1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * 25 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 26 * All rights reserved. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/types.h> 31 #include <sys/systm.h> 32 #include <sys/thread.h> 33 #include <sys/t_lock.h> 34 #include <sys/time.h> 35 #include <sys/vnode.h> 36 #include <sys/vfs.h> 37 #include <sys/errno.h> 38 #include <sys/buf.h> 39 #include <sys/stat.h> 40 #include <sys/cred.h> 41 #include <sys/kmem.h> 42 #include <sys/debug.h> 43 #include <sys/dnlc.h> 44 #include <sys/vmsystm.h> 45 #include <sys/flock.h> 46 #include <sys/share.h> 47 #include <sys/cmn_err.h> 48 #include <sys/tiuser.h> 49 #include <sys/sysmacros.h> 50 #include <sys/callb.h> 51 #include <sys/acl.h> 52 #include <sys/kstat.h> 53 #include <sys/signal.h> 54 #include <sys/list.h> 55 #include <sys/zone.h> 56 57 #include <rpc/types.h> 58 #include <rpc/xdr.h> 59 #include <rpc/auth.h> 60 #include <rpc/clnt.h> 61 62 #include <nfs/nfs.h> 63 #include <nfs/nfs_clnt.h> 64 65 #include <nfs/rnode.h> 66 #include <nfs/nfs_acl.h> 67 #include <nfs/lm.h> 68 69 #include <vm/hat.h> 70 #include <vm/as.h> 71 #include <vm/page.h> 72 #include <vm/pvn.h> 73 #include <vm/seg.h> 74 #include <vm/seg_map.h> 75 #include <vm/seg_vn.h> 76 77 static void nfs3_attr_cache(vnode_t *, vattr_t *, vattr_t *, hrtime_t, 78 cred_t *); 79 static int nfs_getattr_cache(vnode_t *, struct vattr *); 80 static int nfs_remove_locking_id(vnode_t *, int, char *, char *, int *); 81 82 struct mi_globals { 83 kmutex_t mig_lock; /* lock protecting mig_list */ 84 list_t mig_list; /* list of NFS v2 or v3 mounts in zone */ 85 boolean_t mig_destructor_called; 86 }; 87 88 static zone_key_t mi_list_key; 89 90 /* Debugging flag for PC file shares. */ 91 extern int share_debug; 92 93 /* 94 * Attributes caching: 95 * 96 * Attributes are cached in the rnode in struct vattr form. 97 * There is a time associated with the cached attributes (r_attrtime) 98 * which tells whether the attributes are valid. The time is initialized 99 * to the difference between current time and the modify time of the vnode 100 * when new attributes are cached. This allows the attributes for 101 * files that have changed recently to be timed out sooner than for files 102 * that have not changed for a long time. There are minimum and maximum 103 * timeout values that can be set per mount point. 104 */ 105 106 int 107 nfs_waitfor_purge_complete(vnode_t *vp) 108 { 109 rnode_t *rp; 110 k_sigset_t smask; 111 112 rp = VTOR(vp); 113 if (rp->r_serial != NULL && rp->r_serial != curthread) { 114 mutex_enter(&rp->r_statelock); 115 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT); 116 while (rp->r_serial != NULL) { 117 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 118 sigunintr(&smask); 119 mutex_exit(&rp->r_statelock); 120 return (EINTR); 121 } 122 } 123 sigunintr(&smask); 124 mutex_exit(&rp->r_statelock); 125 } 126 return (0); 127 } 128 129 /* 130 * Validate caches by checking cached attributes. If the cached 131 * attributes have timed out, then get new attributes from the server. 132 * As a side affect, this will do cache invalidation if the attributes 133 * have changed. 134 * 135 * If the attributes have not timed out and if there is a cache 136 * invalidation being done by some other thread, then wait until that 137 * thread has completed the cache invalidation. 138 */ 139 int 140 nfs_validate_caches(vnode_t *vp, cred_t *cr) 141 { 142 int error; 143 struct vattr va; 144 145 if (ATTRCACHE_VALID(vp)) { 146 error = nfs_waitfor_purge_complete(vp); 147 if (error) 148 return (error); 149 return (0); 150 } 151 152 va.va_mask = AT_ALL; 153 return (nfs_getattr_otw(vp, &va, cr)); 154 } 155 156 /* 157 * Validate caches by checking cached attributes. If the cached 158 * attributes have timed out, then get new attributes from the server. 159 * As a side affect, this will do cache invalidation if the attributes 160 * have changed. 161 * 162 * If the attributes have not timed out and if there is a cache 163 * invalidation being done by some other thread, then wait until that 164 * thread has completed the cache invalidation. 165 */ 166 int 167 nfs3_validate_caches(vnode_t *vp, cred_t *cr) 168 { 169 int error; 170 struct vattr va; 171 172 if (ATTRCACHE_VALID(vp)) { 173 error = nfs_waitfor_purge_complete(vp); 174 if (error) 175 return (error); 176 return (0); 177 } 178 179 va.va_mask = AT_ALL; 180 return (nfs3_getattr_otw(vp, &va, cr)); 181 } 182 183 /* 184 * Purge all of the various NFS `data' caches. 185 */ 186 void 187 nfs_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr) 188 { 189 rnode_t *rp; 190 char *contents; 191 int size; 192 int error; 193 194 /* 195 * Purge the DNLC for any entries which refer to this file. 196 * Avoid recursive entry into dnlc_purge_vp() in case of a directory. 197 */ 198 rp = VTOR(vp); 199 mutex_enter(&rp->r_statelock); 200 if (vp->v_count > 1 && 201 (vp->v_type == VDIR || purge_dnlc == NFS_PURGE_DNLC) && 202 !(rp->r_flags & RINDNLCPURGE)) { 203 /* 204 * Set the RINDNLCPURGE flag to prevent recursive entry 205 * into dnlc_purge_vp() 206 */ 207 if (vp->v_type == VDIR) 208 rp->r_flags |= RINDNLCPURGE; 209 mutex_exit(&rp->r_statelock); 210 dnlc_purge_vp(vp); 211 mutex_enter(&rp->r_statelock); 212 if (rp->r_flags & RINDNLCPURGE) 213 rp->r_flags &= ~RINDNLCPURGE; 214 } 215 216 /* 217 * Clear any readdir state bits and purge the readlink response cache. 218 */ 219 contents = rp->r_symlink.contents; 220 size = rp->r_symlink.size; 221 rp->r_symlink.contents = NULL; 222 mutex_exit(&rp->r_statelock); 223 224 if (contents != NULL) { 225 226 kmem_free((void *)contents, size); 227 } 228 229 /* 230 * Flush the page cache. 231 */ 232 if (vn_has_cached_data(vp)) { 233 error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL); 234 if (error && (error == ENOSPC || error == EDQUOT)) { 235 mutex_enter(&rp->r_statelock); 236 if (!rp->r_error) 237 rp->r_error = error; 238 mutex_exit(&rp->r_statelock); 239 } 240 } 241 242 /* 243 * Flush the readdir response cache. 244 */ 245 if (HAVE_RDDIR_CACHE(rp)) 246 nfs_purge_rddir_cache(vp); 247 } 248 249 /* 250 * Purge the readdir cache of all entries 251 */ 252 void 253 nfs_purge_rddir_cache(vnode_t *vp) 254 { 255 rnode_t *rp; 256 rddir_cache *rdc; 257 rddir_cache *nrdc; 258 259 rp = VTOR(vp); 260 top: 261 mutex_enter(&rp->r_statelock); 262 rp->r_direof = NULL; 263 rp->r_flags &= ~RLOOKUP; 264 rp->r_flags |= RREADDIRPLUS; 265 rdc = avl_first(&rp->r_dir); 266 while (rdc != NULL) { 267 nrdc = AVL_NEXT(&rp->r_dir, rdc); 268 avl_remove(&rp->r_dir, rdc); 269 rddir_cache_rele(rdc); 270 rdc = nrdc; 271 } 272 mutex_exit(&rp->r_statelock); 273 } 274 275 /* 276 * Do a cache check based on the post-operation attributes. 277 * Then make them the new cached attributes. If no attributes 278 * were returned, then mark the attributes as timed out. 279 */ 280 void 281 nfs3_cache_post_op_attr(vnode_t *vp, post_op_attr *poap, hrtime_t t, cred_t *cr) 282 { 283 vattr_t attr; 284 285 if (!poap->attributes) { 286 PURGE_ATTRCACHE(vp); 287 return; 288 } 289 (void) nfs3_cache_fattr3(vp, &poap->attr, &attr, t, cr); 290 } 291 292 /* 293 * Same as above, but using a vattr 294 */ 295 void 296 nfs3_cache_post_op_vattr(vnode_t *vp, post_op_vattr *poap, hrtime_t t, 297 cred_t *cr) 298 { 299 if (!poap->attributes) { 300 PURGE_ATTRCACHE(vp); 301 return; 302 } 303 nfs_attr_cache(vp, poap->fres.vap, t, cr); 304 } 305 306 /* 307 * Do a cache check based on the weak cache consistency attributes. 308 * These consist of a small set of pre-operation attributes and the 309 * full set of post-operation attributes. 310 * 311 * If we are given the pre-operation attributes, then use them to 312 * check the validity of the various caches. Then, if we got the 313 * post-operation attributes, make them the new cached attributes. 314 * If we didn't get the post-operation attributes, then mark the 315 * attribute cache as timed out so that the next reference will 316 * cause a GETATTR to the server to refresh with the current 317 * attributes. 318 * 319 * Otherwise, if we didn't get the pre-operation attributes, but 320 * we did get the post-operation attributes, then use these 321 * attributes to check the validity of the various caches. This 322 * will probably cause a flush of the caches because if the 323 * operation succeeded, the attributes of the object were changed 324 * in some way from the old post-operation attributes. This 325 * should be okay because it is the safe thing to do. After 326 * checking the data caches, then we make these the new cached 327 * attributes. 328 * 329 * Otherwise, we didn't get either the pre- or post-operation 330 * attributes. Simply mark the attribute cache as timed out so 331 * the next reference will cause a GETATTR to the server to 332 * refresh with the current attributes. 333 * 334 * If an error occurred trying to convert the over the wire 335 * attributes to a vattr, then simply mark the attribute cache as 336 * timed out. 337 */ 338 void 339 nfs3_cache_wcc_data(vnode_t *vp, wcc_data *wccp, hrtime_t t, cred_t *cr) 340 { 341 vattr_t bva; 342 vattr_t ava; 343 344 if (wccp->after.attributes) { 345 if (fattr3_to_vattr(vp, &wccp->after.attr, &ava)) { 346 PURGE_ATTRCACHE(vp); 347 return; 348 } 349 if (wccp->before.attributes) { 350 bva.va_ctime.tv_sec = wccp->before.attr.ctime.seconds; 351 bva.va_ctime.tv_nsec = wccp->before.attr.ctime.nseconds; 352 bva.va_mtime.tv_sec = wccp->before.attr.mtime.seconds; 353 bva.va_mtime.tv_nsec = wccp->before.attr.mtime.nseconds; 354 bva.va_size = wccp->before.attr.size; 355 nfs3_attr_cache(vp, &bva, &ava, t, cr); 356 } else 357 nfs_attr_cache(vp, &ava, t, cr); 358 } else { 359 PURGE_ATTRCACHE(vp); 360 } 361 } 362 363 /* 364 * Set attributes cache for given vnode using nfsattr. 365 * 366 * This routine does not do cache validation with the attributes. 367 * 368 * If an error occurred trying to convert the over the wire 369 * attributes to a vattr, then simply mark the attribute cache as 370 * timed out. 371 */ 372 void 373 nfs_attrcache(vnode_t *vp, struct nfsfattr *na, hrtime_t t) 374 { 375 rnode_t *rp; 376 struct vattr va; 377 378 if (!nattr_to_vattr(vp, na, &va)) { 379 rp = VTOR(vp); 380 mutex_enter(&rp->r_statelock); 381 if (rp->r_mtime <= t) 382 nfs_attrcache_va(vp, &va); 383 mutex_exit(&rp->r_statelock); 384 } else { 385 PURGE_ATTRCACHE(vp); 386 } 387 } 388 389 /* 390 * Set attributes cache for given vnode using fattr3. 391 * 392 * This routine does not do cache validation with the attributes. 393 * 394 * If an error occurred trying to convert the over the wire 395 * attributes to a vattr, then simply mark the attribute cache as 396 * timed out. 397 */ 398 void 399 nfs3_attrcache(vnode_t *vp, fattr3 *na, hrtime_t t) 400 { 401 rnode_t *rp; 402 struct vattr va; 403 404 if (!fattr3_to_vattr(vp, na, &va)) { 405 rp = VTOR(vp); 406 mutex_enter(&rp->r_statelock); 407 if (rp->r_mtime <= t) 408 nfs_attrcache_va(vp, &va); 409 mutex_exit(&rp->r_statelock); 410 } else { 411 PURGE_ATTRCACHE(vp); 412 } 413 } 414 415 /* 416 * Do a cache check based on attributes returned over the wire. The 417 * new attributes are cached. 418 * 419 * If an error occurred trying to convert the over the wire attributes 420 * to a vattr, then just return that error. 421 * 422 * As a side affect, the vattr argument is filled in with the converted 423 * attributes. 424 */ 425 int 426 nfs_cache_fattr(vnode_t *vp, struct nfsfattr *na, vattr_t *vap, hrtime_t t, 427 cred_t *cr) 428 { 429 int error; 430 431 error = nattr_to_vattr(vp, na, vap); 432 if (error) 433 return (error); 434 nfs_attr_cache(vp, vap, t, cr); 435 return (0); 436 } 437 438 /* 439 * Do a cache check based on attributes returned over the wire. The 440 * new attributes are cached. 441 * 442 * If an error occurred trying to convert the over the wire attributes 443 * to a vattr, then just return that error. 444 * 445 * As a side affect, the vattr argument is filled in with the converted 446 * attributes. 447 */ 448 int 449 nfs3_cache_fattr3(vnode_t *vp, fattr3 *na, vattr_t *vap, hrtime_t t, cred_t *cr) 450 { 451 int error; 452 453 error = fattr3_to_vattr(vp, na, vap); 454 if (error) 455 return (error); 456 nfs_attr_cache(vp, vap, t, cr); 457 return (0); 458 } 459 460 /* 461 * Use the passed in virtual attributes to check to see whether the 462 * data and metadata caches are valid, cache the new attributes, and 463 * then do the cache invalidation if required. 464 * 465 * The cache validation and caching of the new attributes is done 466 * atomically via the use of the mutex, r_statelock. If required, 467 * the cache invalidation is done atomically w.r.t. the cache 468 * validation and caching of the attributes via the pseudo lock, 469 * r_serial. 470 * 471 * This routine is used to do cache validation and attributes caching 472 * for operations with a single set of post operation attributes. 473 */ 474 void 475 nfs_attr_cache(vnode_t *vp, vattr_t *vap, hrtime_t t, cred_t *cr) 476 { 477 rnode_t *rp; 478 int mtime_changed = 0; 479 int ctime_changed = 0; 480 vsecattr_t *vsp; 481 int was_serial; 482 len_t preattr_rsize; 483 boolean_t writeattr_set = B_FALSE; 484 boolean_t cachepurge_set = B_FALSE; 485 486 rp = VTOR(vp); 487 488 mutex_enter(&rp->r_statelock); 489 490 if (rp->r_serial != curthread) { 491 klwp_t *lwp = ttolwp(curthread); 492 493 was_serial = 0; 494 if (lwp != NULL) 495 lwp->lwp_nostop++; 496 while (rp->r_serial != NULL) { 497 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 498 mutex_exit(&rp->r_statelock); 499 if (lwp != NULL) 500 lwp->lwp_nostop--; 501 return; 502 } 503 } 504 if (lwp != NULL) 505 lwp->lwp_nostop--; 506 } else 507 was_serial = 1; 508 509 if (rp->r_mtime > t) { 510 if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size)) 511 PURGE_ATTRCACHE_LOCKED(rp); 512 mutex_exit(&rp->r_statelock); 513 return; 514 } 515 516 /* 517 * Write thread after writing data to file on remote server, 518 * will always set RWRITEATTR to indicate that file on remote 519 * server was modified with a WRITE operation and would have 520 * marked attribute cache as timed out. If RWRITEATTR 521 * is set, then do not check for mtime and ctime change. 522 */ 523 if (!(rp->r_flags & RWRITEATTR)) { 524 if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size)) 525 mtime_changed = 1; 526 527 if (rp->r_attr.va_ctime.tv_sec != vap->va_ctime.tv_sec || 528 rp->r_attr.va_ctime.tv_nsec != vap->va_ctime.tv_nsec) 529 ctime_changed = 1; 530 } else { 531 writeattr_set = B_TRUE; 532 } 533 534 preattr_rsize = rp->r_size; 535 536 nfs_attrcache_va(vp, vap); 537 538 /* 539 * If we have updated filesize in nfs_attrcache_va, as soon as we 540 * drop statelock we will be in transition of purging all 541 * our caches and updating them. It is possible for another 542 * thread to pick this new file size and read in zeroed data. 543 * stall other threads till cache purge is complete. 544 */ 545 if ((vp->v_type == VREG) && (rp->r_size != preattr_rsize)) { 546 /* 547 * If RWRITEATTR was set and we have updated the file 548 * size, Server's returned file size need not necessarily 549 * be because of this Client's WRITE. We need to purge 550 * all caches. 551 */ 552 if (writeattr_set) 553 mtime_changed = 1; 554 555 if (mtime_changed && !(rp->r_flags & RINCACHEPURGE)) { 556 rp->r_flags |= RINCACHEPURGE; 557 cachepurge_set = B_TRUE; 558 } 559 } 560 561 if (!mtime_changed && !ctime_changed) { 562 mutex_exit(&rp->r_statelock); 563 return; 564 } 565 566 rp->r_serial = curthread; 567 568 mutex_exit(&rp->r_statelock); 569 570 if (mtime_changed) 571 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 572 573 if ((rp->r_flags & RINCACHEPURGE) && cachepurge_set) { 574 mutex_enter(&rp->r_statelock); 575 rp->r_flags &= ~RINCACHEPURGE; 576 cv_broadcast(&rp->r_cv); 577 mutex_exit(&rp->r_statelock); 578 cachepurge_set = B_FALSE; 579 } 580 581 if (ctime_changed) { 582 (void) nfs_access_purge_rp(rp); 583 if (rp->r_secattr != NULL) { 584 mutex_enter(&rp->r_statelock); 585 vsp = rp->r_secattr; 586 rp->r_secattr = NULL; 587 mutex_exit(&rp->r_statelock); 588 if (vsp != NULL) 589 nfs_acl_free(vsp); 590 } 591 } 592 593 if (!was_serial) { 594 mutex_enter(&rp->r_statelock); 595 rp->r_serial = NULL; 596 cv_broadcast(&rp->r_cv); 597 mutex_exit(&rp->r_statelock); 598 } 599 } 600 601 /* 602 * Use the passed in "before" virtual attributes to check to see 603 * whether the data and metadata caches are valid, cache the "after" 604 * new attributes, and then do the cache invalidation if required. 605 * 606 * The cache validation and caching of the new attributes is done 607 * atomically via the use of the mutex, r_statelock. If required, 608 * the cache invalidation is done atomically w.r.t. the cache 609 * validation and caching of the attributes via the pseudo lock, 610 * r_serial. 611 * 612 * This routine is used to do cache validation and attributes caching 613 * for operations with both pre operation attributes and post operation 614 * attributes. 615 */ 616 static void 617 nfs3_attr_cache(vnode_t *vp, vattr_t *bvap, vattr_t *avap, hrtime_t t, 618 cred_t *cr) 619 { 620 rnode_t *rp; 621 int mtime_changed = 0; 622 int ctime_changed = 0; 623 vsecattr_t *vsp; 624 int was_serial; 625 len_t preattr_rsize; 626 boolean_t writeattr_set = B_FALSE; 627 boolean_t cachepurge_set = B_FALSE; 628 629 rp = VTOR(vp); 630 631 mutex_enter(&rp->r_statelock); 632 633 if (rp->r_serial != curthread) { 634 klwp_t *lwp = ttolwp(curthread); 635 636 was_serial = 0; 637 if (lwp != NULL) 638 lwp->lwp_nostop++; 639 while (rp->r_serial != NULL) { 640 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 641 mutex_exit(&rp->r_statelock); 642 if (lwp != NULL) 643 lwp->lwp_nostop--; 644 return; 645 } 646 } 647 if (lwp != NULL) 648 lwp->lwp_nostop--; 649 } else 650 was_serial = 1; 651 652 if (rp->r_mtime > t) { 653 if (!CACHE_VALID(rp, avap->va_mtime, avap->va_size)) 654 PURGE_ATTRCACHE_LOCKED(rp); 655 mutex_exit(&rp->r_statelock); 656 return; 657 } 658 659 /* 660 * Write thread after writing data to file on remote server, 661 * will always set RWRITEATTR to indicate that file on remote 662 * server was modified with a WRITE operation and would have 663 * marked attribute cache as timed out. If RWRITEATTR 664 * is set, then do not check for mtime and ctime change. 665 */ 666 if (!(rp->r_flags & RWRITEATTR)) { 667 if (!CACHE_VALID(rp, bvap->va_mtime, bvap->va_size)) 668 mtime_changed = 1; 669 670 if (rp->r_attr.va_ctime.tv_sec != bvap->va_ctime.tv_sec || 671 rp->r_attr.va_ctime.tv_nsec != bvap->va_ctime.tv_nsec) 672 ctime_changed = 1; 673 } else { 674 writeattr_set = B_TRUE; 675 } 676 677 preattr_rsize = rp->r_size; 678 679 nfs_attrcache_va(vp, avap); 680 681 /* 682 * If we have updated filesize in nfs_attrcache_va, as soon as we 683 * drop statelock we will be in transition of purging all 684 * our caches and updating them. It is possible for another 685 * thread to pick this new file size and read in zeroed data. 686 * stall other threads till cache purge is complete. 687 */ 688 if ((vp->v_type == VREG) && (rp->r_size != preattr_rsize)) { 689 /* 690 * If RWRITEATTR was set and we have updated the file 691 * size, Server's returned file size need not necessarily 692 * be because of this Client's WRITE. We need to purge 693 * all caches. 694 */ 695 if (writeattr_set) 696 mtime_changed = 1; 697 698 if (mtime_changed && !(rp->r_flags & RINCACHEPURGE)) { 699 rp->r_flags |= RINCACHEPURGE; 700 cachepurge_set = B_TRUE; 701 } 702 } 703 704 if (!mtime_changed && !ctime_changed) { 705 mutex_exit(&rp->r_statelock); 706 return; 707 } 708 709 rp->r_serial = curthread; 710 711 mutex_exit(&rp->r_statelock); 712 713 if (mtime_changed) 714 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 715 716 if ((rp->r_flags & RINCACHEPURGE) && cachepurge_set) { 717 mutex_enter(&rp->r_statelock); 718 rp->r_flags &= ~RINCACHEPURGE; 719 cv_broadcast(&rp->r_cv); 720 mutex_exit(&rp->r_statelock); 721 cachepurge_set = B_FALSE; 722 } 723 724 if (ctime_changed) { 725 (void) nfs_access_purge_rp(rp); 726 if (rp->r_secattr != NULL) { 727 mutex_enter(&rp->r_statelock); 728 vsp = rp->r_secattr; 729 rp->r_secattr = NULL; 730 mutex_exit(&rp->r_statelock); 731 if (vsp != NULL) 732 nfs_acl_free(vsp); 733 } 734 } 735 736 if (!was_serial) { 737 mutex_enter(&rp->r_statelock); 738 rp->r_serial = NULL; 739 cv_broadcast(&rp->r_cv); 740 mutex_exit(&rp->r_statelock); 741 } 742 } 743 744 /* 745 * Set attributes cache for given vnode using virtual attributes. 746 * 747 * Set the timeout value on the attribute cache and fill it 748 * with the passed in attributes. 749 * 750 * The caller must be holding r_statelock. 751 */ 752 void 753 nfs_attrcache_va(vnode_t *vp, struct vattr *va) 754 { 755 rnode_t *rp; 756 mntinfo_t *mi; 757 hrtime_t delta; 758 hrtime_t now; 759 760 rp = VTOR(vp); 761 762 ASSERT(MUTEX_HELD(&rp->r_statelock)); 763 764 now = gethrtime(); 765 766 mi = VTOMI(vp); 767 768 /* 769 * Delta is the number of nanoseconds that we will 770 * cache the attributes of the file. It is based on 771 * the number of nanoseconds since the last time that 772 * we detected a change. The assumption is that files 773 * that changed recently are likely to change again. 774 * There is a minimum and a maximum for regular files 775 * and for directories which is enforced though. 776 * 777 * Using the time since last change was detected 778 * eliminates direct comparison or calculation 779 * using mixed client and server times. NFS does 780 * not make any assumptions regarding the client 781 * and server clocks being synchronized. 782 */ 783 if (va->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec || 784 va->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec || 785 va->va_size != rp->r_attr.va_size) 786 rp->r_mtime = now; 787 788 if ((mi->mi_flags & MI_NOAC) || (vp->v_flag & VNOCACHE)) 789 delta = 0; 790 else { 791 delta = now - rp->r_mtime; 792 if (vp->v_type == VDIR) { 793 if (delta < mi->mi_acdirmin) 794 delta = mi->mi_acdirmin; 795 else if (delta > mi->mi_acdirmax) 796 delta = mi->mi_acdirmax; 797 } else { 798 if (delta < mi->mi_acregmin) 799 delta = mi->mi_acregmin; 800 else if (delta > mi->mi_acregmax) 801 delta = mi->mi_acregmax; 802 } 803 } 804 rp->r_attrtime = now + delta; 805 rp->r_attr = *va; 806 /* 807 * Update the size of the file if there is no cached data or if 808 * the cached data is clean and there is no data being written 809 * out. 810 */ 811 if (rp->r_size != va->va_size && 812 (!vn_has_cached_data(vp) || 813 (!(rp->r_flags & RDIRTY) && rp->r_count == 0))) 814 rp->r_size = va->va_size; 815 nfs_setswaplike(vp, va); 816 rp->r_flags &= ~RWRITEATTR; 817 } 818 819 /* 820 * Fill in attribute from the cache. 821 * If valid, then return 0 to indicate that no error occurred, 822 * otherwise return 1 to indicate that an error occurred. 823 */ 824 static int 825 nfs_getattr_cache(vnode_t *vp, struct vattr *vap) 826 { 827 rnode_t *rp; 828 uint_t mask = vap->va_mask; 829 830 rp = VTOR(vp); 831 mutex_enter(&rp->r_statelock); 832 if (ATTRCACHE_VALID(vp)) { 833 /* 834 * Cached attributes are valid 835 */ 836 *vap = rp->r_attr; 837 /* 838 * Set the caller's va_mask to the set of attributes 839 * that were requested ANDed with the attributes that 840 * are available. If attributes were requested that 841 * are not available, those bits must be turned off 842 * in the callers va_mask. 843 */ 844 vap->va_mask &= mask; 845 mutex_exit(&rp->r_statelock); 846 return (0); 847 } 848 mutex_exit(&rp->r_statelock); 849 return (1); 850 } 851 852 /* 853 * Get attributes over-the-wire and update attributes cache 854 * if no error occurred in the over-the-wire operation. 855 * Return 0 if successful, otherwise error. 856 */ 857 int 858 nfs_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr) 859 { 860 int error; 861 struct nfsattrstat ns; 862 int douprintf; 863 mntinfo_t *mi; 864 failinfo_t fi; 865 hrtime_t t; 866 867 mi = VTOMI(vp); 868 fi.vp = vp; 869 fi.fhp = NULL; /* no need to update, filehandle not copied */ 870 fi.copyproc = nfscopyfh; 871 fi.lookupproc = nfslookup; 872 fi.xattrdirproc = acl_getxattrdir2; 873 874 if (mi->mi_flags & MI_ACL) { 875 error = acl_getattr2_otw(vp, vap, cr); 876 if (mi->mi_flags & MI_ACL) 877 return (error); 878 } 879 880 douprintf = 1; 881 882 t = gethrtime(); 883 884 error = rfs2call(mi, RFS_GETATTR, 885 xdr_fhandle, (caddr_t)VTOFH(vp), 886 xdr_attrstat, (caddr_t)&ns, cr, 887 &douprintf, &ns.ns_status, 0, &fi); 888 889 if (!error) { 890 error = geterrno(ns.ns_status); 891 if (!error) 892 error = nfs_cache_fattr(vp, &ns.ns_attr, vap, t, cr); 893 else { 894 PURGE_STALE_FH(error, vp, cr); 895 } 896 } 897 898 return (error); 899 } 900 901 /* 902 * Return either cached ot remote attributes. If get remote attr 903 * use them to check and invalidate caches, then cache the new attributes. 904 */ 905 int 906 nfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr) 907 { 908 int error; 909 rnode_t *rp; 910 911 /* 912 * If we've got cached attributes, we're done, otherwise go 913 * to the server to get attributes, which will update the cache 914 * in the process. 915 */ 916 error = nfs_getattr_cache(vp, vap); 917 if (error) 918 error = nfs_getattr_otw(vp, vap, cr); 919 920 /* Return the client's view of file size */ 921 rp = VTOR(vp); 922 mutex_enter(&rp->r_statelock); 923 vap->va_size = rp->r_size; 924 mutex_exit(&rp->r_statelock); 925 926 return (error); 927 } 928 929 /* 930 * Get attributes over-the-wire and update attributes cache 931 * if no error occurred in the over-the-wire operation. 932 * Return 0 if successful, otherwise error. 933 */ 934 int 935 nfs3_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr) 936 { 937 int error; 938 GETATTR3args args; 939 GETATTR3vres res; 940 int douprintf; 941 failinfo_t fi; 942 hrtime_t t; 943 944 args.object = *VTOFH3(vp); 945 fi.vp = vp; 946 fi.fhp = (caddr_t)&args.object; 947 fi.copyproc = nfs3copyfh; 948 fi.lookupproc = nfs3lookup; 949 fi.xattrdirproc = acl_getxattrdir3; 950 res.fres.vp = vp; 951 res.fres.vap = vap; 952 953 douprintf = 1; 954 955 t = gethrtime(); 956 957 error = rfs3call(VTOMI(vp), NFSPROC3_GETATTR, 958 xdr_nfs_fh3, (caddr_t)&args, 959 xdr_GETATTR3vres, (caddr_t)&res, cr, 960 &douprintf, &res.status, 0, &fi); 961 962 if (error) 963 return (error); 964 965 error = geterrno3(res.status); 966 if (error) { 967 PURGE_STALE_FH(error, vp, cr); 968 return (error); 969 } 970 971 /* 972 * Catch status codes that indicate fattr3 to vattr translation failure 973 */ 974 if (res.fres.status) 975 return (res.fres.status); 976 977 nfs_attr_cache(vp, vap, t, cr); 978 return (0); 979 } 980 981 /* 982 * Return either cached or remote attributes. If get remote attr 983 * use them to check and invalidate caches, then cache the new attributes. 984 */ 985 int 986 nfs3getattr(vnode_t *vp, struct vattr *vap, cred_t *cr) 987 { 988 int error; 989 rnode_t *rp; 990 991 /* 992 * If we've got cached attributes, we're done, otherwise go 993 * to the server to get attributes, which will update the cache 994 * in the process. 995 */ 996 error = nfs_getattr_cache(vp, vap); 997 if (error) 998 error = nfs3_getattr_otw(vp, vap, cr); 999 1000 /* Return the client's view of file size */ 1001 rp = VTOR(vp); 1002 mutex_enter(&rp->r_statelock); 1003 vap->va_size = rp->r_size; 1004 mutex_exit(&rp->r_statelock); 1005 1006 return (error); 1007 } 1008 1009 vtype_t nf_to_vt[] = { 1010 VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK 1011 }; 1012 /* 1013 * Convert NFS Version 2 over the network attributes to the local 1014 * virtual attributes. The mapping between the UID_NOBODY/GID_NOBODY 1015 * network representation and the local representation is done here. 1016 * Returns 0 for success, error if failed due to overflow. 1017 */ 1018 int 1019 nattr_to_vattr(vnode_t *vp, struct nfsfattr *na, struct vattr *vap) 1020 { 1021 /* overflow in time attributes? */ 1022 #ifndef _LP64 1023 if (!NFS2_FATTR_TIME_OK(na)) 1024 return (EOVERFLOW); 1025 #endif 1026 1027 vap->va_mask = AT_ALL; 1028 1029 if (na->na_type < NFNON || na->na_type > NFSOC) 1030 vap->va_type = VBAD; 1031 else 1032 vap->va_type = nf_to_vt[na->na_type]; 1033 vap->va_mode = na->na_mode; 1034 vap->va_uid = (na->na_uid == NFS_UID_NOBODY) ? UID_NOBODY : na->na_uid; 1035 vap->va_gid = (na->na_gid == NFS_GID_NOBODY) ? GID_NOBODY : na->na_gid; 1036 vap->va_fsid = vp->v_vfsp->vfs_dev; 1037 vap->va_nodeid = na->na_nodeid; 1038 vap->va_nlink = na->na_nlink; 1039 vap->va_size = na->na_size; /* keep for cache validation */ 1040 /* 1041 * nfs protocol defines times as unsigned so don't extend sign, 1042 * unless sysadmin set nfs_allow_preepoch_time. 1043 */ 1044 NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->na_atime.tv_sec); 1045 vap->va_atime.tv_nsec = (uint32_t)(na->na_atime.tv_usec * 1000); 1046 NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->na_mtime.tv_sec); 1047 vap->va_mtime.tv_nsec = (uint32_t)(na->na_mtime.tv_usec * 1000); 1048 NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->na_ctime.tv_sec); 1049 vap->va_ctime.tv_nsec = (uint32_t)(na->na_ctime.tv_usec * 1000); 1050 /* 1051 * Shannon's law - uncompress the received dev_t 1052 * if the top half of is zero indicating a response 1053 * from an `older style' OS. Except for when it is a 1054 * `new style' OS sending the maj device of zero, 1055 * in which case the algorithm still works because the 1056 * fact that it is a new style server 1057 * is hidden by the minor device not being greater 1058 * than 255 (a requirement in this case). 1059 */ 1060 if ((na->na_rdev & 0xffff0000) == 0) 1061 vap->va_rdev = nfsv2_expdev(na->na_rdev); 1062 else 1063 vap->va_rdev = expldev(na->na_rdev); 1064 1065 vap->va_nblocks = na->na_blocks; 1066 switch (na->na_type) { 1067 case NFBLK: 1068 vap->va_blksize = DEV_BSIZE; 1069 break; 1070 1071 case NFCHR: 1072 vap->va_blksize = MAXBSIZE; 1073 break; 1074 1075 case NFSOC: 1076 default: 1077 vap->va_blksize = na->na_blocksize; 1078 break; 1079 } 1080 /* 1081 * This bit of ugliness is a hack to preserve the 1082 * over-the-wire protocols for named-pipe vnodes. 1083 * It remaps the special over-the-wire type to the 1084 * VFIFO type. (see note in nfs.h) 1085 */ 1086 if (NA_ISFIFO(na)) { 1087 vap->va_type = VFIFO; 1088 vap->va_mode = (vap->va_mode & ~S_IFMT) | S_IFIFO; 1089 vap->va_rdev = 0; 1090 vap->va_blksize = na->na_blocksize; 1091 } 1092 vap->va_seq = 0; 1093 return (0); 1094 } 1095 1096 /* 1097 * Convert NFS Version 3 over the network attributes to the local 1098 * virtual attributes. The mapping between the UID_NOBODY/GID_NOBODY 1099 * network representation and the local representation is done here. 1100 */ 1101 vtype_t nf3_to_vt[] = { 1102 VBAD, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO 1103 }; 1104 1105 int 1106 fattr3_to_vattr(vnode_t *vp, fattr3 *na, struct vattr *vap) 1107 { 1108 1109 #ifndef _LP64 1110 /* overflow in time attributes? */ 1111 if (!NFS3_FATTR_TIME_OK(na)) 1112 return (EOVERFLOW); 1113 #endif 1114 if (!NFS3_SIZE_OK(na->size)) 1115 /* file too big */ 1116 return (EFBIG); 1117 1118 vap->va_mask = AT_ALL; 1119 1120 if (na->type < NF3REG || na->type > NF3FIFO) 1121 vap->va_type = VBAD; 1122 else 1123 vap->va_type = nf3_to_vt[na->type]; 1124 vap->va_mode = na->mode; 1125 vap->va_uid = (na->uid == NFS_UID_NOBODY) ? UID_NOBODY : (uid_t)na->uid; 1126 vap->va_gid = (na->gid == NFS_GID_NOBODY) ? GID_NOBODY : (gid_t)na->gid; 1127 vap->va_fsid = vp->v_vfsp->vfs_dev; 1128 vap->va_nodeid = na->fileid; 1129 vap->va_nlink = na->nlink; 1130 vap->va_size = na->size; 1131 1132 /* 1133 * nfs protocol defines times as unsigned so don't extend sign, 1134 * unless sysadmin set nfs_allow_preepoch_time. 1135 */ 1136 NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->atime.seconds); 1137 vap->va_atime.tv_nsec = (uint32_t)na->atime.nseconds; 1138 NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->mtime.seconds); 1139 vap->va_mtime.tv_nsec = (uint32_t)na->mtime.nseconds; 1140 NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->ctime.seconds); 1141 vap->va_ctime.tv_nsec = (uint32_t)na->ctime.nseconds; 1142 1143 switch (na->type) { 1144 case NF3BLK: 1145 vap->va_rdev = makedevice(na->rdev.specdata1, 1146 na->rdev.specdata2); 1147 vap->va_blksize = DEV_BSIZE; 1148 vap->va_nblocks = 0; 1149 break; 1150 case NF3CHR: 1151 vap->va_rdev = makedevice(na->rdev.specdata1, 1152 na->rdev.specdata2); 1153 vap->va_blksize = MAXBSIZE; 1154 vap->va_nblocks = 0; 1155 break; 1156 case NF3REG: 1157 case NF3DIR: 1158 case NF3LNK: 1159 vap->va_rdev = 0; 1160 vap->va_blksize = MAXBSIZE; 1161 vap->va_nblocks = (u_longlong_t) 1162 ((na->used + (size3)DEV_BSIZE - (size3)1) / 1163 (size3)DEV_BSIZE); 1164 break; 1165 case NF3SOCK: 1166 case NF3FIFO: 1167 default: 1168 vap->va_rdev = 0; 1169 vap->va_blksize = MAXBSIZE; 1170 vap->va_nblocks = 0; 1171 break; 1172 } 1173 vap->va_seq = 0; 1174 return (0); 1175 } 1176 1177 /* 1178 * Asynchronous I/O parameters. nfs_async_threads is the high-water mark 1179 * for the demand-based allocation of async threads per-mount. The 1180 * nfs_async_timeout is the amount of time a thread will live after it 1181 * becomes idle, unless new I/O requests are received before the thread 1182 * dies. See nfs_async_putpage and nfs_async_start. 1183 */ 1184 1185 int nfs_async_timeout = -1; /* uninitialized */ 1186 1187 static void nfs_async_start(struct vfs *); 1188 1189 static void 1190 free_async_args(struct nfs_async_reqs *args) 1191 { 1192 rnode_t *rp; 1193 1194 if (args->a_io != NFS_INACTIVE) { 1195 rp = VTOR(args->a_vp); 1196 mutex_enter(&rp->r_statelock); 1197 rp->r_count--; 1198 if (args->a_io == NFS_PUTAPAGE || 1199 args->a_io == NFS_PAGEIO) 1200 rp->r_awcount--; 1201 cv_broadcast(&rp->r_cv); 1202 mutex_exit(&rp->r_statelock); 1203 VN_RELE(args->a_vp); 1204 } 1205 crfree(args->a_cred); 1206 kmem_free(args, sizeof (*args)); 1207 } 1208 1209 /* 1210 * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and 1211 * pageout(), running in the global zone, have legitimate reasons to do 1212 * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts. We avoid the problem by 1213 * use of a a per-mount "asynchronous requests manager thread" which is 1214 * signaled by the various asynchronous work routines when there is 1215 * asynchronous work to be done. It is responsible for creating new 1216 * worker threads if necessary, and notifying existing worker threads 1217 * that there is work to be done. 1218 * 1219 * In other words, it will "take the specifications from the customers and 1220 * give them to the engineers." 1221 * 1222 * Worker threads die off of their own accord if they are no longer 1223 * needed. 1224 * 1225 * This thread is killed when the zone is going away or the filesystem 1226 * is being unmounted. 1227 */ 1228 void 1229 nfs_async_manager(vfs_t *vfsp) 1230 { 1231 callb_cpr_t cprinfo; 1232 mntinfo_t *mi; 1233 uint_t max_threads; 1234 1235 mi = VFTOMI(vfsp); 1236 1237 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, 1238 "nfs_async_manager"); 1239 1240 mutex_enter(&mi->mi_async_lock); 1241 /* 1242 * We want to stash the max number of threads that this mount was 1243 * allowed so we can use it later when the variable is set to zero as 1244 * part of the zone/mount going away. 1245 * 1246 * We want to be able to create at least one thread to handle 1247 * asynchronous inactive calls. 1248 */ 1249 max_threads = MAX(mi->mi_max_threads, 1); 1250 /* 1251 * We don't want to wait for mi_max_threads to go to zero, since that 1252 * happens as part of a failed unmount, but this thread should only 1253 * exit when the mount/zone is really going away. 1254 * 1255 * Once MI_ASYNC_MGR_STOP is set, no more async operations will be 1256 * attempted: the various _async_*() functions know to do things 1257 * inline if mi_max_threads == 0. Henceforth we just drain out the 1258 * outstanding requests. 1259 * 1260 * Note that we still create zthreads even if we notice the zone is 1261 * shutting down (MI_ASYNC_MGR_STOP is set); this may cause the zone 1262 * shutdown sequence to take slightly longer in some cases, but 1263 * doesn't violate the protocol, as all threads will exit as soon as 1264 * they're done processing the remaining requests. 1265 */ 1266 for (;;) { 1267 while (mi->mi_async_req_count > 0) { 1268 /* 1269 * Paranoia: If the mount started out having 1270 * (mi->mi_max_threads == 0), and the value was 1271 * later changed (via a debugger or somesuch), 1272 * we could be confused since we will think we 1273 * can't create any threads, and the calling 1274 * code (which looks at the current value of 1275 * mi->mi_max_threads, now non-zero) thinks we 1276 * can. 1277 * 1278 * So, because we're paranoid, we create threads 1279 * up to the maximum of the original and the 1280 * current value. This means that future 1281 * (debugger-induced) lowerings of 1282 * mi->mi_max_threads are ignored for our 1283 * purposes, but who told them they could change 1284 * random values on a live kernel anyhow? 1285 */ 1286 if (mi->mi_threads < 1287 MAX(mi->mi_max_threads, max_threads)) { 1288 mi->mi_threads++; 1289 mutex_exit(&mi->mi_async_lock); 1290 VFS_HOLD(vfsp); /* hold for new thread */ 1291 (void) zthread_create(NULL, 0, nfs_async_start, 1292 vfsp, 0, minclsyspri); 1293 mutex_enter(&mi->mi_async_lock); 1294 } 1295 cv_signal(&mi->mi_async_work_cv); 1296 ASSERT(mi->mi_async_req_count != 0); 1297 mi->mi_async_req_count--; 1298 } 1299 1300 mutex_enter(&mi->mi_lock); 1301 if (mi->mi_flags & MI_ASYNC_MGR_STOP) { 1302 mutex_exit(&mi->mi_lock); 1303 break; 1304 } 1305 mutex_exit(&mi->mi_lock); 1306 1307 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1308 cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock); 1309 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock); 1310 } 1311 /* 1312 * Let everyone know we're done. 1313 */ 1314 mi->mi_manager_thread = NULL; 1315 cv_broadcast(&mi->mi_async_cv); 1316 1317 /* 1318 * There is no explicit call to mutex_exit(&mi->mi_async_lock) 1319 * since CALLB_CPR_EXIT is actually responsible for releasing 1320 * 'mi_async_lock'. 1321 */ 1322 CALLB_CPR_EXIT(&cprinfo); 1323 VFS_RELE(vfsp); /* release thread's hold */ 1324 zthread_exit(); 1325 } 1326 1327 /* 1328 * Signal (and wait for) the async manager thread to clean up and go away. 1329 */ 1330 void 1331 nfs_async_manager_stop(vfs_t *vfsp) 1332 { 1333 mntinfo_t *mi = VFTOMI(vfsp); 1334 1335 mutex_enter(&mi->mi_async_lock); 1336 mutex_enter(&mi->mi_lock); 1337 mi->mi_flags |= MI_ASYNC_MGR_STOP; 1338 mutex_exit(&mi->mi_lock); 1339 cv_broadcast(&mi->mi_async_reqs_cv); 1340 while (mi->mi_manager_thread != NULL) 1341 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 1342 mutex_exit(&mi->mi_async_lock); 1343 } 1344 1345 int 1346 nfs_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, 1347 struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *, 1348 u_offset_t, caddr_t, struct seg *, cred_t *)) 1349 { 1350 rnode_t *rp; 1351 mntinfo_t *mi; 1352 struct nfs_async_reqs *args; 1353 1354 rp = VTOR(vp); 1355 ASSERT(rp->r_freef == NULL); 1356 1357 mi = VTOMI(vp); 1358 1359 /* 1360 * If addr falls in a different segment, don't bother doing readahead. 1361 */ 1362 if (addr >= seg->s_base + seg->s_size) 1363 return (-1); 1364 1365 /* 1366 * If we can't allocate a request structure, punt on the readahead. 1367 */ 1368 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1369 return (-1); 1370 1371 /* 1372 * If a lock operation is pending, don't initiate any new 1373 * readaheads. Otherwise, bump r_count to indicate the new 1374 * asynchronous I/O. 1375 */ 1376 if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) { 1377 kmem_free(args, sizeof (*args)); 1378 return (-1); 1379 } 1380 mutex_enter(&rp->r_statelock); 1381 rp->r_count++; 1382 mutex_exit(&rp->r_statelock); 1383 nfs_rw_exit(&rp->r_lkserlock); 1384 1385 args->a_next = NULL; 1386 #ifdef DEBUG 1387 args->a_queuer = curthread; 1388 #endif 1389 VN_HOLD(vp); 1390 args->a_vp = vp; 1391 ASSERT(cr != NULL); 1392 crhold(cr); 1393 args->a_cred = cr; 1394 args->a_io = NFS_READ_AHEAD; 1395 args->a_nfs_readahead = readahead; 1396 args->a_nfs_blkoff = blkoff; 1397 args->a_nfs_seg = seg; 1398 args->a_nfs_addr = addr; 1399 1400 mutex_enter(&mi->mi_async_lock); 1401 1402 /* 1403 * If asyncio has been disabled, don't bother readahead. 1404 */ 1405 if (mi->mi_max_threads == 0) { 1406 mutex_exit(&mi->mi_async_lock); 1407 goto noasync; 1408 } 1409 1410 /* 1411 * Link request structure into the async list and 1412 * wakeup async thread to do the i/o. 1413 */ 1414 if (mi->mi_async_reqs[NFS_READ_AHEAD] == NULL) { 1415 mi->mi_async_reqs[NFS_READ_AHEAD] = args; 1416 mi->mi_async_tail[NFS_READ_AHEAD] = args; 1417 } else { 1418 mi->mi_async_tail[NFS_READ_AHEAD]->a_next = args; 1419 mi->mi_async_tail[NFS_READ_AHEAD] = args; 1420 } 1421 1422 if (mi->mi_io_kstats) { 1423 mutex_enter(&mi->mi_lock); 1424 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1425 mutex_exit(&mi->mi_lock); 1426 } 1427 1428 mi->mi_async_req_count++; 1429 ASSERT(mi->mi_async_req_count != 0); 1430 cv_signal(&mi->mi_async_reqs_cv); 1431 mutex_exit(&mi->mi_async_lock); 1432 return (0); 1433 1434 noasync: 1435 mutex_enter(&rp->r_statelock); 1436 rp->r_count--; 1437 cv_broadcast(&rp->r_cv); 1438 mutex_exit(&rp->r_statelock); 1439 VN_RELE(vp); 1440 crfree(cr); 1441 kmem_free(args, sizeof (*args)); 1442 return (-1); 1443 } 1444 1445 int 1446 nfs_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 1447 int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *, 1448 u_offset_t, size_t, int, cred_t *)) 1449 { 1450 rnode_t *rp; 1451 mntinfo_t *mi; 1452 struct nfs_async_reqs *args; 1453 1454 ASSERT(flags & B_ASYNC); 1455 ASSERT(vp->v_vfsp != NULL); 1456 1457 rp = VTOR(vp); 1458 ASSERT(rp->r_count > 0); 1459 1460 mi = VTOMI(vp); 1461 1462 /* 1463 * If we can't allocate a request structure, do the putpage 1464 * operation synchronously in this thread's context. 1465 */ 1466 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1467 goto noasync; 1468 1469 args->a_next = NULL; 1470 #ifdef DEBUG 1471 args->a_queuer = curthread; 1472 #endif 1473 VN_HOLD(vp); 1474 args->a_vp = vp; 1475 ASSERT(cr != NULL); 1476 crhold(cr); 1477 args->a_cred = cr; 1478 args->a_io = NFS_PUTAPAGE; 1479 args->a_nfs_putapage = putapage; 1480 args->a_nfs_pp = pp; 1481 args->a_nfs_off = off; 1482 args->a_nfs_len = (uint_t)len; 1483 args->a_nfs_flags = flags; 1484 1485 mutex_enter(&mi->mi_async_lock); 1486 1487 /* 1488 * If asyncio has been disabled, then make a synchronous request. 1489 * This check is done a second time in case async io was diabled 1490 * while this thread was blocked waiting for memory pressure to 1491 * reduce or for the queue to drain. 1492 */ 1493 if (mi->mi_max_threads == 0) { 1494 mutex_exit(&mi->mi_async_lock); 1495 goto noasync; 1496 } 1497 1498 /* 1499 * Link request structure into the async list and 1500 * wakeup async thread to do the i/o. 1501 */ 1502 if (mi->mi_async_reqs[NFS_PUTAPAGE] == NULL) { 1503 mi->mi_async_reqs[NFS_PUTAPAGE] = args; 1504 mi->mi_async_tail[NFS_PUTAPAGE] = args; 1505 } else { 1506 mi->mi_async_tail[NFS_PUTAPAGE]->a_next = args; 1507 mi->mi_async_tail[NFS_PUTAPAGE] = args; 1508 } 1509 1510 mutex_enter(&rp->r_statelock); 1511 rp->r_count++; 1512 rp->r_awcount++; 1513 mutex_exit(&rp->r_statelock); 1514 1515 if (mi->mi_io_kstats) { 1516 mutex_enter(&mi->mi_lock); 1517 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1518 mutex_exit(&mi->mi_lock); 1519 } 1520 1521 mi->mi_async_req_count++; 1522 ASSERT(mi->mi_async_req_count != 0); 1523 cv_signal(&mi->mi_async_reqs_cv); 1524 mutex_exit(&mi->mi_async_lock); 1525 return (0); 1526 1527 noasync: 1528 if (args != NULL) { 1529 VN_RELE(vp); 1530 crfree(cr); 1531 kmem_free(args, sizeof (*args)); 1532 } 1533 1534 if (curproc == proc_pageout || curproc == proc_fsflush) { 1535 /* 1536 * If we get here in the context of the pageout/fsflush, 1537 * we refuse to do a sync write, because this may hang 1538 * pageout (and the machine). In this case, we just 1539 * re-mark the page as dirty and punt on the page. 1540 * 1541 * Make sure B_FORCE isn't set. We can re-mark the 1542 * pages as dirty and unlock the pages in one swoop by 1543 * passing in B_ERROR to pvn_write_done(). However, 1544 * we should make sure B_FORCE isn't set - we don't 1545 * want the page tossed before it gets written out. 1546 */ 1547 if (flags & B_FORCE) 1548 flags &= ~(B_INVAL | B_FORCE); 1549 pvn_write_done(pp, flags | B_ERROR); 1550 return (0); 1551 } 1552 if (nfs_zone() != mi->mi_zone) { 1553 /* 1554 * So this was a cross-zone sync putpage. We pass in B_ERROR 1555 * to pvn_write_done() to re-mark the pages as dirty and unlock 1556 * them. 1557 * 1558 * We don't want to clear B_FORCE here as the caller presumably 1559 * knows what they're doing if they set it. 1560 */ 1561 pvn_write_done(pp, flags | B_ERROR); 1562 return (EPERM); 1563 } 1564 return ((*putapage)(vp, pp, off, len, flags, cr)); 1565 } 1566 1567 int 1568 nfs_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 1569 int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t, 1570 size_t, int, cred_t *)) 1571 { 1572 rnode_t *rp; 1573 mntinfo_t *mi; 1574 struct nfs_async_reqs *args; 1575 1576 ASSERT(flags & B_ASYNC); 1577 ASSERT(vp->v_vfsp != NULL); 1578 1579 rp = VTOR(vp); 1580 ASSERT(rp->r_count > 0); 1581 1582 mi = VTOMI(vp); 1583 1584 /* 1585 * If we can't allocate a request structure, do the pageio 1586 * request synchronously in this thread's context. 1587 */ 1588 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1589 goto noasync; 1590 1591 args->a_next = NULL; 1592 #ifdef DEBUG 1593 args->a_queuer = curthread; 1594 #endif 1595 VN_HOLD(vp); 1596 args->a_vp = vp; 1597 ASSERT(cr != NULL); 1598 crhold(cr); 1599 args->a_cred = cr; 1600 args->a_io = NFS_PAGEIO; 1601 args->a_nfs_pageio = pageio; 1602 args->a_nfs_pp = pp; 1603 args->a_nfs_off = io_off; 1604 args->a_nfs_len = (uint_t)io_len; 1605 args->a_nfs_flags = flags; 1606 1607 mutex_enter(&mi->mi_async_lock); 1608 1609 /* 1610 * If asyncio has been disabled, then make a synchronous request. 1611 * This check is done a second time in case async io was diabled 1612 * while this thread was blocked waiting for memory pressure to 1613 * reduce or for the queue to drain. 1614 */ 1615 if (mi->mi_max_threads == 0) { 1616 mutex_exit(&mi->mi_async_lock); 1617 goto noasync; 1618 } 1619 1620 /* 1621 * Link request structure into the async list and 1622 * wakeup async thread to do the i/o. 1623 */ 1624 if (mi->mi_async_reqs[NFS_PAGEIO] == NULL) { 1625 mi->mi_async_reqs[NFS_PAGEIO] = args; 1626 mi->mi_async_tail[NFS_PAGEIO] = args; 1627 } else { 1628 mi->mi_async_tail[NFS_PAGEIO]->a_next = args; 1629 mi->mi_async_tail[NFS_PAGEIO] = args; 1630 } 1631 1632 mutex_enter(&rp->r_statelock); 1633 rp->r_count++; 1634 rp->r_awcount++; 1635 mutex_exit(&rp->r_statelock); 1636 1637 if (mi->mi_io_kstats) { 1638 mutex_enter(&mi->mi_lock); 1639 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1640 mutex_exit(&mi->mi_lock); 1641 } 1642 1643 mi->mi_async_req_count++; 1644 ASSERT(mi->mi_async_req_count != 0); 1645 cv_signal(&mi->mi_async_reqs_cv); 1646 mutex_exit(&mi->mi_async_lock); 1647 return (0); 1648 1649 noasync: 1650 if (args != NULL) { 1651 VN_RELE(vp); 1652 crfree(cr); 1653 kmem_free(args, sizeof (*args)); 1654 } 1655 1656 /* 1657 * If we can't do it ASYNC, for reads we do nothing (but cleanup 1658 * the page list), for writes we do it synchronously, except for 1659 * proc_pageout/proc_fsflush as described below. 1660 */ 1661 if (flags & B_READ) { 1662 pvn_read_done(pp, flags | B_ERROR); 1663 return (0); 1664 } 1665 1666 if (curproc == proc_pageout || curproc == proc_fsflush) { 1667 /* 1668 * If we get here in the context of the pageout/fsflush, 1669 * we refuse to do a sync write, because this may hang 1670 * pageout/fsflush (and the machine). In this case, we just 1671 * re-mark the page as dirty and punt on the page. 1672 * 1673 * Make sure B_FORCE isn't set. We can re-mark the 1674 * pages as dirty and unlock the pages in one swoop by 1675 * passing in B_ERROR to pvn_write_done(). However, 1676 * we should make sure B_FORCE isn't set - we don't 1677 * want the page tossed before it gets written out. 1678 */ 1679 if (flags & B_FORCE) 1680 flags &= ~(B_INVAL | B_FORCE); 1681 pvn_write_done(pp, flags | B_ERROR); 1682 return (0); 1683 } 1684 1685 if (nfs_zone() != mi->mi_zone) { 1686 /* 1687 * So this was a cross-zone sync pageio. We pass in B_ERROR 1688 * to pvn_write_done() to re-mark the pages as dirty and unlock 1689 * them. 1690 * 1691 * We don't want to clear B_FORCE here as the caller presumably 1692 * knows what they're doing if they set it. 1693 */ 1694 pvn_write_done(pp, flags | B_ERROR); 1695 return (EPERM); 1696 } 1697 return ((*pageio)(vp, pp, io_off, io_len, flags, cr)); 1698 } 1699 1700 void 1701 nfs_async_readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr, 1702 int (*readdir)(vnode_t *, rddir_cache *, cred_t *)) 1703 { 1704 rnode_t *rp; 1705 mntinfo_t *mi; 1706 struct nfs_async_reqs *args; 1707 1708 rp = VTOR(vp); 1709 ASSERT(rp->r_freef == NULL); 1710 1711 mi = VTOMI(vp); 1712 1713 /* 1714 * If we can't allocate a request structure, do the readdir 1715 * operation synchronously in this thread's context. 1716 */ 1717 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1718 goto noasync; 1719 1720 args->a_next = NULL; 1721 #ifdef DEBUG 1722 args->a_queuer = curthread; 1723 #endif 1724 VN_HOLD(vp); 1725 args->a_vp = vp; 1726 ASSERT(cr != NULL); 1727 crhold(cr); 1728 args->a_cred = cr; 1729 args->a_io = NFS_READDIR; 1730 args->a_nfs_readdir = readdir; 1731 args->a_nfs_rdc = rdc; 1732 1733 mutex_enter(&mi->mi_async_lock); 1734 1735 /* 1736 * If asyncio has been disabled, then make a synchronous request. 1737 */ 1738 if (mi->mi_max_threads == 0) { 1739 mutex_exit(&mi->mi_async_lock); 1740 goto noasync; 1741 } 1742 1743 /* 1744 * Link request structure into the async list and 1745 * wakeup async thread to do the i/o. 1746 */ 1747 if (mi->mi_async_reqs[NFS_READDIR] == NULL) { 1748 mi->mi_async_reqs[NFS_READDIR] = args; 1749 mi->mi_async_tail[NFS_READDIR] = args; 1750 } else { 1751 mi->mi_async_tail[NFS_READDIR]->a_next = args; 1752 mi->mi_async_tail[NFS_READDIR] = args; 1753 } 1754 1755 mutex_enter(&rp->r_statelock); 1756 rp->r_count++; 1757 mutex_exit(&rp->r_statelock); 1758 1759 if (mi->mi_io_kstats) { 1760 mutex_enter(&mi->mi_lock); 1761 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1762 mutex_exit(&mi->mi_lock); 1763 } 1764 1765 mi->mi_async_req_count++; 1766 ASSERT(mi->mi_async_req_count != 0); 1767 cv_signal(&mi->mi_async_reqs_cv); 1768 mutex_exit(&mi->mi_async_lock); 1769 return; 1770 1771 noasync: 1772 if (args != NULL) { 1773 VN_RELE(vp); 1774 crfree(cr); 1775 kmem_free(args, sizeof (*args)); 1776 } 1777 1778 rdc->entries = NULL; 1779 mutex_enter(&rp->r_statelock); 1780 ASSERT(rdc->flags & RDDIR); 1781 rdc->flags &= ~RDDIR; 1782 rdc->flags |= RDDIRREQ; 1783 /* 1784 * Check the flag to see if RDDIRWAIT is set. If RDDIRWAIT 1785 * is set, wakeup the thread sleeping in cv_wait_sig(). 1786 * The woken up thread will reset the flag to RDDIR and will 1787 * continue with the readdir opeartion. 1788 */ 1789 if (rdc->flags & RDDIRWAIT) { 1790 rdc->flags &= ~RDDIRWAIT; 1791 cv_broadcast(&rdc->cv); 1792 } 1793 mutex_exit(&rp->r_statelock); 1794 rddir_cache_rele(rdc); 1795 } 1796 1797 void 1798 nfs_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 1799 cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3, 1800 cred_t *)) 1801 { 1802 rnode_t *rp; 1803 mntinfo_t *mi; 1804 struct nfs_async_reqs *args; 1805 page_t *pp; 1806 1807 rp = VTOR(vp); 1808 mi = VTOMI(vp); 1809 1810 /* 1811 * If we can't allocate a request structure, do the commit 1812 * operation synchronously in this thread's context. 1813 */ 1814 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1815 goto noasync; 1816 1817 args->a_next = NULL; 1818 #ifdef DEBUG 1819 args->a_queuer = curthread; 1820 #endif 1821 VN_HOLD(vp); 1822 args->a_vp = vp; 1823 ASSERT(cr != NULL); 1824 crhold(cr); 1825 args->a_cred = cr; 1826 args->a_io = NFS_COMMIT; 1827 args->a_nfs_commit = commit; 1828 args->a_nfs_plist = plist; 1829 args->a_nfs_offset = offset; 1830 args->a_nfs_count = count; 1831 1832 mutex_enter(&mi->mi_async_lock); 1833 1834 /* 1835 * If asyncio has been disabled, then make a synchronous request. 1836 * This check is done a second time in case async io was diabled 1837 * while this thread was blocked waiting for memory pressure to 1838 * reduce or for the queue to drain. 1839 */ 1840 if (mi->mi_max_threads == 0) { 1841 mutex_exit(&mi->mi_async_lock); 1842 goto noasync; 1843 } 1844 1845 /* 1846 * Link request structure into the async list and 1847 * wakeup async thread to do the i/o. 1848 */ 1849 if (mi->mi_async_reqs[NFS_COMMIT] == NULL) { 1850 mi->mi_async_reqs[NFS_COMMIT] = args; 1851 mi->mi_async_tail[NFS_COMMIT] = args; 1852 } else { 1853 mi->mi_async_tail[NFS_COMMIT]->a_next = args; 1854 mi->mi_async_tail[NFS_COMMIT] = args; 1855 } 1856 1857 mutex_enter(&rp->r_statelock); 1858 rp->r_count++; 1859 mutex_exit(&rp->r_statelock); 1860 1861 if (mi->mi_io_kstats) { 1862 mutex_enter(&mi->mi_lock); 1863 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1864 mutex_exit(&mi->mi_lock); 1865 } 1866 1867 mi->mi_async_req_count++; 1868 ASSERT(mi->mi_async_req_count != 0); 1869 cv_signal(&mi->mi_async_reqs_cv); 1870 mutex_exit(&mi->mi_async_lock); 1871 return; 1872 1873 noasync: 1874 if (args != NULL) { 1875 VN_RELE(vp); 1876 crfree(cr); 1877 kmem_free(args, sizeof (*args)); 1878 } 1879 1880 if (curproc == proc_pageout || curproc == proc_fsflush || 1881 nfs_zone() != mi->mi_zone) { 1882 while (plist != NULL) { 1883 pp = plist; 1884 page_sub(&plist, pp); 1885 pp->p_fsdata = C_COMMIT; 1886 page_unlock(pp); 1887 } 1888 return; 1889 } 1890 (*commit)(vp, plist, offset, count, cr); 1891 } 1892 1893 void 1894 nfs_async_inactive(vnode_t *vp, cred_t *cr, 1895 void (*inactive)(vnode_t *, cred_t *, caller_context_t *)) 1896 { 1897 mntinfo_t *mi; 1898 struct nfs_async_reqs *args; 1899 1900 mi = VTOMI(vp); 1901 1902 args = kmem_alloc(sizeof (*args), KM_SLEEP); 1903 args->a_next = NULL; 1904 #ifdef DEBUG 1905 args->a_queuer = curthread; 1906 #endif 1907 args->a_vp = vp; 1908 ASSERT(cr != NULL); 1909 crhold(cr); 1910 args->a_cred = cr; 1911 args->a_io = NFS_INACTIVE; 1912 args->a_nfs_inactive = inactive; 1913 1914 /* 1915 * Note that we don't check mi->mi_max_threads here, since we 1916 * *need* to get rid of this vnode regardless of whether someone 1917 * set nfs3_max_threads/nfs_max_threads to zero in /etc/system. 1918 * 1919 * The manager thread knows about this and is willing to create 1920 * at least one thread to accommodate us. 1921 */ 1922 mutex_enter(&mi->mi_async_lock); 1923 if (mi->mi_manager_thread == NULL) { 1924 rnode_t *rp = VTOR(vp); 1925 1926 mutex_exit(&mi->mi_async_lock); 1927 crfree(cr); /* drop our reference */ 1928 kmem_free(args, sizeof (*args)); 1929 /* 1930 * We can't do an over-the-wire call since we're in the wrong 1931 * zone, so we need to clean up state as best we can and then 1932 * throw away the vnode. 1933 */ 1934 mutex_enter(&rp->r_statelock); 1935 if (rp->r_unldvp != NULL) { 1936 vnode_t *unldvp; 1937 char *unlname; 1938 cred_t *unlcred; 1939 1940 unldvp = rp->r_unldvp; 1941 rp->r_unldvp = NULL; 1942 unlname = rp->r_unlname; 1943 rp->r_unlname = NULL; 1944 unlcred = rp->r_unlcred; 1945 rp->r_unlcred = NULL; 1946 mutex_exit(&rp->r_statelock); 1947 1948 VN_RELE(unldvp); 1949 kmem_free(unlname, MAXNAMELEN); 1950 crfree(unlcred); 1951 } else { 1952 mutex_exit(&rp->r_statelock); 1953 } 1954 /* 1955 * No need to explicitly throw away any cached pages. The 1956 * eventual rinactive() will attempt a synchronous 1957 * VOP_PUTPAGE() which will immediately fail since the request 1958 * is coming from the wrong zone, and then will proceed to call 1959 * nfs_invalidate_pages() which will clean things up for us. 1960 */ 1961 rp_addfree(VTOR(vp), cr); 1962 return; 1963 } 1964 1965 if (mi->mi_async_reqs[NFS_INACTIVE] == NULL) { 1966 mi->mi_async_reqs[NFS_INACTIVE] = args; 1967 } else { 1968 mi->mi_async_tail[NFS_INACTIVE]->a_next = args; 1969 } 1970 mi->mi_async_tail[NFS_INACTIVE] = args; 1971 /* 1972 * Don't increment r_count, since we're trying to get rid of the vnode. 1973 */ 1974 1975 mi->mi_async_req_count++; 1976 ASSERT(mi->mi_async_req_count != 0); 1977 cv_signal(&mi->mi_async_reqs_cv); 1978 mutex_exit(&mi->mi_async_lock); 1979 } 1980 1981 /* 1982 * The async queues for each mounted file system are arranged as a 1983 * set of queues, one for each async i/o type. Requests are taken 1984 * from the queues in a round-robin fashion. A number of consecutive 1985 * requests are taken from each queue before moving on to the next 1986 * queue. This functionality may allow the NFS Version 2 server to do 1987 * write clustering, even if the client is mixing writes and reads 1988 * because it will take multiple write requests from the queue 1989 * before processing any of the other async i/o types. 1990 * 1991 * XXX The nfs_async_start thread is unsafe in the light of the present 1992 * model defined by cpr to suspend the system. Specifically over the 1993 * wire calls are cpr-unsafe. The thread should be reevaluated in 1994 * case of future updates to the cpr model. 1995 */ 1996 static void 1997 nfs_async_start(struct vfs *vfsp) 1998 { 1999 struct nfs_async_reqs *args; 2000 mntinfo_t *mi = VFTOMI(vfsp); 2001 clock_t time_left = 1; 2002 callb_cpr_t cprinfo; 2003 int i; 2004 2005 /* 2006 * Dynamic initialization of nfs_async_timeout to allow nfs to be 2007 * built in an implementation independent manner. 2008 */ 2009 if (nfs_async_timeout == -1) 2010 nfs_async_timeout = NFS_ASYNC_TIMEOUT; 2011 2012 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas"); 2013 2014 mutex_enter(&mi->mi_async_lock); 2015 for (;;) { 2016 /* 2017 * Find the next queue containing an entry. We start 2018 * at the current queue pointer and then round robin 2019 * through all of them until we either find a non-empty 2020 * queue or have looked through all of them. 2021 */ 2022 for (i = 0; i < NFS_ASYNC_TYPES; i++) { 2023 args = *mi->mi_async_curr; 2024 if (args != NULL) 2025 break; 2026 mi->mi_async_curr++; 2027 if (mi->mi_async_curr == 2028 &mi->mi_async_reqs[NFS_ASYNC_TYPES]) 2029 mi->mi_async_curr = &mi->mi_async_reqs[0]; 2030 } 2031 /* 2032 * If we didn't find a entry, then block until woken up 2033 * again and then look through the queues again. 2034 */ 2035 if (args == NULL) { 2036 /* 2037 * Exiting is considered to be safe for CPR as well 2038 */ 2039 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2040 2041 /* 2042 * Wakeup thread waiting to unmount the file 2043 * system only if all async threads are inactive. 2044 * 2045 * If we've timed-out and there's nothing to do, 2046 * then get rid of this thread. 2047 */ 2048 if (mi->mi_max_threads == 0 || time_left <= 0) { 2049 if (--mi->mi_threads == 0) 2050 cv_signal(&mi->mi_async_cv); 2051 CALLB_CPR_EXIT(&cprinfo); 2052 VFS_RELE(vfsp); /* release thread's hold */ 2053 zthread_exit(); 2054 /* NOTREACHED */ 2055 } 2056 time_left = cv_reltimedwait(&mi->mi_async_work_cv, 2057 &mi->mi_async_lock, nfs_async_timeout, 2058 TR_CLOCK_TICK); 2059 2060 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock); 2061 2062 continue; 2063 } 2064 time_left = 1; 2065 2066 /* 2067 * Remove the request from the async queue and then 2068 * update the current async request queue pointer. If 2069 * the current queue is empty or we have removed enough 2070 * consecutive entries from it, then reset the counter 2071 * for this queue and then move the current pointer to 2072 * the next queue. 2073 */ 2074 *mi->mi_async_curr = args->a_next; 2075 if (*mi->mi_async_curr == NULL || 2076 --mi->mi_async_clusters[args->a_io] == 0) { 2077 mi->mi_async_clusters[args->a_io] = 2078 mi->mi_async_init_clusters; 2079 mi->mi_async_curr++; 2080 if (mi->mi_async_curr == 2081 &mi->mi_async_reqs[NFS_ASYNC_TYPES]) 2082 mi->mi_async_curr = &mi->mi_async_reqs[0]; 2083 } 2084 2085 if (args->a_io != NFS_INACTIVE && mi->mi_io_kstats) { 2086 mutex_enter(&mi->mi_lock); 2087 kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 2088 mutex_exit(&mi->mi_lock); 2089 } 2090 2091 mutex_exit(&mi->mi_async_lock); 2092 2093 /* 2094 * Obtain arguments from the async request structure. 2095 */ 2096 if (args->a_io == NFS_READ_AHEAD && mi->mi_max_threads > 0) { 2097 (*args->a_nfs_readahead)(args->a_vp, args->a_nfs_blkoff, 2098 args->a_nfs_addr, args->a_nfs_seg, 2099 args->a_cred); 2100 } else if (args->a_io == NFS_PUTAPAGE) { 2101 (void) (*args->a_nfs_putapage)(args->a_vp, 2102 args->a_nfs_pp, args->a_nfs_off, 2103 args->a_nfs_len, args->a_nfs_flags, 2104 args->a_cred); 2105 } else if (args->a_io == NFS_PAGEIO) { 2106 (void) (*args->a_nfs_pageio)(args->a_vp, 2107 args->a_nfs_pp, args->a_nfs_off, 2108 args->a_nfs_len, args->a_nfs_flags, 2109 args->a_cred); 2110 } else if (args->a_io == NFS_READDIR) { 2111 (void) ((*args->a_nfs_readdir)(args->a_vp, 2112 args->a_nfs_rdc, args->a_cred)); 2113 } else if (args->a_io == NFS_COMMIT) { 2114 (*args->a_nfs_commit)(args->a_vp, args->a_nfs_plist, 2115 args->a_nfs_offset, args->a_nfs_count, 2116 args->a_cred); 2117 } else if (args->a_io == NFS_INACTIVE) { 2118 (*args->a_nfs_inactive)(args->a_vp, args->a_cred, NULL); 2119 } 2120 2121 /* 2122 * Now, release the vnode and free the credentials 2123 * structure. 2124 */ 2125 free_async_args(args); 2126 /* 2127 * Reacquire the mutex because it will be needed above. 2128 */ 2129 mutex_enter(&mi->mi_async_lock); 2130 } 2131 } 2132 2133 void 2134 nfs_async_stop(struct vfs *vfsp) 2135 { 2136 mntinfo_t *mi = VFTOMI(vfsp); 2137 2138 /* 2139 * Wait for all outstanding async operations to complete and for the 2140 * worker threads to exit. 2141 */ 2142 mutex_enter(&mi->mi_async_lock); 2143 mi->mi_max_threads = 0; 2144 cv_broadcast(&mi->mi_async_work_cv); 2145 while (mi->mi_threads != 0) 2146 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 2147 mutex_exit(&mi->mi_async_lock); 2148 } 2149 2150 /* 2151 * nfs_async_stop_sig: 2152 * Wait for all outstanding putpage operation to complete. If a signal 2153 * is deliver we will abort and return non-zero. If we can put all the 2154 * pages we will return 0. This routine is called from nfs_unmount and 2155 * nfs3_unmount to make these operations interruptible. 2156 */ 2157 int 2158 nfs_async_stop_sig(struct vfs *vfsp) 2159 { 2160 mntinfo_t *mi = VFTOMI(vfsp); 2161 ushort_t omax; 2162 int rval; 2163 2164 /* 2165 * Wait for all outstanding async operations to complete and for the 2166 * worker threads to exit. 2167 */ 2168 mutex_enter(&mi->mi_async_lock); 2169 omax = mi->mi_max_threads; 2170 mi->mi_max_threads = 0; 2171 /* 2172 * Tell all the worker threads to exit. 2173 */ 2174 cv_broadcast(&mi->mi_async_work_cv); 2175 while (mi->mi_threads != 0) { 2176 if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock)) 2177 break; 2178 } 2179 rval = (mi->mi_threads != 0); /* Interrupted */ 2180 if (rval) 2181 mi->mi_max_threads = omax; 2182 mutex_exit(&mi->mi_async_lock); 2183 2184 return (rval); 2185 } 2186 2187 int 2188 writerp(rnode_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated) 2189 { 2190 int pagecreate; 2191 int n; 2192 int saved_n; 2193 caddr_t saved_base; 2194 u_offset_t offset; 2195 int error; 2196 int sm_error; 2197 vnode_t *vp = RTOV(rp); 2198 2199 ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid); 2200 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER)); 2201 if (!vpm_enable) { 2202 ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE); 2203 } 2204 2205 /* 2206 * Move bytes in at most PAGESIZE chunks. We must avoid 2207 * spanning pages in uiomove() because page faults may cause 2208 * the cache to be invalidated out from under us. The r_size is not 2209 * updated until after the uiomove. If we push the last page of a 2210 * file before r_size is correct, we will lose the data written past 2211 * the current (and invalid) r_size. 2212 */ 2213 do { 2214 offset = uio->uio_loffset; 2215 pagecreate = 0; 2216 2217 /* 2218 * n is the number of bytes required to satisfy the request 2219 * or the number of bytes to fill out the page. 2220 */ 2221 n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount); 2222 2223 /* 2224 * Check to see if we can skip reading in the page 2225 * and just allocate the memory. We can do this 2226 * if we are going to rewrite the entire mapping 2227 * or if we are going to write to or beyond the current 2228 * end of file from the beginning of the mapping. 2229 * 2230 * The read of r_size is now protected by r_statelock. 2231 */ 2232 mutex_enter(&rp->r_statelock); 2233 /* 2234 * When pgcreated is nonzero the caller has already done 2235 * a segmap_getmapflt with forcefault 0 and S_WRITE. With 2236 * segkpm this means we already have at least one page 2237 * created and mapped at base. 2238 */ 2239 pagecreate = pgcreated || 2240 ((offset & PAGEOFFSET) == 0 && 2241 (n == PAGESIZE || ((offset + n) >= rp->r_size))); 2242 2243 mutex_exit(&rp->r_statelock); 2244 if (!vpm_enable && pagecreate) { 2245 /* 2246 * The last argument tells segmap_pagecreate() to 2247 * always lock the page, as opposed to sometimes 2248 * returning with the page locked. This way we avoid a 2249 * fault on the ensuing uiomove(), but also 2250 * more importantly (to fix bug 1094402) we can 2251 * call segmap_fault() to unlock the page in all 2252 * cases. An alternative would be to modify 2253 * segmap_pagecreate() to tell us when it is 2254 * locking a page, but that's a fairly major 2255 * interface change. 2256 */ 2257 if (pgcreated == 0) 2258 (void) segmap_pagecreate(segkmap, base, 2259 (uint_t)n, 1); 2260 saved_base = base; 2261 saved_n = n; 2262 } 2263 2264 /* 2265 * The number of bytes of data in the last page can not 2266 * be accurately be determined while page is being 2267 * uiomove'd to and the size of the file being updated. 2268 * Thus, inform threads which need to know accurately 2269 * how much data is in the last page of the file. They 2270 * will not do the i/o immediately, but will arrange for 2271 * the i/o to happen later when this modify operation 2272 * will have finished. 2273 */ 2274 ASSERT(!(rp->r_flags & RMODINPROGRESS)); 2275 mutex_enter(&rp->r_statelock); 2276 rp->r_flags |= RMODINPROGRESS; 2277 rp->r_modaddr = (offset & MAXBMASK); 2278 mutex_exit(&rp->r_statelock); 2279 2280 if (vpm_enable) { 2281 /* 2282 * Copy data. If new pages are created, part of 2283 * the page that is not written will be initizliazed 2284 * with zeros. 2285 */ 2286 error = vpm_data_copy(vp, offset, n, uio, 2287 !pagecreate, NULL, 0, S_WRITE); 2288 } else { 2289 error = uiomove(base, n, UIO_WRITE, uio); 2290 } 2291 2292 /* 2293 * r_size is the maximum number of 2294 * bytes known to be in the file. 2295 * Make sure it is at least as high as the 2296 * first unwritten byte pointed to by uio_loffset. 2297 */ 2298 mutex_enter(&rp->r_statelock); 2299 if (rp->r_size < uio->uio_loffset) 2300 rp->r_size = uio->uio_loffset; 2301 rp->r_flags &= ~RMODINPROGRESS; 2302 rp->r_flags |= RDIRTY; 2303 mutex_exit(&rp->r_statelock); 2304 2305 /* n = # of bytes written */ 2306 n = (int)(uio->uio_loffset - offset); 2307 2308 if (!vpm_enable) { 2309 base += n; 2310 } 2311 tcount -= n; 2312 /* 2313 * If we created pages w/o initializing them completely, 2314 * we need to zero the part that wasn't set up. 2315 * This happens on a most EOF write cases and if 2316 * we had some sort of error during the uiomove. 2317 */ 2318 if (!vpm_enable && pagecreate) { 2319 if ((uio->uio_loffset & PAGEOFFSET) || n == 0) 2320 (void) kzero(base, PAGESIZE - n); 2321 2322 if (pgcreated) { 2323 /* 2324 * Caller is responsible for this page, 2325 * it was not created in this loop. 2326 */ 2327 pgcreated = 0; 2328 } else { 2329 /* 2330 * For bug 1094402: segmap_pagecreate locks 2331 * page. Unlock it. This also unlocks the 2332 * pages allocated by page_create_va() in 2333 * segmap_pagecreate(). 2334 */ 2335 sm_error = segmap_fault(kas.a_hat, segkmap, 2336 saved_base, saved_n, 2337 F_SOFTUNLOCK, S_WRITE); 2338 if (error == 0) 2339 error = sm_error; 2340 } 2341 } 2342 } while (tcount > 0 && error == 0); 2343 2344 return (error); 2345 } 2346 2347 int 2348 nfs_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr) 2349 { 2350 rnode_t *rp; 2351 page_t *pp; 2352 u_offset_t eoff; 2353 u_offset_t io_off; 2354 size_t io_len; 2355 int error; 2356 int rdirty; 2357 int err; 2358 2359 rp = VTOR(vp); 2360 ASSERT(rp->r_count > 0); 2361 2362 if (!vn_has_cached_data(vp)) 2363 return (0); 2364 2365 ASSERT(vp->v_type != VCHR); 2366 2367 /* 2368 * If ROUTOFSPACE is set, then all writes turn into B_INVAL 2369 * writes. B_FORCE is set to force the VM system to actually 2370 * invalidate the pages, even if the i/o failed. The pages 2371 * need to get invalidated because they can't be written out 2372 * because there isn't any space left on either the server's 2373 * file system or in the user's disk quota. The B_FREE bit 2374 * is cleared to avoid confusion as to whether this is a 2375 * request to place the page on the freelist or to destroy 2376 * it. 2377 */ 2378 if ((rp->r_flags & ROUTOFSPACE) || 2379 (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) 2380 flags = (flags & ~B_FREE) | B_INVAL | B_FORCE; 2381 2382 if (len == 0) { 2383 /* 2384 * If doing a full file synchronous operation, then clear 2385 * the RDIRTY bit. If a page gets dirtied while the flush 2386 * is happening, then RDIRTY will get set again. The 2387 * RDIRTY bit must get cleared before the flush so that 2388 * we don't lose this information. 2389 * 2390 * If there are no full file async write operations 2391 * pending and RDIRTY bit is set, clear it. 2392 */ 2393 if (off == (u_offset_t)0 && 2394 !(flags & B_ASYNC) && 2395 (rp->r_flags & RDIRTY)) { 2396 mutex_enter(&rp->r_statelock); 2397 rdirty = (rp->r_flags & RDIRTY); 2398 rp->r_flags &= ~RDIRTY; 2399 mutex_exit(&rp->r_statelock); 2400 } else if (flags & B_ASYNC && off == (u_offset_t)0) { 2401 mutex_enter(&rp->r_statelock); 2402 if (rp->r_flags & RDIRTY && rp->r_awcount == 0) { 2403 rdirty = (rp->r_flags & RDIRTY); 2404 rp->r_flags &= ~RDIRTY; 2405 } 2406 mutex_exit(&rp->r_statelock); 2407 } else 2408 rdirty = 0; 2409 2410 /* 2411 * Search the entire vp list for pages >= off, and flush 2412 * the dirty pages. 2413 */ 2414 error = pvn_vplist_dirty(vp, off, rp->r_putapage, 2415 flags, cr); 2416 2417 /* 2418 * If an error occurred and the file was marked as dirty 2419 * before and we aren't forcibly invalidating pages, then 2420 * reset the RDIRTY flag. 2421 */ 2422 if (error && rdirty && 2423 (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) { 2424 mutex_enter(&rp->r_statelock); 2425 rp->r_flags |= RDIRTY; 2426 mutex_exit(&rp->r_statelock); 2427 } 2428 } else { 2429 /* 2430 * Do a range from [off...off + len) looking for pages 2431 * to deal with. 2432 */ 2433 error = 0; 2434 #ifdef lint 2435 io_len = 0; 2436 #endif 2437 eoff = off + len; 2438 mutex_enter(&rp->r_statelock); 2439 for (io_off = off; io_off < eoff && io_off < rp->r_size; 2440 io_off += io_len) { 2441 mutex_exit(&rp->r_statelock); 2442 /* 2443 * If we are not invalidating, synchronously 2444 * freeing or writing pages use the routine 2445 * page_lookup_nowait() to prevent reclaiming 2446 * them from the free list. 2447 */ 2448 if ((flags & B_INVAL) || !(flags & B_ASYNC)) { 2449 pp = page_lookup(vp, io_off, 2450 (flags & (B_INVAL | B_FREE)) ? 2451 SE_EXCL : SE_SHARED); 2452 } else { 2453 pp = page_lookup_nowait(vp, io_off, 2454 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2455 } 2456 2457 if (pp == NULL || !pvn_getdirty(pp, flags)) 2458 io_len = PAGESIZE; 2459 else { 2460 err = (*rp->r_putapage)(vp, pp, &io_off, 2461 &io_len, flags, cr); 2462 if (!error) 2463 error = err; 2464 /* 2465 * "io_off" and "io_len" are returned as 2466 * the range of pages we actually wrote. 2467 * This allows us to skip ahead more quickly 2468 * since several pages may've been dealt 2469 * with by this iteration of the loop. 2470 */ 2471 } 2472 mutex_enter(&rp->r_statelock); 2473 } 2474 mutex_exit(&rp->r_statelock); 2475 } 2476 2477 return (error); 2478 } 2479 2480 void 2481 nfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr) 2482 { 2483 rnode_t *rp; 2484 2485 rp = VTOR(vp); 2486 mutex_enter(&rp->r_statelock); 2487 while (rp->r_flags & RTRUNCATE) 2488 cv_wait(&rp->r_cv, &rp->r_statelock); 2489 rp->r_flags |= RTRUNCATE; 2490 if (off == (u_offset_t)0) { 2491 rp->r_flags &= ~RDIRTY; 2492 if (!(rp->r_flags & RSTALE)) 2493 rp->r_error = 0; 2494 } 2495 rp->r_truncaddr = off; 2496 mutex_exit(&rp->r_statelock); 2497 (void) pvn_vplist_dirty(vp, off, rp->r_putapage, 2498 B_INVAL | B_TRUNC, cr); 2499 mutex_enter(&rp->r_statelock); 2500 rp->r_flags &= ~RTRUNCATE; 2501 cv_broadcast(&rp->r_cv); 2502 mutex_exit(&rp->r_statelock); 2503 } 2504 2505 static int nfs_write_error_to_cons_only = 0; 2506 #define MSG(x) (nfs_write_error_to_cons_only ? (x) : (x) + 1) 2507 2508 /* 2509 * Print a file handle 2510 */ 2511 void 2512 nfs_printfhandle(nfs_fhandle *fhp) 2513 { 2514 int *ip; 2515 char *buf; 2516 size_t bufsize; 2517 char *cp; 2518 2519 /* 2520 * 13 == "(file handle:" 2521 * maximum of NFS_FHANDLE / sizeof (*ip) elements in fh_buf times 2522 * 1 == ' ' 2523 * 8 == maximum strlen of "%x" 2524 * 3 == ")\n\0" 2525 */ 2526 bufsize = 13 + ((NFS_FHANDLE_LEN / sizeof (*ip)) * (1 + 8)) + 3; 2527 buf = kmem_alloc(bufsize, KM_NOSLEEP); 2528 if (buf == NULL) 2529 return; 2530 2531 cp = buf; 2532 (void) strcpy(cp, "(file handle:"); 2533 while (*cp != '\0') 2534 cp++; 2535 for (ip = (int *)fhp->fh_buf; 2536 ip < (int *)&fhp->fh_buf[fhp->fh_len]; 2537 ip++) { 2538 (void) sprintf(cp, " %x", *ip); 2539 while (*cp != '\0') 2540 cp++; 2541 } 2542 (void) strcpy(cp, ")\n"); 2543 2544 zcmn_err(getzoneid(), CE_CONT, MSG("^%s"), buf); 2545 2546 kmem_free(buf, bufsize); 2547 } 2548 2549 /* 2550 * Notify the system administrator that an NFS write error has 2551 * occurred. 2552 */ 2553 2554 /* seconds between ENOSPC/EDQUOT messages */ 2555 clock_t nfs_write_error_interval = 5; 2556 2557 void 2558 nfs_write_error(vnode_t *vp, int error, cred_t *cr) 2559 { 2560 mntinfo_t *mi; 2561 clock_t now; 2562 2563 mi = VTOMI(vp); 2564 /* 2565 * In case of forced unmount or zone shutdown, do not print any 2566 * messages since it can flood the console with error messages. 2567 */ 2568 if (FS_OR_ZONE_GONE(mi->mi_vfsp)) 2569 return; 2570 2571 /* 2572 * No use in flooding the console with ENOSPC 2573 * messages from the same file system. 2574 */ 2575 now = ddi_get_lbolt(); 2576 if ((error != ENOSPC && error != EDQUOT) || 2577 now - mi->mi_printftime > 0) { 2578 zoneid_t zoneid = mi->mi_zone->zone_id; 2579 2580 #ifdef DEBUG 2581 nfs_perror(error, "NFS%ld write error on host %s: %m.\n", 2582 mi->mi_vers, VTOR(vp)->r_server->sv_hostname, NULL); 2583 #else 2584 nfs_perror(error, "NFS write error on host %s: %m.\n", 2585 VTOR(vp)->r_server->sv_hostname, NULL); 2586 #endif 2587 if (error == ENOSPC || error == EDQUOT) { 2588 zcmn_err(zoneid, CE_CONT, 2589 MSG("^File: userid=%d, groupid=%d\n"), 2590 crgetuid(cr), crgetgid(cr)); 2591 if (crgetuid(CRED()) != crgetuid(cr) || 2592 crgetgid(CRED()) != crgetgid(cr)) { 2593 zcmn_err(zoneid, CE_CONT, 2594 MSG("^User: userid=%d, groupid=%d\n"), 2595 crgetuid(CRED()), crgetgid(CRED())); 2596 } 2597 mi->mi_printftime = now + 2598 nfs_write_error_interval * hz; 2599 } 2600 nfs_printfhandle(&VTOR(vp)->r_fh); 2601 #ifdef DEBUG 2602 if (error == EACCES) { 2603 zcmn_err(zoneid, CE_CONT, 2604 MSG("^nfs_bio: cred is%s kcred\n"), 2605 cr == kcred ? "" : " not"); 2606 } 2607 #endif 2608 } 2609 } 2610 2611 /* ARGSUSED */ 2612 static void * 2613 nfs_mi_init(zoneid_t zoneid) 2614 { 2615 struct mi_globals *mig; 2616 2617 mig = kmem_alloc(sizeof (*mig), KM_SLEEP); 2618 mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL); 2619 list_create(&mig->mig_list, sizeof (mntinfo_t), 2620 offsetof(mntinfo_t, mi_zone_node)); 2621 mig->mig_destructor_called = B_FALSE; 2622 return (mig); 2623 } 2624 2625 /* 2626 * Callback routine to tell all NFS mounts in the zone to stop creating new 2627 * threads. Existing threads should exit. 2628 */ 2629 /* ARGSUSED */ 2630 static void 2631 nfs_mi_shutdown(zoneid_t zoneid, void *data) 2632 { 2633 struct mi_globals *mig = data; 2634 mntinfo_t *mi; 2635 2636 ASSERT(mig != NULL); 2637 again: 2638 mutex_enter(&mig->mig_lock); 2639 for (mi = list_head(&mig->mig_list); mi != NULL; 2640 mi = list_next(&mig->mig_list, mi)) { 2641 2642 /* 2643 * If we've done the shutdown work for this FS, skip. 2644 * Once we go off the end of the list, we're done. 2645 */ 2646 if (mi->mi_flags & MI_DEAD) 2647 continue; 2648 2649 /* 2650 * We will do work, so not done. Get a hold on the FS. 2651 */ 2652 VFS_HOLD(mi->mi_vfsp); 2653 2654 /* 2655 * purge the DNLC for this filesystem 2656 */ 2657 (void) dnlc_purge_vfsp(mi->mi_vfsp, 0); 2658 2659 mutex_enter(&mi->mi_async_lock); 2660 /* 2661 * Tell existing async worker threads to exit. 2662 */ 2663 mi->mi_max_threads = 0; 2664 cv_broadcast(&mi->mi_async_work_cv); 2665 /* 2666 * Set MI_ASYNC_MGR_STOP so the async manager thread starts 2667 * getting ready to exit when it's done with its current work. 2668 * Also set MI_DEAD to note we've acted on this FS. 2669 */ 2670 mutex_enter(&mi->mi_lock); 2671 mi->mi_flags |= (MI_ASYNC_MGR_STOP|MI_DEAD); 2672 mutex_exit(&mi->mi_lock); 2673 /* 2674 * Wake up the async manager thread. 2675 */ 2676 cv_broadcast(&mi->mi_async_reqs_cv); 2677 mutex_exit(&mi->mi_async_lock); 2678 2679 /* 2680 * Drop lock and release FS, which may change list, then repeat. 2681 * We're done when every mi has been done or the list is empty. 2682 */ 2683 mutex_exit(&mig->mig_lock); 2684 VFS_RELE(mi->mi_vfsp); 2685 goto again; 2686 } 2687 mutex_exit(&mig->mig_lock); 2688 } 2689 2690 static void 2691 nfs_mi_free_globals(struct mi_globals *mig) 2692 { 2693 list_destroy(&mig->mig_list); /* makes sure the list is empty */ 2694 mutex_destroy(&mig->mig_lock); 2695 kmem_free(mig, sizeof (*mig)); 2696 2697 } 2698 2699 /* ARGSUSED */ 2700 static void 2701 nfs_mi_destroy(zoneid_t zoneid, void *data) 2702 { 2703 struct mi_globals *mig = data; 2704 2705 ASSERT(mig != NULL); 2706 mutex_enter(&mig->mig_lock); 2707 if (list_head(&mig->mig_list) != NULL) { 2708 /* Still waiting for VFS_FREEVFS() */ 2709 mig->mig_destructor_called = B_TRUE; 2710 mutex_exit(&mig->mig_lock); 2711 return; 2712 } 2713 nfs_mi_free_globals(mig); 2714 } 2715 2716 /* 2717 * Add an NFS mount to the per-zone list of NFS mounts. 2718 */ 2719 void 2720 nfs_mi_zonelist_add(mntinfo_t *mi) 2721 { 2722 struct mi_globals *mig; 2723 2724 mig = zone_getspecific(mi_list_key, mi->mi_zone); 2725 mutex_enter(&mig->mig_lock); 2726 list_insert_head(&mig->mig_list, mi); 2727 mutex_exit(&mig->mig_lock); 2728 } 2729 2730 /* 2731 * Remove an NFS mount from the per-zone list of NFS mounts. 2732 */ 2733 static void 2734 nfs_mi_zonelist_remove(mntinfo_t *mi) 2735 { 2736 struct mi_globals *mig; 2737 2738 mig = zone_getspecific(mi_list_key, mi->mi_zone); 2739 mutex_enter(&mig->mig_lock); 2740 list_remove(&mig->mig_list, mi); 2741 /* 2742 * We can be called asynchronously by VFS_FREEVFS() after the zone 2743 * shutdown/destroy callbacks have executed; if so, clean up the zone's 2744 * mi globals. 2745 */ 2746 if (list_head(&mig->mig_list) == NULL && 2747 mig->mig_destructor_called == B_TRUE) { 2748 nfs_mi_free_globals(mig); 2749 return; 2750 } 2751 mutex_exit(&mig->mig_lock); 2752 } 2753 2754 /* 2755 * NFS Client initialization routine. This routine should only be called 2756 * once. It performs the following tasks: 2757 * - Initalize all global locks 2758 * - Call sub-initialization routines (localize access to variables) 2759 */ 2760 int 2761 nfs_clntinit(void) 2762 { 2763 #ifdef DEBUG 2764 static boolean_t nfs_clntup = B_FALSE; 2765 #endif 2766 int error; 2767 2768 #ifdef DEBUG 2769 ASSERT(nfs_clntup == B_FALSE); 2770 #endif 2771 2772 error = nfs_subrinit(); 2773 if (error) 2774 return (error); 2775 2776 error = nfs_vfsinit(); 2777 if (error) { 2778 /* 2779 * Cleanup nfs_subrinit() work 2780 */ 2781 nfs_subrfini(); 2782 return (error); 2783 } 2784 zone_key_create(&mi_list_key, nfs_mi_init, nfs_mi_shutdown, 2785 nfs_mi_destroy); 2786 2787 nfs4_clnt_init(); 2788 2789 #ifdef DEBUG 2790 nfs_clntup = B_TRUE; 2791 #endif 2792 2793 return (0); 2794 } 2795 2796 /* 2797 * This routine is only called if the NFS Client has been initialized but 2798 * the module failed to be installed. This routine will cleanup the previously 2799 * allocated/initialized work. 2800 */ 2801 void 2802 nfs_clntfini(void) 2803 { 2804 (void) zone_key_delete(mi_list_key); 2805 nfs_subrfini(); 2806 nfs_vfsfini(); 2807 nfs4_clnt_fini(); 2808 } 2809 2810 /* 2811 * nfs_lockrelease: 2812 * 2813 * Release any locks on the given vnode that are held by the current 2814 * process. 2815 */ 2816 void 2817 nfs_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 2818 { 2819 flock64_t ld; 2820 struct shrlock shr; 2821 char *buf; 2822 int remote_lock_possible; 2823 int ret; 2824 2825 ASSERT((uintptr_t)vp > KERNELBASE); 2826 2827 /* 2828 * Generate an explicit unlock operation for the entire file. As a 2829 * partial optimization, only generate the unlock if there is a 2830 * lock registered for the file. We could check whether this 2831 * particular process has any locks on the file, but that would 2832 * require the local locking code to provide yet another query 2833 * routine. Note that no explicit synchronization is needed here. 2834 * At worst, flk_has_remote_locks() will return a false positive, 2835 * in which case the unlock call wastes time but doesn't harm 2836 * correctness. 2837 * 2838 * In addition, an unlock request is generated if the process 2839 * is listed as possibly having a lock on the file because the 2840 * server and client lock managers may have gotten out of sync. 2841 * N.B. It is important to make sure nfs_remove_locking_id() is 2842 * called here even if flk_has_remote_locks(vp) reports true. 2843 * If it is not called and there is an entry on the process id 2844 * list, that entry will never get removed. 2845 */ 2846 remote_lock_possible = nfs_remove_locking_id(vp, RLMPL_PID, 2847 (char *)&(ttoproc(curthread)->p_pid), NULL, NULL); 2848 if (remote_lock_possible || flk_has_remote_locks(vp)) { 2849 ld.l_type = F_UNLCK; /* set to unlock entire file */ 2850 ld.l_whence = 0; /* unlock from start of file */ 2851 ld.l_start = 0; 2852 ld.l_len = 0; /* do entire file */ 2853 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr, 2854 NULL); 2855 2856 if (ret != 0) { 2857 /* 2858 * If VOP_FRLOCK fails, make sure we unregister 2859 * local locks before we continue. 2860 */ 2861 ld.l_pid = ttoproc(curthread)->p_pid; 2862 lm_register_lock_locally(vp, NULL, &ld, flag, offset); 2863 #ifdef DEBUG 2864 nfs_perror(ret, 2865 "NFS lock release error on vp %p: %m.\n", 2866 (void *)vp, NULL); 2867 #endif 2868 } 2869 2870 /* 2871 * The call to VOP_FRLOCK may put the pid back on the 2872 * list. We need to remove it. 2873 */ 2874 (void) nfs_remove_locking_id(vp, RLMPL_PID, 2875 (char *)&(ttoproc(curthread)->p_pid), NULL, NULL); 2876 } 2877 2878 /* 2879 * As long as the vp has a share matching our pid, 2880 * pluck it off and unshare it. There are circumstances in 2881 * which the call to nfs_remove_locking_id() may put the 2882 * owner back on the list, in which case we simply do a 2883 * redundant and harmless unshare. 2884 */ 2885 buf = kmem_alloc(MAX_SHR_OWNER_LEN, KM_SLEEP); 2886 while (nfs_remove_locking_id(vp, RLMPL_OWNER, 2887 (char *)NULL, buf, &shr.s_own_len)) { 2888 shr.s_owner = buf; 2889 shr.s_access = 0; 2890 shr.s_deny = 0; 2891 shr.s_sysid = 0; 2892 shr.s_pid = curproc->p_pid; 2893 2894 ret = VOP_SHRLOCK(vp, F_UNSHARE, &shr, flag, cr, NULL); 2895 #ifdef DEBUG 2896 if (ret != 0) { 2897 nfs_perror(ret, 2898 "NFS share release error on vp %p: %m.\n", 2899 (void *)vp, NULL); 2900 } 2901 #endif 2902 } 2903 kmem_free(buf, MAX_SHR_OWNER_LEN); 2904 } 2905 2906 /* 2907 * nfs_lockcompletion: 2908 * 2909 * If the vnode has a lock that makes it unsafe to cache the file, mark it 2910 * as non cachable (set VNOCACHE bit). 2911 */ 2912 2913 void 2914 nfs_lockcompletion(vnode_t *vp, int cmd) 2915 { 2916 #ifdef DEBUG 2917 rnode_t *rp = VTOR(vp); 2918 2919 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER)); 2920 #endif 2921 2922 if (cmd == F_SETLK || cmd == F_SETLKW) { 2923 if (!lm_safemap(vp)) { 2924 mutex_enter(&vp->v_lock); 2925 vp->v_flag |= VNOCACHE; 2926 mutex_exit(&vp->v_lock); 2927 } else { 2928 mutex_enter(&vp->v_lock); 2929 vp->v_flag &= ~VNOCACHE; 2930 mutex_exit(&vp->v_lock); 2931 } 2932 } 2933 /* 2934 * The cached attributes of the file are stale after acquiring 2935 * the lock on the file. They were updated when the file was 2936 * opened, but not updated when the lock was acquired. Therefore the 2937 * cached attributes are invalidated after the lock is obtained. 2938 */ 2939 PURGE_ATTRCACHE(vp); 2940 } 2941 2942 /* 2943 * The lock manager holds state making it possible for the client 2944 * and server to be out of sync. For example, if the response from 2945 * the server granting a lock request is lost, the server will think 2946 * the lock is granted and the client will think the lock is lost. 2947 * The client can tell when it is not positive if it is in sync with 2948 * the server. 2949 * 2950 * To deal with this, a list of processes for which the client is 2951 * not sure if the server holds a lock is attached to the rnode. 2952 * When such a process closes the rnode, an unlock request is sent 2953 * to the server to unlock the entire file. 2954 * 2955 * The list is kept as a singularly linked NULL terminated list. 2956 * Because it is only added to under extreme error conditions, the 2957 * list shouldn't get very big. DEBUG kernels print a message if 2958 * the list gets bigger than nfs_lmpl_high_water. This is arbitrarily 2959 * choosen to be 8, but can be tuned at runtime. 2960 */ 2961 #ifdef DEBUG 2962 /* int nfs_lmpl_high_water = 8; */ 2963 int nfs_lmpl_high_water = 128; 2964 int nfs_cnt_add_locking_id = 0; 2965 int nfs_len_add_locking_id = 0; 2966 #endif /* DEBUG */ 2967 2968 /* 2969 * Record that the nfs lock manager server may be holding a lock on 2970 * a vnode for a process. 2971 * 2972 * Because the nfs lock manager server holds state, it is possible 2973 * for the server to get out of sync with the client. This routine is called 2974 * from the client when it is no longer sure if the server is in sync 2975 * with the client. nfs_lockrelease() will then notice this and send 2976 * an unlock request when the file is closed 2977 */ 2978 void 2979 nfs_add_locking_id(vnode_t *vp, pid_t pid, int type, char *id, int len) 2980 { 2981 rnode_t *rp; 2982 lmpl_t *new; 2983 lmpl_t *cur; 2984 lmpl_t **lmplp; 2985 #ifdef DEBUG 2986 int list_len = 1; 2987 #endif /* DEBUG */ 2988 2989 #ifdef DEBUG 2990 ++nfs_cnt_add_locking_id; 2991 #endif /* DEBUG */ 2992 /* 2993 * allocate new lmpl_t now so we don't sleep 2994 * later after grabbing mutexes 2995 */ 2996 ASSERT(len < MAX_SHR_OWNER_LEN); 2997 new = kmem_alloc(sizeof (*new), KM_SLEEP); 2998 new->lmpl_type = type; 2999 new->lmpl_pid = pid; 3000 new->lmpl_owner = kmem_alloc(len, KM_SLEEP); 3001 bcopy(id, new->lmpl_owner, len); 3002 new->lmpl_own_len = len; 3003 new->lmpl_next = (lmpl_t *)NULL; 3004 #ifdef DEBUG 3005 if (type == RLMPL_PID) { 3006 ASSERT(len == sizeof (pid_t)); 3007 ASSERT(pid == *(pid_t *)new->lmpl_owner); 3008 } else { 3009 ASSERT(type == RLMPL_OWNER); 3010 } 3011 #endif 3012 3013 rp = VTOR(vp); 3014 mutex_enter(&rp->r_statelock); 3015 3016 /* 3017 * Add this id to the list for this rnode only if the 3018 * rnode is active and the id is not already there. 3019 */ 3020 ASSERT(rp->r_flags & RHASHED); 3021 lmplp = &(rp->r_lmpl); 3022 for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) { 3023 if (cur->lmpl_pid == pid && 3024 cur->lmpl_type == type && 3025 cur->lmpl_own_len == len && 3026 bcmp(cur->lmpl_owner, new->lmpl_owner, len) == 0) { 3027 kmem_free(new->lmpl_owner, len); 3028 kmem_free(new, sizeof (*new)); 3029 break; 3030 } 3031 lmplp = &cur->lmpl_next; 3032 #ifdef DEBUG 3033 ++list_len; 3034 #endif /* DEBUG */ 3035 } 3036 if (cur == (lmpl_t *)NULL) { 3037 *lmplp = new; 3038 #ifdef DEBUG 3039 if (list_len > nfs_len_add_locking_id) { 3040 nfs_len_add_locking_id = list_len; 3041 } 3042 if (list_len > nfs_lmpl_high_water) { 3043 cmn_err(CE_WARN, "nfs_add_locking_id: long list " 3044 "vp=%p is %d", (void *)vp, list_len); 3045 } 3046 #endif /* DEBUG */ 3047 } 3048 3049 #ifdef DEBUG 3050 if (share_debug) { 3051 int nitems = 0; 3052 int npids = 0; 3053 int nowners = 0; 3054 3055 /* 3056 * Count the number of things left on r_lmpl after the remove. 3057 */ 3058 for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; 3059 cur = cur->lmpl_next) { 3060 nitems++; 3061 if (cur->lmpl_type == RLMPL_PID) { 3062 npids++; 3063 } else if (cur->lmpl_type == RLMPL_OWNER) { 3064 nowners++; 3065 } else { 3066 cmn_err(CE_PANIC, "nfs_add_locking_id: " 3067 "unrecognized lmpl_type %d", 3068 cur->lmpl_type); 3069 } 3070 } 3071 3072 cmn_err(CE_CONT, "nfs_add_locking_id(%s): %d PIDs + %d " 3073 "OWNs = %d items left on r_lmpl\n", 3074 (type == RLMPL_PID) ? "P" : "O", npids, nowners, nitems); 3075 } 3076 #endif 3077 3078 mutex_exit(&rp->r_statelock); 3079 } 3080 3081 /* 3082 * Remove an id from the lock manager id list. 3083 * 3084 * If the id is not in the list return 0. If it was found and 3085 * removed, return 1. 3086 */ 3087 static int 3088 nfs_remove_locking_id(vnode_t *vp, int type, char *id, char *rid, int *rlen) 3089 { 3090 lmpl_t *cur; 3091 lmpl_t **lmplp; 3092 rnode_t *rp; 3093 int rv = 0; 3094 3095 ASSERT(type == RLMPL_PID || type == RLMPL_OWNER); 3096 3097 rp = VTOR(vp); 3098 3099 mutex_enter(&rp->r_statelock); 3100 ASSERT(rp->r_flags & RHASHED); 3101 lmplp = &(rp->r_lmpl); 3102 3103 /* 3104 * Search through the list and remove the entry for this id 3105 * if it is there. The special case id == NULL allows removal 3106 * of the first share on the r_lmpl list belonging to the 3107 * current process (if any), without regard to further details 3108 * of its identity. 3109 */ 3110 for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) { 3111 if (cur->lmpl_type == type && 3112 cur->lmpl_pid == curproc->p_pid && 3113 (id == (char *)NULL || 3114 bcmp(cur->lmpl_owner, id, cur->lmpl_own_len) == 0)) { 3115 *lmplp = cur->lmpl_next; 3116 ASSERT(cur->lmpl_own_len < MAX_SHR_OWNER_LEN); 3117 if (rid != NULL) { 3118 bcopy(cur->lmpl_owner, rid, cur->lmpl_own_len); 3119 *rlen = cur->lmpl_own_len; 3120 } 3121 kmem_free(cur->lmpl_owner, cur->lmpl_own_len); 3122 kmem_free(cur, sizeof (*cur)); 3123 rv = 1; 3124 break; 3125 } 3126 lmplp = &cur->lmpl_next; 3127 } 3128 3129 #ifdef DEBUG 3130 if (share_debug) { 3131 int nitems = 0; 3132 int npids = 0; 3133 int nowners = 0; 3134 3135 /* 3136 * Count the number of things left on r_lmpl after the remove. 3137 */ 3138 for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; 3139 cur = cur->lmpl_next) { 3140 nitems++; 3141 if (cur->lmpl_type == RLMPL_PID) { 3142 npids++; 3143 } else if (cur->lmpl_type == RLMPL_OWNER) { 3144 nowners++; 3145 } else { 3146 cmn_err(CE_PANIC, 3147 "nrli: unrecognized lmpl_type %d", 3148 cur->lmpl_type); 3149 } 3150 } 3151 3152 cmn_err(CE_CONT, 3153 "nrli(%s): %d PIDs + %d OWNs = %d items left on r_lmpl\n", 3154 (type == RLMPL_PID) ? "P" : "O", 3155 npids, 3156 nowners, 3157 nitems); 3158 } 3159 #endif 3160 3161 mutex_exit(&rp->r_statelock); 3162 return (rv); 3163 } 3164 3165 void 3166 nfs_free_mi(mntinfo_t *mi) 3167 { 3168 ASSERT(mi->mi_flags & MI_ASYNC_MGR_STOP); 3169 ASSERT(mi->mi_manager_thread == NULL); 3170 ASSERT(mi->mi_threads == 0); 3171 3172 /* 3173 * Remove the node from the global list before we start tearing it down. 3174 */ 3175 nfs_mi_zonelist_remove(mi); 3176 if (mi->mi_klmconfig) { 3177 lm_free_config(mi->mi_klmconfig); 3178 kmem_free(mi->mi_klmconfig, sizeof (struct knetconfig)); 3179 } 3180 mutex_destroy(&mi->mi_lock); 3181 mutex_destroy(&mi->mi_remap_lock); 3182 mutex_destroy(&mi->mi_async_lock); 3183 cv_destroy(&mi->mi_failover_cv); 3184 cv_destroy(&mi->mi_async_work_cv); 3185 cv_destroy(&mi->mi_async_reqs_cv); 3186 cv_destroy(&mi->mi_async_cv); 3187 zone_rele(mi->mi_zone); 3188 kmem_free(mi, sizeof (*mi)); 3189 } 3190 3191 static int 3192 mnt_kstat_update(kstat_t *ksp, int rw) 3193 { 3194 mntinfo_t *mi; 3195 struct mntinfo_kstat *mik; 3196 vfs_t *vfsp; 3197 int i; 3198 3199 /* this is a read-only kstat. Bail out on a write */ 3200 if (rw == KSTAT_WRITE) 3201 return (EACCES); 3202 3203 /* 3204 * We don't want to wait here as kstat_chain_lock could be held by 3205 * dounmount(). dounmount() takes vfs_reflock before the chain lock 3206 * and thus could lead to a deadlock. 3207 */ 3208 vfsp = (struct vfs *)ksp->ks_private; 3209 3210 3211 mi = VFTOMI(vfsp); 3212 3213 mik = (struct mntinfo_kstat *)ksp->ks_data; 3214 3215 (void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto); 3216 mik->mik_vers = (uint32_t)mi->mi_vers; 3217 mik->mik_flags = mi->mi_flags; 3218 mik->mik_secmod = mi->mi_curr_serv->sv_secdata->secmod; 3219 mik->mik_curread = (uint32_t)mi->mi_curread; 3220 mik->mik_curwrite = (uint32_t)mi->mi_curwrite; 3221 mik->mik_retrans = mi->mi_retrans; 3222 mik->mik_timeo = mi->mi_timeo; 3223 mik->mik_acregmin = HR2SEC(mi->mi_acregmin); 3224 mik->mik_acregmax = HR2SEC(mi->mi_acregmax); 3225 mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin); 3226 mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax); 3227 for (i = 0; i < NFS_CALLTYPES + 1; i++) { 3228 mik->mik_timers[i].srtt = (uint32_t)mi->mi_timers[i].rt_srtt; 3229 mik->mik_timers[i].deviate = 3230 (uint32_t)mi->mi_timers[i].rt_deviate; 3231 mik->mik_timers[i].rtxcur = 3232 (uint32_t)mi->mi_timers[i].rt_rtxcur; 3233 } 3234 mik->mik_noresponse = (uint32_t)mi->mi_noresponse; 3235 mik->mik_failover = (uint32_t)mi->mi_failover; 3236 mik->mik_remap = (uint32_t)mi->mi_remap; 3237 (void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname); 3238 3239 return (0); 3240 } 3241 3242 void 3243 nfs_mnt_kstat_init(struct vfs *vfsp) 3244 { 3245 mntinfo_t *mi = VFTOMI(vfsp); 3246 3247 /* 3248 * Create the version specific kstats. 3249 * 3250 * PSARC 2001/697 Contract Private Interface 3251 * All nfs kstats are under SunMC contract 3252 * Please refer to the PSARC listed above and contact 3253 * SunMC before making any changes! 3254 * 3255 * Changes must be reviewed by Solaris File Sharing 3256 * Changes must be communicated to contract-2001-697@sun.com 3257 * 3258 */ 3259 3260 mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev), 3261 NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id); 3262 if (mi->mi_io_kstats) { 3263 if (mi->mi_zone->zone_id != GLOBAL_ZONEID) 3264 kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID); 3265 mi->mi_io_kstats->ks_lock = &mi->mi_lock; 3266 kstat_install(mi->mi_io_kstats); 3267 } 3268 3269 if ((mi->mi_ro_kstats = kstat_create_zone("nfs", 3270 getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW, 3271 sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) { 3272 if (mi->mi_zone->zone_id != GLOBAL_ZONEID) 3273 kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID); 3274 mi->mi_ro_kstats->ks_update = mnt_kstat_update; 3275 mi->mi_ro_kstats->ks_private = (void *)vfsp; 3276 kstat_install(mi->mi_ro_kstats); 3277 } 3278 } 3279 3280 nfs_delmapcall_t * 3281 nfs_init_delmapcall() 3282 { 3283 nfs_delmapcall_t *delmap_call; 3284 3285 delmap_call = kmem_alloc(sizeof (nfs_delmapcall_t), KM_SLEEP); 3286 delmap_call->call_id = curthread; 3287 delmap_call->error = 0; 3288 3289 return (delmap_call); 3290 } 3291 3292 void 3293 nfs_free_delmapcall(nfs_delmapcall_t *delmap_call) 3294 { 3295 kmem_free(delmap_call, sizeof (nfs_delmapcall_t)); 3296 } 3297 3298 /* 3299 * Searches for the current delmap caller (based on curthread) in the list of 3300 * callers. If it is found, we remove it and free the delmap caller. 3301 * Returns: 3302 * 0 if the caller wasn't found 3303 * 1 if the caller was found, removed and freed. *errp is set to what 3304 * the result of the delmap was. 3305 */ 3306 int 3307 nfs_find_and_delete_delmapcall(rnode_t *rp, int *errp) 3308 { 3309 nfs_delmapcall_t *delmap_call; 3310 3311 /* 3312 * If the list doesn't exist yet, we create it and return 3313 * that the caller wasn't found. No list = no callers. 3314 */ 3315 mutex_enter(&rp->r_statelock); 3316 if (!(rp->r_flags & RDELMAPLIST)) { 3317 /* The list does not exist */ 3318 list_create(&rp->r_indelmap, sizeof (nfs_delmapcall_t), 3319 offsetof(nfs_delmapcall_t, call_node)); 3320 rp->r_flags |= RDELMAPLIST; 3321 mutex_exit(&rp->r_statelock); 3322 return (0); 3323 } else { 3324 /* The list exists so search it */ 3325 for (delmap_call = list_head(&rp->r_indelmap); 3326 delmap_call != NULL; 3327 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 3328 if (delmap_call->call_id == curthread) { 3329 /* current caller is in the list */ 3330 *errp = delmap_call->error; 3331 list_remove(&rp->r_indelmap, delmap_call); 3332 mutex_exit(&rp->r_statelock); 3333 nfs_free_delmapcall(delmap_call); 3334 return (1); 3335 } 3336 } 3337 } 3338 mutex_exit(&rp->r_statelock); 3339 return (0); 3340 } 3341