1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/cred.h> 37 #include <sys/time.h> 38 #include <sys/vnode.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/file.h> 42 #include <sys/filio.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/mman.h> 46 #include <sys/pathname.h> 47 #include <sys/dirent.h> 48 #include <sys/debug.h> 49 #include <sys/vmsystm.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/swap.h> 53 #include <sys/errno.h> 54 #include <sys/strsubr.h> 55 #include <sys/sysmacros.h> 56 #include <sys/kmem.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathconf.h> 59 #include <sys/utsname.h> 60 #include <sys/dnlc.h> 61 #include <sys/acl.h> 62 #include <sys/systeminfo.h> 63 #include <sys/policy.h> 64 #include <sys/sdt.h> 65 #include <sys/list.h> 66 #include <sys/stat.h> 67 68 #include <rpc/types.h> 69 #include <rpc/auth.h> 70 #include <rpc/clnt.h> 71 72 #include <nfs/nfs.h> 73 #include <nfs/nfs_clnt.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 #include <nfs/nfs4.h> 77 #include <nfs/nfs4_kprot.h> 78 #include <nfs/rnode4.h> 79 #include <nfs/nfs4_clnt.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/pvn.h> 85 #include <vm/seg.h> 86 #include <vm/seg_map.h> 87 #include <vm/seg_kpm.h> 88 #include <vm/seg_vn.h> 89 90 #include <fs/fs_subr.h> 91 92 #include <sys/ddi.h> 93 #include <sys/int_fmtio.h> 94 95 typedef struct { 96 nfs4_ga_res_t *di_garp; 97 cred_t *di_cred; 98 hrtime_t di_time_call; 99 } dirattr_info_t; 100 101 typedef enum nfs4_acl_op { 102 NFS4_ACL_GET, 103 NFS4_ACL_SET 104 } nfs4_acl_op_t; 105 106 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi); 107 108 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 109 char *, dirattr_info_t *); 110 111 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 112 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 113 nfs4_error_t *, int *); 114 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 115 cred_t *); 116 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 117 stable_how4 *); 118 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 119 cred_t *, bool_t, struct uio *); 120 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 121 vsecattr_t *); 122 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 123 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 124 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 125 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 126 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 127 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 128 int, vnode_t **, cred_t *); 129 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 130 cred_t *, int, int, enum createmode4, int); 131 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 132 caller_context_t *); 133 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 134 vnode_t *, char *, cred_t *, nfsstat4 *); 135 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 136 vnode_t *, char *, cred_t *, nfsstat4 *); 137 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 138 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 139 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 140 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 141 page_t *[], size_t, struct seg *, caddr_t, 142 enum seg_rw, cred_t *); 143 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 144 cred_t *); 145 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 146 int, cred_t *); 147 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 148 int, cred_t *); 149 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 150 static void nfs4_set_mod(vnode_t *); 151 static void nfs4_get_commit(vnode_t *); 152 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 153 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 154 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 155 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 156 cred_t *); 157 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 158 cred_t *); 159 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 160 hrtime_t, vnode_t *, cred_t *); 161 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 162 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 163 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 164 u_offset_t); 165 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 166 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 167 static cred_t *state_to_cred(nfs4_open_stream_t *); 168 static int vtoname(vnode_t *, char *, ssize_t); 169 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 170 static pid_t lo_to_pid(lock_owner4 *); 171 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 172 cred_t *, nfs4_lock_owner_t *); 173 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 174 nfs4_lock_owner_t *); 175 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 176 static void nfs4_delmap_callback(struct as *, void *, uint_t); 177 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 178 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 179 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 180 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 181 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 182 uid_t, gid_t, int); 183 184 /* 185 * Routines that implement the setting of v4 args for the misc. ops 186 */ 187 static void nfs4args_lock_free(nfs_argop4 *); 188 static void nfs4args_lockt_free(nfs_argop4 *); 189 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 190 int, rnode4_t *, cred_t *, bitmap4, int *, 191 nfs4_stateid_types_t *); 192 static void nfs4args_setattr_free(nfs_argop4 *); 193 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 194 bitmap4); 195 static void nfs4args_verify_free(nfs_argop4 *); 196 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 197 WRITE4args **, nfs4_stateid_types_t *); 198 199 /* 200 * These are the vnode ops functions that implement the vnode interface to 201 * the networked file system. See more comments below at nfs4_vnodeops. 202 */ 203 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 204 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 205 caller_context_t *); 206 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 207 caller_context_t *); 208 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 209 caller_context_t *); 210 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 211 caller_context_t *); 212 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 213 caller_context_t *); 214 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 215 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 216 caller_context_t *); 217 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 218 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 219 int, vnode_t **, cred_t *, int, caller_context_t *, 220 vsecattr_t *); 221 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 222 int); 223 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 224 caller_context_t *, int); 225 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 226 caller_context_t *, int); 227 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 228 cred_t *, caller_context_t *, int, vsecattr_t *); 229 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 230 caller_context_t *, int); 231 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 232 cred_t *, caller_context_t *, int); 233 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 234 caller_context_t *, int); 235 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 236 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 237 page_t *[], size_t, struct seg *, caddr_t, 238 enum seg_rw, cred_t *, caller_context_t *); 239 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 240 caller_context_t *); 241 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 242 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 243 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 244 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 245 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 246 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 247 struct flk_callback *, cred_t *, caller_context_t *); 248 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 249 cred_t *, caller_context_t *); 250 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 251 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 252 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 253 cred_t *, caller_context_t *); 254 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 255 caller_context_t *); 256 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 257 caller_context_t *); 258 /* 259 * These vnode ops are required to be called from outside this source file, 260 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 261 * as static. 262 */ 263 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 264 caller_context_t *); 265 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 266 int nfs4_lookup(vnode_t *, char *, vnode_t **, 267 struct pathname *, int, vnode_t *, cred_t *, 268 caller_context_t *, int *, pathname_t *); 269 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 270 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 271 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 272 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 273 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 274 caller_context_t *); 275 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 276 caller_context_t *); 277 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 278 caller_context_t *); 279 280 /* 281 * Used for nfs4_commit_vp() to indicate if we should 282 * wait on pending writes. 283 */ 284 #define NFS4_WRITE_NOWAIT 0 285 #define NFS4_WRITE_WAIT 1 286 287 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 288 289 /* 290 * Error flags used to pass information about certain special errors 291 * which need to be handled specially. 292 */ 293 #define NFS_EOF -98 294 #define NFS_VERF_MISMATCH -97 295 296 /* 297 * Flags used to differentiate between which operation drove the 298 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 299 */ 300 #define NFS4_CLOSE_OP 0x1 301 #define NFS4_DELMAP_OP 0x2 302 #define NFS4_INACTIVE_OP 0x3 303 304 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 305 306 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 307 #define ALIGN64(x, ptr, sz) \ 308 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 309 if (x) { \ 310 x = sizeof (uint64_t) - (x); \ 311 sz -= (x); \ 312 ptr += (x); \ 313 } 314 315 #ifdef DEBUG 316 int nfs4_client_attr_debug = 0; 317 int nfs4_client_state_debug = 0; 318 int nfs4_client_shadow_debug = 0; 319 int nfs4_client_lock_debug = 0; 320 int nfs4_seqid_sync = 0; 321 int nfs4_client_map_debug = 0; 322 static int nfs4_pageio_debug = 0; 323 int nfs4_client_inactive_debug = 0; 324 int nfs4_client_recov_debug = 0; 325 int nfs4_client_failover_debug = 0; 326 int nfs4_client_call_debug = 0; 327 int nfs4_client_lookup_debug = 0; 328 int nfs4_client_zone_debug = 0; 329 int nfs4_lost_rqst_debug = 0; 330 int nfs4_rdattrerr_debug = 0; 331 int nfs4_open_stream_debug = 0; 332 333 int nfs4read_error_inject; 334 335 static int nfs4_create_misses = 0; 336 337 static int nfs4_readdir_cache_shorts = 0; 338 static int nfs4_readdir_readahead = 0; 339 340 static int nfs4_bio_do_stop = 0; 341 342 static int nfs4_lostpage = 0; /* number of times we lost original page */ 343 344 int nfs4_mmap_debug = 0; 345 346 static int nfs4_pathconf_cache_hits = 0; 347 static int nfs4_pathconf_cache_misses = 0; 348 349 int nfs4close_all_cnt; 350 int nfs4close_one_debug = 0; 351 int nfs4close_notw_debug = 0; 352 353 int denied_to_flk_debug = 0; 354 void *lockt_denied_debug; 355 356 #endif 357 358 /* 359 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 360 * or NFS4ERR_RESOURCE. 361 */ 362 static int confirm_retry_sec = 30; 363 364 static int nfs4_lookup_neg_cache = 1; 365 366 /* 367 * number of pages to read ahead 368 * optimized for 100 base-T. 369 */ 370 static int nfs4_nra = 4; 371 372 static int nfs4_do_symlink_cache = 1; 373 374 static int nfs4_pathconf_disable_cache = 0; 375 376 /* 377 * These are the vnode ops routines which implement the vnode interface to 378 * the networked file system. These routines just take their parameters, 379 * make them look networkish by putting the right info into interface structs, 380 * and then calling the appropriate remote routine(s) to do the work. 381 * 382 * Note on directory name lookup cacheing: If we detect a stale fhandle, 383 * we purge the directory cache relative to that vnode. This way, the 384 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 385 * more details on rnode locking. 386 */ 387 388 struct vnodeops *nfs4_vnodeops; 389 390 const fs_operation_def_t nfs4_vnodeops_template[] = { 391 VOPNAME_OPEN, { .vop_open = nfs4_open }, 392 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 393 VOPNAME_READ, { .vop_read = nfs4_read }, 394 VOPNAME_WRITE, { .vop_write = nfs4_write }, 395 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 396 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 397 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 398 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 399 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 400 VOPNAME_CREATE, { .vop_create = nfs4_create }, 401 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 402 VOPNAME_LINK, { .vop_link = nfs4_link }, 403 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 404 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 405 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 406 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 407 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 408 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 409 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 410 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 411 VOPNAME_FID, { .vop_fid = nfs4_fid }, 412 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 413 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 414 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 415 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 416 VOPNAME_SPACE, { .vop_space = nfs4_space }, 417 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 418 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 419 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 420 VOPNAME_MAP, { .vop_map = nfs4_map }, 421 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 422 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 423 /* no separate nfs4_dump */ 424 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 425 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 426 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 427 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 428 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 429 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 430 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 431 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 432 NULL, NULL 433 }; 434 435 /* 436 * The following are subroutines and definitions to set args or get res 437 * for the different nfsv4 ops 438 */ 439 440 void 441 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 442 { 443 int i; 444 445 for (i = 0; i < arglen; i++) { 446 if (argop[i].argop == OP_LOOKUP) { 447 kmem_free( 448 argop[i].nfs_argop4_u.oplookup. 449 objname.utf8string_val, 450 argop[i].nfs_argop4_u.oplookup. 451 objname.utf8string_len); 452 } 453 } 454 } 455 456 static void 457 nfs4args_lock_free(nfs_argop4 *argop) 458 { 459 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 460 461 if (locker->new_lock_owner == TRUE) { 462 open_to_lock_owner4 *open_owner; 463 464 open_owner = &locker->locker4_u.open_owner; 465 if (open_owner->lock_owner.owner_val != NULL) { 466 kmem_free(open_owner->lock_owner.owner_val, 467 open_owner->lock_owner.owner_len); 468 } 469 } 470 } 471 472 static void 473 nfs4args_lockt_free(nfs_argop4 *argop) 474 { 475 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 476 477 if (lowner->owner_val != NULL) { 478 kmem_free(lowner->owner_val, lowner->owner_len); 479 } 480 } 481 482 static void 483 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 484 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 485 nfs4_stateid_types_t *sid_types) 486 { 487 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 488 mntinfo4_t *mi; 489 490 argop->argop = OP_SETATTR; 491 /* 492 * The stateid is set to 0 if client is not modifying the size 493 * and otherwise to whatever nfs4_get_stateid() returns. 494 * 495 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 496 * state struct could be found for the process/file pair. We may 497 * want to change this in the future (by OPENing the file). See 498 * bug # 4474852. 499 */ 500 if (vap->va_mask & AT_SIZE) { 501 502 ASSERT(rp != NULL); 503 mi = VTOMI4(RTOV4(rp)); 504 505 argop->nfs_argop4_u.opsetattr.stateid = 506 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 507 OP_SETATTR, sid_types, FALSE); 508 } else { 509 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 510 sizeof (stateid4)); 511 } 512 513 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 514 if (*error) 515 bzero(attr, sizeof (*attr)); 516 } 517 518 static void 519 nfs4args_setattr_free(nfs_argop4 *argop) 520 { 521 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 522 } 523 524 static int 525 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 526 bitmap4 supp) 527 { 528 fattr4 *attr; 529 int error = 0; 530 531 argop->argop = op; 532 switch (op) { 533 case OP_VERIFY: 534 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 535 break; 536 case OP_NVERIFY: 537 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 538 break; 539 default: 540 return (EINVAL); 541 } 542 if (!error) 543 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 544 if (error) 545 bzero(attr, sizeof (*attr)); 546 return (error); 547 } 548 549 static void 550 nfs4args_verify_free(nfs_argop4 *argop) 551 { 552 switch (argop->argop) { 553 case OP_VERIFY: 554 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 555 break; 556 case OP_NVERIFY: 557 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 558 break; 559 default: 560 break; 561 } 562 } 563 564 static void 565 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 566 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 567 { 568 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 569 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 570 571 argop->argop = OP_WRITE; 572 wargs->stable = stable; 573 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 574 mi, OP_WRITE, sid_tp); 575 wargs->mblk = NULL; 576 *wargs_pp = wargs; 577 } 578 579 void 580 nfs4args_copen_free(OPEN4cargs *open_args) 581 { 582 if (open_args->owner.owner_val) { 583 kmem_free(open_args->owner.owner_val, 584 open_args->owner.owner_len); 585 } 586 if ((open_args->opentype == OPEN4_CREATE) && 587 (open_args->mode != EXCLUSIVE4)) { 588 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 589 } 590 } 591 592 /* 593 * XXX: This is referenced in modstubs.s 594 */ 595 struct vnodeops * 596 nfs4_getvnodeops(void) 597 { 598 return (nfs4_vnodeops); 599 } 600 601 /* 602 * The OPEN operation opens a regular file. 603 */ 604 /*ARGSUSED3*/ 605 static int 606 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 607 { 608 vnode_t *dvp = NULL; 609 rnode4_t *rp, *drp; 610 int error; 611 int just_been_created; 612 char fn[MAXNAMELEN]; 613 614 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 615 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 616 return (EIO); 617 rp = VTOR4(*vpp); 618 619 /* 620 * Check to see if opening something besides a regular file; 621 * if so skip the OTW call 622 */ 623 if ((*vpp)->v_type != VREG) { 624 error = nfs4_open_non_reg_file(vpp, flag, cr); 625 return (error); 626 } 627 628 /* 629 * XXX - would like a check right here to know if the file is 630 * executable or not, so as to skip OTW 631 */ 632 633 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 634 return (error); 635 636 drp = VTOR4(dvp); 637 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 638 return (EINTR); 639 640 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 641 nfs_rw_exit(&drp->r_rwlock); 642 return (error); 643 } 644 645 /* 646 * See if this file has just been CREATEd. 647 * If so, clear the flag and update the dnlc, which was previously 648 * skipped in nfs4_create. 649 * XXX need better serilization on this. 650 * XXX move this into the nf4open_otw call, after we have 651 * XXX acquired the open owner seqid sync. 652 */ 653 mutex_enter(&rp->r_statev4_lock); 654 if (rp->created_v4) { 655 rp->created_v4 = 0; 656 mutex_exit(&rp->r_statev4_lock); 657 658 dnlc_update(dvp, fn, *vpp); 659 /* This is needed so we don't bump the open ref count */ 660 just_been_created = 1; 661 } else { 662 mutex_exit(&rp->r_statev4_lock); 663 just_been_created = 0; 664 } 665 666 /* 667 * If caller specified O_TRUNC/FTRUNC, then be sure to set 668 * FWRITE (to drive successful setattr(size=0) after open) 669 */ 670 if (flag & FTRUNC) 671 flag |= FWRITE; 672 673 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 674 just_been_created); 675 676 if (!error && !((*vpp)->v_flag & VROOT)) 677 dnlc_update(dvp, fn, *vpp); 678 679 nfs_rw_exit(&drp->r_rwlock); 680 681 /* release the hold from vtodv */ 682 VN_RELE(dvp); 683 684 /* exchange the shadow for the master vnode, if needed */ 685 686 if (error == 0 && IS_SHADOW(*vpp, rp)) 687 sv_exchange(vpp); 688 689 return (error); 690 } 691 692 /* 693 * See if there's a "lost open" request to be saved and recovered. 694 */ 695 static void 696 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 697 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 698 vnode_t *dvp, OPEN4cargs *open_args) 699 { 700 vfs_t *vfsp; 701 char *srccfp; 702 703 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 704 705 if (error != ETIMEDOUT && error != EINTR && 706 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 707 lost_rqstp->lr_op = 0; 708 return; 709 } 710 711 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 712 "nfs4open_save_lost_rqst: error %d", error)); 713 714 lost_rqstp->lr_op = OP_OPEN; 715 716 /* 717 * The vp (if it is not NULL) and dvp are held and rele'd via 718 * the recovery code. See nfs4_save_lost_rqst. 719 */ 720 lost_rqstp->lr_vp = vp; 721 lost_rqstp->lr_dvp = dvp; 722 lost_rqstp->lr_oop = oop; 723 lost_rqstp->lr_osp = NULL; 724 lost_rqstp->lr_lop = NULL; 725 lost_rqstp->lr_cr = cr; 726 lost_rqstp->lr_flk = NULL; 727 lost_rqstp->lr_oacc = open_args->share_access; 728 lost_rqstp->lr_odeny = open_args->share_deny; 729 lost_rqstp->lr_oclaim = open_args->claim; 730 if (open_args->claim == CLAIM_DELEGATE_CUR) { 731 lost_rqstp->lr_ostateid = 732 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 733 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 734 } else { 735 srccfp = open_args->open_claim4_u.cfile; 736 } 737 lost_rqstp->lr_ofile.utf8string_len = 0; 738 lost_rqstp->lr_ofile.utf8string_val = NULL; 739 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 740 lost_rqstp->lr_putfirst = FALSE; 741 } 742 743 struct nfs4_excl_time { 744 uint32 seconds; 745 uint32 nseconds; 746 }; 747 748 /* 749 * The OPEN operation creates and/or opens a regular file 750 * 751 * ARGSUSED 752 */ 753 static int 754 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 755 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 756 enum createmode4 createmode, int file_just_been_created) 757 { 758 rnode4_t *rp; 759 rnode4_t *drp = VTOR4(dvp); 760 vnode_t *vp = NULL; 761 vnode_t *vpi = *vpp; 762 bool_t needrecov = FALSE; 763 764 int doqueue = 1; 765 766 COMPOUND4args_clnt args; 767 COMPOUND4res_clnt res; 768 nfs_argop4 *argop; 769 nfs_resop4 *resop; 770 int argoplist_size; 771 int idx_open, idx_fattr; 772 773 GETFH4res *gf_res = NULL; 774 OPEN4res *op_res = NULL; 775 nfs4_ga_res_t *garp; 776 fattr4 *attr = NULL; 777 struct nfs4_excl_time verf; 778 bool_t did_excl_setup = FALSE; 779 int created_osp; 780 781 OPEN4cargs *open_args; 782 nfs4_open_owner_t *oop = NULL; 783 nfs4_open_stream_t *osp = NULL; 784 seqid4 seqid = 0; 785 bool_t retry_open = FALSE; 786 nfs4_recov_state_t recov_state; 787 nfs4_lost_rqst_t lost_rqst; 788 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 789 hrtime_t t; 790 int acc = 0; 791 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 792 cred_t *ncr = NULL; 793 794 nfs4_sharedfh_t *otw_sfh; 795 nfs4_sharedfh_t *orig_sfh; 796 int fh_differs = 0; 797 int numops, setgid_flag; 798 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 799 800 /* 801 * Make sure we properly deal with setting the right gid on 802 * a newly created file to reflect the parent's setgid bit 803 */ 804 setgid_flag = 0; 805 if (create_flag && in_va) { 806 807 /* 808 * If the parent's directory has the setgid bit set 809 * _and_ the client was able to get a valid mapping 810 * for the parent dir's owner_group, we want to 811 * append NVERIFY(owner_group == dva.va_gid) and 812 * SETATTR to the CREATE compound. 813 */ 814 mutex_enter(&drp->r_statelock); 815 if (drp->r_attr.va_mode & VSGID && 816 drp->r_attr.va_gid != GID_NOBODY) { 817 in_va->va_gid = drp->r_attr.va_gid; 818 setgid_flag = 1; 819 } 820 mutex_exit(&drp->r_statelock); 821 } 822 823 /* 824 * Normal/non-create compound: 825 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 826 * 827 * Open(create) compound no setgid: 828 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 829 * RESTOREFH + GETATTR 830 * 831 * Open(create) setgid: 832 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 833 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 834 * NVERIFY(grp) + SETATTR 835 */ 836 if (setgid_flag) { 837 numops = 10; 838 idx_open = 1; 839 idx_fattr = 3; 840 } else if (create_flag) { 841 numops = 7; 842 idx_open = 2; 843 idx_fattr = 4; 844 } else { 845 numops = 4; 846 idx_open = 1; 847 idx_fattr = 3; 848 } 849 850 args.array_len = numops; 851 argoplist_size = numops * sizeof (nfs_argop4); 852 argop = kmem_alloc(argoplist_size, KM_SLEEP); 853 854 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 855 "open %s open flag 0x%x cred %p", file_name, open_flag, 856 (void *)cr)); 857 858 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 859 if (create_flag) { 860 /* 861 * We are to create a file. Initialize the passed in vnode 862 * pointer. 863 */ 864 vpi = NULL; 865 } else { 866 /* 867 * Check to see if the client owns a read delegation and is 868 * trying to open for write. If so, then return the delegation 869 * to avoid the server doing a cb_recall and returning DELAY. 870 * NB - we don't use the statev4_lock here because we'd have 871 * to drop the lock anyway and the result would be stale. 872 */ 873 if ((open_flag & FWRITE) && 874 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 875 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 876 877 /* 878 * If the file has a delegation, then do an access check up 879 * front. This avoids having to an access check later after 880 * we've already done start_op, which could deadlock. 881 */ 882 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 883 if (open_flag & FREAD && 884 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 885 acc |= VREAD; 886 if (open_flag & FWRITE && 887 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 888 acc |= VWRITE; 889 } 890 } 891 892 drp = VTOR4(dvp); 893 894 recov_state.rs_flags = 0; 895 recov_state.rs_num_retry_despite_err = 0; 896 cred_otw = cr; 897 898 recov_retry: 899 fh_differs = 0; 900 nfs4_error_zinit(&e); 901 902 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 903 if (e.error) { 904 if (ncr != NULL) 905 crfree(ncr); 906 kmem_free(argop, argoplist_size); 907 return (e.error); 908 } 909 910 args.ctag = TAG_OPEN; 911 args.array_len = numops; 912 args.array = argop; 913 914 /* putfh directory fh */ 915 argop[0].argop = OP_CPUTFH; 916 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 917 918 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 919 argop[idx_open].argop = OP_COPEN; 920 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 921 open_args->claim = CLAIM_NULL; 922 923 /* name of file */ 924 open_args->open_claim4_u.cfile = file_name; 925 open_args->owner.owner_len = 0; 926 open_args->owner.owner_val = NULL; 927 928 if (create_flag) { 929 /* CREATE a file */ 930 open_args->opentype = OPEN4_CREATE; 931 open_args->mode = createmode; 932 if (createmode == EXCLUSIVE4) { 933 if (did_excl_setup == FALSE) { 934 verf.seconds = nfs_atoi(hw_serial); 935 if (verf.seconds != 0) 936 verf.nseconds = newnum(); 937 else { 938 timestruc_t now; 939 940 gethrestime(&now); 941 verf.seconds = now.tv_sec; 942 verf.nseconds = now.tv_nsec; 943 } 944 /* 945 * Since the server will use this value for the 946 * mtime, make sure that it can't overflow. Zero 947 * out the MSB. The actual value does not matter 948 * here, only its uniqeness. 949 */ 950 verf.seconds &= INT32_MAX; 951 did_excl_setup = TRUE; 952 } 953 954 /* Now copy over verifier to OPEN4args. */ 955 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 956 } else { 957 int v_error; 958 bitmap4 supp_attrs; 959 servinfo4_t *svp; 960 961 attr = &open_args->createhow4_u.createattrs; 962 963 svp = drp->r_server; 964 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 965 supp_attrs = svp->sv_supp_attrs; 966 nfs_rw_exit(&svp->sv_lock); 967 968 /* GUARDED4 or UNCHECKED4 */ 969 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 970 supp_attrs); 971 if (v_error) { 972 bzero(attr, sizeof (*attr)); 973 nfs4args_copen_free(open_args); 974 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 975 &recov_state, FALSE); 976 if (ncr != NULL) 977 crfree(ncr); 978 kmem_free(argop, argoplist_size); 979 return (v_error); 980 } 981 } 982 } else { 983 /* NO CREATE */ 984 open_args->opentype = OPEN4_NOCREATE; 985 } 986 987 if (recov_state.rs_sp != NULL) { 988 mutex_enter(&recov_state.rs_sp->s_lock); 989 open_args->owner.clientid = recov_state.rs_sp->clientid; 990 mutex_exit(&recov_state.rs_sp->s_lock); 991 } else { 992 /* XXX should we just fail here? */ 993 open_args->owner.clientid = 0; 994 } 995 996 /* 997 * This increments oop's ref count or creates a temporary 'just_created' 998 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 999 * completes. 1000 */ 1001 mutex_enter(&VTOMI4(dvp)->mi_lock); 1002 1003 /* See if a permanent or just created open owner exists */ 1004 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1005 if (!oop) { 1006 /* 1007 * This open owner does not exist so create a temporary 1008 * just created one. 1009 */ 1010 oop = create_open_owner(cr, VTOMI4(dvp)); 1011 ASSERT(oop != NULL); 1012 } 1013 mutex_exit(&VTOMI4(dvp)->mi_lock); 1014 1015 /* this length never changes, do alloc before seqid sync */ 1016 open_args->owner.owner_len = sizeof (oop->oo_name); 1017 open_args->owner.owner_val = 1018 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1019 1020 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1021 if (e.error == EAGAIN) { 1022 open_owner_rele(oop); 1023 nfs4args_copen_free(open_args); 1024 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1025 if (ncr != NULL) { 1026 crfree(ncr); 1027 ncr = NULL; 1028 } 1029 goto recov_retry; 1030 } 1031 1032 /* Check to see if we need to do the OTW call */ 1033 if (!create_flag) { 1034 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1035 file_just_been_created, &e.error, acc, &recov_state)) { 1036 1037 /* 1038 * The OTW open is not necessary. Either 1039 * the open can succeed without it (eg. 1040 * delegation, error == 0) or the open 1041 * must fail due to an access failure 1042 * (error != 0). In either case, tidy 1043 * up and return. 1044 */ 1045 1046 nfs4_end_open_seqid_sync(oop); 1047 open_owner_rele(oop); 1048 nfs4args_copen_free(open_args); 1049 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1050 if (ncr != NULL) 1051 crfree(ncr); 1052 kmem_free(argop, argoplist_size); 1053 return (e.error); 1054 } 1055 } 1056 1057 bcopy(&oop->oo_name, open_args->owner.owner_val, 1058 open_args->owner.owner_len); 1059 1060 seqid = nfs4_get_open_seqid(oop) + 1; 1061 open_args->seqid = seqid; 1062 open_args->share_access = 0; 1063 if (open_flag & FREAD) 1064 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1065 if (open_flag & FWRITE) 1066 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1067 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1068 1069 1070 1071 /* 1072 * getfh w/sanity check for idx_open/idx_fattr 1073 */ 1074 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1075 argop[idx_open + 1].argop = OP_GETFH; 1076 1077 /* getattr */ 1078 argop[idx_fattr].argop = OP_GETATTR; 1079 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1080 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1081 1082 if (setgid_flag) { 1083 vattr_t _v; 1084 servinfo4_t *svp; 1085 bitmap4 supp_attrs; 1086 1087 svp = drp->r_server; 1088 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1089 supp_attrs = svp->sv_supp_attrs; 1090 nfs_rw_exit(&svp->sv_lock); 1091 1092 /* 1093 * For setgid case, we need to: 1094 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1095 */ 1096 argop[4].argop = OP_SAVEFH; 1097 1098 argop[5].argop = OP_CPUTFH; 1099 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1100 1101 argop[6].argop = OP_GETATTR; 1102 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1103 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1104 1105 argop[7].argop = OP_RESTOREFH; 1106 1107 /* 1108 * nverify 1109 */ 1110 _v.va_mask = AT_GID; 1111 _v.va_gid = in_va->va_gid; 1112 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1113 supp_attrs))) { 1114 1115 /* 1116 * setattr 1117 * 1118 * We _know_ we're not messing with AT_SIZE or 1119 * AT_XTIME, so no need for stateid or flags. 1120 * Also we specify NULL rp since we're only 1121 * interested in setting owner_group attributes. 1122 */ 1123 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1124 supp_attrs, &e.error, 0); 1125 if (e.error) 1126 nfs4args_verify_free(&argop[8]); 1127 } 1128 1129 if (e.error) { 1130 /* 1131 * XXX - Revisit the last argument to nfs4_end_op() 1132 * once 5020486 is fixed. 1133 */ 1134 nfs4_end_open_seqid_sync(oop); 1135 open_owner_rele(oop); 1136 nfs4args_copen_free(open_args); 1137 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1138 if (ncr != NULL) 1139 crfree(ncr); 1140 kmem_free(argop, argoplist_size); 1141 return (e.error); 1142 } 1143 } else if (create_flag) { 1144 /* 1145 * For setgid case, we need to: 1146 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1147 */ 1148 argop[1].argop = OP_SAVEFH; 1149 1150 argop[5].argop = OP_RESTOREFH; 1151 1152 argop[6].argop = OP_GETATTR; 1153 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1154 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1155 } 1156 1157 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1158 "nfs4open_otw: %s call, nm %s, rp %s", 1159 needrecov ? "recov" : "first", file_name, 1160 rnode4info(VTOR4(dvp)))); 1161 1162 t = gethrtime(); 1163 1164 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1165 1166 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1167 nfs4_set_open_seqid(seqid, oop, args.ctag); 1168 1169 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1170 1171 if (e.error || needrecov) { 1172 bool_t abort = FALSE; 1173 1174 if (needrecov) { 1175 nfs4_bseqid_entry_t *bsep = NULL; 1176 1177 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1178 cred_otw, vpi, dvp, open_args); 1179 1180 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1181 bsep = nfs4_create_bseqid_entry(oop, NULL, 1182 vpi, 0, args.ctag, open_args->seqid); 1183 num_bseqid_retry--; 1184 } 1185 1186 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1187 NULL, lost_rqst.lr_op == OP_OPEN ? 1188 &lost_rqst : NULL, OP_OPEN, bsep); 1189 1190 if (bsep) 1191 kmem_free(bsep, sizeof (*bsep)); 1192 /* give up if we keep getting BAD_SEQID */ 1193 if (num_bseqid_retry == 0) 1194 abort = TRUE; 1195 if (abort == TRUE && e.error == 0) 1196 e.error = geterrno4(res.status); 1197 } 1198 nfs4_end_open_seqid_sync(oop); 1199 open_owner_rele(oop); 1200 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1201 nfs4args_copen_free(open_args); 1202 if (setgid_flag) { 1203 nfs4args_verify_free(&argop[8]); 1204 nfs4args_setattr_free(&argop[9]); 1205 } 1206 if (!e.error) 1207 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1208 if (ncr != NULL) { 1209 crfree(ncr); 1210 ncr = NULL; 1211 } 1212 if (!needrecov || abort == TRUE || e.error == EINTR || 1213 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1214 kmem_free(argop, argoplist_size); 1215 return (e.error); 1216 } 1217 goto recov_retry; 1218 } 1219 1220 /* 1221 * Will check and update lease after checking the rflag for 1222 * OPEN_CONFIRM in the successful OPEN call. 1223 */ 1224 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1225 1226 /* 1227 * XXX what if we're crossing mount points from server1:/drp 1228 * to server2:/drp/rp. 1229 */ 1230 1231 /* Signal our end of use of the open seqid */ 1232 nfs4_end_open_seqid_sync(oop); 1233 1234 /* 1235 * This will destroy the open owner if it was just created, 1236 * and no one else has put a reference on it. 1237 */ 1238 open_owner_rele(oop); 1239 if (create_flag && (createmode != EXCLUSIVE4) && 1240 res.status == NFS4ERR_BADOWNER) 1241 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1242 1243 e.error = geterrno4(res.status); 1244 nfs4args_copen_free(open_args); 1245 if (setgid_flag) { 1246 nfs4args_verify_free(&argop[8]); 1247 nfs4args_setattr_free(&argop[9]); 1248 } 1249 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1250 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1251 /* 1252 * If the reply is NFS4ERR_ACCESS, it may be because 1253 * we are root (no root net access). If the real uid 1254 * is not root, then retry with the real uid instead. 1255 */ 1256 if (ncr != NULL) { 1257 crfree(ncr); 1258 ncr = NULL; 1259 } 1260 if (res.status == NFS4ERR_ACCESS && 1261 (ncr = crnetadjust(cred_otw)) != NULL) { 1262 cred_otw = ncr; 1263 goto recov_retry; 1264 } 1265 kmem_free(argop, argoplist_size); 1266 return (e.error); 1267 } 1268 1269 resop = &res.array[idx_open]; /* open res */ 1270 op_res = &resop->nfs_resop4_u.opopen; 1271 1272 #ifdef DEBUG 1273 /* 1274 * verify attrset bitmap 1275 */ 1276 if (create_flag && 1277 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1278 /* make sure attrset returned is what we asked for */ 1279 /* XXX Ignore this 'error' for now */ 1280 if (attr->attrmask != op_res->attrset) 1281 /* EMPTY */; 1282 } 1283 #endif 1284 1285 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1286 mutex_enter(&VTOMI4(dvp)->mi_lock); 1287 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1288 mutex_exit(&VTOMI4(dvp)->mi_lock); 1289 } 1290 1291 resop = &res.array[idx_open + 1]; /* getfh res */ 1292 gf_res = &resop->nfs_resop4_u.opgetfh; 1293 1294 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1295 1296 /* 1297 * The open stateid has been updated on the server but not 1298 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1299 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1300 * WRITE call. That, however, will use the old stateid, so go ahead 1301 * and upate the open stateid now, before any call to makenfs4node. 1302 */ 1303 if (vpi) { 1304 nfs4_open_stream_t *tmp_osp; 1305 rnode4_t *tmp_rp = VTOR4(vpi); 1306 1307 tmp_osp = find_open_stream(oop, tmp_rp); 1308 if (tmp_osp) { 1309 tmp_osp->open_stateid = op_res->stateid; 1310 mutex_exit(&tmp_osp->os_sync_lock); 1311 open_stream_rele(tmp_osp, tmp_rp); 1312 } 1313 1314 /* 1315 * We must determine if the file handle given by the otw open 1316 * is the same as the file handle which was passed in with 1317 * *vpp. This case can be reached if the file we are trying 1318 * to open has been removed and another file has been created 1319 * having the same file name. The passed in vnode is released 1320 * later. 1321 */ 1322 orig_sfh = VTOR4(vpi)->r_fh; 1323 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1324 } 1325 1326 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1327 1328 if (create_flag || fh_differs) { 1329 int rnode_err = 0; 1330 1331 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1332 dvp, fn_get(VTOSV(dvp)->sv_name, file_name)); 1333 1334 if (e.error) 1335 PURGE_ATTRCACHE4(vp); 1336 /* 1337 * For the newly created vp case, make sure the rnode 1338 * isn't bad before using it. 1339 */ 1340 mutex_enter(&(VTOR4(vp))->r_statelock); 1341 if (VTOR4(vp)->r_flags & R4RECOVERR) 1342 rnode_err = EIO; 1343 mutex_exit(&(VTOR4(vp))->r_statelock); 1344 1345 if (rnode_err) { 1346 nfs4_end_open_seqid_sync(oop); 1347 nfs4args_copen_free(open_args); 1348 if (setgid_flag) { 1349 nfs4args_verify_free(&argop[8]); 1350 nfs4args_setattr_free(&argop[9]); 1351 } 1352 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1353 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1354 needrecov); 1355 open_owner_rele(oop); 1356 VN_RELE(vp); 1357 if (ncr != NULL) 1358 crfree(ncr); 1359 sfh4_rele(&otw_sfh); 1360 kmem_free(argop, argoplist_size); 1361 return (EIO); 1362 } 1363 } else { 1364 vp = vpi; 1365 } 1366 sfh4_rele(&otw_sfh); 1367 1368 /* 1369 * It seems odd to get a full set of attrs and then not update 1370 * the object's attrcache in the non-create case. Create case uses 1371 * the attrs since makenfs4node checks to see if the attrs need to 1372 * be updated (and then updates them). The non-create case should 1373 * update attrs also. 1374 */ 1375 if (! create_flag && ! fh_differs && !e.error) { 1376 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1377 } 1378 1379 nfs4_error_zinit(&e); 1380 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1381 /* This does not do recovery for vp explicitly. */ 1382 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1383 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1384 1385 if (e.error || e.stat) { 1386 nfs4_end_open_seqid_sync(oop); 1387 nfs4args_copen_free(open_args); 1388 if (setgid_flag) { 1389 nfs4args_verify_free(&argop[8]); 1390 nfs4args_setattr_free(&argop[9]); 1391 } 1392 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1393 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1394 needrecov); 1395 open_owner_rele(oop); 1396 if (create_flag || fh_differs) { 1397 /* rele the makenfs4node */ 1398 VN_RELE(vp); 1399 } 1400 if (ncr != NULL) { 1401 crfree(ncr); 1402 ncr = NULL; 1403 } 1404 if (retry_open == TRUE) { 1405 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1406 "nfs4open_otw: retry the open since OPEN " 1407 "CONFIRM failed with error %d stat %d", 1408 e.error, e.stat)); 1409 if (create_flag && createmode == GUARDED4) { 1410 NFS4_DEBUG(nfs4_client_recov_debug, 1411 (CE_NOTE, "nfs4open_otw: switch " 1412 "createmode from GUARDED4 to " 1413 "UNCHECKED4")); 1414 createmode = UNCHECKED4; 1415 } 1416 goto recov_retry; 1417 } 1418 if (!e.error) { 1419 if (create_flag && (createmode != EXCLUSIVE4) && 1420 e.stat == NFS4ERR_BADOWNER) 1421 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1422 1423 e.error = geterrno4(e.stat); 1424 } 1425 kmem_free(argop, argoplist_size); 1426 return (e.error); 1427 } 1428 } 1429 1430 rp = VTOR4(vp); 1431 1432 mutex_enter(&rp->r_statev4_lock); 1433 if (create_flag) 1434 rp->created_v4 = 1; 1435 mutex_exit(&rp->r_statev4_lock); 1436 1437 mutex_enter(&oop->oo_lock); 1438 /* Doesn't matter if 'oo_just_created' already was set as this */ 1439 oop->oo_just_created = NFS4_PERM_CREATED; 1440 if (oop->oo_cred_otw) 1441 crfree(oop->oo_cred_otw); 1442 oop->oo_cred_otw = cred_otw; 1443 crhold(oop->oo_cred_otw); 1444 mutex_exit(&oop->oo_lock); 1445 1446 /* returns with 'os_sync_lock' held */ 1447 osp = find_or_create_open_stream(oop, rp, &created_osp); 1448 if (!osp) { 1449 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1450 "nfs4open_otw: failed to create an open stream")); 1451 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1452 "signal our end of use of the open seqid")); 1453 1454 nfs4_end_open_seqid_sync(oop); 1455 open_owner_rele(oop); 1456 nfs4args_copen_free(open_args); 1457 if (setgid_flag) { 1458 nfs4args_verify_free(&argop[8]); 1459 nfs4args_setattr_free(&argop[9]); 1460 } 1461 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1462 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1463 if (create_flag || fh_differs) 1464 VN_RELE(vp); 1465 if (ncr != NULL) 1466 crfree(ncr); 1467 1468 kmem_free(argop, argoplist_size); 1469 return (EINVAL); 1470 1471 } 1472 1473 osp->open_stateid = op_res->stateid; 1474 1475 if (open_flag & FREAD) 1476 osp->os_share_acc_read++; 1477 if (open_flag & FWRITE) 1478 osp->os_share_acc_write++; 1479 osp->os_share_deny_none++; 1480 1481 /* 1482 * Need to reset this bitfield for the possible case where we were 1483 * going to OTW CLOSE the file, got a non-recoverable error, and before 1484 * we could retry the CLOSE, OPENed the file again. 1485 */ 1486 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1487 osp->os_final_close = 0; 1488 osp->os_force_close = 0; 1489 #ifdef DEBUG 1490 if (osp->os_failed_reopen) 1491 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1492 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1493 (void *)osp, (void *)cr, rnode4info(rp))); 1494 #endif 1495 osp->os_failed_reopen = 0; 1496 1497 mutex_exit(&osp->os_sync_lock); 1498 1499 nfs4_end_open_seqid_sync(oop); 1500 1501 if (created_osp && recov_state.rs_sp != NULL) { 1502 mutex_enter(&recov_state.rs_sp->s_lock); 1503 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1504 mutex_exit(&recov_state.rs_sp->s_lock); 1505 } 1506 1507 /* get rid of our reference to find oop */ 1508 open_owner_rele(oop); 1509 1510 open_stream_rele(osp, rp); 1511 1512 /* accept delegation, if any */ 1513 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1514 1515 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1516 1517 if (createmode == EXCLUSIVE4 && 1518 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1519 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1520 " EXCLUSIVE4: sending a SETATTR")); 1521 /* 1522 * If doing an exclusive create, then generate 1523 * a SETATTR to set the initial attributes. 1524 * Try to set the mtime and the atime to the 1525 * server's current time. It is somewhat 1526 * expected that these fields will be used to 1527 * store the exclusive create cookie. If not, 1528 * server implementors will need to know that 1529 * a SETATTR will follow an exclusive create 1530 * and the cookie should be destroyed if 1531 * appropriate. 1532 * 1533 * The AT_GID and AT_SIZE bits are turned off 1534 * so that the SETATTR request will not attempt 1535 * to process these. The gid will be set 1536 * separately if appropriate. The size is turned 1537 * off because it is assumed that a new file will 1538 * be created empty and if the file wasn't empty, 1539 * then the exclusive create will have failed 1540 * because the file must have existed already. 1541 * Therefore, no truncate operation is needed. 1542 */ 1543 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1544 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1545 1546 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1547 if (e.error) { 1548 /* 1549 * Couldn't correct the attributes of 1550 * the newly created file and the 1551 * attributes are wrong. Remove the 1552 * file and return an error to the 1553 * application. 1554 */ 1555 /* XXX will this take care of client state ? */ 1556 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1557 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1558 " remove file", e.error)); 1559 VN_RELE(vp); 1560 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1561 /* 1562 * Since we've reled the vnode and removed 1563 * the file we now need to return the error. 1564 * At this point we don't want to update the 1565 * dircaches, call nfs4_waitfor_purge_complete 1566 * or set vpp to vp so we need to skip these 1567 * as well. 1568 */ 1569 goto skip_update_dircaches; 1570 } 1571 } 1572 1573 /* 1574 * If we created or found the correct vnode, due to create_flag or 1575 * fh_differs being set, then update directory cache attribute, readdir 1576 * and dnlc caches. 1577 */ 1578 if (create_flag || fh_differs) { 1579 dirattr_info_t dinfo, *dinfop; 1580 1581 /* 1582 * Make sure getattr succeeded before using results. 1583 * note: op 7 is getattr(dir) for both flavors of 1584 * open(create). 1585 */ 1586 if (create_flag && res.status == NFS4_OK) { 1587 dinfo.di_time_call = t; 1588 dinfo.di_cred = cr; 1589 dinfo.di_garp = 1590 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1591 dinfop = &dinfo; 1592 } else { 1593 dinfop = NULL; 1594 } 1595 1596 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1597 dinfop); 1598 } 1599 1600 /* 1601 * If the page cache for this file was flushed from actions 1602 * above, it was done asynchronously and if that is true, 1603 * there is a need to wait here for it to complete. This must 1604 * be done outside of start_fop/end_fop. 1605 */ 1606 (void) nfs4_waitfor_purge_complete(vp); 1607 1608 /* 1609 * It is implicit that we are in the open case (create_flag == 0) since 1610 * fh_differs can only be set to a non-zero value in the open case. 1611 */ 1612 if (fh_differs != 0 && vpi != NULL) 1613 VN_RELE(vpi); 1614 1615 /* 1616 * Be sure to set *vpp to the correct value before returning. 1617 */ 1618 *vpp = vp; 1619 1620 skip_update_dircaches: 1621 1622 nfs4args_copen_free(open_args); 1623 if (setgid_flag) { 1624 nfs4args_verify_free(&argop[8]); 1625 nfs4args_setattr_free(&argop[9]); 1626 } 1627 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1628 1629 if (ncr) 1630 crfree(ncr); 1631 kmem_free(argop, argoplist_size); 1632 return (e.error); 1633 } 1634 1635 /* 1636 * Reopen an open instance. cf. nfs4open_otw(). 1637 * 1638 * Errors are returned by the nfs4_error_t parameter. 1639 * - ep->error contains an errno value or zero. 1640 * - if it is zero, ep->stat is set to an NFS status code, if any. 1641 * If the file could not be reopened, but the caller should continue, the 1642 * file is marked dead and no error values are returned. If the caller 1643 * should stop recovering open files and start over, either the ep->error 1644 * value or ep->stat will indicate an error (either something that requires 1645 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1646 * filehandles) may be handled silently by this routine. 1647 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1648 * will be started, so the caller should not do it. 1649 * 1650 * Gotos: 1651 * - kill_file : reopen failed in such a fashion to constitute marking the 1652 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1653 * is for cases where recovery is not possible. 1654 * - failed_reopen : same as above, except that the file has already been 1655 * marked dead, so no need to do it again. 1656 * - bailout : reopen failed but we are able to recover and retry the reopen - 1657 * either within this function immediately or via the calling function. 1658 */ 1659 1660 void 1661 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1662 open_claim_type4 claim, bool_t frc_use_claim_previous, 1663 bool_t is_recov) 1664 { 1665 COMPOUND4args_clnt args; 1666 COMPOUND4res_clnt res; 1667 nfs_argop4 argop[4]; 1668 nfs_resop4 *resop; 1669 OPEN4res *op_res = NULL; 1670 OPEN4cargs *open_args; 1671 GETFH4res *gf_res; 1672 rnode4_t *rp = VTOR4(vp); 1673 int doqueue = 1; 1674 cred_t *cr = NULL, *cred_otw = NULL; 1675 nfs4_open_owner_t *oop = NULL; 1676 seqid4 seqid; 1677 nfs4_ga_res_t *garp; 1678 char fn[MAXNAMELEN]; 1679 nfs4_recov_state_t recov = {NULL, 0}; 1680 nfs4_lost_rqst_t lost_rqst; 1681 mntinfo4_t *mi = VTOMI4(vp); 1682 bool_t abort; 1683 char *failed_msg = ""; 1684 int fh_different; 1685 hrtime_t t; 1686 nfs4_bseqid_entry_t *bsep = NULL; 1687 1688 ASSERT(nfs4_consistent_type(vp)); 1689 ASSERT(nfs_zone() == mi->mi_zone); 1690 1691 nfs4_error_zinit(ep); 1692 1693 /* this is the cred used to find the open owner */ 1694 cr = state_to_cred(osp); 1695 if (cr == NULL) { 1696 failed_msg = "Couldn't reopen: no cred"; 1697 goto kill_file; 1698 } 1699 /* use this cred for OTW operations */ 1700 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1701 1702 top: 1703 nfs4_error_zinit(ep); 1704 1705 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1706 /* File system has been unmounted, quit */ 1707 ep->error = EIO; 1708 failed_msg = "Couldn't reopen: file system has been unmounted"; 1709 goto kill_file; 1710 } 1711 1712 oop = osp->os_open_owner; 1713 1714 ASSERT(oop != NULL); 1715 if (oop == NULL) { /* be defensive in non-DEBUG */ 1716 failed_msg = "can't reopen: no open owner"; 1717 goto kill_file; 1718 } 1719 open_owner_hold(oop); 1720 1721 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1722 if (ep->error) { 1723 open_owner_rele(oop); 1724 oop = NULL; 1725 goto bailout; 1726 } 1727 1728 /* 1729 * If the rnode has a delegation and the delegation has been 1730 * recovered and the server didn't request a recall and the caller 1731 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1732 * recovery) and the rnode hasn't been marked dead, then install 1733 * the delegation stateid in the open stream. Otherwise, proceed 1734 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1735 */ 1736 mutex_enter(&rp->r_statev4_lock); 1737 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1738 !rp->r_deleg_return_pending && 1739 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1740 !rp->r_deleg_needs_recall && 1741 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1742 !(rp->r_flags & R4RECOVERR)) { 1743 mutex_enter(&osp->os_sync_lock); 1744 osp->os_delegation = 1; 1745 osp->open_stateid = rp->r_deleg_stateid; 1746 mutex_exit(&osp->os_sync_lock); 1747 mutex_exit(&rp->r_statev4_lock); 1748 goto bailout; 1749 } 1750 mutex_exit(&rp->r_statev4_lock); 1751 1752 /* 1753 * If the file failed recovery, just quit. This failure need not 1754 * affect other reopens, so don't return an error. 1755 */ 1756 mutex_enter(&rp->r_statelock); 1757 if (rp->r_flags & R4RECOVERR) { 1758 mutex_exit(&rp->r_statelock); 1759 ep->error = 0; 1760 goto failed_reopen; 1761 } 1762 mutex_exit(&rp->r_statelock); 1763 1764 /* 1765 * argop is empty here 1766 * 1767 * PUTFH, OPEN, GETATTR 1768 */ 1769 args.ctag = TAG_REOPEN; 1770 args.array_len = 4; 1771 args.array = argop; 1772 1773 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1774 "nfs4_reopen: file is type %d, id %s", 1775 vp->v_type, rnode4info(VTOR4(vp)))); 1776 1777 argop[0].argop = OP_CPUTFH; 1778 1779 if (claim != CLAIM_PREVIOUS) { 1780 /* 1781 * if this is a file mount then 1782 * use the mntinfo parentfh 1783 */ 1784 argop[0].nfs_argop4_u.opcputfh.sfh = 1785 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1786 VTOSV(vp)->sv_dfh; 1787 } else { 1788 /* putfh fh to reopen */ 1789 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1790 } 1791 1792 argop[1].argop = OP_COPEN; 1793 open_args = &argop[1].nfs_argop4_u.opcopen; 1794 open_args->claim = claim; 1795 1796 if (claim == CLAIM_NULL) { 1797 1798 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1799 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1800 "failed for vp 0x%p for CLAIM_NULL with %m", 1801 (void *)vp); 1802 failed_msg = "Couldn't reopen: vtoname failed for " 1803 "CLAIM_NULL"; 1804 /* nothing allocated yet */ 1805 goto kill_file; 1806 } 1807 1808 open_args->open_claim4_u.cfile = fn; 1809 } else if (claim == CLAIM_PREVIOUS) { 1810 1811 /* 1812 * We have two cases to deal with here: 1813 * 1) We're being called to reopen files in order to satisfy 1814 * a lock operation request which requires us to explicitly 1815 * reopen files which were opened under a delegation. If 1816 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1817 * that case, frc_use_claim_previous is TRUE and we must 1818 * use the rnode's current delegation type (r_deleg_type). 1819 * 2) We're reopening files during some form of recovery. 1820 * In this case, frc_use_claim_previous is FALSE and we 1821 * use the delegation type appropriate for recovery 1822 * (r_deleg_needs_recovery). 1823 */ 1824 mutex_enter(&rp->r_statev4_lock); 1825 open_args->open_claim4_u.delegate_type = 1826 frc_use_claim_previous ? 1827 rp->r_deleg_type : 1828 rp->r_deleg_needs_recovery; 1829 mutex_exit(&rp->r_statev4_lock); 1830 1831 } else if (claim == CLAIM_DELEGATE_CUR) { 1832 1833 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1834 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1835 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1836 "with %m", (void *)vp); 1837 failed_msg = "Couldn't reopen: vtoname failed for " 1838 "CLAIM_DELEGATE_CUR"; 1839 /* nothing allocated yet */ 1840 goto kill_file; 1841 } 1842 1843 mutex_enter(&rp->r_statev4_lock); 1844 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1845 rp->r_deleg_stateid; 1846 mutex_exit(&rp->r_statev4_lock); 1847 1848 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1849 } 1850 open_args->opentype = OPEN4_NOCREATE; 1851 open_args->owner.clientid = mi2clientid(mi); 1852 open_args->owner.owner_len = sizeof (oop->oo_name); 1853 open_args->owner.owner_val = 1854 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1855 bcopy(&oop->oo_name, open_args->owner.owner_val, 1856 open_args->owner.owner_len); 1857 open_args->share_access = 0; 1858 open_args->share_deny = 0; 1859 1860 mutex_enter(&osp->os_sync_lock); 1861 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1862 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1863 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1864 (void *)osp, (void *)rp, osp->os_share_acc_read, 1865 osp->os_share_acc_write, osp->os_open_ref_count, 1866 osp->os_mmap_read, osp->os_mmap_write, claim)); 1867 1868 if (osp->os_share_acc_read || osp->os_mmap_read) 1869 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1870 if (osp->os_share_acc_write || osp->os_mmap_write) 1871 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1872 if (osp->os_share_deny_read) 1873 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1874 if (osp->os_share_deny_write) 1875 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1876 mutex_exit(&osp->os_sync_lock); 1877 1878 seqid = nfs4_get_open_seqid(oop) + 1; 1879 open_args->seqid = seqid; 1880 1881 /* Construct the getfh part of the compound */ 1882 argop[2].argop = OP_GETFH; 1883 1884 /* Construct the getattr part of the compound */ 1885 argop[3].argop = OP_GETATTR; 1886 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1887 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1888 1889 t = gethrtime(); 1890 1891 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1892 1893 if (ep->error) { 1894 if (!is_recov && !frc_use_claim_previous && 1895 (ep->error == EINTR || ep->error == ETIMEDOUT || 1896 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1897 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1898 cred_otw, vp, NULL, open_args); 1899 abort = nfs4_start_recovery(ep, 1900 VTOMI4(vp), vp, NULL, NULL, 1901 lost_rqst.lr_op == OP_OPEN ? 1902 &lost_rqst : NULL, OP_OPEN, NULL); 1903 nfs4args_copen_free(open_args); 1904 goto bailout; 1905 } 1906 1907 nfs4args_copen_free(open_args); 1908 1909 if (ep->error == EACCES && cred_otw != cr) { 1910 crfree(cred_otw); 1911 cred_otw = cr; 1912 crhold(cred_otw); 1913 nfs4_end_open_seqid_sync(oop); 1914 open_owner_rele(oop); 1915 oop = NULL; 1916 goto top; 1917 } 1918 if (ep->error == ETIMEDOUT) 1919 goto bailout; 1920 failed_msg = "Couldn't reopen: rpc error"; 1921 goto kill_file; 1922 } 1923 1924 if (nfs4_need_to_bump_seqid(&res)) 1925 nfs4_set_open_seqid(seqid, oop, args.ctag); 1926 1927 switch (res.status) { 1928 case NFS4_OK: 1929 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1930 mutex_enter(&rp->r_statelock); 1931 rp->r_delay_interval = 0; 1932 mutex_exit(&rp->r_statelock); 1933 } 1934 break; 1935 case NFS4ERR_BAD_SEQID: 1936 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1937 args.ctag, open_args->seqid); 1938 1939 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1940 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1941 NULL, OP_OPEN, bsep); 1942 1943 nfs4args_copen_free(open_args); 1944 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1945 nfs4_end_open_seqid_sync(oop); 1946 open_owner_rele(oop); 1947 oop = NULL; 1948 kmem_free(bsep, sizeof (*bsep)); 1949 1950 goto kill_file; 1951 case NFS4ERR_NO_GRACE: 1952 nfs4args_copen_free(open_args); 1953 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1954 nfs4_end_open_seqid_sync(oop); 1955 open_owner_rele(oop); 1956 oop = NULL; 1957 if (claim == CLAIM_PREVIOUS) { 1958 /* 1959 * Retry as a plain open. We don't need to worry about 1960 * checking the changeinfo: it is acceptable for a 1961 * client to re-open a file and continue processing 1962 * (in the absence of locks). 1963 */ 1964 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1965 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1966 "will retry as CLAIM_NULL")); 1967 claim = CLAIM_NULL; 1968 nfs4_mi_kstat_inc_no_grace(mi); 1969 goto top; 1970 } 1971 failed_msg = 1972 "Couldn't reopen: tried reclaim outside grace period. "; 1973 goto kill_file; 1974 case NFS4ERR_GRACE: 1975 nfs4_set_grace_wait(mi); 1976 nfs4args_copen_free(open_args); 1977 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1978 nfs4_end_open_seqid_sync(oop); 1979 open_owner_rele(oop); 1980 oop = NULL; 1981 ep->error = nfs4_wait_for_grace(mi, &recov); 1982 if (ep->error != 0) 1983 goto bailout; 1984 goto top; 1985 case NFS4ERR_DELAY: 1986 nfs4_set_delay_wait(vp); 1987 nfs4args_copen_free(open_args); 1988 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1989 nfs4_end_open_seqid_sync(oop); 1990 open_owner_rele(oop); 1991 oop = NULL; 1992 ep->error = nfs4_wait_for_delay(vp, &recov); 1993 nfs4_mi_kstat_inc_delay(mi); 1994 if (ep->error != 0) 1995 goto bailout; 1996 goto top; 1997 case NFS4ERR_FHEXPIRED: 1998 /* recover filehandle and retry */ 1999 abort = nfs4_start_recovery(ep, 2000 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL); 2001 nfs4args_copen_free(open_args); 2002 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2003 nfs4_end_open_seqid_sync(oop); 2004 open_owner_rele(oop); 2005 oop = NULL; 2006 if (abort == FALSE) 2007 goto top; 2008 failed_msg = "Couldn't reopen: recovery aborted"; 2009 goto kill_file; 2010 case NFS4ERR_RESOURCE: 2011 case NFS4ERR_STALE_CLIENTID: 2012 case NFS4ERR_WRONGSEC: 2013 case NFS4ERR_EXPIRED: 2014 /* 2015 * Do not mark the file dead and let the calling 2016 * function initiate recovery. 2017 */ 2018 nfs4args_copen_free(open_args); 2019 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2020 nfs4_end_open_seqid_sync(oop); 2021 open_owner_rele(oop); 2022 oop = NULL; 2023 goto bailout; 2024 case NFS4ERR_ACCESS: 2025 if (cred_otw != cr) { 2026 crfree(cred_otw); 2027 cred_otw = cr; 2028 crhold(cred_otw); 2029 nfs4args_copen_free(open_args); 2030 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2031 nfs4_end_open_seqid_sync(oop); 2032 open_owner_rele(oop); 2033 oop = NULL; 2034 goto top; 2035 } 2036 /* fall through */ 2037 default: 2038 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2039 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2040 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2041 rnode4info(VTOR4(vp)))); 2042 failed_msg = "Couldn't reopen: NFSv4 error"; 2043 nfs4args_copen_free(open_args); 2044 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2045 goto kill_file; 2046 } 2047 2048 resop = &res.array[1]; /* open res */ 2049 op_res = &resop->nfs_resop4_u.opopen; 2050 2051 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2052 2053 /* 2054 * Check if the path we reopened really is the same 2055 * file. We could end up in a situation where the file 2056 * was removed and a new file created with the same name. 2057 */ 2058 resop = &res.array[2]; 2059 gf_res = &resop->nfs_resop4_u.opgetfh; 2060 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2061 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2062 if (fh_different) { 2063 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2064 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2065 /* Oops, we don't have the same file */ 2066 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2067 failed_msg = "Couldn't reopen: Persistent " 2068 "file handle changed"; 2069 else 2070 failed_msg = "Couldn't reopen: Volatile " 2071 "(no expire on open) file handle changed"; 2072 2073 nfs4args_copen_free(open_args); 2074 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2075 nfs_rw_exit(&mi->mi_fh_lock); 2076 goto kill_file; 2077 2078 } else { 2079 /* 2080 * We have volatile file handles that don't compare. 2081 * If the fids are the same then we assume that the 2082 * file handle expired but the rnode still refers to 2083 * the same file object. 2084 * 2085 * First check that we have fids or not. 2086 * If we don't we have a dumb server so we will 2087 * just assume every thing is ok for now. 2088 */ 2089 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2090 rp->r_attr.va_mask & AT_NODEID && 2091 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2092 /* 2093 * We have fids, but they don't 2094 * compare. So kill the file. 2095 */ 2096 failed_msg = 2097 "Couldn't reopen: file handle changed" 2098 " due to mismatched fids"; 2099 nfs4args_copen_free(open_args); 2100 (void) xdr_free(xdr_COMPOUND4res_clnt, 2101 (caddr_t)&res); 2102 nfs_rw_exit(&mi->mi_fh_lock); 2103 goto kill_file; 2104 } else { 2105 /* 2106 * We have volatile file handles that refers 2107 * to the same file (at least they have the 2108 * same fid) or we don't have fids so we 2109 * can't tell. :(. We'll be a kind and accepting 2110 * client so we'll update the rnode's file 2111 * handle with the otw handle. 2112 * 2113 * We need to drop mi->mi_fh_lock since 2114 * sh4_update acquires it. Since there is 2115 * only one recovery thread there is no 2116 * race. 2117 */ 2118 nfs_rw_exit(&mi->mi_fh_lock); 2119 sfh4_update(rp->r_fh, &gf_res->object); 2120 } 2121 } 2122 } else { 2123 nfs_rw_exit(&mi->mi_fh_lock); 2124 } 2125 2126 ASSERT(nfs4_consistent_type(vp)); 2127 2128 /* 2129 * If the server wanted an OPEN_CONFIRM but that fails, just start 2130 * over. Presumably if there is a persistent error it will show up 2131 * when we resend the OPEN. 2132 */ 2133 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2134 bool_t retry_open = FALSE; 2135 2136 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2137 cred_otw, is_recov, &retry_open, 2138 oop, FALSE, ep, NULL); 2139 if (ep->error || ep->stat) { 2140 nfs4args_copen_free(open_args); 2141 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2142 nfs4_end_open_seqid_sync(oop); 2143 open_owner_rele(oop); 2144 oop = NULL; 2145 goto top; 2146 } 2147 } 2148 2149 mutex_enter(&osp->os_sync_lock); 2150 osp->open_stateid = op_res->stateid; 2151 osp->os_delegation = 0; 2152 /* 2153 * Need to reset this bitfield for the possible case where we were 2154 * going to OTW CLOSE the file, got a non-recoverable error, and before 2155 * we could retry the CLOSE, OPENed the file again. 2156 */ 2157 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2158 osp->os_final_close = 0; 2159 osp->os_force_close = 0; 2160 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2161 osp->os_dc_openacc = open_args->share_access; 2162 mutex_exit(&osp->os_sync_lock); 2163 2164 nfs4_end_open_seqid_sync(oop); 2165 2166 /* accept delegation, if any */ 2167 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2168 2169 nfs4args_copen_free(open_args); 2170 2171 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2172 2173 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2174 2175 ASSERT(nfs4_consistent_type(vp)); 2176 2177 open_owner_rele(oop); 2178 crfree(cr); 2179 crfree(cred_otw); 2180 return; 2181 2182 kill_file: 2183 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2184 failed_reopen: 2185 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2186 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2187 (void *)osp, (void *)cr, rnode4info(rp))); 2188 mutex_enter(&osp->os_sync_lock); 2189 osp->os_failed_reopen = 1; 2190 mutex_exit(&osp->os_sync_lock); 2191 bailout: 2192 if (oop != NULL) { 2193 nfs4_end_open_seqid_sync(oop); 2194 open_owner_rele(oop); 2195 } 2196 if (cr != NULL) 2197 crfree(cr); 2198 if (cred_otw != NULL) 2199 crfree(cred_otw); 2200 } 2201 2202 /* for . and .. OPENs */ 2203 /* ARGSUSED */ 2204 static int 2205 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2206 { 2207 rnode4_t *rp; 2208 nfs4_ga_res_t gar; 2209 2210 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2211 2212 /* 2213 * If close-to-open consistency checking is turned off or 2214 * if there is no cached data, we can avoid 2215 * the over the wire getattr. Otherwise, force a 2216 * call to the server to get fresh attributes and to 2217 * check caches. This is required for close-to-open 2218 * consistency. 2219 */ 2220 rp = VTOR4(*vpp); 2221 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2222 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2223 return (0); 2224 2225 gar.n4g_va.va_mask = AT_ALL; 2226 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2227 } 2228 2229 /* 2230 * CLOSE a file 2231 */ 2232 /* ARGSUSED */ 2233 static int 2234 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2235 caller_context_t *ct) 2236 { 2237 rnode4_t *rp; 2238 int error = 0; 2239 int r_error = 0; 2240 int n4error = 0; 2241 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2242 2243 /* 2244 * Remove client state for this (lockowner, file) pair. 2245 * Issue otw v4 call to have the server do the same. 2246 */ 2247 2248 rp = VTOR4(vp); 2249 2250 /* 2251 * zone_enter(2) prevents processes from changing zones with NFS files 2252 * open; if we happen to get here from the wrong zone we can't do 2253 * anything over the wire. 2254 */ 2255 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2256 /* 2257 * We could attempt to clean up locks, except we're sure 2258 * that the current process didn't acquire any locks on 2259 * the file: any attempt to lock a file belong to another zone 2260 * will fail, and one can't lock an NFS file and then change 2261 * zones, as that fails too. 2262 * 2263 * Returning an error here is the sane thing to do. A 2264 * subsequent call to VN_RELE() which translates to a 2265 * nfs4_inactive() will clean up state: if the zone of the 2266 * vnode's origin is still alive and kicking, the inactive 2267 * thread will handle the request (from the correct zone), and 2268 * everything (minus the OTW close call) should be OK. If the 2269 * zone is going away nfs4_async_inactive() will throw away 2270 * delegations, open streams and cached pages inline. 2271 */ 2272 return (EIO); 2273 } 2274 2275 /* 2276 * If we are using local locking for this filesystem, then 2277 * release all of the SYSV style record locks. Otherwise, 2278 * we are doing network locking and we need to release all 2279 * of the network locks. All of the locks held by this 2280 * process on this file are released no matter what the 2281 * incoming reference count is. 2282 */ 2283 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2284 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2285 cleanshares(vp, ttoproc(curthread)->p_pid); 2286 } else 2287 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2288 2289 if (e.error) { 2290 struct lm_sysid *lmsid; 2291 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2292 if (lmsid == NULL) { 2293 DTRACE_PROBE2(unknown__sysid, int, e.error, 2294 vnode_t *, vp); 2295 } else { 2296 cleanlocks(vp, ttoproc(curthread)->p_pid, 2297 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2298 } 2299 return (e.error); 2300 } 2301 2302 if (count > 1) 2303 return (0); 2304 2305 /* 2306 * If the file has been `unlinked', then purge the 2307 * DNLC so that this vnode will get reycled quicker 2308 * and the .nfs* file on the server will get removed. 2309 */ 2310 if (rp->r_unldvp != NULL) 2311 dnlc_purge_vp(vp); 2312 2313 /* 2314 * If the file was open for write and there are pages, 2315 * do a synchronous flush and commit of all of the 2316 * dirty and uncommitted pages. 2317 */ 2318 ASSERT(!e.error); 2319 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2320 error = nfs4_putpage_commit(vp, 0, 0, cr); 2321 2322 mutex_enter(&rp->r_statelock); 2323 r_error = rp->r_error; 2324 rp->r_error = 0; 2325 mutex_exit(&rp->r_statelock); 2326 2327 /* 2328 * If this file type is one for which no explicit 'open' was 2329 * done, then bail now (ie. no need for protocol 'close'). If 2330 * there was an error w/the vm subsystem, return _that_ error, 2331 * otherwise, return any errors that may've been reported via 2332 * the rnode. 2333 */ 2334 if (vp->v_type != VREG) 2335 return (error ? error : r_error); 2336 2337 /* 2338 * The sync putpage commit may have failed above, but since 2339 * we're working w/a regular file, we need to do the protocol 2340 * 'close' (nfs4close_one will figure out if an otw close is 2341 * needed or not). Report any errors _after_ doing the protocol 2342 * 'close'. 2343 */ 2344 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2345 n4error = e.error ? e.error : geterrno4(e.stat); 2346 2347 /* 2348 * Error reporting prio (Hi -> Lo) 2349 * 2350 * i) nfs4_putpage_commit (error) 2351 * ii) rnode's (r_error) 2352 * iii) nfs4close_one (n4error) 2353 */ 2354 return (error ? error : (r_error ? r_error : n4error)); 2355 } 2356 2357 /* 2358 * Initialize *lost_rqstp. 2359 */ 2360 2361 static void 2362 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2363 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2364 vnode_t *vp) 2365 { 2366 if (error != ETIMEDOUT && error != EINTR && 2367 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2368 lost_rqstp->lr_op = 0; 2369 return; 2370 } 2371 2372 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2373 "nfs4close_save_lost_rqst: error %d", error)); 2374 2375 lost_rqstp->lr_op = OP_CLOSE; 2376 /* 2377 * The vp is held and rele'd via the recovery code. 2378 * See nfs4_save_lost_rqst. 2379 */ 2380 lost_rqstp->lr_vp = vp; 2381 lost_rqstp->lr_dvp = NULL; 2382 lost_rqstp->lr_oop = oop; 2383 lost_rqstp->lr_osp = osp; 2384 ASSERT(osp != NULL); 2385 ASSERT(mutex_owned(&osp->os_sync_lock)); 2386 osp->os_pending_close = 1; 2387 lost_rqstp->lr_lop = NULL; 2388 lost_rqstp->lr_cr = cr; 2389 lost_rqstp->lr_flk = NULL; 2390 lost_rqstp->lr_putfirst = FALSE; 2391 } 2392 2393 /* 2394 * Assumes you already have the open seqid sync grabbed as well as the 2395 * 'os_sync_lock'. Note: this will release the open seqid sync and 2396 * 'os_sync_lock' if client recovery starts. Calling functions have to 2397 * be prepared to handle this. 2398 * 2399 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2400 * was needed and was started, and that the calling function should retry 2401 * this function; otherwise it is returned as 0. 2402 * 2403 * Errors are returned via the nfs4_error_t parameter. 2404 */ 2405 static void 2406 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2407 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2408 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2409 { 2410 COMPOUND4args_clnt args; 2411 COMPOUND4res_clnt res; 2412 CLOSE4args *close_args; 2413 nfs_resop4 *resop; 2414 nfs_argop4 argop[3]; 2415 int doqueue = 1; 2416 mntinfo4_t *mi; 2417 seqid4 seqid; 2418 vnode_t *vp; 2419 bool_t needrecov = FALSE; 2420 nfs4_lost_rqst_t lost_rqst; 2421 hrtime_t t; 2422 2423 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2424 2425 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2426 2427 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2428 2429 /* Only set this to 1 if recovery is started */ 2430 *recov = 0; 2431 2432 /* do the OTW call to close the file */ 2433 2434 if (close_type == CLOSE_RESEND) 2435 args.ctag = TAG_CLOSE_LOST; 2436 else if (close_type == CLOSE_AFTER_RESEND) 2437 args.ctag = TAG_CLOSE_UNDO; 2438 else 2439 args.ctag = TAG_CLOSE; 2440 2441 args.array_len = 3; 2442 args.array = argop; 2443 2444 vp = RTOV4(rp); 2445 2446 mi = VTOMI4(vp); 2447 2448 /* putfh target fh */ 2449 argop[0].argop = OP_CPUTFH; 2450 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2451 2452 argop[1].argop = OP_GETATTR; 2453 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2454 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2455 2456 argop[2].argop = OP_CLOSE; 2457 close_args = &argop[2].nfs_argop4_u.opclose; 2458 2459 seqid = nfs4_get_open_seqid(oop) + 1; 2460 2461 close_args->seqid = seqid; 2462 close_args->open_stateid = osp->open_stateid; 2463 2464 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2465 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2466 rnode4info(rp))); 2467 2468 t = gethrtime(); 2469 2470 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2471 2472 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2473 nfs4_set_open_seqid(seqid, oop, args.ctag); 2474 } 2475 2476 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2477 if (ep->error && !needrecov) { 2478 /* 2479 * if there was an error and no recovery is to be done 2480 * then then set up the file to flush its cache if 2481 * needed for the next caller. 2482 */ 2483 mutex_enter(&rp->r_statelock); 2484 PURGE_ATTRCACHE4_LOCKED(rp); 2485 rp->r_flags &= ~R4WRITEMODIFIED; 2486 mutex_exit(&rp->r_statelock); 2487 return; 2488 } 2489 2490 if (needrecov) { 2491 bool_t abort; 2492 nfs4_bseqid_entry_t *bsep = NULL; 2493 2494 if (close_type != CLOSE_RESEND) 2495 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2496 osp, cred_otw, vp); 2497 2498 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2499 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2500 0, args.ctag, close_args->seqid); 2501 2502 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2503 "nfs4close_otw: initiating recovery. error %d " 2504 "res.status %d", ep->error, res.status)); 2505 2506 /* 2507 * Drop the 'os_sync_lock' here so we don't hit 2508 * a potential recursive mutex_enter via an 2509 * 'open_stream_hold()'. 2510 */ 2511 mutex_exit(&osp->os_sync_lock); 2512 *have_sync_lockp = 0; 2513 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2514 (close_type != CLOSE_RESEND && 2515 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2516 OP_CLOSE, bsep); 2517 2518 /* drop open seq sync, and let the calling function regrab it */ 2519 nfs4_end_open_seqid_sync(oop); 2520 *did_start_seqid_syncp = 0; 2521 2522 if (bsep) 2523 kmem_free(bsep, sizeof (*bsep)); 2524 /* 2525 * For signals, the caller wants to quit, so don't say to 2526 * retry. For forced unmount, if it's a user thread, it 2527 * wants to quit. If it's a recovery thread, the retry 2528 * will happen higher-up on the call stack. Either way, 2529 * don't say to retry. 2530 */ 2531 if (abort == FALSE && ep->error != EINTR && 2532 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2533 close_type != CLOSE_RESEND && 2534 close_type != CLOSE_AFTER_RESEND) 2535 *recov = 1; 2536 else 2537 *recov = 0; 2538 2539 if (!ep->error) 2540 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2541 return; 2542 } 2543 2544 if (res.status) { 2545 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2546 return; 2547 } 2548 2549 mutex_enter(&rp->r_statev4_lock); 2550 rp->created_v4 = 0; 2551 mutex_exit(&rp->r_statev4_lock); 2552 2553 resop = &res.array[2]; 2554 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2555 osp->os_valid = 0; 2556 2557 /* 2558 * This removes the reference obtained at OPEN; ie, when the 2559 * open stream structure was created. 2560 * 2561 * We don't have to worry about calling 'open_stream_rele' 2562 * since we our currently holding a reference to the open 2563 * stream which means the count cannot go to 0 with this 2564 * decrement. 2565 */ 2566 ASSERT(osp->os_ref_count >= 2); 2567 osp->os_ref_count--; 2568 2569 if (!ep->error) 2570 nfs4_attr_cache(vp, 2571 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2572 t, cred_otw, TRUE, NULL); 2573 2574 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2575 " returning %d", ep->error)); 2576 2577 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2578 } 2579 2580 /* ARGSUSED */ 2581 static int 2582 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2583 caller_context_t *ct) 2584 { 2585 rnode4_t *rp; 2586 u_offset_t off; 2587 offset_t diff; 2588 uint_t on; 2589 uint_t n; 2590 caddr_t base; 2591 uint_t flags; 2592 int error; 2593 mntinfo4_t *mi; 2594 2595 rp = VTOR4(vp); 2596 2597 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2598 2599 if (IS_SHADOW(vp, rp)) 2600 vp = RTOV4(rp); 2601 2602 if (vp->v_type != VREG) 2603 return (EISDIR); 2604 2605 mi = VTOMI4(vp); 2606 2607 if (nfs_zone() != mi->mi_zone) 2608 return (EIO); 2609 2610 if (uiop->uio_resid == 0) 2611 return (0); 2612 2613 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2614 return (EINVAL); 2615 2616 mutex_enter(&rp->r_statelock); 2617 if (rp->r_flags & R4RECOVERRP) 2618 error = (rp->r_error ? rp->r_error : EIO); 2619 else 2620 error = 0; 2621 mutex_exit(&rp->r_statelock); 2622 if (error) 2623 return (error); 2624 2625 /* 2626 * Bypass VM if caching has been disabled (e.g., locking) or if 2627 * using client-side direct I/O and the file is not mmap'd and 2628 * there are no cached pages. 2629 */ 2630 if ((vp->v_flag & VNOCACHE) || 2631 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2632 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2633 size_t resid = 0; 2634 2635 return (nfs4read(vp, NULL, uiop->uio_loffset, 2636 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2637 } 2638 2639 error = 0; 2640 2641 do { 2642 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2643 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2644 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2645 2646 if (error = nfs4_validate_caches(vp, cr)) 2647 break; 2648 2649 mutex_enter(&rp->r_statelock); 2650 while (rp->r_flags & R4INCACHEPURGE) { 2651 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2652 mutex_exit(&rp->r_statelock); 2653 return (EINTR); 2654 } 2655 } 2656 diff = rp->r_size - uiop->uio_loffset; 2657 mutex_exit(&rp->r_statelock); 2658 if (diff <= 0) 2659 break; 2660 if (diff < n) 2661 n = (uint_t)diff; 2662 2663 if (vpm_enable) { 2664 /* 2665 * Copy data. 2666 */ 2667 error = vpm_data_copy(vp, off + on, n, uiop, 2668 1, NULL, 0, S_READ); 2669 } else { 2670 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2671 S_READ); 2672 2673 error = uiomove(base + on, n, UIO_READ, uiop); 2674 } 2675 2676 if (!error) { 2677 /* 2678 * If read a whole block or read to eof, 2679 * won't need this buffer again soon. 2680 */ 2681 mutex_enter(&rp->r_statelock); 2682 if (n + on == MAXBSIZE || 2683 uiop->uio_loffset == rp->r_size) 2684 flags = SM_DONTNEED; 2685 else 2686 flags = 0; 2687 mutex_exit(&rp->r_statelock); 2688 if (vpm_enable) { 2689 error = vpm_sync_pages(vp, off, n, flags); 2690 } else { 2691 error = segmap_release(segkmap, base, flags); 2692 } 2693 } else { 2694 if (vpm_enable) { 2695 (void) vpm_sync_pages(vp, off, n, 0); 2696 } else { 2697 (void) segmap_release(segkmap, base, 0); 2698 } 2699 } 2700 } while (!error && uiop->uio_resid > 0); 2701 2702 return (error); 2703 } 2704 2705 /* ARGSUSED */ 2706 static int 2707 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2708 caller_context_t *ct) 2709 { 2710 rlim64_t limit = uiop->uio_llimit; 2711 rnode4_t *rp; 2712 u_offset_t off; 2713 caddr_t base; 2714 uint_t flags; 2715 int remainder; 2716 size_t n; 2717 int on; 2718 int error; 2719 int resid; 2720 u_offset_t offset; 2721 mntinfo4_t *mi; 2722 uint_t bsize; 2723 2724 rp = VTOR4(vp); 2725 2726 if (IS_SHADOW(vp, rp)) 2727 vp = RTOV4(rp); 2728 2729 if (vp->v_type != VREG) 2730 return (EISDIR); 2731 2732 mi = VTOMI4(vp); 2733 2734 if (nfs_zone() != mi->mi_zone) 2735 return (EIO); 2736 2737 if (uiop->uio_resid == 0) 2738 return (0); 2739 2740 mutex_enter(&rp->r_statelock); 2741 if (rp->r_flags & R4RECOVERRP) 2742 error = (rp->r_error ? rp->r_error : EIO); 2743 else 2744 error = 0; 2745 mutex_exit(&rp->r_statelock); 2746 if (error) 2747 return (error); 2748 2749 if (ioflag & FAPPEND) { 2750 struct vattr va; 2751 2752 /* 2753 * Must serialize if appending. 2754 */ 2755 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2756 nfs_rw_exit(&rp->r_rwlock); 2757 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2758 INTR(vp))) 2759 return (EINTR); 2760 } 2761 2762 va.va_mask = AT_SIZE; 2763 error = nfs4getattr(vp, &va, cr); 2764 if (error) 2765 return (error); 2766 uiop->uio_loffset = va.va_size; 2767 } 2768 2769 offset = uiop->uio_loffset + uiop->uio_resid; 2770 2771 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2772 return (EINVAL); 2773 2774 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2775 limit = MAXOFFSET_T; 2776 2777 /* 2778 * Check to make sure that the process will not exceed 2779 * its limit on file size. It is okay to write up to 2780 * the limit, but not beyond. Thus, the write which 2781 * reaches the limit will be short and the next write 2782 * will return an error. 2783 */ 2784 remainder = 0; 2785 if (offset > uiop->uio_llimit) { 2786 remainder = offset - uiop->uio_llimit; 2787 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2788 if (uiop->uio_resid <= 0) { 2789 proc_t *p = ttoproc(curthread); 2790 2791 uiop->uio_resid += remainder; 2792 mutex_enter(&p->p_lock); 2793 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2794 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2795 mutex_exit(&p->p_lock); 2796 return (EFBIG); 2797 } 2798 } 2799 2800 /* update the change attribute, if we have a write delegation */ 2801 2802 mutex_enter(&rp->r_statev4_lock); 2803 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2804 rp->r_deleg_change++; 2805 2806 mutex_exit(&rp->r_statev4_lock); 2807 2808 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2809 return (EINTR); 2810 2811 /* 2812 * Bypass VM if caching has been disabled (e.g., locking) or if 2813 * using client-side direct I/O and the file is not mmap'd and 2814 * there are no cached pages. 2815 */ 2816 if ((vp->v_flag & VNOCACHE) || 2817 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2818 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2819 size_t bufsize; 2820 int count; 2821 u_offset_t org_offset; 2822 stable_how4 stab_comm; 2823 nfs4_fwrite: 2824 if (rp->r_flags & R4STALE) { 2825 resid = uiop->uio_resid; 2826 offset = uiop->uio_loffset; 2827 error = rp->r_error; 2828 goto bottom; 2829 } 2830 2831 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2832 base = kmem_alloc(bufsize, KM_SLEEP); 2833 do { 2834 if (ioflag & FDSYNC) 2835 stab_comm = DATA_SYNC4; 2836 else 2837 stab_comm = FILE_SYNC4; 2838 resid = uiop->uio_resid; 2839 offset = uiop->uio_loffset; 2840 count = MIN(uiop->uio_resid, bufsize); 2841 org_offset = uiop->uio_loffset; 2842 error = uiomove(base, count, UIO_WRITE, uiop); 2843 if (!error) { 2844 error = nfs4write(vp, base, org_offset, 2845 count, cr, &stab_comm); 2846 if (!error) { 2847 mutex_enter(&rp->r_statelock); 2848 if (rp->r_size < uiop->uio_loffset) 2849 rp->r_size = uiop->uio_loffset; 2850 mutex_exit(&rp->r_statelock); 2851 } 2852 } 2853 } while (!error && uiop->uio_resid > 0); 2854 kmem_free(base, bufsize); 2855 goto bottom; 2856 } 2857 2858 bsize = vp->v_vfsp->vfs_bsize; 2859 2860 do { 2861 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2862 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2863 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2864 2865 resid = uiop->uio_resid; 2866 offset = uiop->uio_loffset; 2867 2868 if (rp->r_flags & R4STALE) { 2869 error = rp->r_error; 2870 break; 2871 } 2872 2873 /* 2874 * Don't create dirty pages faster than they 2875 * can be cleaned so that the system doesn't 2876 * get imbalanced. If the async queue is 2877 * maxed out, then wait for it to drain before 2878 * creating more dirty pages. Also, wait for 2879 * any threads doing pagewalks in the vop_getattr 2880 * entry points so that they don't block for 2881 * long periods. 2882 */ 2883 mutex_enter(&rp->r_statelock); 2884 while ((mi->mi_max_threads != 0 && 2885 rp->r_awcount > 2 * mi->mi_max_threads) || 2886 rp->r_gcount > 0) 2887 cv_wait(&rp->r_cv, &rp->r_statelock); 2888 mutex_exit(&rp->r_statelock); 2889 2890 if (vpm_enable) { 2891 /* 2892 * It will use kpm mappings, so no need to 2893 * pass an address. 2894 */ 2895 error = writerp4(rp, NULL, n, uiop, 0); 2896 } else { 2897 if (segmap_kpm) { 2898 int pon = uiop->uio_loffset & PAGEOFFSET; 2899 size_t pn = MIN(PAGESIZE - pon, 2900 uiop->uio_resid); 2901 int pagecreate; 2902 2903 mutex_enter(&rp->r_statelock); 2904 pagecreate = (pon == 0) && (pn == PAGESIZE || 2905 uiop->uio_loffset + pn >= rp->r_size); 2906 mutex_exit(&rp->r_statelock); 2907 2908 base = segmap_getmapflt(segkmap, vp, off + on, 2909 pn, !pagecreate, S_WRITE); 2910 2911 error = writerp4(rp, base + pon, n, uiop, 2912 pagecreate); 2913 2914 } else { 2915 base = segmap_getmapflt(segkmap, vp, off + on, 2916 n, 0, S_READ); 2917 error = writerp4(rp, base + on, n, uiop, 0); 2918 } 2919 } 2920 2921 if (!error) { 2922 if (mi->mi_flags & MI4_NOAC) 2923 flags = SM_WRITE; 2924 else if ((uiop->uio_loffset % bsize) == 0 || 2925 IS_SWAPVP(vp)) { 2926 /* 2927 * Have written a whole block. 2928 * Start an asynchronous write 2929 * and mark the buffer to 2930 * indicate that it won't be 2931 * needed again soon. 2932 */ 2933 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2934 } else 2935 flags = 0; 2936 if ((ioflag & (FSYNC|FDSYNC)) || 2937 (rp->r_flags & R4OUTOFSPACE)) { 2938 flags &= ~SM_ASYNC; 2939 flags |= SM_WRITE; 2940 } 2941 if (vpm_enable) { 2942 error = vpm_sync_pages(vp, off, n, flags); 2943 } else { 2944 error = segmap_release(segkmap, base, flags); 2945 } 2946 } else { 2947 if (vpm_enable) { 2948 (void) vpm_sync_pages(vp, off, n, 0); 2949 } else { 2950 (void) segmap_release(segkmap, base, 0); 2951 } 2952 /* 2953 * In the event that we got an access error while 2954 * faulting in a page for a write-only file just 2955 * force a write. 2956 */ 2957 if (error == EACCES) 2958 goto nfs4_fwrite; 2959 } 2960 } while (!error && uiop->uio_resid > 0); 2961 2962 bottom: 2963 if (error) { 2964 uiop->uio_resid = resid + remainder; 2965 uiop->uio_loffset = offset; 2966 } else { 2967 uiop->uio_resid += remainder; 2968 2969 mutex_enter(&rp->r_statev4_lock); 2970 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 2971 gethrestime(&rp->r_attr.va_mtime); 2972 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 2973 } 2974 mutex_exit(&rp->r_statev4_lock); 2975 } 2976 2977 nfs_rw_exit(&rp->r_lkserlock); 2978 2979 return (error); 2980 } 2981 2982 /* 2983 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2984 */ 2985 static int 2986 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 2987 int flags, cred_t *cr) 2988 { 2989 struct buf *bp; 2990 int error; 2991 page_t *savepp; 2992 uchar_t fsdata; 2993 stable_how4 stab_comm; 2994 2995 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 2996 bp = pageio_setup(pp, len, vp, flags); 2997 ASSERT(bp != NULL); 2998 2999 /* 3000 * pageio_setup should have set b_addr to 0. This 3001 * is correct since we want to do I/O on a page 3002 * boundary. bp_mapin will use this addr to calculate 3003 * an offset, and then set b_addr to the kernel virtual 3004 * address it allocated for us. 3005 */ 3006 ASSERT(bp->b_un.b_addr == 0); 3007 3008 bp->b_edev = 0; 3009 bp->b_dev = 0; 3010 bp->b_lblkno = lbtodb(off); 3011 bp->b_file = vp; 3012 bp->b_offset = (offset_t)off; 3013 bp_mapin(bp); 3014 3015 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3016 freemem > desfree) 3017 stab_comm = UNSTABLE4; 3018 else 3019 stab_comm = FILE_SYNC4; 3020 3021 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3022 3023 bp_mapout(bp); 3024 pageio_done(bp); 3025 3026 if (stab_comm == UNSTABLE4) 3027 fsdata = C_DELAYCOMMIT; 3028 else 3029 fsdata = C_NOCOMMIT; 3030 3031 savepp = pp; 3032 do { 3033 pp->p_fsdata = fsdata; 3034 } while ((pp = pp->p_next) != savepp); 3035 3036 return (error); 3037 } 3038 3039 /* 3040 */ 3041 static int 3042 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3043 { 3044 nfs4_open_owner_t *oop; 3045 nfs4_open_stream_t *osp; 3046 rnode4_t *rp = VTOR4(vp); 3047 mntinfo4_t *mi = VTOMI4(vp); 3048 int reopen_needed; 3049 3050 ASSERT(nfs_zone() == mi->mi_zone); 3051 3052 3053 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3054 if (!oop) 3055 return (EIO); 3056 3057 /* returns with 'os_sync_lock' held */ 3058 osp = find_open_stream(oop, rp); 3059 if (!osp) { 3060 open_owner_rele(oop); 3061 return (EIO); 3062 } 3063 3064 if (osp->os_failed_reopen) { 3065 mutex_exit(&osp->os_sync_lock); 3066 open_stream_rele(osp, rp); 3067 open_owner_rele(oop); 3068 return (EIO); 3069 } 3070 3071 /* 3072 * Determine whether a reopen is needed. If this 3073 * is a delegation open stream, then the os_delegation bit 3074 * should be set. 3075 */ 3076 3077 reopen_needed = osp->os_delegation; 3078 3079 mutex_exit(&osp->os_sync_lock); 3080 open_owner_rele(oop); 3081 3082 if (reopen_needed) { 3083 nfs4_error_zinit(ep); 3084 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3085 mutex_enter(&osp->os_sync_lock); 3086 if (ep->error || ep->stat || osp->os_failed_reopen) { 3087 mutex_exit(&osp->os_sync_lock); 3088 open_stream_rele(osp, rp); 3089 return (EIO); 3090 } 3091 mutex_exit(&osp->os_sync_lock); 3092 } 3093 open_stream_rele(osp, rp); 3094 3095 return (0); 3096 } 3097 3098 /* 3099 * Write to file. Writes to remote server in largest size 3100 * chunks that the server can handle. Write is synchronous. 3101 */ 3102 static int 3103 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3104 stable_how4 *stab_comm) 3105 { 3106 mntinfo4_t *mi; 3107 COMPOUND4args_clnt args; 3108 COMPOUND4res_clnt res; 3109 WRITE4args *wargs; 3110 WRITE4res *wres; 3111 nfs_argop4 argop[2]; 3112 nfs_resop4 *resop; 3113 int tsize; 3114 stable_how4 stable; 3115 rnode4_t *rp; 3116 int doqueue = 1; 3117 bool_t needrecov; 3118 nfs4_recov_state_t recov_state; 3119 nfs4_stateid_types_t sid_types; 3120 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3121 int recov; 3122 3123 rp = VTOR4(vp); 3124 mi = VTOMI4(vp); 3125 3126 ASSERT(nfs_zone() == mi->mi_zone); 3127 3128 stable = *stab_comm; 3129 *stab_comm = FILE_SYNC4; 3130 3131 needrecov = FALSE; 3132 recov_state.rs_flags = 0; 3133 recov_state.rs_num_retry_despite_err = 0; 3134 nfs4_init_stateid_types(&sid_types); 3135 3136 /* Is curthread the recovery thread? */ 3137 mutex_enter(&mi->mi_lock); 3138 recov = (mi->mi_recovthread == curthread); 3139 mutex_exit(&mi->mi_lock); 3140 3141 recov_retry: 3142 args.ctag = TAG_WRITE; 3143 args.array_len = 2; 3144 args.array = argop; 3145 3146 if (!recov) { 3147 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3148 &recov_state, NULL); 3149 if (e.error) 3150 return (e.error); 3151 } 3152 3153 /* 0. putfh target fh */ 3154 argop[0].argop = OP_CPUTFH; 3155 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3156 3157 /* 1. write */ 3158 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3159 3160 do { 3161 3162 wargs->offset = (offset4)offset; 3163 wargs->data_val = base; 3164 3165 if (mi->mi_io_kstats) { 3166 mutex_enter(&mi->mi_lock); 3167 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3168 mutex_exit(&mi->mi_lock); 3169 } 3170 3171 if ((vp->v_flag & VNOCACHE) || 3172 (rp->r_flags & R4DIRECTIO) || 3173 (mi->mi_flags & MI4_DIRECTIO)) 3174 tsize = MIN(mi->mi_stsize, count); 3175 else 3176 tsize = MIN(mi->mi_curwrite, count); 3177 wargs->data_len = (uint_t)tsize; 3178 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3179 3180 if (mi->mi_io_kstats) { 3181 mutex_enter(&mi->mi_lock); 3182 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3183 mutex_exit(&mi->mi_lock); 3184 } 3185 3186 if (!recov) { 3187 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3188 if (e.error && !needrecov) { 3189 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3190 &recov_state, needrecov); 3191 return (e.error); 3192 } 3193 } else { 3194 if (e.error) 3195 return (e.error); 3196 } 3197 3198 /* 3199 * Do handling of OLD_STATEID outside 3200 * of the normal recovery framework. 3201 * 3202 * If write receives a BAD stateid error while using a 3203 * delegation stateid, retry using the open stateid (if it 3204 * exists). If it doesn't have an open stateid, reopen the 3205 * file first, then retry. 3206 */ 3207 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3208 sid_types.cur_sid_type != SPEC_SID) { 3209 nfs4_save_stateid(&wargs->stateid, &sid_types); 3210 if (!recov) 3211 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3212 &recov_state, needrecov); 3213 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3214 goto recov_retry; 3215 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3216 sid_types.cur_sid_type == DEL_SID) { 3217 nfs4_save_stateid(&wargs->stateid, &sid_types); 3218 mutex_enter(&rp->r_statev4_lock); 3219 rp->r_deleg_return_pending = TRUE; 3220 mutex_exit(&rp->r_statev4_lock); 3221 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3222 if (!recov) 3223 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3224 &recov_state, needrecov); 3225 (void) xdr_free(xdr_COMPOUND4res_clnt, 3226 (caddr_t)&res); 3227 return (EIO); 3228 } 3229 if (!recov) 3230 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3231 &recov_state, needrecov); 3232 /* hold needed for nfs4delegreturn_thread */ 3233 VN_HOLD(vp); 3234 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3235 NFS4_DR_DISCARD), FALSE); 3236 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3237 goto recov_retry; 3238 } 3239 3240 if (needrecov) { 3241 bool_t abort; 3242 3243 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3244 "nfs4write: client got error %d, res.status %d" 3245 ", so start recovery", e.error, res.status)); 3246 3247 abort = nfs4_start_recovery(&e, 3248 VTOMI4(vp), vp, NULL, &wargs->stateid, 3249 NULL, OP_WRITE, NULL); 3250 if (!e.error) { 3251 e.error = geterrno4(res.status); 3252 (void) xdr_free(xdr_COMPOUND4res_clnt, 3253 (caddr_t)&res); 3254 } 3255 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3256 &recov_state, needrecov); 3257 if (abort == FALSE) 3258 goto recov_retry; 3259 return (e.error); 3260 } 3261 3262 if (res.status) { 3263 e.error = geterrno4(res.status); 3264 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3265 if (!recov) 3266 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3267 &recov_state, needrecov); 3268 return (e.error); 3269 } 3270 3271 resop = &res.array[1]; /* write res */ 3272 wres = &resop->nfs_resop4_u.opwrite; 3273 3274 if ((int)wres->count > tsize) { 3275 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3276 3277 zcmn_err(getzoneid(), CE_WARN, 3278 "nfs4write: server wrote %u, requested was %u", 3279 (int)wres->count, tsize); 3280 if (!recov) 3281 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3282 &recov_state, needrecov); 3283 return (EIO); 3284 } 3285 if (wres->committed == UNSTABLE4) { 3286 *stab_comm = UNSTABLE4; 3287 if (wargs->stable == DATA_SYNC4 || 3288 wargs->stable == FILE_SYNC4) { 3289 (void) xdr_free(xdr_COMPOUND4res_clnt, 3290 (caddr_t)&res); 3291 zcmn_err(getzoneid(), CE_WARN, 3292 "nfs4write: server %s did not commit " 3293 "to stable storage", 3294 rp->r_server->sv_hostname); 3295 if (!recov) 3296 nfs4_end_fop(VTOMI4(vp), vp, NULL, 3297 OH_WRITE, &recov_state, needrecov); 3298 return (EIO); 3299 } 3300 } 3301 3302 tsize = (int)wres->count; 3303 count -= tsize; 3304 base += tsize; 3305 offset += tsize; 3306 if (mi->mi_io_kstats) { 3307 mutex_enter(&mi->mi_lock); 3308 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3309 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3310 tsize; 3311 mutex_exit(&mi->mi_lock); 3312 } 3313 lwp_stat_update(LWP_STAT_OUBLK, 1); 3314 mutex_enter(&rp->r_statelock); 3315 if (rp->r_flags & R4HAVEVERF) { 3316 if (rp->r_writeverf != wres->writeverf) { 3317 nfs4_set_mod(vp); 3318 rp->r_writeverf = wres->writeverf; 3319 } 3320 } else { 3321 rp->r_writeverf = wres->writeverf; 3322 rp->r_flags |= R4HAVEVERF; 3323 } 3324 PURGE_ATTRCACHE4_LOCKED(rp); 3325 rp->r_flags |= R4WRITEMODIFIED; 3326 gethrestime(&rp->r_attr.va_mtime); 3327 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3328 mutex_exit(&rp->r_statelock); 3329 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3330 } while (count); 3331 3332 if (!recov) 3333 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, 3334 needrecov); 3335 3336 return (e.error); 3337 } 3338 3339 /* 3340 * Read from a file. Reads data in largest chunks our interface can handle. 3341 */ 3342 static int 3343 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3344 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3345 { 3346 mntinfo4_t *mi; 3347 COMPOUND4args_clnt args; 3348 COMPOUND4res_clnt res; 3349 READ4args *rargs; 3350 nfs_argop4 argop[2]; 3351 int tsize; 3352 int doqueue; 3353 rnode4_t *rp; 3354 int data_len; 3355 bool_t is_eof; 3356 bool_t needrecov = FALSE; 3357 nfs4_recov_state_t recov_state; 3358 nfs4_stateid_types_t sid_types; 3359 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3360 3361 rp = VTOR4(vp); 3362 mi = VTOMI4(vp); 3363 doqueue = 1; 3364 3365 ASSERT(nfs_zone() == mi->mi_zone); 3366 3367 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3368 3369 args.array_len = 2; 3370 args.array = argop; 3371 3372 nfs4_init_stateid_types(&sid_types); 3373 3374 recov_state.rs_flags = 0; 3375 recov_state.rs_num_retry_despite_err = 0; 3376 3377 recov_retry: 3378 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3379 &recov_state, NULL); 3380 if (e.error) 3381 return (e.error); 3382 3383 /* putfh target fh */ 3384 argop[0].argop = OP_CPUTFH; 3385 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3386 3387 /* read */ 3388 argop[1].argop = OP_READ; 3389 rargs = &argop[1].nfs_argop4_u.opread; 3390 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3391 OP_READ, &sid_types, async); 3392 3393 do { 3394 if (mi->mi_io_kstats) { 3395 mutex_enter(&mi->mi_lock); 3396 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3397 mutex_exit(&mi->mi_lock); 3398 } 3399 3400 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3401 "nfs4read: %s call, rp %s", 3402 needrecov ? "recov" : "first", 3403 rnode4info(rp))); 3404 3405 if ((vp->v_flag & VNOCACHE) || 3406 (rp->r_flags & R4DIRECTIO) || 3407 (mi->mi_flags & MI4_DIRECTIO)) 3408 tsize = MIN(mi->mi_tsize, count); 3409 else 3410 tsize = MIN(mi->mi_curread, count); 3411 rargs->offset = (offset4)offset; 3412 rargs->count = (count4)tsize; 3413 rargs->res_data_val_alt = NULL; 3414 rargs->res_mblk = NULL; 3415 rargs->res_uiop = NULL; 3416 rargs->res_maxsize = 0; 3417 if (uiop) 3418 rargs->res_uiop = uiop; 3419 else 3420 rargs->res_data_val_alt = base; 3421 rargs->res_maxsize = tsize; 3422 3423 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3424 #ifdef DEBUG 3425 if (nfs4read_error_inject) { 3426 res.status = nfs4read_error_inject; 3427 nfs4read_error_inject = 0; 3428 } 3429 #endif 3430 3431 if (mi->mi_io_kstats) { 3432 mutex_enter(&mi->mi_lock); 3433 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3434 mutex_exit(&mi->mi_lock); 3435 } 3436 3437 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3438 if (e.error != 0 && !needrecov) { 3439 nfs4_end_fop(mi, vp, NULL, OH_READ, 3440 &recov_state, needrecov); 3441 return (e.error); 3442 } 3443 3444 /* 3445 * Do proper retry for OLD and BAD stateid errors outside 3446 * of the normal recovery framework. There are two differences 3447 * between async and sync reads. The first is that we allow 3448 * retry on BAD_STATEID for async reads, but not sync reads. 3449 * The second is that we mark the file dead for a failed 3450 * attempt with a special stateid for sync reads, but just 3451 * return EIO for async reads. 3452 * 3453 * If a sync read receives a BAD stateid error while using a 3454 * delegation stateid, retry using the open stateid (if it 3455 * exists). If it doesn't have an open stateid, reopen the 3456 * file first, then retry. 3457 */ 3458 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3459 res.status == NFS4ERR_BAD_STATEID) && async) { 3460 nfs4_end_fop(mi, vp, NULL, OH_READ, 3461 &recov_state, needrecov); 3462 if (sid_types.cur_sid_type == SPEC_SID) { 3463 (void) xdr_free(xdr_COMPOUND4res_clnt, 3464 (caddr_t)&res); 3465 return (EIO); 3466 } 3467 nfs4_save_stateid(&rargs->stateid, &sid_types); 3468 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3469 goto recov_retry; 3470 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3471 !async && sid_types.cur_sid_type != SPEC_SID) { 3472 nfs4_save_stateid(&rargs->stateid, &sid_types); 3473 nfs4_end_fop(mi, vp, NULL, OH_READ, 3474 &recov_state, needrecov); 3475 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3476 goto recov_retry; 3477 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3478 sid_types.cur_sid_type == DEL_SID) { 3479 nfs4_save_stateid(&rargs->stateid, &sid_types); 3480 mutex_enter(&rp->r_statev4_lock); 3481 rp->r_deleg_return_pending = TRUE; 3482 mutex_exit(&rp->r_statev4_lock); 3483 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3484 nfs4_end_fop(mi, vp, NULL, OH_READ, 3485 &recov_state, needrecov); 3486 (void) xdr_free(xdr_COMPOUND4res_clnt, 3487 (caddr_t)&res); 3488 return (EIO); 3489 } 3490 nfs4_end_fop(mi, vp, NULL, OH_READ, 3491 &recov_state, needrecov); 3492 /* hold needed for nfs4delegreturn_thread */ 3493 VN_HOLD(vp); 3494 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3495 NFS4_DR_DISCARD), FALSE); 3496 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3497 goto recov_retry; 3498 } 3499 if (needrecov) { 3500 bool_t abort; 3501 3502 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3503 "nfs4read: initiating recovery\n")); 3504 3505 abort = nfs4_start_recovery(&e, 3506 mi, vp, NULL, &rargs->stateid, 3507 NULL, OP_READ, NULL); 3508 nfs4_end_fop(mi, vp, NULL, OH_READ, 3509 &recov_state, needrecov); 3510 /* 3511 * Do not retry if we got OLD_STATEID using a special 3512 * stateid. This avoids looping with a broken server. 3513 */ 3514 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3515 sid_types.cur_sid_type == SPEC_SID) 3516 abort = TRUE; 3517 3518 if (abort == FALSE) { 3519 /* 3520 * Need to retry all possible stateids in 3521 * case the recovery error wasn't stateid 3522 * related or the stateids have become 3523 * stale (server reboot). 3524 */ 3525 nfs4_init_stateid_types(&sid_types); 3526 (void) xdr_free(xdr_COMPOUND4res_clnt, 3527 (caddr_t)&res); 3528 goto recov_retry; 3529 } 3530 3531 if (!e.error) { 3532 e.error = geterrno4(res.status); 3533 (void) xdr_free(xdr_COMPOUND4res_clnt, 3534 (caddr_t)&res); 3535 } 3536 return (e.error); 3537 } 3538 3539 if (res.status) { 3540 e.error = geterrno4(res.status); 3541 nfs4_end_fop(mi, vp, NULL, OH_READ, 3542 &recov_state, needrecov); 3543 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3544 return (e.error); 3545 } 3546 3547 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3548 count -= data_len; 3549 if (base) 3550 base += data_len; 3551 offset += data_len; 3552 if (mi->mi_io_kstats) { 3553 mutex_enter(&mi->mi_lock); 3554 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3555 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3556 mutex_exit(&mi->mi_lock); 3557 } 3558 lwp_stat_update(LWP_STAT_INBLK, 1); 3559 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3560 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3561 3562 } while (count && !is_eof); 3563 3564 *residp = count; 3565 3566 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3567 3568 return (e.error); 3569 } 3570 3571 /* ARGSUSED */ 3572 static int 3573 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3574 caller_context_t *ct) 3575 { 3576 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3577 return (EIO); 3578 switch (cmd) { 3579 case _FIODIRECTIO: 3580 return (nfs4_directio(vp, (int)arg, cr)); 3581 default: 3582 return (ENOTTY); 3583 } 3584 } 3585 3586 /* ARGSUSED */ 3587 int 3588 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3589 caller_context_t *ct) 3590 { 3591 int error; 3592 rnode4_t *rp = VTOR4(vp); 3593 3594 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3595 return (EIO); 3596 /* 3597 * If it has been specified that the return value will 3598 * just be used as a hint, and we are only being asked 3599 * for size, fsid or rdevid, then return the client's 3600 * notion of these values without checking to make sure 3601 * that the attribute cache is up to date. 3602 * The whole point is to avoid an over the wire GETATTR 3603 * call. 3604 */ 3605 if (flags & ATTR_HINT) { 3606 if (vap->va_mask == 3607 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 3608 mutex_enter(&rp->r_statelock); 3609 if (vap->va_mask | AT_SIZE) 3610 vap->va_size = rp->r_size; 3611 if (vap->va_mask | AT_FSID) 3612 vap->va_fsid = rp->r_attr.va_fsid; 3613 if (vap->va_mask | AT_RDEV) 3614 vap->va_rdev = rp->r_attr.va_rdev; 3615 mutex_exit(&rp->r_statelock); 3616 return (0); 3617 } 3618 } 3619 3620 /* 3621 * Only need to flush pages if asking for the mtime 3622 * and if there any dirty pages or any outstanding 3623 * asynchronous (write) requests for this file. 3624 */ 3625 if (vap->va_mask & AT_MTIME) { 3626 rp = VTOR4(vp); 3627 if (nfs4_has_pages(vp)) { 3628 mutex_enter(&rp->r_statev4_lock); 3629 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3630 mutex_exit(&rp->r_statev4_lock); 3631 if (rp->r_flags & R4DIRTY || 3632 rp->r_awcount > 0) { 3633 mutex_enter(&rp->r_statelock); 3634 rp->r_gcount++; 3635 mutex_exit(&rp->r_statelock); 3636 error = 3637 nfs4_putpage(vp, (u_offset_t)0, 3638 0, 0, cr, NULL); 3639 mutex_enter(&rp->r_statelock); 3640 if (error && (error == ENOSPC || 3641 error == EDQUOT)) { 3642 if (!rp->r_error) 3643 rp->r_error = error; 3644 } 3645 if (--rp->r_gcount == 0) 3646 cv_broadcast(&rp->r_cv); 3647 mutex_exit(&rp->r_statelock); 3648 } 3649 } else { 3650 mutex_exit(&rp->r_statev4_lock); 3651 } 3652 } 3653 } 3654 return (nfs4getattr(vp, vap, cr)); 3655 } 3656 3657 int 3658 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3659 { 3660 /* 3661 * If these are the only two bits cleared 3662 * on the server then return 0 (OK) else 3663 * return 1 (BAD). 3664 */ 3665 on_client &= ~(S_ISUID|S_ISGID); 3666 if (on_client == from_server) 3667 return (0); 3668 else 3669 return (1); 3670 } 3671 3672 /*ARGSUSED4*/ 3673 static int 3674 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3675 caller_context_t *ct) 3676 { 3677 if (vap->va_mask & AT_NOSET) 3678 return (EINVAL); 3679 3680 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3681 return (EIO); 3682 3683 /* 3684 * Don't call secpolicy_vnode_setattr, the client cannot 3685 * use its cached attributes to make security decisions 3686 * as the server may be faking mode bits or mapping uid/gid. 3687 * Always just let the server to the checking. 3688 * If we provide the ability to remove basic priviledges 3689 * to setattr (e.g. basic without chmod) then we will 3690 * need to add a check here before calling the server. 3691 */ 3692 3693 return (nfs4setattr(vp, vap, flags, cr, NULL)); 3694 } 3695 3696 /* 3697 * To replace the "guarded" version 3 setattr, we use two types of compound 3698 * setattr requests: 3699 * 1. The "normal" setattr, used when the size of the file isn't being 3700 * changed - { Putfh <fh>; Setattr; Getattr }/ 3701 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3702 * with only ctime as the argument. If the server ctime differs from 3703 * what is cached on the client, the verify will fail, but we would 3704 * already have the ctime from the preceding getattr, so just set it 3705 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3706 * Setattr; Getattr }. 3707 * 3708 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3709 * this setattr and NULL if they are not. 3710 */ 3711 static int 3712 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3713 vsecattr_t *vsap) 3714 { 3715 COMPOUND4args_clnt args; 3716 COMPOUND4res_clnt res, *resp = NULL; 3717 nfs4_ga_res_t *garp = NULL; 3718 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3719 nfs_argop4 argop[5]; 3720 int verify_argop = -1; 3721 int setattr_argop = 1; 3722 nfs_resop4 *resop; 3723 vattr_t va; 3724 rnode4_t *rp; 3725 int doqueue = 1; 3726 uint_t mask = vap->va_mask; 3727 mode_t omode; 3728 vsecattr_t *vsp; 3729 timestruc_t ctime; 3730 bool_t needrecov = FALSE; 3731 nfs4_recov_state_t recov_state; 3732 nfs4_stateid_types_t sid_types; 3733 stateid4 stateid; 3734 hrtime_t t; 3735 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3736 servinfo4_t *svp; 3737 bitmap4 supp_attrs; 3738 3739 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3740 rp = VTOR4(vp); 3741 nfs4_init_stateid_types(&sid_types); 3742 3743 /* 3744 * Only need to flush pages if there are any pages and 3745 * if the file is marked as dirty in some fashion. The 3746 * file must be flushed so that we can accurately 3747 * determine the size of the file and the cached data 3748 * after the SETATTR returns. A file is considered to 3749 * be dirty if it is either marked with R4DIRTY, has 3750 * outstanding i/o's active, or is mmap'd. In this 3751 * last case, we can't tell whether there are dirty 3752 * pages, so we flush just to be sure. 3753 */ 3754 if (nfs4_has_pages(vp) && 3755 ((rp->r_flags & R4DIRTY) || 3756 rp->r_count > 0 || 3757 rp->r_mapcnt > 0)) { 3758 ASSERT(vp->v_type != VCHR); 3759 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3760 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3761 mutex_enter(&rp->r_statelock); 3762 if (!rp->r_error) 3763 rp->r_error = e.error; 3764 mutex_exit(&rp->r_statelock); 3765 } 3766 } 3767 3768 if (mask & AT_SIZE) { 3769 /* 3770 * Verification setattr compound for non-deleg AT_SIZE: 3771 * { Putfh; Getattr; Verify; Setattr; Getattr } 3772 * Set ctime local here (outside the do_again label) 3773 * so that subsequent retries (after failed VERIFY) 3774 * will use ctime from GETATTR results (from failed 3775 * verify compound) as VERIFY arg. 3776 * If file has delegation, then VERIFY(time_metadata) 3777 * is of little added value, so don't bother. 3778 */ 3779 mutex_enter(&rp->r_statev4_lock); 3780 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3781 rp->r_deleg_return_pending) { 3782 numops = 5; 3783 ctime = rp->r_attr.va_ctime; 3784 } 3785 mutex_exit(&rp->r_statev4_lock); 3786 } 3787 3788 recov_state.rs_flags = 0; 3789 recov_state.rs_num_retry_despite_err = 0; 3790 3791 args.ctag = TAG_SETATTR; 3792 do_again: 3793 recov_retry: 3794 setattr_argop = numops - 2; 3795 3796 args.array = argop; 3797 args.array_len = numops; 3798 3799 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3800 if (e.error) 3801 return (e.error); 3802 3803 3804 /* putfh target fh */ 3805 argop[0].argop = OP_CPUTFH; 3806 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3807 3808 if (numops == 5) { 3809 /* 3810 * We only care about the ctime, but need to get mtime 3811 * and size for proper cache update. 3812 */ 3813 /* getattr */ 3814 argop[1].argop = OP_GETATTR; 3815 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3816 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3817 3818 /* verify - set later in loop */ 3819 verify_argop = 2; 3820 } 3821 3822 /* setattr */ 3823 svp = rp->r_server; 3824 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3825 supp_attrs = svp->sv_supp_attrs; 3826 nfs_rw_exit(&svp->sv_lock); 3827 3828 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3829 supp_attrs, &e.error, &sid_types); 3830 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3831 if (e.error) { 3832 /* req time field(s) overflow - return immediately */ 3833 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3834 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3835 opsetattr.obj_attributes); 3836 return (e.error); 3837 } 3838 omode = rp->r_attr.va_mode; 3839 3840 /* getattr */ 3841 argop[numops-1].argop = OP_GETATTR; 3842 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3843 /* 3844 * If we are setting the ACL (indicated only by vsap != NULL), request 3845 * the ACL in this getattr. The ACL returned from this getattr will be 3846 * used in updating the ACL cache. 3847 */ 3848 if (vsap != NULL) 3849 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3850 FATTR4_ACL_MASK; 3851 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3852 3853 /* 3854 * setattr iterates if the object size is set and the cached ctime 3855 * does not match the file ctime. In that case, verify the ctime first. 3856 */ 3857 3858 do { 3859 if (verify_argop != -1) { 3860 /* 3861 * Verify that the ctime match before doing setattr. 3862 */ 3863 va.va_mask = AT_CTIME; 3864 va.va_ctime = ctime; 3865 svp = rp->r_server; 3866 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3867 supp_attrs = svp->sv_supp_attrs; 3868 nfs_rw_exit(&svp->sv_lock); 3869 e.error = nfs4args_verify(&argop[verify_argop], &va, 3870 OP_VERIFY, supp_attrs); 3871 if (e.error) { 3872 /* req time field(s) overflow - return */ 3873 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3874 needrecov); 3875 break; 3876 } 3877 } 3878 3879 doqueue = 1; 3880 3881 t = gethrtime(); 3882 3883 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3884 3885 /* 3886 * Purge the access cache and ACL cache if changing either the 3887 * owner of the file, the group owner, or the mode. These may 3888 * change the access permissions of the file, so purge old 3889 * information and start over again. 3890 */ 3891 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3892 (void) nfs4_access_purge_rp(rp); 3893 if (rp->r_secattr != NULL) { 3894 mutex_enter(&rp->r_statelock); 3895 vsp = rp->r_secattr; 3896 rp->r_secattr = NULL; 3897 mutex_exit(&rp->r_statelock); 3898 if (vsp != NULL) 3899 nfs4_acl_free_cache(vsp); 3900 } 3901 } 3902 3903 /* 3904 * If res.array_len == numops, then everything succeeded, 3905 * except for possibly the final getattr. If only the 3906 * last getattr failed, give up, and don't try recovery. 3907 */ 3908 if (res.array_len == numops) { 3909 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3910 needrecov); 3911 if (! e.error) 3912 resp = &res; 3913 break; 3914 } 3915 3916 /* 3917 * if either rpc call failed or completely succeeded - done 3918 */ 3919 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3920 if (e.error) { 3921 PURGE_ATTRCACHE4(vp); 3922 if (!needrecov) { 3923 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3924 needrecov); 3925 break; 3926 } 3927 } 3928 3929 /* 3930 * Do proper retry for OLD_STATEID outside of the normal 3931 * recovery framework. 3932 */ 3933 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3934 sid_types.cur_sid_type != SPEC_SID && 3935 sid_types.cur_sid_type != NO_SID) { 3936 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3937 needrecov); 3938 nfs4_save_stateid(&stateid, &sid_types); 3939 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3940 opsetattr.obj_attributes); 3941 if (verify_argop != -1) { 3942 nfs4args_verify_free(&argop[verify_argop]); 3943 verify_argop = -1; 3944 } 3945 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3946 goto recov_retry; 3947 } 3948 3949 if (needrecov) { 3950 bool_t abort; 3951 3952 abort = nfs4_start_recovery(&e, 3953 VTOMI4(vp), vp, NULL, NULL, NULL, 3954 OP_SETATTR, NULL); 3955 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3956 needrecov); 3957 /* 3958 * Do not retry if we failed with OLD_STATEID using 3959 * a special stateid. This is done to avoid looping 3960 * with a broken server. 3961 */ 3962 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3963 (sid_types.cur_sid_type == SPEC_SID || 3964 sid_types.cur_sid_type == NO_SID)) 3965 abort = TRUE; 3966 if (!e.error) { 3967 if (res.status == NFS4ERR_BADOWNER) 3968 nfs4_log_badowner(VTOMI4(vp), 3969 OP_SETATTR); 3970 3971 e.error = geterrno4(res.status); 3972 (void) xdr_free(xdr_COMPOUND4res_clnt, 3973 (caddr_t)&res); 3974 } 3975 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3976 opsetattr.obj_attributes); 3977 if (verify_argop != -1) { 3978 nfs4args_verify_free(&argop[verify_argop]); 3979 verify_argop = -1; 3980 } 3981 if (abort == FALSE) { 3982 /* 3983 * Need to retry all possible stateids in 3984 * case the recovery error wasn't stateid 3985 * related or the stateids have become 3986 * stale (server reboot). 3987 */ 3988 nfs4_init_stateid_types(&sid_types); 3989 goto recov_retry; 3990 } 3991 return (e.error); 3992 } 3993 3994 /* 3995 * Need to call nfs4_end_op before nfs4getattr to 3996 * avoid potential nfs4_start_op deadlock. See RFE 3997 * 4777612. Calls to nfs4_invalidate_pages() and 3998 * nfs4_purge_stale_fh() might also generate over the 3999 * wire calls which my cause nfs4_start_op() deadlock. 4000 */ 4001 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4002 4003 /* 4004 * Check to update lease. 4005 */ 4006 resp = &res; 4007 if (res.status == NFS4_OK) { 4008 break; 4009 } 4010 4011 /* 4012 * Check if verify failed to see if try again 4013 */ 4014 if ((verify_argop == -1) || (res.array_len != 3)) { 4015 /* 4016 * can't continue... 4017 */ 4018 if (res.status == NFS4ERR_BADOWNER) 4019 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4020 4021 e.error = geterrno4(res.status); 4022 } else { 4023 /* 4024 * When the verify request fails, the client ctime is 4025 * not in sync with the server. This is the same as 4026 * the version 3 "not synchronized" error, and we 4027 * handle it in a similar manner (XXX do we need to???). 4028 * Use the ctime returned in the first getattr for 4029 * the input to the next verify. 4030 * If we couldn't get the attributes, then we give up 4031 * because we can't complete the operation as required. 4032 */ 4033 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4034 } 4035 if (e.error) { 4036 PURGE_ATTRCACHE4(vp); 4037 nfs4_purge_stale_fh(e.error, vp, cr); 4038 } else { 4039 /* 4040 * retry with a new verify value 4041 */ 4042 ctime = garp->n4g_va.va_ctime; 4043 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4044 resp = NULL; 4045 } 4046 if (!e.error) { 4047 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4048 opsetattr.obj_attributes); 4049 if (verify_argop != -1) { 4050 nfs4args_verify_free(&argop[verify_argop]); 4051 verify_argop = -1; 4052 } 4053 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4054 goto do_again; 4055 } 4056 } while (!e.error); 4057 4058 if (e.error) { 4059 /* 4060 * If we are here, rfs4call has an irrecoverable error - return 4061 */ 4062 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4063 opsetattr.obj_attributes); 4064 if (verify_argop != -1) { 4065 nfs4args_verify_free(&argop[verify_argop]); 4066 verify_argop = -1; 4067 } 4068 if (resp) 4069 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4070 return (e.error); 4071 } 4072 4073 4074 4075 /* 4076 * If changing the size of the file, invalidate 4077 * any local cached data which is no longer part 4078 * of the file. We also possibly invalidate the 4079 * last page in the file. We could use 4080 * pvn_vpzero(), but this would mark the page as 4081 * modified and require it to be written back to 4082 * the server for no particularly good reason. 4083 * This way, if we access it, then we bring it 4084 * back in. A read should be cheaper than a 4085 * write. 4086 */ 4087 if (mask & AT_SIZE) { 4088 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4089 } 4090 4091 /* either no error or one of the postop getattr failed */ 4092 4093 /* 4094 * XXX Perform a simplified version of wcc checking. Instead of 4095 * have another getattr to get pre-op, just purge cache if 4096 * any of the ops prior to and including the getattr failed. 4097 * If the getattr succeeded then update the attrcache accordingly. 4098 */ 4099 4100 garp = NULL; 4101 if (res.status == NFS4_OK) { 4102 /* 4103 * Last getattr 4104 */ 4105 resop = &res.array[numops - 1]; 4106 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4107 } 4108 /* 4109 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4110 * rather than filling it. See the function itself for details. 4111 */ 4112 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4113 if (garp != NULL) { 4114 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4115 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4116 vs_ace4_destroy(&garp->n4g_vsa); 4117 } else { 4118 if (vsap != NULL) { 4119 /* 4120 * The ACL was supposed to be set and to be 4121 * returned in the last getattr of this 4122 * compound, but for some reason the getattr 4123 * result doesn't contain the ACL. In this 4124 * case, purge the ACL cache. 4125 */ 4126 if (rp->r_secattr != NULL) { 4127 mutex_enter(&rp->r_statelock); 4128 vsp = rp->r_secattr; 4129 rp->r_secattr = NULL; 4130 mutex_exit(&rp->r_statelock); 4131 if (vsp != NULL) 4132 nfs4_acl_free_cache(vsp); 4133 } 4134 } 4135 } 4136 } 4137 4138 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4139 /* 4140 * Set the size, rather than relying on getting it updated 4141 * via a GETATTR. With delegations the client tries to 4142 * suppress GETATTR calls. 4143 */ 4144 mutex_enter(&rp->r_statelock); 4145 rp->r_size = vap->va_size; 4146 mutex_exit(&rp->r_statelock); 4147 } 4148 4149 /* 4150 * Can free up request args and res 4151 */ 4152 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4153 opsetattr.obj_attributes); 4154 if (verify_argop != -1) { 4155 nfs4args_verify_free(&argop[verify_argop]); 4156 verify_argop = -1; 4157 } 4158 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4159 4160 /* 4161 * Some servers will change the mode to clear the setuid 4162 * and setgid bits when changing the uid or gid. The 4163 * client needs to compensate appropriately. 4164 */ 4165 if (mask & (AT_UID | AT_GID)) { 4166 int terror, do_setattr; 4167 4168 do_setattr = 0; 4169 va.va_mask = AT_MODE; 4170 terror = nfs4getattr(vp, &va, cr); 4171 if (!terror && 4172 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4173 (!(mask & AT_MODE) && va.va_mode != omode))) { 4174 va.va_mask = AT_MODE; 4175 if (mask & AT_MODE) { 4176 /* 4177 * We asked the mode to be changed and what 4178 * we just got from the server in getattr is 4179 * not what we wanted it to be, so set it now. 4180 */ 4181 va.va_mode = vap->va_mode; 4182 do_setattr = 1; 4183 } else { 4184 /* 4185 * We did not ask the mode to be changed, 4186 * Check to see that the server just cleared 4187 * I_SUID and I_GUID from it. If not then 4188 * set mode to omode with UID/GID cleared. 4189 */ 4190 if (nfs4_compare_modes(va.va_mode, omode)) { 4191 omode &= ~(S_ISUID|S_ISGID); 4192 va.va_mode = omode; 4193 do_setattr = 1; 4194 } 4195 } 4196 4197 if (do_setattr) 4198 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4199 } 4200 } 4201 4202 return (e.error); 4203 } 4204 4205 /* ARGSUSED */ 4206 static int 4207 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4208 { 4209 COMPOUND4args_clnt args; 4210 COMPOUND4res_clnt res; 4211 int doqueue; 4212 uint32_t acc, resacc, argacc; 4213 rnode4_t *rp; 4214 cred_t *cred, *ncr, *ncrfree = NULL; 4215 nfs4_access_type_t cacc; 4216 int num_ops; 4217 nfs_argop4 argop[3]; 4218 nfs_resop4 *resop; 4219 bool_t needrecov = FALSE, do_getattr; 4220 nfs4_recov_state_t recov_state; 4221 int rpc_error; 4222 hrtime_t t; 4223 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4224 mntinfo4_t *mi = VTOMI4(vp); 4225 4226 if (nfs_zone() != mi->mi_zone) 4227 return (EIO); 4228 4229 acc = 0; 4230 if (mode & VREAD) 4231 acc |= ACCESS4_READ; 4232 if (mode & VWRITE) { 4233 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4234 return (EROFS); 4235 if (vp->v_type == VDIR) 4236 acc |= ACCESS4_DELETE; 4237 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4238 } 4239 if (mode & VEXEC) { 4240 if (vp->v_type == VDIR) 4241 acc |= ACCESS4_LOOKUP; 4242 else 4243 acc |= ACCESS4_EXECUTE; 4244 } 4245 4246 if (VTOR4(vp)->r_acache != NULL) { 4247 e.error = nfs4_validate_caches(vp, cr); 4248 if (e.error) 4249 return (e.error); 4250 } 4251 4252 rp = VTOR4(vp); 4253 if (vp->v_type == VDIR) 4254 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4255 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4256 else 4257 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4258 ACCESS4_EXECUTE; 4259 recov_state.rs_flags = 0; 4260 recov_state.rs_num_retry_despite_err = 0; 4261 4262 cred = cr; 4263 /* 4264 * ncr and ncrfree both initially 4265 * point to the memory area returned 4266 * by crnetadjust(); 4267 * ncrfree not NULL when exiting means 4268 * that we need to release it 4269 */ 4270 ncr = crnetadjust(cred); 4271 ncrfree = ncr; 4272 4273 tryagain: 4274 cacc = nfs4_access_check(rp, acc, cred); 4275 if (cacc == NFS4_ACCESS_ALLOWED) { 4276 if (ncrfree != NULL) 4277 crfree(ncrfree); 4278 return (0); 4279 } 4280 if (cacc == NFS4_ACCESS_DENIED) { 4281 /* 4282 * If the cred can be adjusted, try again 4283 * with the new cred. 4284 */ 4285 if (ncr != NULL) { 4286 cred = ncr; 4287 ncr = NULL; 4288 goto tryagain; 4289 } 4290 if (ncrfree != NULL) 4291 crfree(ncrfree); 4292 return (EACCES); 4293 } 4294 4295 recov_retry: 4296 /* 4297 * Don't take with r_statev4_lock here. r_deleg_type could 4298 * change as soon as lock is released. Since it is an int, 4299 * there is no atomicity issue. 4300 */ 4301 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4302 num_ops = do_getattr ? 3 : 2; 4303 4304 args.ctag = TAG_ACCESS; 4305 4306 args.array_len = num_ops; 4307 args.array = argop; 4308 4309 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4310 &recov_state, NULL)) { 4311 if (ncrfree != NULL) 4312 crfree(ncrfree); 4313 return (e.error); 4314 } 4315 4316 /* putfh target fh */ 4317 argop[0].argop = OP_CPUTFH; 4318 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4319 4320 /* access */ 4321 argop[1].argop = OP_ACCESS; 4322 argop[1].nfs_argop4_u.opaccess.access = argacc; 4323 4324 /* getattr */ 4325 if (do_getattr) { 4326 argop[2].argop = OP_GETATTR; 4327 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4328 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4329 } 4330 4331 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4332 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4333 rnode4info(VTOR4(vp)))); 4334 4335 doqueue = 1; 4336 t = gethrtime(); 4337 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4338 rpc_error = e.error; 4339 4340 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4341 if (needrecov) { 4342 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4343 "nfs4_access: initiating recovery\n")); 4344 4345 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4346 NULL, OP_ACCESS, NULL) == FALSE) { 4347 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4348 &recov_state, needrecov); 4349 if (!e.error) 4350 (void) xdr_free(xdr_COMPOUND4res_clnt, 4351 (caddr_t)&res); 4352 goto recov_retry; 4353 } 4354 } 4355 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4356 4357 if (e.error) 4358 goto out; 4359 4360 if (res.status) { 4361 e.error = geterrno4(res.status); 4362 /* 4363 * This might generate over the wire calls throught 4364 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4365 * here to avoid a deadlock. 4366 */ 4367 nfs4_purge_stale_fh(e.error, vp, cr); 4368 goto out; 4369 } 4370 resop = &res.array[1]; /* access res */ 4371 4372 resacc = resop->nfs_resop4_u.opaccess.access; 4373 4374 if (do_getattr) { 4375 resop++; /* getattr res */ 4376 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4377 t, cr, FALSE, NULL); 4378 } 4379 4380 if (!e.error) { 4381 nfs4_access_cache(rp, argacc, resacc, cred); 4382 /* 4383 * we just cached results with cred; if cred is the 4384 * adjusted credentials from crnetadjust, we do not want 4385 * to release them before exiting: hence setting ncrfree 4386 * to NULL 4387 */ 4388 if (cred != cr) 4389 ncrfree = NULL; 4390 /* XXX check the supported bits too? */ 4391 if ((acc & resacc) != acc) { 4392 /* 4393 * The following code implements the semantic 4394 * that a setuid root program has *at least* the 4395 * permissions of the user that is running the 4396 * program. See rfs3call() for more portions 4397 * of the implementation of this functionality. 4398 */ 4399 /* XXX-LP */ 4400 if (ncr != NULL) { 4401 (void) xdr_free(xdr_COMPOUND4res_clnt, 4402 (caddr_t)&res); 4403 cred = ncr; 4404 ncr = NULL; 4405 goto tryagain; 4406 } 4407 e.error = EACCES; 4408 } 4409 } 4410 4411 out: 4412 if (!rpc_error) 4413 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4414 4415 if (ncrfree != NULL) 4416 crfree(ncrfree); 4417 4418 return (e.error); 4419 } 4420 4421 /* ARGSUSED */ 4422 static int 4423 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4424 { 4425 COMPOUND4args_clnt args; 4426 COMPOUND4res_clnt res; 4427 int doqueue; 4428 rnode4_t *rp; 4429 nfs_argop4 argop[3]; 4430 nfs_resop4 *resop; 4431 READLINK4res *lr_res; 4432 nfs4_ga_res_t *garp; 4433 uint_t len; 4434 char *linkdata; 4435 bool_t needrecov = FALSE; 4436 nfs4_recov_state_t recov_state; 4437 hrtime_t t; 4438 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4439 4440 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4441 return (EIO); 4442 /* 4443 * Can't readlink anything other than a symbolic link. 4444 */ 4445 if (vp->v_type != VLNK) 4446 return (EINVAL); 4447 4448 rp = VTOR4(vp); 4449 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4450 e.error = nfs4_validate_caches(vp, cr); 4451 if (e.error) 4452 return (e.error); 4453 mutex_enter(&rp->r_statelock); 4454 if (rp->r_symlink.contents != NULL) { 4455 e.error = uiomove(rp->r_symlink.contents, 4456 rp->r_symlink.len, UIO_READ, uiop); 4457 mutex_exit(&rp->r_statelock); 4458 return (e.error); 4459 } 4460 mutex_exit(&rp->r_statelock); 4461 } 4462 recov_state.rs_flags = 0; 4463 recov_state.rs_num_retry_despite_err = 0; 4464 4465 recov_retry: 4466 args.array_len = 3; 4467 args.array = argop; 4468 args.ctag = TAG_READLINK; 4469 4470 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4471 if (e.error) { 4472 return (e.error); 4473 } 4474 4475 /* 0. putfh symlink fh */ 4476 argop[0].argop = OP_CPUTFH; 4477 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4478 4479 /* 1. readlink */ 4480 argop[1].argop = OP_READLINK; 4481 4482 /* 2. getattr */ 4483 argop[2].argop = OP_GETATTR; 4484 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4485 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4486 4487 doqueue = 1; 4488 4489 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4490 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4491 rnode4info(VTOR4(vp)))); 4492 4493 t = gethrtime(); 4494 4495 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4496 4497 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4498 if (needrecov) { 4499 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4500 "nfs4_readlink: initiating recovery\n")); 4501 4502 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4503 NULL, OP_READLINK, NULL) == FALSE) { 4504 if (!e.error) 4505 (void) xdr_free(xdr_COMPOUND4res_clnt, 4506 (caddr_t)&res); 4507 4508 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4509 needrecov); 4510 goto recov_retry; 4511 } 4512 } 4513 4514 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4515 4516 if (e.error) 4517 return (e.error); 4518 4519 /* 4520 * There is an path in the code below which calls 4521 * nfs4_purge_stale_fh(), which may generate otw calls through 4522 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4523 * here to avoid nfs4_start_op() deadlock. 4524 */ 4525 4526 if (res.status && (res.array_len < args.array_len)) { 4527 /* 4528 * either Putfh or Link failed 4529 */ 4530 e.error = geterrno4(res.status); 4531 nfs4_purge_stale_fh(e.error, vp, cr); 4532 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4533 return (e.error); 4534 } 4535 4536 resop = &res.array[1]; /* readlink res */ 4537 lr_res = &resop->nfs_resop4_u.opreadlink; 4538 4539 /* 4540 * treat symlink names as data 4541 */ 4542 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4543 if (linkdata != NULL) { 4544 int uio_len = len - 1; 4545 /* len includes null byte, which we won't uiomove */ 4546 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4547 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4548 mutex_enter(&rp->r_statelock); 4549 if (rp->r_symlink.contents == NULL) { 4550 rp->r_symlink.contents = linkdata; 4551 rp->r_symlink.len = uio_len; 4552 rp->r_symlink.size = len; 4553 mutex_exit(&rp->r_statelock); 4554 } else { 4555 mutex_exit(&rp->r_statelock); 4556 kmem_free(linkdata, len); 4557 } 4558 } else { 4559 kmem_free(linkdata, len); 4560 } 4561 } 4562 if (res.status == NFS4_OK) { 4563 resop++; /* getattr res */ 4564 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4565 } 4566 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4567 4568 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4569 4570 /* 4571 * The over the wire error for attempting to readlink something 4572 * other than a symbolic link is ENXIO. However, we need to 4573 * return EINVAL instead of ENXIO, so we map it here. 4574 */ 4575 return (e.error == ENXIO ? EINVAL : e.error); 4576 } 4577 4578 /* 4579 * Flush local dirty pages to stable storage on the server. 4580 * 4581 * If FNODSYNC is specified, then there is nothing to do because 4582 * metadata changes are not cached on the client before being 4583 * sent to the server. 4584 */ 4585 /* ARGSUSED */ 4586 static int 4587 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4588 { 4589 int error; 4590 4591 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4592 return (0); 4593 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4594 return (EIO); 4595 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4596 if (!error) 4597 error = VTOR4(vp)->r_error; 4598 return (error); 4599 } 4600 4601 /* 4602 * Weirdness: if the file was removed or the target of a rename 4603 * operation while it was open, it got renamed instead. Here we 4604 * remove the renamed file. 4605 */ 4606 /* ARGSUSED */ 4607 void 4608 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4609 { 4610 rnode4_t *rp; 4611 4612 ASSERT(vp != DNLC_NO_VNODE); 4613 4614 rp = VTOR4(vp); 4615 4616 if (IS_SHADOW(vp, rp)) { 4617 sv_inactive(vp); 4618 return; 4619 } 4620 4621 /* 4622 * If this is coming from the wrong zone, we let someone in the right 4623 * zone take care of it asynchronously. We can get here due to 4624 * VN_RELE() being called from pageout() or fsflush(). This call may 4625 * potentially turn into an expensive no-op if, for instance, v_count 4626 * gets incremented in the meantime, but it's still correct. 4627 */ 4628 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4629 nfs4_async_inactive(vp, cr); 4630 return; 4631 } 4632 4633 /* 4634 * Some of the cleanup steps might require over-the-wire 4635 * operations. Since VOP_INACTIVE can get called as a result of 4636 * other over-the-wire operations (e.g., an attribute cache update 4637 * can lead to a DNLC purge), doing those steps now would lead to a 4638 * nested call to the recovery framework, which can deadlock. So 4639 * do any over-the-wire cleanups asynchronously, in a separate 4640 * thread. 4641 */ 4642 4643 mutex_enter(&rp->r_os_lock); 4644 mutex_enter(&rp->r_statelock); 4645 mutex_enter(&rp->r_statev4_lock); 4646 4647 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4648 mutex_exit(&rp->r_statev4_lock); 4649 mutex_exit(&rp->r_statelock); 4650 mutex_exit(&rp->r_os_lock); 4651 nfs4_async_inactive(vp, cr); 4652 return; 4653 } 4654 4655 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4656 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4657 mutex_exit(&rp->r_statev4_lock); 4658 mutex_exit(&rp->r_statelock); 4659 mutex_exit(&rp->r_os_lock); 4660 nfs4_async_inactive(vp, cr); 4661 return; 4662 } 4663 4664 if (rp->r_unldvp != NULL) { 4665 mutex_exit(&rp->r_statev4_lock); 4666 mutex_exit(&rp->r_statelock); 4667 mutex_exit(&rp->r_os_lock); 4668 nfs4_async_inactive(vp, cr); 4669 return; 4670 } 4671 mutex_exit(&rp->r_statev4_lock); 4672 mutex_exit(&rp->r_statelock); 4673 mutex_exit(&rp->r_os_lock); 4674 4675 rp4_addfree(rp, cr); 4676 } 4677 4678 /* 4679 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4680 * various bits of state. The caller must not refer to vp after this call. 4681 */ 4682 4683 void 4684 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4685 { 4686 rnode4_t *rp = VTOR4(vp); 4687 nfs4_recov_state_t recov_state; 4688 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4689 vnode_t *unldvp; 4690 char *unlname; 4691 cred_t *unlcred; 4692 COMPOUND4args_clnt args; 4693 COMPOUND4res_clnt res, *resp; 4694 nfs_argop4 argop[2]; 4695 int doqueue; 4696 #ifdef DEBUG 4697 char *name; 4698 #endif 4699 4700 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4701 ASSERT(!IS_SHADOW(vp, rp)); 4702 4703 #ifdef DEBUG 4704 name = fn_name(VTOSV(vp)->sv_name); 4705 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4706 "release vnode %s", name)); 4707 kmem_free(name, MAXNAMELEN); 4708 #endif 4709 4710 if (vp->v_type == VREG) { 4711 bool_t recov_failed = FALSE; 4712 4713 e.error = nfs4close_all(vp, cr); 4714 if (e.error) { 4715 /* Check to see if recovery failed */ 4716 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4717 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4718 recov_failed = TRUE; 4719 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4720 if (!recov_failed) { 4721 mutex_enter(&rp->r_statelock); 4722 if (rp->r_flags & R4RECOVERR) 4723 recov_failed = TRUE; 4724 mutex_exit(&rp->r_statelock); 4725 } 4726 if (recov_failed) { 4727 NFS4_DEBUG(nfs4_client_recov_debug, 4728 (CE_NOTE, "nfs4_inactive_otw: " 4729 "close failed (recovery failure)")); 4730 } 4731 } 4732 } 4733 4734 redo: 4735 if (rp->r_unldvp == NULL) { 4736 rp4_addfree(rp, cr); 4737 return; 4738 } 4739 4740 /* 4741 * Save the vnode pointer for the directory where the 4742 * unlinked-open file got renamed, then set it to NULL 4743 * to prevent another thread from getting here before 4744 * we're done with the remove. While we have the 4745 * statelock, make local copies of the pertinent rnode 4746 * fields. If we weren't to do this in an atomic way, the 4747 * the unl* fields could become inconsistent with respect 4748 * to each other due to a race condition between this 4749 * code and nfs_remove(). See bug report 1034328. 4750 */ 4751 mutex_enter(&rp->r_statelock); 4752 if (rp->r_unldvp == NULL) { 4753 mutex_exit(&rp->r_statelock); 4754 rp4_addfree(rp, cr); 4755 return; 4756 } 4757 4758 unldvp = rp->r_unldvp; 4759 rp->r_unldvp = NULL; 4760 unlname = rp->r_unlname; 4761 rp->r_unlname = NULL; 4762 unlcred = rp->r_unlcred; 4763 rp->r_unlcred = NULL; 4764 mutex_exit(&rp->r_statelock); 4765 4766 /* 4767 * If there are any dirty pages left, then flush 4768 * them. This is unfortunate because they just 4769 * may get thrown away during the remove operation, 4770 * but we have to do this for correctness. 4771 */ 4772 if (nfs4_has_pages(vp) && 4773 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4774 ASSERT(vp->v_type != VCHR); 4775 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4776 if (e.error) { 4777 mutex_enter(&rp->r_statelock); 4778 if (!rp->r_error) 4779 rp->r_error = e.error; 4780 mutex_exit(&rp->r_statelock); 4781 } 4782 } 4783 4784 recov_state.rs_flags = 0; 4785 recov_state.rs_num_retry_despite_err = 0; 4786 recov_retry_remove: 4787 /* 4788 * Do the remove operation on the renamed file 4789 */ 4790 args.ctag = TAG_INACTIVE; 4791 4792 /* 4793 * Remove ops: putfh dir; remove 4794 */ 4795 args.array_len = 2; 4796 args.array = argop; 4797 4798 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4799 if (e.error) { 4800 kmem_free(unlname, MAXNAMELEN); 4801 crfree(unlcred); 4802 VN_RELE(unldvp); 4803 /* 4804 * Try again; this time around r_unldvp will be NULL, so we'll 4805 * just call rp4_addfree() and return. 4806 */ 4807 goto redo; 4808 } 4809 4810 /* putfh directory */ 4811 argop[0].argop = OP_CPUTFH; 4812 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4813 4814 /* remove */ 4815 argop[1].argop = OP_CREMOVE; 4816 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4817 4818 doqueue = 1; 4819 resp = &res; 4820 4821 #if 0 /* notyet */ 4822 /* 4823 * Can't do this yet. We may be being called from 4824 * dnlc_purge_XXX while that routine is holding a 4825 * mutex lock to the nc_rele list. The calls to 4826 * nfs3_cache_wcc_data may result in calls to 4827 * dnlc_purge_XXX. This will result in a deadlock. 4828 */ 4829 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4830 if (e.error) { 4831 PURGE_ATTRCACHE4(unldvp); 4832 resp = NULL; 4833 } else if (res.status) { 4834 e.error = geterrno4(res.status); 4835 PURGE_ATTRCACHE4(unldvp); 4836 /* 4837 * This code is inactive right now 4838 * but if made active there should 4839 * be a nfs4_end_op() call before 4840 * nfs4_purge_stale_fh to avoid start_op() 4841 * deadlock. See BugId: 4948726 4842 */ 4843 nfs4_purge_stale_fh(error, unldvp, cr); 4844 } else { 4845 nfs_resop4 *resop; 4846 REMOVE4res *rm_res; 4847 4848 resop = &res.array[1]; 4849 rm_res = &resop->nfs_resop4_u.opremove; 4850 /* 4851 * Update directory cache attribute, 4852 * readdir and dnlc caches. 4853 */ 4854 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4855 } 4856 #else 4857 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4858 4859 PURGE_ATTRCACHE4(unldvp); 4860 #endif 4861 4862 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4863 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4864 NULL, NULL, OP_REMOVE, NULL) == FALSE) { 4865 if (!e.error) 4866 (void) xdr_free(xdr_COMPOUND4res_clnt, 4867 (caddr_t)&res); 4868 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4869 &recov_state, TRUE); 4870 goto recov_retry_remove; 4871 } 4872 } 4873 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4874 4875 /* 4876 * Release stuff held for the remove 4877 */ 4878 VN_RELE(unldvp); 4879 if (!e.error && resp) 4880 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4881 4882 kmem_free(unlname, MAXNAMELEN); 4883 crfree(unlcred); 4884 goto redo; 4885 } 4886 4887 /* 4888 * Remote file system operations having to do with directory manipulation. 4889 */ 4890 /* ARGSUSED3 */ 4891 int 4892 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4893 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4894 int *direntflags, pathname_t *realpnp) 4895 { 4896 int error; 4897 vnode_t *vp, *avp = NULL; 4898 rnode4_t *drp; 4899 4900 *vpp = NULL; 4901 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4902 return (EPERM); 4903 /* 4904 * if LOOKUP_XATTR, must replace dvp (object) with 4905 * object's attrdir before continuing with lookup 4906 */ 4907 if (flags & LOOKUP_XATTR) { 4908 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4909 if (error) 4910 return (error); 4911 4912 dvp = avp; 4913 4914 /* 4915 * If lookup is for "", just return dvp now. The attrdir 4916 * has already been activated (from nfs4lookup_xattr), and 4917 * the caller will RELE the original dvp -- not 4918 * the attrdir. So, set vpp and return. 4919 * Currently, when the LOOKUP_XATTR flag is 4920 * passed to VOP_LOOKUP, the name is always empty, and 4921 * shortcircuiting here avoids 3 unneeded lock/unlock 4922 * pairs. 4923 * 4924 * If a non-empty name was provided, then it is the 4925 * attribute name, and it will be looked up below. 4926 */ 4927 if (*nm == '\0') { 4928 *vpp = dvp; 4929 return (0); 4930 } 4931 4932 /* 4933 * The vfs layer never sends a name when asking for the 4934 * attrdir, so we should never get here (unless of course 4935 * name is passed at some time in future -- at which time 4936 * we'll blow up here). 4937 */ 4938 ASSERT(0); 4939 } 4940 4941 drp = VTOR4(dvp); 4942 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4943 return (EINTR); 4944 4945 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4946 nfs_rw_exit(&drp->r_rwlock); 4947 4948 /* 4949 * If vnode is a device, create special vnode. 4950 */ 4951 if (!error && ISVDEV((*vpp)->v_type)) { 4952 vp = *vpp; 4953 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 4954 VN_RELE(vp); 4955 } 4956 4957 return (error); 4958 } 4959 4960 /* ARGSUSED */ 4961 static int 4962 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 4963 { 4964 int error; 4965 rnode4_t *drp; 4966 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 4967 mntinfo4_t *mi; 4968 4969 mi = VTOMI4(dvp); 4970 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 4971 !vfs_has_feature(mi->mi_vfsp, VFSFT_XVATTR)) 4972 return (EINVAL); 4973 4974 drp = VTOR4(dvp); 4975 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4976 return (EINTR); 4977 4978 mutex_enter(&drp->r_statelock); 4979 /* 4980 * If the server doesn't support xattrs just return EINVAL 4981 */ 4982 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 4983 mutex_exit(&drp->r_statelock); 4984 nfs_rw_exit(&drp->r_rwlock); 4985 return (EINVAL); 4986 } 4987 4988 /* 4989 * If there is a cached xattr directory entry, 4990 * use it as long as the attributes are valid. If the 4991 * attributes are not valid, take the simple approach and 4992 * free the cached value and re-fetch a new value. 4993 * 4994 * We don't negative entry cache for now, if we did we 4995 * would need to check if the file has changed on every 4996 * lookup. But xattrs don't exist very often and failing 4997 * an openattr is not much more expensive than and NVERIFY or GETATTR 4998 * so do an openattr over the wire for now. 4999 */ 5000 if (drp->r_xattr_dir != NULL) { 5001 if (ATTRCACHE4_VALID(dvp)) { 5002 VN_HOLD(drp->r_xattr_dir); 5003 *vpp = drp->r_xattr_dir; 5004 mutex_exit(&drp->r_statelock); 5005 nfs_rw_exit(&drp->r_rwlock); 5006 return (0); 5007 } 5008 VN_RELE(drp->r_xattr_dir); 5009 drp->r_xattr_dir = NULL; 5010 } 5011 mutex_exit(&drp->r_statelock); 5012 5013 error = nfs4openattr(dvp, vpp, cflag, cr); 5014 5015 nfs_rw_exit(&drp->r_rwlock); 5016 5017 return (error); 5018 } 5019 5020 static int 5021 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5022 { 5023 int error; 5024 rnode4_t *drp; 5025 5026 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5027 5028 /* 5029 * If lookup is for "", just return dvp. Don't need 5030 * to send it over the wire, look it up in the dnlc, 5031 * or perform any access checks. 5032 */ 5033 if (*nm == '\0') { 5034 VN_HOLD(dvp); 5035 *vpp = dvp; 5036 return (0); 5037 } 5038 5039 /* 5040 * Can't do lookups in non-directories. 5041 */ 5042 if (dvp->v_type != VDIR) 5043 return (ENOTDIR); 5044 5045 /* 5046 * If lookup is for ".", just return dvp. Don't need 5047 * to send it over the wire or look it up in the dnlc, 5048 * just need to check access. 5049 */ 5050 if (nm[0] == '.' && nm[1] == '\0') { 5051 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5052 if (error) 5053 return (error); 5054 VN_HOLD(dvp); 5055 *vpp = dvp; 5056 return (0); 5057 } 5058 5059 drp = VTOR4(dvp); 5060 if (!(drp->r_flags & R4LOOKUP)) { 5061 mutex_enter(&drp->r_statelock); 5062 drp->r_flags |= R4LOOKUP; 5063 mutex_exit(&drp->r_statelock); 5064 } 5065 5066 *vpp = NULL; 5067 /* 5068 * Lookup this name in the DNLC. If there is no entry 5069 * lookup over the wire. 5070 */ 5071 if (!skipdnlc) 5072 *vpp = dnlc_lookup(dvp, nm); 5073 if (*vpp == NULL) { 5074 /* 5075 * We need to go over the wire to lookup the name. 5076 */ 5077 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5078 } 5079 5080 /* 5081 * We hit on the dnlc 5082 */ 5083 if (*vpp != DNLC_NO_VNODE || 5084 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5085 /* 5086 * But our attrs may not be valid. 5087 */ 5088 if (ATTRCACHE4_VALID(dvp)) { 5089 error = nfs4_waitfor_purge_complete(dvp); 5090 if (error) { 5091 VN_RELE(*vpp); 5092 *vpp = NULL; 5093 return (error); 5094 } 5095 5096 /* 5097 * If after the purge completes, check to make sure 5098 * our attrs are still valid. 5099 */ 5100 if (ATTRCACHE4_VALID(dvp)) { 5101 /* 5102 * If we waited for a purge we may have 5103 * lost our vnode so look it up again. 5104 */ 5105 VN_RELE(*vpp); 5106 *vpp = dnlc_lookup(dvp, nm); 5107 if (*vpp == NULL) 5108 return (nfs4lookupnew_otw(dvp, 5109 nm, vpp, cr)); 5110 5111 /* 5112 * The access cache should almost always hit 5113 */ 5114 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5115 5116 if (error) { 5117 VN_RELE(*vpp); 5118 *vpp = NULL; 5119 return (error); 5120 } 5121 if (*vpp == DNLC_NO_VNODE) { 5122 VN_RELE(*vpp); 5123 *vpp = NULL; 5124 return (ENOENT); 5125 } 5126 return (0); 5127 } 5128 } 5129 } 5130 5131 ASSERT(*vpp != NULL); 5132 5133 /* 5134 * We may have gotten here we have one of the following cases: 5135 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5136 * need to validate them. 5137 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5138 * must validate. 5139 * 5140 * Go to the server and check if the directory has changed, if 5141 * it hasn't we are done and can use the dnlc entry. 5142 */ 5143 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5144 } 5145 5146 /* 5147 * Go to the server and check if the directory has changed, if 5148 * it hasn't we are done and can use the dnlc entry. If it 5149 * has changed we get a new copy of its attributes and check 5150 * the access for VEXEC, then relookup the filename and 5151 * get its filehandle and attributes. 5152 * 5153 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5154 * if the NVERIFY failed we must 5155 * purge the caches 5156 * cache new attributes (will set r_time_attr_inval) 5157 * cache new access 5158 * recheck VEXEC access 5159 * add name to dnlc, possibly negative 5160 * if LOOKUP succeeded 5161 * cache new attributes 5162 * else 5163 * set a new r_time_attr_inval for dvp 5164 * check to make sure we have access 5165 * 5166 * The vpp returned is the vnode passed in if the directory is valid, 5167 * a new vnode if successful lookup, or NULL on error. 5168 */ 5169 static int 5170 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5171 { 5172 COMPOUND4args_clnt args; 5173 COMPOUND4res_clnt res; 5174 fattr4 *ver_fattr; 5175 fattr4_change dchange; 5176 int32_t *ptr; 5177 int argoplist_size = 7 * sizeof (nfs_argop4); 5178 nfs_argop4 *argop; 5179 int doqueue; 5180 mntinfo4_t *mi; 5181 nfs4_recov_state_t recov_state; 5182 hrtime_t t; 5183 int isdotdot; 5184 vnode_t *nvp; 5185 nfs_fh4 *fhp; 5186 nfs4_sharedfh_t *sfhp; 5187 nfs4_access_type_t cacc; 5188 rnode4_t *nrp; 5189 rnode4_t *drp = VTOR4(dvp); 5190 nfs4_ga_res_t *garp = NULL; 5191 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5192 5193 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5194 ASSERT(nm != NULL); 5195 ASSERT(nm[0] != '\0'); 5196 ASSERT(dvp->v_type == VDIR); 5197 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5198 ASSERT(*vpp != NULL); 5199 5200 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5201 isdotdot = 1; 5202 args.ctag = TAG_LOOKUP_VPARENT; 5203 } else { 5204 /* 5205 * If dvp were a stub, it should have triggered and caused 5206 * a mount for us to get this far. 5207 */ 5208 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5209 5210 isdotdot = 0; 5211 args.ctag = TAG_LOOKUP_VALID; 5212 } 5213 5214 mi = VTOMI4(dvp); 5215 recov_state.rs_flags = 0; 5216 recov_state.rs_num_retry_despite_err = 0; 5217 5218 nvp = NULL; 5219 5220 /* Save the original mount point security information */ 5221 (void) save_mnt_secinfo(mi->mi_curr_serv); 5222 5223 recov_retry: 5224 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5225 &recov_state, NULL); 5226 if (e.error) { 5227 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5228 VN_RELE(*vpp); 5229 *vpp = NULL; 5230 return (e.error); 5231 } 5232 5233 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5234 5235 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5236 args.array_len = 7; 5237 args.array = argop; 5238 5239 /* 0. putfh file */ 5240 argop[0].argop = OP_CPUTFH; 5241 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5242 5243 /* 1. nverify the change info */ 5244 argop[1].argop = OP_NVERIFY; 5245 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5246 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5247 ver_fattr->attrlist4 = (char *)&dchange; 5248 ptr = (int32_t *)&dchange; 5249 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5250 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5251 5252 /* 2. getattr directory */ 5253 argop[2].argop = OP_GETATTR; 5254 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5255 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5256 5257 /* 3. access directory */ 5258 argop[3].argop = OP_ACCESS; 5259 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5260 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5261 5262 /* 4. lookup name */ 5263 if (isdotdot) { 5264 argop[4].argop = OP_LOOKUPP; 5265 } else { 5266 argop[4].argop = OP_CLOOKUP; 5267 argop[4].nfs_argop4_u.opclookup.cname = nm; 5268 } 5269 5270 /* 5. resulting file handle */ 5271 argop[5].argop = OP_GETFH; 5272 5273 /* 6. resulting file attributes */ 5274 argop[6].argop = OP_GETATTR; 5275 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5276 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5277 5278 doqueue = 1; 5279 t = gethrtime(); 5280 5281 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5282 5283 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5284 /* 5285 * For WRONGSEC of a non-dotdot case, send secinfo directly 5286 * from this thread, do not go thru the recovery thread since 5287 * we need the nm information. 5288 * 5289 * Not doing dotdot case because there is no specification 5290 * for (PUTFH, SECINFO "..") yet. 5291 */ 5292 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5293 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5294 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5295 &recov_state, FALSE); 5296 else 5297 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5298 &recov_state, TRUE); 5299 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5300 kmem_free(argop, argoplist_size); 5301 if (!e.error) 5302 goto recov_retry; 5303 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5304 VN_RELE(*vpp); 5305 *vpp = NULL; 5306 return (e.error); 5307 } 5308 5309 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5310 OP_LOOKUP, NULL) == FALSE) { 5311 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5312 &recov_state, TRUE); 5313 5314 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5315 kmem_free(argop, argoplist_size); 5316 goto recov_retry; 5317 } 5318 } 5319 5320 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5321 5322 if (e.error || res.array_len == 0) { 5323 /* 5324 * If e.error isn't set, then reply has no ops (or we couldn't 5325 * be here). The only legal way to reply without an op array 5326 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5327 * be in the reply for all other status values. 5328 * 5329 * For valid replies without an ops array, return ENOTSUP 5330 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5331 * return EIO -- don't trust status. 5332 */ 5333 if (e.error == 0) 5334 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5335 ENOTSUP : EIO; 5336 VN_RELE(*vpp); 5337 *vpp = NULL; 5338 kmem_free(argop, argoplist_size); 5339 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5340 return (e.error); 5341 } 5342 5343 if (res.status != NFS4ERR_SAME) { 5344 e.error = geterrno4(res.status); 5345 5346 /* 5347 * The NVERIFY "failed" so the directory has changed 5348 * First make sure PUTFH succeeded and NVERIFY "failed" 5349 * cleanly. 5350 */ 5351 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5352 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5353 nfs4_purge_stale_fh(e.error, dvp, cr); 5354 VN_RELE(*vpp); 5355 *vpp = NULL; 5356 goto exit; 5357 } 5358 5359 /* 5360 * We know the NVERIFY "failed" so we must: 5361 * purge the caches (access and indirectly dnlc if needed) 5362 */ 5363 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5364 5365 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5366 nfs4_purge_stale_fh(e.error, dvp, cr); 5367 VN_RELE(*vpp); 5368 *vpp = NULL; 5369 goto exit; 5370 } 5371 5372 /* 5373 * Install new cached attributes for the directory 5374 */ 5375 nfs4_attr_cache(dvp, 5376 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5377 t, cr, FALSE, NULL); 5378 5379 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5380 nfs4_purge_stale_fh(e.error, dvp, cr); 5381 VN_RELE(*vpp); 5382 *vpp = NULL; 5383 e.error = geterrno4(res.status); 5384 goto exit; 5385 } 5386 5387 /* 5388 * Now we know the directory is valid, 5389 * cache new directory access 5390 */ 5391 nfs4_access_cache(drp, 5392 args.array[3].nfs_argop4_u.opaccess.access, 5393 res.array[3].nfs_resop4_u.opaccess.access, cr); 5394 5395 /* 5396 * recheck VEXEC access 5397 */ 5398 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5399 if (cacc != NFS4_ACCESS_ALLOWED) { 5400 /* 5401 * Directory permissions might have been revoked 5402 */ 5403 if (cacc == NFS4_ACCESS_DENIED) { 5404 e.error = EACCES; 5405 VN_RELE(*vpp); 5406 *vpp = NULL; 5407 goto exit; 5408 } 5409 5410 /* 5411 * Somehow we must not have asked for enough 5412 * so try a singleton ACCESS, should never happen. 5413 */ 5414 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5415 if (e.error) { 5416 VN_RELE(*vpp); 5417 *vpp = NULL; 5418 goto exit; 5419 } 5420 } 5421 5422 e.error = geterrno4(res.status); 5423 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5424 /* 5425 * The lookup failed, probably no entry 5426 */ 5427 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5428 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5429 } else { 5430 /* 5431 * Might be some other error, so remove 5432 * the dnlc entry to make sure we start all 5433 * over again, next time. 5434 */ 5435 dnlc_remove(dvp, nm); 5436 } 5437 VN_RELE(*vpp); 5438 *vpp = NULL; 5439 goto exit; 5440 } 5441 5442 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5443 /* 5444 * The file exists but we can't get its fh for 5445 * some unknown reason. Remove it from the dnlc 5446 * and error out to be safe. 5447 */ 5448 dnlc_remove(dvp, nm); 5449 VN_RELE(*vpp); 5450 *vpp = NULL; 5451 goto exit; 5452 } 5453 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5454 if (fhp->nfs_fh4_len == 0) { 5455 /* 5456 * The file exists but a bogus fh 5457 * some unknown reason. Remove it from the dnlc 5458 * and error out to be safe. 5459 */ 5460 e.error = ENOENT; 5461 dnlc_remove(dvp, nm); 5462 VN_RELE(*vpp); 5463 *vpp = NULL; 5464 goto exit; 5465 } 5466 sfhp = sfh4_get(fhp, mi); 5467 5468 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5469 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5470 5471 /* 5472 * Make the new rnode 5473 */ 5474 if (isdotdot) { 5475 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5476 if (e.error) { 5477 sfh4_rele(&sfhp); 5478 VN_RELE(*vpp); 5479 *vpp = NULL; 5480 goto exit; 5481 } 5482 /* 5483 * XXX if nfs4_make_dotdot uses an existing rnode 5484 * XXX it doesn't update the attributes. 5485 * XXX for now just save them again to save an OTW 5486 */ 5487 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5488 } else { 5489 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5490 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5491 /* 5492 * If v_type == VNON, then garp was NULL because 5493 * the last op in the compound failed and makenfs4node 5494 * could not find the vnode for sfhp. It created 5495 * a new vnode, so we have nothing to purge here. 5496 */ 5497 if (nvp->v_type == VNON) { 5498 vattr_t vattr; 5499 5500 vattr.va_mask = AT_TYPE; 5501 /* 5502 * N.B. We've already called nfs4_end_fop above. 5503 */ 5504 e.error = nfs4getattr(nvp, &vattr, cr); 5505 if (e.error) { 5506 sfh4_rele(&sfhp); 5507 VN_RELE(*vpp); 5508 *vpp = NULL; 5509 VN_RELE(nvp); 5510 goto exit; 5511 } 5512 nvp->v_type = vattr.va_type; 5513 } 5514 } 5515 sfh4_rele(&sfhp); 5516 5517 nrp = VTOR4(nvp); 5518 mutex_enter(&nrp->r_statev4_lock); 5519 if (!nrp->created_v4) { 5520 mutex_exit(&nrp->r_statev4_lock); 5521 dnlc_update(dvp, nm, nvp); 5522 } else 5523 mutex_exit(&nrp->r_statev4_lock); 5524 5525 VN_RELE(*vpp); 5526 *vpp = nvp; 5527 } else { 5528 hrtime_t now; 5529 hrtime_t delta = 0; 5530 5531 e.error = 0; 5532 5533 /* 5534 * Because the NVERIFY "succeeded" we know that the 5535 * directory attributes are still valid 5536 * so update r_time_attr_inval 5537 */ 5538 now = gethrtime(); 5539 mutex_enter(&drp->r_statelock); 5540 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5541 delta = now - drp->r_time_attr_saved; 5542 if (delta < mi->mi_acdirmin) 5543 delta = mi->mi_acdirmin; 5544 else if (delta > mi->mi_acdirmax) 5545 delta = mi->mi_acdirmax; 5546 } 5547 drp->r_time_attr_inval = now + delta; 5548 mutex_exit(&drp->r_statelock); 5549 dnlc_update(dvp, nm, *vpp); 5550 5551 /* 5552 * Even though we have a valid directory attr cache 5553 * and dnlc entry, we may not have access. 5554 * This should almost always hit the cache. 5555 */ 5556 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5557 if (e.error) { 5558 VN_RELE(*vpp); 5559 *vpp = NULL; 5560 } 5561 5562 if (*vpp == DNLC_NO_VNODE) { 5563 VN_RELE(*vpp); 5564 *vpp = NULL; 5565 e.error = ENOENT; 5566 } 5567 } 5568 5569 exit: 5570 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5571 kmem_free(argop, argoplist_size); 5572 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5573 return (e.error); 5574 } 5575 5576 /* 5577 * We need to go over the wire to lookup the name, but 5578 * while we are there verify the directory has not 5579 * changed but if it has, get new attributes and check access 5580 * 5581 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5582 * NVERIFY GETATTR ACCESS 5583 * 5584 * With the results: 5585 * if the NVERIFY failed we must purge the caches, add new attributes, 5586 * and cache new access. 5587 * set a new r_time_attr_inval 5588 * add name to dnlc, possibly negative 5589 * if LOOKUP succeeded 5590 * cache new attributes 5591 */ 5592 static int 5593 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5594 { 5595 COMPOUND4args_clnt args; 5596 COMPOUND4res_clnt res; 5597 fattr4 *ver_fattr; 5598 fattr4_change dchange; 5599 int32_t *ptr; 5600 nfs4_ga_res_t *garp = NULL; 5601 int argoplist_size = 9 * sizeof (nfs_argop4); 5602 nfs_argop4 *argop; 5603 int doqueue; 5604 mntinfo4_t *mi; 5605 nfs4_recov_state_t recov_state; 5606 hrtime_t t; 5607 int isdotdot; 5608 vnode_t *nvp; 5609 nfs_fh4 *fhp; 5610 nfs4_sharedfh_t *sfhp; 5611 nfs4_access_type_t cacc; 5612 rnode4_t *nrp; 5613 rnode4_t *drp = VTOR4(dvp); 5614 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5615 5616 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5617 ASSERT(nm != NULL); 5618 ASSERT(nm[0] != '\0'); 5619 ASSERT(dvp->v_type == VDIR); 5620 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5621 ASSERT(*vpp == NULL); 5622 5623 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5624 isdotdot = 1; 5625 args.ctag = TAG_LOOKUP_PARENT; 5626 } else { 5627 /* 5628 * If dvp were a stub, it should have triggered and caused 5629 * a mount for us to get this far. 5630 */ 5631 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5632 5633 isdotdot = 0; 5634 args.ctag = TAG_LOOKUP; 5635 } 5636 5637 mi = VTOMI4(dvp); 5638 recov_state.rs_flags = 0; 5639 recov_state.rs_num_retry_despite_err = 0; 5640 5641 nvp = NULL; 5642 5643 /* Save the original mount point security information */ 5644 (void) save_mnt_secinfo(mi->mi_curr_serv); 5645 5646 recov_retry: 5647 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5648 &recov_state, NULL); 5649 if (e.error) { 5650 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5651 return (e.error); 5652 } 5653 5654 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5655 5656 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5657 args.array_len = 9; 5658 args.array = argop; 5659 5660 /* 0. putfh file */ 5661 argop[0].argop = OP_CPUTFH; 5662 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5663 5664 /* 1. savefh for the nverify */ 5665 argop[1].argop = OP_SAVEFH; 5666 5667 /* 2. lookup name */ 5668 if (isdotdot) { 5669 argop[2].argop = OP_LOOKUPP; 5670 } else { 5671 argop[2].argop = OP_CLOOKUP; 5672 argop[2].nfs_argop4_u.opclookup.cname = nm; 5673 } 5674 5675 /* 3. resulting file handle */ 5676 argop[3].argop = OP_GETFH; 5677 5678 /* 4. resulting file attributes */ 5679 argop[4].argop = OP_GETATTR; 5680 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5681 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5682 5683 /* 5. restorefh back the directory for the nverify */ 5684 argop[5].argop = OP_RESTOREFH; 5685 5686 /* 6. nverify the change info */ 5687 argop[6].argop = OP_NVERIFY; 5688 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5689 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5690 ver_fattr->attrlist4 = (char *)&dchange; 5691 ptr = (int32_t *)&dchange; 5692 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5693 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5694 5695 /* 7. getattr directory */ 5696 argop[7].argop = OP_GETATTR; 5697 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5698 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5699 5700 /* 8. access directory */ 5701 argop[8].argop = OP_ACCESS; 5702 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5703 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5704 5705 doqueue = 1; 5706 t = gethrtime(); 5707 5708 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5709 5710 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5711 /* 5712 * For WRONGSEC of a non-dotdot case, send secinfo directly 5713 * from this thread, do not go thru the recovery thread since 5714 * we need the nm information. 5715 * 5716 * Not doing dotdot case because there is no specification 5717 * for (PUTFH, SECINFO "..") yet. 5718 */ 5719 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5720 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5721 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5722 &recov_state, FALSE); 5723 else 5724 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5725 &recov_state, TRUE); 5726 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5727 kmem_free(argop, argoplist_size); 5728 if (!e.error) 5729 goto recov_retry; 5730 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5731 return (e.error); 5732 } 5733 5734 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5735 OP_LOOKUP, NULL) == FALSE) { 5736 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5737 &recov_state, TRUE); 5738 5739 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5740 kmem_free(argop, argoplist_size); 5741 goto recov_retry; 5742 } 5743 } 5744 5745 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5746 5747 if (e.error || res.array_len == 0) { 5748 /* 5749 * If e.error isn't set, then reply has no ops (or we couldn't 5750 * be here). The only legal way to reply without an op array 5751 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5752 * be in the reply for all other status values. 5753 * 5754 * For valid replies without an ops array, return ENOTSUP 5755 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5756 * return EIO -- don't trust status. 5757 */ 5758 if (e.error == 0) 5759 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5760 ENOTSUP : EIO; 5761 5762 kmem_free(argop, argoplist_size); 5763 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5764 return (e.error); 5765 } 5766 5767 e.error = geterrno4(res.status); 5768 5769 /* 5770 * The PUTFH and SAVEFH may have failed. 5771 */ 5772 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5773 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5774 nfs4_purge_stale_fh(e.error, dvp, cr); 5775 goto exit; 5776 } 5777 5778 /* 5779 * Check if the file exists, if it does delay entering 5780 * into the dnlc until after we update the directory 5781 * attributes so we don't cause it to get purged immediately. 5782 */ 5783 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5784 /* 5785 * The lookup failed, probably no entry 5786 */ 5787 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5788 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5789 goto exit; 5790 } 5791 5792 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5793 /* 5794 * The file exists but we can't get its fh for 5795 * some unknown reason. Error out to be safe. 5796 */ 5797 goto exit; 5798 } 5799 5800 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5801 if (fhp->nfs_fh4_len == 0) { 5802 /* 5803 * The file exists but a bogus fh 5804 * some unknown reason. Error out to be safe. 5805 */ 5806 e.error = EIO; 5807 goto exit; 5808 } 5809 sfhp = sfh4_get(fhp, mi); 5810 5811 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5812 sfh4_rele(&sfhp); 5813 goto exit; 5814 } 5815 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5816 5817 /* 5818 * The RESTOREFH may have failed 5819 */ 5820 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5821 sfh4_rele(&sfhp); 5822 e.error = EIO; 5823 goto exit; 5824 } 5825 5826 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5827 /* 5828 * First make sure the NVERIFY failed as we expected, 5829 * if it didn't then be conservative and error out 5830 * as we can't trust the directory. 5831 */ 5832 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5833 sfh4_rele(&sfhp); 5834 e.error = EIO; 5835 goto exit; 5836 } 5837 5838 /* 5839 * We know the NVERIFY "failed" so the directory has changed, 5840 * so we must: 5841 * purge the caches (access and indirectly dnlc if needed) 5842 */ 5843 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5844 5845 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5846 sfh4_rele(&sfhp); 5847 goto exit; 5848 } 5849 nfs4_attr_cache(dvp, 5850 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5851 t, cr, FALSE, NULL); 5852 5853 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5854 nfs4_purge_stale_fh(e.error, dvp, cr); 5855 sfh4_rele(&sfhp); 5856 e.error = geterrno4(res.status); 5857 goto exit; 5858 } 5859 5860 /* 5861 * Now we know the directory is valid, 5862 * cache new directory access 5863 */ 5864 nfs4_access_cache(drp, 5865 args.array[8].nfs_argop4_u.opaccess.access, 5866 res.array[8].nfs_resop4_u.opaccess.access, cr); 5867 5868 /* 5869 * recheck VEXEC access 5870 */ 5871 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5872 if (cacc != NFS4_ACCESS_ALLOWED) { 5873 /* 5874 * Directory permissions might have been revoked 5875 */ 5876 if (cacc == NFS4_ACCESS_DENIED) { 5877 sfh4_rele(&sfhp); 5878 e.error = EACCES; 5879 goto exit; 5880 } 5881 5882 /* 5883 * Somehow we must not have asked for enough 5884 * so try a singleton ACCESS should never happen 5885 */ 5886 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5887 if (e.error) { 5888 sfh4_rele(&sfhp); 5889 goto exit; 5890 } 5891 } 5892 5893 e.error = geterrno4(res.status); 5894 } else { 5895 hrtime_t now; 5896 hrtime_t delta = 0; 5897 5898 e.error = 0; 5899 5900 /* 5901 * Because the NVERIFY "succeeded" we know that the 5902 * directory attributes are still valid 5903 * so update r_time_attr_inval 5904 */ 5905 now = gethrtime(); 5906 mutex_enter(&drp->r_statelock); 5907 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5908 delta = now - drp->r_time_attr_saved; 5909 if (delta < mi->mi_acdirmin) 5910 delta = mi->mi_acdirmin; 5911 else if (delta > mi->mi_acdirmax) 5912 delta = mi->mi_acdirmax; 5913 } 5914 drp->r_time_attr_inval = now + delta; 5915 mutex_exit(&drp->r_statelock); 5916 5917 /* 5918 * Even though we have a valid directory attr cache, 5919 * we may not have access. 5920 * This should almost always hit the cache. 5921 */ 5922 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5923 if (e.error) { 5924 sfh4_rele(&sfhp); 5925 goto exit; 5926 } 5927 } 5928 5929 /* 5930 * Now we have successfully completed the lookup, if the 5931 * directory has changed we now have the valid attributes. 5932 * We also know we have directory access. 5933 * Create the new rnode and insert it in the dnlc. 5934 */ 5935 if (isdotdot) { 5936 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5937 if (e.error) { 5938 sfh4_rele(&sfhp); 5939 goto exit; 5940 } 5941 /* 5942 * XXX if nfs4_make_dotdot uses an existing rnode 5943 * XXX it doesn't update the attributes. 5944 * XXX for now just save them again to save an OTW 5945 */ 5946 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5947 } else { 5948 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5949 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5950 } 5951 sfh4_rele(&sfhp); 5952 5953 nrp = VTOR4(nvp); 5954 mutex_enter(&nrp->r_statev4_lock); 5955 if (!nrp->created_v4) { 5956 mutex_exit(&nrp->r_statev4_lock); 5957 dnlc_update(dvp, nm, nvp); 5958 } else 5959 mutex_exit(&nrp->r_statev4_lock); 5960 5961 *vpp = nvp; 5962 5963 exit: 5964 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5965 kmem_free(argop, argoplist_size); 5966 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5967 return (e.error); 5968 } 5969 5970 #ifdef DEBUG 5971 void 5972 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 5973 { 5974 uint_t i, len; 5975 zoneid_t zoneid = getzoneid(); 5976 char *s; 5977 5978 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 5979 for (i = 0; i < argcnt; i++) { 5980 nfs_argop4 *op = &argbase[i]; 5981 switch (op->argop) { 5982 case OP_CPUTFH: 5983 case OP_PUTFH: 5984 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 5985 break; 5986 case OP_PUTROOTFH: 5987 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 5988 break; 5989 case OP_CLOOKUP: 5990 s = op->nfs_argop4_u.opclookup.cname; 5991 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5992 break; 5993 case OP_LOOKUP: 5994 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 5995 &len, NULL); 5996 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5997 kmem_free(s, len); 5998 break; 5999 case OP_LOOKUPP: 6000 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 6001 break; 6002 case OP_GETFH: 6003 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 6004 break; 6005 case OP_GETATTR: 6006 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 6007 break; 6008 case OP_OPENATTR: 6009 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 6010 break; 6011 default: 6012 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 6013 op->argop); 6014 break; 6015 } 6016 } 6017 } 6018 #endif 6019 6020 /* 6021 * nfs4lookup_setup - constructs a multi-lookup compound request. 6022 * 6023 * Given the path "nm1/nm2/.../nmn", the following compound requests 6024 * may be created: 6025 * 6026 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6027 * is faster, for now. 6028 * 6029 * l4_getattrs indicates the type of compound requested. 6030 * 6031 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6032 * 6033 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6034 * 6035 * total number of ops is n + 1. 6036 * 6037 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6038 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6039 * before the last component, and only get attributes 6040 * for the last component. Note that the second-to-last 6041 * pathname component is XATTR_RPATH, which does NOT go 6042 * over-the-wire as a lookup. 6043 * 6044 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6045 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6046 * 6047 * and total number of ops is n + 5. 6048 * 6049 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6050 * attribute directory: create lookups plus an OPENATTR 6051 * replacing the last lookup. Note that the last pathname 6052 * component is XATTR_RPATH, which does NOT go over-the-wire 6053 * as a lookup. 6054 * 6055 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6056 * Openattr; Getfh; Getattr } 6057 * 6058 * and total number of ops is n + 5. 6059 * 6060 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6061 * nodes too. 6062 * 6063 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6064 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6065 * 6066 * and total number of ops is 3*n + 1. 6067 * 6068 * All cases: returns the index in the arg array of the final LOOKUP op, or 6069 * -1 if no LOOKUPs were used. 6070 */ 6071 int 6072 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6073 { 6074 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6075 nfs_argop4 *argbase, *argop; 6076 int arglen, argcnt; 6077 int n = 1; /* number of components */ 6078 int nga = 1; /* number of Getattr's in request */ 6079 char c = '\0', *s, *p; 6080 int lookup_idx = -1; 6081 int argoplist_size; 6082 6083 /* set lookuparg response result to 0 */ 6084 lookupargp->resp->status = NFS4_OK; 6085 6086 /* skip leading "/" or "." e.g. ".//./" if there is */ 6087 for (; ; nm++) { 6088 if (*nm != '/' && *nm != '.') 6089 break; 6090 6091 /* ".." is counted as 1 component */ 6092 if (*nm == '.' && *(nm + 1) == '.') 6093 break; 6094 } 6095 6096 /* 6097 * Find n = number of components - nm must be null terminated 6098 * Skip "." components. 6099 */ 6100 if (*nm != '\0') 6101 for (n = 1, s = nm; *s != '\0'; s++) { 6102 if ((*s == '/') && (*(s + 1) != '/') && 6103 (*(s + 1) != '\0') && 6104 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6105 *(s + 2) == '\0'))) 6106 n++; 6107 } 6108 else 6109 n = 0; 6110 6111 /* 6112 * nga is number of components that need Getfh+Getattr 6113 */ 6114 switch (l4_getattrs) { 6115 case LKP4_NO_ATTRIBUTES: 6116 nga = 0; 6117 break; 6118 case LKP4_ALL_ATTRIBUTES: 6119 nga = n; 6120 /* 6121 * Always have at least 1 getfh, getattr pair 6122 */ 6123 if (nga == 0) 6124 nga++; 6125 break; 6126 case LKP4_LAST_ATTRDIR: 6127 case LKP4_LAST_NAMED_ATTR: 6128 nga = n+1; 6129 break; 6130 } 6131 6132 /* 6133 * If change to use the filehandle attr instead of getfh 6134 * the following line can be deleted. 6135 */ 6136 nga *= 2; 6137 6138 /* 6139 * calculate number of ops in request as 6140 * header + trailer + lookups + getattrs 6141 */ 6142 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6143 6144 argoplist_size = arglen * sizeof (nfs_argop4); 6145 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6146 lookupargp->argsp->array = argop; 6147 6148 argcnt = lookupargp->header_len; 6149 argop += argcnt; 6150 6151 /* 6152 * loop and create a lookup op and possibly getattr/getfh for 6153 * each component. Skip "." components. 6154 */ 6155 for (s = nm; *s != '\0'; s = p) { 6156 /* 6157 * Set up a pathname struct for each component if needed 6158 */ 6159 while (*s == '/') 6160 s++; 6161 if (*s == '\0') 6162 break; 6163 6164 for (p = s; (*p != '/') && (*p != '\0'); p++) 6165 ; 6166 c = *p; 6167 *p = '\0'; 6168 6169 if (s[0] == '.' && s[1] == '\0') { 6170 *p = c; 6171 continue; 6172 } 6173 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6174 strcmp(s, XATTR_RPATH) == 0) { 6175 /* getfh XXX may not be needed in future */ 6176 argop->argop = OP_GETFH; 6177 argop++; 6178 argcnt++; 6179 6180 /* getattr */ 6181 argop->argop = OP_GETATTR; 6182 argop->nfs_argop4_u.opgetattr.attr_request = 6183 lookupargp->ga_bits; 6184 argop->nfs_argop4_u.opgetattr.mi = 6185 lookupargp->mi; 6186 argop++; 6187 argcnt++; 6188 6189 /* openattr */ 6190 argop->argop = OP_OPENATTR; 6191 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6192 strcmp(s, XATTR_RPATH) == 0) { 6193 /* openattr */ 6194 argop->argop = OP_OPENATTR; 6195 argop++; 6196 argcnt++; 6197 6198 /* getfh XXX may not be needed in future */ 6199 argop->argop = OP_GETFH; 6200 argop++; 6201 argcnt++; 6202 6203 /* getattr */ 6204 argop->argop = OP_GETATTR; 6205 argop->nfs_argop4_u.opgetattr.attr_request = 6206 lookupargp->ga_bits; 6207 argop->nfs_argop4_u.opgetattr.mi = 6208 lookupargp->mi; 6209 argop++; 6210 argcnt++; 6211 *p = c; 6212 continue; 6213 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6214 /* lookupp */ 6215 argop->argop = OP_LOOKUPP; 6216 } else { 6217 /* lookup */ 6218 argop->argop = OP_LOOKUP; 6219 (void) str_to_utf8(s, 6220 &argop->nfs_argop4_u.oplookup.objname); 6221 } 6222 lookup_idx = argcnt; 6223 argop++; 6224 argcnt++; 6225 6226 *p = c; 6227 6228 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6229 /* getfh XXX may not be needed in future */ 6230 argop->argop = OP_GETFH; 6231 argop++; 6232 argcnt++; 6233 6234 /* getattr */ 6235 argop->argop = OP_GETATTR; 6236 argop->nfs_argop4_u.opgetattr.attr_request = 6237 lookupargp->ga_bits; 6238 argop->nfs_argop4_u.opgetattr.mi = 6239 lookupargp->mi; 6240 argop++; 6241 argcnt++; 6242 } 6243 } 6244 6245 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6246 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6247 if (needgetfh) { 6248 /* stick in a post-lookup getfh */ 6249 argop->argop = OP_GETFH; 6250 argcnt++; 6251 argop++; 6252 } 6253 /* post-lookup getattr */ 6254 argop->argop = OP_GETATTR; 6255 argop->nfs_argop4_u.opgetattr.attr_request = 6256 lookupargp->ga_bits; 6257 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6258 argcnt++; 6259 } 6260 argcnt += lookupargp->trailer_len; /* actual op count */ 6261 lookupargp->argsp->array_len = argcnt; 6262 lookupargp->arglen = arglen; 6263 6264 #ifdef DEBUG 6265 if (nfs4_client_lookup_debug) 6266 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6267 #endif 6268 6269 return (lookup_idx); 6270 } 6271 6272 static int 6273 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6274 { 6275 COMPOUND4args_clnt args; 6276 COMPOUND4res_clnt res; 6277 GETFH4res *gf_res = NULL; 6278 nfs_argop4 argop[4]; 6279 nfs_resop4 *resop = NULL; 6280 nfs4_sharedfh_t *sfhp; 6281 hrtime_t t; 6282 nfs4_error_t e; 6283 6284 rnode4_t *drp; 6285 int doqueue = 1; 6286 vnode_t *vp; 6287 int needrecov = 0; 6288 nfs4_recov_state_t recov_state; 6289 6290 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6291 6292 *avp = NULL; 6293 recov_state.rs_flags = 0; 6294 recov_state.rs_num_retry_despite_err = 0; 6295 6296 recov_retry: 6297 /* COMPOUND: putfh, openattr, getfh, getattr */ 6298 args.array_len = 4; 6299 args.array = argop; 6300 args.ctag = TAG_OPENATTR; 6301 6302 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6303 if (e.error) 6304 return (e.error); 6305 6306 drp = VTOR4(dvp); 6307 6308 /* putfh */ 6309 argop[0].argop = OP_CPUTFH; 6310 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6311 6312 /* openattr */ 6313 argop[1].argop = OP_OPENATTR; 6314 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6315 6316 /* getfh */ 6317 argop[2].argop = OP_GETFH; 6318 6319 /* getattr */ 6320 argop[3].argop = OP_GETATTR; 6321 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6322 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6323 6324 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6325 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6326 rnode4info(drp))); 6327 6328 t = gethrtime(); 6329 6330 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6331 6332 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6333 if (needrecov) { 6334 bool_t abort; 6335 6336 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6337 "nfs4openattr: initiating recovery\n")); 6338 6339 abort = nfs4_start_recovery(&e, 6340 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6341 OP_OPENATTR, NULL); 6342 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6343 if (!e.error) { 6344 e.error = geterrno4(res.status); 6345 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6346 } 6347 if (abort == FALSE) 6348 goto recov_retry; 6349 return (e.error); 6350 } 6351 6352 if (e.error) { 6353 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6354 return (e.error); 6355 } 6356 6357 if (res.status) { 6358 /* 6359 * If OTW errro is NOTSUPP, then it should be 6360 * translated to EINVAL. All Solaris file system 6361 * implementations return EINVAL to the syscall layer 6362 * when the attrdir cannot be created due to an 6363 * implementation restriction or noxattr mount option. 6364 */ 6365 if (res.status == NFS4ERR_NOTSUPP) { 6366 mutex_enter(&drp->r_statelock); 6367 if (drp->r_xattr_dir) 6368 VN_RELE(drp->r_xattr_dir); 6369 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6370 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6371 mutex_exit(&drp->r_statelock); 6372 6373 e.error = EINVAL; 6374 } else { 6375 e.error = geterrno4(res.status); 6376 } 6377 6378 if (e.error) { 6379 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6380 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6381 needrecov); 6382 return (e.error); 6383 } 6384 } 6385 6386 resop = &res.array[0]; /* putfh res */ 6387 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6388 6389 resop = &res.array[1]; /* openattr res */ 6390 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6391 6392 resop = &res.array[2]; /* getfh res */ 6393 gf_res = &resop->nfs_resop4_u.opgetfh; 6394 if (gf_res->object.nfs_fh4_len == 0) { 6395 *avp = NULL; 6396 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6397 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6398 return (ENOENT); 6399 } 6400 6401 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6402 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6403 dvp->v_vfsp, t, cr, dvp, 6404 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH)); 6405 sfh4_rele(&sfhp); 6406 6407 if (e.error) 6408 PURGE_ATTRCACHE4(vp); 6409 6410 mutex_enter(&vp->v_lock); 6411 vp->v_flag |= V_XATTRDIR; 6412 mutex_exit(&vp->v_lock); 6413 6414 *avp = vp; 6415 6416 mutex_enter(&drp->r_statelock); 6417 if (drp->r_xattr_dir) 6418 VN_RELE(drp->r_xattr_dir); 6419 VN_HOLD(vp); 6420 drp->r_xattr_dir = vp; 6421 6422 /* 6423 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6424 * NULL. xattrs could be created at any time, and we have no 6425 * way to update pc4_xattr_exists in the base object if/when 6426 * it happens. 6427 */ 6428 drp->r_pathconf.pc4_xattr_valid = 0; 6429 6430 mutex_exit(&drp->r_statelock); 6431 6432 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6433 6434 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6435 6436 return (0); 6437 } 6438 6439 /* ARGSUSED */ 6440 static int 6441 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6442 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6443 vsecattr_t *vsecp) 6444 { 6445 int error; 6446 vnode_t *vp = NULL; 6447 rnode4_t *rp; 6448 struct vattr vattr; 6449 rnode4_t *drp; 6450 vnode_t *tempvp; 6451 enum createmode4 createmode; 6452 bool_t must_trunc = FALSE; 6453 int truncating = 0; 6454 6455 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6456 return (EPERM); 6457 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6458 return (EINVAL); 6459 } 6460 6461 /* . and .. have special meaning in the protocol, reject them. */ 6462 6463 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6464 return (EISDIR); 6465 6466 drp = VTOR4(dvp); 6467 6468 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6469 return (EINTR); 6470 6471 top: 6472 /* 6473 * We make a copy of the attributes because the caller does not 6474 * expect us to change what va points to. 6475 */ 6476 vattr = *va; 6477 6478 /* 6479 * If the pathname is "", then dvp is the root vnode of 6480 * a remote file mounted over a local directory. 6481 * All that needs to be done is access 6482 * checking and truncation. Note that we avoid doing 6483 * open w/ create because the parent directory might 6484 * be in pseudo-fs and the open would fail. 6485 */ 6486 if (*nm == '\0') { 6487 error = 0; 6488 VN_HOLD(dvp); 6489 vp = dvp; 6490 must_trunc = TRUE; 6491 } else { 6492 /* 6493 * We need to go over the wire, just to be sure whether the 6494 * file exists or not. Using the DNLC can be dangerous in 6495 * this case when making a decision regarding existence. 6496 */ 6497 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6498 } 6499 6500 if (exclusive) 6501 createmode = EXCLUSIVE4; 6502 else 6503 createmode = GUARDED4; 6504 6505 /* 6506 * error would be set if the file does not exist on the 6507 * server, so lets go create it. 6508 */ 6509 if (error) { 6510 goto create_otw; 6511 } 6512 6513 /* 6514 * File does exist on the server 6515 */ 6516 if (exclusive == EXCL) 6517 error = EEXIST; 6518 else if (vp->v_type == VDIR && (mode & VWRITE)) 6519 error = EISDIR; 6520 else { 6521 /* 6522 * If vnode is a device, create special vnode. 6523 */ 6524 if (ISVDEV(vp->v_type)) { 6525 tempvp = vp; 6526 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6527 VN_RELE(tempvp); 6528 } 6529 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6530 if ((vattr.va_mask & AT_SIZE) && 6531 vp->v_type == VREG) { 6532 rp = VTOR4(vp); 6533 /* 6534 * Check here for large file handled 6535 * by LF-unaware process (as 6536 * ufs_create() does) 6537 */ 6538 if (!(flags & FOFFMAX)) { 6539 mutex_enter(&rp->r_statelock); 6540 if (rp->r_size > MAXOFF32_T) 6541 error = EOVERFLOW; 6542 mutex_exit(&rp->r_statelock); 6543 } 6544 6545 /* if error is set then we need to return */ 6546 if (error) { 6547 nfs_rw_exit(&drp->r_rwlock); 6548 VN_RELE(vp); 6549 return (error); 6550 } 6551 6552 if (must_trunc) { 6553 vattr.va_mask = AT_SIZE; 6554 error = nfs4setattr(vp, &vattr, 0, cr, 6555 NULL); 6556 } else { 6557 /* 6558 * we know we have a regular file that already 6559 * exists and we may end up truncating the file 6560 * as a result of the open_otw, so flush out 6561 * any dirty pages for this file first. 6562 */ 6563 if (nfs4_has_pages(vp) && 6564 ((rp->r_flags & R4DIRTY) || 6565 rp->r_count > 0 || 6566 rp->r_mapcnt > 0)) { 6567 error = nfs4_putpage(vp, 6568 (offset_t)0, 0, 0, cr, ct); 6569 if (error && (error == ENOSPC || 6570 error == EDQUOT)) { 6571 mutex_enter( 6572 &rp->r_statelock); 6573 if (!rp->r_error) 6574 rp->r_error = 6575 error; 6576 mutex_exit( 6577 &rp->r_statelock); 6578 } 6579 } 6580 vattr.va_mask = (AT_SIZE | 6581 AT_TYPE | AT_MODE); 6582 vattr.va_type = VREG; 6583 createmode = UNCHECKED4; 6584 truncating = 1; 6585 goto create_otw; 6586 } 6587 } 6588 } 6589 } 6590 nfs_rw_exit(&drp->r_rwlock); 6591 if (error) { 6592 VN_RELE(vp); 6593 } else { 6594 vnode_t *tvp; 6595 rnode4_t *trp; 6596 /* 6597 * existing file got truncated, notify. 6598 */ 6599 tvp = vp; 6600 if (vp->v_type == VREG) { 6601 trp = VTOR4(vp); 6602 if (IS_SHADOW(vp, trp)) 6603 tvp = RTOV4(trp); 6604 } 6605 vnevent_create(tvp, ct); 6606 *vpp = vp; 6607 } 6608 return (error); 6609 6610 create_otw: 6611 dnlc_remove(dvp, nm); 6612 6613 ASSERT(vattr.va_mask & AT_TYPE); 6614 6615 /* 6616 * If not a regular file let nfs4mknod() handle it. 6617 */ 6618 if (vattr.va_type != VREG) { 6619 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6620 nfs_rw_exit(&drp->r_rwlock); 6621 return (error); 6622 } 6623 6624 /* 6625 * It _is_ a regular file. 6626 */ 6627 ASSERT(vattr.va_mask & AT_MODE); 6628 if (MANDMODE(vattr.va_mode)) { 6629 nfs_rw_exit(&drp->r_rwlock); 6630 return (EACCES); 6631 } 6632 6633 /* 6634 * If this happens to be a mknod of a regular file, then flags will 6635 * have neither FREAD or FWRITE. However, we must set at least one 6636 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6637 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6638 * set (based on openmode specified by app). 6639 */ 6640 if ((flags & (FREAD|FWRITE)) == 0) 6641 flags |= (FREAD|FWRITE); 6642 6643 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6644 6645 if (vp != NULL) { 6646 /* if create was successful, throw away the file's pages */ 6647 if (!error && (vattr.va_mask & AT_SIZE)) 6648 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6649 cr); 6650 /* release the lookup hold */ 6651 VN_RELE(vp); 6652 vp = NULL; 6653 } 6654 6655 /* 6656 * validate that we opened a regular file. This handles a misbehaving 6657 * server that returns an incorrect FH. 6658 */ 6659 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6660 error = EISDIR; 6661 VN_RELE(*vpp); 6662 } 6663 6664 /* 6665 * If this is not an exclusive create, then the CREATE 6666 * request will be made with the GUARDED mode set. This 6667 * means that the server will return EEXIST if the file 6668 * exists. The file could exist because of a retransmitted 6669 * request. In this case, we recover by starting over and 6670 * checking to see whether the file exists. This second 6671 * time through it should and a CREATE request will not be 6672 * sent. 6673 * 6674 * This handles the problem of a dangling CREATE request 6675 * which contains attributes which indicate that the file 6676 * should be truncated. This retransmitted request could 6677 * possibly truncate valid data in the file if not caught 6678 * by the duplicate request mechanism on the server or if 6679 * not caught by other means. The scenario is: 6680 * 6681 * Client transmits CREATE request with size = 0 6682 * Client times out, retransmits request. 6683 * Response to the first request arrives from the server 6684 * and the client proceeds on. 6685 * Client writes data to the file. 6686 * The server now processes retransmitted CREATE request 6687 * and truncates file. 6688 * 6689 * The use of the GUARDED CREATE request prevents this from 6690 * happening because the retransmitted CREATE would fail 6691 * with EEXIST and would not truncate the file. 6692 */ 6693 if (error == EEXIST && exclusive == NONEXCL) { 6694 #ifdef DEBUG 6695 nfs4_create_misses++; 6696 #endif 6697 goto top; 6698 } 6699 nfs_rw_exit(&drp->r_rwlock); 6700 if (truncating && !error && *vpp) { 6701 vnode_t *tvp; 6702 rnode4_t *trp; 6703 /* 6704 * existing file got truncated, notify. 6705 */ 6706 tvp = *vpp; 6707 trp = VTOR4(tvp); 6708 if (IS_SHADOW(tvp, trp)) 6709 tvp = RTOV4(trp); 6710 vnevent_create(tvp, ct); 6711 } 6712 return (error); 6713 } 6714 6715 /* 6716 * Create compound (for mkdir, mknod, symlink): 6717 * { Putfh <dfh>; Create; Getfh; Getattr } 6718 * It's okay if setattr failed to set gid - this is not considered 6719 * an error, but purge attrs in that case. 6720 */ 6721 static int 6722 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6723 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6724 { 6725 int need_end_op = FALSE; 6726 COMPOUND4args_clnt args; 6727 COMPOUND4res_clnt res, *resp = NULL; 6728 nfs_argop4 *argop; 6729 nfs_resop4 *resop; 6730 int doqueue; 6731 mntinfo4_t *mi; 6732 rnode4_t *drp = VTOR4(dvp); 6733 change_info4 *cinfo; 6734 GETFH4res *gf_res; 6735 struct vattr vattr; 6736 vnode_t *vp; 6737 fattr4 *crattr; 6738 bool_t needrecov = FALSE; 6739 nfs4_recov_state_t recov_state; 6740 nfs4_sharedfh_t *sfhp = NULL; 6741 hrtime_t t; 6742 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6743 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6744 dirattr_info_t dinfo, *dinfop; 6745 servinfo4_t *svp; 6746 bitmap4 supp_attrs; 6747 6748 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6749 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6750 6751 mi = VTOMI4(dvp); 6752 6753 /* 6754 * Make sure we properly deal with setting the right gid 6755 * on a new directory to reflect the parent's setgid bit 6756 */ 6757 setgid_flag = 0; 6758 if (type == NF4DIR) { 6759 struct vattr dva; 6760 6761 va->va_mode &= ~VSGID; 6762 dva.va_mask = AT_MODE | AT_GID; 6763 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6764 6765 /* 6766 * If the parent's directory has the setgid bit set 6767 * _and_ the client was able to get a valid mapping 6768 * for the parent dir's owner_group, we want to 6769 * append NVERIFY(owner_group == dva.va_gid) and 6770 * SETTATTR to the CREATE compound. 6771 */ 6772 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6773 setgid_flag = 1; 6774 va->va_mode |= VSGID; 6775 if (dva.va_gid != GID_NOBODY) { 6776 va->va_mask |= AT_GID; 6777 va->va_gid = dva.va_gid; 6778 } 6779 } 6780 } 6781 } 6782 6783 /* 6784 * Create ops: 6785 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6786 * 5:restorefh(dir) 6:getattr(dir) 6787 * 6788 * if (setgid) 6789 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6790 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6791 * 8:nverify 9:setattr 6792 */ 6793 if (setgid_flag) { 6794 numops = 10; 6795 idx_create = 1; 6796 idx_fattr = 3; 6797 } else { 6798 numops = 7; 6799 idx_create = 2; 6800 idx_fattr = 4; 6801 } 6802 6803 ASSERT(nfs_zone() == mi->mi_zone); 6804 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6805 return (EINTR); 6806 } 6807 recov_state.rs_flags = 0; 6808 recov_state.rs_num_retry_despite_err = 0; 6809 6810 argoplist_size = numops * sizeof (nfs_argop4); 6811 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6812 6813 recov_retry: 6814 if (type == NF4LNK) 6815 args.ctag = TAG_SYMLINK; 6816 else if (type == NF4DIR) 6817 args.ctag = TAG_MKDIR; 6818 else 6819 args.ctag = TAG_MKNOD; 6820 6821 args.array_len = numops; 6822 args.array = argop; 6823 6824 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6825 nfs_rw_exit(&drp->r_rwlock); 6826 kmem_free(argop, argoplist_size); 6827 return (e.error); 6828 } 6829 need_end_op = TRUE; 6830 6831 6832 /* 0: putfh directory */ 6833 argop[0].argop = OP_CPUTFH; 6834 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6835 6836 /* 1/2: Create object */ 6837 argop[idx_create].argop = OP_CCREATE; 6838 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6839 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6840 if (type == NF4LNK) { 6841 /* 6842 * symlink, treat name as data 6843 */ 6844 ASSERT(data != NULL); 6845 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6846 (char *)data; 6847 } 6848 if (type == NF4BLK || type == NF4CHR) { 6849 ASSERT(data != NULL); 6850 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6851 *((specdata4 *)data); 6852 } 6853 6854 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6855 6856 svp = drp->r_server; 6857 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6858 supp_attrs = svp->sv_supp_attrs; 6859 nfs_rw_exit(&svp->sv_lock); 6860 6861 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6862 nfs_rw_exit(&drp->r_rwlock); 6863 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6864 e.error = EINVAL; 6865 kmem_free(argop, argoplist_size); 6866 return (e.error); 6867 } 6868 6869 /* 2/3: getfh fh of created object */ 6870 ASSERT(idx_create + 1 == idx_fattr - 1); 6871 argop[idx_create + 1].argop = OP_GETFH; 6872 6873 /* 3/4: getattr of new object */ 6874 argop[idx_fattr].argop = OP_GETATTR; 6875 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6876 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6877 6878 if (setgid_flag) { 6879 vattr_t _v; 6880 6881 argop[4].argop = OP_SAVEFH; 6882 6883 argop[5].argop = OP_CPUTFH; 6884 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6885 6886 argop[6].argop = OP_GETATTR; 6887 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6888 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6889 6890 argop[7].argop = OP_RESTOREFH; 6891 6892 /* 6893 * nverify 6894 * 6895 * XXX - Revisit the last argument to nfs4_end_op() 6896 * once 5020486 is fixed. 6897 */ 6898 _v.va_mask = AT_GID; 6899 _v.va_gid = va->va_gid; 6900 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6901 supp_attrs)) { 6902 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6903 nfs_rw_exit(&drp->r_rwlock); 6904 nfs4_fattr4_free(crattr); 6905 kmem_free(argop, argoplist_size); 6906 return (e.error); 6907 } 6908 6909 /* 6910 * setattr 6911 * 6912 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6913 * so no need for stateid or flags. Also we specify NULL 6914 * rp since we're only interested in setting owner_group 6915 * attributes. 6916 */ 6917 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6918 &e.error, 0); 6919 6920 if (e.error) { 6921 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6922 nfs_rw_exit(&drp->r_rwlock); 6923 nfs4_fattr4_free(crattr); 6924 nfs4args_verify_free(&argop[8]); 6925 kmem_free(argop, argoplist_size); 6926 return (e.error); 6927 } 6928 } else { 6929 argop[1].argop = OP_SAVEFH; 6930 6931 argop[5].argop = OP_RESTOREFH; 6932 6933 argop[6].argop = OP_GETATTR; 6934 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6935 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6936 } 6937 6938 dnlc_remove(dvp, nm); 6939 6940 doqueue = 1; 6941 t = gethrtime(); 6942 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 6943 6944 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 6945 if (e.error) { 6946 PURGE_ATTRCACHE4(dvp); 6947 if (!needrecov) 6948 goto out; 6949 } 6950 6951 if (needrecov) { 6952 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 6953 OP_CREATE, NULL) == FALSE) { 6954 nfs4_end_op(mi, dvp, NULL, &recov_state, 6955 needrecov); 6956 need_end_op = FALSE; 6957 nfs4_fattr4_free(crattr); 6958 if (setgid_flag) { 6959 nfs4args_verify_free(&argop[8]); 6960 nfs4args_setattr_free(&argop[9]); 6961 } 6962 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6963 goto recov_retry; 6964 } 6965 } 6966 6967 resp = &res; 6968 6969 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 6970 6971 if (res.status == NFS4ERR_BADOWNER) 6972 nfs4_log_badowner(mi, OP_CREATE); 6973 6974 e.error = geterrno4(res.status); 6975 6976 /* 6977 * This check is left over from when create was implemented 6978 * using a setattr op (instead of createattrs). If the 6979 * putfh/create/getfh failed, the error was returned. If 6980 * setattr/getattr failed, we keep going. 6981 * 6982 * It might be better to get rid of the GETFH also, and just 6983 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 6984 * Then if any of the operations failed, we could return the 6985 * error now, and remove much of the error code below. 6986 */ 6987 if (res.array_len <= idx_fattr) { 6988 /* 6989 * Either Putfh, Create or Getfh failed. 6990 */ 6991 PURGE_ATTRCACHE4(dvp); 6992 /* 6993 * nfs4_purge_stale_fh() may generate otw calls through 6994 * nfs4_invalidate_pages. Hence the need to call 6995 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 6996 */ 6997 nfs4_end_op(mi, dvp, NULL, &recov_state, 6998 needrecov); 6999 need_end_op = FALSE; 7000 nfs4_purge_stale_fh(e.error, dvp, cr); 7001 goto out; 7002 } 7003 } 7004 7005 resop = &res.array[idx_create]; /* create res */ 7006 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 7007 7008 resop = &res.array[idx_create + 1]; /* getfh res */ 7009 gf_res = &resop->nfs_resop4_u.opgetfh; 7010 7011 sfhp = sfh4_get(&gf_res->object, mi); 7012 if (e.error) { 7013 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 7014 fn_get(VTOSV(dvp)->sv_name, nm)); 7015 if (vp->v_type == VNON) { 7016 vattr.va_mask = AT_TYPE; 7017 /* 7018 * Need to call nfs4_end_op before nfs4getattr to avoid 7019 * potential nfs4_start_op deadlock. See RFE 4777612. 7020 */ 7021 nfs4_end_op(mi, dvp, NULL, &recov_state, 7022 needrecov); 7023 need_end_op = FALSE; 7024 e.error = nfs4getattr(vp, &vattr, cr); 7025 if (e.error) { 7026 VN_RELE(vp); 7027 *vpp = NULL; 7028 goto out; 7029 } 7030 vp->v_type = vattr.va_type; 7031 } 7032 e.error = 0; 7033 } else { 7034 *vpp = vp = makenfs4node(sfhp, 7035 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7036 dvp->v_vfsp, t, cr, 7037 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 7038 } 7039 7040 /* 7041 * If compound succeeded, then update dir attrs 7042 */ 7043 if (res.status == NFS4_OK) { 7044 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7045 dinfo.di_cred = cr; 7046 dinfo.di_time_call = t; 7047 dinfop = &dinfo; 7048 } else 7049 dinfop = NULL; 7050 7051 /* Update directory cache attribute, readdir and dnlc caches */ 7052 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7053 7054 out: 7055 if (sfhp != NULL) 7056 sfh4_rele(&sfhp); 7057 nfs_rw_exit(&drp->r_rwlock); 7058 nfs4_fattr4_free(crattr); 7059 if (setgid_flag) { 7060 nfs4args_verify_free(&argop[8]); 7061 nfs4args_setattr_free(&argop[9]); 7062 } 7063 if (resp) 7064 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7065 if (need_end_op) 7066 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7067 7068 kmem_free(argop, argoplist_size); 7069 return (e.error); 7070 } 7071 7072 /* ARGSUSED */ 7073 static int 7074 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7075 int mode, vnode_t **vpp, cred_t *cr) 7076 { 7077 int error; 7078 vnode_t *vp; 7079 nfs_ftype4 type; 7080 specdata4 spec, *specp = NULL; 7081 7082 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7083 7084 switch (va->va_type) { 7085 case VCHR: 7086 case VBLK: 7087 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7088 spec.specdata1 = getmajor(va->va_rdev); 7089 spec.specdata2 = getminor(va->va_rdev); 7090 specp = &spec; 7091 break; 7092 7093 case VFIFO: 7094 type = NF4FIFO; 7095 break; 7096 case VSOCK: 7097 type = NF4SOCK; 7098 break; 7099 7100 default: 7101 return (EINVAL); 7102 } 7103 7104 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7105 if (error) { 7106 return (error); 7107 } 7108 7109 /* 7110 * This might not be needed any more; special case to deal 7111 * with problematic v2/v3 servers. Since create was unable 7112 * to set group correctly, not sure what hope setattr has. 7113 */ 7114 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7115 va->va_mask = AT_GID; 7116 (void) nfs4setattr(vp, va, 0, cr, NULL); 7117 } 7118 7119 /* 7120 * If vnode is a device create special vnode 7121 */ 7122 if (ISVDEV(vp->v_type)) { 7123 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7124 VN_RELE(vp); 7125 } else { 7126 *vpp = vp; 7127 } 7128 return (error); 7129 } 7130 7131 /* 7132 * Remove requires that the current fh be the target directory. 7133 * After the operation, the current fh is unchanged. 7134 * The compound op structure is: 7135 * PUTFH(targetdir), REMOVE 7136 * 7137 * Weirdness: if the vnode to be removed is open 7138 * we rename it instead of removing it and nfs_inactive 7139 * will remove the new name. 7140 */ 7141 /* ARGSUSED */ 7142 static int 7143 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7144 { 7145 COMPOUND4args_clnt args; 7146 COMPOUND4res_clnt res, *resp = NULL; 7147 REMOVE4res *rm_res; 7148 nfs_argop4 argop[3]; 7149 nfs_resop4 *resop; 7150 vnode_t *vp; 7151 char *tmpname; 7152 int doqueue; 7153 mntinfo4_t *mi; 7154 rnode4_t *rp; 7155 rnode4_t *drp; 7156 int needrecov = 0; 7157 nfs4_recov_state_t recov_state; 7158 int isopen; 7159 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7160 dirattr_info_t dinfo; 7161 7162 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7163 return (EPERM); 7164 drp = VTOR4(dvp); 7165 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7166 return (EINTR); 7167 7168 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7169 if (e.error) { 7170 nfs_rw_exit(&drp->r_rwlock); 7171 return (e.error); 7172 } 7173 7174 if (vp->v_type == VDIR) { 7175 VN_RELE(vp); 7176 nfs_rw_exit(&drp->r_rwlock); 7177 return (EISDIR); 7178 } 7179 7180 /* 7181 * First just remove the entry from the name cache, as it 7182 * is most likely the only entry for this vp. 7183 */ 7184 dnlc_remove(dvp, nm); 7185 7186 rp = VTOR4(vp); 7187 7188 /* 7189 * For regular file types, check to see if the file is open by looking 7190 * at the open streams. 7191 * For all other types, check the reference count on the vnode. Since 7192 * they are not opened OTW they never have an open stream. 7193 * 7194 * If the file is open, rename it to .nfsXXXX. 7195 */ 7196 if (vp->v_type != VREG) { 7197 /* 7198 * If the file has a v_count > 1 then there may be more than one 7199 * entry in the name cache due multiple links or an open file, 7200 * but we don't have the real reference count so flush all 7201 * possible entries. 7202 */ 7203 if (vp->v_count > 1) 7204 dnlc_purge_vp(vp); 7205 7206 /* 7207 * Now we have the real reference count. 7208 */ 7209 isopen = vp->v_count > 1; 7210 } else { 7211 mutex_enter(&rp->r_os_lock); 7212 isopen = list_head(&rp->r_open_streams) != NULL; 7213 mutex_exit(&rp->r_os_lock); 7214 } 7215 7216 mutex_enter(&rp->r_statelock); 7217 if (isopen && 7218 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7219 mutex_exit(&rp->r_statelock); 7220 tmpname = newname(); 7221 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7222 if (e.error) 7223 kmem_free(tmpname, MAXNAMELEN); 7224 else { 7225 mutex_enter(&rp->r_statelock); 7226 if (rp->r_unldvp == NULL) { 7227 VN_HOLD(dvp); 7228 rp->r_unldvp = dvp; 7229 if (rp->r_unlcred != NULL) 7230 crfree(rp->r_unlcred); 7231 crhold(cr); 7232 rp->r_unlcred = cr; 7233 rp->r_unlname = tmpname; 7234 } else { 7235 kmem_free(rp->r_unlname, MAXNAMELEN); 7236 rp->r_unlname = tmpname; 7237 } 7238 mutex_exit(&rp->r_statelock); 7239 } 7240 VN_RELE(vp); 7241 nfs_rw_exit(&drp->r_rwlock); 7242 return (e.error); 7243 } 7244 /* 7245 * Actually remove the file/dir 7246 */ 7247 mutex_exit(&rp->r_statelock); 7248 7249 /* 7250 * We need to flush any dirty pages which happen to 7251 * be hanging around before removing the file. 7252 * This shouldn't happen very often since in NFSv4 7253 * we should be close to open consistent. 7254 */ 7255 if (nfs4_has_pages(vp) && 7256 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7257 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7258 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7259 mutex_enter(&rp->r_statelock); 7260 if (!rp->r_error) 7261 rp->r_error = e.error; 7262 mutex_exit(&rp->r_statelock); 7263 } 7264 } 7265 7266 mi = VTOMI4(dvp); 7267 7268 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7269 recov_state.rs_flags = 0; 7270 recov_state.rs_num_retry_despite_err = 0; 7271 7272 recov_retry: 7273 /* 7274 * Remove ops: putfh dir; remove 7275 */ 7276 args.ctag = TAG_REMOVE; 7277 args.array_len = 3; 7278 args.array = argop; 7279 7280 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7281 if (e.error) { 7282 nfs_rw_exit(&drp->r_rwlock); 7283 VN_RELE(vp); 7284 return (e.error); 7285 } 7286 7287 /* putfh directory */ 7288 argop[0].argop = OP_CPUTFH; 7289 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7290 7291 /* remove */ 7292 argop[1].argop = OP_CREMOVE; 7293 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7294 7295 /* getattr dir */ 7296 argop[2].argop = OP_GETATTR; 7297 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7298 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7299 7300 doqueue = 1; 7301 dinfo.di_time_call = gethrtime(); 7302 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7303 7304 PURGE_ATTRCACHE4(vp); 7305 7306 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7307 if (e.error) 7308 PURGE_ATTRCACHE4(dvp); 7309 7310 if (needrecov) { 7311 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7312 NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { 7313 if (!e.error) 7314 (void) xdr_free(xdr_COMPOUND4res_clnt, 7315 (caddr_t)&res); 7316 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7317 needrecov); 7318 goto recov_retry; 7319 } 7320 } 7321 7322 /* 7323 * Matching nfs4_end_op() for start_op() above. 7324 * There is a path in the code below which calls 7325 * nfs4_purge_stale_fh(), which may generate otw calls through 7326 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7327 * here to avoid nfs4_start_op() deadlock. 7328 */ 7329 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7330 7331 if (!e.error) { 7332 resp = &res; 7333 7334 if (res.status) { 7335 e.error = geterrno4(res.status); 7336 PURGE_ATTRCACHE4(dvp); 7337 nfs4_purge_stale_fh(e.error, dvp, cr); 7338 } else { 7339 resop = &res.array[1]; /* remove res */ 7340 rm_res = &resop->nfs_resop4_u.opremove; 7341 7342 dinfo.di_garp = 7343 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7344 dinfo.di_cred = cr; 7345 7346 /* Update directory attr, readdir and dnlc caches */ 7347 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7348 &dinfo); 7349 } 7350 } 7351 nfs_rw_exit(&drp->r_rwlock); 7352 if (resp) 7353 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7354 7355 if (e.error == 0) { 7356 vnode_t *tvp; 7357 rnode4_t *trp; 7358 trp = VTOR4(vp); 7359 tvp = vp; 7360 if (IS_SHADOW(vp, trp)) 7361 tvp = RTOV4(trp); 7362 vnevent_remove(tvp, dvp, nm, ct); 7363 } 7364 VN_RELE(vp); 7365 return (e.error); 7366 } 7367 7368 /* 7369 * Link requires that the current fh be the target directory and the 7370 * saved fh be the source fh. After the operation, the current fh is unchanged. 7371 * Thus the compound op structure is: 7372 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7373 * GETATTR(file) 7374 */ 7375 /* ARGSUSED */ 7376 static int 7377 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7378 caller_context_t *ct, int flags) 7379 { 7380 COMPOUND4args_clnt args; 7381 COMPOUND4res_clnt res, *resp = NULL; 7382 LINK4res *ln_res; 7383 int argoplist_size = 7 * sizeof (nfs_argop4); 7384 nfs_argop4 *argop; 7385 nfs_resop4 *resop; 7386 vnode_t *realvp, *nvp; 7387 int doqueue; 7388 mntinfo4_t *mi; 7389 rnode4_t *tdrp; 7390 bool_t needrecov = FALSE; 7391 nfs4_recov_state_t recov_state; 7392 hrtime_t t; 7393 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7394 dirattr_info_t dinfo; 7395 7396 ASSERT(*tnm != '\0'); 7397 ASSERT(tdvp->v_type == VDIR); 7398 ASSERT(nfs4_consistent_type(tdvp)); 7399 ASSERT(nfs4_consistent_type(svp)); 7400 7401 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7402 return (EPERM); 7403 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7404 svp = realvp; 7405 ASSERT(nfs4_consistent_type(svp)); 7406 } 7407 7408 tdrp = VTOR4(tdvp); 7409 mi = VTOMI4(svp); 7410 7411 if (!(mi->mi_flags & MI4_LINK)) { 7412 return (EOPNOTSUPP); 7413 } 7414 recov_state.rs_flags = 0; 7415 recov_state.rs_num_retry_despite_err = 0; 7416 7417 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7418 return (EINTR); 7419 7420 recov_retry: 7421 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7422 7423 args.ctag = TAG_LINK; 7424 7425 /* 7426 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7427 * restorefh; getattr(fl) 7428 */ 7429 args.array_len = 7; 7430 args.array = argop; 7431 7432 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7433 if (e.error) { 7434 kmem_free(argop, argoplist_size); 7435 nfs_rw_exit(&tdrp->r_rwlock); 7436 return (e.error); 7437 } 7438 7439 /* 0. putfh file */ 7440 argop[0].argop = OP_CPUTFH; 7441 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7442 7443 /* 1. save current fh to free up the space for the dir */ 7444 argop[1].argop = OP_SAVEFH; 7445 7446 /* 2. putfh targetdir */ 7447 argop[2].argop = OP_CPUTFH; 7448 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7449 7450 /* 3. link: current_fh is targetdir, saved_fh is source */ 7451 argop[3].argop = OP_CLINK; 7452 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7453 7454 /* 4. Get attributes of dir */ 7455 argop[4].argop = OP_GETATTR; 7456 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7457 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7458 7459 /* 5. If link was successful, restore current vp to file */ 7460 argop[5].argop = OP_RESTOREFH; 7461 7462 /* 6. Get attributes of linked object */ 7463 argop[6].argop = OP_GETATTR; 7464 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7465 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7466 7467 dnlc_remove(tdvp, tnm); 7468 7469 doqueue = 1; 7470 t = gethrtime(); 7471 7472 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7473 7474 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7475 if (e.error != 0 && !needrecov) { 7476 PURGE_ATTRCACHE4(tdvp); 7477 PURGE_ATTRCACHE4(svp); 7478 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7479 goto out; 7480 } 7481 7482 if (needrecov) { 7483 bool_t abort; 7484 7485 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7486 NULL, NULL, OP_LINK, NULL); 7487 if (abort == FALSE) { 7488 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7489 needrecov); 7490 kmem_free(argop, argoplist_size); 7491 if (!e.error) 7492 (void) xdr_free(xdr_COMPOUND4res_clnt, 7493 (caddr_t)&res); 7494 goto recov_retry; 7495 } else { 7496 if (e.error != 0) { 7497 PURGE_ATTRCACHE4(tdvp); 7498 PURGE_ATTRCACHE4(svp); 7499 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7500 &recov_state, needrecov); 7501 goto out; 7502 } 7503 /* fall through for res.status case */ 7504 } 7505 } 7506 7507 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7508 7509 resp = &res; 7510 if (res.status) { 7511 /* If link succeeded, then don't return error */ 7512 e.error = geterrno4(res.status); 7513 if (res.array_len <= 4) { 7514 /* 7515 * Either Putfh, Savefh, Putfh dir, or Link failed 7516 */ 7517 PURGE_ATTRCACHE4(svp); 7518 PURGE_ATTRCACHE4(tdvp); 7519 if (e.error == EOPNOTSUPP) { 7520 mutex_enter(&mi->mi_lock); 7521 mi->mi_flags &= ~MI4_LINK; 7522 mutex_exit(&mi->mi_lock); 7523 } 7524 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7525 /* XXX-LP */ 7526 if (e.error == EISDIR && crgetuid(cr) != 0) 7527 e.error = EPERM; 7528 goto out; 7529 } 7530 } 7531 7532 /* either no error or one of the postop getattr failed */ 7533 7534 /* 7535 * XXX - if LINK succeeded, but no attrs were returned for link 7536 * file, purge its cache. 7537 * 7538 * XXX Perform a simplified version of wcc checking. Instead of 7539 * have another getattr to get pre-op, just purge cache if 7540 * any of the ops prior to and including the getattr failed. 7541 * If the getattr succeeded then update the attrcache accordingly. 7542 */ 7543 7544 /* 7545 * update cache with link file postattrs. 7546 * Note: at this point resop points to link res. 7547 */ 7548 resop = &res.array[3]; /* link res */ 7549 ln_res = &resop->nfs_resop4_u.oplink; 7550 if (res.status == NFS4_OK) 7551 e.error = nfs4_update_attrcache(res.status, 7552 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7553 t, svp, cr); 7554 7555 /* 7556 * Call makenfs4node to create the new shadow vp for tnm. 7557 * We pass NULL attrs because we just cached attrs for 7558 * the src object. All we're trying to accomplish is to 7559 * to create the new shadow vnode. 7560 */ 7561 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7562 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm)); 7563 7564 /* Update target cache attribute, readdir and dnlc caches */ 7565 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7566 dinfo.di_time_call = t; 7567 dinfo.di_cred = cr; 7568 7569 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7570 ASSERT(nfs4_consistent_type(tdvp)); 7571 ASSERT(nfs4_consistent_type(svp)); 7572 ASSERT(nfs4_consistent_type(nvp)); 7573 VN_RELE(nvp); 7574 7575 if (!e.error) { 7576 vnode_t *tvp; 7577 rnode4_t *trp; 7578 /* 7579 * Notify the source file of this link operation. 7580 */ 7581 trp = VTOR4(svp); 7582 tvp = svp; 7583 if (IS_SHADOW(svp, trp)) 7584 tvp = RTOV4(trp); 7585 vnevent_link(tvp, ct); 7586 } 7587 out: 7588 kmem_free(argop, argoplist_size); 7589 if (resp) 7590 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7591 7592 nfs_rw_exit(&tdrp->r_rwlock); 7593 7594 return (e.error); 7595 } 7596 7597 /* ARGSUSED */ 7598 static int 7599 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7600 caller_context_t *ct, int flags) 7601 { 7602 vnode_t *realvp; 7603 7604 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7605 return (EPERM); 7606 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7607 ndvp = realvp; 7608 7609 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7610 } 7611 7612 /* 7613 * nfs4rename does the real work of renaming in NFS Version 4. 7614 * 7615 * A file handle is considered volatile for renaming purposes if either 7616 * of the volatile bits are turned on. However, the compound may differ 7617 * based on the likelihood of the filehandle to change during rename. 7618 */ 7619 static int 7620 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7621 caller_context_t *ct) 7622 { 7623 int error; 7624 mntinfo4_t *mi; 7625 vnode_t *nvp = NULL; 7626 vnode_t *ovp = NULL; 7627 char *tmpname = NULL; 7628 rnode4_t *rp; 7629 rnode4_t *odrp; 7630 rnode4_t *ndrp; 7631 int did_link = 0; 7632 int do_link = 1; 7633 nfsstat4 stat = NFS4_OK; 7634 7635 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7636 ASSERT(nfs4_consistent_type(odvp)); 7637 ASSERT(nfs4_consistent_type(ndvp)); 7638 7639 if (onm[0] == '.' && (onm[1] == '\0' || 7640 (onm[1] == '.' && onm[2] == '\0'))) 7641 return (EINVAL); 7642 7643 if (nnm[0] == '.' && (nnm[1] == '\0' || 7644 (nnm[1] == '.' && nnm[2] == '\0'))) 7645 return (EINVAL); 7646 7647 odrp = VTOR4(odvp); 7648 ndrp = VTOR4(ndvp); 7649 if ((intptr_t)odrp < (intptr_t)ndrp) { 7650 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7651 return (EINTR); 7652 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7653 nfs_rw_exit(&odrp->r_rwlock); 7654 return (EINTR); 7655 } 7656 } else { 7657 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7658 return (EINTR); 7659 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7660 nfs_rw_exit(&ndrp->r_rwlock); 7661 return (EINTR); 7662 } 7663 } 7664 7665 /* 7666 * Lookup the target file. If it exists, it needs to be 7667 * checked to see whether it is a mount point and whether 7668 * it is active (open). 7669 */ 7670 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7671 if (!error) { 7672 int isactive; 7673 7674 ASSERT(nfs4_consistent_type(nvp)); 7675 /* 7676 * If this file has been mounted on, then just 7677 * return busy because renaming to it would remove 7678 * the mounted file system from the name space. 7679 */ 7680 if (vn_ismntpt(nvp)) { 7681 VN_RELE(nvp); 7682 nfs_rw_exit(&odrp->r_rwlock); 7683 nfs_rw_exit(&ndrp->r_rwlock); 7684 return (EBUSY); 7685 } 7686 7687 /* 7688 * First just remove the entry from the name cache, as it 7689 * is most likely the only entry for this vp. 7690 */ 7691 dnlc_remove(ndvp, nnm); 7692 7693 rp = VTOR4(nvp); 7694 7695 if (nvp->v_type != VREG) { 7696 /* 7697 * Purge the name cache of all references to this vnode 7698 * so that we can check the reference count to infer 7699 * whether it is active or not. 7700 */ 7701 if (nvp->v_count > 1) 7702 dnlc_purge_vp(nvp); 7703 7704 isactive = nvp->v_count > 1; 7705 } else { 7706 mutex_enter(&rp->r_os_lock); 7707 isactive = list_head(&rp->r_open_streams) != NULL; 7708 mutex_exit(&rp->r_os_lock); 7709 } 7710 7711 /* 7712 * If the vnode is active and is not a directory, 7713 * arrange to rename it to a 7714 * temporary file so that it will continue to be 7715 * accessible. This implements the "unlink-open-file" 7716 * semantics for the target of a rename operation. 7717 * Before doing this though, make sure that the 7718 * source and target files are not already the same. 7719 */ 7720 if (isactive && nvp->v_type != VDIR) { 7721 /* 7722 * Lookup the source name. 7723 */ 7724 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7725 7726 /* 7727 * The source name *should* already exist. 7728 */ 7729 if (error) { 7730 VN_RELE(nvp); 7731 nfs_rw_exit(&odrp->r_rwlock); 7732 nfs_rw_exit(&ndrp->r_rwlock); 7733 return (error); 7734 } 7735 7736 ASSERT(nfs4_consistent_type(ovp)); 7737 7738 /* 7739 * Compare the two vnodes. If they are the same, 7740 * just release all held vnodes and return success. 7741 */ 7742 if (VN_CMP(ovp, nvp)) { 7743 VN_RELE(ovp); 7744 VN_RELE(nvp); 7745 nfs_rw_exit(&odrp->r_rwlock); 7746 nfs_rw_exit(&ndrp->r_rwlock); 7747 return (0); 7748 } 7749 7750 /* 7751 * Can't mix and match directories and non- 7752 * directories in rename operations. We already 7753 * know that the target is not a directory. If 7754 * the source is a directory, return an error. 7755 */ 7756 if (ovp->v_type == VDIR) { 7757 VN_RELE(ovp); 7758 VN_RELE(nvp); 7759 nfs_rw_exit(&odrp->r_rwlock); 7760 nfs_rw_exit(&ndrp->r_rwlock); 7761 return (ENOTDIR); 7762 } 7763 link_call: 7764 /* 7765 * The target file exists, is not the same as 7766 * the source file, and is active. We first 7767 * try to Link it to a temporary filename to 7768 * avoid having the server removing the file 7769 * completely (which could cause data loss to 7770 * the user's POV in the event the Rename fails 7771 * -- see bug 1165874). 7772 */ 7773 /* 7774 * The do_link and did_link booleans are 7775 * introduced in the event we get NFS4ERR_FILE_OPEN 7776 * returned for the Rename. Some servers can 7777 * not Rename over an Open file, so they return 7778 * this error. The client needs to Remove the 7779 * newly created Link and do two Renames, just 7780 * as if the server didn't support LINK. 7781 */ 7782 tmpname = newname(); 7783 error = 0; 7784 7785 if (do_link) { 7786 error = nfs4_link(ndvp, nvp, tmpname, cr, 7787 NULL, 0); 7788 } 7789 if (error == EOPNOTSUPP || !do_link) { 7790 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7791 cr, NULL, 0); 7792 did_link = 0; 7793 } else { 7794 did_link = 1; 7795 } 7796 if (error) { 7797 kmem_free(tmpname, MAXNAMELEN); 7798 VN_RELE(ovp); 7799 VN_RELE(nvp); 7800 nfs_rw_exit(&odrp->r_rwlock); 7801 nfs_rw_exit(&ndrp->r_rwlock); 7802 return (error); 7803 } 7804 7805 mutex_enter(&rp->r_statelock); 7806 if (rp->r_unldvp == NULL) { 7807 VN_HOLD(ndvp); 7808 rp->r_unldvp = ndvp; 7809 if (rp->r_unlcred != NULL) 7810 crfree(rp->r_unlcred); 7811 crhold(cr); 7812 rp->r_unlcred = cr; 7813 rp->r_unlname = tmpname; 7814 } else { 7815 if (rp->r_unlname) 7816 kmem_free(rp->r_unlname, MAXNAMELEN); 7817 rp->r_unlname = tmpname; 7818 } 7819 mutex_exit(&rp->r_statelock); 7820 } 7821 7822 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7823 7824 ASSERT(nfs4_consistent_type(nvp)); 7825 } 7826 7827 if (ovp == NULL) { 7828 /* 7829 * When renaming directories to be a subdirectory of a 7830 * different parent, the dnlc entry for ".." will no 7831 * longer be valid, so it must be removed. 7832 * 7833 * We do a lookup here to determine whether we are renaming 7834 * a directory and we need to check if we are renaming 7835 * an unlinked file. This might have already been done 7836 * in previous code, so we check ovp == NULL to avoid 7837 * doing it twice. 7838 */ 7839 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7840 /* 7841 * The source name *should* already exist. 7842 */ 7843 if (error) { 7844 nfs_rw_exit(&odrp->r_rwlock); 7845 nfs_rw_exit(&ndrp->r_rwlock); 7846 if (nvp) { 7847 VN_RELE(nvp); 7848 } 7849 return (error); 7850 } 7851 ASSERT(ovp != NULL); 7852 ASSERT(nfs4_consistent_type(ovp)); 7853 } 7854 7855 /* 7856 * Is the object being renamed a dir, and if so, is 7857 * it being renamed to a child of itself? The underlying 7858 * fs should ultimately return EINVAL for this case; 7859 * however, buggy beta non-Solaris NFSv4 servers at 7860 * interop testing events have allowed this behavior, 7861 * and it caused our client to panic due to a recursive 7862 * mutex_enter in fn_move. 7863 * 7864 * The tedious locking in fn_move could be changed to 7865 * deal with this case, and the client could avoid the 7866 * panic; however, the client would just confuse itself 7867 * later and misbehave. A better way to handle the broken 7868 * server is to detect this condition and return EINVAL 7869 * without ever sending the the bogus rename to the server. 7870 * We know the rename is invalid -- just fail it now. 7871 */ 7872 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7873 VN_RELE(ovp); 7874 nfs_rw_exit(&odrp->r_rwlock); 7875 nfs_rw_exit(&ndrp->r_rwlock); 7876 if (nvp) { 7877 VN_RELE(nvp); 7878 } 7879 return (EINVAL); 7880 } 7881 7882 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7883 7884 /* 7885 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7886 * possible for the filehandle to change due to the rename. 7887 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7888 * the fh will not change because of the rename, but we still need 7889 * to update its rnode entry with the new name for 7890 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7891 * has no effect on these for now, but for future improvements, 7892 * we might want to use it too to simplify handling of files 7893 * that are open with that flag on. (XXX) 7894 */ 7895 mi = VTOMI4(odvp); 7896 if (NFS4_VOLATILE_FH(mi)) 7897 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7898 &stat); 7899 else 7900 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7901 &stat); 7902 7903 ASSERT(nfs4_consistent_type(odvp)); 7904 ASSERT(nfs4_consistent_type(ndvp)); 7905 ASSERT(nfs4_consistent_type(ovp)); 7906 7907 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7908 do_link = 0; 7909 /* 7910 * Before the 'link_call' code, we did a nfs4_lookup 7911 * that puts a VN_HOLD on nvp. After the nfs4_link 7912 * call we call VN_RELE to match that hold. We need 7913 * to place an additional VN_HOLD here since we will 7914 * be hitting that VN_RELE again. 7915 */ 7916 VN_HOLD(nvp); 7917 7918 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 7919 7920 /* Undo the unlinked file naming stuff we just did */ 7921 mutex_enter(&rp->r_statelock); 7922 if (rp->r_unldvp) { 7923 VN_RELE(ndvp); 7924 rp->r_unldvp = NULL; 7925 if (rp->r_unlcred != NULL) 7926 crfree(rp->r_unlcred); 7927 rp->r_unlcred = NULL; 7928 /* rp->r_unlanme points to tmpname */ 7929 if (rp->r_unlname) 7930 kmem_free(rp->r_unlname, MAXNAMELEN); 7931 rp->r_unlname = NULL; 7932 } 7933 mutex_exit(&rp->r_statelock); 7934 7935 if (nvp) { 7936 VN_RELE(nvp); 7937 } 7938 goto link_call; 7939 } 7940 7941 if (error) { 7942 VN_RELE(ovp); 7943 nfs_rw_exit(&odrp->r_rwlock); 7944 nfs_rw_exit(&ndrp->r_rwlock); 7945 if (nvp) { 7946 VN_RELE(nvp); 7947 } 7948 return (error); 7949 } 7950 7951 /* 7952 * when renaming directories to be a subdirectory of a 7953 * different parent, the dnlc entry for ".." will no 7954 * longer be valid, so it must be removed 7955 */ 7956 rp = VTOR4(ovp); 7957 if (ndvp != odvp) { 7958 if (ovp->v_type == VDIR) { 7959 dnlc_remove(ovp, ".."); 7960 if (rp->r_dir != NULL) 7961 nfs4_purge_rddir_cache(ovp); 7962 } 7963 } 7964 7965 /* 7966 * If we are renaming the unlinked file, update the 7967 * r_unldvp and r_unlname as needed. 7968 */ 7969 mutex_enter(&rp->r_statelock); 7970 if (rp->r_unldvp != NULL) { 7971 if (strcmp(rp->r_unlname, onm) == 0) { 7972 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 7973 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 7974 if (ndvp != rp->r_unldvp) { 7975 VN_RELE(rp->r_unldvp); 7976 rp->r_unldvp = ndvp; 7977 VN_HOLD(ndvp); 7978 } 7979 } 7980 } 7981 mutex_exit(&rp->r_statelock); 7982 7983 /* 7984 * Notify the rename vnevents to source vnode, and to the target 7985 * vnode if it already existed. 7986 */ 7987 if (error == 0) { 7988 vnode_t *tvp; 7989 rnode4_t *trp; 7990 /* 7991 * Notify the vnode. Each links is represented by 7992 * a different vnode, in nfsv4. 7993 */ 7994 if (nvp) { 7995 trp = VTOR4(nvp); 7996 tvp = nvp; 7997 if (IS_SHADOW(nvp, trp)) 7998 tvp = RTOV4(trp); 7999 vnevent_rename_dest(tvp, ndvp, nnm, ct); 8000 } 8001 8002 /* 8003 * if the source and destination directory are not the 8004 * same notify the destination directory. 8005 */ 8006 if (VTOR4(odvp) != VTOR4(ndvp)) { 8007 trp = VTOR4(ndvp); 8008 tvp = ndvp; 8009 if (IS_SHADOW(ndvp, trp)) 8010 tvp = RTOV4(trp); 8011 vnevent_rename_dest_dir(tvp, ct); 8012 } 8013 8014 trp = VTOR4(ovp); 8015 tvp = ovp; 8016 if (IS_SHADOW(ovp, trp)) 8017 tvp = RTOV4(trp); 8018 vnevent_rename_src(tvp, odvp, onm, ct); 8019 } 8020 8021 if (nvp) { 8022 VN_RELE(nvp); 8023 } 8024 VN_RELE(ovp); 8025 8026 nfs_rw_exit(&odrp->r_rwlock); 8027 nfs_rw_exit(&ndrp->r_rwlock); 8028 8029 return (error); 8030 } 8031 8032 /* 8033 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8034 * when it is known that the filehandle is persistent through rename. 8035 * 8036 * Rename requires that the current fh be the target directory and the 8037 * saved fh be the source directory. After the operation, the current fh 8038 * is unchanged. 8039 * The compound op structure for persistent fh rename is: 8040 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8041 * Rather than bother with the directory postop args, we'll simply 8042 * update that a change occurred in the cache, so no post-op getattrs. 8043 */ 8044 static int 8045 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8046 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8047 { 8048 COMPOUND4args_clnt args; 8049 COMPOUND4res_clnt res, *resp = NULL; 8050 nfs_argop4 *argop; 8051 nfs_resop4 *resop; 8052 int doqueue, argoplist_size; 8053 mntinfo4_t *mi; 8054 rnode4_t *odrp = VTOR4(odvp); 8055 rnode4_t *ndrp = VTOR4(ndvp); 8056 RENAME4res *rn_res; 8057 bool_t needrecov; 8058 nfs4_recov_state_t recov_state; 8059 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8060 dirattr_info_t dinfo, *dinfop; 8061 8062 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8063 8064 recov_state.rs_flags = 0; 8065 recov_state.rs_num_retry_despite_err = 0; 8066 8067 /* 8068 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8069 * 8070 * If source/target are different dirs, then append putfh(src); getattr 8071 */ 8072 args.array_len = (odvp == ndvp) ? 5 : 7; 8073 argoplist_size = args.array_len * sizeof (nfs_argop4); 8074 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8075 8076 recov_retry: 8077 *statp = NFS4_OK; 8078 8079 /* No need to Lookup the file, persistent fh */ 8080 args.ctag = TAG_RENAME; 8081 8082 mi = VTOMI4(odvp); 8083 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8084 if (e.error) { 8085 kmem_free(argop, argoplist_size); 8086 return (e.error); 8087 } 8088 8089 /* 0: putfh source directory */ 8090 argop[0].argop = OP_CPUTFH; 8091 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8092 8093 /* 1: Save source fh to free up current for target */ 8094 argop[1].argop = OP_SAVEFH; 8095 8096 /* 2: putfh targetdir */ 8097 argop[2].argop = OP_CPUTFH; 8098 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8099 8100 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8101 argop[3].argop = OP_CRENAME; 8102 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8103 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8104 8105 /* 4: getattr (targetdir) */ 8106 argop[4].argop = OP_GETATTR; 8107 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8108 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8109 8110 if (ndvp != odvp) { 8111 8112 /* 5: putfh (sourcedir) */ 8113 argop[5].argop = OP_CPUTFH; 8114 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8115 8116 /* 6: getattr (sourcedir) */ 8117 argop[6].argop = OP_GETATTR; 8118 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8119 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8120 } 8121 8122 dnlc_remove(odvp, onm); 8123 dnlc_remove(ndvp, nnm); 8124 8125 doqueue = 1; 8126 dinfo.di_time_call = gethrtime(); 8127 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8128 8129 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8130 if (e.error) { 8131 PURGE_ATTRCACHE4(odvp); 8132 PURGE_ATTRCACHE4(ndvp); 8133 } else { 8134 *statp = res.status; 8135 } 8136 8137 if (needrecov) { 8138 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8139 OP_RENAME, NULL) == FALSE) { 8140 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8141 if (!e.error) 8142 (void) xdr_free(xdr_COMPOUND4res_clnt, 8143 (caddr_t)&res); 8144 goto recov_retry; 8145 } 8146 } 8147 8148 if (!e.error) { 8149 resp = &res; 8150 /* 8151 * as long as OP_RENAME 8152 */ 8153 if (res.status != NFS4_OK && res.array_len <= 4) { 8154 e.error = geterrno4(res.status); 8155 PURGE_ATTRCACHE4(odvp); 8156 PURGE_ATTRCACHE4(ndvp); 8157 /* 8158 * System V defines rename to return EEXIST, not 8159 * ENOTEMPTY if the target directory is not empty. 8160 * Over the wire, the error is NFSERR_ENOTEMPTY 8161 * which geterrno4 maps to ENOTEMPTY. 8162 */ 8163 if (e.error == ENOTEMPTY) 8164 e.error = EEXIST; 8165 } else { 8166 8167 resop = &res.array[3]; /* rename res */ 8168 rn_res = &resop->nfs_resop4_u.oprename; 8169 8170 if (res.status == NFS4_OK) { 8171 /* 8172 * Update target attribute, readdir and dnlc 8173 * caches. 8174 */ 8175 dinfo.di_garp = 8176 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8177 dinfo.di_cred = cr; 8178 dinfop = &dinfo; 8179 } else 8180 dinfop = NULL; 8181 8182 nfs4_update_dircaches(&rn_res->target_cinfo, 8183 ndvp, NULL, NULL, dinfop); 8184 8185 /* 8186 * Update source attribute, readdir and dnlc caches 8187 * 8188 */ 8189 if (ndvp != odvp) { 8190 if (dinfop) 8191 dinfo.di_garp = 8192 &(res.array[6].nfs_resop4_u. 8193 opgetattr.ga_res); 8194 8195 nfs4_update_dircaches(&rn_res->source_cinfo, 8196 odvp, NULL, NULL, dinfop); 8197 } 8198 8199 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8200 nnm); 8201 } 8202 } 8203 8204 if (resp) 8205 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8206 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8207 kmem_free(argop, argoplist_size); 8208 8209 return (e.error); 8210 } 8211 8212 /* 8213 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8214 * it is possible for the filehandle to change due to the rename. 8215 * 8216 * The compound req in this case includes a post-rename lookup and getattr 8217 * to ensure that we have the correct fh and attributes for the object. 8218 * 8219 * Rename requires that the current fh be the target directory and the 8220 * saved fh be the source directory. After the operation, the current fh 8221 * is unchanged. 8222 * 8223 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8224 * update the filehandle for the renamed object. We also get the old 8225 * filehandle for historical reasons; this should be taken out sometime. 8226 * This results in a rather cumbersome compound... 8227 * 8228 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8229 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8230 * 8231 */ 8232 static int 8233 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8234 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8235 { 8236 COMPOUND4args_clnt args; 8237 COMPOUND4res_clnt res, *resp = NULL; 8238 int argoplist_size; 8239 nfs_argop4 *argop; 8240 nfs_resop4 *resop; 8241 int doqueue; 8242 mntinfo4_t *mi; 8243 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8244 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8245 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8246 RENAME4res *rn_res; 8247 GETFH4res *ngf_res; 8248 bool_t needrecov; 8249 nfs4_recov_state_t recov_state; 8250 hrtime_t t; 8251 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8252 dirattr_info_t dinfo, *dinfop = &dinfo; 8253 8254 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8255 8256 recov_state.rs_flags = 0; 8257 recov_state.rs_num_retry_despite_err = 0; 8258 8259 recov_retry: 8260 *statp = NFS4_OK; 8261 8262 /* 8263 * There is a window between the RPC and updating the path and 8264 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8265 * code, so that it doesn't try to use the old path during that 8266 * window. 8267 */ 8268 mutex_enter(&orp->r_statelock); 8269 while (orp->r_flags & R4RECEXPFH) { 8270 klwp_t *lwp = ttolwp(curthread); 8271 8272 if (lwp != NULL) 8273 lwp->lwp_nostop++; 8274 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8275 mutex_exit(&orp->r_statelock); 8276 if (lwp != NULL) 8277 lwp->lwp_nostop--; 8278 return (EINTR); 8279 } 8280 if (lwp != NULL) 8281 lwp->lwp_nostop--; 8282 } 8283 orp->r_flags |= R4RECEXPFH; 8284 mutex_exit(&orp->r_statelock); 8285 8286 mi = VTOMI4(odvp); 8287 8288 args.ctag = TAG_RENAME_VFH; 8289 args.array_len = (odvp == ndvp) ? 10 : 12; 8290 argoplist_size = args.array_len * sizeof (nfs_argop4); 8291 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8292 8293 /* 8294 * Rename ops: 8295 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8296 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8297 * LOOKUP(trgt), GETFH(new), GETATTR, 8298 * 8299 * if (odvp != ndvp) 8300 * add putfh(sourcedir), getattr(sourcedir) } 8301 */ 8302 args.array = argop; 8303 8304 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8305 &recov_state, NULL); 8306 if (e.error) { 8307 kmem_free(argop, argoplist_size); 8308 mutex_enter(&orp->r_statelock); 8309 orp->r_flags &= ~R4RECEXPFH; 8310 cv_broadcast(&orp->r_cv); 8311 mutex_exit(&orp->r_statelock); 8312 return (e.error); 8313 } 8314 8315 /* 0: putfh source directory */ 8316 argop[0].argop = OP_CPUTFH; 8317 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8318 8319 /* 1: Save source fh to free up current for target */ 8320 argop[1].argop = OP_SAVEFH; 8321 8322 /* 2: Lookup pre-rename fh of renamed object */ 8323 argop[2].argop = OP_CLOOKUP; 8324 argop[2].nfs_argop4_u.opclookup.cname = onm; 8325 8326 /* 3: getfh fh of renamed object (before rename) */ 8327 argop[3].argop = OP_GETFH; 8328 8329 /* 4: putfh targetdir */ 8330 argop[4].argop = OP_CPUTFH; 8331 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8332 8333 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8334 argop[5].argop = OP_CRENAME; 8335 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8336 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8337 8338 /* 6: getattr of target dir (post op attrs) */ 8339 argop[6].argop = OP_GETATTR; 8340 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8341 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8342 8343 /* 7: Lookup post-rename fh of renamed object */ 8344 argop[7].argop = OP_CLOOKUP; 8345 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8346 8347 /* 8: getfh fh of renamed object (after rename) */ 8348 argop[8].argop = OP_GETFH; 8349 8350 /* 9: getattr of renamed object */ 8351 argop[9].argop = OP_GETATTR; 8352 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8353 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8354 8355 /* 8356 * If source/target dirs are different, then get new post-op 8357 * attrs for source dir also. 8358 */ 8359 if (ndvp != odvp) { 8360 /* 10: putfh (sourcedir) */ 8361 argop[10].argop = OP_CPUTFH; 8362 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8363 8364 /* 11: getattr (sourcedir) */ 8365 argop[11].argop = OP_GETATTR; 8366 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8367 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8368 } 8369 8370 dnlc_remove(odvp, onm); 8371 dnlc_remove(ndvp, nnm); 8372 8373 doqueue = 1; 8374 t = gethrtime(); 8375 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8376 8377 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8378 if (e.error) { 8379 PURGE_ATTRCACHE4(odvp); 8380 PURGE_ATTRCACHE4(ndvp); 8381 if (!needrecov) { 8382 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8383 &recov_state, needrecov); 8384 goto out; 8385 } 8386 } else { 8387 *statp = res.status; 8388 } 8389 8390 if (needrecov) { 8391 bool_t abort; 8392 8393 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8394 OP_RENAME, NULL); 8395 if (abort == FALSE) { 8396 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8397 &recov_state, needrecov); 8398 kmem_free(argop, argoplist_size); 8399 if (!e.error) 8400 (void) xdr_free(xdr_COMPOUND4res_clnt, 8401 (caddr_t)&res); 8402 mutex_enter(&orp->r_statelock); 8403 orp->r_flags &= ~R4RECEXPFH; 8404 cv_broadcast(&orp->r_cv); 8405 mutex_exit(&orp->r_statelock); 8406 goto recov_retry; 8407 } else { 8408 if (e.error != 0) { 8409 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8410 &recov_state, needrecov); 8411 goto out; 8412 } 8413 /* fall through for res.status case */ 8414 } 8415 } 8416 8417 resp = &res; 8418 /* 8419 * If OP_RENAME (or any prev op) failed, then return an error. 8420 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8421 */ 8422 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8423 /* 8424 * Error in an op other than last Getattr 8425 */ 8426 e.error = geterrno4(res.status); 8427 PURGE_ATTRCACHE4(odvp); 8428 PURGE_ATTRCACHE4(ndvp); 8429 /* 8430 * System V defines rename to return EEXIST, not 8431 * ENOTEMPTY if the target directory is not empty. 8432 * Over the wire, the error is NFSERR_ENOTEMPTY 8433 * which geterrno4 maps to ENOTEMPTY. 8434 */ 8435 if (e.error == ENOTEMPTY) 8436 e.error = EEXIST; 8437 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8438 needrecov); 8439 goto out; 8440 } 8441 8442 /* rename results */ 8443 rn_res = &res.array[5].nfs_resop4_u.oprename; 8444 8445 if (res.status == NFS4_OK) { 8446 /* Update target attribute, readdir and dnlc caches */ 8447 dinfo.di_garp = 8448 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8449 dinfo.di_cred = cr; 8450 dinfo.di_time_call = t; 8451 } else 8452 dinfop = NULL; 8453 8454 /* Update source cache attribute, readdir and dnlc caches */ 8455 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8456 8457 /* Update source cache attribute, readdir and dnlc caches */ 8458 if (ndvp != odvp) { 8459 8460 /* 8461 * If dinfop is non-NULL, then compound succeded, so 8462 * set di_garp to attrs for source dir. dinfop is only 8463 * set to NULL when compound fails. 8464 */ 8465 if (dinfop) 8466 dinfo.di_garp = 8467 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8468 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8469 dinfop); 8470 } 8471 8472 /* 8473 * Update the rnode with the new component name and args, 8474 * and if the file handle changed, also update it with the new fh. 8475 * This is only necessary if the target object has an rnode 8476 * entry and there is no need to create one for it. 8477 */ 8478 resop = &res.array[8]; /* getfh new res */ 8479 ngf_res = &resop->nfs_resop4_u.opgetfh; 8480 8481 /* 8482 * Update the path and filehandle for the renamed object. 8483 */ 8484 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8485 8486 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8487 8488 if (res.status == NFS4_OK) { 8489 resop++; /* getattr res */ 8490 e.error = nfs4_update_attrcache(res.status, 8491 &resop->nfs_resop4_u.opgetattr.ga_res, 8492 t, ovp, cr); 8493 } 8494 8495 out: 8496 kmem_free(argop, argoplist_size); 8497 if (resp) 8498 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8499 mutex_enter(&orp->r_statelock); 8500 orp->r_flags &= ~R4RECEXPFH; 8501 cv_broadcast(&orp->r_cv); 8502 mutex_exit(&orp->r_statelock); 8503 8504 return (e.error); 8505 } 8506 8507 /* ARGSUSED */ 8508 static int 8509 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8510 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8511 { 8512 int error; 8513 vnode_t *vp; 8514 8515 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8516 return (EPERM); 8517 /* 8518 * As ".." has special meaning and rather than send a mkdir 8519 * over the wire to just let the server freak out, we just 8520 * short circuit it here and return EEXIST 8521 */ 8522 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8523 return (EEXIST); 8524 8525 /* 8526 * Decision to get the right gid and setgid bit of the 8527 * new directory is now made in call_nfs4_create_req. 8528 */ 8529 va->va_mask |= AT_MODE; 8530 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8531 if (error) 8532 return (error); 8533 8534 *vpp = vp; 8535 return (0); 8536 } 8537 8538 8539 /* 8540 * rmdir is using the same remove v4 op as does remove. 8541 * Remove requires that the current fh be the target directory. 8542 * After the operation, the current fh is unchanged. 8543 * The compound op structure is: 8544 * PUTFH(targetdir), REMOVE 8545 */ 8546 /*ARGSUSED4*/ 8547 static int 8548 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8549 caller_context_t *ct, int flags) 8550 { 8551 int need_end_op = FALSE; 8552 COMPOUND4args_clnt args; 8553 COMPOUND4res_clnt res, *resp = NULL; 8554 REMOVE4res *rm_res; 8555 nfs_argop4 argop[3]; 8556 nfs_resop4 *resop; 8557 vnode_t *vp; 8558 int doqueue; 8559 mntinfo4_t *mi; 8560 rnode4_t *drp; 8561 bool_t needrecov = FALSE; 8562 nfs4_recov_state_t recov_state; 8563 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8564 dirattr_info_t dinfo, *dinfop; 8565 8566 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8567 return (EPERM); 8568 /* 8569 * As ".." has special meaning and rather than send a rmdir 8570 * over the wire to just let the server freak out, we just 8571 * short circuit it here and return EEXIST 8572 */ 8573 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8574 return (EEXIST); 8575 8576 drp = VTOR4(dvp); 8577 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8578 return (EINTR); 8579 8580 /* 8581 * Attempt to prevent a rmdir(".") from succeeding. 8582 */ 8583 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8584 if (e.error) { 8585 nfs_rw_exit(&drp->r_rwlock); 8586 return (e.error); 8587 } 8588 if (vp == cdir) { 8589 VN_RELE(vp); 8590 nfs_rw_exit(&drp->r_rwlock); 8591 return (EINVAL); 8592 } 8593 8594 /* 8595 * Since nfsv4 remove op works on both files and directories, 8596 * check that the removed object is indeed a directory. 8597 */ 8598 if (vp->v_type != VDIR) { 8599 VN_RELE(vp); 8600 nfs_rw_exit(&drp->r_rwlock); 8601 return (ENOTDIR); 8602 } 8603 8604 /* 8605 * First just remove the entry from the name cache, as it 8606 * is most likely an entry for this vp. 8607 */ 8608 dnlc_remove(dvp, nm); 8609 8610 /* 8611 * If there vnode reference count is greater than one, then 8612 * there may be additional references in the DNLC which will 8613 * need to be purged. First, trying removing the entry for 8614 * the parent directory and see if that removes the additional 8615 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8616 * to completely remove any references to the directory which 8617 * might still exist in the DNLC. 8618 */ 8619 if (vp->v_count > 1) { 8620 dnlc_remove(vp, ".."); 8621 if (vp->v_count > 1) 8622 dnlc_purge_vp(vp); 8623 } 8624 8625 mi = VTOMI4(dvp); 8626 recov_state.rs_flags = 0; 8627 recov_state.rs_num_retry_despite_err = 0; 8628 8629 recov_retry: 8630 args.ctag = TAG_RMDIR; 8631 8632 /* 8633 * Rmdir ops: putfh dir; remove 8634 */ 8635 args.array_len = 3; 8636 args.array = argop; 8637 8638 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8639 if (e.error) { 8640 nfs_rw_exit(&drp->r_rwlock); 8641 return (e.error); 8642 } 8643 need_end_op = TRUE; 8644 8645 /* putfh directory */ 8646 argop[0].argop = OP_CPUTFH; 8647 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8648 8649 /* remove */ 8650 argop[1].argop = OP_CREMOVE; 8651 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8652 8653 /* getattr (postop attrs for dir that contained removed dir) */ 8654 argop[2].argop = OP_GETATTR; 8655 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8656 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8657 8658 dinfo.di_time_call = gethrtime(); 8659 doqueue = 1; 8660 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8661 8662 PURGE_ATTRCACHE4(vp); 8663 8664 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8665 if (e.error) { 8666 PURGE_ATTRCACHE4(dvp); 8667 } 8668 8669 if (needrecov) { 8670 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8671 NULL, OP_REMOVE, NULL) == FALSE) { 8672 if (!e.error) 8673 (void) xdr_free(xdr_COMPOUND4res_clnt, 8674 (caddr_t)&res); 8675 8676 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8677 needrecov); 8678 need_end_op = FALSE; 8679 goto recov_retry; 8680 } 8681 } 8682 8683 if (!e.error) { 8684 resp = &res; 8685 8686 /* 8687 * Only return error if first 2 ops (OP_REMOVE or earlier) 8688 * failed. 8689 */ 8690 if (res.status != NFS4_OK && res.array_len <= 2) { 8691 e.error = geterrno4(res.status); 8692 PURGE_ATTRCACHE4(dvp); 8693 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8694 &recov_state, needrecov); 8695 need_end_op = FALSE; 8696 nfs4_purge_stale_fh(e.error, dvp, cr); 8697 /* 8698 * System V defines rmdir to return EEXIST, not 8699 * ENOTEMPTY if the directory is not empty. Over 8700 * the wire, the error is NFSERR_ENOTEMPTY which 8701 * geterrno4 maps to ENOTEMPTY. 8702 */ 8703 if (e.error == ENOTEMPTY) 8704 e.error = EEXIST; 8705 } else { 8706 resop = &res.array[1]; /* remove res */ 8707 rm_res = &resop->nfs_resop4_u.opremove; 8708 8709 if (res.status == NFS4_OK) { 8710 resop = &res.array[2]; /* dir attrs */ 8711 dinfo.di_garp = 8712 &resop->nfs_resop4_u.opgetattr.ga_res; 8713 dinfo.di_cred = cr; 8714 dinfop = &dinfo; 8715 } else 8716 dinfop = NULL; 8717 8718 /* Update dir attribute, readdir and dnlc caches */ 8719 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8720 dinfop); 8721 8722 /* destroy rddir cache for dir that was removed */ 8723 if (VTOR4(vp)->r_dir != NULL) 8724 nfs4_purge_rddir_cache(vp); 8725 } 8726 } 8727 8728 if (need_end_op) 8729 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8730 8731 nfs_rw_exit(&drp->r_rwlock); 8732 8733 if (resp) 8734 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8735 8736 if (e.error == 0) { 8737 vnode_t *tvp; 8738 rnode4_t *trp; 8739 trp = VTOR4(vp); 8740 tvp = vp; 8741 if (IS_SHADOW(vp, trp)) 8742 tvp = RTOV4(trp); 8743 vnevent_rmdir(tvp, dvp, nm, ct); 8744 } 8745 8746 VN_RELE(vp); 8747 8748 return (e.error); 8749 } 8750 8751 /* ARGSUSED */ 8752 static int 8753 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8754 caller_context_t *ct, int flags) 8755 { 8756 int error; 8757 vnode_t *vp; 8758 rnode4_t *rp; 8759 char *contents; 8760 mntinfo4_t *mi = VTOMI4(dvp); 8761 8762 if (nfs_zone() != mi->mi_zone) 8763 return (EPERM); 8764 if (!(mi->mi_flags & MI4_SYMLINK)) 8765 return (EOPNOTSUPP); 8766 8767 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8768 if (error) 8769 return (error); 8770 8771 ASSERT(nfs4_consistent_type(vp)); 8772 rp = VTOR4(vp); 8773 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8774 8775 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8776 8777 if (contents != NULL) { 8778 mutex_enter(&rp->r_statelock); 8779 if (rp->r_symlink.contents == NULL) { 8780 rp->r_symlink.len = strlen(tnm); 8781 bcopy(tnm, contents, rp->r_symlink.len); 8782 rp->r_symlink.contents = contents; 8783 rp->r_symlink.size = MAXPATHLEN; 8784 mutex_exit(&rp->r_statelock); 8785 } else { 8786 mutex_exit(&rp->r_statelock); 8787 kmem_free((void *)contents, MAXPATHLEN); 8788 } 8789 } 8790 } 8791 VN_RELE(vp); 8792 8793 return (error); 8794 } 8795 8796 8797 /* 8798 * Read directory entries. 8799 * There are some weird things to look out for here. The uio_loffset 8800 * field is either 0 or it is the offset returned from a previous 8801 * readdir. It is an opaque value used by the server to find the 8802 * correct directory block to read. The count field is the number 8803 * of blocks to read on the server. This is advisory only, the server 8804 * may return only one block's worth of entries. Entries may be compressed 8805 * on the server. 8806 */ 8807 /* ARGSUSED */ 8808 static int 8809 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8810 caller_context_t *ct, int flags) 8811 { 8812 int error; 8813 uint_t count; 8814 rnode4_t *rp; 8815 rddir4_cache *rdc; 8816 rddir4_cache *rrdc; 8817 8818 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8819 return (EIO); 8820 rp = VTOR4(vp); 8821 8822 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8823 8824 /* 8825 * Make sure that the directory cache is valid. 8826 */ 8827 if (rp->r_dir != NULL) { 8828 if (nfs_disable_rddir_cache != 0) { 8829 /* 8830 * Setting nfs_disable_rddir_cache in /etc/system 8831 * allows interoperability with servers that do not 8832 * properly update the attributes of directories. 8833 * Any cached information gets purged before an 8834 * access is made to it. 8835 */ 8836 nfs4_purge_rddir_cache(vp); 8837 } 8838 8839 error = nfs4_validate_caches(vp, cr); 8840 if (error) 8841 return (error); 8842 } 8843 8844 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8845 8846 /* 8847 * Short circuit last readdir which always returns 0 bytes. 8848 * This can be done after the directory has been read through 8849 * completely at least once. This will set r_direof which 8850 * can be used to find the value of the last cookie. 8851 */ 8852 mutex_enter(&rp->r_statelock); 8853 if (rp->r_direof != NULL && 8854 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8855 mutex_exit(&rp->r_statelock); 8856 #ifdef DEBUG 8857 nfs4_readdir_cache_shorts++; 8858 #endif 8859 if (eofp) 8860 *eofp = 1; 8861 return (0); 8862 } 8863 8864 /* 8865 * Look for a cache entry. Cache entries are identified 8866 * by the NFS cookie value and the byte count requested. 8867 */ 8868 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8869 8870 /* 8871 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8872 */ 8873 if (rdc == NULL) { 8874 mutex_exit(&rp->r_statelock); 8875 return (EINTR); 8876 } 8877 8878 /* 8879 * Check to see if we need to fill this entry in. 8880 */ 8881 if (rdc->flags & RDDIRREQ) { 8882 rdc->flags &= ~RDDIRREQ; 8883 rdc->flags |= RDDIR; 8884 mutex_exit(&rp->r_statelock); 8885 8886 /* 8887 * Do the readdir. 8888 */ 8889 nfs4readdir(vp, rdc, cr); 8890 8891 /* 8892 * Reacquire the lock, so that we can continue 8893 */ 8894 mutex_enter(&rp->r_statelock); 8895 /* 8896 * The entry is now complete 8897 */ 8898 rdc->flags &= ~RDDIR; 8899 } 8900 8901 ASSERT(!(rdc->flags & RDDIR)); 8902 8903 /* 8904 * If an error occurred while attempting 8905 * to fill the cache entry, mark the entry invalid and 8906 * just return the error. 8907 */ 8908 if (rdc->error) { 8909 error = rdc->error; 8910 rdc->flags |= RDDIRREQ; 8911 rddir4_cache_rele(rp, rdc); 8912 mutex_exit(&rp->r_statelock); 8913 return (error); 8914 } 8915 8916 /* 8917 * The cache entry is complete and good, 8918 * copyout the dirent structs to the calling 8919 * thread. 8920 */ 8921 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 8922 8923 /* 8924 * If no error occurred during the copyout, 8925 * update the offset in the uio struct to 8926 * contain the value of the next NFS 4 cookie 8927 * and set the eof value appropriately. 8928 */ 8929 if (!error) { 8930 uiop->uio_loffset = rdc->nfs4_ncookie; 8931 if (eofp) 8932 *eofp = rdc->eof; 8933 } 8934 8935 /* 8936 * Decide whether to do readahead. Don't if we 8937 * have already read to the end of directory. 8938 */ 8939 if (rdc->eof) { 8940 /* 8941 * Make the entry the direof only if it is cached 8942 */ 8943 if (rdc->flags & RDDIRCACHED) 8944 rp->r_direof = rdc; 8945 rddir4_cache_rele(rp, rdc); 8946 mutex_exit(&rp->r_statelock); 8947 return (error); 8948 } 8949 8950 /* Determine if a readdir readahead should be done */ 8951 if (!(rp->r_flags & R4LOOKUP)) { 8952 rddir4_cache_rele(rp, rdc); 8953 mutex_exit(&rp->r_statelock); 8954 return (error); 8955 } 8956 8957 /* 8958 * Now look for a readahead entry. 8959 * 8960 * Check to see whether we found an entry for the readahead. 8961 * If so, we don't need to do anything further, so free the new 8962 * entry if one was allocated. Otherwise, allocate a new entry, add 8963 * it to the cache, and then initiate an asynchronous readdir 8964 * operation to fill it. 8965 */ 8966 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 8967 8968 /* 8969 * A readdir cache entry could not be obtained for the readahead. In 8970 * this case we skip the readahead and return. 8971 */ 8972 if (rrdc == NULL) { 8973 rddir4_cache_rele(rp, rdc); 8974 mutex_exit(&rp->r_statelock); 8975 return (error); 8976 } 8977 8978 /* 8979 * Check to see if we need to fill this entry in. 8980 */ 8981 if (rrdc->flags & RDDIRREQ) { 8982 rrdc->flags &= ~RDDIRREQ; 8983 rrdc->flags |= RDDIR; 8984 rddir4_cache_rele(rp, rdc); 8985 mutex_exit(&rp->r_statelock); 8986 #ifdef DEBUG 8987 nfs4_readdir_readahead++; 8988 #endif 8989 /* 8990 * Do the readdir. 8991 */ 8992 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 8993 return (error); 8994 } 8995 8996 rddir4_cache_rele(rp, rrdc); 8997 rddir4_cache_rele(rp, rdc); 8998 mutex_exit(&rp->r_statelock); 8999 return (error); 9000 } 9001 9002 static int 9003 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9004 { 9005 int error; 9006 rnode4_t *rp; 9007 9008 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9009 9010 rp = VTOR4(vp); 9011 9012 /* 9013 * Obtain the readdir results for the caller. 9014 */ 9015 nfs4readdir(vp, rdc, cr); 9016 9017 mutex_enter(&rp->r_statelock); 9018 /* 9019 * The entry is now complete 9020 */ 9021 rdc->flags &= ~RDDIR; 9022 9023 error = rdc->error; 9024 if (error) 9025 rdc->flags |= RDDIRREQ; 9026 rddir4_cache_rele(rp, rdc); 9027 mutex_exit(&rp->r_statelock); 9028 9029 return (error); 9030 } 9031 9032 /* 9033 * Read directory entries. 9034 * There are some weird things to look out for here. The uio_loffset 9035 * field is either 0 or it is the offset returned from a previous 9036 * readdir. It is an opaque value used by the server to find the 9037 * correct directory block to read. The count field is the number 9038 * of blocks to read on the server. This is advisory only, the server 9039 * may return only one block's worth of entries. Entries may be compressed 9040 * on the server. 9041 * 9042 * Generates the following compound request: 9043 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9044 * must include a Lookupp as well. In this case, send: 9045 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9046 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9047 * 9048 * Get complete attributes and filehandles for entries if this is the 9049 * first read of the directory. Otherwise, just get fileid's. 9050 */ 9051 static void 9052 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9053 { 9054 COMPOUND4args_clnt args; 9055 COMPOUND4res_clnt res; 9056 READDIR4args *rargs; 9057 READDIR4res_clnt *rd_res; 9058 bitmap4 rd_bitsval; 9059 nfs_argop4 argop[5]; 9060 nfs_resop4 *resop; 9061 rnode4_t *rp = VTOR4(vp); 9062 mntinfo4_t *mi = VTOMI4(vp); 9063 int doqueue; 9064 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9065 vnode_t *dvp; 9066 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9067 int num_ops, res_opcnt; 9068 bool_t needrecov = FALSE; 9069 nfs4_recov_state_t recov_state; 9070 hrtime_t t; 9071 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9072 9073 ASSERT(nfs_zone() == mi->mi_zone); 9074 ASSERT(rdc->flags & RDDIR); 9075 ASSERT(rdc->entries == NULL); 9076 9077 /* 9078 * If rp were a stub, it should have triggered and caused 9079 * a mount for us to get this far. 9080 */ 9081 ASSERT(!RP_ISSTUB(rp)); 9082 9083 num_ops = 2; 9084 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9085 /* 9086 * Since nfsv4 readdir may not return entries for "." and "..", 9087 * the client must recreate them: 9088 * To find the correct nodeid, do the following: 9089 * For current node, get nodeid from dnlc. 9090 * - if current node is rootvp, set pnodeid to nodeid. 9091 * - else if parent is in the dnlc, get its nodeid from there. 9092 * - else add LOOKUPP+GETATTR to compound. 9093 */ 9094 nodeid = rp->r_attr.va_nodeid; 9095 if (vp->v_flag & VROOT) { 9096 pnodeid = nodeid; /* root of mount point */ 9097 } else { 9098 dvp = dnlc_lookup(vp, ".."); 9099 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9100 /* parent in dnlc cache - no need for otw */ 9101 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9102 } else { 9103 /* 9104 * parent not in dnlc cache, 9105 * do lookupp to get its id 9106 */ 9107 num_ops = 5; 9108 pnodeid = 0; /* set later by getattr parent */ 9109 } 9110 if (dvp) 9111 VN_RELE(dvp); 9112 } 9113 } 9114 recov_state.rs_flags = 0; 9115 recov_state.rs_num_retry_despite_err = 0; 9116 9117 /* Save the original mount point security flavor */ 9118 (void) save_mnt_secinfo(mi->mi_curr_serv); 9119 9120 recov_retry: 9121 args.ctag = TAG_READDIR; 9122 9123 args.array = argop; 9124 args.array_len = num_ops; 9125 9126 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9127 &recov_state, NULL)) { 9128 /* 9129 * If readdir a node that is a stub for a crossed mount point, 9130 * keep the original secinfo flavor for the current file 9131 * system, not the crossed one. 9132 */ 9133 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9134 rdc->error = e.error; 9135 return; 9136 } 9137 9138 /* 9139 * Determine which attrs to request for dirents. This code 9140 * must be protected by nfs4_start/end_fop because of r_server 9141 * (which will change during failover recovery). 9142 * 9143 */ 9144 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9145 /* 9146 * Get all vattr attrs plus filehandle and rdattr_error 9147 */ 9148 rd_bitsval = NFS4_VATTR_MASK | 9149 FATTR4_RDATTR_ERROR_MASK | 9150 FATTR4_FILEHANDLE_MASK; 9151 9152 if (rp->r_flags & R4READDIRWATTR) { 9153 mutex_enter(&rp->r_statelock); 9154 rp->r_flags &= ~R4READDIRWATTR; 9155 mutex_exit(&rp->r_statelock); 9156 } 9157 } else { 9158 servinfo4_t *svp = rp->r_server; 9159 9160 /* 9161 * Already read directory. Use readdir with 9162 * no attrs (except for mounted_on_fileid) for updates. 9163 */ 9164 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9165 9166 /* 9167 * request mounted on fileid if supported, else request 9168 * fileid. maybe we should verify that fileid is supported 9169 * and request something else if not. 9170 */ 9171 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9172 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9173 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9174 nfs_rw_exit(&svp->sv_lock); 9175 } 9176 9177 /* putfh directory fh */ 9178 argop[0].argop = OP_CPUTFH; 9179 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9180 9181 argop[1].argop = OP_READDIR; 9182 rargs = &argop[1].nfs_argop4_u.opreaddir; 9183 /* 9184 * 1 and 2 are reserved for client "." and ".." entry offset. 9185 * cookie 0 should be used over-the-wire to start reading at 9186 * the beginning of the directory excluding "." and "..". 9187 */ 9188 if (rdc->nfs4_cookie == 0 || 9189 rdc->nfs4_cookie == 1 || 9190 rdc->nfs4_cookie == 2) { 9191 rargs->cookie = (nfs_cookie4)0; 9192 rargs->cookieverf = 0; 9193 } else { 9194 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9195 mutex_enter(&rp->r_statelock); 9196 rargs->cookieverf = rp->r_cookieverf4; 9197 mutex_exit(&rp->r_statelock); 9198 } 9199 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9200 rargs->maxcount = mi->mi_tsize; 9201 rargs->attr_request = rd_bitsval; 9202 rargs->rdc = rdc; 9203 rargs->dvp = vp; 9204 rargs->mi = mi; 9205 rargs->cr = cr; 9206 9207 9208 /* 9209 * If count < than the minimum required, we return no entries 9210 * and fail with EINVAL 9211 */ 9212 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9213 rdc->error = EINVAL; 9214 goto out; 9215 } 9216 9217 if (args.array_len == 5) { 9218 /* 9219 * Add lookupp and getattr for parent nodeid. 9220 */ 9221 argop[2].argop = OP_LOOKUPP; 9222 9223 argop[3].argop = OP_GETFH; 9224 9225 /* getattr parent */ 9226 argop[4].argop = OP_GETATTR; 9227 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9228 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9229 } 9230 9231 doqueue = 1; 9232 9233 if (mi->mi_io_kstats) { 9234 mutex_enter(&mi->mi_lock); 9235 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9236 mutex_exit(&mi->mi_lock); 9237 } 9238 9239 /* capture the time of this call */ 9240 rargs->t = t = gethrtime(); 9241 9242 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9243 9244 if (mi->mi_io_kstats) { 9245 mutex_enter(&mi->mi_lock); 9246 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9247 mutex_exit(&mi->mi_lock); 9248 } 9249 9250 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9251 9252 /* 9253 * If RPC error occurred and it isn't an error that 9254 * triggers recovery, then go ahead and fail now. 9255 */ 9256 if (e.error != 0 && !needrecov) { 9257 rdc->error = e.error; 9258 goto out; 9259 } 9260 9261 if (needrecov) { 9262 bool_t abort; 9263 9264 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9265 "nfs4readdir: initiating recovery.\n")); 9266 9267 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9268 NULL, OP_READDIR, NULL); 9269 if (abort == FALSE) { 9270 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9271 &recov_state, needrecov); 9272 if (!e.error) 9273 (void) xdr_free(xdr_COMPOUND4res_clnt, 9274 (caddr_t)&res); 9275 if (rdc->entries != NULL) { 9276 kmem_free(rdc->entries, rdc->entlen); 9277 rdc->entries = NULL; 9278 } 9279 goto recov_retry; 9280 } 9281 9282 if (e.error != 0) { 9283 rdc->error = e.error; 9284 goto out; 9285 } 9286 9287 /* fall through for res.status case */ 9288 } 9289 9290 res_opcnt = res.array_len; 9291 9292 /* 9293 * If compound failed first 2 ops (PUTFH+READDIR), then return 9294 * failure here. Subsequent ops are for filling out dot-dot 9295 * dirent, and if they fail, we still want to give the caller 9296 * the dirents returned by (the successful) READDIR op, so we need 9297 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9298 * 9299 * One example where PUTFH+READDIR ops would succeed but 9300 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9301 * but lacks x. In this case, a POSIX server's VOP_READDIR 9302 * would succeed; however, VOP_LOOKUP(..) would fail since no 9303 * x perm. We need to come up with a non-vendor-specific way 9304 * for a POSIX server to return d_ino from dotdot's dirent if 9305 * client only requests mounted_on_fileid, and just say the 9306 * LOOKUPP succeeded and fill out the GETATTR. However, if 9307 * client requested any mandatory attrs, server would be required 9308 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9309 * for dotdot. 9310 */ 9311 9312 if (res.status) { 9313 if (res_opcnt <= 2) { 9314 e.error = geterrno4(res.status); 9315 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9316 &recov_state, needrecov); 9317 nfs4_purge_stale_fh(e.error, vp, cr); 9318 rdc->error = e.error; 9319 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9320 if (rdc->entries != NULL) { 9321 kmem_free(rdc->entries, rdc->entlen); 9322 rdc->entries = NULL; 9323 } 9324 /* 9325 * If readdir a node that is a stub for a 9326 * crossed mount point, keep the original 9327 * secinfo flavor for the current file system, 9328 * not the crossed one. 9329 */ 9330 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9331 return; 9332 } 9333 } 9334 9335 resop = &res.array[1]; /* readdir res */ 9336 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9337 9338 mutex_enter(&rp->r_statelock); 9339 rp->r_cookieverf4 = rd_res->cookieverf; 9340 mutex_exit(&rp->r_statelock); 9341 9342 /* 9343 * For "." and ".." entries 9344 * e.g. 9345 * seek(cookie=0) -> "." entry with d_off = 1 9346 * seek(cookie=1) -> ".." entry with d_off = 2 9347 */ 9348 if (cookie == (nfs_cookie4) 0) { 9349 if (rd_res->dotp) 9350 rd_res->dotp->d_ino = nodeid; 9351 if (rd_res->dotdotp) 9352 rd_res->dotdotp->d_ino = pnodeid; 9353 } 9354 if (cookie == (nfs_cookie4) 1) { 9355 if (rd_res->dotdotp) 9356 rd_res->dotdotp->d_ino = pnodeid; 9357 } 9358 9359 9360 /* LOOKUPP+GETATTR attemped */ 9361 if (args.array_len == 5 && rd_res->dotdotp) { 9362 if (res.status == NFS4_OK && res_opcnt == 5) { 9363 nfs_fh4 *fhp; 9364 nfs4_sharedfh_t *sfhp; 9365 vnode_t *pvp; 9366 nfs4_ga_res_t *garp; 9367 9368 resop++; /* lookupp */ 9369 resop++; /* getfh */ 9370 fhp = &resop->nfs_resop4_u.opgetfh.object; 9371 9372 resop++; /* getattr of parent */ 9373 9374 /* 9375 * First, take care of finishing the 9376 * readdir results. 9377 */ 9378 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9379 /* 9380 * The d_ino of .. must be the inode number 9381 * of the mounted filesystem. 9382 */ 9383 if (garp->n4g_va.va_mask & AT_NODEID) 9384 rd_res->dotdotp->d_ino = 9385 garp->n4g_va.va_nodeid; 9386 9387 9388 /* 9389 * Next, create the ".." dnlc entry 9390 */ 9391 sfhp = sfh4_get(fhp, mi); 9392 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9393 dnlc_update(vp, "..", pvp); 9394 VN_RELE(pvp); 9395 } 9396 sfh4_rele(&sfhp); 9397 } 9398 } 9399 9400 if (mi->mi_io_kstats) { 9401 mutex_enter(&mi->mi_lock); 9402 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9403 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9404 mutex_exit(&mi->mi_lock); 9405 } 9406 9407 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9408 9409 out: 9410 /* 9411 * If readdir a node that is a stub for a crossed mount point, 9412 * keep the original secinfo flavor for the current file system, 9413 * not the crossed one. 9414 */ 9415 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9416 9417 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9418 } 9419 9420 9421 static int 9422 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9423 { 9424 rnode4_t *rp = VTOR4(bp->b_vp); 9425 int count; 9426 int error; 9427 cred_t *cred_otw = NULL; 9428 offset_t offset; 9429 nfs4_open_stream_t *osp = NULL; 9430 bool_t first_time = TRUE; /* first time getting otw cred */ 9431 bool_t last_time = FALSE; /* last time getting otw cred */ 9432 9433 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9434 9435 DTRACE_IO1(start, struct buf *, bp); 9436 offset = ldbtob(bp->b_lblkno); 9437 9438 if (bp->b_flags & B_READ) { 9439 read_again: 9440 /* 9441 * Releases the osp, if it is provided. 9442 * Puts a hold on the cred_otw and the new osp (if found). 9443 */ 9444 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9445 &first_time, &last_time); 9446 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9447 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9448 readahead, NULL); 9449 crfree(cred_otw); 9450 if (!error) { 9451 if (bp->b_resid) { 9452 /* 9453 * Didn't get it all because we hit EOF, 9454 * zero all the memory beyond the EOF. 9455 */ 9456 /* bzero(rdaddr + */ 9457 bzero(bp->b_un.b_addr + 9458 bp->b_bcount - bp->b_resid, bp->b_resid); 9459 } 9460 mutex_enter(&rp->r_statelock); 9461 if (bp->b_resid == bp->b_bcount && 9462 offset >= rp->r_size) { 9463 /* 9464 * We didn't read anything at all as we are 9465 * past EOF. Return an error indicator back 9466 * but don't destroy the pages (yet). 9467 */ 9468 error = NFS_EOF; 9469 } 9470 mutex_exit(&rp->r_statelock); 9471 } else if (error == EACCES && last_time == FALSE) { 9472 goto read_again; 9473 } 9474 } else { 9475 if (!(rp->r_flags & R4STALE)) { 9476 write_again: 9477 /* 9478 * Releases the osp, if it is provided. 9479 * Puts a hold on the cred_otw and the new 9480 * osp (if found). 9481 */ 9482 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9483 &first_time, &last_time); 9484 mutex_enter(&rp->r_statelock); 9485 count = MIN(bp->b_bcount, rp->r_size - offset); 9486 mutex_exit(&rp->r_statelock); 9487 if (count < 0) 9488 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9489 #ifdef DEBUG 9490 if (count == 0) { 9491 zoneid_t zoneid = getzoneid(); 9492 9493 zcmn_err(zoneid, CE_WARN, 9494 "nfs4_bio: zero length write at %lld", 9495 offset); 9496 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9497 "b_bcount=%ld, file size=%lld", 9498 rp->r_flags, (long)bp->b_bcount, 9499 rp->r_size); 9500 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9501 if (nfs4_bio_do_stop) 9502 debug_enter("nfs4_bio"); 9503 } 9504 #endif 9505 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9506 count, cred_otw, stab_comm); 9507 if (error == EACCES && last_time == FALSE) { 9508 crfree(cred_otw); 9509 goto write_again; 9510 } 9511 bp->b_error = error; 9512 if (error && error != EINTR && 9513 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9514 /* 9515 * Don't print EDQUOT errors on the console. 9516 * Don't print asynchronous EACCES errors. 9517 * Don't print EFBIG errors. 9518 * Print all other write errors. 9519 */ 9520 if (error != EDQUOT && error != EFBIG && 9521 (error != EACCES || 9522 !(bp->b_flags & B_ASYNC))) 9523 nfs4_write_error(bp->b_vp, 9524 error, cred_otw); 9525 /* 9526 * Update r_error and r_flags as appropriate. 9527 * If the error was ESTALE, then mark the 9528 * rnode as not being writeable and save 9529 * the error status. Otherwise, save any 9530 * errors which occur from asynchronous 9531 * page invalidations. Any errors occurring 9532 * from other operations should be saved 9533 * by the caller. 9534 */ 9535 mutex_enter(&rp->r_statelock); 9536 if (error == ESTALE) { 9537 rp->r_flags |= R4STALE; 9538 if (!rp->r_error) 9539 rp->r_error = error; 9540 } else if (!rp->r_error && 9541 (bp->b_flags & 9542 (B_INVAL|B_FORCE|B_ASYNC)) == 9543 (B_INVAL|B_FORCE|B_ASYNC)) { 9544 rp->r_error = error; 9545 } 9546 mutex_exit(&rp->r_statelock); 9547 } 9548 crfree(cred_otw); 9549 } else 9550 error = rp->r_error; 9551 } 9552 9553 if (error != 0 && error != NFS_EOF) 9554 bp->b_flags |= B_ERROR; 9555 9556 if (osp) 9557 open_stream_rele(osp, rp); 9558 9559 DTRACE_IO1(done, struct buf *, bp); 9560 9561 return (error); 9562 } 9563 9564 /* ARGSUSED */ 9565 int 9566 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9567 { 9568 return (EREMOTE); 9569 } 9570 9571 /* ARGSUSED2 */ 9572 int 9573 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9574 { 9575 rnode4_t *rp = VTOR4(vp); 9576 9577 if (!write_lock) { 9578 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9579 return (V_WRITELOCK_FALSE); 9580 } 9581 9582 if ((rp->r_flags & R4DIRECTIO) || 9583 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9584 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9585 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9586 return (V_WRITELOCK_FALSE); 9587 nfs_rw_exit(&rp->r_rwlock); 9588 } 9589 9590 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9591 return (V_WRITELOCK_TRUE); 9592 } 9593 9594 /* ARGSUSED */ 9595 void 9596 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9597 { 9598 rnode4_t *rp = VTOR4(vp); 9599 9600 nfs_rw_exit(&rp->r_rwlock); 9601 } 9602 9603 /* ARGSUSED */ 9604 static int 9605 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9606 { 9607 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9608 return (EIO); 9609 9610 /* 9611 * Because we stuff the readdir cookie into the offset field 9612 * someone may attempt to do an lseek with the cookie which 9613 * we want to succeed. 9614 */ 9615 if (vp->v_type == VDIR) 9616 return (0); 9617 if (*noffp < 0) 9618 return (EINVAL); 9619 return (0); 9620 } 9621 9622 9623 /* 9624 * Return all the pages from [off..off+len) in file 9625 */ 9626 /* ARGSUSED */ 9627 static int 9628 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9629 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9630 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9631 { 9632 rnode4_t *rp; 9633 int error; 9634 mntinfo4_t *mi; 9635 9636 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9637 return (EIO); 9638 rp = VTOR4(vp); 9639 if (IS_SHADOW(vp, rp)) 9640 vp = RTOV4(rp); 9641 9642 if (vp->v_flag & VNOMAP) 9643 return (ENOSYS); 9644 9645 if (protp != NULL) 9646 *protp = PROT_ALL; 9647 9648 /* 9649 * Now validate that the caches are up to date. 9650 */ 9651 if (error = nfs4_validate_caches(vp, cr)) 9652 return (error); 9653 9654 mi = VTOMI4(vp); 9655 retry: 9656 mutex_enter(&rp->r_statelock); 9657 9658 /* 9659 * Don't create dirty pages faster than they 9660 * can be cleaned so that the system doesn't 9661 * get imbalanced. If the async queue is 9662 * maxed out, then wait for it to drain before 9663 * creating more dirty pages. Also, wait for 9664 * any threads doing pagewalks in the vop_getattr 9665 * entry points so that they don't block for 9666 * long periods. 9667 */ 9668 if (rw == S_CREATE) { 9669 while ((mi->mi_max_threads != 0 && 9670 rp->r_awcount > 2 * mi->mi_max_threads) || 9671 rp->r_gcount > 0) 9672 cv_wait(&rp->r_cv, &rp->r_statelock); 9673 } 9674 9675 /* 9676 * If we are getting called as a side effect of an nfs_write() 9677 * operation the local file size might not be extended yet. 9678 * In this case we want to be able to return pages of zeroes. 9679 */ 9680 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9681 NFS4_DEBUG(nfs4_pageio_debug, 9682 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9683 "len=%llu, size=%llu, attrsize =%llu", off, 9684 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9685 mutex_exit(&rp->r_statelock); 9686 return (EFAULT); /* beyond EOF */ 9687 } 9688 9689 mutex_exit(&rp->r_statelock); 9690 9691 if (len <= PAGESIZE) { 9692 error = nfs4_getapage(vp, off, len, protp, pl, plsz, 9693 seg, addr, rw, cr); 9694 NFS4_DEBUG(nfs4_pageio_debug && error, 9695 (CE_NOTE, "getpage error %d; off=%lld, " 9696 "len=%lld", error, off, (u_longlong_t)len)); 9697 } else { 9698 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9699 pl, plsz, seg, addr, rw, cr); 9700 NFS4_DEBUG(nfs4_pageio_debug && error, 9701 (CE_NOTE, "getpages error %d; off=%lld, " 9702 "len=%lld", error, off, (u_longlong_t)len)); 9703 } 9704 9705 switch (error) { 9706 case NFS_EOF: 9707 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9708 goto retry; 9709 case ESTALE: 9710 nfs4_purge_stale_fh(error, vp, cr); 9711 } 9712 9713 return (error); 9714 } 9715 9716 /* 9717 * Called from pvn_getpages or nfs4_getpage to get a particular page. 9718 */ 9719 /* ARGSUSED */ 9720 static int 9721 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9722 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9723 enum seg_rw rw, cred_t *cr) 9724 { 9725 rnode4_t *rp; 9726 uint_t bsize; 9727 struct buf *bp; 9728 page_t *pp; 9729 u_offset_t lbn; 9730 u_offset_t io_off; 9731 u_offset_t blkoff; 9732 u_offset_t rablkoff; 9733 size_t io_len; 9734 uint_t blksize; 9735 int error; 9736 int readahead; 9737 int readahead_issued = 0; 9738 int ra_window; /* readahead window */ 9739 page_t *pagefound; 9740 page_t *savepp; 9741 9742 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9743 return (EIO); 9744 9745 rp = VTOR4(vp); 9746 ASSERT(!IS_SHADOW(vp, rp)); 9747 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9748 9749 reread: 9750 bp = NULL; 9751 pp = NULL; 9752 pagefound = NULL; 9753 9754 if (pl != NULL) 9755 pl[0] = NULL; 9756 9757 error = 0; 9758 lbn = off / bsize; 9759 blkoff = lbn * bsize; 9760 9761 /* 9762 * Queueing up the readahead before doing the synchronous read 9763 * results in a significant increase in read throughput because 9764 * of the increased parallelism between the async threads and 9765 * the process context. 9766 */ 9767 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9768 rw != S_CREATE && 9769 !(vp->v_flag & VNOCACHE)) { 9770 mutex_enter(&rp->r_statelock); 9771 9772 /* 9773 * Calculate the number of readaheads to do. 9774 * a) No readaheads at offset = 0. 9775 * b) Do maximum(nfs4_nra) readaheads when the readahead 9776 * window is closed. 9777 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9778 * upon how far the readahead window is open or close. 9779 * d) No readaheads if rp->r_nextr is not within the scope 9780 * of the readahead window (random i/o). 9781 */ 9782 9783 if (off == 0) 9784 readahead = 0; 9785 else if (blkoff == rp->r_nextr) 9786 readahead = nfs4_nra; 9787 else if (rp->r_nextr > blkoff && 9788 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9789 <= (nfs4_nra - 1))) 9790 readahead = nfs4_nra - ra_window; 9791 else 9792 readahead = 0; 9793 9794 rablkoff = rp->r_nextr; 9795 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9796 mutex_exit(&rp->r_statelock); 9797 if (nfs4_async_readahead(vp, rablkoff + bsize, 9798 addr + (rablkoff + bsize - off), 9799 seg, cr, nfs4_readahead) < 0) { 9800 mutex_enter(&rp->r_statelock); 9801 break; 9802 } 9803 readahead--; 9804 rablkoff += bsize; 9805 /* 9806 * Indicate that we did a readahead so 9807 * readahead offset is not updated 9808 * by the synchronous read below. 9809 */ 9810 readahead_issued = 1; 9811 mutex_enter(&rp->r_statelock); 9812 /* 9813 * set readahead offset to 9814 * offset of last async readahead 9815 * request. 9816 */ 9817 rp->r_nextr = rablkoff; 9818 } 9819 mutex_exit(&rp->r_statelock); 9820 } 9821 9822 again: 9823 if ((pagefound = page_exists(vp, off)) == NULL) { 9824 if (pl == NULL) { 9825 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9826 nfs4_readahead); 9827 } else if (rw == S_CREATE) { 9828 /* 9829 * Block for this page is not allocated, or the offset 9830 * is beyond the current allocation size, or we're 9831 * allocating a swap slot and the page was not found, 9832 * so allocate it and return a zero page. 9833 */ 9834 if ((pp = page_create_va(vp, off, 9835 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9836 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9837 io_len = PAGESIZE; 9838 mutex_enter(&rp->r_statelock); 9839 rp->r_nextr = off + PAGESIZE; 9840 mutex_exit(&rp->r_statelock); 9841 } else { 9842 /* 9843 * Need to go to server to get a block 9844 */ 9845 mutex_enter(&rp->r_statelock); 9846 if (blkoff < rp->r_size && 9847 blkoff + bsize > rp->r_size) { 9848 /* 9849 * If less than a block left in 9850 * file read less than a block. 9851 */ 9852 if (rp->r_size <= off) { 9853 /* 9854 * Trying to access beyond EOF, 9855 * set up to get at least one page. 9856 */ 9857 blksize = off + PAGESIZE - blkoff; 9858 } else 9859 blksize = rp->r_size - blkoff; 9860 } else if ((off == 0) || 9861 (off != rp->r_nextr && !readahead_issued)) { 9862 blksize = PAGESIZE; 9863 blkoff = off; /* block = page here */ 9864 } else 9865 blksize = bsize; 9866 mutex_exit(&rp->r_statelock); 9867 9868 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9869 &io_len, blkoff, blksize, 0); 9870 9871 /* 9872 * Some other thread has entered the page, 9873 * so just use it. 9874 */ 9875 if (pp == NULL) 9876 goto again; 9877 9878 /* 9879 * Now round the request size up to page boundaries. 9880 * This ensures that the entire page will be 9881 * initialized to zeroes if EOF is encountered. 9882 */ 9883 io_len = ptob(btopr(io_len)); 9884 9885 bp = pageio_setup(pp, io_len, vp, B_READ); 9886 ASSERT(bp != NULL); 9887 9888 /* 9889 * pageio_setup should have set b_addr to 0. This 9890 * is correct since we want to do I/O on a page 9891 * boundary. bp_mapin will use this addr to calculate 9892 * an offset, and then set b_addr to the kernel virtual 9893 * address it allocated for us. 9894 */ 9895 ASSERT(bp->b_un.b_addr == 0); 9896 9897 bp->b_edev = 0; 9898 bp->b_dev = 0; 9899 bp->b_lblkno = lbtodb(io_off); 9900 bp->b_file = vp; 9901 bp->b_offset = (offset_t)off; 9902 bp_mapin(bp); 9903 9904 /* 9905 * If doing a write beyond what we believe is EOF, 9906 * don't bother trying to read the pages from the 9907 * server, we'll just zero the pages here. We 9908 * don't check that the rw flag is S_WRITE here 9909 * because some implementations may attempt a 9910 * read access to the buffer before copying data. 9911 */ 9912 mutex_enter(&rp->r_statelock); 9913 if (io_off >= rp->r_size && seg == segkmap) { 9914 mutex_exit(&rp->r_statelock); 9915 bzero(bp->b_un.b_addr, io_len); 9916 } else { 9917 mutex_exit(&rp->r_statelock); 9918 error = nfs4_bio(bp, NULL, cr, FALSE); 9919 } 9920 9921 /* 9922 * Unmap the buffer before freeing it. 9923 */ 9924 bp_mapout(bp); 9925 pageio_done(bp); 9926 9927 savepp = pp; 9928 do { 9929 pp->p_fsdata = C_NOCOMMIT; 9930 } while ((pp = pp->p_next) != savepp); 9931 9932 if (error == NFS_EOF) { 9933 /* 9934 * If doing a write system call just return 9935 * zeroed pages, else user tried to get pages 9936 * beyond EOF, return error. We don't check 9937 * that the rw flag is S_WRITE here because 9938 * some implementations may attempt a read 9939 * access to the buffer before copying data. 9940 */ 9941 if (seg == segkmap) 9942 error = 0; 9943 else 9944 error = EFAULT; 9945 } 9946 9947 if (!readahead_issued && !error) { 9948 mutex_enter(&rp->r_statelock); 9949 rp->r_nextr = io_off + io_len; 9950 mutex_exit(&rp->r_statelock); 9951 } 9952 } 9953 } 9954 9955 out: 9956 if (pl == NULL) 9957 return (error); 9958 9959 if (error) { 9960 if (pp != NULL) 9961 pvn_read_done(pp, B_ERROR); 9962 return (error); 9963 } 9964 9965 if (pagefound) { 9966 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 9967 9968 /* 9969 * Page exists in the cache, acquire the appropriate lock. 9970 * If this fails, start all over again. 9971 */ 9972 if ((pp = page_lookup(vp, off, se)) == NULL) { 9973 #ifdef DEBUG 9974 nfs4_lostpage++; 9975 #endif 9976 goto reread; 9977 } 9978 pl[0] = pp; 9979 pl[1] = NULL; 9980 return (0); 9981 } 9982 9983 if (pp != NULL) 9984 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 9985 9986 return (error); 9987 } 9988 9989 static void 9990 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 9991 cred_t *cr) 9992 { 9993 int error; 9994 page_t *pp; 9995 u_offset_t io_off; 9996 size_t io_len; 9997 struct buf *bp; 9998 uint_t bsize, blksize; 9999 rnode4_t *rp = VTOR4(vp); 10000 page_t *savepp; 10001 10002 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10003 10004 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10005 10006 mutex_enter(&rp->r_statelock); 10007 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 10008 /* 10009 * If less than a block left in file read less 10010 * than a block. 10011 */ 10012 blksize = rp->r_size - blkoff; 10013 } else 10014 blksize = bsize; 10015 mutex_exit(&rp->r_statelock); 10016 10017 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 10018 &io_off, &io_len, blkoff, blksize, 1); 10019 /* 10020 * The isra flag passed to the kluster function is 1, we may have 10021 * gotten a return value of NULL for a variety of reasons (# of free 10022 * pages < minfree, someone entered the page on the vnode etc). In all 10023 * cases, we want to punt on the readahead. 10024 */ 10025 if (pp == NULL) 10026 return; 10027 10028 /* 10029 * Now round the request size up to page boundaries. 10030 * This ensures that the entire page will be 10031 * initialized to zeroes if EOF is encountered. 10032 */ 10033 io_len = ptob(btopr(io_len)); 10034 10035 bp = pageio_setup(pp, io_len, vp, B_READ); 10036 ASSERT(bp != NULL); 10037 10038 /* 10039 * pageio_setup should have set b_addr to 0. This is correct since 10040 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10041 * to calculate an offset, and then set b_addr to the kernel virtual 10042 * address it allocated for us. 10043 */ 10044 ASSERT(bp->b_un.b_addr == 0); 10045 10046 bp->b_edev = 0; 10047 bp->b_dev = 0; 10048 bp->b_lblkno = lbtodb(io_off); 10049 bp->b_file = vp; 10050 bp->b_offset = (offset_t)blkoff; 10051 bp_mapin(bp); 10052 10053 /* 10054 * If doing a write beyond what we believe is EOF, don't bother trying 10055 * to read the pages from the server, we'll just zero the pages here. 10056 * We don't check that the rw flag is S_WRITE here because some 10057 * implementations may attempt a read access to the buffer before 10058 * copying data. 10059 */ 10060 mutex_enter(&rp->r_statelock); 10061 if (io_off >= rp->r_size && seg == segkmap) { 10062 mutex_exit(&rp->r_statelock); 10063 bzero(bp->b_un.b_addr, io_len); 10064 error = 0; 10065 } else { 10066 mutex_exit(&rp->r_statelock); 10067 error = nfs4_bio(bp, NULL, cr, TRUE); 10068 if (error == NFS_EOF) 10069 error = 0; 10070 } 10071 10072 /* 10073 * Unmap the buffer before freeing it. 10074 */ 10075 bp_mapout(bp); 10076 pageio_done(bp); 10077 10078 savepp = pp; 10079 do { 10080 pp->p_fsdata = C_NOCOMMIT; 10081 } while ((pp = pp->p_next) != savepp); 10082 10083 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10084 10085 /* 10086 * In case of error set readahead offset 10087 * to the lowest offset. 10088 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10089 */ 10090 if (error && rp->r_nextr > io_off) { 10091 mutex_enter(&rp->r_statelock); 10092 if (rp->r_nextr > io_off) 10093 rp->r_nextr = io_off; 10094 mutex_exit(&rp->r_statelock); 10095 } 10096 } 10097 10098 /* 10099 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10100 * If len == 0, do from off to EOF. 10101 * 10102 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10103 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10104 * (from pageout). 10105 */ 10106 /* ARGSUSED */ 10107 static int 10108 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10109 caller_context_t *ct) 10110 { 10111 int error; 10112 rnode4_t *rp; 10113 10114 ASSERT(cr != NULL); 10115 10116 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10117 return (EIO); 10118 10119 rp = VTOR4(vp); 10120 if (IS_SHADOW(vp, rp)) 10121 vp = RTOV4(rp); 10122 10123 /* 10124 * XXX - Why should this check be made here? 10125 */ 10126 if (vp->v_flag & VNOMAP) 10127 return (ENOSYS); 10128 10129 if (len == 0 && !(flags & B_INVAL) && 10130 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10131 return (0); 10132 10133 mutex_enter(&rp->r_statelock); 10134 rp->r_count++; 10135 mutex_exit(&rp->r_statelock); 10136 error = nfs4_putpages(vp, off, len, flags, cr); 10137 mutex_enter(&rp->r_statelock); 10138 rp->r_count--; 10139 cv_broadcast(&rp->r_cv); 10140 mutex_exit(&rp->r_statelock); 10141 10142 return (error); 10143 } 10144 10145 /* 10146 * Write out a single page, possibly klustering adjacent dirty pages. 10147 */ 10148 int 10149 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10150 int flags, cred_t *cr) 10151 { 10152 u_offset_t io_off; 10153 u_offset_t lbn_off; 10154 u_offset_t lbn; 10155 size_t io_len; 10156 uint_t bsize; 10157 int error; 10158 rnode4_t *rp; 10159 10160 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10161 ASSERT(pp != NULL); 10162 ASSERT(cr != NULL); 10163 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10164 10165 rp = VTOR4(vp); 10166 ASSERT(rp->r_count > 0); 10167 ASSERT(!IS_SHADOW(vp, rp)); 10168 10169 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10170 lbn = pp->p_offset / bsize; 10171 lbn_off = lbn * bsize; 10172 10173 /* 10174 * Find a kluster that fits in one block, or in 10175 * one page if pages are bigger than blocks. If 10176 * there is less file space allocated than a whole 10177 * page, we'll shorten the i/o request below. 10178 */ 10179 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10180 roundup(bsize, PAGESIZE), flags); 10181 10182 /* 10183 * pvn_write_kluster shouldn't have returned a page with offset 10184 * behind the original page we were given. Verify that. 10185 */ 10186 ASSERT((pp->p_offset / bsize) >= lbn); 10187 10188 /* 10189 * Now pp will have the list of kept dirty pages marked for 10190 * write back. It will also handle invalidation and freeing 10191 * of pages that are not dirty. Check for page length rounding 10192 * problems. 10193 */ 10194 if (io_off + io_len > lbn_off + bsize) { 10195 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10196 io_len = lbn_off + bsize - io_off; 10197 } 10198 /* 10199 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10200 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10201 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10202 * progress and the r_size has not been made consistent with the 10203 * new size of the file. When the uiomove() completes the r_size is 10204 * updated and the R4MODINPROGRESS flag is cleared. 10205 * 10206 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10207 * consistent value of r_size. Without this handshaking, it is 10208 * possible that nfs4_bio() picks up the old value of r_size 10209 * before the uiomove() in writerp4() completes. This will result 10210 * in the write through nfs4_bio() being dropped. 10211 * 10212 * More precisely, there is a window between the time the uiomove() 10213 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10214 * operation intervenes in this window, the page will be picked up, 10215 * because it is dirty (it will be unlocked, unless it was 10216 * pagecreate'd). When the page is picked up as dirty, the dirty 10217 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10218 * checked. This will still be the old size. Therefore the page will 10219 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10220 * the page will be found to be clean and the write will be dropped. 10221 */ 10222 if (rp->r_flags & R4MODINPROGRESS) { 10223 mutex_enter(&rp->r_statelock); 10224 if ((rp->r_flags & R4MODINPROGRESS) && 10225 rp->r_modaddr + MAXBSIZE > io_off && 10226 rp->r_modaddr < io_off + io_len) { 10227 page_t *plist; 10228 /* 10229 * A write is in progress for this region of the file. 10230 * If we did not detect R4MODINPROGRESS here then this 10231 * path through nfs_putapage() would eventually go to 10232 * nfs4_bio() and may not write out all of the data 10233 * in the pages. We end up losing data. So we decide 10234 * to set the modified bit on each page in the page 10235 * list and mark the rnode with R4DIRTY. This write 10236 * will be restarted at some later time. 10237 */ 10238 plist = pp; 10239 while (plist != NULL) { 10240 pp = plist; 10241 page_sub(&plist, pp); 10242 hat_setmod(pp); 10243 page_io_unlock(pp); 10244 page_unlock(pp); 10245 } 10246 rp->r_flags |= R4DIRTY; 10247 mutex_exit(&rp->r_statelock); 10248 if (offp) 10249 *offp = io_off; 10250 if (lenp) 10251 *lenp = io_len; 10252 return (0); 10253 } 10254 mutex_exit(&rp->r_statelock); 10255 } 10256 10257 if (flags & B_ASYNC) { 10258 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10259 nfs4_sync_putapage); 10260 } else 10261 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10262 10263 if (offp) 10264 *offp = io_off; 10265 if (lenp) 10266 *lenp = io_len; 10267 return (error); 10268 } 10269 10270 static int 10271 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10272 int flags, cred_t *cr) 10273 { 10274 int error; 10275 rnode4_t *rp; 10276 10277 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10278 10279 flags |= B_WRITE; 10280 10281 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10282 10283 rp = VTOR4(vp); 10284 10285 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10286 error == EACCES) && 10287 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10288 if (!(rp->r_flags & R4OUTOFSPACE)) { 10289 mutex_enter(&rp->r_statelock); 10290 rp->r_flags |= R4OUTOFSPACE; 10291 mutex_exit(&rp->r_statelock); 10292 } 10293 flags |= B_ERROR; 10294 pvn_write_done(pp, flags); 10295 /* 10296 * If this was not an async thread, then try again to 10297 * write out the pages, but this time, also destroy 10298 * them whether or not the write is successful. This 10299 * will prevent memory from filling up with these 10300 * pages and destroying them is the only alternative 10301 * if they can't be written out. 10302 * 10303 * Don't do this if this is an async thread because 10304 * when the pages are unlocked in pvn_write_done, 10305 * some other thread could have come along, locked 10306 * them, and queued for an async thread. It would be 10307 * possible for all of the async threads to be tied 10308 * up waiting to lock the pages again and they would 10309 * all already be locked and waiting for an async 10310 * thread to handle them. Deadlock. 10311 */ 10312 if (!(flags & B_ASYNC)) { 10313 error = nfs4_putpage(vp, io_off, io_len, 10314 B_INVAL | B_FORCE, cr, NULL); 10315 } 10316 } else { 10317 if (error) 10318 flags |= B_ERROR; 10319 else if (rp->r_flags & R4OUTOFSPACE) { 10320 mutex_enter(&rp->r_statelock); 10321 rp->r_flags &= ~R4OUTOFSPACE; 10322 mutex_exit(&rp->r_statelock); 10323 } 10324 pvn_write_done(pp, flags); 10325 if (freemem < desfree) 10326 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10327 NFS4_WRITE_NOWAIT); 10328 } 10329 10330 return (error); 10331 } 10332 10333 #ifdef DEBUG 10334 int nfs4_force_open_before_mmap = 0; 10335 #endif 10336 10337 /* ARGSUSED */ 10338 static int 10339 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10340 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10341 caller_context_t *ct) 10342 { 10343 struct segvn_crargs vn_a; 10344 int error = 0; 10345 rnode4_t *rp = VTOR4(vp); 10346 mntinfo4_t *mi = VTOMI4(vp); 10347 10348 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10349 return (EIO); 10350 10351 if (vp->v_flag & VNOMAP) 10352 return (ENOSYS); 10353 10354 if (off < 0 || (off + len) < 0) 10355 return (ENXIO); 10356 10357 if (vp->v_type != VREG) 10358 return (ENODEV); 10359 10360 /* 10361 * If the file is delegated to the client don't do anything. 10362 * If the file is not delegated, then validate the data cache. 10363 */ 10364 mutex_enter(&rp->r_statev4_lock); 10365 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10366 mutex_exit(&rp->r_statev4_lock); 10367 error = nfs4_validate_caches(vp, cr); 10368 if (error) 10369 return (error); 10370 } else { 10371 mutex_exit(&rp->r_statev4_lock); 10372 } 10373 10374 /* 10375 * Check to see if the vnode is currently marked as not cachable. 10376 * This means portions of the file are locked (through VOP_FRLOCK). 10377 * In this case the map request must be refused. We use 10378 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10379 */ 10380 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 10381 return (EINTR); 10382 10383 if (vp->v_flag & VNOCACHE) { 10384 error = EAGAIN; 10385 goto done; 10386 } 10387 10388 /* 10389 * Don't allow concurrent locks and mapping if mandatory locking is 10390 * enabled. 10391 */ 10392 if (flk_has_remote_locks(vp)) { 10393 struct vattr va; 10394 va.va_mask = AT_MODE; 10395 error = nfs4getattr(vp, &va, cr); 10396 if (error != 0) 10397 goto done; 10398 if (MANDLOCK(vp, va.va_mode)) { 10399 error = EAGAIN; 10400 goto done; 10401 } 10402 } 10403 10404 /* 10405 * It is possible that the rnode has a lost lock request that we 10406 * are still trying to recover, and that the request conflicts with 10407 * this map request. 10408 * 10409 * An alternative approach would be for nfs4_safemap() to consider 10410 * queued lock requests when deciding whether to set or clear 10411 * VNOCACHE. This would require the frlock code path to call 10412 * nfs4_safemap() after enqueing a lost request. 10413 */ 10414 if (nfs4_map_lost_lock_conflict(vp)) { 10415 error = EAGAIN; 10416 goto done; 10417 } 10418 10419 as_rangelock(as); 10420 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 10421 if (error != 0) { 10422 as_rangeunlock(as); 10423 goto done; 10424 } 10425 10426 if (vp->v_type == VREG) { 10427 /* 10428 * We need to retrieve the open stream 10429 */ 10430 nfs4_open_stream_t *osp = NULL; 10431 nfs4_open_owner_t *oop = NULL; 10432 10433 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10434 if (oop != NULL) { 10435 /* returns with 'os_sync_lock' held */ 10436 osp = find_open_stream(oop, rp); 10437 open_owner_rele(oop); 10438 } 10439 if (osp == NULL) { 10440 #ifdef DEBUG 10441 if (nfs4_force_open_before_mmap) { 10442 error = EIO; 10443 goto done; 10444 } 10445 #endif 10446 /* returns with 'os_sync_lock' held */ 10447 error = open_and_get_osp(vp, cr, &osp); 10448 if (osp == NULL) { 10449 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10450 "nfs4_map: we tried to OPEN the file " 10451 "but again no osp, so fail with EIO")); 10452 goto done; 10453 } 10454 } 10455 10456 if (osp->os_failed_reopen) { 10457 mutex_exit(&osp->os_sync_lock); 10458 open_stream_rele(osp, rp); 10459 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10460 "nfs4_map: os_failed_reopen set on " 10461 "osp %p, cr %p, rp %s", (void *)osp, 10462 (void *)cr, rnode4info(rp))); 10463 error = EIO; 10464 goto done; 10465 } 10466 mutex_exit(&osp->os_sync_lock); 10467 open_stream_rele(osp, rp); 10468 } 10469 10470 vn_a.vp = vp; 10471 vn_a.offset = off; 10472 vn_a.type = (flags & MAP_TYPE); 10473 vn_a.prot = (uchar_t)prot; 10474 vn_a.maxprot = (uchar_t)maxprot; 10475 vn_a.flags = (flags & ~MAP_TYPE); 10476 vn_a.cred = cr; 10477 vn_a.amp = NULL; 10478 vn_a.szc = 0; 10479 vn_a.lgrp_mem_policy_flags = 0; 10480 10481 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10482 as_rangeunlock(as); 10483 10484 done: 10485 nfs_rw_exit(&rp->r_lkserlock); 10486 return (error); 10487 } 10488 10489 /* 10490 * We're most likely dealing with a kernel module that likes to READ 10491 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10492 * officially OPEN the file to create the necessary client state 10493 * for bookkeeping of os_mmap_read/write counts. 10494 * 10495 * Since VOP_MAP only passes in a pointer to the vnode rather than 10496 * a double pointer, we can't handle the case where nfs4open_otw() 10497 * returns a different vnode than the one passed into VOP_MAP (since 10498 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10499 * we return NULL and let nfs4_map() fail. Note: the only case where 10500 * this should happen is if the file got removed and replaced with the 10501 * same name on the server (in addition to the fact that we're trying 10502 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10503 */ 10504 static int 10505 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10506 { 10507 rnode4_t *rp, *drp; 10508 vnode_t *dvp, *open_vp; 10509 char file_name[MAXNAMELEN]; 10510 int just_created; 10511 nfs4_open_stream_t *osp; 10512 nfs4_open_owner_t *oop; 10513 int error; 10514 10515 *ospp = NULL; 10516 open_vp = map_vp; 10517 10518 rp = VTOR4(open_vp); 10519 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10520 return (error); 10521 drp = VTOR4(dvp); 10522 10523 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10524 VN_RELE(dvp); 10525 return (EINTR); 10526 } 10527 10528 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10529 nfs_rw_exit(&drp->r_rwlock); 10530 VN_RELE(dvp); 10531 return (error); 10532 } 10533 10534 mutex_enter(&rp->r_statev4_lock); 10535 if (rp->created_v4) { 10536 rp->created_v4 = 0; 10537 mutex_exit(&rp->r_statev4_lock); 10538 10539 dnlc_update(dvp, file_name, open_vp); 10540 /* This is needed so we don't bump the open ref count */ 10541 just_created = 1; 10542 } else { 10543 mutex_exit(&rp->r_statev4_lock); 10544 just_created = 0; 10545 } 10546 10547 VN_HOLD(map_vp); 10548 10549 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10550 just_created); 10551 if (error) { 10552 nfs_rw_exit(&drp->r_rwlock); 10553 VN_RELE(dvp); 10554 VN_RELE(map_vp); 10555 return (error); 10556 } 10557 10558 nfs_rw_exit(&drp->r_rwlock); 10559 VN_RELE(dvp); 10560 10561 /* 10562 * If nfs4open_otw() returned a different vnode then "undo" 10563 * the open and return failure to the caller. 10564 */ 10565 if (!VN_CMP(open_vp, map_vp)) { 10566 nfs4_error_t e; 10567 10568 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10569 "open returned a different vnode")); 10570 /* 10571 * If there's an error, ignore it, 10572 * and let VOP_INACTIVE handle it. 10573 */ 10574 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10575 CLOSE_NORM, 0, 0, 0); 10576 VN_RELE(map_vp); 10577 return (EIO); 10578 } 10579 10580 VN_RELE(map_vp); 10581 10582 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10583 if (!oop) { 10584 nfs4_error_t e; 10585 10586 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10587 "no open owner")); 10588 /* 10589 * If there's an error, ignore it, 10590 * and let VOP_INACTIVE handle it. 10591 */ 10592 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10593 CLOSE_NORM, 0, 0, 0); 10594 return (EIO); 10595 } 10596 osp = find_open_stream(oop, rp); 10597 open_owner_rele(oop); 10598 *ospp = osp; 10599 return (0); 10600 } 10601 10602 /* 10603 * Please be aware that when this function is called, the address space write 10604 * a_lock is held. Do not put over the wire calls in this function. 10605 */ 10606 /* ARGSUSED */ 10607 static int 10608 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10609 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10610 caller_context_t *ct) 10611 { 10612 rnode4_t *rp; 10613 int error = 0; 10614 mntinfo4_t *mi; 10615 10616 mi = VTOMI4(vp); 10617 rp = VTOR4(vp); 10618 10619 if (nfs_zone() != mi->mi_zone) 10620 return (EIO); 10621 if (vp->v_flag & VNOMAP) 10622 return (ENOSYS); 10623 10624 /* 10625 * Need to hold rwlock while incrementing the mapcnt so that 10626 * mmap'ing can be serialized with writes so that the caching 10627 * can be handled correctly. 10628 * 10629 * Don't need to update the open stream first, since this 10630 * mmap can't add any additional share access that isn't 10631 * already contained in the open stream (for the case where we 10632 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10633 * take into account os_mmap_read[write] counts). 10634 */ 10635 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 10636 return (EINTR); 10637 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10638 nfs_rw_exit(&rp->r_rwlock); 10639 10640 if (vp->v_type == VREG) { 10641 /* 10642 * We need to retrieve the open stream and update the counts. 10643 * If there is no open stream here, something is wrong. 10644 */ 10645 nfs4_open_stream_t *osp = NULL; 10646 nfs4_open_owner_t *oop = NULL; 10647 10648 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10649 if (oop != NULL) { 10650 /* returns with 'os_sync_lock' held */ 10651 osp = find_open_stream(oop, rp); 10652 open_owner_rele(oop); 10653 } 10654 if (osp == NULL) { 10655 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10656 "nfs4_addmap: we should have an osp" 10657 "but we don't, so fail with EIO")); 10658 error = EIO; 10659 goto out; 10660 } 10661 10662 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10663 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10664 10665 /* 10666 * Update the map count in the open stream. 10667 * This is necessary in the case where we 10668 * open/mmap/close/, then the server reboots, and we 10669 * attempt to reopen. If the mmap doesn't add share 10670 * access then we send an invalid reopen with 10671 * access = NONE. 10672 * 10673 * We need to specifically check each PROT_* so a mmap 10674 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10675 * read and write access. A simple comparison of prot 10676 * to ~PROT_WRITE to determine read access is insufficient 10677 * since prot can be |= with PROT_USER, etc. 10678 */ 10679 10680 /* 10681 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10682 */ 10683 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10684 osp->os_mmap_write += btopr(len); 10685 if (maxprot & PROT_READ) 10686 osp->os_mmap_read += btopr(len); 10687 if (maxprot & PROT_EXEC) 10688 osp->os_mmap_read += btopr(len); 10689 /* 10690 * Ensure that os_mmap_read gets incremented, even if 10691 * maxprot were to look like PROT_NONE. 10692 */ 10693 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10694 !(maxprot & PROT_EXEC)) 10695 osp->os_mmap_read += btopr(len); 10696 osp->os_mapcnt += btopr(len); 10697 mutex_exit(&osp->os_sync_lock); 10698 open_stream_rele(osp, rp); 10699 } 10700 10701 out: 10702 /* 10703 * If we got an error, then undo our 10704 * incrementing of 'r_mapcnt'. 10705 */ 10706 10707 if (error) { 10708 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10709 ASSERT(rp->r_mapcnt >= 0); 10710 } 10711 return (error); 10712 } 10713 10714 /* ARGSUSED */ 10715 static int 10716 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10717 { 10718 10719 return (VTOR4(vp1) == VTOR4(vp2)); 10720 } 10721 10722 /* ARGSUSED */ 10723 static int 10724 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10725 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10726 caller_context_t *ct) 10727 { 10728 int rc; 10729 u_offset_t start, end; 10730 rnode4_t *rp; 10731 int error = 0, intr = INTR4(vp); 10732 nfs4_error_t e; 10733 10734 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10735 return (EIO); 10736 10737 /* check for valid cmd parameter */ 10738 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10739 return (EINVAL); 10740 10741 /* Verify l_type. */ 10742 switch (bfp->l_type) { 10743 case F_RDLCK: 10744 if (cmd != F_GETLK && !(flag & FREAD)) 10745 return (EBADF); 10746 break; 10747 case F_WRLCK: 10748 if (cmd != F_GETLK && !(flag & FWRITE)) 10749 return (EBADF); 10750 break; 10751 case F_UNLCK: 10752 intr = 0; 10753 break; 10754 10755 default: 10756 return (EINVAL); 10757 } 10758 10759 /* check the validity of the lock range */ 10760 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10761 return (rc); 10762 if (rc = flk_check_lock_data(start, end, MAXEND)) 10763 return (rc); 10764 10765 /* 10766 * If the filesystem is mounted using local locking, pass the 10767 * request off to the local locking code. 10768 */ 10769 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10770 if (cmd == F_SETLK || cmd == F_SETLKW) { 10771 /* 10772 * For complete safety, we should be holding 10773 * r_lkserlock. However, we can't call 10774 * nfs4_safelock and then fs_frlock while 10775 * holding r_lkserlock, so just invoke 10776 * nfs4_safelock and expect that this will 10777 * catch enough of the cases. 10778 */ 10779 if (!nfs4_safelock(vp, bfp, cr)) 10780 return (EAGAIN); 10781 } 10782 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10783 } 10784 10785 rp = VTOR4(vp); 10786 10787 /* 10788 * Check whether the given lock request can proceed, given the 10789 * current file mappings. 10790 */ 10791 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10792 return (EINTR); 10793 if (cmd == F_SETLK || cmd == F_SETLKW) { 10794 if (!nfs4_safelock(vp, bfp, cr)) { 10795 rc = EAGAIN; 10796 goto done; 10797 } 10798 } 10799 10800 /* 10801 * Flush the cache after waiting for async I/O to finish. For new 10802 * locks, this is so that the process gets the latest bits from the 10803 * server. For unlocks, this is so that other clients see the 10804 * latest bits once the file has been unlocked. If currently dirty 10805 * pages can't be flushed, then don't allow a lock to be set. But 10806 * allow unlocks to succeed, to avoid having orphan locks on the 10807 * server. 10808 */ 10809 if (cmd != F_GETLK) { 10810 mutex_enter(&rp->r_statelock); 10811 while (rp->r_count > 0) { 10812 if (intr) { 10813 klwp_t *lwp = ttolwp(curthread); 10814 10815 if (lwp != NULL) 10816 lwp->lwp_nostop++; 10817 if (cv_wait_sig(&rp->r_cv, 10818 &rp->r_statelock) == 0) { 10819 if (lwp != NULL) 10820 lwp->lwp_nostop--; 10821 rc = EINTR; 10822 break; 10823 } 10824 if (lwp != NULL) 10825 lwp->lwp_nostop--; 10826 } else 10827 cv_wait(&rp->r_cv, &rp->r_statelock); 10828 } 10829 mutex_exit(&rp->r_statelock); 10830 if (rc != 0) 10831 goto done; 10832 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10833 if (error) { 10834 if (error == ENOSPC || error == EDQUOT) { 10835 mutex_enter(&rp->r_statelock); 10836 if (!rp->r_error) 10837 rp->r_error = error; 10838 mutex_exit(&rp->r_statelock); 10839 } 10840 if (bfp->l_type != F_UNLCK) { 10841 rc = ENOLCK; 10842 goto done; 10843 } 10844 } 10845 } 10846 10847 /* 10848 * Call the lock manager to do the real work of contacting 10849 * the server and obtaining the lock. 10850 */ 10851 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10852 cr, &e, NULL, NULL); 10853 rc = e.error; 10854 10855 if (rc == 0) 10856 nfs4_lockcompletion(vp, cmd); 10857 10858 done: 10859 nfs_rw_exit(&rp->r_lkserlock); 10860 10861 return (rc); 10862 } 10863 10864 /* 10865 * Free storage space associated with the specified vnode. The portion 10866 * to be freed is specified by bfp->l_start and bfp->l_len (already 10867 * normalized to a "whence" of 0). 10868 * 10869 * This is an experimental facility whose continued existence is not 10870 * guaranteed. Currently, we only support the special case 10871 * of l_len == 0, meaning free to end of file. 10872 */ 10873 /* ARGSUSED */ 10874 static int 10875 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10876 offset_t offset, cred_t *cr, caller_context_t *ct) 10877 { 10878 int error; 10879 10880 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10881 return (EIO); 10882 ASSERT(vp->v_type == VREG); 10883 if (cmd != F_FREESP) 10884 return (EINVAL); 10885 10886 error = convoff(vp, bfp, 0, offset); 10887 if (!error) { 10888 ASSERT(bfp->l_start >= 0); 10889 if (bfp->l_len == 0) { 10890 struct vattr va; 10891 10892 va.va_mask = AT_SIZE; 10893 va.va_size = bfp->l_start; 10894 error = nfs4setattr(vp, &va, 0, cr, NULL); 10895 } else 10896 error = EINVAL; 10897 } 10898 10899 return (error); 10900 } 10901 10902 /* ARGSUSED */ 10903 int 10904 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 10905 { 10906 rnode4_t *rp; 10907 rp = VTOR4(vp); 10908 10909 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 10910 vp = RTOV4(rp); 10911 } 10912 *vpp = vp; 10913 return (0); 10914 } 10915 10916 /* 10917 * Setup and add an address space callback to do the work of the delmap call. 10918 * The callback will (and must be) deleted in the actual callback function. 10919 * 10920 * This is done in order to take care of the problem that we have with holding 10921 * the address space's a_lock for a long period of time (e.g. if the NFS server 10922 * is down). Callbacks will be executed in the address space code while the 10923 * a_lock is not held. Holding the address space's a_lock causes things such 10924 * as ps and fork to hang because they are trying to acquire this lock as well. 10925 */ 10926 /* ARGSUSED */ 10927 static int 10928 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10929 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 10930 caller_context_t *ct) 10931 { 10932 int caller_found; 10933 int error; 10934 rnode4_t *rp; 10935 nfs4_delmap_args_t *dmapp; 10936 nfs4_delmapcall_t *delmap_call; 10937 10938 if (vp->v_flag & VNOMAP) 10939 return (ENOSYS); 10940 10941 /* 10942 * A process may not change zones if it has NFS pages mmap'ed 10943 * in, so we can't legitimately get here from the wrong zone. 10944 */ 10945 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10946 10947 rp = VTOR4(vp); 10948 10949 /* 10950 * The way that the address space of this process deletes its mapping 10951 * of this file is via the following call chains: 10952 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10953 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10954 * 10955 * With the use of address space callbacks we are allowed to drop the 10956 * address space lock, a_lock, while executing the NFS operations that 10957 * need to go over the wire. Returning EAGAIN to the caller of this 10958 * function is what drives the execution of the callback that we add 10959 * below. The callback will be executed by the address space code 10960 * after dropping the a_lock. When the callback is finished, since 10961 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 10962 * is called again on the same segment to finish the rest of the work 10963 * that needs to happen during unmapping. 10964 * 10965 * This action of calling back into the segment driver causes 10966 * nfs4_delmap() to get called again, but since the callback was 10967 * already executed at this point, it already did the work and there 10968 * is nothing left for us to do. 10969 * 10970 * To Summarize: 10971 * - The first time nfs4_delmap is called by the current thread is when 10972 * we add the caller associated with this delmap to the delmap caller 10973 * list, add the callback, and return EAGAIN. 10974 * - The second time in this call chain when nfs4_delmap is called we 10975 * will find this caller in the delmap caller list and realize there 10976 * is no more work to do thus removing this caller from the list and 10977 * returning the error that was set in the callback execution. 10978 */ 10979 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 10980 if (caller_found) { 10981 /* 10982 * 'error' is from the actual delmap operations. To avoid 10983 * hangs, we need to handle the return of EAGAIN differently 10984 * since this is what drives the callback execution. 10985 * In this case, we don't want to return EAGAIN and do the 10986 * callback execution because there are none to execute. 10987 */ 10988 if (error == EAGAIN) 10989 return (0); 10990 else 10991 return (error); 10992 } 10993 10994 /* current caller was not in the list */ 10995 delmap_call = nfs4_init_delmapcall(); 10996 10997 mutex_enter(&rp->r_statelock); 10998 list_insert_tail(&rp->r_indelmap, delmap_call); 10999 mutex_exit(&rp->r_statelock); 11000 11001 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 11002 11003 dmapp->vp = vp; 11004 dmapp->off = off; 11005 dmapp->addr = addr; 11006 dmapp->len = len; 11007 dmapp->prot = prot; 11008 dmapp->maxprot = maxprot; 11009 dmapp->flags = flags; 11010 dmapp->cr = cr; 11011 dmapp->caller = delmap_call; 11012 11013 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11014 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11015 11016 return (error ? error : EAGAIN); 11017 } 11018 11019 static nfs4_delmapcall_t * 11020 nfs4_init_delmapcall() 11021 { 11022 nfs4_delmapcall_t *delmap_call; 11023 11024 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11025 delmap_call->call_id = curthread; 11026 delmap_call->error = 0; 11027 11028 return (delmap_call); 11029 } 11030 11031 static void 11032 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11033 { 11034 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11035 } 11036 11037 /* 11038 * Searches for the current delmap caller (based on curthread) in the list of 11039 * callers. If it is found, we remove it and free the delmap caller. 11040 * Returns: 11041 * 0 if the caller wasn't found 11042 * 1 if the caller was found, removed and freed. *errp will be set 11043 * to what the result of the delmap was. 11044 */ 11045 static int 11046 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11047 { 11048 nfs4_delmapcall_t *delmap_call; 11049 11050 /* 11051 * If the list doesn't exist yet, we create it and return 11052 * that the caller wasn't found. No list = no callers. 11053 */ 11054 mutex_enter(&rp->r_statelock); 11055 if (!(rp->r_flags & R4DELMAPLIST)) { 11056 /* The list does not exist */ 11057 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11058 offsetof(nfs4_delmapcall_t, call_node)); 11059 rp->r_flags |= R4DELMAPLIST; 11060 mutex_exit(&rp->r_statelock); 11061 return (0); 11062 } else { 11063 /* The list exists so search it */ 11064 for (delmap_call = list_head(&rp->r_indelmap); 11065 delmap_call != NULL; 11066 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11067 if (delmap_call->call_id == curthread) { 11068 /* current caller is in the list */ 11069 *errp = delmap_call->error; 11070 list_remove(&rp->r_indelmap, delmap_call); 11071 mutex_exit(&rp->r_statelock); 11072 nfs4_free_delmapcall(delmap_call); 11073 return (1); 11074 } 11075 } 11076 } 11077 mutex_exit(&rp->r_statelock); 11078 return (0); 11079 } 11080 11081 /* 11082 * Remove some pages from an mmap'd vnode. Just update the 11083 * count of pages. If doing close-to-open, then flush and 11084 * commit all of the pages associated with this file. 11085 * Otherwise, start an asynchronous page flush to write out 11086 * any dirty pages. This will also associate a credential 11087 * with the rnode which can be used to write the pages. 11088 */ 11089 /* ARGSUSED */ 11090 static void 11091 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11092 { 11093 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11094 rnode4_t *rp; 11095 mntinfo4_t *mi; 11096 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11097 11098 rp = VTOR4(dmapp->vp); 11099 mi = VTOMI4(dmapp->vp); 11100 11101 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11102 ASSERT(rp->r_mapcnt >= 0); 11103 11104 /* 11105 * Initiate a page flush and potential commit if there are 11106 * pages, the file system was not mounted readonly, the segment 11107 * was mapped shared, and the pages themselves were writeable. 11108 */ 11109 if (nfs4_has_pages(dmapp->vp) && 11110 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11111 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11112 mutex_enter(&rp->r_statelock); 11113 rp->r_flags |= R4DIRTY; 11114 mutex_exit(&rp->r_statelock); 11115 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11116 dmapp->len, dmapp->cr); 11117 if (!e.error) { 11118 mutex_enter(&rp->r_statelock); 11119 e.error = rp->r_error; 11120 rp->r_error = 0; 11121 mutex_exit(&rp->r_statelock); 11122 } 11123 } else 11124 e.error = 0; 11125 11126 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11127 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11128 B_INVAL, dmapp->cr, NULL); 11129 11130 if (e.error) { 11131 e.stat = puterrno4(e.error); 11132 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11133 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11134 dmapp->caller->error = e.error; 11135 } 11136 11137 /* Check to see if we need to close the file */ 11138 11139 if (dmapp->vp->v_type == VREG) { 11140 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11141 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11142 11143 if (e.error != 0 || e.stat != NFS4_OK) { 11144 /* 11145 * Since it is possible that e.error == 0 and 11146 * e.stat != NFS4_OK (and vice versa), 11147 * we do the proper checking in order to get both 11148 * e.error and e.stat reporting the correct info. 11149 */ 11150 if (e.stat == NFS4_OK) 11151 e.stat = puterrno4(e.error); 11152 if (e.error == 0) 11153 e.error = geterrno4(e.stat); 11154 11155 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11156 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11157 dmapp->caller->error = e.error; 11158 } 11159 } 11160 11161 (void) as_delete_callback(as, arg); 11162 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11163 } 11164 11165 11166 static uint_t 11167 fattr4_maxfilesize_to_bits(uint64_t ll) 11168 { 11169 uint_t l = 1; 11170 11171 if (ll == 0) { 11172 return (0); 11173 } 11174 11175 if (ll & 0xffffffff00000000) { 11176 l += 32; ll >>= 32; 11177 } 11178 if (ll & 0xffff0000) { 11179 l += 16; ll >>= 16; 11180 } 11181 if (ll & 0xff00) { 11182 l += 8; ll >>= 8; 11183 } 11184 if (ll & 0xf0) { 11185 l += 4; ll >>= 4; 11186 } 11187 if (ll & 0xc) { 11188 l += 2; ll >>= 2; 11189 } 11190 if (ll & 0x2) { 11191 l += 1; 11192 } 11193 return (l); 11194 } 11195 11196 static int 11197 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr) 11198 { 11199 vnode_t *avp = NULL; 11200 int error; 11201 11202 if ((error = nfs4lookup_xattr(vp, "", &avp, 11203 LOOKUP_XATTR, cr)) == 0) 11204 error = do_xattr_exists_check(avp, valp, cr); 11205 if (avp) 11206 VN_RELE(avp); 11207 11208 return (error); 11209 } 11210 11211 /* ARGSUSED */ 11212 int 11213 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11214 caller_context_t *ct) 11215 { 11216 int error; 11217 hrtime_t t; 11218 rnode4_t *rp; 11219 nfs4_ga_res_t gar; 11220 nfs4_ga_ext_res_t ger; 11221 11222 gar.n4g_ext_res = &ger; 11223 11224 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11225 return (EIO); 11226 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11227 *valp = MAXPATHLEN; 11228 return (0); 11229 } 11230 if (cmd == _PC_ACL_ENABLED) { 11231 *valp = _ACL_ACE_ENABLED; 11232 return (0); 11233 } 11234 11235 rp = VTOR4(vp); 11236 if (cmd == _PC_XATTR_EXISTS) { 11237 /* 11238 * The existence of the xattr directory is not sufficient 11239 * for determining whether generic user attributes exists. 11240 * The attribute directory could only be a transient directory 11241 * used for Solaris sysattr support. Do a small readdir 11242 * to verify if the only entries are sysattrs or not. 11243 * 11244 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11245 * is NULL. Once the xadir vp exists, we can create xattrs, 11246 * and we don't have any way to update the "base" object's 11247 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11248 * could help out. 11249 */ 11250 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11251 rp->r_xattr_dir == NULL) { 11252 return (nfs4_have_xattrs(vp, valp, cr)); 11253 } 11254 } else { /* OLD CODE */ 11255 if (ATTRCACHE4_VALID(vp)) { 11256 mutex_enter(&rp->r_statelock); 11257 if (rp->r_pathconf.pc4_cache_valid) { 11258 error = 0; 11259 switch (cmd) { 11260 case _PC_FILESIZEBITS: 11261 *valp = 11262 rp->r_pathconf.pc4_filesizebits; 11263 break; 11264 case _PC_LINK_MAX: 11265 *valp = 11266 rp->r_pathconf.pc4_link_max; 11267 break; 11268 case _PC_NAME_MAX: 11269 *valp = 11270 rp->r_pathconf.pc4_name_max; 11271 break; 11272 case _PC_CHOWN_RESTRICTED: 11273 *valp = 11274 rp->r_pathconf.pc4_chown_restricted; 11275 break; 11276 case _PC_NO_TRUNC: 11277 *valp = 11278 rp->r_pathconf.pc4_no_trunc; 11279 break; 11280 default: 11281 error = EINVAL; 11282 break; 11283 } 11284 mutex_exit(&rp->r_statelock); 11285 #ifdef DEBUG 11286 nfs4_pathconf_cache_hits++; 11287 #endif 11288 return (error); 11289 } 11290 mutex_exit(&rp->r_statelock); 11291 } 11292 } 11293 #ifdef DEBUG 11294 nfs4_pathconf_cache_misses++; 11295 #endif 11296 11297 t = gethrtime(); 11298 11299 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11300 11301 if (error) { 11302 mutex_enter(&rp->r_statelock); 11303 rp->r_pathconf.pc4_cache_valid = FALSE; 11304 rp->r_pathconf.pc4_xattr_valid = FALSE; 11305 mutex_exit(&rp->r_statelock); 11306 return (error); 11307 } 11308 11309 /* interpret the max filesize */ 11310 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11311 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11312 11313 /* Store the attributes we just received */ 11314 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11315 11316 switch (cmd) { 11317 case _PC_FILESIZEBITS: 11318 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11319 break; 11320 case _PC_LINK_MAX: 11321 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11322 break; 11323 case _PC_NAME_MAX: 11324 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11325 break; 11326 case _PC_CHOWN_RESTRICTED: 11327 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11328 break; 11329 case _PC_NO_TRUNC: 11330 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11331 break; 11332 case _PC_XATTR_EXISTS: 11333 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) { 11334 if (error = nfs4_have_xattrs(vp, valp, cr)) 11335 return (error); 11336 } 11337 break; 11338 default: 11339 return (EINVAL); 11340 } 11341 11342 return (0); 11343 } 11344 11345 /* 11346 * Called by async thread to do synchronous pageio. Do the i/o, wait 11347 * for it to complete, and cleanup the page list when done. 11348 */ 11349 static int 11350 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11351 int flags, cred_t *cr) 11352 { 11353 int error; 11354 11355 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11356 11357 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11358 if (flags & B_READ) 11359 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11360 else 11361 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11362 return (error); 11363 } 11364 11365 /* ARGSUSED */ 11366 static int 11367 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11368 int flags, cred_t *cr, caller_context_t *ct) 11369 { 11370 int error; 11371 rnode4_t *rp; 11372 11373 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11374 return (EIO); 11375 11376 if (pp == NULL) 11377 return (EINVAL); 11378 11379 rp = VTOR4(vp); 11380 mutex_enter(&rp->r_statelock); 11381 rp->r_count++; 11382 mutex_exit(&rp->r_statelock); 11383 11384 if (flags & B_ASYNC) { 11385 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11386 nfs4_sync_pageio); 11387 } else 11388 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11389 mutex_enter(&rp->r_statelock); 11390 rp->r_count--; 11391 cv_broadcast(&rp->r_cv); 11392 mutex_exit(&rp->r_statelock); 11393 return (error); 11394 } 11395 11396 /* ARGSUSED */ 11397 static void 11398 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11399 caller_context_t *ct) 11400 { 11401 int error; 11402 rnode4_t *rp; 11403 page_t *plist; 11404 page_t *pptr; 11405 offset3 offset; 11406 count3 len; 11407 k_sigset_t smask; 11408 11409 /* 11410 * We should get called with fl equal to either B_FREE or 11411 * B_INVAL. Any other value is illegal. 11412 * 11413 * The page that we are either supposed to free or destroy 11414 * should be exclusive locked and its io lock should not 11415 * be held. 11416 */ 11417 ASSERT(fl == B_FREE || fl == B_INVAL); 11418 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11419 11420 rp = VTOR4(vp); 11421 11422 /* 11423 * If the page doesn't need to be committed or we shouldn't 11424 * even bother attempting to commit it, then just make sure 11425 * that the p_fsdata byte is clear and then either free or 11426 * destroy the page as appropriate. 11427 */ 11428 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11429 pp->p_fsdata = C_NOCOMMIT; 11430 if (fl == B_FREE) 11431 page_free(pp, dn); 11432 else 11433 page_destroy(pp, dn); 11434 return; 11435 } 11436 11437 /* 11438 * If there is a page invalidation operation going on, then 11439 * if this is one of the pages being destroyed, then just 11440 * clear the p_fsdata byte and then either free or destroy 11441 * the page as appropriate. 11442 */ 11443 mutex_enter(&rp->r_statelock); 11444 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11445 mutex_exit(&rp->r_statelock); 11446 pp->p_fsdata = C_NOCOMMIT; 11447 if (fl == B_FREE) 11448 page_free(pp, dn); 11449 else 11450 page_destroy(pp, dn); 11451 return; 11452 } 11453 11454 /* 11455 * If we are freeing this page and someone else is already 11456 * waiting to do a commit, then just unlock the page and 11457 * return. That other thread will take care of commiting 11458 * this page. The page can be freed sometime after the 11459 * commit has finished. Otherwise, if the page is marked 11460 * as delay commit, then we may be getting called from 11461 * pvn_write_done, one page at a time. This could result 11462 * in one commit per page, so we end up doing lots of small 11463 * commits instead of fewer larger commits. This is bad, 11464 * we want do as few commits as possible. 11465 */ 11466 if (fl == B_FREE) { 11467 if (rp->r_flags & R4COMMITWAIT) { 11468 page_unlock(pp); 11469 mutex_exit(&rp->r_statelock); 11470 return; 11471 } 11472 if (pp->p_fsdata == C_DELAYCOMMIT) { 11473 pp->p_fsdata = C_COMMIT; 11474 page_unlock(pp); 11475 mutex_exit(&rp->r_statelock); 11476 return; 11477 } 11478 } 11479 11480 /* 11481 * Check to see if there is a signal which would prevent an 11482 * attempt to commit the pages from being successful. If so, 11483 * then don't bother with all of the work to gather pages and 11484 * generate the unsuccessful RPC. Just return from here and 11485 * let the page be committed at some later time. 11486 */ 11487 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11488 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11489 sigunintr(&smask); 11490 page_unlock(pp); 11491 mutex_exit(&rp->r_statelock); 11492 return; 11493 } 11494 sigunintr(&smask); 11495 11496 /* 11497 * We are starting to need to commit pages, so let's try 11498 * to commit as many as possible at once to reduce the 11499 * overhead. 11500 * 11501 * Set the `commit inprogress' state bit. We must 11502 * first wait until any current one finishes. Then 11503 * we initialize the c_pages list with this page. 11504 */ 11505 while (rp->r_flags & R4COMMIT) { 11506 rp->r_flags |= R4COMMITWAIT; 11507 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11508 rp->r_flags &= ~R4COMMITWAIT; 11509 } 11510 rp->r_flags |= R4COMMIT; 11511 mutex_exit(&rp->r_statelock); 11512 ASSERT(rp->r_commit.c_pages == NULL); 11513 rp->r_commit.c_pages = pp; 11514 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11515 rp->r_commit.c_commlen = PAGESIZE; 11516 11517 /* 11518 * Gather together all other pages which can be committed. 11519 * They will all be chained off r_commit.c_pages. 11520 */ 11521 nfs4_get_commit(vp); 11522 11523 /* 11524 * Clear the `commit inprogress' status and disconnect 11525 * the list of pages to be committed from the rnode. 11526 * At this same time, we also save the starting offset 11527 * and length of data to be committed on the server. 11528 */ 11529 plist = rp->r_commit.c_pages; 11530 rp->r_commit.c_pages = NULL; 11531 offset = rp->r_commit.c_commbase; 11532 len = rp->r_commit.c_commlen; 11533 mutex_enter(&rp->r_statelock); 11534 rp->r_flags &= ~R4COMMIT; 11535 cv_broadcast(&rp->r_commit.c_cv); 11536 mutex_exit(&rp->r_statelock); 11537 11538 if (curproc == proc_pageout || curproc == proc_fsflush || 11539 nfs_zone() != VTOMI4(vp)->mi_zone) { 11540 nfs4_async_commit(vp, plist, offset, len, 11541 cr, do_nfs4_async_commit); 11542 return; 11543 } 11544 11545 /* 11546 * Actually generate the COMMIT op over the wire operation. 11547 */ 11548 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11549 11550 /* 11551 * If we got an error during the commit, just unlock all 11552 * of the pages. The pages will get retransmitted to the 11553 * server during a putpage operation. 11554 */ 11555 if (error) { 11556 while (plist != NULL) { 11557 pptr = plist; 11558 page_sub(&plist, pptr); 11559 page_unlock(pptr); 11560 } 11561 return; 11562 } 11563 11564 /* 11565 * We've tried as hard as we can to commit the data to stable 11566 * storage on the server. We just unlock the rest of the pages 11567 * and clear the commit required state. They will be put 11568 * onto the tail of the cachelist if they are nolonger 11569 * mapped. 11570 */ 11571 while (plist != pp) { 11572 pptr = plist; 11573 page_sub(&plist, pptr); 11574 pptr->p_fsdata = C_NOCOMMIT; 11575 page_unlock(pptr); 11576 } 11577 11578 /* 11579 * It is possible that nfs4_commit didn't return error but 11580 * some other thread has modified the page we are going 11581 * to free/destroy. 11582 * In this case we need to rewrite the page. Do an explicit check 11583 * before attempting to free/destroy the page. If modified, needs to 11584 * be rewritten so unlock the page and return. 11585 */ 11586 if (hat_ismod(pp)) { 11587 pp->p_fsdata = C_NOCOMMIT; 11588 page_unlock(pp); 11589 return; 11590 } 11591 11592 /* 11593 * Now, as appropriate, either free or destroy the page 11594 * that we were called with. 11595 */ 11596 pp->p_fsdata = C_NOCOMMIT; 11597 if (fl == B_FREE) 11598 page_free(pp, dn); 11599 else 11600 page_destroy(pp, dn); 11601 } 11602 11603 /* 11604 * Commit requires that the current fh be the file written to. 11605 * The compound op structure is: 11606 * PUTFH(file), COMMIT 11607 */ 11608 static int 11609 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11610 { 11611 COMPOUND4args_clnt args; 11612 COMPOUND4res_clnt res; 11613 COMMIT4res *cm_res; 11614 nfs_argop4 argop[2]; 11615 nfs_resop4 *resop; 11616 int doqueue; 11617 mntinfo4_t *mi; 11618 rnode4_t *rp; 11619 cred_t *cred_otw = NULL; 11620 bool_t needrecov = FALSE; 11621 nfs4_recov_state_t recov_state; 11622 nfs4_open_stream_t *osp = NULL; 11623 bool_t first_time = TRUE; /* first time getting OTW cred */ 11624 bool_t last_time = FALSE; /* last time getting OTW cred */ 11625 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11626 11627 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11628 11629 rp = VTOR4(vp); 11630 11631 mi = VTOMI4(vp); 11632 recov_state.rs_flags = 0; 11633 recov_state.rs_num_retry_despite_err = 0; 11634 get_commit_cred: 11635 /* 11636 * Releases the osp, if a valid open stream is provided. 11637 * Puts a hold on the cred_otw and the new osp (if found). 11638 */ 11639 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11640 &first_time, &last_time); 11641 args.ctag = TAG_COMMIT; 11642 recov_retry: 11643 /* 11644 * Commit ops: putfh file; commit 11645 */ 11646 args.array_len = 2; 11647 args.array = argop; 11648 11649 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11650 &recov_state, NULL); 11651 if (e.error) { 11652 crfree(cred_otw); 11653 if (osp != NULL) 11654 open_stream_rele(osp, rp); 11655 return (e.error); 11656 } 11657 11658 /* putfh directory */ 11659 argop[0].argop = OP_CPUTFH; 11660 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11661 11662 /* commit */ 11663 argop[1].argop = OP_COMMIT; 11664 argop[1].nfs_argop4_u.opcommit.offset = offset; 11665 argop[1].nfs_argop4_u.opcommit.count = count; 11666 11667 doqueue = 1; 11668 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11669 11670 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11671 if (!needrecov && e.error) { 11672 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11673 needrecov); 11674 crfree(cred_otw); 11675 if (e.error == EACCES && last_time == FALSE) 11676 goto get_commit_cred; 11677 if (osp != NULL) 11678 open_stream_rele(osp, rp); 11679 return (e.error); 11680 } 11681 11682 if (needrecov) { 11683 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11684 NULL, OP_COMMIT, NULL) == FALSE) { 11685 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11686 &recov_state, needrecov); 11687 if (!e.error) 11688 (void) xdr_free(xdr_COMPOUND4res_clnt, 11689 (caddr_t)&res); 11690 goto recov_retry; 11691 } 11692 if (e.error) { 11693 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11694 &recov_state, needrecov); 11695 crfree(cred_otw); 11696 if (osp != NULL) 11697 open_stream_rele(osp, rp); 11698 return (e.error); 11699 } 11700 /* fall through for res.status case */ 11701 } 11702 11703 if (res.status) { 11704 e.error = geterrno4(res.status); 11705 if (e.error == EACCES && last_time == FALSE) { 11706 crfree(cred_otw); 11707 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11708 &recov_state, needrecov); 11709 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11710 goto get_commit_cred; 11711 } 11712 /* 11713 * Can't do a nfs4_purge_stale_fh here because this 11714 * can cause a deadlock. nfs4_commit can 11715 * be called from nfs4_dispose which can be called 11716 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11717 * can call back to pvn_vplist_dirty. 11718 */ 11719 if (e.error == ESTALE) { 11720 mutex_enter(&rp->r_statelock); 11721 rp->r_flags |= R4STALE; 11722 if (!rp->r_error) 11723 rp->r_error = e.error; 11724 mutex_exit(&rp->r_statelock); 11725 PURGE_ATTRCACHE4(vp); 11726 } else { 11727 mutex_enter(&rp->r_statelock); 11728 if (!rp->r_error) 11729 rp->r_error = e.error; 11730 mutex_exit(&rp->r_statelock); 11731 } 11732 } else { 11733 ASSERT(rp->r_flags & R4HAVEVERF); 11734 resop = &res.array[1]; /* commit res */ 11735 cm_res = &resop->nfs_resop4_u.opcommit; 11736 mutex_enter(&rp->r_statelock); 11737 if (cm_res->writeverf == rp->r_writeverf) { 11738 mutex_exit(&rp->r_statelock); 11739 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11740 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11741 &recov_state, needrecov); 11742 crfree(cred_otw); 11743 if (osp != NULL) 11744 open_stream_rele(osp, rp); 11745 return (0); 11746 } 11747 nfs4_set_mod(vp); 11748 rp->r_writeverf = cm_res->writeverf; 11749 mutex_exit(&rp->r_statelock); 11750 e.error = NFS_VERF_MISMATCH; 11751 } 11752 11753 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11754 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11755 crfree(cred_otw); 11756 if (osp != NULL) 11757 open_stream_rele(osp, rp); 11758 11759 return (e.error); 11760 } 11761 11762 static void 11763 nfs4_set_mod(vnode_t *vp) 11764 { 11765 page_t *pp; 11766 kmutex_t *vphm; 11767 rnode4_t *rp; 11768 11769 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11770 11771 /* make sure we're looking at the master vnode, not a shadow */ 11772 11773 rp = VTOR4(vp); 11774 if (IS_SHADOW(vp, rp)) 11775 vp = RTOV4(rp); 11776 11777 vphm = page_vnode_mutex(vp); 11778 mutex_enter(vphm); 11779 /* 11780 * If there are no pages associated with this vnode, then 11781 * just return. 11782 */ 11783 if ((pp = vp->v_pages) == NULL) { 11784 mutex_exit(vphm); 11785 return; 11786 } 11787 11788 do { 11789 if (pp->p_fsdata != C_NOCOMMIT) { 11790 hat_setmod(pp); 11791 pp->p_fsdata = C_NOCOMMIT; 11792 } 11793 } while ((pp = pp->p_vpnext) != vp->v_pages); 11794 mutex_exit(vphm); 11795 } 11796 11797 /* 11798 * This function is used to gather a page list of the pages which 11799 * can be committed on the server. 11800 * 11801 * The calling thread must have set R4COMMIT. This bit is used to 11802 * serialize access to the commit structure in the rnode. As long 11803 * as the thread has set R4COMMIT, then it can manipulate the commit 11804 * structure without requiring any other locks. 11805 * 11806 * When this function is called from nfs4_dispose() the page passed 11807 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11808 * will skip it. This is not a problem since we initially add the 11809 * page to the r_commit page list. 11810 * 11811 */ 11812 static void 11813 nfs4_get_commit(vnode_t *vp) 11814 { 11815 rnode4_t *rp; 11816 page_t *pp; 11817 kmutex_t *vphm; 11818 11819 rp = VTOR4(vp); 11820 11821 ASSERT(rp->r_flags & R4COMMIT); 11822 11823 /* make sure we're looking at the master vnode, not a shadow */ 11824 11825 if (IS_SHADOW(vp, rp)) 11826 vp = RTOV4(rp); 11827 11828 vphm = page_vnode_mutex(vp); 11829 mutex_enter(vphm); 11830 11831 /* 11832 * If there are no pages associated with this vnode, then 11833 * just return. 11834 */ 11835 if ((pp = vp->v_pages) == NULL) { 11836 mutex_exit(vphm); 11837 return; 11838 } 11839 11840 /* 11841 * Step through all of the pages associated with this vnode 11842 * looking for pages which need to be committed. 11843 */ 11844 do { 11845 /* 11846 * First short-cut everything (without the page_lock) 11847 * and see if this page does not need to be committed 11848 * or is modified if so then we'll just skip it. 11849 */ 11850 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11851 continue; 11852 11853 /* 11854 * Attempt to lock the page. If we can't, then 11855 * someone else is messing with it or we have been 11856 * called from nfs4_dispose and this is the page that 11857 * nfs4_dispose was called with.. anyway just skip it. 11858 */ 11859 if (!page_trylock(pp, SE_EXCL)) 11860 continue; 11861 11862 /* 11863 * Lets check again now that we have the page lock. 11864 */ 11865 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11866 page_unlock(pp); 11867 continue; 11868 } 11869 11870 /* this had better not be a free page */ 11871 ASSERT(PP_ISFREE(pp) == 0); 11872 11873 /* 11874 * The page needs to be committed and we locked it. 11875 * Update the base and length parameters and add it 11876 * to r_pages. 11877 */ 11878 if (rp->r_commit.c_pages == NULL) { 11879 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11880 rp->r_commit.c_commlen = PAGESIZE; 11881 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11882 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11883 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11884 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11885 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11886 <= pp->p_offset) { 11887 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11888 rp->r_commit.c_commbase + PAGESIZE; 11889 } 11890 page_add(&rp->r_commit.c_pages, pp); 11891 } while ((pp = pp->p_vpnext) != vp->v_pages); 11892 11893 mutex_exit(vphm); 11894 } 11895 11896 /* 11897 * This routine is used to gather together a page list of the pages 11898 * which are to be committed on the server. This routine must not 11899 * be called if the calling thread holds any locked pages. 11900 * 11901 * The calling thread must have set R4COMMIT. This bit is used to 11902 * serialize access to the commit structure in the rnode. As long 11903 * as the thread has set R4COMMIT, then it can manipulate the commit 11904 * structure without requiring any other locks. 11905 */ 11906 static void 11907 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11908 { 11909 11910 rnode4_t *rp; 11911 page_t *pp; 11912 u_offset_t end; 11913 u_offset_t off; 11914 ASSERT(len != 0); 11915 rp = VTOR4(vp); 11916 ASSERT(rp->r_flags & R4COMMIT); 11917 11918 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11919 11920 /* make sure we're looking at the master vnode, not a shadow */ 11921 11922 if (IS_SHADOW(vp, rp)) 11923 vp = RTOV4(rp); 11924 11925 /* 11926 * If there are no pages associated with this vnode, then 11927 * just return. 11928 */ 11929 if ((pp = vp->v_pages) == NULL) 11930 return; 11931 /* 11932 * Calculate the ending offset. 11933 */ 11934 end = soff + len; 11935 for (off = soff; off < end; off += PAGESIZE) { 11936 /* 11937 * Lookup each page by vp, offset. 11938 */ 11939 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 11940 continue; 11941 /* 11942 * If this page does not need to be committed or is 11943 * modified, then just skip it. 11944 */ 11945 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11946 page_unlock(pp); 11947 continue; 11948 } 11949 11950 ASSERT(PP_ISFREE(pp) == 0); 11951 /* 11952 * The page needs to be committed and we locked it. 11953 * Update the base and length parameters and add it 11954 * to r_pages. 11955 */ 11956 if (rp->r_commit.c_pages == NULL) { 11957 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11958 rp->r_commit.c_commlen = PAGESIZE; 11959 } else { 11960 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11961 rp->r_commit.c_commbase + PAGESIZE; 11962 } 11963 page_add(&rp->r_commit.c_pages, pp); 11964 } 11965 } 11966 11967 /* 11968 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 11969 * Flushes and commits data to the server. 11970 */ 11971 static int 11972 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 11973 { 11974 int error; 11975 verifier4 write_verf; 11976 rnode4_t *rp = VTOR4(vp); 11977 11978 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11979 11980 /* 11981 * Flush the data portion of the file and then commit any 11982 * portions which need to be committed. This may need to 11983 * be done twice if the server has changed state since 11984 * data was last written. The data will need to be 11985 * rewritten to the server and then a new commit done. 11986 * 11987 * In fact, this may need to be done several times if the 11988 * server is having problems and crashing while we are 11989 * attempting to do this. 11990 */ 11991 11992 top: 11993 /* 11994 * Do a flush based on the poff and plen arguments. This 11995 * will synchronously write out any modified pages in the 11996 * range specified by (poff, plen). This starts all of the 11997 * i/o operations which will be waited for in the next 11998 * call to nfs4_putpage 11999 */ 12000 12001 mutex_enter(&rp->r_statelock); 12002 write_verf = rp->r_writeverf; 12003 mutex_exit(&rp->r_statelock); 12004 12005 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 12006 if (error == EAGAIN) 12007 error = 0; 12008 12009 /* 12010 * Do a flush based on the poff and plen arguments. This 12011 * will synchronously write out any modified pages in the 12012 * range specified by (poff, plen) and wait until all of 12013 * the asynchronous i/o's in that range are done as well. 12014 */ 12015 if (!error) 12016 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 12017 12018 if (error) 12019 return (error); 12020 12021 mutex_enter(&rp->r_statelock); 12022 if (rp->r_writeverf != write_verf) { 12023 mutex_exit(&rp->r_statelock); 12024 goto top; 12025 } 12026 mutex_exit(&rp->r_statelock); 12027 12028 /* 12029 * Now commit any pages which might need to be committed. 12030 * If the error, NFS_VERF_MISMATCH, is returned, then 12031 * start over with the flush operation. 12032 */ 12033 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12034 12035 if (error == NFS_VERF_MISMATCH) 12036 goto top; 12037 12038 return (error); 12039 } 12040 12041 /* 12042 * nfs4_commit_vp() will wait for other pending commits and 12043 * will either commit the whole file or a range, plen dictates 12044 * if we commit whole file. a value of zero indicates the whole 12045 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12046 */ 12047 static int 12048 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12049 cred_t *cr, int wait_on_writes) 12050 { 12051 rnode4_t *rp; 12052 page_t *plist; 12053 offset3 offset; 12054 count3 len; 12055 12056 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12057 12058 rp = VTOR4(vp); 12059 12060 /* 12061 * before we gather commitable pages make 12062 * sure there are no outstanding async writes 12063 */ 12064 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12065 mutex_enter(&rp->r_statelock); 12066 while (rp->r_count > 0) { 12067 cv_wait(&rp->r_cv, &rp->r_statelock); 12068 } 12069 mutex_exit(&rp->r_statelock); 12070 } 12071 12072 /* 12073 * Set the `commit inprogress' state bit. We must 12074 * first wait until any current one finishes. 12075 */ 12076 mutex_enter(&rp->r_statelock); 12077 while (rp->r_flags & R4COMMIT) { 12078 rp->r_flags |= R4COMMITWAIT; 12079 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12080 rp->r_flags &= ~R4COMMITWAIT; 12081 } 12082 rp->r_flags |= R4COMMIT; 12083 mutex_exit(&rp->r_statelock); 12084 12085 /* 12086 * Gather all of the pages which need to be 12087 * committed. 12088 */ 12089 if (plen == 0) 12090 nfs4_get_commit(vp); 12091 else 12092 nfs4_get_commit_range(vp, poff, plen); 12093 12094 /* 12095 * Clear the `commit inprogress' bit and disconnect the 12096 * page list which was gathered by nfs4_get_commit. 12097 */ 12098 plist = rp->r_commit.c_pages; 12099 rp->r_commit.c_pages = NULL; 12100 offset = rp->r_commit.c_commbase; 12101 len = rp->r_commit.c_commlen; 12102 mutex_enter(&rp->r_statelock); 12103 rp->r_flags &= ~R4COMMIT; 12104 cv_broadcast(&rp->r_commit.c_cv); 12105 mutex_exit(&rp->r_statelock); 12106 12107 /* 12108 * If any pages need to be committed, commit them and 12109 * then unlock them so that they can be freed some 12110 * time later. 12111 */ 12112 if (plist == NULL) 12113 return (0); 12114 12115 /* 12116 * No error occurred during the flush portion 12117 * of this operation, so now attempt to commit 12118 * the data to stable storage on the server. 12119 * 12120 * This will unlock all of the pages on the list. 12121 */ 12122 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12123 } 12124 12125 static int 12126 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12127 cred_t *cr) 12128 { 12129 int error; 12130 page_t *pp; 12131 12132 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12133 12134 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12135 12136 /* 12137 * If we got an error, then just unlock all of the pages 12138 * on the list. 12139 */ 12140 if (error) { 12141 while (plist != NULL) { 12142 pp = plist; 12143 page_sub(&plist, pp); 12144 page_unlock(pp); 12145 } 12146 return (error); 12147 } 12148 /* 12149 * We've tried as hard as we can to commit the data to stable 12150 * storage on the server. We just unlock the pages and clear 12151 * the commit required state. They will get freed later. 12152 */ 12153 while (plist != NULL) { 12154 pp = plist; 12155 page_sub(&plist, pp); 12156 pp->p_fsdata = C_NOCOMMIT; 12157 page_unlock(pp); 12158 } 12159 12160 return (error); 12161 } 12162 12163 static void 12164 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12165 cred_t *cr) 12166 { 12167 12168 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12169 } 12170 12171 /*ARGSUSED*/ 12172 static int 12173 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12174 caller_context_t *ct) 12175 { 12176 int error = 0; 12177 mntinfo4_t *mi; 12178 vattr_t va; 12179 vsecattr_t nfsace4_vsap; 12180 12181 mi = VTOMI4(vp); 12182 if (nfs_zone() != mi->mi_zone) 12183 return (EIO); 12184 if (mi->mi_flags & MI4_ACL) { 12185 /* if we have a delegation, return it */ 12186 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12187 (void) nfs4delegreturn(VTOR4(vp), 12188 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12189 12190 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12191 NFS4_ACL_SET); 12192 if (error) /* EINVAL */ 12193 return (error); 12194 12195 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12196 /* 12197 * These are aclent_t type entries. 12198 */ 12199 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12200 vp->v_type == VDIR, FALSE); 12201 if (error) 12202 return (error); 12203 } else { 12204 /* 12205 * These are ace_t type entries. 12206 */ 12207 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12208 FALSE); 12209 if (error) 12210 return (error); 12211 } 12212 bzero(&va, sizeof (va)); 12213 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12214 vs_ace4_destroy(&nfsace4_vsap); 12215 return (error); 12216 } 12217 return (ENOSYS); 12218 } 12219 12220 /* ARGSUSED */ 12221 int 12222 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12223 caller_context_t *ct) 12224 { 12225 int error; 12226 mntinfo4_t *mi; 12227 nfs4_ga_res_t gar; 12228 rnode4_t *rp = VTOR4(vp); 12229 12230 mi = VTOMI4(vp); 12231 if (nfs_zone() != mi->mi_zone) 12232 return (EIO); 12233 12234 bzero(&gar, sizeof (gar)); 12235 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12236 12237 /* 12238 * vsecattr->vsa_mask holds the original acl request mask. 12239 * This is needed when determining what to return. 12240 * (See: nfs4_create_getsecattr_return()) 12241 */ 12242 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12243 if (error) /* EINVAL */ 12244 return (error); 12245 12246 if (mi->mi_flags & MI4_ACL) { 12247 /* 12248 * Check if the data is cached and the cache is valid. If it 12249 * is we don't go over the wire. 12250 */ 12251 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12252 mutex_enter(&rp->r_statelock); 12253 if (rp->r_secattr != NULL) { 12254 error = nfs4_create_getsecattr_return( 12255 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12256 rp->r_attr.va_gid, 12257 vp->v_type == VDIR); 12258 if (!error) { /* error == 0 - Success! */ 12259 mutex_exit(&rp->r_statelock); 12260 return (error); 12261 } 12262 } 12263 mutex_exit(&rp->r_statelock); 12264 } 12265 12266 /* 12267 * The getattr otw call will always get both the acl, in 12268 * the form of a list of nfsace4's, and the number of acl 12269 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12270 */ 12271 gar.n4g_va.va_mask = AT_ALL; 12272 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12273 if (error) { 12274 vs_ace4_destroy(&gar.n4g_vsa); 12275 if (error == ENOTSUP || error == EOPNOTSUPP) 12276 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12277 return (error); 12278 } 12279 12280 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12281 /* 12282 * No error was returned, but according to the response 12283 * bitmap, neither was an acl. 12284 */ 12285 vs_ace4_destroy(&gar.n4g_vsa); 12286 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12287 return (error); 12288 } 12289 12290 /* 12291 * Update the cache with the ACL. 12292 */ 12293 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12294 12295 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12296 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12297 vp->v_type == VDIR); 12298 vs_ace4_destroy(&gar.n4g_vsa); 12299 if ((error) && (vsecattr->vsa_mask & 12300 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12301 (error != EACCES)) { 12302 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12303 } 12304 return (error); 12305 } 12306 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12307 return (error); 12308 } 12309 12310 /* 12311 * The function returns: 12312 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12313 * - EINVAL if the passed in "acl_mask" is an invalid request. 12314 * 12315 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12316 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12317 * 12318 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12319 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12320 * - We have a count field set without the corresponding acl field set. (e.g. - 12321 * VSA_ACECNT is set, but VSA_ACE is not) 12322 */ 12323 static int 12324 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12325 { 12326 /* Shortcut the masks that are always valid. */ 12327 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12328 return (0); 12329 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12330 return (0); 12331 12332 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12333 /* 12334 * We can't have any VSA_ACL type stuff in the mask now. 12335 */ 12336 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12337 VSA_DFACLCNT)) 12338 return (EINVAL); 12339 12340 if (op == NFS4_ACL_SET) { 12341 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12342 return (EINVAL); 12343 } 12344 } 12345 12346 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12347 /* 12348 * We can't have any VSA_ACE type stuff in the mask now. 12349 */ 12350 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12351 return (EINVAL); 12352 12353 if (op == NFS4_ACL_SET) { 12354 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12355 return (EINVAL); 12356 12357 if ((acl_mask & VSA_DFACLCNT) && 12358 !(acl_mask & VSA_DFACL)) 12359 return (EINVAL); 12360 } 12361 } 12362 return (0); 12363 } 12364 12365 /* 12366 * The theory behind creating the correct getsecattr return is simply this: 12367 * "Don't return anything that the caller is not expecting to have to free." 12368 */ 12369 static int 12370 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12371 uid_t uid, gid_t gid, int isdir) 12372 { 12373 int error = 0; 12374 /* Save the mask since the translators modify it. */ 12375 uint_t orig_mask = vsap->vsa_mask; 12376 12377 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12378 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, 12379 FALSE, ((orig_mask & VSA_ACE) ? FALSE : TRUE)); 12380 12381 if (error) 12382 return (error); 12383 12384 /* 12385 * If the caller only asked for the ace count (VSA_ACECNT) 12386 * don't give them the full acl (VSA_ACE), free it. 12387 */ 12388 if (!orig_mask & VSA_ACE) { 12389 if (vsap->vsa_aclentp != NULL) { 12390 kmem_free(vsap->vsa_aclentp, 12391 vsap->vsa_aclcnt * sizeof (ace_t)); 12392 vsap->vsa_aclentp = NULL; 12393 } 12394 } 12395 vsap->vsa_mask = orig_mask; 12396 12397 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12398 VSA_DFACLCNT)) { 12399 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12400 isdir, FALSE, 12401 ((orig_mask & (VSA_ACL | VSA_DFACL)) ? FALSE : TRUE)); 12402 12403 if (error) 12404 return (error); 12405 12406 /* 12407 * If the caller only asked for the acl count (VSA_ACLCNT) 12408 * and/or the default acl count (VSA_DFACLCNT) don't give them 12409 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12410 */ 12411 if (!orig_mask & VSA_ACL) { 12412 if (vsap->vsa_aclentp != NULL) { 12413 kmem_free(vsap->vsa_aclentp, 12414 vsap->vsa_aclcnt * sizeof (aclent_t)); 12415 vsap->vsa_aclentp = NULL; 12416 } 12417 } 12418 12419 if (!orig_mask & VSA_DFACL) { 12420 if (vsap->vsa_dfaclentp != NULL) { 12421 kmem_free(vsap->vsa_dfaclentp, 12422 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12423 vsap->vsa_dfaclentp = NULL; 12424 } 12425 } 12426 vsap->vsa_mask = orig_mask; 12427 } 12428 return (0); 12429 } 12430 12431 /* ARGSUSED */ 12432 int 12433 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12434 caller_context_t *ct) 12435 { 12436 int error; 12437 12438 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12439 return (EIO); 12440 /* 12441 * check for valid cmd parameter 12442 */ 12443 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12444 return (EINVAL); 12445 12446 /* 12447 * Check access permissions 12448 */ 12449 if ((cmd & F_SHARE) && 12450 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12451 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12452 return (EBADF); 12453 12454 /* 12455 * If the filesystem is mounted using local locking, pass the 12456 * request off to the local share code. 12457 */ 12458 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12459 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12460 12461 switch (cmd) { 12462 case F_SHARE: 12463 case F_UNSHARE: 12464 /* 12465 * This will be properly implemented later, 12466 * see RFE: 4823948 . 12467 */ 12468 error = EAGAIN; 12469 break; 12470 12471 case F_HASREMOTELOCKS: 12472 /* 12473 * NFS client can't store remote locks itself 12474 */ 12475 shr->s_access = 0; 12476 error = 0; 12477 break; 12478 12479 default: 12480 error = EINVAL; 12481 break; 12482 } 12483 12484 return (error); 12485 } 12486 12487 /* 12488 * Common code called by directory ops to update the attrcache 12489 */ 12490 static int 12491 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12492 hrtime_t t, vnode_t *vp, cred_t *cr) 12493 { 12494 int error = 0; 12495 12496 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12497 12498 if (status != NFS4_OK) { 12499 /* getattr not done or failed */ 12500 PURGE_ATTRCACHE4(vp); 12501 return (error); 12502 } 12503 12504 if (garp) { 12505 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12506 } else { 12507 PURGE_ATTRCACHE4(vp); 12508 } 12509 return (error); 12510 } 12511 12512 /* 12513 * Update directory caches for directory modification ops (link, rename, etc.) 12514 * When dinfo is NULL, manage dircaches in the old way. 12515 */ 12516 static void 12517 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12518 dirattr_info_t *dinfo) 12519 { 12520 rnode4_t *drp = VTOR4(dvp); 12521 12522 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12523 12524 /* Purge rddir cache for dir since it changed */ 12525 if (drp->r_dir != NULL) 12526 nfs4_purge_rddir_cache(dvp); 12527 12528 /* 12529 * If caller provided dinfo, then use it to manage dir caches. 12530 */ 12531 if (dinfo != NULL) { 12532 if (vp != NULL) { 12533 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12534 if (!VTOR4(vp)->created_v4) { 12535 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12536 dnlc_update(dvp, nm, vp); 12537 } else { 12538 /* 12539 * XXX don't update if the created_v4 flag is 12540 * set 12541 */ 12542 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12543 NFS4_DEBUG(nfs4_client_state_debug, 12544 (CE_NOTE, "nfs4_update_dircaches: " 12545 "don't update dnlc: created_v4 flag")); 12546 } 12547 } 12548 12549 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12550 dinfo->di_cred, FALSE, cinfo); 12551 12552 return; 12553 } 12554 12555 /* 12556 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12557 * Since caller modified dir but didn't receive post-dirmod-op dir 12558 * attrs, the dir's attrs must be purged. 12559 * 12560 * XXX this check and dnlc update/purge should really be atomic, 12561 * XXX but can't use rnode statelock because it'll deadlock in 12562 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12563 * XXX does occur. 12564 * 12565 * XXX We also may want to check that atomic is true in the 12566 * XXX change_info struct. If it is not, the change_info may 12567 * XXX reflect changes by more than one clients which means that 12568 * XXX our cache may not be valid. 12569 */ 12570 PURGE_ATTRCACHE4(dvp); 12571 if (drp->r_change == cinfo->before) { 12572 /* no changes took place in the directory prior to our link */ 12573 if (vp != NULL) { 12574 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12575 if (!VTOR4(vp)->created_v4) { 12576 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12577 dnlc_update(dvp, nm, vp); 12578 } else { 12579 /* 12580 * XXX dont' update if the created_v4 flag 12581 * is set 12582 */ 12583 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12584 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12585 "nfs4_update_dircaches: don't" 12586 " update dnlc: created_v4 flag")); 12587 } 12588 } 12589 } else { 12590 /* Another client modified directory - purge its dnlc cache */ 12591 dnlc_purge_vp(dvp); 12592 } 12593 } 12594 12595 /* 12596 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12597 * file. 12598 * 12599 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12600 * file (ie: client recovery) and otherwise set to FALSE. 12601 * 12602 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12603 * initiated) calling functions. 12604 * 12605 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12606 * of resending a 'lost' open request. 12607 * 12608 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12609 * server that hands out BAD_SEQID on open confirm. 12610 * 12611 * Errors are returned via the nfs4_error_t parameter. 12612 */ 12613 void 12614 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12615 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12616 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12617 { 12618 COMPOUND4args_clnt args; 12619 COMPOUND4res_clnt res; 12620 nfs_argop4 argop[2]; 12621 nfs_resop4 *resop; 12622 int doqueue = 1; 12623 mntinfo4_t *mi; 12624 OPEN_CONFIRM4args *open_confirm_args; 12625 int needrecov; 12626 12627 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12628 #if DEBUG 12629 mutex_enter(&oop->oo_lock); 12630 ASSERT(oop->oo_seqid_inuse); 12631 mutex_exit(&oop->oo_lock); 12632 #endif 12633 12634 recov_retry_confirm: 12635 nfs4_error_zinit(ep); 12636 *retry_open = FALSE; 12637 12638 if (resend) 12639 args.ctag = TAG_OPEN_CONFIRM_LOST; 12640 else 12641 args.ctag = TAG_OPEN_CONFIRM; 12642 12643 args.array_len = 2; 12644 args.array = argop; 12645 12646 /* putfh target fh */ 12647 argop[0].argop = OP_CPUTFH; 12648 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12649 12650 argop[1].argop = OP_OPEN_CONFIRM; 12651 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12652 12653 (*seqid) += 1; 12654 open_confirm_args->seqid = *seqid; 12655 open_confirm_args->open_stateid = *stateid; 12656 12657 mi = VTOMI4(vp); 12658 12659 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12660 12661 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12662 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12663 } 12664 12665 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12666 if (!needrecov && ep->error) 12667 return; 12668 12669 if (needrecov) { 12670 bool_t abort = FALSE; 12671 12672 if (reopening_file == FALSE) { 12673 nfs4_bseqid_entry_t *bsep = NULL; 12674 12675 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12676 bsep = nfs4_create_bseqid_entry(oop, NULL, 12677 vp, 0, args.ctag, 12678 open_confirm_args->seqid); 12679 12680 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, 12681 NULL, NULL, NULL, OP_OPEN_CONFIRM, bsep); 12682 if (bsep) { 12683 kmem_free(bsep, sizeof (*bsep)); 12684 if (num_bseqid_retryp && 12685 --(*num_bseqid_retryp) == 0) 12686 abort = TRUE; 12687 } 12688 } 12689 if ((ep->error == ETIMEDOUT || 12690 res.status == NFS4ERR_RESOURCE) && 12691 abort == FALSE && resend == FALSE) { 12692 if (!ep->error) 12693 (void) xdr_free(xdr_COMPOUND4res_clnt, 12694 (caddr_t)&res); 12695 12696 delay(SEC_TO_TICK(confirm_retry_sec)); 12697 goto recov_retry_confirm; 12698 } 12699 /* State may have changed so retry the entire OPEN op */ 12700 if (abort == FALSE) 12701 *retry_open = TRUE; 12702 else 12703 *retry_open = FALSE; 12704 if (!ep->error) 12705 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12706 return; 12707 } 12708 12709 if (res.status) { 12710 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12711 return; 12712 } 12713 12714 resop = &res.array[1]; /* open confirm res */ 12715 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12716 stateid, sizeof (*stateid)); 12717 12718 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12719 } 12720 12721 /* 12722 * Return the credentials associated with a client state object. The 12723 * caller is responsible for freeing the credentials. 12724 */ 12725 12726 static cred_t * 12727 state_to_cred(nfs4_open_stream_t *osp) 12728 { 12729 cred_t *cr; 12730 12731 /* 12732 * It's ok to not lock the open stream and open owner to get 12733 * the oo_cred since this is only written once (upon creation) 12734 * and will not change. 12735 */ 12736 cr = osp->os_open_owner->oo_cred; 12737 crhold(cr); 12738 12739 return (cr); 12740 } 12741 12742 /* 12743 * nfs4_find_sysid 12744 * 12745 * Find the sysid for the knetconfig associated with the given mi. 12746 */ 12747 static struct lm_sysid * 12748 nfs4_find_sysid(mntinfo4_t *mi) 12749 { 12750 ASSERT(nfs_zone() == mi->mi_zone); 12751 12752 /* 12753 * Switch from RDMA knconf to original mount knconf 12754 */ 12755 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12756 mi->mi_curr_serv->sv_hostname, NULL)); 12757 } 12758 12759 #ifdef DEBUG 12760 /* 12761 * Return a string version of the call type for easy reading. 12762 */ 12763 static char * 12764 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12765 { 12766 switch (ctype) { 12767 case NFS4_LCK_CTYPE_NORM: 12768 return ("NORMAL"); 12769 case NFS4_LCK_CTYPE_RECLAIM: 12770 return ("RECLAIM"); 12771 case NFS4_LCK_CTYPE_RESEND: 12772 return ("RESEND"); 12773 case NFS4_LCK_CTYPE_REINSTATE: 12774 return ("REINSTATE"); 12775 default: 12776 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12777 "type %d", ctype); 12778 return (""); 12779 } 12780 } 12781 #endif 12782 12783 /* 12784 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12785 * Unlock requests don't have an over-the-wire locktype, so we just return 12786 * something non-threatening. 12787 */ 12788 12789 static nfs_lock_type4 12790 flk_to_locktype(int cmd, int l_type) 12791 { 12792 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12793 12794 switch (l_type) { 12795 case F_UNLCK: 12796 return (READ_LT); 12797 case F_RDLCK: 12798 if (cmd == F_SETLK) 12799 return (READ_LT); 12800 else 12801 return (READW_LT); 12802 case F_WRLCK: 12803 if (cmd == F_SETLK) 12804 return (WRITE_LT); 12805 else 12806 return (WRITEW_LT); 12807 } 12808 panic("flk_to_locktype"); 12809 /*NOTREACHED*/ 12810 } 12811 12812 /* 12813 * Do some preliminary checks for nfs4frlock. 12814 */ 12815 static int 12816 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12817 u_offset_t offset) 12818 { 12819 int error = 0; 12820 12821 /* 12822 * If we are setting a lock, check that the file is opened 12823 * with the correct mode. 12824 */ 12825 if (cmd == F_SETLK || cmd == F_SETLKW) { 12826 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12827 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12828 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12829 "nfs4frlock_validate_args: file was opened with " 12830 "incorrect mode")); 12831 return (EBADF); 12832 } 12833 } 12834 12835 /* Convert the offset. It may need to be restored before returning. */ 12836 if (error = convoff(vp, flk, 0, offset)) { 12837 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12838 "nfs4frlock_validate_args: convoff => error= %d\n", 12839 error)); 12840 return (error); 12841 } 12842 12843 return (error); 12844 } 12845 12846 /* 12847 * Set the flock64's lm_sysid for nfs4frlock. 12848 */ 12849 static int 12850 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12851 { 12852 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12853 12854 /* Find the lm_sysid */ 12855 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12856 12857 if (*lspp == NULL) { 12858 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12859 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12860 return (ENOLCK); 12861 } 12862 12863 flk->l_sysid = lm_sysidt(*lspp); 12864 12865 return (0); 12866 } 12867 12868 /* 12869 * Do the remaining preliminary setup for nfs4frlock. 12870 */ 12871 static void 12872 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12873 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12874 cred_t **cred_otw) 12875 { 12876 /* 12877 * set tick_delay to the base delay time. 12878 * (NFS4_BASE_WAIT_TIME is in secs) 12879 */ 12880 12881 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12882 12883 /* 12884 * If lock is relative to EOF, we need the newest length of the 12885 * file. Therefore invalidate the ATTR_CACHE. 12886 */ 12887 12888 *whencep = flk->l_whence; 12889 12890 if (*whencep == 2) /* SEEK_END */ 12891 PURGE_ATTRCACHE4(vp); 12892 12893 recov_statep->rs_flags = 0; 12894 recov_statep->rs_num_retry_despite_err = 0; 12895 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12896 } 12897 12898 /* 12899 * Initialize and allocate the data structures necessary for 12900 * the nfs4frlock call. 12901 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12902 */ 12903 static void 12904 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12905 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12906 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12907 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 12908 { 12909 int argoplist_size; 12910 int num_ops = 2; 12911 12912 *retry = FALSE; 12913 *did_start_fop = FALSE; 12914 *skip_get_err = FALSE; 12915 lost_rqstp->lr_op = 0; 12916 argoplist_size = num_ops * sizeof (nfs_argop4); 12917 /* fill array with zero */ 12918 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 12919 12920 *argspp = argsp; 12921 *respp = NULL; 12922 12923 argsp->array_len = num_ops; 12924 argsp->array = *argopp; 12925 12926 /* initialize in case of error; will get real value down below */ 12927 argsp->ctag = TAG_NONE; 12928 12929 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 12930 *op_hintp = OH_LOCKU; 12931 else 12932 *op_hintp = OH_OTHER; 12933 } 12934 12935 /* 12936 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 12937 * the proper nfs4_server_t for this instance of nfs4frlock. 12938 * Returns 0 (success) or an errno value. 12939 */ 12940 static int 12941 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 12942 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 12943 bool_t *did_start_fop, bool_t *startrecovp) 12944 { 12945 int error = 0; 12946 rnode4_t *rp; 12947 12948 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12949 12950 if (ctype == NFS4_LCK_CTYPE_NORM) { 12951 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 12952 recov_statep, startrecovp); 12953 if (error) 12954 return (error); 12955 *did_start_fop = TRUE; 12956 } else { 12957 *did_start_fop = FALSE; 12958 *startrecovp = FALSE; 12959 } 12960 12961 if (!error) { 12962 rp = VTOR4(vp); 12963 12964 /* If the file failed recovery, just quit. */ 12965 mutex_enter(&rp->r_statelock); 12966 if (rp->r_flags & R4RECOVERR) { 12967 error = EIO; 12968 } 12969 mutex_exit(&rp->r_statelock); 12970 } 12971 12972 return (error); 12973 } 12974 12975 /* 12976 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 12977 * resend nfs4frlock call is initiated by the recovery framework. 12978 * Acquires the lop and oop seqid synchronization. 12979 */ 12980 static void 12981 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 12982 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 12983 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 12984 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 12985 { 12986 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 12987 int error; 12988 12989 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 12990 (CE_NOTE, 12991 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 12992 ASSERT(resend_rqstp != NULL); 12993 ASSERT(resend_rqstp->lr_op == OP_LOCK || 12994 resend_rqstp->lr_op == OP_LOCKU); 12995 12996 *oopp = resend_rqstp->lr_oop; 12997 if (resend_rqstp->lr_oop) { 12998 open_owner_hold(resend_rqstp->lr_oop); 12999 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 13000 ASSERT(error == 0); /* recov thread always succeeds */ 13001 } 13002 13003 /* Must resend this lost lock/locku request. */ 13004 ASSERT(resend_rqstp->lr_lop != NULL); 13005 *lopp = resend_rqstp->lr_lop; 13006 lock_owner_hold(resend_rqstp->lr_lop); 13007 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 13008 ASSERT(error == 0); /* recov thread always succeeds */ 13009 13010 *ospp = resend_rqstp->lr_osp; 13011 if (*ospp) 13012 open_stream_hold(resend_rqstp->lr_osp); 13013 13014 if (resend_rqstp->lr_op == OP_LOCK) { 13015 LOCK4args *lock_args; 13016 13017 argop->argop = OP_LOCK; 13018 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 13019 lock_args->locktype = resend_rqstp->lr_locktype; 13020 lock_args->reclaim = 13021 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 13022 lock_args->offset = resend_rqstp->lr_flk->l_start; 13023 lock_args->length = resend_rqstp->lr_flk->l_len; 13024 if (lock_args->length == 0) 13025 lock_args->length = ~lock_args->length; 13026 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13027 mi2clientid(mi), &lock_args->locker); 13028 13029 switch (resend_rqstp->lr_ctype) { 13030 case NFS4_LCK_CTYPE_RESEND: 13031 argsp->ctag = TAG_LOCK_RESEND; 13032 break; 13033 case NFS4_LCK_CTYPE_REINSTATE: 13034 argsp->ctag = TAG_LOCK_REINSTATE; 13035 break; 13036 case NFS4_LCK_CTYPE_RECLAIM: 13037 argsp->ctag = TAG_LOCK_RECLAIM; 13038 break; 13039 default: 13040 argsp->ctag = TAG_LOCK_UNKNOWN; 13041 break; 13042 } 13043 } else { 13044 LOCKU4args *locku_args; 13045 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13046 13047 argop->argop = OP_LOCKU; 13048 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13049 locku_args->locktype = READ_LT; 13050 locku_args->seqid = lop->lock_seqid + 1; 13051 mutex_enter(&lop->lo_lock); 13052 locku_args->lock_stateid = lop->lock_stateid; 13053 mutex_exit(&lop->lo_lock); 13054 locku_args->offset = resend_rqstp->lr_flk->l_start; 13055 locku_args->length = resend_rqstp->lr_flk->l_len; 13056 if (locku_args->length == 0) 13057 locku_args->length = ~locku_args->length; 13058 13059 switch (resend_rqstp->lr_ctype) { 13060 case NFS4_LCK_CTYPE_RESEND: 13061 argsp->ctag = TAG_LOCKU_RESEND; 13062 break; 13063 case NFS4_LCK_CTYPE_REINSTATE: 13064 argsp->ctag = TAG_LOCKU_REINSTATE; 13065 break; 13066 default: 13067 argsp->ctag = TAG_LOCK_UNKNOWN; 13068 break; 13069 } 13070 } 13071 } 13072 13073 /* 13074 * Setup the LOCKT4 arguments. 13075 */ 13076 static void 13077 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13078 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13079 rnode4_t *rp) 13080 { 13081 LOCKT4args *lockt_args; 13082 13083 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13084 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13085 argop->argop = OP_LOCKT; 13086 argsp->ctag = TAG_LOCKT; 13087 lockt_args = &argop->nfs_argop4_u.oplockt; 13088 13089 /* 13090 * The locktype will be READ_LT unless it's 13091 * a write lock. We do this because the Solaris 13092 * system call allows the combination of 13093 * F_UNLCK and F_GETLK* and so in that case the 13094 * unlock is mapped to a read. 13095 */ 13096 if (flk->l_type == F_WRLCK) 13097 lockt_args->locktype = WRITE_LT; 13098 else 13099 lockt_args->locktype = READ_LT; 13100 13101 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13102 /* set the lock owner4 args */ 13103 nfs4_setlockowner_args(&lockt_args->owner, rp, 13104 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13105 flk->l_pid); 13106 lockt_args->offset = flk->l_start; 13107 lockt_args->length = flk->l_len; 13108 if (flk->l_len == 0) 13109 lockt_args->length = ~lockt_args->length; 13110 13111 *lockt_argsp = lockt_args; 13112 } 13113 13114 /* 13115 * If the client is holding a delegation, and the open stream to be used 13116 * with this lock request is a delegation open stream, then re-open the stream. 13117 * Sets the nfs4_error_t to all zeros unless the open stream has already 13118 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13119 * means the caller should retry (like a recovery retry). 13120 */ 13121 static void 13122 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13123 { 13124 open_delegation_type4 dt; 13125 bool_t reopen_needed, force; 13126 nfs4_open_stream_t *osp; 13127 open_claim_type4 oclaim; 13128 rnode4_t *rp = VTOR4(vp); 13129 mntinfo4_t *mi = VTOMI4(vp); 13130 13131 ASSERT(nfs_zone() == mi->mi_zone); 13132 13133 nfs4_error_zinit(ep); 13134 13135 mutex_enter(&rp->r_statev4_lock); 13136 dt = rp->r_deleg_type; 13137 mutex_exit(&rp->r_statev4_lock); 13138 13139 if (dt != OPEN_DELEGATE_NONE) { 13140 nfs4_open_owner_t *oop; 13141 13142 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13143 if (!oop) { 13144 ep->stat = NFS4ERR_IO; 13145 return; 13146 } 13147 /* returns with 'os_sync_lock' held */ 13148 osp = find_open_stream(oop, rp); 13149 if (!osp) { 13150 open_owner_rele(oop); 13151 ep->stat = NFS4ERR_IO; 13152 return; 13153 } 13154 13155 if (osp->os_failed_reopen) { 13156 NFS4_DEBUG((nfs4_open_stream_debug || 13157 nfs4_client_lock_debug), (CE_NOTE, 13158 "nfs4frlock_check_deleg: os_failed_reopen set " 13159 "for osp %p, cr %p, rp %s", (void *)osp, 13160 (void *)cr, rnode4info(rp))); 13161 mutex_exit(&osp->os_sync_lock); 13162 open_stream_rele(osp, rp); 13163 open_owner_rele(oop); 13164 ep->stat = NFS4ERR_IO; 13165 return; 13166 } 13167 13168 /* 13169 * Determine whether a reopen is needed. If this 13170 * is a delegation open stream, then send the open 13171 * to the server to give visibility to the open owner. 13172 * Even if it isn't a delegation open stream, we need 13173 * to check if the previous open CLAIM_DELEGATE_CUR 13174 * was sufficient. 13175 */ 13176 13177 reopen_needed = osp->os_delegation || 13178 ((lt == F_RDLCK && 13179 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13180 (lt == F_WRLCK && 13181 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13182 13183 mutex_exit(&osp->os_sync_lock); 13184 open_owner_rele(oop); 13185 13186 if (reopen_needed) { 13187 /* 13188 * Always use CLAIM_PREVIOUS after server reboot. 13189 * The server will reject CLAIM_DELEGATE_CUR if 13190 * it is used during the grace period. 13191 */ 13192 mutex_enter(&mi->mi_lock); 13193 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13194 oclaim = CLAIM_PREVIOUS; 13195 force = TRUE; 13196 } else { 13197 oclaim = CLAIM_DELEGATE_CUR; 13198 force = FALSE; 13199 } 13200 mutex_exit(&mi->mi_lock); 13201 13202 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13203 if (ep->error == EAGAIN) { 13204 nfs4_error_zinit(ep); 13205 ep->stat = NFS4ERR_DELAY; 13206 } 13207 } 13208 open_stream_rele(osp, rp); 13209 osp = NULL; 13210 } 13211 } 13212 13213 /* 13214 * Setup the LOCKU4 arguments. 13215 * Returns errors via the nfs4_error_t. 13216 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13217 * over-the-wire. The caller must release the 13218 * reference on *lopp. 13219 * NFS4ERR_DELAY caller should retry (like recovery retry) 13220 * (other) unrecoverable error. 13221 */ 13222 static void 13223 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13224 LOCKU4args **locku_argsp, flock64_t *flk, 13225 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13226 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13227 bool_t *skip_get_err, bool_t *go_otwp) 13228 { 13229 nfs4_lock_owner_t *lop = NULL; 13230 LOCKU4args *locku_args; 13231 pid_t pid; 13232 bool_t is_spec = FALSE; 13233 rnode4_t *rp = VTOR4(vp); 13234 13235 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13236 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13237 13238 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13239 if (ep->error || ep->stat) 13240 return; 13241 13242 argop->argop = OP_LOCKU; 13243 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13244 argsp->ctag = TAG_LOCKU_REINSTATE; 13245 else 13246 argsp->ctag = TAG_LOCKU; 13247 locku_args = &argop->nfs_argop4_u.oplocku; 13248 *locku_argsp = locku_args; 13249 13250 /* 13251 * XXX what should locku_args->locktype be? 13252 * setting to ALWAYS be READ_LT so at least 13253 * it is a valid locktype. 13254 */ 13255 13256 locku_args->locktype = READ_LT; 13257 13258 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13259 flk->l_pid; 13260 13261 /* 13262 * Get the lock owner stateid. If no lock owner 13263 * exists, return success. 13264 */ 13265 lop = find_lock_owner(rp, pid, LOWN_ANY); 13266 *lopp = lop; 13267 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13268 is_spec = TRUE; 13269 if (!lop || is_spec) { 13270 /* 13271 * No lock owner so no locks to unlock. 13272 * Return success. If there was a failed 13273 * reclaim earlier, the lock might still be 13274 * registered with the local locking code, 13275 * so notify it of the unlock. 13276 * 13277 * If the lockowner is using a special stateid, 13278 * then the original lock request (that created 13279 * this lockowner) was never successful, so we 13280 * have no lock to undo OTW. 13281 */ 13282 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13283 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13284 "(%ld) so return success", (long)pid)); 13285 13286 if (ctype == NFS4_LCK_CTYPE_NORM) 13287 flk->l_pid = curproc->p_pid; 13288 nfs4_register_lock_locally(vp, flk, flag, offset); 13289 /* 13290 * Release our hold and NULL out so final_cleanup 13291 * doesn't try to end a lock seqid sync we 13292 * never started. 13293 */ 13294 if (is_spec) { 13295 lock_owner_rele(lop); 13296 *lopp = NULL; 13297 } 13298 *skip_get_err = TRUE; 13299 *go_otwp = FALSE; 13300 return; 13301 } 13302 13303 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13304 if (ep->error == EAGAIN) { 13305 lock_owner_rele(lop); 13306 *lopp = NULL; 13307 return; 13308 } 13309 13310 mutex_enter(&lop->lo_lock); 13311 locku_args->lock_stateid = lop->lock_stateid; 13312 mutex_exit(&lop->lo_lock); 13313 locku_args->seqid = lop->lock_seqid + 1; 13314 13315 /* leave the ref count on lop, rele after RPC call */ 13316 13317 locku_args->offset = flk->l_start; 13318 locku_args->length = flk->l_len; 13319 if (flk->l_len == 0) 13320 locku_args->length = ~locku_args->length; 13321 13322 *go_otwp = TRUE; 13323 } 13324 13325 /* 13326 * Setup the LOCK4 arguments. 13327 * 13328 * Returns errors via the nfs4_error_t. 13329 * NFS4_OK no problems 13330 * NFS4ERR_DELAY caller should retry (like recovery retry) 13331 * (other) unrecoverable error 13332 */ 13333 static void 13334 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13335 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13336 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13337 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13338 { 13339 LOCK4args *lock_args; 13340 nfs4_open_owner_t *oop = NULL; 13341 nfs4_open_stream_t *osp = NULL; 13342 nfs4_lock_owner_t *lop = NULL; 13343 pid_t pid; 13344 rnode4_t *rp = VTOR4(vp); 13345 13346 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13347 13348 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13349 if (ep->error || ep->stat != NFS4_OK) 13350 return; 13351 13352 argop->argop = OP_LOCK; 13353 if (ctype == NFS4_LCK_CTYPE_NORM) 13354 argsp->ctag = TAG_LOCK; 13355 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13356 argsp->ctag = TAG_RELOCK; 13357 else 13358 argsp->ctag = TAG_LOCK_REINSTATE; 13359 lock_args = &argop->nfs_argop4_u.oplock; 13360 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13361 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13362 /* 13363 * Get the lock owner. If no lock owner exists, 13364 * create a 'temporary' one and grab the open seqid 13365 * synchronization (which puts a hold on the open 13366 * owner and open stream). 13367 * This also grabs the lock seqid synchronization. 13368 */ 13369 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13370 ep->stat = 13371 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13372 13373 if (ep->stat != NFS4_OK) 13374 goto out; 13375 13376 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13377 &lock_args->locker); 13378 13379 lock_args->offset = flk->l_start; 13380 lock_args->length = flk->l_len; 13381 if (flk->l_len == 0) 13382 lock_args->length = ~lock_args->length; 13383 *lock_argsp = lock_args; 13384 out: 13385 *oopp = oop; 13386 *ospp = osp; 13387 *lopp = lop; 13388 } 13389 13390 /* 13391 * After we get the reply from the server, record the proper information 13392 * for possible resend lock requests. 13393 * 13394 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13395 */ 13396 static void 13397 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13398 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13399 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13400 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13401 { 13402 bool_t unlock = (flk->l_type == F_UNLCK); 13403 13404 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13405 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13406 ctype == NFS4_LCK_CTYPE_REINSTATE); 13407 13408 if (error != 0 && !unlock) { 13409 NFS4_DEBUG((nfs4_lost_rqst_debug || 13410 nfs4_client_lock_debug), (CE_NOTE, 13411 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13412 " for lop %p", (void *)lop)); 13413 ASSERT(lop != NULL); 13414 mutex_enter(&lop->lo_lock); 13415 lop->lo_pending_rqsts = 1; 13416 mutex_exit(&lop->lo_lock); 13417 } 13418 13419 lost_rqstp->lr_putfirst = FALSE; 13420 lost_rqstp->lr_op = 0; 13421 13422 /* 13423 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13424 * recovery purposes so that the lock request that was sent 13425 * can be saved and re-issued later. Ditto for EIO from a forced 13426 * unmount. This is done to have the client's local locking state 13427 * match the v4 server's state; that is, the request was 13428 * potentially received and accepted by the server but the client 13429 * thinks it was not. 13430 */ 13431 if (error == ETIMEDOUT || error == EINTR || 13432 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13433 NFS4_DEBUG((nfs4_lost_rqst_debug || 13434 nfs4_client_lock_debug), (CE_NOTE, 13435 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13436 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13437 (void *)lop, (void *)oop, (void *)osp)); 13438 if (unlock) 13439 lost_rqstp->lr_op = OP_LOCKU; 13440 else { 13441 lost_rqstp->lr_op = OP_LOCK; 13442 lost_rqstp->lr_locktype = locktype; 13443 } 13444 /* 13445 * Objects are held and rele'd via the recovery code. 13446 * See nfs4_save_lost_rqst. 13447 */ 13448 lost_rqstp->lr_vp = vp; 13449 lost_rqstp->lr_dvp = NULL; 13450 lost_rqstp->lr_oop = oop; 13451 lost_rqstp->lr_osp = osp; 13452 lost_rqstp->lr_lop = lop; 13453 lost_rqstp->lr_cr = cr; 13454 switch (ctype) { 13455 case NFS4_LCK_CTYPE_NORM: 13456 flk->l_pid = ttoproc(curthread)->p_pid; 13457 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13458 break; 13459 case NFS4_LCK_CTYPE_REINSTATE: 13460 lost_rqstp->lr_putfirst = TRUE; 13461 lost_rqstp->lr_ctype = ctype; 13462 break; 13463 default: 13464 break; 13465 } 13466 lost_rqstp->lr_flk = flk; 13467 } 13468 } 13469 13470 /* 13471 * Update lop's seqid. Also update the seqid stored in a resend request, 13472 * if any. (Some recovery errors increment the seqid, and we may have to 13473 * send the resend request again.) 13474 */ 13475 13476 static void 13477 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13478 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13479 { 13480 if (lock_args) { 13481 if (lock_args->locker.new_lock_owner == TRUE) 13482 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13483 else { 13484 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13485 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13486 } 13487 } else if (locku_args) { 13488 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13489 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13490 } 13491 } 13492 13493 /* 13494 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13495 * COMPOUND4 args/res for calls that need to retry. 13496 * Switches the *cred_otwp to base_cr. 13497 */ 13498 static void 13499 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13500 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13501 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13502 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13503 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13504 { 13505 nfs4_open_owner_t *oop = *oopp; 13506 nfs4_open_stream_t *osp = *ospp; 13507 nfs4_lock_owner_t *lop = *lopp; 13508 nfs_argop4 *argop = (*argspp)->array; 13509 13510 if (*did_start_fop) { 13511 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13512 needrecov); 13513 *did_start_fop = FALSE; 13514 } 13515 ASSERT((*argspp)->array_len == 2); 13516 if (argop[1].argop == OP_LOCK) 13517 nfs4args_lock_free(&argop[1]); 13518 else if (argop[1].argop == OP_LOCKT) 13519 nfs4args_lockt_free(&argop[1]); 13520 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13521 if (!error) 13522 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13523 *argspp = NULL; 13524 *respp = NULL; 13525 13526 if (lop) { 13527 nfs4_end_lock_seqid_sync(lop); 13528 lock_owner_rele(lop); 13529 *lopp = NULL; 13530 } 13531 13532 /* need to free up the reference on osp for lock args */ 13533 if (osp != NULL) { 13534 open_stream_rele(osp, VTOR4(vp)); 13535 *ospp = NULL; 13536 } 13537 13538 /* need to free up the reference on oop for lock args */ 13539 if (oop != NULL) { 13540 nfs4_end_open_seqid_sync(oop); 13541 open_owner_rele(oop); 13542 *oopp = NULL; 13543 } 13544 13545 crfree(*cred_otwp); 13546 *cred_otwp = base_cr; 13547 crhold(*cred_otwp); 13548 } 13549 13550 /* 13551 * Function to process the client's recovery for nfs4frlock. 13552 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13553 * 13554 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13555 * COMPOUND4 args/res for calls that need to retry. 13556 * 13557 * Note: the rp's r_lkserlock is *not* dropped during this path. 13558 */ 13559 static bool_t 13560 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13561 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13562 LOCK4args *lock_args, LOCKU4args *locku_args, 13563 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13564 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13565 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13566 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13567 { 13568 nfs4_open_owner_t *oop = *oopp; 13569 nfs4_open_stream_t *osp = *ospp; 13570 nfs4_lock_owner_t *lop = *lopp; 13571 13572 bool_t abort, retry; 13573 13574 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13575 ASSERT((*argspp) != NULL); 13576 ASSERT((*respp) != NULL); 13577 if (lock_args || locku_args) 13578 ASSERT(lop != NULL); 13579 13580 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13581 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13582 13583 retry = TRUE; 13584 abort = FALSE; 13585 if (needrecov) { 13586 nfs4_bseqid_entry_t *bsep = NULL; 13587 nfs_opnum4 op; 13588 13589 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13590 13591 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13592 seqid4 seqid; 13593 13594 if (lock_args) { 13595 if (lock_args->locker.new_lock_owner == TRUE) 13596 seqid = lock_args->locker.locker4_u. 13597 open_owner.open_seqid; 13598 else 13599 seqid = lock_args->locker.locker4_u. 13600 lock_owner.lock_seqid; 13601 } else if (locku_args) { 13602 seqid = locku_args->seqid; 13603 } else { 13604 seqid = 0; 13605 } 13606 13607 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13608 flk->l_pid, (*argspp)->ctag, seqid); 13609 } 13610 13611 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13612 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13613 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13614 NULL, op, bsep); 13615 13616 if (bsep) 13617 kmem_free(bsep, sizeof (*bsep)); 13618 } 13619 13620 /* 13621 * Return that we do not want to retry the request for 3 cases: 13622 * 1. If we received EINTR or are bailing out because of a forced 13623 * unmount, we came into this code path just for the sake of 13624 * initiating recovery, we now need to return the error. 13625 * 2. If we have aborted recovery. 13626 * 3. We received NFS4ERR_BAD_SEQID. 13627 */ 13628 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13629 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13630 retry = FALSE; 13631 13632 if (*did_start_fop == TRUE) { 13633 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13634 needrecov); 13635 *did_start_fop = FALSE; 13636 } 13637 13638 if (retry == TRUE) { 13639 nfs_argop4 *argop; 13640 13641 argop = (*argspp)->array; 13642 ASSERT((*argspp)->array_len == 2); 13643 13644 if (argop[1].argop == OP_LOCK) 13645 nfs4args_lock_free(&argop[1]); 13646 else if (argop[1].argop == OP_LOCKT) 13647 nfs4args_lockt_free(&argop[1]); 13648 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13649 if (!ep->error) 13650 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13651 *respp = NULL; 13652 *argspp = NULL; 13653 } 13654 13655 if (lop != NULL) { 13656 nfs4_end_lock_seqid_sync(lop); 13657 lock_owner_rele(lop); 13658 } 13659 13660 *lopp = NULL; 13661 13662 /* need to free up the reference on osp for lock args */ 13663 if (osp != NULL) { 13664 open_stream_rele(osp, rp); 13665 *ospp = NULL; 13666 } 13667 13668 /* need to free up the reference on oop for lock args */ 13669 if (oop != NULL) { 13670 nfs4_end_open_seqid_sync(oop); 13671 open_owner_rele(oop); 13672 *oopp = NULL; 13673 } 13674 13675 return (retry); 13676 } 13677 13678 /* 13679 * Handles the successful reply from the server for nfs4frlock. 13680 */ 13681 static void 13682 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13683 vnode_t *vp, int flag, u_offset_t offset, 13684 nfs4_lost_rqst_t *resend_rqstp) 13685 { 13686 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13687 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13688 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13689 if (ctype == NFS4_LCK_CTYPE_NORM) { 13690 flk->l_pid = ttoproc(curthread)->p_pid; 13691 /* 13692 * We do not register lost locks locally in 13693 * the 'resend' case since the user/application 13694 * doesn't think we have the lock. 13695 */ 13696 ASSERT(!resend_rqstp); 13697 nfs4_register_lock_locally(vp, flk, flag, offset); 13698 } 13699 } 13700 } 13701 13702 /* 13703 * Handle the DENIED reply from the server for nfs4frlock. 13704 * Returns TRUE if we should retry the request; FALSE otherwise. 13705 * 13706 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13707 * COMPOUND4 args/res for calls that need to retry. Can also 13708 * drop and regrab the r_lkserlock. 13709 */ 13710 static bool_t 13711 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13712 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13713 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13714 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13715 nfs4_recov_state_t *recov_statep, int needrecov, 13716 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13717 clock_t *tick_delayp, short *whencep, int *errorp, 13718 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13719 bool_t *skip_get_err) 13720 { 13721 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13722 13723 if (lock_args) { 13724 nfs4_open_owner_t *oop = *oopp; 13725 nfs4_open_stream_t *osp = *ospp; 13726 nfs4_lock_owner_t *lop = *lopp; 13727 int intr; 13728 13729 /* 13730 * Blocking lock needs to sleep and retry from the request. 13731 * 13732 * Do not block and wait for 'resend' or 'reinstate' 13733 * lock requests, just return the error. 13734 * 13735 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13736 */ 13737 if (cmd == F_SETLKW) { 13738 rnode4_t *rp = VTOR4(vp); 13739 nfs_argop4 *argop = (*argspp)->array; 13740 13741 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13742 13743 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13744 recov_statep, needrecov); 13745 *did_start_fop = FALSE; 13746 ASSERT((*argspp)->array_len == 2); 13747 if (argop[1].argop == OP_LOCK) 13748 nfs4args_lock_free(&argop[1]); 13749 else if (argop[1].argop == OP_LOCKT) 13750 nfs4args_lockt_free(&argop[1]); 13751 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13752 if (*respp) 13753 (void) xdr_free(xdr_COMPOUND4res_clnt, 13754 (caddr_t)*respp); 13755 *argspp = NULL; 13756 *respp = NULL; 13757 nfs4_end_lock_seqid_sync(lop); 13758 lock_owner_rele(lop); 13759 *lopp = NULL; 13760 if (osp != NULL) { 13761 open_stream_rele(osp, rp); 13762 *ospp = NULL; 13763 } 13764 if (oop != NULL) { 13765 nfs4_end_open_seqid_sync(oop); 13766 open_owner_rele(oop); 13767 *oopp = NULL; 13768 } 13769 13770 nfs_rw_exit(&rp->r_lkserlock); 13771 13772 intr = nfs4_block_and_wait(tick_delayp, rp); 13773 13774 if (intr) { 13775 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13776 RW_WRITER, FALSE); 13777 *errorp = EINTR; 13778 return (FALSE); 13779 } 13780 13781 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13782 RW_WRITER, FALSE); 13783 13784 /* 13785 * Make sure we are still safe to lock with 13786 * regards to mmapping. 13787 */ 13788 if (!nfs4_safelock(vp, flk, cr)) { 13789 *errorp = EAGAIN; 13790 return (FALSE); 13791 } 13792 13793 return (TRUE); 13794 } 13795 if (ctype == NFS4_LCK_CTYPE_NORM) 13796 *errorp = EAGAIN; 13797 *skip_get_err = TRUE; 13798 flk->l_whence = 0; 13799 *whencep = 0; 13800 return (FALSE); 13801 } else if (lockt_args) { 13802 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13803 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13804 13805 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13806 flk, lockt_args); 13807 13808 /* according to NLM code */ 13809 *errorp = 0; 13810 *whencep = 0; 13811 *skip_get_err = TRUE; 13812 return (FALSE); 13813 } 13814 return (FALSE); 13815 } 13816 13817 /* 13818 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13819 */ 13820 static void 13821 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13822 { 13823 switch (resp->status) { 13824 case NFS4ERR_ACCESS: 13825 case NFS4ERR_ADMIN_REVOKED: 13826 case NFS4ERR_BADHANDLE: 13827 case NFS4ERR_BAD_RANGE: 13828 case NFS4ERR_BAD_SEQID: 13829 case NFS4ERR_BAD_STATEID: 13830 case NFS4ERR_BADXDR: 13831 case NFS4ERR_DEADLOCK: 13832 case NFS4ERR_DELAY: 13833 case NFS4ERR_EXPIRED: 13834 case NFS4ERR_FHEXPIRED: 13835 case NFS4ERR_GRACE: 13836 case NFS4ERR_INVAL: 13837 case NFS4ERR_ISDIR: 13838 case NFS4ERR_LEASE_MOVED: 13839 case NFS4ERR_LOCK_NOTSUPP: 13840 case NFS4ERR_LOCK_RANGE: 13841 case NFS4ERR_MOVED: 13842 case NFS4ERR_NOFILEHANDLE: 13843 case NFS4ERR_NO_GRACE: 13844 case NFS4ERR_OLD_STATEID: 13845 case NFS4ERR_OPENMODE: 13846 case NFS4ERR_RECLAIM_BAD: 13847 case NFS4ERR_RECLAIM_CONFLICT: 13848 case NFS4ERR_RESOURCE: 13849 case NFS4ERR_SERVERFAULT: 13850 case NFS4ERR_STALE: 13851 case NFS4ERR_STALE_CLIENTID: 13852 case NFS4ERR_STALE_STATEID: 13853 return; 13854 default: 13855 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13856 "nfs4frlock_results_default: got unrecognizable " 13857 "res.status %d", resp->status)); 13858 *errorp = NFS4ERR_INVAL; 13859 } 13860 } 13861 13862 /* 13863 * The lock request was successful, so update the client's state. 13864 */ 13865 static void 13866 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13867 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13868 vnode_t *vp, flock64_t *flk, cred_t *cr, 13869 nfs4_lost_rqst_t *resend_rqstp) 13870 { 13871 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13872 13873 if (lock_args) { 13874 LOCK4res *lock_res; 13875 13876 lock_res = &resop->nfs_resop4_u.oplock; 13877 /* update the stateid with server's response */ 13878 13879 if (lock_args->locker.new_lock_owner == TRUE) { 13880 mutex_enter(&lop->lo_lock); 13881 lop->lo_just_created = NFS4_PERM_CREATED; 13882 mutex_exit(&lop->lo_lock); 13883 } 13884 13885 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13886 13887 /* 13888 * If the lock was the result of a resending a lost 13889 * request, we've synched up the stateid and seqid 13890 * with the server, but now the server might be out of sync 13891 * with what the application thinks it has for locks. 13892 * Clean that up here. It's unclear whether we should do 13893 * this even if the filesystem has been forcibly unmounted. 13894 * For most servers, it's probably wasted effort, but 13895 * RFC3530 lets servers require that unlocks exactly match 13896 * the locks that are held. 13897 */ 13898 if (resend_rqstp != NULL && 13899 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13900 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13901 } else { 13902 flk->l_whence = 0; 13903 } 13904 } else if (locku_args) { 13905 LOCKU4res *locku_res; 13906 13907 locku_res = &resop->nfs_resop4_u.oplocku; 13908 13909 /* Update the stateid with the server's response */ 13910 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 13911 } else if (lockt_args) { 13912 /* Switch the lock type to express success, see fcntl */ 13913 flk->l_type = F_UNLCK; 13914 flk->l_whence = 0; 13915 } 13916 } 13917 13918 /* 13919 * Do final cleanup before exiting nfs4frlock. 13920 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13921 * COMPOUND4 args/res for calls that haven't already. 13922 */ 13923 static void 13924 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 13925 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 13926 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 13927 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13928 short whence, u_offset_t offset, struct lm_sysid *ls, 13929 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 13930 bool_t did_start_fop, bool_t skip_get_err, 13931 cred_t *cred_otw, cred_t *cred) 13932 { 13933 mntinfo4_t *mi = VTOMI4(vp); 13934 rnode4_t *rp = VTOR4(vp); 13935 int error = *errorp; 13936 nfs_argop4 *argop; 13937 13938 ASSERT(nfs_zone() == mi->mi_zone); 13939 /* 13940 * The client recovery code wants the raw status information, 13941 * so don't map the NFS status code to an errno value for 13942 * non-normal call types. 13943 */ 13944 if (ctype == NFS4_LCK_CTYPE_NORM) { 13945 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 13946 *errorp = geterrno4(resp->status); 13947 if (did_start_fop == TRUE) 13948 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 13949 needrecov); 13950 13951 /* 13952 * We've established a new lock on the server, so invalidate 13953 * the pages associated with the vnode to get the most up to 13954 * date pages from the server after acquiring the lock. We 13955 * want to be sure that the read operation gets the newest data. 13956 * N.B. 13957 * We used to do this in nfs4frlock_results_ok but that doesn't 13958 * work since VOP_PUTPAGE can call nfs4_commit which calls 13959 * nfs4_start_fop. We flush the pages below after calling 13960 * nfs4_end_fop above 13961 */ 13962 if (!error && resp && resp->status == NFS4_OK) { 13963 int error; 13964 13965 error = VOP_PUTPAGE(vp, (u_offset_t)0, 13966 0, B_INVAL, cred, NULL); 13967 13968 if (error && (error == ENOSPC || error == EDQUOT)) { 13969 rnode4_t *rp = VTOR4(vp); 13970 13971 mutex_enter(&rp->r_statelock); 13972 if (!rp->r_error) 13973 rp->r_error = error; 13974 mutex_exit(&rp->r_statelock); 13975 } 13976 } 13977 } 13978 if (argsp) { 13979 ASSERT(argsp->array_len == 2); 13980 argop = argsp->array; 13981 if (argop[1].argop == OP_LOCK) 13982 nfs4args_lock_free(&argop[1]); 13983 else if (argop[1].argop == OP_LOCKT) 13984 nfs4args_lockt_free(&argop[1]); 13985 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13986 if (resp) 13987 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 13988 } 13989 13990 /* free the reference on the lock owner */ 13991 if (lop != NULL) { 13992 nfs4_end_lock_seqid_sync(lop); 13993 lock_owner_rele(lop); 13994 } 13995 13996 /* need to free up the reference on osp for lock args */ 13997 if (osp != NULL) 13998 open_stream_rele(osp, rp); 13999 14000 /* need to free up the reference on oop for lock args */ 14001 if (oop != NULL) { 14002 nfs4_end_open_seqid_sync(oop); 14003 open_owner_rele(oop); 14004 } 14005 14006 (void) convoff(vp, flk, whence, offset); 14007 14008 lm_rel_sysid(ls); 14009 14010 /* 14011 * Record debug information in the event we get EINVAL. 14012 */ 14013 mutex_enter(&mi->mi_lock); 14014 if (*errorp == EINVAL && (lock_args || locku_args) && 14015 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 14016 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 14017 zcmn_err(getzoneid(), CE_NOTE, 14018 "%s operation failed with " 14019 "EINVAL probably since the server, %s," 14020 " doesn't support POSIX style locking", 14021 lock_args ? "LOCK" : "LOCKU", 14022 mi->mi_curr_serv->sv_hostname); 14023 mi->mi_flags |= MI4_LOCK_DEBUG; 14024 } 14025 } 14026 mutex_exit(&mi->mi_lock); 14027 14028 if (cred_otw) 14029 crfree(cred_otw); 14030 } 14031 14032 /* 14033 * This calls the server and the local locking code. 14034 * 14035 * Client locks are registerred locally by oring the sysid with 14036 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 14037 * We need to distinguish between the two to avoid collision in case one 14038 * machine is used as both client and server. 14039 * 14040 * Blocking lock requests will continually retry to acquire the lock 14041 * forever. 14042 * 14043 * The ctype is defined as follows: 14044 * NFS4_LCK_CTYPE_NORM: normal lock request. 14045 * 14046 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14047 * recovery, get the pid from flk instead of curproc, and don't reregister 14048 * the lock locally. 14049 * 14050 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14051 * that we will use the information passed in via resend_rqstp to setup the 14052 * lock/locku request. This resend is the exact same request as the 'lost 14053 * lock', and is initiated by the recovery framework. A successful resend 14054 * request can initiate one or more reinstate requests. 14055 * 14056 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14057 * does not trigger additional reinstate requests. This lock call type is 14058 * set for setting the v4 server's locking state back to match what the 14059 * client's local locking state is in the event of a received 'lost lock'. 14060 * 14061 * Errors are returned via the nfs4_error_t parameter. 14062 */ 14063 void 14064 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14065 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14066 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14067 { 14068 COMPOUND4args_clnt args, *argsp = NULL; 14069 COMPOUND4res_clnt res, *resp = NULL; 14070 nfs_argop4 *argop; 14071 nfs_resop4 *resop; 14072 rnode4_t *rp; 14073 int doqueue = 1; 14074 clock_t tick_delay; /* delay in clock ticks */ 14075 struct lm_sysid *ls; 14076 LOCK4args *lock_args = NULL; 14077 LOCKU4args *locku_args = NULL; 14078 LOCKT4args *lockt_args = NULL; 14079 nfs4_open_owner_t *oop = NULL; 14080 nfs4_open_stream_t *osp = NULL; 14081 nfs4_lock_owner_t *lop = NULL; 14082 bool_t needrecov = FALSE; 14083 nfs4_recov_state_t recov_state; 14084 short whence; 14085 nfs4_op_hint_t op_hint; 14086 nfs4_lost_rqst_t lost_rqst; 14087 bool_t retry = FALSE; 14088 bool_t did_start_fop = FALSE; 14089 bool_t skip_get_err = FALSE; 14090 cred_t *cred_otw = NULL; 14091 bool_t recovonly; /* just queue request */ 14092 int frc_no_reclaim = 0; 14093 #ifdef DEBUG 14094 char *name; 14095 #endif 14096 14097 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14098 14099 #ifdef DEBUG 14100 name = fn_name(VTOSV(vp)->sv_name); 14101 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14102 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14103 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14104 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14105 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14106 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14107 resend_rqstp ? "TRUE" : "FALSE")); 14108 kmem_free(name, MAXNAMELEN); 14109 #endif 14110 14111 nfs4_error_zinit(ep); 14112 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14113 if (ep->error) 14114 return; 14115 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14116 if (ep->error) 14117 return; 14118 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14119 vp, cr, &cred_otw); 14120 14121 recov_retry: 14122 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14123 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14124 rp = VTOR4(vp); 14125 14126 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14127 &did_start_fop, &recovonly); 14128 14129 if (ep->error) 14130 goto out; 14131 14132 if (recovonly) { 14133 /* 14134 * Leave the request for the recovery system to deal with. 14135 */ 14136 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14137 ASSERT(cmd != F_GETLK); 14138 ASSERT(flk->l_type == F_UNLCK); 14139 14140 nfs4_error_init(ep, EINTR); 14141 needrecov = TRUE; 14142 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14143 if (lop != NULL) { 14144 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14145 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14146 (void) nfs4_start_recovery(ep, 14147 VTOMI4(vp), vp, NULL, NULL, 14148 (lost_rqst.lr_op == OP_LOCK || 14149 lost_rqst.lr_op == OP_LOCKU) ? 14150 &lost_rqst : NULL, OP_LOCKU, NULL); 14151 lock_owner_rele(lop); 14152 lop = NULL; 14153 } 14154 flk->l_pid = curproc->p_pid; 14155 nfs4_register_lock_locally(vp, flk, flag, offset); 14156 goto out; 14157 } 14158 14159 /* putfh directory fh */ 14160 argop[0].argop = OP_CPUTFH; 14161 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14162 14163 /* 14164 * Set up the over-the-wire arguments and get references to the 14165 * open owner, etc. 14166 */ 14167 14168 if (ctype == NFS4_LCK_CTYPE_RESEND || 14169 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14170 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14171 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14172 } else { 14173 bool_t go_otw = TRUE; 14174 14175 ASSERT(resend_rqstp == NULL); 14176 14177 switch (cmd) { 14178 case F_GETLK: 14179 case F_O_GETLK: 14180 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14181 &lockt_args, argsp, flk, rp); 14182 break; 14183 case F_SETLKW: 14184 case F_SETLK: 14185 if (flk->l_type == F_UNLCK) 14186 nfs4frlock_setup_locku_args(ctype, 14187 &argop[1], &locku_args, flk, 14188 &lop, ep, argsp, 14189 vp, flag, offset, cr, 14190 &skip_get_err, &go_otw); 14191 else 14192 nfs4frlock_setup_lock_args(ctype, 14193 &lock_args, &oop, &osp, &lop, &argop[1], 14194 argsp, flk, cmd, vp, cr, ep); 14195 14196 if (ep->error) 14197 goto out; 14198 14199 switch (ep->stat) { 14200 case NFS4_OK: 14201 break; 14202 case NFS4ERR_DELAY: 14203 /* recov thread never gets this error */ 14204 ASSERT(resend_rqstp == NULL); 14205 ASSERT(did_start_fop); 14206 14207 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14208 &recov_state, TRUE); 14209 did_start_fop = FALSE; 14210 if (argop[1].argop == OP_LOCK) 14211 nfs4args_lock_free(&argop[1]); 14212 else if (argop[1].argop == OP_LOCKT) 14213 nfs4args_lockt_free(&argop[1]); 14214 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14215 argsp = NULL; 14216 goto recov_retry; 14217 default: 14218 ep->error = EIO; 14219 goto out; 14220 } 14221 break; 14222 default: 14223 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14224 "nfs4_frlock: invalid cmd %d", cmd)); 14225 ep->error = EINVAL; 14226 goto out; 14227 } 14228 14229 if (!go_otw) 14230 goto out; 14231 } 14232 14233 /* XXX should we use the local reclock as a cache ? */ 14234 /* 14235 * Unregister the lock with the local locking code before 14236 * contacting the server. This avoids a potential race where 14237 * another process gets notified that it has been granted a lock 14238 * before we can unregister ourselves locally. 14239 */ 14240 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14241 if (ctype == NFS4_LCK_CTYPE_NORM) 14242 flk->l_pid = ttoproc(curthread)->p_pid; 14243 nfs4_register_lock_locally(vp, flk, flag, offset); 14244 } 14245 14246 /* 14247 * Send the server the lock request. Continually loop with a delay 14248 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14249 */ 14250 resp = &res; 14251 14252 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14253 (CE_NOTE, 14254 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14255 rnode4info(rp))); 14256 14257 if (lock_args && frc_no_reclaim) { 14258 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14259 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14260 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14261 lock_args->reclaim = FALSE; 14262 if (did_reclaimp) 14263 *did_reclaimp = 0; 14264 } 14265 14266 /* 14267 * Do the OTW call. 14268 */ 14269 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14270 14271 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14272 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14273 14274 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14275 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14276 "nfs4frlock: needrecov %d", needrecov)); 14277 14278 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14279 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14280 args.ctag); 14281 14282 /* 14283 * Check if one of these mutually exclusive error cases has 14284 * happened: 14285 * need to swap credentials due to access error 14286 * recovery is needed 14287 * different error (only known case is missing Kerberos ticket) 14288 */ 14289 14290 if ((ep->error == EACCES || 14291 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14292 cred_otw != cr) { 14293 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14294 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14295 cr, &cred_otw); 14296 goto recov_retry; 14297 } 14298 14299 if (needrecov) { 14300 /* 14301 * LOCKT requests don't need to recover from lost 14302 * requests since they don't create/modify state. 14303 */ 14304 if ((ep->error == EINTR || 14305 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14306 lockt_args) 14307 goto out; 14308 /* 14309 * Do not attempt recovery for requests initiated by 14310 * the recovery framework. Let the framework redrive them. 14311 */ 14312 if (ctype != NFS4_LCK_CTYPE_NORM) 14313 goto out; 14314 else { 14315 ASSERT(resend_rqstp == NULL); 14316 } 14317 14318 nfs4frlock_save_lost_rqst(ctype, ep->error, 14319 flk_to_locktype(cmd, flk->l_type), 14320 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14321 14322 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14323 &resp, lock_args, locku_args, &oop, &osp, &lop, 14324 rp, vp, &recov_state, op_hint, &did_start_fop, 14325 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14326 14327 if (retry) { 14328 ASSERT(oop == NULL); 14329 ASSERT(osp == NULL); 14330 ASSERT(lop == NULL); 14331 goto recov_retry; 14332 } 14333 goto out; 14334 } 14335 14336 /* 14337 * Bail out if have reached this point with ep->error set. Can 14338 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14339 * This happens if Kerberos ticket has expired or has been 14340 * destroyed. 14341 */ 14342 if (ep->error != 0) 14343 goto out; 14344 14345 /* 14346 * Process the reply. 14347 */ 14348 switch (resp->status) { 14349 case NFS4_OK: 14350 resop = &resp->array[1]; 14351 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14352 resend_rqstp); 14353 /* 14354 * Have a successful lock operation, now update state. 14355 */ 14356 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14357 resop, lop, vp, flk, cr, resend_rqstp); 14358 break; 14359 14360 case NFS4ERR_DENIED: 14361 resop = &resp->array[1]; 14362 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14363 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14364 &recov_state, needrecov, &argsp, &resp, 14365 &tick_delay, &whence, &ep->error, resop, cr, 14366 &did_start_fop, &skip_get_err); 14367 14368 if (retry) { 14369 ASSERT(oop == NULL); 14370 ASSERT(osp == NULL); 14371 ASSERT(lop == NULL); 14372 goto recov_retry; 14373 } 14374 break; 14375 /* 14376 * If the server won't let us reclaim, fall-back to trying to lock 14377 * the file from scratch. Code elsewhere will check the changeinfo 14378 * to ensure the file hasn't been changed. 14379 */ 14380 case NFS4ERR_NO_GRACE: 14381 if (lock_args && lock_args->reclaim == TRUE) { 14382 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14383 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14384 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14385 frc_no_reclaim = 1; 14386 /* clean up before retrying */ 14387 needrecov = 0; 14388 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14389 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14390 &recov_state, op_hint, &did_start_fop, NULL, flk); 14391 goto recov_retry; 14392 } 14393 /* FALLTHROUGH */ 14394 14395 default: 14396 nfs4frlock_results_default(resp, &ep->error); 14397 break; 14398 } 14399 out: 14400 /* 14401 * Process and cleanup from error. Make interrupted unlock 14402 * requests look successful, since they will be handled by the 14403 * client recovery code. 14404 */ 14405 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14406 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14407 lock_args, locku_args, did_start_fop, 14408 skip_get_err, cred_otw, cr); 14409 14410 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14411 (cmd == F_SETLK || cmd == F_SETLKW)) 14412 ep->error = 0; 14413 } 14414 14415 /* 14416 * nfs4_safelock: 14417 * 14418 * Return non-zero if the given lock request can be handled without 14419 * violating the constraints on concurrent mapping and locking. 14420 */ 14421 14422 static int 14423 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14424 { 14425 rnode4_t *rp = VTOR4(vp); 14426 struct vattr va; 14427 int error; 14428 14429 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14430 ASSERT(rp->r_mapcnt >= 0); 14431 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14432 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14433 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14434 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14435 14436 if (rp->r_mapcnt == 0) 14437 return (1); /* always safe if not mapped */ 14438 14439 /* 14440 * If the file is already mapped and there are locks, then they 14441 * should be all safe locks. So adding or removing a lock is safe 14442 * as long as the new request is safe (i.e., whole-file, meaning 14443 * length and starting offset are both zero). 14444 */ 14445 14446 if (bfp->l_start != 0 || bfp->l_len != 0) { 14447 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14448 "cannot lock a memory mapped file unless locking the " 14449 "entire file: start %"PRIx64", len %"PRIx64, 14450 bfp->l_start, bfp->l_len)); 14451 return (0); 14452 } 14453 14454 /* mandatory locking and mapping don't mix */ 14455 va.va_mask = AT_MODE; 14456 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14457 if (error != 0) { 14458 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14459 "getattr error %d", error)); 14460 return (0); /* treat errors conservatively */ 14461 } 14462 if (MANDLOCK(vp, va.va_mode)) { 14463 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14464 "cannot mandatory lock and mmap a file")); 14465 return (0); 14466 } 14467 14468 return (1); 14469 } 14470 14471 14472 /* 14473 * Register the lock locally within Solaris. 14474 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14475 * recording locks locally. 14476 * 14477 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14478 * are registered locally. 14479 */ 14480 void 14481 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14482 u_offset_t offset) 14483 { 14484 int oldsysid; 14485 int error; 14486 #ifdef DEBUG 14487 char *name; 14488 #endif 14489 14490 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14491 14492 #ifdef DEBUG 14493 name = fn_name(VTOSV(vp)->sv_name); 14494 NFS4_DEBUG(nfs4_client_lock_debug, 14495 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14496 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14497 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14498 flk->l_sysid)); 14499 kmem_free(name, MAXNAMELEN); 14500 #endif 14501 14502 /* register the lock with local locking */ 14503 oldsysid = flk->l_sysid; 14504 flk->l_sysid |= LM_SYSID_CLIENT; 14505 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14506 #ifdef DEBUG 14507 if (error != 0) { 14508 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14509 "nfs4_register_lock_locally: could not register with" 14510 " local locking")); 14511 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14512 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14513 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14514 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14515 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14516 flk->l_type, flk->l_start, flk->l_len)); 14517 (void) reclock(vp, flk, 0, flag, offset, NULL); 14518 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14519 "blocked by pid %d sysid 0x%x type %d " 14520 "off 0x%" PRIx64 " len 0x%" PRIx64, 14521 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14522 flk->l_len)); 14523 } 14524 #endif 14525 flk->l_sysid = oldsysid; 14526 } 14527 14528 /* 14529 * nfs4_lockrelease: 14530 * 14531 * Release any locks on the given vnode that are held by the current 14532 * process. Also removes the lock owner (if one exists) from the rnode's 14533 * list. 14534 */ 14535 static int 14536 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14537 { 14538 flock64_t ld; 14539 int ret, error; 14540 rnode4_t *rp; 14541 nfs4_lock_owner_t *lop; 14542 nfs4_recov_state_t recov_state; 14543 mntinfo4_t *mi; 14544 bool_t possible_orphan = FALSE; 14545 bool_t recovonly; 14546 14547 ASSERT((uintptr_t)vp > KERNELBASE); 14548 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14549 14550 rp = VTOR4(vp); 14551 mi = VTOMI4(vp); 14552 14553 /* 14554 * If we have not locked anything then we can 14555 * just return since we have no work to do. 14556 */ 14557 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14558 return (0); 14559 } 14560 14561 /* 14562 * We need to comprehend that another thread may 14563 * kick off recovery and the lock_owner we have stashed 14564 * in lop might be invalid so we should NOT cache it 14565 * locally! 14566 */ 14567 recov_state.rs_flags = 0; 14568 recov_state.rs_num_retry_despite_err = 0; 14569 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14570 &recovonly); 14571 if (error) { 14572 mutex_enter(&rp->r_statelock); 14573 rp->r_flags |= R4LODANGLERS; 14574 mutex_exit(&rp->r_statelock); 14575 return (error); 14576 } 14577 14578 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14579 14580 /* 14581 * Check if the lock owner might have a lock (request was sent but 14582 * no response was received). Also check if there are any remote 14583 * locks on the file. (In theory we shouldn't have to make this 14584 * second check if there's no lock owner, but for now we'll be 14585 * conservative and do it anyway.) If either condition is true, 14586 * send an unlock for the entire file to the server. 14587 * 14588 * Note that no explicit synchronization is needed here. At worst, 14589 * flk_has_remote_locks() will return a false positive, in which case 14590 * the unlock call wastes time but doesn't harm correctness. 14591 */ 14592 14593 if (lop) { 14594 mutex_enter(&lop->lo_lock); 14595 possible_orphan = lop->lo_pending_rqsts; 14596 mutex_exit(&lop->lo_lock); 14597 lock_owner_rele(lop); 14598 } 14599 14600 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14601 14602 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14603 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14604 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14605 (void *)lop)); 14606 14607 if (possible_orphan || flk_has_remote_locks(vp)) { 14608 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14609 ld.l_whence = 0; /* unlock from start of file */ 14610 ld.l_start = 0; 14611 ld.l_len = 0; /* do entire file */ 14612 14613 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14614 cr, NULL); 14615 14616 if (ret != 0) { 14617 /* 14618 * If VOP_FRLOCK fails, make sure we unregister 14619 * local locks before we continue. 14620 */ 14621 ld.l_pid = ttoproc(curthread)->p_pid; 14622 nfs4_register_lock_locally(vp, &ld, flag, offset); 14623 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14624 "nfs4_lockrelease: lock release error on vp" 14625 " %p: error %d.\n", (void *)vp, ret)); 14626 } 14627 } 14628 14629 recov_state.rs_flags = 0; 14630 recov_state.rs_num_retry_despite_err = 0; 14631 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14632 &recovonly); 14633 if (error) { 14634 mutex_enter(&rp->r_statelock); 14635 rp->r_flags |= R4LODANGLERS; 14636 mutex_exit(&rp->r_statelock); 14637 return (error); 14638 } 14639 14640 /* 14641 * So, here we're going to need to retrieve the lock-owner 14642 * again (in case recovery has done a switch-a-roo) and 14643 * remove it because we can. 14644 */ 14645 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14646 14647 if (lop) { 14648 nfs4_rnode_remove_lock_owner(rp, lop); 14649 lock_owner_rele(lop); 14650 } 14651 14652 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14653 return (0); 14654 } 14655 14656 /* 14657 * Wait for 'tick_delay' clock ticks. 14658 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14659 * NOTE: lock_lease_time is in seconds. 14660 * 14661 * XXX For future improvements, should implement a waiting queue scheme. 14662 */ 14663 static int 14664 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14665 { 14666 long milliseconds_delay; 14667 time_t lock_lease_time; 14668 14669 /* wait tick_delay clock ticks or siginteruptus */ 14670 if (delay_sig(*tick_delay)) { 14671 return (EINTR); 14672 } 14673 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14674 "reissue the lock request: blocked for %ld clock ticks: %ld " 14675 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14676 14677 /* get the lease time */ 14678 lock_lease_time = r2lease_time(rp); 14679 14680 /* drv_hztousec converts ticks to microseconds */ 14681 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14682 if (milliseconds_delay < lock_lease_time * 1000) { 14683 *tick_delay = 2 * *tick_delay; 14684 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14685 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14686 } 14687 return (0); 14688 } 14689 14690 14691 void 14692 nfs4_vnops_init(void) 14693 { 14694 } 14695 14696 void 14697 nfs4_vnops_fini(void) 14698 { 14699 } 14700 14701 /* 14702 * Return a reference to the directory (parent) vnode for a given vnode, 14703 * using the saved pathname information and the directory file handle. The 14704 * caller is responsible for disposing of the reference. 14705 * Returns zero or an errno value. 14706 * 14707 * Caller should set need_start_op to FALSE if it is the recovery 14708 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14709 */ 14710 int 14711 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14712 { 14713 svnode_t *svnp; 14714 vnode_t *dvp = NULL; 14715 servinfo4_t *svp; 14716 nfs4_fname_t *mfname; 14717 int error; 14718 14719 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14720 14721 if (vp->v_flag & VROOT) { 14722 nfs4_sharedfh_t *sfh; 14723 nfs_fh4 fh; 14724 mntinfo4_t *mi; 14725 14726 ASSERT(vp->v_type == VREG); 14727 14728 mi = VTOMI4(vp); 14729 svp = mi->mi_curr_serv; 14730 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14731 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14732 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14733 sfh = sfh4_get(&fh, VTOMI4(vp)); 14734 nfs_rw_exit(&svp->sv_lock); 14735 mfname = mi->mi_fname; 14736 fn_hold(mfname); 14737 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14738 sfh4_rele(&sfh); 14739 14740 if (dvp->v_type == VNON) 14741 dvp->v_type = VDIR; 14742 *dvpp = dvp; 14743 return (0); 14744 } 14745 14746 svnp = VTOSV(vp); 14747 14748 if (svnp == NULL) { 14749 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14750 "shadow node is NULL")); 14751 return (EINVAL); 14752 } 14753 14754 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14755 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14756 "shadow node name or dfh val == NULL")); 14757 return (EINVAL); 14758 } 14759 14760 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14761 (int)need_start_op); 14762 if (error != 0) { 14763 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14764 "nfs4_make_dotdot returned %d", error)); 14765 return (error); 14766 } 14767 if (!dvp) { 14768 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14769 "nfs4_make_dotdot returned a NULL dvp")); 14770 return (EIO); 14771 } 14772 if (dvp->v_type == VNON) 14773 dvp->v_type = VDIR; 14774 ASSERT(dvp->v_type == VDIR); 14775 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14776 mutex_enter(&dvp->v_lock); 14777 dvp->v_flag |= V_XATTRDIR; 14778 mutex_exit(&dvp->v_lock); 14779 } 14780 *dvpp = dvp; 14781 return (0); 14782 } 14783 14784 /* 14785 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14786 * length that fnamep can accept, including the trailing null. 14787 * Returns 0 if okay, returns an errno value if there was a problem. 14788 */ 14789 14790 int 14791 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14792 { 14793 char *fn; 14794 int err = 0; 14795 servinfo4_t *svp; 14796 svnode_t *shvp; 14797 14798 /* 14799 * If the file being opened has VROOT set, then this is 14800 * a "file" mount. sv_name will not be interesting, so 14801 * go back to the servinfo4 to get the original mount 14802 * path and strip off all but the final edge. Otherwise 14803 * just return the name from the shadow vnode. 14804 */ 14805 14806 if (vp->v_flag & VROOT) { 14807 14808 svp = VTOMI4(vp)->mi_curr_serv; 14809 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14810 14811 fn = strrchr(svp->sv_path, '/'); 14812 if (fn == NULL) 14813 err = EINVAL; 14814 else 14815 fn++; 14816 } else { 14817 shvp = VTOSV(vp); 14818 fn = fn_name(shvp->sv_name); 14819 } 14820 14821 if (err == 0) 14822 if (strlen(fn) < maxlen) 14823 (void) strcpy(fnamep, fn); 14824 else 14825 err = ENAMETOOLONG; 14826 14827 if (vp->v_flag & VROOT) 14828 nfs_rw_exit(&svp->sv_lock); 14829 else 14830 kmem_free(fn, MAXNAMELEN); 14831 14832 return (err); 14833 } 14834 14835 /* 14836 * Bookkeeping for a close that doesn't need to go over the wire. 14837 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14838 * it is left at 1. 14839 */ 14840 void 14841 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14842 { 14843 rnode4_t *rp; 14844 mntinfo4_t *mi; 14845 14846 mi = VTOMI4(vp); 14847 rp = VTOR4(vp); 14848 14849 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14850 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14851 ASSERT(nfs_zone() == mi->mi_zone); 14852 ASSERT(mutex_owned(&osp->os_sync_lock)); 14853 ASSERT(*have_lockp); 14854 14855 if (!osp->os_valid || 14856 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14857 return; 14858 } 14859 14860 /* 14861 * This removes the reference obtained at OPEN; ie, 14862 * when the open stream structure was created. 14863 * 14864 * We don't have to worry about calling 'open_stream_rele' 14865 * since we our currently holding a reference to this 14866 * open stream which means the count can not go to 0 with 14867 * this decrement. 14868 */ 14869 ASSERT(osp->os_ref_count >= 2); 14870 osp->os_ref_count--; 14871 osp->os_valid = 0; 14872 mutex_exit(&osp->os_sync_lock); 14873 *have_lockp = 0; 14874 14875 nfs4_dec_state_ref_count(mi); 14876 } 14877 14878 /* 14879 * Close all remaining open streams on the rnode. These open streams 14880 * could be here because: 14881 * - The close attempted at either close or delmap failed 14882 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14883 * - Someone did mknod on a regular file but never opened it 14884 */ 14885 int 14886 nfs4close_all(vnode_t *vp, cred_t *cr) 14887 { 14888 nfs4_open_stream_t *osp; 14889 int error; 14890 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14891 rnode4_t *rp; 14892 14893 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14894 14895 error = 0; 14896 rp = VTOR4(vp); 14897 14898 /* 14899 * At this point, all we know is that the last time 14900 * someone called vn_rele, the count was 1. Since then, 14901 * the vnode could have been re-activated. We want to 14902 * loop through the open streams and close each one, but 14903 * we have to be careful since once we release the rnode 14904 * hash bucket lock, someone else is free to come in and 14905 * re-activate the rnode and add new open streams. The 14906 * strategy is take the rnode hash bucket lock, verify that 14907 * the count is still 1, grab the open stream off the 14908 * head of the list and mark it invalid, then release the 14909 * rnode hash bucket lock and proceed with that open stream. 14910 * This is ok because nfs4close_one() will acquire the proper 14911 * open/create to close/destroy synchronization for open 14912 * streams, and will ensure that if someone has reopened 14913 * the open stream after we've dropped the hash bucket lock 14914 * then we'll just simply return without destroying the 14915 * open stream. 14916 * Repeat until the list is empty. 14917 */ 14918 14919 for (;;) { 14920 14921 /* make sure vnode hasn't been reactivated */ 14922 rw_enter(&rp->r_hashq->r_lock, RW_READER); 14923 mutex_enter(&vp->v_lock); 14924 if (vp->v_count > 1) { 14925 mutex_exit(&vp->v_lock); 14926 rw_exit(&rp->r_hashq->r_lock); 14927 break; 14928 } 14929 /* 14930 * Grabbing r_os_lock before releasing v_lock prevents 14931 * a window where the rnode/open stream could get 14932 * reactivated (and os_force_close set to 0) before we 14933 * had a chance to set os_force_close to 1. 14934 */ 14935 mutex_enter(&rp->r_os_lock); 14936 mutex_exit(&vp->v_lock); 14937 14938 osp = list_head(&rp->r_open_streams); 14939 if (!osp) { 14940 /* nothing left to CLOSE OTW, so return */ 14941 mutex_exit(&rp->r_os_lock); 14942 rw_exit(&rp->r_hashq->r_lock); 14943 break; 14944 } 14945 14946 mutex_enter(&rp->r_statev4_lock); 14947 /* the file can't still be mem mapped */ 14948 ASSERT(rp->r_mapcnt == 0); 14949 if (rp->created_v4) 14950 rp->created_v4 = 0; 14951 mutex_exit(&rp->r_statev4_lock); 14952 14953 /* 14954 * Grab a ref on this open stream; nfs4close_one 14955 * will mark it as invalid 14956 */ 14957 mutex_enter(&osp->os_sync_lock); 14958 osp->os_ref_count++; 14959 osp->os_force_close = 1; 14960 mutex_exit(&osp->os_sync_lock); 14961 mutex_exit(&rp->r_os_lock); 14962 rw_exit(&rp->r_hashq->r_lock); 14963 14964 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 14965 14966 /* Update error if it isn't already non-zero */ 14967 if (error == 0) { 14968 if (e.error) 14969 error = e.error; 14970 else if (e.stat) 14971 error = geterrno4(e.stat); 14972 } 14973 14974 #ifdef DEBUG 14975 nfs4close_all_cnt++; 14976 #endif 14977 /* Release the ref on osp acquired above. */ 14978 open_stream_rele(osp, rp); 14979 14980 /* Proceed to the next open stream, if any */ 14981 } 14982 return (error); 14983 } 14984 14985 /* 14986 * nfs4close_one - close one open stream for a file if needed. 14987 * 14988 * "close_type" indicates which close path this is: 14989 * CLOSE_NORM: close initiated via VOP_CLOSE. 14990 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 14991 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 14992 * the close and release of client state for this open stream 14993 * (unless someone else has the open stream open). 14994 * CLOSE_RESEND: indicates the request is a replay of an earlier request 14995 * (e.g., due to abort because of a signal). 14996 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 14997 * 14998 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 14999 * recovery. Instead, the caller is expected to deal with retries. 15000 * 15001 * The caller can either pass in the osp ('provided_osp') or not. 15002 * 15003 * 'access_bits' represents the access we are closing/downgrading. 15004 * 15005 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 15006 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 15007 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 15008 * 15009 * Errors are returned via the nfs4_error_t. 15010 */ 15011 void 15012 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 15013 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 15014 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 15015 uint_t mmap_flags) 15016 { 15017 nfs4_open_owner_t *oop; 15018 nfs4_open_stream_t *osp = NULL; 15019 int retry = 0; 15020 int num_retries = NFS4_NUM_RECOV_RETRIES; 15021 rnode4_t *rp; 15022 mntinfo4_t *mi; 15023 nfs4_recov_state_t recov_state; 15024 cred_t *cred_otw = NULL; 15025 bool_t recovonly = FALSE; 15026 int isrecov; 15027 int force_close; 15028 int close_failed = 0; 15029 int did_dec_count = 0; 15030 int did_start_op = 0; 15031 int did_force_recovlock = 0; 15032 int did_start_seqid_sync = 0; 15033 int have_sync_lock = 0; 15034 15035 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15036 15037 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15038 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15039 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15040 len, maxprot, mmap_flags, access_bits)); 15041 15042 nfs4_error_zinit(ep); 15043 rp = VTOR4(vp); 15044 mi = VTOMI4(vp); 15045 isrecov = (close_type == CLOSE_RESEND || 15046 close_type == CLOSE_AFTER_RESEND); 15047 15048 /* 15049 * First get the open owner. 15050 */ 15051 if (!provided_osp) { 15052 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15053 } else { 15054 oop = provided_osp->os_open_owner; 15055 ASSERT(oop != NULL); 15056 open_owner_hold(oop); 15057 } 15058 15059 if (!oop) { 15060 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15061 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15062 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15063 (void *)provided_osp, close_type)); 15064 ep->error = EIO; 15065 goto out; 15066 } 15067 15068 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15069 recov_retry: 15070 osp = NULL; 15071 close_failed = 0; 15072 force_close = (close_type == CLOSE_FORCE); 15073 retry = 0; 15074 did_start_op = 0; 15075 did_force_recovlock = 0; 15076 did_start_seqid_sync = 0; 15077 have_sync_lock = 0; 15078 recovonly = FALSE; 15079 recov_state.rs_flags = 0; 15080 recov_state.rs_num_retry_despite_err = 0; 15081 15082 /* 15083 * Second synchronize with recovery. 15084 */ 15085 if (!isrecov) { 15086 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15087 &recov_state, &recovonly); 15088 if (!ep->error) { 15089 did_start_op = 1; 15090 } else { 15091 close_failed = 1; 15092 /* 15093 * If we couldn't get start_fop, but have to 15094 * cleanup state, then at least acquire the 15095 * mi_recovlock so we can synchronize with 15096 * recovery. 15097 */ 15098 if (close_type == CLOSE_FORCE) { 15099 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15100 RW_READER, FALSE); 15101 did_force_recovlock = 1; 15102 } else 15103 goto out; 15104 } 15105 } 15106 15107 /* 15108 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15109 * set 'recovonly' to TRUE since most likely this is due to 15110 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15111 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15112 * to retry, causing us to loop until recovery finishes. Plus we 15113 * don't need protection over the open seqid since we're not going 15114 * OTW, hence don't need to use the seqid. 15115 */ 15116 if (recovonly == FALSE) { 15117 /* need to grab the open owner sync before 'os_sync_lock' */ 15118 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15119 if (ep->error == EAGAIN) { 15120 ASSERT(!isrecov); 15121 if (did_start_op) 15122 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15123 &recov_state, TRUE); 15124 if (did_force_recovlock) 15125 nfs_rw_exit(&mi->mi_recovlock); 15126 goto recov_retry; 15127 } 15128 did_start_seqid_sync = 1; 15129 } 15130 15131 /* 15132 * Third get an open stream and acquire 'os_sync_lock' to 15133 * sychronize the opening/creating of an open stream with the 15134 * closing/destroying of an open stream. 15135 */ 15136 if (!provided_osp) { 15137 /* returns with 'os_sync_lock' held */ 15138 osp = find_open_stream(oop, rp); 15139 if (!osp) { 15140 ep->error = EIO; 15141 goto out; 15142 } 15143 } else { 15144 osp = provided_osp; 15145 open_stream_hold(osp); 15146 mutex_enter(&osp->os_sync_lock); 15147 } 15148 have_sync_lock = 1; 15149 15150 ASSERT(oop == osp->os_open_owner); 15151 15152 /* 15153 * Fourth, do any special pre-OTW CLOSE processing 15154 * based on the specific close type. 15155 */ 15156 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15157 !did_dec_count) { 15158 ASSERT(osp->os_open_ref_count > 0); 15159 osp->os_open_ref_count--; 15160 did_dec_count = 1; 15161 if (osp->os_open_ref_count == 0) 15162 osp->os_final_close = 1; 15163 } 15164 15165 if (close_type == CLOSE_FORCE) { 15166 /* see if somebody reopened the open stream. */ 15167 if (!osp->os_force_close) { 15168 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15169 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15170 "was reopened, vp %p", (void *)osp, (void *)vp)); 15171 ep->error = 0; 15172 ep->stat = NFS4_OK; 15173 goto out; 15174 } 15175 15176 if (!osp->os_final_close && !did_dec_count) { 15177 osp->os_open_ref_count--; 15178 did_dec_count = 1; 15179 } 15180 15181 /* 15182 * We can't depend on os_open_ref_count being 0 due to the 15183 * way executables are opened (VN_RELE to match a VOP_OPEN). 15184 */ 15185 #ifdef NOTYET 15186 ASSERT(osp->os_open_ref_count == 0); 15187 #endif 15188 if (osp->os_open_ref_count != 0) { 15189 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15190 "nfs4close_one: should panic here on an " 15191 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15192 "since this is probably the exec problem.")); 15193 15194 osp->os_open_ref_count = 0; 15195 } 15196 15197 /* 15198 * There is the possibility that nfs4close_one() 15199 * for close_type == CLOSE_DELMAP couldn't find the 15200 * open stream, thus couldn't decrement its os_mapcnt; 15201 * therefore we can't use this ASSERT yet. 15202 */ 15203 #ifdef NOTYET 15204 ASSERT(osp->os_mapcnt == 0); 15205 #endif 15206 osp->os_mapcnt = 0; 15207 } 15208 15209 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15210 ASSERT(osp->os_mapcnt >= btopr(len)); 15211 15212 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15213 osp->os_mmap_write -= btopr(len); 15214 if (maxprot & PROT_READ) 15215 osp->os_mmap_read -= btopr(len); 15216 if (maxprot & PROT_EXEC) 15217 osp->os_mmap_read -= btopr(len); 15218 /* mirror the PROT_NONE check in nfs4_addmap() */ 15219 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15220 !(maxprot & PROT_EXEC)) 15221 osp->os_mmap_read -= btopr(len); 15222 osp->os_mapcnt -= btopr(len); 15223 did_dec_count = 1; 15224 } 15225 15226 if (recovonly) { 15227 nfs4_lost_rqst_t lost_rqst; 15228 15229 /* request should not already be in recovery queue */ 15230 ASSERT(lrp == NULL); 15231 nfs4_error_init(ep, EINTR); 15232 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15233 osp, cred_otw, vp); 15234 mutex_exit(&osp->os_sync_lock); 15235 have_sync_lock = 0; 15236 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15237 lost_rqst.lr_op == OP_CLOSE ? 15238 &lost_rqst : NULL, OP_CLOSE, NULL); 15239 close_failed = 1; 15240 force_close = 0; 15241 goto close_cleanup; 15242 } 15243 15244 /* 15245 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15246 * we stopped operating on the open owner's <old oo_name, old seqid> 15247 * space, which means we stopped operating on the open stream 15248 * too. So don't go OTW (as the seqid is likely bad, and the 15249 * stateid could be stale, potentially triggering a false 15250 * setclientid), and just clean up the client's internal state. 15251 */ 15252 if (osp->os_orig_oo_name != oop->oo_name) { 15253 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15254 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15255 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15256 "oo_name %" PRIx64")", 15257 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15258 oop->oo_name)); 15259 close_failed = 1; 15260 } 15261 15262 /* If the file failed recovery, just quit. */ 15263 mutex_enter(&rp->r_statelock); 15264 if (rp->r_flags & R4RECOVERR) { 15265 close_failed = 1; 15266 } 15267 mutex_exit(&rp->r_statelock); 15268 15269 /* 15270 * If the force close path failed to obtain start_fop 15271 * then skip the OTW close and just remove the state. 15272 */ 15273 if (close_failed) 15274 goto close_cleanup; 15275 15276 /* 15277 * Fifth, check to see if there are still mapped pages or other 15278 * opens using this open stream. If there are then we can't 15279 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15280 */ 15281 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15282 nfs4_lost_rqst_t new_lost_rqst; 15283 bool_t needrecov = FALSE; 15284 cred_t *odg_cred_otw = NULL; 15285 seqid4 open_dg_seqid = 0; 15286 15287 if (osp->os_delegation) { 15288 /* 15289 * If this open stream was never OPENed OTW then we 15290 * surely can't DOWNGRADE it (especially since the 15291 * osp->open_stateid is really a delegation stateid 15292 * when os_delegation is 1). 15293 */ 15294 if (access_bits & FREAD) 15295 osp->os_share_acc_read--; 15296 if (access_bits & FWRITE) 15297 osp->os_share_acc_write--; 15298 osp->os_share_deny_none--; 15299 nfs4_error_zinit(ep); 15300 goto out; 15301 } 15302 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15303 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15304 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15305 if (needrecov && !isrecov) { 15306 bool_t abort; 15307 nfs4_bseqid_entry_t *bsep = NULL; 15308 15309 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15310 bsep = nfs4_create_bseqid_entry(oop, NULL, 15311 vp, 0, 15312 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15313 open_dg_seqid); 15314 15315 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15316 oop, osp, odg_cred_otw, vp, access_bits, 0); 15317 mutex_exit(&osp->os_sync_lock); 15318 have_sync_lock = 0; 15319 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15320 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15321 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15322 bsep); 15323 if (odg_cred_otw) 15324 crfree(odg_cred_otw); 15325 if (bsep) 15326 kmem_free(bsep, sizeof (*bsep)); 15327 15328 if (abort == TRUE) 15329 goto out; 15330 15331 if (did_start_seqid_sync) { 15332 nfs4_end_open_seqid_sync(oop); 15333 did_start_seqid_sync = 0; 15334 } 15335 open_stream_rele(osp, rp); 15336 15337 if (did_start_op) 15338 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15339 &recov_state, FALSE); 15340 if (did_force_recovlock) 15341 nfs_rw_exit(&mi->mi_recovlock); 15342 15343 goto recov_retry; 15344 } else { 15345 if (odg_cred_otw) 15346 crfree(odg_cred_otw); 15347 } 15348 goto out; 15349 } 15350 15351 /* 15352 * If this open stream was created as the results of an open 15353 * while holding a delegation, then just release it; no need 15354 * to do an OTW close. Otherwise do a "normal" OTW close. 15355 */ 15356 if (osp->os_delegation) { 15357 nfs4close_notw(vp, osp, &have_sync_lock); 15358 nfs4_error_zinit(ep); 15359 goto out; 15360 } 15361 15362 /* 15363 * If this stream is not valid, we're done. 15364 */ 15365 if (!osp->os_valid) { 15366 nfs4_error_zinit(ep); 15367 goto out; 15368 } 15369 15370 /* 15371 * Last open or mmap ref has vanished, need to do an OTW close. 15372 * First check to see if a close is still necessary. 15373 */ 15374 if (osp->os_failed_reopen) { 15375 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15376 "don't close OTW osp %p since reopen failed.", 15377 (void *)osp)); 15378 /* 15379 * Reopen of the open stream failed, hence the 15380 * stateid of the open stream is invalid/stale, and 15381 * sending this OTW would incorrectly cause another 15382 * round of recovery. In this case, we need to set 15383 * the 'os_valid' bit to 0 so another thread doesn't 15384 * come in and re-open this open stream before 15385 * this "closing" thread cleans up state (decrementing 15386 * the nfs4_server_t's state_ref_count and decrementing 15387 * the os_ref_count). 15388 */ 15389 osp->os_valid = 0; 15390 /* 15391 * This removes the reference obtained at OPEN; ie, 15392 * when the open stream structure was created. 15393 * 15394 * We don't have to worry about calling 'open_stream_rele' 15395 * since we our currently holding a reference to this 15396 * open stream which means the count can not go to 0 with 15397 * this decrement. 15398 */ 15399 ASSERT(osp->os_ref_count >= 2); 15400 osp->os_ref_count--; 15401 nfs4_error_zinit(ep); 15402 close_failed = 0; 15403 goto close_cleanup; 15404 } 15405 15406 ASSERT(osp->os_ref_count > 1); 15407 15408 /* 15409 * Sixth, try the CLOSE OTW. 15410 */ 15411 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15412 close_type, ep, &have_sync_lock); 15413 15414 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15415 /* 15416 * Let the recovery thread be responsible for 15417 * removing the state for CLOSE. 15418 */ 15419 close_failed = 1; 15420 force_close = 0; 15421 retry = 0; 15422 } 15423 15424 /* See if we need to retry with a different cred */ 15425 if ((ep->error == EACCES || 15426 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15427 cred_otw != cr) { 15428 crfree(cred_otw); 15429 cred_otw = cr; 15430 crhold(cred_otw); 15431 retry = 1; 15432 } 15433 15434 if (ep->error || ep->stat) 15435 close_failed = 1; 15436 15437 if (retry && !isrecov && num_retries-- > 0) { 15438 if (have_sync_lock) { 15439 mutex_exit(&osp->os_sync_lock); 15440 have_sync_lock = 0; 15441 } 15442 if (did_start_seqid_sync) { 15443 nfs4_end_open_seqid_sync(oop); 15444 did_start_seqid_sync = 0; 15445 } 15446 open_stream_rele(osp, rp); 15447 15448 if (did_start_op) 15449 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15450 &recov_state, FALSE); 15451 if (did_force_recovlock) 15452 nfs_rw_exit(&mi->mi_recovlock); 15453 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15454 "nfs4close_one: need to retry the close " 15455 "operation")); 15456 goto recov_retry; 15457 } 15458 close_cleanup: 15459 /* 15460 * Seventh and lastly, process our results. 15461 */ 15462 if (close_failed && force_close) { 15463 /* 15464 * It's ok to drop and regrab the 'os_sync_lock' since 15465 * nfs4close_notw() will recheck to make sure the 15466 * "close"/removal of state should happen. 15467 */ 15468 if (!have_sync_lock) { 15469 mutex_enter(&osp->os_sync_lock); 15470 have_sync_lock = 1; 15471 } 15472 /* 15473 * This is last call, remove the ref on the open 15474 * stream created by open and clean everything up. 15475 */ 15476 osp->os_pending_close = 0; 15477 nfs4close_notw(vp, osp, &have_sync_lock); 15478 nfs4_error_zinit(ep); 15479 } 15480 15481 if (!close_failed) { 15482 if (have_sync_lock) { 15483 osp->os_pending_close = 0; 15484 mutex_exit(&osp->os_sync_lock); 15485 have_sync_lock = 0; 15486 } else { 15487 mutex_enter(&osp->os_sync_lock); 15488 osp->os_pending_close = 0; 15489 mutex_exit(&osp->os_sync_lock); 15490 } 15491 if (did_start_op && recov_state.rs_sp != NULL) { 15492 mutex_enter(&recov_state.rs_sp->s_lock); 15493 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15494 mutex_exit(&recov_state.rs_sp->s_lock); 15495 } else { 15496 nfs4_dec_state_ref_count(mi); 15497 } 15498 nfs4_error_zinit(ep); 15499 } 15500 15501 out: 15502 if (have_sync_lock) 15503 mutex_exit(&osp->os_sync_lock); 15504 if (did_start_op) 15505 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15506 recovonly ? TRUE : FALSE); 15507 if (did_force_recovlock) 15508 nfs_rw_exit(&mi->mi_recovlock); 15509 if (cred_otw) 15510 crfree(cred_otw); 15511 if (osp) 15512 open_stream_rele(osp, rp); 15513 if (oop) { 15514 if (did_start_seqid_sync) 15515 nfs4_end_open_seqid_sync(oop); 15516 open_owner_rele(oop); 15517 } 15518 } 15519 15520 /* 15521 * Convert information returned by the server in the LOCK4denied 15522 * structure to the form required by fcntl. 15523 */ 15524 static void 15525 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15526 { 15527 nfs4_lo_name_t *lo; 15528 15529 #ifdef DEBUG 15530 if (denied_to_flk_debug) { 15531 lockt_denied_debug = lockt_denied; 15532 debug_enter("lockt_denied"); 15533 } 15534 #endif 15535 15536 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15537 flk->l_whence = 0; /* aka SEEK_SET */ 15538 flk->l_start = lockt_denied->offset; 15539 flk->l_len = lockt_denied->length; 15540 15541 /* 15542 * If the blocking clientid matches our client id, then we can 15543 * interpret the lockowner (since we built it). If not, then 15544 * fabricate a sysid and pid. Note that the l_sysid field 15545 * in *flk already has the local sysid. 15546 */ 15547 15548 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15549 15550 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15551 lo = (nfs4_lo_name_t *) 15552 lockt_denied->owner.owner_val; 15553 15554 flk->l_pid = lo->ln_pid; 15555 } else { 15556 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15557 "denied_to_flk: bad lock owner length\n")); 15558 15559 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15560 } 15561 } else { 15562 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15563 "denied_to_flk: foreign clientid\n")); 15564 15565 /* 15566 * Construct a new sysid which should be different from 15567 * sysids of other systems. 15568 */ 15569 15570 flk->l_sysid++; 15571 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15572 } 15573 } 15574 15575 static pid_t 15576 lo_to_pid(lock_owner4 *lop) 15577 { 15578 pid_t pid = 0; 15579 uchar_t *cp; 15580 int i; 15581 15582 cp = (uchar_t *)&lop->clientid; 15583 15584 for (i = 0; i < sizeof (lop->clientid); i++) 15585 pid += (pid_t)*cp++; 15586 15587 cp = (uchar_t *)lop->owner_val; 15588 15589 for (i = 0; i < lop->owner_len; i++) 15590 pid += (pid_t)*cp++; 15591 15592 return (pid); 15593 } 15594 15595 /* 15596 * Given a lock pointer, returns the length of that lock. 15597 * "end" is the last locked offset the "l_len" covers from 15598 * the start of the lock. 15599 */ 15600 static off64_t 15601 lock_to_end(flock64_t *lock) 15602 { 15603 off64_t lock_end; 15604 15605 if (lock->l_len == 0) 15606 lock_end = (off64_t)MAXEND; 15607 else 15608 lock_end = lock->l_start + lock->l_len - 1; 15609 15610 return (lock_end); 15611 } 15612 15613 /* 15614 * Given the end of a lock, it will return you the length "l_len" for that lock. 15615 */ 15616 static off64_t 15617 end_to_len(off64_t start, off64_t end) 15618 { 15619 off64_t lock_len; 15620 15621 ASSERT(end >= start); 15622 if (end == MAXEND) 15623 lock_len = 0; 15624 else 15625 lock_len = end - start + 1; 15626 15627 return (lock_len); 15628 } 15629 15630 /* 15631 * On given end for a lock it determines if it is the last locked offset 15632 * or not, if so keeps it as is, else adds one to return the length for 15633 * valid start. 15634 */ 15635 static off64_t 15636 start_check(off64_t x) 15637 { 15638 if (x == MAXEND) 15639 return (x); 15640 else 15641 return (x + 1); 15642 } 15643 15644 /* 15645 * See if these two locks overlap, and if so return 1; 15646 * otherwise, return 0. 15647 */ 15648 static int 15649 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15650 { 15651 off64_t llfp_end, curfp_end; 15652 15653 llfp_end = lock_to_end(llfp); 15654 curfp_end = lock_to_end(curfp); 15655 15656 if (((llfp_end >= curfp->l_start) && 15657 (llfp->l_start <= curfp->l_start)) || 15658 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15659 return (1); 15660 return (0); 15661 } 15662 15663 /* 15664 * Determine what the intersecting lock region is, and add that to the 15665 * 'nl_llpp' locklist in increasing order (by l_start). 15666 */ 15667 static void 15668 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15669 locklist_t **nl_llpp, vnode_t *vp) 15670 { 15671 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15672 off64_t lost_flp_end, local_flp_end, len, start; 15673 15674 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15675 15676 if (!locks_intersect(lost_flp, local_flp)) 15677 return; 15678 15679 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15680 "locks intersect")); 15681 15682 lost_flp_end = lock_to_end(lost_flp); 15683 local_flp_end = lock_to_end(local_flp); 15684 15685 /* Find the starting point of the intersecting region */ 15686 if (local_flp->l_start > lost_flp->l_start) 15687 start = local_flp->l_start; 15688 else 15689 start = lost_flp->l_start; 15690 15691 /* Find the lenght of the intersecting region */ 15692 if (lost_flp_end < local_flp_end) 15693 len = end_to_len(start, lost_flp_end); 15694 else 15695 len = end_to_len(start, local_flp_end); 15696 15697 /* 15698 * Prepare the flock structure for the intersection found and insert 15699 * it into the new list in increasing l_start order. This list contains 15700 * intersections of locks registered by the client with the local host 15701 * and the lost lock. 15702 * The lock type of this lock is the same as that of the local_flp. 15703 */ 15704 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15705 intersect_llp->ll_flock.l_start = start; 15706 intersect_llp->ll_flock.l_len = len; 15707 intersect_llp->ll_flock.l_type = local_flp->l_type; 15708 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15709 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15710 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15711 intersect_llp->ll_vp = vp; 15712 15713 tmp_fllp = *nl_llpp; 15714 cur_fllp = NULL; 15715 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15716 intersect_llp->ll_flock.l_start) { 15717 cur_fllp = tmp_fllp; 15718 tmp_fllp = tmp_fllp->ll_next; 15719 } 15720 if (cur_fllp == NULL) { 15721 /* first on the list */ 15722 intersect_llp->ll_next = *nl_llpp; 15723 *nl_llpp = intersect_llp; 15724 } else { 15725 intersect_llp->ll_next = cur_fllp->ll_next; 15726 cur_fllp->ll_next = intersect_llp; 15727 } 15728 15729 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15730 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15731 intersect_llp->ll_flock.l_start, 15732 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15733 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15734 } 15735 15736 /* 15737 * Our local locking current state is potentially different than 15738 * what the NFSv4 server thinks we have due to a lost lock that was 15739 * resent and then received. We need to reset our "NFSv4" locking 15740 * state to match the current local locking state for this pid since 15741 * that is what the user/application sees as what the world is. 15742 * 15743 * We cannot afford to drop the open/lock seqid sync since then we can 15744 * get confused about what the current local locking state "is" versus 15745 * "was". 15746 * 15747 * If we are unable to fix up the locks, we send SIGLOST to the affected 15748 * process. This is not done if the filesystem has been forcibly 15749 * unmounted, in case the process has already exited and a new process 15750 * exists with the same pid. 15751 */ 15752 static void 15753 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15754 nfs4_lock_owner_t *lop) 15755 { 15756 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15757 mntinfo4_t *mi = VTOMI4(vp); 15758 const int cmd = F_SETLK; 15759 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15760 flock64_t ul_fl; 15761 15762 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15763 "nfs4_reinstitute_local_lock_state")); 15764 15765 /* 15766 * Find active locks for this vp from the local locking code. 15767 * Scan through this list and find out the locks that intersect with 15768 * the lost lock. Once we find the lock that intersects, add the 15769 * intersection area as a new lock to a new list "ri_llp". The lock 15770 * type of the intersection region lock added to ri_llp is the same 15771 * as that found in the active lock list, "list". The intersecting 15772 * region locks are added to ri_llp in increasing l_start order. 15773 */ 15774 ASSERT(nfs_zone() == mi->mi_zone); 15775 15776 locks = flk_active_locks_for_vp(vp); 15777 ri_llp = NULL; 15778 15779 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15780 ASSERT(llp->ll_vp == vp); 15781 /* 15782 * Pick locks that belong to this pid/lockowner 15783 */ 15784 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15785 continue; 15786 15787 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15788 } 15789 15790 /* 15791 * Now we have the list of intersections with the lost lock. These are 15792 * the locks that were/are active before the server replied to the 15793 * last/lost lock. Issue these locks to the server here. Playing these 15794 * locks to the server will re-establish aur current local locking state 15795 * with the v4 server. 15796 * If we get an error, send SIGLOST to the application for that lock. 15797 */ 15798 15799 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15800 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15801 "nfs4_reinstitute_local_lock_state: need to issue " 15802 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15803 llp->ll_flock.l_start, 15804 llp->ll_flock.l_start + llp->ll_flock.l_len, 15805 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15806 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15807 /* 15808 * No need to relock what we already have 15809 */ 15810 if (llp->ll_flock.l_type == lost_flp->l_type) 15811 continue; 15812 15813 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15814 } 15815 15816 /* 15817 * Now keeping the start of the lost lock as our reference parse the 15818 * newly created ri_llp locklist to find the ranges that we have locked 15819 * with the v4 server but not in the current local locking. We need 15820 * to unlock these ranges. 15821 * These ranges can also be reffered to as those ranges, where the lost 15822 * lock does not overlap with the locks in the ri_llp but are locked 15823 * since the server replied to the lost lock. 15824 */ 15825 cur_start = lost_flp->l_start; 15826 lost_flp_end = lock_to_end(lost_flp); 15827 15828 ul_fl.l_type = F_UNLCK; 15829 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15830 ul_fl.l_sysid = lost_flp->l_sysid; 15831 ul_fl.l_pid = lost_flp->l_pid; 15832 15833 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15834 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15835 15836 if (llp->ll_flock.l_start <= cur_start) { 15837 cur_start = start_check(llp_ll_flock_end); 15838 continue; 15839 } 15840 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15841 "nfs4_reinstitute_local_lock_state: " 15842 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15843 cur_start, llp->ll_flock.l_start)); 15844 15845 ul_fl.l_start = cur_start; 15846 ul_fl.l_len = end_to_len(cur_start, 15847 (llp->ll_flock.l_start - 1)); 15848 15849 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15850 cur_start = start_check(llp_ll_flock_end); 15851 } 15852 15853 /* 15854 * In the case where the lost lock ends after all intersecting locks, 15855 * unlock the last part of the lost lock range. 15856 */ 15857 if (cur_start != start_check(lost_flp_end)) { 15858 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15859 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15860 "lost lock region [%"PRIx64" - %"PRIx64"]", 15861 cur_start, lost_flp->l_start + lost_flp->l_len)); 15862 15863 ul_fl.l_start = cur_start; 15864 /* 15865 * Is it an to-EOF lock? if so unlock till the end 15866 */ 15867 if (lost_flp->l_len == 0) 15868 ul_fl.l_len = 0; 15869 else 15870 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15871 15872 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15873 } 15874 15875 if (locks != NULL) 15876 flk_free_locklist(locks); 15877 15878 /* Free up our newly created locklist */ 15879 for (llp = ri_llp; llp != NULL; ) { 15880 tmp_llp = llp->ll_next; 15881 kmem_free(llp, sizeof (locklist_t)); 15882 llp = tmp_llp; 15883 } 15884 15885 /* 15886 * Now return back to the original calling nfs4frlock() 15887 * and let us naturally drop our seqid syncs. 15888 */ 15889 } 15890 15891 /* 15892 * Create a lost state record for the given lock reinstantiation request 15893 * and push it onto the lost state queue. 15894 */ 15895 static void 15896 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15897 nfs4_lock_owner_t *lop) 15898 { 15899 nfs4_lost_rqst_t req; 15900 nfs_lock_type4 locktype; 15901 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15902 15903 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15904 15905 locktype = flk_to_locktype(cmd, flk->l_type); 15906 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15907 NULL, NULL, lop, flk, &req, cr, vp); 15908 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15909 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15910 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15911 NULL); 15912 } 15913