1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/cred.h> 37 #include <sys/time.h> 38 #include <sys/vnode.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/file.h> 42 #include <sys/filio.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/mman.h> 46 #include <sys/pathname.h> 47 #include <sys/dirent.h> 48 #include <sys/debug.h> 49 #include <sys/vmsystm.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/swap.h> 53 #include <sys/errno.h> 54 #include <sys/strsubr.h> 55 #include <sys/sysmacros.h> 56 #include <sys/kmem.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathconf.h> 59 #include <sys/utsname.h> 60 #include <sys/dnlc.h> 61 #include <sys/acl.h> 62 #include <sys/systeminfo.h> 63 #include <sys/policy.h> 64 #include <sys/sdt.h> 65 #include <sys/list.h> 66 #include <sys/stat.h> 67 68 #include <rpc/types.h> 69 #include <rpc/auth.h> 70 #include <rpc/clnt.h> 71 72 #include <nfs/nfs.h> 73 #include <nfs/nfs_clnt.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 #include <nfs/nfs4.h> 77 #include <nfs/nfs4_kprot.h> 78 #include <nfs/rnode4.h> 79 #include <nfs/nfs4_clnt.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/pvn.h> 85 #include <vm/seg.h> 86 #include <vm/seg_map.h> 87 #include <vm/seg_kpm.h> 88 #include <vm/seg_vn.h> 89 90 #include <fs/fs_subr.h> 91 92 #include <sys/ddi.h> 93 #include <sys/int_fmtio.h> 94 95 typedef struct { 96 nfs4_ga_res_t *di_garp; 97 cred_t *di_cred; 98 hrtime_t di_time_call; 99 } dirattr_info_t; 100 101 typedef enum nfs4_acl_op { 102 NFS4_ACL_GET, 103 NFS4_ACL_SET 104 } nfs4_acl_op_t; 105 106 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi); 107 108 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 109 char *, dirattr_info_t *); 110 111 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 112 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 113 nfs4_error_t *, int *); 114 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 115 cred_t *); 116 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 117 stable_how4 *); 118 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 119 cred_t *, bool_t, struct uio *); 120 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 121 vsecattr_t *); 122 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 123 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 124 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 125 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 126 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 127 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 128 int, vnode_t **, cred_t *); 129 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 130 cred_t *, int, int, enum createmode4, int); 131 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 132 caller_context_t *); 133 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 134 vnode_t *, char *, cred_t *, nfsstat4 *); 135 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 136 vnode_t *, char *, cred_t *, nfsstat4 *); 137 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 138 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 139 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 140 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 141 page_t *[], size_t, struct seg *, caddr_t, 142 enum seg_rw, cred_t *); 143 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 144 cred_t *); 145 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 146 int, cred_t *); 147 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 148 int, cred_t *); 149 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 150 static void nfs4_set_mod(vnode_t *); 151 static void nfs4_get_commit(vnode_t *); 152 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 153 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 154 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 155 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 156 cred_t *); 157 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 158 cred_t *); 159 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 160 hrtime_t, vnode_t *, cred_t *); 161 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 162 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 163 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 164 u_offset_t); 165 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 166 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 167 static cred_t *state_to_cred(nfs4_open_stream_t *); 168 static int vtoname(vnode_t *, char *, ssize_t); 169 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 170 static pid_t lo_to_pid(lock_owner4 *); 171 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 172 cred_t *, nfs4_lock_owner_t *); 173 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 174 nfs4_lock_owner_t *); 175 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 176 static void nfs4_delmap_callback(struct as *, void *, uint_t); 177 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 178 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 179 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 180 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 181 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 182 uid_t, gid_t, int); 183 184 /* 185 * Routines that implement the setting of v4 args for the misc. ops 186 */ 187 static void nfs4args_lock_free(nfs_argop4 *); 188 static void nfs4args_lockt_free(nfs_argop4 *); 189 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 190 int, rnode4_t *, cred_t *, bitmap4, int *, 191 nfs4_stateid_types_t *); 192 static void nfs4args_setattr_free(nfs_argop4 *); 193 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 194 bitmap4); 195 static void nfs4args_verify_free(nfs_argop4 *); 196 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 197 WRITE4args **, nfs4_stateid_types_t *); 198 199 /* 200 * These are the vnode ops functions that implement the vnode interface to 201 * the networked file system. See more comments below at nfs4_vnodeops. 202 */ 203 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 204 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 205 caller_context_t *); 206 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 207 caller_context_t *); 208 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 209 caller_context_t *); 210 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 211 caller_context_t *); 212 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 213 caller_context_t *); 214 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 215 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 216 caller_context_t *); 217 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 218 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 219 int, vnode_t **, cred_t *, int, caller_context_t *, 220 vsecattr_t *); 221 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 222 int); 223 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 224 caller_context_t *, int); 225 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 226 caller_context_t *, int); 227 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 228 cred_t *, caller_context_t *, int, vsecattr_t *); 229 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 230 caller_context_t *, int); 231 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 232 cred_t *, caller_context_t *, int); 233 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 234 caller_context_t *, int); 235 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 236 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 237 page_t *[], size_t, struct seg *, caddr_t, 238 enum seg_rw, cred_t *, caller_context_t *); 239 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 240 caller_context_t *); 241 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 242 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 243 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 244 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 245 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 246 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 247 struct flk_callback *, cred_t *, caller_context_t *); 248 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 249 cred_t *, caller_context_t *); 250 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 251 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 252 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 253 cred_t *, caller_context_t *); 254 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 255 caller_context_t *); 256 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 257 caller_context_t *); 258 /* 259 * These vnode ops are required to be called from outside this source file, 260 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 261 * as static. 262 */ 263 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 264 caller_context_t *); 265 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 266 int nfs4_lookup(vnode_t *, char *, vnode_t **, 267 struct pathname *, int, vnode_t *, cred_t *, 268 caller_context_t *, int *, pathname_t *); 269 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 270 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 271 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 272 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 273 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 274 caller_context_t *); 275 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 276 caller_context_t *); 277 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 278 caller_context_t *); 279 280 /* 281 * Used for nfs4_commit_vp() to indicate if we should 282 * wait on pending writes. 283 */ 284 #define NFS4_WRITE_NOWAIT 0 285 #define NFS4_WRITE_WAIT 1 286 287 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 288 289 /* 290 * Error flags used to pass information about certain special errors 291 * which need to be handled specially. 292 */ 293 #define NFS_EOF -98 294 #define NFS_VERF_MISMATCH -97 295 296 /* 297 * Flags used to differentiate between which operation drove the 298 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 299 */ 300 #define NFS4_CLOSE_OP 0x1 301 #define NFS4_DELMAP_OP 0x2 302 #define NFS4_INACTIVE_OP 0x3 303 304 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 305 306 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 307 #define ALIGN64(x, ptr, sz) \ 308 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 309 if (x) { \ 310 x = sizeof (uint64_t) - (x); \ 311 sz -= (x); \ 312 ptr += (x); \ 313 } 314 315 #ifdef DEBUG 316 int nfs4_client_attr_debug = 0; 317 int nfs4_client_state_debug = 0; 318 int nfs4_client_shadow_debug = 0; 319 int nfs4_client_lock_debug = 0; 320 int nfs4_seqid_sync = 0; 321 int nfs4_client_map_debug = 0; 322 static int nfs4_pageio_debug = 0; 323 int nfs4_client_inactive_debug = 0; 324 int nfs4_client_recov_debug = 0; 325 int nfs4_client_failover_debug = 0; 326 int nfs4_client_call_debug = 0; 327 int nfs4_client_lookup_debug = 0; 328 int nfs4_client_zone_debug = 0; 329 int nfs4_lost_rqst_debug = 0; 330 int nfs4_rdattrerr_debug = 0; 331 int nfs4_open_stream_debug = 0; 332 333 int nfs4read_error_inject; 334 335 static int nfs4_create_misses = 0; 336 337 static int nfs4_readdir_cache_shorts = 0; 338 static int nfs4_readdir_readahead = 0; 339 340 static int nfs4_bio_do_stop = 0; 341 342 static int nfs4_lostpage = 0; /* number of times we lost original page */ 343 344 int nfs4_mmap_debug = 0; 345 346 static int nfs4_pathconf_cache_hits = 0; 347 static int nfs4_pathconf_cache_misses = 0; 348 349 int nfs4close_all_cnt; 350 int nfs4close_one_debug = 0; 351 int nfs4close_notw_debug = 0; 352 353 int denied_to_flk_debug = 0; 354 void *lockt_denied_debug; 355 356 #endif 357 358 /* 359 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 360 * or NFS4ERR_RESOURCE. 361 */ 362 static int confirm_retry_sec = 30; 363 364 static int nfs4_lookup_neg_cache = 1; 365 366 /* 367 * number of pages to read ahead 368 * optimized for 100 base-T. 369 */ 370 static int nfs4_nra = 4; 371 372 static int nfs4_do_symlink_cache = 1; 373 374 static int nfs4_pathconf_disable_cache = 0; 375 376 /* 377 * These are the vnode ops routines which implement the vnode interface to 378 * the networked file system. These routines just take their parameters, 379 * make them look networkish by putting the right info into interface structs, 380 * and then calling the appropriate remote routine(s) to do the work. 381 * 382 * Note on directory name lookup cacheing: If we detect a stale fhandle, 383 * we purge the directory cache relative to that vnode. This way, the 384 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 385 * more details on rnode locking. 386 */ 387 388 struct vnodeops *nfs4_vnodeops; 389 390 const fs_operation_def_t nfs4_vnodeops_template[] = { 391 VOPNAME_OPEN, { .vop_open = nfs4_open }, 392 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 393 VOPNAME_READ, { .vop_read = nfs4_read }, 394 VOPNAME_WRITE, { .vop_write = nfs4_write }, 395 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 396 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 397 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 398 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 399 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 400 VOPNAME_CREATE, { .vop_create = nfs4_create }, 401 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 402 VOPNAME_LINK, { .vop_link = nfs4_link }, 403 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 404 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 405 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 406 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 407 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 408 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 409 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 410 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 411 VOPNAME_FID, { .vop_fid = nfs4_fid }, 412 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 413 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 414 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 415 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 416 VOPNAME_SPACE, { .vop_space = nfs4_space }, 417 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 418 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 419 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 420 VOPNAME_MAP, { .vop_map = nfs4_map }, 421 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 422 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 423 /* no separate nfs4_dump */ 424 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 425 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 426 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 427 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 428 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 429 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 430 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 431 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 432 NULL, NULL 433 }; 434 435 /* 436 * The following are subroutines and definitions to set args or get res 437 * for the different nfsv4 ops 438 */ 439 440 void 441 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 442 { 443 int i; 444 445 for (i = 0; i < arglen; i++) { 446 if (argop[i].argop == OP_LOOKUP) { 447 kmem_free( 448 argop[i].nfs_argop4_u.oplookup. 449 objname.utf8string_val, 450 argop[i].nfs_argop4_u.oplookup. 451 objname.utf8string_len); 452 } 453 } 454 } 455 456 static void 457 nfs4args_lock_free(nfs_argop4 *argop) 458 { 459 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 460 461 if (locker->new_lock_owner == TRUE) { 462 open_to_lock_owner4 *open_owner; 463 464 open_owner = &locker->locker4_u.open_owner; 465 if (open_owner->lock_owner.owner_val != NULL) { 466 kmem_free(open_owner->lock_owner.owner_val, 467 open_owner->lock_owner.owner_len); 468 } 469 } 470 } 471 472 static void 473 nfs4args_lockt_free(nfs_argop4 *argop) 474 { 475 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 476 477 if (lowner->owner_val != NULL) { 478 kmem_free(lowner->owner_val, lowner->owner_len); 479 } 480 } 481 482 static void 483 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 484 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 485 nfs4_stateid_types_t *sid_types) 486 { 487 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 488 mntinfo4_t *mi; 489 490 argop->argop = OP_SETATTR; 491 /* 492 * The stateid is set to 0 if client is not modifying the size 493 * and otherwise to whatever nfs4_get_stateid() returns. 494 * 495 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 496 * state struct could be found for the process/file pair. We may 497 * want to change this in the future (by OPENing the file). See 498 * bug # 4474852. 499 */ 500 if (vap->va_mask & AT_SIZE) { 501 502 ASSERT(rp != NULL); 503 mi = VTOMI4(RTOV4(rp)); 504 505 argop->nfs_argop4_u.opsetattr.stateid = 506 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 507 OP_SETATTR, sid_types, FALSE); 508 } else { 509 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 510 sizeof (stateid4)); 511 } 512 513 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 514 if (*error) 515 bzero(attr, sizeof (*attr)); 516 } 517 518 static void 519 nfs4args_setattr_free(nfs_argop4 *argop) 520 { 521 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 522 } 523 524 static int 525 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 526 bitmap4 supp) 527 { 528 fattr4 *attr; 529 int error = 0; 530 531 argop->argop = op; 532 switch (op) { 533 case OP_VERIFY: 534 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 535 break; 536 case OP_NVERIFY: 537 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 538 break; 539 default: 540 return (EINVAL); 541 } 542 if (!error) 543 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 544 if (error) 545 bzero(attr, sizeof (*attr)); 546 return (error); 547 } 548 549 static void 550 nfs4args_verify_free(nfs_argop4 *argop) 551 { 552 switch (argop->argop) { 553 case OP_VERIFY: 554 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 555 break; 556 case OP_NVERIFY: 557 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 558 break; 559 default: 560 break; 561 } 562 } 563 564 static void 565 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 566 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 567 { 568 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 569 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 570 571 argop->argop = OP_WRITE; 572 wargs->stable = stable; 573 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 574 mi, OP_WRITE, sid_tp); 575 wargs->mblk = NULL; 576 *wargs_pp = wargs; 577 } 578 579 void 580 nfs4args_copen_free(OPEN4cargs *open_args) 581 { 582 if (open_args->owner.owner_val) { 583 kmem_free(open_args->owner.owner_val, 584 open_args->owner.owner_len); 585 } 586 if ((open_args->opentype == OPEN4_CREATE) && 587 (open_args->mode != EXCLUSIVE4)) { 588 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 589 } 590 } 591 592 /* 593 * XXX: This is referenced in modstubs.s 594 */ 595 struct vnodeops * 596 nfs4_getvnodeops(void) 597 { 598 return (nfs4_vnodeops); 599 } 600 601 /* 602 * The OPEN operation opens a regular file. 603 */ 604 /*ARGSUSED3*/ 605 static int 606 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 607 { 608 vnode_t *dvp = NULL; 609 rnode4_t *rp, *drp; 610 int error; 611 int just_been_created; 612 char fn[MAXNAMELEN]; 613 614 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 615 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 616 return (EIO); 617 rp = VTOR4(*vpp); 618 619 /* 620 * Check to see if opening something besides a regular file; 621 * if so skip the OTW call 622 */ 623 if ((*vpp)->v_type != VREG) { 624 error = nfs4_open_non_reg_file(vpp, flag, cr); 625 return (error); 626 } 627 628 /* 629 * XXX - would like a check right here to know if the file is 630 * executable or not, so as to skip OTW 631 */ 632 633 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 634 return (error); 635 636 drp = VTOR4(dvp); 637 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 638 return (EINTR); 639 640 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 641 nfs_rw_exit(&drp->r_rwlock); 642 return (error); 643 } 644 645 /* 646 * See if this file has just been CREATEd. 647 * If so, clear the flag and update the dnlc, which was previously 648 * skipped in nfs4_create. 649 * XXX need better serilization on this. 650 * XXX move this into the nf4open_otw call, after we have 651 * XXX acquired the open owner seqid sync. 652 */ 653 mutex_enter(&rp->r_statev4_lock); 654 if (rp->created_v4) { 655 rp->created_v4 = 0; 656 mutex_exit(&rp->r_statev4_lock); 657 658 dnlc_update(dvp, fn, *vpp); 659 /* This is needed so we don't bump the open ref count */ 660 just_been_created = 1; 661 } else { 662 mutex_exit(&rp->r_statev4_lock); 663 just_been_created = 0; 664 } 665 666 /* 667 * If caller specified O_TRUNC/FTRUNC, then be sure to set 668 * FWRITE (to drive successful setattr(size=0) after open) 669 */ 670 if (flag & FTRUNC) 671 flag |= FWRITE; 672 673 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 674 just_been_created); 675 676 if (!error && !((*vpp)->v_flag & VROOT)) 677 dnlc_update(dvp, fn, *vpp); 678 679 nfs_rw_exit(&drp->r_rwlock); 680 681 /* release the hold from vtodv */ 682 VN_RELE(dvp); 683 684 /* exchange the shadow for the master vnode, if needed */ 685 686 if (error == 0 && IS_SHADOW(*vpp, rp)) 687 sv_exchange(vpp); 688 689 return (error); 690 } 691 692 /* 693 * See if there's a "lost open" request to be saved and recovered. 694 */ 695 static void 696 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 697 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 698 vnode_t *dvp, OPEN4cargs *open_args) 699 { 700 vfs_t *vfsp; 701 char *srccfp; 702 703 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 704 705 if (error != ETIMEDOUT && error != EINTR && 706 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 707 lost_rqstp->lr_op = 0; 708 return; 709 } 710 711 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 712 "nfs4open_save_lost_rqst: error %d", error)); 713 714 lost_rqstp->lr_op = OP_OPEN; 715 716 /* 717 * The vp (if it is not NULL) and dvp are held and rele'd via 718 * the recovery code. See nfs4_save_lost_rqst. 719 */ 720 lost_rqstp->lr_vp = vp; 721 lost_rqstp->lr_dvp = dvp; 722 lost_rqstp->lr_oop = oop; 723 lost_rqstp->lr_osp = NULL; 724 lost_rqstp->lr_lop = NULL; 725 lost_rqstp->lr_cr = cr; 726 lost_rqstp->lr_flk = NULL; 727 lost_rqstp->lr_oacc = open_args->share_access; 728 lost_rqstp->lr_odeny = open_args->share_deny; 729 lost_rqstp->lr_oclaim = open_args->claim; 730 if (open_args->claim == CLAIM_DELEGATE_CUR) { 731 lost_rqstp->lr_ostateid = 732 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 733 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 734 } else { 735 srccfp = open_args->open_claim4_u.cfile; 736 } 737 lost_rqstp->lr_ofile.utf8string_len = 0; 738 lost_rqstp->lr_ofile.utf8string_val = NULL; 739 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 740 lost_rqstp->lr_putfirst = FALSE; 741 } 742 743 struct nfs4_excl_time { 744 uint32 seconds; 745 uint32 nseconds; 746 }; 747 748 /* 749 * The OPEN operation creates and/or opens a regular file 750 * 751 * ARGSUSED 752 */ 753 static int 754 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 755 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 756 enum createmode4 createmode, int file_just_been_created) 757 { 758 rnode4_t *rp; 759 rnode4_t *drp = VTOR4(dvp); 760 vnode_t *vp = NULL; 761 vnode_t *vpi = *vpp; 762 bool_t needrecov = FALSE; 763 764 int doqueue = 1; 765 766 COMPOUND4args_clnt args; 767 COMPOUND4res_clnt res; 768 nfs_argop4 *argop; 769 nfs_resop4 *resop; 770 int argoplist_size; 771 int idx_open, idx_fattr; 772 773 GETFH4res *gf_res = NULL; 774 OPEN4res *op_res = NULL; 775 nfs4_ga_res_t *garp; 776 fattr4 *attr = NULL; 777 struct nfs4_excl_time verf; 778 bool_t did_excl_setup = FALSE; 779 int created_osp; 780 781 OPEN4cargs *open_args; 782 nfs4_open_owner_t *oop = NULL; 783 nfs4_open_stream_t *osp = NULL; 784 seqid4 seqid = 0; 785 bool_t retry_open = FALSE; 786 nfs4_recov_state_t recov_state; 787 nfs4_lost_rqst_t lost_rqst; 788 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 789 hrtime_t t; 790 int acc = 0; 791 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 792 cred_t *ncr = NULL; 793 794 nfs4_sharedfh_t *otw_sfh; 795 nfs4_sharedfh_t *orig_sfh; 796 int fh_differs = 0; 797 int numops, setgid_flag; 798 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 799 800 /* 801 * Make sure we properly deal with setting the right gid on 802 * a newly created file to reflect the parent's setgid bit 803 */ 804 setgid_flag = 0; 805 if (create_flag && in_va) { 806 807 /* 808 * If the parent's directory has the setgid bit set 809 * _and_ the client was able to get a valid mapping 810 * for the parent dir's owner_group, we want to 811 * append NVERIFY(owner_group == dva.va_gid) and 812 * SETATTR to the CREATE compound. 813 */ 814 mutex_enter(&drp->r_statelock); 815 if (drp->r_attr.va_mode & VSGID && 816 drp->r_attr.va_gid != GID_NOBODY) { 817 in_va->va_gid = drp->r_attr.va_gid; 818 setgid_flag = 1; 819 } 820 mutex_exit(&drp->r_statelock); 821 } 822 823 /* 824 * Normal/non-create compound: 825 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 826 * 827 * Open(create) compound no setgid: 828 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 829 * RESTOREFH + GETATTR 830 * 831 * Open(create) setgid: 832 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 833 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 834 * NVERIFY(grp) + SETATTR 835 */ 836 if (setgid_flag) { 837 numops = 10; 838 idx_open = 1; 839 idx_fattr = 3; 840 } else if (create_flag) { 841 numops = 7; 842 idx_open = 2; 843 idx_fattr = 4; 844 } else { 845 numops = 4; 846 idx_open = 1; 847 idx_fattr = 3; 848 } 849 850 args.array_len = numops; 851 argoplist_size = numops * sizeof (nfs_argop4); 852 argop = kmem_alloc(argoplist_size, KM_SLEEP); 853 854 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 855 "open %s open flag 0x%x cred %p", file_name, open_flag, 856 (void *)cr)); 857 858 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 859 if (create_flag) { 860 /* 861 * We are to create a file. Initialize the passed in vnode 862 * pointer. 863 */ 864 vpi = NULL; 865 } else { 866 /* 867 * Check to see if the client owns a read delegation and is 868 * trying to open for write. If so, then return the delegation 869 * to avoid the server doing a cb_recall and returning DELAY. 870 * NB - we don't use the statev4_lock here because we'd have 871 * to drop the lock anyway and the result would be stale. 872 */ 873 if ((open_flag & FWRITE) && 874 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 875 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 876 877 /* 878 * If the file has a delegation, then do an access check up 879 * front. This avoids having to an access check later after 880 * we've already done start_op, which could deadlock. 881 */ 882 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 883 if (open_flag & FREAD && 884 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 885 acc |= VREAD; 886 if (open_flag & FWRITE && 887 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 888 acc |= VWRITE; 889 } 890 } 891 892 drp = VTOR4(dvp); 893 894 recov_state.rs_flags = 0; 895 recov_state.rs_num_retry_despite_err = 0; 896 cred_otw = cr; 897 898 recov_retry: 899 fh_differs = 0; 900 nfs4_error_zinit(&e); 901 902 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 903 if (e.error) { 904 if (ncr != NULL) 905 crfree(ncr); 906 kmem_free(argop, argoplist_size); 907 return (e.error); 908 } 909 910 args.ctag = TAG_OPEN; 911 args.array_len = numops; 912 args.array = argop; 913 914 /* putfh directory fh */ 915 argop[0].argop = OP_CPUTFH; 916 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 917 918 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 919 argop[idx_open].argop = OP_COPEN; 920 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 921 open_args->claim = CLAIM_NULL; 922 923 /* name of file */ 924 open_args->open_claim4_u.cfile = file_name; 925 open_args->owner.owner_len = 0; 926 open_args->owner.owner_val = NULL; 927 928 if (create_flag) { 929 /* CREATE a file */ 930 open_args->opentype = OPEN4_CREATE; 931 open_args->mode = createmode; 932 if (createmode == EXCLUSIVE4) { 933 if (did_excl_setup == FALSE) { 934 verf.seconds = nfs_atoi(hw_serial); 935 if (verf.seconds != 0) 936 verf.nseconds = newnum(); 937 else { 938 timestruc_t now; 939 940 gethrestime(&now); 941 verf.seconds = now.tv_sec; 942 verf.nseconds = now.tv_nsec; 943 } 944 /* 945 * Since the server will use this value for the 946 * mtime, make sure that it can't overflow. Zero 947 * out the MSB. The actual value does not matter 948 * here, only its uniqeness. 949 */ 950 verf.seconds &= INT32_MAX; 951 did_excl_setup = TRUE; 952 } 953 954 /* Now copy over verifier to OPEN4args. */ 955 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 956 } else { 957 int v_error; 958 bitmap4 supp_attrs; 959 servinfo4_t *svp; 960 961 attr = &open_args->createhow4_u.createattrs; 962 963 svp = drp->r_server; 964 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 965 supp_attrs = svp->sv_supp_attrs; 966 nfs_rw_exit(&svp->sv_lock); 967 968 /* GUARDED4 or UNCHECKED4 */ 969 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 970 supp_attrs); 971 if (v_error) { 972 bzero(attr, sizeof (*attr)); 973 nfs4args_copen_free(open_args); 974 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 975 &recov_state, FALSE); 976 if (ncr != NULL) 977 crfree(ncr); 978 kmem_free(argop, argoplist_size); 979 return (v_error); 980 } 981 } 982 } else { 983 /* NO CREATE */ 984 open_args->opentype = OPEN4_NOCREATE; 985 } 986 987 if (recov_state.rs_sp != NULL) { 988 mutex_enter(&recov_state.rs_sp->s_lock); 989 open_args->owner.clientid = recov_state.rs_sp->clientid; 990 mutex_exit(&recov_state.rs_sp->s_lock); 991 } else { 992 /* XXX should we just fail here? */ 993 open_args->owner.clientid = 0; 994 } 995 996 /* 997 * This increments oop's ref count or creates a temporary 'just_created' 998 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 999 * completes. 1000 */ 1001 mutex_enter(&VTOMI4(dvp)->mi_lock); 1002 1003 /* See if a permanent or just created open owner exists */ 1004 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1005 if (!oop) { 1006 /* 1007 * This open owner does not exist so create a temporary 1008 * just created one. 1009 */ 1010 oop = create_open_owner(cr, VTOMI4(dvp)); 1011 ASSERT(oop != NULL); 1012 } 1013 mutex_exit(&VTOMI4(dvp)->mi_lock); 1014 1015 /* this length never changes, do alloc before seqid sync */ 1016 open_args->owner.owner_len = sizeof (oop->oo_name); 1017 open_args->owner.owner_val = 1018 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1019 1020 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1021 if (e.error == EAGAIN) { 1022 open_owner_rele(oop); 1023 nfs4args_copen_free(open_args); 1024 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1025 if (ncr != NULL) { 1026 crfree(ncr); 1027 ncr = NULL; 1028 } 1029 goto recov_retry; 1030 } 1031 1032 /* Check to see if we need to do the OTW call */ 1033 if (!create_flag) { 1034 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1035 file_just_been_created, &e.error, acc, &recov_state)) { 1036 1037 /* 1038 * The OTW open is not necessary. Either 1039 * the open can succeed without it (eg. 1040 * delegation, error == 0) or the open 1041 * must fail due to an access failure 1042 * (error != 0). In either case, tidy 1043 * up and return. 1044 */ 1045 1046 nfs4_end_open_seqid_sync(oop); 1047 open_owner_rele(oop); 1048 nfs4args_copen_free(open_args); 1049 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1050 if (ncr != NULL) 1051 crfree(ncr); 1052 kmem_free(argop, argoplist_size); 1053 return (e.error); 1054 } 1055 } 1056 1057 bcopy(&oop->oo_name, open_args->owner.owner_val, 1058 open_args->owner.owner_len); 1059 1060 seqid = nfs4_get_open_seqid(oop) + 1; 1061 open_args->seqid = seqid; 1062 open_args->share_access = 0; 1063 if (open_flag & FREAD) 1064 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1065 if (open_flag & FWRITE) 1066 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1067 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1068 1069 1070 1071 /* 1072 * getfh w/sanity check for idx_open/idx_fattr 1073 */ 1074 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1075 argop[idx_open + 1].argop = OP_GETFH; 1076 1077 /* getattr */ 1078 argop[idx_fattr].argop = OP_GETATTR; 1079 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1080 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1081 1082 if (setgid_flag) { 1083 vattr_t _v; 1084 servinfo4_t *svp; 1085 bitmap4 supp_attrs; 1086 1087 svp = drp->r_server; 1088 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1089 supp_attrs = svp->sv_supp_attrs; 1090 nfs_rw_exit(&svp->sv_lock); 1091 1092 /* 1093 * For setgid case, we need to: 1094 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1095 */ 1096 argop[4].argop = OP_SAVEFH; 1097 1098 argop[5].argop = OP_CPUTFH; 1099 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1100 1101 argop[6].argop = OP_GETATTR; 1102 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1103 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1104 1105 argop[7].argop = OP_RESTOREFH; 1106 1107 /* 1108 * nverify 1109 */ 1110 _v.va_mask = AT_GID; 1111 _v.va_gid = in_va->va_gid; 1112 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1113 supp_attrs))) { 1114 1115 /* 1116 * setattr 1117 * 1118 * We _know_ we're not messing with AT_SIZE or 1119 * AT_XTIME, so no need for stateid or flags. 1120 * Also we specify NULL rp since we're only 1121 * interested in setting owner_group attributes. 1122 */ 1123 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1124 supp_attrs, &e.error, 0); 1125 if (e.error) 1126 nfs4args_verify_free(&argop[8]); 1127 } 1128 1129 if (e.error) { 1130 /* 1131 * XXX - Revisit the last argument to nfs4_end_op() 1132 * once 5020486 is fixed. 1133 */ 1134 nfs4_end_open_seqid_sync(oop); 1135 open_owner_rele(oop); 1136 nfs4args_copen_free(open_args); 1137 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1138 if (ncr != NULL) 1139 crfree(ncr); 1140 kmem_free(argop, argoplist_size); 1141 return (e.error); 1142 } 1143 } else if (create_flag) { 1144 /* 1145 * For setgid case, we need to: 1146 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1147 */ 1148 argop[1].argop = OP_SAVEFH; 1149 1150 argop[5].argop = OP_RESTOREFH; 1151 1152 argop[6].argop = OP_GETATTR; 1153 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1154 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1155 } 1156 1157 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1158 "nfs4open_otw: %s call, nm %s, rp %s", 1159 needrecov ? "recov" : "first", file_name, 1160 rnode4info(VTOR4(dvp)))); 1161 1162 t = gethrtime(); 1163 1164 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1165 1166 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1167 nfs4_set_open_seqid(seqid, oop, args.ctag); 1168 1169 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1170 1171 if (e.error || needrecov) { 1172 bool_t abort = FALSE; 1173 1174 if (needrecov) { 1175 nfs4_bseqid_entry_t *bsep = NULL; 1176 1177 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1178 cred_otw, vpi, dvp, open_args); 1179 1180 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1181 bsep = nfs4_create_bseqid_entry(oop, NULL, 1182 vpi, 0, args.ctag, open_args->seqid); 1183 num_bseqid_retry--; 1184 } 1185 1186 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1187 NULL, lost_rqst.lr_op == OP_OPEN ? 1188 &lost_rqst : NULL, OP_OPEN, bsep); 1189 1190 if (bsep) 1191 kmem_free(bsep, sizeof (*bsep)); 1192 /* give up if we keep getting BAD_SEQID */ 1193 if (num_bseqid_retry == 0) 1194 abort = TRUE; 1195 if (abort == TRUE && e.error == 0) 1196 e.error = geterrno4(res.status); 1197 } 1198 nfs4_end_open_seqid_sync(oop); 1199 open_owner_rele(oop); 1200 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1201 nfs4args_copen_free(open_args); 1202 if (setgid_flag) { 1203 nfs4args_verify_free(&argop[8]); 1204 nfs4args_setattr_free(&argop[9]); 1205 } 1206 if (!e.error) 1207 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1208 if (ncr != NULL) { 1209 crfree(ncr); 1210 ncr = NULL; 1211 } 1212 if (!needrecov || abort == TRUE || e.error == EINTR || 1213 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1214 kmem_free(argop, argoplist_size); 1215 return (e.error); 1216 } 1217 goto recov_retry; 1218 } 1219 1220 /* 1221 * Will check and update lease after checking the rflag for 1222 * OPEN_CONFIRM in the successful OPEN call. 1223 */ 1224 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1225 1226 /* 1227 * XXX what if we're crossing mount points from server1:/drp 1228 * to server2:/drp/rp. 1229 */ 1230 1231 /* Signal our end of use of the open seqid */ 1232 nfs4_end_open_seqid_sync(oop); 1233 1234 /* 1235 * This will destroy the open owner if it was just created, 1236 * and no one else has put a reference on it. 1237 */ 1238 open_owner_rele(oop); 1239 if (create_flag && (createmode != EXCLUSIVE4) && 1240 res.status == NFS4ERR_BADOWNER) 1241 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1242 1243 e.error = geterrno4(res.status); 1244 nfs4args_copen_free(open_args); 1245 if (setgid_flag) { 1246 nfs4args_verify_free(&argop[8]); 1247 nfs4args_setattr_free(&argop[9]); 1248 } 1249 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1250 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1251 /* 1252 * If the reply is NFS4ERR_ACCESS, it may be because 1253 * we are root (no root net access). If the real uid 1254 * is not root, then retry with the real uid instead. 1255 */ 1256 if (ncr != NULL) { 1257 crfree(ncr); 1258 ncr = NULL; 1259 } 1260 if (res.status == NFS4ERR_ACCESS && 1261 (ncr = crnetadjust(cred_otw)) != NULL) { 1262 cred_otw = ncr; 1263 goto recov_retry; 1264 } 1265 kmem_free(argop, argoplist_size); 1266 return (e.error); 1267 } 1268 1269 resop = &res.array[idx_open]; /* open res */ 1270 op_res = &resop->nfs_resop4_u.opopen; 1271 1272 #ifdef DEBUG 1273 /* 1274 * verify attrset bitmap 1275 */ 1276 if (create_flag && 1277 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1278 /* make sure attrset returned is what we asked for */ 1279 /* XXX Ignore this 'error' for now */ 1280 if (attr->attrmask != op_res->attrset) 1281 /* EMPTY */; 1282 } 1283 #endif 1284 1285 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1286 mutex_enter(&VTOMI4(dvp)->mi_lock); 1287 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1288 mutex_exit(&VTOMI4(dvp)->mi_lock); 1289 } 1290 1291 resop = &res.array[idx_open + 1]; /* getfh res */ 1292 gf_res = &resop->nfs_resop4_u.opgetfh; 1293 1294 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1295 1296 /* 1297 * The open stateid has been updated on the server but not 1298 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1299 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1300 * WRITE call. That, however, will use the old stateid, so go ahead 1301 * and upate the open stateid now, before any call to makenfs4node. 1302 */ 1303 if (vpi) { 1304 nfs4_open_stream_t *tmp_osp; 1305 rnode4_t *tmp_rp = VTOR4(vpi); 1306 1307 tmp_osp = find_open_stream(oop, tmp_rp); 1308 if (tmp_osp) { 1309 tmp_osp->open_stateid = op_res->stateid; 1310 mutex_exit(&tmp_osp->os_sync_lock); 1311 open_stream_rele(tmp_osp, tmp_rp); 1312 } 1313 1314 /* 1315 * We must determine if the file handle given by the otw open 1316 * is the same as the file handle which was passed in with 1317 * *vpp. This case can be reached if the file we are trying 1318 * to open has been removed and another file has been created 1319 * having the same file name. The passed in vnode is released 1320 * later. 1321 */ 1322 orig_sfh = VTOR4(vpi)->r_fh; 1323 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1324 } 1325 1326 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1327 1328 if (create_flag || fh_differs) { 1329 int rnode_err = 0; 1330 1331 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1332 dvp, fn_get(VTOSV(dvp)->sv_name, file_name)); 1333 1334 if (e.error) 1335 PURGE_ATTRCACHE4(vp); 1336 /* 1337 * For the newly created vp case, make sure the rnode 1338 * isn't bad before using it. 1339 */ 1340 mutex_enter(&(VTOR4(vp))->r_statelock); 1341 if (VTOR4(vp)->r_flags & R4RECOVERR) 1342 rnode_err = EIO; 1343 mutex_exit(&(VTOR4(vp))->r_statelock); 1344 1345 if (rnode_err) { 1346 nfs4_end_open_seqid_sync(oop); 1347 nfs4args_copen_free(open_args); 1348 if (setgid_flag) { 1349 nfs4args_verify_free(&argop[8]); 1350 nfs4args_setattr_free(&argop[9]); 1351 } 1352 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1353 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1354 needrecov); 1355 open_owner_rele(oop); 1356 VN_RELE(vp); 1357 if (ncr != NULL) 1358 crfree(ncr); 1359 sfh4_rele(&otw_sfh); 1360 kmem_free(argop, argoplist_size); 1361 return (EIO); 1362 } 1363 } else { 1364 vp = vpi; 1365 } 1366 sfh4_rele(&otw_sfh); 1367 1368 /* 1369 * It seems odd to get a full set of attrs and then not update 1370 * the object's attrcache in the non-create case. Create case uses 1371 * the attrs since makenfs4node checks to see if the attrs need to 1372 * be updated (and then updates them). The non-create case should 1373 * update attrs also. 1374 */ 1375 if (! create_flag && ! fh_differs && !e.error) { 1376 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1377 } 1378 1379 nfs4_error_zinit(&e); 1380 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1381 /* This does not do recovery for vp explicitly. */ 1382 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1383 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1384 1385 if (e.error || e.stat) { 1386 nfs4_end_open_seqid_sync(oop); 1387 nfs4args_copen_free(open_args); 1388 if (setgid_flag) { 1389 nfs4args_verify_free(&argop[8]); 1390 nfs4args_setattr_free(&argop[9]); 1391 } 1392 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1393 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1394 needrecov); 1395 open_owner_rele(oop); 1396 if (create_flag || fh_differs) { 1397 /* rele the makenfs4node */ 1398 VN_RELE(vp); 1399 } 1400 if (ncr != NULL) { 1401 crfree(ncr); 1402 ncr = NULL; 1403 } 1404 if (retry_open == TRUE) { 1405 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1406 "nfs4open_otw: retry the open since OPEN " 1407 "CONFIRM failed with error %d stat %d", 1408 e.error, e.stat)); 1409 if (create_flag && createmode == GUARDED4) { 1410 NFS4_DEBUG(nfs4_client_recov_debug, 1411 (CE_NOTE, "nfs4open_otw: switch " 1412 "createmode from GUARDED4 to " 1413 "UNCHECKED4")); 1414 createmode = UNCHECKED4; 1415 } 1416 goto recov_retry; 1417 } 1418 if (!e.error) { 1419 if (create_flag && (createmode != EXCLUSIVE4) && 1420 e.stat == NFS4ERR_BADOWNER) 1421 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1422 1423 e.error = geterrno4(e.stat); 1424 } 1425 kmem_free(argop, argoplist_size); 1426 return (e.error); 1427 } 1428 } 1429 1430 rp = VTOR4(vp); 1431 1432 mutex_enter(&rp->r_statev4_lock); 1433 if (create_flag) 1434 rp->created_v4 = 1; 1435 mutex_exit(&rp->r_statev4_lock); 1436 1437 mutex_enter(&oop->oo_lock); 1438 /* Doesn't matter if 'oo_just_created' already was set as this */ 1439 oop->oo_just_created = NFS4_PERM_CREATED; 1440 if (oop->oo_cred_otw) 1441 crfree(oop->oo_cred_otw); 1442 oop->oo_cred_otw = cred_otw; 1443 crhold(oop->oo_cred_otw); 1444 mutex_exit(&oop->oo_lock); 1445 1446 /* returns with 'os_sync_lock' held */ 1447 osp = find_or_create_open_stream(oop, rp, &created_osp); 1448 if (!osp) { 1449 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1450 "nfs4open_otw: failed to create an open stream")); 1451 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1452 "signal our end of use of the open seqid")); 1453 1454 nfs4_end_open_seqid_sync(oop); 1455 open_owner_rele(oop); 1456 nfs4args_copen_free(open_args); 1457 if (setgid_flag) { 1458 nfs4args_verify_free(&argop[8]); 1459 nfs4args_setattr_free(&argop[9]); 1460 } 1461 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1462 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1463 if (create_flag || fh_differs) 1464 VN_RELE(vp); 1465 if (ncr != NULL) 1466 crfree(ncr); 1467 1468 kmem_free(argop, argoplist_size); 1469 return (EINVAL); 1470 1471 } 1472 1473 osp->open_stateid = op_res->stateid; 1474 1475 if (open_flag & FREAD) 1476 osp->os_share_acc_read++; 1477 if (open_flag & FWRITE) 1478 osp->os_share_acc_write++; 1479 osp->os_share_deny_none++; 1480 1481 /* 1482 * Need to reset this bitfield for the possible case where we were 1483 * going to OTW CLOSE the file, got a non-recoverable error, and before 1484 * we could retry the CLOSE, OPENed the file again. 1485 */ 1486 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1487 osp->os_final_close = 0; 1488 osp->os_force_close = 0; 1489 #ifdef DEBUG 1490 if (osp->os_failed_reopen) 1491 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1492 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1493 (void *)osp, (void *)cr, rnode4info(rp))); 1494 #endif 1495 osp->os_failed_reopen = 0; 1496 1497 mutex_exit(&osp->os_sync_lock); 1498 1499 nfs4_end_open_seqid_sync(oop); 1500 1501 if (created_osp && recov_state.rs_sp != NULL) { 1502 mutex_enter(&recov_state.rs_sp->s_lock); 1503 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1504 mutex_exit(&recov_state.rs_sp->s_lock); 1505 } 1506 1507 /* get rid of our reference to find oop */ 1508 open_owner_rele(oop); 1509 1510 open_stream_rele(osp, rp); 1511 1512 /* accept delegation, if any */ 1513 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1514 1515 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1516 1517 if (createmode == EXCLUSIVE4 && 1518 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1519 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1520 " EXCLUSIVE4: sending a SETATTR")); 1521 /* 1522 * If doing an exclusive create, then generate 1523 * a SETATTR to set the initial attributes. 1524 * Try to set the mtime and the atime to the 1525 * server's current time. It is somewhat 1526 * expected that these fields will be used to 1527 * store the exclusive create cookie. If not, 1528 * server implementors will need to know that 1529 * a SETATTR will follow an exclusive create 1530 * and the cookie should be destroyed if 1531 * appropriate. 1532 * 1533 * The AT_GID and AT_SIZE bits are turned off 1534 * so that the SETATTR request will not attempt 1535 * to process these. The gid will be set 1536 * separately if appropriate. The size is turned 1537 * off because it is assumed that a new file will 1538 * be created empty and if the file wasn't empty, 1539 * then the exclusive create will have failed 1540 * because the file must have existed already. 1541 * Therefore, no truncate operation is needed. 1542 */ 1543 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1544 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1545 1546 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1547 if (e.error) { 1548 /* 1549 * Couldn't correct the attributes of 1550 * the newly created file and the 1551 * attributes are wrong. Remove the 1552 * file and return an error to the 1553 * application. 1554 */ 1555 /* XXX will this take care of client state ? */ 1556 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1557 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1558 " remove file", e.error)); 1559 VN_RELE(vp); 1560 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1561 /* 1562 * Since we've reled the vnode and removed 1563 * the file we now need to return the error. 1564 * At this point we don't want to update the 1565 * dircaches, call nfs4_waitfor_purge_complete 1566 * or set vpp to vp so we need to skip these 1567 * as well. 1568 */ 1569 goto skip_update_dircaches; 1570 } 1571 } 1572 1573 /* 1574 * If we created or found the correct vnode, due to create_flag or 1575 * fh_differs being set, then update directory cache attribute, readdir 1576 * and dnlc caches. 1577 */ 1578 if (create_flag || fh_differs) { 1579 dirattr_info_t dinfo, *dinfop; 1580 1581 /* 1582 * Make sure getattr succeeded before using results. 1583 * note: op 7 is getattr(dir) for both flavors of 1584 * open(create). 1585 */ 1586 if (create_flag && res.status == NFS4_OK) { 1587 dinfo.di_time_call = t; 1588 dinfo.di_cred = cr; 1589 dinfo.di_garp = 1590 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1591 dinfop = &dinfo; 1592 } else { 1593 dinfop = NULL; 1594 } 1595 1596 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1597 dinfop); 1598 } 1599 1600 /* 1601 * If the page cache for this file was flushed from actions 1602 * above, it was done asynchronously and if that is true, 1603 * there is a need to wait here for it to complete. This must 1604 * be done outside of start_fop/end_fop. 1605 */ 1606 (void) nfs4_waitfor_purge_complete(vp); 1607 1608 /* 1609 * It is implicit that we are in the open case (create_flag == 0) since 1610 * fh_differs can only be set to a non-zero value in the open case. 1611 */ 1612 if (fh_differs != 0 && vpi != NULL) 1613 VN_RELE(vpi); 1614 1615 /* 1616 * Be sure to set *vpp to the correct value before returning. 1617 */ 1618 *vpp = vp; 1619 1620 skip_update_dircaches: 1621 1622 nfs4args_copen_free(open_args); 1623 if (setgid_flag) { 1624 nfs4args_verify_free(&argop[8]); 1625 nfs4args_setattr_free(&argop[9]); 1626 } 1627 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1628 1629 if (ncr) 1630 crfree(ncr); 1631 kmem_free(argop, argoplist_size); 1632 return (e.error); 1633 } 1634 1635 /* 1636 * Reopen an open instance. cf. nfs4open_otw(). 1637 * 1638 * Errors are returned by the nfs4_error_t parameter. 1639 * - ep->error contains an errno value or zero. 1640 * - if it is zero, ep->stat is set to an NFS status code, if any. 1641 * If the file could not be reopened, but the caller should continue, the 1642 * file is marked dead and no error values are returned. If the caller 1643 * should stop recovering open files and start over, either the ep->error 1644 * value or ep->stat will indicate an error (either something that requires 1645 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1646 * filehandles) may be handled silently by this routine. 1647 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1648 * will be started, so the caller should not do it. 1649 * 1650 * Gotos: 1651 * - kill_file : reopen failed in such a fashion to constitute marking the 1652 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1653 * is for cases where recovery is not possible. 1654 * - failed_reopen : same as above, except that the file has already been 1655 * marked dead, so no need to do it again. 1656 * - bailout : reopen failed but we are able to recover and retry the reopen - 1657 * either within this function immediately or via the calling function. 1658 */ 1659 1660 void 1661 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1662 open_claim_type4 claim, bool_t frc_use_claim_previous, 1663 bool_t is_recov) 1664 { 1665 COMPOUND4args_clnt args; 1666 COMPOUND4res_clnt res; 1667 nfs_argop4 argop[4]; 1668 nfs_resop4 *resop; 1669 OPEN4res *op_res = NULL; 1670 OPEN4cargs *open_args; 1671 GETFH4res *gf_res; 1672 rnode4_t *rp = VTOR4(vp); 1673 int doqueue = 1; 1674 cred_t *cr = NULL, *cred_otw = NULL; 1675 nfs4_open_owner_t *oop = NULL; 1676 seqid4 seqid; 1677 nfs4_ga_res_t *garp; 1678 char fn[MAXNAMELEN]; 1679 nfs4_recov_state_t recov = {NULL, 0}; 1680 nfs4_lost_rqst_t lost_rqst; 1681 mntinfo4_t *mi = VTOMI4(vp); 1682 bool_t abort; 1683 char *failed_msg = ""; 1684 int fh_different; 1685 hrtime_t t; 1686 nfs4_bseqid_entry_t *bsep = NULL; 1687 1688 ASSERT(nfs4_consistent_type(vp)); 1689 ASSERT(nfs_zone() == mi->mi_zone); 1690 1691 nfs4_error_zinit(ep); 1692 1693 /* this is the cred used to find the open owner */ 1694 cr = state_to_cred(osp); 1695 if (cr == NULL) { 1696 failed_msg = "Couldn't reopen: no cred"; 1697 goto kill_file; 1698 } 1699 /* use this cred for OTW operations */ 1700 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1701 1702 top: 1703 nfs4_error_zinit(ep); 1704 1705 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1706 /* File system has been unmounted, quit */ 1707 ep->error = EIO; 1708 failed_msg = "Couldn't reopen: file system has been unmounted"; 1709 goto kill_file; 1710 } 1711 1712 oop = osp->os_open_owner; 1713 1714 ASSERT(oop != NULL); 1715 if (oop == NULL) { /* be defensive in non-DEBUG */ 1716 failed_msg = "can't reopen: no open owner"; 1717 goto kill_file; 1718 } 1719 open_owner_hold(oop); 1720 1721 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1722 if (ep->error) { 1723 open_owner_rele(oop); 1724 oop = NULL; 1725 goto bailout; 1726 } 1727 1728 /* 1729 * If the rnode has a delegation and the delegation has been 1730 * recovered and the server didn't request a recall and the caller 1731 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1732 * recovery) and the rnode hasn't been marked dead, then install 1733 * the delegation stateid in the open stream. Otherwise, proceed 1734 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1735 */ 1736 mutex_enter(&rp->r_statev4_lock); 1737 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1738 !rp->r_deleg_return_pending && 1739 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1740 !rp->r_deleg_needs_recall && 1741 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1742 !(rp->r_flags & R4RECOVERR)) { 1743 mutex_enter(&osp->os_sync_lock); 1744 osp->os_delegation = 1; 1745 osp->open_stateid = rp->r_deleg_stateid; 1746 mutex_exit(&osp->os_sync_lock); 1747 mutex_exit(&rp->r_statev4_lock); 1748 goto bailout; 1749 } 1750 mutex_exit(&rp->r_statev4_lock); 1751 1752 /* 1753 * If the file failed recovery, just quit. This failure need not 1754 * affect other reopens, so don't return an error. 1755 */ 1756 mutex_enter(&rp->r_statelock); 1757 if (rp->r_flags & R4RECOVERR) { 1758 mutex_exit(&rp->r_statelock); 1759 ep->error = 0; 1760 goto failed_reopen; 1761 } 1762 mutex_exit(&rp->r_statelock); 1763 1764 /* 1765 * argop is empty here 1766 * 1767 * PUTFH, OPEN, GETATTR 1768 */ 1769 args.ctag = TAG_REOPEN; 1770 args.array_len = 4; 1771 args.array = argop; 1772 1773 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1774 "nfs4_reopen: file is type %d, id %s", 1775 vp->v_type, rnode4info(VTOR4(vp)))); 1776 1777 argop[0].argop = OP_CPUTFH; 1778 1779 if (claim != CLAIM_PREVIOUS) { 1780 /* 1781 * if this is a file mount then 1782 * use the mntinfo parentfh 1783 */ 1784 argop[0].nfs_argop4_u.opcputfh.sfh = 1785 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1786 VTOSV(vp)->sv_dfh; 1787 } else { 1788 /* putfh fh to reopen */ 1789 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1790 } 1791 1792 argop[1].argop = OP_COPEN; 1793 open_args = &argop[1].nfs_argop4_u.opcopen; 1794 open_args->claim = claim; 1795 1796 if (claim == CLAIM_NULL) { 1797 1798 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1799 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1800 "failed for vp 0x%p for CLAIM_NULL with %m", 1801 (void *)vp); 1802 failed_msg = "Couldn't reopen: vtoname failed for " 1803 "CLAIM_NULL"; 1804 /* nothing allocated yet */ 1805 goto kill_file; 1806 } 1807 1808 open_args->open_claim4_u.cfile = fn; 1809 } else if (claim == CLAIM_PREVIOUS) { 1810 1811 /* 1812 * We have two cases to deal with here: 1813 * 1) We're being called to reopen files in order to satisfy 1814 * a lock operation request which requires us to explicitly 1815 * reopen files which were opened under a delegation. If 1816 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1817 * that case, frc_use_claim_previous is TRUE and we must 1818 * use the rnode's current delegation type (r_deleg_type). 1819 * 2) We're reopening files during some form of recovery. 1820 * In this case, frc_use_claim_previous is FALSE and we 1821 * use the delegation type appropriate for recovery 1822 * (r_deleg_needs_recovery). 1823 */ 1824 mutex_enter(&rp->r_statev4_lock); 1825 open_args->open_claim4_u.delegate_type = 1826 frc_use_claim_previous ? 1827 rp->r_deleg_type : 1828 rp->r_deleg_needs_recovery; 1829 mutex_exit(&rp->r_statev4_lock); 1830 1831 } else if (claim == CLAIM_DELEGATE_CUR) { 1832 1833 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1834 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1835 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1836 "with %m", (void *)vp); 1837 failed_msg = "Couldn't reopen: vtoname failed for " 1838 "CLAIM_DELEGATE_CUR"; 1839 /* nothing allocated yet */ 1840 goto kill_file; 1841 } 1842 1843 mutex_enter(&rp->r_statev4_lock); 1844 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1845 rp->r_deleg_stateid; 1846 mutex_exit(&rp->r_statev4_lock); 1847 1848 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1849 } 1850 open_args->opentype = OPEN4_NOCREATE; 1851 open_args->owner.clientid = mi2clientid(mi); 1852 open_args->owner.owner_len = sizeof (oop->oo_name); 1853 open_args->owner.owner_val = 1854 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1855 bcopy(&oop->oo_name, open_args->owner.owner_val, 1856 open_args->owner.owner_len); 1857 open_args->share_access = 0; 1858 open_args->share_deny = 0; 1859 1860 mutex_enter(&osp->os_sync_lock); 1861 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1862 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1863 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1864 (void *)osp, (void *)rp, osp->os_share_acc_read, 1865 osp->os_share_acc_write, osp->os_open_ref_count, 1866 osp->os_mmap_read, osp->os_mmap_write, claim)); 1867 1868 if (osp->os_share_acc_read || osp->os_mmap_read) 1869 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1870 if (osp->os_share_acc_write || osp->os_mmap_write) 1871 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1872 if (osp->os_share_deny_read) 1873 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1874 if (osp->os_share_deny_write) 1875 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1876 mutex_exit(&osp->os_sync_lock); 1877 1878 seqid = nfs4_get_open_seqid(oop) + 1; 1879 open_args->seqid = seqid; 1880 1881 /* Construct the getfh part of the compound */ 1882 argop[2].argop = OP_GETFH; 1883 1884 /* Construct the getattr part of the compound */ 1885 argop[3].argop = OP_GETATTR; 1886 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1887 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1888 1889 t = gethrtime(); 1890 1891 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1892 1893 if (ep->error) { 1894 if (!is_recov && !frc_use_claim_previous && 1895 (ep->error == EINTR || ep->error == ETIMEDOUT || 1896 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1897 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1898 cred_otw, vp, NULL, open_args); 1899 abort = nfs4_start_recovery(ep, 1900 VTOMI4(vp), vp, NULL, NULL, 1901 lost_rqst.lr_op == OP_OPEN ? 1902 &lost_rqst : NULL, OP_OPEN, NULL); 1903 nfs4args_copen_free(open_args); 1904 goto bailout; 1905 } 1906 1907 nfs4args_copen_free(open_args); 1908 1909 if (ep->error == EACCES && cred_otw != cr) { 1910 crfree(cred_otw); 1911 cred_otw = cr; 1912 crhold(cred_otw); 1913 nfs4_end_open_seqid_sync(oop); 1914 open_owner_rele(oop); 1915 oop = NULL; 1916 goto top; 1917 } 1918 if (ep->error == ETIMEDOUT) 1919 goto bailout; 1920 failed_msg = "Couldn't reopen: rpc error"; 1921 goto kill_file; 1922 } 1923 1924 if (nfs4_need_to_bump_seqid(&res)) 1925 nfs4_set_open_seqid(seqid, oop, args.ctag); 1926 1927 switch (res.status) { 1928 case NFS4_OK: 1929 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1930 mutex_enter(&rp->r_statelock); 1931 rp->r_delay_interval = 0; 1932 mutex_exit(&rp->r_statelock); 1933 } 1934 break; 1935 case NFS4ERR_BAD_SEQID: 1936 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1937 args.ctag, open_args->seqid); 1938 1939 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1940 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1941 NULL, OP_OPEN, bsep); 1942 1943 nfs4args_copen_free(open_args); 1944 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1945 nfs4_end_open_seqid_sync(oop); 1946 open_owner_rele(oop); 1947 oop = NULL; 1948 kmem_free(bsep, sizeof (*bsep)); 1949 1950 goto kill_file; 1951 case NFS4ERR_NO_GRACE: 1952 nfs4args_copen_free(open_args); 1953 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1954 nfs4_end_open_seqid_sync(oop); 1955 open_owner_rele(oop); 1956 oop = NULL; 1957 if (claim == CLAIM_PREVIOUS) { 1958 /* 1959 * Retry as a plain open. We don't need to worry about 1960 * checking the changeinfo: it is acceptable for a 1961 * client to re-open a file and continue processing 1962 * (in the absence of locks). 1963 */ 1964 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1965 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1966 "will retry as CLAIM_NULL")); 1967 claim = CLAIM_NULL; 1968 nfs4_mi_kstat_inc_no_grace(mi); 1969 goto top; 1970 } 1971 failed_msg = 1972 "Couldn't reopen: tried reclaim outside grace period. "; 1973 goto kill_file; 1974 case NFS4ERR_GRACE: 1975 nfs4_set_grace_wait(mi); 1976 nfs4args_copen_free(open_args); 1977 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1978 nfs4_end_open_seqid_sync(oop); 1979 open_owner_rele(oop); 1980 oop = NULL; 1981 ep->error = nfs4_wait_for_grace(mi, &recov); 1982 if (ep->error != 0) 1983 goto bailout; 1984 goto top; 1985 case NFS4ERR_DELAY: 1986 nfs4_set_delay_wait(vp); 1987 nfs4args_copen_free(open_args); 1988 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1989 nfs4_end_open_seqid_sync(oop); 1990 open_owner_rele(oop); 1991 oop = NULL; 1992 ep->error = nfs4_wait_for_delay(vp, &recov); 1993 nfs4_mi_kstat_inc_delay(mi); 1994 if (ep->error != 0) 1995 goto bailout; 1996 goto top; 1997 case NFS4ERR_FHEXPIRED: 1998 /* recover filehandle and retry */ 1999 abort = nfs4_start_recovery(ep, 2000 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL); 2001 nfs4args_copen_free(open_args); 2002 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2003 nfs4_end_open_seqid_sync(oop); 2004 open_owner_rele(oop); 2005 oop = NULL; 2006 if (abort == FALSE) 2007 goto top; 2008 failed_msg = "Couldn't reopen: recovery aborted"; 2009 goto kill_file; 2010 case NFS4ERR_RESOURCE: 2011 case NFS4ERR_STALE_CLIENTID: 2012 case NFS4ERR_WRONGSEC: 2013 case NFS4ERR_EXPIRED: 2014 /* 2015 * Do not mark the file dead and let the calling 2016 * function initiate recovery. 2017 */ 2018 nfs4args_copen_free(open_args); 2019 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2020 nfs4_end_open_seqid_sync(oop); 2021 open_owner_rele(oop); 2022 oop = NULL; 2023 goto bailout; 2024 case NFS4ERR_ACCESS: 2025 if (cred_otw != cr) { 2026 crfree(cred_otw); 2027 cred_otw = cr; 2028 crhold(cred_otw); 2029 nfs4args_copen_free(open_args); 2030 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2031 nfs4_end_open_seqid_sync(oop); 2032 open_owner_rele(oop); 2033 oop = NULL; 2034 goto top; 2035 } 2036 /* fall through */ 2037 default: 2038 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2039 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2040 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2041 rnode4info(VTOR4(vp)))); 2042 failed_msg = "Couldn't reopen: NFSv4 error"; 2043 nfs4args_copen_free(open_args); 2044 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2045 goto kill_file; 2046 } 2047 2048 resop = &res.array[1]; /* open res */ 2049 op_res = &resop->nfs_resop4_u.opopen; 2050 2051 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2052 2053 /* 2054 * Check if the path we reopened really is the same 2055 * file. We could end up in a situation where the file 2056 * was removed and a new file created with the same name. 2057 */ 2058 resop = &res.array[2]; 2059 gf_res = &resop->nfs_resop4_u.opgetfh; 2060 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2061 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2062 if (fh_different) { 2063 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2064 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2065 /* Oops, we don't have the same file */ 2066 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2067 failed_msg = "Couldn't reopen: Persistent " 2068 "file handle changed"; 2069 else 2070 failed_msg = "Couldn't reopen: Volatile " 2071 "(no expire on open) file handle changed"; 2072 2073 nfs4args_copen_free(open_args); 2074 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2075 nfs_rw_exit(&mi->mi_fh_lock); 2076 goto kill_file; 2077 2078 } else { 2079 /* 2080 * We have volatile file handles that don't compare. 2081 * If the fids are the same then we assume that the 2082 * file handle expired but the rnode still refers to 2083 * the same file object. 2084 * 2085 * First check that we have fids or not. 2086 * If we don't we have a dumb server so we will 2087 * just assume every thing is ok for now. 2088 */ 2089 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2090 rp->r_attr.va_mask & AT_NODEID && 2091 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2092 /* 2093 * We have fids, but they don't 2094 * compare. So kill the file. 2095 */ 2096 failed_msg = 2097 "Couldn't reopen: file handle changed" 2098 " due to mismatched fids"; 2099 nfs4args_copen_free(open_args); 2100 (void) xdr_free(xdr_COMPOUND4res_clnt, 2101 (caddr_t)&res); 2102 nfs_rw_exit(&mi->mi_fh_lock); 2103 goto kill_file; 2104 } else { 2105 /* 2106 * We have volatile file handles that refers 2107 * to the same file (at least they have the 2108 * same fid) or we don't have fids so we 2109 * can't tell. :(. We'll be a kind and accepting 2110 * client so we'll update the rnode's file 2111 * handle with the otw handle. 2112 * 2113 * We need to drop mi->mi_fh_lock since 2114 * sh4_update acquires it. Since there is 2115 * only one recovery thread there is no 2116 * race. 2117 */ 2118 nfs_rw_exit(&mi->mi_fh_lock); 2119 sfh4_update(rp->r_fh, &gf_res->object); 2120 } 2121 } 2122 } else { 2123 nfs_rw_exit(&mi->mi_fh_lock); 2124 } 2125 2126 ASSERT(nfs4_consistent_type(vp)); 2127 2128 /* 2129 * If the server wanted an OPEN_CONFIRM but that fails, just start 2130 * over. Presumably if there is a persistent error it will show up 2131 * when we resend the OPEN. 2132 */ 2133 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2134 bool_t retry_open = FALSE; 2135 2136 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2137 cred_otw, is_recov, &retry_open, 2138 oop, FALSE, ep, NULL); 2139 if (ep->error || ep->stat) { 2140 nfs4args_copen_free(open_args); 2141 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2142 nfs4_end_open_seqid_sync(oop); 2143 open_owner_rele(oop); 2144 oop = NULL; 2145 goto top; 2146 } 2147 } 2148 2149 mutex_enter(&osp->os_sync_lock); 2150 osp->open_stateid = op_res->stateid; 2151 osp->os_delegation = 0; 2152 /* 2153 * Need to reset this bitfield for the possible case where we were 2154 * going to OTW CLOSE the file, got a non-recoverable error, and before 2155 * we could retry the CLOSE, OPENed the file again. 2156 */ 2157 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2158 osp->os_final_close = 0; 2159 osp->os_force_close = 0; 2160 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2161 osp->os_dc_openacc = open_args->share_access; 2162 mutex_exit(&osp->os_sync_lock); 2163 2164 nfs4_end_open_seqid_sync(oop); 2165 2166 /* accept delegation, if any */ 2167 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2168 2169 nfs4args_copen_free(open_args); 2170 2171 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2172 2173 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2174 2175 ASSERT(nfs4_consistent_type(vp)); 2176 2177 open_owner_rele(oop); 2178 crfree(cr); 2179 crfree(cred_otw); 2180 return; 2181 2182 kill_file: 2183 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2184 failed_reopen: 2185 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2186 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2187 (void *)osp, (void *)cr, rnode4info(rp))); 2188 mutex_enter(&osp->os_sync_lock); 2189 osp->os_failed_reopen = 1; 2190 mutex_exit(&osp->os_sync_lock); 2191 bailout: 2192 if (oop != NULL) { 2193 nfs4_end_open_seqid_sync(oop); 2194 open_owner_rele(oop); 2195 } 2196 if (cr != NULL) 2197 crfree(cr); 2198 if (cred_otw != NULL) 2199 crfree(cred_otw); 2200 } 2201 2202 /* for . and .. OPENs */ 2203 /* ARGSUSED */ 2204 static int 2205 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2206 { 2207 rnode4_t *rp; 2208 nfs4_ga_res_t gar; 2209 2210 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2211 2212 /* 2213 * If close-to-open consistency checking is turned off or 2214 * if there is no cached data, we can avoid 2215 * the over the wire getattr. Otherwise, force a 2216 * call to the server to get fresh attributes and to 2217 * check caches. This is required for close-to-open 2218 * consistency. 2219 */ 2220 rp = VTOR4(*vpp); 2221 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2222 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2223 return (0); 2224 2225 gar.n4g_va.va_mask = AT_ALL; 2226 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2227 } 2228 2229 /* 2230 * CLOSE a file 2231 */ 2232 /* ARGSUSED */ 2233 static int 2234 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2235 caller_context_t *ct) 2236 { 2237 rnode4_t *rp; 2238 int error = 0; 2239 int r_error = 0; 2240 int n4error = 0; 2241 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2242 2243 /* 2244 * Remove client state for this (lockowner, file) pair. 2245 * Issue otw v4 call to have the server do the same. 2246 */ 2247 2248 rp = VTOR4(vp); 2249 2250 /* 2251 * zone_enter(2) prevents processes from changing zones with NFS files 2252 * open; if we happen to get here from the wrong zone we can't do 2253 * anything over the wire. 2254 */ 2255 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2256 /* 2257 * We could attempt to clean up locks, except we're sure 2258 * that the current process didn't acquire any locks on 2259 * the file: any attempt to lock a file belong to another zone 2260 * will fail, and one can't lock an NFS file and then change 2261 * zones, as that fails too. 2262 * 2263 * Returning an error here is the sane thing to do. A 2264 * subsequent call to VN_RELE() which translates to a 2265 * nfs4_inactive() will clean up state: if the zone of the 2266 * vnode's origin is still alive and kicking, the inactive 2267 * thread will handle the request (from the correct zone), and 2268 * everything (minus the OTW close call) should be OK. If the 2269 * zone is going away nfs4_async_inactive() will throw away 2270 * delegations, open streams and cached pages inline. 2271 */ 2272 return (EIO); 2273 } 2274 2275 /* 2276 * If we are using local locking for this filesystem, then 2277 * release all of the SYSV style record locks. Otherwise, 2278 * we are doing network locking and we need to release all 2279 * of the network locks. All of the locks held by this 2280 * process on this file are released no matter what the 2281 * incoming reference count is. 2282 */ 2283 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2284 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2285 cleanshares(vp, ttoproc(curthread)->p_pid); 2286 } else 2287 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2288 2289 if (e.error) { 2290 struct lm_sysid *lmsid; 2291 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2292 if (lmsid == NULL) { 2293 DTRACE_PROBE2(unknown__sysid, int, e.error, 2294 vnode_t *, vp); 2295 } else { 2296 cleanlocks(vp, ttoproc(curthread)->p_pid, 2297 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2298 } 2299 return (e.error); 2300 } 2301 2302 if (count > 1) 2303 return (0); 2304 2305 /* 2306 * If the file has been `unlinked', then purge the 2307 * DNLC so that this vnode will get reycled quicker 2308 * and the .nfs* file on the server will get removed. 2309 */ 2310 if (rp->r_unldvp != NULL) 2311 dnlc_purge_vp(vp); 2312 2313 /* 2314 * If the file was open for write and there are pages, 2315 * do a synchronous flush and commit of all of the 2316 * dirty and uncommitted pages. 2317 */ 2318 ASSERT(!e.error); 2319 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2320 error = nfs4_putpage_commit(vp, 0, 0, cr); 2321 2322 mutex_enter(&rp->r_statelock); 2323 r_error = rp->r_error; 2324 rp->r_error = 0; 2325 mutex_exit(&rp->r_statelock); 2326 2327 /* 2328 * If this file type is one for which no explicit 'open' was 2329 * done, then bail now (ie. no need for protocol 'close'). If 2330 * there was an error w/the vm subsystem, return _that_ error, 2331 * otherwise, return any errors that may've been reported via 2332 * the rnode. 2333 */ 2334 if (vp->v_type != VREG) 2335 return (error ? error : r_error); 2336 2337 /* 2338 * The sync putpage commit may have failed above, but since 2339 * we're working w/a regular file, we need to do the protocol 2340 * 'close' (nfs4close_one will figure out if an otw close is 2341 * needed or not). Report any errors _after_ doing the protocol 2342 * 'close'. 2343 */ 2344 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2345 n4error = e.error ? e.error : geterrno4(e.stat); 2346 2347 /* 2348 * Error reporting prio (Hi -> Lo) 2349 * 2350 * i) nfs4_putpage_commit (error) 2351 * ii) rnode's (r_error) 2352 * iii) nfs4close_one (n4error) 2353 */ 2354 return (error ? error : (r_error ? r_error : n4error)); 2355 } 2356 2357 /* 2358 * Initialize *lost_rqstp. 2359 */ 2360 2361 static void 2362 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2363 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2364 vnode_t *vp) 2365 { 2366 if (error != ETIMEDOUT && error != EINTR && 2367 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2368 lost_rqstp->lr_op = 0; 2369 return; 2370 } 2371 2372 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2373 "nfs4close_save_lost_rqst: error %d", error)); 2374 2375 lost_rqstp->lr_op = OP_CLOSE; 2376 /* 2377 * The vp is held and rele'd via the recovery code. 2378 * See nfs4_save_lost_rqst. 2379 */ 2380 lost_rqstp->lr_vp = vp; 2381 lost_rqstp->lr_dvp = NULL; 2382 lost_rqstp->lr_oop = oop; 2383 lost_rqstp->lr_osp = osp; 2384 ASSERT(osp != NULL); 2385 ASSERT(mutex_owned(&osp->os_sync_lock)); 2386 osp->os_pending_close = 1; 2387 lost_rqstp->lr_lop = NULL; 2388 lost_rqstp->lr_cr = cr; 2389 lost_rqstp->lr_flk = NULL; 2390 lost_rqstp->lr_putfirst = FALSE; 2391 } 2392 2393 /* 2394 * Assumes you already have the open seqid sync grabbed as well as the 2395 * 'os_sync_lock'. Note: this will release the open seqid sync and 2396 * 'os_sync_lock' if client recovery starts. Calling functions have to 2397 * be prepared to handle this. 2398 * 2399 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2400 * was needed and was started, and that the calling function should retry 2401 * this function; otherwise it is returned as 0. 2402 * 2403 * Errors are returned via the nfs4_error_t parameter. 2404 */ 2405 static void 2406 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2407 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2408 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2409 { 2410 COMPOUND4args_clnt args; 2411 COMPOUND4res_clnt res; 2412 CLOSE4args *close_args; 2413 nfs_resop4 *resop; 2414 nfs_argop4 argop[3]; 2415 int doqueue = 1; 2416 mntinfo4_t *mi; 2417 seqid4 seqid; 2418 vnode_t *vp; 2419 bool_t needrecov = FALSE; 2420 nfs4_lost_rqst_t lost_rqst; 2421 hrtime_t t; 2422 2423 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2424 2425 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2426 2427 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2428 2429 /* Only set this to 1 if recovery is started */ 2430 *recov = 0; 2431 2432 /* do the OTW call to close the file */ 2433 2434 if (close_type == CLOSE_RESEND) 2435 args.ctag = TAG_CLOSE_LOST; 2436 else if (close_type == CLOSE_AFTER_RESEND) 2437 args.ctag = TAG_CLOSE_UNDO; 2438 else 2439 args.ctag = TAG_CLOSE; 2440 2441 args.array_len = 3; 2442 args.array = argop; 2443 2444 vp = RTOV4(rp); 2445 2446 mi = VTOMI4(vp); 2447 2448 /* putfh target fh */ 2449 argop[0].argop = OP_CPUTFH; 2450 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2451 2452 argop[1].argop = OP_GETATTR; 2453 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2454 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2455 2456 argop[2].argop = OP_CLOSE; 2457 close_args = &argop[2].nfs_argop4_u.opclose; 2458 2459 seqid = nfs4_get_open_seqid(oop) + 1; 2460 2461 close_args->seqid = seqid; 2462 close_args->open_stateid = osp->open_stateid; 2463 2464 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2465 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2466 rnode4info(rp))); 2467 2468 t = gethrtime(); 2469 2470 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2471 2472 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2473 nfs4_set_open_seqid(seqid, oop, args.ctag); 2474 } 2475 2476 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2477 if (ep->error && !needrecov) { 2478 /* 2479 * if there was an error and no recovery is to be done 2480 * then then set up the file to flush its cache if 2481 * needed for the next caller. 2482 */ 2483 mutex_enter(&rp->r_statelock); 2484 PURGE_ATTRCACHE4_LOCKED(rp); 2485 rp->r_flags &= ~R4WRITEMODIFIED; 2486 mutex_exit(&rp->r_statelock); 2487 return; 2488 } 2489 2490 if (needrecov) { 2491 bool_t abort; 2492 nfs4_bseqid_entry_t *bsep = NULL; 2493 2494 if (close_type != CLOSE_RESEND) 2495 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2496 osp, cred_otw, vp); 2497 2498 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2499 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2500 0, args.ctag, close_args->seqid); 2501 2502 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2503 "nfs4close_otw: initiating recovery. error %d " 2504 "res.status %d", ep->error, res.status)); 2505 2506 /* 2507 * Drop the 'os_sync_lock' here so we don't hit 2508 * a potential recursive mutex_enter via an 2509 * 'open_stream_hold()'. 2510 */ 2511 mutex_exit(&osp->os_sync_lock); 2512 *have_sync_lockp = 0; 2513 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2514 (close_type != CLOSE_RESEND && 2515 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2516 OP_CLOSE, bsep); 2517 2518 /* drop open seq sync, and let the calling function regrab it */ 2519 nfs4_end_open_seqid_sync(oop); 2520 *did_start_seqid_syncp = 0; 2521 2522 if (bsep) 2523 kmem_free(bsep, sizeof (*bsep)); 2524 /* 2525 * For signals, the caller wants to quit, so don't say to 2526 * retry. For forced unmount, if it's a user thread, it 2527 * wants to quit. If it's a recovery thread, the retry 2528 * will happen higher-up on the call stack. Either way, 2529 * don't say to retry. 2530 */ 2531 if (abort == FALSE && ep->error != EINTR && 2532 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2533 close_type != CLOSE_RESEND && 2534 close_type != CLOSE_AFTER_RESEND) 2535 *recov = 1; 2536 else 2537 *recov = 0; 2538 2539 if (!ep->error) 2540 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2541 return; 2542 } 2543 2544 if (res.status) { 2545 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2546 return; 2547 } 2548 2549 mutex_enter(&rp->r_statev4_lock); 2550 rp->created_v4 = 0; 2551 mutex_exit(&rp->r_statev4_lock); 2552 2553 resop = &res.array[2]; 2554 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2555 osp->os_valid = 0; 2556 2557 /* 2558 * This removes the reference obtained at OPEN; ie, when the 2559 * open stream structure was created. 2560 * 2561 * We don't have to worry about calling 'open_stream_rele' 2562 * since we our currently holding a reference to the open 2563 * stream which means the count cannot go to 0 with this 2564 * decrement. 2565 */ 2566 ASSERT(osp->os_ref_count >= 2); 2567 osp->os_ref_count--; 2568 2569 if (!ep->error) 2570 nfs4_attr_cache(vp, 2571 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2572 t, cred_otw, TRUE, NULL); 2573 2574 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2575 " returning %d", ep->error)); 2576 2577 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2578 } 2579 2580 /* ARGSUSED */ 2581 static int 2582 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2583 caller_context_t *ct) 2584 { 2585 rnode4_t *rp; 2586 u_offset_t off; 2587 offset_t diff; 2588 uint_t on; 2589 uint_t n; 2590 caddr_t base; 2591 uint_t flags; 2592 int error; 2593 mntinfo4_t *mi; 2594 2595 rp = VTOR4(vp); 2596 2597 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2598 2599 if (IS_SHADOW(vp, rp)) 2600 vp = RTOV4(rp); 2601 2602 if (vp->v_type != VREG) 2603 return (EISDIR); 2604 2605 mi = VTOMI4(vp); 2606 2607 if (nfs_zone() != mi->mi_zone) 2608 return (EIO); 2609 2610 if (uiop->uio_resid == 0) 2611 return (0); 2612 2613 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2614 return (EINVAL); 2615 2616 mutex_enter(&rp->r_statelock); 2617 if (rp->r_flags & R4RECOVERRP) 2618 error = (rp->r_error ? rp->r_error : EIO); 2619 else 2620 error = 0; 2621 mutex_exit(&rp->r_statelock); 2622 if (error) 2623 return (error); 2624 2625 /* 2626 * Bypass VM if caching has been disabled (e.g., locking) or if 2627 * using client-side direct I/O and the file is not mmap'd and 2628 * there are no cached pages. 2629 */ 2630 if ((vp->v_flag & VNOCACHE) || 2631 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2632 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2633 size_t resid = 0; 2634 2635 return (nfs4read(vp, NULL, uiop->uio_loffset, 2636 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2637 } 2638 2639 error = 0; 2640 2641 do { 2642 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2643 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2644 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2645 2646 if (error = nfs4_validate_caches(vp, cr)) 2647 break; 2648 2649 mutex_enter(&rp->r_statelock); 2650 while (rp->r_flags & R4INCACHEPURGE) { 2651 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2652 mutex_exit(&rp->r_statelock); 2653 return (EINTR); 2654 } 2655 } 2656 diff = rp->r_size - uiop->uio_loffset; 2657 mutex_exit(&rp->r_statelock); 2658 if (diff <= 0) 2659 break; 2660 if (diff < n) 2661 n = (uint_t)diff; 2662 2663 if (vpm_enable) { 2664 /* 2665 * Copy data. 2666 */ 2667 error = vpm_data_copy(vp, off + on, n, uiop, 2668 1, NULL, 0, S_READ); 2669 } else { 2670 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2671 S_READ); 2672 2673 error = uiomove(base + on, n, UIO_READ, uiop); 2674 } 2675 2676 if (!error) { 2677 /* 2678 * If read a whole block or read to eof, 2679 * won't need this buffer again soon. 2680 */ 2681 mutex_enter(&rp->r_statelock); 2682 if (n + on == MAXBSIZE || 2683 uiop->uio_loffset == rp->r_size) 2684 flags = SM_DONTNEED; 2685 else 2686 flags = 0; 2687 mutex_exit(&rp->r_statelock); 2688 if (vpm_enable) { 2689 error = vpm_sync_pages(vp, off, n, flags); 2690 } else { 2691 error = segmap_release(segkmap, base, flags); 2692 } 2693 } else { 2694 if (vpm_enable) { 2695 (void) vpm_sync_pages(vp, off, n, 0); 2696 } else { 2697 (void) segmap_release(segkmap, base, 0); 2698 } 2699 } 2700 } while (!error && uiop->uio_resid > 0); 2701 2702 return (error); 2703 } 2704 2705 /* ARGSUSED */ 2706 static int 2707 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2708 caller_context_t *ct) 2709 { 2710 rlim64_t limit = uiop->uio_llimit; 2711 rnode4_t *rp; 2712 u_offset_t off; 2713 caddr_t base; 2714 uint_t flags; 2715 int remainder; 2716 size_t n; 2717 int on; 2718 int error; 2719 int resid; 2720 u_offset_t offset; 2721 mntinfo4_t *mi; 2722 uint_t bsize; 2723 2724 rp = VTOR4(vp); 2725 2726 if (IS_SHADOW(vp, rp)) 2727 vp = RTOV4(rp); 2728 2729 if (vp->v_type != VREG) 2730 return (EISDIR); 2731 2732 mi = VTOMI4(vp); 2733 2734 if (nfs_zone() != mi->mi_zone) 2735 return (EIO); 2736 2737 if (uiop->uio_resid == 0) 2738 return (0); 2739 2740 mutex_enter(&rp->r_statelock); 2741 if (rp->r_flags & R4RECOVERRP) 2742 error = (rp->r_error ? rp->r_error : EIO); 2743 else 2744 error = 0; 2745 mutex_exit(&rp->r_statelock); 2746 if (error) 2747 return (error); 2748 2749 if (ioflag & FAPPEND) { 2750 struct vattr va; 2751 2752 /* 2753 * Must serialize if appending. 2754 */ 2755 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2756 nfs_rw_exit(&rp->r_rwlock); 2757 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2758 INTR(vp))) 2759 return (EINTR); 2760 } 2761 2762 va.va_mask = AT_SIZE; 2763 error = nfs4getattr(vp, &va, cr); 2764 if (error) 2765 return (error); 2766 uiop->uio_loffset = va.va_size; 2767 } 2768 2769 offset = uiop->uio_loffset + uiop->uio_resid; 2770 2771 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2772 return (EINVAL); 2773 2774 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2775 limit = MAXOFFSET_T; 2776 2777 /* 2778 * Check to make sure that the process will not exceed 2779 * its limit on file size. It is okay to write up to 2780 * the limit, but not beyond. Thus, the write which 2781 * reaches the limit will be short and the next write 2782 * will return an error. 2783 */ 2784 remainder = 0; 2785 if (offset > uiop->uio_llimit) { 2786 remainder = offset - uiop->uio_llimit; 2787 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2788 if (uiop->uio_resid <= 0) { 2789 proc_t *p = ttoproc(curthread); 2790 2791 uiop->uio_resid += remainder; 2792 mutex_enter(&p->p_lock); 2793 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2794 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2795 mutex_exit(&p->p_lock); 2796 return (EFBIG); 2797 } 2798 } 2799 2800 /* update the change attribute, if we have a write delegation */ 2801 2802 mutex_enter(&rp->r_statev4_lock); 2803 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2804 rp->r_deleg_change++; 2805 2806 mutex_exit(&rp->r_statev4_lock); 2807 2808 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2809 return (EINTR); 2810 2811 /* 2812 * Bypass VM if caching has been disabled (e.g., locking) or if 2813 * using client-side direct I/O and the file is not mmap'd and 2814 * there are no cached pages. 2815 */ 2816 if ((vp->v_flag & VNOCACHE) || 2817 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2818 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2819 size_t bufsize; 2820 int count; 2821 u_offset_t org_offset; 2822 stable_how4 stab_comm; 2823 nfs4_fwrite: 2824 if (rp->r_flags & R4STALE) { 2825 resid = uiop->uio_resid; 2826 offset = uiop->uio_loffset; 2827 error = rp->r_error; 2828 goto bottom; 2829 } 2830 2831 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2832 base = kmem_alloc(bufsize, KM_SLEEP); 2833 do { 2834 if (ioflag & FDSYNC) 2835 stab_comm = DATA_SYNC4; 2836 else 2837 stab_comm = FILE_SYNC4; 2838 resid = uiop->uio_resid; 2839 offset = uiop->uio_loffset; 2840 count = MIN(uiop->uio_resid, bufsize); 2841 org_offset = uiop->uio_loffset; 2842 error = uiomove(base, count, UIO_WRITE, uiop); 2843 if (!error) { 2844 error = nfs4write(vp, base, org_offset, 2845 count, cr, &stab_comm); 2846 if (!error) { 2847 mutex_enter(&rp->r_statelock); 2848 if (rp->r_size < uiop->uio_loffset) 2849 rp->r_size = uiop->uio_loffset; 2850 mutex_exit(&rp->r_statelock); 2851 } 2852 } 2853 } while (!error && uiop->uio_resid > 0); 2854 kmem_free(base, bufsize); 2855 goto bottom; 2856 } 2857 2858 bsize = vp->v_vfsp->vfs_bsize; 2859 2860 do { 2861 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2862 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2863 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2864 2865 resid = uiop->uio_resid; 2866 offset = uiop->uio_loffset; 2867 2868 if (rp->r_flags & R4STALE) { 2869 error = rp->r_error; 2870 break; 2871 } 2872 2873 /* 2874 * Don't create dirty pages faster than they 2875 * can be cleaned so that the system doesn't 2876 * get imbalanced. If the async queue is 2877 * maxed out, then wait for it to drain before 2878 * creating more dirty pages. Also, wait for 2879 * any threads doing pagewalks in the vop_getattr 2880 * entry points so that they don't block for 2881 * long periods. 2882 */ 2883 mutex_enter(&rp->r_statelock); 2884 while ((mi->mi_max_threads != 0 && 2885 rp->r_awcount > 2 * mi->mi_max_threads) || 2886 rp->r_gcount > 0) 2887 cv_wait(&rp->r_cv, &rp->r_statelock); 2888 mutex_exit(&rp->r_statelock); 2889 2890 if (vpm_enable) { 2891 /* 2892 * It will use kpm mappings, so no need to 2893 * pass an address. 2894 */ 2895 error = writerp4(rp, NULL, n, uiop, 0); 2896 } else { 2897 if (segmap_kpm) { 2898 int pon = uiop->uio_loffset & PAGEOFFSET; 2899 size_t pn = MIN(PAGESIZE - pon, 2900 uiop->uio_resid); 2901 int pagecreate; 2902 2903 mutex_enter(&rp->r_statelock); 2904 pagecreate = (pon == 0) && (pn == PAGESIZE || 2905 uiop->uio_loffset + pn >= rp->r_size); 2906 mutex_exit(&rp->r_statelock); 2907 2908 base = segmap_getmapflt(segkmap, vp, off + on, 2909 pn, !pagecreate, S_WRITE); 2910 2911 error = writerp4(rp, base + pon, n, uiop, 2912 pagecreate); 2913 2914 } else { 2915 base = segmap_getmapflt(segkmap, vp, off + on, 2916 n, 0, S_READ); 2917 error = writerp4(rp, base + on, n, uiop, 0); 2918 } 2919 } 2920 2921 if (!error) { 2922 if (mi->mi_flags & MI4_NOAC) 2923 flags = SM_WRITE; 2924 else if ((uiop->uio_loffset % bsize) == 0 || 2925 IS_SWAPVP(vp)) { 2926 /* 2927 * Have written a whole block. 2928 * Start an asynchronous write 2929 * and mark the buffer to 2930 * indicate that it won't be 2931 * needed again soon. 2932 */ 2933 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2934 } else 2935 flags = 0; 2936 if ((ioflag & (FSYNC|FDSYNC)) || 2937 (rp->r_flags & R4OUTOFSPACE)) { 2938 flags &= ~SM_ASYNC; 2939 flags |= SM_WRITE; 2940 } 2941 if (vpm_enable) { 2942 error = vpm_sync_pages(vp, off, n, flags); 2943 } else { 2944 error = segmap_release(segkmap, base, flags); 2945 } 2946 } else { 2947 if (vpm_enable) { 2948 (void) vpm_sync_pages(vp, off, n, 0); 2949 } else { 2950 (void) segmap_release(segkmap, base, 0); 2951 } 2952 /* 2953 * In the event that we got an access error while 2954 * faulting in a page for a write-only file just 2955 * force a write. 2956 */ 2957 if (error == EACCES) 2958 goto nfs4_fwrite; 2959 } 2960 } while (!error && uiop->uio_resid > 0); 2961 2962 bottom: 2963 if (error) { 2964 uiop->uio_resid = resid + remainder; 2965 uiop->uio_loffset = offset; 2966 } else { 2967 uiop->uio_resid += remainder; 2968 2969 mutex_enter(&rp->r_statev4_lock); 2970 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 2971 gethrestime(&rp->r_attr.va_mtime); 2972 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 2973 } 2974 mutex_exit(&rp->r_statev4_lock); 2975 } 2976 2977 nfs_rw_exit(&rp->r_lkserlock); 2978 2979 return (error); 2980 } 2981 2982 /* 2983 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2984 */ 2985 static int 2986 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 2987 int flags, cred_t *cr) 2988 { 2989 struct buf *bp; 2990 int error; 2991 page_t *savepp; 2992 uchar_t fsdata; 2993 stable_how4 stab_comm; 2994 2995 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 2996 bp = pageio_setup(pp, len, vp, flags); 2997 ASSERT(bp != NULL); 2998 2999 /* 3000 * pageio_setup should have set b_addr to 0. This 3001 * is correct since we want to do I/O on a page 3002 * boundary. bp_mapin will use this addr to calculate 3003 * an offset, and then set b_addr to the kernel virtual 3004 * address it allocated for us. 3005 */ 3006 ASSERT(bp->b_un.b_addr == 0); 3007 3008 bp->b_edev = 0; 3009 bp->b_dev = 0; 3010 bp->b_lblkno = lbtodb(off); 3011 bp->b_file = vp; 3012 bp->b_offset = (offset_t)off; 3013 bp_mapin(bp); 3014 3015 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3016 freemem > desfree) 3017 stab_comm = UNSTABLE4; 3018 else 3019 stab_comm = FILE_SYNC4; 3020 3021 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3022 3023 bp_mapout(bp); 3024 pageio_done(bp); 3025 3026 if (stab_comm == UNSTABLE4) 3027 fsdata = C_DELAYCOMMIT; 3028 else 3029 fsdata = C_NOCOMMIT; 3030 3031 savepp = pp; 3032 do { 3033 pp->p_fsdata = fsdata; 3034 } while ((pp = pp->p_next) != savepp); 3035 3036 return (error); 3037 } 3038 3039 /* 3040 */ 3041 static int 3042 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3043 { 3044 nfs4_open_owner_t *oop; 3045 nfs4_open_stream_t *osp; 3046 rnode4_t *rp = VTOR4(vp); 3047 mntinfo4_t *mi = VTOMI4(vp); 3048 int reopen_needed; 3049 3050 ASSERT(nfs_zone() == mi->mi_zone); 3051 3052 3053 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3054 if (!oop) 3055 return (EIO); 3056 3057 /* returns with 'os_sync_lock' held */ 3058 osp = find_open_stream(oop, rp); 3059 if (!osp) { 3060 open_owner_rele(oop); 3061 return (EIO); 3062 } 3063 3064 if (osp->os_failed_reopen) { 3065 mutex_exit(&osp->os_sync_lock); 3066 open_stream_rele(osp, rp); 3067 open_owner_rele(oop); 3068 return (EIO); 3069 } 3070 3071 /* 3072 * Determine whether a reopen is needed. If this 3073 * is a delegation open stream, then the os_delegation bit 3074 * should be set. 3075 */ 3076 3077 reopen_needed = osp->os_delegation; 3078 3079 mutex_exit(&osp->os_sync_lock); 3080 open_owner_rele(oop); 3081 3082 if (reopen_needed) { 3083 nfs4_error_zinit(ep); 3084 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3085 mutex_enter(&osp->os_sync_lock); 3086 if (ep->error || ep->stat || osp->os_failed_reopen) { 3087 mutex_exit(&osp->os_sync_lock); 3088 open_stream_rele(osp, rp); 3089 return (EIO); 3090 } 3091 mutex_exit(&osp->os_sync_lock); 3092 } 3093 open_stream_rele(osp, rp); 3094 3095 return (0); 3096 } 3097 3098 /* 3099 * Write to file. Writes to remote server in largest size 3100 * chunks that the server can handle. Write is synchronous. 3101 */ 3102 static int 3103 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3104 stable_how4 *stab_comm) 3105 { 3106 mntinfo4_t *mi; 3107 COMPOUND4args_clnt args; 3108 COMPOUND4res_clnt res; 3109 WRITE4args *wargs; 3110 WRITE4res *wres; 3111 nfs_argop4 argop[2]; 3112 nfs_resop4 *resop; 3113 int tsize; 3114 stable_how4 stable; 3115 rnode4_t *rp; 3116 int doqueue = 1; 3117 bool_t needrecov; 3118 nfs4_recov_state_t recov_state; 3119 nfs4_stateid_types_t sid_types; 3120 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3121 int recov; 3122 3123 rp = VTOR4(vp); 3124 mi = VTOMI4(vp); 3125 3126 ASSERT(nfs_zone() == mi->mi_zone); 3127 3128 stable = *stab_comm; 3129 *stab_comm = FILE_SYNC4; 3130 3131 needrecov = FALSE; 3132 recov_state.rs_flags = 0; 3133 recov_state.rs_num_retry_despite_err = 0; 3134 nfs4_init_stateid_types(&sid_types); 3135 3136 /* Is curthread the recovery thread? */ 3137 mutex_enter(&mi->mi_lock); 3138 recov = (mi->mi_recovthread == curthread); 3139 mutex_exit(&mi->mi_lock); 3140 3141 recov_retry: 3142 args.ctag = TAG_WRITE; 3143 args.array_len = 2; 3144 args.array = argop; 3145 3146 if (!recov) { 3147 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3148 &recov_state, NULL); 3149 if (e.error) 3150 return (e.error); 3151 } 3152 3153 /* 0. putfh target fh */ 3154 argop[0].argop = OP_CPUTFH; 3155 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3156 3157 /* 1. write */ 3158 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3159 3160 do { 3161 3162 wargs->offset = (offset4)offset; 3163 wargs->data_val = base; 3164 3165 if (mi->mi_io_kstats) { 3166 mutex_enter(&mi->mi_lock); 3167 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3168 mutex_exit(&mi->mi_lock); 3169 } 3170 3171 if ((vp->v_flag & VNOCACHE) || 3172 (rp->r_flags & R4DIRECTIO) || 3173 (mi->mi_flags & MI4_DIRECTIO)) 3174 tsize = MIN(mi->mi_stsize, count); 3175 else 3176 tsize = MIN(mi->mi_curwrite, count); 3177 wargs->data_len = (uint_t)tsize; 3178 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3179 3180 if (mi->mi_io_kstats) { 3181 mutex_enter(&mi->mi_lock); 3182 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3183 mutex_exit(&mi->mi_lock); 3184 } 3185 3186 if (!recov) { 3187 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3188 if (e.error && !needrecov) { 3189 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3190 &recov_state, needrecov); 3191 return (e.error); 3192 } 3193 3194 3195 /* 3196 * Do handling of OLD_STATEID outside 3197 * of the normal recovery framework. 3198 * 3199 * If write receives a BAD stateid error while using a 3200 * delegation stateid, retry using the open stateid 3201 * (if it exists). If it doesn't have an open stateid, 3202 * reopen the * file first, then retry. 3203 */ 3204 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3205 sid_types.cur_sid_type != SPEC_SID) { 3206 nfs4_save_stateid(&wargs->stateid, &sid_types); 3207 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3208 &recov_state, needrecov); 3209 (void) xdr_free(xdr_COMPOUND4res_clnt, 3210 (caddr_t)&res); 3211 goto recov_retry; 3212 } else if (e.error == 0 && 3213 res.status == NFS4ERR_BAD_STATEID && 3214 sid_types.cur_sid_type == DEL_SID) { 3215 nfs4_save_stateid(&wargs->stateid, &sid_types); 3216 mutex_enter(&rp->r_statev4_lock); 3217 rp->r_deleg_return_pending = TRUE; 3218 mutex_exit(&rp->r_statev4_lock); 3219 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3220 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3221 &recov_state, needrecov); 3222 (void) xdr_free(xdr_COMPOUND4res_clnt, 3223 (caddr_t)&res); 3224 return (EIO); 3225 } 3226 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3227 &recov_state, needrecov); 3228 /* hold needed for nfs4delegreturn_thread */ 3229 VN_HOLD(vp); 3230 nfs4delegreturn_async(rp, 3231 (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3232 NFS4_DR_DISCARD), FALSE); 3233 (void) xdr_free(xdr_COMPOUND4res_clnt, 3234 (caddr_t)&res); 3235 goto recov_retry; 3236 } 3237 3238 if (needrecov) { 3239 bool_t abort; 3240 3241 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3242 "nfs4write: client got error %d, " 3243 "res.status %d, so start recovery", 3244 e.error, res.status)); 3245 3246 abort = nfs4_start_recovery(&e, 3247 VTOMI4(vp), vp, NULL, &wargs->stateid, 3248 NULL, OP_WRITE, NULL); 3249 if (!e.error) { 3250 e.error = geterrno4(res.status); 3251 (void) xdr_free(xdr_COMPOUND4res_clnt, 3252 (caddr_t)&res); 3253 } 3254 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3255 &recov_state, needrecov); 3256 if (abort == FALSE) 3257 goto recov_retry; 3258 return (e.error); 3259 } 3260 3261 if (res.status) { 3262 e.error = geterrno4(res.status); 3263 (void) xdr_free(xdr_COMPOUND4res_clnt, 3264 (caddr_t)&res); 3265 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3266 &recov_state, needrecov); 3267 return (e.error); 3268 } 3269 3270 resop = &res.array[1]; /* write res */ 3271 wres = &resop->nfs_resop4_u.opwrite; 3272 3273 if ((int)wres->count > tsize) { 3274 (void) xdr_free(xdr_COMPOUND4res_clnt, 3275 (caddr_t)&res); 3276 3277 zcmn_err(getzoneid(), CE_WARN, 3278 "nfs4write: server wrote %u, requested " 3279 "was %u", (int)wres->count, tsize); 3280 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3281 &recov_state, needrecov); 3282 return (EIO); 3283 } 3284 if (wres->committed == UNSTABLE4) { 3285 *stab_comm = UNSTABLE4; 3286 if (wargs->stable == DATA_SYNC4 || 3287 wargs->stable == FILE_SYNC4) { 3288 (void) xdr_free(xdr_COMPOUND4res_clnt, 3289 (caddr_t)&res); 3290 zcmn_err(getzoneid(), CE_WARN, 3291 "nfs4write: server %s did not " 3292 "commit to stable storage", 3293 rp->r_server->sv_hostname); 3294 nfs4_end_fop(VTOMI4(vp), vp, NULL, 3295 OH_WRITE, &recov_state, needrecov); 3296 return (EIO); 3297 } 3298 } 3299 } 3300 3301 tsize = (int)wres->count; 3302 count -= tsize; 3303 base += tsize; 3304 offset += tsize; 3305 if (mi->mi_io_kstats) { 3306 mutex_enter(&mi->mi_lock); 3307 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3308 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3309 tsize; 3310 mutex_exit(&mi->mi_lock); 3311 } 3312 lwp_stat_update(LWP_STAT_OUBLK, 1); 3313 mutex_enter(&rp->r_statelock); 3314 if (rp->r_flags & R4HAVEVERF) { 3315 if (rp->r_writeverf != wres->writeverf) { 3316 nfs4_set_mod(vp); 3317 rp->r_writeverf = wres->writeverf; 3318 } 3319 } else { 3320 rp->r_writeverf = wres->writeverf; 3321 rp->r_flags |= R4HAVEVERF; 3322 } 3323 PURGE_ATTRCACHE4_LOCKED(rp); 3324 rp->r_flags |= R4WRITEMODIFIED; 3325 gethrestime(&rp->r_attr.va_mtime); 3326 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3327 mutex_exit(&rp->r_statelock); 3328 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3329 } while (count); 3330 3331 if (!recov) 3332 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, 3333 needrecov); 3334 3335 return (e.error); 3336 } 3337 3338 /* 3339 * Read from a file. Reads data in largest chunks our interface can handle. 3340 */ 3341 static int 3342 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3343 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3344 { 3345 mntinfo4_t *mi; 3346 COMPOUND4args_clnt args; 3347 COMPOUND4res_clnt res; 3348 READ4args *rargs; 3349 nfs_argop4 argop[2]; 3350 int tsize; 3351 int doqueue; 3352 rnode4_t *rp; 3353 int data_len; 3354 bool_t is_eof; 3355 bool_t needrecov = FALSE; 3356 nfs4_recov_state_t recov_state; 3357 nfs4_stateid_types_t sid_types; 3358 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3359 3360 rp = VTOR4(vp); 3361 mi = VTOMI4(vp); 3362 doqueue = 1; 3363 3364 ASSERT(nfs_zone() == mi->mi_zone); 3365 3366 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3367 3368 args.array_len = 2; 3369 args.array = argop; 3370 3371 nfs4_init_stateid_types(&sid_types); 3372 3373 recov_state.rs_flags = 0; 3374 recov_state.rs_num_retry_despite_err = 0; 3375 3376 recov_retry: 3377 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3378 &recov_state, NULL); 3379 if (e.error) 3380 return (e.error); 3381 3382 /* putfh target fh */ 3383 argop[0].argop = OP_CPUTFH; 3384 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3385 3386 /* read */ 3387 argop[1].argop = OP_READ; 3388 rargs = &argop[1].nfs_argop4_u.opread; 3389 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3390 OP_READ, &sid_types, async); 3391 3392 do { 3393 if (mi->mi_io_kstats) { 3394 mutex_enter(&mi->mi_lock); 3395 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3396 mutex_exit(&mi->mi_lock); 3397 } 3398 3399 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3400 "nfs4read: %s call, rp %s", 3401 needrecov ? "recov" : "first", 3402 rnode4info(rp))); 3403 3404 if ((vp->v_flag & VNOCACHE) || 3405 (rp->r_flags & R4DIRECTIO) || 3406 (mi->mi_flags & MI4_DIRECTIO)) 3407 tsize = MIN(mi->mi_tsize, count); 3408 else 3409 tsize = MIN(mi->mi_curread, count); 3410 rargs->offset = (offset4)offset; 3411 rargs->count = (count4)tsize; 3412 rargs->res_data_val_alt = NULL; 3413 rargs->res_mblk = NULL; 3414 rargs->res_uiop = NULL; 3415 rargs->res_maxsize = 0; 3416 if (uiop) 3417 rargs->res_uiop = uiop; 3418 else 3419 rargs->res_data_val_alt = base; 3420 rargs->res_maxsize = tsize; 3421 3422 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3423 #ifdef DEBUG 3424 if (nfs4read_error_inject) { 3425 res.status = nfs4read_error_inject; 3426 nfs4read_error_inject = 0; 3427 } 3428 #endif 3429 3430 if (mi->mi_io_kstats) { 3431 mutex_enter(&mi->mi_lock); 3432 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3433 mutex_exit(&mi->mi_lock); 3434 } 3435 3436 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3437 if (e.error != 0 && !needrecov) { 3438 nfs4_end_fop(mi, vp, NULL, OH_READ, 3439 &recov_state, needrecov); 3440 return (e.error); 3441 } 3442 3443 /* 3444 * Do proper retry for OLD and BAD stateid errors outside 3445 * of the normal recovery framework. There are two differences 3446 * between async and sync reads. The first is that we allow 3447 * retry on BAD_STATEID for async reads, but not sync reads. 3448 * The second is that we mark the file dead for a failed 3449 * attempt with a special stateid for sync reads, but just 3450 * return EIO for async reads. 3451 * 3452 * If a sync read receives a BAD stateid error while using a 3453 * delegation stateid, retry using the open stateid (if it 3454 * exists). If it doesn't have an open stateid, reopen the 3455 * file first, then retry. 3456 */ 3457 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3458 res.status == NFS4ERR_BAD_STATEID) && async) { 3459 nfs4_end_fop(mi, vp, NULL, OH_READ, 3460 &recov_state, needrecov); 3461 if (sid_types.cur_sid_type == SPEC_SID) { 3462 (void) xdr_free(xdr_COMPOUND4res_clnt, 3463 (caddr_t)&res); 3464 return (EIO); 3465 } 3466 nfs4_save_stateid(&rargs->stateid, &sid_types); 3467 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3468 goto recov_retry; 3469 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3470 !async && sid_types.cur_sid_type != SPEC_SID) { 3471 nfs4_save_stateid(&rargs->stateid, &sid_types); 3472 nfs4_end_fop(mi, vp, NULL, OH_READ, 3473 &recov_state, needrecov); 3474 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3475 goto recov_retry; 3476 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3477 sid_types.cur_sid_type == DEL_SID) { 3478 nfs4_save_stateid(&rargs->stateid, &sid_types); 3479 mutex_enter(&rp->r_statev4_lock); 3480 rp->r_deleg_return_pending = TRUE; 3481 mutex_exit(&rp->r_statev4_lock); 3482 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3483 nfs4_end_fop(mi, vp, NULL, OH_READ, 3484 &recov_state, needrecov); 3485 (void) xdr_free(xdr_COMPOUND4res_clnt, 3486 (caddr_t)&res); 3487 return (EIO); 3488 } 3489 nfs4_end_fop(mi, vp, NULL, OH_READ, 3490 &recov_state, needrecov); 3491 /* hold needed for nfs4delegreturn_thread */ 3492 VN_HOLD(vp); 3493 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3494 NFS4_DR_DISCARD), FALSE); 3495 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3496 goto recov_retry; 3497 } 3498 if (needrecov) { 3499 bool_t abort; 3500 3501 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3502 "nfs4read: initiating recovery\n")); 3503 3504 abort = nfs4_start_recovery(&e, 3505 mi, vp, NULL, &rargs->stateid, 3506 NULL, OP_READ, NULL); 3507 nfs4_end_fop(mi, vp, NULL, OH_READ, 3508 &recov_state, needrecov); 3509 /* 3510 * Do not retry if we got OLD_STATEID using a special 3511 * stateid. This avoids looping with a broken server. 3512 */ 3513 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3514 sid_types.cur_sid_type == SPEC_SID) 3515 abort = TRUE; 3516 3517 if (abort == FALSE) { 3518 /* 3519 * Need to retry all possible stateids in 3520 * case the recovery error wasn't stateid 3521 * related or the stateids have become 3522 * stale (server reboot). 3523 */ 3524 nfs4_init_stateid_types(&sid_types); 3525 (void) xdr_free(xdr_COMPOUND4res_clnt, 3526 (caddr_t)&res); 3527 goto recov_retry; 3528 } 3529 3530 if (!e.error) { 3531 e.error = geterrno4(res.status); 3532 (void) xdr_free(xdr_COMPOUND4res_clnt, 3533 (caddr_t)&res); 3534 } 3535 return (e.error); 3536 } 3537 3538 if (res.status) { 3539 e.error = geterrno4(res.status); 3540 nfs4_end_fop(mi, vp, NULL, OH_READ, 3541 &recov_state, needrecov); 3542 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3543 return (e.error); 3544 } 3545 3546 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3547 count -= data_len; 3548 if (base) 3549 base += data_len; 3550 offset += data_len; 3551 if (mi->mi_io_kstats) { 3552 mutex_enter(&mi->mi_lock); 3553 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3554 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3555 mutex_exit(&mi->mi_lock); 3556 } 3557 lwp_stat_update(LWP_STAT_INBLK, 1); 3558 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3559 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3560 3561 } while (count && !is_eof); 3562 3563 *residp = count; 3564 3565 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3566 3567 return (e.error); 3568 } 3569 3570 /* ARGSUSED */ 3571 static int 3572 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3573 caller_context_t *ct) 3574 { 3575 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3576 return (EIO); 3577 switch (cmd) { 3578 case _FIODIRECTIO: 3579 return (nfs4_directio(vp, (int)arg, cr)); 3580 default: 3581 return (ENOTTY); 3582 } 3583 } 3584 3585 /* ARGSUSED */ 3586 int 3587 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3588 caller_context_t *ct) 3589 { 3590 int error; 3591 rnode4_t *rp = VTOR4(vp); 3592 3593 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3594 return (EIO); 3595 /* 3596 * If it has been specified that the return value will 3597 * just be used as a hint, and we are only being asked 3598 * for size, fsid or rdevid, then return the client's 3599 * notion of these values without checking to make sure 3600 * that the attribute cache is up to date. 3601 * The whole point is to avoid an over the wire GETATTR 3602 * call. 3603 */ 3604 if (flags & ATTR_HINT) { 3605 if (vap->va_mask == 3606 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 3607 mutex_enter(&rp->r_statelock); 3608 if (vap->va_mask | AT_SIZE) 3609 vap->va_size = rp->r_size; 3610 if (vap->va_mask | AT_FSID) 3611 vap->va_fsid = rp->r_attr.va_fsid; 3612 if (vap->va_mask | AT_RDEV) 3613 vap->va_rdev = rp->r_attr.va_rdev; 3614 mutex_exit(&rp->r_statelock); 3615 return (0); 3616 } 3617 } 3618 3619 /* 3620 * Only need to flush pages if asking for the mtime 3621 * and if there any dirty pages or any outstanding 3622 * asynchronous (write) requests for this file. 3623 */ 3624 if (vap->va_mask & AT_MTIME) { 3625 rp = VTOR4(vp); 3626 if (nfs4_has_pages(vp)) { 3627 mutex_enter(&rp->r_statev4_lock); 3628 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3629 mutex_exit(&rp->r_statev4_lock); 3630 if (rp->r_flags & R4DIRTY || 3631 rp->r_awcount > 0) { 3632 mutex_enter(&rp->r_statelock); 3633 rp->r_gcount++; 3634 mutex_exit(&rp->r_statelock); 3635 error = 3636 nfs4_putpage(vp, (u_offset_t)0, 3637 0, 0, cr, NULL); 3638 mutex_enter(&rp->r_statelock); 3639 if (error && (error == ENOSPC || 3640 error == EDQUOT)) { 3641 if (!rp->r_error) 3642 rp->r_error = error; 3643 } 3644 if (--rp->r_gcount == 0) 3645 cv_broadcast(&rp->r_cv); 3646 mutex_exit(&rp->r_statelock); 3647 } 3648 } else { 3649 mutex_exit(&rp->r_statev4_lock); 3650 } 3651 } 3652 } 3653 return (nfs4getattr(vp, vap, cr)); 3654 } 3655 3656 int 3657 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3658 { 3659 /* 3660 * If these are the only two bits cleared 3661 * on the server then return 0 (OK) else 3662 * return 1 (BAD). 3663 */ 3664 on_client &= ~(S_ISUID|S_ISGID); 3665 if (on_client == from_server) 3666 return (0); 3667 else 3668 return (1); 3669 } 3670 3671 /*ARGSUSED4*/ 3672 static int 3673 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3674 caller_context_t *ct) 3675 { 3676 if (vap->va_mask & AT_NOSET) 3677 return (EINVAL); 3678 3679 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3680 return (EIO); 3681 3682 /* 3683 * Don't call secpolicy_vnode_setattr, the client cannot 3684 * use its cached attributes to make security decisions 3685 * as the server may be faking mode bits or mapping uid/gid. 3686 * Always just let the server to the checking. 3687 * If we provide the ability to remove basic priviledges 3688 * to setattr (e.g. basic without chmod) then we will 3689 * need to add a check here before calling the server. 3690 */ 3691 3692 return (nfs4setattr(vp, vap, flags, cr, NULL)); 3693 } 3694 3695 /* 3696 * To replace the "guarded" version 3 setattr, we use two types of compound 3697 * setattr requests: 3698 * 1. The "normal" setattr, used when the size of the file isn't being 3699 * changed - { Putfh <fh>; Setattr; Getattr }/ 3700 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3701 * with only ctime as the argument. If the server ctime differs from 3702 * what is cached on the client, the verify will fail, but we would 3703 * already have the ctime from the preceding getattr, so just set it 3704 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3705 * Setattr; Getattr }. 3706 * 3707 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3708 * this setattr and NULL if they are not. 3709 */ 3710 static int 3711 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3712 vsecattr_t *vsap) 3713 { 3714 COMPOUND4args_clnt args; 3715 COMPOUND4res_clnt res, *resp = NULL; 3716 nfs4_ga_res_t *garp = NULL; 3717 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3718 nfs_argop4 argop[5]; 3719 int verify_argop = -1; 3720 int setattr_argop = 1; 3721 nfs_resop4 *resop; 3722 vattr_t va; 3723 rnode4_t *rp; 3724 int doqueue = 1; 3725 uint_t mask = vap->va_mask; 3726 mode_t omode; 3727 vsecattr_t *vsp; 3728 timestruc_t ctime; 3729 bool_t needrecov = FALSE; 3730 nfs4_recov_state_t recov_state; 3731 nfs4_stateid_types_t sid_types; 3732 stateid4 stateid; 3733 hrtime_t t; 3734 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3735 servinfo4_t *svp; 3736 bitmap4 supp_attrs; 3737 3738 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3739 rp = VTOR4(vp); 3740 nfs4_init_stateid_types(&sid_types); 3741 3742 /* 3743 * Only need to flush pages if there are any pages and 3744 * if the file is marked as dirty in some fashion. The 3745 * file must be flushed so that we can accurately 3746 * determine the size of the file and the cached data 3747 * after the SETATTR returns. A file is considered to 3748 * be dirty if it is either marked with R4DIRTY, has 3749 * outstanding i/o's active, or is mmap'd. In this 3750 * last case, we can't tell whether there are dirty 3751 * pages, so we flush just to be sure. 3752 */ 3753 if (nfs4_has_pages(vp) && 3754 ((rp->r_flags & R4DIRTY) || 3755 rp->r_count > 0 || 3756 rp->r_mapcnt > 0)) { 3757 ASSERT(vp->v_type != VCHR); 3758 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3759 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3760 mutex_enter(&rp->r_statelock); 3761 if (!rp->r_error) 3762 rp->r_error = e.error; 3763 mutex_exit(&rp->r_statelock); 3764 } 3765 } 3766 3767 if (mask & AT_SIZE) { 3768 /* 3769 * Verification setattr compound for non-deleg AT_SIZE: 3770 * { Putfh; Getattr; Verify; Setattr; Getattr } 3771 * Set ctime local here (outside the do_again label) 3772 * so that subsequent retries (after failed VERIFY) 3773 * will use ctime from GETATTR results (from failed 3774 * verify compound) as VERIFY arg. 3775 * If file has delegation, then VERIFY(time_metadata) 3776 * is of little added value, so don't bother. 3777 */ 3778 mutex_enter(&rp->r_statev4_lock); 3779 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3780 rp->r_deleg_return_pending) { 3781 numops = 5; 3782 ctime = rp->r_attr.va_ctime; 3783 } 3784 mutex_exit(&rp->r_statev4_lock); 3785 } 3786 3787 recov_state.rs_flags = 0; 3788 recov_state.rs_num_retry_despite_err = 0; 3789 3790 args.ctag = TAG_SETATTR; 3791 do_again: 3792 recov_retry: 3793 setattr_argop = numops - 2; 3794 3795 args.array = argop; 3796 args.array_len = numops; 3797 3798 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3799 if (e.error) 3800 return (e.error); 3801 3802 3803 /* putfh target fh */ 3804 argop[0].argop = OP_CPUTFH; 3805 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3806 3807 if (numops == 5) { 3808 /* 3809 * We only care about the ctime, but need to get mtime 3810 * and size for proper cache update. 3811 */ 3812 /* getattr */ 3813 argop[1].argop = OP_GETATTR; 3814 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3815 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3816 3817 /* verify - set later in loop */ 3818 verify_argop = 2; 3819 } 3820 3821 /* setattr */ 3822 svp = rp->r_server; 3823 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3824 supp_attrs = svp->sv_supp_attrs; 3825 nfs_rw_exit(&svp->sv_lock); 3826 3827 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3828 supp_attrs, &e.error, &sid_types); 3829 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3830 if (e.error) { 3831 /* req time field(s) overflow - return immediately */ 3832 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3833 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3834 opsetattr.obj_attributes); 3835 return (e.error); 3836 } 3837 omode = rp->r_attr.va_mode; 3838 3839 /* getattr */ 3840 argop[numops-1].argop = OP_GETATTR; 3841 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3842 /* 3843 * If we are setting the ACL (indicated only by vsap != NULL), request 3844 * the ACL in this getattr. The ACL returned from this getattr will be 3845 * used in updating the ACL cache. 3846 */ 3847 if (vsap != NULL) 3848 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3849 FATTR4_ACL_MASK; 3850 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3851 3852 /* 3853 * setattr iterates if the object size is set and the cached ctime 3854 * does not match the file ctime. In that case, verify the ctime first. 3855 */ 3856 3857 do { 3858 if (verify_argop != -1) { 3859 /* 3860 * Verify that the ctime match before doing setattr. 3861 */ 3862 va.va_mask = AT_CTIME; 3863 va.va_ctime = ctime; 3864 svp = rp->r_server; 3865 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3866 supp_attrs = svp->sv_supp_attrs; 3867 nfs_rw_exit(&svp->sv_lock); 3868 e.error = nfs4args_verify(&argop[verify_argop], &va, 3869 OP_VERIFY, supp_attrs); 3870 if (e.error) { 3871 /* req time field(s) overflow - return */ 3872 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3873 needrecov); 3874 break; 3875 } 3876 } 3877 3878 doqueue = 1; 3879 3880 t = gethrtime(); 3881 3882 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3883 3884 /* 3885 * Purge the access cache and ACL cache if changing either the 3886 * owner of the file, the group owner, or the mode. These may 3887 * change the access permissions of the file, so purge old 3888 * information and start over again. 3889 */ 3890 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3891 (void) nfs4_access_purge_rp(rp); 3892 if (rp->r_secattr != NULL) { 3893 mutex_enter(&rp->r_statelock); 3894 vsp = rp->r_secattr; 3895 rp->r_secattr = NULL; 3896 mutex_exit(&rp->r_statelock); 3897 if (vsp != NULL) 3898 nfs4_acl_free_cache(vsp); 3899 } 3900 } 3901 3902 /* 3903 * If res.array_len == numops, then everything succeeded, 3904 * except for possibly the final getattr. If only the 3905 * last getattr failed, give up, and don't try recovery. 3906 */ 3907 if (res.array_len == numops) { 3908 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3909 needrecov); 3910 if (! e.error) 3911 resp = &res; 3912 break; 3913 } 3914 3915 /* 3916 * if either rpc call failed or completely succeeded - done 3917 */ 3918 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3919 if (e.error) { 3920 PURGE_ATTRCACHE4(vp); 3921 if (!needrecov) { 3922 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3923 needrecov); 3924 break; 3925 } 3926 } 3927 3928 /* 3929 * Do proper retry for OLD_STATEID outside of the normal 3930 * recovery framework. 3931 */ 3932 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3933 sid_types.cur_sid_type != SPEC_SID && 3934 sid_types.cur_sid_type != NO_SID) { 3935 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3936 needrecov); 3937 nfs4_save_stateid(&stateid, &sid_types); 3938 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3939 opsetattr.obj_attributes); 3940 if (verify_argop != -1) { 3941 nfs4args_verify_free(&argop[verify_argop]); 3942 verify_argop = -1; 3943 } 3944 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3945 goto recov_retry; 3946 } 3947 3948 if (needrecov) { 3949 bool_t abort; 3950 3951 abort = nfs4_start_recovery(&e, 3952 VTOMI4(vp), vp, NULL, NULL, NULL, 3953 OP_SETATTR, NULL); 3954 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3955 needrecov); 3956 /* 3957 * Do not retry if we failed with OLD_STATEID using 3958 * a special stateid. This is done to avoid looping 3959 * with a broken server. 3960 */ 3961 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3962 (sid_types.cur_sid_type == SPEC_SID || 3963 sid_types.cur_sid_type == NO_SID)) 3964 abort = TRUE; 3965 if (!e.error) { 3966 if (res.status == NFS4ERR_BADOWNER) 3967 nfs4_log_badowner(VTOMI4(vp), 3968 OP_SETATTR); 3969 3970 e.error = geterrno4(res.status); 3971 (void) xdr_free(xdr_COMPOUND4res_clnt, 3972 (caddr_t)&res); 3973 } 3974 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3975 opsetattr.obj_attributes); 3976 if (verify_argop != -1) { 3977 nfs4args_verify_free(&argop[verify_argop]); 3978 verify_argop = -1; 3979 } 3980 if (abort == FALSE) { 3981 /* 3982 * Need to retry all possible stateids in 3983 * case the recovery error wasn't stateid 3984 * related or the stateids have become 3985 * stale (server reboot). 3986 */ 3987 nfs4_init_stateid_types(&sid_types); 3988 goto recov_retry; 3989 } 3990 return (e.error); 3991 } 3992 3993 /* 3994 * Need to call nfs4_end_op before nfs4getattr to 3995 * avoid potential nfs4_start_op deadlock. See RFE 3996 * 4777612. Calls to nfs4_invalidate_pages() and 3997 * nfs4_purge_stale_fh() might also generate over the 3998 * wire calls which my cause nfs4_start_op() deadlock. 3999 */ 4000 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4001 4002 /* 4003 * Check to update lease. 4004 */ 4005 resp = &res; 4006 if (res.status == NFS4_OK) { 4007 break; 4008 } 4009 4010 /* 4011 * Check if verify failed to see if try again 4012 */ 4013 if ((verify_argop == -1) || (res.array_len != 3)) { 4014 /* 4015 * can't continue... 4016 */ 4017 if (res.status == NFS4ERR_BADOWNER) 4018 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4019 4020 e.error = geterrno4(res.status); 4021 } else { 4022 /* 4023 * When the verify request fails, the client ctime is 4024 * not in sync with the server. This is the same as 4025 * the version 3 "not synchronized" error, and we 4026 * handle it in a similar manner (XXX do we need to???). 4027 * Use the ctime returned in the first getattr for 4028 * the input to the next verify. 4029 * If we couldn't get the attributes, then we give up 4030 * because we can't complete the operation as required. 4031 */ 4032 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4033 } 4034 if (e.error) { 4035 PURGE_ATTRCACHE4(vp); 4036 nfs4_purge_stale_fh(e.error, vp, cr); 4037 } else { 4038 /* 4039 * retry with a new verify value 4040 */ 4041 ctime = garp->n4g_va.va_ctime; 4042 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4043 resp = NULL; 4044 } 4045 if (!e.error) { 4046 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4047 opsetattr.obj_attributes); 4048 if (verify_argop != -1) { 4049 nfs4args_verify_free(&argop[verify_argop]); 4050 verify_argop = -1; 4051 } 4052 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4053 goto do_again; 4054 } 4055 } while (!e.error); 4056 4057 if (e.error) { 4058 /* 4059 * If we are here, rfs4call has an irrecoverable error - return 4060 */ 4061 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4062 opsetattr.obj_attributes); 4063 if (verify_argop != -1) { 4064 nfs4args_verify_free(&argop[verify_argop]); 4065 verify_argop = -1; 4066 } 4067 if (resp) 4068 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4069 return (e.error); 4070 } 4071 4072 4073 4074 /* 4075 * If changing the size of the file, invalidate 4076 * any local cached data which is no longer part 4077 * of the file. We also possibly invalidate the 4078 * last page in the file. We could use 4079 * pvn_vpzero(), but this would mark the page as 4080 * modified and require it to be written back to 4081 * the server for no particularly good reason. 4082 * This way, if we access it, then we bring it 4083 * back in. A read should be cheaper than a 4084 * write. 4085 */ 4086 if (mask & AT_SIZE) { 4087 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4088 } 4089 4090 /* either no error or one of the postop getattr failed */ 4091 4092 /* 4093 * XXX Perform a simplified version of wcc checking. Instead of 4094 * have another getattr to get pre-op, just purge cache if 4095 * any of the ops prior to and including the getattr failed. 4096 * If the getattr succeeded then update the attrcache accordingly. 4097 */ 4098 4099 garp = NULL; 4100 if (res.status == NFS4_OK) { 4101 /* 4102 * Last getattr 4103 */ 4104 resop = &res.array[numops - 1]; 4105 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4106 } 4107 /* 4108 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4109 * rather than filling it. See the function itself for details. 4110 */ 4111 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4112 if (garp != NULL) { 4113 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4114 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4115 vs_ace4_destroy(&garp->n4g_vsa); 4116 } else { 4117 if (vsap != NULL) { 4118 /* 4119 * The ACL was supposed to be set and to be 4120 * returned in the last getattr of this 4121 * compound, but for some reason the getattr 4122 * result doesn't contain the ACL. In this 4123 * case, purge the ACL cache. 4124 */ 4125 if (rp->r_secattr != NULL) { 4126 mutex_enter(&rp->r_statelock); 4127 vsp = rp->r_secattr; 4128 rp->r_secattr = NULL; 4129 mutex_exit(&rp->r_statelock); 4130 if (vsp != NULL) 4131 nfs4_acl_free_cache(vsp); 4132 } 4133 } 4134 } 4135 } 4136 4137 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4138 /* 4139 * Set the size, rather than relying on getting it updated 4140 * via a GETATTR. With delegations the client tries to 4141 * suppress GETATTR calls. 4142 */ 4143 mutex_enter(&rp->r_statelock); 4144 rp->r_size = vap->va_size; 4145 mutex_exit(&rp->r_statelock); 4146 } 4147 4148 /* 4149 * Can free up request args and res 4150 */ 4151 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4152 opsetattr.obj_attributes); 4153 if (verify_argop != -1) { 4154 nfs4args_verify_free(&argop[verify_argop]); 4155 verify_argop = -1; 4156 } 4157 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4158 4159 /* 4160 * Some servers will change the mode to clear the setuid 4161 * and setgid bits when changing the uid or gid. The 4162 * client needs to compensate appropriately. 4163 */ 4164 if (mask & (AT_UID | AT_GID)) { 4165 int terror, do_setattr; 4166 4167 do_setattr = 0; 4168 va.va_mask = AT_MODE; 4169 terror = nfs4getattr(vp, &va, cr); 4170 if (!terror && 4171 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4172 (!(mask & AT_MODE) && va.va_mode != omode))) { 4173 va.va_mask = AT_MODE; 4174 if (mask & AT_MODE) { 4175 /* 4176 * We asked the mode to be changed and what 4177 * we just got from the server in getattr is 4178 * not what we wanted it to be, so set it now. 4179 */ 4180 va.va_mode = vap->va_mode; 4181 do_setattr = 1; 4182 } else { 4183 /* 4184 * We did not ask the mode to be changed, 4185 * Check to see that the server just cleared 4186 * I_SUID and I_GUID from it. If not then 4187 * set mode to omode with UID/GID cleared. 4188 */ 4189 if (nfs4_compare_modes(va.va_mode, omode)) { 4190 omode &= ~(S_ISUID|S_ISGID); 4191 va.va_mode = omode; 4192 do_setattr = 1; 4193 } 4194 } 4195 4196 if (do_setattr) 4197 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4198 } 4199 } 4200 4201 return (e.error); 4202 } 4203 4204 /* ARGSUSED */ 4205 static int 4206 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4207 { 4208 COMPOUND4args_clnt args; 4209 COMPOUND4res_clnt res; 4210 int doqueue; 4211 uint32_t acc, resacc, argacc; 4212 rnode4_t *rp; 4213 cred_t *cred, *ncr, *ncrfree = NULL; 4214 nfs4_access_type_t cacc; 4215 int num_ops; 4216 nfs_argop4 argop[3]; 4217 nfs_resop4 *resop; 4218 bool_t needrecov = FALSE, do_getattr; 4219 nfs4_recov_state_t recov_state; 4220 int rpc_error; 4221 hrtime_t t; 4222 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4223 mntinfo4_t *mi = VTOMI4(vp); 4224 4225 if (nfs_zone() != mi->mi_zone) 4226 return (EIO); 4227 4228 acc = 0; 4229 if (mode & VREAD) 4230 acc |= ACCESS4_READ; 4231 if (mode & VWRITE) { 4232 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4233 return (EROFS); 4234 if (vp->v_type == VDIR) 4235 acc |= ACCESS4_DELETE; 4236 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4237 } 4238 if (mode & VEXEC) { 4239 if (vp->v_type == VDIR) 4240 acc |= ACCESS4_LOOKUP; 4241 else 4242 acc |= ACCESS4_EXECUTE; 4243 } 4244 4245 if (VTOR4(vp)->r_acache != NULL) { 4246 e.error = nfs4_validate_caches(vp, cr); 4247 if (e.error) 4248 return (e.error); 4249 } 4250 4251 rp = VTOR4(vp); 4252 if (vp->v_type == VDIR) 4253 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4254 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4255 else 4256 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4257 ACCESS4_EXECUTE; 4258 recov_state.rs_flags = 0; 4259 recov_state.rs_num_retry_despite_err = 0; 4260 4261 cred = cr; 4262 /* 4263 * ncr and ncrfree both initially 4264 * point to the memory area returned 4265 * by crnetadjust(); 4266 * ncrfree not NULL when exiting means 4267 * that we need to release it 4268 */ 4269 ncr = crnetadjust(cred); 4270 ncrfree = ncr; 4271 4272 tryagain: 4273 cacc = nfs4_access_check(rp, acc, cred); 4274 if (cacc == NFS4_ACCESS_ALLOWED) { 4275 if (ncrfree != NULL) 4276 crfree(ncrfree); 4277 return (0); 4278 } 4279 if (cacc == NFS4_ACCESS_DENIED) { 4280 /* 4281 * If the cred can be adjusted, try again 4282 * with the new cred. 4283 */ 4284 if (ncr != NULL) { 4285 cred = ncr; 4286 ncr = NULL; 4287 goto tryagain; 4288 } 4289 if (ncrfree != NULL) 4290 crfree(ncrfree); 4291 return (EACCES); 4292 } 4293 4294 recov_retry: 4295 /* 4296 * Don't take with r_statev4_lock here. r_deleg_type could 4297 * change as soon as lock is released. Since it is an int, 4298 * there is no atomicity issue. 4299 */ 4300 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4301 num_ops = do_getattr ? 3 : 2; 4302 4303 args.ctag = TAG_ACCESS; 4304 4305 args.array_len = num_ops; 4306 args.array = argop; 4307 4308 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4309 &recov_state, NULL)) { 4310 if (ncrfree != NULL) 4311 crfree(ncrfree); 4312 return (e.error); 4313 } 4314 4315 /* putfh target fh */ 4316 argop[0].argop = OP_CPUTFH; 4317 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4318 4319 /* access */ 4320 argop[1].argop = OP_ACCESS; 4321 argop[1].nfs_argop4_u.opaccess.access = argacc; 4322 4323 /* getattr */ 4324 if (do_getattr) { 4325 argop[2].argop = OP_GETATTR; 4326 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4327 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4328 } 4329 4330 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4331 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4332 rnode4info(VTOR4(vp)))); 4333 4334 doqueue = 1; 4335 t = gethrtime(); 4336 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4337 rpc_error = e.error; 4338 4339 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4340 if (needrecov) { 4341 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4342 "nfs4_access: initiating recovery\n")); 4343 4344 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4345 NULL, OP_ACCESS, NULL) == FALSE) { 4346 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4347 &recov_state, needrecov); 4348 if (!e.error) 4349 (void) xdr_free(xdr_COMPOUND4res_clnt, 4350 (caddr_t)&res); 4351 goto recov_retry; 4352 } 4353 } 4354 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4355 4356 if (e.error) 4357 goto out; 4358 4359 if (res.status) { 4360 e.error = geterrno4(res.status); 4361 /* 4362 * This might generate over the wire calls throught 4363 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4364 * here to avoid a deadlock. 4365 */ 4366 nfs4_purge_stale_fh(e.error, vp, cr); 4367 goto out; 4368 } 4369 resop = &res.array[1]; /* access res */ 4370 4371 resacc = resop->nfs_resop4_u.opaccess.access; 4372 4373 if (do_getattr) { 4374 resop++; /* getattr res */ 4375 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4376 t, cr, FALSE, NULL); 4377 } 4378 4379 if (!e.error) { 4380 nfs4_access_cache(rp, argacc, resacc, cred); 4381 /* 4382 * we just cached results with cred; if cred is the 4383 * adjusted credentials from crnetadjust, we do not want 4384 * to release them before exiting: hence setting ncrfree 4385 * to NULL 4386 */ 4387 if (cred != cr) 4388 ncrfree = NULL; 4389 /* XXX check the supported bits too? */ 4390 if ((acc & resacc) != acc) { 4391 /* 4392 * The following code implements the semantic 4393 * that a setuid root program has *at least* the 4394 * permissions of the user that is running the 4395 * program. See rfs3call() for more portions 4396 * of the implementation of this functionality. 4397 */ 4398 /* XXX-LP */ 4399 if (ncr != NULL) { 4400 (void) xdr_free(xdr_COMPOUND4res_clnt, 4401 (caddr_t)&res); 4402 cred = ncr; 4403 ncr = NULL; 4404 goto tryagain; 4405 } 4406 e.error = EACCES; 4407 } 4408 } 4409 4410 out: 4411 if (!rpc_error) 4412 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4413 4414 if (ncrfree != NULL) 4415 crfree(ncrfree); 4416 4417 return (e.error); 4418 } 4419 4420 /* ARGSUSED */ 4421 static int 4422 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4423 { 4424 COMPOUND4args_clnt args; 4425 COMPOUND4res_clnt res; 4426 int doqueue; 4427 rnode4_t *rp; 4428 nfs_argop4 argop[3]; 4429 nfs_resop4 *resop; 4430 READLINK4res *lr_res; 4431 nfs4_ga_res_t *garp; 4432 uint_t len; 4433 char *linkdata; 4434 bool_t needrecov = FALSE; 4435 nfs4_recov_state_t recov_state; 4436 hrtime_t t; 4437 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4438 4439 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4440 return (EIO); 4441 /* 4442 * Can't readlink anything other than a symbolic link. 4443 */ 4444 if (vp->v_type != VLNK) 4445 return (EINVAL); 4446 4447 rp = VTOR4(vp); 4448 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4449 e.error = nfs4_validate_caches(vp, cr); 4450 if (e.error) 4451 return (e.error); 4452 mutex_enter(&rp->r_statelock); 4453 if (rp->r_symlink.contents != NULL) { 4454 e.error = uiomove(rp->r_symlink.contents, 4455 rp->r_symlink.len, UIO_READ, uiop); 4456 mutex_exit(&rp->r_statelock); 4457 return (e.error); 4458 } 4459 mutex_exit(&rp->r_statelock); 4460 } 4461 recov_state.rs_flags = 0; 4462 recov_state.rs_num_retry_despite_err = 0; 4463 4464 recov_retry: 4465 args.array_len = 3; 4466 args.array = argop; 4467 args.ctag = TAG_READLINK; 4468 4469 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4470 if (e.error) { 4471 return (e.error); 4472 } 4473 4474 /* 0. putfh symlink fh */ 4475 argop[0].argop = OP_CPUTFH; 4476 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4477 4478 /* 1. readlink */ 4479 argop[1].argop = OP_READLINK; 4480 4481 /* 2. getattr */ 4482 argop[2].argop = OP_GETATTR; 4483 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4484 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4485 4486 doqueue = 1; 4487 4488 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4489 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4490 rnode4info(VTOR4(vp)))); 4491 4492 t = gethrtime(); 4493 4494 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4495 4496 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4497 if (needrecov) { 4498 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4499 "nfs4_readlink: initiating recovery\n")); 4500 4501 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4502 NULL, OP_READLINK, NULL) == FALSE) { 4503 if (!e.error) 4504 (void) xdr_free(xdr_COMPOUND4res_clnt, 4505 (caddr_t)&res); 4506 4507 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4508 needrecov); 4509 goto recov_retry; 4510 } 4511 } 4512 4513 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4514 4515 if (e.error) 4516 return (e.error); 4517 4518 /* 4519 * There is an path in the code below which calls 4520 * nfs4_purge_stale_fh(), which may generate otw calls through 4521 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4522 * here to avoid nfs4_start_op() deadlock. 4523 */ 4524 4525 if (res.status && (res.array_len < args.array_len)) { 4526 /* 4527 * either Putfh or Link failed 4528 */ 4529 e.error = geterrno4(res.status); 4530 nfs4_purge_stale_fh(e.error, vp, cr); 4531 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4532 return (e.error); 4533 } 4534 4535 resop = &res.array[1]; /* readlink res */ 4536 lr_res = &resop->nfs_resop4_u.opreadlink; 4537 4538 /* 4539 * treat symlink names as data 4540 */ 4541 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4542 if (linkdata != NULL) { 4543 int uio_len = len - 1; 4544 /* len includes null byte, which we won't uiomove */ 4545 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4546 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4547 mutex_enter(&rp->r_statelock); 4548 if (rp->r_symlink.contents == NULL) { 4549 rp->r_symlink.contents = linkdata; 4550 rp->r_symlink.len = uio_len; 4551 rp->r_symlink.size = len; 4552 mutex_exit(&rp->r_statelock); 4553 } else { 4554 mutex_exit(&rp->r_statelock); 4555 kmem_free(linkdata, len); 4556 } 4557 } else { 4558 kmem_free(linkdata, len); 4559 } 4560 } 4561 if (res.status == NFS4_OK) { 4562 resop++; /* getattr res */ 4563 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4564 } 4565 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4566 4567 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4568 4569 /* 4570 * The over the wire error for attempting to readlink something 4571 * other than a symbolic link is ENXIO. However, we need to 4572 * return EINVAL instead of ENXIO, so we map it here. 4573 */ 4574 return (e.error == ENXIO ? EINVAL : e.error); 4575 } 4576 4577 /* 4578 * Flush local dirty pages to stable storage on the server. 4579 * 4580 * If FNODSYNC is specified, then there is nothing to do because 4581 * metadata changes are not cached on the client before being 4582 * sent to the server. 4583 */ 4584 /* ARGSUSED */ 4585 static int 4586 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4587 { 4588 int error; 4589 4590 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4591 return (0); 4592 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4593 return (EIO); 4594 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4595 if (!error) 4596 error = VTOR4(vp)->r_error; 4597 return (error); 4598 } 4599 4600 /* 4601 * Weirdness: if the file was removed or the target of a rename 4602 * operation while it was open, it got renamed instead. Here we 4603 * remove the renamed file. 4604 */ 4605 /* ARGSUSED */ 4606 void 4607 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4608 { 4609 rnode4_t *rp; 4610 4611 ASSERT(vp != DNLC_NO_VNODE); 4612 4613 rp = VTOR4(vp); 4614 4615 if (IS_SHADOW(vp, rp)) { 4616 sv_inactive(vp); 4617 return; 4618 } 4619 4620 /* 4621 * If this is coming from the wrong zone, we let someone in the right 4622 * zone take care of it asynchronously. We can get here due to 4623 * VN_RELE() being called from pageout() or fsflush(). This call may 4624 * potentially turn into an expensive no-op if, for instance, v_count 4625 * gets incremented in the meantime, but it's still correct. 4626 */ 4627 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4628 nfs4_async_inactive(vp, cr); 4629 return; 4630 } 4631 4632 /* 4633 * Some of the cleanup steps might require over-the-wire 4634 * operations. Since VOP_INACTIVE can get called as a result of 4635 * other over-the-wire operations (e.g., an attribute cache update 4636 * can lead to a DNLC purge), doing those steps now would lead to a 4637 * nested call to the recovery framework, which can deadlock. So 4638 * do any over-the-wire cleanups asynchronously, in a separate 4639 * thread. 4640 */ 4641 4642 mutex_enter(&rp->r_os_lock); 4643 mutex_enter(&rp->r_statelock); 4644 mutex_enter(&rp->r_statev4_lock); 4645 4646 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4647 mutex_exit(&rp->r_statev4_lock); 4648 mutex_exit(&rp->r_statelock); 4649 mutex_exit(&rp->r_os_lock); 4650 nfs4_async_inactive(vp, cr); 4651 return; 4652 } 4653 4654 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4655 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4656 mutex_exit(&rp->r_statev4_lock); 4657 mutex_exit(&rp->r_statelock); 4658 mutex_exit(&rp->r_os_lock); 4659 nfs4_async_inactive(vp, cr); 4660 return; 4661 } 4662 4663 if (rp->r_unldvp != NULL) { 4664 mutex_exit(&rp->r_statev4_lock); 4665 mutex_exit(&rp->r_statelock); 4666 mutex_exit(&rp->r_os_lock); 4667 nfs4_async_inactive(vp, cr); 4668 return; 4669 } 4670 mutex_exit(&rp->r_statev4_lock); 4671 mutex_exit(&rp->r_statelock); 4672 mutex_exit(&rp->r_os_lock); 4673 4674 rp4_addfree(rp, cr); 4675 } 4676 4677 /* 4678 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4679 * various bits of state. The caller must not refer to vp after this call. 4680 */ 4681 4682 void 4683 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4684 { 4685 rnode4_t *rp = VTOR4(vp); 4686 nfs4_recov_state_t recov_state; 4687 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4688 vnode_t *unldvp; 4689 char *unlname; 4690 cred_t *unlcred; 4691 COMPOUND4args_clnt args; 4692 COMPOUND4res_clnt res, *resp; 4693 nfs_argop4 argop[2]; 4694 int doqueue; 4695 #ifdef DEBUG 4696 char *name; 4697 #endif 4698 4699 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4700 ASSERT(!IS_SHADOW(vp, rp)); 4701 4702 #ifdef DEBUG 4703 name = fn_name(VTOSV(vp)->sv_name); 4704 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4705 "release vnode %s", name)); 4706 kmem_free(name, MAXNAMELEN); 4707 #endif 4708 4709 if (vp->v_type == VREG) { 4710 bool_t recov_failed = FALSE; 4711 4712 e.error = nfs4close_all(vp, cr); 4713 if (e.error) { 4714 /* Check to see if recovery failed */ 4715 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4716 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4717 recov_failed = TRUE; 4718 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4719 if (!recov_failed) { 4720 mutex_enter(&rp->r_statelock); 4721 if (rp->r_flags & R4RECOVERR) 4722 recov_failed = TRUE; 4723 mutex_exit(&rp->r_statelock); 4724 } 4725 if (recov_failed) { 4726 NFS4_DEBUG(nfs4_client_recov_debug, 4727 (CE_NOTE, "nfs4_inactive_otw: " 4728 "close failed (recovery failure)")); 4729 } 4730 } 4731 } 4732 4733 redo: 4734 if (rp->r_unldvp == NULL) { 4735 rp4_addfree(rp, cr); 4736 return; 4737 } 4738 4739 /* 4740 * Save the vnode pointer for the directory where the 4741 * unlinked-open file got renamed, then set it to NULL 4742 * to prevent another thread from getting here before 4743 * we're done with the remove. While we have the 4744 * statelock, make local copies of the pertinent rnode 4745 * fields. If we weren't to do this in an atomic way, the 4746 * the unl* fields could become inconsistent with respect 4747 * to each other due to a race condition between this 4748 * code and nfs_remove(). See bug report 1034328. 4749 */ 4750 mutex_enter(&rp->r_statelock); 4751 if (rp->r_unldvp == NULL) { 4752 mutex_exit(&rp->r_statelock); 4753 rp4_addfree(rp, cr); 4754 return; 4755 } 4756 4757 unldvp = rp->r_unldvp; 4758 rp->r_unldvp = NULL; 4759 unlname = rp->r_unlname; 4760 rp->r_unlname = NULL; 4761 unlcred = rp->r_unlcred; 4762 rp->r_unlcred = NULL; 4763 mutex_exit(&rp->r_statelock); 4764 4765 /* 4766 * If there are any dirty pages left, then flush 4767 * them. This is unfortunate because they just 4768 * may get thrown away during the remove operation, 4769 * but we have to do this for correctness. 4770 */ 4771 if (nfs4_has_pages(vp) && 4772 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4773 ASSERT(vp->v_type != VCHR); 4774 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4775 if (e.error) { 4776 mutex_enter(&rp->r_statelock); 4777 if (!rp->r_error) 4778 rp->r_error = e.error; 4779 mutex_exit(&rp->r_statelock); 4780 } 4781 } 4782 4783 recov_state.rs_flags = 0; 4784 recov_state.rs_num_retry_despite_err = 0; 4785 recov_retry_remove: 4786 /* 4787 * Do the remove operation on the renamed file 4788 */ 4789 args.ctag = TAG_INACTIVE; 4790 4791 /* 4792 * Remove ops: putfh dir; remove 4793 */ 4794 args.array_len = 2; 4795 args.array = argop; 4796 4797 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4798 if (e.error) { 4799 kmem_free(unlname, MAXNAMELEN); 4800 crfree(unlcred); 4801 VN_RELE(unldvp); 4802 /* 4803 * Try again; this time around r_unldvp will be NULL, so we'll 4804 * just call rp4_addfree() and return. 4805 */ 4806 goto redo; 4807 } 4808 4809 /* putfh directory */ 4810 argop[0].argop = OP_CPUTFH; 4811 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4812 4813 /* remove */ 4814 argop[1].argop = OP_CREMOVE; 4815 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4816 4817 doqueue = 1; 4818 resp = &res; 4819 4820 #if 0 /* notyet */ 4821 /* 4822 * Can't do this yet. We may be being called from 4823 * dnlc_purge_XXX while that routine is holding a 4824 * mutex lock to the nc_rele list. The calls to 4825 * nfs3_cache_wcc_data may result in calls to 4826 * dnlc_purge_XXX. This will result in a deadlock. 4827 */ 4828 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4829 if (e.error) { 4830 PURGE_ATTRCACHE4(unldvp); 4831 resp = NULL; 4832 } else if (res.status) { 4833 e.error = geterrno4(res.status); 4834 PURGE_ATTRCACHE4(unldvp); 4835 /* 4836 * This code is inactive right now 4837 * but if made active there should 4838 * be a nfs4_end_op() call before 4839 * nfs4_purge_stale_fh to avoid start_op() 4840 * deadlock. See BugId: 4948726 4841 */ 4842 nfs4_purge_stale_fh(error, unldvp, cr); 4843 } else { 4844 nfs_resop4 *resop; 4845 REMOVE4res *rm_res; 4846 4847 resop = &res.array[1]; 4848 rm_res = &resop->nfs_resop4_u.opremove; 4849 /* 4850 * Update directory cache attribute, 4851 * readdir and dnlc caches. 4852 */ 4853 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4854 } 4855 #else 4856 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4857 4858 PURGE_ATTRCACHE4(unldvp); 4859 #endif 4860 4861 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4862 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4863 NULL, NULL, OP_REMOVE, NULL) == FALSE) { 4864 if (!e.error) 4865 (void) xdr_free(xdr_COMPOUND4res_clnt, 4866 (caddr_t)&res); 4867 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4868 &recov_state, TRUE); 4869 goto recov_retry_remove; 4870 } 4871 } 4872 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4873 4874 /* 4875 * Release stuff held for the remove 4876 */ 4877 VN_RELE(unldvp); 4878 if (!e.error && resp) 4879 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4880 4881 kmem_free(unlname, MAXNAMELEN); 4882 crfree(unlcred); 4883 goto redo; 4884 } 4885 4886 /* 4887 * Remote file system operations having to do with directory manipulation. 4888 */ 4889 /* ARGSUSED3 */ 4890 int 4891 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4892 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4893 int *direntflags, pathname_t *realpnp) 4894 { 4895 int error; 4896 vnode_t *vp, *avp = NULL; 4897 rnode4_t *drp; 4898 4899 *vpp = NULL; 4900 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4901 return (EPERM); 4902 /* 4903 * if LOOKUP_XATTR, must replace dvp (object) with 4904 * object's attrdir before continuing with lookup 4905 */ 4906 if (flags & LOOKUP_XATTR) { 4907 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4908 if (error) 4909 return (error); 4910 4911 dvp = avp; 4912 4913 /* 4914 * If lookup is for "", just return dvp now. The attrdir 4915 * has already been activated (from nfs4lookup_xattr), and 4916 * the caller will RELE the original dvp -- not 4917 * the attrdir. So, set vpp and return. 4918 * Currently, when the LOOKUP_XATTR flag is 4919 * passed to VOP_LOOKUP, the name is always empty, and 4920 * shortcircuiting here avoids 3 unneeded lock/unlock 4921 * pairs. 4922 * 4923 * If a non-empty name was provided, then it is the 4924 * attribute name, and it will be looked up below. 4925 */ 4926 if (*nm == '\0') { 4927 *vpp = dvp; 4928 return (0); 4929 } 4930 4931 /* 4932 * The vfs layer never sends a name when asking for the 4933 * attrdir, so we should never get here (unless of course 4934 * name is passed at some time in future -- at which time 4935 * we'll blow up here). 4936 */ 4937 ASSERT(0); 4938 } 4939 4940 drp = VTOR4(dvp); 4941 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4942 return (EINTR); 4943 4944 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4945 nfs_rw_exit(&drp->r_rwlock); 4946 4947 /* 4948 * If vnode is a device, create special vnode. 4949 */ 4950 if (!error && ISVDEV((*vpp)->v_type)) { 4951 vp = *vpp; 4952 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 4953 VN_RELE(vp); 4954 } 4955 4956 return (error); 4957 } 4958 4959 /* ARGSUSED */ 4960 static int 4961 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 4962 { 4963 int error; 4964 rnode4_t *drp; 4965 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 4966 mntinfo4_t *mi; 4967 4968 mi = VTOMI4(dvp); 4969 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 4970 !vfs_has_feature(mi->mi_vfsp, VFSFT_XVATTR)) 4971 return (EINVAL); 4972 4973 drp = VTOR4(dvp); 4974 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4975 return (EINTR); 4976 4977 mutex_enter(&drp->r_statelock); 4978 /* 4979 * If the server doesn't support xattrs just return EINVAL 4980 */ 4981 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 4982 mutex_exit(&drp->r_statelock); 4983 nfs_rw_exit(&drp->r_rwlock); 4984 return (EINVAL); 4985 } 4986 4987 /* 4988 * If there is a cached xattr directory entry, 4989 * use it as long as the attributes are valid. If the 4990 * attributes are not valid, take the simple approach and 4991 * free the cached value and re-fetch a new value. 4992 * 4993 * We don't negative entry cache for now, if we did we 4994 * would need to check if the file has changed on every 4995 * lookup. But xattrs don't exist very often and failing 4996 * an openattr is not much more expensive than and NVERIFY or GETATTR 4997 * so do an openattr over the wire for now. 4998 */ 4999 if (drp->r_xattr_dir != NULL) { 5000 if (ATTRCACHE4_VALID(dvp)) { 5001 VN_HOLD(drp->r_xattr_dir); 5002 *vpp = drp->r_xattr_dir; 5003 mutex_exit(&drp->r_statelock); 5004 nfs_rw_exit(&drp->r_rwlock); 5005 return (0); 5006 } 5007 VN_RELE(drp->r_xattr_dir); 5008 drp->r_xattr_dir = NULL; 5009 } 5010 mutex_exit(&drp->r_statelock); 5011 5012 error = nfs4openattr(dvp, vpp, cflag, cr); 5013 5014 nfs_rw_exit(&drp->r_rwlock); 5015 5016 return (error); 5017 } 5018 5019 static int 5020 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5021 { 5022 int error; 5023 rnode4_t *drp; 5024 5025 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5026 5027 /* 5028 * If lookup is for "", just return dvp. Don't need 5029 * to send it over the wire, look it up in the dnlc, 5030 * or perform any access checks. 5031 */ 5032 if (*nm == '\0') { 5033 VN_HOLD(dvp); 5034 *vpp = dvp; 5035 return (0); 5036 } 5037 5038 /* 5039 * Can't do lookups in non-directories. 5040 */ 5041 if (dvp->v_type != VDIR) 5042 return (ENOTDIR); 5043 5044 /* 5045 * If lookup is for ".", just return dvp. Don't need 5046 * to send it over the wire or look it up in the dnlc, 5047 * just need to check access. 5048 */ 5049 if (nm[0] == '.' && nm[1] == '\0') { 5050 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5051 if (error) 5052 return (error); 5053 VN_HOLD(dvp); 5054 *vpp = dvp; 5055 return (0); 5056 } 5057 5058 drp = VTOR4(dvp); 5059 if (!(drp->r_flags & R4LOOKUP)) { 5060 mutex_enter(&drp->r_statelock); 5061 drp->r_flags |= R4LOOKUP; 5062 mutex_exit(&drp->r_statelock); 5063 } 5064 5065 *vpp = NULL; 5066 /* 5067 * Lookup this name in the DNLC. If there is no entry 5068 * lookup over the wire. 5069 */ 5070 if (!skipdnlc) 5071 *vpp = dnlc_lookup(dvp, nm); 5072 if (*vpp == NULL) { 5073 /* 5074 * We need to go over the wire to lookup the name. 5075 */ 5076 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5077 } 5078 5079 /* 5080 * We hit on the dnlc 5081 */ 5082 if (*vpp != DNLC_NO_VNODE || 5083 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5084 /* 5085 * But our attrs may not be valid. 5086 */ 5087 if (ATTRCACHE4_VALID(dvp)) { 5088 error = nfs4_waitfor_purge_complete(dvp); 5089 if (error) { 5090 VN_RELE(*vpp); 5091 *vpp = NULL; 5092 return (error); 5093 } 5094 5095 /* 5096 * If after the purge completes, check to make sure 5097 * our attrs are still valid. 5098 */ 5099 if (ATTRCACHE4_VALID(dvp)) { 5100 /* 5101 * If we waited for a purge we may have 5102 * lost our vnode so look it up again. 5103 */ 5104 VN_RELE(*vpp); 5105 *vpp = dnlc_lookup(dvp, nm); 5106 if (*vpp == NULL) 5107 return (nfs4lookupnew_otw(dvp, 5108 nm, vpp, cr)); 5109 5110 /* 5111 * The access cache should almost always hit 5112 */ 5113 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5114 5115 if (error) { 5116 VN_RELE(*vpp); 5117 *vpp = NULL; 5118 return (error); 5119 } 5120 if (*vpp == DNLC_NO_VNODE) { 5121 VN_RELE(*vpp); 5122 *vpp = NULL; 5123 return (ENOENT); 5124 } 5125 return (0); 5126 } 5127 } 5128 } 5129 5130 ASSERT(*vpp != NULL); 5131 5132 /* 5133 * We may have gotten here we have one of the following cases: 5134 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5135 * need to validate them. 5136 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5137 * must validate. 5138 * 5139 * Go to the server and check if the directory has changed, if 5140 * it hasn't we are done and can use the dnlc entry. 5141 */ 5142 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5143 } 5144 5145 /* 5146 * Go to the server and check if the directory has changed, if 5147 * it hasn't we are done and can use the dnlc entry. If it 5148 * has changed we get a new copy of its attributes and check 5149 * the access for VEXEC, then relookup the filename and 5150 * get its filehandle and attributes. 5151 * 5152 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5153 * if the NVERIFY failed we must 5154 * purge the caches 5155 * cache new attributes (will set r_time_attr_inval) 5156 * cache new access 5157 * recheck VEXEC access 5158 * add name to dnlc, possibly negative 5159 * if LOOKUP succeeded 5160 * cache new attributes 5161 * else 5162 * set a new r_time_attr_inval for dvp 5163 * check to make sure we have access 5164 * 5165 * The vpp returned is the vnode passed in if the directory is valid, 5166 * a new vnode if successful lookup, or NULL on error. 5167 */ 5168 static int 5169 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5170 { 5171 COMPOUND4args_clnt args; 5172 COMPOUND4res_clnt res; 5173 fattr4 *ver_fattr; 5174 fattr4_change dchange; 5175 int32_t *ptr; 5176 int argoplist_size = 7 * sizeof (nfs_argop4); 5177 nfs_argop4 *argop; 5178 int doqueue; 5179 mntinfo4_t *mi; 5180 nfs4_recov_state_t recov_state; 5181 hrtime_t t; 5182 int isdotdot; 5183 vnode_t *nvp; 5184 nfs_fh4 *fhp; 5185 nfs4_sharedfh_t *sfhp; 5186 nfs4_access_type_t cacc; 5187 rnode4_t *nrp; 5188 rnode4_t *drp = VTOR4(dvp); 5189 nfs4_ga_res_t *garp = NULL; 5190 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5191 5192 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5193 ASSERT(nm != NULL); 5194 ASSERT(nm[0] != '\0'); 5195 ASSERT(dvp->v_type == VDIR); 5196 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5197 ASSERT(*vpp != NULL); 5198 5199 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5200 isdotdot = 1; 5201 args.ctag = TAG_LOOKUP_VPARENT; 5202 } else { 5203 /* 5204 * If dvp were a stub, it should have triggered and caused 5205 * a mount for us to get this far. 5206 */ 5207 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5208 5209 isdotdot = 0; 5210 args.ctag = TAG_LOOKUP_VALID; 5211 } 5212 5213 mi = VTOMI4(dvp); 5214 recov_state.rs_flags = 0; 5215 recov_state.rs_num_retry_despite_err = 0; 5216 5217 nvp = NULL; 5218 5219 /* Save the original mount point security information */ 5220 (void) save_mnt_secinfo(mi->mi_curr_serv); 5221 5222 recov_retry: 5223 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5224 &recov_state, NULL); 5225 if (e.error) { 5226 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5227 VN_RELE(*vpp); 5228 *vpp = NULL; 5229 return (e.error); 5230 } 5231 5232 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5233 5234 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5235 args.array_len = 7; 5236 args.array = argop; 5237 5238 /* 0. putfh file */ 5239 argop[0].argop = OP_CPUTFH; 5240 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5241 5242 /* 1. nverify the change info */ 5243 argop[1].argop = OP_NVERIFY; 5244 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5245 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5246 ver_fattr->attrlist4 = (char *)&dchange; 5247 ptr = (int32_t *)&dchange; 5248 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5249 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5250 5251 /* 2. getattr directory */ 5252 argop[2].argop = OP_GETATTR; 5253 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5254 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5255 5256 /* 3. access directory */ 5257 argop[3].argop = OP_ACCESS; 5258 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5259 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5260 5261 /* 4. lookup name */ 5262 if (isdotdot) { 5263 argop[4].argop = OP_LOOKUPP; 5264 } else { 5265 argop[4].argop = OP_CLOOKUP; 5266 argop[4].nfs_argop4_u.opclookup.cname = nm; 5267 } 5268 5269 /* 5. resulting file handle */ 5270 argop[5].argop = OP_GETFH; 5271 5272 /* 6. resulting file attributes */ 5273 argop[6].argop = OP_GETATTR; 5274 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5275 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5276 5277 doqueue = 1; 5278 t = gethrtime(); 5279 5280 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5281 5282 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5283 /* 5284 * For WRONGSEC of a non-dotdot case, send secinfo directly 5285 * from this thread, do not go thru the recovery thread since 5286 * we need the nm information. 5287 * 5288 * Not doing dotdot case because there is no specification 5289 * for (PUTFH, SECINFO "..") yet. 5290 */ 5291 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5292 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5293 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5294 &recov_state, FALSE); 5295 else 5296 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5297 &recov_state, TRUE); 5298 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5299 kmem_free(argop, argoplist_size); 5300 if (!e.error) 5301 goto recov_retry; 5302 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5303 VN_RELE(*vpp); 5304 *vpp = NULL; 5305 return (e.error); 5306 } 5307 5308 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5309 OP_LOOKUP, NULL) == FALSE) { 5310 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5311 &recov_state, TRUE); 5312 5313 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5314 kmem_free(argop, argoplist_size); 5315 goto recov_retry; 5316 } 5317 } 5318 5319 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5320 5321 if (e.error || res.array_len == 0) { 5322 /* 5323 * If e.error isn't set, then reply has no ops (or we couldn't 5324 * be here). The only legal way to reply without an op array 5325 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5326 * be in the reply for all other status values. 5327 * 5328 * For valid replies without an ops array, return ENOTSUP 5329 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5330 * return EIO -- don't trust status. 5331 */ 5332 if (e.error == 0) 5333 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5334 ENOTSUP : EIO; 5335 VN_RELE(*vpp); 5336 *vpp = NULL; 5337 kmem_free(argop, argoplist_size); 5338 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5339 return (e.error); 5340 } 5341 5342 if (res.status != NFS4ERR_SAME) { 5343 e.error = geterrno4(res.status); 5344 5345 /* 5346 * The NVERIFY "failed" so the directory has changed 5347 * First make sure PUTFH succeeded and NVERIFY "failed" 5348 * cleanly. 5349 */ 5350 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5351 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5352 nfs4_purge_stale_fh(e.error, dvp, cr); 5353 VN_RELE(*vpp); 5354 *vpp = NULL; 5355 goto exit; 5356 } 5357 5358 /* 5359 * We know the NVERIFY "failed" so we must: 5360 * purge the caches (access and indirectly dnlc if needed) 5361 */ 5362 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5363 5364 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5365 nfs4_purge_stale_fh(e.error, dvp, cr); 5366 VN_RELE(*vpp); 5367 *vpp = NULL; 5368 goto exit; 5369 } 5370 5371 /* 5372 * Install new cached attributes for the directory 5373 */ 5374 nfs4_attr_cache(dvp, 5375 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5376 t, cr, FALSE, NULL); 5377 5378 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5379 nfs4_purge_stale_fh(e.error, dvp, cr); 5380 VN_RELE(*vpp); 5381 *vpp = NULL; 5382 e.error = geterrno4(res.status); 5383 goto exit; 5384 } 5385 5386 /* 5387 * Now we know the directory is valid, 5388 * cache new directory access 5389 */ 5390 nfs4_access_cache(drp, 5391 args.array[3].nfs_argop4_u.opaccess.access, 5392 res.array[3].nfs_resop4_u.opaccess.access, cr); 5393 5394 /* 5395 * recheck VEXEC access 5396 */ 5397 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5398 if (cacc != NFS4_ACCESS_ALLOWED) { 5399 /* 5400 * Directory permissions might have been revoked 5401 */ 5402 if (cacc == NFS4_ACCESS_DENIED) { 5403 e.error = EACCES; 5404 VN_RELE(*vpp); 5405 *vpp = NULL; 5406 goto exit; 5407 } 5408 5409 /* 5410 * Somehow we must not have asked for enough 5411 * so try a singleton ACCESS, should never happen. 5412 */ 5413 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5414 if (e.error) { 5415 VN_RELE(*vpp); 5416 *vpp = NULL; 5417 goto exit; 5418 } 5419 } 5420 5421 e.error = geterrno4(res.status); 5422 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5423 /* 5424 * The lookup failed, probably no entry 5425 */ 5426 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5427 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5428 } else { 5429 /* 5430 * Might be some other error, so remove 5431 * the dnlc entry to make sure we start all 5432 * over again, next time. 5433 */ 5434 dnlc_remove(dvp, nm); 5435 } 5436 VN_RELE(*vpp); 5437 *vpp = NULL; 5438 goto exit; 5439 } 5440 5441 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5442 /* 5443 * The file exists but we can't get its fh for 5444 * some unknown reason. Remove it from the dnlc 5445 * and error out to be safe. 5446 */ 5447 dnlc_remove(dvp, nm); 5448 VN_RELE(*vpp); 5449 *vpp = NULL; 5450 goto exit; 5451 } 5452 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5453 if (fhp->nfs_fh4_len == 0) { 5454 /* 5455 * The file exists but a bogus fh 5456 * some unknown reason. Remove it from the dnlc 5457 * and error out to be safe. 5458 */ 5459 e.error = ENOENT; 5460 dnlc_remove(dvp, nm); 5461 VN_RELE(*vpp); 5462 *vpp = NULL; 5463 goto exit; 5464 } 5465 sfhp = sfh4_get(fhp, mi); 5466 5467 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5468 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5469 5470 /* 5471 * Make the new rnode 5472 */ 5473 if (isdotdot) { 5474 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5475 if (e.error) { 5476 sfh4_rele(&sfhp); 5477 VN_RELE(*vpp); 5478 *vpp = NULL; 5479 goto exit; 5480 } 5481 /* 5482 * XXX if nfs4_make_dotdot uses an existing rnode 5483 * XXX it doesn't update the attributes. 5484 * XXX for now just save them again to save an OTW 5485 */ 5486 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5487 } else { 5488 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5489 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5490 /* 5491 * If v_type == VNON, then garp was NULL because 5492 * the last op in the compound failed and makenfs4node 5493 * could not find the vnode for sfhp. It created 5494 * a new vnode, so we have nothing to purge here. 5495 */ 5496 if (nvp->v_type == VNON) { 5497 vattr_t vattr; 5498 5499 vattr.va_mask = AT_TYPE; 5500 /* 5501 * N.B. We've already called nfs4_end_fop above. 5502 */ 5503 e.error = nfs4getattr(nvp, &vattr, cr); 5504 if (e.error) { 5505 sfh4_rele(&sfhp); 5506 VN_RELE(*vpp); 5507 *vpp = NULL; 5508 VN_RELE(nvp); 5509 goto exit; 5510 } 5511 nvp->v_type = vattr.va_type; 5512 } 5513 } 5514 sfh4_rele(&sfhp); 5515 5516 nrp = VTOR4(nvp); 5517 mutex_enter(&nrp->r_statev4_lock); 5518 if (!nrp->created_v4) { 5519 mutex_exit(&nrp->r_statev4_lock); 5520 dnlc_update(dvp, nm, nvp); 5521 } else 5522 mutex_exit(&nrp->r_statev4_lock); 5523 5524 VN_RELE(*vpp); 5525 *vpp = nvp; 5526 } else { 5527 hrtime_t now; 5528 hrtime_t delta = 0; 5529 5530 e.error = 0; 5531 5532 /* 5533 * Because the NVERIFY "succeeded" we know that the 5534 * directory attributes are still valid 5535 * so update r_time_attr_inval 5536 */ 5537 now = gethrtime(); 5538 mutex_enter(&drp->r_statelock); 5539 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5540 delta = now - drp->r_time_attr_saved; 5541 if (delta < mi->mi_acdirmin) 5542 delta = mi->mi_acdirmin; 5543 else if (delta > mi->mi_acdirmax) 5544 delta = mi->mi_acdirmax; 5545 } 5546 drp->r_time_attr_inval = now + delta; 5547 mutex_exit(&drp->r_statelock); 5548 dnlc_update(dvp, nm, *vpp); 5549 5550 /* 5551 * Even though we have a valid directory attr cache 5552 * and dnlc entry, we may not have access. 5553 * This should almost always hit the cache. 5554 */ 5555 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5556 if (e.error) { 5557 VN_RELE(*vpp); 5558 *vpp = NULL; 5559 } 5560 5561 if (*vpp == DNLC_NO_VNODE) { 5562 VN_RELE(*vpp); 5563 *vpp = NULL; 5564 e.error = ENOENT; 5565 } 5566 } 5567 5568 exit: 5569 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5570 kmem_free(argop, argoplist_size); 5571 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5572 return (e.error); 5573 } 5574 5575 /* 5576 * We need to go over the wire to lookup the name, but 5577 * while we are there verify the directory has not 5578 * changed but if it has, get new attributes and check access 5579 * 5580 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5581 * NVERIFY GETATTR ACCESS 5582 * 5583 * With the results: 5584 * if the NVERIFY failed we must purge the caches, add new attributes, 5585 * and cache new access. 5586 * set a new r_time_attr_inval 5587 * add name to dnlc, possibly negative 5588 * if LOOKUP succeeded 5589 * cache new attributes 5590 */ 5591 static int 5592 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5593 { 5594 COMPOUND4args_clnt args; 5595 COMPOUND4res_clnt res; 5596 fattr4 *ver_fattr; 5597 fattr4_change dchange; 5598 int32_t *ptr; 5599 nfs4_ga_res_t *garp = NULL; 5600 int argoplist_size = 9 * sizeof (nfs_argop4); 5601 nfs_argop4 *argop; 5602 int doqueue; 5603 mntinfo4_t *mi; 5604 nfs4_recov_state_t recov_state; 5605 hrtime_t t; 5606 int isdotdot; 5607 vnode_t *nvp; 5608 nfs_fh4 *fhp; 5609 nfs4_sharedfh_t *sfhp; 5610 nfs4_access_type_t cacc; 5611 rnode4_t *nrp; 5612 rnode4_t *drp = VTOR4(dvp); 5613 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5614 5615 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5616 ASSERT(nm != NULL); 5617 ASSERT(nm[0] != '\0'); 5618 ASSERT(dvp->v_type == VDIR); 5619 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5620 ASSERT(*vpp == NULL); 5621 5622 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5623 isdotdot = 1; 5624 args.ctag = TAG_LOOKUP_PARENT; 5625 } else { 5626 /* 5627 * If dvp were a stub, it should have triggered and caused 5628 * a mount for us to get this far. 5629 */ 5630 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5631 5632 isdotdot = 0; 5633 args.ctag = TAG_LOOKUP; 5634 } 5635 5636 mi = VTOMI4(dvp); 5637 recov_state.rs_flags = 0; 5638 recov_state.rs_num_retry_despite_err = 0; 5639 5640 nvp = NULL; 5641 5642 /* Save the original mount point security information */ 5643 (void) save_mnt_secinfo(mi->mi_curr_serv); 5644 5645 recov_retry: 5646 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5647 &recov_state, NULL); 5648 if (e.error) { 5649 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5650 return (e.error); 5651 } 5652 5653 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5654 5655 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5656 args.array_len = 9; 5657 args.array = argop; 5658 5659 /* 0. putfh file */ 5660 argop[0].argop = OP_CPUTFH; 5661 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5662 5663 /* 1. savefh for the nverify */ 5664 argop[1].argop = OP_SAVEFH; 5665 5666 /* 2. lookup name */ 5667 if (isdotdot) { 5668 argop[2].argop = OP_LOOKUPP; 5669 } else { 5670 argop[2].argop = OP_CLOOKUP; 5671 argop[2].nfs_argop4_u.opclookup.cname = nm; 5672 } 5673 5674 /* 3. resulting file handle */ 5675 argop[3].argop = OP_GETFH; 5676 5677 /* 4. resulting file attributes */ 5678 argop[4].argop = OP_GETATTR; 5679 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5680 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5681 5682 /* 5. restorefh back the directory for the nverify */ 5683 argop[5].argop = OP_RESTOREFH; 5684 5685 /* 6. nverify the change info */ 5686 argop[6].argop = OP_NVERIFY; 5687 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5688 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5689 ver_fattr->attrlist4 = (char *)&dchange; 5690 ptr = (int32_t *)&dchange; 5691 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5692 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5693 5694 /* 7. getattr directory */ 5695 argop[7].argop = OP_GETATTR; 5696 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5697 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5698 5699 /* 8. access directory */ 5700 argop[8].argop = OP_ACCESS; 5701 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5702 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5703 5704 doqueue = 1; 5705 t = gethrtime(); 5706 5707 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5708 5709 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5710 /* 5711 * For WRONGSEC of a non-dotdot case, send secinfo directly 5712 * from this thread, do not go thru the recovery thread since 5713 * we need the nm information. 5714 * 5715 * Not doing dotdot case because there is no specification 5716 * for (PUTFH, SECINFO "..") yet. 5717 */ 5718 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5719 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5720 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5721 &recov_state, FALSE); 5722 else 5723 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5724 &recov_state, TRUE); 5725 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5726 kmem_free(argop, argoplist_size); 5727 if (!e.error) 5728 goto recov_retry; 5729 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5730 return (e.error); 5731 } 5732 5733 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5734 OP_LOOKUP, NULL) == FALSE) { 5735 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5736 &recov_state, TRUE); 5737 5738 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5739 kmem_free(argop, argoplist_size); 5740 goto recov_retry; 5741 } 5742 } 5743 5744 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5745 5746 if (e.error || res.array_len == 0) { 5747 /* 5748 * If e.error isn't set, then reply has no ops (or we couldn't 5749 * be here). The only legal way to reply without an op array 5750 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5751 * be in the reply for all other status values. 5752 * 5753 * For valid replies without an ops array, return ENOTSUP 5754 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5755 * return EIO -- don't trust status. 5756 */ 5757 if (e.error == 0) 5758 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5759 ENOTSUP : EIO; 5760 5761 kmem_free(argop, argoplist_size); 5762 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5763 return (e.error); 5764 } 5765 5766 e.error = geterrno4(res.status); 5767 5768 /* 5769 * The PUTFH and SAVEFH may have failed. 5770 */ 5771 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5772 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5773 nfs4_purge_stale_fh(e.error, dvp, cr); 5774 goto exit; 5775 } 5776 5777 /* 5778 * Check if the file exists, if it does delay entering 5779 * into the dnlc until after we update the directory 5780 * attributes so we don't cause it to get purged immediately. 5781 */ 5782 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5783 /* 5784 * The lookup failed, probably no entry 5785 */ 5786 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5787 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5788 goto exit; 5789 } 5790 5791 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5792 /* 5793 * The file exists but we can't get its fh for 5794 * some unknown reason. Error out to be safe. 5795 */ 5796 goto exit; 5797 } 5798 5799 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5800 if (fhp->nfs_fh4_len == 0) { 5801 /* 5802 * The file exists but a bogus fh 5803 * some unknown reason. Error out to be safe. 5804 */ 5805 e.error = EIO; 5806 goto exit; 5807 } 5808 sfhp = sfh4_get(fhp, mi); 5809 5810 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5811 sfh4_rele(&sfhp); 5812 goto exit; 5813 } 5814 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5815 5816 /* 5817 * The RESTOREFH may have failed 5818 */ 5819 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5820 sfh4_rele(&sfhp); 5821 e.error = EIO; 5822 goto exit; 5823 } 5824 5825 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5826 /* 5827 * First make sure the NVERIFY failed as we expected, 5828 * if it didn't then be conservative and error out 5829 * as we can't trust the directory. 5830 */ 5831 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5832 sfh4_rele(&sfhp); 5833 e.error = EIO; 5834 goto exit; 5835 } 5836 5837 /* 5838 * We know the NVERIFY "failed" so the directory has changed, 5839 * so we must: 5840 * purge the caches (access and indirectly dnlc if needed) 5841 */ 5842 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5843 5844 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5845 sfh4_rele(&sfhp); 5846 goto exit; 5847 } 5848 nfs4_attr_cache(dvp, 5849 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5850 t, cr, FALSE, NULL); 5851 5852 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5853 nfs4_purge_stale_fh(e.error, dvp, cr); 5854 sfh4_rele(&sfhp); 5855 e.error = geterrno4(res.status); 5856 goto exit; 5857 } 5858 5859 /* 5860 * Now we know the directory is valid, 5861 * cache new directory access 5862 */ 5863 nfs4_access_cache(drp, 5864 args.array[8].nfs_argop4_u.opaccess.access, 5865 res.array[8].nfs_resop4_u.opaccess.access, cr); 5866 5867 /* 5868 * recheck VEXEC access 5869 */ 5870 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5871 if (cacc != NFS4_ACCESS_ALLOWED) { 5872 /* 5873 * Directory permissions might have been revoked 5874 */ 5875 if (cacc == NFS4_ACCESS_DENIED) { 5876 sfh4_rele(&sfhp); 5877 e.error = EACCES; 5878 goto exit; 5879 } 5880 5881 /* 5882 * Somehow we must not have asked for enough 5883 * so try a singleton ACCESS should never happen 5884 */ 5885 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5886 if (e.error) { 5887 sfh4_rele(&sfhp); 5888 goto exit; 5889 } 5890 } 5891 5892 e.error = geterrno4(res.status); 5893 } else { 5894 hrtime_t now; 5895 hrtime_t delta = 0; 5896 5897 e.error = 0; 5898 5899 /* 5900 * Because the NVERIFY "succeeded" we know that the 5901 * directory attributes are still valid 5902 * so update r_time_attr_inval 5903 */ 5904 now = gethrtime(); 5905 mutex_enter(&drp->r_statelock); 5906 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5907 delta = now - drp->r_time_attr_saved; 5908 if (delta < mi->mi_acdirmin) 5909 delta = mi->mi_acdirmin; 5910 else if (delta > mi->mi_acdirmax) 5911 delta = mi->mi_acdirmax; 5912 } 5913 drp->r_time_attr_inval = now + delta; 5914 mutex_exit(&drp->r_statelock); 5915 5916 /* 5917 * Even though we have a valid directory attr cache, 5918 * we may not have access. 5919 * This should almost always hit the cache. 5920 */ 5921 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5922 if (e.error) { 5923 sfh4_rele(&sfhp); 5924 goto exit; 5925 } 5926 } 5927 5928 /* 5929 * Now we have successfully completed the lookup, if the 5930 * directory has changed we now have the valid attributes. 5931 * We also know we have directory access. 5932 * Create the new rnode and insert it in the dnlc. 5933 */ 5934 if (isdotdot) { 5935 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5936 if (e.error) { 5937 sfh4_rele(&sfhp); 5938 goto exit; 5939 } 5940 /* 5941 * XXX if nfs4_make_dotdot uses an existing rnode 5942 * XXX it doesn't update the attributes. 5943 * XXX for now just save them again to save an OTW 5944 */ 5945 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5946 } else { 5947 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5948 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5949 } 5950 sfh4_rele(&sfhp); 5951 5952 nrp = VTOR4(nvp); 5953 mutex_enter(&nrp->r_statev4_lock); 5954 if (!nrp->created_v4) { 5955 mutex_exit(&nrp->r_statev4_lock); 5956 dnlc_update(dvp, nm, nvp); 5957 } else 5958 mutex_exit(&nrp->r_statev4_lock); 5959 5960 *vpp = nvp; 5961 5962 exit: 5963 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5964 kmem_free(argop, argoplist_size); 5965 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5966 return (e.error); 5967 } 5968 5969 #ifdef DEBUG 5970 void 5971 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 5972 { 5973 uint_t i, len; 5974 zoneid_t zoneid = getzoneid(); 5975 char *s; 5976 5977 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 5978 for (i = 0; i < argcnt; i++) { 5979 nfs_argop4 *op = &argbase[i]; 5980 switch (op->argop) { 5981 case OP_CPUTFH: 5982 case OP_PUTFH: 5983 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 5984 break; 5985 case OP_PUTROOTFH: 5986 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 5987 break; 5988 case OP_CLOOKUP: 5989 s = op->nfs_argop4_u.opclookup.cname; 5990 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5991 break; 5992 case OP_LOOKUP: 5993 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 5994 &len, NULL); 5995 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5996 kmem_free(s, len); 5997 break; 5998 case OP_LOOKUPP: 5999 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 6000 break; 6001 case OP_GETFH: 6002 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 6003 break; 6004 case OP_GETATTR: 6005 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 6006 break; 6007 case OP_OPENATTR: 6008 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 6009 break; 6010 default: 6011 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 6012 op->argop); 6013 break; 6014 } 6015 } 6016 } 6017 #endif 6018 6019 /* 6020 * nfs4lookup_setup - constructs a multi-lookup compound request. 6021 * 6022 * Given the path "nm1/nm2/.../nmn", the following compound requests 6023 * may be created: 6024 * 6025 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6026 * is faster, for now. 6027 * 6028 * l4_getattrs indicates the type of compound requested. 6029 * 6030 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6031 * 6032 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6033 * 6034 * total number of ops is n + 1. 6035 * 6036 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6037 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6038 * before the last component, and only get attributes 6039 * for the last component. Note that the second-to-last 6040 * pathname component is XATTR_RPATH, which does NOT go 6041 * over-the-wire as a lookup. 6042 * 6043 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6044 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6045 * 6046 * and total number of ops is n + 5. 6047 * 6048 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6049 * attribute directory: create lookups plus an OPENATTR 6050 * replacing the last lookup. Note that the last pathname 6051 * component is XATTR_RPATH, which does NOT go over-the-wire 6052 * as a lookup. 6053 * 6054 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6055 * Openattr; Getfh; Getattr } 6056 * 6057 * and total number of ops is n + 5. 6058 * 6059 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6060 * nodes too. 6061 * 6062 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6063 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6064 * 6065 * and total number of ops is 3*n + 1. 6066 * 6067 * All cases: returns the index in the arg array of the final LOOKUP op, or 6068 * -1 if no LOOKUPs were used. 6069 */ 6070 int 6071 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6072 { 6073 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6074 nfs_argop4 *argbase, *argop; 6075 int arglen, argcnt; 6076 int n = 1; /* number of components */ 6077 int nga = 1; /* number of Getattr's in request */ 6078 char c = '\0', *s, *p; 6079 int lookup_idx = -1; 6080 int argoplist_size; 6081 6082 /* set lookuparg response result to 0 */ 6083 lookupargp->resp->status = NFS4_OK; 6084 6085 /* skip leading "/" or "." e.g. ".//./" if there is */ 6086 for (; ; nm++) { 6087 if (*nm != '/' && *nm != '.') 6088 break; 6089 6090 /* ".." is counted as 1 component */ 6091 if (*nm == '.' && *(nm + 1) == '.') 6092 break; 6093 } 6094 6095 /* 6096 * Find n = number of components - nm must be null terminated 6097 * Skip "." components. 6098 */ 6099 if (*nm != '\0') 6100 for (n = 1, s = nm; *s != '\0'; s++) { 6101 if ((*s == '/') && (*(s + 1) != '/') && 6102 (*(s + 1) != '\0') && 6103 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6104 *(s + 2) == '\0'))) 6105 n++; 6106 } 6107 else 6108 n = 0; 6109 6110 /* 6111 * nga is number of components that need Getfh+Getattr 6112 */ 6113 switch (l4_getattrs) { 6114 case LKP4_NO_ATTRIBUTES: 6115 nga = 0; 6116 break; 6117 case LKP4_ALL_ATTRIBUTES: 6118 nga = n; 6119 /* 6120 * Always have at least 1 getfh, getattr pair 6121 */ 6122 if (nga == 0) 6123 nga++; 6124 break; 6125 case LKP4_LAST_ATTRDIR: 6126 case LKP4_LAST_NAMED_ATTR: 6127 nga = n+1; 6128 break; 6129 } 6130 6131 /* 6132 * If change to use the filehandle attr instead of getfh 6133 * the following line can be deleted. 6134 */ 6135 nga *= 2; 6136 6137 /* 6138 * calculate number of ops in request as 6139 * header + trailer + lookups + getattrs 6140 */ 6141 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6142 6143 argoplist_size = arglen * sizeof (nfs_argop4); 6144 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6145 lookupargp->argsp->array = argop; 6146 6147 argcnt = lookupargp->header_len; 6148 argop += argcnt; 6149 6150 /* 6151 * loop and create a lookup op and possibly getattr/getfh for 6152 * each component. Skip "." components. 6153 */ 6154 for (s = nm; *s != '\0'; s = p) { 6155 /* 6156 * Set up a pathname struct for each component if needed 6157 */ 6158 while (*s == '/') 6159 s++; 6160 if (*s == '\0') 6161 break; 6162 6163 for (p = s; (*p != '/') && (*p != '\0'); p++) 6164 ; 6165 c = *p; 6166 *p = '\0'; 6167 6168 if (s[0] == '.' && s[1] == '\0') { 6169 *p = c; 6170 continue; 6171 } 6172 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6173 strcmp(s, XATTR_RPATH) == 0) { 6174 /* getfh XXX may not be needed in future */ 6175 argop->argop = OP_GETFH; 6176 argop++; 6177 argcnt++; 6178 6179 /* getattr */ 6180 argop->argop = OP_GETATTR; 6181 argop->nfs_argop4_u.opgetattr.attr_request = 6182 lookupargp->ga_bits; 6183 argop->nfs_argop4_u.opgetattr.mi = 6184 lookupargp->mi; 6185 argop++; 6186 argcnt++; 6187 6188 /* openattr */ 6189 argop->argop = OP_OPENATTR; 6190 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6191 strcmp(s, XATTR_RPATH) == 0) { 6192 /* openattr */ 6193 argop->argop = OP_OPENATTR; 6194 argop++; 6195 argcnt++; 6196 6197 /* getfh XXX may not be needed in future */ 6198 argop->argop = OP_GETFH; 6199 argop++; 6200 argcnt++; 6201 6202 /* getattr */ 6203 argop->argop = OP_GETATTR; 6204 argop->nfs_argop4_u.opgetattr.attr_request = 6205 lookupargp->ga_bits; 6206 argop->nfs_argop4_u.opgetattr.mi = 6207 lookupargp->mi; 6208 argop++; 6209 argcnt++; 6210 *p = c; 6211 continue; 6212 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6213 /* lookupp */ 6214 argop->argop = OP_LOOKUPP; 6215 } else { 6216 /* lookup */ 6217 argop->argop = OP_LOOKUP; 6218 (void) str_to_utf8(s, 6219 &argop->nfs_argop4_u.oplookup.objname); 6220 } 6221 lookup_idx = argcnt; 6222 argop++; 6223 argcnt++; 6224 6225 *p = c; 6226 6227 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6228 /* getfh XXX may not be needed in future */ 6229 argop->argop = OP_GETFH; 6230 argop++; 6231 argcnt++; 6232 6233 /* getattr */ 6234 argop->argop = OP_GETATTR; 6235 argop->nfs_argop4_u.opgetattr.attr_request = 6236 lookupargp->ga_bits; 6237 argop->nfs_argop4_u.opgetattr.mi = 6238 lookupargp->mi; 6239 argop++; 6240 argcnt++; 6241 } 6242 } 6243 6244 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6245 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6246 if (needgetfh) { 6247 /* stick in a post-lookup getfh */ 6248 argop->argop = OP_GETFH; 6249 argcnt++; 6250 argop++; 6251 } 6252 /* post-lookup getattr */ 6253 argop->argop = OP_GETATTR; 6254 argop->nfs_argop4_u.opgetattr.attr_request = 6255 lookupargp->ga_bits; 6256 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6257 argcnt++; 6258 } 6259 argcnt += lookupargp->trailer_len; /* actual op count */ 6260 lookupargp->argsp->array_len = argcnt; 6261 lookupargp->arglen = arglen; 6262 6263 #ifdef DEBUG 6264 if (nfs4_client_lookup_debug) 6265 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6266 #endif 6267 6268 return (lookup_idx); 6269 } 6270 6271 static int 6272 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6273 { 6274 COMPOUND4args_clnt args; 6275 COMPOUND4res_clnt res; 6276 GETFH4res *gf_res = NULL; 6277 nfs_argop4 argop[4]; 6278 nfs_resop4 *resop = NULL; 6279 nfs4_sharedfh_t *sfhp; 6280 hrtime_t t; 6281 nfs4_error_t e; 6282 6283 rnode4_t *drp; 6284 int doqueue = 1; 6285 vnode_t *vp; 6286 int needrecov = 0; 6287 nfs4_recov_state_t recov_state; 6288 6289 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6290 6291 *avp = NULL; 6292 recov_state.rs_flags = 0; 6293 recov_state.rs_num_retry_despite_err = 0; 6294 6295 recov_retry: 6296 /* COMPOUND: putfh, openattr, getfh, getattr */ 6297 args.array_len = 4; 6298 args.array = argop; 6299 args.ctag = TAG_OPENATTR; 6300 6301 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6302 if (e.error) 6303 return (e.error); 6304 6305 drp = VTOR4(dvp); 6306 6307 /* putfh */ 6308 argop[0].argop = OP_CPUTFH; 6309 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6310 6311 /* openattr */ 6312 argop[1].argop = OP_OPENATTR; 6313 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6314 6315 /* getfh */ 6316 argop[2].argop = OP_GETFH; 6317 6318 /* getattr */ 6319 argop[3].argop = OP_GETATTR; 6320 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6321 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6322 6323 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6324 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6325 rnode4info(drp))); 6326 6327 t = gethrtime(); 6328 6329 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6330 6331 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6332 if (needrecov) { 6333 bool_t abort; 6334 6335 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6336 "nfs4openattr: initiating recovery\n")); 6337 6338 abort = nfs4_start_recovery(&e, 6339 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6340 OP_OPENATTR, NULL); 6341 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6342 if (!e.error) { 6343 e.error = geterrno4(res.status); 6344 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6345 } 6346 if (abort == FALSE) 6347 goto recov_retry; 6348 return (e.error); 6349 } 6350 6351 if (e.error) { 6352 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6353 return (e.error); 6354 } 6355 6356 if (res.status) { 6357 /* 6358 * If OTW errro is NOTSUPP, then it should be 6359 * translated to EINVAL. All Solaris file system 6360 * implementations return EINVAL to the syscall layer 6361 * when the attrdir cannot be created due to an 6362 * implementation restriction or noxattr mount option. 6363 */ 6364 if (res.status == NFS4ERR_NOTSUPP) { 6365 mutex_enter(&drp->r_statelock); 6366 if (drp->r_xattr_dir) 6367 VN_RELE(drp->r_xattr_dir); 6368 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6369 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6370 mutex_exit(&drp->r_statelock); 6371 6372 e.error = EINVAL; 6373 } else { 6374 e.error = geterrno4(res.status); 6375 } 6376 6377 if (e.error) { 6378 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6379 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6380 needrecov); 6381 return (e.error); 6382 } 6383 } 6384 6385 resop = &res.array[0]; /* putfh res */ 6386 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6387 6388 resop = &res.array[1]; /* openattr res */ 6389 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6390 6391 resop = &res.array[2]; /* getfh res */ 6392 gf_res = &resop->nfs_resop4_u.opgetfh; 6393 if (gf_res->object.nfs_fh4_len == 0) { 6394 *avp = NULL; 6395 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6396 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6397 return (ENOENT); 6398 } 6399 6400 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6401 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6402 dvp->v_vfsp, t, cr, dvp, 6403 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH)); 6404 sfh4_rele(&sfhp); 6405 6406 if (e.error) 6407 PURGE_ATTRCACHE4(vp); 6408 6409 mutex_enter(&vp->v_lock); 6410 vp->v_flag |= V_XATTRDIR; 6411 mutex_exit(&vp->v_lock); 6412 6413 *avp = vp; 6414 6415 mutex_enter(&drp->r_statelock); 6416 if (drp->r_xattr_dir) 6417 VN_RELE(drp->r_xattr_dir); 6418 VN_HOLD(vp); 6419 drp->r_xattr_dir = vp; 6420 6421 /* 6422 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6423 * NULL. xattrs could be created at any time, and we have no 6424 * way to update pc4_xattr_exists in the base object if/when 6425 * it happens. 6426 */ 6427 drp->r_pathconf.pc4_xattr_valid = 0; 6428 6429 mutex_exit(&drp->r_statelock); 6430 6431 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6432 6433 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6434 6435 return (0); 6436 } 6437 6438 /* ARGSUSED */ 6439 static int 6440 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6441 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6442 vsecattr_t *vsecp) 6443 { 6444 int error; 6445 vnode_t *vp = NULL; 6446 rnode4_t *rp; 6447 struct vattr vattr; 6448 rnode4_t *drp; 6449 vnode_t *tempvp; 6450 enum createmode4 createmode; 6451 bool_t must_trunc = FALSE; 6452 int truncating = 0; 6453 6454 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6455 return (EPERM); 6456 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6457 return (EINVAL); 6458 } 6459 6460 /* . and .. have special meaning in the protocol, reject them. */ 6461 6462 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6463 return (EISDIR); 6464 6465 drp = VTOR4(dvp); 6466 6467 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6468 return (EINTR); 6469 6470 top: 6471 /* 6472 * We make a copy of the attributes because the caller does not 6473 * expect us to change what va points to. 6474 */ 6475 vattr = *va; 6476 6477 /* 6478 * If the pathname is "", then dvp is the root vnode of 6479 * a remote file mounted over a local directory. 6480 * All that needs to be done is access 6481 * checking and truncation. Note that we avoid doing 6482 * open w/ create because the parent directory might 6483 * be in pseudo-fs and the open would fail. 6484 */ 6485 if (*nm == '\0') { 6486 error = 0; 6487 VN_HOLD(dvp); 6488 vp = dvp; 6489 must_trunc = TRUE; 6490 } else { 6491 /* 6492 * We need to go over the wire, just to be sure whether the 6493 * file exists or not. Using the DNLC can be dangerous in 6494 * this case when making a decision regarding existence. 6495 */ 6496 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6497 } 6498 6499 if (exclusive) 6500 createmode = EXCLUSIVE4; 6501 else 6502 createmode = GUARDED4; 6503 6504 /* 6505 * error would be set if the file does not exist on the 6506 * server, so lets go create it. 6507 */ 6508 if (error) { 6509 goto create_otw; 6510 } 6511 6512 /* 6513 * File does exist on the server 6514 */ 6515 if (exclusive == EXCL) 6516 error = EEXIST; 6517 else if (vp->v_type == VDIR && (mode & VWRITE)) 6518 error = EISDIR; 6519 else { 6520 /* 6521 * If vnode is a device, create special vnode. 6522 */ 6523 if (ISVDEV(vp->v_type)) { 6524 tempvp = vp; 6525 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6526 VN_RELE(tempvp); 6527 } 6528 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6529 if ((vattr.va_mask & AT_SIZE) && 6530 vp->v_type == VREG) { 6531 rp = VTOR4(vp); 6532 /* 6533 * Check here for large file handled 6534 * by LF-unaware process (as 6535 * ufs_create() does) 6536 */ 6537 if (!(flags & FOFFMAX)) { 6538 mutex_enter(&rp->r_statelock); 6539 if (rp->r_size > MAXOFF32_T) 6540 error = EOVERFLOW; 6541 mutex_exit(&rp->r_statelock); 6542 } 6543 6544 /* if error is set then we need to return */ 6545 if (error) { 6546 nfs_rw_exit(&drp->r_rwlock); 6547 VN_RELE(vp); 6548 return (error); 6549 } 6550 6551 if (must_trunc) { 6552 vattr.va_mask = AT_SIZE; 6553 error = nfs4setattr(vp, &vattr, 0, cr, 6554 NULL); 6555 } else { 6556 /* 6557 * we know we have a regular file that already 6558 * exists and we may end up truncating the file 6559 * as a result of the open_otw, so flush out 6560 * any dirty pages for this file first. 6561 */ 6562 if (nfs4_has_pages(vp) && 6563 ((rp->r_flags & R4DIRTY) || 6564 rp->r_count > 0 || 6565 rp->r_mapcnt > 0)) { 6566 error = nfs4_putpage(vp, 6567 (offset_t)0, 0, 0, cr, ct); 6568 if (error && (error == ENOSPC || 6569 error == EDQUOT)) { 6570 mutex_enter( 6571 &rp->r_statelock); 6572 if (!rp->r_error) 6573 rp->r_error = 6574 error; 6575 mutex_exit( 6576 &rp->r_statelock); 6577 } 6578 } 6579 vattr.va_mask = (AT_SIZE | 6580 AT_TYPE | AT_MODE); 6581 vattr.va_type = VREG; 6582 createmode = UNCHECKED4; 6583 truncating = 1; 6584 goto create_otw; 6585 } 6586 } 6587 } 6588 } 6589 nfs_rw_exit(&drp->r_rwlock); 6590 if (error) { 6591 VN_RELE(vp); 6592 } else { 6593 vnode_t *tvp; 6594 rnode4_t *trp; 6595 /* 6596 * existing file got truncated, notify. 6597 */ 6598 tvp = vp; 6599 if (vp->v_type == VREG) { 6600 trp = VTOR4(vp); 6601 if (IS_SHADOW(vp, trp)) 6602 tvp = RTOV4(trp); 6603 } 6604 vnevent_create(tvp, ct); 6605 *vpp = vp; 6606 } 6607 return (error); 6608 6609 create_otw: 6610 dnlc_remove(dvp, nm); 6611 6612 ASSERT(vattr.va_mask & AT_TYPE); 6613 6614 /* 6615 * If not a regular file let nfs4mknod() handle it. 6616 */ 6617 if (vattr.va_type != VREG) { 6618 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6619 nfs_rw_exit(&drp->r_rwlock); 6620 return (error); 6621 } 6622 6623 /* 6624 * It _is_ a regular file. 6625 */ 6626 ASSERT(vattr.va_mask & AT_MODE); 6627 if (MANDMODE(vattr.va_mode)) { 6628 nfs_rw_exit(&drp->r_rwlock); 6629 return (EACCES); 6630 } 6631 6632 /* 6633 * If this happens to be a mknod of a regular file, then flags will 6634 * have neither FREAD or FWRITE. However, we must set at least one 6635 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6636 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6637 * set (based on openmode specified by app). 6638 */ 6639 if ((flags & (FREAD|FWRITE)) == 0) 6640 flags |= (FREAD|FWRITE); 6641 6642 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6643 6644 if (vp != NULL) { 6645 /* if create was successful, throw away the file's pages */ 6646 if (!error && (vattr.va_mask & AT_SIZE)) 6647 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6648 cr); 6649 /* release the lookup hold */ 6650 VN_RELE(vp); 6651 vp = NULL; 6652 } 6653 6654 /* 6655 * validate that we opened a regular file. This handles a misbehaving 6656 * server that returns an incorrect FH. 6657 */ 6658 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6659 error = EISDIR; 6660 VN_RELE(*vpp); 6661 } 6662 6663 /* 6664 * If this is not an exclusive create, then the CREATE 6665 * request will be made with the GUARDED mode set. This 6666 * means that the server will return EEXIST if the file 6667 * exists. The file could exist because of a retransmitted 6668 * request. In this case, we recover by starting over and 6669 * checking to see whether the file exists. This second 6670 * time through it should and a CREATE request will not be 6671 * sent. 6672 * 6673 * This handles the problem of a dangling CREATE request 6674 * which contains attributes which indicate that the file 6675 * should be truncated. This retransmitted request could 6676 * possibly truncate valid data in the file if not caught 6677 * by the duplicate request mechanism on the server or if 6678 * not caught by other means. The scenario is: 6679 * 6680 * Client transmits CREATE request with size = 0 6681 * Client times out, retransmits request. 6682 * Response to the first request arrives from the server 6683 * and the client proceeds on. 6684 * Client writes data to the file. 6685 * The server now processes retransmitted CREATE request 6686 * and truncates file. 6687 * 6688 * The use of the GUARDED CREATE request prevents this from 6689 * happening because the retransmitted CREATE would fail 6690 * with EEXIST and would not truncate the file. 6691 */ 6692 if (error == EEXIST && exclusive == NONEXCL) { 6693 #ifdef DEBUG 6694 nfs4_create_misses++; 6695 #endif 6696 goto top; 6697 } 6698 nfs_rw_exit(&drp->r_rwlock); 6699 if (truncating && !error && *vpp) { 6700 vnode_t *tvp; 6701 rnode4_t *trp; 6702 /* 6703 * existing file got truncated, notify. 6704 */ 6705 tvp = *vpp; 6706 trp = VTOR4(tvp); 6707 if (IS_SHADOW(tvp, trp)) 6708 tvp = RTOV4(trp); 6709 vnevent_create(tvp, ct); 6710 } 6711 return (error); 6712 } 6713 6714 /* 6715 * Create compound (for mkdir, mknod, symlink): 6716 * { Putfh <dfh>; Create; Getfh; Getattr } 6717 * It's okay if setattr failed to set gid - this is not considered 6718 * an error, but purge attrs in that case. 6719 */ 6720 static int 6721 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6722 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6723 { 6724 int need_end_op = FALSE; 6725 COMPOUND4args_clnt args; 6726 COMPOUND4res_clnt res, *resp = NULL; 6727 nfs_argop4 *argop; 6728 nfs_resop4 *resop; 6729 int doqueue; 6730 mntinfo4_t *mi; 6731 rnode4_t *drp = VTOR4(dvp); 6732 change_info4 *cinfo; 6733 GETFH4res *gf_res; 6734 struct vattr vattr; 6735 vnode_t *vp; 6736 fattr4 *crattr; 6737 bool_t needrecov = FALSE; 6738 nfs4_recov_state_t recov_state; 6739 nfs4_sharedfh_t *sfhp = NULL; 6740 hrtime_t t; 6741 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6742 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6743 dirattr_info_t dinfo, *dinfop; 6744 servinfo4_t *svp; 6745 bitmap4 supp_attrs; 6746 6747 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6748 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6749 6750 mi = VTOMI4(dvp); 6751 6752 /* 6753 * Make sure we properly deal with setting the right gid 6754 * on a new directory to reflect the parent's setgid bit 6755 */ 6756 setgid_flag = 0; 6757 if (type == NF4DIR) { 6758 struct vattr dva; 6759 6760 va->va_mode &= ~VSGID; 6761 dva.va_mask = AT_MODE | AT_GID; 6762 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6763 6764 /* 6765 * If the parent's directory has the setgid bit set 6766 * _and_ the client was able to get a valid mapping 6767 * for the parent dir's owner_group, we want to 6768 * append NVERIFY(owner_group == dva.va_gid) and 6769 * SETTATTR to the CREATE compound. 6770 */ 6771 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6772 setgid_flag = 1; 6773 va->va_mode |= VSGID; 6774 if (dva.va_gid != GID_NOBODY) { 6775 va->va_mask |= AT_GID; 6776 va->va_gid = dva.va_gid; 6777 } 6778 } 6779 } 6780 } 6781 6782 /* 6783 * Create ops: 6784 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6785 * 5:restorefh(dir) 6:getattr(dir) 6786 * 6787 * if (setgid) 6788 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6789 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6790 * 8:nverify 9:setattr 6791 */ 6792 if (setgid_flag) { 6793 numops = 10; 6794 idx_create = 1; 6795 idx_fattr = 3; 6796 } else { 6797 numops = 7; 6798 idx_create = 2; 6799 idx_fattr = 4; 6800 } 6801 6802 ASSERT(nfs_zone() == mi->mi_zone); 6803 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6804 return (EINTR); 6805 } 6806 recov_state.rs_flags = 0; 6807 recov_state.rs_num_retry_despite_err = 0; 6808 6809 argoplist_size = numops * sizeof (nfs_argop4); 6810 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6811 6812 recov_retry: 6813 if (type == NF4LNK) 6814 args.ctag = TAG_SYMLINK; 6815 else if (type == NF4DIR) 6816 args.ctag = TAG_MKDIR; 6817 else 6818 args.ctag = TAG_MKNOD; 6819 6820 args.array_len = numops; 6821 args.array = argop; 6822 6823 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6824 nfs_rw_exit(&drp->r_rwlock); 6825 kmem_free(argop, argoplist_size); 6826 return (e.error); 6827 } 6828 need_end_op = TRUE; 6829 6830 6831 /* 0: putfh directory */ 6832 argop[0].argop = OP_CPUTFH; 6833 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6834 6835 /* 1/2: Create object */ 6836 argop[idx_create].argop = OP_CCREATE; 6837 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6838 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6839 if (type == NF4LNK) { 6840 /* 6841 * symlink, treat name as data 6842 */ 6843 ASSERT(data != NULL); 6844 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6845 (char *)data; 6846 } 6847 if (type == NF4BLK || type == NF4CHR) { 6848 ASSERT(data != NULL); 6849 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6850 *((specdata4 *)data); 6851 } 6852 6853 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6854 6855 svp = drp->r_server; 6856 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6857 supp_attrs = svp->sv_supp_attrs; 6858 nfs_rw_exit(&svp->sv_lock); 6859 6860 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6861 nfs_rw_exit(&drp->r_rwlock); 6862 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6863 e.error = EINVAL; 6864 kmem_free(argop, argoplist_size); 6865 return (e.error); 6866 } 6867 6868 /* 2/3: getfh fh of created object */ 6869 ASSERT(idx_create + 1 == idx_fattr - 1); 6870 argop[idx_create + 1].argop = OP_GETFH; 6871 6872 /* 3/4: getattr of new object */ 6873 argop[idx_fattr].argop = OP_GETATTR; 6874 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6875 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6876 6877 if (setgid_flag) { 6878 vattr_t _v; 6879 6880 argop[4].argop = OP_SAVEFH; 6881 6882 argop[5].argop = OP_CPUTFH; 6883 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6884 6885 argop[6].argop = OP_GETATTR; 6886 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6887 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6888 6889 argop[7].argop = OP_RESTOREFH; 6890 6891 /* 6892 * nverify 6893 * 6894 * XXX - Revisit the last argument to nfs4_end_op() 6895 * once 5020486 is fixed. 6896 */ 6897 _v.va_mask = AT_GID; 6898 _v.va_gid = va->va_gid; 6899 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6900 supp_attrs)) { 6901 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6902 nfs_rw_exit(&drp->r_rwlock); 6903 nfs4_fattr4_free(crattr); 6904 kmem_free(argop, argoplist_size); 6905 return (e.error); 6906 } 6907 6908 /* 6909 * setattr 6910 * 6911 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6912 * so no need for stateid or flags. Also we specify NULL 6913 * rp since we're only interested in setting owner_group 6914 * attributes. 6915 */ 6916 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6917 &e.error, 0); 6918 6919 if (e.error) { 6920 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6921 nfs_rw_exit(&drp->r_rwlock); 6922 nfs4_fattr4_free(crattr); 6923 nfs4args_verify_free(&argop[8]); 6924 kmem_free(argop, argoplist_size); 6925 return (e.error); 6926 } 6927 } else { 6928 argop[1].argop = OP_SAVEFH; 6929 6930 argop[5].argop = OP_RESTOREFH; 6931 6932 argop[6].argop = OP_GETATTR; 6933 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6934 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6935 } 6936 6937 dnlc_remove(dvp, nm); 6938 6939 doqueue = 1; 6940 t = gethrtime(); 6941 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 6942 6943 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 6944 if (e.error) { 6945 PURGE_ATTRCACHE4(dvp); 6946 if (!needrecov) 6947 goto out; 6948 } 6949 6950 if (needrecov) { 6951 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 6952 OP_CREATE, NULL) == FALSE) { 6953 nfs4_end_op(mi, dvp, NULL, &recov_state, 6954 needrecov); 6955 need_end_op = FALSE; 6956 nfs4_fattr4_free(crattr); 6957 if (setgid_flag) { 6958 nfs4args_verify_free(&argop[8]); 6959 nfs4args_setattr_free(&argop[9]); 6960 } 6961 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6962 goto recov_retry; 6963 } 6964 } 6965 6966 resp = &res; 6967 6968 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 6969 6970 if (res.status == NFS4ERR_BADOWNER) 6971 nfs4_log_badowner(mi, OP_CREATE); 6972 6973 e.error = geterrno4(res.status); 6974 6975 /* 6976 * This check is left over from when create was implemented 6977 * using a setattr op (instead of createattrs). If the 6978 * putfh/create/getfh failed, the error was returned. If 6979 * setattr/getattr failed, we keep going. 6980 * 6981 * It might be better to get rid of the GETFH also, and just 6982 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 6983 * Then if any of the operations failed, we could return the 6984 * error now, and remove much of the error code below. 6985 */ 6986 if (res.array_len <= idx_fattr) { 6987 /* 6988 * Either Putfh, Create or Getfh failed. 6989 */ 6990 PURGE_ATTRCACHE4(dvp); 6991 /* 6992 * nfs4_purge_stale_fh() may generate otw calls through 6993 * nfs4_invalidate_pages. Hence the need to call 6994 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 6995 */ 6996 nfs4_end_op(mi, dvp, NULL, &recov_state, 6997 needrecov); 6998 need_end_op = FALSE; 6999 nfs4_purge_stale_fh(e.error, dvp, cr); 7000 goto out; 7001 } 7002 } 7003 7004 resop = &res.array[idx_create]; /* create res */ 7005 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 7006 7007 resop = &res.array[idx_create + 1]; /* getfh res */ 7008 gf_res = &resop->nfs_resop4_u.opgetfh; 7009 7010 sfhp = sfh4_get(&gf_res->object, mi); 7011 if (e.error) { 7012 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 7013 fn_get(VTOSV(dvp)->sv_name, nm)); 7014 if (vp->v_type == VNON) { 7015 vattr.va_mask = AT_TYPE; 7016 /* 7017 * Need to call nfs4_end_op before nfs4getattr to avoid 7018 * potential nfs4_start_op deadlock. See RFE 4777612. 7019 */ 7020 nfs4_end_op(mi, dvp, NULL, &recov_state, 7021 needrecov); 7022 need_end_op = FALSE; 7023 e.error = nfs4getattr(vp, &vattr, cr); 7024 if (e.error) { 7025 VN_RELE(vp); 7026 *vpp = NULL; 7027 goto out; 7028 } 7029 vp->v_type = vattr.va_type; 7030 } 7031 e.error = 0; 7032 } else { 7033 *vpp = vp = makenfs4node(sfhp, 7034 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7035 dvp->v_vfsp, t, cr, 7036 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 7037 } 7038 7039 /* 7040 * If compound succeeded, then update dir attrs 7041 */ 7042 if (res.status == NFS4_OK) { 7043 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7044 dinfo.di_cred = cr; 7045 dinfo.di_time_call = t; 7046 dinfop = &dinfo; 7047 } else 7048 dinfop = NULL; 7049 7050 /* Update directory cache attribute, readdir and dnlc caches */ 7051 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7052 7053 out: 7054 if (sfhp != NULL) 7055 sfh4_rele(&sfhp); 7056 nfs_rw_exit(&drp->r_rwlock); 7057 nfs4_fattr4_free(crattr); 7058 if (setgid_flag) { 7059 nfs4args_verify_free(&argop[8]); 7060 nfs4args_setattr_free(&argop[9]); 7061 } 7062 if (resp) 7063 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7064 if (need_end_op) 7065 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7066 7067 kmem_free(argop, argoplist_size); 7068 return (e.error); 7069 } 7070 7071 /* ARGSUSED */ 7072 static int 7073 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7074 int mode, vnode_t **vpp, cred_t *cr) 7075 { 7076 int error; 7077 vnode_t *vp; 7078 nfs_ftype4 type; 7079 specdata4 spec, *specp = NULL; 7080 7081 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7082 7083 switch (va->va_type) { 7084 case VCHR: 7085 case VBLK: 7086 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7087 spec.specdata1 = getmajor(va->va_rdev); 7088 spec.specdata2 = getminor(va->va_rdev); 7089 specp = &spec; 7090 break; 7091 7092 case VFIFO: 7093 type = NF4FIFO; 7094 break; 7095 case VSOCK: 7096 type = NF4SOCK; 7097 break; 7098 7099 default: 7100 return (EINVAL); 7101 } 7102 7103 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7104 if (error) { 7105 return (error); 7106 } 7107 7108 /* 7109 * This might not be needed any more; special case to deal 7110 * with problematic v2/v3 servers. Since create was unable 7111 * to set group correctly, not sure what hope setattr has. 7112 */ 7113 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7114 va->va_mask = AT_GID; 7115 (void) nfs4setattr(vp, va, 0, cr, NULL); 7116 } 7117 7118 /* 7119 * If vnode is a device create special vnode 7120 */ 7121 if (ISVDEV(vp->v_type)) { 7122 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7123 VN_RELE(vp); 7124 } else { 7125 *vpp = vp; 7126 } 7127 return (error); 7128 } 7129 7130 /* 7131 * Remove requires that the current fh be the target directory. 7132 * After the operation, the current fh is unchanged. 7133 * The compound op structure is: 7134 * PUTFH(targetdir), REMOVE 7135 * 7136 * Weirdness: if the vnode to be removed is open 7137 * we rename it instead of removing it and nfs_inactive 7138 * will remove the new name. 7139 */ 7140 /* ARGSUSED */ 7141 static int 7142 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7143 { 7144 COMPOUND4args_clnt args; 7145 COMPOUND4res_clnt res, *resp = NULL; 7146 REMOVE4res *rm_res; 7147 nfs_argop4 argop[3]; 7148 nfs_resop4 *resop; 7149 vnode_t *vp; 7150 char *tmpname; 7151 int doqueue; 7152 mntinfo4_t *mi; 7153 rnode4_t *rp; 7154 rnode4_t *drp; 7155 int needrecov = 0; 7156 nfs4_recov_state_t recov_state; 7157 int isopen; 7158 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7159 dirattr_info_t dinfo; 7160 7161 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7162 return (EPERM); 7163 drp = VTOR4(dvp); 7164 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7165 return (EINTR); 7166 7167 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7168 if (e.error) { 7169 nfs_rw_exit(&drp->r_rwlock); 7170 return (e.error); 7171 } 7172 7173 if (vp->v_type == VDIR) { 7174 VN_RELE(vp); 7175 nfs_rw_exit(&drp->r_rwlock); 7176 return (EISDIR); 7177 } 7178 7179 /* 7180 * First just remove the entry from the name cache, as it 7181 * is most likely the only entry for this vp. 7182 */ 7183 dnlc_remove(dvp, nm); 7184 7185 rp = VTOR4(vp); 7186 7187 /* 7188 * For regular file types, check to see if the file is open by looking 7189 * at the open streams. 7190 * For all other types, check the reference count on the vnode. Since 7191 * they are not opened OTW they never have an open stream. 7192 * 7193 * If the file is open, rename it to .nfsXXXX. 7194 */ 7195 if (vp->v_type != VREG) { 7196 /* 7197 * If the file has a v_count > 1 then there may be more than one 7198 * entry in the name cache due multiple links or an open file, 7199 * but we don't have the real reference count so flush all 7200 * possible entries. 7201 */ 7202 if (vp->v_count > 1) 7203 dnlc_purge_vp(vp); 7204 7205 /* 7206 * Now we have the real reference count. 7207 */ 7208 isopen = vp->v_count > 1; 7209 } else { 7210 mutex_enter(&rp->r_os_lock); 7211 isopen = list_head(&rp->r_open_streams) != NULL; 7212 mutex_exit(&rp->r_os_lock); 7213 } 7214 7215 mutex_enter(&rp->r_statelock); 7216 if (isopen && 7217 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7218 mutex_exit(&rp->r_statelock); 7219 tmpname = newname(); 7220 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7221 if (e.error) 7222 kmem_free(tmpname, MAXNAMELEN); 7223 else { 7224 mutex_enter(&rp->r_statelock); 7225 if (rp->r_unldvp == NULL) { 7226 VN_HOLD(dvp); 7227 rp->r_unldvp = dvp; 7228 if (rp->r_unlcred != NULL) 7229 crfree(rp->r_unlcred); 7230 crhold(cr); 7231 rp->r_unlcred = cr; 7232 rp->r_unlname = tmpname; 7233 } else { 7234 kmem_free(rp->r_unlname, MAXNAMELEN); 7235 rp->r_unlname = tmpname; 7236 } 7237 mutex_exit(&rp->r_statelock); 7238 } 7239 VN_RELE(vp); 7240 nfs_rw_exit(&drp->r_rwlock); 7241 return (e.error); 7242 } 7243 /* 7244 * Actually remove the file/dir 7245 */ 7246 mutex_exit(&rp->r_statelock); 7247 7248 /* 7249 * We need to flush any dirty pages which happen to 7250 * be hanging around before removing the file. 7251 * This shouldn't happen very often since in NFSv4 7252 * we should be close to open consistent. 7253 */ 7254 if (nfs4_has_pages(vp) && 7255 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7256 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7257 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7258 mutex_enter(&rp->r_statelock); 7259 if (!rp->r_error) 7260 rp->r_error = e.error; 7261 mutex_exit(&rp->r_statelock); 7262 } 7263 } 7264 7265 mi = VTOMI4(dvp); 7266 7267 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7268 recov_state.rs_flags = 0; 7269 recov_state.rs_num_retry_despite_err = 0; 7270 7271 recov_retry: 7272 /* 7273 * Remove ops: putfh dir; remove 7274 */ 7275 args.ctag = TAG_REMOVE; 7276 args.array_len = 3; 7277 args.array = argop; 7278 7279 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7280 if (e.error) { 7281 nfs_rw_exit(&drp->r_rwlock); 7282 VN_RELE(vp); 7283 return (e.error); 7284 } 7285 7286 /* putfh directory */ 7287 argop[0].argop = OP_CPUTFH; 7288 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7289 7290 /* remove */ 7291 argop[1].argop = OP_CREMOVE; 7292 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7293 7294 /* getattr dir */ 7295 argop[2].argop = OP_GETATTR; 7296 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7297 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7298 7299 doqueue = 1; 7300 dinfo.di_time_call = gethrtime(); 7301 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7302 7303 PURGE_ATTRCACHE4(vp); 7304 7305 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7306 if (e.error) 7307 PURGE_ATTRCACHE4(dvp); 7308 7309 if (needrecov) { 7310 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7311 NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { 7312 if (!e.error) 7313 (void) xdr_free(xdr_COMPOUND4res_clnt, 7314 (caddr_t)&res); 7315 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7316 needrecov); 7317 goto recov_retry; 7318 } 7319 } 7320 7321 /* 7322 * Matching nfs4_end_op() for start_op() above. 7323 * There is a path in the code below which calls 7324 * nfs4_purge_stale_fh(), which may generate otw calls through 7325 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7326 * here to avoid nfs4_start_op() deadlock. 7327 */ 7328 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7329 7330 if (!e.error) { 7331 resp = &res; 7332 7333 if (res.status) { 7334 e.error = geterrno4(res.status); 7335 PURGE_ATTRCACHE4(dvp); 7336 nfs4_purge_stale_fh(e.error, dvp, cr); 7337 } else { 7338 resop = &res.array[1]; /* remove res */ 7339 rm_res = &resop->nfs_resop4_u.opremove; 7340 7341 dinfo.di_garp = 7342 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7343 dinfo.di_cred = cr; 7344 7345 /* Update directory attr, readdir and dnlc caches */ 7346 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7347 &dinfo); 7348 } 7349 } 7350 nfs_rw_exit(&drp->r_rwlock); 7351 if (resp) 7352 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7353 7354 if (e.error == 0) { 7355 vnode_t *tvp; 7356 rnode4_t *trp; 7357 trp = VTOR4(vp); 7358 tvp = vp; 7359 if (IS_SHADOW(vp, trp)) 7360 tvp = RTOV4(trp); 7361 vnevent_remove(tvp, dvp, nm, ct); 7362 } 7363 VN_RELE(vp); 7364 return (e.error); 7365 } 7366 7367 /* 7368 * Link requires that the current fh be the target directory and the 7369 * saved fh be the source fh. After the operation, the current fh is unchanged. 7370 * Thus the compound op structure is: 7371 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7372 * GETATTR(file) 7373 */ 7374 /* ARGSUSED */ 7375 static int 7376 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7377 caller_context_t *ct, int flags) 7378 { 7379 COMPOUND4args_clnt args; 7380 COMPOUND4res_clnt res, *resp = NULL; 7381 LINK4res *ln_res; 7382 int argoplist_size = 7 * sizeof (nfs_argop4); 7383 nfs_argop4 *argop; 7384 nfs_resop4 *resop; 7385 vnode_t *realvp, *nvp; 7386 int doqueue; 7387 mntinfo4_t *mi; 7388 rnode4_t *tdrp; 7389 bool_t needrecov = FALSE; 7390 nfs4_recov_state_t recov_state; 7391 hrtime_t t; 7392 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7393 dirattr_info_t dinfo; 7394 7395 ASSERT(*tnm != '\0'); 7396 ASSERT(tdvp->v_type == VDIR); 7397 ASSERT(nfs4_consistent_type(tdvp)); 7398 ASSERT(nfs4_consistent_type(svp)); 7399 7400 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7401 return (EPERM); 7402 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7403 svp = realvp; 7404 ASSERT(nfs4_consistent_type(svp)); 7405 } 7406 7407 tdrp = VTOR4(tdvp); 7408 mi = VTOMI4(svp); 7409 7410 if (!(mi->mi_flags & MI4_LINK)) { 7411 return (EOPNOTSUPP); 7412 } 7413 recov_state.rs_flags = 0; 7414 recov_state.rs_num_retry_despite_err = 0; 7415 7416 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7417 return (EINTR); 7418 7419 recov_retry: 7420 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7421 7422 args.ctag = TAG_LINK; 7423 7424 /* 7425 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7426 * restorefh; getattr(fl) 7427 */ 7428 args.array_len = 7; 7429 args.array = argop; 7430 7431 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7432 if (e.error) { 7433 kmem_free(argop, argoplist_size); 7434 nfs_rw_exit(&tdrp->r_rwlock); 7435 return (e.error); 7436 } 7437 7438 /* 0. putfh file */ 7439 argop[0].argop = OP_CPUTFH; 7440 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7441 7442 /* 1. save current fh to free up the space for the dir */ 7443 argop[1].argop = OP_SAVEFH; 7444 7445 /* 2. putfh targetdir */ 7446 argop[2].argop = OP_CPUTFH; 7447 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7448 7449 /* 3. link: current_fh is targetdir, saved_fh is source */ 7450 argop[3].argop = OP_CLINK; 7451 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7452 7453 /* 4. Get attributes of dir */ 7454 argop[4].argop = OP_GETATTR; 7455 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7456 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7457 7458 /* 5. If link was successful, restore current vp to file */ 7459 argop[5].argop = OP_RESTOREFH; 7460 7461 /* 6. Get attributes of linked object */ 7462 argop[6].argop = OP_GETATTR; 7463 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7464 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7465 7466 dnlc_remove(tdvp, tnm); 7467 7468 doqueue = 1; 7469 t = gethrtime(); 7470 7471 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7472 7473 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7474 if (e.error != 0 && !needrecov) { 7475 PURGE_ATTRCACHE4(tdvp); 7476 PURGE_ATTRCACHE4(svp); 7477 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7478 goto out; 7479 } 7480 7481 if (needrecov) { 7482 bool_t abort; 7483 7484 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7485 NULL, NULL, OP_LINK, NULL); 7486 if (abort == FALSE) { 7487 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7488 needrecov); 7489 kmem_free(argop, argoplist_size); 7490 if (!e.error) 7491 (void) xdr_free(xdr_COMPOUND4res_clnt, 7492 (caddr_t)&res); 7493 goto recov_retry; 7494 } else { 7495 if (e.error != 0) { 7496 PURGE_ATTRCACHE4(tdvp); 7497 PURGE_ATTRCACHE4(svp); 7498 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7499 &recov_state, needrecov); 7500 goto out; 7501 } 7502 /* fall through for res.status case */ 7503 } 7504 } 7505 7506 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7507 7508 resp = &res; 7509 if (res.status) { 7510 /* If link succeeded, then don't return error */ 7511 e.error = geterrno4(res.status); 7512 if (res.array_len <= 4) { 7513 /* 7514 * Either Putfh, Savefh, Putfh dir, or Link failed 7515 */ 7516 PURGE_ATTRCACHE4(svp); 7517 PURGE_ATTRCACHE4(tdvp); 7518 if (e.error == EOPNOTSUPP) { 7519 mutex_enter(&mi->mi_lock); 7520 mi->mi_flags &= ~MI4_LINK; 7521 mutex_exit(&mi->mi_lock); 7522 } 7523 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7524 /* XXX-LP */ 7525 if (e.error == EISDIR && crgetuid(cr) != 0) 7526 e.error = EPERM; 7527 goto out; 7528 } 7529 } 7530 7531 /* either no error or one of the postop getattr failed */ 7532 7533 /* 7534 * XXX - if LINK succeeded, but no attrs were returned for link 7535 * file, purge its cache. 7536 * 7537 * XXX Perform a simplified version of wcc checking. Instead of 7538 * have another getattr to get pre-op, just purge cache if 7539 * any of the ops prior to and including the getattr failed. 7540 * If the getattr succeeded then update the attrcache accordingly. 7541 */ 7542 7543 /* 7544 * update cache with link file postattrs. 7545 * Note: at this point resop points to link res. 7546 */ 7547 resop = &res.array[3]; /* link res */ 7548 ln_res = &resop->nfs_resop4_u.oplink; 7549 if (res.status == NFS4_OK) 7550 e.error = nfs4_update_attrcache(res.status, 7551 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7552 t, svp, cr); 7553 7554 /* 7555 * Call makenfs4node to create the new shadow vp for tnm. 7556 * We pass NULL attrs because we just cached attrs for 7557 * the src object. All we're trying to accomplish is to 7558 * to create the new shadow vnode. 7559 */ 7560 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7561 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm)); 7562 7563 /* Update target cache attribute, readdir and dnlc caches */ 7564 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7565 dinfo.di_time_call = t; 7566 dinfo.di_cred = cr; 7567 7568 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7569 ASSERT(nfs4_consistent_type(tdvp)); 7570 ASSERT(nfs4_consistent_type(svp)); 7571 ASSERT(nfs4_consistent_type(nvp)); 7572 VN_RELE(nvp); 7573 7574 if (!e.error) { 7575 vnode_t *tvp; 7576 rnode4_t *trp; 7577 /* 7578 * Notify the source file of this link operation. 7579 */ 7580 trp = VTOR4(svp); 7581 tvp = svp; 7582 if (IS_SHADOW(svp, trp)) 7583 tvp = RTOV4(trp); 7584 vnevent_link(tvp, ct); 7585 } 7586 out: 7587 kmem_free(argop, argoplist_size); 7588 if (resp) 7589 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7590 7591 nfs_rw_exit(&tdrp->r_rwlock); 7592 7593 return (e.error); 7594 } 7595 7596 /* ARGSUSED */ 7597 static int 7598 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7599 caller_context_t *ct, int flags) 7600 { 7601 vnode_t *realvp; 7602 7603 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7604 return (EPERM); 7605 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7606 ndvp = realvp; 7607 7608 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7609 } 7610 7611 /* 7612 * nfs4rename does the real work of renaming in NFS Version 4. 7613 * 7614 * A file handle is considered volatile for renaming purposes if either 7615 * of the volatile bits are turned on. However, the compound may differ 7616 * based on the likelihood of the filehandle to change during rename. 7617 */ 7618 static int 7619 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7620 caller_context_t *ct) 7621 { 7622 int error; 7623 mntinfo4_t *mi; 7624 vnode_t *nvp = NULL; 7625 vnode_t *ovp = NULL; 7626 char *tmpname = NULL; 7627 rnode4_t *rp; 7628 rnode4_t *odrp; 7629 rnode4_t *ndrp; 7630 int did_link = 0; 7631 int do_link = 1; 7632 nfsstat4 stat = NFS4_OK; 7633 7634 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7635 ASSERT(nfs4_consistent_type(odvp)); 7636 ASSERT(nfs4_consistent_type(ndvp)); 7637 7638 if (onm[0] == '.' && (onm[1] == '\0' || 7639 (onm[1] == '.' && onm[2] == '\0'))) 7640 return (EINVAL); 7641 7642 if (nnm[0] == '.' && (nnm[1] == '\0' || 7643 (nnm[1] == '.' && nnm[2] == '\0'))) 7644 return (EINVAL); 7645 7646 odrp = VTOR4(odvp); 7647 ndrp = VTOR4(ndvp); 7648 if ((intptr_t)odrp < (intptr_t)ndrp) { 7649 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7650 return (EINTR); 7651 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7652 nfs_rw_exit(&odrp->r_rwlock); 7653 return (EINTR); 7654 } 7655 } else { 7656 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7657 return (EINTR); 7658 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7659 nfs_rw_exit(&ndrp->r_rwlock); 7660 return (EINTR); 7661 } 7662 } 7663 7664 /* 7665 * Lookup the target file. If it exists, it needs to be 7666 * checked to see whether it is a mount point and whether 7667 * it is active (open). 7668 */ 7669 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7670 if (!error) { 7671 int isactive; 7672 7673 ASSERT(nfs4_consistent_type(nvp)); 7674 /* 7675 * If this file has been mounted on, then just 7676 * return busy because renaming to it would remove 7677 * the mounted file system from the name space. 7678 */ 7679 if (vn_ismntpt(nvp)) { 7680 VN_RELE(nvp); 7681 nfs_rw_exit(&odrp->r_rwlock); 7682 nfs_rw_exit(&ndrp->r_rwlock); 7683 return (EBUSY); 7684 } 7685 7686 /* 7687 * First just remove the entry from the name cache, as it 7688 * is most likely the only entry for this vp. 7689 */ 7690 dnlc_remove(ndvp, nnm); 7691 7692 rp = VTOR4(nvp); 7693 7694 if (nvp->v_type != VREG) { 7695 /* 7696 * Purge the name cache of all references to this vnode 7697 * so that we can check the reference count to infer 7698 * whether it is active or not. 7699 */ 7700 if (nvp->v_count > 1) 7701 dnlc_purge_vp(nvp); 7702 7703 isactive = nvp->v_count > 1; 7704 } else { 7705 mutex_enter(&rp->r_os_lock); 7706 isactive = list_head(&rp->r_open_streams) != NULL; 7707 mutex_exit(&rp->r_os_lock); 7708 } 7709 7710 /* 7711 * If the vnode is active and is not a directory, 7712 * arrange to rename it to a 7713 * temporary file so that it will continue to be 7714 * accessible. This implements the "unlink-open-file" 7715 * semantics for the target of a rename operation. 7716 * Before doing this though, make sure that the 7717 * source and target files are not already the same. 7718 */ 7719 if (isactive && nvp->v_type != VDIR) { 7720 /* 7721 * Lookup the source name. 7722 */ 7723 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7724 7725 /* 7726 * The source name *should* already exist. 7727 */ 7728 if (error) { 7729 VN_RELE(nvp); 7730 nfs_rw_exit(&odrp->r_rwlock); 7731 nfs_rw_exit(&ndrp->r_rwlock); 7732 return (error); 7733 } 7734 7735 ASSERT(nfs4_consistent_type(ovp)); 7736 7737 /* 7738 * Compare the two vnodes. If they are the same, 7739 * just release all held vnodes and return success. 7740 */ 7741 if (VN_CMP(ovp, nvp)) { 7742 VN_RELE(ovp); 7743 VN_RELE(nvp); 7744 nfs_rw_exit(&odrp->r_rwlock); 7745 nfs_rw_exit(&ndrp->r_rwlock); 7746 return (0); 7747 } 7748 7749 /* 7750 * Can't mix and match directories and non- 7751 * directories in rename operations. We already 7752 * know that the target is not a directory. If 7753 * the source is a directory, return an error. 7754 */ 7755 if (ovp->v_type == VDIR) { 7756 VN_RELE(ovp); 7757 VN_RELE(nvp); 7758 nfs_rw_exit(&odrp->r_rwlock); 7759 nfs_rw_exit(&ndrp->r_rwlock); 7760 return (ENOTDIR); 7761 } 7762 link_call: 7763 /* 7764 * The target file exists, is not the same as 7765 * the source file, and is active. We first 7766 * try to Link it to a temporary filename to 7767 * avoid having the server removing the file 7768 * completely (which could cause data loss to 7769 * the user's POV in the event the Rename fails 7770 * -- see bug 1165874). 7771 */ 7772 /* 7773 * The do_link and did_link booleans are 7774 * introduced in the event we get NFS4ERR_FILE_OPEN 7775 * returned for the Rename. Some servers can 7776 * not Rename over an Open file, so they return 7777 * this error. The client needs to Remove the 7778 * newly created Link and do two Renames, just 7779 * as if the server didn't support LINK. 7780 */ 7781 tmpname = newname(); 7782 error = 0; 7783 7784 if (do_link) { 7785 error = nfs4_link(ndvp, nvp, tmpname, cr, 7786 NULL, 0); 7787 } 7788 if (error == EOPNOTSUPP || !do_link) { 7789 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7790 cr, NULL, 0); 7791 did_link = 0; 7792 } else { 7793 did_link = 1; 7794 } 7795 if (error) { 7796 kmem_free(tmpname, MAXNAMELEN); 7797 VN_RELE(ovp); 7798 VN_RELE(nvp); 7799 nfs_rw_exit(&odrp->r_rwlock); 7800 nfs_rw_exit(&ndrp->r_rwlock); 7801 return (error); 7802 } 7803 7804 mutex_enter(&rp->r_statelock); 7805 if (rp->r_unldvp == NULL) { 7806 VN_HOLD(ndvp); 7807 rp->r_unldvp = ndvp; 7808 if (rp->r_unlcred != NULL) 7809 crfree(rp->r_unlcred); 7810 crhold(cr); 7811 rp->r_unlcred = cr; 7812 rp->r_unlname = tmpname; 7813 } else { 7814 if (rp->r_unlname) 7815 kmem_free(rp->r_unlname, MAXNAMELEN); 7816 rp->r_unlname = tmpname; 7817 } 7818 mutex_exit(&rp->r_statelock); 7819 } 7820 7821 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7822 7823 ASSERT(nfs4_consistent_type(nvp)); 7824 } 7825 7826 if (ovp == NULL) { 7827 /* 7828 * When renaming directories to be a subdirectory of a 7829 * different parent, the dnlc entry for ".." will no 7830 * longer be valid, so it must be removed. 7831 * 7832 * We do a lookup here to determine whether we are renaming 7833 * a directory and we need to check if we are renaming 7834 * an unlinked file. This might have already been done 7835 * in previous code, so we check ovp == NULL to avoid 7836 * doing it twice. 7837 */ 7838 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7839 /* 7840 * The source name *should* already exist. 7841 */ 7842 if (error) { 7843 nfs_rw_exit(&odrp->r_rwlock); 7844 nfs_rw_exit(&ndrp->r_rwlock); 7845 if (nvp) { 7846 VN_RELE(nvp); 7847 } 7848 return (error); 7849 } 7850 ASSERT(ovp != NULL); 7851 ASSERT(nfs4_consistent_type(ovp)); 7852 } 7853 7854 /* 7855 * Is the object being renamed a dir, and if so, is 7856 * it being renamed to a child of itself? The underlying 7857 * fs should ultimately return EINVAL for this case; 7858 * however, buggy beta non-Solaris NFSv4 servers at 7859 * interop testing events have allowed this behavior, 7860 * and it caused our client to panic due to a recursive 7861 * mutex_enter in fn_move. 7862 * 7863 * The tedious locking in fn_move could be changed to 7864 * deal with this case, and the client could avoid the 7865 * panic; however, the client would just confuse itself 7866 * later and misbehave. A better way to handle the broken 7867 * server is to detect this condition and return EINVAL 7868 * without ever sending the the bogus rename to the server. 7869 * We know the rename is invalid -- just fail it now. 7870 */ 7871 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7872 VN_RELE(ovp); 7873 nfs_rw_exit(&odrp->r_rwlock); 7874 nfs_rw_exit(&ndrp->r_rwlock); 7875 if (nvp) { 7876 VN_RELE(nvp); 7877 } 7878 return (EINVAL); 7879 } 7880 7881 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7882 7883 /* 7884 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7885 * possible for the filehandle to change due to the rename. 7886 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7887 * the fh will not change because of the rename, but we still need 7888 * to update its rnode entry with the new name for 7889 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7890 * has no effect on these for now, but for future improvements, 7891 * we might want to use it too to simplify handling of files 7892 * that are open with that flag on. (XXX) 7893 */ 7894 mi = VTOMI4(odvp); 7895 if (NFS4_VOLATILE_FH(mi)) 7896 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7897 &stat); 7898 else 7899 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7900 &stat); 7901 7902 ASSERT(nfs4_consistent_type(odvp)); 7903 ASSERT(nfs4_consistent_type(ndvp)); 7904 ASSERT(nfs4_consistent_type(ovp)); 7905 7906 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7907 do_link = 0; 7908 /* 7909 * Before the 'link_call' code, we did a nfs4_lookup 7910 * that puts a VN_HOLD on nvp. After the nfs4_link 7911 * call we call VN_RELE to match that hold. We need 7912 * to place an additional VN_HOLD here since we will 7913 * be hitting that VN_RELE again. 7914 */ 7915 VN_HOLD(nvp); 7916 7917 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 7918 7919 /* Undo the unlinked file naming stuff we just did */ 7920 mutex_enter(&rp->r_statelock); 7921 if (rp->r_unldvp) { 7922 VN_RELE(ndvp); 7923 rp->r_unldvp = NULL; 7924 if (rp->r_unlcred != NULL) 7925 crfree(rp->r_unlcred); 7926 rp->r_unlcred = NULL; 7927 /* rp->r_unlanme points to tmpname */ 7928 if (rp->r_unlname) 7929 kmem_free(rp->r_unlname, MAXNAMELEN); 7930 rp->r_unlname = NULL; 7931 } 7932 mutex_exit(&rp->r_statelock); 7933 7934 if (nvp) { 7935 VN_RELE(nvp); 7936 } 7937 goto link_call; 7938 } 7939 7940 if (error) { 7941 VN_RELE(ovp); 7942 nfs_rw_exit(&odrp->r_rwlock); 7943 nfs_rw_exit(&ndrp->r_rwlock); 7944 if (nvp) { 7945 VN_RELE(nvp); 7946 } 7947 return (error); 7948 } 7949 7950 /* 7951 * when renaming directories to be a subdirectory of a 7952 * different parent, the dnlc entry for ".." will no 7953 * longer be valid, so it must be removed 7954 */ 7955 rp = VTOR4(ovp); 7956 if (ndvp != odvp) { 7957 if (ovp->v_type == VDIR) { 7958 dnlc_remove(ovp, ".."); 7959 if (rp->r_dir != NULL) 7960 nfs4_purge_rddir_cache(ovp); 7961 } 7962 } 7963 7964 /* 7965 * If we are renaming the unlinked file, update the 7966 * r_unldvp and r_unlname as needed. 7967 */ 7968 mutex_enter(&rp->r_statelock); 7969 if (rp->r_unldvp != NULL) { 7970 if (strcmp(rp->r_unlname, onm) == 0) { 7971 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 7972 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 7973 if (ndvp != rp->r_unldvp) { 7974 VN_RELE(rp->r_unldvp); 7975 rp->r_unldvp = ndvp; 7976 VN_HOLD(ndvp); 7977 } 7978 } 7979 } 7980 mutex_exit(&rp->r_statelock); 7981 7982 /* 7983 * Notify the rename vnevents to source vnode, and to the target 7984 * vnode if it already existed. 7985 */ 7986 if (error == 0) { 7987 vnode_t *tvp; 7988 rnode4_t *trp; 7989 /* 7990 * Notify the vnode. Each links is represented by 7991 * a different vnode, in nfsv4. 7992 */ 7993 if (nvp) { 7994 trp = VTOR4(nvp); 7995 tvp = nvp; 7996 if (IS_SHADOW(nvp, trp)) 7997 tvp = RTOV4(trp); 7998 vnevent_rename_dest(tvp, ndvp, nnm, ct); 7999 } 8000 8001 /* 8002 * if the source and destination directory are not the 8003 * same notify the destination directory. 8004 */ 8005 if (VTOR4(odvp) != VTOR4(ndvp)) { 8006 trp = VTOR4(ndvp); 8007 tvp = ndvp; 8008 if (IS_SHADOW(ndvp, trp)) 8009 tvp = RTOV4(trp); 8010 vnevent_rename_dest_dir(tvp, ct); 8011 } 8012 8013 trp = VTOR4(ovp); 8014 tvp = ovp; 8015 if (IS_SHADOW(ovp, trp)) 8016 tvp = RTOV4(trp); 8017 vnevent_rename_src(tvp, odvp, onm, ct); 8018 } 8019 8020 if (nvp) { 8021 VN_RELE(nvp); 8022 } 8023 VN_RELE(ovp); 8024 8025 nfs_rw_exit(&odrp->r_rwlock); 8026 nfs_rw_exit(&ndrp->r_rwlock); 8027 8028 return (error); 8029 } 8030 8031 /* 8032 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8033 * when it is known that the filehandle is persistent through rename. 8034 * 8035 * Rename requires that the current fh be the target directory and the 8036 * saved fh be the source directory. After the operation, the current fh 8037 * is unchanged. 8038 * The compound op structure for persistent fh rename is: 8039 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8040 * Rather than bother with the directory postop args, we'll simply 8041 * update that a change occurred in the cache, so no post-op getattrs. 8042 */ 8043 static int 8044 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8045 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8046 { 8047 COMPOUND4args_clnt args; 8048 COMPOUND4res_clnt res, *resp = NULL; 8049 nfs_argop4 *argop; 8050 nfs_resop4 *resop; 8051 int doqueue, argoplist_size; 8052 mntinfo4_t *mi; 8053 rnode4_t *odrp = VTOR4(odvp); 8054 rnode4_t *ndrp = VTOR4(ndvp); 8055 RENAME4res *rn_res; 8056 bool_t needrecov; 8057 nfs4_recov_state_t recov_state; 8058 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8059 dirattr_info_t dinfo, *dinfop; 8060 8061 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8062 8063 recov_state.rs_flags = 0; 8064 recov_state.rs_num_retry_despite_err = 0; 8065 8066 /* 8067 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8068 * 8069 * If source/target are different dirs, then append putfh(src); getattr 8070 */ 8071 args.array_len = (odvp == ndvp) ? 5 : 7; 8072 argoplist_size = args.array_len * sizeof (nfs_argop4); 8073 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8074 8075 recov_retry: 8076 *statp = NFS4_OK; 8077 8078 /* No need to Lookup the file, persistent fh */ 8079 args.ctag = TAG_RENAME; 8080 8081 mi = VTOMI4(odvp); 8082 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8083 if (e.error) { 8084 kmem_free(argop, argoplist_size); 8085 return (e.error); 8086 } 8087 8088 /* 0: putfh source directory */ 8089 argop[0].argop = OP_CPUTFH; 8090 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8091 8092 /* 1: Save source fh to free up current for target */ 8093 argop[1].argop = OP_SAVEFH; 8094 8095 /* 2: putfh targetdir */ 8096 argop[2].argop = OP_CPUTFH; 8097 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8098 8099 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8100 argop[3].argop = OP_CRENAME; 8101 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8102 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8103 8104 /* 4: getattr (targetdir) */ 8105 argop[4].argop = OP_GETATTR; 8106 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8107 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8108 8109 if (ndvp != odvp) { 8110 8111 /* 5: putfh (sourcedir) */ 8112 argop[5].argop = OP_CPUTFH; 8113 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8114 8115 /* 6: getattr (sourcedir) */ 8116 argop[6].argop = OP_GETATTR; 8117 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8118 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8119 } 8120 8121 dnlc_remove(odvp, onm); 8122 dnlc_remove(ndvp, nnm); 8123 8124 doqueue = 1; 8125 dinfo.di_time_call = gethrtime(); 8126 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8127 8128 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8129 if (e.error) { 8130 PURGE_ATTRCACHE4(odvp); 8131 PURGE_ATTRCACHE4(ndvp); 8132 } else { 8133 *statp = res.status; 8134 } 8135 8136 if (needrecov) { 8137 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8138 OP_RENAME, NULL) == FALSE) { 8139 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8140 if (!e.error) 8141 (void) xdr_free(xdr_COMPOUND4res_clnt, 8142 (caddr_t)&res); 8143 goto recov_retry; 8144 } 8145 } 8146 8147 if (!e.error) { 8148 resp = &res; 8149 /* 8150 * as long as OP_RENAME 8151 */ 8152 if (res.status != NFS4_OK && res.array_len <= 4) { 8153 e.error = geterrno4(res.status); 8154 PURGE_ATTRCACHE4(odvp); 8155 PURGE_ATTRCACHE4(ndvp); 8156 /* 8157 * System V defines rename to return EEXIST, not 8158 * ENOTEMPTY if the target directory is not empty. 8159 * Over the wire, the error is NFSERR_ENOTEMPTY 8160 * which geterrno4 maps to ENOTEMPTY. 8161 */ 8162 if (e.error == ENOTEMPTY) 8163 e.error = EEXIST; 8164 } else { 8165 8166 resop = &res.array[3]; /* rename res */ 8167 rn_res = &resop->nfs_resop4_u.oprename; 8168 8169 if (res.status == NFS4_OK) { 8170 /* 8171 * Update target attribute, readdir and dnlc 8172 * caches. 8173 */ 8174 dinfo.di_garp = 8175 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8176 dinfo.di_cred = cr; 8177 dinfop = &dinfo; 8178 } else 8179 dinfop = NULL; 8180 8181 nfs4_update_dircaches(&rn_res->target_cinfo, 8182 ndvp, NULL, NULL, dinfop); 8183 8184 /* 8185 * Update source attribute, readdir and dnlc caches 8186 * 8187 */ 8188 if (ndvp != odvp) { 8189 if (dinfop) 8190 dinfo.di_garp = 8191 &(res.array[6].nfs_resop4_u. 8192 opgetattr.ga_res); 8193 8194 nfs4_update_dircaches(&rn_res->source_cinfo, 8195 odvp, NULL, NULL, dinfop); 8196 } 8197 8198 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8199 nnm); 8200 } 8201 } 8202 8203 if (resp) 8204 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8205 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8206 kmem_free(argop, argoplist_size); 8207 8208 return (e.error); 8209 } 8210 8211 /* 8212 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8213 * it is possible for the filehandle to change due to the rename. 8214 * 8215 * The compound req in this case includes a post-rename lookup and getattr 8216 * to ensure that we have the correct fh and attributes for the object. 8217 * 8218 * Rename requires that the current fh be the target directory and the 8219 * saved fh be the source directory. After the operation, the current fh 8220 * is unchanged. 8221 * 8222 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8223 * update the filehandle for the renamed object. We also get the old 8224 * filehandle for historical reasons; this should be taken out sometime. 8225 * This results in a rather cumbersome compound... 8226 * 8227 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8228 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8229 * 8230 */ 8231 static int 8232 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8233 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8234 { 8235 COMPOUND4args_clnt args; 8236 COMPOUND4res_clnt res, *resp = NULL; 8237 int argoplist_size; 8238 nfs_argop4 *argop; 8239 nfs_resop4 *resop; 8240 int doqueue; 8241 mntinfo4_t *mi; 8242 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8243 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8244 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8245 RENAME4res *rn_res; 8246 GETFH4res *ngf_res; 8247 bool_t needrecov; 8248 nfs4_recov_state_t recov_state; 8249 hrtime_t t; 8250 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8251 dirattr_info_t dinfo, *dinfop = &dinfo; 8252 8253 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8254 8255 recov_state.rs_flags = 0; 8256 recov_state.rs_num_retry_despite_err = 0; 8257 8258 recov_retry: 8259 *statp = NFS4_OK; 8260 8261 /* 8262 * There is a window between the RPC and updating the path and 8263 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8264 * code, so that it doesn't try to use the old path during that 8265 * window. 8266 */ 8267 mutex_enter(&orp->r_statelock); 8268 while (orp->r_flags & R4RECEXPFH) { 8269 klwp_t *lwp = ttolwp(curthread); 8270 8271 if (lwp != NULL) 8272 lwp->lwp_nostop++; 8273 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8274 mutex_exit(&orp->r_statelock); 8275 if (lwp != NULL) 8276 lwp->lwp_nostop--; 8277 return (EINTR); 8278 } 8279 if (lwp != NULL) 8280 lwp->lwp_nostop--; 8281 } 8282 orp->r_flags |= R4RECEXPFH; 8283 mutex_exit(&orp->r_statelock); 8284 8285 mi = VTOMI4(odvp); 8286 8287 args.ctag = TAG_RENAME_VFH; 8288 args.array_len = (odvp == ndvp) ? 10 : 12; 8289 argoplist_size = args.array_len * sizeof (nfs_argop4); 8290 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8291 8292 /* 8293 * Rename ops: 8294 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8295 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8296 * LOOKUP(trgt), GETFH(new), GETATTR, 8297 * 8298 * if (odvp != ndvp) 8299 * add putfh(sourcedir), getattr(sourcedir) } 8300 */ 8301 args.array = argop; 8302 8303 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8304 &recov_state, NULL); 8305 if (e.error) { 8306 kmem_free(argop, argoplist_size); 8307 mutex_enter(&orp->r_statelock); 8308 orp->r_flags &= ~R4RECEXPFH; 8309 cv_broadcast(&orp->r_cv); 8310 mutex_exit(&orp->r_statelock); 8311 return (e.error); 8312 } 8313 8314 /* 0: putfh source directory */ 8315 argop[0].argop = OP_CPUTFH; 8316 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8317 8318 /* 1: Save source fh to free up current for target */ 8319 argop[1].argop = OP_SAVEFH; 8320 8321 /* 2: Lookup pre-rename fh of renamed object */ 8322 argop[2].argop = OP_CLOOKUP; 8323 argop[2].nfs_argop4_u.opclookup.cname = onm; 8324 8325 /* 3: getfh fh of renamed object (before rename) */ 8326 argop[3].argop = OP_GETFH; 8327 8328 /* 4: putfh targetdir */ 8329 argop[4].argop = OP_CPUTFH; 8330 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8331 8332 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8333 argop[5].argop = OP_CRENAME; 8334 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8335 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8336 8337 /* 6: getattr of target dir (post op attrs) */ 8338 argop[6].argop = OP_GETATTR; 8339 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8340 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8341 8342 /* 7: Lookup post-rename fh of renamed object */ 8343 argop[7].argop = OP_CLOOKUP; 8344 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8345 8346 /* 8: getfh fh of renamed object (after rename) */ 8347 argop[8].argop = OP_GETFH; 8348 8349 /* 9: getattr of renamed object */ 8350 argop[9].argop = OP_GETATTR; 8351 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8352 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8353 8354 /* 8355 * If source/target dirs are different, then get new post-op 8356 * attrs for source dir also. 8357 */ 8358 if (ndvp != odvp) { 8359 /* 10: putfh (sourcedir) */ 8360 argop[10].argop = OP_CPUTFH; 8361 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8362 8363 /* 11: getattr (sourcedir) */ 8364 argop[11].argop = OP_GETATTR; 8365 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8366 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8367 } 8368 8369 dnlc_remove(odvp, onm); 8370 dnlc_remove(ndvp, nnm); 8371 8372 doqueue = 1; 8373 t = gethrtime(); 8374 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8375 8376 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8377 if (e.error) { 8378 PURGE_ATTRCACHE4(odvp); 8379 PURGE_ATTRCACHE4(ndvp); 8380 if (!needrecov) { 8381 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8382 &recov_state, needrecov); 8383 goto out; 8384 } 8385 } else { 8386 *statp = res.status; 8387 } 8388 8389 if (needrecov) { 8390 bool_t abort; 8391 8392 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8393 OP_RENAME, NULL); 8394 if (abort == FALSE) { 8395 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8396 &recov_state, needrecov); 8397 kmem_free(argop, argoplist_size); 8398 if (!e.error) 8399 (void) xdr_free(xdr_COMPOUND4res_clnt, 8400 (caddr_t)&res); 8401 mutex_enter(&orp->r_statelock); 8402 orp->r_flags &= ~R4RECEXPFH; 8403 cv_broadcast(&orp->r_cv); 8404 mutex_exit(&orp->r_statelock); 8405 goto recov_retry; 8406 } else { 8407 if (e.error != 0) { 8408 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8409 &recov_state, needrecov); 8410 goto out; 8411 } 8412 /* fall through for res.status case */ 8413 } 8414 } 8415 8416 resp = &res; 8417 /* 8418 * If OP_RENAME (or any prev op) failed, then return an error. 8419 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8420 */ 8421 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8422 /* 8423 * Error in an op other than last Getattr 8424 */ 8425 e.error = geterrno4(res.status); 8426 PURGE_ATTRCACHE4(odvp); 8427 PURGE_ATTRCACHE4(ndvp); 8428 /* 8429 * System V defines rename to return EEXIST, not 8430 * ENOTEMPTY if the target directory is not empty. 8431 * Over the wire, the error is NFSERR_ENOTEMPTY 8432 * which geterrno4 maps to ENOTEMPTY. 8433 */ 8434 if (e.error == ENOTEMPTY) 8435 e.error = EEXIST; 8436 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8437 needrecov); 8438 goto out; 8439 } 8440 8441 /* rename results */ 8442 rn_res = &res.array[5].nfs_resop4_u.oprename; 8443 8444 if (res.status == NFS4_OK) { 8445 /* Update target attribute, readdir and dnlc caches */ 8446 dinfo.di_garp = 8447 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8448 dinfo.di_cred = cr; 8449 dinfo.di_time_call = t; 8450 } else 8451 dinfop = NULL; 8452 8453 /* Update source cache attribute, readdir and dnlc caches */ 8454 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8455 8456 /* Update source cache attribute, readdir and dnlc caches */ 8457 if (ndvp != odvp) { 8458 8459 /* 8460 * If dinfop is non-NULL, then compound succeded, so 8461 * set di_garp to attrs for source dir. dinfop is only 8462 * set to NULL when compound fails. 8463 */ 8464 if (dinfop) 8465 dinfo.di_garp = 8466 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8467 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8468 dinfop); 8469 } 8470 8471 /* 8472 * Update the rnode with the new component name and args, 8473 * and if the file handle changed, also update it with the new fh. 8474 * This is only necessary if the target object has an rnode 8475 * entry and there is no need to create one for it. 8476 */ 8477 resop = &res.array[8]; /* getfh new res */ 8478 ngf_res = &resop->nfs_resop4_u.opgetfh; 8479 8480 /* 8481 * Update the path and filehandle for the renamed object. 8482 */ 8483 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8484 8485 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8486 8487 if (res.status == NFS4_OK) { 8488 resop++; /* getattr res */ 8489 e.error = nfs4_update_attrcache(res.status, 8490 &resop->nfs_resop4_u.opgetattr.ga_res, 8491 t, ovp, cr); 8492 } 8493 8494 out: 8495 kmem_free(argop, argoplist_size); 8496 if (resp) 8497 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8498 mutex_enter(&orp->r_statelock); 8499 orp->r_flags &= ~R4RECEXPFH; 8500 cv_broadcast(&orp->r_cv); 8501 mutex_exit(&orp->r_statelock); 8502 8503 return (e.error); 8504 } 8505 8506 /* ARGSUSED */ 8507 static int 8508 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8509 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8510 { 8511 int error; 8512 vnode_t *vp; 8513 8514 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8515 return (EPERM); 8516 /* 8517 * As ".." has special meaning and rather than send a mkdir 8518 * over the wire to just let the server freak out, we just 8519 * short circuit it here and return EEXIST 8520 */ 8521 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8522 return (EEXIST); 8523 8524 /* 8525 * Decision to get the right gid and setgid bit of the 8526 * new directory is now made in call_nfs4_create_req. 8527 */ 8528 va->va_mask |= AT_MODE; 8529 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8530 if (error) 8531 return (error); 8532 8533 *vpp = vp; 8534 return (0); 8535 } 8536 8537 8538 /* 8539 * rmdir is using the same remove v4 op as does remove. 8540 * Remove requires that the current fh be the target directory. 8541 * After the operation, the current fh is unchanged. 8542 * The compound op structure is: 8543 * PUTFH(targetdir), REMOVE 8544 */ 8545 /*ARGSUSED4*/ 8546 static int 8547 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8548 caller_context_t *ct, int flags) 8549 { 8550 int need_end_op = FALSE; 8551 COMPOUND4args_clnt args; 8552 COMPOUND4res_clnt res, *resp = NULL; 8553 REMOVE4res *rm_res; 8554 nfs_argop4 argop[3]; 8555 nfs_resop4 *resop; 8556 vnode_t *vp; 8557 int doqueue; 8558 mntinfo4_t *mi; 8559 rnode4_t *drp; 8560 bool_t needrecov = FALSE; 8561 nfs4_recov_state_t recov_state; 8562 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8563 dirattr_info_t dinfo, *dinfop; 8564 8565 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8566 return (EPERM); 8567 /* 8568 * As ".." has special meaning and rather than send a rmdir 8569 * over the wire to just let the server freak out, we just 8570 * short circuit it here and return EEXIST 8571 */ 8572 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8573 return (EEXIST); 8574 8575 drp = VTOR4(dvp); 8576 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8577 return (EINTR); 8578 8579 /* 8580 * Attempt to prevent a rmdir(".") from succeeding. 8581 */ 8582 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8583 if (e.error) { 8584 nfs_rw_exit(&drp->r_rwlock); 8585 return (e.error); 8586 } 8587 if (vp == cdir) { 8588 VN_RELE(vp); 8589 nfs_rw_exit(&drp->r_rwlock); 8590 return (EINVAL); 8591 } 8592 8593 /* 8594 * Since nfsv4 remove op works on both files and directories, 8595 * check that the removed object is indeed a directory. 8596 */ 8597 if (vp->v_type != VDIR) { 8598 VN_RELE(vp); 8599 nfs_rw_exit(&drp->r_rwlock); 8600 return (ENOTDIR); 8601 } 8602 8603 /* 8604 * First just remove the entry from the name cache, as it 8605 * is most likely an entry for this vp. 8606 */ 8607 dnlc_remove(dvp, nm); 8608 8609 /* 8610 * If there vnode reference count is greater than one, then 8611 * there may be additional references in the DNLC which will 8612 * need to be purged. First, trying removing the entry for 8613 * the parent directory and see if that removes the additional 8614 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8615 * to completely remove any references to the directory which 8616 * might still exist in the DNLC. 8617 */ 8618 if (vp->v_count > 1) { 8619 dnlc_remove(vp, ".."); 8620 if (vp->v_count > 1) 8621 dnlc_purge_vp(vp); 8622 } 8623 8624 mi = VTOMI4(dvp); 8625 recov_state.rs_flags = 0; 8626 recov_state.rs_num_retry_despite_err = 0; 8627 8628 recov_retry: 8629 args.ctag = TAG_RMDIR; 8630 8631 /* 8632 * Rmdir ops: putfh dir; remove 8633 */ 8634 args.array_len = 3; 8635 args.array = argop; 8636 8637 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8638 if (e.error) { 8639 nfs_rw_exit(&drp->r_rwlock); 8640 return (e.error); 8641 } 8642 need_end_op = TRUE; 8643 8644 /* putfh directory */ 8645 argop[0].argop = OP_CPUTFH; 8646 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8647 8648 /* remove */ 8649 argop[1].argop = OP_CREMOVE; 8650 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8651 8652 /* getattr (postop attrs for dir that contained removed dir) */ 8653 argop[2].argop = OP_GETATTR; 8654 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8655 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8656 8657 dinfo.di_time_call = gethrtime(); 8658 doqueue = 1; 8659 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8660 8661 PURGE_ATTRCACHE4(vp); 8662 8663 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8664 if (e.error) { 8665 PURGE_ATTRCACHE4(dvp); 8666 } 8667 8668 if (needrecov) { 8669 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8670 NULL, OP_REMOVE, NULL) == FALSE) { 8671 if (!e.error) 8672 (void) xdr_free(xdr_COMPOUND4res_clnt, 8673 (caddr_t)&res); 8674 8675 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8676 needrecov); 8677 need_end_op = FALSE; 8678 goto recov_retry; 8679 } 8680 } 8681 8682 if (!e.error) { 8683 resp = &res; 8684 8685 /* 8686 * Only return error if first 2 ops (OP_REMOVE or earlier) 8687 * failed. 8688 */ 8689 if (res.status != NFS4_OK && res.array_len <= 2) { 8690 e.error = geterrno4(res.status); 8691 PURGE_ATTRCACHE4(dvp); 8692 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8693 &recov_state, needrecov); 8694 need_end_op = FALSE; 8695 nfs4_purge_stale_fh(e.error, dvp, cr); 8696 /* 8697 * System V defines rmdir to return EEXIST, not 8698 * ENOTEMPTY if the directory is not empty. Over 8699 * the wire, the error is NFSERR_ENOTEMPTY which 8700 * geterrno4 maps to ENOTEMPTY. 8701 */ 8702 if (e.error == ENOTEMPTY) 8703 e.error = EEXIST; 8704 } else { 8705 resop = &res.array[1]; /* remove res */ 8706 rm_res = &resop->nfs_resop4_u.opremove; 8707 8708 if (res.status == NFS4_OK) { 8709 resop = &res.array[2]; /* dir attrs */ 8710 dinfo.di_garp = 8711 &resop->nfs_resop4_u.opgetattr.ga_res; 8712 dinfo.di_cred = cr; 8713 dinfop = &dinfo; 8714 } else 8715 dinfop = NULL; 8716 8717 /* Update dir attribute, readdir and dnlc caches */ 8718 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8719 dinfop); 8720 8721 /* destroy rddir cache for dir that was removed */ 8722 if (VTOR4(vp)->r_dir != NULL) 8723 nfs4_purge_rddir_cache(vp); 8724 } 8725 } 8726 8727 if (need_end_op) 8728 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8729 8730 nfs_rw_exit(&drp->r_rwlock); 8731 8732 if (resp) 8733 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8734 8735 if (e.error == 0) { 8736 vnode_t *tvp; 8737 rnode4_t *trp; 8738 trp = VTOR4(vp); 8739 tvp = vp; 8740 if (IS_SHADOW(vp, trp)) 8741 tvp = RTOV4(trp); 8742 vnevent_rmdir(tvp, dvp, nm, ct); 8743 } 8744 8745 VN_RELE(vp); 8746 8747 return (e.error); 8748 } 8749 8750 /* ARGSUSED */ 8751 static int 8752 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8753 caller_context_t *ct, int flags) 8754 { 8755 int error; 8756 vnode_t *vp; 8757 rnode4_t *rp; 8758 char *contents; 8759 mntinfo4_t *mi = VTOMI4(dvp); 8760 8761 if (nfs_zone() != mi->mi_zone) 8762 return (EPERM); 8763 if (!(mi->mi_flags & MI4_SYMLINK)) 8764 return (EOPNOTSUPP); 8765 8766 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8767 if (error) 8768 return (error); 8769 8770 ASSERT(nfs4_consistent_type(vp)); 8771 rp = VTOR4(vp); 8772 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8773 8774 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8775 8776 if (contents != NULL) { 8777 mutex_enter(&rp->r_statelock); 8778 if (rp->r_symlink.contents == NULL) { 8779 rp->r_symlink.len = strlen(tnm); 8780 bcopy(tnm, contents, rp->r_symlink.len); 8781 rp->r_symlink.contents = contents; 8782 rp->r_symlink.size = MAXPATHLEN; 8783 mutex_exit(&rp->r_statelock); 8784 } else { 8785 mutex_exit(&rp->r_statelock); 8786 kmem_free((void *)contents, MAXPATHLEN); 8787 } 8788 } 8789 } 8790 VN_RELE(vp); 8791 8792 return (error); 8793 } 8794 8795 8796 /* 8797 * Read directory entries. 8798 * There are some weird things to look out for here. The uio_loffset 8799 * field is either 0 or it is the offset returned from a previous 8800 * readdir. It is an opaque value used by the server to find the 8801 * correct directory block to read. The count field is the number 8802 * of blocks to read on the server. This is advisory only, the server 8803 * may return only one block's worth of entries. Entries may be compressed 8804 * on the server. 8805 */ 8806 /* ARGSUSED */ 8807 static int 8808 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8809 caller_context_t *ct, int flags) 8810 { 8811 int error; 8812 uint_t count; 8813 rnode4_t *rp; 8814 rddir4_cache *rdc; 8815 rddir4_cache *rrdc; 8816 8817 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8818 return (EIO); 8819 rp = VTOR4(vp); 8820 8821 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8822 8823 /* 8824 * Make sure that the directory cache is valid. 8825 */ 8826 if (rp->r_dir != NULL) { 8827 if (nfs_disable_rddir_cache != 0) { 8828 /* 8829 * Setting nfs_disable_rddir_cache in /etc/system 8830 * allows interoperability with servers that do not 8831 * properly update the attributes of directories. 8832 * Any cached information gets purged before an 8833 * access is made to it. 8834 */ 8835 nfs4_purge_rddir_cache(vp); 8836 } 8837 8838 error = nfs4_validate_caches(vp, cr); 8839 if (error) 8840 return (error); 8841 } 8842 8843 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8844 8845 /* 8846 * Short circuit last readdir which always returns 0 bytes. 8847 * This can be done after the directory has been read through 8848 * completely at least once. This will set r_direof which 8849 * can be used to find the value of the last cookie. 8850 */ 8851 mutex_enter(&rp->r_statelock); 8852 if (rp->r_direof != NULL && 8853 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8854 mutex_exit(&rp->r_statelock); 8855 #ifdef DEBUG 8856 nfs4_readdir_cache_shorts++; 8857 #endif 8858 if (eofp) 8859 *eofp = 1; 8860 return (0); 8861 } 8862 8863 /* 8864 * Look for a cache entry. Cache entries are identified 8865 * by the NFS cookie value and the byte count requested. 8866 */ 8867 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8868 8869 /* 8870 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8871 */ 8872 if (rdc == NULL) { 8873 mutex_exit(&rp->r_statelock); 8874 return (EINTR); 8875 } 8876 8877 /* 8878 * Check to see if we need to fill this entry in. 8879 */ 8880 if (rdc->flags & RDDIRREQ) { 8881 rdc->flags &= ~RDDIRREQ; 8882 rdc->flags |= RDDIR; 8883 mutex_exit(&rp->r_statelock); 8884 8885 /* 8886 * Do the readdir. 8887 */ 8888 nfs4readdir(vp, rdc, cr); 8889 8890 /* 8891 * Reacquire the lock, so that we can continue 8892 */ 8893 mutex_enter(&rp->r_statelock); 8894 /* 8895 * The entry is now complete 8896 */ 8897 rdc->flags &= ~RDDIR; 8898 } 8899 8900 ASSERT(!(rdc->flags & RDDIR)); 8901 8902 /* 8903 * If an error occurred while attempting 8904 * to fill the cache entry, mark the entry invalid and 8905 * just return the error. 8906 */ 8907 if (rdc->error) { 8908 error = rdc->error; 8909 rdc->flags |= RDDIRREQ; 8910 rddir4_cache_rele(rp, rdc); 8911 mutex_exit(&rp->r_statelock); 8912 return (error); 8913 } 8914 8915 /* 8916 * The cache entry is complete and good, 8917 * copyout the dirent structs to the calling 8918 * thread. 8919 */ 8920 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 8921 8922 /* 8923 * If no error occurred during the copyout, 8924 * update the offset in the uio struct to 8925 * contain the value of the next NFS 4 cookie 8926 * and set the eof value appropriately. 8927 */ 8928 if (!error) { 8929 uiop->uio_loffset = rdc->nfs4_ncookie; 8930 if (eofp) 8931 *eofp = rdc->eof; 8932 } 8933 8934 /* 8935 * Decide whether to do readahead. Don't if we 8936 * have already read to the end of directory. 8937 */ 8938 if (rdc->eof) { 8939 /* 8940 * Make the entry the direof only if it is cached 8941 */ 8942 if (rdc->flags & RDDIRCACHED) 8943 rp->r_direof = rdc; 8944 rddir4_cache_rele(rp, rdc); 8945 mutex_exit(&rp->r_statelock); 8946 return (error); 8947 } 8948 8949 /* Determine if a readdir readahead should be done */ 8950 if (!(rp->r_flags & R4LOOKUP)) { 8951 rddir4_cache_rele(rp, rdc); 8952 mutex_exit(&rp->r_statelock); 8953 return (error); 8954 } 8955 8956 /* 8957 * Now look for a readahead entry. 8958 * 8959 * Check to see whether we found an entry for the readahead. 8960 * If so, we don't need to do anything further, so free the new 8961 * entry if one was allocated. Otherwise, allocate a new entry, add 8962 * it to the cache, and then initiate an asynchronous readdir 8963 * operation to fill it. 8964 */ 8965 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 8966 8967 /* 8968 * A readdir cache entry could not be obtained for the readahead. In 8969 * this case we skip the readahead and return. 8970 */ 8971 if (rrdc == NULL) { 8972 rddir4_cache_rele(rp, rdc); 8973 mutex_exit(&rp->r_statelock); 8974 return (error); 8975 } 8976 8977 /* 8978 * Check to see if we need to fill this entry in. 8979 */ 8980 if (rrdc->flags & RDDIRREQ) { 8981 rrdc->flags &= ~RDDIRREQ; 8982 rrdc->flags |= RDDIR; 8983 rddir4_cache_rele(rp, rdc); 8984 mutex_exit(&rp->r_statelock); 8985 #ifdef DEBUG 8986 nfs4_readdir_readahead++; 8987 #endif 8988 /* 8989 * Do the readdir. 8990 */ 8991 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 8992 return (error); 8993 } 8994 8995 rddir4_cache_rele(rp, rrdc); 8996 rddir4_cache_rele(rp, rdc); 8997 mutex_exit(&rp->r_statelock); 8998 return (error); 8999 } 9000 9001 static int 9002 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9003 { 9004 int error; 9005 rnode4_t *rp; 9006 9007 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9008 9009 rp = VTOR4(vp); 9010 9011 /* 9012 * Obtain the readdir results for the caller. 9013 */ 9014 nfs4readdir(vp, rdc, cr); 9015 9016 mutex_enter(&rp->r_statelock); 9017 /* 9018 * The entry is now complete 9019 */ 9020 rdc->flags &= ~RDDIR; 9021 9022 error = rdc->error; 9023 if (error) 9024 rdc->flags |= RDDIRREQ; 9025 rddir4_cache_rele(rp, rdc); 9026 mutex_exit(&rp->r_statelock); 9027 9028 return (error); 9029 } 9030 9031 /* 9032 * Read directory entries. 9033 * There are some weird things to look out for here. The uio_loffset 9034 * field is either 0 or it is the offset returned from a previous 9035 * readdir. It is an opaque value used by the server to find the 9036 * correct directory block to read. The count field is the number 9037 * of blocks to read on the server. This is advisory only, the server 9038 * may return only one block's worth of entries. Entries may be compressed 9039 * on the server. 9040 * 9041 * Generates the following compound request: 9042 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9043 * must include a Lookupp as well. In this case, send: 9044 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9045 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9046 * 9047 * Get complete attributes and filehandles for entries if this is the 9048 * first read of the directory. Otherwise, just get fileid's. 9049 */ 9050 static void 9051 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9052 { 9053 COMPOUND4args_clnt args; 9054 COMPOUND4res_clnt res; 9055 READDIR4args *rargs; 9056 READDIR4res_clnt *rd_res; 9057 bitmap4 rd_bitsval; 9058 nfs_argop4 argop[5]; 9059 nfs_resop4 *resop; 9060 rnode4_t *rp = VTOR4(vp); 9061 mntinfo4_t *mi = VTOMI4(vp); 9062 int doqueue; 9063 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9064 vnode_t *dvp; 9065 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9066 int num_ops, res_opcnt; 9067 bool_t needrecov = FALSE; 9068 nfs4_recov_state_t recov_state; 9069 hrtime_t t; 9070 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9071 9072 ASSERT(nfs_zone() == mi->mi_zone); 9073 ASSERT(rdc->flags & RDDIR); 9074 ASSERT(rdc->entries == NULL); 9075 9076 /* 9077 * If rp were a stub, it should have triggered and caused 9078 * a mount for us to get this far. 9079 */ 9080 ASSERT(!RP_ISSTUB(rp)); 9081 9082 num_ops = 2; 9083 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9084 /* 9085 * Since nfsv4 readdir may not return entries for "." and "..", 9086 * the client must recreate them: 9087 * To find the correct nodeid, do the following: 9088 * For current node, get nodeid from dnlc. 9089 * - if current node is rootvp, set pnodeid to nodeid. 9090 * - else if parent is in the dnlc, get its nodeid from there. 9091 * - else add LOOKUPP+GETATTR to compound. 9092 */ 9093 nodeid = rp->r_attr.va_nodeid; 9094 if (vp->v_flag & VROOT) { 9095 pnodeid = nodeid; /* root of mount point */ 9096 } else { 9097 dvp = dnlc_lookup(vp, ".."); 9098 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9099 /* parent in dnlc cache - no need for otw */ 9100 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9101 } else { 9102 /* 9103 * parent not in dnlc cache, 9104 * do lookupp to get its id 9105 */ 9106 num_ops = 5; 9107 pnodeid = 0; /* set later by getattr parent */ 9108 } 9109 if (dvp) 9110 VN_RELE(dvp); 9111 } 9112 } 9113 recov_state.rs_flags = 0; 9114 recov_state.rs_num_retry_despite_err = 0; 9115 9116 /* Save the original mount point security flavor */ 9117 (void) save_mnt_secinfo(mi->mi_curr_serv); 9118 9119 recov_retry: 9120 args.ctag = TAG_READDIR; 9121 9122 args.array = argop; 9123 args.array_len = num_ops; 9124 9125 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9126 &recov_state, NULL)) { 9127 /* 9128 * If readdir a node that is a stub for a crossed mount point, 9129 * keep the original secinfo flavor for the current file 9130 * system, not the crossed one. 9131 */ 9132 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9133 rdc->error = e.error; 9134 return; 9135 } 9136 9137 /* 9138 * Determine which attrs to request for dirents. This code 9139 * must be protected by nfs4_start/end_fop because of r_server 9140 * (which will change during failover recovery). 9141 * 9142 */ 9143 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9144 /* 9145 * Get all vattr attrs plus filehandle and rdattr_error 9146 */ 9147 rd_bitsval = NFS4_VATTR_MASK | 9148 FATTR4_RDATTR_ERROR_MASK | 9149 FATTR4_FILEHANDLE_MASK; 9150 9151 if (rp->r_flags & R4READDIRWATTR) { 9152 mutex_enter(&rp->r_statelock); 9153 rp->r_flags &= ~R4READDIRWATTR; 9154 mutex_exit(&rp->r_statelock); 9155 } 9156 } else { 9157 servinfo4_t *svp = rp->r_server; 9158 9159 /* 9160 * Already read directory. Use readdir with 9161 * no attrs (except for mounted_on_fileid) for updates. 9162 */ 9163 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9164 9165 /* 9166 * request mounted on fileid if supported, else request 9167 * fileid. maybe we should verify that fileid is supported 9168 * and request something else if not. 9169 */ 9170 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9171 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9172 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9173 nfs_rw_exit(&svp->sv_lock); 9174 } 9175 9176 /* putfh directory fh */ 9177 argop[0].argop = OP_CPUTFH; 9178 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9179 9180 argop[1].argop = OP_READDIR; 9181 rargs = &argop[1].nfs_argop4_u.opreaddir; 9182 /* 9183 * 1 and 2 are reserved for client "." and ".." entry offset. 9184 * cookie 0 should be used over-the-wire to start reading at 9185 * the beginning of the directory excluding "." and "..". 9186 */ 9187 if (rdc->nfs4_cookie == 0 || 9188 rdc->nfs4_cookie == 1 || 9189 rdc->nfs4_cookie == 2) { 9190 rargs->cookie = (nfs_cookie4)0; 9191 rargs->cookieverf = 0; 9192 } else { 9193 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9194 mutex_enter(&rp->r_statelock); 9195 rargs->cookieverf = rp->r_cookieverf4; 9196 mutex_exit(&rp->r_statelock); 9197 } 9198 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9199 rargs->maxcount = mi->mi_tsize; 9200 rargs->attr_request = rd_bitsval; 9201 rargs->rdc = rdc; 9202 rargs->dvp = vp; 9203 rargs->mi = mi; 9204 rargs->cr = cr; 9205 9206 9207 /* 9208 * If count < than the minimum required, we return no entries 9209 * and fail with EINVAL 9210 */ 9211 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9212 rdc->error = EINVAL; 9213 goto out; 9214 } 9215 9216 if (args.array_len == 5) { 9217 /* 9218 * Add lookupp and getattr for parent nodeid. 9219 */ 9220 argop[2].argop = OP_LOOKUPP; 9221 9222 argop[3].argop = OP_GETFH; 9223 9224 /* getattr parent */ 9225 argop[4].argop = OP_GETATTR; 9226 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9227 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9228 } 9229 9230 doqueue = 1; 9231 9232 if (mi->mi_io_kstats) { 9233 mutex_enter(&mi->mi_lock); 9234 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9235 mutex_exit(&mi->mi_lock); 9236 } 9237 9238 /* capture the time of this call */ 9239 rargs->t = t = gethrtime(); 9240 9241 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9242 9243 if (mi->mi_io_kstats) { 9244 mutex_enter(&mi->mi_lock); 9245 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9246 mutex_exit(&mi->mi_lock); 9247 } 9248 9249 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9250 9251 /* 9252 * If RPC error occurred and it isn't an error that 9253 * triggers recovery, then go ahead and fail now. 9254 */ 9255 if (e.error != 0 && !needrecov) { 9256 rdc->error = e.error; 9257 goto out; 9258 } 9259 9260 if (needrecov) { 9261 bool_t abort; 9262 9263 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9264 "nfs4readdir: initiating recovery.\n")); 9265 9266 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9267 NULL, OP_READDIR, NULL); 9268 if (abort == FALSE) { 9269 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9270 &recov_state, needrecov); 9271 if (!e.error) 9272 (void) xdr_free(xdr_COMPOUND4res_clnt, 9273 (caddr_t)&res); 9274 if (rdc->entries != NULL) { 9275 kmem_free(rdc->entries, rdc->entlen); 9276 rdc->entries = NULL; 9277 } 9278 goto recov_retry; 9279 } 9280 9281 if (e.error != 0) { 9282 rdc->error = e.error; 9283 goto out; 9284 } 9285 9286 /* fall through for res.status case */ 9287 } 9288 9289 res_opcnt = res.array_len; 9290 9291 /* 9292 * If compound failed first 2 ops (PUTFH+READDIR), then return 9293 * failure here. Subsequent ops are for filling out dot-dot 9294 * dirent, and if they fail, we still want to give the caller 9295 * the dirents returned by (the successful) READDIR op, so we need 9296 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9297 * 9298 * One example where PUTFH+READDIR ops would succeed but 9299 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9300 * but lacks x. In this case, a POSIX server's VOP_READDIR 9301 * would succeed; however, VOP_LOOKUP(..) would fail since no 9302 * x perm. We need to come up with a non-vendor-specific way 9303 * for a POSIX server to return d_ino from dotdot's dirent if 9304 * client only requests mounted_on_fileid, and just say the 9305 * LOOKUPP succeeded and fill out the GETATTR. However, if 9306 * client requested any mandatory attrs, server would be required 9307 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9308 * for dotdot. 9309 */ 9310 9311 if (res.status) { 9312 if (res_opcnt <= 2) { 9313 e.error = geterrno4(res.status); 9314 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9315 &recov_state, needrecov); 9316 nfs4_purge_stale_fh(e.error, vp, cr); 9317 rdc->error = e.error; 9318 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9319 if (rdc->entries != NULL) { 9320 kmem_free(rdc->entries, rdc->entlen); 9321 rdc->entries = NULL; 9322 } 9323 /* 9324 * If readdir a node that is a stub for a 9325 * crossed mount point, keep the original 9326 * secinfo flavor for the current file system, 9327 * not the crossed one. 9328 */ 9329 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9330 return; 9331 } 9332 } 9333 9334 resop = &res.array[1]; /* readdir res */ 9335 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9336 9337 mutex_enter(&rp->r_statelock); 9338 rp->r_cookieverf4 = rd_res->cookieverf; 9339 mutex_exit(&rp->r_statelock); 9340 9341 /* 9342 * For "." and ".." entries 9343 * e.g. 9344 * seek(cookie=0) -> "." entry with d_off = 1 9345 * seek(cookie=1) -> ".." entry with d_off = 2 9346 */ 9347 if (cookie == (nfs_cookie4) 0) { 9348 if (rd_res->dotp) 9349 rd_res->dotp->d_ino = nodeid; 9350 if (rd_res->dotdotp) 9351 rd_res->dotdotp->d_ino = pnodeid; 9352 } 9353 if (cookie == (nfs_cookie4) 1) { 9354 if (rd_res->dotdotp) 9355 rd_res->dotdotp->d_ino = pnodeid; 9356 } 9357 9358 9359 /* LOOKUPP+GETATTR attemped */ 9360 if (args.array_len == 5 && rd_res->dotdotp) { 9361 if (res.status == NFS4_OK && res_opcnt == 5) { 9362 nfs_fh4 *fhp; 9363 nfs4_sharedfh_t *sfhp; 9364 vnode_t *pvp; 9365 nfs4_ga_res_t *garp; 9366 9367 resop++; /* lookupp */ 9368 resop++; /* getfh */ 9369 fhp = &resop->nfs_resop4_u.opgetfh.object; 9370 9371 resop++; /* getattr of parent */ 9372 9373 /* 9374 * First, take care of finishing the 9375 * readdir results. 9376 */ 9377 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9378 /* 9379 * The d_ino of .. must be the inode number 9380 * of the mounted filesystem. 9381 */ 9382 if (garp->n4g_va.va_mask & AT_NODEID) 9383 rd_res->dotdotp->d_ino = 9384 garp->n4g_va.va_nodeid; 9385 9386 9387 /* 9388 * Next, create the ".." dnlc entry 9389 */ 9390 sfhp = sfh4_get(fhp, mi); 9391 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9392 dnlc_update(vp, "..", pvp); 9393 VN_RELE(pvp); 9394 } 9395 sfh4_rele(&sfhp); 9396 } 9397 } 9398 9399 if (mi->mi_io_kstats) { 9400 mutex_enter(&mi->mi_lock); 9401 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9402 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9403 mutex_exit(&mi->mi_lock); 9404 } 9405 9406 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9407 9408 out: 9409 /* 9410 * If readdir a node that is a stub for a crossed mount point, 9411 * keep the original secinfo flavor for the current file system, 9412 * not the crossed one. 9413 */ 9414 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9415 9416 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9417 } 9418 9419 9420 static int 9421 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9422 { 9423 rnode4_t *rp = VTOR4(bp->b_vp); 9424 int count; 9425 int error; 9426 cred_t *cred_otw = NULL; 9427 offset_t offset; 9428 nfs4_open_stream_t *osp = NULL; 9429 bool_t first_time = TRUE; /* first time getting otw cred */ 9430 bool_t last_time = FALSE; /* last time getting otw cred */ 9431 9432 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9433 9434 DTRACE_IO1(start, struct buf *, bp); 9435 offset = ldbtob(bp->b_lblkno); 9436 9437 if (bp->b_flags & B_READ) { 9438 read_again: 9439 /* 9440 * Releases the osp, if it is provided. 9441 * Puts a hold on the cred_otw and the new osp (if found). 9442 */ 9443 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9444 &first_time, &last_time); 9445 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9446 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9447 readahead, NULL); 9448 crfree(cred_otw); 9449 if (!error) { 9450 if (bp->b_resid) { 9451 /* 9452 * Didn't get it all because we hit EOF, 9453 * zero all the memory beyond the EOF. 9454 */ 9455 /* bzero(rdaddr + */ 9456 bzero(bp->b_un.b_addr + 9457 bp->b_bcount - bp->b_resid, bp->b_resid); 9458 } 9459 mutex_enter(&rp->r_statelock); 9460 if (bp->b_resid == bp->b_bcount && 9461 offset >= rp->r_size) { 9462 /* 9463 * We didn't read anything at all as we are 9464 * past EOF. Return an error indicator back 9465 * but don't destroy the pages (yet). 9466 */ 9467 error = NFS_EOF; 9468 } 9469 mutex_exit(&rp->r_statelock); 9470 } else if (error == EACCES && last_time == FALSE) { 9471 goto read_again; 9472 } 9473 } else { 9474 if (!(rp->r_flags & R4STALE)) { 9475 write_again: 9476 /* 9477 * Releases the osp, if it is provided. 9478 * Puts a hold on the cred_otw and the new 9479 * osp (if found). 9480 */ 9481 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9482 &first_time, &last_time); 9483 mutex_enter(&rp->r_statelock); 9484 count = MIN(bp->b_bcount, rp->r_size - offset); 9485 mutex_exit(&rp->r_statelock); 9486 if (count < 0) 9487 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9488 #ifdef DEBUG 9489 if (count == 0) { 9490 zoneid_t zoneid = getzoneid(); 9491 9492 zcmn_err(zoneid, CE_WARN, 9493 "nfs4_bio: zero length write at %lld", 9494 offset); 9495 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9496 "b_bcount=%ld, file size=%lld", 9497 rp->r_flags, (long)bp->b_bcount, 9498 rp->r_size); 9499 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9500 if (nfs4_bio_do_stop) 9501 debug_enter("nfs4_bio"); 9502 } 9503 #endif 9504 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9505 count, cred_otw, stab_comm); 9506 if (error == EACCES && last_time == FALSE) { 9507 crfree(cred_otw); 9508 goto write_again; 9509 } 9510 bp->b_error = error; 9511 if (error && error != EINTR && 9512 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9513 /* 9514 * Don't print EDQUOT errors on the console. 9515 * Don't print asynchronous EACCES errors. 9516 * Don't print EFBIG errors. 9517 * Print all other write errors. 9518 */ 9519 if (error != EDQUOT && error != EFBIG && 9520 (error != EACCES || 9521 !(bp->b_flags & B_ASYNC))) 9522 nfs4_write_error(bp->b_vp, 9523 error, cred_otw); 9524 /* 9525 * Update r_error and r_flags as appropriate. 9526 * If the error was ESTALE, then mark the 9527 * rnode as not being writeable and save 9528 * the error status. Otherwise, save any 9529 * errors which occur from asynchronous 9530 * page invalidations. Any errors occurring 9531 * from other operations should be saved 9532 * by the caller. 9533 */ 9534 mutex_enter(&rp->r_statelock); 9535 if (error == ESTALE) { 9536 rp->r_flags |= R4STALE; 9537 if (!rp->r_error) 9538 rp->r_error = error; 9539 } else if (!rp->r_error && 9540 (bp->b_flags & 9541 (B_INVAL|B_FORCE|B_ASYNC)) == 9542 (B_INVAL|B_FORCE|B_ASYNC)) { 9543 rp->r_error = error; 9544 } 9545 mutex_exit(&rp->r_statelock); 9546 } 9547 crfree(cred_otw); 9548 } else 9549 error = rp->r_error; 9550 } 9551 9552 if (error != 0 && error != NFS_EOF) 9553 bp->b_flags |= B_ERROR; 9554 9555 if (osp) 9556 open_stream_rele(osp, rp); 9557 9558 DTRACE_IO1(done, struct buf *, bp); 9559 9560 return (error); 9561 } 9562 9563 /* ARGSUSED */ 9564 int 9565 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9566 { 9567 return (EREMOTE); 9568 } 9569 9570 /* ARGSUSED2 */ 9571 int 9572 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9573 { 9574 rnode4_t *rp = VTOR4(vp); 9575 9576 if (!write_lock) { 9577 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9578 return (V_WRITELOCK_FALSE); 9579 } 9580 9581 if ((rp->r_flags & R4DIRECTIO) || 9582 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9583 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9584 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9585 return (V_WRITELOCK_FALSE); 9586 nfs_rw_exit(&rp->r_rwlock); 9587 } 9588 9589 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9590 return (V_WRITELOCK_TRUE); 9591 } 9592 9593 /* ARGSUSED */ 9594 void 9595 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9596 { 9597 rnode4_t *rp = VTOR4(vp); 9598 9599 nfs_rw_exit(&rp->r_rwlock); 9600 } 9601 9602 /* ARGSUSED */ 9603 static int 9604 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9605 { 9606 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9607 return (EIO); 9608 9609 /* 9610 * Because we stuff the readdir cookie into the offset field 9611 * someone may attempt to do an lseek with the cookie which 9612 * we want to succeed. 9613 */ 9614 if (vp->v_type == VDIR) 9615 return (0); 9616 if (*noffp < 0) 9617 return (EINVAL); 9618 return (0); 9619 } 9620 9621 9622 /* 9623 * Return all the pages from [off..off+len) in file 9624 */ 9625 /* ARGSUSED */ 9626 static int 9627 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9628 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9629 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9630 { 9631 rnode4_t *rp; 9632 int error; 9633 mntinfo4_t *mi; 9634 9635 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9636 return (EIO); 9637 rp = VTOR4(vp); 9638 if (IS_SHADOW(vp, rp)) 9639 vp = RTOV4(rp); 9640 9641 if (vp->v_flag & VNOMAP) 9642 return (ENOSYS); 9643 9644 if (protp != NULL) 9645 *protp = PROT_ALL; 9646 9647 /* 9648 * Now validate that the caches are up to date. 9649 */ 9650 if (error = nfs4_validate_caches(vp, cr)) 9651 return (error); 9652 9653 mi = VTOMI4(vp); 9654 retry: 9655 mutex_enter(&rp->r_statelock); 9656 9657 /* 9658 * Don't create dirty pages faster than they 9659 * can be cleaned so that the system doesn't 9660 * get imbalanced. If the async queue is 9661 * maxed out, then wait for it to drain before 9662 * creating more dirty pages. Also, wait for 9663 * any threads doing pagewalks in the vop_getattr 9664 * entry points so that they don't block for 9665 * long periods. 9666 */ 9667 if (rw == S_CREATE) { 9668 while ((mi->mi_max_threads != 0 && 9669 rp->r_awcount > 2 * mi->mi_max_threads) || 9670 rp->r_gcount > 0) 9671 cv_wait(&rp->r_cv, &rp->r_statelock); 9672 } 9673 9674 /* 9675 * If we are getting called as a side effect of an nfs_write() 9676 * operation the local file size might not be extended yet. 9677 * In this case we want to be able to return pages of zeroes. 9678 */ 9679 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9680 NFS4_DEBUG(nfs4_pageio_debug, 9681 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9682 "len=%llu, size=%llu, attrsize =%llu", off, 9683 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9684 mutex_exit(&rp->r_statelock); 9685 return (EFAULT); /* beyond EOF */ 9686 } 9687 9688 mutex_exit(&rp->r_statelock); 9689 9690 if (len <= PAGESIZE) { 9691 error = nfs4_getapage(vp, off, len, protp, pl, plsz, 9692 seg, addr, rw, cr); 9693 NFS4_DEBUG(nfs4_pageio_debug && error, 9694 (CE_NOTE, "getpage error %d; off=%lld, " 9695 "len=%lld", error, off, (u_longlong_t)len)); 9696 } else { 9697 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9698 pl, plsz, seg, addr, rw, cr); 9699 NFS4_DEBUG(nfs4_pageio_debug && error, 9700 (CE_NOTE, "getpages error %d; off=%lld, " 9701 "len=%lld", error, off, (u_longlong_t)len)); 9702 } 9703 9704 switch (error) { 9705 case NFS_EOF: 9706 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9707 goto retry; 9708 case ESTALE: 9709 nfs4_purge_stale_fh(error, vp, cr); 9710 } 9711 9712 return (error); 9713 } 9714 9715 /* 9716 * Called from pvn_getpages or nfs4_getpage to get a particular page. 9717 */ 9718 /* ARGSUSED */ 9719 static int 9720 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9721 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9722 enum seg_rw rw, cred_t *cr) 9723 { 9724 rnode4_t *rp; 9725 uint_t bsize; 9726 struct buf *bp; 9727 page_t *pp; 9728 u_offset_t lbn; 9729 u_offset_t io_off; 9730 u_offset_t blkoff; 9731 u_offset_t rablkoff; 9732 size_t io_len; 9733 uint_t blksize; 9734 int error; 9735 int readahead; 9736 int readahead_issued = 0; 9737 int ra_window; /* readahead window */ 9738 page_t *pagefound; 9739 page_t *savepp; 9740 9741 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9742 return (EIO); 9743 9744 rp = VTOR4(vp); 9745 ASSERT(!IS_SHADOW(vp, rp)); 9746 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9747 9748 reread: 9749 bp = NULL; 9750 pp = NULL; 9751 pagefound = NULL; 9752 9753 if (pl != NULL) 9754 pl[0] = NULL; 9755 9756 error = 0; 9757 lbn = off / bsize; 9758 blkoff = lbn * bsize; 9759 9760 /* 9761 * Queueing up the readahead before doing the synchronous read 9762 * results in a significant increase in read throughput because 9763 * of the increased parallelism between the async threads and 9764 * the process context. 9765 */ 9766 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9767 rw != S_CREATE && 9768 !(vp->v_flag & VNOCACHE)) { 9769 mutex_enter(&rp->r_statelock); 9770 9771 /* 9772 * Calculate the number of readaheads to do. 9773 * a) No readaheads at offset = 0. 9774 * b) Do maximum(nfs4_nra) readaheads when the readahead 9775 * window is closed. 9776 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9777 * upon how far the readahead window is open or close. 9778 * d) No readaheads if rp->r_nextr is not within the scope 9779 * of the readahead window (random i/o). 9780 */ 9781 9782 if (off == 0) 9783 readahead = 0; 9784 else if (blkoff == rp->r_nextr) 9785 readahead = nfs4_nra; 9786 else if (rp->r_nextr > blkoff && 9787 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9788 <= (nfs4_nra - 1))) 9789 readahead = nfs4_nra - ra_window; 9790 else 9791 readahead = 0; 9792 9793 rablkoff = rp->r_nextr; 9794 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9795 mutex_exit(&rp->r_statelock); 9796 if (nfs4_async_readahead(vp, rablkoff + bsize, 9797 addr + (rablkoff + bsize - off), 9798 seg, cr, nfs4_readahead) < 0) { 9799 mutex_enter(&rp->r_statelock); 9800 break; 9801 } 9802 readahead--; 9803 rablkoff += bsize; 9804 /* 9805 * Indicate that we did a readahead so 9806 * readahead offset is not updated 9807 * by the synchronous read below. 9808 */ 9809 readahead_issued = 1; 9810 mutex_enter(&rp->r_statelock); 9811 /* 9812 * set readahead offset to 9813 * offset of last async readahead 9814 * request. 9815 */ 9816 rp->r_nextr = rablkoff; 9817 } 9818 mutex_exit(&rp->r_statelock); 9819 } 9820 9821 again: 9822 if ((pagefound = page_exists(vp, off)) == NULL) { 9823 if (pl == NULL) { 9824 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9825 nfs4_readahead); 9826 } else if (rw == S_CREATE) { 9827 /* 9828 * Block for this page is not allocated, or the offset 9829 * is beyond the current allocation size, or we're 9830 * allocating a swap slot and the page was not found, 9831 * so allocate it and return a zero page. 9832 */ 9833 if ((pp = page_create_va(vp, off, 9834 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9835 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9836 io_len = PAGESIZE; 9837 mutex_enter(&rp->r_statelock); 9838 rp->r_nextr = off + PAGESIZE; 9839 mutex_exit(&rp->r_statelock); 9840 } else { 9841 /* 9842 * Need to go to server to get a block 9843 */ 9844 mutex_enter(&rp->r_statelock); 9845 if (blkoff < rp->r_size && 9846 blkoff + bsize > rp->r_size) { 9847 /* 9848 * If less than a block left in 9849 * file read less than a block. 9850 */ 9851 if (rp->r_size <= off) { 9852 /* 9853 * Trying to access beyond EOF, 9854 * set up to get at least one page. 9855 */ 9856 blksize = off + PAGESIZE - blkoff; 9857 } else 9858 blksize = rp->r_size - blkoff; 9859 } else if ((off == 0) || 9860 (off != rp->r_nextr && !readahead_issued)) { 9861 blksize = PAGESIZE; 9862 blkoff = off; /* block = page here */ 9863 } else 9864 blksize = bsize; 9865 mutex_exit(&rp->r_statelock); 9866 9867 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9868 &io_len, blkoff, blksize, 0); 9869 9870 /* 9871 * Some other thread has entered the page, 9872 * so just use it. 9873 */ 9874 if (pp == NULL) 9875 goto again; 9876 9877 /* 9878 * Now round the request size up to page boundaries. 9879 * This ensures that the entire page will be 9880 * initialized to zeroes if EOF is encountered. 9881 */ 9882 io_len = ptob(btopr(io_len)); 9883 9884 bp = pageio_setup(pp, io_len, vp, B_READ); 9885 ASSERT(bp != NULL); 9886 9887 /* 9888 * pageio_setup should have set b_addr to 0. This 9889 * is correct since we want to do I/O on a page 9890 * boundary. bp_mapin will use this addr to calculate 9891 * an offset, and then set b_addr to the kernel virtual 9892 * address it allocated for us. 9893 */ 9894 ASSERT(bp->b_un.b_addr == 0); 9895 9896 bp->b_edev = 0; 9897 bp->b_dev = 0; 9898 bp->b_lblkno = lbtodb(io_off); 9899 bp->b_file = vp; 9900 bp->b_offset = (offset_t)off; 9901 bp_mapin(bp); 9902 9903 /* 9904 * If doing a write beyond what we believe is EOF, 9905 * don't bother trying to read the pages from the 9906 * server, we'll just zero the pages here. We 9907 * don't check that the rw flag is S_WRITE here 9908 * because some implementations may attempt a 9909 * read access to the buffer before copying data. 9910 */ 9911 mutex_enter(&rp->r_statelock); 9912 if (io_off >= rp->r_size && seg == segkmap) { 9913 mutex_exit(&rp->r_statelock); 9914 bzero(bp->b_un.b_addr, io_len); 9915 } else { 9916 mutex_exit(&rp->r_statelock); 9917 error = nfs4_bio(bp, NULL, cr, FALSE); 9918 } 9919 9920 /* 9921 * Unmap the buffer before freeing it. 9922 */ 9923 bp_mapout(bp); 9924 pageio_done(bp); 9925 9926 savepp = pp; 9927 do { 9928 pp->p_fsdata = C_NOCOMMIT; 9929 } while ((pp = pp->p_next) != savepp); 9930 9931 if (error == NFS_EOF) { 9932 /* 9933 * If doing a write system call just return 9934 * zeroed pages, else user tried to get pages 9935 * beyond EOF, return error. We don't check 9936 * that the rw flag is S_WRITE here because 9937 * some implementations may attempt a read 9938 * access to the buffer before copying data. 9939 */ 9940 if (seg == segkmap) 9941 error = 0; 9942 else 9943 error = EFAULT; 9944 } 9945 9946 if (!readahead_issued && !error) { 9947 mutex_enter(&rp->r_statelock); 9948 rp->r_nextr = io_off + io_len; 9949 mutex_exit(&rp->r_statelock); 9950 } 9951 } 9952 } 9953 9954 out: 9955 if (pl == NULL) 9956 return (error); 9957 9958 if (error) { 9959 if (pp != NULL) 9960 pvn_read_done(pp, B_ERROR); 9961 return (error); 9962 } 9963 9964 if (pagefound) { 9965 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 9966 9967 /* 9968 * Page exists in the cache, acquire the appropriate lock. 9969 * If this fails, start all over again. 9970 */ 9971 if ((pp = page_lookup(vp, off, se)) == NULL) { 9972 #ifdef DEBUG 9973 nfs4_lostpage++; 9974 #endif 9975 goto reread; 9976 } 9977 pl[0] = pp; 9978 pl[1] = NULL; 9979 return (0); 9980 } 9981 9982 if (pp != NULL) 9983 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 9984 9985 return (error); 9986 } 9987 9988 static void 9989 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 9990 cred_t *cr) 9991 { 9992 int error; 9993 page_t *pp; 9994 u_offset_t io_off; 9995 size_t io_len; 9996 struct buf *bp; 9997 uint_t bsize, blksize; 9998 rnode4_t *rp = VTOR4(vp); 9999 page_t *savepp; 10000 10001 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10002 10003 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10004 10005 mutex_enter(&rp->r_statelock); 10006 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 10007 /* 10008 * If less than a block left in file read less 10009 * than a block. 10010 */ 10011 blksize = rp->r_size - blkoff; 10012 } else 10013 blksize = bsize; 10014 mutex_exit(&rp->r_statelock); 10015 10016 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 10017 &io_off, &io_len, blkoff, blksize, 1); 10018 /* 10019 * The isra flag passed to the kluster function is 1, we may have 10020 * gotten a return value of NULL for a variety of reasons (# of free 10021 * pages < minfree, someone entered the page on the vnode etc). In all 10022 * cases, we want to punt on the readahead. 10023 */ 10024 if (pp == NULL) 10025 return; 10026 10027 /* 10028 * Now round the request size up to page boundaries. 10029 * This ensures that the entire page will be 10030 * initialized to zeroes if EOF is encountered. 10031 */ 10032 io_len = ptob(btopr(io_len)); 10033 10034 bp = pageio_setup(pp, io_len, vp, B_READ); 10035 ASSERT(bp != NULL); 10036 10037 /* 10038 * pageio_setup should have set b_addr to 0. This is correct since 10039 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10040 * to calculate an offset, and then set b_addr to the kernel virtual 10041 * address it allocated for us. 10042 */ 10043 ASSERT(bp->b_un.b_addr == 0); 10044 10045 bp->b_edev = 0; 10046 bp->b_dev = 0; 10047 bp->b_lblkno = lbtodb(io_off); 10048 bp->b_file = vp; 10049 bp->b_offset = (offset_t)blkoff; 10050 bp_mapin(bp); 10051 10052 /* 10053 * If doing a write beyond what we believe is EOF, don't bother trying 10054 * to read the pages from the server, we'll just zero the pages here. 10055 * We don't check that the rw flag is S_WRITE here because some 10056 * implementations may attempt a read access to the buffer before 10057 * copying data. 10058 */ 10059 mutex_enter(&rp->r_statelock); 10060 if (io_off >= rp->r_size && seg == segkmap) { 10061 mutex_exit(&rp->r_statelock); 10062 bzero(bp->b_un.b_addr, io_len); 10063 error = 0; 10064 } else { 10065 mutex_exit(&rp->r_statelock); 10066 error = nfs4_bio(bp, NULL, cr, TRUE); 10067 if (error == NFS_EOF) 10068 error = 0; 10069 } 10070 10071 /* 10072 * Unmap the buffer before freeing it. 10073 */ 10074 bp_mapout(bp); 10075 pageio_done(bp); 10076 10077 savepp = pp; 10078 do { 10079 pp->p_fsdata = C_NOCOMMIT; 10080 } while ((pp = pp->p_next) != savepp); 10081 10082 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10083 10084 /* 10085 * In case of error set readahead offset 10086 * to the lowest offset. 10087 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10088 */ 10089 if (error && rp->r_nextr > io_off) { 10090 mutex_enter(&rp->r_statelock); 10091 if (rp->r_nextr > io_off) 10092 rp->r_nextr = io_off; 10093 mutex_exit(&rp->r_statelock); 10094 } 10095 } 10096 10097 /* 10098 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10099 * If len == 0, do from off to EOF. 10100 * 10101 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10102 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10103 * (from pageout). 10104 */ 10105 /* ARGSUSED */ 10106 static int 10107 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10108 caller_context_t *ct) 10109 { 10110 int error; 10111 rnode4_t *rp; 10112 10113 ASSERT(cr != NULL); 10114 10115 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10116 return (EIO); 10117 10118 rp = VTOR4(vp); 10119 if (IS_SHADOW(vp, rp)) 10120 vp = RTOV4(rp); 10121 10122 /* 10123 * XXX - Why should this check be made here? 10124 */ 10125 if (vp->v_flag & VNOMAP) 10126 return (ENOSYS); 10127 10128 if (len == 0 && !(flags & B_INVAL) && 10129 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10130 return (0); 10131 10132 mutex_enter(&rp->r_statelock); 10133 rp->r_count++; 10134 mutex_exit(&rp->r_statelock); 10135 error = nfs4_putpages(vp, off, len, flags, cr); 10136 mutex_enter(&rp->r_statelock); 10137 rp->r_count--; 10138 cv_broadcast(&rp->r_cv); 10139 mutex_exit(&rp->r_statelock); 10140 10141 return (error); 10142 } 10143 10144 /* 10145 * Write out a single page, possibly klustering adjacent dirty pages. 10146 */ 10147 int 10148 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10149 int flags, cred_t *cr) 10150 { 10151 u_offset_t io_off; 10152 u_offset_t lbn_off; 10153 u_offset_t lbn; 10154 size_t io_len; 10155 uint_t bsize; 10156 int error; 10157 rnode4_t *rp; 10158 10159 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10160 ASSERT(pp != NULL); 10161 ASSERT(cr != NULL); 10162 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10163 10164 rp = VTOR4(vp); 10165 ASSERT(rp->r_count > 0); 10166 ASSERT(!IS_SHADOW(vp, rp)); 10167 10168 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10169 lbn = pp->p_offset / bsize; 10170 lbn_off = lbn * bsize; 10171 10172 /* 10173 * Find a kluster that fits in one block, or in 10174 * one page if pages are bigger than blocks. If 10175 * there is less file space allocated than a whole 10176 * page, we'll shorten the i/o request below. 10177 */ 10178 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10179 roundup(bsize, PAGESIZE), flags); 10180 10181 /* 10182 * pvn_write_kluster shouldn't have returned a page with offset 10183 * behind the original page we were given. Verify that. 10184 */ 10185 ASSERT((pp->p_offset / bsize) >= lbn); 10186 10187 /* 10188 * Now pp will have the list of kept dirty pages marked for 10189 * write back. It will also handle invalidation and freeing 10190 * of pages that are not dirty. Check for page length rounding 10191 * problems. 10192 */ 10193 if (io_off + io_len > lbn_off + bsize) { 10194 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10195 io_len = lbn_off + bsize - io_off; 10196 } 10197 /* 10198 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10199 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10200 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10201 * progress and the r_size has not been made consistent with the 10202 * new size of the file. When the uiomove() completes the r_size is 10203 * updated and the R4MODINPROGRESS flag is cleared. 10204 * 10205 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10206 * consistent value of r_size. Without this handshaking, it is 10207 * possible that nfs4_bio() picks up the old value of r_size 10208 * before the uiomove() in writerp4() completes. This will result 10209 * in the write through nfs4_bio() being dropped. 10210 * 10211 * More precisely, there is a window between the time the uiomove() 10212 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10213 * operation intervenes in this window, the page will be picked up, 10214 * because it is dirty (it will be unlocked, unless it was 10215 * pagecreate'd). When the page is picked up as dirty, the dirty 10216 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10217 * checked. This will still be the old size. Therefore the page will 10218 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10219 * the page will be found to be clean and the write will be dropped. 10220 */ 10221 if (rp->r_flags & R4MODINPROGRESS) { 10222 mutex_enter(&rp->r_statelock); 10223 if ((rp->r_flags & R4MODINPROGRESS) && 10224 rp->r_modaddr + MAXBSIZE > io_off && 10225 rp->r_modaddr < io_off + io_len) { 10226 page_t *plist; 10227 /* 10228 * A write is in progress for this region of the file. 10229 * If we did not detect R4MODINPROGRESS here then this 10230 * path through nfs_putapage() would eventually go to 10231 * nfs4_bio() and may not write out all of the data 10232 * in the pages. We end up losing data. So we decide 10233 * to set the modified bit on each page in the page 10234 * list and mark the rnode with R4DIRTY. This write 10235 * will be restarted at some later time. 10236 */ 10237 plist = pp; 10238 while (plist != NULL) { 10239 pp = plist; 10240 page_sub(&plist, pp); 10241 hat_setmod(pp); 10242 page_io_unlock(pp); 10243 page_unlock(pp); 10244 } 10245 rp->r_flags |= R4DIRTY; 10246 mutex_exit(&rp->r_statelock); 10247 if (offp) 10248 *offp = io_off; 10249 if (lenp) 10250 *lenp = io_len; 10251 return (0); 10252 } 10253 mutex_exit(&rp->r_statelock); 10254 } 10255 10256 if (flags & B_ASYNC) { 10257 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10258 nfs4_sync_putapage); 10259 } else 10260 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10261 10262 if (offp) 10263 *offp = io_off; 10264 if (lenp) 10265 *lenp = io_len; 10266 return (error); 10267 } 10268 10269 static int 10270 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10271 int flags, cred_t *cr) 10272 { 10273 int error; 10274 rnode4_t *rp; 10275 10276 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10277 10278 flags |= B_WRITE; 10279 10280 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10281 10282 rp = VTOR4(vp); 10283 10284 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10285 error == EACCES) && 10286 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10287 if (!(rp->r_flags & R4OUTOFSPACE)) { 10288 mutex_enter(&rp->r_statelock); 10289 rp->r_flags |= R4OUTOFSPACE; 10290 mutex_exit(&rp->r_statelock); 10291 } 10292 flags |= B_ERROR; 10293 pvn_write_done(pp, flags); 10294 /* 10295 * If this was not an async thread, then try again to 10296 * write out the pages, but this time, also destroy 10297 * them whether or not the write is successful. This 10298 * will prevent memory from filling up with these 10299 * pages and destroying them is the only alternative 10300 * if they can't be written out. 10301 * 10302 * Don't do this if this is an async thread because 10303 * when the pages are unlocked in pvn_write_done, 10304 * some other thread could have come along, locked 10305 * them, and queued for an async thread. It would be 10306 * possible for all of the async threads to be tied 10307 * up waiting to lock the pages again and they would 10308 * all already be locked and waiting for an async 10309 * thread to handle them. Deadlock. 10310 */ 10311 if (!(flags & B_ASYNC)) { 10312 error = nfs4_putpage(vp, io_off, io_len, 10313 B_INVAL | B_FORCE, cr, NULL); 10314 } 10315 } else { 10316 if (error) 10317 flags |= B_ERROR; 10318 else if (rp->r_flags & R4OUTOFSPACE) { 10319 mutex_enter(&rp->r_statelock); 10320 rp->r_flags &= ~R4OUTOFSPACE; 10321 mutex_exit(&rp->r_statelock); 10322 } 10323 pvn_write_done(pp, flags); 10324 if (freemem < desfree) 10325 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10326 NFS4_WRITE_NOWAIT); 10327 } 10328 10329 return (error); 10330 } 10331 10332 #ifdef DEBUG 10333 int nfs4_force_open_before_mmap = 0; 10334 #endif 10335 10336 /* ARGSUSED */ 10337 static int 10338 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10339 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10340 caller_context_t *ct) 10341 { 10342 struct segvn_crargs vn_a; 10343 int error = 0; 10344 rnode4_t *rp = VTOR4(vp); 10345 mntinfo4_t *mi = VTOMI4(vp); 10346 10347 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10348 return (EIO); 10349 10350 if (vp->v_flag & VNOMAP) 10351 return (ENOSYS); 10352 10353 if (off < 0 || (off + len) < 0) 10354 return (ENXIO); 10355 10356 if (vp->v_type != VREG) 10357 return (ENODEV); 10358 10359 /* 10360 * If the file is delegated to the client don't do anything. 10361 * If the file is not delegated, then validate the data cache. 10362 */ 10363 mutex_enter(&rp->r_statev4_lock); 10364 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10365 mutex_exit(&rp->r_statev4_lock); 10366 error = nfs4_validate_caches(vp, cr); 10367 if (error) 10368 return (error); 10369 } else { 10370 mutex_exit(&rp->r_statev4_lock); 10371 } 10372 10373 /* 10374 * Check to see if the vnode is currently marked as not cachable. 10375 * This means portions of the file are locked (through VOP_FRLOCK). 10376 * In this case the map request must be refused. We use 10377 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10378 */ 10379 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 10380 return (EINTR); 10381 10382 if (vp->v_flag & VNOCACHE) { 10383 error = EAGAIN; 10384 goto done; 10385 } 10386 10387 /* 10388 * Don't allow concurrent locks and mapping if mandatory locking is 10389 * enabled. 10390 */ 10391 if (flk_has_remote_locks(vp)) { 10392 struct vattr va; 10393 va.va_mask = AT_MODE; 10394 error = nfs4getattr(vp, &va, cr); 10395 if (error != 0) 10396 goto done; 10397 if (MANDLOCK(vp, va.va_mode)) { 10398 error = EAGAIN; 10399 goto done; 10400 } 10401 } 10402 10403 /* 10404 * It is possible that the rnode has a lost lock request that we 10405 * are still trying to recover, and that the request conflicts with 10406 * this map request. 10407 * 10408 * An alternative approach would be for nfs4_safemap() to consider 10409 * queued lock requests when deciding whether to set or clear 10410 * VNOCACHE. This would require the frlock code path to call 10411 * nfs4_safemap() after enqueing a lost request. 10412 */ 10413 if (nfs4_map_lost_lock_conflict(vp)) { 10414 error = EAGAIN; 10415 goto done; 10416 } 10417 10418 as_rangelock(as); 10419 if (!(flags & MAP_FIXED)) { 10420 map_addr(addrp, len, off, 1, flags); 10421 if (*addrp == NULL) { 10422 as_rangeunlock(as); 10423 error = ENOMEM; 10424 goto done; 10425 } 10426 } else { 10427 /* 10428 * User specified address - blow away any previous mappings 10429 */ 10430 (void) as_unmap(as, *addrp, len); 10431 } 10432 10433 if (vp->v_type == VREG) { 10434 /* 10435 * We need to retrieve the open stream 10436 */ 10437 nfs4_open_stream_t *osp = NULL; 10438 nfs4_open_owner_t *oop = NULL; 10439 10440 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10441 if (oop != NULL) { 10442 /* returns with 'os_sync_lock' held */ 10443 osp = find_open_stream(oop, rp); 10444 open_owner_rele(oop); 10445 } 10446 if (osp == NULL) { 10447 #ifdef DEBUG 10448 if (nfs4_force_open_before_mmap) { 10449 error = EIO; 10450 goto done; 10451 } 10452 #endif 10453 /* returns with 'os_sync_lock' held */ 10454 error = open_and_get_osp(vp, cr, &osp); 10455 if (osp == NULL) { 10456 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10457 "nfs4_map: we tried to OPEN the file " 10458 "but again no osp, so fail with EIO")); 10459 goto done; 10460 } 10461 } 10462 10463 if (osp->os_failed_reopen) { 10464 mutex_exit(&osp->os_sync_lock); 10465 open_stream_rele(osp, rp); 10466 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10467 "nfs4_map: os_failed_reopen set on " 10468 "osp %p, cr %p, rp %s", (void *)osp, 10469 (void *)cr, rnode4info(rp))); 10470 error = EIO; 10471 goto done; 10472 } 10473 mutex_exit(&osp->os_sync_lock); 10474 open_stream_rele(osp, rp); 10475 } 10476 10477 vn_a.vp = vp; 10478 vn_a.offset = off; 10479 vn_a.type = (flags & MAP_TYPE); 10480 vn_a.prot = (uchar_t)prot; 10481 vn_a.maxprot = (uchar_t)maxprot; 10482 vn_a.flags = (flags & ~MAP_TYPE); 10483 vn_a.cred = cr; 10484 vn_a.amp = NULL; 10485 vn_a.szc = 0; 10486 vn_a.lgrp_mem_policy_flags = 0; 10487 10488 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10489 as_rangeunlock(as); 10490 10491 done: 10492 nfs_rw_exit(&rp->r_lkserlock); 10493 return (error); 10494 } 10495 10496 /* 10497 * We're most likely dealing with a kernel module that likes to READ 10498 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10499 * officially OPEN the file to create the necessary client state 10500 * for bookkeeping of os_mmap_read/write counts. 10501 * 10502 * Since VOP_MAP only passes in a pointer to the vnode rather than 10503 * a double pointer, we can't handle the case where nfs4open_otw() 10504 * returns a different vnode than the one passed into VOP_MAP (since 10505 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10506 * we return NULL and let nfs4_map() fail. Note: the only case where 10507 * this should happen is if the file got removed and replaced with the 10508 * same name on the server (in addition to the fact that we're trying 10509 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10510 */ 10511 static int 10512 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10513 { 10514 rnode4_t *rp, *drp; 10515 vnode_t *dvp, *open_vp; 10516 char file_name[MAXNAMELEN]; 10517 int just_created; 10518 nfs4_open_stream_t *osp; 10519 nfs4_open_owner_t *oop; 10520 int error; 10521 10522 *ospp = NULL; 10523 open_vp = map_vp; 10524 10525 rp = VTOR4(open_vp); 10526 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10527 return (error); 10528 drp = VTOR4(dvp); 10529 10530 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10531 VN_RELE(dvp); 10532 return (EINTR); 10533 } 10534 10535 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10536 nfs_rw_exit(&drp->r_rwlock); 10537 VN_RELE(dvp); 10538 return (error); 10539 } 10540 10541 mutex_enter(&rp->r_statev4_lock); 10542 if (rp->created_v4) { 10543 rp->created_v4 = 0; 10544 mutex_exit(&rp->r_statev4_lock); 10545 10546 dnlc_update(dvp, file_name, open_vp); 10547 /* This is needed so we don't bump the open ref count */ 10548 just_created = 1; 10549 } else { 10550 mutex_exit(&rp->r_statev4_lock); 10551 just_created = 0; 10552 } 10553 10554 VN_HOLD(map_vp); 10555 10556 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10557 just_created); 10558 if (error) { 10559 nfs_rw_exit(&drp->r_rwlock); 10560 VN_RELE(dvp); 10561 VN_RELE(map_vp); 10562 return (error); 10563 } 10564 10565 nfs_rw_exit(&drp->r_rwlock); 10566 VN_RELE(dvp); 10567 10568 /* 10569 * If nfs4open_otw() returned a different vnode then "undo" 10570 * the open and return failure to the caller. 10571 */ 10572 if (!VN_CMP(open_vp, map_vp)) { 10573 nfs4_error_t e; 10574 10575 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10576 "open returned a different vnode")); 10577 /* 10578 * If there's an error, ignore it, 10579 * and let VOP_INACTIVE handle it. 10580 */ 10581 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10582 CLOSE_NORM, 0, 0, 0); 10583 VN_RELE(map_vp); 10584 return (EIO); 10585 } 10586 10587 VN_RELE(map_vp); 10588 10589 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10590 if (!oop) { 10591 nfs4_error_t e; 10592 10593 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10594 "no open owner")); 10595 /* 10596 * If there's an error, ignore it, 10597 * and let VOP_INACTIVE handle it. 10598 */ 10599 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10600 CLOSE_NORM, 0, 0, 0); 10601 return (EIO); 10602 } 10603 osp = find_open_stream(oop, rp); 10604 open_owner_rele(oop); 10605 *ospp = osp; 10606 return (0); 10607 } 10608 10609 /* 10610 * Please be aware that when this function is called, the address space write 10611 * a_lock is held. Do not put over the wire calls in this function. 10612 */ 10613 /* ARGSUSED */ 10614 static int 10615 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10616 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10617 caller_context_t *ct) 10618 { 10619 rnode4_t *rp; 10620 int error = 0; 10621 mntinfo4_t *mi; 10622 10623 mi = VTOMI4(vp); 10624 rp = VTOR4(vp); 10625 10626 if (nfs_zone() != mi->mi_zone) 10627 return (EIO); 10628 if (vp->v_flag & VNOMAP) 10629 return (ENOSYS); 10630 10631 /* 10632 * Need to hold rwlock while incrementing the mapcnt so that 10633 * mmap'ing can be serialized with writes so that the caching 10634 * can be handled correctly. 10635 * 10636 * Don't need to update the open stream first, since this 10637 * mmap can't add any additional share access that isn't 10638 * already contained in the open stream (for the case where we 10639 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10640 * take into account os_mmap_read[write] counts). 10641 */ 10642 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 10643 return (EINTR); 10644 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10645 nfs_rw_exit(&rp->r_rwlock); 10646 10647 if (vp->v_type == VREG) { 10648 /* 10649 * We need to retrieve the open stream and update the counts. 10650 * If there is no open stream here, something is wrong. 10651 */ 10652 nfs4_open_stream_t *osp = NULL; 10653 nfs4_open_owner_t *oop = NULL; 10654 10655 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10656 if (oop != NULL) { 10657 /* returns with 'os_sync_lock' held */ 10658 osp = find_open_stream(oop, rp); 10659 open_owner_rele(oop); 10660 } 10661 if (osp == NULL) { 10662 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10663 "nfs4_addmap: we should have an osp" 10664 "but we don't, so fail with EIO")); 10665 error = EIO; 10666 goto out; 10667 } 10668 10669 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10670 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10671 10672 /* 10673 * Update the map count in the open stream. 10674 * This is necessary in the case where we 10675 * open/mmap/close/, then the server reboots, and we 10676 * attempt to reopen. If the mmap doesn't add share 10677 * access then we send an invalid reopen with 10678 * access = NONE. 10679 * 10680 * We need to specifically check each PROT_* so a mmap 10681 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10682 * read and write access. A simple comparison of prot 10683 * to ~PROT_WRITE to determine read access is insufficient 10684 * since prot can be |= with PROT_USER, etc. 10685 */ 10686 10687 /* 10688 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10689 */ 10690 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10691 osp->os_mmap_write += btopr(len); 10692 if (maxprot & PROT_READ) 10693 osp->os_mmap_read += btopr(len); 10694 if (maxprot & PROT_EXEC) 10695 osp->os_mmap_read += btopr(len); 10696 /* 10697 * Ensure that os_mmap_read gets incremented, even if 10698 * maxprot were to look like PROT_NONE. 10699 */ 10700 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10701 !(maxprot & PROT_EXEC)) 10702 osp->os_mmap_read += btopr(len); 10703 osp->os_mapcnt += btopr(len); 10704 mutex_exit(&osp->os_sync_lock); 10705 open_stream_rele(osp, rp); 10706 } 10707 10708 out: 10709 /* 10710 * If we got an error, then undo our 10711 * incrementing of 'r_mapcnt'. 10712 */ 10713 10714 if (error) { 10715 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10716 ASSERT(rp->r_mapcnt >= 0); 10717 } 10718 return (error); 10719 } 10720 10721 /* ARGSUSED */ 10722 static int 10723 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10724 { 10725 10726 return (VTOR4(vp1) == VTOR4(vp2)); 10727 } 10728 10729 /* ARGSUSED */ 10730 static int 10731 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10732 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10733 caller_context_t *ct) 10734 { 10735 int rc; 10736 u_offset_t start, end; 10737 rnode4_t *rp; 10738 int error = 0, intr = INTR4(vp); 10739 nfs4_error_t e; 10740 10741 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10742 return (EIO); 10743 10744 /* check for valid cmd parameter */ 10745 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10746 return (EINVAL); 10747 10748 /* Verify l_type. */ 10749 switch (bfp->l_type) { 10750 case F_RDLCK: 10751 if (cmd != F_GETLK && !(flag & FREAD)) 10752 return (EBADF); 10753 break; 10754 case F_WRLCK: 10755 if (cmd != F_GETLK && !(flag & FWRITE)) 10756 return (EBADF); 10757 break; 10758 case F_UNLCK: 10759 intr = 0; 10760 break; 10761 10762 default: 10763 return (EINVAL); 10764 } 10765 10766 /* check the validity of the lock range */ 10767 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10768 return (rc); 10769 if (rc = flk_check_lock_data(start, end, MAXEND)) 10770 return (rc); 10771 10772 /* 10773 * If the filesystem is mounted using local locking, pass the 10774 * request off to the local locking code. 10775 */ 10776 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10777 if (cmd == F_SETLK || cmd == F_SETLKW) { 10778 /* 10779 * For complete safety, we should be holding 10780 * r_lkserlock. However, we can't call 10781 * nfs4_safelock and then fs_frlock while 10782 * holding r_lkserlock, so just invoke 10783 * nfs4_safelock and expect that this will 10784 * catch enough of the cases. 10785 */ 10786 if (!nfs4_safelock(vp, bfp, cr)) 10787 return (EAGAIN); 10788 } 10789 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10790 } 10791 10792 rp = VTOR4(vp); 10793 10794 /* 10795 * Check whether the given lock request can proceed, given the 10796 * current file mappings. 10797 */ 10798 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10799 return (EINTR); 10800 if (cmd == F_SETLK || cmd == F_SETLKW) { 10801 if (!nfs4_safelock(vp, bfp, cr)) { 10802 rc = EAGAIN; 10803 goto done; 10804 } 10805 } 10806 10807 /* 10808 * Flush the cache after waiting for async I/O to finish. For new 10809 * locks, this is so that the process gets the latest bits from the 10810 * server. For unlocks, this is so that other clients see the 10811 * latest bits once the file has been unlocked. If currently dirty 10812 * pages can't be flushed, then don't allow a lock to be set. But 10813 * allow unlocks to succeed, to avoid having orphan locks on the 10814 * server. 10815 */ 10816 if (cmd != F_GETLK) { 10817 mutex_enter(&rp->r_statelock); 10818 while (rp->r_count > 0) { 10819 if (intr) { 10820 klwp_t *lwp = ttolwp(curthread); 10821 10822 if (lwp != NULL) 10823 lwp->lwp_nostop++; 10824 if (cv_wait_sig(&rp->r_cv, 10825 &rp->r_statelock) == 0) { 10826 if (lwp != NULL) 10827 lwp->lwp_nostop--; 10828 rc = EINTR; 10829 break; 10830 } 10831 if (lwp != NULL) 10832 lwp->lwp_nostop--; 10833 } else 10834 cv_wait(&rp->r_cv, &rp->r_statelock); 10835 } 10836 mutex_exit(&rp->r_statelock); 10837 if (rc != 0) 10838 goto done; 10839 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10840 if (error) { 10841 if (error == ENOSPC || error == EDQUOT) { 10842 mutex_enter(&rp->r_statelock); 10843 if (!rp->r_error) 10844 rp->r_error = error; 10845 mutex_exit(&rp->r_statelock); 10846 } 10847 if (bfp->l_type != F_UNLCK) { 10848 rc = ENOLCK; 10849 goto done; 10850 } 10851 } 10852 } 10853 10854 /* 10855 * Call the lock manager to do the real work of contacting 10856 * the server and obtaining the lock. 10857 */ 10858 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10859 cr, &e, NULL, NULL); 10860 rc = e.error; 10861 10862 if (rc == 0) 10863 nfs4_lockcompletion(vp, cmd); 10864 10865 done: 10866 nfs_rw_exit(&rp->r_lkserlock); 10867 10868 return (rc); 10869 } 10870 10871 /* 10872 * Free storage space associated with the specified vnode. The portion 10873 * to be freed is specified by bfp->l_start and bfp->l_len (already 10874 * normalized to a "whence" of 0). 10875 * 10876 * This is an experimental facility whose continued existence is not 10877 * guaranteed. Currently, we only support the special case 10878 * of l_len == 0, meaning free to end of file. 10879 */ 10880 /* ARGSUSED */ 10881 static int 10882 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10883 offset_t offset, cred_t *cr, caller_context_t *ct) 10884 { 10885 int error; 10886 10887 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10888 return (EIO); 10889 ASSERT(vp->v_type == VREG); 10890 if (cmd != F_FREESP) 10891 return (EINVAL); 10892 10893 error = convoff(vp, bfp, 0, offset); 10894 if (!error) { 10895 ASSERT(bfp->l_start >= 0); 10896 if (bfp->l_len == 0) { 10897 struct vattr va; 10898 10899 va.va_mask = AT_SIZE; 10900 va.va_size = bfp->l_start; 10901 error = nfs4setattr(vp, &va, 0, cr, NULL); 10902 } else 10903 error = EINVAL; 10904 } 10905 10906 return (error); 10907 } 10908 10909 /* ARGSUSED */ 10910 int 10911 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 10912 { 10913 rnode4_t *rp; 10914 rp = VTOR4(vp); 10915 10916 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 10917 vp = RTOV4(rp); 10918 } 10919 *vpp = vp; 10920 return (0); 10921 } 10922 10923 /* 10924 * Setup and add an address space callback to do the work of the delmap call. 10925 * The callback will (and must be) deleted in the actual callback function. 10926 * 10927 * This is done in order to take care of the problem that we have with holding 10928 * the address space's a_lock for a long period of time (e.g. if the NFS server 10929 * is down). Callbacks will be executed in the address space code while the 10930 * a_lock is not held. Holding the address space's a_lock causes things such 10931 * as ps and fork to hang because they are trying to acquire this lock as well. 10932 */ 10933 /* ARGSUSED */ 10934 static int 10935 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10936 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 10937 caller_context_t *ct) 10938 { 10939 int caller_found; 10940 int error; 10941 rnode4_t *rp; 10942 nfs4_delmap_args_t *dmapp; 10943 nfs4_delmapcall_t *delmap_call; 10944 10945 if (vp->v_flag & VNOMAP) 10946 return (ENOSYS); 10947 10948 /* 10949 * A process may not change zones if it has NFS pages mmap'ed 10950 * in, so we can't legitimately get here from the wrong zone. 10951 */ 10952 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10953 10954 rp = VTOR4(vp); 10955 10956 /* 10957 * The way that the address space of this process deletes its mapping 10958 * of this file is via the following call chains: 10959 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10960 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10961 * 10962 * With the use of address space callbacks we are allowed to drop the 10963 * address space lock, a_lock, while executing the NFS operations that 10964 * need to go over the wire. Returning EAGAIN to the caller of this 10965 * function is what drives the execution of the callback that we add 10966 * below. The callback will be executed by the address space code 10967 * after dropping the a_lock. When the callback is finished, since 10968 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 10969 * is called again on the same segment to finish the rest of the work 10970 * that needs to happen during unmapping. 10971 * 10972 * This action of calling back into the segment driver causes 10973 * nfs4_delmap() to get called again, but since the callback was 10974 * already executed at this point, it already did the work and there 10975 * is nothing left for us to do. 10976 * 10977 * To Summarize: 10978 * - The first time nfs4_delmap is called by the current thread is when 10979 * we add the caller associated with this delmap to the delmap caller 10980 * list, add the callback, and return EAGAIN. 10981 * - The second time in this call chain when nfs4_delmap is called we 10982 * will find this caller in the delmap caller list and realize there 10983 * is no more work to do thus removing this caller from the list and 10984 * returning the error that was set in the callback execution. 10985 */ 10986 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 10987 if (caller_found) { 10988 /* 10989 * 'error' is from the actual delmap operations. To avoid 10990 * hangs, we need to handle the return of EAGAIN differently 10991 * since this is what drives the callback execution. 10992 * In this case, we don't want to return EAGAIN and do the 10993 * callback execution because there are none to execute. 10994 */ 10995 if (error == EAGAIN) 10996 return (0); 10997 else 10998 return (error); 10999 } 11000 11001 /* current caller was not in the list */ 11002 delmap_call = nfs4_init_delmapcall(); 11003 11004 mutex_enter(&rp->r_statelock); 11005 list_insert_tail(&rp->r_indelmap, delmap_call); 11006 mutex_exit(&rp->r_statelock); 11007 11008 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 11009 11010 dmapp->vp = vp; 11011 dmapp->off = off; 11012 dmapp->addr = addr; 11013 dmapp->len = len; 11014 dmapp->prot = prot; 11015 dmapp->maxprot = maxprot; 11016 dmapp->flags = flags; 11017 dmapp->cr = cr; 11018 dmapp->caller = delmap_call; 11019 11020 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11021 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11022 11023 return (error ? error : EAGAIN); 11024 } 11025 11026 static nfs4_delmapcall_t * 11027 nfs4_init_delmapcall() 11028 { 11029 nfs4_delmapcall_t *delmap_call; 11030 11031 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11032 delmap_call->call_id = curthread; 11033 delmap_call->error = 0; 11034 11035 return (delmap_call); 11036 } 11037 11038 static void 11039 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11040 { 11041 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11042 } 11043 11044 /* 11045 * Searches for the current delmap caller (based on curthread) in the list of 11046 * callers. If it is found, we remove it and free the delmap caller. 11047 * Returns: 11048 * 0 if the caller wasn't found 11049 * 1 if the caller was found, removed and freed. *errp will be set 11050 * to what the result of the delmap was. 11051 */ 11052 static int 11053 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11054 { 11055 nfs4_delmapcall_t *delmap_call; 11056 11057 /* 11058 * If the list doesn't exist yet, we create it and return 11059 * that the caller wasn't found. No list = no callers. 11060 */ 11061 mutex_enter(&rp->r_statelock); 11062 if (!(rp->r_flags & R4DELMAPLIST)) { 11063 /* The list does not exist */ 11064 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11065 offsetof(nfs4_delmapcall_t, call_node)); 11066 rp->r_flags |= R4DELMAPLIST; 11067 mutex_exit(&rp->r_statelock); 11068 return (0); 11069 } else { 11070 /* The list exists so search it */ 11071 for (delmap_call = list_head(&rp->r_indelmap); 11072 delmap_call != NULL; 11073 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11074 if (delmap_call->call_id == curthread) { 11075 /* current caller is in the list */ 11076 *errp = delmap_call->error; 11077 list_remove(&rp->r_indelmap, delmap_call); 11078 mutex_exit(&rp->r_statelock); 11079 nfs4_free_delmapcall(delmap_call); 11080 return (1); 11081 } 11082 } 11083 } 11084 mutex_exit(&rp->r_statelock); 11085 return (0); 11086 } 11087 11088 /* 11089 * Remove some pages from an mmap'd vnode. Just update the 11090 * count of pages. If doing close-to-open, then flush and 11091 * commit all of the pages associated with this file. 11092 * Otherwise, start an asynchronous page flush to write out 11093 * any dirty pages. This will also associate a credential 11094 * with the rnode which can be used to write the pages. 11095 */ 11096 /* ARGSUSED */ 11097 static void 11098 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11099 { 11100 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11101 rnode4_t *rp; 11102 mntinfo4_t *mi; 11103 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11104 11105 rp = VTOR4(dmapp->vp); 11106 mi = VTOMI4(dmapp->vp); 11107 11108 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11109 ASSERT(rp->r_mapcnt >= 0); 11110 11111 /* 11112 * Initiate a page flush and potential commit if there are 11113 * pages, the file system was not mounted readonly, the segment 11114 * was mapped shared, and the pages themselves were writeable. 11115 */ 11116 if (nfs4_has_pages(dmapp->vp) && 11117 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11118 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11119 mutex_enter(&rp->r_statelock); 11120 rp->r_flags |= R4DIRTY; 11121 mutex_exit(&rp->r_statelock); 11122 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11123 dmapp->len, dmapp->cr); 11124 if (!e.error) { 11125 mutex_enter(&rp->r_statelock); 11126 e.error = rp->r_error; 11127 rp->r_error = 0; 11128 mutex_exit(&rp->r_statelock); 11129 } 11130 } else 11131 e.error = 0; 11132 11133 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11134 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11135 B_INVAL, dmapp->cr, NULL); 11136 11137 if (e.error) { 11138 e.stat = puterrno4(e.error); 11139 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11140 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11141 dmapp->caller->error = e.error; 11142 } 11143 11144 /* Check to see if we need to close the file */ 11145 11146 if (dmapp->vp->v_type == VREG) { 11147 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11148 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11149 11150 if (e.error != 0 || e.stat != NFS4_OK) { 11151 /* 11152 * Since it is possible that e.error == 0 and 11153 * e.stat != NFS4_OK (and vice versa), 11154 * we do the proper checking in order to get both 11155 * e.error and e.stat reporting the correct info. 11156 */ 11157 if (e.stat == NFS4_OK) 11158 e.stat = puterrno4(e.error); 11159 if (e.error == 0) 11160 e.error = geterrno4(e.stat); 11161 11162 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11163 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11164 dmapp->caller->error = e.error; 11165 } 11166 } 11167 11168 (void) as_delete_callback(as, arg); 11169 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11170 } 11171 11172 11173 static uint_t 11174 fattr4_maxfilesize_to_bits(uint64_t ll) 11175 { 11176 uint_t l = 1; 11177 11178 if (ll == 0) { 11179 return (0); 11180 } 11181 11182 if (ll & 0xffffffff00000000) { 11183 l += 32; ll >>= 32; 11184 } 11185 if (ll & 0xffff0000) { 11186 l += 16; ll >>= 16; 11187 } 11188 if (ll & 0xff00) { 11189 l += 8; ll >>= 8; 11190 } 11191 if (ll & 0xf0) { 11192 l += 4; ll >>= 4; 11193 } 11194 if (ll & 0xc) { 11195 l += 2; ll >>= 2; 11196 } 11197 if (ll & 0x2) { 11198 l += 1; 11199 } 11200 return (l); 11201 } 11202 11203 /* ARGSUSED */ 11204 int 11205 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11206 caller_context_t *ct) 11207 { 11208 int error; 11209 hrtime_t t; 11210 rnode4_t *rp; 11211 nfs4_ga_res_t gar; 11212 nfs4_ga_ext_res_t ger; 11213 11214 gar.n4g_ext_res = &ger; 11215 11216 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11217 return (EIO); 11218 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11219 *valp = MAXPATHLEN; 11220 return (0); 11221 } 11222 if (cmd == _PC_ACL_ENABLED) { 11223 *valp = _ACL_ACE_ENABLED; 11224 return (0); 11225 } 11226 11227 rp = VTOR4(vp); 11228 if (cmd == _PC_XATTR_EXISTS) { 11229 /* 11230 * Eventually should attempt small client readdir before 11231 * going otw with GETATTR(FATTR4_NAMED_ATTR). For now 11232 * just drive the OTW getattr. This is required because 11233 * _PC_XATTR_EXISTS can only return true if attributes 11234 * exist -- simply checking for existence of the attrdir 11235 * is not sufficient. 11236 * 11237 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11238 * is NULL. Once the xadir vp exists, we can create xattrs, 11239 * and we don't have any way to update the "base" object's 11240 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11241 * could help out. 11242 */ 11243 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11244 rp->r_xattr_dir == NULL) { 11245 *valp = rp->r_pathconf.pc4_xattr_exists; 11246 return (0); 11247 } 11248 } else { /* OLD CODE */ 11249 if (ATTRCACHE4_VALID(vp)) { 11250 mutex_enter(&rp->r_statelock); 11251 if (rp->r_pathconf.pc4_cache_valid) { 11252 error = 0; 11253 switch (cmd) { 11254 case _PC_FILESIZEBITS: 11255 *valp = 11256 rp->r_pathconf.pc4_filesizebits; 11257 break; 11258 case _PC_LINK_MAX: 11259 *valp = 11260 rp->r_pathconf.pc4_link_max; 11261 break; 11262 case _PC_NAME_MAX: 11263 *valp = 11264 rp->r_pathconf.pc4_name_max; 11265 break; 11266 case _PC_CHOWN_RESTRICTED: 11267 *valp = 11268 rp->r_pathconf.pc4_chown_restricted; 11269 break; 11270 case _PC_NO_TRUNC: 11271 *valp = 11272 rp->r_pathconf.pc4_no_trunc; 11273 break; 11274 default: 11275 error = EINVAL; 11276 break; 11277 } 11278 mutex_exit(&rp->r_statelock); 11279 #ifdef DEBUG 11280 nfs4_pathconf_cache_hits++; 11281 #endif 11282 return (error); 11283 } 11284 mutex_exit(&rp->r_statelock); 11285 } 11286 } 11287 #ifdef DEBUG 11288 nfs4_pathconf_cache_misses++; 11289 #endif 11290 11291 t = gethrtime(); 11292 11293 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11294 11295 if (error) { 11296 mutex_enter(&rp->r_statelock); 11297 rp->r_pathconf.pc4_cache_valid = FALSE; 11298 rp->r_pathconf.pc4_xattr_valid = FALSE; 11299 mutex_exit(&rp->r_statelock); 11300 return (error); 11301 } 11302 11303 /* interpret the max filesize */ 11304 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11305 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11306 11307 /* Store the attributes we just received */ 11308 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11309 11310 switch (cmd) { 11311 case _PC_FILESIZEBITS: 11312 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11313 break; 11314 case _PC_LINK_MAX: 11315 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11316 break; 11317 case _PC_NAME_MAX: 11318 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11319 break; 11320 case _PC_CHOWN_RESTRICTED: 11321 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11322 break; 11323 case _PC_NO_TRUNC: 11324 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11325 break; 11326 case _PC_XATTR_EXISTS: 11327 *valp = gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists; 11328 break; 11329 default: 11330 return (EINVAL); 11331 } 11332 11333 return (0); 11334 } 11335 11336 /* 11337 * Called by async thread to do synchronous pageio. Do the i/o, wait 11338 * for it to complete, and cleanup the page list when done. 11339 */ 11340 static int 11341 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11342 int flags, cred_t *cr) 11343 { 11344 int error; 11345 11346 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11347 11348 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11349 if (flags & B_READ) 11350 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11351 else 11352 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11353 return (error); 11354 } 11355 11356 /* ARGSUSED */ 11357 static int 11358 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11359 int flags, cred_t *cr, caller_context_t *ct) 11360 { 11361 int error; 11362 rnode4_t *rp; 11363 11364 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11365 return (EIO); 11366 11367 if (pp == NULL) 11368 return (EINVAL); 11369 11370 rp = VTOR4(vp); 11371 mutex_enter(&rp->r_statelock); 11372 rp->r_count++; 11373 mutex_exit(&rp->r_statelock); 11374 11375 if (flags & B_ASYNC) { 11376 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11377 nfs4_sync_pageio); 11378 } else 11379 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11380 mutex_enter(&rp->r_statelock); 11381 rp->r_count--; 11382 cv_broadcast(&rp->r_cv); 11383 mutex_exit(&rp->r_statelock); 11384 return (error); 11385 } 11386 11387 /* ARGSUSED */ 11388 static void 11389 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11390 caller_context_t *ct) 11391 { 11392 int error; 11393 rnode4_t *rp; 11394 page_t *plist; 11395 page_t *pptr; 11396 offset3 offset; 11397 count3 len; 11398 k_sigset_t smask; 11399 11400 /* 11401 * We should get called with fl equal to either B_FREE or 11402 * B_INVAL. Any other value is illegal. 11403 * 11404 * The page that we are either supposed to free or destroy 11405 * should be exclusive locked and its io lock should not 11406 * be held. 11407 */ 11408 ASSERT(fl == B_FREE || fl == B_INVAL); 11409 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11410 11411 rp = VTOR4(vp); 11412 11413 /* 11414 * If the page doesn't need to be committed or we shouldn't 11415 * even bother attempting to commit it, then just make sure 11416 * that the p_fsdata byte is clear and then either free or 11417 * destroy the page as appropriate. 11418 */ 11419 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11420 pp->p_fsdata = C_NOCOMMIT; 11421 if (fl == B_FREE) 11422 page_free(pp, dn); 11423 else 11424 page_destroy(pp, dn); 11425 return; 11426 } 11427 11428 /* 11429 * If there is a page invalidation operation going on, then 11430 * if this is one of the pages being destroyed, then just 11431 * clear the p_fsdata byte and then either free or destroy 11432 * the page as appropriate. 11433 */ 11434 mutex_enter(&rp->r_statelock); 11435 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11436 mutex_exit(&rp->r_statelock); 11437 pp->p_fsdata = C_NOCOMMIT; 11438 if (fl == B_FREE) 11439 page_free(pp, dn); 11440 else 11441 page_destroy(pp, dn); 11442 return; 11443 } 11444 11445 /* 11446 * If we are freeing this page and someone else is already 11447 * waiting to do a commit, then just unlock the page and 11448 * return. That other thread will take care of commiting 11449 * this page. The page can be freed sometime after the 11450 * commit has finished. Otherwise, if the page is marked 11451 * as delay commit, then we may be getting called from 11452 * pvn_write_done, one page at a time. This could result 11453 * in one commit per page, so we end up doing lots of small 11454 * commits instead of fewer larger commits. This is bad, 11455 * we want do as few commits as possible. 11456 */ 11457 if (fl == B_FREE) { 11458 if (rp->r_flags & R4COMMITWAIT) { 11459 page_unlock(pp); 11460 mutex_exit(&rp->r_statelock); 11461 return; 11462 } 11463 if (pp->p_fsdata == C_DELAYCOMMIT) { 11464 pp->p_fsdata = C_COMMIT; 11465 page_unlock(pp); 11466 mutex_exit(&rp->r_statelock); 11467 return; 11468 } 11469 } 11470 11471 /* 11472 * Check to see if there is a signal which would prevent an 11473 * attempt to commit the pages from being successful. If so, 11474 * then don't bother with all of the work to gather pages and 11475 * generate the unsuccessful RPC. Just return from here and 11476 * let the page be committed at some later time. 11477 */ 11478 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11479 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11480 sigunintr(&smask); 11481 page_unlock(pp); 11482 mutex_exit(&rp->r_statelock); 11483 return; 11484 } 11485 sigunintr(&smask); 11486 11487 /* 11488 * We are starting to need to commit pages, so let's try 11489 * to commit as many as possible at once to reduce the 11490 * overhead. 11491 * 11492 * Set the `commit inprogress' state bit. We must 11493 * first wait until any current one finishes. Then 11494 * we initialize the c_pages list with this page. 11495 */ 11496 while (rp->r_flags & R4COMMIT) { 11497 rp->r_flags |= R4COMMITWAIT; 11498 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11499 rp->r_flags &= ~R4COMMITWAIT; 11500 } 11501 rp->r_flags |= R4COMMIT; 11502 mutex_exit(&rp->r_statelock); 11503 ASSERT(rp->r_commit.c_pages == NULL); 11504 rp->r_commit.c_pages = pp; 11505 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11506 rp->r_commit.c_commlen = PAGESIZE; 11507 11508 /* 11509 * Gather together all other pages which can be committed. 11510 * They will all be chained off r_commit.c_pages. 11511 */ 11512 nfs4_get_commit(vp); 11513 11514 /* 11515 * Clear the `commit inprogress' status and disconnect 11516 * the list of pages to be committed from the rnode. 11517 * At this same time, we also save the starting offset 11518 * and length of data to be committed on the server. 11519 */ 11520 plist = rp->r_commit.c_pages; 11521 rp->r_commit.c_pages = NULL; 11522 offset = rp->r_commit.c_commbase; 11523 len = rp->r_commit.c_commlen; 11524 mutex_enter(&rp->r_statelock); 11525 rp->r_flags &= ~R4COMMIT; 11526 cv_broadcast(&rp->r_commit.c_cv); 11527 mutex_exit(&rp->r_statelock); 11528 11529 if (curproc == proc_pageout || curproc == proc_fsflush || 11530 nfs_zone() != VTOMI4(vp)->mi_zone) { 11531 nfs4_async_commit(vp, plist, offset, len, 11532 cr, do_nfs4_async_commit); 11533 return; 11534 } 11535 11536 /* 11537 * Actually generate the COMMIT op over the wire operation. 11538 */ 11539 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11540 11541 /* 11542 * If we got an error during the commit, just unlock all 11543 * of the pages. The pages will get retransmitted to the 11544 * server during a putpage operation. 11545 */ 11546 if (error) { 11547 while (plist != NULL) { 11548 pptr = plist; 11549 page_sub(&plist, pptr); 11550 page_unlock(pptr); 11551 } 11552 return; 11553 } 11554 11555 /* 11556 * We've tried as hard as we can to commit the data to stable 11557 * storage on the server. We just unlock the rest of the pages 11558 * and clear the commit required state. They will be put 11559 * onto the tail of the cachelist if they are nolonger 11560 * mapped. 11561 */ 11562 while (plist != pp) { 11563 pptr = plist; 11564 page_sub(&plist, pptr); 11565 pptr->p_fsdata = C_NOCOMMIT; 11566 page_unlock(pptr); 11567 } 11568 11569 /* 11570 * It is possible that nfs4_commit didn't return error but 11571 * some other thread has modified the page we are going 11572 * to free/destroy. 11573 * In this case we need to rewrite the page. Do an explicit check 11574 * before attempting to free/destroy the page. If modified, needs to 11575 * be rewritten so unlock the page and return. 11576 */ 11577 if (hat_ismod(pp)) { 11578 pp->p_fsdata = C_NOCOMMIT; 11579 page_unlock(pp); 11580 return; 11581 } 11582 11583 /* 11584 * Now, as appropriate, either free or destroy the page 11585 * that we were called with. 11586 */ 11587 pp->p_fsdata = C_NOCOMMIT; 11588 if (fl == B_FREE) 11589 page_free(pp, dn); 11590 else 11591 page_destroy(pp, dn); 11592 } 11593 11594 /* 11595 * Commit requires that the current fh be the file written to. 11596 * The compound op structure is: 11597 * PUTFH(file), COMMIT 11598 */ 11599 static int 11600 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11601 { 11602 COMPOUND4args_clnt args; 11603 COMPOUND4res_clnt res; 11604 COMMIT4res *cm_res; 11605 nfs_argop4 argop[2]; 11606 nfs_resop4 *resop; 11607 int doqueue; 11608 mntinfo4_t *mi; 11609 rnode4_t *rp; 11610 cred_t *cred_otw = NULL; 11611 bool_t needrecov = FALSE; 11612 nfs4_recov_state_t recov_state; 11613 nfs4_open_stream_t *osp = NULL; 11614 bool_t first_time = TRUE; /* first time getting OTW cred */ 11615 bool_t last_time = FALSE; /* last time getting OTW cred */ 11616 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11617 11618 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11619 11620 rp = VTOR4(vp); 11621 11622 mi = VTOMI4(vp); 11623 recov_state.rs_flags = 0; 11624 recov_state.rs_num_retry_despite_err = 0; 11625 get_commit_cred: 11626 /* 11627 * Releases the osp, if a valid open stream is provided. 11628 * Puts a hold on the cred_otw and the new osp (if found). 11629 */ 11630 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11631 &first_time, &last_time); 11632 args.ctag = TAG_COMMIT; 11633 recov_retry: 11634 /* 11635 * Commit ops: putfh file; commit 11636 */ 11637 args.array_len = 2; 11638 args.array = argop; 11639 11640 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11641 &recov_state, NULL); 11642 if (e.error) { 11643 crfree(cred_otw); 11644 if (osp != NULL) 11645 open_stream_rele(osp, rp); 11646 return (e.error); 11647 } 11648 11649 /* putfh directory */ 11650 argop[0].argop = OP_CPUTFH; 11651 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11652 11653 /* commit */ 11654 argop[1].argop = OP_COMMIT; 11655 argop[1].nfs_argop4_u.opcommit.offset = offset; 11656 argop[1].nfs_argop4_u.opcommit.count = count; 11657 11658 doqueue = 1; 11659 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11660 11661 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11662 if (!needrecov && e.error) { 11663 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11664 needrecov); 11665 crfree(cred_otw); 11666 if (e.error == EACCES && last_time == FALSE) 11667 goto get_commit_cred; 11668 if (osp != NULL) 11669 open_stream_rele(osp, rp); 11670 return (e.error); 11671 } 11672 11673 if (needrecov) { 11674 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11675 NULL, OP_COMMIT, NULL) == FALSE) { 11676 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11677 &recov_state, needrecov); 11678 if (!e.error) 11679 (void) xdr_free(xdr_COMPOUND4res_clnt, 11680 (caddr_t)&res); 11681 goto recov_retry; 11682 } 11683 if (e.error) { 11684 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11685 &recov_state, needrecov); 11686 crfree(cred_otw); 11687 if (osp != NULL) 11688 open_stream_rele(osp, rp); 11689 return (e.error); 11690 } 11691 /* fall through for res.status case */ 11692 } 11693 11694 if (res.status) { 11695 e.error = geterrno4(res.status); 11696 if (e.error == EACCES && last_time == FALSE) { 11697 crfree(cred_otw); 11698 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11699 &recov_state, needrecov); 11700 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11701 goto get_commit_cred; 11702 } 11703 /* 11704 * Can't do a nfs4_purge_stale_fh here because this 11705 * can cause a deadlock. nfs4_commit can 11706 * be called from nfs4_dispose which can be called 11707 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11708 * can call back to pvn_vplist_dirty. 11709 */ 11710 if (e.error == ESTALE) { 11711 mutex_enter(&rp->r_statelock); 11712 rp->r_flags |= R4STALE; 11713 if (!rp->r_error) 11714 rp->r_error = e.error; 11715 mutex_exit(&rp->r_statelock); 11716 PURGE_ATTRCACHE4(vp); 11717 } else { 11718 mutex_enter(&rp->r_statelock); 11719 if (!rp->r_error) 11720 rp->r_error = e.error; 11721 mutex_exit(&rp->r_statelock); 11722 } 11723 } else { 11724 ASSERT(rp->r_flags & R4HAVEVERF); 11725 resop = &res.array[1]; /* commit res */ 11726 cm_res = &resop->nfs_resop4_u.opcommit; 11727 mutex_enter(&rp->r_statelock); 11728 if (cm_res->writeverf == rp->r_writeverf) { 11729 mutex_exit(&rp->r_statelock); 11730 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11731 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11732 &recov_state, needrecov); 11733 crfree(cred_otw); 11734 if (osp != NULL) 11735 open_stream_rele(osp, rp); 11736 return (0); 11737 } 11738 nfs4_set_mod(vp); 11739 rp->r_writeverf = cm_res->writeverf; 11740 mutex_exit(&rp->r_statelock); 11741 e.error = NFS_VERF_MISMATCH; 11742 } 11743 11744 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11745 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11746 crfree(cred_otw); 11747 if (osp != NULL) 11748 open_stream_rele(osp, rp); 11749 11750 return (e.error); 11751 } 11752 11753 static void 11754 nfs4_set_mod(vnode_t *vp) 11755 { 11756 page_t *pp; 11757 kmutex_t *vphm; 11758 rnode4_t *rp; 11759 11760 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11761 11762 /* make sure we're looking at the master vnode, not a shadow */ 11763 11764 rp = VTOR4(vp); 11765 if (IS_SHADOW(vp, rp)) 11766 vp = RTOV4(rp); 11767 11768 vphm = page_vnode_mutex(vp); 11769 mutex_enter(vphm); 11770 /* 11771 * If there are no pages associated with this vnode, then 11772 * just return. 11773 */ 11774 if ((pp = vp->v_pages) == NULL) { 11775 mutex_exit(vphm); 11776 return; 11777 } 11778 11779 do { 11780 if (pp->p_fsdata != C_NOCOMMIT) { 11781 hat_setmod(pp); 11782 pp->p_fsdata = C_NOCOMMIT; 11783 } 11784 } while ((pp = pp->p_vpnext) != vp->v_pages); 11785 mutex_exit(vphm); 11786 } 11787 11788 /* 11789 * This function is used to gather a page list of the pages which 11790 * can be committed on the server. 11791 * 11792 * The calling thread must have set R4COMMIT. This bit is used to 11793 * serialize access to the commit structure in the rnode. As long 11794 * as the thread has set R4COMMIT, then it can manipulate the commit 11795 * structure without requiring any other locks. 11796 * 11797 * When this function is called from nfs4_dispose() the page passed 11798 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11799 * will skip it. This is not a problem since we initially add the 11800 * page to the r_commit page list. 11801 * 11802 */ 11803 static void 11804 nfs4_get_commit(vnode_t *vp) 11805 { 11806 rnode4_t *rp; 11807 page_t *pp; 11808 kmutex_t *vphm; 11809 11810 rp = VTOR4(vp); 11811 11812 ASSERT(rp->r_flags & R4COMMIT); 11813 11814 /* make sure we're looking at the master vnode, not a shadow */ 11815 11816 if (IS_SHADOW(vp, rp)) 11817 vp = RTOV4(rp); 11818 11819 vphm = page_vnode_mutex(vp); 11820 mutex_enter(vphm); 11821 11822 /* 11823 * If there are no pages associated with this vnode, then 11824 * just return. 11825 */ 11826 if ((pp = vp->v_pages) == NULL) { 11827 mutex_exit(vphm); 11828 return; 11829 } 11830 11831 /* 11832 * Step through all of the pages associated with this vnode 11833 * looking for pages which need to be committed. 11834 */ 11835 do { 11836 /* 11837 * First short-cut everything (without the page_lock) 11838 * and see if this page does not need to be committed 11839 * or is modified if so then we'll just skip it. 11840 */ 11841 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11842 continue; 11843 11844 /* 11845 * Attempt to lock the page. If we can't, then 11846 * someone else is messing with it or we have been 11847 * called from nfs4_dispose and this is the page that 11848 * nfs4_dispose was called with.. anyway just skip it. 11849 */ 11850 if (!page_trylock(pp, SE_EXCL)) 11851 continue; 11852 11853 /* 11854 * Lets check again now that we have the page lock. 11855 */ 11856 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11857 page_unlock(pp); 11858 continue; 11859 } 11860 11861 /* this had better not be a free page */ 11862 ASSERT(PP_ISFREE(pp) == 0); 11863 11864 /* 11865 * The page needs to be committed and we locked it. 11866 * Update the base and length parameters and add it 11867 * to r_pages. 11868 */ 11869 if (rp->r_commit.c_pages == NULL) { 11870 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11871 rp->r_commit.c_commlen = PAGESIZE; 11872 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11873 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11874 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11875 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11876 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11877 <= pp->p_offset) { 11878 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11879 rp->r_commit.c_commbase + PAGESIZE; 11880 } 11881 page_add(&rp->r_commit.c_pages, pp); 11882 } while ((pp = pp->p_vpnext) != vp->v_pages); 11883 11884 mutex_exit(vphm); 11885 } 11886 11887 /* 11888 * This routine is used to gather together a page list of the pages 11889 * which are to be committed on the server. This routine must not 11890 * be called if the calling thread holds any locked pages. 11891 * 11892 * The calling thread must have set R4COMMIT. This bit is used to 11893 * serialize access to the commit structure in the rnode. As long 11894 * as the thread has set R4COMMIT, then it can manipulate the commit 11895 * structure without requiring any other locks. 11896 */ 11897 static void 11898 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11899 { 11900 11901 rnode4_t *rp; 11902 page_t *pp; 11903 u_offset_t end; 11904 u_offset_t off; 11905 ASSERT(len != 0); 11906 rp = VTOR4(vp); 11907 ASSERT(rp->r_flags & R4COMMIT); 11908 11909 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11910 11911 /* make sure we're looking at the master vnode, not a shadow */ 11912 11913 if (IS_SHADOW(vp, rp)) 11914 vp = RTOV4(rp); 11915 11916 /* 11917 * If there are no pages associated with this vnode, then 11918 * just return. 11919 */ 11920 if ((pp = vp->v_pages) == NULL) 11921 return; 11922 /* 11923 * Calculate the ending offset. 11924 */ 11925 end = soff + len; 11926 for (off = soff; off < end; off += PAGESIZE) { 11927 /* 11928 * Lookup each page by vp, offset. 11929 */ 11930 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 11931 continue; 11932 /* 11933 * If this page does not need to be committed or is 11934 * modified, then just skip it. 11935 */ 11936 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11937 page_unlock(pp); 11938 continue; 11939 } 11940 11941 ASSERT(PP_ISFREE(pp) == 0); 11942 /* 11943 * The page needs to be committed and we locked it. 11944 * Update the base and length parameters and add it 11945 * to r_pages. 11946 */ 11947 if (rp->r_commit.c_pages == NULL) { 11948 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11949 rp->r_commit.c_commlen = PAGESIZE; 11950 } else { 11951 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11952 rp->r_commit.c_commbase + PAGESIZE; 11953 } 11954 page_add(&rp->r_commit.c_pages, pp); 11955 } 11956 } 11957 11958 /* 11959 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 11960 * Flushes and commits data to the server. 11961 */ 11962 static int 11963 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 11964 { 11965 int error; 11966 verifier4 write_verf; 11967 rnode4_t *rp = VTOR4(vp); 11968 11969 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11970 11971 /* 11972 * Flush the data portion of the file and then commit any 11973 * portions which need to be committed. This may need to 11974 * be done twice if the server has changed state since 11975 * data was last written. The data will need to be 11976 * rewritten to the server and then a new commit done. 11977 * 11978 * In fact, this may need to be done several times if the 11979 * server is having problems and crashing while we are 11980 * attempting to do this. 11981 */ 11982 11983 top: 11984 /* 11985 * Do a flush based on the poff and plen arguments. This 11986 * will synchronously write out any modified pages in the 11987 * range specified by (poff, plen). This starts all of the 11988 * i/o operations which will be waited for in the next 11989 * call to nfs4_putpage 11990 */ 11991 11992 mutex_enter(&rp->r_statelock); 11993 write_verf = rp->r_writeverf; 11994 mutex_exit(&rp->r_statelock); 11995 11996 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 11997 if (error == EAGAIN) 11998 error = 0; 11999 12000 /* 12001 * Do a flush based on the poff and plen arguments. This 12002 * will synchronously write out any modified pages in the 12003 * range specified by (poff, plen) and wait until all of 12004 * the asynchronous i/o's in that range are done as well. 12005 */ 12006 if (!error) 12007 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 12008 12009 if (error) 12010 return (error); 12011 12012 mutex_enter(&rp->r_statelock); 12013 if (rp->r_writeverf != write_verf) { 12014 mutex_exit(&rp->r_statelock); 12015 goto top; 12016 } 12017 mutex_exit(&rp->r_statelock); 12018 12019 /* 12020 * Now commit any pages which might need to be committed. 12021 * If the error, NFS_VERF_MISMATCH, is returned, then 12022 * start over with the flush operation. 12023 */ 12024 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12025 12026 if (error == NFS_VERF_MISMATCH) 12027 goto top; 12028 12029 return (error); 12030 } 12031 12032 /* 12033 * nfs4_commit_vp() will wait for other pending commits and 12034 * will either commit the whole file or a range, plen dictates 12035 * if we commit whole file. a value of zero indicates the whole 12036 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12037 */ 12038 static int 12039 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12040 cred_t *cr, int wait_on_writes) 12041 { 12042 rnode4_t *rp; 12043 page_t *plist; 12044 offset3 offset; 12045 count3 len; 12046 12047 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12048 12049 rp = VTOR4(vp); 12050 12051 /* 12052 * before we gather commitable pages make 12053 * sure there are no outstanding async writes 12054 */ 12055 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12056 mutex_enter(&rp->r_statelock); 12057 while (rp->r_count > 0) { 12058 cv_wait(&rp->r_cv, &rp->r_statelock); 12059 } 12060 mutex_exit(&rp->r_statelock); 12061 } 12062 12063 /* 12064 * Set the `commit inprogress' state bit. We must 12065 * first wait until any current one finishes. 12066 */ 12067 mutex_enter(&rp->r_statelock); 12068 while (rp->r_flags & R4COMMIT) { 12069 rp->r_flags |= R4COMMITWAIT; 12070 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12071 rp->r_flags &= ~R4COMMITWAIT; 12072 } 12073 rp->r_flags |= R4COMMIT; 12074 mutex_exit(&rp->r_statelock); 12075 12076 /* 12077 * Gather all of the pages which need to be 12078 * committed. 12079 */ 12080 if (plen == 0) 12081 nfs4_get_commit(vp); 12082 else 12083 nfs4_get_commit_range(vp, poff, plen); 12084 12085 /* 12086 * Clear the `commit inprogress' bit and disconnect the 12087 * page list which was gathered by nfs4_get_commit. 12088 */ 12089 plist = rp->r_commit.c_pages; 12090 rp->r_commit.c_pages = NULL; 12091 offset = rp->r_commit.c_commbase; 12092 len = rp->r_commit.c_commlen; 12093 mutex_enter(&rp->r_statelock); 12094 rp->r_flags &= ~R4COMMIT; 12095 cv_broadcast(&rp->r_commit.c_cv); 12096 mutex_exit(&rp->r_statelock); 12097 12098 /* 12099 * If any pages need to be committed, commit them and 12100 * then unlock them so that they can be freed some 12101 * time later. 12102 */ 12103 if (plist == NULL) 12104 return (0); 12105 12106 /* 12107 * No error occurred during the flush portion 12108 * of this operation, so now attempt to commit 12109 * the data to stable storage on the server. 12110 * 12111 * This will unlock all of the pages on the list. 12112 */ 12113 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12114 } 12115 12116 static int 12117 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12118 cred_t *cr) 12119 { 12120 int error; 12121 page_t *pp; 12122 12123 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12124 12125 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12126 12127 /* 12128 * If we got an error, then just unlock all of the pages 12129 * on the list. 12130 */ 12131 if (error) { 12132 while (plist != NULL) { 12133 pp = plist; 12134 page_sub(&plist, pp); 12135 page_unlock(pp); 12136 } 12137 return (error); 12138 } 12139 /* 12140 * We've tried as hard as we can to commit the data to stable 12141 * storage on the server. We just unlock the pages and clear 12142 * the commit required state. They will get freed later. 12143 */ 12144 while (plist != NULL) { 12145 pp = plist; 12146 page_sub(&plist, pp); 12147 pp->p_fsdata = C_NOCOMMIT; 12148 page_unlock(pp); 12149 } 12150 12151 return (error); 12152 } 12153 12154 static void 12155 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12156 cred_t *cr) 12157 { 12158 12159 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12160 } 12161 12162 /*ARGSUSED*/ 12163 static int 12164 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12165 caller_context_t *ct) 12166 { 12167 int error = 0; 12168 mntinfo4_t *mi; 12169 vattr_t va; 12170 vsecattr_t nfsace4_vsap; 12171 12172 mi = VTOMI4(vp); 12173 if (nfs_zone() != mi->mi_zone) 12174 return (EIO); 12175 if (mi->mi_flags & MI4_ACL) { 12176 /* if we have a delegation, return it */ 12177 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12178 (void) nfs4delegreturn(VTOR4(vp), 12179 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12180 12181 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12182 NFS4_ACL_SET); 12183 if (error) /* EINVAL */ 12184 return (error); 12185 12186 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12187 /* 12188 * These are aclent_t type entries. 12189 */ 12190 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12191 vp->v_type == VDIR, FALSE); 12192 if (error) 12193 return (error); 12194 } else { 12195 /* 12196 * These are ace_t type entries. 12197 */ 12198 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12199 FALSE); 12200 if (error) 12201 return (error); 12202 } 12203 bzero(&va, sizeof (va)); 12204 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12205 vs_ace4_destroy(&nfsace4_vsap); 12206 return (error); 12207 } 12208 return (ENOSYS); 12209 } 12210 12211 /* ARGSUSED */ 12212 int 12213 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12214 caller_context_t *ct) 12215 { 12216 int error; 12217 mntinfo4_t *mi; 12218 nfs4_ga_res_t gar; 12219 rnode4_t *rp = VTOR4(vp); 12220 12221 mi = VTOMI4(vp); 12222 if (nfs_zone() != mi->mi_zone) 12223 return (EIO); 12224 12225 bzero(&gar, sizeof (gar)); 12226 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12227 12228 /* 12229 * vsecattr->vsa_mask holds the original acl request mask. 12230 * This is needed when determining what to return. 12231 * (See: nfs4_create_getsecattr_return()) 12232 */ 12233 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12234 if (error) /* EINVAL */ 12235 return (error); 12236 12237 if (mi->mi_flags & MI4_ACL) { 12238 /* 12239 * Check if the data is cached and the cache is valid. If it 12240 * is we don't go over the wire. 12241 */ 12242 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12243 mutex_enter(&rp->r_statelock); 12244 if (rp->r_secattr != NULL) { 12245 error = nfs4_create_getsecattr_return( 12246 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12247 rp->r_attr.va_gid, 12248 vp->v_type == VDIR); 12249 if (!error) { /* error == 0 - Success! */ 12250 mutex_exit(&rp->r_statelock); 12251 return (error); 12252 } 12253 } 12254 mutex_exit(&rp->r_statelock); 12255 } 12256 12257 /* 12258 * The getattr otw call will always get both the acl, in 12259 * the form of a list of nfsace4's, and the number of acl 12260 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12261 */ 12262 gar.n4g_va.va_mask = AT_ALL; 12263 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12264 if (error) { 12265 vs_ace4_destroy(&gar.n4g_vsa); 12266 if (error == ENOTSUP || error == EOPNOTSUPP) 12267 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12268 return (error); 12269 } 12270 12271 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12272 /* 12273 * No error was returned, but according to the response 12274 * bitmap, neither was an acl. 12275 */ 12276 vs_ace4_destroy(&gar.n4g_vsa); 12277 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12278 return (error); 12279 } 12280 12281 /* 12282 * Update the cache with the ACL. 12283 */ 12284 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12285 12286 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12287 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12288 vp->v_type == VDIR); 12289 vs_ace4_destroy(&gar.n4g_vsa); 12290 if ((error) && (vsecattr->vsa_mask & 12291 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12292 (error != EACCES)) { 12293 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12294 } 12295 return (error); 12296 } 12297 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12298 return (error); 12299 } 12300 12301 /* 12302 * The function returns: 12303 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12304 * - EINVAL if the passed in "acl_mask" is an invalid request. 12305 * 12306 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12307 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12308 * 12309 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12310 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12311 * - We have a count field set without the corresponding acl field set. (e.g. - 12312 * VSA_ACECNT is set, but VSA_ACE is not) 12313 */ 12314 static int 12315 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12316 { 12317 /* Shortcut the masks that are always valid. */ 12318 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12319 return (0); 12320 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12321 return (0); 12322 12323 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12324 /* 12325 * We can't have any VSA_ACL type stuff in the mask now. 12326 */ 12327 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12328 VSA_DFACLCNT)) 12329 return (EINVAL); 12330 12331 if (op == NFS4_ACL_SET) { 12332 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12333 return (EINVAL); 12334 } 12335 } 12336 12337 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12338 /* 12339 * We can't have any VSA_ACE type stuff in the mask now. 12340 */ 12341 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12342 return (EINVAL); 12343 12344 if (op == NFS4_ACL_SET) { 12345 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12346 return (EINVAL); 12347 12348 if ((acl_mask & VSA_DFACLCNT) && 12349 !(acl_mask & VSA_DFACL)) 12350 return (EINVAL); 12351 } 12352 } 12353 return (0); 12354 } 12355 12356 /* 12357 * The theory behind creating the correct getsecattr return is simply this: 12358 * "Don't return anything that the caller is not expecting to have to free." 12359 */ 12360 static int 12361 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12362 uid_t uid, gid_t gid, int isdir) 12363 { 12364 int error = 0; 12365 /* Save the mask since the translators modify it. */ 12366 uint_t orig_mask = vsap->vsa_mask; 12367 12368 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12369 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, 12370 FALSE, ((orig_mask & VSA_ACE) ? FALSE : TRUE)); 12371 12372 if (error) 12373 return (error); 12374 12375 /* 12376 * If the caller only asked for the ace count (VSA_ACECNT) 12377 * don't give them the full acl (VSA_ACE), free it. 12378 */ 12379 if (!orig_mask & VSA_ACE) { 12380 if (vsap->vsa_aclentp != NULL) { 12381 kmem_free(vsap->vsa_aclentp, 12382 vsap->vsa_aclcnt * sizeof (ace_t)); 12383 vsap->vsa_aclentp = NULL; 12384 } 12385 } 12386 vsap->vsa_mask = orig_mask; 12387 12388 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12389 VSA_DFACLCNT)) { 12390 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12391 isdir, FALSE, 12392 ((orig_mask & (VSA_ACL | VSA_DFACL)) ? FALSE : TRUE)); 12393 12394 if (error) 12395 return (error); 12396 12397 /* 12398 * If the caller only asked for the acl count (VSA_ACLCNT) 12399 * and/or the default acl count (VSA_DFACLCNT) don't give them 12400 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12401 */ 12402 if (!orig_mask & VSA_ACL) { 12403 if (vsap->vsa_aclentp != NULL) { 12404 kmem_free(vsap->vsa_aclentp, 12405 vsap->vsa_aclcnt * sizeof (aclent_t)); 12406 vsap->vsa_aclentp = NULL; 12407 } 12408 } 12409 12410 if (!orig_mask & VSA_DFACL) { 12411 if (vsap->vsa_dfaclentp != NULL) { 12412 kmem_free(vsap->vsa_dfaclentp, 12413 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12414 vsap->vsa_dfaclentp = NULL; 12415 } 12416 } 12417 vsap->vsa_mask = orig_mask; 12418 } 12419 return (0); 12420 } 12421 12422 /* ARGSUSED */ 12423 int 12424 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12425 caller_context_t *ct) 12426 { 12427 int error; 12428 12429 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12430 return (EIO); 12431 /* 12432 * check for valid cmd parameter 12433 */ 12434 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12435 return (EINVAL); 12436 12437 /* 12438 * Check access permissions 12439 */ 12440 if ((cmd & F_SHARE) && 12441 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12442 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12443 return (EBADF); 12444 12445 /* 12446 * If the filesystem is mounted using local locking, pass the 12447 * request off to the local share code. 12448 */ 12449 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12450 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12451 12452 switch (cmd) { 12453 case F_SHARE: 12454 case F_UNSHARE: 12455 /* 12456 * This will be properly implemented later, 12457 * see RFE: 4823948 . 12458 */ 12459 error = EAGAIN; 12460 break; 12461 12462 case F_HASREMOTELOCKS: 12463 /* 12464 * NFS client can't store remote locks itself 12465 */ 12466 shr->s_access = 0; 12467 error = 0; 12468 break; 12469 12470 default: 12471 error = EINVAL; 12472 break; 12473 } 12474 12475 return (error); 12476 } 12477 12478 /* 12479 * Common code called by directory ops to update the attrcache 12480 */ 12481 static int 12482 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12483 hrtime_t t, vnode_t *vp, cred_t *cr) 12484 { 12485 int error = 0; 12486 12487 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12488 12489 if (status != NFS4_OK) { 12490 /* getattr not done or failed */ 12491 PURGE_ATTRCACHE4(vp); 12492 return (error); 12493 } 12494 12495 if (garp) { 12496 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12497 } else { 12498 PURGE_ATTRCACHE4(vp); 12499 } 12500 return (error); 12501 } 12502 12503 /* 12504 * Update directory caches for directory modification ops (link, rename, etc.) 12505 * When dinfo is NULL, manage dircaches in the old way. 12506 */ 12507 static void 12508 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12509 dirattr_info_t *dinfo) 12510 { 12511 rnode4_t *drp = VTOR4(dvp); 12512 12513 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12514 12515 /* Purge rddir cache for dir since it changed */ 12516 if (drp->r_dir != NULL) 12517 nfs4_purge_rddir_cache(dvp); 12518 12519 /* 12520 * If caller provided dinfo, then use it to manage dir caches. 12521 */ 12522 if (dinfo != NULL) { 12523 if (vp != NULL) { 12524 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12525 if (!VTOR4(vp)->created_v4) { 12526 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12527 dnlc_update(dvp, nm, vp); 12528 } else { 12529 /* 12530 * XXX don't update if the created_v4 flag is 12531 * set 12532 */ 12533 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12534 NFS4_DEBUG(nfs4_client_state_debug, 12535 (CE_NOTE, "nfs4_update_dircaches: " 12536 "don't update dnlc: created_v4 flag")); 12537 } 12538 } 12539 12540 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12541 dinfo->di_cred, FALSE, cinfo); 12542 12543 return; 12544 } 12545 12546 /* 12547 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12548 * Since caller modified dir but didn't receive post-dirmod-op dir 12549 * attrs, the dir's attrs must be purged. 12550 * 12551 * XXX this check and dnlc update/purge should really be atomic, 12552 * XXX but can't use rnode statelock because it'll deadlock in 12553 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12554 * XXX does occur. 12555 * 12556 * XXX We also may want to check that atomic is true in the 12557 * XXX change_info struct. If it is not, the change_info may 12558 * XXX reflect changes by more than one clients which means that 12559 * XXX our cache may not be valid. 12560 */ 12561 PURGE_ATTRCACHE4(dvp); 12562 if (drp->r_change == cinfo->before) { 12563 /* no changes took place in the directory prior to our link */ 12564 if (vp != NULL) { 12565 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12566 if (!VTOR4(vp)->created_v4) { 12567 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12568 dnlc_update(dvp, nm, vp); 12569 } else { 12570 /* 12571 * XXX dont' update if the created_v4 flag 12572 * is set 12573 */ 12574 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12575 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12576 "nfs4_update_dircaches: don't" 12577 " update dnlc: created_v4 flag")); 12578 } 12579 } 12580 } else { 12581 /* Another client modified directory - purge its dnlc cache */ 12582 dnlc_purge_vp(dvp); 12583 } 12584 } 12585 12586 /* 12587 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12588 * file. 12589 * 12590 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12591 * file (ie: client recovery) and otherwise set to FALSE. 12592 * 12593 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12594 * initiated) calling functions. 12595 * 12596 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12597 * of resending a 'lost' open request. 12598 * 12599 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12600 * server that hands out BAD_SEQID on open confirm. 12601 * 12602 * Errors are returned via the nfs4_error_t parameter. 12603 */ 12604 void 12605 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12606 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12607 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12608 { 12609 COMPOUND4args_clnt args; 12610 COMPOUND4res_clnt res; 12611 nfs_argop4 argop[2]; 12612 nfs_resop4 *resop; 12613 int doqueue = 1; 12614 mntinfo4_t *mi; 12615 OPEN_CONFIRM4args *open_confirm_args; 12616 int needrecov; 12617 12618 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12619 #if DEBUG 12620 mutex_enter(&oop->oo_lock); 12621 ASSERT(oop->oo_seqid_inuse); 12622 mutex_exit(&oop->oo_lock); 12623 #endif 12624 12625 recov_retry_confirm: 12626 nfs4_error_zinit(ep); 12627 *retry_open = FALSE; 12628 12629 if (resend) 12630 args.ctag = TAG_OPEN_CONFIRM_LOST; 12631 else 12632 args.ctag = TAG_OPEN_CONFIRM; 12633 12634 args.array_len = 2; 12635 args.array = argop; 12636 12637 /* putfh target fh */ 12638 argop[0].argop = OP_CPUTFH; 12639 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12640 12641 argop[1].argop = OP_OPEN_CONFIRM; 12642 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12643 12644 (*seqid) += 1; 12645 open_confirm_args->seqid = *seqid; 12646 open_confirm_args->open_stateid = *stateid; 12647 12648 mi = VTOMI4(vp); 12649 12650 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12651 12652 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12653 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12654 } 12655 12656 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12657 if (!needrecov && ep->error) 12658 return; 12659 12660 if (needrecov) { 12661 bool_t abort = FALSE; 12662 12663 if (reopening_file == FALSE) { 12664 nfs4_bseqid_entry_t *bsep = NULL; 12665 12666 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12667 bsep = nfs4_create_bseqid_entry(oop, NULL, 12668 vp, 0, args.ctag, 12669 open_confirm_args->seqid); 12670 12671 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, 12672 NULL, NULL, NULL, OP_OPEN_CONFIRM, bsep); 12673 if (bsep) { 12674 kmem_free(bsep, sizeof (*bsep)); 12675 if (num_bseqid_retryp && 12676 --(*num_bseqid_retryp) == 0) 12677 abort = TRUE; 12678 } 12679 } 12680 if ((ep->error == ETIMEDOUT || 12681 res.status == NFS4ERR_RESOURCE) && 12682 abort == FALSE && resend == FALSE) { 12683 if (!ep->error) 12684 (void) xdr_free(xdr_COMPOUND4res_clnt, 12685 (caddr_t)&res); 12686 12687 delay(SEC_TO_TICK(confirm_retry_sec)); 12688 goto recov_retry_confirm; 12689 } 12690 /* State may have changed so retry the entire OPEN op */ 12691 if (abort == FALSE) 12692 *retry_open = TRUE; 12693 else 12694 *retry_open = FALSE; 12695 if (!ep->error) 12696 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12697 return; 12698 } 12699 12700 if (res.status) { 12701 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12702 return; 12703 } 12704 12705 resop = &res.array[1]; /* open confirm res */ 12706 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12707 stateid, sizeof (*stateid)); 12708 12709 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12710 } 12711 12712 /* 12713 * Return the credentials associated with a client state object. The 12714 * caller is responsible for freeing the credentials. 12715 */ 12716 12717 static cred_t * 12718 state_to_cred(nfs4_open_stream_t *osp) 12719 { 12720 cred_t *cr; 12721 12722 /* 12723 * It's ok to not lock the open stream and open owner to get 12724 * the oo_cred since this is only written once (upon creation) 12725 * and will not change. 12726 */ 12727 cr = osp->os_open_owner->oo_cred; 12728 crhold(cr); 12729 12730 return (cr); 12731 } 12732 12733 /* 12734 * nfs4_find_sysid 12735 * 12736 * Find the sysid for the knetconfig associated with the given mi. 12737 */ 12738 static struct lm_sysid * 12739 nfs4_find_sysid(mntinfo4_t *mi) 12740 { 12741 ASSERT(nfs_zone() == mi->mi_zone); 12742 12743 /* 12744 * Switch from RDMA knconf to original mount knconf 12745 */ 12746 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12747 mi->mi_curr_serv->sv_hostname, NULL)); 12748 } 12749 12750 #ifdef DEBUG 12751 /* 12752 * Return a string version of the call type for easy reading. 12753 */ 12754 static char * 12755 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12756 { 12757 switch (ctype) { 12758 case NFS4_LCK_CTYPE_NORM: 12759 return ("NORMAL"); 12760 case NFS4_LCK_CTYPE_RECLAIM: 12761 return ("RECLAIM"); 12762 case NFS4_LCK_CTYPE_RESEND: 12763 return ("RESEND"); 12764 case NFS4_LCK_CTYPE_REINSTATE: 12765 return ("REINSTATE"); 12766 default: 12767 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12768 "type %d", ctype); 12769 return (""); 12770 } 12771 } 12772 #endif 12773 12774 /* 12775 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12776 * Unlock requests don't have an over-the-wire locktype, so we just return 12777 * something non-threatening. 12778 */ 12779 12780 static nfs_lock_type4 12781 flk_to_locktype(int cmd, int l_type) 12782 { 12783 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12784 12785 switch (l_type) { 12786 case F_UNLCK: 12787 return (READ_LT); 12788 case F_RDLCK: 12789 if (cmd == F_SETLK) 12790 return (READ_LT); 12791 else 12792 return (READW_LT); 12793 case F_WRLCK: 12794 if (cmd == F_SETLK) 12795 return (WRITE_LT); 12796 else 12797 return (WRITEW_LT); 12798 } 12799 panic("flk_to_locktype"); 12800 /*NOTREACHED*/ 12801 } 12802 12803 /* 12804 * Do some preliminary checks for nfs4frlock. 12805 */ 12806 static int 12807 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12808 u_offset_t offset) 12809 { 12810 int error = 0; 12811 12812 /* 12813 * If we are setting a lock, check that the file is opened 12814 * with the correct mode. 12815 */ 12816 if (cmd == F_SETLK || cmd == F_SETLKW) { 12817 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12818 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12819 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12820 "nfs4frlock_validate_args: file was opened with " 12821 "incorrect mode")); 12822 return (EBADF); 12823 } 12824 } 12825 12826 /* Convert the offset. It may need to be restored before returning. */ 12827 if (error = convoff(vp, flk, 0, offset)) { 12828 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12829 "nfs4frlock_validate_args: convoff => error= %d\n", 12830 error)); 12831 return (error); 12832 } 12833 12834 return (error); 12835 } 12836 12837 /* 12838 * Set the flock64's lm_sysid for nfs4frlock. 12839 */ 12840 static int 12841 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12842 { 12843 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12844 12845 /* Find the lm_sysid */ 12846 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12847 12848 if (*lspp == NULL) { 12849 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12850 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12851 return (ENOLCK); 12852 } 12853 12854 flk->l_sysid = lm_sysidt(*lspp); 12855 12856 return (0); 12857 } 12858 12859 /* 12860 * Do the remaining preliminary setup for nfs4frlock. 12861 */ 12862 static void 12863 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12864 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12865 cred_t **cred_otw) 12866 { 12867 /* 12868 * set tick_delay to the base delay time. 12869 * (NFS4_BASE_WAIT_TIME is in secs) 12870 */ 12871 12872 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12873 12874 /* 12875 * If lock is relative to EOF, we need the newest length of the 12876 * file. Therefore invalidate the ATTR_CACHE. 12877 */ 12878 12879 *whencep = flk->l_whence; 12880 12881 if (*whencep == 2) /* SEEK_END */ 12882 PURGE_ATTRCACHE4(vp); 12883 12884 recov_statep->rs_flags = 0; 12885 recov_statep->rs_num_retry_despite_err = 0; 12886 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12887 } 12888 12889 /* 12890 * Initialize and allocate the data structures necessary for 12891 * the nfs4frlock call. 12892 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12893 */ 12894 static void 12895 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12896 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12897 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12898 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 12899 { 12900 int argoplist_size; 12901 int num_ops = 2; 12902 12903 *retry = FALSE; 12904 *did_start_fop = FALSE; 12905 *skip_get_err = FALSE; 12906 lost_rqstp->lr_op = 0; 12907 argoplist_size = num_ops * sizeof (nfs_argop4); 12908 /* fill array with zero */ 12909 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 12910 12911 *argspp = argsp; 12912 *respp = NULL; 12913 12914 argsp->array_len = num_ops; 12915 argsp->array = *argopp; 12916 12917 /* initialize in case of error; will get real value down below */ 12918 argsp->ctag = TAG_NONE; 12919 12920 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 12921 *op_hintp = OH_LOCKU; 12922 else 12923 *op_hintp = OH_OTHER; 12924 } 12925 12926 /* 12927 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 12928 * the proper nfs4_server_t for this instance of nfs4frlock. 12929 * Returns 0 (success) or an errno value. 12930 */ 12931 static int 12932 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 12933 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 12934 bool_t *did_start_fop, bool_t *startrecovp) 12935 { 12936 int error = 0; 12937 rnode4_t *rp; 12938 12939 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12940 12941 if (ctype == NFS4_LCK_CTYPE_NORM) { 12942 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 12943 recov_statep, startrecovp); 12944 if (error) 12945 return (error); 12946 *did_start_fop = TRUE; 12947 } else { 12948 *did_start_fop = FALSE; 12949 *startrecovp = FALSE; 12950 } 12951 12952 if (!error) { 12953 rp = VTOR4(vp); 12954 12955 /* If the file failed recovery, just quit. */ 12956 mutex_enter(&rp->r_statelock); 12957 if (rp->r_flags & R4RECOVERR) { 12958 error = EIO; 12959 } 12960 mutex_exit(&rp->r_statelock); 12961 } 12962 12963 return (error); 12964 } 12965 12966 /* 12967 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 12968 * resend nfs4frlock call is initiated by the recovery framework. 12969 * Acquires the lop and oop seqid synchronization. 12970 */ 12971 static void 12972 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 12973 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 12974 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 12975 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 12976 { 12977 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 12978 int error; 12979 12980 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 12981 (CE_NOTE, 12982 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 12983 ASSERT(resend_rqstp != NULL); 12984 ASSERT(resend_rqstp->lr_op == OP_LOCK || 12985 resend_rqstp->lr_op == OP_LOCKU); 12986 12987 *oopp = resend_rqstp->lr_oop; 12988 if (resend_rqstp->lr_oop) { 12989 open_owner_hold(resend_rqstp->lr_oop); 12990 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 12991 ASSERT(error == 0); /* recov thread always succeeds */ 12992 } 12993 12994 /* Must resend this lost lock/locku request. */ 12995 ASSERT(resend_rqstp->lr_lop != NULL); 12996 *lopp = resend_rqstp->lr_lop; 12997 lock_owner_hold(resend_rqstp->lr_lop); 12998 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 12999 ASSERT(error == 0); /* recov thread always succeeds */ 13000 13001 *ospp = resend_rqstp->lr_osp; 13002 if (*ospp) 13003 open_stream_hold(resend_rqstp->lr_osp); 13004 13005 if (resend_rqstp->lr_op == OP_LOCK) { 13006 LOCK4args *lock_args; 13007 13008 argop->argop = OP_LOCK; 13009 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 13010 lock_args->locktype = resend_rqstp->lr_locktype; 13011 lock_args->reclaim = 13012 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 13013 lock_args->offset = resend_rqstp->lr_flk->l_start; 13014 lock_args->length = resend_rqstp->lr_flk->l_len; 13015 if (lock_args->length == 0) 13016 lock_args->length = ~lock_args->length; 13017 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13018 mi2clientid(mi), &lock_args->locker); 13019 13020 switch (resend_rqstp->lr_ctype) { 13021 case NFS4_LCK_CTYPE_RESEND: 13022 argsp->ctag = TAG_LOCK_RESEND; 13023 break; 13024 case NFS4_LCK_CTYPE_REINSTATE: 13025 argsp->ctag = TAG_LOCK_REINSTATE; 13026 break; 13027 case NFS4_LCK_CTYPE_RECLAIM: 13028 argsp->ctag = TAG_LOCK_RECLAIM; 13029 break; 13030 default: 13031 argsp->ctag = TAG_LOCK_UNKNOWN; 13032 break; 13033 } 13034 } else { 13035 LOCKU4args *locku_args; 13036 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13037 13038 argop->argop = OP_LOCKU; 13039 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13040 locku_args->locktype = READ_LT; 13041 locku_args->seqid = lop->lock_seqid + 1; 13042 mutex_enter(&lop->lo_lock); 13043 locku_args->lock_stateid = lop->lock_stateid; 13044 mutex_exit(&lop->lo_lock); 13045 locku_args->offset = resend_rqstp->lr_flk->l_start; 13046 locku_args->length = resend_rqstp->lr_flk->l_len; 13047 if (locku_args->length == 0) 13048 locku_args->length = ~locku_args->length; 13049 13050 switch (resend_rqstp->lr_ctype) { 13051 case NFS4_LCK_CTYPE_RESEND: 13052 argsp->ctag = TAG_LOCKU_RESEND; 13053 break; 13054 case NFS4_LCK_CTYPE_REINSTATE: 13055 argsp->ctag = TAG_LOCKU_REINSTATE; 13056 break; 13057 default: 13058 argsp->ctag = TAG_LOCK_UNKNOWN; 13059 break; 13060 } 13061 } 13062 } 13063 13064 /* 13065 * Setup the LOCKT4 arguments. 13066 */ 13067 static void 13068 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13069 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13070 rnode4_t *rp) 13071 { 13072 LOCKT4args *lockt_args; 13073 13074 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13075 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13076 argop->argop = OP_LOCKT; 13077 argsp->ctag = TAG_LOCKT; 13078 lockt_args = &argop->nfs_argop4_u.oplockt; 13079 13080 /* 13081 * The locktype will be READ_LT unless it's 13082 * a write lock. We do this because the Solaris 13083 * system call allows the combination of 13084 * F_UNLCK and F_GETLK* and so in that case the 13085 * unlock is mapped to a read. 13086 */ 13087 if (flk->l_type == F_WRLCK) 13088 lockt_args->locktype = WRITE_LT; 13089 else 13090 lockt_args->locktype = READ_LT; 13091 13092 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13093 /* set the lock owner4 args */ 13094 nfs4_setlockowner_args(&lockt_args->owner, rp, 13095 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13096 flk->l_pid); 13097 lockt_args->offset = flk->l_start; 13098 lockt_args->length = flk->l_len; 13099 if (flk->l_len == 0) 13100 lockt_args->length = ~lockt_args->length; 13101 13102 *lockt_argsp = lockt_args; 13103 } 13104 13105 /* 13106 * If the client is holding a delegation, and the open stream to be used 13107 * with this lock request is a delegation open stream, then re-open the stream. 13108 * Sets the nfs4_error_t to all zeros unless the open stream has already 13109 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13110 * means the caller should retry (like a recovery retry). 13111 */ 13112 static void 13113 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13114 { 13115 open_delegation_type4 dt; 13116 bool_t reopen_needed, force; 13117 nfs4_open_stream_t *osp; 13118 open_claim_type4 oclaim; 13119 rnode4_t *rp = VTOR4(vp); 13120 mntinfo4_t *mi = VTOMI4(vp); 13121 13122 ASSERT(nfs_zone() == mi->mi_zone); 13123 13124 nfs4_error_zinit(ep); 13125 13126 mutex_enter(&rp->r_statev4_lock); 13127 dt = rp->r_deleg_type; 13128 mutex_exit(&rp->r_statev4_lock); 13129 13130 if (dt != OPEN_DELEGATE_NONE) { 13131 nfs4_open_owner_t *oop; 13132 13133 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13134 if (!oop) { 13135 ep->stat = NFS4ERR_IO; 13136 return; 13137 } 13138 /* returns with 'os_sync_lock' held */ 13139 osp = find_open_stream(oop, rp); 13140 if (!osp) { 13141 open_owner_rele(oop); 13142 ep->stat = NFS4ERR_IO; 13143 return; 13144 } 13145 13146 if (osp->os_failed_reopen) { 13147 NFS4_DEBUG((nfs4_open_stream_debug || 13148 nfs4_client_lock_debug), (CE_NOTE, 13149 "nfs4frlock_check_deleg: os_failed_reopen set " 13150 "for osp %p, cr %p, rp %s", (void *)osp, 13151 (void *)cr, rnode4info(rp))); 13152 mutex_exit(&osp->os_sync_lock); 13153 open_stream_rele(osp, rp); 13154 open_owner_rele(oop); 13155 ep->stat = NFS4ERR_IO; 13156 return; 13157 } 13158 13159 /* 13160 * Determine whether a reopen is needed. If this 13161 * is a delegation open stream, then send the open 13162 * to the server to give visibility to the open owner. 13163 * Even if it isn't a delegation open stream, we need 13164 * to check if the previous open CLAIM_DELEGATE_CUR 13165 * was sufficient. 13166 */ 13167 13168 reopen_needed = osp->os_delegation || 13169 ((lt == F_RDLCK && 13170 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13171 (lt == F_WRLCK && 13172 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13173 13174 mutex_exit(&osp->os_sync_lock); 13175 open_owner_rele(oop); 13176 13177 if (reopen_needed) { 13178 /* 13179 * Always use CLAIM_PREVIOUS after server reboot. 13180 * The server will reject CLAIM_DELEGATE_CUR if 13181 * it is used during the grace period. 13182 */ 13183 mutex_enter(&mi->mi_lock); 13184 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13185 oclaim = CLAIM_PREVIOUS; 13186 force = TRUE; 13187 } else { 13188 oclaim = CLAIM_DELEGATE_CUR; 13189 force = FALSE; 13190 } 13191 mutex_exit(&mi->mi_lock); 13192 13193 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13194 if (ep->error == EAGAIN) { 13195 nfs4_error_zinit(ep); 13196 ep->stat = NFS4ERR_DELAY; 13197 } 13198 } 13199 open_stream_rele(osp, rp); 13200 osp = NULL; 13201 } 13202 } 13203 13204 /* 13205 * Setup the LOCKU4 arguments. 13206 * Returns errors via the nfs4_error_t. 13207 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13208 * over-the-wire. The caller must release the 13209 * reference on *lopp. 13210 * NFS4ERR_DELAY caller should retry (like recovery retry) 13211 * (other) unrecoverable error. 13212 */ 13213 static void 13214 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13215 LOCKU4args **locku_argsp, flock64_t *flk, 13216 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13217 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13218 bool_t *skip_get_err, bool_t *go_otwp) 13219 { 13220 nfs4_lock_owner_t *lop = NULL; 13221 LOCKU4args *locku_args; 13222 pid_t pid; 13223 bool_t is_spec = FALSE; 13224 rnode4_t *rp = VTOR4(vp); 13225 13226 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13227 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13228 13229 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13230 if (ep->error || ep->stat) 13231 return; 13232 13233 argop->argop = OP_LOCKU; 13234 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13235 argsp->ctag = TAG_LOCKU_REINSTATE; 13236 else 13237 argsp->ctag = TAG_LOCKU; 13238 locku_args = &argop->nfs_argop4_u.oplocku; 13239 *locku_argsp = locku_args; 13240 13241 /* 13242 * XXX what should locku_args->locktype be? 13243 * setting to ALWAYS be READ_LT so at least 13244 * it is a valid locktype. 13245 */ 13246 13247 locku_args->locktype = READ_LT; 13248 13249 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13250 flk->l_pid; 13251 13252 /* 13253 * Get the lock owner stateid. If no lock owner 13254 * exists, return success. 13255 */ 13256 lop = find_lock_owner(rp, pid, LOWN_ANY); 13257 *lopp = lop; 13258 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13259 is_spec = TRUE; 13260 if (!lop || is_spec) { 13261 /* 13262 * No lock owner so no locks to unlock. 13263 * Return success. If there was a failed 13264 * reclaim earlier, the lock might still be 13265 * registered with the local locking code, 13266 * so notify it of the unlock. 13267 * 13268 * If the lockowner is using a special stateid, 13269 * then the original lock request (that created 13270 * this lockowner) was never successful, so we 13271 * have no lock to undo OTW. 13272 */ 13273 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13274 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13275 "(%ld) so return success", (long)pid)); 13276 13277 if (ctype == NFS4_LCK_CTYPE_NORM) 13278 flk->l_pid = curproc->p_pid; 13279 nfs4_register_lock_locally(vp, flk, flag, offset); 13280 /* 13281 * Release our hold and NULL out so final_cleanup 13282 * doesn't try to end a lock seqid sync we 13283 * never started. 13284 */ 13285 if (is_spec) { 13286 lock_owner_rele(lop); 13287 *lopp = NULL; 13288 } 13289 *skip_get_err = TRUE; 13290 *go_otwp = FALSE; 13291 return; 13292 } 13293 13294 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13295 if (ep->error == EAGAIN) { 13296 lock_owner_rele(lop); 13297 *lopp = NULL; 13298 return; 13299 } 13300 13301 mutex_enter(&lop->lo_lock); 13302 locku_args->lock_stateid = lop->lock_stateid; 13303 mutex_exit(&lop->lo_lock); 13304 locku_args->seqid = lop->lock_seqid + 1; 13305 13306 /* leave the ref count on lop, rele after RPC call */ 13307 13308 locku_args->offset = flk->l_start; 13309 locku_args->length = flk->l_len; 13310 if (flk->l_len == 0) 13311 locku_args->length = ~locku_args->length; 13312 13313 *go_otwp = TRUE; 13314 } 13315 13316 /* 13317 * Setup the LOCK4 arguments. 13318 * 13319 * Returns errors via the nfs4_error_t. 13320 * NFS4_OK no problems 13321 * NFS4ERR_DELAY caller should retry (like recovery retry) 13322 * (other) unrecoverable error 13323 */ 13324 static void 13325 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13326 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13327 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13328 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13329 { 13330 LOCK4args *lock_args; 13331 nfs4_open_owner_t *oop = NULL; 13332 nfs4_open_stream_t *osp = NULL; 13333 nfs4_lock_owner_t *lop = NULL; 13334 pid_t pid; 13335 rnode4_t *rp = VTOR4(vp); 13336 13337 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13338 13339 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13340 if (ep->error || ep->stat != NFS4_OK) 13341 return; 13342 13343 argop->argop = OP_LOCK; 13344 if (ctype == NFS4_LCK_CTYPE_NORM) 13345 argsp->ctag = TAG_LOCK; 13346 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13347 argsp->ctag = TAG_RELOCK; 13348 else 13349 argsp->ctag = TAG_LOCK_REINSTATE; 13350 lock_args = &argop->nfs_argop4_u.oplock; 13351 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13352 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13353 /* 13354 * Get the lock owner. If no lock owner exists, 13355 * create a 'temporary' one and grab the open seqid 13356 * synchronization (which puts a hold on the open 13357 * owner and open stream). 13358 * This also grabs the lock seqid synchronization. 13359 */ 13360 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13361 ep->stat = 13362 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13363 13364 if (ep->stat != NFS4_OK) 13365 goto out; 13366 13367 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13368 &lock_args->locker); 13369 13370 lock_args->offset = flk->l_start; 13371 lock_args->length = flk->l_len; 13372 if (flk->l_len == 0) 13373 lock_args->length = ~lock_args->length; 13374 *lock_argsp = lock_args; 13375 out: 13376 *oopp = oop; 13377 *ospp = osp; 13378 *lopp = lop; 13379 } 13380 13381 /* 13382 * After we get the reply from the server, record the proper information 13383 * for possible resend lock requests. 13384 * 13385 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13386 */ 13387 static void 13388 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13389 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13390 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13391 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13392 { 13393 bool_t unlock = (flk->l_type == F_UNLCK); 13394 13395 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13396 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13397 ctype == NFS4_LCK_CTYPE_REINSTATE); 13398 13399 if (error != 0 && !unlock) { 13400 NFS4_DEBUG((nfs4_lost_rqst_debug || 13401 nfs4_client_lock_debug), (CE_NOTE, 13402 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13403 " for lop %p", (void *)lop)); 13404 ASSERT(lop != NULL); 13405 mutex_enter(&lop->lo_lock); 13406 lop->lo_pending_rqsts = 1; 13407 mutex_exit(&lop->lo_lock); 13408 } 13409 13410 lost_rqstp->lr_putfirst = FALSE; 13411 lost_rqstp->lr_op = 0; 13412 13413 /* 13414 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13415 * recovery purposes so that the lock request that was sent 13416 * can be saved and re-issued later. Ditto for EIO from a forced 13417 * unmount. This is done to have the client's local locking state 13418 * match the v4 server's state; that is, the request was 13419 * potentially received and accepted by the server but the client 13420 * thinks it was not. 13421 */ 13422 if (error == ETIMEDOUT || error == EINTR || 13423 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13424 NFS4_DEBUG((nfs4_lost_rqst_debug || 13425 nfs4_client_lock_debug), (CE_NOTE, 13426 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13427 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13428 (void *)lop, (void *)oop, (void *)osp)); 13429 if (unlock) 13430 lost_rqstp->lr_op = OP_LOCKU; 13431 else { 13432 lost_rqstp->lr_op = OP_LOCK; 13433 lost_rqstp->lr_locktype = locktype; 13434 } 13435 /* 13436 * Objects are held and rele'd via the recovery code. 13437 * See nfs4_save_lost_rqst. 13438 */ 13439 lost_rqstp->lr_vp = vp; 13440 lost_rqstp->lr_dvp = NULL; 13441 lost_rqstp->lr_oop = oop; 13442 lost_rqstp->lr_osp = osp; 13443 lost_rqstp->lr_lop = lop; 13444 lost_rqstp->lr_cr = cr; 13445 switch (ctype) { 13446 case NFS4_LCK_CTYPE_NORM: 13447 flk->l_pid = ttoproc(curthread)->p_pid; 13448 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13449 break; 13450 case NFS4_LCK_CTYPE_REINSTATE: 13451 lost_rqstp->lr_putfirst = TRUE; 13452 lost_rqstp->lr_ctype = ctype; 13453 break; 13454 default: 13455 break; 13456 } 13457 lost_rqstp->lr_flk = flk; 13458 } 13459 } 13460 13461 /* 13462 * Update lop's seqid. Also update the seqid stored in a resend request, 13463 * if any. (Some recovery errors increment the seqid, and we may have to 13464 * send the resend request again.) 13465 */ 13466 13467 static void 13468 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13469 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13470 { 13471 if (lock_args) { 13472 if (lock_args->locker.new_lock_owner == TRUE) 13473 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13474 else { 13475 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13476 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13477 } 13478 } else if (locku_args) { 13479 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13480 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13481 } 13482 } 13483 13484 /* 13485 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13486 * COMPOUND4 args/res for calls that need to retry. 13487 * Switches the *cred_otwp to base_cr. 13488 */ 13489 static void 13490 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13491 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13492 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13493 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13494 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13495 { 13496 nfs4_open_owner_t *oop = *oopp; 13497 nfs4_open_stream_t *osp = *ospp; 13498 nfs4_lock_owner_t *lop = *lopp; 13499 nfs_argop4 *argop = (*argspp)->array; 13500 13501 if (*did_start_fop) { 13502 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13503 needrecov); 13504 *did_start_fop = FALSE; 13505 } 13506 ASSERT((*argspp)->array_len == 2); 13507 if (argop[1].argop == OP_LOCK) 13508 nfs4args_lock_free(&argop[1]); 13509 else if (argop[1].argop == OP_LOCKT) 13510 nfs4args_lockt_free(&argop[1]); 13511 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13512 if (!error) 13513 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13514 *argspp = NULL; 13515 *respp = NULL; 13516 13517 if (lop) { 13518 nfs4_end_lock_seqid_sync(lop); 13519 lock_owner_rele(lop); 13520 *lopp = NULL; 13521 } 13522 13523 /* need to free up the reference on osp for lock args */ 13524 if (osp != NULL) { 13525 open_stream_rele(osp, VTOR4(vp)); 13526 *ospp = NULL; 13527 } 13528 13529 /* need to free up the reference on oop for lock args */ 13530 if (oop != NULL) { 13531 nfs4_end_open_seqid_sync(oop); 13532 open_owner_rele(oop); 13533 *oopp = NULL; 13534 } 13535 13536 crfree(*cred_otwp); 13537 *cred_otwp = base_cr; 13538 crhold(*cred_otwp); 13539 } 13540 13541 /* 13542 * Function to process the client's recovery for nfs4frlock. 13543 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13544 * 13545 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13546 * COMPOUND4 args/res for calls that need to retry. 13547 * 13548 * Note: the rp's r_lkserlock is *not* dropped during this path. 13549 */ 13550 static bool_t 13551 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13552 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13553 LOCK4args *lock_args, LOCKU4args *locku_args, 13554 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13555 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13556 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13557 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13558 { 13559 nfs4_open_owner_t *oop = *oopp; 13560 nfs4_open_stream_t *osp = *ospp; 13561 nfs4_lock_owner_t *lop = *lopp; 13562 13563 bool_t abort, retry; 13564 13565 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13566 ASSERT((*argspp) != NULL); 13567 ASSERT((*respp) != NULL); 13568 if (lock_args || locku_args) 13569 ASSERT(lop != NULL); 13570 13571 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13572 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13573 13574 retry = TRUE; 13575 abort = FALSE; 13576 if (needrecov) { 13577 nfs4_bseqid_entry_t *bsep = NULL; 13578 nfs_opnum4 op; 13579 13580 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13581 13582 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13583 seqid4 seqid; 13584 13585 if (lock_args) { 13586 if (lock_args->locker.new_lock_owner == TRUE) 13587 seqid = lock_args->locker.locker4_u. 13588 open_owner.open_seqid; 13589 else 13590 seqid = lock_args->locker.locker4_u. 13591 lock_owner.lock_seqid; 13592 } else if (locku_args) { 13593 seqid = locku_args->seqid; 13594 } else { 13595 seqid = 0; 13596 } 13597 13598 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13599 flk->l_pid, (*argspp)->ctag, seqid); 13600 } 13601 13602 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13603 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13604 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13605 NULL, op, bsep); 13606 13607 if (bsep) 13608 kmem_free(bsep, sizeof (*bsep)); 13609 } 13610 13611 /* 13612 * Return that we do not want to retry the request for 3 cases: 13613 * 1. If we received EINTR or are bailing out because of a forced 13614 * unmount, we came into this code path just for the sake of 13615 * initiating recovery, we now need to return the error. 13616 * 2. If we have aborted recovery. 13617 * 3. We received NFS4ERR_BAD_SEQID. 13618 */ 13619 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13620 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13621 retry = FALSE; 13622 13623 if (*did_start_fop == TRUE) { 13624 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13625 needrecov); 13626 *did_start_fop = FALSE; 13627 } 13628 13629 if (retry == TRUE) { 13630 nfs_argop4 *argop; 13631 13632 argop = (*argspp)->array; 13633 ASSERT((*argspp)->array_len == 2); 13634 13635 if (argop[1].argop == OP_LOCK) 13636 nfs4args_lock_free(&argop[1]); 13637 else if (argop[1].argop == OP_LOCKT) 13638 nfs4args_lockt_free(&argop[1]); 13639 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13640 if (!ep->error) 13641 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13642 *respp = NULL; 13643 *argspp = NULL; 13644 } 13645 13646 if (lop != NULL) { 13647 nfs4_end_lock_seqid_sync(lop); 13648 lock_owner_rele(lop); 13649 } 13650 13651 *lopp = NULL; 13652 13653 /* need to free up the reference on osp for lock args */ 13654 if (osp != NULL) { 13655 open_stream_rele(osp, rp); 13656 *ospp = NULL; 13657 } 13658 13659 /* need to free up the reference on oop for lock args */ 13660 if (oop != NULL) { 13661 nfs4_end_open_seqid_sync(oop); 13662 open_owner_rele(oop); 13663 *oopp = NULL; 13664 } 13665 13666 return (retry); 13667 } 13668 13669 /* 13670 * Handles the successful reply from the server for nfs4frlock. 13671 */ 13672 static void 13673 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13674 vnode_t *vp, int flag, u_offset_t offset, 13675 nfs4_lost_rqst_t *resend_rqstp) 13676 { 13677 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13678 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13679 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13680 if (ctype == NFS4_LCK_CTYPE_NORM) { 13681 flk->l_pid = ttoproc(curthread)->p_pid; 13682 /* 13683 * We do not register lost locks locally in 13684 * the 'resend' case since the user/application 13685 * doesn't think we have the lock. 13686 */ 13687 ASSERT(!resend_rqstp); 13688 nfs4_register_lock_locally(vp, flk, flag, offset); 13689 } 13690 } 13691 } 13692 13693 /* 13694 * Handle the DENIED reply from the server for nfs4frlock. 13695 * Returns TRUE if we should retry the request; FALSE otherwise. 13696 * 13697 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13698 * COMPOUND4 args/res for calls that need to retry. Can also 13699 * drop and regrab the r_lkserlock. 13700 */ 13701 static bool_t 13702 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13703 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13704 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13705 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13706 nfs4_recov_state_t *recov_statep, int needrecov, 13707 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13708 clock_t *tick_delayp, short *whencep, int *errorp, 13709 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13710 bool_t *skip_get_err) 13711 { 13712 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13713 13714 if (lock_args) { 13715 nfs4_open_owner_t *oop = *oopp; 13716 nfs4_open_stream_t *osp = *ospp; 13717 nfs4_lock_owner_t *lop = *lopp; 13718 int intr; 13719 13720 /* 13721 * Blocking lock needs to sleep and retry from the request. 13722 * 13723 * Do not block and wait for 'resend' or 'reinstate' 13724 * lock requests, just return the error. 13725 * 13726 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13727 */ 13728 if (cmd == F_SETLKW) { 13729 rnode4_t *rp = VTOR4(vp); 13730 nfs_argop4 *argop = (*argspp)->array; 13731 13732 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13733 13734 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13735 recov_statep, needrecov); 13736 *did_start_fop = FALSE; 13737 ASSERT((*argspp)->array_len == 2); 13738 if (argop[1].argop == OP_LOCK) 13739 nfs4args_lock_free(&argop[1]); 13740 else if (argop[1].argop == OP_LOCKT) 13741 nfs4args_lockt_free(&argop[1]); 13742 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13743 if (*respp) 13744 (void) xdr_free(xdr_COMPOUND4res_clnt, 13745 (caddr_t)*respp); 13746 *argspp = NULL; 13747 *respp = NULL; 13748 nfs4_end_lock_seqid_sync(lop); 13749 lock_owner_rele(lop); 13750 *lopp = NULL; 13751 if (osp != NULL) { 13752 open_stream_rele(osp, rp); 13753 *ospp = NULL; 13754 } 13755 if (oop != NULL) { 13756 nfs4_end_open_seqid_sync(oop); 13757 open_owner_rele(oop); 13758 *oopp = NULL; 13759 } 13760 13761 nfs_rw_exit(&rp->r_lkserlock); 13762 13763 intr = nfs4_block_and_wait(tick_delayp, rp); 13764 13765 if (intr) { 13766 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13767 RW_WRITER, FALSE); 13768 *errorp = EINTR; 13769 return (FALSE); 13770 } 13771 13772 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13773 RW_WRITER, FALSE); 13774 13775 /* 13776 * Make sure we are still safe to lock with 13777 * regards to mmapping. 13778 */ 13779 if (!nfs4_safelock(vp, flk, cr)) { 13780 *errorp = EAGAIN; 13781 return (FALSE); 13782 } 13783 13784 return (TRUE); 13785 } 13786 if (ctype == NFS4_LCK_CTYPE_NORM) 13787 *errorp = EAGAIN; 13788 *skip_get_err = TRUE; 13789 flk->l_whence = 0; 13790 *whencep = 0; 13791 return (FALSE); 13792 } else if (lockt_args) { 13793 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13794 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13795 13796 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13797 flk, lockt_args); 13798 13799 /* according to NLM code */ 13800 *errorp = 0; 13801 *whencep = 0; 13802 *skip_get_err = TRUE; 13803 return (FALSE); 13804 } 13805 return (FALSE); 13806 } 13807 13808 /* 13809 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13810 */ 13811 static void 13812 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13813 { 13814 switch (resp->status) { 13815 case NFS4ERR_ACCESS: 13816 case NFS4ERR_ADMIN_REVOKED: 13817 case NFS4ERR_BADHANDLE: 13818 case NFS4ERR_BAD_RANGE: 13819 case NFS4ERR_BAD_SEQID: 13820 case NFS4ERR_BAD_STATEID: 13821 case NFS4ERR_BADXDR: 13822 case NFS4ERR_DEADLOCK: 13823 case NFS4ERR_DELAY: 13824 case NFS4ERR_EXPIRED: 13825 case NFS4ERR_FHEXPIRED: 13826 case NFS4ERR_GRACE: 13827 case NFS4ERR_INVAL: 13828 case NFS4ERR_ISDIR: 13829 case NFS4ERR_LEASE_MOVED: 13830 case NFS4ERR_LOCK_NOTSUPP: 13831 case NFS4ERR_LOCK_RANGE: 13832 case NFS4ERR_MOVED: 13833 case NFS4ERR_NOFILEHANDLE: 13834 case NFS4ERR_NO_GRACE: 13835 case NFS4ERR_OLD_STATEID: 13836 case NFS4ERR_OPENMODE: 13837 case NFS4ERR_RECLAIM_BAD: 13838 case NFS4ERR_RECLAIM_CONFLICT: 13839 case NFS4ERR_RESOURCE: 13840 case NFS4ERR_SERVERFAULT: 13841 case NFS4ERR_STALE: 13842 case NFS4ERR_STALE_CLIENTID: 13843 case NFS4ERR_STALE_STATEID: 13844 return; 13845 default: 13846 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13847 "nfs4frlock_results_default: got unrecognizable " 13848 "res.status %d", resp->status)); 13849 *errorp = NFS4ERR_INVAL; 13850 } 13851 } 13852 13853 /* 13854 * The lock request was successful, so update the client's state. 13855 */ 13856 static void 13857 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13858 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13859 vnode_t *vp, flock64_t *flk, cred_t *cr, 13860 nfs4_lost_rqst_t *resend_rqstp) 13861 { 13862 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13863 13864 if (lock_args) { 13865 LOCK4res *lock_res; 13866 13867 lock_res = &resop->nfs_resop4_u.oplock; 13868 /* update the stateid with server's response */ 13869 13870 if (lock_args->locker.new_lock_owner == TRUE) { 13871 mutex_enter(&lop->lo_lock); 13872 lop->lo_just_created = NFS4_PERM_CREATED; 13873 mutex_exit(&lop->lo_lock); 13874 } 13875 13876 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13877 13878 /* 13879 * If the lock was the result of a resending a lost 13880 * request, we've synched up the stateid and seqid 13881 * with the server, but now the server might be out of sync 13882 * with what the application thinks it has for locks. 13883 * Clean that up here. It's unclear whether we should do 13884 * this even if the filesystem has been forcibly unmounted. 13885 * For most servers, it's probably wasted effort, but 13886 * RFC3530 lets servers require that unlocks exactly match 13887 * the locks that are held. 13888 */ 13889 if (resend_rqstp != NULL && 13890 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13891 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13892 } else { 13893 flk->l_whence = 0; 13894 } 13895 } else if (locku_args) { 13896 LOCKU4res *locku_res; 13897 13898 locku_res = &resop->nfs_resop4_u.oplocku; 13899 13900 /* Update the stateid with the server's response */ 13901 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 13902 } else if (lockt_args) { 13903 /* Switch the lock type to express success, see fcntl */ 13904 flk->l_type = F_UNLCK; 13905 flk->l_whence = 0; 13906 } 13907 } 13908 13909 /* 13910 * Do final cleanup before exiting nfs4frlock. 13911 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13912 * COMPOUND4 args/res for calls that haven't already. 13913 */ 13914 static void 13915 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 13916 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 13917 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 13918 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13919 short whence, u_offset_t offset, struct lm_sysid *ls, 13920 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 13921 bool_t did_start_fop, bool_t skip_get_err, 13922 cred_t *cred_otw, cred_t *cred) 13923 { 13924 mntinfo4_t *mi = VTOMI4(vp); 13925 rnode4_t *rp = VTOR4(vp); 13926 int error = *errorp; 13927 nfs_argop4 *argop; 13928 13929 ASSERT(nfs_zone() == mi->mi_zone); 13930 /* 13931 * The client recovery code wants the raw status information, 13932 * so don't map the NFS status code to an errno value for 13933 * non-normal call types. 13934 */ 13935 if (ctype == NFS4_LCK_CTYPE_NORM) { 13936 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 13937 *errorp = geterrno4(resp->status); 13938 if (did_start_fop == TRUE) 13939 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 13940 needrecov); 13941 13942 /* 13943 * We've established a new lock on the server, so invalidate 13944 * the pages associated with the vnode to get the most up to 13945 * date pages from the server after acquiring the lock. We 13946 * want to be sure that the read operation gets the newest data. 13947 * N.B. 13948 * We used to do this in nfs4frlock_results_ok but that doesn't 13949 * work since VOP_PUTPAGE can call nfs4_commit which calls 13950 * nfs4_start_fop. We flush the pages below after calling 13951 * nfs4_end_fop above 13952 */ 13953 if (!error && resp && resp->status == NFS4_OK) { 13954 int error; 13955 13956 error = VOP_PUTPAGE(vp, (u_offset_t)0, 13957 0, B_INVAL, cred, NULL); 13958 13959 if (error && (error == ENOSPC || error == EDQUOT)) { 13960 rnode4_t *rp = VTOR4(vp); 13961 13962 mutex_enter(&rp->r_statelock); 13963 if (!rp->r_error) 13964 rp->r_error = error; 13965 mutex_exit(&rp->r_statelock); 13966 } 13967 } 13968 } 13969 if (argsp) { 13970 ASSERT(argsp->array_len == 2); 13971 argop = argsp->array; 13972 if (argop[1].argop == OP_LOCK) 13973 nfs4args_lock_free(&argop[1]); 13974 else if (argop[1].argop == OP_LOCKT) 13975 nfs4args_lockt_free(&argop[1]); 13976 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13977 if (resp) 13978 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 13979 } 13980 13981 /* free the reference on the lock owner */ 13982 if (lop != NULL) { 13983 nfs4_end_lock_seqid_sync(lop); 13984 lock_owner_rele(lop); 13985 } 13986 13987 /* need to free up the reference on osp for lock args */ 13988 if (osp != NULL) 13989 open_stream_rele(osp, rp); 13990 13991 /* need to free up the reference on oop for lock args */ 13992 if (oop != NULL) { 13993 nfs4_end_open_seqid_sync(oop); 13994 open_owner_rele(oop); 13995 } 13996 13997 (void) convoff(vp, flk, whence, offset); 13998 13999 lm_rel_sysid(ls); 14000 14001 /* 14002 * Record debug information in the event we get EINVAL. 14003 */ 14004 mutex_enter(&mi->mi_lock); 14005 if (*errorp == EINVAL && (lock_args || locku_args) && 14006 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 14007 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 14008 zcmn_err(getzoneid(), CE_NOTE, 14009 "%s operation failed with " 14010 "EINVAL probably since the server, %s," 14011 " doesn't support POSIX style locking", 14012 lock_args ? "LOCK" : "LOCKU", 14013 mi->mi_curr_serv->sv_hostname); 14014 mi->mi_flags |= MI4_LOCK_DEBUG; 14015 } 14016 } 14017 mutex_exit(&mi->mi_lock); 14018 14019 if (cred_otw) 14020 crfree(cred_otw); 14021 } 14022 14023 /* 14024 * This calls the server and the local locking code. 14025 * 14026 * Client locks are registerred locally by oring the sysid with 14027 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 14028 * We need to distinguish between the two to avoid collision in case one 14029 * machine is used as both client and server. 14030 * 14031 * Blocking lock requests will continually retry to acquire the lock 14032 * forever. 14033 * 14034 * The ctype is defined as follows: 14035 * NFS4_LCK_CTYPE_NORM: normal lock request. 14036 * 14037 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14038 * recovery, get the pid from flk instead of curproc, and don't reregister 14039 * the lock locally. 14040 * 14041 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14042 * that we will use the information passed in via resend_rqstp to setup the 14043 * lock/locku request. This resend is the exact same request as the 'lost 14044 * lock', and is initiated by the recovery framework. A successful resend 14045 * request can initiate one or more reinstate requests. 14046 * 14047 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14048 * does not trigger additional reinstate requests. This lock call type is 14049 * set for setting the v4 server's locking state back to match what the 14050 * client's local locking state is in the event of a received 'lost lock'. 14051 * 14052 * Errors are returned via the nfs4_error_t parameter. 14053 */ 14054 void 14055 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14056 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14057 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14058 { 14059 COMPOUND4args_clnt args, *argsp = NULL; 14060 COMPOUND4res_clnt res, *resp = NULL; 14061 nfs_argop4 *argop; 14062 nfs_resop4 *resop; 14063 rnode4_t *rp; 14064 int doqueue = 1; 14065 clock_t tick_delay; /* delay in clock ticks */ 14066 struct lm_sysid *ls; 14067 LOCK4args *lock_args = NULL; 14068 LOCKU4args *locku_args = NULL; 14069 LOCKT4args *lockt_args = NULL; 14070 nfs4_open_owner_t *oop = NULL; 14071 nfs4_open_stream_t *osp = NULL; 14072 nfs4_lock_owner_t *lop = NULL; 14073 bool_t needrecov = FALSE; 14074 nfs4_recov_state_t recov_state; 14075 short whence; 14076 nfs4_op_hint_t op_hint; 14077 nfs4_lost_rqst_t lost_rqst; 14078 bool_t retry = FALSE; 14079 bool_t did_start_fop = FALSE; 14080 bool_t skip_get_err = FALSE; 14081 cred_t *cred_otw = NULL; 14082 bool_t recovonly; /* just queue request */ 14083 int frc_no_reclaim = 0; 14084 #ifdef DEBUG 14085 char *name; 14086 #endif 14087 14088 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14089 14090 #ifdef DEBUG 14091 name = fn_name(VTOSV(vp)->sv_name); 14092 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14093 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14094 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14095 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14096 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14097 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14098 resend_rqstp ? "TRUE" : "FALSE")); 14099 kmem_free(name, MAXNAMELEN); 14100 #endif 14101 14102 nfs4_error_zinit(ep); 14103 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14104 if (ep->error) 14105 return; 14106 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14107 if (ep->error) 14108 return; 14109 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14110 vp, cr, &cred_otw); 14111 14112 recov_retry: 14113 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14114 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14115 rp = VTOR4(vp); 14116 14117 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14118 &did_start_fop, &recovonly); 14119 14120 if (ep->error) 14121 goto out; 14122 14123 if (recovonly) { 14124 /* 14125 * Leave the request for the recovery system to deal with. 14126 */ 14127 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14128 ASSERT(cmd != F_GETLK); 14129 ASSERT(flk->l_type == F_UNLCK); 14130 14131 nfs4_error_init(ep, EINTR); 14132 needrecov = TRUE; 14133 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14134 if (lop != NULL) { 14135 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14136 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14137 (void) nfs4_start_recovery(ep, 14138 VTOMI4(vp), vp, NULL, NULL, 14139 (lost_rqst.lr_op == OP_LOCK || 14140 lost_rqst.lr_op == OP_LOCKU) ? 14141 &lost_rqst : NULL, OP_LOCKU, NULL); 14142 lock_owner_rele(lop); 14143 lop = NULL; 14144 } 14145 flk->l_pid = curproc->p_pid; 14146 nfs4_register_lock_locally(vp, flk, flag, offset); 14147 goto out; 14148 } 14149 14150 /* putfh directory fh */ 14151 argop[0].argop = OP_CPUTFH; 14152 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14153 14154 /* 14155 * Set up the over-the-wire arguments and get references to the 14156 * open owner, etc. 14157 */ 14158 14159 if (ctype == NFS4_LCK_CTYPE_RESEND || 14160 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14161 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14162 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14163 } else { 14164 bool_t go_otw = TRUE; 14165 14166 ASSERT(resend_rqstp == NULL); 14167 14168 switch (cmd) { 14169 case F_GETLK: 14170 case F_O_GETLK: 14171 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14172 &lockt_args, argsp, flk, rp); 14173 break; 14174 case F_SETLKW: 14175 case F_SETLK: 14176 if (flk->l_type == F_UNLCK) 14177 nfs4frlock_setup_locku_args(ctype, 14178 &argop[1], &locku_args, flk, 14179 &lop, ep, argsp, 14180 vp, flag, offset, cr, 14181 &skip_get_err, &go_otw); 14182 else 14183 nfs4frlock_setup_lock_args(ctype, 14184 &lock_args, &oop, &osp, &lop, &argop[1], 14185 argsp, flk, cmd, vp, cr, ep); 14186 14187 if (ep->error) 14188 goto out; 14189 14190 switch (ep->stat) { 14191 case NFS4_OK: 14192 break; 14193 case NFS4ERR_DELAY: 14194 /* recov thread never gets this error */ 14195 ASSERT(resend_rqstp == NULL); 14196 ASSERT(did_start_fop); 14197 14198 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14199 &recov_state, TRUE); 14200 did_start_fop = FALSE; 14201 if (argop[1].argop == OP_LOCK) 14202 nfs4args_lock_free(&argop[1]); 14203 else if (argop[1].argop == OP_LOCKT) 14204 nfs4args_lockt_free(&argop[1]); 14205 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14206 argsp = NULL; 14207 goto recov_retry; 14208 default: 14209 ep->error = EIO; 14210 goto out; 14211 } 14212 break; 14213 default: 14214 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14215 "nfs4_frlock: invalid cmd %d", cmd)); 14216 ep->error = EINVAL; 14217 goto out; 14218 } 14219 14220 if (!go_otw) 14221 goto out; 14222 } 14223 14224 /* XXX should we use the local reclock as a cache ? */ 14225 /* 14226 * Unregister the lock with the local locking code before 14227 * contacting the server. This avoids a potential race where 14228 * another process gets notified that it has been granted a lock 14229 * before we can unregister ourselves locally. 14230 */ 14231 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14232 if (ctype == NFS4_LCK_CTYPE_NORM) 14233 flk->l_pid = ttoproc(curthread)->p_pid; 14234 nfs4_register_lock_locally(vp, flk, flag, offset); 14235 } 14236 14237 /* 14238 * Send the server the lock request. Continually loop with a delay 14239 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14240 */ 14241 resp = &res; 14242 14243 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14244 (CE_NOTE, 14245 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14246 rnode4info(rp))); 14247 14248 if (lock_args && frc_no_reclaim) { 14249 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14250 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14251 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14252 lock_args->reclaim = FALSE; 14253 if (did_reclaimp) 14254 *did_reclaimp = 0; 14255 } 14256 14257 /* 14258 * Do the OTW call. 14259 */ 14260 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14261 14262 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14263 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14264 14265 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14266 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14267 "nfs4frlock: needrecov %d", needrecov)); 14268 14269 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14270 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14271 args.ctag); 14272 14273 /* 14274 * Check if one of these mutually exclusive error cases has 14275 * happened: 14276 * need to swap credentials due to access error 14277 * recovery is needed 14278 * different error (only known case is missing Kerberos ticket) 14279 */ 14280 14281 if ((ep->error == EACCES || 14282 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14283 cred_otw != cr) { 14284 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14285 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14286 cr, &cred_otw); 14287 goto recov_retry; 14288 } 14289 14290 if (needrecov) { 14291 /* 14292 * LOCKT requests don't need to recover from lost 14293 * requests since they don't create/modify state. 14294 */ 14295 if ((ep->error == EINTR || 14296 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14297 lockt_args) 14298 goto out; 14299 /* 14300 * Do not attempt recovery for requests initiated by 14301 * the recovery framework. Let the framework redrive them. 14302 */ 14303 if (ctype != NFS4_LCK_CTYPE_NORM) 14304 goto out; 14305 else { 14306 ASSERT(resend_rqstp == NULL); 14307 } 14308 14309 nfs4frlock_save_lost_rqst(ctype, ep->error, 14310 flk_to_locktype(cmd, flk->l_type), 14311 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14312 14313 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14314 &resp, lock_args, locku_args, &oop, &osp, &lop, 14315 rp, vp, &recov_state, op_hint, &did_start_fop, 14316 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14317 14318 if (retry) { 14319 ASSERT(oop == NULL); 14320 ASSERT(osp == NULL); 14321 ASSERT(lop == NULL); 14322 goto recov_retry; 14323 } 14324 goto out; 14325 } 14326 14327 /* 14328 * Bail out if have reached this point with ep->error set. Can 14329 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14330 * This happens if Kerberos ticket has expired or has been 14331 * destroyed. 14332 */ 14333 if (ep->error != 0) 14334 goto out; 14335 14336 /* 14337 * Process the reply. 14338 */ 14339 switch (resp->status) { 14340 case NFS4_OK: 14341 resop = &resp->array[1]; 14342 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14343 resend_rqstp); 14344 /* 14345 * Have a successful lock operation, now update state. 14346 */ 14347 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14348 resop, lop, vp, flk, cr, resend_rqstp); 14349 break; 14350 14351 case NFS4ERR_DENIED: 14352 resop = &resp->array[1]; 14353 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14354 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14355 &recov_state, needrecov, &argsp, &resp, 14356 &tick_delay, &whence, &ep->error, resop, cr, 14357 &did_start_fop, &skip_get_err); 14358 14359 if (retry) { 14360 ASSERT(oop == NULL); 14361 ASSERT(osp == NULL); 14362 ASSERT(lop == NULL); 14363 goto recov_retry; 14364 } 14365 break; 14366 /* 14367 * If the server won't let us reclaim, fall-back to trying to lock 14368 * the file from scratch. Code elsewhere will check the changeinfo 14369 * to ensure the file hasn't been changed. 14370 */ 14371 case NFS4ERR_NO_GRACE: 14372 if (lock_args && lock_args->reclaim == TRUE) { 14373 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14374 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14375 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14376 frc_no_reclaim = 1; 14377 /* clean up before retrying */ 14378 needrecov = 0; 14379 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14380 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14381 &recov_state, op_hint, &did_start_fop, NULL, flk); 14382 goto recov_retry; 14383 } 14384 /* FALLTHROUGH */ 14385 14386 default: 14387 nfs4frlock_results_default(resp, &ep->error); 14388 break; 14389 } 14390 out: 14391 /* 14392 * Process and cleanup from error. Make interrupted unlock 14393 * requests look successful, since they will be handled by the 14394 * client recovery code. 14395 */ 14396 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14397 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14398 lock_args, locku_args, did_start_fop, 14399 skip_get_err, cred_otw, cr); 14400 14401 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14402 (cmd == F_SETLK || cmd == F_SETLKW)) 14403 ep->error = 0; 14404 } 14405 14406 /* 14407 * nfs4_safelock: 14408 * 14409 * Return non-zero if the given lock request can be handled without 14410 * violating the constraints on concurrent mapping and locking. 14411 */ 14412 14413 static int 14414 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14415 { 14416 rnode4_t *rp = VTOR4(vp); 14417 struct vattr va; 14418 int error; 14419 14420 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14421 ASSERT(rp->r_mapcnt >= 0); 14422 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14423 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14424 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14425 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14426 14427 if (rp->r_mapcnt == 0) 14428 return (1); /* always safe if not mapped */ 14429 14430 /* 14431 * If the file is already mapped and there are locks, then they 14432 * should be all safe locks. So adding or removing a lock is safe 14433 * as long as the new request is safe (i.e., whole-file, meaning 14434 * length and starting offset are both zero). 14435 */ 14436 14437 if (bfp->l_start != 0 || bfp->l_len != 0) { 14438 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14439 "cannot lock a memory mapped file unless locking the " 14440 "entire file: start %"PRIx64", len %"PRIx64, 14441 bfp->l_start, bfp->l_len)); 14442 return (0); 14443 } 14444 14445 /* mandatory locking and mapping don't mix */ 14446 va.va_mask = AT_MODE; 14447 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14448 if (error != 0) { 14449 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14450 "getattr error %d", error)); 14451 return (0); /* treat errors conservatively */ 14452 } 14453 if (MANDLOCK(vp, va.va_mode)) { 14454 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14455 "cannot mandatory lock and mmap a file")); 14456 return (0); 14457 } 14458 14459 return (1); 14460 } 14461 14462 14463 /* 14464 * Register the lock locally within Solaris. 14465 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14466 * recording locks locally. 14467 * 14468 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14469 * are registered locally. 14470 */ 14471 void 14472 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14473 u_offset_t offset) 14474 { 14475 int oldsysid; 14476 int error; 14477 #ifdef DEBUG 14478 char *name; 14479 #endif 14480 14481 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14482 14483 #ifdef DEBUG 14484 name = fn_name(VTOSV(vp)->sv_name); 14485 NFS4_DEBUG(nfs4_client_lock_debug, 14486 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14487 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14488 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14489 flk->l_sysid)); 14490 kmem_free(name, MAXNAMELEN); 14491 #endif 14492 14493 /* register the lock with local locking */ 14494 oldsysid = flk->l_sysid; 14495 flk->l_sysid |= LM_SYSID_CLIENT; 14496 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14497 #ifdef DEBUG 14498 if (error != 0) { 14499 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14500 "nfs4_register_lock_locally: could not register with" 14501 " local locking")); 14502 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14503 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14504 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14505 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14506 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14507 flk->l_type, flk->l_start, flk->l_len)); 14508 (void) reclock(vp, flk, 0, flag, offset, NULL); 14509 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14510 "blocked by pid %d sysid 0x%x type %d " 14511 "off 0x%" PRIx64 " len 0x%" PRIx64, 14512 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14513 flk->l_len)); 14514 } 14515 #endif 14516 flk->l_sysid = oldsysid; 14517 } 14518 14519 /* 14520 * nfs4_lockrelease: 14521 * 14522 * Release any locks on the given vnode that are held by the current 14523 * process. Also removes the lock owner (if one exists) from the rnode's 14524 * list. 14525 */ 14526 static int 14527 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14528 { 14529 flock64_t ld; 14530 int ret, error; 14531 rnode4_t *rp; 14532 nfs4_lock_owner_t *lop; 14533 nfs4_recov_state_t recov_state; 14534 mntinfo4_t *mi; 14535 bool_t possible_orphan = FALSE; 14536 bool_t recovonly; 14537 14538 ASSERT((uintptr_t)vp > KERNELBASE); 14539 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14540 14541 rp = VTOR4(vp); 14542 mi = VTOMI4(vp); 14543 14544 /* 14545 * If we have not locked anything then we can 14546 * just return since we have no work to do. 14547 */ 14548 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14549 return (0); 14550 } 14551 14552 /* 14553 * We need to comprehend that another thread may 14554 * kick off recovery and the lock_owner we have stashed 14555 * in lop might be invalid so we should NOT cache it 14556 * locally! 14557 */ 14558 recov_state.rs_flags = 0; 14559 recov_state.rs_num_retry_despite_err = 0; 14560 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14561 &recovonly); 14562 if (error) { 14563 mutex_enter(&rp->r_statelock); 14564 rp->r_flags |= R4LODANGLERS; 14565 mutex_exit(&rp->r_statelock); 14566 return (error); 14567 } 14568 14569 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14570 14571 /* 14572 * Check if the lock owner might have a lock (request was sent but 14573 * no response was received). Also check if there are any remote 14574 * locks on the file. (In theory we shouldn't have to make this 14575 * second check if there's no lock owner, but for now we'll be 14576 * conservative and do it anyway.) If either condition is true, 14577 * send an unlock for the entire file to the server. 14578 * 14579 * Note that no explicit synchronization is needed here. At worst, 14580 * flk_has_remote_locks() will return a false positive, in which case 14581 * the unlock call wastes time but doesn't harm correctness. 14582 */ 14583 14584 if (lop) { 14585 mutex_enter(&lop->lo_lock); 14586 possible_orphan = lop->lo_pending_rqsts; 14587 mutex_exit(&lop->lo_lock); 14588 lock_owner_rele(lop); 14589 } 14590 14591 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14592 14593 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14594 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14595 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14596 (void *)lop)); 14597 14598 if (possible_orphan || flk_has_remote_locks(vp)) { 14599 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14600 ld.l_whence = 0; /* unlock from start of file */ 14601 ld.l_start = 0; 14602 ld.l_len = 0; /* do entire file */ 14603 14604 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14605 cr, NULL); 14606 14607 if (ret != 0) { 14608 /* 14609 * If VOP_FRLOCK fails, make sure we unregister 14610 * local locks before we continue. 14611 */ 14612 ld.l_pid = ttoproc(curthread)->p_pid; 14613 nfs4_register_lock_locally(vp, &ld, flag, offset); 14614 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14615 "nfs4_lockrelease: lock release error on vp" 14616 " %p: error %d.\n", (void *)vp, ret)); 14617 } 14618 } 14619 14620 recov_state.rs_flags = 0; 14621 recov_state.rs_num_retry_despite_err = 0; 14622 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14623 &recovonly); 14624 if (error) { 14625 mutex_enter(&rp->r_statelock); 14626 rp->r_flags |= R4LODANGLERS; 14627 mutex_exit(&rp->r_statelock); 14628 return (error); 14629 } 14630 14631 /* 14632 * So, here we're going to need to retrieve the lock-owner 14633 * again (in case recovery has done a switch-a-roo) and 14634 * remove it because we can. 14635 */ 14636 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14637 14638 if (lop) { 14639 nfs4_rnode_remove_lock_owner(rp, lop); 14640 lock_owner_rele(lop); 14641 } 14642 14643 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14644 return (0); 14645 } 14646 14647 /* 14648 * Wait for 'tick_delay' clock ticks. 14649 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14650 * NOTE: lock_lease_time is in seconds. 14651 * 14652 * XXX For future improvements, should implement a waiting queue scheme. 14653 */ 14654 static int 14655 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14656 { 14657 long milliseconds_delay; 14658 time_t lock_lease_time; 14659 14660 /* wait tick_delay clock ticks or siginteruptus */ 14661 if (delay_sig(*tick_delay)) { 14662 return (EINTR); 14663 } 14664 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14665 "reissue the lock request: blocked for %ld clock ticks: %ld " 14666 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14667 14668 /* get the lease time */ 14669 lock_lease_time = r2lease_time(rp); 14670 14671 /* drv_hztousec converts ticks to microseconds */ 14672 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14673 if (milliseconds_delay < lock_lease_time * 1000) { 14674 *tick_delay = 2 * *tick_delay; 14675 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14676 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14677 } 14678 return (0); 14679 } 14680 14681 14682 void 14683 nfs4_vnops_init(void) 14684 { 14685 } 14686 14687 void 14688 nfs4_vnops_fini(void) 14689 { 14690 } 14691 14692 /* 14693 * Return a reference to the directory (parent) vnode for a given vnode, 14694 * using the saved pathname information and the directory file handle. The 14695 * caller is responsible for disposing of the reference. 14696 * Returns zero or an errno value. 14697 * 14698 * Caller should set need_start_op to FALSE if it is the recovery 14699 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14700 */ 14701 int 14702 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14703 { 14704 svnode_t *svnp; 14705 vnode_t *dvp = NULL; 14706 servinfo4_t *svp; 14707 nfs4_fname_t *mfname; 14708 int error; 14709 14710 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14711 14712 if (vp->v_flag & VROOT) { 14713 nfs4_sharedfh_t *sfh; 14714 nfs_fh4 fh; 14715 mntinfo4_t *mi; 14716 14717 ASSERT(vp->v_type == VREG); 14718 14719 mi = VTOMI4(vp); 14720 svp = mi->mi_curr_serv; 14721 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14722 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14723 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14724 sfh = sfh4_get(&fh, VTOMI4(vp)); 14725 nfs_rw_exit(&svp->sv_lock); 14726 mfname = mi->mi_fname; 14727 fn_hold(mfname); 14728 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14729 sfh4_rele(&sfh); 14730 14731 if (dvp->v_type == VNON) 14732 dvp->v_type = VDIR; 14733 *dvpp = dvp; 14734 return (0); 14735 } 14736 14737 svnp = VTOSV(vp); 14738 14739 if (svnp == NULL) { 14740 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14741 "shadow node is NULL")); 14742 return (EINVAL); 14743 } 14744 14745 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14746 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14747 "shadow node name or dfh val == NULL")); 14748 return (EINVAL); 14749 } 14750 14751 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14752 (int)need_start_op); 14753 if (error != 0) { 14754 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14755 "nfs4_make_dotdot returned %d", error)); 14756 return (error); 14757 } 14758 if (!dvp) { 14759 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14760 "nfs4_make_dotdot returned a NULL dvp")); 14761 return (EIO); 14762 } 14763 if (dvp->v_type == VNON) 14764 dvp->v_type = VDIR; 14765 ASSERT(dvp->v_type == VDIR); 14766 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14767 mutex_enter(&dvp->v_lock); 14768 dvp->v_flag |= V_XATTRDIR; 14769 mutex_exit(&dvp->v_lock); 14770 } 14771 *dvpp = dvp; 14772 return (0); 14773 } 14774 14775 /* 14776 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14777 * length that fnamep can accept, including the trailing null. 14778 * Returns 0 if okay, returns an errno value if there was a problem. 14779 */ 14780 14781 int 14782 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14783 { 14784 char *fn; 14785 int err = 0; 14786 servinfo4_t *svp; 14787 svnode_t *shvp; 14788 14789 /* 14790 * If the file being opened has VROOT set, then this is 14791 * a "file" mount. sv_name will not be interesting, so 14792 * go back to the servinfo4 to get the original mount 14793 * path and strip off all but the final edge. Otherwise 14794 * just return the name from the shadow vnode. 14795 */ 14796 14797 if (vp->v_flag & VROOT) { 14798 14799 svp = VTOMI4(vp)->mi_curr_serv; 14800 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14801 14802 fn = strrchr(svp->sv_path, '/'); 14803 if (fn == NULL) 14804 err = EINVAL; 14805 else 14806 fn++; 14807 } else { 14808 shvp = VTOSV(vp); 14809 fn = fn_name(shvp->sv_name); 14810 } 14811 14812 if (err == 0) 14813 if (strlen(fn) < maxlen) 14814 (void) strcpy(fnamep, fn); 14815 else 14816 err = ENAMETOOLONG; 14817 14818 if (vp->v_flag & VROOT) 14819 nfs_rw_exit(&svp->sv_lock); 14820 else 14821 kmem_free(fn, MAXNAMELEN); 14822 14823 return (err); 14824 } 14825 14826 /* 14827 * Bookkeeping for a close that doesn't need to go over the wire. 14828 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14829 * it is left at 1. 14830 */ 14831 void 14832 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14833 { 14834 rnode4_t *rp; 14835 mntinfo4_t *mi; 14836 14837 mi = VTOMI4(vp); 14838 rp = VTOR4(vp); 14839 14840 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14841 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14842 ASSERT(nfs_zone() == mi->mi_zone); 14843 ASSERT(mutex_owned(&osp->os_sync_lock)); 14844 ASSERT(*have_lockp); 14845 14846 if (!osp->os_valid || 14847 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14848 return; 14849 } 14850 14851 /* 14852 * This removes the reference obtained at OPEN; ie, 14853 * when the open stream structure was created. 14854 * 14855 * We don't have to worry about calling 'open_stream_rele' 14856 * since we our currently holding a reference to this 14857 * open stream which means the count can not go to 0 with 14858 * this decrement. 14859 */ 14860 ASSERT(osp->os_ref_count >= 2); 14861 osp->os_ref_count--; 14862 osp->os_valid = 0; 14863 mutex_exit(&osp->os_sync_lock); 14864 *have_lockp = 0; 14865 14866 nfs4_dec_state_ref_count(mi); 14867 } 14868 14869 /* 14870 * Close all remaining open streams on the rnode. These open streams 14871 * could be here because: 14872 * - The close attempted at either close or delmap failed 14873 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14874 * - Someone did mknod on a regular file but never opened it 14875 */ 14876 int 14877 nfs4close_all(vnode_t *vp, cred_t *cr) 14878 { 14879 nfs4_open_stream_t *osp; 14880 int error; 14881 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14882 rnode4_t *rp; 14883 14884 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14885 14886 error = 0; 14887 rp = VTOR4(vp); 14888 14889 /* 14890 * At this point, all we know is that the last time 14891 * someone called vn_rele, the count was 1. Since then, 14892 * the vnode could have been re-activated. We want to 14893 * loop through the open streams and close each one, but 14894 * we have to be careful since once we release the rnode 14895 * hash bucket lock, someone else is free to come in and 14896 * re-activate the rnode and add new open streams. The 14897 * strategy is take the rnode hash bucket lock, verify that 14898 * the count is still 1, grab the open stream off the 14899 * head of the list and mark it invalid, then release the 14900 * rnode hash bucket lock and proceed with that open stream. 14901 * This is ok because nfs4close_one() will acquire the proper 14902 * open/create to close/destroy synchronization for open 14903 * streams, and will ensure that if someone has reopened 14904 * the open stream after we've dropped the hash bucket lock 14905 * then we'll just simply return without destroying the 14906 * open stream. 14907 * Repeat until the list is empty. 14908 */ 14909 14910 for (;;) { 14911 14912 /* make sure vnode hasn't been reactivated */ 14913 rw_enter(&rp->r_hashq->r_lock, RW_READER); 14914 mutex_enter(&vp->v_lock); 14915 if (vp->v_count > 1) { 14916 mutex_exit(&vp->v_lock); 14917 rw_exit(&rp->r_hashq->r_lock); 14918 break; 14919 } 14920 /* 14921 * Grabbing r_os_lock before releasing v_lock prevents 14922 * a window where the rnode/open stream could get 14923 * reactivated (and os_force_close set to 0) before we 14924 * had a chance to set os_force_close to 1. 14925 */ 14926 mutex_enter(&rp->r_os_lock); 14927 mutex_exit(&vp->v_lock); 14928 14929 osp = list_head(&rp->r_open_streams); 14930 if (!osp) { 14931 /* nothing left to CLOSE OTW, so return */ 14932 mutex_exit(&rp->r_os_lock); 14933 rw_exit(&rp->r_hashq->r_lock); 14934 break; 14935 } 14936 14937 mutex_enter(&rp->r_statev4_lock); 14938 /* the file can't still be mem mapped */ 14939 ASSERT(rp->r_mapcnt == 0); 14940 if (rp->created_v4) 14941 rp->created_v4 = 0; 14942 mutex_exit(&rp->r_statev4_lock); 14943 14944 /* 14945 * Grab a ref on this open stream; nfs4close_one 14946 * will mark it as invalid 14947 */ 14948 mutex_enter(&osp->os_sync_lock); 14949 osp->os_ref_count++; 14950 osp->os_force_close = 1; 14951 mutex_exit(&osp->os_sync_lock); 14952 mutex_exit(&rp->r_os_lock); 14953 rw_exit(&rp->r_hashq->r_lock); 14954 14955 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 14956 14957 /* Update error if it isn't already non-zero */ 14958 if (error == 0) { 14959 if (e.error) 14960 error = e.error; 14961 else if (e.stat) 14962 error = geterrno4(e.stat); 14963 } 14964 14965 #ifdef DEBUG 14966 nfs4close_all_cnt++; 14967 #endif 14968 /* Release the ref on osp acquired above. */ 14969 open_stream_rele(osp, rp); 14970 14971 /* Proceed to the next open stream, if any */ 14972 } 14973 return (error); 14974 } 14975 14976 /* 14977 * nfs4close_one - close one open stream for a file if needed. 14978 * 14979 * "close_type" indicates which close path this is: 14980 * CLOSE_NORM: close initiated via VOP_CLOSE. 14981 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 14982 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 14983 * the close and release of client state for this open stream 14984 * (unless someone else has the open stream open). 14985 * CLOSE_RESEND: indicates the request is a replay of an earlier request 14986 * (e.g., due to abort because of a signal). 14987 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 14988 * 14989 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 14990 * recovery. Instead, the caller is expected to deal with retries. 14991 * 14992 * The caller can either pass in the osp ('provided_osp') or not. 14993 * 14994 * 'access_bits' represents the access we are closing/downgrading. 14995 * 14996 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 14997 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 14998 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 14999 * 15000 * Errors are returned via the nfs4_error_t. 15001 */ 15002 void 15003 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 15004 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 15005 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 15006 uint_t mmap_flags) 15007 { 15008 nfs4_open_owner_t *oop; 15009 nfs4_open_stream_t *osp = NULL; 15010 int retry = 0; 15011 int num_retries = NFS4_NUM_RECOV_RETRIES; 15012 rnode4_t *rp; 15013 mntinfo4_t *mi; 15014 nfs4_recov_state_t recov_state; 15015 cred_t *cred_otw = NULL; 15016 bool_t recovonly = FALSE; 15017 int isrecov; 15018 int force_close; 15019 int close_failed = 0; 15020 int did_dec_count = 0; 15021 int did_start_op = 0; 15022 int did_force_recovlock = 0; 15023 int did_start_seqid_sync = 0; 15024 int have_sync_lock = 0; 15025 15026 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15027 15028 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15029 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15030 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15031 len, maxprot, mmap_flags, access_bits)); 15032 15033 nfs4_error_zinit(ep); 15034 rp = VTOR4(vp); 15035 mi = VTOMI4(vp); 15036 isrecov = (close_type == CLOSE_RESEND || 15037 close_type == CLOSE_AFTER_RESEND); 15038 15039 /* 15040 * First get the open owner. 15041 */ 15042 if (!provided_osp) { 15043 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15044 } else { 15045 oop = provided_osp->os_open_owner; 15046 ASSERT(oop != NULL); 15047 open_owner_hold(oop); 15048 } 15049 15050 if (!oop) { 15051 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15052 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15053 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15054 (void *)provided_osp, close_type)); 15055 ep->error = EIO; 15056 goto out; 15057 } 15058 15059 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15060 recov_retry: 15061 osp = NULL; 15062 close_failed = 0; 15063 force_close = (close_type == CLOSE_FORCE); 15064 retry = 0; 15065 did_start_op = 0; 15066 did_force_recovlock = 0; 15067 did_start_seqid_sync = 0; 15068 have_sync_lock = 0; 15069 recovonly = FALSE; 15070 recov_state.rs_flags = 0; 15071 recov_state.rs_num_retry_despite_err = 0; 15072 15073 /* 15074 * Second synchronize with recovery. 15075 */ 15076 if (!isrecov) { 15077 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15078 &recov_state, &recovonly); 15079 if (!ep->error) { 15080 did_start_op = 1; 15081 } else { 15082 close_failed = 1; 15083 /* 15084 * If we couldn't get start_fop, but have to 15085 * cleanup state, then at least acquire the 15086 * mi_recovlock so we can synchronize with 15087 * recovery. 15088 */ 15089 if (close_type == CLOSE_FORCE) { 15090 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15091 RW_READER, FALSE); 15092 did_force_recovlock = 1; 15093 } else 15094 goto out; 15095 } 15096 } 15097 15098 /* 15099 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15100 * set 'recovonly' to TRUE since most likely this is due to 15101 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15102 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15103 * to retry, causing us to loop until recovery finishes. Plus we 15104 * don't need protection over the open seqid since we're not going 15105 * OTW, hence don't need to use the seqid. 15106 */ 15107 if (recovonly == FALSE) { 15108 /* need to grab the open owner sync before 'os_sync_lock' */ 15109 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15110 if (ep->error == EAGAIN) { 15111 ASSERT(!isrecov); 15112 if (did_start_op) 15113 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15114 &recov_state, TRUE); 15115 if (did_force_recovlock) 15116 nfs_rw_exit(&mi->mi_recovlock); 15117 goto recov_retry; 15118 } 15119 did_start_seqid_sync = 1; 15120 } 15121 15122 /* 15123 * Third get an open stream and acquire 'os_sync_lock' to 15124 * sychronize the opening/creating of an open stream with the 15125 * closing/destroying of an open stream. 15126 */ 15127 if (!provided_osp) { 15128 /* returns with 'os_sync_lock' held */ 15129 osp = find_open_stream(oop, rp); 15130 if (!osp) { 15131 ep->error = EIO; 15132 goto out; 15133 } 15134 } else { 15135 osp = provided_osp; 15136 open_stream_hold(osp); 15137 mutex_enter(&osp->os_sync_lock); 15138 } 15139 have_sync_lock = 1; 15140 15141 ASSERT(oop == osp->os_open_owner); 15142 15143 /* 15144 * Fourth, do any special pre-OTW CLOSE processing 15145 * based on the specific close type. 15146 */ 15147 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15148 !did_dec_count) { 15149 ASSERT(osp->os_open_ref_count > 0); 15150 osp->os_open_ref_count--; 15151 did_dec_count = 1; 15152 if (osp->os_open_ref_count == 0) 15153 osp->os_final_close = 1; 15154 } 15155 15156 if (close_type == CLOSE_FORCE) { 15157 /* see if somebody reopened the open stream. */ 15158 if (!osp->os_force_close) { 15159 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15160 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15161 "was reopened, vp %p", (void *)osp, (void *)vp)); 15162 ep->error = 0; 15163 ep->stat = NFS4_OK; 15164 goto out; 15165 } 15166 15167 if (!osp->os_final_close && !did_dec_count) { 15168 osp->os_open_ref_count--; 15169 did_dec_count = 1; 15170 } 15171 15172 /* 15173 * We can't depend on os_open_ref_count being 0 due to the 15174 * way executables are opened (VN_RELE to match a VOP_OPEN). 15175 */ 15176 #ifdef NOTYET 15177 ASSERT(osp->os_open_ref_count == 0); 15178 #endif 15179 if (osp->os_open_ref_count != 0) { 15180 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15181 "nfs4close_one: should panic here on an " 15182 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15183 "since this is probably the exec problem.")); 15184 15185 osp->os_open_ref_count = 0; 15186 } 15187 15188 /* 15189 * There is the possibility that nfs4close_one() 15190 * for close_type == CLOSE_DELMAP couldn't find the 15191 * open stream, thus couldn't decrement its os_mapcnt; 15192 * therefore we can't use this ASSERT yet. 15193 */ 15194 #ifdef NOTYET 15195 ASSERT(osp->os_mapcnt == 0); 15196 #endif 15197 osp->os_mapcnt = 0; 15198 } 15199 15200 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15201 ASSERT(osp->os_mapcnt >= btopr(len)); 15202 15203 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15204 osp->os_mmap_write -= btopr(len); 15205 if (maxprot & PROT_READ) 15206 osp->os_mmap_read -= btopr(len); 15207 if (maxprot & PROT_EXEC) 15208 osp->os_mmap_read -= btopr(len); 15209 /* mirror the PROT_NONE check in nfs4_addmap() */ 15210 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15211 !(maxprot & PROT_EXEC)) 15212 osp->os_mmap_read -= btopr(len); 15213 osp->os_mapcnt -= btopr(len); 15214 did_dec_count = 1; 15215 } 15216 15217 if (recovonly) { 15218 nfs4_lost_rqst_t lost_rqst; 15219 15220 /* request should not already be in recovery queue */ 15221 ASSERT(lrp == NULL); 15222 nfs4_error_init(ep, EINTR); 15223 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15224 osp, cred_otw, vp); 15225 mutex_exit(&osp->os_sync_lock); 15226 have_sync_lock = 0; 15227 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15228 lost_rqst.lr_op == OP_CLOSE ? 15229 &lost_rqst : NULL, OP_CLOSE, NULL); 15230 close_failed = 1; 15231 force_close = 0; 15232 goto close_cleanup; 15233 } 15234 15235 /* 15236 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15237 * we stopped operating on the open owner's <old oo_name, old seqid> 15238 * space, which means we stopped operating on the open stream 15239 * too. So don't go OTW (as the seqid is likely bad, and the 15240 * stateid could be stale, potentially triggering a false 15241 * setclientid), and just clean up the client's internal state. 15242 */ 15243 if (osp->os_orig_oo_name != oop->oo_name) { 15244 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15245 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15246 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15247 "oo_name %" PRIx64")", 15248 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15249 oop->oo_name)); 15250 close_failed = 1; 15251 } 15252 15253 /* If the file failed recovery, just quit. */ 15254 mutex_enter(&rp->r_statelock); 15255 if (rp->r_flags & R4RECOVERR) { 15256 close_failed = 1; 15257 } 15258 mutex_exit(&rp->r_statelock); 15259 15260 /* 15261 * If the force close path failed to obtain start_fop 15262 * then skip the OTW close and just remove the state. 15263 */ 15264 if (close_failed) 15265 goto close_cleanup; 15266 15267 /* 15268 * Fifth, check to see if there are still mapped pages or other 15269 * opens using this open stream. If there are then we can't 15270 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15271 */ 15272 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15273 nfs4_lost_rqst_t new_lost_rqst; 15274 bool_t needrecov = FALSE; 15275 cred_t *odg_cred_otw = NULL; 15276 seqid4 open_dg_seqid = 0; 15277 15278 if (osp->os_delegation) { 15279 /* 15280 * If this open stream was never OPENed OTW then we 15281 * surely can't DOWNGRADE it (especially since the 15282 * osp->open_stateid is really a delegation stateid 15283 * when os_delegation is 1). 15284 */ 15285 if (access_bits & FREAD) 15286 osp->os_share_acc_read--; 15287 if (access_bits & FWRITE) 15288 osp->os_share_acc_write--; 15289 osp->os_share_deny_none--; 15290 nfs4_error_zinit(ep); 15291 goto out; 15292 } 15293 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15294 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15295 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15296 if (needrecov && !isrecov) { 15297 bool_t abort; 15298 nfs4_bseqid_entry_t *bsep = NULL; 15299 15300 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15301 bsep = nfs4_create_bseqid_entry(oop, NULL, 15302 vp, 0, 15303 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15304 open_dg_seqid); 15305 15306 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15307 oop, osp, odg_cred_otw, vp, access_bits, 0); 15308 mutex_exit(&osp->os_sync_lock); 15309 have_sync_lock = 0; 15310 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15311 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15312 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15313 bsep); 15314 if (odg_cred_otw) 15315 crfree(odg_cred_otw); 15316 if (bsep) 15317 kmem_free(bsep, sizeof (*bsep)); 15318 15319 if (abort == TRUE) 15320 goto out; 15321 15322 if (did_start_seqid_sync) { 15323 nfs4_end_open_seqid_sync(oop); 15324 did_start_seqid_sync = 0; 15325 } 15326 open_stream_rele(osp, rp); 15327 15328 if (did_start_op) 15329 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15330 &recov_state, FALSE); 15331 if (did_force_recovlock) 15332 nfs_rw_exit(&mi->mi_recovlock); 15333 15334 goto recov_retry; 15335 } else { 15336 if (odg_cred_otw) 15337 crfree(odg_cred_otw); 15338 } 15339 goto out; 15340 } 15341 15342 /* 15343 * If this open stream was created as the results of an open 15344 * while holding a delegation, then just release it; no need 15345 * to do an OTW close. Otherwise do a "normal" OTW close. 15346 */ 15347 if (osp->os_delegation) { 15348 nfs4close_notw(vp, osp, &have_sync_lock); 15349 nfs4_error_zinit(ep); 15350 goto out; 15351 } 15352 15353 /* 15354 * If this stream is not valid, we're done. 15355 */ 15356 if (!osp->os_valid) { 15357 nfs4_error_zinit(ep); 15358 goto out; 15359 } 15360 15361 /* 15362 * Last open or mmap ref has vanished, need to do an OTW close. 15363 * First check to see if a close is still necessary. 15364 */ 15365 if (osp->os_failed_reopen) { 15366 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15367 "don't close OTW osp %p since reopen failed.", 15368 (void *)osp)); 15369 /* 15370 * Reopen of the open stream failed, hence the 15371 * stateid of the open stream is invalid/stale, and 15372 * sending this OTW would incorrectly cause another 15373 * round of recovery. In this case, we need to set 15374 * the 'os_valid' bit to 0 so another thread doesn't 15375 * come in and re-open this open stream before 15376 * this "closing" thread cleans up state (decrementing 15377 * the nfs4_server_t's state_ref_count and decrementing 15378 * the os_ref_count). 15379 */ 15380 osp->os_valid = 0; 15381 /* 15382 * This removes the reference obtained at OPEN; ie, 15383 * when the open stream structure was created. 15384 * 15385 * We don't have to worry about calling 'open_stream_rele' 15386 * since we our currently holding a reference to this 15387 * open stream which means the count can not go to 0 with 15388 * this decrement. 15389 */ 15390 ASSERT(osp->os_ref_count >= 2); 15391 osp->os_ref_count--; 15392 nfs4_error_zinit(ep); 15393 close_failed = 0; 15394 goto close_cleanup; 15395 } 15396 15397 ASSERT(osp->os_ref_count > 1); 15398 15399 /* 15400 * Sixth, try the CLOSE OTW. 15401 */ 15402 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15403 close_type, ep, &have_sync_lock); 15404 15405 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15406 /* 15407 * Let the recovery thread be responsible for 15408 * removing the state for CLOSE. 15409 */ 15410 close_failed = 1; 15411 force_close = 0; 15412 retry = 0; 15413 } 15414 15415 /* See if we need to retry with a different cred */ 15416 if ((ep->error == EACCES || 15417 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15418 cred_otw != cr) { 15419 crfree(cred_otw); 15420 cred_otw = cr; 15421 crhold(cred_otw); 15422 retry = 1; 15423 } 15424 15425 if (ep->error || ep->stat) 15426 close_failed = 1; 15427 15428 if (retry && !isrecov && num_retries-- > 0) { 15429 if (have_sync_lock) { 15430 mutex_exit(&osp->os_sync_lock); 15431 have_sync_lock = 0; 15432 } 15433 if (did_start_seqid_sync) { 15434 nfs4_end_open_seqid_sync(oop); 15435 did_start_seqid_sync = 0; 15436 } 15437 open_stream_rele(osp, rp); 15438 15439 if (did_start_op) 15440 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15441 &recov_state, FALSE); 15442 if (did_force_recovlock) 15443 nfs_rw_exit(&mi->mi_recovlock); 15444 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15445 "nfs4close_one: need to retry the close " 15446 "operation")); 15447 goto recov_retry; 15448 } 15449 close_cleanup: 15450 /* 15451 * Seventh and lastly, process our results. 15452 */ 15453 if (close_failed && force_close) { 15454 /* 15455 * It's ok to drop and regrab the 'os_sync_lock' since 15456 * nfs4close_notw() will recheck to make sure the 15457 * "close"/removal of state should happen. 15458 */ 15459 if (!have_sync_lock) { 15460 mutex_enter(&osp->os_sync_lock); 15461 have_sync_lock = 1; 15462 } 15463 /* 15464 * This is last call, remove the ref on the open 15465 * stream created by open and clean everything up. 15466 */ 15467 osp->os_pending_close = 0; 15468 nfs4close_notw(vp, osp, &have_sync_lock); 15469 nfs4_error_zinit(ep); 15470 } 15471 15472 if (!close_failed) { 15473 if (have_sync_lock) { 15474 osp->os_pending_close = 0; 15475 mutex_exit(&osp->os_sync_lock); 15476 have_sync_lock = 0; 15477 } else { 15478 mutex_enter(&osp->os_sync_lock); 15479 osp->os_pending_close = 0; 15480 mutex_exit(&osp->os_sync_lock); 15481 } 15482 if (did_start_op && recov_state.rs_sp != NULL) { 15483 mutex_enter(&recov_state.rs_sp->s_lock); 15484 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15485 mutex_exit(&recov_state.rs_sp->s_lock); 15486 } else { 15487 nfs4_dec_state_ref_count(mi); 15488 } 15489 nfs4_error_zinit(ep); 15490 } 15491 15492 out: 15493 if (have_sync_lock) 15494 mutex_exit(&osp->os_sync_lock); 15495 if (did_start_op) 15496 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15497 recovonly ? TRUE : FALSE); 15498 if (did_force_recovlock) 15499 nfs_rw_exit(&mi->mi_recovlock); 15500 if (cred_otw) 15501 crfree(cred_otw); 15502 if (osp) 15503 open_stream_rele(osp, rp); 15504 if (oop) { 15505 if (did_start_seqid_sync) 15506 nfs4_end_open_seqid_sync(oop); 15507 open_owner_rele(oop); 15508 } 15509 } 15510 15511 /* 15512 * Convert information returned by the server in the LOCK4denied 15513 * structure to the form required by fcntl. 15514 */ 15515 static void 15516 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15517 { 15518 nfs4_lo_name_t *lo; 15519 15520 #ifdef DEBUG 15521 if (denied_to_flk_debug) { 15522 lockt_denied_debug = lockt_denied; 15523 debug_enter("lockt_denied"); 15524 } 15525 #endif 15526 15527 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15528 flk->l_whence = 0; /* aka SEEK_SET */ 15529 flk->l_start = lockt_denied->offset; 15530 flk->l_len = lockt_denied->length; 15531 15532 /* 15533 * If the blocking clientid matches our client id, then we can 15534 * interpret the lockowner (since we built it). If not, then 15535 * fabricate a sysid and pid. Note that the l_sysid field 15536 * in *flk already has the local sysid. 15537 */ 15538 15539 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15540 15541 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15542 lo = (nfs4_lo_name_t *) 15543 lockt_denied->owner.owner_val; 15544 15545 flk->l_pid = lo->ln_pid; 15546 } else { 15547 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15548 "denied_to_flk: bad lock owner length\n")); 15549 15550 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15551 } 15552 } else { 15553 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15554 "denied_to_flk: foreign clientid\n")); 15555 15556 /* 15557 * Construct a new sysid which should be different from 15558 * sysids of other systems. 15559 */ 15560 15561 flk->l_sysid++; 15562 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15563 } 15564 } 15565 15566 static pid_t 15567 lo_to_pid(lock_owner4 *lop) 15568 { 15569 pid_t pid = 0; 15570 uchar_t *cp; 15571 int i; 15572 15573 cp = (uchar_t *)&lop->clientid; 15574 15575 for (i = 0; i < sizeof (lop->clientid); i++) 15576 pid += (pid_t)*cp++; 15577 15578 cp = (uchar_t *)lop->owner_val; 15579 15580 for (i = 0; i < lop->owner_len; i++) 15581 pid += (pid_t)*cp++; 15582 15583 return (pid); 15584 } 15585 15586 /* 15587 * Given a lock pointer, returns the length of that lock. 15588 * "end" is the last locked offset the "l_len" covers from 15589 * the start of the lock. 15590 */ 15591 static off64_t 15592 lock_to_end(flock64_t *lock) 15593 { 15594 off64_t lock_end; 15595 15596 if (lock->l_len == 0) 15597 lock_end = (off64_t)MAXEND; 15598 else 15599 lock_end = lock->l_start + lock->l_len - 1; 15600 15601 return (lock_end); 15602 } 15603 15604 /* 15605 * Given the end of a lock, it will return you the length "l_len" for that lock. 15606 */ 15607 static off64_t 15608 end_to_len(off64_t start, off64_t end) 15609 { 15610 off64_t lock_len; 15611 15612 ASSERT(end >= start); 15613 if (end == MAXEND) 15614 lock_len = 0; 15615 else 15616 lock_len = end - start + 1; 15617 15618 return (lock_len); 15619 } 15620 15621 /* 15622 * On given end for a lock it determines if it is the last locked offset 15623 * or not, if so keeps it as is, else adds one to return the length for 15624 * valid start. 15625 */ 15626 static off64_t 15627 start_check(off64_t x) 15628 { 15629 if (x == MAXEND) 15630 return (x); 15631 else 15632 return (x + 1); 15633 } 15634 15635 /* 15636 * See if these two locks overlap, and if so return 1; 15637 * otherwise, return 0. 15638 */ 15639 static int 15640 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15641 { 15642 off64_t llfp_end, curfp_end; 15643 15644 llfp_end = lock_to_end(llfp); 15645 curfp_end = lock_to_end(curfp); 15646 15647 if (((llfp_end >= curfp->l_start) && 15648 (llfp->l_start <= curfp->l_start)) || 15649 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15650 return (1); 15651 return (0); 15652 } 15653 15654 /* 15655 * Determine what the intersecting lock region is, and add that to the 15656 * 'nl_llpp' locklist in increasing order (by l_start). 15657 */ 15658 static void 15659 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15660 locklist_t **nl_llpp, vnode_t *vp) 15661 { 15662 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15663 off64_t lost_flp_end, local_flp_end, len, start; 15664 15665 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15666 15667 if (!locks_intersect(lost_flp, local_flp)) 15668 return; 15669 15670 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15671 "locks intersect")); 15672 15673 lost_flp_end = lock_to_end(lost_flp); 15674 local_flp_end = lock_to_end(local_flp); 15675 15676 /* Find the starting point of the intersecting region */ 15677 if (local_flp->l_start > lost_flp->l_start) 15678 start = local_flp->l_start; 15679 else 15680 start = lost_flp->l_start; 15681 15682 /* Find the lenght of the intersecting region */ 15683 if (lost_flp_end < local_flp_end) 15684 len = end_to_len(start, lost_flp_end); 15685 else 15686 len = end_to_len(start, local_flp_end); 15687 15688 /* 15689 * Prepare the flock structure for the intersection found and insert 15690 * it into the new list in increasing l_start order. This list contains 15691 * intersections of locks registered by the client with the local host 15692 * and the lost lock. 15693 * The lock type of this lock is the same as that of the local_flp. 15694 */ 15695 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15696 intersect_llp->ll_flock.l_start = start; 15697 intersect_llp->ll_flock.l_len = len; 15698 intersect_llp->ll_flock.l_type = local_flp->l_type; 15699 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15700 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15701 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15702 intersect_llp->ll_vp = vp; 15703 15704 tmp_fllp = *nl_llpp; 15705 cur_fllp = NULL; 15706 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15707 intersect_llp->ll_flock.l_start) { 15708 cur_fllp = tmp_fllp; 15709 tmp_fllp = tmp_fllp->ll_next; 15710 } 15711 if (cur_fllp == NULL) { 15712 /* first on the list */ 15713 intersect_llp->ll_next = *nl_llpp; 15714 *nl_llpp = intersect_llp; 15715 } else { 15716 intersect_llp->ll_next = cur_fllp->ll_next; 15717 cur_fllp->ll_next = intersect_llp; 15718 } 15719 15720 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15721 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15722 intersect_llp->ll_flock.l_start, 15723 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15724 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15725 } 15726 15727 /* 15728 * Our local locking current state is potentially different than 15729 * what the NFSv4 server thinks we have due to a lost lock that was 15730 * resent and then received. We need to reset our "NFSv4" locking 15731 * state to match the current local locking state for this pid since 15732 * that is what the user/application sees as what the world is. 15733 * 15734 * We cannot afford to drop the open/lock seqid sync since then we can 15735 * get confused about what the current local locking state "is" versus 15736 * "was". 15737 * 15738 * If we are unable to fix up the locks, we send SIGLOST to the affected 15739 * process. This is not done if the filesystem has been forcibly 15740 * unmounted, in case the process has already exited and a new process 15741 * exists with the same pid. 15742 */ 15743 static void 15744 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15745 nfs4_lock_owner_t *lop) 15746 { 15747 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15748 mntinfo4_t *mi = VTOMI4(vp); 15749 const int cmd = F_SETLK; 15750 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15751 flock64_t ul_fl; 15752 15753 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15754 "nfs4_reinstitute_local_lock_state")); 15755 15756 /* 15757 * Find active locks for this vp from the local locking code. 15758 * Scan through this list and find out the locks that intersect with 15759 * the lost lock. Once we find the lock that intersects, add the 15760 * intersection area as a new lock to a new list "ri_llp". The lock 15761 * type of the intersection region lock added to ri_llp is the same 15762 * as that found in the active lock list, "list". The intersecting 15763 * region locks are added to ri_llp in increasing l_start order. 15764 */ 15765 ASSERT(nfs_zone() == mi->mi_zone); 15766 15767 locks = flk_active_locks_for_vp(vp); 15768 ri_llp = NULL; 15769 15770 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15771 ASSERT(llp->ll_vp == vp); 15772 /* 15773 * Pick locks that belong to this pid/lockowner 15774 */ 15775 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15776 continue; 15777 15778 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15779 } 15780 15781 /* 15782 * Now we have the list of intersections with the lost lock. These are 15783 * the locks that were/are active before the server replied to the 15784 * last/lost lock. Issue these locks to the server here. Playing these 15785 * locks to the server will re-establish aur current local locking state 15786 * with the v4 server. 15787 * If we get an error, send SIGLOST to the application for that lock. 15788 */ 15789 15790 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15791 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15792 "nfs4_reinstitute_local_lock_state: need to issue " 15793 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15794 llp->ll_flock.l_start, 15795 llp->ll_flock.l_start + llp->ll_flock.l_len, 15796 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15797 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15798 /* 15799 * No need to relock what we already have 15800 */ 15801 if (llp->ll_flock.l_type == lost_flp->l_type) 15802 continue; 15803 15804 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15805 } 15806 15807 /* 15808 * Now keeping the start of the lost lock as our reference parse the 15809 * newly created ri_llp locklist to find the ranges that we have locked 15810 * with the v4 server but not in the current local locking. We need 15811 * to unlock these ranges. 15812 * These ranges can also be reffered to as those ranges, where the lost 15813 * lock does not overlap with the locks in the ri_llp but are locked 15814 * since the server replied to the lost lock. 15815 */ 15816 cur_start = lost_flp->l_start; 15817 lost_flp_end = lock_to_end(lost_flp); 15818 15819 ul_fl.l_type = F_UNLCK; 15820 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15821 ul_fl.l_sysid = lost_flp->l_sysid; 15822 ul_fl.l_pid = lost_flp->l_pid; 15823 15824 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15825 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15826 15827 if (llp->ll_flock.l_start <= cur_start) { 15828 cur_start = start_check(llp_ll_flock_end); 15829 continue; 15830 } 15831 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15832 "nfs4_reinstitute_local_lock_state: " 15833 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15834 cur_start, llp->ll_flock.l_start)); 15835 15836 ul_fl.l_start = cur_start; 15837 ul_fl.l_len = end_to_len(cur_start, 15838 (llp->ll_flock.l_start - 1)); 15839 15840 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15841 cur_start = start_check(llp_ll_flock_end); 15842 } 15843 15844 /* 15845 * In the case where the lost lock ends after all intersecting locks, 15846 * unlock the last part of the lost lock range. 15847 */ 15848 if (cur_start != start_check(lost_flp_end)) { 15849 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15850 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15851 "lost lock region [%"PRIx64" - %"PRIx64"]", 15852 cur_start, lost_flp->l_start + lost_flp->l_len)); 15853 15854 ul_fl.l_start = cur_start; 15855 /* 15856 * Is it an to-EOF lock? if so unlock till the end 15857 */ 15858 if (lost_flp->l_len == 0) 15859 ul_fl.l_len = 0; 15860 else 15861 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15862 15863 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15864 } 15865 15866 if (locks != NULL) 15867 flk_free_locklist(locks); 15868 15869 /* Free up our newly created locklist */ 15870 for (llp = ri_llp; llp != NULL; ) { 15871 tmp_llp = llp->ll_next; 15872 kmem_free(llp, sizeof (locklist_t)); 15873 llp = tmp_llp; 15874 } 15875 15876 /* 15877 * Now return back to the original calling nfs4frlock() 15878 * and let us naturally drop our seqid syncs. 15879 */ 15880 } 15881 15882 /* 15883 * Create a lost state record for the given lock reinstantiation request 15884 * and push it onto the lost state queue. 15885 */ 15886 static void 15887 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15888 nfs4_lock_owner_t *lop) 15889 { 15890 nfs4_lost_rqst_t req; 15891 nfs_lock_type4 locktype; 15892 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15893 15894 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15895 15896 locktype = flk_to_locktype(cmd, flk->l_type); 15897 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15898 NULL, NULL, lop, flk, &req, cr, vp); 15899 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15900 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15901 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15902 NULL); 15903 } 15904