1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/cred.h> 37 #include <sys/time.h> 38 #include <sys/vnode.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/file.h> 42 #include <sys/filio.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/mman.h> 46 #include <sys/pathname.h> 47 #include <sys/dirent.h> 48 #include <sys/debug.h> 49 #include <sys/vmsystm.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/swap.h> 53 #include <sys/errno.h> 54 #include <sys/strsubr.h> 55 #include <sys/sysmacros.h> 56 #include <sys/kmem.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathconf.h> 59 #include <sys/utsname.h> 60 #include <sys/dnlc.h> 61 #include <sys/acl.h> 62 #include <sys/systeminfo.h> 63 #include <sys/policy.h> 64 #include <sys/sdt.h> 65 #include <sys/list.h> 66 #include <sys/stat.h> 67 68 #include <rpc/types.h> 69 #include <rpc/auth.h> 70 #include <rpc/clnt.h> 71 72 #include <nfs/nfs.h> 73 #include <nfs/nfs_clnt.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 #include <nfs/nfs4.h> 77 #include <nfs/nfs4_kprot.h> 78 #include <nfs/rnode4.h> 79 #include <nfs/nfs4_clnt.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/pvn.h> 85 #include <vm/seg.h> 86 #include <vm/seg_map.h> 87 #include <vm/seg_kpm.h> 88 #include <vm/seg_vn.h> 89 90 #include <fs/fs_subr.h> 91 92 #include <sys/ddi.h> 93 #include <sys/int_fmtio.h> 94 95 typedef struct { 96 nfs4_ga_res_t *di_garp; 97 cred_t *di_cred; 98 hrtime_t di_time_call; 99 } dirattr_info_t; 100 101 typedef enum nfs4_acl_op { 102 NFS4_ACL_GET, 103 NFS4_ACL_SET 104 } nfs4_acl_op_t; 105 106 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 107 char *, dirattr_info_t *); 108 109 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 110 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 111 nfs4_error_t *, int *); 112 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 113 cred_t *); 114 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 115 stable_how4 *); 116 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 117 cred_t *, bool_t, struct uio *); 118 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 119 vsecattr_t *); 120 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 121 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 122 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 123 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 124 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 125 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 126 int, vnode_t **, cred_t *); 127 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 128 cred_t *, int, int, enum createmode4, int); 129 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 130 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 131 vnode_t *, char *, cred_t *, nfsstat4 *); 132 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 133 vnode_t *, char *, cred_t *, nfsstat4 *); 134 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 135 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 136 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 137 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 138 page_t *[], size_t, struct seg *, caddr_t, 139 enum seg_rw, cred_t *); 140 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 141 cred_t *); 142 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 143 int, cred_t *); 144 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 145 int, cred_t *); 146 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 147 static void nfs4_set_mod(vnode_t *); 148 static void nfs4_get_commit(vnode_t *); 149 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 150 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 151 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 152 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 153 cred_t *); 154 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 155 cred_t *); 156 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 157 hrtime_t, vnode_t *, cred_t *); 158 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 159 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 160 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 161 u_offset_t); 162 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 163 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 164 static cred_t *state_to_cred(nfs4_open_stream_t *); 165 static int vtoname(vnode_t *, char *, ssize_t); 166 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 167 static pid_t lo_to_pid(lock_owner4 *); 168 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 169 cred_t *, nfs4_lock_owner_t *); 170 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 171 nfs4_lock_owner_t *); 172 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 173 static void nfs4_delmap_callback(struct as *, void *, uint_t); 174 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 175 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 176 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 177 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 178 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 179 uid_t, gid_t, int); 180 181 /* 182 * Routines that implement the setting of v4 args for the misc. ops 183 */ 184 static void nfs4args_lock_free(nfs_argop4 *); 185 static void nfs4args_lockt_free(nfs_argop4 *); 186 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 187 int, rnode4_t *, cred_t *, bitmap4, int *, 188 nfs4_stateid_types_t *); 189 static void nfs4args_setattr_free(nfs_argop4 *); 190 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 191 bitmap4); 192 static void nfs4args_verify_free(nfs_argop4 *); 193 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 194 WRITE4args **, nfs4_stateid_types_t *); 195 196 /* 197 * These are the vnode ops functions that implement the vnode interface to 198 * the networked file system. See more comments below at nfs4_vnodeops. 199 */ 200 static int nfs4_open(vnode_t **, int, cred_t *); 201 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *); 202 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 203 caller_context_t *); 204 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 205 caller_context_t *); 206 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *); 207 static int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *); 208 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 209 caller_context_t *); 210 static int nfs4_access(vnode_t *, int, int, cred_t *); 211 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *); 212 static int nfs4_fsync(vnode_t *, int, cred_t *); 213 static void nfs4_inactive(vnode_t *, cred_t *); 214 static int nfs4_lookup(vnode_t *, char *, vnode_t **, 215 struct pathname *, int, vnode_t *, cred_t *); 216 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 217 int, vnode_t **, cred_t *, int); 218 static int nfs4_remove(vnode_t *, char *, cred_t *); 219 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *); 220 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 221 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, 222 vnode_t **, cred_t *); 223 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *); 224 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 225 cred_t *); 226 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *); 227 static int nfs4_fid(vnode_t *, fid_t *); 228 static int nfs4_rwlock(vnode_t *, int, caller_context_t *); 229 static void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 230 static int nfs4_seek(vnode_t *, offset_t, offset_t *); 231 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 232 page_t *[], size_t, struct seg *, caddr_t, 233 enum seg_rw, cred_t *); 234 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *); 235 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, 236 size_t, uchar_t, uchar_t, uint_t, cred_t *); 237 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, 238 size_t, uchar_t, uchar_t, uint_t, cred_t *); 239 static int nfs4_cmp(vnode_t *, vnode_t *); 240 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 241 struct flk_callback *, cred_t *); 242 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 243 cred_t *, caller_context_t *); 244 static int nfs4_realvp(vnode_t *, vnode_t **); 245 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, 246 size_t, uint_t, uint_t, uint_t, cred_t *); 247 static int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *); 248 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 249 cred_t *); 250 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *); 251 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 252 static int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 253 static int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *); 254 255 /* 256 * Used for nfs4_commit_vp() to indicate if we should 257 * wait on pending writes. 258 */ 259 #define NFS4_WRITE_NOWAIT 0 260 #define NFS4_WRITE_WAIT 1 261 262 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 263 264 /* 265 * Error flags used to pass information about certain special errors 266 * which need to be handled specially. 267 */ 268 #define NFS_EOF -98 269 #define NFS_VERF_MISMATCH -97 270 271 /* 272 * Flags used to differentiate between which operation drove the 273 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 274 */ 275 #define NFS4_CLOSE_OP 0x1 276 #define NFS4_DELMAP_OP 0x2 277 #define NFS4_INACTIVE_OP 0x3 278 279 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 280 281 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 282 #define ALIGN64(x, ptr, sz) \ 283 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 284 if (x) { \ 285 x = sizeof (uint64_t) - (x); \ 286 sz -= (x); \ 287 ptr += (x); \ 288 } 289 290 #ifdef DEBUG 291 int nfs4_client_attr_debug = 0; 292 int nfs4_client_state_debug = 0; 293 int nfs4_client_shadow_debug = 0; 294 int nfs4_client_lock_debug = 0; 295 int nfs4_seqid_sync = 0; 296 int nfs4_client_map_debug = 0; 297 static int nfs4_pageio_debug = 0; 298 int nfs4_client_inactive_debug = 0; 299 int nfs4_client_recov_debug = 0; 300 int nfs4_client_recov_stub_debug = 0; 301 int nfs4_client_failover_debug = 0; 302 int nfs4_client_call_debug = 0; 303 int nfs4_client_lookup_debug = 0; 304 int nfs4_client_zone_debug = 0; 305 int nfs4_lost_rqst_debug = 0; 306 int nfs4_rdattrerr_debug = 0; 307 int nfs4_open_stream_debug = 0; 308 309 int nfs4read_error_inject; 310 311 static int nfs4_create_misses = 0; 312 313 static int nfs4_readdir_cache_shorts = 0; 314 static int nfs4_readdir_readahead = 0; 315 316 static int nfs4_bio_do_stop = 0; 317 318 static int nfs4_lostpage = 0; /* number of times we lost original page */ 319 320 int nfs4_mmap_debug = 0; 321 322 static int nfs4_pathconf_cache_hits = 0; 323 static int nfs4_pathconf_cache_misses = 0; 324 325 int nfs4close_all_cnt; 326 int nfs4close_one_debug = 0; 327 int nfs4close_notw_debug = 0; 328 329 int denied_to_flk_debug = 0; 330 void *lockt_denied_debug; 331 332 #endif 333 334 /* 335 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 336 * or NFS4ERR_RESOURCE. 337 */ 338 static int confirm_retry_sec = 30; 339 340 static int nfs4_lookup_neg_cache = 1; 341 342 /* 343 * number of pages to read ahead 344 * optimized for 100 base-T. 345 */ 346 static int nfs4_nra = 4; 347 348 static int nfs4_do_symlink_cache = 1; 349 350 static int nfs4_pathconf_disable_cache = 0; 351 352 /* 353 * These are the vnode ops routines which implement the vnode interface to 354 * the networked file system. These routines just take their parameters, 355 * make them look networkish by putting the right info into interface structs, 356 * and then calling the appropriate remote routine(s) to do the work. 357 * 358 * Note on directory name lookup cacheing: If we detect a stale fhandle, 359 * we purge the directory cache relative to that vnode. This way, the 360 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 361 * more details on rnode locking. 362 */ 363 364 struct vnodeops *nfs4_vnodeops; 365 366 const fs_operation_def_t nfs4_vnodeops_template[] = { 367 VOPNAME_OPEN, { .vop_open = nfs4_open }, 368 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 369 VOPNAME_READ, { .vop_read = nfs4_read }, 370 VOPNAME_WRITE, { .vop_write = nfs4_write }, 371 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 372 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 373 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 374 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 375 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 376 VOPNAME_CREATE, { .vop_create = nfs4_create }, 377 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 378 VOPNAME_LINK, { .vop_link = nfs4_link }, 379 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 380 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 381 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 382 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 383 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 384 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 385 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 386 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 387 VOPNAME_FID, { .vop_fid = nfs4_fid }, 388 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 389 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 390 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 391 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 392 VOPNAME_SPACE, { .vop_space = nfs4_space }, 393 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 394 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 395 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 396 VOPNAME_MAP, { .vop_map = nfs4_map }, 397 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 398 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 399 /* no separate nfs4_dump */ 400 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 401 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 402 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 403 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 404 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 405 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 406 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 407 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 408 NULL, NULL 409 }; 410 411 /* 412 * The following are subroutines and definitions to set args or get res 413 * for the different nfsv4 ops 414 */ 415 416 void 417 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 418 { 419 int i; 420 421 for (i = 0; i < arglen; i++) { 422 if (argop[i].argop == OP_LOOKUP) 423 kmem_free( 424 argop[i].nfs_argop4_u.oplookup.objname.utf8string_val, 425 argop[i].nfs_argop4_u.oplookup.objname.utf8string_len); 426 } 427 } 428 429 static void 430 nfs4args_lock_free(nfs_argop4 *argop) 431 { 432 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 433 434 if (locker->new_lock_owner == TRUE) { 435 open_to_lock_owner4 *open_owner; 436 437 open_owner = &locker->locker4_u.open_owner; 438 if (open_owner->lock_owner.owner_val != NULL) { 439 kmem_free(open_owner->lock_owner.owner_val, 440 open_owner->lock_owner.owner_len); 441 } 442 } 443 } 444 445 static void 446 nfs4args_lockt_free(nfs_argop4 *argop) 447 { 448 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 449 450 if (lowner->owner_val != NULL) { 451 kmem_free(lowner->owner_val, lowner->owner_len); 452 } 453 } 454 455 static void 456 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 457 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 458 nfs4_stateid_types_t *sid_types) 459 { 460 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 461 mntinfo4_t *mi; 462 463 argop->argop = OP_SETATTR; 464 /* 465 * The stateid is set to 0 if client is not modifying the size 466 * and otherwise to whatever nfs4_get_stateid() returns. 467 * 468 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 469 * state struct could be found for the process/file pair. We may 470 * want to change this in the future (by OPENing the file). See 471 * bug # 4474852. 472 */ 473 if (vap->va_mask & AT_SIZE) { 474 475 ASSERT(rp != NULL); 476 mi = VTOMI4(RTOV4(rp)); 477 478 argop->nfs_argop4_u.opsetattr.stateid = 479 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 480 OP_SETATTR, sid_types, FALSE); 481 } else { 482 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 483 sizeof (stateid4)); 484 } 485 486 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 487 if (*error) 488 bzero(attr, sizeof (*attr)); 489 } 490 491 static void 492 nfs4args_setattr_free(nfs_argop4 *argop) 493 { 494 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 495 } 496 497 static int 498 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 499 bitmap4 supp) 500 { 501 fattr4 *attr; 502 int error = 0; 503 504 argop->argop = op; 505 switch (op) { 506 case OP_VERIFY: 507 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 508 break; 509 case OP_NVERIFY: 510 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 511 break; 512 default: 513 return (EINVAL); 514 } 515 if (!error) 516 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 517 if (error) 518 bzero(attr, sizeof (*attr)); 519 return (error); 520 } 521 522 static void 523 nfs4args_verify_free(nfs_argop4 *argop) 524 { 525 switch (argop->argop) { 526 case OP_VERIFY: 527 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 528 break; 529 case OP_NVERIFY: 530 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 531 break; 532 default: 533 break; 534 } 535 } 536 537 static void 538 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 539 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 540 { 541 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 542 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 543 544 argop->argop = OP_WRITE; 545 wargs->stable = stable; 546 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 547 mi, OP_WRITE, sid_tp); 548 wargs->mblk = NULL; 549 *wargs_pp = wargs; 550 } 551 552 void 553 nfs4args_copen_free(OPEN4cargs *open_args) 554 { 555 if (open_args->owner.owner_val) { 556 kmem_free(open_args->owner.owner_val, 557 open_args->owner.owner_len); 558 } 559 if ((open_args->opentype == OPEN4_CREATE) && 560 (open_args->mode != EXCLUSIVE4)) { 561 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 562 } 563 } 564 565 /* 566 * XXX: This is referenced in modstubs.s 567 */ 568 struct vnodeops * 569 nfs4_getvnodeops(void) 570 { 571 return (nfs4_vnodeops); 572 } 573 574 /* 575 * The OPEN operation opens a regular file. 576 * 577 * ARGSUSED 578 */ 579 static int 580 nfs4_open(vnode_t **vpp, int flag, cred_t *cr) 581 { 582 vnode_t *dvp = NULL; 583 rnode4_t *rp, *drp; 584 int error; 585 int just_been_created; 586 char fn[MAXNAMELEN]; 587 588 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 589 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 590 return (EIO); 591 rp = VTOR4(*vpp); 592 593 /* 594 * Check to see if opening something besides a regular file; 595 * if so skip the OTW call 596 */ 597 if ((*vpp)->v_type != VREG) { 598 error = nfs4_open_non_reg_file(vpp, flag, cr); 599 return (error); 600 } 601 602 /* 603 * XXX - would like a check right here to know if the file is 604 * executable or not, so as to skip OTW 605 */ 606 607 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 608 return (error); 609 610 drp = VTOR4(dvp); 611 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 612 return (EINTR); 613 614 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 615 nfs_rw_exit(&drp->r_rwlock); 616 return (error); 617 } 618 619 /* 620 * See if this file has just been CREATEd. 621 * If so, clear the flag and update the dnlc, which was previously 622 * skipped in nfs4_create. 623 * XXX need better serilization on this. 624 * XXX move this into the nf4open_otw call, after we have 625 * XXX acquired the open owner seqid sync. 626 */ 627 mutex_enter(&rp->r_statev4_lock); 628 if (rp->created_v4) { 629 rp->created_v4 = 0; 630 mutex_exit(&rp->r_statev4_lock); 631 632 dnlc_update(dvp, fn, *vpp); 633 /* This is needed so we don't bump the open ref count */ 634 just_been_created = 1; 635 } else { 636 mutex_exit(&rp->r_statev4_lock); 637 just_been_created = 0; 638 } 639 640 /* 641 * If caller specified O_TRUNC/FTRUNC, then be sure to set 642 * FWRITE (to drive successful setattr(size=0) after open) 643 */ 644 if (flag & FTRUNC) 645 flag |= FWRITE; 646 647 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 648 just_been_created); 649 650 if (!error && !((*vpp)->v_flag & VROOT)) 651 dnlc_update(dvp, fn, *vpp); 652 653 nfs_rw_exit(&drp->r_rwlock); 654 655 /* release the hold from vtodv */ 656 VN_RELE(dvp); 657 658 /* exchange the shadow for the master vnode, if needed */ 659 660 if (error == 0 && IS_SHADOW(*vpp, rp)) 661 sv_exchange(vpp); 662 663 return (error); 664 } 665 666 /* 667 * See if there's a "lost open" request to be saved and recovered. 668 */ 669 static void 670 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 671 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 672 vnode_t *dvp, OPEN4cargs *open_args) 673 { 674 vfs_t *vfsp; 675 char *srccfp; 676 677 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 678 679 if (error != ETIMEDOUT && error != EINTR && 680 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 681 lost_rqstp->lr_op = 0; 682 return; 683 } 684 685 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 686 "nfs4open_save_lost_rqst: error %d", error)); 687 688 lost_rqstp->lr_op = OP_OPEN; 689 /* 690 * The vp (if it is not NULL) and dvp are held and rele'd via 691 * the recovery code. See nfs4_save_lost_rqst. 692 */ 693 lost_rqstp->lr_vp = vp; 694 lost_rqstp->lr_dvp = dvp; 695 lost_rqstp->lr_oop = oop; 696 lost_rqstp->lr_osp = NULL; 697 lost_rqstp->lr_lop = NULL; 698 lost_rqstp->lr_cr = cr; 699 lost_rqstp->lr_flk = NULL; 700 lost_rqstp->lr_oacc = open_args->share_access; 701 lost_rqstp->lr_odeny = open_args->share_deny; 702 lost_rqstp->lr_oclaim = open_args->claim; 703 if (open_args->claim == CLAIM_DELEGATE_CUR) { 704 lost_rqstp->lr_ostateid = 705 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 706 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 707 } else { 708 srccfp = open_args->open_claim4_u.cfile; 709 } 710 lost_rqstp->lr_ofile.utf8string_len = 0; 711 lost_rqstp->lr_ofile.utf8string_val = NULL; 712 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 713 lost_rqstp->lr_putfirst = FALSE; 714 } 715 716 struct nfs4_excl_time { 717 uint32 seconds; 718 uint32 nseconds; 719 }; 720 721 /* 722 * The OPEN operation creates and/or opens a regular file 723 * 724 * ARGSUSED 725 */ 726 static int 727 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 728 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 729 enum createmode4 createmode, int file_just_been_created) 730 { 731 rnode4_t *rp; 732 rnode4_t *drp = VTOR4(dvp); 733 vnode_t *vp = NULL; 734 vnode_t *vpi = *vpp; 735 bool_t needrecov = FALSE; 736 737 int doqueue = 1; 738 739 COMPOUND4args_clnt args; 740 COMPOUND4res_clnt res; 741 nfs_argop4 *argop; 742 nfs_resop4 *resop; 743 int argoplist_size; 744 int idx_open, idx_fattr; 745 746 GETFH4res *gf_res = NULL; 747 OPEN4res *op_res = NULL; 748 nfs4_ga_res_t *garp; 749 fattr4 *attr = NULL; 750 struct nfs4_excl_time verf; 751 bool_t did_excl_setup = FALSE; 752 int created_osp; 753 754 OPEN4cargs *open_args; 755 nfs4_open_owner_t *oop = NULL; 756 nfs4_open_stream_t *osp = NULL; 757 seqid4 seqid = 0; 758 bool_t retry_open = FALSE; 759 nfs4_recov_state_t recov_state; 760 nfs4_lost_rqst_t lost_rqst; 761 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 762 hrtime_t t; 763 int acc = 0; 764 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 765 cred_t *ncr = NULL; 766 767 nfs4_sharedfh_t *otw_sfh; 768 nfs4_sharedfh_t *orig_sfh; 769 int fh_differs = 0; 770 int numops, setgid_flag; 771 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 772 773 /* 774 * Make sure we properly deal with setting the right gid on 775 * a newly created file to reflect the parent's setgid bit 776 */ 777 setgid_flag = 0; 778 if (create_flag && in_va) { 779 780 /* 781 * If the parent's directory has the setgid bit set 782 * _and_ the client was able to get a valid mapping 783 * for the parent dir's owner_group, we want to 784 * append NVERIFY(owner_group == dva.va_gid) and 785 * SETATTR to the CREATE compound. 786 */ 787 mutex_enter(&drp->r_statelock); 788 if (drp->r_attr.va_mode & VSGID && 789 drp->r_attr.va_gid != GID_NOBODY) { 790 in_va->va_gid = drp->r_attr.va_gid; 791 setgid_flag = 1; 792 } 793 mutex_exit(&drp->r_statelock); 794 } 795 796 /* 797 * Normal/non-create compound: 798 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 799 * 800 * Open(create) compound no setgid: 801 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 802 * RESTOREFH + GETATTR 803 * 804 * Open(create) setgid: 805 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 806 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 807 * NVERIFY(grp) + SETATTR 808 */ 809 if (setgid_flag) { 810 numops = 10; 811 idx_open = 1; 812 idx_fattr = 3; 813 } else if (create_flag) { 814 numops = 7; 815 idx_open = 2; 816 idx_fattr = 4; 817 } else { 818 numops = 4; 819 idx_open = 1; 820 idx_fattr = 3; 821 } 822 823 args.array_len = numops; 824 argoplist_size = numops * sizeof (nfs_argop4); 825 argop = kmem_alloc(argoplist_size, KM_SLEEP); 826 827 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 828 "open %s open flag 0x%x cred %p", file_name, open_flag, 829 (void *)cr)); 830 831 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 832 if (create_flag) { 833 /* 834 * We are to create a file. Initialize the passed in vnode 835 * pointer. 836 */ 837 vpi = NULL; 838 } else { 839 /* 840 * Check to see if the client owns a read delegation and is 841 * trying to open for write. If so, then return the delegation 842 * to avoid the server doing a cb_recall and returning DELAY. 843 * NB - we don't use the statev4_lock here because we'd have 844 * to drop the lock anyway and the result would be stale. 845 */ 846 if ((open_flag & FWRITE) && 847 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 848 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 849 850 /* 851 * If the file has a delegation, then do an access check up 852 * front. This avoids having to an access check later after 853 * we've already done start_op, which could deadlock. 854 */ 855 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 856 if (open_flag & FREAD && 857 nfs4_access(vpi, VREAD, 0, cr) == 0) 858 acc |= VREAD; 859 if (open_flag & FWRITE && 860 nfs4_access(vpi, VWRITE, 0, cr) == 0) 861 acc |= VWRITE; 862 } 863 } 864 865 drp = VTOR4(dvp); 866 867 recov_state.rs_flags = 0; 868 recov_state.rs_num_retry_despite_err = 0; 869 cred_otw = cr; 870 871 recov_retry: 872 fh_differs = 0; 873 nfs4_error_zinit(&e); 874 875 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 876 if (e.error) { 877 if (ncr != NULL) 878 crfree(ncr); 879 kmem_free(argop, argoplist_size); 880 return (e.error); 881 } 882 883 args.ctag = TAG_OPEN; 884 args.array_len = numops; 885 args.array = argop; 886 887 /* putfh directory fh */ 888 argop[0].argop = OP_CPUTFH; 889 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 890 891 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 892 argop[idx_open].argop = OP_COPEN; 893 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 894 open_args->claim = CLAIM_NULL; 895 896 /* name of file */ 897 open_args->open_claim4_u.cfile = file_name; 898 open_args->owner.owner_len = 0; 899 open_args->owner.owner_val = NULL; 900 901 if (create_flag) { 902 /* CREATE a file */ 903 open_args->opentype = OPEN4_CREATE; 904 open_args->mode = createmode; 905 if (createmode == EXCLUSIVE4) { 906 if (did_excl_setup == FALSE) { 907 verf.seconds = nfs_atoi(hw_serial); 908 if (verf.seconds != 0) 909 verf.nseconds = newnum(); 910 else { 911 timestruc_t now; 912 913 gethrestime(&now); 914 verf.seconds = now.tv_sec; 915 verf.nseconds = now.tv_nsec; 916 } 917 /* 918 * Since the server will use this value for the 919 * mtime, make sure that it can't overflow. Zero 920 * out the MSB. The actual value does not matter 921 * here, only its uniqeness. 922 */ 923 verf.seconds &= INT32_MAX; 924 did_excl_setup = TRUE; 925 } 926 927 /* Now copy over verifier to OPEN4args. */ 928 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 929 } else { 930 int v_error; 931 bitmap4 supp_attrs; 932 servinfo4_t *svp; 933 934 attr = &open_args->createhow4_u.createattrs; 935 936 svp = drp->r_server; 937 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 938 supp_attrs = svp->sv_supp_attrs; 939 nfs_rw_exit(&svp->sv_lock); 940 941 /* GUARDED4 or UNCHECKED4 */ 942 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 943 supp_attrs); 944 if (v_error) { 945 bzero(attr, sizeof (*attr)); 946 nfs4args_copen_free(open_args); 947 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 948 &recov_state, FALSE); 949 if (ncr != NULL) 950 crfree(ncr); 951 kmem_free(argop, argoplist_size); 952 return (v_error); 953 } 954 } 955 } else { 956 /* NO CREATE */ 957 open_args->opentype = OPEN4_NOCREATE; 958 } 959 960 if (recov_state.rs_sp != NULL) { 961 mutex_enter(&recov_state.rs_sp->s_lock); 962 open_args->owner.clientid = recov_state.rs_sp->clientid; 963 mutex_exit(&recov_state.rs_sp->s_lock); 964 } else { 965 /* XXX should we just fail here? */ 966 open_args->owner.clientid = 0; 967 } 968 969 /* 970 * This increments oop's ref count or creates a temporary 'just_created' 971 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 972 * completes. 973 */ 974 mutex_enter(&VTOMI4(dvp)->mi_lock); 975 976 /* See if a permanent or just created open owner exists */ 977 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 978 if (!oop) { 979 /* 980 * This open owner does not exist so create a temporary 981 * just created one. 982 */ 983 oop = create_open_owner(cr, VTOMI4(dvp)); 984 ASSERT(oop != NULL); 985 } 986 mutex_exit(&VTOMI4(dvp)->mi_lock); 987 988 /* this length never changes, do alloc before seqid sync */ 989 open_args->owner.owner_len = sizeof (oop->oo_name); 990 open_args->owner.owner_val = 991 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 992 993 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 994 if (e.error == EAGAIN) { 995 open_owner_rele(oop); 996 nfs4args_copen_free(open_args); 997 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 998 if (ncr != NULL) { 999 crfree(ncr); 1000 ncr = NULL; 1001 } 1002 goto recov_retry; 1003 } 1004 1005 /* Check to see if we need to do the OTW call */ 1006 if (!create_flag) { 1007 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1008 file_just_been_created, &e.error, acc, &recov_state)) { 1009 1010 /* 1011 * The OTW open is not necessary. Either 1012 * the open can succeed without it (eg. 1013 * delegation, error == 0) or the open 1014 * must fail due to an access failure 1015 * (error != 0). In either case, tidy 1016 * up and return. 1017 */ 1018 1019 nfs4_end_open_seqid_sync(oop); 1020 open_owner_rele(oop); 1021 nfs4args_copen_free(open_args); 1022 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1023 if (ncr != NULL) 1024 crfree(ncr); 1025 kmem_free(argop, argoplist_size); 1026 return (e.error); 1027 } 1028 } 1029 1030 bcopy(&oop->oo_name, open_args->owner.owner_val, 1031 open_args->owner.owner_len); 1032 1033 seqid = nfs4_get_open_seqid(oop) + 1; 1034 open_args->seqid = seqid; 1035 open_args->share_access = 0; 1036 if (open_flag & FREAD) 1037 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1038 if (open_flag & FWRITE) 1039 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1040 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1041 1042 1043 1044 /* 1045 * getfh w/sanity check for idx_open/idx_fattr 1046 */ 1047 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1048 argop[idx_open + 1].argop = OP_GETFH; 1049 1050 /* getattr */ 1051 argop[idx_fattr].argop = OP_GETATTR; 1052 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1053 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1054 1055 if (setgid_flag) { 1056 vattr_t _v; 1057 servinfo4_t *svp; 1058 bitmap4 supp_attrs; 1059 1060 svp = drp->r_server; 1061 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1062 supp_attrs = svp->sv_supp_attrs; 1063 nfs_rw_exit(&svp->sv_lock); 1064 1065 /* 1066 * For setgid case, we need to: 1067 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1068 */ 1069 argop[4].argop = OP_SAVEFH; 1070 1071 argop[5].argop = OP_CPUTFH; 1072 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1073 1074 argop[6].argop = OP_GETATTR; 1075 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1076 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1077 1078 argop[7].argop = OP_RESTOREFH; 1079 1080 /* 1081 * nverify 1082 */ 1083 _v.va_mask = AT_GID; 1084 _v.va_gid = in_va->va_gid; 1085 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1086 supp_attrs))) { 1087 1088 /* 1089 * setattr 1090 * 1091 * We _know_ we're not messing with AT_SIZE or 1092 * AT_XTIME, so no need for stateid or flags. 1093 * Also we specify NULL rp since we're only 1094 * interested in setting owner_group attributes. 1095 */ 1096 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1097 supp_attrs, &e.error, 0); 1098 if (e.error) 1099 nfs4args_verify_free(&argop[8]); 1100 } 1101 1102 if (e.error) { 1103 /* 1104 * XXX - Revisit the last argument to nfs4_end_op() 1105 * once 5020486 is fixed. 1106 */ 1107 nfs4_end_open_seqid_sync(oop); 1108 open_owner_rele(oop); 1109 nfs4args_copen_free(open_args); 1110 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1111 if (ncr != NULL) 1112 crfree(ncr); 1113 kmem_free(argop, argoplist_size); 1114 return (e.error); 1115 } 1116 } else if (create_flag) { 1117 /* 1118 * For setgid case, we need to: 1119 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1120 */ 1121 argop[1].argop = OP_SAVEFH; 1122 1123 argop[5].argop = OP_RESTOREFH; 1124 1125 argop[6].argop = OP_GETATTR; 1126 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1127 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1128 } 1129 1130 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1131 "nfs4open_otw: %s call, nm %s, rp %s", 1132 needrecov ? "recov" : "first", file_name, 1133 rnode4info(VTOR4(dvp)))); 1134 1135 t = gethrtime(); 1136 1137 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1138 1139 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1140 nfs4_set_open_seqid(seqid, oop, args.ctag); 1141 1142 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1143 1144 if (e.error || needrecov) { 1145 bool_t abort = FALSE; 1146 1147 if (needrecov) { 1148 nfs4_bseqid_entry_t *bsep = NULL; 1149 1150 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1151 cred_otw, vpi, dvp, open_args); 1152 1153 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1154 bsep = nfs4_create_bseqid_entry(oop, NULL, 1155 vpi, 0, args.ctag, open_args->seqid); 1156 num_bseqid_retry--; 1157 } 1158 1159 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1160 NULL, lost_rqst.lr_op == OP_OPEN ? 1161 &lost_rqst : NULL, OP_OPEN, bsep); 1162 1163 if (bsep) 1164 kmem_free(bsep, sizeof (*bsep)); 1165 /* give up if we keep getting BAD_SEQID */ 1166 if (num_bseqid_retry == 0) 1167 abort = TRUE; 1168 if (abort == TRUE && e.error == 0) 1169 e.error = geterrno4(res.status); 1170 } 1171 nfs4_end_open_seqid_sync(oop); 1172 open_owner_rele(oop); 1173 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1174 nfs4args_copen_free(open_args); 1175 if (setgid_flag) { 1176 nfs4args_verify_free(&argop[8]); 1177 nfs4args_setattr_free(&argop[9]); 1178 } 1179 if (!e.error) 1180 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1181 if (ncr != NULL) { 1182 crfree(ncr); 1183 ncr = NULL; 1184 } 1185 if (!needrecov || abort == TRUE || e.error == EINTR || 1186 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1187 kmem_free(argop, argoplist_size); 1188 return (e.error); 1189 } 1190 goto recov_retry; 1191 } 1192 1193 /* 1194 * Will check and update lease after checking the rflag for 1195 * OPEN_CONFIRM in the successful OPEN call. 1196 */ 1197 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1198 1199 /* 1200 * XXX what if we're crossing mount points from server1:/drp 1201 * to server2:/drp/rp. 1202 */ 1203 1204 /* Signal our end of use of the open seqid */ 1205 nfs4_end_open_seqid_sync(oop); 1206 1207 /* 1208 * This will destroy the open owner if it was just created, 1209 * and no one else has put a reference on it. 1210 */ 1211 open_owner_rele(oop); 1212 if (create_flag && (createmode != EXCLUSIVE4) && 1213 res.status == NFS4ERR_BADOWNER) 1214 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1215 1216 e.error = geterrno4(res.status); 1217 nfs4args_copen_free(open_args); 1218 if (setgid_flag) { 1219 nfs4args_verify_free(&argop[8]); 1220 nfs4args_setattr_free(&argop[9]); 1221 } 1222 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1223 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1224 /* 1225 * If the reply is NFS4ERR_ACCESS, it may be because 1226 * we are root (no root net access). If the real uid 1227 * is not root, then retry with the real uid instead. 1228 */ 1229 if (ncr != NULL) { 1230 crfree(ncr); 1231 ncr = NULL; 1232 } 1233 if (res.status == NFS4ERR_ACCESS && 1234 (ncr = crnetadjust(cred_otw)) != NULL) { 1235 cred_otw = ncr; 1236 goto recov_retry; 1237 } 1238 kmem_free(argop, argoplist_size); 1239 return (e.error); 1240 } 1241 1242 resop = &res.array[idx_open]; /* open res */ 1243 op_res = &resop->nfs_resop4_u.opopen; 1244 1245 #ifdef DEBUG 1246 /* 1247 * verify attrset bitmap 1248 */ 1249 if (create_flag && 1250 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1251 /* make sure attrset returned is what we asked for */ 1252 /* XXX Ignore this 'error' for now */ 1253 if (attr->attrmask != op_res->attrset) 1254 /* EMPTY */; 1255 } 1256 #endif 1257 1258 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1259 mutex_enter(&VTOMI4(dvp)->mi_lock); 1260 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1261 mutex_exit(&VTOMI4(dvp)->mi_lock); 1262 } 1263 1264 resop = &res.array[idx_open + 1]; /* getfh res */ 1265 gf_res = &resop->nfs_resop4_u.opgetfh; 1266 1267 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1268 1269 /* 1270 * The open stateid has been updated on the server but not 1271 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1272 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1273 * WRITE call. That, however, will use the old stateid, so go ahead 1274 * and upate the open stateid now, before any call to makenfs4node. 1275 */ 1276 if (vpi) { 1277 nfs4_open_stream_t *tmp_osp; 1278 rnode4_t *tmp_rp = VTOR4(vpi); 1279 1280 tmp_osp = find_open_stream(oop, tmp_rp); 1281 if (tmp_osp) { 1282 tmp_osp->open_stateid = op_res->stateid; 1283 mutex_exit(&tmp_osp->os_sync_lock); 1284 open_stream_rele(tmp_osp, tmp_rp); 1285 } 1286 1287 /* 1288 * We must determine if the file handle given by the otw open 1289 * is the same as the file handle which was passed in with 1290 * *vpp. This case can be reached if the file we are trying 1291 * to open has been removed and another file has been created 1292 * having the same file name. The passed in vnode is released 1293 * later. 1294 */ 1295 orig_sfh = VTOR4(vpi)->r_fh; 1296 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1297 } 1298 1299 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1300 1301 if (create_flag || fh_differs) { 1302 int rnode_err = 0; 1303 1304 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1305 dvp, fn_get(VTOSV(dvp)->sv_name, file_name)); 1306 1307 if (e.error) 1308 PURGE_ATTRCACHE4(vp); 1309 /* 1310 * For the newly created vp case, make sure the rnode 1311 * isn't bad before using it. 1312 */ 1313 mutex_enter(&(VTOR4(vp))->r_statelock); 1314 if (VTOR4(vp)->r_flags & R4RECOVERR) 1315 rnode_err = EIO; 1316 mutex_exit(&(VTOR4(vp))->r_statelock); 1317 1318 if (rnode_err) { 1319 nfs4_end_open_seqid_sync(oop); 1320 nfs4args_copen_free(open_args); 1321 if (setgid_flag) { 1322 nfs4args_verify_free(&argop[8]); 1323 nfs4args_setattr_free(&argop[9]); 1324 } 1325 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1326 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1327 needrecov); 1328 open_owner_rele(oop); 1329 VN_RELE(vp); 1330 if (ncr != NULL) 1331 crfree(ncr); 1332 sfh4_rele(&otw_sfh); 1333 kmem_free(argop, argoplist_size); 1334 return (EIO); 1335 } 1336 } else { 1337 vp = vpi; 1338 } 1339 sfh4_rele(&otw_sfh); 1340 1341 /* 1342 * It seems odd to get a full set of attrs and then not update 1343 * the object's attrcache in the non-create case. Create case uses 1344 * the attrs since makenfs4node checks to see if the attrs need to 1345 * be updated (and then updates them). The non-create case should 1346 * update attrs also. 1347 */ 1348 if (! create_flag && ! fh_differs && !e.error) { 1349 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1350 } 1351 1352 nfs4_error_zinit(&e); 1353 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1354 /* This does not do recovery for vp explicitly. */ 1355 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1356 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1357 1358 if (e.error || e.stat) { 1359 nfs4_end_open_seqid_sync(oop); 1360 nfs4args_copen_free(open_args); 1361 if (setgid_flag) { 1362 nfs4args_verify_free(&argop[8]); 1363 nfs4args_setattr_free(&argop[9]); 1364 } 1365 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1366 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1367 needrecov); 1368 open_owner_rele(oop); 1369 if (create_flag || fh_differs) { 1370 /* rele the makenfs4node */ 1371 VN_RELE(vp); 1372 } 1373 if (ncr != NULL) { 1374 crfree(ncr); 1375 ncr = NULL; 1376 } 1377 if (retry_open == TRUE) { 1378 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1379 "nfs4open_otw: retry the open since OPEN " 1380 "CONFIRM failed with error %d stat %d", 1381 e.error, e.stat)); 1382 if (create_flag && createmode == GUARDED4) { 1383 NFS4_DEBUG(nfs4_client_recov_debug, 1384 (CE_NOTE, "nfs4open_otw: switch " 1385 "createmode from GUARDED4 to " 1386 "UNCHECKED4")); 1387 createmode = UNCHECKED4; 1388 } 1389 goto recov_retry; 1390 } 1391 if (!e.error) { 1392 if (create_flag && (createmode != EXCLUSIVE4) && 1393 e.stat == NFS4ERR_BADOWNER) 1394 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1395 1396 e.error = geterrno4(e.stat); 1397 } 1398 kmem_free(argop, argoplist_size); 1399 return (e.error); 1400 } 1401 } 1402 1403 rp = VTOR4(vp); 1404 1405 mutex_enter(&rp->r_statev4_lock); 1406 if (create_flag) 1407 rp->created_v4 = 1; 1408 mutex_exit(&rp->r_statev4_lock); 1409 1410 mutex_enter(&oop->oo_lock); 1411 /* Doesn't matter if 'oo_just_created' already was set as this */ 1412 oop->oo_just_created = NFS4_PERM_CREATED; 1413 if (oop->oo_cred_otw) 1414 crfree(oop->oo_cred_otw); 1415 oop->oo_cred_otw = cred_otw; 1416 crhold(oop->oo_cred_otw); 1417 mutex_exit(&oop->oo_lock); 1418 1419 /* returns with 'os_sync_lock' held */ 1420 osp = find_or_create_open_stream(oop, rp, &created_osp); 1421 if (!osp) { 1422 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1423 "nfs4open_otw: failed to create an open stream")); 1424 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1425 "signal our end of use of the open seqid")); 1426 1427 nfs4_end_open_seqid_sync(oop); 1428 open_owner_rele(oop); 1429 nfs4args_copen_free(open_args); 1430 if (setgid_flag) { 1431 nfs4args_verify_free(&argop[8]); 1432 nfs4args_setattr_free(&argop[9]); 1433 } 1434 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1435 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1436 if (create_flag || fh_differs) 1437 VN_RELE(vp); 1438 if (ncr != NULL) 1439 crfree(ncr); 1440 1441 kmem_free(argop, argoplist_size); 1442 return (EINVAL); 1443 1444 } 1445 1446 osp->open_stateid = op_res->stateid; 1447 1448 if (open_flag & FREAD) 1449 osp->os_share_acc_read++; 1450 if (open_flag & FWRITE) 1451 osp->os_share_acc_write++; 1452 osp->os_share_deny_none++; 1453 1454 /* 1455 * Need to reset this bitfield for the possible case where we were 1456 * going to OTW CLOSE the file, got a non-recoverable error, and before 1457 * we could retry the CLOSE, OPENed the file again. 1458 */ 1459 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1460 osp->os_final_close = 0; 1461 osp->os_force_close = 0; 1462 #ifdef DEBUG 1463 if (osp->os_failed_reopen) 1464 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1465 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1466 (void *)osp, (void *)cr, rnode4info(rp))); 1467 #endif 1468 osp->os_failed_reopen = 0; 1469 1470 mutex_exit(&osp->os_sync_lock); 1471 1472 nfs4_end_open_seqid_sync(oop); 1473 1474 if (created_osp && recov_state.rs_sp != NULL) { 1475 mutex_enter(&recov_state.rs_sp->s_lock); 1476 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1477 mutex_exit(&recov_state.rs_sp->s_lock); 1478 } 1479 1480 /* get rid of our reference to find oop */ 1481 open_owner_rele(oop); 1482 1483 open_stream_rele(osp, rp); 1484 1485 /* accept delegation, if any */ 1486 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1487 1488 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1489 1490 if (createmode == EXCLUSIVE4 && 1491 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1492 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1493 " EXCLUSIVE4: sending a SETATTR")); 1494 /* 1495 * If doing an exclusive create, then generate 1496 * a SETATTR to set the initial attributes. 1497 * Try to set the mtime and the atime to the 1498 * server's current time. It is somewhat 1499 * expected that these fields will be used to 1500 * store the exclusive create cookie. If not, 1501 * server implementors will need to know that 1502 * a SETATTR will follow an exclusive create 1503 * and the cookie should be destroyed if 1504 * appropriate. 1505 * 1506 * The AT_GID and AT_SIZE bits are turned off 1507 * so that the SETATTR request will not attempt 1508 * to process these. The gid will be set 1509 * separately if appropriate. The size is turned 1510 * off because it is assumed that a new file will 1511 * be created empty and if the file wasn't empty, 1512 * then the exclusive create will have failed 1513 * because the file must have existed already. 1514 * Therefore, no truncate operation is needed. 1515 */ 1516 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1517 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1518 1519 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1520 if (e.error) { 1521 /* 1522 * Couldn't correct the attributes of 1523 * the newly created file and the 1524 * attributes are wrong. Remove the 1525 * file and return an error to the 1526 * application. 1527 */ 1528 /* XXX will this take care of client state ? */ 1529 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1530 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1531 " remove file", e.error)); 1532 VN_RELE(vp); 1533 (void) nfs4_remove(dvp, file_name, cr); 1534 /* 1535 * Since we've reled the vnode and removed 1536 * the file we now need to return the error. 1537 * At this point we don't want to update the 1538 * dircaches, call nfs4_waitfor_purge_complete 1539 * or set vpp to vp so we need to skip these 1540 * as well. 1541 */ 1542 goto skip_update_dircaches; 1543 } 1544 } 1545 1546 /* 1547 * If we created or found the correct vnode, due to create_flag or 1548 * fh_differs being set, then update directory cache attribute, readdir 1549 * and dnlc caches. 1550 */ 1551 if (create_flag || fh_differs) { 1552 dirattr_info_t dinfo, *dinfop; 1553 1554 /* 1555 * Make sure getattr succeeded before using results. 1556 * note: op 7 is getattr(dir) for both flavors of 1557 * open(create). 1558 */ 1559 if (create_flag && res.status == NFS4_OK) { 1560 dinfo.di_time_call = t; 1561 dinfo.di_cred = cr; 1562 dinfo.di_garp = 1563 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1564 dinfop = &dinfo; 1565 } else { 1566 dinfop = NULL; 1567 } 1568 1569 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1570 dinfop); 1571 } 1572 1573 /* 1574 * If the page cache for this file was flushed from actions 1575 * above, it was done asynchronously and if that is true, 1576 * there is a need to wait here for it to complete. This must 1577 * be done outside of start_fop/end_fop. 1578 */ 1579 (void) nfs4_waitfor_purge_complete(vp); 1580 1581 /* 1582 * It is implicit that we are in the open case (create_flag == 0) since 1583 * fh_differs can only be set to a non-zero value in the open case. 1584 */ 1585 if (fh_differs != 0 && vpi != NULL) 1586 VN_RELE(vpi); 1587 1588 /* 1589 * Be sure to set *vpp to the correct value before returning. 1590 */ 1591 *vpp = vp; 1592 1593 skip_update_dircaches: 1594 1595 nfs4args_copen_free(open_args); 1596 if (setgid_flag) { 1597 nfs4args_verify_free(&argop[8]); 1598 nfs4args_setattr_free(&argop[9]); 1599 } 1600 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1601 1602 if (ncr) 1603 crfree(ncr); 1604 kmem_free(argop, argoplist_size); 1605 return (e.error); 1606 } 1607 1608 /* 1609 * Reopen an open instance. cf. nfs4open_otw(). 1610 * 1611 * Errors are returned by the nfs4_error_t parameter. 1612 * - ep->error contains an errno value or zero. 1613 * - if it is zero, ep->stat is set to an NFS status code, if any. 1614 * If the file could not be reopened, but the caller should continue, the 1615 * file is marked dead and no error values are returned. If the caller 1616 * should stop recovering open files and start over, either the ep->error 1617 * value or ep->stat will indicate an error (either something that requires 1618 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1619 * filehandles) may be handled silently by this routine. 1620 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1621 * will be started, so the caller should not do it. 1622 * 1623 * Gotos: 1624 * - kill_file : reopen failed in such a fashion to constitute marking the 1625 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1626 * is for cases where recovery is not possible. 1627 * - failed_reopen : same as above, except that the file has already been 1628 * marked dead, so no need to do it again. 1629 * - bailout : reopen failed but we are able to recover and retry the reopen - 1630 * either within this function immediatley or via the calling function. 1631 */ 1632 1633 void 1634 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1635 open_claim_type4 claim, bool_t frc_use_claim_previous, 1636 bool_t is_recov) 1637 { 1638 COMPOUND4args_clnt args; 1639 COMPOUND4res_clnt res; 1640 nfs_argop4 argop[4]; 1641 nfs_resop4 *resop; 1642 OPEN4res *op_res = NULL; 1643 OPEN4cargs *open_args; 1644 GETFH4res *gf_res; 1645 rnode4_t *rp = VTOR4(vp); 1646 int doqueue = 1; 1647 cred_t *cr = NULL, *cred_otw = NULL; 1648 nfs4_open_owner_t *oop = NULL; 1649 seqid4 seqid; 1650 nfs4_ga_res_t *garp; 1651 char fn[MAXNAMELEN]; 1652 nfs4_recov_state_t recov = {NULL, 0}; 1653 nfs4_lost_rqst_t lost_rqst; 1654 mntinfo4_t *mi = VTOMI4(vp); 1655 bool_t abort; 1656 char *failed_msg = ""; 1657 int fh_different; 1658 hrtime_t t; 1659 nfs4_bseqid_entry_t *bsep = NULL; 1660 1661 ASSERT(nfs4_consistent_type(vp)); 1662 ASSERT(nfs_zone() == mi->mi_zone); 1663 1664 nfs4_error_zinit(ep); 1665 1666 /* this is the cred used to find the open owner */ 1667 cr = state_to_cred(osp); 1668 if (cr == NULL) { 1669 failed_msg = "Couldn't reopen: no cred"; 1670 goto kill_file; 1671 } 1672 /* use this cred for OTW operations */ 1673 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1674 1675 top: 1676 nfs4_error_zinit(ep); 1677 1678 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1679 /* File system has been unmounted, quit */ 1680 ep->error = EIO; 1681 failed_msg = "Couldn't reopen: file system has been unmounted"; 1682 goto kill_file; 1683 } 1684 1685 oop = osp->os_open_owner; 1686 1687 ASSERT(oop != NULL); 1688 if (oop == NULL) { /* be defensive in non-DEBUG */ 1689 failed_msg = "can't reopen: no open owner"; 1690 goto kill_file; 1691 } 1692 open_owner_hold(oop); 1693 1694 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1695 if (ep->error) { 1696 open_owner_rele(oop); 1697 oop = NULL; 1698 goto bailout; 1699 } 1700 1701 /* 1702 * If the rnode has a delegation and the delegation has been 1703 * recovered and the server didn't request a recall and the caller 1704 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1705 * recovery) and the rnode hasn't been marked dead, then install 1706 * the delegation stateid in the open stream. Otherwise, proceed 1707 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1708 */ 1709 mutex_enter(&rp->r_statev4_lock); 1710 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1711 !rp->r_deleg_return_pending && 1712 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1713 !rp->r_deleg_needs_recall && 1714 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1715 !(rp->r_flags & R4RECOVERR)) { 1716 mutex_enter(&osp->os_sync_lock); 1717 osp->os_delegation = 1; 1718 osp->open_stateid = rp->r_deleg_stateid; 1719 mutex_exit(&osp->os_sync_lock); 1720 mutex_exit(&rp->r_statev4_lock); 1721 goto bailout; 1722 } 1723 mutex_exit(&rp->r_statev4_lock); 1724 1725 /* 1726 * If the file failed recovery, just quit. This failure need not 1727 * affect other reopens, so don't return an error. 1728 */ 1729 mutex_enter(&rp->r_statelock); 1730 if (rp->r_flags & R4RECOVERR) { 1731 mutex_exit(&rp->r_statelock); 1732 ep->error = 0; 1733 goto failed_reopen; 1734 } 1735 mutex_exit(&rp->r_statelock); 1736 1737 /* 1738 * argop is empty here 1739 * 1740 * PUTFH, OPEN, GETATTR 1741 */ 1742 args.ctag = TAG_REOPEN; 1743 args.array_len = 4; 1744 args.array = argop; 1745 1746 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1747 "nfs4_reopen: file is type %d, id %s", 1748 vp->v_type, rnode4info(VTOR4(vp)))); 1749 1750 argop[0].argop = OP_CPUTFH; 1751 1752 if (claim != CLAIM_PREVIOUS) { 1753 /* 1754 * if this is a file mount then 1755 * use the mntinfo parentfh 1756 */ 1757 argop[0].nfs_argop4_u.opcputfh.sfh = 1758 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1759 VTOSV(vp)->sv_dfh; 1760 } else { 1761 /* putfh fh to reopen */ 1762 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1763 } 1764 1765 argop[1].argop = OP_COPEN; 1766 open_args = &argop[1].nfs_argop4_u.opcopen; 1767 open_args->claim = claim; 1768 1769 if (claim == CLAIM_NULL) { 1770 1771 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1772 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1773 "failed for vp 0x%p for CLAIM_NULL with %m", 1774 (void *)vp); 1775 failed_msg = "Couldn't reopen: vtoname failed for " 1776 "CLAIM_NULL"; 1777 /* nothing allocated yet */ 1778 goto kill_file; 1779 } 1780 1781 open_args->open_claim4_u.cfile = fn; 1782 } else if (claim == CLAIM_PREVIOUS) { 1783 1784 /* 1785 * We have two cases to deal with here: 1786 * 1) We're being called to reopen files in order to satisfy 1787 * a lock operation request which requires us to explicitly 1788 * reopen files which were opened under a delegation. If 1789 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1790 * that case, frc_use_claim_previous is TRUE and we must 1791 * use the rnode's current delegation type (r_deleg_type). 1792 * 2) We're reopening files during some form of recovery. 1793 * In this case, frc_use_claim_previous is FALSE and we 1794 * use the delegation type appropriate for recovery 1795 * (r_deleg_needs_recovery). 1796 */ 1797 mutex_enter(&rp->r_statev4_lock); 1798 open_args->open_claim4_u.delegate_type = 1799 frc_use_claim_previous ? 1800 rp->r_deleg_type : 1801 rp->r_deleg_needs_recovery; 1802 mutex_exit(&rp->r_statev4_lock); 1803 1804 } else if (claim == CLAIM_DELEGATE_CUR) { 1805 1806 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1807 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1808 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1809 "with %m", (void *)vp); 1810 failed_msg = "Couldn't reopen: vtoname failed for " 1811 "CLAIM_DELEGATE_CUR"; 1812 /* nothing allocated yet */ 1813 goto kill_file; 1814 } 1815 1816 mutex_enter(&rp->r_statev4_lock); 1817 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1818 rp->r_deleg_stateid; 1819 mutex_exit(&rp->r_statev4_lock); 1820 1821 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1822 } 1823 open_args->opentype = OPEN4_NOCREATE; 1824 open_args->owner.clientid = mi2clientid(mi); 1825 open_args->owner.owner_len = sizeof (oop->oo_name); 1826 open_args->owner.owner_val = 1827 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1828 bcopy(&oop->oo_name, open_args->owner.owner_val, 1829 open_args->owner.owner_len); 1830 open_args->share_access = 0; 1831 open_args->share_deny = 0; 1832 1833 mutex_enter(&osp->os_sync_lock); 1834 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1835 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1836 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1837 (void *)osp, (void *)rp, osp->os_share_acc_read, 1838 osp->os_share_acc_write, osp->os_open_ref_count, 1839 osp->os_mmap_read, osp->os_mmap_write, claim)); 1840 1841 if (osp->os_share_acc_read || osp->os_mmap_read) 1842 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1843 if (osp->os_share_acc_write || osp->os_mmap_write) 1844 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1845 if (osp->os_share_deny_read) 1846 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1847 if (osp->os_share_deny_write) 1848 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1849 mutex_exit(&osp->os_sync_lock); 1850 1851 seqid = nfs4_get_open_seqid(oop) + 1; 1852 open_args->seqid = seqid; 1853 1854 /* Construct the getfh part of the compound */ 1855 argop[2].argop = OP_GETFH; 1856 1857 /* Construct the getattr part of the compound */ 1858 argop[3].argop = OP_GETATTR; 1859 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1860 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1861 1862 t = gethrtime(); 1863 1864 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1865 1866 if (ep->error) { 1867 if (!is_recov && !frc_use_claim_previous && 1868 (ep->error == EINTR || ep->error == ETIMEDOUT || 1869 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1870 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1871 cred_otw, vp, NULL, open_args); 1872 abort = nfs4_start_recovery(ep, 1873 VTOMI4(vp), vp, NULL, NULL, 1874 lost_rqst.lr_op == OP_OPEN ? 1875 &lost_rqst : NULL, OP_OPEN, NULL); 1876 nfs4args_copen_free(open_args); 1877 goto bailout; 1878 } 1879 1880 nfs4args_copen_free(open_args); 1881 1882 if (ep->error == EACCES && cred_otw != cr) { 1883 crfree(cred_otw); 1884 cred_otw = cr; 1885 crhold(cred_otw); 1886 nfs4_end_open_seqid_sync(oop); 1887 open_owner_rele(oop); 1888 oop = NULL; 1889 goto top; 1890 } 1891 if (ep->error == ETIMEDOUT) 1892 goto bailout; 1893 failed_msg = "Couldn't reopen: rpc error"; 1894 goto kill_file; 1895 } 1896 1897 if (nfs4_need_to_bump_seqid(&res)) 1898 nfs4_set_open_seqid(seqid, oop, args.ctag); 1899 1900 switch (res.status) { 1901 case NFS4_OK: 1902 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1903 mutex_enter(&rp->r_statelock); 1904 rp->r_delay_interval = 0; 1905 mutex_exit(&rp->r_statelock); 1906 } 1907 break; 1908 case NFS4ERR_BAD_SEQID: 1909 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1910 args.ctag, open_args->seqid); 1911 1912 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1913 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1914 NULL, OP_OPEN, bsep); 1915 1916 nfs4args_copen_free(open_args); 1917 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1918 nfs4_end_open_seqid_sync(oop); 1919 open_owner_rele(oop); 1920 oop = NULL; 1921 kmem_free(bsep, sizeof (*bsep)); 1922 1923 goto kill_file; 1924 case NFS4ERR_NO_GRACE: 1925 nfs4args_copen_free(open_args); 1926 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1927 nfs4_end_open_seqid_sync(oop); 1928 open_owner_rele(oop); 1929 oop = NULL; 1930 if (claim == CLAIM_PREVIOUS) { 1931 /* 1932 * Retry as a plain open. We don't need to worry about 1933 * checking the changeinfo: it is acceptable for a 1934 * client to re-open a file and continue processing 1935 * (in the absence of locks). 1936 */ 1937 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1938 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1939 "will retry as CLAIM_NULL")); 1940 claim = CLAIM_NULL; 1941 nfs4_mi_kstat_inc_no_grace(mi); 1942 goto top; 1943 } 1944 failed_msg = 1945 "Couldn't reopen: tried reclaim outside grace period. "; 1946 goto kill_file; 1947 case NFS4ERR_GRACE: 1948 nfs4_set_grace_wait(mi); 1949 nfs4args_copen_free(open_args); 1950 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1951 nfs4_end_open_seqid_sync(oop); 1952 open_owner_rele(oop); 1953 oop = NULL; 1954 ep->error = nfs4_wait_for_grace(mi, &recov); 1955 if (ep->error != 0) 1956 goto bailout; 1957 goto top; 1958 case NFS4ERR_DELAY: 1959 nfs4_set_delay_wait(vp); 1960 nfs4args_copen_free(open_args); 1961 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1962 nfs4_end_open_seqid_sync(oop); 1963 open_owner_rele(oop); 1964 oop = NULL; 1965 ep->error = nfs4_wait_for_delay(vp, &recov); 1966 nfs4_mi_kstat_inc_delay(mi); 1967 if (ep->error != 0) 1968 goto bailout; 1969 goto top; 1970 case NFS4ERR_FHEXPIRED: 1971 /* recover filehandle and retry */ 1972 abort = nfs4_start_recovery(ep, 1973 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL); 1974 nfs4args_copen_free(open_args); 1975 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1976 nfs4_end_open_seqid_sync(oop); 1977 open_owner_rele(oop); 1978 oop = NULL; 1979 if (abort == FALSE) 1980 goto top; 1981 failed_msg = "Couldn't reopen: recovery aborted"; 1982 goto kill_file; 1983 case NFS4ERR_RESOURCE: 1984 case NFS4ERR_STALE_CLIENTID: 1985 case NFS4ERR_WRONGSEC: 1986 case NFS4ERR_EXPIRED: 1987 /* 1988 * Do not mark the file dead and let the calling 1989 * function initiate recovery. 1990 */ 1991 nfs4args_copen_free(open_args); 1992 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1993 nfs4_end_open_seqid_sync(oop); 1994 open_owner_rele(oop); 1995 oop = NULL; 1996 goto bailout; 1997 case NFS4ERR_ACCESS: 1998 if (cred_otw != cr) { 1999 crfree(cred_otw); 2000 cred_otw = cr; 2001 crhold(cred_otw); 2002 nfs4args_copen_free(open_args); 2003 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2004 nfs4_end_open_seqid_sync(oop); 2005 open_owner_rele(oop); 2006 oop = NULL; 2007 goto top; 2008 } 2009 /* fall through */ 2010 default: 2011 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2012 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2013 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2014 rnode4info(VTOR4(vp)))); 2015 failed_msg = "Couldn't reopen: NFSv4 error"; 2016 nfs4args_copen_free(open_args); 2017 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2018 goto kill_file; 2019 } 2020 2021 resop = &res.array[1]; /* open res */ 2022 op_res = &resop->nfs_resop4_u.opopen; 2023 2024 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2025 2026 /* 2027 * Check if the path we reopened really is the same 2028 * file. We could end up in a situation where the file 2029 * was removed and a new file created with the same name. 2030 */ 2031 resop = &res.array[2]; 2032 gf_res = &resop->nfs_resop4_u.opgetfh; 2033 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2034 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2035 if (fh_different) { 2036 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2037 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2038 /* Oops, we don't have the same file */ 2039 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2040 failed_msg = "Couldn't reopen: Persistent " 2041 "file handle changed"; 2042 else 2043 failed_msg = "Couldn't reopen: Volatile " 2044 "(no expire on open) file handle changed"; 2045 2046 nfs4args_copen_free(open_args); 2047 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2048 nfs_rw_exit(&mi->mi_fh_lock); 2049 goto kill_file; 2050 2051 } else { 2052 /* 2053 * We have volatile file handles that don't compare. 2054 * If the fids are the same then we assume that the 2055 * file handle expired but the rnode still refers to 2056 * the same file object. 2057 * 2058 * First check that we have fids or not. 2059 * If we don't we have a dumb server so we will 2060 * just assume every thing is ok for now. 2061 */ 2062 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2063 rp->r_attr.va_mask & AT_NODEID && 2064 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2065 /* 2066 * We have fids, but they don't 2067 * compare. So kill the file. 2068 */ 2069 failed_msg = 2070 "Couldn't reopen: file handle changed" 2071 " due to mismatched fids"; 2072 nfs4args_copen_free(open_args); 2073 (void) xdr_free(xdr_COMPOUND4res_clnt, 2074 (caddr_t)&res); 2075 nfs_rw_exit(&mi->mi_fh_lock); 2076 goto kill_file; 2077 } else { 2078 /* 2079 * We have volatile file handles that refers 2080 * to the same file (at least they have the 2081 * same fid) or we don't have fids so we 2082 * can't tell. :(. We'll be a kind and accepting 2083 * client so we'll update the rnode's file 2084 * handle with the otw handle. 2085 * 2086 * We need to drop mi->mi_fh_lock since 2087 * sh4_update acquires it. Since there is 2088 * only one recovery thread there is no 2089 * race. 2090 */ 2091 nfs_rw_exit(&mi->mi_fh_lock); 2092 sfh4_update(rp->r_fh, &gf_res->object); 2093 } 2094 } 2095 } else { 2096 nfs_rw_exit(&mi->mi_fh_lock); 2097 } 2098 2099 ASSERT(nfs4_consistent_type(vp)); 2100 2101 /* 2102 * If the server wanted an OPEN_CONFIRM but that fails, just start 2103 * over. Presumably if there is a persistent error it will show up 2104 * when we resend the OPEN. 2105 */ 2106 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2107 bool_t retry_open = FALSE; 2108 2109 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2110 cred_otw, is_recov, &retry_open, 2111 oop, FALSE, ep, NULL); 2112 if (ep->error || ep->stat) { 2113 nfs4args_copen_free(open_args); 2114 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2115 nfs4_end_open_seqid_sync(oop); 2116 open_owner_rele(oop); 2117 oop = NULL; 2118 goto top; 2119 } 2120 } 2121 2122 mutex_enter(&osp->os_sync_lock); 2123 osp->open_stateid = op_res->stateid; 2124 osp->os_delegation = 0; 2125 /* 2126 * Need to reset this bitfield for the possible case where we were 2127 * going to OTW CLOSE the file, got a non-recoverable error, and before 2128 * we could retry the CLOSE, OPENed the file again. 2129 */ 2130 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2131 osp->os_final_close = 0; 2132 osp->os_force_close = 0; 2133 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2134 osp->os_dc_openacc = open_args->share_access; 2135 mutex_exit(&osp->os_sync_lock); 2136 2137 nfs4_end_open_seqid_sync(oop); 2138 2139 /* accept delegation, if any */ 2140 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2141 2142 nfs4args_copen_free(open_args); 2143 2144 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2145 2146 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2147 2148 ASSERT(nfs4_consistent_type(vp)); 2149 2150 open_owner_rele(oop); 2151 crfree(cr); 2152 crfree(cred_otw); 2153 return; 2154 2155 kill_file: 2156 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2157 failed_reopen: 2158 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2159 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2160 (void *)osp, (void *)cr, rnode4info(rp))); 2161 mutex_enter(&osp->os_sync_lock); 2162 osp->os_failed_reopen = 1; 2163 mutex_exit(&osp->os_sync_lock); 2164 bailout: 2165 if (oop != NULL) { 2166 nfs4_end_open_seqid_sync(oop); 2167 open_owner_rele(oop); 2168 } 2169 if (cr != NULL) 2170 crfree(cr); 2171 if (cred_otw != NULL) 2172 crfree(cred_otw); 2173 } 2174 2175 /* for . and .. OPENs */ 2176 /* ARGSUSED */ 2177 static int 2178 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2179 { 2180 rnode4_t *rp; 2181 nfs4_ga_res_t gar; 2182 2183 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2184 2185 /* 2186 * If close-to-open consistency checking is turned off or 2187 * if there is no cached data, we can avoid 2188 * the over the wire getattr. Otherwise, force a 2189 * call to the server to get fresh attributes and to 2190 * check caches. This is required for close-to-open 2191 * consistency. 2192 */ 2193 rp = VTOR4(*vpp); 2194 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2195 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2196 return (0); 2197 2198 gar.n4g_va.va_mask = AT_ALL; 2199 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2200 } 2201 2202 /* 2203 * CLOSE a file 2204 */ 2205 static int 2206 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 2207 { 2208 rnode4_t *rp; 2209 int error = 0; 2210 int r_error = 0; 2211 int n4error = 0; 2212 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2213 2214 /* 2215 * Remove client state for this (lockowner, file) pair. 2216 * Issue otw v4 call to have the server do the same. 2217 */ 2218 2219 rp = VTOR4(vp); 2220 2221 /* 2222 * zone_enter(2) prevents processes from changing zones with NFS files 2223 * open; if we happen to get here from the wrong zone we can't do 2224 * anything over the wire. 2225 */ 2226 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2227 /* 2228 * We could attempt to clean up locks, except we're sure 2229 * that the current process didn't acquire any locks on 2230 * the file: any attempt to lock a file belong to another zone 2231 * will fail, and one can't lock an NFS file and then change 2232 * zones, as that fails too. 2233 * 2234 * Returning an error here is the sane thing to do. A 2235 * subsequent call to VN_RELE() which translates to a 2236 * nfs4_inactive() will clean up state: if the zone of the 2237 * vnode's origin is still alive and kicking, the inactive 2238 * thread will handle the request (from the correct zone), and 2239 * everything (minus the OTW close call) should be OK. If the 2240 * zone is going away nfs4_async_inactive() will throw away 2241 * delegations, open streams and cached pages inline. 2242 */ 2243 return (EIO); 2244 } 2245 2246 /* 2247 * If we are using local locking for this filesystem, then 2248 * release all of the SYSV style record locks. Otherwise, 2249 * we are doing network locking and we need to release all 2250 * of the network locks. All of the locks held by this 2251 * process on this file are released no matter what the 2252 * incoming reference count is. 2253 */ 2254 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2255 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2256 cleanshares(vp, ttoproc(curthread)->p_pid); 2257 } else 2258 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2259 2260 if (e.error) 2261 return (e.error); 2262 2263 if (count > 1) 2264 return (0); 2265 2266 /* 2267 * If the file has been `unlinked', then purge the 2268 * DNLC so that this vnode will get reycled quicker 2269 * and the .nfs* file on the server will get removed. 2270 */ 2271 if (rp->r_unldvp != NULL) 2272 dnlc_purge_vp(vp); 2273 2274 /* 2275 * If the file was open for write and there are pages, 2276 * do a synchronous flush and commit of all of the 2277 * dirty and uncommitted pages. 2278 */ 2279 ASSERT(!e.error); 2280 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2281 error = nfs4_putpage_commit(vp, 0, 0, cr); 2282 2283 mutex_enter(&rp->r_statelock); 2284 r_error = rp->r_error; 2285 rp->r_error = 0; 2286 mutex_exit(&rp->r_statelock); 2287 2288 /* 2289 * If this file type is one for which no explicit 'open' was 2290 * done, then bail now (ie. no need for protocol 'close'). If 2291 * there was an error w/the vm subsystem, return _that_ error, 2292 * otherwise, return any errors that may've been reported via 2293 * the rnode. 2294 */ 2295 if (vp->v_type != VREG) 2296 return (error ? error : r_error); 2297 2298 /* 2299 * The sync putpage commit may have failed above, but since 2300 * we're working w/a regular file, we need to do the protocol 2301 * 'close' (nfs4close_one will figure out if an otw close is 2302 * needed or not). Report any errors _after_ doing the protocol 2303 * 'close'. 2304 */ 2305 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2306 n4error = e.error ? e.error : geterrno4(e.stat); 2307 2308 /* 2309 * Error reporting prio (Hi -> Lo) 2310 * 2311 * i) nfs4_putpage_commit (error) 2312 * ii) rnode's (r_error) 2313 * iii) nfs4close_one (n4error) 2314 */ 2315 return (error ? error : (r_error ? r_error : n4error)); 2316 } 2317 2318 /* 2319 * Initialize *lost_rqstp. 2320 */ 2321 2322 static void 2323 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2324 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2325 vnode_t *vp) 2326 { 2327 if (error != ETIMEDOUT && error != EINTR && 2328 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2329 lost_rqstp->lr_op = 0; 2330 return; 2331 } 2332 2333 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2334 "nfs4close_save_lost_rqst: error %d", error)); 2335 2336 lost_rqstp->lr_op = OP_CLOSE; 2337 /* 2338 * The vp is held and rele'd via the recovery code. 2339 * See nfs4_save_lost_rqst. 2340 */ 2341 lost_rqstp->lr_vp = vp; 2342 lost_rqstp->lr_dvp = NULL; 2343 lost_rqstp->lr_oop = oop; 2344 lost_rqstp->lr_osp = osp; 2345 ASSERT(osp != NULL); 2346 ASSERT(mutex_owned(&osp->os_sync_lock)); 2347 osp->os_pending_close = 1; 2348 lost_rqstp->lr_lop = NULL; 2349 lost_rqstp->lr_cr = cr; 2350 lost_rqstp->lr_flk = NULL; 2351 lost_rqstp->lr_putfirst = FALSE; 2352 } 2353 2354 /* 2355 * Assumes you already have the open seqid sync grabbed as well as the 2356 * 'os_sync_lock'. Note: this will release the open seqid sync and 2357 * 'os_sync_lock' if client recovery starts. Calling functions have to 2358 * be prepared to handle this. 2359 * 2360 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2361 * was needed and was started, and that the calling function should retry 2362 * this function; otherwise it is returned as 0. 2363 * 2364 * Errors are returned via the nfs4_error_t parameter. 2365 */ 2366 static void 2367 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2368 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2369 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2370 { 2371 COMPOUND4args_clnt args; 2372 COMPOUND4res_clnt res; 2373 CLOSE4args *close_args; 2374 nfs_resop4 *resop; 2375 nfs_argop4 argop[3]; 2376 int doqueue = 1; 2377 mntinfo4_t *mi; 2378 seqid4 seqid; 2379 vnode_t *vp; 2380 bool_t needrecov = FALSE; 2381 nfs4_lost_rqst_t lost_rqst; 2382 hrtime_t t; 2383 2384 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2385 2386 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2387 2388 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2389 2390 /* Only set this to 1 if recovery is started */ 2391 *recov = 0; 2392 2393 /* do the OTW call to close the file */ 2394 2395 if (close_type == CLOSE_RESEND) 2396 args.ctag = TAG_CLOSE_LOST; 2397 else if (close_type == CLOSE_AFTER_RESEND) 2398 args.ctag = TAG_CLOSE_UNDO; 2399 else 2400 args.ctag = TAG_CLOSE; 2401 2402 args.array_len = 3; 2403 args.array = argop; 2404 2405 vp = RTOV4(rp); 2406 2407 mi = VTOMI4(vp); 2408 2409 /* putfh target fh */ 2410 argop[0].argop = OP_CPUTFH; 2411 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2412 2413 argop[1].argop = OP_GETATTR; 2414 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2415 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2416 2417 argop[2].argop = OP_CLOSE; 2418 close_args = &argop[2].nfs_argop4_u.opclose; 2419 2420 seqid = nfs4_get_open_seqid(oop) + 1; 2421 2422 close_args->seqid = seqid; 2423 close_args->open_stateid = osp->open_stateid; 2424 2425 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2426 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2427 rnode4info(rp))); 2428 2429 t = gethrtime(); 2430 2431 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2432 2433 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2434 nfs4_set_open_seqid(seqid, oop, args.ctag); 2435 } 2436 2437 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2438 if (ep->error && !needrecov) { 2439 /* 2440 * if there was an error and no recovery is to be done 2441 * then then set up the file to flush its cache if 2442 * needed for the next caller. 2443 */ 2444 mutex_enter(&rp->r_statelock); 2445 PURGE_ATTRCACHE4_LOCKED(rp); 2446 rp->r_flags &= ~R4WRITEMODIFIED; 2447 mutex_exit(&rp->r_statelock); 2448 return; 2449 } 2450 2451 if (needrecov) { 2452 bool_t abort; 2453 nfs4_bseqid_entry_t *bsep = NULL; 2454 2455 if (close_type != CLOSE_RESEND) 2456 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2457 osp, cred_otw, vp); 2458 2459 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2460 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2461 0, args.ctag, close_args->seqid); 2462 2463 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2464 "nfs4close_otw: initiating recovery. error %d " 2465 "res.status %d", ep->error, res.status)); 2466 2467 /* 2468 * Drop the 'os_sync_lock' here so we don't hit 2469 * a potential recursive mutex_enter via an 2470 * 'open_stream_hold()'. 2471 */ 2472 mutex_exit(&osp->os_sync_lock); 2473 *have_sync_lockp = 0; 2474 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2475 (close_type != CLOSE_RESEND && 2476 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2477 OP_CLOSE, bsep); 2478 2479 /* drop open seq sync, and let the calling function regrab it */ 2480 nfs4_end_open_seqid_sync(oop); 2481 *did_start_seqid_syncp = 0; 2482 2483 if (bsep) 2484 kmem_free(bsep, sizeof (*bsep)); 2485 /* 2486 * For signals, the caller wants to quit, so don't say to 2487 * retry. For forced unmount, if it's a user thread, it 2488 * wants to quit. If it's a recovery thread, the retry 2489 * will happen higher-up on the call stack. Either way, 2490 * don't say to retry. 2491 */ 2492 if (abort == FALSE && ep->error != EINTR && 2493 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2494 close_type != CLOSE_RESEND && 2495 close_type != CLOSE_AFTER_RESEND) 2496 *recov = 1; 2497 else 2498 *recov = 0; 2499 2500 if (!ep->error) 2501 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2502 return; 2503 } 2504 2505 if (res.status) { 2506 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2507 return; 2508 } 2509 2510 mutex_enter(&rp->r_statev4_lock); 2511 rp->created_v4 = 0; 2512 mutex_exit(&rp->r_statev4_lock); 2513 2514 resop = &res.array[2]; 2515 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2516 osp->os_valid = 0; 2517 2518 /* 2519 * This removes the reference obtained at OPEN; ie, when the 2520 * open stream structure was created. 2521 * 2522 * We don't have to worry about calling 'open_stream_rele' 2523 * since we our currently holding a reference to the open 2524 * stream which means the count cannot go to 0 with this 2525 * decrement. 2526 */ 2527 ASSERT(osp->os_ref_count >= 2); 2528 osp->os_ref_count--; 2529 2530 if (!ep->error) 2531 nfs4_attr_cache(vp, 2532 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2533 t, cred_otw, TRUE, NULL); 2534 2535 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2536 " returning %d", ep->error)); 2537 2538 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2539 } 2540 2541 /* ARGSUSED */ 2542 static int 2543 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2544 caller_context_t *ct) 2545 { 2546 rnode4_t *rp; 2547 u_offset_t off; 2548 offset_t diff; 2549 uint_t on; 2550 uint_t n; 2551 caddr_t base; 2552 uint_t flags; 2553 int error; 2554 mntinfo4_t *mi; 2555 2556 rp = VTOR4(vp); 2557 2558 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2559 2560 if (IS_SHADOW(vp, rp)) 2561 vp = RTOV4(rp); 2562 2563 if (vp->v_type != VREG) 2564 return (EISDIR); 2565 2566 mi = VTOMI4(vp); 2567 2568 if (nfs_zone() != mi->mi_zone) 2569 return (EIO); 2570 2571 if (uiop->uio_resid == 0) 2572 return (0); 2573 2574 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2575 return (EINVAL); 2576 2577 mutex_enter(&rp->r_statelock); 2578 if (rp->r_flags & R4RECOVERRP) 2579 error = (rp->r_error ? rp->r_error : EIO); 2580 else 2581 error = 0; 2582 mutex_exit(&rp->r_statelock); 2583 if (error) 2584 return (error); 2585 2586 /* 2587 * Bypass VM if caching has been disabled (e.g., locking) or if 2588 * using client-side direct I/O and the file is not mmap'd and 2589 * there are no cached pages. 2590 */ 2591 if ((vp->v_flag & VNOCACHE) || 2592 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2593 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2594 size_t resid = 0; 2595 2596 return (nfs4read(vp, NULL, uiop->uio_loffset, 2597 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2598 } 2599 2600 error = 0; 2601 2602 do { 2603 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2604 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2605 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2606 2607 if (error = nfs4_validate_caches(vp, cr)) 2608 break; 2609 2610 mutex_enter(&rp->r_statelock); 2611 diff = rp->r_size - uiop->uio_loffset; 2612 mutex_exit(&rp->r_statelock); 2613 if (diff <= 0) 2614 break; 2615 if (diff < n) 2616 n = (uint_t)diff; 2617 2618 if (vpm_enable) { 2619 /* 2620 * Copy data. 2621 */ 2622 error = vpm_data_copy(vp, off + on, n, uiop, 2623 1, NULL, 0, S_READ); 2624 2625 } else { 2626 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2627 S_READ); 2628 2629 error = uiomove(base + on, n, UIO_READ, uiop); 2630 } 2631 2632 if (!error) { 2633 /* 2634 * If read a whole block or read to eof, 2635 * won't need this buffer again soon. 2636 */ 2637 mutex_enter(&rp->r_statelock); 2638 if (n + on == MAXBSIZE || 2639 uiop->uio_loffset == rp->r_size) 2640 flags = SM_DONTNEED; 2641 else 2642 flags = 0; 2643 mutex_exit(&rp->r_statelock); 2644 if (vpm_enable) { 2645 error = vpm_sync_pages(vp, off, n, flags); 2646 } else { 2647 error = segmap_release(segkmap, base, flags); 2648 } 2649 } else { 2650 if (vpm_enable) { 2651 (void) vpm_sync_pages(vp, off, n, 0); 2652 } else { 2653 (void) segmap_release(segkmap, base, 0); 2654 } 2655 } 2656 } while (!error && uiop->uio_resid > 0); 2657 2658 return (error); 2659 } 2660 2661 /* ARGSUSED */ 2662 static int 2663 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2664 caller_context_t *ct) 2665 { 2666 rlim64_t limit = uiop->uio_llimit; 2667 rnode4_t *rp; 2668 u_offset_t off; 2669 caddr_t base; 2670 uint_t flags; 2671 int remainder; 2672 size_t n; 2673 int on; 2674 int error; 2675 int resid; 2676 u_offset_t offset; 2677 mntinfo4_t *mi; 2678 uint_t bsize; 2679 2680 rp = VTOR4(vp); 2681 2682 if (IS_SHADOW(vp, rp)) 2683 vp = RTOV4(rp); 2684 2685 if (vp->v_type != VREG) 2686 return (EISDIR); 2687 2688 mi = VTOMI4(vp); 2689 2690 if (nfs_zone() != mi->mi_zone) 2691 return (EIO); 2692 2693 if (uiop->uio_resid == 0) 2694 return (0); 2695 2696 mutex_enter(&rp->r_statelock); 2697 if (rp->r_flags & R4RECOVERRP) 2698 error = (rp->r_error ? rp->r_error : EIO); 2699 else 2700 error = 0; 2701 mutex_exit(&rp->r_statelock); 2702 if (error) 2703 return (error); 2704 2705 if (ioflag & FAPPEND) { 2706 struct vattr va; 2707 2708 /* 2709 * Must serialize if appending. 2710 */ 2711 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2712 nfs_rw_exit(&rp->r_rwlock); 2713 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2714 INTR(vp))) 2715 return (EINTR); 2716 } 2717 2718 va.va_mask = AT_SIZE; 2719 error = nfs4getattr(vp, &va, cr); 2720 if (error) 2721 return (error); 2722 uiop->uio_loffset = va.va_size; 2723 } 2724 2725 offset = uiop->uio_loffset + uiop->uio_resid; 2726 2727 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2728 return (EINVAL); 2729 2730 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2731 limit = MAXOFFSET_T; 2732 2733 /* 2734 * Check to make sure that the process will not exceed 2735 * its limit on file size. It is okay to write up to 2736 * the limit, but not beyond. Thus, the write which 2737 * reaches the limit will be short and the next write 2738 * will return an error. 2739 */ 2740 remainder = 0; 2741 if (offset > uiop->uio_llimit) { 2742 remainder = offset - uiop->uio_llimit; 2743 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2744 if (uiop->uio_resid <= 0) { 2745 proc_t *p = ttoproc(curthread); 2746 2747 uiop->uio_resid += remainder; 2748 mutex_enter(&p->p_lock); 2749 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2750 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2751 mutex_exit(&p->p_lock); 2752 return (EFBIG); 2753 } 2754 } 2755 2756 /* update the change attribute, if we have a write delegation */ 2757 2758 mutex_enter(&rp->r_statev4_lock); 2759 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2760 rp->r_deleg_change++; 2761 2762 mutex_exit(&rp->r_statev4_lock); 2763 2764 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2765 return (EINTR); 2766 2767 /* 2768 * Bypass VM if caching has been disabled (e.g., locking) or if 2769 * using client-side direct I/O and the file is not mmap'd and 2770 * there are no cached pages. 2771 */ 2772 if ((vp->v_flag & VNOCACHE) || 2773 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2774 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2775 size_t bufsize; 2776 int count; 2777 u_offset_t org_offset; 2778 stable_how4 stab_comm; 2779 nfs4_fwrite: 2780 if (rp->r_flags & R4STALE) { 2781 resid = uiop->uio_resid; 2782 offset = uiop->uio_loffset; 2783 error = rp->r_error; 2784 goto bottom; 2785 } 2786 2787 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2788 base = kmem_alloc(bufsize, KM_SLEEP); 2789 do { 2790 if (ioflag & FDSYNC) 2791 stab_comm = DATA_SYNC4; 2792 else 2793 stab_comm = FILE_SYNC4; 2794 resid = uiop->uio_resid; 2795 offset = uiop->uio_loffset; 2796 count = MIN(uiop->uio_resid, bufsize); 2797 org_offset = uiop->uio_loffset; 2798 error = uiomove(base, count, UIO_WRITE, uiop); 2799 if (!error) { 2800 error = nfs4write(vp, base, org_offset, 2801 count, cr, &stab_comm); 2802 if (!error) { 2803 mutex_enter(&rp->r_statelock); 2804 if (rp->r_size < uiop->uio_loffset) 2805 rp->r_size = uiop->uio_loffset; 2806 mutex_exit(&rp->r_statelock); 2807 } 2808 } 2809 } while (!error && uiop->uio_resid > 0); 2810 kmem_free(base, bufsize); 2811 goto bottom; 2812 } 2813 2814 bsize = vp->v_vfsp->vfs_bsize; 2815 2816 do { 2817 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2818 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2819 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2820 2821 resid = uiop->uio_resid; 2822 offset = uiop->uio_loffset; 2823 2824 if (rp->r_flags & R4STALE) { 2825 error = rp->r_error; 2826 break; 2827 } 2828 2829 /* 2830 * Don't create dirty pages faster than they 2831 * can be cleaned so that the system doesn't 2832 * get imbalanced. If the async queue is 2833 * maxed out, then wait for it to drain before 2834 * creating more dirty pages. Also, wait for 2835 * any threads doing pagewalks in the vop_getattr 2836 * entry points so that they don't block for 2837 * long periods. 2838 */ 2839 mutex_enter(&rp->r_statelock); 2840 while ((mi->mi_max_threads != 0 && 2841 rp->r_awcount > 2 * mi->mi_max_threads) || 2842 rp->r_gcount > 0) 2843 cv_wait(&rp->r_cv, &rp->r_statelock); 2844 mutex_exit(&rp->r_statelock); 2845 2846 if (vpm_enable) { 2847 /* 2848 * It will use kpm mappings, so no need to 2849 * pass an address. 2850 */ 2851 error = writerp4(rp, NULL, n, uiop, 0); 2852 } else { 2853 if (segmap_kpm) { 2854 int pon = uiop->uio_loffset & PAGEOFFSET; 2855 size_t pn = MIN(PAGESIZE - pon, 2856 uiop->uio_resid); 2857 int pagecreate; 2858 2859 mutex_enter(&rp->r_statelock); 2860 pagecreate = (pon == 0) && (pn == PAGESIZE || 2861 uiop->uio_loffset + pn >= rp->r_size); 2862 mutex_exit(&rp->r_statelock); 2863 2864 base = segmap_getmapflt(segkmap, vp, off + on, 2865 pn, !pagecreate, S_WRITE); 2866 2867 error = writerp4(rp, base + pon, n, uiop, 2868 pagecreate); 2869 2870 } else { 2871 base = segmap_getmapflt(segkmap, vp, off + on, 2872 n, 0, S_READ); 2873 error = writerp4(rp, base + on, n, uiop, 0); 2874 } 2875 } 2876 2877 if (!error) { 2878 if (mi->mi_flags & MI4_NOAC) 2879 flags = SM_WRITE; 2880 else if ((uiop->uio_loffset % bsize) == 0 || 2881 IS_SWAPVP(vp)) { 2882 /* 2883 * Have written a whole block. 2884 * Start an asynchronous write 2885 * and mark the buffer to 2886 * indicate that it won't be 2887 * needed again soon. 2888 */ 2889 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2890 } else 2891 flags = 0; 2892 if ((ioflag & (FSYNC|FDSYNC)) || 2893 (rp->r_flags & R4OUTOFSPACE)) { 2894 flags &= ~SM_ASYNC; 2895 flags |= SM_WRITE; 2896 } 2897 if (vpm_enable) { 2898 error = vpm_sync_pages(vp, off, n, flags); 2899 } else { 2900 error = segmap_release(segkmap, base, flags); 2901 } 2902 } else { 2903 if (vpm_enable) { 2904 (void) vpm_sync_pages(vp, off, n, 0); 2905 } else { 2906 (void) segmap_release(segkmap, base, 0); 2907 } 2908 /* 2909 * In the event that we got an access error while 2910 * faulting in a page for a write-only file just 2911 * force a write. 2912 */ 2913 if (error == EACCES) 2914 goto nfs4_fwrite; 2915 } 2916 } while (!error && uiop->uio_resid > 0); 2917 2918 bottom: 2919 if (error) { 2920 uiop->uio_resid = resid + remainder; 2921 uiop->uio_loffset = offset; 2922 } else { 2923 uiop->uio_resid += remainder; 2924 2925 mutex_enter(&rp->r_statev4_lock); 2926 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 2927 gethrestime(&rp->r_attr.va_mtime); 2928 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 2929 } 2930 mutex_exit(&rp->r_statev4_lock); 2931 } 2932 2933 nfs_rw_exit(&rp->r_lkserlock); 2934 2935 return (error); 2936 } 2937 2938 /* 2939 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2940 */ 2941 static int 2942 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 2943 int flags, cred_t *cr) 2944 { 2945 struct buf *bp; 2946 int error; 2947 page_t *savepp; 2948 uchar_t fsdata; 2949 stable_how4 stab_comm; 2950 2951 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 2952 bp = pageio_setup(pp, len, vp, flags); 2953 ASSERT(bp != NULL); 2954 2955 /* 2956 * pageio_setup should have set b_addr to 0. This 2957 * is correct since we want to do I/O on a page 2958 * boundary. bp_mapin will use this addr to calculate 2959 * an offset, and then set b_addr to the kernel virtual 2960 * address it allocated for us. 2961 */ 2962 ASSERT(bp->b_un.b_addr == 0); 2963 2964 bp->b_edev = 0; 2965 bp->b_dev = 0; 2966 bp->b_lblkno = lbtodb(off); 2967 bp->b_file = vp; 2968 bp->b_offset = (offset_t)off; 2969 bp_mapin(bp); 2970 2971 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 2972 freemem > desfree) 2973 stab_comm = UNSTABLE4; 2974 else 2975 stab_comm = FILE_SYNC4; 2976 2977 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 2978 2979 bp_mapout(bp); 2980 pageio_done(bp); 2981 2982 if (stab_comm == UNSTABLE4) 2983 fsdata = C_DELAYCOMMIT; 2984 else 2985 fsdata = C_NOCOMMIT; 2986 2987 savepp = pp; 2988 do { 2989 pp->p_fsdata = fsdata; 2990 } while ((pp = pp->p_next) != savepp); 2991 2992 return (error); 2993 } 2994 2995 /* 2996 */ 2997 static int 2998 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 2999 { 3000 nfs4_open_owner_t *oop; 3001 nfs4_open_stream_t *osp; 3002 rnode4_t *rp = VTOR4(vp); 3003 mntinfo4_t *mi = VTOMI4(vp); 3004 int reopen_needed; 3005 3006 ASSERT(nfs_zone() == mi->mi_zone); 3007 3008 3009 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3010 if (!oop) 3011 return (EIO); 3012 3013 /* returns with 'os_sync_lock' held */ 3014 osp = find_open_stream(oop, rp); 3015 if (!osp) { 3016 open_owner_rele(oop); 3017 return (EIO); 3018 } 3019 3020 if (osp->os_failed_reopen) { 3021 mutex_exit(&osp->os_sync_lock); 3022 open_stream_rele(osp, rp); 3023 open_owner_rele(oop); 3024 return (EIO); 3025 } 3026 3027 /* 3028 * Determine whether a reopen is needed. If this 3029 * is a delegation open stream, then the os_delegation bit 3030 * should be set. 3031 */ 3032 3033 reopen_needed = osp->os_delegation; 3034 3035 mutex_exit(&osp->os_sync_lock); 3036 open_owner_rele(oop); 3037 3038 if (reopen_needed) { 3039 nfs4_error_zinit(ep); 3040 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3041 mutex_enter(&osp->os_sync_lock); 3042 if (ep->error || ep->stat || osp->os_failed_reopen) { 3043 mutex_exit(&osp->os_sync_lock); 3044 open_stream_rele(osp, rp); 3045 return (EIO); 3046 } 3047 mutex_exit(&osp->os_sync_lock); 3048 } 3049 open_stream_rele(osp, rp); 3050 3051 return (0); 3052 } 3053 3054 /* 3055 * Write to file. Writes to remote server in largest size 3056 * chunks that the server can handle. Write is synchronous. 3057 */ 3058 static int 3059 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3060 stable_how4 *stab_comm) 3061 { 3062 mntinfo4_t *mi; 3063 COMPOUND4args_clnt args; 3064 COMPOUND4res_clnt res; 3065 WRITE4args *wargs; 3066 WRITE4res *wres; 3067 nfs_argop4 argop[2]; 3068 nfs_resop4 *resop; 3069 int tsize; 3070 stable_how4 stable; 3071 rnode4_t *rp; 3072 int doqueue = 1; 3073 bool_t needrecov; 3074 nfs4_recov_state_t recov_state; 3075 nfs4_stateid_types_t sid_types; 3076 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3077 3078 rp = VTOR4(vp); 3079 mi = VTOMI4(vp); 3080 3081 ASSERT(nfs_zone() == mi->mi_zone); 3082 3083 stable = *stab_comm; 3084 *stab_comm = FILE_SYNC4; 3085 3086 needrecov = FALSE; 3087 recov_state.rs_flags = 0; 3088 recov_state.rs_num_retry_despite_err = 0; 3089 nfs4_init_stateid_types(&sid_types); 3090 3091 recov_retry: 3092 args.ctag = TAG_WRITE; 3093 args.array_len = 2; 3094 args.array = argop; 3095 3096 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3097 &recov_state, NULL); 3098 if (e.error) 3099 return (e.error); 3100 3101 /* 0. putfh target fh */ 3102 argop[0].argop = OP_CPUTFH; 3103 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3104 3105 /* 1. write */ 3106 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3107 3108 do { 3109 3110 wargs->offset = (offset4)offset; 3111 wargs->data_val = base; 3112 3113 if (mi->mi_io_kstats) { 3114 mutex_enter(&mi->mi_lock); 3115 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3116 mutex_exit(&mi->mi_lock); 3117 } 3118 3119 if ((vp->v_flag & VNOCACHE) || 3120 (rp->r_flags & R4DIRECTIO) || 3121 (mi->mi_flags & MI4_DIRECTIO)) 3122 tsize = MIN(mi->mi_stsize, count); 3123 else 3124 tsize = MIN(mi->mi_curwrite, count); 3125 wargs->data_len = (uint_t)tsize; 3126 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3127 3128 if (mi->mi_io_kstats) { 3129 mutex_enter(&mi->mi_lock); 3130 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3131 mutex_exit(&mi->mi_lock); 3132 } 3133 3134 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3135 if (e.error && !needrecov) { 3136 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3137 &recov_state, needrecov); 3138 return (e.error); 3139 } 3140 3141 3142 /* 3143 * Do handling of OLD_STATEID outside 3144 * of the normal recovery framework. 3145 * 3146 * If write receives a BAD stateid error while using a 3147 * delegation stateid, retry using the open stateid (if it 3148 * exists). If it doesn't have an open stateid, reopen the 3149 * file first, then retry. 3150 */ 3151 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3152 sid_types.cur_sid_type != SPEC_SID) { 3153 nfs4_save_stateid(&wargs->stateid, &sid_types); 3154 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3155 &recov_state, needrecov); 3156 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3157 goto recov_retry; 3158 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3159 sid_types.cur_sid_type == DEL_SID) { 3160 nfs4_save_stateid(&wargs->stateid, &sid_types); 3161 mutex_enter(&rp->r_statev4_lock); 3162 rp->r_deleg_return_pending = TRUE; 3163 mutex_exit(&rp->r_statev4_lock); 3164 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3165 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3166 &recov_state, needrecov); 3167 (void) xdr_free(xdr_COMPOUND4res_clnt, 3168 (caddr_t)&res); 3169 return (EIO); 3170 } 3171 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3172 &recov_state, needrecov); 3173 /* hold needed for nfs4delegreturn_thread */ 3174 VN_HOLD(vp); 3175 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3176 NFS4_DR_DISCARD), FALSE); 3177 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3178 goto recov_retry; 3179 } 3180 3181 if (needrecov) { 3182 bool_t abort; 3183 3184 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3185 "nfs4write: client got error %d, res.status %d" 3186 ", so start recovery", e.error, res.status)); 3187 3188 abort = nfs4_start_recovery(&e, 3189 VTOMI4(vp), vp, NULL, &wargs->stateid, 3190 NULL, OP_WRITE, NULL); 3191 if (!e.error) { 3192 e.error = geterrno4(res.status); 3193 (void) xdr_free(xdr_COMPOUND4res_clnt, 3194 (caddr_t)&res); 3195 } 3196 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3197 &recov_state, needrecov); 3198 if (abort == FALSE) 3199 goto recov_retry; 3200 return (e.error); 3201 } 3202 3203 if (res.status) { 3204 e.error = geterrno4(res.status); 3205 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3206 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3207 &recov_state, needrecov); 3208 return (e.error); 3209 } 3210 3211 resop = &res.array[1]; /* write res */ 3212 wres = &resop->nfs_resop4_u.opwrite; 3213 3214 if ((int)wres->count > tsize) { 3215 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3216 3217 zcmn_err(getzoneid(), CE_WARN, 3218 "nfs4write: server wrote %u, requested was %u", 3219 (int)wres->count, tsize); 3220 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3221 &recov_state, needrecov); 3222 return (EIO); 3223 } 3224 if (wres->committed == UNSTABLE4) { 3225 *stab_comm = UNSTABLE4; 3226 if (wargs->stable == DATA_SYNC4 || 3227 wargs->stable == FILE_SYNC4) { 3228 (void) xdr_free(xdr_COMPOUND4res_clnt, 3229 (caddr_t)&res); 3230 zcmn_err(getzoneid(), CE_WARN, 3231 "nfs4write: server %s did not commit " 3232 "to stable storage", 3233 rp->r_server->sv_hostname); 3234 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3235 &recov_state, needrecov); 3236 return (EIO); 3237 } 3238 } 3239 3240 tsize = (int)wres->count; 3241 count -= tsize; 3242 base += tsize; 3243 offset += tsize; 3244 if (mi->mi_io_kstats) { 3245 mutex_enter(&mi->mi_lock); 3246 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3247 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3248 tsize; 3249 mutex_exit(&mi->mi_lock); 3250 } 3251 lwp_stat_update(LWP_STAT_OUBLK, 1); 3252 mutex_enter(&rp->r_statelock); 3253 if (rp->r_flags & R4HAVEVERF) { 3254 if (rp->r_writeverf != wres->writeverf) { 3255 nfs4_set_mod(vp); 3256 rp->r_writeverf = wres->writeverf; 3257 } 3258 } else { 3259 rp->r_writeverf = wres->writeverf; 3260 rp->r_flags |= R4HAVEVERF; 3261 } 3262 PURGE_ATTRCACHE4_LOCKED(rp); 3263 rp->r_flags |= R4WRITEMODIFIED; 3264 gethrestime(&rp->r_attr.va_mtime); 3265 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3266 mutex_exit(&rp->r_statelock); 3267 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3268 } while (count); 3269 3270 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); 3271 3272 return (e.error); 3273 } 3274 3275 /* 3276 * Read from a file. Reads data in largest chunks our interface can handle. 3277 */ 3278 static int 3279 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3280 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3281 { 3282 mntinfo4_t *mi; 3283 COMPOUND4args_clnt args; 3284 COMPOUND4res_clnt res; 3285 READ4args *rargs; 3286 nfs_argop4 argop[2]; 3287 int tsize; 3288 int doqueue; 3289 rnode4_t *rp; 3290 int data_len; 3291 bool_t is_eof; 3292 bool_t needrecov = FALSE; 3293 nfs4_recov_state_t recov_state; 3294 nfs4_stateid_types_t sid_types; 3295 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3296 3297 rp = VTOR4(vp); 3298 mi = VTOMI4(vp); 3299 doqueue = 1; 3300 3301 ASSERT(nfs_zone() == mi->mi_zone); 3302 3303 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3304 3305 args.array_len = 2; 3306 args.array = argop; 3307 3308 nfs4_init_stateid_types(&sid_types); 3309 3310 recov_state.rs_flags = 0; 3311 recov_state.rs_num_retry_despite_err = 0; 3312 3313 recov_retry: 3314 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3315 &recov_state, NULL); 3316 if (e.error) 3317 return (e.error); 3318 3319 /* putfh target fh */ 3320 argop[0].argop = OP_CPUTFH; 3321 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3322 3323 /* read */ 3324 argop[1].argop = OP_READ; 3325 rargs = &argop[1].nfs_argop4_u.opread; 3326 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3327 OP_READ, &sid_types, async); 3328 3329 do { 3330 if (mi->mi_io_kstats) { 3331 mutex_enter(&mi->mi_lock); 3332 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3333 mutex_exit(&mi->mi_lock); 3334 } 3335 3336 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3337 "nfs4read: %s call, rp %s", 3338 needrecov ? "recov" : "first", 3339 rnode4info(rp))); 3340 3341 if ((vp->v_flag & VNOCACHE) || 3342 (rp->r_flags & R4DIRECTIO) || 3343 (mi->mi_flags & MI4_DIRECTIO)) 3344 tsize = MIN(mi->mi_tsize, count); 3345 else 3346 tsize = MIN(mi->mi_curread, count); 3347 rargs->offset = (offset4)offset; 3348 rargs->count = (count4)tsize; 3349 rargs->res_data_val_alt = NULL; 3350 rargs->res_mblk = NULL; 3351 rargs->res_uiop = NULL; 3352 rargs->res_maxsize = 0; 3353 if (uiop) 3354 rargs->res_uiop = uiop; 3355 else 3356 rargs->res_data_val_alt = base; 3357 rargs->res_maxsize = tsize; 3358 3359 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3360 #ifdef DEBUG 3361 if (nfs4read_error_inject) { 3362 res.status = nfs4read_error_inject; 3363 nfs4read_error_inject = 0; 3364 } 3365 #endif 3366 3367 if (mi->mi_io_kstats) { 3368 mutex_enter(&mi->mi_lock); 3369 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3370 mutex_exit(&mi->mi_lock); 3371 } 3372 3373 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3374 if (e.error != 0 && !needrecov) { 3375 nfs4_end_fop(mi, vp, NULL, OH_READ, 3376 &recov_state, needrecov); 3377 return (e.error); 3378 } 3379 3380 /* 3381 * Do proper retry for OLD and BAD stateid errors outside 3382 * of the normal recovery framework. There are two differences 3383 * between async and sync reads. The first is that we allow 3384 * retry on BAD_STATEID for async reads, but not sync reads. 3385 * The second is that we mark the file dead for a failed 3386 * attempt with a special stateid for sync reads, but just 3387 * return EIO for async reads. 3388 * 3389 * If a sync read receives a BAD stateid error while using a 3390 * delegation stateid, retry using the open stateid (if it 3391 * exists). If it doesn't have an open stateid, reopen the 3392 * file first, then retry. 3393 */ 3394 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3395 res.status == NFS4ERR_BAD_STATEID) && async) { 3396 nfs4_end_fop(mi, vp, NULL, OH_READ, 3397 &recov_state, needrecov); 3398 if (sid_types.cur_sid_type == SPEC_SID) { 3399 (void) xdr_free(xdr_COMPOUND4res_clnt, 3400 (caddr_t)&res); 3401 return (EIO); 3402 } 3403 nfs4_save_stateid(&rargs->stateid, &sid_types); 3404 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3405 goto recov_retry; 3406 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3407 !async && sid_types.cur_sid_type != SPEC_SID) { 3408 nfs4_save_stateid(&rargs->stateid, &sid_types); 3409 nfs4_end_fop(mi, vp, NULL, OH_READ, 3410 &recov_state, needrecov); 3411 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3412 goto recov_retry; 3413 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3414 sid_types.cur_sid_type == DEL_SID) { 3415 nfs4_save_stateid(&rargs->stateid, &sid_types); 3416 mutex_enter(&rp->r_statev4_lock); 3417 rp->r_deleg_return_pending = TRUE; 3418 mutex_exit(&rp->r_statev4_lock); 3419 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3420 nfs4_end_fop(mi, vp, NULL, OH_READ, 3421 &recov_state, needrecov); 3422 (void) xdr_free(xdr_COMPOUND4res_clnt, 3423 (caddr_t)&res); 3424 return (EIO); 3425 } 3426 nfs4_end_fop(mi, vp, NULL, OH_READ, 3427 &recov_state, needrecov); 3428 /* hold needed for nfs4delegreturn_thread */ 3429 VN_HOLD(vp); 3430 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3431 NFS4_DR_DISCARD), FALSE); 3432 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3433 goto recov_retry; 3434 } 3435 if (needrecov) { 3436 bool_t abort; 3437 3438 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3439 "nfs4read: initiating recovery\n")); 3440 3441 abort = nfs4_start_recovery(&e, 3442 mi, vp, NULL, &rargs->stateid, 3443 NULL, OP_READ, NULL); 3444 nfs4_end_fop(mi, vp, NULL, OH_READ, 3445 &recov_state, needrecov); 3446 /* 3447 * Do not retry if we got OLD_STATEID using a special 3448 * stateid. This avoids looping with a broken server. 3449 */ 3450 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3451 sid_types.cur_sid_type == SPEC_SID) 3452 abort = TRUE; 3453 3454 if (abort == FALSE) { 3455 /* 3456 * Need to retry all possible stateids in 3457 * case the recovery error wasn't stateid 3458 * related or the stateids have become 3459 * stale (server reboot). 3460 */ 3461 nfs4_init_stateid_types(&sid_types); 3462 (void) xdr_free(xdr_COMPOUND4res_clnt, 3463 (caddr_t)&res); 3464 goto recov_retry; 3465 } 3466 3467 if (!e.error) { 3468 e.error = geterrno4(res.status); 3469 (void) xdr_free(xdr_COMPOUND4res_clnt, 3470 (caddr_t)&res); 3471 } 3472 return (e.error); 3473 } 3474 3475 if (res.status) { 3476 e.error = geterrno4(res.status); 3477 nfs4_end_fop(mi, vp, NULL, OH_READ, 3478 &recov_state, needrecov); 3479 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3480 return (e.error); 3481 } 3482 3483 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3484 count -= data_len; 3485 if (base) 3486 base += data_len; 3487 offset += data_len; 3488 if (mi->mi_io_kstats) { 3489 mutex_enter(&mi->mi_lock); 3490 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3491 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3492 mutex_exit(&mi->mi_lock); 3493 } 3494 lwp_stat_update(LWP_STAT_INBLK, 1); 3495 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3496 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3497 3498 } while (count && !is_eof); 3499 3500 *residp = count; 3501 3502 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3503 3504 return (e.error); 3505 } 3506 3507 /* ARGSUSED */ 3508 static int 3509 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) 3510 { 3511 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3512 return (EIO); 3513 switch (cmd) { 3514 case _FIODIRECTIO: 3515 return (nfs4_directio(vp, (int)arg, cr)); 3516 default: 3517 return (ENOTTY); 3518 } 3519 } 3520 3521 static int 3522 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 3523 { 3524 int error; 3525 rnode4_t *rp = VTOR4(vp); 3526 3527 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3528 return (EIO); 3529 /* 3530 * If it has been specified that the return value will 3531 * just be used as a hint, and we are only being asked 3532 * for size, fsid or rdevid, then return the client's 3533 * notion of these values without checking to make sure 3534 * that the attribute cache is up to date. 3535 * The whole point is to avoid an over the wire GETATTR 3536 * call. 3537 */ 3538 if (flags & ATTR_HINT) { 3539 if (vap->va_mask == 3540 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 3541 mutex_enter(&rp->r_statelock); 3542 if (vap->va_mask | AT_SIZE) 3543 vap->va_size = rp->r_size; 3544 if (vap->va_mask | AT_FSID) 3545 vap->va_fsid = rp->r_attr.va_fsid; 3546 if (vap->va_mask | AT_RDEV) 3547 vap->va_rdev = rp->r_attr.va_rdev; 3548 mutex_exit(&rp->r_statelock); 3549 return (0); 3550 } 3551 } 3552 3553 /* 3554 * Only need to flush pages if asking for the mtime 3555 * and if there any dirty pages or any outstanding 3556 * asynchronous (write) requests for this file. 3557 */ 3558 if (vap->va_mask & AT_MTIME) { 3559 rp = VTOR4(vp); 3560 if (nfs4_has_pages(vp)) { 3561 mutex_enter(&rp->r_statev4_lock); 3562 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3563 mutex_exit(&rp->r_statev4_lock); 3564 if (rp->r_flags & R4DIRTY || 3565 rp->r_awcount > 0) { 3566 mutex_enter(&rp->r_statelock); 3567 rp->r_gcount++; 3568 mutex_exit(&rp->r_statelock); 3569 error = 3570 nfs4_putpage(vp, (u_offset_t)0, 3571 0, 0, cr); 3572 mutex_enter(&rp->r_statelock); 3573 if (error && (error == ENOSPC || 3574 error == EDQUOT)) { 3575 if (!rp->r_error) 3576 rp->r_error = error; 3577 } 3578 if (--rp->r_gcount == 0) 3579 cv_broadcast(&rp->r_cv); 3580 mutex_exit(&rp->r_statelock); 3581 } 3582 } else { 3583 mutex_exit(&rp->r_statev4_lock); 3584 } 3585 } 3586 } 3587 return (nfs4getattr(vp, vap, cr)); 3588 } 3589 3590 int 3591 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3592 { 3593 /* 3594 * If these are the only two bits cleared 3595 * on the server then return 0 (OK) else 3596 * return 1 (BAD). 3597 */ 3598 on_client &= ~(S_ISUID|S_ISGID); 3599 if (on_client == from_server) 3600 return (0); 3601 else 3602 return (1); 3603 } 3604 3605 /*ARGSUSED4*/ 3606 static int 3607 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3608 caller_context_t *ct) 3609 { 3610 if (vap->va_mask & AT_NOSET) 3611 return (EINVAL); 3612 3613 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3614 return (EIO); 3615 3616 /* 3617 * Don't call secpolicy_vnode_setattr, the client cannot 3618 * use its cached attributes to make security decisions 3619 * as the server may be faking mode bits or mapping uid/gid. 3620 * Always just let the server to the checking. 3621 * If we provide the ability to remove basic priviledges 3622 * to setattr (e.g. basic without chmod) then we will 3623 * need to add a check here before calling the server. 3624 */ 3625 3626 return (nfs4setattr(vp, vap, flags, cr, NULL)); 3627 } 3628 3629 /* 3630 * To replace the "guarded" version 3 setattr, we use two types of compound 3631 * setattr requests: 3632 * 1. The "normal" setattr, used when the size of the file isn't being 3633 * changed - { Putfh <fh>; Setattr; Getattr }/ 3634 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3635 * with only ctime as the argument. If the server ctime differs from 3636 * what is cached on the client, the verify will fail, but we would 3637 * already have the ctime from the preceding getattr, so just set it 3638 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3639 * Setattr; Getattr }. 3640 * 3641 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3642 * this setattr and NULL if they are not. 3643 */ 3644 static int 3645 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3646 vsecattr_t *vsap) 3647 { 3648 COMPOUND4args_clnt args; 3649 COMPOUND4res_clnt res, *resp = NULL; 3650 nfs4_ga_res_t *garp = NULL; 3651 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3652 nfs_argop4 argop[5]; 3653 int verify_argop = -1; 3654 int setattr_argop = 1; 3655 nfs_resop4 *resop; 3656 vattr_t va; 3657 rnode4_t *rp; 3658 int doqueue = 1; 3659 uint_t mask = vap->va_mask; 3660 mode_t omode; 3661 vsecattr_t *vsp; 3662 timestruc_t ctime; 3663 bool_t needrecov = FALSE; 3664 nfs4_recov_state_t recov_state; 3665 nfs4_stateid_types_t sid_types; 3666 stateid4 stateid; 3667 hrtime_t t; 3668 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3669 servinfo4_t *svp; 3670 bitmap4 supp_attrs; 3671 3672 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3673 rp = VTOR4(vp); 3674 nfs4_init_stateid_types(&sid_types); 3675 3676 /* 3677 * Only need to flush pages if there are any pages and 3678 * if the file is marked as dirty in some fashion. The 3679 * file must be flushed so that we can accurately 3680 * determine the size of the file and the cached data 3681 * after the SETATTR returns. A file is considered to 3682 * be dirty if it is either marked with R4DIRTY, has 3683 * outstanding i/o's active, or is mmap'd. In this 3684 * last case, we can't tell whether there are dirty 3685 * pages, so we flush just to be sure. 3686 */ 3687 if (nfs4_has_pages(vp) && 3688 ((rp->r_flags & R4DIRTY) || 3689 rp->r_count > 0 || 3690 rp->r_mapcnt > 0)) { 3691 ASSERT(vp->v_type != VCHR); 3692 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr); 3693 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3694 mutex_enter(&rp->r_statelock); 3695 if (!rp->r_error) 3696 rp->r_error = e.error; 3697 mutex_exit(&rp->r_statelock); 3698 } 3699 } 3700 3701 if (mask & AT_SIZE) { 3702 /* 3703 * Verification setattr compound for non-deleg AT_SIZE: 3704 * { Putfh; Getattr; Verify; Setattr; Getattr } 3705 * Set ctime local here (outside the do_again label) 3706 * so that subsequent retries (after failed VERIFY) 3707 * will use ctime from GETATTR results (from failed 3708 * verify compound) as VERIFY arg. 3709 * If file has delegation, then VERIFY(time_metadata) 3710 * is of little added value, so don't bother. 3711 */ 3712 mutex_enter(&rp->r_statev4_lock); 3713 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3714 rp->r_deleg_return_pending) { 3715 numops = 5; 3716 ctime = rp->r_attr.va_ctime; 3717 } 3718 mutex_exit(&rp->r_statev4_lock); 3719 } 3720 3721 recov_state.rs_flags = 0; 3722 recov_state.rs_num_retry_despite_err = 0; 3723 3724 args.ctag = TAG_SETATTR; 3725 do_again: 3726 recov_retry: 3727 setattr_argop = numops - 2; 3728 3729 args.array = argop; 3730 args.array_len = numops; 3731 3732 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3733 if (e.error) 3734 return (e.error); 3735 3736 3737 /* putfh target fh */ 3738 argop[0].argop = OP_CPUTFH; 3739 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3740 3741 if (numops == 5) { 3742 /* 3743 * We only care about the ctime, but need to get mtime 3744 * and size for proper cache update. 3745 */ 3746 /* getattr */ 3747 argop[1].argop = OP_GETATTR; 3748 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3749 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3750 3751 /* verify - set later in loop */ 3752 verify_argop = 2; 3753 } 3754 3755 /* setattr */ 3756 svp = rp->r_server; 3757 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3758 supp_attrs = svp->sv_supp_attrs; 3759 nfs_rw_exit(&svp->sv_lock); 3760 3761 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3762 supp_attrs, &e.error, &sid_types); 3763 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3764 if (e.error) { 3765 /* req time field(s) overflow - return immediately */ 3766 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3767 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3768 opsetattr.obj_attributes); 3769 return (e.error); 3770 } 3771 omode = rp->r_attr.va_mode; 3772 3773 /* getattr */ 3774 argop[numops-1].argop = OP_GETATTR; 3775 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3776 /* 3777 * If we are setting the ACL (indicated only by vsap != NULL), request 3778 * the ACL in this getattr. The ACL returned from this getattr will be 3779 * used in updating the ACL cache. 3780 */ 3781 if (vsap != NULL) 3782 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3783 FATTR4_ACL_MASK; 3784 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3785 3786 /* 3787 * setattr iterates if the object size is set and the cached ctime 3788 * does not match the file ctime. In that case, verify the ctime first. 3789 */ 3790 3791 do { 3792 if (verify_argop != -1) { 3793 /* 3794 * Verify that the ctime match before doing setattr. 3795 */ 3796 va.va_mask = AT_CTIME; 3797 va.va_ctime = ctime; 3798 svp = rp->r_server; 3799 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3800 supp_attrs = svp->sv_supp_attrs; 3801 nfs_rw_exit(&svp->sv_lock); 3802 e.error = nfs4args_verify(&argop[verify_argop], &va, 3803 OP_VERIFY, supp_attrs); 3804 if (e.error) { 3805 /* req time field(s) overflow - return */ 3806 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3807 needrecov); 3808 break; 3809 } 3810 } 3811 3812 doqueue = 1; 3813 3814 t = gethrtime(); 3815 3816 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3817 3818 /* 3819 * Purge the access cache and ACL cache if changing either the 3820 * owner of the file, the group owner, or the mode. These may 3821 * change the access permissions of the file, so purge old 3822 * information and start over again. 3823 */ 3824 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3825 (void) nfs4_access_purge_rp(rp); 3826 if (rp->r_secattr != NULL) { 3827 mutex_enter(&rp->r_statelock); 3828 vsp = rp->r_secattr; 3829 rp->r_secattr = NULL; 3830 mutex_exit(&rp->r_statelock); 3831 if (vsp != NULL) 3832 nfs4_acl_free_cache(vsp); 3833 } 3834 } 3835 3836 /* 3837 * If res.array_len == numops, then everything succeeded, 3838 * except for possibly the final getattr. If only the 3839 * last getattr failed, give up, and don't try recovery. 3840 */ 3841 if (res.array_len == numops) { 3842 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3843 needrecov); 3844 if (! e.error) 3845 resp = &res; 3846 break; 3847 } 3848 3849 /* 3850 * if either rpc call failed or completely succeeded - done 3851 */ 3852 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3853 if (e.error) { 3854 PURGE_ATTRCACHE4(vp); 3855 if (!needrecov) { 3856 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3857 needrecov); 3858 break; 3859 } 3860 } 3861 3862 /* 3863 * Do proper retry for OLD_STATEID outside of the normal 3864 * recovery framework. 3865 */ 3866 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3867 sid_types.cur_sid_type != SPEC_SID && 3868 sid_types.cur_sid_type != NO_SID) { 3869 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3870 needrecov); 3871 nfs4_save_stateid(&stateid, &sid_types); 3872 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3873 opsetattr.obj_attributes); 3874 if (verify_argop != -1) { 3875 nfs4args_verify_free(&argop[verify_argop]); 3876 verify_argop = -1; 3877 } 3878 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3879 goto recov_retry; 3880 } 3881 3882 if (needrecov) { 3883 bool_t abort; 3884 3885 abort = nfs4_start_recovery(&e, 3886 VTOMI4(vp), vp, NULL, NULL, NULL, 3887 OP_SETATTR, NULL); 3888 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3889 needrecov); 3890 /* 3891 * Do not retry if we failed with OLD_STATEID using 3892 * a special stateid. This is done to avoid looping 3893 * with a broken server. 3894 */ 3895 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3896 (sid_types.cur_sid_type == SPEC_SID || 3897 sid_types.cur_sid_type == NO_SID)) 3898 abort = TRUE; 3899 if (!e.error) { 3900 if (res.status == NFS4ERR_BADOWNER) 3901 nfs4_log_badowner(VTOMI4(vp), 3902 OP_SETATTR); 3903 3904 e.error = geterrno4(res.status); 3905 (void) xdr_free(xdr_COMPOUND4res_clnt, 3906 (caddr_t)&res); 3907 } 3908 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3909 opsetattr.obj_attributes); 3910 if (verify_argop != -1) { 3911 nfs4args_verify_free(&argop[verify_argop]); 3912 verify_argop = -1; 3913 } 3914 if (abort == FALSE) { 3915 /* 3916 * Need to retry all possible stateids in 3917 * case the recovery error wasn't stateid 3918 * related or the stateids have become 3919 * stale (server reboot). 3920 */ 3921 nfs4_init_stateid_types(&sid_types); 3922 goto recov_retry; 3923 } 3924 return (e.error); 3925 } 3926 3927 /* 3928 * Need to call nfs4_end_op before nfs4getattr to 3929 * avoid potential nfs4_start_op deadlock. See RFE 3930 * 4777612. Calls to nfs4_invalidate_pages() and 3931 * nfs4_purge_stale_fh() might also generate over the 3932 * wire calls which my cause nfs4_start_op() deadlock. 3933 */ 3934 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3935 3936 /* 3937 * Check to update lease. 3938 */ 3939 resp = &res; 3940 if (res.status == NFS4_OK) { 3941 break; 3942 } 3943 3944 /* 3945 * Check if verify failed to see if try again 3946 */ 3947 if ((verify_argop == -1) || (res.array_len != 3)) { 3948 /* 3949 * can't continue... 3950 */ 3951 if (res.status == NFS4ERR_BADOWNER) 3952 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 3953 3954 e.error = geterrno4(res.status); 3955 } else { 3956 /* 3957 * When the verify request fails, the client ctime is 3958 * not in sync with the server. This is the same as 3959 * the version 3 "not synchronized" error, and we 3960 * handle it in a similar manner (XXX do we need to???). 3961 * Use the ctime returned in the first getattr for 3962 * the input to the next verify. 3963 * If we couldn't get the attributes, then we give up 3964 * because we can't complete the operation as required. 3965 */ 3966 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 3967 } 3968 if (e.error) { 3969 PURGE_ATTRCACHE4(vp); 3970 nfs4_purge_stale_fh(e.error, vp, cr); 3971 } else { 3972 /* 3973 * retry with a new verify value 3974 */ 3975 ctime = garp->n4g_va.va_ctime; 3976 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3977 resp = NULL; 3978 } 3979 if (!e.error) { 3980 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3981 opsetattr.obj_attributes); 3982 if (verify_argop != -1) { 3983 nfs4args_verify_free(&argop[verify_argop]); 3984 verify_argop = -1; 3985 } 3986 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3987 goto do_again; 3988 } 3989 } while (!e.error); 3990 3991 if (e.error) { 3992 /* 3993 * If we are here, rfs4call has an irrecoverable error - return 3994 */ 3995 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3996 opsetattr.obj_attributes); 3997 if (verify_argop != -1) { 3998 nfs4args_verify_free(&argop[verify_argop]); 3999 verify_argop = -1; 4000 } 4001 if (resp) 4002 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4003 return (e.error); 4004 } 4005 4006 4007 4008 /* 4009 * If changing the size of the file, invalidate 4010 * any local cached data which is no longer part 4011 * of the file. We also possibly invalidate the 4012 * last page in the file. We could use 4013 * pvn_vpzero(), but this would mark the page as 4014 * modified and require it to be written back to 4015 * the server for no particularly good reason. 4016 * This way, if we access it, then we bring it 4017 * back in. A read should be cheaper than a 4018 * write. 4019 */ 4020 if (mask & AT_SIZE) { 4021 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4022 } 4023 4024 /* either no error or one of the postop getattr failed */ 4025 4026 /* 4027 * XXX Perform a simplified version of wcc checking. Instead of 4028 * have another getattr to get pre-op, just purge cache if 4029 * any of the ops prior to and including the getattr failed. 4030 * If the getattr succeeded then update the attrcache accordingly. 4031 */ 4032 4033 garp = NULL; 4034 if (res.status == NFS4_OK) { 4035 /* 4036 * Last getattr 4037 */ 4038 resop = &res.array[numops - 1]; 4039 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4040 } 4041 /* 4042 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4043 * rather than filling it. See the function itself for details. 4044 */ 4045 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4046 if (garp != NULL) { 4047 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4048 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4049 vs_ace4_destroy(&garp->n4g_vsa); 4050 } else { 4051 if (vsap != NULL) { 4052 /* 4053 * The ACL was supposed to be set and to be 4054 * returned in the last getattr of this 4055 * compound, but for some reason the getattr 4056 * result doesn't contain the ACL. In this 4057 * case, purge the ACL cache. 4058 */ 4059 if (rp->r_secattr != NULL) { 4060 mutex_enter(&rp->r_statelock); 4061 vsp = rp->r_secattr; 4062 rp->r_secattr = NULL; 4063 mutex_exit(&rp->r_statelock); 4064 if (vsp != NULL) 4065 nfs4_acl_free_cache(vsp); 4066 } 4067 } 4068 } 4069 } 4070 4071 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4072 /* 4073 * Set the size, rather than relying on getting it updated 4074 * via a GETATTR. With delegations the client tries to 4075 * suppress GETATTR calls. 4076 */ 4077 mutex_enter(&rp->r_statelock); 4078 rp->r_size = vap->va_size; 4079 mutex_exit(&rp->r_statelock); 4080 } 4081 4082 /* 4083 * Can free up request args and res 4084 */ 4085 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4086 opsetattr.obj_attributes); 4087 if (verify_argop != -1) { 4088 nfs4args_verify_free(&argop[verify_argop]); 4089 verify_argop = -1; 4090 } 4091 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4092 4093 /* 4094 * Some servers will change the mode to clear the setuid 4095 * and setgid bits when changing the uid or gid. The 4096 * client needs to compensate appropriately. 4097 */ 4098 if (mask & (AT_UID | AT_GID)) { 4099 int terror, do_setattr; 4100 4101 do_setattr = 0; 4102 va.va_mask = AT_MODE; 4103 terror = nfs4getattr(vp, &va, cr); 4104 if (!terror && 4105 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4106 (!(mask & AT_MODE) && va.va_mode != omode))) { 4107 va.va_mask = AT_MODE; 4108 if (mask & AT_MODE) { 4109 /* 4110 * We asked the mode to be changed and what 4111 * we just got from the server in getattr is 4112 * not what we wanted it to be, so set it now. 4113 */ 4114 va.va_mode = vap->va_mode; 4115 do_setattr = 1; 4116 } else { 4117 /* 4118 * We did not ask the mode to be changed, 4119 * Check to see that the server just cleared 4120 * I_SUID and I_GUID from it. If not then 4121 * set mode to omode with UID/GID cleared. 4122 */ 4123 if (nfs4_compare_modes(va.va_mode, omode)) { 4124 omode &= ~(S_ISUID|S_ISGID); 4125 va.va_mode = omode; 4126 do_setattr = 1; 4127 } 4128 } 4129 4130 if (do_setattr) 4131 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4132 } 4133 } 4134 4135 return (e.error); 4136 } 4137 4138 /* ARGSUSED */ 4139 static int 4140 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr) 4141 { 4142 COMPOUND4args_clnt args; 4143 COMPOUND4res_clnt res; 4144 int doqueue; 4145 uint32_t acc, resacc, argacc; 4146 rnode4_t *rp; 4147 cred_t *cred, *ncr, *ncrfree = NULL; 4148 nfs4_access_type_t cacc; 4149 int num_ops; 4150 nfs_argop4 argop[3]; 4151 nfs_resop4 *resop; 4152 bool_t needrecov = FALSE, do_getattr; 4153 nfs4_recov_state_t recov_state; 4154 int rpc_error; 4155 hrtime_t t; 4156 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4157 mntinfo4_t *mi = VTOMI4(vp); 4158 4159 if (nfs_zone() != mi->mi_zone) 4160 return (EIO); 4161 4162 acc = 0; 4163 if (mode & VREAD) 4164 acc |= ACCESS4_READ; 4165 if (mode & VWRITE) { 4166 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4167 return (EROFS); 4168 if (vp->v_type == VDIR) 4169 acc |= ACCESS4_DELETE; 4170 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4171 } 4172 if (mode & VEXEC) { 4173 if (vp->v_type == VDIR) 4174 acc |= ACCESS4_LOOKUP; 4175 else 4176 acc |= ACCESS4_EXECUTE; 4177 } 4178 4179 if (VTOR4(vp)->r_acache != NULL) { 4180 e.error = nfs4_validate_caches(vp, cr); 4181 if (e.error) 4182 return (e.error); 4183 } 4184 4185 rp = VTOR4(vp); 4186 if (vp->v_type == VDIR) { 4187 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4188 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4189 } else { 4190 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4191 ACCESS4_EXECUTE; 4192 } 4193 recov_state.rs_flags = 0; 4194 recov_state.rs_num_retry_despite_err = 0; 4195 4196 cred = cr; 4197 /* 4198 * ncr and ncrfree both initially 4199 * point to the memory area returned 4200 * by crnetadjust(); 4201 * ncrfree not NULL when exiting means 4202 * that we need to release it 4203 */ 4204 ncr = crnetadjust(cred); 4205 ncrfree = ncr; 4206 4207 tryagain: 4208 cacc = nfs4_access_check(rp, acc, cred); 4209 if (cacc == NFS4_ACCESS_ALLOWED) { 4210 if (ncrfree != NULL) 4211 crfree(ncrfree); 4212 return (0); 4213 } 4214 if (cacc == NFS4_ACCESS_DENIED) { 4215 /* 4216 * If the cred can be adjusted, try again 4217 * with the new cred. 4218 */ 4219 if (ncr != NULL) { 4220 cred = ncr; 4221 ncr = NULL; 4222 goto tryagain; 4223 } 4224 if (ncrfree != NULL) 4225 crfree(ncrfree); 4226 return (EACCES); 4227 } 4228 4229 recov_retry: 4230 /* 4231 * Don't take with r_statev4_lock here. r_deleg_type could 4232 * change as soon as lock is released. Since it is an int, 4233 * there is no atomicity issue. 4234 */ 4235 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4236 num_ops = do_getattr ? 3 : 2; 4237 4238 args.ctag = TAG_ACCESS; 4239 4240 args.array_len = num_ops; 4241 args.array = argop; 4242 4243 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4244 &recov_state, NULL)) { 4245 if (ncrfree != NULL) 4246 crfree(ncrfree); 4247 return (e.error); 4248 } 4249 4250 /* putfh target fh */ 4251 argop[0].argop = OP_CPUTFH; 4252 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4253 4254 /* access */ 4255 argop[1].argop = OP_ACCESS; 4256 argop[1].nfs_argop4_u.opaccess.access = argacc; 4257 4258 /* getattr */ 4259 if (do_getattr) { 4260 argop[2].argop = OP_GETATTR; 4261 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4262 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4263 } 4264 4265 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4266 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4267 rnode4info(VTOR4(vp)))); 4268 4269 doqueue = 1; 4270 t = gethrtime(); 4271 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4272 rpc_error = e.error; 4273 4274 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4275 if (needrecov) { 4276 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4277 "nfs4_access: initiating recovery\n")); 4278 4279 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4280 NULL, OP_ACCESS, NULL) == FALSE) { 4281 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4282 &recov_state, needrecov); 4283 if (!e.error) 4284 (void) xdr_free(xdr_COMPOUND4res_clnt, 4285 (caddr_t)&res); 4286 goto recov_retry; 4287 } 4288 } 4289 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4290 4291 if (e.error) 4292 goto out; 4293 4294 if (res.status) { 4295 e.error = geterrno4(res.status); 4296 /* 4297 * This might generate over the wire calls throught 4298 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4299 * here to avoid a deadlock. 4300 */ 4301 nfs4_purge_stale_fh(e.error, vp, cr); 4302 goto out; 4303 } 4304 resop = &res.array[1]; /* access res */ 4305 4306 resacc = resop->nfs_resop4_u.opaccess.access; 4307 4308 if (do_getattr) { 4309 resop++; /* getattr res */ 4310 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4311 t, cr, FALSE, NULL); 4312 } 4313 4314 if (!e.error) { 4315 nfs4_access_cache(rp, argacc, resacc, cred); 4316 /* 4317 * we just cached results with cred; if cred is the 4318 * adjusted credentials from crnetadjust, we do not want 4319 * to release them before exiting: hence setting ncrfree 4320 * to NULL 4321 */ 4322 if (cred != cr) 4323 ncrfree = NULL; 4324 /* XXX check the supported bits too? */ 4325 if ((acc & resacc) != acc) { 4326 /* 4327 * The following code implements the semantic 4328 * that a setuid root program has *at least* the 4329 * permissions of the user that is running the 4330 * program. See rfs3call() for more portions 4331 * of the implementation of this functionality. 4332 */ 4333 /* XXX-LP */ 4334 if (ncr != NULL) { 4335 (void) xdr_free(xdr_COMPOUND4res_clnt, 4336 (caddr_t)&res); 4337 cred = ncr; 4338 ncr = NULL; 4339 goto tryagain; 4340 } 4341 e.error = EACCES; 4342 } 4343 } 4344 4345 out: 4346 if (!rpc_error) 4347 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4348 4349 if (ncrfree != NULL) 4350 crfree(ncrfree); 4351 4352 return (e.error); 4353 } 4354 4355 static int 4356 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr) 4357 { 4358 COMPOUND4args_clnt args; 4359 COMPOUND4res_clnt res; 4360 int doqueue; 4361 rnode4_t *rp; 4362 nfs_argop4 argop[3]; 4363 nfs_resop4 *resop; 4364 READLINK4res *lr_res; 4365 nfs4_ga_res_t *garp; 4366 uint_t len; 4367 char *linkdata; 4368 bool_t needrecov = FALSE; 4369 nfs4_recov_state_t recov_state; 4370 hrtime_t t; 4371 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4372 4373 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4374 return (EIO); 4375 /* 4376 * Can't readlink anything other than a symbolic link. 4377 */ 4378 if (vp->v_type != VLNK) 4379 return (EINVAL); 4380 4381 rp = VTOR4(vp); 4382 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4383 e.error = nfs4_validate_caches(vp, cr); 4384 if (e.error) 4385 return (e.error); 4386 mutex_enter(&rp->r_statelock); 4387 if (rp->r_symlink.contents != NULL) { 4388 e.error = uiomove(rp->r_symlink.contents, 4389 rp->r_symlink.len, UIO_READ, uiop); 4390 mutex_exit(&rp->r_statelock); 4391 return (e.error); 4392 } 4393 mutex_exit(&rp->r_statelock); 4394 } 4395 recov_state.rs_flags = 0; 4396 recov_state.rs_num_retry_despite_err = 0; 4397 4398 recov_retry: 4399 args.array_len = 3; 4400 args.array = argop; 4401 args.ctag = TAG_READLINK; 4402 4403 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4404 if (e.error) { 4405 return (e.error); 4406 } 4407 4408 /* 0. putfh symlink fh */ 4409 argop[0].argop = OP_CPUTFH; 4410 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4411 4412 /* 1. readlink */ 4413 argop[1].argop = OP_READLINK; 4414 4415 /* 2. getattr */ 4416 argop[2].argop = OP_GETATTR; 4417 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4418 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4419 4420 doqueue = 1; 4421 4422 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4423 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4424 rnode4info(VTOR4(vp)))); 4425 4426 t = gethrtime(); 4427 4428 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4429 4430 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4431 if (needrecov) { 4432 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4433 "nfs4_readlink: initiating recovery\n")); 4434 4435 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4436 NULL, OP_READLINK, NULL) == FALSE) { 4437 if (!e.error) 4438 (void) xdr_free(xdr_COMPOUND4res_clnt, 4439 (caddr_t)&res); 4440 4441 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4442 needrecov); 4443 goto recov_retry; 4444 } 4445 } 4446 4447 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4448 4449 if (e.error) 4450 return (e.error); 4451 4452 /* 4453 * There is an path in the code below which calls 4454 * nfs4_purge_stale_fh(), which may generate otw calls through 4455 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4456 * here to avoid nfs4_start_op() deadlock. 4457 */ 4458 4459 if (res.status && (res.array_len < args.array_len)) { 4460 /* 4461 * either Putfh or Link failed 4462 */ 4463 e.error = geterrno4(res.status); 4464 nfs4_purge_stale_fh(e.error, vp, cr); 4465 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4466 return (e.error); 4467 } 4468 4469 resop = &res.array[1]; /* readlink res */ 4470 lr_res = &resop->nfs_resop4_u.opreadlink; 4471 4472 /* 4473 * treat symlink names as data 4474 */ 4475 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4476 if (linkdata != NULL) { 4477 int uio_len = len - 1; 4478 /* len includes null byte, which we won't uiomove */ 4479 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4480 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4481 mutex_enter(&rp->r_statelock); 4482 if (rp->r_symlink.contents == NULL) { 4483 rp->r_symlink.contents = linkdata; 4484 rp->r_symlink.len = uio_len; 4485 rp->r_symlink.size = len; 4486 mutex_exit(&rp->r_statelock); 4487 } else { 4488 mutex_exit(&rp->r_statelock); 4489 kmem_free(linkdata, len); 4490 } 4491 } else { 4492 kmem_free(linkdata, len); 4493 } 4494 } 4495 if (res.status == NFS4_OK) { 4496 resop++; /* getattr res */ 4497 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4498 } 4499 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4500 4501 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4502 4503 /* 4504 * The over the wire error for attempting to readlink something 4505 * other than a symbolic link is ENXIO. However, we need to 4506 * return EINVAL instead of ENXIO, so we map it here. 4507 */ 4508 return (e.error == ENXIO ? EINVAL : e.error); 4509 } 4510 4511 /* 4512 * Flush local dirty pages to stable storage on the server. 4513 * 4514 * If FNODSYNC is specified, then there is nothing to do because 4515 * metadata changes are not cached on the client before being 4516 * sent to the server. 4517 */ 4518 static int 4519 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr) 4520 { 4521 int error; 4522 4523 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4524 return (0); 4525 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4526 return (EIO); 4527 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4528 if (!error) 4529 error = VTOR4(vp)->r_error; 4530 return (error); 4531 } 4532 4533 /* 4534 * Weirdness: if the file was removed or the target of a rename 4535 * operation while it was open, it got renamed instead. Here we 4536 * remove the renamed file. 4537 */ 4538 static void 4539 nfs4_inactive(vnode_t *vp, cred_t *cr) 4540 { 4541 rnode4_t *rp; 4542 4543 ASSERT(vp != DNLC_NO_VNODE); 4544 4545 rp = VTOR4(vp); 4546 4547 if (IS_SHADOW(vp, rp)) { 4548 sv_inactive(vp); 4549 return; 4550 } 4551 4552 /* 4553 * If this is coming from the wrong zone, we let someone in the right 4554 * zone take care of it asynchronously. We can get here due to 4555 * VN_RELE() being called from pageout() or fsflush(). This call may 4556 * potentially turn into an expensive no-op if, for instance, v_count 4557 * gets incremented in the meantime, but it's still correct. 4558 */ 4559 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4560 nfs4_async_inactive(vp, cr); 4561 return; 4562 } 4563 4564 /* 4565 * Some of the cleanup steps might require over-the-wire 4566 * operations. Since VOP_INACTIVE can get called as a result of 4567 * other over-the-wire operations (e.g., an attribute cache update 4568 * can lead to a DNLC purge), doing those steps now would lead to a 4569 * nested call to the recovery framework, which can deadlock. So 4570 * do any over-the-wire cleanups asynchronously, in a separate 4571 * thread. 4572 */ 4573 4574 mutex_enter(&rp->r_os_lock); 4575 mutex_enter(&rp->r_statelock); 4576 mutex_enter(&rp->r_statev4_lock); 4577 4578 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4579 mutex_exit(&rp->r_statev4_lock); 4580 mutex_exit(&rp->r_statelock); 4581 mutex_exit(&rp->r_os_lock); 4582 nfs4_async_inactive(vp, cr); 4583 return; 4584 } 4585 4586 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4587 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4588 mutex_exit(&rp->r_statev4_lock); 4589 mutex_exit(&rp->r_statelock); 4590 mutex_exit(&rp->r_os_lock); 4591 nfs4_async_inactive(vp, cr); 4592 return; 4593 } 4594 4595 if (rp->r_unldvp != NULL) { 4596 mutex_exit(&rp->r_statev4_lock); 4597 mutex_exit(&rp->r_statelock); 4598 mutex_exit(&rp->r_os_lock); 4599 nfs4_async_inactive(vp, cr); 4600 return; 4601 } 4602 mutex_exit(&rp->r_statev4_lock); 4603 mutex_exit(&rp->r_statelock); 4604 mutex_exit(&rp->r_os_lock); 4605 4606 rp4_addfree(rp, cr); 4607 } 4608 4609 /* 4610 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4611 * various bits of state. The caller must not refer to vp after this call. 4612 */ 4613 4614 void 4615 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4616 { 4617 rnode4_t *rp = VTOR4(vp); 4618 nfs4_recov_state_t recov_state; 4619 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4620 vnode_t *unldvp; 4621 char *unlname; 4622 cred_t *unlcred; 4623 COMPOUND4args_clnt args; 4624 COMPOUND4res_clnt res, *resp; 4625 nfs_argop4 argop[2]; 4626 int doqueue; 4627 #ifdef DEBUG 4628 char *name; 4629 #endif 4630 4631 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4632 ASSERT(!IS_SHADOW(vp, rp)); 4633 4634 #ifdef DEBUG 4635 name = fn_name(VTOSV(vp)->sv_name); 4636 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4637 "release vnode %s", name)); 4638 kmem_free(name, MAXNAMELEN); 4639 #endif 4640 4641 if (vp->v_type == VREG) { 4642 bool_t recov_failed = FALSE; 4643 4644 e.error = nfs4close_all(vp, cr); 4645 if (e.error) { 4646 /* Check to see if recovery failed */ 4647 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4648 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4649 recov_failed = TRUE; 4650 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4651 if (!recov_failed) { 4652 mutex_enter(&rp->r_statelock); 4653 if (rp->r_flags & R4RECOVERR) 4654 recov_failed = TRUE; 4655 mutex_exit(&rp->r_statelock); 4656 } 4657 if (recov_failed) { 4658 NFS4_DEBUG(nfs4_client_recov_debug, 4659 (CE_NOTE, "nfs4_inactive_otw: " 4660 "close failed (recovery failure)")); 4661 } 4662 } 4663 } 4664 4665 redo: 4666 if (rp->r_unldvp == NULL) { 4667 rp4_addfree(rp, cr); 4668 return; 4669 } 4670 4671 /* 4672 * Save the vnode pointer for the directory where the 4673 * unlinked-open file got renamed, then set it to NULL 4674 * to prevent another thread from getting here before 4675 * we're done with the remove. While we have the 4676 * statelock, make local copies of the pertinent rnode 4677 * fields. If we weren't to do this in an atomic way, the 4678 * the unl* fields could become inconsistent with respect 4679 * to each other due to a race condition between this 4680 * code and nfs_remove(). See bug report 1034328. 4681 */ 4682 mutex_enter(&rp->r_statelock); 4683 if (rp->r_unldvp == NULL) { 4684 mutex_exit(&rp->r_statelock); 4685 rp4_addfree(rp, cr); 4686 return; 4687 } 4688 4689 unldvp = rp->r_unldvp; 4690 rp->r_unldvp = NULL; 4691 unlname = rp->r_unlname; 4692 rp->r_unlname = NULL; 4693 unlcred = rp->r_unlcred; 4694 rp->r_unlcred = NULL; 4695 mutex_exit(&rp->r_statelock); 4696 4697 /* 4698 * If there are any dirty pages left, then flush 4699 * them. This is unfortunate because they just 4700 * may get thrown away during the remove operation, 4701 * but we have to do this for correctness. 4702 */ 4703 if (nfs4_has_pages(vp) && 4704 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4705 ASSERT(vp->v_type != VCHR); 4706 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr); 4707 if (e.error) { 4708 mutex_enter(&rp->r_statelock); 4709 if (!rp->r_error) 4710 rp->r_error = e.error; 4711 mutex_exit(&rp->r_statelock); 4712 } 4713 } 4714 4715 recov_state.rs_flags = 0; 4716 recov_state.rs_num_retry_despite_err = 0; 4717 recov_retry_remove: 4718 /* 4719 * Do the remove operation on the renamed file 4720 */ 4721 args.ctag = TAG_INACTIVE; 4722 4723 /* 4724 * Remove ops: putfh dir; remove 4725 */ 4726 args.array_len = 2; 4727 args.array = argop; 4728 4729 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4730 if (e.error) { 4731 kmem_free(unlname, MAXNAMELEN); 4732 crfree(unlcred); 4733 VN_RELE(unldvp); 4734 /* 4735 * Try again; this time around r_unldvp will be NULL, so we'll 4736 * just call rp4_addfree() and return. 4737 */ 4738 goto redo; 4739 } 4740 4741 /* putfh directory */ 4742 argop[0].argop = OP_CPUTFH; 4743 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4744 4745 /* remove */ 4746 argop[1].argop = OP_CREMOVE; 4747 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4748 4749 doqueue = 1; 4750 resp = &res; 4751 4752 #if 0 /* notyet */ 4753 /* 4754 * Can't do this yet. We may be being called from 4755 * dnlc_purge_XXX while that routine is holding a 4756 * mutex lock to the nc_rele list. The calls to 4757 * nfs3_cache_wcc_data may result in calls to 4758 * dnlc_purge_XXX. This will result in a deadlock. 4759 */ 4760 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4761 if (e.error) { 4762 PURGE_ATTRCACHE4(unldvp); 4763 resp = NULL; 4764 } else if (res.status) { 4765 e.error = geterrno4(res.status); 4766 PURGE_ATTRCACHE4(unldvp); 4767 /* 4768 * This code is inactive right now 4769 * but if made active there should 4770 * be a nfs4_end_op() call before 4771 * nfs4_purge_stale_fh to avoid start_op() 4772 * deadlock. See BugId: 4948726 4773 */ 4774 nfs4_purge_stale_fh(error, unldvp, cr); 4775 } else { 4776 nfs_resop4 *resop; 4777 REMOVE4res *rm_res; 4778 4779 resop = &res.array[1]; 4780 rm_res = &resop->nfs_resop4_u.opremove; 4781 /* 4782 * Update directory cache attribute, 4783 * readdir and dnlc caches. 4784 */ 4785 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4786 } 4787 #else 4788 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4789 4790 PURGE_ATTRCACHE4(unldvp); 4791 #endif 4792 4793 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4794 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4795 NULL, NULL, OP_REMOVE, NULL) == FALSE) { 4796 if (!e.error) 4797 (void) xdr_free(xdr_COMPOUND4res_clnt, 4798 (caddr_t)&res); 4799 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4800 &recov_state, TRUE); 4801 goto recov_retry_remove; 4802 } 4803 } 4804 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4805 4806 /* 4807 * Release stuff held for the remove 4808 */ 4809 VN_RELE(unldvp); 4810 if (!e.error && resp) 4811 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4812 4813 kmem_free(unlname, MAXNAMELEN); 4814 crfree(unlcred); 4815 goto redo; 4816 } 4817 4818 /* 4819 * Remote file system operations having to do with directory manipulation. 4820 */ 4821 /* ARGSUSED3 */ 4822 static int 4823 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4824 int flags, vnode_t *rdir, cred_t *cr) 4825 { 4826 int error; 4827 vnode_t *vp, *avp = NULL; 4828 rnode4_t *drp; 4829 4830 *vpp = NULL; 4831 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4832 return (EPERM); 4833 /* 4834 * if LOOKUP_XATTR, must replace dvp (object) with 4835 * object's attrdir before continuing with lookup 4836 */ 4837 if (flags & LOOKUP_XATTR) { 4838 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4839 if (error) 4840 return (error); 4841 4842 dvp = avp; 4843 4844 /* 4845 * If lookup is for "", just return dvp now. The attrdir 4846 * has already been activated (from nfs4lookup_xattr), and 4847 * the caller will RELE the original dvp -- not 4848 * the attrdir. So, set vpp and return. 4849 * Currently, when the LOOKUP_XATTR flag is 4850 * passed to VOP_LOOKUP, the name is always empty, and 4851 * shortcircuiting here avoids 3 unneeded lock/unlock 4852 * pairs. 4853 * 4854 * If a non-empty name was provided, then it is the 4855 * attribute name, and it will be looked up below. 4856 */ 4857 if (*nm == '\0') { 4858 *vpp = dvp; 4859 return (0); 4860 } 4861 4862 /* 4863 * The vfs layer never sends a name when asking for the 4864 * attrdir, so we should never get here (unless of course 4865 * name is passed at some time in future -- at which time 4866 * we'll blow up here). 4867 */ 4868 ASSERT(0); 4869 } 4870 4871 drp = VTOR4(dvp); 4872 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4873 return (EINTR); 4874 4875 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4876 nfs_rw_exit(&drp->r_rwlock); 4877 4878 /* 4879 * If vnode is a device, create special vnode. 4880 */ 4881 if (!error && ISVDEV((*vpp)->v_type)) { 4882 vp = *vpp; 4883 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 4884 VN_RELE(vp); 4885 } 4886 4887 return (error); 4888 } 4889 4890 /* ARGSUSED */ 4891 static int 4892 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 4893 { 4894 int error; 4895 rnode4_t *drp; 4896 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 4897 mntinfo4_t *mi; 4898 4899 mi = VTOMI4(dvp); 4900 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR)) 4901 return (EINVAL); 4902 4903 drp = VTOR4(dvp); 4904 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4905 return (EINTR); 4906 4907 mutex_enter(&drp->r_statelock); 4908 /* 4909 * If the server doesn't support xattrs just return EINVAL 4910 */ 4911 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 4912 mutex_exit(&drp->r_statelock); 4913 nfs_rw_exit(&drp->r_rwlock); 4914 return (EINVAL); 4915 } 4916 4917 /* 4918 * If there is a cached xattr directory entry, 4919 * use it as long as the attributes are valid. If the 4920 * attributes are not valid, take the simple approach and 4921 * free the cached value and re-fetch a new value. 4922 * 4923 * We don't negative entry cache for now, if we did we 4924 * would need to check if the file has changed on every 4925 * lookup. But xattrs don't exist very often and failing 4926 * an openattr is not much more expensive than and NVERIFY or GETATTR 4927 * so do an openattr over the wire for now. 4928 */ 4929 if (drp->r_xattr_dir != NULL) { 4930 if (ATTRCACHE4_VALID(dvp)) { 4931 VN_HOLD(drp->r_xattr_dir); 4932 *vpp = drp->r_xattr_dir; 4933 mutex_exit(&drp->r_statelock); 4934 nfs_rw_exit(&drp->r_rwlock); 4935 return (0); 4936 } 4937 VN_RELE(drp->r_xattr_dir); 4938 drp->r_xattr_dir = NULL; 4939 } 4940 mutex_exit(&drp->r_statelock); 4941 4942 error = nfs4openattr(dvp, vpp, cflag, cr); 4943 4944 nfs_rw_exit(&drp->r_rwlock); 4945 4946 return (error); 4947 } 4948 4949 static int 4950 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 4951 { 4952 int error; 4953 rnode4_t *drp; 4954 4955 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 4956 4957 /* 4958 * If lookup is for "", just return dvp. Don't need 4959 * to send it over the wire, look it up in the dnlc, 4960 * or perform any access checks. 4961 */ 4962 if (*nm == '\0') { 4963 VN_HOLD(dvp); 4964 *vpp = dvp; 4965 return (0); 4966 } 4967 4968 /* 4969 * Can't do lookups in non-directories. 4970 */ 4971 if (dvp->v_type != VDIR) 4972 return (ENOTDIR); 4973 4974 /* 4975 * If lookup is for ".", just return dvp. Don't need 4976 * to send it over the wire or look it up in the dnlc, 4977 * just need to check access. 4978 */ 4979 if (nm[0] == '.' && nm[1] == '\0') { 4980 error = nfs4_access(dvp, VEXEC, 0, cr); 4981 if (error) 4982 return (error); 4983 VN_HOLD(dvp); 4984 *vpp = dvp; 4985 return (0); 4986 } 4987 4988 drp = VTOR4(dvp); 4989 if (!(drp->r_flags & R4LOOKUP)) { 4990 mutex_enter(&drp->r_statelock); 4991 drp->r_flags |= R4LOOKUP; 4992 mutex_exit(&drp->r_statelock); 4993 } 4994 4995 *vpp = NULL; 4996 /* 4997 * Lookup this name in the DNLC. If there is no entry 4998 * lookup over the wire. 4999 */ 5000 if (!skipdnlc) 5001 *vpp = dnlc_lookup(dvp, nm); 5002 if (*vpp == NULL) { 5003 /* 5004 * We need to go over the wire to lookup the name. 5005 */ 5006 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5007 } 5008 5009 /* 5010 * We hit on the dnlc 5011 */ 5012 if (*vpp != DNLC_NO_VNODE || 5013 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5014 /* 5015 * But our attrs may not be valid. 5016 */ 5017 if (ATTRCACHE4_VALID(dvp)) { 5018 error = nfs4_waitfor_purge_complete(dvp); 5019 if (error) { 5020 VN_RELE(*vpp); 5021 *vpp = NULL; 5022 return (error); 5023 } 5024 5025 /* 5026 * If after the purge completes, check to make sure 5027 * our attrs are still valid. 5028 */ 5029 if (ATTRCACHE4_VALID(dvp)) { 5030 /* 5031 * If we waited for a purge we may have 5032 * lost our vnode so look it up again. 5033 */ 5034 VN_RELE(*vpp); 5035 *vpp = dnlc_lookup(dvp, nm); 5036 if (*vpp == NULL) 5037 return (nfs4lookupnew_otw(dvp, 5038 nm, vpp, cr)); 5039 5040 /* 5041 * The access cache should almost always hit 5042 */ 5043 error = nfs4_access(dvp, VEXEC, 0, cr); 5044 5045 if (error) { 5046 VN_RELE(*vpp); 5047 *vpp = NULL; 5048 return (error); 5049 } 5050 if (*vpp == DNLC_NO_VNODE) { 5051 VN_RELE(*vpp); 5052 *vpp = NULL; 5053 return (ENOENT); 5054 } 5055 return (0); 5056 } 5057 } 5058 } 5059 5060 ASSERT(*vpp != NULL); 5061 5062 /* 5063 * We may have gotten here we have one of the following cases: 5064 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5065 * need to validate them. 5066 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5067 * must validate. 5068 * 5069 * Go to the server and check if the directory has changed, if 5070 * it hasn't we are done and can use the dnlc entry. 5071 */ 5072 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5073 } 5074 5075 /* 5076 * Go to the server and check if the directory has changed, if 5077 * it hasn't we are done and can use the dnlc entry. If it 5078 * has changed we get a new copy of its attributes and check 5079 * the access for VEXEC, then relookup the filename and 5080 * get its filehandle and attributes. 5081 * 5082 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5083 * if the NVERIFY failed we must 5084 * purge the caches 5085 * cache new attributes (will set r_time_attr_inval) 5086 * cache new access 5087 * recheck VEXEC access 5088 * add name to dnlc, possibly negative 5089 * if LOOKUP succeeded 5090 * cache new attributes 5091 * else 5092 * set a new r_time_attr_inval for dvp 5093 * check to make sure we have access 5094 * 5095 * The vpp returned is the vnode passed in if the directory is valid, 5096 * a new vnode if successful lookup, or NULL on error. 5097 */ 5098 static int 5099 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5100 { 5101 COMPOUND4args_clnt args; 5102 COMPOUND4res_clnt res; 5103 fattr4 *ver_fattr; 5104 fattr4_change dchange; 5105 int32_t *ptr; 5106 int argoplist_size = 7 * sizeof (nfs_argop4); 5107 nfs_argop4 *argop; 5108 int doqueue; 5109 mntinfo4_t *mi; 5110 nfs4_recov_state_t recov_state; 5111 hrtime_t t; 5112 int isdotdot; 5113 vnode_t *nvp; 5114 nfs_fh4 *fhp; 5115 nfs4_sharedfh_t *sfhp; 5116 nfs4_access_type_t cacc; 5117 rnode4_t *nrp; 5118 rnode4_t *drp = VTOR4(dvp); 5119 nfs4_ga_res_t *garp = NULL; 5120 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5121 5122 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5123 ASSERT(nm != NULL); 5124 ASSERT(nm[0] != '\0'); 5125 ASSERT(dvp->v_type == VDIR); 5126 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5127 ASSERT(*vpp != NULL); 5128 5129 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5130 isdotdot = 1; 5131 args.ctag = TAG_LOOKUP_VPARENT; 5132 } else { 5133 /* 5134 * Do not allow crossing of server mount points. The 5135 * only visible entries in a SRVSTUB dir are . and .. 5136 * This code handles the non-.. case. We can't even get 5137 * this far if looking up ".". 5138 */ 5139 if (VTOR4(dvp)->r_flags & R4SRVSTUB) { 5140 VN_RELE(*vpp); 5141 *vpp = NULL; 5142 return (ENOENT); 5143 } 5144 isdotdot = 0; 5145 args.ctag = TAG_LOOKUP_VALID; 5146 } 5147 5148 mi = VTOMI4(dvp); 5149 recov_state.rs_flags = 0; 5150 recov_state.rs_num_retry_despite_err = 0; 5151 5152 nvp = NULL; 5153 5154 /* Save the original mount point security information */ 5155 (void) save_mnt_secinfo(mi->mi_curr_serv); 5156 5157 recov_retry: 5158 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5159 &recov_state, NULL); 5160 if (e.error) { 5161 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5162 VN_RELE(*vpp); 5163 *vpp = NULL; 5164 return (e.error); 5165 } 5166 5167 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5168 5169 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5170 args.array_len = 7; 5171 args.array = argop; 5172 5173 /* 0. putfh file */ 5174 argop[0].argop = OP_CPUTFH; 5175 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5176 5177 /* 1. nverify the change info */ 5178 argop[1].argop = OP_NVERIFY; 5179 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5180 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5181 ver_fattr->attrlist4 = (char *)&dchange; 5182 ptr = (int32_t *)&dchange; 5183 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5184 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5185 5186 /* 2. getattr directory */ 5187 argop[2].argop = OP_GETATTR; 5188 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5189 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5190 5191 /* 3. access directory */ 5192 argop[3].argop = OP_ACCESS; 5193 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5194 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5195 5196 /* 4. lookup name */ 5197 if (isdotdot) { 5198 argop[4].argop = OP_LOOKUPP; 5199 } else { 5200 argop[4].argop = OP_CLOOKUP; 5201 argop[4].nfs_argop4_u.opclookup.cname = nm; 5202 } 5203 5204 /* 5. resulting file handle */ 5205 argop[5].argop = OP_GETFH; 5206 5207 /* 6. resulting file attributes */ 5208 argop[6].argop = OP_GETATTR; 5209 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5210 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5211 5212 doqueue = 1; 5213 t = gethrtime(); 5214 5215 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5216 5217 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5218 /* 5219 * For WRONGSEC of a non-dotdot case, send secinfo directly 5220 * from this thread, do not go thru the recovery thread since 5221 * we need the nm information. 5222 * 5223 * Not doing dotdot case because there is no specification 5224 * for (PUTFH, SECINFO "..") yet. 5225 */ 5226 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5227 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) { 5228 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5229 &recov_state, FALSE); 5230 } else { 5231 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5232 &recov_state, TRUE); 5233 } 5234 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5235 kmem_free(argop, argoplist_size); 5236 if (!e.error) 5237 goto recov_retry; 5238 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5239 VN_RELE(*vpp); 5240 *vpp = NULL; 5241 return (e.error); 5242 } 5243 5244 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5245 OP_LOOKUP, NULL) == FALSE) { 5246 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5247 &recov_state, TRUE); 5248 5249 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5250 kmem_free(argop, argoplist_size); 5251 goto recov_retry; 5252 } 5253 } 5254 5255 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5256 5257 if (e.error || res.array_len == 0) { 5258 /* 5259 * If e.error isn't set, then reply has no ops (or we couldn't 5260 * be here). The only legal way to reply without an op array 5261 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5262 * be in the reply for all other status values. 5263 * 5264 * For valid replies without an ops array, return ENOTSUP 5265 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5266 * return EIO -- don't trust status. 5267 */ 5268 if (e.error == 0) 5269 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5270 ENOTSUP : EIO; 5271 VN_RELE(*vpp); 5272 *vpp = NULL; 5273 kmem_free(argop, argoplist_size); 5274 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5275 return (e.error); 5276 } 5277 5278 if (res.status != NFS4ERR_SAME) { 5279 e.error = geterrno4(res.status); 5280 5281 /* 5282 * The NVERIFY "failed" so the directory has changed 5283 * First make sure PUTFH succeeded and NVERIFY "failed" 5284 * cleanly. 5285 */ 5286 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5287 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5288 nfs4_purge_stale_fh(e.error, dvp, cr); 5289 VN_RELE(*vpp); 5290 *vpp = NULL; 5291 goto exit; 5292 } 5293 5294 /* 5295 * We know the NVERIFY "failed" so we must: 5296 * purge the caches (access and indirectly dnlc if needed) 5297 */ 5298 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5299 5300 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5301 nfs4_purge_stale_fh(e.error, dvp, cr); 5302 VN_RELE(*vpp); 5303 *vpp = NULL; 5304 goto exit; 5305 } 5306 5307 /* 5308 * Install new cached attributes for the directory 5309 */ 5310 nfs4_attr_cache(dvp, 5311 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5312 t, cr, FALSE, NULL); 5313 5314 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5315 nfs4_purge_stale_fh(e.error, dvp, cr); 5316 VN_RELE(*vpp); 5317 *vpp = NULL; 5318 e.error = geterrno4(res.status); 5319 goto exit; 5320 } 5321 5322 /* 5323 * Now we know the directory is valid, 5324 * cache new directory access 5325 */ 5326 nfs4_access_cache(drp, 5327 args.array[3].nfs_argop4_u.opaccess.access, 5328 res.array[3].nfs_resop4_u.opaccess.access, cr); 5329 5330 /* 5331 * recheck VEXEC access 5332 */ 5333 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5334 if (cacc != NFS4_ACCESS_ALLOWED) { 5335 /* 5336 * Directory permissions might have been revoked 5337 */ 5338 if (cacc == NFS4_ACCESS_DENIED) { 5339 e.error = EACCES; 5340 VN_RELE(*vpp); 5341 *vpp = NULL; 5342 goto exit; 5343 } 5344 5345 /* 5346 * Somehow we must not have asked for enough 5347 * so try a singleton ACCESS, should never happen. 5348 */ 5349 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5350 if (e.error) { 5351 VN_RELE(*vpp); 5352 *vpp = NULL; 5353 goto exit; 5354 } 5355 } 5356 5357 e.error = geterrno4(res.status); 5358 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5359 /* 5360 * The lookup failed, probably no entry 5361 */ 5362 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5363 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5364 } else { 5365 /* 5366 * Might be some other error, so remove 5367 * the dnlc entry to make sure we start all 5368 * over again, next time. 5369 */ 5370 dnlc_remove(dvp, nm); 5371 } 5372 VN_RELE(*vpp); 5373 *vpp = NULL; 5374 goto exit; 5375 } 5376 5377 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5378 /* 5379 * The file exists but we can't get its fh for 5380 * some unknown reason. Remove it from the dnlc 5381 * and error out to be safe. 5382 */ 5383 dnlc_remove(dvp, nm); 5384 VN_RELE(*vpp); 5385 *vpp = NULL; 5386 goto exit; 5387 } 5388 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5389 if (fhp->nfs_fh4_len == 0) { 5390 /* 5391 * The file exists but a bogus fh 5392 * some unknown reason. Remove it from the dnlc 5393 * and error out to be safe. 5394 */ 5395 e.error = ENOENT; 5396 dnlc_remove(dvp, nm); 5397 VN_RELE(*vpp); 5398 *vpp = NULL; 5399 goto exit; 5400 } 5401 sfhp = sfh4_get(fhp, mi); 5402 5403 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5404 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5405 5406 /* 5407 * Make the new rnode 5408 */ 5409 if (isdotdot) { 5410 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5411 if (e.error) { 5412 sfh4_rele(&sfhp); 5413 VN_RELE(*vpp); 5414 *vpp = NULL; 5415 goto exit; 5416 } 5417 /* 5418 * XXX if nfs4_make_dotdot uses an existing rnode 5419 * XXX it doesn't update the attributes. 5420 * XXX for now just save them again to save an OTW 5421 */ 5422 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5423 } else { 5424 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5425 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5426 /* 5427 * If v_type == VNON, then garp was NULL because 5428 * the last op in the compound failed and makenfs4node 5429 * could not find the vnode for sfhp. It created 5430 * a new vnode, so we have nothing to purge here. 5431 */ 5432 if (nvp->v_type == VNON) { 5433 vattr_t vattr; 5434 5435 vattr.va_mask = AT_TYPE; 5436 /* 5437 * N.B. We've already called nfs4_end_fop above. 5438 */ 5439 e.error = nfs4getattr(nvp, &vattr, cr); 5440 if (e.error) { 5441 sfh4_rele(&sfhp); 5442 VN_RELE(*vpp); 5443 *vpp = NULL; 5444 VN_RELE(nvp); 5445 goto exit; 5446 } 5447 nvp->v_type = vattr.va_type; 5448 } 5449 } 5450 sfh4_rele(&sfhp); 5451 5452 nrp = VTOR4(nvp); 5453 mutex_enter(&nrp->r_statev4_lock); 5454 if (!nrp->created_v4) { 5455 mutex_exit(&nrp->r_statev4_lock); 5456 dnlc_update(dvp, nm, nvp); 5457 } else 5458 mutex_exit(&nrp->r_statev4_lock); 5459 5460 VN_RELE(*vpp); 5461 *vpp = nvp; 5462 } else { 5463 hrtime_t now; 5464 hrtime_t delta = 0; 5465 5466 e.error = 0; 5467 5468 /* 5469 * Because the NVERIFY "succeeded" we know that the 5470 * directory attributes are still valid 5471 * so update r_time_attr_inval 5472 */ 5473 now = gethrtime(); 5474 mutex_enter(&drp->r_statelock); 5475 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5476 delta = now - drp->r_time_attr_saved; 5477 if (delta < mi->mi_acdirmin) 5478 delta = mi->mi_acdirmin; 5479 else if (delta > mi->mi_acdirmax) 5480 delta = mi->mi_acdirmax; 5481 } 5482 drp->r_time_attr_inval = now + delta; 5483 mutex_exit(&drp->r_statelock); 5484 dnlc_update(dvp, nm, *vpp); 5485 5486 /* 5487 * Even though we have a valid directory attr cache 5488 * and dnlc entry, we may not have access. 5489 * This should almost always hit the cache. 5490 */ 5491 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5492 if (e.error) { 5493 VN_RELE(*vpp); 5494 *vpp = NULL; 5495 } 5496 5497 if (*vpp == DNLC_NO_VNODE) { 5498 VN_RELE(*vpp); 5499 *vpp = NULL; 5500 e.error = ENOENT; 5501 } 5502 } 5503 5504 exit: 5505 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5506 kmem_free(argop, argoplist_size); 5507 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5508 return (e.error); 5509 } 5510 5511 /* 5512 * We need to go over the wire to lookup the name, but 5513 * while we are there verify the directory has not 5514 * changed but if it has, get new attributes and check access 5515 * 5516 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5517 * NVERIFY GETATTR ACCESS 5518 * 5519 * With the results: 5520 * if the NVERIFY failed we must purge the caches, add new attributes, 5521 * and cache new access. 5522 * set a new r_time_attr_inval 5523 * add name to dnlc, possibly negative 5524 * if LOOKUP succeeded 5525 * cache new attributes 5526 */ 5527 static int 5528 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5529 { 5530 COMPOUND4args_clnt args; 5531 COMPOUND4res_clnt res; 5532 fattr4 *ver_fattr; 5533 fattr4_change dchange; 5534 int32_t *ptr; 5535 nfs4_ga_res_t *garp = NULL; 5536 int argoplist_size = 9 * sizeof (nfs_argop4); 5537 nfs_argop4 *argop; 5538 int doqueue; 5539 mntinfo4_t *mi; 5540 nfs4_recov_state_t recov_state; 5541 hrtime_t t; 5542 int isdotdot; 5543 vnode_t *nvp; 5544 nfs_fh4 *fhp; 5545 nfs4_sharedfh_t *sfhp; 5546 nfs4_access_type_t cacc; 5547 rnode4_t *nrp; 5548 rnode4_t *drp = VTOR4(dvp); 5549 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5550 5551 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5552 ASSERT(nm != NULL); 5553 ASSERT(nm[0] != '\0'); 5554 ASSERT(dvp->v_type == VDIR); 5555 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5556 ASSERT(*vpp == NULL); 5557 5558 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5559 isdotdot = 1; 5560 args.ctag = TAG_LOOKUP_PARENT; 5561 } else { 5562 /* 5563 * Do not allow crossing of server mount points. The 5564 * only visible entries in a SRVSTUB dir are . and .. 5565 * This code handles the non-.. case. We can't even get 5566 * this far if looking up ".". 5567 */ 5568 if (VTOR4(dvp)->r_flags & R4SRVSTUB) 5569 return (ENOENT); 5570 5571 isdotdot = 0; 5572 args.ctag = TAG_LOOKUP; 5573 } 5574 5575 mi = VTOMI4(dvp); 5576 recov_state.rs_flags = 0; 5577 recov_state.rs_num_retry_despite_err = 0; 5578 5579 nvp = NULL; 5580 5581 /* Save the original mount point security information */ 5582 (void) save_mnt_secinfo(mi->mi_curr_serv); 5583 5584 recov_retry: 5585 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5586 &recov_state, NULL); 5587 if (e.error) { 5588 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5589 return (e.error); 5590 } 5591 5592 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5593 5594 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5595 args.array_len = 9; 5596 args.array = argop; 5597 5598 /* 0. putfh file */ 5599 argop[0].argop = OP_CPUTFH; 5600 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5601 5602 /* 1. savefh for the nverify */ 5603 argop[1].argop = OP_SAVEFH; 5604 5605 /* 2. lookup name */ 5606 if (isdotdot) { 5607 argop[2].argop = OP_LOOKUPP; 5608 } else { 5609 argop[2].argop = OP_CLOOKUP; 5610 argop[2].nfs_argop4_u.opclookup.cname = nm; 5611 } 5612 5613 /* 3. resulting file handle */ 5614 argop[3].argop = OP_GETFH; 5615 5616 /* 4. resulting file attributes */ 5617 argop[4].argop = OP_GETATTR; 5618 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5619 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5620 5621 /* 5. restorefh back the directory for the nverify */ 5622 argop[5].argop = OP_RESTOREFH; 5623 5624 /* 6. nverify the change info */ 5625 argop[6].argop = OP_NVERIFY; 5626 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5627 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5628 ver_fattr->attrlist4 = (char *)&dchange; 5629 ptr = (int32_t *)&dchange; 5630 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5631 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5632 5633 /* 7. getattr directory */ 5634 argop[7].argop = OP_GETATTR; 5635 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5636 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5637 5638 /* 8. access directory */ 5639 argop[8].argop = OP_ACCESS; 5640 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5641 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5642 5643 doqueue = 1; 5644 t = gethrtime(); 5645 5646 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5647 5648 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5649 /* 5650 * For WRONGSEC of a non-dotdot case, send secinfo directly 5651 * from this thread, do not go thru the recovery thread since 5652 * we need the nm information. 5653 * 5654 * Not doing dotdot case because there is no specification 5655 * for (PUTFH, SECINFO "..") yet. 5656 */ 5657 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5658 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) { 5659 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5660 &recov_state, FALSE); 5661 } else { 5662 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5663 &recov_state, TRUE); 5664 } 5665 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5666 kmem_free(argop, argoplist_size); 5667 if (!e.error) 5668 goto recov_retry; 5669 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5670 return (e.error); 5671 } 5672 5673 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5674 OP_LOOKUP, NULL) == FALSE) { 5675 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5676 &recov_state, TRUE); 5677 5678 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5679 kmem_free(argop, argoplist_size); 5680 goto recov_retry; 5681 } 5682 } 5683 5684 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5685 5686 if (e.error || res.array_len == 0) { 5687 /* 5688 * If e.error isn't set, then reply has no ops (or we couldn't 5689 * be here). The only legal way to reply without an op array 5690 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5691 * be in the reply for all other status values. 5692 * 5693 * For valid replies without an ops array, return ENOTSUP 5694 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5695 * return EIO -- don't trust status. 5696 */ 5697 if (e.error == 0) 5698 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5699 ENOTSUP : EIO; 5700 5701 kmem_free(argop, argoplist_size); 5702 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5703 return (e.error); 5704 } 5705 5706 e.error = geterrno4(res.status); 5707 5708 /* 5709 * The PUTFH and SAVEFH may have failed. 5710 */ 5711 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5712 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5713 nfs4_purge_stale_fh(e.error, dvp, cr); 5714 goto exit; 5715 } 5716 5717 /* 5718 * Check if the file exists, if it does delay entering 5719 * into the dnlc until after we update the directory 5720 * attributes so we don't cause it to get purged immediately. 5721 */ 5722 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5723 /* 5724 * The lookup failed, probably no entry 5725 */ 5726 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5727 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5728 } 5729 goto exit; 5730 } 5731 5732 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5733 /* 5734 * The file exists but we can't get its fh for 5735 * some unknown reason. Error out to be safe. 5736 */ 5737 goto exit; 5738 } 5739 5740 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5741 if (fhp->nfs_fh4_len == 0) { 5742 /* 5743 * The file exists but a bogus fh 5744 * some unknown reason. Error out to be safe. 5745 */ 5746 e.error = EIO; 5747 goto exit; 5748 } 5749 sfhp = sfh4_get(fhp, mi); 5750 5751 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5752 sfh4_rele(&sfhp); 5753 e.error = EIO; 5754 goto exit; 5755 } 5756 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5757 5758 /* 5759 * The RESTOREFH may have failed 5760 */ 5761 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5762 sfh4_rele(&sfhp); 5763 e.error = EIO; 5764 goto exit; 5765 } 5766 5767 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5768 /* 5769 * First make sure the NVERIFY failed as we expected, 5770 * if it didn't then be conservative and error out 5771 * as we can't trust the directory. 5772 */ 5773 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5774 sfh4_rele(&sfhp); 5775 e.error = EIO; 5776 goto exit; 5777 } 5778 5779 /* 5780 * We know the NVERIFY "failed" so the directory has changed, 5781 * so we must: 5782 * purge the caches (access and indirectly dnlc if needed) 5783 */ 5784 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5785 5786 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5787 sfh4_rele(&sfhp); 5788 goto exit; 5789 } 5790 nfs4_attr_cache(dvp, 5791 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5792 t, cr, FALSE, NULL); 5793 5794 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5795 nfs4_purge_stale_fh(e.error, dvp, cr); 5796 sfh4_rele(&sfhp); 5797 e.error = geterrno4(res.status); 5798 goto exit; 5799 } 5800 5801 /* 5802 * Now we know the directory is valid, 5803 * cache new directory access 5804 */ 5805 nfs4_access_cache(drp, 5806 args.array[8].nfs_argop4_u.opaccess.access, 5807 res.array[8].nfs_resop4_u.opaccess.access, cr); 5808 5809 /* 5810 * recheck VEXEC access 5811 */ 5812 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5813 if (cacc != NFS4_ACCESS_ALLOWED) { 5814 /* 5815 * Directory permissions might have been revoked 5816 */ 5817 if (cacc == NFS4_ACCESS_DENIED) { 5818 sfh4_rele(&sfhp); 5819 e.error = EACCES; 5820 goto exit; 5821 } 5822 5823 /* 5824 * Somehow we must not have asked for enough 5825 * so try a singleton ACCESS should never happen 5826 */ 5827 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5828 if (e.error) { 5829 sfh4_rele(&sfhp); 5830 goto exit; 5831 } 5832 } 5833 5834 e.error = geterrno4(res.status); 5835 } else { 5836 hrtime_t now; 5837 hrtime_t delta = 0; 5838 5839 e.error = 0; 5840 5841 /* 5842 * Because the NVERIFY "succeeded" we know that the 5843 * directory attributes are still valid 5844 * so update r_time_attr_inval 5845 */ 5846 now = gethrtime(); 5847 mutex_enter(&drp->r_statelock); 5848 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5849 delta = now - drp->r_time_attr_saved; 5850 if (delta < mi->mi_acdirmin) 5851 delta = mi->mi_acdirmin; 5852 else if (delta > mi->mi_acdirmax) 5853 delta = mi->mi_acdirmax; 5854 } 5855 drp->r_time_attr_inval = now + delta; 5856 mutex_exit(&drp->r_statelock); 5857 5858 /* 5859 * Even though we have a valid directory attr cache, 5860 * we may not have access. 5861 * This should almost always hit the cache. 5862 */ 5863 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5864 if (e.error) { 5865 sfh4_rele(&sfhp); 5866 goto exit; 5867 } 5868 } 5869 5870 /* 5871 * Now we have successfully completed the lookup, if the 5872 * directory has changed we now have the valid attributes. 5873 * We also know we have directory access. 5874 * Create the new rnode and insert it in the dnlc. 5875 */ 5876 if (isdotdot) { 5877 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5878 if (e.error) { 5879 sfh4_rele(&sfhp); 5880 goto exit; 5881 } 5882 /* 5883 * XXX if nfs4_make_dotdot uses an existing rnode 5884 * XXX it doesn't update the attributes. 5885 * XXX for now just save them again to save an OTW 5886 */ 5887 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5888 } else { 5889 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5890 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5891 } 5892 sfh4_rele(&sfhp); 5893 5894 nrp = VTOR4(nvp); 5895 mutex_enter(&nrp->r_statev4_lock); 5896 if (!nrp->created_v4) { 5897 mutex_exit(&nrp->r_statev4_lock); 5898 dnlc_update(dvp, nm, nvp); 5899 } else 5900 mutex_exit(&nrp->r_statev4_lock); 5901 5902 *vpp = nvp; 5903 5904 exit: 5905 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5906 kmem_free(argop, argoplist_size); 5907 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5908 return (e.error); 5909 } 5910 5911 #ifdef DEBUG 5912 void 5913 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 5914 { 5915 uint_t i, len; 5916 zoneid_t zoneid = getzoneid(); 5917 char *s; 5918 5919 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 5920 for (i = 0; i < argcnt; i++) { 5921 nfs_argop4 *op = &argbase[i]; 5922 switch (op->argop) { 5923 case OP_CPUTFH: 5924 case OP_PUTFH: 5925 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 5926 break; 5927 case OP_PUTROOTFH: 5928 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 5929 break; 5930 case OP_CLOOKUP: 5931 s = op->nfs_argop4_u.opclookup.cname; 5932 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5933 break; 5934 case OP_LOOKUP: 5935 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 5936 &len, NULL); 5937 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5938 kmem_free(s, len); 5939 break; 5940 case OP_LOOKUPP: 5941 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 5942 break; 5943 case OP_GETFH: 5944 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 5945 break; 5946 case OP_GETATTR: 5947 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 5948 break; 5949 case OP_OPENATTR: 5950 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 5951 break; 5952 default: 5953 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 5954 op->argop); 5955 break; 5956 } 5957 } 5958 } 5959 #endif 5960 5961 /* 5962 * nfs4lookup_setup - constructs a multi-lookup compound request. 5963 * 5964 * Given the path "nm1/nm2/.../nmn", the following compound requests 5965 * may be created: 5966 * 5967 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 5968 * is faster, for now. 5969 * 5970 * l4_getattrs indicates the type of compound requested. 5971 * 5972 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 5973 * 5974 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 5975 * 5976 * total number of ops is n + 1. 5977 * 5978 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 5979 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 5980 * before the last component, and only get attributes 5981 * for the last component. Note that the second-to-last 5982 * pathname component is XATTR_RPATH, which does NOT go 5983 * over-the-wire as a lookup. 5984 * 5985 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 5986 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 5987 * 5988 * and total number of ops is n + 5. 5989 * 5990 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 5991 * attribute directory: create lookups plus an OPENATTR 5992 * replacing the last lookup. Note that the last pathname 5993 * component is XATTR_RPATH, which does NOT go over-the-wire 5994 * as a lookup. 5995 * 5996 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 5997 * Openattr; Getfh; Getattr } 5998 * 5999 * and total number of ops is n + 5. 6000 * 6001 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6002 * nodes too. 6003 * 6004 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6005 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6006 * 6007 * and total number of ops is 3*n + 1. 6008 * 6009 * All cases: returns the index in the arg array of the final LOOKUP op, or 6010 * -1 if no LOOKUPs were used. 6011 */ 6012 int 6013 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6014 { 6015 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6016 nfs_argop4 *argbase, *argop; 6017 int arglen, argcnt; 6018 int n = 1; /* number of components */ 6019 int nga = 1; /* number of Getattr's in request */ 6020 char c = '\0', *s, *p; 6021 int lookup_idx = -1; 6022 int argoplist_size; 6023 6024 /* set lookuparg response result to 0 */ 6025 lookupargp->resp->status = NFS4_OK; 6026 6027 /* skip leading "/" or "." e.g. ".//./" if there is */ 6028 for (; ; nm++) { 6029 if (*nm != '/' && *nm != '.') 6030 break; 6031 6032 /* ".." is counted as 1 component */ 6033 if (*nm == '.' && *(nm + 1) == '.') 6034 break; 6035 } 6036 6037 /* 6038 * Find n = number of components - nm must be null terminated 6039 * Skip "." components. 6040 */ 6041 if (*nm != '\0') { 6042 for (n = 1, s = nm; *s != '\0'; s++) { 6043 if ((*s == '/') && (*(s + 1) != '/') && 6044 (*(s + 1) != '\0') && 6045 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6046 *(s + 2) == '\0'))) 6047 n++; 6048 } 6049 } else 6050 n = 0; 6051 6052 /* 6053 * nga is number of components that need Getfh+Getattr 6054 */ 6055 switch (l4_getattrs) { 6056 case LKP4_NO_ATTRIBUTES: 6057 nga = 0; 6058 break; 6059 case LKP4_ALL_ATTRIBUTES: 6060 nga = n; 6061 /* 6062 * Always have at least 1 getfh, getattr pair 6063 */ 6064 if (nga == 0) 6065 nga++; 6066 break; 6067 case LKP4_LAST_ATTRDIR: 6068 case LKP4_LAST_NAMED_ATTR: 6069 nga = n+1; 6070 break; 6071 } 6072 6073 /* 6074 * If change to use the filehandle attr instead of getfh 6075 * the following line can be deleted. 6076 */ 6077 nga *= 2; 6078 6079 /* 6080 * calculate number of ops in request as 6081 * header + trailer + lookups + getattrs 6082 */ 6083 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6084 6085 argoplist_size = arglen * sizeof (nfs_argop4); 6086 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6087 lookupargp->argsp->array = argop; 6088 6089 argcnt = lookupargp->header_len; 6090 argop += argcnt; 6091 6092 /* 6093 * loop and create a lookup op and possibly getattr/getfh for 6094 * each component. Skip "." components. 6095 */ 6096 for (s = nm; *s != '\0'; s = p) { 6097 /* 6098 * Set up a pathname struct for each component if needed 6099 */ 6100 while (*s == '/') 6101 s++; 6102 if (*s == '\0') 6103 break; 6104 for (p = s; (*p != '/') && (*p != '\0'); p++); 6105 c = *p; 6106 *p = '\0'; 6107 6108 if (s[0] == '.' && s[1] == '\0') { 6109 *p = c; 6110 continue; 6111 } 6112 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6113 strcmp(s, XATTR_RPATH) == 0) { 6114 /* getfh XXX may not be needed in future */ 6115 argop->argop = OP_GETFH; 6116 argop++; 6117 argcnt++; 6118 6119 /* getattr */ 6120 argop->argop = OP_GETATTR; 6121 argop->nfs_argop4_u.opgetattr.attr_request = 6122 lookupargp->ga_bits; 6123 argop->nfs_argop4_u.opgetattr.mi = 6124 lookupargp->mi; 6125 argop++; 6126 argcnt++; 6127 6128 /* openattr */ 6129 argop->argop = OP_OPENATTR; 6130 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6131 strcmp(s, XATTR_RPATH) == 0) { 6132 /* openattr */ 6133 argop->argop = OP_OPENATTR; 6134 argop++; 6135 argcnt++; 6136 6137 /* getfh XXX may not be needed in future */ 6138 argop->argop = OP_GETFH; 6139 argop++; 6140 argcnt++; 6141 6142 /* getattr */ 6143 argop->argop = OP_GETATTR; 6144 argop->nfs_argop4_u.opgetattr.attr_request = 6145 lookupargp->ga_bits; 6146 argop->nfs_argop4_u.opgetattr.mi = 6147 lookupargp->mi; 6148 argop++; 6149 argcnt++; 6150 *p = c; 6151 continue; 6152 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6153 /* lookupp */ 6154 argop->argop = OP_LOOKUPP; 6155 } else { 6156 /* lookup */ 6157 argop->argop = OP_LOOKUP; 6158 (void) str_to_utf8(s, 6159 &argop->nfs_argop4_u.oplookup.objname); 6160 } 6161 lookup_idx = argcnt; 6162 argop++; 6163 argcnt++; 6164 6165 *p = c; 6166 6167 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6168 /* getfh XXX may not be needed in future */ 6169 argop->argop = OP_GETFH; 6170 argop++; 6171 argcnt++; 6172 6173 /* getattr */ 6174 argop->argop = OP_GETATTR; 6175 argop->nfs_argop4_u.opgetattr.attr_request = 6176 lookupargp->ga_bits; 6177 argop->nfs_argop4_u.opgetattr.mi = 6178 lookupargp->mi; 6179 argop++; 6180 argcnt++; 6181 } 6182 } 6183 6184 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6185 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6186 if (needgetfh) { 6187 /* stick in a post-lookup getfh */ 6188 argop->argop = OP_GETFH; 6189 argcnt++; 6190 argop++; 6191 } 6192 /* post-lookup getattr */ 6193 argop->argop = OP_GETATTR; 6194 argop->nfs_argop4_u.opgetattr.attr_request = 6195 lookupargp->ga_bits; 6196 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6197 argcnt++; 6198 } 6199 argcnt += lookupargp->trailer_len; /* actual op count */ 6200 lookupargp->argsp->array_len = argcnt; 6201 lookupargp->arglen = arglen; 6202 6203 #ifdef DEBUG 6204 if (nfs4_client_lookup_debug) 6205 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6206 #endif 6207 6208 return (lookup_idx); 6209 } 6210 6211 static int 6212 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6213 { 6214 COMPOUND4args_clnt args; 6215 COMPOUND4res_clnt res; 6216 GETFH4res *gf_res = NULL; 6217 nfs_argop4 argop[4]; 6218 nfs_resop4 *resop = NULL; 6219 nfs4_sharedfh_t *sfhp; 6220 hrtime_t t; 6221 nfs4_error_t e; 6222 6223 rnode4_t *drp; 6224 int doqueue = 1; 6225 vnode_t *vp; 6226 int needrecov = 0; 6227 nfs4_recov_state_t recov_state; 6228 6229 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6230 6231 *avp = NULL; 6232 recov_state.rs_flags = 0; 6233 recov_state.rs_num_retry_despite_err = 0; 6234 6235 recov_retry: 6236 /* COMPOUND: putfh, openattr, getfh, getattr */ 6237 args.array_len = 4; 6238 args.array = argop; 6239 args.ctag = TAG_OPENATTR; 6240 6241 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6242 if (e.error) 6243 return (e.error); 6244 6245 drp = VTOR4(dvp); 6246 6247 /* putfh */ 6248 argop[0].argop = OP_CPUTFH; 6249 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6250 6251 /* openattr */ 6252 argop[1].argop = OP_OPENATTR; 6253 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6254 6255 /* getfh */ 6256 argop[2].argop = OP_GETFH; 6257 6258 /* getattr */ 6259 argop[3].argop = OP_GETATTR; 6260 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6261 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6262 6263 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6264 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6265 rnode4info(drp))); 6266 6267 t = gethrtime(); 6268 6269 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6270 6271 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6272 if (needrecov) { 6273 bool_t abort; 6274 6275 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6276 "nfs4openattr: initiating recovery\n")); 6277 6278 abort = nfs4_start_recovery(&e, 6279 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6280 OP_OPENATTR, NULL); 6281 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6282 if (!e.error) { 6283 e.error = geterrno4(res.status); 6284 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6285 } 6286 if (abort == FALSE) 6287 goto recov_retry; 6288 return (e.error); 6289 } 6290 6291 if (e.error) { 6292 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6293 return (e.error); 6294 } 6295 6296 if (res.status) { 6297 /* 6298 * If OTW errro is NOTSUPP, then it should be 6299 * translated to EINVAL. All Solaris file system 6300 * implementations return EINVAL to the syscall layer 6301 * when the attrdir cannot be created due to an 6302 * implementation restriction or noxattr mount option. 6303 */ 6304 if (res.status == NFS4ERR_NOTSUPP) { 6305 mutex_enter(&drp->r_statelock); 6306 if (drp->r_xattr_dir) 6307 VN_RELE(drp->r_xattr_dir); 6308 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6309 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6310 mutex_exit(&drp->r_statelock); 6311 6312 e.error = EINVAL; 6313 } else { 6314 e.error = geterrno4(res.status); 6315 } 6316 6317 if (e.error) { 6318 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6319 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6320 needrecov); 6321 return (e.error); 6322 } 6323 } 6324 6325 resop = &res.array[0]; /* putfh res */ 6326 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6327 6328 resop = &res.array[1]; /* openattr res */ 6329 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6330 6331 resop = &res.array[2]; /* getfh res */ 6332 gf_res = &resop->nfs_resop4_u.opgetfh; 6333 if (gf_res->object.nfs_fh4_len == 0) { 6334 *avp = NULL; 6335 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6336 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6337 return (ENOENT); 6338 } 6339 6340 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6341 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6342 dvp->v_vfsp, t, cr, dvp, 6343 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH)); 6344 sfh4_rele(&sfhp); 6345 6346 if (e.error) 6347 PURGE_ATTRCACHE4(vp); 6348 6349 mutex_enter(&vp->v_lock); 6350 vp->v_flag |= V_XATTRDIR; 6351 mutex_exit(&vp->v_lock); 6352 6353 *avp = vp; 6354 6355 mutex_enter(&drp->r_statelock); 6356 if (drp->r_xattr_dir) 6357 VN_RELE(drp->r_xattr_dir); 6358 VN_HOLD(vp); 6359 drp->r_xattr_dir = vp; 6360 6361 /* 6362 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6363 * NULL. xattrs could be created at any time, and we have no 6364 * way to update pc4_xattr_exists in the base object if/when 6365 * it happens. 6366 */ 6367 drp->r_pathconf.pc4_xattr_valid = 0; 6368 6369 mutex_exit(&drp->r_statelock); 6370 6371 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6372 6373 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6374 6375 return (0); 6376 } 6377 6378 /* ARGSUSED */ 6379 static int 6380 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6381 int mode, vnode_t **vpp, cred_t *cr, int flags) 6382 { 6383 int error; 6384 vnode_t *vp = NULL; 6385 rnode4_t *rp; 6386 struct vattr vattr; 6387 rnode4_t *drp; 6388 vnode_t *tempvp; 6389 enum createmode4 createmode; 6390 bool_t must_trunc = FALSE; 6391 int truncating = 0; 6392 6393 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6394 return (EPERM); 6395 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6396 return (EINVAL); 6397 } 6398 6399 /* . and .. have special meaning in the protocol, reject them. */ 6400 6401 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6402 return (EISDIR); 6403 6404 drp = VTOR4(dvp); 6405 6406 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6407 return (EINTR); 6408 6409 top: 6410 /* 6411 * We make a copy of the attributes because the caller does not 6412 * expect us to change what va points to. 6413 */ 6414 vattr = *va; 6415 6416 /* 6417 * If the pathname is "", then dvp is the root vnode of 6418 * a remote file mounted over a local directory. 6419 * All that needs to be done is access 6420 * checking and truncation. Note that we avoid doing 6421 * open w/ create because the parent directory might 6422 * be in pseudo-fs and the open would fail. 6423 */ 6424 if (*nm == '\0') { 6425 error = 0; 6426 VN_HOLD(dvp); 6427 vp = dvp; 6428 must_trunc = TRUE; 6429 } else { 6430 /* 6431 * We need to go over the wire, just to be sure whether the 6432 * file exists or not. Using the DNLC can be dangerous in 6433 * this case when making a decision regarding existence. 6434 */ 6435 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6436 } 6437 6438 if (exclusive) 6439 createmode = EXCLUSIVE4; 6440 else 6441 createmode = GUARDED4; 6442 6443 /* 6444 * error would be set if the file does not exist on the 6445 * server, so lets go create it. 6446 */ 6447 if (error) { 6448 goto create_otw; 6449 } 6450 6451 /* 6452 * File does exist on the server 6453 */ 6454 if (exclusive == EXCL) 6455 error = EEXIST; 6456 else if (vp->v_type == VDIR && (mode & VWRITE)) 6457 error = EISDIR; 6458 else { 6459 /* 6460 * If vnode is a device, create special vnode. 6461 */ 6462 if (ISVDEV(vp->v_type)) { 6463 tempvp = vp; 6464 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6465 VN_RELE(tempvp); 6466 } 6467 if (!(error = VOP_ACCESS(vp, mode, 0, cr))) { 6468 if ((vattr.va_mask & AT_SIZE) && 6469 vp->v_type == VREG) { 6470 rp = VTOR4(vp); 6471 /* 6472 * Check here for large file handled 6473 * by LF-unaware process (as 6474 * ufs_create() does) 6475 */ 6476 if (!(flags & FOFFMAX)) { 6477 mutex_enter(&rp->r_statelock); 6478 if (rp->r_size > MAXOFF32_T) 6479 error = EOVERFLOW; 6480 mutex_exit(&rp->r_statelock); 6481 } 6482 6483 /* if error is set then we need to return */ 6484 if (error) { 6485 nfs_rw_exit(&drp->r_rwlock); 6486 VN_RELE(vp); 6487 return (error); 6488 } 6489 6490 if (must_trunc) { 6491 vattr.va_mask = AT_SIZE; 6492 error = nfs4setattr(vp, &vattr, 0, cr, 6493 NULL); 6494 } else { 6495 /* 6496 * we know we have a regular file that already 6497 * exists and we may end up truncating the file 6498 * as a result of the open_otw, so flush out 6499 * any dirty pages for this file first. 6500 */ 6501 if (nfs4_has_pages(vp) && 6502 ((rp->r_flags & R4DIRTY) || 6503 rp->r_count > 0 || 6504 rp->r_mapcnt > 0)) { 6505 error = nfs4_putpage(vp, 6506 (offset_t)0, 0, 0, cr); 6507 if (error && (error == ENOSPC || 6508 error == EDQUOT)) { 6509 mutex_enter( 6510 &rp->r_statelock); 6511 if (!rp->r_error) 6512 rp->r_error = 6513 error; 6514 mutex_exit( 6515 &rp->r_statelock); 6516 } 6517 } 6518 vattr.va_mask = (AT_SIZE | 6519 AT_TYPE | AT_MODE); 6520 vattr.va_type = VREG; 6521 createmode = UNCHECKED4; 6522 truncating = 1; 6523 goto create_otw; 6524 } 6525 } 6526 } 6527 } 6528 nfs_rw_exit(&drp->r_rwlock); 6529 if (error) { 6530 VN_RELE(vp); 6531 } else { 6532 vnode_t *tvp; 6533 rnode4_t *trp; 6534 /* 6535 * existing file got truncated, notify. 6536 */ 6537 tvp = vp; 6538 if (vp->v_type == VREG) { 6539 trp = VTOR4(vp); 6540 if (IS_SHADOW(vp, trp)) 6541 tvp = RTOV4(trp); 6542 } 6543 vnevent_create(tvp); 6544 *vpp = vp; 6545 } 6546 return (error); 6547 6548 create_otw: 6549 dnlc_remove(dvp, nm); 6550 6551 ASSERT(vattr.va_mask & AT_TYPE); 6552 6553 /* 6554 * If not a regular file let nfs4mknod() handle it. 6555 */ 6556 if (vattr.va_type != VREG) { 6557 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6558 nfs_rw_exit(&drp->r_rwlock); 6559 return (error); 6560 } 6561 6562 /* 6563 * It _is_ a regular file. 6564 */ 6565 ASSERT(vattr.va_mask & AT_MODE); 6566 if (MANDMODE(vattr.va_mode)) { 6567 nfs_rw_exit(&drp->r_rwlock); 6568 return (EACCES); 6569 } 6570 6571 /* 6572 * If this happens to be a mknod of a regular file, then flags will 6573 * have neither FREAD or FWRITE. However, we must set at least one 6574 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6575 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6576 * set (based on openmode specified by app). 6577 */ 6578 if ((flags & (FREAD|FWRITE)) == 0) 6579 flags |= (FREAD|FWRITE); 6580 6581 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6582 6583 if (vp != NULL) { 6584 /* if create was successful, throw away the file's pages */ 6585 if (!error && (vattr.va_mask & AT_SIZE)) 6586 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6587 cr); 6588 /* release the lookup hold */ 6589 VN_RELE(vp); 6590 vp = NULL; 6591 } 6592 6593 /* 6594 * validate that we opened a regular file. This handles a misbehaving 6595 * server that returns an incorrect FH. 6596 */ 6597 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6598 error = EISDIR; 6599 VN_RELE(*vpp); 6600 } 6601 6602 /* 6603 * If this is not an exclusive create, then the CREATE 6604 * request will be made with the GUARDED mode set. This 6605 * means that the server will return EEXIST if the file 6606 * exists. The file could exist because of a retransmitted 6607 * request. In this case, we recover by starting over and 6608 * checking to see whether the file exists. This second 6609 * time through it should and a CREATE request will not be 6610 * sent. 6611 * 6612 * This handles the problem of a dangling CREATE request 6613 * which contains attributes which indicate that the file 6614 * should be truncated. This retransmitted request could 6615 * possibly truncate valid data in the file if not caught 6616 * by the duplicate request mechanism on the server or if 6617 * not caught by other means. The scenario is: 6618 * 6619 * Client transmits CREATE request with size = 0 6620 * Client times out, retransmits request. 6621 * Response to the first request arrives from the server 6622 * and the client proceeds on. 6623 * Client writes data to the file. 6624 * The server now processes retransmitted CREATE request 6625 * and truncates file. 6626 * 6627 * The use of the GUARDED CREATE request prevents this from 6628 * happening because the retransmitted CREATE would fail 6629 * with EEXIST and would not truncate the file. 6630 */ 6631 if (error == EEXIST && exclusive == NONEXCL) { 6632 #ifdef DEBUG 6633 nfs4_create_misses++; 6634 #endif 6635 goto top; 6636 } 6637 nfs_rw_exit(&drp->r_rwlock); 6638 if (truncating && !error && *vpp) { 6639 vnode_t *tvp; 6640 rnode4_t *trp; 6641 /* 6642 * existing file got truncated, notify. 6643 */ 6644 tvp = *vpp; 6645 trp = VTOR4(tvp); 6646 if (IS_SHADOW(tvp, trp)) 6647 tvp = RTOV4(trp); 6648 vnevent_create(tvp); 6649 } 6650 return (error); 6651 } 6652 6653 /* 6654 * Create compound (for mkdir, mknod, symlink): 6655 * { Putfh <dfh>; Create; Getfh; Getattr } 6656 * It's okay if setattr failed to set gid - this is not considered 6657 * an error, but purge attrs in that case. 6658 */ 6659 static int 6660 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6661 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6662 { 6663 int need_end_op = FALSE; 6664 COMPOUND4args_clnt args; 6665 COMPOUND4res_clnt res, *resp = NULL; 6666 nfs_argop4 *argop; 6667 nfs_resop4 *resop; 6668 int doqueue; 6669 mntinfo4_t *mi; 6670 rnode4_t *drp = VTOR4(dvp); 6671 change_info4 *cinfo; 6672 GETFH4res *gf_res; 6673 struct vattr vattr; 6674 vnode_t *vp; 6675 fattr4 *crattr; 6676 bool_t needrecov = FALSE; 6677 nfs4_recov_state_t recov_state; 6678 nfs4_sharedfh_t *sfhp = NULL; 6679 hrtime_t t; 6680 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6681 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6682 dirattr_info_t dinfo, *dinfop; 6683 servinfo4_t *svp; 6684 bitmap4 supp_attrs; 6685 6686 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6687 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6688 6689 mi = VTOMI4(dvp); 6690 6691 /* 6692 * Make sure we properly deal with setting the right gid 6693 * on a new directory to reflect the parent's setgid bit 6694 */ 6695 setgid_flag = 0; 6696 if (type == NF4DIR) { 6697 struct vattr dva; 6698 6699 va->va_mode &= ~VSGID; 6700 dva.va_mask = AT_MODE | AT_GID; 6701 if (VOP_GETATTR(dvp, &dva, 0, cr) == 0) { 6702 6703 /* 6704 * If the parent's directory has the setgid bit set 6705 * _and_ the client was able to get a valid mapping 6706 * for the parent dir's owner_group, we want to 6707 * append NVERIFY(owner_group == dva.va_gid) and 6708 * SETTATTR to the CREATE compound. 6709 */ 6710 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6711 setgid_flag = 1; 6712 va->va_mode |= VSGID; 6713 if (dva.va_gid != GID_NOBODY) { 6714 va->va_mask |= AT_GID; 6715 va->va_gid = dva.va_gid; 6716 } 6717 } 6718 } 6719 } 6720 6721 /* 6722 * Create ops: 6723 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6724 * 5:restorefh(dir) 6:getattr(dir) 6725 * 6726 * if (setgid) 6727 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6728 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6729 * 8:nverify 9:setattr 6730 */ 6731 if (setgid_flag) { 6732 numops = 10; 6733 idx_create = 1; 6734 idx_fattr = 3; 6735 } else { 6736 numops = 7; 6737 idx_create = 2; 6738 idx_fattr = 4; 6739 } 6740 6741 ASSERT(nfs_zone() == mi->mi_zone); 6742 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6743 return (EINTR); 6744 } 6745 recov_state.rs_flags = 0; 6746 recov_state.rs_num_retry_despite_err = 0; 6747 6748 argoplist_size = numops * sizeof (nfs_argop4); 6749 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6750 6751 recov_retry: 6752 if (type == NF4LNK) 6753 args.ctag = TAG_SYMLINK; 6754 else if (type == NF4DIR) 6755 args.ctag = TAG_MKDIR; 6756 else 6757 args.ctag = TAG_MKNOD; 6758 6759 args.array_len = numops; 6760 args.array = argop; 6761 6762 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6763 nfs_rw_exit(&drp->r_rwlock); 6764 kmem_free(argop, argoplist_size); 6765 return (e.error); 6766 } 6767 need_end_op = TRUE; 6768 6769 6770 /* 0: putfh directory */ 6771 argop[0].argop = OP_CPUTFH; 6772 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6773 6774 /* 1/2: Create object */ 6775 argop[idx_create].argop = OP_CCREATE; 6776 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6777 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6778 if (type == NF4LNK) { 6779 /* 6780 * symlink, treat name as data 6781 */ 6782 ASSERT(data != NULL); 6783 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6784 (char *)data; 6785 } 6786 if (type == NF4BLK || type == NF4CHR) { 6787 ASSERT(data != NULL); 6788 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6789 *((specdata4 *)data); 6790 } 6791 6792 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6793 6794 svp = drp->r_server; 6795 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6796 supp_attrs = svp->sv_supp_attrs; 6797 nfs_rw_exit(&svp->sv_lock); 6798 6799 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6800 nfs_rw_exit(&drp->r_rwlock); 6801 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6802 e.error = EINVAL; 6803 kmem_free(argop, argoplist_size); 6804 return (e.error); 6805 } 6806 6807 /* 2/3: getfh fh of created object */ 6808 ASSERT(idx_create + 1 == idx_fattr - 1); 6809 argop[idx_create + 1].argop = OP_GETFH; 6810 6811 /* 3/4: getattr of new object */ 6812 argop[idx_fattr].argop = OP_GETATTR; 6813 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6814 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6815 6816 if (setgid_flag) { 6817 vattr_t _v; 6818 6819 argop[4].argop = OP_SAVEFH; 6820 6821 argop[5].argop = OP_CPUTFH; 6822 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6823 6824 argop[6].argop = OP_GETATTR; 6825 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6826 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6827 6828 argop[7].argop = OP_RESTOREFH; 6829 6830 /* 6831 * nverify 6832 * 6833 * XXX - Revisit the last argument to nfs4_end_op() 6834 * once 5020486 is fixed. 6835 */ 6836 _v.va_mask = AT_GID; 6837 _v.va_gid = va->va_gid; 6838 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6839 supp_attrs)) { 6840 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6841 nfs_rw_exit(&drp->r_rwlock); 6842 nfs4_fattr4_free(crattr); 6843 kmem_free(argop, argoplist_size); 6844 return (e.error); 6845 } 6846 6847 /* 6848 * setattr 6849 * 6850 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6851 * so no need for stateid or flags. Also we specify NULL 6852 * rp since we're only interested in setting owner_group 6853 * attributes. 6854 */ 6855 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6856 &e.error, 0); 6857 6858 if (e.error) { 6859 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6860 nfs_rw_exit(&drp->r_rwlock); 6861 nfs4_fattr4_free(crattr); 6862 nfs4args_verify_free(&argop[8]); 6863 kmem_free(argop, argoplist_size); 6864 return (e.error); 6865 } 6866 } else { 6867 argop[1].argop = OP_SAVEFH; 6868 6869 argop[5].argop = OP_RESTOREFH; 6870 6871 argop[6].argop = OP_GETATTR; 6872 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6873 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6874 } 6875 6876 dnlc_remove(dvp, nm); 6877 6878 doqueue = 1; 6879 t = gethrtime(); 6880 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 6881 6882 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 6883 if (e.error) { 6884 PURGE_ATTRCACHE4(dvp); 6885 if (!needrecov) 6886 goto out; 6887 } 6888 6889 if (needrecov) { 6890 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 6891 OP_CREATE, NULL) == FALSE) { 6892 nfs4_end_op(mi, dvp, NULL, &recov_state, 6893 needrecov); 6894 need_end_op = FALSE; 6895 nfs4_fattr4_free(crattr); 6896 if (setgid_flag) { 6897 nfs4args_verify_free(&argop[8]); 6898 nfs4args_setattr_free(&argop[9]); 6899 } 6900 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6901 goto recov_retry; 6902 } 6903 } 6904 6905 resp = &res; 6906 6907 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 6908 6909 if (res.status == NFS4ERR_BADOWNER) 6910 nfs4_log_badowner(mi, OP_CREATE); 6911 6912 e.error = geterrno4(res.status); 6913 6914 /* 6915 * This check is left over from when create was implemented 6916 * using a setattr op (instead of createattrs). If the 6917 * putfh/create/getfh failed, the error was returned. If 6918 * setattr/getattr failed, we keep going. 6919 * 6920 * It might be better to get rid of the GETFH also, and just 6921 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 6922 * Then if any of the operations failed, we could return the 6923 * error now, and remove much of the error code below. 6924 */ 6925 if (res.array_len <= idx_fattr) { 6926 /* 6927 * Either Putfh, Create or Getfh failed. 6928 */ 6929 PURGE_ATTRCACHE4(dvp); 6930 /* 6931 * nfs4_purge_stale_fh() may generate otw calls through 6932 * nfs4_invalidate_pages. Hence the need to call 6933 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 6934 */ 6935 nfs4_end_op(mi, dvp, NULL, &recov_state, 6936 needrecov); 6937 need_end_op = FALSE; 6938 nfs4_purge_stale_fh(e.error, dvp, cr); 6939 goto out; 6940 } 6941 } 6942 6943 resop = &res.array[idx_create]; /* create res */ 6944 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 6945 6946 resop = &res.array[idx_create + 1]; /* getfh res */ 6947 gf_res = &resop->nfs_resop4_u.opgetfh; 6948 6949 sfhp = sfh4_get(&gf_res->object, mi); 6950 if (e.error) { 6951 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 6952 fn_get(VTOSV(dvp)->sv_name, nm)); 6953 if (vp->v_type == VNON) { 6954 vattr.va_mask = AT_TYPE; 6955 /* 6956 * Need to call nfs4_end_op before nfs4getattr to avoid 6957 * potential nfs4_start_op deadlock. See RFE 4777612. 6958 */ 6959 nfs4_end_op(mi, dvp, NULL, &recov_state, 6960 needrecov); 6961 need_end_op = FALSE; 6962 e.error = nfs4getattr(vp, &vattr, cr); 6963 if (e.error) { 6964 VN_RELE(vp); 6965 *vpp = NULL; 6966 goto out; 6967 } 6968 vp->v_type = vattr.va_type; 6969 } 6970 e.error = 0; 6971 } else { 6972 *vpp = vp = makenfs4node(sfhp, 6973 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 6974 dvp->v_vfsp, t, cr, 6975 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 6976 } 6977 6978 /* 6979 * If compound succeeded, then update dir attrs 6980 */ 6981 if (res.status == NFS4_OK) { 6982 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 6983 dinfo.di_cred = cr; 6984 dinfo.di_time_call = t; 6985 dinfop = &dinfo; 6986 } else 6987 dinfop = NULL; 6988 6989 /* Update directory cache attribute, readdir and dnlc caches */ 6990 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 6991 6992 out: 6993 if (sfhp != NULL) 6994 sfh4_rele(&sfhp); 6995 nfs_rw_exit(&drp->r_rwlock); 6996 nfs4_fattr4_free(crattr); 6997 if (setgid_flag) { 6998 nfs4args_verify_free(&argop[8]); 6999 nfs4args_setattr_free(&argop[9]); 7000 } 7001 if (resp) 7002 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7003 if (need_end_op) 7004 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7005 7006 kmem_free(argop, argoplist_size); 7007 return (e.error); 7008 } 7009 7010 /* ARGSUSED */ 7011 static int 7012 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7013 int mode, vnode_t **vpp, cred_t *cr) 7014 { 7015 int error; 7016 vnode_t *vp; 7017 nfs_ftype4 type; 7018 specdata4 spec, *specp = NULL; 7019 7020 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7021 7022 switch (va->va_type) { 7023 case VCHR: 7024 case VBLK: 7025 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7026 spec.specdata1 = getmajor(va->va_rdev); 7027 spec.specdata2 = getminor(va->va_rdev); 7028 specp = &spec; 7029 break; 7030 7031 case VFIFO: 7032 type = NF4FIFO; 7033 break; 7034 case VSOCK: 7035 type = NF4SOCK; 7036 break; 7037 7038 default: 7039 return (EINVAL); 7040 } 7041 7042 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7043 if (error) { 7044 return (error); 7045 } 7046 7047 /* 7048 * This might not be needed any more; special case to deal 7049 * with problematic v2/v3 servers. Since create was unable 7050 * to set group correctly, not sure what hope setattr has. 7051 */ 7052 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7053 va->va_mask = AT_GID; 7054 (void) nfs4setattr(vp, va, 0, cr, NULL); 7055 } 7056 7057 /* 7058 * If vnode is a device create special vnode 7059 */ 7060 if (ISVDEV(vp->v_type)) { 7061 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7062 VN_RELE(vp); 7063 } else { 7064 *vpp = vp; 7065 } 7066 return (error); 7067 } 7068 7069 /* 7070 * Remove requires that the current fh be the target directory. 7071 * After the operation, the current fh is unchanged. 7072 * The compound op structure is: 7073 * PUTFH(targetdir), REMOVE 7074 * 7075 * Weirdness: if the vnode to be removed is open 7076 * we rename it instead of removing it and nfs_inactive 7077 * will remove the new name. 7078 */ 7079 static int 7080 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr) 7081 { 7082 COMPOUND4args_clnt args; 7083 COMPOUND4res_clnt res, *resp = NULL; 7084 REMOVE4res *rm_res; 7085 nfs_argop4 argop[3]; 7086 nfs_resop4 *resop; 7087 vnode_t *vp; 7088 char *tmpname; 7089 int doqueue; 7090 mntinfo4_t *mi; 7091 rnode4_t *rp; 7092 rnode4_t *drp; 7093 int needrecov = 0; 7094 nfs4_recov_state_t recov_state; 7095 int isopen; 7096 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7097 dirattr_info_t dinfo; 7098 7099 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7100 return (EPERM); 7101 drp = VTOR4(dvp); 7102 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7103 return (EINTR); 7104 7105 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7106 if (e.error) { 7107 nfs_rw_exit(&drp->r_rwlock); 7108 return (e.error); 7109 } 7110 7111 if (vp->v_type == VDIR) { 7112 VN_RELE(vp); 7113 nfs_rw_exit(&drp->r_rwlock); 7114 return (EISDIR); 7115 } 7116 7117 /* 7118 * First just remove the entry from the name cache, as it 7119 * is most likely the only entry for this vp. 7120 */ 7121 dnlc_remove(dvp, nm); 7122 7123 rp = VTOR4(vp); 7124 7125 /* 7126 * For regular file types, check to see if the file is open by looking 7127 * at the open streams. 7128 * For all other types, check the reference count on the vnode. Since 7129 * they are not opened OTW they never have an open stream. 7130 * 7131 * If the file is open, rename it to .nfsXXXX. 7132 */ 7133 if (vp->v_type != VREG) { 7134 /* 7135 * If the file has a v_count > 1 then there may be more than one 7136 * entry in the name cache due multiple links or an open file, 7137 * but we don't have the real reference count so flush all 7138 * possible entries. 7139 */ 7140 if (vp->v_count > 1) 7141 dnlc_purge_vp(vp); 7142 7143 /* 7144 * Now we have the real reference count. 7145 */ 7146 isopen = vp->v_count > 1; 7147 } else { 7148 mutex_enter(&rp->r_os_lock); 7149 isopen = list_head(&rp->r_open_streams) != NULL; 7150 mutex_exit(&rp->r_os_lock); 7151 } 7152 7153 mutex_enter(&rp->r_statelock); 7154 if (isopen && 7155 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7156 mutex_exit(&rp->r_statelock); 7157 tmpname = newname(); 7158 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr); 7159 if (e.error) 7160 kmem_free(tmpname, MAXNAMELEN); 7161 else { 7162 mutex_enter(&rp->r_statelock); 7163 if (rp->r_unldvp == NULL) { 7164 VN_HOLD(dvp); 7165 rp->r_unldvp = dvp; 7166 if (rp->r_unlcred != NULL) 7167 crfree(rp->r_unlcred); 7168 crhold(cr); 7169 rp->r_unlcred = cr; 7170 rp->r_unlname = tmpname; 7171 } else { 7172 kmem_free(rp->r_unlname, MAXNAMELEN); 7173 rp->r_unlname = tmpname; 7174 } 7175 mutex_exit(&rp->r_statelock); 7176 } 7177 VN_RELE(vp); 7178 nfs_rw_exit(&drp->r_rwlock); 7179 return (e.error); 7180 } 7181 /* 7182 * Actually remove the file/dir 7183 */ 7184 mutex_exit(&rp->r_statelock); 7185 7186 /* 7187 * We need to flush any dirty pages which happen to 7188 * be hanging around before removing the file. 7189 * This shouldn't happen very often since in NFSv4 7190 * we should be close to open consistent. 7191 */ 7192 if (nfs4_has_pages(vp) && 7193 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7194 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr); 7195 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7196 mutex_enter(&rp->r_statelock); 7197 if (!rp->r_error) 7198 rp->r_error = e.error; 7199 mutex_exit(&rp->r_statelock); 7200 } 7201 } 7202 7203 mi = VTOMI4(dvp); 7204 7205 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7206 recov_state.rs_flags = 0; 7207 recov_state.rs_num_retry_despite_err = 0; 7208 7209 recov_retry: 7210 /* 7211 * Remove ops: putfh dir; remove 7212 */ 7213 args.ctag = TAG_REMOVE; 7214 args.array_len = 3; 7215 args.array = argop; 7216 7217 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7218 if (e.error) { 7219 nfs_rw_exit(&drp->r_rwlock); 7220 VN_RELE(vp); 7221 return (e.error); 7222 } 7223 7224 /* putfh directory */ 7225 argop[0].argop = OP_CPUTFH; 7226 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7227 7228 /* remove */ 7229 argop[1].argop = OP_CREMOVE; 7230 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7231 7232 /* getattr dir */ 7233 argop[2].argop = OP_GETATTR; 7234 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7235 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7236 7237 doqueue = 1; 7238 dinfo.di_time_call = gethrtime(); 7239 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7240 7241 PURGE_ATTRCACHE4(vp); 7242 7243 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7244 if (e.error) 7245 PURGE_ATTRCACHE4(dvp); 7246 7247 if (needrecov) { 7248 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7249 NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { 7250 if (!e.error) 7251 (void) xdr_free(xdr_COMPOUND4res_clnt, 7252 (caddr_t)&res); 7253 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7254 needrecov); 7255 goto recov_retry; 7256 } 7257 } 7258 7259 /* 7260 * Matching nfs4_end_op() for start_op() above. 7261 * There is a path in the code below which calls 7262 * nfs4_purge_stale_fh(), which may generate otw calls through 7263 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7264 * here to avoid nfs4_start_op() deadlock. 7265 */ 7266 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7267 7268 if (!e.error) { 7269 resp = &res; 7270 7271 if (res.status) { 7272 e.error = geterrno4(res.status); 7273 PURGE_ATTRCACHE4(dvp); 7274 nfs4_purge_stale_fh(e.error, dvp, cr); 7275 } else { 7276 resop = &res.array[1]; /* remove res */ 7277 rm_res = &resop->nfs_resop4_u.opremove; 7278 7279 dinfo.di_garp = 7280 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7281 dinfo.di_cred = cr; 7282 7283 /* Update directory attr, readdir and dnlc caches */ 7284 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7285 &dinfo); 7286 } 7287 } 7288 nfs_rw_exit(&drp->r_rwlock); 7289 if (resp) 7290 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7291 7292 if (e.error == 0) { 7293 vnode_t *tvp; 7294 rnode4_t *trp; 7295 trp = VTOR4(vp); 7296 tvp = vp; 7297 if (IS_SHADOW(vp, trp)) 7298 tvp = RTOV4(trp); 7299 vnevent_remove(tvp, dvp, nm); 7300 } 7301 VN_RELE(vp); 7302 return (e.error); 7303 } 7304 7305 /* 7306 * Link requires that the current fh be the target directory and the 7307 * saved fh be the source fh. After the operation, the current fh is unchanged. 7308 * Thus the compound op structure is: 7309 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7310 * GETATTR(file) 7311 */ 7312 static int 7313 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr) 7314 { 7315 COMPOUND4args_clnt args; 7316 COMPOUND4res_clnt res, *resp = NULL; 7317 LINK4res *ln_res; 7318 int argoplist_size = 7 * sizeof (nfs_argop4); 7319 nfs_argop4 *argop; 7320 nfs_resop4 *resop; 7321 vnode_t *realvp, *nvp; 7322 int doqueue; 7323 mntinfo4_t *mi; 7324 rnode4_t *tdrp; 7325 bool_t needrecov = FALSE; 7326 nfs4_recov_state_t recov_state; 7327 hrtime_t t; 7328 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7329 dirattr_info_t dinfo; 7330 7331 ASSERT(*tnm != '\0'); 7332 ASSERT(tdvp->v_type == VDIR); 7333 ASSERT(nfs4_consistent_type(tdvp)); 7334 ASSERT(nfs4_consistent_type(svp)); 7335 7336 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7337 return (EPERM); 7338 if (VOP_REALVP(svp, &realvp) == 0) { 7339 svp = realvp; 7340 ASSERT(nfs4_consistent_type(svp)); 7341 } 7342 7343 tdrp = VTOR4(tdvp); 7344 mi = VTOMI4(svp); 7345 7346 if (!(mi->mi_flags & MI4_LINK)) { 7347 return (EOPNOTSUPP); 7348 } 7349 recov_state.rs_flags = 0; 7350 recov_state.rs_num_retry_despite_err = 0; 7351 7352 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7353 return (EINTR); 7354 7355 recov_retry: 7356 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7357 7358 args.ctag = TAG_LINK; 7359 7360 /* 7361 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7362 * restorefh; getattr(fl) 7363 */ 7364 args.array_len = 7; 7365 args.array = argop; 7366 7367 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7368 if (e.error) { 7369 kmem_free(argop, argoplist_size); 7370 nfs_rw_exit(&tdrp->r_rwlock); 7371 return (e.error); 7372 } 7373 7374 /* 0. putfh file */ 7375 argop[0].argop = OP_CPUTFH; 7376 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7377 7378 /* 1. save current fh to free up the space for the dir */ 7379 argop[1].argop = OP_SAVEFH; 7380 7381 /* 2. putfh targetdir */ 7382 argop[2].argop = OP_CPUTFH; 7383 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7384 7385 /* 3. link: current_fh is targetdir, saved_fh is source */ 7386 argop[3].argop = OP_CLINK; 7387 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7388 7389 /* 4. Get attributes of dir */ 7390 argop[4].argop = OP_GETATTR; 7391 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7392 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7393 7394 /* 5. If link was successful, restore current vp to file */ 7395 argop[5].argop = OP_RESTOREFH; 7396 7397 /* 6. Get attributes of linked object */ 7398 argop[6].argop = OP_GETATTR; 7399 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7400 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7401 7402 dnlc_remove(tdvp, tnm); 7403 7404 doqueue = 1; 7405 t = gethrtime(); 7406 7407 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7408 7409 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7410 if (e.error != 0 && !needrecov) { 7411 PURGE_ATTRCACHE4(tdvp); 7412 PURGE_ATTRCACHE4(svp); 7413 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7414 goto out; 7415 } 7416 7417 if (needrecov) { 7418 bool_t abort; 7419 7420 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7421 NULL, NULL, OP_LINK, NULL); 7422 if (abort == FALSE) { 7423 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7424 needrecov); 7425 kmem_free(argop, argoplist_size); 7426 if (!e.error) 7427 (void) xdr_free(xdr_COMPOUND4res_clnt, 7428 (caddr_t)&res); 7429 goto recov_retry; 7430 } else { 7431 if (e.error != 0) { 7432 PURGE_ATTRCACHE4(tdvp); 7433 PURGE_ATTRCACHE4(svp); 7434 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7435 &recov_state, needrecov); 7436 goto out; 7437 } 7438 /* fall through for res.status case */ 7439 } 7440 } 7441 7442 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7443 7444 resp = &res; 7445 if (res.status) { 7446 /* If link succeeded, then don't return error */ 7447 e.error = geterrno4(res.status); 7448 if (res.array_len <= 4) { 7449 /* 7450 * Either Putfh, Savefh, Putfh dir, or Link failed 7451 */ 7452 PURGE_ATTRCACHE4(svp); 7453 PURGE_ATTRCACHE4(tdvp); 7454 if (e.error == EOPNOTSUPP) { 7455 mutex_enter(&mi->mi_lock); 7456 mi->mi_flags &= ~MI4_LINK; 7457 mutex_exit(&mi->mi_lock); 7458 } 7459 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7460 /* XXX-LP */ 7461 if (e.error == EISDIR && crgetuid(cr) != 0) 7462 e.error = EPERM; 7463 goto out; 7464 } 7465 } 7466 7467 /* either no error or one of the postop getattr failed */ 7468 7469 /* 7470 * XXX - if LINK succeeded, but no attrs were returned for link 7471 * file, purge its cache. 7472 * 7473 * XXX Perform a simplified version of wcc checking. Instead of 7474 * have another getattr to get pre-op, just purge cache if 7475 * any of the ops prior to and including the getattr failed. 7476 * If the getattr succeeded then update the attrcache accordingly. 7477 */ 7478 7479 /* 7480 * update cache with link file postattrs. 7481 * Note: at this point resop points to link res. 7482 */ 7483 resop = &res.array[3]; /* link res */ 7484 ln_res = &resop->nfs_resop4_u.oplink; 7485 if (res.status == NFS4_OK) { 7486 e.error = nfs4_update_attrcache(res.status, 7487 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7488 t, svp, cr); 7489 } 7490 7491 /* 7492 * Call makenfs4node to create the new shadow vp for tnm. 7493 * We pass NULL attrs because we just cached attrs for 7494 * the src object. All we're trying to accomplish is to 7495 * to create the new shadow vnode. 7496 */ 7497 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7498 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm)); 7499 7500 /* Update target cache attribute, readdir and dnlc caches */ 7501 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7502 dinfo.di_time_call = t; 7503 dinfo.di_cred = cr; 7504 7505 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7506 ASSERT(nfs4_consistent_type(tdvp)); 7507 ASSERT(nfs4_consistent_type(svp)); 7508 ASSERT(nfs4_consistent_type(nvp)); 7509 VN_RELE(nvp); 7510 7511 if (!e.error) { 7512 vnode_t *tvp; 7513 rnode4_t *trp; 7514 /* 7515 * Notify the source file of this link operation. 7516 */ 7517 trp = VTOR4(svp); 7518 tvp = svp; 7519 if (IS_SHADOW(svp, trp)) 7520 tvp = RTOV4(trp); 7521 vnevent_link(tvp); 7522 } 7523 out: 7524 kmem_free(argop, argoplist_size); 7525 if (resp) 7526 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7527 7528 nfs_rw_exit(&tdrp->r_rwlock); 7529 7530 return (e.error); 7531 } 7532 7533 static int 7534 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 7535 { 7536 vnode_t *realvp; 7537 7538 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7539 return (EPERM); 7540 if (VOP_REALVP(ndvp, &realvp) == 0) 7541 ndvp = realvp; 7542 7543 return (nfs4rename(odvp, onm, ndvp, nnm, cr)); 7544 } 7545 7546 /* 7547 * nfs4rename does the real work of renaming in NFS Version 4. 7548 * 7549 * A file handle is considered volatile for renaming purposes if either 7550 * of the volatile bits are turned on. However, the compound may differ 7551 * based on the likelihood of the filehandle to change during rename. 7552 */ 7553 static int 7554 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 7555 { 7556 int error; 7557 mntinfo4_t *mi; 7558 vnode_t *nvp = NULL; 7559 vnode_t *ovp = NULL; 7560 char *tmpname = NULL; 7561 rnode4_t *rp; 7562 rnode4_t *odrp; 7563 rnode4_t *ndrp; 7564 int did_link = 0; 7565 int do_link = 1; 7566 nfsstat4 stat = NFS4_OK; 7567 7568 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7569 ASSERT(nfs4_consistent_type(odvp)); 7570 ASSERT(nfs4_consistent_type(ndvp)); 7571 7572 if (onm[0] == '.' && (onm[1] == '\0' || 7573 (onm[1] == '.' && onm[2] == '\0'))) 7574 return (EINVAL); 7575 7576 if (nnm[0] == '.' && (nnm[1] == '\0' || 7577 (nnm[1] == '.' && nnm[2] == '\0'))) 7578 return (EINVAL); 7579 7580 odrp = VTOR4(odvp); 7581 ndrp = VTOR4(ndvp); 7582 if ((intptr_t)odrp < (intptr_t)ndrp) { 7583 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7584 return (EINTR); 7585 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7586 nfs_rw_exit(&odrp->r_rwlock); 7587 return (EINTR); 7588 } 7589 } else { 7590 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7591 return (EINTR); 7592 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7593 nfs_rw_exit(&ndrp->r_rwlock); 7594 return (EINTR); 7595 } 7596 } 7597 7598 /* 7599 * Lookup the target file. If it exists, it needs to be 7600 * checked to see whether it is a mount point and whether 7601 * it is active (open). 7602 */ 7603 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7604 if (!error) { 7605 int isactive; 7606 7607 ASSERT(nfs4_consistent_type(nvp)); 7608 /* 7609 * If this file has been mounted on, then just 7610 * return busy because renaming to it would remove 7611 * the mounted file system from the name space. 7612 */ 7613 if (vn_ismntpt(nvp)) { 7614 VN_RELE(nvp); 7615 nfs_rw_exit(&odrp->r_rwlock); 7616 nfs_rw_exit(&ndrp->r_rwlock); 7617 return (EBUSY); 7618 } 7619 7620 /* 7621 * First just remove the entry from the name cache, as it 7622 * is most likely the only entry for this vp. 7623 */ 7624 dnlc_remove(ndvp, nnm); 7625 7626 rp = VTOR4(nvp); 7627 7628 if (nvp->v_type != VREG) { 7629 /* 7630 * Purge the name cache of all references to this vnode 7631 * so that we can check the reference count to infer 7632 * whether it is active or not. 7633 */ 7634 if (nvp->v_count > 1) 7635 dnlc_purge_vp(nvp); 7636 7637 isactive = nvp->v_count > 1; 7638 } else { 7639 mutex_enter(&rp->r_os_lock); 7640 isactive = list_head(&rp->r_open_streams) != NULL; 7641 mutex_exit(&rp->r_os_lock); 7642 } 7643 7644 /* 7645 * If the vnode is active and is not a directory, 7646 * arrange to rename it to a 7647 * temporary file so that it will continue to be 7648 * accessible. This implements the "unlink-open-file" 7649 * semantics for the target of a rename operation. 7650 * Before doing this though, make sure that the 7651 * source and target files are not already the same. 7652 */ 7653 if (isactive && nvp->v_type != VDIR) { 7654 /* 7655 * Lookup the source name. 7656 */ 7657 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7658 7659 /* 7660 * The source name *should* already exist. 7661 */ 7662 if (error) { 7663 VN_RELE(nvp); 7664 nfs_rw_exit(&odrp->r_rwlock); 7665 nfs_rw_exit(&ndrp->r_rwlock); 7666 return (error); 7667 } 7668 7669 ASSERT(nfs4_consistent_type(ovp)); 7670 7671 /* 7672 * Compare the two vnodes. If they are the same, 7673 * just release all held vnodes and return success. 7674 */ 7675 if (VN_CMP(ovp, nvp)) { 7676 VN_RELE(ovp); 7677 VN_RELE(nvp); 7678 nfs_rw_exit(&odrp->r_rwlock); 7679 nfs_rw_exit(&ndrp->r_rwlock); 7680 return (0); 7681 } 7682 7683 /* 7684 * Can't mix and match directories and non- 7685 * directories in rename operations. We already 7686 * know that the target is not a directory. If 7687 * the source is a directory, return an error. 7688 */ 7689 if (ovp->v_type == VDIR) { 7690 VN_RELE(ovp); 7691 VN_RELE(nvp); 7692 nfs_rw_exit(&odrp->r_rwlock); 7693 nfs_rw_exit(&ndrp->r_rwlock); 7694 return (ENOTDIR); 7695 } 7696 link_call: 7697 /* 7698 * The target file exists, is not the same as 7699 * the source file, and is active. We first 7700 * try to Link it to a temporary filename to 7701 * avoid having the server removing the file 7702 * completely (which could cause data loss to 7703 * the user's POV in the event the Rename fails 7704 * -- see bug 1165874). 7705 */ 7706 /* 7707 * The do_link and did_link booleans are 7708 * introduced in the event we get NFS4ERR_FILE_OPEN 7709 * returned for the Rename. Some servers can 7710 * not Rename over an Open file, so they return 7711 * this error. The client needs to Remove the 7712 * newly created Link and do two Renames, just 7713 * as if the server didn't support LINK. 7714 */ 7715 tmpname = newname(); 7716 error = 0; 7717 7718 if (do_link) { 7719 error = nfs4_link(ndvp, nvp, tmpname, cr); 7720 } 7721 if (error == EOPNOTSUPP || !do_link) { 7722 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7723 cr); 7724 did_link = 0; 7725 } else { 7726 did_link = 1; 7727 } 7728 if (error) { 7729 kmem_free(tmpname, MAXNAMELEN); 7730 VN_RELE(ovp); 7731 VN_RELE(nvp); 7732 nfs_rw_exit(&odrp->r_rwlock); 7733 nfs_rw_exit(&ndrp->r_rwlock); 7734 return (error); 7735 } 7736 7737 mutex_enter(&rp->r_statelock); 7738 if (rp->r_unldvp == NULL) { 7739 VN_HOLD(ndvp); 7740 rp->r_unldvp = ndvp; 7741 if (rp->r_unlcred != NULL) 7742 crfree(rp->r_unlcred); 7743 crhold(cr); 7744 rp->r_unlcred = cr; 7745 rp->r_unlname = tmpname; 7746 } else { 7747 if (rp->r_unlname) 7748 kmem_free(rp->r_unlname, MAXNAMELEN); 7749 rp->r_unlname = tmpname; 7750 } 7751 mutex_exit(&rp->r_statelock); 7752 } 7753 7754 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7755 7756 ASSERT(nfs4_consistent_type(nvp)); 7757 } 7758 7759 if (ovp == NULL) { 7760 /* 7761 * When renaming directories to be a subdirectory of a 7762 * different parent, the dnlc entry for ".." will no 7763 * longer be valid, so it must be removed. 7764 * 7765 * We do a lookup here to determine whether we are renaming 7766 * a directory and we need to check if we are renaming 7767 * an unlinked file. This might have already been done 7768 * in previous code, so we check ovp == NULL to avoid 7769 * doing it twice. 7770 */ 7771 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7772 /* 7773 * The source name *should* already exist. 7774 */ 7775 if (error) { 7776 nfs_rw_exit(&odrp->r_rwlock); 7777 nfs_rw_exit(&ndrp->r_rwlock); 7778 if (nvp) { 7779 VN_RELE(nvp); 7780 } 7781 return (error); 7782 } 7783 ASSERT(ovp != NULL); 7784 ASSERT(nfs4_consistent_type(ovp)); 7785 } 7786 7787 /* 7788 * Is the object being renamed a dir, and if so, is 7789 * it being renamed to a child of itself? The underlying 7790 * fs should ultimately return EINVAL for this case; 7791 * however, buggy beta non-Solaris NFSv4 servers at 7792 * interop testing events have allowed this behavior, 7793 * and it caused our client to panic due to a recursive 7794 * mutex_enter in fn_move. 7795 * 7796 * The tedious locking in fn_move could be changed to 7797 * deal with this case, and the client could avoid the 7798 * panic; however, the client would just confuse itself 7799 * later and misbehave. A better way to handle the broken 7800 * server is to detect this condition and return EINVAL 7801 * without ever sending the the bogus rename to the server. 7802 * We know the rename is invalid -- just fail it now. 7803 */ 7804 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7805 VN_RELE(ovp); 7806 nfs_rw_exit(&odrp->r_rwlock); 7807 nfs_rw_exit(&ndrp->r_rwlock); 7808 if (nvp) { 7809 VN_RELE(nvp); 7810 } 7811 return (EINVAL); 7812 } 7813 7814 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7815 7816 /* 7817 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7818 * possible for the filehandle to change due to the rename. 7819 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7820 * the fh will not change because of the rename, but we still need 7821 * to update its rnode entry with the new name for 7822 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7823 * has no effect on these for now, but for future improvements, 7824 * we might want to use it too to simplify handling of files 7825 * that are open with that flag on. (XXX) 7826 */ 7827 mi = VTOMI4(odvp); 7828 if (NFS4_VOLATILE_FH(mi)) { 7829 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7830 &stat); 7831 } else { 7832 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7833 &stat); 7834 } 7835 ASSERT(nfs4_consistent_type(odvp)); 7836 ASSERT(nfs4_consistent_type(ndvp)); 7837 ASSERT(nfs4_consistent_type(ovp)); 7838 7839 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7840 do_link = 0; 7841 /* 7842 * Before the 'link_call' code, we did a nfs4_lookup 7843 * that puts a VN_HOLD on nvp. After the nfs4_link 7844 * call we call VN_RELE to match that hold. We need 7845 * to place an additional VN_HOLD here since we will 7846 * be hitting that VN_RELE again. 7847 */ 7848 VN_HOLD(nvp); 7849 7850 (void) nfs4_remove(ndvp, tmpname, cr); 7851 7852 /* Undo the unlinked file naming stuff we just did */ 7853 mutex_enter(&rp->r_statelock); 7854 if (rp->r_unldvp) { 7855 VN_RELE(ndvp); 7856 rp->r_unldvp = NULL; 7857 if (rp->r_unlcred != NULL) 7858 crfree(rp->r_unlcred); 7859 rp->r_unlcred = NULL; 7860 /* rp->r_unlanme points to tmpname */ 7861 if (rp->r_unlname) 7862 kmem_free(rp->r_unlname, MAXNAMELEN); 7863 rp->r_unlname = NULL; 7864 } 7865 mutex_exit(&rp->r_statelock); 7866 7867 if (nvp) { 7868 VN_RELE(nvp); 7869 } 7870 goto link_call; 7871 } 7872 7873 if (error) { 7874 VN_RELE(ovp); 7875 nfs_rw_exit(&odrp->r_rwlock); 7876 nfs_rw_exit(&ndrp->r_rwlock); 7877 if (nvp) { 7878 VN_RELE(nvp); 7879 } 7880 return (error); 7881 } 7882 7883 /* 7884 * when renaming directories to be a subdirectory of a 7885 * different parent, the dnlc entry for ".." will no 7886 * longer be valid, so it must be removed 7887 */ 7888 rp = VTOR4(ovp); 7889 if (ndvp != odvp) { 7890 if (ovp->v_type == VDIR) { 7891 dnlc_remove(ovp, ".."); 7892 if (rp->r_dir != NULL) 7893 nfs4_purge_rddir_cache(ovp); 7894 } 7895 } 7896 7897 /* 7898 * If we are renaming the unlinked file, update the 7899 * r_unldvp and r_unlname as needed. 7900 */ 7901 mutex_enter(&rp->r_statelock); 7902 if (rp->r_unldvp != NULL) { 7903 if (strcmp(rp->r_unlname, onm) == 0) { 7904 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 7905 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 7906 if (ndvp != rp->r_unldvp) { 7907 VN_RELE(rp->r_unldvp); 7908 rp->r_unldvp = ndvp; 7909 VN_HOLD(ndvp); 7910 } 7911 } 7912 } 7913 mutex_exit(&rp->r_statelock); 7914 7915 /* 7916 * Notify the rename vnevents to source vnode, and to the target 7917 * vnode if it already existed. 7918 */ 7919 if (error == 0) { 7920 vnode_t *tvp; 7921 rnode4_t *trp; 7922 /* 7923 * Notify the vnode. Each links is represented by 7924 * a different vnode, in nfsv4. 7925 */ 7926 if (nvp) { 7927 trp = VTOR4(nvp); 7928 tvp = nvp; 7929 if (IS_SHADOW(nvp, trp)) 7930 tvp = RTOV4(trp); 7931 vnevent_rename_dest(tvp, ndvp, nnm); 7932 } 7933 7934 /* 7935 * if the source and destination directory are not the 7936 * same notify the destination directory. 7937 */ 7938 if (VTOR4(odvp) != VTOR4(ndvp)) { 7939 trp = VTOR4(ndvp); 7940 tvp = ndvp; 7941 if (IS_SHADOW(ndvp, trp)) 7942 tvp = RTOV4(trp); 7943 vnevent_rename_dest_dir(tvp); 7944 } 7945 7946 trp = VTOR4(ovp); 7947 tvp = ovp; 7948 if (IS_SHADOW(ovp, trp)) 7949 tvp = RTOV4(trp); 7950 vnevent_rename_src(tvp, odvp, onm); 7951 } 7952 7953 if (nvp) { 7954 VN_RELE(nvp); 7955 } 7956 VN_RELE(ovp); 7957 7958 nfs_rw_exit(&odrp->r_rwlock); 7959 nfs_rw_exit(&ndrp->r_rwlock); 7960 7961 return (error); 7962 } 7963 7964 /* 7965 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 7966 * when it is known that the filehandle is persistent through rename. 7967 * 7968 * Rename requires that the current fh be the target directory and the 7969 * saved fh be the source directory. After the operation, the current fh 7970 * is unchanged. 7971 * The compound op structure for persistent fh rename is: 7972 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 7973 * Rather than bother with the directory postop args, we'll simply 7974 * update that a change occured in the cache, so no post-op getattrs. 7975 */ 7976 static int 7977 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 7978 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 7979 { 7980 COMPOUND4args_clnt args; 7981 COMPOUND4res_clnt res, *resp = NULL; 7982 nfs_argop4 *argop; 7983 nfs_resop4 *resop; 7984 int doqueue, argoplist_size; 7985 mntinfo4_t *mi; 7986 rnode4_t *odrp = VTOR4(odvp); 7987 rnode4_t *ndrp = VTOR4(ndvp); 7988 RENAME4res *rn_res; 7989 bool_t needrecov; 7990 nfs4_recov_state_t recov_state; 7991 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7992 dirattr_info_t dinfo, *dinfop; 7993 7994 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7995 7996 recov_state.rs_flags = 0; 7997 recov_state.rs_num_retry_despite_err = 0; 7998 7999 /* 8000 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8001 * 8002 * If source/target are different dirs, then append putfh(src); getattr 8003 */ 8004 args.array_len = (odvp == ndvp) ? 5 : 7; 8005 argoplist_size = args.array_len * sizeof (nfs_argop4); 8006 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8007 8008 recov_retry: 8009 *statp = NFS4_OK; 8010 8011 /* No need to Lookup the file, persistent fh */ 8012 args.ctag = TAG_RENAME; 8013 8014 mi = VTOMI4(odvp); 8015 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8016 if (e.error) { 8017 kmem_free(argop, argoplist_size); 8018 return (e.error); 8019 } 8020 8021 /* 0: putfh source directory */ 8022 argop[0].argop = OP_CPUTFH; 8023 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8024 8025 /* 1: Save source fh to free up current for target */ 8026 argop[1].argop = OP_SAVEFH; 8027 8028 /* 2: putfh targetdir */ 8029 argop[2].argop = OP_CPUTFH; 8030 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8031 8032 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8033 argop[3].argop = OP_CRENAME; 8034 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8035 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8036 8037 /* 4: getattr (targetdir) */ 8038 argop[4].argop = OP_GETATTR; 8039 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8040 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8041 8042 if (ndvp != odvp) { 8043 8044 /* 5: putfh (sourcedir) */ 8045 argop[5].argop = OP_CPUTFH; 8046 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8047 8048 /* 6: getattr (sourcedir) */ 8049 argop[6].argop = OP_GETATTR; 8050 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8051 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8052 } 8053 8054 dnlc_remove(odvp, onm); 8055 dnlc_remove(ndvp, nnm); 8056 8057 doqueue = 1; 8058 dinfo.di_time_call = gethrtime(); 8059 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8060 8061 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8062 if (e.error) { 8063 PURGE_ATTRCACHE4(odvp); 8064 PURGE_ATTRCACHE4(ndvp); 8065 } else { 8066 *statp = res.status; 8067 } 8068 8069 if (needrecov) { 8070 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8071 OP_RENAME, NULL) == FALSE) { 8072 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8073 if (!e.error) 8074 (void) xdr_free(xdr_COMPOUND4res_clnt, 8075 (caddr_t)&res); 8076 goto recov_retry; 8077 } 8078 } 8079 8080 if (!e.error) { 8081 resp = &res; 8082 /* 8083 * as long as OP_RENAME 8084 */ 8085 if (res.status != NFS4_OK && res.array_len <= 4) { 8086 e.error = geterrno4(res.status); 8087 PURGE_ATTRCACHE4(odvp); 8088 PURGE_ATTRCACHE4(ndvp); 8089 /* 8090 * System V defines rename to return EEXIST, not 8091 * ENOTEMPTY if the target directory is not empty. 8092 * Over the wire, the error is NFSERR_ENOTEMPTY 8093 * which geterrno4 maps to ENOTEMPTY. 8094 */ 8095 if (e.error == ENOTEMPTY) 8096 e.error = EEXIST; 8097 } else { 8098 8099 resop = &res.array[3]; /* rename res */ 8100 rn_res = &resop->nfs_resop4_u.oprename; 8101 8102 if (res.status == NFS4_OK) { 8103 /* 8104 * Update target attribute, readdir and dnlc 8105 * caches. 8106 */ 8107 dinfo.di_garp = 8108 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8109 dinfo.di_cred = cr; 8110 dinfop = &dinfo; 8111 } else 8112 dinfop = NULL; 8113 8114 nfs4_update_dircaches(&rn_res->target_cinfo, 8115 ndvp, NULL, NULL, dinfop); 8116 8117 /* 8118 * Update source attribute, readdir and dnlc caches 8119 * 8120 */ 8121 if (ndvp != odvp) { 8122 if (dinfop) 8123 dinfo.di_garp = 8124 &(res.array[6].nfs_resop4_u. 8125 opgetattr.ga_res); 8126 8127 nfs4_update_dircaches(&rn_res->source_cinfo, 8128 odvp, NULL, NULL, dinfop); 8129 } 8130 8131 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8132 nnm); 8133 } 8134 } 8135 8136 if (resp) 8137 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8138 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8139 kmem_free(argop, argoplist_size); 8140 8141 return (e.error); 8142 } 8143 8144 /* 8145 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8146 * it is possible for the filehandle to change due to the rename. 8147 * 8148 * The compound req in this case includes a post-rename lookup and getattr 8149 * to ensure that we have the correct fh and attributes for the object. 8150 * 8151 * Rename requires that the current fh be the target directory and the 8152 * saved fh be the source directory. After the operation, the current fh 8153 * is unchanged. 8154 * 8155 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8156 * update the filehandle for the renamed object. We also get the old 8157 * filehandle for historical reasons; this should be taken out sometime. 8158 * This results in a rather cumbersome compound... 8159 * 8160 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8161 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8162 * 8163 */ 8164 static int 8165 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8166 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8167 { 8168 COMPOUND4args_clnt args; 8169 COMPOUND4res_clnt res, *resp = NULL; 8170 int argoplist_size; 8171 nfs_argop4 *argop; 8172 nfs_resop4 *resop; 8173 int doqueue; 8174 mntinfo4_t *mi; 8175 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8176 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8177 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8178 RENAME4res *rn_res; 8179 GETFH4res *ngf_res; 8180 bool_t needrecov; 8181 nfs4_recov_state_t recov_state; 8182 hrtime_t t; 8183 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8184 dirattr_info_t dinfo, *dinfop = &dinfo; 8185 8186 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8187 8188 recov_state.rs_flags = 0; 8189 recov_state.rs_num_retry_despite_err = 0; 8190 8191 recov_retry: 8192 *statp = NFS4_OK; 8193 8194 /* 8195 * There is a window between the RPC and updating the path and 8196 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8197 * code, so that it doesn't try to use the old path during that 8198 * window. 8199 */ 8200 mutex_enter(&orp->r_statelock); 8201 while (orp->r_flags & R4RECEXPFH) { 8202 klwp_t *lwp = ttolwp(curthread); 8203 8204 if (lwp != NULL) 8205 lwp->lwp_nostop++; 8206 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8207 mutex_exit(&orp->r_statelock); 8208 if (lwp != NULL) 8209 lwp->lwp_nostop--; 8210 return (EINTR); 8211 } 8212 if (lwp != NULL) 8213 lwp->lwp_nostop--; 8214 } 8215 orp->r_flags |= R4RECEXPFH; 8216 mutex_exit(&orp->r_statelock); 8217 8218 mi = VTOMI4(odvp); 8219 8220 args.ctag = TAG_RENAME_VFH; 8221 args.array_len = (odvp == ndvp) ? 10 : 12; 8222 argoplist_size = args.array_len * sizeof (nfs_argop4); 8223 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8224 8225 /* 8226 * Rename ops: 8227 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8228 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8229 * LOOKUP(trgt), GETFH(new), GETATTR, 8230 * 8231 * if (odvp != ndvp) 8232 * add putfh(sourcedir), getattr(sourcedir) } 8233 */ 8234 args.array = argop; 8235 8236 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8237 &recov_state, NULL); 8238 if (e.error) { 8239 kmem_free(argop, argoplist_size); 8240 mutex_enter(&orp->r_statelock); 8241 orp->r_flags &= ~R4RECEXPFH; 8242 cv_broadcast(&orp->r_cv); 8243 mutex_exit(&orp->r_statelock); 8244 return (e.error); 8245 } 8246 8247 /* 0: putfh source directory */ 8248 argop[0].argop = OP_CPUTFH; 8249 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8250 8251 /* 1: Save source fh to free up current for target */ 8252 argop[1].argop = OP_SAVEFH; 8253 8254 /* 2: Lookup pre-rename fh of renamed object */ 8255 argop[2].argop = OP_CLOOKUP; 8256 argop[2].nfs_argop4_u.opclookup.cname = onm; 8257 8258 /* 3: getfh fh of renamed object (before rename) */ 8259 argop[3].argop = OP_GETFH; 8260 8261 /* 4: putfh targetdir */ 8262 argop[4].argop = OP_CPUTFH; 8263 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8264 8265 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8266 argop[5].argop = OP_CRENAME; 8267 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8268 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8269 8270 /* 6: getattr of target dir (post op attrs) */ 8271 argop[6].argop = OP_GETATTR; 8272 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8273 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8274 8275 /* 7: Lookup post-rename fh of renamed object */ 8276 argop[7].argop = OP_CLOOKUP; 8277 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8278 8279 /* 8: getfh fh of renamed object (after rename) */ 8280 argop[8].argop = OP_GETFH; 8281 8282 /* 9: getattr of renamed object */ 8283 argop[9].argop = OP_GETATTR; 8284 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8285 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8286 8287 /* 8288 * If source/target dirs are different, then get new post-op 8289 * attrs for source dir also. 8290 */ 8291 if (ndvp != odvp) { 8292 /* 10: putfh (sourcedir) */ 8293 argop[10].argop = OP_CPUTFH; 8294 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8295 8296 /* 11: getattr (sourcedir) */ 8297 argop[11].argop = OP_GETATTR; 8298 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8299 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8300 } 8301 8302 dnlc_remove(odvp, onm); 8303 dnlc_remove(ndvp, nnm); 8304 8305 doqueue = 1; 8306 t = gethrtime(); 8307 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8308 8309 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8310 if (e.error) { 8311 PURGE_ATTRCACHE4(odvp); 8312 PURGE_ATTRCACHE4(ndvp); 8313 if (!needrecov) { 8314 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8315 &recov_state, needrecov); 8316 goto out; 8317 } 8318 } else { 8319 *statp = res.status; 8320 } 8321 8322 if (needrecov) { 8323 bool_t abort; 8324 8325 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8326 OP_RENAME, NULL); 8327 if (abort == FALSE) { 8328 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8329 &recov_state, needrecov); 8330 kmem_free(argop, argoplist_size); 8331 if (!e.error) 8332 (void) xdr_free(xdr_COMPOUND4res_clnt, 8333 (caddr_t)&res); 8334 mutex_enter(&orp->r_statelock); 8335 orp->r_flags &= ~R4RECEXPFH; 8336 cv_broadcast(&orp->r_cv); 8337 mutex_exit(&orp->r_statelock); 8338 goto recov_retry; 8339 } else { 8340 if (e.error != 0) { 8341 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8342 &recov_state, needrecov); 8343 goto out; 8344 } 8345 /* fall through for res.status case */ 8346 } 8347 } 8348 8349 resp = &res; 8350 /* 8351 * If OP_RENAME (or any prev op) failed, then return an error. 8352 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8353 */ 8354 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8355 /* 8356 * Error in an op other than last Getattr 8357 */ 8358 e.error = geterrno4(res.status); 8359 PURGE_ATTRCACHE4(odvp); 8360 PURGE_ATTRCACHE4(ndvp); 8361 /* 8362 * System V defines rename to return EEXIST, not 8363 * ENOTEMPTY if the target directory is not empty. 8364 * Over the wire, the error is NFSERR_ENOTEMPTY 8365 * which geterrno4 maps to ENOTEMPTY. 8366 */ 8367 if (e.error == ENOTEMPTY) 8368 e.error = EEXIST; 8369 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8370 needrecov); 8371 goto out; 8372 } 8373 8374 /* rename results */ 8375 rn_res = &res.array[5].nfs_resop4_u.oprename; 8376 8377 if (res.status == NFS4_OK) { 8378 /* Update target attribute, readdir and dnlc caches */ 8379 dinfo.di_garp = 8380 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8381 dinfo.di_cred = cr; 8382 dinfo.di_time_call = t; 8383 } else 8384 dinfop = NULL; 8385 8386 /* Update source cache attribute, readdir and dnlc caches */ 8387 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8388 8389 /* Update source cache attribute, readdir and dnlc caches */ 8390 if (ndvp != odvp) { 8391 8392 /* 8393 * If dinfop is non-NULL, then compound succeded, so 8394 * set di_garp to attrs for source dir. dinfop is only 8395 * set to NULL when compound fails. 8396 */ 8397 if (dinfop) 8398 dinfo.di_garp = 8399 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8400 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8401 dinfop); 8402 } 8403 8404 /* 8405 * Update the rnode with the new component name and args, 8406 * and if the file handle changed, also update it with the new fh. 8407 * This is only necessary if the target object has an rnode 8408 * entry and there is no need to create one for it. 8409 */ 8410 resop = &res.array[8]; /* getfh new res */ 8411 ngf_res = &resop->nfs_resop4_u.opgetfh; 8412 8413 /* 8414 * Update the path and filehandle for the renamed object. 8415 */ 8416 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8417 8418 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8419 8420 if (res.status == NFS4_OK) { 8421 resop++; /* getattr res */ 8422 e.error = nfs4_update_attrcache(res.status, 8423 &resop->nfs_resop4_u.opgetattr.ga_res, 8424 t, ovp, cr); 8425 } 8426 8427 out: 8428 kmem_free(argop, argoplist_size); 8429 if (resp) 8430 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8431 mutex_enter(&orp->r_statelock); 8432 orp->r_flags &= ~R4RECEXPFH; 8433 cv_broadcast(&orp->r_cv); 8434 mutex_exit(&orp->r_statelock); 8435 8436 return (e.error); 8437 } 8438 8439 static int 8440 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr) 8441 { 8442 int error; 8443 vnode_t *vp; 8444 8445 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8446 return (EPERM); 8447 /* 8448 * As ".." has special meaning and rather than send a mkdir 8449 * over the wire to just let the server freak out, we just 8450 * short circuit it here and return EEXIST 8451 */ 8452 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8453 return (EEXIST); 8454 8455 /* 8456 * Decision to get the right gid and setgid bit of the 8457 * new directory is now made in call_nfs4_create_req. 8458 */ 8459 va->va_mask |= AT_MODE; 8460 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8461 if (error) 8462 return (error); 8463 8464 *vpp = vp; 8465 return (0); 8466 } 8467 8468 8469 /* 8470 * rmdir is using the same remove v4 op as does remove. 8471 * Remove requires that the current fh be the target directory. 8472 * After the operation, the current fh is unchanged. 8473 * The compound op structure is: 8474 * PUTFH(targetdir), REMOVE 8475 */ 8476 static int 8477 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr) 8478 { 8479 int need_end_op = FALSE; 8480 COMPOUND4args_clnt args; 8481 COMPOUND4res_clnt res, *resp = NULL; 8482 REMOVE4res *rm_res; 8483 nfs_argop4 argop[3]; 8484 nfs_resop4 *resop; 8485 vnode_t *vp; 8486 int doqueue; 8487 mntinfo4_t *mi; 8488 rnode4_t *drp; 8489 bool_t needrecov = FALSE; 8490 nfs4_recov_state_t recov_state; 8491 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8492 dirattr_info_t dinfo, *dinfop; 8493 8494 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8495 return (EPERM); 8496 /* 8497 * As ".." has special meaning and rather than send a rmdir 8498 * over the wire to just let the server freak out, we just 8499 * short circuit it here and return EEXIST 8500 */ 8501 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8502 return (EEXIST); 8503 8504 drp = VTOR4(dvp); 8505 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8506 return (EINTR); 8507 8508 /* 8509 * Attempt to prevent a rmdir(".") from succeeding. 8510 */ 8511 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8512 if (e.error) { 8513 nfs_rw_exit(&drp->r_rwlock); 8514 return (e.error); 8515 } 8516 if (vp == cdir) { 8517 VN_RELE(vp); 8518 nfs_rw_exit(&drp->r_rwlock); 8519 return (EINVAL); 8520 } 8521 8522 /* 8523 * Since nfsv4 remove op works on both files and directories, 8524 * check that the removed object is indeed a directory. 8525 */ 8526 if (vp->v_type != VDIR) { 8527 VN_RELE(vp); 8528 nfs_rw_exit(&drp->r_rwlock); 8529 return (ENOTDIR); 8530 } 8531 8532 /* 8533 * First just remove the entry from the name cache, as it 8534 * is most likely an entry for this vp. 8535 */ 8536 dnlc_remove(dvp, nm); 8537 8538 /* 8539 * If there vnode reference count is greater than one, then 8540 * there may be additional references in the DNLC which will 8541 * need to be purged. First, trying removing the entry for 8542 * the parent directory and see if that removes the additional 8543 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8544 * to completely remove any references to the directory which 8545 * might still exist in the DNLC. 8546 */ 8547 if (vp->v_count > 1) { 8548 dnlc_remove(vp, ".."); 8549 if (vp->v_count > 1) 8550 dnlc_purge_vp(vp); 8551 } 8552 8553 mi = VTOMI4(dvp); 8554 recov_state.rs_flags = 0; 8555 recov_state.rs_num_retry_despite_err = 0; 8556 8557 recov_retry: 8558 args.ctag = TAG_RMDIR; 8559 8560 /* 8561 * Rmdir ops: putfh dir; remove 8562 */ 8563 args.array_len = 3; 8564 args.array = argop; 8565 8566 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8567 if (e.error) { 8568 nfs_rw_exit(&drp->r_rwlock); 8569 return (e.error); 8570 } 8571 need_end_op = TRUE; 8572 8573 /* putfh directory */ 8574 argop[0].argop = OP_CPUTFH; 8575 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8576 8577 /* remove */ 8578 argop[1].argop = OP_CREMOVE; 8579 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8580 8581 /* getattr (postop attrs for dir that contained removed dir) */ 8582 argop[2].argop = OP_GETATTR; 8583 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8584 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8585 8586 dinfo.di_time_call = gethrtime(); 8587 doqueue = 1; 8588 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8589 8590 PURGE_ATTRCACHE4(vp); 8591 8592 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8593 if (e.error) { 8594 PURGE_ATTRCACHE4(dvp); 8595 } 8596 8597 if (needrecov) { 8598 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8599 NULL, OP_REMOVE, NULL) == FALSE) { 8600 if (!e.error) 8601 (void) xdr_free(xdr_COMPOUND4res_clnt, 8602 (caddr_t)&res); 8603 8604 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8605 needrecov); 8606 need_end_op = FALSE; 8607 goto recov_retry; 8608 } 8609 } 8610 8611 if (!e.error) { 8612 resp = &res; 8613 8614 /* 8615 * Only return error if first 2 ops (OP_REMOVE or earlier) 8616 * failed. 8617 */ 8618 if (res.status != NFS4_OK && res.array_len <= 2) { 8619 e.error = geterrno4(res.status); 8620 PURGE_ATTRCACHE4(dvp); 8621 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8622 &recov_state, needrecov); 8623 need_end_op = FALSE; 8624 nfs4_purge_stale_fh(e.error, dvp, cr); 8625 /* 8626 * System V defines rmdir to return EEXIST, not 8627 * ENOTEMPTY if the directory is not empty. Over 8628 * the wire, the error is NFSERR_ENOTEMPTY which 8629 * geterrno4 maps to ENOTEMPTY. 8630 */ 8631 if (e.error == ENOTEMPTY) 8632 e.error = EEXIST; 8633 } else { 8634 resop = &res.array[1]; /* remove res */ 8635 rm_res = &resop->nfs_resop4_u.opremove; 8636 8637 if (res.status == NFS4_OK) { 8638 resop = &res.array[2]; /* dir attrs */ 8639 dinfo.di_garp = 8640 &resop->nfs_resop4_u.opgetattr.ga_res; 8641 dinfo.di_cred = cr; 8642 dinfop = &dinfo; 8643 } else 8644 dinfop = NULL; 8645 8646 /* Update dir attribute, readdir and dnlc caches */ 8647 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8648 dinfop); 8649 8650 /* destroy rddir cache for dir that was removed */ 8651 if (VTOR4(vp)->r_dir != NULL) 8652 nfs4_purge_rddir_cache(vp); 8653 } 8654 } 8655 8656 if (need_end_op) 8657 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8658 8659 nfs_rw_exit(&drp->r_rwlock); 8660 8661 if (resp) 8662 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8663 8664 if (e.error == 0) { 8665 vnode_t *tvp; 8666 rnode4_t *trp; 8667 trp = VTOR4(vp); 8668 tvp = vp; 8669 if (IS_SHADOW(vp, trp)) 8670 tvp = RTOV4(trp); 8671 vnevent_rmdir(tvp, dvp, nm); 8672 } 8673 8674 VN_RELE(vp); 8675 8676 return (e.error); 8677 } 8678 8679 static int 8680 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr) 8681 { 8682 int error; 8683 vnode_t *vp; 8684 rnode4_t *rp; 8685 char *contents; 8686 mntinfo4_t *mi = VTOMI4(dvp); 8687 8688 if (nfs_zone() != mi->mi_zone) 8689 return (EPERM); 8690 if (!(mi->mi_flags & MI4_SYMLINK)) 8691 return (EOPNOTSUPP); 8692 8693 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8694 if (error) { 8695 return (error); 8696 } 8697 8698 ASSERT(nfs4_consistent_type(vp)); 8699 rp = VTOR4(vp); 8700 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8701 8702 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8703 8704 if (contents != NULL) { 8705 mutex_enter(&rp->r_statelock); 8706 if (rp->r_symlink.contents == NULL) { 8707 rp->r_symlink.len = strlen(tnm); 8708 bcopy(tnm, contents, rp->r_symlink.len); 8709 rp->r_symlink.contents = contents; 8710 rp->r_symlink.size = MAXPATHLEN; 8711 mutex_exit(&rp->r_statelock); 8712 } else { 8713 mutex_exit(&rp->r_statelock); 8714 kmem_free((void *)contents, MAXPATHLEN); 8715 } 8716 } 8717 } 8718 VN_RELE(vp); 8719 8720 return (error); 8721 } 8722 8723 8724 /* 8725 * Read directory entries. 8726 * There are some weird things to look out for here. The uio_loffset 8727 * field is either 0 or it is the offset returned from a previous 8728 * readdir. It is an opaque value used by the server to find the 8729 * correct directory block to read. The count field is the number 8730 * of blocks to read on the server. This is advisory only, the server 8731 * may return only one block's worth of entries. Entries may be compressed 8732 * on the server. 8733 */ 8734 static int 8735 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp) 8736 { 8737 int error; 8738 uint_t count; 8739 rnode4_t *rp; 8740 rddir4_cache *rdc; 8741 rddir4_cache *rrdc; 8742 8743 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8744 return (EIO); 8745 rp = VTOR4(vp); 8746 8747 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8748 8749 /* 8750 * Make sure that the directory cache is valid. 8751 */ 8752 if (rp->r_dir != NULL) { 8753 if (nfs_disable_rddir_cache != 0) { 8754 /* 8755 * Setting nfs_disable_rddir_cache in /etc/system 8756 * allows interoperability with servers that do not 8757 * properly update the attributes of directories. 8758 * Any cached information gets purged before an 8759 * access is made to it. 8760 */ 8761 nfs4_purge_rddir_cache(vp); 8762 } 8763 8764 error = nfs4_validate_caches(vp, cr); 8765 if (error) 8766 return (error); 8767 } 8768 8769 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8770 8771 /* 8772 * Short circuit last readdir which always returns 0 bytes. 8773 * This can be done after the directory has been read through 8774 * completely at least once. This will set r_direof which 8775 * can be used to find the value of the last cookie. 8776 */ 8777 mutex_enter(&rp->r_statelock); 8778 if (rp->r_direof != NULL && 8779 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8780 mutex_exit(&rp->r_statelock); 8781 #ifdef DEBUG 8782 nfs4_readdir_cache_shorts++; 8783 #endif 8784 if (eofp) 8785 *eofp = 1; 8786 return (0); 8787 } 8788 8789 /* 8790 * Look for a cache entry. Cache entries are identified 8791 * by the NFS cookie value and the byte count requested. 8792 */ 8793 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8794 8795 /* 8796 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8797 */ 8798 if (rdc == NULL) { 8799 mutex_exit(&rp->r_statelock); 8800 return (EINTR); 8801 } 8802 8803 /* 8804 * Check to see if we need to fill this entry in. 8805 */ 8806 if (rdc->flags & RDDIRREQ) { 8807 rdc->flags &= ~RDDIRREQ; 8808 rdc->flags |= RDDIR; 8809 mutex_exit(&rp->r_statelock); 8810 8811 /* 8812 * Do the readdir. 8813 */ 8814 nfs4readdir(vp, rdc, cr); 8815 8816 /* 8817 * Reaquire the lock, so that we can continue 8818 */ 8819 mutex_enter(&rp->r_statelock); 8820 /* 8821 * The entry is now complete 8822 */ 8823 rdc->flags &= ~RDDIR; 8824 } 8825 8826 ASSERT(!(rdc->flags & RDDIR)); 8827 8828 /* 8829 * If an error occurred while attempting 8830 * to fill the cache entry, mark the entry invalid and 8831 * just return the error. 8832 */ 8833 if (rdc->error) { 8834 error = rdc->error; 8835 rdc->flags |= RDDIRREQ; 8836 rddir4_cache_rele(rp, rdc); 8837 mutex_exit(&rp->r_statelock); 8838 return (error); 8839 } 8840 8841 /* 8842 * The cache entry is complete and good, 8843 * copyout the dirent structs to the calling 8844 * thread. 8845 */ 8846 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 8847 8848 /* 8849 * If no error occurred during the copyout, 8850 * update the offset in the uio struct to 8851 * contain the value of the next NFS 4 cookie 8852 * and set the eof value appropriately. 8853 */ 8854 if (!error) { 8855 uiop->uio_loffset = rdc->nfs4_ncookie; 8856 if (eofp) 8857 *eofp = rdc->eof; 8858 } 8859 8860 /* 8861 * Decide whether to do readahead. Don't if we 8862 * have already read to the end of directory. 8863 */ 8864 if (rdc->eof) { 8865 /* 8866 * Make the entry the direof only if it is cached 8867 */ 8868 if (rdc->flags & RDDIRCACHED) 8869 rp->r_direof = rdc; 8870 rddir4_cache_rele(rp, rdc); 8871 mutex_exit(&rp->r_statelock); 8872 return (error); 8873 } 8874 8875 /* Determine if a readdir readahead should be done */ 8876 if (!(rp->r_flags & R4LOOKUP)) { 8877 rddir4_cache_rele(rp, rdc); 8878 mutex_exit(&rp->r_statelock); 8879 return (error); 8880 } 8881 8882 /* 8883 * Now look for a readahead entry. 8884 * 8885 * Check to see whether we found an entry for the readahead. 8886 * If so, we don't need to do anything further, so free the new 8887 * entry if one was allocated. Otherwise, allocate a new entry, add 8888 * it to the cache, and then initiate an asynchronous readdir 8889 * operation to fill it. 8890 */ 8891 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 8892 8893 /* 8894 * A readdir cache entry could not be obtained for the readahead. In 8895 * this case we skip the readahead and return. 8896 */ 8897 if (rrdc == NULL) { 8898 rddir4_cache_rele(rp, rdc); 8899 mutex_exit(&rp->r_statelock); 8900 return (error); 8901 } 8902 8903 /* 8904 * Check to see if we need to fill this entry in. 8905 */ 8906 if (rrdc->flags & RDDIRREQ) { 8907 rrdc->flags &= ~RDDIRREQ; 8908 rrdc->flags |= RDDIR; 8909 rddir4_cache_rele(rp, rdc); 8910 mutex_exit(&rp->r_statelock); 8911 #ifdef DEBUG 8912 nfs4_readdir_readahead++; 8913 #endif 8914 /* 8915 * Do the readdir. 8916 */ 8917 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 8918 return (error); 8919 } 8920 8921 rddir4_cache_rele(rp, rrdc); 8922 rddir4_cache_rele(rp, rdc); 8923 mutex_exit(&rp->r_statelock); 8924 return (error); 8925 } 8926 8927 static int 8928 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8929 { 8930 int error; 8931 rnode4_t *rp; 8932 8933 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 8934 8935 rp = VTOR4(vp); 8936 8937 /* 8938 * Obtain the readdir results for the caller. 8939 */ 8940 nfs4readdir(vp, rdc, cr); 8941 8942 mutex_enter(&rp->r_statelock); 8943 /* 8944 * The entry is now complete 8945 */ 8946 rdc->flags &= ~RDDIR; 8947 8948 error = rdc->error; 8949 if (error) 8950 rdc->flags |= RDDIRREQ; 8951 rddir4_cache_rele(rp, rdc); 8952 mutex_exit(&rp->r_statelock); 8953 8954 return (error); 8955 } 8956 8957 static void 8958 nfs4readdir_stub(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8959 { 8960 int stublength; 8961 dirent64_t *dp; 8962 u_longlong_t nodeid, pnodeid; 8963 vnode_t *dotdotvp = NULL; 8964 rnode4_t *rp = VTOR4(vp); 8965 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 8966 8967 rdc->error = 0; 8968 rdc->entries = 0; 8969 rdc->actlen = rdc->entlen = 0; 8970 rdc->eof = TRUE; 8971 8972 /* Check for EOF case for readdir of stub */ 8973 if (cookie != 0 && cookie != 1) 8974 return; 8975 8976 nodeid = rp->r_attr.va_nodeid; 8977 if (vp->v_flag & VROOT) { 8978 pnodeid = nodeid; /* root of mount point */ 8979 } else { 8980 if (rdc->error = nfs4_lookup(vp, "..", &dotdotvp, 0, 0, 0, cr)) 8981 return; 8982 pnodeid = VTOR4(dotdotvp)->r_attr.va_nodeid; 8983 VN_RELE(dotdotvp); 8984 } 8985 8986 stublength = DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2); 8987 rdc->entries = kmem_alloc(stublength, KM_SLEEP); 8988 rdc->entlen = rdc->buflen = stublength; 8989 rdc->eof = TRUE; 8990 8991 dp = (dirent64_t *)rdc->entries; 8992 8993 if (rdc->nfs4_cookie == (nfs_cookie4)0) { 8994 bcopy(nfs4_dot_entries, rdc->entries, 8995 DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2)); 8996 dp->d_ino = nodeid; 8997 dp = (struct dirent64 *)(((char *)dp) + DIRENT64_RECLEN(1)); 8998 dp->d_ino = pnodeid; 8999 rdc->actlen = DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2); 9000 } else { /* for ".." entry */ 9001 bcopy(nfs4_dot_dot_entry, rdc->entries, DIRENT64_RECLEN(2)); 9002 dp->d_ino = pnodeid; 9003 rdc->actlen = DIRENT64_RECLEN(2); 9004 } 9005 rdc->nfs4_ncookie = rdc->actlen; 9006 } 9007 9008 /* 9009 * Read directory entries. 9010 * There are some weird things to look out for here. The uio_loffset 9011 * field is either 0 or it is the offset returned from a previous 9012 * readdir. It is an opaque value used by the server to find the 9013 * correct directory block to read. The count field is the number 9014 * of blocks to read on the server. This is advisory only, the server 9015 * may return only one block's worth of entries. Entries may be compressed 9016 * on the server. 9017 * 9018 * Generates the following compound request: 9019 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9020 * must include a Lookupp as well. In this case, send: 9021 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9022 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9023 * 9024 * Get complete attributes and filehandles for entries if this is the 9025 * first read of the directory. Otherwise, just get fileid's. 9026 */ 9027 static void 9028 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9029 { 9030 COMPOUND4args_clnt args; 9031 COMPOUND4res_clnt res; 9032 READDIR4args *rargs; 9033 READDIR4res_clnt *rd_res; 9034 bitmap4 rd_bitsval; 9035 nfs_argop4 argop[5]; 9036 nfs_resop4 *resop; 9037 rnode4_t *rp = VTOR4(vp); 9038 mntinfo4_t *mi = VTOMI4(vp); 9039 int doqueue; 9040 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9041 vnode_t *dvp; 9042 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9043 int num_ops, res_opcnt; 9044 bool_t needrecov = FALSE; 9045 nfs4_recov_state_t recov_state; 9046 hrtime_t t; 9047 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9048 9049 ASSERT(nfs_zone() == mi->mi_zone); 9050 ASSERT(rdc->flags & RDDIR); 9051 ASSERT(rdc->entries == NULL); 9052 9053 if (rp->r_flags & R4SRVSTUB) { 9054 nfs4readdir_stub(vp, rdc, cr); 9055 return; 9056 } 9057 9058 num_ops = 2; 9059 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9060 /* 9061 * Since nfsv4 readdir may not return entries for "." and "..", 9062 * the client must recreate them: 9063 * To find the correct nodeid, do the following: 9064 * For current node, get nodeid from dnlc. 9065 * - if current node is rootvp, set pnodeid to nodeid. 9066 * - else if parent is in the dnlc, get its nodeid from there. 9067 * - else add LOOKUPP+GETATTR to compound. 9068 */ 9069 nodeid = rp->r_attr.va_nodeid; 9070 if (vp->v_flag & VROOT) { 9071 pnodeid = nodeid; /* root of mount point */ 9072 } else { 9073 dvp = dnlc_lookup(vp, ".."); 9074 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9075 /* parent in dnlc cache - no need for otw */ 9076 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9077 } else { 9078 /* 9079 * parent not in dnlc cache, 9080 * do lookupp to get its id 9081 */ 9082 num_ops = 5; 9083 pnodeid = 0; /* set later by getattr parent */ 9084 } 9085 if (dvp) 9086 VN_RELE(dvp); 9087 } 9088 } 9089 recov_state.rs_flags = 0; 9090 recov_state.rs_num_retry_despite_err = 0; 9091 9092 /* Save the original mount point security flavor */ 9093 (void) save_mnt_secinfo(mi->mi_curr_serv); 9094 9095 recov_retry: 9096 args.ctag = TAG_READDIR; 9097 9098 args.array = argop; 9099 args.array_len = num_ops; 9100 9101 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9102 &recov_state, NULL)) { 9103 /* 9104 * If readdir a node that is a stub for a crossed mount point, 9105 * keep the original secinfo flavor for the current file 9106 * system, not the crossed one. 9107 */ 9108 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9109 rdc->error = e.error; 9110 return; 9111 } 9112 9113 /* 9114 * Determine which attrs to request for dirents. This code 9115 * must be protected by nfs4_start/end_fop because of r_server 9116 * (which will change during failover recovery). 9117 * 9118 */ 9119 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9120 /* 9121 * Get all vattr attrs plus filehandle and rdattr_error 9122 */ 9123 rd_bitsval = NFS4_VATTR_MASK | 9124 FATTR4_RDATTR_ERROR_MASK | 9125 FATTR4_FILEHANDLE_MASK; 9126 9127 if (rp->r_flags & R4READDIRWATTR) { 9128 mutex_enter(&rp->r_statelock); 9129 rp->r_flags &= ~R4READDIRWATTR; 9130 mutex_exit(&rp->r_statelock); 9131 } 9132 } else { 9133 servinfo4_t *svp = rp->r_server; 9134 9135 /* 9136 * Already read directory. Use readdir with 9137 * no attrs (except for mounted_on_fileid) for updates. 9138 */ 9139 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9140 9141 /* 9142 * request mounted on fileid if supported, else request 9143 * fileid. maybe we should verify that fileid is supported 9144 * and request something else if not. 9145 */ 9146 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9147 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9148 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9149 nfs_rw_exit(&svp->sv_lock); 9150 } 9151 9152 /* putfh directory fh */ 9153 argop[0].argop = OP_CPUTFH; 9154 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9155 9156 argop[1].argop = OP_READDIR; 9157 rargs = &argop[1].nfs_argop4_u.opreaddir; 9158 /* 9159 * 1 and 2 are reserved for client "." and ".." entry offset. 9160 * cookie 0 should be used over-the-wire to start reading at 9161 * the beginning of the directory excluding "." and "..". 9162 */ 9163 if (rdc->nfs4_cookie == 0 || 9164 rdc->nfs4_cookie == 1 || 9165 rdc->nfs4_cookie == 2) { 9166 rargs->cookie = (nfs_cookie4)0; 9167 rargs->cookieverf = 0; 9168 } else { 9169 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9170 mutex_enter(&rp->r_statelock); 9171 rargs->cookieverf = rp->r_cookieverf4; 9172 mutex_exit(&rp->r_statelock); 9173 } 9174 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9175 rargs->maxcount = mi->mi_tsize; 9176 rargs->attr_request = rd_bitsval; 9177 rargs->rdc = rdc; 9178 rargs->dvp = vp; 9179 rargs->mi = mi; 9180 rargs->cr = cr; 9181 9182 9183 /* 9184 * If count < than the minimum required, we return no entries 9185 * and fail with EINVAL 9186 */ 9187 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9188 rdc->error = EINVAL; 9189 goto out; 9190 } 9191 9192 if (args.array_len == 5) { 9193 /* 9194 * Add lookupp and getattr for parent nodeid. 9195 */ 9196 argop[2].argop = OP_LOOKUPP; 9197 9198 argop[3].argop = OP_GETFH; 9199 9200 /* getattr parent */ 9201 argop[4].argop = OP_GETATTR; 9202 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9203 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9204 } 9205 9206 doqueue = 1; 9207 9208 if (mi->mi_io_kstats) { 9209 mutex_enter(&mi->mi_lock); 9210 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9211 mutex_exit(&mi->mi_lock); 9212 } 9213 9214 /* capture the time of this call */ 9215 rargs->t = t = gethrtime(); 9216 9217 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9218 9219 if (mi->mi_io_kstats) { 9220 mutex_enter(&mi->mi_lock); 9221 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9222 mutex_exit(&mi->mi_lock); 9223 } 9224 9225 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9226 9227 /* 9228 * If RPC error occurred and it isn't an error that 9229 * triggers recovery, then go ahead and fail now. 9230 */ 9231 if (e.error != 0 && !needrecov) { 9232 rdc->error = e.error; 9233 goto out; 9234 } 9235 9236 if (needrecov) { 9237 bool_t abort; 9238 9239 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9240 "nfs4readdir: initiating recovery.\n")); 9241 9242 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9243 NULL, OP_READDIR, NULL); 9244 if (abort == FALSE) { 9245 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9246 &recov_state, needrecov); 9247 if (!e.error) 9248 (void) xdr_free(xdr_COMPOUND4res_clnt, 9249 (caddr_t)&res); 9250 if (rdc->entries != NULL) { 9251 kmem_free(rdc->entries, rdc->entlen); 9252 rdc->entries = NULL; 9253 } 9254 goto recov_retry; 9255 } 9256 9257 if (e.error != 0) { 9258 rdc->error = e.error; 9259 goto out; 9260 } 9261 9262 /* fall through for res.status case */ 9263 } 9264 9265 res_opcnt = res.array_len; 9266 9267 /* 9268 * If compound failed first 2 ops (PUTFH+READDIR), then return 9269 * failure here. Subsequent ops are for filling out dot-dot 9270 * dirent, and if they fail, we still want to give the caller 9271 * the dirents returned by (the successful) READDIR op, so we need 9272 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9273 * 9274 * One example where PUTFH+READDIR ops would succeed but 9275 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9276 * but lacks x. In this case, a POSIX server's VOP_READDIR 9277 * would succeed; however, VOP_LOOKUP(..) would fail since no 9278 * x perm. We need to come up with a non-vendor-specific way 9279 * for a POSIX server to return d_ino from dotdot's dirent if 9280 * client only requests mounted_on_fileid, and just say the 9281 * LOOKUPP succeeded and fill out the GETATTR. However, if 9282 * client requested any mandatory attrs, server would be required 9283 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9284 * for dotdot. 9285 */ 9286 9287 if (res.status) { 9288 if (res_opcnt <= 2) { 9289 e.error = geterrno4(res.status); 9290 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9291 &recov_state, needrecov); 9292 nfs4_purge_stale_fh(e.error, vp, cr); 9293 rdc->error = e.error; 9294 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9295 if (rdc->entries != NULL) { 9296 kmem_free(rdc->entries, rdc->entlen); 9297 rdc->entries = NULL; 9298 } 9299 /* 9300 * If readdir a node that is a stub for a 9301 * crossed mount point, keep the original 9302 * secinfo flavor for the current file system, 9303 * not the crossed one. 9304 */ 9305 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9306 return; 9307 } 9308 } 9309 9310 resop = &res.array[1]; /* readdir res */ 9311 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9312 9313 mutex_enter(&rp->r_statelock); 9314 rp->r_cookieverf4 = rd_res->cookieverf; 9315 mutex_exit(&rp->r_statelock); 9316 9317 /* 9318 * For "." and ".." entries 9319 * e.g. 9320 * seek(cookie=0) -> "." entry with d_off = 1 9321 * seek(cookie=1) -> ".." entry with d_off = 2 9322 */ 9323 if (cookie == (nfs_cookie4) 0) { 9324 if (rd_res->dotp) 9325 rd_res->dotp->d_ino = nodeid; 9326 if (rd_res->dotdotp) 9327 rd_res->dotdotp->d_ino = pnodeid; 9328 } 9329 if (cookie == (nfs_cookie4) 1) { 9330 if (rd_res->dotdotp) 9331 rd_res->dotdotp->d_ino = pnodeid; 9332 } 9333 9334 9335 /* LOOKUPP+GETATTR attemped */ 9336 if (args.array_len == 5 && rd_res->dotdotp) { 9337 if (res.status == NFS4_OK && res_opcnt == 5) { 9338 nfs_fh4 *fhp; 9339 nfs4_sharedfh_t *sfhp; 9340 vnode_t *pvp; 9341 nfs4_ga_res_t *garp; 9342 9343 resop++; /* lookupp */ 9344 resop++; /* getfh */ 9345 fhp = &resop->nfs_resop4_u.opgetfh.object; 9346 9347 resop++; /* getattr of parent */ 9348 9349 /* 9350 * First, take care of finishing the 9351 * readdir results. 9352 */ 9353 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9354 /* 9355 * The d_ino of .. must be the inode number 9356 * of the mounted filesystem. 9357 */ 9358 if (garp->n4g_va.va_mask & AT_NODEID) 9359 rd_res->dotdotp->d_ino = 9360 garp->n4g_va.va_nodeid; 9361 9362 9363 /* 9364 * Next, create the ".." dnlc entry 9365 */ 9366 sfhp = sfh4_get(fhp, mi); 9367 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9368 dnlc_update(vp, "..", pvp); 9369 VN_RELE(pvp); 9370 } 9371 sfh4_rele(&sfhp); 9372 } 9373 } 9374 9375 if (mi->mi_io_kstats) { 9376 mutex_enter(&mi->mi_lock); 9377 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9378 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9379 mutex_exit(&mi->mi_lock); 9380 } 9381 9382 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9383 9384 out: 9385 /* 9386 * If readdir a node that is a stub for a crossed mount point, 9387 * keep the original secinfo flavor for the current file system, 9388 * not the crossed one. 9389 */ 9390 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9391 9392 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9393 } 9394 9395 9396 static int 9397 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9398 { 9399 rnode4_t *rp = VTOR4(bp->b_vp); 9400 int count; 9401 int error; 9402 cred_t *cred_otw = NULL; 9403 offset_t offset; 9404 nfs4_open_stream_t *osp = NULL; 9405 bool_t first_time = TRUE; /* first time getting otw cred */ 9406 bool_t last_time = FALSE; /* last time getting otw cred */ 9407 9408 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9409 9410 DTRACE_IO1(start, struct buf *, bp); 9411 offset = ldbtob(bp->b_lblkno); 9412 9413 if (bp->b_flags & B_READ) { 9414 read_again: 9415 /* 9416 * Releases the osp, if it is provided. 9417 * Puts a hold on the cred_otw and the new osp (if found). 9418 */ 9419 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9420 &first_time, &last_time); 9421 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9422 offset, bp->b_bcount, 9423 &bp->b_resid, cred_otw, 9424 readahead, NULL); 9425 crfree(cred_otw); 9426 if (!error) { 9427 if (bp->b_resid) { 9428 /* 9429 * Didn't get it all because we hit EOF, 9430 * zero all the memory beyond the EOF. 9431 */ 9432 /* bzero(rdaddr + */ 9433 bzero(bp->b_un.b_addr + 9434 bp->b_bcount - bp->b_resid, bp->b_resid); 9435 } 9436 mutex_enter(&rp->r_statelock); 9437 if (bp->b_resid == bp->b_bcount && 9438 offset >= rp->r_size) { 9439 /* 9440 * We didn't read anything at all as we are 9441 * past EOF. Return an error indicator back 9442 * but don't destroy the pages (yet). 9443 */ 9444 error = NFS_EOF; 9445 } 9446 mutex_exit(&rp->r_statelock); 9447 } else if (error == EACCES && last_time == FALSE) { 9448 goto read_again; 9449 } 9450 } else { 9451 if (!(rp->r_flags & R4STALE)) { 9452 write_again: 9453 /* 9454 * Releases the osp, if it is provided. 9455 * Puts a hold on the cred_otw and the new 9456 * osp (if found). 9457 */ 9458 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9459 &first_time, &last_time); 9460 mutex_enter(&rp->r_statelock); 9461 count = MIN(bp->b_bcount, rp->r_size - offset); 9462 mutex_exit(&rp->r_statelock); 9463 if (count < 0) 9464 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9465 #ifdef DEBUG 9466 if (count == 0) { 9467 zoneid_t zoneid = getzoneid(); 9468 9469 zcmn_err(zoneid, CE_WARN, 9470 "nfs4_bio: zero length write at %lld", 9471 offset); 9472 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9473 "b_bcount=%ld, file size=%lld", 9474 rp->r_flags, (long)bp->b_bcount, 9475 rp->r_size); 9476 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9477 if (nfs4_bio_do_stop) 9478 debug_enter("nfs4_bio"); 9479 } 9480 #endif 9481 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9482 count, cred_otw, stab_comm); 9483 if (error == EACCES && last_time == FALSE) { 9484 crfree(cred_otw); 9485 goto write_again; 9486 } 9487 bp->b_error = error; 9488 if (error && error != EINTR && 9489 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9490 /* 9491 * Don't print EDQUOT errors on the console. 9492 * Don't print asynchronous EACCES errors. 9493 * Don't print EFBIG errors. 9494 * Print all other write errors. 9495 */ 9496 if (error != EDQUOT && error != EFBIG && 9497 (error != EACCES || 9498 !(bp->b_flags & B_ASYNC))) 9499 nfs4_write_error(bp->b_vp, 9500 error, cred_otw); 9501 /* 9502 * Update r_error and r_flags as appropriate. 9503 * If the error was ESTALE, then mark the 9504 * rnode as not being writeable and save 9505 * the error status. Otherwise, save any 9506 * errors which occur from asynchronous 9507 * page invalidations. Any errors occurring 9508 * from other operations should be saved 9509 * by the caller. 9510 */ 9511 mutex_enter(&rp->r_statelock); 9512 if (error == ESTALE) { 9513 rp->r_flags |= R4STALE; 9514 if (!rp->r_error) 9515 rp->r_error = error; 9516 } else if (!rp->r_error && 9517 (bp->b_flags & 9518 (B_INVAL|B_FORCE|B_ASYNC)) == 9519 (B_INVAL|B_FORCE|B_ASYNC)) { 9520 rp->r_error = error; 9521 } 9522 mutex_exit(&rp->r_statelock); 9523 } 9524 crfree(cred_otw); 9525 } else 9526 error = rp->r_error; 9527 } 9528 9529 if (error != 0 && error != NFS_EOF) 9530 bp->b_flags |= B_ERROR; 9531 9532 if (osp) 9533 open_stream_rele(osp, rp); 9534 9535 DTRACE_IO1(done, struct buf *, bp); 9536 9537 return (error); 9538 } 9539 9540 /* ARGSUSED */ 9541 static int 9542 nfs4_fid(vnode_t *vp, fid_t *fidp) 9543 { 9544 return (EREMOTE); 9545 } 9546 9547 /* ARGSUSED2 */ 9548 static int 9549 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9550 { 9551 rnode4_t *rp = VTOR4(vp); 9552 9553 if (!write_lock) { 9554 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9555 return (V_WRITELOCK_FALSE); 9556 } 9557 9558 if ((rp->r_flags & R4DIRECTIO) || 9559 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9560 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9561 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9562 return (V_WRITELOCK_FALSE); 9563 nfs_rw_exit(&rp->r_rwlock); 9564 } 9565 9566 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9567 return (V_WRITELOCK_TRUE); 9568 } 9569 9570 /* ARGSUSED */ 9571 static void 9572 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9573 { 9574 rnode4_t *rp = VTOR4(vp); 9575 9576 nfs_rw_exit(&rp->r_rwlock); 9577 } 9578 9579 /* ARGSUSED */ 9580 static int 9581 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 9582 { 9583 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9584 return (EIO); 9585 9586 /* 9587 * Because we stuff the readdir cookie into the offset field 9588 * someone may attempt to do an lseek with the cookie which 9589 * we want to succeed. 9590 */ 9591 if (vp->v_type == VDIR) 9592 return (0); 9593 if (*noffp < 0) 9594 return (EINVAL); 9595 return (0); 9596 } 9597 9598 9599 /* 9600 * Return all the pages from [off..off+len) in file 9601 */ 9602 static int 9603 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9604 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9605 enum seg_rw rw, cred_t *cr) 9606 { 9607 rnode4_t *rp; 9608 int error; 9609 mntinfo4_t *mi; 9610 9611 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9612 return (EIO); 9613 rp = VTOR4(vp); 9614 if (IS_SHADOW(vp, rp)) 9615 vp = RTOV4(rp); 9616 9617 if (vp->v_flag & VNOMAP) 9618 return (ENOSYS); 9619 9620 if (protp != NULL) 9621 *protp = PROT_ALL; 9622 9623 /* 9624 * Now validate that the caches are up to date. 9625 */ 9626 if (error = nfs4_validate_caches(vp, cr)) 9627 return (error); 9628 9629 mi = VTOMI4(vp); 9630 retry: 9631 mutex_enter(&rp->r_statelock); 9632 9633 /* 9634 * Don't create dirty pages faster than they 9635 * can be cleaned so that the system doesn't 9636 * get imbalanced. If the async queue is 9637 * maxed out, then wait for it to drain before 9638 * creating more dirty pages. Also, wait for 9639 * any threads doing pagewalks in the vop_getattr 9640 * entry points so that they don't block for 9641 * long periods. 9642 */ 9643 if (rw == S_CREATE) { 9644 while ((mi->mi_max_threads != 0 && 9645 rp->r_awcount > 2 * mi->mi_max_threads) || 9646 rp->r_gcount > 0) 9647 cv_wait(&rp->r_cv, &rp->r_statelock); 9648 } 9649 9650 /* 9651 * If we are getting called as a side effect of an nfs_write() 9652 * operation the local file size might not be extended yet. 9653 * In this case we want to be able to return pages of zeroes. 9654 */ 9655 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9656 NFS4_DEBUG(nfs4_pageio_debug, 9657 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9658 "len=%llu, size=%llu, attrsize =%llu", off, 9659 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9660 mutex_exit(&rp->r_statelock); 9661 return (EFAULT); /* beyond EOF */ 9662 } 9663 9664 mutex_exit(&rp->r_statelock); 9665 9666 if (len <= PAGESIZE) { 9667 error = nfs4_getapage(vp, off, len, protp, pl, plsz, 9668 seg, addr, rw, cr); 9669 NFS4_DEBUG(nfs4_pageio_debug && error, 9670 (CE_NOTE, "getpage error %d; off=%lld, " 9671 "len=%lld", error, off, (u_longlong_t)len)); 9672 } else { 9673 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9674 pl, plsz, seg, addr, rw, cr); 9675 NFS4_DEBUG(nfs4_pageio_debug && error, 9676 (CE_NOTE, "getpages error %d; off=%lld, " 9677 "len=%lld", error, off, (u_longlong_t)len)); 9678 } 9679 9680 switch (error) { 9681 case NFS_EOF: 9682 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9683 goto retry; 9684 case ESTALE: 9685 nfs4_purge_stale_fh(error, vp, cr); 9686 } 9687 9688 return (error); 9689 } 9690 9691 /* 9692 * Called from pvn_getpages or nfs4_getpage to get a particular page. 9693 */ 9694 /* ARGSUSED */ 9695 static int 9696 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9697 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9698 enum seg_rw rw, cred_t *cr) 9699 { 9700 rnode4_t *rp; 9701 uint_t bsize; 9702 struct buf *bp; 9703 page_t *pp; 9704 u_offset_t lbn; 9705 u_offset_t io_off; 9706 u_offset_t blkoff; 9707 u_offset_t rablkoff; 9708 size_t io_len; 9709 uint_t blksize; 9710 int error; 9711 int readahead; 9712 int readahead_issued = 0; 9713 int ra_window; /* readahead window */ 9714 page_t *pagefound; 9715 page_t *savepp; 9716 9717 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9718 return (EIO); 9719 9720 rp = VTOR4(vp); 9721 ASSERT(!IS_SHADOW(vp, rp)); 9722 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9723 9724 reread: 9725 bp = NULL; 9726 pp = NULL; 9727 pagefound = NULL; 9728 9729 if (pl != NULL) 9730 pl[0] = NULL; 9731 9732 error = 0; 9733 lbn = off / bsize; 9734 blkoff = lbn * bsize; 9735 9736 /* 9737 * Queueing up the readahead before doing the synchronous read 9738 * results in a significant increase in read throughput because 9739 * of the increased parallelism between the async threads and 9740 * the process context. 9741 */ 9742 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9743 rw != S_CREATE && 9744 !(vp->v_flag & VNOCACHE)) { 9745 mutex_enter(&rp->r_statelock); 9746 9747 /* 9748 * Calculate the number of readaheads to do. 9749 * a) No readaheads at offset = 0. 9750 * b) Do maximum(nfs4_nra) readaheads when the readahead 9751 * window is closed. 9752 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9753 * upon how far the readahead window is open or close. 9754 * d) No readaheads if rp->r_nextr is not within the scope 9755 * of the readahead window (random i/o). 9756 */ 9757 9758 if (off == 0) 9759 readahead = 0; 9760 else if (blkoff == rp->r_nextr) 9761 readahead = nfs4_nra; 9762 else if (rp->r_nextr > blkoff && 9763 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9764 <= (nfs4_nra - 1))) 9765 readahead = nfs4_nra - ra_window; 9766 else 9767 readahead = 0; 9768 9769 rablkoff = rp->r_nextr; 9770 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9771 mutex_exit(&rp->r_statelock); 9772 if (nfs4_async_readahead(vp, rablkoff + bsize, 9773 addr + (rablkoff + bsize - off), 9774 seg, cr, nfs4_readahead) < 0) { 9775 mutex_enter(&rp->r_statelock); 9776 break; 9777 } 9778 readahead--; 9779 rablkoff += bsize; 9780 /* 9781 * Indicate that we did a readahead so 9782 * readahead offset is not updated 9783 * by the synchronous read below. 9784 */ 9785 readahead_issued = 1; 9786 mutex_enter(&rp->r_statelock); 9787 /* 9788 * set readahead offset to 9789 * offset of last async readahead 9790 * request. 9791 */ 9792 rp->r_nextr = rablkoff; 9793 } 9794 mutex_exit(&rp->r_statelock); 9795 } 9796 9797 again: 9798 if ((pagefound = page_exists(vp, off)) == NULL) { 9799 if (pl == NULL) { 9800 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9801 nfs4_readahead); 9802 } else if (rw == S_CREATE) { 9803 /* 9804 * Block for this page is not allocated, or the offset 9805 * is beyond the current allocation size, or we're 9806 * allocating a swap slot and the page was not found, 9807 * so allocate it and return a zero page. 9808 */ 9809 if ((pp = page_create_va(vp, off, 9810 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9811 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9812 io_len = PAGESIZE; 9813 mutex_enter(&rp->r_statelock); 9814 rp->r_nextr = off + PAGESIZE; 9815 mutex_exit(&rp->r_statelock); 9816 } else { 9817 /* 9818 * Need to go to server to get a block 9819 */ 9820 mutex_enter(&rp->r_statelock); 9821 if (blkoff < rp->r_size && 9822 blkoff + bsize > rp->r_size) { 9823 /* 9824 * If less than a block left in 9825 * file read less than a block. 9826 */ 9827 if (rp->r_size <= off) { 9828 /* 9829 * Trying to access beyond EOF, 9830 * set up to get at least one page. 9831 */ 9832 blksize = off + PAGESIZE - blkoff; 9833 } else 9834 blksize = rp->r_size - blkoff; 9835 } else if ((off == 0) || 9836 (off != rp->r_nextr && !readahead_issued)) { 9837 blksize = PAGESIZE; 9838 blkoff = off; /* block = page here */ 9839 } else 9840 blksize = bsize; 9841 mutex_exit(&rp->r_statelock); 9842 9843 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9844 &io_len, blkoff, blksize, 0); 9845 9846 /* 9847 * Some other thread has entered the page, 9848 * so just use it. 9849 */ 9850 if (pp == NULL) 9851 goto again; 9852 9853 /* 9854 * Now round the request size up to page boundaries. 9855 * This ensures that the entire page will be 9856 * initialized to zeroes if EOF is encountered. 9857 */ 9858 io_len = ptob(btopr(io_len)); 9859 9860 bp = pageio_setup(pp, io_len, vp, B_READ); 9861 ASSERT(bp != NULL); 9862 9863 /* 9864 * pageio_setup should have set b_addr to 0. This 9865 * is correct since we want to do I/O on a page 9866 * boundary. bp_mapin will use this addr to calculate 9867 * an offset, and then set b_addr to the kernel virtual 9868 * address it allocated for us. 9869 */ 9870 ASSERT(bp->b_un.b_addr == 0); 9871 9872 bp->b_edev = 0; 9873 bp->b_dev = 0; 9874 bp->b_lblkno = lbtodb(io_off); 9875 bp->b_file = vp; 9876 bp->b_offset = (offset_t)off; 9877 bp_mapin(bp); 9878 9879 /* 9880 * If doing a write beyond what we believe is EOF, 9881 * don't bother trying to read the pages from the 9882 * server, we'll just zero the pages here. We 9883 * don't check that the rw flag is S_WRITE here 9884 * because some implementations may attempt a 9885 * read access to the buffer before copying data. 9886 */ 9887 mutex_enter(&rp->r_statelock); 9888 if (io_off >= rp->r_size && seg == segkmap) { 9889 mutex_exit(&rp->r_statelock); 9890 bzero(bp->b_un.b_addr, io_len); 9891 } else { 9892 mutex_exit(&rp->r_statelock); 9893 error = nfs4_bio(bp, NULL, cr, FALSE); 9894 } 9895 9896 /* 9897 * Unmap the buffer before freeing it. 9898 */ 9899 bp_mapout(bp); 9900 pageio_done(bp); 9901 9902 savepp = pp; 9903 do { 9904 pp->p_fsdata = C_NOCOMMIT; 9905 } while ((pp = pp->p_next) != savepp); 9906 9907 if (error == NFS_EOF) { 9908 /* 9909 * If doing a write system call just return 9910 * zeroed pages, else user tried to get pages 9911 * beyond EOF, return error. We don't check 9912 * that the rw flag is S_WRITE here because 9913 * some implementations may attempt a read 9914 * access to the buffer before copying data. 9915 */ 9916 if (seg == segkmap) 9917 error = 0; 9918 else 9919 error = EFAULT; 9920 } 9921 9922 if (!readahead_issued && !error) { 9923 mutex_enter(&rp->r_statelock); 9924 rp->r_nextr = io_off + io_len; 9925 mutex_exit(&rp->r_statelock); 9926 } 9927 } 9928 } 9929 9930 out: 9931 if (pl == NULL) 9932 return (error); 9933 9934 if (error) { 9935 if (pp != NULL) 9936 pvn_read_done(pp, B_ERROR); 9937 return (error); 9938 } 9939 9940 if (pagefound) { 9941 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 9942 9943 /* 9944 * Page exists in the cache, acquire the appropriate lock. 9945 * If this fails, start all over again. 9946 */ 9947 if ((pp = page_lookup(vp, off, se)) == NULL) { 9948 #ifdef DEBUG 9949 nfs4_lostpage++; 9950 #endif 9951 goto reread; 9952 } 9953 pl[0] = pp; 9954 pl[1] = NULL; 9955 return (0); 9956 } 9957 9958 if (pp != NULL) 9959 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 9960 9961 return (error); 9962 } 9963 9964 static void 9965 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 9966 cred_t *cr) 9967 { 9968 int error; 9969 page_t *pp; 9970 u_offset_t io_off; 9971 size_t io_len; 9972 struct buf *bp; 9973 uint_t bsize, blksize; 9974 rnode4_t *rp = VTOR4(vp); 9975 page_t *savepp; 9976 9977 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9978 9979 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9980 9981 mutex_enter(&rp->r_statelock); 9982 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 9983 /* 9984 * If less than a block left in file read less 9985 * than a block. 9986 */ 9987 blksize = rp->r_size - blkoff; 9988 } else 9989 blksize = bsize; 9990 mutex_exit(&rp->r_statelock); 9991 9992 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 9993 &io_off, &io_len, blkoff, blksize, 1); 9994 /* 9995 * The isra flag passed to the kluster function is 1, we may have 9996 * gotten a return value of NULL for a variety of reasons (# of free 9997 * pages < minfree, someone entered the page on the vnode etc). In all 9998 * cases, we want to punt on the readahead. 9999 */ 10000 if (pp == NULL) 10001 return; 10002 10003 /* 10004 * Now round the request size up to page boundaries. 10005 * This ensures that the entire page will be 10006 * initialized to zeroes if EOF is encountered. 10007 */ 10008 io_len = ptob(btopr(io_len)); 10009 10010 bp = pageio_setup(pp, io_len, vp, B_READ); 10011 ASSERT(bp != NULL); 10012 10013 /* 10014 * pageio_setup should have set b_addr to 0. This is correct since 10015 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10016 * to calculate an offset, and then set b_addr to the kernel virtual 10017 * address it allocated for us. 10018 */ 10019 ASSERT(bp->b_un.b_addr == 0); 10020 10021 bp->b_edev = 0; 10022 bp->b_dev = 0; 10023 bp->b_lblkno = lbtodb(io_off); 10024 bp->b_file = vp; 10025 bp->b_offset = (offset_t)blkoff; 10026 bp_mapin(bp); 10027 10028 /* 10029 * If doing a write beyond what we believe is EOF, don't bother trying 10030 * to read the pages from the server, we'll just zero the pages here. 10031 * We don't check that the rw flag is S_WRITE here because some 10032 * implementations may attempt a read access to the buffer before 10033 * copying data. 10034 */ 10035 mutex_enter(&rp->r_statelock); 10036 if (io_off >= rp->r_size && seg == segkmap) { 10037 mutex_exit(&rp->r_statelock); 10038 bzero(bp->b_un.b_addr, io_len); 10039 error = 0; 10040 } else { 10041 mutex_exit(&rp->r_statelock); 10042 error = nfs4_bio(bp, NULL, cr, TRUE); 10043 if (error == NFS_EOF) 10044 error = 0; 10045 } 10046 10047 /* 10048 * Unmap the buffer before freeing it. 10049 */ 10050 bp_mapout(bp); 10051 pageio_done(bp); 10052 10053 savepp = pp; 10054 do { 10055 pp->p_fsdata = C_NOCOMMIT; 10056 } while ((pp = pp->p_next) != savepp); 10057 10058 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10059 10060 /* 10061 * In case of error set readahead offset 10062 * to the lowest offset. 10063 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10064 */ 10065 if (error && rp->r_nextr > io_off) { 10066 mutex_enter(&rp->r_statelock); 10067 if (rp->r_nextr > io_off) 10068 rp->r_nextr = io_off; 10069 mutex_exit(&rp->r_statelock); 10070 } 10071 } 10072 10073 /* 10074 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10075 * If len == 0, do from off to EOF. 10076 * 10077 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10078 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10079 * (from pageout). 10080 */ 10081 static int 10082 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 10083 { 10084 int error; 10085 rnode4_t *rp; 10086 10087 ASSERT(cr != NULL); 10088 10089 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10090 return (EIO); 10091 10092 rp = VTOR4(vp); 10093 if (IS_SHADOW(vp, rp)) 10094 vp = RTOV4(rp); 10095 10096 /* 10097 * XXX - Why should this check be made here? 10098 */ 10099 if (vp->v_flag & VNOMAP) 10100 return (ENOSYS); 10101 10102 if (len == 0 && !(flags & B_INVAL) && 10103 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10104 return (0); 10105 10106 mutex_enter(&rp->r_statelock); 10107 rp->r_count++; 10108 mutex_exit(&rp->r_statelock); 10109 error = nfs4_putpages(vp, off, len, flags, cr); 10110 mutex_enter(&rp->r_statelock); 10111 rp->r_count--; 10112 cv_broadcast(&rp->r_cv); 10113 mutex_exit(&rp->r_statelock); 10114 10115 return (error); 10116 } 10117 10118 /* 10119 * Write out a single page, possibly klustering adjacent dirty pages. 10120 */ 10121 int 10122 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10123 int flags, cred_t *cr) 10124 { 10125 u_offset_t io_off; 10126 u_offset_t lbn_off; 10127 u_offset_t lbn; 10128 size_t io_len; 10129 uint_t bsize; 10130 int error; 10131 rnode4_t *rp; 10132 10133 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10134 ASSERT(pp != NULL); 10135 ASSERT(cr != NULL); 10136 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10137 10138 rp = VTOR4(vp); 10139 ASSERT(rp->r_count > 0); 10140 ASSERT(!IS_SHADOW(vp, rp)); 10141 10142 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10143 lbn = pp->p_offset / bsize; 10144 lbn_off = lbn * bsize; 10145 10146 /* 10147 * Find a kluster that fits in one block, or in 10148 * one page if pages are bigger than blocks. If 10149 * there is less file space allocated than a whole 10150 * page, we'll shorten the i/o request below. 10151 */ 10152 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10153 roundup(bsize, PAGESIZE), flags); 10154 10155 /* 10156 * pvn_write_kluster shouldn't have returned a page with offset 10157 * behind the original page we were given. Verify that. 10158 */ 10159 ASSERT((pp->p_offset / bsize) >= lbn); 10160 10161 /* 10162 * Now pp will have the list of kept dirty pages marked for 10163 * write back. It will also handle invalidation and freeing 10164 * of pages that are not dirty. Check for page length rounding 10165 * problems. 10166 */ 10167 if (io_off + io_len > lbn_off + bsize) { 10168 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10169 io_len = lbn_off + bsize - io_off; 10170 } 10171 /* 10172 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10173 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10174 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10175 * progress and the r_size has not been made consistent with the 10176 * new size of the file. When the uiomove() completes the r_size is 10177 * updated and the R4MODINPROGRESS flag is cleared. 10178 * 10179 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10180 * consistent value of r_size. Without this handshaking, it is 10181 * possible that nfs4_bio() picks up the old value of r_size 10182 * before the uiomove() in writerp4() completes. This will result 10183 * in the write through nfs4_bio() being dropped. 10184 * 10185 * More precisely, there is a window between the time the uiomove() 10186 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10187 * operation intervenes in this window, the page will be picked up, 10188 * because it is dirty (it will be unlocked, unless it was 10189 * pagecreate'd). When the page is picked up as dirty, the dirty 10190 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10191 * checked. This will still be the old size. Therefore the page will 10192 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10193 * the page will be found to be clean and the write will be dropped. 10194 */ 10195 if (rp->r_flags & R4MODINPROGRESS) { 10196 mutex_enter(&rp->r_statelock); 10197 if ((rp->r_flags & R4MODINPROGRESS) && 10198 rp->r_modaddr + MAXBSIZE > io_off && 10199 rp->r_modaddr < io_off + io_len) { 10200 page_t *plist; 10201 /* 10202 * A write is in progress for this region of the file. 10203 * If we did not detect R4MODINPROGRESS here then this 10204 * path through nfs_putapage() would eventually go to 10205 * nfs4_bio() and may not write out all of the data 10206 * in the pages. We end up losing data. So we decide 10207 * to set the modified bit on each page in the page 10208 * list and mark the rnode with R4DIRTY. This write 10209 * will be restarted at some later time. 10210 */ 10211 plist = pp; 10212 while (plist != NULL) { 10213 pp = plist; 10214 page_sub(&plist, pp); 10215 hat_setmod(pp); 10216 page_io_unlock(pp); 10217 page_unlock(pp); 10218 } 10219 rp->r_flags |= R4DIRTY; 10220 mutex_exit(&rp->r_statelock); 10221 if (offp) 10222 *offp = io_off; 10223 if (lenp) 10224 *lenp = io_len; 10225 return (0); 10226 } 10227 mutex_exit(&rp->r_statelock); 10228 } 10229 10230 if (flags & B_ASYNC) { 10231 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10232 nfs4_sync_putapage); 10233 } else 10234 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10235 10236 if (offp) 10237 *offp = io_off; 10238 if (lenp) 10239 *lenp = io_len; 10240 return (error); 10241 } 10242 10243 static int 10244 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10245 int flags, cred_t *cr) 10246 { 10247 int error; 10248 rnode4_t *rp; 10249 10250 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10251 10252 flags |= B_WRITE; 10253 10254 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10255 10256 rp = VTOR4(vp); 10257 10258 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10259 error == EACCES) && 10260 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10261 if (!(rp->r_flags & R4OUTOFSPACE)) { 10262 mutex_enter(&rp->r_statelock); 10263 rp->r_flags |= R4OUTOFSPACE; 10264 mutex_exit(&rp->r_statelock); 10265 } 10266 flags |= B_ERROR; 10267 pvn_write_done(pp, flags); 10268 /* 10269 * If this was not an async thread, then try again to 10270 * write out the pages, but this time, also destroy 10271 * them whether or not the write is successful. This 10272 * will prevent memory from filling up with these 10273 * pages and destroying them is the only alternative 10274 * if they can't be written out. 10275 * 10276 * Don't do this if this is an async thread because 10277 * when the pages are unlocked in pvn_write_done, 10278 * some other thread could have come along, locked 10279 * them, and queued for an async thread. It would be 10280 * possible for all of the async threads to be tied 10281 * up waiting to lock the pages again and they would 10282 * all already be locked and waiting for an async 10283 * thread to handle them. Deadlock. 10284 */ 10285 if (!(flags & B_ASYNC)) { 10286 error = nfs4_putpage(vp, io_off, io_len, 10287 B_INVAL | B_FORCE, cr); 10288 } 10289 } else { 10290 if (error) 10291 flags |= B_ERROR; 10292 else if (rp->r_flags & R4OUTOFSPACE) { 10293 mutex_enter(&rp->r_statelock); 10294 rp->r_flags &= ~R4OUTOFSPACE; 10295 mutex_exit(&rp->r_statelock); 10296 } 10297 pvn_write_done(pp, flags); 10298 if (freemem < desfree) 10299 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10300 NFS4_WRITE_NOWAIT); 10301 } 10302 10303 return (error); 10304 } 10305 10306 #ifdef DEBUG 10307 int nfs4_force_open_before_mmap = 0; 10308 #endif 10309 10310 static int 10311 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10312 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 10313 { 10314 struct segvn_crargs vn_a; 10315 int error = 0; 10316 rnode4_t *rp = VTOR4(vp); 10317 mntinfo4_t *mi = VTOMI4(vp); 10318 10319 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10320 return (EIO); 10321 10322 if (vp->v_flag & VNOMAP) 10323 return (ENOSYS); 10324 10325 if (off < 0 || (off + len) < 0) 10326 return (ENXIO); 10327 10328 if (vp->v_type != VREG) 10329 return (ENODEV); 10330 10331 /* 10332 * If the file is delegated to the client don't do anything. 10333 * If the file is not delegated, then validate the data cache. 10334 */ 10335 mutex_enter(&rp->r_statev4_lock); 10336 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10337 mutex_exit(&rp->r_statev4_lock); 10338 error = nfs4_validate_caches(vp, cr); 10339 if (error) 10340 return (error); 10341 } else { 10342 mutex_exit(&rp->r_statev4_lock); 10343 } 10344 10345 /* 10346 * Check to see if the vnode is currently marked as not cachable. 10347 * This means portions of the file are locked (through VOP_FRLOCK). 10348 * In this case the map request must be refused. We use 10349 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10350 */ 10351 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 10352 return (EINTR); 10353 10354 if (vp->v_flag & VNOCACHE) { 10355 error = EAGAIN; 10356 goto done; 10357 } 10358 10359 /* 10360 * Don't allow concurrent locks and mapping if mandatory locking is 10361 * enabled. 10362 */ 10363 if (flk_has_remote_locks(vp)) { 10364 struct vattr va; 10365 va.va_mask = AT_MODE; 10366 error = nfs4getattr(vp, &va, cr); 10367 if (error != 0) 10368 goto done; 10369 if (MANDLOCK(vp, va.va_mode)) { 10370 error = EAGAIN; 10371 goto done; 10372 } 10373 } 10374 10375 /* 10376 * It is possible that the rnode has a lost lock request that we 10377 * are still trying to recover, and that the request conflicts with 10378 * this map request. 10379 * 10380 * An alternative approach would be for nfs4_safemap() to consider 10381 * queued lock requests when deciding whether to set or clear 10382 * VNOCACHE. This would require the frlock code path to call 10383 * nfs4_safemap() after enqueing a lost request. 10384 */ 10385 if (nfs4_map_lost_lock_conflict(vp)) { 10386 error = EAGAIN; 10387 goto done; 10388 } 10389 10390 as_rangelock(as); 10391 if (!(flags & MAP_FIXED)) { 10392 map_addr(addrp, len, off, 1, flags); 10393 if (*addrp == NULL) { 10394 as_rangeunlock(as); 10395 error = ENOMEM; 10396 goto done; 10397 } 10398 } else { 10399 /* 10400 * User specified address - blow away any previous mappings 10401 */ 10402 (void) as_unmap(as, *addrp, len); 10403 } 10404 10405 if (vp->v_type == VREG) { 10406 /* 10407 * We need to retrieve the open stream 10408 */ 10409 nfs4_open_stream_t *osp = NULL; 10410 nfs4_open_owner_t *oop = NULL; 10411 10412 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10413 if (oop != NULL) { 10414 /* returns with 'os_sync_lock' held */ 10415 osp = find_open_stream(oop, rp); 10416 open_owner_rele(oop); 10417 } 10418 if (osp == NULL) { 10419 #ifdef DEBUG 10420 if (nfs4_force_open_before_mmap) { 10421 error = EIO; 10422 goto done; 10423 } 10424 #endif 10425 /* returns with 'os_sync_lock' held */ 10426 error = open_and_get_osp(vp, cr, &osp); 10427 if (osp == NULL) { 10428 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10429 "nfs4_map: we tried to OPEN the file " 10430 "but again no osp, so fail with EIO")); 10431 goto done; 10432 } 10433 } 10434 10435 if (osp->os_failed_reopen) { 10436 mutex_exit(&osp->os_sync_lock); 10437 open_stream_rele(osp, rp); 10438 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10439 "nfs4_map: os_failed_reopen set on " 10440 "osp %p, cr %p, rp %s", (void *)osp, 10441 (void *)cr, rnode4info(rp))); 10442 error = EIO; 10443 goto done; 10444 } 10445 mutex_exit(&osp->os_sync_lock); 10446 open_stream_rele(osp, rp); 10447 } 10448 10449 vn_a.vp = vp; 10450 vn_a.offset = off; 10451 vn_a.type = (flags & MAP_TYPE); 10452 vn_a.prot = (uchar_t)prot; 10453 vn_a.maxprot = (uchar_t)maxprot; 10454 vn_a.flags = (flags & ~MAP_TYPE); 10455 vn_a.cred = cr; 10456 vn_a.amp = NULL; 10457 vn_a.szc = 0; 10458 vn_a.lgrp_mem_policy_flags = 0; 10459 10460 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10461 as_rangeunlock(as); 10462 10463 done: 10464 nfs_rw_exit(&rp->r_lkserlock); 10465 return (error); 10466 } 10467 10468 /* 10469 * We're most likely dealing with a kernel module that likes to READ 10470 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10471 * officially OPEN the file to create the necessary client state 10472 * for bookkeeping of os_mmap_read/write counts. 10473 * 10474 * Since VOP_MAP only passes in a pointer to the vnode rather than 10475 * a double pointer, we can't handle the case where nfs4open_otw() 10476 * returns a different vnode than the one passed into VOP_MAP (since 10477 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10478 * we return NULL and let nfs4_map() fail. Note: the only case where 10479 * this should happen is if the file got removed and replaced with the 10480 * same name on the server (in addition to the fact that we're trying 10481 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10482 */ 10483 static int 10484 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10485 { 10486 rnode4_t *rp, *drp; 10487 vnode_t *dvp, *open_vp; 10488 char file_name[MAXNAMELEN]; 10489 int just_created; 10490 nfs4_open_stream_t *osp; 10491 nfs4_open_owner_t *oop; 10492 int error; 10493 10494 *ospp = NULL; 10495 open_vp = map_vp; 10496 10497 rp = VTOR4(open_vp); 10498 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10499 return (error); 10500 drp = VTOR4(dvp); 10501 10502 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10503 VN_RELE(dvp); 10504 return (EINTR); 10505 } 10506 10507 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10508 nfs_rw_exit(&drp->r_rwlock); 10509 VN_RELE(dvp); 10510 return (error); 10511 } 10512 10513 mutex_enter(&rp->r_statev4_lock); 10514 if (rp->created_v4) { 10515 rp->created_v4 = 0; 10516 mutex_exit(&rp->r_statev4_lock); 10517 10518 dnlc_update(dvp, file_name, open_vp); 10519 /* This is needed so we don't bump the open ref count */ 10520 just_created = 1; 10521 } else { 10522 mutex_exit(&rp->r_statev4_lock); 10523 just_created = 0; 10524 } 10525 10526 VN_HOLD(map_vp); 10527 10528 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10529 just_created); 10530 if (error) { 10531 nfs_rw_exit(&drp->r_rwlock); 10532 VN_RELE(dvp); 10533 VN_RELE(map_vp); 10534 return (error); 10535 } 10536 10537 nfs_rw_exit(&drp->r_rwlock); 10538 VN_RELE(dvp); 10539 10540 /* 10541 * If nfs4open_otw() returned a different vnode then "undo" 10542 * the open and return failure to the caller. 10543 */ 10544 if (!VN_CMP(open_vp, map_vp)) { 10545 nfs4_error_t e; 10546 10547 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10548 "open returned a different vnode")); 10549 /* 10550 * If there's an error, ignore it, 10551 * and let VOP_INACTIVE handle it. 10552 */ 10553 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10554 CLOSE_NORM, 0, 0, 0); 10555 VN_RELE(map_vp); 10556 return (EIO); 10557 } 10558 10559 VN_RELE(map_vp); 10560 10561 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10562 if (!oop) { 10563 nfs4_error_t e; 10564 10565 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10566 "no open owner")); 10567 /* 10568 * If there's an error, ignore it, 10569 * and let VOP_INACTIVE handle it. 10570 */ 10571 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10572 CLOSE_NORM, 0, 0, 0); 10573 return (EIO); 10574 } 10575 osp = find_open_stream(oop, rp); 10576 open_owner_rele(oop); 10577 *ospp = osp; 10578 return (0); 10579 } 10580 10581 /* 10582 * Please be aware that when this function is called, the address space write 10583 * a_lock is held. Do not put over the wire calls in this function. 10584 */ 10585 /* ARGSUSED */ 10586 static int 10587 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10588 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 10589 { 10590 rnode4_t *rp; 10591 int error = 0; 10592 mntinfo4_t *mi; 10593 10594 mi = VTOMI4(vp); 10595 rp = VTOR4(vp); 10596 10597 if (nfs_zone() != mi->mi_zone) 10598 return (EIO); 10599 if (vp->v_flag & VNOMAP) 10600 return (ENOSYS); 10601 10602 /* 10603 * Need to hold rwlock while incrementing the mapcnt so that 10604 * mmap'ing can be serialized with writes so that the caching 10605 * can be handled correctly. 10606 * 10607 * Don't need to update the open stream first, since this 10608 * mmap can't add any additional share access that isn't 10609 * already contained in the open stream (for the case where we 10610 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10611 * take into account os_mmap_read[write] counts). 10612 */ 10613 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 10614 return (EINTR); 10615 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10616 nfs_rw_exit(&rp->r_rwlock); 10617 10618 if (vp->v_type == VREG) { 10619 /* 10620 * We need to retrieve the open stream and update the counts. 10621 * If there is no open stream here, something is wrong. 10622 */ 10623 nfs4_open_stream_t *osp = NULL; 10624 nfs4_open_owner_t *oop = NULL; 10625 10626 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10627 if (oop != NULL) { 10628 /* returns with 'os_sync_lock' held */ 10629 osp = find_open_stream(oop, rp); 10630 open_owner_rele(oop); 10631 } 10632 if (osp == NULL) { 10633 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10634 "nfs4_addmap: we should have an osp" 10635 "but we don't, so fail with EIO")); 10636 error = EIO; 10637 goto out; 10638 } 10639 10640 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10641 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10642 10643 /* 10644 * Update the map count in the open stream. 10645 * This is necessary in the case where we 10646 * open/mmap/close/, then the server reboots, and we 10647 * attempt to reopen. If the mmap doesn't add share 10648 * access then we send an invalid reopen with 10649 * access = NONE. 10650 * 10651 * We need to specifically check each PROT_* so a mmap 10652 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10653 * read and write access. A simple comparison of prot 10654 * to ~PROT_WRITE to determine read access is insufficient 10655 * since prot can be |= with PROT_USER, etc. 10656 */ 10657 10658 /* 10659 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10660 */ 10661 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10662 osp->os_mmap_write += btopr(len); 10663 if (maxprot & PROT_READ) 10664 osp->os_mmap_read += btopr(len); 10665 if (maxprot & PROT_EXEC) 10666 osp->os_mmap_read += btopr(len); 10667 /* 10668 * Ensure that os_mmap_read gets incremented, even if 10669 * maxprot were to look like PROT_NONE. 10670 */ 10671 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10672 !(maxprot & PROT_EXEC)) 10673 osp->os_mmap_read += btopr(len); 10674 osp->os_mapcnt += btopr(len); 10675 mutex_exit(&osp->os_sync_lock); 10676 open_stream_rele(osp, rp); 10677 } 10678 10679 out: 10680 /* 10681 * If we got an error, then undo our 10682 * incrementing of 'r_mapcnt'. 10683 */ 10684 10685 if (error) { 10686 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10687 ASSERT(rp->r_mapcnt >= 0); 10688 } 10689 return (error); 10690 } 10691 10692 static int 10693 nfs4_cmp(vnode_t *vp1, vnode_t *vp2) 10694 { 10695 10696 return (VTOR4(vp1) == VTOR4(vp2)); 10697 } 10698 10699 static int 10700 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10701 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr) 10702 { 10703 int rc; 10704 u_offset_t start, end; 10705 rnode4_t *rp; 10706 int error = 0, intr = INTR4(vp); 10707 nfs4_error_t e; 10708 10709 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10710 return (EIO); 10711 10712 /* check for valid cmd parameter */ 10713 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10714 return (EINVAL); 10715 10716 /* Verify l_type. */ 10717 switch (bfp->l_type) { 10718 case F_RDLCK: 10719 if (cmd != F_GETLK && !(flag & FREAD)) 10720 return (EBADF); 10721 break; 10722 case F_WRLCK: 10723 if (cmd != F_GETLK && !(flag & FWRITE)) 10724 return (EBADF); 10725 break; 10726 case F_UNLCK: 10727 intr = 0; 10728 break; 10729 10730 default: 10731 return (EINVAL); 10732 } 10733 10734 /* check the validity of the lock range */ 10735 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10736 return (rc); 10737 if (rc = flk_check_lock_data(start, end, MAXEND)) 10738 return (rc); 10739 10740 /* 10741 * If the filesystem is mounted using local locking, pass the 10742 * request off to the local locking code. 10743 */ 10744 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10745 if (cmd == F_SETLK || cmd == F_SETLKW) { 10746 /* 10747 * For complete safety, we should be holding 10748 * r_lkserlock. However, we can't call 10749 * nfs4_safelock and then fs_frlock while 10750 * holding r_lkserlock, so just invoke 10751 * nfs4_safelock and expect that this will 10752 * catch enough of the cases. 10753 */ 10754 if (!nfs4_safelock(vp, bfp, cr)) 10755 return (EAGAIN); 10756 } 10757 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 10758 } 10759 10760 rp = VTOR4(vp); 10761 10762 /* 10763 * Check whether the given lock request can proceed, given the 10764 * current file mappings. 10765 */ 10766 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10767 return (EINTR); 10768 if (cmd == F_SETLK || cmd == F_SETLKW) { 10769 if (!nfs4_safelock(vp, bfp, cr)) { 10770 rc = EAGAIN; 10771 goto done; 10772 } 10773 } 10774 10775 /* 10776 * Flush the cache after waiting for async I/O to finish. For new 10777 * locks, this is so that the process gets the latest bits from the 10778 * server. For unlocks, this is so that other clients see the 10779 * latest bits once the file has been unlocked. If currently dirty 10780 * pages can't be flushed, then don't allow a lock to be set. But 10781 * allow unlocks to succeed, to avoid having orphan locks on the 10782 * server. 10783 */ 10784 if (cmd != F_GETLK) { 10785 mutex_enter(&rp->r_statelock); 10786 while (rp->r_count > 0) { 10787 if (intr) { 10788 klwp_t *lwp = ttolwp(curthread); 10789 10790 if (lwp != NULL) 10791 lwp->lwp_nostop++; 10792 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) == 0) { 10793 if (lwp != NULL) 10794 lwp->lwp_nostop--; 10795 rc = EINTR; 10796 break; 10797 } 10798 if (lwp != NULL) 10799 lwp->lwp_nostop--; 10800 } else 10801 cv_wait(&rp->r_cv, &rp->r_statelock); 10802 } 10803 mutex_exit(&rp->r_statelock); 10804 if (rc != 0) 10805 goto done; 10806 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr); 10807 if (error) { 10808 if (error == ENOSPC || error == EDQUOT) { 10809 mutex_enter(&rp->r_statelock); 10810 if (!rp->r_error) 10811 rp->r_error = error; 10812 mutex_exit(&rp->r_statelock); 10813 } 10814 if (bfp->l_type != F_UNLCK) { 10815 rc = ENOLCK; 10816 goto done; 10817 } 10818 } 10819 } 10820 10821 /* 10822 * Call the lock manager to do the real work of contacting 10823 * the server and obtaining the lock. 10824 */ 10825 10826 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10827 cr, &e, NULL, NULL); 10828 rc = e.error; 10829 10830 if (rc == 0) 10831 nfs4_lockcompletion(vp, cmd); 10832 10833 done: 10834 nfs_rw_exit(&rp->r_lkserlock); 10835 10836 return (rc); 10837 } 10838 10839 /* 10840 * Free storage space associated with the specified vnode. The portion 10841 * to be freed is specified by bfp->l_start and bfp->l_len (already 10842 * normalized to a "whence" of 0). 10843 * 10844 * This is an experimental facility whose continued existence is not 10845 * guaranteed. Currently, we only support the special case 10846 * of l_len == 0, meaning free to end of file. 10847 */ 10848 /* ARGSUSED */ 10849 static int 10850 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10851 offset_t offset, cred_t *cr, caller_context_t *ct) 10852 { 10853 int error; 10854 10855 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10856 return (EIO); 10857 ASSERT(vp->v_type == VREG); 10858 if (cmd != F_FREESP) 10859 return (EINVAL); 10860 10861 error = convoff(vp, bfp, 0, offset); 10862 if (!error) { 10863 ASSERT(bfp->l_start >= 0); 10864 if (bfp->l_len == 0) { 10865 struct vattr va; 10866 10867 va.va_mask = AT_SIZE; 10868 va.va_size = bfp->l_start; 10869 error = nfs4setattr(vp, &va, 0, cr, NULL); 10870 } else 10871 error = EINVAL; 10872 } 10873 10874 return (error); 10875 } 10876 10877 /* ARGSUSED */ 10878 static int 10879 nfs4_realvp(vnode_t *vp, vnode_t **vpp) 10880 { 10881 rnode4_t *rp; 10882 rp = VTOR4(vp); 10883 10884 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 10885 vp = RTOV4(rp); 10886 } 10887 *vpp = vp; 10888 return (0); 10889 } 10890 10891 /* 10892 * Setup and add an address space callback to do the work of the delmap call. 10893 * The callback will (and must be) deleted in the actual callback function. 10894 * 10895 * This is done in order to take care of the problem that we have with holding 10896 * the address space's a_lock for a long period of time (e.g. if the NFS server 10897 * is down). Callbacks will be executed in the address space code while the 10898 * a_lock is not held. Holding the address space's a_lock causes things such 10899 * as ps and fork to hang because they are trying to acquire this lock as well. 10900 */ 10901 /* ARGSUSED */ 10902 static int 10903 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10904 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 10905 { 10906 int caller_found; 10907 int error; 10908 rnode4_t *rp; 10909 nfs4_delmap_args_t *dmapp; 10910 nfs4_delmapcall_t *delmap_call; 10911 10912 if (vp->v_flag & VNOMAP) 10913 return (ENOSYS); 10914 10915 /* 10916 * A process may not change zones if it has NFS pages mmap'ed 10917 * in, so we can't legitimately get here from the wrong zone. 10918 */ 10919 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10920 10921 rp = VTOR4(vp); 10922 10923 /* 10924 * The way that the address space of this process deletes its mapping 10925 * of this file is via the following call chains: 10926 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10927 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10928 * 10929 * With the use of address space callbacks we are allowed to drop the 10930 * address space lock, a_lock, while executing the NFS operations that 10931 * need to go over the wire. Returning EAGAIN to the caller of this 10932 * function is what drives the execution of the callback that we add 10933 * below. The callback will be executed by the address space code 10934 * after dropping the a_lock. When the callback is finished, since 10935 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 10936 * is called again on the same segment to finish the rest of the work 10937 * that needs to happen during unmapping. 10938 * 10939 * This action of calling back into the segment driver causes 10940 * nfs4_delmap() to get called again, but since the callback was 10941 * already executed at this point, it already did the work and there 10942 * is nothing left for us to do. 10943 * 10944 * To Summarize: 10945 * - The first time nfs4_delmap is called by the current thread is when 10946 * we add the caller associated with this delmap to the delmap caller 10947 * list, add the callback, and return EAGAIN. 10948 * - The second time in this call chain when nfs4_delmap is called we 10949 * will find this caller in the delmap caller list and realize there 10950 * is no more work to do thus removing this caller from the list and 10951 * returning the error that was set in the callback execution. 10952 */ 10953 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 10954 if (caller_found) { 10955 /* 10956 * 'error' is from the actual delmap operations. To avoid 10957 * hangs, we need to handle the return of EAGAIN differently 10958 * since this is what drives the callback execution. 10959 * In this case, we don't want to return EAGAIN and do the 10960 * callback execution because there are none to execute. 10961 */ 10962 if (error == EAGAIN) 10963 return (0); 10964 else 10965 return (error); 10966 } 10967 10968 /* current caller was not in the list */ 10969 delmap_call = nfs4_init_delmapcall(); 10970 10971 mutex_enter(&rp->r_statelock); 10972 list_insert_tail(&rp->r_indelmap, delmap_call); 10973 mutex_exit(&rp->r_statelock); 10974 10975 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 10976 10977 dmapp->vp = vp; 10978 dmapp->off = off; 10979 dmapp->addr = addr; 10980 dmapp->len = len; 10981 dmapp->prot = prot; 10982 dmapp->maxprot = maxprot; 10983 dmapp->flags = flags; 10984 dmapp->cr = cr; 10985 dmapp->caller = delmap_call; 10986 10987 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 10988 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 10989 10990 return (error ? error : EAGAIN); 10991 } 10992 10993 static nfs4_delmapcall_t * 10994 nfs4_init_delmapcall() 10995 { 10996 nfs4_delmapcall_t *delmap_call; 10997 10998 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 10999 delmap_call->call_id = curthread; 11000 delmap_call->error = 0; 11001 11002 return (delmap_call); 11003 } 11004 11005 static void 11006 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11007 { 11008 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11009 } 11010 11011 /* 11012 * Searches for the current delmap caller (based on curthread) in the list of 11013 * callers. If it is found, we remove it and free the delmap caller. 11014 * Returns: 11015 * 0 if the caller wasn't found 11016 * 1 if the caller was found, removed and freed. *errp will be set 11017 * to what the result of the delmap was. 11018 */ 11019 static int 11020 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11021 { 11022 nfs4_delmapcall_t *delmap_call; 11023 11024 /* 11025 * If the list doesn't exist yet, we create it and return 11026 * that the caller wasn't found. No list = no callers. 11027 */ 11028 mutex_enter(&rp->r_statelock); 11029 if (!(rp->r_flags & R4DELMAPLIST)) { 11030 /* The list does not exist */ 11031 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11032 offsetof(nfs4_delmapcall_t, call_node)); 11033 rp->r_flags |= R4DELMAPLIST; 11034 mutex_exit(&rp->r_statelock); 11035 return (0); 11036 } else { 11037 /* The list exists so search it */ 11038 for (delmap_call = list_head(&rp->r_indelmap); 11039 delmap_call != NULL; 11040 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11041 if (delmap_call->call_id == curthread) { 11042 /* current caller is in the list */ 11043 *errp = delmap_call->error; 11044 list_remove(&rp->r_indelmap, delmap_call); 11045 mutex_exit(&rp->r_statelock); 11046 nfs4_free_delmapcall(delmap_call); 11047 return (1); 11048 } 11049 } 11050 } 11051 mutex_exit(&rp->r_statelock); 11052 return (0); 11053 } 11054 11055 /* 11056 * Remove some pages from an mmap'd vnode. Just update the 11057 * count of pages. If doing close-to-open, then flush and 11058 * commit all of the pages associated with this file. 11059 * Otherwise, start an asynchronous page flush to write out 11060 * any dirty pages. This will also associate a credential 11061 * with the rnode which can be used to write the pages. 11062 */ 11063 /* ARGSUSED */ 11064 static void 11065 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11066 { 11067 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11068 rnode4_t *rp; 11069 mntinfo4_t *mi; 11070 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11071 11072 rp = VTOR4(dmapp->vp); 11073 mi = VTOMI4(dmapp->vp); 11074 11075 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11076 ASSERT(rp->r_mapcnt >= 0); 11077 11078 /* 11079 * Initiate a page flush and potential commit if there are 11080 * pages, the file system was not mounted readonly, the segment 11081 * was mapped shared, and the pages themselves were writeable. 11082 */ 11083 if (nfs4_has_pages(dmapp->vp) && 11084 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11085 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11086 mutex_enter(&rp->r_statelock); 11087 rp->r_flags |= R4DIRTY; 11088 mutex_exit(&rp->r_statelock); 11089 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11090 dmapp->len, dmapp->cr); 11091 if (!e.error) { 11092 mutex_enter(&rp->r_statelock); 11093 e.error = rp->r_error; 11094 rp->r_error = 0; 11095 mutex_exit(&rp->r_statelock); 11096 } 11097 } else 11098 e.error = 0; 11099 11100 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11101 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11102 B_INVAL, dmapp->cr); 11103 11104 if (e.error) { 11105 e.stat = puterrno4(e.error); 11106 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11107 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11108 dmapp->caller->error = e.error; 11109 } 11110 11111 /* Check to see if we need to close the file */ 11112 11113 if (dmapp->vp->v_type == VREG) { 11114 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11115 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11116 11117 if (e.error != 0 || e.stat != NFS4_OK) { 11118 /* 11119 * Since it is possible that e.error == 0 and 11120 * e.stat != NFS4_OK (and vice versa), 11121 * we do the proper checking in order to get both 11122 * e.error and e.stat reporting the correct info. 11123 */ 11124 if (e.stat == NFS4_OK) 11125 e.stat = puterrno4(e.error); 11126 if (e.error == 0) 11127 e.error = geterrno4(e.stat); 11128 11129 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11130 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11131 dmapp->caller->error = e.error; 11132 } 11133 } 11134 11135 (void) as_delete_callback(as, arg); 11136 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11137 } 11138 11139 11140 static uint_t 11141 fattr4_maxfilesize_to_bits(uint64_t ll) 11142 { 11143 uint_t l = 1; 11144 11145 if (ll == 0) { 11146 return (0); 11147 } 11148 11149 if (ll & 0xffffffff00000000) { 11150 l += 32; ll >>= 32; 11151 } 11152 if (ll & 0xffff0000) { 11153 l += 16; ll >>= 16; 11154 } 11155 if (ll & 0xff00) { 11156 l += 8; ll >>= 8; 11157 } 11158 if (ll & 0xf0) { 11159 l += 4; ll >>= 4; 11160 } 11161 if (ll & 0xc) { 11162 l += 2; ll >>= 2; 11163 } 11164 if (ll & 0x2) { 11165 l += 1; 11166 } 11167 return (l); 11168 } 11169 11170 static int 11171 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 11172 { 11173 int error; 11174 hrtime_t t; 11175 rnode4_t *rp; 11176 nfs4_ga_res_t gar; 11177 nfs4_ga_ext_res_t ger; 11178 11179 gar.n4g_ext_res = &ger; 11180 11181 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11182 return (EIO); 11183 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11184 *valp = MAXPATHLEN; 11185 return (0); 11186 } 11187 if (cmd == _PC_ACL_ENABLED) { 11188 *valp = _ACL_ACE_ENABLED; 11189 return (0); 11190 } 11191 11192 rp = VTOR4(vp); 11193 if (cmd == _PC_XATTR_EXISTS) { 11194 /* 11195 * Eventually should attempt small client readdir before 11196 * going otw with GETATTR(FATTR4_NAMED_ATTR). For now 11197 * just drive the OTW getattr. This is required because 11198 * _PC_XATTR_EXISTS can only return true if attributes 11199 * exist -- simply checking for existance of the attrdir 11200 * is not sufficient. 11201 * 11202 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11203 * is NULL. Once the xadir vp exists, we can create xattrs, 11204 * and we don't have any way to update the "base" object's 11205 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11206 * could help out. 11207 */ 11208 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11209 rp->r_xattr_dir == NULL) { 11210 *valp = rp->r_pathconf.pc4_xattr_exists; 11211 return (0); 11212 } 11213 } else { /* OLD CODE */ 11214 if (ATTRCACHE4_VALID(vp)) { 11215 mutex_enter(&rp->r_statelock); 11216 if (rp->r_pathconf.pc4_cache_valid) { 11217 error = 0; 11218 switch (cmd) { 11219 case _PC_FILESIZEBITS: 11220 *valp = 11221 rp->r_pathconf.pc4_filesizebits; 11222 break; 11223 case _PC_LINK_MAX: 11224 *valp = 11225 rp->r_pathconf.pc4_link_max; 11226 break; 11227 case _PC_NAME_MAX: 11228 *valp = 11229 rp->r_pathconf.pc4_name_max; 11230 break; 11231 case _PC_CHOWN_RESTRICTED: 11232 *valp = 11233 rp->r_pathconf.pc4_chown_restricted; 11234 break; 11235 case _PC_NO_TRUNC: 11236 *valp = 11237 rp->r_pathconf.pc4_no_trunc; 11238 break; 11239 default: 11240 error = EINVAL; 11241 break; 11242 } 11243 mutex_exit(&rp->r_statelock); 11244 #ifdef DEBUG 11245 nfs4_pathconf_cache_hits++; 11246 #endif 11247 return (error); 11248 } 11249 mutex_exit(&rp->r_statelock); 11250 } 11251 } 11252 #ifdef DEBUG 11253 nfs4_pathconf_cache_misses++; 11254 #endif 11255 11256 t = gethrtime(); 11257 11258 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11259 11260 if (error) { 11261 mutex_enter(&rp->r_statelock); 11262 rp->r_pathconf.pc4_cache_valid = FALSE; 11263 rp->r_pathconf.pc4_xattr_valid = FALSE; 11264 mutex_exit(&rp->r_statelock); 11265 return (error); 11266 } 11267 11268 /* interpret the max filesize */ 11269 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11270 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11271 11272 /* Store the attributes we just received */ 11273 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11274 11275 switch (cmd) { 11276 case _PC_FILESIZEBITS: 11277 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11278 break; 11279 case _PC_LINK_MAX: 11280 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11281 break; 11282 case _PC_NAME_MAX: 11283 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11284 break; 11285 case _PC_CHOWN_RESTRICTED: 11286 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11287 break; 11288 case _PC_NO_TRUNC: 11289 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11290 break; 11291 case _PC_XATTR_EXISTS: 11292 *valp = gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists; 11293 break; 11294 default: 11295 return (EINVAL); 11296 } 11297 11298 return (0); 11299 } 11300 11301 /* 11302 * Called by async thread to do synchronous pageio. Do the i/o, wait 11303 * for it to complete, and cleanup the page list when done. 11304 */ 11305 static int 11306 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11307 int flags, cred_t *cr) 11308 { 11309 int error; 11310 11311 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11312 11313 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11314 if (flags & B_READ) 11315 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11316 else 11317 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11318 return (error); 11319 } 11320 11321 static int 11322 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11323 int flags, cred_t *cr) 11324 { 11325 int error; 11326 rnode4_t *rp; 11327 11328 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11329 return (EIO); 11330 11331 if (pp == NULL) 11332 return (EINVAL); 11333 11334 rp = VTOR4(vp); 11335 mutex_enter(&rp->r_statelock); 11336 rp->r_count++; 11337 mutex_exit(&rp->r_statelock); 11338 11339 if (flags & B_ASYNC) { 11340 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11341 nfs4_sync_pageio); 11342 } else 11343 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11344 mutex_enter(&rp->r_statelock); 11345 rp->r_count--; 11346 cv_broadcast(&rp->r_cv); 11347 mutex_exit(&rp->r_statelock); 11348 return (error); 11349 } 11350 11351 static void 11352 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr) 11353 { 11354 int error; 11355 rnode4_t *rp; 11356 page_t *plist; 11357 page_t *pptr; 11358 offset3 offset; 11359 count3 len; 11360 k_sigset_t smask; 11361 11362 /* 11363 * We should get called with fl equal to either B_FREE or 11364 * B_INVAL. Any other value is illegal. 11365 * 11366 * The page that we are either supposed to free or destroy 11367 * should be exclusive locked and its io lock should not 11368 * be held. 11369 */ 11370 ASSERT(fl == B_FREE || fl == B_INVAL); 11371 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11372 11373 rp = VTOR4(vp); 11374 11375 /* 11376 * If the page doesn't need to be committed or we shouldn't 11377 * even bother attempting to commit it, then just make sure 11378 * that the p_fsdata byte is clear and then either free or 11379 * destroy the page as appropriate. 11380 */ 11381 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11382 pp->p_fsdata = C_NOCOMMIT; 11383 if (fl == B_FREE) 11384 page_free(pp, dn); 11385 else 11386 page_destroy(pp, dn); 11387 return; 11388 } 11389 11390 /* 11391 * If there is a page invalidation operation going on, then 11392 * if this is one of the pages being destroyed, then just 11393 * clear the p_fsdata byte and then either free or destroy 11394 * the page as appropriate. 11395 */ 11396 mutex_enter(&rp->r_statelock); 11397 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11398 mutex_exit(&rp->r_statelock); 11399 pp->p_fsdata = C_NOCOMMIT; 11400 if (fl == B_FREE) 11401 page_free(pp, dn); 11402 else 11403 page_destroy(pp, dn); 11404 return; 11405 } 11406 11407 /* 11408 * If we are freeing this page and someone else is already 11409 * waiting to do a commit, then just unlock the page and 11410 * return. That other thread will take care of commiting 11411 * this page. The page can be freed sometime after the 11412 * commit has finished. Otherwise, if the page is marked 11413 * as delay commit, then we may be getting called from 11414 * pvn_write_done, one page at a time. This could result 11415 * in one commit per page, so we end up doing lots of small 11416 * commits instead of fewer larger commits. This is bad, 11417 * we want do as few commits as possible. 11418 */ 11419 if (fl == B_FREE) { 11420 if (rp->r_flags & R4COMMITWAIT) { 11421 page_unlock(pp); 11422 mutex_exit(&rp->r_statelock); 11423 return; 11424 } 11425 if (pp->p_fsdata == C_DELAYCOMMIT) { 11426 pp->p_fsdata = C_COMMIT; 11427 page_unlock(pp); 11428 mutex_exit(&rp->r_statelock); 11429 return; 11430 } 11431 } 11432 11433 /* 11434 * Check to see if there is a signal which would prevent an 11435 * attempt to commit the pages from being successful. If so, 11436 * then don't bother with all of the work to gather pages and 11437 * generate the unsuccessful RPC. Just return from here and 11438 * let the page be committed at some later time. 11439 */ 11440 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11441 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11442 sigunintr(&smask); 11443 page_unlock(pp); 11444 mutex_exit(&rp->r_statelock); 11445 return; 11446 } 11447 sigunintr(&smask); 11448 11449 /* 11450 * We are starting to need to commit pages, so let's try 11451 * to commit as many as possible at once to reduce the 11452 * overhead. 11453 * 11454 * Set the `commit inprogress' state bit. We must 11455 * first wait until any current one finishes. Then 11456 * we initialize the c_pages list with this page. 11457 */ 11458 while (rp->r_flags & R4COMMIT) { 11459 rp->r_flags |= R4COMMITWAIT; 11460 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11461 rp->r_flags &= ~R4COMMITWAIT; 11462 } 11463 rp->r_flags |= R4COMMIT; 11464 mutex_exit(&rp->r_statelock); 11465 ASSERT(rp->r_commit.c_pages == NULL); 11466 rp->r_commit.c_pages = pp; 11467 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11468 rp->r_commit.c_commlen = PAGESIZE; 11469 11470 /* 11471 * Gather together all other pages which can be committed. 11472 * They will all be chained off r_commit.c_pages. 11473 */ 11474 nfs4_get_commit(vp); 11475 11476 /* 11477 * Clear the `commit inprogress' status and disconnect 11478 * the list of pages to be committed from the rnode. 11479 * At this same time, we also save the starting offset 11480 * and length of data to be committed on the server. 11481 */ 11482 plist = rp->r_commit.c_pages; 11483 rp->r_commit.c_pages = NULL; 11484 offset = rp->r_commit.c_commbase; 11485 len = rp->r_commit.c_commlen; 11486 mutex_enter(&rp->r_statelock); 11487 rp->r_flags &= ~R4COMMIT; 11488 cv_broadcast(&rp->r_commit.c_cv); 11489 mutex_exit(&rp->r_statelock); 11490 11491 if (curproc == proc_pageout || curproc == proc_fsflush || 11492 nfs_zone() != VTOMI4(vp)->mi_zone) { 11493 nfs4_async_commit(vp, plist, offset, len, 11494 cr, do_nfs4_async_commit); 11495 return; 11496 } 11497 11498 /* 11499 * Actually generate the COMMIT op over the wire operation. 11500 */ 11501 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11502 11503 /* 11504 * If we got an error during the commit, just unlock all 11505 * of the pages. The pages will get retransmitted to the 11506 * server during a putpage operation. 11507 */ 11508 if (error) { 11509 while (plist != NULL) { 11510 pptr = plist; 11511 page_sub(&plist, pptr); 11512 page_unlock(pptr); 11513 } 11514 return; 11515 } 11516 11517 /* 11518 * We've tried as hard as we can to commit the data to stable 11519 * storage on the server. We just unlock the rest of the pages 11520 * and clear the commit required state. They will be put 11521 * onto the tail of the cachelist if they are nolonger 11522 * mapped. 11523 */ 11524 while (plist != pp) { 11525 pptr = plist; 11526 page_sub(&plist, pptr); 11527 pptr->p_fsdata = C_NOCOMMIT; 11528 page_unlock(pptr); 11529 } 11530 11531 /* 11532 * It is possible that nfs4_commit didn't return error but 11533 * some other thread has modified the page we are going 11534 * to free/destroy. 11535 * In this case we need to rewrite the page. Do an explicit check 11536 * before attempting to free/destroy the page. If modified, needs to 11537 * be rewritten so unlock the page and return. 11538 */ 11539 if (hat_ismod(pp)) { 11540 pp->p_fsdata = C_NOCOMMIT; 11541 page_unlock(pp); 11542 return; 11543 } 11544 11545 /* 11546 * Now, as appropriate, either free or destroy the page 11547 * that we were called with. 11548 */ 11549 pp->p_fsdata = C_NOCOMMIT; 11550 if (fl == B_FREE) 11551 page_free(pp, dn); 11552 else 11553 page_destroy(pp, dn); 11554 } 11555 11556 /* 11557 * Commit requires that the current fh be the file written to. 11558 * The compound op structure is: 11559 * PUTFH(file), COMMIT 11560 */ 11561 static int 11562 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11563 { 11564 COMPOUND4args_clnt args; 11565 COMPOUND4res_clnt res; 11566 COMMIT4res *cm_res; 11567 nfs_argop4 argop[2]; 11568 nfs_resop4 *resop; 11569 int doqueue; 11570 mntinfo4_t *mi; 11571 rnode4_t *rp; 11572 cred_t *cred_otw = NULL; 11573 bool_t needrecov = FALSE; 11574 nfs4_recov_state_t recov_state; 11575 nfs4_open_stream_t *osp = NULL; 11576 bool_t first_time = TRUE; /* first time getting OTW cred */ 11577 bool_t last_time = FALSE; /* last time getting OTW cred */ 11578 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11579 11580 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11581 11582 rp = VTOR4(vp); 11583 11584 mi = VTOMI4(vp); 11585 recov_state.rs_flags = 0; 11586 recov_state.rs_num_retry_despite_err = 0; 11587 get_commit_cred: 11588 /* 11589 * Releases the osp, if a valid open stream is provided. 11590 * Puts a hold on the cred_otw and the new osp (if found). 11591 */ 11592 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11593 &first_time, &last_time); 11594 args.ctag = TAG_COMMIT; 11595 recov_retry: 11596 /* 11597 * Commit ops: putfh file; commit 11598 */ 11599 args.array_len = 2; 11600 args.array = argop; 11601 11602 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11603 &recov_state, NULL); 11604 if (e.error) { 11605 crfree(cred_otw); 11606 if (osp != NULL) 11607 open_stream_rele(osp, rp); 11608 return (e.error); 11609 } 11610 11611 /* putfh directory */ 11612 argop[0].argop = OP_CPUTFH; 11613 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11614 11615 /* commit */ 11616 argop[1].argop = OP_COMMIT; 11617 argop[1].nfs_argop4_u.opcommit.offset = offset; 11618 argop[1].nfs_argop4_u.opcommit.count = count; 11619 11620 doqueue = 1; 11621 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11622 11623 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11624 if (!needrecov && e.error) { 11625 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11626 needrecov); 11627 crfree(cred_otw); 11628 if (e.error == EACCES && last_time == FALSE) 11629 goto get_commit_cred; 11630 if (osp != NULL) 11631 open_stream_rele(osp, rp); 11632 return (e.error); 11633 } 11634 11635 if (needrecov) { 11636 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11637 NULL, OP_COMMIT, NULL) == FALSE) { 11638 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11639 &recov_state, needrecov); 11640 if (!e.error) 11641 (void) xdr_free(xdr_COMPOUND4res_clnt, 11642 (caddr_t)&res); 11643 goto recov_retry; 11644 } 11645 if (e.error) { 11646 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11647 &recov_state, needrecov); 11648 crfree(cred_otw); 11649 if (osp != NULL) 11650 open_stream_rele(osp, rp); 11651 return (e.error); 11652 } 11653 /* fall through for res.status case */ 11654 } 11655 11656 if (res.status) { 11657 e.error = geterrno4(res.status); 11658 if (e.error == EACCES && last_time == FALSE) { 11659 crfree(cred_otw); 11660 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11661 &recov_state, needrecov); 11662 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11663 goto get_commit_cred; 11664 } 11665 /* 11666 * Can't do a nfs4_purge_stale_fh here because this 11667 * can cause a deadlock. nfs4_commit can 11668 * be called from nfs4_dispose which can be called 11669 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11670 * can call back to pvn_vplist_dirty. 11671 */ 11672 if (e.error == ESTALE) { 11673 mutex_enter(&rp->r_statelock); 11674 rp->r_flags |= R4STALE; 11675 if (!rp->r_error) 11676 rp->r_error = e.error; 11677 mutex_exit(&rp->r_statelock); 11678 PURGE_ATTRCACHE4(vp); 11679 } else { 11680 mutex_enter(&rp->r_statelock); 11681 if (!rp->r_error) 11682 rp->r_error = e.error; 11683 mutex_exit(&rp->r_statelock); 11684 } 11685 } else { 11686 ASSERT(rp->r_flags & R4HAVEVERF); 11687 resop = &res.array[1]; /* commit res */ 11688 cm_res = &resop->nfs_resop4_u.opcommit; 11689 mutex_enter(&rp->r_statelock); 11690 if (cm_res->writeverf == rp->r_writeverf) { 11691 mutex_exit(&rp->r_statelock); 11692 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11693 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11694 &recov_state, needrecov); 11695 crfree(cred_otw); 11696 if (osp != NULL) 11697 open_stream_rele(osp, rp); 11698 return (0); 11699 } 11700 nfs4_set_mod(vp); 11701 rp->r_writeverf = cm_res->writeverf; 11702 mutex_exit(&rp->r_statelock); 11703 e.error = NFS_VERF_MISMATCH; 11704 } 11705 11706 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11707 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11708 crfree(cred_otw); 11709 if (osp != NULL) 11710 open_stream_rele(osp, rp); 11711 11712 return (e.error); 11713 } 11714 11715 static void 11716 nfs4_set_mod(vnode_t *vp) 11717 { 11718 page_t *pp; 11719 kmutex_t *vphm; 11720 rnode4_t *rp; 11721 11722 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11723 11724 /* make sure we're looking at the master vnode, not a shadow */ 11725 11726 rp = VTOR4(vp); 11727 if (IS_SHADOW(vp, rp)) 11728 vp = RTOV4(rp); 11729 11730 vphm = page_vnode_mutex(vp); 11731 mutex_enter(vphm); 11732 /* 11733 * If there are no pages associated with this vnode, then 11734 * just return. 11735 */ 11736 if ((pp = vp->v_pages) == NULL) { 11737 mutex_exit(vphm); 11738 return; 11739 } 11740 11741 do { 11742 if (pp->p_fsdata != C_NOCOMMIT) { 11743 hat_setmod(pp); 11744 pp->p_fsdata = C_NOCOMMIT; 11745 } 11746 } while ((pp = pp->p_vpnext) != vp->v_pages); 11747 mutex_exit(vphm); 11748 } 11749 11750 /* 11751 * This function is used to gather a page list of the pages which 11752 * can be committed on the server. 11753 * 11754 * The calling thread must have set R4COMMIT. This bit is used to 11755 * serialize access to the commit structure in the rnode. As long 11756 * as the thread has set R4COMMIT, then it can manipulate the commit 11757 * structure without requiring any other locks. 11758 * 11759 * When this function is called from nfs4_dispose() the page passed 11760 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11761 * will skip it. This is not a problem since we initially add the 11762 * page to the r_commit page list. 11763 * 11764 */ 11765 static void 11766 nfs4_get_commit(vnode_t *vp) 11767 { 11768 rnode4_t *rp; 11769 page_t *pp; 11770 kmutex_t *vphm; 11771 11772 rp = VTOR4(vp); 11773 11774 ASSERT(rp->r_flags & R4COMMIT); 11775 11776 /* make sure we're looking at the master vnode, not a shadow */ 11777 11778 if (IS_SHADOW(vp, rp)) 11779 vp = RTOV4(rp); 11780 11781 vphm = page_vnode_mutex(vp); 11782 mutex_enter(vphm); 11783 11784 /* 11785 * If there are no pages associated with this vnode, then 11786 * just return. 11787 */ 11788 if ((pp = vp->v_pages) == NULL) { 11789 mutex_exit(vphm); 11790 return; 11791 } 11792 11793 /* 11794 * Step through all of the pages associated with this vnode 11795 * looking for pages which need to be committed. 11796 */ 11797 do { 11798 /* 11799 * First short-cut everything (without the page_lock) 11800 * and see if this page does not need to be committed 11801 * or is modified if so then we'll just skip it. 11802 */ 11803 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11804 continue; 11805 11806 /* 11807 * Attempt to lock the page. If we can't, then 11808 * someone else is messing with it or we have been 11809 * called from nfs4_dispose and this is the page that 11810 * nfs4_dispose was called with.. anyway just skip it. 11811 */ 11812 if (!page_trylock(pp, SE_EXCL)) 11813 continue; 11814 11815 /* 11816 * Lets check again now that we have the page lock. 11817 */ 11818 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11819 page_unlock(pp); 11820 continue; 11821 } 11822 11823 /* this had better not be a free page */ 11824 ASSERT(PP_ISFREE(pp) == 0); 11825 11826 /* 11827 * The page needs to be committed and we locked it. 11828 * Update the base and length parameters and add it 11829 * to r_pages. 11830 */ 11831 if (rp->r_commit.c_pages == NULL) { 11832 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11833 rp->r_commit.c_commlen = PAGESIZE; 11834 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11835 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11836 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11837 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11838 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11839 <= pp->p_offset) { 11840 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11841 rp->r_commit.c_commbase + PAGESIZE; 11842 } 11843 page_add(&rp->r_commit.c_pages, pp); 11844 } while ((pp = pp->p_vpnext) != vp->v_pages); 11845 11846 mutex_exit(vphm); 11847 } 11848 11849 /* 11850 * This routine is used to gather together a page list of the pages 11851 * which are to be committed on the server. This routine must not 11852 * be called if the calling thread holds any locked pages. 11853 * 11854 * The calling thread must have set R4COMMIT. This bit is used to 11855 * serialize access to the commit structure in the rnode. As long 11856 * as the thread has set R4COMMIT, then it can manipulate the commit 11857 * structure without requiring any other locks. 11858 */ 11859 static void 11860 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11861 { 11862 11863 rnode4_t *rp; 11864 page_t *pp; 11865 u_offset_t end; 11866 u_offset_t off; 11867 ASSERT(len != 0); 11868 rp = VTOR4(vp); 11869 ASSERT(rp->r_flags & R4COMMIT); 11870 11871 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11872 11873 /* make sure we're looking at the master vnode, not a shadow */ 11874 11875 if (IS_SHADOW(vp, rp)) 11876 vp = RTOV4(rp); 11877 11878 /* 11879 * If there are no pages associated with this vnode, then 11880 * just return. 11881 */ 11882 if ((pp = vp->v_pages) == NULL) 11883 return; 11884 /* 11885 * Calculate the ending offset. 11886 */ 11887 end = soff + len; 11888 for (off = soff; off < end; off += PAGESIZE) { 11889 /* 11890 * Lookup each page by vp, offset. 11891 */ 11892 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 11893 continue; 11894 /* 11895 * If this page does not need to be committed or is 11896 * modified, then just skip it. 11897 */ 11898 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11899 page_unlock(pp); 11900 continue; 11901 } 11902 11903 ASSERT(PP_ISFREE(pp) == 0); 11904 /* 11905 * The page needs to be committed and we locked it. 11906 * Update the base and length parameters and add it 11907 * to r_pages. 11908 */ 11909 if (rp->r_commit.c_pages == NULL) { 11910 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11911 rp->r_commit.c_commlen = PAGESIZE; 11912 } else { 11913 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11914 rp->r_commit.c_commbase + PAGESIZE; 11915 } 11916 page_add(&rp->r_commit.c_pages, pp); 11917 } 11918 } 11919 11920 /* 11921 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 11922 * Flushes and commits data to the server. 11923 */ 11924 static int 11925 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 11926 { 11927 int error; 11928 verifier4 write_verf; 11929 rnode4_t *rp = VTOR4(vp); 11930 11931 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11932 11933 /* 11934 * Flush the data portion of the file and then commit any 11935 * portions which need to be committed. This may need to 11936 * be done twice if the server has changed state since 11937 * data was last written. The data will need to be 11938 * rewritten to the server and then a new commit done. 11939 * 11940 * In fact, this may need to be done several times if the 11941 * server is having problems and crashing while we are 11942 * attempting to do this. 11943 */ 11944 11945 top: 11946 /* 11947 * Do a flush based on the poff and plen arguments. This 11948 * will synchronously write out any modified pages in the 11949 * range specified by (poff, plen). This starts all of the 11950 * i/o operations which will be waited for in the next 11951 * call to nfs4_putpage 11952 */ 11953 11954 mutex_enter(&rp->r_statelock); 11955 write_verf = rp->r_writeverf; 11956 mutex_exit(&rp->r_statelock); 11957 11958 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr); 11959 if (error == EAGAIN) 11960 error = 0; 11961 11962 /* 11963 * Do a flush based on the poff and plen arguments. This 11964 * will synchronously write out any modified pages in the 11965 * range specified by (poff, plen) and wait until all of 11966 * the asynchronous i/o's in that range are done as well. 11967 */ 11968 if (!error) 11969 error = nfs4_putpage(vp, poff, plen, 0, cr); 11970 11971 if (error) 11972 return (error); 11973 11974 mutex_enter(&rp->r_statelock); 11975 if (rp->r_writeverf != write_verf) { 11976 mutex_exit(&rp->r_statelock); 11977 goto top; 11978 } 11979 mutex_exit(&rp->r_statelock); 11980 11981 /* 11982 * Now commit any pages which might need to be committed. 11983 * If the error, NFS_VERF_MISMATCH, is returned, then 11984 * start over with the flush operation. 11985 */ 11986 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 11987 11988 if (error == NFS_VERF_MISMATCH) 11989 goto top; 11990 11991 return (error); 11992 } 11993 11994 /* 11995 * nfs4_commit_vp() will wait for other pending commits and 11996 * will either commit the whole file or a range, plen dictates 11997 * if we commit whole file. a value of zero indicates the whole 11998 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 11999 */ 12000 static int 12001 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12002 cred_t *cr, int wait_on_writes) 12003 { 12004 rnode4_t *rp; 12005 page_t *plist; 12006 offset3 offset; 12007 count3 len; 12008 12009 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12010 12011 rp = VTOR4(vp); 12012 12013 /* 12014 * before we gather commitable pages make 12015 * sure there are no outstanding async writes 12016 */ 12017 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12018 mutex_enter(&rp->r_statelock); 12019 while (rp->r_count > 0) { 12020 cv_wait(&rp->r_cv, &rp->r_statelock); 12021 } 12022 mutex_exit(&rp->r_statelock); 12023 } 12024 12025 /* 12026 * Set the `commit inprogress' state bit. We must 12027 * first wait until any current one finishes. 12028 */ 12029 mutex_enter(&rp->r_statelock); 12030 while (rp->r_flags & R4COMMIT) { 12031 rp->r_flags |= R4COMMITWAIT; 12032 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12033 rp->r_flags &= ~R4COMMITWAIT; 12034 } 12035 rp->r_flags |= R4COMMIT; 12036 mutex_exit(&rp->r_statelock); 12037 12038 /* 12039 * Gather all of the pages which need to be 12040 * committed. 12041 */ 12042 if (plen == 0) 12043 nfs4_get_commit(vp); 12044 else 12045 nfs4_get_commit_range(vp, poff, plen); 12046 12047 /* 12048 * Clear the `commit inprogress' bit and disconnect the 12049 * page list which was gathered by nfs4_get_commit. 12050 */ 12051 plist = rp->r_commit.c_pages; 12052 rp->r_commit.c_pages = NULL; 12053 offset = rp->r_commit.c_commbase; 12054 len = rp->r_commit.c_commlen; 12055 mutex_enter(&rp->r_statelock); 12056 rp->r_flags &= ~R4COMMIT; 12057 cv_broadcast(&rp->r_commit.c_cv); 12058 mutex_exit(&rp->r_statelock); 12059 12060 /* 12061 * If any pages need to be committed, commit them and 12062 * then unlock them so that they can be freed some 12063 * time later. 12064 */ 12065 if (plist == NULL) 12066 return (0); 12067 12068 /* 12069 * No error occurred during the flush portion 12070 * of this operation, so now attempt to commit 12071 * the data to stable storage on the server. 12072 * 12073 * This will unlock all of the pages on the list. 12074 */ 12075 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12076 } 12077 12078 static int 12079 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12080 cred_t *cr) 12081 { 12082 int error; 12083 page_t *pp; 12084 12085 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12086 12087 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12088 12089 /* 12090 * If we got an error, then just unlock all of the pages 12091 * on the list. 12092 */ 12093 if (error) { 12094 while (plist != NULL) { 12095 pp = plist; 12096 page_sub(&plist, pp); 12097 page_unlock(pp); 12098 } 12099 return (error); 12100 } 12101 /* 12102 * We've tried as hard as we can to commit the data to stable 12103 * storage on the server. We just unlock the pages and clear 12104 * the commit required state. They will get freed later. 12105 */ 12106 while (plist != NULL) { 12107 pp = plist; 12108 page_sub(&plist, pp); 12109 pp->p_fsdata = C_NOCOMMIT; 12110 page_unlock(pp); 12111 } 12112 12113 return (error); 12114 } 12115 12116 static void 12117 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12118 cred_t *cr) 12119 { 12120 12121 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12122 } 12123 12124 /*ARGSUSED*/ 12125 static int 12126 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 12127 { 12128 int error = 0; 12129 mntinfo4_t *mi; 12130 vattr_t va; 12131 vsecattr_t nfsace4_vsap; 12132 12133 mi = VTOMI4(vp); 12134 if (nfs_zone() != mi->mi_zone) 12135 return (EIO); 12136 if (mi->mi_flags & MI4_ACL) { 12137 /* if we have a delegation, return it */ 12138 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12139 (void) nfs4delegreturn(VTOR4(vp), 12140 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12141 12142 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12143 NFS4_ACL_SET); 12144 if (error) /* EINVAL */ 12145 return (error); 12146 12147 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12148 /* 12149 * These are aclent_t type entries. 12150 */ 12151 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12152 vp->v_type == VDIR, FALSE); 12153 if (error) 12154 return (error); 12155 } else { 12156 /* 12157 * These are ace_t type entries. 12158 */ 12159 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12160 FALSE); 12161 if (error) 12162 return (error); 12163 } 12164 bzero(&va, sizeof (va)); 12165 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12166 vs_ace4_destroy(&nfsace4_vsap); 12167 return (error); 12168 } 12169 return (ENOSYS); 12170 } 12171 12172 static int 12173 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 12174 { 12175 int error; 12176 mntinfo4_t *mi; 12177 nfs4_ga_res_t gar; 12178 rnode4_t *rp = VTOR4(vp); 12179 12180 mi = VTOMI4(vp); 12181 if (nfs_zone() != mi->mi_zone) 12182 return (EIO); 12183 12184 bzero(&gar, sizeof (gar)); 12185 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12186 12187 /* 12188 * vsecattr->vsa_mask holds the original acl request mask. 12189 * This is needed when determining what to return. 12190 * (See: nfs4_create_getsecattr_return()) 12191 */ 12192 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12193 if (error) /* EINVAL */ 12194 return (error); 12195 12196 if (mi->mi_flags & MI4_ACL) { 12197 /* 12198 * Check if the data is cached and the cache is valid. If it 12199 * is we don't go over the wire. 12200 */ 12201 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12202 mutex_enter(&rp->r_statelock); 12203 if (rp->r_secattr != NULL) { 12204 error = nfs4_create_getsecattr_return( 12205 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12206 rp->r_attr.va_gid, 12207 vp->v_type == VDIR); 12208 if (!error) { /* error == 0 - Success! */ 12209 mutex_exit(&rp->r_statelock); 12210 return (error); 12211 } 12212 } 12213 mutex_exit(&rp->r_statelock); 12214 } 12215 12216 /* 12217 * The getattr otw call will always get both the acl, in 12218 * the form of a list of nfsace4's, and the number of acl 12219 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12220 */ 12221 gar.n4g_va.va_mask = AT_ALL; 12222 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12223 if (error) { 12224 vs_ace4_destroy(&gar.n4g_vsa); 12225 if (error == ENOTSUP || error == EOPNOTSUPP) 12226 error = fs_fab_acl(vp, vsecattr, flag, cr); 12227 return (error); 12228 } 12229 12230 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12231 /* 12232 * No error was returned, but according to the response 12233 * bitmap, neither was an acl. 12234 */ 12235 vs_ace4_destroy(&gar.n4g_vsa); 12236 error = fs_fab_acl(vp, vsecattr, flag, cr); 12237 return (error); 12238 } 12239 12240 /* 12241 * Update the cache with the ACL. 12242 */ 12243 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12244 12245 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12246 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12247 vp->v_type == VDIR); 12248 vs_ace4_destroy(&gar.n4g_vsa); 12249 if ((error) && (vsecattr->vsa_mask & 12250 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12251 (error != EACCES)) { 12252 error = fs_fab_acl(vp, vsecattr, flag, cr); 12253 } 12254 return (error); 12255 } 12256 error = fs_fab_acl(vp, vsecattr, flag, cr); 12257 return (error); 12258 } 12259 12260 /* 12261 * The function returns: 12262 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12263 * - EINVAL if the passed in "acl_mask" is an invalid request. 12264 * 12265 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12266 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12267 * 12268 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12269 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12270 * - We have a count field set without the corresponding acl field set. (e.g. - 12271 * VSA_ACECNT is set, but VSA_ACE is not) 12272 */ 12273 static int 12274 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12275 { 12276 /* Shortcut the masks that are always valid. */ 12277 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12278 return (0); 12279 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12280 return (0); 12281 12282 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12283 /* 12284 * We can't have any VSA_ACL type stuff in the mask now. 12285 */ 12286 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12287 VSA_DFACLCNT)) 12288 return (EINVAL); 12289 12290 if (op == NFS4_ACL_SET) { 12291 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12292 return (EINVAL); 12293 } 12294 } 12295 12296 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12297 /* 12298 * We can't have any VSA_ACE type stuff in the mask now. 12299 */ 12300 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12301 return (EINVAL); 12302 12303 if (op == NFS4_ACL_SET) { 12304 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12305 return (EINVAL); 12306 12307 if ((acl_mask & VSA_DFACLCNT) && 12308 !(acl_mask & VSA_DFACL)) 12309 return (EINVAL); 12310 } 12311 } 12312 return (0); 12313 } 12314 12315 /* 12316 * The theory behind creating the correct getsecattr return is simply this: 12317 * "Don't return anything that the caller is not expecting to have to free." 12318 */ 12319 static int 12320 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12321 uid_t uid, gid_t gid, int isdir) 12322 { 12323 int error = 0; 12324 /* Save the mask since the translators modify it. */ 12325 uint_t orig_mask = vsap->vsa_mask; 12326 12327 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12328 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, 12329 FALSE, ((orig_mask & VSA_ACE) ? FALSE : TRUE)); 12330 12331 if (error) 12332 return (error); 12333 12334 /* 12335 * If the caller only asked for the ace count (VSA_ACECNT) 12336 * don't give them the full acl (VSA_ACE), free it. 12337 */ 12338 if (!orig_mask & VSA_ACE) { 12339 if (vsap->vsa_aclentp != NULL) { 12340 kmem_free(vsap->vsa_aclentp, 12341 vsap->vsa_aclcnt * sizeof (ace_t)); 12342 vsap->vsa_aclentp = NULL; 12343 } 12344 } 12345 vsap->vsa_mask = orig_mask; 12346 12347 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12348 VSA_DFACLCNT)) { 12349 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12350 isdir, FALSE, 12351 ((orig_mask & (VSA_ACL | VSA_DFACL)) ? FALSE : TRUE)); 12352 12353 if (error) 12354 return (error); 12355 12356 /* 12357 * If the caller only asked for the acl count (VSA_ACLCNT) 12358 * and/or the default acl count (VSA_DFACLCNT) don't give them 12359 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12360 */ 12361 if (!orig_mask & VSA_ACL) { 12362 if (vsap->vsa_aclentp != NULL) { 12363 kmem_free(vsap->vsa_aclentp, 12364 vsap->vsa_aclcnt * sizeof (aclent_t)); 12365 vsap->vsa_aclentp = NULL; 12366 } 12367 } 12368 12369 if (!orig_mask & VSA_DFACL) { 12370 if (vsap->vsa_dfaclentp != NULL) { 12371 kmem_free(vsap->vsa_dfaclentp, 12372 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12373 vsap->vsa_dfaclentp = NULL; 12374 } 12375 } 12376 vsap->vsa_mask = orig_mask; 12377 } 12378 return (0); 12379 } 12380 12381 static int 12382 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr) 12383 { 12384 int error; 12385 12386 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12387 return (EIO); 12388 /* 12389 * check for valid cmd parameter 12390 */ 12391 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12392 return (EINVAL); 12393 12394 /* 12395 * Check access permissions 12396 */ 12397 if ((cmd & F_SHARE) && 12398 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12399 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12400 return (EBADF); 12401 12402 /* 12403 * If the filesystem is mounted using local locking, pass the 12404 * request off to the local share code. 12405 */ 12406 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12407 return (fs_shrlock(vp, cmd, shr, flag, cr)); 12408 12409 switch (cmd) { 12410 case F_SHARE: 12411 case F_UNSHARE: 12412 /* 12413 * This will be properly implemented later, 12414 * see RFE: 4823948 . 12415 */ 12416 error = EAGAIN; 12417 break; 12418 12419 case F_HASREMOTELOCKS: 12420 /* 12421 * NFS client can't store remote locks itself 12422 */ 12423 shr->s_access = 0; 12424 error = 0; 12425 break; 12426 12427 default: 12428 error = EINVAL; 12429 break; 12430 } 12431 12432 return (error); 12433 } 12434 12435 /* 12436 * Common code called by directory ops to update the attrcache 12437 */ 12438 static int 12439 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12440 hrtime_t t, vnode_t *vp, cred_t *cr) 12441 { 12442 int error = 0; 12443 12444 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12445 12446 if (status != NFS4_OK) { 12447 /* getattr not done or failed */ 12448 PURGE_ATTRCACHE4(vp); 12449 return (error); 12450 } 12451 12452 if (garp) { 12453 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12454 } else { 12455 PURGE_ATTRCACHE4(vp); 12456 } 12457 return (error); 12458 } 12459 12460 /* 12461 * Update directory caches for directory modification ops (link, rename, etc.) 12462 * When dinfo is NULL, manage dircaches in the old way. 12463 */ 12464 static void 12465 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12466 dirattr_info_t *dinfo) 12467 { 12468 rnode4_t *drp = VTOR4(dvp); 12469 12470 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12471 12472 /* Purge rddir cache for dir since it changed */ 12473 if (drp->r_dir != NULL) 12474 nfs4_purge_rddir_cache(dvp); 12475 12476 /* 12477 * If caller provided dinfo, then use it to manage dir caches. 12478 */ 12479 if (dinfo != NULL) { 12480 if (vp != NULL) { 12481 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12482 if (!VTOR4(vp)->created_v4) { 12483 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12484 dnlc_update(dvp, nm, vp); 12485 } else { 12486 /* 12487 * XXX don't update if the created_v4 flag is 12488 * set 12489 */ 12490 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12491 NFS4_DEBUG(nfs4_client_state_debug, 12492 (CE_NOTE, "nfs4_update_dircaches: " 12493 "don't update dnlc: created_v4 flag")); 12494 } 12495 } 12496 12497 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12498 dinfo->di_cred, FALSE, cinfo); 12499 12500 return; 12501 } 12502 12503 /* 12504 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12505 * Since caller modified dir but didn't receive post-dirmod-op dir 12506 * attrs, the dir's attrs must be purged. 12507 * 12508 * XXX this check and dnlc update/purge should really be atomic, 12509 * XXX but can't use rnode statelock because it'll deadlock in 12510 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12511 * XXX does occur. 12512 * 12513 * XXX We also may want to check that atomic is true in the 12514 * XXX change_info struct. If it is not, the change_info may 12515 * XXX reflect changes by more than one clients which means that 12516 * XXX our cache may not be valid. 12517 */ 12518 PURGE_ATTRCACHE4(dvp); 12519 if (drp->r_change == cinfo->before) { 12520 /* no changes took place in the directory prior to our link */ 12521 if (vp != NULL) { 12522 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12523 if (!VTOR4(vp)->created_v4) { 12524 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12525 dnlc_update(dvp, nm, vp); 12526 } else { 12527 /* 12528 * XXX dont' update if the created_v4 flag 12529 * is set 12530 */ 12531 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12532 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12533 "nfs4_update_dircaches: don't" 12534 " update dnlc: created_v4 flag")); 12535 } 12536 } 12537 } else { 12538 /* Another client modified directory - purge its dnlc cache */ 12539 dnlc_purge_vp(dvp); 12540 } 12541 } 12542 12543 /* 12544 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12545 * file. 12546 * 12547 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12548 * file (ie: client recovery) and otherwise set to FALSE. 12549 * 12550 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12551 * initiated) calling functions. 12552 * 12553 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12554 * of resending a 'lost' open request. 12555 * 12556 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12557 * server that hands out BAD_SEQID on open confirm. 12558 * 12559 * Errors are returned via the nfs4_error_t parameter. 12560 */ 12561 void 12562 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12563 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12564 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12565 { 12566 COMPOUND4args_clnt args; 12567 COMPOUND4res_clnt res; 12568 nfs_argop4 argop[2]; 12569 nfs_resop4 *resop; 12570 int doqueue = 1; 12571 mntinfo4_t *mi; 12572 OPEN_CONFIRM4args *open_confirm_args; 12573 int needrecov; 12574 12575 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12576 #if DEBUG 12577 mutex_enter(&oop->oo_lock); 12578 ASSERT(oop->oo_seqid_inuse); 12579 mutex_exit(&oop->oo_lock); 12580 #endif 12581 12582 recov_retry_confirm: 12583 nfs4_error_zinit(ep); 12584 *retry_open = FALSE; 12585 12586 if (resend) 12587 args.ctag = TAG_OPEN_CONFIRM_LOST; 12588 else 12589 args.ctag = TAG_OPEN_CONFIRM; 12590 12591 args.array_len = 2; 12592 args.array = argop; 12593 12594 /* putfh target fh */ 12595 argop[0].argop = OP_CPUTFH; 12596 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12597 12598 argop[1].argop = OP_OPEN_CONFIRM; 12599 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12600 12601 (*seqid) += 1; 12602 open_confirm_args->seqid = *seqid; 12603 open_confirm_args->open_stateid = *stateid; 12604 12605 mi = VTOMI4(vp); 12606 12607 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12608 12609 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12610 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12611 } 12612 12613 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12614 if (!needrecov && ep->error) 12615 return; 12616 12617 if (needrecov) { 12618 bool_t abort = FALSE; 12619 12620 if (reopening_file == FALSE) { 12621 nfs4_bseqid_entry_t *bsep = NULL; 12622 12623 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12624 bsep = nfs4_create_bseqid_entry(oop, NULL, 12625 vp, 0, args.ctag, 12626 open_confirm_args->seqid); 12627 12628 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, 12629 NULL, NULL, NULL, OP_OPEN_CONFIRM, bsep); 12630 if (bsep) { 12631 kmem_free(bsep, sizeof (*bsep)); 12632 if (num_bseqid_retryp && 12633 --(*num_bseqid_retryp) == 0) 12634 abort = TRUE; 12635 } 12636 } 12637 if ((ep->error == ETIMEDOUT || 12638 res.status == NFS4ERR_RESOURCE) && 12639 abort == FALSE && resend == FALSE) { 12640 if (!ep->error) 12641 (void) xdr_free(xdr_COMPOUND4res_clnt, 12642 (caddr_t)&res); 12643 12644 delay(SEC_TO_TICK(confirm_retry_sec)); 12645 goto recov_retry_confirm; 12646 } 12647 /* State may have changed so retry the entire OPEN op */ 12648 if (abort == FALSE) 12649 *retry_open = TRUE; 12650 else 12651 *retry_open = FALSE; 12652 if (!ep->error) 12653 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12654 return; 12655 } 12656 12657 if (res.status) { 12658 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12659 return; 12660 } 12661 12662 resop = &res.array[1]; /* open confirm res */ 12663 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12664 stateid, sizeof (*stateid)); 12665 12666 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12667 } 12668 12669 /* 12670 * Return the credentials associated with a client state object. The 12671 * caller is responsible for freeing the credentials. 12672 */ 12673 12674 static cred_t * 12675 state_to_cred(nfs4_open_stream_t *osp) 12676 { 12677 cred_t *cr; 12678 12679 /* 12680 * It's ok to not lock the open stream and open owner to get 12681 * the oo_cred since this is only written once (upon creation) 12682 * and will not change. 12683 */ 12684 cr = osp->os_open_owner->oo_cred; 12685 crhold(cr); 12686 12687 return (cr); 12688 } 12689 12690 /* 12691 * nfs4_find_sysid 12692 * 12693 * Find the sysid for the knetconfig associated with the given mi. 12694 */ 12695 static struct lm_sysid * 12696 nfs4_find_sysid(mntinfo4_t *mi) 12697 { 12698 ASSERT(nfs_zone() == mi->mi_zone); 12699 12700 /* 12701 * Switch from RDMA knconf to original mount knconf 12702 */ 12703 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12704 mi->mi_curr_serv->sv_hostname, NULL)); 12705 } 12706 12707 #ifdef DEBUG 12708 /* 12709 * Return a string version of the call type for easy reading. 12710 */ 12711 static char * 12712 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12713 { 12714 switch (ctype) { 12715 case NFS4_LCK_CTYPE_NORM: 12716 return ("NORMAL"); 12717 case NFS4_LCK_CTYPE_RECLAIM: 12718 return ("RECLAIM"); 12719 case NFS4_LCK_CTYPE_RESEND: 12720 return ("RESEND"); 12721 case NFS4_LCK_CTYPE_REINSTATE: 12722 return ("REINSTATE"); 12723 default: 12724 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12725 "type %d", ctype); 12726 return (""); 12727 } 12728 } 12729 #endif 12730 12731 /* 12732 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12733 * Unlock requests don't have an over-the-wire locktype, so we just return 12734 * something non-threatening. 12735 */ 12736 12737 static nfs_lock_type4 12738 flk_to_locktype(int cmd, int l_type) 12739 { 12740 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12741 12742 switch (l_type) { 12743 case F_UNLCK: 12744 return (READ_LT); 12745 case F_RDLCK: 12746 if (cmd == F_SETLK) 12747 return (READ_LT); 12748 else 12749 return (READW_LT); 12750 case F_WRLCK: 12751 if (cmd == F_SETLK) 12752 return (WRITE_LT); 12753 else 12754 return (WRITEW_LT); 12755 } 12756 panic("flk_to_locktype"); 12757 /*NOTREACHED*/ 12758 } 12759 12760 /* 12761 * Do some preliminary checks for nfs4frlock. 12762 */ 12763 static int 12764 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12765 u_offset_t offset) 12766 { 12767 int error = 0; 12768 12769 /* 12770 * If we are setting a lock, check that the file is opened 12771 * with the correct mode. 12772 */ 12773 if (cmd == F_SETLK || cmd == F_SETLKW) { 12774 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12775 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12776 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12777 "nfs4frlock_validate_args: file was opened with " 12778 "incorrect mode")); 12779 return (EBADF); 12780 } 12781 } 12782 12783 /* Convert the offset. It may need to be restored before returning. */ 12784 if (error = convoff(vp, flk, 0, offset)) { 12785 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12786 "nfs4frlock_validate_args: convoff => error= %d\n", 12787 error)); 12788 return (error); 12789 } 12790 12791 return (error); 12792 } 12793 12794 /* 12795 * Set the flock64's lm_sysid for nfs4frlock. 12796 */ 12797 static int 12798 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12799 { 12800 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12801 12802 /* Find the lm_sysid */ 12803 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12804 12805 if (*lspp == NULL) { 12806 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12807 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12808 return (ENOLCK); 12809 } 12810 12811 flk->l_sysid = lm_sysidt(*lspp); 12812 12813 return (0); 12814 } 12815 12816 /* 12817 * Do the remaining preliminary setup for nfs4frlock. 12818 */ 12819 static void 12820 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12821 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12822 cred_t **cred_otw) 12823 { 12824 /* 12825 * set tick_delay to the base delay time. 12826 * (NFS4_BASE_WAIT_TIME is in secs) 12827 */ 12828 12829 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12830 12831 /* 12832 * If lock is relative to EOF, we need the newest length of the 12833 * file. Therefore invalidate the ATTR_CACHE. 12834 */ 12835 12836 *whencep = flk->l_whence; 12837 12838 if (*whencep == 2) /* SEEK_END */ 12839 PURGE_ATTRCACHE4(vp); 12840 12841 recov_statep->rs_flags = 0; 12842 recov_statep->rs_num_retry_despite_err = 0; 12843 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12844 } 12845 12846 /* 12847 * Initialize and allocate the data structures necessary for 12848 * the nfs4frlock call. 12849 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12850 */ 12851 static void 12852 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12853 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12854 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12855 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 12856 { 12857 int argoplist_size; 12858 int num_ops = 2; 12859 12860 *retry = FALSE; 12861 *did_start_fop = FALSE; 12862 *skip_get_err = FALSE; 12863 lost_rqstp->lr_op = 0; 12864 argoplist_size = num_ops * sizeof (nfs_argop4); 12865 /* fill array with zero */ 12866 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 12867 12868 *argspp = argsp; 12869 *respp = NULL; 12870 12871 argsp->array_len = num_ops; 12872 argsp->array = *argopp; 12873 12874 /* initialize in case of error; will get real value down below */ 12875 argsp->ctag = TAG_NONE; 12876 12877 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 12878 *op_hintp = OH_LOCKU; 12879 else 12880 *op_hintp = OH_OTHER; 12881 } 12882 12883 /* 12884 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 12885 * the proper nfs4_server_t for this instance of nfs4frlock. 12886 * Returns 0 (success) or an errno value. 12887 */ 12888 static int 12889 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 12890 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 12891 bool_t *did_start_fop, bool_t *startrecovp) 12892 { 12893 int error = 0; 12894 rnode4_t *rp; 12895 12896 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12897 12898 if (ctype == NFS4_LCK_CTYPE_NORM) { 12899 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 12900 recov_statep, startrecovp); 12901 if (error) 12902 return (error); 12903 *did_start_fop = TRUE; 12904 } else { 12905 *did_start_fop = FALSE; 12906 *startrecovp = FALSE; 12907 } 12908 12909 if (!error) { 12910 rp = VTOR4(vp); 12911 12912 /* If the file failed recovery, just quit. */ 12913 mutex_enter(&rp->r_statelock); 12914 if (rp->r_flags & R4RECOVERR) { 12915 error = EIO; 12916 } 12917 mutex_exit(&rp->r_statelock); 12918 } 12919 12920 return (error); 12921 } 12922 12923 /* 12924 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 12925 * resend nfs4frlock call is initiated by the recovery framework. 12926 * Acquires the lop and oop seqid synchronization. 12927 */ 12928 static void 12929 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 12930 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 12931 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 12932 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 12933 { 12934 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 12935 int error; 12936 12937 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 12938 (CE_NOTE, 12939 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 12940 ASSERT(resend_rqstp != NULL); 12941 ASSERT(resend_rqstp->lr_op == OP_LOCK || 12942 resend_rqstp->lr_op == OP_LOCKU); 12943 12944 *oopp = resend_rqstp->lr_oop; 12945 if (resend_rqstp->lr_oop) { 12946 open_owner_hold(resend_rqstp->lr_oop); 12947 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 12948 ASSERT(error == 0); /* recov thread always succeeds */ 12949 } 12950 12951 /* Must resend this lost lock/locku request. */ 12952 ASSERT(resend_rqstp->lr_lop != NULL); 12953 *lopp = resend_rqstp->lr_lop; 12954 lock_owner_hold(resend_rqstp->lr_lop); 12955 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 12956 ASSERT(error == 0); /* recov thread always succeeds */ 12957 12958 *ospp = resend_rqstp->lr_osp; 12959 if (*ospp) 12960 open_stream_hold(resend_rqstp->lr_osp); 12961 12962 if (resend_rqstp->lr_op == OP_LOCK) { 12963 LOCK4args *lock_args; 12964 12965 argop->argop = OP_LOCK; 12966 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 12967 lock_args->locktype = resend_rqstp->lr_locktype; 12968 lock_args->reclaim = 12969 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 12970 lock_args->offset = resend_rqstp->lr_flk->l_start; 12971 lock_args->length = resend_rqstp->lr_flk->l_len; 12972 if (lock_args->length == 0) 12973 lock_args->length = ~lock_args->length; 12974 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 12975 mi2clientid(mi), &lock_args->locker); 12976 12977 switch (resend_rqstp->lr_ctype) { 12978 case NFS4_LCK_CTYPE_RESEND: 12979 argsp->ctag = TAG_LOCK_RESEND; 12980 break; 12981 case NFS4_LCK_CTYPE_REINSTATE: 12982 argsp->ctag = TAG_LOCK_REINSTATE; 12983 break; 12984 case NFS4_LCK_CTYPE_RECLAIM: 12985 argsp->ctag = TAG_LOCK_RECLAIM; 12986 break; 12987 default: 12988 argsp->ctag = TAG_LOCK_UNKNOWN; 12989 break; 12990 } 12991 } else { 12992 LOCKU4args *locku_args; 12993 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 12994 12995 argop->argop = OP_LOCKU; 12996 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 12997 locku_args->locktype = READ_LT; 12998 locku_args->seqid = lop->lock_seqid + 1; 12999 mutex_enter(&lop->lo_lock); 13000 locku_args->lock_stateid = lop->lock_stateid; 13001 mutex_exit(&lop->lo_lock); 13002 locku_args->offset = resend_rqstp->lr_flk->l_start; 13003 locku_args->length = resend_rqstp->lr_flk->l_len; 13004 if (locku_args->length == 0) 13005 locku_args->length = ~locku_args->length; 13006 13007 switch (resend_rqstp->lr_ctype) { 13008 case NFS4_LCK_CTYPE_RESEND: 13009 argsp->ctag = TAG_LOCKU_RESEND; 13010 break; 13011 case NFS4_LCK_CTYPE_REINSTATE: 13012 argsp->ctag = TAG_LOCKU_REINSTATE; 13013 break; 13014 default: 13015 argsp->ctag = TAG_LOCK_UNKNOWN; 13016 break; 13017 } 13018 } 13019 } 13020 13021 /* 13022 * Setup the LOCKT4 arguments. 13023 */ 13024 static void 13025 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13026 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13027 rnode4_t *rp) 13028 { 13029 LOCKT4args *lockt_args; 13030 13031 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13032 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13033 argop->argop = OP_LOCKT; 13034 argsp->ctag = TAG_LOCKT; 13035 lockt_args = &argop->nfs_argop4_u.oplockt; 13036 13037 /* 13038 * The locktype will be READ_LT unless it's 13039 * a write lock. We do this because the Solaris 13040 * system call allows the combination of 13041 * F_UNLCK and F_GETLK* and so in that case the 13042 * unlock is mapped to a read. 13043 */ 13044 if (flk->l_type == F_WRLCK) 13045 lockt_args->locktype = WRITE_LT; 13046 else 13047 lockt_args->locktype = READ_LT; 13048 13049 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13050 /* set the lock owner4 args */ 13051 nfs4_setlockowner_args(&lockt_args->owner, rp, 13052 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13053 flk->l_pid); 13054 lockt_args->offset = flk->l_start; 13055 lockt_args->length = flk->l_len; 13056 if (flk->l_len == 0) 13057 lockt_args->length = ~lockt_args->length; 13058 13059 *lockt_argsp = lockt_args; 13060 } 13061 13062 /* 13063 * If the client is holding a delegation, and the open stream to be used 13064 * with this lock request is a delegation open stream, then re-open the stream. 13065 * Sets the nfs4_error_t to all zeros unless the open stream has already 13066 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13067 * means the caller should retry (like a recovery retry). 13068 */ 13069 static void 13070 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13071 { 13072 open_delegation_type4 dt; 13073 bool_t reopen_needed, force; 13074 nfs4_open_stream_t *osp; 13075 open_claim_type4 oclaim; 13076 rnode4_t *rp = VTOR4(vp); 13077 mntinfo4_t *mi = VTOMI4(vp); 13078 13079 ASSERT(nfs_zone() == mi->mi_zone); 13080 13081 nfs4_error_zinit(ep); 13082 13083 mutex_enter(&rp->r_statev4_lock); 13084 dt = rp->r_deleg_type; 13085 mutex_exit(&rp->r_statev4_lock); 13086 13087 if (dt != OPEN_DELEGATE_NONE) { 13088 nfs4_open_owner_t *oop; 13089 13090 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13091 if (!oop) { 13092 ep->stat = NFS4ERR_IO; 13093 return; 13094 } 13095 /* returns with 'os_sync_lock' held */ 13096 osp = find_open_stream(oop, rp); 13097 if (!osp) { 13098 open_owner_rele(oop); 13099 ep->stat = NFS4ERR_IO; 13100 return; 13101 } 13102 13103 if (osp->os_failed_reopen) { 13104 NFS4_DEBUG((nfs4_open_stream_debug || 13105 nfs4_client_lock_debug), (CE_NOTE, 13106 "nfs4frlock_check_deleg: os_failed_reopen set " 13107 "for osp %p, cr %p, rp %s", (void *)osp, 13108 (void *)cr, rnode4info(rp))); 13109 mutex_exit(&osp->os_sync_lock); 13110 open_stream_rele(osp, rp); 13111 open_owner_rele(oop); 13112 ep->stat = NFS4ERR_IO; 13113 return; 13114 } 13115 13116 /* 13117 * Determine whether a reopen is needed. If this 13118 * is a delegation open stream, then send the open 13119 * to the server to give visibility to the open owner. 13120 * Even if it isn't a delegation open stream, we need 13121 * to check if the previous open CLAIM_DELEGATE_CUR 13122 * was sufficient. 13123 */ 13124 13125 reopen_needed = osp->os_delegation || 13126 ((lt == F_RDLCK && 13127 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13128 (lt == F_WRLCK && 13129 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13130 13131 mutex_exit(&osp->os_sync_lock); 13132 open_owner_rele(oop); 13133 13134 if (reopen_needed) { 13135 /* 13136 * Always use CLAIM_PREVIOUS after server reboot. 13137 * The server will reject CLAIM_DELEGATE_CUR if 13138 * it is used during the grace period. 13139 */ 13140 mutex_enter(&mi->mi_lock); 13141 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13142 oclaim = CLAIM_PREVIOUS; 13143 force = TRUE; 13144 } else { 13145 oclaim = CLAIM_DELEGATE_CUR; 13146 force = FALSE; 13147 } 13148 mutex_exit(&mi->mi_lock); 13149 13150 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13151 if (ep->error == EAGAIN) { 13152 nfs4_error_zinit(ep); 13153 ep->stat = NFS4ERR_DELAY; 13154 } 13155 } 13156 open_stream_rele(osp, rp); 13157 osp = NULL; 13158 } 13159 } 13160 13161 /* 13162 * Setup the LOCKU4 arguments. 13163 * Returns errors via the nfs4_error_t. 13164 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13165 * over-the-wire. The caller must release the 13166 * reference on *lopp. 13167 * NFS4ERR_DELAY caller should retry (like recovery retry) 13168 * (other) unrecoverable error. 13169 */ 13170 static void 13171 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13172 LOCKU4args **locku_argsp, flock64_t *flk, 13173 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13174 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13175 bool_t *skip_get_err, bool_t *go_otwp) 13176 { 13177 nfs4_lock_owner_t *lop = NULL; 13178 LOCKU4args *locku_args; 13179 pid_t pid; 13180 bool_t is_spec = FALSE; 13181 rnode4_t *rp = VTOR4(vp); 13182 13183 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13184 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13185 13186 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13187 if (ep->error || ep->stat) 13188 return; 13189 13190 argop->argop = OP_LOCKU; 13191 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13192 argsp->ctag = TAG_LOCKU_REINSTATE; 13193 else 13194 argsp->ctag = TAG_LOCKU; 13195 locku_args = &argop->nfs_argop4_u.oplocku; 13196 *locku_argsp = locku_args; 13197 13198 /* 13199 * XXX what should locku_args->locktype be? 13200 * setting to ALWAYS be READ_LT so at least 13201 * it is a valid locktype. 13202 */ 13203 13204 locku_args->locktype = READ_LT; 13205 13206 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13207 flk->l_pid; 13208 13209 /* 13210 * Get the lock owner stateid. If no lock owner 13211 * exists, return success. 13212 */ 13213 lop = find_lock_owner(rp, pid, LOWN_ANY); 13214 *lopp = lop; 13215 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13216 is_spec = TRUE; 13217 if (!lop || is_spec) { 13218 /* 13219 * No lock owner so no locks to unlock. 13220 * Return success. If there was a failed 13221 * reclaim earlier, the lock might still be 13222 * registered with the local locking code, 13223 * so notify it of the unlock. 13224 * 13225 * If the lockowner is using a special stateid, 13226 * then the original lock request (that created 13227 * this lockowner) was never successful, so we 13228 * have no lock to undo OTW. 13229 */ 13230 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13231 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13232 "(%ld) so return success", (long)pid)); 13233 13234 if (ctype == NFS4_LCK_CTYPE_NORM) 13235 flk->l_pid = curproc->p_pid; 13236 nfs4_register_lock_locally(vp, flk, flag, offset); 13237 /* 13238 * Release our hold and NULL out so final_cleanup 13239 * doesn't try to end a lock seqid sync we 13240 * never started. 13241 */ 13242 if (is_spec) { 13243 lock_owner_rele(lop); 13244 *lopp = NULL; 13245 } 13246 *skip_get_err = TRUE; 13247 *go_otwp = FALSE; 13248 return; 13249 } 13250 13251 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13252 if (ep->error == EAGAIN) { 13253 lock_owner_rele(lop); 13254 *lopp = NULL; 13255 return; 13256 } 13257 13258 mutex_enter(&lop->lo_lock); 13259 locku_args->lock_stateid = lop->lock_stateid; 13260 mutex_exit(&lop->lo_lock); 13261 locku_args->seqid = lop->lock_seqid + 1; 13262 13263 /* leave the ref count on lop, rele after RPC call */ 13264 13265 locku_args->offset = flk->l_start; 13266 locku_args->length = flk->l_len; 13267 if (flk->l_len == 0) 13268 locku_args->length = ~locku_args->length; 13269 13270 *go_otwp = TRUE; 13271 } 13272 13273 /* 13274 * Setup the LOCK4 arguments. 13275 * 13276 * Returns errors via the nfs4_error_t. 13277 * NFS4_OK no problems 13278 * NFS4ERR_DELAY caller should retry (like recovery retry) 13279 * (other) unrecoverable error 13280 */ 13281 static void 13282 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13283 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13284 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13285 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13286 { 13287 LOCK4args *lock_args; 13288 nfs4_open_owner_t *oop = NULL; 13289 nfs4_open_stream_t *osp = NULL; 13290 nfs4_lock_owner_t *lop = NULL; 13291 pid_t pid; 13292 rnode4_t *rp = VTOR4(vp); 13293 13294 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13295 13296 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13297 if (ep->error || ep->stat != NFS4_OK) 13298 return; 13299 13300 argop->argop = OP_LOCK; 13301 if (ctype == NFS4_LCK_CTYPE_NORM) 13302 argsp->ctag = TAG_LOCK; 13303 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13304 argsp->ctag = TAG_RELOCK; 13305 else 13306 argsp->ctag = TAG_LOCK_REINSTATE; 13307 lock_args = &argop->nfs_argop4_u.oplock; 13308 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13309 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13310 /* 13311 * Get the lock owner. If no lock owner exists, 13312 * create a 'temporary' one and grab the open seqid 13313 * synchronization (which puts a hold on the open 13314 * owner and open stream). 13315 * This also grabs the lock seqid synchronization. 13316 */ 13317 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13318 ep->stat = 13319 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13320 13321 if (ep->stat != NFS4_OK) 13322 goto out; 13323 13324 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13325 &lock_args->locker); 13326 13327 lock_args->offset = flk->l_start; 13328 lock_args->length = flk->l_len; 13329 if (flk->l_len == 0) 13330 lock_args->length = ~lock_args->length; 13331 *lock_argsp = lock_args; 13332 out: 13333 *oopp = oop; 13334 *ospp = osp; 13335 *lopp = lop; 13336 } 13337 13338 /* 13339 * After we get the reply from the server, record the proper information 13340 * for possible resend lock requests. 13341 * 13342 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13343 */ 13344 static void 13345 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13346 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13347 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13348 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13349 { 13350 bool_t unlock = (flk->l_type == F_UNLCK); 13351 13352 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13353 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13354 ctype == NFS4_LCK_CTYPE_REINSTATE); 13355 13356 if (error != 0 && !unlock) { 13357 NFS4_DEBUG((nfs4_lost_rqst_debug || 13358 nfs4_client_lock_debug), (CE_NOTE, 13359 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13360 " for lop %p", (void *)lop)); 13361 ASSERT(lop != NULL); 13362 mutex_enter(&lop->lo_lock); 13363 lop->lo_pending_rqsts = 1; 13364 mutex_exit(&lop->lo_lock); 13365 } 13366 13367 lost_rqstp->lr_putfirst = FALSE; 13368 lost_rqstp->lr_op = 0; 13369 13370 /* 13371 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13372 * recovery purposes so that the lock request that was sent 13373 * can be saved and re-issued later. Ditto for EIO from a forced 13374 * unmount. This is done to have the client's local locking state 13375 * match the v4 server's state; that is, the request was 13376 * potentially received and accepted by the server but the client 13377 * thinks it was not. 13378 */ 13379 if (error == ETIMEDOUT || error == EINTR || 13380 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13381 NFS4_DEBUG((nfs4_lost_rqst_debug || 13382 nfs4_client_lock_debug), (CE_NOTE, 13383 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13384 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13385 (void *)lop, (void *)oop, (void *)osp)); 13386 if (unlock) 13387 lost_rqstp->lr_op = OP_LOCKU; 13388 else { 13389 lost_rqstp->lr_op = OP_LOCK; 13390 lost_rqstp->lr_locktype = locktype; 13391 } 13392 /* 13393 * Objects are held and rele'd via the recovery code. 13394 * See nfs4_save_lost_rqst. 13395 */ 13396 lost_rqstp->lr_vp = vp; 13397 lost_rqstp->lr_dvp = NULL; 13398 lost_rqstp->lr_oop = oop; 13399 lost_rqstp->lr_osp = osp; 13400 lost_rqstp->lr_lop = lop; 13401 lost_rqstp->lr_cr = cr; 13402 switch (ctype) { 13403 case NFS4_LCK_CTYPE_NORM: 13404 flk->l_pid = ttoproc(curthread)->p_pid; 13405 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13406 break; 13407 case NFS4_LCK_CTYPE_REINSTATE: 13408 lost_rqstp->lr_putfirst = TRUE; 13409 lost_rqstp->lr_ctype = ctype; 13410 break; 13411 default: 13412 break; 13413 } 13414 lost_rqstp->lr_flk = flk; 13415 } 13416 } 13417 13418 /* 13419 * Update lop's seqid. Also update the seqid stored in a resend request, 13420 * if any. (Some recovery errors increment the seqid, and we may have to 13421 * send the resend request again.) 13422 */ 13423 13424 static void 13425 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13426 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13427 { 13428 if (lock_args) { 13429 if (lock_args->locker.new_lock_owner == TRUE) 13430 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13431 else { 13432 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13433 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13434 } 13435 } else if (locku_args) { 13436 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13437 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13438 } 13439 } 13440 13441 /* 13442 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13443 * COMPOUND4 args/res for calls that need to retry. 13444 * Switches the *cred_otwp to base_cr. 13445 */ 13446 static void 13447 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13448 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13449 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13450 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13451 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13452 { 13453 nfs4_open_owner_t *oop = *oopp; 13454 nfs4_open_stream_t *osp = *ospp; 13455 nfs4_lock_owner_t *lop = *lopp; 13456 nfs_argop4 *argop = (*argspp)->array; 13457 13458 if (*did_start_fop) { 13459 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13460 needrecov); 13461 *did_start_fop = FALSE; 13462 } 13463 ASSERT((*argspp)->array_len == 2); 13464 if (argop[1].argop == OP_LOCK) 13465 nfs4args_lock_free(&argop[1]); 13466 else if (argop[1].argop == OP_LOCKT) 13467 nfs4args_lockt_free(&argop[1]); 13468 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13469 if (!error) 13470 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13471 *argspp = NULL; 13472 *respp = NULL; 13473 13474 if (lop) { 13475 nfs4_end_lock_seqid_sync(lop); 13476 lock_owner_rele(lop); 13477 *lopp = NULL; 13478 } 13479 13480 /* need to free up the reference on osp for lock args */ 13481 if (osp != NULL) { 13482 open_stream_rele(osp, VTOR4(vp)); 13483 *ospp = NULL; 13484 } 13485 13486 /* need to free up the reference on oop for lock args */ 13487 if (oop != NULL) { 13488 nfs4_end_open_seqid_sync(oop); 13489 open_owner_rele(oop); 13490 *oopp = NULL; 13491 } 13492 13493 crfree(*cred_otwp); 13494 *cred_otwp = base_cr; 13495 crhold(*cred_otwp); 13496 } 13497 13498 /* 13499 * Function to process the client's recovery for nfs4frlock. 13500 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13501 * 13502 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13503 * COMPOUND4 args/res for calls that need to retry. 13504 * 13505 * Note: the rp's r_lkserlock is *not* dropped during this path. 13506 */ 13507 static bool_t 13508 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13509 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13510 LOCK4args *lock_args, LOCKU4args *locku_args, 13511 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13512 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13513 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13514 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13515 { 13516 nfs4_open_owner_t *oop = *oopp; 13517 nfs4_open_stream_t *osp = *ospp; 13518 nfs4_lock_owner_t *lop = *lopp; 13519 13520 bool_t abort, retry; 13521 13522 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13523 ASSERT((*argspp) != NULL); 13524 ASSERT((*respp) != NULL); 13525 if (lock_args || locku_args) 13526 ASSERT(lop != NULL); 13527 13528 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13529 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13530 13531 retry = TRUE; 13532 abort = FALSE; 13533 if (needrecov) { 13534 nfs4_bseqid_entry_t *bsep = NULL; 13535 nfs_opnum4 op; 13536 13537 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13538 13539 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13540 seqid4 seqid; 13541 13542 if (lock_args) { 13543 if (lock_args->locker.new_lock_owner == TRUE) 13544 seqid = lock_args->locker.locker4_u. 13545 open_owner.open_seqid; 13546 else 13547 seqid = lock_args->locker.locker4_u. 13548 lock_owner.lock_seqid; 13549 } else if (locku_args) { 13550 seqid = locku_args->seqid; 13551 } else { 13552 seqid = 0; 13553 } 13554 13555 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13556 flk->l_pid, (*argspp)->ctag, seqid); 13557 } 13558 13559 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13560 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13561 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13562 NULL, op, bsep); 13563 13564 if (bsep) 13565 kmem_free(bsep, sizeof (*bsep)); 13566 } 13567 13568 /* 13569 * Return that we do not want to retry the request for 3 cases: 13570 * 1. If we received EINTR or are bailing out because of a forced 13571 * unmount, we came into this code path just for the sake of 13572 * initiating recovery, we now need to return the error. 13573 * 2. If we have aborted recovery. 13574 * 3. We received NFS4ERR_BAD_SEQID. 13575 */ 13576 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13577 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13578 retry = FALSE; 13579 13580 if (*did_start_fop == TRUE) { 13581 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13582 needrecov); 13583 *did_start_fop = FALSE; 13584 } 13585 13586 if (retry == TRUE) { 13587 nfs_argop4 *argop; 13588 13589 argop = (*argspp)->array; 13590 ASSERT((*argspp)->array_len == 2); 13591 13592 if (argop[1].argop == OP_LOCK) 13593 nfs4args_lock_free(&argop[1]); 13594 else if (argop[1].argop == OP_LOCKT) 13595 nfs4args_lockt_free(&argop[1]); 13596 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13597 if (!ep->error) 13598 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13599 *respp = NULL; 13600 *argspp = NULL; 13601 } 13602 13603 if (lop != NULL) { 13604 nfs4_end_lock_seqid_sync(lop); 13605 lock_owner_rele(lop); 13606 } 13607 13608 *lopp = NULL; 13609 13610 /* need to free up the reference on osp for lock args */ 13611 if (osp != NULL) { 13612 open_stream_rele(osp, rp); 13613 *ospp = NULL; 13614 } 13615 13616 /* need to free up the reference on oop for lock args */ 13617 if (oop != NULL) { 13618 nfs4_end_open_seqid_sync(oop); 13619 open_owner_rele(oop); 13620 *oopp = NULL; 13621 } 13622 13623 return (retry); 13624 } 13625 13626 /* 13627 * Handles the succesful reply from the server for nfs4frlock. 13628 */ 13629 static void 13630 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13631 vnode_t *vp, int flag, u_offset_t offset, 13632 nfs4_lost_rqst_t *resend_rqstp) 13633 { 13634 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13635 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13636 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13637 if (ctype == NFS4_LCK_CTYPE_NORM) { 13638 flk->l_pid = ttoproc(curthread)->p_pid; 13639 /* 13640 * We do not register lost locks locally in 13641 * the 'resend' case since the user/application 13642 * doesn't think we have the lock. 13643 */ 13644 ASSERT(!resend_rqstp); 13645 nfs4_register_lock_locally(vp, flk, flag, offset); 13646 } 13647 } 13648 } 13649 13650 /* 13651 * Handle the DENIED reply from the server for nfs4frlock. 13652 * Returns TRUE if we should retry the request; FALSE otherwise. 13653 * 13654 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13655 * COMPOUND4 args/res for calls that need to retry. Can also 13656 * drop and regrab the r_lkserlock. 13657 */ 13658 static bool_t 13659 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13660 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13661 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13662 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13663 nfs4_recov_state_t *recov_statep, int needrecov, 13664 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13665 clock_t *tick_delayp, short *whencep, int *errorp, 13666 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13667 bool_t *skip_get_err) 13668 { 13669 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13670 13671 if (lock_args) { 13672 nfs4_open_owner_t *oop = *oopp; 13673 nfs4_open_stream_t *osp = *ospp; 13674 nfs4_lock_owner_t *lop = *lopp; 13675 int intr; 13676 13677 /* 13678 * Blocking lock needs to sleep and retry from the request. 13679 * 13680 * Do not block and wait for 'resend' or 'reinstate' 13681 * lock requests, just return the error. 13682 * 13683 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13684 */ 13685 if (cmd == F_SETLKW) { 13686 rnode4_t *rp = VTOR4(vp); 13687 nfs_argop4 *argop = (*argspp)->array; 13688 13689 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13690 13691 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13692 recov_statep, needrecov); 13693 *did_start_fop = FALSE; 13694 ASSERT((*argspp)->array_len == 2); 13695 if (argop[1].argop == OP_LOCK) 13696 nfs4args_lock_free(&argop[1]); 13697 else if (argop[1].argop == OP_LOCKT) 13698 nfs4args_lockt_free(&argop[1]); 13699 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13700 if (*respp) 13701 (void) xdr_free(xdr_COMPOUND4res_clnt, 13702 (caddr_t)*respp); 13703 *argspp = NULL; 13704 *respp = NULL; 13705 nfs4_end_lock_seqid_sync(lop); 13706 lock_owner_rele(lop); 13707 *lopp = NULL; 13708 if (osp != NULL) { 13709 open_stream_rele(osp, rp); 13710 *ospp = NULL; 13711 } 13712 if (oop != NULL) { 13713 nfs4_end_open_seqid_sync(oop); 13714 open_owner_rele(oop); 13715 *oopp = NULL; 13716 } 13717 13718 nfs_rw_exit(&rp->r_lkserlock); 13719 13720 intr = nfs4_block_and_wait(tick_delayp, rp); 13721 13722 if (intr) { 13723 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13724 RW_WRITER, FALSE); 13725 *errorp = EINTR; 13726 return (FALSE); 13727 } 13728 13729 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13730 RW_WRITER, FALSE); 13731 13732 /* 13733 * Make sure we are still safe to lock with 13734 * regards to mmapping. 13735 */ 13736 if (!nfs4_safelock(vp, flk, cr)) { 13737 *errorp = EAGAIN; 13738 return (FALSE); 13739 } 13740 13741 return (TRUE); 13742 } 13743 if (ctype == NFS4_LCK_CTYPE_NORM) 13744 *errorp = EAGAIN; 13745 *skip_get_err = TRUE; 13746 flk->l_whence = 0; 13747 *whencep = 0; 13748 return (FALSE); 13749 } else if (lockt_args) { 13750 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13751 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13752 13753 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13754 flk, lockt_args); 13755 13756 /* according to NLM code */ 13757 *errorp = 0; 13758 *whencep = 0; 13759 *skip_get_err = TRUE; 13760 return (FALSE); 13761 } 13762 return (FALSE); 13763 } 13764 13765 /* 13766 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13767 */ 13768 static void 13769 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13770 { 13771 switch (resp->status) { 13772 case NFS4ERR_ACCESS: 13773 case NFS4ERR_ADMIN_REVOKED: 13774 case NFS4ERR_BADHANDLE: 13775 case NFS4ERR_BAD_RANGE: 13776 case NFS4ERR_BAD_SEQID: 13777 case NFS4ERR_BAD_STATEID: 13778 case NFS4ERR_BADXDR: 13779 case NFS4ERR_DEADLOCK: 13780 case NFS4ERR_DELAY: 13781 case NFS4ERR_EXPIRED: 13782 case NFS4ERR_FHEXPIRED: 13783 case NFS4ERR_GRACE: 13784 case NFS4ERR_INVAL: 13785 case NFS4ERR_ISDIR: 13786 case NFS4ERR_LEASE_MOVED: 13787 case NFS4ERR_LOCK_NOTSUPP: 13788 case NFS4ERR_LOCK_RANGE: 13789 case NFS4ERR_MOVED: 13790 case NFS4ERR_NOFILEHANDLE: 13791 case NFS4ERR_NO_GRACE: 13792 case NFS4ERR_OLD_STATEID: 13793 case NFS4ERR_OPENMODE: 13794 case NFS4ERR_RECLAIM_BAD: 13795 case NFS4ERR_RECLAIM_CONFLICT: 13796 case NFS4ERR_RESOURCE: 13797 case NFS4ERR_SERVERFAULT: 13798 case NFS4ERR_STALE: 13799 case NFS4ERR_STALE_CLIENTID: 13800 case NFS4ERR_STALE_STATEID: 13801 return; 13802 default: 13803 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13804 "nfs4frlock_results_default: got unrecognizable " 13805 "res.status %d", resp->status)); 13806 *errorp = NFS4ERR_INVAL; 13807 } 13808 } 13809 13810 /* 13811 * The lock request was successful, so update the client's state. 13812 */ 13813 static void 13814 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13815 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13816 vnode_t *vp, flock64_t *flk, cred_t *cr, 13817 nfs4_lost_rqst_t *resend_rqstp) 13818 { 13819 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13820 13821 if (lock_args) { 13822 LOCK4res *lock_res; 13823 13824 lock_res = &resop->nfs_resop4_u.oplock; 13825 /* update the stateid with server's response */ 13826 13827 if (lock_args->locker.new_lock_owner == TRUE) { 13828 mutex_enter(&lop->lo_lock); 13829 lop->lo_just_created = NFS4_PERM_CREATED; 13830 mutex_exit(&lop->lo_lock); 13831 } 13832 13833 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13834 13835 /* 13836 * If the lock was the result of a resending a lost 13837 * request, we've synched up the stateid and seqid 13838 * with the server, but now the server might be out of sync 13839 * with what the application thinks it has for locks. 13840 * Clean that up here. It's unclear whether we should do 13841 * this even if the filesystem has been forcibly unmounted. 13842 * For most servers, it's probably wasted effort, but 13843 * RFC3530 lets servers require that unlocks exactly match 13844 * the locks that are held. 13845 */ 13846 if (resend_rqstp != NULL && 13847 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13848 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13849 } else { 13850 flk->l_whence = 0; 13851 } 13852 } else if (locku_args) { 13853 LOCKU4res *locku_res; 13854 13855 locku_res = &resop->nfs_resop4_u.oplocku; 13856 13857 /* Update the stateid with the server's response */ 13858 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 13859 } else if (lockt_args) { 13860 /* Switch the lock type to express success, see fcntl */ 13861 flk->l_type = F_UNLCK; 13862 flk->l_whence = 0; 13863 } 13864 } 13865 13866 /* 13867 * Do final cleanup before exiting nfs4frlock. 13868 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13869 * COMPOUND4 args/res for calls that haven't already. 13870 */ 13871 static void 13872 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 13873 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 13874 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 13875 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13876 short whence, u_offset_t offset, struct lm_sysid *ls, 13877 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 13878 bool_t did_start_fop, bool_t skip_get_err, 13879 cred_t *cred_otw, cred_t *cred) 13880 { 13881 mntinfo4_t *mi = VTOMI4(vp); 13882 rnode4_t *rp = VTOR4(vp); 13883 int error = *errorp; 13884 nfs_argop4 *argop; 13885 13886 ASSERT(nfs_zone() == mi->mi_zone); 13887 /* 13888 * The client recovery code wants the raw status information, 13889 * so don't map the NFS status code to an errno value for 13890 * non-normal call types. 13891 */ 13892 if (ctype == NFS4_LCK_CTYPE_NORM) { 13893 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 13894 *errorp = geterrno4(resp->status); 13895 if (did_start_fop == TRUE) 13896 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 13897 needrecov); 13898 13899 if (!error && resp && resp->status == NFS4_OK) { 13900 /* 13901 * We've established a new lock on the server, so invalidate 13902 * the pages associated with the vnode to get the most up to 13903 * date pages from the server after acquiring the lock. We 13904 * want to be sure that the read operation gets the newest data. 13905 * N.B. 13906 * We used to do this in nfs4frlock_results_ok but that doesn't 13907 * work since VOP_PUTPAGE can call nfs4_commit which calls 13908 * nfs4_start_fop. We flush the pages below after calling 13909 * nfs4_end_fop above 13910 */ 13911 int error; 13912 13913 error = VOP_PUTPAGE(vp, (u_offset_t)0, 13914 0, B_INVAL, cred); 13915 13916 if (error && (error == ENOSPC || error == EDQUOT)) { 13917 rnode4_t *rp = VTOR4(vp); 13918 13919 mutex_enter(&rp->r_statelock); 13920 if (!rp->r_error) 13921 rp->r_error = error; 13922 mutex_exit(&rp->r_statelock); 13923 } 13924 } 13925 } 13926 if (argsp) { 13927 ASSERT(argsp->array_len == 2); 13928 argop = argsp->array; 13929 if (argop[1].argop == OP_LOCK) 13930 nfs4args_lock_free(&argop[1]); 13931 else if (argop[1].argop == OP_LOCKT) 13932 nfs4args_lockt_free(&argop[1]); 13933 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13934 if (resp) 13935 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 13936 } 13937 13938 /* free the reference on the lock owner */ 13939 if (lop != NULL) { 13940 nfs4_end_lock_seqid_sync(lop); 13941 lock_owner_rele(lop); 13942 } 13943 13944 /* need to free up the reference on osp for lock args */ 13945 if (osp != NULL) 13946 open_stream_rele(osp, rp); 13947 13948 /* need to free up the reference on oop for lock args */ 13949 if (oop != NULL) { 13950 nfs4_end_open_seqid_sync(oop); 13951 open_owner_rele(oop); 13952 } 13953 13954 (void) convoff(vp, flk, whence, offset); 13955 13956 lm_rel_sysid(ls); 13957 13958 /* 13959 * Record debug information in the event we get EINVAL. 13960 */ 13961 mutex_enter(&mi->mi_lock); 13962 if (*errorp == EINVAL && (lock_args || locku_args) && 13963 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 13964 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 13965 zcmn_err(getzoneid(), CE_NOTE, 13966 "%s operation failed with " 13967 "EINVAL probably since the server, %s," 13968 " doesn't support POSIX style locking", 13969 lock_args ? "LOCK" : "LOCKU", 13970 mi->mi_curr_serv->sv_hostname); 13971 mi->mi_flags |= MI4_LOCK_DEBUG; 13972 } 13973 } 13974 mutex_exit(&mi->mi_lock); 13975 13976 if (cred_otw) 13977 crfree(cred_otw); 13978 } 13979 13980 /* 13981 * This calls the server and the local locking code. 13982 * 13983 * Client locks are registerred locally by oring the sysid with 13984 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 13985 * We need to distinguish between the two to avoid collision in case one 13986 * machine is used as both client and server. 13987 * 13988 * Blocking lock requests will continually retry to acquire the lock 13989 * forever. 13990 * 13991 * The ctype is defined as follows: 13992 * NFS4_LCK_CTYPE_NORM: normal lock request. 13993 * 13994 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 13995 * recovery, get the pid from flk instead of curproc, and don't reregister 13996 * the lock locally. 13997 * 13998 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 13999 * that we will use the information passed in via resend_rqstp to setup the 14000 * lock/locku request. This resend is the exact same request as the 'lost 14001 * lock', and is initiated by the recovery framework. A successful resend 14002 * request can initiate one or more reinstate requests. 14003 * 14004 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14005 * does not trigger additional reinstate requests. This lock call type is 14006 * set for setting the v4 server's locking state back to match what the 14007 * client's local locking state is in the event of a received 'lost lock'. 14008 * 14009 * Errors are returned via the nfs4_error_t parameter. 14010 */ 14011 void 14012 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14013 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14014 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14015 { 14016 COMPOUND4args_clnt args, *argsp = NULL; 14017 COMPOUND4res_clnt res, *resp = NULL; 14018 nfs_argop4 *argop; 14019 nfs_resop4 *resop; 14020 rnode4_t *rp; 14021 int doqueue = 1; 14022 clock_t tick_delay; /* delay in clock ticks */ 14023 struct lm_sysid *ls; 14024 LOCK4args *lock_args = NULL; 14025 LOCKU4args *locku_args = NULL; 14026 LOCKT4args *lockt_args = NULL; 14027 nfs4_open_owner_t *oop = NULL; 14028 nfs4_open_stream_t *osp = NULL; 14029 nfs4_lock_owner_t *lop = NULL; 14030 bool_t needrecov = FALSE; 14031 nfs4_recov_state_t recov_state; 14032 short whence; 14033 nfs4_op_hint_t op_hint; 14034 nfs4_lost_rqst_t lost_rqst; 14035 bool_t retry = FALSE; 14036 bool_t did_start_fop = FALSE; 14037 bool_t skip_get_err = FALSE; 14038 cred_t *cred_otw = NULL; 14039 bool_t recovonly; /* just queue request */ 14040 int frc_no_reclaim = 0; 14041 #ifdef DEBUG 14042 char *name; 14043 #endif 14044 14045 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14046 14047 #ifdef DEBUG 14048 name = fn_name(VTOSV(vp)->sv_name); 14049 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14050 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14051 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14052 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14053 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14054 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14055 resend_rqstp ? "TRUE" : "FALSE")); 14056 kmem_free(name, MAXNAMELEN); 14057 #endif 14058 14059 nfs4_error_zinit(ep); 14060 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14061 if (ep->error) 14062 return; 14063 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14064 if (ep->error) 14065 return; 14066 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14067 vp, cr, &cred_otw); 14068 14069 recov_retry: 14070 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14071 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14072 rp = VTOR4(vp); 14073 14074 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14075 &did_start_fop, &recovonly); 14076 14077 if (ep->error) 14078 goto out; 14079 14080 if (recovonly) { 14081 /* 14082 * Leave the request for the recovery system to deal with. 14083 */ 14084 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14085 ASSERT(cmd != F_GETLK); 14086 ASSERT(flk->l_type == F_UNLCK); 14087 14088 nfs4_error_init(ep, EINTR); 14089 needrecov = TRUE; 14090 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14091 if (lop != NULL) { 14092 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14093 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14094 (void) nfs4_start_recovery(ep, 14095 VTOMI4(vp), vp, NULL, NULL, 14096 (lost_rqst.lr_op == OP_LOCK || 14097 lost_rqst.lr_op == OP_LOCKU) ? 14098 &lost_rqst : NULL, OP_LOCKU, NULL); 14099 lock_owner_rele(lop); 14100 lop = NULL; 14101 } 14102 flk->l_pid = curproc->p_pid; 14103 nfs4_register_lock_locally(vp, flk, flag, offset); 14104 goto out; 14105 } 14106 14107 /* putfh directory fh */ 14108 argop[0].argop = OP_CPUTFH; 14109 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14110 14111 /* 14112 * Set up the over-the-wire arguments and get references to the 14113 * open owner, etc. 14114 */ 14115 14116 if (ctype == NFS4_LCK_CTYPE_RESEND || 14117 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14118 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14119 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14120 } else { 14121 bool_t go_otw = TRUE; 14122 14123 ASSERT(resend_rqstp == NULL); 14124 14125 switch (cmd) { 14126 case F_GETLK: 14127 case F_O_GETLK: 14128 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14129 &lockt_args, argsp, flk, rp); 14130 break; 14131 case F_SETLKW: 14132 case F_SETLK: 14133 if (flk->l_type == F_UNLCK) 14134 nfs4frlock_setup_locku_args(ctype, 14135 &argop[1], &locku_args, flk, 14136 &lop, ep, argsp, 14137 vp, flag, offset, cr, 14138 &skip_get_err, &go_otw); 14139 else 14140 nfs4frlock_setup_lock_args(ctype, 14141 &lock_args, &oop, &osp, &lop, &argop[1], 14142 argsp, flk, cmd, vp, cr, ep); 14143 14144 if (ep->error) 14145 goto out; 14146 14147 switch (ep->stat) { 14148 case NFS4_OK: 14149 break; 14150 case NFS4ERR_DELAY: 14151 /* recov thread never gets this error */ 14152 ASSERT(resend_rqstp == NULL); 14153 ASSERT(did_start_fop); 14154 14155 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14156 &recov_state, TRUE); 14157 did_start_fop = FALSE; 14158 if (argop[1].argop == OP_LOCK) 14159 nfs4args_lock_free(&argop[1]); 14160 else if (argop[1].argop == OP_LOCKT) 14161 nfs4args_lockt_free(&argop[1]); 14162 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14163 argsp = NULL; 14164 goto recov_retry; 14165 default: 14166 ep->error = EIO; 14167 goto out; 14168 } 14169 break; 14170 default: 14171 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14172 "nfs4_frlock: invalid cmd %d", cmd)); 14173 ep->error = EINVAL; 14174 goto out; 14175 } 14176 14177 if (!go_otw) 14178 goto out; 14179 } 14180 14181 /* XXX should we use the local reclock as a cache ? */ 14182 /* 14183 * Unregister the lock with the local locking code before 14184 * contacting the server. This avoids a potential race where 14185 * another process gets notified that it has been granted a lock 14186 * before we can unregister ourselves locally. 14187 */ 14188 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14189 if (ctype == NFS4_LCK_CTYPE_NORM) 14190 flk->l_pid = ttoproc(curthread)->p_pid; 14191 nfs4_register_lock_locally(vp, flk, flag, offset); 14192 } 14193 14194 /* 14195 * Send the server the lock request. Continually loop with a delay 14196 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14197 */ 14198 resp = &res; 14199 14200 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14201 (CE_NOTE, 14202 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14203 rnode4info(rp))); 14204 14205 if (lock_args && frc_no_reclaim) { 14206 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14207 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14208 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14209 lock_args->reclaim = FALSE; 14210 if (did_reclaimp) 14211 *did_reclaimp = 0; 14212 } 14213 14214 /* 14215 * Do the OTW call. 14216 */ 14217 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14218 14219 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14220 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14221 14222 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14223 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14224 "nfs4frlock: needrecov %d", needrecov)); 14225 14226 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14227 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14228 args.ctag); 14229 14230 /* 14231 * Check if one of these mutually exclusive error cases has 14232 * happened: 14233 * need to swap credentials due to access error 14234 * recovery is needed 14235 * different error (only known case is missing Kerberos ticket) 14236 */ 14237 14238 if ((ep->error == EACCES || 14239 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14240 cred_otw != cr) { 14241 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14242 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14243 cr, &cred_otw); 14244 goto recov_retry; 14245 } 14246 14247 if (needrecov) { 14248 /* 14249 * LOCKT requests don't need to recover from lost 14250 * requests since they don't create/modify state. 14251 */ 14252 if ((ep->error == EINTR || 14253 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14254 lockt_args) 14255 goto out; 14256 /* 14257 * Do not attempt recovery for requests initiated by 14258 * the recovery framework. Let the framework redrive them. 14259 */ 14260 if (ctype != NFS4_LCK_CTYPE_NORM) 14261 goto out; 14262 else { 14263 ASSERT(resend_rqstp == NULL); 14264 } 14265 14266 nfs4frlock_save_lost_rqst(ctype, ep->error, 14267 flk_to_locktype(cmd, flk->l_type), 14268 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14269 14270 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14271 &resp, lock_args, locku_args, &oop, &osp, &lop, 14272 rp, vp, &recov_state, op_hint, &did_start_fop, 14273 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14274 14275 if (retry) { 14276 ASSERT(oop == NULL); 14277 ASSERT(osp == NULL); 14278 ASSERT(lop == NULL); 14279 goto recov_retry; 14280 } 14281 goto out; 14282 } 14283 14284 /* 14285 * Bail out if have reached this point with ep->error set. Can 14286 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14287 * This happens if Kerberos ticket has expired or has been 14288 * destroyed. 14289 */ 14290 if (ep->error != 0) 14291 goto out; 14292 14293 /* 14294 * Process the reply. 14295 */ 14296 switch (resp->status) { 14297 case NFS4_OK: 14298 resop = &resp->array[1]; 14299 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14300 resend_rqstp); 14301 /* 14302 * Have a successful lock operation, now update state. 14303 */ 14304 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14305 resop, lop, vp, flk, cr, resend_rqstp); 14306 break; 14307 14308 case NFS4ERR_DENIED: 14309 resop = &resp->array[1]; 14310 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14311 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14312 &recov_state, needrecov, &argsp, &resp, 14313 &tick_delay, &whence, &ep->error, resop, cr, 14314 &did_start_fop, &skip_get_err); 14315 14316 if (retry) { 14317 ASSERT(oop == NULL); 14318 ASSERT(osp == NULL); 14319 ASSERT(lop == NULL); 14320 goto recov_retry; 14321 } 14322 break; 14323 /* 14324 * If the server won't let us reclaim, fall-back to trying to lock 14325 * the file from scratch. Code elsewhere will check the changeinfo 14326 * to ensure the file hasn't been changed. 14327 */ 14328 case NFS4ERR_NO_GRACE: 14329 if (lock_args && lock_args->reclaim == TRUE) { 14330 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14331 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14332 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14333 frc_no_reclaim = 1; 14334 /* clean up before retrying */ 14335 needrecov = 0; 14336 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14337 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14338 &recov_state, op_hint, &did_start_fop, NULL, flk); 14339 goto recov_retry; 14340 } 14341 /* FALLTHROUGH */ 14342 14343 default: 14344 nfs4frlock_results_default(resp, &ep->error); 14345 break; 14346 } 14347 out: 14348 /* 14349 * Process and cleanup from error. Make interrupted unlock 14350 * requests look successful, since they will be handled by the 14351 * client recovery code. 14352 */ 14353 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14354 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14355 lock_args, locku_args, did_start_fop, 14356 skip_get_err, cred_otw, cr); 14357 14358 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14359 (cmd == F_SETLK || cmd == F_SETLKW)) 14360 ep->error = 0; 14361 } 14362 14363 /* 14364 * nfs4_safelock: 14365 * 14366 * Return non-zero if the given lock request can be handled without 14367 * violating the constraints on concurrent mapping and locking. 14368 */ 14369 14370 static int 14371 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14372 { 14373 rnode4_t *rp = VTOR4(vp); 14374 struct vattr va; 14375 int error; 14376 14377 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14378 ASSERT(rp->r_mapcnt >= 0); 14379 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14380 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14381 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14382 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14383 14384 if (rp->r_mapcnt == 0) 14385 return (1); /* always safe if not mapped */ 14386 14387 /* 14388 * If the file is already mapped and there are locks, then they 14389 * should be all safe locks. So adding or removing a lock is safe 14390 * as long as the new request is safe (i.e., whole-file, meaning 14391 * length and starting offset are both zero). 14392 */ 14393 14394 if (bfp->l_start != 0 || bfp->l_len != 0) { 14395 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14396 "cannot lock a memory mapped file unless locking the " 14397 "entire file: start %"PRIx64", len %"PRIx64, 14398 bfp->l_start, bfp->l_len)); 14399 return (0); 14400 } 14401 14402 /* mandatory locking and mapping don't mix */ 14403 va.va_mask = AT_MODE; 14404 error = VOP_GETATTR(vp, &va, 0, cr); 14405 if (error != 0) { 14406 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14407 "getattr error %d", error)); 14408 return (0); /* treat errors conservatively */ 14409 } 14410 if (MANDLOCK(vp, va.va_mode)) { 14411 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14412 "cannot mandatory lock and mmap a file")); 14413 return (0); 14414 } 14415 14416 return (1); 14417 } 14418 14419 14420 /* 14421 * Register the lock locally within Solaris. 14422 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14423 * recording locks locally. 14424 * 14425 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14426 * are registered locally. 14427 */ 14428 void 14429 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14430 u_offset_t offset) 14431 { 14432 int oldsysid; 14433 int error; 14434 #ifdef DEBUG 14435 char *name; 14436 #endif 14437 14438 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14439 14440 #ifdef DEBUG 14441 name = fn_name(VTOSV(vp)->sv_name); 14442 NFS4_DEBUG(nfs4_client_lock_debug, 14443 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14444 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14445 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14446 flk->l_sysid)); 14447 kmem_free(name, MAXNAMELEN); 14448 #endif 14449 14450 /* register the lock with local locking */ 14451 oldsysid = flk->l_sysid; 14452 flk->l_sysid |= LM_SYSID_CLIENT; 14453 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14454 #ifdef DEBUG 14455 if (error != 0) { 14456 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14457 "nfs4_register_lock_locally: could not register with" 14458 " local locking")); 14459 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14460 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14461 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14462 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14463 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14464 flk->l_type, flk->l_start, flk->l_len)); 14465 (void) reclock(vp, flk, 0, flag, offset, NULL); 14466 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14467 "blocked by pid %d sysid 0x%x type %d " 14468 "off 0x%" PRIx64 " len 0x%" PRIx64, 14469 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14470 flk->l_len)); 14471 } 14472 #endif 14473 flk->l_sysid = oldsysid; 14474 } 14475 14476 /* 14477 * nfs4_lockrelease: 14478 * 14479 * Release any locks on the given vnode that are held by the current 14480 * process. Also removes the lock owner (if one exists) from the rnode's 14481 * list. 14482 */ 14483 static int 14484 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14485 { 14486 flock64_t ld; 14487 int ret, error; 14488 rnode4_t *rp; 14489 nfs4_lock_owner_t *lop; 14490 nfs4_recov_state_t recov_state; 14491 mntinfo4_t *mi; 14492 bool_t possible_orphan = FALSE; 14493 bool_t recovonly; 14494 14495 ASSERT((uintptr_t)vp > KERNELBASE); 14496 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14497 14498 rp = VTOR4(vp); 14499 mi = VTOMI4(vp); 14500 14501 /* 14502 * If we have not locked anything then we can 14503 * just return since we have no work to do. 14504 */ 14505 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14506 return (0); 14507 } 14508 14509 /* 14510 * We need to comprehend that another thread may 14511 * kick off recovery and the lock_owner we have stashed 14512 * in lop might be invalid so we should NOT cache it 14513 * locally! 14514 */ 14515 recov_state.rs_flags = 0; 14516 recov_state.rs_num_retry_despite_err = 0; 14517 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14518 &recovonly); 14519 if (error) { 14520 mutex_enter(&rp->r_statelock); 14521 rp->r_flags |= R4LODANGLERS; 14522 mutex_exit(&rp->r_statelock); 14523 return (error); 14524 } 14525 14526 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14527 14528 /* 14529 * Check if the lock owner might have a lock (request was sent but 14530 * no response was received). Also check if there are any remote 14531 * locks on the file. (In theory we shouldn't have to make this 14532 * second check if there's no lock owner, but for now we'll be 14533 * conservative and do it anyway.) If either condition is true, 14534 * send an unlock for the entire file to the server. 14535 * 14536 * Note that no explicit synchronization is needed here. At worst, 14537 * flk_has_remote_locks() will return a false positive, in which case 14538 * the unlock call wastes time but doesn't harm correctness. 14539 */ 14540 14541 if (lop) { 14542 mutex_enter(&lop->lo_lock); 14543 possible_orphan = lop->lo_pending_rqsts; 14544 mutex_exit(&lop->lo_lock); 14545 lock_owner_rele(lop); 14546 } 14547 14548 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14549 14550 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14551 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14552 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14553 (void *)lop)); 14554 14555 if (possible_orphan || flk_has_remote_locks(vp)) { 14556 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14557 ld.l_whence = 0; /* unlock from start of file */ 14558 ld.l_start = 0; 14559 ld.l_len = 0; /* do entire file */ 14560 14561 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr); 14562 14563 if (ret != 0) { 14564 /* 14565 * If VOP_FRLOCK fails, make sure we unregister 14566 * local locks before we continue. 14567 */ 14568 ld.l_pid = ttoproc(curthread)->p_pid; 14569 nfs4_register_lock_locally(vp, &ld, flag, offset); 14570 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14571 "nfs4_lockrelease: lock release error on vp" 14572 " %p: error %d.\n", (void *)vp, ret)); 14573 } 14574 } 14575 14576 recov_state.rs_flags = 0; 14577 recov_state.rs_num_retry_despite_err = 0; 14578 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14579 &recovonly); 14580 if (error) { 14581 mutex_enter(&rp->r_statelock); 14582 rp->r_flags |= R4LODANGLERS; 14583 mutex_exit(&rp->r_statelock); 14584 return (error); 14585 } 14586 14587 /* 14588 * So, here we're going to need to retrieve the lock-owner 14589 * again (in case recovery has done a switch-a-roo) and 14590 * remove it because we can. 14591 */ 14592 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14593 14594 if (lop) { 14595 nfs4_rnode_remove_lock_owner(rp, lop); 14596 lock_owner_rele(lop); 14597 } 14598 14599 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14600 return (0); 14601 } 14602 14603 /* 14604 * Wait for 'tick_delay' clock ticks. 14605 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14606 * NOTE: lock_lease_time is in seconds. 14607 * 14608 * XXX For future improvements, should implement a waiting queue scheme. 14609 */ 14610 static int 14611 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14612 { 14613 long milliseconds_delay; 14614 time_t lock_lease_time; 14615 14616 /* wait tick_delay clock ticks or siginteruptus */ 14617 if (delay_sig(*tick_delay)) { 14618 return (EINTR); 14619 } 14620 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14621 "reissue the lock request: blocked for %ld clock ticks: %ld " 14622 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14623 14624 /* get the lease time */ 14625 lock_lease_time = r2lease_time(rp); 14626 14627 /* drv_hztousec converts ticks to microseconds */ 14628 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14629 if (milliseconds_delay < lock_lease_time * 1000) { 14630 *tick_delay = 2 * *tick_delay; 14631 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14632 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14633 } 14634 return (0); 14635 } 14636 14637 14638 void 14639 nfs4_vnops_init(void) 14640 { 14641 } 14642 14643 void 14644 nfs4_vnops_fini(void) 14645 { 14646 } 14647 14648 /* 14649 * Return a reference to the directory (parent) vnode for a given vnode, 14650 * using the saved pathname information and the directory file handle. The 14651 * caller is responsible for disposing of the reference. 14652 * Returns zero or an errno value. 14653 * 14654 * Caller should set need_start_op to FALSE if it is the recovery 14655 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14656 */ 14657 int 14658 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14659 { 14660 svnode_t *svnp; 14661 vnode_t *dvp = NULL; 14662 servinfo4_t *svp; 14663 nfs4_fname_t *mfname; 14664 int error; 14665 14666 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14667 14668 if (vp->v_flag & VROOT) { 14669 nfs4_sharedfh_t *sfh; 14670 nfs_fh4 fh; 14671 mntinfo4_t *mi; 14672 14673 ASSERT(vp->v_type == VREG); 14674 14675 mi = VTOMI4(vp); 14676 svp = mi->mi_curr_serv; 14677 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14678 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14679 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14680 sfh = sfh4_get(&fh, VTOMI4(vp)); 14681 nfs_rw_exit(&svp->sv_lock); 14682 mfname = mi->mi_fname; 14683 fn_hold(mfname); 14684 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14685 sfh4_rele(&sfh); 14686 14687 if (dvp->v_type == VNON) 14688 dvp->v_type = VDIR; 14689 *dvpp = dvp; 14690 return (0); 14691 } 14692 14693 svnp = VTOSV(vp); 14694 14695 if (svnp == NULL) { 14696 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14697 "shadow node is NULL")); 14698 return (EINVAL); 14699 } 14700 14701 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14702 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14703 "shadow node name or dfh val == NULL")); 14704 return (EINVAL); 14705 } 14706 14707 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14708 (int)need_start_op); 14709 if (error != 0) { 14710 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14711 "nfs4_make_dotdot returned %d", error)); 14712 return (error); 14713 } 14714 if (!dvp) { 14715 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14716 "nfs4_make_dotdot returned a NULL dvp")); 14717 return (EIO); 14718 } 14719 if (dvp->v_type == VNON) 14720 dvp->v_type = VDIR; 14721 ASSERT(dvp->v_type == VDIR); 14722 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14723 mutex_enter(&dvp->v_lock); 14724 dvp->v_flag |= V_XATTRDIR; 14725 mutex_exit(&dvp->v_lock); 14726 } 14727 *dvpp = dvp; 14728 return (0); 14729 } 14730 14731 /* 14732 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14733 * length that fnamep can accept, including the trailing null. 14734 * Returns 0 if okay, returns an errno value if there was a problem. 14735 */ 14736 14737 int 14738 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14739 { 14740 char *fn; 14741 int err = 0; 14742 servinfo4_t *svp; 14743 svnode_t *shvp; 14744 14745 /* 14746 * If the file being opened has VROOT set, then this is 14747 * a "file" mount. sv_name will not be interesting, so 14748 * go back to the servinfo4 to get the original mount 14749 * path and strip off all but the final edge. Otherwise 14750 * just return the name from the shadow vnode. 14751 */ 14752 14753 if (vp->v_flag & VROOT) { 14754 14755 svp = VTOMI4(vp)->mi_curr_serv; 14756 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14757 14758 fn = strrchr(svp->sv_path, '/'); 14759 if (fn == NULL) 14760 err = EINVAL; 14761 else 14762 fn++; 14763 } else { 14764 shvp = VTOSV(vp); 14765 fn = fn_name(shvp->sv_name); 14766 } 14767 14768 if (err == 0) 14769 if (strlen(fn) < maxlen) 14770 (void) strcpy(fnamep, fn); 14771 else 14772 err = ENAMETOOLONG; 14773 14774 if (vp->v_flag & VROOT) 14775 nfs_rw_exit(&svp->sv_lock); 14776 else 14777 kmem_free(fn, MAXNAMELEN); 14778 14779 return (err); 14780 } 14781 14782 /* 14783 * Bookkeeping for a close that doesn't need to go over the wire. 14784 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14785 * it is left at 1. 14786 */ 14787 void 14788 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14789 { 14790 rnode4_t *rp; 14791 mntinfo4_t *mi; 14792 14793 mi = VTOMI4(vp); 14794 rp = VTOR4(vp); 14795 14796 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14797 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14798 ASSERT(nfs_zone() == mi->mi_zone); 14799 ASSERT(mutex_owned(&osp->os_sync_lock)); 14800 ASSERT(*have_lockp); 14801 14802 if (!osp->os_valid || 14803 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14804 return; 14805 } 14806 14807 /* 14808 * This removes the reference obtained at OPEN; ie, 14809 * when the open stream structure was created. 14810 * 14811 * We don't have to worry about calling 'open_stream_rele' 14812 * since we our currently holding a reference to this 14813 * open stream which means the count can not go to 0 with 14814 * this decrement. 14815 */ 14816 ASSERT(osp->os_ref_count >= 2); 14817 osp->os_ref_count--; 14818 osp->os_valid = 0; 14819 mutex_exit(&osp->os_sync_lock); 14820 *have_lockp = 0; 14821 14822 nfs4_dec_state_ref_count(mi); 14823 } 14824 14825 /* 14826 * Close all remaining open streams on the rnode. These open streams 14827 * could be here because: 14828 * - The close attempted at either close or delmap failed 14829 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14830 * - Someone did mknod on a regular file but never opened it 14831 */ 14832 int 14833 nfs4close_all(vnode_t *vp, cred_t *cr) 14834 { 14835 nfs4_open_stream_t *osp; 14836 int error; 14837 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14838 rnode4_t *rp; 14839 14840 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14841 14842 error = 0; 14843 rp = VTOR4(vp); 14844 14845 /* 14846 * At this point, all we know is that the last time 14847 * someone called vn_rele, the count was 1. Since then, 14848 * the vnode could have been re-activated. We want to 14849 * loop through the open streams and close each one, but 14850 * we have to be careful since once we release the rnode 14851 * hash bucket lock, someone else is free to come in and 14852 * re-activate the rnode and add new open streams. The 14853 * strategy is take the rnode hash bucket lock, verify that 14854 * the count is still 1, grab the open stream off the 14855 * head of the list and mark it invalid, then release the 14856 * rnode hash bucket lock and proceed with that open stream. 14857 * This is ok because nfs4close_one() will acquire the proper 14858 * open/create to close/destroy synchronization for open 14859 * streams, and will ensure that if someone has reopened 14860 * the open stream after we've dropped the hash bucket lock 14861 * then we'll just simply return without destroying the 14862 * open stream. 14863 * Repeat until the list is empty. 14864 */ 14865 14866 for (;;) { 14867 14868 /* make sure vnode hasn't been reactivated */ 14869 rw_enter(&rp->r_hashq->r_lock, RW_READER); 14870 mutex_enter(&vp->v_lock); 14871 if (vp->v_count > 1) { 14872 mutex_exit(&vp->v_lock); 14873 rw_exit(&rp->r_hashq->r_lock); 14874 break; 14875 } 14876 /* 14877 * Grabbing r_os_lock before releasing v_lock prevents 14878 * a window where the rnode/open stream could get 14879 * reactivated (and os_force_close set to 0) before we 14880 * had a chance to set os_force_close to 1. 14881 */ 14882 mutex_enter(&rp->r_os_lock); 14883 mutex_exit(&vp->v_lock); 14884 14885 osp = list_head(&rp->r_open_streams); 14886 if (!osp) { 14887 /* nothing left to CLOSE OTW, so return */ 14888 mutex_exit(&rp->r_os_lock); 14889 rw_exit(&rp->r_hashq->r_lock); 14890 break; 14891 } 14892 14893 mutex_enter(&rp->r_statev4_lock); 14894 /* the file can't still be mem mapped */ 14895 ASSERT(rp->r_mapcnt == 0); 14896 if (rp->created_v4) 14897 rp->created_v4 = 0; 14898 mutex_exit(&rp->r_statev4_lock); 14899 14900 /* 14901 * Grab a ref on this open stream; nfs4close_one 14902 * will mark it as invalid 14903 */ 14904 mutex_enter(&osp->os_sync_lock); 14905 osp->os_ref_count++; 14906 osp->os_force_close = 1; 14907 mutex_exit(&osp->os_sync_lock); 14908 mutex_exit(&rp->r_os_lock); 14909 rw_exit(&rp->r_hashq->r_lock); 14910 14911 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 14912 14913 /* Update error if it isn't already non-zero */ 14914 if (error == 0) { 14915 if (e.error) 14916 error = e.error; 14917 else if (e.stat) 14918 error = geterrno4(e.stat); 14919 } 14920 14921 #ifdef DEBUG 14922 nfs4close_all_cnt++; 14923 #endif 14924 /* Release the ref on osp acquired above. */ 14925 open_stream_rele(osp, rp); 14926 14927 /* Proceed to the next open stream, if any */ 14928 } 14929 return (error); 14930 } 14931 14932 /* 14933 * nfs4close_one - close one open stream for a file if needed. 14934 * 14935 * "close_type" indicates which close path this is: 14936 * CLOSE_NORM: close initiated via VOP_CLOSE. 14937 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 14938 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 14939 * the close and release of client state for this open stream 14940 * (unless someone else has the open stream open). 14941 * CLOSE_RESEND: indicates the request is a replay of an earlier request 14942 * (e.g., due to abort because of a signal). 14943 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 14944 * 14945 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 14946 * recovery. Instead, the caller is expected to deal with retries. 14947 * 14948 * The caller can either pass in the osp ('provided_osp') or not. 14949 * 14950 * 'access_bits' represents the access we are closing/downgrading. 14951 * 14952 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 14953 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 14954 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 14955 * 14956 * Errors are returned via the nfs4_error_t. 14957 */ 14958 void 14959 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 14960 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 14961 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 14962 uint_t mmap_flags) 14963 { 14964 nfs4_open_owner_t *oop; 14965 nfs4_open_stream_t *osp = NULL; 14966 int retry = 0; 14967 int num_retries = NFS4_NUM_RECOV_RETRIES; 14968 rnode4_t *rp; 14969 mntinfo4_t *mi; 14970 nfs4_recov_state_t recov_state; 14971 cred_t *cred_otw = NULL; 14972 bool_t recovonly = FALSE; 14973 int isrecov; 14974 int force_close; 14975 int close_failed = 0; 14976 int did_dec_count = 0; 14977 int did_start_op = 0; 14978 int did_force_recovlock = 0; 14979 int did_start_seqid_sync = 0; 14980 int have_sync_lock = 0; 14981 14982 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14983 14984 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 14985 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 14986 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 14987 len, maxprot, mmap_flags, access_bits)); 14988 14989 nfs4_error_zinit(ep); 14990 rp = VTOR4(vp); 14991 mi = VTOMI4(vp); 14992 isrecov = (close_type == CLOSE_RESEND || 14993 close_type == CLOSE_AFTER_RESEND); 14994 14995 /* 14996 * First get the open owner. 14997 */ 14998 if (!provided_osp) { 14999 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15000 } else { 15001 oop = provided_osp->os_open_owner; 15002 ASSERT(oop != NULL); 15003 open_owner_hold(oop); 15004 } 15005 15006 if (!oop) { 15007 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15008 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15009 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15010 (void *)provided_osp, close_type)); 15011 ep->error = EIO; 15012 goto out; 15013 } 15014 15015 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15016 recov_retry: 15017 osp = NULL; 15018 close_failed = 0; 15019 force_close = (close_type == CLOSE_FORCE); 15020 retry = 0; 15021 did_start_op = 0; 15022 did_force_recovlock = 0; 15023 did_start_seqid_sync = 0; 15024 have_sync_lock = 0; 15025 recovonly = FALSE; 15026 recov_state.rs_flags = 0; 15027 recov_state.rs_num_retry_despite_err = 0; 15028 15029 /* 15030 * Second synchronize with recovery. 15031 */ 15032 if (!isrecov) { 15033 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15034 &recov_state, &recovonly); 15035 if (!ep->error) { 15036 did_start_op = 1; 15037 } else { 15038 close_failed = 1; 15039 /* 15040 * If we couldn't get start_fop, but have to 15041 * cleanup state, then at least acquire the 15042 * mi_recovlock so we can synchronize with 15043 * recovery. 15044 */ 15045 if (close_type == CLOSE_FORCE) { 15046 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15047 RW_READER, FALSE); 15048 did_force_recovlock = 1; 15049 } else 15050 goto out; 15051 } 15052 } 15053 15054 /* 15055 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15056 * set 'recovonly' to TRUE since most likely this is due to 15057 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15058 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15059 * to retry, causing us to loop until recovery finishes. Plus we 15060 * don't need protection over the open seqid since we're not going 15061 * OTW, hence don't need to use the seqid. 15062 */ 15063 if (recovonly == FALSE) { 15064 /* need to grab the open owner sync before 'os_sync_lock' */ 15065 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15066 if (ep->error == EAGAIN) { 15067 ASSERT(!isrecov); 15068 if (did_start_op) 15069 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15070 &recov_state, TRUE); 15071 if (did_force_recovlock) 15072 nfs_rw_exit(&mi->mi_recovlock); 15073 goto recov_retry; 15074 } 15075 did_start_seqid_sync = 1; 15076 } 15077 15078 /* 15079 * Third get an open stream and acquire 'os_sync_lock' to 15080 * sychronize the opening/creating of an open stream with the 15081 * closing/destroying of an open stream. 15082 */ 15083 if (!provided_osp) { 15084 /* returns with 'os_sync_lock' held */ 15085 osp = find_open_stream(oop, rp); 15086 if (!osp) { 15087 ep->error = EIO; 15088 goto out; 15089 } 15090 } else { 15091 osp = provided_osp; 15092 open_stream_hold(osp); 15093 mutex_enter(&osp->os_sync_lock); 15094 } 15095 have_sync_lock = 1; 15096 15097 ASSERT(oop == osp->os_open_owner); 15098 15099 /* 15100 * Fourth, do any special pre-OTW CLOSE processing 15101 * based on the specific close type. 15102 */ 15103 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15104 !did_dec_count) { 15105 ASSERT(osp->os_open_ref_count > 0); 15106 osp->os_open_ref_count--; 15107 did_dec_count = 1; 15108 if (osp->os_open_ref_count == 0) 15109 osp->os_final_close = 1; 15110 } 15111 15112 if (close_type == CLOSE_FORCE) { 15113 /* see if somebody reopened the open stream. */ 15114 if (!osp->os_force_close) { 15115 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15116 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15117 "was reopened, vp %p", (void *)osp, (void *)vp)); 15118 ep->error = 0; 15119 ep->stat = NFS4_OK; 15120 goto out; 15121 } 15122 15123 if (!osp->os_final_close && !did_dec_count) { 15124 osp->os_open_ref_count--; 15125 did_dec_count = 1; 15126 } 15127 15128 /* 15129 * We can't depend on os_open_ref_count being 0 due to the 15130 * way executables are opened (VN_RELE to match a VOP_OPEN). 15131 */ 15132 #ifdef NOTYET 15133 ASSERT(osp->os_open_ref_count == 0); 15134 #endif 15135 if (osp->os_open_ref_count != 0) { 15136 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15137 "nfs4close_one: should panic here on an " 15138 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15139 "since this is probably the exec problem.")); 15140 15141 osp->os_open_ref_count = 0; 15142 } 15143 15144 /* 15145 * There is the possibility that nfs4close_one() 15146 * for close_type == CLOSE_DELMAP couldn't find the 15147 * open stream, thus couldn't decrement its os_mapcnt; 15148 * therefore we can't use this ASSERT yet. 15149 */ 15150 #ifdef NOTYET 15151 ASSERT(osp->os_mapcnt == 0); 15152 #endif 15153 osp->os_mapcnt = 0; 15154 } 15155 15156 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15157 ASSERT(osp->os_mapcnt >= btopr(len)); 15158 15159 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15160 osp->os_mmap_write -= btopr(len); 15161 if (maxprot & PROT_READ) 15162 osp->os_mmap_read -= btopr(len); 15163 if (maxprot & PROT_EXEC) 15164 osp->os_mmap_read -= btopr(len); 15165 /* mirror the PROT_NONE check in nfs4_addmap() */ 15166 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15167 !(maxprot & PROT_EXEC)) 15168 osp->os_mmap_read -= btopr(len); 15169 osp->os_mapcnt -= btopr(len); 15170 did_dec_count = 1; 15171 } 15172 15173 if (recovonly) { 15174 nfs4_lost_rqst_t lost_rqst; 15175 15176 /* request should not already be in recovery queue */ 15177 ASSERT(lrp == NULL); 15178 nfs4_error_init(ep, EINTR); 15179 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15180 osp, cred_otw, vp); 15181 mutex_exit(&osp->os_sync_lock); 15182 have_sync_lock = 0; 15183 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15184 lost_rqst.lr_op == OP_CLOSE ? 15185 &lost_rqst : NULL, OP_CLOSE, NULL); 15186 close_failed = 1; 15187 force_close = 0; 15188 goto close_cleanup; 15189 } 15190 15191 /* 15192 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15193 * we stopped operating on the open owner's <old oo_name, old seqid> 15194 * space, which means we stopped operating on the open stream 15195 * too. So don't go OTW (as the seqid is likely bad, and the 15196 * stateid could be stale, potentially triggering a false 15197 * setclientid), and just clean up the client's internal state. 15198 */ 15199 if (osp->os_orig_oo_name != oop->oo_name) { 15200 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15201 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15202 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15203 "oo_name %" PRIx64")", 15204 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15205 oop->oo_name)); 15206 close_failed = 1; 15207 } 15208 15209 /* If the file failed recovery, just quit. */ 15210 mutex_enter(&rp->r_statelock); 15211 if (rp->r_flags & R4RECOVERR) { 15212 close_failed = 1; 15213 } 15214 mutex_exit(&rp->r_statelock); 15215 15216 /* 15217 * If the force close path failed to obtain start_fop 15218 * then skip the OTW close and just remove the state. 15219 */ 15220 if (close_failed) 15221 goto close_cleanup; 15222 15223 /* 15224 * Fifth, check to see if there are still mapped pages or other 15225 * opens using this open stream. If there are then we can't 15226 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15227 */ 15228 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15229 nfs4_lost_rqst_t new_lost_rqst; 15230 bool_t needrecov = FALSE; 15231 cred_t *odg_cred_otw = NULL; 15232 seqid4 open_dg_seqid = 0; 15233 15234 if (osp->os_delegation) { 15235 /* 15236 * If this open stream was never OPENed OTW then we 15237 * surely can't DOWNGRADE it (especially since the 15238 * osp->open_stateid is really a delegation stateid 15239 * when os_delegation is 1). 15240 */ 15241 if (access_bits & FREAD) 15242 osp->os_share_acc_read--; 15243 if (access_bits & FWRITE) 15244 osp->os_share_acc_write--; 15245 osp->os_share_deny_none--; 15246 nfs4_error_zinit(ep); 15247 goto out; 15248 } 15249 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15250 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15251 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15252 if (needrecov && !isrecov) { 15253 bool_t abort; 15254 nfs4_bseqid_entry_t *bsep = NULL; 15255 15256 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15257 bsep = nfs4_create_bseqid_entry(oop, NULL, 15258 vp, 0, 15259 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15260 open_dg_seqid); 15261 15262 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15263 oop, osp, odg_cred_otw, vp, access_bits, 0); 15264 mutex_exit(&osp->os_sync_lock); 15265 have_sync_lock = 0; 15266 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15267 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15268 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15269 bsep); 15270 if (odg_cred_otw) 15271 crfree(odg_cred_otw); 15272 if (bsep) 15273 kmem_free(bsep, sizeof (*bsep)); 15274 15275 if (abort == TRUE) 15276 goto out; 15277 15278 if (did_start_seqid_sync) { 15279 nfs4_end_open_seqid_sync(oop); 15280 did_start_seqid_sync = 0; 15281 } 15282 open_stream_rele(osp, rp); 15283 15284 if (did_start_op) 15285 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15286 &recov_state, FALSE); 15287 if (did_force_recovlock) 15288 nfs_rw_exit(&mi->mi_recovlock); 15289 15290 goto recov_retry; 15291 } else { 15292 if (odg_cred_otw) 15293 crfree(odg_cred_otw); 15294 } 15295 goto out; 15296 } 15297 15298 /* 15299 * If this open stream was created as the results of an open 15300 * while holding a delegation, then just release it; no need 15301 * to do an OTW close. Otherwise do a "normal" OTW close. 15302 */ 15303 if (osp->os_delegation) { 15304 nfs4close_notw(vp, osp, &have_sync_lock); 15305 nfs4_error_zinit(ep); 15306 goto out; 15307 } 15308 15309 /* 15310 * If this stream is not valid, we're done. 15311 */ 15312 if (!osp->os_valid) { 15313 nfs4_error_zinit(ep); 15314 goto out; 15315 } 15316 15317 /* 15318 * Last open or mmap ref has vanished, need to do an OTW close. 15319 * First check to see if a close is still necessary. 15320 */ 15321 if (osp->os_failed_reopen) { 15322 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15323 "don't close OTW osp %p since reopen failed.", 15324 (void *)osp)); 15325 /* 15326 * Reopen of the open stream failed, hence the 15327 * stateid of the open stream is invalid/stale, and 15328 * sending this OTW would incorrectly cause another 15329 * round of recovery. In this case, we need to set 15330 * the 'os_valid' bit to 0 so another thread doesn't 15331 * come in and re-open this open stream before 15332 * this "closing" thread cleans up state (decrementing 15333 * the nfs4_server_t's state_ref_count and decrementing 15334 * the os_ref_count). 15335 */ 15336 osp->os_valid = 0; 15337 /* 15338 * This removes the reference obtained at OPEN; ie, 15339 * when the open stream structure was created. 15340 * 15341 * We don't have to worry about calling 'open_stream_rele' 15342 * since we our currently holding a reference to this 15343 * open stream which means the count can not go to 0 with 15344 * this decrement. 15345 */ 15346 ASSERT(osp->os_ref_count >= 2); 15347 osp->os_ref_count--; 15348 nfs4_error_zinit(ep); 15349 close_failed = 0; 15350 goto close_cleanup; 15351 } 15352 15353 ASSERT(osp->os_ref_count > 1); 15354 15355 /* 15356 * Sixth, try the CLOSE OTW. 15357 */ 15358 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15359 close_type, ep, &have_sync_lock); 15360 15361 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15362 /* 15363 * Let the recovery thread be responsible for 15364 * removing the state for CLOSE. 15365 */ 15366 close_failed = 1; 15367 force_close = 0; 15368 retry = 0; 15369 } 15370 15371 /* See if we need to retry with a different cred */ 15372 if ((ep->error == EACCES || 15373 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15374 cred_otw != cr) { 15375 crfree(cred_otw); 15376 cred_otw = cr; 15377 crhold(cred_otw); 15378 retry = 1; 15379 } 15380 15381 if (ep->error || ep->stat) 15382 close_failed = 1; 15383 15384 if (retry && !isrecov && num_retries-- > 0) { 15385 if (have_sync_lock) { 15386 mutex_exit(&osp->os_sync_lock); 15387 have_sync_lock = 0; 15388 } 15389 if (did_start_seqid_sync) { 15390 nfs4_end_open_seqid_sync(oop); 15391 did_start_seqid_sync = 0; 15392 } 15393 open_stream_rele(osp, rp); 15394 15395 if (did_start_op) 15396 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15397 &recov_state, FALSE); 15398 if (did_force_recovlock) 15399 nfs_rw_exit(&mi->mi_recovlock); 15400 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15401 "nfs4close_one: need to retry the close " 15402 "operation")); 15403 goto recov_retry; 15404 } 15405 close_cleanup: 15406 /* 15407 * Seventh and lastly, process our results. 15408 */ 15409 if (close_failed && force_close) { 15410 /* 15411 * It's ok to drop and regrab the 'os_sync_lock' since 15412 * nfs4close_notw() will recheck to make sure the 15413 * "close"/removal of state should happen. 15414 */ 15415 if (!have_sync_lock) { 15416 mutex_enter(&osp->os_sync_lock); 15417 have_sync_lock = 1; 15418 } 15419 /* 15420 * This is last call, remove the ref on the open 15421 * stream created by open and clean everything up. 15422 */ 15423 osp->os_pending_close = 0; 15424 nfs4close_notw(vp, osp, &have_sync_lock); 15425 nfs4_error_zinit(ep); 15426 } 15427 15428 if (!close_failed) { 15429 if (have_sync_lock) { 15430 osp->os_pending_close = 0; 15431 mutex_exit(&osp->os_sync_lock); 15432 have_sync_lock = 0; 15433 } else { 15434 mutex_enter(&osp->os_sync_lock); 15435 osp->os_pending_close = 0; 15436 mutex_exit(&osp->os_sync_lock); 15437 } 15438 if (did_start_op && recov_state.rs_sp != NULL) { 15439 mutex_enter(&recov_state.rs_sp->s_lock); 15440 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15441 mutex_exit(&recov_state.rs_sp->s_lock); 15442 } else { 15443 nfs4_dec_state_ref_count(mi); 15444 } 15445 nfs4_error_zinit(ep); 15446 } 15447 15448 out: 15449 if (have_sync_lock) 15450 mutex_exit(&osp->os_sync_lock); 15451 if (did_start_op) 15452 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15453 recovonly ? TRUE : FALSE); 15454 if (did_force_recovlock) 15455 nfs_rw_exit(&mi->mi_recovlock); 15456 if (cred_otw) 15457 crfree(cred_otw); 15458 if (osp) 15459 open_stream_rele(osp, rp); 15460 if (oop) { 15461 if (did_start_seqid_sync) 15462 nfs4_end_open_seqid_sync(oop); 15463 open_owner_rele(oop); 15464 } 15465 } 15466 15467 /* 15468 * Convert information returned by the server in the LOCK4denied 15469 * structure to the form required by fcntl. 15470 */ 15471 static void 15472 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15473 { 15474 nfs4_lo_name_t *lo; 15475 15476 #ifdef DEBUG 15477 if (denied_to_flk_debug) { 15478 lockt_denied_debug = lockt_denied; 15479 debug_enter("lockt_denied"); 15480 } 15481 #endif 15482 15483 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15484 flk->l_whence = 0; /* aka SEEK_SET */ 15485 flk->l_start = lockt_denied->offset; 15486 flk->l_len = lockt_denied->length; 15487 15488 /* 15489 * If the blocking clientid matches our client id, then we can 15490 * interpret the lockowner (since we built it). If not, then 15491 * fabricate a sysid and pid. Note that the l_sysid field 15492 * in *flk already has the local sysid. 15493 */ 15494 15495 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15496 15497 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15498 lo = (nfs4_lo_name_t *) 15499 lockt_denied->owner.owner_val; 15500 15501 flk->l_pid = lo->ln_pid; 15502 } else { 15503 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15504 "denied_to_flk: bad lock owner length\n")); 15505 15506 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15507 } 15508 } else { 15509 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15510 "denied_to_flk: foreign clientid\n")); 15511 15512 /* 15513 * Construct a new sysid which should be different from 15514 * sysids of other systems. 15515 */ 15516 15517 flk->l_sysid++; 15518 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15519 } 15520 } 15521 15522 static pid_t 15523 lo_to_pid(lock_owner4 *lop) 15524 { 15525 pid_t pid = 0; 15526 uchar_t *cp; 15527 int i; 15528 15529 cp = (uchar_t *)&lop->clientid; 15530 15531 for (i = 0; i < sizeof (lop->clientid); i++) 15532 pid += (pid_t)*cp++; 15533 15534 cp = (uchar_t *)lop->owner_val; 15535 15536 for (i = 0; i < lop->owner_len; i++) 15537 pid += (pid_t)*cp++; 15538 15539 return (pid); 15540 } 15541 15542 /* 15543 * Given a lock pointer, returns the length of that lock. 15544 * "end" is the last locked offset the "l_len" covers from 15545 * the start of the lock. 15546 */ 15547 static off64_t 15548 lock_to_end(flock64_t *lock) 15549 { 15550 off64_t lock_end; 15551 15552 if (lock->l_len == 0) 15553 lock_end = (off64_t)MAXEND; 15554 else 15555 lock_end = lock->l_start + lock->l_len - 1; 15556 15557 return (lock_end); 15558 } 15559 15560 /* 15561 * Given the end of a lock, it will return you the length "l_len" for that lock. 15562 */ 15563 static off64_t 15564 end_to_len(off64_t start, off64_t end) 15565 { 15566 off64_t lock_len; 15567 15568 ASSERT(end >= start); 15569 if (end == MAXEND) 15570 lock_len = 0; 15571 else 15572 lock_len = end - start + 1; 15573 15574 return (lock_len); 15575 } 15576 15577 /* 15578 * On given end for a lock it determines if it is the last locked offset 15579 * or not, if so keeps it as is, else adds one to return the length for 15580 * valid start. 15581 */ 15582 static off64_t 15583 start_check(off64_t x) 15584 { 15585 if (x == MAXEND) 15586 return (x); 15587 else 15588 return (x + 1); 15589 } 15590 15591 /* 15592 * See if these two locks overlap, and if so return 1; 15593 * otherwise, return 0. 15594 */ 15595 static int 15596 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15597 { 15598 off64_t llfp_end, curfp_end; 15599 15600 llfp_end = lock_to_end(llfp); 15601 curfp_end = lock_to_end(curfp); 15602 15603 if (((llfp_end >= curfp->l_start) && 15604 (llfp->l_start <= curfp->l_start)) || 15605 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15606 return (1); 15607 return (0); 15608 } 15609 15610 /* 15611 * Determine what the interseting lock region is, and add that to the 15612 * 'nl_llpp' locklist in increasing order (by l_start). 15613 */ 15614 static void 15615 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15616 locklist_t **nl_llpp, vnode_t *vp) 15617 { 15618 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15619 off64_t lost_flp_end, local_flp_end, len, start; 15620 15621 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15622 15623 if (!locks_intersect(lost_flp, local_flp)) 15624 return; 15625 15626 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15627 "locks intersect")); 15628 15629 lost_flp_end = lock_to_end(lost_flp); 15630 local_flp_end = lock_to_end(local_flp); 15631 15632 /* Find the starting point of the intersecting region */ 15633 if (local_flp->l_start > lost_flp->l_start) 15634 start = local_flp->l_start; 15635 else 15636 start = lost_flp->l_start; 15637 15638 /* Find the lenght of the intersecting region */ 15639 if (lost_flp_end < local_flp_end) 15640 len = end_to_len(start, lost_flp_end); 15641 else 15642 len = end_to_len(start, local_flp_end); 15643 15644 /* 15645 * Prepare the flock structure for the intersection found and insert 15646 * it into the new list in increasing l_start order. This list contains 15647 * intersections of locks registered by the client with the local host 15648 * and the lost lock. 15649 * The lock type of this lock is the same as that of the local_flp. 15650 */ 15651 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15652 intersect_llp->ll_flock.l_start = start; 15653 intersect_llp->ll_flock.l_len = len; 15654 intersect_llp->ll_flock.l_type = local_flp->l_type; 15655 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15656 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15657 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15658 intersect_llp->ll_vp = vp; 15659 15660 tmp_fllp = *nl_llpp; 15661 cur_fllp = NULL; 15662 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15663 intersect_llp->ll_flock.l_start) { 15664 cur_fllp = tmp_fllp; 15665 tmp_fllp = tmp_fllp->ll_next; 15666 } 15667 if (cur_fllp == NULL) { 15668 /* first on the list */ 15669 intersect_llp->ll_next = *nl_llpp; 15670 *nl_llpp = intersect_llp; 15671 } else { 15672 intersect_llp->ll_next = cur_fllp->ll_next; 15673 cur_fllp->ll_next = intersect_llp; 15674 } 15675 15676 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15677 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15678 intersect_llp->ll_flock.l_start, 15679 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15680 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15681 } 15682 15683 /* 15684 * Our local locking current state is potentially different than 15685 * what the NFSv4 server thinks we have due to a lost lock that was 15686 * resent and then received. We need to reset our "NFSv4" locking 15687 * state to match the current local locking state for this pid since 15688 * that is what the user/application sees as what the world is. 15689 * 15690 * We cannot afford to drop the open/lock seqid sync since then we can 15691 * get confused about what the current local locking state "is" versus 15692 * "was". 15693 * 15694 * If we are unable to fix up the locks, we send SIGLOST to the affected 15695 * process. This is not done if the filesystem has been forcibly 15696 * unmounted, in case the process has already exited and a new process 15697 * exists with the same pid. 15698 */ 15699 static void 15700 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15701 nfs4_lock_owner_t *lop) 15702 { 15703 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15704 mntinfo4_t *mi = VTOMI4(vp); 15705 const int cmd = F_SETLK; 15706 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15707 flock64_t ul_fl; 15708 15709 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15710 "nfs4_reinstitute_local_lock_state")); 15711 15712 /* 15713 * Find active locks for this vp from the local locking code. 15714 * Scan through this list and find out the locks that intersect with 15715 * the lost lock. Once we find the lock that intersects, add the 15716 * intersection area as a new lock to a new list "ri_llp". The lock 15717 * type of the intersection region lock added to ri_llp is the same 15718 * as that found in the active lock list, "list". The intersecting 15719 * region locks are added to ri_llp in increasing l_start order. 15720 */ 15721 ASSERT(nfs_zone() == mi->mi_zone); 15722 15723 locks = flk_active_locks_for_vp(vp); 15724 ri_llp = NULL; 15725 15726 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15727 ASSERT(llp->ll_vp == vp); 15728 /* 15729 * Pick locks that belong to this pid/lockowner 15730 */ 15731 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15732 continue; 15733 15734 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15735 } 15736 15737 /* 15738 * Now we have the list of intersections with the lost lock. These are 15739 * the locks that were/are active before the server replied to the 15740 * last/lost lock. Issue these locks to the server here. Playing these 15741 * locks to the server will re-establish aur current local locking state 15742 * with the v4 server. 15743 * If we get an error, send SIGLOST to the application for that lock. 15744 */ 15745 15746 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15747 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15748 "nfs4_reinstitute_local_lock_state: need to issue " 15749 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15750 llp->ll_flock.l_start, 15751 llp->ll_flock.l_start + llp->ll_flock.l_len, 15752 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15753 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15754 /* 15755 * No need to relock what we already have 15756 */ 15757 if (llp->ll_flock.l_type == lost_flp->l_type) 15758 continue; 15759 15760 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15761 } 15762 15763 /* 15764 * Now keeping the start of the lost lock as our reference parse the 15765 * newly created ri_llp locklist to find the ranges that we have locked 15766 * with the v4 server but not in the current local locking. We need 15767 * to unlock these ranges. 15768 * These ranges can also be reffered to as those ranges, where the lost 15769 * lock does not overlap with the locks in the ri_llp but are locked 15770 * since the server replied to the lost lock. 15771 */ 15772 cur_start = lost_flp->l_start; 15773 lost_flp_end = lock_to_end(lost_flp); 15774 15775 ul_fl.l_type = F_UNLCK; 15776 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15777 ul_fl.l_sysid = lost_flp->l_sysid; 15778 ul_fl.l_pid = lost_flp->l_pid; 15779 15780 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15781 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15782 15783 if (llp->ll_flock.l_start <= cur_start) { 15784 cur_start = start_check(llp_ll_flock_end); 15785 continue; 15786 } 15787 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15788 "nfs4_reinstitute_local_lock_state: " 15789 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15790 cur_start, llp->ll_flock.l_start)); 15791 15792 ul_fl.l_start = cur_start; 15793 ul_fl.l_len = end_to_len(cur_start, 15794 (llp->ll_flock.l_start - 1)); 15795 15796 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15797 cur_start = start_check(llp_ll_flock_end); 15798 } 15799 15800 /* 15801 * In the case where the lost lock ends after all intersecting locks, 15802 * unlock the last part of the lost lock range. 15803 */ 15804 if (cur_start != start_check(lost_flp_end)) { 15805 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15806 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15807 "lost lock region [%"PRIx64" - %"PRIx64"]", 15808 cur_start, lost_flp->l_start + lost_flp->l_len)); 15809 15810 ul_fl.l_start = cur_start; 15811 /* 15812 * Is it an to-EOF lock? if so unlock till the end 15813 */ 15814 if (lost_flp->l_len == 0) 15815 ul_fl.l_len = 0; 15816 else 15817 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15818 15819 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15820 } 15821 15822 if (locks != NULL) 15823 flk_free_locklist(locks); 15824 15825 /* Free up our newly created locklist */ 15826 for (llp = ri_llp; llp != NULL; ) { 15827 tmp_llp = llp->ll_next; 15828 kmem_free(llp, sizeof (locklist_t)); 15829 llp = tmp_llp; 15830 } 15831 15832 /* 15833 * Now return back to the original calling nfs4frlock() 15834 * and let us naturally drop our seqid syncs. 15835 */ 15836 } 15837 15838 /* 15839 * Create a lost state record for the given lock reinstantiation request 15840 * and push it onto the lost state queue. 15841 */ 15842 static void 15843 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15844 nfs4_lock_owner_t *lop) 15845 { 15846 nfs4_lost_rqst_t req; 15847 nfs_lock_type4 locktype; 15848 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15849 15850 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15851 15852 locktype = flk_to_locktype(cmd, flk->l_type); 15853 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15854 NULL, NULL, lop, flk, &req, cr, vp); 15855 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15856 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15857 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15858 NULL); 15859 } 15860