1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 29 * All Rights Reserved 30 */ 31 32 #pragma ident "%Z%%M% %I% %E% SMI" 33 34 #include <sys/param.h> 35 #include <sys/types.h> 36 #include <sys/systm.h> 37 #include <sys/cred.h> 38 #include <sys/time.h> 39 #include <sys/vnode.h> 40 #include <sys/vfs.h> 41 #include <sys/file.h> 42 #include <sys/filio.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/mman.h> 46 #include <sys/pathname.h> 47 #include <sys/dirent.h> 48 #include <sys/debug.h> 49 #include <sys/vmsystm.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/swap.h> 53 #include <sys/errno.h> 54 #include <sys/strsubr.h> 55 #include <sys/sysmacros.h> 56 #include <sys/kmem.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathconf.h> 59 #include <sys/utsname.h> 60 #include <sys/dnlc.h> 61 #include <sys/acl.h> 62 #include <sys/systeminfo.h> 63 #include <sys/policy.h> 64 #include <sys/sdt.h> 65 #include <sys/list.h> 66 #include <sys/stat.h> 67 68 #include <rpc/types.h> 69 #include <rpc/auth.h> 70 #include <rpc/clnt.h> 71 72 #include <nfs/nfs.h> 73 #include <nfs/nfs_clnt.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 #include <nfs/nfs4.h> 77 #include <nfs/nfs4_kprot.h> 78 #include <nfs/rnode4.h> 79 #include <nfs/nfs4_clnt.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/pvn.h> 85 #include <vm/seg.h> 86 #include <vm/seg_map.h> 87 #include <vm/seg_kpm.h> 88 #include <vm/seg_vn.h> 89 90 #include <fs/fs_subr.h> 91 92 #include <sys/ddi.h> 93 #include <sys/int_fmtio.h> 94 95 typedef struct { 96 nfs4_ga_res_t *di_garp; 97 cred_t *di_cred; 98 hrtime_t di_time_call; 99 } dirattr_info_t; 100 101 typedef enum nfs4_acl_op { 102 NFS4_ACL_GET, 103 NFS4_ACL_SET 104 } nfs4_acl_op_t; 105 106 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 107 char *, dirattr_info_t *); 108 109 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 110 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 111 nfs4_error_t *, int *); 112 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 113 cred_t *); 114 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 115 stable_how4 *); 116 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 117 cred_t *, bool_t, struct uio *); 118 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 119 vsecattr_t *); 120 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 121 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 122 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 123 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 124 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 125 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 126 int, vnode_t **, cred_t *); 127 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 128 cred_t *, int, int, enum createmode4, int); 129 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 130 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 131 vnode_t *, char *, cred_t *, nfsstat4 *); 132 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 133 vnode_t *, char *, cred_t *, nfsstat4 *); 134 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 135 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 136 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 137 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 138 page_t *[], size_t, struct seg *, caddr_t, 139 enum seg_rw, cred_t *); 140 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 141 cred_t *); 142 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 143 int, cred_t *); 144 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 145 int, cred_t *); 146 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 147 static void nfs4_set_mod(vnode_t *); 148 static void nfs4_get_commit(vnode_t *); 149 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 150 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 151 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 152 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 153 cred_t *); 154 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 155 cred_t *); 156 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 157 hrtime_t, vnode_t *, cred_t *); 158 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 159 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 160 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 161 u_offset_t); 162 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 163 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 164 static cred_t *state_to_cred(nfs4_open_stream_t *); 165 static int vtoname(vnode_t *, char *, ssize_t); 166 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 167 static pid_t lo_to_pid(lock_owner4 *); 168 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 169 cred_t *, nfs4_lock_owner_t *); 170 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 171 nfs4_lock_owner_t *); 172 static nfs4_open_stream_t *open_and_get_osp(vnode_t *, cred_t *, mntinfo4_t *); 173 static void nfs4_delmap_callback(struct as *, void *, uint_t); 174 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 175 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 176 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 177 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 178 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 179 uid_t, gid_t, int); 180 181 /* 182 * Routines that implement the setting of v4 args for the misc. ops 183 */ 184 static void nfs4args_lock_free(nfs_argop4 *); 185 static void nfs4args_lockt_free(nfs_argop4 *); 186 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 187 int, rnode4_t *, cred_t *, bitmap4, int *, 188 nfs4_stateid_types_t *); 189 static void nfs4args_setattr_free(nfs_argop4 *); 190 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 191 bitmap4); 192 static void nfs4args_verify_free(nfs_argop4 *); 193 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 194 WRITE4args **, nfs4_stateid_types_t *); 195 196 /* 197 * These are the vnode ops functions that implement the vnode interface to 198 * the networked file system. See more comments below at nfs4_vnodeops. 199 */ 200 static int nfs4_open(vnode_t **, int, cred_t *); 201 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *); 202 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 203 caller_context_t *); 204 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 205 caller_context_t *); 206 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *); 207 static int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *); 208 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 209 caller_context_t *); 210 static int nfs4_access(vnode_t *, int, int, cred_t *); 211 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *); 212 static int nfs4_fsync(vnode_t *, int, cred_t *); 213 static void nfs4_inactive(vnode_t *, cred_t *); 214 static int nfs4_lookup(vnode_t *, char *, vnode_t **, 215 struct pathname *, int, vnode_t *, cred_t *); 216 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 217 int, vnode_t **, cred_t *, int); 218 static int nfs4_remove(vnode_t *, char *, cred_t *); 219 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *); 220 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 221 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, 222 vnode_t **, cred_t *); 223 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *); 224 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 225 cred_t *); 226 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *); 227 static int nfs4_fid(vnode_t *, fid_t *); 228 static int nfs4_rwlock(vnode_t *, int, caller_context_t *); 229 static void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 230 static int nfs4_seek(vnode_t *, offset_t, offset_t *); 231 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 232 page_t *[], size_t, struct seg *, caddr_t, 233 enum seg_rw, cred_t *); 234 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *); 235 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, 236 size_t, uchar_t, uchar_t, uint_t, cred_t *); 237 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, 238 size_t, uchar_t, uchar_t, uint_t, cred_t *); 239 static int nfs4_cmp(vnode_t *, vnode_t *); 240 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 241 struct flk_callback *, cred_t *); 242 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 243 cred_t *, caller_context_t *); 244 static int nfs4_realvp(vnode_t *, vnode_t **); 245 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, 246 size_t, uint_t, uint_t, uint_t, cred_t *); 247 static int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *); 248 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 249 cred_t *); 250 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *); 251 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 252 static int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 253 static int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *); 254 255 /* 256 * Used for nfs4_commit_vp() to indicate if we should 257 * wait on pending writes. 258 */ 259 #define NFS4_WRITE_NOWAIT 0 260 #define NFS4_WRITE_WAIT 1 261 262 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 263 264 /* 265 * Error flags used to pass information about certain special errors 266 * which need to be handled specially. 267 */ 268 #define NFS_EOF -98 269 #define NFS_VERF_MISMATCH -97 270 271 /* 272 * Flags used to differentiate between which operation drove the 273 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 274 */ 275 #define NFS4_CLOSE_OP 0x1 276 #define NFS4_DELMAP_OP 0x2 277 #define NFS4_INACTIVE_OP 0x3 278 279 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 280 281 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 282 #define ALIGN64(x, ptr, sz) \ 283 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 284 if (x) { \ 285 x = sizeof (uint64_t) - (x); \ 286 sz -= (x); \ 287 ptr += (x); \ 288 } 289 290 #ifdef DEBUG 291 int nfs4_client_attr_debug = 0; 292 int nfs4_client_state_debug = 0; 293 int nfs4_client_shadow_debug = 0; 294 int nfs4_client_lock_debug = 0; 295 int nfs4_seqid_sync = 0; 296 int nfs4_client_map_debug = 0; 297 static int nfs4_pageio_debug = 0; 298 int nfs4_client_inactive_debug = 0; 299 int nfs4_client_recov_debug = 0; 300 int nfs4_client_recov_stub_debug = 0; 301 int nfs4_client_failover_debug = 0; 302 int nfs4_client_call_debug = 0; 303 int nfs4_client_lookup_debug = 0; 304 int nfs4_client_zone_debug = 0; 305 int nfs4_lost_rqst_debug = 0; 306 int nfs4_rdattrerr_debug = 0; 307 int nfs4_open_stream_debug = 0; 308 309 int nfs4read_error_inject; 310 311 static int nfs4_create_misses = 0; 312 313 static int nfs4_readdir_cache_shorts = 0; 314 static int nfs4_readdir_readahead = 0; 315 316 static int nfs4_bio_do_stop = 0; 317 318 static int nfs4_lostpage = 0; /* number of times we lost original page */ 319 320 int nfs4_mmap_debug = 0; 321 322 static int nfs4_pathconf_cache_hits = 0; 323 static int nfs4_pathconf_cache_misses = 0; 324 325 int nfs4close_all_cnt; 326 int nfs4close_one_debug = 0; 327 int nfs4close_notw_debug = 0; 328 329 int denied_to_flk_debug = 0; 330 void *lockt_denied_debug; 331 332 #endif 333 334 /* 335 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 336 * or NFS4ERR_RESOURCE. 337 */ 338 static int confirm_retry_sec = 30; 339 340 static int nfs4_lookup_neg_cache = 1; 341 342 /* 343 * number of pages to read ahead 344 * optimized for 100 base-T. 345 */ 346 static int nfs4_nra = 4; 347 348 static int nfs4_do_symlink_cache = 1; 349 350 static int nfs4_pathconf_disable_cache = 0; 351 352 /* 353 * These are the vnode ops routines which implement the vnode interface to 354 * the networked file system. These routines just take their parameters, 355 * make them look networkish by putting the right info into interface structs, 356 * and then calling the appropriate remote routine(s) to do the work. 357 * 358 * Note on directory name lookup cacheing: If we detect a stale fhandle, 359 * we purge the directory cache relative to that vnode. This way, the 360 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 361 * more details on rnode locking. 362 */ 363 364 struct vnodeops *nfs4_vnodeops; 365 366 const fs_operation_def_t nfs4_vnodeops_template[] = { 367 VOPNAME_OPEN, nfs4_open, 368 VOPNAME_CLOSE, nfs4_close, 369 VOPNAME_READ, nfs4_read, 370 VOPNAME_WRITE, nfs4_write, 371 VOPNAME_IOCTL, nfs4_ioctl, 372 VOPNAME_GETATTR, nfs4_getattr, 373 VOPNAME_SETATTR, nfs4_setattr, 374 VOPNAME_ACCESS, nfs4_access, 375 VOPNAME_LOOKUP, nfs4_lookup, 376 VOPNAME_CREATE, nfs4_create, 377 VOPNAME_REMOVE, nfs4_remove, 378 VOPNAME_LINK, nfs4_link, 379 VOPNAME_RENAME, nfs4_rename, 380 VOPNAME_MKDIR, nfs4_mkdir, 381 VOPNAME_RMDIR, nfs4_rmdir, 382 VOPNAME_READDIR, nfs4_readdir, 383 VOPNAME_SYMLINK, nfs4_symlink, 384 VOPNAME_READLINK, nfs4_readlink, 385 VOPNAME_FSYNC, nfs4_fsync, 386 VOPNAME_INACTIVE, (fs_generic_func_p) nfs4_inactive, 387 VOPNAME_FID, nfs4_fid, 388 VOPNAME_RWLOCK, nfs4_rwlock, 389 VOPNAME_RWUNLOCK, (fs_generic_func_p) nfs4_rwunlock, 390 VOPNAME_SEEK, nfs4_seek, 391 VOPNAME_FRLOCK, nfs4_frlock, 392 VOPNAME_SPACE, nfs4_space, 393 VOPNAME_REALVP, nfs4_realvp, 394 VOPNAME_GETPAGE, nfs4_getpage, 395 VOPNAME_PUTPAGE, nfs4_putpage, 396 VOPNAME_MAP, (fs_generic_func_p) nfs4_map, 397 VOPNAME_ADDMAP, (fs_generic_func_p) nfs4_addmap, 398 VOPNAME_DELMAP, nfs4_delmap, 399 VOPNAME_DUMP, nfs_dump, /* there is no separate nfs4_dump */ 400 VOPNAME_PATHCONF, nfs4_pathconf, 401 VOPNAME_PAGEIO, nfs4_pageio, 402 VOPNAME_DISPOSE, (fs_generic_func_p) nfs4_dispose, 403 VOPNAME_SETSECATTR, nfs4_setsecattr, 404 VOPNAME_GETSECATTR, nfs4_getsecattr, 405 VOPNAME_SHRLOCK, nfs4_shrlock, 406 NULL, NULL 407 }; 408 409 /* 410 * The following are subroutines and definitions to set args or get res 411 * for the different nfsv4 ops 412 */ 413 414 void 415 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 416 { 417 int i; 418 419 for (i = 0; i < arglen; i++) { 420 if (argop[i].argop == OP_LOOKUP) 421 kmem_free( 422 argop[i].nfs_argop4_u.oplookup.objname.utf8string_val, 423 argop[i].nfs_argop4_u.oplookup.objname.utf8string_len); 424 } 425 } 426 427 static void 428 nfs4args_lock_free(nfs_argop4 *argop) 429 { 430 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 431 432 if (locker->new_lock_owner == TRUE) { 433 open_to_lock_owner4 *open_owner; 434 435 open_owner = &locker->locker4_u.open_owner; 436 if (open_owner->lock_owner.owner_val != NULL) { 437 kmem_free(open_owner->lock_owner.owner_val, 438 open_owner->lock_owner.owner_len); 439 } 440 } 441 } 442 443 static void 444 nfs4args_lockt_free(nfs_argop4 *argop) 445 { 446 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 447 448 if (lowner->owner_val != NULL) { 449 kmem_free(lowner->owner_val, lowner->owner_len); 450 } 451 } 452 453 static void 454 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 455 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 456 nfs4_stateid_types_t *sid_types) 457 { 458 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 459 mntinfo4_t *mi; 460 461 argop->argop = OP_SETATTR; 462 /* 463 * The stateid is set to 0 if client is not modifying the size 464 * and otherwise to whatever nfs4_get_stateid() returns. 465 * 466 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 467 * state struct could be found for the process/file pair. We may 468 * want to change this in the future (by OPENing the file). See 469 * bug # 4474852. 470 */ 471 if (vap->va_mask & AT_SIZE) { 472 473 ASSERT(rp != NULL); 474 mi = VTOMI4(RTOV4(rp)); 475 476 argop->nfs_argop4_u.opsetattr.stateid = 477 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 478 OP_SETATTR, sid_types, FALSE); 479 } else { 480 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 481 sizeof (stateid4)); 482 } 483 484 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 485 if (*error) 486 bzero(attr, sizeof (*attr)); 487 } 488 489 static void 490 nfs4args_setattr_free(nfs_argop4 *argop) 491 { 492 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 493 } 494 495 static int 496 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 497 bitmap4 supp) 498 { 499 fattr4 *attr; 500 int error = 0; 501 502 argop->argop = op; 503 switch (op) { 504 case OP_VERIFY: 505 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 506 break; 507 case OP_NVERIFY: 508 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 509 break; 510 default: 511 return (EINVAL); 512 } 513 if (!error) 514 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 515 if (error) 516 bzero(attr, sizeof (*attr)); 517 return (error); 518 } 519 520 static void 521 nfs4args_verify_free(nfs_argop4 *argop) 522 { 523 switch (argop->argop) { 524 case OP_VERIFY: 525 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 526 break; 527 case OP_NVERIFY: 528 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 529 break; 530 default: 531 break; 532 } 533 } 534 535 static void 536 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 537 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 538 { 539 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 540 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 541 542 argop->argop = OP_WRITE; 543 wargs->stable = stable; 544 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 545 mi, OP_WRITE, sid_tp); 546 wargs->mblk = NULL; 547 *wargs_pp = wargs; 548 } 549 550 void 551 nfs4args_copen_free(OPEN4cargs *open_args) 552 { 553 if (open_args->owner.owner_val) { 554 kmem_free(open_args->owner.owner_val, 555 open_args->owner.owner_len); 556 } 557 if ((open_args->opentype == OPEN4_CREATE) && 558 (open_args->mode != EXCLUSIVE4)) { 559 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 560 } 561 } 562 563 /* 564 * XXX: This is referenced in modstubs.s 565 */ 566 struct vnodeops * 567 nfs4_getvnodeops(void) 568 { 569 return (nfs4_vnodeops); 570 } 571 572 /* 573 * The OPEN operation opens a regular file. 574 * 575 * ARGSUSED 576 */ 577 static int 578 nfs4_open(vnode_t **vpp, int flag, cred_t *cr) 579 { 580 vnode_t *dvp = NULL; 581 rnode4_t *rp; 582 int error; 583 int just_been_created; 584 char fn[MAXNAMELEN]; 585 586 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 587 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 588 return (EIO); 589 rp = VTOR4(*vpp); 590 591 /* 592 * Check to see if opening something besides a regular file; 593 * if so skip the OTW call 594 */ 595 if ((*vpp)->v_type != VREG) { 596 error = nfs4_open_non_reg_file(vpp, flag, cr); 597 return (error); 598 } 599 600 /* 601 * XXX - would like a check right here to know if the file is 602 * executable or not, so as to skip OTW 603 */ 604 605 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) 606 return (error); 607 608 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 609 return (error); 610 611 /* 612 * See if this file has just been CREATEd. 613 * If so, clear the flag and update the dnlc, which was previously 614 * skipped in nfs4_create. 615 * XXX need better serilization on this. 616 * XXX move this into the nf4open_otw call, after we have 617 * XXX acquired the open owner seqid sync. 618 */ 619 mutex_enter(&rp->r_statev4_lock); 620 if (rp->created_v4) { 621 rp->created_v4 = 0; 622 mutex_exit(&rp->r_statev4_lock); 623 624 dnlc_update(dvp, fn, *vpp); 625 /* This is needed so we don't bump the open ref count */ 626 just_been_created = 1; 627 } else { 628 mutex_exit(&rp->r_statev4_lock); 629 just_been_created = 0; 630 } 631 632 /* 633 * If caller specified O_TRUNC/FTRUNC, then be sure to set 634 * FWRITE (to drive successful setattr(size=0) after open) 635 */ 636 if (flag & FTRUNC) 637 flag |= FWRITE; 638 639 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 640 just_been_created); 641 642 if (!error && !((*vpp)->v_flag & VROOT)) 643 dnlc_update(dvp, fn, *vpp); 644 645 /* release the hold from vtodv */ 646 VN_RELE(dvp); 647 648 /* exchange the shadow for the master vnode, if needed */ 649 650 if (error == 0 && IS_SHADOW(*vpp, rp)) 651 sv_exchange(vpp); 652 653 return (error); 654 } 655 656 /* 657 * See if there's a "lost open" request to be saved and recovered. 658 */ 659 static void 660 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 661 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 662 vnode_t *dvp, OPEN4cargs *open_args) 663 { 664 vfs_t *vfsp; 665 char *srccfp; 666 667 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 668 669 if (error != ETIMEDOUT && error != EINTR && 670 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 671 lost_rqstp->lr_op = 0; 672 return; 673 } 674 675 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 676 "nfs4open_save_lost_rqst: error %d", error)); 677 678 lost_rqstp->lr_op = OP_OPEN; 679 /* 680 * The vp (if it is not NULL) and dvp are held and rele'd via 681 * the recovery code. See nfs4_save_lost_rqst. 682 */ 683 lost_rqstp->lr_vp = vp; 684 lost_rqstp->lr_dvp = dvp; 685 lost_rqstp->lr_oop = oop; 686 lost_rqstp->lr_osp = NULL; 687 lost_rqstp->lr_lop = NULL; 688 lost_rqstp->lr_cr = cr; 689 lost_rqstp->lr_flk = NULL; 690 lost_rqstp->lr_oacc = open_args->share_access; 691 lost_rqstp->lr_odeny = open_args->share_deny; 692 lost_rqstp->lr_oclaim = open_args->claim; 693 if (open_args->claim == CLAIM_DELEGATE_CUR) { 694 lost_rqstp->lr_ostateid = 695 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 696 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 697 } else { 698 srccfp = open_args->open_claim4_u.cfile; 699 } 700 lost_rqstp->lr_ofile.utf8string_len = 0; 701 lost_rqstp->lr_ofile.utf8string_val = NULL; 702 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 703 lost_rqstp->lr_putfirst = FALSE; 704 } 705 706 struct nfs4_excl_time { 707 uint32 seconds; 708 uint32 nseconds; 709 }; 710 711 /* 712 * The OPEN operation creates and/or opens a regular file 713 * 714 * ARGSUSED 715 */ 716 static int 717 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 718 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 719 enum createmode4 createmode, int file_just_been_created) 720 { 721 rnode4_t *rp; 722 rnode4_t *drp = VTOR4(dvp); 723 vnode_t *vp = NULL; 724 vnode_t *vpi = *vpp; 725 bool_t needrecov = FALSE; 726 727 int doqueue = 1; 728 729 COMPOUND4args_clnt args; 730 COMPOUND4res_clnt res; 731 nfs_argop4 *argop; 732 nfs_resop4 *resop; 733 int argoplist_size; 734 int idx_open, idx_fattr; 735 736 GETFH4res *gf_res = NULL; 737 OPEN4res *op_res = NULL; 738 nfs4_ga_res_t *garp; 739 fattr4 *attr = NULL; 740 struct nfs4_excl_time verf; 741 bool_t did_excl_setup = FALSE; 742 int created_osp; 743 744 OPEN4cargs *open_args; 745 nfs4_open_owner_t *oop = NULL; 746 nfs4_open_stream_t *osp = NULL; 747 seqid4 seqid = 0; 748 bool_t retry_open = FALSE; 749 nfs4_recov_state_t recov_state; 750 nfs4_lost_rqst_t lost_rqst; 751 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 752 hrtime_t t; 753 int acc = 0; 754 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 755 cred_t *ncr = NULL; 756 757 nfs4_sharedfh_t *otw_sfh; 758 nfs4_sharedfh_t *orig_sfh; 759 int fh_differs = 0; 760 int numops, setgid_flag; 761 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 762 763 /* 764 * Make sure we properly deal with setting the right gid on 765 * a newly created file to reflect the parent's setgid bit 766 */ 767 setgid_flag = 0; 768 if (create_flag && in_va) { 769 770 /* 771 * If the parent's directory has the setgid bit set 772 * _and_ the client was able to get a valid mapping 773 * for the parent dir's owner_group, we want to 774 * append NVERIFY(owner_group == dva.va_gid) and 775 * SETATTR to the CREATE compound. 776 */ 777 mutex_enter(&drp->r_statelock); 778 if (drp->r_attr.va_mode & VSGID && 779 drp->r_attr.va_gid != GID_NOBODY) { 780 in_va->va_gid = drp->r_attr.va_gid; 781 setgid_flag = 1; 782 } 783 mutex_exit(&drp->r_statelock); 784 } 785 786 /* 787 * Normal/non-create compound: 788 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 789 * 790 * Open(create) compound no setgid: 791 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 792 * RESTOREFH + GETATTR 793 * 794 * Open(create) setgid: 795 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 796 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 797 * NVERIFY(grp) + SETATTR 798 */ 799 if (setgid_flag) { 800 numops = 10; 801 idx_open = 1; 802 idx_fattr = 3; 803 } else if (create_flag) { 804 numops = 7; 805 idx_open = 2; 806 idx_fattr = 4; 807 } else { 808 numops = 4; 809 idx_open = 1; 810 idx_fattr = 3; 811 } 812 813 args.array_len = numops; 814 argoplist_size = numops * sizeof (nfs_argop4); 815 argop = kmem_alloc(argoplist_size, KM_SLEEP); 816 817 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 818 "open %s open flag 0x%x cred %p", file_name, open_flag, 819 (void *)cr)); 820 821 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 822 if (create_flag) { 823 /* 824 * We are to create a file. Initialize the passed in vnode 825 * pointer. 826 */ 827 vpi = NULL; 828 } else { 829 /* 830 * Check to see if the client owns a read delegation and is 831 * trying to open for write. If so, then return the delegation 832 * to avoid the server doing a cb_recall and returning DELAY. 833 * NB - we don't use the statev4_lock here because we'd have 834 * to drop the lock anyway and the result would be stale. 835 */ 836 if ((open_flag & FWRITE) && 837 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 838 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 839 840 /* 841 * If the file has a delegation, then do an access check up 842 * front. This avoids having to an access check later after 843 * we've already done start_op, which could deadlock. 844 */ 845 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 846 if (open_flag & FREAD && 847 nfs4_access(vpi, VREAD, 0, cr) == 0) 848 acc |= VREAD; 849 if (open_flag & FWRITE && 850 nfs4_access(vpi, VWRITE, 0, cr) == 0) 851 acc |= VWRITE; 852 } 853 } 854 855 drp = VTOR4(dvp); 856 857 recov_state.rs_flags = 0; 858 recov_state.rs_num_retry_despite_err = 0; 859 cred_otw = cr; 860 861 recov_retry: 862 fh_differs = 0; 863 nfs4_error_zinit(&e); 864 865 /* argop is empty here */ 866 867 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 868 if (ncr != NULL) 869 crfree(ncr); 870 kmem_free(argop, argoplist_size); 871 return (EINTR); 872 } 873 874 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 875 if (e.error) { 876 nfs_rw_exit(&drp->r_rwlock); 877 if (ncr != NULL) 878 crfree(ncr); 879 kmem_free(argop, argoplist_size); 880 return (e.error); 881 } 882 883 args.ctag = TAG_OPEN; 884 args.array_len = numops; 885 args.array = argop; 886 887 /* putfh directory fh */ 888 argop[0].argop = OP_CPUTFH; 889 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 890 891 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 892 argop[idx_open].argop = OP_COPEN; 893 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 894 open_args->claim = CLAIM_NULL; 895 896 /* name of file */ 897 open_args->open_claim4_u.cfile = file_name; 898 open_args->owner.owner_len = 0; 899 open_args->owner.owner_val = NULL; 900 901 if (create_flag) { 902 /* CREATE a file */ 903 open_args->opentype = OPEN4_CREATE; 904 open_args->mode = createmode; 905 if (createmode == EXCLUSIVE4) { 906 if (did_excl_setup == FALSE) { 907 verf.seconds = nfs_atoi(hw_serial); 908 if (verf.seconds != 0) 909 verf.nseconds = newnum(); 910 else { 911 timestruc_t now; 912 913 gethrestime(&now); 914 verf.seconds = now.tv_sec; 915 verf.nseconds = now.tv_nsec; 916 } 917 /* 918 * Since the server will use this value for the 919 * mtime, make sure that it can't overflow. Zero 920 * out the MSB. The actual value does not matter 921 * here, only its uniqeness. 922 */ 923 verf.seconds &= INT32_MAX; 924 did_excl_setup = TRUE; 925 } 926 927 /* Now copy over verifier to OPEN4args. */ 928 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 929 } else { 930 int v_error; 931 bitmap4 supp_attrs; 932 servinfo4_t *svp; 933 934 attr = &open_args->createhow4_u.createattrs; 935 936 svp = drp->r_server; 937 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 938 supp_attrs = svp->sv_supp_attrs; 939 nfs_rw_exit(&svp->sv_lock); 940 941 /* GUARDED4 or UNCHECKED4 */ 942 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 943 supp_attrs); 944 if (v_error) { 945 bzero(attr, sizeof (*attr)); 946 nfs4args_copen_free(open_args); 947 nfs_rw_exit(&drp->r_rwlock); 948 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 949 &recov_state, FALSE); 950 if (ncr != NULL) 951 crfree(ncr); 952 kmem_free(argop, argoplist_size); 953 return (v_error); 954 } 955 } 956 } else { 957 /* NO CREATE */ 958 open_args->opentype = OPEN4_NOCREATE; 959 } 960 961 if (recov_state.rs_sp != NULL) { 962 mutex_enter(&recov_state.rs_sp->s_lock); 963 open_args->owner.clientid = recov_state.rs_sp->clientid; 964 mutex_exit(&recov_state.rs_sp->s_lock); 965 } else { 966 /* XXX should we just fail here? */ 967 open_args->owner.clientid = 0; 968 } 969 970 /* 971 * This increments oop's ref count or creates a temporary 'just_created' 972 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 973 * completes. 974 */ 975 mutex_enter(&VTOMI4(dvp)->mi_lock); 976 977 /* See if a permanent or just created open owner exists */ 978 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 979 if (!oop) { 980 /* 981 * This open owner does not exist so create a temporary 982 * just created one. 983 */ 984 oop = create_open_owner(cr, VTOMI4(dvp)); 985 ASSERT(oop != NULL); 986 } 987 mutex_exit(&VTOMI4(dvp)->mi_lock); 988 989 /* this length never changes, do alloc before seqid sync */ 990 open_args->owner.owner_len = sizeof (oop->oo_name); 991 open_args->owner.owner_val = 992 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 993 994 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 995 if (e.error == EAGAIN) { 996 open_owner_rele(oop); 997 nfs4args_copen_free(open_args); 998 nfs_rw_exit(&drp->r_rwlock); 999 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1000 if (ncr != NULL) { 1001 crfree(ncr); 1002 ncr = NULL; 1003 } 1004 goto recov_retry; 1005 } 1006 1007 /* Check to see if we need to do the OTW call */ 1008 if (!create_flag) { 1009 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1010 file_just_been_created, &e.error, acc, &recov_state)) { 1011 1012 /* 1013 * The OTW open is not necessary. Either 1014 * the open can succeed without it (eg. 1015 * delegation, error == 0) or the open 1016 * must fail due to an access failure 1017 * (error != 0). In either case, tidy 1018 * up and return. 1019 */ 1020 1021 nfs4_end_open_seqid_sync(oop); 1022 open_owner_rele(oop); 1023 nfs4args_copen_free(open_args); 1024 nfs_rw_exit(&drp->r_rwlock); 1025 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1026 if (ncr != NULL) 1027 crfree(ncr); 1028 kmem_free(argop, argoplist_size); 1029 return (e.error); 1030 } 1031 } 1032 1033 bcopy(&oop->oo_name, open_args->owner.owner_val, 1034 open_args->owner.owner_len); 1035 1036 seqid = nfs4_get_open_seqid(oop) + 1; 1037 open_args->seqid = seqid; 1038 open_args->share_access = 0; 1039 if (open_flag & FREAD) 1040 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1041 if (open_flag & FWRITE) 1042 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1043 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1044 1045 1046 1047 /* 1048 * getfh w/sanity check for idx_open/idx_fattr 1049 */ 1050 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1051 argop[idx_open + 1].argop = OP_GETFH; 1052 1053 /* getattr */ 1054 argop[idx_fattr].argop = OP_GETATTR; 1055 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1056 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1057 1058 if (setgid_flag) { 1059 vattr_t _v; 1060 servinfo4_t *svp; 1061 bitmap4 supp_attrs; 1062 1063 svp = drp->r_server; 1064 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1065 supp_attrs = svp->sv_supp_attrs; 1066 nfs_rw_exit(&svp->sv_lock); 1067 1068 /* 1069 * For setgid case, we need to: 1070 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1071 */ 1072 argop[4].argop = OP_SAVEFH; 1073 1074 argop[5].argop = OP_CPUTFH; 1075 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1076 1077 argop[6].argop = OP_GETATTR; 1078 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1079 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1080 1081 argop[7].argop = OP_RESTOREFH; 1082 1083 /* 1084 * nverify 1085 */ 1086 _v.va_mask = AT_GID; 1087 _v.va_gid = in_va->va_gid; 1088 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1089 supp_attrs))) { 1090 1091 /* 1092 * setattr 1093 * 1094 * We _know_ we're not messing with AT_SIZE or 1095 * AT_XTIME, so no need for stateid or flags. 1096 * Also we specify NULL rp since we're only 1097 * interested in setting owner_group attributes. 1098 */ 1099 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1100 supp_attrs, &e.error, 0); 1101 if (e.error) 1102 nfs4args_verify_free(&argop[8]); 1103 } 1104 1105 if (e.error) { 1106 /* 1107 * XXX - Revisit the last argument to nfs4_end_op() 1108 * once 5020486 is fixed. 1109 */ 1110 nfs4_end_open_seqid_sync(oop); 1111 open_owner_rele(oop); 1112 nfs4args_copen_free(open_args); 1113 nfs_rw_exit(&drp->r_rwlock); 1114 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1115 if (ncr != NULL) 1116 crfree(ncr); 1117 kmem_free(argop, argoplist_size); 1118 return (e.error); 1119 } 1120 } else if (create_flag) { 1121 /* 1122 * For setgid case, we need to: 1123 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1124 */ 1125 argop[1].argop = OP_SAVEFH; 1126 1127 argop[5].argop = OP_RESTOREFH; 1128 1129 argop[6].argop = OP_GETATTR; 1130 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1131 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1132 } 1133 1134 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1135 "nfs4open_otw: %s call, nm %s, rp %s", 1136 needrecov ? "recov" : "first", file_name, 1137 rnode4info(VTOR4(dvp)))); 1138 1139 t = gethrtime(); 1140 1141 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1142 1143 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1144 nfs4_set_open_seqid(seqid, oop, args.ctag); 1145 1146 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1147 1148 if (e.error || needrecov) { 1149 bool_t abort = FALSE; 1150 1151 if (needrecov) { 1152 nfs4_bseqid_entry_t *bsep = NULL; 1153 1154 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1155 cred_otw, vpi, dvp, open_args); 1156 1157 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1158 bsep = nfs4_create_bseqid_entry(oop, NULL, 1159 vpi, 0, args.ctag, open_args->seqid); 1160 num_bseqid_retry--; 1161 } 1162 1163 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1164 NULL, lost_rqst.lr_op == OP_OPEN ? 1165 &lost_rqst : NULL, OP_OPEN, bsep); 1166 1167 if (bsep) 1168 kmem_free(bsep, sizeof (*bsep)); 1169 /* give up if we keep getting BAD_SEQID */ 1170 if (num_bseqid_retry == 0) 1171 abort = TRUE; 1172 if (abort == TRUE && e.error == 0) 1173 e.error = geterrno4(res.status); 1174 } 1175 nfs4_end_open_seqid_sync(oop); 1176 open_owner_rele(oop); 1177 nfs_rw_exit(&drp->r_rwlock); 1178 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1179 nfs4args_copen_free(open_args); 1180 if (setgid_flag) { 1181 nfs4args_verify_free(&argop[8]); 1182 nfs4args_setattr_free(&argop[9]); 1183 } 1184 if (!e.error) 1185 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1186 if (ncr != NULL) { 1187 crfree(ncr); 1188 ncr = NULL; 1189 } 1190 if (!needrecov || abort == TRUE || e.error == EINTR || 1191 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1192 kmem_free(argop, argoplist_size); 1193 return (e.error); 1194 } 1195 goto recov_retry; 1196 } 1197 1198 /* 1199 * Will check and update lease after checking the rflag for 1200 * OPEN_CONFIRM in the successful OPEN call. 1201 */ 1202 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1203 1204 /* 1205 * XXX what if we're crossing mount points from server1:/drp 1206 * to server2:/drp/rp. 1207 */ 1208 1209 /* Signal our end of use of the open seqid */ 1210 nfs4_end_open_seqid_sync(oop); 1211 1212 /* 1213 * This will destroy the open owner if it was just created, 1214 * and no one else has put a reference on it. 1215 */ 1216 open_owner_rele(oop); 1217 if (create_flag && (createmode != EXCLUSIVE4) && 1218 res.status == NFS4ERR_BADOWNER) 1219 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1220 1221 e.error = geterrno4(res.status); 1222 nfs4args_copen_free(open_args); 1223 if (setgid_flag) { 1224 nfs4args_verify_free(&argop[8]); 1225 nfs4args_setattr_free(&argop[9]); 1226 } 1227 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1228 nfs_rw_exit(&drp->r_rwlock); 1229 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1230 /* 1231 * If the reply is NFS4ERR_ACCESS, it may be because 1232 * we are root (no root net access). If the real uid 1233 * is not root, then retry with the real uid instead. 1234 */ 1235 if (ncr != NULL) { 1236 crfree(ncr); 1237 ncr = NULL; 1238 } 1239 if (res.status == NFS4ERR_ACCESS && 1240 (ncr = crnetadjust(cred_otw)) != NULL) { 1241 cred_otw = ncr; 1242 goto recov_retry; 1243 } 1244 kmem_free(argop, argoplist_size); 1245 return (e.error); 1246 } 1247 1248 resop = &res.array[idx_open]; /* open res */ 1249 op_res = &resop->nfs_resop4_u.opopen; 1250 1251 #ifdef DEBUG 1252 /* 1253 * verify attrset bitmap 1254 */ 1255 if (create_flag && 1256 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1257 /* make sure attrset returned is what we asked for */ 1258 /* XXX Ignore this 'error' for now */ 1259 if (attr->attrmask != op_res->attrset) 1260 /* EMPTY */; 1261 } 1262 #endif 1263 1264 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1265 mutex_enter(&VTOMI4(dvp)->mi_lock); 1266 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1267 mutex_exit(&VTOMI4(dvp)->mi_lock); 1268 } 1269 1270 resop = &res.array[idx_open + 1]; /* getfh res */ 1271 gf_res = &resop->nfs_resop4_u.opgetfh; 1272 1273 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1274 1275 /* 1276 * The open stateid has been updated on the server but not 1277 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1278 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1279 * WRITE call. That, however, will use the old stateid, so go ahead 1280 * and upate the open stateid now, before any call to makenfs4node. 1281 */ 1282 if (vpi) { 1283 nfs4_open_stream_t *tmp_osp; 1284 rnode4_t *tmp_rp = VTOR4(vpi); 1285 1286 tmp_osp = find_open_stream(oop, tmp_rp); 1287 if (tmp_osp) { 1288 tmp_osp->open_stateid = op_res->stateid; 1289 mutex_exit(&tmp_osp->os_sync_lock); 1290 open_stream_rele(tmp_osp, tmp_rp); 1291 } 1292 1293 /* 1294 * We must determine if the file handle given by the otw open 1295 * is the same as the file handle which was passed in with 1296 * *vpp. This case can be reached if the file we are trying 1297 * to open has been removed and another file has been created 1298 * having the same file name. The passed in vnode is released 1299 * later. 1300 */ 1301 orig_sfh = VTOR4(vpi)->r_fh; 1302 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1303 } 1304 1305 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1306 1307 if (create_flag || fh_differs) { 1308 int rnode_err = 0; 1309 1310 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1311 dvp, fn_get(VTOSV(dvp)->sv_name, file_name)); 1312 1313 if (e.error) 1314 PURGE_ATTRCACHE4(vp); 1315 /* 1316 * For the newly created vp case, make sure the rnode 1317 * isn't bad before using it. 1318 */ 1319 mutex_enter(&(VTOR4(vp))->r_statelock); 1320 if (VTOR4(vp)->r_flags & R4RECOVERR) 1321 rnode_err = EIO; 1322 mutex_exit(&(VTOR4(vp))->r_statelock); 1323 1324 if (rnode_err) { 1325 nfs4_end_open_seqid_sync(oop); 1326 nfs4args_copen_free(open_args); 1327 if (setgid_flag) { 1328 nfs4args_verify_free(&argop[8]); 1329 nfs4args_setattr_free(&argop[9]); 1330 } 1331 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1332 nfs_rw_exit(&drp->r_rwlock); 1333 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1334 needrecov); 1335 open_owner_rele(oop); 1336 VN_RELE(vp); 1337 if (ncr != NULL) 1338 crfree(ncr); 1339 sfh4_rele(&otw_sfh); 1340 kmem_free(argop, argoplist_size); 1341 return (EIO); 1342 } 1343 } else { 1344 vp = vpi; 1345 } 1346 sfh4_rele(&otw_sfh); 1347 1348 /* 1349 * It seems odd to get a full set of attrs and then not update 1350 * the object's attrcache in the non-create case. Create case uses 1351 * the attrs since makenfs4node checks to see if the attrs need to 1352 * be updated (and then updates them). The non-create case should 1353 * update attrs also. 1354 */ 1355 if (! create_flag && ! fh_differs && !e.error) { 1356 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1357 } 1358 1359 nfs4_error_zinit(&e); 1360 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1361 /* This does not do recovery for vp explicitly. */ 1362 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1363 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1364 1365 if (e.error || e.stat) { 1366 nfs4_end_open_seqid_sync(oop); 1367 nfs4args_copen_free(open_args); 1368 if (setgid_flag) { 1369 nfs4args_verify_free(&argop[8]); 1370 nfs4args_setattr_free(&argop[9]); 1371 } 1372 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1373 nfs_rw_exit(&drp->r_rwlock); 1374 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1375 needrecov); 1376 open_owner_rele(oop); 1377 if (create_flag || fh_differs) { 1378 /* rele the makenfs4node */ 1379 VN_RELE(vp); 1380 } 1381 if (ncr != NULL) { 1382 crfree(ncr); 1383 ncr = NULL; 1384 } 1385 if (retry_open == TRUE) { 1386 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1387 "nfs4open_otw: retry the open since OPEN " 1388 "CONFIRM failed with error %d stat %d", 1389 e.error, e.stat)); 1390 if (create_flag && createmode == GUARDED4) { 1391 NFS4_DEBUG(nfs4_client_recov_debug, 1392 (CE_NOTE, "nfs4open_otw: switch " 1393 "createmode from GUARDED4 to " 1394 "UNCHECKED4")); 1395 createmode = UNCHECKED4; 1396 } 1397 goto recov_retry; 1398 } 1399 if (!e.error) { 1400 if (create_flag && (createmode != EXCLUSIVE4) && 1401 e.stat == NFS4ERR_BADOWNER) 1402 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1403 1404 e.error = geterrno4(e.stat); 1405 } 1406 kmem_free(argop, argoplist_size); 1407 return (e.error); 1408 } 1409 } 1410 1411 rp = VTOR4(vp); 1412 1413 mutex_enter(&rp->r_statev4_lock); 1414 if (create_flag) 1415 rp->created_v4 = 1; 1416 mutex_exit(&rp->r_statev4_lock); 1417 1418 mutex_enter(&oop->oo_lock); 1419 /* Doesn't matter if 'oo_just_created' already was set as this */ 1420 oop->oo_just_created = NFS4_PERM_CREATED; 1421 if (oop->oo_cred_otw) 1422 crfree(oop->oo_cred_otw); 1423 oop->oo_cred_otw = cred_otw; 1424 crhold(oop->oo_cred_otw); 1425 mutex_exit(&oop->oo_lock); 1426 1427 /* returns with 'os_sync_lock' held */ 1428 osp = find_or_create_open_stream(oop, rp, &created_osp); 1429 if (!osp) { 1430 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1431 "nfs4open_otw: failed to create an open stream")); 1432 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1433 "signal our end of use of the open seqid")); 1434 1435 nfs4_end_open_seqid_sync(oop); 1436 open_owner_rele(oop); 1437 nfs4args_copen_free(open_args); 1438 if (setgid_flag) { 1439 nfs4args_verify_free(&argop[8]); 1440 nfs4args_setattr_free(&argop[9]); 1441 } 1442 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1443 nfs_rw_exit(&drp->r_rwlock); 1444 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1445 if (create_flag || fh_differs) 1446 VN_RELE(vp); 1447 if (ncr != NULL) 1448 crfree(ncr); 1449 1450 kmem_free(argop, argoplist_size); 1451 return (EINVAL); 1452 1453 } 1454 1455 osp->open_stateid = op_res->stateid; 1456 1457 if (open_flag & FREAD) 1458 osp->os_share_acc_read++; 1459 if (open_flag & FWRITE) 1460 osp->os_share_acc_write++; 1461 osp->os_share_deny_none++; 1462 1463 /* 1464 * Need to reset this bitfield for the possible case where we were 1465 * going to OTW CLOSE the file, got a non-recoverable error, and before 1466 * we could retry the CLOSE, OPENed the file again. 1467 */ 1468 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1469 osp->os_final_close = 0; 1470 osp->os_force_close = 0; 1471 #ifdef DEBUG 1472 if (osp->os_failed_reopen) 1473 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1474 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1475 (void *)osp, (void *)cr, rnode4info(rp))); 1476 #endif 1477 osp->os_failed_reopen = 0; 1478 1479 mutex_exit(&osp->os_sync_lock); 1480 1481 nfs4_end_open_seqid_sync(oop); 1482 1483 if (created_osp && recov_state.rs_sp != NULL) { 1484 mutex_enter(&recov_state.rs_sp->s_lock); 1485 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1486 mutex_exit(&recov_state.rs_sp->s_lock); 1487 } 1488 1489 /* get rid of our reference to find oop */ 1490 open_owner_rele(oop); 1491 1492 open_stream_rele(osp, rp); 1493 1494 /* accept delegation, if any */ 1495 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1496 1497 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1498 1499 if (createmode == EXCLUSIVE4 && 1500 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1501 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1502 " EXCLUSIVE4: sending a SETATTR")); 1503 /* 1504 * If doing an exclusive create, then generate 1505 * a SETATTR to set the initial attributes. 1506 * Try to set the mtime and the atime to the 1507 * server's current time. It is somewhat 1508 * expected that these fields will be used to 1509 * store the exclusive create cookie. If not, 1510 * server implementors will need to know that 1511 * a SETATTR will follow an exclusive create 1512 * and the cookie should be destroyed if 1513 * appropriate. 1514 * 1515 * The AT_GID and AT_SIZE bits are turned off 1516 * so that the SETATTR request will not attempt 1517 * to process these. The gid will be set 1518 * separately if appropriate. The size is turned 1519 * off because it is assumed that a new file will 1520 * be created empty and if the file wasn't empty, 1521 * then the exclusive create will have failed 1522 * because the file must have existed already. 1523 * Therefore, no truncate operation is needed. 1524 */ 1525 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1526 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1527 1528 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1529 if (e.error) { 1530 /* 1531 * Couldn't correct the attributes of 1532 * the newly created file and the 1533 * attributes are wrong. Remove the 1534 * file and return an error to the 1535 * application. 1536 */ 1537 /* XXX will this take care of client state ? */ 1538 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1539 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1540 " remove file", e.error)); 1541 VN_RELE(vp); 1542 (void) nfs4_remove(dvp, file_name, cr); 1543 nfs_rw_exit(&drp->r_rwlock); 1544 goto skip_rwlock_exit; 1545 } 1546 } 1547 1548 /* 1549 * If we created or found the correct vnode, due to create_flag or 1550 * fh_differs being set, then update directory cache attribute, readdir 1551 * and dnlc caches. 1552 */ 1553 if (create_flag || fh_differs) { 1554 dirattr_info_t dinfo, *dinfop; 1555 1556 /* 1557 * Make sure getattr succeeded before using results. 1558 * note: op 7 is getattr(dir) for both flavors of 1559 * open(create). 1560 */ 1561 if (create_flag && res.status == NFS4_OK) { 1562 dinfo.di_time_call = t; 1563 dinfo.di_cred = cr; 1564 dinfo.di_garp = 1565 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1566 dinfop = &dinfo; 1567 } else { 1568 dinfop = NULL; 1569 } 1570 1571 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1572 dinfop); 1573 } 1574 nfs_rw_exit(&drp->r_rwlock); 1575 skip_rwlock_exit: 1576 1577 /* 1578 * If the page cache for this file was flushed from actions 1579 * above, it was done asynchronously and if that is true, 1580 * there is a need to wait here for it to complete. This must 1581 * be done outside of start_fop/end_fop. 1582 */ 1583 (void) nfs4_waitfor_purge_complete(vp); 1584 1585 /* 1586 * It is implicit that we are in the open case (create_flag == 0) since 1587 * fh_differs can only be set to a non-zero value in the open case. 1588 */ 1589 if (fh_differs != 0 && vpi != NULL) 1590 VN_RELE(vpi); 1591 1592 /* 1593 * Be sure to set *vpp to the correct value before returning. 1594 */ 1595 *vpp = vp; 1596 1597 nfs4args_copen_free(open_args); 1598 if (setgid_flag) { 1599 nfs4args_verify_free(&argop[8]); 1600 nfs4args_setattr_free(&argop[9]); 1601 } 1602 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1603 1604 if (ncr) 1605 crfree(ncr); 1606 kmem_free(argop, argoplist_size); 1607 return (e.error); 1608 } 1609 1610 /* 1611 * Reopen an open instance. cf. nfs4open_otw(). 1612 * 1613 * Errors are returned by the nfs4_error_t parameter. 1614 * - ep->error contains an errno value or zero. 1615 * - if it is zero, ep->stat is set to an NFS status code, if any. 1616 * If the file could not be reopened, but the caller should continue, the 1617 * file is marked dead and no error values are returned. If the caller 1618 * should stop recovering open files and start over, either the ep->error 1619 * value or ep->stat will indicate an error (either something that requires 1620 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1621 * filehandles) may be handled silently by this routine. 1622 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1623 * will be started, so the caller should not do it. 1624 * 1625 * Gotos: 1626 * - kill_file : reopen failed in such a fashion to constitute marking the 1627 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1628 * is for cases where recovery is not possible. 1629 * - failed_reopen : same as above, except that the file has already been 1630 * marked dead, so no need to do it again. 1631 * - bailout : reopen failed but we are able to recover and retry the reopen - 1632 * either within this function immediatley or via the calling function. 1633 */ 1634 1635 void 1636 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1637 open_claim_type4 claim, bool_t frc_use_claim_previous, 1638 bool_t is_recov) 1639 { 1640 COMPOUND4args_clnt args; 1641 COMPOUND4res_clnt res; 1642 nfs_argop4 argop[4]; 1643 nfs_resop4 *resop; 1644 OPEN4res *op_res = NULL; 1645 OPEN4cargs *open_args; 1646 GETFH4res *gf_res; 1647 rnode4_t *rp = VTOR4(vp); 1648 int doqueue = 1; 1649 cred_t *cr = NULL, *cred_otw = NULL; 1650 nfs4_open_owner_t *oop = NULL; 1651 seqid4 seqid; 1652 nfs4_ga_res_t *garp; 1653 char fn[MAXNAMELEN]; 1654 nfs4_recov_state_t recov = {NULL, 0}; 1655 nfs4_lost_rqst_t lost_rqst; 1656 mntinfo4_t *mi = VTOMI4(vp); 1657 bool_t abort; 1658 char *failed_msg = ""; 1659 int fh_different; 1660 hrtime_t t; 1661 nfs4_bseqid_entry_t *bsep = NULL; 1662 1663 ASSERT(nfs4_consistent_type(vp)); 1664 ASSERT(nfs_zone() == mi->mi_zone); 1665 1666 nfs4_error_zinit(ep); 1667 1668 /* this is the cred used to find the open owner */ 1669 cr = state_to_cred(osp); 1670 if (cr == NULL) { 1671 failed_msg = "Couldn't reopen: no cred"; 1672 goto kill_file; 1673 } 1674 /* use this cred for OTW operations */ 1675 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1676 1677 top: 1678 nfs4_error_zinit(ep); 1679 1680 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1681 /* File system has been unmounted, quit */ 1682 ep->error = EIO; 1683 failed_msg = "Couldn't reopen: file system has been unmounted"; 1684 goto kill_file; 1685 } 1686 1687 oop = osp->os_open_owner; 1688 1689 ASSERT(oop != NULL); 1690 if (oop == NULL) { /* be defensive in non-DEBUG */ 1691 failed_msg = "can't reopen: no open owner"; 1692 goto kill_file; 1693 } 1694 open_owner_hold(oop); 1695 1696 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1697 if (ep->error) { 1698 open_owner_rele(oop); 1699 oop = NULL; 1700 goto bailout; 1701 } 1702 1703 /* 1704 * If the rnode has a delegation and the delegation has been 1705 * recovered and the server didn't request a recall and the caller 1706 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1707 * recovery) and the rnode hasn't been marked dead, then install 1708 * the delegation stateid in the open stream. Otherwise, proceed 1709 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1710 */ 1711 mutex_enter(&rp->r_statev4_lock); 1712 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1713 !rp->r_deleg_return_pending && 1714 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1715 !rp->r_deleg_needs_recall && 1716 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1717 !(rp->r_flags & R4RECOVERR)) { 1718 mutex_enter(&osp->os_sync_lock); 1719 osp->os_delegation = 1; 1720 osp->open_stateid = rp->r_deleg_stateid; 1721 mutex_exit(&osp->os_sync_lock); 1722 mutex_exit(&rp->r_statev4_lock); 1723 goto bailout; 1724 } 1725 mutex_exit(&rp->r_statev4_lock); 1726 1727 /* 1728 * If the file failed recovery, just quit. This failure need not 1729 * affect other reopens, so don't return an error. 1730 */ 1731 mutex_enter(&rp->r_statelock); 1732 if (rp->r_flags & R4RECOVERR) { 1733 mutex_exit(&rp->r_statelock); 1734 ep->error = 0; 1735 goto failed_reopen; 1736 } 1737 mutex_exit(&rp->r_statelock); 1738 1739 /* 1740 * argop is empty here 1741 * 1742 * PUTFH, OPEN, GETATTR 1743 */ 1744 args.ctag = TAG_REOPEN; 1745 args.array_len = 4; 1746 args.array = argop; 1747 1748 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1749 "nfs4_reopen: file is type %d, id %s", 1750 vp->v_type, rnode4info(VTOR4(vp)))); 1751 1752 argop[0].argop = OP_CPUTFH; 1753 1754 if (claim != CLAIM_PREVIOUS) { 1755 /* 1756 * if this is a file mount then 1757 * use the mntinfo parentfh 1758 */ 1759 argop[0].nfs_argop4_u.opcputfh.sfh = 1760 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1761 VTOSV(vp)->sv_dfh; 1762 } else { 1763 /* putfh fh to reopen */ 1764 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1765 } 1766 1767 argop[1].argop = OP_COPEN; 1768 open_args = &argop[1].nfs_argop4_u.opcopen; 1769 open_args->claim = claim; 1770 1771 if (claim == CLAIM_NULL) { 1772 1773 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1774 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1775 "failed for vp 0x%p for CLAIM_NULL with %m", 1776 (void *)vp); 1777 failed_msg = "Couldn't reopen: vtoname failed for " 1778 "CLAIM_NULL"; 1779 /* nothing allocated yet */ 1780 goto kill_file; 1781 } 1782 1783 open_args->open_claim4_u.cfile = fn; 1784 } else if (claim == CLAIM_PREVIOUS) { 1785 1786 /* 1787 * We have two cases to deal with here: 1788 * 1) We're being called to reopen files in order to satisfy 1789 * a lock operation request which requires us to explicitly 1790 * reopen files which were opened under a delegation. If 1791 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1792 * that case, frc_use_claim_previous is TRUE and we must 1793 * use the rnode's current delegation type (r_deleg_type). 1794 * 2) We're reopening files during some form of recovery. 1795 * In this case, frc_use_claim_previous is FALSE and we 1796 * use the delegation type appropriate for recovery 1797 * (r_deleg_needs_recovery). 1798 */ 1799 mutex_enter(&rp->r_statev4_lock); 1800 open_args->open_claim4_u.delegate_type = 1801 frc_use_claim_previous ? 1802 rp->r_deleg_type : 1803 rp->r_deleg_needs_recovery; 1804 mutex_exit(&rp->r_statev4_lock); 1805 1806 } else if (claim == CLAIM_DELEGATE_CUR) { 1807 1808 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1809 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1810 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1811 "with %m", (void *)vp); 1812 failed_msg = "Couldn't reopen: vtoname failed for " 1813 "CLAIM_DELEGATE_CUR"; 1814 /* nothing allocated yet */ 1815 goto kill_file; 1816 } 1817 1818 mutex_enter(&rp->r_statev4_lock); 1819 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1820 rp->r_deleg_stateid; 1821 mutex_exit(&rp->r_statev4_lock); 1822 1823 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1824 } 1825 open_args->opentype = OPEN4_NOCREATE; 1826 open_args->owner.clientid = mi2clientid(mi); 1827 open_args->owner.owner_len = sizeof (oop->oo_name); 1828 open_args->owner.owner_val = 1829 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1830 bcopy(&oop->oo_name, open_args->owner.owner_val, 1831 open_args->owner.owner_len); 1832 open_args->share_access = 0; 1833 open_args->share_deny = 0; 1834 1835 mutex_enter(&osp->os_sync_lock); 1836 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1837 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1838 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1839 (void *)osp, (void *)rp, osp->os_share_acc_read, 1840 osp->os_share_acc_write, osp->os_open_ref_count, 1841 osp->os_mmap_read, osp->os_mmap_write, claim)); 1842 1843 if (osp->os_share_acc_read || osp->os_mmap_read) 1844 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1845 if (osp->os_share_acc_write || osp->os_mmap_write) 1846 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1847 if (osp->os_share_deny_read) 1848 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1849 if (osp->os_share_deny_write) 1850 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1851 mutex_exit(&osp->os_sync_lock); 1852 1853 seqid = nfs4_get_open_seqid(oop) + 1; 1854 open_args->seqid = seqid; 1855 1856 /* Construct the getfh part of the compound */ 1857 argop[2].argop = OP_GETFH; 1858 1859 /* Construct the getattr part of the compound */ 1860 argop[3].argop = OP_GETATTR; 1861 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1862 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1863 1864 t = gethrtime(); 1865 1866 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1867 1868 if (ep->error) { 1869 if (!is_recov && !frc_use_claim_previous && 1870 (ep->error == EINTR || ep->error == ETIMEDOUT || 1871 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1872 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1873 cred_otw, vp, NULL, open_args); 1874 abort = nfs4_start_recovery(ep, 1875 VTOMI4(vp), vp, NULL, NULL, 1876 lost_rqst.lr_op == OP_OPEN ? 1877 &lost_rqst : NULL, OP_OPEN, NULL); 1878 nfs4args_copen_free(open_args); 1879 goto bailout; 1880 } 1881 1882 nfs4args_copen_free(open_args); 1883 1884 if (ep->error == EACCES && cred_otw != cr) { 1885 crfree(cred_otw); 1886 cred_otw = cr; 1887 crhold(cred_otw); 1888 nfs4_end_open_seqid_sync(oop); 1889 open_owner_rele(oop); 1890 oop = NULL; 1891 goto top; 1892 } 1893 if (ep->error == ETIMEDOUT) 1894 goto bailout; 1895 failed_msg = "Couldn't reopen: rpc error"; 1896 goto kill_file; 1897 } 1898 1899 if (nfs4_need_to_bump_seqid(&res)) 1900 nfs4_set_open_seqid(seqid, oop, args.ctag); 1901 1902 switch (res.status) { 1903 case NFS4_OK: 1904 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1905 mutex_enter(&rp->r_statelock); 1906 rp->r_delay_interval = 0; 1907 mutex_exit(&rp->r_statelock); 1908 } 1909 break; 1910 case NFS4ERR_BAD_SEQID: 1911 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1912 args.ctag, open_args->seqid); 1913 1914 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1915 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1916 NULL, OP_OPEN, bsep); 1917 1918 nfs4args_copen_free(open_args); 1919 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1920 nfs4_end_open_seqid_sync(oop); 1921 open_owner_rele(oop); 1922 oop = NULL; 1923 kmem_free(bsep, sizeof (*bsep)); 1924 1925 goto kill_file; 1926 case NFS4ERR_NO_GRACE: 1927 nfs4args_copen_free(open_args); 1928 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1929 nfs4_end_open_seqid_sync(oop); 1930 open_owner_rele(oop); 1931 oop = NULL; 1932 if (claim == CLAIM_PREVIOUS) { 1933 /* 1934 * Retry as a plain open. We don't need to worry about 1935 * checking the changeinfo: it is acceptable for a 1936 * client to re-open a file and continue processing 1937 * (in the absence of locks). 1938 */ 1939 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1940 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1941 "will retry as CLAIM_NULL")); 1942 claim = CLAIM_NULL; 1943 nfs4_mi_kstat_inc_no_grace(mi); 1944 goto top; 1945 } 1946 failed_msg = 1947 "Couldn't reopen: tried reclaim outside grace period. "; 1948 goto kill_file; 1949 case NFS4ERR_GRACE: 1950 nfs4_set_grace_wait(mi); 1951 nfs4args_copen_free(open_args); 1952 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1953 nfs4_end_open_seqid_sync(oop); 1954 open_owner_rele(oop); 1955 oop = NULL; 1956 ep->error = nfs4_wait_for_grace(mi, &recov); 1957 if (ep->error != 0) 1958 goto bailout; 1959 goto top; 1960 case NFS4ERR_DELAY: 1961 nfs4_set_delay_wait(vp); 1962 nfs4args_copen_free(open_args); 1963 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1964 nfs4_end_open_seqid_sync(oop); 1965 open_owner_rele(oop); 1966 oop = NULL; 1967 ep->error = nfs4_wait_for_delay(vp, &recov); 1968 nfs4_mi_kstat_inc_delay(mi); 1969 if (ep->error != 0) 1970 goto bailout; 1971 goto top; 1972 case NFS4ERR_FHEXPIRED: 1973 /* recover filehandle and retry */ 1974 abort = nfs4_start_recovery(ep, 1975 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL); 1976 nfs4args_copen_free(open_args); 1977 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1978 nfs4_end_open_seqid_sync(oop); 1979 open_owner_rele(oop); 1980 oop = NULL; 1981 if (abort == FALSE) 1982 goto top; 1983 failed_msg = "Couldn't reopen: recovery aborted"; 1984 goto kill_file; 1985 case NFS4ERR_RESOURCE: 1986 case NFS4ERR_STALE_CLIENTID: 1987 case NFS4ERR_WRONGSEC: 1988 case NFS4ERR_EXPIRED: 1989 /* 1990 * Do not mark the file dead and let the calling 1991 * function initiate recovery. 1992 */ 1993 nfs4args_copen_free(open_args); 1994 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1995 nfs4_end_open_seqid_sync(oop); 1996 open_owner_rele(oop); 1997 oop = NULL; 1998 goto bailout; 1999 case NFS4ERR_ACCESS: 2000 if (cred_otw != cr) { 2001 crfree(cred_otw); 2002 cred_otw = cr; 2003 crhold(cred_otw); 2004 nfs4args_copen_free(open_args); 2005 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2006 nfs4_end_open_seqid_sync(oop); 2007 open_owner_rele(oop); 2008 oop = NULL; 2009 goto top; 2010 } 2011 /* fall through */ 2012 default: 2013 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2014 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2015 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2016 rnode4info(VTOR4(vp)))); 2017 failed_msg = "Couldn't reopen: NFSv4 error"; 2018 nfs4args_copen_free(open_args); 2019 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2020 goto kill_file; 2021 } 2022 2023 resop = &res.array[1]; /* open res */ 2024 op_res = &resop->nfs_resop4_u.opopen; 2025 2026 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2027 2028 /* 2029 * Check if the path we reopened really is the same 2030 * file. We could end up in a situation where the file 2031 * was removed and a new file created with the same name. 2032 */ 2033 resop = &res.array[2]; 2034 gf_res = &resop->nfs_resop4_u.opgetfh; 2035 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2036 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2037 if (fh_different) { 2038 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2039 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2040 /* Oops, we don't have the same file */ 2041 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2042 failed_msg = "Couldn't reopen: Persistent " 2043 "file handle changed"; 2044 else 2045 failed_msg = "Couldn't reopen: Volatile " 2046 "(no expire on open) file handle changed"; 2047 2048 nfs4args_copen_free(open_args); 2049 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2050 nfs_rw_exit(&mi->mi_fh_lock); 2051 goto kill_file; 2052 2053 } else { 2054 /* 2055 * We have volatile file handles that don't compare. 2056 * If the fids are the same then we assume that the 2057 * file handle expired but the rnode still refers to 2058 * the same file object. 2059 * 2060 * First check that we have fids or not. 2061 * If we don't we have a dumb server so we will 2062 * just assume every thing is ok for now. 2063 */ 2064 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2065 rp->r_attr.va_mask & AT_NODEID && 2066 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2067 /* 2068 * We have fids, but they don't 2069 * compare. So kill the file. 2070 */ 2071 failed_msg = 2072 "Couldn't reopen: file handle changed" 2073 " due to mismatched fids"; 2074 nfs4args_copen_free(open_args); 2075 (void) xdr_free(xdr_COMPOUND4res_clnt, 2076 (caddr_t)&res); 2077 nfs_rw_exit(&mi->mi_fh_lock); 2078 goto kill_file; 2079 } else { 2080 /* 2081 * We have volatile file handles that refers 2082 * to the same file (at least they have the 2083 * same fid) or we don't have fids so we 2084 * can't tell. :(. We'll be a kind and accepting 2085 * client so we'll update the rnode's file 2086 * handle with the otw handle. 2087 * 2088 * We need to drop mi->mi_fh_lock since 2089 * sh4_update acquires it. Since there is 2090 * only one recovery thread there is no 2091 * race. 2092 */ 2093 nfs_rw_exit(&mi->mi_fh_lock); 2094 sfh4_update(rp->r_fh, &gf_res->object); 2095 } 2096 } 2097 } else { 2098 nfs_rw_exit(&mi->mi_fh_lock); 2099 } 2100 2101 ASSERT(nfs4_consistent_type(vp)); 2102 2103 /* 2104 * If the server wanted an OPEN_CONFIRM but that fails, just start 2105 * over. Presumably if there is a persistent error it will show up 2106 * when we resend the OPEN. 2107 */ 2108 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2109 bool_t retry_open = FALSE; 2110 2111 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2112 cred_otw, is_recov, &retry_open, 2113 oop, FALSE, ep, NULL); 2114 if (ep->error || ep->stat) { 2115 nfs4args_copen_free(open_args); 2116 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2117 nfs4_end_open_seqid_sync(oop); 2118 open_owner_rele(oop); 2119 oop = NULL; 2120 goto top; 2121 } 2122 } 2123 2124 mutex_enter(&osp->os_sync_lock); 2125 osp->open_stateid = op_res->stateid; 2126 osp->os_delegation = 0; 2127 /* 2128 * Need to reset this bitfield for the possible case where we were 2129 * going to OTW CLOSE the file, got a non-recoverable error, and before 2130 * we could retry the CLOSE, OPENed the file again. 2131 */ 2132 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2133 osp->os_final_close = 0; 2134 osp->os_force_close = 0; 2135 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2136 osp->os_dc_openacc = open_args->share_access; 2137 mutex_exit(&osp->os_sync_lock); 2138 2139 nfs4_end_open_seqid_sync(oop); 2140 2141 /* accept delegation, if any */ 2142 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2143 2144 nfs4args_copen_free(open_args); 2145 2146 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2147 2148 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2149 2150 ASSERT(nfs4_consistent_type(vp)); 2151 2152 open_owner_rele(oop); 2153 crfree(cr); 2154 crfree(cred_otw); 2155 return; 2156 2157 kill_file: 2158 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2159 failed_reopen: 2160 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2161 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2162 (void *)osp, (void *)cr, rnode4info(rp))); 2163 mutex_enter(&osp->os_sync_lock); 2164 osp->os_failed_reopen = 1; 2165 mutex_exit(&osp->os_sync_lock); 2166 bailout: 2167 if (oop != NULL) { 2168 nfs4_end_open_seqid_sync(oop); 2169 open_owner_rele(oop); 2170 } 2171 if (cr != NULL) 2172 crfree(cr); 2173 if (cred_otw != NULL) 2174 crfree(cred_otw); 2175 } 2176 2177 /* for . and .. OPENs */ 2178 /* ARGSUSED */ 2179 static int 2180 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2181 { 2182 rnode4_t *rp; 2183 nfs4_ga_res_t gar; 2184 2185 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2186 2187 /* 2188 * If close-to-open consistency checking is turned off or 2189 * if there is no cached data, we can avoid 2190 * the over the wire getattr. Otherwise, force a 2191 * call to the server to get fresh attributes and to 2192 * check caches. This is required for close-to-open 2193 * consistency. 2194 */ 2195 rp = VTOR4(*vpp); 2196 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2197 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2198 return (0); 2199 2200 gar.n4g_va.va_mask = AT_ALL; 2201 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2202 } 2203 2204 /* 2205 * CLOSE a file 2206 */ 2207 static int 2208 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 2209 { 2210 rnode4_t *rp; 2211 int pc_err = 0; 2212 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2213 2214 /* 2215 * Remove client state for this (lockowner, file) pair. 2216 * Issue otw v4 call to have the server do the same. 2217 */ 2218 2219 rp = VTOR4(vp); 2220 2221 /* 2222 * zone_enter(2) prevents processes from changing zones with NFS files 2223 * open; if we happen to get here from the wrong zone we can't do 2224 * anything over the wire. 2225 */ 2226 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2227 /* 2228 * We could attempt to clean up locks, except we're sure 2229 * that the current process didn't acquire any locks on 2230 * the file: any attempt to lock a file belong to another zone 2231 * will fail, and one can't lock an NFS file and then change 2232 * zones, as that fails too. 2233 * 2234 * Returning an error here is the sane thing to do. A 2235 * subsequent call to VN_RELE() which translates to a 2236 * nfs4_inactive() will clean up state: if the zone of the 2237 * vnode's origin is still alive and kicking, the inactive 2238 * thread will handle the request (from the correct zone), and 2239 * everything (minus the OTW close call) should be OK. If the 2240 * zone is going away nfs4_async_inactive() will throw away 2241 * delegations, open streams and cached pages inline. 2242 */ 2243 return (EIO); 2244 } 2245 2246 /* 2247 * If we are using local locking for this filesystem, then 2248 * release all of the SYSV style record locks. Otherwise, 2249 * we are doing network locking and we need to release all 2250 * of the network locks. All of the locks held by this 2251 * process on this file are released no matter what the 2252 * incoming reference count is. 2253 */ 2254 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2255 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2256 cleanshares(vp, ttoproc(curthread)->p_pid); 2257 } else 2258 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2259 2260 if (e.error) 2261 return (e.error); 2262 2263 if (count > 1) 2264 return (0); 2265 2266 /* 2267 * If the file has been `unlinked', then purge the 2268 * DNLC so that this vnode will get reycled quicker 2269 * and the .nfs* file on the server will get removed. 2270 */ 2271 if (rp->r_unldvp != NULL) 2272 dnlc_purge_vp(vp); 2273 2274 /* 2275 * If the file was open for write and there are pages, 2276 * do a synchronous flush and commit of all of the 2277 * dirty and uncommitted pages. 2278 */ 2279 ASSERT(!e.error); 2280 if ((flag & FWRITE) && nfs4_has_pages(vp)) { 2281 pc_err = nfs4_putpage_commit(vp, 0, 0, cr); 2282 } 2283 2284 mutex_enter(&rp->r_statelock); 2285 e.error = rp->r_error; 2286 rp->r_error = 0; 2287 mutex_exit(&rp->r_statelock); 2288 2289 /* Check to see if we need to close the file */ 2290 2291 if (vp->v_type != VREG) 2292 return (pc_err ? pc_err : e.error); 2293 2294 /* Let nfs4close_one figure out if an OTW close is needed. */ 2295 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2296 2297 if (pc_err) 2298 return (pc_err); 2299 2300 return (e.error ? e.error : geterrno4(e.stat)); 2301 } 2302 2303 /* 2304 * Initialize *lost_rqstp. 2305 */ 2306 2307 static void 2308 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2309 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2310 vnode_t *vp) 2311 { 2312 if (error != ETIMEDOUT && error != EINTR && 2313 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2314 lost_rqstp->lr_op = 0; 2315 return; 2316 } 2317 2318 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2319 "nfs4close_save_lost_rqst: error %d", error)); 2320 2321 lost_rqstp->lr_op = OP_CLOSE; 2322 /* 2323 * The vp is held and rele'd via the recovery code. 2324 * See nfs4_save_lost_rqst. 2325 */ 2326 lost_rqstp->lr_vp = vp; 2327 lost_rqstp->lr_dvp = NULL; 2328 lost_rqstp->lr_oop = oop; 2329 lost_rqstp->lr_osp = osp; 2330 ASSERT(osp != NULL); 2331 ASSERT(mutex_owned(&osp->os_sync_lock)); 2332 osp->os_pending_close = 1; 2333 lost_rqstp->lr_lop = NULL; 2334 lost_rqstp->lr_cr = cr; 2335 lost_rqstp->lr_flk = NULL; 2336 lost_rqstp->lr_putfirst = FALSE; 2337 } 2338 2339 /* 2340 * Assumes you already have the open seqid sync grabbed as well as the 2341 * 'os_sync_lock'. Note: this will release the open seqid sync and 2342 * 'os_sync_lock' if client recovery starts. Calling functions have to 2343 * be prepared to handle this. 2344 * 2345 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2346 * was needed and was started, and that the calling function should retry 2347 * this function; otherwise it is returned as 0. 2348 * 2349 * Errors are returned via the nfs4_error_t parameter. 2350 */ 2351 static void 2352 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2353 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2354 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2355 { 2356 COMPOUND4args_clnt args; 2357 COMPOUND4res_clnt res; 2358 CLOSE4args *close_args; 2359 nfs_resop4 *resop; 2360 nfs_argop4 argop[3]; 2361 int doqueue = 1; 2362 mntinfo4_t *mi; 2363 seqid4 seqid; 2364 vnode_t *vp; 2365 bool_t needrecov = FALSE; 2366 nfs4_lost_rqst_t lost_rqst; 2367 hrtime_t t; 2368 2369 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2370 2371 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2372 2373 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2374 2375 /* Only set this to 1 if recovery is started */ 2376 *recov = 0; 2377 2378 /* do the OTW call to close the file */ 2379 2380 if (close_type == CLOSE_RESEND) 2381 args.ctag = TAG_CLOSE_LOST; 2382 else if (close_type == CLOSE_AFTER_RESEND) 2383 args.ctag = TAG_CLOSE_UNDO; 2384 else 2385 args.ctag = TAG_CLOSE; 2386 2387 args.array_len = 3; 2388 args.array = argop; 2389 2390 vp = RTOV4(rp); 2391 2392 mi = VTOMI4(vp); 2393 2394 /* putfh target fh */ 2395 argop[0].argop = OP_CPUTFH; 2396 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2397 2398 argop[1].argop = OP_GETATTR; 2399 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2400 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2401 2402 argop[2].argop = OP_CLOSE; 2403 close_args = &argop[2].nfs_argop4_u.opclose; 2404 2405 seqid = nfs4_get_open_seqid(oop) + 1; 2406 2407 close_args->seqid = seqid; 2408 close_args->open_stateid = osp->open_stateid; 2409 2410 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2411 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2412 rnode4info(rp))); 2413 2414 t = gethrtime(); 2415 2416 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2417 2418 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2419 nfs4_set_open_seqid(seqid, oop, args.ctag); 2420 } 2421 2422 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2423 if (ep->error && !needrecov) { 2424 /* 2425 * if there was an error and no recovery is to be done 2426 * then then set up the file to flush its cache if 2427 * needed for the next caller. 2428 */ 2429 mutex_enter(&rp->r_statelock); 2430 PURGE_ATTRCACHE4_LOCKED(rp); 2431 rp->r_flags &= ~R4WRITEMODIFIED; 2432 mutex_exit(&rp->r_statelock); 2433 return; 2434 } 2435 2436 if (needrecov) { 2437 bool_t abort; 2438 nfs4_bseqid_entry_t *bsep = NULL; 2439 2440 if (close_type != CLOSE_RESEND) 2441 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2442 osp, cred_otw, vp); 2443 2444 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2445 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2446 0, args.ctag, close_args->seqid); 2447 2448 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2449 "nfs4close_otw: initiating recovery. error %d " 2450 "res.status %d", ep->error, res.status)); 2451 2452 /* 2453 * Drop the 'os_sync_lock' here so we don't hit 2454 * a potential recursive mutex_enter via an 2455 * 'open_stream_hold()'. 2456 */ 2457 mutex_exit(&osp->os_sync_lock); 2458 *have_sync_lockp = 0; 2459 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2460 (close_type != CLOSE_RESEND && 2461 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2462 OP_CLOSE, bsep); 2463 2464 /* drop open seq sync, and let the calling function regrab it */ 2465 nfs4_end_open_seqid_sync(oop); 2466 *did_start_seqid_syncp = 0; 2467 2468 if (bsep) 2469 kmem_free(bsep, sizeof (*bsep)); 2470 /* 2471 * For signals, the caller wants to quit, so don't say to 2472 * retry. For forced unmount, if it's a user thread, it 2473 * wants to quit. If it's a recovery thread, the retry 2474 * will happen higher-up on the call stack. Either way, 2475 * don't say to retry. 2476 */ 2477 if (abort == FALSE && ep->error != EINTR && 2478 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2479 close_type != CLOSE_RESEND && 2480 close_type != CLOSE_AFTER_RESEND) 2481 *recov = 1; 2482 else 2483 *recov = 0; 2484 2485 if (!ep->error) 2486 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2487 return; 2488 } 2489 2490 if (res.status) { 2491 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2492 return; 2493 } 2494 2495 mutex_enter(&rp->r_statev4_lock); 2496 rp->created_v4 = 0; 2497 mutex_exit(&rp->r_statev4_lock); 2498 2499 resop = &res.array[2]; 2500 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2501 osp->os_valid = 0; 2502 2503 /* 2504 * This removes the reference obtained at OPEN; ie, when the 2505 * open stream structure was created. 2506 * 2507 * We don't have to worry about calling 'open_stream_rele' 2508 * since we our currently holding a reference to the open 2509 * stream which means the count cannot go to 0 with this 2510 * decrement. 2511 */ 2512 ASSERT(osp->os_ref_count >= 2); 2513 osp->os_ref_count--; 2514 2515 if (!ep->error) 2516 nfs4_attr_cache(vp, 2517 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2518 t, cred_otw, TRUE, NULL); 2519 2520 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2521 " returning %d", ep->error)); 2522 2523 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2524 } 2525 2526 /* ARGSUSED */ 2527 static int 2528 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2529 caller_context_t *ct) 2530 { 2531 rnode4_t *rp; 2532 u_offset_t off; 2533 offset_t diff; 2534 uint_t on; 2535 uint_t n; 2536 caddr_t base; 2537 uint_t flags; 2538 int error; 2539 mntinfo4_t *mi; 2540 2541 rp = VTOR4(vp); 2542 2543 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2544 2545 if (IS_SHADOW(vp, rp)) 2546 vp = RTOV4(rp); 2547 2548 if (vp->v_type != VREG) 2549 return (EISDIR); 2550 2551 mi = VTOMI4(vp); 2552 2553 if (nfs_zone() != mi->mi_zone) 2554 return (EIO); 2555 2556 if (uiop->uio_resid == 0) 2557 return (0); 2558 2559 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2560 return (EINVAL); 2561 2562 mutex_enter(&rp->r_statelock); 2563 if (rp->r_flags & R4RECOVERRP) 2564 error = (rp->r_error ? rp->r_error : EIO); 2565 else 2566 error = 0; 2567 mutex_exit(&rp->r_statelock); 2568 if (error) 2569 return (error); 2570 2571 /* 2572 * Bypass VM if caching has been disabled (e.g., locking) or if 2573 * using client-side direct I/O and the file is not mmap'd and 2574 * there are no cached pages. 2575 */ 2576 if ((vp->v_flag & VNOCACHE) || 2577 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2578 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2579 size_t resid = 0; 2580 2581 return (nfs4read(vp, NULL, uiop->uio_loffset, 2582 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2583 } 2584 2585 error = 0; 2586 2587 do { 2588 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2589 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2590 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2591 2592 if (error = nfs4_validate_caches(vp, cr)) 2593 break; 2594 2595 mutex_enter(&rp->r_statelock); 2596 diff = rp->r_size - uiop->uio_loffset; 2597 mutex_exit(&rp->r_statelock); 2598 if (diff <= 0) 2599 break; 2600 if (diff < n) 2601 n = (uint_t)diff; 2602 2603 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, S_READ); 2604 2605 error = uiomove(base + on, n, UIO_READ, uiop); 2606 2607 if (!error) { 2608 /* 2609 * If read a whole block or read to eof, 2610 * won't need this buffer again soon. 2611 */ 2612 mutex_enter(&rp->r_statelock); 2613 if (n + on == MAXBSIZE || 2614 uiop->uio_loffset == rp->r_size) 2615 flags = SM_DONTNEED; 2616 else 2617 flags = 0; 2618 mutex_exit(&rp->r_statelock); 2619 error = segmap_release(segkmap, base, flags); 2620 } else 2621 (void) segmap_release(segkmap, base, 0); 2622 } while (!error && uiop->uio_resid > 0); 2623 2624 return (error); 2625 } 2626 2627 /* ARGSUSED */ 2628 static int 2629 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2630 caller_context_t *ct) 2631 { 2632 rlim64_t limit = uiop->uio_llimit; 2633 rnode4_t *rp; 2634 u_offset_t off; 2635 caddr_t base; 2636 uint_t flags; 2637 int remainder; 2638 size_t n; 2639 int on; 2640 int error; 2641 int resid; 2642 u_offset_t offset; 2643 mntinfo4_t *mi; 2644 uint_t bsize; 2645 2646 rp = VTOR4(vp); 2647 2648 if (IS_SHADOW(vp, rp)) 2649 vp = RTOV4(rp); 2650 2651 if (vp->v_type != VREG) 2652 return (EISDIR); 2653 2654 mi = VTOMI4(vp); 2655 2656 if (nfs_zone() != mi->mi_zone) 2657 return (EIO); 2658 2659 if (uiop->uio_resid == 0) 2660 return (0); 2661 2662 mutex_enter(&rp->r_statelock); 2663 if (rp->r_flags & R4RECOVERRP) 2664 error = (rp->r_error ? rp->r_error : EIO); 2665 else 2666 error = 0; 2667 mutex_exit(&rp->r_statelock); 2668 if (error) 2669 return (error); 2670 2671 if (ioflag & FAPPEND) { 2672 struct vattr va; 2673 2674 /* 2675 * Must serialize if appending. 2676 */ 2677 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2678 nfs_rw_exit(&rp->r_rwlock); 2679 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2680 INTR(vp))) 2681 return (EINTR); 2682 } 2683 2684 va.va_mask = AT_SIZE; 2685 error = nfs4getattr(vp, &va, cr); 2686 if (error) 2687 return (error); 2688 uiop->uio_loffset = va.va_size; 2689 } 2690 2691 offset = uiop->uio_loffset + uiop->uio_resid; 2692 2693 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2694 return (EINVAL); 2695 2696 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2697 limit = MAXOFFSET_T; 2698 2699 /* 2700 * Check to make sure that the process will not exceed 2701 * its limit on file size. It is okay to write up to 2702 * the limit, but not beyond. Thus, the write which 2703 * reaches the limit will be short and the next write 2704 * will return an error. 2705 */ 2706 remainder = 0; 2707 if (offset > uiop->uio_llimit) { 2708 remainder = offset - uiop->uio_llimit; 2709 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2710 if (uiop->uio_resid <= 0) { 2711 proc_t *p = ttoproc(curthread); 2712 2713 uiop->uio_resid += remainder; 2714 mutex_enter(&p->p_lock); 2715 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2716 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2717 mutex_exit(&p->p_lock); 2718 return (EFBIG); 2719 } 2720 } 2721 2722 /* update the change attribute, if we have a write delegation */ 2723 2724 mutex_enter(&rp->r_statev4_lock); 2725 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2726 rp->r_deleg_change++; 2727 2728 mutex_exit(&rp->r_statev4_lock); 2729 2730 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2731 return (EINTR); 2732 2733 /* 2734 * Bypass VM if caching has been disabled (e.g., locking) or if 2735 * using client-side direct I/O and the file is not mmap'd and 2736 * there are no cached pages. 2737 */ 2738 if ((vp->v_flag & VNOCACHE) || 2739 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2740 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2741 size_t bufsize; 2742 int count; 2743 u_offset_t org_offset; 2744 stable_how4 stab_comm; 2745 nfs4_fwrite: 2746 if (rp->r_flags & R4STALE) { 2747 resid = uiop->uio_resid; 2748 offset = uiop->uio_loffset; 2749 error = rp->r_error; 2750 goto bottom; 2751 } 2752 2753 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2754 base = kmem_alloc(bufsize, KM_SLEEP); 2755 do { 2756 if (ioflag & FDSYNC) 2757 stab_comm = DATA_SYNC4; 2758 else 2759 stab_comm = FILE_SYNC4; 2760 resid = uiop->uio_resid; 2761 offset = uiop->uio_loffset; 2762 count = MIN(uiop->uio_resid, bufsize); 2763 org_offset = uiop->uio_loffset; 2764 error = uiomove(base, count, UIO_WRITE, uiop); 2765 if (!error) { 2766 error = nfs4write(vp, base, org_offset, 2767 count, cr, &stab_comm); 2768 if (!error) { 2769 mutex_enter(&rp->r_statelock); 2770 if (rp->r_size < uiop->uio_loffset) 2771 rp->r_size = uiop->uio_loffset; 2772 mutex_exit(&rp->r_statelock); 2773 } 2774 } 2775 } while (!error && uiop->uio_resid > 0); 2776 kmem_free(base, bufsize); 2777 goto bottom; 2778 } 2779 2780 bsize = vp->v_vfsp->vfs_bsize; 2781 2782 do { 2783 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2784 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2785 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2786 2787 resid = uiop->uio_resid; 2788 offset = uiop->uio_loffset; 2789 2790 if (rp->r_flags & R4STALE) { 2791 error = rp->r_error; 2792 break; 2793 } 2794 2795 /* 2796 * Don't create dirty pages faster than they 2797 * can be cleaned so that the system doesn't 2798 * get imbalanced. If the async queue is 2799 * maxed out, then wait for it to drain before 2800 * creating more dirty pages. Also, wait for 2801 * any threads doing pagewalks in the vop_getattr 2802 * entry points so that they don't block for 2803 * long periods. 2804 */ 2805 mutex_enter(&rp->r_statelock); 2806 while ((mi->mi_max_threads != 0 && 2807 rp->r_awcount > 2 * mi->mi_max_threads) || 2808 rp->r_gcount > 0) 2809 cv_wait(&rp->r_cv, &rp->r_statelock); 2810 mutex_exit(&rp->r_statelock); 2811 2812 if (segmap_kpm) { 2813 int pon = uiop->uio_loffset & PAGEOFFSET; 2814 size_t pn = MIN(PAGESIZE - pon, uiop->uio_resid); 2815 int pagecreate; 2816 2817 mutex_enter(&rp->r_statelock); 2818 pagecreate = (pon == 0) && (pn == PAGESIZE || 2819 uiop->uio_loffset + pn >= rp->r_size); 2820 mutex_exit(&rp->r_statelock); 2821 2822 base = segmap_getmapflt(segkmap, vp, off + on, 2823 pn, !pagecreate, S_WRITE); 2824 2825 error = writerp4(rp, base + pon, n, uiop, pagecreate); 2826 2827 } else { 2828 base = segmap_getmapflt(segkmap, vp, off + on, 2829 n, 0, S_READ); 2830 error = writerp4(rp, base + on, n, uiop, 0); 2831 } 2832 2833 if (!error) { 2834 if (mi->mi_flags & MI4_NOAC) 2835 flags = SM_WRITE; 2836 else if ((uiop->uio_loffset % bsize) == 0 || 2837 IS_SWAPVP(vp)) { 2838 /* 2839 * Have written a whole block. 2840 * Start an asynchronous write 2841 * and mark the buffer to 2842 * indicate that it won't be 2843 * needed again soon. 2844 */ 2845 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2846 } else 2847 flags = 0; 2848 if ((ioflag & (FSYNC|FDSYNC)) || 2849 (rp->r_flags & R4OUTOFSPACE)) { 2850 flags &= ~SM_ASYNC; 2851 flags |= SM_WRITE; 2852 } 2853 error = segmap_release(segkmap, base, flags); 2854 } else { 2855 (void) segmap_release(segkmap, base, 0); 2856 /* 2857 * In the event that we got an access error while 2858 * faulting in a page for a write-only file just 2859 * force a write. 2860 */ 2861 if (error == EACCES) 2862 goto nfs4_fwrite; 2863 } 2864 } while (!error && uiop->uio_resid > 0); 2865 2866 bottom: 2867 if (error) { 2868 uiop->uio_resid = resid + remainder; 2869 uiop->uio_loffset = offset; 2870 } else { 2871 uiop->uio_resid += remainder; 2872 2873 mutex_enter(&rp->r_statev4_lock); 2874 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 2875 gethrestime(&rp->r_attr.va_mtime); 2876 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 2877 } 2878 mutex_exit(&rp->r_statev4_lock); 2879 } 2880 2881 nfs_rw_exit(&rp->r_lkserlock); 2882 2883 return (error); 2884 } 2885 2886 /* 2887 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2888 */ 2889 static int 2890 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 2891 int flags, cred_t *cr) 2892 { 2893 struct buf *bp; 2894 int error; 2895 page_t *savepp; 2896 uchar_t fsdata; 2897 stable_how4 stab_comm; 2898 2899 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 2900 bp = pageio_setup(pp, len, vp, flags); 2901 ASSERT(bp != NULL); 2902 2903 /* 2904 * pageio_setup should have set b_addr to 0. This 2905 * is correct since we want to do I/O on a page 2906 * boundary. bp_mapin will use this addr to calculate 2907 * an offset, and then set b_addr to the kernel virtual 2908 * address it allocated for us. 2909 */ 2910 ASSERT(bp->b_un.b_addr == 0); 2911 2912 bp->b_edev = 0; 2913 bp->b_dev = 0; 2914 bp->b_lblkno = lbtodb(off); 2915 bp->b_file = vp; 2916 bp->b_offset = (offset_t)off; 2917 bp_mapin(bp); 2918 2919 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 2920 freemem > desfree) 2921 stab_comm = UNSTABLE4; 2922 else 2923 stab_comm = FILE_SYNC4; 2924 2925 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 2926 2927 bp_mapout(bp); 2928 pageio_done(bp); 2929 2930 if (stab_comm == UNSTABLE4) 2931 fsdata = C_DELAYCOMMIT; 2932 else 2933 fsdata = C_NOCOMMIT; 2934 2935 savepp = pp; 2936 do { 2937 pp->p_fsdata = fsdata; 2938 } while ((pp = pp->p_next) != savepp); 2939 2940 return (error); 2941 } 2942 2943 /* 2944 */ 2945 static int 2946 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 2947 { 2948 nfs4_open_owner_t *oop; 2949 nfs4_open_stream_t *osp; 2950 rnode4_t *rp = VTOR4(vp); 2951 mntinfo4_t *mi = VTOMI4(vp); 2952 int reopen_needed; 2953 2954 ASSERT(nfs_zone() == mi->mi_zone); 2955 2956 2957 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 2958 if (!oop) 2959 return (EIO); 2960 2961 /* returns with 'os_sync_lock' held */ 2962 osp = find_open_stream(oop, rp); 2963 if (!osp) { 2964 open_owner_rele(oop); 2965 return (EIO); 2966 } 2967 2968 if (osp->os_failed_reopen) { 2969 mutex_exit(&osp->os_sync_lock); 2970 open_stream_rele(osp, rp); 2971 open_owner_rele(oop); 2972 return (EIO); 2973 } 2974 2975 /* 2976 * Determine whether a reopen is needed. If this 2977 * is a delegation open stream, then the os_delegation bit 2978 * should be set. 2979 */ 2980 2981 reopen_needed = osp->os_delegation; 2982 2983 mutex_exit(&osp->os_sync_lock); 2984 open_owner_rele(oop); 2985 2986 if (reopen_needed) { 2987 nfs4_error_zinit(ep); 2988 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 2989 mutex_enter(&osp->os_sync_lock); 2990 if (ep->error || ep->stat || osp->os_failed_reopen) { 2991 mutex_exit(&osp->os_sync_lock); 2992 open_stream_rele(osp, rp); 2993 return (EIO); 2994 } 2995 mutex_exit(&osp->os_sync_lock); 2996 } 2997 open_stream_rele(osp, rp); 2998 2999 return (0); 3000 } 3001 3002 /* 3003 * Write to file. Writes to remote server in largest size 3004 * chunks that the server can handle. Write is synchronous. 3005 */ 3006 static int 3007 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3008 stable_how4 *stab_comm) 3009 { 3010 mntinfo4_t *mi; 3011 COMPOUND4args_clnt args; 3012 COMPOUND4res_clnt res; 3013 WRITE4args *wargs; 3014 WRITE4res *wres; 3015 nfs_argop4 argop[2]; 3016 nfs_resop4 *resop; 3017 int tsize; 3018 stable_how4 stable; 3019 rnode4_t *rp; 3020 int doqueue = 1; 3021 bool_t needrecov; 3022 nfs4_recov_state_t recov_state; 3023 nfs4_stateid_types_t sid_types; 3024 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3025 3026 rp = VTOR4(vp); 3027 mi = VTOMI4(vp); 3028 3029 ASSERT(nfs_zone() == mi->mi_zone); 3030 3031 stable = *stab_comm; 3032 *stab_comm = FILE_SYNC4; 3033 3034 needrecov = FALSE; 3035 recov_state.rs_flags = 0; 3036 recov_state.rs_num_retry_despite_err = 0; 3037 nfs4_init_stateid_types(&sid_types); 3038 3039 recov_retry: 3040 args.ctag = TAG_WRITE; 3041 args.array_len = 2; 3042 args.array = argop; 3043 3044 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3045 &recov_state, NULL); 3046 if (e.error) 3047 return (e.error); 3048 3049 /* 0. putfh target fh */ 3050 argop[0].argop = OP_CPUTFH; 3051 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3052 3053 /* 1. write */ 3054 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3055 3056 do { 3057 3058 wargs->offset = (offset4)offset; 3059 wargs->data_val = base; 3060 3061 if (mi->mi_io_kstats) { 3062 mutex_enter(&mi->mi_lock); 3063 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3064 mutex_exit(&mi->mi_lock); 3065 } 3066 3067 if ((vp->v_flag & VNOCACHE) || 3068 (rp->r_flags & R4DIRECTIO) || 3069 (mi->mi_flags & MI4_DIRECTIO)) 3070 tsize = MIN(mi->mi_stsize, count); 3071 else 3072 tsize = MIN(mi->mi_curwrite, count); 3073 wargs->data_len = (uint_t)tsize; 3074 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3075 3076 if (mi->mi_io_kstats) { 3077 mutex_enter(&mi->mi_lock); 3078 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3079 mutex_exit(&mi->mi_lock); 3080 } 3081 3082 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3083 if (e.error && !needrecov) { 3084 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3085 &recov_state, needrecov); 3086 return (e.error); 3087 } 3088 3089 3090 /* 3091 * Do handling of OLD_STATEID outside 3092 * of the normal recovery framework. 3093 * 3094 * If write receives a BAD stateid error while using a 3095 * delegation stateid, retry using the open stateid (if it 3096 * exists). If it doesn't have an open stateid, reopen the 3097 * file first, then retry. 3098 */ 3099 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3100 sid_types.cur_sid_type != SPEC_SID) { 3101 nfs4_save_stateid(&wargs->stateid, &sid_types); 3102 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3103 &recov_state, needrecov); 3104 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3105 goto recov_retry; 3106 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3107 sid_types.cur_sid_type == DEL_SID) { 3108 nfs4_save_stateid(&wargs->stateid, &sid_types); 3109 mutex_enter(&rp->r_statev4_lock); 3110 rp->r_deleg_return_pending = TRUE; 3111 mutex_exit(&rp->r_statev4_lock); 3112 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3113 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3114 &recov_state, needrecov); 3115 (void) xdr_free(xdr_COMPOUND4res_clnt, 3116 (caddr_t)&res); 3117 return (EIO); 3118 } 3119 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3120 &recov_state, needrecov); 3121 /* hold needed for nfs4delegreturn_thread */ 3122 VN_HOLD(vp); 3123 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3124 NFS4_DR_DISCARD), FALSE); 3125 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3126 goto recov_retry; 3127 } 3128 3129 if (needrecov) { 3130 bool_t abort; 3131 3132 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3133 "nfs4write: client got error %d, res.status %d" 3134 ", so start recovery", e.error, res.status)); 3135 3136 abort = nfs4_start_recovery(&e, 3137 VTOMI4(vp), vp, NULL, &wargs->stateid, 3138 NULL, OP_WRITE, NULL); 3139 if (!e.error) { 3140 e.error = geterrno4(res.status); 3141 (void) xdr_free(xdr_COMPOUND4res_clnt, 3142 (caddr_t)&res); 3143 } 3144 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3145 &recov_state, needrecov); 3146 if (abort == FALSE) 3147 goto recov_retry; 3148 return (e.error); 3149 } 3150 3151 if (res.status) { 3152 e.error = geterrno4(res.status); 3153 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3154 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3155 &recov_state, needrecov); 3156 return (e.error); 3157 } 3158 3159 resop = &res.array[1]; /* write res */ 3160 wres = &resop->nfs_resop4_u.opwrite; 3161 3162 if ((int)wres->count > tsize) { 3163 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3164 3165 zcmn_err(getzoneid(), CE_WARN, 3166 "nfs4write: server wrote %u, requested was %u", 3167 (int)wres->count, tsize); 3168 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3169 &recov_state, needrecov); 3170 return (EIO); 3171 } 3172 if (wres->committed == UNSTABLE4) { 3173 *stab_comm = UNSTABLE4; 3174 if (wargs->stable == DATA_SYNC4 || 3175 wargs->stable == FILE_SYNC4) { 3176 (void) xdr_free(xdr_COMPOUND4res_clnt, 3177 (caddr_t)&res); 3178 zcmn_err(getzoneid(), CE_WARN, 3179 "nfs4write: server %s did not commit " 3180 "to stable storage", 3181 rp->r_server->sv_hostname); 3182 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3183 &recov_state, needrecov); 3184 return (EIO); 3185 } 3186 } 3187 3188 tsize = (int)wres->count; 3189 count -= tsize; 3190 base += tsize; 3191 offset += tsize; 3192 if (mi->mi_io_kstats) { 3193 mutex_enter(&mi->mi_lock); 3194 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3195 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3196 tsize; 3197 mutex_exit(&mi->mi_lock); 3198 } 3199 lwp_stat_update(LWP_STAT_OUBLK, 1); 3200 mutex_enter(&rp->r_statelock); 3201 if (rp->r_flags & R4HAVEVERF) { 3202 if (rp->r_writeverf != wres->writeverf) { 3203 nfs4_set_mod(vp); 3204 rp->r_writeverf = wres->writeverf; 3205 } 3206 } else { 3207 rp->r_writeverf = wres->writeverf; 3208 rp->r_flags |= R4HAVEVERF; 3209 } 3210 PURGE_ATTRCACHE4_LOCKED(rp); 3211 rp->r_flags |= R4WRITEMODIFIED; 3212 gethrestime(&rp->r_attr.va_mtime); 3213 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3214 mutex_exit(&rp->r_statelock); 3215 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3216 } while (count); 3217 3218 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); 3219 3220 return (e.error); 3221 } 3222 3223 /* 3224 * Read from a file. Reads data in largest chunks our interface can handle. 3225 */ 3226 static int 3227 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3228 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3229 { 3230 mntinfo4_t *mi; 3231 COMPOUND4args_clnt args; 3232 COMPOUND4res_clnt res; 3233 READ4args *rargs; 3234 nfs_argop4 argop[2]; 3235 int tsize; 3236 int doqueue; 3237 rnode4_t *rp; 3238 int data_len; 3239 bool_t is_eof; 3240 bool_t needrecov = FALSE; 3241 nfs4_recov_state_t recov_state; 3242 nfs4_stateid_types_t sid_types; 3243 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3244 3245 rp = VTOR4(vp); 3246 mi = VTOMI4(vp); 3247 doqueue = 1; 3248 3249 ASSERT(nfs_zone() == mi->mi_zone); 3250 3251 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3252 3253 args.array_len = 2; 3254 args.array = argop; 3255 3256 nfs4_init_stateid_types(&sid_types); 3257 3258 recov_state.rs_flags = 0; 3259 recov_state.rs_num_retry_despite_err = 0; 3260 3261 recov_retry: 3262 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3263 &recov_state, NULL); 3264 if (e.error) 3265 return (e.error); 3266 3267 /* putfh target fh */ 3268 argop[0].argop = OP_CPUTFH; 3269 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3270 3271 /* read */ 3272 argop[1].argop = OP_READ; 3273 rargs = &argop[1].nfs_argop4_u.opread; 3274 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3275 OP_READ, &sid_types, async); 3276 3277 do { 3278 if (mi->mi_io_kstats) { 3279 mutex_enter(&mi->mi_lock); 3280 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3281 mutex_exit(&mi->mi_lock); 3282 } 3283 3284 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3285 "nfs4read: %s call, rp %s", 3286 needrecov ? "recov" : "first", 3287 rnode4info(rp))); 3288 3289 if ((vp->v_flag & VNOCACHE) || 3290 (rp->r_flags & R4DIRECTIO) || 3291 (mi->mi_flags & MI4_DIRECTIO)) 3292 tsize = MIN(mi->mi_tsize, count); 3293 else 3294 tsize = MIN(mi->mi_curread, count); 3295 rargs->offset = (offset4)offset; 3296 rargs->count = (count4)tsize; 3297 rargs->res_data_val_alt = NULL; 3298 rargs->res_mblk = NULL; 3299 rargs->res_uiop = NULL; 3300 rargs->res_maxsize = 0; 3301 if (uiop) 3302 rargs->res_uiop = uiop; 3303 else 3304 rargs->res_data_val_alt = base; 3305 rargs->res_maxsize = tsize; 3306 3307 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3308 #ifdef DEBUG 3309 if (nfs4read_error_inject) { 3310 res.status = nfs4read_error_inject; 3311 nfs4read_error_inject = 0; 3312 } 3313 #endif 3314 3315 if (mi->mi_io_kstats) { 3316 mutex_enter(&mi->mi_lock); 3317 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3318 mutex_exit(&mi->mi_lock); 3319 } 3320 3321 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3322 if (e.error != 0 && !needrecov) { 3323 nfs4_end_fop(mi, vp, NULL, OH_READ, 3324 &recov_state, needrecov); 3325 return (e.error); 3326 } 3327 3328 /* 3329 * Do proper retry for OLD and BAD stateid errors outside 3330 * of the normal recovery framework. There are two differences 3331 * between async and sync reads. The first is that we allow 3332 * retry on BAD_STATEID for async reads, but not sync reads. 3333 * The second is that we mark the file dead for a failed 3334 * attempt with a special stateid for sync reads, but just 3335 * return EIO for async reads. 3336 * 3337 * If a sync read receives a BAD stateid error while using a 3338 * delegation stateid, retry using the open stateid (if it 3339 * exists). If it doesn't have an open stateid, reopen the 3340 * file first, then retry. 3341 */ 3342 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3343 res.status == NFS4ERR_BAD_STATEID) && async) { 3344 nfs4_end_fop(mi, vp, NULL, OH_READ, 3345 &recov_state, needrecov); 3346 if (sid_types.cur_sid_type == SPEC_SID) { 3347 (void) xdr_free(xdr_COMPOUND4res_clnt, 3348 (caddr_t)&res); 3349 return (EIO); 3350 } 3351 nfs4_save_stateid(&rargs->stateid, &sid_types); 3352 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3353 goto recov_retry; 3354 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3355 !async && sid_types.cur_sid_type != SPEC_SID) { 3356 nfs4_save_stateid(&rargs->stateid, &sid_types); 3357 nfs4_end_fop(mi, vp, NULL, OH_READ, 3358 &recov_state, needrecov); 3359 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3360 goto recov_retry; 3361 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3362 sid_types.cur_sid_type == DEL_SID) { 3363 nfs4_save_stateid(&rargs->stateid, &sid_types); 3364 mutex_enter(&rp->r_statev4_lock); 3365 rp->r_deleg_return_pending = TRUE; 3366 mutex_exit(&rp->r_statev4_lock); 3367 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3368 nfs4_end_fop(mi, vp, NULL, OH_READ, 3369 &recov_state, needrecov); 3370 (void) xdr_free(xdr_COMPOUND4res_clnt, 3371 (caddr_t)&res); 3372 return (EIO); 3373 } 3374 nfs4_end_fop(mi, vp, NULL, OH_READ, 3375 &recov_state, needrecov); 3376 /* hold needed for nfs4delegreturn_thread */ 3377 VN_HOLD(vp); 3378 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3379 NFS4_DR_DISCARD), FALSE); 3380 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3381 goto recov_retry; 3382 } 3383 if (needrecov) { 3384 bool_t abort; 3385 3386 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3387 "nfs4read: initiating recovery\n")); 3388 3389 abort = nfs4_start_recovery(&e, 3390 mi, vp, NULL, &rargs->stateid, 3391 NULL, OP_READ, NULL); 3392 nfs4_end_fop(mi, vp, NULL, OH_READ, 3393 &recov_state, needrecov); 3394 /* 3395 * Do not retry if we got OLD_STATEID using a special 3396 * stateid. This avoids looping with a broken server. 3397 */ 3398 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3399 sid_types.cur_sid_type == SPEC_SID) 3400 abort = TRUE; 3401 3402 if (abort == FALSE) { 3403 /* 3404 * Need to retry all possible stateids in 3405 * case the recovery error wasn't stateid 3406 * related or the stateids have become 3407 * stale (server reboot). 3408 */ 3409 nfs4_init_stateid_types(&sid_types); 3410 (void) xdr_free(xdr_COMPOUND4res_clnt, 3411 (caddr_t)&res); 3412 goto recov_retry; 3413 } 3414 3415 if (!e.error) { 3416 e.error = geterrno4(res.status); 3417 (void) xdr_free(xdr_COMPOUND4res_clnt, 3418 (caddr_t)&res); 3419 } 3420 return (e.error); 3421 } 3422 3423 if (res.status) { 3424 e.error = geterrno4(res.status); 3425 nfs4_end_fop(mi, vp, NULL, OH_READ, 3426 &recov_state, needrecov); 3427 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3428 return (e.error); 3429 } 3430 3431 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3432 count -= data_len; 3433 if (base) 3434 base += data_len; 3435 offset += data_len; 3436 if (mi->mi_io_kstats) { 3437 mutex_enter(&mi->mi_lock); 3438 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3439 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3440 mutex_exit(&mi->mi_lock); 3441 } 3442 lwp_stat_update(LWP_STAT_INBLK, 1); 3443 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3444 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3445 3446 } while (count && !is_eof); 3447 3448 *residp = count; 3449 3450 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3451 3452 return (e.error); 3453 } 3454 3455 /* ARGSUSED */ 3456 static int 3457 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) 3458 { 3459 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3460 return (EIO); 3461 switch (cmd) { 3462 case _FIODIRECTIO: 3463 return (nfs4_directio(vp, (int)arg, cr)); 3464 default: 3465 return (ENOTTY); 3466 } 3467 } 3468 3469 static int 3470 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 3471 { 3472 int error; 3473 rnode4_t *rp = VTOR4(vp); 3474 3475 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3476 return (EIO); 3477 /* 3478 * If it has been specified that the return value will 3479 * just be used as a hint, and we are only being asked 3480 * for size, fsid or rdevid, then return the client's 3481 * notion of these values without checking to make sure 3482 * that the attribute cache is up to date. 3483 * The whole point is to avoid an over the wire GETATTR 3484 * call. 3485 */ 3486 if (flags & ATTR_HINT) { 3487 if (vap->va_mask == 3488 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 3489 mutex_enter(&rp->r_statelock); 3490 if (vap->va_mask | AT_SIZE) 3491 vap->va_size = rp->r_size; 3492 if (vap->va_mask | AT_FSID) 3493 vap->va_fsid = rp->r_attr.va_fsid; 3494 if (vap->va_mask | AT_RDEV) 3495 vap->va_rdev = rp->r_attr.va_rdev; 3496 mutex_exit(&rp->r_statelock); 3497 return (0); 3498 } 3499 } 3500 3501 /* 3502 * Only need to flush pages if asking for the mtime 3503 * and if there any dirty pages or any outstanding 3504 * asynchronous (write) requests for this file. 3505 */ 3506 if (vap->va_mask & AT_MTIME) { 3507 rp = VTOR4(vp); 3508 if (nfs4_has_pages(vp)) { 3509 mutex_enter(&rp->r_statev4_lock); 3510 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3511 mutex_exit(&rp->r_statev4_lock); 3512 if (rp->r_flags & R4DIRTY || 3513 rp->r_awcount > 0) { 3514 mutex_enter(&rp->r_statelock); 3515 rp->r_gcount++; 3516 mutex_exit(&rp->r_statelock); 3517 error = 3518 nfs4_putpage(vp, (u_offset_t)0, 3519 0, 0, cr); 3520 mutex_enter(&rp->r_statelock); 3521 if (error && (error == ENOSPC || 3522 error == EDQUOT)) { 3523 if (!rp->r_error) 3524 rp->r_error = error; 3525 } 3526 if (--rp->r_gcount == 0) 3527 cv_broadcast(&rp->r_cv); 3528 mutex_exit(&rp->r_statelock); 3529 } 3530 } else { 3531 mutex_exit(&rp->r_statev4_lock); 3532 } 3533 } 3534 } 3535 return (nfs4getattr(vp, vap, cr)); 3536 } 3537 3538 int 3539 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3540 { 3541 /* 3542 * If these are the only two bits cleared 3543 * on the server then return 0 (OK) else 3544 * return 1 (BAD). 3545 */ 3546 on_client &= ~(S_ISUID|S_ISGID); 3547 if (on_client == from_server) 3548 return (0); 3549 else 3550 return (1); 3551 } 3552 3553 /*ARGSUSED4*/ 3554 static int 3555 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3556 caller_context_t *ct) 3557 { 3558 if (vap->va_mask & AT_NOSET) 3559 return (EINVAL); 3560 3561 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3562 return (EIO); 3563 3564 /* 3565 * Don't call secpolicy_vnode_setattr, the client cannot 3566 * use its cached attributes to make security decisions 3567 * as the server may be faking mode bits or mapping uid/gid. 3568 * Always just let the server to the checking. 3569 * If we provide the ability to remove basic priviledges 3570 * to setattr (e.g. basic without chmod) then we will 3571 * need to add a check here before calling the server. 3572 */ 3573 3574 return (nfs4setattr(vp, vap, flags, cr, NULL)); 3575 } 3576 3577 /* 3578 * To replace the "guarded" version 3 setattr, we use two types of compound 3579 * setattr requests: 3580 * 1. The "normal" setattr, used when the size of the file isn't being 3581 * changed - { Putfh <fh>; Setattr; Getattr }/ 3582 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3583 * with only ctime as the argument. If the server ctime differs from 3584 * what is cached on the client, the verify will fail, but we would 3585 * already have the ctime from the preceding getattr, so just set it 3586 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3587 * Setattr; Getattr }. 3588 * 3589 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3590 * this setattr and NULL if they are not. 3591 */ 3592 static int 3593 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3594 vsecattr_t *vsap) 3595 { 3596 COMPOUND4args_clnt args; 3597 COMPOUND4res_clnt res, *resp = NULL; 3598 nfs4_ga_res_t *garp = NULL; 3599 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3600 nfs_argop4 argop[5]; 3601 int verify_argop = -1; 3602 int setattr_argop = 1; 3603 nfs_resop4 *resop; 3604 vattr_t va; 3605 rnode4_t *rp; 3606 int doqueue = 1; 3607 uint_t mask = vap->va_mask; 3608 mode_t omode; 3609 vsecattr_t *vsp; 3610 timestruc_t ctime; 3611 bool_t needrecov = FALSE; 3612 nfs4_recov_state_t recov_state; 3613 nfs4_stateid_types_t sid_types; 3614 stateid4 stateid; 3615 hrtime_t t; 3616 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3617 servinfo4_t *svp; 3618 bitmap4 supp_attrs; 3619 3620 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3621 rp = VTOR4(vp); 3622 nfs4_init_stateid_types(&sid_types); 3623 3624 /* 3625 * Only need to flush pages if there are any pages and 3626 * if the file is marked as dirty in some fashion. The 3627 * file must be flushed so that we can accurately 3628 * determine the size of the file and the cached data 3629 * after the SETATTR returns. A file is considered to 3630 * be dirty if it is either marked with R4DIRTY, has 3631 * outstanding i/o's active, or is mmap'd. In this 3632 * last case, we can't tell whether there are dirty 3633 * pages, so we flush just to be sure. 3634 */ 3635 if (nfs4_has_pages(vp) && 3636 ((rp->r_flags & R4DIRTY) || 3637 rp->r_count > 0 || 3638 rp->r_mapcnt > 0)) { 3639 ASSERT(vp->v_type != VCHR); 3640 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr); 3641 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3642 mutex_enter(&rp->r_statelock); 3643 if (!rp->r_error) 3644 rp->r_error = e.error; 3645 mutex_exit(&rp->r_statelock); 3646 } 3647 } 3648 3649 if (mask & AT_SIZE) { 3650 /* 3651 * Verification setattr compound for non-deleg AT_SIZE: 3652 * { Putfh; Getattr; Verify; Setattr; Getattr } 3653 * Set ctime local here (outside the do_again label) 3654 * so that subsequent retries (after failed VERIFY) 3655 * will use ctime from GETATTR results (from failed 3656 * verify compound) as VERIFY arg. 3657 * If file has delegation, then VERIFY(time_metadata) 3658 * is of little added value, so don't bother. 3659 */ 3660 mutex_enter(&rp->r_statev4_lock); 3661 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3662 rp->r_deleg_return_pending) { 3663 numops = 5; 3664 ctime = rp->r_attr.va_ctime; 3665 } 3666 mutex_exit(&rp->r_statev4_lock); 3667 } 3668 3669 recov_state.rs_flags = 0; 3670 recov_state.rs_num_retry_despite_err = 0; 3671 3672 args.ctag = TAG_SETATTR; 3673 do_again: 3674 recov_retry: 3675 setattr_argop = numops - 2; 3676 3677 args.array = argop; 3678 args.array_len = numops; 3679 3680 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3681 if (e.error) 3682 return (e.error); 3683 3684 3685 /* putfh target fh */ 3686 argop[0].argop = OP_CPUTFH; 3687 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3688 3689 if (numops == 5) { 3690 /* 3691 * We only care about the ctime, but need to get mtime 3692 * and size for proper cache update. 3693 */ 3694 /* getattr */ 3695 argop[1].argop = OP_GETATTR; 3696 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3697 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3698 3699 /* verify - set later in loop */ 3700 verify_argop = 2; 3701 } 3702 3703 /* setattr */ 3704 svp = rp->r_server; 3705 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3706 supp_attrs = svp->sv_supp_attrs; 3707 nfs_rw_exit(&svp->sv_lock); 3708 3709 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3710 supp_attrs, &e.error, &sid_types); 3711 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3712 if (e.error) { 3713 /* req time field(s) overflow - return immediately */ 3714 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3715 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3716 opsetattr.obj_attributes); 3717 return (e.error); 3718 } 3719 omode = rp->r_attr.va_mode; 3720 3721 /* getattr */ 3722 argop[numops-1].argop = OP_GETATTR; 3723 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3724 /* 3725 * If we are setting the ACL (indicated only by vsap != NULL), request 3726 * the ACL in this getattr. The ACL returned from this getattr will be 3727 * used in updating the ACL cache. 3728 */ 3729 if (vsap != NULL) 3730 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3731 FATTR4_ACL_MASK; 3732 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3733 3734 /* 3735 * setattr iterates if the object size is set and the cached ctime 3736 * does not match the file ctime. In that case, verify the ctime first. 3737 */ 3738 3739 do { 3740 if (verify_argop != -1) { 3741 /* 3742 * Verify that the ctime match before doing setattr. 3743 */ 3744 va.va_mask = AT_CTIME; 3745 va.va_ctime = ctime; 3746 svp = rp->r_server; 3747 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3748 supp_attrs = svp->sv_supp_attrs; 3749 nfs_rw_exit(&svp->sv_lock); 3750 e.error = nfs4args_verify(&argop[verify_argop], &va, 3751 OP_VERIFY, supp_attrs); 3752 if (e.error) { 3753 /* req time field(s) overflow - return */ 3754 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3755 needrecov); 3756 break; 3757 } 3758 } 3759 3760 doqueue = 1; 3761 3762 t = gethrtime(); 3763 3764 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3765 3766 /* 3767 * Purge the access cache and ACL cache if changing either the 3768 * owner of the file, the group owner, or the mode. These may 3769 * change the access permissions of the file, so purge old 3770 * information and start over again. 3771 */ 3772 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3773 (void) nfs4_access_purge_rp(rp); 3774 if (rp->r_secattr != NULL) { 3775 mutex_enter(&rp->r_statelock); 3776 vsp = rp->r_secattr; 3777 rp->r_secattr = NULL; 3778 mutex_exit(&rp->r_statelock); 3779 if (vsp != NULL) 3780 nfs4_acl_free_cache(vsp); 3781 } 3782 } 3783 3784 /* 3785 * If res.array_len == numops, then everything succeeded, 3786 * except for possibly the final getattr. If only the 3787 * last getattr failed, give up, and don't try recovery. 3788 */ 3789 if (res.array_len == numops) { 3790 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3791 needrecov); 3792 if (! e.error) 3793 resp = &res; 3794 break; 3795 } 3796 3797 /* 3798 * if either rpc call failed or completely succeeded - done 3799 */ 3800 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3801 if (e.error) { 3802 PURGE_ATTRCACHE4(vp); 3803 if (!needrecov) { 3804 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3805 needrecov); 3806 break; 3807 } 3808 } 3809 3810 /* 3811 * Do proper retry for OLD_STATEID outside of the normal 3812 * recovery framework. 3813 */ 3814 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3815 sid_types.cur_sid_type != SPEC_SID && 3816 sid_types.cur_sid_type != NO_SID) { 3817 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3818 needrecov); 3819 nfs4_save_stateid(&stateid, &sid_types); 3820 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3821 opsetattr.obj_attributes); 3822 if (verify_argop != -1) { 3823 nfs4args_verify_free(&argop[verify_argop]); 3824 verify_argop = -1; 3825 } 3826 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3827 goto recov_retry; 3828 } 3829 3830 if (needrecov) { 3831 bool_t abort; 3832 3833 abort = nfs4_start_recovery(&e, 3834 VTOMI4(vp), vp, NULL, NULL, NULL, 3835 OP_SETATTR, NULL); 3836 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3837 needrecov); 3838 /* 3839 * Do not retry if we failed with OLD_STATEID using 3840 * a special stateid. This is done to avoid looping 3841 * with a broken server. 3842 */ 3843 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3844 (sid_types.cur_sid_type == SPEC_SID || 3845 sid_types.cur_sid_type == NO_SID)) 3846 abort = TRUE; 3847 if (!e.error) { 3848 if (res.status == NFS4ERR_BADOWNER) 3849 nfs4_log_badowner(VTOMI4(vp), 3850 OP_SETATTR); 3851 3852 e.error = geterrno4(res.status); 3853 (void) xdr_free(xdr_COMPOUND4res_clnt, 3854 (caddr_t)&res); 3855 } 3856 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3857 opsetattr.obj_attributes); 3858 if (verify_argop != -1) { 3859 nfs4args_verify_free(&argop[verify_argop]); 3860 verify_argop = -1; 3861 } 3862 if (abort == FALSE) { 3863 /* 3864 * Need to retry all possible stateids in 3865 * case the recovery error wasn't stateid 3866 * related or the stateids have become 3867 * stale (server reboot). 3868 */ 3869 nfs4_init_stateid_types(&sid_types); 3870 goto recov_retry; 3871 } 3872 return (e.error); 3873 } 3874 3875 /* 3876 * Need to call nfs4_end_op before nfs4getattr to 3877 * avoid potential nfs4_start_op deadlock. See RFE 3878 * 4777612. Calls to nfs4_invalidate_pages() and 3879 * nfs4_purge_stale_fh() might also generate over the 3880 * wire calls which my cause nfs4_start_op() deadlock. 3881 */ 3882 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3883 3884 /* 3885 * Check to update lease. 3886 */ 3887 resp = &res; 3888 if (res.status == NFS4_OK) { 3889 break; 3890 } 3891 3892 /* 3893 * Check if verify failed to see if try again 3894 */ 3895 if ((verify_argop == -1) || (res.array_len != 3)) { 3896 /* 3897 * can't continue... 3898 */ 3899 if (res.status == NFS4ERR_BADOWNER) 3900 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 3901 3902 e.error = geterrno4(res.status); 3903 } else { 3904 /* 3905 * When the verify request fails, the client ctime is 3906 * not in sync with the server. This is the same as 3907 * the version 3 "not synchronized" error, and we 3908 * handle it in a similar manner (XXX do we need to???). 3909 * Use the ctime returned in the first getattr for 3910 * the input to the next verify. 3911 * If we couldn't get the attributes, then we give up 3912 * because we can't complete the operation as required. 3913 */ 3914 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 3915 } 3916 if (e.error) { 3917 PURGE_ATTRCACHE4(vp); 3918 nfs4_purge_stale_fh(e.error, vp, cr); 3919 } else { 3920 /* 3921 * retry with a new verify value 3922 */ 3923 ctime = garp->n4g_va.va_ctime; 3924 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3925 resp = NULL; 3926 } 3927 if (!e.error) { 3928 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3929 opsetattr.obj_attributes); 3930 if (verify_argop != -1) { 3931 nfs4args_verify_free(&argop[verify_argop]); 3932 verify_argop = -1; 3933 } 3934 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3935 goto do_again; 3936 } 3937 } while (!e.error); 3938 3939 if (e.error) { 3940 /* 3941 * If we are here, rfs4call has an irrecoverable error - return 3942 */ 3943 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3944 opsetattr.obj_attributes); 3945 if (verify_argop != -1) { 3946 nfs4args_verify_free(&argop[verify_argop]); 3947 verify_argop = -1; 3948 } 3949 if (resp) 3950 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 3951 return (e.error); 3952 } 3953 3954 3955 3956 /* 3957 * If changing the size of the file, invalidate 3958 * any local cached data which is no longer part 3959 * of the file. We also possibly invalidate the 3960 * last page in the file. We could use 3961 * pvn_vpzero(), but this would mark the page as 3962 * modified and require it to be written back to 3963 * the server for no particularly good reason. 3964 * This way, if we access it, then we bring it 3965 * back in. A read should be cheaper than a 3966 * write. 3967 */ 3968 if (mask & AT_SIZE) { 3969 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 3970 } 3971 3972 /* either no error or one of the postop getattr failed */ 3973 3974 /* 3975 * XXX Perform a simplified version of wcc checking. Instead of 3976 * have another getattr to get pre-op, just purge cache if 3977 * any of the ops prior to and including the getattr failed. 3978 * If the getattr succeeded then update the attrcache accordingly. 3979 */ 3980 3981 garp = NULL; 3982 if (res.status == NFS4_OK) { 3983 /* 3984 * Last getattr 3985 */ 3986 resop = &res.array[numops - 1]; 3987 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 3988 } 3989 /* 3990 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 3991 * rather than filling it. See the function itself for details. 3992 */ 3993 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 3994 if (garp != NULL) { 3995 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 3996 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 3997 vs_ace4_destroy(&garp->n4g_vsa); 3998 } else { 3999 if (vsap != NULL) { 4000 /* 4001 * The ACL was supposed to be set and to be 4002 * returned in the last getattr of this 4003 * compound, but for some reason the getattr 4004 * result doesn't contain the ACL. In this 4005 * case, purge the ACL cache. 4006 */ 4007 if (rp->r_secattr != NULL) { 4008 mutex_enter(&rp->r_statelock); 4009 vsp = rp->r_secattr; 4010 rp->r_secattr = NULL; 4011 mutex_exit(&rp->r_statelock); 4012 if (vsp != NULL) 4013 nfs4_acl_free_cache(vsp); 4014 } 4015 } 4016 } 4017 } 4018 4019 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4020 /* 4021 * Set the size, rather than relying on getting it updated 4022 * via a GETATTR. With delegations the client tries to 4023 * suppress GETATTR calls. 4024 */ 4025 mutex_enter(&rp->r_statelock); 4026 rp->r_size = vap->va_size; 4027 mutex_exit(&rp->r_statelock); 4028 } 4029 4030 /* 4031 * Can free up request args and res 4032 */ 4033 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4034 opsetattr.obj_attributes); 4035 if (verify_argop != -1) { 4036 nfs4args_verify_free(&argop[verify_argop]); 4037 verify_argop = -1; 4038 } 4039 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4040 4041 /* 4042 * Some servers will change the mode to clear the setuid 4043 * and setgid bits when changing the uid or gid. The 4044 * client needs to compensate appropriately. 4045 */ 4046 if (mask & (AT_UID | AT_GID)) { 4047 int terror, do_setattr; 4048 4049 do_setattr = 0; 4050 va.va_mask = AT_MODE; 4051 terror = nfs4getattr(vp, &va, cr); 4052 if (!terror && 4053 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4054 (!(mask & AT_MODE) && va.va_mode != omode))) { 4055 va.va_mask = AT_MODE; 4056 if (mask & AT_MODE) { 4057 /* 4058 * We asked the mode to be changed and what 4059 * we just got from the server in getattr is 4060 * not what we wanted it to be, so set it now. 4061 */ 4062 va.va_mode = vap->va_mode; 4063 do_setattr = 1; 4064 } else { 4065 /* 4066 * We did not ask the mode to be changed, 4067 * Check to see that the server just cleared 4068 * I_SUID and I_GUID from it. If not then 4069 * set mode to omode with UID/GID cleared. 4070 */ 4071 if (nfs4_compare_modes(va.va_mode, omode)) { 4072 omode &= ~(S_ISUID|S_ISGID); 4073 va.va_mode = omode; 4074 do_setattr = 1; 4075 } 4076 } 4077 4078 if (do_setattr) 4079 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4080 } 4081 } 4082 4083 return (e.error); 4084 } 4085 4086 /* ARGSUSED */ 4087 static int 4088 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr) 4089 { 4090 COMPOUND4args_clnt args; 4091 COMPOUND4res_clnt res; 4092 int doqueue; 4093 uint32_t acc, resacc, argacc; 4094 rnode4_t *rp; 4095 cred_t *cred, *ncr, *ncrfree = NULL; 4096 nfs4_access_type_t cacc; 4097 int num_ops; 4098 nfs_argop4 argop[3]; 4099 nfs_resop4 *resop; 4100 bool_t needrecov = FALSE, do_getattr; 4101 nfs4_recov_state_t recov_state; 4102 int rpc_error; 4103 hrtime_t t; 4104 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4105 mntinfo4_t *mi = VTOMI4(vp); 4106 4107 if (nfs_zone() != mi->mi_zone) 4108 return (EIO); 4109 4110 acc = 0; 4111 if (mode & VREAD) 4112 acc |= ACCESS4_READ; 4113 if (mode & VWRITE) { 4114 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4115 return (EROFS); 4116 if (vp->v_type == VDIR) 4117 acc |= ACCESS4_DELETE; 4118 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4119 } 4120 if (mode & VEXEC) { 4121 if (vp->v_type == VDIR) 4122 acc |= ACCESS4_LOOKUP; 4123 else 4124 acc |= ACCESS4_EXECUTE; 4125 } 4126 4127 if (VTOR4(vp)->r_acache != NULL) { 4128 e.error = nfs4_validate_caches(vp, cr); 4129 if (e.error) 4130 return (e.error); 4131 } 4132 4133 rp = VTOR4(vp); 4134 if (vp->v_type == VDIR) { 4135 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4136 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4137 } else { 4138 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4139 ACCESS4_EXECUTE; 4140 } 4141 recov_state.rs_flags = 0; 4142 recov_state.rs_num_retry_despite_err = 0; 4143 4144 cred = cr; 4145 /* 4146 * ncr and ncrfree both initially 4147 * point to the memory area returned 4148 * by crnetadjust(); 4149 * ncrfree not NULL when exiting means 4150 * that we need to release it 4151 */ 4152 ncr = crnetadjust(cred); 4153 ncrfree = ncr; 4154 4155 tryagain: 4156 cacc = nfs4_access_check(rp, acc, cred); 4157 if (cacc == NFS4_ACCESS_ALLOWED) { 4158 if (ncrfree != NULL) 4159 crfree(ncrfree); 4160 return (0); 4161 } 4162 if (cacc == NFS4_ACCESS_DENIED) { 4163 /* 4164 * If the cred can be adjusted, try again 4165 * with the new cred. 4166 */ 4167 if (ncr != NULL) { 4168 cred = ncr; 4169 ncr = NULL; 4170 goto tryagain; 4171 } 4172 if (ncrfree != NULL) 4173 crfree(ncrfree); 4174 return (EACCES); 4175 } 4176 4177 recov_retry: 4178 /* 4179 * Don't take with r_statev4_lock here. r_deleg_type could 4180 * change as soon as lock is released. Since it is an int, 4181 * there is no atomicity issue. 4182 */ 4183 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4184 num_ops = do_getattr ? 3 : 2; 4185 4186 args.ctag = TAG_ACCESS; 4187 4188 args.array_len = num_ops; 4189 args.array = argop; 4190 4191 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4192 &recov_state, NULL)) { 4193 if (ncrfree != NULL) 4194 crfree(ncrfree); 4195 return (e.error); 4196 } 4197 4198 /* putfh target fh */ 4199 argop[0].argop = OP_CPUTFH; 4200 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4201 4202 /* access */ 4203 argop[1].argop = OP_ACCESS; 4204 argop[1].nfs_argop4_u.opaccess.access = argacc; 4205 4206 /* getattr */ 4207 if (do_getattr) { 4208 argop[2].argop = OP_GETATTR; 4209 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4210 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4211 } 4212 4213 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4214 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4215 rnode4info(VTOR4(vp)))); 4216 4217 doqueue = 1; 4218 t = gethrtime(); 4219 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4220 rpc_error = e.error; 4221 4222 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4223 if (needrecov) { 4224 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4225 "nfs4_access: initiating recovery\n")); 4226 4227 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4228 NULL, OP_ACCESS, NULL) == FALSE) { 4229 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4230 &recov_state, needrecov); 4231 if (!e.error) 4232 (void) xdr_free(xdr_COMPOUND4res_clnt, 4233 (caddr_t)&res); 4234 goto recov_retry; 4235 } 4236 } 4237 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4238 4239 if (e.error) 4240 goto out; 4241 4242 if (res.status) { 4243 e.error = geterrno4(res.status); 4244 /* 4245 * This might generate over the wire calls throught 4246 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4247 * here to avoid a deadlock. 4248 */ 4249 nfs4_purge_stale_fh(e.error, vp, cr); 4250 goto out; 4251 } 4252 resop = &res.array[1]; /* access res */ 4253 4254 resacc = resop->nfs_resop4_u.opaccess.access; 4255 4256 if (do_getattr) { 4257 resop++; /* getattr res */ 4258 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4259 t, cr, FALSE, NULL); 4260 } 4261 4262 if (!e.error) { 4263 nfs4_access_cache(rp, argacc, resacc, cred); 4264 /* 4265 * we just cached results with cred; if cred is the 4266 * adjusted credentials from crnetadjust, we do not want 4267 * to release them before exiting: hence setting ncrfree 4268 * to NULL 4269 */ 4270 if (cred != cr) 4271 ncrfree = NULL; 4272 /* XXX check the supported bits too? */ 4273 if ((acc & resacc) != acc) { 4274 /* 4275 * The following code implements the semantic 4276 * that a setuid root program has *at least* the 4277 * permissions of the user that is running the 4278 * program. See rfs3call() for more portions 4279 * of the implementation of this functionality. 4280 */ 4281 /* XXX-LP */ 4282 if (ncr != NULL) { 4283 (void) xdr_free(xdr_COMPOUND4res_clnt, 4284 (caddr_t)&res); 4285 cred = ncr; 4286 ncr = NULL; 4287 goto tryagain; 4288 } 4289 e.error = EACCES; 4290 } 4291 } 4292 4293 out: 4294 if (!rpc_error) 4295 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4296 4297 if (ncrfree != NULL) 4298 crfree(ncrfree); 4299 4300 return (e.error); 4301 } 4302 4303 static int 4304 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr) 4305 { 4306 COMPOUND4args_clnt args; 4307 COMPOUND4res_clnt res; 4308 int doqueue; 4309 rnode4_t *rp; 4310 nfs_argop4 argop[3]; 4311 nfs_resop4 *resop; 4312 READLINK4res *lr_res; 4313 nfs4_ga_res_t *garp; 4314 uint_t len; 4315 char *linkdata; 4316 bool_t needrecov = FALSE; 4317 nfs4_recov_state_t recov_state; 4318 hrtime_t t; 4319 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4320 4321 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4322 return (EIO); 4323 /* 4324 * Can't readlink anything other than a symbolic link. 4325 */ 4326 if (vp->v_type != VLNK) 4327 return (EINVAL); 4328 4329 rp = VTOR4(vp); 4330 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4331 e.error = nfs4_validate_caches(vp, cr); 4332 if (e.error) 4333 return (e.error); 4334 mutex_enter(&rp->r_statelock); 4335 if (rp->r_symlink.contents != NULL) { 4336 e.error = uiomove(rp->r_symlink.contents, 4337 rp->r_symlink.len, UIO_READ, uiop); 4338 mutex_exit(&rp->r_statelock); 4339 return (e.error); 4340 } 4341 mutex_exit(&rp->r_statelock); 4342 } 4343 recov_state.rs_flags = 0; 4344 recov_state.rs_num_retry_despite_err = 0; 4345 4346 recov_retry: 4347 args.array_len = 3; 4348 args.array = argop; 4349 args.ctag = TAG_READLINK; 4350 4351 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4352 if (e.error) { 4353 return (e.error); 4354 } 4355 4356 /* 0. putfh symlink fh */ 4357 argop[0].argop = OP_CPUTFH; 4358 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4359 4360 /* 1. readlink */ 4361 argop[1].argop = OP_READLINK; 4362 4363 /* 2. getattr */ 4364 argop[2].argop = OP_GETATTR; 4365 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4366 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4367 4368 doqueue = 1; 4369 4370 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4371 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4372 rnode4info(VTOR4(vp)))); 4373 4374 t = gethrtime(); 4375 4376 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4377 4378 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4379 if (needrecov) { 4380 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4381 "nfs4_readlink: initiating recovery\n")); 4382 4383 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4384 NULL, OP_READLINK, NULL) == FALSE) { 4385 if (!e.error) 4386 (void) xdr_free(xdr_COMPOUND4res_clnt, 4387 (caddr_t)&res); 4388 4389 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4390 needrecov); 4391 goto recov_retry; 4392 } 4393 } 4394 4395 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4396 4397 if (e.error) 4398 return (e.error); 4399 4400 /* 4401 * There is an path in the code below which calls 4402 * nfs4_purge_stale_fh(), which may generate otw calls through 4403 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4404 * here to avoid nfs4_start_op() deadlock. 4405 */ 4406 4407 if (res.status && (res.array_len < args.array_len)) { 4408 /* 4409 * either Putfh or Link failed 4410 */ 4411 e.error = geterrno4(res.status); 4412 nfs4_purge_stale_fh(e.error, vp, cr); 4413 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4414 return (e.error); 4415 } 4416 4417 resop = &res.array[1]; /* readlink res */ 4418 lr_res = &resop->nfs_resop4_u.opreadlink; 4419 4420 /* 4421 * treat symlink names as data 4422 */ 4423 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4424 if (linkdata != NULL) { 4425 int uio_len = len - 1; 4426 /* len includes null byte, which we won't uiomove */ 4427 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4428 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4429 mutex_enter(&rp->r_statelock); 4430 if (rp->r_symlink.contents == NULL) { 4431 rp->r_symlink.contents = linkdata; 4432 rp->r_symlink.len = uio_len; 4433 rp->r_symlink.size = len; 4434 mutex_exit(&rp->r_statelock); 4435 } else { 4436 mutex_exit(&rp->r_statelock); 4437 kmem_free(linkdata, len); 4438 } 4439 } else { 4440 kmem_free(linkdata, len); 4441 } 4442 } 4443 if (res.status == NFS4_OK) { 4444 resop++; /* getattr res */ 4445 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4446 } 4447 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4448 4449 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4450 4451 /* 4452 * The over the wire error for attempting to readlink something 4453 * other than a symbolic link is ENXIO. However, we need to 4454 * return EINVAL instead of ENXIO, so we map it here. 4455 */ 4456 return (e.error == ENXIO ? EINVAL : e.error); 4457 } 4458 4459 /* 4460 * Flush local dirty pages to stable storage on the server. 4461 * 4462 * If FNODSYNC is specified, then there is nothing to do because 4463 * metadata changes are not cached on the client before being 4464 * sent to the server. 4465 */ 4466 static int 4467 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr) 4468 { 4469 int error; 4470 4471 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4472 return (0); 4473 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4474 return (EIO); 4475 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4476 if (!error) 4477 error = VTOR4(vp)->r_error; 4478 return (error); 4479 } 4480 4481 /* 4482 * Weirdness: if the file was removed or the target of a rename 4483 * operation while it was open, it got renamed instead. Here we 4484 * remove the renamed file. 4485 */ 4486 static void 4487 nfs4_inactive(vnode_t *vp, cred_t *cr) 4488 { 4489 rnode4_t *rp; 4490 4491 ASSERT(vp != DNLC_NO_VNODE); 4492 4493 rp = VTOR4(vp); 4494 4495 if (IS_SHADOW(vp, rp)) { 4496 sv_inactive(vp); 4497 return; 4498 } 4499 4500 /* 4501 * If this is coming from the wrong zone, we let someone in the right 4502 * zone take care of it asynchronously. We can get here due to 4503 * VN_RELE() being called from pageout() or fsflush(). This call may 4504 * potentially turn into an expensive no-op if, for instance, v_count 4505 * gets incremented in the meantime, but it's still correct. 4506 */ 4507 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4508 nfs4_async_inactive(vp, cr); 4509 return; 4510 } 4511 4512 /* 4513 * Some of the cleanup steps might require over-the-wire 4514 * operations. Since VOP_INACTIVE can get called as a result of 4515 * other over-the-wire operations (e.g., an attribute cache update 4516 * can lead to a DNLC purge), doing those steps now would lead to a 4517 * nested call to the recovery framework, which can deadlock. So 4518 * do any over-the-wire cleanups asynchronously, in a separate 4519 * thread. 4520 */ 4521 4522 mutex_enter(&rp->r_os_lock); 4523 mutex_enter(&rp->r_statelock); 4524 mutex_enter(&rp->r_statev4_lock); 4525 4526 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4527 mutex_exit(&rp->r_statev4_lock); 4528 mutex_exit(&rp->r_statelock); 4529 mutex_exit(&rp->r_os_lock); 4530 nfs4_async_inactive(vp, cr); 4531 return; 4532 } 4533 4534 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4535 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4536 mutex_exit(&rp->r_statev4_lock); 4537 mutex_exit(&rp->r_statelock); 4538 mutex_exit(&rp->r_os_lock); 4539 nfs4_async_inactive(vp, cr); 4540 return; 4541 } 4542 4543 if (rp->r_unldvp != NULL) { 4544 mutex_exit(&rp->r_statev4_lock); 4545 mutex_exit(&rp->r_statelock); 4546 mutex_exit(&rp->r_os_lock); 4547 nfs4_async_inactive(vp, cr); 4548 return; 4549 } 4550 mutex_exit(&rp->r_statev4_lock); 4551 mutex_exit(&rp->r_statelock); 4552 mutex_exit(&rp->r_os_lock); 4553 4554 rp4_addfree(rp, cr); 4555 } 4556 4557 /* 4558 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4559 * various bits of state. The caller must not refer to vp after this call. 4560 */ 4561 4562 void 4563 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4564 { 4565 rnode4_t *rp = VTOR4(vp); 4566 nfs4_recov_state_t recov_state; 4567 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4568 vnode_t *unldvp; 4569 char *unlname; 4570 cred_t *unlcred; 4571 COMPOUND4args_clnt args; 4572 COMPOUND4res_clnt res, *resp; 4573 nfs_argop4 argop[2]; 4574 int doqueue; 4575 #ifdef DEBUG 4576 char *name; 4577 #endif 4578 4579 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4580 ASSERT(!IS_SHADOW(vp, rp)); 4581 4582 #ifdef DEBUG 4583 name = fn_name(VTOSV(vp)->sv_name); 4584 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4585 "release vnode %s", name)); 4586 kmem_free(name, MAXNAMELEN); 4587 #endif 4588 4589 if (vp->v_type == VREG) { 4590 bool_t recov_failed = FALSE; 4591 4592 e.error = nfs4close_all(vp, cr); 4593 if (e.error) { 4594 /* Check to see if recovery failed */ 4595 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4596 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4597 recov_failed = TRUE; 4598 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4599 if (!recov_failed) { 4600 mutex_enter(&rp->r_statelock); 4601 if (rp->r_flags & R4RECOVERR) 4602 recov_failed = TRUE; 4603 mutex_exit(&rp->r_statelock); 4604 } 4605 if (recov_failed) { 4606 NFS4_DEBUG(nfs4_client_recov_debug, 4607 (CE_NOTE, "nfs4_inactive_otw: " 4608 "close failed (recovery failure)")); 4609 } 4610 } 4611 } 4612 4613 redo: 4614 if (rp->r_unldvp == NULL) { 4615 rp4_addfree(rp, cr); 4616 return; 4617 } 4618 4619 /* 4620 * Save the vnode pointer for the directory where the 4621 * unlinked-open file got renamed, then set it to NULL 4622 * to prevent another thread from getting here before 4623 * we're done with the remove. While we have the 4624 * statelock, make local copies of the pertinent rnode 4625 * fields. If we weren't to do this in an atomic way, the 4626 * the unl* fields could become inconsistent with respect 4627 * to each other due to a race condition between this 4628 * code and nfs_remove(). See bug report 1034328. 4629 */ 4630 mutex_enter(&rp->r_statelock); 4631 if (rp->r_unldvp == NULL) { 4632 mutex_exit(&rp->r_statelock); 4633 rp4_addfree(rp, cr); 4634 return; 4635 } 4636 4637 unldvp = rp->r_unldvp; 4638 rp->r_unldvp = NULL; 4639 unlname = rp->r_unlname; 4640 rp->r_unlname = NULL; 4641 unlcred = rp->r_unlcred; 4642 rp->r_unlcred = NULL; 4643 mutex_exit(&rp->r_statelock); 4644 4645 /* 4646 * If there are any dirty pages left, then flush 4647 * them. This is unfortunate because they just 4648 * may get thrown away during the remove operation, 4649 * but we have to do this for correctness. 4650 */ 4651 if (nfs4_has_pages(vp) && 4652 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4653 ASSERT(vp->v_type != VCHR); 4654 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr); 4655 if (e.error) { 4656 mutex_enter(&rp->r_statelock); 4657 if (!rp->r_error) 4658 rp->r_error = e.error; 4659 mutex_exit(&rp->r_statelock); 4660 } 4661 } 4662 4663 recov_state.rs_flags = 0; 4664 recov_state.rs_num_retry_despite_err = 0; 4665 recov_retry_remove: 4666 /* 4667 * Do the remove operation on the renamed file 4668 */ 4669 args.ctag = TAG_INACTIVE; 4670 4671 /* 4672 * Remove ops: putfh dir; remove 4673 */ 4674 args.array_len = 2; 4675 args.array = argop; 4676 4677 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4678 if (e.error) { 4679 kmem_free(unlname, MAXNAMELEN); 4680 crfree(unlcred); 4681 VN_RELE(unldvp); 4682 /* 4683 * Try again; this time around r_unldvp will be NULL, so we'll 4684 * just call rp4_addfree() and return. 4685 */ 4686 goto redo; 4687 } 4688 4689 /* putfh directory */ 4690 argop[0].argop = OP_CPUTFH; 4691 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4692 4693 /* remove */ 4694 argop[1].argop = OP_CREMOVE; 4695 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4696 4697 doqueue = 1; 4698 resp = &res; 4699 4700 #if 0 /* notyet */ 4701 /* 4702 * Can't do this yet. We may be being called from 4703 * dnlc_purge_XXX while that routine is holding a 4704 * mutex lock to the nc_rele list. The calls to 4705 * nfs3_cache_wcc_data may result in calls to 4706 * dnlc_purge_XXX. This will result in a deadlock. 4707 */ 4708 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4709 if (e.error) { 4710 PURGE_ATTRCACHE4(unldvp); 4711 resp = NULL; 4712 } else if (res.status) { 4713 e.error = geterrno4(res.status); 4714 PURGE_ATTRCACHE4(unldvp); 4715 /* 4716 * This code is inactive right now 4717 * but if made active there should 4718 * be a nfs4_end_op() call before 4719 * nfs4_purge_stale_fh to avoid start_op() 4720 * deadlock. See BugId: 4948726 4721 */ 4722 nfs4_purge_stale_fh(error, unldvp, cr); 4723 } else { 4724 nfs_resop4 *resop; 4725 REMOVE4res *rm_res; 4726 4727 resop = &res.array[1]; 4728 rm_res = &resop->nfs_resop4_u.opremove; 4729 /* 4730 * Update directory cache attribute, 4731 * readdir and dnlc caches. 4732 */ 4733 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4734 } 4735 #else 4736 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4737 4738 PURGE_ATTRCACHE4(unldvp); 4739 #endif 4740 4741 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4742 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4743 NULL, NULL, OP_REMOVE, NULL) == FALSE) { 4744 if (!e.error) 4745 (void) xdr_free(xdr_COMPOUND4res_clnt, 4746 (caddr_t)&res); 4747 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4748 &recov_state, TRUE); 4749 goto recov_retry_remove; 4750 } 4751 } 4752 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4753 4754 /* 4755 * Release stuff held for the remove 4756 */ 4757 VN_RELE(unldvp); 4758 if (!e.error && resp) 4759 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4760 4761 kmem_free(unlname, MAXNAMELEN); 4762 crfree(unlcred); 4763 goto redo; 4764 } 4765 4766 /* 4767 * Remote file system operations having to do with directory manipulation. 4768 */ 4769 /* ARGSUSED3 */ 4770 static int 4771 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4772 int flags, vnode_t *rdir, cred_t *cr) 4773 { 4774 int error; 4775 vnode_t *vp, *avp = NULL; 4776 rnode4_t *drp; 4777 4778 *vpp = NULL; 4779 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4780 return (EPERM); 4781 /* 4782 * if LOOKUP_XATTR, must replace dvp (object) with 4783 * object's attrdir before continuing with lookup 4784 */ 4785 if (flags & LOOKUP_XATTR) { 4786 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4787 if (error) 4788 return (error); 4789 4790 dvp = avp; 4791 4792 /* 4793 * If lookup is for "", just return dvp now. The attrdir 4794 * has already been activated (from nfs4lookup_xattr), and 4795 * the caller will RELE the original dvp -- not 4796 * the attrdir. So, set vpp and return. 4797 * Currently, when the LOOKUP_XATTR flag is 4798 * passed to VOP_LOOKUP, the name is always empty, and 4799 * shortcircuiting here avoids 3 unneeded lock/unlock 4800 * pairs. 4801 * 4802 * If a non-empty name was provided, then it is the 4803 * attribute name, and it will be looked up below. 4804 */ 4805 if (*nm == '\0') { 4806 *vpp = dvp; 4807 return (0); 4808 } 4809 4810 /* 4811 * The vfs layer never sends a name when asking for the 4812 * attrdir, so we should never get here (unless of course 4813 * name is passed at some time in future -- at which time 4814 * we'll blow up here). 4815 */ 4816 ASSERT(0); 4817 } 4818 4819 drp = VTOR4(dvp); 4820 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4821 return (EINTR); 4822 4823 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4824 nfs_rw_exit(&drp->r_rwlock); 4825 4826 /* 4827 * If vnode is a device, create special vnode. 4828 */ 4829 if (!error && ISVDEV((*vpp)->v_type)) { 4830 vp = *vpp; 4831 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 4832 VN_RELE(vp); 4833 } 4834 4835 return (error); 4836 } 4837 4838 /* ARGSUSED */ 4839 static int 4840 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 4841 { 4842 int error; 4843 rnode4_t *drp; 4844 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 4845 mntinfo4_t *mi; 4846 4847 mi = VTOMI4(dvp); 4848 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR)) 4849 return (EINVAL); 4850 4851 drp = VTOR4(dvp); 4852 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4853 return (EINTR); 4854 4855 mutex_enter(&drp->r_statelock); 4856 /* 4857 * If the server doesn't support xattrs just return EINVAL 4858 */ 4859 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 4860 mutex_exit(&drp->r_statelock); 4861 nfs_rw_exit(&drp->r_rwlock); 4862 return (EINVAL); 4863 } 4864 4865 /* 4866 * If there is a cached xattr directory entry, 4867 * use it as long as the attributes are valid. If the 4868 * attributes are not valid, take the simple approach and 4869 * free the cached value and re-fetch a new value. 4870 * 4871 * We don't negative entry cache for now, if we did we 4872 * would need to check if the file has changed on every 4873 * lookup. But xattrs don't exist very often and failing 4874 * an openattr is not much more expensive than and NVERIFY or GETATTR 4875 * so do an openattr over the wire for now. 4876 */ 4877 if (drp->r_xattr_dir != NULL) { 4878 if (ATTRCACHE4_VALID(dvp)) { 4879 VN_HOLD(drp->r_xattr_dir); 4880 *vpp = drp->r_xattr_dir; 4881 mutex_exit(&drp->r_statelock); 4882 nfs_rw_exit(&drp->r_rwlock); 4883 return (0); 4884 } 4885 VN_RELE(drp->r_xattr_dir); 4886 drp->r_xattr_dir = NULL; 4887 } 4888 mutex_exit(&drp->r_statelock); 4889 4890 error = nfs4openattr(dvp, vpp, cflag, cr); 4891 4892 nfs_rw_exit(&drp->r_rwlock); 4893 4894 return (error); 4895 } 4896 4897 static int 4898 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 4899 { 4900 int error; 4901 rnode4_t *drp; 4902 4903 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 4904 4905 /* 4906 * If lookup is for "", just return dvp. Don't need 4907 * to send it over the wire, look it up in the dnlc, 4908 * or perform any access checks. 4909 */ 4910 if (*nm == '\0') { 4911 VN_HOLD(dvp); 4912 *vpp = dvp; 4913 return (0); 4914 } 4915 4916 /* 4917 * Can't do lookups in non-directories. 4918 */ 4919 if (dvp->v_type != VDIR) 4920 return (ENOTDIR); 4921 4922 /* 4923 * If lookup is for ".", just return dvp. Don't need 4924 * to send it over the wire or look it up in the dnlc, 4925 * just need to check access. 4926 */ 4927 if (nm[0] == '.' && nm[1] == '\0') { 4928 error = nfs4_access(dvp, VEXEC, 0, cr); 4929 if (error) 4930 return (error); 4931 VN_HOLD(dvp); 4932 *vpp = dvp; 4933 return (0); 4934 } 4935 4936 drp = VTOR4(dvp); 4937 if (!(drp->r_flags & R4LOOKUP)) { 4938 mutex_enter(&drp->r_statelock); 4939 drp->r_flags |= R4LOOKUP; 4940 mutex_exit(&drp->r_statelock); 4941 } 4942 4943 *vpp = NULL; 4944 /* 4945 * Lookup this name in the DNLC. If there is no entry 4946 * lookup over the wire. 4947 */ 4948 if (!skipdnlc) 4949 *vpp = dnlc_lookup(dvp, nm); 4950 if (*vpp == NULL) { 4951 /* 4952 * We need to go over the wire to lookup the name. 4953 */ 4954 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 4955 } 4956 4957 /* 4958 * We hit on the dnlc 4959 */ 4960 if (*vpp != DNLC_NO_VNODE || 4961 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 4962 /* 4963 * But our attrs may not be valid. 4964 */ 4965 if (ATTRCACHE4_VALID(dvp)) { 4966 error = nfs4_waitfor_purge_complete(dvp); 4967 if (error) { 4968 VN_RELE(*vpp); 4969 *vpp = NULL; 4970 return (error); 4971 } 4972 4973 /* 4974 * If after the purge completes, check to make sure 4975 * our attrs are still valid. 4976 */ 4977 if (ATTRCACHE4_VALID(dvp)) { 4978 /* 4979 * If we waited for a purge we may have 4980 * lost our vnode so look it up again. 4981 */ 4982 VN_RELE(*vpp); 4983 *vpp = dnlc_lookup(dvp, nm); 4984 if (*vpp == NULL) 4985 return (nfs4lookupnew_otw(dvp, 4986 nm, vpp, cr)); 4987 4988 /* 4989 * The access cache should almost always hit 4990 */ 4991 error = nfs4_access(dvp, VEXEC, 0, cr); 4992 4993 if (error) { 4994 VN_RELE(*vpp); 4995 *vpp = NULL; 4996 return (error); 4997 } 4998 if (*vpp == DNLC_NO_VNODE) { 4999 VN_RELE(*vpp); 5000 *vpp = NULL; 5001 return (ENOENT); 5002 } 5003 return (0); 5004 } 5005 } 5006 } 5007 5008 ASSERT(*vpp != NULL); 5009 5010 /* 5011 * We may have gotten here we have one of the following cases: 5012 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5013 * need to validate them. 5014 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5015 * must validate. 5016 * 5017 * Go to the server and check if the directory has changed, if 5018 * it hasn't we are done and can use the dnlc entry. 5019 */ 5020 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5021 } 5022 5023 /* 5024 * Go to the server and check if the directory has changed, if 5025 * it hasn't we are done and can use the dnlc entry. If it 5026 * has changed we get a new copy of its attributes and check 5027 * the access for VEXEC, then relookup the filename and 5028 * get its filehandle and attributes. 5029 * 5030 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5031 * if the NVERIFY failed we must 5032 * purge the caches 5033 * cache new attributes (will set r_time_attr_inval) 5034 * cache new access 5035 * recheck VEXEC access 5036 * add name to dnlc, possibly negative 5037 * if LOOKUP succeeded 5038 * cache new attributes 5039 * else 5040 * set a new r_time_attr_inval for dvp 5041 * check to make sure we have access 5042 * 5043 * The vpp returned is the vnode passed in if the directory is valid, 5044 * a new vnode if successful lookup, or NULL on error. 5045 */ 5046 static int 5047 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5048 { 5049 COMPOUND4args_clnt args; 5050 COMPOUND4res_clnt res; 5051 fattr4 *ver_fattr; 5052 fattr4_change dchange; 5053 int32_t *ptr; 5054 int argoplist_size = 7 * sizeof (nfs_argop4); 5055 nfs_argop4 *argop; 5056 int doqueue; 5057 mntinfo4_t *mi; 5058 nfs4_recov_state_t recov_state; 5059 hrtime_t t; 5060 int isdotdot; 5061 vnode_t *nvp; 5062 nfs_fh4 *fhp; 5063 nfs4_sharedfh_t *sfhp; 5064 nfs4_access_type_t cacc; 5065 rnode4_t *nrp; 5066 rnode4_t *drp = VTOR4(dvp); 5067 nfs4_ga_res_t *garp = NULL; 5068 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5069 5070 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5071 ASSERT(nm != NULL); 5072 ASSERT(nm[0] != '\0'); 5073 ASSERT(dvp->v_type == VDIR); 5074 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5075 ASSERT(*vpp != NULL); 5076 5077 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5078 isdotdot = 1; 5079 args.ctag = TAG_LOOKUP_VPARENT; 5080 } else { 5081 /* 5082 * Do not allow crossing of server mount points. The 5083 * only visible entries in a SRVSTUB dir are . and .. 5084 * This code handles the non-.. case. We can't even get 5085 * this far if looking up ".". 5086 */ 5087 if (VTOR4(dvp)->r_flags & R4SRVSTUB) { 5088 VN_RELE(*vpp); 5089 *vpp = NULL; 5090 return (ENOENT); 5091 } 5092 isdotdot = 0; 5093 args.ctag = TAG_LOOKUP_VALID; 5094 } 5095 5096 mi = VTOMI4(dvp); 5097 recov_state.rs_flags = 0; 5098 recov_state.rs_num_retry_despite_err = 0; 5099 5100 nvp = NULL; 5101 5102 /* Save the original mount point security information */ 5103 (void) save_mnt_secinfo(mi->mi_curr_serv); 5104 5105 recov_retry: 5106 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5107 &recov_state, NULL); 5108 if (e.error) { 5109 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5110 VN_RELE(*vpp); 5111 *vpp = NULL; 5112 return (e.error); 5113 } 5114 5115 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5116 5117 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5118 args.array_len = 7; 5119 args.array = argop; 5120 5121 /* 0. putfh file */ 5122 argop[0].argop = OP_CPUTFH; 5123 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5124 5125 /* 1. nverify the change info */ 5126 argop[1].argop = OP_NVERIFY; 5127 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5128 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5129 ver_fattr->attrlist4 = (char *)&dchange; 5130 ptr = (int32_t *)&dchange; 5131 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5132 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5133 5134 /* 2. getattr directory */ 5135 argop[2].argop = OP_GETATTR; 5136 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5137 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5138 5139 /* 3. access directory */ 5140 argop[3].argop = OP_ACCESS; 5141 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5142 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5143 5144 /* 4. lookup name */ 5145 if (isdotdot) { 5146 argop[4].argop = OP_LOOKUPP; 5147 } else { 5148 argop[4].argop = OP_CLOOKUP; 5149 argop[4].nfs_argop4_u.opclookup.cname = nm; 5150 } 5151 5152 /* 5. resulting file handle */ 5153 argop[5].argop = OP_GETFH; 5154 5155 /* 6. resulting file attributes */ 5156 argop[6].argop = OP_GETATTR; 5157 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5158 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5159 5160 doqueue = 1; 5161 t = gethrtime(); 5162 5163 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5164 5165 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5166 /* 5167 * For WRONGSEC of a non-dotdot case, send secinfo directly 5168 * from this thread, do not go thru the recovery thread since 5169 * we need the nm information. 5170 * 5171 * Not doing dotdot case because there is no specification 5172 * for (PUTFH, SECINFO "..") yet. 5173 */ 5174 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5175 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) { 5176 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5177 &recov_state, FALSE); 5178 } else { 5179 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5180 &recov_state, TRUE); 5181 } 5182 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5183 kmem_free(argop, argoplist_size); 5184 if (!e.error) 5185 goto recov_retry; 5186 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5187 VN_RELE(*vpp); 5188 *vpp = NULL; 5189 return (e.error); 5190 } 5191 5192 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5193 OP_LOOKUP, NULL) == FALSE) { 5194 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5195 &recov_state, TRUE); 5196 5197 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5198 kmem_free(argop, argoplist_size); 5199 goto recov_retry; 5200 } 5201 } 5202 5203 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5204 5205 if (e.error || res.array_len == 0) { 5206 /* 5207 * If e.error isn't set, then reply has no ops (or we couldn't 5208 * be here). The only legal way to reply without an op array 5209 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5210 * be in the reply for all other status values. 5211 * 5212 * For valid replies without an ops array, return ENOTSUP 5213 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5214 * return EIO -- don't trust status. 5215 */ 5216 if (e.error == 0) 5217 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5218 ENOTSUP : EIO; 5219 VN_RELE(*vpp); 5220 *vpp = NULL; 5221 kmem_free(argop, argoplist_size); 5222 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5223 return (e.error); 5224 } 5225 5226 if (res.status != NFS4ERR_SAME) { 5227 e.error = geterrno4(res.status); 5228 5229 /* 5230 * The NVERIFY "failed" so the directory has changed 5231 * First make sure PUTFH succeeded and NVERIFY "failed" 5232 * cleanly. 5233 */ 5234 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5235 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5236 nfs4_purge_stale_fh(e.error, dvp, cr); 5237 VN_RELE(*vpp); 5238 *vpp = NULL; 5239 goto exit; 5240 } 5241 5242 /* 5243 * We know the NVERIFY "failed" so we must: 5244 * purge the caches (access and indirectly dnlc if needed) 5245 */ 5246 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5247 5248 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5249 nfs4_purge_stale_fh(e.error, dvp, cr); 5250 VN_RELE(*vpp); 5251 *vpp = NULL; 5252 goto exit; 5253 } 5254 5255 /* 5256 * Install new cached attributes for the directory 5257 */ 5258 nfs4_attr_cache(dvp, 5259 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5260 t, cr, FALSE, NULL); 5261 5262 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5263 nfs4_purge_stale_fh(e.error, dvp, cr); 5264 VN_RELE(*vpp); 5265 *vpp = NULL; 5266 e.error = geterrno4(res.status); 5267 goto exit; 5268 } 5269 5270 /* 5271 * Now we know the directory is valid, 5272 * cache new directory access 5273 */ 5274 nfs4_access_cache(drp, 5275 args.array[3].nfs_argop4_u.opaccess.access, 5276 res.array[3].nfs_resop4_u.opaccess.access, cr); 5277 5278 /* 5279 * recheck VEXEC access 5280 */ 5281 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5282 if (cacc != NFS4_ACCESS_ALLOWED) { 5283 /* 5284 * Directory permissions might have been revoked 5285 */ 5286 if (cacc == NFS4_ACCESS_DENIED) { 5287 e.error = EACCES; 5288 VN_RELE(*vpp); 5289 *vpp = NULL; 5290 goto exit; 5291 } 5292 5293 /* 5294 * Somehow we must not have asked for enough 5295 * so try a singleton ACCESS, should never happen. 5296 */ 5297 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5298 if (e.error) { 5299 VN_RELE(*vpp); 5300 *vpp = NULL; 5301 goto exit; 5302 } 5303 } 5304 5305 e.error = geterrno4(res.status); 5306 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5307 /* 5308 * The lookup failed, probably no entry 5309 */ 5310 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5311 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5312 } else { 5313 /* 5314 * Might be some other error, so remove 5315 * the dnlc entry to make sure we start all 5316 * over again, next time. 5317 */ 5318 dnlc_remove(dvp, nm); 5319 } 5320 VN_RELE(*vpp); 5321 *vpp = NULL; 5322 goto exit; 5323 } 5324 5325 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5326 /* 5327 * The file exists but we can't get its fh for 5328 * some unknown reason. Remove it from the dnlc 5329 * and error out to be safe. 5330 */ 5331 dnlc_remove(dvp, nm); 5332 VN_RELE(*vpp); 5333 *vpp = NULL; 5334 goto exit; 5335 } 5336 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5337 if (fhp->nfs_fh4_len == 0) { 5338 /* 5339 * The file exists but a bogus fh 5340 * some unknown reason. Remove it from the dnlc 5341 * and error out to be safe. 5342 */ 5343 e.error = ENOENT; 5344 dnlc_remove(dvp, nm); 5345 VN_RELE(*vpp); 5346 *vpp = NULL; 5347 goto exit; 5348 } 5349 sfhp = sfh4_get(fhp, mi); 5350 5351 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5352 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5353 5354 /* 5355 * Make the new rnode 5356 */ 5357 if (isdotdot) { 5358 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5359 if (e.error) { 5360 sfh4_rele(&sfhp); 5361 VN_RELE(*vpp); 5362 *vpp = NULL; 5363 goto exit; 5364 } 5365 /* 5366 * XXX if nfs4_make_dotdot uses an existing rnode 5367 * XXX it doesn't update the attributes. 5368 * XXX for now just save them again to save an OTW 5369 */ 5370 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5371 } else { 5372 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5373 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5374 /* 5375 * If v_type == VNON, then garp was NULL because 5376 * the last op in the compound failed and makenfs4node 5377 * could not find the vnode for sfhp. It created 5378 * a new vnode, so we have nothing to purge here. 5379 */ 5380 if (nvp->v_type == VNON) { 5381 vattr_t vattr; 5382 5383 vattr.va_mask = AT_TYPE; 5384 /* 5385 * N.B. We've already called nfs4_end_fop above. 5386 */ 5387 e.error = nfs4getattr(nvp, &vattr, cr); 5388 if (e.error) { 5389 sfh4_rele(&sfhp); 5390 VN_RELE(*vpp); 5391 *vpp = NULL; 5392 VN_RELE(nvp); 5393 goto exit; 5394 } 5395 nvp->v_type = vattr.va_type; 5396 } 5397 } 5398 sfh4_rele(&sfhp); 5399 5400 nrp = VTOR4(nvp); 5401 mutex_enter(&nrp->r_statev4_lock); 5402 if (!nrp->created_v4) { 5403 mutex_exit(&nrp->r_statev4_lock); 5404 dnlc_update(dvp, nm, nvp); 5405 } else 5406 mutex_exit(&nrp->r_statev4_lock); 5407 5408 VN_RELE(*vpp); 5409 *vpp = nvp; 5410 } else { 5411 hrtime_t now; 5412 hrtime_t delta = 0; 5413 5414 e.error = 0; 5415 5416 /* 5417 * Because the NVERIFY "succeeded" we know that the 5418 * directory attributes are still valid 5419 * so update r_time_attr_inval 5420 */ 5421 now = gethrtime(); 5422 mutex_enter(&drp->r_statelock); 5423 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5424 delta = now - drp->r_time_attr_saved; 5425 if (delta < mi->mi_acdirmin) 5426 delta = mi->mi_acdirmin; 5427 else if (delta > mi->mi_acdirmax) 5428 delta = mi->mi_acdirmax; 5429 } 5430 drp->r_time_attr_inval = now + delta; 5431 mutex_exit(&drp->r_statelock); 5432 dnlc_update(dvp, nm, *vpp); 5433 5434 /* 5435 * Even though we have a valid directory attr cache 5436 * and dnlc entry, we may not have access. 5437 * This should almost always hit the cache. 5438 */ 5439 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5440 if (e.error) { 5441 VN_RELE(*vpp); 5442 *vpp = NULL; 5443 } 5444 5445 if (*vpp == DNLC_NO_VNODE) { 5446 VN_RELE(*vpp); 5447 *vpp = NULL; 5448 e.error = ENOENT; 5449 } 5450 } 5451 5452 exit: 5453 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5454 kmem_free(argop, argoplist_size); 5455 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5456 return (e.error); 5457 } 5458 5459 /* 5460 * We need to go over the wire to lookup the name, but 5461 * while we are there verify the directory has not 5462 * changed but if it has, get new attributes and check access 5463 * 5464 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5465 * NVERIFY GETATTR ACCESS 5466 * 5467 * With the results: 5468 * if the NVERIFY failed we must purge the caches, add new attributes, 5469 * and cache new access. 5470 * set a new r_time_attr_inval 5471 * add name to dnlc, possibly negative 5472 * if LOOKUP succeeded 5473 * cache new attributes 5474 */ 5475 static int 5476 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5477 { 5478 COMPOUND4args_clnt args; 5479 COMPOUND4res_clnt res; 5480 fattr4 *ver_fattr; 5481 fattr4_change dchange; 5482 int32_t *ptr; 5483 nfs4_ga_res_t *garp = NULL; 5484 int argoplist_size = 9 * sizeof (nfs_argop4); 5485 nfs_argop4 *argop; 5486 int doqueue; 5487 mntinfo4_t *mi; 5488 nfs4_recov_state_t recov_state; 5489 hrtime_t t; 5490 int isdotdot; 5491 vnode_t *nvp; 5492 nfs_fh4 *fhp; 5493 nfs4_sharedfh_t *sfhp; 5494 nfs4_access_type_t cacc; 5495 rnode4_t *nrp; 5496 rnode4_t *drp = VTOR4(dvp); 5497 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5498 5499 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5500 ASSERT(nm != NULL); 5501 ASSERT(nm[0] != '\0'); 5502 ASSERT(dvp->v_type == VDIR); 5503 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5504 ASSERT(*vpp == NULL); 5505 5506 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5507 isdotdot = 1; 5508 args.ctag = TAG_LOOKUP_PARENT; 5509 } else { 5510 /* 5511 * Do not allow crossing of server mount points. The 5512 * only visible entries in a SRVSTUB dir are . and .. 5513 * This code handles the non-.. case. We can't even get 5514 * this far if looking up ".". 5515 */ 5516 if (VTOR4(dvp)->r_flags & R4SRVSTUB) 5517 return (ENOENT); 5518 5519 isdotdot = 0; 5520 args.ctag = TAG_LOOKUP; 5521 } 5522 5523 mi = VTOMI4(dvp); 5524 recov_state.rs_flags = 0; 5525 recov_state.rs_num_retry_despite_err = 0; 5526 5527 nvp = NULL; 5528 5529 /* Save the original mount point security information */ 5530 (void) save_mnt_secinfo(mi->mi_curr_serv); 5531 5532 recov_retry: 5533 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5534 &recov_state, NULL); 5535 if (e.error) { 5536 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5537 return (e.error); 5538 } 5539 5540 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5541 5542 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5543 args.array_len = 9; 5544 args.array = argop; 5545 5546 /* 0. putfh file */ 5547 argop[0].argop = OP_CPUTFH; 5548 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5549 5550 /* 1. savefh for the nverify */ 5551 argop[1].argop = OP_SAVEFH; 5552 5553 /* 2. lookup name */ 5554 if (isdotdot) { 5555 argop[2].argop = OP_LOOKUPP; 5556 } else { 5557 argop[2].argop = OP_CLOOKUP; 5558 argop[2].nfs_argop4_u.opclookup.cname = nm; 5559 } 5560 5561 /* 3. resulting file handle */ 5562 argop[3].argop = OP_GETFH; 5563 5564 /* 4. resulting file attributes */ 5565 argop[4].argop = OP_GETATTR; 5566 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5567 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5568 5569 /* 5. restorefh back the directory for the nverify */ 5570 argop[5].argop = OP_RESTOREFH; 5571 5572 /* 6. nverify the change info */ 5573 argop[6].argop = OP_NVERIFY; 5574 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5575 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5576 ver_fattr->attrlist4 = (char *)&dchange; 5577 ptr = (int32_t *)&dchange; 5578 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5579 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5580 5581 /* 7. getattr directory */ 5582 argop[7].argop = OP_GETATTR; 5583 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5584 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5585 5586 /* 8. access directory */ 5587 argop[8].argop = OP_ACCESS; 5588 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5589 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5590 5591 doqueue = 1; 5592 t = gethrtime(); 5593 5594 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5595 5596 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5597 /* 5598 * For WRONGSEC of a non-dotdot case, send secinfo directly 5599 * from this thread, do not go thru the recovery thread since 5600 * we need the nm information. 5601 * 5602 * Not doing dotdot case because there is no specification 5603 * for (PUTFH, SECINFO "..") yet. 5604 */ 5605 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5606 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) { 5607 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5608 &recov_state, FALSE); 5609 } else { 5610 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5611 &recov_state, TRUE); 5612 } 5613 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5614 kmem_free(argop, argoplist_size); 5615 if (!e.error) 5616 goto recov_retry; 5617 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5618 return (e.error); 5619 } 5620 5621 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5622 OP_LOOKUP, NULL) == FALSE) { 5623 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5624 &recov_state, TRUE); 5625 5626 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5627 kmem_free(argop, argoplist_size); 5628 goto recov_retry; 5629 } 5630 } 5631 5632 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5633 5634 if (e.error || res.array_len == 0) { 5635 /* 5636 * If e.error isn't set, then reply has no ops (or we couldn't 5637 * be here). The only legal way to reply without an op array 5638 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5639 * be in the reply for all other status values. 5640 * 5641 * For valid replies without an ops array, return ENOTSUP 5642 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5643 * return EIO -- don't trust status. 5644 */ 5645 if (e.error == 0) 5646 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5647 ENOTSUP : EIO; 5648 5649 kmem_free(argop, argoplist_size); 5650 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5651 return (e.error); 5652 } 5653 5654 e.error = geterrno4(res.status); 5655 5656 /* 5657 * The PUTFH and SAVEFH may have failed. 5658 */ 5659 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5660 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5661 nfs4_purge_stale_fh(e.error, dvp, cr); 5662 goto exit; 5663 } 5664 5665 /* 5666 * Check if the file exists, if it does delay entering 5667 * into the dnlc until after we update the directory 5668 * attributes so we don't cause it to get purged immediately. 5669 */ 5670 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5671 /* 5672 * The lookup failed, probably no entry 5673 */ 5674 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5675 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5676 } 5677 goto exit; 5678 } 5679 5680 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5681 /* 5682 * The file exists but we can't get its fh for 5683 * some unknown reason. Error out to be safe. 5684 */ 5685 goto exit; 5686 } 5687 5688 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5689 if (fhp->nfs_fh4_len == 0) { 5690 /* 5691 * The file exists but a bogus fh 5692 * some unknown reason. Error out to be safe. 5693 */ 5694 e.error = EIO; 5695 goto exit; 5696 } 5697 sfhp = sfh4_get(fhp, mi); 5698 5699 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5700 sfh4_rele(&sfhp); 5701 e.error = EIO; 5702 goto exit; 5703 } 5704 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5705 5706 /* 5707 * The RESTOREFH may have failed 5708 */ 5709 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5710 sfh4_rele(&sfhp); 5711 e.error = EIO; 5712 goto exit; 5713 } 5714 5715 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5716 /* 5717 * First make sure the NVERIFY failed as we expected, 5718 * if it didn't then be conservative and error out 5719 * as we can't trust the directory. 5720 */ 5721 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5722 sfh4_rele(&sfhp); 5723 e.error = EIO; 5724 goto exit; 5725 } 5726 5727 /* 5728 * We know the NVERIFY "failed" so the directory has changed, 5729 * so we must: 5730 * purge the caches (access and indirectly dnlc if needed) 5731 */ 5732 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5733 5734 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5735 sfh4_rele(&sfhp); 5736 goto exit; 5737 } 5738 nfs4_attr_cache(dvp, 5739 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5740 t, cr, FALSE, NULL); 5741 5742 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5743 nfs4_purge_stale_fh(e.error, dvp, cr); 5744 sfh4_rele(&sfhp); 5745 e.error = geterrno4(res.status); 5746 goto exit; 5747 } 5748 5749 /* 5750 * Now we know the directory is valid, 5751 * cache new directory access 5752 */ 5753 nfs4_access_cache(drp, 5754 args.array[8].nfs_argop4_u.opaccess.access, 5755 res.array[8].nfs_resop4_u.opaccess.access, cr); 5756 5757 /* 5758 * recheck VEXEC access 5759 */ 5760 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5761 if (cacc != NFS4_ACCESS_ALLOWED) { 5762 /* 5763 * Directory permissions might have been revoked 5764 */ 5765 if (cacc == NFS4_ACCESS_DENIED) { 5766 sfh4_rele(&sfhp); 5767 e.error = EACCES; 5768 goto exit; 5769 } 5770 5771 /* 5772 * Somehow we must not have asked for enough 5773 * so try a singleton ACCESS should never happen 5774 */ 5775 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5776 if (e.error) { 5777 sfh4_rele(&sfhp); 5778 goto exit; 5779 } 5780 } 5781 5782 e.error = geterrno4(res.status); 5783 } else { 5784 hrtime_t now; 5785 hrtime_t delta = 0; 5786 5787 e.error = 0; 5788 5789 /* 5790 * Because the NVERIFY "succeeded" we know that the 5791 * directory attributes are still valid 5792 * so update r_time_attr_inval 5793 */ 5794 now = gethrtime(); 5795 mutex_enter(&drp->r_statelock); 5796 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5797 delta = now - drp->r_time_attr_saved; 5798 if (delta < mi->mi_acdirmin) 5799 delta = mi->mi_acdirmin; 5800 else if (delta > mi->mi_acdirmax) 5801 delta = mi->mi_acdirmax; 5802 } 5803 drp->r_time_attr_inval = now + delta; 5804 mutex_exit(&drp->r_statelock); 5805 5806 /* 5807 * Even though we have a valid directory attr cache, 5808 * we may not have access. 5809 * This should almost always hit the cache. 5810 */ 5811 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5812 if (e.error) { 5813 sfh4_rele(&sfhp); 5814 goto exit; 5815 } 5816 } 5817 5818 /* 5819 * Now we have successfully completed the lookup, if the 5820 * directory has changed we now have the valid attributes. 5821 * We also know we have directory access. 5822 * Create the new rnode and insert it in the dnlc. 5823 */ 5824 if (isdotdot) { 5825 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5826 if (e.error) { 5827 sfh4_rele(&sfhp); 5828 goto exit; 5829 } 5830 /* 5831 * XXX if nfs4_make_dotdot uses an existing rnode 5832 * XXX it doesn't update the attributes. 5833 * XXX for now just save them again to save an OTW 5834 */ 5835 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5836 } else { 5837 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5838 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5839 } 5840 sfh4_rele(&sfhp); 5841 5842 nrp = VTOR4(nvp); 5843 mutex_enter(&nrp->r_statev4_lock); 5844 if (!nrp->created_v4) { 5845 mutex_exit(&nrp->r_statev4_lock); 5846 dnlc_update(dvp, nm, nvp); 5847 } else 5848 mutex_exit(&nrp->r_statev4_lock); 5849 5850 *vpp = nvp; 5851 5852 exit: 5853 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5854 kmem_free(argop, argoplist_size); 5855 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5856 return (e.error); 5857 } 5858 5859 #ifdef DEBUG 5860 void 5861 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 5862 { 5863 uint_t i, len; 5864 zoneid_t zoneid = getzoneid(); 5865 char *s; 5866 5867 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 5868 for (i = 0; i < argcnt; i++) { 5869 nfs_argop4 *op = &argbase[i]; 5870 switch (op->argop) { 5871 case OP_CPUTFH: 5872 case OP_PUTFH: 5873 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 5874 break; 5875 case OP_PUTROOTFH: 5876 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 5877 break; 5878 case OP_CLOOKUP: 5879 s = op->nfs_argop4_u.opclookup.cname; 5880 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5881 break; 5882 case OP_LOOKUP: 5883 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 5884 &len, NULL); 5885 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5886 kmem_free(s, len); 5887 break; 5888 case OP_LOOKUPP: 5889 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 5890 break; 5891 case OP_GETFH: 5892 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 5893 break; 5894 case OP_GETATTR: 5895 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 5896 break; 5897 case OP_OPENATTR: 5898 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 5899 break; 5900 default: 5901 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 5902 op->argop); 5903 break; 5904 } 5905 } 5906 } 5907 #endif 5908 5909 /* 5910 * nfs4lookup_setup - constructs a multi-lookup compound request. 5911 * 5912 * Given the path "nm1/nm2/.../nmn", the following compound requests 5913 * may be created: 5914 * 5915 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 5916 * is faster, for now. 5917 * 5918 * l4_getattrs indicates the type of compound requested. 5919 * 5920 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 5921 * 5922 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 5923 * 5924 * total number of ops is n + 1. 5925 * 5926 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 5927 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 5928 * before the last component, and only get attributes 5929 * for the last component. Note that the second-to-last 5930 * pathname component is XATTR_RPATH, which does NOT go 5931 * over-the-wire as a lookup. 5932 * 5933 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 5934 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 5935 * 5936 * and total number of ops is n + 5. 5937 * 5938 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 5939 * attribute directory: create lookups plus an OPENATTR 5940 * replacing the last lookup. Note that the last pathname 5941 * component is XATTR_RPATH, which does NOT go over-the-wire 5942 * as a lookup. 5943 * 5944 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 5945 * Openattr; Getfh; Getattr } 5946 * 5947 * and total number of ops is n + 5. 5948 * 5949 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 5950 * nodes too. 5951 * 5952 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 5953 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 5954 * 5955 * and total number of ops is 3*n + 1. 5956 * 5957 * All cases: returns the index in the arg array of the final LOOKUP op, or 5958 * -1 if no LOOKUPs were used. 5959 */ 5960 int 5961 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 5962 { 5963 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 5964 nfs_argop4 *argbase, *argop; 5965 int arglen, argcnt; 5966 int n = 1; /* number of components */ 5967 int nga = 1; /* number of Getattr's in request */ 5968 char c = '\0', *s, *p; 5969 int lookup_idx = -1; 5970 int argoplist_size; 5971 5972 /* set lookuparg response result to 0 */ 5973 lookupargp->resp->status = NFS4_OK; 5974 5975 /* skip leading "/" or "." e.g. ".//./" if there is */ 5976 for (; ; nm++) { 5977 if (*nm != '/' && *nm != '.') 5978 break; 5979 5980 /* ".." is counted as 1 component */ 5981 if (*nm == '.' && *(nm + 1) == '.') 5982 break; 5983 } 5984 5985 /* 5986 * Find n = number of components - nm must be null terminated 5987 * Skip "." components. 5988 */ 5989 if (*nm != '\0') { 5990 for (n = 1, s = nm; *s != '\0'; s++) { 5991 if ((*s == '/') && (*(s + 1) != '/') && 5992 (*(s + 1) != '\0') && 5993 !(*(s + 1) == '.' && (*(s + 2) == '/' || 5994 *(s + 2) == '\0'))) 5995 n++; 5996 } 5997 } else 5998 n = 0; 5999 6000 /* 6001 * nga is number of components that need Getfh+Getattr 6002 */ 6003 switch (l4_getattrs) { 6004 case LKP4_NO_ATTRIBUTES: 6005 nga = 0; 6006 break; 6007 case LKP4_ALL_ATTRIBUTES: 6008 nga = n; 6009 /* 6010 * Always have at least 1 getfh, getattr pair 6011 */ 6012 if (nga == 0) 6013 nga++; 6014 break; 6015 case LKP4_LAST_ATTRDIR: 6016 case LKP4_LAST_NAMED_ATTR: 6017 nga = n+1; 6018 break; 6019 } 6020 6021 /* 6022 * If change to use the filehandle attr instead of getfh 6023 * the following line can be deleted. 6024 */ 6025 nga *= 2; 6026 6027 /* 6028 * calculate number of ops in request as 6029 * header + trailer + lookups + getattrs 6030 */ 6031 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6032 6033 argoplist_size = arglen * sizeof (nfs_argop4); 6034 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6035 lookupargp->argsp->array = argop; 6036 6037 argcnt = lookupargp->header_len; 6038 argop += argcnt; 6039 6040 /* 6041 * loop and create a lookup op and possibly getattr/getfh for 6042 * each component. Skip "." components. 6043 */ 6044 for (s = nm; *s != '\0'; s = p) { 6045 /* 6046 * Set up a pathname struct for each component if needed 6047 */ 6048 while (*s == '/') 6049 s++; 6050 if (*s == '\0') 6051 break; 6052 for (p = s; (*p != '/') && (*p != '\0'); p++); 6053 c = *p; 6054 *p = '\0'; 6055 6056 if (s[0] == '.' && s[1] == '\0') { 6057 *p = c; 6058 continue; 6059 } 6060 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6061 strcmp(s, XATTR_RPATH) == 0) { 6062 /* getfh XXX may not be needed in future */ 6063 argop->argop = OP_GETFH; 6064 argop++; 6065 argcnt++; 6066 6067 /* getattr */ 6068 argop->argop = OP_GETATTR; 6069 argop->nfs_argop4_u.opgetattr.attr_request = 6070 lookupargp->ga_bits; 6071 argop->nfs_argop4_u.opgetattr.mi = 6072 lookupargp->mi; 6073 argop++; 6074 argcnt++; 6075 6076 /* openattr */ 6077 argop->argop = OP_OPENATTR; 6078 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6079 strcmp(s, XATTR_RPATH) == 0) { 6080 /* openattr */ 6081 argop->argop = OP_OPENATTR; 6082 argop++; 6083 argcnt++; 6084 6085 /* getfh XXX may not be needed in future */ 6086 argop->argop = OP_GETFH; 6087 argop++; 6088 argcnt++; 6089 6090 /* getattr */ 6091 argop->argop = OP_GETATTR; 6092 argop->nfs_argop4_u.opgetattr.attr_request = 6093 lookupargp->ga_bits; 6094 argop->nfs_argop4_u.opgetattr.mi = 6095 lookupargp->mi; 6096 argop++; 6097 argcnt++; 6098 *p = c; 6099 continue; 6100 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6101 /* lookupp */ 6102 argop->argop = OP_LOOKUPP; 6103 } else { 6104 /* lookup */ 6105 argop->argop = OP_LOOKUP; 6106 (void) str_to_utf8(s, 6107 &argop->nfs_argop4_u.oplookup.objname); 6108 } 6109 lookup_idx = argcnt; 6110 argop++; 6111 argcnt++; 6112 6113 *p = c; 6114 6115 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6116 /* getfh XXX may not be needed in future */ 6117 argop->argop = OP_GETFH; 6118 argop++; 6119 argcnt++; 6120 6121 /* getattr */ 6122 argop->argop = OP_GETATTR; 6123 argop->nfs_argop4_u.opgetattr.attr_request = 6124 lookupargp->ga_bits; 6125 argop->nfs_argop4_u.opgetattr.mi = 6126 lookupargp->mi; 6127 argop++; 6128 argcnt++; 6129 } 6130 } 6131 6132 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6133 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6134 if (needgetfh) { 6135 /* stick in a post-lookup getfh */ 6136 argop->argop = OP_GETFH; 6137 argcnt++; 6138 argop++; 6139 } 6140 /* post-lookup getattr */ 6141 argop->argop = OP_GETATTR; 6142 argop->nfs_argop4_u.opgetattr.attr_request = 6143 lookupargp->ga_bits; 6144 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6145 argcnt++; 6146 } 6147 argcnt += lookupargp->trailer_len; /* actual op count */ 6148 lookupargp->argsp->array_len = argcnt; 6149 lookupargp->arglen = arglen; 6150 6151 #ifdef DEBUG 6152 if (nfs4_client_lookup_debug) 6153 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6154 #endif 6155 6156 return (lookup_idx); 6157 } 6158 6159 static int 6160 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6161 { 6162 COMPOUND4args_clnt args; 6163 COMPOUND4res_clnt res; 6164 GETFH4res *gf_res = NULL; 6165 nfs_argop4 argop[4]; 6166 nfs_resop4 *resop = NULL; 6167 nfs4_sharedfh_t *sfhp; 6168 hrtime_t t; 6169 nfs4_error_t e; 6170 6171 rnode4_t *drp; 6172 int doqueue = 1; 6173 vnode_t *vp; 6174 int needrecov = 0; 6175 nfs4_recov_state_t recov_state; 6176 6177 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6178 6179 *avp = NULL; 6180 recov_state.rs_flags = 0; 6181 recov_state.rs_num_retry_despite_err = 0; 6182 6183 recov_retry: 6184 /* COMPOUND: putfh, openattr, getfh, getattr */ 6185 args.array_len = 4; 6186 args.array = argop; 6187 args.ctag = TAG_OPENATTR; 6188 6189 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6190 if (e.error) 6191 return (e.error); 6192 6193 drp = VTOR4(dvp); 6194 6195 /* putfh */ 6196 argop[0].argop = OP_CPUTFH; 6197 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6198 6199 /* openattr */ 6200 argop[1].argop = OP_OPENATTR; 6201 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6202 6203 /* getfh */ 6204 argop[2].argop = OP_GETFH; 6205 6206 /* getattr */ 6207 argop[3].argop = OP_GETATTR; 6208 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6209 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6210 6211 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6212 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6213 rnode4info(drp))); 6214 6215 t = gethrtime(); 6216 6217 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6218 6219 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6220 if (needrecov) { 6221 bool_t abort; 6222 6223 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6224 "nfs4openattr: initiating recovery\n")); 6225 6226 abort = nfs4_start_recovery(&e, 6227 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6228 OP_OPENATTR, NULL); 6229 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6230 if (!e.error) { 6231 e.error = geterrno4(res.status); 6232 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6233 } 6234 if (abort == FALSE) 6235 goto recov_retry; 6236 return (e.error); 6237 } 6238 6239 if (e.error) { 6240 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6241 return (e.error); 6242 } 6243 6244 if (res.status) { 6245 /* 6246 * If OTW errro is NOTSUPP, then it should be 6247 * translated to EINVAL. All Solaris file system 6248 * implementations return EINVAL to the syscall layer 6249 * when the attrdir cannot be created due to an 6250 * implementation restriction or noxattr mount option. 6251 */ 6252 if (res.status == NFS4ERR_NOTSUPP) { 6253 mutex_enter(&drp->r_statelock); 6254 if (drp->r_xattr_dir) 6255 VN_RELE(drp->r_xattr_dir); 6256 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6257 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6258 mutex_exit(&drp->r_statelock); 6259 6260 e.error = EINVAL; 6261 } else { 6262 e.error = geterrno4(res.status); 6263 } 6264 6265 if (e.error) { 6266 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6267 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6268 needrecov); 6269 return (e.error); 6270 } 6271 } 6272 6273 resop = &res.array[0]; /* putfh res */ 6274 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6275 6276 resop = &res.array[1]; /* openattr res */ 6277 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6278 6279 resop = &res.array[2]; /* getfh res */ 6280 gf_res = &resop->nfs_resop4_u.opgetfh; 6281 if (gf_res->object.nfs_fh4_len == 0) { 6282 *avp = NULL; 6283 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6284 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6285 return (ENOENT); 6286 } 6287 6288 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6289 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6290 dvp->v_vfsp, t, cr, dvp, 6291 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH)); 6292 sfh4_rele(&sfhp); 6293 6294 if (e.error) 6295 PURGE_ATTRCACHE4(vp); 6296 6297 mutex_enter(&vp->v_lock); 6298 vp->v_flag |= V_XATTRDIR; 6299 mutex_exit(&vp->v_lock); 6300 6301 *avp = vp; 6302 6303 mutex_enter(&drp->r_statelock); 6304 if (drp->r_xattr_dir) 6305 VN_RELE(drp->r_xattr_dir); 6306 VN_HOLD(vp); 6307 drp->r_xattr_dir = vp; 6308 6309 /* 6310 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6311 * NULL. xattrs could be created at any time, and we have no 6312 * way to update pc4_xattr_exists in the base object if/when 6313 * it happens. 6314 */ 6315 drp->r_pathconf.pc4_xattr_valid = 0; 6316 6317 mutex_exit(&drp->r_statelock); 6318 6319 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6320 6321 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6322 6323 return (0); 6324 } 6325 6326 /* ARGSUSED */ 6327 static int 6328 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6329 int mode, vnode_t **vpp, cred_t *cr, int flags) 6330 { 6331 int error; 6332 vnode_t *vp = NULL; 6333 rnode4_t *rp; 6334 struct vattr vattr; 6335 rnode4_t *drp; 6336 vnode_t *tempvp; 6337 enum createmode4 createmode; 6338 bool_t must_trunc = FALSE; 6339 6340 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6341 return (EPERM); 6342 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6343 return (EINVAL); 6344 } 6345 6346 /* . and .. have special meaning in the protocol, reject them. */ 6347 6348 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6349 return (EISDIR); 6350 6351 drp = VTOR4(dvp); 6352 6353 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6354 return (EINTR); 6355 6356 top: 6357 /* 6358 * We make a copy of the attributes because the caller does not 6359 * expect us to change what va points to. 6360 */ 6361 vattr = *va; 6362 6363 /* 6364 * If the pathname is "", then dvp is the root vnode of 6365 * a remote file mounted over a local directory. 6366 * All that needs to be done is access 6367 * checking and truncation. Note that we avoid doing 6368 * open w/ create because the parent directory might 6369 * be in pseudo-fs and the open would fail. 6370 */ 6371 if (*nm == '\0') { 6372 error = 0; 6373 VN_HOLD(dvp); 6374 vp = dvp; 6375 must_trunc = TRUE; 6376 } else { 6377 /* 6378 * We need to go over the wire, just to be sure whether the 6379 * file exists or not. Using the DNLC can be dangerous in 6380 * this case when making a decision regarding existence. 6381 */ 6382 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6383 } 6384 6385 if (exclusive) 6386 createmode = EXCLUSIVE4; 6387 else 6388 createmode = GUARDED4; 6389 6390 /* 6391 * error would be set if the file does not exist on the 6392 * server, so lets go create it. 6393 */ 6394 if (error) { 6395 goto create_otw; 6396 } 6397 6398 /* 6399 * File does exist on the server 6400 */ 6401 if (exclusive == EXCL) 6402 error = EEXIST; 6403 else if (vp->v_type == VDIR && (mode & VWRITE)) 6404 error = EISDIR; 6405 else { 6406 /* 6407 * If vnode is a device, create special vnode. 6408 */ 6409 if (ISVDEV(vp->v_type)) { 6410 tempvp = vp; 6411 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6412 VN_RELE(tempvp); 6413 } 6414 if (!(error = VOP_ACCESS(vp, mode, 0, cr))) { 6415 if ((vattr.va_mask & AT_SIZE) && 6416 vp->v_type == VREG) { 6417 rp = VTOR4(vp); 6418 /* 6419 * Check here for large file handled 6420 * by LF-unaware process (as 6421 * ufs_create() does) 6422 */ 6423 if (!(flags & FOFFMAX)) { 6424 mutex_enter(&rp->r_statelock); 6425 if (rp->r_size > MAXOFF32_T) 6426 error = EOVERFLOW; 6427 mutex_exit(&rp->r_statelock); 6428 } 6429 6430 /* if error is set then we need to return */ 6431 if (error) { 6432 nfs_rw_exit(&drp->r_rwlock); 6433 VN_RELE(vp); 6434 return (error); 6435 } 6436 6437 if (must_trunc) { 6438 vattr.va_mask = AT_SIZE; 6439 error = nfs4setattr(vp, &vattr, 0, cr, 6440 NULL); 6441 } else { 6442 /* 6443 * we know we have a regular file that already 6444 * exists and we may end up truncating the file 6445 * as a result of the open_otw, so flush out 6446 * any dirty pages for this file first. 6447 */ 6448 if (nfs4_has_pages(vp) && 6449 ((rp->r_flags & R4DIRTY) || 6450 rp->r_count > 0 || 6451 rp->r_mapcnt > 0)) { 6452 error = nfs4_putpage(vp, 6453 (offset_t)0, 0, 0, cr); 6454 if (error && (error == ENOSPC || 6455 error == EDQUOT)) { 6456 mutex_enter( 6457 &rp->r_statelock); 6458 if (!rp->r_error) 6459 rp->r_error = 6460 error; 6461 mutex_exit( 6462 &rp->r_statelock); 6463 } 6464 } 6465 vattr.va_mask = (AT_SIZE | 6466 AT_TYPE | AT_MODE); 6467 vattr.va_type = VREG; 6468 createmode = UNCHECKED4; 6469 goto create_otw; 6470 } 6471 } 6472 } 6473 } 6474 nfs_rw_exit(&drp->r_rwlock); 6475 if (error) { 6476 VN_RELE(vp); 6477 } else { 6478 *vpp = vp; 6479 } 6480 return (error); 6481 6482 create_otw: 6483 dnlc_remove(dvp, nm); 6484 6485 ASSERT(vattr.va_mask & AT_TYPE); 6486 6487 /* 6488 * If not a regular file let nfs4mknod() handle it. 6489 */ 6490 if (vattr.va_type != VREG) { 6491 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6492 nfs_rw_exit(&drp->r_rwlock); 6493 return (error); 6494 } 6495 6496 /* 6497 * It _is_ a regular file. 6498 */ 6499 ASSERT(vattr.va_mask & AT_MODE); 6500 if (MANDMODE(vattr.va_mode)) { 6501 nfs_rw_exit(&drp->r_rwlock); 6502 return (EACCES); 6503 } 6504 6505 /* 6506 * If this happens to be a mknod of a regular file, then flags will 6507 * have neither FREAD or FWRITE. However, we must set at least one 6508 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6509 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6510 * set (based on openmode specified by app). 6511 */ 6512 if ((flags & (FREAD|FWRITE)) == 0) 6513 flags |= (FREAD|FWRITE); 6514 6515 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6516 6517 if (vp != NULL) { 6518 /* if create was successful, throw away the file's pages */ 6519 if (!error && (vattr.va_mask & AT_SIZE)) 6520 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6521 cr); 6522 /* release the lookup hold */ 6523 VN_RELE(vp); 6524 vp = NULL; 6525 } 6526 6527 /* 6528 * validate that we opened a regular file. This handles a misbehaving 6529 * server that returns an incorrect FH. 6530 */ 6531 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6532 error = EISDIR; 6533 VN_RELE(*vpp); 6534 } 6535 6536 /* 6537 * If this is not an exclusive create, then the CREATE 6538 * request will be made with the GUARDED mode set. This 6539 * means that the server will return EEXIST if the file 6540 * exists. The file could exist because of a retransmitted 6541 * request. In this case, we recover by starting over and 6542 * checking to see whether the file exists. This second 6543 * time through it should and a CREATE request will not be 6544 * sent. 6545 * 6546 * This handles the problem of a dangling CREATE request 6547 * which contains attributes which indicate that the file 6548 * should be truncated. This retransmitted request could 6549 * possibly truncate valid data in the file if not caught 6550 * by the duplicate request mechanism on the server or if 6551 * not caught by other means. The scenario is: 6552 * 6553 * Client transmits CREATE request with size = 0 6554 * Client times out, retransmits request. 6555 * Response to the first request arrives from the server 6556 * and the client proceeds on. 6557 * Client writes data to the file. 6558 * The server now processes retransmitted CREATE request 6559 * and truncates file. 6560 * 6561 * The use of the GUARDED CREATE request prevents this from 6562 * happening because the retransmitted CREATE would fail 6563 * with EEXIST and would not truncate the file. 6564 */ 6565 if (error == EEXIST && exclusive == NONEXCL) { 6566 #ifdef DEBUG 6567 nfs4_create_misses++; 6568 #endif 6569 goto top; 6570 } 6571 nfs_rw_exit(&drp->r_rwlock); 6572 return (error); 6573 } 6574 6575 /* 6576 * Create compound (for mkdir, mknod, symlink): 6577 * { Putfh <dfh>; Create; Getfh; Getattr } 6578 * It's okay if setattr failed to set gid - this is not considered 6579 * an error, but purge attrs in that case. 6580 */ 6581 static int 6582 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6583 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6584 { 6585 int need_end_op = FALSE; 6586 COMPOUND4args_clnt args; 6587 COMPOUND4res_clnt res, *resp = NULL; 6588 nfs_argop4 *argop; 6589 nfs_resop4 *resop; 6590 int doqueue; 6591 mntinfo4_t *mi; 6592 rnode4_t *drp = VTOR4(dvp); 6593 change_info4 *cinfo; 6594 GETFH4res *gf_res; 6595 struct vattr vattr; 6596 vnode_t *vp; 6597 fattr4 *crattr; 6598 bool_t needrecov = FALSE; 6599 nfs4_recov_state_t recov_state; 6600 nfs4_sharedfh_t *sfhp = NULL; 6601 hrtime_t t; 6602 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6603 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6604 dirattr_info_t dinfo, *dinfop; 6605 servinfo4_t *svp; 6606 bitmap4 supp_attrs; 6607 6608 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6609 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6610 6611 mi = VTOMI4(dvp); 6612 6613 /* 6614 * Make sure we properly deal with setting the right gid 6615 * on a new directory to reflect the parent's setgid bit 6616 */ 6617 setgid_flag = 0; 6618 if (type == NF4DIR) { 6619 struct vattr dva; 6620 6621 va->va_mode &= ~VSGID; 6622 dva.va_mask = AT_MODE | AT_GID; 6623 if (VOP_GETATTR(dvp, &dva, 0, cr) == 0) { 6624 6625 /* 6626 * If the parent's directory has the setgid bit set 6627 * _and_ the client was able to get a valid mapping 6628 * for the parent dir's owner_group, we want to 6629 * append NVERIFY(owner_group == dva.va_gid) and 6630 * SETTATTR to the CREATE compound. 6631 */ 6632 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6633 setgid_flag = 1; 6634 va->va_mode |= VSGID; 6635 if (dva.va_gid != GID_NOBODY) { 6636 va->va_mask |= AT_GID; 6637 va->va_gid = dva.va_gid; 6638 } 6639 } 6640 } 6641 } 6642 6643 /* 6644 * Create ops: 6645 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6646 * 5:restorefh(dir) 6:getattr(dir) 6647 * 6648 * if (setgid) 6649 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6650 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6651 * 8:nverify 9:setattr 6652 */ 6653 if (setgid_flag) { 6654 numops = 10; 6655 idx_create = 1; 6656 idx_fattr = 3; 6657 } else { 6658 numops = 7; 6659 idx_create = 2; 6660 idx_fattr = 4; 6661 } 6662 6663 ASSERT(nfs_zone() == mi->mi_zone); 6664 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6665 return (EINTR); 6666 } 6667 recov_state.rs_flags = 0; 6668 recov_state.rs_num_retry_despite_err = 0; 6669 6670 argoplist_size = numops * sizeof (nfs_argop4); 6671 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6672 6673 recov_retry: 6674 if (type == NF4LNK) 6675 args.ctag = TAG_SYMLINK; 6676 else if (type == NF4DIR) 6677 args.ctag = TAG_MKDIR; 6678 else 6679 args.ctag = TAG_MKNOD; 6680 6681 args.array_len = numops; 6682 args.array = argop; 6683 6684 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6685 nfs_rw_exit(&drp->r_rwlock); 6686 kmem_free(argop, argoplist_size); 6687 return (e.error); 6688 } 6689 need_end_op = TRUE; 6690 6691 6692 /* 0: putfh directory */ 6693 argop[0].argop = OP_CPUTFH; 6694 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6695 6696 /* 1/2: Create object */ 6697 argop[idx_create].argop = OP_CCREATE; 6698 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6699 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6700 if (type == NF4LNK) { 6701 /* 6702 * symlink, treat name as data 6703 */ 6704 ASSERT(data != NULL); 6705 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6706 (char *)data; 6707 } 6708 if (type == NF4BLK || type == NF4CHR) { 6709 ASSERT(data != NULL); 6710 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6711 *((specdata4 *)data); 6712 } 6713 6714 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6715 6716 svp = drp->r_server; 6717 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6718 supp_attrs = svp->sv_supp_attrs; 6719 nfs_rw_exit(&svp->sv_lock); 6720 6721 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6722 nfs_rw_exit(&drp->r_rwlock); 6723 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6724 e.error = EINVAL; 6725 kmem_free(argop, argoplist_size); 6726 return (e.error); 6727 } 6728 6729 /* 2/3: getfh fh of created object */ 6730 ASSERT(idx_create + 1 == idx_fattr - 1); 6731 argop[idx_create + 1].argop = OP_GETFH; 6732 6733 /* 3/4: getattr of new object */ 6734 argop[idx_fattr].argop = OP_GETATTR; 6735 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6736 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6737 6738 if (setgid_flag) { 6739 vattr_t _v; 6740 6741 argop[4].argop = OP_SAVEFH; 6742 6743 argop[5].argop = OP_CPUTFH; 6744 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6745 6746 argop[6].argop = OP_GETATTR; 6747 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6748 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6749 6750 argop[7].argop = OP_RESTOREFH; 6751 6752 /* 6753 * nverify 6754 * 6755 * XXX - Revisit the last argument to nfs4_end_op() 6756 * once 5020486 is fixed. 6757 */ 6758 _v.va_mask = AT_GID; 6759 _v.va_gid = va->va_gid; 6760 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6761 supp_attrs)) { 6762 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6763 nfs_rw_exit(&drp->r_rwlock); 6764 nfs4_fattr4_free(crattr); 6765 kmem_free(argop, argoplist_size); 6766 return (e.error); 6767 } 6768 6769 /* 6770 * setattr 6771 * 6772 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6773 * so no need for stateid or flags. Also we specify NULL 6774 * rp since we're only interested in setting owner_group 6775 * attributes. 6776 */ 6777 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6778 &e.error, 0); 6779 6780 if (e.error) { 6781 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6782 nfs_rw_exit(&drp->r_rwlock); 6783 nfs4_fattr4_free(crattr); 6784 nfs4args_verify_free(&argop[8]); 6785 kmem_free(argop, argoplist_size); 6786 return (e.error); 6787 } 6788 } else { 6789 argop[1].argop = OP_SAVEFH; 6790 6791 argop[5].argop = OP_RESTOREFH; 6792 6793 argop[6].argop = OP_GETATTR; 6794 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6795 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6796 } 6797 6798 dnlc_remove(dvp, nm); 6799 6800 doqueue = 1; 6801 t = gethrtime(); 6802 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 6803 6804 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 6805 if (e.error) { 6806 PURGE_ATTRCACHE4(dvp); 6807 if (!needrecov) 6808 goto out; 6809 } 6810 6811 if (needrecov) { 6812 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 6813 OP_CREATE, NULL) == FALSE) { 6814 nfs4_end_op(mi, dvp, NULL, &recov_state, 6815 needrecov); 6816 need_end_op = FALSE; 6817 nfs4_fattr4_free(crattr); 6818 if (setgid_flag) { 6819 nfs4args_verify_free(&argop[8]); 6820 nfs4args_setattr_free(&argop[9]); 6821 } 6822 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6823 goto recov_retry; 6824 } 6825 } 6826 6827 resp = &res; 6828 6829 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 6830 6831 if (res.status == NFS4ERR_BADOWNER) 6832 nfs4_log_badowner(mi, OP_CREATE); 6833 6834 e.error = geterrno4(res.status); 6835 6836 /* 6837 * This check is left over from when create was implemented 6838 * using a setattr op (instead of createattrs). If the 6839 * putfh/create/getfh failed, the error was returned. If 6840 * setattr/getattr failed, we keep going. 6841 * 6842 * It might be better to get rid of the GETFH also, and just 6843 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 6844 * Then if any of the operations failed, we could return the 6845 * error now, and remove much of the error code below. 6846 */ 6847 if (res.array_len <= idx_fattr) { 6848 /* 6849 * Either Putfh, Create or Getfh failed. 6850 */ 6851 PURGE_ATTRCACHE4(dvp); 6852 /* 6853 * nfs4_purge_stale_fh() may generate otw calls through 6854 * nfs4_invalidate_pages. Hence the need to call 6855 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 6856 */ 6857 nfs4_end_op(mi, dvp, NULL, &recov_state, 6858 needrecov); 6859 need_end_op = FALSE; 6860 nfs4_purge_stale_fh(e.error, dvp, cr); 6861 goto out; 6862 } 6863 } 6864 6865 resop = &res.array[idx_create]; /* create res */ 6866 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 6867 6868 resop = &res.array[idx_create + 1]; /* getfh res */ 6869 gf_res = &resop->nfs_resop4_u.opgetfh; 6870 6871 sfhp = sfh4_get(&gf_res->object, mi); 6872 if (e.error) { 6873 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 6874 fn_get(VTOSV(dvp)->sv_name, nm)); 6875 if (vp->v_type == VNON) { 6876 vattr.va_mask = AT_TYPE; 6877 /* 6878 * Need to call nfs4_end_op before nfs4getattr to avoid 6879 * potential nfs4_start_op deadlock. See RFE 4777612. 6880 */ 6881 nfs4_end_op(mi, dvp, NULL, &recov_state, 6882 needrecov); 6883 need_end_op = FALSE; 6884 e.error = nfs4getattr(vp, &vattr, cr); 6885 if (e.error) { 6886 VN_RELE(vp); 6887 *vpp = NULL; 6888 goto out; 6889 } 6890 vp->v_type = vattr.va_type; 6891 } 6892 e.error = 0; 6893 } else { 6894 *vpp = vp = makenfs4node(sfhp, 6895 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 6896 dvp->v_vfsp, t, cr, 6897 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 6898 } 6899 6900 /* 6901 * If compound succeeded, then update dir attrs 6902 */ 6903 if (res.status == NFS4_OK) { 6904 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 6905 dinfo.di_cred = cr; 6906 dinfo.di_time_call = t; 6907 dinfop = &dinfo; 6908 } else 6909 dinfop = NULL; 6910 6911 /* Update directory cache attribute, readdir and dnlc caches */ 6912 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 6913 6914 out: 6915 if (sfhp != NULL) 6916 sfh4_rele(&sfhp); 6917 nfs_rw_exit(&drp->r_rwlock); 6918 nfs4_fattr4_free(crattr); 6919 if (setgid_flag) { 6920 nfs4args_verify_free(&argop[8]); 6921 nfs4args_setattr_free(&argop[9]); 6922 } 6923 if (resp) 6924 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 6925 if (need_end_op) 6926 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6927 6928 kmem_free(argop, argoplist_size); 6929 return (e.error); 6930 } 6931 6932 /* ARGSUSED */ 6933 static int 6934 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6935 int mode, vnode_t **vpp, cred_t *cr) 6936 { 6937 int error; 6938 vnode_t *vp; 6939 nfs_ftype4 type; 6940 specdata4 spec, *specp = NULL; 6941 6942 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6943 6944 switch (va->va_type) { 6945 case VCHR: 6946 case VBLK: 6947 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 6948 spec.specdata1 = getmajor(va->va_rdev); 6949 spec.specdata2 = getminor(va->va_rdev); 6950 specp = &spec; 6951 break; 6952 6953 case VFIFO: 6954 type = NF4FIFO; 6955 break; 6956 case VSOCK: 6957 type = NF4SOCK; 6958 break; 6959 6960 default: 6961 return (EINVAL); 6962 } 6963 6964 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 6965 if (error) { 6966 return (error); 6967 } 6968 6969 /* 6970 * This might not be needed any more; special case to deal 6971 * with problematic v2/v3 servers. Since create was unable 6972 * to set group correctly, not sure what hope setattr has. 6973 */ 6974 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 6975 va->va_mask = AT_GID; 6976 (void) nfs4setattr(vp, va, 0, cr, NULL); 6977 } 6978 6979 /* 6980 * If vnode is a device create special vnode 6981 */ 6982 if (ISVDEV(vp->v_type)) { 6983 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6984 VN_RELE(vp); 6985 } else { 6986 *vpp = vp; 6987 } 6988 return (error); 6989 } 6990 6991 /* 6992 * Remove requires that the current fh be the target directory. 6993 * After the operation, the current fh is unchanged. 6994 * The compound op structure is: 6995 * PUTFH(targetdir), REMOVE 6996 * 6997 * Weirdness: if the vnode to be removed is open 6998 * we rename it instead of removing it and nfs_inactive 6999 * will remove the new name. 7000 */ 7001 static int 7002 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr) 7003 { 7004 COMPOUND4args_clnt args; 7005 COMPOUND4res_clnt res, *resp = NULL; 7006 REMOVE4res *rm_res; 7007 nfs_argop4 argop[3]; 7008 nfs_resop4 *resop; 7009 vnode_t *vp; 7010 char *tmpname; 7011 int doqueue; 7012 mntinfo4_t *mi; 7013 rnode4_t *rp; 7014 rnode4_t *drp; 7015 int needrecov = 0; 7016 nfs4_recov_state_t recov_state; 7017 int isopen; 7018 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7019 dirattr_info_t dinfo; 7020 7021 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7022 return (EPERM); 7023 drp = VTOR4(dvp); 7024 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7025 return (EINTR); 7026 7027 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7028 if (e.error) { 7029 nfs_rw_exit(&drp->r_rwlock); 7030 return (e.error); 7031 } 7032 7033 if (vp->v_type == VDIR) { 7034 VN_RELE(vp); 7035 nfs_rw_exit(&drp->r_rwlock); 7036 return (EISDIR); 7037 } 7038 7039 /* 7040 * First just remove the entry from the name cache, as it 7041 * is most likely the only entry for this vp. 7042 */ 7043 dnlc_remove(dvp, nm); 7044 7045 rp = VTOR4(vp); 7046 7047 /* 7048 * For regular file types, check to see if the file is open by looking 7049 * at the open streams. 7050 * For all other types, check the reference count on the vnode. Since 7051 * they are not opened OTW they never have an open stream. 7052 * 7053 * If the file is open, rename it to .nfsXXXX. 7054 */ 7055 if (vp->v_type != VREG) { 7056 /* 7057 * If the file has a v_count > 1 then there may be more than one 7058 * entry in the name cache due multiple links or an open file, 7059 * but we don't have the real reference count so flush all 7060 * possible entries. 7061 */ 7062 if (vp->v_count > 1) 7063 dnlc_purge_vp(vp); 7064 7065 /* 7066 * Now we have the real reference count. 7067 */ 7068 isopen = vp->v_count > 1; 7069 } else { 7070 mutex_enter(&rp->r_os_lock); 7071 isopen = list_head(&rp->r_open_streams) != NULL; 7072 mutex_exit(&rp->r_os_lock); 7073 } 7074 7075 mutex_enter(&rp->r_statelock); 7076 if (isopen && 7077 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7078 mutex_exit(&rp->r_statelock); 7079 tmpname = newname(); 7080 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr); 7081 if (e.error) 7082 kmem_free(tmpname, MAXNAMELEN); 7083 else { 7084 mutex_enter(&rp->r_statelock); 7085 if (rp->r_unldvp == NULL) { 7086 VN_HOLD(dvp); 7087 rp->r_unldvp = dvp; 7088 if (rp->r_unlcred != NULL) 7089 crfree(rp->r_unlcred); 7090 crhold(cr); 7091 rp->r_unlcred = cr; 7092 rp->r_unlname = tmpname; 7093 } else { 7094 kmem_free(rp->r_unlname, MAXNAMELEN); 7095 rp->r_unlname = tmpname; 7096 } 7097 mutex_exit(&rp->r_statelock); 7098 } 7099 VN_RELE(vp); 7100 nfs_rw_exit(&drp->r_rwlock); 7101 return (e.error); 7102 } 7103 /* 7104 * Actually remove the file/dir 7105 */ 7106 mutex_exit(&rp->r_statelock); 7107 7108 /* 7109 * We need to flush any dirty pages which happen to 7110 * be hanging around before removing the file. 7111 * This shouldn't happen very often since in NFSv4 7112 * we should be close to open consistent. 7113 */ 7114 if (nfs4_has_pages(vp) && 7115 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7116 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr); 7117 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7118 mutex_enter(&rp->r_statelock); 7119 if (!rp->r_error) 7120 rp->r_error = e.error; 7121 mutex_exit(&rp->r_statelock); 7122 } 7123 } 7124 7125 mi = VTOMI4(dvp); 7126 7127 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7128 recov_state.rs_flags = 0; 7129 recov_state.rs_num_retry_despite_err = 0; 7130 7131 recov_retry: 7132 /* 7133 * Remove ops: putfh dir; remove 7134 */ 7135 args.ctag = TAG_REMOVE; 7136 args.array_len = 3; 7137 args.array = argop; 7138 7139 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7140 if (e.error) { 7141 nfs_rw_exit(&drp->r_rwlock); 7142 VN_RELE(vp); 7143 return (e.error); 7144 } 7145 7146 /* putfh directory */ 7147 argop[0].argop = OP_CPUTFH; 7148 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7149 7150 /* remove */ 7151 argop[1].argop = OP_CREMOVE; 7152 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7153 7154 /* getattr dir */ 7155 argop[2].argop = OP_GETATTR; 7156 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7157 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7158 7159 doqueue = 1; 7160 dinfo.di_time_call = gethrtime(); 7161 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7162 7163 PURGE_ATTRCACHE4(vp); 7164 7165 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7166 if (e.error) 7167 PURGE_ATTRCACHE4(dvp); 7168 7169 if (needrecov) { 7170 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7171 NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { 7172 if (!e.error) 7173 (void) xdr_free(xdr_COMPOUND4res_clnt, 7174 (caddr_t)&res); 7175 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7176 needrecov); 7177 goto recov_retry; 7178 } 7179 } 7180 7181 /* 7182 * Matching nfs4_end_op() for start_op() above. 7183 * There is a path in the code below which calls 7184 * nfs4_purge_stale_fh(), which may generate otw calls through 7185 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7186 * here to avoid nfs4_start_op() deadlock. 7187 */ 7188 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7189 7190 if (!e.error) { 7191 resp = &res; 7192 7193 if (res.status) { 7194 e.error = geterrno4(res.status); 7195 PURGE_ATTRCACHE4(dvp); 7196 nfs4_purge_stale_fh(e.error, dvp, cr); 7197 } else { 7198 resop = &res.array[1]; /* remove res */ 7199 rm_res = &resop->nfs_resop4_u.opremove; 7200 7201 dinfo.di_garp = 7202 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7203 dinfo.di_cred = cr; 7204 7205 /* Update directory attr, readdir and dnlc caches */ 7206 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7207 &dinfo); 7208 } 7209 } 7210 nfs_rw_exit(&drp->r_rwlock); 7211 if (resp) 7212 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7213 7214 VN_RELE(vp); 7215 return (e.error); 7216 } 7217 7218 /* 7219 * Link requires that the current fh be the target directory and the 7220 * saved fh be the source fh. After the operation, the current fh is unchanged. 7221 * Thus the compound op structure is: 7222 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7223 * GETATTR(file) 7224 */ 7225 static int 7226 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr) 7227 { 7228 COMPOUND4args_clnt args; 7229 COMPOUND4res_clnt res, *resp = NULL; 7230 LINK4res *ln_res; 7231 int argoplist_size = 7 * sizeof (nfs_argop4); 7232 nfs_argop4 *argop; 7233 nfs_resop4 *resop; 7234 vnode_t *realvp, *nvp; 7235 int doqueue; 7236 mntinfo4_t *mi; 7237 rnode4_t *tdrp; 7238 bool_t needrecov = FALSE; 7239 nfs4_recov_state_t recov_state; 7240 hrtime_t t; 7241 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7242 dirattr_info_t dinfo; 7243 7244 ASSERT(*tnm != '\0'); 7245 ASSERT(tdvp->v_type == VDIR); 7246 ASSERT(nfs4_consistent_type(tdvp)); 7247 ASSERT(nfs4_consistent_type(svp)); 7248 7249 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7250 return (EPERM); 7251 if (VOP_REALVP(svp, &realvp) == 0) { 7252 svp = realvp; 7253 ASSERT(nfs4_consistent_type(svp)); 7254 } 7255 7256 tdrp = VTOR4(tdvp); 7257 mi = VTOMI4(svp); 7258 7259 if (!(mi->mi_flags & MI4_LINK)) { 7260 return (EOPNOTSUPP); 7261 } 7262 recov_state.rs_flags = 0; 7263 recov_state.rs_num_retry_despite_err = 0; 7264 7265 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7266 return (EINTR); 7267 7268 recov_retry: 7269 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7270 7271 args.ctag = TAG_LINK; 7272 7273 /* 7274 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7275 * restorefh; getattr(fl) 7276 */ 7277 args.array_len = 7; 7278 args.array = argop; 7279 7280 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7281 if (e.error) { 7282 kmem_free(argop, argoplist_size); 7283 nfs_rw_exit(&tdrp->r_rwlock); 7284 return (e.error); 7285 } 7286 7287 /* 0. putfh file */ 7288 argop[0].argop = OP_CPUTFH; 7289 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7290 7291 /* 1. save current fh to free up the space for the dir */ 7292 argop[1].argop = OP_SAVEFH; 7293 7294 /* 2. putfh targetdir */ 7295 argop[2].argop = OP_CPUTFH; 7296 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7297 7298 /* 3. link: current_fh is targetdir, saved_fh is source */ 7299 argop[3].argop = OP_CLINK; 7300 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7301 7302 /* 4. Get attributes of dir */ 7303 argop[4].argop = OP_GETATTR; 7304 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7305 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7306 7307 /* 5. If link was successful, restore current vp to file */ 7308 argop[5].argop = OP_RESTOREFH; 7309 7310 /* 6. Get attributes of linked object */ 7311 argop[6].argop = OP_GETATTR; 7312 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7313 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7314 7315 dnlc_remove(tdvp, tnm); 7316 7317 doqueue = 1; 7318 t = gethrtime(); 7319 7320 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7321 7322 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7323 if (e.error != 0 && !needrecov) { 7324 PURGE_ATTRCACHE4(tdvp); 7325 PURGE_ATTRCACHE4(svp); 7326 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7327 goto out; 7328 } 7329 7330 if (needrecov) { 7331 bool_t abort; 7332 7333 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7334 NULL, NULL, OP_LINK, NULL); 7335 if (abort == FALSE) { 7336 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7337 needrecov); 7338 kmem_free(argop, argoplist_size); 7339 if (!e.error) 7340 (void) xdr_free(xdr_COMPOUND4res_clnt, 7341 (caddr_t)&res); 7342 goto recov_retry; 7343 } else { 7344 if (e.error != 0) { 7345 PURGE_ATTRCACHE4(tdvp); 7346 PURGE_ATTRCACHE4(svp); 7347 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7348 &recov_state, needrecov); 7349 goto out; 7350 } 7351 /* fall through for res.status case */ 7352 } 7353 } 7354 7355 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7356 7357 resp = &res; 7358 if (res.status) { 7359 /* If link succeeded, then don't return error */ 7360 e.error = geterrno4(res.status); 7361 if (res.array_len <= 4) { 7362 /* 7363 * Either Putfh, Savefh, Putfh dir, or Link failed 7364 */ 7365 PURGE_ATTRCACHE4(svp); 7366 PURGE_ATTRCACHE4(tdvp); 7367 if (e.error == EOPNOTSUPP) { 7368 mutex_enter(&mi->mi_lock); 7369 mi->mi_flags &= ~MI4_LINK; 7370 mutex_exit(&mi->mi_lock); 7371 } 7372 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7373 /* XXX-LP */ 7374 if (e.error == EISDIR && crgetuid(cr) != 0) 7375 e.error = EPERM; 7376 goto out; 7377 } 7378 } 7379 7380 /* either no error or one of the postop getattr failed */ 7381 7382 /* 7383 * XXX - if LINK succeeded, but no attrs were returned for link 7384 * file, purge its cache. 7385 * 7386 * XXX Perform a simplified version of wcc checking. Instead of 7387 * have another getattr to get pre-op, just purge cache if 7388 * any of the ops prior to and including the getattr failed. 7389 * If the getattr succeeded then update the attrcache accordingly. 7390 */ 7391 7392 /* 7393 * update cache with link file postattrs. 7394 * Note: at this point resop points to link res. 7395 */ 7396 resop = &res.array[3]; /* link res */ 7397 ln_res = &resop->nfs_resop4_u.oplink; 7398 if (res.status == NFS4_OK) { 7399 e.error = nfs4_update_attrcache(res.status, 7400 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7401 t, svp, cr); 7402 } 7403 7404 /* 7405 * Call makenfs4node to create the new shadow vp for tnm. 7406 * We pass NULL attrs because we just cached attrs for 7407 * the src object. All we're trying to accomplish is to 7408 * to create the new shadow vnode. 7409 */ 7410 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7411 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm)); 7412 7413 /* Update target cache attribute, readdir and dnlc caches */ 7414 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7415 dinfo.di_time_call = t; 7416 dinfo.di_cred = cr; 7417 7418 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7419 ASSERT(nfs4_consistent_type(tdvp)); 7420 ASSERT(nfs4_consistent_type(svp)); 7421 ASSERT(nfs4_consistent_type(nvp)); 7422 VN_RELE(nvp); 7423 7424 out: 7425 kmem_free(argop, argoplist_size); 7426 if (resp) 7427 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7428 7429 nfs_rw_exit(&tdrp->r_rwlock); 7430 7431 return (e.error); 7432 } 7433 7434 static int 7435 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 7436 { 7437 vnode_t *realvp; 7438 7439 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7440 return (EPERM); 7441 if (VOP_REALVP(ndvp, &realvp) == 0) 7442 ndvp = realvp; 7443 7444 return (nfs4rename(odvp, onm, ndvp, nnm, cr)); 7445 } 7446 7447 /* 7448 * nfs4rename does the real work of renaming in NFS Version 4. 7449 * 7450 * A file handle is considered volatile for renaming purposes if either 7451 * of the volatile bits are turned on. However, the compound may differ 7452 * based on the likelihood of the filehandle to change during rename. 7453 */ 7454 static int 7455 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 7456 { 7457 int error; 7458 mntinfo4_t *mi; 7459 vnode_t *nvp; 7460 vnode_t *ovp = NULL; 7461 char *tmpname = NULL; 7462 rnode4_t *rp; 7463 rnode4_t *odrp; 7464 rnode4_t *ndrp; 7465 int did_link = 0; 7466 int do_link = 1; 7467 nfsstat4 stat = NFS4_OK; 7468 7469 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7470 ASSERT(nfs4_consistent_type(odvp)); 7471 ASSERT(nfs4_consistent_type(ndvp)); 7472 7473 if (onm[0] == '.' && (onm[1] == '\0' || 7474 (onm[1] == '.' && onm[2] == '\0'))) 7475 return (EINVAL); 7476 7477 if (nnm[0] == '.' && (nnm[1] == '\0' || 7478 (nnm[1] == '.' && nnm[2] == '\0'))) 7479 return (EINVAL); 7480 7481 odrp = VTOR4(odvp); 7482 ndrp = VTOR4(ndvp); 7483 if ((intptr_t)odrp < (intptr_t)ndrp) { 7484 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7485 return (EINTR); 7486 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7487 nfs_rw_exit(&odrp->r_rwlock); 7488 return (EINTR); 7489 } 7490 } else { 7491 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7492 return (EINTR); 7493 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7494 nfs_rw_exit(&ndrp->r_rwlock); 7495 return (EINTR); 7496 } 7497 } 7498 7499 /* 7500 * Lookup the target file. If it exists, it needs to be 7501 * checked to see whether it is a mount point and whether 7502 * it is active (open). 7503 */ 7504 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7505 if (!error) { 7506 int isactive; 7507 7508 ASSERT(nfs4_consistent_type(nvp)); 7509 /* 7510 * If this file has been mounted on, then just 7511 * return busy because renaming to it would remove 7512 * the mounted file system from the name space. 7513 */ 7514 if (vn_ismntpt(nvp)) { 7515 VN_RELE(nvp); 7516 nfs_rw_exit(&odrp->r_rwlock); 7517 nfs_rw_exit(&ndrp->r_rwlock); 7518 return (EBUSY); 7519 } 7520 7521 /* 7522 * First just remove the entry from the name cache, as it 7523 * is most likely the only entry for this vp. 7524 */ 7525 dnlc_remove(ndvp, nnm); 7526 7527 rp = VTOR4(nvp); 7528 7529 if (nvp->v_type != VREG) { 7530 /* 7531 * Purge the name cache of all references to this vnode 7532 * so that we can check the reference count to infer 7533 * whether it is active or not. 7534 */ 7535 if (nvp->v_count > 1) 7536 dnlc_purge_vp(nvp); 7537 7538 isactive = nvp->v_count > 1; 7539 } else { 7540 mutex_enter(&rp->r_os_lock); 7541 isactive = list_head(&rp->r_open_streams) != NULL; 7542 mutex_exit(&rp->r_os_lock); 7543 } 7544 7545 /* 7546 * If the vnode is active and is not a directory, 7547 * arrange to rename it to a 7548 * temporary file so that it will continue to be 7549 * accessible. This implements the "unlink-open-file" 7550 * semantics for the target of a rename operation. 7551 * Before doing this though, make sure that the 7552 * source and target files are not already the same. 7553 */ 7554 if (isactive && nvp->v_type != VDIR) { 7555 /* 7556 * Lookup the source name. 7557 */ 7558 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7559 7560 /* 7561 * The source name *should* already exist. 7562 */ 7563 if (error) { 7564 VN_RELE(nvp); 7565 nfs_rw_exit(&odrp->r_rwlock); 7566 nfs_rw_exit(&ndrp->r_rwlock); 7567 return (error); 7568 } 7569 7570 ASSERT(nfs4_consistent_type(ovp)); 7571 7572 /* 7573 * Compare the two vnodes. If they are the same, 7574 * just release all held vnodes and return success. 7575 */ 7576 if (VN_CMP(ovp, nvp)) { 7577 VN_RELE(ovp); 7578 VN_RELE(nvp); 7579 nfs_rw_exit(&odrp->r_rwlock); 7580 nfs_rw_exit(&ndrp->r_rwlock); 7581 return (0); 7582 } 7583 7584 /* 7585 * Can't mix and match directories and non- 7586 * directories in rename operations. We already 7587 * know that the target is not a directory. If 7588 * the source is a directory, return an error. 7589 */ 7590 if (ovp->v_type == VDIR) { 7591 VN_RELE(ovp); 7592 VN_RELE(nvp); 7593 nfs_rw_exit(&odrp->r_rwlock); 7594 nfs_rw_exit(&ndrp->r_rwlock); 7595 return (ENOTDIR); 7596 } 7597 link_call: 7598 /* 7599 * The target file exists, is not the same as 7600 * the source file, and is active. We first 7601 * try to Link it to a temporary filename to 7602 * avoid having the server removing the file 7603 * completely (which could cause data loss to 7604 * the user's POV in the event the Rename fails 7605 * -- see bug 1165874). 7606 */ 7607 /* 7608 * The do_link and did_link booleans are 7609 * introduced in the event we get NFS4ERR_FILE_OPEN 7610 * returned for the Rename. Some servers can 7611 * not Rename over an Open file, so they return 7612 * this error. The client needs to Remove the 7613 * newly created Link and do two Renames, just 7614 * as if the server didn't support LINK. 7615 */ 7616 tmpname = newname(); 7617 error = 0; 7618 7619 if (do_link) { 7620 error = nfs4_link(ndvp, nvp, tmpname, cr); 7621 } 7622 if (error == EOPNOTSUPP || !do_link) { 7623 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7624 cr); 7625 did_link = 0; 7626 } else { 7627 did_link = 1; 7628 } 7629 if (error) { 7630 kmem_free(tmpname, MAXNAMELEN); 7631 VN_RELE(ovp); 7632 VN_RELE(nvp); 7633 nfs_rw_exit(&odrp->r_rwlock); 7634 nfs_rw_exit(&ndrp->r_rwlock); 7635 return (error); 7636 } 7637 7638 mutex_enter(&rp->r_statelock); 7639 if (rp->r_unldvp == NULL) { 7640 VN_HOLD(ndvp); 7641 rp->r_unldvp = ndvp; 7642 if (rp->r_unlcred != NULL) 7643 crfree(rp->r_unlcred); 7644 crhold(cr); 7645 rp->r_unlcred = cr; 7646 rp->r_unlname = tmpname; 7647 } else { 7648 if (rp->r_unlname) 7649 kmem_free(rp->r_unlname, MAXNAMELEN); 7650 rp->r_unlname = tmpname; 7651 } 7652 mutex_exit(&rp->r_statelock); 7653 } 7654 7655 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7656 7657 ASSERT(nfs4_consistent_type(nvp)); 7658 VN_RELE(nvp); 7659 } 7660 7661 if (ovp == NULL) { 7662 /* 7663 * When renaming directories to be a subdirectory of a 7664 * different parent, the dnlc entry for ".." will no 7665 * longer be valid, so it must be removed. 7666 * 7667 * We do a lookup here to determine whether we are renaming 7668 * a directory and we need to check if we are renaming 7669 * an unlinked file. This might have already been done 7670 * in previous code, so we check ovp == NULL to avoid 7671 * doing it twice. 7672 */ 7673 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7674 /* 7675 * The source name *should* already exist. 7676 */ 7677 if (error) { 7678 nfs_rw_exit(&odrp->r_rwlock); 7679 nfs_rw_exit(&ndrp->r_rwlock); 7680 return (error); 7681 } 7682 ASSERT(ovp != NULL); 7683 ASSERT(nfs4_consistent_type(ovp)); 7684 } 7685 7686 /* 7687 * Is the object being renamed a dir, and if so, is 7688 * it being renamed to a child of itself? The underlying 7689 * fs should ultimately return EINVAL for this case; 7690 * however, buggy beta non-Solaris NFSv4 servers at 7691 * interop testing events have allowed this behavior, 7692 * and it caused our client to panic due to a recursive 7693 * mutex_enter in fn_move. 7694 * 7695 * The tedious locking in fn_move could be changed to 7696 * deal with this case, and the client could avoid the 7697 * panic; however, the client would just confuse itself 7698 * later and misbehave. A better way to handle the broken 7699 * server is to detect this condition and return EINVAL 7700 * without ever sending the the bogus rename to the server. 7701 * We know the rename is invalid -- just fail it now. 7702 */ 7703 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7704 VN_RELE(ovp); 7705 nfs_rw_exit(&odrp->r_rwlock); 7706 nfs_rw_exit(&ndrp->r_rwlock); 7707 return (EINVAL); 7708 } 7709 7710 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7711 7712 /* 7713 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7714 * possible for the filehandle to change due to the rename. 7715 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7716 * the fh will not change because of the rename, but we still need 7717 * to update its rnode entry with the new name for 7718 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7719 * has no effect on these for now, but for future improvements, 7720 * we might want to use it too to simplify handling of files 7721 * that are open with that flag on. (XXX) 7722 */ 7723 mi = VTOMI4(odvp); 7724 if (NFS4_VOLATILE_FH(mi)) { 7725 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7726 &stat); 7727 } else { 7728 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7729 &stat); 7730 } 7731 ASSERT(nfs4_consistent_type(odvp)); 7732 ASSERT(nfs4_consistent_type(ndvp)); 7733 ASSERT(nfs4_consistent_type(ovp)); 7734 7735 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7736 do_link = 0; 7737 /* 7738 * Before the 'link_call' code, we did a nfs4_lookup 7739 * that puts a VN_HOLD on nvp. After the nfs4_link 7740 * call we call VN_RELE to match that hold. We need 7741 * to place an additional VN_HOLD here since we will 7742 * be hitting that VN_RELE again. 7743 */ 7744 VN_HOLD(nvp); 7745 7746 (void) nfs4_remove(ndvp, tmpname, cr); 7747 7748 /* Undo the unlinked file naming stuff we just did */ 7749 mutex_enter(&rp->r_statelock); 7750 if (rp->r_unldvp) { 7751 VN_RELE(ndvp); 7752 rp->r_unldvp = NULL; 7753 if (rp->r_unlcred != NULL) 7754 crfree(rp->r_unlcred); 7755 rp->r_unlcred = NULL; 7756 /* rp->r_unlanme points to tmpname */ 7757 if (rp->r_unlname) 7758 kmem_free(rp->r_unlname, MAXNAMELEN); 7759 rp->r_unlname = NULL; 7760 } 7761 mutex_exit(&rp->r_statelock); 7762 7763 goto link_call; 7764 } 7765 7766 if (error) { 7767 VN_RELE(ovp); 7768 nfs_rw_exit(&odrp->r_rwlock); 7769 nfs_rw_exit(&ndrp->r_rwlock); 7770 return (error); 7771 } 7772 7773 /* 7774 * when renaming directories to be a subdirectory of a 7775 * different parent, the dnlc entry for ".." will no 7776 * longer be valid, so it must be removed 7777 */ 7778 rp = VTOR4(ovp); 7779 if (ndvp != odvp) { 7780 if (ovp->v_type == VDIR) { 7781 dnlc_remove(ovp, ".."); 7782 if (rp->r_dir != NULL) 7783 nfs4_purge_rddir_cache(ovp); 7784 } 7785 } 7786 7787 /* 7788 * If we are renaming the unlinked file, update the 7789 * r_unldvp and r_unlname as needed. 7790 */ 7791 mutex_enter(&rp->r_statelock); 7792 if (rp->r_unldvp != NULL) { 7793 if (strcmp(rp->r_unlname, onm) == 0) { 7794 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 7795 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 7796 if (ndvp != rp->r_unldvp) { 7797 VN_RELE(rp->r_unldvp); 7798 rp->r_unldvp = ndvp; 7799 VN_HOLD(ndvp); 7800 } 7801 } 7802 } 7803 mutex_exit(&rp->r_statelock); 7804 7805 VN_RELE(ovp); 7806 7807 nfs_rw_exit(&odrp->r_rwlock); 7808 nfs_rw_exit(&ndrp->r_rwlock); 7809 7810 return (error); 7811 } 7812 7813 /* 7814 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 7815 * when it is known that the filehandle is persistent through rename. 7816 * 7817 * Rename requires that the current fh be the target directory and the 7818 * saved fh be the source directory. After the operation, the current fh 7819 * is unchanged. 7820 * The compound op structure for persistent fh rename is: 7821 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 7822 * Rather than bother with the directory postop args, we'll simply 7823 * update that a change occured in the cache, so no post-op getattrs. 7824 */ 7825 static int 7826 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 7827 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 7828 { 7829 COMPOUND4args_clnt args; 7830 COMPOUND4res_clnt res, *resp = NULL; 7831 nfs_argop4 *argop; 7832 nfs_resop4 *resop; 7833 int doqueue, argoplist_size; 7834 mntinfo4_t *mi; 7835 rnode4_t *odrp = VTOR4(odvp); 7836 rnode4_t *ndrp = VTOR4(ndvp); 7837 RENAME4res *rn_res; 7838 bool_t needrecov; 7839 nfs4_recov_state_t recov_state; 7840 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7841 dirattr_info_t dinfo, *dinfop; 7842 7843 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7844 7845 recov_state.rs_flags = 0; 7846 recov_state.rs_num_retry_despite_err = 0; 7847 7848 /* 7849 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 7850 * 7851 * If source/target are different dirs, then append putfh(src); getattr 7852 */ 7853 args.array_len = (odvp == ndvp) ? 5 : 7; 7854 argoplist_size = args.array_len * sizeof (nfs_argop4); 7855 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 7856 7857 recov_retry: 7858 *statp = NFS4_OK; 7859 7860 /* No need to Lookup the file, persistent fh */ 7861 args.ctag = TAG_RENAME; 7862 7863 mi = VTOMI4(odvp); 7864 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 7865 if (e.error) { 7866 kmem_free(argop, argoplist_size); 7867 return (e.error); 7868 } 7869 7870 /* 0: putfh source directory */ 7871 argop[0].argop = OP_CPUTFH; 7872 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 7873 7874 /* 1: Save source fh to free up current for target */ 7875 argop[1].argop = OP_SAVEFH; 7876 7877 /* 2: putfh targetdir */ 7878 argop[2].argop = OP_CPUTFH; 7879 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 7880 7881 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 7882 argop[3].argop = OP_CRENAME; 7883 argop[3].nfs_argop4_u.opcrename.coldname = onm; 7884 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 7885 7886 /* 4: getattr (targetdir) */ 7887 argop[4].argop = OP_GETATTR; 7888 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7889 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7890 7891 if (ndvp != odvp) { 7892 7893 /* 5: putfh (sourcedir) */ 7894 argop[5].argop = OP_CPUTFH; 7895 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 7896 7897 /* 6: getattr (sourcedir) */ 7898 argop[6].argop = OP_GETATTR; 7899 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7900 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7901 } 7902 7903 dnlc_remove(odvp, onm); 7904 dnlc_remove(ndvp, nnm); 7905 7906 doqueue = 1; 7907 dinfo.di_time_call = gethrtime(); 7908 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7909 7910 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7911 if (e.error) { 7912 PURGE_ATTRCACHE4(odvp); 7913 PURGE_ATTRCACHE4(ndvp); 7914 } else { 7915 *statp = res.status; 7916 } 7917 7918 if (needrecov) { 7919 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 7920 OP_RENAME, NULL) == FALSE) { 7921 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 7922 if (!e.error) 7923 (void) xdr_free(xdr_COMPOUND4res_clnt, 7924 (caddr_t)&res); 7925 goto recov_retry; 7926 } 7927 } 7928 7929 if (!e.error) { 7930 resp = &res; 7931 /* 7932 * as long as OP_RENAME 7933 */ 7934 if (res.status != NFS4_OK && res.array_len <= 4) { 7935 e.error = geterrno4(res.status); 7936 PURGE_ATTRCACHE4(odvp); 7937 PURGE_ATTRCACHE4(ndvp); 7938 /* 7939 * System V defines rename to return EEXIST, not 7940 * ENOTEMPTY if the target directory is not empty. 7941 * Over the wire, the error is NFSERR_ENOTEMPTY 7942 * which geterrno4 maps to ENOTEMPTY. 7943 */ 7944 if (e.error == ENOTEMPTY) 7945 e.error = EEXIST; 7946 } else { 7947 7948 resop = &res.array[3]; /* rename res */ 7949 rn_res = &resop->nfs_resop4_u.oprename; 7950 7951 if (res.status == NFS4_OK) { 7952 /* 7953 * Update target attribute, readdir and dnlc 7954 * caches. 7955 */ 7956 dinfo.di_garp = 7957 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7958 dinfo.di_cred = cr; 7959 dinfop = &dinfo; 7960 } else 7961 dinfop = NULL; 7962 7963 nfs4_update_dircaches(&rn_res->target_cinfo, 7964 ndvp, NULL, NULL, dinfop); 7965 7966 /* 7967 * Update source attribute, readdir and dnlc caches 7968 * 7969 */ 7970 if (ndvp != odvp) { 7971 if (dinfop) 7972 dinfo.di_garp = 7973 &(res.array[6].nfs_resop4_u. 7974 opgetattr.ga_res); 7975 7976 nfs4_update_dircaches(&rn_res->source_cinfo, 7977 odvp, NULL, NULL, dinfop); 7978 } 7979 7980 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 7981 nnm); 7982 } 7983 } 7984 7985 if (resp) 7986 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7987 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 7988 kmem_free(argop, argoplist_size); 7989 7990 return (e.error); 7991 } 7992 7993 /* 7994 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 7995 * it is possible for the filehandle to change due to the rename. 7996 * 7997 * The compound req in this case includes a post-rename lookup and getattr 7998 * to ensure that we have the correct fh and attributes for the object. 7999 * 8000 * Rename requires that the current fh be the target directory and the 8001 * saved fh be the source directory. After the operation, the current fh 8002 * is unchanged. 8003 * 8004 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8005 * update the filehandle for the renamed object. We also get the old 8006 * filehandle for historical reasons; this should be taken out sometime. 8007 * This results in a rather cumbersome compound... 8008 * 8009 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8010 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8011 * 8012 */ 8013 static int 8014 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8015 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8016 { 8017 COMPOUND4args_clnt args; 8018 COMPOUND4res_clnt res, *resp = NULL; 8019 int argoplist_size; 8020 nfs_argop4 *argop; 8021 nfs_resop4 *resop; 8022 int doqueue; 8023 mntinfo4_t *mi; 8024 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8025 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8026 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8027 RENAME4res *rn_res; 8028 GETFH4res *ngf_res; 8029 bool_t needrecov; 8030 nfs4_recov_state_t recov_state; 8031 hrtime_t t; 8032 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8033 dirattr_info_t dinfo, *dinfop = &dinfo; 8034 8035 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8036 8037 recov_state.rs_flags = 0; 8038 recov_state.rs_num_retry_despite_err = 0; 8039 8040 recov_retry: 8041 *statp = NFS4_OK; 8042 8043 /* 8044 * There is a window between the RPC and updating the path and 8045 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8046 * code, so that it doesn't try to use the old path during that 8047 * window. 8048 */ 8049 mutex_enter(&orp->r_statelock); 8050 while (orp->r_flags & R4RECEXPFH) { 8051 klwp_t *lwp = ttolwp(curthread); 8052 8053 if (lwp != NULL) 8054 lwp->lwp_nostop++; 8055 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8056 mutex_exit(&orp->r_statelock); 8057 if (lwp != NULL) 8058 lwp->lwp_nostop--; 8059 return (EINTR); 8060 } 8061 if (lwp != NULL) 8062 lwp->lwp_nostop--; 8063 } 8064 orp->r_flags |= R4RECEXPFH; 8065 mutex_exit(&orp->r_statelock); 8066 8067 mi = VTOMI4(odvp); 8068 8069 args.ctag = TAG_RENAME_VFH; 8070 args.array_len = (odvp == ndvp) ? 10 : 12; 8071 argoplist_size = args.array_len * sizeof (nfs_argop4); 8072 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8073 8074 /* 8075 * Rename ops: 8076 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8077 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8078 * LOOKUP(trgt), GETFH(new), GETATTR, 8079 * 8080 * if (odvp != ndvp) 8081 * add putfh(sourcedir), getattr(sourcedir) } 8082 */ 8083 args.array = argop; 8084 8085 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8086 &recov_state, NULL); 8087 if (e.error) { 8088 kmem_free(argop, argoplist_size); 8089 mutex_enter(&orp->r_statelock); 8090 orp->r_flags &= ~R4RECEXPFH; 8091 cv_broadcast(&orp->r_cv); 8092 mutex_exit(&orp->r_statelock); 8093 return (e.error); 8094 } 8095 8096 /* 0: putfh source directory */ 8097 argop[0].argop = OP_CPUTFH; 8098 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8099 8100 /* 1: Save source fh to free up current for target */ 8101 argop[1].argop = OP_SAVEFH; 8102 8103 /* 2: Lookup pre-rename fh of renamed object */ 8104 argop[2].argop = OP_CLOOKUP; 8105 argop[2].nfs_argop4_u.opclookup.cname = onm; 8106 8107 /* 3: getfh fh of renamed object (before rename) */ 8108 argop[3].argop = OP_GETFH; 8109 8110 /* 4: putfh targetdir */ 8111 argop[4].argop = OP_CPUTFH; 8112 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8113 8114 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8115 argop[5].argop = OP_CRENAME; 8116 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8117 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8118 8119 /* 6: getattr of target dir (post op attrs) */ 8120 argop[6].argop = OP_GETATTR; 8121 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8122 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8123 8124 /* 7: Lookup post-rename fh of renamed object */ 8125 argop[7].argop = OP_CLOOKUP; 8126 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8127 8128 /* 8: getfh fh of renamed object (after rename) */ 8129 argop[8].argop = OP_GETFH; 8130 8131 /* 9: getattr of renamed object */ 8132 argop[9].argop = OP_GETATTR; 8133 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8134 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8135 8136 /* 8137 * If source/target dirs are different, then get new post-op 8138 * attrs for source dir also. 8139 */ 8140 if (ndvp != odvp) { 8141 /* 10: putfh (sourcedir) */ 8142 argop[10].argop = OP_CPUTFH; 8143 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8144 8145 /* 11: getattr (sourcedir) */ 8146 argop[11].argop = OP_GETATTR; 8147 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8148 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8149 } 8150 8151 dnlc_remove(odvp, onm); 8152 dnlc_remove(ndvp, nnm); 8153 8154 doqueue = 1; 8155 t = gethrtime(); 8156 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8157 8158 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8159 if (e.error) { 8160 PURGE_ATTRCACHE4(odvp); 8161 PURGE_ATTRCACHE4(ndvp); 8162 if (!needrecov) { 8163 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8164 &recov_state, needrecov); 8165 goto out; 8166 } 8167 } else { 8168 *statp = res.status; 8169 } 8170 8171 if (needrecov) { 8172 bool_t abort; 8173 8174 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8175 OP_RENAME, NULL); 8176 if (abort == FALSE) { 8177 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8178 &recov_state, needrecov); 8179 kmem_free(argop, argoplist_size); 8180 if (!e.error) 8181 (void) xdr_free(xdr_COMPOUND4res_clnt, 8182 (caddr_t)&res); 8183 mutex_enter(&orp->r_statelock); 8184 orp->r_flags &= ~R4RECEXPFH; 8185 cv_broadcast(&orp->r_cv); 8186 mutex_exit(&orp->r_statelock); 8187 goto recov_retry; 8188 } else { 8189 if (e.error != 0) { 8190 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8191 &recov_state, needrecov); 8192 goto out; 8193 } 8194 /* fall through for res.status case */ 8195 } 8196 } 8197 8198 resp = &res; 8199 /* 8200 * If OP_RENAME (or any prev op) failed, then return an error. 8201 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8202 */ 8203 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8204 /* 8205 * Error in an op other than last Getattr 8206 */ 8207 e.error = geterrno4(res.status); 8208 PURGE_ATTRCACHE4(odvp); 8209 PURGE_ATTRCACHE4(ndvp); 8210 /* 8211 * System V defines rename to return EEXIST, not 8212 * ENOTEMPTY if the target directory is not empty. 8213 * Over the wire, the error is NFSERR_ENOTEMPTY 8214 * which geterrno4 maps to ENOTEMPTY. 8215 */ 8216 if (e.error == ENOTEMPTY) 8217 e.error = EEXIST; 8218 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8219 needrecov); 8220 goto out; 8221 } 8222 8223 /* rename results */ 8224 rn_res = &res.array[5].nfs_resop4_u.oprename; 8225 8226 if (res.status == NFS4_OK) { 8227 /* Update target attribute, readdir and dnlc caches */ 8228 dinfo.di_garp = 8229 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8230 dinfo.di_cred = cr; 8231 dinfo.di_time_call = t; 8232 } else 8233 dinfop = NULL; 8234 8235 /* Update source cache attribute, readdir and dnlc caches */ 8236 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8237 8238 /* Update source cache attribute, readdir and dnlc caches */ 8239 if (ndvp != odvp) { 8240 8241 /* 8242 * If dinfop is non-NULL, then compound succeded, so 8243 * set di_garp to attrs for source dir. dinfop is only 8244 * set to NULL when compound fails. 8245 */ 8246 if (dinfop) 8247 dinfo.di_garp = 8248 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8249 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8250 dinfop); 8251 } 8252 8253 /* 8254 * Update the rnode with the new component name and args, 8255 * and if the file handle changed, also update it with the new fh. 8256 * This is only necessary if the target object has an rnode 8257 * entry and there is no need to create one for it. 8258 */ 8259 resop = &res.array[8]; /* getfh new res */ 8260 ngf_res = &resop->nfs_resop4_u.opgetfh; 8261 8262 /* 8263 * Update the path and filehandle for the renamed object. 8264 */ 8265 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8266 8267 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8268 8269 if (res.status == NFS4_OK) { 8270 resop++; /* getattr res */ 8271 e.error = nfs4_update_attrcache(res.status, 8272 &resop->nfs_resop4_u.opgetattr.ga_res, 8273 t, ovp, cr); 8274 } 8275 8276 out: 8277 kmem_free(argop, argoplist_size); 8278 if (resp) 8279 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8280 mutex_enter(&orp->r_statelock); 8281 orp->r_flags &= ~R4RECEXPFH; 8282 cv_broadcast(&orp->r_cv); 8283 mutex_exit(&orp->r_statelock); 8284 8285 return (e.error); 8286 } 8287 8288 static int 8289 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr) 8290 { 8291 int error; 8292 vnode_t *vp; 8293 8294 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8295 return (EPERM); 8296 /* 8297 * As ".." has special meaning and rather than send a mkdir 8298 * over the wire to just let the server freak out, we just 8299 * short circuit it here and return EEXIST 8300 */ 8301 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8302 return (EEXIST); 8303 8304 /* 8305 * Decision to get the right gid and setgid bit of the 8306 * new directory is now made in call_nfs4_create_req. 8307 */ 8308 va->va_mask |= AT_MODE; 8309 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8310 if (error) 8311 return (error); 8312 8313 *vpp = vp; 8314 return (0); 8315 } 8316 8317 8318 /* 8319 * rmdir is using the same remove v4 op as does remove. 8320 * Remove requires that the current fh be the target directory. 8321 * After the operation, the current fh is unchanged. 8322 * The compound op structure is: 8323 * PUTFH(targetdir), REMOVE 8324 */ 8325 static int 8326 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr) 8327 { 8328 int need_end_op = FALSE; 8329 COMPOUND4args_clnt args; 8330 COMPOUND4res_clnt res, *resp = NULL; 8331 REMOVE4res *rm_res; 8332 nfs_argop4 argop[3]; 8333 nfs_resop4 *resop; 8334 vnode_t *vp; 8335 int doqueue; 8336 mntinfo4_t *mi; 8337 rnode4_t *drp; 8338 bool_t needrecov = FALSE; 8339 nfs4_recov_state_t recov_state; 8340 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8341 dirattr_info_t dinfo, *dinfop; 8342 8343 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8344 return (EPERM); 8345 /* 8346 * As ".." has special meaning and rather than send a rmdir 8347 * over the wire to just let the server freak out, we just 8348 * short circuit it here and return EEXIST 8349 */ 8350 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8351 return (EEXIST); 8352 8353 drp = VTOR4(dvp); 8354 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8355 return (EINTR); 8356 8357 /* 8358 * Attempt to prevent a rmdir(".") from succeeding. 8359 */ 8360 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8361 if (e.error) { 8362 nfs_rw_exit(&drp->r_rwlock); 8363 return (e.error); 8364 } 8365 if (vp == cdir) { 8366 VN_RELE(vp); 8367 nfs_rw_exit(&drp->r_rwlock); 8368 return (EINVAL); 8369 } 8370 8371 /* 8372 * Since nfsv4 remove op works on both files and directories, 8373 * check that the removed object is indeed a directory. 8374 */ 8375 if (vp->v_type != VDIR) { 8376 VN_RELE(vp); 8377 nfs_rw_exit(&drp->r_rwlock); 8378 return (ENOTDIR); 8379 } 8380 8381 /* 8382 * First just remove the entry from the name cache, as it 8383 * is most likely an entry for this vp. 8384 */ 8385 dnlc_remove(dvp, nm); 8386 8387 /* 8388 * If there vnode reference count is greater than one, then 8389 * there may be additional references in the DNLC which will 8390 * need to be purged. First, trying removing the entry for 8391 * the parent directory and see if that removes the additional 8392 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8393 * to completely remove any references to the directory which 8394 * might still exist in the DNLC. 8395 */ 8396 if (vp->v_count > 1) { 8397 dnlc_remove(vp, ".."); 8398 if (vp->v_count > 1) 8399 dnlc_purge_vp(vp); 8400 } 8401 8402 mi = VTOMI4(dvp); 8403 recov_state.rs_flags = 0; 8404 recov_state.rs_num_retry_despite_err = 0; 8405 8406 recov_retry: 8407 args.ctag = TAG_RMDIR; 8408 8409 /* 8410 * Rmdir ops: putfh dir; remove 8411 */ 8412 args.array_len = 3; 8413 args.array = argop; 8414 8415 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8416 if (e.error) { 8417 nfs_rw_exit(&drp->r_rwlock); 8418 return (e.error); 8419 } 8420 need_end_op = TRUE; 8421 8422 /* putfh directory */ 8423 argop[0].argop = OP_CPUTFH; 8424 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8425 8426 /* remove */ 8427 argop[1].argop = OP_CREMOVE; 8428 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8429 8430 /* getattr (postop attrs for dir that contained removed dir) */ 8431 argop[2].argop = OP_GETATTR; 8432 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8433 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8434 8435 dinfo.di_time_call = gethrtime(); 8436 doqueue = 1; 8437 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8438 8439 PURGE_ATTRCACHE4(vp); 8440 8441 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8442 if (e.error) { 8443 PURGE_ATTRCACHE4(dvp); 8444 } 8445 8446 if (needrecov) { 8447 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8448 NULL, OP_REMOVE, NULL) == FALSE) { 8449 if (!e.error) 8450 (void) xdr_free(xdr_COMPOUND4res_clnt, 8451 (caddr_t)&res); 8452 8453 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8454 needrecov); 8455 need_end_op = FALSE; 8456 goto recov_retry; 8457 } 8458 } 8459 8460 if (!e.error) { 8461 resp = &res; 8462 8463 /* 8464 * Only return error if first 2 ops (OP_REMOVE or earlier) 8465 * failed. 8466 */ 8467 if (res.status != NFS4_OK && res.array_len <= 2) { 8468 e.error = geterrno4(res.status); 8469 PURGE_ATTRCACHE4(dvp); 8470 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8471 &recov_state, needrecov); 8472 need_end_op = FALSE; 8473 nfs4_purge_stale_fh(e.error, dvp, cr); 8474 /* 8475 * System V defines rmdir to return EEXIST, not 8476 * ENOTEMPTY if the directory is not empty. Over 8477 * the wire, the error is NFSERR_ENOTEMPTY which 8478 * geterrno4 maps to ENOTEMPTY. 8479 */ 8480 if (e.error == ENOTEMPTY) 8481 e.error = EEXIST; 8482 } else { 8483 resop = &res.array[1]; /* remove res */ 8484 rm_res = &resop->nfs_resop4_u.opremove; 8485 8486 if (res.status == NFS4_OK) { 8487 resop = &res.array[2]; /* dir attrs */ 8488 dinfo.di_garp = 8489 &resop->nfs_resop4_u.opgetattr.ga_res; 8490 dinfo.di_cred = cr; 8491 dinfop = &dinfo; 8492 } else 8493 dinfop = NULL; 8494 8495 /* Update dir attribute, readdir and dnlc caches */ 8496 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8497 dinfop); 8498 8499 /* destroy rddir cache for dir that was removed */ 8500 if (VTOR4(vp)->r_dir != NULL) 8501 nfs4_purge_rddir_cache(vp); 8502 } 8503 } 8504 8505 if (need_end_op) 8506 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8507 8508 nfs_rw_exit(&drp->r_rwlock); 8509 8510 if (resp) 8511 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8512 8513 VN_RELE(vp); 8514 8515 return (e.error); 8516 } 8517 8518 static int 8519 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr) 8520 { 8521 int error; 8522 vnode_t *vp; 8523 rnode4_t *rp; 8524 char *contents; 8525 mntinfo4_t *mi = VTOMI4(dvp); 8526 8527 if (nfs_zone() != mi->mi_zone) 8528 return (EPERM); 8529 if (!(mi->mi_flags & MI4_SYMLINK)) 8530 return (EOPNOTSUPP); 8531 8532 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8533 if (error) { 8534 return (error); 8535 } 8536 8537 ASSERT(nfs4_consistent_type(vp)); 8538 rp = VTOR4(vp); 8539 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8540 8541 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8542 8543 if (contents != NULL) { 8544 mutex_enter(&rp->r_statelock); 8545 if (rp->r_symlink.contents == NULL) { 8546 rp->r_symlink.len = strlen(tnm); 8547 bcopy(tnm, contents, rp->r_symlink.len); 8548 rp->r_symlink.contents = contents; 8549 rp->r_symlink.size = MAXPATHLEN; 8550 mutex_exit(&rp->r_statelock); 8551 } else { 8552 mutex_exit(&rp->r_statelock); 8553 kmem_free((void *)contents, MAXPATHLEN); 8554 } 8555 } 8556 } 8557 VN_RELE(vp); 8558 8559 return (error); 8560 } 8561 8562 8563 /* 8564 * Read directory entries. 8565 * There are some weird things to look out for here. The uio_loffset 8566 * field is either 0 or it is the offset returned from a previous 8567 * readdir. It is an opaque value used by the server to find the 8568 * correct directory block to read. The count field is the number 8569 * of blocks to read on the server. This is advisory only, the server 8570 * may return only one block's worth of entries. Entries may be compressed 8571 * on the server. 8572 */ 8573 static int 8574 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp) 8575 { 8576 int error; 8577 uint_t count; 8578 rnode4_t *rp; 8579 rddir4_cache *rdc; 8580 rddir4_cache *rrdc; 8581 8582 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8583 return (EIO); 8584 rp = VTOR4(vp); 8585 8586 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8587 8588 /* 8589 * Make sure that the directory cache is valid. 8590 */ 8591 if (rp->r_dir != NULL) { 8592 if (nfs_disable_rddir_cache != 0) { 8593 /* 8594 * Setting nfs_disable_rddir_cache in /etc/system 8595 * allows interoperability with servers that do not 8596 * properly update the attributes of directories. 8597 * Any cached information gets purged before an 8598 * access is made to it. 8599 */ 8600 nfs4_purge_rddir_cache(vp); 8601 } 8602 8603 error = nfs4_validate_caches(vp, cr); 8604 if (error) 8605 return (error); 8606 } 8607 8608 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8609 8610 /* 8611 * Short circuit last readdir which always returns 0 bytes. 8612 * This can be done after the directory has been read through 8613 * completely at least once. This will set r_direof which 8614 * can be used to find the value of the last cookie. 8615 */ 8616 mutex_enter(&rp->r_statelock); 8617 if (rp->r_direof != NULL && 8618 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8619 mutex_exit(&rp->r_statelock); 8620 #ifdef DEBUG 8621 nfs4_readdir_cache_shorts++; 8622 #endif 8623 if (eofp) 8624 *eofp = 1; 8625 return (0); 8626 } 8627 8628 /* 8629 * Look for a cache entry. Cache entries are identified 8630 * by the NFS cookie value and the byte count requested. 8631 */ 8632 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8633 8634 /* 8635 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8636 */ 8637 if (rdc == NULL) { 8638 mutex_exit(&rp->r_statelock); 8639 return (EINTR); 8640 } 8641 8642 /* 8643 * Check to see if we need to fill this entry in. 8644 */ 8645 if (rdc->flags & RDDIRREQ) { 8646 rdc->flags &= ~RDDIRREQ; 8647 rdc->flags |= RDDIR; 8648 mutex_exit(&rp->r_statelock); 8649 8650 /* 8651 * Do the readdir. 8652 */ 8653 nfs4readdir(vp, rdc, cr); 8654 8655 /* 8656 * Reaquire the lock, so that we can continue 8657 */ 8658 mutex_enter(&rp->r_statelock); 8659 /* 8660 * The entry is now complete 8661 */ 8662 rdc->flags &= ~RDDIR; 8663 } 8664 8665 ASSERT(!(rdc->flags & RDDIR)); 8666 8667 /* 8668 * If an error occurred while attempting 8669 * to fill the cache entry, mark the entry invalid and 8670 * just return the error. 8671 */ 8672 if (rdc->error) { 8673 error = rdc->error; 8674 rdc->flags |= RDDIRREQ; 8675 rddir4_cache_rele(rp, rdc); 8676 mutex_exit(&rp->r_statelock); 8677 return (error); 8678 } 8679 8680 /* 8681 * The cache entry is complete and good, 8682 * copyout the dirent structs to the calling 8683 * thread. 8684 */ 8685 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 8686 8687 /* 8688 * If no error occurred during the copyout, 8689 * update the offset in the uio struct to 8690 * contain the value of the next NFS 4 cookie 8691 * and set the eof value appropriately. 8692 */ 8693 if (!error) { 8694 uiop->uio_loffset = rdc->nfs4_ncookie; 8695 if (eofp) 8696 *eofp = rdc->eof; 8697 } 8698 8699 /* 8700 * Decide whether to do readahead. Don't if we 8701 * have already read to the end of directory. 8702 */ 8703 if (rdc->eof) { 8704 /* 8705 * Make the entry the direof only if it is cached 8706 */ 8707 if (rdc->flags & RDDIRCACHED) 8708 rp->r_direof = rdc; 8709 rddir4_cache_rele(rp, rdc); 8710 mutex_exit(&rp->r_statelock); 8711 return (error); 8712 } 8713 8714 /* Determine if a readdir readahead should be done */ 8715 if (!(rp->r_flags & R4LOOKUP)) { 8716 rddir4_cache_rele(rp, rdc); 8717 mutex_exit(&rp->r_statelock); 8718 return (error); 8719 } 8720 8721 /* 8722 * Now look for a readahead entry. 8723 * 8724 * Check to see whether we found an entry for the readahead. 8725 * If so, we don't need to do anything further, so free the new 8726 * entry if one was allocated. Otherwise, allocate a new entry, add 8727 * it to the cache, and then initiate an asynchronous readdir 8728 * operation to fill it. 8729 */ 8730 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 8731 8732 /* 8733 * A readdir cache entry could not be obtained for the readahead. In 8734 * this case we skip the readahead and return. 8735 */ 8736 if (rrdc == NULL) { 8737 rddir4_cache_rele(rp, rdc); 8738 mutex_exit(&rp->r_statelock); 8739 return (error); 8740 } 8741 8742 /* 8743 * Check to see if we need to fill this entry in. 8744 */ 8745 if (rrdc->flags & RDDIRREQ) { 8746 rrdc->flags &= ~RDDIRREQ; 8747 rrdc->flags |= RDDIR; 8748 rddir4_cache_rele(rp, rdc); 8749 mutex_exit(&rp->r_statelock); 8750 #ifdef DEBUG 8751 nfs4_readdir_readahead++; 8752 #endif 8753 /* 8754 * Do the readdir. 8755 */ 8756 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 8757 return (error); 8758 } 8759 8760 rddir4_cache_rele(rp, rrdc); 8761 rddir4_cache_rele(rp, rdc); 8762 mutex_exit(&rp->r_statelock); 8763 return (error); 8764 } 8765 8766 static int 8767 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8768 { 8769 int error; 8770 rnode4_t *rp; 8771 8772 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 8773 8774 rp = VTOR4(vp); 8775 8776 /* 8777 * Obtain the readdir results for the caller. 8778 */ 8779 nfs4readdir(vp, rdc, cr); 8780 8781 mutex_enter(&rp->r_statelock); 8782 /* 8783 * The entry is now complete 8784 */ 8785 rdc->flags &= ~RDDIR; 8786 8787 error = rdc->error; 8788 if (error) 8789 rdc->flags |= RDDIRREQ; 8790 rddir4_cache_rele(rp, rdc); 8791 mutex_exit(&rp->r_statelock); 8792 8793 return (error); 8794 } 8795 8796 static void 8797 nfs4readdir_stub(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8798 { 8799 int stublength; 8800 dirent64_t *dp; 8801 u_longlong_t nodeid, pnodeid; 8802 vnode_t *dotdotvp = NULL; 8803 rnode4_t *rp = VTOR4(vp); 8804 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 8805 8806 rdc->error = 0; 8807 rdc->entries = 0; 8808 rdc->actlen = rdc->entlen = 0; 8809 rdc->eof = TRUE; 8810 8811 /* Check for EOF case for readdir of stub */ 8812 if (cookie != 0 && cookie != 1) 8813 return; 8814 8815 nodeid = rp->r_attr.va_nodeid; 8816 if (vp->v_flag & VROOT) { 8817 pnodeid = nodeid; /* root of mount point */ 8818 } else { 8819 if (rdc->error = nfs4_lookup(vp, "..", &dotdotvp, 0, 0, 0, cr)) 8820 return; 8821 pnodeid = VTOR4(dotdotvp)->r_attr.va_nodeid; 8822 VN_RELE(dotdotvp); 8823 } 8824 8825 stublength = DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2); 8826 rdc->entries = kmem_alloc(stublength, KM_SLEEP); 8827 rdc->entlen = rdc->buflen = stublength; 8828 rdc->eof = TRUE; 8829 8830 dp = (dirent64_t *)rdc->entries; 8831 8832 if (rdc->nfs4_cookie == (nfs_cookie4)0) { 8833 bcopy(nfs4_dot_entries, rdc->entries, 8834 DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2)); 8835 dp->d_ino = nodeid; 8836 dp = (struct dirent64 *)(((char *)dp) + DIRENT64_RECLEN(1)); 8837 dp->d_ino = pnodeid; 8838 rdc->actlen = DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2); 8839 } else { /* for ".." entry */ 8840 bcopy(nfs4_dot_dot_entry, rdc->entries, DIRENT64_RECLEN(2)); 8841 dp->d_ino = pnodeid; 8842 rdc->actlen = DIRENT64_RECLEN(2); 8843 } 8844 rdc->nfs4_ncookie = rdc->actlen; 8845 } 8846 8847 /* 8848 * Read directory entries. 8849 * There are some weird things to look out for here. The uio_loffset 8850 * field is either 0 or it is the offset returned from a previous 8851 * readdir. It is an opaque value used by the server to find the 8852 * correct directory block to read. The count field is the number 8853 * of blocks to read on the server. This is advisory only, the server 8854 * may return only one block's worth of entries. Entries may be compressed 8855 * on the server. 8856 * 8857 * Generates the following compound request: 8858 * 1. If readdir offset is zero and no dnlc entry for parent exists, 8859 * must include a Lookupp as well. In this case, send: 8860 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 8861 * 2. Otherwise just do: { Putfh <fh>; Readdir } 8862 * 8863 * Get complete attributes and filehandles for entries if this is the 8864 * first read of the directory. Otherwise, just get fileid's. 8865 */ 8866 static void 8867 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8868 { 8869 COMPOUND4args_clnt args; 8870 COMPOUND4res_clnt res; 8871 READDIR4args *rargs; 8872 READDIR4res_clnt *rd_res; 8873 bitmap4 rd_bitsval; 8874 nfs_argop4 argop[5]; 8875 nfs_resop4 *resop; 8876 rnode4_t *rp = VTOR4(vp); 8877 mntinfo4_t *mi = VTOMI4(vp); 8878 int doqueue; 8879 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 8880 vnode_t *dvp; 8881 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 8882 int num_ops, res_opcnt; 8883 bool_t needrecov = FALSE; 8884 nfs4_recov_state_t recov_state; 8885 hrtime_t t; 8886 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8887 8888 ASSERT(nfs_zone() == mi->mi_zone); 8889 ASSERT(rdc->flags & RDDIR); 8890 ASSERT(rdc->entries == NULL); 8891 8892 if (rp->r_flags & R4SRVSTUB) { 8893 nfs4readdir_stub(vp, rdc, cr); 8894 return; 8895 } 8896 8897 num_ops = 2; 8898 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 8899 /* 8900 * Since nfsv4 readdir may not return entries for "." and "..", 8901 * the client must recreate them: 8902 * To find the correct nodeid, do the following: 8903 * For current node, get nodeid from dnlc. 8904 * - if current node is rootvp, set pnodeid to nodeid. 8905 * - else if parent is in the dnlc, get its nodeid from there. 8906 * - else add LOOKUPP+GETATTR to compound. 8907 */ 8908 nodeid = rp->r_attr.va_nodeid; 8909 if (vp->v_flag & VROOT) { 8910 pnodeid = nodeid; /* root of mount point */ 8911 } else { 8912 dvp = dnlc_lookup(vp, ".."); 8913 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 8914 /* parent in dnlc cache - no need for otw */ 8915 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 8916 } else { 8917 /* 8918 * parent not in dnlc cache, 8919 * do lookupp to get its id 8920 */ 8921 num_ops = 5; 8922 pnodeid = 0; /* set later by getattr parent */ 8923 } 8924 if (dvp) 8925 VN_RELE(dvp); 8926 } 8927 } 8928 recov_state.rs_flags = 0; 8929 recov_state.rs_num_retry_despite_err = 0; 8930 8931 /* Save the original mount point security flavor */ 8932 (void) save_mnt_secinfo(mi->mi_curr_serv); 8933 8934 recov_retry: 8935 args.ctag = TAG_READDIR; 8936 8937 args.array = argop; 8938 args.array_len = num_ops; 8939 8940 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 8941 &recov_state, NULL)) { 8942 /* 8943 * If readdir a node that is a stub for a crossed mount point, 8944 * keep the original secinfo flavor for the current file 8945 * system, not the crossed one. 8946 */ 8947 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 8948 rdc->error = e.error; 8949 return; 8950 } 8951 8952 /* 8953 * Determine which attrs to request for dirents. This code 8954 * must be protected by nfs4_start/end_fop because of r_server 8955 * (which will change during failover recovery). 8956 * 8957 */ 8958 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 8959 /* 8960 * Get all vattr attrs plus filehandle and rdattr_error 8961 */ 8962 rd_bitsval = NFS4_VATTR_MASK | 8963 FATTR4_RDATTR_ERROR_MASK | 8964 FATTR4_FILEHANDLE_MASK; 8965 8966 if (rp->r_flags & R4READDIRWATTR) { 8967 mutex_enter(&rp->r_statelock); 8968 rp->r_flags &= ~R4READDIRWATTR; 8969 mutex_exit(&rp->r_statelock); 8970 } 8971 } else { 8972 servinfo4_t *svp = rp->r_server; 8973 8974 /* 8975 * Already read directory. Use readdir with 8976 * no attrs (except for mounted_on_fileid) for updates. 8977 */ 8978 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 8979 8980 /* 8981 * request mounted on fileid if supported, else request 8982 * fileid. maybe we should verify that fileid is supported 8983 * and request something else if not. 8984 */ 8985 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 8986 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 8987 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 8988 nfs_rw_exit(&svp->sv_lock); 8989 } 8990 8991 /* putfh directory fh */ 8992 argop[0].argop = OP_CPUTFH; 8993 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 8994 8995 argop[1].argop = OP_READDIR; 8996 rargs = &argop[1].nfs_argop4_u.opreaddir; 8997 /* 8998 * 1 and 2 are reserved for client "." and ".." entry offset. 8999 * cookie 0 should be used over-the-wire to start reading at 9000 * the beginning of the directory excluding "." and "..". 9001 */ 9002 if (rdc->nfs4_cookie == 0 || 9003 rdc->nfs4_cookie == 1 || 9004 rdc->nfs4_cookie == 2) { 9005 rargs->cookie = (nfs_cookie4)0; 9006 rargs->cookieverf = 0; 9007 } else { 9008 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9009 mutex_enter(&rp->r_statelock); 9010 rargs->cookieverf = rp->r_cookieverf4; 9011 mutex_exit(&rp->r_statelock); 9012 } 9013 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9014 rargs->maxcount = mi->mi_tsize; 9015 rargs->attr_request = rd_bitsval; 9016 rargs->rdc = rdc; 9017 rargs->dvp = vp; 9018 rargs->mi = mi; 9019 rargs->cr = cr; 9020 9021 9022 /* 9023 * If count < than the minimum required, we return no entries 9024 * and fail with EINVAL 9025 */ 9026 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9027 rdc->error = EINVAL; 9028 goto out; 9029 } 9030 9031 if (args.array_len == 5) { 9032 /* 9033 * Add lookupp and getattr for parent nodeid. 9034 */ 9035 argop[2].argop = OP_LOOKUPP; 9036 9037 argop[3].argop = OP_GETFH; 9038 9039 /* getattr parent */ 9040 argop[4].argop = OP_GETATTR; 9041 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9042 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9043 } 9044 9045 doqueue = 1; 9046 9047 if (mi->mi_io_kstats) { 9048 mutex_enter(&mi->mi_lock); 9049 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9050 mutex_exit(&mi->mi_lock); 9051 } 9052 9053 /* capture the time of this call */ 9054 rargs->t = t = gethrtime(); 9055 9056 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9057 9058 if (mi->mi_io_kstats) { 9059 mutex_enter(&mi->mi_lock); 9060 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9061 mutex_exit(&mi->mi_lock); 9062 } 9063 9064 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9065 9066 /* 9067 * If RPC error occurred and it isn't an error that 9068 * triggers recovery, then go ahead and fail now. 9069 */ 9070 if (e.error != 0 && !needrecov) { 9071 rdc->error = e.error; 9072 goto out; 9073 } 9074 9075 if (needrecov) { 9076 bool_t abort; 9077 9078 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9079 "nfs4readdir: initiating recovery.\n")); 9080 9081 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9082 NULL, OP_READDIR, NULL); 9083 if (abort == FALSE) { 9084 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9085 &recov_state, needrecov); 9086 if (!e.error) 9087 (void) xdr_free(xdr_COMPOUND4res_clnt, 9088 (caddr_t)&res); 9089 if (rdc->entries != NULL) { 9090 kmem_free(rdc->entries, rdc->entlen); 9091 rdc->entries = NULL; 9092 } 9093 goto recov_retry; 9094 } 9095 9096 if (e.error != 0) { 9097 rdc->error = e.error; 9098 goto out; 9099 } 9100 9101 /* fall through for res.status case */ 9102 } 9103 9104 res_opcnt = res.array_len; 9105 9106 /* 9107 * If compound failed first 2 ops (PUTFH+READDIR), then return 9108 * failure here. Subsequent ops are for filling out dot-dot 9109 * dirent, and if they fail, we still want to give the caller 9110 * the dirents returned by (the successful) READDIR op, so we need 9111 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9112 * 9113 * One example where PUTFH+READDIR ops would succeed but 9114 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9115 * but lacks x. In this case, a POSIX server's VOP_READDIR 9116 * would succeed; however, VOP_LOOKUP(..) would fail since no 9117 * x perm. We need to come up with a non-vendor-specific way 9118 * for a POSIX server to return d_ino from dotdot's dirent if 9119 * client only requests mounted_on_fileid, and just say the 9120 * LOOKUPP succeeded and fill out the GETATTR. However, if 9121 * client requested any mandatory attrs, server would be required 9122 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9123 * for dotdot. 9124 */ 9125 9126 if (res.status) { 9127 if (res_opcnt <= 2) { 9128 e.error = geterrno4(res.status); 9129 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9130 &recov_state, needrecov); 9131 nfs4_purge_stale_fh(e.error, vp, cr); 9132 rdc->error = e.error; 9133 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9134 if (rdc->entries != NULL) { 9135 kmem_free(rdc->entries, rdc->entlen); 9136 rdc->entries = NULL; 9137 } 9138 /* 9139 * If readdir a node that is a stub for a 9140 * crossed mount point, keep the original 9141 * secinfo flavor for the current file system, 9142 * not the crossed one. 9143 */ 9144 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9145 return; 9146 } 9147 } 9148 9149 resop = &res.array[1]; /* readdir res */ 9150 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9151 9152 mutex_enter(&rp->r_statelock); 9153 rp->r_cookieverf4 = rd_res->cookieverf; 9154 mutex_exit(&rp->r_statelock); 9155 9156 /* 9157 * For "." and ".." entries 9158 * e.g. 9159 * seek(cookie=0) -> "." entry with d_off = 1 9160 * seek(cookie=1) -> ".." entry with d_off = 2 9161 */ 9162 if (cookie == (nfs_cookie4) 0) { 9163 if (rd_res->dotp) 9164 rd_res->dotp->d_ino = nodeid; 9165 if (rd_res->dotdotp) 9166 rd_res->dotdotp->d_ino = pnodeid; 9167 } 9168 if (cookie == (nfs_cookie4) 1) { 9169 if (rd_res->dotdotp) 9170 rd_res->dotdotp->d_ino = pnodeid; 9171 } 9172 9173 9174 /* LOOKUPP+GETATTR attemped */ 9175 if (args.array_len == 5 && rd_res->dotdotp) { 9176 if (res.status == NFS4_OK && res_opcnt == 5) { 9177 nfs_fh4 *fhp; 9178 nfs4_sharedfh_t *sfhp; 9179 vnode_t *pvp; 9180 nfs4_ga_res_t *garp; 9181 9182 resop++; /* lookupp */ 9183 resop++; /* getfh */ 9184 fhp = &resop->nfs_resop4_u.opgetfh.object; 9185 9186 resop++; /* getattr of parent */ 9187 9188 /* 9189 * First, take care of finishing the 9190 * readdir results. 9191 */ 9192 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9193 /* 9194 * The d_ino of .. must be the inode number 9195 * of the mounted filesystem. 9196 */ 9197 if (garp->n4g_va.va_mask & AT_NODEID) 9198 rd_res->dotdotp->d_ino = 9199 garp->n4g_va.va_nodeid; 9200 9201 9202 /* 9203 * Next, create the ".." dnlc entry 9204 */ 9205 sfhp = sfh4_get(fhp, mi); 9206 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9207 dnlc_update(vp, "..", pvp); 9208 VN_RELE(pvp); 9209 } 9210 sfh4_rele(&sfhp); 9211 } 9212 } 9213 9214 if (mi->mi_io_kstats) { 9215 mutex_enter(&mi->mi_lock); 9216 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9217 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9218 mutex_exit(&mi->mi_lock); 9219 } 9220 9221 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9222 9223 out: 9224 /* 9225 * If readdir a node that is a stub for a crossed mount point, 9226 * keep the original secinfo flavor for the current file system, 9227 * not the crossed one. 9228 */ 9229 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9230 9231 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9232 } 9233 9234 9235 static int 9236 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9237 { 9238 rnode4_t *rp = VTOR4(bp->b_vp); 9239 int count; 9240 int error; 9241 cred_t *cred_otw = NULL; 9242 offset_t offset; 9243 nfs4_open_stream_t *osp = NULL; 9244 bool_t first_time = TRUE; /* first time getting otw cred */ 9245 bool_t last_time = FALSE; /* last time getting otw cred */ 9246 9247 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9248 9249 DTRACE_IO1(start, struct buf *, bp); 9250 offset = ldbtob(bp->b_lblkno); 9251 9252 if (bp->b_flags & B_READ) { 9253 read_again: 9254 /* 9255 * Releases the osp, if it is provided. 9256 * Puts a hold on the cred_otw and the new osp (if found). 9257 */ 9258 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9259 &first_time, &last_time); 9260 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9261 offset, bp->b_bcount, 9262 &bp->b_resid, cred_otw, 9263 readahead, NULL); 9264 crfree(cred_otw); 9265 if (!error) { 9266 if (bp->b_resid) { 9267 /* 9268 * Didn't get it all because we hit EOF, 9269 * zero all the memory beyond the EOF. 9270 */ 9271 /* bzero(rdaddr + */ 9272 bzero(bp->b_un.b_addr + 9273 bp->b_bcount - bp->b_resid, bp->b_resid); 9274 } 9275 mutex_enter(&rp->r_statelock); 9276 if (bp->b_resid == bp->b_bcount && 9277 offset >= rp->r_size) { 9278 /* 9279 * We didn't read anything at all as we are 9280 * past EOF. Return an error indicator back 9281 * but don't destroy the pages (yet). 9282 */ 9283 error = NFS_EOF; 9284 } 9285 mutex_exit(&rp->r_statelock); 9286 } else if (error == EACCES && last_time == FALSE) { 9287 goto read_again; 9288 } 9289 } else { 9290 if (!(rp->r_flags & R4STALE)) { 9291 write_again: 9292 /* 9293 * Releases the osp, if it is provided. 9294 * Puts a hold on the cred_otw and the new 9295 * osp (if found). 9296 */ 9297 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9298 &first_time, &last_time); 9299 mutex_enter(&rp->r_statelock); 9300 count = MIN(bp->b_bcount, rp->r_size - offset); 9301 mutex_exit(&rp->r_statelock); 9302 if (count < 0) 9303 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9304 #ifdef DEBUG 9305 if (count == 0) { 9306 zoneid_t zoneid = getzoneid(); 9307 9308 zcmn_err(zoneid, CE_WARN, 9309 "nfs4_bio: zero length write at %lld", 9310 offset); 9311 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9312 "b_bcount=%ld, file size=%lld", 9313 rp->r_flags, (long)bp->b_bcount, 9314 rp->r_size); 9315 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9316 if (nfs4_bio_do_stop) 9317 debug_enter("nfs4_bio"); 9318 } 9319 #endif 9320 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9321 count, cred_otw, stab_comm); 9322 if (error == EACCES && last_time == FALSE) { 9323 crfree(cred_otw); 9324 goto write_again; 9325 } 9326 bp->b_error = error; 9327 if (error && error != EINTR && 9328 !(bp->b_vp->v_vfsp->vfs_flag && VFS_UNMOUNTED)) { 9329 /* 9330 * Don't print EDQUOT errors on the console. 9331 * Don't print asynchronous EACCES errors. 9332 * Don't print EFBIG errors. 9333 * Print all other write errors. 9334 */ 9335 if (error != EDQUOT && error != EFBIG && 9336 (error != EACCES || 9337 !(bp->b_flags & B_ASYNC))) 9338 nfs4_write_error(bp->b_vp, 9339 error, cred_otw); 9340 /* 9341 * Update r_error and r_flags as appropriate. 9342 * If the error was ESTALE, then mark the 9343 * rnode as not being writeable and save 9344 * the error status. Otherwise, save any 9345 * errors which occur from asynchronous 9346 * page invalidations. Any errors occurring 9347 * from other operations should be saved 9348 * by the caller. 9349 */ 9350 mutex_enter(&rp->r_statelock); 9351 if (error == ESTALE) { 9352 rp->r_flags |= R4STALE; 9353 if (!rp->r_error) 9354 rp->r_error = error; 9355 } else if (!rp->r_error && 9356 (bp->b_flags & 9357 (B_INVAL|B_FORCE|B_ASYNC)) == 9358 (B_INVAL|B_FORCE|B_ASYNC)) { 9359 rp->r_error = error; 9360 } 9361 mutex_exit(&rp->r_statelock); 9362 } 9363 crfree(cred_otw); 9364 } else 9365 error = rp->r_error; 9366 } 9367 9368 if (error != 0 && error != NFS_EOF) 9369 bp->b_flags |= B_ERROR; 9370 9371 if (osp) 9372 open_stream_rele(osp, rp); 9373 9374 DTRACE_IO1(done, struct buf *, bp); 9375 9376 return (error); 9377 } 9378 9379 /* ARGSUSED */ 9380 static int 9381 nfs4_fid(vnode_t *vp, fid_t *fidp) 9382 { 9383 return (EREMOTE); 9384 } 9385 9386 /* ARGSUSED2 */ 9387 static int 9388 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9389 { 9390 rnode4_t *rp = VTOR4(vp); 9391 9392 if (!write_lock) { 9393 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9394 return (V_WRITELOCK_FALSE); 9395 } 9396 9397 if ((rp->r_flags & R4DIRECTIO) || 9398 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9399 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9400 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9401 return (V_WRITELOCK_FALSE); 9402 nfs_rw_exit(&rp->r_rwlock); 9403 } 9404 9405 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9406 return (V_WRITELOCK_TRUE); 9407 } 9408 9409 /* ARGSUSED */ 9410 static void 9411 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9412 { 9413 rnode4_t *rp = VTOR4(vp); 9414 9415 nfs_rw_exit(&rp->r_rwlock); 9416 } 9417 9418 /* ARGSUSED */ 9419 static int 9420 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 9421 { 9422 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9423 return (EIO); 9424 9425 /* 9426 * Because we stuff the readdir cookie into the offset field 9427 * someone may attempt to do an lseek with the cookie which 9428 * we want to succeed. 9429 */ 9430 if (vp->v_type == VDIR) 9431 return (0); 9432 if (*noffp < 0) 9433 return (EINVAL); 9434 return (0); 9435 } 9436 9437 9438 /* 9439 * Return all the pages from [off..off+len) in file 9440 */ 9441 static int 9442 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9443 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9444 enum seg_rw rw, cred_t *cr) 9445 { 9446 rnode4_t *rp; 9447 int error; 9448 mntinfo4_t *mi; 9449 9450 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9451 return (EIO); 9452 rp = VTOR4(vp); 9453 if (IS_SHADOW(vp, rp)) 9454 vp = RTOV4(rp); 9455 9456 if (vp->v_flag & VNOMAP) 9457 return (ENOSYS); 9458 9459 if (protp != NULL) 9460 *protp = PROT_ALL; 9461 9462 /* 9463 * Now validate that the caches are up to date. 9464 */ 9465 if (error = nfs4_validate_caches(vp, cr)) 9466 return (error); 9467 9468 mi = VTOMI4(vp); 9469 retry: 9470 mutex_enter(&rp->r_statelock); 9471 9472 /* 9473 * Don't create dirty pages faster than they 9474 * can be cleaned so that the system doesn't 9475 * get imbalanced. If the async queue is 9476 * maxed out, then wait for it to drain before 9477 * creating more dirty pages. Also, wait for 9478 * any threads doing pagewalks in the vop_getattr 9479 * entry points so that they don't block for 9480 * long periods. 9481 */ 9482 if (rw == S_CREATE) { 9483 while ((mi->mi_max_threads != 0 && 9484 rp->r_awcount > 2 * mi->mi_max_threads) || 9485 rp->r_gcount > 0) 9486 cv_wait(&rp->r_cv, &rp->r_statelock); 9487 } 9488 9489 /* 9490 * If we are getting called as a side effect of an nfs_write() 9491 * operation the local file size might not be extended yet. 9492 * In this case we want to be able to return pages of zeroes. 9493 */ 9494 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9495 NFS4_DEBUG(nfs4_pageio_debug, 9496 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9497 "len=%llu, size=%llu, attrsize =%llu", off, 9498 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9499 mutex_exit(&rp->r_statelock); 9500 return (EFAULT); /* beyond EOF */ 9501 } 9502 9503 mutex_exit(&rp->r_statelock); 9504 9505 if (len <= PAGESIZE) { 9506 error = nfs4_getapage(vp, off, len, protp, pl, plsz, 9507 seg, addr, rw, cr); 9508 NFS4_DEBUG(nfs4_pageio_debug && error, 9509 (CE_NOTE, "getpage error %d; off=%lld, " 9510 "len=%lld", error, off, (u_longlong_t)len)); 9511 } else { 9512 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9513 pl, plsz, seg, addr, rw, cr); 9514 NFS4_DEBUG(nfs4_pageio_debug && error, 9515 (CE_NOTE, "getpages error %d; off=%lld, " 9516 "len=%lld", error, off, (u_longlong_t)len)); 9517 } 9518 9519 switch (error) { 9520 case NFS_EOF: 9521 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9522 goto retry; 9523 case ESTALE: 9524 nfs4_purge_stale_fh(error, vp, cr); 9525 } 9526 9527 return (error); 9528 } 9529 9530 /* 9531 * Called from pvn_getpages or nfs4_getpage to get a particular page. 9532 */ 9533 /* ARGSUSED */ 9534 static int 9535 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9536 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9537 enum seg_rw rw, cred_t *cr) 9538 { 9539 rnode4_t *rp; 9540 uint_t bsize; 9541 struct buf *bp; 9542 page_t *pp; 9543 u_offset_t lbn; 9544 u_offset_t io_off; 9545 u_offset_t blkoff; 9546 u_offset_t rablkoff; 9547 size_t io_len; 9548 uint_t blksize; 9549 int error; 9550 int readahead; 9551 int readahead_issued = 0; 9552 int ra_window; /* readahead window */ 9553 page_t *pagefound; 9554 page_t *savepp; 9555 9556 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9557 return (EIO); 9558 9559 rp = VTOR4(vp); 9560 ASSERT(!IS_SHADOW(vp, rp)); 9561 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9562 9563 reread: 9564 bp = NULL; 9565 pp = NULL; 9566 pagefound = NULL; 9567 9568 if (pl != NULL) 9569 pl[0] = NULL; 9570 9571 error = 0; 9572 lbn = off / bsize; 9573 blkoff = lbn * bsize; 9574 9575 /* 9576 * Queueing up the readahead before doing the synchronous read 9577 * results in a significant increase in read throughput because 9578 * of the increased parallelism between the async threads and 9579 * the process context. 9580 */ 9581 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9582 rw != S_CREATE && 9583 !(vp->v_flag & VNOCACHE)) { 9584 mutex_enter(&rp->r_statelock); 9585 9586 /* 9587 * Calculate the number of readaheads to do. 9588 * a) No readaheads at offset = 0. 9589 * b) Do maximum(nfs4_nra) readaheads when the readahead 9590 * window is closed. 9591 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9592 * upon how far the readahead window is open or close. 9593 * d) No readaheads if rp->r_nextr is not within the scope 9594 * of the readahead window (random i/o). 9595 */ 9596 9597 if (off == 0) 9598 readahead = 0; 9599 else if (blkoff == rp->r_nextr) 9600 readahead = nfs4_nra; 9601 else if (rp->r_nextr > blkoff && 9602 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9603 <= (nfs4_nra - 1))) 9604 readahead = nfs4_nra - ra_window; 9605 else 9606 readahead = 0; 9607 9608 rablkoff = rp->r_nextr; 9609 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9610 mutex_exit(&rp->r_statelock); 9611 if (nfs4_async_readahead(vp, rablkoff + bsize, 9612 addr + (rablkoff + bsize - off), 9613 seg, cr, nfs4_readahead) < 0) { 9614 mutex_enter(&rp->r_statelock); 9615 break; 9616 } 9617 readahead--; 9618 rablkoff += bsize; 9619 /* 9620 * Indicate that we did a readahead so 9621 * readahead offset is not updated 9622 * by the synchronous read below. 9623 */ 9624 readahead_issued = 1; 9625 mutex_enter(&rp->r_statelock); 9626 /* 9627 * set readahead offset to 9628 * offset of last async readahead 9629 * request. 9630 */ 9631 rp->r_nextr = rablkoff; 9632 } 9633 mutex_exit(&rp->r_statelock); 9634 } 9635 9636 again: 9637 if ((pagefound = page_exists(vp, off)) == NULL) { 9638 if (pl == NULL) { 9639 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9640 nfs4_readahead); 9641 } else if (rw == S_CREATE) { 9642 /* 9643 * Block for this page is not allocated, or the offset 9644 * is beyond the current allocation size, or we're 9645 * allocating a swap slot and the page was not found, 9646 * so allocate it and return a zero page. 9647 */ 9648 if ((pp = page_create_va(vp, off, 9649 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9650 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9651 io_len = PAGESIZE; 9652 mutex_enter(&rp->r_statelock); 9653 rp->r_nextr = off + PAGESIZE; 9654 mutex_exit(&rp->r_statelock); 9655 } else { 9656 /* 9657 * Need to go to server to get a block 9658 */ 9659 mutex_enter(&rp->r_statelock); 9660 if (blkoff < rp->r_size && 9661 blkoff + bsize > rp->r_size) { 9662 /* 9663 * If less than a block left in 9664 * file read less than a block. 9665 */ 9666 if (rp->r_size <= off) { 9667 /* 9668 * Trying to access beyond EOF, 9669 * set up to get at least one page. 9670 */ 9671 blksize = off + PAGESIZE - blkoff; 9672 } else 9673 blksize = rp->r_size - blkoff; 9674 } else if ((off == 0) || 9675 (off != rp->r_nextr && !readahead_issued)) { 9676 blksize = PAGESIZE; 9677 blkoff = off; /* block = page here */ 9678 } else 9679 blksize = bsize; 9680 mutex_exit(&rp->r_statelock); 9681 9682 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9683 &io_len, blkoff, blksize, 0); 9684 9685 /* 9686 * Some other thread has entered the page, 9687 * so just use it. 9688 */ 9689 if (pp == NULL) 9690 goto again; 9691 9692 /* 9693 * Now round the request size up to page boundaries. 9694 * This ensures that the entire page will be 9695 * initialized to zeroes if EOF is encountered. 9696 */ 9697 io_len = ptob(btopr(io_len)); 9698 9699 bp = pageio_setup(pp, io_len, vp, B_READ); 9700 ASSERT(bp != NULL); 9701 9702 /* 9703 * pageio_setup should have set b_addr to 0. This 9704 * is correct since we want to do I/O on a page 9705 * boundary. bp_mapin will use this addr to calculate 9706 * an offset, and then set b_addr to the kernel virtual 9707 * address it allocated for us. 9708 */ 9709 ASSERT(bp->b_un.b_addr == 0); 9710 9711 bp->b_edev = 0; 9712 bp->b_dev = 0; 9713 bp->b_lblkno = lbtodb(io_off); 9714 bp->b_file = vp; 9715 bp->b_offset = (offset_t)off; 9716 bp_mapin(bp); 9717 9718 /* 9719 * If doing a write beyond what we believe is EOF, 9720 * don't bother trying to read the pages from the 9721 * server, we'll just zero the pages here. We 9722 * don't check that the rw flag is S_WRITE here 9723 * because some implementations may attempt a 9724 * read access to the buffer before copying data. 9725 */ 9726 mutex_enter(&rp->r_statelock); 9727 if (io_off >= rp->r_size && seg == segkmap) { 9728 mutex_exit(&rp->r_statelock); 9729 bzero(bp->b_un.b_addr, io_len); 9730 } else { 9731 mutex_exit(&rp->r_statelock); 9732 error = nfs4_bio(bp, NULL, cr, FALSE); 9733 } 9734 9735 /* 9736 * Unmap the buffer before freeing it. 9737 */ 9738 bp_mapout(bp); 9739 pageio_done(bp); 9740 9741 savepp = pp; 9742 do { 9743 pp->p_fsdata = C_NOCOMMIT; 9744 } while ((pp = pp->p_next) != savepp); 9745 9746 if (error == NFS_EOF) { 9747 /* 9748 * If doing a write system call just return 9749 * zeroed pages, else user tried to get pages 9750 * beyond EOF, return error. We don't check 9751 * that the rw flag is S_WRITE here because 9752 * some implementations may attempt a read 9753 * access to the buffer before copying data. 9754 */ 9755 if (seg == segkmap) 9756 error = 0; 9757 else 9758 error = EFAULT; 9759 } 9760 9761 if (!readahead_issued && !error) { 9762 mutex_enter(&rp->r_statelock); 9763 rp->r_nextr = io_off + io_len; 9764 mutex_exit(&rp->r_statelock); 9765 } 9766 } 9767 } 9768 9769 out: 9770 if (pl == NULL) 9771 return (error); 9772 9773 if (error) { 9774 if (pp != NULL) 9775 pvn_read_done(pp, B_ERROR); 9776 return (error); 9777 } 9778 9779 if (pagefound) { 9780 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 9781 9782 /* 9783 * Page exists in the cache, acquire the appropriate lock. 9784 * If this fails, start all over again. 9785 */ 9786 if ((pp = page_lookup(vp, off, se)) == NULL) { 9787 #ifdef DEBUG 9788 nfs4_lostpage++; 9789 #endif 9790 goto reread; 9791 } 9792 pl[0] = pp; 9793 pl[1] = NULL; 9794 return (0); 9795 } 9796 9797 if (pp != NULL) 9798 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 9799 9800 return (error); 9801 } 9802 9803 static void 9804 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 9805 cred_t *cr) 9806 { 9807 int error; 9808 page_t *pp; 9809 u_offset_t io_off; 9810 size_t io_len; 9811 struct buf *bp; 9812 uint_t bsize, blksize; 9813 rnode4_t *rp = VTOR4(vp); 9814 page_t *savepp; 9815 9816 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9817 9818 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9819 9820 mutex_enter(&rp->r_statelock); 9821 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 9822 /* 9823 * If less than a block left in file read less 9824 * than a block. 9825 */ 9826 blksize = rp->r_size - blkoff; 9827 } else 9828 blksize = bsize; 9829 mutex_exit(&rp->r_statelock); 9830 9831 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 9832 &io_off, &io_len, blkoff, blksize, 1); 9833 /* 9834 * The isra flag passed to the kluster function is 1, we may have 9835 * gotten a return value of NULL for a variety of reasons (# of free 9836 * pages < minfree, someone entered the page on the vnode etc). In all 9837 * cases, we want to punt on the readahead. 9838 */ 9839 if (pp == NULL) 9840 return; 9841 9842 /* 9843 * Now round the request size up to page boundaries. 9844 * This ensures that the entire page will be 9845 * initialized to zeroes if EOF is encountered. 9846 */ 9847 io_len = ptob(btopr(io_len)); 9848 9849 bp = pageio_setup(pp, io_len, vp, B_READ); 9850 ASSERT(bp != NULL); 9851 9852 /* 9853 * pageio_setup should have set b_addr to 0. This is correct since 9854 * we want to do I/O on a page boundary. bp_mapin() will use this addr 9855 * to calculate an offset, and then set b_addr to the kernel virtual 9856 * address it allocated for us. 9857 */ 9858 ASSERT(bp->b_un.b_addr == 0); 9859 9860 bp->b_edev = 0; 9861 bp->b_dev = 0; 9862 bp->b_lblkno = lbtodb(io_off); 9863 bp->b_file = vp; 9864 bp->b_offset = (offset_t)blkoff; 9865 bp_mapin(bp); 9866 9867 /* 9868 * If doing a write beyond what we believe is EOF, don't bother trying 9869 * to read the pages from the server, we'll just zero the pages here. 9870 * We don't check that the rw flag is S_WRITE here because some 9871 * implementations may attempt a read access to the buffer before 9872 * copying data. 9873 */ 9874 mutex_enter(&rp->r_statelock); 9875 if (io_off >= rp->r_size && seg == segkmap) { 9876 mutex_exit(&rp->r_statelock); 9877 bzero(bp->b_un.b_addr, io_len); 9878 error = 0; 9879 } else { 9880 mutex_exit(&rp->r_statelock); 9881 error = nfs4_bio(bp, NULL, cr, TRUE); 9882 if (error == NFS_EOF) 9883 error = 0; 9884 } 9885 9886 /* 9887 * Unmap the buffer before freeing it. 9888 */ 9889 bp_mapout(bp); 9890 pageio_done(bp); 9891 9892 savepp = pp; 9893 do { 9894 pp->p_fsdata = C_NOCOMMIT; 9895 } while ((pp = pp->p_next) != savepp); 9896 9897 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 9898 9899 /* 9900 * In case of error set readahead offset 9901 * to the lowest offset. 9902 * pvn_read_done() calls VN_DISPOSE to destroy the pages 9903 */ 9904 if (error && rp->r_nextr > io_off) { 9905 mutex_enter(&rp->r_statelock); 9906 if (rp->r_nextr > io_off) 9907 rp->r_nextr = io_off; 9908 mutex_exit(&rp->r_statelock); 9909 } 9910 } 9911 9912 /* 9913 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 9914 * If len == 0, do from off to EOF. 9915 * 9916 * The normal cases should be len == 0 && off == 0 (entire vp list) or 9917 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 9918 * (from pageout). 9919 */ 9920 static int 9921 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 9922 { 9923 int error; 9924 rnode4_t *rp; 9925 9926 ASSERT(cr != NULL); 9927 9928 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 9929 return (EIO); 9930 9931 rp = VTOR4(vp); 9932 if (IS_SHADOW(vp, rp)) 9933 vp = RTOV4(rp); 9934 9935 /* 9936 * XXX - Why should this check be made here? 9937 */ 9938 if (vp->v_flag & VNOMAP) 9939 return (ENOSYS); 9940 9941 if (len == 0 && !(flags & B_INVAL) && 9942 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 9943 return (0); 9944 9945 mutex_enter(&rp->r_statelock); 9946 rp->r_count++; 9947 mutex_exit(&rp->r_statelock); 9948 error = nfs4_putpages(vp, off, len, flags, cr); 9949 mutex_enter(&rp->r_statelock); 9950 rp->r_count--; 9951 cv_broadcast(&rp->r_cv); 9952 mutex_exit(&rp->r_statelock); 9953 9954 return (error); 9955 } 9956 9957 /* 9958 * Write out a single page, possibly klustering adjacent dirty pages. 9959 */ 9960 int 9961 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 9962 int flags, cred_t *cr) 9963 { 9964 u_offset_t io_off; 9965 u_offset_t lbn_off; 9966 u_offset_t lbn; 9967 size_t io_len; 9968 uint_t bsize; 9969 int error; 9970 rnode4_t *rp; 9971 9972 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 9973 ASSERT(pp != NULL); 9974 ASSERT(cr != NULL); 9975 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 9976 9977 rp = VTOR4(vp); 9978 ASSERT(rp->r_count > 0); 9979 ASSERT(!IS_SHADOW(vp, rp)); 9980 9981 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9982 lbn = pp->p_offset / bsize; 9983 lbn_off = lbn * bsize; 9984 9985 /* 9986 * Find a kluster that fits in one block, or in 9987 * one page if pages are bigger than blocks. If 9988 * there is less file space allocated than a whole 9989 * page, we'll shorten the i/o request below. 9990 */ 9991 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 9992 roundup(bsize, PAGESIZE), flags); 9993 9994 /* 9995 * pvn_write_kluster shouldn't have returned a page with offset 9996 * behind the original page we were given. Verify that. 9997 */ 9998 ASSERT((pp->p_offset / bsize) >= lbn); 9999 10000 /* 10001 * Now pp will have the list of kept dirty pages marked for 10002 * write back. It will also handle invalidation and freeing 10003 * of pages that are not dirty. Check for page length rounding 10004 * problems. 10005 */ 10006 if (io_off + io_len > lbn_off + bsize) { 10007 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10008 io_len = lbn_off + bsize - io_off; 10009 } 10010 /* 10011 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10012 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10013 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10014 * progress and the r_size has not been made consistent with the 10015 * new size of the file. When the uiomove() completes the r_size is 10016 * updated and the R4MODINPROGRESS flag is cleared. 10017 * 10018 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10019 * consistent value of r_size. Without this handshaking, it is 10020 * possible that nfs4_bio() picks up the old value of r_size 10021 * before the uiomove() in writerp4() completes. This will result 10022 * in the write through nfs4_bio() being dropped. 10023 * 10024 * More precisely, there is a window between the time the uiomove() 10025 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10026 * operation intervenes in this window, the page will be picked up, 10027 * because it is dirty (it will be unlocked, unless it was 10028 * pagecreate'd). When the page is picked up as dirty, the dirty 10029 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10030 * checked. This will still be the old size. Therefore the page will 10031 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10032 * the page will be found to be clean and the write will be dropped. 10033 */ 10034 if (rp->r_flags & R4MODINPROGRESS) { 10035 mutex_enter(&rp->r_statelock); 10036 if ((rp->r_flags & R4MODINPROGRESS) && 10037 rp->r_modaddr + MAXBSIZE > io_off && 10038 rp->r_modaddr < io_off + io_len) { 10039 page_t *plist; 10040 /* 10041 * A write is in progress for this region of the file. 10042 * If we did not detect R4MODINPROGRESS here then this 10043 * path through nfs_putapage() would eventually go to 10044 * nfs4_bio() and may not write out all of the data 10045 * in the pages. We end up losing data. So we decide 10046 * to set the modified bit on each page in the page 10047 * list and mark the rnode with R4DIRTY. This write 10048 * will be restarted at some later time. 10049 */ 10050 plist = pp; 10051 while (plist != NULL) { 10052 pp = plist; 10053 page_sub(&plist, pp); 10054 hat_setmod(pp); 10055 page_io_unlock(pp); 10056 page_unlock(pp); 10057 } 10058 rp->r_flags |= R4DIRTY; 10059 mutex_exit(&rp->r_statelock); 10060 if (offp) 10061 *offp = io_off; 10062 if (lenp) 10063 *lenp = io_len; 10064 return (0); 10065 } 10066 mutex_exit(&rp->r_statelock); 10067 } 10068 10069 if (flags & B_ASYNC) { 10070 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10071 nfs4_sync_putapage); 10072 } else 10073 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10074 10075 if (offp) 10076 *offp = io_off; 10077 if (lenp) 10078 *lenp = io_len; 10079 return (error); 10080 } 10081 10082 static int 10083 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10084 int flags, cred_t *cr) 10085 { 10086 int error; 10087 rnode4_t *rp; 10088 10089 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10090 10091 flags |= B_WRITE; 10092 10093 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10094 10095 rp = VTOR4(vp); 10096 10097 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10098 error == EACCES) && 10099 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10100 if (!(rp->r_flags & R4OUTOFSPACE)) { 10101 mutex_enter(&rp->r_statelock); 10102 rp->r_flags |= R4OUTOFSPACE; 10103 mutex_exit(&rp->r_statelock); 10104 } 10105 flags |= B_ERROR; 10106 pvn_write_done(pp, flags); 10107 /* 10108 * If this was not an async thread, then try again to 10109 * write out the pages, but this time, also destroy 10110 * them whether or not the write is successful. This 10111 * will prevent memory from filling up with these 10112 * pages and destroying them is the only alternative 10113 * if they can't be written out. 10114 * 10115 * Don't do this if this is an async thread because 10116 * when the pages are unlocked in pvn_write_done, 10117 * some other thread could have come along, locked 10118 * them, and queued for an async thread. It would be 10119 * possible for all of the async threads to be tied 10120 * up waiting to lock the pages again and they would 10121 * all already be locked and waiting for an async 10122 * thread to handle them. Deadlock. 10123 */ 10124 if (!(flags & B_ASYNC)) { 10125 error = nfs4_putpage(vp, io_off, io_len, 10126 B_INVAL | B_FORCE, cr); 10127 } 10128 } else { 10129 if (error) 10130 flags |= B_ERROR; 10131 else if (rp->r_flags & R4OUTOFSPACE) { 10132 mutex_enter(&rp->r_statelock); 10133 rp->r_flags &= ~R4OUTOFSPACE; 10134 mutex_exit(&rp->r_statelock); 10135 } 10136 pvn_write_done(pp, flags); 10137 if (freemem < desfree) 10138 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10139 NFS4_WRITE_NOWAIT); 10140 } 10141 10142 return (error); 10143 } 10144 10145 #ifdef DEBUG 10146 int nfs4_force_open_before_mmap = 0; 10147 #endif 10148 10149 static int 10150 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10151 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 10152 { 10153 struct segvn_crargs vn_a; 10154 int error = 0; 10155 rnode4_t *rp = VTOR4(vp); 10156 mntinfo4_t *mi = VTOMI4(vp); 10157 10158 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10159 return (EIO); 10160 10161 if (vp->v_flag & VNOMAP) 10162 return (ENOSYS); 10163 10164 if (off < 0 || (off + len) < 0) 10165 return (ENXIO); 10166 10167 if (vp->v_type != VREG) 10168 return (ENODEV); 10169 10170 /* 10171 * If the file is delegated to the client don't do anything. 10172 * If the file is not delegated, then validate the data cache. 10173 */ 10174 mutex_enter(&rp->r_statev4_lock); 10175 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10176 mutex_exit(&rp->r_statev4_lock); 10177 error = nfs4_validate_caches(vp, cr); 10178 if (error) 10179 return (error); 10180 } else { 10181 mutex_exit(&rp->r_statev4_lock); 10182 } 10183 10184 /* 10185 * Check to see if the vnode is currently marked as not cachable. 10186 * This means portions of the file are locked (through VOP_FRLOCK). 10187 * In this case the map request must be refused. We use 10188 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10189 */ 10190 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 10191 return (EINTR); 10192 10193 if (vp->v_flag & VNOCACHE) { 10194 error = EAGAIN; 10195 goto done; 10196 } 10197 10198 /* 10199 * Don't allow concurrent locks and mapping if mandatory locking is 10200 * enabled. 10201 */ 10202 if (flk_has_remote_locks(vp)) { 10203 struct vattr va; 10204 va.va_mask = AT_MODE; 10205 error = nfs4getattr(vp, &va, cr); 10206 if (error != 0) 10207 goto done; 10208 if (MANDLOCK(vp, va.va_mode)) { 10209 error = EAGAIN; 10210 goto done; 10211 } 10212 } 10213 10214 /* 10215 * It is possible that the rnode has a lost lock request that we 10216 * are still trying to recover, and that the request conflicts with 10217 * this map request. 10218 * 10219 * An alternative approach would be for nfs4_safemap() to consider 10220 * queued lock requests when deciding whether to set or clear 10221 * VNOCACHE. This would require the frlock code path to call 10222 * nfs4_safemap() after enqueing a lost request. 10223 */ 10224 if (nfs4_map_lost_lock_conflict(vp)) { 10225 error = EAGAIN; 10226 goto done; 10227 } 10228 10229 as_rangelock(as); 10230 if (!(flags & MAP_FIXED)) { 10231 map_addr(addrp, len, off, 1, flags); 10232 if (*addrp == NULL) { 10233 as_rangeunlock(as); 10234 error = ENOMEM; 10235 goto done; 10236 } 10237 } else { 10238 /* 10239 * User specified address - blow away any previous mappings 10240 */ 10241 (void) as_unmap(as, *addrp, len); 10242 } 10243 10244 if (vp->v_type == VREG) { 10245 /* 10246 * We need to retrieve the open stream 10247 */ 10248 nfs4_open_stream_t *osp = NULL; 10249 nfs4_open_owner_t *oop = NULL; 10250 10251 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10252 if (oop != NULL) { 10253 /* returns with 'os_sync_lock' held */ 10254 osp = find_open_stream(oop, rp); 10255 open_owner_rele(oop); 10256 } 10257 if (osp == NULL) { 10258 #ifdef DEBUG 10259 if (nfs4_force_open_before_mmap) { 10260 error = EIO; 10261 goto done; 10262 } 10263 #endif 10264 /* returns with 'os_sync_lock' held */ 10265 osp = open_and_get_osp(vp, cr, mi); 10266 if (osp == NULL) { 10267 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10268 "nfs4_map: we tried to OPEN the file " 10269 "but again no osp, so fail with EIO")); 10270 error = EIO; 10271 goto done; 10272 } 10273 } 10274 10275 if (osp->os_failed_reopen) { 10276 mutex_exit(&osp->os_sync_lock); 10277 open_stream_rele(osp, rp); 10278 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10279 "nfs4_map: os_failed_reopen set on " 10280 "osp %p, cr %p, rp %s", (void *)osp, 10281 (void *)cr, rnode4info(rp))); 10282 error = EIO; 10283 goto done; 10284 } 10285 mutex_exit(&osp->os_sync_lock); 10286 open_stream_rele(osp, rp); 10287 } 10288 10289 vn_a.vp = vp; 10290 vn_a.offset = off; 10291 vn_a.type = (flags & MAP_TYPE); 10292 vn_a.prot = (uchar_t)prot; 10293 vn_a.maxprot = (uchar_t)maxprot; 10294 vn_a.flags = (flags & ~MAP_TYPE); 10295 vn_a.cred = cr; 10296 vn_a.amp = NULL; 10297 vn_a.szc = 0; 10298 vn_a.lgrp_mem_policy_flags = 0; 10299 10300 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10301 as_rangeunlock(as); 10302 10303 done: 10304 nfs_rw_exit(&rp->r_lkserlock); 10305 return (error); 10306 } 10307 10308 /* 10309 * We're most likely dealing with a kernel module that likes to READ 10310 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10311 * officially OPEN the file to create the necessary client state 10312 * for bookkeeping of os_mmap_read/write counts. 10313 * 10314 * Since VOP_MAP only passes in a pointer to the vnode rather than 10315 * a double pointer, we can't handle the case where nfs4open_otw() 10316 * returns a different vnode than the one passed into VOP_MAP (since 10317 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10318 * we return NULL and let nfs4_map() fail. Note: the only case where 10319 * this should happen is if the file got removed and replaced with the 10320 * same name on the server (in addition to the fact that we're trying 10321 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10322 */ 10323 static nfs4_open_stream_t * 10324 open_and_get_osp(vnode_t *map_vp, cred_t *cr, mntinfo4_t *mi) 10325 { 10326 rnode4_t *rp, *drp; 10327 vnode_t *dvp, *open_vp; 10328 char *file_name; 10329 int just_created; 10330 nfs4_sharedfh_t *sfh; 10331 nfs4_open_stream_t *osp; 10332 nfs4_open_owner_t *oop; 10333 10334 open_vp = map_vp; 10335 sfh = (open_vp->v_flag & VROOT) ? mi->mi_srvparentfh : 10336 VTOSV(open_vp)->sv_dfh; 10337 drp = r4find_unlocked(sfh, open_vp->v_vfsp); 10338 if (!drp) 10339 return (NULL); 10340 10341 file_name = fn_name(VTOSV(open_vp)->sv_name); 10342 10343 rp = VTOR4(open_vp); 10344 dvp = RTOV4(drp); 10345 mutex_enter(&rp->r_statev4_lock); 10346 if (rp->created_v4) { 10347 rp->created_v4 = 0; 10348 mutex_exit(&rp->r_statev4_lock); 10349 10350 dnlc_update(dvp, file_name, open_vp); 10351 /* This is needed so we don't bump the open ref count */ 10352 just_created = 1; 10353 } else { 10354 mutex_exit(&rp->r_statev4_lock); 10355 just_created = 0; 10356 } 10357 10358 VN_HOLD(map_vp); 10359 10360 if (nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10361 just_created)) { 10362 kmem_free(file_name, MAXNAMELEN); 10363 VN_RELE(dvp); 10364 VN_RELE(map_vp); 10365 return (NULL); 10366 } 10367 10368 kmem_free(file_name, MAXNAMELEN); 10369 VN_RELE(dvp); 10370 10371 /* 10372 * If nfs4open_otw() returned a different vnode then "undo" 10373 * the open and return failure to the caller. 10374 */ 10375 if (!VN_CMP(open_vp, map_vp)) { 10376 nfs4_error_t e; 10377 10378 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10379 "open returned a different vnode")); 10380 /* 10381 * If there's an error, ignore it, 10382 * and let VOP_INACTIVE handle it. 10383 */ 10384 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10385 CLOSE_NORM, 0, 0, 0); 10386 VN_RELE(map_vp); 10387 return (NULL); 10388 } 10389 10390 VN_RELE(map_vp); 10391 10392 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10393 if (!oop) { 10394 nfs4_error_t e; 10395 10396 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10397 "no open owner")); 10398 /* 10399 * If there's an error, ignore it, 10400 * and let VOP_INACTIVE handle it. 10401 */ 10402 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10403 CLOSE_NORM, 0, 0, 0); 10404 return (NULL); 10405 } 10406 osp = find_open_stream(oop, rp); 10407 open_owner_rele(oop); 10408 return (osp); 10409 } 10410 10411 /* 10412 * Please be aware that when this function is called, the address space write 10413 * a_lock is held. Do not put over the wire calls in this function. 10414 */ 10415 /* ARGSUSED */ 10416 static int 10417 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10418 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 10419 { 10420 rnode4_t *rp; 10421 int error = 0; 10422 mntinfo4_t *mi; 10423 10424 mi = VTOMI4(vp); 10425 rp = VTOR4(vp); 10426 10427 if (nfs_zone() != mi->mi_zone) 10428 return (EIO); 10429 if (vp->v_flag & VNOMAP) 10430 return (ENOSYS); 10431 10432 /* 10433 * Need to hold rwlock while incrementing the mapcnt so that 10434 * mmap'ing can be serialized with writes so that the caching 10435 * can be handled correctly. 10436 * 10437 * Don't need to update the open stream first, since this 10438 * mmap can't add any additional share access that isn't 10439 * already contained in the open stream (for the case where we 10440 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10441 * take into account os_mmap_read[write] counts). 10442 */ 10443 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 10444 return (EINTR); 10445 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10446 nfs_rw_exit(&rp->r_rwlock); 10447 10448 if (vp->v_type == VREG) { 10449 /* 10450 * We need to retrieve the open stream and update the counts. 10451 * If there is no open stream here, something is wrong. 10452 */ 10453 nfs4_open_stream_t *osp = NULL; 10454 nfs4_open_owner_t *oop = NULL; 10455 10456 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10457 if (oop != NULL) { 10458 /* returns with 'os_sync_lock' held */ 10459 osp = find_open_stream(oop, rp); 10460 open_owner_rele(oop); 10461 } 10462 if (osp == NULL) { 10463 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10464 "nfs4_addmap: we should have an osp" 10465 "but we don't, so fail with EIO")); 10466 error = EIO; 10467 goto out; 10468 } 10469 10470 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10471 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10472 10473 /* 10474 * Update the map count in the open stream. 10475 * This is necessary in the case where we 10476 * open/mmap/close/, then the server reboots, and we 10477 * attempt to reopen. If the mmap doesn't add share 10478 * access then we send an invalid reopen with 10479 * access = NONE. 10480 * 10481 * We need to specifically check each PROT_* so a mmap 10482 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10483 * read and write access. A simple comparison of prot 10484 * to ~PROT_WRITE to determine read access is insufficient 10485 * since prot can be |= with PROT_USER, etc. 10486 */ 10487 10488 /* 10489 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10490 */ 10491 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10492 osp->os_mmap_write += btopr(len); 10493 if (maxprot & PROT_READ) 10494 osp->os_mmap_read += btopr(len); 10495 if (maxprot & PROT_EXEC) 10496 osp->os_mmap_read += btopr(len); 10497 /* 10498 * Ensure that os_mmap_read gets incremented, even if 10499 * maxprot were to look like PROT_NONE. 10500 */ 10501 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10502 !(maxprot & PROT_EXEC)) 10503 osp->os_mmap_read += btopr(len); 10504 osp->os_mapcnt += btopr(len); 10505 mutex_exit(&osp->os_sync_lock); 10506 open_stream_rele(osp, rp); 10507 } 10508 10509 out: 10510 /* 10511 * If we got an error, then undo our 10512 * incrementing of 'r_mapcnt'. 10513 */ 10514 10515 if (error) { 10516 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10517 ASSERT(rp->r_mapcnt >= 0); 10518 } 10519 return (error); 10520 } 10521 10522 static int 10523 nfs4_cmp(vnode_t *vp1, vnode_t *vp2) 10524 { 10525 10526 return (VTOR4(vp1) == VTOR4(vp2)); 10527 } 10528 10529 static int 10530 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10531 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr) 10532 { 10533 int rc; 10534 u_offset_t start, end; 10535 rnode4_t *rp; 10536 int error = 0, intr = INTR4(vp); 10537 nfs4_error_t e; 10538 10539 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10540 return (EIO); 10541 10542 /* check for valid cmd parameter */ 10543 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10544 return (EINVAL); 10545 10546 /* Verify l_type. */ 10547 switch (bfp->l_type) { 10548 case F_RDLCK: 10549 if (cmd != F_GETLK && !(flag & FREAD)) 10550 return (EBADF); 10551 break; 10552 case F_WRLCK: 10553 if (cmd != F_GETLK && !(flag & FWRITE)) 10554 return (EBADF); 10555 break; 10556 case F_UNLCK: 10557 intr = 0; 10558 break; 10559 10560 default: 10561 return (EINVAL); 10562 } 10563 10564 /* check the validity of the lock range */ 10565 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10566 return (rc); 10567 if (rc = flk_check_lock_data(start, end, MAXEND)) 10568 return (rc); 10569 10570 /* 10571 * If the filesystem is mounted using local locking, pass the 10572 * request off to the local locking code. 10573 */ 10574 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10575 if (cmd == F_SETLK || cmd == F_SETLKW) { 10576 /* 10577 * For complete safety, we should be holding 10578 * r_lkserlock. However, we can't call 10579 * nfs4_safelock and then fs_frlock while 10580 * holding r_lkserlock, so just invoke 10581 * nfs4_safelock and expect that this will 10582 * catch enough of the cases. 10583 */ 10584 if (!nfs4_safelock(vp, bfp, cr)) 10585 return (EAGAIN); 10586 } 10587 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 10588 } 10589 10590 rp = VTOR4(vp); 10591 10592 /* 10593 * Check whether the given lock request can proceed, given the 10594 * current file mappings. 10595 */ 10596 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10597 return (EINTR); 10598 if (cmd == F_SETLK || cmd == F_SETLKW) { 10599 if (!nfs4_safelock(vp, bfp, cr)) { 10600 rc = EAGAIN; 10601 goto done; 10602 } 10603 } 10604 10605 /* 10606 * Flush the cache after waiting for async I/O to finish. For new 10607 * locks, this is so that the process gets the latest bits from the 10608 * server. For unlocks, this is so that other clients see the 10609 * latest bits once the file has been unlocked. If currently dirty 10610 * pages can't be flushed, then don't allow a lock to be set. But 10611 * allow unlocks to succeed, to avoid having orphan locks on the 10612 * server. 10613 */ 10614 if (cmd != F_GETLK) { 10615 mutex_enter(&rp->r_statelock); 10616 while (rp->r_count > 0) { 10617 if (intr) { 10618 klwp_t *lwp = ttolwp(curthread); 10619 10620 if (lwp != NULL) 10621 lwp->lwp_nostop++; 10622 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) == 0) { 10623 if (lwp != NULL) 10624 lwp->lwp_nostop--; 10625 rc = EINTR; 10626 break; 10627 } 10628 if (lwp != NULL) 10629 lwp->lwp_nostop--; 10630 } else 10631 cv_wait(&rp->r_cv, &rp->r_statelock); 10632 } 10633 mutex_exit(&rp->r_statelock); 10634 if (rc != 0) 10635 goto done; 10636 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr); 10637 if (error) { 10638 if (error == ENOSPC || error == EDQUOT) { 10639 mutex_enter(&rp->r_statelock); 10640 if (!rp->r_error) 10641 rp->r_error = error; 10642 mutex_exit(&rp->r_statelock); 10643 } 10644 if (bfp->l_type != F_UNLCK) { 10645 rc = ENOLCK; 10646 goto done; 10647 } 10648 } 10649 } 10650 10651 /* 10652 * Call the lock manager to do the real work of contacting 10653 * the server and obtaining the lock. 10654 */ 10655 10656 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10657 cr, &e, NULL, NULL); 10658 rc = e.error; 10659 10660 if (rc == 0) 10661 nfs4_lockcompletion(vp, cmd); 10662 10663 done: 10664 nfs_rw_exit(&rp->r_lkserlock); 10665 10666 return (rc); 10667 } 10668 10669 /* 10670 * Free storage space associated with the specified vnode. The portion 10671 * to be freed is specified by bfp->l_start and bfp->l_len (already 10672 * normalized to a "whence" of 0). 10673 * 10674 * This is an experimental facility whose continued existence is not 10675 * guaranteed. Currently, we only support the special case 10676 * of l_len == 0, meaning free to end of file. 10677 */ 10678 /* ARGSUSED */ 10679 static int 10680 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10681 offset_t offset, cred_t *cr, caller_context_t *ct) 10682 { 10683 int error; 10684 10685 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10686 return (EIO); 10687 ASSERT(vp->v_type == VREG); 10688 if (cmd != F_FREESP) 10689 return (EINVAL); 10690 10691 error = convoff(vp, bfp, 0, offset); 10692 if (!error) { 10693 ASSERT(bfp->l_start >= 0); 10694 if (bfp->l_len == 0) { 10695 struct vattr va; 10696 10697 va.va_mask = AT_SIZE; 10698 va.va_size = bfp->l_start; 10699 error = nfs4setattr(vp, &va, 0, cr, NULL); 10700 } else 10701 error = EINVAL; 10702 } 10703 10704 return (error); 10705 } 10706 10707 /* ARGSUSED */ 10708 static int 10709 nfs4_realvp(vnode_t *vp, vnode_t **vpp) 10710 { 10711 return (EINVAL); 10712 } 10713 10714 /* 10715 * Setup and add an address space callback to do the work of the delmap call. 10716 * The callback will (and must be) deleted in the actual callback function. 10717 * 10718 * This is done in order to take care of the problem that we have with holding 10719 * the address space's a_lock for a long period of time (e.g. if the NFS server 10720 * is down). Callbacks will be executed in the address space code while the 10721 * a_lock is not held. Holding the address space's a_lock causes things such 10722 * as ps and fork to hang because they are trying to acquire this lock as well. 10723 */ 10724 /* ARGSUSED */ 10725 static int 10726 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10727 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 10728 { 10729 int caller_found; 10730 int error; 10731 rnode4_t *rp; 10732 nfs4_delmap_args_t *dmapp; 10733 nfs4_delmapcall_t *delmap_call; 10734 10735 if (vp->v_flag & VNOMAP) 10736 return (ENOSYS); 10737 10738 /* 10739 * A process may not change zones if it has NFS pages mmap'ed 10740 * in, so we can't legitimately get here from the wrong zone. 10741 */ 10742 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10743 10744 rp = VTOR4(vp); 10745 10746 /* 10747 * The way that the address space of this process deletes its mapping 10748 * of this file is via the following call chains: 10749 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10750 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10751 * 10752 * With the use of address space callbacks we are allowed to drop the 10753 * address space lock, a_lock, while executing the NFS operations that 10754 * need to go over the wire. Returning EAGAIN to the caller of this 10755 * function is what drives the execution of the callback that we add 10756 * below. The callback will be executed by the address space code 10757 * after dropping the a_lock. When the callback is finished, since 10758 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 10759 * is called again on the same segment to finish the rest of the work 10760 * that needs to happen during unmapping. 10761 * 10762 * This action of calling back into the segment driver causes 10763 * nfs4_delmap() to get called again, but since the callback was 10764 * already executed at this point, it already did the work and there 10765 * is nothing left for us to do. 10766 * 10767 * To Summarize: 10768 * - The first time nfs4_delmap is called by the current thread is when 10769 * we add the caller associated with this delmap to the delmap caller 10770 * list, add the callback, and return EAGAIN. 10771 * - The second time in this call chain when nfs4_delmap is called we 10772 * will find this caller in the delmap caller list and realize there 10773 * is no more work to do thus removing this caller from the list and 10774 * returning the error that was set in the callback execution. 10775 */ 10776 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 10777 if (caller_found) { 10778 /* 10779 * 'error' is from the actual delmap operations. To avoid 10780 * hangs, we need to handle the return of EAGAIN differently 10781 * since this is what drives the callback execution. 10782 * In this case, we don't want to return EAGAIN and do the 10783 * callback execution because there are none to execute. 10784 */ 10785 if (error == EAGAIN) 10786 return (0); 10787 else 10788 return (error); 10789 } 10790 10791 /* current caller was not in the list */ 10792 delmap_call = nfs4_init_delmapcall(); 10793 10794 mutex_enter(&rp->r_statelock); 10795 list_insert_tail(&rp->r_indelmap, delmap_call); 10796 mutex_exit(&rp->r_statelock); 10797 10798 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 10799 10800 dmapp->vp = vp; 10801 dmapp->off = off; 10802 dmapp->addr = addr; 10803 dmapp->len = len; 10804 dmapp->prot = prot; 10805 dmapp->maxprot = maxprot; 10806 dmapp->flags = flags; 10807 dmapp->cr = cr; 10808 dmapp->caller = delmap_call; 10809 10810 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 10811 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 10812 10813 return (error ? error : EAGAIN); 10814 } 10815 10816 static nfs4_delmapcall_t * 10817 nfs4_init_delmapcall() 10818 { 10819 nfs4_delmapcall_t *delmap_call; 10820 10821 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 10822 delmap_call->call_id = curthread; 10823 delmap_call->error = 0; 10824 10825 return (delmap_call); 10826 } 10827 10828 static void 10829 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 10830 { 10831 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 10832 } 10833 10834 /* 10835 * Searches for the current delmap caller (based on curthread) in the list of 10836 * callers. If it is found, we remove it and free the delmap caller. 10837 * Returns: 10838 * 0 if the caller wasn't found 10839 * 1 if the caller was found, removed and freed. *errp will be set 10840 * to what the result of the delmap was. 10841 */ 10842 static int 10843 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 10844 { 10845 nfs4_delmapcall_t *delmap_call; 10846 10847 /* 10848 * If the list doesn't exist yet, we create it and return 10849 * that the caller wasn't found. No list = no callers. 10850 */ 10851 mutex_enter(&rp->r_statelock); 10852 if (!(rp->r_flags & R4DELMAPLIST)) { 10853 /* The list does not exist */ 10854 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 10855 offsetof(nfs4_delmapcall_t, call_node)); 10856 rp->r_flags |= R4DELMAPLIST; 10857 mutex_exit(&rp->r_statelock); 10858 return (0); 10859 } else { 10860 /* The list exists so search it */ 10861 for (delmap_call = list_head(&rp->r_indelmap); 10862 delmap_call != NULL; 10863 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 10864 if (delmap_call->call_id == curthread) { 10865 /* current caller is in the list */ 10866 *errp = delmap_call->error; 10867 list_remove(&rp->r_indelmap, delmap_call); 10868 mutex_exit(&rp->r_statelock); 10869 nfs4_free_delmapcall(delmap_call); 10870 return (1); 10871 } 10872 } 10873 } 10874 mutex_exit(&rp->r_statelock); 10875 return (0); 10876 } 10877 10878 /* 10879 * Remove some pages from an mmap'd vnode. Just update the 10880 * count of pages. If doing close-to-open, then flush and 10881 * commit all of the pages associated with this file. 10882 * Otherwise, start an asynchronous page flush to write out 10883 * any dirty pages. This will also associate a credential 10884 * with the rnode which can be used to write the pages. 10885 */ 10886 /* ARGSUSED */ 10887 static void 10888 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 10889 { 10890 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 10891 rnode4_t *rp; 10892 mntinfo4_t *mi; 10893 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 10894 10895 rp = VTOR4(dmapp->vp); 10896 mi = VTOMI4(dmapp->vp); 10897 10898 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 10899 ASSERT(rp->r_mapcnt >= 0); 10900 10901 /* 10902 * Initiate a page flush and potential commit if there are 10903 * pages, the file system was not mounted readonly, the segment 10904 * was mapped shared, and the pages themselves were writeable. 10905 */ 10906 if (nfs4_has_pages(dmapp->vp) && 10907 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 10908 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 10909 mutex_enter(&rp->r_statelock); 10910 rp->r_flags |= R4DIRTY; 10911 mutex_exit(&rp->r_statelock); 10912 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 10913 dmapp->len, dmapp->cr); 10914 if (!e.error) { 10915 mutex_enter(&rp->r_statelock); 10916 e.error = rp->r_error; 10917 rp->r_error = 0; 10918 mutex_exit(&rp->r_statelock); 10919 } 10920 } else 10921 e.error = 0; 10922 10923 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 10924 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 10925 B_INVAL, dmapp->cr); 10926 10927 if (e.error) { 10928 e.stat = puterrno4(e.error); 10929 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 10930 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 10931 dmapp->caller->error = e.error; 10932 } 10933 10934 /* Check to see if we need to close the file */ 10935 10936 if (dmapp->vp->v_type == VREG) { 10937 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 10938 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 10939 10940 if (e.error != 0 || e.stat != NFS4_OK) { 10941 /* 10942 * Since it is possible that e.error == 0 and 10943 * e.stat != NFS4_OK (and vice versa), 10944 * we do the proper checking in order to get both 10945 * e.error and e.stat reporting the correct info. 10946 */ 10947 if (e.stat == NFS4_OK) 10948 e.stat = puterrno4(e.error); 10949 if (e.error == 0) 10950 e.error = geterrno4(e.stat); 10951 10952 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 10953 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 10954 dmapp->caller->error = e.error; 10955 } 10956 } 10957 10958 (void) as_delete_callback(as, arg); 10959 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 10960 } 10961 10962 10963 static uint_t 10964 fattr4_maxfilesize_to_bits(uint64_t ll) 10965 { 10966 uint_t l = 1; 10967 10968 if (ll == 0) { 10969 return (0); 10970 } 10971 10972 if (ll & 0xffffffff00000000) { 10973 l += 32; ll >>= 32; 10974 } 10975 if (ll & 0xffff0000) { 10976 l += 16; ll >>= 16; 10977 } 10978 if (ll & 0xff00) { 10979 l += 8; ll >>= 8; 10980 } 10981 if (ll & 0xf0) { 10982 l += 4; ll >>= 4; 10983 } 10984 if (ll & 0xc) { 10985 l += 2; ll >>= 2; 10986 } 10987 if (ll & 0x2) { 10988 l += 1; 10989 } 10990 return (l); 10991 } 10992 10993 static int 10994 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 10995 { 10996 int error; 10997 hrtime_t t; 10998 rnode4_t *rp; 10999 nfs4_ga_res_t gar; 11000 nfs4_ga_ext_res_t ger; 11001 11002 gar.n4g_ext_res = &ger; 11003 11004 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11005 return (EIO); 11006 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11007 *valp = MAXPATHLEN; 11008 return (0); 11009 } 11010 if (cmd == _PC_ACL_ENABLED) { 11011 *valp = _ACL_ACE_ENABLED; 11012 return (0); 11013 } 11014 11015 rp = VTOR4(vp); 11016 if (cmd == _PC_XATTR_EXISTS) { 11017 /* 11018 * Eventually should attempt small client readdir before 11019 * going otw with GETATTR(FATTR4_NAMED_ATTR). For now 11020 * just drive the OTW getattr. This is required because 11021 * _PC_XATTR_EXISTS can only return true if attributes 11022 * exist -- simply checking for existance of the attrdir 11023 * is not sufficient. 11024 * 11025 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11026 * is NULL. Once the xadir vp exists, we can create xattrs, 11027 * and we don't have any way to update the "base" object's 11028 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11029 * could help out. 11030 */ 11031 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11032 rp->r_xattr_dir == NULL) { 11033 *valp = rp->r_pathconf.pc4_xattr_exists; 11034 return (0); 11035 } 11036 } else { /* OLD CODE */ 11037 if (ATTRCACHE4_VALID(vp)) { 11038 mutex_enter(&rp->r_statelock); 11039 if (rp->r_pathconf.pc4_cache_valid) { 11040 error = 0; 11041 switch (cmd) { 11042 case _PC_FILESIZEBITS: 11043 *valp = 11044 rp->r_pathconf.pc4_filesizebits; 11045 break; 11046 case _PC_LINK_MAX: 11047 *valp = 11048 rp->r_pathconf.pc4_link_max; 11049 break; 11050 case _PC_NAME_MAX: 11051 *valp = 11052 rp->r_pathconf.pc4_name_max; 11053 break; 11054 case _PC_CHOWN_RESTRICTED: 11055 *valp = 11056 rp->r_pathconf.pc4_chown_restricted; 11057 break; 11058 case _PC_NO_TRUNC: 11059 *valp = 11060 rp->r_pathconf.pc4_no_trunc; 11061 break; 11062 default: 11063 error = EINVAL; 11064 break; 11065 } 11066 mutex_exit(&rp->r_statelock); 11067 #ifdef DEBUG 11068 nfs4_pathconf_cache_hits++; 11069 #endif 11070 return (error); 11071 } 11072 mutex_exit(&rp->r_statelock); 11073 } 11074 } 11075 #ifdef DEBUG 11076 nfs4_pathconf_cache_misses++; 11077 #endif 11078 11079 t = gethrtime(); 11080 11081 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11082 11083 if (error) { 11084 mutex_enter(&rp->r_statelock); 11085 rp->r_pathconf.pc4_cache_valid = FALSE; 11086 rp->r_pathconf.pc4_xattr_valid = FALSE; 11087 mutex_exit(&rp->r_statelock); 11088 return (error); 11089 } 11090 11091 /* interpret the max filesize */ 11092 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11093 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11094 11095 /* Store the attributes we just received */ 11096 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11097 11098 switch (cmd) { 11099 case _PC_FILESIZEBITS: 11100 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11101 break; 11102 case _PC_LINK_MAX: 11103 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11104 break; 11105 case _PC_NAME_MAX: 11106 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11107 break; 11108 case _PC_CHOWN_RESTRICTED: 11109 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11110 break; 11111 case _PC_NO_TRUNC: 11112 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11113 break; 11114 case _PC_XATTR_EXISTS: 11115 *valp = gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists; 11116 break; 11117 default: 11118 return (EINVAL); 11119 } 11120 11121 return (0); 11122 } 11123 11124 /* 11125 * Called by async thread to do synchronous pageio. Do the i/o, wait 11126 * for it to complete, and cleanup the page list when done. 11127 */ 11128 static int 11129 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11130 int flags, cred_t *cr) 11131 { 11132 int error; 11133 11134 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11135 11136 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11137 if (flags & B_READ) 11138 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11139 else 11140 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11141 return (error); 11142 } 11143 11144 static int 11145 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11146 int flags, cred_t *cr) 11147 { 11148 int error; 11149 rnode4_t *rp; 11150 11151 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11152 return (EIO); 11153 11154 if (pp == NULL) 11155 return (EINVAL); 11156 11157 rp = VTOR4(vp); 11158 mutex_enter(&rp->r_statelock); 11159 rp->r_count++; 11160 mutex_exit(&rp->r_statelock); 11161 11162 if (flags & B_ASYNC) { 11163 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11164 nfs4_sync_pageio); 11165 } else 11166 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11167 mutex_enter(&rp->r_statelock); 11168 rp->r_count--; 11169 cv_broadcast(&rp->r_cv); 11170 mutex_exit(&rp->r_statelock); 11171 return (error); 11172 } 11173 11174 static void 11175 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr) 11176 { 11177 int error; 11178 rnode4_t *rp; 11179 page_t *plist; 11180 page_t *pptr; 11181 offset3 offset; 11182 count3 len; 11183 k_sigset_t smask; 11184 11185 /* 11186 * We should get called with fl equal to either B_FREE or 11187 * B_INVAL. Any other value is illegal. 11188 * 11189 * The page that we are either supposed to free or destroy 11190 * should be exclusive locked and its io lock should not 11191 * be held. 11192 */ 11193 ASSERT(fl == B_FREE || fl == B_INVAL); 11194 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11195 11196 rp = VTOR4(vp); 11197 11198 /* 11199 * If the page doesn't need to be committed or we shouldn't 11200 * even bother attempting to commit it, then just make sure 11201 * that the p_fsdata byte is clear and then either free or 11202 * destroy the page as appropriate. 11203 */ 11204 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11205 pp->p_fsdata = C_NOCOMMIT; 11206 if (fl == B_FREE) 11207 page_free(pp, dn); 11208 else 11209 page_destroy(pp, dn); 11210 return; 11211 } 11212 11213 /* 11214 * If there is a page invalidation operation going on, then 11215 * if this is one of the pages being destroyed, then just 11216 * clear the p_fsdata byte and then either free or destroy 11217 * the page as appropriate. 11218 */ 11219 mutex_enter(&rp->r_statelock); 11220 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11221 mutex_exit(&rp->r_statelock); 11222 pp->p_fsdata = C_NOCOMMIT; 11223 if (fl == B_FREE) 11224 page_free(pp, dn); 11225 else 11226 page_destroy(pp, dn); 11227 return; 11228 } 11229 11230 /* 11231 * If we are freeing this page and someone else is already 11232 * waiting to do a commit, then just unlock the page and 11233 * return. That other thread will take care of commiting 11234 * this page. The page can be freed sometime after the 11235 * commit has finished. Otherwise, if the page is marked 11236 * as delay commit, then we may be getting called from 11237 * pvn_write_done, one page at a time. This could result 11238 * in one commit per page, so we end up doing lots of small 11239 * commits instead of fewer larger commits. This is bad, 11240 * we want do as few commits as possible. 11241 */ 11242 if (fl == B_FREE) { 11243 if (rp->r_flags & R4COMMITWAIT) { 11244 page_unlock(pp); 11245 mutex_exit(&rp->r_statelock); 11246 return; 11247 } 11248 if (pp->p_fsdata == C_DELAYCOMMIT) { 11249 pp->p_fsdata = C_COMMIT; 11250 page_unlock(pp); 11251 mutex_exit(&rp->r_statelock); 11252 return; 11253 } 11254 } 11255 11256 /* 11257 * Check to see if there is a signal which would prevent an 11258 * attempt to commit the pages from being successful. If so, 11259 * then don't bother with all of the work to gather pages and 11260 * generate the unsuccessful RPC. Just return from here and 11261 * let the page be committed at some later time. 11262 */ 11263 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11264 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11265 sigunintr(&smask); 11266 page_unlock(pp); 11267 mutex_exit(&rp->r_statelock); 11268 return; 11269 } 11270 sigunintr(&smask); 11271 11272 /* 11273 * We are starting to need to commit pages, so let's try 11274 * to commit as many as possible at once to reduce the 11275 * overhead. 11276 * 11277 * Set the `commit inprogress' state bit. We must 11278 * first wait until any current one finishes. Then 11279 * we initialize the c_pages list with this page. 11280 */ 11281 while (rp->r_flags & R4COMMIT) { 11282 rp->r_flags |= R4COMMITWAIT; 11283 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11284 rp->r_flags &= ~R4COMMITWAIT; 11285 } 11286 rp->r_flags |= R4COMMIT; 11287 mutex_exit(&rp->r_statelock); 11288 ASSERT(rp->r_commit.c_pages == NULL); 11289 rp->r_commit.c_pages = pp; 11290 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11291 rp->r_commit.c_commlen = PAGESIZE; 11292 11293 /* 11294 * Gather together all other pages which can be committed. 11295 * They will all be chained off r_commit.c_pages. 11296 */ 11297 nfs4_get_commit(vp); 11298 11299 /* 11300 * Clear the `commit inprogress' status and disconnect 11301 * the list of pages to be committed from the rnode. 11302 * At this same time, we also save the starting offset 11303 * and length of data to be committed on the server. 11304 */ 11305 plist = rp->r_commit.c_pages; 11306 rp->r_commit.c_pages = NULL; 11307 offset = rp->r_commit.c_commbase; 11308 len = rp->r_commit.c_commlen; 11309 mutex_enter(&rp->r_statelock); 11310 rp->r_flags &= ~R4COMMIT; 11311 cv_broadcast(&rp->r_commit.c_cv); 11312 mutex_exit(&rp->r_statelock); 11313 11314 if (curproc == proc_pageout || curproc == proc_fsflush || 11315 nfs_zone() != VTOMI4(vp)->mi_zone) { 11316 nfs4_async_commit(vp, plist, offset, len, 11317 cr, do_nfs4_async_commit); 11318 return; 11319 } 11320 11321 /* 11322 * Actually generate the COMMIT op over the wire operation. 11323 */ 11324 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11325 11326 /* 11327 * If we got an error during the commit, just unlock all 11328 * of the pages. The pages will get retransmitted to the 11329 * server during a putpage operation. 11330 */ 11331 if (error) { 11332 while (plist != NULL) { 11333 pptr = plist; 11334 page_sub(&plist, pptr); 11335 page_unlock(pptr); 11336 } 11337 return; 11338 } 11339 11340 /* 11341 * We've tried as hard as we can to commit the data to stable 11342 * storage on the server. We just unlock the rest of the pages 11343 * and clear the commit required state. They will be put 11344 * onto the tail of the cachelist if they are nolonger 11345 * mapped. 11346 */ 11347 while (plist != pp) { 11348 pptr = plist; 11349 page_sub(&plist, pptr); 11350 pptr->p_fsdata = C_NOCOMMIT; 11351 page_unlock(pptr); 11352 } 11353 11354 /* 11355 * It is possible that nfs4_commit didn't return error but 11356 * some other thread has modified the page we are going 11357 * to free/destroy. 11358 * In this case we need to rewrite the page. Do an explicit check 11359 * before attempting to free/destroy the page. If modified, needs to 11360 * be rewritten so unlock the page and return. 11361 */ 11362 if (hat_ismod(pp)) { 11363 pp->p_fsdata = C_NOCOMMIT; 11364 page_unlock(pp); 11365 return; 11366 } 11367 11368 /* 11369 * Now, as appropriate, either free or destroy the page 11370 * that we were called with. 11371 */ 11372 pp->p_fsdata = C_NOCOMMIT; 11373 if (fl == B_FREE) 11374 page_free(pp, dn); 11375 else 11376 page_destroy(pp, dn); 11377 } 11378 11379 /* 11380 * Commit requires that the current fh be the file written to. 11381 * The compound op structure is: 11382 * PUTFH(file), COMMIT 11383 */ 11384 static int 11385 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11386 { 11387 COMPOUND4args_clnt args; 11388 COMPOUND4res_clnt res; 11389 COMMIT4res *cm_res; 11390 nfs_argop4 argop[2]; 11391 nfs_resop4 *resop; 11392 int doqueue; 11393 mntinfo4_t *mi; 11394 rnode4_t *rp; 11395 cred_t *cred_otw = NULL; 11396 bool_t needrecov = FALSE; 11397 nfs4_recov_state_t recov_state; 11398 nfs4_open_stream_t *osp = NULL; 11399 bool_t first_time = TRUE; /* first time getting OTW cred */ 11400 bool_t last_time = FALSE; /* last time getting OTW cred */ 11401 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11402 11403 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11404 11405 rp = VTOR4(vp); 11406 11407 mi = VTOMI4(vp); 11408 recov_state.rs_flags = 0; 11409 recov_state.rs_num_retry_despite_err = 0; 11410 get_commit_cred: 11411 /* 11412 * Releases the osp, if a valid open stream is provided. 11413 * Puts a hold on the cred_otw and the new osp (if found). 11414 */ 11415 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11416 &first_time, &last_time); 11417 args.ctag = TAG_COMMIT; 11418 recov_retry: 11419 /* 11420 * Commit ops: putfh file; commit 11421 */ 11422 args.array_len = 2; 11423 args.array = argop; 11424 11425 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11426 &recov_state, NULL); 11427 if (e.error) { 11428 crfree(cred_otw); 11429 if (osp != NULL) 11430 open_stream_rele(osp, rp); 11431 return (e.error); 11432 } 11433 11434 /* putfh directory */ 11435 argop[0].argop = OP_CPUTFH; 11436 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11437 11438 /* commit */ 11439 argop[1].argop = OP_COMMIT; 11440 argop[1].nfs_argop4_u.opcommit.offset = offset; 11441 argop[1].nfs_argop4_u.opcommit.count = count; 11442 11443 doqueue = 1; 11444 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11445 11446 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11447 if (!needrecov && e.error) { 11448 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11449 needrecov); 11450 crfree(cred_otw); 11451 if (e.error == EACCES && last_time == FALSE) 11452 goto get_commit_cred; 11453 if (osp != NULL) 11454 open_stream_rele(osp, rp); 11455 return (e.error); 11456 } 11457 11458 if (needrecov) { 11459 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11460 NULL, OP_COMMIT, NULL) == FALSE) { 11461 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11462 &recov_state, needrecov); 11463 if (!e.error) 11464 (void) xdr_free(xdr_COMPOUND4res_clnt, 11465 (caddr_t)&res); 11466 goto recov_retry; 11467 } 11468 if (e.error) { 11469 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11470 &recov_state, needrecov); 11471 crfree(cred_otw); 11472 if (osp != NULL) 11473 open_stream_rele(osp, rp); 11474 return (e.error); 11475 } 11476 /* fall through for res.status case */ 11477 } 11478 11479 if (res.status) { 11480 e.error = geterrno4(res.status); 11481 if (e.error == EACCES && last_time == FALSE) { 11482 crfree(cred_otw); 11483 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11484 &recov_state, needrecov); 11485 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11486 goto get_commit_cred; 11487 } 11488 /* 11489 * Can't do a nfs4_purge_stale_fh here because this 11490 * can cause a deadlock. nfs4_commit can 11491 * be called from nfs4_dispose which can be called 11492 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11493 * can call back to pvn_vplist_dirty. 11494 */ 11495 if (e.error == ESTALE) { 11496 mutex_enter(&rp->r_statelock); 11497 rp->r_flags |= R4STALE; 11498 if (!rp->r_error) 11499 rp->r_error = e.error; 11500 mutex_exit(&rp->r_statelock); 11501 PURGE_ATTRCACHE4(vp); 11502 } else { 11503 mutex_enter(&rp->r_statelock); 11504 if (!rp->r_error) 11505 rp->r_error = e.error; 11506 mutex_exit(&rp->r_statelock); 11507 } 11508 } else { 11509 ASSERT(rp->r_flags & R4HAVEVERF); 11510 resop = &res.array[1]; /* commit res */ 11511 cm_res = &resop->nfs_resop4_u.opcommit; 11512 mutex_enter(&rp->r_statelock); 11513 if (cm_res->writeverf == rp->r_writeverf) { 11514 mutex_exit(&rp->r_statelock); 11515 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11516 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11517 &recov_state, needrecov); 11518 crfree(cred_otw); 11519 if (osp != NULL) 11520 open_stream_rele(osp, rp); 11521 return (0); 11522 } 11523 nfs4_set_mod(vp); 11524 rp->r_writeverf = cm_res->writeverf; 11525 mutex_exit(&rp->r_statelock); 11526 e.error = NFS_VERF_MISMATCH; 11527 } 11528 11529 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11530 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11531 crfree(cred_otw); 11532 if (osp != NULL) 11533 open_stream_rele(osp, rp); 11534 11535 return (e.error); 11536 } 11537 11538 static void 11539 nfs4_set_mod(vnode_t *vp) 11540 { 11541 page_t *pp; 11542 kmutex_t *vphm; 11543 rnode4_t *rp; 11544 11545 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11546 11547 /* make sure we're looking at the master vnode, not a shadow */ 11548 11549 rp = VTOR4(vp); 11550 if (IS_SHADOW(vp, rp)) 11551 vp = RTOV4(rp); 11552 11553 vphm = page_vnode_mutex(vp); 11554 mutex_enter(vphm); 11555 /* 11556 * If there are no pages associated with this vnode, then 11557 * just return. 11558 */ 11559 if ((pp = vp->v_pages) == NULL) { 11560 mutex_exit(vphm); 11561 return; 11562 } 11563 11564 do { 11565 if (pp->p_fsdata != C_NOCOMMIT) { 11566 hat_setmod(pp); 11567 pp->p_fsdata = C_NOCOMMIT; 11568 } 11569 } while ((pp = pp->p_vpnext) != vp->v_pages); 11570 mutex_exit(vphm); 11571 } 11572 11573 /* 11574 * This function is used to gather a page list of the pages which 11575 * can be committed on the server. 11576 * 11577 * The calling thread must have set R4COMMIT. This bit is used to 11578 * serialize access to the commit structure in the rnode. As long 11579 * as the thread has set R4COMMIT, then it can manipulate the commit 11580 * structure without requiring any other locks. 11581 * 11582 * When this function is called from nfs4_dispose() the page passed 11583 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11584 * will skip it. This is not a problem since we initially add the 11585 * page to the r_commit page list. 11586 * 11587 */ 11588 static void 11589 nfs4_get_commit(vnode_t *vp) 11590 { 11591 rnode4_t *rp; 11592 page_t *pp; 11593 kmutex_t *vphm; 11594 11595 rp = VTOR4(vp); 11596 11597 ASSERT(rp->r_flags & R4COMMIT); 11598 11599 /* make sure we're looking at the master vnode, not a shadow */ 11600 11601 if (IS_SHADOW(vp, rp)) 11602 vp = RTOV4(rp); 11603 11604 vphm = page_vnode_mutex(vp); 11605 mutex_enter(vphm); 11606 11607 /* 11608 * If there are no pages associated with this vnode, then 11609 * just return. 11610 */ 11611 if ((pp = vp->v_pages) == NULL) { 11612 mutex_exit(vphm); 11613 return; 11614 } 11615 11616 /* 11617 * Step through all of the pages associated with this vnode 11618 * looking for pages which need to be committed. 11619 */ 11620 do { 11621 /* 11622 * First short-cut everything (without the page_lock) 11623 * and see if this page does not need to be committed 11624 * or is modified if so then we'll just skip it. 11625 */ 11626 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11627 continue; 11628 11629 /* 11630 * Attempt to lock the page. If we can't, then 11631 * someone else is messing with it or we have been 11632 * called from nfs4_dispose and this is the page that 11633 * nfs4_dispose was called with.. anyway just skip it. 11634 */ 11635 if (!page_trylock(pp, SE_EXCL)) 11636 continue; 11637 11638 /* 11639 * Lets check again now that we have the page lock. 11640 */ 11641 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11642 page_unlock(pp); 11643 continue; 11644 } 11645 11646 /* this had better not be a free page */ 11647 ASSERT(PP_ISFREE(pp) == 0); 11648 11649 /* 11650 * The page needs to be committed and we locked it. 11651 * Update the base and length parameters and add it 11652 * to r_pages. 11653 */ 11654 if (rp->r_commit.c_pages == NULL) { 11655 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11656 rp->r_commit.c_commlen = PAGESIZE; 11657 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11658 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11659 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11660 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11661 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11662 <= pp->p_offset) { 11663 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11664 rp->r_commit.c_commbase + PAGESIZE; 11665 } 11666 page_add(&rp->r_commit.c_pages, pp); 11667 } while ((pp = pp->p_vpnext) != vp->v_pages); 11668 11669 mutex_exit(vphm); 11670 } 11671 11672 /* 11673 * This routine is used to gather together a page list of the pages 11674 * which are to be committed on the server. This routine must not 11675 * be called if the calling thread holds any locked pages. 11676 * 11677 * The calling thread must have set R4COMMIT. This bit is used to 11678 * serialize access to the commit structure in the rnode. As long 11679 * as the thread has set R4COMMIT, then it can manipulate the commit 11680 * structure without requiring any other locks. 11681 */ 11682 static void 11683 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11684 { 11685 11686 rnode4_t *rp; 11687 page_t *pp; 11688 u_offset_t end; 11689 u_offset_t off; 11690 ASSERT(len != 0); 11691 rp = VTOR4(vp); 11692 ASSERT(rp->r_flags & R4COMMIT); 11693 11694 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11695 11696 /* make sure we're looking at the master vnode, not a shadow */ 11697 11698 if (IS_SHADOW(vp, rp)) 11699 vp = RTOV4(rp); 11700 11701 /* 11702 * If there are no pages associated with this vnode, then 11703 * just return. 11704 */ 11705 if ((pp = vp->v_pages) == NULL) 11706 return; 11707 /* 11708 * Calculate the ending offset. 11709 */ 11710 end = soff + len; 11711 for (off = soff; off < end; off += PAGESIZE) { 11712 /* 11713 * Lookup each page by vp, offset. 11714 */ 11715 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 11716 continue; 11717 /* 11718 * If this page does not need to be committed or is 11719 * modified, then just skip it. 11720 */ 11721 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11722 page_unlock(pp); 11723 continue; 11724 } 11725 11726 ASSERT(PP_ISFREE(pp) == 0); 11727 /* 11728 * The page needs to be committed and we locked it. 11729 * Update the base and length parameters and add it 11730 * to r_pages. 11731 */ 11732 if (rp->r_commit.c_pages == NULL) { 11733 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11734 rp->r_commit.c_commlen = PAGESIZE; 11735 } else { 11736 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11737 rp->r_commit.c_commbase + PAGESIZE; 11738 } 11739 page_add(&rp->r_commit.c_pages, pp); 11740 } 11741 } 11742 11743 /* 11744 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 11745 * Flushes and commits data to the server. 11746 */ 11747 static int 11748 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 11749 { 11750 int error; 11751 verifier4 write_verf; 11752 rnode4_t *rp = VTOR4(vp); 11753 11754 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11755 11756 /* 11757 * Flush the data portion of the file and then commit any 11758 * portions which need to be committed. This may need to 11759 * be done twice if the server has changed state since 11760 * data was last written. The data will need to be 11761 * rewritten to the server and then a new commit done. 11762 * 11763 * In fact, this may need to be done several times if the 11764 * server is having problems and crashing while we are 11765 * attempting to do this. 11766 */ 11767 11768 top: 11769 /* 11770 * Do a flush based on the poff and plen arguments. This 11771 * will synchronously write out any modified pages in the 11772 * range specified by (poff, plen). This starts all of the 11773 * i/o operations which will be waited for in the next 11774 * call to nfs4_putpage 11775 */ 11776 11777 mutex_enter(&rp->r_statelock); 11778 write_verf = rp->r_writeverf; 11779 mutex_exit(&rp->r_statelock); 11780 11781 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr); 11782 if (error == EAGAIN) 11783 error = 0; 11784 11785 /* 11786 * Do a flush based on the poff and plen arguments. This 11787 * will synchronously write out any modified pages in the 11788 * range specified by (poff, plen) and wait until all of 11789 * the asynchronous i/o's in that range are done as well. 11790 */ 11791 if (!error) 11792 error = nfs4_putpage(vp, poff, plen, 0, cr); 11793 11794 if (error) 11795 return (error); 11796 11797 mutex_enter(&rp->r_statelock); 11798 if (rp->r_writeverf != write_verf) { 11799 mutex_exit(&rp->r_statelock); 11800 goto top; 11801 } 11802 mutex_exit(&rp->r_statelock); 11803 11804 /* 11805 * Now commit any pages which might need to be committed. 11806 * If the error, NFS_VERF_MISMATCH, is returned, then 11807 * start over with the flush operation. 11808 */ 11809 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 11810 11811 if (error == NFS_VERF_MISMATCH) 11812 goto top; 11813 11814 return (error); 11815 } 11816 11817 /* 11818 * nfs4_commit_vp() will wait for other pending commits and 11819 * will either commit the whole file or a range, plen dictates 11820 * if we commit whole file. a value of zero indicates the whole 11821 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 11822 */ 11823 static int 11824 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 11825 cred_t *cr, int wait_on_writes) 11826 { 11827 rnode4_t *rp; 11828 page_t *plist; 11829 offset3 offset; 11830 count3 len; 11831 11832 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11833 11834 rp = VTOR4(vp); 11835 11836 /* 11837 * before we gather commitable pages make 11838 * sure there are no outstanding async writes 11839 */ 11840 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 11841 mutex_enter(&rp->r_statelock); 11842 while (rp->r_count > 0) { 11843 cv_wait(&rp->r_cv, &rp->r_statelock); 11844 } 11845 mutex_exit(&rp->r_statelock); 11846 } 11847 11848 /* 11849 * Set the `commit inprogress' state bit. We must 11850 * first wait until any current one finishes. 11851 */ 11852 mutex_enter(&rp->r_statelock); 11853 while (rp->r_flags & R4COMMIT) { 11854 rp->r_flags |= R4COMMITWAIT; 11855 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11856 rp->r_flags &= ~R4COMMITWAIT; 11857 } 11858 rp->r_flags |= R4COMMIT; 11859 mutex_exit(&rp->r_statelock); 11860 11861 /* 11862 * Gather all of the pages which need to be 11863 * committed. 11864 */ 11865 if (plen == 0) 11866 nfs4_get_commit(vp); 11867 else 11868 nfs4_get_commit_range(vp, poff, plen); 11869 11870 /* 11871 * Clear the `commit inprogress' bit and disconnect the 11872 * page list which was gathered by nfs4_get_commit. 11873 */ 11874 plist = rp->r_commit.c_pages; 11875 rp->r_commit.c_pages = NULL; 11876 offset = rp->r_commit.c_commbase; 11877 len = rp->r_commit.c_commlen; 11878 mutex_enter(&rp->r_statelock); 11879 rp->r_flags &= ~R4COMMIT; 11880 cv_broadcast(&rp->r_commit.c_cv); 11881 mutex_exit(&rp->r_statelock); 11882 11883 /* 11884 * If any pages need to be committed, commit them and 11885 * then unlock them so that they can be freed some 11886 * time later. 11887 */ 11888 if (plist == NULL) 11889 return (0); 11890 11891 /* 11892 * No error occurred during the flush portion 11893 * of this operation, so now attempt to commit 11894 * the data to stable storage on the server. 11895 * 11896 * This will unlock all of the pages on the list. 11897 */ 11898 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 11899 } 11900 11901 static int 11902 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 11903 cred_t *cr) 11904 { 11905 int error; 11906 page_t *pp; 11907 11908 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11909 11910 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 11911 11912 /* 11913 * If we got an error, then just unlock all of the pages 11914 * on the list. 11915 */ 11916 if (error) { 11917 while (plist != NULL) { 11918 pp = plist; 11919 page_sub(&plist, pp); 11920 page_unlock(pp); 11921 } 11922 return (error); 11923 } 11924 /* 11925 * We've tried as hard as we can to commit the data to stable 11926 * storage on the server. We just unlock the pages and clear 11927 * the commit required state. They will get freed later. 11928 */ 11929 while (plist != NULL) { 11930 pp = plist; 11931 page_sub(&plist, pp); 11932 pp->p_fsdata = C_NOCOMMIT; 11933 page_unlock(pp); 11934 } 11935 11936 return (error); 11937 } 11938 11939 static void 11940 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 11941 cred_t *cr) 11942 { 11943 11944 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 11945 } 11946 11947 /*ARGSUSED*/ 11948 static int 11949 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 11950 { 11951 int error = 0; 11952 mntinfo4_t *mi; 11953 vattr_t va; 11954 vsecattr_t nfsace4_vsap; 11955 11956 mi = VTOMI4(vp); 11957 if (nfs_zone() != mi->mi_zone) 11958 return (EIO); 11959 if (mi->mi_flags & MI4_ACL) { 11960 /* if we have a delegation, return it */ 11961 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 11962 (void) nfs4delegreturn(VTOR4(vp), 11963 NFS4_DR_REOPEN|NFS4_DR_PUSH); 11964 11965 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 11966 NFS4_ACL_SET); 11967 if (error) /* EINVAL */ 11968 return (error); 11969 11970 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 11971 /* 11972 * These are aclent_t type entries. 11973 */ 11974 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 11975 vp->v_type == VDIR, FALSE); 11976 if (error) 11977 return (error); 11978 } else { 11979 /* 11980 * These are ace_t type entries. 11981 */ 11982 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 11983 FALSE); 11984 if (error) 11985 return (error); 11986 } 11987 bzero(&va, sizeof (va)); 11988 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 11989 vs_ace4_destroy(&nfsace4_vsap); 11990 return (error); 11991 } 11992 return (ENOSYS); 11993 } 11994 11995 static int 11996 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 11997 { 11998 int error; 11999 mntinfo4_t *mi; 12000 nfs4_ga_res_t gar; 12001 rnode4_t *rp = VTOR4(vp); 12002 12003 mi = VTOMI4(vp); 12004 if (nfs_zone() != mi->mi_zone) 12005 return (EIO); 12006 12007 bzero(&gar, sizeof (gar)); 12008 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12009 12010 /* 12011 * vsecattr->vsa_mask holds the original acl request mask. 12012 * This is needed when determining what to return. 12013 * (See: nfs4_create_getsecattr_return()) 12014 */ 12015 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12016 if (error) /* EINVAL */ 12017 return (error); 12018 12019 if (mi->mi_flags & MI4_ACL) { 12020 /* 12021 * Check if the data is cached and the cache is valid. If it 12022 * is we don't go over the wire. 12023 */ 12024 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12025 mutex_enter(&rp->r_statelock); 12026 if (rp->r_secattr != NULL) { 12027 error = nfs4_create_getsecattr_return( 12028 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12029 rp->r_attr.va_gid, 12030 vp->v_type == VDIR); 12031 if (!error) { /* error == 0 - Success! */ 12032 mutex_exit(&rp->r_statelock); 12033 return (error); 12034 } 12035 } 12036 mutex_exit(&rp->r_statelock); 12037 } 12038 12039 /* 12040 * The getattr otw call will always get both the acl, in 12041 * the form of a list of nfsace4's, and the number of acl 12042 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12043 */ 12044 gar.n4g_va.va_mask = AT_ALL; 12045 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12046 if (error) { 12047 vs_ace4_destroy(&gar.n4g_vsa); 12048 if (error == ENOTSUP || error == EOPNOTSUPP) 12049 error = fs_fab_acl(vp, vsecattr, flag, cr); 12050 return (error); 12051 } 12052 12053 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12054 /* 12055 * No error was returned, but according to the response 12056 * bitmap, neither was an acl. 12057 */ 12058 vs_ace4_destroy(&gar.n4g_vsa); 12059 error = fs_fab_acl(vp, vsecattr, flag, cr); 12060 return (error); 12061 } 12062 12063 /* 12064 * Update the cache with the ACL. 12065 */ 12066 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12067 12068 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12069 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12070 vp->v_type == VDIR); 12071 vs_ace4_destroy(&gar.n4g_vsa); 12072 if ((error) && (vsecattr->vsa_mask & 12073 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12074 (error != EACCES)) { 12075 error = fs_fab_acl(vp, vsecattr, flag, cr); 12076 } 12077 return (error); 12078 } 12079 error = fs_fab_acl(vp, vsecattr, flag, cr); 12080 return (error); 12081 } 12082 12083 /* 12084 * The function returns: 12085 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12086 * - EINVAL if the passed in "acl_mask" is an invalid request. 12087 * 12088 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12089 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12090 * 12091 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12092 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12093 * - We have a count field set without the corresponding acl field set. (e.g. - 12094 * VSA_ACECNT is set, but VSA_ACE is not) 12095 */ 12096 static int 12097 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12098 { 12099 /* Shortcut the masks that are always valid. */ 12100 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12101 return (0); 12102 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12103 return (0); 12104 12105 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12106 /* 12107 * We can't have any VSA_ACL type stuff in the mask now. 12108 */ 12109 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12110 VSA_DFACLCNT)) 12111 return (EINVAL); 12112 12113 if (op == NFS4_ACL_SET) { 12114 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12115 return (EINVAL); 12116 } 12117 } 12118 12119 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12120 /* 12121 * We can't have any VSA_ACE type stuff in the mask now. 12122 */ 12123 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12124 return (EINVAL); 12125 12126 if (op == NFS4_ACL_SET) { 12127 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12128 return (EINVAL); 12129 12130 if ((acl_mask & VSA_DFACLCNT) && 12131 !(acl_mask & VSA_DFACL)) 12132 return (EINVAL); 12133 } 12134 } 12135 return (0); 12136 } 12137 12138 /* 12139 * The theory behind creating the correct getsecattr return is simply this: 12140 * "Don't return anything that the caller is not expecting to have to free." 12141 */ 12142 static int 12143 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12144 uid_t uid, gid_t gid, int isdir) 12145 { 12146 int error = 0; 12147 /* Save the mask since the translators modify it. */ 12148 uint_t orig_mask = vsap->vsa_mask; 12149 12150 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12151 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, 12152 FALSE, ((orig_mask & VSA_ACE) ? FALSE : TRUE)); 12153 12154 if (error) 12155 return (error); 12156 12157 /* 12158 * If the caller only asked for the ace count (VSA_ACECNT) 12159 * don't give them the full acl (VSA_ACE), free it. 12160 */ 12161 if (!orig_mask & VSA_ACE) { 12162 if (vsap->vsa_aclentp != NULL) { 12163 kmem_free(vsap->vsa_aclentp, 12164 vsap->vsa_aclcnt * sizeof (ace_t)); 12165 vsap->vsa_aclentp = NULL; 12166 } 12167 } 12168 vsap->vsa_mask = orig_mask; 12169 12170 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12171 VSA_DFACLCNT)) { 12172 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12173 isdir, FALSE, 12174 ((orig_mask & (VSA_ACL | VSA_DFACL)) ? FALSE : TRUE)); 12175 12176 if (error) 12177 return (error); 12178 12179 /* 12180 * If the caller only asked for the acl count (VSA_ACLCNT) 12181 * and/or the default acl count (VSA_DFACLCNT) don't give them 12182 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12183 */ 12184 if (!orig_mask & VSA_ACL) { 12185 if (vsap->vsa_aclentp != NULL) { 12186 kmem_free(vsap->vsa_aclentp, 12187 vsap->vsa_aclcnt * sizeof (aclent_t)); 12188 vsap->vsa_aclentp = NULL; 12189 } 12190 } 12191 12192 if (!orig_mask & VSA_DFACL) { 12193 if (vsap->vsa_dfaclentp != NULL) { 12194 kmem_free(vsap->vsa_dfaclentp, 12195 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12196 vsap->vsa_dfaclentp = NULL; 12197 } 12198 } 12199 vsap->vsa_mask = orig_mask; 12200 } 12201 return (0); 12202 } 12203 12204 static int 12205 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr) 12206 { 12207 int error; 12208 12209 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12210 return (EIO); 12211 /* 12212 * check for valid cmd parameter 12213 */ 12214 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12215 return (EINVAL); 12216 12217 /* 12218 * Check access permissions 12219 */ 12220 if ((cmd & F_SHARE) && 12221 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12222 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12223 return (EBADF); 12224 12225 /* 12226 * If the filesystem is mounted using local locking, pass the 12227 * request off to the local share code. 12228 */ 12229 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12230 return (fs_shrlock(vp, cmd, shr, flag, cr)); 12231 12232 switch (cmd) { 12233 case F_SHARE: 12234 case F_UNSHARE: 12235 /* 12236 * This will be properly implemented later, 12237 * see RFE: 4823948 . 12238 */ 12239 error = EAGAIN; 12240 break; 12241 12242 case F_HASREMOTELOCKS: 12243 /* 12244 * NFS client can't store remote locks itself 12245 */ 12246 shr->s_access = 0; 12247 error = 0; 12248 break; 12249 12250 default: 12251 error = EINVAL; 12252 break; 12253 } 12254 12255 return (error); 12256 } 12257 12258 /* 12259 * Common code called by directory ops to update the attrcache 12260 */ 12261 static int 12262 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12263 hrtime_t t, vnode_t *vp, cred_t *cr) 12264 { 12265 int error = 0; 12266 12267 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12268 12269 if (status != NFS4_OK) { 12270 /* getattr not done or failed */ 12271 PURGE_ATTRCACHE4(vp); 12272 return (error); 12273 } 12274 12275 if (garp) { 12276 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12277 } else { 12278 PURGE_ATTRCACHE4(vp); 12279 } 12280 return (error); 12281 } 12282 12283 /* 12284 * Update directory caches for directory modification ops (link, rename, etc.) 12285 * When dinfo is NULL, manage dircaches in the old way. 12286 */ 12287 static void 12288 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12289 dirattr_info_t *dinfo) 12290 { 12291 rnode4_t *drp = VTOR4(dvp); 12292 12293 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12294 12295 /* Purge rddir cache for dir since it changed */ 12296 if (drp->r_dir != NULL) 12297 nfs4_purge_rddir_cache(dvp); 12298 12299 /* 12300 * If caller provided dinfo, then use it to manage dir caches. 12301 */ 12302 if (dinfo != NULL) { 12303 if (vp != NULL) { 12304 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12305 if (!VTOR4(vp)->created_v4) { 12306 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12307 dnlc_update(dvp, nm, vp); 12308 } else { 12309 /* 12310 * XXX don't update if the created_v4 flag is 12311 * set 12312 */ 12313 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12314 NFS4_DEBUG(nfs4_client_state_debug, 12315 (CE_NOTE, "nfs4_update_dircaches: " 12316 "don't update dnlc: created_v4 flag")); 12317 } 12318 } 12319 12320 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12321 dinfo->di_cred, FALSE, cinfo); 12322 12323 return; 12324 } 12325 12326 /* 12327 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12328 * Since caller modified dir but didn't receive post-dirmod-op dir 12329 * attrs, the dir's attrs must be purged. 12330 * 12331 * XXX this check and dnlc update/purge should really be atomic, 12332 * XXX but can't use rnode statelock because it'll deadlock in 12333 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12334 * XXX does occur. 12335 * 12336 * XXX We also may want to check that atomic is true in the 12337 * XXX change_info struct. If it is not, the change_info may 12338 * XXX reflect changes by more than one clients which means that 12339 * XXX our cache may not be valid. 12340 */ 12341 PURGE_ATTRCACHE4(dvp); 12342 if (drp->r_change == cinfo->before) { 12343 /* no changes took place in the directory prior to our link */ 12344 if (vp != NULL) { 12345 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12346 if (!VTOR4(vp)->created_v4) { 12347 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12348 dnlc_update(dvp, nm, vp); 12349 } else { 12350 /* 12351 * XXX dont' update if the created_v4 flag 12352 * is set 12353 */ 12354 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12355 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12356 "nfs4_update_dircaches: don't" 12357 " update dnlc: created_v4 flag")); 12358 } 12359 } 12360 } else { 12361 /* Another client modified directory - purge its dnlc cache */ 12362 dnlc_purge_vp(dvp); 12363 } 12364 } 12365 12366 /* 12367 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12368 * file. 12369 * 12370 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12371 * file (ie: client recovery) and otherwise set to FALSE. 12372 * 12373 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12374 * initiated) calling functions. 12375 * 12376 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12377 * of resending a 'lost' open request. 12378 * 12379 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12380 * server that hands out BAD_SEQID on open confirm. 12381 * 12382 * Errors are returned via the nfs4_error_t parameter. 12383 */ 12384 void 12385 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12386 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12387 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12388 { 12389 COMPOUND4args_clnt args; 12390 COMPOUND4res_clnt res; 12391 nfs_argop4 argop[2]; 12392 nfs_resop4 *resop; 12393 int doqueue = 1; 12394 mntinfo4_t *mi; 12395 OPEN_CONFIRM4args *open_confirm_args; 12396 int needrecov; 12397 12398 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12399 #if DEBUG 12400 mutex_enter(&oop->oo_lock); 12401 ASSERT(oop->oo_seqid_inuse); 12402 mutex_exit(&oop->oo_lock); 12403 #endif 12404 12405 recov_retry_confirm: 12406 nfs4_error_zinit(ep); 12407 *retry_open = FALSE; 12408 12409 if (resend) 12410 args.ctag = TAG_OPEN_CONFIRM_LOST; 12411 else 12412 args.ctag = TAG_OPEN_CONFIRM; 12413 12414 args.array_len = 2; 12415 args.array = argop; 12416 12417 /* putfh target fh */ 12418 argop[0].argop = OP_CPUTFH; 12419 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12420 12421 argop[1].argop = OP_OPEN_CONFIRM; 12422 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12423 12424 (*seqid) += 1; 12425 open_confirm_args->seqid = *seqid; 12426 open_confirm_args->open_stateid = *stateid; 12427 12428 mi = VTOMI4(vp); 12429 12430 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12431 12432 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12433 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12434 } 12435 12436 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12437 if (!needrecov && ep->error) 12438 return; 12439 12440 if (needrecov) { 12441 bool_t abort = FALSE; 12442 12443 if (reopening_file == FALSE) { 12444 nfs4_bseqid_entry_t *bsep = NULL; 12445 12446 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12447 bsep = nfs4_create_bseqid_entry(oop, NULL, 12448 vp, 0, args.ctag, 12449 open_confirm_args->seqid); 12450 12451 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, 12452 NULL, NULL, NULL, OP_OPEN_CONFIRM, bsep); 12453 if (bsep) { 12454 kmem_free(bsep, sizeof (*bsep)); 12455 if (num_bseqid_retryp && 12456 --(*num_bseqid_retryp) == 0) 12457 abort = TRUE; 12458 } 12459 } 12460 if ((ep->error == ETIMEDOUT || 12461 res.status == NFS4ERR_RESOURCE) && 12462 abort == FALSE && resend == FALSE) { 12463 if (!ep->error) 12464 (void) xdr_free(xdr_COMPOUND4res_clnt, 12465 (caddr_t)&res); 12466 12467 delay(SEC_TO_TICK(confirm_retry_sec)); 12468 goto recov_retry_confirm; 12469 } 12470 /* State may have changed so retry the entire OPEN op */ 12471 if (abort == FALSE) 12472 *retry_open = TRUE; 12473 else 12474 *retry_open = FALSE; 12475 if (!ep->error) 12476 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12477 return; 12478 } 12479 12480 if (res.status) { 12481 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12482 return; 12483 } 12484 12485 resop = &res.array[1]; /* open confirm res */ 12486 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12487 stateid, sizeof (*stateid)); 12488 12489 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12490 } 12491 12492 /* 12493 * Return the credentials associated with a client state object. The 12494 * caller is responsible for freeing the credentials. 12495 */ 12496 12497 static cred_t * 12498 state_to_cred(nfs4_open_stream_t *osp) 12499 { 12500 cred_t *cr; 12501 12502 /* 12503 * It's ok to not lock the open stream and open owner to get 12504 * the oo_cred since this is only written once (upon creation) 12505 * and will not change. 12506 */ 12507 cr = osp->os_open_owner->oo_cred; 12508 crhold(cr); 12509 12510 return (cr); 12511 } 12512 12513 /* 12514 * nfs4_find_sysid 12515 * 12516 * Find the sysid for the knetconfig associated with the given mi. 12517 */ 12518 static struct lm_sysid * 12519 nfs4_find_sysid(mntinfo4_t *mi) 12520 { 12521 ASSERT(nfs_zone() == mi->mi_zone); 12522 12523 /* 12524 * Switch from RDMA knconf to original mount knconf 12525 */ 12526 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12527 mi->mi_curr_serv->sv_hostname, NULL)); 12528 } 12529 12530 #ifdef DEBUG 12531 /* 12532 * Return a string version of the call type for easy reading. 12533 */ 12534 static char * 12535 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12536 { 12537 switch (ctype) { 12538 case NFS4_LCK_CTYPE_NORM: 12539 return ("NORMAL"); 12540 case NFS4_LCK_CTYPE_RECLAIM: 12541 return ("RECLAIM"); 12542 case NFS4_LCK_CTYPE_RESEND: 12543 return ("RESEND"); 12544 case NFS4_LCK_CTYPE_REINSTATE: 12545 return ("REINSTATE"); 12546 default: 12547 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12548 "type %d", ctype); 12549 return (""); 12550 } 12551 } 12552 #endif 12553 12554 /* 12555 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12556 * Unlock requests don't have an over-the-wire locktype, so we just return 12557 * something non-threatening. 12558 */ 12559 12560 static nfs_lock_type4 12561 flk_to_locktype(int cmd, int l_type) 12562 { 12563 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12564 12565 switch (l_type) { 12566 case F_UNLCK: 12567 return (READ_LT); 12568 case F_RDLCK: 12569 if (cmd == F_SETLK) 12570 return (READ_LT); 12571 else 12572 return (READW_LT); 12573 case F_WRLCK: 12574 if (cmd == F_SETLK) 12575 return (WRITE_LT); 12576 else 12577 return (WRITEW_LT); 12578 } 12579 panic("flk_to_locktype"); 12580 /*NOTREACHED*/ 12581 } 12582 12583 /* 12584 * Do some preliminary checks for nfs4frlock. 12585 */ 12586 static int 12587 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12588 u_offset_t offset) 12589 { 12590 int error = 0; 12591 12592 /* 12593 * If we are setting a lock, check that the file is opened 12594 * with the correct mode. 12595 */ 12596 if (cmd == F_SETLK || cmd == F_SETLKW) { 12597 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12598 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12599 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12600 "nfs4frlock_validate_args: file was opened with " 12601 "incorrect mode")); 12602 return (EBADF); 12603 } 12604 } 12605 12606 /* Convert the offset. It may need to be restored before returning. */ 12607 if (error = convoff(vp, flk, 0, offset)) { 12608 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12609 "nfs4frlock_validate_args: convoff => error= %d\n", 12610 error)); 12611 return (error); 12612 } 12613 12614 return (error); 12615 } 12616 12617 /* 12618 * Set the flock64's lm_sysid for nfs4frlock. 12619 */ 12620 static int 12621 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12622 { 12623 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12624 12625 /* Find the lm_sysid */ 12626 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12627 12628 if (*lspp == NULL) { 12629 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12630 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12631 return (ENOLCK); 12632 } 12633 12634 flk->l_sysid = lm_sysidt(*lspp); 12635 12636 return (0); 12637 } 12638 12639 /* 12640 * Do the remaining preliminary setup for nfs4frlock. 12641 */ 12642 static void 12643 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12644 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12645 cred_t **cred_otw) 12646 { 12647 /* 12648 * set tick_delay to the base delay time. 12649 * (NFS4_BASE_WAIT_TIME is in secs) 12650 */ 12651 12652 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12653 12654 /* 12655 * If lock is relative to EOF, we need the newest length of the 12656 * file. Therefore invalidate the ATTR_CACHE. 12657 */ 12658 12659 *whencep = flk->l_whence; 12660 12661 if (*whencep == 2) /* SEEK_END */ 12662 PURGE_ATTRCACHE4(vp); 12663 12664 recov_statep->rs_flags = 0; 12665 recov_statep->rs_num_retry_despite_err = 0; 12666 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12667 } 12668 12669 /* 12670 * Initialize and allocate the data structures necessary for 12671 * the nfs4frlock call. 12672 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12673 */ 12674 static void 12675 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12676 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12677 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12678 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 12679 { 12680 int argoplist_size; 12681 int num_ops = 2; 12682 12683 *retry = FALSE; 12684 *did_start_fop = FALSE; 12685 *skip_get_err = FALSE; 12686 lost_rqstp->lr_op = 0; 12687 argoplist_size = num_ops * sizeof (nfs_argop4); 12688 /* fill array with zero */ 12689 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 12690 12691 *argspp = argsp; 12692 *respp = NULL; 12693 12694 argsp->array_len = num_ops; 12695 argsp->array = *argopp; 12696 12697 /* initialize in case of error; will get real value down below */ 12698 argsp->ctag = TAG_NONE; 12699 12700 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 12701 *op_hintp = OH_LOCKU; 12702 else 12703 *op_hintp = OH_OTHER; 12704 } 12705 12706 /* 12707 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 12708 * the proper nfs4_server_t for this instance of nfs4frlock. 12709 * Returns 0 (success) or an errno value. 12710 */ 12711 static int 12712 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 12713 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 12714 bool_t *did_start_fop, bool_t *startrecovp) 12715 { 12716 int error = 0; 12717 rnode4_t *rp; 12718 12719 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12720 12721 if (ctype == NFS4_LCK_CTYPE_NORM) { 12722 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 12723 recov_statep, startrecovp); 12724 if (error) 12725 return (error); 12726 *did_start_fop = TRUE; 12727 } else { 12728 *did_start_fop = FALSE; 12729 *startrecovp = FALSE; 12730 } 12731 12732 if (!error) { 12733 rp = VTOR4(vp); 12734 12735 /* If the file failed recovery, just quit. */ 12736 mutex_enter(&rp->r_statelock); 12737 if (rp->r_flags & R4RECOVERR) { 12738 error = EIO; 12739 } 12740 mutex_exit(&rp->r_statelock); 12741 } 12742 12743 return (error); 12744 } 12745 12746 /* 12747 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 12748 * resend nfs4frlock call is initiated by the recovery framework. 12749 * Acquires the lop and oop seqid synchronization. 12750 */ 12751 static void 12752 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 12753 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 12754 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 12755 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 12756 { 12757 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 12758 int error; 12759 12760 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 12761 (CE_NOTE, 12762 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 12763 ASSERT(resend_rqstp != NULL); 12764 ASSERT(resend_rqstp->lr_op == OP_LOCK || 12765 resend_rqstp->lr_op == OP_LOCKU); 12766 12767 *oopp = resend_rqstp->lr_oop; 12768 if (resend_rqstp->lr_oop) { 12769 open_owner_hold(resend_rqstp->lr_oop); 12770 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 12771 ASSERT(error == 0); /* recov thread always succeeds */ 12772 } 12773 12774 /* Must resend this lost lock/locku request. */ 12775 ASSERT(resend_rqstp->lr_lop != NULL); 12776 *lopp = resend_rqstp->lr_lop; 12777 lock_owner_hold(resend_rqstp->lr_lop); 12778 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 12779 ASSERT(error == 0); /* recov thread always succeeds */ 12780 12781 *ospp = resend_rqstp->lr_osp; 12782 if (*ospp) 12783 open_stream_hold(resend_rqstp->lr_osp); 12784 12785 if (resend_rqstp->lr_op == OP_LOCK) { 12786 LOCK4args *lock_args; 12787 12788 argop->argop = OP_LOCK; 12789 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 12790 lock_args->locktype = resend_rqstp->lr_locktype; 12791 lock_args->reclaim = 12792 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 12793 lock_args->offset = resend_rqstp->lr_flk->l_start; 12794 lock_args->length = resend_rqstp->lr_flk->l_len; 12795 if (lock_args->length == 0) 12796 lock_args->length = ~lock_args->length; 12797 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 12798 mi2clientid(mi), &lock_args->locker); 12799 12800 switch (resend_rqstp->lr_ctype) { 12801 case NFS4_LCK_CTYPE_RESEND: 12802 argsp->ctag = TAG_LOCK_RESEND; 12803 break; 12804 case NFS4_LCK_CTYPE_REINSTATE: 12805 argsp->ctag = TAG_LOCK_REINSTATE; 12806 break; 12807 case NFS4_LCK_CTYPE_RECLAIM: 12808 argsp->ctag = TAG_LOCK_RECLAIM; 12809 break; 12810 default: 12811 argsp->ctag = TAG_LOCK_UNKNOWN; 12812 break; 12813 } 12814 } else { 12815 LOCKU4args *locku_args; 12816 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 12817 12818 argop->argop = OP_LOCKU; 12819 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 12820 locku_args->locktype = READ_LT; 12821 locku_args->seqid = lop->lock_seqid + 1; 12822 mutex_enter(&lop->lo_lock); 12823 locku_args->lock_stateid = lop->lock_stateid; 12824 mutex_exit(&lop->lo_lock); 12825 locku_args->offset = resend_rqstp->lr_flk->l_start; 12826 locku_args->length = resend_rqstp->lr_flk->l_len; 12827 if (locku_args->length == 0) 12828 locku_args->length = ~locku_args->length; 12829 12830 switch (resend_rqstp->lr_ctype) { 12831 case NFS4_LCK_CTYPE_RESEND: 12832 argsp->ctag = TAG_LOCKU_RESEND; 12833 break; 12834 case NFS4_LCK_CTYPE_REINSTATE: 12835 argsp->ctag = TAG_LOCKU_REINSTATE; 12836 break; 12837 default: 12838 argsp->ctag = TAG_LOCK_UNKNOWN; 12839 break; 12840 } 12841 } 12842 } 12843 12844 /* 12845 * Setup the LOCKT4 arguments. 12846 */ 12847 static void 12848 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 12849 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 12850 rnode4_t *rp) 12851 { 12852 LOCKT4args *lockt_args; 12853 12854 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 12855 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 12856 argop->argop = OP_LOCKT; 12857 argsp->ctag = TAG_LOCKT; 12858 lockt_args = &argop->nfs_argop4_u.oplockt; 12859 12860 /* 12861 * The locktype will be READ_LT unless it's 12862 * a write lock. We do this because the Solaris 12863 * system call allows the combination of 12864 * F_UNLCK and F_GETLK* and so in that case the 12865 * unlock is mapped to a read. 12866 */ 12867 if (flk->l_type == F_WRLCK) 12868 lockt_args->locktype = WRITE_LT; 12869 else 12870 lockt_args->locktype = READ_LT; 12871 12872 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 12873 /* set the lock owner4 args */ 12874 nfs4_setlockowner_args(&lockt_args->owner, rp, 12875 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 12876 flk->l_pid); 12877 lockt_args->offset = flk->l_start; 12878 lockt_args->length = flk->l_len; 12879 if (flk->l_len == 0) 12880 lockt_args->length = ~lockt_args->length; 12881 12882 *lockt_argsp = lockt_args; 12883 } 12884 12885 /* 12886 * If the client is holding a delegation, and the open stream to be used 12887 * with this lock request is a delegation open stream, then re-open the stream. 12888 * Sets the nfs4_error_t to all zeros unless the open stream has already 12889 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 12890 * means the caller should retry (like a recovery retry). 12891 */ 12892 static void 12893 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 12894 { 12895 open_delegation_type4 dt; 12896 bool_t reopen_needed, force; 12897 nfs4_open_stream_t *osp; 12898 open_claim_type4 oclaim; 12899 rnode4_t *rp = VTOR4(vp); 12900 mntinfo4_t *mi = VTOMI4(vp); 12901 12902 ASSERT(nfs_zone() == mi->mi_zone); 12903 12904 nfs4_error_zinit(ep); 12905 12906 mutex_enter(&rp->r_statev4_lock); 12907 dt = rp->r_deleg_type; 12908 mutex_exit(&rp->r_statev4_lock); 12909 12910 if (dt != OPEN_DELEGATE_NONE) { 12911 nfs4_open_owner_t *oop; 12912 12913 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 12914 if (!oop) { 12915 ep->stat = NFS4ERR_IO; 12916 return; 12917 } 12918 /* returns with 'os_sync_lock' held */ 12919 osp = find_open_stream(oop, rp); 12920 if (!osp) { 12921 open_owner_rele(oop); 12922 ep->stat = NFS4ERR_IO; 12923 return; 12924 } 12925 12926 if (osp->os_failed_reopen) { 12927 NFS4_DEBUG((nfs4_open_stream_debug || 12928 nfs4_client_lock_debug), (CE_NOTE, 12929 "nfs4frlock_check_deleg: os_failed_reopen set " 12930 "for osp %p, cr %p, rp %s", (void *)osp, 12931 (void *)cr, rnode4info(rp))); 12932 mutex_exit(&osp->os_sync_lock); 12933 open_stream_rele(osp, rp); 12934 open_owner_rele(oop); 12935 ep->stat = NFS4ERR_IO; 12936 return; 12937 } 12938 12939 /* 12940 * Determine whether a reopen is needed. If this 12941 * is a delegation open stream, then send the open 12942 * to the server to give visibility to the open owner. 12943 * Even if it isn't a delegation open stream, we need 12944 * to check if the previous open CLAIM_DELEGATE_CUR 12945 * was sufficient. 12946 */ 12947 12948 reopen_needed = osp->os_delegation || 12949 ((lt == F_RDLCK && 12950 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 12951 (lt == F_WRLCK && 12952 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 12953 12954 mutex_exit(&osp->os_sync_lock); 12955 open_owner_rele(oop); 12956 12957 if (reopen_needed) { 12958 /* 12959 * Always use CLAIM_PREVIOUS after server reboot. 12960 * The server will reject CLAIM_DELEGATE_CUR if 12961 * it is used during the grace period. 12962 */ 12963 mutex_enter(&mi->mi_lock); 12964 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 12965 oclaim = CLAIM_PREVIOUS; 12966 force = TRUE; 12967 } else { 12968 oclaim = CLAIM_DELEGATE_CUR; 12969 force = FALSE; 12970 } 12971 mutex_exit(&mi->mi_lock); 12972 12973 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 12974 if (ep->error == EAGAIN) { 12975 nfs4_error_zinit(ep); 12976 ep->stat = NFS4ERR_DELAY; 12977 } 12978 } 12979 open_stream_rele(osp, rp); 12980 osp = NULL; 12981 } 12982 } 12983 12984 /* 12985 * Setup the LOCKU4 arguments. 12986 * Returns errors via the nfs4_error_t. 12987 * NFS4_OK no problems. *go_otwp is TRUE if call should go 12988 * over-the-wire. The caller must release the 12989 * reference on *lopp. 12990 * NFS4ERR_DELAY caller should retry (like recovery retry) 12991 * (other) unrecoverable error. 12992 */ 12993 static void 12994 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 12995 LOCKU4args **locku_argsp, flock64_t *flk, 12996 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 12997 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 12998 bool_t *skip_get_err, bool_t *go_otwp) 12999 { 13000 nfs4_lock_owner_t *lop = NULL; 13001 LOCKU4args *locku_args; 13002 pid_t pid; 13003 bool_t is_spec = FALSE; 13004 rnode4_t *rp = VTOR4(vp); 13005 13006 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13007 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13008 13009 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13010 if (ep->error || ep->stat) 13011 return; 13012 13013 argop->argop = OP_LOCKU; 13014 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13015 argsp->ctag = TAG_LOCKU_REINSTATE; 13016 else 13017 argsp->ctag = TAG_LOCKU; 13018 locku_args = &argop->nfs_argop4_u.oplocku; 13019 *locku_argsp = locku_args; 13020 13021 /* 13022 * XXX what should locku_args->locktype be? 13023 * setting to ALWAYS be READ_LT so at least 13024 * it is a valid locktype. 13025 */ 13026 13027 locku_args->locktype = READ_LT; 13028 13029 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13030 flk->l_pid; 13031 13032 /* 13033 * Get the lock owner stateid. If no lock owner 13034 * exists, return success. 13035 */ 13036 lop = find_lock_owner(rp, pid, LOWN_ANY); 13037 *lopp = lop; 13038 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13039 is_spec = TRUE; 13040 if (!lop || is_spec) { 13041 /* 13042 * No lock owner so no locks to unlock. 13043 * Return success. If there was a failed 13044 * reclaim earlier, the lock might still be 13045 * registered with the local locking code, 13046 * so notify it of the unlock. 13047 * 13048 * If the lockowner is using a special stateid, 13049 * then the original lock request (that created 13050 * this lockowner) was never successful, so we 13051 * have no lock to undo OTW. 13052 */ 13053 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13054 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13055 "(%ld) so return success", (long)pid)); 13056 13057 if (ctype == NFS4_LCK_CTYPE_NORM) 13058 flk->l_pid = curproc->p_pid; 13059 nfs4_register_lock_locally(vp, flk, flag, offset); 13060 /* 13061 * Release our hold and NULL out so final_cleanup 13062 * doesn't try to end a lock seqid sync we 13063 * never started. 13064 */ 13065 if (is_spec) { 13066 lock_owner_rele(lop); 13067 *lopp = NULL; 13068 } 13069 *skip_get_err = TRUE; 13070 *go_otwp = FALSE; 13071 return; 13072 } 13073 13074 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13075 if (ep->error == EAGAIN) { 13076 lock_owner_rele(lop); 13077 *lopp = NULL; 13078 return; 13079 } 13080 13081 mutex_enter(&lop->lo_lock); 13082 locku_args->lock_stateid = lop->lock_stateid; 13083 mutex_exit(&lop->lo_lock); 13084 locku_args->seqid = lop->lock_seqid + 1; 13085 13086 /* leave the ref count on lop, rele after RPC call */ 13087 13088 locku_args->offset = flk->l_start; 13089 locku_args->length = flk->l_len; 13090 if (flk->l_len == 0) 13091 locku_args->length = ~locku_args->length; 13092 13093 *go_otwp = TRUE; 13094 } 13095 13096 /* 13097 * Setup the LOCK4 arguments. 13098 * 13099 * Returns errors via the nfs4_error_t. 13100 * NFS4_OK no problems 13101 * NFS4ERR_DELAY caller should retry (like recovery retry) 13102 * (other) unrecoverable error 13103 */ 13104 static void 13105 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13106 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13107 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13108 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13109 { 13110 LOCK4args *lock_args; 13111 nfs4_open_owner_t *oop = NULL; 13112 nfs4_open_stream_t *osp = NULL; 13113 nfs4_lock_owner_t *lop = NULL; 13114 pid_t pid; 13115 rnode4_t *rp = VTOR4(vp); 13116 13117 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13118 13119 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13120 if (ep->error || ep->stat != NFS4_OK) 13121 return; 13122 13123 argop->argop = OP_LOCK; 13124 if (ctype == NFS4_LCK_CTYPE_NORM) 13125 argsp->ctag = TAG_LOCK; 13126 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13127 argsp->ctag = TAG_RELOCK; 13128 else 13129 argsp->ctag = TAG_LOCK_REINSTATE; 13130 lock_args = &argop->nfs_argop4_u.oplock; 13131 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13132 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13133 /* 13134 * Get the lock owner. If no lock owner exists, 13135 * create a 'temporary' one and grab the open seqid 13136 * synchronization (which puts a hold on the open 13137 * owner and open stream). 13138 * This also grabs the lock seqid synchronization. 13139 */ 13140 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13141 ep->stat = 13142 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13143 13144 if (ep->stat != NFS4_OK) 13145 goto out; 13146 13147 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13148 &lock_args->locker); 13149 13150 lock_args->offset = flk->l_start; 13151 lock_args->length = flk->l_len; 13152 if (flk->l_len == 0) 13153 lock_args->length = ~lock_args->length; 13154 *lock_argsp = lock_args; 13155 out: 13156 *oopp = oop; 13157 *ospp = osp; 13158 *lopp = lop; 13159 } 13160 13161 /* 13162 * After we get the reply from the server, record the proper information 13163 * for possible resend lock requests. 13164 * 13165 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13166 */ 13167 static void 13168 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13169 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13170 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13171 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13172 { 13173 bool_t unlock = (flk->l_type == F_UNLCK); 13174 13175 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13176 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13177 ctype == NFS4_LCK_CTYPE_REINSTATE); 13178 13179 if (error != 0 && !unlock) { 13180 NFS4_DEBUG((nfs4_lost_rqst_debug || 13181 nfs4_client_lock_debug), (CE_NOTE, 13182 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13183 " for lop %p", (void *)lop)); 13184 ASSERT(lop != NULL); 13185 mutex_enter(&lop->lo_lock); 13186 lop->lo_pending_rqsts = 1; 13187 mutex_exit(&lop->lo_lock); 13188 } 13189 13190 lost_rqstp->lr_putfirst = FALSE; 13191 lost_rqstp->lr_op = 0; 13192 13193 /* 13194 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13195 * recovery purposes so that the lock request that was sent 13196 * can be saved and re-issued later. Ditto for EIO from a forced 13197 * unmount. This is done to have the client's local locking state 13198 * match the v4 server's state; that is, the request was 13199 * potentially received and accepted by the server but the client 13200 * thinks it was not. 13201 */ 13202 if (error == ETIMEDOUT || error == EINTR || 13203 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13204 NFS4_DEBUG((nfs4_lost_rqst_debug || 13205 nfs4_client_lock_debug), (CE_NOTE, 13206 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13207 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13208 (void *)lop, (void *)oop, (void *)osp)); 13209 if (unlock) 13210 lost_rqstp->lr_op = OP_LOCKU; 13211 else { 13212 lost_rqstp->lr_op = OP_LOCK; 13213 lost_rqstp->lr_locktype = locktype; 13214 } 13215 /* 13216 * Objects are held and rele'd via the recovery code. 13217 * See nfs4_save_lost_rqst. 13218 */ 13219 lost_rqstp->lr_vp = vp; 13220 lost_rqstp->lr_dvp = NULL; 13221 lost_rqstp->lr_oop = oop; 13222 lost_rqstp->lr_osp = osp; 13223 lost_rqstp->lr_lop = lop; 13224 lost_rqstp->lr_cr = cr; 13225 switch (ctype) { 13226 case NFS4_LCK_CTYPE_NORM: 13227 flk->l_pid = ttoproc(curthread)->p_pid; 13228 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13229 break; 13230 case NFS4_LCK_CTYPE_REINSTATE: 13231 lost_rqstp->lr_putfirst = TRUE; 13232 lost_rqstp->lr_ctype = ctype; 13233 break; 13234 default: 13235 break; 13236 } 13237 lost_rqstp->lr_flk = flk; 13238 } 13239 } 13240 13241 /* 13242 * Update lop's seqid. Also update the seqid stored in a resend request, 13243 * if any. (Some recovery errors increment the seqid, and we may have to 13244 * send the resend request again.) 13245 */ 13246 13247 static void 13248 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13249 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13250 { 13251 if (lock_args) { 13252 if (lock_args->locker.new_lock_owner == TRUE) 13253 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13254 else { 13255 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13256 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13257 } 13258 } else if (locku_args) { 13259 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13260 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13261 } 13262 } 13263 13264 /* 13265 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13266 * COMPOUND4 args/res for calls that need to retry. 13267 * Switches the *cred_otwp to base_cr. 13268 */ 13269 static void 13270 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13271 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13272 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13273 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13274 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13275 { 13276 nfs4_open_owner_t *oop = *oopp; 13277 nfs4_open_stream_t *osp = *ospp; 13278 nfs4_lock_owner_t *lop = *lopp; 13279 nfs_argop4 *argop = (*argspp)->array; 13280 13281 if (*did_start_fop) { 13282 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13283 needrecov); 13284 *did_start_fop = FALSE; 13285 } 13286 ASSERT((*argspp)->array_len == 2); 13287 if (argop[1].argop == OP_LOCK) 13288 nfs4args_lock_free(&argop[1]); 13289 else if (argop[1].argop == OP_LOCKT) 13290 nfs4args_lockt_free(&argop[1]); 13291 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13292 if (!error) 13293 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13294 *argspp = NULL; 13295 *respp = NULL; 13296 13297 if (lop) { 13298 nfs4_end_lock_seqid_sync(lop); 13299 lock_owner_rele(lop); 13300 *lopp = NULL; 13301 } 13302 13303 /* need to free up the reference on osp for lock args */ 13304 if (osp != NULL) { 13305 open_stream_rele(osp, VTOR4(vp)); 13306 *ospp = NULL; 13307 } 13308 13309 /* need to free up the reference on oop for lock args */ 13310 if (oop != NULL) { 13311 nfs4_end_open_seqid_sync(oop); 13312 open_owner_rele(oop); 13313 *oopp = NULL; 13314 } 13315 13316 crfree(*cred_otwp); 13317 *cred_otwp = base_cr; 13318 crhold(*cred_otwp); 13319 } 13320 13321 /* 13322 * Function to process the client's recovery for nfs4frlock. 13323 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13324 * 13325 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13326 * COMPOUND4 args/res for calls that need to retry. 13327 * 13328 * Note: the rp's r_lkserlock is *not* dropped during this path. 13329 */ 13330 static bool_t 13331 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13332 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13333 LOCK4args *lock_args, LOCKU4args *locku_args, 13334 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13335 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13336 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13337 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13338 { 13339 nfs4_open_owner_t *oop = *oopp; 13340 nfs4_open_stream_t *osp = *ospp; 13341 nfs4_lock_owner_t *lop = *lopp; 13342 13343 bool_t abort, retry; 13344 13345 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13346 ASSERT((*argspp) != NULL); 13347 ASSERT((*respp) != NULL); 13348 if (lock_args || locku_args) 13349 ASSERT(lop != NULL); 13350 13351 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13352 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13353 13354 retry = TRUE; 13355 abort = FALSE; 13356 if (needrecov) { 13357 nfs4_bseqid_entry_t *bsep = NULL; 13358 nfs_opnum4 op; 13359 13360 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13361 13362 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13363 seqid4 seqid; 13364 13365 if (lock_args) { 13366 if (lock_args->locker.new_lock_owner == TRUE) 13367 seqid = lock_args->locker.locker4_u. 13368 open_owner.open_seqid; 13369 else 13370 seqid = lock_args->locker.locker4_u. 13371 lock_owner.lock_seqid; 13372 } else if (locku_args) { 13373 seqid = locku_args->seqid; 13374 } else { 13375 seqid = 0; 13376 } 13377 13378 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13379 flk->l_pid, (*argspp)->ctag, seqid); 13380 } 13381 13382 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13383 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13384 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13385 NULL, op, bsep); 13386 13387 if (bsep) 13388 kmem_free(bsep, sizeof (*bsep)); 13389 } 13390 13391 /* 13392 * Return that we do not want to retry the request for 3 cases: 13393 * 1. If we received EINTR or are bailing out because of a forced 13394 * unmount, we came into this code path just for the sake of 13395 * initiating recovery, we now need to return the error. 13396 * 2. If we have aborted recovery. 13397 * 3. We received NFS4ERR_BAD_SEQID. 13398 */ 13399 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13400 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13401 retry = FALSE; 13402 13403 if (*did_start_fop == TRUE) { 13404 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13405 needrecov); 13406 *did_start_fop = FALSE; 13407 } 13408 13409 if (retry == TRUE) { 13410 nfs_argop4 *argop; 13411 13412 argop = (*argspp)->array; 13413 ASSERT((*argspp)->array_len == 2); 13414 13415 if (argop[1].argop == OP_LOCK) 13416 nfs4args_lock_free(&argop[1]); 13417 else if (argop[1].argop == OP_LOCKT) 13418 nfs4args_lockt_free(&argop[1]); 13419 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13420 if (!ep->error) 13421 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13422 *respp = NULL; 13423 *argspp = NULL; 13424 } 13425 13426 if (lop != NULL) { 13427 nfs4_end_lock_seqid_sync(lop); 13428 lock_owner_rele(lop); 13429 } 13430 13431 *lopp = NULL; 13432 13433 /* need to free up the reference on osp for lock args */ 13434 if (osp != NULL) { 13435 open_stream_rele(osp, rp); 13436 *ospp = NULL; 13437 } 13438 13439 /* need to free up the reference on oop for lock args */ 13440 if (oop != NULL) { 13441 nfs4_end_open_seqid_sync(oop); 13442 open_owner_rele(oop); 13443 *oopp = NULL; 13444 } 13445 13446 return (retry); 13447 } 13448 13449 /* 13450 * Handles the succesful reply from the server for nfs4frlock. 13451 */ 13452 static void 13453 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13454 vnode_t *vp, int flag, u_offset_t offset, 13455 nfs4_lost_rqst_t *resend_rqstp) 13456 { 13457 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13458 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13459 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13460 if (ctype == NFS4_LCK_CTYPE_NORM) { 13461 flk->l_pid = ttoproc(curthread)->p_pid; 13462 /* 13463 * We do not register lost locks locally in 13464 * the 'resend' case since the user/application 13465 * doesn't think we have the lock. 13466 */ 13467 ASSERT(!resend_rqstp); 13468 nfs4_register_lock_locally(vp, flk, flag, offset); 13469 } 13470 } 13471 } 13472 13473 /* 13474 * Handle the DENIED reply from the server for nfs4frlock. 13475 * Returns TRUE if we should retry the request; FALSE otherwise. 13476 * 13477 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13478 * COMPOUND4 args/res for calls that need to retry. Can also 13479 * drop and regrab the r_lkserlock. 13480 */ 13481 static bool_t 13482 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13483 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13484 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13485 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13486 nfs4_recov_state_t *recov_statep, int needrecov, 13487 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13488 clock_t *tick_delayp, short *whencep, int *errorp, 13489 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13490 bool_t *skip_get_err) 13491 { 13492 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13493 13494 if (lock_args) { 13495 nfs4_open_owner_t *oop = *oopp; 13496 nfs4_open_stream_t *osp = *ospp; 13497 nfs4_lock_owner_t *lop = *lopp; 13498 int intr; 13499 13500 /* 13501 * Blocking lock needs to sleep and retry from the request. 13502 * 13503 * Do not block and wait for 'resend' or 'reinstate' 13504 * lock requests, just return the error. 13505 * 13506 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13507 */ 13508 if (cmd == F_SETLKW) { 13509 rnode4_t *rp = VTOR4(vp); 13510 nfs_argop4 *argop = (*argspp)->array; 13511 13512 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13513 13514 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13515 recov_statep, needrecov); 13516 *did_start_fop = FALSE; 13517 ASSERT((*argspp)->array_len == 2); 13518 if (argop[1].argop == OP_LOCK) 13519 nfs4args_lock_free(&argop[1]); 13520 else if (argop[1].argop == OP_LOCKT) 13521 nfs4args_lockt_free(&argop[1]); 13522 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13523 if (*respp) 13524 (void) xdr_free(xdr_COMPOUND4res_clnt, 13525 (caddr_t)*respp); 13526 *argspp = NULL; 13527 *respp = NULL; 13528 nfs4_end_lock_seqid_sync(lop); 13529 lock_owner_rele(lop); 13530 *lopp = NULL; 13531 if (osp != NULL) { 13532 open_stream_rele(osp, rp); 13533 *ospp = NULL; 13534 } 13535 if (oop != NULL) { 13536 nfs4_end_open_seqid_sync(oop); 13537 open_owner_rele(oop); 13538 *oopp = NULL; 13539 } 13540 13541 nfs_rw_exit(&rp->r_lkserlock); 13542 13543 intr = nfs4_block_and_wait(tick_delayp, rp); 13544 13545 if (intr) { 13546 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13547 RW_WRITER, FALSE); 13548 *errorp = EINTR; 13549 return (FALSE); 13550 } 13551 13552 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13553 RW_WRITER, FALSE); 13554 13555 /* 13556 * Make sure we are still safe to lock with 13557 * regards to mmapping. 13558 */ 13559 if (!nfs4_safelock(vp, flk, cr)) { 13560 *errorp = EAGAIN; 13561 return (FALSE); 13562 } 13563 13564 return (TRUE); 13565 } 13566 if (ctype == NFS4_LCK_CTYPE_NORM) 13567 *errorp = EAGAIN; 13568 *skip_get_err = TRUE; 13569 flk->l_whence = 0; 13570 *whencep = 0; 13571 return (FALSE); 13572 } else if (lockt_args) { 13573 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13574 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13575 13576 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13577 flk, lockt_args); 13578 13579 /* according to NLM code */ 13580 *errorp = 0; 13581 *whencep = 0; 13582 *skip_get_err = TRUE; 13583 return (FALSE); 13584 } 13585 return (FALSE); 13586 } 13587 13588 /* 13589 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13590 */ 13591 static void 13592 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13593 { 13594 switch (resp->status) { 13595 case NFS4ERR_ACCESS: 13596 case NFS4ERR_ADMIN_REVOKED: 13597 case NFS4ERR_BADHANDLE: 13598 case NFS4ERR_BAD_RANGE: 13599 case NFS4ERR_BAD_SEQID: 13600 case NFS4ERR_BAD_STATEID: 13601 case NFS4ERR_BADXDR: 13602 case NFS4ERR_DEADLOCK: 13603 case NFS4ERR_DELAY: 13604 case NFS4ERR_EXPIRED: 13605 case NFS4ERR_FHEXPIRED: 13606 case NFS4ERR_GRACE: 13607 case NFS4ERR_INVAL: 13608 case NFS4ERR_ISDIR: 13609 case NFS4ERR_LEASE_MOVED: 13610 case NFS4ERR_LOCK_NOTSUPP: 13611 case NFS4ERR_LOCK_RANGE: 13612 case NFS4ERR_MOVED: 13613 case NFS4ERR_NOFILEHANDLE: 13614 case NFS4ERR_NO_GRACE: 13615 case NFS4ERR_OLD_STATEID: 13616 case NFS4ERR_OPENMODE: 13617 case NFS4ERR_RECLAIM_BAD: 13618 case NFS4ERR_RECLAIM_CONFLICT: 13619 case NFS4ERR_RESOURCE: 13620 case NFS4ERR_SERVERFAULT: 13621 case NFS4ERR_STALE: 13622 case NFS4ERR_STALE_CLIENTID: 13623 case NFS4ERR_STALE_STATEID: 13624 return; 13625 default: 13626 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13627 "nfs4frlock_results_default: got unrecognizable " 13628 "res.status %d", resp->status)); 13629 *errorp = NFS4ERR_INVAL; 13630 } 13631 } 13632 13633 /* 13634 * The lock request was successful, so update the client's state. 13635 */ 13636 static void 13637 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13638 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13639 vnode_t *vp, flock64_t *flk, cred_t *cr, 13640 nfs4_lost_rqst_t *resend_rqstp) 13641 { 13642 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13643 13644 if (lock_args) { 13645 LOCK4res *lock_res; 13646 13647 lock_res = &resop->nfs_resop4_u.oplock; 13648 /* update the stateid with server's response */ 13649 13650 if (lock_args->locker.new_lock_owner == TRUE) { 13651 mutex_enter(&lop->lo_lock); 13652 lop->lo_just_created = NFS4_PERM_CREATED; 13653 mutex_exit(&lop->lo_lock); 13654 } 13655 13656 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13657 13658 /* 13659 * If the lock was the result of a resending a lost 13660 * request, we've synched up the stateid and seqid 13661 * with the server, but now the server might be out of sync 13662 * with what the application thinks it has for locks. 13663 * Clean that up here. It's unclear whether we should do 13664 * this even if the filesystem has been forcibly unmounted. 13665 * For most servers, it's probably wasted effort, but 13666 * RFC3530 lets servers require that unlocks exactly match 13667 * the locks that are held. 13668 */ 13669 if (resend_rqstp != NULL && 13670 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13671 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13672 } else { 13673 flk->l_whence = 0; 13674 } 13675 } else if (locku_args) { 13676 LOCKU4res *locku_res; 13677 13678 locku_res = &resop->nfs_resop4_u.oplocku; 13679 13680 /* Update the stateid with the server's response */ 13681 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 13682 } else if (lockt_args) { 13683 /* Switch the lock type to express success, see fcntl */ 13684 flk->l_type = F_UNLCK; 13685 flk->l_whence = 0; 13686 } 13687 } 13688 13689 /* 13690 * Do final cleanup before exiting nfs4frlock. 13691 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13692 * COMPOUND4 args/res for calls that haven't already. 13693 */ 13694 static void 13695 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 13696 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 13697 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 13698 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13699 short whence, u_offset_t offset, struct lm_sysid *ls, 13700 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 13701 bool_t did_start_fop, bool_t skip_get_err, 13702 cred_t *cred_otw, cred_t *cred) 13703 { 13704 mntinfo4_t *mi = VTOMI4(vp); 13705 rnode4_t *rp = VTOR4(vp); 13706 int error = *errorp; 13707 nfs_argop4 *argop; 13708 13709 ASSERT(nfs_zone() == mi->mi_zone); 13710 /* 13711 * The client recovery code wants the raw status information, 13712 * so don't map the NFS status code to an errno value for 13713 * non-normal call types. 13714 */ 13715 if (ctype == NFS4_LCK_CTYPE_NORM) { 13716 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 13717 *errorp = geterrno4(resp->status); 13718 if (did_start_fop == TRUE) 13719 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 13720 needrecov); 13721 13722 if (!error && resp && resp->status == NFS4_OK) { 13723 /* 13724 * We've established a new lock on the server, so invalidate 13725 * the pages associated with the vnode to get the most up to 13726 * date pages from the server after acquiring the lock. We 13727 * want to be sure that the read operation gets the newest data. 13728 * N.B. 13729 * We used to do this in nfs4frlock_results_ok but that doesn't 13730 * work since VOP_PUTPAGE can call nfs4_commit which calls 13731 * nfs4_start_fop. We flush the pages below after calling 13732 * nfs4_end_fop above 13733 */ 13734 int error; 13735 13736 error = VOP_PUTPAGE(vp, (u_offset_t)0, 13737 0, B_INVAL, cred); 13738 13739 if (error && (error == ENOSPC || error == EDQUOT)) { 13740 rnode4_t *rp = VTOR4(vp); 13741 13742 mutex_enter(&rp->r_statelock); 13743 if (!rp->r_error) 13744 rp->r_error = error; 13745 mutex_exit(&rp->r_statelock); 13746 } 13747 } 13748 } 13749 if (argsp) { 13750 ASSERT(argsp->array_len == 2); 13751 argop = argsp->array; 13752 if (argop[1].argop == OP_LOCK) 13753 nfs4args_lock_free(&argop[1]); 13754 else if (argop[1].argop == OP_LOCKT) 13755 nfs4args_lockt_free(&argop[1]); 13756 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13757 if (resp) 13758 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 13759 } 13760 13761 /* free the reference on the lock owner */ 13762 if (lop != NULL) { 13763 nfs4_end_lock_seqid_sync(lop); 13764 lock_owner_rele(lop); 13765 } 13766 13767 /* need to free up the reference on osp for lock args */ 13768 if (osp != NULL) 13769 open_stream_rele(osp, rp); 13770 13771 /* need to free up the reference on oop for lock args */ 13772 if (oop != NULL) { 13773 nfs4_end_open_seqid_sync(oop); 13774 open_owner_rele(oop); 13775 } 13776 13777 (void) convoff(vp, flk, whence, offset); 13778 13779 lm_rel_sysid(ls); 13780 13781 /* 13782 * Record debug information in the event we get EINVAL. 13783 */ 13784 mutex_enter(&mi->mi_lock); 13785 if (*errorp == EINVAL && (lock_args || locku_args) && 13786 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 13787 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 13788 zcmn_err(getzoneid(), CE_NOTE, 13789 "%s operation failed with " 13790 "EINVAL probably since the server, %s," 13791 " doesn't support POSIX style locking", 13792 lock_args ? "LOCK" : "LOCKU", 13793 mi->mi_curr_serv->sv_hostname); 13794 mi->mi_flags |= MI4_LOCK_DEBUG; 13795 } 13796 } 13797 mutex_exit(&mi->mi_lock); 13798 13799 if (cred_otw) 13800 crfree(cred_otw); 13801 } 13802 13803 /* 13804 * This calls the server and the local locking code. 13805 * 13806 * Client locks are registerred locally by oring the sysid with 13807 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 13808 * We need to distinguish between the two to avoid collision in case one 13809 * machine is used as both client and server. 13810 * 13811 * Blocking lock requests will continually retry to acquire the lock 13812 * forever. 13813 * 13814 * The ctype is defined as follows: 13815 * NFS4_LCK_CTYPE_NORM: normal lock request. 13816 * 13817 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 13818 * recovery, get the pid from flk instead of curproc, and don't reregister 13819 * the lock locally. 13820 * 13821 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 13822 * that we will use the information passed in via resend_rqstp to setup the 13823 * lock/locku request. This resend is the exact same request as the 'lost 13824 * lock', and is initiated by the recovery framework. A successful resend 13825 * request can initiate one or more reinstate requests. 13826 * 13827 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 13828 * does not trigger additional reinstate requests. This lock call type is 13829 * set for setting the v4 server's locking state back to match what the 13830 * client's local locking state is in the event of a received 'lost lock'. 13831 * 13832 * Errors are returned via the nfs4_error_t parameter. 13833 */ 13834 void 13835 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 13836 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 13837 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 13838 { 13839 COMPOUND4args_clnt args, *argsp = NULL; 13840 COMPOUND4res_clnt res, *resp = NULL; 13841 nfs_argop4 *argop; 13842 nfs_resop4 *resop; 13843 rnode4_t *rp; 13844 int doqueue = 1; 13845 clock_t tick_delay; /* delay in clock ticks */ 13846 struct lm_sysid *ls; 13847 LOCK4args *lock_args = NULL; 13848 LOCKU4args *locku_args = NULL; 13849 LOCKT4args *lockt_args = NULL; 13850 nfs4_open_owner_t *oop = NULL; 13851 nfs4_open_stream_t *osp = NULL; 13852 nfs4_lock_owner_t *lop = NULL; 13853 bool_t needrecov = FALSE; 13854 nfs4_recov_state_t recov_state; 13855 short whence; 13856 nfs4_op_hint_t op_hint; 13857 nfs4_lost_rqst_t lost_rqst; 13858 bool_t retry = FALSE; 13859 bool_t did_start_fop = FALSE; 13860 bool_t skip_get_err = FALSE; 13861 cred_t *cred_otw = NULL; 13862 bool_t recovonly; /* just queue request */ 13863 int frc_no_reclaim = 0; 13864 #ifdef DEBUG 13865 char *name; 13866 #endif 13867 13868 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13869 13870 #ifdef DEBUG 13871 name = fn_name(VTOSV(vp)->sv_name); 13872 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 13873 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 13874 "length %"PRIu64", pid %d, sysid %d, call type %s, " 13875 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 13876 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 13877 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 13878 resend_rqstp ? "TRUE" : "FALSE")); 13879 kmem_free(name, MAXNAMELEN); 13880 #endif 13881 13882 nfs4_error_zinit(ep); 13883 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 13884 if (ep->error) 13885 return; 13886 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 13887 if (ep->error) 13888 return; 13889 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 13890 vp, cr, &cred_otw); 13891 13892 recov_retry: 13893 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 13894 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 13895 rp = VTOR4(vp); 13896 13897 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 13898 &did_start_fop, &recovonly); 13899 13900 if (ep->error) 13901 goto out; 13902 13903 if (recovonly) { 13904 /* 13905 * Leave the request for the recovery system to deal with. 13906 */ 13907 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13908 ASSERT(cmd != F_GETLK); 13909 ASSERT(flk->l_type == F_UNLCK); 13910 13911 nfs4_error_init(ep, EINTR); 13912 needrecov = TRUE; 13913 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 13914 if (lop != NULL) { 13915 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 13916 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 13917 (void) nfs4_start_recovery(ep, 13918 VTOMI4(vp), vp, NULL, NULL, 13919 (lost_rqst.lr_op == OP_LOCK || 13920 lost_rqst.lr_op == OP_LOCKU) ? 13921 &lost_rqst : NULL, OP_LOCKU, NULL); 13922 lock_owner_rele(lop); 13923 lop = NULL; 13924 } 13925 flk->l_pid = curproc->p_pid; 13926 nfs4_register_lock_locally(vp, flk, flag, offset); 13927 goto out; 13928 } 13929 13930 /* putfh directory fh */ 13931 argop[0].argop = OP_CPUTFH; 13932 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 13933 13934 /* 13935 * Set up the over-the-wire arguments and get references to the 13936 * open owner, etc. 13937 */ 13938 13939 if (ctype == NFS4_LCK_CTYPE_RESEND || 13940 ctype == NFS4_LCK_CTYPE_REINSTATE) { 13941 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 13942 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 13943 } else { 13944 bool_t go_otw = TRUE; 13945 13946 ASSERT(resend_rqstp == NULL); 13947 13948 switch (cmd) { 13949 case F_GETLK: 13950 case F_O_GETLK: 13951 nfs4frlock_setup_lockt_args(ctype, &argop[1], 13952 &lockt_args, argsp, flk, rp); 13953 break; 13954 case F_SETLKW: 13955 case F_SETLK: 13956 if (flk->l_type == F_UNLCK) 13957 nfs4frlock_setup_locku_args(ctype, 13958 &argop[1], &locku_args, flk, 13959 &lop, ep, argsp, 13960 vp, flag, offset, cr, 13961 &skip_get_err, &go_otw); 13962 else 13963 nfs4frlock_setup_lock_args(ctype, 13964 &lock_args, &oop, &osp, &lop, &argop[1], 13965 argsp, flk, cmd, vp, cr, ep); 13966 13967 if (ep->error) 13968 goto out; 13969 13970 switch (ep->stat) { 13971 case NFS4_OK: 13972 break; 13973 case NFS4ERR_DELAY: 13974 /* recov thread never gets this error */ 13975 ASSERT(resend_rqstp == NULL); 13976 ASSERT(did_start_fop); 13977 13978 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13979 &recov_state, TRUE); 13980 did_start_fop = FALSE; 13981 if (argop[1].argop == OP_LOCK) 13982 nfs4args_lock_free(&argop[1]); 13983 else if (argop[1].argop == OP_LOCKT) 13984 nfs4args_lockt_free(&argop[1]); 13985 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13986 argsp = NULL; 13987 goto recov_retry; 13988 default: 13989 ep->error = EIO; 13990 goto out; 13991 } 13992 break; 13993 default: 13994 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13995 "nfs4_frlock: invalid cmd %d", cmd)); 13996 ep->error = EINVAL; 13997 goto out; 13998 } 13999 14000 if (!go_otw) 14001 goto out; 14002 } 14003 14004 /* XXX should we use the local reclock as a cache ? */ 14005 /* 14006 * Unregister the lock with the local locking code before 14007 * contacting the server. This avoids a potential race where 14008 * another process gets notified that it has been granted a lock 14009 * before we can unregister ourselves locally. 14010 */ 14011 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14012 if (ctype == NFS4_LCK_CTYPE_NORM) 14013 flk->l_pid = ttoproc(curthread)->p_pid; 14014 nfs4_register_lock_locally(vp, flk, flag, offset); 14015 } 14016 14017 /* 14018 * Send the server the lock request. Continually loop with a delay 14019 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14020 */ 14021 resp = &res; 14022 14023 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14024 (CE_NOTE, 14025 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14026 rnode4info(rp))); 14027 14028 if (lock_args && frc_no_reclaim) { 14029 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14030 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14031 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14032 lock_args->reclaim = FALSE; 14033 if (did_reclaimp) 14034 *did_reclaimp = 0; 14035 } 14036 14037 /* 14038 * Do the OTW call. 14039 */ 14040 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14041 14042 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14043 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14044 14045 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14046 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14047 "nfs4frlock: needrecov %d", needrecov)); 14048 14049 if (ep->error != 0 && !needrecov && ep->error != EACCES) 14050 goto out; 14051 14052 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14053 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14054 args.ctag); 14055 14056 if ((ep->error == EACCES || 14057 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14058 cred_otw != cr) { 14059 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14060 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14061 cr, &cred_otw); 14062 goto recov_retry; 14063 } 14064 14065 if (needrecov) { 14066 /* 14067 * LOCKT requests don't need to recover from lost 14068 * requests since they don't create/modify state. 14069 */ 14070 if ((ep->error == EINTR || 14071 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14072 lockt_args) 14073 goto out; 14074 /* 14075 * Do not attempt recovery for requests initiated by 14076 * the recovery framework. Let the framework redrive them. 14077 */ 14078 if (ctype != NFS4_LCK_CTYPE_NORM) 14079 goto out; 14080 else { 14081 ASSERT(resend_rqstp == NULL); 14082 } 14083 14084 nfs4frlock_save_lost_rqst(ctype, ep->error, 14085 flk_to_locktype(cmd, flk->l_type), 14086 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14087 14088 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14089 &resp, lock_args, locku_args, &oop, &osp, &lop, 14090 rp, vp, &recov_state, op_hint, &did_start_fop, 14091 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14092 14093 if (retry) { 14094 ASSERT(oop == NULL); 14095 ASSERT(osp == NULL); 14096 ASSERT(lop == NULL); 14097 goto recov_retry; 14098 } 14099 goto out; 14100 } 14101 14102 /* 14103 * Process the reply. 14104 */ 14105 switch (resp->status) { 14106 case NFS4_OK: 14107 resop = &resp->array[1]; 14108 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14109 resend_rqstp); 14110 /* 14111 * Have a successful lock operation, now update state. 14112 */ 14113 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14114 resop, lop, vp, flk, cr, resend_rqstp); 14115 break; 14116 14117 case NFS4ERR_DENIED: 14118 resop = &resp->array[1]; 14119 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14120 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14121 &recov_state, needrecov, &argsp, &resp, 14122 &tick_delay, &whence, &ep->error, resop, cr, 14123 &did_start_fop, &skip_get_err); 14124 14125 if (retry) { 14126 ASSERT(oop == NULL); 14127 ASSERT(osp == NULL); 14128 ASSERT(lop == NULL); 14129 goto recov_retry; 14130 } 14131 break; 14132 /* 14133 * If the server won't let us reclaim, fall-back to trying to lock 14134 * the file from scratch. Code elsewhere will check the changeinfo 14135 * to ensure the file hasn't been changed. 14136 */ 14137 case NFS4ERR_NO_GRACE: 14138 if (lock_args && lock_args->reclaim == TRUE) { 14139 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14140 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14141 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14142 frc_no_reclaim = 1; 14143 /* clean up before retrying */ 14144 needrecov = 0; 14145 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14146 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14147 &recov_state, op_hint, &did_start_fop, NULL, flk); 14148 goto recov_retry; 14149 } 14150 /* FALLTHROUGH */ 14151 14152 default: 14153 nfs4frlock_results_default(resp, &ep->error); 14154 break; 14155 } 14156 out: 14157 /* 14158 * Process and cleanup from error. Make interrupted unlock 14159 * requests look successful, since they will be handled by the 14160 * client recovery code. 14161 */ 14162 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14163 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14164 lock_args, locku_args, did_start_fop, 14165 skip_get_err, cred_otw, cr); 14166 14167 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14168 (cmd == F_SETLK || cmd == F_SETLKW)) 14169 ep->error = 0; 14170 } 14171 14172 /* 14173 * nfs4_safelock: 14174 * 14175 * Return non-zero if the given lock request can be handled without 14176 * violating the constraints on concurrent mapping and locking. 14177 */ 14178 14179 static int 14180 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14181 { 14182 rnode4_t *rp = VTOR4(vp); 14183 struct vattr va; 14184 int error; 14185 14186 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14187 ASSERT(rp->r_mapcnt >= 0); 14188 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14189 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14190 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14191 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14192 14193 if (rp->r_mapcnt == 0) 14194 return (1); /* always safe if not mapped */ 14195 14196 /* 14197 * If the file is already mapped and there are locks, then they 14198 * should be all safe locks. So adding or removing a lock is safe 14199 * as long as the new request is safe (i.e., whole-file, meaning 14200 * length and starting offset are both zero). 14201 */ 14202 14203 if (bfp->l_start != 0 || bfp->l_len != 0) { 14204 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14205 "cannot lock a memory mapped file unless locking the " 14206 "entire file: start %"PRIx64", len %"PRIx64, 14207 bfp->l_start, bfp->l_len)); 14208 return (0); 14209 } 14210 14211 /* mandatory locking and mapping don't mix */ 14212 va.va_mask = AT_MODE; 14213 error = VOP_GETATTR(vp, &va, 0, cr); 14214 if (error != 0) { 14215 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14216 "getattr error %d", error)); 14217 return (0); /* treat errors conservatively */ 14218 } 14219 if (MANDLOCK(vp, va.va_mode)) { 14220 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14221 "cannot mandatory lock and mmap a file")); 14222 return (0); 14223 } 14224 14225 return (1); 14226 } 14227 14228 14229 /* 14230 * Register the lock locally within Solaris. 14231 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14232 * recording locks locally. 14233 * 14234 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14235 * are registered locally. 14236 */ 14237 void 14238 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14239 u_offset_t offset) 14240 { 14241 int oldsysid; 14242 int error; 14243 #ifdef DEBUG 14244 char *name; 14245 #endif 14246 14247 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14248 14249 #ifdef DEBUG 14250 name = fn_name(VTOSV(vp)->sv_name); 14251 NFS4_DEBUG(nfs4_client_lock_debug, 14252 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14253 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14254 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14255 flk->l_sysid)); 14256 kmem_free(name, MAXNAMELEN); 14257 #endif 14258 14259 /* register the lock with local locking */ 14260 oldsysid = flk->l_sysid; 14261 flk->l_sysid |= LM_SYSID_CLIENT; 14262 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14263 #ifdef DEBUG 14264 if (error != 0) { 14265 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14266 "nfs4_register_lock_locally: could not register with" 14267 " local locking")); 14268 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14269 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14270 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14271 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14272 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14273 flk->l_type, flk->l_start, flk->l_len)); 14274 (void) reclock(vp, flk, 0, flag, offset, NULL); 14275 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14276 "blocked by pid %d sysid 0x%x type %d " 14277 "off 0x%" PRIx64 " len 0x%" PRIx64, 14278 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14279 flk->l_len)); 14280 } 14281 #endif 14282 flk->l_sysid = oldsysid; 14283 } 14284 14285 /* 14286 * nfs4_lockrelease: 14287 * 14288 * Release any locks on the given vnode that are held by the current 14289 * process. Also removes the lock owner (if one exists) from the rnode's 14290 * list. 14291 */ 14292 static int 14293 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14294 { 14295 flock64_t ld; 14296 int ret, error; 14297 rnode4_t *rp; 14298 nfs4_lock_owner_t *lop; 14299 nfs4_recov_state_t recov_state; 14300 mntinfo4_t *mi; 14301 bool_t possible_orphan = FALSE; 14302 bool_t recovonly; 14303 14304 ASSERT((uintptr_t)vp > KERNELBASE); 14305 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14306 14307 rp = VTOR4(vp); 14308 mi = VTOMI4(vp); 14309 14310 /* 14311 * If we have not locked anything then we can 14312 * just return since we have no work to do. 14313 */ 14314 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14315 return (0); 14316 } 14317 14318 /* 14319 * We need to comprehend that another thread may 14320 * kick off recovery and the lock_owner we have stashed 14321 * in lop might be invalid so we should NOT cache it 14322 * locally! 14323 */ 14324 recov_state.rs_flags = 0; 14325 recov_state.rs_num_retry_despite_err = 0; 14326 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14327 &recovonly); 14328 if (error) { 14329 mutex_enter(&rp->r_statelock); 14330 rp->r_flags |= R4LODANGLERS; 14331 mutex_exit(&rp->r_statelock); 14332 return (error); 14333 } 14334 14335 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14336 14337 /* 14338 * Check if the lock owner might have a lock (request was sent but 14339 * no response was received). Also check if there are any remote 14340 * locks on the file. (In theory we shouldn't have to make this 14341 * second check if there's no lock owner, but for now we'll be 14342 * conservative and do it anyway.) If either condition is true, 14343 * send an unlock for the entire file to the server. 14344 * 14345 * Note that no explicit synchronization is needed here. At worst, 14346 * flk_has_remote_locks() will return a false positive, in which case 14347 * the unlock call wastes time but doesn't harm correctness. 14348 */ 14349 14350 if (lop) { 14351 mutex_enter(&lop->lo_lock); 14352 possible_orphan = lop->lo_pending_rqsts; 14353 mutex_exit(&lop->lo_lock); 14354 lock_owner_rele(lop); 14355 } 14356 14357 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14358 14359 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14360 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14361 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14362 (void *)lop)); 14363 14364 if (possible_orphan || flk_has_remote_locks(vp)) { 14365 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14366 ld.l_whence = 0; /* unlock from start of file */ 14367 ld.l_start = 0; 14368 ld.l_len = 0; /* do entire file */ 14369 14370 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr); 14371 14372 if (ret != 0) { 14373 /* 14374 * If VOP_FRLOCK fails, make sure we unregister 14375 * local locks before we continue. 14376 */ 14377 ld.l_pid = ttoproc(curthread)->p_pid; 14378 nfs4_register_lock_locally(vp, &ld, flag, offset); 14379 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14380 "nfs4_lockrelease: lock release error on vp" 14381 " %p: error %d.\n", (void *)vp, ret)); 14382 } 14383 } 14384 14385 recov_state.rs_flags = 0; 14386 recov_state.rs_num_retry_despite_err = 0; 14387 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14388 &recovonly); 14389 if (error) { 14390 mutex_enter(&rp->r_statelock); 14391 rp->r_flags |= R4LODANGLERS; 14392 mutex_exit(&rp->r_statelock); 14393 return (error); 14394 } 14395 14396 /* 14397 * So, here we're going to need to retrieve the lock-owner 14398 * again (in case recovery has done a switch-a-roo) and 14399 * remove it because we can. 14400 */ 14401 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14402 14403 if (lop) { 14404 nfs4_rnode_remove_lock_owner(rp, lop); 14405 lock_owner_rele(lop); 14406 } 14407 14408 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14409 return (0); 14410 } 14411 14412 /* 14413 * Wait for 'tick_delay' clock ticks. 14414 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14415 * NOTE: lock_lease_time is in seconds. 14416 * 14417 * XXX For future improvements, should implement a waiting queue scheme. 14418 */ 14419 static int 14420 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14421 { 14422 long milliseconds_delay; 14423 time_t lock_lease_time; 14424 14425 /* wait tick_delay clock ticks or siginteruptus */ 14426 if (delay_sig(*tick_delay)) { 14427 return (EINTR); 14428 } 14429 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14430 "reissue the lock request: blocked for %ld clock ticks: %ld " 14431 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14432 14433 /* get the lease time */ 14434 lock_lease_time = r2lease_time(rp); 14435 14436 /* drv_hztousec converts ticks to microseconds */ 14437 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14438 if (milliseconds_delay < lock_lease_time * 1000) { 14439 *tick_delay = 2 * *tick_delay; 14440 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14441 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14442 } 14443 return (0); 14444 } 14445 14446 14447 void 14448 nfs4_vnops_init(void) 14449 { 14450 } 14451 14452 void 14453 nfs4_vnops_fini(void) 14454 { 14455 } 14456 14457 /* 14458 * Return a reference to the directory (parent) vnode for a given vnode, 14459 * using the saved pathname information and the directory file handle. The 14460 * caller is responsible for disposing of the reference. 14461 * Returns zero or an errno value. 14462 * 14463 * Caller should set need_start_op to FALSE if it is the recovery 14464 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14465 */ 14466 int 14467 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14468 { 14469 svnode_t *svnp; 14470 vnode_t *dvp = NULL; 14471 servinfo4_t *svp; 14472 nfs4_fname_t *mfname; 14473 int error; 14474 14475 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14476 14477 if (vp->v_flag & VROOT) { 14478 nfs4_sharedfh_t *sfh; 14479 nfs_fh4 fh; 14480 mntinfo4_t *mi; 14481 14482 ASSERT(vp->v_type == VREG); 14483 14484 mi = VTOMI4(vp); 14485 svp = mi->mi_curr_serv; 14486 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14487 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14488 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14489 sfh = sfh4_get(&fh, VTOMI4(vp)); 14490 nfs_rw_exit(&svp->sv_lock); 14491 mfname = mi->mi_fname; 14492 fn_hold(mfname); 14493 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14494 sfh4_rele(&sfh); 14495 14496 if (dvp->v_type == VNON) 14497 dvp->v_type = VDIR; 14498 *dvpp = dvp; 14499 return (0); 14500 } 14501 14502 svnp = VTOSV(vp); 14503 14504 if (svnp == NULL) { 14505 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14506 "shadow node is NULL")); 14507 return (EINVAL); 14508 } 14509 14510 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14511 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14512 "shadow node name or dfh val == NULL")); 14513 return (EINVAL); 14514 } 14515 14516 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14517 (int)need_start_op); 14518 if (error != 0) { 14519 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14520 "nfs4_make_dotdot returned %d", error)); 14521 return (error); 14522 } 14523 if (!dvp) { 14524 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14525 "nfs4_make_dotdot returned a NULL dvp")); 14526 return (EIO); 14527 } 14528 if (dvp->v_type == VNON) 14529 dvp->v_type = VDIR; 14530 ASSERT(dvp->v_type == VDIR); 14531 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14532 mutex_enter(&dvp->v_lock); 14533 dvp->v_flag |= V_XATTRDIR; 14534 mutex_exit(&dvp->v_lock); 14535 } 14536 *dvpp = dvp; 14537 return (0); 14538 } 14539 14540 /* 14541 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14542 * length that fnamep can accept, including the trailing null. 14543 * Returns 0 if okay, returns an errno value if there was a problem. 14544 */ 14545 14546 int 14547 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14548 { 14549 char *fn; 14550 int err = 0; 14551 servinfo4_t *svp; 14552 svnode_t *shvp; 14553 14554 /* 14555 * If the file being opened has VROOT set, then this is 14556 * a "file" mount. sv_name will not be interesting, so 14557 * go back to the servinfo4 to get the original mount 14558 * path and strip off all but the final edge. Otherwise 14559 * just return the name from the shadow vnode. 14560 */ 14561 14562 if (vp->v_flag & VROOT) { 14563 14564 svp = VTOMI4(vp)->mi_curr_serv; 14565 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14566 14567 fn = strrchr(svp->sv_path, '/'); 14568 if (fn == NULL) 14569 err = EINVAL; 14570 else 14571 fn++; 14572 } else { 14573 shvp = VTOSV(vp); 14574 fn = fn_name(shvp->sv_name); 14575 } 14576 14577 if (err == 0) 14578 if (strlen(fn) < maxlen) 14579 (void) strcpy(fnamep, fn); 14580 else 14581 err = ENAMETOOLONG; 14582 14583 if (vp->v_flag & VROOT) 14584 nfs_rw_exit(&svp->sv_lock); 14585 else 14586 kmem_free(fn, MAXNAMELEN); 14587 14588 return (err); 14589 } 14590 14591 /* 14592 * If the vnode has pages, run the list and check for 14593 * any that are still dangling. We call this function 14594 * before the OTW CLOSE occurs so we can B_INVAL the 14595 * danglers. 14596 */ 14597 static int 14598 nfs4_dross_pages(vnode_t *vp) 14599 { 14600 page_t *pp; 14601 kmutex_t *vphm; 14602 rnode4_t *rp; 14603 14604 /* make sure we're looking at the master vnode, not a shadow */ 14605 rp = VTOR4(vp); 14606 if (IS_SHADOW(vp, rp)) 14607 vp = RTOV4(rp); 14608 14609 vphm = page_vnode_mutex(vp); 14610 mutex_enter(vphm); 14611 if ((pp = vp->v_pages) != NULL) { 14612 do { 14613 if (pp->p_fsdata != C_NOCOMMIT) { 14614 mutex_exit(vphm); 14615 return (1); 14616 } 14617 } while ((pp = pp->p_vpnext) != vp->v_pages); 14618 } 14619 mutex_exit(vphm); 14620 14621 return (0); 14622 } 14623 14624 /* 14625 * Bookkeeping for a close that doesn't need to go over the wire. 14626 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14627 * it is left at 1. 14628 */ 14629 void 14630 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14631 { 14632 rnode4_t *rp; 14633 mntinfo4_t *mi; 14634 14635 mi = VTOMI4(vp); 14636 rp = VTOR4(vp); 14637 14638 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14639 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14640 ASSERT(nfs_zone() == mi->mi_zone); 14641 ASSERT(mutex_owned(&osp->os_sync_lock)); 14642 ASSERT(*have_lockp); 14643 14644 if (!osp->os_valid || 14645 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14646 return; 14647 } 14648 14649 /* 14650 * This removes the reference obtained at OPEN; ie, 14651 * when the open stream structure was created. 14652 * 14653 * We don't have to worry about calling 'open_stream_rele' 14654 * since we our currently holding a reference to this 14655 * open stream which means the count can not go to 0 with 14656 * this decrement. 14657 */ 14658 ASSERT(osp->os_ref_count >= 2); 14659 osp->os_ref_count--; 14660 osp->os_valid = 0; 14661 mutex_exit(&osp->os_sync_lock); 14662 *have_lockp = 0; 14663 14664 nfs4_dec_state_ref_count(mi); 14665 } 14666 14667 /* 14668 * Close all remaining open streams on the rnode. These open streams 14669 * could be here because: 14670 * - The close attempted at either close or delmap failed 14671 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14672 * - Someone did mknod on a regular file but never opened it 14673 */ 14674 int 14675 nfs4close_all(vnode_t *vp, cred_t *cr) 14676 { 14677 nfs4_open_stream_t *osp; 14678 int error; 14679 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14680 rnode4_t *rp; 14681 14682 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14683 14684 error = 0; 14685 rp = VTOR4(vp); 14686 14687 /* 14688 * At this point, all we know is that the last time 14689 * someone called vn_rele, the count was 1. Since then, 14690 * the vnode could have been re-activated. We want to 14691 * loop through the open streams and close each one, but 14692 * we have to be careful since once we release the rnode 14693 * hash bucket lock, someone else is free to come in and 14694 * re-activate the rnode and add new open streams. The 14695 * strategy is take the rnode hash bucket lock, verify that 14696 * the count is still 1, grab the open stream off the 14697 * head of the list and mark it invalid, then release the 14698 * rnode hash bucket lock and proceed with that open stream. 14699 * This is ok because nfs4close_one() will acquire the proper 14700 * open/create to close/destroy synchronization for open 14701 * streams, and will ensure that if someone has reopened 14702 * the open stream after we've dropped the hash bucket lock 14703 * then we'll just simply return without destroying the 14704 * open stream. 14705 * Repeat until the list is empty. 14706 */ 14707 14708 for (;;) { 14709 14710 /* make sure vnode hasn't been reactivated */ 14711 rw_enter(&rp->r_hashq->r_lock, RW_READER); 14712 mutex_enter(&vp->v_lock); 14713 if (vp->v_count > 1) { 14714 mutex_exit(&vp->v_lock); 14715 rw_exit(&rp->r_hashq->r_lock); 14716 break; 14717 } 14718 /* 14719 * Grabbing r_os_lock before releasing v_lock prevents 14720 * a window where the rnode/open stream could get 14721 * reactivated (and os_force_close set to 0) before we 14722 * had a chance to set os_force_close to 1. 14723 */ 14724 mutex_enter(&rp->r_os_lock); 14725 mutex_exit(&vp->v_lock); 14726 14727 osp = list_head(&rp->r_open_streams); 14728 if (!osp) { 14729 /* nothing left to CLOSE OTW, so return */ 14730 mutex_exit(&rp->r_os_lock); 14731 rw_exit(&rp->r_hashq->r_lock); 14732 break; 14733 } 14734 14735 mutex_enter(&rp->r_statev4_lock); 14736 /* the file can't still be mem mapped */ 14737 ASSERT(rp->r_mapcnt == 0); 14738 if (rp->created_v4) 14739 rp->created_v4 = 0; 14740 mutex_exit(&rp->r_statev4_lock); 14741 14742 /* 14743 * Grab a ref on this open stream; nfs4close_one 14744 * will mark it as invalid 14745 */ 14746 mutex_enter(&osp->os_sync_lock); 14747 osp->os_ref_count++; 14748 osp->os_force_close = 1; 14749 mutex_exit(&osp->os_sync_lock); 14750 mutex_exit(&rp->r_os_lock); 14751 rw_exit(&rp->r_hashq->r_lock); 14752 14753 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 14754 14755 /* Update error if it isn't already non-zero */ 14756 if (error == 0) { 14757 if (e.error) 14758 error = e.error; 14759 else if (e.stat) 14760 error = geterrno4(e.stat); 14761 } 14762 14763 #ifdef DEBUG 14764 nfs4close_all_cnt++; 14765 #endif 14766 /* Release the ref on osp acquired above. */ 14767 open_stream_rele(osp, rp); 14768 14769 /* Proceed to the next open stream, if any */ 14770 } 14771 return (error); 14772 } 14773 14774 /* 14775 * nfs4close_one - close one open stream for a file if needed. 14776 * 14777 * "close_type" indicates which close path this is: 14778 * CLOSE_NORM: close initiated via VOP_CLOSE. 14779 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 14780 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 14781 * the close and release of client state for this open stream 14782 * (unless someone else has the open stream open). 14783 * CLOSE_RESEND: indicates the request is a replay of an earlier request 14784 * (e.g., due to abort because of a signal). 14785 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 14786 * 14787 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 14788 * recovery. Instead, the caller is expected to deal with retries. 14789 * 14790 * The caller can either pass in the osp ('provided_osp') or not. 14791 * 14792 * 'access_bits' represents the access we are closing/downgrading. 14793 * 14794 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 14795 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 14796 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 14797 * 14798 * Errors are returned via the nfs4_error_t. 14799 */ 14800 void 14801 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 14802 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 14803 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 14804 uint_t mmap_flags) 14805 { 14806 nfs4_open_owner_t *oop; 14807 nfs4_open_stream_t *osp = NULL; 14808 int retry = 0; 14809 int num_retries = NFS4_NUM_RECOV_RETRIES; 14810 rnode4_t *rp; 14811 mntinfo4_t *mi; 14812 nfs4_recov_state_t recov_state; 14813 cred_t *cred_otw = NULL; 14814 bool_t recovonly = FALSE; 14815 int isrecov; 14816 int force_close; 14817 int close_failed = 0; 14818 int did_dec_count = 0; 14819 int did_start_op = 0; 14820 int did_force_recovlock = 0; 14821 int did_start_seqid_sync = 0; 14822 int have_sync_lock = 0; 14823 14824 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14825 14826 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 14827 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 14828 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 14829 len, maxprot, mmap_flags, access_bits)); 14830 14831 nfs4_error_zinit(ep); 14832 rp = VTOR4(vp); 14833 mi = VTOMI4(vp); 14834 isrecov = (close_type == CLOSE_RESEND || 14835 close_type == CLOSE_AFTER_RESEND); 14836 14837 /* 14838 * First get the open owner. 14839 */ 14840 if (!provided_osp) { 14841 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 14842 } else { 14843 oop = provided_osp->os_open_owner; 14844 ASSERT(oop != NULL); 14845 open_owner_hold(oop); 14846 } 14847 14848 if (!oop) { 14849 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 14850 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 14851 "close type %d", (void *)rp, (void *)mi, (void *)cr, 14852 (void *)provided_osp, close_type)); 14853 ep->error = EIO; 14854 goto out; 14855 } 14856 14857 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 14858 recov_retry: 14859 osp = NULL; 14860 close_failed = 0; 14861 force_close = (close_type == CLOSE_FORCE); 14862 retry = 0; 14863 did_start_op = 0; 14864 did_force_recovlock = 0; 14865 did_start_seqid_sync = 0; 14866 have_sync_lock = 0; 14867 recovonly = FALSE; 14868 recov_state.rs_flags = 0; 14869 recov_state.rs_num_retry_despite_err = 0; 14870 14871 /* 14872 * Second synchronize with recovery. 14873 */ 14874 if (!isrecov) { 14875 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 14876 &recov_state, &recovonly); 14877 if (!ep->error) { 14878 did_start_op = 1; 14879 } else { 14880 close_failed = 1; 14881 /* 14882 * If we couldn't get start_fop, but have to 14883 * cleanup state, then at least acquire the 14884 * mi_recovlock so we can synchronize with 14885 * recovery. 14886 */ 14887 if (close_type == CLOSE_FORCE) { 14888 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 14889 RW_READER, FALSE); 14890 did_force_recovlock = 1; 14891 } else 14892 goto out; 14893 } 14894 } 14895 14896 /* 14897 * We cannot attempt to get the open seqid sync if nfs4_start_fop 14898 * set 'recovonly' to TRUE since most likely this is due to 14899 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 14900 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 14901 * to retry, causing us to loop until recovery finishes. Plus we 14902 * don't need protection over the open seqid since we're not going 14903 * OTW, hence don't need to use the seqid. 14904 */ 14905 if (recovonly == FALSE) { 14906 /* need to grab the open owner sync before 'os_sync_lock' */ 14907 ep->error = nfs4_start_open_seqid_sync(oop, mi); 14908 if (ep->error == EAGAIN) { 14909 ASSERT(!isrecov); 14910 if (did_start_op) 14911 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 14912 &recov_state, TRUE); 14913 if (did_force_recovlock) 14914 nfs_rw_exit(&mi->mi_recovlock); 14915 goto recov_retry; 14916 } 14917 did_start_seqid_sync = 1; 14918 } 14919 14920 /* 14921 * Third get an open stream and acquire 'os_sync_lock' to 14922 * sychronize the opening/creating of an open stream with the 14923 * closing/destroying of an open stream. 14924 */ 14925 if (!provided_osp) { 14926 /* returns with 'os_sync_lock' held */ 14927 osp = find_open_stream(oop, rp); 14928 if (!osp) { 14929 ep->error = EIO; 14930 goto out; 14931 } 14932 } else { 14933 osp = provided_osp; 14934 open_stream_hold(osp); 14935 mutex_enter(&osp->os_sync_lock); 14936 } 14937 have_sync_lock = 1; 14938 14939 ASSERT(oop == osp->os_open_owner); 14940 14941 /* 14942 * Fourth, do any special pre-OTW CLOSE processing 14943 * based on the specific close type. 14944 */ 14945 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 14946 !did_dec_count) { 14947 ASSERT(osp->os_open_ref_count > 0); 14948 osp->os_open_ref_count--; 14949 did_dec_count = 1; 14950 if (osp->os_open_ref_count == 0) 14951 osp->os_final_close = 1; 14952 } 14953 14954 if (close_type == CLOSE_FORCE) { 14955 /* see if somebody reopened the open stream. */ 14956 if (!osp->os_force_close) { 14957 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 14958 "nfs4close_one: skip CLOSE_FORCE as osp %p " 14959 "was reopened, vp %p", (void *)osp, (void *)vp)); 14960 ep->error = 0; 14961 ep->stat = NFS4_OK; 14962 goto out; 14963 } 14964 14965 if (!osp->os_final_close && !did_dec_count) { 14966 osp->os_open_ref_count--; 14967 did_dec_count = 1; 14968 } 14969 14970 /* 14971 * We can't depend on os_open_ref_count being 0 due to the 14972 * way executables are opened (VN_RELE to match a VOP_OPEN). 14973 */ 14974 #ifdef NOTYET 14975 ASSERT(osp->os_open_ref_count == 0); 14976 #endif 14977 if (osp->os_open_ref_count != 0) { 14978 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 14979 "nfs4close_one: should panic here on an " 14980 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 14981 "since this is probably the exec problem.")); 14982 14983 osp->os_open_ref_count = 0; 14984 } 14985 14986 /* 14987 * There is the possibility that nfs4close_one() 14988 * for close_type == CLOSE_DELMAP couldn't find the 14989 * open stream, thus couldn't decrement its os_mapcnt; 14990 * therefore we can't use this ASSERT yet. 14991 */ 14992 #ifdef NOTYET 14993 ASSERT(osp->os_mapcnt == 0); 14994 #endif 14995 osp->os_mapcnt = 0; 14996 } 14997 14998 if (close_type == CLOSE_DELMAP && !did_dec_count) { 14999 ASSERT(osp->os_mapcnt >= btopr(len)); 15000 15001 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15002 osp->os_mmap_write -= btopr(len); 15003 if (maxprot & PROT_READ) 15004 osp->os_mmap_read -= btopr(len); 15005 if (maxprot & PROT_EXEC) 15006 osp->os_mmap_read -= btopr(len); 15007 /* mirror the PROT_NONE check in nfs4_addmap() */ 15008 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15009 !(maxprot & PROT_EXEC)) 15010 osp->os_mmap_read -= btopr(len); 15011 osp->os_mapcnt -= btopr(len); 15012 did_dec_count = 1; 15013 } 15014 15015 if (recovonly) { 15016 nfs4_lost_rqst_t lost_rqst; 15017 15018 /* request should not already be in recovery queue */ 15019 ASSERT(lrp == NULL); 15020 nfs4_error_init(ep, EINTR); 15021 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15022 osp, cred_otw, vp); 15023 mutex_exit(&osp->os_sync_lock); 15024 have_sync_lock = 0; 15025 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15026 lost_rqst.lr_op == OP_CLOSE ? 15027 &lost_rqst : NULL, OP_CLOSE, NULL); 15028 close_failed = 1; 15029 force_close = 0; 15030 goto close_cleanup; 15031 } 15032 15033 /* 15034 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15035 * we stopped operating on the open owner's <old oo_name, old seqid> 15036 * space, which means we stopped operating on the open stream 15037 * too. So don't go OTW (as the seqid is likely bad, and the 15038 * stateid could be stale, potentially triggering a false 15039 * setclientid), and just clean up the client's internal state. 15040 */ 15041 if (osp->os_orig_oo_name != oop->oo_name) { 15042 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15043 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15044 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15045 "oo_name %" PRIx64")", 15046 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15047 oop->oo_name)); 15048 close_failed = 1; 15049 } 15050 15051 /* If the file failed recovery, just quit. */ 15052 mutex_enter(&rp->r_statelock); 15053 if (rp->r_flags & R4RECOVERR) { 15054 close_failed = 1; 15055 } 15056 mutex_exit(&rp->r_statelock); 15057 15058 /* 15059 * If the force close path failed to obtain start_fop 15060 * then skip the OTW close and just remove the state. 15061 */ 15062 if (close_failed) 15063 goto close_cleanup; 15064 15065 /* 15066 * Fifth, check to see if there are still mapped pages or other 15067 * opens using this open stream. If there are then we can't 15068 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15069 */ 15070 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15071 nfs4_lost_rqst_t new_lost_rqst; 15072 bool_t needrecov = FALSE; 15073 cred_t *odg_cred_otw = NULL; 15074 seqid4 open_dg_seqid = 0; 15075 15076 if (osp->os_delegation) { 15077 /* 15078 * If this open stream was never OPENed OTW then we 15079 * surely can't DOWNGRADE it (especially since the 15080 * osp->open_stateid is really a delegation stateid 15081 * when os_delegation is 1). 15082 */ 15083 if (access_bits & FREAD) 15084 osp->os_share_acc_read--; 15085 if (access_bits & FWRITE) 15086 osp->os_share_acc_write--; 15087 osp->os_share_deny_none--; 15088 nfs4_error_zinit(ep); 15089 goto out; 15090 } 15091 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15092 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15093 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15094 if (needrecov && !isrecov) { 15095 bool_t abort; 15096 nfs4_bseqid_entry_t *bsep = NULL; 15097 15098 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15099 bsep = nfs4_create_bseqid_entry(oop, NULL, 15100 vp, 0, 15101 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15102 open_dg_seqid); 15103 15104 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15105 oop, osp, odg_cred_otw, vp, access_bits, 0); 15106 mutex_exit(&osp->os_sync_lock); 15107 have_sync_lock = 0; 15108 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15109 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15110 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15111 bsep); 15112 if (odg_cred_otw) 15113 crfree(odg_cred_otw); 15114 if (bsep) 15115 kmem_free(bsep, sizeof (*bsep)); 15116 15117 if (abort == TRUE) 15118 goto out; 15119 15120 if (did_start_seqid_sync) { 15121 nfs4_end_open_seqid_sync(oop); 15122 did_start_seqid_sync = 0; 15123 } 15124 open_stream_rele(osp, rp); 15125 15126 if (did_start_op) 15127 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15128 &recov_state, FALSE); 15129 if (did_force_recovlock) 15130 nfs_rw_exit(&mi->mi_recovlock); 15131 15132 goto recov_retry; 15133 } else { 15134 if (odg_cred_otw) 15135 crfree(odg_cred_otw); 15136 } 15137 goto out; 15138 } 15139 15140 /* 15141 * If this open stream was created as the results of an open 15142 * while holding a delegation, then just release it; no need 15143 * to do an OTW close. Otherwise do a "normal" OTW close. 15144 */ 15145 if (osp->os_delegation) { 15146 nfs4close_notw(vp, osp, &have_sync_lock); 15147 nfs4_error_zinit(ep); 15148 goto out; 15149 } 15150 15151 /* 15152 * If this stream is not valid, we're done. 15153 */ 15154 if (!osp->os_valid) { 15155 nfs4_error_zinit(ep); 15156 goto out; 15157 } 15158 15159 /* 15160 * Last open or mmap ref has vanished, need to do an OTW close. 15161 * First check to see if a close is still necessary. 15162 */ 15163 if (osp->os_failed_reopen) { 15164 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15165 "don't close OTW osp %p since reopen failed.", 15166 (void *)osp)); 15167 /* 15168 * Reopen of the open stream failed, hence the 15169 * stateid of the open stream is invalid/stale, and 15170 * sending this OTW would incorrectly cause another 15171 * round of recovery. In this case, we need to set 15172 * the 'os_valid' bit to 0 so another thread doesn't 15173 * come in and re-open this open stream before 15174 * this "closing" thread cleans up state (decrementing 15175 * the nfs4_server_t's state_ref_count and decrementing 15176 * the os_ref_count). 15177 */ 15178 osp->os_valid = 0; 15179 /* 15180 * This removes the reference obtained at OPEN; ie, 15181 * when the open stream structure was created. 15182 * 15183 * We don't have to worry about calling 'open_stream_rele' 15184 * since we our currently holding a reference to this 15185 * open stream which means the count can not go to 0 with 15186 * this decrement. 15187 */ 15188 ASSERT(osp->os_ref_count >= 2); 15189 osp->os_ref_count--; 15190 nfs4_error_zinit(ep); 15191 close_failed = 0; 15192 goto close_cleanup; 15193 } 15194 15195 ASSERT(osp->os_ref_count > 1); 15196 15197 if (!(vp->v_vfsp->vfs_flag & VFS_RDONLY) && 15198 nfs4_dross_pages(vp)) { 15199 nfs4_invalidate_pages(vp, 0, cred_otw); 15200 } 15201 15202 /* 15203 * Sixth, try the CLOSE OTW. 15204 */ 15205 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15206 close_type, ep, &have_sync_lock); 15207 15208 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15209 /* 15210 * Let the recovery thread be responsible for 15211 * removing the state for CLOSE. 15212 */ 15213 close_failed = 1; 15214 force_close = 0; 15215 retry = 0; 15216 } 15217 15218 /* See if we need to retry with a different cred */ 15219 if ((ep->error == EACCES || 15220 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15221 cred_otw != cr) { 15222 crfree(cred_otw); 15223 cred_otw = cr; 15224 crhold(cred_otw); 15225 retry = 1; 15226 } 15227 15228 if (ep->error || ep->stat) 15229 close_failed = 1; 15230 15231 if (retry && !isrecov && num_retries-- > 0) { 15232 if (have_sync_lock) { 15233 mutex_exit(&osp->os_sync_lock); 15234 have_sync_lock = 0; 15235 } 15236 if (did_start_seqid_sync) { 15237 nfs4_end_open_seqid_sync(oop); 15238 did_start_seqid_sync = 0; 15239 } 15240 open_stream_rele(osp, rp); 15241 15242 if (did_start_op) 15243 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15244 &recov_state, FALSE); 15245 if (did_force_recovlock) 15246 nfs_rw_exit(&mi->mi_recovlock); 15247 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15248 "nfs4close_one: need to retry the close " 15249 "operation")); 15250 goto recov_retry; 15251 } 15252 close_cleanup: 15253 /* 15254 * Seventh and lastly, process our results. 15255 */ 15256 if (close_failed && force_close) { 15257 /* 15258 * It's ok to drop and regrab the 'os_sync_lock' since 15259 * nfs4close_notw() will recheck to make sure the 15260 * "close"/removal of state should happen. 15261 */ 15262 if (!have_sync_lock) { 15263 mutex_enter(&osp->os_sync_lock); 15264 have_sync_lock = 1; 15265 } 15266 /* 15267 * This is last call, remove the ref on the open 15268 * stream created by open and clean everything up. 15269 */ 15270 osp->os_pending_close = 0; 15271 nfs4close_notw(vp, osp, &have_sync_lock); 15272 nfs4_error_zinit(ep); 15273 } 15274 15275 if (!close_failed) { 15276 if (have_sync_lock) { 15277 osp->os_pending_close = 0; 15278 mutex_exit(&osp->os_sync_lock); 15279 have_sync_lock = 0; 15280 } else { 15281 mutex_enter(&osp->os_sync_lock); 15282 osp->os_pending_close = 0; 15283 mutex_exit(&osp->os_sync_lock); 15284 } 15285 if (did_start_op && recov_state.rs_sp != NULL) { 15286 mutex_enter(&recov_state.rs_sp->s_lock); 15287 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15288 mutex_exit(&recov_state.rs_sp->s_lock); 15289 } else { 15290 nfs4_dec_state_ref_count(mi); 15291 } 15292 nfs4_error_zinit(ep); 15293 } 15294 15295 out: 15296 if (have_sync_lock) 15297 mutex_exit(&osp->os_sync_lock); 15298 if (did_start_op) 15299 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15300 recovonly ? TRUE : FALSE); 15301 if (did_force_recovlock) 15302 nfs_rw_exit(&mi->mi_recovlock); 15303 if (cred_otw) 15304 crfree(cred_otw); 15305 if (osp) 15306 open_stream_rele(osp, rp); 15307 if (oop) { 15308 if (did_start_seqid_sync) 15309 nfs4_end_open_seqid_sync(oop); 15310 open_owner_rele(oop); 15311 } 15312 } 15313 15314 /* 15315 * Convert information returned by the server in the LOCK4denied 15316 * structure to the form required by fcntl. 15317 */ 15318 static void 15319 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15320 { 15321 nfs4_lo_name_t *lo; 15322 15323 #ifdef DEBUG 15324 if (denied_to_flk_debug) { 15325 lockt_denied_debug = lockt_denied; 15326 debug_enter("lockt_denied"); 15327 } 15328 #endif 15329 15330 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15331 flk->l_whence = 0; /* aka SEEK_SET */ 15332 flk->l_start = lockt_denied->offset; 15333 flk->l_len = lockt_denied->length; 15334 15335 /* 15336 * If the blocking clientid matches our client id, then we can 15337 * interpret the lockowner (since we built it). If not, then 15338 * fabricate a sysid and pid. Note that the l_sysid field 15339 * in *flk already has the local sysid. 15340 */ 15341 15342 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15343 15344 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15345 lo = (nfs4_lo_name_t *) 15346 lockt_denied->owner.owner_val; 15347 15348 flk->l_pid = lo->ln_pid; 15349 } else { 15350 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15351 "denied_to_flk: bad lock owner length\n")); 15352 15353 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15354 } 15355 } else { 15356 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15357 "denied_to_flk: foreign clientid\n")); 15358 15359 /* 15360 * Construct a new sysid which should be different from 15361 * sysids of other systems. 15362 */ 15363 15364 flk->l_sysid++; 15365 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15366 } 15367 } 15368 15369 static pid_t 15370 lo_to_pid(lock_owner4 *lop) 15371 { 15372 pid_t pid = 0; 15373 uchar_t *cp; 15374 int i; 15375 15376 cp = (uchar_t *)&lop->clientid; 15377 15378 for (i = 0; i < sizeof (lop->clientid); i++) 15379 pid += (pid_t)*cp++; 15380 15381 cp = (uchar_t *)lop->owner_val; 15382 15383 for (i = 0; i < lop->owner_len; i++) 15384 pid += (pid_t)*cp++; 15385 15386 return (pid); 15387 } 15388 15389 /* 15390 * Given a lock pointer, returns the length of that lock. 15391 * "end" is the last locked offset the "l_len" covers from 15392 * the start of the lock. 15393 */ 15394 static off64_t 15395 lock_to_end(flock64_t *lock) 15396 { 15397 off64_t lock_end; 15398 15399 if (lock->l_len == 0) 15400 lock_end = (off64_t)MAXEND; 15401 else 15402 lock_end = lock->l_start + lock->l_len - 1; 15403 15404 return (lock_end); 15405 } 15406 15407 /* 15408 * Given the end of a lock, it will return you the length "l_len" for that lock. 15409 */ 15410 static off64_t 15411 end_to_len(off64_t start, off64_t end) 15412 { 15413 off64_t lock_len; 15414 15415 ASSERT(end >= start); 15416 if (end == MAXEND) 15417 lock_len = 0; 15418 else 15419 lock_len = end - start + 1; 15420 15421 return (lock_len); 15422 } 15423 15424 /* 15425 * On given end for a lock it determines if it is the last locked offset 15426 * or not, if so keeps it as is, else adds one to return the length for 15427 * valid start. 15428 */ 15429 static off64_t 15430 start_check(off64_t x) 15431 { 15432 if (x == MAXEND) 15433 return (x); 15434 else 15435 return (x + 1); 15436 } 15437 15438 /* 15439 * See if these two locks overlap, and if so return 1; 15440 * otherwise, return 0. 15441 */ 15442 static int 15443 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15444 { 15445 off64_t llfp_end, curfp_end; 15446 15447 llfp_end = lock_to_end(llfp); 15448 curfp_end = lock_to_end(curfp); 15449 15450 if (((llfp_end >= curfp->l_start) && 15451 (llfp->l_start <= curfp->l_start)) || 15452 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15453 return (1); 15454 return (0); 15455 } 15456 15457 /* 15458 * Determine what the interseting lock region is, and add that to the 15459 * 'nl_llpp' locklist in increasing order (by l_start). 15460 */ 15461 static void 15462 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15463 locklist_t **nl_llpp, vnode_t *vp) 15464 { 15465 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15466 off64_t lost_flp_end, local_flp_end, len, start; 15467 15468 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15469 15470 if (!locks_intersect(lost_flp, local_flp)) 15471 return; 15472 15473 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15474 "locks intersect")); 15475 15476 lost_flp_end = lock_to_end(lost_flp); 15477 local_flp_end = lock_to_end(local_flp); 15478 15479 /* Find the starting point of the intersecting region */ 15480 if (local_flp->l_start > lost_flp->l_start) 15481 start = local_flp->l_start; 15482 else 15483 start = lost_flp->l_start; 15484 15485 /* Find the lenght of the intersecting region */ 15486 if (lost_flp_end < local_flp_end) 15487 len = end_to_len(start, lost_flp_end); 15488 else 15489 len = end_to_len(start, local_flp_end); 15490 15491 /* 15492 * Prepare the flock structure for the intersection found and insert 15493 * it into the new list in increasing l_start order. This list contains 15494 * intersections of locks registered by the client with the local host 15495 * and the lost lock. 15496 * The lock type of this lock is the same as that of the local_flp. 15497 */ 15498 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15499 intersect_llp->ll_flock.l_start = start; 15500 intersect_llp->ll_flock.l_len = len; 15501 intersect_llp->ll_flock.l_type = local_flp->l_type; 15502 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15503 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15504 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15505 intersect_llp->ll_vp = vp; 15506 15507 tmp_fllp = *nl_llpp; 15508 cur_fllp = NULL; 15509 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15510 intersect_llp->ll_flock.l_start) { 15511 cur_fllp = tmp_fllp; 15512 tmp_fllp = tmp_fllp->ll_next; 15513 } 15514 if (cur_fllp == NULL) { 15515 /* first on the list */ 15516 intersect_llp->ll_next = *nl_llpp; 15517 *nl_llpp = intersect_llp; 15518 } else { 15519 intersect_llp->ll_next = cur_fllp->ll_next; 15520 cur_fllp->ll_next = intersect_llp; 15521 } 15522 15523 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15524 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15525 intersect_llp->ll_flock.l_start, 15526 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15527 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15528 } 15529 15530 /* 15531 * Our local locking current state is potentially different than 15532 * what the NFSv4 server thinks we have due to a lost lock that was 15533 * resent and then received. We need to reset our "NFSv4" locking 15534 * state to match the current local locking state for this pid since 15535 * that is what the user/application sees as what the world is. 15536 * 15537 * We cannot afford to drop the open/lock seqid sync since then we can 15538 * get confused about what the current local locking state "is" versus 15539 * "was". 15540 * 15541 * If we are unable to fix up the locks, we send SIGLOST to the affected 15542 * process. This is not done if the filesystem has been forcibly 15543 * unmounted, in case the process has already exited and a new process 15544 * exists with the same pid. 15545 */ 15546 static void 15547 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15548 nfs4_lock_owner_t *lop) 15549 { 15550 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15551 mntinfo4_t *mi = VTOMI4(vp); 15552 const int cmd = F_SETLK; 15553 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15554 flock64_t ul_fl; 15555 15556 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15557 "nfs4_reinstitute_local_lock_state")); 15558 15559 /* 15560 * Find active locks for this vp from the local locking code. 15561 * Scan through this list and find out the locks that intersect with 15562 * the lost lock. Once we find the lock that intersects, add the 15563 * intersection area as a new lock to a new list "ri_llp". The lock 15564 * type of the intersection region lock added to ri_llp is the same 15565 * as that found in the active lock list, "list". The intersecting 15566 * region locks are added to ri_llp in increasing l_start order. 15567 */ 15568 ASSERT(nfs_zone() == mi->mi_zone); 15569 15570 locks = flk_active_locks_for_vp(vp); 15571 ri_llp = NULL; 15572 15573 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15574 ASSERT(llp->ll_vp == vp); 15575 /* 15576 * Pick locks that belong to this pid/lockowner 15577 */ 15578 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15579 continue; 15580 15581 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15582 } 15583 15584 /* 15585 * Now we have the list of intersections with the lost lock. These are 15586 * the locks that were/are active before the server replied to the 15587 * last/lost lock. Issue these locks to the server here. Playing these 15588 * locks to the server will re-establish aur current local locking state 15589 * with the v4 server. 15590 * If we get an error, send SIGLOST to the application for that lock. 15591 */ 15592 15593 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15594 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15595 "nfs4_reinstitute_local_lock_state: need to issue " 15596 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15597 llp->ll_flock.l_start, 15598 llp->ll_flock.l_start + llp->ll_flock.l_len, 15599 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15600 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15601 /* 15602 * No need to relock what we already have 15603 */ 15604 if (llp->ll_flock.l_type == lost_flp->l_type) 15605 continue; 15606 15607 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15608 } 15609 15610 /* 15611 * Now keeping the start of the lost lock as our reference parse the 15612 * newly created ri_llp locklist to find the ranges that we have locked 15613 * with the v4 server but not in the current local locking. We need 15614 * to unlock these ranges. 15615 * These ranges can also be reffered to as those ranges, where the lost 15616 * lock does not overlap with the locks in the ri_llp but are locked 15617 * since the server replied to the lost lock. 15618 */ 15619 cur_start = lost_flp->l_start; 15620 lost_flp_end = lock_to_end(lost_flp); 15621 15622 ul_fl.l_type = F_UNLCK; 15623 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15624 ul_fl.l_sysid = lost_flp->l_sysid; 15625 ul_fl.l_pid = lost_flp->l_pid; 15626 15627 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15628 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15629 15630 if (llp->ll_flock.l_start <= cur_start) { 15631 cur_start = start_check(llp_ll_flock_end); 15632 continue; 15633 } 15634 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15635 "nfs4_reinstitute_local_lock_state: " 15636 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15637 cur_start, llp->ll_flock.l_start)); 15638 15639 ul_fl.l_start = cur_start; 15640 ul_fl.l_len = end_to_len(cur_start, 15641 (llp->ll_flock.l_start - 1)); 15642 15643 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15644 cur_start = start_check(llp_ll_flock_end); 15645 } 15646 15647 /* 15648 * In the case where the lost lock ends after all intersecting locks, 15649 * unlock the last part of the lost lock range. 15650 */ 15651 if (cur_start != start_check(lost_flp_end)) { 15652 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15653 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15654 "lost lock region [%"PRIx64" - %"PRIx64"]", 15655 cur_start, lost_flp->l_start + lost_flp->l_len)); 15656 15657 ul_fl.l_start = cur_start; 15658 /* 15659 * Is it an to-EOF lock? if so unlock till the end 15660 */ 15661 if (lost_flp->l_len == 0) 15662 ul_fl.l_len = 0; 15663 else 15664 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15665 15666 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15667 } 15668 15669 if (locks != NULL) 15670 flk_free_locklist(locks); 15671 15672 /* Free up our newly created locklist */ 15673 for (llp = ri_llp; llp != NULL; ) { 15674 tmp_llp = llp->ll_next; 15675 kmem_free(llp, sizeof (locklist_t)); 15676 llp = tmp_llp; 15677 } 15678 15679 /* 15680 * Now return back to the original calling nfs4frlock() 15681 * and let us naturally drop our seqid syncs. 15682 */ 15683 } 15684 15685 /* 15686 * Create a lost state record for the given lock reinstantiation request 15687 * and push it onto the lost state queue. 15688 */ 15689 static void 15690 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15691 nfs4_lock_owner_t *lop) 15692 { 15693 nfs4_lost_rqst_t req; 15694 nfs_lock_type4 locktype; 15695 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15696 15697 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15698 15699 locktype = flk_to_locktype(cmd, flk->l_type); 15700 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15701 NULL, NULL, lop, flk, &req, cr, vp); 15702 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15703 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15704 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15705 NULL); 15706 } 15707