1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 * Use is subject to license terms. 30 */ 31 32 #pragma ident "%Z%%M% %I% %E% SMI" 33 34 #include <sys/param.h> 35 #include <sys/types.h> 36 #include <sys/systm.h> 37 #include <sys/cred.h> 38 #include <sys/proc.h> 39 #include <sys/user.h> 40 #include <sys/buf.h> 41 #include <sys/vfs.h> 42 #include <sys/vnode.h> 43 #include <sys/pathname.h> 44 #include <sys/uio.h> 45 #include <sys/file.h> 46 #include <sys/stat.h> 47 #include <sys/errno.h> 48 #include <sys/socket.h> 49 #include <sys/sysmacros.h> 50 #include <sys/siginfo.h> 51 #include <sys/tiuser.h> 52 #include <sys/statvfs.h> 53 #include <sys/stream.h> 54 #include <sys/strsubr.h> 55 #include <sys/stropts.h> 56 #include <sys/timod.h> 57 #include <sys/t_kuser.h> 58 #include <sys/kmem.h> 59 #include <sys/kstat.h> 60 #include <sys/dirent.h> 61 #include <sys/cmn_err.h> 62 #include <sys/debug.h> 63 #include <sys/unistd.h> 64 #include <sys/vtrace.h> 65 #include <sys/mode.h> 66 #include <sys/acl.h> 67 #include <sys/sdt.h> 68 69 #include <rpc/types.h> 70 #include <rpc/auth.h> 71 #include <rpc/auth_unix.h> 72 #include <rpc/auth_des.h> 73 #include <rpc/svc.h> 74 #include <rpc/xdr.h> 75 76 #include <nfs/nfs.h> 77 #include <nfs/export.h> 78 #include <nfs/nfssys.h> 79 #include <nfs/nfs_clnt.h> 80 #include <nfs/nfs_acl.h> 81 #include <nfs/nfs_log.h> 82 #include <nfs/lm.h> 83 #include <nfs/nfs_dispatch.h> 84 #include <nfs/nfs4_drc.h> 85 86 #include <sys/modctl.h> 87 #include <sys/cladm.h> 88 #include <sys/clconf.h> 89 90 #define MAXHOST 32 91 const char *kinet_ntop6(uchar_t *, char *, size_t); 92 93 /* 94 * Module linkage information. 95 */ 96 97 static struct modlmisc modlmisc = { 98 &mod_miscops, "NFS server module" 99 }; 100 101 static struct modlinkage modlinkage = { 102 MODREV_1, (void *)&modlmisc, NULL 103 }; 104 105 char _depends_on[] = "misc/klmmod"; 106 107 int 108 _init(void) 109 { 110 int status; 111 112 if ((status = nfs_srvinit()) != 0) { 113 cmn_err(CE_WARN, "_init: nfs_srvinit failed"); 114 return (status); 115 } 116 117 status = mod_install((struct modlinkage *)&modlinkage); 118 if (status != 0) { 119 /* 120 * Could not load module, cleanup previous 121 * initialization work. 122 */ 123 nfs_srvfini(); 124 } 125 126 /* 127 * Initialise some placeholders for nfssys() calls. These have 128 * to be declared by the nfs module, since that handles nfssys() 129 * calls - also used by NFS clients - but are provided by this 130 * nfssrv module. These also then serve as confirmation to the 131 * relevant code in nfs that nfssrv has been loaded, as they're 132 * initially NULL. 133 */ 134 nfs_srv_quiesce_func = nfs_srv_quiesce_all; 135 nfs_srv_dss_func = rfs4_dss_setpaths; 136 137 /* setup DSS paths here; must be done before initial server startup */ 138 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 139 140 return (status); 141 } 142 143 int 144 _fini() 145 { 146 return (EBUSY); 147 } 148 149 int 150 _info(struct modinfo *modinfop) 151 { 152 return (mod_info(&modlinkage, modinfop)); 153 } 154 155 /* 156 * PUBLICFH_CHECK() checks if the dispatch routine supports 157 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the 158 * incoming request is using the public filehandle. The check duplicates 159 * the exportmatch() call done in checkexport(), and we should consider 160 * modifying those routines to avoid the duplication. For now, we optimize 161 * by calling exportmatch() only after checking that the dispatch routine 162 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported 163 * public (i.e., not the placeholder). 164 */ 165 #define PUBLICFH_CHECK(disp, exi, fsid, xfid) \ 166 ((disp->dis_flags & RPC_PUBLICFH_OK) && \ 167 ((exi->exi_export.ex_flags & EX_PUBLIC) || \ 168 (exi == exi_public && exportmatch(exi_root, \ 169 fsid, xfid)))) 170 171 static void nfs_srv_shutdown_all(int); 172 static void rfs4_server_start(int); 173 static void nullfree(void); 174 static void rfs_dispatch(struct svc_req *, SVCXPRT *); 175 static void acl_dispatch(struct svc_req *, SVCXPRT *); 176 static void common_dispatch(struct svc_req *, SVCXPRT *, 177 rpcvers_t, rpcvers_t, char *, 178 struct rpc_disptable *); 179 static void hanfsv4_failover(void); 180 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int, 181 bool_t); 182 static char *client_name(struct svc_req *req); 183 static char *client_addr(struct svc_req *req, char *buf); 184 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *); 185 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *); 186 187 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \ 188 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \ 189 (nb)->len = (xprt)->xp_rtaddr.len; \ 190 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \ 191 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \ 192 } 193 194 /* 195 * Public Filehandle common nfs routines 196 */ 197 static int MCLpath(char **); 198 static void URLparse(char *); 199 200 /* 201 * NFS callout table. 202 * This table is used by svc_getreq() to dispatch a request with 203 * a given prog/vers pair to an appropriate service provider 204 * dispatch routine. 205 * 206 * NOTE: ordering is relied upon below when resetting the version min/max 207 * for NFS_PROGRAM. Careful, if this is ever changed. 208 */ 209 static SVC_CALLOUT __nfs_sc_clts[] = { 210 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 211 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 212 }; 213 214 static SVC_CALLOUT_TABLE nfs_sct_clts = { 215 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE, 216 __nfs_sc_clts 217 }; 218 219 static SVC_CALLOUT __nfs_sc_cots[] = { 220 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 221 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 222 }; 223 224 static SVC_CALLOUT_TABLE nfs_sct_cots = { 225 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots 226 }; 227 228 static SVC_CALLOUT __nfs_sc_rdma[] = { 229 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 230 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 231 }; 232 233 static SVC_CALLOUT_TABLE nfs_sct_rdma = { 234 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma 235 }; 236 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT; 237 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT; 238 239 /* 240 * Used to track the state of the server so that initialization 241 * can be done properly. 242 */ 243 typedef enum { 244 NFS_SERVER_STOPPED, /* server state destroyed */ 245 NFS_SERVER_STOPPING, /* server state being destroyed */ 246 NFS_SERVER_RUNNING, 247 NFS_SERVER_QUIESCED, /* server state preserved */ 248 NFS_SERVER_OFFLINE /* server pool offline */ 249 } nfs_server_running_t; 250 251 static nfs_server_running_t nfs_server_upordown; 252 static kmutex_t nfs_server_upordown_lock; 253 static kcondvar_t nfs_server_upordown_cv; 254 255 /* 256 * DSS: distributed stable storage 257 * lists of all DSS paths: current, and before last warmstart 258 */ 259 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths; 260 261 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *); 262 263 /* 264 * RDMA wait variables. 265 */ 266 static kcondvar_t rdma_wait_cv; 267 static kmutex_t rdma_wait_mutex; 268 269 /* 270 * Will be called at the point the server pool is being unregistered 271 * from the pool list. From that point onwards, the pool is waiting 272 * to be drained and as such the server state is stale and pertains 273 * to the old instantiation of the NFS server pool. 274 */ 275 void 276 nfs_srv_offline(void) 277 { 278 mutex_enter(&nfs_server_upordown_lock); 279 if (nfs_server_upordown == NFS_SERVER_RUNNING) { 280 nfs_server_upordown = NFS_SERVER_OFFLINE; 281 } 282 mutex_exit(&nfs_server_upordown_lock); 283 } 284 285 /* 286 * Will be called at the point the server pool is being destroyed so 287 * all transports have been closed and no service threads are in 288 * existence. 289 * 290 * If we quiesce the server, we're shutting it down without destroying the 291 * server state. This allows it to warm start subsequently. 292 */ 293 void 294 nfs_srv_stop_all(void) 295 { 296 int quiesce = 0; 297 nfs_srv_shutdown_all(quiesce); 298 } 299 300 /* 301 * This alternative shutdown routine can be requested via nfssys() 302 */ 303 void 304 nfs_srv_quiesce_all(void) 305 { 306 int quiesce = 1; 307 nfs_srv_shutdown_all(quiesce); 308 } 309 310 static void 311 nfs_srv_shutdown_all(int quiesce) { 312 mutex_enter(&nfs_server_upordown_lock); 313 if (quiesce) { 314 if (nfs_server_upordown == NFS_SERVER_RUNNING || 315 nfs_server_upordown == NFS_SERVER_OFFLINE) { 316 nfs_server_upordown = NFS_SERVER_QUIESCED; 317 cv_signal(&nfs_server_upordown_cv); 318 319 /* reset DSS state, for subsequent warm restart */ 320 rfs4_dss_numnewpaths = 0; 321 rfs4_dss_newpaths = NULL; 322 323 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; " 324 "NFSv4 state has been preserved"); 325 } 326 } else { 327 if (nfs_server_upordown == NFS_SERVER_OFFLINE) { 328 nfs_server_upordown = NFS_SERVER_STOPPING; 329 mutex_exit(&nfs_server_upordown_lock); 330 rfs4_state_fini(); 331 rfs4_fini_drc(nfs4_drc); 332 mutex_enter(&nfs_server_upordown_lock); 333 nfs_server_upordown = NFS_SERVER_STOPPED; 334 cv_signal(&nfs_server_upordown_cv); 335 } 336 } 337 mutex_exit(&nfs_server_upordown_lock); 338 } 339 340 static int 341 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp, 342 rpcvers_t versmin, rpcvers_t versmax) 343 { 344 struct strioctl strioc; 345 struct T_info_ack tinfo; 346 int error, retval; 347 348 /* 349 * Find out what type of transport this is. 350 */ 351 strioc.ic_cmd = TI_GETINFO; 352 strioc.ic_timout = -1; 353 strioc.ic_len = sizeof (tinfo); 354 strioc.ic_dp = (char *)&tinfo; 355 tinfo.PRIM_type = T_INFO_REQ; 356 357 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K, 358 CRED(), &retval); 359 if (error || retval) 360 return (error); 361 362 /* 363 * Based on our query of the transport type... 364 * 365 * Reset the min/max versions based on the caller's request 366 * NOTE: This assumes that NFS_PROGRAM is first in the array!! 367 * And the second entry is the NFS_ACL_PROGRAM. 368 */ 369 switch (tinfo.SERV_type) { 370 case T_CLTS: 371 if (versmax == NFS_V4) 372 return (EINVAL); 373 __nfs_sc_clts[0].sc_versmin = versmin; 374 __nfs_sc_clts[0].sc_versmax = versmax; 375 __nfs_sc_clts[1].sc_versmin = versmin; 376 __nfs_sc_clts[1].sc_versmax = versmax; 377 *sctpp = &nfs_sct_clts; 378 break; 379 case T_COTS: 380 case T_COTS_ORD: 381 __nfs_sc_cots[0].sc_versmin = versmin; 382 __nfs_sc_cots[0].sc_versmax = versmax; 383 /* For the NFS_ACL program, check the max version */ 384 if (versmax > NFS_ACL_VERSMAX) 385 versmax = NFS_ACL_VERSMAX; 386 __nfs_sc_cots[1].sc_versmin = versmin; 387 __nfs_sc_cots[1].sc_versmax = versmax; 388 *sctpp = &nfs_sct_cots; 389 break; 390 default: 391 error = EINVAL; 392 } 393 394 return (error); 395 } 396 397 /* 398 * NFS Server system call. 399 * Does all of the work of running a NFS server. 400 * uap->fd is the fd of an open transport provider 401 */ 402 int 403 nfs_svc(struct nfs_svc_args *arg, model_t model) 404 { 405 file_t *fp; 406 SVCMASTERXPRT *xprt; 407 int error; 408 int readsize; 409 char buf[KNC_STRSIZE]; 410 size_t len; 411 STRUCT_HANDLE(nfs_svc_args, uap); 412 struct netbuf addrmask; 413 SVC_CALLOUT_TABLE *sctp = NULL; 414 415 #ifdef lint 416 model = model; /* STRUCT macros don't always refer to it */ 417 #endif 418 419 STRUCT_SET_HANDLE(uap, model, arg); 420 421 /* Check privileges in nfssys() */ 422 423 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL) 424 return (EBADF); 425 426 /* 427 * Set read buffer size to rsize 428 * and add room for RPC headers. 429 */ 430 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA); 431 if (readsize < RPC_MAXDATASIZE) 432 readsize = RPC_MAXDATASIZE; 433 434 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf, 435 KNC_STRSIZE, &len); 436 if (error) { 437 releasef(STRUCT_FGET(uap, fd)); 438 return (error); 439 } 440 441 addrmask.len = STRUCT_FGET(uap, addrmask.len); 442 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen); 443 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP); 444 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf, 445 addrmask.len); 446 if (error) { 447 releasef(STRUCT_FGET(uap, fd)); 448 kmem_free(addrmask.buf, addrmask.maxlen); 449 return (error); 450 } 451 452 nfs_versmin = STRUCT_FGET(uap, versmin); 453 nfs_versmax = STRUCT_FGET(uap, versmax); 454 455 /* Double check the vers min/max ranges */ 456 if ((nfs_versmin > nfs_versmax) || 457 (nfs_versmin < NFS_VERSMIN) || 458 (nfs_versmax > NFS_VERSMAX)) { 459 nfs_versmin = NFS_VERSMIN_DEFAULT; 460 nfs_versmax = NFS_VERSMAX_DEFAULT; 461 } 462 463 if (error = 464 nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) { 465 releasef(STRUCT_FGET(uap, fd)); 466 kmem_free(addrmask.buf, addrmask.maxlen); 467 return (error); 468 } 469 470 /* Initialize nfsv4 server */ 471 if (nfs_versmax == (rpcvers_t)NFS_V4) 472 rfs4_server_start(STRUCT_FGET(uap, delegation)); 473 474 /* Create a transport handle. */ 475 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt, 476 sctp, NULL, NFS_SVCPOOL_ID, TRUE); 477 478 if (error) 479 kmem_free(addrmask.buf, addrmask.maxlen); 480 481 releasef(STRUCT_FGET(uap, fd)); 482 483 /* HA-NFSv4: save the cluster nodeid */ 484 if (cluster_bootflags & CLUSTER_BOOTED) 485 lm_global_nlmid = clconf_get_nodeid(); 486 487 return (error); 488 } 489 490 static void 491 rfs4_server_start(int nfs4_srv_delegation) 492 { 493 /* 494 * Determine if the server has previously been "started" and 495 * if not, do the per instance initialization 496 */ 497 mutex_enter(&nfs_server_upordown_lock); 498 499 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 500 /* Do we need to stop and wait on the previous server? */ 501 while (nfs_server_upordown == NFS_SERVER_STOPPING || 502 nfs_server_upordown == NFS_SERVER_OFFLINE) 503 cv_wait(&nfs_server_upordown_cv, 504 &nfs_server_upordown_lock); 505 506 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 507 (void) svc_pool_control(NFS_SVCPOOL_ID, 508 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline); 509 (void) svc_pool_control(NFS_SVCPOOL_ID, 510 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all); 511 512 /* is this an nfsd warm start? */ 513 if (nfs_server_upordown == NFS_SERVER_QUIESCED) { 514 cmn_err(CE_NOTE, "nfs_server: " 515 "server was previously quiesced; " 516 "existing NFSv4 state will be re-used"); 517 518 /* 519 * HA-NFSv4: this is also the signal 520 * that a Resource Group failover has 521 * occurred. 522 */ 523 if (cluster_bootflags & CLUSTER_BOOTED) 524 hanfsv4_failover(); 525 } else { 526 /* cold start */ 527 rfs4_state_init(); 528 nfs4_drc = rfs4_init_drc(nfs4_drc_max, 529 nfs4_drc_hash); 530 } 531 532 /* 533 * Check to see if delegation is to be 534 * enabled at the server 535 */ 536 if (nfs4_srv_delegation != FALSE) 537 rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE); 538 539 nfs_server_upordown = NFS_SERVER_RUNNING; 540 } 541 cv_signal(&nfs_server_upordown_cv); 542 } 543 mutex_exit(&nfs_server_upordown_lock); 544 } 545 546 /* 547 * If RDMA device available, 548 * start RDMA listener. 549 */ 550 int 551 rdma_start(struct rdma_svc_args *rsa) 552 { 553 int error; 554 rdma_xprt_group_t started_rdma_xprts; 555 556 /* Double check the vers min/max ranges */ 557 if ((rsa->nfs_versmin > rsa->nfs_versmax) || 558 (rsa->nfs_versmin < NFS_VERSMIN) || 559 (rsa->nfs_versmax > NFS_VERSMAX)) { 560 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT; 561 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT; 562 } 563 nfs_versmin = rsa->nfs_versmin; 564 nfs_versmax = rsa->nfs_versmax; 565 566 /* Set the versions in the callout table */ 567 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin; 568 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax; 569 /* For the NFS_ACL program, check the max version */ 570 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin; 571 if (rsa->nfs_versmax > NFS_ACL_VERSMAX) 572 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX; 573 else 574 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax; 575 576 /* Initialize nfsv4 server */ 577 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4) 578 rfs4_server_start(rsa->delegation); 579 580 started_rdma_xprts.rtg_count = 0; 581 started_rdma_xprts.rtg_listhead = NULL; 582 started_rdma_xprts.rtg_poolid = rsa->poolid; 583 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid, 584 &started_rdma_xprts); 585 586 if (error == 0) { 587 mutex_enter(&rdma_wait_mutex); 588 if (!cv_wait_sig(&rdma_wait_cv, &rdma_wait_mutex)) { 589 rdma_stop(started_rdma_xprts); 590 } 591 mutex_exit(&rdma_wait_mutex); 592 } 593 594 return (error); 595 } 596 597 /* ARGSUSED */ 598 void 599 rpc_null(caddr_t *argp, caddr_t *resp) 600 { 601 } 602 603 /* ARGSUSED */ 604 static void 605 rfs_error(caddr_t *argp, caddr_t *resp) 606 { 607 /* return (EOPNOTSUPP); */ 608 } 609 610 static void 611 nullfree(void) 612 { 613 } 614 615 static char *rfscallnames_v2[] = { 616 "RFS2_NULL", 617 "RFS2_GETATTR", 618 "RFS2_SETATTR", 619 "RFS2_ROOT", 620 "RFS2_LOOKUP", 621 "RFS2_READLINK", 622 "RFS2_READ", 623 "RFS2_WRITECACHE", 624 "RFS2_WRITE", 625 "RFS2_CREATE", 626 "RFS2_REMOVE", 627 "RFS2_RENAME", 628 "RFS2_LINK", 629 "RFS2_SYMLINK", 630 "RFS2_MKDIR", 631 "RFS2_RMDIR", 632 "RFS2_READDIR", 633 "RFS2_STATFS" 634 }; 635 636 static struct rpcdisp rfsdisptab_v2[] = { 637 /* 638 * NFS VERSION 2 639 */ 640 641 /* RFS_NULL = 0 */ 642 {rpc_null, 643 xdr_void, NULL_xdrproc_t, 0, 644 xdr_void, NULL_xdrproc_t, 0, 645 nullfree, RPC_IDEMPOTENT, 646 0}, 647 648 /* RFS_GETATTR = 1 */ 649 {rfs_getattr, 650 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 651 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 652 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 653 rfs_getattr_getfh}, 654 655 /* RFS_SETATTR = 2 */ 656 {rfs_setattr, 657 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs), 658 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 659 nullfree, RPC_MAPRESP, 660 rfs_setattr_getfh}, 661 662 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 663 {rfs_error, 664 xdr_void, NULL_xdrproc_t, 0, 665 xdr_void, NULL_xdrproc_t, 0, 666 nullfree, RPC_IDEMPOTENT, 667 0}, 668 669 /* RFS_LOOKUP = 4 */ 670 {rfs_lookup, 671 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 672 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 673 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK, 674 rfs_lookup_getfh}, 675 676 /* RFS_READLINK = 5 */ 677 {rfs_readlink, 678 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 679 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres), 680 rfs_rlfree, RPC_IDEMPOTENT, 681 rfs_readlink_getfh}, 682 683 /* RFS_READ = 6 */ 684 {rfs_read, 685 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs), 686 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult), 687 rfs_rdfree, RPC_IDEMPOTENT, 688 rfs_read_getfh}, 689 690 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 691 {rfs_error, 692 xdr_void, NULL_xdrproc_t, 0, 693 xdr_void, NULL_xdrproc_t, 0, 694 nullfree, RPC_IDEMPOTENT, 695 0}, 696 697 /* RFS_WRITE = 8 */ 698 {rfs_write, 699 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs), 700 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 701 nullfree, RPC_MAPRESP, 702 rfs_write_getfh}, 703 704 /* RFS_CREATE = 9 */ 705 {rfs_create, 706 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 707 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 708 nullfree, RPC_MAPRESP, 709 rfs_create_getfh}, 710 711 /* RFS_REMOVE = 10 */ 712 {rfs_remove, 713 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 714 #ifdef _LITTLE_ENDIAN 715 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 716 #else 717 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 718 #endif 719 nullfree, RPC_MAPRESP, 720 rfs_remove_getfh}, 721 722 /* RFS_RENAME = 11 */ 723 {rfs_rename, 724 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs), 725 #ifdef _LITTLE_ENDIAN 726 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 727 #else 728 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 729 #endif 730 nullfree, RPC_MAPRESP, 731 rfs_rename_getfh}, 732 733 /* RFS_LINK = 12 */ 734 {rfs_link, 735 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs), 736 #ifdef _LITTLE_ENDIAN 737 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 738 #else 739 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 740 #endif 741 nullfree, RPC_MAPRESP, 742 rfs_link_getfh}, 743 744 /* RFS_SYMLINK = 13 */ 745 {rfs_symlink, 746 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs), 747 #ifdef _LITTLE_ENDIAN 748 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 749 #else 750 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 751 #endif 752 nullfree, RPC_MAPRESP, 753 rfs_symlink_getfh}, 754 755 /* RFS_MKDIR = 14 */ 756 {rfs_mkdir, 757 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 758 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 759 nullfree, RPC_MAPRESP, 760 rfs_mkdir_getfh}, 761 762 /* RFS_RMDIR = 15 */ 763 {rfs_rmdir, 764 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 765 #ifdef _LITTLE_ENDIAN 766 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 767 #else 768 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 769 #endif 770 nullfree, RPC_MAPRESP, 771 rfs_rmdir_getfh}, 772 773 /* RFS_READDIR = 16 */ 774 {rfs_readdir, 775 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs), 776 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres), 777 rfs_rddirfree, RPC_IDEMPOTENT, 778 rfs_readdir_getfh}, 779 780 /* RFS_STATFS = 17 */ 781 {rfs_statfs, 782 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 783 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs), 784 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 785 rfs_statfs_getfh}, 786 }; 787 788 static char *rfscallnames_v3[] = { 789 "RFS3_NULL", 790 "RFS3_GETATTR", 791 "RFS3_SETATTR", 792 "RFS3_LOOKUP", 793 "RFS3_ACCESS", 794 "RFS3_READLINK", 795 "RFS3_READ", 796 "RFS3_WRITE", 797 "RFS3_CREATE", 798 "RFS3_MKDIR", 799 "RFS3_SYMLINK", 800 "RFS3_MKNOD", 801 "RFS3_REMOVE", 802 "RFS3_RMDIR", 803 "RFS3_RENAME", 804 "RFS3_LINK", 805 "RFS3_READDIR", 806 "RFS3_READDIRPLUS", 807 "RFS3_FSSTAT", 808 "RFS3_FSINFO", 809 "RFS3_PATHCONF", 810 "RFS3_COMMIT" 811 }; 812 813 static struct rpcdisp rfsdisptab_v3[] = { 814 /* 815 * NFS VERSION 3 816 */ 817 818 /* RFS_NULL = 0 */ 819 {rpc_null, 820 xdr_void, NULL_xdrproc_t, 0, 821 xdr_void, NULL_xdrproc_t, 0, 822 nullfree, RPC_IDEMPOTENT, 823 0}, 824 825 /* RFS3_GETATTR = 1 */ 826 {rfs3_getattr, 827 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args), 828 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res), 829 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON), 830 rfs3_getattr_getfh}, 831 832 /* RFS3_SETATTR = 2 */ 833 {rfs3_setattr, 834 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args), 835 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res), 836 nullfree, 0, 837 rfs3_setattr_getfh}, 838 839 /* RFS3_LOOKUP = 3 */ 840 {rfs3_lookup, 841 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args), 842 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res), 843 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK), 844 rfs3_lookup_getfh}, 845 846 /* RFS3_ACCESS = 4 */ 847 {rfs3_access, 848 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args), 849 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res), 850 nullfree, RPC_IDEMPOTENT, 851 rfs3_access_getfh}, 852 853 /* RFS3_READLINK = 5 */ 854 {rfs3_readlink, 855 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args), 856 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res), 857 rfs3_readlink_free, RPC_IDEMPOTENT, 858 rfs3_readlink_getfh}, 859 860 /* RFS3_READ = 6 */ 861 {rfs3_read, 862 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args), 863 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res), 864 rfs3_read_free, RPC_IDEMPOTENT, 865 rfs3_read_getfh}, 866 867 /* RFS3_WRITE = 7 */ 868 {rfs3_write, 869 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args), 870 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res), 871 nullfree, 0, 872 rfs3_write_getfh}, 873 874 /* RFS3_CREATE = 8 */ 875 {rfs3_create, 876 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args), 877 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res), 878 nullfree, 0, 879 rfs3_create_getfh}, 880 881 /* RFS3_MKDIR = 9 */ 882 {rfs3_mkdir, 883 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args), 884 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res), 885 nullfree, 0, 886 rfs3_mkdir_getfh}, 887 888 /* RFS3_SYMLINK = 10 */ 889 {rfs3_symlink, 890 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args), 891 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res), 892 nullfree, 0, 893 rfs3_symlink_getfh}, 894 895 /* RFS3_MKNOD = 11 */ 896 {rfs3_mknod, 897 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args), 898 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res), 899 nullfree, 0, 900 rfs3_mknod_getfh}, 901 902 /* RFS3_REMOVE = 12 */ 903 {rfs3_remove, 904 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args), 905 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res), 906 nullfree, 0, 907 rfs3_remove_getfh}, 908 909 /* RFS3_RMDIR = 13 */ 910 {rfs3_rmdir, 911 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args), 912 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res), 913 nullfree, 0, 914 rfs3_rmdir_getfh}, 915 916 /* RFS3_RENAME = 14 */ 917 {rfs3_rename, 918 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args), 919 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res), 920 nullfree, 0, 921 rfs3_rename_getfh}, 922 923 /* RFS3_LINK = 15 */ 924 {rfs3_link, 925 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args), 926 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res), 927 nullfree, 0, 928 rfs3_link_getfh}, 929 930 /* RFS3_READDIR = 16 */ 931 {rfs3_readdir, 932 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args), 933 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res), 934 rfs3_readdir_free, RPC_IDEMPOTENT, 935 rfs3_readdir_getfh}, 936 937 /* RFS3_READDIRPLUS = 17 */ 938 {rfs3_readdirplus, 939 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args), 940 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res), 941 rfs3_readdirplus_free, RPC_AVOIDWORK, 942 rfs3_readdirplus_getfh}, 943 944 /* RFS3_FSSTAT = 18 */ 945 {rfs3_fsstat, 946 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args), 947 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res), 948 nullfree, RPC_IDEMPOTENT, 949 rfs3_fsstat_getfh}, 950 951 /* RFS3_FSINFO = 19 */ 952 {rfs3_fsinfo, 953 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args), 954 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res), 955 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON, 956 rfs3_fsinfo_getfh}, 957 958 /* RFS3_PATHCONF = 20 */ 959 {rfs3_pathconf, 960 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args), 961 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res), 962 nullfree, RPC_IDEMPOTENT, 963 rfs3_pathconf_getfh}, 964 965 /* RFS3_COMMIT = 21 */ 966 {rfs3_commit, 967 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args), 968 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res), 969 nullfree, RPC_IDEMPOTENT, 970 rfs3_commit_getfh}, 971 }; 972 973 static char *rfscallnames_v4[] = { 974 "RFS4_NULL", 975 "RFS4_COMPOUND", 976 "RFS4_NULL", 977 "RFS4_NULL", 978 "RFS4_NULL", 979 "RFS4_NULL", 980 "RFS4_NULL", 981 "RFS4_NULL", 982 "RFS4_CREATE" 983 }; 984 985 static struct rpcdisp rfsdisptab_v4[] = { 986 /* 987 * NFS VERSION 4 988 */ 989 990 /* RFS_NULL = 0 */ 991 {rpc_null, 992 xdr_void, NULL_xdrproc_t, 0, 993 xdr_void, NULL_xdrproc_t, 0, 994 nullfree, RPC_IDEMPOTENT, 0}, 995 996 /* RFS4_compound = 1 */ 997 {rfs4_compound, 998 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args), 999 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res), 1000 rfs4_compound_free, 0, 0}, 1001 }; 1002 1003 union rfs_args { 1004 /* 1005 * NFS VERSION 2 1006 */ 1007 1008 /* RFS_NULL = 0 */ 1009 1010 /* RFS_GETATTR = 1 */ 1011 fhandle_t nfs2_getattr_args; 1012 1013 /* RFS_SETATTR = 2 */ 1014 struct nfssaargs nfs2_setattr_args; 1015 1016 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1017 1018 /* RFS_LOOKUP = 4 */ 1019 struct nfsdiropargs nfs2_lookup_args; 1020 1021 /* RFS_READLINK = 5 */ 1022 fhandle_t nfs2_readlink_args; 1023 1024 /* RFS_READ = 6 */ 1025 struct nfsreadargs nfs2_read_args; 1026 1027 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1028 1029 /* RFS_WRITE = 8 */ 1030 struct nfswriteargs nfs2_write_args; 1031 1032 /* RFS_CREATE = 9 */ 1033 struct nfscreatargs nfs2_create_args; 1034 1035 /* RFS_REMOVE = 10 */ 1036 struct nfsdiropargs nfs2_remove_args; 1037 1038 /* RFS_RENAME = 11 */ 1039 struct nfsrnmargs nfs2_rename_args; 1040 1041 /* RFS_LINK = 12 */ 1042 struct nfslinkargs nfs2_link_args; 1043 1044 /* RFS_SYMLINK = 13 */ 1045 struct nfsslargs nfs2_symlink_args; 1046 1047 /* RFS_MKDIR = 14 */ 1048 struct nfscreatargs nfs2_mkdir_args; 1049 1050 /* RFS_RMDIR = 15 */ 1051 struct nfsdiropargs nfs2_rmdir_args; 1052 1053 /* RFS_READDIR = 16 */ 1054 struct nfsrddirargs nfs2_readdir_args; 1055 1056 /* RFS_STATFS = 17 */ 1057 fhandle_t nfs2_statfs_args; 1058 1059 /* 1060 * NFS VERSION 3 1061 */ 1062 1063 /* RFS_NULL = 0 */ 1064 1065 /* RFS3_GETATTR = 1 */ 1066 GETATTR3args nfs3_getattr_args; 1067 1068 /* RFS3_SETATTR = 2 */ 1069 SETATTR3args nfs3_setattr_args; 1070 1071 /* RFS3_LOOKUP = 3 */ 1072 LOOKUP3args nfs3_lookup_args; 1073 1074 /* RFS3_ACCESS = 4 */ 1075 ACCESS3args nfs3_access_args; 1076 1077 /* RFS3_READLINK = 5 */ 1078 READLINK3args nfs3_readlink_args; 1079 1080 /* RFS3_READ = 6 */ 1081 READ3args nfs3_read_args; 1082 1083 /* RFS3_WRITE = 7 */ 1084 WRITE3args nfs3_write_args; 1085 1086 /* RFS3_CREATE = 8 */ 1087 CREATE3args nfs3_create_args; 1088 1089 /* RFS3_MKDIR = 9 */ 1090 MKDIR3args nfs3_mkdir_args; 1091 1092 /* RFS3_SYMLINK = 10 */ 1093 SYMLINK3args nfs3_symlink_args; 1094 1095 /* RFS3_MKNOD = 11 */ 1096 MKNOD3args nfs3_mknod_args; 1097 1098 /* RFS3_REMOVE = 12 */ 1099 REMOVE3args nfs3_remove_args; 1100 1101 /* RFS3_RMDIR = 13 */ 1102 RMDIR3args nfs3_rmdir_args; 1103 1104 /* RFS3_RENAME = 14 */ 1105 RENAME3args nfs3_rename_args; 1106 1107 /* RFS3_LINK = 15 */ 1108 LINK3args nfs3_link_args; 1109 1110 /* RFS3_READDIR = 16 */ 1111 READDIR3args nfs3_readdir_args; 1112 1113 /* RFS3_READDIRPLUS = 17 */ 1114 READDIRPLUS3args nfs3_readdirplus_args; 1115 1116 /* RFS3_FSSTAT = 18 */ 1117 FSSTAT3args nfs3_fsstat_args; 1118 1119 /* RFS3_FSINFO = 19 */ 1120 FSINFO3args nfs3_fsinfo_args; 1121 1122 /* RFS3_PATHCONF = 20 */ 1123 PATHCONF3args nfs3_pathconf_args; 1124 1125 /* RFS3_COMMIT = 21 */ 1126 COMMIT3args nfs3_commit_args; 1127 1128 /* 1129 * NFS VERSION 4 1130 */ 1131 1132 /* RFS_NULL = 0 */ 1133 1134 /* COMPUND = 1 */ 1135 COMPOUND4args nfs4_compound_args; 1136 }; 1137 1138 union rfs_res { 1139 /* 1140 * NFS VERSION 2 1141 */ 1142 1143 /* RFS_NULL = 0 */ 1144 1145 /* RFS_GETATTR = 1 */ 1146 struct nfsattrstat nfs2_getattr_res; 1147 1148 /* RFS_SETATTR = 2 */ 1149 struct nfsattrstat nfs2_setattr_res; 1150 1151 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1152 1153 /* RFS_LOOKUP = 4 */ 1154 struct nfsdiropres nfs2_lookup_res; 1155 1156 /* RFS_READLINK = 5 */ 1157 struct nfsrdlnres nfs2_readlink_res; 1158 1159 /* RFS_READ = 6 */ 1160 struct nfsrdresult nfs2_read_res; 1161 1162 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1163 1164 /* RFS_WRITE = 8 */ 1165 struct nfsattrstat nfs2_write_res; 1166 1167 /* RFS_CREATE = 9 */ 1168 struct nfsdiropres nfs2_create_res; 1169 1170 /* RFS_REMOVE = 10 */ 1171 enum nfsstat nfs2_remove_res; 1172 1173 /* RFS_RENAME = 11 */ 1174 enum nfsstat nfs2_rename_res; 1175 1176 /* RFS_LINK = 12 */ 1177 enum nfsstat nfs2_link_res; 1178 1179 /* RFS_SYMLINK = 13 */ 1180 enum nfsstat nfs2_symlink_res; 1181 1182 /* RFS_MKDIR = 14 */ 1183 struct nfsdiropres nfs2_mkdir_res; 1184 1185 /* RFS_RMDIR = 15 */ 1186 enum nfsstat nfs2_rmdir_res; 1187 1188 /* RFS_READDIR = 16 */ 1189 struct nfsrddirres nfs2_readdir_res; 1190 1191 /* RFS_STATFS = 17 */ 1192 struct nfsstatfs nfs2_statfs_res; 1193 1194 /* 1195 * NFS VERSION 3 1196 */ 1197 1198 /* RFS_NULL = 0 */ 1199 1200 /* RFS3_GETATTR = 1 */ 1201 GETATTR3res nfs3_getattr_res; 1202 1203 /* RFS3_SETATTR = 2 */ 1204 SETATTR3res nfs3_setattr_res; 1205 1206 /* RFS3_LOOKUP = 3 */ 1207 LOOKUP3res nfs3_lookup_res; 1208 1209 /* RFS3_ACCESS = 4 */ 1210 ACCESS3res nfs3_access_res; 1211 1212 /* RFS3_READLINK = 5 */ 1213 READLINK3res nfs3_readlink_res; 1214 1215 /* RFS3_READ = 6 */ 1216 READ3res nfs3_read_res; 1217 1218 /* RFS3_WRITE = 7 */ 1219 WRITE3res nfs3_write_res; 1220 1221 /* RFS3_CREATE = 8 */ 1222 CREATE3res nfs3_create_res; 1223 1224 /* RFS3_MKDIR = 9 */ 1225 MKDIR3res nfs3_mkdir_res; 1226 1227 /* RFS3_SYMLINK = 10 */ 1228 SYMLINK3res nfs3_symlink_res; 1229 1230 /* RFS3_MKNOD = 11 */ 1231 MKNOD3res nfs3_mknod_res; 1232 1233 /* RFS3_REMOVE = 12 */ 1234 REMOVE3res nfs3_remove_res; 1235 1236 /* RFS3_RMDIR = 13 */ 1237 RMDIR3res nfs3_rmdir_res; 1238 1239 /* RFS3_RENAME = 14 */ 1240 RENAME3res nfs3_rename_res; 1241 1242 /* RFS3_LINK = 15 */ 1243 LINK3res nfs3_link_res; 1244 1245 /* RFS3_READDIR = 16 */ 1246 READDIR3res nfs3_readdir_res; 1247 1248 /* RFS3_READDIRPLUS = 17 */ 1249 READDIRPLUS3res nfs3_readdirplus_res; 1250 1251 /* RFS3_FSSTAT = 18 */ 1252 FSSTAT3res nfs3_fsstat_res; 1253 1254 /* RFS3_FSINFO = 19 */ 1255 FSINFO3res nfs3_fsinfo_res; 1256 1257 /* RFS3_PATHCONF = 20 */ 1258 PATHCONF3res nfs3_pathconf_res; 1259 1260 /* RFS3_COMMIT = 21 */ 1261 COMMIT3res nfs3_commit_res; 1262 1263 /* 1264 * NFS VERSION 4 1265 */ 1266 1267 /* RFS_NULL = 0 */ 1268 1269 /* RFS4_COMPOUND = 1 */ 1270 COMPOUND4res nfs4_compound_res; 1271 1272 }; 1273 1274 static struct rpc_disptable rfs_disptable[] = { 1275 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]), 1276 rfscallnames_v2, 1277 &rfsproccnt_v2_ptr, rfsdisptab_v2}, 1278 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]), 1279 rfscallnames_v3, 1280 &rfsproccnt_v3_ptr, rfsdisptab_v3}, 1281 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]), 1282 rfscallnames_v4, 1283 &rfsproccnt_v4_ptr, rfsdisptab_v4}, 1284 }; 1285 1286 /* 1287 * If nfs_portmon is set, then clients are required to use privileged 1288 * ports (ports < IPPORT_RESERVED) in order to get NFS services. 1289 * 1290 * N.B.: this attempt to carry forward the already ill-conceived notion 1291 * of privileged ports for TCP/UDP is really quite ineffectual. Not only 1292 * is it transport-dependent, it's laughably easy to spoof. If you're 1293 * really interested in security, you must start with secure RPC instead. 1294 */ 1295 static int nfs_portmon = 0; 1296 1297 #ifdef DEBUG 1298 static int cred_hits = 0; 1299 static int cred_misses = 0; 1300 #endif 1301 1302 1303 #ifdef DEBUG 1304 /* 1305 * Debug code to allow disabling of rfs_dispatch() use of 1306 * fastxdrargs() and fastxdrres() calls for testing purposes. 1307 */ 1308 static int rfs_no_fast_xdrargs = 0; 1309 static int rfs_no_fast_xdrres = 0; 1310 #endif 1311 1312 union acl_args { 1313 /* 1314 * ACL VERSION 2 1315 */ 1316 1317 /* ACL2_NULL = 0 */ 1318 1319 /* ACL2_GETACL = 1 */ 1320 GETACL2args acl2_getacl_args; 1321 1322 /* ACL2_SETACL = 2 */ 1323 SETACL2args acl2_setacl_args; 1324 1325 /* ACL2_GETATTR = 3 */ 1326 GETATTR2args acl2_getattr_args; 1327 1328 /* ACL2_ACCESS = 4 */ 1329 ACCESS2args acl2_access_args; 1330 1331 /* ACL2_GETXATTRDIR = 5 */ 1332 GETXATTRDIR2args acl2_getxattrdir_args; 1333 1334 /* 1335 * ACL VERSION 3 1336 */ 1337 1338 /* ACL3_NULL = 0 */ 1339 1340 /* ACL3_GETACL = 1 */ 1341 GETACL3args acl3_getacl_args; 1342 1343 /* ACL3_SETACL = 2 */ 1344 SETACL3args acl3_setacl; 1345 1346 /* ACL3_GETXATTRDIR = 3 */ 1347 GETXATTRDIR3args acl3_getxattrdir_args; 1348 1349 }; 1350 1351 union acl_res { 1352 /* 1353 * ACL VERSION 2 1354 */ 1355 1356 /* ACL2_NULL = 0 */ 1357 1358 /* ACL2_GETACL = 1 */ 1359 GETACL2res acl2_getacl_res; 1360 1361 /* ACL2_SETACL = 2 */ 1362 SETACL2res acl2_setacl_res; 1363 1364 /* ACL2_GETATTR = 3 */ 1365 GETATTR2res acl2_getattr_res; 1366 1367 /* ACL2_ACCESS = 4 */ 1368 ACCESS2res acl2_access_res; 1369 1370 /* ACL2_GETXATTRDIR = 5 */ 1371 GETXATTRDIR2args acl2_getxattrdir_res; 1372 1373 /* 1374 * ACL VERSION 3 1375 */ 1376 1377 /* ACL3_NULL = 0 */ 1378 1379 /* ACL3_GETACL = 1 */ 1380 GETACL3res acl3_getacl_res; 1381 1382 /* ACL3_SETACL = 2 */ 1383 SETACL3res acl3_setacl_res; 1384 1385 /* ACL3_GETXATTRDIR = 3 */ 1386 GETXATTRDIR3res acl3_getxattrdir_res; 1387 1388 }; 1389 1390 static bool_t 1391 auth_tooweak(struct svc_req *req, char *res) 1392 { 1393 1394 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) { 1395 struct nfsdiropres *dr = (struct nfsdiropres *)res; 1396 if (dr->dr_status == WNFSERR_CLNT_FLAVOR) 1397 return (TRUE); 1398 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) { 1399 LOOKUP3res *resp = (LOOKUP3res *)res; 1400 if (resp->status == WNFSERR_CLNT_FLAVOR) 1401 return (TRUE); 1402 } 1403 return (FALSE); 1404 } 1405 1406 1407 static void 1408 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers, 1409 rpcvers_t max_vers, char *pgmname, 1410 struct rpc_disptable *disptable) 1411 { 1412 int which; 1413 rpcvers_t vers; 1414 char *args; 1415 union { 1416 union rfs_args ra; 1417 union acl_args aa; 1418 } args_buf; 1419 char *res; 1420 union { 1421 union rfs_res rr; 1422 union acl_res ar; 1423 } res_buf; 1424 struct rpcdisp *disp = NULL; 1425 int dis_flags = 0; 1426 cred_t *cr; 1427 int error = 0; 1428 int anon_ok; 1429 struct exportinfo *exi = NULL; 1430 unsigned int nfslog_rec_id; 1431 int dupstat; 1432 struct dupreq *dr; 1433 int authres; 1434 bool_t publicfh_ok = FALSE; 1435 enum_t auth_flavor; 1436 bool_t dupcached = FALSE; 1437 struct netbuf nb; 1438 bool_t logging_enabled = FALSE; 1439 struct exportinfo *nfslog_exi = NULL; 1440 char **procnames; 1441 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 1442 1443 vers = req->rq_vers; 1444 1445 if (vers < min_vers || vers > max_vers) { 1446 svcerr_progvers(req->rq_xprt, min_vers, max_vers); 1447 error++; 1448 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers); 1449 goto done; 1450 } 1451 vers -= min_vers; 1452 1453 which = req->rq_proc; 1454 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) { 1455 svcerr_noproc(req->rq_xprt); 1456 error++; 1457 goto done; 1458 } 1459 1460 (*(disptable[(int)vers].dis_proccntp))[which].value.ui64++; 1461 1462 disp = &disptable[(int)vers].dis_table[which]; 1463 procnames = disptable[(int)vers].dis_procnames; 1464 1465 auth_flavor = req->rq_cred.oa_flavor; 1466 1467 /* 1468 * Deserialize into the args struct. 1469 */ 1470 args = (char *)&args_buf; 1471 1472 #ifdef DEBUG 1473 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) || 1474 disp->dis_fastxdrargs == NULL_xdrproc_t || 1475 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1476 #else 1477 if ((auth_flavor == RPCSEC_GSS) || 1478 disp->dis_fastxdrargs == NULL_xdrproc_t || 1479 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1480 #endif 1481 { 1482 bzero(args, disp->dis_argsz); 1483 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) { 1484 svcerr_decode(xprt); 1485 error++; 1486 cmn_err(CE_NOTE, 1487 "Failed to decode arguments for %s version %u " 1488 "procedure %s client %s%s", 1489 pgmname, vers + min_vers, procnames[which], 1490 client_name(req), client_addr(req, cbuf)); 1491 goto done; 1492 } 1493 } 1494 1495 /* 1496 * If Version 4 use that specific dispatch function. 1497 */ 1498 if (req->rq_vers == 4) { 1499 error += rfs4_dispatch(disp, req, xprt, args); 1500 goto done; 1501 } 1502 1503 dis_flags = disp->dis_flags; 1504 1505 /* 1506 * Find export information and check authentication, 1507 * setting the credential if everything is ok. 1508 */ 1509 if (disp->dis_getfh != NULL) { 1510 void *fh; 1511 fsid_t *fsid; 1512 fid_t *fid, *xfid; 1513 fhandle_t *fh2; 1514 nfs_fh3 *fh3; 1515 1516 fh = (*disp->dis_getfh)(args); 1517 switch (req->rq_vers) { 1518 case NFS_VERSION: 1519 fh2 = (fhandle_t *)fh; 1520 fsid = &fh2->fh_fsid; 1521 fid = (fid_t *)&fh2->fh_len; 1522 xfid = (fid_t *)&fh2->fh_xlen; 1523 break; 1524 case NFS_V3: 1525 fh3 = (nfs_fh3 *)fh; 1526 fsid = &fh3->fh3_fsid; 1527 fid = FH3TOFIDP(fh3); 1528 xfid = FH3TOXFIDP(fh3); 1529 break; 1530 } 1531 1532 /* 1533 * Fix for bug 1038302 - corbin 1534 * There is a problem here if anonymous access is 1535 * disallowed. If the current request is part of the 1536 * client's mount process for the requested filesystem, 1537 * then it will carry root (uid 0) credentials on it, and 1538 * will be denied by checkauth if that client does not 1539 * have explicit root=0 permission. This will cause the 1540 * client's mount operation to fail. As a work-around, 1541 * we check here to see if the request is a getattr or 1542 * statfs operation on the exported vnode itself, and 1543 * pass a flag to checkauth with the result of this test. 1544 * 1545 * The filehandle refers to the mountpoint itself if 1546 * the fh_data and fh_xdata portions of the filehandle 1547 * are equal. 1548 * 1549 * Added anon_ok argument to checkauth(). 1550 */ 1551 1552 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid)) 1553 anon_ok = 1; 1554 else 1555 anon_ok = 0; 1556 1557 cr = xprt->xp_cred; 1558 ASSERT(cr != NULL); 1559 #ifdef DEBUG 1560 if (crgetref(cr) != 1) { 1561 crfree(cr); 1562 cr = crget(); 1563 xprt->xp_cred = cr; 1564 cred_misses++; 1565 } else 1566 cred_hits++; 1567 #else 1568 if (crgetref(cr) != 1) { 1569 crfree(cr); 1570 cr = crget(); 1571 xprt->xp_cred = cr; 1572 } 1573 #endif 1574 1575 exi = checkexport(fsid, xfid); 1576 1577 if (exi != NULL) { 1578 publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid); 1579 1580 /* 1581 * Don't allow non-V4 clients access 1582 * to pseudo exports 1583 */ 1584 if (PSEUDO(exi)) { 1585 svcerr_weakauth(xprt); 1586 error++; 1587 goto done; 1588 } 1589 1590 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok); 1591 /* 1592 * authres > 0: authentication OK - proceed 1593 * authres == 0: authentication weak - return error 1594 * authres < 0: authentication timeout - drop 1595 */ 1596 if (authres <= 0) { 1597 if (authres == 0) { 1598 svcerr_weakauth(xprt); 1599 error++; 1600 } 1601 goto done; 1602 } 1603 } 1604 } else 1605 cr = NULL; 1606 1607 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) { 1608 res = (char *)SVC_GETRES(xprt, disp->dis_ressz); 1609 if (res == NULL) 1610 res = (char *)&res_buf; 1611 } else 1612 res = (char *)&res_buf; 1613 1614 if (!(dis_flags & RPC_IDEMPOTENT)) { 1615 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr, 1616 &dupcached); 1617 1618 switch (dupstat) { 1619 case DUP_ERROR: 1620 svcerr_systemerr(xprt); 1621 error++; 1622 goto done; 1623 /* NOTREACHED */ 1624 case DUP_INPROGRESS: 1625 if (res != (char *)&res_buf) 1626 SVC_FREERES(xprt); 1627 error++; 1628 goto done; 1629 /* NOTREACHED */ 1630 case DUP_NEW: 1631 case DUP_DROP: 1632 curthread->t_flag |= T_DONTPEND; 1633 1634 (*disp->dis_proc)(args, res, exi, req, cr); 1635 1636 curthread->t_flag &= ~T_DONTPEND; 1637 if (curthread->t_flag & T_WOULDBLOCK) { 1638 curthread->t_flag &= ~T_WOULDBLOCK; 1639 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1640 disp->dis_ressz, DUP_DROP); 1641 if (res != (char *)&res_buf) 1642 SVC_FREERES(xprt); 1643 error++; 1644 goto done; 1645 } 1646 if (dis_flags & RPC_AVOIDWORK) { 1647 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1648 disp->dis_ressz, DUP_DROP); 1649 } else { 1650 SVC_DUPDONE_EXT(xprt, dr, res, 1651 disp->dis_resfree == nullfree ? NULL : 1652 disp->dis_resfree, 1653 disp->dis_ressz, DUP_DONE); 1654 dupcached = TRUE; 1655 } 1656 break; 1657 case DUP_DONE: 1658 break; 1659 } 1660 1661 } else { 1662 curthread->t_flag |= T_DONTPEND; 1663 1664 (*disp->dis_proc)(args, res, exi, req, cr); 1665 1666 curthread->t_flag &= ~T_DONTPEND; 1667 if (curthread->t_flag & T_WOULDBLOCK) { 1668 curthread->t_flag &= ~T_WOULDBLOCK; 1669 if (res != (char *)&res_buf) 1670 SVC_FREERES(xprt); 1671 error++; 1672 goto done; 1673 } 1674 } 1675 1676 if (auth_tooweak(req, res)) { 1677 svcerr_weakauth(xprt); 1678 error++; 1679 goto done; 1680 } 1681 1682 /* 1683 * Check to see if logging has been enabled on the server. 1684 * If so, then obtain the export info struct to be used for 1685 * the later writing of the log record. This is done for 1686 * the case that a lookup is done across a non-logged public 1687 * file system. 1688 */ 1689 if (nfslog_buffer_list != NULL) { 1690 nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id); 1691 /* 1692 * Is logging enabled? 1693 */ 1694 logging_enabled = (nfslog_exi != NULL); 1695 1696 /* 1697 * Copy the netbuf for logging purposes, before it is 1698 * freed by svc_sendreply(). 1699 */ 1700 if (logging_enabled) { 1701 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb); 1702 /* 1703 * If RPC_MAPRESP flag set (i.e. in V2 ops) the 1704 * res gets copied directly into the mbuf and 1705 * may be freed soon after the sendreply. So we 1706 * must copy it here to a safe place... 1707 */ 1708 if (res != (char *)&res_buf) { 1709 bcopy(res, (char *)&res_buf, disp->dis_ressz); 1710 } 1711 } 1712 } 1713 1714 /* 1715 * Serialize and send results struct 1716 */ 1717 #ifdef DEBUG 1718 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf) 1719 #else 1720 if (res != (char *)&res_buf) 1721 #endif 1722 { 1723 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) { 1724 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1725 error++; 1726 } 1727 } else { 1728 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) { 1729 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1730 error++; 1731 } 1732 } 1733 1734 /* 1735 * Log if needed 1736 */ 1737 if (logging_enabled) { 1738 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf, 1739 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER); 1740 exi_rele(nfslog_exi); 1741 kmem_free((&nb)->buf, (&nb)->len); 1742 } 1743 1744 /* 1745 * Free results struct. With the addition of NFS V4 we can 1746 * have non-idempotent procedures with functions. 1747 */ 1748 if (disp->dis_resfree != nullfree && dupcached == FALSE) { 1749 (*disp->dis_resfree)(res); 1750 } 1751 1752 done: 1753 /* 1754 * Free arguments struct 1755 */ 1756 if (disp) { 1757 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) { 1758 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1759 error++; 1760 } 1761 } else { 1762 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) { 1763 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1764 error++; 1765 } 1766 } 1767 1768 if (exi != NULL) 1769 exi_rele(exi); 1770 1771 global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error; 1772 1773 global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++; 1774 } 1775 1776 static void 1777 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt) 1778 { 1779 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX, 1780 "NFS", rfs_disptable); 1781 } 1782 1783 static char *aclcallnames_v2[] = { 1784 "ACL2_NULL", 1785 "ACL2_GETACL", 1786 "ACL2_SETACL", 1787 "ACL2_GETATTR", 1788 "ACL2_ACCESS", 1789 "ACL2_GETXATTRDIR" 1790 }; 1791 1792 static struct rpcdisp acldisptab_v2[] = { 1793 /* 1794 * ACL VERSION 2 1795 */ 1796 1797 /* ACL2_NULL = 0 */ 1798 {rpc_null, 1799 xdr_void, NULL_xdrproc_t, 0, 1800 xdr_void, NULL_xdrproc_t, 0, 1801 nullfree, RPC_IDEMPOTENT, 1802 0}, 1803 1804 /* ACL2_GETACL = 1 */ 1805 {acl2_getacl, 1806 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args), 1807 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res), 1808 acl2_getacl_free, RPC_IDEMPOTENT, 1809 acl2_getacl_getfh}, 1810 1811 /* ACL2_SETACL = 2 */ 1812 {acl2_setacl, 1813 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args), 1814 #ifdef _LITTLE_ENDIAN 1815 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res), 1816 #else 1817 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res), 1818 #endif 1819 nullfree, RPC_MAPRESP, 1820 acl2_setacl_getfh}, 1821 1822 /* ACL2_GETATTR = 3 */ 1823 {acl2_getattr, 1824 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args), 1825 #ifdef _LITTLE_ENDIAN 1826 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res), 1827 #else 1828 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res), 1829 #endif 1830 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 1831 acl2_getattr_getfh}, 1832 1833 /* ACL2_ACCESS = 4 */ 1834 {acl2_access, 1835 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args), 1836 #ifdef _LITTLE_ENDIAN 1837 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res), 1838 #else 1839 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res), 1840 #endif 1841 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP, 1842 acl2_access_getfh}, 1843 1844 /* ACL2_GETXATTRDIR = 5 */ 1845 {acl2_getxattrdir, 1846 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args), 1847 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res), 1848 nullfree, RPC_IDEMPOTENT, 1849 acl2_getxattrdir_getfh}, 1850 }; 1851 1852 static char *aclcallnames_v3[] = { 1853 "ACL3_NULL", 1854 "ACL3_GETACL", 1855 "ACL3_SETACL", 1856 "ACL3_GETXATTRDIR" 1857 }; 1858 1859 static struct rpcdisp acldisptab_v3[] = { 1860 /* 1861 * ACL VERSION 3 1862 */ 1863 1864 /* ACL3_NULL = 0 */ 1865 {rpc_null, 1866 xdr_void, NULL_xdrproc_t, 0, 1867 xdr_void, NULL_xdrproc_t, 0, 1868 nullfree, RPC_IDEMPOTENT, 1869 0}, 1870 1871 /* ACL3_GETACL = 1 */ 1872 {acl3_getacl, 1873 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args), 1874 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res), 1875 acl3_getacl_free, RPC_IDEMPOTENT, 1876 acl3_getacl_getfh}, 1877 1878 /* ACL3_SETACL = 2 */ 1879 {acl3_setacl, 1880 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args), 1881 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res), 1882 nullfree, 0, 1883 acl3_setacl_getfh}, 1884 1885 /* ACL3_GETXATTRDIR = 3 */ 1886 {acl3_getxattrdir, 1887 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args), 1888 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res), 1889 nullfree, RPC_IDEMPOTENT, 1890 acl3_getxattrdir_getfh}, 1891 }; 1892 1893 static struct rpc_disptable acl_disptable[] = { 1894 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]), 1895 aclcallnames_v2, 1896 &aclproccnt_v2_ptr, acldisptab_v2}, 1897 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]), 1898 aclcallnames_v3, 1899 &aclproccnt_v3_ptr, acldisptab_v3}, 1900 }; 1901 1902 static void 1903 acl_dispatch(struct svc_req *req, SVCXPRT *xprt) 1904 { 1905 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, 1906 "ACL", acl_disptable); 1907 } 1908 1909 int 1910 checkwin(int flavor, int window, struct svc_req *req) 1911 { 1912 struct authdes_cred *adc; 1913 1914 switch (flavor) { 1915 case AUTH_DES: 1916 adc = (struct authdes_cred *)req->rq_clntcred; 1917 if (adc->adc_fullname.window > window) 1918 return (0); 1919 break; 1920 1921 default: 1922 break; 1923 } 1924 return (1); 1925 } 1926 1927 1928 /* 1929 * checkauth() will check the access permission against the export 1930 * information. Then map root uid/gid to appropriate uid/gid. 1931 * 1932 * This routine is used by NFS V3 and V2 code. 1933 */ 1934 static int 1935 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok, 1936 bool_t publicfh_ok) 1937 { 1938 int i, nfsflavor, rpcflavor, stat, access; 1939 struct secinfo *secp; 1940 caddr_t principal; 1941 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 1942 int anon_res = 0; 1943 1944 /* 1945 * Check for privileged port number 1946 * N.B.: this assumes that we know the format of a netbuf. 1947 */ 1948 if (nfs_portmon) { 1949 struct sockaddr *ca; 1950 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 1951 1952 if (ca == NULL) 1953 return (0); 1954 1955 if ((ca->sa_family == AF_INET && 1956 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 1957 IPPORT_RESERVED) || 1958 (ca->sa_family == AF_INET6 && 1959 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 1960 IPPORT_RESERVED)) { 1961 cmn_err(CE_NOTE, 1962 "nfs_server: client %s%ssent NFS request from " 1963 "unprivileged port", 1964 client_name(req), client_addr(req, buf)); 1965 return (0); 1966 } 1967 } 1968 1969 /* 1970 * return 1 on success or 0 on failure 1971 */ 1972 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor); 1973 1974 /* 1975 * A failed AUTH_UNIX svc_get_cred() implies we couldn't set 1976 * the credentials; below we map that to anonymous. 1977 */ 1978 if (!stat && nfsflavor != AUTH_UNIX) { 1979 cmn_err(CE_NOTE, 1980 "nfs_server: couldn't get unix cred for %s", 1981 client_name(req)); 1982 return (0); 1983 } 1984 1985 /* 1986 * Short circuit checkauth() on operations that support the 1987 * public filehandle, and if the request for that operation 1988 * is using the public filehandle. Note that we must call 1989 * sec_svc_getcred() first so that xp_cookie is set to the 1990 * right value. Normally xp_cookie is just the RPC flavor 1991 * of the the request, but in the case of RPCSEC_GSS it 1992 * could be a pseudo flavor. 1993 */ 1994 if (publicfh_ok) 1995 return (1); 1996 1997 rpcflavor = req->rq_cred.oa_flavor; 1998 /* 1999 * Check if the auth flavor is valid for this export 2000 */ 2001 access = nfsauth_access(exi, req); 2002 if (access & NFSAUTH_DROP) 2003 return (-1); /* drop the request */ 2004 2005 if (access & NFSAUTH_DENIED) { 2006 /* 2007 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was 2008 * probably due to the flavor not matching during the 2009 * the mount attempt. So map the flavor to AUTH_NONE 2010 * so that the credentials get mapped to the anonymous 2011 * user. 2012 */ 2013 if (anon_ok == 1) 2014 rpcflavor = AUTH_NONE; 2015 else 2016 return (0); /* deny access */ 2017 2018 } else if (access & NFSAUTH_MAPNONE) { 2019 /* 2020 * Access was granted even though the flavor mismatched 2021 * because AUTH_NONE was one of the exported flavors. 2022 */ 2023 rpcflavor = AUTH_NONE; 2024 2025 } else if (access & NFSAUTH_WRONGSEC) { 2026 /* 2027 * NFSAUTH_WRONGSEC is used for NFSv4. Since V2/V3 already 2028 * negotiates the security flavor thru MOUNT protocol, the 2029 * only way it can get NFSAUTH_WRONGSEC here is from 2030 * NFS_ACL for V4. This could be for a limited view, so 2031 * map it to RO access. V4 lookup/readdir will take care 2032 * of the limited view portion. 2033 */ 2034 access |= NFSAUTH_RO; 2035 access &= ~NFSAUTH_WRONGSEC; 2036 } 2037 2038 switch (rpcflavor) { 2039 case AUTH_NONE: 2040 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2041 exi->exi_export.ex_anon); 2042 (void) crsetgroups(cr, 0, NULL); 2043 break; 2044 2045 case AUTH_UNIX: 2046 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) { 2047 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2048 exi->exi_export.ex_anon); 2049 (void) crsetgroups(cr, 0, NULL); 2050 } 2051 break; 2052 2053 case AUTH_DES: 2054 case RPCSEC_GSS: 2055 /* 2056 * Find the secinfo structure. We should be able 2057 * to find it by the time we reach here. 2058 * nfsauth_access() has done the checking. 2059 */ 2060 secp = NULL; 2061 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2062 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2063 nfsflavor) { 2064 secp = &exi->exi_export.ex_secinfo[i]; 2065 break; 2066 } 2067 } 2068 2069 if (!secp) { 2070 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2071 "no secinfo data for flavor %d", 2072 client_name(req), client_addr(req, buf), 2073 nfsflavor); 2074 return (0); 2075 } 2076 2077 if (!checkwin(rpcflavor, secp->s_window, req)) { 2078 cmn_err(CE_NOTE, 2079 "nfs_server: client %s%sused invalid " 2080 "auth window value", 2081 client_name(req), client_addr(req, buf)); 2082 return (0); 2083 } 2084 2085 /* 2086 * Map root principals listed in the share's root= list to root, 2087 * and map any others principals that were mapped to root by RPC 2088 * to anon. 2089 */ 2090 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2091 secp->s_rootcnt, secp->s_rootnames)) { 2092 if (crgetuid(cr) == 0) 2093 return (1); 2094 2095 (void) crsetugid(cr, 0, 0); 2096 2097 /* 2098 * NOTE: If and when kernel-land privilege tracing is 2099 * added this may have to be replaced with code that 2100 * retrieves root's supplementary groups (e.g., using 2101 * kgss_get_group_info(). In the meantime principals 2102 * mapped to uid 0 get all privileges, so setting cr's 2103 * supplementary groups for them does nothing. 2104 */ 2105 (void) crsetgroups(cr, 0, NULL); 2106 2107 return (1); 2108 } 2109 2110 /* 2111 * Not a root princ, or not in root list, map UID 0/nobody to 2112 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2113 * UID_NOBODY and GID_NOBODY, respectively.) 2114 */ 2115 if (crgetuid(cr) != 0 && 2116 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2117 return (1); 2118 2119 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2120 exi->exi_export.ex_anon); 2121 (void) crsetgroups(cr, 0, NULL); 2122 break; 2123 default: 2124 return (0); 2125 } /* switch on rpcflavor */ 2126 2127 /* 2128 * Even if anon access is disallowed via ex_anon == -1, we allow 2129 * this access if anon_ok is set. So set creds to the default 2130 * "nobody" id. 2131 */ 2132 if (anon_res != 0) { 2133 if (anon_ok == 0) { 2134 cmn_err(CE_NOTE, 2135 "nfs_server: client %s%ssent wrong " 2136 "authentication for %s", 2137 client_name(req), client_addr(req, buf), 2138 exi->exi_export.ex_path ? 2139 exi->exi_export.ex_path : "?"); 2140 return (0); 2141 } 2142 2143 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0) 2144 return (0); 2145 } 2146 2147 return (1); 2148 } 2149 2150 /* 2151 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor, 2152 * and 1 on success 2153 */ 2154 int 2155 checkauth4(struct compound_state *cs, struct svc_req *req) 2156 { 2157 int i, rpcflavor, access; 2158 struct secinfo *secp; 2159 char buf[MAXHOST + 1]; 2160 int anon_res = 0, nfsflavor; 2161 struct exportinfo *exi; 2162 cred_t *cr; 2163 caddr_t principal; 2164 2165 exi = cs->exi; 2166 cr = cs->cr; 2167 principal = cs->principal; 2168 nfsflavor = cs->nfsflavor; 2169 2170 ASSERT(cr != NULL); 2171 2172 rpcflavor = req->rq_cred.oa_flavor; 2173 cs->access &= ~CS_ACCESS_LIMITED; 2174 2175 /* 2176 * Check the access right per auth flavor on the vnode of 2177 * this export for the given request. 2178 */ 2179 access = nfsauth4_access(cs->exi, cs->vp, req); 2180 2181 if (access & NFSAUTH_WRONGSEC) 2182 return (-2); /* no access for this security flavor */ 2183 2184 if (access & NFSAUTH_DROP) 2185 return (-1); /* drop the request */ 2186 2187 if (access & NFSAUTH_DENIED) { 2188 2189 if (exi->exi_export.ex_seccnt > 0) 2190 return (0); /* deny access */ 2191 2192 } else if (access & NFSAUTH_LIMITED) { 2193 2194 cs->access |= CS_ACCESS_LIMITED; 2195 2196 } else if (access & NFSAUTH_MAPNONE) { 2197 /* 2198 * Access was granted even though the flavor mismatched 2199 * because AUTH_NONE was one of the exported flavors. 2200 */ 2201 rpcflavor = AUTH_NONE; 2202 } 2203 2204 /* 2205 * XXX probably need to redo some of it for nfsv4? 2206 * return 1 on success or 0 on failure 2207 */ 2208 2209 switch (rpcflavor) { 2210 case AUTH_NONE: 2211 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2212 exi->exi_export.ex_anon); 2213 (void) crsetgroups(cr, 0, NULL); 2214 break; 2215 2216 case AUTH_UNIX: 2217 if (crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) { 2218 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2219 exi->exi_export.ex_anon); 2220 (void) crsetgroups(cr, 0, NULL); 2221 } 2222 break; 2223 2224 default: 2225 /* 2226 * Find the secinfo structure. We should be able 2227 * to find it by the time we reach here. 2228 * nfsauth_access() has done the checking. 2229 */ 2230 secp = NULL; 2231 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2232 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2233 nfsflavor) { 2234 secp = &exi->exi_export.ex_secinfo[i]; 2235 break; 2236 } 2237 } 2238 2239 if (!secp) { 2240 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2241 "no secinfo data for flavor %d", 2242 client_name(req), client_addr(req, buf), 2243 nfsflavor); 2244 return (0); 2245 } 2246 2247 if (!checkwin(rpcflavor, secp->s_window, req)) { 2248 cmn_err(CE_NOTE, 2249 "nfs_server: client %s%sused invalid " 2250 "auth window value", 2251 client_name(req), client_addr(req, buf)); 2252 return (0); 2253 } 2254 2255 /* 2256 * Map root principals listed in the share's root= list to root, 2257 * and map any others principals that were mapped to root by RPC 2258 * to anon. 2259 */ 2260 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2261 secp->s_rootcnt, secp->s_rootnames)) { 2262 if (crgetuid(cr) == 0) 2263 return (1); 2264 2265 (void) crsetugid(cr, 0, 0); 2266 2267 /* 2268 * NOTE: If and when kernel-land privilege tracing is 2269 * added this may have to be replaced with code that 2270 * retrieves root's supplementary groups (e.g., using 2271 * kgss_get_group_info(). In the meantime principals 2272 * mapped to uid 0 get all privileges, so setting cr's 2273 * supplementary groups for them does nothing. 2274 */ 2275 (void) crsetgroups(cr, 0, NULL); 2276 2277 return (1); 2278 } 2279 2280 /* 2281 * Not a root princ, or not in root list, map UID 0/nobody to 2282 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2283 * UID_NOBODY and GID_NOBODY, respectively.) 2284 */ 2285 if (crgetuid(cr) != 0 && 2286 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2287 return (1); 2288 2289 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2290 exi->exi_export.ex_anon); 2291 (void) crsetgroups(cr, 0, NULL); 2292 break; 2293 } /* switch on rpcflavor */ 2294 2295 /* 2296 * Even if anon access is disallowed via ex_anon == -1, we allow 2297 * this access if anon_ok is set. So set creds to the default 2298 * "nobody" id. 2299 */ 2300 2301 if (anon_res != 0) { 2302 cmn_err(CE_NOTE, 2303 "nfs_server: client %s%ssent wrong " 2304 "authentication for %s", 2305 client_name(req), client_addr(req, buf), 2306 exi->exi_export.ex_path ? 2307 exi->exi_export.ex_path : "?"); 2308 return (0); 2309 } 2310 2311 return (1); 2312 } 2313 2314 2315 static char * 2316 client_name(struct svc_req *req) 2317 { 2318 char *hostname = NULL; 2319 2320 /* 2321 * If it's a Unix cred then use the 2322 * hostname from the credential. 2323 */ 2324 if (req->rq_cred.oa_flavor == AUTH_UNIX) { 2325 hostname = ((struct authunix_parms *) 2326 req->rq_clntcred)->aup_machname; 2327 } 2328 if (hostname == NULL) 2329 hostname = ""; 2330 2331 return (hostname); 2332 } 2333 2334 static char * 2335 client_addr(struct svc_req *req, char *buf) 2336 { 2337 struct sockaddr *ca; 2338 uchar_t *b; 2339 char *frontspace = ""; 2340 2341 /* 2342 * We assume we are called in tandem with client_name and the 2343 * format string looks like "...client %s%sblah blah..." 2344 * 2345 * If it's a Unix cred then client_name returned 2346 * a host name, so we need insert a space between host name 2347 * and IP address. 2348 */ 2349 if (req->rq_cred.oa_flavor == AUTH_UNIX) 2350 frontspace = " "; 2351 2352 /* 2353 * Convert the caller's IP address to a dotted string 2354 */ 2355 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2356 2357 if (ca->sa_family == AF_INET) { 2358 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 2359 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace, 2360 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 2361 } else if (ca->sa_family == AF_INET6) { 2362 struct sockaddr_in6 *sin6; 2363 sin6 = (struct sockaddr_in6 *)ca; 2364 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 2365 buf, INET6_ADDRSTRLEN); 2366 2367 } else { 2368 2369 /* 2370 * No IP address to print. If there was a host name 2371 * printed, then we print a space. 2372 */ 2373 (void) sprintf(buf, frontspace); 2374 } 2375 2376 return (buf); 2377 } 2378 2379 /* 2380 * NFS Server initialization routine. This routine should only be called 2381 * once. It performs the following tasks: 2382 * - Call sub-initialization routines (localize access to variables) 2383 * - Initialize all locks 2384 * - initialize the version 3 write verifier 2385 */ 2386 int 2387 nfs_srvinit(void) 2388 { 2389 int error; 2390 2391 error = nfs_exportinit(); 2392 if (error != 0) 2393 return (error); 2394 error = rfs4_srvrinit(); 2395 if (error != 0) { 2396 nfs_exportfini(); 2397 return (error); 2398 } 2399 rfs_srvrinit(); 2400 rfs3_srvrinit(); 2401 nfsauth_init(); 2402 2403 /* Init the stuff to control start/stop */ 2404 nfs_server_upordown = NFS_SERVER_STOPPED; 2405 mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL); 2406 cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL); 2407 mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL); 2408 cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL); 2409 2410 return (0); 2411 } 2412 2413 /* 2414 * NFS Server finalization routine. This routine is called to cleanup the 2415 * initialization work previously performed if the NFS server module could 2416 * not be loaded correctly. 2417 */ 2418 void 2419 nfs_srvfini(void) 2420 { 2421 nfsauth_fini(); 2422 rfs3_srvrfini(); 2423 rfs_srvrfini(); 2424 nfs_exportfini(); 2425 2426 mutex_destroy(&nfs_server_upordown_lock); 2427 cv_destroy(&nfs_server_upordown_cv); 2428 mutex_destroy(&rdma_wait_mutex); 2429 cv_destroy(&rdma_wait_cv); 2430 } 2431 2432 /* 2433 * Set up an iovec array of up to cnt pointers. 2434 */ 2435 2436 void 2437 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp) 2438 { 2439 while (m != NULL && cnt-- > 0) { 2440 iovp->iov_base = (caddr_t)m->b_rptr; 2441 iovp->iov_len = (m->b_wptr - m->b_rptr); 2442 iovp++; 2443 m = m->b_cont; 2444 } 2445 } 2446 2447 /* 2448 * Common code between NFS Version 2 and NFS Version 3 for the public 2449 * filehandle multicomponent lookups. 2450 */ 2451 2452 /* 2453 * Public filehandle evaluation of a multi-component lookup, following 2454 * symbolic links, if necessary. This may result in a vnode in another 2455 * filesystem, which is OK as long as the other filesystem is exported. 2456 * 2457 * Note that the exi will be set either to NULL or a new reference to the 2458 * exportinfo struct that corresponds to the vnode of the multi-component path. 2459 * It is the callers responsibility to release this reference. 2460 */ 2461 int 2462 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp, 2463 struct exportinfo **exi, struct sec_ol *sec) 2464 { 2465 int pathflag; 2466 vnode_t *mc_dvp = NULL; 2467 vnode_t *realvp; 2468 int error; 2469 2470 *exi = NULL; 2471 2472 /* 2473 * check if the given path is a url or native path. Since p is 2474 * modified by MCLpath(), it may be empty after returning from 2475 * there, and should be checked. 2476 */ 2477 if ((pathflag = MCLpath(&p)) == -1) 2478 return (EIO); 2479 2480 /* 2481 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit 2482 * on in sec->sec_flags. This bit will later serve as an 2483 * indication in makefh_ol() or makefh3_ol() to overload the 2484 * filehandle to contain the sec modes used by the server for 2485 * the path. 2486 */ 2487 if (pathflag == SECURITY_QUERY) { 2488 if ((sec->sec_index = (uint_t)(*p)) > 0) { 2489 sec->sec_flags |= SEC_QUERY; 2490 p++; 2491 if ((pathflag = MCLpath(&p)) == -1) 2492 return (EIO); 2493 } else { 2494 cmn_err(CE_NOTE, 2495 "nfs_server: invalid security index %d, " 2496 "violating WebNFS SNEGO protocol.", sec->sec_index); 2497 return (EIO); 2498 } 2499 } 2500 2501 if (p[0] == '\0') { 2502 error = ENOENT; 2503 goto publicfh_done; 2504 } 2505 2506 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag); 2507 2508 /* 2509 * If name resolves to "/" we get EINVAL since we asked for 2510 * the vnode of the directory that the file is in. Try again 2511 * with NULL directory vnode. 2512 */ 2513 if (error == EINVAL) { 2514 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag); 2515 if (!error) { 2516 ASSERT(*vpp != NULL); 2517 if ((*vpp)->v_type == VDIR) { 2518 VN_HOLD(*vpp); 2519 mc_dvp = *vpp; 2520 } else { 2521 /* 2522 * This should not happen, the filesystem is 2523 * in an inconsistent state. Fail the lookup 2524 * at this point. 2525 */ 2526 VN_RELE(*vpp); 2527 error = EINVAL; 2528 } 2529 } 2530 } 2531 2532 if (error) 2533 goto publicfh_done; 2534 2535 if (*vpp == NULL) { 2536 error = ENOENT; 2537 goto publicfh_done; 2538 } 2539 2540 ASSERT(mc_dvp != NULL); 2541 ASSERT(*vpp != NULL); 2542 2543 if ((*vpp)->v_type == VDIR) { 2544 do { 2545 /* 2546 * *vpp may be an AutoFS node, so we perform 2547 * a VOP_ACCESS() to trigger the mount of the intended 2548 * filesystem, so we can perform the lookup in the 2549 * intended filesystem. 2550 */ 2551 (void) VOP_ACCESS(*vpp, 0, 0, cr); 2552 2553 /* 2554 * If vnode is covered, get the 2555 * the topmost vnode. 2556 */ 2557 if (vn_mountedvfs(*vpp) != NULL) { 2558 error = traverse(vpp); 2559 if (error) { 2560 VN_RELE(*vpp); 2561 goto publicfh_done; 2562 } 2563 } 2564 2565 if (VOP_REALVP(*vpp, &realvp) == 0 && realvp != *vpp) { 2566 /* 2567 * If realvp is different from *vpp 2568 * then release our reference on *vpp, so that 2569 * the export access check be performed on the 2570 * real filesystem instead. 2571 */ 2572 VN_HOLD(realvp); 2573 VN_RELE(*vpp); 2574 *vpp = realvp; 2575 } else 2576 break; 2577 /* LINTED */ 2578 } while (TRUE); 2579 2580 /* 2581 * Let nfs_vptexi() figure what the real parent is. 2582 */ 2583 VN_RELE(mc_dvp); 2584 mc_dvp = NULL; 2585 2586 } else { 2587 /* 2588 * If vnode is covered, get the 2589 * the topmost vnode. 2590 */ 2591 if (vn_mountedvfs(mc_dvp) != NULL) { 2592 error = traverse(&mc_dvp); 2593 if (error) { 2594 VN_RELE(*vpp); 2595 goto publicfh_done; 2596 } 2597 } 2598 2599 if (VOP_REALVP(mc_dvp, &realvp) == 0 && realvp != mc_dvp) { 2600 /* 2601 * *vpp is a file, obtain realvp of the parent 2602 * directory vnode. 2603 */ 2604 VN_HOLD(realvp); 2605 VN_RELE(mc_dvp); 2606 mc_dvp = realvp; 2607 } 2608 } 2609 2610 /* 2611 * The pathname may take us from the public filesystem to another. 2612 * If that's the case then just set the exportinfo to the new export 2613 * and build filehandle for it. Thanks to per-access checking there's 2614 * no security issues with doing this. If the client is not allowed 2615 * access to this new export then it will get an access error when it 2616 * tries to use the filehandle 2617 */ 2618 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2619 VN_RELE(*vpp); 2620 goto publicfh_done; 2621 } 2622 2623 /* 2624 * Not allowed access to pseudo exports. 2625 */ 2626 if (PSEUDO(*exi)) { 2627 error = ENOENT; 2628 VN_RELE(*vpp); 2629 goto publicfh_done; 2630 } 2631 2632 /* 2633 * Do a lookup for the index file. We know the index option doesn't 2634 * allow paths through handling in the share command, so mc_dvp will 2635 * be the parent for the index file vnode, if its present. Use 2636 * temporary pointers to preserve and reuse the vnode pointers of the 2637 * original directory in case there's no index file. Note that the 2638 * index file is a native path, and should not be interpreted by 2639 * the URL parser in rfs_pathname() 2640 */ 2641 if (((*exi)->exi_export.ex_flags & EX_INDEX) && 2642 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) { 2643 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */ 2644 2645 tmc_dvp = mc_dvp; 2646 mc_dvp = tvp = *vpp; 2647 2648 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp, 2649 mc_dvp, cr, NATIVEPATH); 2650 2651 if (error == ENOENT) { 2652 *vpp = tvp; 2653 mc_dvp = tmc_dvp; 2654 error = 0; 2655 } else { /* ok or error other than ENOENT */ 2656 if (tmc_dvp) 2657 VN_RELE(tmc_dvp); 2658 if (error) 2659 goto publicfh_done; 2660 2661 /* 2662 * Found a valid vp for index "filename". Sanity check 2663 * for odd case where a directory is provided as index 2664 * option argument and leads us to another filesystem 2665 */ 2666 2667 /* Release the reference on the old exi value */ 2668 ASSERT(*exi != NULL); 2669 exi_rele(*exi); 2670 2671 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2672 VN_RELE(*vpp); 2673 goto publicfh_done; 2674 } 2675 } 2676 } 2677 2678 publicfh_done: 2679 if (mc_dvp) 2680 VN_RELE(mc_dvp); 2681 2682 return (error); 2683 } 2684 2685 /* 2686 * Evaluate a multi-component path 2687 */ 2688 int 2689 rfs_pathname( 2690 char *path, /* pathname to evaluate */ 2691 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */ 2692 vnode_t **compvpp, /* ret for ptr to component vnode */ 2693 vnode_t *startdvp, /* starting vnode */ 2694 cred_t *cr, /* user's credential */ 2695 int pathflag) /* flag to identify path, e.g. URL */ 2696 { 2697 char namebuf[TYPICALMAXPATHLEN]; 2698 struct pathname pn; 2699 int error; 2700 2701 /* 2702 * If pathname starts with '/', then set startdvp to root. 2703 */ 2704 if (*path == '/') { 2705 while (*path == '/') 2706 path++; 2707 2708 startdvp = rootdir; 2709 } 2710 2711 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf)); 2712 if (error == 0) { 2713 /* 2714 * Call the URL parser for URL paths to modify the original 2715 * string to handle any '%' encoded characters that exist. 2716 * Done here to avoid an extra bcopy in the lookup. 2717 * We need to be careful about pathlen's. We know that 2718 * rfs_pathname() is called with a non-empty path. However, 2719 * it could be emptied due to the path simply being all /'s, 2720 * which is valid to proceed with the lookup, or due to the 2721 * URL parser finding an encoded null character at the 2722 * beginning of path which should not proceed with the lookup. 2723 */ 2724 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2725 URLparse(pn.pn_path); 2726 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) 2727 return (ENOENT); 2728 } 2729 VN_HOLD(startdvp); 2730 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2731 rootdir, startdvp, cr); 2732 } 2733 if (error == ENAMETOOLONG) { 2734 /* 2735 * This thread used a pathname > TYPICALMAXPATHLEN bytes long. 2736 */ 2737 if (error = pn_get(path, UIO_SYSSPACE, &pn)) 2738 return (error); 2739 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2740 URLparse(pn.pn_path); 2741 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) { 2742 pn_free(&pn); 2743 return (ENOENT); 2744 } 2745 } 2746 VN_HOLD(startdvp); 2747 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2748 rootdir, startdvp, cr); 2749 pn_free(&pn); 2750 } 2751 2752 return (error); 2753 } 2754 2755 /* 2756 * Adapt the multicomponent lookup path depending on the pathtype 2757 */ 2758 static int 2759 MCLpath(char **path) 2760 { 2761 unsigned char c = (unsigned char)**path; 2762 2763 /* 2764 * If the MCL path is between 0x20 and 0x7E (graphic printable 2765 * character of the US-ASCII coded character set), its a URL path, 2766 * per RFC 1738. 2767 */ 2768 if (c >= 0x20 && c <= 0x7E) 2769 return (URLPATH); 2770 2771 /* 2772 * If the first octet of the MCL path is not an ASCII character 2773 * then it must be interpreted as a tag value that describes the 2774 * format of the remaining octets of the MCL path. 2775 * 2776 * If the first octet of the MCL path is 0x81 it is a query 2777 * for the security info. 2778 */ 2779 switch (c) { 2780 case 0x80: /* native path, i.e. MCL via mount protocol */ 2781 (*path)++; 2782 return (NATIVEPATH); 2783 case 0x81: /* security query */ 2784 (*path)++; 2785 return (SECURITY_QUERY); 2786 default: 2787 return (-1); 2788 } 2789 } 2790 2791 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \ 2792 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\ 2793 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0))) 2794 2795 /* 2796 * The implementation of URLparse gaurantees that the final string will 2797 * fit in the original one. Replaces '%' occurrences followed by 2 characters 2798 * with its corresponding hexadecimal character. 2799 */ 2800 static void 2801 URLparse(char *str) 2802 { 2803 char *p, *q; 2804 2805 p = q = str; 2806 while (*p) { 2807 *q = *p; 2808 if (*p++ == '%') { 2809 if (*p) { 2810 *q = fromhex(*p) * 16; 2811 p++; 2812 if (*p) { 2813 *q += fromhex(*p); 2814 p++; 2815 } 2816 } 2817 } 2818 q++; 2819 } 2820 *q = '\0'; 2821 } 2822 2823 2824 /* 2825 * Get the export information for the lookup vnode, and verify its 2826 * useable. 2827 */ 2828 int 2829 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr, 2830 struct exportinfo **exi) 2831 { 2832 int walk; 2833 int error = 0; 2834 2835 *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE); 2836 if (*exi == NULL) 2837 error = EACCES; 2838 else { 2839 /* 2840 * If nosub is set for this export then 2841 * a lookup relative to the public fh 2842 * must not terminate below the 2843 * exported directory. 2844 */ 2845 if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0) 2846 error = EACCES; 2847 } 2848 2849 return (error); 2850 } 2851 2852 /* 2853 * Do the main work of handling HA-NFSv4 Resource Group failover on 2854 * Sun Cluster. 2855 * We need to detect whether any RG admin paths have been added or removed, 2856 * and adjust resources accordingly. 2857 * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In 2858 * order to scale, the list and array of paths need to be held in more 2859 * suitable data structures. 2860 */ 2861 static void 2862 hanfsv4_failover(void) 2863 { 2864 int i, start_grace, numadded_paths = 0; 2865 char **added_paths = NULL; 2866 rfs4_dss_path_t *dss_path; 2867 2868 /* 2869 * Note: currently, rfs4_dss_pathlist cannot be NULL, since 2870 * it will always include an entry for NFS4_DSS_VAR_DIR. If we 2871 * make the latter dynamically specified too, the following will 2872 * need to be adjusted. 2873 */ 2874 2875 /* 2876 * First, look for removed paths: RGs that have been failed-over 2877 * away from this node. 2878 * Walk the "currently-serving" rfs4_dss_pathlist and, for each 2879 * path, check if it is on the "passed-in" rfs4_dss_newpaths array 2880 * from nfsd. If not, that RG path has been removed. 2881 * 2882 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed 2883 * any duplicates. 2884 */ 2885 dss_path = rfs4_dss_pathlist; 2886 do { 2887 int found = 0; 2888 char *path = dss_path->path; 2889 2890 /* used only for non-HA so may not be removed */ 2891 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 2892 dss_path = dss_path->next; 2893 continue; 2894 } 2895 2896 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 2897 int cmpret; 2898 char *newpath = rfs4_dss_newpaths[i]; 2899 2900 /* 2901 * Since nfsd has sorted rfs4_dss_newpaths for us, 2902 * once the return from strcmp is negative we know 2903 * we've passed the point where "path" should be, 2904 * and can stop searching: "path" has been removed. 2905 */ 2906 cmpret = strcmp(path, newpath); 2907 if (cmpret < 0) 2908 break; 2909 if (cmpret == 0) { 2910 found = 1; 2911 break; 2912 } 2913 } 2914 2915 if (found == 0) { 2916 unsigned index = dss_path->index; 2917 rfs4_servinst_t *sip = dss_path->sip; 2918 rfs4_dss_path_t *path_next = dss_path->next; 2919 2920 /* 2921 * This path has been removed. 2922 * We must clear out the servinst reference to 2923 * it, since it's now owned by another 2924 * node: we should not attempt to touch it. 2925 */ 2926 ASSERT(dss_path == sip->dss_paths[index]); 2927 sip->dss_paths[index] = NULL; 2928 2929 /* remove from "currently-serving" list, and destroy */ 2930 remque(dss_path); 2931 /* allow for NUL */ 2932 kmem_free(dss_path->path, strlen(dss_path->path) + 1); 2933 kmem_free(dss_path, sizeof (rfs4_dss_path_t)); 2934 2935 dss_path = path_next; 2936 } else { 2937 /* path was found; not removed */ 2938 dss_path = dss_path->next; 2939 } 2940 } while (dss_path != rfs4_dss_pathlist); 2941 2942 /* 2943 * Now, look for added paths: RGs that have been failed-over 2944 * to this node. 2945 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and, 2946 * for each path, check if it is on the "currently-serving" 2947 * rfs4_dss_pathlist. If not, that RG path has been added. 2948 * 2949 * Note: we don't do duplicate detection here; nfsd does that for us. 2950 * 2951 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us 2952 * an upper bound for the size needed for added_paths[numadded_paths]. 2953 */ 2954 2955 /* probably more space than we need, but guaranteed to be enough */ 2956 if (rfs4_dss_numnewpaths > 0) { 2957 size_t sz = rfs4_dss_numnewpaths * sizeof (char *); 2958 added_paths = kmem_zalloc(sz, KM_SLEEP); 2959 } 2960 2961 /* walk the "passed-in" rfs4_dss_newpaths array from nfsd */ 2962 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 2963 int found = 0; 2964 char *newpath = rfs4_dss_newpaths[i]; 2965 2966 dss_path = rfs4_dss_pathlist; 2967 do { 2968 char *path = dss_path->path; 2969 2970 /* used only for non-HA */ 2971 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 2972 dss_path = dss_path->next; 2973 continue; 2974 } 2975 2976 if (strncmp(path, newpath, strlen(path)) == 0) { 2977 found = 1; 2978 break; 2979 } 2980 2981 dss_path = dss_path->next; 2982 } while (dss_path != rfs4_dss_pathlist); 2983 2984 if (found == 0) { 2985 added_paths[numadded_paths] = newpath; 2986 numadded_paths++; 2987 } 2988 } 2989 2990 /* did we find any added paths? */ 2991 if (numadded_paths > 0) { 2992 /* create a new server instance, and start its grace period */ 2993 start_grace = 1; 2994 rfs4_servinst_create(start_grace, numadded_paths, added_paths); 2995 2996 /* read in the stable storage state from these paths */ 2997 rfs4_dss_readstate(numadded_paths, added_paths); 2998 2999 /* 3000 * Multiple failovers during a grace period will cause 3001 * clients of the same resource group to be partitioned 3002 * into different server instances, with different 3003 * grace periods. Since clients of the same resource 3004 * group must be subject to the same grace period, 3005 * we need to reset all currently active grace periods. 3006 */ 3007 rfs4_grace_reset_all(); 3008 } 3009 3010 if (rfs4_dss_numnewpaths > 0) 3011 kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *)); 3012 } 3013