1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/cred.h> 37 #include <sys/time.h> 38 #include <sys/vnode.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/file.h> 42 #include <sys/filio.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/mman.h> 46 #include <sys/pathname.h> 47 #include <sys/dirent.h> 48 #include <sys/debug.h> 49 #include <sys/vmsystm.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/swap.h> 53 #include <sys/errno.h> 54 #include <sys/strsubr.h> 55 #include <sys/sysmacros.h> 56 #include <sys/kmem.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathconf.h> 59 #include <sys/utsname.h> 60 #include <sys/dnlc.h> 61 #include <sys/acl.h> 62 #include <sys/systeminfo.h> 63 #include <sys/policy.h> 64 #include <sys/sdt.h> 65 #include <sys/list.h> 66 #include <sys/stat.h> 67 68 #include <rpc/types.h> 69 #include <rpc/auth.h> 70 #include <rpc/clnt.h> 71 72 #include <nfs/nfs.h> 73 #include <nfs/nfs_clnt.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 #include <nfs/nfs4.h> 77 #include <nfs/nfs4_kprot.h> 78 #include <nfs/rnode4.h> 79 #include <nfs/nfs4_clnt.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/pvn.h> 85 #include <vm/seg.h> 86 #include <vm/seg_map.h> 87 #include <vm/seg_kpm.h> 88 #include <vm/seg_vn.h> 89 90 #include <fs/fs_subr.h> 91 92 #include <sys/ddi.h> 93 #include <sys/int_fmtio.h> 94 95 typedef struct { 96 nfs4_ga_res_t *di_garp; 97 cred_t *di_cred; 98 hrtime_t di_time_call; 99 } dirattr_info_t; 100 101 typedef enum nfs4_acl_op { 102 NFS4_ACL_GET, 103 NFS4_ACL_SET 104 } nfs4_acl_op_t; 105 106 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 107 char *, dirattr_info_t *); 108 109 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 110 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 111 nfs4_error_t *, int *); 112 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 113 cred_t *); 114 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 115 stable_how4 *); 116 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 117 cred_t *, bool_t, struct uio *); 118 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 119 vsecattr_t *); 120 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 121 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 122 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 123 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 124 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 125 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 126 int, vnode_t **, cred_t *); 127 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 128 cred_t *, int, int, enum createmode4, int); 129 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 130 caller_context_t *); 131 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 132 vnode_t *, char *, cred_t *, nfsstat4 *); 133 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 134 vnode_t *, char *, cred_t *, nfsstat4 *); 135 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 136 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 137 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 138 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 139 page_t *[], size_t, struct seg *, caddr_t, 140 enum seg_rw, cred_t *); 141 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 142 cred_t *); 143 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 144 int, cred_t *); 145 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 146 int, cred_t *); 147 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 148 static void nfs4_set_mod(vnode_t *); 149 static void nfs4_get_commit(vnode_t *); 150 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 151 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 152 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 153 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 154 cred_t *); 155 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 156 cred_t *); 157 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 158 hrtime_t, vnode_t *, cred_t *); 159 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 160 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 161 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 162 u_offset_t); 163 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 164 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 165 static cred_t *state_to_cred(nfs4_open_stream_t *); 166 static int vtoname(vnode_t *, char *, ssize_t); 167 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 168 static pid_t lo_to_pid(lock_owner4 *); 169 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 170 cred_t *, nfs4_lock_owner_t *); 171 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 172 nfs4_lock_owner_t *); 173 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 174 static void nfs4_delmap_callback(struct as *, void *, uint_t); 175 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 176 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 177 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 178 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 179 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 180 uid_t, gid_t, int); 181 182 /* 183 * Routines that implement the setting of v4 args for the misc. ops 184 */ 185 static void nfs4args_lock_free(nfs_argop4 *); 186 static void nfs4args_lockt_free(nfs_argop4 *); 187 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 188 int, rnode4_t *, cred_t *, bitmap4, int *, 189 nfs4_stateid_types_t *); 190 static void nfs4args_setattr_free(nfs_argop4 *); 191 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 192 bitmap4); 193 static void nfs4args_verify_free(nfs_argop4 *); 194 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 195 WRITE4args **, nfs4_stateid_types_t *); 196 197 /* 198 * These are the vnode ops functions that implement the vnode interface to 199 * the networked file system. See more comments below at nfs4_vnodeops. 200 */ 201 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 202 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 203 caller_context_t *); 204 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 205 caller_context_t *); 206 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 207 caller_context_t *); 208 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 209 caller_context_t *); 210 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 211 caller_context_t *); 212 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 213 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 214 caller_context_t *); 215 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 216 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 217 int, vnode_t **, cred_t *, int, caller_context_t *, 218 vsecattr_t *); 219 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 220 int); 221 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 222 caller_context_t *, int); 223 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 224 caller_context_t *, int); 225 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 226 cred_t *, caller_context_t *, int, vsecattr_t *); 227 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 228 caller_context_t *, int); 229 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 230 cred_t *, caller_context_t *, int); 231 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 232 caller_context_t *, int); 233 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 234 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 235 page_t *[], size_t, struct seg *, caddr_t, 236 enum seg_rw, cred_t *, caller_context_t *); 237 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 238 caller_context_t *); 239 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 240 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 241 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 242 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 243 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 244 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 245 struct flk_callback *, cred_t *, caller_context_t *); 246 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 247 cred_t *, caller_context_t *); 248 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 249 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 250 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 251 cred_t *, caller_context_t *); 252 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 253 caller_context_t *); 254 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 255 caller_context_t *); 256 /* 257 * These vnode ops are required to be called from outside this source file, 258 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 259 * as static. 260 */ 261 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 262 caller_context_t *); 263 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 264 int nfs4_lookup(vnode_t *, char *, vnode_t **, 265 struct pathname *, int, vnode_t *, cred_t *, 266 caller_context_t *, int *, pathname_t *); 267 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 268 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 269 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 270 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 271 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 272 caller_context_t *); 273 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 274 caller_context_t *); 275 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 276 caller_context_t *); 277 278 /* 279 * Used for nfs4_commit_vp() to indicate if we should 280 * wait on pending writes. 281 */ 282 #define NFS4_WRITE_NOWAIT 0 283 #define NFS4_WRITE_WAIT 1 284 285 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 286 287 /* 288 * Error flags used to pass information about certain special errors 289 * which need to be handled specially. 290 */ 291 #define NFS_EOF -98 292 #define NFS_VERF_MISMATCH -97 293 294 /* 295 * Flags used to differentiate between which operation drove the 296 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 297 */ 298 #define NFS4_CLOSE_OP 0x1 299 #define NFS4_DELMAP_OP 0x2 300 #define NFS4_INACTIVE_OP 0x3 301 302 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 303 304 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 305 #define ALIGN64(x, ptr, sz) \ 306 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 307 if (x) { \ 308 x = sizeof (uint64_t) - (x); \ 309 sz -= (x); \ 310 ptr += (x); \ 311 } 312 313 #ifdef DEBUG 314 int nfs4_client_attr_debug = 0; 315 int nfs4_client_state_debug = 0; 316 int nfs4_client_shadow_debug = 0; 317 int nfs4_client_lock_debug = 0; 318 int nfs4_seqid_sync = 0; 319 int nfs4_client_map_debug = 0; 320 static int nfs4_pageio_debug = 0; 321 int nfs4_client_inactive_debug = 0; 322 int nfs4_client_recov_debug = 0; 323 int nfs4_client_failover_debug = 0; 324 int nfs4_client_call_debug = 0; 325 int nfs4_client_lookup_debug = 0; 326 int nfs4_client_zone_debug = 0; 327 int nfs4_lost_rqst_debug = 0; 328 int nfs4_rdattrerr_debug = 0; 329 int nfs4_open_stream_debug = 0; 330 331 int nfs4read_error_inject; 332 333 static int nfs4_create_misses = 0; 334 335 static int nfs4_readdir_cache_shorts = 0; 336 static int nfs4_readdir_readahead = 0; 337 338 static int nfs4_bio_do_stop = 0; 339 340 static int nfs4_lostpage = 0; /* number of times we lost original page */ 341 342 int nfs4_mmap_debug = 0; 343 344 static int nfs4_pathconf_cache_hits = 0; 345 static int nfs4_pathconf_cache_misses = 0; 346 347 int nfs4close_all_cnt; 348 int nfs4close_one_debug = 0; 349 int nfs4close_notw_debug = 0; 350 351 int denied_to_flk_debug = 0; 352 void *lockt_denied_debug; 353 354 #endif 355 356 /* 357 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 358 * or NFS4ERR_RESOURCE. 359 */ 360 static int confirm_retry_sec = 30; 361 362 static int nfs4_lookup_neg_cache = 1; 363 364 /* 365 * number of pages to read ahead 366 * optimized for 100 base-T. 367 */ 368 static int nfs4_nra = 4; 369 370 static int nfs4_do_symlink_cache = 1; 371 372 static int nfs4_pathconf_disable_cache = 0; 373 374 /* 375 * These are the vnode ops routines which implement the vnode interface to 376 * the networked file system. These routines just take their parameters, 377 * make them look networkish by putting the right info into interface structs, 378 * and then calling the appropriate remote routine(s) to do the work. 379 * 380 * Note on directory name lookup cacheing: If we detect a stale fhandle, 381 * we purge the directory cache relative to that vnode. This way, the 382 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 383 * more details on rnode locking. 384 */ 385 386 struct vnodeops *nfs4_vnodeops; 387 388 const fs_operation_def_t nfs4_vnodeops_template[] = { 389 VOPNAME_OPEN, { .vop_open = nfs4_open }, 390 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 391 VOPNAME_READ, { .vop_read = nfs4_read }, 392 VOPNAME_WRITE, { .vop_write = nfs4_write }, 393 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 394 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 395 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 396 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 397 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 398 VOPNAME_CREATE, { .vop_create = nfs4_create }, 399 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 400 VOPNAME_LINK, { .vop_link = nfs4_link }, 401 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 402 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 403 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 404 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 405 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 406 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 407 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 408 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 409 VOPNAME_FID, { .vop_fid = nfs4_fid }, 410 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 411 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 412 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 413 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 414 VOPNAME_SPACE, { .vop_space = nfs4_space }, 415 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 416 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 417 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 418 VOPNAME_MAP, { .vop_map = nfs4_map }, 419 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 420 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 421 /* no separate nfs4_dump */ 422 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 423 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 424 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 425 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 426 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 427 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 428 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 429 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 430 NULL, NULL 431 }; 432 433 /* 434 * The following are subroutines and definitions to set args or get res 435 * for the different nfsv4 ops 436 */ 437 438 void 439 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 440 { 441 int i; 442 443 for (i = 0; i < arglen; i++) { 444 if (argop[i].argop == OP_LOOKUP) { 445 kmem_free( 446 argop[i].nfs_argop4_u.oplookup. 447 objname.utf8string_val, 448 argop[i].nfs_argop4_u.oplookup. 449 objname.utf8string_len); 450 } 451 } 452 } 453 454 static void 455 nfs4args_lock_free(nfs_argop4 *argop) 456 { 457 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 458 459 if (locker->new_lock_owner == TRUE) { 460 open_to_lock_owner4 *open_owner; 461 462 open_owner = &locker->locker4_u.open_owner; 463 if (open_owner->lock_owner.owner_val != NULL) { 464 kmem_free(open_owner->lock_owner.owner_val, 465 open_owner->lock_owner.owner_len); 466 } 467 } 468 } 469 470 static void 471 nfs4args_lockt_free(nfs_argop4 *argop) 472 { 473 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 474 475 if (lowner->owner_val != NULL) { 476 kmem_free(lowner->owner_val, lowner->owner_len); 477 } 478 } 479 480 static void 481 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 482 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 483 nfs4_stateid_types_t *sid_types) 484 { 485 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 486 mntinfo4_t *mi; 487 488 argop->argop = OP_SETATTR; 489 /* 490 * The stateid is set to 0 if client is not modifying the size 491 * and otherwise to whatever nfs4_get_stateid() returns. 492 * 493 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 494 * state struct could be found for the process/file pair. We may 495 * want to change this in the future (by OPENing the file). See 496 * bug # 4474852. 497 */ 498 if (vap->va_mask & AT_SIZE) { 499 500 ASSERT(rp != NULL); 501 mi = VTOMI4(RTOV4(rp)); 502 503 argop->nfs_argop4_u.opsetattr.stateid = 504 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 505 OP_SETATTR, sid_types, FALSE); 506 } else { 507 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 508 sizeof (stateid4)); 509 } 510 511 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 512 if (*error) 513 bzero(attr, sizeof (*attr)); 514 } 515 516 static void 517 nfs4args_setattr_free(nfs_argop4 *argop) 518 { 519 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 520 } 521 522 static int 523 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 524 bitmap4 supp) 525 { 526 fattr4 *attr; 527 int error = 0; 528 529 argop->argop = op; 530 switch (op) { 531 case OP_VERIFY: 532 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 533 break; 534 case OP_NVERIFY: 535 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 536 break; 537 default: 538 return (EINVAL); 539 } 540 if (!error) 541 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 542 if (error) 543 bzero(attr, sizeof (*attr)); 544 return (error); 545 } 546 547 static void 548 nfs4args_verify_free(nfs_argop4 *argop) 549 { 550 switch (argop->argop) { 551 case OP_VERIFY: 552 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 553 break; 554 case OP_NVERIFY: 555 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 556 break; 557 default: 558 break; 559 } 560 } 561 562 static void 563 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 564 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 565 { 566 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 567 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 568 569 argop->argop = OP_WRITE; 570 wargs->stable = stable; 571 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 572 mi, OP_WRITE, sid_tp); 573 wargs->mblk = NULL; 574 *wargs_pp = wargs; 575 } 576 577 void 578 nfs4args_copen_free(OPEN4cargs *open_args) 579 { 580 if (open_args->owner.owner_val) { 581 kmem_free(open_args->owner.owner_val, 582 open_args->owner.owner_len); 583 } 584 if ((open_args->opentype == OPEN4_CREATE) && 585 (open_args->mode != EXCLUSIVE4)) { 586 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 587 } 588 } 589 590 /* 591 * XXX: This is referenced in modstubs.s 592 */ 593 struct vnodeops * 594 nfs4_getvnodeops(void) 595 { 596 return (nfs4_vnodeops); 597 } 598 599 /* 600 * The OPEN operation opens a regular file. 601 */ 602 /*ARGSUSED3*/ 603 static int 604 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 605 { 606 vnode_t *dvp = NULL; 607 rnode4_t *rp, *drp; 608 int error; 609 int just_been_created; 610 char fn[MAXNAMELEN]; 611 612 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 613 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 614 return (EIO); 615 rp = VTOR4(*vpp); 616 617 /* 618 * Check to see if opening something besides a regular file; 619 * if so skip the OTW call 620 */ 621 if ((*vpp)->v_type != VREG) { 622 error = nfs4_open_non_reg_file(vpp, flag, cr); 623 return (error); 624 } 625 626 /* 627 * XXX - would like a check right here to know if the file is 628 * executable or not, so as to skip OTW 629 */ 630 631 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 632 return (error); 633 634 drp = VTOR4(dvp); 635 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 636 return (EINTR); 637 638 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 639 nfs_rw_exit(&drp->r_rwlock); 640 return (error); 641 } 642 643 /* 644 * See if this file has just been CREATEd. 645 * If so, clear the flag and update the dnlc, which was previously 646 * skipped in nfs4_create. 647 * XXX need better serilization on this. 648 * XXX move this into the nf4open_otw call, after we have 649 * XXX acquired the open owner seqid sync. 650 */ 651 mutex_enter(&rp->r_statev4_lock); 652 if (rp->created_v4) { 653 rp->created_v4 = 0; 654 mutex_exit(&rp->r_statev4_lock); 655 656 dnlc_update(dvp, fn, *vpp); 657 /* This is needed so we don't bump the open ref count */ 658 just_been_created = 1; 659 } else { 660 mutex_exit(&rp->r_statev4_lock); 661 just_been_created = 0; 662 } 663 664 /* 665 * If caller specified O_TRUNC/FTRUNC, then be sure to set 666 * FWRITE (to drive successful setattr(size=0) after open) 667 */ 668 if (flag & FTRUNC) 669 flag |= FWRITE; 670 671 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 672 just_been_created); 673 674 if (!error && !((*vpp)->v_flag & VROOT)) 675 dnlc_update(dvp, fn, *vpp); 676 677 nfs_rw_exit(&drp->r_rwlock); 678 679 /* release the hold from vtodv */ 680 VN_RELE(dvp); 681 682 /* exchange the shadow for the master vnode, if needed */ 683 684 if (error == 0 && IS_SHADOW(*vpp, rp)) 685 sv_exchange(vpp); 686 687 return (error); 688 } 689 690 /* 691 * See if there's a "lost open" request to be saved and recovered. 692 */ 693 static void 694 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 695 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 696 vnode_t *dvp, OPEN4cargs *open_args) 697 { 698 vfs_t *vfsp; 699 char *srccfp; 700 701 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 702 703 if (error != ETIMEDOUT && error != EINTR && 704 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 705 lost_rqstp->lr_op = 0; 706 return; 707 } 708 709 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 710 "nfs4open_save_lost_rqst: error %d", error)); 711 712 lost_rqstp->lr_op = OP_OPEN; 713 714 /* 715 * The vp (if it is not NULL) and dvp are held and rele'd via 716 * the recovery code. See nfs4_save_lost_rqst. 717 */ 718 lost_rqstp->lr_vp = vp; 719 lost_rqstp->lr_dvp = dvp; 720 lost_rqstp->lr_oop = oop; 721 lost_rqstp->lr_osp = NULL; 722 lost_rqstp->lr_lop = NULL; 723 lost_rqstp->lr_cr = cr; 724 lost_rqstp->lr_flk = NULL; 725 lost_rqstp->lr_oacc = open_args->share_access; 726 lost_rqstp->lr_odeny = open_args->share_deny; 727 lost_rqstp->lr_oclaim = open_args->claim; 728 if (open_args->claim == CLAIM_DELEGATE_CUR) { 729 lost_rqstp->lr_ostateid = 730 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 731 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 732 } else { 733 srccfp = open_args->open_claim4_u.cfile; 734 } 735 lost_rqstp->lr_ofile.utf8string_len = 0; 736 lost_rqstp->lr_ofile.utf8string_val = NULL; 737 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 738 lost_rqstp->lr_putfirst = FALSE; 739 } 740 741 struct nfs4_excl_time { 742 uint32 seconds; 743 uint32 nseconds; 744 }; 745 746 /* 747 * The OPEN operation creates and/or opens a regular file 748 * 749 * ARGSUSED 750 */ 751 static int 752 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 753 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 754 enum createmode4 createmode, int file_just_been_created) 755 { 756 rnode4_t *rp; 757 rnode4_t *drp = VTOR4(dvp); 758 vnode_t *vp = NULL; 759 vnode_t *vpi = *vpp; 760 bool_t needrecov = FALSE; 761 762 int doqueue = 1; 763 764 COMPOUND4args_clnt args; 765 COMPOUND4res_clnt res; 766 nfs_argop4 *argop; 767 nfs_resop4 *resop; 768 int argoplist_size; 769 int idx_open, idx_fattr; 770 771 GETFH4res *gf_res = NULL; 772 OPEN4res *op_res = NULL; 773 nfs4_ga_res_t *garp; 774 fattr4 *attr = NULL; 775 struct nfs4_excl_time verf; 776 bool_t did_excl_setup = FALSE; 777 int created_osp; 778 779 OPEN4cargs *open_args; 780 nfs4_open_owner_t *oop = NULL; 781 nfs4_open_stream_t *osp = NULL; 782 seqid4 seqid = 0; 783 bool_t retry_open = FALSE; 784 nfs4_recov_state_t recov_state; 785 nfs4_lost_rqst_t lost_rqst; 786 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 787 hrtime_t t; 788 int acc = 0; 789 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 790 cred_t *ncr = NULL; 791 792 nfs4_sharedfh_t *otw_sfh; 793 nfs4_sharedfh_t *orig_sfh; 794 int fh_differs = 0; 795 int numops, setgid_flag; 796 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 797 798 /* 799 * Make sure we properly deal with setting the right gid on 800 * a newly created file to reflect the parent's setgid bit 801 */ 802 setgid_flag = 0; 803 if (create_flag && in_va) { 804 805 /* 806 * If the parent's directory has the setgid bit set 807 * _and_ the client was able to get a valid mapping 808 * for the parent dir's owner_group, we want to 809 * append NVERIFY(owner_group == dva.va_gid) and 810 * SETATTR to the CREATE compound. 811 */ 812 mutex_enter(&drp->r_statelock); 813 if (drp->r_attr.va_mode & VSGID && 814 drp->r_attr.va_gid != GID_NOBODY) { 815 in_va->va_gid = drp->r_attr.va_gid; 816 setgid_flag = 1; 817 } 818 mutex_exit(&drp->r_statelock); 819 } 820 821 /* 822 * Normal/non-create compound: 823 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 824 * 825 * Open(create) compound no setgid: 826 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 827 * RESTOREFH + GETATTR 828 * 829 * Open(create) setgid: 830 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 831 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 832 * NVERIFY(grp) + SETATTR 833 */ 834 if (setgid_flag) { 835 numops = 10; 836 idx_open = 1; 837 idx_fattr = 3; 838 } else if (create_flag) { 839 numops = 7; 840 idx_open = 2; 841 idx_fattr = 4; 842 } else { 843 numops = 4; 844 idx_open = 1; 845 idx_fattr = 3; 846 } 847 848 args.array_len = numops; 849 argoplist_size = numops * sizeof (nfs_argop4); 850 argop = kmem_alloc(argoplist_size, KM_SLEEP); 851 852 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 853 "open %s open flag 0x%x cred %p", file_name, open_flag, 854 (void *)cr)); 855 856 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 857 if (create_flag) { 858 /* 859 * We are to create a file. Initialize the passed in vnode 860 * pointer. 861 */ 862 vpi = NULL; 863 } else { 864 /* 865 * Check to see if the client owns a read delegation and is 866 * trying to open for write. If so, then return the delegation 867 * to avoid the server doing a cb_recall and returning DELAY. 868 * NB - we don't use the statev4_lock here because we'd have 869 * to drop the lock anyway and the result would be stale. 870 */ 871 if ((open_flag & FWRITE) && 872 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 873 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 874 875 /* 876 * If the file has a delegation, then do an access check up 877 * front. This avoids having to an access check later after 878 * we've already done start_op, which could deadlock. 879 */ 880 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 881 if (open_flag & FREAD && 882 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 883 acc |= VREAD; 884 if (open_flag & FWRITE && 885 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 886 acc |= VWRITE; 887 } 888 } 889 890 drp = VTOR4(dvp); 891 892 recov_state.rs_flags = 0; 893 recov_state.rs_num_retry_despite_err = 0; 894 cred_otw = cr; 895 896 recov_retry: 897 fh_differs = 0; 898 nfs4_error_zinit(&e); 899 900 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 901 if (e.error) { 902 if (ncr != NULL) 903 crfree(ncr); 904 kmem_free(argop, argoplist_size); 905 return (e.error); 906 } 907 908 args.ctag = TAG_OPEN; 909 args.array_len = numops; 910 args.array = argop; 911 912 /* putfh directory fh */ 913 argop[0].argop = OP_CPUTFH; 914 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 915 916 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 917 argop[idx_open].argop = OP_COPEN; 918 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 919 open_args->claim = CLAIM_NULL; 920 921 /* name of file */ 922 open_args->open_claim4_u.cfile = file_name; 923 open_args->owner.owner_len = 0; 924 open_args->owner.owner_val = NULL; 925 926 if (create_flag) { 927 /* CREATE a file */ 928 open_args->opentype = OPEN4_CREATE; 929 open_args->mode = createmode; 930 if (createmode == EXCLUSIVE4) { 931 if (did_excl_setup == FALSE) { 932 verf.seconds = nfs_atoi(hw_serial); 933 if (verf.seconds != 0) 934 verf.nseconds = newnum(); 935 else { 936 timestruc_t now; 937 938 gethrestime(&now); 939 verf.seconds = now.tv_sec; 940 verf.nseconds = now.tv_nsec; 941 } 942 /* 943 * Since the server will use this value for the 944 * mtime, make sure that it can't overflow. Zero 945 * out the MSB. The actual value does not matter 946 * here, only its uniqeness. 947 */ 948 verf.seconds &= INT32_MAX; 949 did_excl_setup = TRUE; 950 } 951 952 /* Now copy over verifier to OPEN4args. */ 953 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 954 } else { 955 int v_error; 956 bitmap4 supp_attrs; 957 servinfo4_t *svp; 958 959 attr = &open_args->createhow4_u.createattrs; 960 961 svp = drp->r_server; 962 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 963 supp_attrs = svp->sv_supp_attrs; 964 nfs_rw_exit(&svp->sv_lock); 965 966 /* GUARDED4 or UNCHECKED4 */ 967 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 968 supp_attrs); 969 if (v_error) { 970 bzero(attr, sizeof (*attr)); 971 nfs4args_copen_free(open_args); 972 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 973 &recov_state, FALSE); 974 if (ncr != NULL) 975 crfree(ncr); 976 kmem_free(argop, argoplist_size); 977 return (v_error); 978 } 979 } 980 } else { 981 /* NO CREATE */ 982 open_args->opentype = OPEN4_NOCREATE; 983 } 984 985 if (recov_state.rs_sp != NULL) { 986 mutex_enter(&recov_state.rs_sp->s_lock); 987 open_args->owner.clientid = recov_state.rs_sp->clientid; 988 mutex_exit(&recov_state.rs_sp->s_lock); 989 } else { 990 /* XXX should we just fail here? */ 991 open_args->owner.clientid = 0; 992 } 993 994 /* 995 * This increments oop's ref count or creates a temporary 'just_created' 996 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 997 * completes. 998 */ 999 mutex_enter(&VTOMI4(dvp)->mi_lock); 1000 1001 /* See if a permanent or just created open owner exists */ 1002 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1003 if (!oop) { 1004 /* 1005 * This open owner does not exist so create a temporary 1006 * just created one. 1007 */ 1008 oop = create_open_owner(cr, VTOMI4(dvp)); 1009 ASSERT(oop != NULL); 1010 } 1011 mutex_exit(&VTOMI4(dvp)->mi_lock); 1012 1013 /* this length never changes, do alloc before seqid sync */ 1014 open_args->owner.owner_len = sizeof (oop->oo_name); 1015 open_args->owner.owner_val = 1016 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1017 1018 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1019 if (e.error == EAGAIN) { 1020 open_owner_rele(oop); 1021 nfs4args_copen_free(open_args); 1022 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1023 if (ncr != NULL) { 1024 crfree(ncr); 1025 ncr = NULL; 1026 } 1027 goto recov_retry; 1028 } 1029 1030 /* Check to see if we need to do the OTW call */ 1031 if (!create_flag) { 1032 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1033 file_just_been_created, &e.error, acc, &recov_state)) { 1034 1035 /* 1036 * The OTW open is not necessary. Either 1037 * the open can succeed without it (eg. 1038 * delegation, error == 0) or the open 1039 * must fail due to an access failure 1040 * (error != 0). In either case, tidy 1041 * up and return. 1042 */ 1043 1044 nfs4_end_open_seqid_sync(oop); 1045 open_owner_rele(oop); 1046 nfs4args_copen_free(open_args); 1047 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1048 if (ncr != NULL) 1049 crfree(ncr); 1050 kmem_free(argop, argoplist_size); 1051 return (e.error); 1052 } 1053 } 1054 1055 bcopy(&oop->oo_name, open_args->owner.owner_val, 1056 open_args->owner.owner_len); 1057 1058 seqid = nfs4_get_open_seqid(oop) + 1; 1059 open_args->seqid = seqid; 1060 open_args->share_access = 0; 1061 if (open_flag & FREAD) 1062 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1063 if (open_flag & FWRITE) 1064 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1065 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1066 1067 1068 1069 /* 1070 * getfh w/sanity check for idx_open/idx_fattr 1071 */ 1072 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1073 argop[idx_open + 1].argop = OP_GETFH; 1074 1075 /* getattr */ 1076 argop[idx_fattr].argop = OP_GETATTR; 1077 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1078 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1079 1080 if (setgid_flag) { 1081 vattr_t _v; 1082 servinfo4_t *svp; 1083 bitmap4 supp_attrs; 1084 1085 svp = drp->r_server; 1086 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1087 supp_attrs = svp->sv_supp_attrs; 1088 nfs_rw_exit(&svp->sv_lock); 1089 1090 /* 1091 * For setgid case, we need to: 1092 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1093 */ 1094 argop[4].argop = OP_SAVEFH; 1095 1096 argop[5].argop = OP_CPUTFH; 1097 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1098 1099 argop[6].argop = OP_GETATTR; 1100 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1101 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1102 1103 argop[7].argop = OP_RESTOREFH; 1104 1105 /* 1106 * nverify 1107 */ 1108 _v.va_mask = AT_GID; 1109 _v.va_gid = in_va->va_gid; 1110 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1111 supp_attrs))) { 1112 1113 /* 1114 * setattr 1115 * 1116 * We _know_ we're not messing with AT_SIZE or 1117 * AT_XTIME, so no need for stateid or flags. 1118 * Also we specify NULL rp since we're only 1119 * interested in setting owner_group attributes. 1120 */ 1121 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1122 supp_attrs, &e.error, 0); 1123 if (e.error) 1124 nfs4args_verify_free(&argop[8]); 1125 } 1126 1127 if (e.error) { 1128 /* 1129 * XXX - Revisit the last argument to nfs4_end_op() 1130 * once 5020486 is fixed. 1131 */ 1132 nfs4_end_open_seqid_sync(oop); 1133 open_owner_rele(oop); 1134 nfs4args_copen_free(open_args); 1135 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1136 if (ncr != NULL) 1137 crfree(ncr); 1138 kmem_free(argop, argoplist_size); 1139 return (e.error); 1140 } 1141 } else if (create_flag) { 1142 /* 1143 * For setgid case, we need to: 1144 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1145 */ 1146 argop[1].argop = OP_SAVEFH; 1147 1148 argop[5].argop = OP_RESTOREFH; 1149 1150 argop[6].argop = OP_GETATTR; 1151 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1152 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1153 } 1154 1155 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1156 "nfs4open_otw: %s call, nm %s, rp %s", 1157 needrecov ? "recov" : "first", file_name, 1158 rnode4info(VTOR4(dvp)))); 1159 1160 t = gethrtime(); 1161 1162 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1163 1164 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1165 nfs4_set_open_seqid(seqid, oop, args.ctag); 1166 1167 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1168 1169 if (e.error || needrecov) { 1170 bool_t abort = FALSE; 1171 1172 if (needrecov) { 1173 nfs4_bseqid_entry_t *bsep = NULL; 1174 1175 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1176 cred_otw, vpi, dvp, open_args); 1177 1178 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1179 bsep = nfs4_create_bseqid_entry(oop, NULL, 1180 vpi, 0, args.ctag, open_args->seqid); 1181 num_bseqid_retry--; 1182 } 1183 1184 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1185 NULL, lost_rqst.lr_op == OP_OPEN ? 1186 &lost_rqst : NULL, OP_OPEN, bsep); 1187 1188 if (bsep) 1189 kmem_free(bsep, sizeof (*bsep)); 1190 /* give up if we keep getting BAD_SEQID */ 1191 if (num_bseqid_retry == 0) 1192 abort = TRUE; 1193 if (abort == TRUE && e.error == 0) 1194 e.error = geterrno4(res.status); 1195 } 1196 nfs4_end_open_seqid_sync(oop); 1197 open_owner_rele(oop); 1198 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1199 nfs4args_copen_free(open_args); 1200 if (setgid_flag) { 1201 nfs4args_verify_free(&argop[8]); 1202 nfs4args_setattr_free(&argop[9]); 1203 } 1204 if (!e.error) 1205 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1206 if (ncr != NULL) { 1207 crfree(ncr); 1208 ncr = NULL; 1209 } 1210 if (!needrecov || abort == TRUE || e.error == EINTR || 1211 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1212 kmem_free(argop, argoplist_size); 1213 return (e.error); 1214 } 1215 goto recov_retry; 1216 } 1217 1218 /* 1219 * Will check and update lease after checking the rflag for 1220 * OPEN_CONFIRM in the successful OPEN call. 1221 */ 1222 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1223 1224 /* 1225 * XXX what if we're crossing mount points from server1:/drp 1226 * to server2:/drp/rp. 1227 */ 1228 1229 /* Signal our end of use of the open seqid */ 1230 nfs4_end_open_seqid_sync(oop); 1231 1232 /* 1233 * This will destroy the open owner if it was just created, 1234 * and no one else has put a reference on it. 1235 */ 1236 open_owner_rele(oop); 1237 if (create_flag && (createmode != EXCLUSIVE4) && 1238 res.status == NFS4ERR_BADOWNER) 1239 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1240 1241 e.error = geterrno4(res.status); 1242 nfs4args_copen_free(open_args); 1243 if (setgid_flag) { 1244 nfs4args_verify_free(&argop[8]); 1245 nfs4args_setattr_free(&argop[9]); 1246 } 1247 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1248 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1249 /* 1250 * If the reply is NFS4ERR_ACCESS, it may be because 1251 * we are root (no root net access). If the real uid 1252 * is not root, then retry with the real uid instead. 1253 */ 1254 if (ncr != NULL) { 1255 crfree(ncr); 1256 ncr = NULL; 1257 } 1258 if (res.status == NFS4ERR_ACCESS && 1259 (ncr = crnetadjust(cred_otw)) != NULL) { 1260 cred_otw = ncr; 1261 goto recov_retry; 1262 } 1263 kmem_free(argop, argoplist_size); 1264 return (e.error); 1265 } 1266 1267 resop = &res.array[idx_open]; /* open res */ 1268 op_res = &resop->nfs_resop4_u.opopen; 1269 1270 #ifdef DEBUG 1271 /* 1272 * verify attrset bitmap 1273 */ 1274 if (create_flag && 1275 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1276 /* make sure attrset returned is what we asked for */ 1277 /* XXX Ignore this 'error' for now */ 1278 if (attr->attrmask != op_res->attrset) 1279 /* EMPTY */; 1280 } 1281 #endif 1282 1283 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1284 mutex_enter(&VTOMI4(dvp)->mi_lock); 1285 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1286 mutex_exit(&VTOMI4(dvp)->mi_lock); 1287 } 1288 1289 resop = &res.array[idx_open + 1]; /* getfh res */ 1290 gf_res = &resop->nfs_resop4_u.opgetfh; 1291 1292 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1293 1294 /* 1295 * The open stateid has been updated on the server but not 1296 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1297 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1298 * WRITE call. That, however, will use the old stateid, so go ahead 1299 * and upate the open stateid now, before any call to makenfs4node. 1300 */ 1301 if (vpi) { 1302 nfs4_open_stream_t *tmp_osp; 1303 rnode4_t *tmp_rp = VTOR4(vpi); 1304 1305 tmp_osp = find_open_stream(oop, tmp_rp); 1306 if (tmp_osp) { 1307 tmp_osp->open_stateid = op_res->stateid; 1308 mutex_exit(&tmp_osp->os_sync_lock); 1309 open_stream_rele(tmp_osp, tmp_rp); 1310 } 1311 1312 /* 1313 * We must determine if the file handle given by the otw open 1314 * is the same as the file handle which was passed in with 1315 * *vpp. This case can be reached if the file we are trying 1316 * to open has been removed and another file has been created 1317 * having the same file name. The passed in vnode is released 1318 * later. 1319 */ 1320 orig_sfh = VTOR4(vpi)->r_fh; 1321 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1322 } 1323 1324 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1325 1326 if (create_flag || fh_differs) { 1327 int rnode_err = 0; 1328 1329 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1330 dvp, fn_get(VTOSV(dvp)->sv_name, file_name)); 1331 1332 if (e.error) 1333 PURGE_ATTRCACHE4(vp); 1334 /* 1335 * For the newly created vp case, make sure the rnode 1336 * isn't bad before using it. 1337 */ 1338 mutex_enter(&(VTOR4(vp))->r_statelock); 1339 if (VTOR4(vp)->r_flags & R4RECOVERR) 1340 rnode_err = EIO; 1341 mutex_exit(&(VTOR4(vp))->r_statelock); 1342 1343 if (rnode_err) { 1344 nfs4_end_open_seqid_sync(oop); 1345 nfs4args_copen_free(open_args); 1346 if (setgid_flag) { 1347 nfs4args_verify_free(&argop[8]); 1348 nfs4args_setattr_free(&argop[9]); 1349 } 1350 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1351 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1352 needrecov); 1353 open_owner_rele(oop); 1354 VN_RELE(vp); 1355 if (ncr != NULL) 1356 crfree(ncr); 1357 sfh4_rele(&otw_sfh); 1358 kmem_free(argop, argoplist_size); 1359 return (EIO); 1360 } 1361 } else { 1362 vp = vpi; 1363 } 1364 sfh4_rele(&otw_sfh); 1365 1366 /* 1367 * It seems odd to get a full set of attrs and then not update 1368 * the object's attrcache in the non-create case. Create case uses 1369 * the attrs since makenfs4node checks to see if the attrs need to 1370 * be updated (and then updates them). The non-create case should 1371 * update attrs also. 1372 */ 1373 if (! create_flag && ! fh_differs && !e.error) { 1374 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1375 } 1376 1377 nfs4_error_zinit(&e); 1378 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1379 /* This does not do recovery for vp explicitly. */ 1380 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1381 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1382 1383 if (e.error || e.stat) { 1384 nfs4_end_open_seqid_sync(oop); 1385 nfs4args_copen_free(open_args); 1386 if (setgid_flag) { 1387 nfs4args_verify_free(&argop[8]); 1388 nfs4args_setattr_free(&argop[9]); 1389 } 1390 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1391 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1392 needrecov); 1393 open_owner_rele(oop); 1394 if (create_flag || fh_differs) { 1395 /* rele the makenfs4node */ 1396 VN_RELE(vp); 1397 } 1398 if (ncr != NULL) { 1399 crfree(ncr); 1400 ncr = NULL; 1401 } 1402 if (retry_open == TRUE) { 1403 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1404 "nfs4open_otw: retry the open since OPEN " 1405 "CONFIRM failed with error %d stat %d", 1406 e.error, e.stat)); 1407 if (create_flag && createmode == GUARDED4) { 1408 NFS4_DEBUG(nfs4_client_recov_debug, 1409 (CE_NOTE, "nfs4open_otw: switch " 1410 "createmode from GUARDED4 to " 1411 "UNCHECKED4")); 1412 createmode = UNCHECKED4; 1413 } 1414 goto recov_retry; 1415 } 1416 if (!e.error) { 1417 if (create_flag && (createmode != EXCLUSIVE4) && 1418 e.stat == NFS4ERR_BADOWNER) 1419 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1420 1421 e.error = geterrno4(e.stat); 1422 } 1423 kmem_free(argop, argoplist_size); 1424 return (e.error); 1425 } 1426 } 1427 1428 rp = VTOR4(vp); 1429 1430 mutex_enter(&rp->r_statev4_lock); 1431 if (create_flag) 1432 rp->created_v4 = 1; 1433 mutex_exit(&rp->r_statev4_lock); 1434 1435 mutex_enter(&oop->oo_lock); 1436 /* Doesn't matter if 'oo_just_created' already was set as this */ 1437 oop->oo_just_created = NFS4_PERM_CREATED; 1438 if (oop->oo_cred_otw) 1439 crfree(oop->oo_cred_otw); 1440 oop->oo_cred_otw = cred_otw; 1441 crhold(oop->oo_cred_otw); 1442 mutex_exit(&oop->oo_lock); 1443 1444 /* returns with 'os_sync_lock' held */ 1445 osp = find_or_create_open_stream(oop, rp, &created_osp); 1446 if (!osp) { 1447 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1448 "nfs4open_otw: failed to create an open stream")); 1449 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1450 "signal our end of use of the open seqid")); 1451 1452 nfs4_end_open_seqid_sync(oop); 1453 open_owner_rele(oop); 1454 nfs4args_copen_free(open_args); 1455 if (setgid_flag) { 1456 nfs4args_verify_free(&argop[8]); 1457 nfs4args_setattr_free(&argop[9]); 1458 } 1459 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1460 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1461 if (create_flag || fh_differs) 1462 VN_RELE(vp); 1463 if (ncr != NULL) 1464 crfree(ncr); 1465 1466 kmem_free(argop, argoplist_size); 1467 return (EINVAL); 1468 1469 } 1470 1471 osp->open_stateid = op_res->stateid; 1472 1473 if (open_flag & FREAD) 1474 osp->os_share_acc_read++; 1475 if (open_flag & FWRITE) 1476 osp->os_share_acc_write++; 1477 osp->os_share_deny_none++; 1478 1479 /* 1480 * Need to reset this bitfield for the possible case where we were 1481 * going to OTW CLOSE the file, got a non-recoverable error, and before 1482 * we could retry the CLOSE, OPENed the file again. 1483 */ 1484 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1485 osp->os_final_close = 0; 1486 osp->os_force_close = 0; 1487 #ifdef DEBUG 1488 if (osp->os_failed_reopen) 1489 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1490 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1491 (void *)osp, (void *)cr, rnode4info(rp))); 1492 #endif 1493 osp->os_failed_reopen = 0; 1494 1495 mutex_exit(&osp->os_sync_lock); 1496 1497 nfs4_end_open_seqid_sync(oop); 1498 1499 if (created_osp && recov_state.rs_sp != NULL) { 1500 mutex_enter(&recov_state.rs_sp->s_lock); 1501 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1502 mutex_exit(&recov_state.rs_sp->s_lock); 1503 } 1504 1505 /* get rid of our reference to find oop */ 1506 open_owner_rele(oop); 1507 1508 open_stream_rele(osp, rp); 1509 1510 /* accept delegation, if any */ 1511 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1512 1513 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1514 1515 if (createmode == EXCLUSIVE4 && 1516 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1517 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1518 " EXCLUSIVE4: sending a SETATTR")); 1519 /* 1520 * If doing an exclusive create, then generate 1521 * a SETATTR to set the initial attributes. 1522 * Try to set the mtime and the atime to the 1523 * server's current time. It is somewhat 1524 * expected that these fields will be used to 1525 * store the exclusive create cookie. If not, 1526 * server implementors will need to know that 1527 * a SETATTR will follow an exclusive create 1528 * and the cookie should be destroyed if 1529 * appropriate. 1530 * 1531 * The AT_GID and AT_SIZE bits are turned off 1532 * so that the SETATTR request will not attempt 1533 * to process these. The gid will be set 1534 * separately if appropriate. The size is turned 1535 * off because it is assumed that a new file will 1536 * be created empty and if the file wasn't empty, 1537 * then the exclusive create will have failed 1538 * because the file must have existed already. 1539 * Therefore, no truncate operation is needed. 1540 */ 1541 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1542 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1543 1544 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1545 if (e.error) { 1546 /* 1547 * Couldn't correct the attributes of 1548 * the newly created file and the 1549 * attributes are wrong. Remove the 1550 * file and return an error to the 1551 * application. 1552 */ 1553 /* XXX will this take care of client state ? */ 1554 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1555 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1556 " remove file", e.error)); 1557 VN_RELE(vp); 1558 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1559 /* 1560 * Since we've reled the vnode and removed 1561 * the file we now need to return the error. 1562 * At this point we don't want to update the 1563 * dircaches, call nfs4_waitfor_purge_complete 1564 * or set vpp to vp so we need to skip these 1565 * as well. 1566 */ 1567 goto skip_update_dircaches; 1568 } 1569 } 1570 1571 /* 1572 * If we created or found the correct vnode, due to create_flag or 1573 * fh_differs being set, then update directory cache attribute, readdir 1574 * and dnlc caches. 1575 */ 1576 if (create_flag || fh_differs) { 1577 dirattr_info_t dinfo, *dinfop; 1578 1579 /* 1580 * Make sure getattr succeeded before using results. 1581 * note: op 7 is getattr(dir) for both flavors of 1582 * open(create). 1583 */ 1584 if (create_flag && res.status == NFS4_OK) { 1585 dinfo.di_time_call = t; 1586 dinfo.di_cred = cr; 1587 dinfo.di_garp = 1588 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1589 dinfop = &dinfo; 1590 } else { 1591 dinfop = NULL; 1592 } 1593 1594 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1595 dinfop); 1596 } 1597 1598 /* 1599 * If the page cache for this file was flushed from actions 1600 * above, it was done asynchronously and if that is true, 1601 * there is a need to wait here for it to complete. This must 1602 * be done outside of start_fop/end_fop. 1603 */ 1604 (void) nfs4_waitfor_purge_complete(vp); 1605 1606 /* 1607 * It is implicit that we are in the open case (create_flag == 0) since 1608 * fh_differs can only be set to a non-zero value in the open case. 1609 */ 1610 if (fh_differs != 0 && vpi != NULL) 1611 VN_RELE(vpi); 1612 1613 /* 1614 * Be sure to set *vpp to the correct value before returning. 1615 */ 1616 *vpp = vp; 1617 1618 skip_update_dircaches: 1619 1620 nfs4args_copen_free(open_args); 1621 if (setgid_flag) { 1622 nfs4args_verify_free(&argop[8]); 1623 nfs4args_setattr_free(&argop[9]); 1624 } 1625 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1626 1627 if (ncr) 1628 crfree(ncr); 1629 kmem_free(argop, argoplist_size); 1630 return (e.error); 1631 } 1632 1633 /* 1634 * Reopen an open instance. cf. nfs4open_otw(). 1635 * 1636 * Errors are returned by the nfs4_error_t parameter. 1637 * - ep->error contains an errno value or zero. 1638 * - if it is zero, ep->stat is set to an NFS status code, if any. 1639 * If the file could not be reopened, but the caller should continue, the 1640 * file is marked dead and no error values are returned. If the caller 1641 * should stop recovering open files and start over, either the ep->error 1642 * value or ep->stat will indicate an error (either something that requires 1643 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1644 * filehandles) may be handled silently by this routine. 1645 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1646 * will be started, so the caller should not do it. 1647 * 1648 * Gotos: 1649 * - kill_file : reopen failed in such a fashion to constitute marking the 1650 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1651 * is for cases where recovery is not possible. 1652 * - failed_reopen : same as above, except that the file has already been 1653 * marked dead, so no need to do it again. 1654 * - bailout : reopen failed but we are able to recover and retry the reopen - 1655 * either within this function immediately or via the calling function. 1656 */ 1657 1658 void 1659 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1660 open_claim_type4 claim, bool_t frc_use_claim_previous, 1661 bool_t is_recov) 1662 { 1663 COMPOUND4args_clnt args; 1664 COMPOUND4res_clnt res; 1665 nfs_argop4 argop[4]; 1666 nfs_resop4 *resop; 1667 OPEN4res *op_res = NULL; 1668 OPEN4cargs *open_args; 1669 GETFH4res *gf_res; 1670 rnode4_t *rp = VTOR4(vp); 1671 int doqueue = 1; 1672 cred_t *cr = NULL, *cred_otw = NULL; 1673 nfs4_open_owner_t *oop = NULL; 1674 seqid4 seqid; 1675 nfs4_ga_res_t *garp; 1676 char fn[MAXNAMELEN]; 1677 nfs4_recov_state_t recov = {NULL, 0}; 1678 nfs4_lost_rqst_t lost_rqst; 1679 mntinfo4_t *mi = VTOMI4(vp); 1680 bool_t abort; 1681 char *failed_msg = ""; 1682 int fh_different; 1683 hrtime_t t; 1684 nfs4_bseqid_entry_t *bsep = NULL; 1685 1686 ASSERT(nfs4_consistent_type(vp)); 1687 ASSERT(nfs_zone() == mi->mi_zone); 1688 1689 nfs4_error_zinit(ep); 1690 1691 /* this is the cred used to find the open owner */ 1692 cr = state_to_cred(osp); 1693 if (cr == NULL) { 1694 failed_msg = "Couldn't reopen: no cred"; 1695 goto kill_file; 1696 } 1697 /* use this cred for OTW operations */ 1698 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1699 1700 top: 1701 nfs4_error_zinit(ep); 1702 1703 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1704 /* File system has been unmounted, quit */ 1705 ep->error = EIO; 1706 failed_msg = "Couldn't reopen: file system has been unmounted"; 1707 goto kill_file; 1708 } 1709 1710 oop = osp->os_open_owner; 1711 1712 ASSERT(oop != NULL); 1713 if (oop == NULL) { /* be defensive in non-DEBUG */ 1714 failed_msg = "can't reopen: no open owner"; 1715 goto kill_file; 1716 } 1717 open_owner_hold(oop); 1718 1719 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1720 if (ep->error) { 1721 open_owner_rele(oop); 1722 oop = NULL; 1723 goto bailout; 1724 } 1725 1726 /* 1727 * If the rnode has a delegation and the delegation has been 1728 * recovered and the server didn't request a recall and the caller 1729 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1730 * recovery) and the rnode hasn't been marked dead, then install 1731 * the delegation stateid in the open stream. Otherwise, proceed 1732 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1733 */ 1734 mutex_enter(&rp->r_statev4_lock); 1735 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1736 !rp->r_deleg_return_pending && 1737 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1738 !rp->r_deleg_needs_recall && 1739 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1740 !(rp->r_flags & R4RECOVERR)) { 1741 mutex_enter(&osp->os_sync_lock); 1742 osp->os_delegation = 1; 1743 osp->open_stateid = rp->r_deleg_stateid; 1744 mutex_exit(&osp->os_sync_lock); 1745 mutex_exit(&rp->r_statev4_lock); 1746 goto bailout; 1747 } 1748 mutex_exit(&rp->r_statev4_lock); 1749 1750 /* 1751 * If the file failed recovery, just quit. This failure need not 1752 * affect other reopens, so don't return an error. 1753 */ 1754 mutex_enter(&rp->r_statelock); 1755 if (rp->r_flags & R4RECOVERR) { 1756 mutex_exit(&rp->r_statelock); 1757 ep->error = 0; 1758 goto failed_reopen; 1759 } 1760 mutex_exit(&rp->r_statelock); 1761 1762 /* 1763 * argop is empty here 1764 * 1765 * PUTFH, OPEN, GETATTR 1766 */ 1767 args.ctag = TAG_REOPEN; 1768 args.array_len = 4; 1769 args.array = argop; 1770 1771 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1772 "nfs4_reopen: file is type %d, id %s", 1773 vp->v_type, rnode4info(VTOR4(vp)))); 1774 1775 argop[0].argop = OP_CPUTFH; 1776 1777 if (claim != CLAIM_PREVIOUS) { 1778 /* 1779 * if this is a file mount then 1780 * use the mntinfo parentfh 1781 */ 1782 argop[0].nfs_argop4_u.opcputfh.sfh = 1783 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1784 VTOSV(vp)->sv_dfh; 1785 } else { 1786 /* putfh fh to reopen */ 1787 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1788 } 1789 1790 argop[1].argop = OP_COPEN; 1791 open_args = &argop[1].nfs_argop4_u.opcopen; 1792 open_args->claim = claim; 1793 1794 if (claim == CLAIM_NULL) { 1795 1796 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1797 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1798 "failed for vp 0x%p for CLAIM_NULL with %m", 1799 (void *)vp); 1800 failed_msg = "Couldn't reopen: vtoname failed for " 1801 "CLAIM_NULL"; 1802 /* nothing allocated yet */ 1803 goto kill_file; 1804 } 1805 1806 open_args->open_claim4_u.cfile = fn; 1807 } else if (claim == CLAIM_PREVIOUS) { 1808 1809 /* 1810 * We have two cases to deal with here: 1811 * 1) We're being called to reopen files in order to satisfy 1812 * a lock operation request which requires us to explicitly 1813 * reopen files which were opened under a delegation. If 1814 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1815 * that case, frc_use_claim_previous is TRUE and we must 1816 * use the rnode's current delegation type (r_deleg_type). 1817 * 2) We're reopening files during some form of recovery. 1818 * In this case, frc_use_claim_previous is FALSE and we 1819 * use the delegation type appropriate for recovery 1820 * (r_deleg_needs_recovery). 1821 */ 1822 mutex_enter(&rp->r_statev4_lock); 1823 open_args->open_claim4_u.delegate_type = 1824 frc_use_claim_previous ? 1825 rp->r_deleg_type : 1826 rp->r_deleg_needs_recovery; 1827 mutex_exit(&rp->r_statev4_lock); 1828 1829 } else if (claim == CLAIM_DELEGATE_CUR) { 1830 1831 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1832 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1833 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1834 "with %m", (void *)vp); 1835 failed_msg = "Couldn't reopen: vtoname failed for " 1836 "CLAIM_DELEGATE_CUR"; 1837 /* nothing allocated yet */ 1838 goto kill_file; 1839 } 1840 1841 mutex_enter(&rp->r_statev4_lock); 1842 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1843 rp->r_deleg_stateid; 1844 mutex_exit(&rp->r_statev4_lock); 1845 1846 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1847 } 1848 open_args->opentype = OPEN4_NOCREATE; 1849 open_args->owner.clientid = mi2clientid(mi); 1850 open_args->owner.owner_len = sizeof (oop->oo_name); 1851 open_args->owner.owner_val = 1852 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1853 bcopy(&oop->oo_name, open_args->owner.owner_val, 1854 open_args->owner.owner_len); 1855 open_args->share_access = 0; 1856 open_args->share_deny = 0; 1857 1858 mutex_enter(&osp->os_sync_lock); 1859 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1860 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1861 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1862 (void *)osp, (void *)rp, osp->os_share_acc_read, 1863 osp->os_share_acc_write, osp->os_open_ref_count, 1864 osp->os_mmap_read, osp->os_mmap_write, claim)); 1865 1866 if (osp->os_share_acc_read || osp->os_mmap_read) 1867 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1868 if (osp->os_share_acc_write || osp->os_mmap_write) 1869 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1870 if (osp->os_share_deny_read) 1871 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1872 if (osp->os_share_deny_write) 1873 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1874 mutex_exit(&osp->os_sync_lock); 1875 1876 seqid = nfs4_get_open_seqid(oop) + 1; 1877 open_args->seqid = seqid; 1878 1879 /* Construct the getfh part of the compound */ 1880 argop[2].argop = OP_GETFH; 1881 1882 /* Construct the getattr part of the compound */ 1883 argop[3].argop = OP_GETATTR; 1884 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1885 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1886 1887 t = gethrtime(); 1888 1889 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1890 1891 if (ep->error) { 1892 if (!is_recov && !frc_use_claim_previous && 1893 (ep->error == EINTR || ep->error == ETIMEDOUT || 1894 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1895 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1896 cred_otw, vp, NULL, open_args); 1897 abort = nfs4_start_recovery(ep, 1898 VTOMI4(vp), vp, NULL, NULL, 1899 lost_rqst.lr_op == OP_OPEN ? 1900 &lost_rqst : NULL, OP_OPEN, NULL); 1901 nfs4args_copen_free(open_args); 1902 goto bailout; 1903 } 1904 1905 nfs4args_copen_free(open_args); 1906 1907 if (ep->error == EACCES && cred_otw != cr) { 1908 crfree(cred_otw); 1909 cred_otw = cr; 1910 crhold(cred_otw); 1911 nfs4_end_open_seqid_sync(oop); 1912 open_owner_rele(oop); 1913 oop = NULL; 1914 goto top; 1915 } 1916 if (ep->error == ETIMEDOUT) 1917 goto bailout; 1918 failed_msg = "Couldn't reopen: rpc error"; 1919 goto kill_file; 1920 } 1921 1922 if (nfs4_need_to_bump_seqid(&res)) 1923 nfs4_set_open_seqid(seqid, oop, args.ctag); 1924 1925 switch (res.status) { 1926 case NFS4_OK: 1927 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1928 mutex_enter(&rp->r_statelock); 1929 rp->r_delay_interval = 0; 1930 mutex_exit(&rp->r_statelock); 1931 } 1932 break; 1933 case NFS4ERR_BAD_SEQID: 1934 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1935 args.ctag, open_args->seqid); 1936 1937 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1938 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1939 NULL, OP_OPEN, bsep); 1940 1941 nfs4args_copen_free(open_args); 1942 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1943 nfs4_end_open_seqid_sync(oop); 1944 open_owner_rele(oop); 1945 oop = NULL; 1946 kmem_free(bsep, sizeof (*bsep)); 1947 1948 goto kill_file; 1949 case NFS4ERR_NO_GRACE: 1950 nfs4args_copen_free(open_args); 1951 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1952 nfs4_end_open_seqid_sync(oop); 1953 open_owner_rele(oop); 1954 oop = NULL; 1955 if (claim == CLAIM_PREVIOUS) { 1956 /* 1957 * Retry as a plain open. We don't need to worry about 1958 * checking the changeinfo: it is acceptable for a 1959 * client to re-open a file and continue processing 1960 * (in the absence of locks). 1961 */ 1962 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1963 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1964 "will retry as CLAIM_NULL")); 1965 claim = CLAIM_NULL; 1966 nfs4_mi_kstat_inc_no_grace(mi); 1967 goto top; 1968 } 1969 failed_msg = 1970 "Couldn't reopen: tried reclaim outside grace period. "; 1971 goto kill_file; 1972 case NFS4ERR_GRACE: 1973 nfs4_set_grace_wait(mi); 1974 nfs4args_copen_free(open_args); 1975 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1976 nfs4_end_open_seqid_sync(oop); 1977 open_owner_rele(oop); 1978 oop = NULL; 1979 ep->error = nfs4_wait_for_grace(mi, &recov); 1980 if (ep->error != 0) 1981 goto bailout; 1982 goto top; 1983 case NFS4ERR_DELAY: 1984 nfs4_set_delay_wait(vp); 1985 nfs4args_copen_free(open_args); 1986 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1987 nfs4_end_open_seqid_sync(oop); 1988 open_owner_rele(oop); 1989 oop = NULL; 1990 ep->error = nfs4_wait_for_delay(vp, &recov); 1991 nfs4_mi_kstat_inc_delay(mi); 1992 if (ep->error != 0) 1993 goto bailout; 1994 goto top; 1995 case NFS4ERR_FHEXPIRED: 1996 /* recover filehandle and retry */ 1997 abort = nfs4_start_recovery(ep, 1998 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL); 1999 nfs4args_copen_free(open_args); 2000 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2001 nfs4_end_open_seqid_sync(oop); 2002 open_owner_rele(oop); 2003 oop = NULL; 2004 if (abort == FALSE) 2005 goto top; 2006 failed_msg = "Couldn't reopen: recovery aborted"; 2007 goto kill_file; 2008 case NFS4ERR_RESOURCE: 2009 case NFS4ERR_STALE_CLIENTID: 2010 case NFS4ERR_WRONGSEC: 2011 case NFS4ERR_EXPIRED: 2012 /* 2013 * Do not mark the file dead and let the calling 2014 * function initiate recovery. 2015 */ 2016 nfs4args_copen_free(open_args); 2017 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2018 nfs4_end_open_seqid_sync(oop); 2019 open_owner_rele(oop); 2020 oop = NULL; 2021 goto bailout; 2022 case NFS4ERR_ACCESS: 2023 if (cred_otw != cr) { 2024 crfree(cred_otw); 2025 cred_otw = cr; 2026 crhold(cred_otw); 2027 nfs4args_copen_free(open_args); 2028 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2029 nfs4_end_open_seqid_sync(oop); 2030 open_owner_rele(oop); 2031 oop = NULL; 2032 goto top; 2033 } 2034 /* fall through */ 2035 default: 2036 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2037 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2038 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2039 rnode4info(VTOR4(vp)))); 2040 failed_msg = "Couldn't reopen: NFSv4 error"; 2041 nfs4args_copen_free(open_args); 2042 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2043 goto kill_file; 2044 } 2045 2046 resop = &res.array[1]; /* open res */ 2047 op_res = &resop->nfs_resop4_u.opopen; 2048 2049 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2050 2051 /* 2052 * Check if the path we reopened really is the same 2053 * file. We could end up in a situation where the file 2054 * was removed and a new file created with the same name. 2055 */ 2056 resop = &res.array[2]; 2057 gf_res = &resop->nfs_resop4_u.opgetfh; 2058 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2059 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2060 if (fh_different) { 2061 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2062 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2063 /* Oops, we don't have the same file */ 2064 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2065 failed_msg = "Couldn't reopen: Persistent " 2066 "file handle changed"; 2067 else 2068 failed_msg = "Couldn't reopen: Volatile " 2069 "(no expire on open) file handle changed"; 2070 2071 nfs4args_copen_free(open_args); 2072 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2073 nfs_rw_exit(&mi->mi_fh_lock); 2074 goto kill_file; 2075 2076 } else { 2077 /* 2078 * We have volatile file handles that don't compare. 2079 * If the fids are the same then we assume that the 2080 * file handle expired but the rnode still refers to 2081 * the same file object. 2082 * 2083 * First check that we have fids or not. 2084 * If we don't we have a dumb server so we will 2085 * just assume every thing is ok for now. 2086 */ 2087 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2088 rp->r_attr.va_mask & AT_NODEID && 2089 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2090 /* 2091 * We have fids, but they don't 2092 * compare. So kill the file. 2093 */ 2094 failed_msg = 2095 "Couldn't reopen: file handle changed" 2096 " due to mismatched fids"; 2097 nfs4args_copen_free(open_args); 2098 (void) xdr_free(xdr_COMPOUND4res_clnt, 2099 (caddr_t)&res); 2100 nfs_rw_exit(&mi->mi_fh_lock); 2101 goto kill_file; 2102 } else { 2103 /* 2104 * We have volatile file handles that refers 2105 * to the same file (at least they have the 2106 * same fid) or we don't have fids so we 2107 * can't tell. :(. We'll be a kind and accepting 2108 * client so we'll update the rnode's file 2109 * handle with the otw handle. 2110 * 2111 * We need to drop mi->mi_fh_lock since 2112 * sh4_update acquires it. Since there is 2113 * only one recovery thread there is no 2114 * race. 2115 */ 2116 nfs_rw_exit(&mi->mi_fh_lock); 2117 sfh4_update(rp->r_fh, &gf_res->object); 2118 } 2119 } 2120 } else { 2121 nfs_rw_exit(&mi->mi_fh_lock); 2122 } 2123 2124 ASSERT(nfs4_consistent_type(vp)); 2125 2126 /* 2127 * If the server wanted an OPEN_CONFIRM but that fails, just start 2128 * over. Presumably if there is a persistent error it will show up 2129 * when we resend the OPEN. 2130 */ 2131 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2132 bool_t retry_open = FALSE; 2133 2134 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2135 cred_otw, is_recov, &retry_open, 2136 oop, FALSE, ep, NULL); 2137 if (ep->error || ep->stat) { 2138 nfs4args_copen_free(open_args); 2139 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2140 nfs4_end_open_seqid_sync(oop); 2141 open_owner_rele(oop); 2142 oop = NULL; 2143 goto top; 2144 } 2145 } 2146 2147 mutex_enter(&osp->os_sync_lock); 2148 osp->open_stateid = op_res->stateid; 2149 osp->os_delegation = 0; 2150 /* 2151 * Need to reset this bitfield for the possible case where we were 2152 * going to OTW CLOSE the file, got a non-recoverable error, and before 2153 * we could retry the CLOSE, OPENed the file again. 2154 */ 2155 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2156 osp->os_final_close = 0; 2157 osp->os_force_close = 0; 2158 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2159 osp->os_dc_openacc = open_args->share_access; 2160 mutex_exit(&osp->os_sync_lock); 2161 2162 nfs4_end_open_seqid_sync(oop); 2163 2164 /* accept delegation, if any */ 2165 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2166 2167 nfs4args_copen_free(open_args); 2168 2169 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2170 2171 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2172 2173 ASSERT(nfs4_consistent_type(vp)); 2174 2175 open_owner_rele(oop); 2176 crfree(cr); 2177 crfree(cred_otw); 2178 return; 2179 2180 kill_file: 2181 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2182 failed_reopen: 2183 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2184 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2185 (void *)osp, (void *)cr, rnode4info(rp))); 2186 mutex_enter(&osp->os_sync_lock); 2187 osp->os_failed_reopen = 1; 2188 mutex_exit(&osp->os_sync_lock); 2189 bailout: 2190 if (oop != NULL) { 2191 nfs4_end_open_seqid_sync(oop); 2192 open_owner_rele(oop); 2193 } 2194 if (cr != NULL) 2195 crfree(cr); 2196 if (cred_otw != NULL) 2197 crfree(cred_otw); 2198 } 2199 2200 /* for . and .. OPENs */ 2201 /* ARGSUSED */ 2202 static int 2203 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2204 { 2205 rnode4_t *rp; 2206 nfs4_ga_res_t gar; 2207 2208 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2209 2210 /* 2211 * If close-to-open consistency checking is turned off or 2212 * if there is no cached data, we can avoid 2213 * the over the wire getattr. Otherwise, force a 2214 * call to the server to get fresh attributes and to 2215 * check caches. This is required for close-to-open 2216 * consistency. 2217 */ 2218 rp = VTOR4(*vpp); 2219 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2220 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2221 return (0); 2222 2223 gar.n4g_va.va_mask = AT_ALL; 2224 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2225 } 2226 2227 /* 2228 * CLOSE a file 2229 */ 2230 /* ARGSUSED */ 2231 static int 2232 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2233 caller_context_t *ct) 2234 { 2235 rnode4_t *rp; 2236 int error = 0; 2237 int r_error = 0; 2238 int n4error = 0; 2239 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2240 2241 /* 2242 * Remove client state for this (lockowner, file) pair. 2243 * Issue otw v4 call to have the server do the same. 2244 */ 2245 2246 rp = VTOR4(vp); 2247 2248 /* 2249 * zone_enter(2) prevents processes from changing zones with NFS files 2250 * open; if we happen to get here from the wrong zone we can't do 2251 * anything over the wire. 2252 */ 2253 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2254 /* 2255 * We could attempt to clean up locks, except we're sure 2256 * that the current process didn't acquire any locks on 2257 * the file: any attempt to lock a file belong to another zone 2258 * will fail, and one can't lock an NFS file and then change 2259 * zones, as that fails too. 2260 * 2261 * Returning an error here is the sane thing to do. A 2262 * subsequent call to VN_RELE() which translates to a 2263 * nfs4_inactive() will clean up state: if the zone of the 2264 * vnode's origin is still alive and kicking, the inactive 2265 * thread will handle the request (from the correct zone), and 2266 * everything (minus the OTW close call) should be OK. If the 2267 * zone is going away nfs4_async_inactive() will throw away 2268 * delegations, open streams and cached pages inline. 2269 */ 2270 return (EIO); 2271 } 2272 2273 /* 2274 * If we are using local locking for this filesystem, then 2275 * release all of the SYSV style record locks. Otherwise, 2276 * we are doing network locking and we need to release all 2277 * of the network locks. All of the locks held by this 2278 * process on this file are released no matter what the 2279 * incoming reference count is. 2280 */ 2281 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2282 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2283 cleanshares(vp, ttoproc(curthread)->p_pid); 2284 } else 2285 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2286 2287 if (e.error) 2288 return (e.error); 2289 2290 if (count > 1) 2291 return (0); 2292 2293 /* 2294 * If the file has been `unlinked', then purge the 2295 * DNLC so that this vnode will get reycled quicker 2296 * and the .nfs* file on the server will get removed. 2297 */ 2298 if (rp->r_unldvp != NULL) 2299 dnlc_purge_vp(vp); 2300 2301 /* 2302 * If the file was open for write and there are pages, 2303 * do a synchronous flush and commit of all of the 2304 * dirty and uncommitted pages. 2305 */ 2306 ASSERT(!e.error); 2307 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2308 error = nfs4_putpage_commit(vp, 0, 0, cr); 2309 2310 mutex_enter(&rp->r_statelock); 2311 r_error = rp->r_error; 2312 rp->r_error = 0; 2313 mutex_exit(&rp->r_statelock); 2314 2315 /* 2316 * If this file type is one for which no explicit 'open' was 2317 * done, then bail now (ie. no need for protocol 'close'). If 2318 * there was an error w/the vm subsystem, return _that_ error, 2319 * otherwise, return any errors that may've been reported via 2320 * the rnode. 2321 */ 2322 if (vp->v_type != VREG) 2323 return (error ? error : r_error); 2324 2325 /* 2326 * The sync putpage commit may have failed above, but since 2327 * we're working w/a regular file, we need to do the protocol 2328 * 'close' (nfs4close_one will figure out if an otw close is 2329 * needed or not). Report any errors _after_ doing the protocol 2330 * 'close'. 2331 */ 2332 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2333 n4error = e.error ? e.error : geterrno4(e.stat); 2334 2335 /* 2336 * Error reporting prio (Hi -> Lo) 2337 * 2338 * i) nfs4_putpage_commit (error) 2339 * ii) rnode's (r_error) 2340 * iii) nfs4close_one (n4error) 2341 */ 2342 return (error ? error : (r_error ? r_error : n4error)); 2343 } 2344 2345 /* 2346 * Initialize *lost_rqstp. 2347 */ 2348 2349 static void 2350 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2351 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2352 vnode_t *vp) 2353 { 2354 if (error != ETIMEDOUT && error != EINTR && 2355 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2356 lost_rqstp->lr_op = 0; 2357 return; 2358 } 2359 2360 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2361 "nfs4close_save_lost_rqst: error %d", error)); 2362 2363 lost_rqstp->lr_op = OP_CLOSE; 2364 /* 2365 * The vp is held and rele'd via the recovery code. 2366 * See nfs4_save_lost_rqst. 2367 */ 2368 lost_rqstp->lr_vp = vp; 2369 lost_rqstp->lr_dvp = NULL; 2370 lost_rqstp->lr_oop = oop; 2371 lost_rqstp->lr_osp = osp; 2372 ASSERT(osp != NULL); 2373 ASSERT(mutex_owned(&osp->os_sync_lock)); 2374 osp->os_pending_close = 1; 2375 lost_rqstp->lr_lop = NULL; 2376 lost_rqstp->lr_cr = cr; 2377 lost_rqstp->lr_flk = NULL; 2378 lost_rqstp->lr_putfirst = FALSE; 2379 } 2380 2381 /* 2382 * Assumes you already have the open seqid sync grabbed as well as the 2383 * 'os_sync_lock'. Note: this will release the open seqid sync and 2384 * 'os_sync_lock' if client recovery starts. Calling functions have to 2385 * be prepared to handle this. 2386 * 2387 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2388 * was needed and was started, and that the calling function should retry 2389 * this function; otherwise it is returned as 0. 2390 * 2391 * Errors are returned via the nfs4_error_t parameter. 2392 */ 2393 static void 2394 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2395 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2396 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2397 { 2398 COMPOUND4args_clnt args; 2399 COMPOUND4res_clnt res; 2400 CLOSE4args *close_args; 2401 nfs_resop4 *resop; 2402 nfs_argop4 argop[3]; 2403 int doqueue = 1; 2404 mntinfo4_t *mi; 2405 seqid4 seqid; 2406 vnode_t *vp; 2407 bool_t needrecov = FALSE; 2408 nfs4_lost_rqst_t lost_rqst; 2409 hrtime_t t; 2410 2411 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2412 2413 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2414 2415 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2416 2417 /* Only set this to 1 if recovery is started */ 2418 *recov = 0; 2419 2420 /* do the OTW call to close the file */ 2421 2422 if (close_type == CLOSE_RESEND) 2423 args.ctag = TAG_CLOSE_LOST; 2424 else if (close_type == CLOSE_AFTER_RESEND) 2425 args.ctag = TAG_CLOSE_UNDO; 2426 else 2427 args.ctag = TAG_CLOSE; 2428 2429 args.array_len = 3; 2430 args.array = argop; 2431 2432 vp = RTOV4(rp); 2433 2434 mi = VTOMI4(vp); 2435 2436 /* putfh target fh */ 2437 argop[0].argop = OP_CPUTFH; 2438 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2439 2440 argop[1].argop = OP_GETATTR; 2441 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2442 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2443 2444 argop[2].argop = OP_CLOSE; 2445 close_args = &argop[2].nfs_argop4_u.opclose; 2446 2447 seqid = nfs4_get_open_seqid(oop) + 1; 2448 2449 close_args->seqid = seqid; 2450 close_args->open_stateid = osp->open_stateid; 2451 2452 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2453 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2454 rnode4info(rp))); 2455 2456 t = gethrtime(); 2457 2458 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2459 2460 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2461 nfs4_set_open_seqid(seqid, oop, args.ctag); 2462 } 2463 2464 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2465 if (ep->error && !needrecov) { 2466 /* 2467 * if there was an error and no recovery is to be done 2468 * then then set up the file to flush its cache if 2469 * needed for the next caller. 2470 */ 2471 mutex_enter(&rp->r_statelock); 2472 PURGE_ATTRCACHE4_LOCKED(rp); 2473 rp->r_flags &= ~R4WRITEMODIFIED; 2474 mutex_exit(&rp->r_statelock); 2475 return; 2476 } 2477 2478 if (needrecov) { 2479 bool_t abort; 2480 nfs4_bseqid_entry_t *bsep = NULL; 2481 2482 if (close_type != CLOSE_RESEND) 2483 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2484 osp, cred_otw, vp); 2485 2486 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2487 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2488 0, args.ctag, close_args->seqid); 2489 2490 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2491 "nfs4close_otw: initiating recovery. error %d " 2492 "res.status %d", ep->error, res.status)); 2493 2494 /* 2495 * Drop the 'os_sync_lock' here so we don't hit 2496 * a potential recursive mutex_enter via an 2497 * 'open_stream_hold()'. 2498 */ 2499 mutex_exit(&osp->os_sync_lock); 2500 *have_sync_lockp = 0; 2501 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2502 (close_type != CLOSE_RESEND && 2503 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2504 OP_CLOSE, bsep); 2505 2506 /* drop open seq sync, and let the calling function regrab it */ 2507 nfs4_end_open_seqid_sync(oop); 2508 *did_start_seqid_syncp = 0; 2509 2510 if (bsep) 2511 kmem_free(bsep, sizeof (*bsep)); 2512 /* 2513 * For signals, the caller wants to quit, so don't say to 2514 * retry. For forced unmount, if it's a user thread, it 2515 * wants to quit. If it's a recovery thread, the retry 2516 * will happen higher-up on the call stack. Either way, 2517 * don't say to retry. 2518 */ 2519 if (abort == FALSE && ep->error != EINTR && 2520 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2521 close_type != CLOSE_RESEND && 2522 close_type != CLOSE_AFTER_RESEND) 2523 *recov = 1; 2524 else 2525 *recov = 0; 2526 2527 if (!ep->error) 2528 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2529 return; 2530 } 2531 2532 if (res.status) { 2533 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2534 return; 2535 } 2536 2537 mutex_enter(&rp->r_statev4_lock); 2538 rp->created_v4 = 0; 2539 mutex_exit(&rp->r_statev4_lock); 2540 2541 resop = &res.array[2]; 2542 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2543 osp->os_valid = 0; 2544 2545 /* 2546 * This removes the reference obtained at OPEN; ie, when the 2547 * open stream structure was created. 2548 * 2549 * We don't have to worry about calling 'open_stream_rele' 2550 * since we our currently holding a reference to the open 2551 * stream which means the count cannot go to 0 with this 2552 * decrement. 2553 */ 2554 ASSERT(osp->os_ref_count >= 2); 2555 osp->os_ref_count--; 2556 2557 if (!ep->error) 2558 nfs4_attr_cache(vp, 2559 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2560 t, cred_otw, TRUE, NULL); 2561 2562 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2563 " returning %d", ep->error)); 2564 2565 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2566 } 2567 2568 /* ARGSUSED */ 2569 static int 2570 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2571 caller_context_t *ct) 2572 { 2573 rnode4_t *rp; 2574 u_offset_t off; 2575 offset_t diff; 2576 uint_t on; 2577 uint_t n; 2578 caddr_t base; 2579 uint_t flags; 2580 int error; 2581 mntinfo4_t *mi; 2582 2583 rp = VTOR4(vp); 2584 2585 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2586 2587 if (IS_SHADOW(vp, rp)) 2588 vp = RTOV4(rp); 2589 2590 if (vp->v_type != VREG) 2591 return (EISDIR); 2592 2593 mi = VTOMI4(vp); 2594 2595 if (nfs_zone() != mi->mi_zone) 2596 return (EIO); 2597 2598 if (uiop->uio_resid == 0) 2599 return (0); 2600 2601 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2602 return (EINVAL); 2603 2604 mutex_enter(&rp->r_statelock); 2605 if (rp->r_flags & R4RECOVERRP) 2606 error = (rp->r_error ? rp->r_error : EIO); 2607 else 2608 error = 0; 2609 mutex_exit(&rp->r_statelock); 2610 if (error) 2611 return (error); 2612 2613 /* 2614 * Bypass VM if caching has been disabled (e.g., locking) or if 2615 * using client-side direct I/O and the file is not mmap'd and 2616 * there are no cached pages. 2617 */ 2618 if ((vp->v_flag & VNOCACHE) || 2619 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2620 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2621 size_t resid = 0; 2622 2623 return (nfs4read(vp, NULL, uiop->uio_loffset, 2624 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2625 } 2626 2627 error = 0; 2628 2629 do { 2630 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2631 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2632 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2633 2634 if (error = nfs4_validate_caches(vp, cr)) 2635 break; 2636 2637 mutex_enter(&rp->r_statelock); 2638 diff = rp->r_size - uiop->uio_loffset; 2639 mutex_exit(&rp->r_statelock); 2640 if (diff <= 0) 2641 break; 2642 if (diff < n) 2643 n = (uint_t)diff; 2644 2645 if (vpm_enable) { 2646 /* 2647 * Copy data. 2648 */ 2649 error = vpm_data_copy(vp, off + on, n, uiop, 2650 1, NULL, 0, S_READ); 2651 } else { 2652 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2653 S_READ); 2654 2655 error = uiomove(base + on, n, UIO_READ, uiop); 2656 } 2657 2658 if (!error) { 2659 /* 2660 * If read a whole block or read to eof, 2661 * won't need this buffer again soon. 2662 */ 2663 mutex_enter(&rp->r_statelock); 2664 if (n + on == MAXBSIZE || 2665 uiop->uio_loffset == rp->r_size) 2666 flags = SM_DONTNEED; 2667 else 2668 flags = 0; 2669 mutex_exit(&rp->r_statelock); 2670 if (vpm_enable) { 2671 error = vpm_sync_pages(vp, off, n, flags); 2672 } else { 2673 error = segmap_release(segkmap, base, flags); 2674 } 2675 } else { 2676 if (vpm_enable) { 2677 (void) vpm_sync_pages(vp, off, n, 0); 2678 } else { 2679 (void) segmap_release(segkmap, base, 0); 2680 } 2681 } 2682 } while (!error && uiop->uio_resid > 0); 2683 2684 return (error); 2685 } 2686 2687 /* ARGSUSED */ 2688 static int 2689 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2690 caller_context_t *ct) 2691 { 2692 rlim64_t limit = uiop->uio_llimit; 2693 rnode4_t *rp; 2694 u_offset_t off; 2695 caddr_t base; 2696 uint_t flags; 2697 int remainder; 2698 size_t n; 2699 int on; 2700 int error; 2701 int resid; 2702 u_offset_t offset; 2703 mntinfo4_t *mi; 2704 uint_t bsize; 2705 2706 rp = VTOR4(vp); 2707 2708 if (IS_SHADOW(vp, rp)) 2709 vp = RTOV4(rp); 2710 2711 if (vp->v_type != VREG) 2712 return (EISDIR); 2713 2714 mi = VTOMI4(vp); 2715 2716 if (nfs_zone() != mi->mi_zone) 2717 return (EIO); 2718 2719 if (uiop->uio_resid == 0) 2720 return (0); 2721 2722 mutex_enter(&rp->r_statelock); 2723 if (rp->r_flags & R4RECOVERRP) 2724 error = (rp->r_error ? rp->r_error : EIO); 2725 else 2726 error = 0; 2727 mutex_exit(&rp->r_statelock); 2728 if (error) 2729 return (error); 2730 2731 if (ioflag & FAPPEND) { 2732 struct vattr va; 2733 2734 /* 2735 * Must serialize if appending. 2736 */ 2737 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2738 nfs_rw_exit(&rp->r_rwlock); 2739 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2740 INTR(vp))) 2741 return (EINTR); 2742 } 2743 2744 va.va_mask = AT_SIZE; 2745 error = nfs4getattr(vp, &va, cr); 2746 if (error) 2747 return (error); 2748 uiop->uio_loffset = va.va_size; 2749 } 2750 2751 offset = uiop->uio_loffset + uiop->uio_resid; 2752 2753 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2754 return (EINVAL); 2755 2756 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2757 limit = MAXOFFSET_T; 2758 2759 /* 2760 * Check to make sure that the process will not exceed 2761 * its limit on file size. It is okay to write up to 2762 * the limit, but not beyond. Thus, the write which 2763 * reaches the limit will be short and the next write 2764 * will return an error. 2765 */ 2766 remainder = 0; 2767 if (offset > uiop->uio_llimit) { 2768 remainder = offset - uiop->uio_llimit; 2769 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2770 if (uiop->uio_resid <= 0) { 2771 proc_t *p = ttoproc(curthread); 2772 2773 uiop->uio_resid += remainder; 2774 mutex_enter(&p->p_lock); 2775 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2776 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2777 mutex_exit(&p->p_lock); 2778 return (EFBIG); 2779 } 2780 } 2781 2782 /* update the change attribute, if we have a write delegation */ 2783 2784 mutex_enter(&rp->r_statev4_lock); 2785 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2786 rp->r_deleg_change++; 2787 2788 mutex_exit(&rp->r_statev4_lock); 2789 2790 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2791 return (EINTR); 2792 2793 /* 2794 * Bypass VM if caching has been disabled (e.g., locking) or if 2795 * using client-side direct I/O and the file is not mmap'd and 2796 * there are no cached pages. 2797 */ 2798 if ((vp->v_flag & VNOCACHE) || 2799 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2800 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2801 size_t bufsize; 2802 int count; 2803 u_offset_t org_offset; 2804 stable_how4 stab_comm; 2805 nfs4_fwrite: 2806 if (rp->r_flags & R4STALE) { 2807 resid = uiop->uio_resid; 2808 offset = uiop->uio_loffset; 2809 error = rp->r_error; 2810 goto bottom; 2811 } 2812 2813 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2814 base = kmem_alloc(bufsize, KM_SLEEP); 2815 do { 2816 if (ioflag & FDSYNC) 2817 stab_comm = DATA_SYNC4; 2818 else 2819 stab_comm = FILE_SYNC4; 2820 resid = uiop->uio_resid; 2821 offset = uiop->uio_loffset; 2822 count = MIN(uiop->uio_resid, bufsize); 2823 org_offset = uiop->uio_loffset; 2824 error = uiomove(base, count, UIO_WRITE, uiop); 2825 if (!error) { 2826 error = nfs4write(vp, base, org_offset, 2827 count, cr, &stab_comm); 2828 if (!error) { 2829 mutex_enter(&rp->r_statelock); 2830 if (rp->r_size < uiop->uio_loffset) 2831 rp->r_size = uiop->uio_loffset; 2832 mutex_exit(&rp->r_statelock); 2833 } 2834 } 2835 } while (!error && uiop->uio_resid > 0); 2836 kmem_free(base, bufsize); 2837 goto bottom; 2838 } 2839 2840 bsize = vp->v_vfsp->vfs_bsize; 2841 2842 do { 2843 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2844 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2845 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2846 2847 resid = uiop->uio_resid; 2848 offset = uiop->uio_loffset; 2849 2850 if (rp->r_flags & R4STALE) { 2851 error = rp->r_error; 2852 break; 2853 } 2854 2855 /* 2856 * Don't create dirty pages faster than they 2857 * can be cleaned so that the system doesn't 2858 * get imbalanced. If the async queue is 2859 * maxed out, then wait for it to drain before 2860 * creating more dirty pages. Also, wait for 2861 * any threads doing pagewalks in the vop_getattr 2862 * entry points so that they don't block for 2863 * long periods. 2864 */ 2865 mutex_enter(&rp->r_statelock); 2866 while ((mi->mi_max_threads != 0 && 2867 rp->r_awcount > 2 * mi->mi_max_threads) || 2868 rp->r_gcount > 0) 2869 cv_wait(&rp->r_cv, &rp->r_statelock); 2870 mutex_exit(&rp->r_statelock); 2871 2872 if (vpm_enable) { 2873 /* 2874 * It will use kpm mappings, so no need to 2875 * pass an address. 2876 */ 2877 error = writerp4(rp, NULL, n, uiop, 0); 2878 } else { 2879 if (segmap_kpm) { 2880 int pon = uiop->uio_loffset & PAGEOFFSET; 2881 size_t pn = MIN(PAGESIZE - pon, 2882 uiop->uio_resid); 2883 int pagecreate; 2884 2885 mutex_enter(&rp->r_statelock); 2886 pagecreate = (pon == 0) && (pn == PAGESIZE || 2887 uiop->uio_loffset + pn >= rp->r_size); 2888 mutex_exit(&rp->r_statelock); 2889 2890 base = segmap_getmapflt(segkmap, vp, off + on, 2891 pn, !pagecreate, S_WRITE); 2892 2893 error = writerp4(rp, base + pon, n, uiop, 2894 pagecreate); 2895 2896 } else { 2897 base = segmap_getmapflt(segkmap, vp, off + on, 2898 n, 0, S_READ); 2899 error = writerp4(rp, base + on, n, uiop, 0); 2900 } 2901 } 2902 2903 if (!error) { 2904 if (mi->mi_flags & MI4_NOAC) 2905 flags = SM_WRITE; 2906 else if ((uiop->uio_loffset % bsize) == 0 || 2907 IS_SWAPVP(vp)) { 2908 /* 2909 * Have written a whole block. 2910 * Start an asynchronous write 2911 * and mark the buffer to 2912 * indicate that it won't be 2913 * needed again soon. 2914 */ 2915 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2916 } else 2917 flags = 0; 2918 if ((ioflag & (FSYNC|FDSYNC)) || 2919 (rp->r_flags & R4OUTOFSPACE)) { 2920 flags &= ~SM_ASYNC; 2921 flags |= SM_WRITE; 2922 } 2923 if (vpm_enable) { 2924 error = vpm_sync_pages(vp, off, n, flags); 2925 } else { 2926 error = segmap_release(segkmap, base, flags); 2927 } 2928 } else { 2929 if (vpm_enable) { 2930 (void) vpm_sync_pages(vp, off, n, 0); 2931 } else { 2932 (void) segmap_release(segkmap, base, 0); 2933 } 2934 /* 2935 * In the event that we got an access error while 2936 * faulting in a page for a write-only file just 2937 * force a write. 2938 */ 2939 if (error == EACCES) 2940 goto nfs4_fwrite; 2941 } 2942 } while (!error && uiop->uio_resid > 0); 2943 2944 bottom: 2945 if (error) { 2946 uiop->uio_resid = resid + remainder; 2947 uiop->uio_loffset = offset; 2948 } else { 2949 uiop->uio_resid += remainder; 2950 2951 mutex_enter(&rp->r_statev4_lock); 2952 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 2953 gethrestime(&rp->r_attr.va_mtime); 2954 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 2955 } 2956 mutex_exit(&rp->r_statev4_lock); 2957 } 2958 2959 nfs_rw_exit(&rp->r_lkserlock); 2960 2961 return (error); 2962 } 2963 2964 /* 2965 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2966 */ 2967 static int 2968 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 2969 int flags, cred_t *cr) 2970 { 2971 struct buf *bp; 2972 int error; 2973 page_t *savepp; 2974 uchar_t fsdata; 2975 stable_how4 stab_comm; 2976 2977 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 2978 bp = pageio_setup(pp, len, vp, flags); 2979 ASSERT(bp != NULL); 2980 2981 /* 2982 * pageio_setup should have set b_addr to 0. This 2983 * is correct since we want to do I/O on a page 2984 * boundary. bp_mapin will use this addr to calculate 2985 * an offset, and then set b_addr to the kernel virtual 2986 * address it allocated for us. 2987 */ 2988 ASSERT(bp->b_un.b_addr == 0); 2989 2990 bp->b_edev = 0; 2991 bp->b_dev = 0; 2992 bp->b_lblkno = lbtodb(off); 2993 bp->b_file = vp; 2994 bp->b_offset = (offset_t)off; 2995 bp_mapin(bp); 2996 2997 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 2998 freemem > desfree) 2999 stab_comm = UNSTABLE4; 3000 else 3001 stab_comm = FILE_SYNC4; 3002 3003 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3004 3005 bp_mapout(bp); 3006 pageio_done(bp); 3007 3008 if (stab_comm == UNSTABLE4) 3009 fsdata = C_DELAYCOMMIT; 3010 else 3011 fsdata = C_NOCOMMIT; 3012 3013 savepp = pp; 3014 do { 3015 pp->p_fsdata = fsdata; 3016 } while ((pp = pp->p_next) != savepp); 3017 3018 return (error); 3019 } 3020 3021 /* 3022 */ 3023 static int 3024 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3025 { 3026 nfs4_open_owner_t *oop; 3027 nfs4_open_stream_t *osp; 3028 rnode4_t *rp = VTOR4(vp); 3029 mntinfo4_t *mi = VTOMI4(vp); 3030 int reopen_needed; 3031 3032 ASSERT(nfs_zone() == mi->mi_zone); 3033 3034 3035 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3036 if (!oop) 3037 return (EIO); 3038 3039 /* returns with 'os_sync_lock' held */ 3040 osp = find_open_stream(oop, rp); 3041 if (!osp) { 3042 open_owner_rele(oop); 3043 return (EIO); 3044 } 3045 3046 if (osp->os_failed_reopen) { 3047 mutex_exit(&osp->os_sync_lock); 3048 open_stream_rele(osp, rp); 3049 open_owner_rele(oop); 3050 return (EIO); 3051 } 3052 3053 /* 3054 * Determine whether a reopen is needed. If this 3055 * is a delegation open stream, then the os_delegation bit 3056 * should be set. 3057 */ 3058 3059 reopen_needed = osp->os_delegation; 3060 3061 mutex_exit(&osp->os_sync_lock); 3062 open_owner_rele(oop); 3063 3064 if (reopen_needed) { 3065 nfs4_error_zinit(ep); 3066 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3067 mutex_enter(&osp->os_sync_lock); 3068 if (ep->error || ep->stat || osp->os_failed_reopen) { 3069 mutex_exit(&osp->os_sync_lock); 3070 open_stream_rele(osp, rp); 3071 return (EIO); 3072 } 3073 mutex_exit(&osp->os_sync_lock); 3074 } 3075 open_stream_rele(osp, rp); 3076 3077 return (0); 3078 } 3079 3080 /* 3081 * Write to file. Writes to remote server in largest size 3082 * chunks that the server can handle. Write is synchronous. 3083 */ 3084 static int 3085 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3086 stable_how4 *stab_comm) 3087 { 3088 mntinfo4_t *mi; 3089 COMPOUND4args_clnt args; 3090 COMPOUND4res_clnt res; 3091 WRITE4args *wargs; 3092 WRITE4res *wres; 3093 nfs_argop4 argop[2]; 3094 nfs_resop4 *resop; 3095 int tsize; 3096 stable_how4 stable; 3097 rnode4_t *rp; 3098 int doqueue = 1; 3099 bool_t needrecov; 3100 nfs4_recov_state_t recov_state; 3101 nfs4_stateid_types_t sid_types; 3102 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3103 3104 rp = VTOR4(vp); 3105 mi = VTOMI4(vp); 3106 3107 ASSERT(nfs_zone() == mi->mi_zone); 3108 3109 stable = *stab_comm; 3110 *stab_comm = FILE_SYNC4; 3111 3112 needrecov = FALSE; 3113 recov_state.rs_flags = 0; 3114 recov_state.rs_num_retry_despite_err = 0; 3115 nfs4_init_stateid_types(&sid_types); 3116 3117 recov_retry: 3118 args.ctag = TAG_WRITE; 3119 args.array_len = 2; 3120 args.array = argop; 3121 3122 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3123 &recov_state, NULL); 3124 if (e.error) 3125 return (e.error); 3126 3127 /* 0. putfh target fh */ 3128 argop[0].argop = OP_CPUTFH; 3129 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3130 3131 /* 1. write */ 3132 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3133 3134 do { 3135 3136 wargs->offset = (offset4)offset; 3137 wargs->data_val = base; 3138 3139 if (mi->mi_io_kstats) { 3140 mutex_enter(&mi->mi_lock); 3141 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3142 mutex_exit(&mi->mi_lock); 3143 } 3144 3145 if ((vp->v_flag & VNOCACHE) || 3146 (rp->r_flags & R4DIRECTIO) || 3147 (mi->mi_flags & MI4_DIRECTIO)) 3148 tsize = MIN(mi->mi_stsize, count); 3149 else 3150 tsize = MIN(mi->mi_curwrite, count); 3151 wargs->data_len = (uint_t)tsize; 3152 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3153 3154 if (mi->mi_io_kstats) { 3155 mutex_enter(&mi->mi_lock); 3156 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3157 mutex_exit(&mi->mi_lock); 3158 } 3159 3160 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3161 if (e.error && !needrecov) { 3162 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3163 &recov_state, needrecov); 3164 return (e.error); 3165 } 3166 3167 3168 /* 3169 * Do handling of OLD_STATEID outside 3170 * of the normal recovery framework. 3171 * 3172 * If write receives a BAD stateid error while using a 3173 * delegation stateid, retry using the open stateid (if it 3174 * exists). If it doesn't have an open stateid, reopen the 3175 * file first, then retry. 3176 */ 3177 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3178 sid_types.cur_sid_type != SPEC_SID) { 3179 nfs4_save_stateid(&wargs->stateid, &sid_types); 3180 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3181 &recov_state, needrecov); 3182 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3183 goto recov_retry; 3184 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3185 sid_types.cur_sid_type == DEL_SID) { 3186 nfs4_save_stateid(&wargs->stateid, &sid_types); 3187 mutex_enter(&rp->r_statev4_lock); 3188 rp->r_deleg_return_pending = TRUE; 3189 mutex_exit(&rp->r_statev4_lock); 3190 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3191 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3192 &recov_state, needrecov); 3193 (void) xdr_free(xdr_COMPOUND4res_clnt, 3194 (caddr_t)&res); 3195 return (EIO); 3196 } 3197 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3198 &recov_state, needrecov); 3199 /* hold needed for nfs4delegreturn_thread */ 3200 VN_HOLD(vp); 3201 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3202 NFS4_DR_DISCARD), FALSE); 3203 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3204 goto recov_retry; 3205 } 3206 3207 if (needrecov) { 3208 bool_t abort; 3209 3210 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3211 "nfs4write: client got error %d, res.status %d" 3212 ", so start recovery", e.error, res.status)); 3213 3214 abort = nfs4_start_recovery(&e, 3215 VTOMI4(vp), vp, NULL, &wargs->stateid, 3216 NULL, OP_WRITE, NULL); 3217 if (!e.error) { 3218 e.error = geterrno4(res.status); 3219 (void) xdr_free(xdr_COMPOUND4res_clnt, 3220 (caddr_t)&res); 3221 } 3222 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3223 &recov_state, needrecov); 3224 if (abort == FALSE) 3225 goto recov_retry; 3226 return (e.error); 3227 } 3228 3229 if (res.status) { 3230 e.error = geterrno4(res.status); 3231 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3232 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3233 &recov_state, needrecov); 3234 return (e.error); 3235 } 3236 3237 resop = &res.array[1]; /* write res */ 3238 wres = &resop->nfs_resop4_u.opwrite; 3239 3240 if ((int)wres->count > tsize) { 3241 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3242 3243 zcmn_err(getzoneid(), CE_WARN, 3244 "nfs4write: server wrote %u, requested was %u", 3245 (int)wres->count, tsize); 3246 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3247 &recov_state, needrecov); 3248 return (EIO); 3249 } 3250 if (wres->committed == UNSTABLE4) { 3251 *stab_comm = UNSTABLE4; 3252 if (wargs->stable == DATA_SYNC4 || 3253 wargs->stable == FILE_SYNC4) { 3254 (void) xdr_free(xdr_COMPOUND4res_clnt, 3255 (caddr_t)&res); 3256 zcmn_err(getzoneid(), CE_WARN, 3257 "nfs4write: server %s did not commit " 3258 "to stable storage", 3259 rp->r_server->sv_hostname); 3260 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3261 &recov_state, needrecov); 3262 return (EIO); 3263 } 3264 } 3265 3266 tsize = (int)wres->count; 3267 count -= tsize; 3268 base += tsize; 3269 offset += tsize; 3270 if (mi->mi_io_kstats) { 3271 mutex_enter(&mi->mi_lock); 3272 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3273 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3274 tsize; 3275 mutex_exit(&mi->mi_lock); 3276 } 3277 lwp_stat_update(LWP_STAT_OUBLK, 1); 3278 mutex_enter(&rp->r_statelock); 3279 if (rp->r_flags & R4HAVEVERF) { 3280 if (rp->r_writeverf != wres->writeverf) { 3281 nfs4_set_mod(vp); 3282 rp->r_writeverf = wres->writeverf; 3283 } 3284 } else { 3285 rp->r_writeverf = wres->writeverf; 3286 rp->r_flags |= R4HAVEVERF; 3287 } 3288 PURGE_ATTRCACHE4_LOCKED(rp); 3289 rp->r_flags |= R4WRITEMODIFIED; 3290 gethrestime(&rp->r_attr.va_mtime); 3291 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3292 mutex_exit(&rp->r_statelock); 3293 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3294 } while (count); 3295 3296 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); 3297 3298 return (e.error); 3299 } 3300 3301 /* 3302 * Read from a file. Reads data in largest chunks our interface can handle. 3303 */ 3304 static int 3305 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3306 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3307 { 3308 mntinfo4_t *mi; 3309 COMPOUND4args_clnt args; 3310 COMPOUND4res_clnt res; 3311 READ4args *rargs; 3312 nfs_argop4 argop[2]; 3313 int tsize; 3314 int doqueue; 3315 rnode4_t *rp; 3316 int data_len; 3317 bool_t is_eof; 3318 bool_t needrecov = FALSE; 3319 nfs4_recov_state_t recov_state; 3320 nfs4_stateid_types_t sid_types; 3321 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3322 3323 rp = VTOR4(vp); 3324 mi = VTOMI4(vp); 3325 doqueue = 1; 3326 3327 ASSERT(nfs_zone() == mi->mi_zone); 3328 3329 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3330 3331 args.array_len = 2; 3332 args.array = argop; 3333 3334 nfs4_init_stateid_types(&sid_types); 3335 3336 recov_state.rs_flags = 0; 3337 recov_state.rs_num_retry_despite_err = 0; 3338 3339 recov_retry: 3340 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3341 &recov_state, NULL); 3342 if (e.error) 3343 return (e.error); 3344 3345 /* putfh target fh */ 3346 argop[0].argop = OP_CPUTFH; 3347 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3348 3349 /* read */ 3350 argop[1].argop = OP_READ; 3351 rargs = &argop[1].nfs_argop4_u.opread; 3352 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3353 OP_READ, &sid_types, async); 3354 3355 do { 3356 if (mi->mi_io_kstats) { 3357 mutex_enter(&mi->mi_lock); 3358 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3359 mutex_exit(&mi->mi_lock); 3360 } 3361 3362 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3363 "nfs4read: %s call, rp %s", 3364 needrecov ? "recov" : "first", 3365 rnode4info(rp))); 3366 3367 if ((vp->v_flag & VNOCACHE) || 3368 (rp->r_flags & R4DIRECTIO) || 3369 (mi->mi_flags & MI4_DIRECTIO)) 3370 tsize = MIN(mi->mi_tsize, count); 3371 else 3372 tsize = MIN(mi->mi_curread, count); 3373 rargs->offset = (offset4)offset; 3374 rargs->count = (count4)tsize; 3375 rargs->res_data_val_alt = NULL; 3376 rargs->res_mblk = NULL; 3377 rargs->res_uiop = NULL; 3378 rargs->res_maxsize = 0; 3379 if (uiop) 3380 rargs->res_uiop = uiop; 3381 else 3382 rargs->res_data_val_alt = base; 3383 rargs->res_maxsize = tsize; 3384 3385 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3386 #ifdef DEBUG 3387 if (nfs4read_error_inject) { 3388 res.status = nfs4read_error_inject; 3389 nfs4read_error_inject = 0; 3390 } 3391 #endif 3392 3393 if (mi->mi_io_kstats) { 3394 mutex_enter(&mi->mi_lock); 3395 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3396 mutex_exit(&mi->mi_lock); 3397 } 3398 3399 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3400 if (e.error != 0 && !needrecov) { 3401 nfs4_end_fop(mi, vp, NULL, OH_READ, 3402 &recov_state, needrecov); 3403 return (e.error); 3404 } 3405 3406 /* 3407 * Do proper retry for OLD and BAD stateid errors outside 3408 * of the normal recovery framework. There are two differences 3409 * between async and sync reads. The first is that we allow 3410 * retry on BAD_STATEID for async reads, but not sync reads. 3411 * The second is that we mark the file dead for a failed 3412 * attempt with a special stateid for sync reads, but just 3413 * return EIO for async reads. 3414 * 3415 * If a sync read receives a BAD stateid error while using a 3416 * delegation stateid, retry using the open stateid (if it 3417 * exists). If it doesn't have an open stateid, reopen the 3418 * file first, then retry. 3419 */ 3420 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3421 res.status == NFS4ERR_BAD_STATEID) && async) { 3422 nfs4_end_fop(mi, vp, NULL, OH_READ, 3423 &recov_state, needrecov); 3424 if (sid_types.cur_sid_type == SPEC_SID) { 3425 (void) xdr_free(xdr_COMPOUND4res_clnt, 3426 (caddr_t)&res); 3427 return (EIO); 3428 } 3429 nfs4_save_stateid(&rargs->stateid, &sid_types); 3430 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3431 goto recov_retry; 3432 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3433 !async && sid_types.cur_sid_type != SPEC_SID) { 3434 nfs4_save_stateid(&rargs->stateid, &sid_types); 3435 nfs4_end_fop(mi, vp, NULL, OH_READ, 3436 &recov_state, needrecov); 3437 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3438 goto recov_retry; 3439 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3440 sid_types.cur_sid_type == DEL_SID) { 3441 nfs4_save_stateid(&rargs->stateid, &sid_types); 3442 mutex_enter(&rp->r_statev4_lock); 3443 rp->r_deleg_return_pending = TRUE; 3444 mutex_exit(&rp->r_statev4_lock); 3445 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3446 nfs4_end_fop(mi, vp, NULL, OH_READ, 3447 &recov_state, needrecov); 3448 (void) xdr_free(xdr_COMPOUND4res_clnt, 3449 (caddr_t)&res); 3450 return (EIO); 3451 } 3452 nfs4_end_fop(mi, vp, NULL, OH_READ, 3453 &recov_state, needrecov); 3454 /* hold needed for nfs4delegreturn_thread */ 3455 VN_HOLD(vp); 3456 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3457 NFS4_DR_DISCARD), FALSE); 3458 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3459 goto recov_retry; 3460 } 3461 if (needrecov) { 3462 bool_t abort; 3463 3464 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3465 "nfs4read: initiating recovery\n")); 3466 3467 abort = nfs4_start_recovery(&e, 3468 mi, vp, NULL, &rargs->stateid, 3469 NULL, OP_READ, NULL); 3470 nfs4_end_fop(mi, vp, NULL, OH_READ, 3471 &recov_state, needrecov); 3472 /* 3473 * Do not retry if we got OLD_STATEID using a special 3474 * stateid. This avoids looping with a broken server. 3475 */ 3476 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3477 sid_types.cur_sid_type == SPEC_SID) 3478 abort = TRUE; 3479 3480 if (abort == FALSE) { 3481 /* 3482 * Need to retry all possible stateids in 3483 * case the recovery error wasn't stateid 3484 * related or the stateids have become 3485 * stale (server reboot). 3486 */ 3487 nfs4_init_stateid_types(&sid_types); 3488 (void) xdr_free(xdr_COMPOUND4res_clnt, 3489 (caddr_t)&res); 3490 goto recov_retry; 3491 } 3492 3493 if (!e.error) { 3494 e.error = geterrno4(res.status); 3495 (void) xdr_free(xdr_COMPOUND4res_clnt, 3496 (caddr_t)&res); 3497 } 3498 return (e.error); 3499 } 3500 3501 if (res.status) { 3502 e.error = geterrno4(res.status); 3503 nfs4_end_fop(mi, vp, NULL, OH_READ, 3504 &recov_state, needrecov); 3505 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3506 return (e.error); 3507 } 3508 3509 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3510 count -= data_len; 3511 if (base) 3512 base += data_len; 3513 offset += data_len; 3514 if (mi->mi_io_kstats) { 3515 mutex_enter(&mi->mi_lock); 3516 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3517 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3518 mutex_exit(&mi->mi_lock); 3519 } 3520 lwp_stat_update(LWP_STAT_INBLK, 1); 3521 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3522 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3523 3524 } while (count && !is_eof); 3525 3526 *residp = count; 3527 3528 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3529 3530 return (e.error); 3531 } 3532 3533 /* ARGSUSED */ 3534 static int 3535 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3536 caller_context_t *ct) 3537 { 3538 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3539 return (EIO); 3540 switch (cmd) { 3541 case _FIODIRECTIO: 3542 return (nfs4_directio(vp, (int)arg, cr)); 3543 default: 3544 return (ENOTTY); 3545 } 3546 } 3547 3548 /* ARGSUSED */ 3549 int 3550 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3551 caller_context_t *ct) 3552 { 3553 int error; 3554 rnode4_t *rp = VTOR4(vp); 3555 3556 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3557 return (EIO); 3558 /* 3559 * If it has been specified that the return value will 3560 * just be used as a hint, and we are only being asked 3561 * for size, fsid or rdevid, then return the client's 3562 * notion of these values without checking to make sure 3563 * that the attribute cache is up to date. 3564 * The whole point is to avoid an over the wire GETATTR 3565 * call. 3566 */ 3567 if (flags & ATTR_HINT) { 3568 if (vap->va_mask == 3569 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 3570 mutex_enter(&rp->r_statelock); 3571 if (vap->va_mask | AT_SIZE) 3572 vap->va_size = rp->r_size; 3573 if (vap->va_mask | AT_FSID) 3574 vap->va_fsid = rp->r_attr.va_fsid; 3575 if (vap->va_mask | AT_RDEV) 3576 vap->va_rdev = rp->r_attr.va_rdev; 3577 mutex_exit(&rp->r_statelock); 3578 return (0); 3579 } 3580 } 3581 3582 /* 3583 * Only need to flush pages if asking for the mtime 3584 * and if there any dirty pages or any outstanding 3585 * asynchronous (write) requests for this file. 3586 */ 3587 if (vap->va_mask & AT_MTIME) { 3588 rp = VTOR4(vp); 3589 if (nfs4_has_pages(vp)) { 3590 mutex_enter(&rp->r_statev4_lock); 3591 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3592 mutex_exit(&rp->r_statev4_lock); 3593 if (rp->r_flags & R4DIRTY || 3594 rp->r_awcount > 0) { 3595 mutex_enter(&rp->r_statelock); 3596 rp->r_gcount++; 3597 mutex_exit(&rp->r_statelock); 3598 error = 3599 nfs4_putpage(vp, (u_offset_t)0, 3600 0, 0, cr, NULL); 3601 mutex_enter(&rp->r_statelock); 3602 if (error && (error == ENOSPC || 3603 error == EDQUOT)) { 3604 if (!rp->r_error) 3605 rp->r_error = error; 3606 } 3607 if (--rp->r_gcount == 0) 3608 cv_broadcast(&rp->r_cv); 3609 mutex_exit(&rp->r_statelock); 3610 } 3611 } else { 3612 mutex_exit(&rp->r_statev4_lock); 3613 } 3614 } 3615 } 3616 return (nfs4getattr(vp, vap, cr)); 3617 } 3618 3619 int 3620 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3621 { 3622 /* 3623 * If these are the only two bits cleared 3624 * on the server then return 0 (OK) else 3625 * return 1 (BAD). 3626 */ 3627 on_client &= ~(S_ISUID|S_ISGID); 3628 if (on_client == from_server) 3629 return (0); 3630 else 3631 return (1); 3632 } 3633 3634 /*ARGSUSED4*/ 3635 static int 3636 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3637 caller_context_t *ct) 3638 { 3639 if (vap->va_mask & AT_NOSET) 3640 return (EINVAL); 3641 3642 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3643 return (EIO); 3644 3645 /* 3646 * Don't call secpolicy_vnode_setattr, the client cannot 3647 * use its cached attributes to make security decisions 3648 * as the server may be faking mode bits or mapping uid/gid. 3649 * Always just let the server to the checking. 3650 * If we provide the ability to remove basic priviledges 3651 * to setattr (e.g. basic without chmod) then we will 3652 * need to add a check here before calling the server. 3653 */ 3654 3655 return (nfs4setattr(vp, vap, flags, cr, NULL)); 3656 } 3657 3658 /* 3659 * To replace the "guarded" version 3 setattr, we use two types of compound 3660 * setattr requests: 3661 * 1. The "normal" setattr, used when the size of the file isn't being 3662 * changed - { Putfh <fh>; Setattr; Getattr }/ 3663 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3664 * with only ctime as the argument. If the server ctime differs from 3665 * what is cached on the client, the verify will fail, but we would 3666 * already have the ctime from the preceding getattr, so just set it 3667 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3668 * Setattr; Getattr }. 3669 * 3670 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3671 * this setattr and NULL if they are not. 3672 */ 3673 static int 3674 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3675 vsecattr_t *vsap) 3676 { 3677 COMPOUND4args_clnt args; 3678 COMPOUND4res_clnt res, *resp = NULL; 3679 nfs4_ga_res_t *garp = NULL; 3680 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3681 nfs_argop4 argop[5]; 3682 int verify_argop = -1; 3683 int setattr_argop = 1; 3684 nfs_resop4 *resop; 3685 vattr_t va; 3686 rnode4_t *rp; 3687 int doqueue = 1; 3688 uint_t mask = vap->va_mask; 3689 mode_t omode; 3690 vsecattr_t *vsp; 3691 timestruc_t ctime; 3692 bool_t needrecov = FALSE; 3693 nfs4_recov_state_t recov_state; 3694 nfs4_stateid_types_t sid_types; 3695 stateid4 stateid; 3696 hrtime_t t; 3697 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3698 servinfo4_t *svp; 3699 bitmap4 supp_attrs; 3700 3701 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3702 rp = VTOR4(vp); 3703 nfs4_init_stateid_types(&sid_types); 3704 3705 /* 3706 * Only need to flush pages if there are any pages and 3707 * if the file is marked as dirty in some fashion. The 3708 * file must be flushed so that we can accurately 3709 * determine the size of the file and the cached data 3710 * after the SETATTR returns. A file is considered to 3711 * be dirty if it is either marked with R4DIRTY, has 3712 * outstanding i/o's active, or is mmap'd. In this 3713 * last case, we can't tell whether there are dirty 3714 * pages, so we flush just to be sure. 3715 */ 3716 if (nfs4_has_pages(vp) && 3717 ((rp->r_flags & R4DIRTY) || 3718 rp->r_count > 0 || 3719 rp->r_mapcnt > 0)) { 3720 ASSERT(vp->v_type != VCHR); 3721 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3722 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3723 mutex_enter(&rp->r_statelock); 3724 if (!rp->r_error) 3725 rp->r_error = e.error; 3726 mutex_exit(&rp->r_statelock); 3727 } 3728 } 3729 3730 if (mask & AT_SIZE) { 3731 /* 3732 * Verification setattr compound for non-deleg AT_SIZE: 3733 * { Putfh; Getattr; Verify; Setattr; Getattr } 3734 * Set ctime local here (outside the do_again label) 3735 * so that subsequent retries (after failed VERIFY) 3736 * will use ctime from GETATTR results (from failed 3737 * verify compound) as VERIFY arg. 3738 * If file has delegation, then VERIFY(time_metadata) 3739 * is of little added value, so don't bother. 3740 */ 3741 mutex_enter(&rp->r_statev4_lock); 3742 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3743 rp->r_deleg_return_pending) { 3744 numops = 5; 3745 ctime = rp->r_attr.va_ctime; 3746 } 3747 mutex_exit(&rp->r_statev4_lock); 3748 } 3749 3750 recov_state.rs_flags = 0; 3751 recov_state.rs_num_retry_despite_err = 0; 3752 3753 args.ctag = TAG_SETATTR; 3754 do_again: 3755 recov_retry: 3756 setattr_argop = numops - 2; 3757 3758 args.array = argop; 3759 args.array_len = numops; 3760 3761 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3762 if (e.error) 3763 return (e.error); 3764 3765 3766 /* putfh target fh */ 3767 argop[0].argop = OP_CPUTFH; 3768 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3769 3770 if (numops == 5) { 3771 /* 3772 * We only care about the ctime, but need to get mtime 3773 * and size for proper cache update. 3774 */ 3775 /* getattr */ 3776 argop[1].argop = OP_GETATTR; 3777 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3778 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3779 3780 /* verify - set later in loop */ 3781 verify_argop = 2; 3782 } 3783 3784 /* setattr */ 3785 svp = rp->r_server; 3786 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3787 supp_attrs = svp->sv_supp_attrs; 3788 nfs_rw_exit(&svp->sv_lock); 3789 3790 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3791 supp_attrs, &e.error, &sid_types); 3792 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3793 if (e.error) { 3794 /* req time field(s) overflow - return immediately */ 3795 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3796 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3797 opsetattr.obj_attributes); 3798 return (e.error); 3799 } 3800 omode = rp->r_attr.va_mode; 3801 3802 /* getattr */ 3803 argop[numops-1].argop = OP_GETATTR; 3804 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3805 /* 3806 * If we are setting the ACL (indicated only by vsap != NULL), request 3807 * the ACL in this getattr. The ACL returned from this getattr will be 3808 * used in updating the ACL cache. 3809 */ 3810 if (vsap != NULL) 3811 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3812 FATTR4_ACL_MASK; 3813 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3814 3815 /* 3816 * setattr iterates if the object size is set and the cached ctime 3817 * does not match the file ctime. In that case, verify the ctime first. 3818 */ 3819 3820 do { 3821 if (verify_argop != -1) { 3822 /* 3823 * Verify that the ctime match before doing setattr. 3824 */ 3825 va.va_mask = AT_CTIME; 3826 va.va_ctime = ctime; 3827 svp = rp->r_server; 3828 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3829 supp_attrs = svp->sv_supp_attrs; 3830 nfs_rw_exit(&svp->sv_lock); 3831 e.error = nfs4args_verify(&argop[verify_argop], &va, 3832 OP_VERIFY, supp_attrs); 3833 if (e.error) { 3834 /* req time field(s) overflow - return */ 3835 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3836 needrecov); 3837 break; 3838 } 3839 } 3840 3841 doqueue = 1; 3842 3843 t = gethrtime(); 3844 3845 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3846 3847 /* 3848 * Purge the access cache and ACL cache if changing either the 3849 * owner of the file, the group owner, or the mode. These may 3850 * change the access permissions of the file, so purge old 3851 * information and start over again. 3852 */ 3853 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3854 (void) nfs4_access_purge_rp(rp); 3855 if (rp->r_secattr != NULL) { 3856 mutex_enter(&rp->r_statelock); 3857 vsp = rp->r_secattr; 3858 rp->r_secattr = NULL; 3859 mutex_exit(&rp->r_statelock); 3860 if (vsp != NULL) 3861 nfs4_acl_free_cache(vsp); 3862 } 3863 } 3864 3865 /* 3866 * If res.array_len == numops, then everything succeeded, 3867 * except for possibly the final getattr. If only the 3868 * last getattr failed, give up, and don't try recovery. 3869 */ 3870 if (res.array_len == numops) { 3871 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3872 needrecov); 3873 if (! e.error) 3874 resp = &res; 3875 break; 3876 } 3877 3878 /* 3879 * if either rpc call failed or completely succeeded - done 3880 */ 3881 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3882 if (e.error) { 3883 PURGE_ATTRCACHE4(vp); 3884 if (!needrecov) { 3885 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3886 needrecov); 3887 break; 3888 } 3889 } 3890 3891 /* 3892 * Do proper retry for OLD_STATEID outside of the normal 3893 * recovery framework. 3894 */ 3895 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3896 sid_types.cur_sid_type != SPEC_SID && 3897 sid_types.cur_sid_type != NO_SID) { 3898 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3899 needrecov); 3900 nfs4_save_stateid(&stateid, &sid_types); 3901 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3902 opsetattr.obj_attributes); 3903 if (verify_argop != -1) { 3904 nfs4args_verify_free(&argop[verify_argop]); 3905 verify_argop = -1; 3906 } 3907 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3908 goto recov_retry; 3909 } 3910 3911 if (needrecov) { 3912 bool_t abort; 3913 3914 abort = nfs4_start_recovery(&e, 3915 VTOMI4(vp), vp, NULL, NULL, NULL, 3916 OP_SETATTR, NULL); 3917 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3918 needrecov); 3919 /* 3920 * Do not retry if we failed with OLD_STATEID using 3921 * a special stateid. This is done to avoid looping 3922 * with a broken server. 3923 */ 3924 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3925 (sid_types.cur_sid_type == SPEC_SID || 3926 sid_types.cur_sid_type == NO_SID)) 3927 abort = TRUE; 3928 if (!e.error) { 3929 if (res.status == NFS4ERR_BADOWNER) 3930 nfs4_log_badowner(VTOMI4(vp), 3931 OP_SETATTR); 3932 3933 e.error = geterrno4(res.status); 3934 (void) xdr_free(xdr_COMPOUND4res_clnt, 3935 (caddr_t)&res); 3936 } 3937 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3938 opsetattr.obj_attributes); 3939 if (verify_argop != -1) { 3940 nfs4args_verify_free(&argop[verify_argop]); 3941 verify_argop = -1; 3942 } 3943 if (abort == FALSE) { 3944 /* 3945 * Need to retry all possible stateids in 3946 * case the recovery error wasn't stateid 3947 * related or the stateids have become 3948 * stale (server reboot). 3949 */ 3950 nfs4_init_stateid_types(&sid_types); 3951 goto recov_retry; 3952 } 3953 return (e.error); 3954 } 3955 3956 /* 3957 * Need to call nfs4_end_op before nfs4getattr to 3958 * avoid potential nfs4_start_op deadlock. See RFE 3959 * 4777612. Calls to nfs4_invalidate_pages() and 3960 * nfs4_purge_stale_fh() might also generate over the 3961 * wire calls which my cause nfs4_start_op() deadlock. 3962 */ 3963 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3964 3965 /* 3966 * Check to update lease. 3967 */ 3968 resp = &res; 3969 if (res.status == NFS4_OK) { 3970 break; 3971 } 3972 3973 /* 3974 * Check if verify failed to see if try again 3975 */ 3976 if ((verify_argop == -1) || (res.array_len != 3)) { 3977 /* 3978 * can't continue... 3979 */ 3980 if (res.status == NFS4ERR_BADOWNER) 3981 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 3982 3983 e.error = geterrno4(res.status); 3984 } else { 3985 /* 3986 * When the verify request fails, the client ctime is 3987 * not in sync with the server. This is the same as 3988 * the version 3 "not synchronized" error, and we 3989 * handle it in a similar manner (XXX do we need to???). 3990 * Use the ctime returned in the first getattr for 3991 * the input to the next verify. 3992 * If we couldn't get the attributes, then we give up 3993 * because we can't complete the operation as required. 3994 */ 3995 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 3996 } 3997 if (e.error) { 3998 PURGE_ATTRCACHE4(vp); 3999 nfs4_purge_stale_fh(e.error, vp, cr); 4000 } else { 4001 /* 4002 * retry with a new verify value 4003 */ 4004 ctime = garp->n4g_va.va_ctime; 4005 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4006 resp = NULL; 4007 } 4008 if (!e.error) { 4009 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4010 opsetattr.obj_attributes); 4011 if (verify_argop != -1) { 4012 nfs4args_verify_free(&argop[verify_argop]); 4013 verify_argop = -1; 4014 } 4015 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4016 goto do_again; 4017 } 4018 } while (!e.error); 4019 4020 if (e.error) { 4021 /* 4022 * If we are here, rfs4call has an irrecoverable error - return 4023 */ 4024 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4025 opsetattr.obj_attributes); 4026 if (verify_argop != -1) { 4027 nfs4args_verify_free(&argop[verify_argop]); 4028 verify_argop = -1; 4029 } 4030 if (resp) 4031 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4032 return (e.error); 4033 } 4034 4035 4036 4037 /* 4038 * If changing the size of the file, invalidate 4039 * any local cached data which is no longer part 4040 * of the file. We also possibly invalidate the 4041 * last page in the file. We could use 4042 * pvn_vpzero(), but this would mark the page as 4043 * modified and require it to be written back to 4044 * the server for no particularly good reason. 4045 * This way, if we access it, then we bring it 4046 * back in. A read should be cheaper than a 4047 * write. 4048 */ 4049 if (mask & AT_SIZE) { 4050 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4051 } 4052 4053 /* either no error or one of the postop getattr failed */ 4054 4055 /* 4056 * XXX Perform a simplified version of wcc checking. Instead of 4057 * have another getattr to get pre-op, just purge cache if 4058 * any of the ops prior to and including the getattr failed. 4059 * If the getattr succeeded then update the attrcache accordingly. 4060 */ 4061 4062 garp = NULL; 4063 if (res.status == NFS4_OK) { 4064 /* 4065 * Last getattr 4066 */ 4067 resop = &res.array[numops - 1]; 4068 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4069 } 4070 /* 4071 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4072 * rather than filling it. See the function itself for details. 4073 */ 4074 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4075 if (garp != NULL) { 4076 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4077 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4078 vs_ace4_destroy(&garp->n4g_vsa); 4079 } else { 4080 if (vsap != NULL) { 4081 /* 4082 * The ACL was supposed to be set and to be 4083 * returned in the last getattr of this 4084 * compound, but for some reason the getattr 4085 * result doesn't contain the ACL. In this 4086 * case, purge the ACL cache. 4087 */ 4088 if (rp->r_secattr != NULL) { 4089 mutex_enter(&rp->r_statelock); 4090 vsp = rp->r_secattr; 4091 rp->r_secattr = NULL; 4092 mutex_exit(&rp->r_statelock); 4093 if (vsp != NULL) 4094 nfs4_acl_free_cache(vsp); 4095 } 4096 } 4097 } 4098 } 4099 4100 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4101 /* 4102 * Set the size, rather than relying on getting it updated 4103 * via a GETATTR. With delegations the client tries to 4104 * suppress GETATTR calls. 4105 */ 4106 mutex_enter(&rp->r_statelock); 4107 rp->r_size = vap->va_size; 4108 mutex_exit(&rp->r_statelock); 4109 } 4110 4111 /* 4112 * Can free up request args and res 4113 */ 4114 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4115 opsetattr.obj_attributes); 4116 if (verify_argop != -1) { 4117 nfs4args_verify_free(&argop[verify_argop]); 4118 verify_argop = -1; 4119 } 4120 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4121 4122 /* 4123 * Some servers will change the mode to clear the setuid 4124 * and setgid bits when changing the uid or gid. The 4125 * client needs to compensate appropriately. 4126 */ 4127 if (mask & (AT_UID | AT_GID)) { 4128 int terror, do_setattr; 4129 4130 do_setattr = 0; 4131 va.va_mask = AT_MODE; 4132 terror = nfs4getattr(vp, &va, cr); 4133 if (!terror && 4134 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4135 (!(mask & AT_MODE) && va.va_mode != omode))) { 4136 va.va_mask = AT_MODE; 4137 if (mask & AT_MODE) { 4138 /* 4139 * We asked the mode to be changed and what 4140 * we just got from the server in getattr is 4141 * not what we wanted it to be, so set it now. 4142 */ 4143 va.va_mode = vap->va_mode; 4144 do_setattr = 1; 4145 } else { 4146 /* 4147 * We did not ask the mode to be changed, 4148 * Check to see that the server just cleared 4149 * I_SUID and I_GUID from it. If not then 4150 * set mode to omode with UID/GID cleared. 4151 */ 4152 if (nfs4_compare_modes(va.va_mode, omode)) { 4153 omode &= ~(S_ISUID|S_ISGID); 4154 va.va_mode = omode; 4155 do_setattr = 1; 4156 } 4157 } 4158 4159 if (do_setattr) 4160 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4161 } 4162 } 4163 4164 return (e.error); 4165 } 4166 4167 /* ARGSUSED */ 4168 static int 4169 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4170 { 4171 COMPOUND4args_clnt args; 4172 COMPOUND4res_clnt res; 4173 int doqueue; 4174 uint32_t acc, resacc, argacc; 4175 rnode4_t *rp; 4176 cred_t *cred, *ncr, *ncrfree = NULL; 4177 nfs4_access_type_t cacc; 4178 int num_ops; 4179 nfs_argop4 argop[3]; 4180 nfs_resop4 *resop; 4181 bool_t needrecov = FALSE, do_getattr; 4182 nfs4_recov_state_t recov_state; 4183 int rpc_error; 4184 hrtime_t t; 4185 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4186 mntinfo4_t *mi = VTOMI4(vp); 4187 4188 if (nfs_zone() != mi->mi_zone) 4189 return (EIO); 4190 4191 acc = 0; 4192 if (mode & VREAD) 4193 acc |= ACCESS4_READ; 4194 if (mode & VWRITE) { 4195 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4196 return (EROFS); 4197 if (vp->v_type == VDIR) 4198 acc |= ACCESS4_DELETE; 4199 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4200 } 4201 if (mode & VEXEC) { 4202 if (vp->v_type == VDIR) 4203 acc |= ACCESS4_LOOKUP; 4204 else 4205 acc |= ACCESS4_EXECUTE; 4206 } 4207 4208 if (VTOR4(vp)->r_acache != NULL) { 4209 e.error = nfs4_validate_caches(vp, cr); 4210 if (e.error) 4211 return (e.error); 4212 } 4213 4214 rp = VTOR4(vp); 4215 if (vp->v_type == VDIR) 4216 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4217 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4218 else 4219 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4220 ACCESS4_EXECUTE; 4221 recov_state.rs_flags = 0; 4222 recov_state.rs_num_retry_despite_err = 0; 4223 4224 cred = cr; 4225 /* 4226 * ncr and ncrfree both initially 4227 * point to the memory area returned 4228 * by crnetadjust(); 4229 * ncrfree not NULL when exiting means 4230 * that we need to release it 4231 */ 4232 ncr = crnetadjust(cred); 4233 ncrfree = ncr; 4234 4235 tryagain: 4236 cacc = nfs4_access_check(rp, acc, cred); 4237 if (cacc == NFS4_ACCESS_ALLOWED) { 4238 if (ncrfree != NULL) 4239 crfree(ncrfree); 4240 return (0); 4241 } 4242 if (cacc == NFS4_ACCESS_DENIED) { 4243 /* 4244 * If the cred can be adjusted, try again 4245 * with the new cred. 4246 */ 4247 if (ncr != NULL) { 4248 cred = ncr; 4249 ncr = NULL; 4250 goto tryagain; 4251 } 4252 if (ncrfree != NULL) 4253 crfree(ncrfree); 4254 return (EACCES); 4255 } 4256 4257 recov_retry: 4258 /* 4259 * Don't take with r_statev4_lock here. r_deleg_type could 4260 * change as soon as lock is released. Since it is an int, 4261 * there is no atomicity issue. 4262 */ 4263 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4264 num_ops = do_getattr ? 3 : 2; 4265 4266 args.ctag = TAG_ACCESS; 4267 4268 args.array_len = num_ops; 4269 args.array = argop; 4270 4271 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4272 &recov_state, NULL)) { 4273 if (ncrfree != NULL) 4274 crfree(ncrfree); 4275 return (e.error); 4276 } 4277 4278 /* putfh target fh */ 4279 argop[0].argop = OP_CPUTFH; 4280 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4281 4282 /* access */ 4283 argop[1].argop = OP_ACCESS; 4284 argop[1].nfs_argop4_u.opaccess.access = argacc; 4285 4286 /* getattr */ 4287 if (do_getattr) { 4288 argop[2].argop = OP_GETATTR; 4289 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4290 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4291 } 4292 4293 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4294 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4295 rnode4info(VTOR4(vp)))); 4296 4297 doqueue = 1; 4298 t = gethrtime(); 4299 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4300 rpc_error = e.error; 4301 4302 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4303 if (needrecov) { 4304 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4305 "nfs4_access: initiating recovery\n")); 4306 4307 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4308 NULL, OP_ACCESS, NULL) == FALSE) { 4309 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4310 &recov_state, needrecov); 4311 if (!e.error) 4312 (void) xdr_free(xdr_COMPOUND4res_clnt, 4313 (caddr_t)&res); 4314 goto recov_retry; 4315 } 4316 } 4317 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4318 4319 if (e.error) 4320 goto out; 4321 4322 if (res.status) { 4323 e.error = geterrno4(res.status); 4324 /* 4325 * This might generate over the wire calls throught 4326 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4327 * here to avoid a deadlock. 4328 */ 4329 nfs4_purge_stale_fh(e.error, vp, cr); 4330 goto out; 4331 } 4332 resop = &res.array[1]; /* access res */ 4333 4334 resacc = resop->nfs_resop4_u.opaccess.access; 4335 4336 if (do_getattr) { 4337 resop++; /* getattr res */ 4338 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4339 t, cr, FALSE, NULL); 4340 } 4341 4342 if (!e.error) { 4343 nfs4_access_cache(rp, argacc, resacc, cred); 4344 /* 4345 * we just cached results with cred; if cred is the 4346 * adjusted credentials from crnetadjust, we do not want 4347 * to release them before exiting: hence setting ncrfree 4348 * to NULL 4349 */ 4350 if (cred != cr) 4351 ncrfree = NULL; 4352 /* XXX check the supported bits too? */ 4353 if ((acc & resacc) != acc) { 4354 /* 4355 * The following code implements the semantic 4356 * that a setuid root program has *at least* the 4357 * permissions of the user that is running the 4358 * program. See rfs3call() for more portions 4359 * of the implementation of this functionality. 4360 */ 4361 /* XXX-LP */ 4362 if (ncr != NULL) { 4363 (void) xdr_free(xdr_COMPOUND4res_clnt, 4364 (caddr_t)&res); 4365 cred = ncr; 4366 ncr = NULL; 4367 goto tryagain; 4368 } 4369 e.error = EACCES; 4370 } 4371 } 4372 4373 out: 4374 if (!rpc_error) 4375 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4376 4377 if (ncrfree != NULL) 4378 crfree(ncrfree); 4379 4380 return (e.error); 4381 } 4382 4383 /* ARGSUSED */ 4384 static int 4385 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4386 { 4387 COMPOUND4args_clnt args; 4388 COMPOUND4res_clnt res; 4389 int doqueue; 4390 rnode4_t *rp; 4391 nfs_argop4 argop[3]; 4392 nfs_resop4 *resop; 4393 READLINK4res *lr_res; 4394 nfs4_ga_res_t *garp; 4395 uint_t len; 4396 char *linkdata; 4397 bool_t needrecov = FALSE; 4398 nfs4_recov_state_t recov_state; 4399 hrtime_t t; 4400 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4401 4402 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4403 return (EIO); 4404 /* 4405 * Can't readlink anything other than a symbolic link. 4406 */ 4407 if (vp->v_type != VLNK) 4408 return (EINVAL); 4409 4410 rp = VTOR4(vp); 4411 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4412 e.error = nfs4_validate_caches(vp, cr); 4413 if (e.error) 4414 return (e.error); 4415 mutex_enter(&rp->r_statelock); 4416 if (rp->r_symlink.contents != NULL) { 4417 e.error = uiomove(rp->r_symlink.contents, 4418 rp->r_symlink.len, UIO_READ, uiop); 4419 mutex_exit(&rp->r_statelock); 4420 return (e.error); 4421 } 4422 mutex_exit(&rp->r_statelock); 4423 } 4424 recov_state.rs_flags = 0; 4425 recov_state.rs_num_retry_despite_err = 0; 4426 4427 recov_retry: 4428 args.array_len = 3; 4429 args.array = argop; 4430 args.ctag = TAG_READLINK; 4431 4432 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4433 if (e.error) { 4434 return (e.error); 4435 } 4436 4437 /* 0. putfh symlink fh */ 4438 argop[0].argop = OP_CPUTFH; 4439 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4440 4441 /* 1. readlink */ 4442 argop[1].argop = OP_READLINK; 4443 4444 /* 2. getattr */ 4445 argop[2].argop = OP_GETATTR; 4446 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4447 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4448 4449 doqueue = 1; 4450 4451 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4452 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4453 rnode4info(VTOR4(vp)))); 4454 4455 t = gethrtime(); 4456 4457 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4458 4459 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4460 if (needrecov) { 4461 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4462 "nfs4_readlink: initiating recovery\n")); 4463 4464 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4465 NULL, OP_READLINK, NULL) == FALSE) { 4466 if (!e.error) 4467 (void) xdr_free(xdr_COMPOUND4res_clnt, 4468 (caddr_t)&res); 4469 4470 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4471 needrecov); 4472 goto recov_retry; 4473 } 4474 } 4475 4476 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4477 4478 if (e.error) 4479 return (e.error); 4480 4481 /* 4482 * There is an path in the code below which calls 4483 * nfs4_purge_stale_fh(), which may generate otw calls through 4484 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4485 * here to avoid nfs4_start_op() deadlock. 4486 */ 4487 4488 if (res.status && (res.array_len < args.array_len)) { 4489 /* 4490 * either Putfh or Link failed 4491 */ 4492 e.error = geterrno4(res.status); 4493 nfs4_purge_stale_fh(e.error, vp, cr); 4494 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4495 return (e.error); 4496 } 4497 4498 resop = &res.array[1]; /* readlink res */ 4499 lr_res = &resop->nfs_resop4_u.opreadlink; 4500 4501 /* 4502 * treat symlink names as data 4503 */ 4504 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4505 if (linkdata != NULL) { 4506 int uio_len = len - 1; 4507 /* len includes null byte, which we won't uiomove */ 4508 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4509 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4510 mutex_enter(&rp->r_statelock); 4511 if (rp->r_symlink.contents == NULL) { 4512 rp->r_symlink.contents = linkdata; 4513 rp->r_symlink.len = uio_len; 4514 rp->r_symlink.size = len; 4515 mutex_exit(&rp->r_statelock); 4516 } else { 4517 mutex_exit(&rp->r_statelock); 4518 kmem_free(linkdata, len); 4519 } 4520 } else { 4521 kmem_free(linkdata, len); 4522 } 4523 } 4524 if (res.status == NFS4_OK) { 4525 resop++; /* getattr res */ 4526 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4527 } 4528 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4529 4530 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4531 4532 /* 4533 * The over the wire error for attempting to readlink something 4534 * other than a symbolic link is ENXIO. However, we need to 4535 * return EINVAL instead of ENXIO, so we map it here. 4536 */ 4537 return (e.error == ENXIO ? EINVAL : e.error); 4538 } 4539 4540 /* 4541 * Flush local dirty pages to stable storage on the server. 4542 * 4543 * If FNODSYNC is specified, then there is nothing to do because 4544 * metadata changes are not cached on the client before being 4545 * sent to the server. 4546 */ 4547 /* ARGSUSED */ 4548 static int 4549 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4550 { 4551 int error; 4552 4553 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4554 return (0); 4555 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4556 return (EIO); 4557 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4558 if (!error) 4559 error = VTOR4(vp)->r_error; 4560 return (error); 4561 } 4562 4563 /* 4564 * Weirdness: if the file was removed or the target of a rename 4565 * operation while it was open, it got renamed instead. Here we 4566 * remove the renamed file. 4567 */ 4568 /* ARGSUSED */ 4569 void 4570 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4571 { 4572 rnode4_t *rp; 4573 4574 ASSERT(vp != DNLC_NO_VNODE); 4575 4576 rp = VTOR4(vp); 4577 4578 if (IS_SHADOW(vp, rp)) { 4579 sv_inactive(vp); 4580 return; 4581 } 4582 4583 /* 4584 * If this is coming from the wrong zone, we let someone in the right 4585 * zone take care of it asynchronously. We can get here due to 4586 * VN_RELE() being called from pageout() or fsflush(). This call may 4587 * potentially turn into an expensive no-op if, for instance, v_count 4588 * gets incremented in the meantime, but it's still correct. 4589 */ 4590 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4591 nfs4_async_inactive(vp, cr); 4592 return; 4593 } 4594 4595 /* 4596 * Some of the cleanup steps might require over-the-wire 4597 * operations. Since VOP_INACTIVE can get called as a result of 4598 * other over-the-wire operations (e.g., an attribute cache update 4599 * can lead to a DNLC purge), doing those steps now would lead to a 4600 * nested call to the recovery framework, which can deadlock. So 4601 * do any over-the-wire cleanups asynchronously, in a separate 4602 * thread. 4603 */ 4604 4605 mutex_enter(&rp->r_os_lock); 4606 mutex_enter(&rp->r_statelock); 4607 mutex_enter(&rp->r_statev4_lock); 4608 4609 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4610 mutex_exit(&rp->r_statev4_lock); 4611 mutex_exit(&rp->r_statelock); 4612 mutex_exit(&rp->r_os_lock); 4613 nfs4_async_inactive(vp, cr); 4614 return; 4615 } 4616 4617 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4618 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4619 mutex_exit(&rp->r_statev4_lock); 4620 mutex_exit(&rp->r_statelock); 4621 mutex_exit(&rp->r_os_lock); 4622 nfs4_async_inactive(vp, cr); 4623 return; 4624 } 4625 4626 if (rp->r_unldvp != NULL) { 4627 mutex_exit(&rp->r_statev4_lock); 4628 mutex_exit(&rp->r_statelock); 4629 mutex_exit(&rp->r_os_lock); 4630 nfs4_async_inactive(vp, cr); 4631 return; 4632 } 4633 mutex_exit(&rp->r_statev4_lock); 4634 mutex_exit(&rp->r_statelock); 4635 mutex_exit(&rp->r_os_lock); 4636 4637 rp4_addfree(rp, cr); 4638 } 4639 4640 /* 4641 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4642 * various bits of state. The caller must not refer to vp after this call. 4643 */ 4644 4645 void 4646 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4647 { 4648 rnode4_t *rp = VTOR4(vp); 4649 nfs4_recov_state_t recov_state; 4650 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4651 vnode_t *unldvp; 4652 char *unlname; 4653 cred_t *unlcred; 4654 COMPOUND4args_clnt args; 4655 COMPOUND4res_clnt res, *resp; 4656 nfs_argop4 argop[2]; 4657 int doqueue; 4658 #ifdef DEBUG 4659 char *name; 4660 #endif 4661 4662 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4663 ASSERT(!IS_SHADOW(vp, rp)); 4664 4665 #ifdef DEBUG 4666 name = fn_name(VTOSV(vp)->sv_name); 4667 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4668 "release vnode %s", name)); 4669 kmem_free(name, MAXNAMELEN); 4670 #endif 4671 4672 if (vp->v_type == VREG) { 4673 bool_t recov_failed = FALSE; 4674 4675 e.error = nfs4close_all(vp, cr); 4676 if (e.error) { 4677 /* Check to see if recovery failed */ 4678 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4679 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4680 recov_failed = TRUE; 4681 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4682 if (!recov_failed) { 4683 mutex_enter(&rp->r_statelock); 4684 if (rp->r_flags & R4RECOVERR) 4685 recov_failed = TRUE; 4686 mutex_exit(&rp->r_statelock); 4687 } 4688 if (recov_failed) { 4689 NFS4_DEBUG(nfs4_client_recov_debug, 4690 (CE_NOTE, "nfs4_inactive_otw: " 4691 "close failed (recovery failure)")); 4692 } 4693 } 4694 } 4695 4696 redo: 4697 if (rp->r_unldvp == NULL) { 4698 rp4_addfree(rp, cr); 4699 return; 4700 } 4701 4702 /* 4703 * Save the vnode pointer for the directory where the 4704 * unlinked-open file got renamed, then set it to NULL 4705 * to prevent another thread from getting here before 4706 * we're done with the remove. While we have the 4707 * statelock, make local copies of the pertinent rnode 4708 * fields. If we weren't to do this in an atomic way, the 4709 * the unl* fields could become inconsistent with respect 4710 * to each other due to a race condition between this 4711 * code and nfs_remove(). See bug report 1034328. 4712 */ 4713 mutex_enter(&rp->r_statelock); 4714 if (rp->r_unldvp == NULL) { 4715 mutex_exit(&rp->r_statelock); 4716 rp4_addfree(rp, cr); 4717 return; 4718 } 4719 4720 unldvp = rp->r_unldvp; 4721 rp->r_unldvp = NULL; 4722 unlname = rp->r_unlname; 4723 rp->r_unlname = NULL; 4724 unlcred = rp->r_unlcred; 4725 rp->r_unlcred = NULL; 4726 mutex_exit(&rp->r_statelock); 4727 4728 /* 4729 * If there are any dirty pages left, then flush 4730 * them. This is unfortunate because they just 4731 * may get thrown away during the remove operation, 4732 * but we have to do this for correctness. 4733 */ 4734 if (nfs4_has_pages(vp) && 4735 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4736 ASSERT(vp->v_type != VCHR); 4737 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4738 if (e.error) { 4739 mutex_enter(&rp->r_statelock); 4740 if (!rp->r_error) 4741 rp->r_error = e.error; 4742 mutex_exit(&rp->r_statelock); 4743 } 4744 } 4745 4746 recov_state.rs_flags = 0; 4747 recov_state.rs_num_retry_despite_err = 0; 4748 recov_retry_remove: 4749 /* 4750 * Do the remove operation on the renamed file 4751 */ 4752 args.ctag = TAG_INACTIVE; 4753 4754 /* 4755 * Remove ops: putfh dir; remove 4756 */ 4757 args.array_len = 2; 4758 args.array = argop; 4759 4760 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4761 if (e.error) { 4762 kmem_free(unlname, MAXNAMELEN); 4763 crfree(unlcred); 4764 VN_RELE(unldvp); 4765 /* 4766 * Try again; this time around r_unldvp will be NULL, so we'll 4767 * just call rp4_addfree() and return. 4768 */ 4769 goto redo; 4770 } 4771 4772 /* putfh directory */ 4773 argop[0].argop = OP_CPUTFH; 4774 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4775 4776 /* remove */ 4777 argop[1].argop = OP_CREMOVE; 4778 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4779 4780 doqueue = 1; 4781 resp = &res; 4782 4783 #if 0 /* notyet */ 4784 /* 4785 * Can't do this yet. We may be being called from 4786 * dnlc_purge_XXX while that routine is holding a 4787 * mutex lock to the nc_rele list. The calls to 4788 * nfs3_cache_wcc_data may result in calls to 4789 * dnlc_purge_XXX. This will result in a deadlock. 4790 */ 4791 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4792 if (e.error) { 4793 PURGE_ATTRCACHE4(unldvp); 4794 resp = NULL; 4795 } else if (res.status) { 4796 e.error = geterrno4(res.status); 4797 PURGE_ATTRCACHE4(unldvp); 4798 /* 4799 * This code is inactive right now 4800 * but if made active there should 4801 * be a nfs4_end_op() call before 4802 * nfs4_purge_stale_fh to avoid start_op() 4803 * deadlock. See BugId: 4948726 4804 */ 4805 nfs4_purge_stale_fh(error, unldvp, cr); 4806 } else { 4807 nfs_resop4 *resop; 4808 REMOVE4res *rm_res; 4809 4810 resop = &res.array[1]; 4811 rm_res = &resop->nfs_resop4_u.opremove; 4812 /* 4813 * Update directory cache attribute, 4814 * readdir and dnlc caches. 4815 */ 4816 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4817 } 4818 #else 4819 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4820 4821 PURGE_ATTRCACHE4(unldvp); 4822 #endif 4823 4824 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4825 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4826 NULL, NULL, OP_REMOVE, NULL) == FALSE) { 4827 if (!e.error) 4828 (void) xdr_free(xdr_COMPOUND4res_clnt, 4829 (caddr_t)&res); 4830 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4831 &recov_state, TRUE); 4832 goto recov_retry_remove; 4833 } 4834 } 4835 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4836 4837 /* 4838 * Release stuff held for the remove 4839 */ 4840 VN_RELE(unldvp); 4841 if (!e.error && resp) 4842 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4843 4844 kmem_free(unlname, MAXNAMELEN); 4845 crfree(unlcred); 4846 goto redo; 4847 } 4848 4849 /* 4850 * Remote file system operations having to do with directory manipulation. 4851 */ 4852 /* ARGSUSED3 */ 4853 int 4854 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4855 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4856 int *direntflags, pathname_t *realpnp) 4857 { 4858 int error; 4859 vnode_t *vp, *avp = NULL; 4860 rnode4_t *drp; 4861 4862 *vpp = NULL; 4863 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4864 return (EPERM); 4865 /* 4866 * if LOOKUP_XATTR, must replace dvp (object) with 4867 * object's attrdir before continuing with lookup 4868 */ 4869 if (flags & LOOKUP_XATTR) { 4870 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4871 if (error) 4872 return (error); 4873 4874 dvp = avp; 4875 4876 /* 4877 * If lookup is for "", just return dvp now. The attrdir 4878 * has already been activated (from nfs4lookup_xattr), and 4879 * the caller will RELE the original dvp -- not 4880 * the attrdir. So, set vpp and return. 4881 * Currently, when the LOOKUP_XATTR flag is 4882 * passed to VOP_LOOKUP, the name is always empty, and 4883 * shortcircuiting here avoids 3 unneeded lock/unlock 4884 * pairs. 4885 * 4886 * If a non-empty name was provided, then it is the 4887 * attribute name, and it will be looked up below. 4888 */ 4889 if (*nm == '\0') { 4890 *vpp = dvp; 4891 return (0); 4892 } 4893 4894 /* 4895 * The vfs layer never sends a name when asking for the 4896 * attrdir, so we should never get here (unless of course 4897 * name is passed at some time in future -- at which time 4898 * we'll blow up here). 4899 */ 4900 ASSERT(0); 4901 } 4902 4903 drp = VTOR4(dvp); 4904 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4905 return (EINTR); 4906 4907 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4908 nfs_rw_exit(&drp->r_rwlock); 4909 4910 /* 4911 * If vnode is a device, create special vnode. 4912 */ 4913 if (!error && ISVDEV((*vpp)->v_type)) { 4914 vp = *vpp; 4915 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 4916 VN_RELE(vp); 4917 } 4918 4919 return (error); 4920 } 4921 4922 /* ARGSUSED */ 4923 static int 4924 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 4925 { 4926 int error; 4927 rnode4_t *drp; 4928 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 4929 mntinfo4_t *mi; 4930 4931 mi = VTOMI4(dvp); 4932 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 4933 !vfs_has_feature(mi->mi_vfsp, VFSFT_XVATTR)) 4934 return (EINVAL); 4935 4936 drp = VTOR4(dvp); 4937 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4938 return (EINTR); 4939 4940 mutex_enter(&drp->r_statelock); 4941 /* 4942 * If the server doesn't support xattrs just return EINVAL 4943 */ 4944 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 4945 mutex_exit(&drp->r_statelock); 4946 nfs_rw_exit(&drp->r_rwlock); 4947 return (EINVAL); 4948 } 4949 4950 /* 4951 * If there is a cached xattr directory entry, 4952 * use it as long as the attributes are valid. If the 4953 * attributes are not valid, take the simple approach and 4954 * free the cached value and re-fetch a new value. 4955 * 4956 * We don't negative entry cache for now, if we did we 4957 * would need to check if the file has changed on every 4958 * lookup. But xattrs don't exist very often and failing 4959 * an openattr is not much more expensive than and NVERIFY or GETATTR 4960 * so do an openattr over the wire for now. 4961 */ 4962 if (drp->r_xattr_dir != NULL) { 4963 if (ATTRCACHE4_VALID(dvp)) { 4964 VN_HOLD(drp->r_xattr_dir); 4965 *vpp = drp->r_xattr_dir; 4966 mutex_exit(&drp->r_statelock); 4967 nfs_rw_exit(&drp->r_rwlock); 4968 return (0); 4969 } 4970 VN_RELE(drp->r_xattr_dir); 4971 drp->r_xattr_dir = NULL; 4972 } 4973 mutex_exit(&drp->r_statelock); 4974 4975 error = nfs4openattr(dvp, vpp, cflag, cr); 4976 4977 nfs_rw_exit(&drp->r_rwlock); 4978 4979 return (error); 4980 } 4981 4982 static int 4983 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 4984 { 4985 int error; 4986 rnode4_t *drp; 4987 4988 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 4989 4990 /* 4991 * If lookup is for "", just return dvp. Don't need 4992 * to send it over the wire, look it up in the dnlc, 4993 * or perform any access checks. 4994 */ 4995 if (*nm == '\0') { 4996 VN_HOLD(dvp); 4997 *vpp = dvp; 4998 return (0); 4999 } 5000 5001 /* 5002 * Can't do lookups in non-directories. 5003 */ 5004 if (dvp->v_type != VDIR) 5005 return (ENOTDIR); 5006 5007 /* 5008 * If lookup is for ".", just return dvp. Don't need 5009 * to send it over the wire or look it up in the dnlc, 5010 * just need to check access. 5011 */ 5012 if (nm[0] == '.' && nm[1] == '\0') { 5013 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5014 if (error) 5015 return (error); 5016 VN_HOLD(dvp); 5017 *vpp = dvp; 5018 return (0); 5019 } 5020 5021 drp = VTOR4(dvp); 5022 if (!(drp->r_flags & R4LOOKUP)) { 5023 mutex_enter(&drp->r_statelock); 5024 drp->r_flags |= R4LOOKUP; 5025 mutex_exit(&drp->r_statelock); 5026 } 5027 5028 *vpp = NULL; 5029 /* 5030 * Lookup this name in the DNLC. If there is no entry 5031 * lookup over the wire. 5032 */ 5033 if (!skipdnlc) 5034 *vpp = dnlc_lookup(dvp, nm); 5035 if (*vpp == NULL) { 5036 /* 5037 * We need to go over the wire to lookup the name. 5038 */ 5039 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5040 } 5041 5042 /* 5043 * We hit on the dnlc 5044 */ 5045 if (*vpp != DNLC_NO_VNODE || 5046 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5047 /* 5048 * But our attrs may not be valid. 5049 */ 5050 if (ATTRCACHE4_VALID(dvp)) { 5051 error = nfs4_waitfor_purge_complete(dvp); 5052 if (error) { 5053 VN_RELE(*vpp); 5054 *vpp = NULL; 5055 return (error); 5056 } 5057 5058 /* 5059 * If after the purge completes, check to make sure 5060 * our attrs are still valid. 5061 */ 5062 if (ATTRCACHE4_VALID(dvp)) { 5063 /* 5064 * If we waited for a purge we may have 5065 * lost our vnode so look it up again. 5066 */ 5067 VN_RELE(*vpp); 5068 *vpp = dnlc_lookup(dvp, nm); 5069 if (*vpp == NULL) 5070 return (nfs4lookupnew_otw(dvp, 5071 nm, vpp, cr)); 5072 5073 /* 5074 * The access cache should almost always hit 5075 */ 5076 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5077 5078 if (error) { 5079 VN_RELE(*vpp); 5080 *vpp = NULL; 5081 return (error); 5082 } 5083 if (*vpp == DNLC_NO_VNODE) { 5084 VN_RELE(*vpp); 5085 *vpp = NULL; 5086 return (ENOENT); 5087 } 5088 return (0); 5089 } 5090 } 5091 } 5092 5093 ASSERT(*vpp != NULL); 5094 5095 /* 5096 * We may have gotten here we have one of the following cases: 5097 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5098 * need to validate them. 5099 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5100 * must validate. 5101 * 5102 * Go to the server and check if the directory has changed, if 5103 * it hasn't we are done and can use the dnlc entry. 5104 */ 5105 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5106 } 5107 5108 /* 5109 * Go to the server and check if the directory has changed, if 5110 * it hasn't we are done and can use the dnlc entry. If it 5111 * has changed we get a new copy of its attributes and check 5112 * the access for VEXEC, then relookup the filename and 5113 * get its filehandle and attributes. 5114 * 5115 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5116 * if the NVERIFY failed we must 5117 * purge the caches 5118 * cache new attributes (will set r_time_attr_inval) 5119 * cache new access 5120 * recheck VEXEC access 5121 * add name to dnlc, possibly negative 5122 * if LOOKUP succeeded 5123 * cache new attributes 5124 * else 5125 * set a new r_time_attr_inval for dvp 5126 * check to make sure we have access 5127 * 5128 * The vpp returned is the vnode passed in if the directory is valid, 5129 * a new vnode if successful lookup, or NULL on error. 5130 */ 5131 static int 5132 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5133 { 5134 COMPOUND4args_clnt args; 5135 COMPOUND4res_clnt res; 5136 fattr4 *ver_fattr; 5137 fattr4_change dchange; 5138 int32_t *ptr; 5139 int argoplist_size = 7 * sizeof (nfs_argop4); 5140 nfs_argop4 *argop; 5141 int doqueue; 5142 mntinfo4_t *mi; 5143 nfs4_recov_state_t recov_state; 5144 hrtime_t t; 5145 int isdotdot; 5146 vnode_t *nvp; 5147 nfs_fh4 *fhp; 5148 nfs4_sharedfh_t *sfhp; 5149 nfs4_access_type_t cacc; 5150 rnode4_t *nrp; 5151 rnode4_t *drp = VTOR4(dvp); 5152 nfs4_ga_res_t *garp = NULL; 5153 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5154 5155 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5156 ASSERT(nm != NULL); 5157 ASSERT(nm[0] != '\0'); 5158 ASSERT(dvp->v_type == VDIR); 5159 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5160 ASSERT(*vpp != NULL); 5161 5162 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5163 isdotdot = 1; 5164 args.ctag = TAG_LOOKUP_VPARENT; 5165 } else { 5166 /* 5167 * If dvp were a stub, it should have triggered and caused 5168 * a mount for us to get this far. 5169 */ 5170 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5171 5172 isdotdot = 0; 5173 args.ctag = TAG_LOOKUP_VALID; 5174 } 5175 5176 mi = VTOMI4(dvp); 5177 recov_state.rs_flags = 0; 5178 recov_state.rs_num_retry_despite_err = 0; 5179 5180 nvp = NULL; 5181 5182 /* Save the original mount point security information */ 5183 (void) save_mnt_secinfo(mi->mi_curr_serv); 5184 5185 recov_retry: 5186 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5187 &recov_state, NULL); 5188 if (e.error) { 5189 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5190 VN_RELE(*vpp); 5191 *vpp = NULL; 5192 return (e.error); 5193 } 5194 5195 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5196 5197 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5198 args.array_len = 7; 5199 args.array = argop; 5200 5201 /* 0. putfh file */ 5202 argop[0].argop = OP_CPUTFH; 5203 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5204 5205 /* 1. nverify the change info */ 5206 argop[1].argop = OP_NVERIFY; 5207 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5208 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5209 ver_fattr->attrlist4 = (char *)&dchange; 5210 ptr = (int32_t *)&dchange; 5211 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5212 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5213 5214 /* 2. getattr directory */ 5215 argop[2].argop = OP_GETATTR; 5216 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5217 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5218 5219 /* 3. access directory */ 5220 argop[3].argop = OP_ACCESS; 5221 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5222 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5223 5224 /* 4. lookup name */ 5225 if (isdotdot) { 5226 argop[4].argop = OP_LOOKUPP; 5227 } else { 5228 argop[4].argop = OP_CLOOKUP; 5229 argop[4].nfs_argop4_u.opclookup.cname = nm; 5230 } 5231 5232 /* 5. resulting file handle */ 5233 argop[5].argop = OP_GETFH; 5234 5235 /* 6. resulting file attributes */ 5236 argop[6].argop = OP_GETATTR; 5237 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5238 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5239 5240 doqueue = 1; 5241 t = gethrtime(); 5242 5243 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5244 5245 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5246 /* 5247 * For WRONGSEC of a non-dotdot case, send secinfo directly 5248 * from this thread, do not go thru the recovery thread since 5249 * we need the nm information. 5250 * 5251 * Not doing dotdot case because there is no specification 5252 * for (PUTFH, SECINFO "..") yet. 5253 */ 5254 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5255 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5256 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5257 &recov_state, FALSE); 5258 else 5259 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5260 &recov_state, TRUE); 5261 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5262 kmem_free(argop, argoplist_size); 5263 if (!e.error) 5264 goto recov_retry; 5265 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5266 VN_RELE(*vpp); 5267 *vpp = NULL; 5268 return (e.error); 5269 } 5270 5271 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5272 OP_LOOKUP, NULL) == FALSE) { 5273 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5274 &recov_state, TRUE); 5275 5276 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5277 kmem_free(argop, argoplist_size); 5278 goto recov_retry; 5279 } 5280 } 5281 5282 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5283 5284 if (e.error || res.array_len == 0) { 5285 /* 5286 * If e.error isn't set, then reply has no ops (or we couldn't 5287 * be here). The only legal way to reply without an op array 5288 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5289 * be in the reply for all other status values. 5290 * 5291 * For valid replies without an ops array, return ENOTSUP 5292 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5293 * return EIO -- don't trust status. 5294 */ 5295 if (e.error == 0) 5296 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5297 ENOTSUP : EIO; 5298 VN_RELE(*vpp); 5299 *vpp = NULL; 5300 kmem_free(argop, argoplist_size); 5301 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5302 return (e.error); 5303 } 5304 5305 if (res.status != NFS4ERR_SAME) { 5306 e.error = geterrno4(res.status); 5307 5308 /* 5309 * The NVERIFY "failed" so the directory has changed 5310 * First make sure PUTFH succeeded and NVERIFY "failed" 5311 * cleanly. 5312 */ 5313 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5314 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5315 nfs4_purge_stale_fh(e.error, dvp, cr); 5316 VN_RELE(*vpp); 5317 *vpp = NULL; 5318 goto exit; 5319 } 5320 5321 /* 5322 * We know the NVERIFY "failed" so we must: 5323 * purge the caches (access and indirectly dnlc if needed) 5324 */ 5325 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5326 5327 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5328 nfs4_purge_stale_fh(e.error, dvp, cr); 5329 VN_RELE(*vpp); 5330 *vpp = NULL; 5331 goto exit; 5332 } 5333 5334 /* 5335 * Install new cached attributes for the directory 5336 */ 5337 nfs4_attr_cache(dvp, 5338 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5339 t, cr, FALSE, NULL); 5340 5341 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5342 nfs4_purge_stale_fh(e.error, dvp, cr); 5343 VN_RELE(*vpp); 5344 *vpp = NULL; 5345 e.error = geterrno4(res.status); 5346 goto exit; 5347 } 5348 5349 /* 5350 * Now we know the directory is valid, 5351 * cache new directory access 5352 */ 5353 nfs4_access_cache(drp, 5354 args.array[3].nfs_argop4_u.opaccess.access, 5355 res.array[3].nfs_resop4_u.opaccess.access, cr); 5356 5357 /* 5358 * recheck VEXEC access 5359 */ 5360 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5361 if (cacc != NFS4_ACCESS_ALLOWED) { 5362 /* 5363 * Directory permissions might have been revoked 5364 */ 5365 if (cacc == NFS4_ACCESS_DENIED) { 5366 e.error = EACCES; 5367 VN_RELE(*vpp); 5368 *vpp = NULL; 5369 goto exit; 5370 } 5371 5372 /* 5373 * Somehow we must not have asked for enough 5374 * so try a singleton ACCESS, should never happen. 5375 */ 5376 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5377 if (e.error) { 5378 VN_RELE(*vpp); 5379 *vpp = NULL; 5380 goto exit; 5381 } 5382 } 5383 5384 e.error = geterrno4(res.status); 5385 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5386 /* 5387 * The lookup failed, probably no entry 5388 */ 5389 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5390 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5391 } else { 5392 /* 5393 * Might be some other error, so remove 5394 * the dnlc entry to make sure we start all 5395 * over again, next time. 5396 */ 5397 dnlc_remove(dvp, nm); 5398 } 5399 VN_RELE(*vpp); 5400 *vpp = NULL; 5401 goto exit; 5402 } 5403 5404 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5405 /* 5406 * The file exists but we can't get its fh for 5407 * some unknown reason. Remove it from the dnlc 5408 * and error out to be safe. 5409 */ 5410 dnlc_remove(dvp, nm); 5411 VN_RELE(*vpp); 5412 *vpp = NULL; 5413 goto exit; 5414 } 5415 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5416 if (fhp->nfs_fh4_len == 0) { 5417 /* 5418 * The file exists but a bogus fh 5419 * some unknown reason. Remove it from the dnlc 5420 * and error out to be safe. 5421 */ 5422 e.error = ENOENT; 5423 dnlc_remove(dvp, nm); 5424 VN_RELE(*vpp); 5425 *vpp = NULL; 5426 goto exit; 5427 } 5428 sfhp = sfh4_get(fhp, mi); 5429 5430 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5431 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5432 5433 /* 5434 * Make the new rnode 5435 */ 5436 if (isdotdot) { 5437 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5438 if (e.error) { 5439 sfh4_rele(&sfhp); 5440 VN_RELE(*vpp); 5441 *vpp = NULL; 5442 goto exit; 5443 } 5444 /* 5445 * XXX if nfs4_make_dotdot uses an existing rnode 5446 * XXX it doesn't update the attributes. 5447 * XXX for now just save them again to save an OTW 5448 */ 5449 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5450 } else { 5451 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5452 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5453 /* 5454 * If v_type == VNON, then garp was NULL because 5455 * the last op in the compound failed and makenfs4node 5456 * could not find the vnode for sfhp. It created 5457 * a new vnode, so we have nothing to purge here. 5458 */ 5459 if (nvp->v_type == VNON) { 5460 vattr_t vattr; 5461 5462 vattr.va_mask = AT_TYPE; 5463 /* 5464 * N.B. We've already called nfs4_end_fop above. 5465 */ 5466 e.error = nfs4getattr(nvp, &vattr, cr); 5467 if (e.error) { 5468 sfh4_rele(&sfhp); 5469 VN_RELE(*vpp); 5470 *vpp = NULL; 5471 VN_RELE(nvp); 5472 goto exit; 5473 } 5474 nvp->v_type = vattr.va_type; 5475 } 5476 } 5477 sfh4_rele(&sfhp); 5478 5479 nrp = VTOR4(nvp); 5480 mutex_enter(&nrp->r_statev4_lock); 5481 if (!nrp->created_v4) { 5482 mutex_exit(&nrp->r_statev4_lock); 5483 dnlc_update(dvp, nm, nvp); 5484 } else 5485 mutex_exit(&nrp->r_statev4_lock); 5486 5487 VN_RELE(*vpp); 5488 *vpp = nvp; 5489 } else { 5490 hrtime_t now; 5491 hrtime_t delta = 0; 5492 5493 e.error = 0; 5494 5495 /* 5496 * Because the NVERIFY "succeeded" we know that the 5497 * directory attributes are still valid 5498 * so update r_time_attr_inval 5499 */ 5500 now = gethrtime(); 5501 mutex_enter(&drp->r_statelock); 5502 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5503 delta = now - drp->r_time_attr_saved; 5504 if (delta < mi->mi_acdirmin) 5505 delta = mi->mi_acdirmin; 5506 else if (delta > mi->mi_acdirmax) 5507 delta = mi->mi_acdirmax; 5508 } 5509 drp->r_time_attr_inval = now + delta; 5510 mutex_exit(&drp->r_statelock); 5511 dnlc_update(dvp, nm, *vpp); 5512 5513 /* 5514 * Even though we have a valid directory attr cache 5515 * and dnlc entry, we may not have access. 5516 * This should almost always hit the cache. 5517 */ 5518 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5519 if (e.error) { 5520 VN_RELE(*vpp); 5521 *vpp = NULL; 5522 } 5523 5524 if (*vpp == DNLC_NO_VNODE) { 5525 VN_RELE(*vpp); 5526 *vpp = NULL; 5527 e.error = ENOENT; 5528 } 5529 } 5530 5531 exit: 5532 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5533 kmem_free(argop, argoplist_size); 5534 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5535 return (e.error); 5536 } 5537 5538 /* 5539 * We need to go over the wire to lookup the name, but 5540 * while we are there verify the directory has not 5541 * changed but if it has, get new attributes and check access 5542 * 5543 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5544 * NVERIFY GETATTR ACCESS 5545 * 5546 * With the results: 5547 * if the NVERIFY failed we must purge the caches, add new attributes, 5548 * and cache new access. 5549 * set a new r_time_attr_inval 5550 * add name to dnlc, possibly negative 5551 * if LOOKUP succeeded 5552 * cache new attributes 5553 */ 5554 static int 5555 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5556 { 5557 COMPOUND4args_clnt args; 5558 COMPOUND4res_clnt res; 5559 fattr4 *ver_fattr; 5560 fattr4_change dchange; 5561 int32_t *ptr; 5562 nfs4_ga_res_t *garp = NULL; 5563 int argoplist_size = 9 * sizeof (nfs_argop4); 5564 nfs_argop4 *argop; 5565 int doqueue; 5566 mntinfo4_t *mi; 5567 nfs4_recov_state_t recov_state; 5568 hrtime_t t; 5569 int isdotdot; 5570 vnode_t *nvp; 5571 nfs_fh4 *fhp; 5572 nfs4_sharedfh_t *sfhp; 5573 nfs4_access_type_t cacc; 5574 rnode4_t *nrp; 5575 rnode4_t *drp = VTOR4(dvp); 5576 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5577 5578 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5579 ASSERT(nm != NULL); 5580 ASSERT(nm[0] != '\0'); 5581 ASSERT(dvp->v_type == VDIR); 5582 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5583 ASSERT(*vpp == NULL); 5584 5585 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5586 isdotdot = 1; 5587 args.ctag = TAG_LOOKUP_PARENT; 5588 } else { 5589 /* 5590 * If dvp were a stub, it should have triggered and caused 5591 * a mount for us to get this far. 5592 */ 5593 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5594 5595 isdotdot = 0; 5596 args.ctag = TAG_LOOKUP; 5597 } 5598 5599 mi = VTOMI4(dvp); 5600 recov_state.rs_flags = 0; 5601 recov_state.rs_num_retry_despite_err = 0; 5602 5603 nvp = NULL; 5604 5605 /* Save the original mount point security information */ 5606 (void) save_mnt_secinfo(mi->mi_curr_serv); 5607 5608 recov_retry: 5609 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5610 &recov_state, NULL); 5611 if (e.error) { 5612 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5613 return (e.error); 5614 } 5615 5616 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5617 5618 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5619 args.array_len = 9; 5620 args.array = argop; 5621 5622 /* 0. putfh file */ 5623 argop[0].argop = OP_CPUTFH; 5624 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5625 5626 /* 1. savefh for the nverify */ 5627 argop[1].argop = OP_SAVEFH; 5628 5629 /* 2. lookup name */ 5630 if (isdotdot) { 5631 argop[2].argop = OP_LOOKUPP; 5632 } else { 5633 argop[2].argop = OP_CLOOKUP; 5634 argop[2].nfs_argop4_u.opclookup.cname = nm; 5635 } 5636 5637 /* 3. resulting file handle */ 5638 argop[3].argop = OP_GETFH; 5639 5640 /* 4. resulting file attributes */ 5641 argop[4].argop = OP_GETATTR; 5642 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5643 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5644 5645 /* 5. restorefh back the directory for the nverify */ 5646 argop[5].argop = OP_RESTOREFH; 5647 5648 /* 6. nverify the change info */ 5649 argop[6].argop = OP_NVERIFY; 5650 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5651 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5652 ver_fattr->attrlist4 = (char *)&dchange; 5653 ptr = (int32_t *)&dchange; 5654 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5655 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5656 5657 /* 7. getattr directory */ 5658 argop[7].argop = OP_GETATTR; 5659 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5660 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5661 5662 /* 8. access directory */ 5663 argop[8].argop = OP_ACCESS; 5664 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5665 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5666 5667 doqueue = 1; 5668 t = gethrtime(); 5669 5670 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5671 5672 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5673 /* 5674 * For WRONGSEC of a non-dotdot case, send secinfo directly 5675 * from this thread, do not go thru the recovery thread since 5676 * we need the nm information. 5677 * 5678 * Not doing dotdot case because there is no specification 5679 * for (PUTFH, SECINFO "..") yet. 5680 */ 5681 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5682 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5683 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5684 &recov_state, FALSE); 5685 else 5686 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5687 &recov_state, TRUE); 5688 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5689 kmem_free(argop, argoplist_size); 5690 if (!e.error) 5691 goto recov_retry; 5692 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5693 return (e.error); 5694 } 5695 5696 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5697 OP_LOOKUP, NULL) == FALSE) { 5698 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5699 &recov_state, TRUE); 5700 5701 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5702 kmem_free(argop, argoplist_size); 5703 goto recov_retry; 5704 } 5705 } 5706 5707 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5708 5709 if (e.error || res.array_len == 0) { 5710 /* 5711 * If e.error isn't set, then reply has no ops (or we couldn't 5712 * be here). The only legal way to reply without an op array 5713 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5714 * be in the reply for all other status values. 5715 * 5716 * For valid replies without an ops array, return ENOTSUP 5717 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5718 * return EIO -- don't trust status. 5719 */ 5720 if (e.error == 0) 5721 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5722 ENOTSUP : EIO; 5723 5724 kmem_free(argop, argoplist_size); 5725 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5726 return (e.error); 5727 } 5728 5729 e.error = geterrno4(res.status); 5730 5731 /* 5732 * The PUTFH and SAVEFH may have failed. 5733 */ 5734 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5735 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5736 nfs4_purge_stale_fh(e.error, dvp, cr); 5737 goto exit; 5738 } 5739 5740 /* 5741 * Check if the file exists, if it does delay entering 5742 * into the dnlc until after we update the directory 5743 * attributes so we don't cause it to get purged immediately. 5744 */ 5745 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5746 /* 5747 * The lookup failed, probably no entry 5748 */ 5749 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5750 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5751 goto exit; 5752 } 5753 5754 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5755 /* 5756 * The file exists but we can't get its fh for 5757 * some unknown reason. Error out to be safe. 5758 */ 5759 goto exit; 5760 } 5761 5762 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5763 if (fhp->nfs_fh4_len == 0) { 5764 /* 5765 * The file exists but a bogus fh 5766 * some unknown reason. Error out to be safe. 5767 */ 5768 e.error = EIO; 5769 goto exit; 5770 } 5771 sfhp = sfh4_get(fhp, mi); 5772 5773 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5774 sfh4_rele(&sfhp); 5775 e.error = EIO; 5776 goto exit; 5777 } 5778 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5779 5780 /* 5781 * The RESTOREFH may have failed 5782 */ 5783 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5784 sfh4_rele(&sfhp); 5785 e.error = EIO; 5786 goto exit; 5787 } 5788 5789 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5790 /* 5791 * First make sure the NVERIFY failed as we expected, 5792 * if it didn't then be conservative and error out 5793 * as we can't trust the directory. 5794 */ 5795 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5796 sfh4_rele(&sfhp); 5797 e.error = EIO; 5798 goto exit; 5799 } 5800 5801 /* 5802 * We know the NVERIFY "failed" so the directory has changed, 5803 * so we must: 5804 * purge the caches (access and indirectly dnlc if needed) 5805 */ 5806 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5807 5808 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5809 sfh4_rele(&sfhp); 5810 goto exit; 5811 } 5812 nfs4_attr_cache(dvp, 5813 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5814 t, cr, FALSE, NULL); 5815 5816 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5817 nfs4_purge_stale_fh(e.error, dvp, cr); 5818 sfh4_rele(&sfhp); 5819 e.error = geterrno4(res.status); 5820 goto exit; 5821 } 5822 5823 /* 5824 * Now we know the directory is valid, 5825 * cache new directory access 5826 */ 5827 nfs4_access_cache(drp, 5828 args.array[8].nfs_argop4_u.opaccess.access, 5829 res.array[8].nfs_resop4_u.opaccess.access, cr); 5830 5831 /* 5832 * recheck VEXEC access 5833 */ 5834 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5835 if (cacc != NFS4_ACCESS_ALLOWED) { 5836 /* 5837 * Directory permissions might have been revoked 5838 */ 5839 if (cacc == NFS4_ACCESS_DENIED) { 5840 sfh4_rele(&sfhp); 5841 e.error = EACCES; 5842 goto exit; 5843 } 5844 5845 /* 5846 * Somehow we must not have asked for enough 5847 * so try a singleton ACCESS should never happen 5848 */ 5849 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5850 if (e.error) { 5851 sfh4_rele(&sfhp); 5852 goto exit; 5853 } 5854 } 5855 5856 e.error = geterrno4(res.status); 5857 } else { 5858 hrtime_t now; 5859 hrtime_t delta = 0; 5860 5861 e.error = 0; 5862 5863 /* 5864 * Because the NVERIFY "succeeded" we know that the 5865 * directory attributes are still valid 5866 * so update r_time_attr_inval 5867 */ 5868 now = gethrtime(); 5869 mutex_enter(&drp->r_statelock); 5870 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5871 delta = now - drp->r_time_attr_saved; 5872 if (delta < mi->mi_acdirmin) 5873 delta = mi->mi_acdirmin; 5874 else if (delta > mi->mi_acdirmax) 5875 delta = mi->mi_acdirmax; 5876 } 5877 drp->r_time_attr_inval = now + delta; 5878 mutex_exit(&drp->r_statelock); 5879 5880 /* 5881 * Even though we have a valid directory attr cache, 5882 * we may not have access. 5883 * This should almost always hit the cache. 5884 */ 5885 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5886 if (e.error) { 5887 sfh4_rele(&sfhp); 5888 goto exit; 5889 } 5890 } 5891 5892 /* 5893 * Now we have successfully completed the lookup, if the 5894 * directory has changed we now have the valid attributes. 5895 * We also know we have directory access. 5896 * Create the new rnode and insert it in the dnlc. 5897 */ 5898 if (isdotdot) { 5899 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5900 if (e.error) { 5901 sfh4_rele(&sfhp); 5902 goto exit; 5903 } 5904 /* 5905 * XXX if nfs4_make_dotdot uses an existing rnode 5906 * XXX it doesn't update the attributes. 5907 * XXX for now just save them again to save an OTW 5908 */ 5909 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5910 } else { 5911 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5912 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5913 } 5914 sfh4_rele(&sfhp); 5915 5916 nrp = VTOR4(nvp); 5917 mutex_enter(&nrp->r_statev4_lock); 5918 if (!nrp->created_v4) { 5919 mutex_exit(&nrp->r_statev4_lock); 5920 dnlc_update(dvp, nm, nvp); 5921 } else 5922 mutex_exit(&nrp->r_statev4_lock); 5923 5924 *vpp = nvp; 5925 5926 exit: 5927 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5928 kmem_free(argop, argoplist_size); 5929 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5930 return (e.error); 5931 } 5932 5933 #ifdef DEBUG 5934 void 5935 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 5936 { 5937 uint_t i, len; 5938 zoneid_t zoneid = getzoneid(); 5939 char *s; 5940 5941 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 5942 for (i = 0; i < argcnt; i++) { 5943 nfs_argop4 *op = &argbase[i]; 5944 switch (op->argop) { 5945 case OP_CPUTFH: 5946 case OP_PUTFH: 5947 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 5948 break; 5949 case OP_PUTROOTFH: 5950 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 5951 break; 5952 case OP_CLOOKUP: 5953 s = op->nfs_argop4_u.opclookup.cname; 5954 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5955 break; 5956 case OP_LOOKUP: 5957 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 5958 &len, NULL); 5959 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5960 kmem_free(s, len); 5961 break; 5962 case OP_LOOKUPP: 5963 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 5964 break; 5965 case OP_GETFH: 5966 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 5967 break; 5968 case OP_GETATTR: 5969 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 5970 break; 5971 case OP_OPENATTR: 5972 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 5973 break; 5974 default: 5975 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 5976 op->argop); 5977 break; 5978 } 5979 } 5980 } 5981 #endif 5982 5983 /* 5984 * nfs4lookup_setup - constructs a multi-lookup compound request. 5985 * 5986 * Given the path "nm1/nm2/.../nmn", the following compound requests 5987 * may be created: 5988 * 5989 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 5990 * is faster, for now. 5991 * 5992 * l4_getattrs indicates the type of compound requested. 5993 * 5994 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 5995 * 5996 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 5997 * 5998 * total number of ops is n + 1. 5999 * 6000 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6001 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6002 * before the last component, and only get attributes 6003 * for the last component. Note that the second-to-last 6004 * pathname component is XATTR_RPATH, which does NOT go 6005 * over-the-wire as a lookup. 6006 * 6007 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6008 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6009 * 6010 * and total number of ops is n + 5. 6011 * 6012 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6013 * attribute directory: create lookups plus an OPENATTR 6014 * replacing the last lookup. Note that the last pathname 6015 * component is XATTR_RPATH, which does NOT go over-the-wire 6016 * as a lookup. 6017 * 6018 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6019 * Openattr; Getfh; Getattr } 6020 * 6021 * and total number of ops is n + 5. 6022 * 6023 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6024 * nodes too. 6025 * 6026 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6027 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6028 * 6029 * and total number of ops is 3*n + 1. 6030 * 6031 * All cases: returns the index in the arg array of the final LOOKUP op, or 6032 * -1 if no LOOKUPs were used. 6033 */ 6034 int 6035 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6036 { 6037 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6038 nfs_argop4 *argbase, *argop; 6039 int arglen, argcnt; 6040 int n = 1; /* number of components */ 6041 int nga = 1; /* number of Getattr's in request */ 6042 char c = '\0', *s, *p; 6043 int lookup_idx = -1; 6044 int argoplist_size; 6045 6046 /* set lookuparg response result to 0 */ 6047 lookupargp->resp->status = NFS4_OK; 6048 6049 /* skip leading "/" or "." e.g. ".//./" if there is */ 6050 for (; ; nm++) { 6051 if (*nm != '/' && *nm != '.') 6052 break; 6053 6054 /* ".." is counted as 1 component */ 6055 if (*nm == '.' && *(nm + 1) == '.') 6056 break; 6057 } 6058 6059 /* 6060 * Find n = number of components - nm must be null terminated 6061 * Skip "." components. 6062 */ 6063 if (*nm != '\0') 6064 for (n = 1, s = nm; *s != '\0'; s++) { 6065 if ((*s == '/') && (*(s + 1) != '/') && 6066 (*(s + 1) != '\0') && 6067 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6068 *(s + 2) == '\0'))) 6069 n++; 6070 } 6071 else 6072 n = 0; 6073 6074 /* 6075 * nga is number of components that need Getfh+Getattr 6076 */ 6077 switch (l4_getattrs) { 6078 case LKP4_NO_ATTRIBUTES: 6079 nga = 0; 6080 break; 6081 case LKP4_ALL_ATTRIBUTES: 6082 nga = n; 6083 /* 6084 * Always have at least 1 getfh, getattr pair 6085 */ 6086 if (nga == 0) 6087 nga++; 6088 break; 6089 case LKP4_LAST_ATTRDIR: 6090 case LKP4_LAST_NAMED_ATTR: 6091 nga = n+1; 6092 break; 6093 } 6094 6095 /* 6096 * If change to use the filehandle attr instead of getfh 6097 * the following line can be deleted. 6098 */ 6099 nga *= 2; 6100 6101 /* 6102 * calculate number of ops in request as 6103 * header + trailer + lookups + getattrs 6104 */ 6105 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6106 6107 argoplist_size = arglen * sizeof (nfs_argop4); 6108 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6109 lookupargp->argsp->array = argop; 6110 6111 argcnt = lookupargp->header_len; 6112 argop += argcnt; 6113 6114 /* 6115 * loop and create a lookup op and possibly getattr/getfh for 6116 * each component. Skip "." components. 6117 */ 6118 for (s = nm; *s != '\0'; s = p) { 6119 /* 6120 * Set up a pathname struct for each component if needed 6121 */ 6122 while (*s == '/') 6123 s++; 6124 if (*s == '\0') 6125 break; 6126 6127 for (p = s; (*p != '/') && (*p != '\0'); p++) 6128 ; 6129 c = *p; 6130 *p = '\0'; 6131 6132 if (s[0] == '.' && s[1] == '\0') { 6133 *p = c; 6134 continue; 6135 } 6136 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6137 strcmp(s, XATTR_RPATH) == 0) { 6138 /* getfh XXX may not be needed in future */ 6139 argop->argop = OP_GETFH; 6140 argop++; 6141 argcnt++; 6142 6143 /* getattr */ 6144 argop->argop = OP_GETATTR; 6145 argop->nfs_argop4_u.opgetattr.attr_request = 6146 lookupargp->ga_bits; 6147 argop->nfs_argop4_u.opgetattr.mi = 6148 lookupargp->mi; 6149 argop++; 6150 argcnt++; 6151 6152 /* openattr */ 6153 argop->argop = OP_OPENATTR; 6154 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6155 strcmp(s, XATTR_RPATH) == 0) { 6156 /* openattr */ 6157 argop->argop = OP_OPENATTR; 6158 argop++; 6159 argcnt++; 6160 6161 /* getfh XXX may not be needed in future */ 6162 argop->argop = OP_GETFH; 6163 argop++; 6164 argcnt++; 6165 6166 /* getattr */ 6167 argop->argop = OP_GETATTR; 6168 argop->nfs_argop4_u.opgetattr.attr_request = 6169 lookupargp->ga_bits; 6170 argop->nfs_argop4_u.opgetattr.mi = 6171 lookupargp->mi; 6172 argop++; 6173 argcnt++; 6174 *p = c; 6175 continue; 6176 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6177 /* lookupp */ 6178 argop->argop = OP_LOOKUPP; 6179 } else { 6180 /* lookup */ 6181 argop->argop = OP_LOOKUP; 6182 (void) str_to_utf8(s, 6183 &argop->nfs_argop4_u.oplookup.objname); 6184 } 6185 lookup_idx = argcnt; 6186 argop++; 6187 argcnt++; 6188 6189 *p = c; 6190 6191 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6192 /* getfh XXX may not be needed in future */ 6193 argop->argop = OP_GETFH; 6194 argop++; 6195 argcnt++; 6196 6197 /* getattr */ 6198 argop->argop = OP_GETATTR; 6199 argop->nfs_argop4_u.opgetattr.attr_request = 6200 lookupargp->ga_bits; 6201 argop->nfs_argop4_u.opgetattr.mi = 6202 lookupargp->mi; 6203 argop++; 6204 argcnt++; 6205 } 6206 } 6207 6208 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6209 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6210 if (needgetfh) { 6211 /* stick in a post-lookup getfh */ 6212 argop->argop = OP_GETFH; 6213 argcnt++; 6214 argop++; 6215 } 6216 /* post-lookup getattr */ 6217 argop->argop = OP_GETATTR; 6218 argop->nfs_argop4_u.opgetattr.attr_request = 6219 lookupargp->ga_bits; 6220 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6221 argcnt++; 6222 } 6223 argcnt += lookupargp->trailer_len; /* actual op count */ 6224 lookupargp->argsp->array_len = argcnt; 6225 lookupargp->arglen = arglen; 6226 6227 #ifdef DEBUG 6228 if (nfs4_client_lookup_debug) 6229 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6230 #endif 6231 6232 return (lookup_idx); 6233 } 6234 6235 static int 6236 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6237 { 6238 COMPOUND4args_clnt args; 6239 COMPOUND4res_clnt res; 6240 GETFH4res *gf_res = NULL; 6241 nfs_argop4 argop[4]; 6242 nfs_resop4 *resop = NULL; 6243 nfs4_sharedfh_t *sfhp; 6244 hrtime_t t; 6245 nfs4_error_t e; 6246 6247 rnode4_t *drp; 6248 int doqueue = 1; 6249 vnode_t *vp; 6250 int needrecov = 0; 6251 nfs4_recov_state_t recov_state; 6252 6253 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6254 6255 *avp = NULL; 6256 recov_state.rs_flags = 0; 6257 recov_state.rs_num_retry_despite_err = 0; 6258 6259 recov_retry: 6260 /* COMPOUND: putfh, openattr, getfh, getattr */ 6261 args.array_len = 4; 6262 args.array = argop; 6263 args.ctag = TAG_OPENATTR; 6264 6265 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6266 if (e.error) 6267 return (e.error); 6268 6269 drp = VTOR4(dvp); 6270 6271 /* putfh */ 6272 argop[0].argop = OP_CPUTFH; 6273 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6274 6275 /* openattr */ 6276 argop[1].argop = OP_OPENATTR; 6277 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6278 6279 /* getfh */ 6280 argop[2].argop = OP_GETFH; 6281 6282 /* getattr */ 6283 argop[3].argop = OP_GETATTR; 6284 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6285 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6286 6287 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6288 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6289 rnode4info(drp))); 6290 6291 t = gethrtime(); 6292 6293 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6294 6295 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6296 if (needrecov) { 6297 bool_t abort; 6298 6299 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6300 "nfs4openattr: initiating recovery\n")); 6301 6302 abort = nfs4_start_recovery(&e, 6303 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6304 OP_OPENATTR, NULL); 6305 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6306 if (!e.error) { 6307 e.error = geterrno4(res.status); 6308 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6309 } 6310 if (abort == FALSE) 6311 goto recov_retry; 6312 return (e.error); 6313 } 6314 6315 if (e.error) { 6316 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6317 return (e.error); 6318 } 6319 6320 if (res.status) { 6321 /* 6322 * If OTW errro is NOTSUPP, then it should be 6323 * translated to EINVAL. All Solaris file system 6324 * implementations return EINVAL to the syscall layer 6325 * when the attrdir cannot be created due to an 6326 * implementation restriction or noxattr mount option. 6327 */ 6328 if (res.status == NFS4ERR_NOTSUPP) { 6329 mutex_enter(&drp->r_statelock); 6330 if (drp->r_xattr_dir) 6331 VN_RELE(drp->r_xattr_dir); 6332 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6333 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6334 mutex_exit(&drp->r_statelock); 6335 6336 e.error = EINVAL; 6337 } else { 6338 e.error = geterrno4(res.status); 6339 } 6340 6341 if (e.error) { 6342 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6343 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6344 needrecov); 6345 return (e.error); 6346 } 6347 } 6348 6349 resop = &res.array[0]; /* putfh res */ 6350 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6351 6352 resop = &res.array[1]; /* openattr res */ 6353 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6354 6355 resop = &res.array[2]; /* getfh res */ 6356 gf_res = &resop->nfs_resop4_u.opgetfh; 6357 if (gf_res->object.nfs_fh4_len == 0) { 6358 *avp = NULL; 6359 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6360 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6361 return (ENOENT); 6362 } 6363 6364 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6365 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6366 dvp->v_vfsp, t, cr, dvp, 6367 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH)); 6368 sfh4_rele(&sfhp); 6369 6370 if (e.error) 6371 PURGE_ATTRCACHE4(vp); 6372 6373 mutex_enter(&vp->v_lock); 6374 vp->v_flag |= V_XATTRDIR; 6375 mutex_exit(&vp->v_lock); 6376 6377 *avp = vp; 6378 6379 mutex_enter(&drp->r_statelock); 6380 if (drp->r_xattr_dir) 6381 VN_RELE(drp->r_xattr_dir); 6382 VN_HOLD(vp); 6383 drp->r_xattr_dir = vp; 6384 6385 /* 6386 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6387 * NULL. xattrs could be created at any time, and we have no 6388 * way to update pc4_xattr_exists in the base object if/when 6389 * it happens. 6390 */ 6391 drp->r_pathconf.pc4_xattr_valid = 0; 6392 6393 mutex_exit(&drp->r_statelock); 6394 6395 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6396 6397 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6398 6399 return (0); 6400 } 6401 6402 /* ARGSUSED */ 6403 static int 6404 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6405 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6406 vsecattr_t *vsecp) 6407 { 6408 int error; 6409 vnode_t *vp = NULL; 6410 rnode4_t *rp; 6411 struct vattr vattr; 6412 rnode4_t *drp; 6413 vnode_t *tempvp; 6414 enum createmode4 createmode; 6415 bool_t must_trunc = FALSE; 6416 int truncating = 0; 6417 6418 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6419 return (EPERM); 6420 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6421 return (EINVAL); 6422 } 6423 6424 /* . and .. have special meaning in the protocol, reject them. */ 6425 6426 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6427 return (EISDIR); 6428 6429 drp = VTOR4(dvp); 6430 6431 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6432 return (EINTR); 6433 6434 top: 6435 /* 6436 * We make a copy of the attributes because the caller does not 6437 * expect us to change what va points to. 6438 */ 6439 vattr = *va; 6440 6441 /* 6442 * If the pathname is "", then dvp is the root vnode of 6443 * a remote file mounted over a local directory. 6444 * All that needs to be done is access 6445 * checking and truncation. Note that we avoid doing 6446 * open w/ create because the parent directory might 6447 * be in pseudo-fs and the open would fail. 6448 */ 6449 if (*nm == '\0') { 6450 error = 0; 6451 VN_HOLD(dvp); 6452 vp = dvp; 6453 must_trunc = TRUE; 6454 } else { 6455 /* 6456 * We need to go over the wire, just to be sure whether the 6457 * file exists or not. Using the DNLC can be dangerous in 6458 * this case when making a decision regarding existence. 6459 */ 6460 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6461 } 6462 6463 if (exclusive) 6464 createmode = EXCLUSIVE4; 6465 else 6466 createmode = GUARDED4; 6467 6468 /* 6469 * error would be set if the file does not exist on the 6470 * server, so lets go create it. 6471 */ 6472 if (error) { 6473 goto create_otw; 6474 } 6475 6476 /* 6477 * File does exist on the server 6478 */ 6479 if (exclusive == EXCL) 6480 error = EEXIST; 6481 else if (vp->v_type == VDIR && (mode & VWRITE)) 6482 error = EISDIR; 6483 else { 6484 /* 6485 * If vnode is a device, create special vnode. 6486 */ 6487 if (ISVDEV(vp->v_type)) { 6488 tempvp = vp; 6489 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6490 VN_RELE(tempvp); 6491 } 6492 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6493 if ((vattr.va_mask & AT_SIZE) && 6494 vp->v_type == VREG) { 6495 rp = VTOR4(vp); 6496 /* 6497 * Check here for large file handled 6498 * by LF-unaware process (as 6499 * ufs_create() does) 6500 */ 6501 if (!(flags & FOFFMAX)) { 6502 mutex_enter(&rp->r_statelock); 6503 if (rp->r_size > MAXOFF32_T) 6504 error = EOVERFLOW; 6505 mutex_exit(&rp->r_statelock); 6506 } 6507 6508 /* if error is set then we need to return */ 6509 if (error) { 6510 nfs_rw_exit(&drp->r_rwlock); 6511 VN_RELE(vp); 6512 return (error); 6513 } 6514 6515 if (must_trunc) { 6516 vattr.va_mask = AT_SIZE; 6517 error = nfs4setattr(vp, &vattr, 0, cr, 6518 NULL); 6519 } else { 6520 /* 6521 * we know we have a regular file that already 6522 * exists and we may end up truncating the file 6523 * as a result of the open_otw, so flush out 6524 * any dirty pages for this file first. 6525 */ 6526 if (nfs4_has_pages(vp) && 6527 ((rp->r_flags & R4DIRTY) || 6528 rp->r_count > 0 || 6529 rp->r_mapcnt > 0)) { 6530 error = nfs4_putpage(vp, 6531 (offset_t)0, 0, 0, cr, ct); 6532 if (error && (error == ENOSPC || 6533 error == EDQUOT)) { 6534 mutex_enter( 6535 &rp->r_statelock); 6536 if (!rp->r_error) 6537 rp->r_error = 6538 error; 6539 mutex_exit( 6540 &rp->r_statelock); 6541 } 6542 } 6543 vattr.va_mask = (AT_SIZE | 6544 AT_TYPE | AT_MODE); 6545 vattr.va_type = VREG; 6546 createmode = UNCHECKED4; 6547 truncating = 1; 6548 goto create_otw; 6549 } 6550 } 6551 } 6552 } 6553 nfs_rw_exit(&drp->r_rwlock); 6554 if (error) { 6555 VN_RELE(vp); 6556 } else { 6557 vnode_t *tvp; 6558 rnode4_t *trp; 6559 /* 6560 * existing file got truncated, notify. 6561 */ 6562 tvp = vp; 6563 if (vp->v_type == VREG) { 6564 trp = VTOR4(vp); 6565 if (IS_SHADOW(vp, trp)) 6566 tvp = RTOV4(trp); 6567 } 6568 vnevent_create(tvp, ct); 6569 *vpp = vp; 6570 } 6571 return (error); 6572 6573 create_otw: 6574 dnlc_remove(dvp, nm); 6575 6576 ASSERT(vattr.va_mask & AT_TYPE); 6577 6578 /* 6579 * If not a regular file let nfs4mknod() handle it. 6580 */ 6581 if (vattr.va_type != VREG) { 6582 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6583 nfs_rw_exit(&drp->r_rwlock); 6584 return (error); 6585 } 6586 6587 /* 6588 * It _is_ a regular file. 6589 */ 6590 ASSERT(vattr.va_mask & AT_MODE); 6591 if (MANDMODE(vattr.va_mode)) { 6592 nfs_rw_exit(&drp->r_rwlock); 6593 return (EACCES); 6594 } 6595 6596 /* 6597 * If this happens to be a mknod of a regular file, then flags will 6598 * have neither FREAD or FWRITE. However, we must set at least one 6599 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6600 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6601 * set (based on openmode specified by app). 6602 */ 6603 if ((flags & (FREAD|FWRITE)) == 0) 6604 flags |= (FREAD|FWRITE); 6605 6606 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6607 6608 if (vp != NULL) { 6609 /* if create was successful, throw away the file's pages */ 6610 if (!error && (vattr.va_mask & AT_SIZE)) 6611 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6612 cr); 6613 /* release the lookup hold */ 6614 VN_RELE(vp); 6615 vp = NULL; 6616 } 6617 6618 /* 6619 * validate that we opened a regular file. This handles a misbehaving 6620 * server that returns an incorrect FH. 6621 */ 6622 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6623 error = EISDIR; 6624 VN_RELE(*vpp); 6625 } 6626 6627 /* 6628 * If this is not an exclusive create, then the CREATE 6629 * request will be made with the GUARDED mode set. This 6630 * means that the server will return EEXIST if the file 6631 * exists. The file could exist because of a retransmitted 6632 * request. In this case, we recover by starting over and 6633 * checking to see whether the file exists. This second 6634 * time through it should and a CREATE request will not be 6635 * sent. 6636 * 6637 * This handles the problem of a dangling CREATE request 6638 * which contains attributes which indicate that the file 6639 * should be truncated. This retransmitted request could 6640 * possibly truncate valid data in the file if not caught 6641 * by the duplicate request mechanism on the server or if 6642 * not caught by other means. The scenario is: 6643 * 6644 * Client transmits CREATE request with size = 0 6645 * Client times out, retransmits request. 6646 * Response to the first request arrives from the server 6647 * and the client proceeds on. 6648 * Client writes data to the file. 6649 * The server now processes retransmitted CREATE request 6650 * and truncates file. 6651 * 6652 * The use of the GUARDED CREATE request prevents this from 6653 * happening because the retransmitted CREATE would fail 6654 * with EEXIST and would not truncate the file. 6655 */ 6656 if (error == EEXIST && exclusive == NONEXCL) { 6657 #ifdef DEBUG 6658 nfs4_create_misses++; 6659 #endif 6660 goto top; 6661 } 6662 nfs_rw_exit(&drp->r_rwlock); 6663 if (truncating && !error && *vpp) { 6664 vnode_t *tvp; 6665 rnode4_t *trp; 6666 /* 6667 * existing file got truncated, notify. 6668 */ 6669 tvp = *vpp; 6670 trp = VTOR4(tvp); 6671 if (IS_SHADOW(tvp, trp)) 6672 tvp = RTOV4(trp); 6673 vnevent_create(tvp, ct); 6674 } 6675 return (error); 6676 } 6677 6678 /* 6679 * Create compound (for mkdir, mknod, symlink): 6680 * { Putfh <dfh>; Create; Getfh; Getattr } 6681 * It's okay if setattr failed to set gid - this is not considered 6682 * an error, but purge attrs in that case. 6683 */ 6684 static int 6685 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6686 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6687 { 6688 int need_end_op = FALSE; 6689 COMPOUND4args_clnt args; 6690 COMPOUND4res_clnt res, *resp = NULL; 6691 nfs_argop4 *argop; 6692 nfs_resop4 *resop; 6693 int doqueue; 6694 mntinfo4_t *mi; 6695 rnode4_t *drp = VTOR4(dvp); 6696 change_info4 *cinfo; 6697 GETFH4res *gf_res; 6698 struct vattr vattr; 6699 vnode_t *vp; 6700 fattr4 *crattr; 6701 bool_t needrecov = FALSE; 6702 nfs4_recov_state_t recov_state; 6703 nfs4_sharedfh_t *sfhp = NULL; 6704 hrtime_t t; 6705 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6706 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6707 dirattr_info_t dinfo, *dinfop; 6708 servinfo4_t *svp; 6709 bitmap4 supp_attrs; 6710 6711 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6712 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6713 6714 mi = VTOMI4(dvp); 6715 6716 /* 6717 * Make sure we properly deal with setting the right gid 6718 * on a new directory to reflect the parent's setgid bit 6719 */ 6720 setgid_flag = 0; 6721 if (type == NF4DIR) { 6722 struct vattr dva; 6723 6724 va->va_mode &= ~VSGID; 6725 dva.va_mask = AT_MODE | AT_GID; 6726 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6727 6728 /* 6729 * If the parent's directory has the setgid bit set 6730 * _and_ the client was able to get a valid mapping 6731 * for the parent dir's owner_group, we want to 6732 * append NVERIFY(owner_group == dva.va_gid) and 6733 * SETTATTR to the CREATE compound. 6734 */ 6735 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6736 setgid_flag = 1; 6737 va->va_mode |= VSGID; 6738 if (dva.va_gid != GID_NOBODY) { 6739 va->va_mask |= AT_GID; 6740 va->va_gid = dva.va_gid; 6741 } 6742 } 6743 } 6744 } 6745 6746 /* 6747 * Create ops: 6748 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6749 * 5:restorefh(dir) 6:getattr(dir) 6750 * 6751 * if (setgid) 6752 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6753 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6754 * 8:nverify 9:setattr 6755 */ 6756 if (setgid_flag) { 6757 numops = 10; 6758 idx_create = 1; 6759 idx_fattr = 3; 6760 } else { 6761 numops = 7; 6762 idx_create = 2; 6763 idx_fattr = 4; 6764 } 6765 6766 ASSERT(nfs_zone() == mi->mi_zone); 6767 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6768 return (EINTR); 6769 } 6770 recov_state.rs_flags = 0; 6771 recov_state.rs_num_retry_despite_err = 0; 6772 6773 argoplist_size = numops * sizeof (nfs_argop4); 6774 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6775 6776 recov_retry: 6777 if (type == NF4LNK) 6778 args.ctag = TAG_SYMLINK; 6779 else if (type == NF4DIR) 6780 args.ctag = TAG_MKDIR; 6781 else 6782 args.ctag = TAG_MKNOD; 6783 6784 args.array_len = numops; 6785 args.array = argop; 6786 6787 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6788 nfs_rw_exit(&drp->r_rwlock); 6789 kmem_free(argop, argoplist_size); 6790 return (e.error); 6791 } 6792 need_end_op = TRUE; 6793 6794 6795 /* 0: putfh directory */ 6796 argop[0].argop = OP_CPUTFH; 6797 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6798 6799 /* 1/2: Create object */ 6800 argop[idx_create].argop = OP_CCREATE; 6801 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6802 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6803 if (type == NF4LNK) { 6804 /* 6805 * symlink, treat name as data 6806 */ 6807 ASSERT(data != NULL); 6808 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6809 (char *)data; 6810 } 6811 if (type == NF4BLK || type == NF4CHR) { 6812 ASSERT(data != NULL); 6813 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6814 *((specdata4 *)data); 6815 } 6816 6817 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6818 6819 svp = drp->r_server; 6820 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6821 supp_attrs = svp->sv_supp_attrs; 6822 nfs_rw_exit(&svp->sv_lock); 6823 6824 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6825 nfs_rw_exit(&drp->r_rwlock); 6826 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6827 e.error = EINVAL; 6828 kmem_free(argop, argoplist_size); 6829 return (e.error); 6830 } 6831 6832 /* 2/3: getfh fh of created object */ 6833 ASSERT(idx_create + 1 == idx_fattr - 1); 6834 argop[idx_create + 1].argop = OP_GETFH; 6835 6836 /* 3/4: getattr of new object */ 6837 argop[idx_fattr].argop = OP_GETATTR; 6838 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6839 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6840 6841 if (setgid_flag) { 6842 vattr_t _v; 6843 6844 argop[4].argop = OP_SAVEFH; 6845 6846 argop[5].argop = OP_CPUTFH; 6847 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6848 6849 argop[6].argop = OP_GETATTR; 6850 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6851 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6852 6853 argop[7].argop = OP_RESTOREFH; 6854 6855 /* 6856 * nverify 6857 * 6858 * XXX - Revisit the last argument to nfs4_end_op() 6859 * once 5020486 is fixed. 6860 */ 6861 _v.va_mask = AT_GID; 6862 _v.va_gid = va->va_gid; 6863 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6864 supp_attrs)) { 6865 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6866 nfs_rw_exit(&drp->r_rwlock); 6867 nfs4_fattr4_free(crattr); 6868 kmem_free(argop, argoplist_size); 6869 return (e.error); 6870 } 6871 6872 /* 6873 * setattr 6874 * 6875 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6876 * so no need for stateid or flags. Also we specify NULL 6877 * rp since we're only interested in setting owner_group 6878 * attributes. 6879 */ 6880 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6881 &e.error, 0); 6882 6883 if (e.error) { 6884 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6885 nfs_rw_exit(&drp->r_rwlock); 6886 nfs4_fattr4_free(crattr); 6887 nfs4args_verify_free(&argop[8]); 6888 kmem_free(argop, argoplist_size); 6889 return (e.error); 6890 } 6891 } else { 6892 argop[1].argop = OP_SAVEFH; 6893 6894 argop[5].argop = OP_RESTOREFH; 6895 6896 argop[6].argop = OP_GETATTR; 6897 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6898 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6899 } 6900 6901 dnlc_remove(dvp, nm); 6902 6903 doqueue = 1; 6904 t = gethrtime(); 6905 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 6906 6907 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 6908 if (e.error) { 6909 PURGE_ATTRCACHE4(dvp); 6910 if (!needrecov) 6911 goto out; 6912 } 6913 6914 if (needrecov) { 6915 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 6916 OP_CREATE, NULL) == FALSE) { 6917 nfs4_end_op(mi, dvp, NULL, &recov_state, 6918 needrecov); 6919 need_end_op = FALSE; 6920 nfs4_fattr4_free(crattr); 6921 if (setgid_flag) { 6922 nfs4args_verify_free(&argop[8]); 6923 nfs4args_setattr_free(&argop[9]); 6924 } 6925 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6926 goto recov_retry; 6927 } 6928 } 6929 6930 resp = &res; 6931 6932 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 6933 6934 if (res.status == NFS4ERR_BADOWNER) 6935 nfs4_log_badowner(mi, OP_CREATE); 6936 6937 e.error = geterrno4(res.status); 6938 6939 /* 6940 * This check is left over from when create was implemented 6941 * using a setattr op (instead of createattrs). If the 6942 * putfh/create/getfh failed, the error was returned. If 6943 * setattr/getattr failed, we keep going. 6944 * 6945 * It might be better to get rid of the GETFH also, and just 6946 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 6947 * Then if any of the operations failed, we could return the 6948 * error now, and remove much of the error code below. 6949 */ 6950 if (res.array_len <= idx_fattr) { 6951 /* 6952 * Either Putfh, Create or Getfh failed. 6953 */ 6954 PURGE_ATTRCACHE4(dvp); 6955 /* 6956 * nfs4_purge_stale_fh() may generate otw calls through 6957 * nfs4_invalidate_pages. Hence the need to call 6958 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 6959 */ 6960 nfs4_end_op(mi, dvp, NULL, &recov_state, 6961 needrecov); 6962 need_end_op = FALSE; 6963 nfs4_purge_stale_fh(e.error, dvp, cr); 6964 goto out; 6965 } 6966 } 6967 6968 resop = &res.array[idx_create]; /* create res */ 6969 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 6970 6971 resop = &res.array[idx_create + 1]; /* getfh res */ 6972 gf_res = &resop->nfs_resop4_u.opgetfh; 6973 6974 sfhp = sfh4_get(&gf_res->object, mi); 6975 if (e.error) { 6976 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 6977 fn_get(VTOSV(dvp)->sv_name, nm)); 6978 if (vp->v_type == VNON) { 6979 vattr.va_mask = AT_TYPE; 6980 /* 6981 * Need to call nfs4_end_op before nfs4getattr to avoid 6982 * potential nfs4_start_op deadlock. See RFE 4777612. 6983 */ 6984 nfs4_end_op(mi, dvp, NULL, &recov_state, 6985 needrecov); 6986 need_end_op = FALSE; 6987 e.error = nfs4getattr(vp, &vattr, cr); 6988 if (e.error) { 6989 VN_RELE(vp); 6990 *vpp = NULL; 6991 goto out; 6992 } 6993 vp->v_type = vattr.va_type; 6994 } 6995 e.error = 0; 6996 } else { 6997 *vpp = vp = makenfs4node(sfhp, 6998 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 6999 dvp->v_vfsp, t, cr, 7000 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 7001 } 7002 7003 /* 7004 * If compound succeeded, then update dir attrs 7005 */ 7006 if (res.status == NFS4_OK) { 7007 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7008 dinfo.di_cred = cr; 7009 dinfo.di_time_call = t; 7010 dinfop = &dinfo; 7011 } else 7012 dinfop = NULL; 7013 7014 /* Update directory cache attribute, readdir and dnlc caches */ 7015 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7016 7017 out: 7018 if (sfhp != NULL) 7019 sfh4_rele(&sfhp); 7020 nfs_rw_exit(&drp->r_rwlock); 7021 nfs4_fattr4_free(crattr); 7022 if (setgid_flag) { 7023 nfs4args_verify_free(&argop[8]); 7024 nfs4args_setattr_free(&argop[9]); 7025 } 7026 if (resp) 7027 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7028 if (need_end_op) 7029 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7030 7031 kmem_free(argop, argoplist_size); 7032 return (e.error); 7033 } 7034 7035 /* ARGSUSED */ 7036 static int 7037 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7038 int mode, vnode_t **vpp, cred_t *cr) 7039 { 7040 int error; 7041 vnode_t *vp; 7042 nfs_ftype4 type; 7043 specdata4 spec, *specp = NULL; 7044 7045 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7046 7047 switch (va->va_type) { 7048 case VCHR: 7049 case VBLK: 7050 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7051 spec.specdata1 = getmajor(va->va_rdev); 7052 spec.specdata2 = getminor(va->va_rdev); 7053 specp = &spec; 7054 break; 7055 7056 case VFIFO: 7057 type = NF4FIFO; 7058 break; 7059 case VSOCK: 7060 type = NF4SOCK; 7061 break; 7062 7063 default: 7064 return (EINVAL); 7065 } 7066 7067 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7068 if (error) { 7069 return (error); 7070 } 7071 7072 /* 7073 * This might not be needed any more; special case to deal 7074 * with problematic v2/v3 servers. Since create was unable 7075 * to set group correctly, not sure what hope setattr has. 7076 */ 7077 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7078 va->va_mask = AT_GID; 7079 (void) nfs4setattr(vp, va, 0, cr, NULL); 7080 } 7081 7082 /* 7083 * If vnode is a device create special vnode 7084 */ 7085 if (ISVDEV(vp->v_type)) { 7086 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7087 VN_RELE(vp); 7088 } else { 7089 *vpp = vp; 7090 } 7091 return (error); 7092 } 7093 7094 /* 7095 * Remove requires that the current fh be the target directory. 7096 * After the operation, the current fh is unchanged. 7097 * The compound op structure is: 7098 * PUTFH(targetdir), REMOVE 7099 * 7100 * Weirdness: if the vnode to be removed is open 7101 * we rename it instead of removing it and nfs_inactive 7102 * will remove the new name. 7103 */ 7104 /* ARGSUSED */ 7105 static int 7106 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7107 { 7108 COMPOUND4args_clnt args; 7109 COMPOUND4res_clnt res, *resp = NULL; 7110 REMOVE4res *rm_res; 7111 nfs_argop4 argop[3]; 7112 nfs_resop4 *resop; 7113 vnode_t *vp; 7114 char *tmpname; 7115 int doqueue; 7116 mntinfo4_t *mi; 7117 rnode4_t *rp; 7118 rnode4_t *drp; 7119 int needrecov = 0; 7120 nfs4_recov_state_t recov_state; 7121 int isopen; 7122 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7123 dirattr_info_t dinfo; 7124 7125 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7126 return (EPERM); 7127 drp = VTOR4(dvp); 7128 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7129 return (EINTR); 7130 7131 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7132 if (e.error) { 7133 nfs_rw_exit(&drp->r_rwlock); 7134 return (e.error); 7135 } 7136 7137 if (vp->v_type == VDIR) { 7138 VN_RELE(vp); 7139 nfs_rw_exit(&drp->r_rwlock); 7140 return (EISDIR); 7141 } 7142 7143 /* 7144 * First just remove the entry from the name cache, as it 7145 * is most likely the only entry for this vp. 7146 */ 7147 dnlc_remove(dvp, nm); 7148 7149 rp = VTOR4(vp); 7150 7151 /* 7152 * For regular file types, check to see if the file is open by looking 7153 * at the open streams. 7154 * For all other types, check the reference count on the vnode. Since 7155 * they are not opened OTW they never have an open stream. 7156 * 7157 * If the file is open, rename it to .nfsXXXX. 7158 */ 7159 if (vp->v_type != VREG) { 7160 /* 7161 * If the file has a v_count > 1 then there may be more than one 7162 * entry in the name cache due multiple links or an open file, 7163 * but we don't have the real reference count so flush all 7164 * possible entries. 7165 */ 7166 if (vp->v_count > 1) 7167 dnlc_purge_vp(vp); 7168 7169 /* 7170 * Now we have the real reference count. 7171 */ 7172 isopen = vp->v_count > 1; 7173 } else { 7174 mutex_enter(&rp->r_os_lock); 7175 isopen = list_head(&rp->r_open_streams) != NULL; 7176 mutex_exit(&rp->r_os_lock); 7177 } 7178 7179 mutex_enter(&rp->r_statelock); 7180 if (isopen && 7181 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7182 mutex_exit(&rp->r_statelock); 7183 tmpname = newname(); 7184 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7185 if (e.error) 7186 kmem_free(tmpname, MAXNAMELEN); 7187 else { 7188 mutex_enter(&rp->r_statelock); 7189 if (rp->r_unldvp == NULL) { 7190 VN_HOLD(dvp); 7191 rp->r_unldvp = dvp; 7192 if (rp->r_unlcred != NULL) 7193 crfree(rp->r_unlcred); 7194 crhold(cr); 7195 rp->r_unlcred = cr; 7196 rp->r_unlname = tmpname; 7197 } else { 7198 kmem_free(rp->r_unlname, MAXNAMELEN); 7199 rp->r_unlname = tmpname; 7200 } 7201 mutex_exit(&rp->r_statelock); 7202 } 7203 VN_RELE(vp); 7204 nfs_rw_exit(&drp->r_rwlock); 7205 return (e.error); 7206 } 7207 /* 7208 * Actually remove the file/dir 7209 */ 7210 mutex_exit(&rp->r_statelock); 7211 7212 /* 7213 * We need to flush any dirty pages which happen to 7214 * be hanging around before removing the file. 7215 * This shouldn't happen very often since in NFSv4 7216 * we should be close to open consistent. 7217 */ 7218 if (nfs4_has_pages(vp) && 7219 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7220 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7221 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7222 mutex_enter(&rp->r_statelock); 7223 if (!rp->r_error) 7224 rp->r_error = e.error; 7225 mutex_exit(&rp->r_statelock); 7226 } 7227 } 7228 7229 mi = VTOMI4(dvp); 7230 7231 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7232 recov_state.rs_flags = 0; 7233 recov_state.rs_num_retry_despite_err = 0; 7234 7235 recov_retry: 7236 /* 7237 * Remove ops: putfh dir; remove 7238 */ 7239 args.ctag = TAG_REMOVE; 7240 args.array_len = 3; 7241 args.array = argop; 7242 7243 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7244 if (e.error) { 7245 nfs_rw_exit(&drp->r_rwlock); 7246 VN_RELE(vp); 7247 return (e.error); 7248 } 7249 7250 /* putfh directory */ 7251 argop[0].argop = OP_CPUTFH; 7252 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7253 7254 /* remove */ 7255 argop[1].argop = OP_CREMOVE; 7256 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7257 7258 /* getattr dir */ 7259 argop[2].argop = OP_GETATTR; 7260 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7261 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7262 7263 doqueue = 1; 7264 dinfo.di_time_call = gethrtime(); 7265 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7266 7267 PURGE_ATTRCACHE4(vp); 7268 7269 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7270 if (e.error) 7271 PURGE_ATTRCACHE4(dvp); 7272 7273 if (needrecov) { 7274 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7275 NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { 7276 if (!e.error) 7277 (void) xdr_free(xdr_COMPOUND4res_clnt, 7278 (caddr_t)&res); 7279 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7280 needrecov); 7281 goto recov_retry; 7282 } 7283 } 7284 7285 /* 7286 * Matching nfs4_end_op() for start_op() above. 7287 * There is a path in the code below which calls 7288 * nfs4_purge_stale_fh(), which may generate otw calls through 7289 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7290 * here to avoid nfs4_start_op() deadlock. 7291 */ 7292 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7293 7294 if (!e.error) { 7295 resp = &res; 7296 7297 if (res.status) { 7298 e.error = geterrno4(res.status); 7299 PURGE_ATTRCACHE4(dvp); 7300 nfs4_purge_stale_fh(e.error, dvp, cr); 7301 } else { 7302 resop = &res.array[1]; /* remove res */ 7303 rm_res = &resop->nfs_resop4_u.opremove; 7304 7305 dinfo.di_garp = 7306 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7307 dinfo.di_cred = cr; 7308 7309 /* Update directory attr, readdir and dnlc caches */ 7310 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7311 &dinfo); 7312 } 7313 } 7314 nfs_rw_exit(&drp->r_rwlock); 7315 if (resp) 7316 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7317 7318 if (e.error == 0) { 7319 vnode_t *tvp; 7320 rnode4_t *trp; 7321 trp = VTOR4(vp); 7322 tvp = vp; 7323 if (IS_SHADOW(vp, trp)) 7324 tvp = RTOV4(trp); 7325 vnevent_remove(tvp, dvp, nm, ct); 7326 } 7327 VN_RELE(vp); 7328 return (e.error); 7329 } 7330 7331 /* 7332 * Link requires that the current fh be the target directory and the 7333 * saved fh be the source fh. After the operation, the current fh is unchanged. 7334 * Thus the compound op structure is: 7335 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7336 * GETATTR(file) 7337 */ 7338 /* ARGSUSED */ 7339 static int 7340 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7341 caller_context_t *ct, int flags) 7342 { 7343 COMPOUND4args_clnt args; 7344 COMPOUND4res_clnt res, *resp = NULL; 7345 LINK4res *ln_res; 7346 int argoplist_size = 7 * sizeof (nfs_argop4); 7347 nfs_argop4 *argop; 7348 nfs_resop4 *resop; 7349 vnode_t *realvp, *nvp; 7350 int doqueue; 7351 mntinfo4_t *mi; 7352 rnode4_t *tdrp; 7353 bool_t needrecov = FALSE; 7354 nfs4_recov_state_t recov_state; 7355 hrtime_t t; 7356 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7357 dirattr_info_t dinfo; 7358 7359 ASSERT(*tnm != '\0'); 7360 ASSERT(tdvp->v_type == VDIR); 7361 ASSERT(nfs4_consistent_type(tdvp)); 7362 ASSERT(nfs4_consistent_type(svp)); 7363 7364 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7365 return (EPERM); 7366 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7367 svp = realvp; 7368 ASSERT(nfs4_consistent_type(svp)); 7369 } 7370 7371 tdrp = VTOR4(tdvp); 7372 mi = VTOMI4(svp); 7373 7374 if (!(mi->mi_flags & MI4_LINK)) { 7375 return (EOPNOTSUPP); 7376 } 7377 recov_state.rs_flags = 0; 7378 recov_state.rs_num_retry_despite_err = 0; 7379 7380 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7381 return (EINTR); 7382 7383 recov_retry: 7384 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7385 7386 args.ctag = TAG_LINK; 7387 7388 /* 7389 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7390 * restorefh; getattr(fl) 7391 */ 7392 args.array_len = 7; 7393 args.array = argop; 7394 7395 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7396 if (e.error) { 7397 kmem_free(argop, argoplist_size); 7398 nfs_rw_exit(&tdrp->r_rwlock); 7399 return (e.error); 7400 } 7401 7402 /* 0. putfh file */ 7403 argop[0].argop = OP_CPUTFH; 7404 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7405 7406 /* 1. save current fh to free up the space for the dir */ 7407 argop[1].argop = OP_SAVEFH; 7408 7409 /* 2. putfh targetdir */ 7410 argop[2].argop = OP_CPUTFH; 7411 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7412 7413 /* 3. link: current_fh is targetdir, saved_fh is source */ 7414 argop[3].argop = OP_CLINK; 7415 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7416 7417 /* 4. Get attributes of dir */ 7418 argop[4].argop = OP_GETATTR; 7419 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7420 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7421 7422 /* 5. If link was successful, restore current vp to file */ 7423 argop[5].argop = OP_RESTOREFH; 7424 7425 /* 6. Get attributes of linked object */ 7426 argop[6].argop = OP_GETATTR; 7427 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7428 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7429 7430 dnlc_remove(tdvp, tnm); 7431 7432 doqueue = 1; 7433 t = gethrtime(); 7434 7435 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7436 7437 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7438 if (e.error != 0 && !needrecov) { 7439 PURGE_ATTRCACHE4(tdvp); 7440 PURGE_ATTRCACHE4(svp); 7441 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7442 goto out; 7443 } 7444 7445 if (needrecov) { 7446 bool_t abort; 7447 7448 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7449 NULL, NULL, OP_LINK, NULL); 7450 if (abort == FALSE) { 7451 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7452 needrecov); 7453 kmem_free(argop, argoplist_size); 7454 if (!e.error) 7455 (void) xdr_free(xdr_COMPOUND4res_clnt, 7456 (caddr_t)&res); 7457 goto recov_retry; 7458 } else { 7459 if (e.error != 0) { 7460 PURGE_ATTRCACHE4(tdvp); 7461 PURGE_ATTRCACHE4(svp); 7462 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7463 &recov_state, needrecov); 7464 goto out; 7465 } 7466 /* fall through for res.status case */ 7467 } 7468 } 7469 7470 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7471 7472 resp = &res; 7473 if (res.status) { 7474 /* If link succeeded, then don't return error */ 7475 e.error = geterrno4(res.status); 7476 if (res.array_len <= 4) { 7477 /* 7478 * Either Putfh, Savefh, Putfh dir, or Link failed 7479 */ 7480 PURGE_ATTRCACHE4(svp); 7481 PURGE_ATTRCACHE4(tdvp); 7482 if (e.error == EOPNOTSUPP) { 7483 mutex_enter(&mi->mi_lock); 7484 mi->mi_flags &= ~MI4_LINK; 7485 mutex_exit(&mi->mi_lock); 7486 } 7487 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7488 /* XXX-LP */ 7489 if (e.error == EISDIR && crgetuid(cr) != 0) 7490 e.error = EPERM; 7491 goto out; 7492 } 7493 } 7494 7495 /* either no error or one of the postop getattr failed */ 7496 7497 /* 7498 * XXX - if LINK succeeded, but no attrs were returned for link 7499 * file, purge its cache. 7500 * 7501 * XXX Perform a simplified version of wcc checking. Instead of 7502 * have another getattr to get pre-op, just purge cache if 7503 * any of the ops prior to and including the getattr failed. 7504 * If the getattr succeeded then update the attrcache accordingly. 7505 */ 7506 7507 /* 7508 * update cache with link file postattrs. 7509 * Note: at this point resop points to link res. 7510 */ 7511 resop = &res.array[3]; /* link res */ 7512 ln_res = &resop->nfs_resop4_u.oplink; 7513 if (res.status == NFS4_OK) 7514 e.error = nfs4_update_attrcache(res.status, 7515 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7516 t, svp, cr); 7517 7518 /* 7519 * Call makenfs4node to create the new shadow vp for tnm. 7520 * We pass NULL attrs because we just cached attrs for 7521 * the src object. All we're trying to accomplish is to 7522 * to create the new shadow vnode. 7523 */ 7524 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7525 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm)); 7526 7527 /* Update target cache attribute, readdir and dnlc caches */ 7528 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7529 dinfo.di_time_call = t; 7530 dinfo.di_cred = cr; 7531 7532 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7533 ASSERT(nfs4_consistent_type(tdvp)); 7534 ASSERT(nfs4_consistent_type(svp)); 7535 ASSERT(nfs4_consistent_type(nvp)); 7536 VN_RELE(nvp); 7537 7538 if (!e.error) { 7539 vnode_t *tvp; 7540 rnode4_t *trp; 7541 /* 7542 * Notify the source file of this link operation. 7543 */ 7544 trp = VTOR4(svp); 7545 tvp = svp; 7546 if (IS_SHADOW(svp, trp)) 7547 tvp = RTOV4(trp); 7548 vnevent_link(tvp, ct); 7549 } 7550 out: 7551 kmem_free(argop, argoplist_size); 7552 if (resp) 7553 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7554 7555 nfs_rw_exit(&tdrp->r_rwlock); 7556 7557 return (e.error); 7558 } 7559 7560 /* ARGSUSED */ 7561 static int 7562 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7563 caller_context_t *ct, int flags) 7564 { 7565 vnode_t *realvp; 7566 7567 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7568 return (EPERM); 7569 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7570 ndvp = realvp; 7571 7572 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7573 } 7574 7575 /* 7576 * nfs4rename does the real work of renaming in NFS Version 4. 7577 * 7578 * A file handle is considered volatile for renaming purposes if either 7579 * of the volatile bits are turned on. However, the compound may differ 7580 * based on the likelihood of the filehandle to change during rename. 7581 */ 7582 static int 7583 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7584 caller_context_t *ct) 7585 { 7586 int error; 7587 mntinfo4_t *mi; 7588 vnode_t *nvp = NULL; 7589 vnode_t *ovp = NULL; 7590 char *tmpname = NULL; 7591 rnode4_t *rp; 7592 rnode4_t *odrp; 7593 rnode4_t *ndrp; 7594 int did_link = 0; 7595 int do_link = 1; 7596 nfsstat4 stat = NFS4_OK; 7597 7598 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7599 ASSERT(nfs4_consistent_type(odvp)); 7600 ASSERT(nfs4_consistent_type(ndvp)); 7601 7602 if (onm[0] == '.' && (onm[1] == '\0' || 7603 (onm[1] == '.' && onm[2] == '\0'))) 7604 return (EINVAL); 7605 7606 if (nnm[0] == '.' && (nnm[1] == '\0' || 7607 (nnm[1] == '.' && nnm[2] == '\0'))) 7608 return (EINVAL); 7609 7610 odrp = VTOR4(odvp); 7611 ndrp = VTOR4(ndvp); 7612 if ((intptr_t)odrp < (intptr_t)ndrp) { 7613 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7614 return (EINTR); 7615 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7616 nfs_rw_exit(&odrp->r_rwlock); 7617 return (EINTR); 7618 } 7619 } else { 7620 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7621 return (EINTR); 7622 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7623 nfs_rw_exit(&ndrp->r_rwlock); 7624 return (EINTR); 7625 } 7626 } 7627 7628 /* 7629 * Lookup the target file. If it exists, it needs to be 7630 * checked to see whether it is a mount point and whether 7631 * it is active (open). 7632 */ 7633 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7634 if (!error) { 7635 int isactive; 7636 7637 ASSERT(nfs4_consistent_type(nvp)); 7638 /* 7639 * If this file has been mounted on, then just 7640 * return busy because renaming to it would remove 7641 * the mounted file system from the name space. 7642 */ 7643 if (vn_ismntpt(nvp)) { 7644 VN_RELE(nvp); 7645 nfs_rw_exit(&odrp->r_rwlock); 7646 nfs_rw_exit(&ndrp->r_rwlock); 7647 return (EBUSY); 7648 } 7649 7650 /* 7651 * First just remove the entry from the name cache, as it 7652 * is most likely the only entry for this vp. 7653 */ 7654 dnlc_remove(ndvp, nnm); 7655 7656 rp = VTOR4(nvp); 7657 7658 if (nvp->v_type != VREG) { 7659 /* 7660 * Purge the name cache of all references to this vnode 7661 * so that we can check the reference count to infer 7662 * whether it is active or not. 7663 */ 7664 if (nvp->v_count > 1) 7665 dnlc_purge_vp(nvp); 7666 7667 isactive = nvp->v_count > 1; 7668 } else { 7669 mutex_enter(&rp->r_os_lock); 7670 isactive = list_head(&rp->r_open_streams) != NULL; 7671 mutex_exit(&rp->r_os_lock); 7672 } 7673 7674 /* 7675 * If the vnode is active and is not a directory, 7676 * arrange to rename it to a 7677 * temporary file so that it will continue to be 7678 * accessible. This implements the "unlink-open-file" 7679 * semantics for the target of a rename operation. 7680 * Before doing this though, make sure that the 7681 * source and target files are not already the same. 7682 */ 7683 if (isactive && nvp->v_type != VDIR) { 7684 /* 7685 * Lookup the source name. 7686 */ 7687 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7688 7689 /* 7690 * The source name *should* already exist. 7691 */ 7692 if (error) { 7693 VN_RELE(nvp); 7694 nfs_rw_exit(&odrp->r_rwlock); 7695 nfs_rw_exit(&ndrp->r_rwlock); 7696 return (error); 7697 } 7698 7699 ASSERT(nfs4_consistent_type(ovp)); 7700 7701 /* 7702 * Compare the two vnodes. If they are the same, 7703 * just release all held vnodes and return success. 7704 */ 7705 if (VN_CMP(ovp, nvp)) { 7706 VN_RELE(ovp); 7707 VN_RELE(nvp); 7708 nfs_rw_exit(&odrp->r_rwlock); 7709 nfs_rw_exit(&ndrp->r_rwlock); 7710 return (0); 7711 } 7712 7713 /* 7714 * Can't mix and match directories and non- 7715 * directories in rename operations. We already 7716 * know that the target is not a directory. If 7717 * the source is a directory, return an error. 7718 */ 7719 if (ovp->v_type == VDIR) { 7720 VN_RELE(ovp); 7721 VN_RELE(nvp); 7722 nfs_rw_exit(&odrp->r_rwlock); 7723 nfs_rw_exit(&ndrp->r_rwlock); 7724 return (ENOTDIR); 7725 } 7726 link_call: 7727 /* 7728 * The target file exists, is not the same as 7729 * the source file, and is active. We first 7730 * try to Link it to a temporary filename to 7731 * avoid having the server removing the file 7732 * completely (which could cause data loss to 7733 * the user's POV in the event the Rename fails 7734 * -- see bug 1165874). 7735 */ 7736 /* 7737 * The do_link and did_link booleans are 7738 * introduced in the event we get NFS4ERR_FILE_OPEN 7739 * returned for the Rename. Some servers can 7740 * not Rename over an Open file, so they return 7741 * this error. The client needs to Remove the 7742 * newly created Link and do two Renames, just 7743 * as if the server didn't support LINK. 7744 */ 7745 tmpname = newname(); 7746 error = 0; 7747 7748 if (do_link) { 7749 error = nfs4_link(ndvp, nvp, tmpname, cr, 7750 NULL, 0); 7751 } 7752 if (error == EOPNOTSUPP || !do_link) { 7753 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7754 cr, NULL, 0); 7755 did_link = 0; 7756 } else { 7757 did_link = 1; 7758 } 7759 if (error) { 7760 kmem_free(tmpname, MAXNAMELEN); 7761 VN_RELE(ovp); 7762 VN_RELE(nvp); 7763 nfs_rw_exit(&odrp->r_rwlock); 7764 nfs_rw_exit(&ndrp->r_rwlock); 7765 return (error); 7766 } 7767 7768 mutex_enter(&rp->r_statelock); 7769 if (rp->r_unldvp == NULL) { 7770 VN_HOLD(ndvp); 7771 rp->r_unldvp = ndvp; 7772 if (rp->r_unlcred != NULL) 7773 crfree(rp->r_unlcred); 7774 crhold(cr); 7775 rp->r_unlcred = cr; 7776 rp->r_unlname = tmpname; 7777 } else { 7778 if (rp->r_unlname) 7779 kmem_free(rp->r_unlname, MAXNAMELEN); 7780 rp->r_unlname = tmpname; 7781 } 7782 mutex_exit(&rp->r_statelock); 7783 } 7784 7785 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7786 7787 ASSERT(nfs4_consistent_type(nvp)); 7788 } 7789 7790 if (ovp == NULL) { 7791 /* 7792 * When renaming directories to be a subdirectory of a 7793 * different parent, the dnlc entry for ".." will no 7794 * longer be valid, so it must be removed. 7795 * 7796 * We do a lookup here to determine whether we are renaming 7797 * a directory and we need to check if we are renaming 7798 * an unlinked file. This might have already been done 7799 * in previous code, so we check ovp == NULL to avoid 7800 * doing it twice. 7801 */ 7802 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7803 /* 7804 * The source name *should* already exist. 7805 */ 7806 if (error) { 7807 nfs_rw_exit(&odrp->r_rwlock); 7808 nfs_rw_exit(&ndrp->r_rwlock); 7809 if (nvp) { 7810 VN_RELE(nvp); 7811 } 7812 return (error); 7813 } 7814 ASSERT(ovp != NULL); 7815 ASSERT(nfs4_consistent_type(ovp)); 7816 } 7817 7818 /* 7819 * Is the object being renamed a dir, and if so, is 7820 * it being renamed to a child of itself? The underlying 7821 * fs should ultimately return EINVAL for this case; 7822 * however, buggy beta non-Solaris NFSv4 servers at 7823 * interop testing events have allowed this behavior, 7824 * and it caused our client to panic due to a recursive 7825 * mutex_enter in fn_move. 7826 * 7827 * The tedious locking in fn_move could be changed to 7828 * deal with this case, and the client could avoid the 7829 * panic; however, the client would just confuse itself 7830 * later and misbehave. A better way to handle the broken 7831 * server is to detect this condition and return EINVAL 7832 * without ever sending the the bogus rename to the server. 7833 * We know the rename is invalid -- just fail it now. 7834 */ 7835 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7836 VN_RELE(ovp); 7837 nfs_rw_exit(&odrp->r_rwlock); 7838 nfs_rw_exit(&ndrp->r_rwlock); 7839 if (nvp) { 7840 VN_RELE(nvp); 7841 } 7842 return (EINVAL); 7843 } 7844 7845 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7846 7847 /* 7848 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7849 * possible for the filehandle to change due to the rename. 7850 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7851 * the fh will not change because of the rename, but we still need 7852 * to update its rnode entry with the new name for 7853 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7854 * has no effect on these for now, but for future improvements, 7855 * we might want to use it too to simplify handling of files 7856 * that are open with that flag on. (XXX) 7857 */ 7858 mi = VTOMI4(odvp); 7859 if (NFS4_VOLATILE_FH(mi)) 7860 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7861 &stat); 7862 else 7863 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7864 &stat); 7865 7866 ASSERT(nfs4_consistent_type(odvp)); 7867 ASSERT(nfs4_consistent_type(ndvp)); 7868 ASSERT(nfs4_consistent_type(ovp)); 7869 7870 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7871 do_link = 0; 7872 /* 7873 * Before the 'link_call' code, we did a nfs4_lookup 7874 * that puts a VN_HOLD on nvp. After the nfs4_link 7875 * call we call VN_RELE to match that hold. We need 7876 * to place an additional VN_HOLD here since we will 7877 * be hitting that VN_RELE again. 7878 */ 7879 VN_HOLD(nvp); 7880 7881 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 7882 7883 /* Undo the unlinked file naming stuff we just did */ 7884 mutex_enter(&rp->r_statelock); 7885 if (rp->r_unldvp) { 7886 VN_RELE(ndvp); 7887 rp->r_unldvp = NULL; 7888 if (rp->r_unlcred != NULL) 7889 crfree(rp->r_unlcred); 7890 rp->r_unlcred = NULL; 7891 /* rp->r_unlanme points to tmpname */ 7892 if (rp->r_unlname) 7893 kmem_free(rp->r_unlname, MAXNAMELEN); 7894 rp->r_unlname = NULL; 7895 } 7896 mutex_exit(&rp->r_statelock); 7897 7898 if (nvp) { 7899 VN_RELE(nvp); 7900 } 7901 goto link_call; 7902 } 7903 7904 if (error) { 7905 VN_RELE(ovp); 7906 nfs_rw_exit(&odrp->r_rwlock); 7907 nfs_rw_exit(&ndrp->r_rwlock); 7908 if (nvp) { 7909 VN_RELE(nvp); 7910 } 7911 return (error); 7912 } 7913 7914 /* 7915 * when renaming directories to be a subdirectory of a 7916 * different parent, the dnlc entry for ".." will no 7917 * longer be valid, so it must be removed 7918 */ 7919 rp = VTOR4(ovp); 7920 if (ndvp != odvp) { 7921 if (ovp->v_type == VDIR) { 7922 dnlc_remove(ovp, ".."); 7923 if (rp->r_dir != NULL) 7924 nfs4_purge_rddir_cache(ovp); 7925 } 7926 } 7927 7928 /* 7929 * If we are renaming the unlinked file, update the 7930 * r_unldvp and r_unlname as needed. 7931 */ 7932 mutex_enter(&rp->r_statelock); 7933 if (rp->r_unldvp != NULL) { 7934 if (strcmp(rp->r_unlname, onm) == 0) { 7935 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 7936 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 7937 if (ndvp != rp->r_unldvp) { 7938 VN_RELE(rp->r_unldvp); 7939 rp->r_unldvp = ndvp; 7940 VN_HOLD(ndvp); 7941 } 7942 } 7943 } 7944 mutex_exit(&rp->r_statelock); 7945 7946 /* 7947 * Notify the rename vnevents to source vnode, and to the target 7948 * vnode if it already existed. 7949 */ 7950 if (error == 0) { 7951 vnode_t *tvp; 7952 rnode4_t *trp; 7953 /* 7954 * Notify the vnode. Each links is represented by 7955 * a different vnode, in nfsv4. 7956 */ 7957 if (nvp) { 7958 trp = VTOR4(nvp); 7959 tvp = nvp; 7960 if (IS_SHADOW(nvp, trp)) 7961 tvp = RTOV4(trp); 7962 vnevent_rename_dest(tvp, ndvp, nnm, ct); 7963 } 7964 7965 /* 7966 * if the source and destination directory are not the 7967 * same notify the destination directory. 7968 */ 7969 if (VTOR4(odvp) != VTOR4(ndvp)) { 7970 trp = VTOR4(ndvp); 7971 tvp = ndvp; 7972 if (IS_SHADOW(ndvp, trp)) 7973 tvp = RTOV4(trp); 7974 vnevent_rename_dest_dir(tvp, ct); 7975 } 7976 7977 trp = VTOR4(ovp); 7978 tvp = ovp; 7979 if (IS_SHADOW(ovp, trp)) 7980 tvp = RTOV4(trp); 7981 vnevent_rename_src(tvp, odvp, onm, ct); 7982 } 7983 7984 if (nvp) { 7985 VN_RELE(nvp); 7986 } 7987 VN_RELE(ovp); 7988 7989 nfs_rw_exit(&odrp->r_rwlock); 7990 nfs_rw_exit(&ndrp->r_rwlock); 7991 7992 return (error); 7993 } 7994 7995 /* 7996 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 7997 * when it is known that the filehandle is persistent through rename. 7998 * 7999 * Rename requires that the current fh be the target directory and the 8000 * saved fh be the source directory. After the operation, the current fh 8001 * is unchanged. 8002 * The compound op structure for persistent fh rename is: 8003 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8004 * Rather than bother with the directory postop args, we'll simply 8005 * update that a change occurred in the cache, so no post-op getattrs. 8006 */ 8007 static int 8008 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8009 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8010 { 8011 COMPOUND4args_clnt args; 8012 COMPOUND4res_clnt res, *resp = NULL; 8013 nfs_argop4 *argop; 8014 nfs_resop4 *resop; 8015 int doqueue, argoplist_size; 8016 mntinfo4_t *mi; 8017 rnode4_t *odrp = VTOR4(odvp); 8018 rnode4_t *ndrp = VTOR4(ndvp); 8019 RENAME4res *rn_res; 8020 bool_t needrecov; 8021 nfs4_recov_state_t recov_state; 8022 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8023 dirattr_info_t dinfo, *dinfop; 8024 8025 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8026 8027 recov_state.rs_flags = 0; 8028 recov_state.rs_num_retry_despite_err = 0; 8029 8030 /* 8031 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8032 * 8033 * If source/target are different dirs, then append putfh(src); getattr 8034 */ 8035 args.array_len = (odvp == ndvp) ? 5 : 7; 8036 argoplist_size = args.array_len * sizeof (nfs_argop4); 8037 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8038 8039 recov_retry: 8040 *statp = NFS4_OK; 8041 8042 /* No need to Lookup the file, persistent fh */ 8043 args.ctag = TAG_RENAME; 8044 8045 mi = VTOMI4(odvp); 8046 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8047 if (e.error) { 8048 kmem_free(argop, argoplist_size); 8049 return (e.error); 8050 } 8051 8052 /* 0: putfh source directory */ 8053 argop[0].argop = OP_CPUTFH; 8054 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8055 8056 /* 1: Save source fh to free up current for target */ 8057 argop[1].argop = OP_SAVEFH; 8058 8059 /* 2: putfh targetdir */ 8060 argop[2].argop = OP_CPUTFH; 8061 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8062 8063 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8064 argop[3].argop = OP_CRENAME; 8065 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8066 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8067 8068 /* 4: getattr (targetdir) */ 8069 argop[4].argop = OP_GETATTR; 8070 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8071 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8072 8073 if (ndvp != odvp) { 8074 8075 /* 5: putfh (sourcedir) */ 8076 argop[5].argop = OP_CPUTFH; 8077 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8078 8079 /* 6: getattr (sourcedir) */ 8080 argop[6].argop = OP_GETATTR; 8081 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8082 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8083 } 8084 8085 dnlc_remove(odvp, onm); 8086 dnlc_remove(ndvp, nnm); 8087 8088 doqueue = 1; 8089 dinfo.di_time_call = gethrtime(); 8090 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8091 8092 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8093 if (e.error) { 8094 PURGE_ATTRCACHE4(odvp); 8095 PURGE_ATTRCACHE4(ndvp); 8096 } else { 8097 *statp = res.status; 8098 } 8099 8100 if (needrecov) { 8101 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8102 OP_RENAME, NULL) == FALSE) { 8103 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8104 if (!e.error) 8105 (void) xdr_free(xdr_COMPOUND4res_clnt, 8106 (caddr_t)&res); 8107 goto recov_retry; 8108 } 8109 } 8110 8111 if (!e.error) { 8112 resp = &res; 8113 /* 8114 * as long as OP_RENAME 8115 */ 8116 if (res.status != NFS4_OK && res.array_len <= 4) { 8117 e.error = geterrno4(res.status); 8118 PURGE_ATTRCACHE4(odvp); 8119 PURGE_ATTRCACHE4(ndvp); 8120 /* 8121 * System V defines rename to return EEXIST, not 8122 * ENOTEMPTY if the target directory is not empty. 8123 * Over the wire, the error is NFSERR_ENOTEMPTY 8124 * which geterrno4 maps to ENOTEMPTY. 8125 */ 8126 if (e.error == ENOTEMPTY) 8127 e.error = EEXIST; 8128 } else { 8129 8130 resop = &res.array[3]; /* rename res */ 8131 rn_res = &resop->nfs_resop4_u.oprename; 8132 8133 if (res.status == NFS4_OK) { 8134 /* 8135 * Update target attribute, readdir and dnlc 8136 * caches. 8137 */ 8138 dinfo.di_garp = 8139 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8140 dinfo.di_cred = cr; 8141 dinfop = &dinfo; 8142 } else 8143 dinfop = NULL; 8144 8145 nfs4_update_dircaches(&rn_res->target_cinfo, 8146 ndvp, NULL, NULL, dinfop); 8147 8148 /* 8149 * Update source attribute, readdir and dnlc caches 8150 * 8151 */ 8152 if (ndvp != odvp) { 8153 if (dinfop) 8154 dinfo.di_garp = 8155 &(res.array[6].nfs_resop4_u. 8156 opgetattr.ga_res); 8157 8158 nfs4_update_dircaches(&rn_res->source_cinfo, 8159 odvp, NULL, NULL, dinfop); 8160 } 8161 8162 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8163 nnm); 8164 } 8165 } 8166 8167 if (resp) 8168 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8169 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8170 kmem_free(argop, argoplist_size); 8171 8172 return (e.error); 8173 } 8174 8175 /* 8176 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8177 * it is possible for the filehandle to change due to the rename. 8178 * 8179 * The compound req in this case includes a post-rename lookup and getattr 8180 * to ensure that we have the correct fh and attributes for the object. 8181 * 8182 * Rename requires that the current fh be the target directory and the 8183 * saved fh be the source directory. After the operation, the current fh 8184 * is unchanged. 8185 * 8186 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8187 * update the filehandle for the renamed object. We also get the old 8188 * filehandle for historical reasons; this should be taken out sometime. 8189 * This results in a rather cumbersome compound... 8190 * 8191 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8192 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8193 * 8194 */ 8195 static int 8196 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8197 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8198 { 8199 COMPOUND4args_clnt args; 8200 COMPOUND4res_clnt res, *resp = NULL; 8201 int argoplist_size; 8202 nfs_argop4 *argop; 8203 nfs_resop4 *resop; 8204 int doqueue; 8205 mntinfo4_t *mi; 8206 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8207 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8208 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8209 RENAME4res *rn_res; 8210 GETFH4res *ngf_res; 8211 bool_t needrecov; 8212 nfs4_recov_state_t recov_state; 8213 hrtime_t t; 8214 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8215 dirattr_info_t dinfo, *dinfop = &dinfo; 8216 8217 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8218 8219 recov_state.rs_flags = 0; 8220 recov_state.rs_num_retry_despite_err = 0; 8221 8222 recov_retry: 8223 *statp = NFS4_OK; 8224 8225 /* 8226 * There is a window between the RPC and updating the path and 8227 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8228 * code, so that it doesn't try to use the old path during that 8229 * window. 8230 */ 8231 mutex_enter(&orp->r_statelock); 8232 while (orp->r_flags & R4RECEXPFH) { 8233 klwp_t *lwp = ttolwp(curthread); 8234 8235 if (lwp != NULL) 8236 lwp->lwp_nostop++; 8237 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8238 mutex_exit(&orp->r_statelock); 8239 if (lwp != NULL) 8240 lwp->lwp_nostop--; 8241 return (EINTR); 8242 } 8243 if (lwp != NULL) 8244 lwp->lwp_nostop--; 8245 } 8246 orp->r_flags |= R4RECEXPFH; 8247 mutex_exit(&orp->r_statelock); 8248 8249 mi = VTOMI4(odvp); 8250 8251 args.ctag = TAG_RENAME_VFH; 8252 args.array_len = (odvp == ndvp) ? 10 : 12; 8253 argoplist_size = args.array_len * sizeof (nfs_argop4); 8254 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8255 8256 /* 8257 * Rename ops: 8258 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8259 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8260 * LOOKUP(trgt), GETFH(new), GETATTR, 8261 * 8262 * if (odvp != ndvp) 8263 * add putfh(sourcedir), getattr(sourcedir) } 8264 */ 8265 args.array = argop; 8266 8267 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8268 &recov_state, NULL); 8269 if (e.error) { 8270 kmem_free(argop, argoplist_size); 8271 mutex_enter(&orp->r_statelock); 8272 orp->r_flags &= ~R4RECEXPFH; 8273 cv_broadcast(&orp->r_cv); 8274 mutex_exit(&orp->r_statelock); 8275 return (e.error); 8276 } 8277 8278 /* 0: putfh source directory */ 8279 argop[0].argop = OP_CPUTFH; 8280 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8281 8282 /* 1: Save source fh to free up current for target */ 8283 argop[1].argop = OP_SAVEFH; 8284 8285 /* 2: Lookup pre-rename fh of renamed object */ 8286 argop[2].argop = OP_CLOOKUP; 8287 argop[2].nfs_argop4_u.opclookup.cname = onm; 8288 8289 /* 3: getfh fh of renamed object (before rename) */ 8290 argop[3].argop = OP_GETFH; 8291 8292 /* 4: putfh targetdir */ 8293 argop[4].argop = OP_CPUTFH; 8294 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8295 8296 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8297 argop[5].argop = OP_CRENAME; 8298 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8299 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8300 8301 /* 6: getattr of target dir (post op attrs) */ 8302 argop[6].argop = OP_GETATTR; 8303 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8304 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8305 8306 /* 7: Lookup post-rename fh of renamed object */ 8307 argop[7].argop = OP_CLOOKUP; 8308 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8309 8310 /* 8: getfh fh of renamed object (after rename) */ 8311 argop[8].argop = OP_GETFH; 8312 8313 /* 9: getattr of renamed object */ 8314 argop[9].argop = OP_GETATTR; 8315 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8316 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8317 8318 /* 8319 * If source/target dirs are different, then get new post-op 8320 * attrs for source dir also. 8321 */ 8322 if (ndvp != odvp) { 8323 /* 10: putfh (sourcedir) */ 8324 argop[10].argop = OP_CPUTFH; 8325 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8326 8327 /* 11: getattr (sourcedir) */ 8328 argop[11].argop = OP_GETATTR; 8329 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8330 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8331 } 8332 8333 dnlc_remove(odvp, onm); 8334 dnlc_remove(ndvp, nnm); 8335 8336 doqueue = 1; 8337 t = gethrtime(); 8338 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8339 8340 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8341 if (e.error) { 8342 PURGE_ATTRCACHE4(odvp); 8343 PURGE_ATTRCACHE4(ndvp); 8344 if (!needrecov) { 8345 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8346 &recov_state, needrecov); 8347 goto out; 8348 } 8349 } else { 8350 *statp = res.status; 8351 } 8352 8353 if (needrecov) { 8354 bool_t abort; 8355 8356 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8357 OP_RENAME, NULL); 8358 if (abort == FALSE) { 8359 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8360 &recov_state, needrecov); 8361 kmem_free(argop, argoplist_size); 8362 if (!e.error) 8363 (void) xdr_free(xdr_COMPOUND4res_clnt, 8364 (caddr_t)&res); 8365 mutex_enter(&orp->r_statelock); 8366 orp->r_flags &= ~R4RECEXPFH; 8367 cv_broadcast(&orp->r_cv); 8368 mutex_exit(&orp->r_statelock); 8369 goto recov_retry; 8370 } else { 8371 if (e.error != 0) { 8372 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8373 &recov_state, needrecov); 8374 goto out; 8375 } 8376 /* fall through for res.status case */ 8377 } 8378 } 8379 8380 resp = &res; 8381 /* 8382 * If OP_RENAME (or any prev op) failed, then return an error. 8383 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8384 */ 8385 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8386 /* 8387 * Error in an op other than last Getattr 8388 */ 8389 e.error = geterrno4(res.status); 8390 PURGE_ATTRCACHE4(odvp); 8391 PURGE_ATTRCACHE4(ndvp); 8392 /* 8393 * System V defines rename to return EEXIST, not 8394 * ENOTEMPTY if the target directory is not empty. 8395 * Over the wire, the error is NFSERR_ENOTEMPTY 8396 * which geterrno4 maps to ENOTEMPTY. 8397 */ 8398 if (e.error == ENOTEMPTY) 8399 e.error = EEXIST; 8400 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8401 needrecov); 8402 goto out; 8403 } 8404 8405 /* rename results */ 8406 rn_res = &res.array[5].nfs_resop4_u.oprename; 8407 8408 if (res.status == NFS4_OK) { 8409 /* Update target attribute, readdir and dnlc caches */ 8410 dinfo.di_garp = 8411 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8412 dinfo.di_cred = cr; 8413 dinfo.di_time_call = t; 8414 } else 8415 dinfop = NULL; 8416 8417 /* Update source cache attribute, readdir and dnlc caches */ 8418 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8419 8420 /* Update source cache attribute, readdir and dnlc caches */ 8421 if (ndvp != odvp) { 8422 8423 /* 8424 * If dinfop is non-NULL, then compound succeded, so 8425 * set di_garp to attrs for source dir. dinfop is only 8426 * set to NULL when compound fails. 8427 */ 8428 if (dinfop) 8429 dinfo.di_garp = 8430 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8431 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8432 dinfop); 8433 } 8434 8435 /* 8436 * Update the rnode with the new component name and args, 8437 * and if the file handle changed, also update it with the new fh. 8438 * This is only necessary if the target object has an rnode 8439 * entry and there is no need to create one for it. 8440 */ 8441 resop = &res.array[8]; /* getfh new res */ 8442 ngf_res = &resop->nfs_resop4_u.opgetfh; 8443 8444 /* 8445 * Update the path and filehandle for the renamed object. 8446 */ 8447 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8448 8449 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8450 8451 if (res.status == NFS4_OK) { 8452 resop++; /* getattr res */ 8453 e.error = nfs4_update_attrcache(res.status, 8454 &resop->nfs_resop4_u.opgetattr.ga_res, 8455 t, ovp, cr); 8456 } 8457 8458 out: 8459 kmem_free(argop, argoplist_size); 8460 if (resp) 8461 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8462 mutex_enter(&orp->r_statelock); 8463 orp->r_flags &= ~R4RECEXPFH; 8464 cv_broadcast(&orp->r_cv); 8465 mutex_exit(&orp->r_statelock); 8466 8467 return (e.error); 8468 } 8469 8470 /* ARGSUSED */ 8471 static int 8472 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8473 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8474 { 8475 int error; 8476 vnode_t *vp; 8477 8478 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8479 return (EPERM); 8480 /* 8481 * As ".." has special meaning and rather than send a mkdir 8482 * over the wire to just let the server freak out, we just 8483 * short circuit it here and return EEXIST 8484 */ 8485 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8486 return (EEXIST); 8487 8488 /* 8489 * Decision to get the right gid and setgid bit of the 8490 * new directory is now made in call_nfs4_create_req. 8491 */ 8492 va->va_mask |= AT_MODE; 8493 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8494 if (error) 8495 return (error); 8496 8497 *vpp = vp; 8498 return (0); 8499 } 8500 8501 8502 /* 8503 * rmdir is using the same remove v4 op as does remove. 8504 * Remove requires that the current fh be the target directory. 8505 * After the operation, the current fh is unchanged. 8506 * The compound op structure is: 8507 * PUTFH(targetdir), REMOVE 8508 */ 8509 /*ARGSUSED4*/ 8510 static int 8511 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8512 caller_context_t *ct, int flags) 8513 { 8514 int need_end_op = FALSE; 8515 COMPOUND4args_clnt args; 8516 COMPOUND4res_clnt res, *resp = NULL; 8517 REMOVE4res *rm_res; 8518 nfs_argop4 argop[3]; 8519 nfs_resop4 *resop; 8520 vnode_t *vp; 8521 int doqueue; 8522 mntinfo4_t *mi; 8523 rnode4_t *drp; 8524 bool_t needrecov = FALSE; 8525 nfs4_recov_state_t recov_state; 8526 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8527 dirattr_info_t dinfo, *dinfop; 8528 8529 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8530 return (EPERM); 8531 /* 8532 * As ".." has special meaning and rather than send a rmdir 8533 * over the wire to just let the server freak out, we just 8534 * short circuit it here and return EEXIST 8535 */ 8536 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8537 return (EEXIST); 8538 8539 drp = VTOR4(dvp); 8540 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8541 return (EINTR); 8542 8543 /* 8544 * Attempt to prevent a rmdir(".") from succeeding. 8545 */ 8546 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8547 if (e.error) { 8548 nfs_rw_exit(&drp->r_rwlock); 8549 return (e.error); 8550 } 8551 if (vp == cdir) { 8552 VN_RELE(vp); 8553 nfs_rw_exit(&drp->r_rwlock); 8554 return (EINVAL); 8555 } 8556 8557 /* 8558 * Since nfsv4 remove op works on both files and directories, 8559 * check that the removed object is indeed a directory. 8560 */ 8561 if (vp->v_type != VDIR) { 8562 VN_RELE(vp); 8563 nfs_rw_exit(&drp->r_rwlock); 8564 return (ENOTDIR); 8565 } 8566 8567 /* 8568 * First just remove the entry from the name cache, as it 8569 * is most likely an entry for this vp. 8570 */ 8571 dnlc_remove(dvp, nm); 8572 8573 /* 8574 * If there vnode reference count is greater than one, then 8575 * there may be additional references in the DNLC which will 8576 * need to be purged. First, trying removing the entry for 8577 * the parent directory and see if that removes the additional 8578 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8579 * to completely remove any references to the directory which 8580 * might still exist in the DNLC. 8581 */ 8582 if (vp->v_count > 1) { 8583 dnlc_remove(vp, ".."); 8584 if (vp->v_count > 1) 8585 dnlc_purge_vp(vp); 8586 } 8587 8588 mi = VTOMI4(dvp); 8589 recov_state.rs_flags = 0; 8590 recov_state.rs_num_retry_despite_err = 0; 8591 8592 recov_retry: 8593 args.ctag = TAG_RMDIR; 8594 8595 /* 8596 * Rmdir ops: putfh dir; remove 8597 */ 8598 args.array_len = 3; 8599 args.array = argop; 8600 8601 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8602 if (e.error) { 8603 nfs_rw_exit(&drp->r_rwlock); 8604 return (e.error); 8605 } 8606 need_end_op = TRUE; 8607 8608 /* putfh directory */ 8609 argop[0].argop = OP_CPUTFH; 8610 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8611 8612 /* remove */ 8613 argop[1].argop = OP_CREMOVE; 8614 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8615 8616 /* getattr (postop attrs for dir that contained removed dir) */ 8617 argop[2].argop = OP_GETATTR; 8618 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8619 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8620 8621 dinfo.di_time_call = gethrtime(); 8622 doqueue = 1; 8623 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8624 8625 PURGE_ATTRCACHE4(vp); 8626 8627 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8628 if (e.error) { 8629 PURGE_ATTRCACHE4(dvp); 8630 } 8631 8632 if (needrecov) { 8633 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8634 NULL, OP_REMOVE, NULL) == FALSE) { 8635 if (!e.error) 8636 (void) xdr_free(xdr_COMPOUND4res_clnt, 8637 (caddr_t)&res); 8638 8639 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8640 needrecov); 8641 need_end_op = FALSE; 8642 goto recov_retry; 8643 } 8644 } 8645 8646 if (!e.error) { 8647 resp = &res; 8648 8649 /* 8650 * Only return error if first 2 ops (OP_REMOVE or earlier) 8651 * failed. 8652 */ 8653 if (res.status != NFS4_OK && res.array_len <= 2) { 8654 e.error = geterrno4(res.status); 8655 PURGE_ATTRCACHE4(dvp); 8656 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8657 &recov_state, needrecov); 8658 need_end_op = FALSE; 8659 nfs4_purge_stale_fh(e.error, dvp, cr); 8660 /* 8661 * System V defines rmdir to return EEXIST, not 8662 * ENOTEMPTY if the directory is not empty. Over 8663 * the wire, the error is NFSERR_ENOTEMPTY which 8664 * geterrno4 maps to ENOTEMPTY. 8665 */ 8666 if (e.error == ENOTEMPTY) 8667 e.error = EEXIST; 8668 } else { 8669 resop = &res.array[1]; /* remove res */ 8670 rm_res = &resop->nfs_resop4_u.opremove; 8671 8672 if (res.status == NFS4_OK) { 8673 resop = &res.array[2]; /* dir attrs */ 8674 dinfo.di_garp = 8675 &resop->nfs_resop4_u.opgetattr.ga_res; 8676 dinfo.di_cred = cr; 8677 dinfop = &dinfo; 8678 } else 8679 dinfop = NULL; 8680 8681 /* Update dir attribute, readdir and dnlc caches */ 8682 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8683 dinfop); 8684 8685 /* destroy rddir cache for dir that was removed */ 8686 if (VTOR4(vp)->r_dir != NULL) 8687 nfs4_purge_rddir_cache(vp); 8688 } 8689 } 8690 8691 if (need_end_op) 8692 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8693 8694 nfs_rw_exit(&drp->r_rwlock); 8695 8696 if (resp) 8697 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8698 8699 if (e.error == 0) { 8700 vnode_t *tvp; 8701 rnode4_t *trp; 8702 trp = VTOR4(vp); 8703 tvp = vp; 8704 if (IS_SHADOW(vp, trp)) 8705 tvp = RTOV4(trp); 8706 vnevent_rmdir(tvp, dvp, nm, ct); 8707 } 8708 8709 VN_RELE(vp); 8710 8711 return (e.error); 8712 } 8713 8714 /* ARGSUSED */ 8715 static int 8716 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8717 caller_context_t *ct, int flags) 8718 { 8719 int error; 8720 vnode_t *vp; 8721 rnode4_t *rp; 8722 char *contents; 8723 mntinfo4_t *mi = VTOMI4(dvp); 8724 8725 if (nfs_zone() != mi->mi_zone) 8726 return (EPERM); 8727 if (!(mi->mi_flags & MI4_SYMLINK)) 8728 return (EOPNOTSUPP); 8729 8730 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8731 if (error) 8732 return (error); 8733 8734 ASSERT(nfs4_consistent_type(vp)); 8735 rp = VTOR4(vp); 8736 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8737 8738 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8739 8740 if (contents != NULL) { 8741 mutex_enter(&rp->r_statelock); 8742 if (rp->r_symlink.contents == NULL) { 8743 rp->r_symlink.len = strlen(tnm); 8744 bcopy(tnm, contents, rp->r_symlink.len); 8745 rp->r_symlink.contents = contents; 8746 rp->r_symlink.size = MAXPATHLEN; 8747 mutex_exit(&rp->r_statelock); 8748 } else { 8749 mutex_exit(&rp->r_statelock); 8750 kmem_free((void *)contents, MAXPATHLEN); 8751 } 8752 } 8753 } 8754 VN_RELE(vp); 8755 8756 return (error); 8757 } 8758 8759 8760 /* 8761 * Read directory entries. 8762 * There are some weird things to look out for here. The uio_loffset 8763 * field is either 0 or it is the offset returned from a previous 8764 * readdir. It is an opaque value used by the server to find the 8765 * correct directory block to read. The count field is the number 8766 * of blocks to read on the server. This is advisory only, the server 8767 * may return only one block's worth of entries. Entries may be compressed 8768 * on the server. 8769 */ 8770 /* ARGSUSED */ 8771 static int 8772 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8773 caller_context_t *ct, int flags) 8774 { 8775 int error; 8776 uint_t count; 8777 rnode4_t *rp; 8778 rddir4_cache *rdc; 8779 rddir4_cache *rrdc; 8780 8781 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8782 return (EIO); 8783 rp = VTOR4(vp); 8784 8785 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8786 8787 /* 8788 * Make sure that the directory cache is valid. 8789 */ 8790 if (rp->r_dir != NULL) { 8791 if (nfs_disable_rddir_cache != 0) { 8792 /* 8793 * Setting nfs_disable_rddir_cache in /etc/system 8794 * allows interoperability with servers that do not 8795 * properly update the attributes of directories. 8796 * Any cached information gets purged before an 8797 * access is made to it. 8798 */ 8799 nfs4_purge_rddir_cache(vp); 8800 } 8801 8802 error = nfs4_validate_caches(vp, cr); 8803 if (error) 8804 return (error); 8805 } 8806 8807 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8808 8809 /* 8810 * Short circuit last readdir which always returns 0 bytes. 8811 * This can be done after the directory has been read through 8812 * completely at least once. This will set r_direof which 8813 * can be used to find the value of the last cookie. 8814 */ 8815 mutex_enter(&rp->r_statelock); 8816 if (rp->r_direof != NULL && 8817 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8818 mutex_exit(&rp->r_statelock); 8819 #ifdef DEBUG 8820 nfs4_readdir_cache_shorts++; 8821 #endif 8822 if (eofp) 8823 *eofp = 1; 8824 return (0); 8825 } 8826 8827 /* 8828 * Look for a cache entry. Cache entries are identified 8829 * by the NFS cookie value and the byte count requested. 8830 */ 8831 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8832 8833 /* 8834 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8835 */ 8836 if (rdc == NULL) { 8837 mutex_exit(&rp->r_statelock); 8838 return (EINTR); 8839 } 8840 8841 /* 8842 * Check to see if we need to fill this entry in. 8843 */ 8844 if (rdc->flags & RDDIRREQ) { 8845 rdc->flags &= ~RDDIRREQ; 8846 rdc->flags |= RDDIR; 8847 mutex_exit(&rp->r_statelock); 8848 8849 /* 8850 * Do the readdir. 8851 */ 8852 nfs4readdir(vp, rdc, cr); 8853 8854 /* 8855 * Reacquire the lock, so that we can continue 8856 */ 8857 mutex_enter(&rp->r_statelock); 8858 /* 8859 * The entry is now complete 8860 */ 8861 rdc->flags &= ~RDDIR; 8862 } 8863 8864 ASSERT(!(rdc->flags & RDDIR)); 8865 8866 /* 8867 * If an error occurred while attempting 8868 * to fill the cache entry, mark the entry invalid and 8869 * just return the error. 8870 */ 8871 if (rdc->error) { 8872 error = rdc->error; 8873 rdc->flags |= RDDIRREQ; 8874 rddir4_cache_rele(rp, rdc); 8875 mutex_exit(&rp->r_statelock); 8876 return (error); 8877 } 8878 8879 /* 8880 * The cache entry is complete and good, 8881 * copyout the dirent structs to the calling 8882 * thread. 8883 */ 8884 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 8885 8886 /* 8887 * If no error occurred during the copyout, 8888 * update the offset in the uio struct to 8889 * contain the value of the next NFS 4 cookie 8890 * and set the eof value appropriately. 8891 */ 8892 if (!error) { 8893 uiop->uio_loffset = rdc->nfs4_ncookie; 8894 if (eofp) 8895 *eofp = rdc->eof; 8896 } 8897 8898 /* 8899 * Decide whether to do readahead. Don't if we 8900 * have already read to the end of directory. 8901 */ 8902 if (rdc->eof) { 8903 /* 8904 * Make the entry the direof only if it is cached 8905 */ 8906 if (rdc->flags & RDDIRCACHED) 8907 rp->r_direof = rdc; 8908 rddir4_cache_rele(rp, rdc); 8909 mutex_exit(&rp->r_statelock); 8910 return (error); 8911 } 8912 8913 /* Determine if a readdir readahead should be done */ 8914 if (!(rp->r_flags & R4LOOKUP)) { 8915 rddir4_cache_rele(rp, rdc); 8916 mutex_exit(&rp->r_statelock); 8917 return (error); 8918 } 8919 8920 /* 8921 * Now look for a readahead entry. 8922 * 8923 * Check to see whether we found an entry for the readahead. 8924 * If so, we don't need to do anything further, so free the new 8925 * entry if one was allocated. Otherwise, allocate a new entry, add 8926 * it to the cache, and then initiate an asynchronous readdir 8927 * operation to fill it. 8928 */ 8929 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 8930 8931 /* 8932 * A readdir cache entry could not be obtained for the readahead. In 8933 * this case we skip the readahead and return. 8934 */ 8935 if (rrdc == NULL) { 8936 rddir4_cache_rele(rp, rdc); 8937 mutex_exit(&rp->r_statelock); 8938 return (error); 8939 } 8940 8941 /* 8942 * Check to see if we need to fill this entry in. 8943 */ 8944 if (rrdc->flags & RDDIRREQ) { 8945 rrdc->flags &= ~RDDIRREQ; 8946 rrdc->flags |= RDDIR; 8947 rddir4_cache_rele(rp, rdc); 8948 mutex_exit(&rp->r_statelock); 8949 #ifdef DEBUG 8950 nfs4_readdir_readahead++; 8951 #endif 8952 /* 8953 * Do the readdir. 8954 */ 8955 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 8956 return (error); 8957 } 8958 8959 rddir4_cache_rele(rp, rrdc); 8960 rddir4_cache_rele(rp, rdc); 8961 mutex_exit(&rp->r_statelock); 8962 return (error); 8963 } 8964 8965 static int 8966 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8967 { 8968 int error; 8969 rnode4_t *rp; 8970 8971 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 8972 8973 rp = VTOR4(vp); 8974 8975 /* 8976 * Obtain the readdir results for the caller. 8977 */ 8978 nfs4readdir(vp, rdc, cr); 8979 8980 mutex_enter(&rp->r_statelock); 8981 /* 8982 * The entry is now complete 8983 */ 8984 rdc->flags &= ~RDDIR; 8985 8986 error = rdc->error; 8987 if (error) 8988 rdc->flags |= RDDIRREQ; 8989 rddir4_cache_rele(rp, rdc); 8990 mutex_exit(&rp->r_statelock); 8991 8992 return (error); 8993 } 8994 8995 /* 8996 * Read directory entries. 8997 * There are some weird things to look out for here. The uio_loffset 8998 * field is either 0 or it is the offset returned from a previous 8999 * readdir. It is an opaque value used by the server to find the 9000 * correct directory block to read. The count field is the number 9001 * of blocks to read on the server. This is advisory only, the server 9002 * may return only one block's worth of entries. Entries may be compressed 9003 * on the server. 9004 * 9005 * Generates the following compound request: 9006 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9007 * must include a Lookupp as well. In this case, send: 9008 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9009 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9010 * 9011 * Get complete attributes and filehandles for entries if this is the 9012 * first read of the directory. Otherwise, just get fileid's. 9013 */ 9014 static void 9015 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9016 { 9017 COMPOUND4args_clnt args; 9018 COMPOUND4res_clnt res; 9019 READDIR4args *rargs; 9020 READDIR4res_clnt *rd_res; 9021 bitmap4 rd_bitsval; 9022 nfs_argop4 argop[5]; 9023 nfs_resop4 *resop; 9024 rnode4_t *rp = VTOR4(vp); 9025 mntinfo4_t *mi = VTOMI4(vp); 9026 int doqueue; 9027 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9028 vnode_t *dvp; 9029 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9030 int num_ops, res_opcnt; 9031 bool_t needrecov = FALSE; 9032 nfs4_recov_state_t recov_state; 9033 hrtime_t t; 9034 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9035 9036 ASSERT(nfs_zone() == mi->mi_zone); 9037 ASSERT(rdc->flags & RDDIR); 9038 ASSERT(rdc->entries == NULL); 9039 9040 /* 9041 * If rp were a stub, it should have triggered and caused 9042 * a mount for us to get this far. 9043 */ 9044 ASSERT(!RP_ISSTUB(rp)); 9045 9046 num_ops = 2; 9047 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9048 /* 9049 * Since nfsv4 readdir may not return entries for "." and "..", 9050 * the client must recreate them: 9051 * To find the correct nodeid, do the following: 9052 * For current node, get nodeid from dnlc. 9053 * - if current node is rootvp, set pnodeid to nodeid. 9054 * - else if parent is in the dnlc, get its nodeid from there. 9055 * - else add LOOKUPP+GETATTR to compound. 9056 */ 9057 nodeid = rp->r_attr.va_nodeid; 9058 if (vp->v_flag & VROOT) { 9059 pnodeid = nodeid; /* root of mount point */ 9060 } else { 9061 dvp = dnlc_lookup(vp, ".."); 9062 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9063 /* parent in dnlc cache - no need for otw */ 9064 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9065 } else { 9066 /* 9067 * parent not in dnlc cache, 9068 * do lookupp to get its id 9069 */ 9070 num_ops = 5; 9071 pnodeid = 0; /* set later by getattr parent */ 9072 } 9073 if (dvp) 9074 VN_RELE(dvp); 9075 } 9076 } 9077 recov_state.rs_flags = 0; 9078 recov_state.rs_num_retry_despite_err = 0; 9079 9080 /* Save the original mount point security flavor */ 9081 (void) save_mnt_secinfo(mi->mi_curr_serv); 9082 9083 recov_retry: 9084 args.ctag = TAG_READDIR; 9085 9086 args.array = argop; 9087 args.array_len = num_ops; 9088 9089 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9090 &recov_state, NULL)) { 9091 /* 9092 * If readdir a node that is a stub for a crossed mount point, 9093 * keep the original secinfo flavor for the current file 9094 * system, not the crossed one. 9095 */ 9096 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9097 rdc->error = e.error; 9098 return; 9099 } 9100 9101 /* 9102 * Determine which attrs to request for dirents. This code 9103 * must be protected by nfs4_start/end_fop because of r_server 9104 * (which will change during failover recovery). 9105 * 9106 */ 9107 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9108 /* 9109 * Get all vattr attrs plus filehandle and rdattr_error 9110 */ 9111 rd_bitsval = NFS4_VATTR_MASK | 9112 FATTR4_RDATTR_ERROR_MASK | 9113 FATTR4_FILEHANDLE_MASK; 9114 9115 if (rp->r_flags & R4READDIRWATTR) { 9116 mutex_enter(&rp->r_statelock); 9117 rp->r_flags &= ~R4READDIRWATTR; 9118 mutex_exit(&rp->r_statelock); 9119 } 9120 } else { 9121 servinfo4_t *svp = rp->r_server; 9122 9123 /* 9124 * Already read directory. Use readdir with 9125 * no attrs (except for mounted_on_fileid) for updates. 9126 */ 9127 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9128 9129 /* 9130 * request mounted on fileid if supported, else request 9131 * fileid. maybe we should verify that fileid is supported 9132 * and request something else if not. 9133 */ 9134 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9135 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9136 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9137 nfs_rw_exit(&svp->sv_lock); 9138 } 9139 9140 /* putfh directory fh */ 9141 argop[0].argop = OP_CPUTFH; 9142 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9143 9144 argop[1].argop = OP_READDIR; 9145 rargs = &argop[1].nfs_argop4_u.opreaddir; 9146 /* 9147 * 1 and 2 are reserved for client "." and ".." entry offset. 9148 * cookie 0 should be used over-the-wire to start reading at 9149 * the beginning of the directory excluding "." and "..". 9150 */ 9151 if (rdc->nfs4_cookie == 0 || 9152 rdc->nfs4_cookie == 1 || 9153 rdc->nfs4_cookie == 2) { 9154 rargs->cookie = (nfs_cookie4)0; 9155 rargs->cookieverf = 0; 9156 } else { 9157 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9158 mutex_enter(&rp->r_statelock); 9159 rargs->cookieverf = rp->r_cookieverf4; 9160 mutex_exit(&rp->r_statelock); 9161 } 9162 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9163 rargs->maxcount = mi->mi_tsize; 9164 rargs->attr_request = rd_bitsval; 9165 rargs->rdc = rdc; 9166 rargs->dvp = vp; 9167 rargs->mi = mi; 9168 rargs->cr = cr; 9169 9170 9171 /* 9172 * If count < than the minimum required, we return no entries 9173 * and fail with EINVAL 9174 */ 9175 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9176 rdc->error = EINVAL; 9177 goto out; 9178 } 9179 9180 if (args.array_len == 5) { 9181 /* 9182 * Add lookupp and getattr for parent nodeid. 9183 */ 9184 argop[2].argop = OP_LOOKUPP; 9185 9186 argop[3].argop = OP_GETFH; 9187 9188 /* getattr parent */ 9189 argop[4].argop = OP_GETATTR; 9190 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9191 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9192 } 9193 9194 doqueue = 1; 9195 9196 if (mi->mi_io_kstats) { 9197 mutex_enter(&mi->mi_lock); 9198 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9199 mutex_exit(&mi->mi_lock); 9200 } 9201 9202 /* capture the time of this call */ 9203 rargs->t = t = gethrtime(); 9204 9205 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9206 9207 if (mi->mi_io_kstats) { 9208 mutex_enter(&mi->mi_lock); 9209 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9210 mutex_exit(&mi->mi_lock); 9211 } 9212 9213 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9214 9215 /* 9216 * If RPC error occurred and it isn't an error that 9217 * triggers recovery, then go ahead and fail now. 9218 */ 9219 if (e.error != 0 && !needrecov) { 9220 rdc->error = e.error; 9221 goto out; 9222 } 9223 9224 if (needrecov) { 9225 bool_t abort; 9226 9227 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9228 "nfs4readdir: initiating recovery.\n")); 9229 9230 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9231 NULL, OP_READDIR, NULL); 9232 if (abort == FALSE) { 9233 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9234 &recov_state, needrecov); 9235 if (!e.error) 9236 (void) xdr_free(xdr_COMPOUND4res_clnt, 9237 (caddr_t)&res); 9238 if (rdc->entries != NULL) { 9239 kmem_free(rdc->entries, rdc->entlen); 9240 rdc->entries = NULL; 9241 } 9242 goto recov_retry; 9243 } 9244 9245 if (e.error != 0) { 9246 rdc->error = e.error; 9247 goto out; 9248 } 9249 9250 /* fall through for res.status case */ 9251 } 9252 9253 res_opcnt = res.array_len; 9254 9255 /* 9256 * If compound failed first 2 ops (PUTFH+READDIR), then return 9257 * failure here. Subsequent ops are for filling out dot-dot 9258 * dirent, and if they fail, we still want to give the caller 9259 * the dirents returned by (the successful) READDIR op, so we need 9260 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9261 * 9262 * One example where PUTFH+READDIR ops would succeed but 9263 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9264 * but lacks x. In this case, a POSIX server's VOP_READDIR 9265 * would succeed; however, VOP_LOOKUP(..) would fail since no 9266 * x perm. We need to come up with a non-vendor-specific way 9267 * for a POSIX server to return d_ino from dotdot's dirent if 9268 * client only requests mounted_on_fileid, and just say the 9269 * LOOKUPP succeeded and fill out the GETATTR. However, if 9270 * client requested any mandatory attrs, server would be required 9271 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9272 * for dotdot. 9273 */ 9274 9275 if (res.status) { 9276 if (res_opcnt <= 2) { 9277 e.error = geterrno4(res.status); 9278 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9279 &recov_state, needrecov); 9280 nfs4_purge_stale_fh(e.error, vp, cr); 9281 rdc->error = e.error; 9282 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9283 if (rdc->entries != NULL) { 9284 kmem_free(rdc->entries, rdc->entlen); 9285 rdc->entries = NULL; 9286 } 9287 /* 9288 * If readdir a node that is a stub for a 9289 * crossed mount point, keep the original 9290 * secinfo flavor for the current file system, 9291 * not the crossed one. 9292 */ 9293 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9294 return; 9295 } 9296 } 9297 9298 resop = &res.array[1]; /* readdir res */ 9299 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9300 9301 mutex_enter(&rp->r_statelock); 9302 rp->r_cookieverf4 = rd_res->cookieverf; 9303 mutex_exit(&rp->r_statelock); 9304 9305 /* 9306 * For "." and ".." entries 9307 * e.g. 9308 * seek(cookie=0) -> "." entry with d_off = 1 9309 * seek(cookie=1) -> ".." entry with d_off = 2 9310 */ 9311 if (cookie == (nfs_cookie4) 0) { 9312 if (rd_res->dotp) 9313 rd_res->dotp->d_ino = nodeid; 9314 if (rd_res->dotdotp) 9315 rd_res->dotdotp->d_ino = pnodeid; 9316 } 9317 if (cookie == (nfs_cookie4) 1) { 9318 if (rd_res->dotdotp) 9319 rd_res->dotdotp->d_ino = pnodeid; 9320 } 9321 9322 9323 /* LOOKUPP+GETATTR attemped */ 9324 if (args.array_len == 5 && rd_res->dotdotp) { 9325 if (res.status == NFS4_OK && res_opcnt == 5) { 9326 nfs_fh4 *fhp; 9327 nfs4_sharedfh_t *sfhp; 9328 vnode_t *pvp; 9329 nfs4_ga_res_t *garp; 9330 9331 resop++; /* lookupp */ 9332 resop++; /* getfh */ 9333 fhp = &resop->nfs_resop4_u.opgetfh.object; 9334 9335 resop++; /* getattr of parent */ 9336 9337 /* 9338 * First, take care of finishing the 9339 * readdir results. 9340 */ 9341 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9342 /* 9343 * The d_ino of .. must be the inode number 9344 * of the mounted filesystem. 9345 */ 9346 if (garp->n4g_va.va_mask & AT_NODEID) 9347 rd_res->dotdotp->d_ino = 9348 garp->n4g_va.va_nodeid; 9349 9350 9351 /* 9352 * Next, create the ".." dnlc entry 9353 */ 9354 sfhp = sfh4_get(fhp, mi); 9355 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9356 dnlc_update(vp, "..", pvp); 9357 VN_RELE(pvp); 9358 } 9359 sfh4_rele(&sfhp); 9360 } 9361 } 9362 9363 if (mi->mi_io_kstats) { 9364 mutex_enter(&mi->mi_lock); 9365 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9366 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9367 mutex_exit(&mi->mi_lock); 9368 } 9369 9370 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9371 9372 out: 9373 /* 9374 * If readdir a node that is a stub for a crossed mount point, 9375 * keep the original secinfo flavor for the current file system, 9376 * not the crossed one. 9377 */ 9378 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9379 9380 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9381 } 9382 9383 9384 static int 9385 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9386 { 9387 rnode4_t *rp = VTOR4(bp->b_vp); 9388 int count; 9389 int error; 9390 cred_t *cred_otw = NULL; 9391 offset_t offset; 9392 nfs4_open_stream_t *osp = NULL; 9393 bool_t first_time = TRUE; /* first time getting otw cred */ 9394 bool_t last_time = FALSE; /* last time getting otw cred */ 9395 9396 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9397 9398 DTRACE_IO1(start, struct buf *, bp); 9399 offset = ldbtob(bp->b_lblkno); 9400 9401 if (bp->b_flags & B_READ) { 9402 read_again: 9403 /* 9404 * Releases the osp, if it is provided. 9405 * Puts a hold on the cred_otw and the new osp (if found). 9406 */ 9407 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9408 &first_time, &last_time); 9409 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9410 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9411 readahead, NULL); 9412 crfree(cred_otw); 9413 if (!error) { 9414 if (bp->b_resid) { 9415 /* 9416 * Didn't get it all because we hit EOF, 9417 * zero all the memory beyond the EOF. 9418 */ 9419 /* bzero(rdaddr + */ 9420 bzero(bp->b_un.b_addr + 9421 bp->b_bcount - bp->b_resid, bp->b_resid); 9422 } 9423 mutex_enter(&rp->r_statelock); 9424 if (bp->b_resid == bp->b_bcount && 9425 offset >= rp->r_size) { 9426 /* 9427 * We didn't read anything at all as we are 9428 * past EOF. Return an error indicator back 9429 * but don't destroy the pages (yet). 9430 */ 9431 error = NFS_EOF; 9432 } 9433 mutex_exit(&rp->r_statelock); 9434 } else if (error == EACCES && last_time == FALSE) { 9435 goto read_again; 9436 } 9437 } else { 9438 if (!(rp->r_flags & R4STALE)) { 9439 write_again: 9440 /* 9441 * Releases the osp, if it is provided. 9442 * Puts a hold on the cred_otw and the new 9443 * osp (if found). 9444 */ 9445 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9446 &first_time, &last_time); 9447 mutex_enter(&rp->r_statelock); 9448 count = MIN(bp->b_bcount, rp->r_size - offset); 9449 mutex_exit(&rp->r_statelock); 9450 if (count < 0) 9451 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9452 #ifdef DEBUG 9453 if (count == 0) { 9454 zoneid_t zoneid = getzoneid(); 9455 9456 zcmn_err(zoneid, CE_WARN, 9457 "nfs4_bio: zero length write at %lld", 9458 offset); 9459 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9460 "b_bcount=%ld, file size=%lld", 9461 rp->r_flags, (long)bp->b_bcount, 9462 rp->r_size); 9463 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9464 if (nfs4_bio_do_stop) 9465 debug_enter("nfs4_bio"); 9466 } 9467 #endif 9468 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9469 count, cred_otw, stab_comm); 9470 if (error == EACCES && last_time == FALSE) { 9471 crfree(cred_otw); 9472 goto write_again; 9473 } 9474 bp->b_error = error; 9475 if (error && error != EINTR && 9476 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9477 /* 9478 * Don't print EDQUOT errors on the console. 9479 * Don't print asynchronous EACCES errors. 9480 * Don't print EFBIG errors. 9481 * Print all other write errors. 9482 */ 9483 if (error != EDQUOT && error != EFBIG && 9484 (error != EACCES || 9485 !(bp->b_flags & B_ASYNC))) 9486 nfs4_write_error(bp->b_vp, 9487 error, cred_otw); 9488 /* 9489 * Update r_error and r_flags as appropriate. 9490 * If the error was ESTALE, then mark the 9491 * rnode as not being writeable and save 9492 * the error status. Otherwise, save any 9493 * errors which occur from asynchronous 9494 * page invalidations. Any errors occurring 9495 * from other operations should be saved 9496 * by the caller. 9497 */ 9498 mutex_enter(&rp->r_statelock); 9499 if (error == ESTALE) { 9500 rp->r_flags |= R4STALE; 9501 if (!rp->r_error) 9502 rp->r_error = error; 9503 } else if (!rp->r_error && 9504 (bp->b_flags & 9505 (B_INVAL|B_FORCE|B_ASYNC)) == 9506 (B_INVAL|B_FORCE|B_ASYNC)) { 9507 rp->r_error = error; 9508 } 9509 mutex_exit(&rp->r_statelock); 9510 } 9511 crfree(cred_otw); 9512 } else 9513 error = rp->r_error; 9514 } 9515 9516 if (error != 0 && error != NFS_EOF) 9517 bp->b_flags |= B_ERROR; 9518 9519 if (osp) 9520 open_stream_rele(osp, rp); 9521 9522 DTRACE_IO1(done, struct buf *, bp); 9523 9524 return (error); 9525 } 9526 9527 /* ARGSUSED */ 9528 int 9529 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9530 { 9531 return (EREMOTE); 9532 } 9533 9534 /* ARGSUSED2 */ 9535 int 9536 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9537 { 9538 rnode4_t *rp = VTOR4(vp); 9539 9540 if (!write_lock) { 9541 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9542 return (V_WRITELOCK_FALSE); 9543 } 9544 9545 if ((rp->r_flags & R4DIRECTIO) || 9546 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9547 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9548 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9549 return (V_WRITELOCK_FALSE); 9550 nfs_rw_exit(&rp->r_rwlock); 9551 } 9552 9553 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9554 return (V_WRITELOCK_TRUE); 9555 } 9556 9557 /* ARGSUSED */ 9558 void 9559 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9560 { 9561 rnode4_t *rp = VTOR4(vp); 9562 9563 nfs_rw_exit(&rp->r_rwlock); 9564 } 9565 9566 /* ARGSUSED */ 9567 static int 9568 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9569 { 9570 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9571 return (EIO); 9572 9573 /* 9574 * Because we stuff the readdir cookie into the offset field 9575 * someone may attempt to do an lseek with the cookie which 9576 * we want to succeed. 9577 */ 9578 if (vp->v_type == VDIR) 9579 return (0); 9580 if (*noffp < 0) 9581 return (EINVAL); 9582 return (0); 9583 } 9584 9585 9586 /* 9587 * Return all the pages from [off..off+len) in file 9588 */ 9589 /* ARGSUSED */ 9590 static int 9591 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9592 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9593 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9594 { 9595 rnode4_t *rp; 9596 int error; 9597 mntinfo4_t *mi; 9598 9599 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9600 return (EIO); 9601 rp = VTOR4(vp); 9602 if (IS_SHADOW(vp, rp)) 9603 vp = RTOV4(rp); 9604 9605 if (vp->v_flag & VNOMAP) 9606 return (ENOSYS); 9607 9608 if (protp != NULL) 9609 *protp = PROT_ALL; 9610 9611 /* 9612 * Now validate that the caches are up to date. 9613 */ 9614 if (error = nfs4_validate_caches(vp, cr)) 9615 return (error); 9616 9617 mi = VTOMI4(vp); 9618 retry: 9619 mutex_enter(&rp->r_statelock); 9620 9621 /* 9622 * Don't create dirty pages faster than they 9623 * can be cleaned so that the system doesn't 9624 * get imbalanced. If the async queue is 9625 * maxed out, then wait for it to drain before 9626 * creating more dirty pages. Also, wait for 9627 * any threads doing pagewalks in the vop_getattr 9628 * entry points so that they don't block for 9629 * long periods. 9630 */ 9631 if (rw == S_CREATE) { 9632 while ((mi->mi_max_threads != 0 && 9633 rp->r_awcount > 2 * mi->mi_max_threads) || 9634 rp->r_gcount > 0) 9635 cv_wait(&rp->r_cv, &rp->r_statelock); 9636 } 9637 9638 /* 9639 * If we are getting called as a side effect of an nfs_write() 9640 * operation the local file size might not be extended yet. 9641 * In this case we want to be able to return pages of zeroes. 9642 */ 9643 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9644 NFS4_DEBUG(nfs4_pageio_debug, 9645 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9646 "len=%llu, size=%llu, attrsize =%llu", off, 9647 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9648 mutex_exit(&rp->r_statelock); 9649 return (EFAULT); /* beyond EOF */ 9650 } 9651 9652 mutex_exit(&rp->r_statelock); 9653 9654 if (len <= PAGESIZE) { 9655 error = nfs4_getapage(vp, off, len, protp, pl, plsz, 9656 seg, addr, rw, cr); 9657 NFS4_DEBUG(nfs4_pageio_debug && error, 9658 (CE_NOTE, "getpage error %d; off=%lld, " 9659 "len=%lld", error, off, (u_longlong_t)len)); 9660 } else { 9661 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9662 pl, plsz, seg, addr, rw, cr); 9663 NFS4_DEBUG(nfs4_pageio_debug && error, 9664 (CE_NOTE, "getpages error %d; off=%lld, " 9665 "len=%lld", error, off, (u_longlong_t)len)); 9666 } 9667 9668 switch (error) { 9669 case NFS_EOF: 9670 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9671 goto retry; 9672 case ESTALE: 9673 nfs4_purge_stale_fh(error, vp, cr); 9674 } 9675 9676 return (error); 9677 } 9678 9679 /* 9680 * Called from pvn_getpages or nfs4_getpage to get a particular page. 9681 */ 9682 /* ARGSUSED */ 9683 static int 9684 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9685 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9686 enum seg_rw rw, cred_t *cr) 9687 { 9688 rnode4_t *rp; 9689 uint_t bsize; 9690 struct buf *bp; 9691 page_t *pp; 9692 u_offset_t lbn; 9693 u_offset_t io_off; 9694 u_offset_t blkoff; 9695 u_offset_t rablkoff; 9696 size_t io_len; 9697 uint_t blksize; 9698 int error; 9699 int readahead; 9700 int readahead_issued = 0; 9701 int ra_window; /* readahead window */ 9702 page_t *pagefound; 9703 page_t *savepp; 9704 9705 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9706 return (EIO); 9707 9708 rp = VTOR4(vp); 9709 ASSERT(!IS_SHADOW(vp, rp)); 9710 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9711 9712 reread: 9713 bp = NULL; 9714 pp = NULL; 9715 pagefound = NULL; 9716 9717 if (pl != NULL) 9718 pl[0] = NULL; 9719 9720 error = 0; 9721 lbn = off / bsize; 9722 blkoff = lbn * bsize; 9723 9724 /* 9725 * Queueing up the readahead before doing the synchronous read 9726 * results in a significant increase in read throughput because 9727 * of the increased parallelism between the async threads and 9728 * the process context. 9729 */ 9730 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9731 rw != S_CREATE && 9732 !(vp->v_flag & VNOCACHE)) { 9733 mutex_enter(&rp->r_statelock); 9734 9735 /* 9736 * Calculate the number of readaheads to do. 9737 * a) No readaheads at offset = 0. 9738 * b) Do maximum(nfs4_nra) readaheads when the readahead 9739 * window is closed. 9740 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9741 * upon how far the readahead window is open or close. 9742 * d) No readaheads if rp->r_nextr is not within the scope 9743 * of the readahead window (random i/o). 9744 */ 9745 9746 if (off == 0) 9747 readahead = 0; 9748 else if (blkoff == rp->r_nextr) 9749 readahead = nfs4_nra; 9750 else if (rp->r_nextr > blkoff && 9751 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9752 <= (nfs4_nra - 1))) 9753 readahead = nfs4_nra - ra_window; 9754 else 9755 readahead = 0; 9756 9757 rablkoff = rp->r_nextr; 9758 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9759 mutex_exit(&rp->r_statelock); 9760 if (nfs4_async_readahead(vp, rablkoff + bsize, 9761 addr + (rablkoff + bsize - off), 9762 seg, cr, nfs4_readahead) < 0) { 9763 mutex_enter(&rp->r_statelock); 9764 break; 9765 } 9766 readahead--; 9767 rablkoff += bsize; 9768 /* 9769 * Indicate that we did a readahead so 9770 * readahead offset is not updated 9771 * by the synchronous read below. 9772 */ 9773 readahead_issued = 1; 9774 mutex_enter(&rp->r_statelock); 9775 /* 9776 * set readahead offset to 9777 * offset of last async readahead 9778 * request. 9779 */ 9780 rp->r_nextr = rablkoff; 9781 } 9782 mutex_exit(&rp->r_statelock); 9783 } 9784 9785 again: 9786 if ((pagefound = page_exists(vp, off)) == NULL) { 9787 if (pl == NULL) { 9788 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9789 nfs4_readahead); 9790 } else if (rw == S_CREATE) { 9791 /* 9792 * Block for this page is not allocated, or the offset 9793 * is beyond the current allocation size, or we're 9794 * allocating a swap slot and the page was not found, 9795 * so allocate it and return a zero page. 9796 */ 9797 if ((pp = page_create_va(vp, off, 9798 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9799 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9800 io_len = PAGESIZE; 9801 mutex_enter(&rp->r_statelock); 9802 rp->r_nextr = off + PAGESIZE; 9803 mutex_exit(&rp->r_statelock); 9804 } else { 9805 /* 9806 * Need to go to server to get a block 9807 */ 9808 mutex_enter(&rp->r_statelock); 9809 if (blkoff < rp->r_size && 9810 blkoff + bsize > rp->r_size) { 9811 /* 9812 * If less than a block left in 9813 * file read less than a block. 9814 */ 9815 if (rp->r_size <= off) { 9816 /* 9817 * Trying to access beyond EOF, 9818 * set up to get at least one page. 9819 */ 9820 blksize = off + PAGESIZE - blkoff; 9821 } else 9822 blksize = rp->r_size - blkoff; 9823 } else if ((off == 0) || 9824 (off != rp->r_nextr && !readahead_issued)) { 9825 blksize = PAGESIZE; 9826 blkoff = off; /* block = page here */ 9827 } else 9828 blksize = bsize; 9829 mutex_exit(&rp->r_statelock); 9830 9831 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9832 &io_len, blkoff, blksize, 0); 9833 9834 /* 9835 * Some other thread has entered the page, 9836 * so just use it. 9837 */ 9838 if (pp == NULL) 9839 goto again; 9840 9841 /* 9842 * Now round the request size up to page boundaries. 9843 * This ensures that the entire page will be 9844 * initialized to zeroes if EOF is encountered. 9845 */ 9846 io_len = ptob(btopr(io_len)); 9847 9848 bp = pageio_setup(pp, io_len, vp, B_READ); 9849 ASSERT(bp != NULL); 9850 9851 /* 9852 * pageio_setup should have set b_addr to 0. This 9853 * is correct since we want to do I/O on a page 9854 * boundary. bp_mapin will use this addr to calculate 9855 * an offset, and then set b_addr to the kernel virtual 9856 * address it allocated for us. 9857 */ 9858 ASSERT(bp->b_un.b_addr == 0); 9859 9860 bp->b_edev = 0; 9861 bp->b_dev = 0; 9862 bp->b_lblkno = lbtodb(io_off); 9863 bp->b_file = vp; 9864 bp->b_offset = (offset_t)off; 9865 bp_mapin(bp); 9866 9867 /* 9868 * If doing a write beyond what we believe is EOF, 9869 * don't bother trying to read the pages from the 9870 * server, we'll just zero the pages here. We 9871 * don't check that the rw flag is S_WRITE here 9872 * because some implementations may attempt a 9873 * read access to the buffer before copying data. 9874 */ 9875 mutex_enter(&rp->r_statelock); 9876 if (io_off >= rp->r_size && seg == segkmap) { 9877 mutex_exit(&rp->r_statelock); 9878 bzero(bp->b_un.b_addr, io_len); 9879 } else { 9880 mutex_exit(&rp->r_statelock); 9881 error = nfs4_bio(bp, NULL, cr, FALSE); 9882 } 9883 9884 /* 9885 * Unmap the buffer before freeing it. 9886 */ 9887 bp_mapout(bp); 9888 pageio_done(bp); 9889 9890 savepp = pp; 9891 do { 9892 pp->p_fsdata = C_NOCOMMIT; 9893 } while ((pp = pp->p_next) != savepp); 9894 9895 if (error == NFS_EOF) { 9896 /* 9897 * If doing a write system call just return 9898 * zeroed pages, else user tried to get pages 9899 * beyond EOF, return error. We don't check 9900 * that the rw flag is S_WRITE here because 9901 * some implementations may attempt a read 9902 * access to the buffer before copying data. 9903 */ 9904 if (seg == segkmap) 9905 error = 0; 9906 else 9907 error = EFAULT; 9908 } 9909 9910 if (!readahead_issued && !error) { 9911 mutex_enter(&rp->r_statelock); 9912 rp->r_nextr = io_off + io_len; 9913 mutex_exit(&rp->r_statelock); 9914 } 9915 } 9916 } 9917 9918 out: 9919 if (pl == NULL) 9920 return (error); 9921 9922 if (error) { 9923 if (pp != NULL) 9924 pvn_read_done(pp, B_ERROR); 9925 return (error); 9926 } 9927 9928 if (pagefound) { 9929 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 9930 9931 /* 9932 * Page exists in the cache, acquire the appropriate lock. 9933 * If this fails, start all over again. 9934 */ 9935 if ((pp = page_lookup(vp, off, se)) == NULL) { 9936 #ifdef DEBUG 9937 nfs4_lostpage++; 9938 #endif 9939 goto reread; 9940 } 9941 pl[0] = pp; 9942 pl[1] = NULL; 9943 return (0); 9944 } 9945 9946 if (pp != NULL) 9947 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 9948 9949 return (error); 9950 } 9951 9952 static void 9953 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 9954 cred_t *cr) 9955 { 9956 int error; 9957 page_t *pp; 9958 u_offset_t io_off; 9959 size_t io_len; 9960 struct buf *bp; 9961 uint_t bsize, blksize; 9962 rnode4_t *rp = VTOR4(vp); 9963 page_t *savepp; 9964 9965 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9966 9967 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9968 9969 mutex_enter(&rp->r_statelock); 9970 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 9971 /* 9972 * If less than a block left in file read less 9973 * than a block. 9974 */ 9975 blksize = rp->r_size - blkoff; 9976 } else 9977 blksize = bsize; 9978 mutex_exit(&rp->r_statelock); 9979 9980 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 9981 &io_off, &io_len, blkoff, blksize, 1); 9982 /* 9983 * The isra flag passed to the kluster function is 1, we may have 9984 * gotten a return value of NULL for a variety of reasons (# of free 9985 * pages < minfree, someone entered the page on the vnode etc). In all 9986 * cases, we want to punt on the readahead. 9987 */ 9988 if (pp == NULL) 9989 return; 9990 9991 /* 9992 * Now round the request size up to page boundaries. 9993 * This ensures that the entire page will be 9994 * initialized to zeroes if EOF is encountered. 9995 */ 9996 io_len = ptob(btopr(io_len)); 9997 9998 bp = pageio_setup(pp, io_len, vp, B_READ); 9999 ASSERT(bp != NULL); 10000 10001 /* 10002 * pageio_setup should have set b_addr to 0. This is correct since 10003 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10004 * to calculate an offset, and then set b_addr to the kernel virtual 10005 * address it allocated for us. 10006 */ 10007 ASSERT(bp->b_un.b_addr == 0); 10008 10009 bp->b_edev = 0; 10010 bp->b_dev = 0; 10011 bp->b_lblkno = lbtodb(io_off); 10012 bp->b_file = vp; 10013 bp->b_offset = (offset_t)blkoff; 10014 bp_mapin(bp); 10015 10016 /* 10017 * If doing a write beyond what we believe is EOF, don't bother trying 10018 * to read the pages from the server, we'll just zero the pages here. 10019 * We don't check that the rw flag is S_WRITE here because some 10020 * implementations may attempt a read access to the buffer before 10021 * copying data. 10022 */ 10023 mutex_enter(&rp->r_statelock); 10024 if (io_off >= rp->r_size && seg == segkmap) { 10025 mutex_exit(&rp->r_statelock); 10026 bzero(bp->b_un.b_addr, io_len); 10027 error = 0; 10028 } else { 10029 mutex_exit(&rp->r_statelock); 10030 error = nfs4_bio(bp, NULL, cr, TRUE); 10031 if (error == NFS_EOF) 10032 error = 0; 10033 } 10034 10035 /* 10036 * Unmap the buffer before freeing it. 10037 */ 10038 bp_mapout(bp); 10039 pageio_done(bp); 10040 10041 savepp = pp; 10042 do { 10043 pp->p_fsdata = C_NOCOMMIT; 10044 } while ((pp = pp->p_next) != savepp); 10045 10046 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10047 10048 /* 10049 * In case of error set readahead offset 10050 * to the lowest offset. 10051 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10052 */ 10053 if (error && rp->r_nextr > io_off) { 10054 mutex_enter(&rp->r_statelock); 10055 if (rp->r_nextr > io_off) 10056 rp->r_nextr = io_off; 10057 mutex_exit(&rp->r_statelock); 10058 } 10059 } 10060 10061 /* 10062 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10063 * If len == 0, do from off to EOF. 10064 * 10065 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10066 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10067 * (from pageout). 10068 */ 10069 /* ARGSUSED */ 10070 static int 10071 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10072 caller_context_t *ct) 10073 { 10074 int error; 10075 rnode4_t *rp; 10076 10077 ASSERT(cr != NULL); 10078 10079 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10080 return (EIO); 10081 10082 rp = VTOR4(vp); 10083 if (IS_SHADOW(vp, rp)) 10084 vp = RTOV4(rp); 10085 10086 /* 10087 * XXX - Why should this check be made here? 10088 */ 10089 if (vp->v_flag & VNOMAP) 10090 return (ENOSYS); 10091 10092 if (len == 0 && !(flags & B_INVAL) && 10093 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10094 return (0); 10095 10096 mutex_enter(&rp->r_statelock); 10097 rp->r_count++; 10098 mutex_exit(&rp->r_statelock); 10099 error = nfs4_putpages(vp, off, len, flags, cr); 10100 mutex_enter(&rp->r_statelock); 10101 rp->r_count--; 10102 cv_broadcast(&rp->r_cv); 10103 mutex_exit(&rp->r_statelock); 10104 10105 return (error); 10106 } 10107 10108 /* 10109 * Write out a single page, possibly klustering adjacent dirty pages. 10110 */ 10111 int 10112 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10113 int flags, cred_t *cr) 10114 { 10115 u_offset_t io_off; 10116 u_offset_t lbn_off; 10117 u_offset_t lbn; 10118 size_t io_len; 10119 uint_t bsize; 10120 int error; 10121 rnode4_t *rp; 10122 10123 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10124 ASSERT(pp != NULL); 10125 ASSERT(cr != NULL); 10126 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10127 10128 rp = VTOR4(vp); 10129 ASSERT(rp->r_count > 0); 10130 ASSERT(!IS_SHADOW(vp, rp)); 10131 10132 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10133 lbn = pp->p_offset / bsize; 10134 lbn_off = lbn * bsize; 10135 10136 /* 10137 * Find a kluster that fits in one block, or in 10138 * one page if pages are bigger than blocks. If 10139 * there is less file space allocated than a whole 10140 * page, we'll shorten the i/o request below. 10141 */ 10142 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10143 roundup(bsize, PAGESIZE), flags); 10144 10145 /* 10146 * pvn_write_kluster shouldn't have returned a page with offset 10147 * behind the original page we were given. Verify that. 10148 */ 10149 ASSERT((pp->p_offset / bsize) >= lbn); 10150 10151 /* 10152 * Now pp will have the list of kept dirty pages marked for 10153 * write back. It will also handle invalidation and freeing 10154 * of pages that are not dirty. Check for page length rounding 10155 * problems. 10156 */ 10157 if (io_off + io_len > lbn_off + bsize) { 10158 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10159 io_len = lbn_off + bsize - io_off; 10160 } 10161 /* 10162 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10163 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10164 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10165 * progress and the r_size has not been made consistent with the 10166 * new size of the file. When the uiomove() completes the r_size is 10167 * updated and the R4MODINPROGRESS flag is cleared. 10168 * 10169 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10170 * consistent value of r_size. Without this handshaking, it is 10171 * possible that nfs4_bio() picks up the old value of r_size 10172 * before the uiomove() in writerp4() completes. This will result 10173 * in the write through nfs4_bio() being dropped. 10174 * 10175 * More precisely, there is a window between the time the uiomove() 10176 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10177 * operation intervenes in this window, the page will be picked up, 10178 * because it is dirty (it will be unlocked, unless it was 10179 * pagecreate'd). When the page is picked up as dirty, the dirty 10180 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10181 * checked. This will still be the old size. Therefore the page will 10182 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10183 * the page will be found to be clean and the write will be dropped. 10184 */ 10185 if (rp->r_flags & R4MODINPROGRESS) { 10186 mutex_enter(&rp->r_statelock); 10187 if ((rp->r_flags & R4MODINPROGRESS) && 10188 rp->r_modaddr + MAXBSIZE > io_off && 10189 rp->r_modaddr < io_off + io_len) { 10190 page_t *plist; 10191 /* 10192 * A write is in progress for this region of the file. 10193 * If we did not detect R4MODINPROGRESS here then this 10194 * path through nfs_putapage() would eventually go to 10195 * nfs4_bio() and may not write out all of the data 10196 * in the pages. We end up losing data. So we decide 10197 * to set the modified bit on each page in the page 10198 * list and mark the rnode with R4DIRTY. This write 10199 * will be restarted at some later time. 10200 */ 10201 plist = pp; 10202 while (plist != NULL) { 10203 pp = plist; 10204 page_sub(&plist, pp); 10205 hat_setmod(pp); 10206 page_io_unlock(pp); 10207 page_unlock(pp); 10208 } 10209 rp->r_flags |= R4DIRTY; 10210 mutex_exit(&rp->r_statelock); 10211 if (offp) 10212 *offp = io_off; 10213 if (lenp) 10214 *lenp = io_len; 10215 return (0); 10216 } 10217 mutex_exit(&rp->r_statelock); 10218 } 10219 10220 if (flags & B_ASYNC) { 10221 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10222 nfs4_sync_putapage); 10223 } else 10224 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10225 10226 if (offp) 10227 *offp = io_off; 10228 if (lenp) 10229 *lenp = io_len; 10230 return (error); 10231 } 10232 10233 static int 10234 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10235 int flags, cred_t *cr) 10236 { 10237 int error; 10238 rnode4_t *rp; 10239 10240 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10241 10242 flags |= B_WRITE; 10243 10244 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10245 10246 rp = VTOR4(vp); 10247 10248 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10249 error == EACCES) && 10250 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10251 if (!(rp->r_flags & R4OUTOFSPACE)) { 10252 mutex_enter(&rp->r_statelock); 10253 rp->r_flags |= R4OUTOFSPACE; 10254 mutex_exit(&rp->r_statelock); 10255 } 10256 flags |= B_ERROR; 10257 pvn_write_done(pp, flags); 10258 /* 10259 * If this was not an async thread, then try again to 10260 * write out the pages, but this time, also destroy 10261 * them whether or not the write is successful. This 10262 * will prevent memory from filling up with these 10263 * pages and destroying them is the only alternative 10264 * if they can't be written out. 10265 * 10266 * Don't do this if this is an async thread because 10267 * when the pages are unlocked in pvn_write_done, 10268 * some other thread could have come along, locked 10269 * them, and queued for an async thread. It would be 10270 * possible for all of the async threads to be tied 10271 * up waiting to lock the pages again and they would 10272 * all already be locked and waiting for an async 10273 * thread to handle them. Deadlock. 10274 */ 10275 if (!(flags & B_ASYNC)) { 10276 error = nfs4_putpage(vp, io_off, io_len, 10277 B_INVAL | B_FORCE, cr, NULL); 10278 } 10279 } else { 10280 if (error) 10281 flags |= B_ERROR; 10282 else if (rp->r_flags & R4OUTOFSPACE) { 10283 mutex_enter(&rp->r_statelock); 10284 rp->r_flags &= ~R4OUTOFSPACE; 10285 mutex_exit(&rp->r_statelock); 10286 } 10287 pvn_write_done(pp, flags); 10288 if (freemem < desfree) 10289 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10290 NFS4_WRITE_NOWAIT); 10291 } 10292 10293 return (error); 10294 } 10295 10296 #ifdef DEBUG 10297 int nfs4_force_open_before_mmap = 0; 10298 #endif 10299 10300 /* ARGSUSED */ 10301 static int 10302 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10303 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10304 caller_context_t *ct) 10305 { 10306 struct segvn_crargs vn_a; 10307 int error = 0; 10308 rnode4_t *rp = VTOR4(vp); 10309 mntinfo4_t *mi = VTOMI4(vp); 10310 10311 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10312 return (EIO); 10313 10314 if (vp->v_flag & VNOMAP) 10315 return (ENOSYS); 10316 10317 if (off < 0 || (off + len) < 0) 10318 return (ENXIO); 10319 10320 if (vp->v_type != VREG) 10321 return (ENODEV); 10322 10323 /* 10324 * If the file is delegated to the client don't do anything. 10325 * If the file is not delegated, then validate the data cache. 10326 */ 10327 mutex_enter(&rp->r_statev4_lock); 10328 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10329 mutex_exit(&rp->r_statev4_lock); 10330 error = nfs4_validate_caches(vp, cr); 10331 if (error) 10332 return (error); 10333 } else { 10334 mutex_exit(&rp->r_statev4_lock); 10335 } 10336 10337 /* 10338 * Check to see if the vnode is currently marked as not cachable. 10339 * This means portions of the file are locked (through VOP_FRLOCK). 10340 * In this case the map request must be refused. We use 10341 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10342 */ 10343 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 10344 return (EINTR); 10345 10346 if (vp->v_flag & VNOCACHE) { 10347 error = EAGAIN; 10348 goto done; 10349 } 10350 10351 /* 10352 * Don't allow concurrent locks and mapping if mandatory locking is 10353 * enabled. 10354 */ 10355 if (flk_has_remote_locks(vp)) { 10356 struct vattr va; 10357 va.va_mask = AT_MODE; 10358 error = nfs4getattr(vp, &va, cr); 10359 if (error != 0) 10360 goto done; 10361 if (MANDLOCK(vp, va.va_mode)) { 10362 error = EAGAIN; 10363 goto done; 10364 } 10365 } 10366 10367 /* 10368 * It is possible that the rnode has a lost lock request that we 10369 * are still trying to recover, and that the request conflicts with 10370 * this map request. 10371 * 10372 * An alternative approach would be for nfs4_safemap() to consider 10373 * queued lock requests when deciding whether to set or clear 10374 * VNOCACHE. This would require the frlock code path to call 10375 * nfs4_safemap() after enqueing a lost request. 10376 */ 10377 if (nfs4_map_lost_lock_conflict(vp)) { 10378 error = EAGAIN; 10379 goto done; 10380 } 10381 10382 as_rangelock(as); 10383 if (!(flags & MAP_FIXED)) { 10384 map_addr(addrp, len, off, 1, flags); 10385 if (*addrp == NULL) { 10386 as_rangeunlock(as); 10387 error = ENOMEM; 10388 goto done; 10389 } 10390 } else { 10391 /* 10392 * User specified address - blow away any previous mappings 10393 */ 10394 (void) as_unmap(as, *addrp, len); 10395 } 10396 10397 if (vp->v_type == VREG) { 10398 /* 10399 * We need to retrieve the open stream 10400 */ 10401 nfs4_open_stream_t *osp = NULL; 10402 nfs4_open_owner_t *oop = NULL; 10403 10404 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10405 if (oop != NULL) { 10406 /* returns with 'os_sync_lock' held */ 10407 osp = find_open_stream(oop, rp); 10408 open_owner_rele(oop); 10409 } 10410 if (osp == NULL) { 10411 #ifdef DEBUG 10412 if (nfs4_force_open_before_mmap) { 10413 error = EIO; 10414 goto done; 10415 } 10416 #endif 10417 /* returns with 'os_sync_lock' held */ 10418 error = open_and_get_osp(vp, cr, &osp); 10419 if (osp == NULL) { 10420 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10421 "nfs4_map: we tried to OPEN the file " 10422 "but again no osp, so fail with EIO")); 10423 goto done; 10424 } 10425 } 10426 10427 if (osp->os_failed_reopen) { 10428 mutex_exit(&osp->os_sync_lock); 10429 open_stream_rele(osp, rp); 10430 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10431 "nfs4_map: os_failed_reopen set on " 10432 "osp %p, cr %p, rp %s", (void *)osp, 10433 (void *)cr, rnode4info(rp))); 10434 error = EIO; 10435 goto done; 10436 } 10437 mutex_exit(&osp->os_sync_lock); 10438 open_stream_rele(osp, rp); 10439 } 10440 10441 vn_a.vp = vp; 10442 vn_a.offset = off; 10443 vn_a.type = (flags & MAP_TYPE); 10444 vn_a.prot = (uchar_t)prot; 10445 vn_a.maxprot = (uchar_t)maxprot; 10446 vn_a.flags = (flags & ~MAP_TYPE); 10447 vn_a.cred = cr; 10448 vn_a.amp = NULL; 10449 vn_a.szc = 0; 10450 vn_a.lgrp_mem_policy_flags = 0; 10451 10452 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10453 as_rangeunlock(as); 10454 10455 done: 10456 nfs_rw_exit(&rp->r_lkserlock); 10457 return (error); 10458 } 10459 10460 /* 10461 * We're most likely dealing with a kernel module that likes to READ 10462 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10463 * officially OPEN the file to create the necessary client state 10464 * for bookkeeping of os_mmap_read/write counts. 10465 * 10466 * Since VOP_MAP only passes in a pointer to the vnode rather than 10467 * a double pointer, we can't handle the case where nfs4open_otw() 10468 * returns a different vnode than the one passed into VOP_MAP (since 10469 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10470 * we return NULL and let nfs4_map() fail. Note: the only case where 10471 * this should happen is if the file got removed and replaced with the 10472 * same name on the server (in addition to the fact that we're trying 10473 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10474 */ 10475 static int 10476 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10477 { 10478 rnode4_t *rp, *drp; 10479 vnode_t *dvp, *open_vp; 10480 char file_name[MAXNAMELEN]; 10481 int just_created; 10482 nfs4_open_stream_t *osp; 10483 nfs4_open_owner_t *oop; 10484 int error; 10485 10486 *ospp = NULL; 10487 open_vp = map_vp; 10488 10489 rp = VTOR4(open_vp); 10490 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10491 return (error); 10492 drp = VTOR4(dvp); 10493 10494 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10495 VN_RELE(dvp); 10496 return (EINTR); 10497 } 10498 10499 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10500 nfs_rw_exit(&drp->r_rwlock); 10501 VN_RELE(dvp); 10502 return (error); 10503 } 10504 10505 mutex_enter(&rp->r_statev4_lock); 10506 if (rp->created_v4) { 10507 rp->created_v4 = 0; 10508 mutex_exit(&rp->r_statev4_lock); 10509 10510 dnlc_update(dvp, file_name, open_vp); 10511 /* This is needed so we don't bump the open ref count */ 10512 just_created = 1; 10513 } else { 10514 mutex_exit(&rp->r_statev4_lock); 10515 just_created = 0; 10516 } 10517 10518 VN_HOLD(map_vp); 10519 10520 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10521 just_created); 10522 if (error) { 10523 nfs_rw_exit(&drp->r_rwlock); 10524 VN_RELE(dvp); 10525 VN_RELE(map_vp); 10526 return (error); 10527 } 10528 10529 nfs_rw_exit(&drp->r_rwlock); 10530 VN_RELE(dvp); 10531 10532 /* 10533 * If nfs4open_otw() returned a different vnode then "undo" 10534 * the open and return failure to the caller. 10535 */ 10536 if (!VN_CMP(open_vp, map_vp)) { 10537 nfs4_error_t e; 10538 10539 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10540 "open returned a different vnode")); 10541 /* 10542 * If there's an error, ignore it, 10543 * and let VOP_INACTIVE handle it. 10544 */ 10545 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10546 CLOSE_NORM, 0, 0, 0); 10547 VN_RELE(map_vp); 10548 return (EIO); 10549 } 10550 10551 VN_RELE(map_vp); 10552 10553 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10554 if (!oop) { 10555 nfs4_error_t e; 10556 10557 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10558 "no open owner")); 10559 /* 10560 * If there's an error, ignore it, 10561 * and let VOP_INACTIVE handle it. 10562 */ 10563 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10564 CLOSE_NORM, 0, 0, 0); 10565 return (EIO); 10566 } 10567 osp = find_open_stream(oop, rp); 10568 open_owner_rele(oop); 10569 *ospp = osp; 10570 return (0); 10571 } 10572 10573 /* 10574 * Please be aware that when this function is called, the address space write 10575 * a_lock is held. Do not put over the wire calls in this function. 10576 */ 10577 /* ARGSUSED */ 10578 static int 10579 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10580 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10581 caller_context_t *ct) 10582 { 10583 rnode4_t *rp; 10584 int error = 0; 10585 mntinfo4_t *mi; 10586 10587 mi = VTOMI4(vp); 10588 rp = VTOR4(vp); 10589 10590 if (nfs_zone() != mi->mi_zone) 10591 return (EIO); 10592 if (vp->v_flag & VNOMAP) 10593 return (ENOSYS); 10594 10595 /* 10596 * Need to hold rwlock while incrementing the mapcnt so that 10597 * mmap'ing can be serialized with writes so that the caching 10598 * can be handled correctly. 10599 * 10600 * Don't need to update the open stream first, since this 10601 * mmap can't add any additional share access that isn't 10602 * already contained in the open stream (for the case where we 10603 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10604 * take into account os_mmap_read[write] counts). 10605 */ 10606 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 10607 return (EINTR); 10608 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10609 nfs_rw_exit(&rp->r_rwlock); 10610 10611 if (vp->v_type == VREG) { 10612 /* 10613 * We need to retrieve the open stream and update the counts. 10614 * If there is no open stream here, something is wrong. 10615 */ 10616 nfs4_open_stream_t *osp = NULL; 10617 nfs4_open_owner_t *oop = NULL; 10618 10619 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10620 if (oop != NULL) { 10621 /* returns with 'os_sync_lock' held */ 10622 osp = find_open_stream(oop, rp); 10623 open_owner_rele(oop); 10624 } 10625 if (osp == NULL) { 10626 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10627 "nfs4_addmap: we should have an osp" 10628 "but we don't, so fail with EIO")); 10629 error = EIO; 10630 goto out; 10631 } 10632 10633 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10634 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10635 10636 /* 10637 * Update the map count in the open stream. 10638 * This is necessary in the case where we 10639 * open/mmap/close/, then the server reboots, and we 10640 * attempt to reopen. If the mmap doesn't add share 10641 * access then we send an invalid reopen with 10642 * access = NONE. 10643 * 10644 * We need to specifically check each PROT_* so a mmap 10645 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10646 * read and write access. A simple comparison of prot 10647 * to ~PROT_WRITE to determine read access is insufficient 10648 * since prot can be |= with PROT_USER, etc. 10649 */ 10650 10651 /* 10652 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10653 */ 10654 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10655 osp->os_mmap_write += btopr(len); 10656 if (maxprot & PROT_READ) 10657 osp->os_mmap_read += btopr(len); 10658 if (maxprot & PROT_EXEC) 10659 osp->os_mmap_read += btopr(len); 10660 /* 10661 * Ensure that os_mmap_read gets incremented, even if 10662 * maxprot were to look like PROT_NONE. 10663 */ 10664 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10665 !(maxprot & PROT_EXEC)) 10666 osp->os_mmap_read += btopr(len); 10667 osp->os_mapcnt += btopr(len); 10668 mutex_exit(&osp->os_sync_lock); 10669 open_stream_rele(osp, rp); 10670 } 10671 10672 out: 10673 /* 10674 * If we got an error, then undo our 10675 * incrementing of 'r_mapcnt'. 10676 */ 10677 10678 if (error) { 10679 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10680 ASSERT(rp->r_mapcnt >= 0); 10681 } 10682 return (error); 10683 } 10684 10685 /* ARGSUSED */ 10686 static int 10687 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10688 { 10689 10690 return (VTOR4(vp1) == VTOR4(vp2)); 10691 } 10692 10693 /* ARGSUSED */ 10694 static int 10695 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10696 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10697 caller_context_t *ct) 10698 { 10699 int rc; 10700 u_offset_t start, end; 10701 rnode4_t *rp; 10702 int error = 0, intr = INTR4(vp); 10703 nfs4_error_t e; 10704 10705 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10706 return (EIO); 10707 10708 /* check for valid cmd parameter */ 10709 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10710 return (EINVAL); 10711 10712 /* Verify l_type. */ 10713 switch (bfp->l_type) { 10714 case F_RDLCK: 10715 if (cmd != F_GETLK && !(flag & FREAD)) 10716 return (EBADF); 10717 break; 10718 case F_WRLCK: 10719 if (cmd != F_GETLK && !(flag & FWRITE)) 10720 return (EBADF); 10721 break; 10722 case F_UNLCK: 10723 intr = 0; 10724 break; 10725 10726 default: 10727 return (EINVAL); 10728 } 10729 10730 /* check the validity of the lock range */ 10731 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10732 return (rc); 10733 if (rc = flk_check_lock_data(start, end, MAXEND)) 10734 return (rc); 10735 10736 /* 10737 * If the filesystem is mounted using local locking, pass the 10738 * request off to the local locking code. 10739 */ 10740 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10741 if (cmd == F_SETLK || cmd == F_SETLKW) { 10742 /* 10743 * For complete safety, we should be holding 10744 * r_lkserlock. However, we can't call 10745 * nfs4_safelock and then fs_frlock while 10746 * holding r_lkserlock, so just invoke 10747 * nfs4_safelock and expect that this will 10748 * catch enough of the cases. 10749 */ 10750 if (!nfs4_safelock(vp, bfp, cr)) 10751 return (EAGAIN); 10752 } 10753 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10754 } 10755 10756 rp = VTOR4(vp); 10757 10758 /* 10759 * Check whether the given lock request can proceed, given the 10760 * current file mappings. 10761 */ 10762 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10763 return (EINTR); 10764 if (cmd == F_SETLK || cmd == F_SETLKW) { 10765 if (!nfs4_safelock(vp, bfp, cr)) { 10766 rc = EAGAIN; 10767 goto done; 10768 } 10769 } 10770 10771 /* 10772 * Flush the cache after waiting for async I/O to finish. For new 10773 * locks, this is so that the process gets the latest bits from the 10774 * server. For unlocks, this is so that other clients see the 10775 * latest bits once the file has been unlocked. If currently dirty 10776 * pages can't be flushed, then don't allow a lock to be set. But 10777 * allow unlocks to succeed, to avoid having orphan locks on the 10778 * server. 10779 */ 10780 if (cmd != F_GETLK) { 10781 mutex_enter(&rp->r_statelock); 10782 while (rp->r_count > 0) { 10783 if (intr) { 10784 klwp_t *lwp = ttolwp(curthread); 10785 10786 if (lwp != NULL) 10787 lwp->lwp_nostop++; 10788 if (cv_wait_sig(&rp->r_cv, 10789 &rp->r_statelock) == 0) { 10790 if (lwp != NULL) 10791 lwp->lwp_nostop--; 10792 rc = EINTR; 10793 break; 10794 } 10795 if (lwp != NULL) 10796 lwp->lwp_nostop--; 10797 } else 10798 cv_wait(&rp->r_cv, &rp->r_statelock); 10799 } 10800 mutex_exit(&rp->r_statelock); 10801 if (rc != 0) 10802 goto done; 10803 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10804 if (error) { 10805 if (error == ENOSPC || error == EDQUOT) { 10806 mutex_enter(&rp->r_statelock); 10807 if (!rp->r_error) 10808 rp->r_error = error; 10809 mutex_exit(&rp->r_statelock); 10810 } 10811 if (bfp->l_type != F_UNLCK) { 10812 rc = ENOLCK; 10813 goto done; 10814 } 10815 } 10816 } 10817 10818 /* 10819 * Call the lock manager to do the real work of contacting 10820 * the server and obtaining the lock. 10821 */ 10822 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10823 cr, &e, NULL, NULL); 10824 rc = e.error; 10825 10826 if (rc == 0) 10827 nfs4_lockcompletion(vp, cmd); 10828 10829 done: 10830 nfs_rw_exit(&rp->r_lkserlock); 10831 10832 return (rc); 10833 } 10834 10835 /* 10836 * Free storage space associated with the specified vnode. The portion 10837 * to be freed is specified by bfp->l_start and bfp->l_len (already 10838 * normalized to a "whence" of 0). 10839 * 10840 * This is an experimental facility whose continued existence is not 10841 * guaranteed. Currently, we only support the special case 10842 * of l_len == 0, meaning free to end of file. 10843 */ 10844 /* ARGSUSED */ 10845 static int 10846 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10847 offset_t offset, cred_t *cr, caller_context_t *ct) 10848 { 10849 int error; 10850 10851 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10852 return (EIO); 10853 ASSERT(vp->v_type == VREG); 10854 if (cmd != F_FREESP) 10855 return (EINVAL); 10856 10857 error = convoff(vp, bfp, 0, offset); 10858 if (!error) { 10859 ASSERT(bfp->l_start >= 0); 10860 if (bfp->l_len == 0) { 10861 struct vattr va; 10862 10863 va.va_mask = AT_SIZE; 10864 va.va_size = bfp->l_start; 10865 error = nfs4setattr(vp, &va, 0, cr, NULL); 10866 } else 10867 error = EINVAL; 10868 } 10869 10870 return (error); 10871 } 10872 10873 /* ARGSUSED */ 10874 int 10875 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 10876 { 10877 rnode4_t *rp; 10878 rp = VTOR4(vp); 10879 10880 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 10881 vp = RTOV4(rp); 10882 } 10883 *vpp = vp; 10884 return (0); 10885 } 10886 10887 /* 10888 * Setup and add an address space callback to do the work of the delmap call. 10889 * The callback will (and must be) deleted in the actual callback function. 10890 * 10891 * This is done in order to take care of the problem that we have with holding 10892 * the address space's a_lock for a long period of time (e.g. if the NFS server 10893 * is down). Callbacks will be executed in the address space code while the 10894 * a_lock is not held. Holding the address space's a_lock causes things such 10895 * as ps and fork to hang because they are trying to acquire this lock as well. 10896 */ 10897 /* ARGSUSED */ 10898 static int 10899 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10900 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 10901 caller_context_t *ct) 10902 { 10903 int caller_found; 10904 int error; 10905 rnode4_t *rp; 10906 nfs4_delmap_args_t *dmapp; 10907 nfs4_delmapcall_t *delmap_call; 10908 10909 if (vp->v_flag & VNOMAP) 10910 return (ENOSYS); 10911 10912 /* 10913 * A process may not change zones if it has NFS pages mmap'ed 10914 * in, so we can't legitimately get here from the wrong zone. 10915 */ 10916 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10917 10918 rp = VTOR4(vp); 10919 10920 /* 10921 * The way that the address space of this process deletes its mapping 10922 * of this file is via the following call chains: 10923 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10924 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10925 * 10926 * With the use of address space callbacks we are allowed to drop the 10927 * address space lock, a_lock, while executing the NFS operations that 10928 * need to go over the wire. Returning EAGAIN to the caller of this 10929 * function is what drives the execution of the callback that we add 10930 * below. The callback will be executed by the address space code 10931 * after dropping the a_lock. When the callback is finished, since 10932 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 10933 * is called again on the same segment to finish the rest of the work 10934 * that needs to happen during unmapping. 10935 * 10936 * This action of calling back into the segment driver causes 10937 * nfs4_delmap() to get called again, but since the callback was 10938 * already executed at this point, it already did the work and there 10939 * is nothing left for us to do. 10940 * 10941 * To Summarize: 10942 * - The first time nfs4_delmap is called by the current thread is when 10943 * we add the caller associated with this delmap to the delmap caller 10944 * list, add the callback, and return EAGAIN. 10945 * - The second time in this call chain when nfs4_delmap is called we 10946 * will find this caller in the delmap caller list and realize there 10947 * is no more work to do thus removing this caller from the list and 10948 * returning the error that was set in the callback execution. 10949 */ 10950 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 10951 if (caller_found) { 10952 /* 10953 * 'error' is from the actual delmap operations. To avoid 10954 * hangs, we need to handle the return of EAGAIN differently 10955 * since this is what drives the callback execution. 10956 * In this case, we don't want to return EAGAIN and do the 10957 * callback execution because there are none to execute. 10958 */ 10959 if (error == EAGAIN) 10960 return (0); 10961 else 10962 return (error); 10963 } 10964 10965 /* current caller was not in the list */ 10966 delmap_call = nfs4_init_delmapcall(); 10967 10968 mutex_enter(&rp->r_statelock); 10969 list_insert_tail(&rp->r_indelmap, delmap_call); 10970 mutex_exit(&rp->r_statelock); 10971 10972 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 10973 10974 dmapp->vp = vp; 10975 dmapp->off = off; 10976 dmapp->addr = addr; 10977 dmapp->len = len; 10978 dmapp->prot = prot; 10979 dmapp->maxprot = maxprot; 10980 dmapp->flags = flags; 10981 dmapp->cr = cr; 10982 dmapp->caller = delmap_call; 10983 10984 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 10985 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 10986 10987 return (error ? error : EAGAIN); 10988 } 10989 10990 static nfs4_delmapcall_t * 10991 nfs4_init_delmapcall() 10992 { 10993 nfs4_delmapcall_t *delmap_call; 10994 10995 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 10996 delmap_call->call_id = curthread; 10997 delmap_call->error = 0; 10998 10999 return (delmap_call); 11000 } 11001 11002 static void 11003 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11004 { 11005 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11006 } 11007 11008 /* 11009 * Searches for the current delmap caller (based on curthread) in the list of 11010 * callers. If it is found, we remove it and free the delmap caller. 11011 * Returns: 11012 * 0 if the caller wasn't found 11013 * 1 if the caller was found, removed and freed. *errp will be set 11014 * to what the result of the delmap was. 11015 */ 11016 static int 11017 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11018 { 11019 nfs4_delmapcall_t *delmap_call; 11020 11021 /* 11022 * If the list doesn't exist yet, we create it and return 11023 * that the caller wasn't found. No list = no callers. 11024 */ 11025 mutex_enter(&rp->r_statelock); 11026 if (!(rp->r_flags & R4DELMAPLIST)) { 11027 /* The list does not exist */ 11028 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11029 offsetof(nfs4_delmapcall_t, call_node)); 11030 rp->r_flags |= R4DELMAPLIST; 11031 mutex_exit(&rp->r_statelock); 11032 return (0); 11033 } else { 11034 /* The list exists so search it */ 11035 for (delmap_call = list_head(&rp->r_indelmap); 11036 delmap_call != NULL; 11037 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11038 if (delmap_call->call_id == curthread) { 11039 /* current caller is in the list */ 11040 *errp = delmap_call->error; 11041 list_remove(&rp->r_indelmap, delmap_call); 11042 mutex_exit(&rp->r_statelock); 11043 nfs4_free_delmapcall(delmap_call); 11044 return (1); 11045 } 11046 } 11047 } 11048 mutex_exit(&rp->r_statelock); 11049 return (0); 11050 } 11051 11052 /* 11053 * Remove some pages from an mmap'd vnode. Just update the 11054 * count of pages. If doing close-to-open, then flush and 11055 * commit all of the pages associated with this file. 11056 * Otherwise, start an asynchronous page flush to write out 11057 * any dirty pages. This will also associate a credential 11058 * with the rnode which can be used to write the pages. 11059 */ 11060 /* ARGSUSED */ 11061 static void 11062 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11063 { 11064 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11065 rnode4_t *rp; 11066 mntinfo4_t *mi; 11067 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11068 11069 rp = VTOR4(dmapp->vp); 11070 mi = VTOMI4(dmapp->vp); 11071 11072 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11073 ASSERT(rp->r_mapcnt >= 0); 11074 11075 /* 11076 * Initiate a page flush and potential commit if there are 11077 * pages, the file system was not mounted readonly, the segment 11078 * was mapped shared, and the pages themselves were writeable. 11079 */ 11080 if (nfs4_has_pages(dmapp->vp) && 11081 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11082 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11083 mutex_enter(&rp->r_statelock); 11084 rp->r_flags |= R4DIRTY; 11085 mutex_exit(&rp->r_statelock); 11086 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11087 dmapp->len, dmapp->cr); 11088 if (!e.error) { 11089 mutex_enter(&rp->r_statelock); 11090 e.error = rp->r_error; 11091 rp->r_error = 0; 11092 mutex_exit(&rp->r_statelock); 11093 } 11094 } else 11095 e.error = 0; 11096 11097 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11098 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11099 B_INVAL, dmapp->cr, NULL); 11100 11101 if (e.error) { 11102 e.stat = puterrno4(e.error); 11103 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11104 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11105 dmapp->caller->error = e.error; 11106 } 11107 11108 /* Check to see if we need to close the file */ 11109 11110 if (dmapp->vp->v_type == VREG) { 11111 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11112 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11113 11114 if (e.error != 0 || e.stat != NFS4_OK) { 11115 /* 11116 * Since it is possible that e.error == 0 and 11117 * e.stat != NFS4_OK (and vice versa), 11118 * we do the proper checking in order to get both 11119 * e.error and e.stat reporting the correct info. 11120 */ 11121 if (e.stat == NFS4_OK) 11122 e.stat = puterrno4(e.error); 11123 if (e.error == 0) 11124 e.error = geterrno4(e.stat); 11125 11126 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11127 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11128 dmapp->caller->error = e.error; 11129 } 11130 } 11131 11132 (void) as_delete_callback(as, arg); 11133 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11134 } 11135 11136 11137 static uint_t 11138 fattr4_maxfilesize_to_bits(uint64_t ll) 11139 { 11140 uint_t l = 1; 11141 11142 if (ll == 0) { 11143 return (0); 11144 } 11145 11146 if (ll & 0xffffffff00000000) { 11147 l += 32; ll >>= 32; 11148 } 11149 if (ll & 0xffff0000) { 11150 l += 16; ll >>= 16; 11151 } 11152 if (ll & 0xff00) { 11153 l += 8; ll >>= 8; 11154 } 11155 if (ll & 0xf0) { 11156 l += 4; ll >>= 4; 11157 } 11158 if (ll & 0xc) { 11159 l += 2; ll >>= 2; 11160 } 11161 if (ll & 0x2) { 11162 l += 1; 11163 } 11164 return (l); 11165 } 11166 11167 /* ARGSUSED */ 11168 int 11169 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11170 caller_context_t *ct) 11171 { 11172 int error; 11173 hrtime_t t; 11174 rnode4_t *rp; 11175 nfs4_ga_res_t gar; 11176 nfs4_ga_ext_res_t ger; 11177 11178 gar.n4g_ext_res = &ger; 11179 11180 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11181 return (EIO); 11182 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11183 *valp = MAXPATHLEN; 11184 return (0); 11185 } 11186 if (cmd == _PC_ACL_ENABLED) { 11187 *valp = _ACL_ACE_ENABLED; 11188 return (0); 11189 } 11190 11191 rp = VTOR4(vp); 11192 if (cmd == _PC_XATTR_EXISTS) { 11193 /* 11194 * Eventually should attempt small client readdir before 11195 * going otw with GETATTR(FATTR4_NAMED_ATTR). For now 11196 * just drive the OTW getattr. This is required because 11197 * _PC_XATTR_EXISTS can only return true if attributes 11198 * exist -- simply checking for existence of the attrdir 11199 * is not sufficient. 11200 * 11201 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11202 * is NULL. Once the xadir vp exists, we can create xattrs, 11203 * and we don't have any way to update the "base" object's 11204 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11205 * could help out. 11206 */ 11207 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11208 rp->r_xattr_dir == NULL) { 11209 *valp = rp->r_pathconf.pc4_xattr_exists; 11210 return (0); 11211 } 11212 } else { /* OLD CODE */ 11213 if (ATTRCACHE4_VALID(vp)) { 11214 mutex_enter(&rp->r_statelock); 11215 if (rp->r_pathconf.pc4_cache_valid) { 11216 error = 0; 11217 switch (cmd) { 11218 case _PC_FILESIZEBITS: 11219 *valp = 11220 rp->r_pathconf.pc4_filesizebits; 11221 break; 11222 case _PC_LINK_MAX: 11223 *valp = 11224 rp->r_pathconf.pc4_link_max; 11225 break; 11226 case _PC_NAME_MAX: 11227 *valp = 11228 rp->r_pathconf.pc4_name_max; 11229 break; 11230 case _PC_CHOWN_RESTRICTED: 11231 *valp = 11232 rp->r_pathconf.pc4_chown_restricted; 11233 break; 11234 case _PC_NO_TRUNC: 11235 *valp = 11236 rp->r_pathconf.pc4_no_trunc; 11237 break; 11238 default: 11239 error = EINVAL; 11240 break; 11241 } 11242 mutex_exit(&rp->r_statelock); 11243 #ifdef DEBUG 11244 nfs4_pathconf_cache_hits++; 11245 #endif 11246 return (error); 11247 } 11248 mutex_exit(&rp->r_statelock); 11249 } 11250 } 11251 #ifdef DEBUG 11252 nfs4_pathconf_cache_misses++; 11253 #endif 11254 11255 t = gethrtime(); 11256 11257 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11258 11259 if (error) { 11260 mutex_enter(&rp->r_statelock); 11261 rp->r_pathconf.pc4_cache_valid = FALSE; 11262 rp->r_pathconf.pc4_xattr_valid = FALSE; 11263 mutex_exit(&rp->r_statelock); 11264 return (error); 11265 } 11266 11267 /* interpret the max filesize */ 11268 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11269 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11270 11271 /* Store the attributes we just received */ 11272 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11273 11274 switch (cmd) { 11275 case _PC_FILESIZEBITS: 11276 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11277 break; 11278 case _PC_LINK_MAX: 11279 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11280 break; 11281 case _PC_NAME_MAX: 11282 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11283 break; 11284 case _PC_CHOWN_RESTRICTED: 11285 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11286 break; 11287 case _PC_NO_TRUNC: 11288 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11289 break; 11290 case _PC_XATTR_EXISTS: 11291 *valp = gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists; 11292 break; 11293 default: 11294 return (EINVAL); 11295 } 11296 11297 return (0); 11298 } 11299 11300 /* 11301 * Called by async thread to do synchronous pageio. Do the i/o, wait 11302 * for it to complete, and cleanup the page list when done. 11303 */ 11304 static int 11305 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11306 int flags, cred_t *cr) 11307 { 11308 int error; 11309 11310 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11311 11312 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11313 if (flags & B_READ) 11314 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11315 else 11316 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11317 return (error); 11318 } 11319 11320 /* ARGSUSED */ 11321 static int 11322 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11323 int flags, cred_t *cr, caller_context_t *ct) 11324 { 11325 int error; 11326 rnode4_t *rp; 11327 11328 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11329 return (EIO); 11330 11331 if (pp == NULL) 11332 return (EINVAL); 11333 11334 rp = VTOR4(vp); 11335 mutex_enter(&rp->r_statelock); 11336 rp->r_count++; 11337 mutex_exit(&rp->r_statelock); 11338 11339 if (flags & B_ASYNC) { 11340 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11341 nfs4_sync_pageio); 11342 } else 11343 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11344 mutex_enter(&rp->r_statelock); 11345 rp->r_count--; 11346 cv_broadcast(&rp->r_cv); 11347 mutex_exit(&rp->r_statelock); 11348 return (error); 11349 } 11350 11351 /* ARGSUSED */ 11352 static void 11353 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11354 caller_context_t *ct) 11355 { 11356 int error; 11357 rnode4_t *rp; 11358 page_t *plist; 11359 page_t *pptr; 11360 offset3 offset; 11361 count3 len; 11362 k_sigset_t smask; 11363 11364 /* 11365 * We should get called with fl equal to either B_FREE or 11366 * B_INVAL. Any other value is illegal. 11367 * 11368 * The page that we are either supposed to free or destroy 11369 * should be exclusive locked and its io lock should not 11370 * be held. 11371 */ 11372 ASSERT(fl == B_FREE || fl == B_INVAL); 11373 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11374 11375 rp = VTOR4(vp); 11376 11377 /* 11378 * If the page doesn't need to be committed or we shouldn't 11379 * even bother attempting to commit it, then just make sure 11380 * that the p_fsdata byte is clear and then either free or 11381 * destroy the page as appropriate. 11382 */ 11383 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11384 pp->p_fsdata = C_NOCOMMIT; 11385 if (fl == B_FREE) 11386 page_free(pp, dn); 11387 else 11388 page_destroy(pp, dn); 11389 return; 11390 } 11391 11392 /* 11393 * If there is a page invalidation operation going on, then 11394 * if this is one of the pages being destroyed, then just 11395 * clear the p_fsdata byte and then either free or destroy 11396 * the page as appropriate. 11397 */ 11398 mutex_enter(&rp->r_statelock); 11399 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11400 mutex_exit(&rp->r_statelock); 11401 pp->p_fsdata = C_NOCOMMIT; 11402 if (fl == B_FREE) 11403 page_free(pp, dn); 11404 else 11405 page_destroy(pp, dn); 11406 return; 11407 } 11408 11409 /* 11410 * If we are freeing this page and someone else is already 11411 * waiting to do a commit, then just unlock the page and 11412 * return. That other thread will take care of commiting 11413 * this page. The page can be freed sometime after the 11414 * commit has finished. Otherwise, if the page is marked 11415 * as delay commit, then we may be getting called from 11416 * pvn_write_done, one page at a time. This could result 11417 * in one commit per page, so we end up doing lots of small 11418 * commits instead of fewer larger commits. This is bad, 11419 * we want do as few commits as possible. 11420 */ 11421 if (fl == B_FREE) { 11422 if (rp->r_flags & R4COMMITWAIT) { 11423 page_unlock(pp); 11424 mutex_exit(&rp->r_statelock); 11425 return; 11426 } 11427 if (pp->p_fsdata == C_DELAYCOMMIT) { 11428 pp->p_fsdata = C_COMMIT; 11429 page_unlock(pp); 11430 mutex_exit(&rp->r_statelock); 11431 return; 11432 } 11433 } 11434 11435 /* 11436 * Check to see if there is a signal which would prevent an 11437 * attempt to commit the pages from being successful. If so, 11438 * then don't bother with all of the work to gather pages and 11439 * generate the unsuccessful RPC. Just return from here and 11440 * let the page be committed at some later time. 11441 */ 11442 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11443 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11444 sigunintr(&smask); 11445 page_unlock(pp); 11446 mutex_exit(&rp->r_statelock); 11447 return; 11448 } 11449 sigunintr(&smask); 11450 11451 /* 11452 * We are starting to need to commit pages, so let's try 11453 * to commit as many as possible at once to reduce the 11454 * overhead. 11455 * 11456 * Set the `commit inprogress' state bit. We must 11457 * first wait until any current one finishes. Then 11458 * we initialize the c_pages list with this page. 11459 */ 11460 while (rp->r_flags & R4COMMIT) { 11461 rp->r_flags |= R4COMMITWAIT; 11462 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11463 rp->r_flags &= ~R4COMMITWAIT; 11464 } 11465 rp->r_flags |= R4COMMIT; 11466 mutex_exit(&rp->r_statelock); 11467 ASSERT(rp->r_commit.c_pages == NULL); 11468 rp->r_commit.c_pages = pp; 11469 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11470 rp->r_commit.c_commlen = PAGESIZE; 11471 11472 /* 11473 * Gather together all other pages which can be committed. 11474 * They will all be chained off r_commit.c_pages. 11475 */ 11476 nfs4_get_commit(vp); 11477 11478 /* 11479 * Clear the `commit inprogress' status and disconnect 11480 * the list of pages to be committed from the rnode. 11481 * At this same time, we also save the starting offset 11482 * and length of data to be committed on the server. 11483 */ 11484 plist = rp->r_commit.c_pages; 11485 rp->r_commit.c_pages = NULL; 11486 offset = rp->r_commit.c_commbase; 11487 len = rp->r_commit.c_commlen; 11488 mutex_enter(&rp->r_statelock); 11489 rp->r_flags &= ~R4COMMIT; 11490 cv_broadcast(&rp->r_commit.c_cv); 11491 mutex_exit(&rp->r_statelock); 11492 11493 if (curproc == proc_pageout || curproc == proc_fsflush || 11494 nfs_zone() != VTOMI4(vp)->mi_zone) { 11495 nfs4_async_commit(vp, plist, offset, len, 11496 cr, do_nfs4_async_commit); 11497 return; 11498 } 11499 11500 /* 11501 * Actually generate the COMMIT op over the wire operation. 11502 */ 11503 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11504 11505 /* 11506 * If we got an error during the commit, just unlock all 11507 * of the pages. The pages will get retransmitted to the 11508 * server during a putpage operation. 11509 */ 11510 if (error) { 11511 while (plist != NULL) { 11512 pptr = plist; 11513 page_sub(&plist, pptr); 11514 page_unlock(pptr); 11515 } 11516 return; 11517 } 11518 11519 /* 11520 * We've tried as hard as we can to commit the data to stable 11521 * storage on the server. We just unlock the rest of the pages 11522 * and clear the commit required state. They will be put 11523 * onto the tail of the cachelist if they are nolonger 11524 * mapped. 11525 */ 11526 while (plist != pp) { 11527 pptr = plist; 11528 page_sub(&plist, pptr); 11529 pptr->p_fsdata = C_NOCOMMIT; 11530 page_unlock(pptr); 11531 } 11532 11533 /* 11534 * It is possible that nfs4_commit didn't return error but 11535 * some other thread has modified the page we are going 11536 * to free/destroy. 11537 * In this case we need to rewrite the page. Do an explicit check 11538 * before attempting to free/destroy the page. If modified, needs to 11539 * be rewritten so unlock the page and return. 11540 */ 11541 if (hat_ismod(pp)) { 11542 pp->p_fsdata = C_NOCOMMIT; 11543 page_unlock(pp); 11544 return; 11545 } 11546 11547 /* 11548 * Now, as appropriate, either free or destroy the page 11549 * that we were called with. 11550 */ 11551 pp->p_fsdata = C_NOCOMMIT; 11552 if (fl == B_FREE) 11553 page_free(pp, dn); 11554 else 11555 page_destroy(pp, dn); 11556 } 11557 11558 /* 11559 * Commit requires that the current fh be the file written to. 11560 * The compound op structure is: 11561 * PUTFH(file), COMMIT 11562 */ 11563 static int 11564 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11565 { 11566 COMPOUND4args_clnt args; 11567 COMPOUND4res_clnt res; 11568 COMMIT4res *cm_res; 11569 nfs_argop4 argop[2]; 11570 nfs_resop4 *resop; 11571 int doqueue; 11572 mntinfo4_t *mi; 11573 rnode4_t *rp; 11574 cred_t *cred_otw = NULL; 11575 bool_t needrecov = FALSE; 11576 nfs4_recov_state_t recov_state; 11577 nfs4_open_stream_t *osp = NULL; 11578 bool_t first_time = TRUE; /* first time getting OTW cred */ 11579 bool_t last_time = FALSE; /* last time getting OTW cred */ 11580 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11581 11582 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11583 11584 rp = VTOR4(vp); 11585 11586 mi = VTOMI4(vp); 11587 recov_state.rs_flags = 0; 11588 recov_state.rs_num_retry_despite_err = 0; 11589 get_commit_cred: 11590 /* 11591 * Releases the osp, if a valid open stream is provided. 11592 * Puts a hold on the cred_otw and the new osp (if found). 11593 */ 11594 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11595 &first_time, &last_time); 11596 args.ctag = TAG_COMMIT; 11597 recov_retry: 11598 /* 11599 * Commit ops: putfh file; commit 11600 */ 11601 args.array_len = 2; 11602 args.array = argop; 11603 11604 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11605 &recov_state, NULL); 11606 if (e.error) { 11607 crfree(cred_otw); 11608 if (osp != NULL) 11609 open_stream_rele(osp, rp); 11610 return (e.error); 11611 } 11612 11613 /* putfh directory */ 11614 argop[0].argop = OP_CPUTFH; 11615 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11616 11617 /* commit */ 11618 argop[1].argop = OP_COMMIT; 11619 argop[1].nfs_argop4_u.opcommit.offset = offset; 11620 argop[1].nfs_argop4_u.opcommit.count = count; 11621 11622 doqueue = 1; 11623 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11624 11625 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11626 if (!needrecov && e.error) { 11627 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11628 needrecov); 11629 crfree(cred_otw); 11630 if (e.error == EACCES && last_time == FALSE) 11631 goto get_commit_cred; 11632 if (osp != NULL) 11633 open_stream_rele(osp, rp); 11634 return (e.error); 11635 } 11636 11637 if (needrecov) { 11638 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11639 NULL, OP_COMMIT, NULL) == FALSE) { 11640 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11641 &recov_state, needrecov); 11642 if (!e.error) 11643 (void) xdr_free(xdr_COMPOUND4res_clnt, 11644 (caddr_t)&res); 11645 goto recov_retry; 11646 } 11647 if (e.error) { 11648 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11649 &recov_state, needrecov); 11650 crfree(cred_otw); 11651 if (osp != NULL) 11652 open_stream_rele(osp, rp); 11653 return (e.error); 11654 } 11655 /* fall through for res.status case */ 11656 } 11657 11658 if (res.status) { 11659 e.error = geterrno4(res.status); 11660 if (e.error == EACCES && last_time == FALSE) { 11661 crfree(cred_otw); 11662 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11663 &recov_state, needrecov); 11664 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11665 goto get_commit_cred; 11666 } 11667 /* 11668 * Can't do a nfs4_purge_stale_fh here because this 11669 * can cause a deadlock. nfs4_commit can 11670 * be called from nfs4_dispose which can be called 11671 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11672 * can call back to pvn_vplist_dirty. 11673 */ 11674 if (e.error == ESTALE) { 11675 mutex_enter(&rp->r_statelock); 11676 rp->r_flags |= R4STALE; 11677 if (!rp->r_error) 11678 rp->r_error = e.error; 11679 mutex_exit(&rp->r_statelock); 11680 PURGE_ATTRCACHE4(vp); 11681 } else { 11682 mutex_enter(&rp->r_statelock); 11683 if (!rp->r_error) 11684 rp->r_error = e.error; 11685 mutex_exit(&rp->r_statelock); 11686 } 11687 } else { 11688 ASSERT(rp->r_flags & R4HAVEVERF); 11689 resop = &res.array[1]; /* commit res */ 11690 cm_res = &resop->nfs_resop4_u.opcommit; 11691 mutex_enter(&rp->r_statelock); 11692 if (cm_res->writeverf == rp->r_writeverf) { 11693 mutex_exit(&rp->r_statelock); 11694 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11695 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11696 &recov_state, needrecov); 11697 crfree(cred_otw); 11698 if (osp != NULL) 11699 open_stream_rele(osp, rp); 11700 return (0); 11701 } 11702 nfs4_set_mod(vp); 11703 rp->r_writeverf = cm_res->writeverf; 11704 mutex_exit(&rp->r_statelock); 11705 e.error = NFS_VERF_MISMATCH; 11706 } 11707 11708 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11709 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11710 crfree(cred_otw); 11711 if (osp != NULL) 11712 open_stream_rele(osp, rp); 11713 11714 return (e.error); 11715 } 11716 11717 static void 11718 nfs4_set_mod(vnode_t *vp) 11719 { 11720 page_t *pp; 11721 kmutex_t *vphm; 11722 rnode4_t *rp; 11723 11724 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11725 11726 /* make sure we're looking at the master vnode, not a shadow */ 11727 11728 rp = VTOR4(vp); 11729 if (IS_SHADOW(vp, rp)) 11730 vp = RTOV4(rp); 11731 11732 vphm = page_vnode_mutex(vp); 11733 mutex_enter(vphm); 11734 /* 11735 * If there are no pages associated with this vnode, then 11736 * just return. 11737 */ 11738 if ((pp = vp->v_pages) == NULL) { 11739 mutex_exit(vphm); 11740 return; 11741 } 11742 11743 do { 11744 if (pp->p_fsdata != C_NOCOMMIT) { 11745 hat_setmod(pp); 11746 pp->p_fsdata = C_NOCOMMIT; 11747 } 11748 } while ((pp = pp->p_vpnext) != vp->v_pages); 11749 mutex_exit(vphm); 11750 } 11751 11752 /* 11753 * This function is used to gather a page list of the pages which 11754 * can be committed on the server. 11755 * 11756 * The calling thread must have set R4COMMIT. This bit is used to 11757 * serialize access to the commit structure in the rnode. As long 11758 * as the thread has set R4COMMIT, then it can manipulate the commit 11759 * structure without requiring any other locks. 11760 * 11761 * When this function is called from nfs4_dispose() the page passed 11762 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11763 * will skip it. This is not a problem since we initially add the 11764 * page to the r_commit page list. 11765 * 11766 */ 11767 static void 11768 nfs4_get_commit(vnode_t *vp) 11769 { 11770 rnode4_t *rp; 11771 page_t *pp; 11772 kmutex_t *vphm; 11773 11774 rp = VTOR4(vp); 11775 11776 ASSERT(rp->r_flags & R4COMMIT); 11777 11778 /* make sure we're looking at the master vnode, not a shadow */ 11779 11780 if (IS_SHADOW(vp, rp)) 11781 vp = RTOV4(rp); 11782 11783 vphm = page_vnode_mutex(vp); 11784 mutex_enter(vphm); 11785 11786 /* 11787 * If there are no pages associated with this vnode, then 11788 * just return. 11789 */ 11790 if ((pp = vp->v_pages) == NULL) { 11791 mutex_exit(vphm); 11792 return; 11793 } 11794 11795 /* 11796 * Step through all of the pages associated with this vnode 11797 * looking for pages which need to be committed. 11798 */ 11799 do { 11800 /* 11801 * First short-cut everything (without the page_lock) 11802 * and see if this page does not need to be committed 11803 * or is modified if so then we'll just skip it. 11804 */ 11805 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11806 continue; 11807 11808 /* 11809 * Attempt to lock the page. If we can't, then 11810 * someone else is messing with it or we have been 11811 * called from nfs4_dispose and this is the page that 11812 * nfs4_dispose was called with.. anyway just skip it. 11813 */ 11814 if (!page_trylock(pp, SE_EXCL)) 11815 continue; 11816 11817 /* 11818 * Lets check again now that we have the page lock. 11819 */ 11820 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11821 page_unlock(pp); 11822 continue; 11823 } 11824 11825 /* this had better not be a free page */ 11826 ASSERT(PP_ISFREE(pp) == 0); 11827 11828 /* 11829 * The page needs to be committed and we locked it. 11830 * Update the base and length parameters and add it 11831 * to r_pages. 11832 */ 11833 if (rp->r_commit.c_pages == NULL) { 11834 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11835 rp->r_commit.c_commlen = PAGESIZE; 11836 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11837 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11838 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11839 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11840 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11841 <= pp->p_offset) { 11842 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11843 rp->r_commit.c_commbase + PAGESIZE; 11844 } 11845 page_add(&rp->r_commit.c_pages, pp); 11846 } while ((pp = pp->p_vpnext) != vp->v_pages); 11847 11848 mutex_exit(vphm); 11849 } 11850 11851 /* 11852 * This routine is used to gather together a page list of the pages 11853 * which are to be committed on the server. This routine must not 11854 * be called if the calling thread holds any locked pages. 11855 * 11856 * The calling thread must have set R4COMMIT. This bit is used to 11857 * serialize access to the commit structure in the rnode. As long 11858 * as the thread has set R4COMMIT, then it can manipulate the commit 11859 * structure without requiring any other locks. 11860 */ 11861 static void 11862 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11863 { 11864 11865 rnode4_t *rp; 11866 page_t *pp; 11867 u_offset_t end; 11868 u_offset_t off; 11869 ASSERT(len != 0); 11870 rp = VTOR4(vp); 11871 ASSERT(rp->r_flags & R4COMMIT); 11872 11873 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11874 11875 /* make sure we're looking at the master vnode, not a shadow */ 11876 11877 if (IS_SHADOW(vp, rp)) 11878 vp = RTOV4(rp); 11879 11880 /* 11881 * If there are no pages associated with this vnode, then 11882 * just return. 11883 */ 11884 if ((pp = vp->v_pages) == NULL) 11885 return; 11886 /* 11887 * Calculate the ending offset. 11888 */ 11889 end = soff + len; 11890 for (off = soff; off < end; off += PAGESIZE) { 11891 /* 11892 * Lookup each page by vp, offset. 11893 */ 11894 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 11895 continue; 11896 /* 11897 * If this page does not need to be committed or is 11898 * modified, then just skip it. 11899 */ 11900 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11901 page_unlock(pp); 11902 continue; 11903 } 11904 11905 ASSERT(PP_ISFREE(pp) == 0); 11906 /* 11907 * The page needs to be committed and we locked it. 11908 * Update the base and length parameters and add it 11909 * to r_pages. 11910 */ 11911 if (rp->r_commit.c_pages == NULL) { 11912 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11913 rp->r_commit.c_commlen = PAGESIZE; 11914 } else { 11915 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11916 rp->r_commit.c_commbase + PAGESIZE; 11917 } 11918 page_add(&rp->r_commit.c_pages, pp); 11919 } 11920 } 11921 11922 /* 11923 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 11924 * Flushes and commits data to the server. 11925 */ 11926 static int 11927 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 11928 { 11929 int error; 11930 verifier4 write_verf; 11931 rnode4_t *rp = VTOR4(vp); 11932 11933 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11934 11935 /* 11936 * Flush the data portion of the file and then commit any 11937 * portions which need to be committed. This may need to 11938 * be done twice if the server has changed state since 11939 * data was last written. The data will need to be 11940 * rewritten to the server and then a new commit done. 11941 * 11942 * In fact, this may need to be done several times if the 11943 * server is having problems and crashing while we are 11944 * attempting to do this. 11945 */ 11946 11947 top: 11948 /* 11949 * Do a flush based on the poff and plen arguments. This 11950 * will synchronously write out any modified pages in the 11951 * range specified by (poff, plen). This starts all of the 11952 * i/o operations which will be waited for in the next 11953 * call to nfs4_putpage 11954 */ 11955 11956 mutex_enter(&rp->r_statelock); 11957 write_verf = rp->r_writeverf; 11958 mutex_exit(&rp->r_statelock); 11959 11960 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 11961 if (error == EAGAIN) 11962 error = 0; 11963 11964 /* 11965 * Do a flush based on the poff and plen arguments. This 11966 * will synchronously write out any modified pages in the 11967 * range specified by (poff, plen) and wait until all of 11968 * the asynchronous i/o's in that range are done as well. 11969 */ 11970 if (!error) 11971 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 11972 11973 if (error) 11974 return (error); 11975 11976 mutex_enter(&rp->r_statelock); 11977 if (rp->r_writeverf != write_verf) { 11978 mutex_exit(&rp->r_statelock); 11979 goto top; 11980 } 11981 mutex_exit(&rp->r_statelock); 11982 11983 /* 11984 * Now commit any pages which might need to be committed. 11985 * If the error, NFS_VERF_MISMATCH, is returned, then 11986 * start over with the flush operation. 11987 */ 11988 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 11989 11990 if (error == NFS_VERF_MISMATCH) 11991 goto top; 11992 11993 return (error); 11994 } 11995 11996 /* 11997 * nfs4_commit_vp() will wait for other pending commits and 11998 * will either commit the whole file or a range, plen dictates 11999 * if we commit whole file. a value of zero indicates the whole 12000 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12001 */ 12002 static int 12003 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12004 cred_t *cr, int wait_on_writes) 12005 { 12006 rnode4_t *rp; 12007 page_t *plist; 12008 offset3 offset; 12009 count3 len; 12010 12011 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12012 12013 rp = VTOR4(vp); 12014 12015 /* 12016 * before we gather commitable pages make 12017 * sure there are no outstanding async writes 12018 */ 12019 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12020 mutex_enter(&rp->r_statelock); 12021 while (rp->r_count > 0) { 12022 cv_wait(&rp->r_cv, &rp->r_statelock); 12023 } 12024 mutex_exit(&rp->r_statelock); 12025 } 12026 12027 /* 12028 * Set the `commit inprogress' state bit. We must 12029 * first wait until any current one finishes. 12030 */ 12031 mutex_enter(&rp->r_statelock); 12032 while (rp->r_flags & R4COMMIT) { 12033 rp->r_flags |= R4COMMITWAIT; 12034 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12035 rp->r_flags &= ~R4COMMITWAIT; 12036 } 12037 rp->r_flags |= R4COMMIT; 12038 mutex_exit(&rp->r_statelock); 12039 12040 /* 12041 * Gather all of the pages which need to be 12042 * committed. 12043 */ 12044 if (plen == 0) 12045 nfs4_get_commit(vp); 12046 else 12047 nfs4_get_commit_range(vp, poff, plen); 12048 12049 /* 12050 * Clear the `commit inprogress' bit and disconnect the 12051 * page list which was gathered by nfs4_get_commit. 12052 */ 12053 plist = rp->r_commit.c_pages; 12054 rp->r_commit.c_pages = NULL; 12055 offset = rp->r_commit.c_commbase; 12056 len = rp->r_commit.c_commlen; 12057 mutex_enter(&rp->r_statelock); 12058 rp->r_flags &= ~R4COMMIT; 12059 cv_broadcast(&rp->r_commit.c_cv); 12060 mutex_exit(&rp->r_statelock); 12061 12062 /* 12063 * If any pages need to be committed, commit them and 12064 * then unlock them so that they can be freed some 12065 * time later. 12066 */ 12067 if (plist == NULL) 12068 return (0); 12069 12070 /* 12071 * No error occurred during the flush portion 12072 * of this operation, so now attempt to commit 12073 * the data to stable storage on the server. 12074 * 12075 * This will unlock all of the pages on the list. 12076 */ 12077 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12078 } 12079 12080 static int 12081 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12082 cred_t *cr) 12083 { 12084 int error; 12085 page_t *pp; 12086 12087 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12088 12089 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12090 12091 /* 12092 * If we got an error, then just unlock all of the pages 12093 * on the list. 12094 */ 12095 if (error) { 12096 while (plist != NULL) { 12097 pp = plist; 12098 page_sub(&plist, pp); 12099 page_unlock(pp); 12100 } 12101 return (error); 12102 } 12103 /* 12104 * We've tried as hard as we can to commit the data to stable 12105 * storage on the server. We just unlock the pages and clear 12106 * the commit required state. They will get freed later. 12107 */ 12108 while (plist != NULL) { 12109 pp = plist; 12110 page_sub(&plist, pp); 12111 pp->p_fsdata = C_NOCOMMIT; 12112 page_unlock(pp); 12113 } 12114 12115 return (error); 12116 } 12117 12118 static void 12119 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12120 cred_t *cr) 12121 { 12122 12123 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12124 } 12125 12126 /*ARGSUSED*/ 12127 static int 12128 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12129 caller_context_t *ct) 12130 { 12131 int error = 0; 12132 mntinfo4_t *mi; 12133 vattr_t va; 12134 vsecattr_t nfsace4_vsap; 12135 12136 mi = VTOMI4(vp); 12137 if (nfs_zone() != mi->mi_zone) 12138 return (EIO); 12139 if (mi->mi_flags & MI4_ACL) { 12140 /* if we have a delegation, return it */ 12141 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12142 (void) nfs4delegreturn(VTOR4(vp), 12143 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12144 12145 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12146 NFS4_ACL_SET); 12147 if (error) /* EINVAL */ 12148 return (error); 12149 12150 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12151 /* 12152 * These are aclent_t type entries. 12153 */ 12154 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12155 vp->v_type == VDIR, FALSE); 12156 if (error) 12157 return (error); 12158 } else { 12159 /* 12160 * These are ace_t type entries. 12161 */ 12162 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12163 FALSE); 12164 if (error) 12165 return (error); 12166 } 12167 bzero(&va, sizeof (va)); 12168 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12169 vs_ace4_destroy(&nfsace4_vsap); 12170 return (error); 12171 } 12172 return (ENOSYS); 12173 } 12174 12175 /* ARGSUSED */ 12176 int 12177 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12178 caller_context_t *ct) 12179 { 12180 int error; 12181 mntinfo4_t *mi; 12182 nfs4_ga_res_t gar; 12183 rnode4_t *rp = VTOR4(vp); 12184 12185 mi = VTOMI4(vp); 12186 if (nfs_zone() != mi->mi_zone) 12187 return (EIO); 12188 12189 bzero(&gar, sizeof (gar)); 12190 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12191 12192 /* 12193 * vsecattr->vsa_mask holds the original acl request mask. 12194 * This is needed when determining what to return. 12195 * (See: nfs4_create_getsecattr_return()) 12196 */ 12197 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12198 if (error) /* EINVAL */ 12199 return (error); 12200 12201 if (mi->mi_flags & MI4_ACL) { 12202 /* 12203 * Check if the data is cached and the cache is valid. If it 12204 * is we don't go over the wire. 12205 */ 12206 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12207 mutex_enter(&rp->r_statelock); 12208 if (rp->r_secattr != NULL) { 12209 error = nfs4_create_getsecattr_return( 12210 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12211 rp->r_attr.va_gid, 12212 vp->v_type == VDIR); 12213 if (!error) { /* error == 0 - Success! */ 12214 mutex_exit(&rp->r_statelock); 12215 return (error); 12216 } 12217 } 12218 mutex_exit(&rp->r_statelock); 12219 } 12220 12221 /* 12222 * The getattr otw call will always get both the acl, in 12223 * the form of a list of nfsace4's, and the number of acl 12224 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12225 */ 12226 gar.n4g_va.va_mask = AT_ALL; 12227 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12228 if (error) { 12229 vs_ace4_destroy(&gar.n4g_vsa); 12230 if (error == ENOTSUP || error == EOPNOTSUPP) 12231 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12232 return (error); 12233 } 12234 12235 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12236 /* 12237 * No error was returned, but according to the response 12238 * bitmap, neither was an acl. 12239 */ 12240 vs_ace4_destroy(&gar.n4g_vsa); 12241 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12242 return (error); 12243 } 12244 12245 /* 12246 * Update the cache with the ACL. 12247 */ 12248 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12249 12250 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12251 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12252 vp->v_type == VDIR); 12253 vs_ace4_destroy(&gar.n4g_vsa); 12254 if ((error) && (vsecattr->vsa_mask & 12255 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12256 (error != EACCES)) { 12257 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12258 } 12259 return (error); 12260 } 12261 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12262 return (error); 12263 } 12264 12265 /* 12266 * The function returns: 12267 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12268 * - EINVAL if the passed in "acl_mask" is an invalid request. 12269 * 12270 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12271 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12272 * 12273 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12274 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12275 * - We have a count field set without the corresponding acl field set. (e.g. - 12276 * VSA_ACECNT is set, but VSA_ACE is not) 12277 */ 12278 static int 12279 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12280 { 12281 /* Shortcut the masks that are always valid. */ 12282 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12283 return (0); 12284 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12285 return (0); 12286 12287 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12288 /* 12289 * We can't have any VSA_ACL type stuff in the mask now. 12290 */ 12291 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12292 VSA_DFACLCNT)) 12293 return (EINVAL); 12294 12295 if (op == NFS4_ACL_SET) { 12296 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12297 return (EINVAL); 12298 } 12299 } 12300 12301 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12302 /* 12303 * We can't have any VSA_ACE type stuff in the mask now. 12304 */ 12305 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12306 return (EINVAL); 12307 12308 if (op == NFS4_ACL_SET) { 12309 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12310 return (EINVAL); 12311 12312 if ((acl_mask & VSA_DFACLCNT) && 12313 !(acl_mask & VSA_DFACL)) 12314 return (EINVAL); 12315 } 12316 } 12317 return (0); 12318 } 12319 12320 /* 12321 * The theory behind creating the correct getsecattr return is simply this: 12322 * "Don't return anything that the caller is not expecting to have to free." 12323 */ 12324 static int 12325 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12326 uid_t uid, gid_t gid, int isdir) 12327 { 12328 int error = 0; 12329 /* Save the mask since the translators modify it. */ 12330 uint_t orig_mask = vsap->vsa_mask; 12331 12332 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12333 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, 12334 FALSE, ((orig_mask & VSA_ACE) ? FALSE : TRUE)); 12335 12336 if (error) 12337 return (error); 12338 12339 /* 12340 * If the caller only asked for the ace count (VSA_ACECNT) 12341 * don't give them the full acl (VSA_ACE), free it. 12342 */ 12343 if (!orig_mask & VSA_ACE) { 12344 if (vsap->vsa_aclentp != NULL) { 12345 kmem_free(vsap->vsa_aclentp, 12346 vsap->vsa_aclcnt * sizeof (ace_t)); 12347 vsap->vsa_aclentp = NULL; 12348 } 12349 } 12350 vsap->vsa_mask = orig_mask; 12351 12352 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12353 VSA_DFACLCNT)) { 12354 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12355 isdir, FALSE, 12356 ((orig_mask & (VSA_ACL | VSA_DFACL)) ? FALSE : TRUE)); 12357 12358 if (error) 12359 return (error); 12360 12361 /* 12362 * If the caller only asked for the acl count (VSA_ACLCNT) 12363 * and/or the default acl count (VSA_DFACLCNT) don't give them 12364 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12365 */ 12366 if (!orig_mask & VSA_ACL) { 12367 if (vsap->vsa_aclentp != NULL) { 12368 kmem_free(vsap->vsa_aclentp, 12369 vsap->vsa_aclcnt * sizeof (aclent_t)); 12370 vsap->vsa_aclentp = NULL; 12371 } 12372 } 12373 12374 if (!orig_mask & VSA_DFACL) { 12375 if (vsap->vsa_dfaclentp != NULL) { 12376 kmem_free(vsap->vsa_dfaclentp, 12377 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12378 vsap->vsa_dfaclentp = NULL; 12379 } 12380 } 12381 vsap->vsa_mask = orig_mask; 12382 } 12383 return (0); 12384 } 12385 12386 /* ARGSUSED */ 12387 int 12388 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12389 caller_context_t *ct) 12390 { 12391 int error; 12392 12393 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12394 return (EIO); 12395 /* 12396 * check for valid cmd parameter 12397 */ 12398 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12399 return (EINVAL); 12400 12401 /* 12402 * Check access permissions 12403 */ 12404 if ((cmd & F_SHARE) && 12405 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12406 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12407 return (EBADF); 12408 12409 /* 12410 * If the filesystem is mounted using local locking, pass the 12411 * request off to the local share code. 12412 */ 12413 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12414 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12415 12416 switch (cmd) { 12417 case F_SHARE: 12418 case F_UNSHARE: 12419 /* 12420 * This will be properly implemented later, 12421 * see RFE: 4823948 . 12422 */ 12423 error = EAGAIN; 12424 break; 12425 12426 case F_HASREMOTELOCKS: 12427 /* 12428 * NFS client can't store remote locks itself 12429 */ 12430 shr->s_access = 0; 12431 error = 0; 12432 break; 12433 12434 default: 12435 error = EINVAL; 12436 break; 12437 } 12438 12439 return (error); 12440 } 12441 12442 /* 12443 * Common code called by directory ops to update the attrcache 12444 */ 12445 static int 12446 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12447 hrtime_t t, vnode_t *vp, cred_t *cr) 12448 { 12449 int error = 0; 12450 12451 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12452 12453 if (status != NFS4_OK) { 12454 /* getattr not done or failed */ 12455 PURGE_ATTRCACHE4(vp); 12456 return (error); 12457 } 12458 12459 if (garp) { 12460 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12461 } else { 12462 PURGE_ATTRCACHE4(vp); 12463 } 12464 return (error); 12465 } 12466 12467 /* 12468 * Update directory caches for directory modification ops (link, rename, etc.) 12469 * When dinfo is NULL, manage dircaches in the old way. 12470 */ 12471 static void 12472 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12473 dirattr_info_t *dinfo) 12474 { 12475 rnode4_t *drp = VTOR4(dvp); 12476 12477 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12478 12479 /* Purge rddir cache for dir since it changed */ 12480 if (drp->r_dir != NULL) 12481 nfs4_purge_rddir_cache(dvp); 12482 12483 /* 12484 * If caller provided dinfo, then use it to manage dir caches. 12485 */ 12486 if (dinfo != NULL) { 12487 if (vp != NULL) { 12488 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12489 if (!VTOR4(vp)->created_v4) { 12490 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12491 dnlc_update(dvp, nm, vp); 12492 } else { 12493 /* 12494 * XXX don't update if the created_v4 flag is 12495 * set 12496 */ 12497 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12498 NFS4_DEBUG(nfs4_client_state_debug, 12499 (CE_NOTE, "nfs4_update_dircaches: " 12500 "don't update dnlc: created_v4 flag")); 12501 } 12502 } 12503 12504 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12505 dinfo->di_cred, FALSE, cinfo); 12506 12507 return; 12508 } 12509 12510 /* 12511 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12512 * Since caller modified dir but didn't receive post-dirmod-op dir 12513 * attrs, the dir's attrs must be purged. 12514 * 12515 * XXX this check and dnlc update/purge should really be atomic, 12516 * XXX but can't use rnode statelock because it'll deadlock in 12517 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12518 * XXX does occur. 12519 * 12520 * XXX We also may want to check that atomic is true in the 12521 * XXX change_info struct. If it is not, the change_info may 12522 * XXX reflect changes by more than one clients which means that 12523 * XXX our cache may not be valid. 12524 */ 12525 PURGE_ATTRCACHE4(dvp); 12526 if (drp->r_change == cinfo->before) { 12527 /* no changes took place in the directory prior to our link */ 12528 if (vp != NULL) { 12529 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12530 if (!VTOR4(vp)->created_v4) { 12531 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12532 dnlc_update(dvp, nm, vp); 12533 } else { 12534 /* 12535 * XXX dont' update if the created_v4 flag 12536 * is set 12537 */ 12538 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12539 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12540 "nfs4_update_dircaches: don't" 12541 " update dnlc: created_v4 flag")); 12542 } 12543 } 12544 } else { 12545 /* Another client modified directory - purge its dnlc cache */ 12546 dnlc_purge_vp(dvp); 12547 } 12548 } 12549 12550 /* 12551 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12552 * file. 12553 * 12554 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12555 * file (ie: client recovery) and otherwise set to FALSE. 12556 * 12557 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12558 * initiated) calling functions. 12559 * 12560 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12561 * of resending a 'lost' open request. 12562 * 12563 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12564 * server that hands out BAD_SEQID on open confirm. 12565 * 12566 * Errors are returned via the nfs4_error_t parameter. 12567 */ 12568 void 12569 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12570 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12571 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12572 { 12573 COMPOUND4args_clnt args; 12574 COMPOUND4res_clnt res; 12575 nfs_argop4 argop[2]; 12576 nfs_resop4 *resop; 12577 int doqueue = 1; 12578 mntinfo4_t *mi; 12579 OPEN_CONFIRM4args *open_confirm_args; 12580 int needrecov; 12581 12582 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12583 #if DEBUG 12584 mutex_enter(&oop->oo_lock); 12585 ASSERT(oop->oo_seqid_inuse); 12586 mutex_exit(&oop->oo_lock); 12587 #endif 12588 12589 recov_retry_confirm: 12590 nfs4_error_zinit(ep); 12591 *retry_open = FALSE; 12592 12593 if (resend) 12594 args.ctag = TAG_OPEN_CONFIRM_LOST; 12595 else 12596 args.ctag = TAG_OPEN_CONFIRM; 12597 12598 args.array_len = 2; 12599 args.array = argop; 12600 12601 /* putfh target fh */ 12602 argop[0].argop = OP_CPUTFH; 12603 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12604 12605 argop[1].argop = OP_OPEN_CONFIRM; 12606 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12607 12608 (*seqid) += 1; 12609 open_confirm_args->seqid = *seqid; 12610 open_confirm_args->open_stateid = *stateid; 12611 12612 mi = VTOMI4(vp); 12613 12614 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12615 12616 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12617 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12618 } 12619 12620 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12621 if (!needrecov && ep->error) 12622 return; 12623 12624 if (needrecov) { 12625 bool_t abort = FALSE; 12626 12627 if (reopening_file == FALSE) { 12628 nfs4_bseqid_entry_t *bsep = NULL; 12629 12630 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12631 bsep = nfs4_create_bseqid_entry(oop, NULL, 12632 vp, 0, args.ctag, 12633 open_confirm_args->seqid); 12634 12635 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, 12636 NULL, NULL, NULL, OP_OPEN_CONFIRM, bsep); 12637 if (bsep) { 12638 kmem_free(bsep, sizeof (*bsep)); 12639 if (num_bseqid_retryp && 12640 --(*num_bseqid_retryp) == 0) 12641 abort = TRUE; 12642 } 12643 } 12644 if ((ep->error == ETIMEDOUT || 12645 res.status == NFS4ERR_RESOURCE) && 12646 abort == FALSE && resend == FALSE) { 12647 if (!ep->error) 12648 (void) xdr_free(xdr_COMPOUND4res_clnt, 12649 (caddr_t)&res); 12650 12651 delay(SEC_TO_TICK(confirm_retry_sec)); 12652 goto recov_retry_confirm; 12653 } 12654 /* State may have changed so retry the entire OPEN op */ 12655 if (abort == FALSE) 12656 *retry_open = TRUE; 12657 else 12658 *retry_open = FALSE; 12659 if (!ep->error) 12660 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12661 return; 12662 } 12663 12664 if (res.status) { 12665 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12666 return; 12667 } 12668 12669 resop = &res.array[1]; /* open confirm res */ 12670 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12671 stateid, sizeof (*stateid)); 12672 12673 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12674 } 12675 12676 /* 12677 * Return the credentials associated with a client state object. The 12678 * caller is responsible for freeing the credentials. 12679 */ 12680 12681 static cred_t * 12682 state_to_cred(nfs4_open_stream_t *osp) 12683 { 12684 cred_t *cr; 12685 12686 /* 12687 * It's ok to not lock the open stream and open owner to get 12688 * the oo_cred since this is only written once (upon creation) 12689 * and will not change. 12690 */ 12691 cr = osp->os_open_owner->oo_cred; 12692 crhold(cr); 12693 12694 return (cr); 12695 } 12696 12697 /* 12698 * nfs4_find_sysid 12699 * 12700 * Find the sysid for the knetconfig associated with the given mi. 12701 */ 12702 static struct lm_sysid * 12703 nfs4_find_sysid(mntinfo4_t *mi) 12704 { 12705 ASSERT(nfs_zone() == mi->mi_zone); 12706 12707 /* 12708 * Switch from RDMA knconf to original mount knconf 12709 */ 12710 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12711 mi->mi_curr_serv->sv_hostname, NULL)); 12712 } 12713 12714 #ifdef DEBUG 12715 /* 12716 * Return a string version of the call type for easy reading. 12717 */ 12718 static char * 12719 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12720 { 12721 switch (ctype) { 12722 case NFS4_LCK_CTYPE_NORM: 12723 return ("NORMAL"); 12724 case NFS4_LCK_CTYPE_RECLAIM: 12725 return ("RECLAIM"); 12726 case NFS4_LCK_CTYPE_RESEND: 12727 return ("RESEND"); 12728 case NFS4_LCK_CTYPE_REINSTATE: 12729 return ("REINSTATE"); 12730 default: 12731 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12732 "type %d", ctype); 12733 return (""); 12734 } 12735 } 12736 #endif 12737 12738 /* 12739 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12740 * Unlock requests don't have an over-the-wire locktype, so we just return 12741 * something non-threatening. 12742 */ 12743 12744 static nfs_lock_type4 12745 flk_to_locktype(int cmd, int l_type) 12746 { 12747 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12748 12749 switch (l_type) { 12750 case F_UNLCK: 12751 return (READ_LT); 12752 case F_RDLCK: 12753 if (cmd == F_SETLK) 12754 return (READ_LT); 12755 else 12756 return (READW_LT); 12757 case F_WRLCK: 12758 if (cmd == F_SETLK) 12759 return (WRITE_LT); 12760 else 12761 return (WRITEW_LT); 12762 } 12763 panic("flk_to_locktype"); 12764 /*NOTREACHED*/ 12765 } 12766 12767 /* 12768 * Do some preliminary checks for nfs4frlock. 12769 */ 12770 static int 12771 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12772 u_offset_t offset) 12773 { 12774 int error = 0; 12775 12776 /* 12777 * If we are setting a lock, check that the file is opened 12778 * with the correct mode. 12779 */ 12780 if (cmd == F_SETLK || cmd == F_SETLKW) { 12781 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12782 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12783 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12784 "nfs4frlock_validate_args: file was opened with " 12785 "incorrect mode")); 12786 return (EBADF); 12787 } 12788 } 12789 12790 /* Convert the offset. It may need to be restored before returning. */ 12791 if (error = convoff(vp, flk, 0, offset)) { 12792 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12793 "nfs4frlock_validate_args: convoff => error= %d\n", 12794 error)); 12795 return (error); 12796 } 12797 12798 return (error); 12799 } 12800 12801 /* 12802 * Set the flock64's lm_sysid for nfs4frlock. 12803 */ 12804 static int 12805 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12806 { 12807 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12808 12809 /* Find the lm_sysid */ 12810 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12811 12812 if (*lspp == NULL) { 12813 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12814 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12815 return (ENOLCK); 12816 } 12817 12818 flk->l_sysid = lm_sysidt(*lspp); 12819 12820 return (0); 12821 } 12822 12823 /* 12824 * Do the remaining preliminary setup for nfs4frlock. 12825 */ 12826 static void 12827 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12828 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12829 cred_t **cred_otw) 12830 { 12831 /* 12832 * set tick_delay to the base delay time. 12833 * (NFS4_BASE_WAIT_TIME is in secs) 12834 */ 12835 12836 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12837 12838 /* 12839 * If lock is relative to EOF, we need the newest length of the 12840 * file. Therefore invalidate the ATTR_CACHE. 12841 */ 12842 12843 *whencep = flk->l_whence; 12844 12845 if (*whencep == 2) /* SEEK_END */ 12846 PURGE_ATTRCACHE4(vp); 12847 12848 recov_statep->rs_flags = 0; 12849 recov_statep->rs_num_retry_despite_err = 0; 12850 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12851 } 12852 12853 /* 12854 * Initialize and allocate the data structures necessary for 12855 * the nfs4frlock call. 12856 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12857 */ 12858 static void 12859 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12860 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12861 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12862 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 12863 { 12864 int argoplist_size; 12865 int num_ops = 2; 12866 12867 *retry = FALSE; 12868 *did_start_fop = FALSE; 12869 *skip_get_err = FALSE; 12870 lost_rqstp->lr_op = 0; 12871 argoplist_size = num_ops * sizeof (nfs_argop4); 12872 /* fill array with zero */ 12873 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 12874 12875 *argspp = argsp; 12876 *respp = NULL; 12877 12878 argsp->array_len = num_ops; 12879 argsp->array = *argopp; 12880 12881 /* initialize in case of error; will get real value down below */ 12882 argsp->ctag = TAG_NONE; 12883 12884 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 12885 *op_hintp = OH_LOCKU; 12886 else 12887 *op_hintp = OH_OTHER; 12888 } 12889 12890 /* 12891 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 12892 * the proper nfs4_server_t for this instance of nfs4frlock. 12893 * Returns 0 (success) or an errno value. 12894 */ 12895 static int 12896 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 12897 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 12898 bool_t *did_start_fop, bool_t *startrecovp) 12899 { 12900 int error = 0; 12901 rnode4_t *rp; 12902 12903 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12904 12905 if (ctype == NFS4_LCK_CTYPE_NORM) { 12906 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 12907 recov_statep, startrecovp); 12908 if (error) 12909 return (error); 12910 *did_start_fop = TRUE; 12911 } else { 12912 *did_start_fop = FALSE; 12913 *startrecovp = FALSE; 12914 } 12915 12916 if (!error) { 12917 rp = VTOR4(vp); 12918 12919 /* If the file failed recovery, just quit. */ 12920 mutex_enter(&rp->r_statelock); 12921 if (rp->r_flags & R4RECOVERR) { 12922 error = EIO; 12923 } 12924 mutex_exit(&rp->r_statelock); 12925 } 12926 12927 return (error); 12928 } 12929 12930 /* 12931 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 12932 * resend nfs4frlock call is initiated by the recovery framework. 12933 * Acquires the lop and oop seqid synchronization. 12934 */ 12935 static void 12936 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 12937 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 12938 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 12939 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 12940 { 12941 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 12942 int error; 12943 12944 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 12945 (CE_NOTE, 12946 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 12947 ASSERT(resend_rqstp != NULL); 12948 ASSERT(resend_rqstp->lr_op == OP_LOCK || 12949 resend_rqstp->lr_op == OP_LOCKU); 12950 12951 *oopp = resend_rqstp->lr_oop; 12952 if (resend_rqstp->lr_oop) { 12953 open_owner_hold(resend_rqstp->lr_oop); 12954 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 12955 ASSERT(error == 0); /* recov thread always succeeds */ 12956 } 12957 12958 /* Must resend this lost lock/locku request. */ 12959 ASSERT(resend_rqstp->lr_lop != NULL); 12960 *lopp = resend_rqstp->lr_lop; 12961 lock_owner_hold(resend_rqstp->lr_lop); 12962 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 12963 ASSERT(error == 0); /* recov thread always succeeds */ 12964 12965 *ospp = resend_rqstp->lr_osp; 12966 if (*ospp) 12967 open_stream_hold(resend_rqstp->lr_osp); 12968 12969 if (resend_rqstp->lr_op == OP_LOCK) { 12970 LOCK4args *lock_args; 12971 12972 argop->argop = OP_LOCK; 12973 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 12974 lock_args->locktype = resend_rqstp->lr_locktype; 12975 lock_args->reclaim = 12976 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 12977 lock_args->offset = resend_rqstp->lr_flk->l_start; 12978 lock_args->length = resend_rqstp->lr_flk->l_len; 12979 if (lock_args->length == 0) 12980 lock_args->length = ~lock_args->length; 12981 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 12982 mi2clientid(mi), &lock_args->locker); 12983 12984 switch (resend_rqstp->lr_ctype) { 12985 case NFS4_LCK_CTYPE_RESEND: 12986 argsp->ctag = TAG_LOCK_RESEND; 12987 break; 12988 case NFS4_LCK_CTYPE_REINSTATE: 12989 argsp->ctag = TAG_LOCK_REINSTATE; 12990 break; 12991 case NFS4_LCK_CTYPE_RECLAIM: 12992 argsp->ctag = TAG_LOCK_RECLAIM; 12993 break; 12994 default: 12995 argsp->ctag = TAG_LOCK_UNKNOWN; 12996 break; 12997 } 12998 } else { 12999 LOCKU4args *locku_args; 13000 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13001 13002 argop->argop = OP_LOCKU; 13003 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13004 locku_args->locktype = READ_LT; 13005 locku_args->seqid = lop->lock_seqid + 1; 13006 mutex_enter(&lop->lo_lock); 13007 locku_args->lock_stateid = lop->lock_stateid; 13008 mutex_exit(&lop->lo_lock); 13009 locku_args->offset = resend_rqstp->lr_flk->l_start; 13010 locku_args->length = resend_rqstp->lr_flk->l_len; 13011 if (locku_args->length == 0) 13012 locku_args->length = ~locku_args->length; 13013 13014 switch (resend_rqstp->lr_ctype) { 13015 case NFS4_LCK_CTYPE_RESEND: 13016 argsp->ctag = TAG_LOCKU_RESEND; 13017 break; 13018 case NFS4_LCK_CTYPE_REINSTATE: 13019 argsp->ctag = TAG_LOCKU_REINSTATE; 13020 break; 13021 default: 13022 argsp->ctag = TAG_LOCK_UNKNOWN; 13023 break; 13024 } 13025 } 13026 } 13027 13028 /* 13029 * Setup the LOCKT4 arguments. 13030 */ 13031 static void 13032 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13033 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13034 rnode4_t *rp) 13035 { 13036 LOCKT4args *lockt_args; 13037 13038 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13039 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13040 argop->argop = OP_LOCKT; 13041 argsp->ctag = TAG_LOCKT; 13042 lockt_args = &argop->nfs_argop4_u.oplockt; 13043 13044 /* 13045 * The locktype will be READ_LT unless it's 13046 * a write lock. We do this because the Solaris 13047 * system call allows the combination of 13048 * F_UNLCK and F_GETLK* and so in that case the 13049 * unlock is mapped to a read. 13050 */ 13051 if (flk->l_type == F_WRLCK) 13052 lockt_args->locktype = WRITE_LT; 13053 else 13054 lockt_args->locktype = READ_LT; 13055 13056 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13057 /* set the lock owner4 args */ 13058 nfs4_setlockowner_args(&lockt_args->owner, rp, 13059 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13060 flk->l_pid); 13061 lockt_args->offset = flk->l_start; 13062 lockt_args->length = flk->l_len; 13063 if (flk->l_len == 0) 13064 lockt_args->length = ~lockt_args->length; 13065 13066 *lockt_argsp = lockt_args; 13067 } 13068 13069 /* 13070 * If the client is holding a delegation, and the open stream to be used 13071 * with this lock request is a delegation open stream, then re-open the stream. 13072 * Sets the nfs4_error_t to all zeros unless the open stream has already 13073 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13074 * means the caller should retry (like a recovery retry). 13075 */ 13076 static void 13077 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13078 { 13079 open_delegation_type4 dt; 13080 bool_t reopen_needed, force; 13081 nfs4_open_stream_t *osp; 13082 open_claim_type4 oclaim; 13083 rnode4_t *rp = VTOR4(vp); 13084 mntinfo4_t *mi = VTOMI4(vp); 13085 13086 ASSERT(nfs_zone() == mi->mi_zone); 13087 13088 nfs4_error_zinit(ep); 13089 13090 mutex_enter(&rp->r_statev4_lock); 13091 dt = rp->r_deleg_type; 13092 mutex_exit(&rp->r_statev4_lock); 13093 13094 if (dt != OPEN_DELEGATE_NONE) { 13095 nfs4_open_owner_t *oop; 13096 13097 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13098 if (!oop) { 13099 ep->stat = NFS4ERR_IO; 13100 return; 13101 } 13102 /* returns with 'os_sync_lock' held */ 13103 osp = find_open_stream(oop, rp); 13104 if (!osp) { 13105 open_owner_rele(oop); 13106 ep->stat = NFS4ERR_IO; 13107 return; 13108 } 13109 13110 if (osp->os_failed_reopen) { 13111 NFS4_DEBUG((nfs4_open_stream_debug || 13112 nfs4_client_lock_debug), (CE_NOTE, 13113 "nfs4frlock_check_deleg: os_failed_reopen set " 13114 "for osp %p, cr %p, rp %s", (void *)osp, 13115 (void *)cr, rnode4info(rp))); 13116 mutex_exit(&osp->os_sync_lock); 13117 open_stream_rele(osp, rp); 13118 open_owner_rele(oop); 13119 ep->stat = NFS4ERR_IO; 13120 return; 13121 } 13122 13123 /* 13124 * Determine whether a reopen is needed. If this 13125 * is a delegation open stream, then send the open 13126 * to the server to give visibility to the open owner. 13127 * Even if it isn't a delegation open stream, we need 13128 * to check if the previous open CLAIM_DELEGATE_CUR 13129 * was sufficient. 13130 */ 13131 13132 reopen_needed = osp->os_delegation || 13133 ((lt == F_RDLCK && 13134 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13135 (lt == F_WRLCK && 13136 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13137 13138 mutex_exit(&osp->os_sync_lock); 13139 open_owner_rele(oop); 13140 13141 if (reopen_needed) { 13142 /* 13143 * Always use CLAIM_PREVIOUS after server reboot. 13144 * The server will reject CLAIM_DELEGATE_CUR if 13145 * it is used during the grace period. 13146 */ 13147 mutex_enter(&mi->mi_lock); 13148 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13149 oclaim = CLAIM_PREVIOUS; 13150 force = TRUE; 13151 } else { 13152 oclaim = CLAIM_DELEGATE_CUR; 13153 force = FALSE; 13154 } 13155 mutex_exit(&mi->mi_lock); 13156 13157 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13158 if (ep->error == EAGAIN) { 13159 nfs4_error_zinit(ep); 13160 ep->stat = NFS4ERR_DELAY; 13161 } 13162 } 13163 open_stream_rele(osp, rp); 13164 osp = NULL; 13165 } 13166 } 13167 13168 /* 13169 * Setup the LOCKU4 arguments. 13170 * Returns errors via the nfs4_error_t. 13171 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13172 * over-the-wire. The caller must release the 13173 * reference on *lopp. 13174 * NFS4ERR_DELAY caller should retry (like recovery retry) 13175 * (other) unrecoverable error. 13176 */ 13177 static void 13178 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13179 LOCKU4args **locku_argsp, flock64_t *flk, 13180 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13181 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13182 bool_t *skip_get_err, bool_t *go_otwp) 13183 { 13184 nfs4_lock_owner_t *lop = NULL; 13185 LOCKU4args *locku_args; 13186 pid_t pid; 13187 bool_t is_spec = FALSE; 13188 rnode4_t *rp = VTOR4(vp); 13189 13190 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13191 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13192 13193 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13194 if (ep->error || ep->stat) 13195 return; 13196 13197 argop->argop = OP_LOCKU; 13198 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13199 argsp->ctag = TAG_LOCKU_REINSTATE; 13200 else 13201 argsp->ctag = TAG_LOCKU; 13202 locku_args = &argop->nfs_argop4_u.oplocku; 13203 *locku_argsp = locku_args; 13204 13205 /* 13206 * XXX what should locku_args->locktype be? 13207 * setting to ALWAYS be READ_LT so at least 13208 * it is a valid locktype. 13209 */ 13210 13211 locku_args->locktype = READ_LT; 13212 13213 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13214 flk->l_pid; 13215 13216 /* 13217 * Get the lock owner stateid. If no lock owner 13218 * exists, return success. 13219 */ 13220 lop = find_lock_owner(rp, pid, LOWN_ANY); 13221 *lopp = lop; 13222 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13223 is_spec = TRUE; 13224 if (!lop || is_spec) { 13225 /* 13226 * No lock owner so no locks to unlock. 13227 * Return success. If there was a failed 13228 * reclaim earlier, the lock might still be 13229 * registered with the local locking code, 13230 * so notify it of the unlock. 13231 * 13232 * If the lockowner is using a special stateid, 13233 * then the original lock request (that created 13234 * this lockowner) was never successful, so we 13235 * have no lock to undo OTW. 13236 */ 13237 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13238 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13239 "(%ld) so return success", (long)pid)); 13240 13241 if (ctype == NFS4_LCK_CTYPE_NORM) 13242 flk->l_pid = curproc->p_pid; 13243 nfs4_register_lock_locally(vp, flk, flag, offset); 13244 /* 13245 * Release our hold and NULL out so final_cleanup 13246 * doesn't try to end a lock seqid sync we 13247 * never started. 13248 */ 13249 if (is_spec) { 13250 lock_owner_rele(lop); 13251 *lopp = NULL; 13252 } 13253 *skip_get_err = TRUE; 13254 *go_otwp = FALSE; 13255 return; 13256 } 13257 13258 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13259 if (ep->error == EAGAIN) { 13260 lock_owner_rele(lop); 13261 *lopp = NULL; 13262 return; 13263 } 13264 13265 mutex_enter(&lop->lo_lock); 13266 locku_args->lock_stateid = lop->lock_stateid; 13267 mutex_exit(&lop->lo_lock); 13268 locku_args->seqid = lop->lock_seqid + 1; 13269 13270 /* leave the ref count on lop, rele after RPC call */ 13271 13272 locku_args->offset = flk->l_start; 13273 locku_args->length = flk->l_len; 13274 if (flk->l_len == 0) 13275 locku_args->length = ~locku_args->length; 13276 13277 *go_otwp = TRUE; 13278 } 13279 13280 /* 13281 * Setup the LOCK4 arguments. 13282 * 13283 * Returns errors via the nfs4_error_t. 13284 * NFS4_OK no problems 13285 * NFS4ERR_DELAY caller should retry (like recovery retry) 13286 * (other) unrecoverable error 13287 */ 13288 static void 13289 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13290 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13291 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13292 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13293 { 13294 LOCK4args *lock_args; 13295 nfs4_open_owner_t *oop = NULL; 13296 nfs4_open_stream_t *osp = NULL; 13297 nfs4_lock_owner_t *lop = NULL; 13298 pid_t pid; 13299 rnode4_t *rp = VTOR4(vp); 13300 13301 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13302 13303 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13304 if (ep->error || ep->stat != NFS4_OK) 13305 return; 13306 13307 argop->argop = OP_LOCK; 13308 if (ctype == NFS4_LCK_CTYPE_NORM) 13309 argsp->ctag = TAG_LOCK; 13310 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13311 argsp->ctag = TAG_RELOCK; 13312 else 13313 argsp->ctag = TAG_LOCK_REINSTATE; 13314 lock_args = &argop->nfs_argop4_u.oplock; 13315 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13316 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13317 /* 13318 * Get the lock owner. If no lock owner exists, 13319 * create a 'temporary' one and grab the open seqid 13320 * synchronization (which puts a hold on the open 13321 * owner and open stream). 13322 * This also grabs the lock seqid synchronization. 13323 */ 13324 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13325 ep->stat = 13326 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13327 13328 if (ep->stat != NFS4_OK) 13329 goto out; 13330 13331 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13332 &lock_args->locker); 13333 13334 lock_args->offset = flk->l_start; 13335 lock_args->length = flk->l_len; 13336 if (flk->l_len == 0) 13337 lock_args->length = ~lock_args->length; 13338 *lock_argsp = lock_args; 13339 out: 13340 *oopp = oop; 13341 *ospp = osp; 13342 *lopp = lop; 13343 } 13344 13345 /* 13346 * After we get the reply from the server, record the proper information 13347 * for possible resend lock requests. 13348 * 13349 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13350 */ 13351 static void 13352 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13353 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13354 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13355 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13356 { 13357 bool_t unlock = (flk->l_type == F_UNLCK); 13358 13359 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13360 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13361 ctype == NFS4_LCK_CTYPE_REINSTATE); 13362 13363 if (error != 0 && !unlock) { 13364 NFS4_DEBUG((nfs4_lost_rqst_debug || 13365 nfs4_client_lock_debug), (CE_NOTE, 13366 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13367 " for lop %p", (void *)lop)); 13368 ASSERT(lop != NULL); 13369 mutex_enter(&lop->lo_lock); 13370 lop->lo_pending_rqsts = 1; 13371 mutex_exit(&lop->lo_lock); 13372 } 13373 13374 lost_rqstp->lr_putfirst = FALSE; 13375 lost_rqstp->lr_op = 0; 13376 13377 /* 13378 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13379 * recovery purposes so that the lock request that was sent 13380 * can be saved and re-issued later. Ditto for EIO from a forced 13381 * unmount. This is done to have the client's local locking state 13382 * match the v4 server's state; that is, the request was 13383 * potentially received and accepted by the server but the client 13384 * thinks it was not. 13385 */ 13386 if (error == ETIMEDOUT || error == EINTR || 13387 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13388 NFS4_DEBUG((nfs4_lost_rqst_debug || 13389 nfs4_client_lock_debug), (CE_NOTE, 13390 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13391 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13392 (void *)lop, (void *)oop, (void *)osp)); 13393 if (unlock) 13394 lost_rqstp->lr_op = OP_LOCKU; 13395 else { 13396 lost_rqstp->lr_op = OP_LOCK; 13397 lost_rqstp->lr_locktype = locktype; 13398 } 13399 /* 13400 * Objects are held and rele'd via the recovery code. 13401 * See nfs4_save_lost_rqst. 13402 */ 13403 lost_rqstp->lr_vp = vp; 13404 lost_rqstp->lr_dvp = NULL; 13405 lost_rqstp->lr_oop = oop; 13406 lost_rqstp->lr_osp = osp; 13407 lost_rqstp->lr_lop = lop; 13408 lost_rqstp->lr_cr = cr; 13409 switch (ctype) { 13410 case NFS4_LCK_CTYPE_NORM: 13411 flk->l_pid = ttoproc(curthread)->p_pid; 13412 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13413 break; 13414 case NFS4_LCK_CTYPE_REINSTATE: 13415 lost_rqstp->lr_putfirst = TRUE; 13416 lost_rqstp->lr_ctype = ctype; 13417 break; 13418 default: 13419 break; 13420 } 13421 lost_rqstp->lr_flk = flk; 13422 } 13423 } 13424 13425 /* 13426 * Update lop's seqid. Also update the seqid stored in a resend request, 13427 * if any. (Some recovery errors increment the seqid, and we may have to 13428 * send the resend request again.) 13429 */ 13430 13431 static void 13432 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13433 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13434 { 13435 if (lock_args) { 13436 if (lock_args->locker.new_lock_owner == TRUE) 13437 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13438 else { 13439 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13440 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13441 } 13442 } else if (locku_args) { 13443 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13444 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13445 } 13446 } 13447 13448 /* 13449 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13450 * COMPOUND4 args/res for calls that need to retry. 13451 * Switches the *cred_otwp to base_cr. 13452 */ 13453 static void 13454 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13455 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13456 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13457 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13458 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13459 { 13460 nfs4_open_owner_t *oop = *oopp; 13461 nfs4_open_stream_t *osp = *ospp; 13462 nfs4_lock_owner_t *lop = *lopp; 13463 nfs_argop4 *argop = (*argspp)->array; 13464 13465 if (*did_start_fop) { 13466 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13467 needrecov); 13468 *did_start_fop = FALSE; 13469 } 13470 ASSERT((*argspp)->array_len == 2); 13471 if (argop[1].argop == OP_LOCK) 13472 nfs4args_lock_free(&argop[1]); 13473 else if (argop[1].argop == OP_LOCKT) 13474 nfs4args_lockt_free(&argop[1]); 13475 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13476 if (!error) 13477 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13478 *argspp = NULL; 13479 *respp = NULL; 13480 13481 if (lop) { 13482 nfs4_end_lock_seqid_sync(lop); 13483 lock_owner_rele(lop); 13484 *lopp = NULL; 13485 } 13486 13487 /* need to free up the reference on osp for lock args */ 13488 if (osp != NULL) { 13489 open_stream_rele(osp, VTOR4(vp)); 13490 *ospp = NULL; 13491 } 13492 13493 /* need to free up the reference on oop for lock args */ 13494 if (oop != NULL) { 13495 nfs4_end_open_seqid_sync(oop); 13496 open_owner_rele(oop); 13497 *oopp = NULL; 13498 } 13499 13500 crfree(*cred_otwp); 13501 *cred_otwp = base_cr; 13502 crhold(*cred_otwp); 13503 } 13504 13505 /* 13506 * Function to process the client's recovery for nfs4frlock. 13507 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13508 * 13509 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13510 * COMPOUND4 args/res for calls that need to retry. 13511 * 13512 * Note: the rp's r_lkserlock is *not* dropped during this path. 13513 */ 13514 static bool_t 13515 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13516 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13517 LOCK4args *lock_args, LOCKU4args *locku_args, 13518 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13519 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13520 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13521 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13522 { 13523 nfs4_open_owner_t *oop = *oopp; 13524 nfs4_open_stream_t *osp = *ospp; 13525 nfs4_lock_owner_t *lop = *lopp; 13526 13527 bool_t abort, retry; 13528 13529 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13530 ASSERT((*argspp) != NULL); 13531 ASSERT((*respp) != NULL); 13532 if (lock_args || locku_args) 13533 ASSERT(lop != NULL); 13534 13535 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13536 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13537 13538 retry = TRUE; 13539 abort = FALSE; 13540 if (needrecov) { 13541 nfs4_bseqid_entry_t *bsep = NULL; 13542 nfs_opnum4 op; 13543 13544 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13545 13546 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13547 seqid4 seqid; 13548 13549 if (lock_args) { 13550 if (lock_args->locker.new_lock_owner == TRUE) 13551 seqid = lock_args->locker.locker4_u. 13552 open_owner.open_seqid; 13553 else 13554 seqid = lock_args->locker.locker4_u. 13555 lock_owner.lock_seqid; 13556 } else if (locku_args) { 13557 seqid = locku_args->seqid; 13558 } else { 13559 seqid = 0; 13560 } 13561 13562 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13563 flk->l_pid, (*argspp)->ctag, seqid); 13564 } 13565 13566 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13567 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13568 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13569 NULL, op, bsep); 13570 13571 if (bsep) 13572 kmem_free(bsep, sizeof (*bsep)); 13573 } 13574 13575 /* 13576 * Return that we do not want to retry the request for 3 cases: 13577 * 1. If we received EINTR or are bailing out because of a forced 13578 * unmount, we came into this code path just for the sake of 13579 * initiating recovery, we now need to return the error. 13580 * 2. If we have aborted recovery. 13581 * 3. We received NFS4ERR_BAD_SEQID. 13582 */ 13583 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13584 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13585 retry = FALSE; 13586 13587 if (*did_start_fop == TRUE) { 13588 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13589 needrecov); 13590 *did_start_fop = FALSE; 13591 } 13592 13593 if (retry == TRUE) { 13594 nfs_argop4 *argop; 13595 13596 argop = (*argspp)->array; 13597 ASSERT((*argspp)->array_len == 2); 13598 13599 if (argop[1].argop == OP_LOCK) 13600 nfs4args_lock_free(&argop[1]); 13601 else if (argop[1].argop == OP_LOCKT) 13602 nfs4args_lockt_free(&argop[1]); 13603 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13604 if (!ep->error) 13605 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13606 *respp = NULL; 13607 *argspp = NULL; 13608 } 13609 13610 if (lop != NULL) { 13611 nfs4_end_lock_seqid_sync(lop); 13612 lock_owner_rele(lop); 13613 } 13614 13615 *lopp = NULL; 13616 13617 /* need to free up the reference on osp for lock args */ 13618 if (osp != NULL) { 13619 open_stream_rele(osp, rp); 13620 *ospp = NULL; 13621 } 13622 13623 /* need to free up the reference on oop for lock args */ 13624 if (oop != NULL) { 13625 nfs4_end_open_seqid_sync(oop); 13626 open_owner_rele(oop); 13627 *oopp = NULL; 13628 } 13629 13630 return (retry); 13631 } 13632 13633 /* 13634 * Handles the successful reply from the server for nfs4frlock. 13635 */ 13636 static void 13637 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13638 vnode_t *vp, int flag, u_offset_t offset, 13639 nfs4_lost_rqst_t *resend_rqstp) 13640 { 13641 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13642 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13643 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13644 if (ctype == NFS4_LCK_CTYPE_NORM) { 13645 flk->l_pid = ttoproc(curthread)->p_pid; 13646 /* 13647 * We do not register lost locks locally in 13648 * the 'resend' case since the user/application 13649 * doesn't think we have the lock. 13650 */ 13651 ASSERT(!resend_rqstp); 13652 nfs4_register_lock_locally(vp, flk, flag, offset); 13653 } 13654 } 13655 } 13656 13657 /* 13658 * Handle the DENIED reply from the server for nfs4frlock. 13659 * Returns TRUE if we should retry the request; FALSE otherwise. 13660 * 13661 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13662 * COMPOUND4 args/res for calls that need to retry. Can also 13663 * drop and regrab the r_lkserlock. 13664 */ 13665 static bool_t 13666 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13667 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13668 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13669 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13670 nfs4_recov_state_t *recov_statep, int needrecov, 13671 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13672 clock_t *tick_delayp, short *whencep, int *errorp, 13673 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13674 bool_t *skip_get_err) 13675 { 13676 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13677 13678 if (lock_args) { 13679 nfs4_open_owner_t *oop = *oopp; 13680 nfs4_open_stream_t *osp = *ospp; 13681 nfs4_lock_owner_t *lop = *lopp; 13682 int intr; 13683 13684 /* 13685 * Blocking lock needs to sleep and retry from the request. 13686 * 13687 * Do not block and wait for 'resend' or 'reinstate' 13688 * lock requests, just return the error. 13689 * 13690 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13691 */ 13692 if (cmd == F_SETLKW) { 13693 rnode4_t *rp = VTOR4(vp); 13694 nfs_argop4 *argop = (*argspp)->array; 13695 13696 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13697 13698 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13699 recov_statep, needrecov); 13700 *did_start_fop = FALSE; 13701 ASSERT((*argspp)->array_len == 2); 13702 if (argop[1].argop == OP_LOCK) 13703 nfs4args_lock_free(&argop[1]); 13704 else if (argop[1].argop == OP_LOCKT) 13705 nfs4args_lockt_free(&argop[1]); 13706 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13707 if (*respp) 13708 (void) xdr_free(xdr_COMPOUND4res_clnt, 13709 (caddr_t)*respp); 13710 *argspp = NULL; 13711 *respp = NULL; 13712 nfs4_end_lock_seqid_sync(lop); 13713 lock_owner_rele(lop); 13714 *lopp = NULL; 13715 if (osp != NULL) { 13716 open_stream_rele(osp, rp); 13717 *ospp = NULL; 13718 } 13719 if (oop != NULL) { 13720 nfs4_end_open_seqid_sync(oop); 13721 open_owner_rele(oop); 13722 *oopp = NULL; 13723 } 13724 13725 nfs_rw_exit(&rp->r_lkserlock); 13726 13727 intr = nfs4_block_and_wait(tick_delayp, rp); 13728 13729 if (intr) { 13730 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13731 RW_WRITER, FALSE); 13732 *errorp = EINTR; 13733 return (FALSE); 13734 } 13735 13736 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13737 RW_WRITER, FALSE); 13738 13739 /* 13740 * Make sure we are still safe to lock with 13741 * regards to mmapping. 13742 */ 13743 if (!nfs4_safelock(vp, flk, cr)) { 13744 *errorp = EAGAIN; 13745 return (FALSE); 13746 } 13747 13748 return (TRUE); 13749 } 13750 if (ctype == NFS4_LCK_CTYPE_NORM) 13751 *errorp = EAGAIN; 13752 *skip_get_err = TRUE; 13753 flk->l_whence = 0; 13754 *whencep = 0; 13755 return (FALSE); 13756 } else if (lockt_args) { 13757 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13758 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13759 13760 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13761 flk, lockt_args); 13762 13763 /* according to NLM code */ 13764 *errorp = 0; 13765 *whencep = 0; 13766 *skip_get_err = TRUE; 13767 return (FALSE); 13768 } 13769 return (FALSE); 13770 } 13771 13772 /* 13773 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13774 */ 13775 static void 13776 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13777 { 13778 switch (resp->status) { 13779 case NFS4ERR_ACCESS: 13780 case NFS4ERR_ADMIN_REVOKED: 13781 case NFS4ERR_BADHANDLE: 13782 case NFS4ERR_BAD_RANGE: 13783 case NFS4ERR_BAD_SEQID: 13784 case NFS4ERR_BAD_STATEID: 13785 case NFS4ERR_BADXDR: 13786 case NFS4ERR_DEADLOCK: 13787 case NFS4ERR_DELAY: 13788 case NFS4ERR_EXPIRED: 13789 case NFS4ERR_FHEXPIRED: 13790 case NFS4ERR_GRACE: 13791 case NFS4ERR_INVAL: 13792 case NFS4ERR_ISDIR: 13793 case NFS4ERR_LEASE_MOVED: 13794 case NFS4ERR_LOCK_NOTSUPP: 13795 case NFS4ERR_LOCK_RANGE: 13796 case NFS4ERR_MOVED: 13797 case NFS4ERR_NOFILEHANDLE: 13798 case NFS4ERR_NO_GRACE: 13799 case NFS4ERR_OLD_STATEID: 13800 case NFS4ERR_OPENMODE: 13801 case NFS4ERR_RECLAIM_BAD: 13802 case NFS4ERR_RECLAIM_CONFLICT: 13803 case NFS4ERR_RESOURCE: 13804 case NFS4ERR_SERVERFAULT: 13805 case NFS4ERR_STALE: 13806 case NFS4ERR_STALE_CLIENTID: 13807 case NFS4ERR_STALE_STATEID: 13808 return; 13809 default: 13810 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13811 "nfs4frlock_results_default: got unrecognizable " 13812 "res.status %d", resp->status)); 13813 *errorp = NFS4ERR_INVAL; 13814 } 13815 } 13816 13817 /* 13818 * The lock request was successful, so update the client's state. 13819 */ 13820 static void 13821 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13822 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13823 vnode_t *vp, flock64_t *flk, cred_t *cr, 13824 nfs4_lost_rqst_t *resend_rqstp) 13825 { 13826 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13827 13828 if (lock_args) { 13829 LOCK4res *lock_res; 13830 13831 lock_res = &resop->nfs_resop4_u.oplock; 13832 /* update the stateid with server's response */ 13833 13834 if (lock_args->locker.new_lock_owner == TRUE) { 13835 mutex_enter(&lop->lo_lock); 13836 lop->lo_just_created = NFS4_PERM_CREATED; 13837 mutex_exit(&lop->lo_lock); 13838 } 13839 13840 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13841 13842 /* 13843 * If the lock was the result of a resending a lost 13844 * request, we've synched up the stateid and seqid 13845 * with the server, but now the server might be out of sync 13846 * with what the application thinks it has for locks. 13847 * Clean that up here. It's unclear whether we should do 13848 * this even if the filesystem has been forcibly unmounted. 13849 * For most servers, it's probably wasted effort, but 13850 * RFC3530 lets servers require that unlocks exactly match 13851 * the locks that are held. 13852 */ 13853 if (resend_rqstp != NULL && 13854 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13855 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13856 } else { 13857 flk->l_whence = 0; 13858 } 13859 } else if (locku_args) { 13860 LOCKU4res *locku_res; 13861 13862 locku_res = &resop->nfs_resop4_u.oplocku; 13863 13864 /* Update the stateid with the server's response */ 13865 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 13866 } else if (lockt_args) { 13867 /* Switch the lock type to express success, see fcntl */ 13868 flk->l_type = F_UNLCK; 13869 flk->l_whence = 0; 13870 } 13871 } 13872 13873 /* 13874 * Do final cleanup before exiting nfs4frlock. 13875 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13876 * COMPOUND4 args/res for calls that haven't already. 13877 */ 13878 static void 13879 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 13880 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 13881 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 13882 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13883 short whence, u_offset_t offset, struct lm_sysid *ls, 13884 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 13885 bool_t did_start_fop, bool_t skip_get_err, 13886 cred_t *cred_otw, cred_t *cred) 13887 { 13888 mntinfo4_t *mi = VTOMI4(vp); 13889 rnode4_t *rp = VTOR4(vp); 13890 int error = *errorp; 13891 nfs_argop4 *argop; 13892 13893 ASSERT(nfs_zone() == mi->mi_zone); 13894 /* 13895 * The client recovery code wants the raw status information, 13896 * so don't map the NFS status code to an errno value for 13897 * non-normal call types. 13898 */ 13899 if (ctype == NFS4_LCK_CTYPE_NORM) { 13900 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 13901 *errorp = geterrno4(resp->status); 13902 if (did_start_fop == TRUE) 13903 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 13904 needrecov); 13905 13906 /* 13907 * We've established a new lock on the server, so invalidate 13908 * the pages associated with the vnode to get the most up to 13909 * date pages from the server after acquiring the lock. We 13910 * want to be sure that the read operation gets the newest data. 13911 * N.B. 13912 * We used to do this in nfs4frlock_results_ok but that doesn't 13913 * work since VOP_PUTPAGE can call nfs4_commit which calls 13914 * nfs4_start_fop. We flush the pages below after calling 13915 * nfs4_end_fop above 13916 */ 13917 if (!error && resp && resp->status == NFS4_OK) { 13918 int error; 13919 13920 error = VOP_PUTPAGE(vp, (u_offset_t)0, 13921 0, B_INVAL, cred, NULL); 13922 13923 if (error && (error == ENOSPC || error == EDQUOT)) { 13924 rnode4_t *rp = VTOR4(vp); 13925 13926 mutex_enter(&rp->r_statelock); 13927 if (!rp->r_error) 13928 rp->r_error = error; 13929 mutex_exit(&rp->r_statelock); 13930 } 13931 } 13932 } 13933 if (argsp) { 13934 ASSERT(argsp->array_len == 2); 13935 argop = argsp->array; 13936 if (argop[1].argop == OP_LOCK) 13937 nfs4args_lock_free(&argop[1]); 13938 else if (argop[1].argop == OP_LOCKT) 13939 nfs4args_lockt_free(&argop[1]); 13940 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13941 if (resp) 13942 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 13943 } 13944 13945 /* free the reference on the lock owner */ 13946 if (lop != NULL) { 13947 nfs4_end_lock_seqid_sync(lop); 13948 lock_owner_rele(lop); 13949 } 13950 13951 /* need to free up the reference on osp for lock args */ 13952 if (osp != NULL) 13953 open_stream_rele(osp, rp); 13954 13955 /* need to free up the reference on oop for lock args */ 13956 if (oop != NULL) { 13957 nfs4_end_open_seqid_sync(oop); 13958 open_owner_rele(oop); 13959 } 13960 13961 (void) convoff(vp, flk, whence, offset); 13962 13963 lm_rel_sysid(ls); 13964 13965 /* 13966 * Record debug information in the event we get EINVAL. 13967 */ 13968 mutex_enter(&mi->mi_lock); 13969 if (*errorp == EINVAL && (lock_args || locku_args) && 13970 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 13971 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 13972 zcmn_err(getzoneid(), CE_NOTE, 13973 "%s operation failed with " 13974 "EINVAL probably since the server, %s," 13975 " doesn't support POSIX style locking", 13976 lock_args ? "LOCK" : "LOCKU", 13977 mi->mi_curr_serv->sv_hostname); 13978 mi->mi_flags |= MI4_LOCK_DEBUG; 13979 } 13980 } 13981 mutex_exit(&mi->mi_lock); 13982 13983 if (cred_otw) 13984 crfree(cred_otw); 13985 } 13986 13987 /* 13988 * This calls the server and the local locking code. 13989 * 13990 * Client locks are registerred locally by oring the sysid with 13991 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 13992 * We need to distinguish between the two to avoid collision in case one 13993 * machine is used as both client and server. 13994 * 13995 * Blocking lock requests will continually retry to acquire the lock 13996 * forever. 13997 * 13998 * The ctype is defined as follows: 13999 * NFS4_LCK_CTYPE_NORM: normal lock request. 14000 * 14001 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14002 * recovery, get the pid from flk instead of curproc, and don't reregister 14003 * the lock locally. 14004 * 14005 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14006 * that we will use the information passed in via resend_rqstp to setup the 14007 * lock/locku request. This resend is the exact same request as the 'lost 14008 * lock', and is initiated by the recovery framework. A successful resend 14009 * request can initiate one or more reinstate requests. 14010 * 14011 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14012 * does not trigger additional reinstate requests. This lock call type is 14013 * set for setting the v4 server's locking state back to match what the 14014 * client's local locking state is in the event of a received 'lost lock'. 14015 * 14016 * Errors are returned via the nfs4_error_t parameter. 14017 */ 14018 void 14019 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14020 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14021 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14022 { 14023 COMPOUND4args_clnt args, *argsp = NULL; 14024 COMPOUND4res_clnt res, *resp = NULL; 14025 nfs_argop4 *argop; 14026 nfs_resop4 *resop; 14027 rnode4_t *rp; 14028 int doqueue = 1; 14029 clock_t tick_delay; /* delay in clock ticks */ 14030 struct lm_sysid *ls; 14031 LOCK4args *lock_args = NULL; 14032 LOCKU4args *locku_args = NULL; 14033 LOCKT4args *lockt_args = NULL; 14034 nfs4_open_owner_t *oop = NULL; 14035 nfs4_open_stream_t *osp = NULL; 14036 nfs4_lock_owner_t *lop = NULL; 14037 bool_t needrecov = FALSE; 14038 nfs4_recov_state_t recov_state; 14039 short whence; 14040 nfs4_op_hint_t op_hint; 14041 nfs4_lost_rqst_t lost_rqst; 14042 bool_t retry = FALSE; 14043 bool_t did_start_fop = FALSE; 14044 bool_t skip_get_err = FALSE; 14045 cred_t *cred_otw = NULL; 14046 bool_t recovonly; /* just queue request */ 14047 int frc_no_reclaim = 0; 14048 #ifdef DEBUG 14049 char *name; 14050 #endif 14051 14052 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14053 14054 #ifdef DEBUG 14055 name = fn_name(VTOSV(vp)->sv_name); 14056 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14057 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14058 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14059 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14060 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14061 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14062 resend_rqstp ? "TRUE" : "FALSE")); 14063 kmem_free(name, MAXNAMELEN); 14064 #endif 14065 14066 nfs4_error_zinit(ep); 14067 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14068 if (ep->error) 14069 return; 14070 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14071 if (ep->error) 14072 return; 14073 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14074 vp, cr, &cred_otw); 14075 14076 recov_retry: 14077 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14078 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14079 rp = VTOR4(vp); 14080 14081 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14082 &did_start_fop, &recovonly); 14083 14084 if (ep->error) 14085 goto out; 14086 14087 if (recovonly) { 14088 /* 14089 * Leave the request for the recovery system to deal with. 14090 */ 14091 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14092 ASSERT(cmd != F_GETLK); 14093 ASSERT(flk->l_type == F_UNLCK); 14094 14095 nfs4_error_init(ep, EINTR); 14096 needrecov = TRUE; 14097 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14098 if (lop != NULL) { 14099 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14100 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14101 (void) nfs4_start_recovery(ep, 14102 VTOMI4(vp), vp, NULL, NULL, 14103 (lost_rqst.lr_op == OP_LOCK || 14104 lost_rqst.lr_op == OP_LOCKU) ? 14105 &lost_rqst : NULL, OP_LOCKU, NULL); 14106 lock_owner_rele(lop); 14107 lop = NULL; 14108 } 14109 flk->l_pid = curproc->p_pid; 14110 nfs4_register_lock_locally(vp, flk, flag, offset); 14111 goto out; 14112 } 14113 14114 /* putfh directory fh */ 14115 argop[0].argop = OP_CPUTFH; 14116 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14117 14118 /* 14119 * Set up the over-the-wire arguments and get references to the 14120 * open owner, etc. 14121 */ 14122 14123 if (ctype == NFS4_LCK_CTYPE_RESEND || 14124 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14125 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14126 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14127 } else { 14128 bool_t go_otw = TRUE; 14129 14130 ASSERT(resend_rqstp == NULL); 14131 14132 switch (cmd) { 14133 case F_GETLK: 14134 case F_O_GETLK: 14135 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14136 &lockt_args, argsp, flk, rp); 14137 break; 14138 case F_SETLKW: 14139 case F_SETLK: 14140 if (flk->l_type == F_UNLCK) 14141 nfs4frlock_setup_locku_args(ctype, 14142 &argop[1], &locku_args, flk, 14143 &lop, ep, argsp, 14144 vp, flag, offset, cr, 14145 &skip_get_err, &go_otw); 14146 else 14147 nfs4frlock_setup_lock_args(ctype, 14148 &lock_args, &oop, &osp, &lop, &argop[1], 14149 argsp, flk, cmd, vp, cr, ep); 14150 14151 if (ep->error) 14152 goto out; 14153 14154 switch (ep->stat) { 14155 case NFS4_OK: 14156 break; 14157 case NFS4ERR_DELAY: 14158 /* recov thread never gets this error */ 14159 ASSERT(resend_rqstp == NULL); 14160 ASSERT(did_start_fop); 14161 14162 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14163 &recov_state, TRUE); 14164 did_start_fop = FALSE; 14165 if (argop[1].argop == OP_LOCK) 14166 nfs4args_lock_free(&argop[1]); 14167 else if (argop[1].argop == OP_LOCKT) 14168 nfs4args_lockt_free(&argop[1]); 14169 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14170 argsp = NULL; 14171 goto recov_retry; 14172 default: 14173 ep->error = EIO; 14174 goto out; 14175 } 14176 break; 14177 default: 14178 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14179 "nfs4_frlock: invalid cmd %d", cmd)); 14180 ep->error = EINVAL; 14181 goto out; 14182 } 14183 14184 if (!go_otw) 14185 goto out; 14186 } 14187 14188 /* XXX should we use the local reclock as a cache ? */ 14189 /* 14190 * Unregister the lock with the local locking code before 14191 * contacting the server. This avoids a potential race where 14192 * another process gets notified that it has been granted a lock 14193 * before we can unregister ourselves locally. 14194 */ 14195 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14196 if (ctype == NFS4_LCK_CTYPE_NORM) 14197 flk->l_pid = ttoproc(curthread)->p_pid; 14198 nfs4_register_lock_locally(vp, flk, flag, offset); 14199 } 14200 14201 /* 14202 * Send the server the lock request. Continually loop with a delay 14203 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14204 */ 14205 resp = &res; 14206 14207 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14208 (CE_NOTE, 14209 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14210 rnode4info(rp))); 14211 14212 if (lock_args && frc_no_reclaim) { 14213 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14214 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14215 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14216 lock_args->reclaim = FALSE; 14217 if (did_reclaimp) 14218 *did_reclaimp = 0; 14219 } 14220 14221 /* 14222 * Do the OTW call. 14223 */ 14224 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14225 14226 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14227 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14228 14229 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14230 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14231 "nfs4frlock: needrecov %d", needrecov)); 14232 14233 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14234 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14235 args.ctag); 14236 14237 /* 14238 * Check if one of these mutually exclusive error cases has 14239 * happened: 14240 * need to swap credentials due to access error 14241 * recovery is needed 14242 * different error (only known case is missing Kerberos ticket) 14243 */ 14244 14245 if ((ep->error == EACCES || 14246 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14247 cred_otw != cr) { 14248 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14249 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14250 cr, &cred_otw); 14251 goto recov_retry; 14252 } 14253 14254 if (needrecov) { 14255 /* 14256 * LOCKT requests don't need to recover from lost 14257 * requests since they don't create/modify state. 14258 */ 14259 if ((ep->error == EINTR || 14260 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14261 lockt_args) 14262 goto out; 14263 /* 14264 * Do not attempt recovery for requests initiated by 14265 * the recovery framework. Let the framework redrive them. 14266 */ 14267 if (ctype != NFS4_LCK_CTYPE_NORM) 14268 goto out; 14269 else { 14270 ASSERT(resend_rqstp == NULL); 14271 } 14272 14273 nfs4frlock_save_lost_rqst(ctype, ep->error, 14274 flk_to_locktype(cmd, flk->l_type), 14275 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14276 14277 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14278 &resp, lock_args, locku_args, &oop, &osp, &lop, 14279 rp, vp, &recov_state, op_hint, &did_start_fop, 14280 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14281 14282 if (retry) { 14283 ASSERT(oop == NULL); 14284 ASSERT(osp == NULL); 14285 ASSERT(lop == NULL); 14286 goto recov_retry; 14287 } 14288 goto out; 14289 } 14290 14291 /* 14292 * Bail out if have reached this point with ep->error set. Can 14293 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14294 * This happens if Kerberos ticket has expired or has been 14295 * destroyed. 14296 */ 14297 if (ep->error != 0) 14298 goto out; 14299 14300 /* 14301 * Process the reply. 14302 */ 14303 switch (resp->status) { 14304 case NFS4_OK: 14305 resop = &resp->array[1]; 14306 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14307 resend_rqstp); 14308 /* 14309 * Have a successful lock operation, now update state. 14310 */ 14311 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14312 resop, lop, vp, flk, cr, resend_rqstp); 14313 break; 14314 14315 case NFS4ERR_DENIED: 14316 resop = &resp->array[1]; 14317 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14318 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14319 &recov_state, needrecov, &argsp, &resp, 14320 &tick_delay, &whence, &ep->error, resop, cr, 14321 &did_start_fop, &skip_get_err); 14322 14323 if (retry) { 14324 ASSERT(oop == NULL); 14325 ASSERT(osp == NULL); 14326 ASSERT(lop == NULL); 14327 goto recov_retry; 14328 } 14329 break; 14330 /* 14331 * If the server won't let us reclaim, fall-back to trying to lock 14332 * the file from scratch. Code elsewhere will check the changeinfo 14333 * to ensure the file hasn't been changed. 14334 */ 14335 case NFS4ERR_NO_GRACE: 14336 if (lock_args && lock_args->reclaim == TRUE) { 14337 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14338 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14339 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14340 frc_no_reclaim = 1; 14341 /* clean up before retrying */ 14342 needrecov = 0; 14343 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14344 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14345 &recov_state, op_hint, &did_start_fop, NULL, flk); 14346 goto recov_retry; 14347 } 14348 /* FALLTHROUGH */ 14349 14350 default: 14351 nfs4frlock_results_default(resp, &ep->error); 14352 break; 14353 } 14354 out: 14355 /* 14356 * Process and cleanup from error. Make interrupted unlock 14357 * requests look successful, since they will be handled by the 14358 * client recovery code. 14359 */ 14360 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14361 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14362 lock_args, locku_args, did_start_fop, 14363 skip_get_err, cred_otw, cr); 14364 14365 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14366 (cmd == F_SETLK || cmd == F_SETLKW)) 14367 ep->error = 0; 14368 } 14369 14370 /* 14371 * nfs4_safelock: 14372 * 14373 * Return non-zero if the given lock request can be handled without 14374 * violating the constraints on concurrent mapping and locking. 14375 */ 14376 14377 static int 14378 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14379 { 14380 rnode4_t *rp = VTOR4(vp); 14381 struct vattr va; 14382 int error; 14383 14384 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14385 ASSERT(rp->r_mapcnt >= 0); 14386 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14387 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14388 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14389 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14390 14391 if (rp->r_mapcnt == 0) 14392 return (1); /* always safe if not mapped */ 14393 14394 /* 14395 * If the file is already mapped and there are locks, then they 14396 * should be all safe locks. So adding or removing a lock is safe 14397 * as long as the new request is safe (i.e., whole-file, meaning 14398 * length and starting offset are both zero). 14399 */ 14400 14401 if (bfp->l_start != 0 || bfp->l_len != 0) { 14402 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14403 "cannot lock a memory mapped file unless locking the " 14404 "entire file: start %"PRIx64", len %"PRIx64, 14405 bfp->l_start, bfp->l_len)); 14406 return (0); 14407 } 14408 14409 /* mandatory locking and mapping don't mix */ 14410 va.va_mask = AT_MODE; 14411 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14412 if (error != 0) { 14413 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14414 "getattr error %d", error)); 14415 return (0); /* treat errors conservatively */ 14416 } 14417 if (MANDLOCK(vp, va.va_mode)) { 14418 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14419 "cannot mandatory lock and mmap a file")); 14420 return (0); 14421 } 14422 14423 return (1); 14424 } 14425 14426 14427 /* 14428 * Register the lock locally within Solaris. 14429 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14430 * recording locks locally. 14431 * 14432 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14433 * are registered locally. 14434 */ 14435 void 14436 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14437 u_offset_t offset) 14438 { 14439 int oldsysid; 14440 int error; 14441 #ifdef DEBUG 14442 char *name; 14443 #endif 14444 14445 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14446 14447 #ifdef DEBUG 14448 name = fn_name(VTOSV(vp)->sv_name); 14449 NFS4_DEBUG(nfs4_client_lock_debug, 14450 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14451 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14452 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14453 flk->l_sysid)); 14454 kmem_free(name, MAXNAMELEN); 14455 #endif 14456 14457 /* register the lock with local locking */ 14458 oldsysid = flk->l_sysid; 14459 flk->l_sysid |= LM_SYSID_CLIENT; 14460 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14461 #ifdef DEBUG 14462 if (error != 0) { 14463 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14464 "nfs4_register_lock_locally: could not register with" 14465 " local locking")); 14466 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14467 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14468 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14469 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14470 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14471 flk->l_type, flk->l_start, flk->l_len)); 14472 (void) reclock(vp, flk, 0, flag, offset, NULL); 14473 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14474 "blocked by pid %d sysid 0x%x type %d " 14475 "off 0x%" PRIx64 " len 0x%" PRIx64, 14476 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14477 flk->l_len)); 14478 } 14479 #endif 14480 flk->l_sysid = oldsysid; 14481 } 14482 14483 /* 14484 * nfs4_lockrelease: 14485 * 14486 * Release any locks on the given vnode that are held by the current 14487 * process. Also removes the lock owner (if one exists) from the rnode's 14488 * list. 14489 */ 14490 static int 14491 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14492 { 14493 flock64_t ld; 14494 int ret, error; 14495 rnode4_t *rp; 14496 nfs4_lock_owner_t *lop; 14497 nfs4_recov_state_t recov_state; 14498 mntinfo4_t *mi; 14499 bool_t possible_orphan = FALSE; 14500 bool_t recovonly; 14501 14502 ASSERT((uintptr_t)vp > KERNELBASE); 14503 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14504 14505 rp = VTOR4(vp); 14506 mi = VTOMI4(vp); 14507 14508 /* 14509 * If we have not locked anything then we can 14510 * just return since we have no work to do. 14511 */ 14512 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14513 return (0); 14514 } 14515 14516 /* 14517 * We need to comprehend that another thread may 14518 * kick off recovery and the lock_owner we have stashed 14519 * in lop might be invalid so we should NOT cache it 14520 * locally! 14521 */ 14522 recov_state.rs_flags = 0; 14523 recov_state.rs_num_retry_despite_err = 0; 14524 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14525 &recovonly); 14526 if (error) { 14527 mutex_enter(&rp->r_statelock); 14528 rp->r_flags |= R4LODANGLERS; 14529 mutex_exit(&rp->r_statelock); 14530 return (error); 14531 } 14532 14533 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14534 14535 /* 14536 * Check if the lock owner might have a lock (request was sent but 14537 * no response was received). Also check if there are any remote 14538 * locks on the file. (In theory we shouldn't have to make this 14539 * second check if there's no lock owner, but for now we'll be 14540 * conservative and do it anyway.) If either condition is true, 14541 * send an unlock for the entire file to the server. 14542 * 14543 * Note that no explicit synchronization is needed here. At worst, 14544 * flk_has_remote_locks() will return a false positive, in which case 14545 * the unlock call wastes time but doesn't harm correctness. 14546 */ 14547 14548 if (lop) { 14549 mutex_enter(&lop->lo_lock); 14550 possible_orphan = lop->lo_pending_rqsts; 14551 mutex_exit(&lop->lo_lock); 14552 lock_owner_rele(lop); 14553 } 14554 14555 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14556 14557 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14558 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14559 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14560 (void *)lop)); 14561 14562 if (possible_orphan || flk_has_remote_locks(vp)) { 14563 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14564 ld.l_whence = 0; /* unlock from start of file */ 14565 ld.l_start = 0; 14566 ld.l_len = 0; /* do entire file */ 14567 14568 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14569 cr, NULL); 14570 14571 if (ret != 0) { 14572 /* 14573 * If VOP_FRLOCK fails, make sure we unregister 14574 * local locks before we continue. 14575 */ 14576 ld.l_pid = ttoproc(curthread)->p_pid; 14577 nfs4_register_lock_locally(vp, &ld, flag, offset); 14578 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14579 "nfs4_lockrelease: lock release error on vp" 14580 " %p: error %d.\n", (void *)vp, ret)); 14581 } 14582 } 14583 14584 recov_state.rs_flags = 0; 14585 recov_state.rs_num_retry_despite_err = 0; 14586 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14587 &recovonly); 14588 if (error) { 14589 mutex_enter(&rp->r_statelock); 14590 rp->r_flags |= R4LODANGLERS; 14591 mutex_exit(&rp->r_statelock); 14592 return (error); 14593 } 14594 14595 /* 14596 * So, here we're going to need to retrieve the lock-owner 14597 * again (in case recovery has done a switch-a-roo) and 14598 * remove it because we can. 14599 */ 14600 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14601 14602 if (lop) { 14603 nfs4_rnode_remove_lock_owner(rp, lop); 14604 lock_owner_rele(lop); 14605 } 14606 14607 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14608 return (0); 14609 } 14610 14611 /* 14612 * Wait for 'tick_delay' clock ticks. 14613 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14614 * NOTE: lock_lease_time is in seconds. 14615 * 14616 * XXX For future improvements, should implement a waiting queue scheme. 14617 */ 14618 static int 14619 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14620 { 14621 long milliseconds_delay; 14622 time_t lock_lease_time; 14623 14624 /* wait tick_delay clock ticks or siginteruptus */ 14625 if (delay_sig(*tick_delay)) { 14626 return (EINTR); 14627 } 14628 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14629 "reissue the lock request: blocked for %ld clock ticks: %ld " 14630 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14631 14632 /* get the lease time */ 14633 lock_lease_time = r2lease_time(rp); 14634 14635 /* drv_hztousec converts ticks to microseconds */ 14636 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14637 if (milliseconds_delay < lock_lease_time * 1000) { 14638 *tick_delay = 2 * *tick_delay; 14639 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14640 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14641 } 14642 return (0); 14643 } 14644 14645 14646 void 14647 nfs4_vnops_init(void) 14648 { 14649 } 14650 14651 void 14652 nfs4_vnops_fini(void) 14653 { 14654 } 14655 14656 /* 14657 * Return a reference to the directory (parent) vnode for a given vnode, 14658 * using the saved pathname information and the directory file handle. The 14659 * caller is responsible for disposing of the reference. 14660 * Returns zero or an errno value. 14661 * 14662 * Caller should set need_start_op to FALSE if it is the recovery 14663 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14664 */ 14665 int 14666 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14667 { 14668 svnode_t *svnp; 14669 vnode_t *dvp = NULL; 14670 servinfo4_t *svp; 14671 nfs4_fname_t *mfname; 14672 int error; 14673 14674 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14675 14676 if (vp->v_flag & VROOT) { 14677 nfs4_sharedfh_t *sfh; 14678 nfs_fh4 fh; 14679 mntinfo4_t *mi; 14680 14681 ASSERT(vp->v_type == VREG); 14682 14683 mi = VTOMI4(vp); 14684 svp = mi->mi_curr_serv; 14685 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14686 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14687 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14688 sfh = sfh4_get(&fh, VTOMI4(vp)); 14689 nfs_rw_exit(&svp->sv_lock); 14690 mfname = mi->mi_fname; 14691 fn_hold(mfname); 14692 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14693 sfh4_rele(&sfh); 14694 14695 if (dvp->v_type == VNON) 14696 dvp->v_type = VDIR; 14697 *dvpp = dvp; 14698 return (0); 14699 } 14700 14701 svnp = VTOSV(vp); 14702 14703 if (svnp == NULL) { 14704 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14705 "shadow node is NULL")); 14706 return (EINVAL); 14707 } 14708 14709 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14710 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14711 "shadow node name or dfh val == NULL")); 14712 return (EINVAL); 14713 } 14714 14715 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14716 (int)need_start_op); 14717 if (error != 0) { 14718 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14719 "nfs4_make_dotdot returned %d", error)); 14720 return (error); 14721 } 14722 if (!dvp) { 14723 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14724 "nfs4_make_dotdot returned a NULL dvp")); 14725 return (EIO); 14726 } 14727 if (dvp->v_type == VNON) 14728 dvp->v_type = VDIR; 14729 ASSERT(dvp->v_type == VDIR); 14730 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14731 mutex_enter(&dvp->v_lock); 14732 dvp->v_flag |= V_XATTRDIR; 14733 mutex_exit(&dvp->v_lock); 14734 } 14735 *dvpp = dvp; 14736 return (0); 14737 } 14738 14739 /* 14740 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14741 * length that fnamep can accept, including the trailing null. 14742 * Returns 0 if okay, returns an errno value if there was a problem. 14743 */ 14744 14745 int 14746 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14747 { 14748 char *fn; 14749 int err = 0; 14750 servinfo4_t *svp; 14751 svnode_t *shvp; 14752 14753 /* 14754 * If the file being opened has VROOT set, then this is 14755 * a "file" mount. sv_name will not be interesting, so 14756 * go back to the servinfo4 to get the original mount 14757 * path and strip off all but the final edge. Otherwise 14758 * just return the name from the shadow vnode. 14759 */ 14760 14761 if (vp->v_flag & VROOT) { 14762 14763 svp = VTOMI4(vp)->mi_curr_serv; 14764 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14765 14766 fn = strrchr(svp->sv_path, '/'); 14767 if (fn == NULL) 14768 err = EINVAL; 14769 else 14770 fn++; 14771 } else { 14772 shvp = VTOSV(vp); 14773 fn = fn_name(shvp->sv_name); 14774 } 14775 14776 if (err == 0) 14777 if (strlen(fn) < maxlen) 14778 (void) strcpy(fnamep, fn); 14779 else 14780 err = ENAMETOOLONG; 14781 14782 if (vp->v_flag & VROOT) 14783 nfs_rw_exit(&svp->sv_lock); 14784 else 14785 kmem_free(fn, MAXNAMELEN); 14786 14787 return (err); 14788 } 14789 14790 /* 14791 * Bookkeeping for a close that doesn't need to go over the wire. 14792 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14793 * it is left at 1. 14794 */ 14795 void 14796 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14797 { 14798 rnode4_t *rp; 14799 mntinfo4_t *mi; 14800 14801 mi = VTOMI4(vp); 14802 rp = VTOR4(vp); 14803 14804 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14805 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14806 ASSERT(nfs_zone() == mi->mi_zone); 14807 ASSERT(mutex_owned(&osp->os_sync_lock)); 14808 ASSERT(*have_lockp); 14809 14810 if (!osp->os_valid || 14811 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14812 return; 14813 } 14814 14815 /* 14816 * This removes the reference obtained at OPEN; ie, 14817 * when the open stream structure was created. 14818 * 14819 * We don't have to worry about calling 'open_stream_rele' 14820 * since we our currently holding a reference to this 14821 * open stream which means the count can not go to 0 with 14822 * this decrement. 14823 */ 14824 ASSERT(osp->os_ref_count >= 2); 14825 osp->os_ref_count--; 14826 osp->os_valid = 0; 14827 mutex_exit(&osp->os_sync_lock); 14828 *have_lockp = 0; 14829 14830 nfs4_dec_state_ref_count(mi); 14831 } 14832 14833 /* 14834 * Close all remaining open streams on the rnode. These open streams 14835 * could be here because: 14836 * - The close attempted at either close or delmap failed 14837 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14838 * - Someone did mknod on a regular file but never opened it 14839 */ 14840 int 14841 nfs4close_all(vnode_t *vp, cred_t *cr) 14842 { 14843 nfs4_open_stream_t *osp; 14844 int error; 14845 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14846 rnode4_t *rp; 14847 14848 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14849 14850 error = 0; 14851 rp = VTOR4(vp); 14852 14853 /* 14854 * At this point, all we know is that the last time 14855 * someone called vn_rele, the count was 1. Since then, 14856 * the vnode could have been re-activated. We want to 14857 * loop through the open streams and close each one, but 14858 * we have to be careful since once we release the rnode 14859 * hash bucket lock, someone else is free to come in and 14860 * re-activate the rnode and add new open streams. The 14861 * strategy is take the rnode hash bucket lock, verify that 14862 * the count is still 1, grab the open stream off the 14863 * head of the list and mark it invalid, then release the 14864 * rnode hash bucket lock and proceed with that open stream. 14865 * This is ok because nfs4close_one() will acquire the proper 14866 * open/create to close/destroy synchronization for open 14867 * streams, and will ensure that if someone has reopened 14868 * the open stream after we've dropped the hash bucket lock 14869 * then we'll just simply return without destroying the 14870 * open stream. 14871 * Repeat until the list is empty. 14872 */ 14873 14874 for (;;) { 14875 14876 /* make sure vnode hasn't been reactivated */ 14877 rw_enter(&rp->r_hashq->r_lock, RW_READER); 14878 mutex_enter(&vp->v_lock); 14879 if (vp->v_count > 1) { 14880 mutex_exit(&vp->v_lock); 14881 rw_exit(&rp->r_hashq->r_lock); 14882 break; 14883 } 14884 /* 14885 * Grabbing r_os_lock before releasing v_lock prevents 14886 * a window where the rnode/open stream could get 14887 * reactivated (and os_force_close set to 0) before we 14888 * had a chance to set os_force_close to 1. 14889 */ 14890 mutex_enter(&rp->r_os_lock); 14891 mutex_exit(&vp->v_lock); 14892 14893 osp = list_head(&rp->r_open_streams); 14894 if (!osp) { 14895 /* nothing left to CLOSE OTW, so return */ 14896 mutex_exit(&rp->r_os_lock); 14897 rw_exit(&rp->r_hashq->r_lock); 14898 break; 14899 } 14900 14901 mutex_enter(&rp->r_statev4_lock); 14902 /* the file can't still be mem mapped */ 14903 ASSERT(rp->r_mapcnt == 0); 14904 if (rp->created_v4) 14905 rp->created_v4 = 0; 14906 mutex_exit(&rp->r_statev4_lock); 14907 14908 /* 14909 * Grab a ref on this open stream; nfs4close_one 14910 * will mark it as invalid 14911 */ 14912 mutex_enter(&osp->os_sync_lock); 14913 osp->os_ref_count++; 14914 osp->os_force_close = 1; 14915 mutex_exit(&osp->os_sync_lock); 14916 mutex_exit(&rp->r_os_lock); 14917 rw_exit(&rp->r_hashq->r_lock); 14918 14919 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 14920 14921 /* Update error if it isn't already non-zero */ 14922 if (error == 0) { 14923 if (e.error) 14924 error = e.error; 14925 else if (e.stat) 14926 error = geterrno4(e.stat); 14927 } 14928 14929 #ifdef DEBUG 14930 nfs4close_all_cnt++; 14931 #endif 14932 /* Release the ref on osp acquired above. */ 14933 open_stream_rele(osp, rp); 14934 14935 /* Proceed to the next open stream, if any */ 14936 } 14937 return (error); 14938 } 14939 14940 /* 14941 * nfs4close_one - close one open stream for a file if needed. 14942 * 14943 * "close_type" indicates which close path this is: 14944 * CLOSE_NORM: close initiated via VOP_CLOSE. 14945 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 14946 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 14947 * the close and release of client state for this open stream 14948 * (unless someone else has the open stream open). 14949 * CLOSE_RESEND: indicates the request is a replay of an earlier request 14950 * (e.g., due to abort because of a signal). 14951 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 14952 * 14953 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 14954 * recovery. Instead, the caller is expected to deal with retries. 14955 * 14956 * The caller can either pass in the osp ('provided_osp') or not. 14957 * 14958 * 'access_bits' represents the access we are closing/downgrading. 14959 * 14960 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 14961 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 14962 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 14963 * 14964 * Errors are returned via the nfs4_error_t. 14965 */ 14966 void 14967 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 14968 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 14969 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 14970 uint_t mmap_flags) 14971 { 14972 nfs4_open_owner_t *oop; 14973 nfs4_open_stream_t *osp = NULL; 14974 int retry = 0; 14975 int num_retries = NFS4_NUM_RECOV_RETRIES; 14976 rnode4_t *rp; 14977 mntinfo4_t *mi; 14978 nfs4_recov_state_t recov_state; 14979 cred_t *cred_otw = NULL; 14980 bool_t recovonly = FALSE; 14981 int isrecov; 14982 int force_close; 14983 int close_failed = 0; 14984 int did_dec_count = 0; 14985 int did_start_op = 0; 14986 int did_force_recovlock = 0; 14987 int did_start_seqid_sync = 0; 14988 int have_sync_lock = 0; 14989 14990 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14991 14992 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 14993 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 14994 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 14995 len, maxprot, mmap_flags, access_bits)); 14996 14997 nfs4_error_zinit(ep); 14998 rp = VTOR4(vp); 14999 mi = VTOMI4(vp); 15000 isrecov = (close_type == CLOSE_RESEND || 15001 close_type == CLOSE_AFTER_RESEND); 15002 15003 /* 15004 * First get the open owner. 15005 */ 15006 if (!provided_osp) { 15007 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15008 } else { 15009 oop = provided_osp->os_open_owner; 15010 ASSERT(oop != NULL); 15011 open_owner_hold(oop); 15012 } 15013 15014 if (!oop) { 15015 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15016 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15017 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15018 (void *)provided_osp, close_type)); 15019 ep->error = EIO; 15020 goto out; 15021 } 15022 15023 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15024 recov_retry: 15025 osp = NULL; 15026 close_failed = 0; 15027 force_close = (close_type == CLOSE_FORCE); 15028 retry = 0; 15029 did_start_op = 0; 15030 did_force_recovlock = 0; 15031 did_start_seqid_sync = 0; 15032 have_sync_lock = 0; 15033 recovonly = FALSE; 15034 recov_state.rs_flags = 0; 15035 recov_state.rs_num_retry_despite_err = 0; 15036 15037 /* 15038 * Second synchronize with recovery. 15039 */ 15040 if (!isrecov) { 15041 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15042 &recov_state, &recovonly); 15043 if (!ep->error) { 15044 did_start_op = 1; 15045 } else { 15046 close_failed = 1; 15047 /* 15048 * If we couldn't get start_fop, but have to 15049 * cleanup state, then at least acquire the 15050 * mi_recovlock so we can synchronize with 15051 * recovery. 15052 */ 15053 if (close_type == CLOSE_FORCE) { 15054 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15055 RW_READER, FALSE); 15056 did_force_recovlock = 1; 15057 } else 15058 goto out; 15059 } 15060 } 15061 15062 /* 15063 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15064 * set 'recovonly' to TRUE since most likely this is due to 15065 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15066 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15067 * to retry, causing us to loop until recovery finishes. Plus we 15068 * don't need protection over the open seqid since we're not going 15069 * OTW, hence don't need to use the seqid. 15070 */ 15071 if (recovonly == FALSE) { 15072 /* need to grab the open owner sync before 'os_sync_lock' */ 15073 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15074 if (ep->error == EAGAIN) { 15075 ASSERT(!isrecov); 15076 if (did_start_op) 15077 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15078 &recov_state, TRUE); 15079 if (did_force_recovlock) 15080 nfs_rw_exit(&mi->mi_recovlock); 15081 goto recov_retry; 15082 } 15083 did_start_seqid_sync = 1; 15084 } 15085 15086 /* 15087 * Third get an open stream and acquire 'os_sync_lock' to 15088 * sychronize the opening/creating of an open stream with the 15089 * closing/destroying of an open stream. 15090 */ 15091 if (!provided_osp) { 15092 /* returns with 'os_sync_lock' held */ 15093 osp = find_open_stream(oop, rp); 15094 if (!osp) { 15095 ep->error = EIO; 15096 goto out; 15097 } 15098 } else { 15099 osp = provided_osp; 15100 open_stream_hold(osp); 15101 mutex_enter(&osp->os_sync_lock); 15102 } 15103 have_sync_lock = 1; 15104 15105 ASSERT(oop == osp->os_open_owner); 15106 15107 /* 15108 * Fourth, do any special pre-OTW CLOSE processing 15109 * based on the specific close type. 15110 */ 15111 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15112 !did_dec_count) { 15113 ASSERT(osp->os_open_ref_count > 0); 15114 osp->os_open_ref_count--; 15115 did_dec_count = 1; 15116 if (osp->os_open_ref_count == 0) 15117 osp->os_final_close = 1; 15118 } 15119 15120 if (close_type == CLOSE_FORCE) { 15121 /* see if somebody reopened the open stream. */ 15122 if (!osp->os_force_close) { 15123 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15124 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15125 "was reopened, vp %p", (void *)osp, (void *)vp)); 15126 ep->error = 0; 15127 ep->stat = NFS4_OK; 15128 goto out; 15129 } 15130 15131 if (!osp->os_final_close && !did_dec_count) { 15132 osp->os_open_ref_count--; 15133 did_dec_count = 1; 15134 } 15135 15136 /* 15137 * We can't depend on os_open_ref_count being 0 due to the 15138 * way executables are opened (VN_RELE to match a VOP_OPEN). 15139 */ 15140 #ifdef NOTYET 15141 ASSERT(osp->os_open_ref_count == 0); 15142 #endif 15143 if (osp->os_open_ref_count != 0) { 15144 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15145 "nfs4close_one: should panic here on an " 15146 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15147 "since this is probably the exec problem.")); 15148 15149 osp->os_open_ref_count = 0; 15150 } 15151 15152 /* 15153 * There is the possibility that nfs4close_one() 15154 * for close_type == CLOSE_DELMAP couldn't find the 15155 * open stream, thus couldn't decrement its os_mapcnt; 15156 * therefore we can't use this ASSERT yet. 15157 */ 15158 #ifdef NOTYET 15159 ASSERT(osp->os_mapcnt == 0); 15160 #endif 15161 osp->os_mapcnt = 0; 15162 } 15163 15164 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15165 ASSERT(osp->os_mapcnt >= btopr(len)); 15166 15167 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15168 osp->os_mmap_write -= btopr(len); 15169 if (maxprot & PROT_READ) 15170 osp->os_mmap_read -= btopr(len); 15171 if (maxprot & PROT_EXEC) 15172 osp->os_mmap_read -= btopr(len); 15173 /* mirror the PROT_NONE check in nfs4_addmap() */ 15174 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15175 !(maxprot & PROT_EXEC)) 15176 osp->os_mmap_read -= btopr(len); 15177 osp->os_mapcnt -= btopr(len); 15178 did_dec_count = 1; 15179 } 15180 15181 if (recovonly) { 15182 nfs4_lost_rqst_t lost_rqst; 15183 15184 /* request should not already be in recovery queue */ 15185 ASSERT(lrp == NULL); 15186 nfs4_error_init(ep, EINTR); 15187 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15188 osp, cred_otw, vp); 15189 mutex_exit(&osp->os_sync_lock); 15190 have_sync_lock = 0; 15191 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15192 lost_rqst.lr_op == OP_CLOSE ? 15193 &lost_rqst : NULL, OP_CLOSE, NULL); 15194 close_failed = 1; 15195 force_close = 0; 15196 goto close_cleanup; 15197 } 15198 15199 /* 15200 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15201 * we stopped operating on the open owner's <old oo_name, old seqid> 15202 * space, which means we stopped operating on the open stream 15203 * too. So don't go OTW (as the seqid is likely bad, and the 15204 * stateid could be stale, potentially triggering a false 15205 * setclientid), and just clean up the client's internal state. 15206 */ 15207 if (osp->os_orig_oo_name != oop->oo_name) { 15208 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15209 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15210 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15211 "oo_name %" PRIx64")", 15212 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15213 oop->oo_name)); 15214 close_failed = 1; 15215 } 15216 15217 /* If the file failed recovery, just quit. */ 15218 mutex_enter(&rp->r_statelock); 15219 if (rp->r_flags & R4RECOVERR) { 15220 close_failed = 1; 15221 } 15222 mutex_exit(&rp->r_statelock); 15223 15224 /* 15225 * If the force close path failed to obtain start_fop 15226 * then skip the OTW close and just remove the state. 15227 */ 15228 if (close_failed) 15229 goto close_cleanup; 15230 15231 /* 15232 * Fifth, check to see if there are still mapped pages or other 15233 * opens using this open stream. If there are then we can't 15234 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15235 */ 15236 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15237 nfs4_lost_rqst_t new_lost_rqst; 15238 bool_t needrecov = FALSE; 15239 cred_t *odg_cred_otw = NULL; 15240 seqid4 open_dg_seqid = 0; 15241 15242 if (osp->os_delegation) { 15243 /* 15244 * If this open stream was never OPENed OTW then we 15245 * surely can't DOWNGRADE it (especially since the 15246 * osp->open_stateid is really a delegation stateid 15247 * when os_delegation is 1). 15248 */ 15249 if (access_bits & FREAD) 15250 osp->os_share_acc_read--; 15251 if (access_bits & FWRITE) 15252 osp->os_share_acc_write--; 15253 osp->os_share_deny_none--; 15254 nfs4_error_zinit(ep); 15255 goto out; 15256 } 15257 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15258 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15259 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15260 if (needrecov && !isrecov) { 15261 bool_t abort; 15262 nfs4_bseqid_entry_t *bsep = NULL; 15263 15264 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15265 bsep = nfs4_create_bseqid_entry(oop, NULL, 15266 vp, 0, 15267 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15268 open_dg_seqid); 15269 15270 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15271 oop, osp, odg_cred_otw, vp, access_bits, 0); 15272 mutex_exit(&osp->os_sync_lock); 15273 have_sync_lock = 0; 15274 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15275 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15276 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15277 bsep); 15278 if (odg_cred_otw) 15279 crfree(odg_cred_otw); 15280 if (bsep) 15281 kmem_free(bsep, sizeof (*bsep)); 15282 15283 if (abort == TRUE) 15284 goto out; 15285 15286 if (did_start_seqid_sync) { 15287 nfs4_end_open_seqid_sync(oop); 15288 did_start_seqid_sync = 0; 15289 } 15290 open_stream_rele(osp, rp); 15291 15292 if (did_start_op) 15293 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15294 &recov_state, FALSE); 15295 if (did_force_recovlock) 15296 nfs_rw_exit(&mi->mi_recovlock); 15297 15298 goto recov_retry; 15299 } else { 15300 if (odg_cred_otw) 15301 crfree(odg_cred_otw); 15302 } 15303 goto out; 15304 } 15305 15306 /* 15307 * If this open stream was created as the results of an open 15308 * while holding a delegation, then just release it; no need 15309 * to do an OTW close. Otherwise do a "normal" OTW close. 15310 */ 15311 if (osp->os_delegation) { 15312 nfs4close_notw(vp, osp, &have_sync_lock); 15313 nfs4_error_zinit(ep); 15314 goto out; 15315 } 15316 15317 /* 15318 * If this stream is not valid, we're done. 15319 */ 15320 if (!osp->os_valid) { 15321 nfs4_error_zinit(ep); 15322 goto out; 15323 } 15324 15325 /* 15326 * Last open or mmap ref has vanished, need to do an OTW close. 15327 * First check to see if a close is still necessary. 15328 */ 15329 if (osp->os_failed_reopen) { 15330 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15331 "don't close OTW osp %p since reopen failed.", 15332 (void *)osp)); 15333 /* 15334 * Reopen of the open stream failed, hence the 15335 * stateid of the open stream is invalid/stale, and 15336 * sending this OTW would incorrectly cause another 15337 * round of recovery. In this case, we need to set 15338 * the 'os_valid' bit to 0 so another thread doesn't 15339 * come in and re-open this open stream before 15340 * this "closing" thread cleans up state (decrementing 15341 * the nfs4_server_t's state_ref_count and decrementing 15342 * the os_ref_count). 15343 */ 15344 osp->os_valid = 0; 15345 /* 15346 * This removes the reference obtained at OPEN; ie, 15347 * when the open stream structure was created. 15348 * 15349 * We don't have to worry about calling 'open_stream_rele' 15350 * since we our currently holding a reference to this 15351 * open stream which means the count can not go to 0 with 15352 * this decrement. 15353 */ 15354 ASSERT(osp->os_ref_count >= 2); 15355 osp->os_ref_count--; 15356 nfs4_error_zinit(ep); 15357 close_failed = 0; 15358 goto close_cleanup; 15359 } 15360 15361 ASSERT(osp->os_ref_count > 1); 15362 15363 /* 15364 * Sixth, try the CLOSE OTW. 15365 */ 15366 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15367 close_type, ep, &have_sync_lock); 15368 15369 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15370 /* 15371 * Let the recovery thread be responsible for 15372 * removing the state for CLOSE. 15373 */ 15374 close_failed = 1; 15375 force_close = 0; 15376 retry = 0; 15377 } 15378 15379 /* See if we need to retry with a different cred */ 15380 if ((ep->error == EACCES || 15381 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15382 cred_otw != cr) { 15383 crfree(cred_otw); 15384 cred_otw = cr; 15385 crhold(cred_otw); 15386 retry = 1; 15387 } 15388 15389 if (ep->error || ep->stat) 15390 close_failed = 1; 15391 15392 if (retry && !isrecov && num_retries-- > 0) { 15393 if (have_sync_lock) { 15394 mutex_exit(&osp->os_sync_lock); 15395 have_sync_lock = 0; 15396 } 15397 if (did_start_seqid_sync) { 15398 nfs4_end_open_seqid_sync(oop); 15399 did_start_seqid_sync = 0; 15400 } 15401 open_stream_rele(osp, rp); 15402 15403 if (did_start_op) 15404 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15405 &recov_state, FALSE); 15406 if (did_force_recovlock) 15407 nfs_rw_exit(&mi->mi_recovlock); 15408 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15409 "nfs4close_one: need to retry the close " 15410 "operation")); 15411 goto recov_retry; 15412 } 15413 close_cleanup: 15414 /* 15415 * Seventh and lastly, process our results. 15416 */ 15417 if (close_failed && force_close) { 15418 /* 15419 * It's ok to drop and regrab the 'os_sync_lock' since 15420 * nfs4close_notw() will recheck to make sure the 15421 * "close"/removal of state should happen. 15422 */ 15423 if (!have_sync_lock) { 15424 mutex_enter(&osp->os_sync_lock); 15425 have_sync_lock = 1; 15426 } 15427 /* 15428 * This is last call, remove the ref on the open 15429 * stream created by open and clean everything up. 15430 */ 15431 osp->os_pending_close = 0; 15432 nfs4close_notw(vp, osp, &have_sync_lock); 15433 nfs4_error_zinit(ep); 15434 } 15435 15436 if (!close_failed) { 15437 if (have_sync_lock) { 15438 osp->os_pending_close = 0; 15439 mutex_exit(&osp->os_sync_lock); 15440 have_sync_lock = 0; 15441 } else { 15442 mutex_enter(&osp->os_sync_lock); 15443 osp->os_pending_close = 0; 15444 mutex_exit(&osp->os_sync_lock); 15445 } 15446 if (did_start_op && recov_state.rs_sp != NULL) { 15447 mutex_enter(&recov_state.rs_sp->s_lock); 15448 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15449 mutex_exit(&recov_state.rs_sp->s_lock); 15450 } else { 15451 nfs4_dec_state_ref_count(mi); 15452 } 15453 nfs4_error_zinit(ep); 15454 } 15455 15456 out: 15457 if (have_sync_lock) 15458 mutex_exit(&osp->os_sync_lock); 15459 if (did_start_op) 15460 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15461 recovonly ? TRUE : FALSE); 15462 if (did_force_recovlock) 15463 nfs_rw_exit(&mi->mi_recovlock); 15464 if (cred_otw) 15465 crfree(cred_otw); 15466 if (osp) 15467 open_stream_rele(osp, rp); 15468 if (oop) { 15469 if (did_start_seqid_sync) 15470 nfs4_end_open_seqid_sync(oop); 15471 open_owner_rele(oop); 15472 } 15473 } 15474 15475 /* 15476 * Convert information returned by the server in the LOCK4denied 15477 * structure to the form required by fcntl. 15478 */ 15479 static void 15480 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15481 { 15482 nfs4_lo_name_t *lo; 15483 15484 #ifdef DEBUG 15485 if (denied_to_flk_debug) { 15486 lockt_denied_debug = lockt_denied; 15487 debug_enter("lockt_denied"); 15488 } 15489 #endif 15490 15491 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15492 flk->l_whence = 0; /* aka SEEK_SET */ 15493 flk->l_start = lockt_denied->offset; 15494 flk->l_len = lockt_denied->length; 15495 15496 /* 15497 * If the blocking clientid matches our client id, then we can 15498 * interpret the lockowner (since we built it). If not, then 15499 * fabricate a sysid and pid. Note that the l_sysid field 15500 * in *flk already has the local sysid. 15501 */ 15502 15503 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15504 15505 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15506 lo = (nfs4_lo_name_t *) 15507 lockt_denied->owner.owner_val; 15508 15509 flk->l_pid = lo->ln_pid; 15510 } else { 15511 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15512 "denied_to_flk: bad lock owner length\n")); 15513 15514 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15515 } 15516 } else { 15517 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15518 "denied_to_flk: foreign clientid\n")); 15519 15520 /* 15521 * Construct a new sysid which should be different from 15522 * sysids of other systems. 15523 */ 15524 15525 flk->l_sysid++; 15526 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15527 } 15528 } 15529 15530 static pid_t 15531 lo_to_pid(lock_owner4 *lop) 15532 { 15533 pid_t pid = 0; 15534 uchar_t *cp; 15535 int i; 15536 15537 cp = (uchar_t *)&lop->clientid; 15538 15539 for (i = 0; i < sizeof (lop->clientid); i++) 15540 pid += (pid_t)*cp++; 15541 15542 cp = (uchar_t *)lop->owner_val; 15543 15544 for (i = 0; i < lop->owner_len; i++) 15545 pid += (pid_t)*cp++; 15546 15547 return (pid); 15548 } 15549 15550 /* 15551 * Given a lock pointer, returns the length of that lock. 15552 * "end" is the last locked offset the "l_len" covers from 15553 * the start of the lock. 15554 */ 15555 static off64_t 15556 lock_to_end(flock64_t *lock) 15557 { 15558 off64_t lock_end; 15559 15560 if (lock->l_len == 0) 15561 lock_end = (off64_t)MAXEND; 15562 else 15563 lock_end = lock->l_start + lock->l_len - 1; 15564 15565 return (lock_end); 15566 } 15567 15568 /* 15569 * Given the end of a lock, it will return you the length "l_len" for that lock. 15570 */ 15571 static off64_t 15572 end_to_len(off64_t start, off64_t end) 15573 { 15574 off64_t lock_len; 15575 15576 ASSERT(end >= start); 15577 if (end == MAXEND) 15578 lock_len = 0; 15579 else 15580 lock_len = end - start + 1; 15581 15582 return (lock_len); 15583 } 15584 15585 /* 15586 * On given end for a lock it determines if it is the last locked offset 15587 * or not, if so keeps it as is, else adds one to return the length for 15588 * valid start. 15589 */ 15590 static off64_t 15591 start_check(off64_t x) 15592 { 15593 if (x == MAXEND) 15594 return (x); 15595 else 15596 return (x + 1); 15597 } 15598 15599 /* 15600 * See if these two locks overlap, and if so return 1; 15601 * otherwise, return 0. 15602 */ 15603 static int 15604 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15605 { 15606 off64_t llfp_end, curfp_end; 15607 15608 llfp_end = lock_to_end(llfp); 15609 curfp_end = lock_to_end(curfp); 15610 15611 if (((llfp_end >= curfp->l_start) && 15612 (llfp->l_start <= curfp->l_start)) || 15613 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15614 return (1); 15615 return (0); 15616 } 15617 15618 /* 15619 * Determine what the intersecting lock region is, and add that to the 15620 * 'nl_llpp' locklist in increasing order (by l_start). 15621 */ 15622 static void 15623 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15624 locklist_t **nl_llpp, vnode_t *vp) 15625 { 15626 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15627 off64_t lost_flp_end, local_flp_end, len, start; 15628 15629 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15630 15631 if (!locks_intersect(lost_flp, local_flp)) 15632 return; 15633 15634 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15635 "locks intersect")); 15636 15637 lost_flp_end = lock_to_end(lost_flp); 15638 local_flp_end = lock_to_end(local_flp); 15639 15640 /* Find the starting point of the intersecting region */ 15641 if (local_flp->l_start > lost_flp->l_start) 15642 start = local_flp->l_start; 15643 else 15644 start = lost_flp->l_start; 15645 15646 /* Find the lenght of the intersecting region */ 15647 if (lost_flp_end < local_flp_end) 15648 len = end_to_len(start, lost_flp_end); 15649 else 15650 len = end_to_len(start, local_flp_end); 15651 15652 /* 15653 * Prepare the flock structure for the intersection found and insert 15654 * it into the new list in increasing l_start order. This list contains 15655 * intersections of locks registered by the client with the local host 15656 * and the lost lock. 15657 * The lock type of this lock is the same as that of the local_flp. 15658 */ 15659 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15660 intersect_llp->ll_flock.l_start = start; 15661 intersect_llp->ll_flock.l_len = len; 15662 intersect_llp->ll_flock.l_type = local_flp->l_type; 15663 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15664 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15665 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15666 intersect_llp->ll_vp = vp; 15667 15668 tmp_fllp = *nl_llpp; 15669 cur_fllp = NULL; 15670 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15671 intersect_llp->ll_flock.l_start) { 15672 cur_fllp = tmp_fllp; 15673 tmp_fllp = tmp_fllp->ll_next; 15674 } 15675 if (cur_fllp == NULL) { 15676 /* first on the list */ 15677 intersect_llp->ll_next = *nl_llpp; 15678 *nl_llpp = intersect_llp; 15679 } else { 15680 intersect_llp->ll_next = cur_fllp->ll_next; 15681 cur_fllp->ll_next = intersect_llp; 15682 } 15683 15684 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15685 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15686 intersect_llp->ll_flock.l_start, 15687 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15688 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15689 } 15690 15691 /* 15692 * Our local locking current state is potentially different than 15693 * what the NFSv4 server thinks we have due to a lost lock that was 15694 * resent and then received. We need to reset our "NFSv4" locking 15695 * state to match the current local locking state for this pid since 15696 * that is what the user/application sees as what the world is. 15697 * 15698 * We cannot afford to drop the open/lock seqid sync since then we can 15699 * get confused about what the current local locking state "is" versus 15700 * "was". 15701 * 15702 * If we are unable to fix up the locks, we send SIGLOST to the affected 15703 * process. This is not done if the filesystem has been forcibly 15704 * unmounted, in case the process has already exited and a new process 15705 * exists with the same pid. 15706 */ 15707 static void 15708 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15709 nfs4_lock_owner_t *lop) 15710 { 15711 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15712 mntinfo4_t *mi = VTOMI4(vp); 15713 const int cmd = F_SETLK; 15714 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15715 flock64_t ul_fl; 15716 15717 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15718 "nfs4_reinstitute_local_lock_state")); 15719 15720 /* 15721 * Find active locks for this vp from the local locking code. 15722 * Scan through this list and find out the locks that intersect with 15723 * the lost lock. Once we find the lock that intersects, add the 15724 * intersection area as a new lock to a new list "ri_llp". The lock 15725 * type of the intersection region lock added to ri_llp is the same 15726 * as that found in the active lock list, "list". The intersecting 15727 * region locks are added to ri_llp in increasing l_start order. 15728 */ 15729 ASSERT(nfs_zone() == mi->mi_zone); 15730 15731 locks = flk_active_locks_for_vp(vp); 15732 ri_llp = NULL; 15733 15734 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15735 ASSERT(llp->ll_vp == vp); 15736 /* 15737 * Pick locks that belong to this pid/lockowner 15738 */ 15739 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15740 continue; 15741 15742 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15743 } 15744 15745 /* 15746 * Now we have the list of intersections with the lost lock. These are 15747 * the locks that were/are active before the server replied to the 15748 * last/lost lock. Issue these locks to the server here. Playing these 15749 * locks to the server will re-establish aur current local locking state 15750 * with the v4 server. 15751 * If we get an error, send SIGLOST to the application for that lock. 15752 */ 15753 15754 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15755 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15756 "nfs4_reinstitute_local_lock_state: need to issue " 15757 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15758 llp->ll_flock.l_start, 15759 llp->ll_flock.l_start + llp->ll_flock.l_len, 15760 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15761 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15762 /* 15763 * No need to relock what we already have 15764 */ 15765 if (llp->ll_flock.l_type == lost_flp->l_type) 15766 continue; 15767 15768 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15769 } 15770 15771 /* 15772 * Now keeping the start of the lost lock as our reference parse the 15773 * newly created ri_llp locklist to find the ranges that we have locked 15774 * with the v4 server but not in the current local locking. We need 15775 * to unlock these ranges. 15776 * These ranges can also be reffered to as those ranges, where the lost 15777 * lock does not overlap with the locks in the ri_llp but are locked 15778 * since the server replied to the lost lock. 15779 */ 15780 cur_start = lost_flp->l_start; 15781 lost_flp_end = lock_to_end(lost_flp); 15782 15783 ul_fl.l_type = F_UNLCK; 15784 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15785 ul_fl.l_sysid = lost_flp->l_sysid; 15786 ul_fl.l_pid = lost_flp->l_pid; 15787 15788 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15789 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15790 15791 if (llp->ll_flock.l_start <= cur_start) { 15792 cur_start = start_check(llp_ll_flock_end); 15793 continue; 15794 } 15795 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15796 "nfs4_reinstitute_local_lock_state: " 15797 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15798 cur_start, llp->ll_flock.l_start)); 15799 15800 ul_fl.l_start = cur_start; 15801 ul_fl.l_len = end_to_len(cur_start, 15802 (llp->ll_flock.l_start - 1)); 15803 15804 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15805 cur_start = start_check(llp_ll_flock_end); 15806 } 15807 15808 /* 15809 * In the case where the lost lock ends after all intersecting locks, 15810 * unlock the last part of the lost lock range. 15811 */ 15812 if (cur_start != start_check(lost_flp_end)) { 15813 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15814 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15815 "lost lock region [%"PRIx64" - %"PRIx64"]", 15816 cur_start, lost_flp->l_start + lost_flp->l_len)); 15817 15818 ul_fl.l_start = cur_start; 15819 /* 15820 * Is it an to-EOF lock? if so unlock till the end 15821 */ 15822 if (lost_flp->l_len == 0) 15823 ul_fl.l_len = 0; 15824 else 15825 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15826 15827 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15828 } 15829 15830 if (locks != NULL) 15831 flk_free_locklist(locks); 15832 15833 /* Free up our newly created locklist */ 15834 for (llp = ri_llp; llp != NULL; ) { 15835 tmp_llp = llp->ll_next; 15836 kmem_free(llp, sizeof (locklist_t)); 15837 llp = tmp_llp; 15838 } 15839 15840 /* 15841 * Now return back to the original calling nfs4frlock() 15842 * and let us naturally drop our seqid syncs. 15843 */ 15844 } 15845 15846 /* 15847 * Create a lost state record for the given lock reinstantiation request 15848 * and push it onto the lost state queue. 15849 */ 15850 static void 15851 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15852 nfs4_lock_owner_t *lop) 15853 { 15854 nfs4_lost_rqst_t req; 15855 nfs_lock_type4 locktype; 15856 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15857 15858 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15859 15860 locktype = flk_to_locktype(cmd, flk->l_type); 15861 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15862 NULL, NULL, lop, flk, &req, cr, vp); 15863 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15864 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15865 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15866 NULL); 15867 } 15868