1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/cred.h> 37 #include <sys/time.h> 38 #include <sys/vnode.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/file.h> 42 #include <sys/filio.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/mman.h> 46 #include <sys/pathname.h> 47 #include <sys/dirent.h> 48 #include <sys/debug.h> 49 #include <sys/vmsystm.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/swap.h> 53 #include <sys/errno.h> 54 #include <sys/strsubr.h> 55 #include <sys/sysmacros.h> 56 #include <sys/kmem.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathconf.h> 59 #include <sys/utsname.h> 60 #include <sys/dnlc.h> 61 #include <sys/acl.h> 62 #include <sys/systeminfo.h> 63 #include <sys/policy.h> 64 #include <sys/sdt.h> 65 #include <sys/list.h> 66 #include <sys/stat.h> 67 68 #include <rpc/types.h> 69 #include <rpc/auth.h> 70 #include <rpc/clnt.h> 71 72 #include <nfs/nfs.h> 73 #include <nfs/nfs_clnt.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 #include <nfs/nfs4.h> 77 #include <nfs/nfs4_kprot.h> 78 #include <nfs/rnode4.h> 79 #include <nfs/nfs4_clnt.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/pvn.h> 85 #include <vm/seg.h> 86 #include <vm/seg_map.h> 87 #include <vm/seg_kpm.h> 88 #include <vm/seg_vn.h> 89 90 #include <fs/fs_subr.h> 91 92 #include <sys/ddi.h> 93 #include <sys/int_fmtio.h> 94 95 typedef struct { 96 nfs4_ga_res_t *di_garp; 97 cred_t *di_cred; 98 hrtime_t di_time_call; 99 } dirattr_info_t; 100 101 typedef enum nfs4_acl_op { 102 NFS4_ACL_GET, 103 NFS4_ACL_SET 104 } nfs4_acl_op_t; 105 106 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi); 107 108 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 109 char *, dirattr_info_t *); 110 111 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 112 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 113 nfs4_error_t *, int *); 114 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 115 cred_t *); 116 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 117 stable_how4 *); 118 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 119 cred_t *, bool_t, struct uio *); 120 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 121 vsecattr_t *); 122 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 123 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 124 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 125 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 126 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 127 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 128 int, vnode_t **, cred_t *); 129 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 130 cred_t *, int, int, enum createmode4, int); 131 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 132 caller_context_t *); 133 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 134 vnode_t *, char *, cred_t *, nfsstat4 *); 135 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 136 vnode_t *, char *, cred_t *, nfsstat4 *); 137 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 138 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 139 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 140 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 141 page_t *[], size_t, struct seg *, caddr_t, 142 enum seg_rw, cred_t *); 143 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 144 cred_t *); 145 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 146 int, cred_t *); 147 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 148 int, cred_t *); 149 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 150 static void nfs4_set_mod(vnode_t *); 151 static void nfs4_get_commit(vnode_t *); 152 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 153 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 154 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 155 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 156 cred_t *); 157 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 158 cred_t *); 159 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 160 hrtime_t, vnode_t *, cred_t *); 161 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 162 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 163 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 164 u_offset_t); 165 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 166 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 167 static cred_t *state_to_cred(nfs4_open_stream_t *); 168 static int vtoname(vnode_t *, char *, ssize_t); 169 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 170 static pid_t lo_to_pid(lock_owner4 *); 171 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 172 cred_t *, nfs4_lock_owner_t *); 173 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 174 nfs4_lock_owner_t *); 175 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 176 static void nfs4_delmap_callback(struct as *, void *, uint_t); 177 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 178 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 179 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 180 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 181 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 182 uid_t, gid_t, int); 183 184 /* 185 * Routines that implement the setting of v4 args for the misc. ops 186 */ 187 static void nfs4args_lock_free(nfs_argop4 *); 188 static void nfs4args_lockt_free(nfs_argop4 *); 189 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 190 int, rnode4_t *, cred_t *, bitmap4, int *, 191 nfs4_stateid_types_t *); 192 static void nfs4args_setattr_free(nfs_argop4 *); 193 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 194 bitmap4); 195 static void nfs4args_verify_free(nfs_argop4 *); 196 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 197 WRITE4args **, nfs4_stateid_types_t *); 198 199 /* 200 * These are the vnode ops functions that implement the vnode interface to 201 * the networked file system. See more comments below at nfs4_vnodeops. 202 */ 203 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 204 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 205 caller_context_t *); 206 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 207 caller_context_t *); 208 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 209 caller_context_t *); 210 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 211 caller_context_t *); 212 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 213 caller_context_t *); 214 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 215 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 216 caller_context_t *); 217 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 218 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 219 int, vnode_t **, cred_t *, int, caller_context_t *, 220 vsecattr_t *); 221 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 222 int); 223 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 224 caller_context_t *, int); 225 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 226 caller_context_t *, int); 227 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 228 cred_t *, caller_context_t *, int, vsecattr_t *); 229 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 230 caller_context_t *, int); 231 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 232 cred_t *, caller_context_t *, int); 233 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 234 caller_context_t *, int); 235 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 236 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 237 page_t *[], size_t, struct seg *, caddr_t, 238 enum seg_rw, cred_t *, caller_context_t *); 239 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 240 caller_context_t *); 241 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 242 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 243 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 244 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 245 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 246 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 247 struct flk_callback *, cred_t *, caller_context_t *); 248 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 249 cred_t *, caller_context_t *); 250 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 251 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 252 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 253 cred_t *, caller_context_t *); 254 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 255 caller_context_t *); 256 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 257 caller_context_t *); 258 /* 259 * These vnode ops are required to be called from outside this source file, 260 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 261 * as static. 262 */ 263 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 264 caller_context_t *); 265 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 266 int nfs4_lookup(vnode_t *, char *, vnode_t **, 267 struct pathname *, int, vnode_t *, cred_t *, 268 caller_context_t *, int *, pathname_t *); 269 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 270 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 271 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 272 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 273 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 274 caller_context_t *); 275 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 276 caller_context_t *); 277 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 278 caller_context_t *); 279 280 /* 281 * Used for nfs4_commit_vp() to indicate if we should 282 * wait on pending writes. 283 */ 284 #define NFS4_WRITE_NOWAIT 0 285 #define NFS4_WRITE_WAIT 1 286 287 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 288 289 /* 290 * Error flags used to pass information about certain special errors 291 * which need to be handled specially. 292 */ 293 #define NFS_EOF -98 294 #define NFS_VERF_MISMATCH -97 295 296 /* 297 * Flags used to differentiate between which operation drove the 298 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 299 */ 300 #define NFS4_CLOSE_OP 0x1 301 #define NFS4_DELMAP_OP 0x2 302 #define NFS4_INACTIVE_OP 0x3 303 304 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 305 306 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 307 #define ALIGN64(x, ptr, sz) \ 308 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 309 if (x) { \ 310 x = sizeof (uint64_t) - (x); \ 311 sz -= (x); \ 312 ptr += (x); \ 313 } 314 315 #ifdef DEBUG 316 int nfs4_client_attr_debug = 0; 317 int nfs4_client_state_debug = 0; 318 int nfs4_client_shadow_debug = 0; 319 int nfs4_client_lock_debug = 0; 320 int nfs4_seqid_sync = 0; 321 int nfs4_client_map_debug = 0; 322 static int nfs4_pageio_debug = 0; 323 int nfs4_client_inactive_debug = 0; 324 int nfs4_client_recov_debug = 0; 325 int nfs4_client_failover_debug = 0; 326 int nfs4_client_call_debug = 0; 327 int nfs4_client_lookup_debug = 0; 328 int nfs4_client_zone_debug = 0; 329 int nfs4_lost_rqst_debug = 0; 330 int nfs4_rdattrerr_debug = 0; 331 int nfs4_open_stream_debug = 0; 332 333 int nfs4read_error_inject; 334 335 static int nfs4_create_misses = 0; 336 337 static int nfs4_readdir_cache_shorts = 0; 338 static int nfs4_readdir_readahead = 0; 339 340 static int nfs4_bio_do_stop = 0; 341 342 static int nfs4_lostpage = 0; /* number of times we lost original page */ 343 344 int nfs4_mmap_debug = 0; 345 346 static int nfs4_pathconf_cache_hits = 0; 347 static int nfs4_pathconf_cache_misses = 0; 348 349 int nfs4close_all_cnt; 350 int nfs4close_one_debug = 0; 351 int nfs4close_notw_debug = 0; 352 353 int denied_to_flk_debug = 0; 354 void *lockt_denied_debug; 355 356 #endif 357 358 /* 359 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 360 * or NFS4ERR_RESOURCE. 361 */ 362 static int confirm_retry_sec = 30; 363 364 static int nfs4_lookup_neg_cache = 1; 365 366 /* 367 * number of pages to read ahead 368 * optimized for 100 base-T. 369 */ 370 static int nfs4_nra = 4; 371 372 static int nfs4_do_symlink_cache = 1; 373 374 static int nfs4_pathconf_disable_cache = 0; 375 376 /* 377 * These are the vnode ops routines which implement the vnode interface to 378 * the networked file system. These routines just take their parameters, 379 * make them look networkish by putting the right info into interface structs, 380 * and then calling the appropriate remote routine(s) to do the work. 381 * 382 * Note on directory name lookup cacheing: If we detect a stale fhandle, 383 * we purge the directory cache relative to that vnode. This way, the 384 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 385 * more details on rnode locking. 386 */ 387 388 struct vnodeops *nfs4_vnodeops; 389 390 const fs_operation_def_t nfs4_vnodeops_template[] = { 391 VOPNAME_OPEN, { .vop_open = nfs4_open }, 392 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 393 VOPNAME_READ, { .vop_read = nfs4_read }, 394 VOPNAME_WRITE, { .vop_write = nfs4_write }, 395 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 396 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 397 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 398 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 399 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 400 VOPNAME_CREATE, { .vop_create = nfs4_create }, 401 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 402 VOPNAME_LINK, { .vop_link = nfs4_link }, 403 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 404 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 405 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 406 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 407 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 408 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 409 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 410 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 411 VOPNAME_FID, { .vop_fid = nfs4_fid }, 412 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 413 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 414 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 415 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 416 VOPNAME_SPACE, { .vop_space = nfs4_space }, 417 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 418 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 419 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 420 VOPNAME_MAP, { .vop_map = nfs4_map }, 421 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 422 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 423 /* no separate nfs4_dump */ 424 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 425 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 426 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 427 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 428 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 429 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 430 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 431 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 432 NULL, NULL 433 }; 434 435 /* 436 * The following are subroutines and definitions to set args or get res 437 * for the different nfsv4 ops 438 */ 439 440 void 441 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 442 { 443 int i; 444 445 for (i = 0; i < arglen; i++) { 446 if (argop[i].argop == OP_LOOKUP) { 447 kmem_free( 448 argop[i].nfs_argop4_u.oplookup. 449 objname.utf8string_val, 450 argop[i].nfs_argop4_u.oplookup. 451 objname.utf8string_len); 452 } 453 } 454 } 455 456 static void 457 nfs4args_lock_free(nfs_argop4 *argop) 458 { 459 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 460 461 if (locker->new_lock_owner == TRUE) { 462 open_to_lock_owner4 *open_owner; 463 464 open_owner = &locker->locker4_u.open_owner; 465 if (open_owner->lock_owner.owner_val != NULL) { 466 kmem_free(open_owner->lock_owner.owner_val, 467 open_owner->lock_owner.owner_len); 468 } 469 } 470 } 471 472 static void 473 nfs4args_lockt_free(nfs_argop4 *argop) 474 { 475 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 476 477 if (lowner->owner_val != NULL) { 478 kmem_free(lowner->owner_val, lowner->owner_len); 479 } 480 } 481 482 static void 483 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 484 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 485 nfs4_stateid_types_t *sid_types) 486 { 487 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 488 mntinfo4_t *mi; 489 490 argop->argop = OP_SETATTR; 491 /* 492 * The stateid is set to 0 if client is not modifying the size 493 * and otherwise to whatever nfs4_get_stateid() returns. 494 * 495 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 496 * state struct could be found for the process/file pair. We may 497 * want to change this in the future (by OPENing the file). See 498 * bug # 4474852. 499 */ 500 if (vap->va_mask & AT_SIZE) { 501 502 ASSERT(rp != NULL); 503 mi = VTOMI4(RTOV4(rp)); 504 505 argop->nfs_argop4_u.opsetattr.stateid = 506 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 507 OP_SETATTR, sid_types, FALSE); 508 } else { 509 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 510 sizeof (stateid4)); 511 } 512 513 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 514 if (*error) 515 bzero(attr, sizeof (*attr)); 516 } 517 518 static void 519 nfs4args_setattr_free(nfs_argop4 *argop) 520 { 521 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 522 } 523 524 static int 525 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 526 bitmap4 supp) 527 { 528 fattr4 *attr; 529 int error = 0; 530 531 argop->argop = op; 532 switch (op) { 533 case OP_VERIFY: 534 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 535 break; 536 case OP_NVERIFY: 537 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 538 break; 539 default: 540 return (EINVAL); 541 } 542 if (!error) 543 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 544 if (error) 545 bzero(attr, sizeof (*attr)); 546 return (error); 547 } 548 549 static void 550 nfs4args_verify_free(nfs_argop4 *argop) 551 { 552 switch (argop->argop) { 553 case OP_VERIFY: 554 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 555 break; 556 case OP_NVERIFY: 557 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 558 break; 559 default: 560 break; 561 } 562 } 563 564 static void 565 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 566 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 567 { 568 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 569 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 570 571 argop->argop = OP_WRITE; 572 wargs->stable = stable; 573 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 574 mi, OP_WRITE, sid_tp); 575 wargs->mblk = NULL; 576 *wargs_pp = wargs; 577 } 578 579 void 580 nfs4args_copen_free(OPEN4cargs *open_args) 581 { 582 if (open_args->owner.owner_val) { 583 kmem_free(open_args->owner.owner_val, 584 open_args->owner.owner_len); 585 } 586 if ((open_args->opentype == OPEN4_CREATE) && 587 (open_args->mode != EXCLUSIVE4)) { 588 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 589 } 590 } 591 592 /* 593 * XXX: This is referenced in modstubs.s 594 */ 595 struct vnodeops * 596 nfs4_getvnodeops(void) 597 { 598 return (nfs4_vnodeops); 599 } 600 601 /* 602 * The OPEN operation opens a regular file. 603 */ 604 /*ARGSUSED3*/ 605 static int 606 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 607 { 608 vnode_t *dvp = NULL; 609 rnode4_t *rp, *drp; 610 int error; 611 int just_been_created; 612 char fn[MAXNAMELEN]; 613 614 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 615 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 616 return (EIO); 617 rp = VTOR4(*vpp); 618 619 /* 620 * Check to see if opening something besides a regular file; 621 * if so skip the OTW call 622 */ 623 if ((*vpp)->v_type != VREG) { 624 error = nfs4_open_non_reg_file(vpp, flag, cr); 625 return (error); 626 } 627 628 /* 629 * XXX - would like a check right here to know if the file is 630 * executable or not, so as to skip OTW 631 */ 632 633 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 634 return (error); 635 636 drp = VTOR4(dvp); 637 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 638 return (EINTR); 639 640 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 641 nfs_rw_exit(&drp->r_rwlock); 642 return (error); 643 } 644 645 /* 646 * See if this file has just been CREATEd. 647 * If so, clear the flag and update the dnlc, which was previously 648 * skipped in nfs4_create. 649 * XXX need better serilization on this. 650 * XXX move this into the nf4open_otw call, after we have 651 * XXX acquired the open owner seqid sync. 652 */ 653 mutex_enter(&rp->r_statev4_lock); 654 if (rp->created_v4) { 655 rp->created_v4 = 0; 656 mutex_exit(&rp->r_statev4_lock); 657 658 dnlc_update(dvp, fn, *vpp); 659 /* This is needed so we don't bump the open ref count */ 660 just_been_created = 1; 661 } else { 662 mutex_exit(&rp->r_statev4_lock); 663 just_been_created = 0; 664 } 665 666 /* 667 * If caller specified O_TRUNC/FTRUNC, then be sure to set 668 * FWRITE (to drive successful setattr(size=0) after open) 669 */ 670 if (flag & FTRUNC) 671 flag |= FWRITE; 672 673 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 674 just_been_created); 675 676 if (!error && !((*vpp)->v_flag & VROOT)) 677 dnlc_update(dvp, fn, *vpp); 678 679 nfs_rw_exit(&drp->r_rwlock); 680 681 /* release the hold from vtodv */ 682 VN_RELE(dvp); 683 684 /* exchange the shadow for the master vnode, if needed */ 685 686 if (error == 0 && IS_SHADOW(*vpp, rp)) 687 sv_exchange(vpp); 688 689 return (error); 690 } 691 692 /* 693 * See if there's a "lost open" request to be saved and recovered. 694 */ 695 static void 696 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 697 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 698 vnode_t *dvp, OPEN4cargs *open_args) 699 { 700 vfs_t *vfsp; 701 char *srccfp; 702 703 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 704 705 if (error != ETIMEDOUT && error != EINTR && 706 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 707 lost_rqstp->lr_op = 0; 708 return; 709 } 710 711 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 712 "nfs4open_save_lost_rqst: error %d", error)); 713 714 lost_rqstp->lr_op = OP_OPEN; 715 716 /* 717 * The vp (if it is not NULL) and dvp are held and rele'd via 718 * the recovery code. See nfs4_save_lost_rqst. 719 */ 720 lost_rqstp->lr_vp = vp; 721 lost_rqstp->lr_dvp = dvp; 722 lost_rqstp->lr_oop = oop; 723 lost_rqstp->lr_osp = NULL; 724 lost_rqstp->lr_lop = NULL; 725 lost_rqstp->lr_cr = cr; 726 lost_rqstp->lr_flk = NULL; 727 lost_rqstp->lr_oacc = open_args->share_access; 728 lost_rqstp->lr_odeny = open_args->share_deny; 729 lost_rqstp->lr_oclaim = open_args->claim; 730 if (open_args->claim == CLAIM_DELEGATE_CUR) { 731 lost_rqstp->lr_ostateid = 732 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 733 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 734 } else { 735 srccfp = open_args->open_claim4_u.cfile; 736 } 737 lost_rqstp->lr_ofile.utf8string_len = 0; 738 lost_rqstp->lr_ofile.utf8string_val = NULL; 739 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 740 lost_rqstp->lr_putfirst = FALSE; 741 } 742 743 struct nfs4_excl_time { 744 uint32 seconds; 745 uint32 nseconds; 746 }; 747 748 /* 749 * The OPEN operation creates and/or opens a regular file 750 * 751 * ARGSUSED 752 */ 753 static int 754 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 755 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 756 enum createmode4 createmode, int file_just_been_created) 757 { 758 rnode4_t *rp; 759 rnode4_t *drp = VTOR4(dvp); 760 vnode_t *vp = NULL; 761 vnode_t *vpi = *vpp; 762 bool_t needrecov = FALSE; 763 764 int doqueue = 1; 765 766 COMPOUND4args_clnt args; 767 COMPOUND4res_clnt res; 768 nfs_argop4 *argop; 769 nfs_resop4 *resop; 770 int argoplist_size; 771 int idx_open, idx_fattr; 772 773 GETFH4res *gf_res = NULL; 774 OPEN4res *op_res = NULL; 775 nfs4_ga_res_t *garp; 776 fattr4 *attr = NULL; 777 struct nfs4_excl_time verf; 778 bool_t did_excl_setup = FALSE; 779 int created_osp; 780 781 OPEN4cargs *open_args; 782 nfs4_open_owner_t *oop = NULL; 783 nfs4_open_stream_t *osp = NULL; 784 seqid4 seqid = 0; 785 bool_t retry_open = FALSE; 786 nfs4_recov_state_t recov_state; 787 nfs4_lost_rqst_t lost_rqst; 788 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 789 hrtime_t t; 790 int acc = 0; 791 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 792 cred_t *ncr = NULL; 793 794 nfs4_sharedfh_t *otw_sfh; 795 nfs4_sharedfh_t *orig_sfh; 796 int fh_differs = 0; 797 int numops, setgid_flag; 798 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 799 800 /* 801 * Make sure we properly deal with setting the right gid on 802 * a newly created file to reflect the parent's setgid bit 803 */ 804 setgid_flag = 0; 805 if (create_flag && in_va) { 806 807 /* 808 * If the parent's directory has the setgid bit set 809 * _and_ the client was able to get a valid mapping 810 * for the parent dir's owner_group, we want to 811 * append NVERIFY(owner_group == dva.va_gid) and 812 * SETATTR to the CREATE compound. 813 */ 814 mutex_enter(&drp->r_statelock); 815 if (drp->r_attr.va_mode & VSGID && 816 drp->r_attr.va_gid != GID_NOBODY) { 817 in_va->va_gid = drp->r_attr.va_gid; 818 setgid_flag = 1; 819 } 820 mutex_exit(&drp->r_statelock); 821 } 822 823 /* 824 * Normal/non-create compound: 825 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 826 * 827 * Open(create) compound no setgid: 828 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 829 * RESTOREFH + GETATTR 830 * 831 * Open(create) setgid: 832 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 833 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 834 * NVERIFY(grp) + SETATTR 835 */ 836 if (setgid_flag) { 837 numops = 10; 838 idx_open = 1; 839 idx_fattr = 3; 840 } else if (create_flag) { 841 numops = 7; 842 idx_open = 2; 843 idx_fattr = 4; 844 } else { 845 numops = 4; 846 idx_open = 1; 847 idx_fattr = 3; 848 } 849 850 args.array_len = numops; 851 argoplist_size = numops * sizeof (nfs_argop4); 852 argop = kmem_alloc(argoplist_size, KM_SLEEP); 853 854 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 855 "open %s open flag 0x%x cred %p", file_name, open_flag, 856 (void *)cr)); 857 858 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 859 if (create_flag) { 860 /* 861 * We are to create a file. Initialize the passed in vnode 862 * pointer. 863 */ 864 vpi = NULL; 865 } else { 866 /* 867 * Check to see if the client owns a read delegation and is 868 * trying to open for write. If so, then return the delegation 869 * to avoid the server doing a cb_recall and returning DELAY. 870 * NB - we don't use the statev4_lock here because we'd have 871 * to drop the lock anyway and the result would be stale. 872 */ 873 if ((open_flag & FWRITE) && 874 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 875 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 876 877 /* 878 * If the file has a delegation, then do an access check up 879 * front. This avoids having to an access check later after 880 * we've already done start_op, which could deadlock. 881 */ 882 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 883 if (open_flag & FREAD && 884 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 885 acc |= VREAD; 886 if (open_flag & FWRITE && 887 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 888 acc |= VWRITE; 889 } 890 } 891 892 drp = VTOR4(dvp); 893 894 recov_state.rs_flags = 0; 895 recov_state.rs_num_retry_despite_err = 0; 896 cred_otw = cr; 897 898 recov_retry: 899 fh_differs = 0; 900 nfs4_error_zinit(&e); 901 902 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 903 if (e.error) { 904 if (ncr != NULL) 905 crfree(ncr); 906 kmem_free(argop, argoplist_size); 907 return (e.error); 908 } 909 910 args.ctag = TAG_OPEN; 911 args.array_len = numops; 912 args.array = argop; 913 914 /* putfh directory fh */ 915 argop[0].argop = OP_CPUTFH; 916 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 917 918 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 919 argop[idx_open].argop = OP_COPEN; 920 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 921 open_args->claim = CLAIM_NULL; 922 923 /* name of file */ 924 open_args->open_claim4_u.cfile = file_name; 925 open_args->owner.owner_len = 0; 926 open_args->owner.owner_val = NULL; 927 928 if (create_flag) { 929 /* CREATE a file */ 930 open_args->opentype = OPEN4_CREATE; 931 open_args->mode = createmode; 932 if (createmode == EXCLUSIVE4) { 933 if (did_excl_setup == FALSE) { 934 verf.seconds = nfs_atoi(hw_serial); 935 if (verf.seconds != 0) 936 verf.nseconds = newnum(); 937 else { 938 timestruc_t now; 939 940 gethrestime(&now); 941 verf.seconds = now.tv_sec; 942 verf.nseconds = now.tv_nsec; 943 } 944 /* 945 * Since the server will use this value for the 946 * mtime, make sure that it can't overflow. Zero 947 * out the MSB. The actual value does not matter 948 * here, only its uniqeness. 949 */ 950 verf.seconds &= INT32_MAX; 951 did_excl_setup = TRUE; 952 } 953 954 /* Now copy over verifier to OPEN4args. */ 955 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 956 } else { 957 int v_error; 958 bitmap4 supp_attrs; 959 servinfo4_t *svp; 960 961 attr = &open_args->createhow4_u.createattrs; 962 963 svp = drp->r_server; 964 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 965 supp_attrs = svp->sv_supp_attrs; 966 nfs_rw_exit(&svp->sv_lock); 967 968 /* GUARDED4 or UNCHECKED4 */ 969 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 970 supp_attrs); 971 if (v_error) { 972 bzero(attr, sizeof (*attr)); 973 nfs4args_copen_free(open_args); 974 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 975 &recov_state, FALSE); 976 if (ncr != NULL) 977 crfree(ncr); 978 kmem_free(argop, argoplist_size); 979 return (v_error); 980 } 981 } 982 } else { 983 /* NO CREATE */ 984 open_args->opentype = OPEN4_NOCREATE; 985 } 986 987 if (recov_state.rs_sp != NULL) { 988 mutex_enter(&recov_state.rs_sp->s_lock); 989 open_args->owner.clientid = recov_state.rs_sp->clientid; 990 mutex_exit(&recov_state.rs_sp->s_lock); 991 } else { 992 /* XXX should we just fail here? */ 993 open_args->owner.clientid = 0; 994 } 995 996 /* 997 * This increments oop's ref count or creates a temporary 'just_created' 998 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 999 * completes. 1000 */ 1001 mutex_enter(&VTOMI4(dvp)->mi_lock); 1002 1003 /* See if a permanent or just created open owner exists */ 1004 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1005 if (!oop) { 1006 /* 1007 * This open owner does not exist so create a temporary 1008 * just created one. 1009 */ 1010 oop = create_open_owner(cr, VTOMI4(dvp)); 1011 ASSERT(oop != NULL); 1012 } 1013 mutex_exit(&VTOMI4(dvp)->mi_lock); 1014 1015 /* this length never changes, do alloc before seqid sync */ 1016 open_args->owner.owner_len = sizeof (oop->oo_name); 1017 open_args->owner.owner_val = 1018 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1019 1020 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1021 if (e.error == EAGAIN) { 1022 open_owner_rele(oop); 1023 nfs4args_copen_free(open_args); 1024 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1025 if (ncr != NULL) { 1026 crfree(ncr); 1027 ncr = NULL; 1028 } 1029 goto recov_retry; 1030 } 1031 1032 /* Check to see if we need to do the OTW call */ 1033 if (!create_flag) { 1034 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1035 file_just_been_created, &e.error, acc, &recov_state)) { 1036 1037 /* 1038 * The OTW open is not necessary. Either 1039 * the open can succeed without it (eg. 1040 * delegation, error == 0) or the open 1041 * must fail due to an access failure 1042 * (error != 0). In either case, tidy 1043 * up and return. 1044 */ 1045 1046 nfs4_end_open_seqid_sync(oop); 1047 open_owner_rele(oop); 1048 nfs4args_copen_free(open_args); 1049 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1050 if (ncr != NULL) 1051 crfree(ncr); 1052 kmem_free(argop, argoplist_size); 1053 return (e.error); 1054 } 1055 } 1056 1057 bcopy(&oop->oo_name, open_args->owner.owner_val, 1058 open_args->owner.owner_len); 1059 1060 seqid = nfs4_get_open_seqid(oop) + 1; 1061 open_args->seqid = seqid; 1062 open_args->share_access = 0; 1063 if (open_flag & FREAD) 1064 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1065 if (open_flag & FWRITE) 1066 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1067 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1068 1069 1070 1071 /* 1072 * getfh w/sanity check for idx_open/idx_fattr 1073 */ 1074 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1075 argop[idx_open + 1].argop = OP_GETFH; 1076 1077 /* getattr */ 1078 argop[idx_fattr].argop = OP_GETATTR; 1079 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1080 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1081 1082 if (setgid_flag) { 1083 vattr_t _v; 1084 servinfo4_t *svp; 1085 bitmap4 supp_attrs; 1086 1087 svp = drp->r_server; 1088 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1089 supp_attrs = svp->sv_supp_attrs; 1090 nfs_rw_exit(&svp->sv_lock); 1091 1092 /* 1093 * For setgid case, we need to: 1094 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1095 */ 1096 argop[4].argop = OP_SAVEFH; 1097 1098 argop[5].argop = OP_CPUTFH; 1099 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1100 1101 argop[6].argop = OP_GETATTR; 1102 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1103 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1104 1105 argop[7].argop = OP_RESTOREFH; 1106 1107 /* 1108 * nverify 1109 */ 1110 _v.va_mask = AT_GID; 1111 _v.va_gid = in_va->va_gid; 1112 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1113 supp_attrs))) { 1114 1115 /* 1116 * setattr 1117 * 1118 * We _know_ we're not messing with AT_SIZE or 1119 * AT_XTIME, so no need for stateid or flags. 1120 * Also we specify NULL rp since we're only 1121 * interested in setting owner_group attributes. 1122 */ 1123 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1124 supp_attrs, &e.error, 0); 1125 if (e.error) 1126 nfs4args_verify_free(&argop[8]); 1127 } 1128 1129 if (e.error) { 1130 /* 1131 * XXX - Revisit the last argument to nfs4_end_op() 1132 * once 5020486 is fixed. 1133 */ 1134 nfs4_end_open_seqid_sync(oop); 1135 open_owner_rele(oop); 1136 nfs4args_copen_free(open_args); 1137 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1138 if (ncr != NULL) 1139 crfree(ncr); 1140 kmem_free(argop, argoplist_size); 1141 return (e.error); 1142 } 1143 } else if (create_flag) { 1144 /* 1145 * For setgid case, we need to: 1146 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1147 */ 1148 argop[1].argop = OP_SAVEFH; 1149 1150 argop[5].argop = OP_RESTOREFH; 1151 1152 argop[6].argop = OP_GETATTR; 1153 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1154 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1155 } 1156 1157 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1158 "nfs4open_otw: %s call, nm %s, rp %s", 1159 needrecov ? "recov" : "first", file_name, 1160 rnode4info(VTOR4(dvp)))); 1161 1162 t = gethrtime(); 1163 1164 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1165 1166 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1167 nfs4_set_open_seqid(seqid, oop, args.ctag); 1168 1169 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1170 1171 if (e.error || needrecov) { 1172 bool_t abort = FALSE; 1173 1174 if (needrecov) { 1175 nfs4_bseqid_entry_t *bsep = NULL; 1176 1177 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1178 cred_otw, vpi, dvp, open_args); 1179 1180 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1181 bsep = nfs4_create_bseqid_entry(oop, NULL, 1182 vpi, 0, args.ctag, open_args->seqid); 1183 num_bseqid_retry--; 1184 } 1185 1186 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1187 NULL, lost_rqst.lr_op == OP_OPEN ? 1188 &lost_rqst : NULL, OP_OPEN, bsep); 1189 1190 if (bsep) 1191 kmem_free(bsep, sizeof (*bsep)); 1192 /* give up if we keep getting BAD_SEQID */ 1193 if (num_bseqid_retry == 0) 1194 abort = TRUE; 1195 if (abort == TRUE && e.error == 0) 1196 e.error = geterrno4(res.status); 1197 } 1198 nfs4_end_open_seqid_sync(oop); 1199 open_owner_rele(oop); 1200 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1201 nfs4args_copen_free(open_args); 1202 if (setgid_flag) { 1203 nfs4args_verify_free(&argop[8]); 1204 nfs4args_setattr_free(&argop[9]); 1205 } 1206 if (!e.error) 1207 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1208 if (ncr != NULL) { 1209 crfree(ncr); 1210 ncr = NULL; 1211 } 1212 if (!needrecov || abort == TRUE || e.error == EINTR || 1213 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1214 kmem_free(argop, argoplist_size); 1215 return (e.error); 1216 } 1217 goto recov_retry; 1218 } 1219 1220 /* 1221 * Will check and update lease after checking the rflag for 1222 * OPEN_CONFIRM in the successful OPEN call. 1223 */ 1224 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1225 1226 /* 1227 * XXX what if we're crossing mount points from server1:/drp 1228 * to server2:/drp/rp. 1229 */ 1230 1231 /* Signal our end of use of the open seqid */ 1232 nfs4_end_open_seqid_sync(oop); 1233 1234 /* 1235 * This will destroy the open owner if it was just created, 1236 * and no one else has put a reference on it. 1237 */ 1238 open_owner_rele(oop); 1239 if (create_flag && (createmode != EXCLUSIVE4) && 1240 res.status == NFS4ERR_BADOWNER) 1241 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1242 1243 e.error = geterrno4(res.status); 1244 nfs4args_copen_free(open_args); 1245 if (setgid_flag) { 1246 nfs4args_verify_free(&argop[8]); 1247 nfs4args_setattr_free(&argop[9]); 1248 } 1249 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1250 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1251 /* 1252 * If the reply is NFS4ERR_ACCESS, it may be because 1253 * we are root (no root net access). If the real uid 1254 * is not root, then retry with the real uid instead. 1255 */ 1256 if (ncr != NULL) { 1257 crfree(ncr); 1258 ncr = NULL; 1259 } 1260 if (res.status == NFS4ERR_ACCESS && 1261 (ncr = crnetadjust(cred_otw)) != NULL) { 1262 cred_otw = ncr; 1263 goto recov_retry; 1264 } 1265 kmem_free(argop, argoplist_size); 1266 return (e.error); 1267 } 1268 1269 resop = &res.array[idx_open]; /* open res */ 1270 op_res = &resop->nfs_resop4_u.opopen; 1271 1272 #ifdef DEBUG 1273 /* 1274 * verify attrset bitmap 1275 */ 1276 if (create_flag && 1277 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1278 /* make sure attrset returned is what we asked for */ 1279 /* XXX Ignore this 'error' for now */ 1280 if (attr->attrmask != op_res->attrset) 1281 /* EMPTY */; 1282 } 1283 #endif 1284 1285 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1286 mutex_enter(&VTOMI4(dvp)->mi_lock); 1287 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1288 mutex_exit(&VTOMI4(dvp)->mi_lock); 1289 } 1290 1291 resop = &res.array[idx_open + 1]; /* getfh res */ 1292 gf_res = &resop->nfs_resop4_u.opgetfh; 1293 1294 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1295 1296 /* 1297 * The open stateid has been updated on the server but not 1298 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1299 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1300 * WRITE call. That, however, will use the old stateid, so go ahead 1301 * and upate the open stateid now, before any call to makenfs4node. 1302 */ 1303 if (vpi) { 1304 nfs4_open_stream_t *tmp_osp; 1305 rnode4_t *tmp_rp = VTOR4(vpi); 1306 1307 tmp_osp = find_open_stream(oop, tmp_rp); 1308 if (tmp_osp) { 1309 tmp_osp->open_stateid = op_res->stateid; 1310 mutex_exit(&tmp_osp->os_sync_lock); 1311 open_stream_rele(tmp_osp, tmp_rp); 1312 } 1313 1314 /* 1315 * We must determine if the file handle given by the otw open 1316 * is the same as the file handle which was passed in with 1317 * *vpp. This case can be reached if the file we are trying 1318 * to open has been removed and another file has been created 1319 * having the same file name. The passed in vnode is released 1320 * later. 1321 */ 1322 orig_sfh = VTOR4(vpi)->r_fh; 1323 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1324 } 1325 1326 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1327 1328 if (create_flag || fh_differs) { 1329 int rnode_err = 0; 1330 1331 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1332 dvp, fn_get(VTOSV(dvp)->sv_name, file_name)); 1333 1334 if (e.error) 1335 PURGE_ATTRCACHE4(vp); 1336 /* 1337 * For the newly created vp case, make sure the rnode 1338 * isn't bad before using it. 1339 */ 1340 mutex_enter(&(VTOR4(vp))->r_statelock); 1341 if (VTOR4(vp)->r_flags & R4RECOVERR) 1342 rnode_err = EIO; 1343 mutex_exit(&(VTOR4(vp))->r_statelock); 1344 1345 if (rnode_err) { 1346 nfs4_end_open_seqid_sync(oop); 1347 nfs4args_copen_free(open_args); 1348 if (setgid_flag) { 1349 nfs4args_verify_free(&argop[8]); 1350 nfs4args_setattr_free(&argop[9]); 1351 } 1352 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1353 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1354 needrecov); 1355 open_owner_rele(oop); 1356 VN_RELE(vp); 1357 if (ncr != NULL) 1358 crfree(ncr); 1359 sfh4_rele(&otw_sfh); 1360 kmem_free(argop, argoplist_size); 1361 return (EIO); 1362 } 1363 } else { 1364 vp = vpi; 1365 } 1366 sfh4_rele(&otw_sfh); 1367 1368 /* 1369 * It seems odd to get a full set of attrs and then not update 1370 * the object's attrcache in the non-create case. Create case uses 1371 * the attrs since makenfs4node checks to see if the attrs need to 1372 * be updated (and then updates them). The non-create case should 1373 * update attrs also. 1374 */ 1375 if (! create_flag && ! fh_differs && !e.error) { 1376 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1377 } 1378 1379 nfs4_error_zinit(&e); 1380 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1381 /* This does not do recovery for vp explicitly. */ 1382 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1383 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1384 1385 if (e.error || e.stat) { 1386 nfs4_end_open_seqid_sync(oop); 1387 nfs4args_copen_free(open_args); 1388 if (setgid_flag) { 1389 nfs4args_verify_free(&argop[8]); 1390 nfs4args_setattr_free(&argop[9]); 1391 } 1392 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1393 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1394 needrecov); 1395 open_owner_rele(oop); 1396 if (create_flag || fh_differs) { 1397 /* rele the makenfs4node */ 1398 VN_RELE(vp); 1399 } 1400 if (ncr != NULL) { 1401 crfree(ncr); 1402 ncr = NULL; 1403 } 1404 if (retry_open == TRUE) { 1405 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1406 "nfs4open_otw: retry the open since OPEN " 1407 "CONFIRM failed with error %d stat %d", 1408 e.error, e.stat)); 1409 if (create_flag && createmode == GUARDED4) { 1410 NFS4_DEBUG(nfs4_client_recov_debug, 1411 (CE_NOTE, "nfs4open_otw: switch " 1412 "createmode from GUARDED4 to " 1413 "UNCHECKED4")); 1414 createmode = UNCHECKED4; 1415 } 1416 goto recov_retry; 1417 } 1418 if (!e.error) { 1419 if (create_flag && (createmode != EXCLUSIVE4) && 1420 e.stat == NFS4ERR_BADOWNER) 1421 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1422 1423 e.error = geterrno4(e.stat); 1424 } 1425 kmem_free(argop, argoplist_size); 1426 return (e.error); 1427 } 1428 } 1429 1430 rp = VTOR4(vp); 1431 1432 mutex_enter(&rp->r_statev4_lock); 1433 if (create_flag) 1434 rp->created_v4 = 1; 1435 mutex_exit(&rp->r_statev4_lock); 1436 1437 mutex_enter(&oop->oo_lock); 1438 /* Doesn't matter if 'oo_just_created' already was set as this */ 1439 oop->oo_just_created = NFS4_PERM_CREATED; 1440 if (oop->oo_cred_otw) 1441 crfree(oop->oo_cred_otw); 1442 oop->oo_cred_otw = cred_otw; 1443 crhold(oop->oo_cred_otw); 1444 mutex_exit(&oop->oo_lock); 1445 1446 /* returns with 'os_sync_lock' held */ 1447 osp = find_or_create_open_stream(oop, rp, &created_osp); 1448 if (!osp) { 1449 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1450 "nfs4open_otw: failed to create an open stream")); 1451 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1452 "signal our end of use of the open seqid")); 1453 1454 nfs4_end_open_seqid_sync(oop); 1455 open_owner_rele(oop); 1456 nfs4args_copen_free(open_args); 1457 if (setgid_flag) { 1458 nfs4args_verify_free(&argop[8]); 1459 nfs4args_setattr_free(&argop[9]); 1460 } 1461 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1462 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1463 if (create_flag || fh_differs) 1464 VN_RELE(vp); 1465 if (ncr != NULL) 1466 crfree(ncr); 1467 1468 kmem_free(argop, argoplist_size); 1469 return (EINVAL); 1470 1471 } 1472 1473 osp->open_stateid = op_res->stateid; 1474 1475 if (open_flag & FREAD) 1476 osp->os_share_acc_read++; 1477 if (open_flag & FWRITE) 1478 osp->os_share_acc_write++; 1479 osp->os_share_deny_none++; 1480 1481 /* 1482 * Need to reset this bitfield for the possible case where we were 1483 * going to OTW CLOSE the file, got a non-recoverable error, and before 1484 * we could retry the CLOSE, OPENed the file again. 1485 */ 1486 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1487 osp->os_final_close = 0; 1488 osp->os_force_close = 0; 1489 #ifdef DEBUG 1490 if (osp->os_failed_reopen) 1491 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1492 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1493 (void *)osp, (void *)cr, rnode4info(rp))); 1494 #endif 1495 osp->os_failed_reopen = 0; 1496 1497 mutex_exit(&osp->os_sync_lock); 1498 1499 nfs4_end_open_seqid_sync(oop); 1500 1501 if (created_osp && recov_state.rs_sp != NULL) { 1502 mutex_enter(&recov_state.rs_sp->s_lock); 1503 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1504 mutex_exit(&recov_state.rs_sp->s_lock); 1505 } 1506 1507 /* get rid of our reference to find oop */ 1508 open_owner_rele(oop); 1509 1510 open_stream_rele(osp, rp); 1511 1512 /* accept delegation, if any */ 1513 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1514 1515 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1516 1517 if (createmode == EXCLUSIVE4 && 1518 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1519 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1520 " EXCLUSIVE4: sending a SETATTR")); 1521 /* 1522 * If doing an exclusive create, then generate 1523 * a SETATTR to set the initial attributes. 1524 * Try to set the mtime and the atime to the 1525 * server's current time. It is somewhat 1526 * expected that these fields will be used to 1527 * store the exclusive create cookie. If not, 1528 * server implementors will need to know that 1529 * a SETATTR will follow an exclusive create 1530 * and the cookie should be destroyed if 1531 * appropriate. 1532 * 1533 * The AT_GID and AT_SIZE bits are turned off 1534 * so that the SETATTR request will not attempt 1535 * to process these. The gid will be set 1536 * separately if appropriate. The size is turned 1537 * off because it is assumed that a new file will 1538 * be created empty and if the file wasn't empty, 1539 * then the exclusive create will have failed 1540 * because the file must have existed already. 1541 * Therefore, no truncate operation is needed. 1542 */ 1543 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1544 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1545 1546 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1547 if (e.error) { 1548 /* 1549 * Couldn't correct the attributes of 1550 * the newly created file and the 1551 * attributes are wrong. Remove the 1552 * file and return an error to the 1553 * application. 1554 */ 1555 /* XXX will this take care of client state ? */ 1556 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1557 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1558 " remove file", e.error)); 1559 VN_RELE(vp); 1560 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1561 /* 1562 * Since we've reled the vnode and removed 1563 * the file we now need to return the error. 1564 * At this point we don't want to update the 1565 * dircaches, call nfs4_waitfor_purge_complete 1566 * or set vpp to vp so we need to skip these 1567 * as well. 1568 */ 1569 goto skip_update_dircaches; 1570 } 1571 } 1572 1573 /* 1574 * If we created or found the correct vnode, due to create_flag or 1575 * fh_differs being set, then update directory cache attribute, readdir 1576 * and dnlc caches. 1577 */ 1578 if (create_flag || fh_differs) { 1579 dirattr_info_t dinfo, *dinfop; 1580 1581 /* 1582 * Make sure getattr succeeded before using results. 1583 * note: op 7 is getattr(dir) for both flavors of 1584 * open(create). 1585 */ 1586 if (create_flag && res.status == NFS4_OK) { 1587 dinfo.di_time_call = t; 1588 dinfo.di_cred = cr; 1589 dinfo.di_garp = 1590 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1591 dinfop = &dinfo; 1592 } else { 1593 dinfop = NULL; 1594 } 1595 1596 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1597 dinfop); 1598 } 1599 1600 /* 1601 * If the page cache for this file was flushed from actions 1602 * above, it was done asynchronously and if that is true, 1603 * there is a need to wait here for it to complete. This must 1604 * be done outside of start_fop/end_fop. 1605 */ 1606 (void) nfs4_waitfor_purge_complete(vp); 1607 1608 /* 1609 * It is implicit that we are in the open case (create_flag == 0) since 1610 * fh_differs can only be set to a non-zero value in the open case. 1611 */ 1612 if (fh_differs != 0 && vpi != NULL) 1613 VN_RELE(vpi); 1614 1615 /* 1616 * Be sure to set *vpp to the correct value before returning. 1617 */ 1618 *vpp = vp; 1619 1620 skip_update_dircaches: 1621 1622 nfs4args_copen_free(open_args); 1623 if (setgid_flag) { 1624 nfs4args_verify_free(&argop[8]); 1625 nfs4args_setattr_free(&argop[9]); 1626 } 1627 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1628 1629 if (ncr) 1630 crfree(ncr); 1631 kmem_free(argop, argoplist_size); 1632 return (e.error); 1633 } 1634 1635 /* 1636 * Reopen an open instance. cf. nfs4open_otw(). 1637 * 1638 * Errors are returned by the nfs4_error_t parameter. 1639 * - ep->error contains an errno value or zero. 1640 * - if it is zero, ep->stat is set to an NFS status code, if any. 1641 * If the file could not be reopened, but the caller should continue, the 1642 * file is marked dead and no error values are returned. If the caller 1643 * should stop recovering open files and start over, either the ep->error 1644 * value or ep->stat will indicate an error (either something that requires 1645 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1646 * filehandles) may be handled silently by this routine. 1647 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1648 * will be started, so the caller should not do it. 1649 * 1650 * Gotos: 1651 * - kill_file : reopen failed in such a fashion to constitute marking the 1652 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1653 * is for cases where recovery is not possible. 1654 * - failed_reopen : same as above, except that the file has already been 1655 * marked dead, so no need to do it again. 1656 * - bailout : reopen failed but we are able to recover and retry the reopen - 1657 * either within this function immediately or via the calling function. 1658 */ 1659 1660 void 1661 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1662 open_claim_type4 claim, bool_t frc_use_claim_previous, 1663 bool_t is_recov) 1664 { 1665 COMPOUND4args_clnt args; 1666 COMPOUND4res_clnt res; 1667 nfs_argop4 argop[4]; 1668 nfs_resop4 *resop; 1669 OPEN4res *op_res = NULL; 1670 OPEN4cargs *open_args; 1671 GETFH4res *gf_res; 1672 rnode4_t *rp = VTOR4(vp); 1673 int doqueue = 1; 1674 cred_t *cr = NULL, *cred_otw = NULL; 1675 nfs4_open_owner_t *oop = NULL; 1676 seqid4 seqid; 1677 nfs4_ga_res_t *garp; 1678 char fn[MAXNAMELEN]; 1679 nfs4_recov_state_t recov = {NULL, 0}; 1680 nfs4_lost_rqst_t lost_rqst; 1681 mntinfo4_t *mi = VTOMI4(vp); 1682 bool_t abort; 1683 char *failed_msg = ""; 1684 int fh_different; 1685 hrtime_t t; 1686 nfs4_bseqid_entry_t *bsep = NULL; 1687 1688 ASSERT(nfs4_consistent_type(vp)); 1689 ASSERT(nfs_zone() == mi->mi_zone); 1690 1691 nfs4_error_zinit(ep); 1692 1693 /* this is the cred used to find the open owner */ 1694 cr = state_to_cred(osp); 1695 if (cr == NULL) { 1696 failed_msg = "Couldn't reopen: no cred"; 1697 goto kill_file; 1698 } 1699 /* use this cred for OTW operations */ 1700 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1701 1702 top: 1703 nfs4_error_zinit(ep); 1704 1705 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1706 /* File system has been unmounted, quit */ 1707 ep->error = EIO; 1708 failed_msg = "Couldn't reopen: file system has been unmounted"; 1709 goto kill_file; 1710 } 1711 1712 oop = osp->os_open_owner; 1713 1714 ASSERT(oop != NULL); 1715 if (oop == NULL) { /* be defensive in non-DEBUG */ 1716 failed_msg = "can't reopen: no open owner"; 1717 goto kill_file; 1718 } 1719 open_owner_hold(oop); 1720 1721 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1722 if (ep->error) { 1723 open_owner_rele(oop); 1724 oop = NULL; 1725 goto bailout; 1726 } 1727 1728 /* 1729 * If the rnode has a delegation and the delegation has been 1730 * recovered and the server didn't request a recall and the caller 1731 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1732 * recovery) and the rnode hasn't been marked dead, then install 1733 * the delegation stateid in the open stream. Otherwise, proceed 1734 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1735 */ 1736 mutex_enter(&rp->r_statev4_lock); 1737 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1738 !rp->r_deleg_return_pending && 1739 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1740 !rp->r_deleg_needs_recall && 1741 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1742 !(rp->r_flags & R4RECOVERR)) { 1743 mutex_enter(&osp->os_sync_lock); 1744 osp->os_delegation = 1; 1745 osp->open_stateid = rp->r_deleg_stateid; 1746 mutex_exit(&osp->os_sync_lock); 1747 mutex_exit(&rp->r_statev4_lock); 1748 goto bailout; 1749 } 1750 mutex_exit(&rp->r_statev4_lock); 1751 1752 /* 1753 * If the file failed recovery, just quit. This failure need not 1754 * affect other reopens, so don't return an error. 1755 */ 1756 mutex_enter(&rp->r_statelock); 1757 if (rp->r_flags & R4RECOVERR) { 1758 mutex_exit(&rp->r_statelock); 1759 ep->error = 0; 1760 goto failed_reopen; 1761 } 1762 mutex_exit(&rp->r_statelock); 1763 1764 /* 1765 * argop is empty here 1766 * 1767 * PUTFH, OPEN, GETATTR 1768 */ 1769 args.ctag = TAG_REOPEN; 1770 args.array_len = 4; 1771 args.array = argop; 1772 1773 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1774 "nfs4_reopen: file is type %d, id %s", 1775 vp->v_type, rnode4info(VTOR4(vp)))); 1776 1777 argop[0].argop = OP_CPUTFH; 1778 1779 if (claim != CLAIM_PREVIOUS) { 1780 /* 1781 * if this is a file mount then 1782 * use the mntinfo parentfh 1783 */ 1784 argop[0].nfs_argop4_u.opcputfh.sfh = 1785 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1786 VTOSV(vp)->sv_dfh; 1787 } else { 1788 /* putfh fh to reopen */ 1789 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1790 } 1791 1792 argop[1].argop = OP_COPEN; 1793 open_args = &argop[1].nfs_argop4_u.opcopen; 1794 open_args->claim = claim; 1795 1796 if (claim == CLAIM_NULL) { 1797 1798 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1799 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1800 "failed for vp 0x%p for CLAIM_NULL with %m", 1801 (void *)vp); 1802 failed_msg = "Couldn't reopen: vtoname failed for " 1803 "CLAIM_NULL"; 1804 /* nothing allocated yet */ 1805 goto kill_file; 1806 } 1807 1808 open_args->open_claim4_u.cfile = fn; 1809 } else if (claim == CLAIM_PREVIOUS) { 1810 1811 /* 1812 * We have two cases to deal with here: 1813 * 1) We're being called to reopen files in order to satisfy 1814 * a lock operation request which requires us to explicitly 1815 * reopen files which were opened under a delegation. If 1816 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1817 * that case, frc_use_claim_previous is TRUE and we must 1818 * use the rnode's current delegation type (r_deleg_type). 1819 * 2) We're reopening files during some form of recovery. 1820 * In this case, frc_use_claim_previous is FALSE and we 1821 * use the delegation type appropriate for recovery 1822 * (r_deleg_needs_recovery). 1823 */ 1824 mutex_enter(&rp->r_statev4_lock); 1825 open_args->open_claim4_u.delegate_type = 1826 frc_use_claim_previous ? 1827 rp->r_deleg_type : 1828 rp->r_deleg_needs_recovery; 1829 mutex_exit(&rp->r_statev4_lock); 1830 1831 } else if (claim == CLAIM_DELEGATE_CUR) { 1832 1833 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1834 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1835 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1836 "with %m", (void *)vp); 1837 failed_msg = "Couldn't reopen: vtoname failed for " 1838 "CLAIM_DELEGATE_CUR"; 1839 /* nothing allocated yet */ 1840 goto kill_file; 1841 } 1842 1843 mutex_enter(&rp->r_statev4_lock); 1844 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1845 rp->r_deleg_stateid; 1846 mutex_exit(&rp->r_statev4_lock); 1847 1848 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1849 } 1850 open_args->opentype = OPEN4_NOCREATE; 1851 open_args->owner.clientid = mi2clientid(mi); 1852 open_args->owner.owner_len = sizeof (oop->oo_name); 1853 open_args->owner.owner_val = 1854 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1855 bcopy(&oop->oo_name, open_args->owner.owner_val, 1856 open_args->owner.owner_len); 1857 open_args->share_access = 0; 1858 open_args->share_deny = 0; 1859 1860 mutex_enter(&osp->os_sync_lock); 1861 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1862 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1863 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1864 (void *)osp, (void *)rp, osp->os_share_acc_read, 1865 osp->os_share_acc_write, osp->os_open_ref_count, 1866 osp->os_mmap_read, osp->os_mmap_write, claim)); 1867 1868 if (osp->os_share_acc_read || osp->os_mmap_read) 1869 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1870 if (osp->os_share_acc_write || osp->os_mmap_write) 1871 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1872 if (osp->os_share_deny_read) 1873 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1874 if (osp->os_share_deny_write) 1875 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1876 mutex_exit(&osp->os_sync_lock); 1877 1878 seqid = nfs4_get_open_seqid(oop) + 1; 1879 open_args->seqid = seqid; 1880 1881 /* Construct the getfh part of the compound */ 1882 argop[2].argop = OP_GETFH; 1883 1884 /* Construct the getattr part of the compound */ 1885 argop[3].argop = OP_GETATTR; 1886 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1887 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1888 1889 t = gethrtime(); 1890 1891 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1892 1893 if (ep->error) { 1894 if (!is_recov && !frc_use_claim_previous && 1895 (ep->error == EINTR || ep->error == ETIMEDOUT || 1896 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1897 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1898 cred_otw, vp, NULL, open_args); 1899 abort = nfs4_start_recovery(ep, 1900 VTOMI4(vp), vp, NULL, NULL, 1901 lost_rqst.lr_op == OP_OPEN ? 1902 &lost_rqst : NULL, OP_OPEN, NULL); 1903 nfs4args_copen_free(open_args); 1904 goto bailout; 1905 } 1906 1907 nfs4args_copen_free(open_args); 1908 1909 if (ep->error == EACCES && cred_otw != cr) { 1910 crfree(cred_otw); 1911 cred_otw = cr; 1912 crhold(cred_otw); 1913 nfs4_end_open_seqid_sync(oop); 1914 open_owner_rele(oop); 1915 oop = NULL; 1916 goto top; 1917 } 1918 if (ep->error == ETIMEDOUT) 1919 goto bailout; 1920 failed_msg = "Couldn't reopen: rpc error"; 1921 goto kill_file; 1922 } 1923 1924 if (nfs4_need_to_bump_seqid(&res)) 1925 nfs4_set_open_seqid(seqid, oop, args.ctag); 1926 1927 switch (res.status) { 1928 case NFS4_OK: 1929 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1930 mutex_enter(&rp->r_statelock); 1931 rp->r_delay_interval = 0; 1932 mutex_exit(&rp->r_statelock); 1933 } 1934 break; 1935 case NFS4ERR_BAD_SEQID: 1936 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1937 args.ctag, open_args->seqid); 1938 1939 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1940 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1941 NULL, OP_OPEN, bsep); 1942 1943 nfs4args_copen_free(open_args); 1944 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1945 nfs4_end_open_seqid_sync(oop); 1946 open_owner_rele(oop); 1947 oop = NULL; 1948 kmem_free(bsep, sizeof (*bsep)); 1949 1950 goto kill_file; 1951 case NFS4ERR_NO_GRACE: 1952 nfs4args_copen_free(open_args); 1953 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1954 nfs4_end_open_seqid_sync(oop); 1955 open_owner_rele(oop); 1956 oop = NULL; 1957 if (claim == CLAIM_PREVIOUS) { 1958 /* 1959 * Retry as a plain open. We don't need to worry about 1960 * checking the changeinfo: it is acceptable for a 1961 * client to re-open a file and continue processing 1962 * (in the absence of locks). 1963 */ 1964 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1965 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1966 "will retry as CLAIM_NULL")); 1967 claim = CLAIM_NULL; 1968 nfs4_mi_kstat_inc_no_grace(mi); 1969 goto top; 1970 } 1971 failed_msg = 1972 "Couldn't reopen: tried reclaim outside grace period. "; 1973 goto kill_file; 1974 case NFS4ERR_GRACE: 1975 nfs4_set_grace_wait(mi); 1976 nfs4args_copen_free(open_args); 1977 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1978 nfs4_end_open_seqid_sync(oop); 1979 open_owner_rele(oop); 1980 oop = NULL; 1981 ep->error = nfs4_wait_for_grace(mi, &recov); 1982 if (ep->error != 0) 1983 goto bailout; 1984 goto top; 1985 case NFS4ERR_DELAY: 1986 nfs4_set_delay_wait(vp); 1987 nfs4args_copen_free(open_args); 1988 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1989 nfs4_end_open_seqid_sync(oop); 1990 open_owner_rele(oop); 1991 oop = NULL; 1992 ep->error = nfs4_wait_for_delay(vp, &recov); 1993 nfs4_mi_kstat_inc_delay(mi); 1994 if (ep->error != 0) 1995 goto bailout; 1996 goto top; 1997 case NFS4ERR_FHEXPIRED: 1998 /* recover filehandle and retry */ 1999 abort = nfs4_start_recovery(ep, 2000 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL); 2001 nfs4args_copen_free(open_args); 2002 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2003 nfs4_end_open_seqid_sync(oop); 2004 open_owner_rele(oop); 2005 oop = NULL; 2006 if (abort == FALSE) 2007 goto top; 2008 failed_msg = "Couldn't reopen: recovery aborted"; 2009 goto kill_file; 2010 case NFS4ERR_RESOURCE: 2011 case NFS4ERR_STALE_CLIENTID: 2012 case NFS4ERR_WRONGSEC: 2013 case NFS4ERR_EXPIRED: 2014 /* 2015 * Do not mark the file dead and let the calling 2016 * function initiate recovery. 2017 */ 2018 nfs4args_copen_free(open_args); 2019 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2020 nfs4_end_open_seqid_sync(oop); 2021 open_owner_rele(oop); 2022 oop = NULL; 2023 goto bailout; 2024 case NFS4ERR_ACCESS: 2025 if (cred_otw != cr) { 2026 crfree(cred_otw); 2027 cred_otw = cr; 2028 crhold(cred_otw); 2029 nfs4args_copen_free(open_args); 2030 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2031 nfs4_end_open_seqid_sync(oop); 2032 open_owner_rele(oop); 2033 oop = NULL; 2034 goto top; 2035 } 2036 /* fall through */ 2037 default: 2038 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2039 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2040 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2041 rnode4info(VTOR4(vp)))); 2042 failed_msg = "Couldn't reopen: NFSv4 error"; 2043 nfs4args_copen_free(open_args); 2044 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2045 goto kill_file; 2046 } 2047 2048 resop = &res.array[1]; /* open res */ 2049 op_res = &resop->nfs_resop4_u.opopen; 2050 2051 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2052 2053 /* 2054 * Check if the path we reopened really is the same 2055 * file. We could end up in a situation where the file 2056 * was removed and a new file created with the same name. 2057 */ 2058 resop = &res.array[2]; 2059 gf_res = &resop->nfs_resop4_u.opgetfh; 2060 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2061 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2062 if (fh_different) { 2063 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2064 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2065 /* Oops, we don't have the same file */ 2066 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2067 failed_msg = "Couldn't reopen: Persistent " 2068 "file handle changed"; 2069 else 2070 failed_msg = "Couldn't reopen: Volatile " 2071 "(no expire on open) file handle changed"; 2072 2073 nfs4args_copen_free(open_args); 2074 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2075 nfs_rw_exit(&mi->mi_fh_lock); 2076 goto kill_file; 2077 2078 } else { 2079 /* 2080 * We have volatile file handles that don't compare. 2081 * If the fids are the same then we assume that the 2082 * file handle expired but the rnode still refers to 2083 * the same file object. 2084 * 2085 * First check that we have fids or not. 2086 * If we don't we have a dumb server so we will 2087 * just assume every thing is ok for now. 2088 */ 2089 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2090 rp->r_attr.va_mask & AT_NODEID && 2091 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2092 /* 2093 * We have fids, but they don't 2094 * compare. So kill the file. 2095 */ 2096 failed_msg = 2097 "Couldn't reopen: file handle changed" 2098 " due to mismatched fids"; 2099 nfs4args_copen_free(open_args); 2100 (void) xdr_free(xdr_COMPOUND4res_clnt, 2101 (caddr_t)&res); 2102 nfs_rw_exit(&mi->mi_fh_lock); 2103 goto kill_file; 2104 } else { 2105 /* 2106 * We have volatile file handles that refers 2107 * to the same file (at least they have the 2108 * same fid) or we don't have fids so we 2109 * can't tell. :(. We'll be a kind and accepting 2110 * client so we'll update the rnode's file 2111 * handle with the otw handle. 2112 * 2113 * We need to drop mi->mi_fh_lock since 2114 * sh4_update acquires it. Since there is 2115 * only one recovery thread there is no 2116 * race. 2117 */ 2118 nfs_rw_exit(&mi->mi_fh_lock); 2119 sfh4_update(rp->r_fh, &gf_res->object); 2120 } 2121 } 2122 } else { 2123 nfs_rw_exit(&mi->mi_fh_lock); 2124 } 2125 2126 ASSERT(nfs4_consistent_type(vp)); 2127 2128 /* 2129 * If the server wanted an OPEN_CONFIRM but that fails, just start 2130 * over. Presumably if there is a persistent error it will show up 2131 * when we resend the OPEN. 2132 */ 2133 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2134 bool_t retry_open = FALSE; 2135 2136 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2137 cred_otw, is_recov, &retry_open, 2138 oop, FALSE, ep, NULL); 2139 if (ep->error || ep->stat) { 2140 nfs4args_copen_free(open_args); 2141 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2142 nfs4_end_open_seqid_sync(oop); 2143 open_owner_rele(oop); 2144 oop = NULL; 2145 goto top; 2146 } 2147 } 2148 2149 mutex_enter(&osp->os_sync_lock); 2150 osp->open_stateid = op_res->stateid; 2151 osp->os_delegation = 0; 2152 /* 2153 * Need to reset this bitfield for the possible case where we were 2154 * going to OTW CLOSE the file, got a non-recoverable error, and before 2155 * we could retry the CLOSE, OPENed the file again. 2156 */ 2157 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2158 osp->os_final_close = 0; 2159 osp->os_force_close = 0; 2160 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2161 osp->os_dc_openacc = open_args->share_access; 2162 mutex_exit(&osp->os_sync_lock); 2163 2164 nfs4_end_open_seqid_sync(oop); 2165 2166 /* accept delegation, if any */ 2167 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2168 2169 nfs4args_copen_free(open_args); 2170 2171 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2172 2173 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2174 2175 ASSERT(nfs4_consistent_type(vp)); 2176 2177 open_owner_rele(oop); 2178 crfree(cr); 2179 crfree(cred_otw); 2180 return; 2181 2182 kill_file: 2183 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2184 failed_reopen: 2185 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2186 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2187 (void *)osp, (void *)cr, rnode4info(rp))); 2188 mutex_enter(&osp->os_sync_lock); 2189 osp->os_failed_reopen = 1; 2190 mutex_exit(&osp->os_sync_lock); 2191 bailout: 2192 if (oop != NULL) { 2193 nfs4_end_open_seqid_sync(oop); 2194 open_owner_rele(oop); 2195 } 2196 if (cr != NULL) 2197 crfree(cr); 2198 if (cred_otw != NULL) 2199 crfree(cred_otw); 2200 } 2201 2202 /* for . and .. OPENs */ 2203 /* ARGSUSED */ 2204 static int 2205 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2206 { 2207 rnode4_t *rp; 2208 nfs4_ga_res_t gar; 2209 2210 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2211 2212 /* 2213 * If close-to-open consistency checking is turned off or 2214 * if there is no cached data, we can avoid 2215 * the over the wire getattr. Otherwise, force a 2216 * call to the server to get fresh attributes and to 2217 * check caches. This is required for close-to-open 2218 * consistency. 2219 */ 2220 rp = VTOR4(*vpp); 2221 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2222 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2223 return (0); 2224 2225 gar.n4g_va.va_mask = AT_ALL; 2226 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2227 } 2228 2229 /* 2230 * CLOSE a file 2231 */ 2232 /* ARGSUSED */ 2233 static int 2234 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2235 caller_context_t *ct) 2236 { 2237 rnode4_t *rp; 2238 int error = 0; 2239 int r_error = 0; 2240 int n4error = 0; 2241 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2242 2243 /* 2244 * Remove client state for this (lockowner, file) pair. 2245 * Issue otw v4 call to have the server do the same. 2246 */ 2247 2248 rp = VTOR4(vp); 2249 2250 /* 2251 * zone_enter(2) prevents processes from changing zones with NFS files 2252 * open; if we happen to get here from the wrong zone we can't do 2253 * anything over the wire. 2254 */ 2255 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2256 /* 2257 * We could attempt to clean up locks, except we're sure 2258 * that the current process didn't acquire any locks on 2259 * the file: any attempt to lock a file belong to another zone 2260 * will fail, and one can't lock an NFS file and then change 2261 * zones, as that fails too. 2262 * 2263 * Returning an error here is the sane thing to do. A 2264 * subsequent call to VN_RELE() which translates to a 2265 * nfs4_inactive() will clean up state: if the zone of the 2266 * vnode's origin is still alive and kicking, the inactive 2267 * thread will handle the request (from the correct zone), and 2268 * everything (minus the OTW close call) should be OK. If the 2269 * zone is going away nfs4_async_inactive() will throw away 2270 * delegations, open streams and cached pages inline. 2271 */ 2272 return (EIO); 2273 } 2274 2275 /* 2276 * If we are using local locking for this filesystem, then 2277 * release all of the SYSV style record locks. Otherwise, 2278 * we are doing network locking and we need to release all 2279 * of the network locks. All of the locks held by this 2280 * process on this file are released no matter what the 2281 * incoming reference count is. 2282 */ 2283 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2284 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2285 cleanshares(vp, ttoproc(curthread)->p_pid); 2286 } else 2287 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2288 2289 if (e.error) { 2290 struct lm_sysid *lmsid; 2291 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2292 if (lmsid == NULL) { 2293 DTRACE_PROBE2(unknown__sysid, int, e.error, 2294 vnode_t *, vp); 2295 } else { 2296 cleanlocks(vp, ttoproc(curthread)->p_pid, 2297 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2298 } 2299 return (e.error); 2300 } 2301 2302 if (count > 1) 2303 return (0); 2304 2305 /* 2306 * If the file has been `unlinked', then purge the 2307 * DNLC so that this vnode will get reycled quicker 2308 * and the .nfs* file on the server will get removed. 2309 */ 2310 if (rp->r_unldvp != NULL) 2311 dnlc_purge_vp(vp); 2312 2313 /* 2314 * If the file was open for write and there are pages, 2315 * do a synchronous flush and commit of all of the 2316 * dirty and uncommitted pages. 2317 */ 2318 ASSERT(!e.error); 2319 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2320 error = nfs4_putpage_commit(vp, 0, 0, cr); 2321 2322 mutex_enter(&rp->r_statelock); 2323 r_error = rp->r_error; 2324 rp->r_error = 0; 2325 mutex_exit(&rp->r_statelock); 2326 2327 /* 2328 * If this file type is one for which no explicit 'open' was 2329 * done, then bail now (ie. no need for protocol 'close'). If 2330 * there was an error w/the vm subsystem, return _that_ error, 2331 * otherwise, return any errors that may've been reported via 2332 * the rnode. 2333 */ 2334 if (vp->v_type != VREG) 2335 return (error ? error : r_error); 2336 2337 /* 2338 * The sync putpage commit may have failed above, but since 2339 * we're working w/a regular file, we need to do the protocol 2340 * 'close' (nfs4close_one will figure out if an otw close is 2341 * needed or not). Report any errors _after_ doing the protocol 2342 * 'close'. 2343 */ 2344 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2345 n4error = e.error ? e.error : geterrno4(e.stat); 2346 2347 /* 2348 * Error reporting prio (Hi -> Lo) 2349 * 2350 * i) nfs4_putpage_commit (error) 2351 * ii) rnode's (r_error) 2352 * iii) nfs4close_one (n4error) 2353 */ 2354 return (error ? error : (r_error ? r_error : n4error)); 2355 } 2356 2357 /* 2358 * Initialize *lost_rqstp. 2359 */ 2360 2361 static void 2362 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2363 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2364 vnode_t *vp) 2365 { 2366 if (error != ETIMEDOUT && error != EINTR && 2367 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2368 lost_rqstp->lr_op = 0; 2369 return; 2370 } 2371 2372 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2373 "nfs4close_save_lost_rqst: error %d", error)); 2374 2375 lost_rqstp->lr_op = OP_CLOSE; 2376 /* 2377 * The vp is held and rele'd via the recovery code. 2378 * See nfs4_save_lost_rqst. 2379 */ 2380 lost_rqstp->lr_vp = vp; 2381 lost_rqstp->lr_dvp = NULL; 2382 lost_rqstp->lr_oop = oop; 2383 lost_rqstp->lr_osp = osp; 2384 ASSERT(osp != NULL); 2385 ASSERT(mutex_owned(&osp->os_sync_lock)); 2386 osp->os_pending_close = 1; 2387 lost_rqstp->lr_lop = NULL; 2388 lost_rqstp->lr_cr = cr; 2389 lost_rqstp->lr_flk = NULL; 2390 lost_rqstp->lr_putfirst = FALSE; 2391 } 2392 2393 /* 2394 * Assumes you already have the open seqid sync grabbed as well as the 2395 * 'os_sync_lock'. Note: this will release the open seqid sync and 2396 * 'os_sync_lock' if client recovery starts. Calling functions have to 2397 * be prepared to handle this. 2398 * 2399 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2400 * was needed and was started, and that the calling function should retry 2401 * this function; otherwise it is returned as 0. 2402 * 2403 * Errors are returned via the nfs4_error_t parameter. 2404 */ 2405 static void 2406 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2407 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2408 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2409 { 2410 COMPOUND4args_clnt args; 2411 COMPOUND4res_clnt res; 2412 CLOSE4args *close_args; 2413 nfs_resop4 *resop; 2414 nfs_argop4 argop[3]; 2415 int doqueue = 1; 2416 mntinfo4_t *mi; 2417 seqid4 seqid; 2418 vnode_t *vp; 2419 bool_t needrecov = FALSE; 2420 nfs4_lost_rqst_t lost_rqst; 2421 hrtime_t t; 2422 2423 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2424 2425 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2426 2427 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2428 2429 /* Only set this to 1 if recovery is started */ 2430 *recov = 0; 2431 2432 /* do the OTW call to close the file */ 2433 2434 if (close_type == CLOSE_RESEND) 2435 args.ctag = TAG_CLOSE_LOST; 2436 else if (close_type == CLOSE_AFTER_RESEND) 2437 args.ctag = TAG_CLOSE_UNDO; 2438 else 2439 args.ctag = TAG_CLOSE; 2440 2441 args.array_len = 3; 2442 args.array = argop; 2443 2444 vp = RTOV4(rp); 2445 2446 mi = VTOMI4(vp); 2447 2448 /* putfh target fh */ 2449 argop[0].argop = OP_CPUTFH; 2450 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2451 2452 argop[1].argop = OP_GETATTR; 2453 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2454 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2455 2456 argop[2].argop = OP_CLOSE; 2457 close_args = &argop[2].nfs_argop4_u.opclose; 2458 2459 seqid = nfs4_get_open_seqid(oop) + 1; 2460 2461 close_args->seqid = seqid; 2462 close_args->open_stateid = osp->open_stateid; 2463 2464 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2465 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2466 rnode4info(rp))); 2467 2468 t = gethrtime(); 2469 2470 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2471 2472 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2473 nfs4_set_open_seqid(seqid, oop, args.ctag); 2474 } 2475 2476 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2477 if (ep->error && !needrecov) { 2478 /* 2479 * if there was an error and no recovery is to be done 2480 * then then set up the file to flush its cache if 2481 * needed for the next caller. 2482 */ 2483 mutex_enter(&rp->r_statelock); 2484 PURGE_ATTRCACHE4_LOCKED(rp); 2485 rp->r_flags &= ~R4WRITEMODIFIED; 2486 mutex_exit(&rp->r_statelock); 2487 return; 2488 } 2489 2490 if (needrecov) { 2491 bool_t abort; 2492 nfs4_bseqid_entry_t *bsep = NULL; 2493 2494 if (close_type != CLOSE_RESEND) 2495 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2496 osp, cred_otw, vp); 2497 2498 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2499 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2500 0, args.ctag, close_args->seqid); 2501 2502 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2503 "nfs4close_otw: initiating recovery. error %d " 2504 "res.status %d", ep->error, res.status)); 2505 2506 /* 2507 * Drop the 'os_sync_lock' here so we don't hit 2508 * a potential recursive mutex_enter via an 2509 * 'open_stream_hold()'. 2510 */ 2511 mutex_exit(&osp->os_sync_lock); 2512 *have_sync_lockp = 0; 2513 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2514 (close_type != CLOSE_RESEND && 2515 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2516 OP_CLOSE, bsep); 2517 2518 /* drop open seq sync, and let the calling function regrab it */ 2519 nfs4_end_open_seqid_sync(oop); 2520 *did_start_seqid_syncp = 0; 2521 2522 if (bsep) 2523 kmem_free(bsep, sizeof (*bsep)); 2524 /* 2525 * For signals, the caller wants to quit, so don't say to 2526 * retry. For forced unmount, if it's a user thread, it 2527 * wants to quit. If it's a recovery thread, the retry 2528 * will happen higher-up on the call stack. Either way, 2529 * don't say to retry. 2530 */ 2531 if (abort == FALSE && ep->error != EINTR && 2532 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2533 close_type != CLOSE_RESEND && 2534 close_type != CLOSE_AFTER_RESEND) 2535 *recov = 1; 2536 else 2537 *recov = 0; 2538 2539 if (!ep->error) 2540 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2541 return; 2542 } 2543 2544 if (res.status) { 2545 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2546 return; 2547 } 2548 2549 mutex_enter(&rp->r_statev4_lock); 2550 rp->created_v4 = 0; 2551 mutex_exit(&rp->r_statev4_lock); 2552 2553 resop = &res.array[2]; 2554 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2555 osp->os_valid = 0; 2556 2557 /* 2558 * This removes the reference obtained at OPEN; ie, when the 2559 * open stream structure was created. 2560 * 2561 * We don't have to worry about calling 'open_stream_rele' 2562 * since we our currently holding a reference to the open 2563 * stream which means the count cannot go to 0 with this 2564 * decrement. 2565 */ 2566 ASSERT(osp->os_ref_count >= 2); 2567 osp->os_ref_count--; 2568 2569 if (!ep->error) 2570 nfs4_attr_cache(vp, 2571 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2572 t, cred_otw, TRUE, NULL); 2573 2574 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2575 " returning %d", ep->error)); 2576 2577 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2578 } 2579 2580 /* ARGSUSED */ 2581 static int 2582 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2583 caller_context_t *ct) 2584 { 2585 rnode4_t *rp; 2586 u_offset_t off; 2587 offset_t diff; 2588 uint_t on; 2589 uint_t n; 2590 caddr_t base; 2591 uint_t flags; 2592 int error; 2593 mntinfo4_t *mi; 2594 2595 rp = VTOR4(vp); 2596 2597 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2598 2599 if (IS_SHADOW(vp, rp)) 2600 vp = RTOV4(rp); 2601 2602 if (vp->v_type != VREG) 2603 return (EISDIR); 2604 2605 mi = VTOMI4(vp); 2606 2607 if (nfs_zone() != mi->mi_zone) 2608 return (EIO); 2609 2610 if (uiop->uio_resid == 0) 2611 return (0); 2612 2613 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2614 return (EINVAL); 2615 2616 mutex_enter(&rp->r_statelock); 2617 if (rp->r_flags & R4RECOVERRP) 2618 error = (rp->r_error ? rp->r_error : EIO); 2619 else 2620 error = 0; 2621 mutex_exit(&rp->r_statelock); 2622 if (error) 2623 return (error); 2624 2625 /* 2626 * Bypass VM if caching has been disabled (e.g., locking) or if 2627 * using client-side direct I/O and the file is not mmap'd and 2628 * there are no cached pages. 2629 */ 2630 if ((vp->v_flag & VNOCACHE) || 2631 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2632 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2633 size_t resid = 0; 2634 2635 return (nfs4read(vp, NULL, uiop->uio_loffset, 2636 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2637 } 2638 2639 error = 0; 2640 2641 do { 2642 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2643 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2644 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2645 2646 if (error = nfs4_validate_caches(vp, cr)) 2647 break; 2648 2649 mutex_enter(&rp->r_statelock); 2650 while (rp->r_flags & R4INCACHEPURGE) { 2651 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2652 mutex_exit(&rp->r_statelock); 2653 return (EINTR); 2654 } 2655 } 2656 diff = rp->r_size - uiop->uio_loffset; 2657 mutex_exit(&rp->r_statelock); 2658 if (diff <= 0) 2659 break; 2660 if (diff < n) 2661 n = (uint_t)diff; 2662 2663 if (vpm_enable) { 2664 /* 2665 * Copy data. 2666 */ 2667 error = vpm_data_copy(vp, off + on, n, uiop, 2668 1, NULL, 0, S_READ); 2669 } else { 2670 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2671 S_READ); 2672 2673 error = uiomove(base + on, n, UIO_READ, uiop); 2674 } 2675 2676 if (!error) { 2677 /* 2678 * If read a whole block or read to eof, 2679 * won't need this buffer again soon. 2680 */ 2681 mutex_enter(&rp->r_statelock); 2682 if (n + on == MAXBSIZE || 2683 uiop->uio_loffset == rp->r_size) 2684 flags = SM_DONTNEED; 2685 else 2686 flags = 0; 2687 mutex_exit(&rp->r_statelock); 2688 if (vpm_enable) { 2689 error = vpm_sync_pages(vp, off, n, flags); 2690 } else { 2691 error = segmap_release(segkmap, base, flags); 2692 } 2693 } else { 2694 if (vpm_enable) { 2695 (void) vpm_sync_pages(vp, off, n, 0); 2696 } else { 2697 (void) segmap_release(segkmap, base, 0); 2698 } 2699 } 2700 } while (!error && uiop->uio_resid > 0); 2701 2702 return (error); 2703 } 2704 2705 /* ARGSUSED */ 2706 static int 2707 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2708 caller_context_t *ct) 2709 { 2710 rlim64_t limit = uiop->uio_llimit; 2711 rnode4_t *rp; 2712 u_offset_t off; 2713 caddr_t base; 2714 uint_t flags; 2715 int remainder; 2716 size_t n; 2717 int on; 2718 int error; 2719 int resid; 2720 u_offset_t offset; 2721 mntinfo4_t *mi; 2722 uint_t bsize; 2723 2724 rp = VTOR4(vp); 2725 2726 if (IS_SHADOW(vp, rp)) 2727 vp = RTOV4(rp); 2728 2729 if (vp->v_type != VREG) 2730 return (EISDIR); 2731 2732 mi = VTOMI4(vp); 2733 2734 if (nfs_zone() != mi->mi_zone) 2735 return (EIO); 2736 2737 if (uiop->uio_resid == 0) 2738 return (0); 2739 2740 mutex_enter(&rp->r_statelock); 2741 if (rp->r_flags & R4RECOVERRP) 2742 error = (rp->r_error ? rp->r_error : EIO); 2743 else 2744 error = 0; 2745 mutex_exit(&rp->r_statelock); 2746 if (error) 2747 return (error); 2748 2749 if (ioflag & FAPPEND) { 2750 struct vattr va; 2751 2752 /* 2753 * Must serialize if appending. 2754 */ 2755 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2756 nfs_rw_exit(&rp->r_rwlock); 2757 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2758 INTR(vp))) 2759 return (EINTR); 2760 } 2761 2762 va.va_mask = AT_SIZE; 2763 error = nfs4getattr(vp, &va, cr); 2764 if (error) 2765 return (error); 2766 uiop->uio_loffset = va.va_size; 2767 } 2768 2769 offset = uiop->uio_loffset + uiop->uio_resid; 2770 2771 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2772 return (EINVAL); 2773 2774 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2775 limit = MAXOFFSET_T; 2776 2777 /* 2778 * Check to make sure that the process will not exceed 2779 * its limit on file size. It is okay to write up to 2780 * the limit, but not beyond. Thus, the write which 2781 * reaches the limit will be short and the next write 2782 * will return an error. 2783 */ 2784 remainder = 0; 2785 if (offset > uiop->uio_llimit) { 2786 remainder = offset - uiop->uio_llimit; 2787 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2788 if (uiop->uio_resid <= 0) { 2789 proc_t *p = ttoproc(curthread); 2790 2791 uiop->uio_resid += remainder; 2792 mutex_enter(&p->p_lock); 2793 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2794 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2795 mutex_exit(&p->p_lock); 2796 return (EFBIG); 2797 } 2798 } 2799 2800 /* update the change attribute, if we have a write delegation */ 2801 2802 mutex_enter(&rp->r_statev4_lock); 2803 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2804 rp->r_deleg_change++; 2805 2806 mutex_exit(&rp->r_statev4_lock); 2807 2808 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2809 return (EINTR); 2810 2811 /* 2812 * Bypass VM if caching has been disabled (e.g., locking) or if 2813 * using client-side direct I/O and the file is not mmap'd and 2814 * there are no cached pages. 2815 */ 2816 if ((vp->v_flag & VNOCACHE) || 2817 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2818 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2819 size_t bufsize; 2820 int count; 2821 u_offset_t org_offset; 2822 stable_how4 stab_comm; 2823 nfs4_fwrite: 2824 if (rp->r_flags & R4STALE) { 2825 resid = uiop->uio_resid; 2826 offset = uiop->uio_loffset; 2827 error = rp->r_error; 2828 goto bottom; 2829 } 2830 2831 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2832 base = kmem_alloc(bufsize, KM_SLEEP); 2833 do { 2834 if (ioflag & FDSYNC) 2835 stab_comm = DATA_SYNC4; 2836 else 2837 stab_comm = FILE_SYNC4; 2838 resid = uiop->uio_resid; 2839 offset = uiop->uio_loffset; 2840 count = MIN(uiop->uio_resid, bufsize); 2841 org_offset = uiop->uio_loffset; 2842 error = uiomove(base, count, UIO_WRITE, uiop); 2843 if (!error) { 2844 error = nfs4write(vp, base, org_offset, 2845 count, cr, &stab_comm); 2846 if (!error) { 2847 mutex_enter(&rp->r_statelock); 2848 if (rp->r_size < uiop->uio_loffset) 2849 rp->r_size = uiop->uio_loffset; 2850 mutex_exit(&rp->r_statelock); 2851 } 2852 } 2853 } while (!error && uiop->uio_resid > 0); 2854 kmem_free(base, bufsize); 2855 goto bottom; 2856 } 2857 2858 bsize = vp->v_vfsp->vfs_bsize; 2859 2860 do { 2861 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2862 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2863 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2864 2865 resid = uiop->uio_resid; 2866 offset = uiop->uio_loffset; 2867 2868 if (rp->r_flags & R4STALE) { 2869 error = rp->r_error; 2870 break; 2871 } 2872 2873 /* 2874 * Don't create dirty pages faster than they 2875 * can be cleaned so that the system doesn't 2876 * get imbalanced. If the async queue is 2877 * maxed out, then wait for it to drain before 2878 * creating more dirty pages. Also, wait for 2879 * any threads doing pagewalks in the vop_getattr 2880 * entry points so that they don't block for 2881 * long periods. 2882 */ 2883 mutex_enter(&rp->r_statelock); 2884 while ((mi->mi_max_threads != 0 && 2885 rp->r_awcount > 2 * mi->mi_max_threads) || 2886 rp->r_gcount > 0) 2887 cv_wait(&rp->r_cv, &rp->r_statelock); 2888 mutex_exit(&rp->r_statelock); 2889 2890 if (vpm_enable) { 2891 /* 2892 * It will use kpm mappings, so no need to 2893 * pass an address. 2894 */ 2895 error = writerp4(rp, NULL, n, uiop, 0); 2896 } else { 2897 if (segmap_kpm) { 2898 int pon = uiop->uio_loffset & PAGEOFFSET; 2899 size_t pn = MIN(PAGESIZE - pon, 2900 uiop->uio_resid); 2901 int pagecreate; 2902 2903 mutex_enter(&rp->r_statelock); 2904 pagecreate = (pon == 0) && (pn == PAGESIZE || 2905 uiop->uio_loffset + pn >= rp->r_size); 2906 mutex_exit(&rp->r_statelock); 2907 2908 base = segmap_getmapflt(segkmap, vp, off + on, 2909 pn, !pagecreate, S_WRITE); 2910 2911 error = writerp4(rp, base + pon, n, uiop, 2912 pagecreate); 2913 2914 } else { 2915 base = segmap_getmapflt(segkmap, vp, off + on, 2916 n, 0, S_READ); 2917 error = writerp4(rp, base + on, n, uiop, 0); 2918 } 2919 } 2920 2921 if (!error) { 2922 if (mi->mi_flags & MI4_NOAC) 2923 flags = SM_WRITE; 2924 else if ((uiop->uio_loffset % bsize) == 0 || 2925 IS_SWAPVP(vp)) { 2926 /* 2927 * Have written a whole block. 2928 * Start an asynchronous write 2929 * and mark the buffer to 2930 * indicate that it won't be 2931 * needed again soon. 2932 */ 2933 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2934 } else 2935 flags = 0; 2936 if ((ioflag & (FSYNC|FDSYNC)) || 2937 (rp->r_flags & R4OUTOFSPACE)) { 2938 flags &= ~SM_ASYNC; 2939 flags |= SM_WRITE; 2940 } 2941 if (vpm_enable) { 2942 error = vpm_sync_pages(vp, off, n, flags); 2943 } else { 2944 error = segmap_release(segkmap, base, flags); 2945 } 2946 } else { 2947 if (vpm_enable) { 2948 (void) vpm_sync_pages(vp, off, n, 0); 2949 } else { 2950 (void) segmap_release(segkmap, base, 0); 2951 } 2952 /* 2953 * In the event that we got an access error while 2954 * faulting in a page for a write-only file just 2955 * force a write. 2956 */ 2957 if (error == EACCES) 2958 goto nfs4_fwrite; 2959 } 2960 } while (!error && uiop->uio_resid > 0); 2961 2962 bottom: 2963 if (error) { 2964 uiop->uio_resid = resid + remainder; 2965 uiop->uio_loffset = offset; 2966 } else { 2967 uiop->uio_resid += remainder; 2968 2969 mutex_enter(&rp->r_statev4_lock); 2970 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 2971 gethrestime(&rp->r_attr.va_mtime); 2972 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 2973 } 2974 mutex_exit(&rp->r_statev4_lock); 2975 } 2976 2977 nfs_rw_exit(&rp->r_lkserlock); 2978 2979 return (error); 2980 } 2981 2982 /* 2983 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2984 */ 2985 static int 2986 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 2987 int flags, cred_t *cr) 2988 { 2989 struct buf *bp; 2990 int error; 2991 page_t *savepp; 2992 uchar_t fsdata; 2993 stable_how4 stab_comm; 2994 2995 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 2996 bp = pageio_setup(pp, len, vp, flags); 2997 ASSERT(bp != NULL); 2998 2999 /* 3000 * pageio_setup should have set b_addr to 0. This 3001 * is correct since we want to do I/O on a page 3002 * boundary. bp_mapin will use this addr to calculate 3003 * an offset, and then set b_addr to the kernel virtual 3004 * address it allocated for us. 3005 */ 3006 ASSERT(bp->b_un.b_addr == 0); 3007 3008 bp->b_edev = 0; 3009 bp->b_dev = 0; 3010 bp->b_lblkno = lbtodb(off); 3011 bp->b_file = vp; 3012 bp->b_offset = (offset_t)off; 3013 bp_mapin(bp); 3014 3015 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3016 freemem > desfree) 3017 stab_comm = UNSTABLE4; 3018 else 3019 stab_comm = FILE_SYNC4; 3020 3021 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3022 3023 bp_mapout(bp); 3024 pageio_done(bp); 3025 3026 if (stab_comm == UNSTABLE4) 3027 fsdata = C_DELAYCOMMIT; 3028 else 3029 fsdata = C_NOCOMMIT; 3030 3031 savepp = pp; 3032 do { 3033 pp->p_fsdata = fsdata; 3034 } while ((pp = pp->p_next) != savepp); 3035 3036 return (error); 3037 } 3038 3039 /* 3040 */ 3041 static int 3042 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3043 { 3044 nfs4_open_owner_t *oop; 3045 nfs4_open_stream_t *osp; 3046 rnode4_t *rp = VTOR4(vp); 3047 mntinfo4_t *mi = VTOMI4(vp); 3048 int reopen_needed; 3049 3050 ASSERT(nfs_zone() == mi->mi_zone); 3051 3052 3053 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3054 if (!oop) 3055 return (EIO); 3056 3057 /* returns with 'os_sync_lock' held */ 3058 osp = find_open_stream(oop, rp); 3059 if (!osp) { 3060 open_owner_rele(oop); 3061 return (EIO); 3062 } 3063 3064 if (osp->os_failed_reopen) { 3065 mutex_exit(&osp->os_sync_lock); 3066 open_stream_rele(osp, rp); 3067 open_owner_rele(oop); 3068 return (EIO); 3069 } 3070 3071 /* 3072 * Determine whether a reopen is needed. If this 3073 * is a delegation open stream, then the os_delegation bit 3074 * should be set. 3075 */ 3076 3077 reopen_needed = osp->os_delegation; 3078 3079 mutex_exit(&osp->os_sync_lock); 3080 open_owner_rele(oop); 3081 3082 if (reopen_needed) { 3083 nfs4_error_zinit(ep); 3084 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3085 mutex_enter(&osp->os_sync_lock); 3086 if (ep->error || ep->stat || osp->os_failed_reopen) { 3087 mutex_exit(&osp->os_sync_lock); 3088 open_stream_rele(osp, rp); 3089 return (EIO); 3090 } 3091 mutex_exit(&osp->os_sync_lock); 3092 } 3093 open_stream_rele(osp, rp); 3094 3095 return (0); 3096 } 3097 3098 /* 3099 * Write to file. Writes to remote server in largest size 3100 * chunks that the server can handle. Write is synchronous. 3101 */ 3102 static int 3103 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3104 stable_how4 *stab_comm) 3105 { 3106 mntinfo4_t *mi; 3107 COMPOUND4args_clnt args; 3108 COMPOUND4res_clnt res; 3109 WRITE4args *wargs; 3110 WRITE4res *wres; 3111 nfs_argop4 argop[2]; 3112 nfs_resop4 *resop; 3113 int tsize; 3114 stable_how4 stable; 3115 rnode4_t *rp; 3116 int doqueue = 1; 3117 bool_t needrecov; 3118 nfs4_recov_state_t recov_state; 3119 nfs4_stateid_types_t sid_types; 3120 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3121 3122 rp = VTOR4(vp); 3123 mi = VTOMI4(vp); 3124 3125 ASSERT(nfs_zone() == mi->mi_zone); 3126 3127 stable = *stab_comm; 3128 *stab_comm = FILE_SYNC4; 3129 3130 needrecov = FALSE; 3131 recov_state.rs_flags = 0; 3132 recov_state.rs_num_retry_despite_err = 0; 3133 nfs4_init_stateid_types(&sid_types); 3134 3135 recov_retry: 3136 args.ctag = TAG_WRITE; 3137 args.array_len = 2; 3138 args.array = argop; 3139 3140 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3141 &recov_state, NULL); 3142 if (e.error) 3143 return (e.error); 3144 3145 /* 0. putfh target fh */ 3146 argop[0].argop = OP_CPUTFH; 3147 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3148 3149 /* 1. write */ 3150 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3151 3152 do { 3153 3154 wargs->offset = (offset4)offset; 3155 wargs->data_val = base; 3156 3157 if (mi->mi_io_kstats) { 3158 mutex_enter(&mi->mi_lock); 3159 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3160 mutex_exit(&mi->mi_lock); 3161 } 3162 3163 if ((vp->v_flag & VNOCACHE) || 3164 (rp->r_flags & R4DIRECTIO) || 3165 (mi->mi_flags & MI4_DIRECTIO)) 3166 tsize = MIN(mi->mi_stsize, count); 3167 else 3168 tsize = MIN(mi->mi_curwrite, count); 3169 wargs->data_len = (uint_t)tsize; 3170 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3171 3172 if (mi->mi_io_kstats) { 3173 mutex_enter(&mi->mi_lock); 3174 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3175 mutex_exit(&mi->mi_lock); 3176 } 3177 3178 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3179 if (e.error && !needrecov) { 3180 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3181 &recov_state, needrecov); 3182 return (e.error); 3183 } 3184 3185 3186 /* 3187 * Do handling of OLD_STATEID outside 3188 * of the normal recovery framework. 3189 * 3190 * If write receives a BAD stateid error while using a 3191 * delegation stateid, retry using the open stateid (if it 3192 * exists). If it doesn't have an open stateid, reopen the 3193 * file first, then retry. 3194 */ 3195 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3196 sid_types.cur_sid_type != SPEC_SID) { 3197 nfs4_save_stateid(&wargs->stateid, &sid_types); 3198 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3199 &recov_state, needrecov); 3200 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3201 goto recov_retry; 3202 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3203 sid_types.cur_sid_type == DEL_SID) { 3204 nfs4_save_stateid(&wargs->stateid, &sid_types); 3205 mutex_enter(&rp->r_statev4_lock); 3206 rp->r_deleg_return_pending = TRUE; 3207 mutex_exit(&rp->r_statev4_lock); 3208 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3209 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3210 &recov_state, needrecov); 3211 (void) xdr_free(xdr_COMPOUND4res_clnt, 3212 (caddr_t)&res); 3213 return (EIO); 3214 } 3215 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3216 &recov_state, needrecov); 3217 /* hold needed for nfs4delegreturn_thread */ 3218 VN_HOLD(vp); 3219 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3220 NFS4_DR_DISCARD), FALSE); 3221 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3222 goto recov_retry; 3223 } 3224 3225 if (needrecov) { 3226 bool_t abort; 3227 3228 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3229 "nfs4write: client got error %d, res.status %d" 3230 ", so start recovery", e.error, res.status)); 3231 3232 abort = nfs4_start_recovery(&e, 3233 VTOMI4(vp), vp, NULL, &wargs->stateid, 3234 NULL, OP_WRITE, NULL); 3235 if (!e.error) { 3236 e.error = geterrno4(res.status); 3237 (void) xdr_free(xdr_COMPOUND4res_clnt, 3238 (caddr_t)&res); 3239 } 3240 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3241 &recov_state, needrecov); 3242 if (abort == FALSE) 3243 goto recov_retry; 3244 return (e.error); 3245 } 3246 3247 if (res.status) { 3248 e.error = geterrno4(res.status); 3249 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3250 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3251 &recov_state, needrecov); 3252 return (e.error); 3253 } 3254 3255 resop = &res.array[1]; /* write res */ 3256 wres = &resop->nfs_resop4_u.opwrite; 3257 3258 if ((int)wres->count > tsize) { 3259 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3260 3261 zcmn_err(getzoneid(), CE_WARN, 3262 "nfs4write: server wrote %u, requested was %u", 3263 (int)wres->count, tsize); 3264 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3265 &recov_state, needrecov); 3266 return (EIO); 3267 } 3268 if (wres->committed == UNSTABLE4) { 3269 *stab_comm = UNSTABLE4; 3270 if (wargs->stable == DATA_SYNC4 || 3271 wargs->stable == FILE_SYNC4) { 3272 (void) xdr_free(xdr_COMPOUND4res_clnt, 3273 (caddr_t)&res); 3274 zcmn_err(getzoneid(), CE_WARN, 3275 "nfs4write: server %s did not commit " 3276 "to stable storage", 3277 rp->r_server->sv_hostname); 3278 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3279 &recov_state, needrecov); 3280 return (EIO); 3281 } 3282 } 3283 3284 tsize = (int)wres->count; 3285 count -= tsize; 3286 base += tsize; 3287 offset += tsize; 3288 if (mi->mi_io_kstats) { 3289 mutex_enter(&mi->mi_lock); 3290 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3291 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3292 tsize; 3293 mutex_exit(&mi->mi_lock); 3294 } 3295 lwp_stat_update(LWP_STAT_OUBLK, 1); 3296 mutex_enter(&rp->r_statelock); 3297 if (rp->r_flags & R4HAVEVERF) { 3298 if (rp->r_writeverf != wres->writeverf) { 3299 nfs4_set_mod(vp); 3300 rp->r_writeverf = wres->writeverf; 3301 } 3302 } else { 3303 rp->r_writeverf = wres->writeverf; 3304 rp->r_flags |= R4HAVEVERF; 3305 } 3306 PURGE_ATTRCACHE4_LOCKED(rp); 3307 rp->r_flags |= R4WRITEMODIFIED; 3308 gethrestime(&rp->r_attr.va_mtime); 3309 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3310 mutex_exit(&rp->r_statelock); 3311 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3312 } while (count); 3313 3314 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); 3315 3316 return (e.error); 3317 } 3318 3319 /* 3320 * Read from a file. Reads data in largest chunks our interface can handle. 3321 */ 3322 static int 3323 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3324 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3325 { 3326 mntinfo4_t *mi; 3327 COMPOUND4args_clnt args; 3328 COMPOUND4res_clnt res; 3329 READ4args *rargs; 3330 nfs_argop4 argop[2]; 3331 int tsize; 3332 int doqueue; 3333 rnode4_t *rp; 3334 int data_len; 3335 bool_t is_eof; 3336 bool_t needrecov = FALSE; 3337 nfs4_recov_state_t recov_state; 3338 nfs4_stateid_types_t sid_types; 3339 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3340 3341 rp = VTOR4(vp); 3342 mi = VTOMI4(vp); 3343 doqueue = 1; 3344 3345 ASSERT(nfs_zone() == mi->mi_zone); 3346 3347 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3348 3349 args.array_len = 2; 3350 args.array = argop; 3351 3352 nfs4_init_stateid_types(&sid_types); 3353 3354 recov_state.rs_flags = 0; 3355 recov_state.rs_num_retry_despite_err = 0; 3356 3357 recov_retry: 3358 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3359 &recov_state, NULL); 3360 if (e.error) 3361 return (e.error); 3362 3363 /* putfh target fh */ 3364 argop[0].argop = OP_CPUTFH; 3365 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3366 3367 /* read */ 3368 argop[1].argop = OP_READ; 3369 rargs = &argop[1].nfs_argop4_u.opread; 3370 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3371 OP_READ, &sid_types, async); 3372 3373 do { 3374 if (mi->mi_io_kstats) { 3375 mutex_enter(&mi->mi_lock); 3376 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3377 mutex_exit(&mi->mi_lock); 3378 } 3379 3380 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3381 "nfs4read: %s call, rp %s", 3382 needrecov ? "recov" : "first", 3383 rnode4info(rp))); 3384 3385 if ((vp->v_flag & VNOCACHE) || 3386 (rp->r_flags & R4DIRECTIO) || 3387 (mi->mi_flags & MI4_DIRECTIO)) 3388 tsize = MIN(mi->mi_tsize, count); 3389 else 3390 tsize = MIN(mi->mi_curread, count); 3391 rargs->offset = (offset4)offset; 3392 rargs->count = (count4)tsize; 3393 rargs->res_data_val_alt = NULL; 3394 rargs->res_mblk = NULL; 3395 rargs->res_uiop = NULL; 3396 rargs->res_maxsize = 0; 3397 if (uiop) 3398 rargs->res_uiop = uiop; 3399 else 3400 rargs->res_data_val_alt = base; 3401 rargs->res_maxsize = tsize; 3402 3403 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3404 #ifdef DEBUG 3405 if (nfs4read_error_inject) { 3406 res.status = nfs4read_error_inject; 3407 nfs4read_error_inject = 0; 3408 } 3409 #endif 3410 3411 if (mi->mi_io_kstats) { 3412 mutex_enter(&mi->mi_lock); 3413 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3414 mutex_exit(&mi->mi_lock); 3415 } 3416 3417 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3418 if (e.error != 0 && !needrecov) { 3419 nfs4_end_fop(mi, vp, NULL, OH_READ, 3420 &recov_state, needrecov); 3421 return (e.error); 3422 } 3423 3424 /* 3425 * Do proper retry for OLD and BAD stateid errors outside 3426 * of the normal recovery framework. There are two differences 3427 * between async and sync reads. The first is that we allow 3428 * retry on BAD_STATEID for async reads, but not sync reads. 3429 * The second is that we mark the file dead for a failed 3430 * attempt with a special stateid for sync reads, but just 3431 * return EIO for async reads. 3432 * 3433 * If a sync read receives a BAD stateid error while using a 3434 * delegation stateid, retry using the open stateid (if it 3435 * exists). If it doesn't have an open stateid, reopen the 3436 * file first, then retry. 3437 */ 3438 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3439 res.status == NFS4ERR_BAD_STATEID) && async) { 3440 nfs4_end_fop(mi, vp, NULL, OH_READ, 3441 &recov_state, needrecov); 3442 if (sid_types.cur_sid_type == SPEC_SID) { 3443 (void) xdr_free(xdr_COMPOUND4res_clnt, 3444 (caddr_t)&res); 3445 return (EIO); 3446 } 3447 nfs4_save_stateid(&rargs->stateid, &sid_types); 3448 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3449 goto recov_retry; 3450 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3451 !async && sid_types.cur_sid_type != SPEC_SID) { 3452 nfs4_save_stateid(&rargs->stateid, &sid_types); 3453 nfs4_end_fop(mi, vp, NULL, OH_READ, 3454 &recov_state, needrecov); 3455 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3456 goto recov_retry; 3457 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3458 sid_types.cur_sid_type == DEL_SID) { 3459 nfs4_save_stateid(&rargs->stateid, &sid_types); 3460 mutex_enter(&rp->r_statev4_lock); 3461 rp->r_deleg_return_pending = TRUE; 3462 mutex_exit(&rp->r_statev4_lock); 3463 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3464 nfs4_end_fop(mi, vp, NULL, OH_READ, 3465 &recov_state, needrecov); 3466 (void) xdr_free(xdr_COMPOUND4res_clnt, 3467 (caddr_t)&res); 3468 return (EIO); 3469 } 3470 nfs4_end_fop(mi, vp, NULL, OH_READ, 3471 &recov_state, needrecov); 3472 /* hold needed for nfs4delegreturn_thread */ 3473 VN_HOLD(vp); 3474 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3475 NFS4_DR_DISCARD), FALSE); 3476 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3477 goto recov_retry; 3478 } 3479 if (needrecov) { 3480 bool_t abort; 3481 3482 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3483 "nfs4read: initiating recovery\n")); 3484 3485 abort = nfs4_start_recovery(&e, 3486 mi, vp, NULL, &rargs->stateid, 3487 NULL, OP_READ, NULL); 3488 nfs4_end_fop(mi, vp, NULL, OH_READ, 3489 &recov_state, needrecov); 3490 /* 3491 * Do not retry if we got OLD_STATEID using a special 3492 * stateid. This avoids looping with a broken server. 3493 */ 3494 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3495 sid_types.cur_sid_type == SPEC_SID) 3496 abort = TRUE; 3497 3498 if (abort == FALSE) { 3499 /* 3500 * Need to retry all possible stateids in 3501 * case the recovery error wasn't stateid 3502 * related or the stateids have become 3503 * stale (server reboot). 3504 */ 3505 nfs4_init_stateid_types(&sid_types); 3506 (void) xdr_free(xdr_COMPOUND4res_clnt, 3507 (caddr_t)&res); 3508 goto recov_retry; 3509 } 3510 3511 if (!e.error) { 3512 e.error = geterrno4(res.status); 3513 (void) xdr_free(xdr_COMPOUND4res_clnt, 3514 (caddr_t)&res); 3515 } 3516 return (e.error); 3517 } 3518 3519 if (res.status) { 3520 e.error = geterrno4(res.status); 3521 nfs4_end_fop(mi, vp, NULL, OH_READ, 3522 &recov_state, needrecov); 3523 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3524 return (e.error); 3525 } 3526 3527 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3528 count -= data_len; 3529 if (base) 3530 base += data_len; 3531 offset += data_len; 3532 if (mi->mi_io_kstats) { 3533 mutex_enter(&mi->mi_lock); 3534 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3535 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3536 mutex_exit(&mi->mi_lock); 3537 } 3538 lwp_stat_update(LWP_STAT_INBLK, 1); 3539 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3540 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3541 3542 } while (count && !is_eof); 3543 3544 *residp = count; 3545 3546 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3547 3548 return (e.error); 3549 } 3550 3551 /* ARGSUSED */ 3552 static int 3553 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3554 caller_context_t *ct) 3555 { 3556 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3557 return (EIO); 3558 switch (cmd) { 3559 case _FIODIRECTIO: 3560 return (nfs4_directio(vp, (int)arg, cr)); 3561 default: 3562 return (ENOTTY); 3563 } 3564 } 3565 3566 /* ARGSUSED */ 3567 int 3568 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3569 caller_context_t *ct) 3570 { 3571 int error; 3572 rnode4_t *rp = VTOR4(vp); 3573 3574 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3575 return (EIO); 3576 /* 3577 * If it has been specified that the return value will 3578 * just be used as a hint, and we are only being asked 3579 * for size, fsid or rdevid, then return the client's 3580 * notion of these values without checking to make sure 3581 * that the attribute cache is up to date. 3582 * The whole point is to avoid an over the wire GETATTR 3583 * call. 3584 */ 3585 if (flags & ATTR_HINT) { 3586 if (vap->va_mask == 3587 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 3588 mutex_enter(&rp->r_statelock); 3589 if (vap->va_mask | AT_SIZE) 3590 vap->va_size = rp->r_size; 3591 if (vap->va_mask | AT_FSID) 3592 vap->va_fsid = rp->r_attr.va_fsid; 3593 if (vap->va_mask | AT_RDEV) 3594 vap->va_rdev = rp->r_attr.va_rdev; 3595 mutex_exit(&rp->r_statelock); 3596 return (0); 3597 } 3598 } 3599 3600 /* 3601 * Only need to flush pages if asking for the mtime 3602 * and if there any dirty pages or any outstanding 3603 * asynchronous (write) requests for this file. 3604 */ 3605 if (vap->va_mask & AT_MTIME) { 3606 rp = VTOR4(vp); 3607 if (nfs4_has_pages(vp)) { 3608 mutex_enter(&rp->r_statev4_lock); 3609 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3610 mutex_exit(&rp->r_statev4_lock); 3611 if (rp->r_flags & R4DIRTY || 3612 rp->r_awcount > 0) { 3613 mutex_enter(&rp->r_statelock); 3614 rp->r_gcount++; 3615 mutex_exit(&rp->r_statelock); 3616 error = 3617 nfs4_putpage(vp, (u_offset_t)0, 3618 0, 0, cr, NULL); 3619 mutex_enter(&rp->r_statelock); 3620 if (error && (error == ENOSPC || 3621 error == EDQUOT)) { 3622 if (!rp->r_error) 3623 rp->r_error = error; 3624 } 3625 if (--rp->r_gcount == 0) 3626 cv_broadcast(&rp->r_cv); 3627 mutex_exit(&rp->r_statelock); 3628 } 3629 } else { 3630 mutex_exit(&rp->r_statev4_lock); 3631 } 3632 } 3633 } 3634 return (nfs4getattr(vp, vap, cr)); 3635 } 3636 3637 int 3638 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3639 { 3640 /* 3641 * If these are the only two bits cleared 3642 * on the server then return 0 (OK) else 3643 * return 1 (BAD). 3644 */ 3645 on_client &= ~(S_ISUID|S_ISGID); 3646 if (on_client == from_server) 3647 return (0); 3648 else 3649 return (1); 3650 } 3651 3652 /*ARGSUSED4*/ 3653 static int 3654 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3655 caller_context_t *ct) 3656 { 3657 if (vap->va_mask & AT_NOSET) 3658 return (EINVAL); 3659 3660 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3661 return (EIO); 3662 3663 /* 3664 * Don't call secpolicy_vnode_setattr, the client cannot 3665 * use its cached attributes to make security decisions 3666 * as the server may be faking mode bits or mapping uid/gid. 3667 * Always just let the server to the checking. 3668 * If we provide the ability to remove basic priviledges 3669 * to setattr (e.g. basic without chmod) then we will 3670 * need to add a check here before calling the server. 3671 */ 3672 3673 return (nfs4setattr(vp, vap, flags, cr, NULL)); 3674 } 3675 3676 /* 3677 * To replace the "guarded" version 3 setattr, we use two types of compound 3678 * setattr requests: 3679 * 1. The "normal" setattr, used when the size of the file isn't being 3680 * changed - { Putfh <fh>; Setattr; Getattr }/ 3681 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3682 * with only ctime as the argument. If the server ctime differs from 3683 * what is cached on the client, the verify will fail, but we would 3684 * already have the ctime from the preceding getattr, so just set it 3685 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3686 * Setattr; Getattr }. 3687 * 3688 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3689 * this setattr and NULL if they are not. 3690 */ 3691 static int 3692 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3693 vsecattr_t *vsap) 3694 { 3695 COMPOUND4args_clnt args; 3696 COMPOUND4res_clnt res, *resp = NULL; 3697 nfs4_ga_res_t *garp = NULL; 3698 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3699 nfs_argop4 argop[5]; 3700 int verify_argop = -1; 3701 int setattr_argop = 1; 3702 nfs_resop4 *resop; 3703 vattr_t va; 3704 rnode4_t *rp; 3705 int doqueue = 1; 3706 uint_t mask = vap->va_mask; 3707 mode_t omode; 3708 vsecattr_t *vsp; 3709 timestruc_t ctime; 3710 bool_t needrecov = FALSE; 3711 nfs4_recov_state_t recov_state; 3712 nfs4_stateid_types_t sid_types; 3713 stateid4 stateid; 3714 hrtime_t t; 3715 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3716 servinfo4_t *svp; 3717 bitmap4 supp_attrs; 3718 3719 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3720 rp = VTOR4(vp); 3721 nfs4_init_stateid_types(&sid_types); 3722 3723 /* 3724 * Only need to flush pages if there are any pages and 3725 * if the file is marked as dirty in some fashion. The 3726 * file must be flushed so that we can accurately 3727 * determine the size of the file and the cached data 3728 * after the SETATTR returns. A file is considered to 3729 * be dirty if it is either marked with R4DIRTY, has 3730 * outstanding i/o's active, or is mmap'd. In this 3731 * last case, we can't tell whether there are dirty 3732 * pages, so we flush just to be sure. 3733 */ 3734 if (nfs4_has_pages(vp) && 3735 ((rp->r_flags & R4DIRTY) || 3736 rp->r_count > 0 || 3737 rp->r_mapcnt > 0)) { 3738 ASSERT(vp->v_type != VCHR); 3739 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3740 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3741 mutex_enter(&rp->r_statelock); 3742 if (!rp->r_error) 3743 rp->r_error = e.error; 3744 mutex_exit(&rp->r_statelock); 3745 } 3746 } 3747 3748 if (mask & AT_SIZE) { 3749 /* 3750 * Verification setattr compound for non-deleg AT_SIZE: 3751 * { Putfh; Getattr; Verify; Setattr; Getattr } 3752 * Set ctime local here (outside the do_again label) 3753 * so that subsequent retries (after failed VERIFY) 3754 * will use ctime from GETATTR results (from failed 3755 * verify compound) as VERIFY arg. 3756 * If file has delegation, then VERIFY(time_metadata) 3757 * is of little added value, so don't bother. 3758 */ 3759 mutex_enter(&rp->r_statev4_lock); 3760 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3761 rp->r_deleg_return_pending) { 3762 numops = 5; 3763 ctime = rp->r_attr.va_ctime; 3764 } 3765 mutex_exit(&rp->r_statev4_lock); 3766 } 3767 3768 recov_state.rs_flags = 0; 3769 recov_state.rs_num_retry_despite_err = 0; 3770 3771 args.ctag = TAG_SETATTR; 3772 do_again: 3773 recov_retry: 3774 setattr_argop = numops - 2; 3775 3776 args.array = argop; 3777 args.array_len = numops; 3778 3779 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3780 if (e.error) 3781 return (e.error); 3782 3783 3784 /* putfh target fh */ 3785 argop[0].argop = OP_CPUTFH; 3786 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3787 3788 if (numops == 5) { 3789 /* 3790 * We only care about the ctime, but need to get mtime 3791 * and size for proper cache update. 3792 */ 3793 /* getattr */ 3794 argop[1].argop = OP_GETATTR; 3795 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3796 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3797 3798 /* verify - set later in loop */ 3799 verify_argop = 2; 3800 } 3801 3802 /* setattr */ 3803 svp = rp->r_server; 3804 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3805 supp_attrs = svp->sv_supp_attrs; 3806 nfs_rw_exit(&svp->sv_lock); 3807 3808 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3809 supp_attrs, &e.error, &sid_types); 3810 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3811 if (e.error) { 3812 /* req time field(s) overflow - return immediately */ 3813 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3814 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3815 opsetattr.obj_attributes); 3816 return (e.error); 3817 } 3818 omode = rp->r_attr.va_mode; 3819 3820 /* getattr */ 3821 argop[numops-1].argop = OP_GETATTR; 3822 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3823 /* 3824 * If we are setting the ACL (indicated only by vsap != NULL), request 3825 * the ACL in this getattr. The ACL returned from this getattr will be 3826 * used in updating the ACL cache. 3827 */ 3828 if (vsap != NULL) 3829 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3830 FATTR4_ACL_MASK; 3831 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3832 3833 /* 3834 * setattr iterates if the object size is set and the cached ctime 3835 * does not match the file ctime. In that case, verify the ctime first. 3836 */ 3837 3838 do { 3839 if (verify_argop != -1) { 3840 /* 3841 * Verify that the ctime match before doing setattr. 3842 */ 3843 va.va_mask = AT_CTIME; 3844 va.va_ctime = ctime; 3845 svp = rp->r_server; 3846 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3847 supp_attrs = svp->sv_supp_attrs; 3848 nfs_rw_exit(&svp->sv_lock); 3849 e.error = nfs4args_verify(&argop[verify_argop], &va, 3850 OP_VERIFY, supp_attrs); 3851 if (e.error) { 3852 /* req time field(s) overflow - return */ 3853 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3854 needrecov); 3855 break; 3856 } 3857 } 3858 3859 doqueue = 1; 3860 3861 t = gethrtime(); 3862 3863 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3864 3865 /* 3866 * Purge the access cache and ACL cache if changing either the 3867 * owner of the file, the group owner, or the mode. These may 3868 * change the access permissions of the file, so purge old 3869 * information and start over again. 3870 */ 3871 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3872 (void) nfs4_access_purge_rp(rp); 3873 if (rp->r_secattr != NULL) { 3874 mutex_enter(&rp->r_statelock); 3875 vsp = rp->r_secattr; 3876 rp->r_secattr = NULL; 3877 mutex_exit(&rp->r_statelock); 3878 if (vsp != NULL) 3879 nfs4_acl_free_cache(vsp); 3880 } 3881 } 3882 3883 /* 3884 * If res.array_len == numops, then everything succeeded, 3885 * except for possibly the final getattr. If only the 3886 * last getattr failed, give up, and don't try recovery. 3887 */ 3888 if (res.array_len == numops) { 3889 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3890 needrecov); 3891 if (! e.error) 3892 resp = &res; 3893 break; 3894 } 3895 3896 /* 3897 * if either rpc call failed or completely succeeded - done 3898 */ 3899 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3900 if (e.error) { 3901 PURGE_ATTRCACHE4(vp); 3902 if (!needrecov) { 3903 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3904 needrecov); 3905 break; 3906 } 3907 } 3908 3909 /* 3910 * Do proper retry for OLD_STATEID outside of the normal 3911 * recovery framework. 3912 */ 3913 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3914 sid_types.cur_sid_type != SPEC_SID && 3915 sid_types.cur_sid_type != NO_SID) { 3916 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3917 needrecov); 3918 nfs4_save_stateid(&stateid, &sid_types); 3919 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3920 opsetattr.obj_attributes); 3921 if (verify_argop != -1) { 3922 nfs4args_verify_free(&argop[verify_argop]); 3923 verify_argop = -1; 3924 } 3925 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3926 goto recov_retry; 3927 } 3928 3929 if (needrecov) { 3930 bool_t abort; 3931 3932 abort = nfs4_start_recovery(&e, 3933 VTOMI4(vp), vp, NULL, NULL, NULL, 3934 OP_SETATTR, NULL); 3935 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3936 needrecov); 3937 /* 3938 * Do not retry if we failed with OLD_STATEID using 3939 * a special stateid. This is done to avoid looping 3940 * with a broken server. 3941 */ 3942 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3943 (sid_types.cur_sid_type == SPEC_SID || 3944 sid_types.cur_sid_type == NO_SID)) 3945 abort = TRUE; 3946 if (!e.error) { 3947 if (res.status == NFS4ERR_BADOWNER) 3948 nfs4_log_badowner(VTOMI4(vp), 3949 OP_SETATTR); 3950 3951 e.error = geterrno4(res.status); 3952 (void) xdr_free(xdr_COMPOUND4res_clnt, 3953 (caddr_t)&res); 3954 } 3955 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3956 opsetattr.obj_attributes); 3957 if (verify_argop != -1) { 3958 nfs4args_verify_free(&argop[verify_argop]); 3959 verify_argop = -1; 3960 } 3961 if (abort == FALSE) { 3962 /* 3963 * Need to retry all possible stateids in 3964 * case the recovery error wasn't stateid 3965 * related or the stateids have become 3966 * stale (server reboot). 3967 */ 3968 nfs4_init_stateid_types(&sid_types); 3969 goto recov_retry; 3970 } 3971 return (e.error); 3972 } 3973 3974 /* 3975 * Need to call nfs4_end_op before nfs4getattr to 3976 * avoid potential nfs4_start_op deadlock. See RFE 3977 * 4777612. Calls to nfs4_invalidate_pages() and 3978 * nfs4_purge_stale_fh() might also generate over the 3979 * wire calls which my cause nfs4_start_op() deadlock. 3980 */ 3981 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3982 3983 /* 3984 * Check to update lease. 3985 */ 3986 resp = &res; 3987 if (res.status == NFS4_OK) { 3988 break; 3989 } 3990 3991 /* 3992 * Check if verify failed to see if try again 3993 */ 3994 if ((verify_argop == -1) || (res.array_len != 3)) { 3995 /* 3996 * can't continue... 3997 */ 3998 if (res.status == NFS4ERR_BADOWNER) 3999 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4000 4001 e.error = geterrno4(res.status); 4002 } else { 4003 /* 4004 * When the verify request fails, the client ctime is 4005 * not in sync with the server. This is the same as 4006 * the version 3 "not synchronized" error, and we 4007 * handle it in a similar manner (XXX do we need to???). 4008 * Use the ctime returned in the first getattr for 4009 * the input to the next verify. 4010 * If we couldn't get the attributes, then we give up 4011 * because we can't complete the operation as required. 4012 */ 4013 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4014 } 4015 if (e.error) { 4016 PURGE_ATTRCACHE4(vp); 4017 nfs4_purge_stale_fh(e.error, vp, cr); 4018 } else { 4019 /* 4020 * retry with a new verify value 4021 */ 4022 ctime = garp->n4g_va.va_ctime; 4023 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4024 resp = NULL; 4025 } 4026 if (!e.error) { 4027 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4028 opsetattr.obj_attributes); 4029 if (verify_argop != -1) { 4030 nfs4args_verify_free(&argop[verify_argop]); 4031 verify_argop = -1; 4032 } 4033 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4034 goto do_again; 4035 } 4036 } while (!e.error); 4037 4038 if (e.error) { 4039 /* 4040 * If we are here, rfs4call has an irrecoverable error - return 4041 */ 4042 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4043 opsetattr.obj_attributes); 4044 if (verify_argop != -1) { 4045 nfs4args_verify_free(&argop[verify_argop]); 4046 verify_argop = -1; 4047 } 4048 if (resp) 4049 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4050 return (e.error); 4051 } 4052 4053 4054 4055 /* 4056 * If changing the size of the file, invalidate 4057 * any local cached data which is no longer part 4058 * of the file. We also possibly invalidate the 4059 * last page in the file. We could use 4060 * pvn_vpzero(), but this would mark the page as 4061 * modified and require it to be written back to 4062 * the server for no particularly good reason. 4063 * This way, if we access it, then we bring it 4064 * back in. A read should be cheaper than a 4065 * write. 4066 */ 4067 if (mask & AT_SIZE) { 4068 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4069 } 4070 4071 /* either no error or one of the postop getattr failed */ 4072 4073 /* 4074 * XXX Perform a simplified version of wcc checking. Instead of 4075 * have another getattr to get pre-op, just purge cache if 4076 * any of the ops prior to and including the getattr failed. 4077 * If the getattr succeeded then update the attrcache accordingly. 4078 */ 4079 4080 garp = NULL; 4081 if (res.status == NFS4_OK) { 4082 /* 4083 * Last getattr 4084 */ 4085 resop = &res.array[numops - 1]; 4086 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4087 } 4088 /* 4089 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4090 * rather than filling it. See the function itself for details. 4091 */ 4092 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4093 if (garp != NULL) { 4094 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4095 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4096 vs_ace4_destroy(&garp->n4g_vsa); 4097 } else { 4098 if (vsap != NULL) { 4099 /* 4100 * The ACL was supposed to be set and to be 4101 * returned in the last getattr of this 4102 * compound, but for some reason the getattr 4103 * result doesn't contain the ACL. In this 4104 * case, purge the ACL cache. 4105 */ 4106 if (rp->r_secattr != NULL) { 4107 mutex_enter(&rp->r_statelock); 4108 vsp = rp->r_secattr; 4109 rp->r_secattr = NULL; 4110 mutex_exit(&rp->r_statelock); 4111 if (vsp != NULL) 4112 nfs4_acl_free_cache(vsp); 4113 } 4114 } 4115 } 4116 } 4117 4118 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4119 /* 4120 * Set the size, rather than relying on getting it updated 4121 * via a GETATTR. With delegations the client tries to 4122 * suppress GETATTR calls. 4123 */ 4124 mutex_enter(&rp->r_statelock); 4125 rp->r_size = vap->va_size; 4126 mutex_exit(&rp->r_statelock); 4127 } 4128 4129 /* 4130 * Can free up request args and res 4131 */ 4132 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4133 opsetattr.obj_attributes); 4134 if (verify_argop != -1) { 4135 nfs4args_verify_free(&argop[verify_argop]); 4136 verify_argop = -1; 4137 } 4138 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4139 4140 /* 4141 * Some servers will change the mode to clear the setuid 4142 * and setgid bits when changing the uid or gid. The 4143 * client needs to compensate appropriately. 4144 */ 4145 if (mask & (AT_UID | AT_GID)) { 4146 int terror, do_setattr; 4147 4148 do_setattr = 0; 4149 va.va_mask = AT_MODE; 4150 terror = nfs4getattr(vp, &va, cr); 4151 if (!terror && 4152 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4153 (!(mask & AT_MODE) && va.va_mode != omode))) { 4154 va.va_mask = AT_MODE; 4155 if (mask & AT_MODE) { 4156 /* 4157 * We asked the mode to be changed and what 4158 * we just got from the server in getattr is 4159 * not what we wanted it to be, so set it now. 4160 */ 4161 va.va_mode = vap->va_mode; 4162 do_setattr = 1; 4163 } else { 4164 /* 4165 * We did not ask the mode to be changed, 4166 * Check to see that the server just cleared 4167 * I_SUID and I_GUID from it. If not then 4168 * set mode to omode with UID/GID cleared. 4169 */ 4170 if (nfs4_compare_modes(va.va_mode, omode)) { 4171 omode &= ~(S_ISUID|S_ISGID); 4172 va.va_mode = omode; 4173 do_setattr = 1; 4174 } 4175 } 4176 4177 if (do_setattr) 4178 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4179 } 4180 } 4181 4182 return (e.error); 4183 } 4184 4185 /* ARGSUSED */ 4186 static int 4187 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4188 { 4189 COMPOUND4args_clnt args; 4190 COMPOUND4res_clnt res; 4191 int doqueue; 4192 uint32_t acc, resacc, argacc; 4193 rnode4_t *rp; 4194 cred_t *cred, *ncr, *ncrfree = NULL; 4195 nfs4_access_type_t cacc; 4196 int num_ops; 4197 nfs_argop4 argop[3]; 4198 nfs_resop4 *resop; 4199 bool_t needrecov = FALSE, do_getattr; 4200 nfs4_recov_state_t recov_state; 4201 int rpc_error; 4202 hrtime_t t; 4203 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4204 mntinfo4_t *mi = VTOMI4(vp); 4205 4206 if (nfs_zone() != mi->mi_zone) 4207 return (EIO); 4208 4209 acc = 0; 4210 if (mode & VREAD) 4211 acc |= ACCESS4_READ; 4212 if (mode & VWRITE) { 4213 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4214 return (EROFS); 4215 if (vp->v_type == VDIR) 4216 acc |= ACCESS4_DELETE; 4217 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4218 } 4219 if (mode & VEXEC) { 4220 if (vp->v_type == VDIR) 4221 acc |= ACCESS4_LOOKUP; 4222 else 4223 acc |= ACCESS4_EXECUTE; 4224 } 4225 4226 if (VTOR4(vp)->r_acache != NULL) { 4227 e.error = nfs4_validate_caches(vp, cr); 4228 if (e.error) 4229 return (e.error); 4230 } 4231 4232 rp = VTOR4(vp); 4233 if (vp->v_type == VDIR) 4234 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4235 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4236 else 4237 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4238 ACCESS4_EXECUTE; 4239 recov_state.rs_flags = 0; 4240 recov_state.rs_num_retry_despite_err = 0; 4241 4242 cred = cr; 4243 /* 4244 * ncr and ncrfree both initially 4245 * point to the memory area returned 4246 * by crnetadjust(); 4247 * ncrfree not NULL when exiting means 4248 * that we need to release it 4249 */ 4250 ncr = crnetadjust(cred); 4251 ncrfree = ncr; 4252 4253 tryagain: 4254 cacc = nfs4_access_check(rp, acc, cred); 4255 if (cacc == NFS4_ACCESS_ALLOWED) { 4256 if (ncrfree != NULL) 4257 crfree(ncrfree); 4258 return (0); 4259 } 4260 if (cacc == NFS4_ACCESS_DENIED) { 4261 /* 4262 * If the cred can be adjusted, try again 4263 * with the new cred. 4264 */ 4265 if (ncr != NULL) { 4266 cred = ncr; 4267 ncr = NULL; 4268 goto tryagain; 4269 } 4270 if (ncrfree != NULL) 4271 crfree(ncrfree); 4272 return (EACCES); 4273 } 4274 4275 recov_retry: 4276 /* 4277 * Don't take with r_statev4_lock here. r_deleg_type could 4278 * change as soon as lock is released. Since it is an int, 4279 * there is no atomicity issue. 4280 */ 4281 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4282 num_ops = do_getattr ? 3 : 2; 4283 4284 args.ctag = TAG_ACCESS; 4285 4286 args.array_len = num_ops; 4287 args.array = argop; 4288 4289 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4290 &recov_state, NULL)) { 4291 if (ncrfree != NULL) 4292 crfree(ncrfree); 4293 return (e.error); 4294 } 4295 4296 /* putfh target fh */ 4297 argop[0].argop = OP_CPUTFH; 4298 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4299 4300 /* access */ 4301 argop[1].argop = OP_ACCESS; 4302 argop[1].nfs_argop4_u.opaccess.access = argacc; 4303 4304 /* getattr */ 4305 if (do_getattr) { 4306 argop[2].argop = OP_GETATTR; 4307 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4308 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4309 } 4310 4311 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4312 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4313 rnode4info(VTOR4(vp)))); 4314 4315 doqueue = 1; 4316 t = gethrtime(); 4317 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4318 rpc_error = e.error; 4319 4320 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4321 if (needrecov) { 4322 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4323 "nfs4_access: initiating recovery\n")); 4324 4325 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4326 NULL, OP_ACCESS, NULL) == FALSE) { 4327 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4328 &recov_state, needrecov); 4329 if (!e.error) 4330 (void) xdr_free(xdr_COMPOUND4res_clnt, 4331 (caddr_t)&res); 4332 goto recov_retry; 4333 } 4334 } 4335 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4336 4337 if (e.error) 4338 goto out; 4339 4340 if (res.status) { 4341 e.error = geterrno4(res.status); 4342 /* 4343 * This might generate over the wire calls throught 4344 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4345 * here to avoid a deadlock. 4346 */ 4347 nfs4_purge_stale_fh(e.error, vp, cr); 4348 goto out; 4349 } 4350 resop = &res.array[1]; /* access res */ 4351 4352 resacc = resop->nfs_resop4_u.opaccess.access; 4353 4354 if (do_getattr) { 4355 resop++; /* getattr res */ 4356 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4357 t, cr, FALSE, NULL); 4358 } 4359 4360 if (!e.error) { 4361 nfs4_access_cache(rp, argacc, resacc, cred); 4362 /* 4363 * we just cached results with cred; if cred is the 4364 * adjusted credentials from crnetadjust, we do not want 4365 * to release them before exiting: hence setting ncrfree 4366 * to NULL 4367 */ 4368 if (cred != cr) 4369 ncrfree = NULL; 4370 /* XXX check the supported bits too? */ 4371 if ((acc & resacc) != acc) { 4372 /* 4373 * The following code implements the semantic 4374 * that a setuid root program has *at least* the 4375 * permissions of the user that is running the 4376 * program. See rfs3call() for more portions 4377 * of the implementation of this functionality. 4378 */ 4379 /* XXX-LP */ 4380 if (ncr != NULL) { 4381 (void) xdr_free(xdr_COMPOUND4res_clnt, 4382 (caddr_t)&res); 4383 cred = ncr; 4384 ncr = NULL; 4385 goto tryagain; 4386 } 4387 e.error = EACCES; 4388 } 4389 } 4390 4391 out: 4392 if (!rpc_error) 4393 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4394 4395 if (ncrfree != NULL) 4396 crfree(ncrfree); 4397 4398 return (e.error); 4399 } 4400 4401 /* ARGSUSED */ 4402 static int 4403 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4404 { 4405 COMPOUND4args_clnt args; 4406 COMPOUND4res_clnt res; 4407 int doqueue; 4408 rnode4_t *rp; 4409 nfs_argop4 argop[3]; 4410 nfs_resop4 *resop; 4411 READLINK4res *lr_res; 4412 nfs4_ga_res_t *garp; 4413 uint_t len; 4414 char *linkdata; 4415 bool_t needrecov = FALSE; 4416 nfs4_recov_state_t recov_state; 4417 hrtime_t t; 4418 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4419 4420 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4421 return (EIO); 4422 /* 4423 * Can't readlink anything other than a symbolic link. 4424 */ 4425 if (vp->v_type != VLNK) 4426 return (EINVAL); 4427 4428 rp = VTOR4(vp); 4429 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4430 e.error = nfs4_validate_caches(vp, cr); 4431 if (e.error) 4432 return (e.error); 4433 mutex_enter(&rp->r_statelock); 4434 if (rp->r_symlink.contents != NULL) { 4435 e.error = uiomove(rp->r_symlink.contents, 4436 rp->r_symlink.len, UIO_READ, uiop); 4437 mutex_exit(&rp->r_statelock); 4438 return (e.error); 4439 } 4440 mutex_exit(&rp->r_statelock); 4441 } 4442 recov_state.rs_flags = 0; 4443 recov_state.rs_num_retry_despite_err = 0; 4444 4445 recov_retry: 4446 args.array_len = 3; 4447 args.array = argop; 4448 args.ctag = TAG_READLINK; 4449 4450 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4451 if (e.error) { 4452 return (e.error); 4453 } 4454 4455 /* 0. putfh symlink fh */ 4456 argop[0].argop = OP_CPUTFH; 4457 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4458 4459 /* 1. readlink */ 4460 argop[1].argop = OP_READLINK; 4461 4462 /* 2. getattr */ 4463 argop[2].argop = OP_GETATTR; 4464 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4465 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4466 4467 doqueue = 1; 4468 4469 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4470 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4471 rnode4info(VTOR4(vp)))); 4472 4473 t = gethrtime(); 4474 4475 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4476 4477 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4478 if (needrecov) { 4479 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4480 "nfs4_readlink: initiating recovery\n")); 4481 4482 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4483 NULL, OP_READLINK, NULL) == FALSE) { 4484 if (!e.error) 4485 (void) xdr_free(xdr_COMPOUND4res_clnt, 4486 (caddr_t)&res); 4487 4488 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4489 needrecov); 4490 goto recov_retry; 4491 } 4492 } 4493 4494 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4495 4496 if (e.error) 4497 return (e.error); 4498 4499 /* 4500 * There is an path in the code below which calls 4501 * nfs4_purge_stale_fh(), which may generate otw calls through 4502 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4503 * here to avoid nfs4_start_op() deadlock. 4504 */ 4505 4506 if (res.status && (res.array_len < args.array_len)) { 4507 /* 4508 * either Putfh or Link failed 4509 */ 4510 e.error = geterrno4(res.status); 4511 nfs4_purge_stale_fh(e.error, vp, cr); 4512 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4513 return (e.error); 4514 } 4515 4516 resop = &res.array[1]; /* readlink res */ 4517 lr_res = &resop->nfs_resop4_u.opreadlink; 4518 4519 /* 4520 * treat symlink names as data 4521 */ 4522 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4523 if (linkdata != NULL) { 4524 int uio_len = len - 1; 4525 /* len includes null byte, which we won't uiomove */ 4526 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4527 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4528 mutex_enter(&rp->r_statelock); 4529 if (rp->r_symlink.contents == NULL) { 4530 rp->r_symlink.contents = linkdata; 4531 rp->r_symlink.len = uio_len; 4532 rp->r_symlink.size = len; 4533 mutex_exit(&rp->r_statelock); 4534 } else { 4535 mutex_exit(&rp->r_statelock); 4536 kmem_free(linkdata, len); 4537 } 4538 } else { 4539 kmem_free(linkdata, len); 4540 } 4541 } 4542 if (res.status == NFS4_OK) { 4543 resop++; /* getattr res */ 4544 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4545 } 4546 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4547 4548 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4549 4550 /* 4551 * The over the wire error for attempting to readlink something 4552 * other than a symbolic link is ENXIO. However, we need to 4553 * return EINVAL instead of ENXIO, so we map it here. 4554 */ 4555 return (e.error == ENXIO ? EINVAL : e.error); 4556 } 4557 4558 /* 4559 * Flush local dirty pages to stable storage on the server. 4560 * 4561 * If FNODSYNC is specified, then there is nothing to do because 4562 * metadata changes are not cached on the client before being 4563 * sent to the server. 4564 */ 4565 /* ARGSUSED */ 4566 static int 4567 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4568 { 4569 int error; 4570 4571 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4572 return (0); 4573 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4574 return (EIO); 4575 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4576 if (!error) 4577 error = VTOR4(vp)->r_error; 4578 return (error); 4579 } 4580 4581 /* 4582 * Weirdness: if the file was removed or the target of a rename 4583 * operation while it was open, it got renamed instead. Here we 4584 * remove the renamed file. 4585 */ 4586 /* ARGSUSED */ 4587 void 4588 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4589 { 4590 rnode4_t *rp; 4591 4592 ASSERT(vp != DNLC_NO_VNODE); 4593 4594 rp = VTOR4(vp); 4595 4596 if (IS_SHADOW(vp, rp)) { 4597 sv_inactive(vp); 4598 return; 4599 } 4600 4601 /* 4602 * If this is coming from the wrong zone, we let someone in the right 4603 * zone take care of it asynchronously. We can get here due to 4604 * VN_RELE() being called from pageout() or fsflush(). This call may 4605 * potentially turn into an expensive no-op if, for instance, v_count 4606 * gets incremented in the meantime, but it's still correct. 4607 */ 4608 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4609 nfs4_async_inactive(vp, cr); 4610 return; 4611 } 4612 4613 /* 4614 * Some of the cleanup steps might require over-the-wire 4615 * operations. Since VOP_INACTIVE can get called as a result of 4616 * other over-the-wire operations (e.g., an attribute cache update 4617 * can lead to a DNLC purge), doing those steps now would lead to a 4618 * nested call to the recovery framework, which can deadlock. So 4619 * do any over-the-wire cleanups asynchronously, in a separate 4620 * thread. 4621 */ 4622 4623 mutex_enter(&rp->r_os_lock); 4624 mutex_enter(&rp->r_statelock); 4625 mutex_enter(&rp->r_statev4_lock); 4626 4627 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4628 mutex_exit(&rp->r_statev4_lock); 4629 mutex_exit(&rp->r_statelock); 4630 mutex_exit(&rp->r_os_lock); 4631 nfs4_async_inactive(vp, cr); 4632 return; 4633 } 4634 4635 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4636 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4637 mutex_exit(&rp->r_statev4_lock); 4638 mutex_exit(&rp->r_statelock); 4639 mutex_exit(&rp->r_os_lock); 4640 nfs4_async_inactive(vp, cr); 4641 return; 4642 } 4643 4644 if (rp->r_unldvp != NULL) { 4645 mutex_exit(&rp->r_statev4_lock); 4646 mutex_exit(&rp->r_statelock); 4647 mutex_exit(&rp->r_os_lock); 4648 nfs4_async_inactive(vp, cr); 4649 return; 4650 } 4651 mutex_exit(&rp->r_statev4_lock); 4652 mutex_exit(&rp->r_statelock); 4653 mutex_exit(&rp->r_os_lock); 4654 4655 rp4_addfree(rp, cr); 4656 } 4657 4658 /* 4659 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4660 * various bits of state. The caller must not refer to vp after this call. 4661 */ 4662 4663 void 4664 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4665 { 4666 rnode4_t *rp = VTOR4(vp); 4667 nfs4_recov_state_t recov_state; 4668 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4669 vnode_t *unldvp; 4670 char *unlname; 4671 cred_t *unlcred; 4672 COMPOUND4args_clnt args; 4673 COMPOUND4res_clnt res, *resp; 4674 nfs_argop4 argop[2]; 4675 int doqueue; 4676 #ifdef DEBUG 4677 char *name; 4678 #endif 4679 4680 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4681 ASSERT(!IS_SHADOW(vp, rp)); 4682 4683 #ifdef DEBUG 4684 name = fn_name(VTOSV(vp)->sv_name); 4685 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4686 "release vnode %s", name)); 4687 kmem_free(name, MAXNAMELEN); 4688 #endif 4689 4690 if (vp->v_type == VREG) { 4691 bool_t recov_failed = FALSE; 4692 4693 e.error = nfs4close_all(vp, cr); 4694 if (e.error) { 4695 /* Check to see if recovery failed */ 4696 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4697 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4698 recov_failed = TRUE; 4699 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4700 if (!recov_failed) { 4701 mutex_enter(&rp->r_statelock); 4702 if (rp->r_flags & R4RECOVERR) 4703 recov_failed = TRUE; 4704 mutex_exit(&rp->r_statelock); 4705 } 4706 if (recov_failed) { 4707 NFS4_DEBUG(nfs4_client_recov_debug, 4708 (CE_NOTE, "nfs4_inactive_otw: " 4709 "close failed (recovery failure)")); 4710 } 4711 } 4712 } 4713 4714 redo: 4715 if (rp->r_unldvp == NULL) { 4716 rp4_addfree(rp, cr); 4717 return; 4718 } 4719 4720 /* 4721 * Save the vnode pointer for the directory where the 4722 * unlinked-open file got renamed, then set it to NULL 4723 * to prevent another thread from getting here before 4724 * we're done with the remove. While we have the 4725 * statelock, make local copies of the pertinent rnode 4726 * fields. If we weren't to do this in an atomic way, the 4727 * the unl* fields could become inconsistent with respect 4728 * to each other due to a race condition between this 4729 * code and nfs_remove(). See bug report 1034328. 4730 */ 4731 mutex_enter(&rp->r_statelock); 4732 if (rp->r_unldvp == NULL) { 4733 mutex_exit(&rp->r_statelock); 4734 rp4_addfree(rp, cr); 4735 return; 4736 } 4737 4738 unldvp = rp->r_unldvp; 4739 rp->r_unldvp = NULL; 4740 unlname = rp->r_unlname; 4741 rp->r_unlname = NULL; 4742 unlcred = rp->r_unlcred; 4743 rp->r_unlcred = NULL; 4744 mutex_exit(&rp->r_statelock); 4745 4746 /* 4747 * If there are any dirty pages left, then flush 4748 * them. This is unfortunate because they just 4749 * may get thrown away during the remove operation, 4750 * but we have to do this for correctness. 4751 */ 4752 if (nfs4_has_pages(vp) && 4753 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4754 ASSERT(vp->v_type != VCHR); 4755 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4756 if (e.error) { 4757 mutex_enter(&rp->r_statelock); 4758 if (!rp->r_error) 4759 rp->r_error = e.error; 4760 mutex_exit(&rp->r_statelock); 4761 } 4762 } 4763 4764 recov_state.rs_flags = 0; 4765 recov_state.rs_num_retry_despite_err = 0; 4766 recov_retry_remove: 4767 /* 4768 * Do the remove operation on the renamed file 4769 */ 4770 args.ctag = TAG_INACTIVE; 4771 4772 /* 4773 * Remove ops: putfh dir; remove 4774 */ 4775 args.array_len = 2; 4776 args.array = argop; 4777 4778 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4779 if (e.error) { 4780 kmem_free(unlname, MAXNAMELEN); 4781 crfree(unlcred); 4782 VN_RELE(unldvp); 4783 /* 4784 * Try again; this time around r_unldvp will be NULL, so we'll 4785 * just call rp4_addfree() and return. 4786 */ 4787 goto redo; 4788 } 4789 4790 /* putfh directory */ 4791 argop[0].argop = OP_CPUTFH; 4792 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4793 4794 /* remove */ 4795 argop[1].argop = OP_CREMOVE; 4796 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4797 4798 doqueue = 1; 4799 resp = &res; 4800 4801 #if 0 /* notyet */ 4802 /* 4803 * Can't do this yet. We may be being called from 4804 * dnlc_purge_XXX while that routine is holding a 4805 * mutex lock to the nc_rele list. The calls to 4806 * nfs3_cache_wcc_data may result in calls to 4807 * dnlc_purge_XXX. This will result in a deadlock. 4808 */ 4809 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4810 if (e.error) { 4811 PURGE_ATTRCACHE4(unldvp); 4812 resp = NULL; 4813 } else if (res.status) { 4814 e.error = geterrno4(res.status); 4815 PURGE_ATTRCACHE4(unldvp); 4816 /* 4817 * This code is inactive right now 4818 * but if made active there should 4819 * be a nfs4_end_op() call before 4820 * nfs4_purge_stale_fh to avoid start_op() 4821 * deadlock. See BugId: 4948726 4822 */ 4823 nfs4_purge_stale_fh(error, unldvp, cr); 4824 } else { 4825 nfs_resop4 *resop; 4826 REMOVE4res *rm_res; 4827 4828 resop = &res.array[1]; 4829 rm_res = &resop->nfs_resop4_u.opremove; 4830 /* 4831 * Update directory cache attribute, 4832 * readdir and dnlc caches. 4833 */ 4834 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4835 } 4836 #else 4837 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4838 4839 PURGE_ATTRCACHE4(unldvp); 4840 #endif 4841 4842 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4843 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4844 NULL, NULL, OP_REMOVE, NULL) == FALSE) { 4845 if (!e.error) 4846 (void) xdr_free(xdr_COMPOUND4res_clnt, 4847 (caddr_t)&res); 4848 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4849 &recov_state, TRUE); 4850 goto recov_retry_remove; 4851 } 4852 } 4853 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4854 4855 /* 4856 * Release stuff held for the remove 4857 */ 4858 VN_RELE(unldvp); 4859 if (!e.error && resp) 4860 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4861 4862 kmem_free(unlname, MAXNAMELEN); 4863 crfree(unlcred); 4864 goto redo; 4865 } 4866 4867 /* 4868 * Remote file system operations having to do with directory manipulation. 4869 */ 4870 /* ARGSUSED3 */ 4871 int 4872 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4873 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4874 int *direntflags, pathname_t *realpnp) 4875 { 4876 int error; 4877 vnode_t *vp, *avp = NULL; 4878 rnode4_t *drp; 4879 4880 *vpp = NULL; 4881 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4882 return (EPERM); 4883 /* 4884 * if LOOKUP_XATTR, must replace dvp (object) with 4885 * object's attrdir before continuing with lookup 4886 */ 4887 if (flags & LOOKUP_XATTR) { 4888 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4889 if (error) 4890 return (error); 4891 4892 dvp = avp; 4893 4894 /* 4895 * If lookup is for "", just return dvp now. The attrdir 4896 * has already been activated (from nfs4lookup_xattr), and 4897 * the caller will RELE the original dvp -- not 4898 * the attrdir. So, set vpp and return. 4899 * Currently, when the LOOKUP_XATTR flag is 4900 * passed to VOP_LOOKUP, the name is always empty, and 4901 * shortcircuiting here avoids 3 unneeded lock/unlock 4902 * pairs. 4903 * 4904 * If a non-empty name was provided, then it is the 4905 * attribute name, and it will be looked up below. 4906 */ 4907 if (*nm == '\0') { 4908 *vpp = dvp; 4909 return (0); 4910 } 4911 4912 /* 4913 * The vfs layer never sends a name when asking for the 4914 * attrdir, so we should never get here (unless of course 4915 * name is passed at some time in future -- at which time 4916 * we'll blow up here). 4917 */ 4918 ASSERT(0); 4919 } 4920 4921 drp = VTOR4(dvp); 4922 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4923 return (EINTR); 4924 4925 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4926 nfs_rw_exit(&drp->r_rwlock); 4927 4928 /* 4929 * If vnode is a device, create special vnode. 4930 */ 4931 if (!error && ISVDEV((*vpp)->v_type)) { 4932 vp = *vpp; 4933 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 4934 VN_RELE(vp); 4935 } 4936 4937 return (error); 4938 } 4939 4940 /* ARGSUSED */ 4941 static int 4942 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 4943 { 4944 int error; 4945 rnode4_t *drp; 4946 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 4947 mntinfo4_t *mi; 4948 4949 mi = VTOMI4(dvp); 4950 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 4951 !vfs_has_feature(mi->mi_vfsp, VFSFT_XVATTR)) 4952 return (EINVAL); 4953 4954 drp = VTOR4(dvp); 4955 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4956 return (EINTR); 4957 4958 mutex_enter(&drp->r_statelock); 4959 /* 4960 * If the server doesn't support xattrs just return EINVAL 4961 */ 4962 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 4963 mutex_exit(&drp->r_statelock); 4964 nfs_rw_exit(&drp->r_rwlock); 4965 return (EINVAL); 4966 } 4967 4968 /* 4969 * If there is a cached xattr directory entry, 4970 * use it as long as the attributes are valid. If the 4971 * attributes are not valid, take the simple approach and 4972 * free the cached value and re-fetch a new value. 4973 * 4974 * We don't negative entry cache for now, if we did we 4975 * would need to check if the file has changed on every 4976 * lookup. But xattrs don't exist very often and failing 4977 * an openattr is not much more expensive than and NVERIFY or GETATTR 4978 * so do an openattr over the wire for now. 4979 */ 4980 if (drp->r_xattr_dir != NULL) { 4981 if (ATTRCACHE4_VALID(dvp)) { 4982 VN_HOLD(drp->r_xattr_dir); 4983 *vpp = drp->r_xattr_dir; 4984 mutex_exit(&drp->r_statelock); 4985 nfs_rw_exit(&drp->r_rwlock); 4986 return (0); 4987 } 4988 VN_RELE(drp->r_xattr_dir); 4989 drp->r_xattr_dir = NULL; 4990 } 4991 mutex_exit(&drp->r_statelock); 4992 4993 error = nfs4openattr(dvp, vpp, cflag, cr); 4994 4995 nfs_rw_exit(&drp->r_rwlock); 4996 4997 return (error); 4998 } 4999 5000 static int 5001 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5002 { 5003 int error; 5004 rnode4_t *drp; 5005 5006 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5007 5008 /* 5009 * If lookup is for "", just return dvp. Don't need 5010 * to send it over the wire, look it up in the dnlc, 5011 * or perform any access checks. 5012 */ 5013 if (*nm == '\0') { 5014 VN_HOLD(dvp); 5015 *vpp = dvp; 5016 return (0); 5017 } 5018 5019 /* 5020 * Can't do lookups in non-directories. 5021 */ 5022 if (dvp->v_type != VDIR) 5023 return (ENOTDIR); 5024 5025 /* 5026 * If lookup is for ".", just return dvp. Don't need 5027 * to send it over the wire or look it up in the dnlc, 5028 * just need to check access. 5029 */ 5030 if (nm[0] == '.' && nm[1] == '\0') { 5031 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5032 if (error) 5033 return (error); 5034 VN_HOLD(dvp); 5035 *vpp = dvp; 5036 return (0); 5037 } 5038 5039 drp = VTOR4(dvp); 5040 if (!(drp->r_flags & R4LOOKUP)) { 5041 mutex_enter(&drp->r_statelock); 5042 drp->r_flags |= R4LOOKUP; 5043 mutex_exit(&drp->r_statelock); 5044 } 5045 5046 *vpp = NULL; 5047 /* 5048 * Lookup this name in the DNLC. If there is no entry 5049 * lookup over the wire. 5050 */ 5051 if (!skipdnlc) 5052 *vpp = dnlc_lookup(dvp, nm); 5053 if (*vpp == NULL) { 5054 /* 5055 * We need to go over the wire to lookup the name. 5056 */ 5057 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5058 } 5059 5060 /* 5061 * We hit on the dnlc 5062 */ 5063 if (*vpp != DNLC_NO_VNODE || 5064 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5065 /* 5066 * But our attrs may not be valid. 5067 */ 5068 if (ATTRCACHE4_VALID(dvp)) { 5069 error = nfs4_waitfor_purge_complete(dvp); 5070 if (error) { 5071 VN_RELE(*vpp); 5072 *vpp = NULL; 5073 return (error); 5074 } 5075 5076 /* 5077 * If after the purge completes, check to make sure 5078 * our attrs are still valid. 5079 */ 5080 if (ATTRCACHE4_VALID(dvp)) { 5081 /* 5082 * If we waited for a purge we may have 5083 * lost our vnode so look it up again. 5084 */ 5085 VN_RELE(*vpp); 5086 *vpp = dnlc_lookup(dvp, nm); 5087 if (*vpp == NULL) 5088 return (nfs4lookupnew_otw(dvp, 5089 nm, vpp, cr)); 5090 5091 /* 5092 * The access cache should almost always hit 5093 */ 5094 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5095 5096 if (error) { 5097 VN_RELE(*vpp); 5098 *vpp = NULL; 5099 return (error); 5100 } 5101 if (*vpp == DNLC_NO_VNODE) { 5102 VN_RELE(*vpp); 5103 *vpp = NULL; 5104 return (ENOENT); 5105 } 5106 return (0); 5107 } 5108 } 5109 } 5110 5111 ASSERT(*vpp != NULL); 5112 5113 /* 5114 * We may have gotten here we have one of the following cases: 5115 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5116 * need to validate them. 5117 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5118 * must validate. 5119 * 5120 * Go to the server and check if the directory has changed, if 5121 * it hasn't we are done and can use the dnlc entry. 5122 */ 5123 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5124 } 5125 5126 /* 5127 * Go to the server and check if the directory has changed, if 5128 * it hasn't we are done and can use the dnlc entry. If it 5129 * has changed we get a new copy of its attributes and check 5130 * the access for VEXEC, then relookup the filename and 5131 * get its filehandle and attributes. 5132 * 5133 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5134 * if the NVERIFY failed we must 5135 * purge the caches 5136 * cache new attributes (will set r_time_attr_inval) 5137 * cache new access 5138 * recheck VEXEC access 5139 * add name to dnlc, possibly negative 5140 * if LOOKUP succeeded 5141 * cache new attributes 5142 * else 5143 * set a new r_time_attr_inval for dvp 5144 * check to make sure we have access 5145 * 5146 * The vpp returned is the vnode passed in if the directory is valid, 5147 * a new vnode if successful lookup, or NULL on error. 5148 */ 5149 static int 5150 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5151 { 5152 COMPOUND4args_clnt args; 5153 COMPOUND4res_clnt res; 5154 fattr4 *ver_fattr; 5155 fattr4_change dchange; 5156 int32_t *ptr; 5157 int argoplist_size = 7 * sizeof (nfs_argop4); 5158 nfs_argop4 *argop; 5159 int doqueue; 5160 mntinfo4_t *mi; 5161 nfs4_recov_state_t recov_state; 5162 hrtime_t t; 5163 int isdotdot; 5164 vnode_t *nvp; 5165 nfs_fh4 *fhp; 5166 nfs4_sharedfh_t *sfhp; 5167 nfs4_access_type_t cacc; 5168 rnode4_t *nrp; 5169 rnode4_t *drp = VTOR4(dvp); 5170 nfs4_ga_res_t *garp = NULL; 5171 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5172 5173 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5174 ASSERT(nm != NULL); 5175 ASSERT(nm[0] != '\0'); 5176 ASSERT(dvp->v_type == VDIR); 5177 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5178 ASSERT(*vpp != NULL); 5179 5180 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5181 isdotdot = 1; 5182 args.ctag = TAG_LOOKUP_VPARENT; 5183 } else { 5184 /* 5185 * If dvp were a stub, it should have triggered and caused 5186 * a mount for us to get this far. 5187 */ 5188 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5189 5190 isdotdot = 0; 5191 args.ctag = TAG_LOOKUP_VALID; 5192 } 5193 5194 mi = VTOMI4(dvp); 5195 recov_state.rs_flags = 0; 5196 recov_state.rs_num_retry_despite_err = 0; 5197 5198 nvp = NULL; 5199 5200 /* Save the original mount point security information */ 5201 (void) save_mnt_secinfo(mi->mi_curr_serv); 5202 5203 recov_retry: 5204 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5205 &recov_state, NULL); 5206 if (e.error) { 5207 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5208 VN_RELE(*vpp); 5209 *vpp = NULL; 5210 return (e.error); 5211 } 5212 5213 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5214 5215 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5216 args.array_len = 7; 5217 args.array = argop; 5218 5219 /* 0. putfh file */ 5220 argop[0].argop = OP_CPUTFH; 5221 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5222 5223 /* 1. nverify the change info */ 5224 argop[1].argop = OP_NVERIFY; 5225 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5226 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5227 ver_fattr->attrlist4 = (char *)&dchange; 5228 ptr = (int32_t *)&dchange; 5229 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5230 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5231 5232 /* 2. getattr directory */ 5233 argop[2].argop = OP_GETATTR; 5234 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5235 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5236 5237 /* 3. access directory */ 5238 argop[3].argop = OP_ACCESS; 5239 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5240 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5241 5242 /* 4. lookup name */ 5243 if (isdotdot) { 5244 argop[4].argop = OP_LOOKUPP; 5245 } else { 5246 argop[4].argop = OP_CLOOKUP; 5247 argop[4].nfs_argop4_u.opclookup.cname = nm; 5248 } 5249 5250 /* 5. resulting file handle */ 5251 argop[5].argop = OP_GETFH; 5252 5253 /* 6. resulting file attributes */ 5254 argop[6].argop = OP_GETATTR; 5255 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5256 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5257 5258 doqueue = 1; 5259 t = gethrtime(); 5260 5261 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5262 5263 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5264 /* 5265 * For WRONGSEC of a non-dotdot case, send secinfo directly 5266 * from this thread, do not go thru the recovery thread since 5267 * we need the nm information. 5268 * 5269 * Not doing dotdot case because there is no specification 5270 * for (PUTFH, SECINFO "..") yet. 5271 */ 5272 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5273 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5274 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5275 &recov_state, FALSE); 5276 else 5277 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5278 &recov_state, TRUE); 5279 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5280 kmem_free(argop, argoplist_size); 5281 if (!e.error) 5282 goto recov_retry; 5283 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5284 VN_RELE(*vpp); 5285 *vpp = NULL; 5286 return (e.error); 5287 } 5288 5289 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5290 OP_LOOKUP, NULL) == FALSE) { 5291 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5292 &recov_state, TRUE); 5293 5294 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5295 kmem_free(argop, argoplist_size); 5296 goto recov_retry; 5297 } 5298 } 5299 5300 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5301 5302 if (e.error || res.array_len == 0) { 5303 /* 5304 * If e.error isn't set, then reply has no ops (or we couldn't 5305 * be here). The only legal way to reply without an op array 5306 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5307 * be in the reply for all other status values. 5308 * 5309 * For valid replies without an ops array, return ENOTSUP 5310 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5311 * return EIO -- don't trust status. 5312 */ 5313 if (e.error == 0) 5314 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5315 ENOTSUP : EIO; 5316 VN_RELE(*vpp); 5317 *vpp = NULL; 5318 kmem_free(argop, argoplist_size); 5319 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5320 return (e.error); 5321 } 5322 5323 if (res.status != NFS4ERR_SAME) { 5324 e.error = geterrno4(res.status); 5325 5326 /* 5327 * The NVERIFY "failed" so the directory has changed 5328 * First make sure PUTFH succeeded and NVERIFY "failed" 5329 * cleanly. 5330 */ 5331 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5332 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5333 nfs4_purge_stale_fh(e.error, dvp, cr); 5334 VN_RELE(*vpp); 5335 *vpp = NULL; 5336 goto exit; 5337 } 5338 5339 /* 5340 * We know the NVERIFY "failed" so we must: 5341 * purge the caches (access and indirectly dnlc if needed) 5342 */ 5343 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5344 5345 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5346 nfs4_purge_stale_fh(e.error, dvp, cr); 5347 VN_RELE(*vpp); 5348 *vpp = NULL; 5349 goto exit; 5350 } 5351 5352 /* 5353 * Install new cached attributes for the directory 5354 */ 5355 nfs4_attr_cache(dvp, 5356 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5357 t, cr, FALSE, NULL); 5358 5359 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5360 nfs4_purge_stale_fh(e.error, dvp, cr); 5361 VN_RELE(*vpp); 5362 *vpp = NULL; 5363 e.error = geterrno4(res.status); 5364 goto exit; 5365 } 5366 5367 /* 5368 * Now we know the directory is valid, 5369 * cache new directory access 5370 */ 5371 nfs4_access_cache(drp, 5372 args.array[3].nfs_argop4_u.opaccess.access, 5373 res.array[3].nfs_resop4_u.opaccess.access, cr); 5374 5375 /* 5376 * recheck VEXEC access 5377 */ 5378 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5379 if (cacc != NFS4_ACCESS_ALLOWED) { 5380 /* 5381 * Directory permissions might have been revoked 5382 */ 5383 if (cacc == NFS4_ACCESS_DENIED) { 5384 e.error = EACCES; 5385 VN_RELE(*vpp); 5386 *vpp = NULL; 5387 goto exit; 5388 } 5389 5390 /* 5391 * Somehow we must not have asked for enough 5392 * so try a singleton ACCESS, should never happen. 5393 */ 5394 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5395 if (e.error) { 5396 VN_RELE(*vpp); 5397 *vpp = NULL; 5398 goto exit; 5399 } 5400 } 5401 5402 e.error = geterrno4(res.status); 5403 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5404 /* 5405 * The lookup failed, probably no entry 5406 */ 5407 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5408 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5409 } else { 5410 /* 5411 * Might be some other error, so remove 5412 * the dnlc entry to make sure we start all 5413 * over again, next time. 5414 */ 5415 dnlc_remove(dvp, nm); 5416 } 5417 VN_RELE(*vpp); 5418 *vpp = NULL; 5419 goto exit; 5420 } 5421 5422 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5423 /* 5424 * The file exists but we can't get its fh for 5425 * some unknown reason. Remove it from the dnlc 5426 * and error out to be safe. 5427 */ 5428 dnlc_remove(dvp, nm); 5429 VN_RELE(*vpp); 5430 *vpp = NULL; 5431 goto exit; 5432 } 5433 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5434 if (fhp->nfs_fh4_len == 0) { 5435 /* 5436 * The file exists but a bogus fh 5437 * some unknown reason. Remove it from the dnlc 5438 * and error out to be safe. 5439 */ 5440 e.error = ENOENT; 5441 dnlc_remove(dvp, nm); 5442 VN_RELE(*vpp); 5443 *vpp = NULL; 5444 goto exit; 5445 } 5446 sfhp = sfh4_get(fhp, mi); 5447 5448 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5449 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5450 5451 /* 5452 * Make the new rnode 5453 */ 5454 if (isdotdot) { 5455 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5456 if (e.error) { 5457 sfh4_rele(&sfhp); 5458 VN_RELE(*vpp); 5459 *vpp = NULL; 5460 goto exit; 5461 } 5462 /* 5463 * XXX if nfs4_make_dotdot uses an existing rnode 5464 * XXX it doesn't update the attributes. 5465 * XXX for now just save them again to save an OTW 5466 */ 5467 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5468 } else { 5469 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5470 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5471 /* 5472 * If v_type == VNON, then garp was NULL because 5473 * the last op in the compound failed and makenfs4node 5474 * could not find the vnode for sfhp. It created 5475 * a new vnode, so we have nothing to purge here. 5476 */ 5477 if (nvp->v_type == VNON) { 5478 vattr_t vattr; 5479 5480 vattr.va_mask = AT_TYPE; 5481 /* 5482 * N.B. We've already called nfs4_end_fop above. 5483 */ 5484 e.error = nfs4getattr(nvp, &vattr, cr); 5485 if (e.error) { 5486 sfh4_rele(&sfhp); 5487 VN_RELE(*vpp); 5488 *vpp = NULL; 5489 VN_RELE(nvp); 5490 goto exit; 5491 } 5492 nvp->v_type = vattr.va_type; 5493 } 5494 } 5495 sfh4_rele(&sfhp); 5496 5497 nrp = VTOR4(nvp); 5498 mutex_enter(&nrp->r_statev4_lock); 5499 if (!nrp->created_v4) { 5500 mutex_exit(&nrp->r_statev4_lock); 5501 dnlc_update(dvp, nm, nvp); 5502 } else 5503 mutex_exit(&nrp->r_statev4_lock); 5504 5505 VN_RELE(*vpp); 5506 *vpp = nvp; 5507 } else { 5508 hrtime_t now; 5509 hrtime_t delta = 0; 5510 5511 e.error = 0; 5512 5513 /* 5514 * Because the NVERIFY "succeeded" we know that the 5515 * directory attributes are still valid 5516 * so update r_time_attr_inval 5517 */ 5518 now = gethrtime(); 5519 mutex_enter(&drp->r_statelock); 5520 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5521 delta = now - drp->r_time_attr_saved; 5522 if (delta < mi->mi_acdirmin) 5523 delta = mi->mi_acdirmin; 5524 else if (delta > mi->mi_acdirmax) 5525 delta = mi->mi_acdirmax; 5526 } 5527 drp->r_time_attr_inval = now + delta; 5528 mutex_exit(&drp->r_statelock); 5529 dnlc_update(dvp, nm, *vpp); 5530 5531 /* 5532 * Even though we have a valid directory attr cache 5533 * and dnlc entry, we may not have access. 5534 * This should almost always hit the cache. 5535 */ 5536 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5537 if (e.error) { 5538 VN_RELE(*vpp); 5539 *vpp = NULL; 5540 } 5541 5542 if (*vpp == DNLC_NO_VNODE) { 5543 VN_RELE(*vpp); 5544 *vpp = NULL; 5545 e.error = ENOENT; 5546 } 5547 } 5548 5549 exit: 5550 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5551 kmem_free(argop, argoplist_size); 5552 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5553 return (e.error); 5554 } 5555 5556 /* 5557 * We need to go over the wire to lookup the name, but 5558 * while we are there verify the directory has not 5559 * changed but if it has, get new attributes and check access 5560 * 5561 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5562 * NVERIFY GETATTR ACCESS 5563 * 5564 * With the results: 5565 * if the NVERIFY failed we must purge the caches, add new attributes, 5566 * and cache new access. 5567 * set a new r_time_attr_inval 5568 * add name to dnlc, possibly negative 5569 * if LOOKUP succeeded 5570 * cache new attributes 5571 */ 5572 static int 5573 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5574 { 5575 COMPOUND4args_clnt args; 5576 COMPOUND4res_clnt res; 5577 fattr4 *ver_fattr; 5578 fattr4_change dchange; 5579 int32_t *ptr; 5580 nfs4_ga_res_t *garp = NULL; 5581 int argoplist_size = 9 * sizeof (nfs_argop4); 5582 nfs_argop4 *argop; 5583 int doqueue; 5584 mntinfo4_t *mi; 5585 nfs4_recov_state_t recov_state; 5586 hrtime_t t; 5587 int isdotdot; 5588 vnode_t *nvp; 5589 nfs_fh4 *fhp; 5590 nfs4_sharedfh_t *sfhp; 5591 nfs4_access_type_t cacc; 5592 rnode4_t *nrp; 5593 rnode4_t *drp = VTOR4(dvp); 5594 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5595 5596 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5597 ASSERT(nm != NULL); 5598 ASSERT(nm[0] != '\0'); 5599 ASSERT(dvp->v_type == VDIR); 5600 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5601 ASSERT(*vpp == NULL); 5602 5603 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5604 isdotdot = 1; 5605 args.ctag = TAG_LOOKUP_PARENT; 5606 } else { 5607 /* 5608 * If dvp were a stub, it should have triggered and caused 5609 * a mount for us to get this far. 5610 */ 5611 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5612 5613 isdotdot = 0; 5614 args.ctag = TAG_LOOKUP; 5615 } 5616 5617 mi = VTOMI4(dvp); 5618 recov_state.rs_flags = 0; 5619 recov_state.rs_num_retry_despite_err = 0; 5620 5621 nvp = NULL; 5622 5623 /* Save the original mount point security information */ 5624 (void) save_mnt_secinfo(mi->mi_curr_serv); 5625 5626 recov_retry: 5627 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5628 &recov_state, NULL); 5629 if (e.error) { 5630 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5631 return (e.error); 5632 } 5633 5634 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5635 5636 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5637 args.array_len = 9; 5638 args.array = argop; 5639 5640 /* 0. putfh file */ 5641 argop[0].argop = OP_CPUTFH; 5642 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5643 5644 /* 1. savefh for the nverify */ 5645 argop[1].argop = OP_SAVEFH; 5646 5647 /* 2. lookup name */ 5648 if (isdotdot) { 5649 argop[2].argop = OP_LOOKUPP; 5650 } else { 5651 argop[2].argop = OP_CLOOKUP; 5652 argop[2].nfs_argop4_u.opclookup.cname = nm; 5653 } 5654 5655 /* 3. resulting file handle */ 5656 argop[3].argop = OP_GETFH; 5657 5658 /* 4. resulting file attributes */ 5659 argop[4].argop = OP_GETATTR; 5660 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5661 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5662 5663 /* 5. restorefh back the directory for the nverify */ 5664 argop[5].argop = OP_RESTOREFH; 5665 5666 /* 6. nverify the change info */ 5667 argop[6].argop = OP_NVERIFY; 5668 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5669 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5670 ver_fattr->attrlist4 = (char *)&dchange; 5671 ptr = (int32_t *)&dchange; 5672 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5673 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5674 5675 /* 7. getattr directory */ 5676 argop[7].argop = OP_GETATTR; 5677 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5678 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5679 5680 /* 8. access directory */ 5681 argop[8].argop = OP_ACCESS; 5682 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5683 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5684 5685 doqueue = 1; 5686 t = gethrtime(); 5687 5688 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5689 5690 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5691 /* 5692 * For WRONGSEC of a non-dotdot case, send secinfo directly 5693 * from this thread, do not go thru the recovery thread since 5694 * we need the nm information. 5695 * 5696 * Not doing dotdot case because there is no specification 5697 * for (PUTFH, SECINFO "..") yet. 5698 */ 5699 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5700 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5701 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5702 &recov_state, FALSE); 5703 else 5704 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5705 &recov_state, TRUE); 5706 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5707 kmem_free(argop, argoplist_size); 5708 if (!e.error) 5709 goto recov_retry; 5710 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5711 return (e.error); 5712 } 5713 5714 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5715 OP_LOOKUP, NULL) == FALSE) { 5716 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5717 &recov_state, TRUE); 5718 5719 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5720 kmem_free(argop, argoplist_size); 5721 goto recov_retry; 5722 } 5723 } 5724 5725 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5726 5727 if (e.error || res.array_len == 0) { 5728 /* 5729 * If e.error isn't set, then reply has no ops (or we couldn't 5730 * be here). The only legal way to reply without an op array 5731 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5732 * be in the reply for all other status values. 5733 * 5734 * For valid replies without an ops array, return ENOTSUP 5735 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5736 * return EIO -- don't trust status. 5737 */ 5738 if (e.error == 0) 5739 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5740 ENOTSUP : EIO; 5741 5742 kmem_free(argop, argoplist_size); 5743 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5744 return (e.error); 5745 } 5746 5747 e.error = geterrno4(res.status); 5748 5749 /* 5750 * The PUTFH and SAVEFH may have failed. 5751 */ 5752 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5753 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5754 nfs4_purge_stale_fh(e.error, dvp, cr); 5755 goto exit; 5756 } 5757 5758 /* 5759 * Check if the file exists, if it does delay entering 5760 * into the dnlc until after we update the directory 5761 * attributes so we don't cause it to get purged immediately. 5762 */ 5763 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5764 /* 5765 * The lookup failed, probably no entry 5766 */ 5767 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5768 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5769 goto exit; 5770 } 5771 5772 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5773 /* 5774 * The file exists but we can't get its fh for 5775 * some unknown reason. Error out to be safe. 5776 */ 5777 goto exit; 5778 } 5779 5780 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5781 if (fhp->nfs_fh4_len == 0) { 5782 /* 5783 * The file exists but a bogus fh 5784 * some unknown reason. Error out to be safe. 5785 */ 5786 e.error = EIO; 5787 goto exit; 5788 } 5789 sfhp = sfh4_get(fhp, mi); 5790 5791 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5792 sfh4_rele(&sfhp); 5793 e.error = EIO; 5794 goto exit; 5795 } 5796 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5797 5798 /* 5799 * The RESTOREFH may have failed 5800 */ 5801 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5802 sfh4_rele(&sfhp); 5803 e.error = EIO; 5804 goto exit; 5805 } 5806 5807 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5808 /* 5809 * First make sure the NVERIFY failed as we expected, 5810 * if it didn't then be conservative and error out 5811 * as we can't trust the directory. 5812 */ 5813 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5814 sfh4_rele(&sfhp); 5815 e.error = EIO; 5816 goto exit; 5817 } 5818 5819 /* 5820 * We know the NVERIFY "failed" so the directory has changed, 5821 * so we must: 5822 * purge the caches (access and indirectly dnlc if needed) 5823 */ 5824 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5825 5826 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5827 sfh4_rele(&sfhp); 5828 goto exit; 5829 } 5830 nfs4_attr_cache(dvp, 5831 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5832 t, cr, FALSE, NULL); 5833 5834 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5835 nfs4_purge_stale_fh(e.error, dvp, cr); 5836 sfh4_rele(&sfhp); 5837 e.error = geterrno4(res.status); 5838 goto exit; 5839 } 5840 5841 /* 5842 * Now we know the directory is valid, 5843 * cache new directory access 5844 */ 5845 nfs4_access_cache(drp, 5846 args.array[8].nfs_argop4_u.opaccess.access, 5847 res.array[8].nfs_resop4_u.opaccess.access, cr); 5848 5849 /* 5850 * recheck VEXEC access 5851 */ 5852 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5853 if (cacc != NFS4_ACCESS_ALLOWED) { 5854 /* 5855 * Directory permissions might have been revoked 5856 */ 5857 if (cacc == NFS4_ACCESS_DENIED) { 5858 sfh4_rele(&sfhp); 5859 e.error = EACCES; 5860 goto exit; 5861 } 5862 5863 /* 5864 * Somehow we must not have asked for enough 5865 * so try a singleton ACCESS should never happen 5866 */ 5867 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5868 if (e.error) { 5869 sfh4_rele(&sfhp); 5870 goto exit; 5871 } 5872 } 5873 5874 e.error = geterrno4(res.status); 5875 } else { 5876 hrtime_t now; 5877 hrtime_t delta = 0; 5878 5879 e.error = 0; 5880 5881 /* 5882 * Because the NVERIFY "succeeded" we know that the 5883 * directory attributes are still valid 5884 * so update r_time_attr_inval 5885 */ 5886 now = gethrtime(); 5887 mutex_enter(&drp->r_statelock); 5888 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5889 delta = now - drp->r_time_attr_saved; 5890 if (delta < mi->mi_acdirmin) 5891 delta = mi->mi_acdirmin; 5892 else if (delta > mi->mi_acdirmax) 5893 delta = mi->mi_acdirmax; 5894 } 5895 drp->r_time_attr_inval = now + delta; 5896 mutex_exit(&drp->r_statelock); 5897 5898 /* 5899 * Even though we have a valid directory attr cache, 5900 * we may not have access. 5901 * This should almost always hit the cache. 5902 */ 5903 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5904 if (e.error) { 5905 sfh4_rele(&sfhp); 5906 goto exit; 5907 } 5908 } 5909 5910 /* 5911 * Now we have successfully completed the lookup, if the 5912 * directory has changed we now have the valid attributes. 5913 * We also know we have directory access. 5914 * Create the new rnode and insert it in the dnlc. 5915 */ 5916 if (isdotdot) { 5917 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5918 if (e.error) { 5919 sfh4_rele(&sfhp); 5920 goto exit; 5921 } 5922 /* 5923 * XXX if nfs4_make_dotdot uses an existing rnode 5924 * XXX it doesn't update the attributes. 5925 * XXX for now just save them again to save an OTW 5926 */ 5927 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5928 } else { 5929 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5930 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5931 } 5932 sfh4_rele(&sfhp); 5933 5934 nrp = VTOR4(nvp); 5935 mutex_enter(&nrp->r_statev4_lock); 5936 if (!nrp->created_v4) { 5937 mutex_exit(&nrp->r_statev4_lock); 5938 dnlc_update(dvp, nm, nvp); 5939 } else 5940 mutex_exit(&nrp->r_statev4_lock); 5941 5942 *vpp = nvp; 5943 5944 exit: 5945 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5946 kmem_free(argop, argoplist_size); 5947 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5948 return (e.error); 5949 } 5950 5951 #ifdef DEBUG 5952 void 5953 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 5954 { 5955 uint_t i, len; 5956 zoneid_t zoneid = getzoneid(); 5957 char *s; 5958 5959 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 5960 for (i = 0; i < argcnt; i++) { 5961 nfs_argop4 *op = &argbase[i]; 5962 switch (op->argop) { 5963 case OP_CPUTFH: 5964 case OP_PUTFH: 5965 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 5966 break; 5967 case OP_PUTROOTFH: 5968 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 5969 break; 5970 case OP_CLOOKUP: 5971 s = op->nfs_argop4_u.opclookup.cname; 5972 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5973 break; 5974 case OP_LOOKUP: 5975 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 5976 &len, NULL); 5977 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5978 kmem_free(s, len); 5979 break; 5980 case OP_LOOKUPP: 5981 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 5982 break; 5983 case OP_GETFH: 5984 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 5985 break; 5986 case OP_GETATTR: 5987 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 5988 break; 5989 case OP_OPENATTR: 5990 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 5991 break; 5992 default: 5993 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 5994 op->argop); 5995 break; 5996 } 5997 } 5998 } 5999 #endif 6000 6001 /* 6002 * nfs4lookup_setup - constructs a multi-lookup compound request. 6003 * 6004 * Given the path "nm1/nm2/.../nmn", the following compound requests 6005 * may be created: 6006 * 6007 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6008 * is faster, for now. 6009 * 6010 * l4_getattrs indicates the type of compound requested. 6011 * 6012 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6013 * 6014 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6015 * 6016 * total number of ops is n + 1. 6017 * 6018 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6019 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6020 * before the last component, and only get attributes 6021 * for the last component. Note that the second-to-last 6022 * pathname component is XATTR_RPATH, which does NOT go 6023 * over-the-wire as a lookup. 6024 * 6025 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6026 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6027 * 6028 * and total number of ops is n + 5. 6029 * 6030 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6031 * attribute directory: create lookups plus an OPENATTR 6032 * replacing the last lookup. Note that the last pathname 6033 * component is XATTR_RPATH, which does NOT go over-the-wire 6034 * as a lookup. 6035 * 6036 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6037 * Openattr; Getfh; Getattr } 6038 * 6039 * and total number of ops is n + 5. 6040 * 6041 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6042 * nodes too. 6043 * 6044 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6045 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6046 * 6047 * and total number of ops is 3*n + 1. 6048 * 6049 * All cases: returns the index in the arg array of the final LOOKUP op, or 6050 * -1 if no LOOKUPs were used. 6051 */ 6052 int 6053 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6054 { 6055 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6056 nfs_argop4 *argbase, *argop; 6057 int arglen, argcnt; 6058 int n = 1; /* number of components */ 6059 int nga = 1; /* number of Getattr's in request */ 6060 char c = '\0', *s, *p; 6061 int lookup_idx = -1; 6062 int argoplist_size; 6063 6064 /* set lookuparg response result to 0 */ 6065 lookupargp->resp->status = NFS4_OK; 6066 6067 /* skip leading "/" or "." e.g. ".//./" if there is */ 6068 for (; ; nm++) { 6069 if (*nm != '/' && *nm != '.') 6070 break; 6071 6072 /* ".." is counted as 1 component */ 6073 if (*nm == '.' && *(nm + 1) == '.') 6074 break; 6075 } 6076 6077 /* 6078 * Find n = number of components - nm must be null terminated 6079 * Skip "." components. 6080 */ 6081 if (*nm != '\0') 6082 for (n = 1, s = nm; *s != '\0'; s++) { 6083 if ((*s == '/') && (*(s + 1) != '/') && 6084 (*(s + 1) != '\0') && 6085 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6086 *(s + 2) == '\0'))) 6087 n++; 6088 } 6089 else 6090 n = 0; 6091 6092 /* 6093 * nga is number of components that need Getfh+Getattr 6094 */ 6095 switch (l4_getattrs) { 6096 case LKP4_NO_ATTRIBUTES: 6097 nga = 0; 6098 break; 6099 case LKP4_ALL_ATTRIBUTES: 6100 nga = n; 6101 /* 6102 * Always have at least 1 getfh, getattr pair 6103 */ 6104 if (nga == 0) 6105 nga++; 6106 break; 6107 case LKP4_LAST_ATTRDIR: 6108 case LKP4_LAST_NAMED_ATTR: 6109 nga = n+1; 6110 break; 6111 } 6112 6113 /* 6114 * If change to use the filehandle attr instead of getfh 6115 * the following line can be deleted. 6116 */ 6117 nga *= 2; 6118 6119 /* 6120 * calculate number of ops in request as 6121 * header + trailer + lookups + getattrs 6122 */ 6123 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6124 6125 argoplist_size = arglen * sizeof (nfs_argop4); 6126 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6127 lookupargp->argsp->array = argop; 6128 6129 argcnt = lookupargp->header_len; 6130 argop += argcnt; 6131 6132 /* 6133 * loop and create a lookup op and possibly getattr/getfh for 6134 * each component. Skip "." components. 6135 */ 6136 for (s = nm; *s != '\0'; s = p) { 6137 /* 6138 * Set up a pathname struct for each component if needed 6139 */ 6140 while (*s == '/') 6141 s++; 6142 if (*s == '\0') 6143 break; 6144 6145 for (p = s; (*p != '/') && (*p != '\0'); p++) 6146 ; 6147 c = *p; 6148 *p = '\0'; 6149 6150 if (s[0] == '.' && s[1] == '\0') { 6151 *p = c; 6152 continue; 6153 } 6154 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6155 strcmp(s, XATTR_RPATH) == 0) { 6156 /* getfh XXX may not be needed in future */ 6157 argop->argop = OP_GETFH; 6158 argop++; 6159 argcnt++; 6160 6161 /* getattr */ 6162 argop->argop = OP_GETATTR; 6163 argop->nfs_argop4_u.opgetattr.attr_request = 6164 lookupargp->ga_bits; 6165 argop->nfs_argop4_u.opgetattr.mi = 6166 lookupargp->mi; 6167 argop++; 6168 argcnt++; 6169 6170 /* openattr */ 6171 argop->argop = OP_OPENATTR; 6172 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6173 strcmp(s, XATTR_RPATH) == 0) { 6174 /* openattr */ 6175 argop->argop = OP_OPENATTR; 6176 argop++; 6177 argcnt++; 6178 6179 /* getfh XXX may not be needed in future */ 6180 argop->argop = OP_GETFH; 6181 argop++; 6182 argcnt++; 6183 6184 /* getattr */ 6185 argop->argop = OP_GETATTR; 6186 argop->nfs_argop4_u.opgetattr.attr_request = 6187 lookupargp->ga_bits; 6188 argop->nfs_argop4_u.opgetattr.mi = 6189 lookupargp->mi; 6190 argop++; 6191 argcnt++; 6192 *p = c; 6193 continue; 6194 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6195 /* lookupp */ 6196 argop->argop = OP_LOOKUPP; 6197 } else { 6198 /* lookup */ 6199 argop->argop = OP_LOOKUP; 6200 (void) str_to_utf8(s, 6201 &argop->nfs_argop4_u.oplookup.objname); 6202 } 6203 lookup_idx = argcnt; 6204 argop++; 6205 argcnt++; 6206 6207 *p = c; 6208 6209 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6210 /* getfh XXX may not be needed in future */ 6211 argop->argop = OP_GETFH; 6212 argop++; 6213 argcnt++; 6214 6215 /* getattr */ 6216 argop->argop = OP_GETATTR; 6217 argop->nfs_argop4_u.opgetattr.attr_request = 6218 lookupargp->ga_bits; 6219 argop->nfs_argop4_u.opgetattr.mi = 6220 lookupargp->mi; 6221 argop++; 6222 argcnt++; 6223 } 6224 } 6225 6226 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6227 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6228 if (needgetfh) { 6229 /* stick in a post-lookup getfh */ 6230 argop->argop = OP_GETFH; 6231 argcnt++; 6232 argop++; 6233 } 6234 /* post-lookup getattr */ 6235 argop->argop = OP_GETATTR; 6236 argop->nfs_argop4_u.opgetattr.attr_request = 6237 lookupargp->ga_bits; 6238 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6239 argcnt++; 6240 } 6241 argcnt += lookupargp->trailer_len; /* actual op count */ 6242 lookupargp->argsp->array_len = argcnt; 6243 lookupargp->arglen = arglen; 6244 6245 #ifdef DEBUG 6246 if (nfs4_client_lookup_debug) 6247 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6248 #endif 6249 6250 return (lookup_idx); 6251 } 6252 6253 static int 6254 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6255 { 6256 COMPOUND4args_clnt args; 6257 COMPOUND4res_clnt res; 6258 GETFH4res *gf_res = NULL; 6259 nfs_argop4 argop[4]; 6260 nfs_resop4 *resop = NULL; 6261 nfs4_sharedfh_t *sfhp; 6262 hrtime_t t; 6263 nfs4_error_t e; 6264 6265 rnode4_t *drp; 6266 int doqueue = 1; 6267 vnode_t *vp; 6268 int needrecov = 0; 6269 nfs4_recov_state_t recov_state; 6270 6271 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6272 6273 *avp = NULL; 6274 recov_state.rs_flags = 0; 6275 recov_state.rs_num_retry_despite_err = 0; 6276 6277 recov_retry: 6278 /* COMPOUND: putfh, openattr, getfh, getattr */ 6279 args.array_len = 4; 6280 args.array = argop; 6281 args.ctag = TAG_OPENATTR; 6282 6283 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6284 if (e.error) 6285 return (e.error); 6286 6287 drp = VTOR4(dvp); 6288 6289 /* putfh */ 6290 argop[0].argop = OP_CPUTFH; 6291 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6292 6293 /* openattr */ 6294 argop[1].argop = OP_OPENATTR; 6295 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6296 6297 /* getfh */ 6298 argop[2].argop = OP_GETFH; 6299 6300 /* getattr */ 6301 argop[3].argop = OP_GETATTR; 6302 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6303 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6304 6305 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6306 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6307 rnode4info(drp))); 6308 6309 t = gethrtime(); 6310 6311 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6312 6313 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6314 if (needrecov) { 6315 bool_t abort; 6316 6317 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6318 "nfs4openattr: initiating recovery\n")); 6319 6320 abort = nfs4_start_recovery(&e, 6321 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6322 OP_OPENATTR, NULL); 6323 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6324 if (!e.error) { 6325 e.error = geterrno4(res.status); 6326 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6327 } 6328 if (abort == FALSE) 6329 goto recov_retry; 6330 return (e.error); 6331 } 6332 6333 if (e.error) { 6334 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6335 return (e.error); 6336 } 6337 6338 if (res.status) { 6339 /* 6340 * If OTW errro is NOTSUPP, then it should be 6341 * translated to EINVAL. All Solaris file system 6342 * implementations return EINVAL to the syscall layer 6343 * when the attrdir cannot be created due to an 6344 * implementation restriction or noxattr mount option. 6345 */ 6346 if (res.status == NFS4ERR_NOTSUPP) { 6347 mutex_enter(&drp->r_statelock); 6348 if (drp->r_xattr_dir) 6349 VN_RELE(drp->r_xattr_dir); 6350 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6351 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6352 mutex_exit(&drp->r_statelock); 6353 6354 e.error = EINVAL; 6355 } else { 6356 e.error = geterrno4(res.status); 6357 } 6358 6359 if (e.error) { 6360 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6361 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6362 needrecov); 6363 return (e.error); 6364 } 6365 } 6366 6367 resop = &res.array[0]; /* putfh res */ 6368 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6369 6370 resop = &res.array[1]; /* openattr res */ 6371 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6372 6373 resop = &res.array[2]; /* getfh res */ 6374 gf_res = &resop->nfs_resop4_u.opgetfh; 6375 if (gf_res->object.nfs_fh4_len == 0) { 6376 *avp = NULL; 6377 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6378 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6379 return (ENOENT); 6380 } 6381 6382 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6383 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6384 dvp->v_vfsp, t, cr, dvp, 6385 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH)); 6386 sfh4_rele(&sfhp); 6387 6388 if (e.error) 6389 PURGE_ATTRCACHE4(vp); 6390 6391 mutex_enter(&vp->v_lock); 6392 vp->v_flag |= V_XATTRDIR; 6393 mutex_exit(&vp->v_lock); 6394 6395 *avp = vp; 6396 6397 mutex_enter(&drp->r_statelock); 6398 if (drp->r_xattr_dir) 6399 VN_RELE(drp->r_xattr_dir); 6400 VN_HOLD(vp); 6401 drp->r_xattr_dir = vp; 6402 6403 /* 6404 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6405 * NULL. xattrs could be created at any time, and we have no 6406 * way to update pc4_xattr_exists in the base object if/when 6407 * it happens. 6408 */ 6409 drp->r_pathconf.pc4_xattr_valid = 0; 6410 6411 mutex_exit(&drp->r_statelock); 6412 6413 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6414 6415 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6416 6417 return (0); 6418 } 6419 6420 /* ARGSUSED */ 6421 static int 6422 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6423 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6424 vsecattr_t *vsecp) 6425 { 6426 int error; 6427 vnode_t *vp = NULL; 6428 rnode4_t *rp; 6429 struct vattr vattr; 6430 rnode4_t *drp; 6431 vnode_t *tempvp; 6432 enum createmode4 createmode; 6433 bool_t must_trunc = FALSE; 6434 int truncating = 0; 6435 6436 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6437 return (EPERM); 6438 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6439 return (EINVAL); 6440 } 6441 6442 /* . and .. have special meaning in the protocol, reject them. */ 6443 6444 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6445 return (EISDIR); 6446 6447 drp = VTOR4(dvp); 6448 6449 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6450 return (EINTR); 6451 6452 top: 6453 /* 6454 * We make a copy of the attributes because the caller does not 6455 * expect us to change what va points to. 6456 */ 6457 vattr = *va; 6458 6459 /* 6460 * If the pathname is "", then dvp is the root vnode of 6461 * a remote file mounted over a local directory. 6462 * All that needs to be done is access 6463 * checking and truncation. Note that we avoid doing 6464 * open w/ create because the parent directory might 6465 * be in pseudo-fs and the open would fail. 6466 */ 6467 if (*nm == '\0') { 6468 error = 0; 6469 VN_HOLD(dvp); 6470 vp = dvp; 6471 must_trunc = TRUE; 6472 } else { 6473 /* 6474 * We need to go over the wire, just to be sure whether the 6475 * file exists or not. Using the DNLC can be dangerous in 6476 * this case when making a decision regarding existence. 6477 */ 6478 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6479 } 6480 6481 if (exclusive) 6482 createmode = EXCLUSIVE4; 6483 else 6484 createmode = GUARDED4; 6485 6486 /* 6487 * error would be set if the file does not exist on the 6488 * server, so lets go create it. 6489 */ 6490 if (error) { 6491 goto create_otw; 6492 } 6493 6494 /* 6495 * File does exist on the server 6496 */ 6497 if (exclusive == EXCL) 6498 error = EEXIST; 6499 else if (vp->v_type == VDIR && (mode & VWRITE)) 6500 error = EISDIR; 6501 else { 6502 /* 6503 * If vnode is a device, create special vnode. 6504 */ 6505 if (ISVDEV(vp->v_type)) { 6506 tempvp = vp; 6507 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6508 VN_RELE(tempvp); 6509 } 6510 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6511 if ((vattr.va_mask & AT_SIZE) && 6512 vp->v_type == VREG) { 6513 rp = VTOR4(vp); 6514 /* 6515 * Check here for large file handled 6516 * by LF-unaware process (as 6517 * ufs_create() does) 6518 */ 6519 if (!(flags & FOFFMAX)) { 6520 mutex_enter(&rp->r_statelock); 6521 if (rp->r_size > MAXOFF32_T) 6522 error = EOVERFLOW; 6523 mutex_exit(&rp->r_statelock); 6524 } 6525 6526 /* if error is set then we need to return */ 6527 if (error) { 6528 nfs_rw_exit(&drp->r_rwlock); 6529 VN_RELE(vp); 6530 return (error); 6531 } 6532 6533 if (must_trunc) { 6534 vattr.va_mask = AT_SIZE; 6535 error = nfs4setattr(vp, &vattr, 0, cr, 6536 NULL); 6537 } else { 6538 /* 6539 * we know we have a regular file that already 6540 * exists and we may end up truncating the file 6541 * as a result of the open_otw, so flush out 6542 * any dirty pages for this file first. 6543 */ 6544 if (nfs4_has_pages(vp) && 6545 ((rp->r_flags & R4DIRTY) || 6546 rp->r_count > 0 || 6547 rp->r_mapcnt > 0)) { 6548 error = nfs4_putpage(vp, 6549 (offset_t)0, 0, 0, cr, ct); 6550 if (error && (error == ENOSPC || 6551 error == EDQUOT)) { 6552 mutex_enter( 6553 &rp->r_statelock); 6554 if (!rp->r_error) 6555 rp->r_error = 6556 error; 6557 mutex_exit( 6558 &rp->r_statelock); 6559 } 6560 } 6561 vattr.va_mask = (AT_SIZE | 6562 AT_TYPE | AT_MODE); 6563 vattr.va_type = VREG; 6564 createmode = UNCHECKED4; 6565 truncating = 1; 6566 goto create_otw; 6567 } 6568 } 6569 } 6570 } 6571 nfs_rw_exit(&drp->r_rwlock); 6572 if (error) { 6573 VN_RELE(vp); 6574 } else { 6575 vnode_t *tvp; 6576 rnode4_t *trp; 6577 /* 6578 * existing file got truncated, notify. 6579 */ 6580 tvp = vp; 6581 if (vp->v_type == VREG) { 6582 trp = VTOR4(vp); 6583 if (IS_SHADOW(vp, trp)) 6584 tvp = RTOV4(trp); 6585 } 6586 vnevent_create(tvp, ct); 6587 *vpp = vp; 6588 } 6589 return (error); 6590 6591 create_otw: 6592 dnlc_remove(dvp, nm); 6593 6594 ASSERT(vattr.va_mask & AT_TYPE); 6595 6596 /* 6597 * If not a regular file let nfs4mknod() handle it. 6598 */ 6599 if (vattr.va_type != VREG) { 6600 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6601 nfs_rw_exit(&drp->r_rwlock); 6602 return (error); 6603 } 6604 6605 /* 6606 * It _is_ a regular file. 6607 */ 6608 ASSERT(vattr.va_mask & AT_MODE); 6609 if (MANDMODE(vattr.va_mode)) { 6610 nfs_rw_exit(&drp->r_rwlock); 6611 return (EACCES); 6612 } 6613 6614 /* 6615 * If this happens to be a mknod of a regular file, then flags will 6616 * have neither FREAD or FWRITE. However, we must set at least one 6617 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6618 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6619 * set (based on openmode specified by app). 6620 */ 6621 if ((flags & (FREAD|FWRITE)) == 0) 6622 flags |= (FREAD|FWRITE); 6623 6624 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6625 6626 if (vp != NULL) { 6627 /* if create was successful, throw away the file's pages */ 6628 if (!error && (vattr.va_mask & AT_SIZE)) 6629 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6630 cr); 6631 /* release the lookup hold */ 6632 VN_RELE(vp); 6633 vp = NULL; 6634 } 6635 6636 /* 6637 * validate that we opened a regular file. This handles a misbehaving 6638 * server that returns an incorrect FH. 6639 */ 6640 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6641 error = EISDIR; 6642 VN_RELE(*vpp); 6643 } 6644 6645 /* 6646 * If this is not an exclusive create, then the CREATE 6647 * request will be made with the GUARDED mode set. This 6648 * means that the server will return EEXIST if the file 6649 * exists. The file could exist because of a retransmitted 6650 * request. In this case, we recover by starting over and 6651 * checking to see whether the file exists. This second 6652 * time through it should and a CREATE request will not be 6653 * sent. 6654 * 6655 * This handles the problem of a dangling CREATE request 6656 * which contains attributes which indicate that the file 6657 * should be truncated. This retransmitted request could 6658 * possibly truncate valid data in the file if not caught 6659 * by the duplicate request mechanism on the server or if 6660 * not caught by other means. The scenario is: 6661 * 6662 * Client transmits CREATE request with size = 0 6663 * Client times out, retransmits request. 6664 * Response to the first request arrives from the server 6665 * and the client proceeds on. 6666 * Client writes data to the file. 6667 * The server now processes retransmitted CREATE request 6668 * and truncates file. 6669 * 6670 * The use of the GUARDED CREATE request prevents this from 6671 * happening because the retransmitted CREATE would fail 6672 * with EEXIST and would not truncate the file. 6673 */ 6674 if (error == EEXIST && exclusive == NONEXCL) { 6675 #ifdef DEBUG 6676 nfs4_create_misses++; 6677 #endif 6678 goto top; 6679 } 6680 nfs_rw_exit(&drp->r_rwlock); 6681 if (truncating && !error && *vpp) { 6682 vnode_t *tvp; 6683 rnode4_t *trp; 6684 /* 6685 * existing file got truncated, notify. 6686 */ 6687 tvp = *vpp; 6688 trp = VTOR4(tvp); 6689 if (IS_SHADOW(tvp, trp)) 6690 tvp = RTOV4(trp); 6691 vnevent_create(tvp, ct); 6692 } 6693 return (error); 6694 } 6695 6696 /* 6697 * Create compound (for mkdir, mknod, symlink): 6698 * { Putfh <dfh>; Create; Getfh; Getattr } 6699 * It's okay if setattr failed to set gid - this is not considered 6700 * an error, but purge attrs in that case. 6701 */ 6702 static int 6703 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6704 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6705 { 6706 int need_end_op = FALSE; 6707 COMPOUND4args_clnt args; 6708 COMPOUND4res_clnt res, *resp = NULL; 6709 nfs_argop4 *argop; 6710 nfs_resop4 *resop; 6711 int doqueue; 6712 mntinfo4_t *mi; 6713 rnode4_t *drp = VTOR4(dvp); 6714 change_info4 *cinfo; 6715 GETFH4res *gf_res; 6716 struct vattr vattr; 6717 vnode_t *vp; 6718 fattr4 *crattr; 6719 bool_t needrecov = FALSE; 6720 nfs4_recov_state_t recov_state; 6721 nfs4_sharedfh_t *sfhp = NULL; 6722 hrtime_t t; 6723 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6724 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6725 dirattr_info_t dinfo, *dinfop; 6726 servinfo4_t *svp; 6727 bitmap4 supp_attrs; 6728 6729 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6730 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6731 6732 mi = VTOMI4(dvp); 6733 6734 /* 6735 * Make sure we properly deal with setting the right gid 6736 * on a new directory to reflect the parent's setgid bit 6737 */ 6738 setgid_flag = 0; 6739 if (type == NF4DIR) { 6740 struct vattr dva; 6741 6742 va->va_mode &= ~VSGID; 6743 dva.va_mask = AT_MODE | AT_GID; 6744 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6745 6746 /* 6747 * If the parent's directory has the setgid bit set 6748 * _and_ the client was able to get a valid mapping 6749 * for the parent dir's owner_group, we want to 6750 * append NVERIFY(owner_group == dva.va_gid) and 6751 * SETTATTR to the CREATE compound. 6752 */ 6753 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6754 setgid_flag = 1; 6755 va->va_mode |= VSGID; 6756 if (dva.va_gid != GID_NOBODY) { 6757 va->va_mask |= AT_GID; 6758 va->va_gid = dva.va_gid; 6759 } 6760 } 6761 } 6762 } 6763 6764 /* 6765 * Create ops: 6766 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6767 * 5:restorefh(dir) 6:getattr(dir) 6768 * 6769 * if (setgid) 6770 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6771 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6772 * 8:nverify 9:setattr 6773 */ 6774 if (setgid_flag) { 6775 numops = 10; 6776 idx_create = 1; 6777 idx_fattr = 3; 6778 } else { 6779 numops = 7; 6780 idx_create = 2; 6781 idx_fattr = 4; 6782 } 6783 6784 ASSERT(nfs_zone() == mi->mi_zone); 6785 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6786 return (EINTR); 6787 } 6788 recov_state.rs_flags = 0; 6789 recov_state.rs_num_retry_despite_err = 0; 6790 6791 argoplist_size = numops * sizeof (nfs_argop4); 6792 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6793 6794 recov_retry: 6795 if (type == NF4LNK) 6796 args.ctag = TAG_SYMLINK; 6797 else if (type == NF4DIR) 6798 args.ctag = TAG_MKDIR; 6799 else 6800 args.ctag = TAG_MKNOD; 6801 6802 args.array_len = numops; 6803 args.array = argop; 6804 6805 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6806 nfs_rw_exit(&drp->r_rwlock); 6807 kmem_free(argop, argoplist_size); 6808 return (e.error); 6809 } 6810 need_end_op = TRUE; 6811 6812 6813 /* 0: putfh directory */ 6814 argop[0].argop = OP_CPUTFH; 6815 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6816 6817 /* 1/2: Create object */ 6818 argop[idx_create].argop = OP_CCREATE; 6819 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6820 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6821 if (type == NF4LNK) { 6822 /* 6823 * symlink, treat name as data 6824 */ 6825 ASSERT(data != NULL); 6826 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6827 (char *)data; 6828 } 6829 if (type == NF4BLK || type == NF4CHR) { 6830 ASSERT(data != NULL); 6831 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6832 *((specdata4 *)data); 6833 } 6834 6835 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6836 6837 svp = drp->r_server; 6838 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6839 supp_attrs = svp->sv_supp_attrs; 6840 nfs_rw_exit(&svp->sv_lock); 6841 6842 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6843 nfs_rw_exit(&drp->r_rwlock); 6844 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6845 e.error = EINVAL; 6846 kmem_free(argop, argoplist_size); 6847 return (e.error); 6848 } 6849 6850 /* 2/3: getfh fh of created object */ 6851 ASSERT(idx_create + 1 == idx_fattr - 1); 6852 argop[idx_create + 1].argop = OP_GETFH; 6853 6854 /* 3/4: getattr of new object */ 6855 argop[idx_fattr].argop = OP_GETATTR; 6856 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6857 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6858 6859 if (setgid_flag) { 6860 vattr_t _v; 6861 6862 argop[4].argop = OP_SAVEFH; 6863 6864 argop[5].argop = OP_CPUTFH; 6865 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6866 6867 argop[6].argop = OP_GETATTR; 6868 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6869 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6870 6871 argop[7].argop = OP_RESTOREFH; 6872 6873 /* 6874 * nverify 6875 * 6876 * XXX - Revisit the last argument to nfs4_end_op() 6877 * once 5020486 is fixed. 6878 */ 6879 _v.va_mask = AT_GID; 6880 _v.va_gid = va->va_gid; 6881 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6882 supp_attrs)) { 6883 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6884 nfs_rw_exit(&drp->r_rwlock); 6885 nfs4_fattr4_free(crattr); 6886 kmem_free(argop, argoplist_size); 6887 return (e.error); 6888 } 6889 6890 /* 6891 * setattr 6892 * 6893 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6894 * so no need for stateid or flags. Also we specify NULL 6895 * rp since we're only interested in setting owner_group 6896 * attributes. 6897 */ 6898 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6899 &e.error, 0); 6900 6901 if (e.error) { 6902 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6903 nfs_rw_exit(&drp->r_rwlock); 6904 nfs4_fattr4_free(crattr); 6905 nfs4args_verify_free(&argop[8]); 6906 kmem_free(argop, argoplist_size); 6907 return (e.error); 6908 } 6909 } else { 6910 argop[1].argop = OP_SAVEFH; 6911 6912 argop[5].argop = OP_RESTOREFH; 6913 6914 argop[6].argop = OP_GETATTR; 6915 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6916 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6917 } 6918 6919 dnlc_remove(dvp, nm); 6920 6921 doqueue = 1; 6922 t = gethrtime(); 6923 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 6924 6925 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 6926 if (e.error) { 6927 PURGE_ATTRCACHE4(dvp); 6928 if (!needrecov) 6929 goto out; 6930 } 6931 6932 if (needrecov) { 6933 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 6934 OP_CREATE, NULL) == FALSE) { 6935 nfs4_end_op(mi, dvp, NULL, &recov_state, 6936 needrecov); 6937 need_end_op = FALSE; 6938 nfs4_fattr4_free(crattr); 6939 if (setgid_flag) { 6940 nfs4args_verify_free(&argop[8]); 6941 nfs4args_setattr_free(&argop[9]); 6942 } 6943 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6944 goto recov_retry; 6945 } 6946 } 6947 6948 resp = &res; 6949 6950 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 6951 6952 if (res.status == NFS4ERR_BADOWNER) 6953 nfs4_log_badowner(mi, OP_CREATE); 6954 6955 e.error = geterrno4(res.status); 6956 6957 /* 6958 * This check is left over from when create was implemented 6959 * using a setattr op (instead of createattrs). If the 6960 * putfh/create/getfh failed, the error was returned. If 6961 * setattr/getattr failed, we keep going. 6962 * 6963 * It might be better to get rid of the GETFH also, and just 6964 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 6965 * Then if any of the operations failed, we could return the 6966 * error now, and remove much of the error code below. 6967 */ 6968 if (res.array_len <= idx_fattr) { 6969 /* 6970 * Either Putfh, Create or Getfh failed. 6971 */ 6972 PURGE_ATTRCACHE4(dvp); 6973 /* 6974 * nfs4_purge_stale_fh() may generate otw calls through 6975 * nfs4_invalidate_pages. Hence the need to call 6976 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 6977 */ 6978 nfs4_end_op(mi, dvp, NULL, &recov_state, 6979 needrecov); 6980 need_end_op = FALSE; 6981 nfs4_purge_stale_fh(e.error, dvp, cr); 6982 goto out; 6983 } 6984 } 6985 6986 resop = &res.array[idx_create]; /* create res */ 6987 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 6988 6989 resop = &res.array[idx_create + 1]; /* getfh res */ 6990 gf_res = &resop->nfs_resop4_u.opgetfh; 6991 6992 sfhp = sfh4_get(&gf_res->object, mi); 6993 if (e.error) { 6994 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 6995 fn_get(VTOSV(dvp)->sv_name, nm)); 6996 if (vp->v_type == VNON) { 6997 vattr.va_mask = AT_TYPE; 6998 /* 6999 * Need to call nfs4_end_op before nfs4getattr to avoid 7000 * potential nfs4_start_op deadlock. See RFE 4777612. 7001 */ 7002 nfs4_end_op(mi, dvp, NULL, &recov_state, 7003 needrecov); 7004 need_end_op = FALSE; 7005 e.error = nfs4getattr(vp, &vattr, cr); 7006 if (e.error) { 7007 VN_RELE(vp); 7008 *vpp = NULL; 7009 goto out; 7010 } 7011 vp->v_type = vattr.va_type; 7012 } 7013 e.error = 0; 7014 } else { 7015 *vpp = vp = makenfs4node(sfhp, 7016 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7017 dvp->v_vfsp, t, cr, 7018 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 7019 } 7020 7021 /* 7022 * If compound succeeded, then update dir attrs 7023 */ 7024 if (res.status == NFS4_OK) { 7025 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7026 dinfo.di_cred = cr; 7027 dinfo.di_time_call = t; 7028 dinfop = &dinfo; 7029 } else 7030 dinfop = NULL; 7031 7032 /* Update directory cache attribute, readdir and dnlc caches */ 7033 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7034 7035 out: 7036 if (sfhp != NULL) 7037 sfh4_rele(&sfhp); 7038 nfs_rw_exit(&drp->r_rwlock); 7039 nfs4_fattr4_free(crattr); 7040 if (setgid_flag) { 7041 nfs4args_verify_free(&argop[8]); 7042 nfs4args_setattr_free(&argop[9]); 7043 } 7044 if (resp) 7045 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7046 if (need_end_op) 7047 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7048 7049 kmem_free(argop, argoplist_size); 7050 return (e.error); 7051 } 7052 7053 /* ARGSUSED */ 7054 static int 7055 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7056 int mode, vnode_t **vpp, cred_t *cr) 7057 { 7058 int error; 7059 vnode_t *vp; 7060 nfs_ftype4 type; 7061 specdata4 spec, *specp = NULL; 7062 7063 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7064 7065 switch (va->va_type) { 7066 case VCHR: 7067 case VBLK: 7068 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7069 spec.specdata1 = getmajor(va->va_rdev); 7070 spec.specdata2 = getminor(va->va_rdev); 7071 specp = &spec; 7072 break; 7073 7074 case VFIFO: 7075 type = NF4FIFO; 7076 break; 7077 case VSOCK: 7078 type = NF4SOCK; 7079 break; 7080 7081 default: 7082 return (EINVAL); 7083 } 7084 7085 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7086 if (error) { 7087 return (error); 7088 } 7089 7090 /* 7091 * This might not be needed any more; special case to deal 7092 * with problematic v2/v3 servers. Since create was unable 7093 * to set group correctly, not sure what hope setattr has. 7094 */ 7095 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7096 va->va_mask = AT_GID; 7097 (void) nfs4setattr(vp, va, 0, cr, NULL); 7098 } 7099 7100 /* 7101 * If vnode is a device create special vnode 7102 */ 7103 if (ISVDEV(vp->v_type)) { 7104 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7105 VN_RELE(vp); 7106 } else { 7107 *vpp = vp; 7108 } 7109 return (error); 7110 } 7111 7112 /* 7113 * Remove requires that the current fh be the target directory. 7114 * After the operation, the current fh is unchanged. 7115 * The compound op structure is: 7116 * PUTFH(targetdir), REMOVE 7117 * 7118 * Weirdness: if the vnode to be removed is open 7119 * we rename it instead of removing it and nfs_inactive 7120 * will remove the new name. 7121 */ 7122 /* ARGSUSED */ 7123 static int 7124 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7125 { 7126 COMPOUND4args_clnt args; 7127 COMPOUND4res_clnt res, *resp = NULL; 7128 REMOVE4res *rm_res; 7129 nfs_argop4 argop[3]; 7130 nfs_resop4 *resop; 7131 vnode_t *vp; 7132 char *tmpname; 7133 int doqueue; 7134 mntinfo4_t *mi; 7135 rnode4_t *rp; 7136 rnode4_t *drp; 7137 int needrecov = 0; 7138 nfs4_recov_state_t recov_state; 7139 int isopen; 7140 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7141 dirattr_info_t dinfo; 7142 7143 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7144 return (EPERM); 7145 drp = VTOR4(dvp); 7146 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7147 return (EINTR); 7148 7149 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7150 if (e.error) { 7151 nfs_rw_exit(&drp->r_rwlock); 7152 return (e.error); 7153 } 7154 7155 if (vp->v_type == VDIR) { 7156 VN_RELE(vp); 7157 nfs_rw_exit(&drp->r_rwlock); 7158 return (EISDIR); 7159 } 7160 7161 /* 7162 * First just remove the entry from the name cache, as it 7163 * is most likely the only entry for this vp. 7164 */ 7165 dnlc_remove(dvp, nm); 7166 7167 rp = VTOR4(vp); 7168 7169 /* 7170 * For regular file types, check to see if the file is open by looking 7171 * at the open streams. 7172 * For all other types, check the reference count on the vnode. Since 7173 * they are not opened OTW they never have an open stream. 7174 * 7175 * If the file is open, rename it to .nfsXXXX. 7176 */ 7177 if (vp->v_type != VREG) { 7178 /* 7179 * If the file has a v_count > 1 then there may be more than one 7180 * entry in the name cache due multiple links or an open file, 7181 * but we don't have the real reference count so flush all 7182 * possible entries. 7183 */ 7184 if (vp->v_count > 1) 7185 dnlc_purge_vp(vp); 7186 7187 /* 7188 * Now we have the real reference count. 7189 */ 7190 isopen = vp->v_count > 1; 7191 } else { 7192 mutex_enter(&rp->r_os_lock); 7193 isopen = list_head(&rp->r_open_streams) != NULL; 7194 mutex_exit(&rp->r_os_lock); 7195 } 7196 7197 mutex_enter(&rp->r_statelock); 7198 if (isopen && 7199 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7200 mutex_exit(&rp->r_statelock); 7201 tmpname = newname(); 7202 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7203 if (e.error) 7204 kmem_free(tmpname, MAXNAMELEN); 7205 else { 7206 mutex_enter(&rp->r_statelock); 7207 if (rp->r_unldvp == NULL) { 7208 VN_HOLD(dvp); 7209 rp->r_unldvp = dvp; 7210 if (rp->r_unlcred != NULL) 7211 crfree(rp->r_unlcred); 7212 crhold(cr); 7213 rp->r_unlcred = cr; 7214 rp->r_unlname = tmpname; 7215 } else { 7216 kmem_free(rp->r_unlname, MAXNAMELEN); 7217 rp->r_unlname = tmpname; 7218 } 7219 mutex_exit(&rp->r_statelock); 7220 } 7221 VN_RELE(vp); 7222 nfs_rw_exit(&drp->r_rwlock); 7223 return (e.error); 7224 } 7225 /* 7226 * Actually remove the file/dir 7227 */ 7228 mutex_exit(&rp->r_statelock); 7229 7230 /* 7231 * We need to flush any dirty pages which happen to 7232 * be hanging around before removing the file. 7233 * This shouldn't happen very often since in NFSv4 7234 * we should be close to open consistent. 7235 */ 7236 if (nfs4_has_pages(vp) && 7237 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7238 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7239 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7240 mutex_enter(&rp->r_statelock); 7241 if (!rp->r_error) 7242 rp->r_error = e.error; 7243 mutex_exit(&rp->r_statelock); 7244 } 7245 } 7246 7247 mi = VTOMI4(dvp); 7248 7249 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7250 recov_state.rs_flags = 0; 7251 recov_state.rs_num_retry_despite_err = 0; 7252 7253 recov_retry: 7254 /* 7255 * Remove ops: putfh dir; remove 7256 */ 7257 args.ctag = TAG_REMOVE; 7258 args.array_len = 3; 7259 args.array = argop; 7260 7261 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7262 if (e.error) { 7263 nfs_rw_exit(&drp->r_rwlock); 7264 VN_RELE(vp); 7265 return (e.error); 7266 } 7267 7268 /* putfh directory */ 7269 argop[0].argop = OP_CPUTFH; 7270 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7271 7272 /* remove */ 7273 argop[1].argop = OP_CREMOVE; 7274 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7275 7276 /* getattr dir */ 7277 argop[2].argop = OP_GETATTR; 7278 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7279 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7280 7281 doqueue = 1; 7282 dinfo.di_time_call = gethrtime(); 7283 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7284 7285 PURGE_ATTRCACHE4(vp); 7286 7287 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7288 if (e.error) 7289 PURGE_ATTRCACHE4(dvp); 7290 7291 if (needrecov) { 7292 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7293 NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { 7294 if (!e.error) 7295 (void) xdr_free(xdr_COMPOUND4res_clnt, 7296 (caddr_t)&res); 7297 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7298 needrecov); 7299 goto recov_retry; 7300 } 7301 } 7302 7303 /* 7304 * Matching nfs4_end_op() for start_op() above. 7305 * There is a path in the code below which calls 7306 * nfs4_purge_stale_fh(), which may generate otw calls through 7307 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7308 * here to avoid nfs4_start_op() deadlock. 7309 */ 7310 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7311 7312 if (!e.error) { 7313 resp = &res; 7314 7315 if (res.status) { 7316 e.error = geterrno4(res.status); 7317 PURGE_ATTRCACHE4(dvp); 7318 nfs4_purge_stale_fh(e.error, dvp, cr); 7319 } else { 7320 resop = &res.array[1]; /* remove res */ 7321 rm_res = &resop->nfs_resop4_u.opremove; 7322 7323 dinfo.di_garp = 7324 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7325 dinfo.di_cred = cr; 7326 7327 /* Update directory attr, readdir and dnlc caches */ 7328 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7329 &dinfo); 7330 } 7331 } 7332 nfs_rw_exit(&drp->r_rwlock); 7333 if (resp) 7334 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7335 7336 if (e.error == 0) { 7337 vnode_t *tvp; 7338 rnode4_t *trp; 7339 trp = VTOR4(vp); 7340 tvp = vp; 7341 if (IS_SHADOW(vp, trp)) 7342 tvp = RTOV4(trp); 7343 vnevent_remove(tvp, dvp, nm, ct); 7344 } 7345 VN_RELE(vp); 7346 return (e.error); 7347 } 7348 7349 /* 7350 * Link requires that the current fh be the target directory and the 7351 * saved fh be the source fh. After the operation, the current fh is unchanged. 7352 * Thus the compound op structure is: 7353 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7354 * GETATTR(file) 7355 */ 7356 /* ARGSUSED */ 7357 static int 7358 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7359 caller_context_t *ct, int flags) 7360 { 7361 COMPOUND4args_clnt args; 7362 COMPOUND4res_clnt res, *resp = NULL; 7363 LINK4res *ln_res; 7364 int argoplist_size = 7 * sizeof (nfs_argop4); 7365 nfs_argop4 *argop; 7366 nfs_resop4 *resop; 7367 vnode_t *realvp, *nvp; 7368 int doqueue; 7369 mntinfo4_t *mi; 7370 rnode4_t *tdrp; 7371 bool_t needrecov = FALSE; 7372 nfs4_recov_state_t recov_state; 7373 hrtime_t t; 7374 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7375 dirattr_info_t dinfo; 7376 7377 ASSERT(*tnm != '\0'); 7378 ASSERT(tdvp->v_type == VDIR); 7379 ASSERT(nfs4_consistent_type(tdvp)); 7380 ASSERT(nfs4_consistent_type(svp)); 7381 7382 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7383 return (EPERM); 7384 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7385 svp = realvp; 7386 ASSERT(nfs4_consistent_type(svp)); 7387 } 7388 7389 tdrp = VTOR4(tdvp); 7390 mi = VTOMI4(svp); 7391 7392 if (!(mi->mi_flags & MI4_LINK)) { 7393 return (EOPNOTSUPP); 7394 } 7395 recov_state.rs_flags = 0; 7396 recov_state.rs_num_retry_despite_err = 0; 7397 7398 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7399 return (EINTR); 7400 7401 recov_retry: 7402 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7403 7404 args.ctag = TAG_LINK; 7405 7406 /* 7407 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7408 * restorefh; getattr(fl) 7409 */ 7410 args.array_len = 7; 7411 args.array = argop; 7412 7413 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7414 if (e.error) { 7415 kmem_free(argop, argoplist_size); 7416 nfs_rw_exit(&tdrp->r_rwlock); 7417 return (e.error); 7418 } 7419 7420 /* 0. putfh file */ 7421 argop[0].argop = OP_CPUTFH; 7422 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7423 7424 /* 1. save current fh to free up the space for the dir */ 7425 argop[1].argop = OP_SAVEFH; 7426 7427 /* 2. putfh targetdir */ 7428 argop[2].argop = OP_CPUTFH; 7429 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7430 7431 /* 3. link: current_fh is targetdir, saved_fh is source */ 7432 argop[3].argop = OP_CLINK; 7433 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7434 7435 /* 4. Get attributes of dir */ 7436 argop[4].argop = OP_GETATTR; 7437 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7438 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7439 7440 /* 5. If link was successful, restore current vp to file */ 7441 argop[5].argop = OP_RESTOREFH; 7442 7443 /* 6. Get attributes of linked object */ 7444 argop[6].argop = OP_GETATTR; 7445 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7446 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7447 7448 dnlc_remove(tdvp, tnm); 7449 7450 doqueue = 1; 7451 t = gethrtime(); 7452 7453 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7454 7455 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7456 if (e.error != 0 && !needrecov) { 7457 PURGE_ATTRCACHE4(tdvp); 7458 PURGE_ATTRCACHE4(svp); 7459 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7460 goto out; 7461 } 7462 7463 if (needrecov) { 7464 bool_t abort; 7465 7466 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7467 NULL, NULL, OP_LINK, NULL); 7468 if (abort == FALSE) { 7469 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7470 needrecov); 7471 kmem_free(argop, argoplist_size); 7472 if (!e.error) 7473 (void) xdr_free(xdr_COMPOUND4res_clnt, 7474 (caddr_t)&res); 7475 goto recov_retry; 7476 } else { 7477 if (e.error != 0) { 7478 PURGE_ATTRCACHE4(tdvp); 7479 PURGE_ATTRCACHE4(svp); 7480 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7481 &recov_state, needrecov); 7482 goto out; 7483 } 7484 /* fall through for res.status case */ 7485 } 7486 } 7487 7488 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7489 7490 resp = &res; 7491 if (res.status) { 7492 /* If link succeeded, then don't return error */ 7493 e.error = geterrno4(res.status); 7494 if (res.array_len <= 4) { 7495 /* 7496 * Either Putfh, Savefh, Putfh dir, or Link failed 7497 */ 7498 PURGE_ATTRCACHE4(svp); 7499 PURGE_ATTRCACHE4(tdvp); 7500 if (e.error == EOPNOTSUPP) { 7501 mutex_enter(&mi->mi_lock); 7502 mi->mi_flags &= ~MI4_LINK; 7503 mutex_exit(&mi->mi_lock); 7504 } 7505 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7506 /* XXX-LP */ 7507 if (e.error == EISDIR && crgetuid(cr) != 0) 7508 e.error = EPERM; 7509 goto out; 7510 } 7511 } 7512 7513 /* either no error or one of the postop getattr failed */ 7514 7515 /* 7516 * XXX - if LINK succeeded, but no attrs were returned for link 7517 * file, purge its cache. 7518 * 7519 * XXX Perform a simplified version of wcc checking. Instead of 7520 * have another getattr to get pre-op, just purge cache if 7521 * any of the ops prior to and including the getattr failed. 7522 * If the getattr succeeded then update the attrcache accordingly. 7523 */ 7524 7525 /* 7526 * update cache with link file postattrs. 7527 * Note: at this point resop points to link res. 7528 */ 7529 resop = &res.array[3]; /* link res */ 7530 ln_res = &resop->nfs_resop4_u.oplink; 7531 if (res.status == NFS4_OK) 7532 e.error = nfs4_update_attrcache(res.status, 7533 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7534 t, svp, cr); 7535 7536 /* 7537 * Call makenfs4node to create the new shadow vp for tnm. 7538 * We pass NULL attrs because we just cached attrs for 7539 * the src object. All we're trying to accomplish is to 7540 * to create the new shadow vnode. 7541 */ 7542 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7543 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm)); 7544 7545 /* Update target cache attribute, readdir and dnlc caches */ 7546 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7547 dinfo.di_time_call = t; 7548 dinfo.di_cred = cr; 7549 7550 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7551 ASSERT(nfs4_consistent_type(tdvp)); 7552 ASSERT(nfs4_consistent_type(svp)); 7553 ASSERT(nfs4_consistent_type(nvp)); 7554 VN_RELE(nvp); 7555 7556 if (!e.error) { 7557 vnode_t *tvp; 7558 rnode4_t *trp; 7559 /* 7560 * Notify the source file of this link operation. 7561 */ 7562 trp = VTOR4(svp); 7563 tvp = svp; 7564 if (IS_SHADOW(svp, trp)) 7565 tvp = RTOV4(trp); 7566 vnevent_link(tvp, ct); 7567 } 7568 out: 7569 kmem_free(argop, argoplist_size); 7570 if (resp) 7571 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7572 7573 nfs_rw_exit(&tdrp->r_rwlock); 7574 7575 return (e.error); 7576 } 7577 7578 /* ARGSUSED */ 7579 static int 7580 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7581 caller_context_t *ct, int flags) 7582 { 7583 vnode_t *realvp; 7584 7585 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7586 return (EPERM); 7587 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7588 ndvp = realvp; 7589 7590 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7591 } 7592 7593 /* 7594 * nfs4rename does the real work of renaming in NFS Version 4. 7595 * 7596 * A file handle is considered volatile for renaming purposes if either 7597 * of the volatile bits are turned on. However, the compound may differ 7598 * based on the likelihood of the filehandle to change during rename. 7599 */ 7600 static int 7601 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7602 caller_context_t *ct) 7603 { 7604 int error; 7605 mntinfo4_t *mi; 7606 vnode_t *nvp = NULL; 7607 vnode_t *ovp = NULL; 7608 char *tmpname = NULL; 7609 rnode4_t *rp; 7610 rnode4_t *odrp; 7611 rnode4_t *ndrp; 7612 int did_link = 0; 7613 int do_link = 1; 7614 nfsstat4 stat = NFS4_OK; 7615 7616 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7617 ASSERT(nfs4_consistent_type(odvp)); 7618 ASSERT(nfs4_consistent_type(ndvp)); 7619 7620 if (onm[0] == '.' && (onm[1] == '\0' || 7621 (onm[1] == '.' && onm[2] == '\0'))) 7622 return (EINVAL); 7623 7624 if (nnm[0] == '.' && (nnm[1] == '\0' || 7625 (nnm[1] == '.' && nnm[2] == '\0'))) 7626 return (EINVAL); 7627 7628 odrp = VTOR4(odvp); 7629 ndrp = VTOR4(ndvp); 7630 if ((intptr_t)odrp < (intptr_t)ndrp) { 7631 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7632 return (EINTR); 7633 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7634 nfs_rw_exit(&odrp->r_rwlock); 7635 return (EINTR); 7636 } 7637 } else { 7638 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7639 return (EINTR); 7640 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7641 nfs_rw_exit(&ndrp->r_rwlock); 7642 return (EINTR); 7643 } 7644 } 7645 7646 /* 7647 * Lookup the target file. If it exists, it needs to be 7648 * checked to see whether it is a mount point and whether 7649 * it is active (open). 7650 */ 7651 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7652 if (!error) { 7653 int isactive; 7654 7655 ASSERT(nfs4_consistent_type(nvp)); 7656 /* 7657 * If this file has been mounted on, then just 7658 * return busy because renaming to it would remove 7659 * the mounted file system from the name space. 7660 */ 7661 if (vn_ismntpt(nvp)) { 7662 VN_RELE(nvp); 7663 nfs_rw_exit(&odrp->r_rwlock); 7664 nfs_rw_exit(&ndrp->r_rwlock); 7665 return (EBUSY); 7666 } 7667 7668 /* 7669 * First just remove the entry from the name cache, as it 7670 * is most likely the only entry for this vp. 7671 */ 7672 dnlc_remove(ndvp, nnm); 7673 7674 rp = VTOR4(nvp); 7675 7676 if (nvp->v_type != VREG) { 7677 /* 7678 * Purge the name cache of all references to this vnode 7679 * so that we can check the reference count to infer 7680 * whether it is active or not. 7681 */ 7682 if (nvp->v_count > 1) 7683 dnlc_purge_vp(nvp); 7684 7685 isactive = nvp->v_count > 1; 7686 } else { 7687 mutex_enter(&rp->r_os_lock); 7688 isactive = list_head(&rp->r_open_streams) != NULL; 7689 mutex_exit(&rp->r_os_lock); 7690 } 7691 7692 /* 7693 * If the vnode is active and is not a directory, 7694 * arrange to rename it to a 7695 * temporary file so that it will continue to be 7696 * accessible. This implements the "unlink-open-file" 7697 * semantics for the target of a rename operation. 7698 * Before doing this though, make sure that the 7699 * source and target files are not already the same. 7700 */ 7701 if (isactive && nvp->v_type != VDIR) { 7702 /* 7703 * Lookup the source name. 7704 */ 7705 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7706 7707 /* 7708 * The source name *should* already exist. 7709 */ 7710 if (error) { 7711 VN_RELE(nvp); 7712 nfs_rw_exit(&odrp->r_rwlock); 7713 nfs_rw_exit(&ndrp->r_rwlock); 7714 return (error); 7715 } 7716 7717 ASSERT(nfs4_consistent_type(ovp)); 7718 7719 /* 7720 * Compare the two vnodes. If they are the same, 7721 * just release all held vnodes and return success. 7722 */ 7723 if (VN_CMP(ovp, nvp)) { 7724 VN_RELE(ovp); 7725 VN_RELE(nvp); 7726 nfs_rw_exit(&odrp->r_rwlock); 7727 nfs_rw_exit(&ndrp->r_rwlock); 7728 return (0); 7729 } 7730 7731 /* 7732 * Can't mix and match directories and non- 7733 * directories in rename operations. We already 7734 * know that the target is not a directory. If 7735 * the source is a directory, return an error. 7736 */ 7737 if (ovp->v_type == VDIR) { 7738 VN_RELE(ovp); 7739 VN_RELE(nvp); 7740 nfs_rw_exit(&odrp->r_rwlock); 7741 nfs_rw_exit(&ndrp->r_rwlock); 7742 return (ENOTDIR); 7743 } 7744 link_call: 7745 /* 7746 * The target file exists, is not the same as 7747 * the source file, and is active. We first 7748 * try to Link it to a temporary filename to 7749 * avoid having the server removing the file 7750 * completely (which could cause data loss to 7751 * the user's POV in the event the Rename fails 7752 * -- see bug 1165874). 7753 */ 7754 /* 7755 * The do_link and did_link booleans are 7756 * introduced in the event we get NFS4ERR_FILE_OPEN 7757 * returned for the Rename. Some servers can 7758 * not Rename over an Open file, so they return 7759 * this error. The client needs to Remove the 7760 * newly created Link and do two Renames, just 7761 * as if the server didn't support LINK. 7762 */ 7763 tmpname = newname(); 7764 error = 0; 7765 7766 if (do_link) { 7767 error = nfs4_link(ndvp, nvp, tmpname, cr, 7768 NULL, 0); 7769 } 7770 if (error == EOPNOTSUPP || !do_link) { 7771 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7772 cr, NULL, 0); 7773 did_link = 0; 7774 } else { 7775 did_link = 1; 7776 } 7777 if (error) { 7778 kmem_free(tmpname, MAXNAMELEN); 7779 VN_RELE(ovp); 7780 VN_RELE(nvp); 7781 nfs_rw_exit(&odrp->r_rwlock); 7782 nfs_rw_exit(&ndrp->r_rwlock); 7783 return (error); 7784 } 7785 7786 mutex_enter(&rp->r_statelock); 7787 if (rp->r_unldvp == NULL) { 7788 VN_HOLD(ndvp); 7789 rp->r_unldvp = ndvp; 7790 if (rp->r_unlcred != NULL) 7791 crfree(rp->r_unlcred); 7792 crhold(cr); 7793 rp->r_unlcred = cr; 7794 rp->r_unlname = tmpname; 7795 } else { 7796 if (rp->r_unlname) 7797 kmem_free(rp->r_unlname, MAXNAMELEN); 7798 rp->r_unlname = tmpname; 7799 } 7800 mutex_exit(&rp->r_statelock); 7801 } 7802 7803 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7804 7805 ASSERT(nfs4_consistent_type(nvp)); 7806 } 7807 7808 if (ovp == NULL) { 7809 /* 7810 * When renaming directories to be a subdirectory of a 7811 * different parent, the dnlc entry for ".." will no 7812 * longer be valid, so it must be removed. 7813 * 7814 * We do a lookup here to determine whether we are renaming 7815 * a directory and we need to check if we are renaming 7816 * an unlinked file. This might have already been done 7817 * in previous code, so we check ovp == NULL to avoid 7818 * doing it twice. 7819 */ 7820 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7821 /* 7822 * The source name *should* already exist. 7823 */ 7824 if (error) { 7825 nfs_rw_exit(&odrp->r_rwlock); 7826 nfs_rw_exit(&ndrp->r_rwlock); 7827 if (nvp) { 7828 VN_RELE(nvp); 7829 } 7830 return (error); 7831 } 7832 ASSERT(ovp != NULL); 7833 ASSERT(nfs4_consistent_type(ovp)); 7834 } 7835 7836 /* 7837 * Is the object being renamed a dir, and if so, is 7838 * it being renamed to a child of itself? The underlying 7839 * fs should ultimately return EINVAL for this case; 7840 * however, buggy beta non-Solaris NFSv4 servers at 7841 * interop testing events have allowed this behavior, 7842 * and it caused our client to panic due to a recursive 7843 * mutex_enter in fn_move. 7844 * 7845 * The tedious locking in fn_move could be changed to 7846 * deal with this case, and the client could avoid the 7847 * panic; however, the client would just confuse itself 7848 * later and misbehave. A better way to handle the broken 7849 * server is to detect this condition and return EINVAL 7850 * without ever sending the the bogus rename to the server. 7851 * We know the rename is invalid -- just fail it now. 7852 */ 7853 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7854 VN_RELE(ovp); 7855 nfs_rw_exit(&odrp->r_rwlock); 7856 nfs_rw_exit(&ndrp->r_rwlock); 7857 if (nvp) { 7858 VN_RELE(nvp); 7859 } 7860 return (EINVAL); 7861 } 7862 7863 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7864 7865 /* 7866 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7867 * possible for the filehandle to change due to the rename. 7868 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7869 * the fh will not change because of the rename, but we still need 7870 * to update its rnode entry with the new name for 7871 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7872 * has no effect on these for now, but for future improvements, 7873 * we might want to use it too to simplify handling of files 7874 * that are open with that flag on. (XXX) 7875 */ 7876 mi = VTOMI4(odvp); 7877 if (NFS4_VOLATILE_FH(mi)) 7878 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7879 &stat); 7880 else 7881 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7882 &stat); 7883 7884 ASSERT(nfs4_consistent_type(odvp)); 7885 ASSERT(nfs4_consistent_type(ndvp)); 7886 ASSERT(nfs4_consistent_type(ovp)); 7887 7888 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7889 do_link = 0; 7890 /* 7891 * Before the 'link_call' code, we did a nfs4_lookup 7892 * that puts a VN_HOLD on nvp. After the nfs4_link 7893 * call we call VN_RELE to match that hold. We need 7894 * to place an additional VN_HOLD here since we will 7895 * be hitting that VN_RELE again. 7896 */ 7897 VN_HOLD(nvp); 7898 7899 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 7900 7901 /* Undo the unlinked file naming stuff we just did */ 7902 mutex_enter(&rp->r_statelock); 7903 if (rp->r_unldvp) { 7904 VN_RELE(ndvp); 7905 rp->r_unldvp = NULL; 7906 if (rp->r_unlcred != NULL) 7907 crfree(rp->r_unlcred); 7908 rp->r_unlcred = NULL; 7909 /* rp->r_unlanme points to tmpname */ 7910 if (rp->r_unlname) 7911 kmem_free(rp->r_unlname, MAXNAMELEN); 7912 rp->r_unlname = NULL; 7913 } 7914 mutex_exit(&rp->r_statelock); 7915 7916 if (nvp) { 7917 VN_RELE(nvp); 7918 } 7919 goto link_call; 7920 } 7921 7922 if (error) { 7923 VN_RELE(ovp); 7924 nfs_rw_exit(&odrp->r_rwlock); 7925 nfs_rw_exit(&ndrp->r_rwlock); 7926 if (nvp) { 7927 VN_RELE(nvp); 7928 } 7929 return (error); 7930 } 7931 7932 /* 7933 * when renaming directories to be a subdirectory of a 7934 * different parent, the dnlc entry for ".." will no 7935 * longer be valid, so it must be removed 7936 */ 7937 rp = VTOR4(ovp); 7938 if (ndvp != odvp) { 7939 if (ovp->v_type == VDIR) { 7940 dnlc_remove(ovp, ".."); 7941 if (rp->r_dir != NULL) 7942 nfs4_purge_rddir_cache(ovp); 7943 } 7944 } 7945 7946 /* 7947 * If we are renaming the unlinked file, update the 7948 * r_unldvp and r_unlname as needed. 7949 */ 7950 mutex_enter(&rp->r_statelock); 7951 if (rp->r_unldvp != NULL) { 7952 if (strcmp(rp->r_unlname, onm) == 0) { 7953 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 7954 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 7955 if (ndvp != rp->r_unldvp) { 7956 VN_RELE(rp->r_unldvp); 7957 rp->r_unldvp = ndvp; 7958 VN_HOLD(ndvp); 7959 } 7960 } 7961 } 7962 mutex_exit(&rp->r_statelock); 7963 7964 /* 7965 * Notify the rename vnevents to source vnode, and to the target 7966 * vnode if it already existed. 7967 */ 7968 if (error == 0) { 7969 vnode_t *tvp; 7970 rnode4_t *trp; 7971 /* 7972 * Notify the vnode. Each links is represented by 7973 * a different vnode, in nfsv4. 7974 */ 7975 if (nvp) { 7976 trp = VTOR4(nvp); 7977 tvp = nvp; 7978 if (IS_SHADOW(nvp, trp)) 7979 tvp = RTOV4(trp); 7980 vnevent_rename_dest(tvp, ndvp, nnm, ct); 7981 } 7982 7983 /* 7984 * if the source and destination directory are not the 7985 * same notify the destination directory. 7986 */ 7987 if (VTOR4(odvp) != VTOR4(ndvp)) { 7988 trp = VTOR4(ndvp); 7989 tvp = ndvp; 7990 if (IS_SHADOW(ndvp, trp)) 7991 tvp = RTOV4(trp); 7992 vnevent_rename_dest_dir(tvp, ct); 7993 } 7994 7995 trp = VTOR4(ovp); 7996 tvp = ovp; 7997 if (IS_SHADOW(ovp, trp)) 7998 tvp = RTOV4(trp); 7999 vnevent_rename_src(tvp, odvp, onm, ct); 8000 } 8001 8002 if (nvp) { 8003 VN_RELE(nvp); 8004 } 8005 VN_RELE(ovp); 8006 8007 nfs_rw_exit(&odrp->r_rwlock); 8008 nfs_rw_exit(&ndrp->r_rwlock); 8009 8010 return (error); 8011 } 8012 8013 /* 8014 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8015 * when it is known that the filehandle is persistent through rename. 8016 * 8017 * Rename requires that the current fh be the target directory and the 8018 * saved fh be the source directory. After the operation, the current fh 8019 * is unchanged. 8020 * The compound op structure for persistent fh rename is: 8021 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8022 * Rather than bother with the directory postop args, we'll simply 8023 * update that a change occurred in the cache, so no post-op getattrs. 8024 */ 8025 static int 8026 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8027 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8028 { 8029 COMPOUND4args_clnt args; 8030 COMPOUND4res_clnt res, *resp = NULL; 8031 nfs_argop4 *argop; 8032 nfs_resop4 *resop; 8033 int doqueue, argoplist_size; 8034 mntinfo4_t *mi; 8035 rnode4_t *odrp = VTOR4(odvp); 8036 rnode4_t *ndrp = VTOR4(ndvp); 8037 RENAME4res *rn_res; 8038 bool_t needrecov; 8039 nfs4_recov_state_t recov_state; 8040 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8041 dirattr_info_t dinfo, *dinfop; 8042 8043 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8044 8045 recov_state.rs_flags = 0; 8046 recov_state.rs_num_retry_despite_err = 0; 8047 8048 /* 8049 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8050 * 8051 * If source/target are different dirs, then append putfh(src); getattr 8052 */ 8053 args.array_len = (odvp == ndvp) ? 5 : 7; 8054 argoplist_size = args.array_len * sizeof (nfs_argop4); 8055 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8056 8057 recov_retry: 8058 *statp = NFS4_OK; 8059 8060 /* No need to Lookup the file, persistent fh */ 8061 args.ctag = TAG_RENAME; 8062 8063 mi = VTOMI4(odvp); 8064 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8065 if (e.error) { 8066 kmem_free(argop, argoplist_size); 8067 return (e.error); 8068 } 8069 8070 /* 0: putfh source directory */ 8071 argop[0].argop = OP_CPUTFH; 8072 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8073 8074 /* 1: Save source fh to free up current for target */ 8075 argop[1].argop = OP_SAVEFH; 8076 8077 /* 2: putfh targetdir */ 8078 argop[2].argop = OP_CPUTFH; 8079 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8080 8081 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8082 argop[3].argop = OP_CRENAME; 8083 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8084 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8085 8086 /* 4: getattr (targetdir) */ 8087 argop[4].argop = OP_GETATTR; 8088 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8089 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8090 8091 if (ndvp != odvp) { 8092 8093 /* 5: putfh (sourcedir) */ 8094 argop[5].argop = OP_CPUTFH; 8095 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8096 8097 /* 6: getattr (sourcedir) */ 8098 argop[6].argop = OP_GETATTR; 8099 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8100 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8101 } 8102 8103 dnlc_remove(odvp, onm); 8104 dnlc_remove(ndvp, nnm); 8105 8106 doqueue = 1; 8107 dinfo.di_time_call = gethrtime(); 8108 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8109 8110 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8111 if (e.error) { 8112 PURGE_ATTRCACHE4(odvp); 8113 PURGE_ATTRCACHE4(ndvp); 8114 } else { 8115 *statp = res.status; 8116 } 8117 8118 if (needrecov) { 8119 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8120 OP_RENAME, NULL) == FALSE) { 8121 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8122 if (!e.error) 8123 (void) xdr_free(xdr_COMPOUND4res_clnt, 8124 (caddr_t)&res); 8125 goto recov_retry; 8126 } 8127 } 8128 8129 if (!e.error) { 8130 resp = &res; 8131 /* 8132 * as long as OP_RENAME 8133 */ 8134 if (res.status != NFS4_OK && res.array_len <= 4) { 8135 e.error = geterrno4(res.status); 8136 PURGE_ATTRCACHE4(odvp); 8137 PURGE_ATTRCACHE4(ndvp); 8138 /* 8139 * System V defines rename to return EEXIST, not 8140 * ENOTEMPTY if the target directory is not empty. 8141 * Over the wire, the error is NFSERR_ENOTEMPTY 8142 * which geterrno4 maps to ENOTEMPTY. 8143 */ 8144 if (e.error == ENOTEMPTY) 8145 e.error = EEXIST; 8146 } else { 8147 8148 resop = &res.array[3]; /* rename res */ 8149 rn_res = &resop->nfs_resop4_u.oprename; 8150 8151 if (res.status == NFS4_OK) { 8152 /* 8153 * Update target attribute, readdir and dnlc 8154 * caches. 8155 */ 8156 dinfo.di_garp = 8157 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8158 dinfo.di_cred = cr; 8159 dinfop = &dinfo; 8160 } else 8161 dinfop = NULL; 8162 8163 nfs4_update_dircaches(&rn_res->target_cinfo, 8164 ndvp, NULL, NULL, dinfop); 8165 8166 /* 8167 * Update source attribute, readdir and dnlc caches 8168 * 8169 */ 8170 if (ndvp != odvp) { 8171 if (dinfop) 8172 dinfo.di_garp = 8173 &(res.array[6].nfs_resop4_u. 8174 opgetattr.ga_res); 8175 8176 nfs4_update_dircaches(&rn_res->source_cinfo, 8177 odvp, NULL, NULL, dinfop); 8178 } 8179 8180 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8181 nnm); 8182 } 8183 } 8184 8185 if (resp) 8186 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8187 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8188 kmem_free(argop, argoplist_size); 8189 8190 return (e.error); 8191 } 8192 8193 /* 8194 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8195 * it is possible for the filehandle to change due to the rename. 8196 * 8197 * The compound req in this case includes a post-rename lookup and getattr 8198 * to ensure that we have the correct fh and attributes for the object. 8199 * 8200 * Rename requires that the current fh be the target directory and the 8201 * saved fh be the source directory. After the operation, the current fh 8202 * is unchanged. 8203 * 8204 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8205 * update the filehandle for the renamed object. We also get the old 8206 * filehandle for historical reasons; this should be taken out sometime. 8207 * This results in a rather cumbersome compound... 8208 * 8209 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8210 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8211 * 8212 */ 8213 static int 8214 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8215 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8216 { 8217 COMPOUND4args_clnt args; 8218 COMPOUND4res_clnt res, *resp = NULL; 8219 int argoplist_size; 8220 nfs_argop4 *argop; 8221 nfs_resop4 *resop; 8222 int doqueue; 8223 mntinfo4_t *mi; 8224 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8225 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8226 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8227 RENAME4res *rn_res; 8228 GETFH4res *ngf_res; 8229 bool_t needrecov; 8230 nfs4_recov_state_t recov_state; 8231 hrtime_t t; 8232 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8233 dirattr_info_t dinfo, *dinfop = &dinfo; 8234 8235 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8236 8237 recov_state.rs_flags = 0; 8238 recov_state.rs_num_retry_despite_err = 0; 8239 8240 recov_retry: 8241 *statp = NFS4_OK; 8242 8243 /* 8244 * There is a window between the RPC and updating the path and 8245 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8246 * code, so that it doesn't try to use the old path during that 8247 * window. 8248 */ 8249 mutex_enter(&orp->r_statelock); 8250 while (orp->r_flags & R4RECEXPFH) { 8251 klwp_t *lwp = ttolwp(curthread); 8252 8253 if (lwp != NULL) 8254 lwp->lwp_nostop++; 8255 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8256 mutex_exit(&orp->r_statelock); 8257 if (lwp != NULL) 8258 lwp->lwp_nostop--; 8259 return (EINTR); 8260 } 8261 if (lwp != NULL) 8262 lwp->lwp_nostop--; 8263 } 8264 orp->r_flags |= R4RECEXPFH; 8265 mutex_exit(&orp->r_statelock); 8266 8267 mi = VTOMI4(odvp); 8268 8269 args.ctag = TAG_RENAME_VFH; 8270 args.array_len = (odvp == ndvp) ? 10 : 12; 8271 argoplist_size = args.array_len * sizeof (nfs_argop4); 8272 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8273 8274 /* 8275 * Rename ops: 8276 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8277 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8278 * LOOKUP(trgt), GETFH(new), GETATTR, 8279 * 8280 * if (odvp != ndvp) 8281 * add putfh(sourcedir), getattr(sourcedir) } 8282 */ 8283 args.array = argop; 8284 8285 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8286 &recov_state, NULL); 8287 if (e.error) { 8288 kmem_free(argop, argoplist_size); 8289 mutex_enter(&orp->r_statelock); 8290 orp->r_flags &= ~R4RECEXPFH; 8291 cv_broadcast(&orp->r_cv); 8292 mutex_exit(&orp->r_statelock); 8293 return (e.error); 8294 } 8295 8296 /* 0: putfh source directory */ 8297 argop[0].argop = OP_CPUTFH; 8298 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8299 8300 /* 1: Save source fh to free up current for target */ 8301 argop[1].argop = OP_SAVEFH; 8302 8303 /* 2: Lookup pre-rename fh of renamed object */ 8304 argop[2].argop = OP_CLOOKUP; 8305 argop[2].nfs_argop4_u.opclookup.cname = onm; 8306 8307 /* 3: getfh fh of renamed object (before rename) */ 8308 argop[3].argop = OP_GETFH; 8309 8310 /* 4: putfh targetdir */ 8311 argop[4].argop = OP_CPUTFH; 8312 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8313 8314 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8315 argop[5].argop = OP_CRENAME; 8316 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8317 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8318 8319 /* 6: getattr of target dir (post op attrs) */ 8320 argop[6].argop = OP_GETATTR; 8321 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8322 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8323 8324 /* 7: Lookup post-rename fh of renamed object */ 8325 argop[7].argop = OP_CLOOKUP; 8326 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8327 8328 /* 8: getfh fh of renamed object (after rename) */ 8329 argop[8].argop = OP_GETFH; 8330 8331 /* 9: getattr of renamed object */ 8332 argop[9].argop = OP_GETATTR; 8333 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8334 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8335 8336 /* 8337 * If source/target dirs are different, then get new post-op 8338 * attrs for source dir also. 8339 */ 8340 if (ndvp != odvp) { 8341 /* 10: putfh (sourcedir) */ 8342 argop[10].argop = OP_CPUTFH; 8343 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8344 8345 /* 11: getattr (sourcedir) */ 8346 argop[11].argop = OP_GETATTR; 8347 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8348 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8349 } 8350 8351 dnlc_remove(odvp, onm); 8352 dnlc_remove(ndvp, nnm); 8353 8354 doqueue = 1; 8355 t = gethrtime(); 8356 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8357 8358 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8359 if (e.error) { 8360 PURGE_ATTRCACHE4(odvp); 8361 PURGE_ATTRCACHE4(ndvp); 8362 if (!needrecov) { 8363 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8364 &recov_state, needrecov); 8365 goto out; 8366 } 8367 } else { 8368 *statp = res.status; 8369 } 8370 8371 if (needrecov) { 8372 bool_t abort; 8373 8374 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8375 OP_RENAME, NULL); 8376 if (abort == FALSE) { 8377 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8378 &recov_state, needrecov); 8379 kmem_free(argop, argoplist_size); 8380 if (!e.error) 8381 (void) xdr_free(xdr_COMPOUND4res_clnt, 8382 (caddr_t)&res); 8383 mutex_enter(&orp->r_statelock); 8384 orp->r_flags &= ~R4RECEXPFH; 8385 cv_broadcast(&orp->r_cv); 8386 mutex_exit(&orp->r_statelock); 8387 goto recov_retry; 8388 } else { 8389 if (e.error != 0) { 8390 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8391 &recov_state, needrecov); 8392 goto out; 8393 } 8394 /* fall through for res.status case */ 8395 } 8396 } 8397 8398 resp = &res; 8399 /* 8400 * If OP_RENAME (or any prev op) failed, then return an error. 8401 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8402 */ 8403 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8404 /* 8405 * Error in an op other than last Getattr 8406 */ 8407 e.error = geterrno4(res.status); 8408 PURGE_ATTRCACHE4(odvp); 8409 PURGE_ATTRCACHE4(ndvp); 8410 /* 8411 * System V defines rename to return EEXIST, not 8412 * ENOTEMPTY if the target directory is not empty. 8413 * Over the wire, the error is NFSERR_ENOTEMPTY 8414 * which geterrno4 maps to ENOTEMPTY. 8415 */ 8416 if (e.error == ENOTEMPTY) 8417 e.error = EEXIST; 8418 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8419 needrecov); 8420 goto out; 8421 } 8422 8423 /* rename results */ 8424 rn_res = &res.array[5].nfs_resop4_u.oprename; 8425 8426 if (res.status == NFS4_OK) { 8427 /* Update target attribute, readdir and dnlc caches */ 8428 dinfo.di_garp = 8429 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8430 dinfo.di_cred = cr; 8431 dinfo.di_time_call = t; 8432 } else 8433 dinfop = NULL; 8434 8435 /* Update source cache attribute, readdir and dnlc caches */ 8436 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8437 8438 /* Update source cache attribute, readdir and dnlc caches */ 8439 if (ndvp != odvp) { 8440 8441 /* 8442 * If dinfop is non-NULL, then compound succeded, so 8443 * set di_garp to attrs for source dir. dinfop is only 8444 * set to NULL when compound fails. 8445 */ 8446 if (dinfop) 8447 dinfo.di_garp = 8448 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8449 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8450 dinfop); 8451 } 8452 8453 /* 8454 * Update the rnode with the new component name and args, 8455 * and if the file handle changed, also update it with the new fh. 8456 * This is only necessary if the target object has an rnode 8457 * entry and there is no need to create one for it. 8458 */ 8459 resop = &res.array[8]; /* getfh new res */ 8460 ngf_res = &resop->nfs_resop4_u.opgetfh; 8461 8462 /* 8463 * Update the path and filehandle for the renamed object. 8464 */ 8465 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8466 8467 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8468 8469 if (res.status == NFS4_OK) { 8470 resop++; /* getattr res */ 8471 e.error = nfs4_update_attrcache(res.status, 8472 &resop->nfs_resop4_u.opgetattr.ga_res, 8473 t, ovp, cr); 8474 } 8475 8476 out: 8477 kmem_free(argop, argoplist_size); 8478 if (resp) 8479 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8480 mutex_enter(&orp->r_statelock); 8481 orp->r_flags &= ~R4RECEXPFH; 8482 cv_broadcast(&orp->r_cv); 8483 mutex_exit(&orp->r_statelock); 8484 8485 return (e.error); 8486 } 8487 8488 /* ARGSUSED */ 8489 static int 8490 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8491 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8492 { 8493 int error; 8494 vnode_t *vp; 8495 8496 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8497 return (EPERM); 8498 /* 8499 * As ".." has special meaning and rather than send a mkdir 8500 * over the wire to just let the server freak out, we just 8501 * short circuit it here and return EEXIST 8502 */ 8503 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8504 return (EEXIST); 8505 8506 /* 8507 * Decision to get the right gid and setgid bit of the 8508 * new directory is now made in call_nfs4_create_req. 8509 */ 8510 va->va_mask |= AT_MODE; 8511 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8512 if (error) 8513 return (error); 8514 8515 *vpp = vp; 8516 return (0); 8517 } 8518 8519 8520 /* 8521 * rmdir is using the same remove v4 op as does remove. 8522 * Remove requires that the current fh be the target directory. 8523 * After the operation, the current fh is unchanged. 8524 * The compound op structure is: 8525 * PUTFH(targetdir), REMOVE 8526 */ 8527 /*ARGSUSED4*/ 8528 static int 8529 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8530 caller_context_t *ct, int flags) 8531 { 8532 int need_end_op = FALSE; 8533 COMPOUND4args_clnt args; 8534 COMPOUND4res_clnt res, *resp = NULL; 8535 REMOVE4res *rm_res; 8536 nfs_argop4 argop[3]; 8537 nfs_resop4 *resop; 8538 vnode_t *vp; 8539 int doqueue; 8540 mntinfo4_t *mi; 8541 rnode4_t *drp; 8542 bool_t needrecov = FALSE; 8543 nfs4_recov_state_t recov_state; 8544 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8545 dirattr_info_t dinfo, *dinfop; 8546 8547 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8548 return (EPERM); 8549 /* 8550 * As ".." has special meaning and rather than send a rmdir 8551 * over the wire to just let the server freak out, we just 8552 * short circuit it here and return EEXIST 8553 */ 8554 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8555 return (EEXIST); 8556 8557 drp = VTOR4(dvp); 8558 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8559 return (EINTR); 8560 8561 /* 8562 * Attempt to prevent a rmdir(".") from succeeding. 8563 */ 8564 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8565 if (e.error) { 8566 nfs_rw_exit(&drp->r_rwlock); 8567 return (e.error); 8568 } 8569 if (vp == cdir) { 8570 VN_RELE(vp); 8571 nfs_rw_exit(&drp->r_rwlock); 8572 return (EINVAL); 8573 } 8574 8575 /* 8576 * Since nfsv4 remove op works on both files and directories, 8577 * check that the removed object is indeed a directory. 8578 */ 8579 if (vp->v_type != VDIR) { 8580 VN_RELE(vp); 8581 nfs_rw_exit(&drp->r_rwlock); 8582 return (ENOTDIR); 8583 } 8584 8585 /* 8586 * First just remove the entry from the name cache, as it 8587 * is most likely an entry for this vp. 8588 */ 8589 dnlc_remove(dvp, nm); 8590 8591 /* 8592 * If there vnode reference count is greater than one, then 8593 * there may be additional references in the DNLC which will 8594 * need to be purged. First, trying removing the entry for 8595 * the parent directory and see if that removes the additional 8596 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8597 * to completely remove any references to the directory which 8598 * might still exist in the DNLC. 8599 */ 8600 if (vp->v_count > 1) { 8601 dnlc_remove(vp, ".."); 8602 if (vp->v_count > 1) 8603 dnlc_purge_vp(vp); 8604 } 8605 8606 mi = VTOMI4(dvp); 8607 recov_state.rs_flags = 0; 8608 recov_state.rs_num_retry_despite_err = 0; 8609 8610 recov_retry: 8611 args.ctag = TAG_RMDIR; 8612 8613 /* 8614 * Rmdir ops: putfh dir; remove 8615 */ 8616 args.array_len = 3; 8617 args.array = argop; 8618 8619 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8620 if (e.error) { 8621 nfs_rw_exit(&drp->r_rwlock); 8622 return (e.error); 8623 } 8624 need_end_op = TRUE; 8625 8626 /* putfh directory */ 8627 argop[0].argop = OP_CPUTFH; 8628 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8629 8630 /* remove */ 8631 argop[1].argop = OP_CREMOVE; 8632 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8633 8634 /* getattr (postop attrs for dir that contained removed dir) */ 8635 argop[2].argop = OP_GETATTR; 8636 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8637 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8638 8639 dinfo.di_time_call = gethrtime(); 8640 doqueue = 1; 8641 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8642 8643 PURGE_ATTRCACHE4(vp); 8644 8645 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8646 if (e.error) { 8647 PURGE_ATTRCACHE4(dvp); 8648 } 8649 8650 if (needrecov) { 8651 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8652 NULL, OP_REMOVE, NULL) == FALSE) { 8653 if (!e.error) 8654 (void) xdr_free(xdr_COMPOUND4res_clnt, 8655 (caddr_t)&res); 8656 8657 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8658 needrecov); 8659 need_end_op = FALSE; 8660 goto recov_retry; 8661 } 8662 } 8663 8664 if (!e.error) { 8665 resp = &res; 8666 8667 /* 8668 * Only return error if first 2 ops (OP_REMOVE or earlier) 8669 * failed. 8670 */ 8671 if (res.status != NFS4_OK && res.array_len <= 2) { 8672 e.error = geterrno4(res.status); 8673 PURGE_ATTRCACHE4(dvp); 8674 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8675 &recov_state, needrecov); 8676 need_end_op = FALSE; 8677 nfs4_purge_stale_fh(e.error, dvp, cr); 8678 /* 8679 * System V defines rmdir to return EEXIST, not 8680 * ENOTEMPTY if the directory is not empty. Over 8681 * the wire, the error is NFSERR_ENOTEMPTY which 8682 * geterrno4 maps to ENOTEMPTY. 8683 */ 8684 if (e.error == ENOTEMPTY) 8685 e.error = EEXIST; 8686 } else { 8687 resop = &res.array[1]; /* remove res */ 8688 rm_res = &resop->nfs_resop4_u.opremove; 8689 8690 if (res.status == NFS4_OK) { 8691 resop = &res.array[2]; /* dir attrs */ 8692 dinfo.di_garp = 8693 &resop->nfs_resop4_u.opgetattr.ga_res; 8694 dinfo.di_cred = cr; 8695 dinfop = &dinfo; 8696 } else 8697 dinfop = NULL; 8698 8699 /* Update dir attribute, readdir and dnlc caches */ 8700 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8701 dinfop); 8702 8703 /* destroy rddir cache for dir that was removed */ 8704 if (VTOR4(vp)->r_dir != NULL) 8705 nfs4_purge_rddir_cache(vp); 8706 } 8707 } 8708 8709 if (need_end_op) 8710 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8711 8712 nfs_rw_exit(&drp->r_rwlock); 8713 8714 if (resp) 8715 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8716 8717 if (e.error == 0) { 8718 vnode_t *tvp; 8719 rnode4_t *trp; 8720 trp = VTOR4(vp); 8721 tvp = vp; 8722 if (IS_SHADOW(vp, trp)) 8723 tvp = RTOV4(trp); 8724 vnevent_rmdir(tvp, dvp, nm, ct); 8725 } 8726 8727 VN_RELE(vp); 8728 8729 return (e.error); 8730 } 8731 8732 /* ARGSUSED */ 8733 static int 8734 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8735 caller_context_t *ct, int flags) 8736 { 8737 int error; 8738 vnode_t *vp; 8739 rnode4_t *rp; 8740 char *contents; 8741 mntinfo4_t *mi = VTOMI4(dvp); 8742 8743 if (nfs_zone() != mi->mi_zone) 8744 return (EPERM); 8745 if (!(mi->mi_flags & MI4_SYMLINK)) 8746 return (EOPNOTSUPP); 8747 8748 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8749 if (error) 8750 return (error); 8751 8752 ASSERT(nfs4_consistent_type(vp)); 8753 rp = VTOR4(vp); 8754 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8755 8756 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8757 8758 if (contents != NULL) { 8759 mutex_enter(&rp->r_statelock); 8760 if (rp->r_symlink.contents == NULL) { 8761 rp->r_symlink.len = strlen(tnm); 8762 bcopy(tnm, contents, rp->r_symlink.len); 8763 rp->r_symlink.contents = contents; 8764 rp->r_symlink.size = MAXPATHLEN; 8765 mutex_exit(&rp->r_statelock); 8766 } else { 8767 mutex_exit(&rp->r_statelock); 8768 kmem_free((void *)contents, MAXPATHLEN); 8769 } 8770 } 8771 } 8772 VN_RELE(vp); 8773 8774 return (error); 8775 } 8776 8777 8778 /* 8779 * Read directory entries. 8780 * There are some weird things to look out for here. The uio_loffset 8781 * field is either 0 or it is the offset returned from a previous 8782 * readdir. It is an opaque value used by the server to find the 8783 * correct directory block to read. The count field is the number 8784 * of blocks to read on the server. This is advisory only, the server 8785 * may return only one block's worth of entries. Entries may be compressed 8786 * on the server. 8787 */ 8788 /* ARGSUSED */ 8789 static int 8790 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8791 caller_context_t *ct, int flags) 8792 { 8793 int error; 8794 uint_t count; 8795 rnode4_t *rp; 8796 rddir4_cache *rdc; 8797 rddir4_cache *rrdc; 8798 8799 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8800 return (EIO); 8801 rp = VTOR4(vp); 8802 8803 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8804 8805 /* 8806 * Make sure that the directory cache is valid. 8807 */ 8808 if (rp->r_dir != NULL) { 8809 if (nfs_disable_rddir_cache != 0) { 8810 /* 8811 * Setting nfs_disable_rddir_cache in /etc/system 8812 * allows interoperability with servers that do not 8813 * properly update the attributes of directories. 8814 * Any cached information gets purged before an 8815 * access is made to it. 8816 */ 8817 nfs4_purge_rddir_cache(vp); 8818 } 8819 8820 error = nfs4_validate_caches(vp, cr); 8821 if (error) 8822 return (error); 8823 } 8824 8825 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8826 8827 /* 8828 * Short circuit last readdir which always returns 0 bytes. 8829 * This can be done after the directory has been read through 8830 * completely at least once. This will set r_direof which 8831 * can be used to find the value of the last cookie. 8832 */ 8833 mutex_enter(&rp->r_statelock); 8834 if (rp->r_direof != NULL && 8835 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8836 mutex_exit(&rp->r_statelock); 8837 #ifdef DEBUG 8838 nfs4_readdir_cache_shorts++; 8839 #endif 8840 if (eofp) 8841 *eofp = 1; 8842 return (0); 8843 } 8844 8845 /* 8846 * Look for a cache entry. Cache entries are identified 8847 * by the NFS cookie value and the byte count requested. 8848 */ 8849 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8850 8851 /* 8852 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8853 */ 8854 if (rdc == NULL) { 8855 mutex_exit(&rp->r_statelock); 8856 return (EINTR); 8857 } 8858 8859 /* 8860 * Check to see if we need to fill this entry in. 8861 */ 8862 if (rdc->flags & RDDIRREQ) { 8863 rdc->flags &= ~RDDIRREQ; 8864 rdc->flags |= RDDIR; 8865 mutex_exit(&rp->r_statelock); 8866 8867 /* 8868 * Do the readdir. 8869 */ 8870 nfs4readdir(vp, rdc, cr); 8871 8872 /* 8873 * Reacquire the lock, so that we can continue 8874 */ 8875 mutex_enter(&rp->r_statelock); 8876 /* 8877 * The entry is now complete 8878 */ 8879 rdc->flags &= ~RDDIR; 8880 } 8881 8882 ASSERT(!(rdc->flags & RDDIR)); 8883 8884 /* 8885 * If an error occurred while attempting 8886 * to fill the cache entry, mark the entry invalid and 8887 * just return the error. 8888 */ 8889 if (rdc->error) { 8890 error = rdc->error; 8891 rdc->flags |= RDDIRREQ; 8892 rddir4_cache_rele(rp, rdc); 8893 mutex_exit(&rp->r_statelock); 8894 return (error); 8895 } 8896 8897 /* 8898 * The cache entry is complete and good, 8899 * copyout the dirent structs to the calling 8900 * thread. 8901 */ 8902 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 8903 8904 /* 8905 * If no error occurred during the copyout, 8906 * update the offset in the uio struct to 8907 * contain the value of the next NFS 4 cookie 8908 * and set the eof value appropriately. 8909 */ 8910 if (!error) { 8911 uiop->uio_loffset = rdc->nfs4_ncookie; 8912 if (eofp) 8913 *eofp = rdc->eof; 8914 } 8915 8916 /* 8917 * Decide whether to do readahead. Don't if we 8918 * have already read to the end of directory. 8919 */ 8920 if (rdc->eof) { 8921 /* 8922 * Make the entry the direof only if it is cached 8923 */ 8924 if (rdc->flags & RDDIRCACHED) 8925 rp->r_direof = rdc; 8926 rddir4_cache_rele(rp, rdc); 8927 mutex_exit(&rp->r_statelock); 8928 return (error); 8929 } 8930 8931 /* Determine if a readdir readahead should be done */ 8932 if (!(rp->r_flags & R4LOOKUP)) { 8933 rddir4_cache_rele(rp, rdc); 8934 mutex_exit(&rp->r_statelock); 8935 return (error); 8936 } 8937 8938 /* 8939 * Now look for a readahead entry. 8940 * 8941 * Check to see whether we found an entry for the readahead. 8942 * If so, we don't need to do anything further, so free the new 8943 * entry if one was allocated. Otherwise, allocate a new entry, add 8944 * it to the cache, and then initiate an asynchronous readdir 8945 * operation to fill it. 8946 */ 8947 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 8948 8949 /* 8950 * A readdir cache entry could not be obtained for the readahead. In 8951 * this case we skip the readahead and return. 8952 */ 8953 if (rrdc == NULL) { 8954 rddir4_cache_rele(rp, rdc); 8955 mutex_exit(&rp->r_statelock); 8956 return (error); 8957 } 8958 8959 /* 8960 * Check to see if we need to fill this entry in. 8961 */ 8962 if (rrdc->flags & RDDIRREQ) { 8963 rrdc->flags &= ~RDDIRREQ; 8964 rrdc->flags |= RDDIR; 8965 rddir4_cache_rele(rp, rdc); 8966 mutex_exit(&rp->r_statelock); 8967 #ifdef DEBUG 8968 nfs4_readdir_readahead++; 8969 #endif 8970 /* 8971 * Do the readdir. 8972 */ 8973 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 8974 return (error); 8975 } 8976 8977 rddir4_cache_rele(rp, rrdc); 8978 rddir4_cache_rele(rp, rdc); 8979 mutex_exit(&rp->r_statelock); 8980 return (error); 8981 } 8982 8983 static int 8984 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8985 { 8986 int error; 8987 rnode4_t *rp; 8988 8989 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 8990 8991 rp = VTOR4(vp); 8992 8993 /* 8994 * Obtain the readdir results for the caller. 8995 */ 8996 nfs4readdir(vp, rdc, cr); 8997 8998 mutex_enter(&rp->r_statelock); 8999 /* 9000 * The entry is now complete 9001 */ 9002 rdc->flags &= ~RDDIR; 9003 9004 error = rdc->error; 9005 if (error) 9006 rdc->flags |= RDDIRREQ; 9007 rddir4_cache_rele(rp, rdc); 9008 mutex_exit(&rp->r_statelock); 9009 9010 return (error); 9011 } 9012 9013 /* 9014 * Read directory entries. 9015 * There are some weird things to look out for here. The uio_loffset 9016 * field is either 0 or it is the offset returned from a previous 9017 * readdir. It is an opaque value used by the server to find the 9018 * correct directory block to read. The count field is the number 9019 * of blocks to read on the server. This is advisory only, the server 9020 * may return only one block's worth of entries. Entries may be compressed 9021 * on the server. 9022 * 9023 * Generates the following compound request: 9024 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9025 * must include a Lookupp as well. In this case, send: 9026 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9027 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9028 * 9029 * Get complete attributes and filehandles for entries if this is the 9030 * first read of the directory. Otherwise, just get fileid's. 9031 */ 9032 static void 9033 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9034 { 9035 COMPOUND4args_clnt args; 9036 COMPOUND4res_clnt res; 9037 READDIR4args *rargs; 9038 READDIR4res_clnt *rd_res; 9039 bitmap4 rd_bitsval; 9040 nfs_argop4 argop[5]; 9041 nfs_resop4 *resop; 9042 rnode4_t *rp = VTOR4(vp); 9043 mntinfo4_t *mi = VTOMI4(vp); 9044 int doqueue; 9045 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9046 vnode_t *dvp; 9047 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9048 int num_ops, res_opcnt; 9049 bool_t needrecov = FALSE; 9050 nfs4_recov_state_t recov_state; 9051 hrtime_t t; 9052 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9053 9054 ASSERT(nfs_zone() == mi->mi_zone); 9055 ASSERT(rdc->flags & RDDIR); 9056 ASSERT(rdc->entries == NULL); 9057 9058 /* 9059 * If rp were a stub, it should have triggered and caused 9060 * a mount for us to get this far. 9061 */ 9062 ASSERT(!RP_ISSTUB(rp)); 9063 9064 num_ops = 2; 9065 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9066 /* 9067 * Since nfsv4 readdir may not return entries for "." and "..", 9068 * the client must recreate them: 9069 * To find the correct nodeid, do the following: 9070 * For current node, get nodeid from dnlc. 9071 * - if current node is rootvp, set pnodeid to nodeid. 9072 * - else if parent is in the dnlc, get its nodeid from there. 9073 * - else add LOOKUPP+GETATTR to compound. 9074 */ 9075 nodeid = rp->r_attr.va_nodeid; 9076 if (vp->v_flag & VROOT) { 9077 pnodeid = nodeid; /* root of mount point */ 9078 } else { 9079 dvp = dnlc_lookup(vp, ".."); 9080 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9081 /* parent in dnlc cache - no need for otw */ 9082 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9083 } else { 9084 /* 9085 * parent not in dnlc cache, 9086 * do lookupp to get its id 9087 */ 9088 num_ops = 5; 9089 pnodeid = 0; /* set later by getattr parent */ 9090 } 9091 if (dvp) 9092 VN_RELE(dvp); 9093 } 9094 } 9095 recov_state.rs_flags = 0; 9096 recov_state.rs_num_retry_despite_err = 0; 9097 9098 /* Save the original mount point security flavor */ 9099 (void) save_mnt_secinfo(mi->mi_curr_serv); 9100 9101 recov_retry: 9102 args.ctag = TAG_READDIR; 9103 9104 args.array = argop; 9105 args.array_len = num_ops; 9106 9107 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9108 &recov_state, NULL)) { 9109 /* 9110 * If readdir a node that is a stub for a crossed mount point, 9111 * keep the original secinfo flavor for the current file 9112 * system, not the crossed one. 9113 */ 9114 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9115 rdc->error = e.error; 9116 return; 9117 } 9118 9119 /* 9120 * Determine which attrs to request for dirents. This code 9121 * must be protected by nfs4_start/end_fop because of r_server 9122 * (which will change during failover recovery). 9123 * 9124 */ 9125 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9126 /* 9127 * Get all vattr attrs plus filehandle and rdattr_error 9128 */ 9129 rd_bitsval = NFS4_VATTR_MASK | 9130 FATTR4_RDATTR_ERROR_MASK | 9131 FATTR4_FILEHANDLE_MASK; 9132 9133 if (rp->r_flags & R4READDIRWATTR) { 9134 mutex_enter(&rp->r_statelock); 9135 rp->r_flags &= ~R4READDIRWATTR; 9136 mutex_exit(&rp->r_statelock); 9137 } 9138 } else { 9139 servinfo4_t *svp = rp->r_server; 9140 9141 /* 9142 * Already read directory. Use readdir with 9143 * no attrs (except for mounted_on_fileid) for updates. 9144 */ 9145 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9146 9147 /* 9148 * request mounted on fileid if supported, else request 9149 * fileid. maybe we should verify that fileid is supported 9150 * and request something else if not. 9151 */ 9152 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9153 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9154 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9155 nfs_rw_exit(&svp->sv_lock); 9156 } 9157 9158 /* putfh directory fh */ 9159 argop[0].argop = OP_CPUTFH; 9160 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9161 9162 argop[1].argop = OP_READDIR; 9163 rargs = &argop[1].nfs_argop4_u.opreaddir; 9164 /* 9165 * 1 and 2 are reserved for client "." and ".." entry offset. 9166 * cookie 0 should be used over-the-wire to start reading at 9167 * the beginning of the directory excluding "." and "..". 9168 */ 9169 if (rdc->nfs4_cookie == 0 || 9170 rdc->nfs4_cookie == 1 || 9171 rdc->nfs4_cookie == 2) { 9172 rargs->cookie = (nfs_cookie4)0; 9173 rargs->cookieverf = 0; 9174 } else { 9175 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9176 mutex_enter(&rp->r_statelock); 9177 rargs->cookieverf = rp->r_cookieverf4; 9178 mutex_exit(&rp->r_statelock); 9179 } 9180 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9181 rargs->maxcount = mi->mi_tsize; 9182 rargs->attr_request = rd_bitsval; 9183 rargs->rdc = rdc; 9184 rargs->dvp = vp; 9185 rargs->mi = mi; 9186 rargs->cr = cr; 9187 9188 9189 /* 9190 * If count < than the minimum required, we return no entries 9191 * and fail with EINVAL 9192 */ 9193 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9194 rdc->error = EINVAL; 9195 goto out; 9196 } 9197 9198 if (args.array_len == 5) { 9199 /* 9200 * Add lookupp and getattr for parent nodeid. 9201 */ 9202 argop[2].argop = OP_LOOKUPP; 9203 9204 argop[3].argop = OP_GETFH; 9205 9206 /* getattr parent */ 9207 argop[4].argop = OP_GETATTR; 9208 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9209 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9210 } 9211 9212 doqueue = 1; 9213 9214 if (mi->mi_io_kstats) { 9215 mutex_enter(&mi->mi_lock); 9216 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9217 mutex_exit(&mi->mi_lock); 9218 } 9219 9220 /* capture the time of this call */ 9221 rargs->t = t = gethrtime(); 9222 9223 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9224 9225 if (mi->mi_io_kstats) { 9226 mutex_enter(&mi->mi_lock); 9227 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9228 mutex_exit(&mi->mi_lock); 9229 } 9230 9231 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9232 9233 /* 9234 * If RPC error occurred and it isn't an error that 9235 * triggers recovery, then go ahead and fail now. 9236 */ 9237 if (e.error != 0 && !needrecov) { 9238 rdc->error = e.error; 9239 goto out; 9240 } 9241 9242 if (needrecov) { 9243 bool_t abort; 9244 9245 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9246 "nfs4readdir: initiating recovery.\n")); 9247 9248 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9249 NULL, OP_READDIR, NULL); 9250 if (abort == FALSE) { 9251 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9252 &recov_state, needrecov); 9253 if (!e.error) 9254 (void) xdr_free(xdr_COMPOUND4res_clnt, 9255 (caddr_t)&res); 9256 if (rdc->entries != NULL) { 9257 kmem_free(rdc->entries, rdc->entlen); 9258 rdc->entries = NULL; 9259 } 9260 goto recov_retry; 9261 } 9262 9263 if (e.error != 0) { 9264 rdc->error = e.error; 9265 goto out; 9266 } 9267 9268 /* fall through for res.status case */ 9269 } 9270 9271 res_opcnt = res.array_len; 9272 9273 /* 9274 * If compound failed first 2 ops (PUTFH+READDIR), then return 9275 * failure here. Subsequent ops are for filling out dot-dot 9276 * dirent, and if they fail, we still want to give the caller 9277 * the dirents returned by (the successful) READDIR op, so we need 9278 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9279 * 9280 * One example where PUTFH+READDIR ops would succeed but 9281 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9282 * but lacks x. In this case, a POSIX server's VOP_READDIR 9283 * would succeed; however, VOP_LOOKUP(..) would fail since no 9284 * x perm. We need to come up with a non-vendor-specific way 9285 * for a POSIX server to return d_ino from dotdot's dirent if 9286 * client only requests mounted_on_fileid, and just say the 9287 * LOOKUPP succeeded and fill out the GETATTR. However, if 9288 * client requested any mandatory attrs, server would be required 9289 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9290 * for dotdot. 9291 */ 9292 9293 if (res.status) { 9294 if (res_opcnt <= 2) { 9295 e.error = geterrno4(res.status); 9296 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9297 &recov_state, needrecov); 9298 nfs4_purge_stale_fh(e.error, vp, cr); 9299 rdc->error = e.error; 9300 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9301 if (rdc->entries != NULL) { 9302 kmem_free(rdc->entries, rdc->entlen); 9303 rdc->entries = NULL; 9304 } 9305 /* 9306 * If readdir a node that is a stub for a 9307 * crossed mount point, keep the original 9308 * secinfo flavor for the current file system, 9309 * not the crossed one. 9310 */ 9311 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9312 return; 9313 } 9314 } 9315 9316 resop = &res.array[1]; /* readdir res */ 9317 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9318 9319 mutex_enter(&rp->r_statelock); 9320 rp->r_cookieverf4 = rd_res->cookieverf; 9321 mutex_exit(&rp->r_statelock); 9322 9323 /* 9324 * For "." and ".." entries 9325 * e.g. 9326 * seek(cookie=0) -> "." entry with d_off = 1 9327 * seek(cookie=1) -> ".." entry with d_off = 2 9328 */ 9329 if (cookie == (nfs_cookie4) 0) { 9330 if (rd_res->dotp) 9331 rd_res->dotp->d_ino = nodeid; 9332 if (rd_res->dotdotp) 9333 rd_res->dotdotp->d_ino = pnodeid; 9334 } 9335 if (cookie == (nfs_cookie4) 1) { 9336 if (rd_res->dotdotp) 9337 rd_res->dotdotp->d_ino = pnodeid; 9338 } 9339 9340 9341 /* LOOKUPP+GETATTR attemped */ 9342 if (args.array_len == 5 && rd_res->dotdotp) { 9343 if (res.status == NFS4_OK && res_opcnt == 5) { 9344 nfs_fh4 *fhp; 9345 nfs4_sharedfh_t *sfhp; 9346 vnode_t *pvp; 9347 nfs4_ga_res_t *garp; 9348 9349 resop++; /* lookupp */ 9350 resop++; /* getfh */ 9351 fhp = &resop->nfs_resop4_u.opgetfh.object; 9352 9353 resop++; /* getattr of parent */ 9354 9355 /* 9356 * First, take care of finishing the 9357 * readdir results. 9358 */ 9359 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9360 /* 9361 * The d_ino of .. must be the inode number 9362 * of the mounted filesystem. 9363 */ 9364 if (garp->n4g_va.va_mask & AT_NODEID) 9365 rd_res->dotdotp->d_ino = 9366 garp->n4g_va.va_nodeid; 9367 9368 9369 /* 9370 * Next, create the ".." dnlc entry 9371 */ 9372 sfhp = sfh4_get(fhp, mi); 9373 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9374 dnlc_update(vp, "..", pvp); 9375 VN_RELE(pvp); 9376 } 9377 sfh4_rele(&sfhp); 9378 } 9379 } 9380 9381 if (mi->mi_io_kstats) { 9382 mutex_enter(&mi->mi_lock); 9383 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9384 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9385 mutex_exit(&mi->mi_lock); 9386 } 9387 9388 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9389 9390 out: 9391 /* 9392 * If readdir a node that is a stub for a crossed mount point, 9393 * keep the original secinfo flavor for the current file system, 9394 * not the crossed one. 9395 */ 9396 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9397 9398 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9399 } 9400 9401 9402 static int 9403 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9404 { 9405 rnode4_t *rp = VTOR4(bp->b_vp); 9406 int count; 9407 int error; 9408 cred_t *cred_otw = NULL; 9409 offset_t offset; 9410 nfs4_open_stream_t *osp = NULL; 9411 bool_t first_time = TRUE; /* first time getting otw cred */ 9412 bool_t last_time = FALSE; /* last time getting otw cred */ 9413 9414 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9415 9416 DTRACE_IO1(start, struct buf *, bp); 9417 offset = ldbtob(bp->b_lblkno); 9418 9419 if (bp->b_flags & B_READ) { 9420 read_again: 9421 /* 9422 * Releases the osp, if it is provided. 9423 * Puts a hold on the cred_otw and the new osp (if found). 9424 */ 9425 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9426 &first_time, &last_time); 9427 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9428 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9429 readahead, NULL); 9430 crfree(cred_otw); 9431 if (!error) { 9432 if (bp->b_resid) { 9433 /* 9434 * Didn't get it all because we hit EOF, 9435 * zero all the memory beyond the EOF. 9436 */ 9437 /* bzero(rdaddr + */ 9438 bzero(bp->b_un.b_addr + 9439 bp->b_bcount - bp->b_resid, bp->b_resid); 9440 } 9441 mutex_enter(&rp->r_statelock); 9442 if (bp->b_resid == bp->b_bcount && 9443 offset >= rp->r_size) { 9444 /* 9445 * We didn't read anything at all as we are 9446 * past EOF. Return an error indicator back 9447 * but don't destroy the pages (yet). 9448 */ 9449 error = NFS_EOF; 9450 } 9451 mutex_exit(&rp->r_statelock); 9452 } else if (error == EACCES && last_time == FALSE) { 9453 goto read_again; 9454 } 9455 } else { 9456 if (!(rp->r_flags & R4STALE)) { 9457 write_again: 9458 /* 9459 * Releases the osp, if it is provided. 9460 * Puts a hold on the cred_otw and the new 9461 * osp (if found). 9462 */ 9463 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9464 &first_time, &last_time); 9465 mutex_enter(&rp->r_statelock); 9466 count = MIN(bp->b_bcount, rp->r_size - offset); 9467 mutex_exit(&rp->r_statelock); 9468 if (count < 0) 9469 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9470 #ifdef DEBUG 9471 if (count == 0) { 9472 zoneid_t zoneid = getzoneid(); 9473 9474 zcmn_err(zoneid, CE_WARN, 9475 "nfs4_bio: zero length write at %lld", 9476 offset); 9477 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9478 "b_bcount=%ld, file size=%lld", 9479 rp->r_flags, (long)bp->b_bcount, 9480 rp->r_size); 9481 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9482 if (nfs4_bio_do_stop) 9483 debug_enter("nfs4_bio"); 9484 } 9485 #endif 9486 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9487 count, cred_otw, stab_comm); 9488 if (error == EACCES && last_time == FALSE) { 9489 crfree(cred_otw); 9490 goto write_again; 9491 } 9492 bp->b_error = error; 9493 if (error && error != EINTR && 9494 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9495 /* 9496 * Don't print EDQUOT errors on the console. 9497 * Don't print asynchronous EACCES errors. 9498 * Don't print EFBIG errors. 9499 * Print all other write errors. 9500 */ 9501 if (error != EDQUOT && error != EFBIG && 9502 (error != EACCES || 9503 !(bp->b_flags & B_ASYNC))) 9504 nfs4_write_error(bp->b_vp, 9505 error, cred_otw); 9506 /* 9507 * Update r_error and r_flags as appropriate. 9508 * If the error was ESTALE, then mark the 9509 * rnode as not being writeable and save 9510 * the error status. Otherwise, save any 9511 * errors which occur from asynchronous 9512 * page invalidations. Any errors occurring 9513 * from other operations should be saved 9514 * by the caller. 9515 */ 9516 mutex_enter(&rp->r_statelock); 9517 if (error == ESTALE) { 9518 rp->r_flags |= R4STALE; 9519 if (!rp->r_error) 9520 rp->r_error = error; 9521 } else if (!rp->r_error && 9522 (bp->b_flags & 9523 (B_INVAL|B_FORCE|B_ASYNC)) == 9524 (B_INVAL|B_FORCE|B_ASYNC)) { 9525 rp->r_error = error; 9526 } 9527 mutex_exit(&rp->r_statelock); 9528 } 9529 crfree(cred_otw); 9530 } else 9531 error = rp->r_error; 9532 } 9533 9534 if (error != 0 && error != NFS_EOF) 9535 bp->b_flags |= B_ERROR; 9536 9537 if (osp) 9538 open_stream_rele(osp, rp); 9539 9540 DTRACE_IO1(done, struct buf *, bp); 9541 9542 return (error); 9543 } 9544 9545 /* ARGSUSED */ 9546 int 9547 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9548 { 9549 return (EREMOTE); 9550 } 9551 9552 /* ARGSUSED2 */ 9553 int 9554 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9555 { 9556 rnode4_t *rp = VTOR4(vp); 9557 9558 if (!write_lock) { 9559 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9560 return (V_WRITELOCK_FALSE); 9561 } 9562 9563 if ((rp->r_flags & R4DIRECTIO) || 9564 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9565 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9566 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9567 return (V_WRITELOCK_FALSE); 9568 nfs_rw_exit(&rp->r_rwlock); 9569 } 9570 9571 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9572 return (V_WRITELOCK_TRUE); 9573 } 9574 9575 /* ARGSUSED */ 9576 void 9577 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9578 { 9579 rnode4_t *rp = VTOR4(vp); 9580 9581 nfs_rw_exit(&rp->r_rwlock); 9582 } 9583 9584 /* ARGSUSED */ 9585 static int 9586 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9587 { 9588 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9589 return (EIO); 9590 9591 /* 9592 * Because we stuff the readdir cookie into the offset field 9593 * someone may attempt to do an lseek with the cookie which 9594 * we want to succeed. 9595 */ 9596 if (vp->v_type == VDIR) 9597 return (0); 9598 if (*noffp < 0) 9599 return (EINVAL); 9600 return (0); 9601 } 9602 9603 9604 /* 9605 * Return all the pages from [off..off+len) in file 9606 */ 9607 /* ARGSUSED */ 9608 static int 9609 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9610 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9611 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9612 { 9613 rnode4_t *rp; 9614 int error; 9615 mntinfo4_t *mi; 9616 9617 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9618 return (EIO); 9619 rp = VTOR4(vp); 9620 if (IS_SHADOW(vp, rp)) 9621 vp = RTOV4(rp); 9622 9623 if (vp->v_flag & VNOMAP) 9624 return (ENOSYS); 9625 9626 if (protp != NULL) 9627 *protp = PROT_ALL; 9628 9629 /* 9630 * Now validate that the caches are up to date. 9631 */ 9632 if (error = nfs4_validate_caches(vp, cr)) 9633 return (error); 9634 9635 mi = VTOMI4(vp); 9636 retry: 9637 mutex_enter(&rp->r_statelock); 9638 9639 /* 9640 * Don't create dirty pages faster than they 9641 * can be cleaned so that the system doesn't 9642 * get imbalanced. If the async queue is 9643 * maxed out, then wait for it to drain before 9644 * creating more dirty pages. Also, wait for 9645 * any threads doing pagewalks in the vop_getattr 9646 * entry points so that they don't block for 9647 * long periods. 9648 */ 9649 if (rw == S_CREATE) { 9650 while ((mi->mi_max_threads != 0 && 9651 rp->r_awcount > 2 * mi->mi_max_threads) || 9652 rp->r_gcount > 0) 9653 cv_wait(&rp->r_cv, &rp->r_statelock); 9654 } 9655 9656 /* 9657 * If we are getting called as a side effect of an nfs_write() 9658 * operation the local file size might not be extended yet. 9659 * In this case we want to be able to return pages of zeroes. 9660 */ 9661 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9662 NFS4_DEBUG(nfs4_pageio_debug, 9663 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9664 "len=%llu, size=%llu, attrsize =%llu", off, 9665 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9666 mutex_exit(&rp->r_statelock); 9667 return (EFAULT); /* beyond EOF */ 9668 } 9669 9670 mutex_exit(&rp->r_statelock); 9671 9672 if (len <= PAGESIZE) { 9673 error = nfs4_getapage(vp, off, len, protp, pl, plsz, 9674 seg, addr, rw, cr); 9675 NFS4_DEBUG(nfs4_pageio_debug && error, 9676 (CE_NOTE, "getpage error %d; off=%lld, " 9677 "len=%lld", error, off, (u_longlong_t)len)); 9678 } else { 9679 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9680 pl, plsz, seg, addr, rw, cr); 9681 NFS4_DEBUG(nfs4_pageio_debug && error, 9682 (CE_NOTE, "getpages error %d; off=%lld, " 9683 "len=%lld", error, off, (u_longlong_t)len)); 9684 } 9685 9686 switch (error) { 9687 case NFS_EOF: 9688 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9689 goto retry; 9690 case ESTALE: 9691 nfs4_purge_stale_fh(error, vp, cr); 9692 } 9693 9694 return (error); 9695 } 9696 9697 /* 9698 * Called from pvn_getpages or nfs4_getpage to get a particular page. 9699 */ 9700 /* ARGSUSED */ 9701 static int 9702 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9703 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9704 enum seg_rw rw, cred_t *cr) 9705 { 9706 rnode4_t *rp; 9707 uint_t bsize; 9708 struct buf *bp; 9709 page_t *pp; 9710 u_offset_t lbn; 9711 u_offset_t io_off; 9712 u_offset_t blkoff; 9713 u_offset_t rablkoff; 9714 size_t io_len; 9715 uint_t blksize; 9716 int error; 9717 int readahead; 9718 int readahead_issued = 0; 9719 int ra_window; /* readahead window */ 9720 page_t *pagefound; 9721 page_t *savepp; 9722 9723 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9724 return (EIO); 9725 9726 rp = VTOR4(vp); 9727 ASSERT(!IS_SHADOW(vp, rp)); 9728 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9729 9730 reread: 9731 bp = NULL; 9732 pp = NULL; 9733 pagefound = NULL; 9734 9735 if (pl != NULL) 9736 pl[0] = NULL; 9737 9738 error = 0; 9739 lbn = off / bsize; 9740 blkoff = lbn * bsize; 9741 9742 /* 9743 * Queueing up the readahead before doing the synchronous read 9744 * results in a significant increase in read throughput because 9745 * of the increased parallelism between the async threads and 9746 * the process context. 9747 */ 9748 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9749 rw != S_CREATE && 9750 !(vp->v_flag & VNOCACHE)) { 9751 mutex_enter(&rp->r_statelock); 9752 9753 /* 9754 * Calculate the number of readaheads to do. 9755 * a) No readaheads at offset = 0. 9756 * b) Do maximum(nfs4_nra) readaheads when the readahead 9757 * window is closed. 9758 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9759 * upon how far the readahead window is open or close. 9760 * d) No readaheads if rp->r_nextr is not within the scope 9761 * of the readahead window (random i/o). 9762 */ 9763 9764 if (off == 0) 9765 readahead = 0; 9766 else if (blkoff == rp->r_nextr) 9767 readahead = nfs4_nra; 9768 else if (rp->r_nextr > blkoff && 9769 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9770 <= (nfs4_nra - 1))) 9771 readahead = nfs4_nra - ra_window; 9772 else 9773 readahead = 0; 9774 9775 rablkoff = rp->r_nextr; 9776 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9777 mutex_exit(&rp->r_statelock); 9778 if (nfs4_async_readahead(vp, rablkoff + bsize, 9779 addr + (rablkoff + bsize - off), 9780 seg, cr, nfs4_readahead) < 0) { 9781 mutex_enter(&rp->r_statelock); 9782 break; 9783 } 9784 readahead--; 9785 rablkoff += bsize; 9786 /* 9787 * Indicate that we did a readahead so 9788 * readahead offset is not updated 9789 * by the synchronous read below. 9790 */ 9791 readahead_issued = 1; 9792 mutex_enter(&rp->r_statelock); 9793 /* 9794 * set readahead offset to 9795 * offset of last async readahead 9796 * request. 9797 */ 9798 rp->r_nextr = rablkoff; 9799 } 9800 mutex_exit(&rp->r_statelock); 9801 } 9802 9803 again: 9804 if ((pagefound = page_exists(vp, off)) == NULL) { 9805 if (pl == NULL) { 9806 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9807 nfs4_readahead); 9808 } else if (rw == S_CREATE) { 9809 /* 9810 * Block for this page is not allocated, or the offset 9811 * is beyond the current allocation size, or we're 9812 * allocating a swap slot and the page was not found, 9813 * so allocate it and return a zero page. 9814 */ 9815 if ((pp = page_create_va(vp, off, 9816 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9817 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9818 io_len = PAGESIZE; 9819 mutex_enter(&rp->r_statelock); 9820 rp->r_nextr = off + PAGESIZE; 9821 mutex_exit(&rp->r_statelock); 9822 } else { 9823 /* 9824 * Need to go to server to get a block 9825 */ 9826 mutex_enter(&rp->r_statelock); 9827 if (blkoff < rp->r_size && 9828 blkoff + bsize > rp->r_size) { 9829 /* 9830 * If less than a block left in 9831 * file read less than a block. 9832 */ 9833 if (rp->r_size <= off) { 9834 /* 9835 * Trying to access beyond EOF, 9836 * set up to get at least one page. 9837 */ 9838 blksize = off + PAGESIZE - blkoff; 9839 } else 9840 blksize = rp->r_size - blkoff; 9841 } else if ((off == 0) || 9842 (off != rp->r_nextr && !readahead_issued)) { 9843 blksize = PAGESIZE; 9844 blkoff = off; /* block = page here */ 9845 } else 9846 blksize = bsize; 9847 mutex_exit(&rp->r_statelock); 9848 9849 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9850 &io_len, blkoff, blksize, 0); 9851 9852 /* 9853 * Some other thread has entered the page, 9854 * so just use it. 9855 */ 9856 if (pp == NULL) 9857 goto again; 9858 9859 /* 9860 * Now round the request size up to page boundaries. 9861 * This ensures that the entire page will be 9862 * initialized to zeroes if EOF is encountered. 9863 */ 9864 io_len = ptob(btopr(io_len)); 9865 9866 bp = pageio_setup(pp, io_len, vp, B_READ); 9867 ASSERT(bp != NULL); 9868 9869 /* 9870 * pageio_setup should have set b_addr to 0. This 9871 * is correct since we want to do I/O on a page 9872 * boundary. bp_mapin will use this addr to calculate 9873 * an offset, and then set b_addr to the kernel virtual 9874 * address it allocated for us. 9875 */ 9876 ASSERT(bp->b_un.b_addr == 0); 9877 9878 bp->b_edev = 0; 9879 bp->b_dev = 0; 9880 bp->b_lblkno = lbtodb(io_off); 9881 bp->b_file = vp; 9882 bp->b_offset = (offset_t)off; 9883 bp_mapin(bp); 9884 9885 /* 9886 * If doing a write beyond what we believe is EOF, 9887 * don't bother trying to read the pages from the 9888 * server, we'll just zero the pages here. We 9889 * don't check that the rw flag is S_WRITE here 9890 * because some implementations may attempt a 9891 * read access to the buffer before copying data. 9892 */ 9893 mutex_enter(&rp->r_statelock); 9894 if (io_off >= rp->r_size && seg == segkmap) { 9895 mutex_exit(&rp->r_statelock); 9896 bzero(bp->b_un.b_addr, io_len); 9897 } else { 9898 mutex_exit(&rp->r_statelock); 9899 error = nfs4_bio(bp, NULL, cr, FALSE); 9900 } 9901 9902 /* 9903 * Unmap the buffer before freeing it. 9904 */ 9905 bp_mapout(bp); 9906 pageio_done(bp); 9907 9908 savepp = pp; 9909 do { 9910 pp->p_fsdata = C_NOCOMMIT; 9911 } while ((pp = pp->p_next) != savepp); 9912 9913 if (error == NFS_EOF) { 9914 /* 9915 * If doing a write system call just return 9916 * zeroed pages, else user tried to get pages 9917 * beyond EOF, return error. We don't check 9918 * that the rw flag is S_WRITE here because 9919 * some implementations may attempt a read 9920 * access to the buffer before copying data. 9921 */ 9922 if (seg == segkmap) 9923 error = 0; 9924 else 9925 error = EFAULT; 9926 } 9927 9928 if (!readahead_issued && !error) { 9929 mutex_enter(&rp->r_statelock); 9930 rp->r_nextr = io_off + io_len; 9931 mutex_exit(&rp->r_statelock); 9932 } 9933 } 9934 } 9935 9936 out: 9937 if (pl == NULL) 9938 return (error); 9939 9940 if (error) { 9941 if (pp != NULL) 9942 pvn_read_done(pp, B_ERROR); 9943 return (error); 9944 } 9945 9946 if (pagefound) { 9947 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 9948 9949 /* 9950 * Page exists in the cache, acquire the appropriate lock. 9951 * If this fails, start all over again. 9952 */ 9953 if ((pp = page_lookup(vp, off, se)) == NULL) { 9954 #ifdef DEBUG 9955 nfs4_lostpage++; 9956 #endif 9957 goto reread; 9958 } 9959 pl[0] = pp; 9960 pl[1] = NULL; 9961 return (0); 9962 } 9963 9964 if (pp != NULL) 9965 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 9966 9967 return (error); 9968 } 9969 9970 static void 9971 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 9972 cred_t *cr) 9973 { 9974 int error; 9975 page_t *pp; 9976 u_offset_t io_off; 9977 size_t io_len; 9978 struct buf *bp; 9979 uint_t bsize, blksize; 9980 rnode4_t *rp = VTOR4(vp); 9981 page_t *savepp; 9982 9983 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9984 9985 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9986 9987 mutex_enter(&rp->r_statelock); 9988 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 9989 /* 9990 * If less than a block left in file read less 9991 * than a block. 9992 */ 9993 blksize = rp->r_size - blkoff; 9994 } else 9995 blksize = bsize; 9996 mutex_exit(&rp->r_statelock); 9997 9998 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 9999 &io_off, &io_len, blkoff, blksize, 1); 10000 /* 10001 * The isra flag passed to the kluster function is 1, we may have 10002 * gotten a return value of NULL for a variety of reasons (# of free 10003 * pages < minfree, someone entered the page on the vnode etc). In all 10004 * cases, we want to punt on the readahead. 10005 */ 10006 if (pp == NULL) 10007 return; 10008 10009 /* 10010 * Now round the request size up to page boundaries. 10011 * This ensures that the entire page will be 10012 * initialized to zeroes if EOF is encountered. 10013 */ 10014 io_len = ptob(btopr(io_len)); 10015 10016 bp = pageio_setup(pp, io_len, vp, B_READ); 10017 ASSERT(bp != NULL); 10018 10019 /* 10020 * pageio_setup should have set b_addr to 0. This is correct since 10021 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10022 * to calculate an offset, and then set b_addr to the kernel virtual 10023 * address it allocated for us. 10024 */ 10025 ASSERT(bp->b_un.b_addr == 0); 10026 10027 bp->b_edev = 0; 10028 bp->b_dev = 0; 10029 bp->b_lblkno = lbtodb(io_off); 10030 bp->b_file = vp; 10031 bp->b_offset = (offset_t)blkoff; 10032 bp_mapin(bp); 10033 10034 /* 10035 * If doing a write beyond what we believe is EOF, don't bother trying 10036 * to read the pages from the server, we'll just zero the pages here. 10037 * We don't check that the rw flag is S_WRITE here because some 10038 * implementations may attempt a read access to the buffer before 10039 * copying data. 10040 */ 10041 mutex_enter(&rp->r_statelock); 10042 if (io_off >= rp->r_size && seg == segkmap) { 10043 mutex_exit(&rp->r_statelock); 10044 bzero(bp->b_un.b_addr, io_len); 10045 error = 0; 10046 } else { 10047 mutex_exit(&rp->r_statelock); 10048 error = nfs4_bio(bp, NULL, cr, TRUE); 10049 if (error == NFS_EOF) 10050 error = 0; 10051 } 10052 10053 /* 10054 * Unmap the buffer before freeing it. 10055 */ 10056 bp_mapout(bp); 10057 pageio_done(bp); 10058 10059 savepp = pp; 10060 do { 10061 pp->p_fsdata = C_NOCOMMIT; 10062 } while ((pp = pp->p_next) != savepp); 10063 10064 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10065 10066 /* 10067 * In case of error set readahead offset 10068 * to the lowest offset. 10069 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10070 */ 10071 if (error && rp->r_nextr > io_off) { 10072 mutex_enter(&rp->r_statelock); 10073 if (rp->r_nextr > io_off) 10074 rp->r_nextr = io_off; 10075 mutex_exit(&rp->r_statelock); 10076 } 10077 } 10078 10079 /* 10080 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10081 * If len == 0, do from off to EOF. 10082 * 10083 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10084 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10085 * (from pageout). 10086 */ 10087 /* ARGSUSED */ 10088 static int 10089 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10090 caller_context_t *ct) 10091 { 10092 int error; 10093 rnode4_t *rp; 10094 10095 ASSERT(cr != NULL); 10096 10097 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10098 return (EIO); 10099 10100 rp = VTOR4(vp); 10101 if (IS_SHADOW(vp, rp)) 10102 vp = RTOV4(rp); 10103 10104 /* 10105 * XXX - Why should this check be made here? 10106 */ 10107 if (vp->v_flag & VNOMAP) 10108 return (ENOSYS); 10109 10110 if (len == 0 && !(flags & B_INVAL) && 10111 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10112 return (0); 10113 10114 mutex_enter(&rp->r_statelock); 10115 rp->r_count++; 10116 mutex_exit(&rp->r_statelock); 10117 error = nfs4_putpages(vp, off, len, flags, cr); 10118 mutex_enter(&rp->r_statelock); 10119 rp->r_count--; 10120 cv_broadcast(&rp->r_cv); 10121 mutex_exit(&rp->r_statelock); 10122 10123 return (error); 10124 } 10125 10126 /* 10127 * Write out a single page, possibly klustering adjacent dirty pages. 10128 */ 10129 int 10130 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10131 int flags, cred_t *cr) 10132 { 10133 u_offset_t io_off; 10134 u_offset_t lbn_off; 10135 u_offset_t lbn; 10136 size_t io_len; 10137 uint_t bsize; 10138 int error; 10139 rnode4_t *rp; 10140 10141 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10142 ASSERT(pp != NULL); 10143 ASSERT(cr != NULL); 10144 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10145 10146 rp = VTOR4(vp); 10147 ASSERT(rp->r_count > 0); 10148 ASSERT(!IS_SHADOW(vp, rp)); 10149 10150 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10151 lbn = pp->p_offset / bsize; 10152 lbn_off = lbn * bsize; 10153 10154 /* 10155 * Find a kluster that fits in one block, or in 10156 * one page if pages are bigger than blocks. If 10157 * there is less file space allocated than a whole 10158 * page, we'll shorten the i/o request below. 10159 */ 10160 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10161 roundup(bsize, PAGESIZE), flags); 10162 10163 /* 10164 * pvn_write_kluster shouldn't have returned a page with offset 10165 * behind the original page we were given. Verify that. 10166 */ 10167 ASSERT((pp->p_offset / bsize) >= lbn); 10168 10169 /* 10170 * Now pp will have the list of kept dirty pages marked for 10171 * write back. It will also handle invalidation and freeing 10172 * of pages that are not dirty. Check for page length rounding 10173 * problems. 10174 */ 10175 if (io_off + io_len > lbn_off + bsize) { 10176 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10177 io_len = lbn_off + bsize - io_off; 10178 } 10179 /* 10180 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10181 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10182 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10183 * progress and the r_size has not been made consistent with the 10184 * new size of the file. When the uiomove() completes the r_size is 10185 * updated and the R4MODINPROGRESS flag is cleared. 10186 * 10187 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10188 * consistent value of r_size. Without this handshaking, it is 10189 * possible that nfs4_bio() picks up the old value of r_size 10190 * before the uiomove() in writerp4() completes. This will result 10191 * in the write through nfs4_bio() being dropped. 10192 * 10193 * More precisely, there is a window between the time the uiomove() 10194 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10195 * operation intervenes in this window, the page will be picked up, 10196 * because it is dirty (it will be unlocked, unless it was 10197 * pagecreate'd). When the page is picked up as dirty, the dirty 10198 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10199 * checked. This will still be the old size. Therefore the page will 10200 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10201 * the page will be found to be clean and the write will be dropped. 10202 */ 10203 if (rp->r_flags & R4MODINPROGRESS) { 10204 mutex_enter(&rp->r_statelock); 10205 if ((rp->r_flags & R4MODINPROGRESS) && 10206 rp->r_modaddr + MAXBSIZE > io_off && 10207 rp->r_modaddr < io_off + io_len) { 10208 page_t *plist; 10209 /* 10210 * A write is in progress for this region of the file. 10211 * If we did not detect R4MODINPROGRESS here then this 10212 * path through nfs_putapage() would eventually go to 10213 * nfs4_bio() and may not write out all of the data 10214 * in the pages. We end up losing data. So we decide 10215 * to set the modified bit on each page in the page 10216 * list and mark the rnode with R4DIRTY. This write 10217 * will be restarted at some later time. 10218 */ 10219 plist = pp; 10220 while (plist != NULL) { 10221 pp = plist; 10222 page_sub(&plist, pp); 10223 hat_setmod(pp); 10224 page_io_unlock(pp); 10225 page_unlock(pp); 10226 } 10227 rp->r_flags |= R4DIRTY; 10228 mutex_exit(&rp->r_statelock); 10229 if (offp) 10230 *offp = io_off; 10231 if (lenp) 10232 *lenp = io_len; 10233 return (0); 10234 } 10235 mutex_exit(&rp->r_statelock); 10236 } 10237 10238 if (flags & B_ASYNC) { 10239 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10240 nfs4_sync_putapage); 10241 } else 10242 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10243 10244 if (offp) 10245 *offp = io_off; 10246 if (lenp) 10247 *lenp = io_len; 10248 return (error); 10249 } 10250 10251 static int 10252 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10253 int flags, cred_t *cr) 10254 { 10255 int error; 10256 rnode4_t *rp; 10257 10258 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10259 10260 flags |= B_WRITE; 10261 10262 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10263 10264 rp = VTOR4(vp); 10265 10266 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10267 error == EACCES) && 10268 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10269 if (!(rp->r_flags & R4OUTOFSPACE)) { 10270 mutex_enter(&rp->r_statelock); 10271 rp->r_flags |= R4OUTOFSPACE; 10272 mutex_exit(&rp->r_statelock); 10273 } 10274 flags |= B_ERROR; 10275 pvn_write_done(pp, flags); 10276 /* 10277 * If this was not an async thread, then try again to 10278 * write out the pages, but this time, also destroy 10279 * them whether or not the write is successful. This 10280 * will prevent memory from filling up with these 10281 * pages and destroying them is the only alternative 10282 * if they can't be written out. 10283 * 10284 * Don't do this if this is an async thread because 10285 * when the pages are unlocked in pvn_write_done, 10286 * some other thread could have come along, locked 10287 * them, and queued for an async thread. It would be 10288 * possible for all of the async threads to be tied 10289 * up waiting to lock the pages again and they would 10290 * all already be locked and waiting for an async 10291 * thread to handle them. Deadlock. 10292 */ 10293 if (!(flags & B_ASYNC)) { 10294 error = nfs4_putpage(vp, io_off, io_len, 10295 B_INVAL | B_FORCE, cr, NULL); 10296 } 10297 } else { 10298 if (error) 10299 flags |= B_ERROR; 10300 else if (rp->r_flags & R4OUTOFSPACE) { 10301 mutex_enter(&rp->r_statelock); 10302 rp->r_flags &= ~R4OUTOFSPACE; 10303 mutex_exit(&rp->r_statelock); 10304 } 10305 pvn_write_done(pp, flags); 10306 if (freemem < desfree) 10307 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10308 NFS4_WRITE_NOWAIT); 10309 } 10310 10311 return (error); 10312 } 10313 10314 #ifdef DEBUG 10315 int nfs4_force_open_before_mmap = 0; 10316 #endif 10317 10318 /* ARGSUSED */ 10319 static int 10320 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10321 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10322 caller_context_t *ct) 10323 { 10324 struct segvn_crargs vn_a; 10325 int error = 0; 10326 rnode4_t *rp = VTOR4(vp); 10327 mntinfo4_t *mi = VTOMI4(vp); 10328 10329 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10330 return (EIO); 10331 10332 if (vp->v_flag & VNOMAP) 10333 return (ENOSYS); 10334 10335 if (off < 0 || (off + len) < 0) 10336 return (ENXIO); 10337 10338 if (vp->v_type != VREG) 10339 return (ENODEV); 10340 10341 /* 10342 * If the file is delegated to the client don't do anything. 10343 * If the file is not delegated, then validate the data cache. 10344 */ 10345 mutex_enter(&rp->r_statev4_lock); 10346 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10347 mutex_exit(&rp->r_statev4_lock); 10348 error = nfs4_validate_caches(vp, cr); 10349 if (error) 10350 return (error); 10351 } else { 10352 mutex_exit(&rp->r_statev4_lock); 10353 } 10354 10355 /* 10356 * Check to see if the vnode is currently marked as not cachable. 10357 * This means portions of the file are locked (through VOP_FRLOCK). 10358 * In this case the map request must be refused. We use 10359 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10360 */ 10361 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 10362 return (EINTR); 10363 10364 if (vp->v_flag & VNOCACHE) { 10365 error = EAGAIN; 10366 goto done; 10367 } 10368 10369 /* 10370 * Don't allow concurrent locks and mapping if mandatory locking is 10371 * enabled. 10372 */ 10373 if (flk_has_remote_locks(vp)) { 10374 struct vattr va; 10375 va.va_mask = AT_MODE; 10376 error = nfs4getattr(vp, &va, cr); 10377 if (error != 0) 10378 goto done; 10379 if (MANDLOCK(vp, va.va_mode)) { 10380 error = EAGAIN; 10381 goto done; 10382 } 10383 } 10384 10385 /* 10386 * It is possible that the rnode has a lost lock request that we 10387 * are still trying to recover, and that the request conflicts with 10388 * this map request. 10389 * 10390 * An alternative approach would be for nfs4_safemap() to consider 10391 * queued lock requests when deciding whether to set or clear 10392 * VNOCACHE. This would require the frlock code path to call 10393 * nfs4_safemap() after enqueing a lost request. 10394 */ 10395 if (nfs4_map_lost_lock_conflict(vp)) { 10396 error = EAGAIN; 10397 goto done; 10398 } 10399 10400 as_rangelock(as); 10401 if (!(flags & MAP_FIXED)) { 10402 map_addr(addrp, len, off, 1, flags); 10403 if (*addrp == NULL) { 10404 as_rangeunlock(as); 10405 error = ENOMEM; 10406 goto done; 10407 } 10408 } else { 10409 /* 10410 * User specified address - blow away any previous mappings 10411 */ 10412 (void) as_unmap(as, *addrp, len); 10413 } 10414 10415 if (vp->v_type == VREG) { 10416 /* 10417 * We need to retrieve the open stream 10418 */ 10419 nfs4_open_stream_t *osp = NULL; 10420 nfs4_open_owner_t *oop = NULL; 10421 10422 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10423 if (oop != NULL) { 10424 /* returns with 'os_sync_lock' held */ 10425 osp = find_open_stream(oop, rp); 10426 open_owner_rele(oop); 10427 } 10428 if (osp == NULL) { 10429 #ifdef DEBUG 10430 if (nfs4_force_open_before_mmap) { 10431 error = EIO; 10432 goto done; 10433 } 10434 #endif 10435 /* returns with 'os_sync_lock' held */ 10436 error = open_and_get_osp(vp, cr, &osp); 10437 if (osp == NULL) { 10438 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10439 "nfs4_map: we tried to OPEN the file " 10440 "but again no osp, so fail with EIO")); 10441 goto done; 10442 } 10443 } 10444 10445 if (osp->os_failed_reopen) { 10446 mutex_exit(&osp->os_sync_lock); 10447 open_stream_rele(osp, rp); 10448 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10449 "nfs4_map: os_failed_reopen set on " 10450 "osp %p, cr %p, rp %s", (void *)osp, 10451 (void *)cr, rnode4info(rp))); 10452 error = EIO; 10453 goto done; 10454 } 10455 mutex_exit(&osp->os_sync_lock); 10456 open_stream_rele(osp, rp); 10457 } 10458 10459 vn_a.vp = vp; 10460 vn_a.offset = off; 10461 vn_a.type = (flags & MAP_TYPE); 10462 vn_a.prot = (uchar_t)prot; 10463 vn_a.maxprot = (uchar_t)maxprot; 10464 vn_a.flags = (flags & ~MAP_TYPE); 10465 vn_a.cred = cr; 10466 vn_a.amp = NULL; 10467 vn_a.szc = 0; 10468 vn_a.lgrp_mem_policy_flags = 0; 10469 10470 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10471 as_rangeunlock(as); 10472 10473 done: 10474 nfs_rw_exit(&rp->r_lkserlock); 10475 return (error); 10476 } 10477 10478 /* 10479 * We're most likely dealing with a kernel module that likes to READ 10480 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10481 * officially OPEN the file to create the necessary client state 10482 * for bookkeeping of os_mmap_read/write counts. 10483 * 10484 * Since VOP_MAP only passes in a pointer to the vnode rather than 10485 * a double pointer, we can't handle the case where nfs4open_otw() 10486 * returns a different vnode than the one passed into VOP_MAP (since 10487 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10488 * we return NULL and let nfs4_map() fail. Note: the only case where 10489 * this should happen is if the file got removed and replaced with the 10490 * same name on the server (in addition to the fact that we're trying 10491 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10492 */ 10493 static int 10494 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10495 { 10496 rnode4_t *rp, *drp; 10497 vnode_t *dvp, *open_vp; 10498 char file_name[MAXNAMELEN]; 10499 int just_created; 10500 nfs4_open_stream_t *osp; 10501 nfs4_open_owner_t *oop; 10502 int error; 10503 10504 *ospp = NULL; 10505 open_vp = map_vp; 10506 10507 rp = VTOR4(open_vp); 10508 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10509 return (error); 10510 drp = VTOR4(dvp); 10511 10512 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10513 VN_RELE(dvp); 10514 return (EINTR); 10515 } 10516 10517 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10518 nfs_rw_exit(&drp->r_rwlock); 10519 VN_RELE(dvp); 10520 return (error); 10521 } 10522 10523 mutex_enter(&rp->r_statev4_lock); 10524 if (rp->created_v4) { 10525 rp->created_v4 = 0; 10526 mutex_exit(&rp->r_statev4_lock); 10527 10528 dnlc_update(dvp, file_name, open_vp); 10529 /* This is needed so we don't bump the open ref count */ 10530 just_created = 1; 10531 } else { 10532 mutex_exit(&rp->r_statev4_lock); 10533 just_created = 0; 10534 } 10535 10536 VN_HOLD(map_vp); 10537 10538 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10539 just_created); 10540 if (error) { 10541 nfs_rw_exit(&drp->r_rwlock); 10542 VN_RELE(dvp); 10543 VN_RELE(map_vp); 10544 return (error); 10545 } 10546 10547 nfs_rw_exit(&drp->r_rwlock); 10548 VN_RELE(dvp); 10549 10550 /* 10551 * If nfs4open_otw() returned a different vnode then "undo" 10552 * the open and return failure to the caller. 10553 */ 10554 if (!VN_CMP(open_vp, map_vp)) { 10555 nfs4_error_t e; 10556 10557 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10558 "open returned a different vnode")); 10559 /* 10560 * If there's an error, ignore it, 10561 * and let VOP_INACTIVE handle it. 10562 */ 10563 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10564 CLOSE_NORM, 0, 0, 0); 10565 VN_RELE(map_vp); 10566 return (EIO); 10567 } 10568 10569 VN_RELE(map_vp); 10570 10571 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10572 if (!oop) { 10573 nfs4_error_t e; 10574 10575 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10576 "no open owner")); 10577 /* 10578 * If there's an error, ignore it, 10579 * and let VOP_INACTIVE handle it. 10580 */ 10581 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10582 CLOSE_NORM, 0, 0, 0); 10583 return (EIO); 10584 } 10585 osp = find_open_stream(oop, rp); 10586 open_owner_rele(oop); 10587 *ospp = osp; 10588 return (0); 10589 } 10590 10591 /* 10592 * Please be aware that when this function is called, the address space write 10593 * a_lock is held. Do not put over the wire calls in this function. 10594 */ 10595 /* ARGSUSED */ 10596 static int 10597 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10598 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10599 caller_context_t *ct) 10600 { 10601 rnode4_t *rp; 10602 int error = 0; 10603 mntinfo4_t *mi; 10604 10605 mi = VTOMI4(vp); 10606 rp = VTOR4(vp); 10607 10608 if (nfs_zone() != mi->mi_zone) 10609 return (EIO); 10610 if (vp->v_flag & VNOMAP) 10611 return (ENOSYS); 10612 10613 /* 10614 * Need to hold rwlock while incrementing the mapcnt so that 10615 * mmap'ing can be serialized with writes so that the caching 10616 * can be handled correctly. 10617 * 10618 * Don't need to update the open stream first, since this 10619 * mmap can't add any additional share access that isn't 10620 * already contained in the open stream (for the case where we 10621 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10622 * take into account os_mmap_read[write] counts). 10623 */ 10624 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 10625 return (EINTR); 10626 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10627 nfs_rw_exit(&rp->r_rwlock); 10628 10629 if (vp->v_type == VREG) { 10630 /* 10631 * We need to retrieve the open stream and update the counts. 10632 * If there is no open stream here, something is wrong. 10633 */ 10634 nfs4_open_stream_t *osp = NULL; 10635 nfs4_open_owner_t *oop = NULL; 10636 10637 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10638 if (oop != NULL) { 10639 /* returns with 'os_sync_lock' held */ 10640 osp = find_open_stream(oop, rp); 10641 open_owner_rele(oop); 10642 } 10643 if (osp == NULL) { 10644 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10645 "nfs4_addmap: we should have an osp" 10646 "but we don't, so fail with EIO")); 10647 error = EIO; 10648 goto out; 10649 } 10650 10651 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10652 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10653 10654 /* 10655 * Update the map count in the open stream. 10656 * This is necessary in the case where we 10657 * open/mmap/close/, then the server reboots, and we 10658 * attempt to reopen. If the mmap doesn't add share 10659 * access then we send an invalid reopen with 10660 * access = NONE. 10661 * 10662 * We need to specifically check each PROT_* so a mmap 10663 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10664 * read and write access. A simple comparison of prot 10665 * to ~PROT_WRITE to determine read access is insufficient 10666 * since prot can be |= with PROT_USER, etc. 10667 */ 10668 10669 /* 10670 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10671 */ 10672 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10673 osp->os_mmap_write += btopr(len); 10674 if (maxprot & PROT_READ) 10675 osp->os_mmap_read += btopr(len); 10676 if (maxprot & PROT_EXEC) 10677 osp->os_mmap_read += btopr(len); 10678 /* 10679 * Ensure that os_mmap_read gets incremented, even if 10680 * maxprot were to look like PROT_NONE. 10681 */ 10682 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10683 !(maxprot & PROT_EXEC)) 10684 osp->os_mmap_read += btopr(len); 10685 osp->os_mapcnt += btopr(len); 10686 mutex_exit(&osp->os_sync_lock); 10687 open_stream_rele(osp, rp); 10688 } 10689 10690 out: 10691 /* 10692 * If we got an error, then undo our 10693 * incrementing of 'r_mapcnt'. 10694 */ 10695 10696 if (error) { 10697 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10698 ASSERT(rp->r_mapcnt >= 0); 10699 } 10700 return (error); 10701 } 10702 10703 /* ARGSUSED */ 10704 static int 10705 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10706 { 10707 10708 return (VTOR4(vp1) == VTOR4(vp2)); 10709 } 10710 10711 /* ARGSUSED */ 10712 static int 10713 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10714 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10715 caller_context_t *ct) 10716 { 10717 int rc; 10718 u_offset_t start, end; 10719 rnode4_t *rp; 10720 int error = 0, intr = INTR4(vp); 10721 nfs4_error_t e; 10722 10723 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10724 return (EIO); 10725 10726 /* check for valid cmd parameter */ 10727 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10728 return (EINVAL); 10729 10730 /* Verify l_type. */ 10731 switch (bfp->l_type) { 10732 case F_RDLCK: 10733 if (cmd != F_GETLK && !(flag & FREAD)) 10734 return (EBADF); 10735 break; 10736 case F_WRLCK: 10737 if (cmd != F_GETLK && !(flag & FWRITE)) 10738 return (EBADF); 10739 break; 10740 case F_UNLCK: 10741 intr = 0; 10742 break; 10743 10744 default: 10745 return (EINVAL); 10746 } 10747 10748 /* check the validity of the lock range */ 10749 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10750 return (rc); 10751 if (rc = flk_check_lock_data(start, end, MAXEND)) 10752 return (rc); 10753 10754 /* 10755 * If the filesystem is mounted using local locking, pass the 10756 * request off to the local locking code. 10757 */ 10758 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10759 if (cmd == F_SETLK || cmd == F_SETLKW) { 10760 /* 10761 * For complete safety, we should be holding 10762 * r_lkserlock. However, we can't call 10763 * nfs4_safelock and then fs_frlock while 10764 * holding r_lkserlock, so just invoke 10765 * nfs4_safelock and expect that this will 10766 * catch enough of the cases. 10767 */ 10768 if (!nfs4_safelock(vp, bfp, cr)) 10769 return (EAGAIN); 10770 } 10771 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10772 } 10773 10774 rp = VTOR4(vp); 10775 10776 /* 10777 * Check whether the given lock request can proceed, given the 10778 * current file mappings. 10779 */ 10780 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10781 return (EINTR); 10782 if (cmd == F_SETLK || cmd == F_SETLKW) { 10783 if (!nfs4_safelock(vp, bfp, cr)) { 10784 rc = EAGAIN; 10785 goto done; 10786 } 10787 } 10788 10789 /* 10790 * Flush the cache after waiting for async I/O to finish. For new 10791 * locks, this is so that the process gets the latest bits from the 10792 * server. For unlocks, this is so that other clients see the 10793 * latest bits once the file has been unlocked. If currently dirty 10794 * pages can't be flushed, then don't allow a lock to be set. But 10795 * allow unlocks to succeed, to avoid having orphan locks on the 10796 * server. 10797 */ 10798 if (cmd != F_GETLK) { 10799 mutex_enter(&rp->r_statelock); 10800 while (rp->r_count > 0) { 10801 if (intr) { 10802 klwp_t *lwp = ttolwp(curthread); 10803 10804 if (lwp != NULL) 10805 lwp->lwp_nostop++; 10806 if (cv_wait_sig(&rp->r_cv, 10807 &rp->r_statelock) == 0) { 10808 if (lwp != NULL) 10809 lwp->lwp_nostop--; 10810 rc = EINTR; 10811 break; 10812 } 10813 if (lwp != NULL) 10814 lwp->lwp_nostop--; 10815 } else 10816 cv_wait(&rp->r_cv, &rp->r_statelock); 10817 } 10818 mutex_exit(&rp->r_statelock); 10819 if (rc != 0) 10820 goto done; 10821 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10822 if (error) { 10823 if (error == ENOSPC || error == EDQUOT) { 10824 mutex_enter(&rp->r_statelock); 10825 if (!rp->r_error) 10826 rp->r_error = error; 10827 mutex_exit(&rp->r_statelock); 10828 } 10829 if (bfp->l_type != F_UNLCK) { 10830 rc = ENOLCK; 10831 goto done; 10832 } 10833 } 10834 } 10835 10836 /* 10837 * Call the lock manager to do the real work of contacting 10838 * the server and obtaining the lock. 10839 */ 10840 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10841 cr, &e, NULL, NULL); 10842 rc = e.error; 10843 10844 if (rc == 0) 10845 nfs4_lockcompletion(vp, cmd); 10846 10847 done: 10848 nfs_rw_exit(&rp->r_lkserlock); 10849 10850 return (rc); 10851 } 10852 10853 /* 10854 * Free storage space associated with the specified vnode. The portion 10855 * to be freed is specified by bfp->l_start and bfp->l_len (already 10856 * normalized to a "whence" of 0). 10857 * 10858 * This is an experimental facility whose continued existence is not 10859 * guaranteed. Currently, we only support the special case 10860 * of l_len == 0, meaning free to end of file. 10861 */ 10862 /* ARGSUSED */ 10863 static int 10864 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10865 offset_t offset, cred_t *cr, caller_context_t *ct) 10866 { 10867 int error; 10868 10869 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10870 return (EIO); 10871 ASSERT(vp->v_type == VREG); 10872 if (cmd != F_FREESP) 10873 return (EINVAL); 10874 10875 error = convoff(vp, bfp, 0, offset); 10876 if (!error) { 10877 ASSERT(bfp->l_start >= 0); 10878 if (bfp->l_len == 0) { 10879 struct vattr va; 10880 10881 va.va_mask = AT_SIZE; 10882 va.va_size = bfp->l_start; 10883 error = nfs4setattr(vp, &va, 0, cr, NULL); 10884 } else 10885 error = EINVAL; 10886 } 10887 10888 return (error); 10889 } 10890 10891 /* ARGSUSED */ 10892 int 10893 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 10894 { 10895 rnode4_t *rp; 10896 rp = VTOR4(vp); 10897 10898 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 10899 vp = RTOV4(rp); 10900 } 10901 *vpp = vp; 10902 return (0); 10903 } 10904 10905 /* 10906 * Setup and add an address space callback to do the work of the delmap call. 10907 * The callback will (and must be) deleted in the actual callback function. 10908 * 10909 * This is done in order to take care of the problem that we have with holding 10910 * the address space's a_lock for a long period of time (e.g. if the NFS server 10911 * is down). Callbacks will be executed in the address space code while the 10912 * a_lock is not held. Holding the address space's a_lock causes things such 10913 * as ps and fork to hang because they are trying to acquire this lock as well. 10914 */ 10915 /* ARGSUSED */ 10916 static int 10917 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10918 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 10919 caller_context_t *ct) 10920 { 10921 int caller_found; 10922 int error; 10923 rnode4_t *rp; 10924 nfs4_delmap_args_t *dmapp; 10925 nfs4_delmapcall_t *delmap_call; 10926 10927 if (vp->v_flag & VNOMAP) 10928 return (ENOSYS); 10929 10930 /* 10931 * A process may not change zones if it has NFS pages mmap'ed 10932 * in, so we can't legitimately get here from the wrong zone. 10933 */ 10934 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10935 10936 rp = VTOR4(vp); 10937 10938 /* 10939 * The way that the address space of this process deletes its mapping 10940 * of this file is via the following call chains: 10941 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10942 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10943 * 10944 * With the use of address space callbacks we are allowed to drop the 10945 * address space lock, a_lock, while executing the NFS operations that 10946 * need to go over the wire. Returning EAGAIN to the caller of this 10947 * function is what drives the execution of the callback that we add 10948 * below. The callback will be executed by the address space code 10949 * after dropping the a_lock. When the callback is finished, since 10950 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 10951 * is called again on the same segment to finish the rest of the work 10952 * that needs to happen during unmapping. 10953 * 10954 * This action of calling back into the segment driver causes 10955 * nfs4_delmap() to get called again, but since the callback was 10956 * already executed at this point, it already did the work and there 10957 * is nothing left for us to do. 10958 * 10959 * To Summarize: 10960 * - The first time nfs4_delmap is called by the current thread is when 10961 * we add the caller associated with this delmap to the delmap caller 10962 * list, add the callback, and return EAGAIN. 10963 * - The second time in this call chain when nfs4_delmap is called we 10964 * will find this caller in the delmap caller list and realize there 10965 * is no more work to do thus removing this caller from the list and 10966 * returning the error that was set in the callback execution. 10967 */ 10968 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 10969 if (caller_found) { 10970 /* 10971 * 'error' is from the actual delmap operations. To avoid 10972 * hangs, we need to handle the return of EAGAIN differently 10973 * since this is what drives the callback execution. 10974 * In this case, we don't want to return EAGAIN and do the 10975 * callback execution because there are none to execute. 10976 */ 10977 if (error == EAGAIN) 10978 return (0); 10979 else 10980 return (error); 10981 } 10982 10983 /* current caller was not in the list */ 10984 delmap_call = nfs4_init_delmapcall(); 10985 10986 mutex_enter(&rp->r_statelock); 10987 list_insert_tail(&rp->r_indelmap, delmap_call); 10988 mutex_exit(&rp->r_statelock); 10989 10990 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 10991 10992 dmapp->vp = vp; 10993 dmapp->off = off; 10994 dmapp->addr = addr; 10995 dmapp->len = len; 10996 dmapp->prot = prot; 10997 dmapp->maxprot = maxprot; 10998 dmapp->flags = flags; 10999 dmapp->cr = cr; 11000 dmapp->caller = delmap_call; 11001 11002 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11003 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11004 11005 return (error ? error : EAGAIN); 11006 } 11007 11008 static nfs4_delmapcall_t * 11009 nfs4_init_delmapcall() 11010 { 11011 nfs4_delmapcall_t *delmap_call; 11012 11013 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11014 delmap_call->call_id = curthread; 11015 delmap_call->error = 0; 11016 11017 return (delmap_call); 11018 } 11019 11020 static void 11021 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11022 { 11023 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11024 } 11025 11026 /* 11027 * Searches for the current delmap caller (based on curthread) in the list of 11028 * callers. If it is found, we remove it and free the delmap caller. 11029 * Returns: 11030 * 0 if the caller wasn't found 11031 * 1 if the caller was found, removed and freed. *errp will be set 11032 * to what the result of the delmap was. 11033 */ 11034 static int 11035 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11036 { 11037 nfs4_delmapcall_t *delmap_call; 11038 11039 /* 11040 * If the list doesn't exist yet, we create it and return 11041 * that the caller wasn't found. No list = no callers. 11042 */ 11043 mutex_enter(&rp->r_statelock); 11044 if (!(rp->r_flags & R4DELMAPLIST)) { 11045 /* The list does not exist */ 11046 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11047 offsetof(nfs4_delmapcall_t, call_node)); 11048 rp->r_flags |= R4DELMAPLIST; 11049 mutex_exit(&rp->r_statelock); 11050 return (0); 11051 } else { 11052 /* The list exists so search it */ 11053 for (delmap_call = list_head(&rp->r_indelmap); 11054 delmap_call != NULL; 11055 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11056 if (delmap_call->call_id == curthread) { 11057 /* current caller is in the list */ 11058 *errp = delmap_call->error; 11059 list_remove(&rp->r_indelmap, delmap_call); 11060 mutex_exit(&rp->r_statelock); 11061 nfs4_free_delmapcall(delmap_call); 11062 return (1); 11063 } 11064 } 11065 } 11066 mutex_exit(&rp->r_statelock); 11067 return (0); 11068 } 11069 11070 /* 11071 * Remove some pages from an mmap'd vnode. Just update the 11072 * count of pages. If doing close-to-open, then flush and 11073 * commit all of the pages associated with this file. 11074 * Otherwise, start an asynchronous page flush to write out 11075 * any dirty pages. This will also associate a credential 11076 * with the rnode which can be used to write the pages. 11077 */ 11078 /* ARGSUSED */ 11079 static void 11080 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11081 { 11082 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11083 rnode4_t *rp; 11084 mntinfo4_t *mi; 11085 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11086 11087 rp = VTOR4(dmapp->vp); 11088 mi = VTOMI4(dmapp->vp); 11089 11090 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11091 ASSERT(rp->r_mapcnt >= 0); 11092 11093 /* 11094 * Initiate a page flush and potential commit if there are 11095 * pages, the file system was not mounted readonly, the segment 11096 * was mapped shared, and the pages themselves were writeable. 11097 */ 11098 if (nfs4_has_pages(dmapp->vp) && 11099 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11100 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11101 mutex_enter(&rp->r_statelock); 11102 rp->r_flags |= R4DIRTY; 11103 mutex_exit(&rp->r_statelock); 11104 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11105 dmapp->len, dmapp->cr); 11106 if (!e.error) { 11107 mutex_enter(&rp->r_statelock); 11108 e.error = rp->r_error; 11109 rp->r_error = 0; 11110 mutex_exit(&rp->r_statelock); 11111 } 11112 } else 11113 e.error = 0; 11114 11115 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11116 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11117 B_INVAL, dmapp->cr, NULL); 11118 11119 if (e.error) { 11120 e.stat = puterrno4(e.error); 11121 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11122 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11123 dmapp->caller->error = e.error; 11124 } 11125 11126 /* Check to see if we need to close the file */ 11127 11128 if (dmapp->vp->v_type == VREG) { 11129 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11130 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11131 11132 if (e.error != 0 || e.stat != NFS4_OK) { 11133 /* 11134 * Since it is possible that e.error == 0 and 11135 * e.stat != NFS4_OK (and vice versa), 11136 * we do the proper checking in order to get both 11137 * e.error and e.stat reporting the correct info. 11138 */ 11139 if (e.stat == NFS4_OK) 11140 e.stat = puterrno4(e.error); 11141 if (e.error == 0) 11142 e.error = geterrno4(e.stat); 11143 11144 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11145 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11146 dmapp->caller->error = e.error; 11147 } 11148 } 11149 11150 (void) as_delete_callback(as, arg); 11151 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11152 } 11153 11154 11155 static uint_t 11156 fattr4_maxfilesize_to_bits(uint64_t ll) 11157 { 11158 uint_t l = 1; 11159 11160 if (ll == 0) { 11161 return (0); 11162 } 11163 11164 if (ll & 0xffffffff00000000) { 11165 l += 32; ll >>= 32; 11166 } 11167 if (ll & 0xffff0000) { 11168 l += 16; ll >>= 16; 11169 } 11170 if (ll & 0xff00) { 11171 l += 8; ll >>= 8; 11172 } 11173 if (ll & 0xf0) { 11174 l += 4; ll >>= 4; 11175 } 11176 if (ll & 0xc) { 11177 l += 2; ll >>= 2; 11178 } 11179 if (ll & 0x2) { 11180 l += 1; 11181 } 11182 return (l); 11183 } 11184 11185 /* ARGSUSED */ 11186 int 11187 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11188 caller_context_t *ct) 11189 { 11190 int error; 11191 hrtime_t t; 11192 rnode4_t *rp; 11193 nfs4_ga_res_t gar; 11194 nfs4_ga_ext_res_t ger; 11195 11196 gar.n4g_ext_res = &ger; 11197 11198 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11199 return (EIO); 11200 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11201 *valp = MAXPATHLEN; 11202 return (0); 11203 } 11204 if (cmd == _PC_ACL_ENABLED) { 11205 *valp = _ACL_ACE_ENABLED; 11206 return (0); 11207 } 11208 11209 rp = VTOR4(vp); 11210 if (cmd == _PC_XATTR_EXISTS) { 11211 /* 11212 * Eventually should attempt small client readdir before 11213 * going otw with GETATTR(FATTR4_NAMED_ATTR). For now 11214 * just drive the OTW getattr. This is required because 11215 * _PC_XATTR_EXISTS can only return true if attributes 11216 * exist -- simply checking for existence of the attrdir 11217 * is not sufficient. 11218 * 11219 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11220 * is NULL. Once the xadir vp exists, we can create xattrs, 11221 * and we don't have any way to update the "base" object's 11222 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11223 * could help out. 11224 */ 11225 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11226 rp->r_xattr_dir == NULL) { 11227 *valp = rp->r_pathconf.pc4_xattr_exists; 11228 return (0); 11229 } 11230 } else { /* OLD CODE */ 11231 if (ATTRCACHE4_VALID(vp)) { 11232 mutex_enter(&rp->r_statelock); 11233 if (rp->r_pathconf.pc4_cache_valid) { 11234 error = 0; 11235 switch (cmd) { 11236 case _PC_FILESIZEBITS: 11237 *valp = 11238 rp->r_pathconf.pc4_filesizebits; 11239 break; 11240 case _PC_LINK_MAX: 11241 *valp = 11242 rp->r_pathconf.pc4_link_max; 11243 break; 11244 case _PC_NAME_MAX: 11245 *valp = 11246 rp->r_pathconf.pc4_name_max; 11247 break; 11248 case _PC_CHOWN_RESTRICTED: 11249 *valp = 11250 rp->r_pathconf.pc4_chown_restricted; 11251 break; 11252 case _PC_NO_TRUNC: 11253 *valp = 11254 rp->r_pathconf.pc4_no_trunc; 11255 break; 11256 default: 11257 error = EINVAL; 11258 break; 11259 } 11260 mutex_exit(&rp->r_statelock); 11261 #ifdef DEBUG 11262 nfs4_pathconf_cache_hits++; 11263 #endif 11264 return (error); 11265 } 11266 mutex_exit(&rp->r_statelock); 11267 } 11268 } 11269 #ifdef DEBUG 11270 nfs4_pathconf_cache_misses++; 11271 #endif 11272 11273 t = gethrtime(); 11274 11275 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11276 11277 if (error) { 11278 mutex_enter(&rp->r_statelock); 11279 rp->r_pathconf.pc4_cache_valid = FALSE; 11280 rp->r_pathconf.pc4_xattr_valid = FALSE; 11281 mutex_exit(&rp->r_statelock); 11282 return (error); 11283 } 11284 11285 /* interpret the max filesize */ 11286 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11287 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11288 11289 /* Store the attributes we just received */ 11290 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11291 11292 switch (cmd) { 11293 case _PC_FILESIZEBITS: 11294 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11295 break; 11296 case _PC_LINK_MAX: 11297 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11298 break; 11299 case _PC_NAME_MAX: 11300 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11301 break; 11302 case _PC_CHOWN_RESTRICTED: 11303 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11304 break; 11305 case _PC_NO_TRUNC: 11306 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11307 break; 11308 case _PC_XATTR_EXISTS: 11309 *valp = gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists; 11310 break; 11311 default: 11312 return (EINVAL); 11313 } 11314 11315 return (0); 11316 } 11317 11318 /* 11319 * Called by async thread to do synchronous pageio. Do the i/o, wait 11320 * for it to complete, and cleanup the page list when done. 11321 */ 11322 static int 11323 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11324 int flags, cred_t *cr) 11325 { 11326 int error; 11327 11328 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11329 11330 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11331 if (flags & B_READ) 11332 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11333 else 11334 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11335 return (error); 11336 } 11337 11338 /* ARGSUSED */ 11339 static int 11340 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11341 int flags, cred_t *cr, caller_context_t *ct) 11342 { 11343 int error; 11344 rnode4_t *rp; 11345 11346 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11347 return (EIO); 11348 11349 if (pp == NULL) 11350 return (EINVAL); 11351 11352 rp = VTOR4(vp); 11353 mutex_enter(&rp->r_statelock); 11354 rp->r_count++; 11355 mutex_exit(&rp->r_statelock); 11356 11357 if (flags & B_ASYNC) { 11358 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11359 nfs4_sync_pageio); 11360 } else 11361 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11362 mutex_enter(&rp->r_statelock); 11363 rp->r_count--; 11364 cv_broadcast(&rp->r_cv); 11365 mutex_exit(&rp->r_statelock); 11366 return (error); 11367 } 11368 11369 /* ARGSUSED */ 11370 static void 11371 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11372 caller_context_t *ct) 11373 { 11374 int error; 11375 rnode4_t *rp; 11376 page_t *plist; 11377 page_t *pptr; 11378 offset3 offset; 11379 count3 len; 11380 k_sigset_t smask; 11381 11382 /* 11383 * We should get called with fl equal to either B_FREE or 11384 * B_INVAL. Any other value is illegal. 11385 * 11386 * The page that we are either supposed to free or destroy 11387 * should be exclusive locked and its io lock should not 11388 * be held. 11389 */ 11390 ASSERT(fl == B_FREE || fl == B_INVAL); 11391 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11392 11393 rp = VTOR4(vp); 11394 11395 /* 11396 * If the page doesn't need to be committed or we shouldn't 11397 * even bother attempting to commit it, then just make sure 11398 * that the p_fsdata byte is clear and then either free or 11399 * destroy the page as appropriate. 11400 */ 11401 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11402 pp->p_fsdata = C_NOCOMMIT; 11403 if (fl == B_FREE) 11404 page_free(pp, dn); 11405 else 11406 page_destroy(pp, dn); 11407 return; 11408 } 11409 11410 /* 11411 * If there is a page invalidation operation going on, then 11412 * if this is one of the pages being destroyed, then just 11413 * clear the p_fsdata byte and then either free or destroy 11414 * the page as appropriate. 11415 */ 11416 mutex_enter(&rp->r_statelock); 11417 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11418 mutex_exit(&rp->r_statelock); 11419 pp->p_fsdata = C_NOCOMMIT; 11420 if (fl == B_FREE) 11421 page_free(pp, dn); 11422 else 11423 page_destroy(pp, dn); 11424 return; 11425 } 11426 11427 /* 11428 * If we are freeing this page and someone else is already 11429 * waiting to do a commit, then just unlock the page and 11430 * return. That other thread will take care of commiting 11431 * this page. The page can be freed sometime after the 11432 * commit has finished. Otherwise, if the page is marked 11433 * as delay commit, then we may be getting called from 11434 * pvn_write_done, one page at a time. This could result 11435 * in one commit per page, so we end up doing lots of small 11436 * commits instead of fewer larger commits. This is bad, 11437 * we want do as few commits as possible. 11438 */ 11439 if (fl == B_FREE) { 11440 if (rp->r_flags & R4COMMITWAIT) { 11441 page_unlock(pp); 11442 mutex_exit(&rp->r_statelock); 11443 return; 11444 } 11445 if (pp->p_fsdata == C_DELAYCOMMIT) { 11446 pp->p_fsdata = C_COMMIT; 11447 page_unlock(pp); 11448 mutex_exit(&rp->r_statelock); 11449 return; 11450 } 11451 } 11452 11453 /* 11454 * Check to see if there is a signal which would prevent an 11455 * attempt to commit the pages from being successful. If so, 11456 * then don't bother with all of the work to gather pages and 11457 * generate the unsuccessful RPC. Just return from here and 11458 * let the page be committed at some later time. 11459 */ 11460 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11461 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11462 sigunintr(&smask); 11463 page_unlock(pp); 11464 mutex_exit(&rp->r_statelock); 11465 return; 11466 } 11467 sigunintr(&smask); 11468 11469 /* 11470 * We are starting to need to commit pages, so let's try 11471 * to commit as many as possible at once to reduce the 11472 * overhead. 11473 * 11474 * Set the `commit inprogress' state bit. We must 11475 * first wait until any current one finishes. Then 11476 * we initialize the c_pages list with this page. 11477 */ 11478 while (rp->r_flags & R4COMMIT) { 11479 rp->r_flags |= R4COMMITWAIT; 11480 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11481 rp->r_flags &= ~R4COMMITWAIT; 11482 } 11483 rp->r_flags |= R4COMMIT; 11484 mutex_exit(&rp->r_statelock); 11485 ASSERT(rp->r_commit.c_pages == NULL); 11486 rp->r_commit.c_pages = pp; 11487 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11488 rp->r_commit.c_commlen = PAGESIZE; 11489 11490 /* 11491 * Gather together all other pages which can be committed. 11492 * They will all be chained off r_commit.c_pages. 11493 */ 11494 nfs4_get_commit(vp); 11495 11496 /* 11497 * Clear the `commit inprogress' status and disconnect 11498 * the list of pages to be committed from the rnode. 11499 * At this same time, we also save the starting offset 11500 * and length of data to be committed on the server. 11501 */ 11502 plist = rp->r_commit.c_pages; 11503 rp->r_commit.c_pages = NULL; 11504 offset = rp->r_commit.c_commbase; 11505 len = rp->r_commit.c_commlen; 11506 mutex_enter(&rp->r_statelock); 11507 rp->r_flags &= ~R4COMMIT; 11508 cv_broadcast(&rp->r_commit.c_cv); 11509 mutex_exit(&rp->r_statelock); 11510 11511 if (curproc == proc_pageout || curproc == proc_fsflush || 11512 nfs_zone() != VTOMI4(vp)->mi_zone) { 11513 nfs4_async_commit(vp, plist, offset, len, 11514 cr, do_nfs4_async_commit); 11515 return; 11516 } 11517 11518 /* 11519 * Actually generate the COMMIT op over the wire operation. 11520 */ 11521 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11522 11523 /* 11524 * If we got an error during the commit, just unlock all 11525 * of the pages. The pages will get retransmitted to the 11526 * server during a putpage operation. 11527 */ 11528 if (error) { 11529 while (plist != NULL) { 11530 pptr = plist; 11531 page_sub(&plist, pptr); 11532 page_unlock(pptr); 11533 } 11534 return; 11535 } 11536 11537 /* 11538 * We've tried as hard as we can to commit the data to stable 11539 * storage on the server. We just unlock the rest of the pages 11540 * and clear the commit required state. They will be put 11541 * onto the tail of the cachelist if they are nolonger 11542 * mapped. 11543 */ 11544 while (plist != pp) { 11545 pptr = plist; 11546 page_sub(&plist, pptr); 11547 pptr->p_fsdata = C_NOCOMMIT; 11548 page_unlock(pptr); 11549 } 11550 11551 /* 11552 * It is possible that nfs4_commit didn't return error but 11553 * some other thread has modified the page we are going 11554 * to free/destroy. 11555 * In this case we need to rewrite the page. Do an explicit check 11556 * before attempting to free/destroy the page. If modified, needs to 11557 * be rewritten so unlock the page and return. 11558 */ 11559 if (hat_ismod(pp)) { 11560 pp->p_fsdata = C_NOCOMMIT; 11561 page_unlock(pp); 11562 return; 11563 } 11564 11565 /* 11566 * Now, as appropriate, either free or destroy the page 11567 * that we were called with. 11568 */ 11569 pp->p_fsdata = C_NOCOMMIT; 11570 if (fl == B_FREE) 11571 page_free(pp, dn); 11572 else 11573 page_destroy(pp, dn); 11574 } 11575 11576 /* 11577 * Commit requires that the current fh be the file written to. 11578 * The compound op structure is: 11579 * PUTFH(file), COMMIT 11580 */ 11581 static int 11582 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11583 { 11584 COMPOUND4args_clnt args; 11585 COMPOUND4res_clnt res; 11586 COMMIT4res *cm_res; 11587 nfs_argop4 argop[2]; 11588 nfs_resop4 *resop; 11589 int doqueue; 11590 mntinfo4_t *mi; 11591 rnode4_t *rp; 11592 cred_t *cred_otw = NULL; 11593 bool_t needrecov = FALSE; 11594 nfs4_recov_state_t recov_state; 11595 nfs4_open_stream_t *osp = NULL; 11596 bool_t first_time = TRUE; /* first time getting OTW cred */ 11597 bool_t last_time = FALSE; /* last time getting OTW cred */ 11598 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11599 11600 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11601 11602 rp = VTOR4(vp); 11603 11604 mi = VTOMI4(vp); 11605 recov_state.rs_flags = 0; 11606 recov_state.rs_num_retry_despite_err = 0; 11607 get_commit_cred: 11608 /* 11609 * Releases the osp, if a valid open stream is provided. 11610 * Puts a hold on the cred_otw and the new osp (if found). 11611 */ 11612 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11613 &first_time, &last_time); 11614 args.ctag = TAG_COMMIT; 11615 recov_retry: 11616 /* 11617 * Commit ops: putfh file; commit 11618 */ 11619 args.array_len = 2; 11620 args.array = argop; 11621 11622 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11623 &recov_state, NULL); 11624 if (e.error) { 11625 crfree(cred_otw); 11626 if (osp != NULL) 11627 open_stream_rele(osp, rp); 11628 return (e.error); 11629 } 11630 11631 /* putfh directory */ 11632 argop[0].argop = OP_CPUTFH; 11633 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11634 11635 /* commit */ 11636 argop[1].argop = OP_COMMIT; 11637 argop[1].nfs_argop4_u.opcommit.offset = offset; 11638 argop[1].nfs_argop4_u.opcommit.count = count; 11639 11640 doqueue = 1; 11641 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11642 11643 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11644 if (!needrecov && e.error) { 11645 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11646 needrecov); 11647 crfree(cred_otw); 11648 if (e.error == EACCES && last_time == FALSE) 11649 goto get_commit_cred; 11650 if (osp != NULL) 11651 open_stream_rele(osp, rp); 11652 return (e.error); 11653 } 11654 11655 if (needrecov) { 11656 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11657 NULL, OP_COMMIT, NULL) == FALSE) { 11658 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11659 &recov_state, needrecov); 11660 if (!e.error) 11661 (void) xdr_free(xdr_COMPOUND4res_clnt, 11662 (caddr_t)&res); 11663 goto recov_retry; 11664 } 11665 if (e.error) { 11666 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11667 &recov_state, needrecov); 11668 crfree(cred_otw); 11669 if (osp != NULL) 11670 open_stream_rele(osp, rp); 11671 return (e.error); 11672 } 11673 /* fall through for res.status case */ 11674 } 11675 11676 if (res.status) { 11677 e.error = geterrno4(res.status); 11678 if (e.error == EACCES && last_time == FALSE) { 11679 crfree(cred_otw); 11680 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11681 &recov_state, needrecov); 11682 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11683 goto get_commit_cred; 11684 } 11685 /* 11686 * Can't do a nfs4_purge_stale_fh here because this 11687 * can cause a deadlock. nfs4_commit can 11688 * be called from nfs4_dispose which can be called 11689 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11690 * can call back to pvn_vplist_dirty. 11691 */ 11692 if (e.error == ESTALE) { 11693 mutex_enter(&rp->r_statelock); 11694 rp->r_flags |= R4STALE; 11695 if (!rp->r_error) 11696 rp->r_error = e.error; 11697 mutex_exit(&rp->r_statelock); 11698 PURGE_ATTRCACHE4(vp); 11699 } else { 11700 mutex_enter(&rp->r_statelock); 11701 if (!rp->r_error) 11702 rp->r_error = e.error; 11703 mutex_exit(&rp->r_statelock); 11704 } 11705 } else { 11706 ASSERT(rp->r_flags & R4HAVEVERF); 11707 resop = &res.array[1]; /* commit res */ 11708 cm_res = &resop->nfs_resop4_u.opcommit; 11709 mutex_enter(&rp->r_statelock); 11710 if (cm_res->writeverf == rp->r_writeverf) { 11711 mutex_exit(&rp->r_statelock); 11712 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11713 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11714 &recov_state, needrecov); 11715 crfree(cred_otw); 11716 if (osp != NULL) 11717 open_stream_rele(osp, rp); 11718 return (0); 11719 } 11720 nfs4_set_mod(vp); 11721 rp->r_writeverf = cm_res->writeverf; 11722 mutex_exit(&rp->r_statelock); 11723 e.error = NFS_VERF_MISMATCH; 11724 } 11725 11726 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11727 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11728 crfree(cred_otw); 11729 if (osp != NULL) 11730 open_stream_rele(osp, rp); 11731 11732 return (e.error); 11733 } 11734 11735 static void 11736 nfs4_set_mod(vnode_t *vp) 11737 { 11738 page_t *pp; 11739 kmutex_t *vphm; 11740 rnode4_t *rp; 11741 11742 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11743 11744 /* make sure we're looking at the master vnode, not a shadow */ 11745 11746 rp = VTOR4(vp); 11747 if (IS_SHADOW(vp, rp)) 11748 vp = RTOV4(rp); 11749 11750 vphm = page_vnode_mutex(vp); 11751 mutex_enter(vphm); 11752 /* 11753 * If there are no pages associated with this vnode, then 11754 * just return. 11755 */ 11756 if ((pp = vp->v_pages) == NULL) { 11757 mutex_exit(vphm); 11758 return; 11759 } 11760 11761 do { 11762 if (pp->p_fsdata != C_NOCOMMIT) { 11763 hat_setmod(pp); 11764 pp->p_fsdata = C_NOCOMMIT; 11765 } 11766 } while ((pp = pp->p_vpnext) != vp->v_pages); 11767 mutex_exit(vphm); 11768 } 11769 11770 /* 11771 * This function is used to gather a page list of the pages which 11772 * can be committed on the server. 11773 * 11774 * The calling thread must have set R4COMMIT. This bit is used to 11775 * serialize access to the commit structure in the rnode. As long 11776 * as the thread has set R4COMMIT, then it can manipulate the commit 11777 * structure without requiring any other locks. 11778 * 11779 * When this function is called from nfs4_dispose() the page passed 11780 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11781 * will skip it. This is not a problem since we initially add the 11782 * page to the r_commit page list. 11783 * 11784 */ 11785 static void 11786 nfs4_get_commit(vnode_t *vp) 11787 { 11788 rnode4_t *rp; 11789 page_t *pp; 11790 kmutex_t *vphm; 11791 11792 rp = VTOR4(vp); 11793 11794 ASSERT(rp->r_flags & R4COMMIT); 11795 11796 /* make sure we're looking at the master vnode, not a shadow */ 11797 11798 if (IS_SHADOW(vp, rp)) 11799 vp = RTOV4(rp); 11800 11801 vphm = page_vnode_mutex(vp); 11802 mutex_enter(vphm); 11803 11804 /* 11805 * If there are no pages associated with this vnode, then 11806 * just return. 11807 */ 11808 if ((pp = vp->v_pages) == NULL) { 11809 mutex_exit(vphm); 11810 return; 11811 } 11812 11813 /* 11814 * Step through all of the pages associated with this vnode 11815 * looking for pages which need to be committed. 11816 */ 11817 do { 11818 /* 11819 * First short-cut everything (without the page_lock) 11820 * and see if this page does not need to be committed 11821 * or is modified if so then we'll just skip it. 11822 */ 11823 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11824 continue; 11825 11826 /* 11827 * Attempt to lock the page. If we can't, then 11828 * someone else is messing with it or we have been 11829 * called from nfs4_dispose and this is the page that 11830 * nfs4_dispose was called with.. anyway just skip it. 11831 */ 11832 if (!page_trylock(pp, SE_EXCL)) 11833 continue; 11834 11835 /* 11836 * Lets check again now that we have the page lock. 11837 */ 11838 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11839 page_unlock(pp); 11840 continue; 11841 } 11842 11843 /* this had better not be a free page */ 11844 ASSERT(PP_ISFREE(pp) == 0); 11845 11846 /* 11847 * The page needs to be committed and we locked it. 11848 * Update the base and length parameters and add it 11849 * to r_pages. 11850 */ 11851 if (rp->r_commit.c_pages == NULL) { 11852 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11853 rp->r_commit.c_commlen = PAGESIZE; 11854 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11855 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11856 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11857 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11858 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11859 <= pp->p_offset) { 11860 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11861 rp->r_commit.c_commbase + PAGESIZE; 11862 } 11863 page_add(&rp->r_commit.c_pages, pp); 11864 } while ((pp = pp->p_vpnext) != vp->v_pages); 11865 11866 mutex_exit(vphm); 11867 } 11868 11869 /* 11870 * This routine is used to gather together a page list of the pages 11871 * which are to be committed on the server. This routine must not 11872 * be called if the calling thread holds any locked pages. 11873 * 11874 * The calling thread must have set R4COMMIT. This bit is used to 11875 * serialize access to the commit structure in the rnode. As long 11876 * as the thread has set R4COMMIT, then it can manipulate the commit 11877 * structure without requiring any other locks. 11878 */ 11879 static void 11880 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11881 { 11882 11883 rnode4_t *rp; 11884 page_t *pp; 11885 u_offset_t end; 11886 u_offset_t off; 11887 ASSERT(len != 0); 11888 rp = VTOR4(vp); 11889 ASSERT(rp->r_flags & R4COMMIT); 11890 11891 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11892 11893 /* make sure we're looking at the master vnode, not a shadow */ 11894 11895 if (IS_SHADOW(vp, rp)) 11896 vp = RTOV4(rp); 11897 11898 /* 11899 * If there are no pages associated with this vnode, then 11900 * just return. 11901 */ 11902 if ((pp = vp->v_pages) == NULL) 11903 return; 11904 /* 11905 * Calculate the ending offset. 11906 */ 11907 end = soff + len; 11908 for (off = soff; off < end; off += PAGESIZE) { 11909 /* 11910 * Lookup each page by vp, offset. 11911 */ 11912 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 11913 continue; 11914 /* 11915 * If this page does not need to be committed or is 11916 * modified, then just skip it. 11917 */ 11918 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11919 page_unlock(pp); 11920 continue; 11921 } 11922 11923 ASSERT(PP_ISFREE(pp) == 0); 11924 /* 11925 * The page needs to be committed and we locked it. 11926 * Update the base and length parameters and add it 11927 * to r_pages. 11928 */ 11929 if (rp->r_commit.c_pages == NULL) { 11930 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11931 rp->r_commit.c_commlen = PAGESIZE; 11932 } else { 11933 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11934 rp->r_commit.c_commbase + PAGESIZE; 11935 } 11936 page_add(&rp->r_commit.c_pages, pp); 11937 } 11938 } 11939 11940 /* 11941 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 11942 * Flushes and commits data to the server. 11943 */ 11944 static int 11945 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 11946 { 11947 int error; 11948 verifier4 write_verf; 11949 rnode4_t *rp = VTOR4(vp); 11950 11951 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11952 11953 /* 11954 * Flush the data portion of the file and then commit any 11955 * portions which need to be committed. This may need to 11956 * be done twice if the server has changed state since 11957 * data was last written. The data will need to be 11958 * rewritten to the server and then a new commit done. 11959 * 11960 * In fact, this may need to be done several times if the 11961 * server is having problems and crashing while we are 11962 * attempting to do this. 11963 */ 11964 11965 top: 11966 /* 11967 * Do a flush based on the poff and plen arguments. This 11968 * will synchronously write out any modified pages in the 11969 * range specified by (poff, plen). This starts all of the 11970 * i/o operations which will be waited for in the next 11971 * call to nfs4_putpage 11972 */ 11973 11974 mutex_enter(&rp->r_statelock); 11975 write_verf = rp->r_writeverf; 11976 mutex_exit(&rp->r_statelock); 11977 11978 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 11979 if (error == EAGAIN) 11980 error = 0; 11981 11982 /* 11983 * Do a flush based on the poff and plen arguments. This 11984 * will synchronously write out any modified pages in the 11985 * range specified by (poff, plen) and wait until all of 11986 * the asynchronous i/o's in that range are done as well. 11987 */ 11988 if (!error) 11989 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 11990 11991 if (error) 11992 return (error); 11993 11994 mutex_enter(&rp->r_statelock); 11995 if (rp->r_writeverf != write_verf) { 11996 mutex_exit(&rp->r_statelock); 11997 goto top; 11998 } 11999 mutex_exit(&rp->r_statelock); 12000 12001 /* 12002 * Now commit any pages which might need to be committed. 12003 * If the error, NFS_VERF_MISMATCH, is returned, then 12004 * start over with the flush operation. 12005 */ 12006 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12007 12008 if (error == NFS_VERF_MISMATCH) 12009 goto top; 12010 12011 return (error); 12012 } 12013 12014 /* 12015 * nfs4_commit_vp() will wait for other pending commits and 12016 * will either commit the whole file or a range, plen dictates 12017 * if we commit whole file. a value of zero indicates the whole 12018 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12019 */ 12020 static int 12021 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12022 cred_t *cr, int wait_on_writes) 12023 { 12024 rnode4_t *rp; 12025 page_t *plist; 12026 offset3 offset; 12027 count3 len; 12028 12029 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12030 12031 rp = VTOR4(vp); 12032 12033 /* 12034 * before we gather commitable pages make 12035 * sure there are no outstanding async writes 12036 */ 12037 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12038 mutex_enter(&rp->r_statelock); 12039 while (rp->r_count > 0) { 12040 cv_wait(&rp->r_cv, &rp->r_statelock); 12041 } 12042 mutex_exit(&rp->r_statelock); 12043 } 12044 12045 /* 12046 * Set the `commit inprogress' state bit. We must 12047 * first wait until any current one finishes. 12048 */ 12049 mutex_enter(&rp->r_statelock); 12050 while (rp->r_flags & R4COMMIT) { 12051 rp->r_flags |= R4COMMITWAIT; 12052 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12053 rp->r_flags &= ~R4COMMITWAIT; 12054 } 12055 rp->r_flags |= R4COMMIT; 12056 mutex_exit(&rp->r_statelock); 12057 12058 /* 12059 * Gather all of the pages which need to be 12060 * committed. 12061 */ 12062 if (plen == 0) 12063 nfs4_get_commit(vp); 12064 else 12065 nfs4_get_commit_range(vp, poff, plen); 12066 12067 /* 12068 * Clear the `commit inprogress' bit and disconnect the 12069 * page list which was gathered by nfs4_get_commit. 12070 */ 12071 plist = rp->r_commit.c_pages; 12072 rp->r_commit.c_pages = NULL; 12073 offset = rp->r_commit.c_commbase; 12074 len = rp->r_commit.c_commlen; 12075 mutex_enter(&rp->r_statelock); 12076 rp->r_flags &= ~R4COMMIT; 12077 cv_broadcast(&rp->r_commit.c_cv); 12078 mutex_exit(&rp->r_statelock); 12079 12080 /* 12081 * If any pages need to be committed, commit them and 12082 * then unlock them so that they can be freed some 12083 * time later. 12084 */ 12085 if (plist == NULL) 12086 return (0); 12087 12088 /* 12089 * No error occurred during the flush portion 12090 * of this operation, so now attempt to commit 12091 * the data to stable storage on the server. 12092 * 12093 * This will unlock all of the pages on the list. 12094 */ 12095 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12096 } 12097 12098 static int 12099 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12100 cred_t *cr) 12101 { 12102 int error; 12103 page_t *pp; 12104 12105 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12106 12107 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12108 12109 /* 12110 * If we got an error, then just unlock all of the pages 12111 * on the list. 12112 */ 12113 if (error) { 12114 while (plist != NULL) { 12115 pp = plist; 12116 page_sub(&plist, pp); 12117 page_unlock(pp); 12118 } 12119 return (error); 12120 } 12121 /* 12122 * We've tried as hard as we can to commit the data to stable 12123 * storage on the server. We just unlock the pages and clear 12124 * the commit required state. They will get freed later. 12125 */ 12126 while (plist != NULL) { 12127 pp = plist; 12128 page_sub(&plist, pp); 12129 pp->p_fsdata = C_NOCOMMIT; 12130 page_unlock(pp); 12131 } 12132 12133 return (error); 12134 } 12135 12136 static void 12137 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12138 cred_t *cr) 12139 { 12140 12141 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12142 } 12143 12144 /*ARGSUSED*/ 12145 static int 12146 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12147 caller_context_t *ct) 12148 { 12149 int error = 0; 12150 mntinfo4_t *mi; 12151 vattr_t va; 12152 vsecattr_t nfsace4_vsap; 12153 12154 mi = VTOMI4(vp); 12155 if (nfs_zone() != mi->mi_zone) 12156 return (EIO); 12157 if (mi->mi_flags & MI4_ACL) { 12158 /* if we have a delegation, return it */ 12159 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12160 (void) nfs4delegreturn(VTOR4(vp), 12161 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12162 12163 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12164 NFS4_ACL_SET); 12165 if (error) /* EINVAL */ 12166 return (error); 12167 12168 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12169 /* 12170 * These are aclent_t type entries. 12171 */ 12172 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12173 vp->v_type == VDIR, FALSE); 12174 if (error) 12175 return (error); 12176 } else { 12177 /* 12178 * These are ace_t type entries. 12179 */ 12180 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12181 FALSE); 12182 if (error) 12183 return (error); 12184 } 12185 bzero(&va, sizeof (va)); 12186 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12187 vs_ace4_destroy(&nfsace4_vsap); 12188 return (error); 12189 } 12190 return (ENOSYS); 12191 } 12192 12193 /* ARGSUSED */ 12194 int 12195 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12196 caller_context_t *ct) 12197 { 12198 int error; 12199 mntinfo4_t *mi; 12200 nfs4_ga_res_t gar; 12201 rnode4_t *rp = VTOR4(vp); 12202 12203 mi = VTOMI4(vp); 12204 if (nfs_zone() != mi->mi_zone) 12205 return (EIO); 12206 12207 bzero(&gar, sizeof (gar)); 12208 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12209 12210 /* 12211 * vsecattr->vsa_mask holds the original acl request mask. 12212 * This is needed when determining what to return. 12213 * (See: nfs4_create_getsecattr_return()) 12214 */ 12215 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12216 if (error) /* EINVAL */ 12217 return (error); 12218 12219 if (mi->mi_flags & MI4_ACL) { 12220 /* 12221 * Check if the data is cached and the cache is valid. If it 12222 * is we don't go over the wire. 12223 */ 12224 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12225 mutex_enter(&rp->r_statelock); 12226 if (rp->r_secattr != NULL) { 12227 error = nfs4_create_getsecattr_return( 12228 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12229 rp->r_attr.va_gid, 12230 vp->v_type == VDIR); 12231 if (!error) { /* error == 0 - Success! */ 12232 mutex_exit(&rp->r_statelock); 12233 return (error); 12234 } 12235 } 12236 mutex_exit(&rp->r_statelock); 12237 } 12238 12239 /* 12240 * The getattr otw call will always get both the acl, in 12241 * the form of a list of nfsace4's, and the number of acl 12242 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12243 */ 12244 gar.n4g_va.va_mask = AT_ALL; 12245 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12246 if (error) { 12247 vs_ace4_destroy(&gar.n4g_vsa); 12248 if (error == ENOTSUP || error == EOPNOTSUPP) 12249 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12250 return (error); 12251 } 12252 12253 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12254 /* 12255 * No error was returned, but according to the response 12256 * bitmap, neither was an acl. 12257 */ 12258 vs_ace4_destroy(&gar.n4g_vsa); 12259 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12260 return (error); 12261 } 12262 12263 /* 12264 * Update the cache with the ACL. 12265 */ 12266 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12267 12268 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12269 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12270 vp->v_type == VDIR); 12271 vs_ace4_destroy(&gar.n4g_vsa); 12272 if ((error) && (vsecattr->vsa_mask & 12273 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12274 (error != EACCES)) { 12275 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12276 } 12277 return (error); 12278 } 12279 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12280 return (error); 12281 } 12282 12283 /* 12284 * The function returns: 12285 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12286 * - EINVAL if the passed in "acl_mask" is an invalid request. 12287 * 12288 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12289 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12290 * 12291 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12292 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12293 * - We have a count field set without the corresponding acl field set. (e.g. - 12294 * VSA_ACECNT is set, but VSA_ACE is not) 12295 */ 12296 static int 12297 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12298 { 12299 /* Shortcut the masks that are always valid. */ 12300 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12301 return (0); 12302 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12303 return (0); 12304 12305 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12306 /* 12307 * We can't have any VSA_ACL type stuff in the mask now. 12308 */ 12309 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12310 VSA_DFACLCNT)) 12311 return (EINVAL); 12312 12313 if (op == NFS4_ACL_SET) { 12314 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12315 return (EINVAL); 12316 } 12317 } 12318 12319 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12320 /* 12321 * We can't have any VSA_ACE type stuff in the mask now. 12322 */ 12323 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12324 return (EINVAL); 12325 12326 if (op == NFS4_ACL_SET) { 12327 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12328 return (EINVAL); 12329 12330 if ((acl_mask & VSA_DFACLCNT) && 12331 !(acl_mask & VSA_DFACL)) 12332 return (EINVAL); 12333 } 12334 } 12335 return (0); 12336 } 12337 12338 /* 12339 * The theory behind creating the correct getsecattr return is simply this: 12340 * "Don't return anything that the caller is not expecting to have to free." 12341 */ 12342 static int 12343 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12344 uid_t uid, gid_t gid, int isdir) 12345 { 12346 int error = 0; 12347 /* Save the mask since the translators modify it. */ 12348 uint_t orig_mask = vsap->vsa_mask; 12349 12350 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12351 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, 12352 FALSE, ((orig_mask & VSA_ACE) ? FALSE : TRUE)); 12353 12354 if (error) 12355 return (error); 12356 12357 /* 12358 * If the caller only asked for the ace count (VSA_ACECNT) 12359 * don't give them the full acl (VSA_ACE), free it. 12360 */ 12361 if (!orig_mask & VSA_ACE) { 12362 if (vsap->vsa_aclentp != NULL) { 12363 kmem_free(vsap->vsa_aclentp, 12364 vsap->vsa_aclcnt * sizeof (ace_t)); 12365 vsap->vsa_aclentp = NULL; 12366 } 12367 } 12368 vsap->vsa_mask = orig_mask; 12369 12370 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12371 VSA_DFACLCNT)) { 12372 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12373 isdir, FALSE, 12374 ((orig_mask & (VSA_ACL | VSA_DFACL)) ? FALSE : TRUE)); 12375 12376 if (error) 12377 return (error); 12378 12379 /* 12380 * If the caller only asked for the acl count (VSA_ACLCNT) 12381 * and/or the default acl count (VSA_DFACLCNT) don't give them 12382 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12383 */ 12384 if (!orig_mask & VSA_ACL) { 12385 if (vsap->vsa_aclentp != NULL) { 12386 kmem_free(vsap->vsa_aclentp, 12387 vsap->vsa_aclcnt * sizeof (aclent_t)); 12388 vsap->vsa_aclentp = NULL; 12389 } 12390 } 12391 12392 if (!orig_mask & VSA_DFACL) { 12393 if (vsap->vsa_dfaclentp != NULL) { 12394 kmem_free(vsap->vsa_dfaclentp, 12395 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12396 vsap->vsa_dfaclentp = NULL; 12397 } 12398 } 12399 vsap->vsa_mask = orig_mask; 12400 } 12401 return (0); 12402 } 12403 12404 /* ARGSUSED */ 12405 int 12406 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12407 caller_context_t *ct) 12408 { 12409 int error; 12410 12411 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12412 return (EIO); 12413 /* 12414 * check for valid cmd parameter 12415 */ 12416 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12417 return (EINVAL); 12418 12419 /* 12420 * Check access permissions 12421 */ 12422 if ((cmd & F_SHARE) && 12423 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12424 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12425 return (EBADF); 12426 12427 /* 12428 * If the filesystem is mounted using local locking, pass the 12429 * request off to the local share code. 12430 */ 12431 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12432 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12433 12434 switch (cmd) { 12435 case F_SHARE: 12436 case F_UNSHARE: 12437 /* 12438 * This will be properly implemented later, 12439 * see RFE: 4823948 . 12440 */ 12441 error = EAGAIN; 12442 break; 12443 12444 case F_HASREMOTELOCKS: 12445 /* 12446 * NFS client can't store remote locks itself 12447 */ 12448 shr->s_access = 0; 12449 error = 0; 12450 break; 12451 12452 default: 12453 error = EINVAL; 12454 break; 12455 } 12456 12457 return (error); 12458 } 12459 12460 /* 12461 * Common code called by directory ops to update the attrcache 12462 */ 12463 static int 12464 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12465 hrtime_t t, vnode_t *vp, cred_t *cr) 12466 { 12467 int error = 0; 12468 12469 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12470 12471 if (status != NFS4_OK) { 12472 /* getattr not done or failed */ 12473 PURGE_ATTRCACHE4(vp); 12474 return (error); 12475 } 12476 12477 if (garp) { 12478 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12479 } else { 12480 PURGE_ATTRCACHE4(vp); 12481 } 12482 return (error); 12483 } 12484 12485 /* 12486 * Update directory caches for directory modification ops (link, rename, etc.) 12487 * When dinfo is NULL, manage dircaches in the old way. 12488 */ 12489 static void 12490 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12491 dirattr_info_t *dinfo) 12492 { 12493 rnode4_t *drp = VTOR4(dvp); 12494 12495 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12496 12497 /* Purge rddir cache for dir since it changed */ 12498 if (drp->r_dir != NULL) 12499 nfs4_purge_rddir_cache(dvp); 12500 12501 /* 12502 * If caller provided dinfo, then use it to manage dir caches. 12503 */ 12504 if (dinfo != NULL) { 12505 if (vp != NULL) { 12506 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12507 if (!VTOR4(vp)->created_v4) { 12508 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12509 dnlc_update(dvp, nm, vp); 12510 } else { 12511 /* 12512 * XXX don't update if the created_v4 flag is 12513 * set 12514 */ 12515 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12516 NFS4_DEBUG(nfs4_client_state_debug, 12517 (CE_NOTE, "nfs4_update_dircaches: " 12518 "don't update dnlc: created_v4 flag")); 12519 } 12520 } 12521 12522 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12523 dinfo->di_cred, FALSE, cinfo); 12524 12525 return; 12526 } 12527 12528 /* 12529 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12530 * Since caller modified dir but didn't receive post-dirmod-op dir 12531 * attrs, the dir's attrs must be purged. 12532 * 12533 * XXX this check and dnlc update/purge should really be atomic, 12534 * XXX but can't use rnode statelock because it'll deadlock in 12535 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12536 * XXX does occur. 12537 * 12538 * XXX We also may want to check that atomic is true in the 12539 * XXX change_info struct. If it is not, the change_info may 12540 * XXX reflect changes by more than one clients which means that 12541 * XXX our cache may not be valid. 12542 */ 12543 PURGE_ATTRCACHE4(dvp); 12544 if (drp->r_change == cinfo->before) { 12545 /* no changes took place in the directory prior to our link */ 12546 if (vp != NULL) { 12547 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12548 if (!VTOR4(vp)->created_v4) { 12549 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12550 dnlc_update(dvp, nm, vp); 12551 } else { 12552 /* 12553 * XXX dont' update if the created_v4 flag 12554 * is set 12555 */ 12556 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12557 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12558 "nfs4_update_dircaches: don't" 12559 " update dnlc: created_v4 flag")); 12560 } 12561 } 12562 } else { 12563 /* Another client modified directory - purge its dnlc cache */ 12564 dnlc_purge_vp(dvp); 12565 } 12566 } 12567 12568 /* 12569 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12570 * file. 12571 * 12572 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12573 * file (ie: client recovery) and otherwise set to FALSE. 12574 * 12575 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12576 * initiated) calling functions. 12577 * 12578 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12579 * of resending a 'lost' open request. 12580 * 12581 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12582 * server that hands out BAD_SEQID on open confirm. 12583 * 12584 * Errors are returned via the nfs4_error_t parameter. 12585 */ 12586 void 12587 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12588 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12589 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12590 { 12591 COMPOUND4args_clnt args; 12592 COMPOUND4res_clnt res; 12593 nfs_argop4 argop[2]; 12594 nfs_resop4 *resop; 12595 int doqueue = 1; 12596 mntinfo4_t *mi; 12597 OPEN_CONFIRM4args *open_confirm_args; 12598 int needrecov; 12599 12600 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12601 #if DEBUG 12602 mutex_enter(&oop->oo_lock); 12603 ASSERT(oop->oo_seqid_inuse); 12604 mutex_exit(&oop->oo_lock); 12605 #endif 12606 12607 recov_retry_confirm: 12608 nfs4_error_zinit(ep); 12609 *retry_open = FALSE; 12610 12611 if (resend) 12612 args.ctag = TAG_OPEN_CONFIRM_LOST; 12613 else 12614 args.ctag = TAG_OPEN_CONFIRM; 12615 12616 args.array_len = 2; 12617 args.array = argop; 12618 12619 /* putfh target fh */ 12620 argop[0].argop = OP_CPUTFH; 12621 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12622 12623 argop[1].argop = OP_OPEN_CONFIRM; 12624 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12625 12626 (*seqid) += 1; 12627 open_confirm_args->seqid = *seqid; 12628 open_confirm_args->open_stateid = *stateid; 12629 12630 mi = VTOMI4(vp); 12631 12632 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12633 12634 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12635 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12636 } 12637 12638 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12639 if (!needrecov && ep->error) 12640 return; 12641 12642 if (needrecov) { 12643 bool_t abort = FALSE; 12644 12645 if (reopening_file == FALSE) { 12646 nfs4_bseqid_entry_t *bsep = NULL; 12647 12648 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12649 bsep = nfs4_create_bseqid_entry(oop, NULL, 12650 vp, 0, args.ctag, 12651 open_confirm_args->seqid); 12652 12653 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, 12654 NULL, NULL, NULL, OP_OPEN_CONFIRM, bsep); 12655 if (bsep) { 12656 kmem_free(bsep, sizeof (*bsep)); 12657 if (num_bseqid_retryp && 12658 --(*num_bseqid_retryp) == 0) 12659 abort = TRUE; 12660 } 12661 } 12662 if ((ep->error == ETIMEDOUT || 12663 res.status == NFS4ERR_RESOURCE) && 12664 abort == FALSE && resend == FALSE) { 12665 if (!ep->error) 12666 (void) xdr_free(xdr_COMPOUND4res_clnt, 12667 (caddr_t)&res); 12668 12669 delay(SEC_TO_TICK(confirm_retry_sec)); 12670 goto recov_retry_confirm; 12671 } 12672 /* State may have changed so retry the entire OPEN op */ 12673 if (abort == FALSE) 12674 *retry_open = TRUE; 12675 else 12676 *retry_open = FALSE; 12677 if (!ep->error) 12678 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12679 return; 12680 } 12681 12682 if (res.status) { 12683 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12684 return; 12685 } 12686 12687 resop = &res.array[1]; /* open confirm res */ 12688 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12689 stateid, sizeof (*stateid)); 12690 12691 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12692 } 12693 12694 /* 12695 * Return the credentials associated with a client state object. The 12696 * caller is responsible for freeing the credentials. 12697 */ 12698 12699 static cred_t * 12700 state_to_cred(nfs4_open_stream_t *osp) 12701 { 12702 cred_t *cr; 12703 12704 /* 12705 * It's ok to not lock the open stream and open owner to get 12706 * the oo_cred since this is only written once (upon creation) 12707 * and will not change. 12708 */ 12709 cr = osp->os_open_owner->oo_cred; 12710 crhold(cr); 12711 12712 return (cr); 12713 } 12714 12715 /* 12716 * nfs4_find_sysid 12717 * 12718 * Find the sysid for the knetconfig associated with the given mi. 12719 */ 12720 static struct lm_sysid * 12721 nfs4_find_sysid(mntinfo4_t *mi) 12722 { 12723 ASSERT(nfs_zone() == mi->mi_zone); 12724 12725 /* 12726 * Switch from RDMA knconf to original mount knconf 12727 */ 12728 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12729 mi->mi_curr_serv->sv_hostname, NULL)); 12730 } 12731 12732 #ifdef DEBUG 12733 /* 12734 * Return a string version of the call type for easy reading. 12735 */ 12736 static char * 12737 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12738 { 12739 switch (ctype) { 12740 case NFS4_LCK_CTYPE_NORM: 12741 return ("NORMAL"); 12742 case NFS4_LCK_CTYPE_RECLAIM: 12743 return ("RECLAIM"); 12744 case NFS4_LCK_CTYPE_RESEND: 12745 return ("RESEND"); 12746 case NFS4_LCK_CTYPE_REINSTATE: 12747 return ("REINSTATE"); 12748 default: 12749 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12750 "type %d", ctype); 12751 return (""); 12752 } 12753 } 12754 #endif 12755 12756 /* 12757 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12758 * Unlock requests don't have an over-the-wire locktype, so we just return 12759 * something non-threatening. 12760 */ 12761 12762 static nfs_lock_type4 12763 flk_to_locktype(int cmd, int l_type) 12764 { 12765 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12766 12767 switch (l_type) { 12768 case F_UNLCK: 12769 return (READ_LT); 12770 case F_RDLCK: 12771 if (cmd == F_SETLK) 12772 return (READ_LT); 12773 else 12774 return (READW_LT); 12775 case F_WRLCK: 12776 if (cmd == F_SETLK) 12777 return (WRITE_LT); 12778 else 12779 return (WRITEW_LT); 12780 } 12781 panic("flk_to_locktype"); 12782 /*NOTREACHED*/ 12783 } 12784 12785 /* 12786 * Do some preliminary checks for nfs4frlock. 12787 */ 12788 static int 12789 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12790 u_offset_t offset) 12791 { 12792 int error = 0; 12793 12794 /* 12795 * If we are setting a lock, check that the file is opened 12796 * with the correct mode. 12797 */ 12798 if (cmd == F_SETLK || cmd == F_SETLKW) { 12799 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12800 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12801 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12802 "nfs4frlock_validate_args: file was opened with " 12803 "incorrect mode")); 12804 return (EBADF); 12805 } 12806 } 12807 12808 /* Convert the offset. It may need to be restored before returning. */ 12809 if (error = convoff(vp, flk, 0, offset)) { 12810 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12811 "nfs4frlock_validate_args: convoff => error= %d\n", 12812 error)); 12813 return (error); 12814 } 12815 12816 return (error); 12817 } 12818 12819 /* 12820 * Set the flock64's lm_sysid for nfs4frlock. 12821 */ 12822 static int 12823 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12824 { 12825 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12826 12827 /* Find the lm_sysid */ 12828 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12829 12830 if (*lspp == NULL) { 12831 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12832 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12833 return (ENOLCK); 12834 } 12835 12836 flk->l_sysid = lm_sysidt(*lspp); 12837 12838 return (0); 12839 } 12840 12841 /* 12842 * Do the remaining preliminary setup for nfs4frlock. 12843 */ 12844 static void 12845 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12846 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12847 cred_t **cred_otw) 12848 { 12849 /* 12850 * set tick_delay to the base delay time. 12851 * (NFS4_BASE_WAIT_TIME is in secs) 12852 */ 12853 12854 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12855 12856 /* 12857 * If lock is relative to EOF, we need the newest length of the 12858 * file. Therefore invalidate the ATTR_CACHE. 12859 */ 12860 12861 *whencep = flk->l_whence; 12862 12863 if (*whencep == 2) /* SEEK_END */ 12864 PURGE_ATTRCACHE4(vp); 12865 12866 recov_statep->rs_flags = 0; 12867 recov_statep->rs_num_retry_despite_err = 0; 12868 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12869 } 12870 12871 /* 12872 * Initialize and allocate the data structures necessary for 12873 * the nfs4frlock call. 12874 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12875 */ 12876 static void 12877 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12878 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12879 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12880 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 12881 { 12882 int argoplist_size; 12883 int num_ops = 2; 12884 12885 *retry = FALSE; 12886 *did_start_fop = FALSE; 12887 *skip_get_err = FALSE; 12888 lost_rqstp->lr_op = 0; 12889 argoplist_size = num_ops * sizeof (nfs_argop4); 12890 /* fill array with zero */ 12891 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 12892 12893 *argspp = argsp; 12894 *respp = NULL; 12895 12896 argsp->array_len = num_ops; 12897 argsp->array = *argopp; 12898 12899 /* initialize in case of error; will get real value down below */ 12900 argsp->ctag = TAG_NONE; 12901 12902 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 12903 *op_hintp = OH_LOCKU; 12904 else 12905 *op_hintp = OH_OTHER; 12906 } 12907 12908 /* 12909 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 12910 * the proper nfs4_server_t for this instance of nfs4frlock. 12911 * Returns 0 (success) or an errno value. 12912 */ 12913 static int 12914 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 12915 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 12916 bool_t *did_start_fop, bool_t *startrecovp) 12917 { 12918 int error = 0; 12919 rnode4_t *rp; 12920 12921 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12922 12923 if (ctype == NFS4_LCK_CTYPE_NORM) { 12924 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 12925 recov_statep, startrecovp); 12926 if (error) 12927 return (error); 12928 *did_start_fop = TRUE; 12929 } else { 12930 *did_start_fop = FALSE; 12931 *startrecovp = FALSE; 12932 } 12933 12934 if (!error) { 12935 rp = VTOR4(vp); 12936 12937 /* If the file failed recovery, just quit. */ 12938 mutex_enter(&rp->r_statelock); 12939 if (rp->r_flags & R4RECOVERR) { 12940 error = EIO; 12941 } 12942 mutex_exit(&rp->r_statelock); 12943 } 12944 12945 return (error); 12946 } 12947 12948 /* 12949 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 12950 * resend nfs4frlock call is initiated by the recovery framework. 12951 * Acquires the lop and oop seqid synchronization. 12952 */ 12953 static void 12954 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 12955 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 12956 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 12957 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 12958 { 12959 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 12960 int error; 12961 12962 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 12963 (CE_NOTE, 12964 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 12965 ASSERT(resend_rqstp != NULL); 12966 ASSERT(resend_rqstp->lr_op == OP_LOCK || 12967 resend_rqstp->lr_op == OP_LOCKU); 12968 12969 *oopp = resend_rqstp->lr_oop; 12970 if (resend_rqstp->lr_oop) { 12971 open_owner_hold(resend_rqstp->lr_oop); 12972 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 12973 ASSERT(error == 0); /* recov thread always succeeds */ 12974 } 12975 12976 /* Must resend this lost lock/locku request. */ 12977 ASSERT(resend_rqstp->lr_lop != NULL); 12978 *lopp = resend_rqstp->lr_lop; 12979 lock_owner_hold(resend_rqstp->lr_lop); 12980 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 12981 ASSERT(error == 0); /* recov thread always succeeds */ 12982 12983 *ospp = resend_rqstp->lr_osp; 12984 if (*ospp) 12985 open_stream_hold(resend_rqstp->lr_osp); 12986 12987 if (resend_rqstp->lr_op == OP_LOCK) { 12988 LOCK4args *lock_args; 12989 12990 argop->argop = OP_LOCK; 12991 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 12992 lock_args->locktype = resend_rqstp->lr_locktype; 12993 lock_args->reclaim = 12994 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 12995 lock_args->offset = resend_rqstp->lr_flk->l_start; 12996 lock_args->length = resend_rqstp->lr_flk->l_len; 12997 if (lock_args->length == 0) 12998 lock_args->length = ~lock_args->length; 12999 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13000 mi2clientid(mi), &lock_args->locker); 13001 13002 switch (resend_rqstp->lr_ctype) { 13003 case NFS4_LCK_CTYPE_RESEND: 13004 argsp->ctag = TAG_LOCK_RESEND; 13005 break; 13006 case NFS4_LCK_CTYPE_REINSTATE: 13007 argsp->ctag = TAG_LOCK_REINSTATE; 13008 break; 13009 case NFS4_LCK_CTYPE_RECLAIM: 13010 argsp->ctag = TAG_LOCK_RECLAIM; 13011 break; 13012 default: 13013 argsp->ctag = TAG_LOCK_UNKNOWN; 13014 break; 13015 } 13016 } else { 13017 LOCKU4args *locku_args; 13018 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13019 13020 argop->argop = OP_LOCKU; 13021 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13022 locku_args->locktype = READ_LT; 13023 locku_args->seqid = lop->lock_seqid + 1; 13024 mutex_enter(&lop->lo_lock); 13025 locku_args->lock_stateid = lop->lock_stateid; 13026 mutex_exit(&lop->lo_lock); 13027 locku_args->offset = resend_rqstp->lr_flk->l_start; 13028 locku_args->length = resend_rqstp->lr_flk->l_len; 13029 if (locku_args->length == 0) 13030 locku_args->length = ~locku_args->length; 13031 13032 switch (resend_rqstp->lr_ctype) { 13033 case NFS4_LCK_CTYPE_RESEND: 13034 argsp->ctag = TAG_LOCKU_RESEND; 13035 break; 13036 case NFS4_LCK_CTYPE_REINSTATE: 13037 argsp->ctag = TAG_LOCKU_REINSTATE; 13038 break; 13039 default: 13040 argsp->ctag = TAG_LOCK_UNKNOWN; 13041 break; 13042 } 13043 } 13044 } 13045 13046 /* 13047 * Setup the LOCKT4 arguments. 13048 */ 13049 static void 13050 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13051 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13052 rnode4_t *rp) 13053 { 13054 LOCKT4args *lockt_args; 13055 13056 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13057 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13058 argop->argop = OP_LOCKT; 13059 argsp->ctag = TAG_LOCKT; 13060 lockt_args = &argop->nfs_argop4_u.oplockt; 13061 13062 /* 13063 * The locktype will be READ_LT unless it's 13064 * a write lock. We do this because the Solaris 13065 * system call allows the combination of 13066 * F_UNLCK and F_GETLK* and so in that case the 13067 * unlock is mapped to a read. 13068 */ 13069 if (flk->l_type == F_WRLCK) 13070 lockt_args->locktype = WRITE_LT; 13071 else 13072 lockt_args->locktype = READ_LT; 13073 13074 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13075 /* set the lock owner4 args */ 13076 nfs4_setlockowner_args(&lockt_args->owner, rp, 13077 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13078 flk->l_pid); 13079 lockt_args->offset = flk->l_start; 13080 lockt_args->length = flk->l_len; 13081 if (flk->l_len == 0) 13082 lockt_args->length = ~lockt_args->length; 13083 13084 *lockt_argsp = lockt_args; 13085 } 13086 13087 /* 13088 * If the client is holding a delegation, and the open stream to be used 13089 * with this lock request is a delegation open stream, then re-open the stream. 13090 * Sets the nfs4_error_t to all zeros unless the open stream has already 13091 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13092 * means the caller should retry (like a recovery retry). 13093 */ 13094 static void 13095 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13096 { 13097 open_delegation_type4 dt; 13098 bool_t reopen_needed, force; 13099 nfs4_open_stream_t *osp; 13100 open_claim_type4 oclaim; 13101 rnode4_t *rp = VTOR4(vp); 13102 mntinfo4_t *mi = VTOMI4(vp); 13103 13104 ASSERT(nfs_zone() == mi->mi_zone); 13105 13106 nfs4_error_zinit(ep); 13107 13108 mutex_enter(&rp->r_statev4_lock); 13109 dt = rp->r_deleg_type; 13110 mutex_exit(&rp->r_statev4_lock); 13111 13112 if (dt != OPEN_DELEGATE_NONE) { 13113 nfs4_open_owner_t *oop; 13114 13115 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13116 if (!oop) { 13117 ep->stat = NFS4ERR_IO; 13118 return; 13119 } 13120 /* returns with 'os_sync_lock' held */ 13121 osp = find_open_stream(oop, rp); 13122 if (!osp) { 13123 open_owner_rele(oop); 13124 ep->stat = NFS4ERR_IO; 13125 return; 13126 } 13127 13128 if (osp->os_failed_reopen) { 13129 NFS4_DEBUG((nfs4_open_stream_debug || 13130 nfs4_client_lock_debug), (CE_NOTE, 13131 "nfs4frlock_check_deleg: os_failed_reopen set " 13132 "for osp %p, cr %p, rp %s", (void *)osp, 13133 (void *)cr, rnode4info(rp))); 13134 mutex_exit(&osp->os_sync_lock); 13135 open_stream_rele(osp, rp); 13136 open_owner_rele(oop); 13137 ep->stat = NFS4ERR_IO; 13138 return; 13139 } 13140 13141 /* 13142 * Determine whether a reopen is needed. If this 13143 * is a delegation open stream, then send the open 13144 * to the server to give visibility to the open owner. 13145 * Even if it isn't a delegation open stream, we need 13146 * to check if the previous open CLAIM_DELEGATE_CUR 13147 * was sufficient. 13148 */ 13149 13150 reopen_needed = osp->os_delegation || 13151 ((lt == F_RDLCK && 13152 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13153 (lt == F_WRLCK && 13154 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13155 13156 mutex_exit(&osp->os_sync_lock); 13157 open_owner_rele(oop); 13158 13159 if (reopen_needed) { 13160 /* 13161 * Always use CLAIM_PREVIOUS after server reboot. 13162 * The server will reject CLAIM_DELEGATE_CUR if 13163 * it is used during the grace period. 13164 */ 13165 mutex_enter(&mi->mi_lock); 13166 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13167 oclaim = CLAIM_PREVIOUS; 13168 force = TRUE; 13169 } else { 13170 oclaim = CLAIM_DELEGATE_CUR; 13171 force = FALSE; 13172 } 13173 mutex_exit(&mi->mi_lock); 13174 13175 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13176 if (ep->error == EAGAIN) { 13177 nfs4_error_zinit(ep); 13178 ep->stat = NFS4ERR_DELAY; 13179 } 13180 } 13181 open_stream_rele(osp, rp); 13182 osp = NULL; 13183 } 13184 } 13185 13186 /* 13187 * Setup the LOCKU4 arguments. 13188 * Returns errors via the nfs4_error_t. 13189 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13190 * over-the-wire. The caller must release the 13191 * reference on *lopp. 13192 * NFS4ERR_DELAY caller should retry (like recovery retry) 13193 * (other) unrecoverable error. 13194 */ 13195 static void 13196 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13197 LOCKU4args **locku_argsp, flock64_t *flk, 13198 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13199 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13200 bool_t *skip_get_err, bool_t *go_otwp) 13201 { 13202 nfs4_lock_owner_t *lop = NULL; 13203 LOCKU4args *locku_args; 13204 pid_t pid; 13205 bool_t is_spec = FALSE; 13206 rnode4_t *rp = VTOR4(vp); 13207 13208 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13209 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13210 13211 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13212 if (ep->error || ep->stat) 13213 return; 13214 13215 argop->argop = OP_LOCKU; 13216 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13217 argsp->ctag = TAG_LOCKU_REINSTATE; 13218 else 13219 argsp->ctag = TAG_LOCKU; 13220 locku_args = &argop->nfs_argop4_u.oplocku; 13221 *locku_argsp = locku_args; 13222 13223 /* 13224 * XXX what should locku_args->locktype be? 13225 * setting to ALWAYS be READ_LT so at least 13226 * it is a valid locktype. 13227 */ 13228 13229 locku_args->locktype = READ_LT; 13230 13231 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13232 flk->l_pid; 13233 13234 /* 13235 * Get the lock owner stateid. If no lock owner 13236 * exists, return success. 13237 */ 13238 lop = find_lock_owner(rp, pid, LOWN_ANY); 13239 *lopp = lop; 13240 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13241 is_spec = TRUE; 13242 if (!lop || is_spec) { 13243 /* 13244 * No lock owner so no locks to unlock. 13245 * Return success. If there was a failed 13246 * reclaim earlier, the lock might still be 13247 * registered with the local locking code, 13248 * so notify it of the unlock. 13249 * 13250 * If the lockowner is using a special stateid, 13251 * then the original lock request (that created 13252 * this lockowner) was never successful, so we 13253 * have no lock to undo OTW. 13254 */ 13255 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13256 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13257 "(%ld) so return success", (long)pid)); 13258 13259 if (ctype == NFS4_LCK_CTYPE_NORM) 13260 flk->l_pid = curproc->p_pid; 13261 nfs4_register_lock_locally(vp, flk, flag, offset); 13262 /* 13263 * Release our hold and NULL out so final_cleanup 13264 * doesn't try to end a lock seqid sync we 13265 * never started. 13266 */ 13267 if (is_spec) { 13268 lock_owner_rele(lop); 13269 *lopp = NULL; 13270 } 13271 *skip_get_err = TRUE; 13272 *go_otwp = FALSE; 13273 return; 13274 } 13275 13276 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13277 if (ep->error == EAGAIN) { 13278 lock_owner_rele(lop); 13279 *lopp = NULL; 13280 return; 13281 } 13282 13283 mutex_enter(&lop->lo_lock); 13284 locku_args->lock_stateid = lop->lock_stateid; 13285 mutex_exit(&lop->lo_lock); 13286 locku_args->seqid = lop->lock_seqid + 1; 13287 13288 /* leave the ref count on lop, rele after RPC call */ 13289 13290 locku_args->offset = flk->l_start; 13291 locku_args->length = flk->l_len; 13292 if (flk->l_len == 0) 13293 locku_args->length = ~locku_args->length; 13294 13295 *go_otwp = TRUE; 13296 } 13297 13298 /* 13299 * Setup the LOCK4 arguments. 13300 * 13301 * Returns errors via the nfs4_error_t. 13302 * NFS4_OK no problems 13303 * NFS4ERR_DELAY caller should retry (like recovery retry) 13304 * (other) unrecoverable error 13305 */ 13306 static void 13307 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13308 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13309 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13310 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13311 { 13312 LOCK4args *lock_args; 13313 nfs4_open_owner_t *oop = NULL; 13314 nfs4_open_stream_t *osp = NULL; 13315 nfs4_lock_owner_t *lop = NULL; 13316 pid_t pid; 13317 rnode4_t *rp = VTOR4(vp); 13318 13319 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13320 13321 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13322 if (ep->error || ep->stat != NFS4_OK) 13323 return; 13324 13325 argop->argop = OP_LOCK; 13326 if (ctype == NFS4_LCK_CTYPE_NORM) 13327 argsp->ctag = TAG_LOCK; 13328 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13329 argsp->ctag = TAG_RELOCK; 13330 else 13331 argsp->ctag = TAG_LOCK_REINSTATE; 13332 lock_args = &argop->nfs_argop4_u.oplock; 13333 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13334 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13335 /* 13336 * Get the lock owner. If no lock owner exists, 13337 * create a 'temporary' one and grab the open seqid 13338 * synchronization (which puts a hold on the open 13339 * owner and open stream). 13340 * This also grabs the lock seqid synchronization. 13341 */ 13342 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13343 ep->stat = 13344 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13345 13346 if (ep->stat != NFS4_OK) 13347 goto out; 13348 13349 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13350 &lock_args->locker); 13351 13352 lock_args->offset = flk->l_start; 13353 lock_args->length = flk->l_len; 13354 if (flk->l_len == 0) 13355 lock_args->length = ~lock_args->length; 13356 *lock_argsp = lock_args; 13357 out: 13358 *oopp = oop; 13359 *ospp = osp; 13360 *lopp = lop; 13361 } 13362 13363 /* 13364 * After we get the reply from the server, record the proper information 13365 * for possible resend lock requests. 13366 * 13367 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13368 */ 13369 static void 13370 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13371 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13372 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13373 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13374 { 13375 bool_t unlock = (flk->l_type == F_UNLCK); 13376 13377 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13378 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13379 ctype == NFS4_LCK_CTYPE_REINSTATE); 13380 13381 if (error != 0 && !unlock) { 13382 NFS4_DEBUG((nfs4_lost_rqst_debug || 13383 nfs4_client_lock_debug), (CE_NOTE, 13384 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13385 " for lop %p", (void *)lop)); 13386 ASSERT(lop != NULL); 13387 mutex_enter(&lop->lo_lock); 13388 lop->lo_pending_rqsts = 1; 13389 mutex_exit(&lop->lo_lock); 13390 } 13391 13392 lost_rqstp->lr_putfirst = FALSE; 13393 lost_rqstp->lr_op = 0; 13394 13395 /* 13396 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13397 * recovery purposes so that the lock request that was sent 13398 * can be saved and re-issued later. Ditto for EIO from a forced 13399 * unmount. This is done to have the client's local locking state 13400 * match the v4 server's state; that is, the request was 13401 * potentially received and accepted by the server but the client 13402 * thinks it was not. 13403 */ 13404 if (error == ETIMEDOUT || error == EINTR || 13405 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13406 NFS4_DEBUG((nfs4_lost_rqst_debug || 13407 nfs4_client_lock_debug), (CE_NOTE, 13408 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13409 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13410 (void *)lop, (void *)oop, (void *)osp)); 13411 if (unlock) 13412 lost_rqstp->lr_op = OP_LOCKU; 13413 else { 13414 lost_rqstp->lr_op = OP_LOCK; 13415 lost_rqstp->lr_locktype = locktype; 13416 } 13417 /* 13418 * Objects are held and rele'd via the recovery code. 13419 * See nfs4_save_lost_rqst. 13420 */ 13421 lost_rqstp->lr_vp = vp; 13422 lost_rqstp->lr_dvp = NULL; 13423 lost_rqstp->lr_oop = oop; 13424 lost_rqstp->lr_osp = osp; 13425 lost_rqstp->lr_lop = lop; 13426 lost_rqstp->lr_cr = cr; 13427 switch (ctype) { 13428 case NFS4_LCK_CTYPE_NORM: 13429 flk->l_pid = ttoproc(curthread)->p_pid; 13430 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13431 break; 13432 case NFS4_LCK_CTYPE_REINSTATE: 13433 lost_rqstp->lr_putfirst = TRUE; 13434 lost_rqstp->lr_ctype = ctype; 13435 break; 13436 default: 13437 break; 13438 } 13439 lost_rqstp->lr_flk = flk; 13440 } 13441 } 13442 13443 /* 13444 * Update lop's seqid. Also update the seqid stored in a resend request, 13445 * if any. (Some recovery errors increment the seqid, and we may have to 13446 * send the resend request again.) 13447 */ 13448 13449 static void 13450 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13451 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13452 { 13453 if (lock_args) { 13454 if (lock_args->locker.new_lock_owner == TRUE) 13455 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13456 else { 13457 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13458 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13459 } 13460 } else if (locku_args) { 13461 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13462 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13463 } 13464 } 13465 13466 /* 13467 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13468 * COMPOUND4 args/res for calls that need to retry. 13469 * Switches the *cred_otwp to base_cr. 13470 */ 13471 static void 13472 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13473 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13474 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13475 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13476 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13477 { 13478 nfs4_open_owner_t *oop = *oopp; 13479 nfs4_open_stream_t *osp = *ospp; 13480 nfs4_lock_owner_t *lop = *lopp; 13481 nfs_argop4 *argop = (*argspp)->array; 13482 13483 if (*did_start_fop) { 13484 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13485 needrecov); 13486 *did_start_fop = FALSE; 13487 } 13488 ASSERT((*argspp)->array_len == 2); 13489 if (argop[1].argop == OP_LOCK) 13490 nfs4args_lock_free(&argop[1]); 13491 else if (argop[1].argop == OP_LOCKT) 13492 nfs4args_lockt_free(&argop[1]); 13493 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13494 if (!error) 13495 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13496 *argspp = NULL; 13497 *respp = NULL; 13498 13499 if (lop) { 13500 nfs4_end_lock_seqid_sync(lop); 13501 lock_owner_rele(lop); 13502 *lopp = NULL; 13503 } 13504 13505 /* need to free up the reference on osp for lock args */ 13506 if (osp != NULL) { 13507 open_stream_rele(osp, VTOR4(vp)); 13508 *ospp = NULL; 13509 } 13510 13511 /* need to free up the reference on oop for lock args */ 13512 if (oop != NULL) { 13513 nfs4_end_open_seqid_sync(oop); 13514 open_owner_rele(oop); 13515 *oopp = NULL; 13516 } 13517 13518 crfree(*cred_otwp); 13519 *cred_otwp = base_cr; 13520 crhold(*cred_otwp); 13521 } 13522 13523 /* 13524 * Function to process the client's recovery for nfs4frlock. 13525 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13526 * 13527 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13528 * COMPOUND4 args/res for calls that need to retry. 13529 * 13530 * Note: the rp's r_lkserlock is *not* dropped during this path. 13531 */ 13532 static bool_t 13533 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13534 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13535 LOCK4args *lock_args, LOCKU4args *locku_args, 13536 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13537 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13538 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13539 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13540 { 13541 nfs4_open_owner_t *oop = *oopp; 13542 nfs4_open_stream_t *osp = *ospp; 13543 nfs4_lock_owner_t *lop = *lopp; 13544 13545 bool_t abort, retry; 13546 13547 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13548 ASSERT((*argspp) != NULL); 13549 ASSERT((*respp) != NULL); 13550 if (lock_args || locku_args) 13551 ASSERT(lop != NULL); 13552 13553 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13554 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13555 13556 retry = TRUE; 13557 abort = FALSE; 13558 if (needrecov) { 13559 nfs4_bseqid_entry_t *bsep = NULL; 13560 nfs_opnum4 op; 13561 13562 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13563 13564 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13565 seqid4 seqid; 13566 13567 if (lock_args) { 13568 if (lock_args->locker.new_lock_owner == TRUE) 13569 seqid = lock_args->locker.locker4_u. 13570 open_owner.open_seqid; 13571 else 13572 seqid = lock_args->locker.locker4_u. 13573 lock_owner.lock_seqid; 13574 } else if (locku_args) { 13575 seqid = locku_args->seqid; 13576 } else { 13577 seqid = 0; 13578 } 13579 13580 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13581 flk->l_pid, (*argspp)->ctag, seqid); 13582 } 13583 13584 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13585 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13586 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13587 NULL, op, bsep); 13588 13589 if (bsep) 13590 kmem_free(bsep, sizeof (*bsep)); 13591 } 13592 13593 /* 13594 * Return that we do not want to retry the request for 3 cases: 13595 * 1. If we received EINTR or are bailing out because of a forced 13596 * unmount, we came into this code path just for the sake of 13597 * initiating recovery, we now need to return the error. 13598 * 2. If we have aborted recovery. 13599 * 3. We received NFS4ERR_BAD_SEQID. 13600 */ 13601 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13602 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13603 retry = FALSE; 13604 13605 if (*did_start_fop == TRUE) { 13606 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13607 needrecov); 13608 *did_start_fop = FALSE; 13609 } 13610 13611 if (retry == TRUE) { 13612 nfs_argop4 *argop; 13613 13614 argop = (*argspp)->array; 13615 ASSERT((*argspp)->array_len == 2); 13616 13617 if (argop[1].argop == OP_LOCK) 13618 nfs4args_lock_free(&argop[1]); 13619 else if (argop[1].argop == OP_LOCKT) 13620 nfs4args_lockt_free(&argop[1]); 13621 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13622 if (!ep->error) 13623 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13624 *respp = NULL; 13625 *argspp = NULL; 13626 } 13627 13628 if (lop != NULL) { 13629 nfs4_end_lock_seqid_sync(lop); 13630 lock_owner_rele(lop); 13631 } 13632 13633 *lopp = NULL; 13634 13635 /* need to free up the reference on osp for lock args */ 13636 if (osp != NULL) { 13637 open_stream_rele(osp, rp); 13638 *ospp = NULL; 13639 } 13640 13641 /* need to free up the reference on oop for lock args */ 13642 if (oop != NULL) { 13643 nfs4_end_open_seqid_sync(oop); 13644 open_owner_rele(oop); 13645 *oopp = NULL; 13646 } 13647 13648 return (retry); 13649 } 13650 13651 /* 13652 * Handles the successful reply from the server for nfs4frlock. 13653 */ 13654 static void 13655 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13656 vnode_t *vp, int flag, u_offset_t offset, 13657 nfs4_lost_rqst_t *resend_rqstp) 13658 { 13659 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13660 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13661 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13662 if (ctype == NFS4_LCK_CTYPE_NORM) { 13663 flk->l_pid = ttoproc(curthread)->p_pid; 13664 /* 13665 * We do not register lost locks locally in 13666 * the 'resend' case since the user/application 13667 * doesn't think we have the lock. 13668 */ 13669 ASSERT(!resend_rqstp); 13670 nfs4_register_lock_locally(vp, flk, flag, offset); 13671 } 13672 } 13673 } 13674 13675 /* 13676 * Handle the DENIED reply from the server for nfs4frlock. 13677 * Returns TRUE if we should retry the request; FALSE otherwise. 13678 * 13679 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13680 * COMPOUND4 args/res for calls that need to retry. Can also 13681 * drop and regrab the r_lkserlock. 13682 */ 13683 static bool_t 13684 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13685 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13686 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13687 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13688 nfs4_recov_state_t *recov_statep, int needrecov, 13689 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13690 clock_t *tick_delayp, short *whencep, int *errorp, 13691 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13692 bool_t *skip_get_err) 13693 { 13694 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13695 13696 if (lock_args) { 13697 nfs4_open_owner_t *oop = *oopp; 13698 nfs4_open_stream_t *osp = *ospp; 13699 nfs4_lock_owner_t *lop = *lopp; 13700 int intr; 13701 13702 /* 13703 * Blocking lock needs to sleep and retry from the request. 13704 * 13705 * Do not block and wait for 'resend' or 'reinstate' 13706 * lock requests, just return the error. 13707 * 13708 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13709 */ 13710 if (cmd == F_SETLKW) { 13711 rnode4_t *rp = VTOR4(vp); 13712 nfs_argop4 *argop = (*argspp)->array; 13713 13714 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13715 13716 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13717 recov_statep, needrecov); 13718 *did_start_fop = FALSE; 13719 ASSERT((*argspp)->array_len == 2); 13720 if (argop[1].argop == OP_LOCK) 13721 nfs4args_lock_free(&argop[1]); 13722 else if (argop[1].argop == OP_LOCKT) 13723 nfs4args_lockt_free(&argop[1]); 13724 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13725 if (*respp) 13726 (void) xdr_free(xdr_COMPOUND4res_clnt, 13727 (caddr_t)*respp); 13728 *argspp = NULL; 13729 *respp = NULL; 13730 nfs4_end_lock_seqid_sync(lop); 13731 lock_owner_rele(lop); 13732 *lopp = NULL; 13733 if (osp != NULL) { 13734 open_stream_rele(osp, rp); 13735 *ospp = NULL; 13736 } 13737 if (oop != NULL) { 13738 nfs4_end_open_seqid_sync(oop); 13739 open_owner_rele(oop); 13740 *oopp = NULL; 13741 } 13742 13743 nfs_rw_exit(&rp->r_lkserlock); 13744 13745 intr = nfs4_block_and_wait(tick_delayp, rp); 13746 13747 if (intr) { 13748 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13749 RW_WRITER, FALSE); 13750 *errorp = EINTR; 13751 return (FALSE); 13752 } 13753 13754 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13755 RW_WRITER, FALSE); 13756 13757 /* 13758 * Make sure we are still safe to lock with 13759 * regards to mmapping. 13760 */ 13761 if (!nfs4_safelock(vp, flk, cr)) { 13762 *errorp = EAGAIN; 13763 return (FALSE); 13764 } 13765 13766 return (TRUE); 13767 } 13768 if (ctype == NFS4_LCK_CTYPE_NORM) 13769 *errorp = EAGAIN; 13770 *skip_get_err = TRUE; 13771 flk->l_whence = 0; 13772 *whencep = 0; 13773 return (FALSE); 13774 } else if (lockt_args) { 13775 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13776 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13777 13778 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13779 flk, lockt_args); 13780 13781 /* according to NLM code */ 13782 *errorp = 0; 13783 *whencep = 0; 13784 *skip_get_err = TRUE; 13785 return (FALSE); 13786 } 13787 return (FALSE); 13788 } 13789 13790 /* 13791 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13792 */ 13793 static void 13794 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13795 { 13796 switch (resp->status) { 13797 case NFS4ERR_ACCESS: 13798 case NFS4ERR_ADMIN_REVOKED: 13799 case NFS4ERR_BADHANDLE: 13800 case NFS4ERR_BAD_RANGE: 13801 case NFS4ERR_BAD_SEQID: 13802 case NFS4ERR_BAD_STATEID: 13803 case NFS4ERR_BADXDR: 13804 case NFS4ERR_DEADLOCK: 13805 case NFS4ERR_DELAY: 13806 case NFS4ERR_EXPIRED: 13807 case NFS4ERR_FHEXPIRED: 13808 case NFS4ERR_GRACE: 13809 case NFS4ERR_INVAL: 13810 case NFS4ERR_ISDIR: 13811 case NFS4ERR_LEASE_MOVED: 13812 case NFS4ERR_LOCK_NOTSUPP: 13813 case NFS4ERR_LOCK_RANGE: 13814 case NFS4ERR_MOVED: 13815 case NFS4ERR_NOFILEHANDLE: 13816 case NFS4ERR_NO_GRACE: 13817 case NFS4ERR_OLD_STATEID: 13818 case NFS4ERR_OPENMODE: 13819 case NFS4ERR_RECLAIM_BAD: 13820 case NFS4ERR_RECLAIM_CONFLICT: 13821 case NFS4ERR_RESOURCE: 13822 case NFS4ERR_SERVERFAULT: 13823 case NFS4ERR_STALE: 13824 case NFS4ERR_STALE_CLIENTID: 13825 case NFS4ERR_STALE_STATEID: 13826 return; 13827 default: 13828 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13829 "nfs4frlock_results_default: got unrecognizable " 13830 "res.status %d", resp->status)); 13831 *errorp = NFS4ERR_INVAL; 13832 } 13833 } 13834 13835 /* 13836 * The lock request was successful, so update the client's state. 13837 */ 13838 static void 13839 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13840 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13841 vnode_t *vp, flock64_t *flk, cred_t *cr, 13842 nfs4_lost_rqst_t *resend_rqstp) 13843 { 13844 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13845 13846 if (lock_args) { 13847 LOCK4res *lock_res; 13848 13849 lock_res = &resop->nfs_resop4_u.oplock; 13850 /* update the stateid with server's response */ 13851 13852 if (lock_args->locker.new_lock_owner == TRUE) { 13853 mutex_enter(&lop->lo_lock); 13854 lop->lo_just_created = NFS4_PERM_CREATED; 13855 mutex_exit(&lop->lo_lock); 13856 } 13857 13858 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13859 13860 /* 13861 * If the lock was the result of a resending a lost 13862 * request, we've synched up the stateid and seqid 13863 * with the server, but now the server might be out of sync 13864 * with what the application thinks it has for locks. 13865 * Clean that up here. It's unclear whether we should do 13866 * this even if the filesystem has been forcibly unmounted. 13867 * For most servers, it's probably wasted effort, but 13868 * RFC3530 lets servers require that unlocks exactly match 13869 * the locks that are held. 13870 */ 13871 if (resend_rqstp != NULL && 13872 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13873 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13874 } else { 13875 flk->l_whence = 0; 13876 } 13877 } else if (locku_args) { 13878 LOCKU4res *locku_res; 13879 13880 locku_res = &resop->nfs_resop4_u.oplocku; 13881 13882 /* Update the stateid with the server's response */ 13883 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 13884 } else if (lockt_args) { 13885 /* Switch the lock type to express success, see fcntl */ 13886 flk->l_type = F_UNLCK; 13887 flk->l_whence = 0; 13888 } 13889 } 13890 13891 /* 13892 * Do final cleanup before exiting nfs4frlock. 13893 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13894 * COMPOUND4 args/res for calls that haven't already. 13895 */ 13896 static void 13897 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 13898 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 13899 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 13900 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13901 short whence, u_offset_t offset, struct lm_sysid *ls, 13902 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 13903 bool_t did_start_fop, bool_t skip_get_err, 13904 cred_t *cred_otw, cred_t *cred) 13905 { 13906 mntinfo4_t *mi = VTOMI4(vp); 13907 rnode4_t *rp = VTOR4(vp); 13908 int error = *errorp; 13909 nfs_argop4 *argop; 13910 13911 ASSERT(nfs_zone() == mi->mi_zone); 13912 /* 13913 * The client recovery code wants the raw status information, 13914 * so don't map the NFS status code to an errno value for 13915 * non-normal call types. 13916 */ 13917 if (ctype == NFS4_LCK_CTYPE_NORM) { 13918 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 13919 *errorp = geterrno4(resp->status); 13920 if (did_start_fop == TRUE) 13921 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 13922 needrecov); 13923 13924 /* 13925 * We've established a new lock on the server, so invalidate 13926 * the pages associated with the vnode to get the most up to 13927 * date pages from the server after acquiring the lock. We 13928 * want to be sure that the read operation gets the newest data. 13929 * N.B. 13930 * We used to do this in nfs4frlock_results_ok but that doesn't 13931 * work since VOP_PUTPAGE can call nfs4_commit which calls 13932 * nfs4_start_fop. We flush the pages below after calling 13933 * nfs4_end_fop above 13934 */ 13935 if (!error && resp && resp->status == NFS4_OK) { 13936 int error; 13937 13938 error = VOP_PUTPAGE(vp, (u_offset_t)0, 13939 0, B_INVAL, cred, NULL); 13940 13941 if (error && (error == ENOSPC || error == EDQUOT)) { 13942 rnode4_t *rp = VTOR4(vp); 13943 13944 mutex_enter(&rp->r_statelock); 13945 if (!rp->r_error) 13946 rp->r_error = error; 13947 mutex_exit(&rp->r_statelock); 13948 } 13949 } 13950 } 13951 if (argsp) { 13952 ASSERT(argsp->array_len == 2); 13953 argop = argsp->array; 13954 if (argop[1].argop == OP_LOCK) 13955 nfs4args_lock_free(&argop[1]); 13956 else if (argop[1].argop == OP_LOCKT) 13957 nfs4args_lockt_free(&argop[1]); 13958 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13959 if (resp) 13960 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 13961 } 13962 13963 /* free the reference on the lock owner */ 13964 if (lop != NULL) { 13965 nfs4_end_lock_seqid_sync(lop); 13966 lock_owner_rele(lop); 13967 } 13968 13969 /* need to free up the reference on osp for lock args */ 13970 if (osp != NULL) 13971 open_stream_rele(osp, rp); 13972 13973 /* need to free up the reference on oop for lock args */ 13974 if (oop != NULL) { 13975 nfs4_end_open_seqid_sync(oop); 13976 open_owner_rele(oop); 13977 } 13978 13979 (void) convoff(vp, flk, whence, offset); 13980 13981 lm_rel_sysid(ls); 13982 13983 /* 13984 * Record debug information in the event we get EINVAL. 13985 */ 13986 mutex_enter(&mi->mi_lock); 13987 if (*errorp == EINVAL && (lock_args || locku_args) && 13988 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 13989 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 13990 zcmn_err(getzoneid(), CE_NOTE, 13991 "%s operation failed with " 13992 "EINVAL probably since the server, %s," 13993 " doesn't support POSIX style locking", 13994 lock_args ? "LOCK" : "LOCKU", 13995 mi->mi_curr_serv->sv_hostname); 13996 mi->mi_flags |= MI4_LOCK_DEBUG; 13997 } 13998 } 13999 mutex_exit(&mi->mi_lock); 14000 14001 if (cred_otw) 14002 crfree(cred_otw); 14003 } 14004 14005 /* 14006 * This calls the server and the local locking code. 14007 * 14008 * Client locks are registerred locally by oring the sysid with 14009 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 14010 * We need to distinguish between the two to avoid collision in case one 14011 * machine is used as both client and server. 14012 * 14013 * Blocking lock requests will continually retry to acquire the lock 14014 * forever. 14015 * 14016 * The ctype is defined as follows: 14017 * NFS4_LCK_CTYPE_NORM: normal lock request. 14018 * 14019 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14020 * recovery, get the pid from flk instead of curproc, and don't reregister 14021 * the lock locally. 14022 * 14023 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14024 * that we will use the information passed in via resend_rqstp to setup the 14025 * lock/locku request. This resend is the exact same request as the 'lost 14026 * lock', and is initiated by the recovery framework. A successful resend 14027 * request can initiate one or more reinstate requests. 14028 * 14029 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14030 * does not trigger additional reinstate requests. This lock call type is 14031 * set for setting the v4 server's locking state back to match what the 14032 * client's local locking state is in the event of a received 'lost lock'. 14033 * 14034 * Errors are returned via the nfs4_error_t parameter. 14035 */ 14036 void 14037 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14038 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14039 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14040 { 14041 COMPOUND4args_clnt args, *argsp = NULL; 14042 COMPOUND4res_clnt res, *resp = NULL; 14043 nfs_argop4 *argop; 14044 nfs_resop4 *resop; 14045 rnode4_t *rp; 14046 int doqueue = 1; 14047 clock_t tick_delay; /* delay in clock ticks */ 14048 struct lm_sysid *ls; 14049 LOCK4args *lock_args = NULL; 14050 LOCKU4args *locku_args = NULL; 14051 LOCKT4args *lockt_args = NULL; 14052 nfs4_open_owner_t *oop = NULL; 14053 nfs4_open_stream_t *osp = NULL; 14054 nfs4_lock_owner_t *lop = NULL; 14055 bool_t needrecov = FALSE; 14056 nfs4_recov_state_t recov_state; 14057 short whence; 14058 nfs4_op_hint_t op_hint; 14059 nfs4_lost_rqst_t lost_rqst; 14060 bool_t retry = FALSE; 14061 bool_t did_start_fop = FALSE; 14062 bool_t skip_get_err = FALSE; 14063 cred_t *cred_otw = NULL; 14064 bool_t recovonly; /* just queue request */ 14065 int frc_no_reclaim = 0; 14066 #ifdef DEBUG 14067 char *name; 14068 #endif 14069 14070 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14071 14072 #ifdef DEBUG 14073 name = fn_name(VTOSV(vp)->sv_name); 14074 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14075 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14076 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14077 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14078 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14079 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14080 resend_rqstp ? "TRUE" : "FALSE")); 14081 kmem_free(name, MAXNAMELEN); 14082 #endif 14083 14084 nfs4_error_zinit(ep); 14085 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14086 if (ep->error) 14087 return; 14088 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14089 if (ep->error) 14090 return; 14091 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14092 vp, cr, &cred_otw); 14093 14094 recov_retry: 14095 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14096 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14097 rp = VTOR4(vp); 14098 14099 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14100 &did_start_fop, &recovonly); 14101 14102 if (ep->error) 14103 goto out; 14104 14105 if (recovonly) { 14106 /* 14107 * Leave the request for the recovery system to deal with. 14108 */ 14109 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14110 ASSERT(cmd != F_GETLK); 14111 ASSERT(flk->l_type == F_UNLCK); 14112 14113 nfs4_error_init(ep, EINTR); 14114 needrecov = TRUE; 14115 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14116 if (lop != NULL) { 14117 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14118 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14119 (void) nfs4_start_recovery(ep, 14120 VTOMI4(vp), vp, NULL, NULL, 14121 (lost_rqst.lr_op == OP_LOCK || 14122 lost_rqst.lr_op == OP_LOCKU) ? 14123 &lost_rqst : NULL, OP_LOCKU, NULL); 14124 lock_owner_rele(lop); 14125 lop = NULL; 14126 } 14127 flk->l_pid = curproc->p_pid; 14128 nfs4_register_lock_locally(vp, flk, flag, offset); 14129 goto out; 14130 } 14131 14132 /* putfh directory fh */ 14133 argop[0].argop = OP_CPUTFH; 14134 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14135 14136 /* 14137 * Set up the over-the-wire arguments and get references to the 14138 * open owner, etc. 14139 */ 14140 14141 if (ctype == NFS4_LCK_CTYPE_RESEND || 14142 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14143 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14144 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14145 } else { 14146 bool_t go_otw = TRUE; 14147 14148 ASSERT(resend_rqstp == NULL); 14149 14150 switch (cmd) { 14151 case F_GETLK: 14152 case F_O_GETLK: 14153 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14154 &lockt_args, argsp, flk, rp); 14155 break; 14156 case F_SETLKW: 14157 case F_SETLK: 14158 if (flk->l_type == F_UNLCK) 14159 nfs4frlock_setup_locku_args(ctype, 14160 &argop[1], &locku_args, flk, 14161 &lop, ep, argsp, 14162 vp, flag, offset, cr, 14163 &skip_get_err, &go_otw); 14164 else 14165 nfs4frlock_setup_lock_args(ctype, 14166 &lock_args, &oop, &osp, &lop, &argop[1], 14167 argsp, flk, cmd, vp, cr, ep); 14168 14169 if (ep->error) 14170 goto out; 14171 14172 switch (ep->stat) { 14173 case NFS4_OK: 14174 break; 14175 case NFS4ERR_DELAY: 14176 /* recov thread never gets this error */ 14177 ASSERT(resend_rqstp == NULL); 14178 ASSERT(did_start_fop); 14179 14180 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14181 &recov_state, TRUE); 14182 did_start_fop = FALSE; 14183 if (argop[1].argop == OP_LOCK) 14184 nfs4args_lock_free(&argop[1]); 14185 else if (argop[1].argop == OP_LOCKT) 14186 nfs4args_lockt_free(&argop[1]); 14187 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14188 argsp = NULL; 14189 goto recov_retry; 14190 default: 14191 ep->error = EIO; 14192 goto out; 14193 } 14194 break; 14195 default: 14196 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14197 "nfs4_frlock: invalid cmd %d", cmd)); 14198 ep->error = EINVAL; 14199 goto out; 14200 } 14201 14202 if (!go_otw) 14203 goto out; 14204 } 14205 14206 /* XXX should we use the local reclock as a cache ? */ 14207 /* 14208 * Unregister the lock with the local locking code before 14209 * contacting the server. This avoids a potential race where 14210 * another process gets notified that it has been granted a lock 14211 * before we can unregister ourselves locally. 14212 */ 14213 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14214 if (ctype == NFS4_LCK_CTYPE_NORM) 14215 flk->l_pid = ttoproc(curthread)->p_pid; 14216 nfs4_register_lock_locally(vp, flk, flag, offset); 14217 } 14218 14219 /* 14220 * Send the server the lock request. Continually loop with a delay 14221 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14222 */ 14223 resp = &res; 14224 14225 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14226 (CE_NOTE, 14227 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14228 rnode4info(rp))); 14229 14230 if (lock_args && frc_no_reclaim) { 14231 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14232 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14233 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14234 lock_args->reclaim = FALSE; 14235 if (did_reclaimp) 14236 *did_reclaimp = 0; 14237 } 14238 14239 /* 14240 * Do the OTW call. 14241 */ 14242 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14243 14244 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14245 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14246 14247 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14248 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14249 "nfs4frlock: needrecov %d", needrecov)); 14250 14251 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14252 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14253 args.ctag); 14254 14255 /* 14256 * Check if one of these mutually exclusive error cases has 14257 * happened: 14258 * need to swap credentials due to access error 14259 * recovery is needed 14260 * different error (only known case is missing Kerberos ticket) 14261 */ 14262 14263 if ((ep->error == EACCES || 14264 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14265 cred_otw != cr) { 14266 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14267 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14268 cr, &cred_otw); 14269 goto recov_retry; 14270 } 14271 14272 if (needrecov) { 14273 /* 14274 * LOCKT requests don't need to recover from lost 14275 * requests since they don't create/modify state. 14276 */ 14277 if ((ep->error == EINTR || 14278 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14279 lockt_args) 14280 goto out; 14281 /* 14282 * Do not attempt recovery for requests initiated by 14283 * the recovery framework. Let the framework redrive them. 14284 */ 14285 if (ctype != NFS4_LCK_CTYPE_NORM) 14286 goto out; 14287 else { 14288 ASSERT(resend_rqstp == NULL); 14289 } 14290 14291 nfs4frlock_save_lost_rqst(ctype, ep->error, 14292 flk_to_locktype(cmd, flk->l_type), 14293 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14294 14295 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14296 &resp, lock_args, locku_args, &oop, &osp, &lop, 14297 rp, vp, &recov_state, op_hint, &did_start_fop, 14298 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14299 14300 if (retry) { 14301 ASSERT(oop == NULL); 14302 ASSERT(osp == NULL); 14303 ASSERT(lop == NULL); 14304 goto recov_retry; 14305 } 14306 goto out; 14307 } 14308 14309 /* 14310 * Bail out if have reached this point with ep->error set. Can 14311 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14312 * This happens if Kerberos ticket has expired or has been 14313 * destroyed. 14314 */ 14315 if (ep->error != 0) 14316 goto out; 14317 14318 /* 14319 * Process the reply. 14320 */ 14321 switch (resp->status) { 14322 case NFS4_OK: 14323 resop = &resp->array[1]; 14324 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14325 resend_rqstp); 14326 /* 14327 * Have a successful lock operation, now update state. 14328 */ 14329 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14330 resop, lop, vp, flk, cr, resend_rqstp); 14331 break; 14332 14333 case NFS4ERR_DENIED: 14334 resop = &resp->array[1]; 14335 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14336 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14337 &recov_state, needrecov, &argsp, &resp, 14338 &tick_delay, &whence, &ep->error, resop, cr, 14339 &did_start_fop, &skip_get_err); 14340 14341 if (retry) { 14342 ASSERT(oop == NULL); 14343 ASSERT(osp == NULL); 14344 ASSERT(lop == NULL); 14345 goto recov_retry; 14346 } 14347 break; 14348 /* 14349 * If the server won't let us reclaim, fall-back to trying to lock 14350 * the file from scratch. Code elsewhere will check the changeinfo 14351 * to ensure the file hasn't been changed. 14352 */ 14353 case NFS4ERR_NO_GRACE: 14354 if (lock_args && lock_args->reclaim == TRUE) { 14355 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14356 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14357 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14358 frc_no_reclaim = 1; 14359 /* clean up before retrying */ 14360 needrecov = 0; 14361 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14362 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14363 &recov_state, op_hint, &did_start_fop, NULL, flk); 14364 goto recov_retry; 14365 } 14366 /* FALLTHROUGH */ 14367 14368 default: 14369 nfs4frlock_results_default(resp, &ep->error); 14370 break; 14371 } 14372 out: 14373 /* 14374 * Process and cleanup from error. Make interrupted unlock 14375 * requests look successful, since they will be handled by the 14376 * client recovery code. 14377 */ 14378 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14379 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14380 lock_args, locku_args, did_start_fop, 14381 skip_get_err, cred_otw, cr); 14382 14383 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14384 (cmd == F_SETLK || cmd == F_SETLKW)) 14385 ep->error = 0; 14386 } 14387 14388 /* 14389 * nfs4_safelock: 14390 * 14391 * Return non-zero if the given lock request can be handled without 14392 * violating the constraints on concurrent mapping and locking. 14393 */ 14394 14395 static int 14396 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14397 { 14398 rnode4_t *rp = VTOR4(vp); 14399 struct vattr va; 14400 int error; 14401 14402 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14403 ASSERT(rp->r_mapcnt >= 0); 14404 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14405 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14406 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14407 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14408 14409 if (rp->r_mapcnt == 0) 14410 return (1); /* always safe if not mapped */ 14411 14412 /* 14413 * If the file is already mapped and there are locks, then they 14414 * should be all safe locks. So adding or removing a lock is safe 14415 * as long as the new request is safe (i.e., whole-file, meaning 14416 * length and starting offset are both zero). 14417 */ 14418 14419 if (bfp->l_start != 0 || bfp->l_len != 0) { 14420 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14421 "cannot lock a memory mapped file unless locking the " 14422 "entire file: start %"PRIx64", len %"PRIx64, 14423 bfp->l_start, bfp->l_len)); 14424 return (0); 14425 } 14426 14427 /* mandatory locking and mapping don't mix */ 14428 va.va_mask = AT_MODE; 14429 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14430 if (error != 0) { 14431 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14432 "getattr error %d", error)); 14433 return (0); /* treat errors conservatively */ 14434 } 14435 if (MANDLOCK(vp, va.va_mode)) { 14436 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14437 "cannot mandatory lock and mmap a file")); 14438 return (0); 14439 } 14440 14441 return (1); 14442 } 14443 14444 14445 /* 14446 * Register the lock locally within Solaris. 14447 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14448 * recording locks locally. 14449 * 14450 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14451 * are registered locally. 14452 */ 14453 void 14454 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14455 u_offset_t offset) 14456 { 14457 int oldsysid; 14458 int error; 14459 #ifdef DEBUG 14460 char *name; 14461 #endif 14462 14463 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14464 14465 #ifdef DEBUG 14466 name = fn_name(VTOSV(vp)->sv_name); 14467 NFS4_DEBUG(nfs4_client_lock_debug, 14468 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14469 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14470 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14471 flk->l_sysid)); 14472 kmem_free(name, MAXNAMELEN); 14473 #endif 14474 14475 /* register the lock with local locking */ 14476 oldsysid = flk->l_sysid; 14477 flk->l_sysid |= LM_SYSID_CLIENT; 14478 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14479 #ifdef DEBUG 14480 if (error != 0) { 14481 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14482 "nfs4_register_lock_locally: could not register with" 14483 " local locking")); 14484 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14485 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14486 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14487 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14488 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14489 flk->l_type, flk->l_start, flk->l_len)); 14490 (void) reclock(vp, flk, 0, flag, offset, NULL); 14491 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14492 "blocked by pid %d sysid 0x%x type %d " 14493 "off 0x%" PRIx64 " len 0x%" PRIx64, 14494 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14495 flk->l_len)); 14496 } 14497 #endif 14498 flk->l_sysid = oldsysid; 14499 } 14500 14501 /* 14502 * nfs4_lockrelease: 14503 * 14504 * Release any locks on the given vnode that are held by the current 14505 * process. Also removes the lock owner (if one exists) from the rnode's 14506 * list. 14507 */ 14508 static int 14509 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14510 { 14511 flock64_t ld; 14512 int ret, error; 14513 rnode4_t *rp; 14514 nfs4_lock_owner_t *lop; 14515 nfs4_recov_state_t recov_state; 14516 mntinfo4_t *mi; 14517 bool_t possible_orphan = FALSE; 14518 bool_t recovonly; 14519 14520 ASSERT((uintptr_t)vp > KERNELBASE); 14521 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14522 14523 rp = VTOR4(vp); 14524 mi = VTOMI4(vp); 14525 14526 /* 14527 * If we have not locked anything then we can 14528 * just return since we have no work to do. 14529 */ 14530 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14531 return (0); 14532 } 14533 14534 /* 14535 * We need to comprehend that another thread may 14536 * kick off recovery and the lock_owner we have stashed 14537 * in lop might be invalid so we should NOT cache it 14538 * locally! 14539 */ 14540 recov_state.rs_flags = 0; 14541 recov_state.rs_num_retry_despite_err = 0; 14542 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14543 &recovonly); 14544 if (error) { 14545 mutex_enter(&rp->r_statelock); 14546 rp->r_flags |= R4LODANGLERS; 14547 mutex_exit(&rp->r_statelock); 14548 return (error); 14549 } 14550 14551 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14552 14553 /* 14554 * Check if the lock owner might have a lock (request was sent but 14555 * no response was received). Also check if there are any remote 14556 * locks on the file. (In theory we shouldn't have to make this 14557 * second check if there's no lock owner, but for now we'll be 14558 * conservative and do it anyway.) If either condition is true, 14559 * send an unlock for the entire file to the server. 14560 * 14561 * Note that no explicit synchronization is needed here. At worst, 14562 * flk_has_remote_locks() will return a false positive, in which case 14563 * the unlock call wastes time but doesn't harm correctness. 14564 */ 14565 14566 if (lop) { 14567 mutex_enter(&lop->lo_lock); 14568 possible_orphan = lop->lo_pending_rqsts; 14569 mutex_exit(&lop->lo_lock); 14570 lock_owner_rele(lop); 14571 } 14572 14573 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14574 14575 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14576 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14577 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14578 (void *)lop)); 14579 14580 if (possible_orphan || flk_has_remote_locks(vp)) { 14581 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14582 ld.l_whence = 0; /* unlock from start of file */ 14583 ld.l_start = 0; 14584 ld.l_len = 0; /* do entire file */ 14585 14586 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14587 cr, NULL); 14588 14589 if (ret != 0) { 14590 /* 14591 * If VOP_FRLOCK fails, make sure we unregister 14592 * local locks before we continue. 14593 */ 14594 ld.l_pid = ttoproc(curthread)->p_pid; 14595 nfs4_register_lock_locally(vp, &ld, flag, offset); 14596 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14597 "nfs4_lockrelease: lock release error on vp" 14598 " %p: error %d.\n", (void *)vp, ret)); 14599 } 14600 } 14601 14602 recov_state.rs_flags = 0; 14603 recov_state.rs_num_retry_despite_err = 0; 14604 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14605 &recovonly); 14606 if (error) { 14607 mutex_enter(&rp->r_statelock); 14608 rp->r_flags |= R4LODANGLERS; 14609 mutex_exit(&rp->r_statelock); 14610 return (error); 14611 } 14612 14613 /* 14614 * So, here we're going to need to retrieve the lock-owner 14615 * again (in case recovery has done a switch-a-roo) and 14616 * remove it because we can. 14617 */ 14618 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14619 14620 if (lop) { 14621 nfs4_rnode_remove_lock_owner(rp, lop); 14622 lock_owner_rele(lop); 14623 } 14624 14625 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14626 return (0); 14627 } 14628 14629 /* 14630 * Wait for 'tick_delay' clock ticks. 14631 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14632 * NOTE: lock_lease_time is in seconds. 14633 * 14634 * XXX For future improvements, should implement a waiting queue scheme. 14635 */ 14636 static int 14637 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14638 { 14639 long milliseconds_delay; 14640 time_t lock_lease_time; 14641 14642 /* wait tick_delay clock ticks or siginteruptus */ 14643 if (delay_sig(*tick_delay)) { 14644 return (EINTR); 14645 } 14646 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14647 "reissue the lock request: blocked for %ld clock ticks: %ld " 14648 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14649 14650 /* get the lease time */ 14651 lock_lease_time = r2lease_time(rp); 14652 14653 /* drv_hztousec converts ticks to microseconds */ 14654 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14655 if (milliseconds_delay < lock_lease_time * 1000) { 14656 *tick_delay = 2 * *tick_delay; 14657 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14658 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14659 } 14660 return (0); 14661 } 14662 14663 14664 void 14665 nfs4_vnops_init(void) 14666 { 14667 } 14668 14669 void 14670 nfs4_vnops_fini(void) 14671 { 14672 } 14673 14674 /* 14675 * Return a reference to the directory (parent) vnode for a given vnode, 14676 * using the saved pathname information and the directory file handle. The 14677 * caller is responsible for disposing of the reference. 14678 * Returns zero or an errno value. 14679 * 14680 * Caller should set need_start_op to FALSE if it is the recovery 14681 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14682 */ 14683 int 14684 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14685 { 14686 svnode_t *svnp; 14687 vnode_t *dvp = NULL; 14688 servinfo4_t *svp; 14689 nfs4_fname_t *mfname; 14690 int error; 14691 14692 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14693 14694 if (vp->v_flag & VROOT) { 14695 nfs4_sharedfh_t *sfh; 14696 nfs_fh4 fh; 14697 mntinfo4_t *mi; 14698 14699 ASSERT(vp->v_type == VREG); 14700 14701 mi = VTOMI4(vp); 14702 svp = mi->mi_curr_serv; 14703 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14704 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14705 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14706 sfh = sfh4_get(&fh, VTOMI4(vp)); 14707 nfs_rw_exit(&svp->sv_lock); 14708 mfname = mi->mi_fname; 14709 fn_hold(mfname); 14710 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14711 sfh4_rele(&sfh); 14712 14713 if (dvp->v_type == VNON) 14714 dvp->v_type = VDIR; 14715 *dvpp = dvp; 14716 return (0); 14717 } 14718 14719 svnp = VTOSV(vp); 14720 14721 if (svnp == NULL) { 14722 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14723 "shadow node is NULL")); 14724 return (EINVAL); 14725 } 14726 14727 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14728 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14729 "shadow node name or dfh val == NULL")); 14730 return (EINVAL); 14731 } 14732 14733 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14734 (int)need_start_op); 14735 if (error != 0) { 14736 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14737 "nfs4_make_dotdot returned %d", error)); 14738 return (error); 14739 } 14740 if (!dvp) { 14741 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14742 "nfs4_make_dotdot returned a NULL dvp")); 14743 return (EIO); 14744 } 14745 if (dvp->v_type == VNON) 14746 dvp->v_type = VDIR; 14747 ASSERT(dvp->v_type == VDIR); 14748 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14749 mutex_enter(&dvp->v_lock); 14750 dvp->v_flag |= V_XATTRDIR; 14751 mutex_exit(&dvp->v_lock); 14752 } 14753 *dvpp = dvp; 14754 return (0); 14755 } 14756 14757 /* 14758 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14759 * length that fnamep can accept, including the trailing null. 14760 * Returns 0 if okay, returns an errno value if there was a problem. 14761 */ 14762 14763 int 14764 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14765 { 14766 char *fn; 14767 int err = 0; 14768 servinfo4_t *svp; 14769 svnode_t *shvp; 14770 14771 /* 14772 * If the file being opened has VROOT set, then this is 14773 * a "file" mount. sv_name will not be interesting, so 14774 * go back to the servinfo4 to get the original mount 14775 * path and strip off all but the final edge. Otherwise 14776 * just return the name from the shadow vnode. 14777 */ 14778 14779 if (vp->v_flag & VROOT) { 14780 14781 svp = VTOMI4(vp)->mi_curr_serv; 14782 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14783 14784 fn = strrchr(svp->sv_path, '/'); 14785 if (fn == NULL) 14786 err = EINVAL; 14787 else 14788 fn++; 14789 } else { 14790 shvp = VTOSV(vp); 14791 fn = fn_name(shvp->sv_name); 14792 } 14793 14794 if (err == 0) 14795 if (strlen(fn) < maxlen) 14796 (void) strcpy(fnamep, fn); 14797 else 14798 err = ENAMETOOLONG; 14799 14800 if (vp->v_flag & VROOT) 14801 nfs_rw_exit(&svp->sv_lock); 14802 else 14803 kmem_free(fn, MAXNAMELEN); 14804 14805 return (err); 14806 } 14807 14808 /* 14809 * Bookkeeping for a close that doesn't need to go over the wire. 14810 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14811 * it is left at 1. 14812 */ 14813 void 14814 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14815 { 14816 rnode4_t *rp; 14817 mntinfo4_t *mi; 14818 14819 mi = VTOMI4(vp); 14820 rp = VTOR4(vp); 14821 14822 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14823 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14824 ASSERT(nfs_zone() == mi->mi_zone); 14825 ASSERT(mutex_owned(&osp->os_sync_lock)); 14826 ASSERT(*have_lockp); 14827 14828 if (!osp->os_valid || 14829 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14830 return; 14831 } 14832 14833 /* 14834 * This removes the reference obtained at OPEN; ie, 14835 * when the open stream structure was created. 14836 * 14837 * We don't have to worry about calling 'open_stream_rele' 14838 * since we our currently holding a reference to this 14839 * open stream which means the count can not go to 0 with 14840 * this decrement. 14841 */ 14842 ASSERT(osp->os_ref_count >= 2); 14843 osp->os_ref_count--; 14844 osp->os_valid = 0; 14845 mutex_exit(&osp->os_sync_lock); 14846 *have_lockp = 0; 14847 14848 nfs4_dec_state_ref_count(mi); 14849 } 14850 14851 /* 14852 * Close all remaining open streams on the rnode. These open streams 14853 * could be here because: 14854 * - The close attempted at either close or delmap failed 14855 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14856 * - Someone did mknod on a regular file but never opened it 14857 */ 14858 int 14859 nfs4close_all(vnode_t *vp, cred_t *cr) 14860 { 14861 nfs4_open_stream_t *osp; 14862 int error; 14863 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14864 rnode4_t *rp; 14865 14866 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14867 14868 error = 0; 14869 rp = VTOR4(vp); 14870 14871 /* 14872 * At this point, all we know is that the last time 14873 * someone called vn_rele, the count was 1. Since then, 14874 * the vnode could have been re-activated. We want to 14875 * loop through the open streams and close each one, but 14876 * we have to be careful since once we release the rnode 14877 * hash bucket lock, someone else is free to come in and 14878 * re-activate the rnode and add new open streams. The 14879 * strategy is take the rnode hash bucket lock, verify that 14880 * the count is still 1, grab the open stream off the 14881 * head of the list and mark it invalid, then release the 14882 * rnode hash bucket lock and proceed with that open stream. 14883 * This is ok because nfs4close_one() will acquire the proper 14884 * open/create to close/destroy synchronization for open 14885 * streams, and will ensure that if someone has reopened 14886 * the open stream after we've dropped the hash bucket lock 14887 * then we'll just simply return without destroying the 14888 * open stream. 14889 * Repeat until the list is empty. 14890 */ 14891 14892 for (;;) { 14893 14894 /* make sure vnode hasn't been reactivated */ 14895 rw_enter(&rp->r_hashq->r_lock, RW_READER); 14896 mutex_enter(&vp->v_lock); 14897 if (vp->v_count > 1) { 14898 mutex_exit(&vp->v_lock); 14899 rw_exit(&rp->r_hashq->r_lock); 14900 break; 14901 } 14902 /* 14903 * Grabbing r_os_lock before releasing v_lock prevents 14904 * a window where the rnode/open stream could get 14905 * reactivated (and os_force_close set to 0) before we 14906 * had a chance to set os_force_close to 1. 14907 */ 14908 mutex_enter(&rp->r_os_lock); 14909 mutex_exit(&vp->v_lock); 14910 14911 osp = list_head(&rp->r_open_streams); 14912 if (!osp) { 14913 /* nothing left to CLOSE OTW, so return */ 14914 mutex_exit(&rp->r_os_lock); 14915 rw_exit(&rp->r_hashq->r_lock); 14916 break; 14917 } 14918 14919 mutex_enter(&rp->r_statev4_lock); 14920 /* the file can't still be mem mapped */ 14921 ASSERT(rp->r_mapcnt == 0); 14922 if (rp->created_v4) 14923 rp->created_v4 = 0; 14924 mutex_exit(&rp->r_statev4_lock); 14925 14926 /* 14927 * Grab a ref on this open stream; nfs4close_one 14928 * will mark it as invalid 14929 */ 14930 mutex_enter(&osp->os_sync_lock); 14931 osp->os_ref_count++; 14932 osp->os_force_close = 1; 14933 mutex_exit(&osp->os_sync_lock); 14934 mutex_exit(&rp->r_os_lock); 14935 rw_exit(&rp->r_hashq->r_lock); 14936 14937 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 14938 14939 /* Update error if it isn't already non-zero */ 14940 if (error == 0) { 14941 if (e.error) 14942 error = e.error; 14943 else if (e.stat) 14944 error = geterrno4(e.stat); 14945 } 14946 14947 #ifdef DEBUG 14948 nfs4close_all_cnt++; 14949 #endif 14950 /* Release the ref on osp acquired above. */ 14951 open_stream_rele(osp, rp); 14952 14953 /* Proceed to the next open stream, if any */ 14954 } 14955 return (error); 14956 } 14957 14958 /* 14959 * nfs4close_one - close one open stream for a file if needed. 14960 * 14961 * "close_type" indicates which close path this is: 14962 * CLOSE_NORM: close initiated via VOP_CLOSE. 14963 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 14964 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 14965 * the close and release of client state for this open stream 14966 * (unless someone else has the open stream open). 14967 * CLOSE_RESEND: indicates the request is a replay of an earlier request 14968 * (e.g., due to abort because of a signal). 14969 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 14970 * 14971 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 14972 * recovery. Instead, the caller is expected to deal with retries. 14973 * 14974 * The caller can either pass in the osp ('provided_osp') or not. 14975 * 14976 * 'access_bits' represents the access we are closing/downgrading. 14977 * 14978 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 14979 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 14980 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 14981 * 14982 * Errors are returned via the nfs4_error_t. 14983 */ 14984 void 14985 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 14986 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 14987 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 14988 uint_t mmap_flags) 14989 { 14990 nfs4_open_owner_t *oop; 14991 nfs4_open_stream_t *osp = NULL; 14992 int retry = 0; 14993 int num_retries = NFS4_NUM_RECOV_RETRIES; 14994 rnode4_t *rp; 14995 mntinfo4_t *mi; 14996 nfs4_recov_state_t recov_state; 14997 cred_t *cred_otw = NULL; 14998 bool_t recovonly = FALSE; 14999 int isrecov; 15000 int force_close; 15001 int close_failed = 0; 15002 int did_dec_count = 0; 15003 int did_start_op = 0; 15004 int did_force_recovlock = 0; 15005 int did_start_seqid_sync = 0; 15006 int have_sync_lock = 0; 15007 15008 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15009 15010 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15011 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15012 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15013 len, maxprot, mmap_flags, access_bits)); 15014 15015 nfs4_error_zinit(ep); 15016 rp = VTOR4(vp); 15017 mi = VTOMI4(vp); 15018 isrecov = (close_type == CLOSE_RESEND || 15019 close_type == CLOSE_AFTER_RESEND); 15020 15021 /* 15022 * First get the open owner. 15023 */ 15024 if (!provided_osp) { 15025 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15026 } else { 15027 oop = provided_osp->os_open_owner; 15028 ASSERT(oop != NULL); 15029 open_owner_hold(oop); 15030 } 15031 15032 if (!oop) { 15033 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15034 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15035 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15036 (void *)provided_osp, close_type)); 15037 ep->error = EIO; 15038 goto out; 15039 } 15040 15041 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15042 recov_retry: 15043 osp = NULL; 15044 close_failed = 0; 15045 force_close = (close_type == CLOSE_FORCE); 15046 retry = 0; 15047 did_start_op = 0; 15048 did_force_recovlock = 0; 15049 did_start_seqid_sync = 0; 15050 have_sync_lock = 0; 15051 recovonly = FALSE; 15052 recov_state.rs_flags = 0; 15053 recov_state.rs_num_retry_despite_err = 0; 15054 15055 /* 15056 * Second synchronize with recovery. 15057 */ 15058 if (!isrecov) { 15059 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15060 &recov_state, &recovonly); 15061 if (!ep->error) { 15062 did_start_op = 1; 15063 } else { 15064 close_failed = 1; 15065 /* 15066 * If we couldn't get start_fop, but have to 15067 * cleanup state, then at least acquire the 15068 * mi_recovlock so we can synchronize with 15069 * recovery. 15070 */ 15071 if (close_type == CLOSE_FORCE) { 15072 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15073 RW_READER, FALSE); 15074 did_force_recovlock = 1; 15075 } else 15076 goto out; 15077 } 15078 } 15079 15080 /* 15081 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15082 * set 'recovonly' to TRUE since most likely this is due to 15083 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15084 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15085 * to retry, causing us to loop until recovery finishes. Plus we 15086 * don't need protection over the open seqid since we're not going 15087 * OTW, hence don't need to use the seqid. 15088 */ 15089 if (recovonly == FALSE) { 15090 /* need to grab the open owner sync before 'os_sync_lock' */ 15091 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15092 if (ep->error == EAGAIN) { 15093 ASSERT(!isrecov); 15094 if (did_start_op) 15095 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15096 &recov_state, TRUE); 15097 if (did_force_recovlock) 15098 nfs_rw_exit(&mi->mi_recovlock); 15099 goto recov_retry; 15100 } 15101 did_start_seqid_sync = 1; 15102 } 15103 15104 /* 15105 * Third get an open stream and acquire 'os_sync_lock' to 15106 * sychronize the opening/creating of an open stream with the 15107 * closing/destroying of an open stream. 15108 */ 15109 if (!provided_osp) { 15110 /* returns with 'os_sync_lock' held */ 15111 osp = find_open_stream(oop, rp); 15112 if (!osp) { 15113 ep->error = EIO; 15114 goto out; 15115 } 15116 } else { 15117 osp = provided_osp; 15118 open_stream_hold(osp); 15119 mutex_enter(&osp->os_sync_lock); 15120 } 15121 have_sync_lock = 1; 15122 15123 ASSERT(oop == osp->os_open_owner); 15124 15125 /* 15126 * Fourth, do any special pre-OTW CLOSE processing 15127 * based on the specific close type. 15128 */ 15129 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15130 !did_dec_count) { 15131 ASSERT(osp->os_open_ref_count > 0); 15132 osp->os_open_ref_count--; 15133 did_dec_count = 1; 15134 if (osp->os_open_ref_count == 0) 15135 osp->os_final_close = 1; 15136 } 15137 15138 if (close_type == CLOSE_FORCE) { 15139 /* see if somebody reopened the open stream. */ 15140 if (!osp->os_force_close) { 15141 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15142 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15143 "was reopened, vp %p", (void *)osp, (void *)vp)); 15144 ep->error = 0; 15145 ep->stat = NFS4_OK; 15146 goto out; 15147 } 15148 15149 if (!osp->os_final_close && !did_dec_count) { 15150 osp->os_open_ref_count--; 15151 did_dec_count = 1; 15152 } 15153 15154 /* 15155 * We can't depend on os_open_ref_count being 0 due to the 15156 * way executables are opened (VN_RELE to match a VOP_OPEN). 15157 */ 15158 #ifdef NOTYET 15159 ASSERT(osp->os_open_ref_count == 0); 15160 #endif 15161 if (osp->os_open_ref_count != 0) { 15162 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15163 "nfs4close_one: should panic here on an " 15164 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15165 "since this is probably the exec problem.")); 15166 15167 osp->os_open_ref_count = 0; 15168 } 15169 15170 /* 15171 * There is the possibility that nfs4close_one() 15172 * for close_type == CLOSE_DELMAP couldn't find the 15173 * open stream, thus couldn't decrement its os_mapcnt; 15174 * therefore we can't use this ASSERT yet. 15175 */ 15176 #ifdef NOTYET 15177 ASSERT(osp->os_mapcnt == 0); 15178 #endif 15179 osp->os_mapcnt = 0; 15180 } 15181 15182 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15183 ASSERT(osp->os_mapcnt >= btopr(len)); 15184 15185 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15186 osp->os_mmap_write -= btopr(len); 15187 if (maxprot & PROT_READ) 15188 osp->os_mmap_read -= btopr(len); 15189 if (maxprot & PROT_EXEC) 15190 osp->os_mmap_read -= btopr(len); 15191 /* mirror the PROT_NONE check in nfs4_addmap() */ 15192 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15193 !(maxprot & PROT_EXEC)) 15194 osp->os_mmap_read -= btopr(len); 15195 osp->os_mapcnt -= btopr(len); 15196 did_dec_count = 1; 15197 } 15198 15199 if (recovonly) { 15200 nfs4_lost_rqst_t lost_rqst; 15201 15202 /* request should not already be in recovery queue */ 15203 ASSERT(lrp == NULL); 15204 nfs4_error_init(ep, EINTR); 15205 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15206 osp, cred_otw, vp); 15207 mutex_exit(&osp->os_sync_lock); 15208 have_sync_lock = 0; 15209 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15210 lost_rqst.lr_op == OP_CLOSE ? 15211 &lost_rqst : NULL, OP_CLOSE, NULL); 15212 close_failed = 1; 15213 force_close = 0; 15214 goto close_cleanup; 15215 } 15216 15217 /* 15218 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15219 * we stopped operating on the open owner's <old oo_name, old seqid> 15220 * space, which means we stopped operating on the open stream 15221 * too. So don't go OTW (as the seqid is likely bad, and the 15222 * stateid could be stale, potentially triggering a false 15223 * setclientid), and just clean up the client's internal state. 15224 */ 15225 if (osp->os_orig_oo_name != oop->oo_name) { 15226 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15227 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15228 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15229 "oo_name %" PRIx64")", 15230 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15231 oop->oo_name)); 15232 close_failed = 1; 15233 } 15234 15235 /* If the file failed recovery, just quit. */ 15236 mutex_enter(&rp->r_statelock); 15237 if (rp->r_flags & R4RECOVERR) { 15238 close_failed = 1; 15239 } 15240 mutex_exit(&rp->r_statelock); 15241 15242 /* 15243 * If the force close path failed to obtain start_fop 15244 * then skip the OTW close and just remove the state. 15245 */ 15246 if (close_failed) 15247 goto close_cleanup; 15248 15249 /* 15250 * Fifth, check to see if there are still mapped pages or other 15251 * opens using this open stream. If there are then we can't 15252 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15253 */ 15254 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15255 nfs4_lost_rqst_t new_lost_rqst; 15256 bool_t needrecov = FALSE; 15257 cred_t *odg_cred_otw = NULL; 15258 seqid4 open_dg_seqid = 0; 15259 15260 if (osp->os_delegation) { 15261 /* 15262 * If this open stream was never OPENed OTW then we 15263 * surely can't DOWNGRADE it (especially since the 15264 * osp->open_stateid is really a delegation stateid 15265 * when os_delegation is 1). 15266 */ 15267 if (access_bits & FREAD) 15268 osp->os_share_acc_read--; 15269 if (access_bits & FWRITE) 15270 osp->os_share_acc_write--; 15271 osp->os_share_deny_none--; 15272 nfs4_error_zinit(ep); 15273 goto out; 15274 } 15275 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15276 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15277 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15278 if (needrecov && !isrecov) { 15279 bool_t abort; 15280 nfs4_bseqid_entry_t *bsep = NULL; 15281 15282 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15283 bsep = nfs4_create_bseqid_entry(oop, NULL, 15284 vp, 0, 15285 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15286 open_dg_seqid); 15287 15288 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15289 oop, osp, odg_cred_otw, vp, access_bits, 0); 15290 mutex_exit(&osp->os_sync_lock); 15291 have_sync_lock = 0; 15292 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15293 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15294 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15295 bsep); 15296 if (odg_cred_otw) 15297 crfree(odg_cred_otw); 15298 if (bsep) 15299 kmem_free(bsep, sizeof (*bsep)); 15300 15301 if (abort == TRUE) 15302 goto out; 15303 15304 if (did_start_seqid_sync) { 15305 nfs4_end_open_seqid_sync(oop); 15306 did_start_seqid_sync = 0; 15307 } 15308 open_stream_rele(osp, rp); 15309 15310 if (did_start_op) 15311 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15312 &recov_state, FALSE); 15313 if (did_force_recovlock) 15314 nfs_rw_exit(&mi->mi_recovlock); 15315 15316 goto recov_retry; 15317 } else { 15318 if (odg_cred_otw) 15319 crfree(odg_cred_otw); 15320 } 15321 goto out; 15322 } 15323 15324 /* 15325 * If this open stream was created as the results of an open 15326 * while holding a delegation, then just release it; no need 15327 * to do an OTW close. Otherwise do a "normal" OTW close. 15328 */ 15329 if (osp->os_delegation) { 15330 nfs4close_notw(vp, osp, &have_sync_lock); 15331 nfs4_error_zinit(ep); 15332 goto out; 15333 } 15334 15335 /* 15336 * If this stream is not valid, we're done. 15337 */ 15338 if (!osp->os_valid) { 15339 nfs4_error_zinit(ep); 15340 goto out; 15341 } 15342 15343 /* 15344 * Last open or mmap ref has vanished, need to do an OTW close. 15345 * First check to see if a close is still necessary. 15346 */ 15347 if (osp->os_failed_reopen) { 15348 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15349 "don't close OTW osp %p since reopen failed.", 15350 (void *)osp)); 15351 /* 15352 * Reopen of the open stream failed, hence the 15353 * stateid of the open stream is invalid/stale, and 15354 * sending this OTW would incorrectly cause another 15355 * round of recovery. In this case, we need to set 15356 * the 'os_valid' bit to 0 so another thread doesn't 15357 * come in and re-open this open stream before 15358 * this "closing" thread cleans up state (decrementing 15359 * the nfs4_server_t's state_ref_count and decrementing 15360 * the os_ref_count). 15361 */ 15362 osp->os_valid = 0; 15363 /* 15364 * This removes the reference obtained at OPEN; ie, 15365 * when the open stream structure was created. 15366 * 15367 * We don't have to worry about calling 'open_stream_rele' 15368 * since we our currently holding a reference to this 15369 * open stream which means the count can not go to 0 with 15370 * this decrement. 15371 */ 15372 ASSERT(osp->os_ref_count >= 2); 15373 osp->os_ref_count--; 15374 nfs4_error_zinit(ep); 15375 close_failed = 0; 15376 goto close_cleanup; 15377 } 15378 15379 ASSERT(osp->os_ref_count > 1); 15380 15381 /* 15382 * Sixth, try the CLOSE OTW. 15383 */ 15384 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15385 close_type, ep, &have_sync_lock); 15386 15387 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15388 /* 15389 * Let the recovery thread be responsible for 15390 * removing the state for CLOSE. 15391 */ 15392 close_failed = 1; 15393 force_close = 0; 15394 retry = 0; 15395 } 15396 15397 /* See if we need to retry with a different cred */ 15398 if ((ep->error == EACCES || 15399 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15400 cred_otw != cr) { 15401 crfree(cred_otw); 15402 cred_otw = cr; 15403 crhold(cred_otw); 15404 retry = 1; 15405 } 15406 15407 if (ep->error || ep->stat) 15408 close_failed = 1; 15409 15410 if (retry && !isrecov && num_retries-- > 0) { 15411 if (have_sync_lock) { 15412 mutex_exit(&osp->os_sync_lock); 15413 have_sync_lock = 0; 15414 } 15415 if (did_start_seqid_sync) { 15416 nfs4_end_open_seqid_sync(oop); 15417 did_start_seqid_sync = 0; 15418 } 15419 open_stream_rele(osp, rp); 15420 15421 if (did_start_op) 15422 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15423 &recov_state, FALSE); 15424 if (did_force_recovlock) 15425 nfs_rw_exit(&mi->mi_recovlock); 15426 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15427 "nfs4close_one: need to retry the close " 15428 "operation")); 15429 goto recov_retry; 15430 } 15431 close_cleanup: 15432 /* 15433 * Seventh and lastly, process our results. 15434 */ 15435 if (close_failed && force_close) { 15436 /* 15437 * It's ok to drop and regrab the 'os_sync_lock' since 15438 * nfs4close_notw() will recheck to make sure the 15439 * "close"/removal of state should happen. 15440 */ 15441 if (!have_sync_lock) { 15442 mutex_enter(&osp->os_sync_lock); 15443 have_sync_lock = 1; 15444 } 15445 /* 15446 * This is last call, remove the ref on the open 15447 * stream created by open and clean everything up. 15448 */ 15449 osp->os_pending_close = 0; 15450 nfs4close_notw(vp, osp, &have_sync_lock); 15451 nfs4_error_zinit(ep); 15452 } 15453 15454 if (!close_failed) { 15455 if (have_sync_lock) { 15456 osp->os_pending_close = 0; 15457 mutex_exit(&osp->os_sync_lock); 15458 have_sync_lock = 0; 15459 } else { 15460 mutex_enter(&osp->os_sync_lock); 15461 osp->os_pending_close = 0; 15462 mutex_exit(&osp->os_sync_lock); 15463 } 15464 if (did_start_op && recov_state.rs_sp != NULL) { 15465 mutex_enter(&recov_state.rs_sp->s_lock); 15466 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15467 mutex_exit(&recov_state.rs_sp->s_lock); 15468 } else { 15469 nfs4_dec_state_ref_count(mi); 15470 } 15471 nfs4_error_zinit(ep); 15472 } 15473 15474 out: 15475 if (have_sync_lock) 15476 mutex_exit(&osp->os_sync_lock); 15477 if (did_start_op) 15478 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15479 recovonly ? TRUE : FALSE); 15480 if (did_force_recovlock) 15481 nfs_rw_exit(&mi->mi_recovlock); 15482 if (cred_otw) 15483 crfree(cred_otw); 15484 if (osp) 15485 open_stream_rele(osp, rp); 15486 if (oop) { 15487 if (did_start_seqid_sync) 15488 nfs4_end_open_seqid_sync(oop); 15489 open_owner_rele(oop); 15490 } 15491 } 15492 15493 /* 15494 * Convert information returned by the server in the LOCK4denied 15495 * structure to the form required by fcntl. 15496 */ 15497 static void 15498 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15499 { 15500 nfs4_lo_name_t *lo; 15501 15502 #ifdef DEBUG 15503 if (denied_to_flk_debug) { 15504 lockt_denied_debug = lockt_denied; 15505 debug_enter("lockt_denied"); 15506 } 15507 #endif 15508 15509 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15510 flk->l_whence = 0; /* aka SEEK_SET */ 15511 flk->l_start = lockt_denied->offset; 15512 flk->l_len = lockt_denied->length; 15513 15514 /* 15515 * If the blocking clientid matches our client id, then we can 15516 * interpret the lockowner (since we built it). If not, then 15517 * fabricate a sysid and pid. Note that the l_sysid field 15518 * in *flk already has the local sysid. 15519 */ 15520 15521 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15522 15523 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15524 lo = (nfs4_lo_name_t *) 15525 lockt_denied->owner.owner_val; 15526 15527 flk->l_pid = lo->ln_pid; 15528 } else { 15529 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15530 "denied_to_flk: bad lock owner length\n")); 15531 15532 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15533 } 15534 } else { 15535 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15536 "denied_to_flk: foreign clientid\n")); 15537 15538 /* 15539 * Construct a new sysid which should be different from 15540 * sysids of other systems. 15541 */ 15542 15543 flk->l_sysid++; 15544 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15545 } 15546 } 15547 15548 static pid_t 15549 lo_to_pid(lock_owner4 *lop) 15550 { 15551 pid_t pid = 0; 15552 uchar_t *cp; 15553 int i; 15554 15555 cp = (uchar_t *)&lop->clientid; 15556 15557 for (i = 0; i < sizeof (lop->clientid); i++) 15558 pid += (pid_t)*cp++; 15559 15560 cp = (uchar_t *)lop->owner_val; 15561 15562 for (i = 0; i < lop->owner_len; i++) 15563 pid += (pid_t)*cp++; 15564 15565 return (pid); 15566 } 15567 15568 /* 15569 * Given a lock pointer, returns the length of that lock. 15570 * "end" is the last locked offset the "l_len" covers from 15571 * the start of the lock. 15572 */ 15573 static off64_t 15574 lock_to_end(flock64_t *lock) 15575 { 15576 off64_t lock_end; 15577 15578 if (lock->l_len == 0) 15579 lock_end = (off64_t)MAXEND; 15580 else 15581 lock_end = lock->l_start + lock->l_len - 1; 15582 15583 return (lock_end); 15584 } 15585 15586 /* 15587 * Given the end of a lock, it will return you the length "l_len" for that lock. 15588 */ 15589 static off64_t 15590 end_to_len(off64_t start, off64_t end) 15591 { 15592 off64_t lock_len; 15593 15594 ASSERT(end >= start); 15595 if (end == MAXEND) 15596 lock_len = 0; 15597 else 15598 lock_len = end - start + 1; 15599 15600 return (lock_len); 15601 } 15602 15603 /* 15604 * On given end for a lock it determines if it is the last locked offset 15605 * or not, if so keeps it as is, else adds one to return the length for 15606 * valid start. 15607 */ 15608 static off64_t 15609 start_check(off64_t x) 15610 { 15611 if (x == MAXEND) 15612 return (x); 15613 else 15614 return (x + 1); 15615 } 15616 15617 /* 15618 * See if these two locks overlap, and if so return 1; 15619 * otherwise, return 0. 15620 */ 15621 static int 15622 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15623 { 15624 off64_t llfp_end, curfp_end; 15625 15626 llfp_end = lock_to_end(llfp); 15627 curfp_end = lock_to_end(curfp); 15628 15629 if (((llfp_end >= curfp->l_start) && 15630 (llfp->l_start <= curfp->l_start)) || 15631 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15632 return (1); 15633 return (0); 15634 } 15635 15636 /* 15637 * Determine what the intersecting lock region is, and add that to the 15638 * 'nl_llpp' locklist in increasing order (by l_start). 15639 */ 15640 static void 15641 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15642 locklist_t **nl_llpp, vnode_t *vp) 15643 { 15644 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15645 off64_t lost_flp_end, local_flp_end, len, start; 15646 15647 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15648 15649 if (!locks_intersect(lost_flp, local_flp)) 15650 return; 15651 15652 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15653 "locks intersect")); 15654 15655 lost_flp_end = lock_to_end(lost_flp); 15656 local_flp_end = lock_to_end(local_flp); 15657 15658 /* Find the starting point of the intersecting region */ 15659 if (local_flp->l_start > lost_flp->l_start) 15660 start = local_flp->l_start; 15661 else 15662 start = lost_flp->l_start; 15663 15664 /* Find the lenght of the intersecting region */ 15665 if (lost_flp_end < local_flp_end) 15666 len = end_to_len(start, lost_flp_end); 15667 else 15668 len = end_to_len(start, local_flp_end); 15669 15670 /* 15671 * Prepare the flock structure for the intersection found and insert 15672 * it into the new list in increasing l_start order. This list contains 15673 * intersections of locks registered by the client with the local host 15674 * and the lost lock. 15675 * The lock type of this lock is the same as that of the local_flp. 15676 */ 15677 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15678 intersect_llp->ll_flock.l_start = start; 15679 intersect_llp->ll_flock.l_len = len; 15680 intersect_llp->ll_flock.l_type = local_flp->l_type; 15681 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15682 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15683 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15684 intersect_llp->ll_vp = vp; 15685 15686 tmp_fllp = *nl_llpp; 15687 cur_fllp = NULL; 15688 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15689 intersect_llp->ll_flock.l_start) { 15690 cur_fllp = tmp_fllp; 15691 tmp_fllp = tmp_fllp->ll_next; 15692 } 15693 if (cur_fllp == NULL) { 15694 /* first on the list */ 15695 intersect_llp->ll_next = *nl_llpp; 15696 *nl_llpp = intersect_llp; 15697 } else { 15698 intersect_llp->ll_next = cur_fllp->ll_next; 15699 cur_fllp->ll_next = intersect_llp; 15700 } 15701 15702 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15703 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15704 intersect_llp->ll_flock.l_start, 15705 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15706 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15707 } 15708 15709 /* 15710 * Our local locking current state is potentially different than 15711 * what the NFSv4 server thinks we have due to a lost lock that was 15712 * resent and then received. We need to reset our "NFSv4" locking 15713 * state to match the current local locking state for this pid since 15714 * that is what the user/application sees as what the world is. 15715 * 15716 * We cannot afford to drop the open/lock seqid sync since then we can 15717 * get confused about what the current local locking state "is" versus 15718 * "was". 15719 * 15720 * If we are unable to fix up the locks, we send SIGLOST to the affected 15721 * process. This is not done if the filesystem has been forcibly 15722 * unmounted, in case the process has already exited and a new process 15723 * exists with the same pid. 15724 */ 15725 static void 15726 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15727 nfs4_lock_owner_t *lop) 15728 { 15729 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15730 mntinfo4_t *mi = VTOMI4(vp); 15731 const int cmd = F_SETLK; 15732 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15733 flock64_t ul_fl; 15734 15735 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15736 "nfs4_reinstitute_local_lock_state")); 15737 15738 /* 15739 * Find active locks for this vp from the local locking code. 15740 * Scan through this list and find out the locks that intersect with 15741 * the lost lock. Once we find the lock that intersects, add the 15742 * intersection area as a new lock to a new list "ri_llp". The lock 15743 * type of the intersection region lock added to ri_llp is the same 15744 * as that found in the active lock list, "list". The intersecting 15745 * region locks are added to ri_llp in increasing l_start order. 15746 */ 15747 ASSERT(nfs_zone() == mi->mi_zone); 15748 15749 locks = flk_active_locks_for_vp(vp); 15750 ri_llp = NULL; 15751 15752 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15753 ASSERT(llp->ll_vp == vp); 15754 /* 15755 * Pick locks that belong to this pid/lockowner 15756 */ 15757 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15758 continue; 15759 15760 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15761 } 15762 15763 /* 15764 * Now we have the list of intersections with the lost lock. These are 15765 * the locks that were/are active before the server replied to the 15766 * last/lost lock. Issue these locks to the server here. Playing these 15767 * locks to the server will re-establish aur current local locking state 15768 * with the v4 server. 15769 * If we get an error, send SIGLOST to the application for that lock. 15770 */ 15771 15772 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15773 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15774 "nfs4_reinstitute_local_lock_state: need to issue " 15775 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15776 llp->ll_flock.l_start, 15777 llp->ll_flock.l_start + llp->ll_flock.l_len, 15778 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15779 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15780 /* 15781 * No need to relock what we already have 15782 */ 15783 if (llp->ll_flock.l_type == lost_flp->l_type) 15784 continue; 15785 15786 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15787 } 15788 15789 /* 15790 * Now keeping the start of the lost lock as our reference parse the 15791 * newly created ri_llp locklist to find the ranges that we have locked 15792 * with the v4 server but not in the current local locking. We need 15793 * to unlock these ranges. 15794 * These ranges can also be reffered to as those ranges, where the lost 15795 * lock does not overlap with the locks in the ri_llp but are locked 15796 * since the server replied to the lost lock. 15797 */ 15798 cur_start = lost_flp->l_start; 15799 lost_flp_end = lock_to_end(lost_flp); 15800 15801 ul_fl.l_type = F_UNLCK; 15802 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15803 ul_fl.l_sysid = lost_flp->l_sysid; 15804 ul_fl.l_pid = lost_flp->l_pid; 15805 15806 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15807 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15808 15809 if (llp->ll_flock.l_start <= cur_start) { 15810 cur_start = start_check(llp_ll_flock_end); 15811 continue; 15812 } 15813 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15814 "nfs4_reinstitute_local_lock_state: " 15815 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15816 cur_start, llp->ll_flock.l_start)); 15817 15818 ul_fl.l_start = cur_start; 15819 ul_fl.l_len = end_to_len(cur_start, 15820 (llp->ll_flock.l_start - 1)); 15821 15822 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15823 cur_start = start_check(llp_ll_flock_end); 15824 } 15825 15826 /* 15827 * In the case where the lost lock ends after all intersecting locks, 15828 * unlock the last part of the lost lock range. 15829 */ 15830 if (cur_start != start_check(lost_flp_end)) { 15831 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15832 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15833 "lost lock region [%"PRIx64" - %"PRIx64"]", 15834 cur_start, lost_flp->l_start + lost_flp->l_len)); 15835 15836 ul_fl.l_start = cur_start; 15837 /* 15838 * Is it an to-EOF lock? if so unlock till the end 15839 */ 15840 if (lost_flp->l_len == 0) 15841 ul_fl.l_len = 0; 15842 else 15843 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15844 15845 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15846 } 15847 15848 if (locks != NULL) 15849 flk_free_locklist(locks); 15850 15851 /* Free up our newly created locklist */ 15852 for (llp = ri_llp; llp != NULL; ) { 15853 tmp_llp = llp->ll_next; 15854 kmem_free(llp, sizeof (locklist_t)); 15855 llp = tmp_llp; 15856 } 15857 15858 /* 15859 * Now return back to the original calling nfs4frlock() 15860 * and let us naturally drop our seqid syncs. 15861 */ 15862 } 15863 15864 /* 15865 * Create a lost state record for the given lock reinstantiation request 15866 * and push it onto the lost state queue. 15867 */ 15868 static void 15869 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15870 nfs4_lock_owner_t *lop) 15871 { 15872 nfs4_lost_rqst_t req; 15873 nfs_lock_type4 locktype; 15874 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15875 15876 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15877 15878 locktype = flk_to_locktype(cmd, flk->l_type); 15879 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15880 NULL, NULL, lop, flk, &req, cr, vp); 15881 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15882 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15883 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15884 NULL); 15885 } 15886