1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/cred.h> 37 #include <sys/time.h> 38 #include <sys/vnode.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/file.h> 42 #include <sys/filio.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/mman.h> 46 #include <sys/pathname.h> 47 #include <sys/dirent.h> 48 #include <sys/debug.h> 49 #include <sys/vmsystm.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/swap.h> 53 #include <sys/errno.h> 54 #include <sys/strsubr.h> 55 #include <sys/sysmacros.h> 56 #include <sys/kmem.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathconf.h> 59 #include <sys/utsname.h> 60 #include <sys/dnlc.h> 61 #include <sys/acl.h> 62 #include <sys/systeminfo.h> 63 #include <sys/policy.h> 64 #include <sys/sdt.h> 65 #include <sys/list.h> 66 #include <sys/stat.h> 67 68 #include <rpc/types.h> 69 #include <rpc/auth.h> 70 #include <rpc/clnt.h> 71 72 #include <nfs/nfs.h> 73 #include <nfs/nfs_clnt.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 #include <nfs/nfs4.h> 77 #include <nfs/nfs4_kprot.h> 78 #include <nfs/rnode4.h> 79 #include <nfs/nfs4_clnt.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/pvn.h> 85 #include <vm/seg.h> 86 #include <vm/seg_map.h> 87 #include <vm/seg_kpm.h> 88 #include <vm/seg_vn.h> 89 90 #include <fs/fs_subr.h> 91 92 #include <sys/ddi.h> 93 #include <sys/int_fmtio.h> 94 95 typedef struct { 96 nfs4_ga_res_t *di_garp; 97 cred_t *di_cred; 98 hrtime_t di_time_call; 99 } dirattr_info_t; 100 101 typedef enum nfs4_acl_op { 102 NFS4_ACL_GET, 103 NFS4_ACL_SET 104 } nfs4_acl_op_t; 105 106 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi); 107 108 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 109 char *, dirattr_info_t *); 110 111 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 112 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 113 nfs4_error_t *, int *); 114 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 115 cred_t *); 116 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 117 stable_how4 *); 118 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 119 cred_t *, bool_t, struct uio *); 120 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 121 vsecattr_t *); 122 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 123 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 124 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 125 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 126 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 127 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 128 int, vnode_t **, cred_t *); 129 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 130 cred_t *, int, int, enum createmode4, int); 131 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 132 caller_context_t *); 133 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 134 vnode_t *, char *, cred_t *, nfsstat4 *); 135 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 136 vnode_t *, char *, cred_t *, nfsstat4 *); 137 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 138 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 139 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 140 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 141 page_t *[], size_t, struct seg *, caddr_t, 142 enum seg_rw, cred_t *); 143 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 144 cred_t *); 145 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 146 int, cred_t *); 147 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 148 int, cred_t *); 149 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 150 static void nfs4_set_mod(vnode_t *); 151 static void nfs4_get_commit(vnode_t *); 152 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 153 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 154 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 155 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 156 cred_t *); 157 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 158 cred_t *); 159 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 160 hrtime_t, vnode_t *, cred_t *); 161 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 162 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 163 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 164 u_offset_t); 165 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 166 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 167 static cred_t *state_to_cred(nfs4_open_stream_t *); 168 static int vtoname(vnode_t *, char *, ssize_t); 169 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 170 static pid_t lo_to_pid(lock_owner4 *); 171 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 172 cred_t *, nfs4_lock_owner_t *); 173 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 174 nfs4_lock_owner_t *); 175 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 176 static void nfs4_delmap_callback(struct as *, void *, uint_t); 177 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 178 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 179 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 180 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 181 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 182 uid_t, gid_t, int); 183 184 /* 185 * Routines that implement the setting of v4 args for the misc. ops 186 */ 187 static void nfs4args_lock_free(nfs_argop4 *); 188 static void nfs4args_lockt_free(nfs_argop4 *); 189 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 190 int, rnode4_t *, cred_t *, bitmap4, int *, 191 nfs4_stateid_types_t *); 192 static void nfs4args_setattr_free(nfs_argop4 *); 193 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 194 bitmap4); 195 static void nfs4args_verify_free(nfs_argop4 *); 196 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 197 WRITE4args **, nfs4_stateid_types_t *); 198 199 /* 200 * These are the vnode ops functions that implement the vnode interface to 201 * the networked file system. See more comments below at nfs4_vnodeops. 202 */ 203 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 204 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 205 caller_context_t *); 206 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 207 caller_context_t *); 208 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 209 caller_context_t *); 210 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 211 caller_context_t *); 212 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 213 caller_context_t *); 214 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 215 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 216 caller_context_t *); 217 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 218 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 219 int, vnode_t **, cred_t *, int, caller_context_t *, 220 vsecattr_t *); 221 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 222 int); 223 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 224 caller_context_t *, int); 225 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 226 caller_context_t *, int); 227 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 228 cred_t *, caller_context_t *, int, vsecattr_t *); 229 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 230 caller_context_t *, int); 231 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 232 cred_t *, caller_context_t *, int); 233 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 234 caller_context_t *, int); 235 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 236 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 237 page_t *[], size_t, struct seg *, caddr_t, 238 enum seg_rw, cred_t *, caller_context_t *); 239 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 240 caller_context_t *); 241 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 242 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 243 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 244 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 245 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 246 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 247 struct flk_callback *, cred_t *, caller_context_t *); 248 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 249 cred_t *, caller_context_t *); 250 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 251 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 252 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 253 cred_t *, caller_context_t *); 254 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 255 caller_context_t *); 256 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 257 caller_context_t *); 258 /* 259 * These vnode ops are required to be called from outside this source file, 260 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 261 * as static. 262 */ 263 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 264 caller_context_t *); 265 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 266 int nfs4_lookup(vnode_t *, char *, vnode_t **, 267 struct pathname *, int, vnode_t *, cred_t *, 268 caller_context_t *, int *, pathname_t *); 269 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 270 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 271 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 272 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 273 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 274 caller_context_t *); 275 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 276 caller_context_t *); 277 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 278 caller_context_t *); 279 280 /* 281 * Used for nfs4_commit_vp() to indicate if we should 282 * wait on pending writes. 283 */ 284 #define NFS4_WRITE_NOWAIT 0 285 #define NFS4_WRITE_WAIT 1 286 287 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 288 289 /* 290 * Error flags used to pass information about certain special errors 291 * which need to be handled specially. 292 */ 293 #define NFS_EOF -98 294 #define NFS_VERF_MISMATCH -97 295 296 /* 297 * Flags used to differentiate between which operation drove the 298 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 299 */ 300 #define NFS4_CLOSE_OP 0x1 301 #define NFS4_DELMAP_OP 0x2 302 #define NFS4_INACTIVE_OP 0x3 303 304 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 305 306 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 307 #define ALIGN64(x, ptr, sz) \ 308 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 309 if (x) { \ 310 x = sizeof (uint64_t) - (x); \ 311 sz -= (x); \ 312 ptr += (x); \ 313 } 314 315 #ifdef DEBUG 316 int nfs4_client_attr_debug = 0; 317 int nfs4_client_state_debug = 0; 318 int nfs4_client_shadow_debug = 0; 319 int nfs4_client_lock_debug = 0; 320 int nfs4_seqid_sync = 0; 321 int nfs4_client_map_debug = 0; 322 static int nfs4_pageio_debug = 0; 323 int nfs4_client_inactive_debug = 0; 324 int nfs4_client_recov_debug = 0; 325 int nfs4_client_failover_debug = 0; 326 int nfs4_client_call_debug = 0; 327 int nfs4_client_lookup_debug = 0; 328 int nfs4_client_zone_debug = 0; 329 int nfs4_lost_rqst_debug = 0; 330 int nfs4_rdattrerr_debug = 0; 331 int nfs4_open_stream_debug = 0; 332 333 int nfs4read_error_inject; 334 335 static int nfs4_create_misses = 0; 336 337 static int nfs4_readdir_cache_shorts = 0; 338 static int nfs4_readdir_readahead = 0; 339 340 static int nfs4_bio_do_stop = 0; 341 342 static int nfs4_lostpage = 0; /* number of times we lost original page */ 343 344 int nfs4_mmap_debug = 0; 345 346 static int nfs4_pathconf_cache_hits = 0; 347 static int nfs4_pathconf_cache_misses = 0; 348 349 int nfs4close_all_cnt; 350 int nfs4close_one_debug = 0; 351 int nfs4close_notw_debug = 0; 352 353 int denied_to_flk_debug = 0; 354 void *lockt_denied_debug; 355 356 #endif 357 358 /* 359 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 360 * or NFS4ERR_RESOURCE. 361 */ 362 static int confirm_retry_sec = 30; 363 364 static int nfs4_lookup_neg_cache = 1; 365 366 /* 367 * number of pages to read ahead 368 * optimized for 100 base-T. 369 */ 370 static int nfs4_nra = 4; 371 372 static int nfs4_do_symlink_cache = 1; 373 374 static int nfs4_pathconf_disable_cache = 0; 375 376 /* 377 * These are the vnode ops routines which implement the vnode interface to 378 * the networked file system. These routines just take their parameters, 379 * make them look networkish by putting the right info into interface structs, 380 * and then calling the appropriate remote routine(s) to do the work. 381 * 382 * Note on directory name lookup cacheing: If we detect a stale fhandle, 383 * we purge the directory cache relative to that vnode. This way, the 384 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 385 * more details on rnode locking. 386 */ 387 388 struct vnodeops *nfs4_vnodeops; 389 390 const fs_operation_def_t nfs4_vnodeops_template[] = { 391 VOPNAME_OPEN, { .vop_open = nfs4_open }, 392 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 393 VOPNAME_READ, { .vop_read = nfs4_read }, 394 VOPNAME_WRITE, { .vop_write = nfs4_write }, 395 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 396 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 397 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 398 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 399 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 400 VOPNAME_CREATE, { .vop_create = nfs4_create }, 401 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 402 VOPNAME_LINK, { .vop_link = nfs4_link }, 403 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 404 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 405 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 406 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 407 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 408 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 409 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 410 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 411 VOPNAME_FID, { .vop_fid = nfs4_fid }, 412 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 413 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 414 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 415 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 416 VOPNAME_SPACE, { .vop_space = nfs4_space }, 417 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 418 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 419 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 420 VOPNAME_MAP, { .vop_map = nfs4_map }, 421 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 422 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 423 /* no separate nfs4_dump */ 424 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 425 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 426 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 427 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 428 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 429 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 430 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 431 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 432 NULL, NULL 433 }; 434 435 /* 436 * The following are subroutines and definitions to set args or get res 437 * for the different nfsv4 ops 438 */ 439 440 void 441 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 442 { 443 int i; 444 445 for (i = 0; i < arglen; i++) { 446 if (argop[i].argop == OP_LOOKUP) { 447 kmem_free( 448 argop[i].nfs_argop4_u.oplookup. 449 objname.utf8string_val, 450 argop[i].nfs_argop4_u.oplookup. 451 objname.utf8string_len); 452 } 453 } 454 } 455 456 static void 457 nfs4args_lock_free(nfs_argop4 *argop) 458 { 459 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 460 461 if (locker->new_lock_owner == TRUE) { 462 open_to_lock_owner4 *open_owner; 463 464 open_owner = &locker->locker4_u.open_owner; 465 if (open_owner->lock_owner.owner_val != NULL) { 466 kmem_free(open_owner->lock_owner.owner_val, 467 open_owner->lock_owner.owner_len); 468 } 469 } 470 } 471 472 static void 473 nfs4args_lockt_free(nfs_argop4 *argop) 474 { 475 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 476 477 if (lowner->owner_val != NULL) { 478 kmem_free(lowner->owner_val, lowner->owner_len); 479 } 480 } 481 482 static void 483 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 484 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 485 nfs4_stateid_types_t *sid_types) 486 { 487 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 488 mntinfo4_t *mi; 489 490 argop->argop = OP_SETATTR; 491 /* 492 * The stateid is set to 0 if client is not modifying the size 493 * and otherwise to whatever nfs4_get_stateid() returns. 494 * 495 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 496 * state struct could be found for the process/file pair. We may 497 * want to change this in the future (by OPENing the file). See 498 * bug # 4474852. 499 */ 500 if (vap->va_mask & AT_SIZE) { 501 502 ASSERT(rp != NULL); 503 mi = VTOMI4(RTOV4(rp)); 504 505 argop->nfs_argop4_u.opsetattr.stateid = 506 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 507 OP_SETATTR, sid_types, FALSE); 508 } else { 509 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 510 sizeof (stateid4)); 511 } 512 513 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 514 if (*error) 515 bzero(attr, sizeof (*attr)); 516 } 517 518 static void 519 nfs4args_setattr_free(nfs_argop4 *argop) 520 { 521 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 522 } 523 524 static int 525 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 526 bitmap4 supp) 527 { 528 fattr4 *attr; 529 int error = 0; 530 531 argop->argop = op; 532 switch (op) { 533 case OP_VERIFY: 534 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 535 break; 536 case OP_NVERIFY: 537 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 538 break; 539 default: 540 return (EINVAL); 541 } 542 if (!error) 543 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 544 if (error) 545 bzero(attr, sizeof (*attr)); 546 return (error); 547 } 548 549 static void 550 nfs4args_verify_free(nfs_argop4 *argop) 551 { 552 switch (argop->argop) { 553 case OP_VERIFY: 554 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 555 break; 556 case OP_NVERIFY: 557 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 558 break; 559 default: 560 break; 561 } 562 } 563 564 static void 565 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 566 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 567 { 568 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 569 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 570 571 argop->argop = OP_WRITE; 572 wargs->stable = stable; 573 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 574 mi, OP_WRITE, sid_tp); 575 wargs->mblk = NULL; 576 *wargs_pp = wargs; 577 } 578 579 void 580 nfs4args_copen_free(OPEN4cargs *open_args) 581 { 582 if (open_args->owner.owner_val) { 583 kmem_free(open_args->owner.owner_val, 584 open_args->owner.owner_len); 585 } 586 if ((open_args->opentype == OPEN4_CREATE) && 587 (open_args->mode != EXCLUSIVE4)) { 588 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 589 } 590 } 591 592 /* 593 * XXX: This is referenced in modstubs.s 594 */ 595 struct vnodeops * 596 nfs4_getvnodeops(void) 597 { 598 return (nfs4_vnodeops); 599 } 600 601 /* 602 * The OPEN operation opens a regular file. 603 */ 604 /*ARGSUSED3*/ 605 static int 606 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 607 { 608 vnode_t *dvp = NULL; 609 rnode4_t *rp, *drp; 610 int error; 611 int just_been_created; 612 char fn[MAXNAMELEN]; 613 614 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 615 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 616 return (EIO); 617 rp = VTOR4(*vpp); 618 619 /* 620 * Check to see if opening something besides a regular file; 621 * if so skip the OTW call 622 */ 623 if ((*vpp)->v_type != VREG) { 624 error = nfs4_open_non_reg_file(vpp, flag, cr); 625 return (error); 626 } 627 628 /* 629 * XXX - would like a check right here to know if the file is 630 * executable or not, so as to skip OTW 631 */ 632 633 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 634 return (error); 635 636 drp = VTOR4(dvp); 637 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 638 return (EINTR); 639 640 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 641 nfs_rw_exit(&drp->r_rwlock); 642 return (error); 643 } 644 645 /* 646 * See if this file has just been CREATEd. 647 * If so, clear the flag and update the dnlc, which was previously 648 * skipped in nfs4_create. 649 * XXX need better serilization on this. 650 * XXX move this into the nf4open_otw call, after we have 651 * XXX acquired the open owner seqid sync. 652 */ 653 mutex_enter(&rp->r_statev4_lock); 654 if (rp->created_v4) { 655 rp->created_v4 = 0; 656 mutex_exit(&rp->r_statev4_lock); 657 658 dnlc_update(dvp, fn, *vpp); 659 /* This is needed so we don't bump the open ref count */ 660 just_been_created = 1; 661 } else { 662 mutex_exit(&rp->r_statev4_lock); 663 just_been_created = 0; 664 } 665 666 /* 667 * If caller specified O_TRUNC/FTRUNC, then be sure to set 668 * FWRITE (to drive successful setattr(size=0) after open) 669 */ 670 if (flag & FTRUNC) 671 flag |= FWRITE; 672 673 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 674 just_been_created); 675 676 if (!error && !((*vpp)->v_flag & VROOT)) 677 dnlc_update(dvp, fn, *vpp); 678 679 nfs_rw_exit(&drp->r_rwlock); 680 681 /* release the hold from vtodv */ 682 VN_RELE(dvp); 683 684 /* exchange the shadow for the master vnode, if needed */ 685 686 if (error == 0 && IS_SHADOW(*vpp, rp)) 687 sv_exchange(vpp); 688 689 return (error); 690 } 691 692 /* 693 * See if there's a "lost open" request to be saved and recovered. 694 */ 695 static void 696 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 697 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 698 vnode_t *dvp, OPEN4cargs *open_args) 699 { 700 vfs_t *vfsp; 701 char *srccfp; 702 703 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 704 705 if (error != ETIMEDOUT && error != EINTR && 706 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 707 lost_rqstp->lr_op = 0; 708 return; 709 } 710 711 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 712 "nfs4open_save_lost_rqst: error %d", error)); 713 714 lost_rqstp->lr_op = OP_OPEN; 715 716 /* 717 * The vp (if it is not NULL) and dvp are held and rele'd via 718 * the recovery code. See nfs4_save_lost_rqst. 719 */ 720 lost_rqstp->lr_vp = vp; 721 lost_rqstp->lr_dvp = dvp; 722 lost_rqstp->lr_oop = oop; 723 lost_rqstp->lr_osp = NULL; 724 lost_rqstp->lr_lop = NULL; 725 lost_rqstp->lr_cr = cr; 726 lost_rqstp->lr_flk = NULL; 727 lost_rqstp->lr_oacc = open_args->share_access; 728 lost_rqstp->lr_odeny = open_args->share_deny; 729 lost_rqstp->lr_oclaim = open_args->claim; 730 if (open_args->claim == CLAIM_DELEGATE_CUR) { 731 lost_rqstp->lr_ostateid = 732 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 733 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 734 } else { 735 srccfp = open_args->open_claim4_u.cfile; 736 } 737 lost_rqstp->lr_ofile.utf8string_len = 0; 738 lost_rqstp->lr_ofile.utf8string_val = NULL; 739 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 740 lost_rqstp->lr_putfirst = FALSE; 741 } 742 743 struct nfs4_excl_time { 744 uint32 seconds; 745 uint32 nseconds; 746 }; 747 748 /* 749 * The OPEN operation creates and/or opens a regular file 750 * 751 * ARGSUSED 752 */ 753 static int 754 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 755 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 756 enum createmode4 createmode, int file_just_been_created) 757 { 758 rnode4_t *rp; 759 rnode4_t *drp = VTOR4(dvp); 760 vnode_t *vp = NULL; 761 vnode_t *vpi = *vpp; 762 bool_t needrecov = FALSE; 763 764 int doqueue = 1; 765 766 COMPOUND4args_clnt args; 767 COMPOUND4res_clnt res; 768 nfs_argop4 *argop; 769 nfs_resop4 *resop; 770 int argoplist_size; 771 int idx_open, idx_fattr; 772 773 GETFH4res *gf_res = NULL; 774 OPEN4res *op_res = NULL; 775 nfs4_ga_res_t *garp; 776 fattr4 *attr = NULL; 777 struct nfs4_excl_time verf; 778 bool_t did_excl_setup = FALSE; 779 int created_osp; 780 781 OPEN4cargs *open_args; 782 nfs4_open_owner_t *oop = NULL; 783 nfs4_open_stream_t *osp = NULL; 784 seqid4 seqid = 0; 785 bool_t retry_open = FALSE; 786 nfs4_recov_state_t recov_state; 787 nfs4_lost_rqst_t lost_rqst; 788 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 789 hrtime_t t; 790 int acc = 0; 791 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 792 cred_t *ncr = NULL; 793 794 nfs4_sharedfh_t *otw_sfh; 795 nfs4_sharedfh_t *orig_sfh; 796 int fh_differs = 0; 797 int numops, setgid_flag; 798 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 799 800 /* 801 * Make sure we properly deal with setting the right gid on 802 * a newly created file to reflect the parent's setgid bit 803 */ 804 setgid_flag = 0; 805 if (create_flag && in_va) { 806 807 /* 808 * If the parent's directory has the setgid bit set 809 * _and_ the client was able to get a valid mapping 810 * for the parent dir's owner_group, we want to 811 * append NVERIFY(owner_group == dva.va_gid) and 812 * SETATTR to the CREATE compound. 813 */ 814 mutex_enter(&drp->r_statelock); 815 if (drp->r_attr.va_mode & VSGID && 816 drp->r_attr.va_gid != GID_NOBODY) { 817 in_va->va_gid = drp->r_attr.va_gid; 818 setgid_flag = 1; 819 } 820 mutex_exit(&drp->r_statelock); 821 } 822 823 /* 824 * Normal/non-create compound: 825 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 826 * 827 * Open(create) compound no setgid: 828 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 829 * RESTOREFH + GETATTR 830 * 831 * Open(create) setgid: 832 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 833 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 834 * NVERIFY(grp) + SETATTR 835 */ 836 if (setgid_flag) { 837 numops = 10; 838 idx_open = 1; 839 idx_fattr = 3; 840 } else if (create_flag) { 841 numops = 7; 842 idx_open = 2; 843 idx_fattr = 4; 844 } else { 845 numops = 4; 846 idx_open = 1; 847 idx_fattr = 3; 848 } 849 850 args.array_len = numops; 851 argoplist_size = numops * sizeof (nfs_argop4); 852 argop = kmem_alloc(argoplist_size, KM_SLEEP); 853 854 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 855 "open %s open flag 0x%x cred %p", file_name, open_flag, 856 (void *)cr)); 857 858 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 859 if (create_flag) { 860 /* 861 * We are to create a file. Initialize the passed in vnode 862 * pointer. 863 */ 864 vpi = NULL; 865 } else { 866 /* 867 * Check to see if the client owns a read delegation and is 868 * trying to open for write. If so, then return the delegation 869 * to avoid the server doing a cb_recall and returning DELAY. 870 * NB - we don't use the statev4_lock here because we'd have 871 * to drop the lock anyway and the result would be stale. 872 */ 873 if ((open_flag & FWRITE) && 874 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 875 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 876 877 /* 878 * If the file has a delegation, then do an access check up 879 * front. This avoids having to an access check later after 880 * we've already done start_op, which could deadlock. 881 */ 882 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 883 if (open_flag & FREAD && 884 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 885 acc |= VREAD; 886 if (open_flag & FWRITE && 887 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 888 acc |= VWRITE; 889 } 890 } 891 892 drp = VTOR4(dvp); 893 894 recov_state.rs_flags = 0; 895 recov_state.rs_num_retry_despite_err = 0; 896 cred_otw = cr; 897 898 recov_retry: 899 fh_differs = 0; 900 nfs4_error_zinit(&e); 901 902 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 903 if (e.error) { 904 if (ncr != NULL) 905 crfree(ncr); 906 kmem_free(argop, argoplist_size); 907 return (e.error); 908 } 909 910 args.ctag = TAG_OPEN; 911 args.array_len = numops; 912 args.array = argop; 913 914 /* putfh directory fh */ 915 argop[0].argop = OP_CPUTFH; 916 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 917 918 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 919 argop[idx_open].argop = OP_COPEN; 920 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 921 open_args->claim = CLAIM_NULL; 922 923 /* name of file */ 924 open_args->open_claim4_u.cfile = file_name; 925 open_args->owner.owner_len = 0; 926 open_args->owner.owner_val = NULL; 927 928 if (create_flag) { 929 /* CREATE a file */ 930 open_args->opentype = OPEN4_CREATE; 931 open_args->mode = createmode; 932 if (createmode == EXCLUSIVE4) { 933 if (did_excl_setup == FALSE) { 934 verf.seconds = nfs_atoi(hw_serial); 935 if (verf.seconds != 0) 936 verf.nseconds = newnum(); 937 else { 938 timestruc_t now; 939 940 gethrestime(&now); 941 verf.seconds = now.tv_sec; 942 verf.nseconds = now.tv_nsec; 943 } 944 /* 945 * Since the server will use this value for the 946 * mtime, make sure that it can't overflow. Zero 947 * out the MSB. The actual value does not matter 948 * here, only its uniqeness. 949 */ 950 verf.seconds &= INT32_MAX; 951 did_excl_setup = TRUE; 952 } 953 954 /* Now copy over verifier to OPEN4args. */ 955 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 956 } else { 957 int v_error; 958 bitmap4 supp_attrs; 959 servinfo4_t *svp; 960 961 attr = &open_args->createhow4_u.createattrs; 962 963 svp = drp->r_server; 964 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 965 supp_attrs = svp->sv_supp_attrs; 966 nfs_rw_exit(&svp->sv_lock); 967 968 /* GUARDED4 or UNCHECKED4 */ 969 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 970 supp_attrs); 971 if (v_error) { 972 bzero(attr, sizeof (*attr)); 973 nfs4args_copen_free(open_args); 974 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 975 &recov_state, FALSE); 976 if (ncr != NULL) 977 crfree(ncr); 978 kmem_free(argop, argoplist_size); 979 return (v_error); 980 } 981 } 982 } else { 983 /* NO CREATE */ 984 open_args->opentype = OPEN4_NOCREATE; 985 } 986 987 if (recov_state.rs_sp != NULL) { 988 mutex_enter(&recov_state.rs_sp->s_lock); 989 open_args->owner.clientid = recov_state.rs_sp->clientid; 990 mutex_exit(&recov_state.rs_sp->s_lock); 991 } else { 992 /* XXX should we just fail here? */ 993 open_args->owner.clientid = 0; 994 } 995 996 /* 997 * This increments oop's ref count or creates a temporary 'just_created' 998 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 999 * completes. 1000 */ 1001 mutex_enter(&VTOMI4(dvp)->mi_lock); 1002 1003 /* See if a permanent or just created open owner exists */ 1004 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1005 if (!oop) { 1006 /* 1007 * This open owner does not exist so create a temporary 1008 * just created one. 1009 */ 1010 oop = create_open_owner(cr, VTOMI4(dvp)); 1011 ASSERT(oop != NULL); 1012 } 1013 mutex_exit(&VTOMI4(dvp)->mi_lock); 1014 1015 /* this length never changes, do alloc before seqid sync */ 1016 open_args->owner.owner_len = sizeof (oop->oo_name); 1017 open_args->owner.owner_val = 1018 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1019 1020 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1021 if (e.error == EAGAIN) { 1022 open_owner_rele(oop); 1023 nfs4args_copen_free(open_args); 1024 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1025 if (ncr != NULL) { 1026 crfree(ncr); 1027 ncr = NULL; 1028 } 1029 goto recov_retry; 1030 } 1031 1032 /* Check to see if we need to do the OTW call */ 1033 if (!create_flag) { 1034 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1035 file_just_been_created, &e.error, acc, &recov_state)) { 1036 1037 /* 1038 * The OTW open is not necessary. Either 1039 * the open can succeed without it (eg. 1040 * delegation, error == 0) or the open 1041 * must fail due to an access failure 1042 * (error != 0). In either case, tidy 1043 * up and return. 1044 */ 1045 1046 nfs4_end_open_seqid_sync(oop); 1047 open_owner_rele(oop); 1048 nfs4args_copen_free(open_args); 1049 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1050 if (ncr != NULL) 1051 crfree(ncr); 1052 kmem_free(argop, argoplist_size); 1053 return (e.error); 1054 } 1055 } 1056 1057 bcopy(&oop->oo_name, open_args->owner.owner_val, 1058 open_args->owner.owner_len); 1059 1060 seqid = nfs4_get_open_seqid(oop) + 1; 1061 open_args->seqid = seqid; 1062 open_args->share_access = 0; 1063 if (open_flag & FREAD) 1064 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1065 if (open_flag & FWRITE) 1066 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1067 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1068 1069 1070 1071 /* 1072 * getfh w/sanity check for idx_open/idx_fattr 1073 */ 1074 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1075 argop[idx_open + 1].argop = OP_GETFH; 1076 1077 /* getattr */ 1078 argop[idx_fattr].argop = OP_GETATTR; 1079 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1080 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1081 1082 if (setgid_flag) { 1083 vattr_t _v; 1084 servinfo4_t *svp; 1085 bitmap4 supp_attrs; 1086 1087 svp = drp->r_server; 1088 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1089 supp_attrs = svp->sv_supp_attrs; 1090 nfs_rw_exit(&svp->sv_lock); 1091 1092 /* 1093 * For setgid case, we need to: 1094 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1095 */ 1096 argop[4].argop = OP_SAVEFH; 1097 1098 argop[5].argop = OP_CPUTFH; 1099 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1100 1101 argop[6].argop = OP_GETATTR; 1102 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1103 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1104 1105 argop[7].argop = OP_RESTOREFH; 1106 1107 /* 1108 * nverify 1109 */ 1110 _v.va_mask = AT_GID; 1111 _v.va_gid = in_va->va_gid; 1112 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1113 supp_attrs))) { 1114 1115 /* 1116 * setattr 1117 * 1118 * We _know_ we're not messing with AT_SIZE or 1119 * AT_XTIME, so no need for stateid or flags. 1120 * Also we specify NULL rp since we're only 1121 * interested in setting owner_group attributes. 1122 */ 1123 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1124 supp_attrs, &e.error, 0); 1125 if (e.error) 1126 nfs4args_verify_free(&argop[8]); 1127 } 1128 1129 if (e.error) { 1130 /* 1131 * XXX - Revisit the last argument to nfs4_end_op() 1132 * once 5020486 is fixed. 1133 */ 1134 nfs4_end_open_seqid_sync(oop); 1135 open_owner_rele(oop); 1136 nfs4args_copen_free(open_args); 1137 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1138 if (ncr != NULL) 1139 crfree(ncr); 1140 kmem_free(argop, argoplist_size); 1141 return (e.error); 1142 } 1143 } else if (create_flag) { 1144 /* 1145 * For setgid case, we need to: 1146 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1147 */ 1148 argop[1].argop = OP_SAVEFH; 1149 1150 argop[5].argop = OP_RESTOREFH; 1151 1152 argop[6].argop = OP_GETATTR; 1153 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1154 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1155 } 1156 1157 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1158 "nfs4open_otw: %s call, nm %s, rp %s", 1159 needrecov ? "recov" : "first", file_name, 1160 rnode4info(VTOR4(dvp)))); 1161 1162 t = gethrtime(); 1163 1164 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1165 1166 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1167 nfs4_set_open_seqid(seqid, oop, args.ctag); 1168 1169 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1170 1171 if (e.error || needrecov) { 1172 bool_t abort = FALSE; 1173 1174 if (needrecov) { 1175 nfs4_bseqid_entry_t *bsep = NULL; 1176 1177 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1178 cred_otw, vpi, dvp, open_args); 1179 1180 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1181 bsep = nfs4_create_bseqid_entry(oop, NULL, 1182 vpi, 0, args.ctag, open_args->seqid); 1183 num_bseqid_retry--; 1184 } 1185 1186 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1187 NULL, lost_rqst.lr_op == OP_OPEN ? 1188 &lost_rqst : NULL, OP_OPEN, bsep); 1189 1190 if (bsep) 1191 kmem_free(bsep, sizeof (*bsep)); 1192 /* give up if we keep getting BAD_SEQID */ 1193 if (num_bseqid_retry == 0) 1194 abort = TRUE; 1195 if (abort == TRUE && e.error == 0) 1196 e.error = geterrno4(res.status); 1197 } 1198 nfs4_end_open_seqid_sync(oop); 1199 open_owner_rele(oop); 1200 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1201 nfs4args_copen_free(open_args); 1202 if (setgid_flag) { 1203 nfs4args_verify_free(&argop[8]); 1204 nfs4args_setattr_free(&argop[9]); 1205 } 1206 if (!e.error) 1207 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1208 if (ncr != NULL) { 1209 crfree(ncr); 1210 ncr = NULL; 1211 } 1212 if (!needrecov || abort == TRUE || e.error == EINTR || 1213 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1214 kmem_free(argop, argoplist_size); 1215 return (e.error); 1216 } 1217 goto recov_retry; 1218 } 1219 1220 /* 1221 * Will check and update lease after checking the rflag for 1222 * OPEN_CONFIRM in the successful OPEN call. 1223 */ 1224 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1225 1226 /* 1227 * XXX what if we're crossing mount points from server1:/drp 1228 * to server2:/drp/rp. 1229 */ 1230 1231 /* Signal our end of use of the open seqid */ 1232 nfs4_end_open_seqid_sync(oop); 1233 1234 /* 1235 * This will destroy the open owner if it was just created, 1236 * and no one else has put a reference on it. 1237 */ 1238 open_owner_rele(oop); 1239 if (create_flag && (createmode != EXCLUSIVE4) && 1240 res.status == NFS4ERR_BADOWNER) 1241 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1242 1243 e.error = geterrno4(res.status); 1244 nfs4args_copen_free(open_args); 1245 if (setgid_flag) { 1246 nfs4args_verify_free(&argop[8]); 1247 nfs4args_setattr_free(&argop[9]); 1248 } 1249 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1250 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1251 /* 1252 * If the reply is NFS4ERR_ACCESS, it may be because 1253 * we are root (no root net access). If the real uid 1254 * is not root, then retry with the real uid instead. 1255 */ 1256 if (ncr != NULL) { 1257 crfree(ncr); 1258 ncr = NULL; 1259 } 1260 if (res.status == NFS4ERR_ACCESS && 1261 (ncr = crnetadjust(cred_otw)) != NULL) { 1262 cred_otw = ncr; 1263 goto recov_retry; 1264 } 1265 kmem_free(argop, argoplist_size); 1266 return (e.error); 1267 } 1268 1269 resop = &res.array[idx_open]; /* open res */ 1270 op_res = &resop->nfs_resop4_u.opopen; 1271 1272 #ifdef DEBUG 1273 /* 1274 * verify attrset bitmap 1275 */ 1276 if (create_flag && 1277 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1278 /* make sure attrset returned is what we asked for */ 1279 /* XXX Ignore this 'error' for now */ 1280 if (attr->attrmask != op_res->attrset) 1281 /* EMPTY */; 1282 } 1283 #endif 1284 1285 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1286 mutex_enter(&VTOMI4(dvp)->mi_lock); 1287 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1288 mutex_exit(&VTOMI4(dvp)->mi_lock); 1289 } 1290 1291 resop = &res.array[idx_open + 1]; /* getfh res */ 1292 gf_res = &resop->nfs_resop4_u.opgetfh; 1293 1294 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1295 1296 /* 1297 * The open stateid has been updated on the server but not 1298 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1299 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1300 * WRITE call. That, however, will use the old stateid, so go ahead 1301 * and upate the open stateid now, before any call to makenfs4node. 1302 */ 1303 if (vpi) { 1304 nfs4_open_stream_t *tmp_osp; 1305 rnode4_t *tmp_rp = VTOR4(vpi); 1306 1307 tmp_osp = find_open_stream(oop, tmp_rp); 1308 if (tmp_osp) { 1309 tmp_osp->open_stateid = op_res->stateid; 1310 mutex_exit(&tmp_osp->os_sync_lock); 1311 open_stream_rele(tmp_osp, tmp_rp); 1312 } 1313 1314 /* 1315 * We must determine if the file handle given by the otw open 1316 * is the same as the file handle which was passed in with 1317 * *vpp. This case can be reached if the file we are trying 1318 * to open has been removed and another file has been created 1319 * having the same file name. The passed in vnode is released 1320 * later. 1321 */ 1322 orig_sfh = VTOR4(vpi)->r_fh; 1323 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1324 } 1325 1326 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1327 1328 if (create_flag || fh_differs) { 1329 int rnode_err = 0; 1330 1331 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1332 dvp, fn_get(VTOSV(dvp)->sv_name, file_name)); 1333 1334 if (e.error) 1335 PURGE_ATTRCACHE4(vp); 1336 /* 1337 * For the newly created vp case, make sure the rnode 1338 * isn't bad before using it. 1339 */ 1340 mutex_enter(&(VTOR4(vp))->r_statelock); 1341 if (VTOR4(vp)->r_flags & R4RECOVERR) 1342 rnode_err = EIO; 1343 mutex_exit(&(VTOR4(vp))->r_statelock); 1344 1345 if (rnode_err) { 1346 nfs4_end_open_seqid_sync(oop); 1347 nfs4args_copen_free(open_args); 1348 if (setgid_flag) { 1349 nfs4args_verify_free(&argop[8]); 1350 nfs4args_setattr_free(&argop[9]); 1351 } 1352 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1353 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1354 needrecov); 1355 open_owner_rele(oop); 1356 VN_RELE(vp); 1357 if (ncr != NULL) 1358 crfree(ncr); 1359 sfh4_rele(&otw_sfh); 1360 kmem_free(argop, argoplist_size); 1361 return (EIO); 1362 } 1363 } else { 1364 vp = vpi; 1365 } 1366 sfh4_rele(&otw_sfh); 1367 1368 /* 1369 * It seems odd to get a full set of attrs and then not update 1370 * the object's attrcache in the non-create case. Create case uses 1371 * the attrs since makenfs4node checks to see if the attrs need to 1372 * be updated (and then updates them). The non-create case should 1373 * update attrs also. 1374 */ 1375 if (! create_flag && ! fh_differs && !e.error) { 1376 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1377 } 1378 1379 nfs4_error_zinit(&e); 1380 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1381 /* This does not do recovery for vp explicitly. */ 1382 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1383 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1384 1385 if (e.error || e.stat) { 1386 nfs4_end_open_seqid_sync(oop); 1387 nfs4args_copen_free(open_args); 1388 if (setgid_flag) { 1389 nfs4args_verify_free(&argop[8]); 1390 nfs4args_setattr_free(&argop[9]); 1391 } 1392 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1393 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1394 needrecov); 1395 open_owner_rele(oop); 1396 if (create_flag || fh_differs) { 1397 /* rele the makenfs4node */ 1398 VN_RELE(vp); 1399 } 1400 if (ncr != NULL) { 1401 crfree(ncr); 1402 ncr = NULL; 1403 } 1404 if (retry_open == TRUE) { 1405 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1406 "nfs4open_otw: retry the open since OPEN " 1407 "CONFIRM failed with error %d stat %d", 1408 e.error, e.stat)); 1409 if (create_flag && createmode == GUARDED4) { 1410 NFS4_DEBUG(nfs4_client_recov_debug, 1411 (CE_NOTE, "nfs4open_otw: switch " 1412 "createmode from GUARDED4 to " 1413 "UNCHECKED4")); 1414 createmode = UNCHECKED4; 1415 } 1416 goto recov_retry; 1417 } 1418 if (!e.error) { 1419 if (create_flag && (createmode != EXCLUSIVE4) && 1420 e.stat == NFS4ERR_BADOWNER) 1421 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1422 1423 e.error = geterrno4(e.stat); 1424 } 1425 kmem_free(argop, argoplist_size); 1426 return (e.error); 1427 } 1428 } 1429 1430 rp = VTOR4(vp); 1431 1432 mutex_enter(&rp->r_statev4_lock); 1433 if (create_flag) 1434 rp->created_v4 = 1; 1435 mutex_exit(&rp->r_statev4_lock); 1436 1437 mutex_enter(&oop->oo_lock); 1438 /* Doesn't matter if 'oo_just_created' already was set as this */ 1439 oop->oo_just_created = NFS4_PERM_CREATED; 1440 if (oop->oo_cred_otw) 1441 crfree(oop->oo_cred_otw); 1442 oop->oo_cred_otw = cred_otw; 1443 crhold(oop->oo_cred_otw); 1444 mutex_exit(&oop->oo_lock); 1445 1446 /* returns with 'os_sync_lock' held */ 1447 osp = find_or_create_open_stream(oop, rp, &created_osp); 1448 if (!osp) { 1449 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1450 "nfs4open_otw: failed to create an open stream")); 1451 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1452 "signal our end of use of the open seqid")); 1453 1454 nfs4_end_open_seqid_sync(oop); 1455 open_owner_rele(oop); 1456 nfs4args_copen_free(open_args); 1457 if (setgid_flag) { 1458 nfs4args_verify_free(&argop[8]); 1459 nfs4args_setattr_free(&argop[9]); 1460 } 1461 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1462 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1463 if (create_flag || fh_differs) 1464 VN_RELE(vp); 1465 if (ncr != NULL) 1466 crfree(ncr); 1467 1468 kmem_free(argop, argoplist_size); 1469 return (EINVAL); 1470 1471 } 1472 1473 osp->open_stateid = op_res->stateid; 1474 1475 if (open_flag & FREAD) 1476 osp->os_share_acc_read++; 1477 if (open_flag & FWRITE) 1478 osp->os_share_acc_write++; 1479 osp->os_share_deny_none++; 1480 1481 /* 1482 * Need to reset this bitfield for the possible case where we were 1483 * going to OTW CLOSE the file, got a non-recoverable error, and before 1484 * we could retry the CLOSE, OPENed the file again. 1485 */ 1486 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1487 osp->os_final_close = 0; 1488 osp->os_force_close = 0; 1489 #ifdef DEBUG 1490 if (osp->os_failed_reopen) 1491 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1492 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1493 (void *)osp, (void *)cr, rnode4info(rp))); 1494 #endif 1495 osp->os_failed_reopen = 0; 1496 1497 mutex_exit(&osp->os_sync_lock); 1498 1499 nfs4_end_open_seqid_sync(oop); 1500 1501 if (created_osp && recov_state.rs_sp != NULL) { 1502 mutex_enter(&recov_state.rs_sp->s_lock); 1503 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1504 mutex_exit(&recov_state.rs_sp->s_lock); 1505 } 1506 1507 /* get rid of our reference to find oop */ 1508 open_owner_rele(oop); 1509 1510 open_stream_rele(osp, rp); 1511 1512 /* accept delegation, if any */ 1513 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1514 1515 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1516 1517 if (createmode == EXCLUSIVE4 && 1518 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1519 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1520 " EXCLUSIVE4: sending a SETATTR")); 1521 /* 1522 * If doing an exclusive create, then generate 1523 * a SETATTR to set the initial attributes. 1524 * Try to set the mtime and the atime to the 1525 * server's current time. It is somewhat 1526 * expected that these fields will be used to 1527 * store the exclusive create cookie. If not, 1528 * server implementors will need to know that 1529 * a SETATTR will follow an exclusive create 1530 * and the cookie should be destroyed if 1531 * appropriate. 1532 * 1533 * The AT_GID and AT_SIZE bits are turned off 1534 * so that the SETATTR request will not attempt 1535 * to process these. The gid will be set 1536 * separately if appropriate. The size is turned 1537 * off because it is assumed that a new file will 1538 * be created empty and if the file wasn't empty, 1539 * then the exclusive create will have failed 1540 * because the file must have existed already. 1541 * Therefore, no truncate operation is needed. 1542 */ 1543 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1544 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1545 1546 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1547 if (e.error) { 1548 /* 1549 * Couldn't correct the attributes of 1550 * the newly created file and the 1551 * attributes are wrong. Remove the 1552 * file and return an error to the 1553 * application. 1554 */ 1555 /* XXX will this take care of client state ? */ 1556 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1557 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1558 " remove file", e.error)); 1559 VN_RELE(vp); 1560 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1561 /* 1562 * Since we've reled the vnode and removed 1563 * the file we now need to return the error. 1564 * At this point we don't want to update the 1565 * dircaches, call nfs4_waitfor_purge_complete 1566 * or set vpp to vp so we need to skip these 1567 * as well. 1568 */ 1569 goto skip_update_dircaches; 1570 } 1571 } 1572 1573 /* 1574 * If we created or found the correct vnode, due to create_flag or 1575 * fh_differs being set, then update directory cache attribute, readdir 1576 * and dnlc caches. 1577 */ 1578 if (create_flag || fh_differs) { 1579 dirattr_info_t dinfo, *dinfop; 1580 1581 /* 1582 * Make sure getattr succeeded before using results. 1583 * note: op 7 is getattr(dir) for both flavors of 1584 * open(create). 1585 */ 1586 if (create_flag && res.status == NFS4_OK) { 1587 dinfo.di_time_call = t; 1588 dinfo.di_cred = cr; 1589 dinfo.di_garp = 1590 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1591 dinfop = &dinfo; 1592 } else { 1593 dinfop = NULL; 1594 } 1595 1596 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1597 dinfop); 1598 } 1599 1600 /* 1601 * If the page cache for this file was flushed from actions 1602 * above, it was done asynchronously and if that is true, 1603 * there is a need to wait here for it to complete. This must 1604 * be done outside of start_fop/end_fop. 1605 */ 1606 (void) nfs4_waitfor_purge_complete(vp); 1607 1608 /* 1609 * It is implicit that we are in the open case (create_flag == 0) since 1610 * fh_differs can only be set to a non-zero value in the open case. 1611 */ 1612 if (fh_differs != 0 && vpi != NULL) 1613 VN_RELE(vpi); 1614 1615 /* 1616 * Be sure to set *vpp to the correct value before returning. 1617 */ 1618 *vpp = vp; 1619 1620 skip_update_dircaches: 1621 1622 nfs4args_copen_free(open_args); 1623 if (setgid_flag) { 1624 nfs4args_verify_free(&argop[8]); 1625 nfs4args_setattr_free(&argop[9]); 1626 } 1627 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1628 1629 if (ncr) 1630 crfree(ncr); 1631 kmem_free(argop, argoplist_size); 1632 return (e.error); 1633 } 1634 1635 /* 1636 * Reopen an open instance. cf. nfs4open_otw(). 1637 * 1638 * Errors are returned by the nfs4_error_t parameter. 1639 * - ep->error contains an errno value or zero. 1640 * - if it is zero, ep->stat is set to an NFS status code, if any. 1641 * If the file could not be reopened, but the caller should continue, the 1642 * file is marked dead and no error values are returned. If the caller 1643 * should stop recovering open files and start over, either the ep->error 1644 * value or ep->stat will indicate an error (either something that requires 1645 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1646 * filehandles) may be handled silently by this routine. 1647 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1648 * will be started, so the caller should not do it. 1649 * 1650 * Gotos: 1651 * - kill_file : reopen failed in such a fashion to constitute marking the 1652 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1653 * is for cases where recovery is not possible. 1654 * - failed_reopen : same as above, except that the file has already been 1655 * marked dead, so no need to do it again. 1656 * - bailout : reopen failed but we are able to recover and retry the reopen - 1657 * either within this function immediately or via the calling function. 1658 */ 1659 1660 void 1661 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1662 open_claim_type4 claim, bool_t frc_use_claim_previous, 1663 bool_t is_recov) 1664 { 1665 COMPOUND4args_clnt args; 1666 COMPOUND4res_clnt res; 1667 nfs_argop4 argop[4]; 1668 nfs_resop4 *resop; 1669 OPEN4res *op_res = NULL; 1670 OPEN4cargs *open_args; 1671 GETFH4res *gf_res; 1672 rnode4_t *rp = VTOR4(vp); 1673 int doqueue = 1; 1674 cred_t *cr = NULL, *cred_otw = NULL; 1675 nfs4_open_owner_t *oop = NULL; 1676 seqid4 seqid; 1677 nfs4_ga_res_t *garp; 1678 char fn[MAXNAMELEN]; 1679 nfs4_recov_state_t recov = {NULL, 0}; 1680 nfs4_lost_rqst_t lost_rqst; 1681 mntinfo4_t *mi = VTOMI4(vp); 1682 bool_t abort; 1683 char *failed_msg = ""; 1684 int fh_different; 1685 hrtime_t t; 1686 nfs4_bseqid_entry_t *bsep = NULL; 1687 1688 ASSERT(nfs4_consistent_type(vp)); 1689 ASSERT(nfs_zone() == mi->mi_zone); 1690 1691 nfs4_error_zinit(ep); 1692 1693 /* this is the cred used to find the open owner */ 1694 cr = state_to_cred(osp); 1695 if (cr == NULL) { 1696 failed_msg = "Couldn't reopen: no cred"; 1697 goto kill_file; 1698 } 1699 /* use this cred for OTW operations */ 1700 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1701 1702 top: 1703 nfs4_error_zinit(ep); 1704 1705 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1706 /* File system has been unmounted, quit */ 1707 ep->error = EIO; 1708 failed_msg = "Couldn't reopen: file system has been unmounted"; 1709 goto kill_file; 1710 } 1711 1712 oop = osp->os_open_owner; 1713 1714 ASSERT(oop != NULL); 1715 if (oop == NULL) { /* be defensive in non-DEBUG */ 1716 failed_msg = "can't reopen: no open owner"; 1717 goto kill_file; 1718 } 1719 open_owner_hold(oop); 1720 1721 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1722 if (ep->error) { 1723 open_owner_rele(oop); 1724 oop = NULL; 1725 goto bailout; 1726 } 1727 1728 /* 1729 * If the rnode has a delegation and the delegation has been 1730 * recovered and the server didn't request a recall and the caller 1731 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1732 * recovery) and the rnode hasn't been marked dead, then install 1733 * the delegation stateid in the open stream. Otherwise, proceed 1734 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1735 */ 1736 mutex_enter(&rp->r_statev4_lock); 1737 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1738 !rp->r_deleg_return_pending && 1739 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1740 !rp->r_deleg_needs_recall && 1741 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1742 !(rp->r_flags & R4RECOVERR)) { 1743 mutex_enter(&osp->os_sync_lock); 1744 osp->os_delegation = 1; 1745 osp->open_stateid = rp->r_deleg_stateid; 1746 mutex_exit(&osp->os_sync_lock); 1747 mutex_exit(&rp->r_statev4_lock); 1748 goto bailout; 1749 } 1750 mutex_exit(&rp->r_statev4_lock); 1751 1752 /* 1753 * If the file failed recovery, just quit. This failure need not 1754 * affect other reopens, so don't return an error. 1755 */ 1756 mutex_enter(&rp->r_statelock); 1757 if (rp->r_flags & R4RECOVERR) { 1758 mutex_exit(&rp->r_statelock); 1759 ep->error = 0; 1760 goto failed_reopen; 1761 } 1762 mutex_exit(&rp->r_statelock); 1763 1764 /* 1765 * argop is empty here 1766 * 1767 * PUTFH, OPEN, GETATTR 1768 */ 1769 args.ctag = TAG_REOPEN; 1770 args.array_len = 4; 1771 args.array = argop; 1772 1773 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1774 "nfs4_reopen: file is type %d, id %s", 1775 vp->v_type, rnode4info(VTOR4(vp)))); 1776 1777 argop[0].argop = OP_CPUTFH; 1778 1779 if (claim != CLAIM_PREVIOUS) { 1780 /* 1781 * if this is a file mount then 1782 * use the mntinfo parentfh 1783 */ 1784 argop[0].nfs_argop4_u.opcputfh.sfh = 1785 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1786 VTOSV(vp)->sv_dfh; 1787 } else { 1788 /* putfh fh to reopen */ 1789 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1790 } 1791 1792 argop[1].argop = OP_COPEN; 1793 open_args = &argop[1].nfs_argop4_u.opcopen; 1794 open_args->claim = claim; 1795 1796 if (claim == CLAIM_NULL) { 1797 1798 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1799 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1800 "failed for vp 0x%p for CLAIM_NULL with %m", 1801 (void *)vp); 1802 failed_msg = "Couldn't reopen: vtoname failed for " 1803 "CLAIM_NULL"; 1804 /* nothing allocated yet */ 1805 goto kill_file; 1806 } 1807 1808 open_args->open_claim4_u.cfile = fn; 1809 } else if (claim == CLAIM_PREVIOUS) { 1810 1811 /* 1812 * We have two cases to deal with here: 1813 * 1) We're being called to reopen files in order to satisfy 1814 * a lock operation request which requires us to explicitly 1815 * reopen files which were opened under a delegation. If 1816 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1817 * that case, frc_use_claim_previous is TRUE and we must 1818 * use the rnode's current delegation type (r_deleg_type). 1819 * 2) We're reopening files during some form of recovery. 1820 * In this case, frc_use_claim_previous is FALSE and we 1821 * use the delegation type appropriate for recovery 1822 * (r_deleg_needs_recovery). 1823 */ 1824 mutex_enter(&rp->r_statev4_lock); 1825 open_args->open_claim4_u.delegate_type = 1826 frc_use_claim_previous ? 1827 rp->r_deleg_type : 1828 rp->r_deleg_needs_recovery; 1829 mutex_exit(&rp->r_statev4_lock); 1830 1831 } else if (claim == CLAIM_DELEGATE_CUR) { 1832 1833 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1834 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1835 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1836 "with %m", (void *)vp); 1837 failed_msg = "Couldn't reopen: vtoname failed for " 1838 "CLAIM_DELEGATE_CUR"; 1839 /* nothing allocated yet */ 1840 goto kill_file; 1841 } 1842 1843 mutex_enter(&rp->r_statev4_lock); 1844 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1845 rp->r_deleg_stateid; 1846 mutex_exit(&rp->r_statev4_lock); 1847 1848 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1849 } 1850 open_args->opentype = OPEN4_NOCREATE; 1851 open_args->owner.clientid = mi2clientid(mi); 1852 open_args->owner.owner_len = sizeof (oop->oo_name); 1853 open_args->owner.owner_val = 1854 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1855 bcopy(&oop->oo_name, open_args->owner.owner_val, 1856 open_args->owner.owner_len); 1857 open_args->share_access = 0; 1858 open_args->share_deny = 0; 1859 1860 mutex_enter(&osp->os_sync_lock); 1861 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1862 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1863 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1864 (void *)osp, (void *)rp, osp->os_share_acc_read, 1865 osp->os_share_acc_write, osp->os_open_ref_count, 1866 osp->os_mmap_read, osp->os_mmap_write, claim)); 1867 1868 if (osp->os_share_acc_read || osp->os_mmap_read) 1869 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1870 if (osp->os_share_acc_write || osp->os_mmap_write) 1871 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1872 if (osp->os_share_deny_read) 1873 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1874 if (osp->os_share_deny_write) 1875 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1876 mutex_exit(&osp->os_sync_lock); 1877 1878 seqid = nfs4_get_open_seqid(oop) + 1; 1879 open_args->seqid = seqid; 1880 1881 /* Construct the getfh part of the compound */ 1882 argop[2].argop = OP_GETFH; 1883 1884 /* Construct the getattr part of the compound */ 1885 argop[3].argop = OP_GETATTR; 1886 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1887 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1888 1889 t = gethrtime(); 1890 1891 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1892 1893 if (ep->error) { 1894 if (!is_recov && !frc_use_claim_previous && 1895 (ep->error == EINTR || ep->error == ETIMEDOUT || 1896 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1897 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1898 cred_otw, vp, NULL, open_args); 1899 abort = nfs4_start_recovery(ep, 1900 VTOMI4(vp), vp, NULL, NULL, 1901 lost_rqst.lr_op == OP_OPEN ? 1902 &lost_rqst : NULL, OP_OPEN, NULL); 1903 nfs4args_copen_free(open_args); 1904 goto bailout; 1905 } 1906 1907 nfs4args_copen_free(open_args); 1908 1909 if (ep->error == EACCES && cred_otw != cr) { 1910 crfree(cred_otw); 1911 cred_otw = cr; 1912 crhold(cred_otw); 1913 nfs4_end_open_seqid_sync(oop); 1914 open_owner_rele(oop); 1915 oop = NULL; 1916 goto top; 1917 } 1918 if (ep->error == ETIMEDOUT) 1919 goto bailout; 1920 failed_msg = "Couldn't reopen: rpc error"; 1921 goto kill_file; 1922 } 1923 1924 if (nfs4_need_to_bump_seqid(&res)) 1925 nfs4_set_open_seqid(seqid, oop, args.ctag); 1926 1927 switch (res.status) { 1928 case NFS4_OK: 1929 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1930 mutex_enter(&rp->r_statelock); 1931 rp->r_delay_interval = 0; 1932 mutex_exit(&rp->r_statelock); 1933 } 1934 break; 1935 case NFS4ERR_BAD_SEQID: 1936 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1937 args.ctag, open_args->seqid); 1938 1939 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1940 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1941 NULL, OP_OPEN, bsep); 1942 1943 nfs4args_copen_free(open_args); 1944 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1945 nfs4_end_open_seqid_sync(oop); 1946 open_owner_rele(oop); 1947 oop = NULL; 1948 kmem_free(bsep, sizeof (*bsep)); 1949 1950 goto kill_file; 1951 case NFS4ERR_NO_GRACE: 1952 nfs4args_copen_free(open_args); 1953 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1954 nfs4_end_open_seqid_sync(oop); 1955 open_owner_rele(oop); 1956 oop = NULL; 1957 if (claim == CLAIM_PREVIOUS) { 1958 /* 1959 * Retry as a plain open. We don't need to worry about 1960 * checking the changeinfo: it is acceptable for a 1961 * client to re-open a file and continue processing 1962 * (in the absence of locks). 1963 */ 1964 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1965 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1966 "will retry as CLAIM_NULL")); 1967 claim = CLAIM_NULL; 1968 nfs4_mi_kstat_inc_no_grace(mi); 1969 goto top; 1970 } 1971 failed_msg = 1972 "Couldn't reopen: tried reclaim outside grace period. "; 1973 goto kill_file; 1974 case NFS4ERR_GRACE: 1975 nfs4_set_grace_wait(mi); 1976 nfs4args_copen_free(open_args); 1977 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1978 nfs4_end_open_seqid_sync(oop); 1979 open_owner_rele(oop); 1980 oop = NULL; 1981 ep->error = nfs4_wait_for_grace(mi, &recov); 1982 if (ep->error != 0) 1983 goto bailout; 1984 goto top; 1985 case NFS4ERR_DELAY: 1986 nfs4_set_delay_wait(vp); 1987 nfs4args_copen_free(open_args); 1988 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1989 nfs4_end_open_seqid_sync(oop); 1990 open_owner_rele(oop); 1991 oop = NULL; 1992 ep->error = nfs4_wait_for_delay(vp, &recov); 1993 nfs4_mi_kstat_inc_delay(mi); 1994 if (ep->error != 0) 1995 goto bailout; 1996 goto top; 1997 case NFS4ERR_FHEXPIRED: 1998 /* recover filehandle and retry */ 1999 abort = nfs4_start_recovery(ep, 2000 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL); 2001 nfs4args_copen_free(open_args); 2002 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2003 nfs4_end_open_seqid_sync(oop); 2004 open_owner_rele(oop); 2005 oop = NULL; 2006 if (abort == FALSE) 2007 goto top; 2008 failed_msg = "Couldn't reopen: recovery aborted"; 2009 goto kill_file; 2010 case NFS4ERR_RESOURCE: 2011 case NFS4ERR_STALE_CLIENTID: 2012 case NFS4ERR_WRONGSEC: 2013 case NFS4ERR_EXPIRED: 2014 /* 2015 * Do not mark the file dead and let the calling 2016 * function initiate recovery. 2017 */ 2018 nfs4args_copen_free(open_args); 2019 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2020 nfs4_end_open_seqid_sync(oop); 2021 open_owner_rele(oop); 2022 oop = NULL; 2023 goto bailout; 2024 case NFS4ERR_ACCESS: 2025 if (cred_otw != cr) { 2026 crfree(cred_otw); 2027 cred_otw = cr; 2028 crhold(cred_otw); 2029 nfs4args_copen_free(open_args); 2030 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2031 nfs4_end_open_seqid_sync(oop); 2032 open_owner_rele(oop); 2033 oop = NULL; 2034 goto top; 2035 } 2036 /* fall through */ 2037 default: 2038 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2039 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2040 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2041 rnode4info(VTOR4(vp)))); 2042 failed_msg = "Couldn't reopen: NFSv4 error"; 2043 nfs4args_copen_free(open_args); 2044 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2045 goto kill_file; 2046 } 2047 2048 resop = &res.array[1]; /* open res */ 2049 op_res = &resop->nfs_resop4_u.opopen; 2050 2051 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2052 2053 /* 2054 * Check if the path we reopened really is the same 2055 * file. We could end up in a situation where the file 2056 * was removed and a new file created with the same name. 2057 */ 2058 resop = &res.array[2]; 2059 gf_res = &resop->nfs_resop4_u.opgetfh; 2060 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2061 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2062 if (fh_different) { 2063 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2064 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2065 /* Oops, we don't have the same file */ 2066 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2067 failed_msg = "Couldn't reopen: Persistent " 2068 "file handle changed"; 2069 else 2070 failed_msg = "Couldn't reopen: Volatile " 2071 "(no expire on open) file handle changed"; 2072 2073 nfs4args_copen_free(open_args); 2074 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2075 nfs_rw_exit(&mi->mi_fh_lock); 2076 goto kill_file; 2077 2078 } else { 2079 /* 2080 * We have volatile file handles that don't compare. 2081 * If the fids are the same then we assume that the 2082 * file handle expired but the rnode still refers to 2083 * the same file object. 2084 * 2085 * First check that we have fids or not. 2086 * If we don't we have a dumb server so we will 2087 * just assume every thing is ok for now. 2088 */ 2089 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2090 rp->r_attr.va_mask & AT_NODEID && 2091 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2092 /* 2093 * We have fids, but they don't 2094 * compare. So kill the file. 2095 */ 2096 failed_msg = 2097 "Couldn't reopen: file handle changed" 2098 " due to mismatched fids"; 2099 nfs4args_copen_free(open_args); 2100 (void) xdr_free(xdr_COMPOUND4res_clnt, 2101 (caddr_t)&res); 2102 nfs_rw_exit(&mi->mi_fh_lock); 2103 goto kill_file; 2104 } else { 2105 /* 2106 * We have volatile file handles that refers 2107 * to the same file (at least they have the 2108 * same fid) or we don't have fids so we 2109 * can't tell. :(. We'll be a kind and accepting 2110 * client so we'll update the rnode's file 2111 * handle with the otw handle. 2112 * 2113 * We need to drop mi->mi_fh_lock since 2114 * sh4_update acquires it. Since there is 2115 * only one recovery thread there is no 2116 * race. 2117 */ 2118 nfs_rw_exit(&mi->mi_fh_lock); 2119 sfh4_update(rp->r_fh, &gf_res->object); 2120 } 2121 } 2122 } else { 2123 nfs_rw_exit(&mi->mi_fh_lock); 2124 } 2125 2126 ASSERT(nfs4_consistent_type(vp)); 2127 2128 /* 2129 * If the server wanted an OPEN_CONFIRM but that fails, just start 2130 * over. Presumably if there is a persistent error it will show up 2131 * when we resend the OPEN. 2132 */ 2133 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2134 bool_t retry_open = FALSE; 2135 2136 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2137 cred_otw, is_recov, &retry_open, 2138 oop, FALSE, ep, NULL); 2139 if (ep->error || ep->stat) { 2140 nfs4args_copen_free(open_args); 2141 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2142 nfs4_end_open_seqid_sync(oop); 2143 open_owner_rele(oop); 2144 oop = NULL; 2145 goto top; 2146 } 2147 } 2148 2149 mutex_enter(&osp->os_sync_lock); 2150 osp->open_stateid = op_res->stateid; 2151 osp->os_delegation = 0; 2152 /* 2153 * Need to reset this bitfield for the possible case where we were 2154 * going to OTW CLOSE the file, got a non-recoverable error, and before 2155 * we could retry the CLOSE, OPENed the file again. 2156 */ 2157 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2158 osp->os_final_close = 0; 2159 osp->os_force_close = 0; 2160 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2161 osp->os_dc_openacc = open_args->share_access; 2162 mutex_exit(&osp->os_sync_lock); 2163 2164 nfs4_end_open_seqid_sync(oop); 2165 2166 /* accept delegation, if any */ 2167 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2168 2169 nfs4args_copen_free(open_args); 2170 2171 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2172 2173 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2174 2175 ASSERT(nfs4_consistent_type(vp)); 2176 2177 open_owner_rele(oop); 2178 crfree(cr); 2179 crfree(cred_otw); 2180 return; 2181 2182 kill_file: 2183 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2184 failed_reopen: 2185 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2186 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2187 (void *)osp, (void *)cr, rnode4info(rp))); 2188 mutex_enter(&osp->os_sync_lock); 2189 osp->os_failed_reopen = 1; 2190 mutex_exit(&osp->os_sync_lock); 2191 bailout: 2192 if (oop != NULL) { 2193 nfs4_end_open_seqid_sync(oop); 2194 open_owner_rele(oop); 2195 } 2196 if (cr != NULL) 2197 crfree(cr); 2198 if (cred_otw != NULL) 2199 crfree(cred_otw); 2200 } 2201 2202 /* for . and .. OPENs */ 2203 /* ARGSUSED */ 2204 static int 2205 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2206 { 2207 rnode4_t *rp; 2208 nfs4_ga_res_t gar; 2209 2210 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2211 2212 /* 2213 * If close-to-open consistency checking is turned off or 2214 * if there is no cached data, we can avoid 2215 * the over the wire getattr. Otherwise, force a 2216 * call to the server to get fresh attributes and to 2217 * check caches. This is required for close-to-open 2218 * consistency. 2219 */ 2220 rp = VTOR4(*vpp); 2221 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2222 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2223 return (0); 2224 2225 gar.n4g_va.va_mask = AT_ALL; 2226 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2227 } 2228 2229 /* 2230 * CLOSE a file 2231 */ 2232 /* ARGSUSED */ 2233 static int 2234 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2235 caller_context_t *ct) 2236 { 2237 rnode4_t *rp; 2238 int error = 0; 2239 int r_error = 0; 2240 int n4error = 0; 2241 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2242 2243 /* 2244 * Remove client state for this (lockowner, file) pair. 2245 * Issue otw v4 call to have the server do the same. 2246 */ 2247 2248 rp = VTOR4(vp); 2249 2250 /* 2251 * zone_enter(2) prevents processes from changing zones with NFS files 2252 * open; if we happen to get here from the wrong zone we can't do 2253 * anything over the wire. 2254 */ 2255 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2256 /* 2257 * We could attempt to clean up locks, except we're sure 2258 * that the current process didn't acquire any locks on 2259 * the file: any attempt to lock a file belong to another zone 2260 * will fail, and one can't lock an NFS file and then change 2261 * zones, as that fails too. 2262 * 2263 * Returning an error here is the sane thing to do. A 2264 * subsequent call to VN_RELE() which translates to a 2265 * nfs4_inactive() will clean up state: if the zone of the 2266 * vnode's origin is still alive and kicking, the inactive 2267 * thread will handle the request (from the correct zone), and 2268 * everything (minus the OTW close call) should be OK. If the 2269 * zone is going away nfs4_async_inactive() will throw away 2270 * delegations, open streams and cached pages inline. 2271 */ 2272 return (EIO); 2273 } 2274 2275 /* 2276 * If we are using local locking for this filesystem, then 2277 * release all of the SYSV style record locks. Otherwise, 2278 * we are doing network locking and we need to release all 2279 * of the network locks. All of the locks held by this 2280 * process on this file are released no matter what the 2281 * incoming reference count is. 2282 */ 2283 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2284 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2285 cleanshares(vp, ttoproc(curthread)->p_pid); 2286 } else 2287 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2288 2289 if (e.error) { 2290 struct lm_sysid *lmsid; 2291 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2292 if (lmsid == NULL) { 2293 DTRACE_PROBE2(unknown__sysid, int, e.error, 2294 vnode_t *, vp); 2295 } else { 2296 cleanlocks(vp, ttoproc(curthread)->p_pid, 2297 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2298 } 2299 return (e.error); 2300 } 2301 2302 if (count > 1) 2303 return (0); 2304 2305 /* 2306 * If the file has been `unlinked', then purge the 2307 * DNLC so that this vnode will get reycled quicker 2308 * and the .nfs* file on the server will get removed. 2309 */ 2310 if (rp->r_unldvp != NULL) 2311 dnlc_purge_vp(vp); 2312 2313 /* 2314 * If the file was open for write and there are pages, 2315 * do a synchronous flush and commit of all of the 2316 * dirty and uncommitted pages. 2317 */ 2318 ASSERT(!e.error); 2319 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2320 error = nfs4_putpage_commit(vp, 0, 0, cr); 2321 2322 mutex_enter(&rp->r_statelock); 2323 r_error = rp->r_error; 2324 rp->r_error = 0; 2325 mutex_exit(&rp->r_statelock); 2326 2327 /* 2328 * If this file type is one for which no explicit 'open' was 2329 * done, then bail now (ie. no need for protocol 'close'). If 2330 * there was an error w/the vm subsystem, return _that_ error, 2331 * otherwise, return any errors that may've been reported via 2332 * the rnode. 2333 */ 2334 if (vp->v_type != VREG) 2335 return (error ? error : r_error); 2336 2337 /* 2338 * The sync putpage commit may have failed above, but since 2339 * we're working w/a regular file, we need to do the protocol 2340 * 'close' (nfs4close_one will figure out if an otw close is 2341 * needed or not). Report any errors _after_ doing the protocol 2342 * 'close'. 2343 */ 2344 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2345 n4error = e.error ? e.error : geterrno4(e.stat); 2346 2347 /* 2348 * Error reporting prio (Hi -> Lo) 2349 * 2350 * i) nfs4_putpage_commit (error) 2351 * ii) rnode's (r_error) 2352 * iii) nfs4close_one (n4error) 2353 */ 2354 return (error ? error : (r_error ? r_error : n4error)); 2355 } 2356 2357 /* 2358 * Initialize *lost_rqstp. 2359 */ 2360 2361 static void 2362 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2363 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2364 vnode_t *vp) 2365 { 2366 if (error != ETIMEDOUT && error != EINTR && 2367 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2368 lost_rqstp->lr_op = 0; 2369 return; 2370 } 2371 2372 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2373 "nfs4close_save_lost_rqst: error %d", error)); 2374 2375 lost_rqstp->lr_op = OP_CLOSE; 2376 /* 2377 * The vp is held and rele'd via the recovery code. 2378 * See nfs4_save_lost_rqst. 2379 */ 2380 lost_rqstp->lr_vp = vp; 2381 lost_rqstp->lr_dvp = NULL; 2382 lost_rqstp->lr_oop = oop; 2383 lost_rqstp->lr_osp = osp; 2384 ASSERT(osp != NULL); 2385 ASSERT(mutex_owned(&osp->os_sync_lock)); 2386 osp->os_pending_close = 1; 2387 lost_rqstp->lr_lop = NULL; 2388 lost_rqstp->lr_cr = cr; 2389 lost_rqstp->lr_flk = NULL; 2390 lost_rqstp->lr_putfirst = FALSE; 2391 } 2392 2393 /* 2394 * Assumes you already have the open seqid sync grabbed as well as the 2395 * 'os_sync_lock'. Note: this will release the open seqid sync and 2396 * 'os_sync_lock' if client recovery starts. Calling functions have to 2397 * be prepared to handle this. 2398 * 2399 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2400 * was needed and was started, and that the calling function should retry 2401 * this function; otherwise it is returned as 0. 2402 * 2403 * Errors are returned via the nfs4_error_t parameter. 2404 */ 2405 static void 2406 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2407 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2408 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2409 { 2410 COMPOUND4args_clnt args; 2411 COMPOUND4res_clnt res; 2412 CLOSE4args *close_args; 2413 nfs_resop4 *resop; 2414 nfs_argop4 argop[3]; 2415 int doqueue = 1; 2416 mntinfo4_t *mi; 2417 seqid4 seqid; 2418 vnode_t *vp; 2419 bool_t needrecov = FALSE; 2420 nfs4_lost_rqst_t lost_rqst; 2421 hrtime_t t; 2422 2423 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2424 2425 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2426 2427 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2428 2429 /* Only set this to 1 if recovery is started */ 2430 *recov = 0; 2431 2432 /* do the OTW call to close the file */ 2433 2434 if (close_type == CLOSE_RESEND) 2435 args.ctag = TAG_CLOSE_LOST; 2436 else if (close_type == CLOSE_AFTER_RESEND) 2437 args.ctag = TAG_CLOSE_UNDO; 2438 else 2439 args.ctag = TAG_CLOSE; 2440 2441 args.array_len = 3; 2442 args.array = argop; 2443 2444 vp = RTOV4(rp); 2445 2446 mi = VTOMI4(vp); 2447 2448 /* putfh target fh */ 2449 argop[0].argop = OP_CPUTFH; 2450 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2451 2452 argop[1].argop = OP_GETATTR; 2453 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2454 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2455 2456 argop[2].argop = OP_CLOSE; 2457 close_args = &argop[2].nfs_argop4_u.opclose; 2458 2459 seqid = nfs4_get_open_seqid(oop) + 1; 2460 2461 close_args->seqid = seqid; 2462 close_args->open_stateid = osp->open_stateid; 2463 2464 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2465 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2466 rnode4info(rp))); 2467 2468 t = gethrtime(); 2469 2470 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2471 2472 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2473 nfs4_set_open_seqid(seqid, oop, args.ctag); 2474 } 2475 2476 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2477 if (ep->error && !needrecov) { 2478 /* 2479 * if there was an error and no recovery is to be done 2480 * then then set up the file to flush its cache if 2481 * needed for the next caller. 2482 */ 2483 mutex_enter(&rp->r_statelock); 2484 PURGE_ATTRCACHE4_LOCKED(rp); 2485 rp->r_flags &= ~R4WRITEMODIFIED; 2486 mutex_exit(&rp->r_statelock); 2487 return; 2488 } 2489 2490 if (needrecov) { 2491 bool_t abort; 2492 nfs4_bseqid_entry_t *bsep = NULL; 2493 2494 if (close_type != CLOSE_RESEND) 2495 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2496 osp, cred_otw, vp); 2497 2498 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2499 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2500 0, args.ctag, close_args->seqid); 2501 2502 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2503 "nfs4close_otw: initiating recovery. error %d " 2504 "res.status %d", ep->error, res.status)); 2505 2506 /* 2507 * Drop the 'os_sync_lock' here so we don't hit 2508 * a potential recursive mutex_enter via an 2509 * 'open_stream_hold()'. 2510 */ 2511 mutex_exit(&osp->os_sync_lock); 2512 *have_sync_lockp = 0; 2513 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2514 (close_type != CLOSE_RESEND && 2515 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2516 OP_CLOSE, bsep); 2517 2518 /* drop open seq sync, and let the calling function regrab it */ 2519 nfs4_end_open_seqid_sync(oop); 2520 *did_start_seqid_syncp = 0; 2521 2522 if (bsep) 2523 kmem_free(bsep, sizeof (*bsep)); 2524 /* 2525 * For signals, the caller wants to quit, so don't say to 2526 * retry. For forced unmount, if it's a user thread, it 2527 * wants to quit. If it's a recovery thread, the retry 2528 * will happen higher-up on the call stack. Either way, 2529 * don't say to retry. 2530 */ 2531 if (abort == FALSE && ep->error != EINTR && 2532 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2533 close_type != CLOSE_RESEND && 2534 close_type != CLOSE_AFTER_RESEND) 2535 *recov = 1; 2536 else 2537 *recov = 0; 2538 2539 if (!ep->error) 2540 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2541 return; 2542 } 2543 2544 if (res.status) { 2545 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2546 return; 2547 } 2548 2549 mutex_enter(&rp->r_statev4_lock); 2550 rp->created_v4 = 0; 2551 mutex_exit(&rp->r_statev4_lock); 2552 2553 resop = &res.array[2]; 2554 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2555 osp->os_valid = 0; 2556 2557 /* 2558 * This removes the reference obtained at OPEN; ie, when the 2559 * open stream structure was created. 2560 * 2561 * We don't have to worry about calling 'open_stream_rele' 2562 * since we our currently holding a reference to the open 2563 * stream which means the count cannot go to 0 with this 2564 * decrement. 2565 */ 2566 ASSERT(osp->os_ref_count >= 2); 2567 osp->os_ref_count--; 2568 2569 if (!ep->error) 2570 nfs4_attr_cache(vp, 2571 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2572 t, cred_otw, TRUE, NULL); 2573 2574 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2575 " returning %d", ep->error)); 2576 2577 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2578 } 2579 2580 /* ARGSUSED */ 2581 static int 2582 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2583 caller_context_t *ct) 2584 { 2585 rnode4_t *rp; 2586 u_offset_t off; 2587 offset_t diff; 2588 uint_t on; 2589 uint_t n; 2590 caddr_t base; 2591 uint_t flags; 2592 int error; 2593 mntinfo4_t *mi; 2594 2595 rp = VTOR4(vp); 2596 2597 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2598 2599 if (IS_SHADOW(vp, rp)) 2600 vp = RTOV4(rp); 2601 2602 if (vp->v_type != VREG) 2603 return (EISDIR); 2604 2605 mi = VTOMI4(vp); 2606 2607 if (nfs_zone() != mi->mi_zone) 2608 return (EIO); 2609 2610 if (uiop->uio_resid == 0) 2611 return (0); 2612 2613 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2614 return (EINVAL); 2615 2616 mutex_enter(&rp->r_statelock); 2617 if (rp->r_flags & R4RECOVERRP) 2618 error = (rp->r_error ? rp->r_error : EIO); 2619 else 2620 error = 0; 2621 mutex_exit(&rp->r_statelock); 2622 if (error) 2623 return (error); 2624 2625 /* 2626 * Bypass VM if caching has been disabled (e.g., locking) or if 2627 * using client-side direct I/O and the file is not mmap'd and 2628 * there are no cached pages. 2629 */ 2630 if ((vp->v_flag & VNOCACHE) || 2631 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2632 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2633 size_t resid = 0; 2634 2635 return (nfs4read(vp, NULL, uiop->uio_loffset, 2636 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2637 } 2638 2639 error = 0; 2640 2641 do { 2642 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2643 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2644 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2645 2646 if (error = nfs4_validate_caches(vp, cr)) 2647 break; 2648 2649 mutex_enter(&rp->r_statelock); 2650 while (rp->r_flags & R4INCACHEPURGE) { 2651 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2652 mutex_exit(&rp->r_statelock); 2653 return (EINTR); 2654 } 2655 } 2656 diff = rp->r_size - uiop->uio_loffset; 2657 mutex_exit(&rp->r_statelock); 2658 if (diff <= 0) 2659 break; 2660 if (diff < n) 2661 n = (uint_t)diff; 2662 2663 if (vpm_enable) { 2664 /* 2665 * Copy data. 2666 */ 2667 error = vpm_data_copy(vp, off + on, n, uiop, 2668 1, NULL, 0, S_READ); 2669 } else { 2670 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2671 S_READ); 2672 2673 error = uiomove(base + on, n, UIO_READ, uiop); 2674 } 2675 2676 if (!error) { 2677 /* 2678 * If read a whole block or read to eof, 2679 * won't need this buffer again soon. 2680 */ 2681 mutex_enter(&rp->r_statelock); 2682 if (n + on == MAXBSIZE || 2683 uiop->uio_loffset == rp->r_size) 2684 flags = SM_DONTNEED; 2685 else 2686 flags = 0; 2687 mutex_exit(&rp->r_statelock); 2688 if (vpm_enable) { 2689 error = vpm_sync_pages(vp, off, n, flags); 2690 } else { 2691 error = segmap_release(segkmap, base, flags); 2692 } 2693 } else { 2694 if (vpm_enable) { 2695 (void) vpm_sync_pages(vp, off, n, 0); 2696 } else { 2697 (void) segmap_release(segkmap, base, 0); 2698 } 2699 } 2700 } while (!error && uiop->uio_resid > 0); 2701 2702 return (error); 2703 } 2704 2705 /* ARGSUSED */ 2706 static int 2707 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2708 caller_context_t *ct) 2709 { 2710 rlim64_t limit = uiop->uio_llimit; 2711 rnode4_t *rp; 2712 u_offset_t off; 2713 caddr_t base; 2714 uint_t flags; 2715 int remainder; 2716 size_t n; 2717 int on; 2718 int error; 2719 int resid; 2720 u_offset_t offset; 2721 mntinfo4_t *mi; 2722 uint_t bsize; 2723 2724 rp = VTOR4(vp); 2725 2726 if (IS_SHADOW(vp, rp)) 2727 vp = RTOV4(rp); 2728 2729 if (vp->v_type != VREG) 2730 return (EISDIR); 2731 2732 mi = VTOMI4(vp); 2733 2734 if (nfs_zone() != mi->mi_zone) 2735 return (EIO); 2736 2737 if (uiop->uio_resid == 0) 2738 return (0); 2739 2740 mutex_enter(&rp->r_statelock); 2741 if (rp->r_flags & R4RECOVERRP) 2742 error = (rp->r_error ? rp->r_error : EIO); 2743 else 2744 error = 0; 2745 mutex_exit(&rp->r_statelock); 2746 if (error) 2747 return (error); 2748 2749 if (ioflag & FAPPEND) { 2750 struct vattr va; 2751 2752 /* 2753 * Must serialize if appending. 2754 */ 2755 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2756 nfs_rw_exit(&rp->r_rwlock); 2757 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2758 INTR(vp))) 2759 return (EINTR); 2760 } 2761 2762 va.va_mask = AT_SIZE; 2763 error = nfs4getattr(vp, &va, cr); 2764 if (error) 2765 return (error); 2766 uiop->uio_loffset = va.va_size; 2767 } 2768 2769 offset = uiop->uio_loffset + uiop->uio_resid; 2770 2771 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2772 return (EINVAL); 2773 2774 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2775 limit = MAXOFFSET_T; 2776 2777 /* 2778 * Check to make sure that the process will not exceed 2779 * its limit on file size. It is okay to write up to 2780 * the limit, but not beyond. Thus, the write which 2781 * reaches the limit will be short and the next write 2782 * will return an error. 2783 */ 2784 remainder = 0; 2785 if (offset > uiop->uio_llimit) { 2786 remainder = offset - uiop->uio_llimit; 2787 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2788 if (uiop->uio_resid <= 0) { 2789 proc_t *p = ttoproc(curthread); 2790 2791 uiop->uio_resid += remainder; 2792 mutex_enter(&p->p_lock); 2793 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2794 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2795 mutex_exit(&p->p_lock); 2796 return (EFBIG); 2797 } 2798 } 2799 2800 /* update the change attribute, if we have a write delegation */ 2801 2802 mutex_enter(&rp->r_statev4_lock); 2803 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2804 rp->r_deleg_change++; 2805 2806 mutex_exit(&rp->r_statev4_lock); 2807 2808 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2809 return (EINTR); 2810 2811 /* 2812 * Bypass VM if caching has been disabled (e.g., locking) or if 2813 * using client-side direct I/O and the file is not mmap'd and 2814 * there are no cached pages. 2815 */ 2816 if ((vp->v_flag & VNOCACHE) || 2817 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2818 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2819 size_t bufsize; 2820 int count; 2821 u_offset_t org_offset; 2822 stable_how4 stab_comm; 2823 nfs4_fwrite: 2824 if (rp->r_flags & R4STALE) { 2825 resid = uiop->uio_resid; 2826 offset = uiop->uio_loffset; 2827 error = rp->r_error; 2828 goto bottom; 2829 } 2830 2831 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2832 base = kmem_alloc(bufsize, KM_SLEEP); 2833 do { 2834 if (ioflag & FDSYNC) 2835 stab_comm = DATA_SYNC4; 2836 else 2837 stab_comm = FILE_SYNC4; 2838 resid = uiop->uio_resid; 2839 offset = uiop->uio_loffset; 2840 count = MIN(uiop->uio_resid, bufsize); 2841 org_offset = uiop->uio_loffset; 2842 error = uiomove(base, count, UIO_WRITE, uiop); 2843 if (!error) { 2844 error = nfs4write(vp, base, org_offset, 2845 count, cr, &stab_comm); 2846 if (!error) { 2847 mutex_enter(&rp->r_statelock); 2848 if (rp->r_size < uiop->uio_loffset) 2849 rp->r_size = uiop->uio_loffset; 2850 mutex_exit(&rp->r_statelock); 2851 } 2852 } 2853 } while (!error && uiop->uio_resid > 0); 2854 kmem_free(base, bufsize); 2855 goto bottom; 2856 } 2857 2858 bsize = vp->v_vfsp->vfs_bsize; 2859 2860 do { 2861 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2862 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2863 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2864 2865 resid = uiop->uio_resid; 2866 offset = uiop->uio_loffset; 2867 2868 if (rp->r_flags & R4STALE) { 2869 error = rp->r_error; 2870 break; 2871 } 2872 2873 /* 2874 * Don't create dirty pages faster than they 2875 * can be cleaned so that the system doesn't 2876 * get imbalanced. If the async queue is 2877 * maxed out, then wait for it to drain before 2878 * creating more dirty pages. Also, wait for 2879 * any threads doing pagewalks in the vop_getattr 2880 * entry points so that they don't block for 2881 * long periods. 2882 */ 2883 mutex_enter(&rp->r_statelock); 2884 while ((mi->mi_max_threads != 0 && 2885 rp->r_awcount > 2 * mi->mi_max_threads) || 2886 rp->r_gcount > 0) 2887 cv_wait(&rp->r_cv, &rp->r_statelock); 2888 mutex_exit(&rp->r_statelock); 2889 2890 if (vpm_enable) { 2891 /* 2892 * It will use kpm mappings, so no need to 2893 * pass an address. 2894 */ 2895 error = writerp4(rp, NULL, n, uiop, 0); 2896 } else { 2897 if (segmap_kpm) { 2898 int pon = uiop->uio_loffset & PAGEOFFSET; 2899 size_t pn = MIN(PAGESIZE - pon, 2900 uiop->uio_resid); 2901 int pagecreate; 2902 2903 mutex_enter(&rp->r_statelock); 2904 pagecreate = (pon == 0) && (pn == PAGESIZE || 2905 uiop->uio_loffset + pn >= rp->r_size); 2906 mutex_exit(&rp->r_statelock); 2907 2908 base = segmap_getmapflt(segkmap, vp, off + on, 2909 pn, !pagecreate, S_WRITE); 2910 2911 error = writerp4(rp, base + pon, n, uiop, 2912 pagecreate); 2913 2914 } else { 2915 base = segmap_getmapflt(segkmap, vp, off + on, 2916 n, 0, S_READ); 2917 error = writerp4(rp, base + on, n, uiop, 0); 2918 } 2919 } 2920 2921 if (!error) { 2922 if (mi->mi_flags & MI4_NOAC) 2923 flags = SM_WRITE; 2924 else if ((uiop->uio_loffset % bsize) == 0 || 2925 IS_SWAPVP(vp)) { 2926 /* 2927 * Have written a whole block. 2928 * Start an asynchronous write 2929 * and mark the buffer to 2930 * indicate that it won't be 2931 * needed again soon. 2932 */ 2933 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2934 } else 2935 flags = 0; 2936 if ((ioflag & (FSYNC|FDSYNC)) || 2937 (rp->r_flags & R4OUTOFSPACE)) { 2938 flags &= ~SM_ASYNC; 2939 flags |= SM_WRITE; 2940 } 2941 if (vpm_enable) { 2942 error = vpm_sync_pages(vp, off, n, flags); 2943 } else { 2944 error = segmap_release(segkmap, base, flags); 2945 } 2946 } else { 2947 if (vpm_enable) { 2948 (void) vpm_sync_pages(vp, off, n, 0); 2949 } else { 2950 (void) segmap_release(segkmap, base, 0); 2951 } 2952 /* 2953 * In the event that we got an access error while 2954 * faulting in a page for a write-only file just 2955 * force a write. 2956 */ 2957 if (error == EACCES) 2958 goto nfs4_fwrite; 2959 } 2960 } while (!error && uiop->uio_resid > 0); 2961 2962 bottom: 2963 if (error) { 2964 uiop->uio_resid = resid + remainder; 2965 uiop->uio_loffset = offset; 2966 } else { 2967 uiop->uio_resid += remainder; 2968 2969 mutex_enter(&rp->r_statev4_lock); 2970 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 2971 gethrestime(&rp->r_attr.va_mtime); 2972 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 2973 } 2974 mutex_exit(&rp->r_statev4_lock); 2975 } 2976 2977 nfs_rw_exit(&rp->r_lkserlock); 2978 2979 return (error); 2980 } 2981 2982 /* 2983 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2984 */ 2985 static int 2986 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 2987 int flags, cred_t *cr) 2988 { 2989 struct buf *bp; 2990 int error; 2991 page_t *savepp; 2992 uchar_t fsdata; 2993 stable_how4 stab_comm; 2994 2995 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 2996 bp = pageio_setup(pp, len, vp, flags); 2997 ASSERT(bp != NULL); 2998 2999 /* 3000 * pageio_setup should have set b_addr to 0. This 3001 * is correct since we want to do I/O on a page 3002 * boundary. bp_mapin will use this addr to calculate 3003 * an offset, and then set b_addr to the kernel virtual 3004 * address it allocated for us. 3005 */ 3006 ASSERT(bp->b_un.b_addr == 0); 3007 3008 bp->b_edev = 0; 3009 bp->b_dev = 0; 3010 bp->b_lblkno = lbtodb(off); 3011 bp->b_file = vp; 3012 bp->b_offset = (offset_t)off; 3013 bp_mapin(bp); 3014 3015 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3016 freemem > desfree) 3017 stab_comm = UNSTABLE4; 3018 else 3019 stab_comm = FILE_SYNC4; 3020 3021 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3022 3023 bp_mapout(bp); 3024 pageio_done(bp); 3025 3026 if (stab_comm == UNSTABLE4) 3027 fsdata = C_DELAYCOMMIT; 3028 else 3029 fsdata = C_NOCOMMIT; 3030 3031 savepp = pp; 3032 do { 3033 pp->p_fsdata = fsdata; 3034 } while ((pp = pp->p_next) != savepp); 3035 3036 return (error); 3037 } 3038 3039 /* 3040 */ 3041 static int 3042 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3043 { 3044 nfs4_open_owner_t *oop; 3045 nfs4_open_stream_t *osp; 3046 rnode4_t *rp = VTOR4(vp); 3047 mntinfo4_t *mi = VTOMI4(vp); 3048 int reopen_needed; 3049 3050 ASSERT(nfs_zone() == mi->mi_zone); 3051 3052 3053 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3054 if (!oop) 3055 return (EIO); 3056 3057 /* returns with 'os_sync_lock' held */ 3058 osp = find_open_stream(oop, rp); 3059 if (!osp) { 3060 open_owner_rele(oop); 3061 return (EIO); 3062 } 3063 3064 if (osp->os_failed_reopen) { 3065 mutex_exit(&osp->os_sync_lock); 3066 open_stream_rele(osp, rp); 3067 open_owner_rele(oop); 3068 return (EIO); 3069 } 3070 3071 /* 3072 * Determine whether a reopen is needed. If this 3073 * is a delegation open stream, then the os_delegation bit 3074 * should be set. 3075 */ 3076 3077 reopen_needed = osp->os_delegation; 3078 3079 mutex_exit(&osp->os_sync_lock); 3080 open_owner_rele(oop); 3081 3082 if (reopen_needed) { 3083 nfs4_error_zinit(ep); 3084 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3085 mutex_enter(&osp->os_sync_lock); 3086 if (ep->error || ep->stat || osp->os_failed_reopen) { 3087 mutex_exit(&osp->os_sync_lock); 3088 open_stream_rele(osp, rp); 3089 return (EIO); 3090 } 3091 mutex_exit(&osp->os_sync_lock); 3092 } 3093 open_stream_rele(osp, rp); 3094 3095 return (0); 3096 } 3097 3098 /* 3099 * Write to file. Writes to remote server in largest size 3100 * chunks that the server can handle. Write is synchronous. 3101 */ 3102 static int 3103 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3104 stable_how4 *stab_comm) 3105 { 3106 mntinfo4_t *mi; 3107 COMPOUND4args_clnt args; 3108 COMPOUND4res_clnt res; 3109 WRITE4args *wargs; 3110 WRITE4res *wres; 3111 nfs_argop4 argop[2]; 3112 nfs_resop4 *resop; 3113 int tsize; 3114 stable_how4 stable; 3115 rnode4_t *rp; 3116 int doqueue = 1; 3117 bool_t needrecov; 3118 nfs4_recov_state_t recov_state; 3119 nfs4_stateid_types_t sid_types; 3120 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3121 int recov; 3122 3123 rp = VTOR4(vp); 3124 mi = VTOMI4(vp); 3125 3126 ASSERT(nfs_zone() == mi->mi_zone); 3127 3128 stable = *stab_comm; 3129 *stab_comm = FILE_SYNC4; 3130 3131 needrecov = FALSE; 3132 recov_state.rs_flags = 0; 3133 recov_state.rs_num_retry_despite_err = 0; 3134 nfs4_init_stateid_types(&sid_types); 3135 3136 /* Is curthread the recovery thread? */ 3137 mutex_enter(&mi->mi_lock); 3138 recov = (mi->mi_recovthread == curthread); 3139 mutex_exit(&mi->mi_lock); 3140 3141 recov_retry: 3142 args.ctag = TAG_WRITE; 3143 args.array_len = 2; 3144 args.array = argop; 3145 3146 if (!recov) { 3147 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3148 &recov_state, NULL); 3149 if (e.error) 3150 return (e.error); 3151 } 3152 3153 /* 0. putfh target fh */ 3154 argop[0].argop = OP_CPUTFH; 3155 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3156 3157 /* 1. write */ 3158 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3159 3160 do { 3161 3162 wargs->offset = (offset4)offset; 3163 wargs->data_val = base; 3164 3165 if (mi->mi_io_kstats) { 3166 mutex_enter(&mi->mi_lock); 3167 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3168 mutex_exit(&mi->mi_lock); 3169 } 3170 3171 if ((vp->v_flag & VNOCACHE) || 3172 (rp->r_flags & R4DIRECTIO) || 3173 (mi->mi_flags & MI4_DIRECTIO)) 3174 tsize = MIN(mi->mi_stsize, count); 3175 else 3176 tsize = MIN(mi->mi_curwrite, count); 3177 wargs->data_len = (uint_t)tsize; 3178 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3179 3180 if (mi->mi_io_kstats) { 3181 mutex_enter(&mi->mi_lock); 3182 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3183 mutex_exit(&mi->mi_lock); 3184 } 3185 3186 if (!recov) { 3187 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3188 if (e.error && !needrecov) { 3189 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3190 &recov_state, needrecov); 3191 return (e.error); 3192 } 3193 3194 3195 /* 3196 * Do handling of OLD_STATEID outside 3197 * of the normal recovery framework. 3198 * 3199 * If write receives a BAD stateid error while using a 3200 * delegation stateid, retry using the open stateid 3201 * (if it exists). If it doesn't have an open stateid, 3202 * reopen the * file first, then retry. 3203 */ 3204 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3205 sid_types.cur_sid_type != SPEC_SID) { 3206 nfs4_save_stateid(&wargs->stateid, &sid_types); 3207 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3208 &recov_state, needrecov); 3209 (void) xdr_free(xdr_COMPOUND4res_clnt, 3210 (caddr_t)&res); 3211 goto recov_retry; 3212 } else if (e.error == 0 && 3213 res.status == NFS4ERR_BAD_STATEID && 3214 sid_types.cur_sid_type == DEL_SID) { 3215 nfs4_save_stateid(&wargs->stateid, &sid_types); 3216 mutex_enter(&rp->r_statev4_lock); 3217 rp->r_deleg_return_pending = TRUE; 3218 mutex_exit(&rp->r_statev4_lock); 3219 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3220 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3221 &recov_state, needrecov); 3222 (void) xdr_free(xdr_COMPOUND4res_clnt, 3223 (caddr_t)&res); 3224 return (EIO); 3225 } 3226 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3227 &recov_state, needrecov); 3228 /* hold needed for nfs4delegreturn_thread */ 3229 VN_HOLD(vp); 3230 nfs4delegreturn_async(rp, 3231 (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3232 NFS4_DR_DISCARD), FALSE); 3233 (void) xdr_free(xdr_COMPOUND4res_clnt, 3234 (caddr_t)&res); 3235 goto recov_retry; 3236 } 3237 3238 if (needrecov) { 3239 bool_t abort; 3240 3241 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3242 "nfs4write: client got error %d, " 3243 "res.status %d, so start recovery", 3244 e.error, res.status)); 3245 3246 abort = nfs4_start_recovery(&e, 3247 VTOMI4(vp), vp, NULL, &wargs->stateid, 3248 NULL, OP_WRITE, NULL); 3249 if (!e.error) { 3250 e.error = geterrno4(res.status); 3251 (void) xdr_free(xdr_COMPOUND4res_clnt, 3252 (caddr_t)&res); 3253 } 3254 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3255 &recov_state, needrecov); 3256 if (abort == FALSE) 3257 goto recov_retry; 3258 return (e.error); 3259 } 3260 3261 if (res.status) { 3262 e.error = geterrno4(res.status); 3263 (void) xdr_free(xdr_COMPOUND4res_clnt, 3264 (caddr_t)&res); 3265 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3266 &recov_state, needrecov); 3267 return (e.error); 3268 } 3269 3270 resop = &res.array[1]; /* write res */ 3271 wres = &resop->nfs_resop4_u.opwrite; 3272 3273 if ((int)wres->count > tsize) { 3274 (void) xdr_free(xdr_COMPOUND4res_clnt, 3275 (caddr_t)&res); 3276 3277 zcmn_err(getzoneid(), CE_WARN, 3278 "nfs4write: server wrote %u, requested " 3279 "was %u", (int)wres->count, tsize); 3280 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3281 &recov_state, needrecov); 3282 return (EIO); 3283 } 3284 if (wres->committed == UNSTABLE4) { 3285 *stab_comm = UNSTABLE4; 3286 if (wargs->stable == DATA_SYNC4 || 3287 wargs->stable == FILE_SYNC4) { 3288 (void) xdr_free(xdr_COMPOUND4res_clnt, 3289 (caddr_t)&res); 3290 zcmn_err(getzoneid(), CE_WARN, 3291 "nfs4write: server %s did not " 3292 "commit to stable storage", 3293 rp->r_server->sv_hostname); 3294 nfs4_end_fop(VTOMI4(vp), vp, NULL, 3295 OH_WRITE, &recov_state, needrecov); 3296 return (EIO); 3297 } 3298 } 3299 } 3300 3301 tsize = (int)wres->count; 3302 count -= tsize; 3303 base += tsize; 3304 offset += tsize; 3305 if (mi->mi_io_kstats) { 3306 mutex_enter(&mi->mi_lock); 3307 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3308 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3309 tsize; 3310 mutex_exit(&mi->mi_lock); 3311 } 3312 lwp_stat_update(LWP_STAT_OUBLK, 1); 3313 mutex_enter(&rp->r_statelock); 3314 if (rp->r_flags & R4HAVEVERF) { 3315 if (rp->r_writeverf != wres->writeverf) { 3316 nfs4_set_mod(vp); 3317 rp->r_writeverf = wres->writeverf; 3318 } 3319 } else { 3320 rp->r_writeverf = wres->writeverf; 3321 rp->r_flags |= R4HAVEVERF; 3322 } 3323 PURGE_ATTRCACHE4_LOCKED(rp); 3324 rp->r_flags |= R4WRITEMODIFIED; 3325 gethrestime(&rp->r_attr.va_mtime); 3326 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3327 mutex_exit(&rp->r_statelock); 3328 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3329 } while (count); 3330 3331 if (!recov) 3332 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, 3333 needrecov); 3334 3335 return (e.error); 3336 } 3337 3338 /* 3339 * Read from a file. Reads data in largest chunks our interface can handle. 3340 */ 3341 static int 3342 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3343 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3344 { 3345 mntinfo4_t *mi; 3346 COMPOUND4args_clnt args; 3347 COMPOUND4res_clnt res; 3348 READ4args *rargs; 3349 nfs_argop4 argop[2]; 3350 int tsize; 3351 int doqueue; 3352 rnode4_t *rp; 3353 int data_len; 3354 bool_t is_eof; 3355 bool_t needrecov = FALSE; 3356 nfs4_recov_state_t recov_state; 3357 nfs4_stateid_types_t sid_types; 3358 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3359 3360 rp = VTOR4(vp); 3361 mi = VTOMI4(vp); 3362 doqueue = 1; 3363 3364 ASSERT(nfs_zone() == mi->mi_zone); 3365 3366 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3367 3368 args.array_len = 2; 3369 args.array = argop; 3370 3371 nfs4_init_stateid_types(&sid_types); 3372 3373 recov_state.rs_flags = 0; 3374 recov_state.rs_num_retry_despite_err = 0; 3375 3376 recov_retry: 3377 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3378 &recov_state, NULL); 3379 if (e.error) 3380 return (e.error); 3381 3382 /* putfh target fh */ 3383 argop[0].argop = OP_CPUTFH; 3384 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3385 3386 /* read */ 3387 argop[1].argop = OP_READ; 3388 rargs = &argop[1].nfs_argop4_u.opread; 3389 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3390 OP_READ, &sid_types, async); 3391 3392 do { 3393 if (mi->mi_io_kstats) { 3394 mutex_enter(&mi->mi_lock); 3395 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3396 mutex_exit(&mi->mi_lock); 3397 } 3398 3399 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3400 "nfs4read: %s call, rp %s", 3401 needrecov ? "recov" : "first", 3402 rnode4info(rp))); 3403 3404 if ((vp->v_flag & VNOCACHE) || 3405 (rp->r_flags & R4DIRECTIO) || 3406 (mi->mi_flags & MI4_DIRECTIO)) 3407 tsize = MIN(mi->mi_tsize, count); 3408 else 3409 tsize = MIN(mi->mi_curread, count); 3410 rargs->offset = (offset4)offset; 3411 rargs->count = (count4)tsize; 3412 rargs->res_data_val_alt = NULL; 3413 rargs->res_mblk = NULL; 3414 rargs->res_uiop = NULL; 3415 rargs->res_maxsize = 0; 3416 if (uiop) 3417 rargs->res_uiop = uiop; 3418 else 3419 rargs->res_data_val_alt = base; 3420 rargs->res_maxsize = tsize; 3421 3422 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3423 #ifdef DEBUG 3424 if (nfs4read_error_inject) { 3425 res.status = nfs4read_error_inject; 3426 nfs4read_error_inject = 0; 3427 } 3428 #endif 3429 3430 if (mi->mi_io_kstats) { 3431 mutex_enter(&mi->mi_lock); 3432 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3433 mutex_exit(&mi->mi_lock); 3434 } 3435 3436 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3437 if (e.error != 0 && !needrecov) { 3438 nfs4_end_fop(mi, vp, NULL, OH_READ, 3439 &recov_state, needrecov); 3440 return (e.error); 3441 } 3442 3443 /* 3444 * Do proper retry for OLD and BAD stateid errors outside 3445 * of the normal recovery framework. There are two differences 3446 * between async and sync reads. The first is that we allow 3447 * retry on BAD_STATEID for async reads, but not sync reads. 3448 * The second is that we mark the file dead for a failed 3449 * attempt with a special stateid for sync reads, but just 3450 * return EIO for async reads. 3451 * 3452 * If a sync read receives a BAD stateid error while using a 3453 * delegation stateid, retry using the open stateid (if it 3454 * exists). If it doesn't have an open stateid, reopen the 3455 * file first, then retry. 3456 */ 3457 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3458 res.status == NFS4ERR_BAD_STATEID) && async) { 3459 nfs4_end_fop(mi, vp, NULL, OH_READ, 3460 &recov_state, needrecov); 3461 if (sid_types.cur_sid_type == SPEC_SID) { 3462 (void) xdr_free(xdr_COMPOUND4res_clnt, 3463 (caddr_t)&res); 3464 return (EIO); 3465 } 3466 nfs4_save_stateid(&rargs->stateid, &sid_types); 3467 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3468 goto recov_retry; 3469 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3470 !async && sid_types.cur_sid_type != SPEC_SID) { 3471 nfs4_save_stateid(&rargs->stateid, &sid_types); 3472 nfs4_end_fop(mi, vp, NULL, OH_READ, 3473 &recov_state, needrecov); 3474 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3475 goto recov_retry; 3476 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3477 sid_types.cur_sid_type == DEL_SID) { 3478 nfs4_save_stateid(&rargs->stateid, &sid_types); 3479 mutex_enter(&rp->r_statev4_lock); 3480 rp->r_deleg_return_pending = TRUE; 3481 mutex_exit(&rp->r_statev4_lock); 3482 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3483 nfs4_end_fop(mi, vp, NULL, OH_READ, 3484 &recov_state, needrecov); 3485 (void) xdr_free(xdr_COMPOUND4res_clnt, 3486 (caddr_t)&res); 3487 return (EIO); 3488 } 3489 nfs4_end_fop(mi, vp, NULL, OH_READ, 3490 &recov_state, needrecov); 3491 /* hold needed for nfs4delegreturn_thread */ 3492 VN_HOLD(vp); 3493 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3494 NFS4_DR_DISCARD), FALSE); 3495 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3496 goto recov_retry; 3497 } 3498 if (needrecov) { 3499 bool_t abort; 3500 3501 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3502 "nfs4read: initiating recovery\n")); 3503 3504 abort = nfs4_start_recovery(&e, 3505 mi, vp, NULL, &rargs->stateid, 3506 NULL, OP_READ, NULL); 3507 nfs4_end_fop(mi, vp, NULL, OH_READ, 3508 &recov_state, needrecov); 3509 /* 3510 * Do not retry if we got OLD_STATEID using a special 3511 * stateid. This avoids looping with a broken server. 3512 */ 3513 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3514 sid_types.cur_sid_type == SPEC_SID) 3515 abort = TRUE; 3516 3517 if (abort == FALSE) { 3518 /* 3519 * Need to retry all possible stateids in 3520 * case the recovery error wasn't stateid 3521 * related or the stateids have become 3522 * stale (server reboot). 3523 */ 3524 nfs4_init_stateid_types(&sid_types); 3525 (void) xdr_free(xdr_COMPOUND4res_clnt, 3526 (caddr_t)&res); 3527 goto recov_retry; 3528 } 3529 3530 if (!e.error) { 3531 e.error = geterrno4(res.status); 3532 (void) xdr_free(xdr_COMPOUND4res_clnt, 3533 (caddr_t)&res); 3534 } 3535 return (e.error); 3536 } 3537 3538 if (res.status) { 3539 e.error = geterrno4(res.status); 3540 nfs4_end_fop(mi, vp, NULL, OH_READ, 3541 &recov_state, needrecov); 3542 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3543 return (e.error); 3544 } 3545 3546 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3547 count -= data_len; 3548 if (base) 3549 base += data_len; 3550 offset += data_len; 3551 if (mi->mi_io_kstats) { 3552 mutex_enter(&mi->mi_lock); 3553 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3554 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3555 mutex_exit(&mi->mi_lock); 3556 } 3557 lwp_stat_update(LWP_STAT_INBLK, 1); 3558 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3559 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3560 3561 } while (count && !is_eof); 3562 3563 *residp = count; 3564 3565 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3566 3567 return (e.error); 3568 } 3569 3570 /* ARGSUSED */ 3571 static int 3572 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3573 caller_context_t *ct) 3574 { 3575 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3576 return (EIO); 3577 switch (cmd) { 3578 case _FIODIRECTIO: 3579 return (nfs4_directio(vp, (int)arg, cr)); 3580 default: 3581 return (ENOTTY); 3582 } 3583 } 3584 3585 /* ARGSUSED */ 3586 int 3587 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3588 caller_context_t *ct) 3589 { 3590 int error; 3591 rnode4_t *rp = VTOR4(vp); 3592 3593 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3594 return (EIO); 3595 /* 3596 * If it has been specified that the return value will 3597 * just be used as a hint, and we are only being asked 3598 * for size, fsid or rdevid, then return the client's 3599 * notion of these values without checking to make sure 3600 * that the attribute cache is up to date. 3601 * The whole point is to avoid an over the wire GETATTR 3602 * call. 3603 */ 3604 if (flags & ATTR_HINT) { 3605 if (vap->va_mask == 3606 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 3607 mutex_enter(&rp->r_statelock); 3608 if (vap->va_mask | AT_SIZE) 3609 vap->va_size = rp->r_size; 3610 if (vap->va_mask | AT_FSID) 3611 vap->va_fsid = rp->r_attr.va_fsid; 3612 if (vap->va_mask | AT_RDEV) 3613 vap->va_rdev = rp->r_attr.va_rdev; 3614 mutex_exit(&rp->r_statelock); 3615 return (0); 3616 } 3617 } 3618 3619 /* 3620 * Only need to flush pages if asking for the mtime 3621 * and if there any dirty pages or any outstanding 3622 * asynchronous (write) requests for this file. 3623 */ 3624 if (vap->va_mask & AT_MTIME) { 3625 rp = VTOR4(vp); 3626 if (nfs4_has_pages(vp)) { 3627 mutex_enter(&rp->r_statev4_lock); 3628 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3629 mutex_exit(&rp->r_statev4_lock); 3630 if (rp->r_flags & R4DIRTY || 3631 rp->r_awcount > 0) { 3632 mutex_enter(&rp->r_statelock); 3633 rp->r_gcount++; 3634 mutex_exit(&rp->r_statelock); 3635 error = 3636 nfs4_putpage(vp, (u_offset_t)0, 3637 0, 0, cr, NULL); 3638 mutex_enter(&rp->r_statelock); 3639 if (error && (error == ENOSPC || 3640 error == EDQUOT)) { 3641 if (!rp->r_error) 3642 rp->r_error = error; 3643 } 3644 if (--rp->r_gcount == 0) 3645 cv_broadcast(&rp->r_cv); 3646 mutex_exit(&rp->r_statelock); 3647 } 3648 } else { 3649 mutex_exit(&rp->r_statev4_lock); 3650 } 3651 } 3652 } 3653 return (nfs4getattr(vp, vap, cr)); 3654 } 3655 3656 int 3657 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3658 { 3659 /* 3660 * If these are the only two bits cleared 3661 * on the server then return 0 (OK) else 3662 * return 1 (BAD). 3663 */ 3664 on_client &= ~(S_ISUID|S_ISGID); 3665 if (on_client == from_server) 3666 return (0); 3667 else 3668 return (1); 3669 } 3670 3671 /*ARGSUSED4*/ 3672 static int 3673 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3674 caller_context_t *ct) 3675 { 3676 if (vap->va_mask & AT_NOSET) 3677 return (EINVAL); 3678 3679 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3680 return (EIO); 3681 3682 /* 3683 * Don't call secpolicy_vnode_setattr, the client cannot 3684 * use its cached attributes to make security decisions 3685 * as the server may be faking mode bits or mapping uid/gid. 3686 * Always just let the server to the checking. 3687 * If we provide the ability to remove basic priviledges 3688 * to setattr (e.g. basic without chmod) then we will 3689 * need to add a check here before calling the server. 3690 */ 3691 3692 return (nfs4setattr(vp, vap, flags, cr, NULL)); 3693 } 3694 3695 /* 3696 * To replace the "guarded" version 3 setattr, we use two types of compound 3697 * setattr requests: 3698 * 1. The "normal" setattr, used when the size of the file isn't being 3699 * changed - { Putfh <fh>; Setattr; Getattr }/ 3700 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3701 * with only ctime as the argument. If the server ctime differs from 3702 * what is cached on the client, the verify will fail, but we would 3703 * already have the ctime from the preceding getattr, so just set it 3704 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3705 * Setattr; Getattr }. 3706 * 3707 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3708 * this setattr and NULL if they are not. 3709 */ 3710 static int 3711 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3712 vsecattr_t *vsap) 3713 { 3714 COMPOUND4args_clnt args; 3715 COMPOUND4res_clnt res, *resp = NULL; 3716 nfs4_ga_res_t *garp = NULL; 3717 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3718 nfs_argop4 argop[5]; 3719 int verify_argop = -1; 3720 int setattr_argop = 1; 3721 nfs_resop4 *resop; 3722 vattr_t va; 3723 rnode4_t *rp; 3724 int doqueue = 1; 3725 uint_t mask = vap->va_mask; 3726 mode_t omode; 3727 vsecattr_t *vsp; 3728 timestruc_t ctime; 3729 bool_t needrecov = FALSE; 3730 nfs4_recov_state_t recov_state; 3731 nfs4_stateid_types_t sid_types; 3732 stateid4 stateid; 3733 hrtime_t t; 3734 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3735 servinfo4_t *svp; 3736 bitmap4 supp_attrs; 3737 3738 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3739 rp = VTOR4(vp); 3740 nfs4_init_stateid_types(&sid_types); 3741 3742 /* 3743 * Only need to flush pages if there are any pages and 3744 * if the file is marked as dirty in some fashion. The 3745 * file must be flushed so that we can accurately 3746 * determine the size of the file and the cached data 3747 * after the SETATTR returns. A file is considered to 3748 * be dirty if it is either marked with R4DIRTY, has 3749 * outstanding i/o's active, or is mmap'd. In this 3750 * last case, we can't tell whether there are dirty 3751 * pages, so we flush just to be sure. 3752 */ 3753 if (nfs4_has_pages(vp) && 3754 ((rp->r_flags & R4DIRTY) || 3755 rp->r_count > 0 || 3756 rp->r_mapcnt > 0)) { 3757 ASSERT(vp->v_type != VCHR); 3758 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3759 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3760 mutex_enter(&rp->r_statelock); 3761 if (!rp->r_error) 3762 rp->r_error = e.error; 3763 mutex_exit(&rp->r_statelock); 3764 } 3765 } 3766 3767 if (mask & AT_SIZE) { 3768 /* 3769 * Verification setattr compound for non-deleg AT_SIZE: 3770 * { Putfh; Getattr; Verify; Setattr; Getattr } 3771 * Set ctime local here (outside the do_again label) 3772 * so that subsequent retries (after failed VERIFY) 3773 * will use ctime from GETATTR results (from failed 3774 * verify compound) as VERIFY arg. 3775 * If file has delegation, then VERIFY(time_metadata) 3776 * is of little added value, so don't bother. 3777 */ 3778 mutex_enter(&rp->r_statev4_lock); 3779 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3780 rp->r_deleg_return_pending) { 3781 numops = 5; 3782 ctime = rp->r_attr.va_ctime; 3783 } 3784 mutex_exit(&rp->r_statev4_lock); 3785 } 3786 3787 recov_state.rs_flags = 0; 3788 recov_state.rs_num_retry_despite_err = 0; 3789 3790 args.ctag = TAG_SETATTR; 3791 do_again: 3792 recov_retry: 3793 setattr_argop = numops - 2; 3794 3795 args.array = argop; 3796 args.array_len = numops; 3797 3798 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3799 if (e.error) 3800 return (e.error); 3801 3802 3803 /* putfh target fh */ 3804 argop[0].argop = OP_CPUTFH; 3805 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3806 3807 if (numops == 5) { 3808 /* 3809 * We only care about the ctime, but need to get mtime 3810 * and size for proper cache update. 3811 */ 3812 /* getattr */ 3813 argop[1].argop = OP_GETATTR; 3814 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3815 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3816 3817 /* verify - set later in loop */ 3818 verify_argop = 2; 3819 } 3820 3821 /* setattr */ 3822 svp = rp->r_server; 3823 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3824 supp_attrs = svp->sv_supp_attrs; 3825 nfs_rw_exit(&svp->sv_lock); 3826 3827 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3828 supp_attrs, &e.error, &sid_types); 3829 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3830 if (e.error) { 3831 /* req time field(s) overflow - return immediately */ 3832 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3833 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3834 opsetattr.obj_attributes); 3835 return (e.error); 3836 } 3837 omode = rp->r_attr.va_mode; 3838 3839 /* getattr */ 3840 argop[numops-1].argop = OP_GETATTR; 3841 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3842 /* 3843 * If we are setting the ACL (indicated only by vsap != NULL), request 3844 * the ACL in this getattr. The ACL returned from this getattr will be 3845 * used in updating the ACL cache. 3846 */ 3847 if (vsap != NULL) 3848 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3849 FATTR4_ACL_MASK; 3850 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3851 3852 /* 3853 * setattr iterates if the object size is set and the cached ctime 3854 * does not match the file ctime. In that case, verify the ctime first. 3855 */ 3856 3857 do { 3858 if (verify_argop != -1) { 3859 /* 3860 * Verify that the ctime match before doing setattr. 3861 */ 3862 va.va_mask = AT_CTIME; 3863 va.va_ctime = ctime; 3864 svp = rp->r_server; 3865 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3866 supp_attrs = svp->sv_supp_attrs; 3867 nfs_rw_exit(&svp->sv_lock); 3868 e.error = nfs4args_verify(&argop[verify_argop], &va, 3869 OP_VERIFY, supp_attrs); 3870 if (e.error) { 3871 /* req time field(s) overflow - return */ 3872 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3873 needrecov); 3874 break; 3875 } 3876 } 3877 3878 doqueue = 1; 3879 3880 t = gethrtime(); 3881 3882 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3883 3884 /* 3885 * Purge the access cache and ACL cache if changing either the 3886 * owner of the file, the group owner, or the mode. These may 3887 * change the access permissions of the file, so purge old 3888 * information and start over again. 3889 */ 3890 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3891 (void) nfs4_access_purge_rp(rp); 3892 if (rp->r_secattr != NULL) { 3893 mutex_enter(&rp->r_statelock); 3894 vsp = rp->r_secattr; 3895 rp->r_secattr = NULL; 3896 mutex_exit(&rp->r_statelock); 3897 if (vsp != NULL) 3898 nfs4_acl_free_cache(vsp); 3899 } 3900 } 3901 3902 /* 3903 * If res.array_len == numops, then everything succeeded, 3904 * except for possibly the final getattr. If only the 3905 * last getattr failed, give up, and don't try recovery. 3906 */ 3907 if (res.array_len == numops) { 3908 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3909 needrecov); 3910 if (! e.error) 3911 resp = &res; 3912 break; 3913 } 3914 3915 /* 3916 * if either rpc call failed or completely succeeded - done 3917 */ 3918 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3919 if (e.error) { 3920 PURGE_ATTRCACHE4(vp); 3921 if (!needrecov) { 3922 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3923 needrecov); 3924 break; 3925 } 3926 } 3927 3928 /* 3929 * Do proper retry for OLD_STATEID outside of the normal 3930 * recovery framework. 3931 */ 3932 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3933 sid_types.cur_sid_type != SPEC_SID && 3934 sid_types.cur_sid_type != NO_SID) { 3935 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3936 needrecov); 3937 nfs4_save_stateid(&stateid, &sid_types); 3938 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3939 opsetattr.obj_attributes); 3940 if (verify_argop != -1) { 3941 nfs4args_verify_free(&argop[verify_argop]); 3942 verify_argop = -1; 3943 } 3944 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3945 goto recov_retry; 3946 } 3947 3948 if (needrecov) { 3949 bool_t abort; 3950 3951 abort = nfs4_start_recovery(&e, 3952 VTOMI4(vp), vp, NULL, NULL, NULL, 3953 OP_SETATTR, NULL); 3954 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3955 needrecov); 3956 /* 3957 * Do not retry if we failed with OLD_STATEID using 3958 * a special stateid. This is done to avoid looping 3959 * with a broken server. 3960 */ 3961 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3962 (sid_types.cur_sid_type == SPEC_SID || 3963 sid_types.cur_sid_type == NO_SID)) 3964 abort = TRUE; 3965 if (!e.error) { 3966 if (res.status == NFS4ERR_BADOWNER) 3967 nfs4_log_badowner(VTOMI4(vp), 3968 OP_SETATTR); 3969 3970 e.error = geterrno4(res.status); 3971 (void) xdr_free(xdr_COMPOUND4res_clnt, 3972 (caddr_t)&res); 3973 } 3974 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3975 opsetattr.obj_attributes); 3976 if (verify_argop != -1) { 3977 nfs4args_verify_free(&argop[verify_argop]); 3978 verify_argop = -1; 3979 } 3980 if (abort == FALSE) { 3981 /* 3982 * Need to retry all possible stateids in 3983 * case the recovery error wasn't stateid 3984 * related or the stateids have become 3985 * stale (server reboot). 3986 */ 3987 nfs4_init_stateid_types(&sid_types); 3988 goto recov_retry; 3989 } 3990 return (e.error); 3991 } 3992 3993 /* 3994 * Need to call nfs4_end_op before nfs4getattr to 3995 * avoid potential nfs4_start_op deadlock. See RFE 3996 * 4777612. Calls to nfs4_invalidate_pages() and 3997 * nfs4_purge_stale_fh() might also generate over the 3998 * wire calls which my cause nfs4_start_op() deadlock. 3999 */ 4000 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4001 4002 /* 4003 * Check to update lease. 4004 */ 4005 resp = &res; 4006 if (res.status == NFS4_OK) { 4007 break; 4008 } 4009 4010 /* 4011 * Check if verify failed to see if try again 4012 */ 4013 if ((verify_argop == -1) || (res.array_len != 3)) { 4014 /* 4015 * can't continue... 4016 */ 4017 if (res.status == NFS4ERR_BADOWNER) 4018 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4019 4020 e.error = geterrno4(res.status); 4021 } else { 4022 /* 4023 * When the verify request fails, the client ctime is 4024 * not in sync with the server. This is the same as 4025 * the version 3 "not synchronized" error, and we 4026 * handle it in a similar manner (XXX do we need to???). 4027 * Use the ctime returned in the first getattr for 4028 * the input to the next verify. 4029 * If we couldn't get the attributes, then we give up 4030 * because we can't complete the operation as required. 4031 */ 4032 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4033 } 4034 if (e.error) { 4035 PURGE_ATTRCACHE4(vp); 4036 nfs4_purge_stale_fh(e.error, vp, cr); 4037 } else { 4038 /* 4039 * retry with a new verify value 4040 */ 4041 ctime = garp->n4g_va.va_ctime; 4042 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4043 resp = NULL; 4044 } 4045 if (!e.error) { 4046 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4047 opsetattr.obj_attributes); 4048 if (verify_argop != -1) { 4049 nfs4args_verify_free(&argop[verify_argop]); 4050 verify_argop = -1; 4051 } 4052 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4053 goto do_again; 4054 } 4055 } while (!e.error); 4056 4057 if (e.error) { 4058 /* 4059 * If we are here, rfs4call has an irrecoverable error - return 4060 */ 4061 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4062 opsetattr.obj_attributes); 4063 if (verify_argop != -1) { 4064 nfs4args_verify_free(&argop[verify_argop]); 4065 verify_argop = -1; 4066 } 4067 if (resp) 4068 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4069 return (e.error); 4070 } 4071 4072 4073 4074 /* 4075 * If changing the size of the file, invalidate 4076 * any local cached data which is no longer part 4077 * of the file. We also possibly invalidate the 4078 * last page in the file. We could use 4079 * pvn_vpzero(), but this would mark the page as 4080 * modified and require it to be written back to 4081 * the server for no particularly good reason. 4082 * This way, if we access it, then we bring it 4083 * back in. A read should be cheaper than a 4084 * write. 4085 */ 4086 if (mask & AT_SIZE) { 4087 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4088 } 4089 4090 /* either no error or one of the postop getattr failed */ 4091 4092 /* 4093 * XXX Perform a simplified version of wcc checking. Instead of 4094 * have another getattr to get pre-op, just purge cache if 4095 * any of the ops prior to and including the getattr failed. 4096 * If the getattr succeeded then update the attrcache accordingly. 4097 */ 4098 4099 garp = NULL; 4100 if (res.status == NFS4_OK) { 4101 /* 4102 * Last getattr 4103 */ 4104 resop = &res.array[numops - 1]; 4105 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4106 } 4107 /* 4108 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4109 * rather than filling it. See the function itself for details. 4110 */ 4111 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4112 if (garp != NULL) { 4113 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4114 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4115 vs_ace4_destroy(&garp->n4g_vsa); 4116 } else { 4117 if (vsap != NULL) { 4118 /* 4119 * The ACL was supposed to be set and to be 4120 * returned in the last getattr of this 4121 * compound, but for some reason the getattr 4122 * result doesn't contain the ACL. In this 4123 * case, purge the ACL cache. 4124 */ 4125 if (rp->r_secattr != NULL) { 4126 mutex_enter(&rp->r_statelock); 4127 vsp = rp->r_secattr; 4128 rp->r_secattr = NULL; 4129 mutex_exit(&rp->r_statelock); 4130 if (vsp != NULL) 4131 nfs4_acl_free_cache(vsp); 4132 } 4133 } 4134 } 4135 } 4136 4137 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4138 /* 4139 * Set the size, rather than relying on getting it updated 4140 * via a GETATTR. With delegations the client tries to 4141 * suppress GETATTR calls. 4142 */ 4143 mutex_enter(&rp->r_statelock); 4144 rp->r_size = vap->va_size; 4145 mutex_exit(&rp->r_statelock); 4146 } 4147 4148 /* 4149 * Can free up request args and res 4150 */ 4151 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4152 opsetattr.obj_attributes); 4153 if (verify_argop != -1) { 4154 nfs4args_verify_free(&argop[verify_argop]); 4155 verify_argop = -1; 4156 } 4157 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4158 4159 /* 4160 * Some servers will change the mode to clear the setuid 4161 * and setgid bits when changing the uid or gid. The 4162 * client needs to compensate appropriately. 4163 */ 4164 if (mask & (AT_UID | AT_GID)) { 4165 int terror, do_setattr; 4166 4167 do_setattr = 0; 4168 va.va_mask = AT_MODE; 4169 terror = nfs4getattr(vp, &va, cr); 4170 if (!terror && 4171 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4172 (!(mask & AT_MODE) && va.va_mode != omode))) { 4173 va.va_mask = AT_MODE; 4174 if (mask & AT_MODE) { 4175 /* 4176 * We asked the mode to be changed and what 4177 * we just got from the server in getattr is 4178 * not what we wanted it to be, so set it now. 4179 */ 4180 va.va_mode = vap->va_mode; 4181 do_setattr = 1; 4182 } else { 4183 /* 4184 * We did not ask the mode to be changed, 4185 * Check to see that the server just cleared 4186 * I_SUID and I_GUID from it. If not then 4187 * set mode to omode with UID/GID cleared. 4188 */ 4189 if (nfs4_compare_modes(va.va_mode, omode)) { 4190 omode &= ~(S_ISUID|S_ISGID); 4191 va.va_mode = omode; 4192 do_setattr = 1; 4193 } 4194 } 4195 4196 if (do_setattr) 4197 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4198 } 4199 } 4200 4201 return (e.error); 4202 } 4203 4204 /* ARGSUSED */ 4205 static int 4206 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4207 { 4208 COMPOUND4args_clnt args; 4209 COMPOUND4res_clnt res; 4210 int doqueue; 4211 uint32_t acc, resacc, argacc; 4212 rnode4_t *rp; 4213 cred_t *cred, *ncr, *ncrfree = NULL; 4214 nfs4_access_type_t cacc; 4215 int num_ops; 4216 nfs_argop4 argop[3]; 4217 nfs_resop4 *resop; 4218 bool_t needrecov = FALSE, do_getattr; 4219 nfs4_recov_state_t recov_state; 4220 int rpc_error; 4221 hrtime_t t; 4222 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4223 mntinfo4_t *mi = VTOMI4(vp); 4224 4225 if (nfs_zone() != mi->mi_zone) 4226 return (EIO); 4227 4228 acc = 0; 4229 if (mode & VREAD) 4230 acc |= ACCESS4_READ; 4231 if (mode & VWRITE) { 4232 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4233 return (EROFS); 4234 if (vp->v_type == VDIR) 4235 acc |= ACCESS4_DELETE; 4236 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4237 } 4238 if (mode & VEXEC) { 4239 if (vp->v_type == VDIR) 4240 acc |= ACCESS4_LOOKUP; 4241 else 4242 acc |= ACCESS4_EXECUTE; 4243 } 4244 4245 if (VTOR4(vp)->r_acache != NULL) { 4246 e.error = nfs4_validate_caches(vp, cr); 4247 if (e.error) 4248 return (e.error); 4249 } 4250 4251 rp = VTOR4(vp); 4252 if (vp->v_type == VDIR) 4253 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4254 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4255 else 4256 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4257 ACCESS4_EXECUTE; 4258 recov_state.rs_flags = 0; 4259 recov_state.rs_num_retry_despite_err = 0; 4260 4261 cred = cr; 4262 /* 4263 * ncr and ncrfree both initially 4264 * point to the memory area returned 4265 * by crnetadjust(); 4266 * ncrfree not NULL when exiting means 4267 * that we need to release it 4268 */ 4269 ncr = crnetadjust(cred); 4270 ncrfree = ncr; 4271 4272 tryagain: 4273 cacc = nfs4_access_check(rp, acc, cred); 4274 if (cacc == NFS4_ACCESS_ALLOWED) { 4275 if (ncrfree != NULL) 4276 crfree(ncrfree); 4277 return (0); 4278 } 4279 if (cacc == NFS4_ACCESS_DENIED) { 4280 /* 4281 * If the cred can be adjusted, try again 4282 * with the new cred. 4283 */ 4284 if (ncr != NULL) { 4285 cred = ncr; 4286 ncr = NULL; 4287 goto tryagain; 4288 } 4289 if (ncrfree != NULL) 4290 crfree(ncrfree); 4291 return (EACCES); 4292 } 4293 4294 recov_retry: 4295 /* 4296 * Don't take with r_statev4_lock here. r_deleg_type could 4297 * change as soon as lock is released. Since it is an int, 4298 * there is no atomicity issue. 4299 */ 4300 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4301 num_ops = do_getattr ? 3 : 2; 4302 4303 args.ctag = TAG_ACCESS; 4304 4305 args.array_len = num_ops; 4306 args.array = argop; 4307 4308 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4309 &recov_state, NULL)) { 4310 if (ncrfree != NULL) 4311 crfree(ncrfree); 4312 return (e.error); 4313 } 4314 4315 /* putfh target fh */ 4316 argop[0].argop = OP_CPUTFH; 4317 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4318 4319 /* access */ 4320 argop[1].argop = OP_ACCESS; 4321 argop[1].nfs_argop4_u.opaccess.access = argacc; 4322 4323 /* getattr */ 4324 if (do_getattr) { 4325 argop[2].argop = OP_GETATTR; 4326 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4327 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4328 } 4329 4330 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4331 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4332 rnode4info(VTOR4(vp)))); 4333 4334 doqueue = 1; 4335 t = gethrtime(); 4336 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4337 rpc_error = e.error; 4338 4339 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4340 if (needrecov) { 4341 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4342 "nfs4_access: initiating recovery\n")); 4343 4344 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4345 NULL, OP_ACCESS, NULL) == FALSE) { 4346 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4347 &recov_state, needrecov); 4348 if (!e.error) 4349 (void) xdr_free(xdr_COMPOUND4res_clnt, 4350 (caddr_t)&res); 4351 goto recov_retry; 4352 } 4353 } 4354 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4355 4356 if (e.error) 4357 goto out; 4358 4359 if (res.status) { 4360 e.error = geterrno4(res.status); 4361 /* 4362 * This might generate over the wire calls throught 4363 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4364 * here to avoid a deadlock. 4365 */ 4366 nfs4_purge_stale_fh(e.error, vp, cr); 4367 goto out; 4368 } 4369 resop = &res.array[1]; /* access res */ 4370 4371 resacc = resop->nfs_resop4_u.opaccess.access; 4372 4373 if (do_getattr) { 4374 resop++; /* getattr res */ 4375 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4376 t, cr, FALSE, NULL); 4377 } 4378 4379 if (!e.error) { 4380 nfs4_access_cache(rp, argacc, resacc, cred); 4381 /* 4382 * we just cached results with cred; if cred is the 4383 * adjusted credentials from crnetadjust, we do not want 4384 * to release them before exiting: hence setting ncrfree 4385 * to NULL 4386 */ 4387 if (cred != cr) 4388 ncrfree = NULL; 4389 /* XXX check the supported bits too? */ 4390 if ((acc & resacc) != acc) { 4391 /* 4392 * The following code implements the semantic 4393 * that a setuid root program has *at least* the 4394 * permissions of the user that is running the 4395 * program. See rfs3call() for more portions 4396 * of the implementation of this functionality. 4397 */ 4398 /* XXX-LP */ 4399 if (ncr != NULL) { 4400 (void) xdr_free(xdr_COMPOUND4res_clnt, 4401 (caddr_t)&res); 4402 cred = ncr; 4403 ncr = NULL; 4404 goto tryagain; 4405 } 4406 e.error = EACCES; 4407 } 4408 } 4409 4410 out: 4411 if (!rpc_error) 4412 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4413 4414 if (ncrfree != NULL) 4415 crfree(ncrfree); 4416 4417 return (e.error); 4418 } 4419 4420 /* ARGSUSED */ 4421 static int 4422 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4423 { 4424 COMPOUND4args_clnt args; 4425 COMPOUND4res_clnt res; 4426 int doqueue; 4427 rnode4_t *rp; 4428 nfs_argop4 argop[3]; 4429 nfs_resop4 *resop; 4430 READLINK4res *lr_res; 4431 nfs4_ga_res_t *garp; 4432 uint_t len; 4433 char *linkdata; 4434 bool_t needrecov = FALSE; 4435 nfs4_recov_state_t recov_state; 4436 hrtime_t t; 4437 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4438 4439 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4440 return (EIO); 4441 /* 4442 * Can't readlink anything other than a symbolic link. 4443 */ 4444 if (vp->v_type != VLNK) 4445 return (EINVAL); 4446 4447 rp = VTOR4(vp); 4448 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4449 e.error = nfs4_validate_caches(vp, cr); 4450 if (e.error) 4451 return (e.error); 4452 mutex_enter(&rp->r_statelock); 4453 if (rp->r_symlink.contents != NULL) { 4454 e.error = uiomove(rp->r_symlink.contents, 4455 rp->r_symlink.len, UIO_READ, uiop); 4456 mutex_exit(&rp->r_statelock); 4457 return (e.error); 4458 } 4459 mutex_exit(&rp->r_statelock); 4460 } 4461 recov_state.rs_flags = 0; 4462 recov_state.rs_num_retry_despite_err = 0; 4463 4464 recov_retry: 4465 args.array_len = 3; 4466 args.array = argop; 4467 args.ctag = TAG_READLINK; 4468 4469 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4470 if (e.error) { 4471 return (e.error); 4472 } 4473 4474 /* 0. putfh symlink fh */ 4475 argop[0].argop = OP_CPUTFH; 4476 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4477 4478 /* 1. readlink */ 4479 argop[1].argop = OP_READLINK; 4480 4481 /* 2. getattr */ 4482 argop[2].argop = OP_GETATTR; 4483 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4484 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4485 4486 doqueue = 1; 4487 4488 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4489 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4490 rnode4info(VTOR4(vp)))); 4491 4492 t = gethrtime(); 4493 4494 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4495 4496 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4497 if (needrecov) { 4498 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4499 "nfs4_readlink: initiating recovery\n")); 4500 4501 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4502 NULL, OP_READLINK, NULL) == FALSE) { 4503 if (!e.error) 4504 (void) xdr_free(xdr_COMPOUND4res_clnt, 4505 (caddr_t)&res); 4506 4507 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4508 needrecov); 4509 goto recov_retry; 4510 } 4511 } 4512 4513 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4514 4515 if (e.error) 4516 return (e.error); 4517 4518 /* 4519 * There is an path in the code below which calls 4520 * nfs4_purge_stale_fh(), which may generate otw calls through 4521 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4522 * here to avoid nfs4_start_op() deadlock. 4523 */ 4524 4525 if (res.status && (res.array_len < args.array_len)) { 4526 /* 4527 * either Putfh or Link failed 4528 */ 4529 e.error = geterrno4(res.status); 4530 nfs4_purge_stale_fh(e.error, vp, cr); 4531 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4532 return (e.error); 4533 } 4534 4535 resop = &res.array[1]; /* readlink res */ 4536 lr_res = &resop->nfs_resop4_u.opreadlink; 4537 4538 /* 4539 * treat symlink names as data 4540 */ 4541 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4542 if (linkdata != NULL) { 4543 int uio_len = len - 1; 4544 /* len includes null byte, which we won't uiomove */ 4545 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4546 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4547 mutex_enter(&rp->r_statelock); 4548 if (rp->r_symlink.contents == NULL) { 4549 rp->r_symlink.contents = linkdata; 4550 rp->r_symlink.len = uio_len; 4551 rp->r_symlink.size = len; 4552 mutex_exit(&rp->r_statelock); 4553 } else { 4554 mutex_exit(&rp->r_statelock); 4555 kmem_free(linkdata, len); 4556 } 4557 } else { 4558 kmem_free(linkdata, len); 4559 } 4560 } 4561 if (res.status == NFS4_OK) { 4562 resop++; /* getattr res */ 4563 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4564 } 4565 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4566 4567 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4568 4569 /* 4570 * The over the wire error for attempting to readlink something 4571 * other than a symbolic link is ENXIO. However, we need to 4572 * return EINVAL instead of ENXIO, so we map it here. 4573 */ 4574 return (e.error == ENXIO ? EINVAL : e.error); 4575 } 4576 4577 /* 4578 * Flush local dirty pages to stable storage on the server. 4579 * 4580 * If FNODSYNC is specified, then there is nothing to do because 4581 * metadata changes are not cached on the client before being 4582 * sent to the server. 4583 */ 4584 /* ARGSUSED */ 4585 static int 4586 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4587 { 4588 int error; 4589 4590 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4591 return (0); 4592 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4593 return (EIO); 4594 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4595 if (!error) 4596 error = VTOR4(vp)->r_error; 4597 return (error); 4598 } 4599 4600 /* 4601 * Weirdness: if the file was removed or the target of a rename 4602 * operation while it was open, it got renamed instead. Here we 4603 * remove the renamed file. 4604 */ 4605 /* ARGSUSED */ 4606 void 4607 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4608 { 4609 rnode4_t *rp; 4610 4611 ASSERT(vp != DNLC_NO_VNODE); 4612 4613 rp = VTOR4(vp); 4614 4615 if (IS_SHADOW(vp, rp)) { 4616 sv_inactive(vp); 4617 return; 4618 } 4619 4620 /* 4621 * If this is coming from the wrong zone, we let someone in the right 4622 * zone take care of it asynchronously. We can get here due to 4623 * VN_RELE() being called from pageout() or fsflush(). This call may 4624 * potentially turn into an expensive no-op if, for instance, v_count 4625 * gets incremented in the meantime, but it's still correct. 4626 */ 4627 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4628 nfs4_async_inactive(vp, cr); 4629 return; 4630 } 4631 4632 /* 4633 * Some of the cleanup steps might require over-the-wire 4634 * operations. Since VOP_INACTIVE can get called as a result of 4635 * other over-the-wire operations (e.g., an attribute cache update 4636 * can lead to a DNLC purge), doing those steps now would lead to a 4637 * nested call to the recovery framework, which can deadlock. So 4638 * do any over-the-wire cleanups asynchronously, in a separate 4639 * thread. 4640 */ 4641 4642 mutex_enter(&rp->r_os_lock); 4643 mutex_enter(&rp->r_statelock); 4644 mutex_enter(&rp->r_statev4_lock); 4645 4646 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4647 mutex_exit(&rp->r_statev4_lock); 4648 mutex_exit(&rp->r_statelock); 4649 mutex_exit(&rp->r_os_lock); 4650 nfs4_async_inactive(vp, cr); 4651 return; 4652 } 4653 4654 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4655 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4656 mutex_exit(&rp->r_statev4_lock); 4657 mutex_exit(&rp->r_statelock); 4658 mutex_exit(&rp->r_os_lock); 4659 nfs4_async_inactive(vp, cr); 4660 return; 4661 } 4662 4663 if (rp->r_unldvp != NULL) { 4664 mutex_exit(&rp->r_statev4_lock); 4665 mutex_exit(&rp->r_statelock); 4666 mutex_exit(&rp->r_os_lock); 4667 nfs4_async_inactive(vp, cr); 4668 return; 4669 } 4670 mutex_exit(&rp->r_statev4_lock); 4671 mutex_exit(&rp->r_statelock); 4672 mutex_exit(&rp->r_os_lock); 4673 4674 rp4_addfree(rp, cr); 4675 } 4676 4677 /* 4678 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4679 * various bits of state. The caller must not refer to vp after this call. 4680 */ 4681 4682 void 4683 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4684 { 4685 rnode4_t *rp = VTOR4(vp); 4686 nfs4_recov_state_t recov_state; 4687 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4688 vnode_t *unldvp; 4689 char *unlname; 4690 cred_t *unlcred; 4691 COMPOUND4args_clnt args; 4692 COMPOUND4res_clnt res, *resp; 4693 nfs_argop4 argop[2]; 4694 int doqueue; 4695 #ifdef DEBUG 4696 char *name; 4697 #endif 4698 4699 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4700 ASSERT(!IS_SHADOW(vp, rp)); 4701 4702 #ifdef DEBUG 4703 name = fn_name(VTOSV(vp)->sv_name); 4704 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4705 "release vnode %s", name)); 4706 kmem_free(name, MAXNAMELEN); 4707 #endif 4708 4709 if (vp->v_type == VREG) { 4710 bool_t recov_failed = FALSE; 4711 4712 e.error = nfs4close_all(vp, cr); 4713 if (e.error) { 4714 /* Check to see if recovery failed */ 4715 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4716 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4717 recov_failed = TRUE; 4718 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4719 if (!recov_failed) { 4720 mutex_enter(&rp->r_statelock); 4721 if (rp->r_flags & R4RECOVERR) 4722 recov_failed = TRUE; 4723 mutex_exit(&rp->r_statelock); 4724 } 4725 if (recov_failed) { 4726 NFS4_DEBUG(nfs4_client_recov_debug, 4727 (CE_NOTE, "nfs4_inactive_otw: " 4728 "close failed (recovery failure)")); 4729 } 4730 } 4731 } 4732 4733 redo: 4734 if (rp->r_unldvp == NULL) { 4735 rp4_addfree(rp, cr); 4736 return; 4737 } 4738 4739 /* 4740 * Save the vnode pointer for the directory where the 4741 * unlinked-open file got renamed, then set it to NULL 4742 * to prevent another thread from getting here before 4743 * we're done with the remove. While we have the 4744 * statelock, make local copies of the pertinent rnode 4745 * fields. If we weren't to do this in an atomic way, the 4746 * the unl* fields could become inconsistent with respect 4747 * to each other due to a race condition between this 4748 * code and nfs_remove(). See bug report 1034328. 4749 */ 4750 mutex_enter(&rp->r_statelock); 4751 if (rp->r_unldvp == NULL) { 4752 mutex_exit(&rp->r_statelock); 4753 rp4_addfree(rp, cr); 4754 return; 4755 } 4756 4757 unldvp = rp->r_unldvp; 4758 rp->r_unldvp = NULL; 4759 unlname = rp->r_unlname; 4760 rp->r_unlname = NULL; 4761 unlcred = rp->r_unlcred; 4762 rp->r_unlcred = NULL; 4763 mutex_exit(&rp->r_statelock); 4764 4765 /* 4766 * If there are any dirty pages left, then flush 4767 * them. This is unfortunate because they just 4768 * may get thrown away during the remove operation, 4769 * but we have to do this for correctness. 4770 */ 4771 if (nfs4_has_pages(vp) && 4772 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4773 ASSERT(vp->v_type != VCHR); 4774 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4775 if (e.error) { 4776 mutex_enter(&rp->r_statelock); 4777 if (!rp->r_error) 4778 rp->r_error = e.error; 4779 mutex_exit(&rp->r_statelock); 4780 } 4781 } 4782 4783 recov_state.rs_flags = 0; 4784 recov_state.rs_num_retry_despite_err = 0; 4785 recov_retry_remove: 4786 /* 4787 * Do the remove operation on the renamed file 4788 */ 4789 args.ctag = TAG_INACTIVE; 4790 4791 /* 4792 * Remove ops: putfh dir; remove 4793 */ 4794 args.array_len = 2; 4795 args.array = argop; 4796 4797 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4798 if (e.error) { 4799 kmem_free(unlname, MAXNAMELEN); 4800 crfree(unlcred); 4801 VN_RELE(unldvp); 4802 /* 4803 * Try again; this time around r_unldvp will be NULL, so we'll 4804 * just call rp4_addfree() and return. 4805 */ 4806 goto redo; 4807 } 4808 4809 /* putfh directory */ 4810 argop[0].argop = OP_CPUTFH; 4811 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4812 4813 /* remove */ 4814 argop[1].argop = OP_CREMOVE; 4815 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4816 4817 doqueue = 1; 4818 resp = &res; 4819 4820 #if 0 /* notyet */ 4821 /* 4822 * Can't do this yet. We may be being called from 4823 * dnlc_purge_XXX while that routine is holding a 4824 * mutex lock to the nc_rele list. The calls to 4825 * nfs3_cache_wcc_data may result in calls to 4826 * dnlc_purge_XXX. This will result in a deadlock. 4827 */ 4828 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4829 if (e.error) { 4830 PURGE_ATTRCACHE4(unldvp); 4831 resp = NULL; 4832 } else if (res.status) { 4833 e.error = geterrno4(res.status); 4834 PURGE_ATTRCACHE4(unldvp); 4835 /* 4836 * This code is inactive right now 4837 * but if made active there should 4838 * be a nfs4_end_op() call before 4839 * nfs4_purge_stale_fh to avoid start_op() 4840 * deadlock. See BugId: 4948726 4841 */ 4842 nfs4_purge_stale_fh(error, unldvp, cr); 4843 } else { 4844 nfs_resop4 *resop; 4845 REMOVE4res *rm_res; 4846 4847 resop = &res.array[1]; 4848 rm_res = &resop->nfs_resop4_u.opremove; 4849 /* 4850 * Update directory cache attribute, 4851 * readdir and dnlc caches. 4852 */ 4853 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4854 } 4855 #else 4856 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4857 4858 PURGE_ATTRCACHE4(unldvp); 4859 #endif 4860 4861 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4862 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4863 NULL, NULL, OP_REMOVE, NULL) == FALSE) { 4864 if (!e.error) 4865 (void) xdr_free(xdr_COMPOUND4res_clnt, 4866 (caddr_t)&res); 4867 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4868 &recov_state, TRUE); 4869 goto recov_retry_remove; 4870 } 4871 } 4872 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4873 4874 /* 4875 * Release stuff held for the remove 4876 */ 4877 VN_RELE(unldvp); 4878 if (!e.error && resp) 4879 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4880 4881 kmem_free(unlname, MAXNAMELEN); 4882 crfree(unlcred); 4883 goto redo; 4884 } 4885 4886 /* 4887 * Remote file system operations having to do with directory manipulation. 4888 */ 4889 /* ARGSUSED3 */ 4890 int 4891 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4892 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4893 int *direntflags, pathname_t *realpnp) 4894 { 4895 int error; 4896 vnode_t *vp, *avp = NULL; 4897 rnode4_t *drp; 4898 4899 *vpp = NULL; 4900 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4901 return (EPERM); 4902 /* 4903 * if LOOKUP_XATTR, must replace dvp (object) with 4904 * object's attrdir before continuing with lookup 4905 */ 4906 if (flags & LOOKUP_XATTR) { 4907 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4908 if (error) 4909 return (error); 4910 4911 dvp = avp; 4912 4913 /* 4914 * If lookup is for "", just return dvp now. The attrdir 4915 * has already been activated (from nfs4lookup_xattr), and 4916 * the caller will RELE the original dvp -- not 4917 * the attrdir. So, set vpp and return. 4918 * Currently, when the LOOKUP_XATTR flag is 4919 * passed to VOP_LOOKUP, the name is always empty, and 4920 * shortcircuiting here avoids 3 unneeded lock/unlock 4921 * pairs. 4922 * 4923 * If a non-empty name was provided, then it is the 4924 * attribute name, and it will be looked up below. 4925 */ 4926 if (*nm == '\0') { 4927 *vpp = dvp; 4928 return (0); 4929 } 4930 4931 /* 4932 * The vfs layer never sends a name when asking for the 4933 * attrdir, so we should never get here (unless of course 4934 * name is passed at some time in future -- at which time 4935 * we'll blow up here). 4936 */ 4937 ASSERT(0); 4938 } 4939 4940 drp = VTOR4(dvp); 4941 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4942 return (EINTR); 4943 4944 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4945 nfs_rw_exit(&drp->r_rwlock); 4946 4947 /* 4948 * If vnode is a device, create special vnode. 4949 */ 4950 if (!error && ISVDEV((*vpp)->v_type)) { 4951 vp = *vpp; 4952 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 4953 VN_RELE(vp); 4954 } 4955 4956 return (error); 4957 } 4958 4959 /* ARGSUSED */ 4960 static int 4961 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 4962 { 4963 int error; 4964 rnode4_t *drp; 4965 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 4966 mntinfo4_t *mi; 4967 4968 mi = VTOMI4(dvp); 4969 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 4970 !vfs_has_feature(mi->mi_vfsp, VFSFT_XVATTR)) 4971 return (EINVAL); 4972 4973 drp = VTOR4(dvp); 4974 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4975 return (EINTR); 4976 4977 mutex_enter(&drp->r_statelock); 4978 /* 4979 * If the server doesn't support xattrs just return EINVAL 4980 */ 4981 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 4982 mutex_exit(&drp->r_statelock); 4983 nfs_rw_exit(&drp->r_rwlock); 4984 return (EINVAL); 4985 } 4986 4987 /* 4988 * If there is a cached xattr directory entry, 4989 * use it as long as the attributes are valid. If the 4990 * attributes are not valid, take the simple approach and 4991 * free the cached value and re-fetch a new value. 4992 * 4993 * We don't negative entry cache for now, if we did we 4994 * would need to check if the file has changed on every 4995 * lookup. But xattrs don't exist very often and failing 4996 * an openattr is not much more expensive than and NVERIFY or GETATTR 4997 * so do an openattr over the wire for now. 4998 */ 4999 if (drp->r_xattr_dir != NULL) { 5000 if (ATTRCACHE4_VALID(dvp)) { 5001 VN_HOLD(drp->r_xattr_dir); 5002 *vpp = drp->r_xattr_dir; 5003 mutex_exit(&drp->r_statelock); 5004 nfs_rw_exit(&drp->r_rwlock); 5005 return (0); 5006 } 5007 VN_RELE(drp->r_xattr_dir); 5008 drp->r_xattr_dir = NULL; 5009 } 5010 mutex_exit(&drp->r_statelock); 5011 5012 error = nfs4openattr(dvp, vpp, cflag, cr); 5013 5014 nfs_rw_exit(&drp->r_rwlock); 5015 5016 return (error); 5017 } 5018 5019 static int 5020 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5021 { 5022 int error; 5023 rnode4_t *drp; 5024 5025 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5026 5027 /* 5028 * If lookup is for "", just return dvp. Don't need 5029 * to send it over the wire, look it up in the dnlc, 5030 * or perform any access checks. 5031 */ 5032 if (*nm == '\0') { 5033 VN_HOLD(dvp); 5034 *vpp = dvp; 5035 return (0); 5036 } 5037 5038 /* 5039 * Can't do lookups in non-directories. 5040 */ 5041 if (dvp->v_type != VDIR) 5042 return (ENOTDIR); 5043 5044 /* 5045 * If lookup is for ".", just return dvp. Don't need 5046 * to send it over the wire or look it up in the dnlc, 5047 * just need to check access. 5048 */ 5049 if (nm[0] == '.' && nm[1] == '\0') { 5050 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5051 if (error) 5052 return (error); 5053 VN_HOLD(dvp); 5054 *vpp = dvp; 5055 return (0); 5056 } 5057 5058 drp = VTOR4(dvp); 5059 if (!(drp->r_flags & R4LOOKUP)) { 5060 mutex_enter(&drp->r_statelock); 5061 drp->r_flags |= R4LOOKUP; 5062 mutex_exit(&drp->r_statelock); 5063 } 5064 5065 *vpp = NULL; 5066 /* 5067 * Lookup this name in the DNLC. If there is no entry 5068 * lookup over the wire. 5069 */ 5070 if (!skipdnlc) 5071 *vpp = dnlc_lookup(dvp, nm); 5072 if (*vpp == NULL) { 5073 /* 5074 * We need to go over the wire to lookup the name. 5075 */ 5076 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5077 } 5078 5079 /* 5080 * We hit on the dnlc 5081 */ 5082 if (*vpp != DNLC_NO_VNODE || 5083 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5084 /* 5085 * But our attrs may not be valid. 5086 */ 5087 if (ATTRCACHE4_VALID(dvp)) { 5088 error = nfs4_waitfor_purge_complete(dvp); 5089 if (error) { 5090 VN_RELE(*vpp); 5091 *vpp = NULL; 5092 return (error); 5093 } 5094 5095 /* 5096 * If after the purge completes, check to make sure 5097 * our attrs are still valid. 5098 */ 5099 if (ATTRCACHE4_VALID(dvp)) { 5100 /* 5101 * If we waited for a purge we may have 5102 * lost our vnode so look it up again. 5103 */ 5104 VN_RELE(*vpp); 5105 *vpp = dnlc_lookup(dvp, nm); 5106 if (*vpp == NULL) 5107 return (nfs4lookupnew_otw(dvp, 5108 nm, vpp, cr)); 5109 5110 /* 5111 * The access cache should almost always hit 5112 */ 5113 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5114 5115 if (error) { 5116 VN_RELE(*vpp); 5117 *vpp = NULL; 5118 return (error); 5119 } 5120 if (*vpp == DNLC_NO_VNODE) { 5121 VN_RELE(*vpp); 5122 *vpp = NULL; 5123 return (ENOENT); 5124 } 5125 return (0); 5126 } 5127 } 5128 } 5129 5130 ASSERT(*vpp != NULL); 5131 5132 /* 5133 * We may have gotten here we have one of the following cases: 5134 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5135 * need to validate them. 5136 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5137 * must validate. 5138 * 5139 * Go to the server and check if the directory has changed, if 5140 * it hasn't we are done and can use the dnlc entry. 5141 */ 5142 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5143 } 5144 5145 /* 5146 * Go to the server and check if the directory has changed, if 5147 * it hasn't we are done and can use the dnlc entry. If it 5148 * has changed we get a new copy of its attributes and check 5149 * the access for VEXEC, then relookup the filename and 5150 * get its filehandle and attributes. 5151 * 5152 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5153 * if the NVERIFY failed we must 5154 * purge the caches 5155 * cache new attributes (will set r_time_attr_inval) 5156 * cache new access 5157 * recheck VEXEC access 5158 * add name to dnlc, possibly negative 5159 * if LOOKUP succeeded 5160 * cache new attributes 5161 * else 5162 * set a new r_time_attr_inval for dvp 5163 * check to make sure we have access 5164 * 5165 * The vpp returned is the vnode passed in if the directory is valid, 5166 * a new vnode if successful lookup, or NULL on error. 5167 */ 5168 static int 5169 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5170 { 5171 COMPOUND4args_clnt args; 5172 COMPOUND4res_clnt res; 5173 fattr4 *ver_fattr; 5174 fattr4_change dchange; 5175 int32_t *ptr; 5176 int argoplist_size = 7 * sizeof (nfs_argop4); 5177 nfs_argop4 *argop; 5178 int doqueue; 5179 mntinfo4_t *mi; 5180 nfs4_recov_state_t recov_state; 5181 hrtime_t t; 5182 int isdotdot; 5183 vnode_t *nvp; 5184 nfs_fh4 *fhp; 5185 nfs4_sharedfh_t *sfhp; 5186 nfs4_access_type_t cacc; 5187 rnode4_t *nrp; 5188 rnode4_t *drp = VTOR4(dvp); 5189 nfs4_ga_res_t *garp = NULL; 5190 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5191 5192 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5193 ASSERT(nm != NULL); 5194 ASSERT(nm[0] != '\0'); 5195 ASSERT(dvp->v_type == VDIR); 5196 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5197 ASSERT(*vpp != NULL); 5198 5199 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5200 isdotdot = 1; 5201 args.ctag = TAG_LOOKUP_VPARENT; 5202 } else { 5203 /* 5204 * If dvp were a stub, it should have triggered and caused 5205 * a mount for us to get this far. 5206 */ 5207 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5208 5209 isdotdot = 0; 5210 args.ctag = TAG_LOOKUP_VALID; 5211 } 5212 5213 mi = VTOMI4(dvp); 5214 recov_state.rs_flags = 0; 5215 recov_state.rs_num_retry_despite_err = 0; 5216 5217 nvp = NULL; 5218 5219 /* Save the original mount point security information */ 5220 (void) save_mnt_secinfo(mi->mi_curr_serv); 5221 5222 recov_retry: 5223 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5224 &recov_state, NULL); 5225 if (e.error) { 5226 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5227 VN_RELE(*vpp); 5228 *vpp = NULL; 5229 return (e.error); 5230 } 5231 5232 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5233 5234 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5235 args.array_len = 7; 5236 args.array = argop; 5237 5238 /* 0. putfh file */ 5239 argop[0].argop = OP_CPUTFH; 5240 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5241 5242 /* 1. nverify the change info */ 5243 argop[1].argop = OP_NVERIFY; 5244 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5245 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5246 ver_fattr->attrlist4 = (char *)&dchange; 5247 ptr = (int32_t *)&dchange; 5248 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5249 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5250 5251 /* 2. getattr directory */ 5252 argop[2].argop = OP_GETATTR; 5253 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5254 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5255 5256 /* 3. access directory */ 5257 argop[3].argop = OP_ACCESS; 5258 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5259 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5260 5261 /* 4. lookup name */ 5262 if (isdotdot) { 5263 argop[4].argop = OP_LOOKUPP; 5264 } else { 5265 argop[4].argop = OP_CLOOKUP; 5266 argop[4].nfs_argop4_u.opclookup.cname = nm; 5267 } 5268 5269 /* 5. resulting file handle */ 5270 argop[5].argop = OP_GETFH; 5271 5272 /* 6. resulting file attributes */ 5273 argop[6].argop = OP_GETATTR; 5274 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5275 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5276 5277 doqueue = 1; 5278 t = gethrtime(); 5279 5280 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5281 5282 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5283 /* 5284 * For WRONGSEC of a non-dotdot case, send secinfo directly 5285 * from this thread, do not go thru the recovery thread since 5286 * we need the nm information. 5287 * 5288 * Not doing dotdot case because there is no specification 5289 * for (PUTFH, SECINFO "..") yet. 5290 */ 5291 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5292 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5293 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5294 &recov_state, FALSE); 5295 else 5296 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5297 &recov_state, TRUE); 5298 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5299 kmem_free(argop, argoplist_size); 5300 if (!e.error) 5301 goto recov_retry; 5302 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5303 VN_RELE(*vpp); 5304 *vpp = NULL; 5305 return (e.error); 5306 } 5307 5308 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5309 OP_LOOKUP, NULL) == FALSE) { 5310 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5311 &recov_state, TRUE); 5312 5313 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5314 kmem_free(argop, argoplist_size); 5315 goto recov_retry; 5316 } 5317 } 5318 5319 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5320 5321 if (e.error || res.array_len == 0) { 5322 /* 5323 * If e.error isn't set, then reply has no ops (or we couldn't 5324 * be here). The only legal way to reply without an op array 5325 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5326 * be in the reply for all other status values. 5327 * 5328 * For valid replies without an ops array, return ENOTSUP 5329 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5330 * return EIO -- don't trust status. 5331 */ 5332 if (e.error == 0) 5333 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5334 ENOTSUP : EIO; 5335 VN_RELE(*vpp); 5336 *vpp = NULL; 5337 kmem_free(argop, argoplist_size); 5338 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5339 return (e.error); 5340 } 5341 5342 if (res.status != NFS4ERR_SAME) { 5343 e.error = geterrno4(res.status); 5344 5345 /* 5346 * The NVERIFY "failed" so the directory has changed 5347 * First make sure PUTFH succeeded and NVERIFY "failed" 5348 * cleanly. 5349 */ 5350 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5351 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5352 nfs4_purge_stale_fh(e.error, dvp, cr); 5353 VN_RELE(*vpp); 5354 *vpp = NULL; 5355 goto exit; 5356 } 5357 5358 /* 5359 * We know the NVERIFY "failed" so we must: 5360 * purge the caches (access and indirectly dnlc if needed) 5361 */ 5362 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5363 5364 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5365 nfs4_purge_stale_fh(e.error, dvp, cr); 5366 VN_RELE(*vpp); 5367 *vpp = NULL; 5368 goto exit; 5369 } 5370 5371 /* 5372 * Install new cached attributes for the directory 5373 */ 5374 nfs4_attr_cache(dvp, 5375 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5376 t, cr, FALSE, NULL); 5377 5378 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5379 nfs4_purge_stale_fh(e.error, dvp, cr); 5380 VN_RELE(*vpp); 5381 *vpp = NULL; 5382 e.error = geterrno4(res.status); 5383 goto exit; 5384 } 5385 5386 /* 5387 * Now we know the directory is valid, 5388 * cache new directory access 5389 */ 5390 nfs4_access_cache(drp, 5391 args.array[3].nfs_argop4_u.opaccess.access, 5392 res.array[3].nfs_resop4_u.opaccess.access, cr); 5393 5394 /* 5395 * recheck VEXEC access 5396 */ 5397 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5398 if (cacc != NFS4_ACCESS_ALLOWED) { 5399 /* 5400 * Directory permissions might have been revoked 5401 */ 5402 if (cacc == NFS4_ACCESS_DENIED) { 5403 e.error = EACCES; 5404 VN_RELE(*vpp); 5405 *vpp = NULL; 5406 goto exit; 5407 } 5408 5409 /* 5410 * Somehow we must not have asked for enough 5411 * so try a singleton ACCESS, should never happen. 5412 */ 5413 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5414 if (e.error) { 5415 VN_RELE(*vpp); 5416 *vpp = NULL; 5417 goto exit; 5418 } 5419 } 5420 5421 e.error = geterrno4(res.status); 5422 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5423 /* 5424 * The lookup failed, probably no entry 5425 */ 5426 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5427 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5428 } else { 5429 /* 5430 * Might be some other error, so remove 5431 * the dnlc entry to make sure we start all 5432 * over again, next time. 5433 */ 5434 dnlc_remove(dvp, nm); 5435 } 5436 VN_RELE(*vpp); 5437 *vpp = NULL; 5438 goto exit; 5439 } 5440 5441 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5442 /* 5443 * The file exists but we can't get its fh for 5444 * some unknown reason. Remove it from the dnlc 5445 * and error out to be safe. 5446 */ 5447 dnlc_remove(dvp, nm); 5448 VN_RELE(*vpp); 5449 *vpp = NULL; 5450 goto exit; 5451 } 5452 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5453 if (fhp->nfs_fh4_len == 0) { 5454 /* 5455 * The file exists but a bogus fh 5456 * some unknown reason. Remove it from the dnlc 5457 * and error out to be safe. 5458 */ 5459 e.error = ENOENT; 5460 dnlc_remove(dvp, nm); 5461 VN_RELE(*vpp); 5462 *vpp = NULL; 5463 goto exit; 5464 } 5465 sfhp = sfh4_get(fhp, mi); 5466 5467 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5468 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5469 5470 /* 5471 * Make the new rnode 5472 */ 5473 if (isdotdot) { 5474 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5475 if (e.error) { 5476 sfh4_rele(&sfhp); 5477 VN_RELE(*vpp); 5478 *vpp = NULL; 5479 goto exit; 5480 } 5481 /* 5482 * XXX if nfs4_make_dotdot uses an existing rnode 5483 * XXX it doesn't update the attributes. 5484 * XXX for now just save them again to save an OTW 5485 */ 5486 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5487 } else { 5488 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5489 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5490 /* 5491 * If v_type == VNON, then garp was NULL because 5492 * the last op in the compound failed and makenfs4node 5493 * could not find the vnode for sfhp. It created 5494 * a new vnode, so we have nothing to purge here. 5495 */ 5496 if (nvp->v_type == VNON) { 5497 vattr_t vattr; 5498 5499 vattr.va_mask = AT_TYPE; 5500 /* 5501 * N.B. We've already called nfs4_end_fop above. 5502 */ 5503 e.error = nfs4getattr(nvp, &vattr, cr); 5504 if (e.error) { 5505 sfh4_rele(&sfhp); 5506 VN_RELE(*vpp); 5507 *vpp = NULL; 5508 VN_RELE(nvp); 5509 goto exit; 5510 } 5511 nvp->v_type = vattr.va_type; 5512 } 5513 } 5514 sfh4_rele(&sfhp); 5515 5516 nrp = VTOR4(nvp); 5517 mutex_enter(&nrp->r_statev4_lock); 5518 if (!nrp->created_v4) { 5519 mutex_exit(&nrp->r_statev4_lock); 5520 dnlc_update(dvp, nm, nvp); 5521 } else 5522 mutex_exit(&nrp->r_statev4_lock); 5523 5524 VN_RELE(*vpp); 5525 *vpp = nvp; 5526 } else { 5527 hrtime_t now; 5528 hrtime_t delta = 0; 5529 5530 e.error = 0; 5531 5532 /* 5533 * Because the NVERIFY "succeeded" we know that the 5534 * directory attributes are still valid 5535 * so update r_time_attr_inval 5536 */ 5537 now = gethrtime(); 5538 mutex_enter(&drp->r_statelock); 5539 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5540 delta = now - drp->r_time_attr_saved; 5541 if (delta < mi->mi_acdirmin) 5542 delta = mi->mi_acdirmin; 5543 else if (delta > mi->mi_acdirmax) 5544 delta = mi->mi_acdirmax; 5545 } 5546 drp->r_time_attr_inval = now + delta; 5547 mutex_exit(&drp->r_statelock); 5548 dnlc_update(dvp, nm, *vpp); 5549 5550 /* 5551 * Even though we have a valid directory attr cache 5552 * and dnlc entry, we may not have access. 5553 * This should almost always hit the cache. 5554 */ 5555 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5556 if (e.error) { 5557 VN_RELE(*vpp); 5558 *vpp = NULL; 5559 } 5560 5561 if (*vpp == DNLC_NO_VNODE) { 5562 VN_RELE(*vpp); 5563 *vpp = NULL; 5564 e.error = ENOENT; 5565 } 5566 } 5567 5568 exit: 5569 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5570 kmem_free(argop, argoplist_size); 5571 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5572 return (e.error); 5573 } 5574 5575 /* 5576 * We need to go over the wire to lookup the name, but 5577 * while we are there verify the directory has not 5578 * changed but if it has, get new attributes and check access 5579 * 5580 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5581 * NVERIFY GETATTR ACCESS 5582 * 5583 * With the results: 5584 * if the NVERIFY failed we must purge the caches, add new attributes, 5585 * and cache new access. 5586 * set a new r_time_attr_inval 5587 * add name to dnlc, possibly negative 5588 * if LOOKUP succeeded 5589 * cache new attributes 5590 */ 5591 static int 5592 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5593 { 5594 COMPOUND4args_clnt args; 5595 COMPOUND4res_clnt res; 5596 fattr4 *ver_fattr; 5597 fattr4_change dchange; 5598 int32_t *ptr; 5599 nfs4_ga_res_t *garp = NULL; 5600 int argoplist_size = 9 * sizeof (nfs_argop4); 5601 nfs_argop4 *argop; 5602 int doqueue; 5603 mntinfo4_t *mi; 5604 nfs4_recov_state_t recov_state; 5605 hrtime_t t; 5606 int isdotdot; 5607 vnode_t *nvp; 5608 nfs_fh4 *fhp; 5609 nfs4_sharedfh_t *sfhp; 5610 nfs4_access_type_t cacc; 5611 rnode4_t *nrp; 5612 rnode4_t *drp = VTOR4(dvp); 5613 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5614 5615 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5616 ASSERT(nm != NULL); 5617 ASSERT(nm[0] != '\0'); 5618 ASSERT(dvp->v_type == VDIR); 5619 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5620 ASSERT(*vpp == NULL); 5621 5622 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5623 isdotdot = 1; 5624 args.ctag = TAG_LOOKUP_PARENT; 5625 } else { 5626 /* 5627 * If dvp were a stub, it should have triggered and caused 5628 * a mount for us to get this far. 5629 */ 5630 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5631 5632 isdotdot = 0; 5633 args.ctag = TAG_LOOKUP; 5634 } 5635 5636 mi = VTOMI4(dvp); 5637 recov_state.rs_flags = 0; 5638 recov_state.rs_num_retry_despite_err = 0; 5639 5640 nvp = NULL; 5641 5642 /* Save the original mount point security information */ 5643 (void) save_mnt_secinfo(mi->mi_curr_serv); 5644 5645 recov_retry: 5646 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5647 &recov_state, NULL); 5648 if (e.error) { 5649 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5650 return (e.error); 5651 } 5652 5653 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5654 5655 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5656 args.array_len = 9; 5657 args.array = argop; 5658 5659 /* 0. putfh file */ 5660 argop[0].argop = OP_CPUTFH; 5661 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5662 5663 /* 1. savefh for the nverify */ 5664 argop[1].argop = OP_SAVEFH; 5665 5666 /* 2. lookup name */ 5667 if (isdotdot) { 5668 argop[2].argop = OP_LOOKUPP; 5669 } else { 5670 argop[2].argop = OP_CLOOKUP; 5671 argop[2].nfs_argop4_u.opclookup.cname = nm; 5672 } 5673 5674 /* 3. resulting file handle */ 5675 argop[3].argop = OP_GETFH; 5676 5677 /* 4. resulting file attributes */ 5678 argop[4].argop = OP_GETATTR; 5679 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5680 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5681 5682 /* 5. restorefh back the directory for the nverify */ 5683 argop[5].argop = OP_RESTOREFH; 5684 5685 /* 6. nverify the change info */ 5686 argop[6].argop = OP_NVERIFY; 5687 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5688 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5689 ver_fattr->attrlist4 = (char *)&dchange; 5690 ptr = (int32_t *)&dchange; 5691 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5692 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5693 5694 /* 7. getattr directory */ 5695 argop[7].argop = OP_GETATTR; 5696 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5697 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5698 5699 /* 8. access directory */ 5700 argop[8].argop = OP_ACCESS; 5701 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5702 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5703 5704 doqueue = 1; 5705 t = gethrtime(); 5706 5707 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5708 5709 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5710 /* 5711 * For WRONGSEC of a non-dotdot case, send secinfo directly 5712 * from this thread, do not go thru the recovery thread since 5713 * we need the nm information. 5714 * 5715 * Not doing dotdot case because there is no specification 5716 * for (PUTFH, SECINFO "..") yet. 5717 */ 5718 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5719 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5720 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5721 &recov_state, FALSE); 5722 else 5723 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5724 &recov_state, TRUE); 5725 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5726 kmem_free(argop, argoplist_size); 5727 if (!e.error) 5728 goto recov_retry; 5729 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5730 return (e.error); 5731 } 5732 5733 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5734 OP_LOOKUP, NULL) == FALSE) { 5735 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5736 &recov_state, TRUE); 5737 5738 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5739 kmem_free(argop, argoplist_size); 5740 goto recov_retry; 5741 } 5742 } 5743 5744 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5745 5746 if (e.error || res.array_len == 0) { 5747 /* 5748 * If e.error isn't set, then reply has no ops (or we couldn't 5749 * be here). The only legal way to reply without an op array 5750 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5751 * be in the reply for all other status values. 5752 * 5753 * For valid replies without an ops array, return ENOTSUP 5754 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5755 * return EIO -- don't trust status. 5756 */ 5757 if (e.error == 0) 5758 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5759 ENOTSUP : EIO; 5760 5761 kmem_free(argop, argoplist_size); 5762 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5763 return (e.error); 5764 } 5765 5766 e.error = geterrno4(res.status); 5767 5768 /* 5769 * The PUTFH and SAVEFH may have failed. 5770 */ 5771 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5772 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5773 nfs4_purge_stale_fh(e.error, dvp, cr); 5774 goto exit; 5775 } 5776 5777 /* 5778 * Check if the file exists, if it does delay entering 5779 * into the dnlc until after we update the directory 5780 * attributes so we don't cause it to get purged immediately. 5781 */ 5782 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5783 /* 5784 * The lookup failed, probably no entry 5785 */ 5786 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5787 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5788 goto exit; 5789 } 5790 5791 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5792 /* 5793 * The file exists but we can't get its fh for 5794 * some unknown reason. Error out to be safe. 5795 */ 5796 goto exit; 5797 } 5798 5799 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5800 if (fhp->nfs_fh4_len == 0) { 5801 /* 5802 * The file exists but a bogus fh 5803 * some unknown reason. Error out to be safe. 5804 */ 5805 e.error = EIO; 5806 goto exit; 5807 } 5808 sfhp = sfh4_get(fhp, mi); 5809 5810 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5811 sfh4_rele(&sfhp); 5812 e.error = EIO; 5813 goto exit; 5814 } 5815 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5816 5817 /* 5818 * The RESTOREFH may have failed 5819 */ 5820 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5821 sfh4_rele(&sfhp); 5822 e.error = EIO; 5823 goto exit; 5824 } 5825 5826 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5827 /* 5828 * First make sure the NVERIFY failed as we expected, 5829 * if it didn't then be conservative and error out 5830 * as we can't trust the directory. 5831 */ 5832 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5833 sfh4_rele(&sfhp); 5834 e.error = EIO; 5835 goto exit; 5836 } 5837 5838 /* 5839 * We know the NVERIFY "failed" so the directory has changed, 5840 * so we must: 5841 * purge the caches (access and indirectly dnlc if needed) 5842 */ 5843 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5844 5845 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5846 sfh4_rele(&sfhp); 5847 goto exit; 5848 } 5849 nfs4_attr_cache(dvp, 5850 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5851 t, cr, FALSE, NULL); 5852 5853 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5854 nfs4_purge_stale_fh(e.error, dvp, cr); 5855 sfh4_rele(&sfhp); 5856 e.error = geterrno4(res.status); 5857 goto exit; 5858 } 5859 5860 /* 5861 * Now we know the directory is valid, 5862 * cache new directory access 5863 */ 5864 nfs4_access_cache(drp, 5865 args.array[8].nfs_argop4_u.opaccess.access, 5866 res.array[8].nfs_resop4_u.opaccess.access, cr); 5867 5868 /* 5869 * recheck VEXEC access 5870 */ 5871 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5872 if (cacc != NFS4_ACCESS_ALLOWED) { 5873 /* 5874 * Directory permissions might have been revoked 5875 */ 5876 if (cacc == NFS4_ACCESS_DENIED) { 5877 sfh4_rele(&sfhp); 5878 e.error = EACCES; 5879 goto exit; 5880 } 5881 5882 /* 5883 * Somehow we must not have asked for enough 5884 * so try a singleton ACCESS should never happen 5885 */ 5886 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5887 if (e.error) { 5888 sfh4_rele(&sfhp); 5889 goto exit; 5890 } 5891 } 5892 5893 e.error = geterrno4(res.status); 5894 } else { 5895 hrtime_t now; 5896 hrtime_t delta = 0; 5897 5898 e.error = 0; 5899 5900 /* 5901 * Because the NVERIFY "succeeded" we know that the 5902 * directory attributes are still valid 5903 * so update r_time_attr_inval 5904 */ 5905 now = gethrtime(); 5906 mutex_enter(&drp->r_statelock); 5907 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5908 delta = now - drp->r_time_attr_saved; 5909 if (delta < mi->mi_acdirmin) 5910 delta = mi->mi_acdirmin; 5911 else if (delta > mi->mi_acdirmax) 5912 delta = mi->mi_acdirmax; 5913 } 5914 drp->r_time_attr_inval = now + delta; 5915 mutex_exit(&drp->r_statelock); 5916 5917 /* 5918 * Even though we have a valid directory attr cache, 5919 * we may not have access. 5920 * This should almost always hit the cache. 5921 */ 5922 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5923 if (e.error) { 5924 sfh4_rele(&sfhp); 5925 goto exit; 5926 } 5927 } 5928 5929 /* 5930 * Now we have successfully completed the lookup, if the 5931 * directory has changed we now have the valid attributes. 5932 * We also know we have directory access. 5933 * Create the new rnode and insert it in the dnlc. 5934 */ 5935 if (isdotdot) { 5936 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5937 if (e.error) { 5938 sfh4_rele(&sfhp); 5939 goto exit; 5940 } 5941 /* 5942 * XXX if nfs4_make_dotdot uses an existing rnode 5943 * XXX it doesn't update the attributes. 5944 * XXX for now just save them again to save an OTW 5945 */ 5946 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5947 } else { 5948 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5949 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5950 } 5951 sfh4_rele(&sfhp); 5952 5953 nrp = VTOR4(nvp); 5954 mutex_enter(&nrp->r_statev4_lock); 5955 if (!nrp->created_v4) { 5956 mutex_exit(&nrp->r_statev4_lock); 5957 dnlc_update(dvp, nm, nvp); 5958 } else 5959 mutex_exit(&nrp->r_statev4_lock); 5960 5961 *vpp = nvp; 5962 5963 exit: 5964 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5965 kmem_free(argop, argoplist_size); 5966 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5967 return (e.error); 5968 } 5969 5970 #ifdef DEBUG 5971 void 5972 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 5973 { 5974 uint_t i, len; 5975 zoneid_t zoneid = getzoneid(); 5976 char *s; 5977 5978 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 5979 for (i = 0; i < argcnt; i++) { 5980 nfs_argop4 *op = &argbase[i]; 5981 switch (op->argop) { 5982 case OP_CPUTFH: 5983 case OP_PUTFH: 5984 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 5985 break; 5986 case OP_PUTROOTFH: 5987 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 5988 break; 5989 case OP_CLOOKUP: 5990 s = op->nfs_argop4_u.opclookup.cname; 5991 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5992 break; 5993 case OP_LOOKUP: 5994 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 5995 &len, NULL); 5996 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5997 kmem_free(s, len); 5998 break; 5999 case OP_LOOKUPP: 6000 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 6001 break; 6002 case OP_GETFH: 6003 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 6004 break; 6005 case OP_GETATTR: 6006 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 6007 break; 6008 case OP_OPENATTR: 6009 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 6010 break; 6011 default: 6012 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 6013 op->argop); 6014 break; 6015 } 6016 } 6017 } 6018 #endif 6019 6020 /* 6021 * nfs4lookup_setup - constructs a multi-lookup compound request. 6022 * 6023 * Given the path "nm1/nm2/.../nmn", the following compound requests 6024 * may be created: 6025 * 6026 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6027 * is faster, for now. 6028 * 6029 * l4_getattrs indicates the type of compound requested. 6030 * 6031 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6032 * 6033 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6034 * 6035 * total number of ops is n + 1. 6036 * 6037 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6038 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6039 * before the last component, and only get attributes 6040 * for the last component. Note that the second-to-last 6041 * pathname component is XATTR_RPATH, which does NOT go 6042 * over-the-wire as a lookup. 6043 * 6044 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6045 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6046 * 6047 * and total number of ops is n + 5. 6048 * 6049 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6050 * attribute directory: create lookups plus an OPENATTR 6051 * replacing the last lookup. Note that the last pathname 6052 * component is XATTR_RPATH, which does NOT go over-the-wire 6053 * as a lookup. 6054 * 6055 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6056 * Openattr; Getfh; Getattr } 6057 * 6058 * and total number of ops is n + 5. 6059 * 6060 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6061 * nodes too. 6062 * 6063 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6064 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6065 * 6066 * and total number of ops is 3*n + 1. 6067 * 6068 * All cases: returns the index in the arg array of the final LOOKUP op, or 6069 * -1 if no LOOKUPs were used. 6070 */ 6071 int 6072 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6073 { 6074 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6075 nfs_argop4 *argbase, *argop; 6076 int arglen, argcnt; 6077 int n = 1; /* number of components */ 6078 int nga = 1; /* number of Getattr's in request */ 6079 char c = '\0', *s, *p; 6080 int lookup_idx = -1; 6081 int argoplist_size; 6082 6083 /* set lookuparg response result to 0 */ 6084 lookupargp->resp->status = NFS4_OK; 6085 6086 /* skip leading "/" or "." e.g. ".//./" if there is */ 6087 for (; ; nm++) { 6088 if (*nm != '/' && *nm != '.') 6089 break; 6090 6091 /* ".." is counted as 1 component */ 6092 if (*nm == '.' && *(nm + 1) == '.') 6093 break; 6094 } 6095 6096 /* 6097 * Find n = number of components - nm must be null terminated 6098 * Skip "." components. 6099 */ 6100 if (*nm != '\0') 6101 for (n = 1, s = nm; *s != '\0'; s++) { 6102 if ((*s == '/') && (*(s + 1) != '/') && 6103 (*(s + 1) != '\0') && 6104 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6105 *(s + 2) == '\0'))) 6106 n++; 6107 } 6108 else 6109 n = 0; 6110 6111 /* 6112 * nga is number of components that need Getfh+Getattr 6113 */ 6114 switch (l4_getattrs) { 6115 case LKP4_NO_ATTRIBUTES: 6116 nga = 0; 6117 break; 6118 case LKP4_ALL_ATTRIBUTES: 6119 nga = n; 6120 /* 6121 * Always have at least 1 getfh, getattr pair 6122 */ 6123 if (nga == 0) 6124 nga++; 6125 break; 6126 case LKP4_LAST_ATTRDIR: 6127 case LKP4_LAST_NAMED_ATTR: 6128 nga = n+1; 6129 break; 6130 } 6131 6132 /* 6133 * If change to use the filehandle attr instead of getfh 6134 * the following line can be deleted. 6135 */ 6136 nga *= 2; 6137 6138 /* 6139 * calculate number of ops in request as 6140 * header + trailer + lookups + getattrs 6141 */ 6142 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6143 6144 argoplist_size = arglen * sizeof (nfs_argop4); 6145 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6146 lookupargp->argsp->array = argop; 6147 6148 argcnt = lookupargp->header_len; 6149 argop += argcnt; 6150 6151 /* 6152 * loop and create a lookup op and possibly getattr/getfh for 6153 * each component. Skip "." components. 6154 */ 6155 for (s = nm; *s != '\0'; s = p) { 6156 /* 6157 * Set up a pathname struct for each component if needed 6158 */ 6159 while (*s == '/') 6160 s++; 6161 if (*s == '\0') 6162 break; 6163 6164 for (p = s; (*p != '/') && (*p != '\0'); p++) 6165 ; 6166 c = *p; 6167 *p = '\0'; 6168 6169 if (s[0] == '.' && s[1] == '\0') { 6170 *p = c; 6171 continue; 6172 } 6173 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6174 strcmp(s, XATTR_RPATH) == 0) { 6175 /* getfh XXX may not be needed in future */ 6176 argop->argop = OP_GETFH; 6177 argop++; 6178 argcnt++; 6179 6180 /* getattr */ 6181 argop->argop = OP_GETATTR; 6182 argop->nfs_argop4_u.opgetattr.attr_request = 6183 lookupargp->ga_bits; 6184 argop->nfs_argop4_u.opgetattr.mi = 6185 lookupargp->mi; 6186 argop++; 6187 argcnt++; 6188 6189 /* openattr */ 6190 argop->argop = OP_OPENATTR; 6191 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6192 strcmp(s, XATTR_RPATH) == 0) { 6193 /* openattr */ 6194 argop->argop = OP_OPENATTR; 6195 argop++; 6196 argcnt++; 6197 6198 /* getfh XXX may not be needed in future */ 6199 argop->argop = OP_GETFH; 6200 argop++; 6201 argcnt++; 6202 6203 /* getattr */ 6204 argop->argop = OP_GETATTR; 6205 argop->nfs_argop4_u.opgetattr.attr_request = 6206 lookupargp->ga_bits; 6207 argop->nfs_argop4_u.opgetattr.mi = 6208 lookupargp->mi; 6209 argop++; 6210 argcnt++; 6211 *p = c; 6212 continue; 6213 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6214 /* lookupp */ 6215 argop->argop = OP_LOOKUPP; 6216 } else { 6217 /* lookup */ 6218 argop->argop = OP_LOOKUP; 6219 (void) str_to_utf8(s, 6220 &argop->nfs_argop4_u.oplookup.objname); 6221 } 6222 lookup_idx = argcnt; 6223 argop++; 6224 argcnt++; 6225 6226 *p = c; 6227 6228 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6229 /* getfh XXX may not be needed in future */ 6230 argop->argop = OP_GETFH; 6231 argop++; 6232 argcnt++; 6233 6234 /* getattr */ 6235 argop->argop = OP_GETATTR; 6236 argop->nfs_argop4_u.opgetattr.attr_request = 6237 lookupargp->ga_bits; 6238 argop->nfs_argop4_u.opgetattr.mi = 6239 lookupargp->mi; 6240 argop++; 6241 argcnt++; 6242 } 6243 } 6244 6245 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6246 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6247 if (needgetfh) { 6248 /* stick in a post-lookup getfh */ 6249 argop->argop = OP_GETFH; 6250 argcnt++; 6251 argop++; 6252 } 6253 /* post-lookup getattr */ 6254 argop->argop = OP_GETATTR; 6255 argop->nfs_argop4_u.opgetattr.attr_request = 6256 lookupargp->ga_bits; 6257 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6258 argcnt++; 6259 } 6260 argcnt += lookupargp->trailer_len; /* actual op count */ 6261 lookupargp->argsp->array_len = argcnt; 6262 lookupargp->arglen = arglen; 6263 6264 #ifdef DEBUG 6265 if (nfs4_client_lookup_debug) 6266 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6267 #endif 6268 6269 return (lookup_idx); 6270 } 6271 6272 static int 6273 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6274 { 6275 COMPOUND4args_clnt args; 6276 COMPOUND4res_clnt res; 6277 GETFH4res *gf_res = NULL; 6278 nfs_argop4 argop[4]; 6279 nfs_resop4 *resop = NULL; 6280 nfs4_sharedfh_t *sfhp; 6281 hrtime_t t; 6282 nfs4_error_t e; 6283 6284 rnode4_t *drp; 6285 int doqueue = 1; 6286 vnode_t *vp; 6287 int needrecov = 0; 6288 nfs4_recov_state_t recov_state; 6289 6290 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6291 6292 *avp = NULL; 6293 recov_state.rs_flags = 0; 6294 recov_state.rs_num_retry_despite_err = 0; 6295 6296 recov_retry: 6297 /* COMPOUND: putfh, openattr, getfh, getattr */ 6298 args.array_len = 4; 6299 args.array = argop; 6300 args.ctag = TAG_OPENATTR; 6301 6302 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6303 if (e.error) 6304 return (e.error); 6305 6306 drp = VTOR4(dvp); 6307 6308 /* putfh */ 6309 argop[0].argop = OP_CPUTFH; 6310 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6311 6312 /* openattr */ 6313 argop[1].argop = OP_OPENATTR; 6314 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6315 6316 /* getfh */ 6317 argop[2].argop = OP_GETFH; 6318 6319 /* getattr */ 6320 argop[3].argop = OP_GETATTR; 6321 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6322 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6323 6324 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6325 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6326 rnode4info(drp))); 6327 6328 t = gethrtime(); 6329 6330 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6331 6332 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6333 if (needrecov) { 6334 bool_t abort; 6335 6336 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6337 "nfs4openattr: initiating recovery\n")); 6338 6339 abort = nfs4_start_recovery(&e, 6340 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6341 OP_OPENATTR, NULL); 6342 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6343 if (!e.error) { 6344 e.error = geterrno4(res.status); 6345 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6346 } 6347 if (abort == FALSE) 6348 goto recov_retry; 6349 return (e.error); 6350 } 6351 6352 if (e.error) { 6353 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6354 return (e.error); 6355 } 6356 6357 if (res.status) { 6358 /* 6359 * If OTW errro is NOTSUPP, then it should be 6360 * translated to EINVAL. All Solaris file system 6361 * implementations return EINVAL to the syscall layer 6362 * when the attrdir cannot be created due to an 6363 * implementation restriction or noxattr mount option. 6364 */ 6365 if (res.status == NFS4ERR_NOTSUPP) { 6366 mutex_enter(&drp->r_statelock); 6367 if (drp->r_xattr_dir) 6368 VN_RELE(drp->r_xattr_dir); 6369 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6370 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6371 mutex_exit(&drp->r_statelock); 6372 6373 e.error = EINVAL; 6374 } else { 6375 e.error = geterrno4(res.status); 6376 } 6377 6378 if (e.error) { 6379 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6380 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6381 needrecov); 6382 return (e.error); 6383 } 6384 } 6385 6386 resop = &res.array[0]; /* putfh res */ 6387 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6388 6389 resop = &res.array[1]; /* openattr res */ 6390 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6391 6392 resop = &res.array[2]; /* getfh res */ 6393 gf_res = &resop->nfs_resop4_u.opgetfh; 6394 if (gf_res->object.nfs_fh4_len == 0) { 6395 *avp = NULL; 6396 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6397 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6398 return (ENOENT); 6399 } 6400 6401 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6402 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6403 dvp->v_vfsp, t, cr, dvp, 6404 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH)); 6405 sfh4_rele(&sfhp); 6406 6407 if (e.error) 6408 PURGE_ATTRCACHE4(vp); 6409 6410 mutex_enter(&vp->v_lock); 6411 vp->v_flag |= V_XATTRDIR; 6412 mutex_exit(&vp->v_lock); 6413 6414 *avp = vp; 6415 6416 mutex_enter(&drp->r_statelock); 6417 if (drp->r_xattr_dir) 6418 VN_RELE(drp->r_xattr_dir); 6419 VN_HOLD(vp); 6420 drp->r_xattr_dir = vp; 6421 6422 /* 6423 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6424 * NULL. xattrs could be created at any time, and we have no 6425 * way to update pc4_xattr_exists in the base object if/when 6426 * it happens. 6427 */ 6428 drp->r_pathconf.pc4_xattr_valid = 0; 6429 6430 mutex_exit(&drp->r_statelock); 6431 6432 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6433 6434 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6435 6436 return (0); 6437 } 6438 6439 /* ARGSUSED */ 6440 static int 6441 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6442 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6443 vsecattr_t *vsecp) 6444 { 6445 int error; 6446 vnode_t *vp = NULL; 6447 rnode4_t *rp; 6448 struct vattr vattr; 6449 rnode4_t *drp; 6450 vnode_t *tempvp; 6451 enum createmode4 createmode; 6452 bool_t must_trunc = FALSE; 6453 int truncating = 0; 6454 6455 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6456 return (EPERM); 6457 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6458 return (EINVAL); 6459 } 6460 6461 /* . and .. have special meaning in the protocol, reject them. */ 6462 6463 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6464 return (EISDIR); 6465 6466 drp = VTOR4(dvp); 6467 6468 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6469 return (EINTR); 6470 6471 top: 6472 /* 6473 * We make a copy of the attributes because the caller does not 6474 * expect us to change what va points to. 6475 */ 6476 vattr = *va; 6477 6478 /* 6479 * If the pathname is "", then dvp is the root vnode of 6480 * a remote file mounted over a local directory. 6481 * All that needs to be done is access 6482 * checking and truncation. Note that we avoid doing 6483 * open w/ create because the parent directory might 6484 * be in pseudo-fs and the open would fail. 6485 */ 6486 if (*nm == '\0') { 6487 error = 0; 6488 VN_HOLD(dvp); 6489 vp = dvp; 6490 must_trunc = TRUE; 6491 } else { 6492 /* 6493 * We need to go over the wire, just to be sure whether the 6494 * file exists or not. Using the DNLC can be dangerous in 6495 * this case when making a decision regarding existence. 6496 */ 6497 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6498 } 6499 6500 if (exclusive) 6501 createmode = EXCLUSIVE4; 6502 else 6503 createmode = GUARDED4; 6504 6505 /* 6506 * error would be set if the file does not exist on the 6507 * server, so lets go create it. 6508 */ 6509 if (error) { 6510 goto create_otw; 6511 } 6512 6513 /* 6514 * File does exist on the server 6515 */ 6516 if (exclusive == EXCL) 6517 error = EEXIST; 6518 else if (vp->v_type == VDIR && (mode & VWRITE)) 6519 error = EISDIR; 6520 else { 6521 /* 6522 * If vnode is a device, create special vnode. 6523 */ 6524 if (ISVDEV(vp->v_type)) { 6525 tempvp = vp; 6526 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6527 VN_RELE(tempvp); 6528 } 6529 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6530 if ((vattr.va_mask & AT_SIZE) && 6531 vp->v_type == VREG) { 6532 rp = VTOR4(vp); 6533 /* 6534 * Check here for large file handled 6535 * by LF-unaware process (as 6536 * ufs_create() does) 6537 */ 6538 if (!(flags & FOFFMAX)) { 6539 mutex_enter(&rp->r_statelock); 6540 if (rp->r_size > MAXOFF32_T) 6541 error = EOVERFLOW; 6542 mutex_exit(&rp->r_statelock); 6543 } 6544 6545 /* if error is set then we need to return */ 6546 if (error) { 6547 nfs_rw_exit(&drp->r_rwlock); 6548 VN_RELE(vp); 6549 return (error); 6550 } 6551 6552 if (must_trunc) { 6553 vattr.va_mask = AT_SIZE; 6554 error = nfs4setattr(vp, &vattr, 0, cr, 6555 NULL); 6556 } else { 6557 /* 6558 * we know we have a regular file that already 6559 * exists and we may end up truncating the file 6560 * as a result of the open_otw, so flush out 6561 * any dirty pages for this file first. 6562 */ 6563 if (nfs4_has_pages(vp) && 6564 ((rp->r_flags & R4DIRTY) || 6565 rp->r_count > 0 || 6566 rp->r_mapcnt > 0)) { 6567 error = nfs4_putpage(vp, 6568 (offset_t)0, 0, 0, cr, ct); 6569 if (error && (error == ENOSPC || 6570 error == EDQUOT)) { 6571 mutex_enter( 6572 &rp->r_statelock); 6573 if (!rp->r_error) 6574 rp->r_error = 6575 error; 6576 mutex_exit( 6577 &rp->r_statelock); 6578 } 6579 } 6580 vattr.va_mask = (AT_SIZE | 6581 AT_TYPE | AT_MODE); 6582 vattr.va_type = VREG; 6583 createmode = UNCHECKED4; 6584 truncating = 1; 6585 goto create_otw; 6586 } 6587 } 6588 } 6589 } 6590 nfs_rw_exit(&drp->r_rwlock); 6591 if (error) { 6592 VN_RELE(vp); 6593 } else { 6594 vnode_t *tvp; 6595 rnode4_t *trp; 6596 /* 6597 * existing file got truncated, notify. 6598 */ 6599 tvp = vp; 6600 if (vp->v_type == VREG) { 6601 trp = VTOR4(vp); 6602 if (IS_SHADOW(vp, trp)) 6603 tvp = RTOV4(trp); 6604 } 6605 vnevent_create(tvp, ct); 6606 *vpp = vp; 6607 } 6608 return (error); 6609 6610 create_otw: 6611 dnlc_remove(dvp, nm); 6612 6613 ASSERT(vattr.va_mask & AT_TYPE); 6614 6615 /* 6616 * If not a regular file let nfs4mknod() handle it. 6617 */ 6618 if (vattr.va_type != VREG) { 6619 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6620 nfs_rw_exit(&drp->r_rwlock); 6621 return (error); 6622 } 6623 6624 /* 6625 * It _is_ a regular file. 6626 */ 6627 ASSERT(vattr.va_mask & AT_MODE); 6628 if (MANDMODE(vattr.va_mode)) { 6629 nfs_rw_exit(&drp->r_rwlock); 6630 return (EACCES); 6631 } 6632 6633 /* 6634 * If this happens to be a mknod of a regular file, then flags will 6635 * have neither FREAD or FWRITE. However, we must set at least one 6636 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6637 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6638 * set (based on openmode specified by app). 6639 */ 6640 if ((flags & (FREAD|FWRITE)) == 0) 6641 flags |= (FREAD|FWRITE); 6642 6643 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6644 6645 if (vp != NULL) { 6646 /* if create was successful, throw away the file's pages */ 6647 if (!error && (vattr.va_mask & AT_SIZE)) 6648 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6649 cr); 6650 /* release the lookup hold */ 6651 VN_RELE(vp); 6652 vp = NULL; 6653 } 6654 6655 /* 6656 * validate that we opened a regular file. This handles a misbehaving 6657 * server that returns an incorrect FH. 6658 */ 6659 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6660 error = EISDIR; 6661 VN_RELE(*vpp); 6662 } 6663 6664 /* 6665 * If this is not an exclusive create, then the CREATE 6666 * request will be made with the GUARDED mode set. This 6667 * means that the server will return EEXIST if the file 6668 * exists. The file could exist because of a retransmitted 6669 * request. In this case, we recover by starting over and 6670 * checking to see whether the file exists. This second 6671 * time through it should and a CREATE request will not be 6672 * sent. 6673 * 6674 * This handles the problem of a dangling CREATE request 6675 * which contains attributes which indicate that the file 6676 * should be truncated. This retransmitted request could 6677 * possibly truncate valid data in the file if not caught 6678 * by the duplicate request mechanism on the server or if 6679 * not caught by other means. The scenario is: 6680 * 6681 * Client transmits CREATE request with size = 0 6682 * Client times out, retransmits request. 6683 * Response to the first request arrives from the server 6684 * and the client proceeds on. 6685 * Client writes data to the file. 6686 * The server now processes retransmitted CREATE request 6687 * and truncates file. 6688 * 6689 * The use of the GUARDED CREATE request prevents this from 6690 * happening because the retransmitted CREATE would fail 6691 * with EEXIST and would not truncate the file. 6692 */ 6693 if (error == EEXIST && exclusive == NONEXCL) { 6694 #ifdef DEBUG 6695 nfs4_create_misses++; 6696 #endif 6697 goto top; 6698 } 6699 nfs_rw_exit(&drp->r_rwlock); 6700 if (truncating && !error && *vpp) { 6701 vnode_t *tvp; 6702 rnode4_t *trp; 6703 /* 6704 * existing file got truncated, notify. 6705 */ 6706 tvp = *vpp; 6707 trp = VTOR4(tvp); 6708 if (IS_SHADOW(tvp, trp)) 6709 tvp = RTOV4(trp); 6710 vnevent_create(tvp, ct); 6711 } 6712 return (error); 6713 } 6714 6715 /* 6716 * Create compound (for mkdir, mknod, symlink): 6717 * { Putfh <dfh>; Create; Getfh; Getattr } 6718 * It's okay if setattr failed to set gid - this is not considered 6719 * an error, but purge attrs in that case. 6720 */ 6721 static int 6722 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6723 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6724 { 6725 int need_end_op = FALSE; 6726 COMPOUND4args_clnt args; 6727 COMPOUND4res_clnt res, *resp = NULL; 6728 nfs_argop4 *argop; 6729 nfs_resop4 *resop; 6730 int doqueue; 6731 mntinfo4_t *mi; 6732 rnode4_t *drp = VTOR4(dvp); 6733 change_info4 *cinfo; 6734 GETFH4res *gf_res; 6735 struct vattr vattr; 6736 vnode_t *vp; 6737 fattr4 *crattr; 6738 bool_t needrecov = FALSE; 6739 nfs4_recov_state_t recov_state; 6740 nfs4_sharedfh_t *sfhp = NULL; 6741 hrtime_t t; 6742 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6743 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6744 dirattr_info_t dinfo, *dinfop; 6745 servinfo4_t *svp; 6746 bitmap4 supp_attrs; 6747 6748 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6749 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6750 6751 mi = VTOMI4(dvp); 6752 6753 /* 6754 * Make sure we properly deal with setting the right gid 6755 * on a new directory to reflect the parent's setgid bit 6756 */ 6757 setgid_flag = 0; 6758 if (type == NF4DIR) { 6759 struct vattr dva; 6760 6761 va->va_mode &= ~VSGID; 6762 dva.va_mask = AT_MODE | AT_GID; 6763 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6764 6765 /* 6766 * If the parent's directory has the setgid bit set 6767 * _and_ the client was able to get a valid mapping 6768 * for the parent dir's owner_group, we want to 6769 * append NVERIFY(owner_group == dva.va_gid) and 6770 * SETTATTR to the CREATE compound. 6771 */ 6772 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6773 setgid_flag = 1; 6774 va->va_mode |= VSGID; 6775 if (dva.va_gid != GID_NOBODY) { 6776 va->va_mask |= AT_GID; 6777 va->va_gid = dva.va_gid; 6778 } 6779 } 6780 } 6781 } 6782 6783 /* 6784 * Create ops: 6785 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6786 * 5:restorefh(dir) 6:getattr(dir) 6787 * 6788 * if (setgid) 6789 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6790 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6791 * 8:nverify 9:setattr 6792 */ 6793 if (setgid_flag) { 6794 numops = 10; 6795 idx_create = 1; 6796 idx_fattr = 3; 6797 } else { 6798 numops = 7; 6799 idx_create = 2; 6800 idx_fattr = 4; 6801 } 6802 6803 ASSERT(nfs_zone() == mi->mi_zone); 6804 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6805 return (EINTR); 6806 } 6807 recov_state.rs_flags = 0; 6808 recov_state.rs_num_retry_despite_err = 0; 6809 6810 argoplist_size = numops * sizeof (nfs_argop4); 6811 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6812 6813 recov_retry: 6814 if (type == NF4LNK) 6815 args.ctag = TAG_SYMLINK; 6816 else if (type == NF4DIR) 6817 args.ctag = TAG_MKDIR; 6818 else 6819 args.ctag = TAG_MKNOD; 6820 6821 args.array_len = numops; 6822 args.array = argop; 6823 6824 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6825 nfs_rw_exit(&drp->r_rwlock); 6826 kmem_free(argop, argoplist_size); 6827 return (e.error); 6828 } 6829 need_end_op = TRUE; 6830 6831 6832 /* 0: putfh directory */ 6833 argop[0].argop = OP_CPUTFH; 6834 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6835 6836 /* 1/2: Create object */ 6837 argop[idx_create].argop = OP_CCREATE; 6838 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6839 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6840 if (type == NF4LNK) { 6841 /* 6842 * symlink, treat name as data 6843 */ 6844 ASSERT(data != NULL); 6845 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6846 (char *)data; 6847 } 6848 if (type == NF4BLK || type == NF4CHR) { 6849 ASSERT(data != NULL); 6850 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6851 *((specdata4 *)data); 6852 } 6853 6854 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6855 6856 svp = drp->r_server; 6857 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6858 supp_attrs = svp->sv_supp_attrs; 6859 nfs_rw_exit(&svp->sv_lock); 6860 6861 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6862 nfs_rw_exit(&drp->r_rwlock); 6863 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6864 e.error = EINVAL; 6865 kmem_free(argop, argoplist_size); 6866 return (e.error); 6867 } 6868 6869 /* 2/3: getfh fh of created object */ 6870 ASSERT(idx_create + 1 == idx_fattr - 1); 6871 argop[idx_create + 1].argop = OP_GETFH; 6872 6873 /* 3/4: getattr of new object */ 6874 argop[idx_fattr].argop = OP_GETATTR; 6875 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6876 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6877 6878 if (setgid_flag) { 6879 vattr_t _v; 6880 6881 argop[4].argop = OP_SAVEFH; 6882 6883 argop[5].argop = OP_CPUTFH; 6884 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6885 6886 argop[6].argop = OP_GETATTR; 6887 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6888 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6889 6890 argop[7].argop = OP_RESTOREFH; 6891 6892 /* 6893 * nverify 6894 * 6895 * XXX - Revisit the last argument to nfs4_end_op() 6896 * once 5020486 is fixed. 6897 */ 6898 _v.va_mask = AT_GID; 6899 _v.va_gid = va->va_gid; 6900 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6901 supp_attrs)) { 6902 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6903 nfs_rw_exit(&drp->r_rwlock); 6904 nfs4_fattr4_free(crattr); 6905 kmem_free(argop, argoplist_size); 6906 return (e.error); 6907 } 6908 6909 /* 6910 * setattr 6911 * 6912 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6913 * so no need for stateid or flags. Also we specify NULL 6914 * rp since we're only interested in setting owner_group 6915 * attributes. 6916 */ 6917 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6918 &e.error, 0); 6919 6920 if (e.error) { 6921 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6922 nfs_rw_exit(&drp->r_rwlock); 6923 nfs4_fattr4_free(crattr); 6924 nfs4args_verify_free(&argop[8]); 6925 kmem_free(argop, argoplist_size); 6926 return (e.error); 6927 } 6928 } else { 6929 argop[1].argop = OP_SAVEFH; 6930 6931 argop[5].argop = OP_RESTOREFH; 6932 6933 argop[6].argop = OP_GETATTR; 6934 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6935 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6936 } 6937 6938 dnlc_remove(dvp, nm); 6939 6940 doqueue = 1; 6941 t = gethrtime(); 6942 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 6943 6944 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 6945 if (e.error) { 6946 PURGE_ATTRCACHE4(dvp); 6947 if (!needrecov) 6948 goto out; 6949 } 6950 6951 if (needrecov) { 6952 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 6953 OP_CREATE, NULL) == FALSE) { 6954 nfs4_end_op(mi, dvp, NULL, &recov_state, 6955 needrecov); 6956 need_end_op = FALSE; 6957 nfs4_fattr4_free(crattr); 6958 if (setgid_flag) { 6959 nfs4args_verify_free(&argop[8]); 6960 nfs4args_setattr_free(&argop[9]); 6961 } 6962 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6963 goto recov_retry; 6964 } 6965 } 6966 6967 resp = &res; 6968 6969 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 6970 6971 if (res.status == NFS4ERR_BADOWNER) 6972 nfs4_log_badowner(mi, OP_CREATE); 6973 6974 e.error = geterrno4(res.status); 6975 6976 /* 6977 * This check is left over from when create was implemented 6978 * using a setattr op (instead of createattrs). If the 6979 * putfh/create/getfh failed, the error was returned. If 6980 * setattr/getattr failed, we keep going. 6981 * 6982 * It might be better to get rid of the GETFH also, and just 6983 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 6984 * Then if any of the operations failed, we could return the 6985 * error now, and remove much of the error code below. 6986 */ 6987 if (res.array_len <= idx_fattr) { 6988 /* 6989 * Either Putfh, Create or Getfh failed. 6990 */ 6991 PURGE_ATTRCACHE4(dvp); 6992 /* 6993 * nfs4_purge_stale_fh() may generate otw calls through 6994 * nfs4_invalidate_pages. Hence the need to call 6995 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 6996 */ 6997 nfs4_end_op(mi, dvp, NULL, &recov_state, 6998 needrecov); 6999 need_end_op = FALSE; 7000 nfs4_purge_stale_fh(e.error, dvp, cr); 7001 goto out; 7002 } 7003 } 7004 7005 resop = &res.array[idx_create]; /* create res */ 7006 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 7007 7008 resop = &res.array[idx_create + 1]; /* getfh res */ 7009 gf_res = &resop->nfs_resop4_u.opgetfh; 7010 7011 sfhp = sfh4_get(&gf_res->object, mi); 7012 if (e.error) { 7013 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 7014 fn_get(VTOSV(dvp)->sv_name, nm)); 7015 if (vp->v_type == VNON) { 7016 vattr.va_mask = AT_TYPE; 7017 /* 7018 * Need to call nfs4_end_op before nfs4getattr to avoid 7019 * potential nfs4_start_op deadlock. See RFE 4777612. 7020 */ 7021 nfs4_end_op(mi, dvp, NULL, &recov_state, 7022 needrecov); 7023 need_end_op = FALSE; 7024 e.error = nfs4getattr(vp, &vattr, cr); 7025 if (e.error) { 7026 VN_RELE(vp); 7027 *vpp = NULL; 7028 goto out; 7029 } 7030 vp->v_type = vattr.va_type; 7031 } 7032 e.error = 0; 7033 } else { 7034 *vpp = vp = makenfs4node(sfhp, 7035 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7036 dvp->v_vfsp, t, cr, 7037 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 7038 } 7039 7040 /* 7041 * If compound succeeded, then update dir attrs 7042 */ 7043 if (res.status == NFS4_OK) { 7044 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7045 dinfo.di_cred = cr; 7046 dinfo.di_time_call = t; 7047 dinfop = &dinfo; 7048 } else 7049 dinfop = NULL; 7050 7051 /* Update directory cache attribute, readdir and dnlc caches */ 7052 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7053 7054 out: 7055 if (sfhp != NULL) 7056 sfh4_rele(&sfhp); 7057 nfs_rw_exit(&drp->r_rwlock); 7058 nfs4_fattr4_free(crattr); 7059 if (setgid_flag) { 7060 nfs4args_verify_free(&argop[8]); 7061 nfs4args_setattr_free(&argop[9]); 7062 } 7063 if (resp) 7064 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7065 if (need_end_op) 7066 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7067 7068 kmem_free(argop, argoplist_size); 7069 return (e.error); 7070 } 7071 7072 /* ARGSUSED */ 7073 static int 7074 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7075 int mode, vnode_t **vpp, cred_t *cr) 7076 { 7077 int error; 7078 vnode_t *vp; 7079 nfs_ftype4 type; 7080 specdata4 spec, *specp = NULL; 7081 7082 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7083 7084 switch (va->va_type) { 7085 case VCHR: 7086 case VBLK: 7087 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7088 spec.specdata1 = getmajor(va->va_rdev); 7089 spec.specdata2 = getminor(va->va_rdev); 7090 specp = &spec; 7091 break; 7092 7093 case VFIFO: 7094 type = NF4FIFO; 7095 break; 7096 case VSOCK: 7097 type = NF4SOCK; 7098 break; 7099 7100 default: 7101 return (EINVAL); 7102 } 7103 7104 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7105 if (error) { 7106 return (error); 7107 } 7108 7109 /* 7110 * This might not be needed any more; special case to deal 7111 * with problematic v2/v3 servers. Since create was unable 7112 * to set group correctly, not sure what hope setattr has. 7113 */ 7114 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7115 va->va_mask = AT_GID; 7116 (void) nfs4setattr(vp, va, 0, cr, NULL); 7117 } 7118 7119 /* 7120 * If vnode is a device create special vnode 7121 */ 7122 if (ISVDEV(vp->v_type)) { 7123 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7124 VN_RELE(vp); 7125 } else { 7126 *vpp = vp; 7127 } 7128 return (error); 7129 } 7130 7131 /* 7132 * Remove requires that the current fh be the target directory. 7133 * After the operation, the current fh is unchanged. 7134 * The compound op structure is: 7135 * PUTFH(targetdir), REMOVE 7136 * 7137 * Weirdness: if the vnode to be removed is open 7138 * we rename it instead of removing it and nfs_inactive 7139 * will remove the new name. 7140 */ 7141 /* ARGSUSED */ 7142 static int 7143 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7144 { 7145 COMPOUND4args_clnt args; 7146 COMPOUND4res_clnt res, *resp = NULL; 7147 REMOVE4res *rm_res; 7148 nfs_argop4 argop[3]; 7149 nfs_resop4 *resop; 7150 vnode_t *vp; 7151 char *tmpname; 7152 int doqueue; 7153 mntinfo4_t *mi; 7154 rnode4_t *rp; 7155 rnode4_t *drp; 7156 int needrecov = 0; 7157 nfs4_recov_state_t recov_state; 7158 int isopen; 7159 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7160 dirattr_info_t dinfo; 7161 7162 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7163 return (EPERM); 7164 drp = VTOR4(dvp); 7165 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7166 return (EINTR); 7167 7168 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7169 if (e.error) { 7170 nfs_rw_exit(&drp->r_rwlock); 7171 return (e.error); 7172 } 7173 7174 if (vp->v_type == VDIR) { 7175 VN_RELE(vp); 7176 nfs_rw_exit(&drp->r_rwlock); 7177 return (EISDIR); 7178 } 7179 7180 /* 7181 * First just remove the entry from the name cache, as it 7182 * is most likely the only entry for this vp. 7183 */ 7184 dnlc_remove(dvp, nm); 7185 7186 rp = VTOR4(vp); 7187 7188 /* 7189 * For regular file types, check to see if the file is open by looking 7190 * at the open streams. 7191 * For all other types, check the reference count on the vnode. Since 7192 * they are not opened OTW they never have an open stream. 7193 * 7194 * If the file is open, rename it to .nfsXXXX. 7195 */ 7196 if (vp->v_type != VREG) { 7197 /* 7198 * If the file has a v_count > 1 then there may be more than one 7199 * entry in the name cache due multiple links or an open file, 7200 * but we don't have the real reference count so flush all 7201 * possible entries. 7202 */ 7203 if (vp->v_count > 1) 7204 dnlc_purge_vp(vp); 7205 7206 /* 7207 * Now we have the real reference count. 7208 */ 7209 isopen = vp->v_count > 1; 7210 } else { 7211 mutex_enter(&rp->r_os_lock); 7212 isopen = list_head(&rp->r_open_streams) != NULL; 7213 mutex_exit(&rp->r_os_lock); 7214 } 7215 7216 mutex_enter(&rp->r_statelock); 7217 if (isopen && 7218 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7219 mutex_exit(&rp->r_statelock); 7220 tmpname = newname(); 7221 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7222 if (e.error) 7223 kmem_free(tmpname, MAXNAMELEN); 7224 else { 7225 mutex_enter(&rp->r_statelock); 7226 if (rp->r_unldvp == NULL) { 7227 VN_HOLD(dvp); 7228 rp->r_unldvp = dvp; 7229 if (rp->r_unlcred != NULL) 7230 crfree(rp->r_unlcred); 7231 crhold(cr); 7232 rp->r_unlcred = cr; 7233 rp->r_unlname = tmpname; 7234 } else { 7235 kmem_free(rp->r_unlname, MAXNAMELEN); 7236 rp->r_unlname = tmpname; 7237 } 7238 mutex_exit(&rp->r_statelock); 7239 } 7240 VN_RELE(vp); 7241 nfs_rw_exit(&drp->r_rwlock); 7242 return (e.error); 7243 } 7244 /* 7245 * Actually remove the file/dir 7246 */ 7247 mutex_exit(&rp->r_statelock); 7248 7249 /* 7250 * We need to flush any dirty pages which happen to 7251 * be hanging around before removing the file. 7252 * This shouldn't happen very often since in NFSv4 7253 * we should be close to open consistent. 7254 */ 7255 if (nfs4_has_pages(vp) && 7256 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7257 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7258 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7259 mutex_enter(&rp->r_statelock); 7260 if (!rp->r_error) 7261 rp->r_error = e.error; 7262 mutex_exit(&rp->r_statelock); 7263 } 7264 } 7265 7266 mi = VTOMI4(dvp); 7267 7268 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7269 recov_state.rs_flags = 0; 7270 recov_state.rs_num_retry_despite_err = 0; 7271 7272 recov_retry: 7273 /* 7274 * Remove ops: putfh dir; remove 7275 */ 7276 args.ctag = TAG_REMOVE; 7277 args.array_len = 3; 7278 args.array = argop; 7279 7280 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7281 if (e.error) { 7282 nfs_rw_exit(&drp->r_rwlock); 7283 VN_RELE(vp); 7284 return (e.error); 7285 } 7286 7287 /* putfh directory */ 7288 argop[0].argop = OP_CPUTFH; 7289 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7290 7291 /* remove */ 7292 argop[1].argop = OP_CREMOVE; 7293 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7294 7295 /* getattr dir */ 7296 argop[2].argop = OP_GETATTR; 7297 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7298 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7299 7300 doqueue = 1; 7301 dinfo.di_time_call = gethrtime(); 7302 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7303 7304 PURGE_ATTRCACHE4(vp); 7305 7306 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7307 if (e.error) 7308 PURGE_ATTRCACHE4(dvp); 7309 7310 if (needrecov) { 7311 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7312 NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { 7313 if (!e.error) 7314 (void) xdr_free(xdr_COMPOUND4res_clnt, 7315 (caddr_t)&res); 7316 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7317 needrecov); 7318 goto recov_retry; 7319 } 7320 } 7321 7322 /* 7323 * Matching nfs4_end_op() for start_op() above. 7324 * There is a path in the code below which calls 7325 * nfs4_purge_stale_fh(), which may generate otw calls through 7326 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7327 * here to avoid nfs4_start_op() deadlock. 7328 */ 7329 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7330 7331 if (!e.error) { 7332 resp = &res; 7333 7334 if (res.status) { 7335 e.error = geterrno4(res.status); 7336 PURGE_ATTRCACHE4(dvp); 7337 nfs4_purge_stale_fh(e.error, dvp, cr); 7338 } else { 7339 resop = &res.array[1]; /* remove res */ 7340 rm_res = &resop->nfs_resop4_u.opremove; 7341 7342 dinfo.di_garp = 7343 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7344 dinfo.di_cred = cr; 7345 7346 /* Update directory attr, readdir and dnlc caches */ 7347 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7348 &dinfo); 7349 } 7350 } 7351 nfs_rw_exit(&drp->r_rwlock); 7352 if (resp) 7353 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7354 7355 if (e.error == 0) { 7356 vnode_t *tvp; 7357 rnode4_t *trp; 7358 trp = VTOR4(vp); 7359 tvp = vp; 7360 if (IS_SHADOW(vp, trp)) 7361 tvp = RTOV4(trp); 7362 vnevent_remove(tvp, dvp, nm, ct); 7363 } 7364 VN_RELE(vp); 7365 return (e.error); 7366 } 7367 7368 /* 7369 * Link requires that the current fh be the target directory and the 7370 * saved fh be the source fh. After the operation, the current fh is unchanged. 7371 * Thus the compound op structure is: 7372 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7373 * GETATTR(file) 7374 */ 7375 /* ARGSUSED */ 7376 static int 7377 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7378 caller_context_t *ct, int flags) 7379 { 7380 COMPOUND4args_clnt args; 7381 COMPOUND4res_clnt res, *resp = NULL; 7382 LINK4res *ln_res; 7383 int argoplist_size = 7 * sizeof (nfs_argop4); 7384 nfs_argop4 *argop; 7385 nfs_resop4 *resop; 7386 vnode_t *realvp, *nvp; 7387 int doqueue; 7388 mntinfo4_t *mi; 7389 rnode4_t *tdrp; 7390 bool_t needrecov = FALSE; 7391 nfs4_recov_state_t recov_state; 7392 hrtime_t t; 7393 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7394 dirattr_info_t dinfo; 7395 7396 ASSERT(*tnm != '\0'); 7397 ASSERT(tdvp->v_type == VDIR); 7398 ASSERT(nfs4_consistent_type(tdvp)); 7399 ASSERT(nfs4_consistent_type(svp)); 7400 7401 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7402 return (EPERM); 7403 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7404 svp = realvp; 7405 ASSERT(nfs4_consistent_type(svp)); 7406 } 7407 7408 tdrp = VTOR4(tdvp); 7409 mi = VTOMI4(svp); 7410 7411 if (!(mi->mi_flags & MI4_LINK)) { 7412 return (EOPNOTSUPP); 7413 } 7414 recov_state.rs_flags = 0; 7415 recov_state.rs_num_retry_despite_err = 0; 7416 7417 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7418 return (EINTR); 7419 7420 recov_retry: 7421 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7422 7423 args.ctag = TAG_LINK; 7424 7425 /* 7426 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7427 * restorefh; getattr(fl) 7428 */ 7429 args.array_len = 7; 7430 args.array = argop; 7431 7432 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7433 if (e.error) { 7434 kmem_free(argop, argoplist_size); 7435 nfs_rw_exit(&tdrp->r_rwlock); 7436 return (e.error); 7437 } 7438 7439 /* 0. putfh file */ 7440 argop[0].argop = OP_CPUTFH; 7441 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7442 7443 /* 1. save current fh to free up the space for the dir */ 7444 argop[1].argop = OP_SAVEFH; 7445 7446 /* 2. putfh targetdir */ 7447 argop[2].argop = OP_CPUTFH; 7448 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7449 7450 /* 3. link: current_fh is targetdir, saved_fh is source */ 7451 argop[3].argop = OP_CLINK; 7452 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7453 7454 /* 4. Get attributes of dir */ 7455 argop[4].argop = OP_GETATTR; 7456 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7457 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7458 7459 /* 5. If link was successful, restore current vp to file */ 7460 argop[5].argop = OP_RESTOREFH; 7461 7462 /* 6. Get attributes of linked object */ 7463 argop[6].argop = OP_GETATTR; 7464 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7465 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7466 7467 dnlc_remove(tdvp, tnm); 7468 7469 doqueue = 1; 7470 t = gethrtime(); 7471 7472 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7473 7474 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7475 if (e.error != 0 && !needrecov) { 7476 PURGE_ATTRCACHE4(tdvp); 7477 PURGE_ATTRCACHE4(svp); 7478 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7479 goto out; 7480 } 7481 7482 if (needrecov) { 7483 bool_t abort; 7484 7485 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7486 NULL, NULL, OP_LINK, NULL); 7487 if (abort == FALSE) { 7488 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7489 needrecov); 7490 kmem_free(argop, argoplist_size); 7491 if (!e.error) 7492 (void) xdr_free(xdr_COMPOUND4res_clnt, 7493 (caddr_t)&res); 7494 goto recov_retry; 7495 } else { 7496 if (e.error != 0) { 7497 PURGE_ATTRCACHE4(tdvp); 7498 PURGE_ATTRCACHE4(svp); 7499 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7500 &recov_state, needrecov); 7501 goto out; 7502 } 7503 /* fall through for res.status case */ 7504 } 7505 } 7506 7507 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7508 7509 resp = &res; 7510 if (res.status) { 7511 /* If link succeeded, then don't return error */ 7512 e.error = geterrno4(res.status); 7513 if (res.array_len <= 4) { 7514 /* 7515 * Either Putfh, Savefh, Putfh dir, or Link failed 7516 */ 7517 PURGE_ATTRCACHE4(svp); 7518 PURGE_ATTRCACHE4(tdvp); 7519 if (e.error == EOPNOTSUPP) { 7520 mutex_enter(&mi->mi_lock); 7521 mi->mi_flags &= ~MI4_LINK; 7522 mutex_exit(&mi->mi_lock); 7523 } 7524 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7525 /* XXX-LP */ 7526 if (e.error == EISDIR && crgetuid(cr) != 0) 7527 e.error = EPERM; 7528 goto out; 7529 } 7530 } 7531 7532 /* either no error or one of the postop getattr failed */ 7533 7534 /* 7535 * XXX - if LINK succeeded, but no attrs were returned for link 7536 * file, purge its cache. 7537 * 7538 * XXX Perform a simplified version of wcc checking. Instead of 7539 * have another getattr to get pre-op, just purge cache if 7540 * any of the ops prior to and including the getattr failed. 7541 * If the getattr succeeded then update the attrcache accordingly. 7542 */ 7543 7544 /* 7545 * update cache with link file postattrs. 7546 * Note: at this point resop points to link res. 7547 */ 7548 resop = &res.array[3]; /* link res */ 7549 ln_res = &resop->nfs_resop4_u.oplink; 7550 if (res.status == NFS4_OK) 7551 e.error = nfs4_update_attrcache(res.status, 7552 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7553 t, svp, cr); 7554 7555 /* 7556 * Call makenfs4node to create the new shadow vp for tnm. 7557 * We pass NULL attrs because we just cached attrs for 7558 * the src object. All we're trying to accomplish is to 7559 * to create the new shadow vnode. 7560 */ 7561 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7562 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm)); 7563 7564 /* Update target cache attribute, readdir and dnlc caches */ 7565 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7566 dinfo.di_time_call = t; 7567 dinfo.di_cred = cr; 7568 7569 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7570 ASSERT(nfs4_consistent_type(tdvp)); 7571 ASSERT(nfs4_consistent_type(svp)); 7572 ASSERT(nfs4_consistent_type(nvp)); 7573 VN_RELE(nvp); 7574 7575 if (!e.error) { 7576 vnode_t *tvp; 7577 rnode4_t *trp; 7578 /* 7579 * Notify the source file of this link operation. 7580 */ 7581 trp = VTOR4(svp); 7582 tvp = svp; 7583 if (IS_SHADOW(svp, trp)) 7584 tvp = RTOV4(trp); 7585 vnevent_link(tvp, ct); 7586 } 7587 out: 7588 kmem_free(argop, argoplist_size); 7589 if (resp) 7590 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7591 7592 nfs_rw_exit(&tdrp->r_rwlock); 7593 7594 return (e.error); 7595 } 7596 7597 /* ARGSUSED */ 7598 static int 7599 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7600 caller_context_t *ct, int flags) 7601 { 7602 vnode_t *realvp; 7603 7604 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7605 return (EPERM); 7606 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7607 ndvp = realvp; 7608 7609 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7610 } 7611 7612 /* 7613 * nfs4rename does the real work of renaming in NFS Version 4. 7614 * 7615 * A file handle is considered volatile for renaming purposes if either 7616 * of the volatile bits are turned on. However, the compound may differ 7617 * based on the likelihood of the filehandle to change during rename. 7618 */ 7619 static int 7620 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7621 caller_context_t *ct) 7622 { 7623 int error; 7624 mntinfo4_t *mi; 7625 vnode_t *nvp = NULL; 7626 vnode_t *ovp = NULL; 7627 char *tmpname = NULL; 7628 rnode4_t *rp; 7629 rnode4_t *odrp; 7630 rnode4_t *ndrp; 7631 int did_link = 0; 7632 int do_link = 1; 7633 nfsstat4 stat = NFS4_OK; 7634 7635 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7636 ASSERT(nfs4_consistent_type(odvp)); 7637 ASSERT(nfs4_consistent_type(ndvp)); 7638 7639 if (onm[0] == '.' && (onm[1] == '\0' || 7640 (onm[1] == '.' && onm[2] == '\0'))) 7641 return (EINVAL); 7642 7643 if (nnm[0] == '.' && (nnm[1] == '\0' || 7644 (nnm[1] == '.' && nnm[2] == '\0'))) 7645 return (EINVAL); 7646 7647 odrp = VTOR4(odvp); 7648 ndrp = VTOR4(ndvp); 7649 if ((intptr_t)odrp < (intptr_t)ndrp) { 7650 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7651 return (EINTR); 7652 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7653 nfs_rw_exit(&odrp->r_rwlock); 7654 return (EINTR); 7655 } 7656 } else { 7657 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7658 return (EINTR); 7659 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7660 nfs_rw_exit(&ndrp->r_rwlock); 7661 return (EINTR); 7662 } 7663 } 7664 7665 /* 7666 * Lookup the target file. If it exists, it needs to be 7667 * checked to see whether it is a mount point and whether 7668 * it is active (open). 7669 */ 7670 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7671 if (!error) { 7672 int isactive; 7673 7674 ASSERT(nfs4_consistent_type(nvp)); 7675 /* 7676 * If this file has been mounted on, then just 7677 * return busy because renaming to it would remove 7678 * the mounted file system from the name space. 7679 */ 7680 if (vn_ismntpt(nvp)) { 7681 VN_RELE(nvp); 7682 nfs_rw_exit(&odrp->r_rwlock); 7683 nfs_rw_exit(&ndrp->r_rwlock); 7684 return (EBUSY); 7685 } 7686 7687 /* 7688 * First just remove the entry from the name cache, as it 7689 * is most likely the only entry for this vp. 7690 */ 7691 dnlc_remove(ndvp, nnm); 7692 7693 rp = VTOR4(nvp); 7694 7695 if (nvp->v_type != VREG) { 7696 /* 7697 * Purge the name cache of all references to this vnode 7698 * so that we can check the reference count to infer 7699 * whether it is active or not. 7700 */ 7701 if (nvp->v_count > 1) 7702 dnlc_purge_vp(nvp); 7703 7704 isactive = nvp->v_count > 1; 7705 } else { 7706 mutex_enter(&rp->r_os_lock); 7707 isactive = list_head(&rp->r_open_streams) != NULL; 7708 mutex_exit(&rp->r_os_lock); 7709 } 7710 7711 /* 7712 * If the vnode is active and is not a directory, 7713 * arrange to rename it to a 7714 * temporary file so that it will continue to be 7715 * accessible. This implements the "unlink-open-file" 7716 * semantics for the target of a rename operation. 7717 * Before doing this though, make sure that the 7718 * source and target files are not already the same. 7719 */ 7720 if (isactive && nvp->v_type != VDIR) { 7721 /* 7722 * Lookup the source name. 7723 */ 7724 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7725 7726 /* 7727 * The source name *should* already exist. 7728 */ 7729 if (error) { 7730 VN_RELE(nvp); 7731 nfs_rw_exit(&odrp->r_rwlock); 7732 nfs_rw_exit(&ndrp->r_rwlock); 7733 return (error); 7734 } 7735 7736 ASSERT(nfs4_consistent_type(ovp)); 7737 7738 /* 7739 * Compare the two vnodes. If they are the same, 7740 * just release all held vnodes and return success. 7741 */ 7742 if (VN_CMP(ovp, nvp)) { 7743 VN_RELE(ovp); 7744 VN_RELE(nvp); 7745 nfs_rw_exit(&odrp->r_rwlock); 7746 nfs_rw_exit(&ndrp->r_rwlock); 7747 return (0); 7748 } 7749 7750 /* 7751 * Can't mix and match directories and non- 7752 * directories in rename operations. We already 7753 * know that the target is not a directory. If 7754 * the source is a directory, return an error. 7755 */ 7756 if (ovp->v_type == VDIR) { 7757 VN_RELE(ovp); 7758 VN_RELE(nvp); 7759 nfs_rw_exit(&odrp->r_rwlock); 7760 nfs_rw_exit(&ndrp->r_rwlock); 7761 return (ENOTDIR); 7762 } 7763 link_call: 7764 /* 7765 * The target file exists, is not the same as 7766 * the source file, and is active. We first 7767 * try to Link it to a temporary filename to 7768 * avoid having the server removing the file 7769 * completely (which could cause data loss to 7770 * the user's POV in the event the Rename fails 7771 * -- see bug 1165874). 7772 */ 7773 /* 7774 * The do_link and did_link booleans are 7775 * introduced in the event we get NFS4ERR_FILE_OPEN 7776 * returned for the Rename. Some servers can 7777 * not Rename over an Open file, so they return 7778 * this error. The client needs to Remove the 7779 * newly created Link and do two Renames, just 7780 * as if the server didn't support LINK. 7781 */ 7782 tmpname = newname(); 7783 error = 0; 7784 7785 if (do_link) { 7786 error = nfs4_link(ndvp, nvp, tmpname, cr, 7787 NULL, 0); 7788 } 7789 if (error == EOPNOTSUPP || !do_link) { 7790 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7791 cr, NULL, 0); 7792 did_link = 0; 7793 } else { 7794 did_link = 1; 7795 } 7796 if (error) { 7797 kmem_free(tmpname, MAXNAMELEN); 7798 VN_RELE(ovp); 7799 VN_RELE(nvp); 7800 nfs_rw_exit(&odrp->r_rwlock); 7801 nfs_rw_exit(&ndrp->r_rwlock); 7802 return (error); 7803 } 7804 7805 mutex_enter(&rp->r_statelock); 7806 if (rp->r_unldvp == NULL) { 7807 VN_HOLD(ndvp); 7808 rp->r_unldvp = ndvp; 7809 if (rp->r_unlcred != NULL) 7810 crfree(rp->r_unlcred); 7811 crhold(cr); 7812 rp->r_unlcred = cr; 7813 rp->r_unlname = tmpname; 7814 } else { 7815 if (rp->r_unlname) 7816 kmem_free(rp->r_unlname, MAXNAMELEN); 7817 rp->r_unlname = tmpname; 7818 } 7819 mutex_exit(&rp->r_statelock); 7820 } 7821 7822 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7823 7824 ASSERT(nfs4_consistent_type(nvp)); 7825 } 7826 7827 if (ovp == NULL) { 7828 /* 7829 * When renaming directories to be a subdirectory of a 7830 * different parent, the dnlc entry for ".." will no 7831 * longer be valid, so it must be removed. 7832 * 7833 * We do a lookup here to determine whether we are renaming 7834 * a directory and we need to check if we are renaming 7835 * an unlinked file. This might have already been done 7836 * in previous code, so we check ovp == NULL to avoid 7837 * doing it twice. 7838 */ 7839 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7840 /* 7841 * The source name *should* already exist. 7842 */ 7843 if (error) { 7844 nfs_rw_exit(&odrp->r_rwlock); 7845 nfs_rw_exit(&ndrp->r_rwlock); 7846 if (nvp) { 7847 VN_RELE(nvp); 7848 } 7849 return (error); 7850 } 7851 ASSERT(ovp != NULL); 7852 ASSERT(nfs4_consistent_type(ovp)); 7853 } 7854 7855 /* 7856 * Is the object being renamed a dir, and if so, is 7857 * it being renamed to a child of itself? The underlying 7858 * fs should ultimately return EINVAL for this case; 7859 * however, buggy beta non-Solaris NFSv4 servers at 7860 * interop testing events have allowed this behavior, 7861 * and it caused our client to panic due to a recursive 7862 * mutex_enter in fn_move. 7863 * 7864 * The tedious locking in fn_move could be changed to 7865 * deal with this case, and the client could avoid the 7866 * panic; however, the client would just confuse itself 7867 * later and misbehave. A better way to handle the broken 7868 * server is to detect this condition and return EINVAL 7869 * without ever sending the the bogus rename to the server. 7870 * We know the rename is invalid -- just fail it now. 7871 */ 7872 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7873 VN_RELE(ovp); 7874 nfs_rw_exit(&odrp->r_rwlock); 7875 nfs_rw_exit(&ndrp->r_rwlock); 7876 if (nvp) { 7877 VN_RELE(nvp); 7878 } 7879 return (EINVAL); 7880 } 7881 7882 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7883 7884 /* 7885 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7886 * possible for the filehandle to change due to the rename. 7887 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7888 * the fh will not change because of the rename, but we still need 7889 * to update its rnode entry with the new name for 7890 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7891 * has no effect on these for now, but for future improvements, 7892 * we might want to use it too to simplify handling of files 7893 * that are open with that flag on. (XXX) 7894 */ 7895 mi = VTOMI4(odvp); 7896 if (NFS4_VOLATILE_FH(mi)) 7897 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7898 &stat); 7899 else 7900 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7901 &stat); 7902 7903 ASSERT(nfs4_consistent_type(odvp)); 7904 ASSERT(nfs4_consistent_type(ndvp)); 7905 ASSERT(nfs4_consistent_type(ovp)); 7906 7907 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7908 do_link = 0; 7909 /* 7910 * Before the 'link_call' code, we did a nfs4_lookup 7911 * that puts a VN_HOLD on nvp. After the nfs4_link 7912 * call we call VN_RELE to match that hold. We need 7913 * to place an additional VN_HOLD here since we will 7914 * be hitting that VN_RELE again. 7915 */ 7916 VN_HOLD(nvp); 7917 7918 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 7919 7920 /* Undo the unlinked file naming stuff we just did */ 7921 mutex_enter(&rp->r_statelock); 7922 if (rp->r_unldvp) { 7923 VN_RELE(ndvp); 7924 rp->r_unldvp = NULL; 7925 if (rp->r_unlcred != NULL) 7926 crfree(rp->r_unlcred); 7927 rp->r_unlcred = NULL; 7928 /* rp->r_unlanme points to tmpname */ 7929 if (rp->r_unlname) 7930 kmem_free(rp->r_unlname, MAXNAMELEN); 7931 rp->r_unlname = NULL; 7932 } 7933 mutex_exit(&rp->r_statelock); 7934 7935 if (nvp) { 7936 VN_RELE(nvp); 7937 } 7938 goto link_call; 7939 } 7940 7941 if (error) { 7942 VN_RELE(ovp); 7943 nfs_rw_exit(&odrp->r_rwlock); 7944 nfs_rw_exit(&ndrp->r_rwlock); 7945 if (nvp) { 7946 VN_RELE(nvp); 7947 } 7948 return (error); 7949 } 7950 7951 /* 7952 * when renaming directories to be a subdirectory of a 7953 * different parent, the dnlc entry for ".." will no 7954 * longer be valid, so it must be removed 7955 */ 7956 rp = VTOR4(ovp); 7957 if (ndvp != odvp) { 7958 if (ovp->v_type == VDIR) { 7959 dnlc_remove(ovp, ".."); 7960 if (rp->r_dir != NULL) 7961 nfs4_purge_rddir_cache(ovp); 7962 } 7963 } 7964 7965 /* 7966 * If we are renaming the unlinked file, update the 7967 * r_unldvp and r_unlname as needed. 7968 */ 7969 mutex_enter(&rp->r_statelock); 7970 if (rp->r_unldvp != NULL) { 7971 if (strcmp(rp->r_unlname, onm) == 0) { 7972 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 7973 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 7974 if (ndvp != rp->r_unldvp) { 7975 VN_RELE(rp->r_unldvp); 7976 rp->r_unldvp = ndvp; 7977 VN_HOLD(ndvp); 7978 } 7979 } 7980 } 7981 mutex_exit(&rp->r_statelock); 7982 7983 /* 7984 * Notify the rename vnevents to source vnode, and to the target 7985 * vnode if it already existed. 7986 */ 7987 if (error == 0) { 7988 vnode_t *tvp; 7989 rnode4_t *trp; 7990 /* 7991 * Notify the vnode. Each links is represented by 7992 * a different vnode, in nfsv4. 7993 */ 7994 if (nvp) { 7995 trp = VTOR4(nvp); 7996 tvp = nvp; 7997 if (IS_SHADOW(nvp, trp)) 7998 tvp = RTOV4(trp); 7999 vnevent_rename_dest(tvp, ndvp, nnm, ct); 8000 } 8001 8002 /* 8003 * if the source and destination directory are not the 8004 * same notify the destination directory. 8005 */ 8006 if (VTOR4(odvp) != VTOR4(ndvp)) { 8007 trp = VTOR4(ndvp); 8008 tvp = ndvp; 8009 if (IS_SHADOW(ndvp, trp)) 8010 tvp = RTOV4(trp); 8011 vnevent_rename_dest_dir(tvp, ct); 8012 } 8013 8014 trp = VTOR4(ovp); 8015 tvp = ovp; 8016 if (IS_SHADOW(ovp, trp)) 8017 tvp = RTOV4(trp); 8018 vnevent_rename_src(tvp, odvp, onm, ct); 8019 } 8020 8021 if (nvp) { 8022 VN_RELE(nvp); 8023 } 8024 VN_RELE(ovp); 8025 8026 nfs_rw_exit(&odrp->r_rwlock); 8027 nfs_rw_exit(&ndrp->r_rwlock); 8028 8029 return (error); 8030 } 8031 8032 /* 8033 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8034 * when it is known that the filehandle is persistent through rename. 8035 * 8036 * Rename requires that the current fh be the target directory and the 8037 * saved fh be the source directory. After the operation, the current fh 8038 * is unchanged. 8039 * The compound op structure for persistent fh rename is: 8040 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8041 * Rather than bother with the directory postop args, we'll simply 8042 * update that a change occurred in the cache, so no post-op getattrs. 8043 */ 8044 static int 8045 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8046 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8047 { 8048 COMPOUND4args_clnt args; 8049 COMPOUND4res_clnt res, *resp = NULL; 8050 nfs_argop4 *argop; 8051 nfs_resop4 *resop; 8052 int doqueue, argoplist_size; 8053 mntinfo4_t *mi; 8054 rnode4_t *odrp = VTOR4(odvp); 8055 rnode4_t *ndrp = VTOR4(ndvp); 8056 RENAME4res *rn_res; 8057 bool_t needrecov; 8058 nfs4_recov_state_t recov_state; 8059 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8060 dirattr_info_t dinfo, *dinfop; 8061 8062 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8063 8064 recov_state.rs_flags = 0; 8065 recov_state.rs_num_retry_despite_err = 0; 8066 8067 /* 8068 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8069 * 8070 * If source/target are different dirs, then append putfh(src); getattr 8071 */ 8072 args.array_len = (odvp == ndvp) ? 5 : 7; 8073 argoplist_size = args.array_len * sizeof (nfs_argop4); 8074 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8075 8076 recov_retry: 8077 *statp = NFS4_OK; 8078 8079 /* No need to Lookup the file, persistent fh */ 8080 args.ctag = TAG_RENAME; 8081 8082 mi = VTOMI4(odvp); 8083 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8084 if (e.error) { 8085 kmem_free(argop, argoplist_size); 8086 return (e.error); 8087 } 8088 8089 /* 0: putfh source directory */ 8090 argop[0].argop = OP_CPUTFH; 8091 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8092 8093 /* 1: Save source fh to free up current for target */ 8094 argop[1].argop = OP_SAVEFH; 8095 8096 /* 2: putfh targetdir */ 8097 argop[2].argop = OP_CPUTFH; 8098 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8099 8100 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8101 argop[3].argop = OP_CRENAME; 8102 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8103 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8104 8105 /* 4: getattr (targetdir) */ 8106 argop[4].argop = OP_GETATTR; 8107 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8108 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8109 8110 if (ndvp != odvp) { 8111 8112 /* 5: putfh (sourcedir) */ 8113 argop[5].argop = OP_CPUTFH; 8114 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8115 8116 /* 6: getattr (sourcedir) */ 8117 argop[6].argop = OP_GETATTR; 8118 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8119 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8120 } 8121 8122 dnlc_remove(odvp, onm); 8123 dnlc_remove(ndvp, nnm); 8124 8125 doqueue = 1; 8126 dinfo.di_time_call = gethrtime(); 8127 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8128 8129 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8130 if (e.error) { 8131 PURGE_ATTRCACHE4(odvp); 8132 PURGE_ATTRCACHE4(ndvp); 8133 } else { 8134 *statp = res.status; 8135 } 8136 8137 if (needrecov) { 8138 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8139 OP_RENAME, NULL) == FALSE) { 8140 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8141 if (!e.error) 8142 (void) xdr_free(xdr_COMPOUND4res_clnt, 8143 (caddr_t)&res); 8144 goto recov_retry; 8145 } 8146 } 8147 8148 if (!e.error) { 8149 resp = &res; 8150 /* 8151 * as long as OP_RENAME 8152 */ 8153 if (res.status != NFS4_OK && res.array_len <= 4) { 8154 e.error = geterrno4(res.status); 8155 PURGE_ATTRCACHE4(odvp); 8156 PURGE_ATTRCACHE4(ndvp); 8157 /* 8158 * System V defines rename to return EEXIST, not 8159 * ENOTEMPTY if the target directory is not empty. 8160 * Over the wire, the error is NFSERR_ENOTEMPTY 8161 * which geterrno4 maps to ENOTEMPTY. 8162 */ 8163 if (e.error == ENOTEMPTY) 8164 e.error = EEXIST; 8165 } else { 8166 8167 resop = &res.array[3]; /* rename res */ 8168 rn_res = &resop->nfs_resop4_u.oprename; 8169 8170 if (res.status == NFS4_OK) { 8171 /* 8172 * Update target attribute, readdir and dnlc 8173 * caches. 8174 */ 8175 dinfo.di_garp = 8176 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8177 dinfo.di_cred = cr; 8178 dinfop = &dinfo; 8179 } else 8180 dinfop = NULL; 8181 8182 nfs4_update_dircaches(&rn_res->target_cinfo, 8183 ndvp, NULL, NULL, dinfop); 8184 8185 /* 8186 * Update source attribute, readdir and dnlc caches 8187 * 8188 */ 8189 if (ndvp != odvp) { 8190 if (dinfop) 8191 dinfo.di_garp = 8192 &(res.array[6].nfs_resop4_u. 8193 opgetattr.ga_res); 8194 8195 nfs4_update_dircaches(&rn_res->source_cinfo, 8196 odvp, NULL, NULL, dinfop); 8197 } 8198 8199 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8200 nnm); 8201 } 8202 } 8203 8204 if (resp) 8205 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8206 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8207 kmem_free(argop, argoplist_size); 8208 8209 return (e.error); 8210 } 8211 8212 /* 8213 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8214 * it is possible for the filehandle to change due to the rename. 8215 * 8216 * The compound req in this case includes a post-rename lookup and getattr 8217 * to ensure that we have the correct fh and attributes for the object. 8218 * 8219 * Rename requires that the current fh be the target directory and the 8220 * saved fh be the source directory. After the operation, the current fh 8221 * is unchanged. 8222 * 8223 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8224 * update the filehandle for the renamed object. We also get the old 8225 * filehandle for historical reasons; this should be taken out sometime. 8226 * This results in a rather cumbersome compound... 8227 * 8228 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8229 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8230 * 8231 */ 8232 static int 8233 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8234 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8235 { 8236 COMPOUND4args_clnt args; 8237 COMPOUND4res_clnt res, *resp = NULL; 8238 int argoplist_size; 8239 nfs_argop4 *argop; 8240 nfs_resop4 *resop; 8241 int doqueue; 8242 mntinfo4_t *mi; 8243 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8244 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8245 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8246 RENAME4res *rn_res; 8247 GETFH4res *ngf_res; 8248 bool_t needrecov; 8249 nfs4_recov_state_t recov_state; 8250 hrtime_t t; 8251 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8252 dirattr_info_t dinfo, *dinfop = &dinfo; 8253 8254 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8255 8256 recov_state.rs_flags = 0; 8257 recov_state.rs_num_retry_despite_err = 0; 8258 8259 recov_retry: 8260 *statp = NFS4_OK; 8261 8262 /* 8263 * There is a window between the RPC and updating the path and 8264 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8265 * code, so that it doesn't try to use the old path during that 8266 * window. 8267 */ 8268 mutex_enter(&orp->r_statelock); 8269 while (orp->r_flags & R4RECEXPFH) { 8270 klwp_t *lwp = ttolwp(curthread); 8271 8272 if (lwp != NULL) 8273 lwp->lwp_nostop++; 8274 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8275 mutex_exit(&orp->r_statelock); 8276 if (lwp != NULL) 8277 lwp->lwp_nostop--; 8278 return (EINTR); 8279 } 8280 if (lwp != NULL) 8281 lwp->lwp_nostop--; 8282 } 8283 orp->r_flags |= R4RECEXPFH; 8284 mutex_exit(&orp->r_statelock); 8285 8286 mi = VTOMI4(odvp); 8287 8288 args.ctag = TAG_RENAME_VFH; 8289 args.array_len = (odvp == ndvp) ? 10 : 12; 8290 argoplist_size = args.array_len * sizeof (nfs_argop4); 8291 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8292 8293 /* 8294 * Rename ops: 8295 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8296 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8297 * LOOKUP(trgt), GETFH(new), GETATTR, 8298 * 8299 * if (odvp != ndvp) 8300 * add putfh(sourcedir), getattr(sourcedir) } 8301 */ 8302 args.array = argop; 8303 8304 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8305 &recov_state, NULL); 8306 if (e.error) { 8307 kmem_free(argop, argoplist_size); 8308 mutex_enter(&orp->r_statelock); 8309 orp->r_flags &= ~R4RECEXPFH; 8310 cv_broadcast(&orp->r_cv); 8311 mutex_exit(&orp->r_statelock); 8312 return (e.error); 8313 } 8314 8315 /* 0: putfh source directory */ 8316 argop[0].argop = OP_CPUTFH; 8317 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8318 8319 /* 1: Save source fh to free up current for target */ 8320 argop[1].argop = OP_SAVEFH; 8321 8322 /* 2: Lookup pre-rename fh of renamed object */ 8323 argop[2].argop = OP_CLOOKUP; 8324 argop[2].nfs_argop4_u.opclookup.cname = onm; 8325 8326 /* 3: getfh fh of renamed object (before rename) */ 8327 argop[3].argop = OP_GETFH; 8328 8329 /* 4: putfh targetdir */ 8330 argop[4].argop = OP_CPUTFH; 8331 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8332 8333 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8334 argop[5].argop = OP_CRENAME; 8335 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8336 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8337 8338 /* 6: getattr of target dir (post op attrs) */ 8339 argop[6].argop = OP_GETATTR; 8340 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8341 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8342 8343 /* 7: Lookup post-rename fh of renamed object */ 8344 argop[7].argop = OP_CLOOKUP; 8345 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8346 8347 /* 8: getfh fh of renamed object (after rename) */ 8348 argop[8].argop = OP_GETFH; 8349 8350 /* 9: getattr of renamed object */ 8351 argop[9].argop = OP_GETATTR; 8352 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8353 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8354 8355 /* 8356 * If source/target dirs are different, then get new post-op 8357 * attrs for source dir also. 8358 */ 8359 if (ndvp != odvp) { 8360 /* 10: putfh (sourcedir) */ 8361 argop[10].argop = OP_CPUTFH; 8362 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8363 8364 /* 11: getattr (sourcedir) */ 8365 argop[11].argop = OP_GETATTR; 8366 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8367 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8368 } 8369 8370 dnlc_remove(odvp, onm); 8371 dnlc_remove(ndvp, nnm); 8372 8373 doqueue = 1; 8374 t = gethrtime(); 8375 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8376 8377 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8378 if (e.error) { 8379 PURGE_ATTRCACHE4(odvp); 8380 PURGE_ATTRCACHE4(ndvp); 8381 if (!needrecov) { 8382 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8383 &recov_state, needrecov); 8384 goto out; 8385 } 8386 } else { 8387 *statp = res.status; 8388 } 8389 8390 if (needrecov) { 8391 bool_t abort; 8392 8393 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8394 OP_RENAME, NULL); 8395 if (abort == FALSE) { 8396 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8397 &recov_state, needrecov); 8398 kmem_free(argop, argoplist_size); 8399 if (!e.error) 8400 (void) xdr_free(xdr_COMPOUND4res_clnt, 8401 (caddr_t)&res); 8402 mutex_enter(&orp->r_statelock); 8403 orp->r_flags &= ~R4RECEXPFH; 8404 cv_broadcast(&orp->r_cv); 8405 mutex_exit(&orp->r_statelock); 8406 goto recov_retry; 8407 } else { 8408 if (e.error != 0) { 8409 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8410 &recov_state, needrecov); 8411 goto out; 8412 } 8413 /* fall through for res.status case */ 8414 } 8415 } 8416 8417 resp = &res; 8418 /* 8419 * If OP_RENAME (or any prev op) failed, then return an error. 8420 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8421 */ 8422 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8423 /* 8424 * Error in an op other than last Getattr 8425 */ 8426 e.error = geterrno4(res.status); 8427 PURGE_ATTRCACHE4(odvp); 8428 PURGE_ATTRCACHE4(ndvp); 8429 /* 8430 * System V defines rename to return EEXIST, not 8431 * ENOTEMPTY if the target directory is not empty. 8432 * Over the wire, the error is NFSERR_ENOTEMPTY 8433 * which geterrno4 maps to ENOTEMPTY. 8434 */ 8435 if (e.error == ENOTEMPTY) 8436 e.error = EEXIST; 8437 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8438 needrecov); 8439 goto out; 8440 } 8441 8442 /* rename results */ 8443 rn_res = &res.array[5].nfs_resop4_u.oprename; 8444 8445 if (res.status == NFS4_OK) { 8446 /* Update target attribute, readdir and dnlc caches */ 8447 dinfo.di_garp = 8448 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8449 dinfo.di_cred = cr; 8450 dinfo.di_time_call = t; 8451 } else 8452 dinfop = NULL; 8453 8454 /* Update source cache attribute, readdir and dnlc caches */ 8455 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8456 8457 /* Update source cache attribute, readdir and dnlc caches */ 8458 if (ndvp != odvp) { 8459 8460 /* 8461 * If dinfop is non-NULL, then compound succeded, so 8462 * set di_garp to attrs for source dir. dinfop is only 8463 * set to NULL when compound fails. 8464 */ 8465 if (dinfop) 8466 dinfo.di_garp = 8467 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8468 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8469 dinfop); 8470 } 8471 8472 /* 8473 * Update the rnode with the new component name and args, 8474 * and if the file handle changed, also update it with the new fh. 8475 * This is only necessary if the target object has an rnode 8476 * entry and there is no need to create one for it. 8477 */ 8478 resop = &res.array[8]; /* getfh new res */ 8479 ngf_res = &resop->nfs_resop4_u.opgetfh; 8480 8481 /* 8482 * Update the path and filehandle for the renamed object. 8483 */ 8484 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8485 8486 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8487 8488 if (res.status == NFS4_OK) { 8489 resop++; /* getattr res */ 8490 e.error = nfs4_update_attrcache(res.status, 8491 &resop->nfs_resop4_u.opgetattr.ga_res, 8492 t, ovp, cr); 8493 } 8494 8495 out: 8496 kmem_free(argop, argoplist_size); 8497 if (resp) 8498 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8499 mutex_enter(&orp->r_statelock); 8500 orp->r_flags &= ~R4RECEXPFH; 8501 cv_broadcast(&orp->r_cv); 8502 mutex_exit(&orp->r_statelock); 8503 8504 return (e.error); 8505 } 8506 8507 /* ARGSUSED */ 8508 static int 8509 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8510 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8511 { 8512 int error; 8513 vnode_t *vp; 8514 8515 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8516 return (EPERM); 8517 /* 8518 * As ".." has special meaning and rather than send a mkdir 8519 * over the wire to just let the server freak out, we just 8520 * short circuit it here and return EEXIST 8521 */ 8522 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8523 return (EEXIST); 8524 8525 /* 8526 * Decision to get the right gid and setgid bit of the 8527 * new directory is now made in call_nfs4_create_req. 8528 */ 8529 va->va_mask |= AT_MODE; 8530 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8531 if (error) 8532 return (error); 8533 8534 *vpp = vp; 8535 return (0); 8536 } 8537 8538 8539 /* 8540 * rmdir is using the same remove v4 op as does remove. 8541 * Remove requires that the current fh be the target directory. 8542 * After the operation, the current fh is unchanged. 8543 * The compound op structure is: 8544 * PUTFH(targetdir), REMOVE 8545 */ 8546 /*ARGSUSED4*/ 8547 static int 8548 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8549 caller_context_t *ct, int flags) 8550 { 8551 int need_end_op = FALSE; 8552 COMPOUND4args_clnt args; 8553 COMPOUND4res_clnt res, *resp = NULL; 8554 REMOVE4res *rm_res; 8555 nfs_argop4 argop[3]; 8556 nfs_resop4 *resop; 8557 vnode_t *vp; 8558 int doqueue; 8559 mntinfo4_t *mi; 8560 rnode4_t *drp; 8561 bool_t needrecov = FALSE; 8562 nfs4_recov_state_t recov_state; 8563 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8564 dirattr_info_t dinfo, *dinfop; 8565 8566 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8567 return (EPERM); 8568 /* 8569 * As ".." has special meaning and rather than send a rmdir 8570 * over the wire to just let the server freak out, we just 8571 * short circuit it here and return EEXIST 8572 */ 8573 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8574 return (EEXIST); 8575 8576 drp = VTOR4(dvp); 8577 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8578 return (EINTR); 8579 8580 /* 8581 * Attempt to prevent a rmdir(".") from succeeding. 8582 */ 8583 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8584 if (e.error) { 8585 nfs_rw_exit(&drp->r_rwlock); 8586 return (e.error); 8587 } 8588 if (vp == cdir) { 8589 VN_RELE(vp); 8590 nfs_rw_exit(&drp->r_rwlock); 8591 return (EINVAL); 8592 } 8593 8594 /* 8595 * Since nfsv4 remove op works on both files and directories, 8596 * check that the removed object is indeed a directory. 8597 */ 8598 if (vp->v_type != VDIR) { 8599 VN_RELE(vp); 8600 nfs_rw_exit(&drp->r_rwlock); 8601 return (ENOTDIR); 8602 } 8603 8604 /* 8605 * First just remove the entry from the name cache, as it 8606 * is most likely an entry for this vp. 8607 */ 8608 dnlc_remove(dvp, nm); 8609 8610 /* 8611 * If there vnode reference count is greater than one, then 8612 * there may be additional references in the DNLC which will 8613 * need to be purged. First, trying removing the entry for 8614 * the parent directory and see if that removes the additional 8615 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8616 * to completely remove any references to the directory which 8617 * might still exist in the DNLC. 8618 */ 8619 if (vp->v_count > 1) { 8620 dnlc_remove(vp, ".."); 8621 if (vp->v_count > 1) 8622 dnlc_purge_vp(vp); 8623 } 8624 8625 mi = VTOMI4(dvp); 8626 recov_state.rs_flags = 0; 8627 recov_state.rs_num_retry_despite_err = 0; 8628 8629 recov_retry: 8630 args.ctag = TAG_RMDIR; 8631 8632 /* 8633 * Rmdir ops: putfh dir; remove 8634 */ 8635 args.array_len = 3; 8636 args.array = argop; 8637 8638 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8639 if (e.error) { 8640 nfs_rw_exit(&drp->r_rwlock); 8641 return (e.error); 8642 } 8643 need_end_op = TRUE; 8644 8645 /* putfh directory */ 8646 argop[0].argop = OP_CPUTFH; 8647 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8648 8649 /* remove */ 8650 argop[1].argop = OP_CREMOVE; 8651 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8652 8653 /* getattr (postop attrs for dir that contained removed dir) */ 8654 argop[2].argop = OP_GETATTR; 8655 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8656 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8657 8658 dinfo.di_time_call = gethrtime(); 8659 doqueue = 1; 8660 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8661 8662 PURGE_ATTRCACHE4(vp); 8663 8664 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8665 if (e.error) { 8666 PURGE_ATTRCACHE4(dvp); 8667 } 8668 8669 if (needrecov) { 8670 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8671 NULL, OP_REMOVE, NULL) == FALSE) { 8672 if (!e.error) 8673 (void) xdr_free(xdr_COMPOUND4res_clnt, 8674 (caddr_t)&res); 8675 8676 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8677 needrecov); 8678 need_end_op = FALSE; 8679 goto recov_retry; 8680 } 8681 } 8682 8683 if (!e.error) { 8684 resp = &res; 8685 8686 /* 8687 * Only return error if first 2 ops (OP_REMOVE or earlier) 8688 * failed. 8689 */ 8690 if (res.status != NFS4_OK && res.array_len <= 2) { 8691 e.error = geterrno4(res.status); 8692 PURGE_ATTRCACHE4(dvp); 8693 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8694 &recov_state, needrecov); 8695 need_end_op = FALSE; 8696 nfs4_purge_stale_fh(e.error, dvp, cr); 8697 /* 8698 * System V defines rmdir to return EEXIST, not 8699 * ENOTEMPTY if the directory is not empty. Over 8700 * the wire, the error is NFSERR_ENOTEMPTY which 8701 * geterrno4 maps to ENOTEMPTY. 8702 */ 8703 if (e.error == ENOTEMPTY) 8704 e.error = EEXIST; 8705 } else { 8706 resop = &res.array[1]; /* remove res */ 8707 rm_res = &resop->nfs_resop4_u.opremove; 8708 8709 if (res.status == NFS4_OK) { 8710 resop = &res.array[2]; /* dir attrs */ 8711 dinfo.di_garp = 8712 &resop->nfs_resop4_u.opgetattr.ga_res; 8713 dinfo.di_cred = cr; 8714 dinfop = &dinfo; 8715 } else 8716 dinfop = NULL; 8717 8718 /* Update dir attribute, readdir and dnlc caches */ 8719 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8720 dinfop); 8721 8722 /* destroy rddir cache for dir that was removed */ 8723 if (VTOR4(vp)->r_dir != NULL) 8724 nfs4_purge_rddir_cache(vp); 8725 } 8726 } 8727 8728 if (need_end_op) 8729 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8730 8731 nfs_rw_exit(&drp->r_rwlock); 8732 8733 if (resp) 8734 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8735 8736 if (e.error == 0) { 8737 vnode_t *tvp; 8738 rnode4_t *trp; 8739 trp = VTOR4(vp); 8740 tvp = vp; 8741 if (IS_SHADOW(vp, trp)) 8742 tvp = RTOV4(trp); 8743 vnevent_rmdir(tvp, dvp, nm, ct); 8744 } 8745 8746 VN_RELE(vp); 8747 8748 return (e.error); 8749 } 8750 8751 /* ARGSUSED */ 8752 static int 8753 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8754 caller_context_t *ct, int flags) 8755 { 8756 int error; 8757 vnode_t *vp; 8758 rnode4_t *rp; 8759 char *contents; 8760 mntinfo4_t *mi = VTOMI4(dvp); 8761 8762 if (nfs_zone() != mi->mi_zone) 8763 return (EPERM); 8764 if (!(mi->mi_flags & MI4_SYMLINK)) 8765 return (EOPNOTSUPP); 8766 8767 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8768 if (error) 8769 return (error); 8770 8771 ASSERT(nfs4_consistent_type(vp)); 8772 rp = VTOR4(vp); 8773 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8774 8775 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8776 8777 if (contents != NULL) { 8778 mutex_enter(&rp->r_statelock); 8779 if (rp->r_symlink.contents == NULL) { 8780 rp->r_symlink.len = strlen(tnm); 8781 bcopy(tnm, contents, rp->r_symlink.len); 8782 rp->r_symlink.contents = contents; 8783 rp->r_symlink.size = MAXPATHLEN; 8784 mutex_exit(&rp->r_statelock); 8785 } else { 8786 mutex_exit(&rp->r_statelock); 8787 kmem_free((void *)contents, MAXPATHLEN); 8788 } 8789 } 8790 } 8791 VN_RELE(vp); 8792 8793 return (error); 8794 } 8795 8796 8797 /* 8798 * Read directory entries. 8799 * There are some weird things to look out for here. The uio_loffset 8800 * field is either 0 or it is the offset returned from a previous 8801 * readdir. It is an opaque value used by the server to find the 8802 * correct directory block to read. The count field is the number 8803 * of blocks to read on the server. This is advisory only, the server 8804 * may return only one block's worth of entries. Entries may be compressed 8805 * on the server. 8806 */ 8807 /* ARGSUSED */ 8808 static int 8809 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8810 caller_context_t *ct, int flags) 8811 { 8812 int error; 8813 uint_t count; 8814 rnode4_t *rp; 8815 rddir4_cache *rdc; 8816 rddir4_cache *rrdc; 8817 8818 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8819 return (EIO); 8820 rp = VTOR4(vp); 8821 8822 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8823 8824 /* 8825 * Make sure that the directory cache is valid. 8826 */ 8827 if (rp->r_dir != NULL) { 8828 if (nfs_disable_rddir_cache != 0) { 8829 /* 8830 * Setting nfs_disable_rddir_cache in /etc/system 8831 * allows interoperability with servers that do not 8832 * properly update the attributes of directories. 8833 * Any cached information gets purged before an 8834 * access is made to it. 8835 */ 8836 nfs4_purge_rddir_cache(vp); 8837 } 8838 8839 error = nfs4_validate_caches(vp, cr); 8840 if (error) 8841 return (error); 8842 } 8843 8844 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8845 8846 /* 8847 * Short circuit last readdir which always returns 0 bytes. 8848 * This can be done after the directory has been read through 8849 * completely at least once. This will set r_direof which 8850 * can be used to find the value of the last cookie. 8851 */ 8852 mutex_enter(&rp->r_statelock); 8853 if (rp->r_direof != NULL && 8854 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8855 mutex_exit(&rp->r_statelock); 8856 #ifdef DEBUG 8857 nfs4_readdir_cache_shorts++; 8858 #endif 8859 if (eofp) 8860 *eofp = 1; 8861 return (0); 8862 } 8863 8864 /* 8865 * Look for a cache entry. Cache entries are identified 8866 * by the NFS cookie value and the byte count requested. 8867 */ 8868 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8869 8870 /* 8871 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8872 */ 8873 if (rdc == NULL) { 8874 mutex_exit(&rp->r_statelock); 8875 return (EINTR); 8876 } 8877 8878 /* 8879 * Check to see if we need to fill this entry in. 8880 */ 8881 if (rdc->flags & RDDIRREQ) { 8882 rdc->flags &= ~RDDIRREQ; 8883 rdc->flags |= RDDIR; 8884 mutex_exit(&rp->r_statelock); 8885 8886 /* 8887 * Do the readdir. 8888 */ 8889 nfs4readdir(vp, rdc, cr); 8890 8891 /* 8892 * Reacquire the lock, so that we can continue 8893 */ 8894 mutex_enter(&rp->r_statelock); 8895 /* 8896 * The entry is now complete 8897 */ 8898 rdc->flags &= ~RDDIR; 8899 } 8900 8901 ASSERT(!(rdc->flags & RDDIR)); 8902 8903 /* 8904 * If an error occurred while attempting 8905 * to fill the cache entry, mark the entry invalid and 8906 * just return the error. 8907 */ 8908 if (rdc->error) { 8909 error = rdc->error; 8910 rdc->flags |= RDDIRREQ; 8911 rddir4_cache_rele(rp, rdc); 8912 mutex_exit(&rp->r_statelock); 8913 return (error); 8914 } 8915 8916 /* 8917 * The cache entry is complete and good, 8918 * copyout the dirent structs to the calling 8919 * thread. 8920 */ 8921 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 8922 8923 /* 8924 * If no error occurred during the copyout, 8925 * update the offset in the uio struct to 8926 * contain the value of the next NFS 4 cookie 8927 * and set the eof value appropriately. 8928 */ 8929 if (!error) { 8930 uiop->uio_loffset = rdc->nfs4_ncookie; 8931 if (eofp) 8932 *eofp = rdc->eof; 8933 } 8934 8935 /* 8936 * Decide whether to do readahead. Don't if we 8937 * have already read to the end of directory. 8938 */ 8939 if (rdc->eof) { 8940 /* 8941 * Make the entry the direof only if it is cached 8942 */ 8943 if (rdc->flags & RDDIRCACHED) 8944 rp->r_direof = rdc; 8945 rddir4_cache_rele(rp, rdc); 8946 mutex_exit(&rp->r_statelock); 8947 return (error); 8948 } 8949 8950 /* Determine if a readdir readahead should be done */ 8951 if (!(rp->r_flags & R4LOOKUP)) { 8952 rddir4_cache_rele(rp, rdc); 8953 mutex_exit(&rp->r_statelock); 8954 return (error); 8955 } 8956 8957 /* 8958 * Now look for a readahead entry. 8959 * 8960 * Check to see whether we found an entry for the readahead. 8961 * If so, we don't need to do anything further, so free the new 8962 * entry if one was allocated. Otherwise, allocate a new entry, add 8963 * it to the cache, and then initiate an asynchronous readdir 8964 * operation to fill it. 8965 */ 8966 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 8967 8968 /* 8969 * A readdir cache entry could not be obtained for the readahead. In 8970 * this case we skip the readahead and return. 8971 */ 8972 if (rrdc == NULL) { 8973 rddir4_cache_rele(rp, rdc); 8974 mutex_exit(&rp->r_statelock); 8975 return (error); 8976 } 8977 8978 /* 8979 * Check to see if we need to fill this entry in. 8980 */ 8981 if (rrdc->flags & RDDIRREQ) { 8982 rrdc->flags &= ~RDDIRREQ; 8983 rrdc->flags |= RDDIR; 8984 rddir4_cache_rele(rp, rdc); 8985 mutex_exit(&rp->r_statelock); 8986 #ifdef DEBUG 8987 nfs4_readdir_readahead++; 8988 #endif 8989 /* 8990 * Do the readdir. 8991 */ 8992 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 8993 return (error); 8994 } 8995 8996 rddir4_cache_rele(rp, rrdc); 8997 rddir4_cache_rele(rp, rdc); 8998 mutex_exit(&rp->r_statelock); 8999 return (error); 9000 } 9001 9002 static int 9003 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9004 { 9005 int error; 9006 rnode4_t *rp; 9007 9008 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9009 9010 rp = VTOR4(vp); 9011 9012 /* 9013 * Obtain the readdir results for the caller. 9014 */ 9015 nfs4readdir(vp, rdc, cr); 9016 9017 mutex_enter(&rp->r_statelock); 9018 /* 9019 * The entry is now complete 9020 */ 9021 rdc->flags &= ~RDDIR; 9022 9023 error = rdc->error; 9024 if (error) 9025 rdc->flags |= RDDIRREQ; 9026 rddir4_cache_rele(rp, rdc); 9027 mutex_exit(&rp->r_statelock); 9028 9029 return (error); 9030 } 9031 9032 /* 9033 * Read directory entries. 9034 * There are some weird things to look out for here. The uio_loffset 9035 * field is either 0 or it is the offset returned from a previous 9036 * readdir. It is an opaque value used by the server to find the 9037 * correct directory block to read. The count field is the number 9038 * of blocks to read on the server. This is advisory only, the server 9039 * may return only one block's worth of entries. Entries may be compressed 9040 * on the server. 9041 * 9042 * Generates the following compound request: 9043 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9044 * must include a Lookupp as well. In this case, send: 9045 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9046 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9047 * 9048 * Get complete attributes and filehandles for entries if this is the 9049 * first read of the directory. Otherwise, just get fileid's. 9050 */ 9051 static void 9052 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9053 { 9054 COMPOUND4args_clnt args; 9055 COMPOUND4res_clnt res; 9056 READDIR4args *rargs; 9057 READDIR4res_clnt *rd_res; 9058 bitmap4 rd_bitsval; 9059 nfs_argop4 argop[5]; 9060 nfs_resop4 *resop; 9061 rnode4_t *rp = VTOR4(vp); 9062 mntinfo4_t *mi = VTOMI4(vp); 9063 int doqueue; 9064 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9065 vnode_t *dvp; 9066 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9067 int num_ops, res_opcnt; 9068 bool_t needrecov = FALSE; 9069 nfs4_recov_state_t recov_state; 9070 hrtime_t t; 9071 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9072 9073 ASSERT(nfs_zone() == mi->mi_zone); 9074 ASSERT(rdc->flags & RDDIR); 9075 ASSERT(rdc->entries == NULL); 9076 9077 /* 9078 * If rp were a stub, it should have triggered and caused 9079 * a mount for us to get this far. 9080 */ 9081 ASSERT(!RP_ISSTUB(rp)); 9082 9083 num_ops = 2; 9084 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9085 /* 9086 * Since nfsv4 readdir may not return entries for "." and "..", 9087 * the client must recreate them: 9088 * To find the correct nodeid, do the following: 9089 * For current node, get nodeid from dnlc. 9090 * - if current node is rootvp, set pnodeid to nodeid. 9091 * - else if parent is in the dnlc, get its nodeid from there. 9092 * - else add LOOKUPP+GETATTR to compound. 9093 */ 9094 nodeid = rp->r_attr.va_nodeid; 9095 if (vp->v_flag & VROOT) { 9096 pnodeid = nodeid; /* root of mount point */ 9097 } else { 9098 dvp = dnlc_lookup(vp, ".."); 9099 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9100 /* parent in dnlc cache - no need for otw */ 9101 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9102 } else { 9103 /* 9104 * parent not in dnlc cache, 9105 * do lookupp to get its id 9106 */ 9107 num_ops = 5; 9108 pnodeid = 0; /* set later by getattr parent */ 9109 } 9110 if (dvp) 9111 VN_RELE(dvp); 9112 } 9113 } 9114 recov_state.rs_flags = 0; 9115 recov_state.rs_num_retry_despite_err = 0; 9116 9117 /* Save the original mount point security flavor */ 9118 (void) save_mnt_secinfo(mi->mi_curr_serv); 9119 9120 recov_retry: 9121 args.ctag = TAG_READDIR; 9122 9123 args.array = argop; 9124 args.array_len = num_ops; 9125 9126 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9127 &recov_state, NULL)) { 9128 /* 9129 * If readdir a node that is a stub for a crossed mount point, 9130 * keep the original secinfo flavor for the current file 9131 * system, not the crossed one. 9132 */ 9133 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9134 rdc->error = e.error; 9135 return; 9136 } 9137 9138 /* 9139 * Determine which attrs to request for dirents. This code 9140 * must be protected by nfs4_start/end_fop because of r_server 9141 * (which will change during failover recovery). 9142 * 9143 */ 9144 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9145 /* 9146 * Get all vattr attrs plus filehandle and rdattr_error 9147 */ 9148 rd_bitsval = NFS4_VATTR_MASK | 9149 FATTR4_RDATTR_ERROR_MASK | 9150 FATTR4_FILEHANDLE_MASK; 9151 9152 if (rp->r_flags & R4READDIRWATTR) { 9153 mutex_enter(&rp->r_statelock); 9154 rp->r_flags &= ~R4READDIRWATTR; 9155 mutex_exit(&rp->r_statelock); 9156 } 9157 } else { 9158 servinfo4_t *svp = rp->r_server; 9159 9160 /* 9161 * Already read directory. Use readdir with 9162 * no attrs (except for mounted_on_fileid) for updates. 9163 */ 9164 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9165 9166 /* 9167 * request mounted on fileid if supported, else request 9168 * fileid. maybe we should verify that fileid is supported 9169 * and request something else if not. 9170 */ 9171 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9172 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9173 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9174 nfs_rw_exit(&svp->sv_lock); 9175 } 9176 9177 /* putfh directory fh */ 9178 argop[0].argop = OP_CPUTFH; 9179 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9180 9181 argop[1].argop = OP_READDIR; 9182 rargs = &argop[1].nfs_argop4_u.opreaddir; 9183 /* 9184 * 1 and 2 are reserved for client "." and ".." entry offset. 9185 * cookie 0 should be used over-the-wire to start reading at 9186 * the beginning of the directory excluding "." and "..". 9187 */ 9188 if (rdc->nfs4_cookie == 0 || 9189 rdc->nfs4_cookie == 1 || 9190 rdc->nfs4_cookie == 2) { 9191 rargs->cookie = (nfs_cookie4)0; 9192 rargs->cookieverf = 0; 9193 } else { 9194 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9195 mutex_enter(&rp->r_statelock); 9196 rargs->cookieverf = rp->r_cookieverf4; 9197 mutex_exit(&rp->r_statelock); 9198 } 9199 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9200 rargs->maxcount = mi->mi_tsize; 9201 rargs->attr_request = rd_bitsval; 9202 rargs->rdc = rdc; 9203 rargs->dvp = vp; 9204 rargs->mi = mi; 9205 rargs->cr = cr; 9206 9207 9208 /* 9209 * If count < than the minimum required, we return no entries 9210 * and fail with EINVAL 9211 */ 9212 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9213 rdc->error = EINVAL; 9214 goto out; 9215 } 9216 9217 if (args.array_len == 5) { 9218 /* 9219 * Add lookupp and getattr for parent nodeid. 9220 */ 9221 argop[2].argop = OP_LOOKUPP; 9222 9223 argop[3].argop = OP_GETFH; 9224 9225 /* getattr parent */ 9226 argop[4].argop = OP_GETATTR; 9227 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9228 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9229 } 9230 9231 doqueue = 1; 9232 9233 if (mi->mi_io_kstats) { 9234 mutex_enter(&mi->mi_lock); 9235 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9236 mutex_exit(&mi->mi_lock); 9237 } 9238 9239 /* capture the time of this call */ 9240 rargs->t = t = gethrtime(); 9241 9242 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9243 9244 if (mi->mi_io_kstats) { 9245 mutex_enter(&mi->mi_lock); 9246 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9247 mutex_exit(&mi->mi_lock); 9248 } 9249 9250 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9251 9252 /* 9253 * If RPC error occurred and it isn't an error that 9254 * triggers recovery, then go ahead and fail now. 9255 */ 9256 if (e.error != 0 && !needrecov) { 9257 rdc->error = e.error; 9258 goto out; 9259 } 9260 9261 if (needrecov) { 9262 bool_t abort; 9263 9264 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9265 "nfs4readdir: initiating recovery.\n")); 9266 9267 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9268 NULL, OP_READDIR, NULL); 9269 if (abort == FALSE) { 9270 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9271 &recov_state, needrecov); 9272 if (!e.error) 9273 (void) xdr_free(xdr_COMPOUND4res_clnt, 9274 (caddr_t)&res); 9275 if (rdc->entries != NULL) { 9276 kmem_free(rdc->entries, rdc->entlen); 9277 rdc->entries = NULL; 9278 } 9279 goto recov_retry; 9280 } 9281 9282 if (e.error != 0) { 9283 rdc->error = e.error; 9284 goto out; 9285 } 9286 9287 /* fall through for res.status case */ 9288 } 9289 9290 res_opcnt = res.array_len; 9291 9292 /* 9293 * If compound failed first 2 ops (PUTFH+READDIR), then return 9294 * failure here. Subsequent ops are for filling out dot-dot 9295 * dirent, and if they fail, we still want to give the caller 9296 * the dirents returned by (the successful) READDIR op, so we need 9297 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9298 * 9299 * One example where PUTFH+READDIR ops would succeed but 9300 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9301 * but lacks x. In this case, a POSIX server's VOP_READDIR 9302 * would succeed; however, VOP_LOOKUP(..) would fail since no 9303 * x perm. We need to come up with a non-vendor-specific way 9304 * for a POSIX server to return d_ino from dotdot's dirent if 9305 * client only requests mounted_on_fileid, and just say the 9306 * LOOKUPP succeeded and fill out the GETATTR. However, if 9307 * client requested any mandatory attrs, server would be required 9308 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9309 * for dotdot. 9310 */ 9311 9312 if (res.status) { 9313 if (res_opcnt <= 2) { 9314 e.error = geterrno4(res.status); 9315 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9316 &recov_state, needrecov); 9317 nfs4_purge_stale_fh(e.error, vp, cr); 9318 rdc->error = e.error; 9319 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9320 if (rdc->entries != NULL) { 9321 kmem_free(rdc->entries, rdc->entlen); 9322 rdc->entries = NULL; 9323 } 9324 /* 9325 * If readdir a node that is a stub for a 9326 * crossed mount point, keep the original 9327 * secinfo flavor for the current file system, 9328 * not the crossed one. 9329 */ 9330 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9331 return; 9332 } 9333 } 9334 9335 resop = &res.array[1]; /* readdir res */ 9336 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9337 9338 mutex_enter(&rp->r_statelock); 9339 rp->r_cookieverf4 = rd_res->cookieverf; 9340 mutex_exit(&rp->r_statelock); 9341 9342 /* 9343 * For "." and ".." entries 9344 * e.g. 9345 * seek(cookie=0) -> "." entry with d_off = 1 9346 * seek(cookie=1) -> ".." entry with d_off = 2 9347 */ 9348 if (cookie == (nfs_cookie4) 0) { 9349 if (rd_res->dotp) 9350 rd_res->dotp->d_ino = nodeid; 9351 if (rd_res->dotdotp) 9352 rd_res->dotdotp->d_ino = pnodeid; 9353 } 9354 if (cookie == (nfs_cookie4) 1) { 9355 if (rd_res->dotdotp) 9356 rd_res->dotdotp->d_ino = pnodeid; 9357 } 9358 9359 9360 /* LOOKUPP+GETATTR attemped */ 9361 if (args.array_len == 5 && rd_res->dotdotp) { 9362 if (res.status == NFS4_OK && res_opcnt == 5) { 9363 nfs_fh4 *fhp; 9364 nfs4_sharedfh_t *sfhp; 9365 vnode_t *pvp; 9366 nfs4_ga_res_t *garp; 9367 9368 resop++; /* lookupp */ 9369 resop++; /* getfh */ 9370 fhp = &resop->nfs_resop4_u.opgetfh.object; 9371 9372 resop++; /* getattr of parent */ 9373 9374 /* 9375 * First, take care of finishing the 9376 * readdir results. 9377 */ 9378 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9379 /* 9380 * The d_ino of .. must be the inode number 9381 * of the mounted filesystem. 9382 */ 9383 if (garp->n4g_va.va_mask & AT_NODEID) 9384 rd_res->dotdotp->d_ino = 9385 garp->n4g_va.va_nodeid; 9386 9387 9388 /* 9389 * Next, create the ".." dnlc entry 9390 */ 9391 sfhp = sfh4_get(fhp, mi); 9392 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9393 dnlc_update(vp, "..", pvp); 9394 VN_RELE(pvp); 9395 } 9396 sfh4_rele(&sfhp); 9397 } 9398 } 9399 9400 if (mi->mi_io_kstats) { 9401 mutex_enter(&mi->mi_lock); 9402 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9403 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9404 mutex_exit(&mi->mi_lock); 9405 } 9406 9407 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9408 9409 out: 9410 /* 9411 * If readdir a node that is a stub for a crossed mount point, 9412 * keep the original secinfo flavor for the current file system, 9413 * not the crossed one. 9414 */ 9415 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9416 9417 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9418 } 9419 9420 9421 static int 9422 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9423 { 9424 rnode4_t *rp = VTOR4(bp->b_vp); 9425 int count; 9426 int error; 9427 cred_t *cred_otw = NULL; 9428 offset_t offset; 9429 nfs4_open_stream_t *osp = NULL; 9430 bool_t first_time = TRUE; /* first time getting otw cred */ 9431 bool_t last_time = FALSE; /* last time getting otw cred */ 9432 9433 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9434 9435 DTRACE_IO1(start, struct buf *, bp); 9436 offset = ldbtob(bp->b_lblkno); 9437 9438 if (bp->b_flags & B_READ) { 9439 read_again: 9440 /* 9441 * Releases the osp, if it is provided. 9442 * Puts a hold on the cred_otw and the new osp (if found). 9443 */ 9444 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9445 &first_time, &last_time); 9446 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9447 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9448 readahead, NULL); 9449 crfree(cred_otw); 9450 if (!error) { 9451 if (bp->b_resid) { 9452 /* 9453 * Didn't get it all because we hit EOF, 9454 * zero all the memory beyond the EOF. 9455 */ 9456 /* bzero(rdaddr + */ 9457 bzero(bp->b_un.b_addr + 9458 bp->b_bcount - bp->b_resid, bp->b_resid); 9459 } 9460 mutex_enter(&rp->r_statelock); 9461 if (bp->b_resid == bp->b_bcount && 9462 offset >= rp->r_size) { 9463 /* 9464 * We didn't read anything at all as we are 9465 * past EOF. Return an error indicator back 9466 * but don't destroy the pages (yet). 9467 */ 9468 error = NFS_EOF; 9469 } 9470 mutex_exit(&rp->r_statelock); 9471 } else if (error == EACCES && last_time == FALSE) { 9472 goto read_again; 9473 } 9474 } else { 9475 if (!(rp->r_flags & R4STALE)) { 9476 write_again: 9477 /* 9478 * Releases the osp, if it is provided. 9479 * Puts a hold on the cred_otw and the new 9480 * osp (if found). 9481 */ 9482 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9483 &first_time, &last_time); 9484 mutex_enter(&rp->r_statelock); 9485 count = MIN(bp->b_bcount, rp->r_size - offset); 9486 mutex_exit(&rp->r_statelock); 9487 if (count < 0) 9488 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9489 #ifdef DEBUG 9490 if (count == 0) { 9491 zoneid_t zoneid = getzoneid(); 9492 9493 zcmn_err(zoneid, CE_WARN, 9494 "nfs4_bio: zero length write at %lld", 9495 offset); 9496 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9497 "b_bcount=%ld, file size=%lld", 9498 rp->r_flags, (long)bp->b_bcount, 9499 rp->r_size); 9500 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9501 if (nfs4_bio_do_stop) 9502 debug_enter("nfs4_bio"); 9503 } 9504 #endif 9505 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9506 count, cred_otw, stab_comm); 9507 if (error == EACCES && last_time == FALSE) { 9508 crfree(cred_otw); 9509 goto write_again; 9510 } 9511 bp->b_error = error; 9512 if (error && error != EINTR && 9513 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9514 /* 9515 * Don't print EDQUOT errors on the console. 9516 * Don't print asynchronous EACCES errors. 9517 * Don't print EFBIG errors. 9518 * Print all other write errors. 9519 */ 9520 if (error != EDQUOT && error != EFBIG && 9521 (error != EACCES || 9522 !(bp->b_flags & B_ASYNC))) 9523 nfs4_write_error(bp->b_vp, 9524 error, cred_otw); 9525 /* 9526 * Update r_error and r_flags as appropriate. 9527 * If the error was ESTALE, then mark the 9528 * rnode as not being writeable and save 9529 * the error status. Otherwise, save any 9530 * errors which occur from asynchronous 9531 * page invalidations. Any errors occurring 9532 * from other operations should be saved 9533 * by the caller. 9534 */ 9535 mutex_enter(&rp->r_statelock); 9536 if (error == ESTALE) { 9537 rp->r_flags |= R4STALE; 9538 if (!rp->r_error) 9539 rp->r_error = error; 9540 } else if (!rp->r_error && 9541 (bp->b_flags & 9542 (B_INVAL|B_FORCE|B_ASYNC)) == 9543 (B_INVAL|B_FORCE|B_ASYNC)) { 9544 rp->r_error = error; 9545 } 9546 mutex_exit(&rp->r_statelock); 9547 } 9548 crfree(cred_otw); 9549 } else 9550 error = rp->r_error; 9551 } 9552 9553 if (error != 0 && error != NFS_EOF) 9554 bp->b_flags |= B_ERROR; 9555 9556 if (osp) 9557 open_stream_rele(osp, rp); 9558 9559 DTRACE_IO1(done, struct buf *, bp); 9560 9561 return (error); 9562 } 9563 9564 /* ARGSUSED */ 9565 int 9566 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9567 { 9568 return (EREMOTE); 9569 } 9570 9571 /* ARGSUSED2 */ 9572 int 9573 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9574 { 9575 rnode4_t *rp = VTOR4(vp); 9576 9577 if (!write_lock) { 9578 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9579 return (V_WRITELOCK_FALSE); 9580 } 9581 9582 if ((rp->r_flags & R4DIRECTIO) || 9583 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9584 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9585 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9586 return (V_WRITELOCK_FALSE); 9587 nfs_rw_exit(&rp->r_rwlock); 9588 } 9589 9590 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9591 return (V_WRITELOCK_TRUE); 9592 } 9593 9594 /* ARGSUSED */ 9595 void 9596 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9597 { 9598 rnode4_t *rp = VTOR4(vp); 9599 9600 nfs_rw_exit(&rp->r_rwlock); 9601 } 9602 9603 /* ARGSUSED */ 9604 static int 9605 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9606 { 9607 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9608 return (EIO); 9609 9610 /* 9611 * Because we stuff the readdir cookie into the offset field 9612 * someone may attempt to do an lseek with the cookie which 9613 * we want to succeed. 9614 */ 9615 if (vp->v_type == VDIR) 9616 return (0); 9617 if (*noffp < 0) 9618 return (EINVAL); 9619 return (0); 9620 } 9621 9622 9623 /* 9624 * Return all the pages from [off..off+len) in file 9625 */ 9626 /* ARGSUSED */ 9627 static int 9628 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9629 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9630 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9631 { 9632 rnode4_t *rp; 9633 int error; 9634 mntinfo4_t *mi; 9635 9636 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9637 return (EIO); 9638 rp = VTOR4(vp); 9639 if (IS_SHADOW(vp, rp)) 9640 vp = RTOV4(rp); 9641 9642 if (vp->v_flag & VNOMAP) 9643 return (ENOSYS); 9644 9645 if (protp != NULL) 9646 *protp = PROT_ALL; 9647 9648 /* 9649 * Now validate that the caches are up to date. 9650 */ 9651 if (error = nfs4_validate_caches(vp, cr)) 9652 return (error); 9653 9654 mi = VTOMI4(vp); 9655 retry: 9656 mutex_enter(&rp->r_statelock); 9657 9658 /* 9659 * Don't create dirty pages faster than they 9660 * can be cleaned so that the system doesn't 9661 * get imbalanced. If the async queue is 9662 * maxed out, then wait for it to drain before 9663 * creating more dirty pages. Also, wait for 9664 * any threads doing pagewalks in the vop_getattr 9665 * entry points so that they don't block for 9666 * long periods. 9667 */ 9668 if (rw == S_CREATE) { 9669 while ((mi->mi_max_threads != 0 && 9670 rp->r_awcount > 2 * mi->mi_max_threads) || 9671 rp->r_gcount > 0) 9672 cv_wait(&rp->r_cv, &rp->r_statelock); 9673 } 9674 9675 /* 9676 * If we are getting called as a side effect of an nfs_write() 9677 * operation the local file size might not be extended yet. 9678 * In this case we want to be able to return pages of zeroes. 9679 */ 9680 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9681 NFS4_DEBUG(nfs4_pageio_debug, 9682 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9683 "len=%llu, size=%llu, attrsize =%llu", off, 9684 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9685 mutex_exit(&rp->r_statelock); 9686 return (EFAULT); /* beyond EOF */ 9687 } 9688 9689 mutex_exit(&rp->r_statelock); 9690 9691 if (len <= PAGESIZE) { 9692 error = nfs4_getapage(vp, off, len, protp, pl, plsz, 9693 seg, addr, rw, cr); 9694 NFS4_DEBUG(nfs4_pageio_debug && error, 9695 (CE_NOTE, "getpage error %d; off=%lld, " 9696 "len=%lld", error, off, (u_longlong_t)len)); 9697 } else { 9698 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9699 pl, plsz, seg, addr, rw, cr); 9700 NFS4_DEBUG(nfs4_pageio_debug && error, 9701 (CE_NOTE, "getpages error %d; off=%lld, " 9702 "len=%lld", error, off, (u_longlong_t)len)); 9703 } 9704 9705 switch (error) { 9706 case NFS_EOF: 9707 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9708 goto retry; 9709 case ESTALE: 9710 nfs4_purge_stale_fh(error, vp, cr); 9711 } 9712 9713 return (error); 9714 } 9715 9716 /* 9717 * Called from pvn_getpages or nfs4_getpage to get a particular page. 9718 */ 9719 /* ARGSUSED */ 9720 static int 9721 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9722 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9723 enum seg_rw rw, cred_t *cr) 9724 { 9725 rnode4_t *rp; 9726 uint_t bsize; 9727 struct buf *bp; 9728 page_t *pp; 9729 u_offset_t lbn; 9730 u_offset_t io_off; 9731 u_offset_t blkoff; 9732 u_offset_t rablkoff; 9733 size_t io_len; 9734 uint_t blksize; 9735 int error; 9736 int readahead; 9737 int readahead_issued = 0; 9738 int ra_window; /* readahead window */ 9739 page_t *pagefound; 9740 page_t *savepp; 9741 9742 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9743 return (EIO); 9744 9745 rp = VTOR4(vp); 9746 ASSERT(!IS_SHADOW(vp, rp)); 9747 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9748 9749 reread: 9750 bp = NULL; 9751 pp = NULL; 9752 pagefound = NULL; 9753 9754 if (pl != NULL) 9755 pl[0] = NULL; 9756 9757 error = 0; 9758 lbn = off / bsize; 9759 blkoff = lbn * bsize; 9760 9761 /* 9762 * Queueing up the readahead before doing the synchronous read 9763 * results in a significant increase in read throughput because 9764 * of the increased parallelism between the async threads and 9765 * the process context. 9766 */ 9767 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9768 rw != S_CREATE && 9769 !(vp->v_flag & VNOCACHE)) { 9770 mutex_enter(&rp->r_statelock); 9771 9772 /* 9773 * Calculate the number of readaheads to do. 9774 * a) No readaheads at offset = 0. 9775 * b) Do maximum(nfs4_nra) readaheads when the readahead 9776 * window is closed. 9777 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9778 * upon how far the readahead window is open or close. 9779 * d) No readaheads if rp->r_nextr is not within the scope 9780 * of the readahead window (random i/o). 9781 */ 9782 9783 if (off == 0) 9784 readahead = 0; 9785 else if (blkoff == rp->r_nextr) 9786 readahead = nfs4_nra; 9787 else if (rp->r_nextr > blkoff && 9788 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9789 <= (nfs4_nra - 1))) 9790 readahead = nfs4_nra - ra_window; 9791 else 9792 readahead = 0; 9793 9794 rablkoff = rp->r_nextr; 9795 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9796 mutex_exit(&rp->r_statelock); 9797 if (nfs4_async_readahead(vp, rablkoff + bsize, 9798 addr + (rablkoff + bsize - off), 9799 seg, cr, nfs4_readahead) < 0) { 9800 mutex_enter(&rp->r_statelock); 9801 break; 9802 } 9803 readahead--; 9804 rablkoff += bsize; 9805 /* 9806 * Indicate that we did a readahead so 9807 * readahead offset is not updated 9808 * by the synchronous read below. 9809 */ 9810 readahead_issued = 1; 9811 mutex_enter(&rp->r_statelock); 9812 /* 9813 * set readahead offset to 9814 * offset of last async readahead 9815 * request. 9816 */ 9817 rp->r_nextr = rablkoff; 9818 } 9819 mutex_exit(&rp->r_statelock); 9820 } 9821 9822 again: 9823 if ((pagefound = page_exists(vp, off)) == NULL) { 9824 if (pl == NULL) { 9825 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9826 nfs4_readahead); 9827 } else if (rw == S_CREATE) { 9828 /* 9829 * Block for this page is not allocated, or the offset 9830 * is beyond the current allocation size, or we're 9831 * allocating a swap slot and the page was not found, 9832 * so allocate it and return a zero page. 9833 */ 9834 if ((pp = page_create_va(vp, off, 9835 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9836 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9837 io_len = PAGESIZE; 9838 mutex_enter(&rp->r_statelock); 9839 rp->r_nextr = off + PAGESIZE; 9840 mutex_exit(&rp->r_statelock); 9841 } else { 9842 /* 9843 * Need to go to server to get a block 9844 */ 9845 mutex_enter(&rp->r_statelock); 9846 if (blkoff < rp->r_size && 9847 blkoff + bsize > rp->r_size) { 9848 /* 9849 * If less than a block left in 9850 * file read less than a block. 9851 */ 9852 if (rp->r_size <= off) { 9853 /* 9854 * Trying to access beyond EOF, 9855 * set up to get at least one page. 9856 */ 9857 blksize = off + PAGESIZE - blkoff; 9858 } else 9859 blksize = rp->r_size - blkoff; 9860 } else if ((off == 0) || 9861 (off != rp->r_nextr && !readahead_issued)) { 9862 blksize = PAGESIZE; 9863 blkoff = off; /* block = page here */ 9864 } else 9865 blksize = bsize; 9866 mutex_exit(&rp->r_statelock); 9867 9868 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9869 &io_len, blkoff, blksize, 0); 9870 9871 /* 9872 * Some other thread has entered the page, 9873 * so just use it. 9874 */ 9875 if (pp == NULL) 9876 goto again; 9877 9878 /* 9879 * Now round the request size up to page boundaries. 9880 * This ensures that the entire page will be 9881 * initialized to zeroes if EOF is encountered. 9882 */ 9883 io_len = ptob(btopr(io_len)); 9884 9885 bp = pageio_setup(pp, io_len, vp, B_READ); 9886 ASSERT(bp != NULL); 9887 9888 /* 9889 * pageio_setup should have set b_addr to 0. This 9890 * is correct since we want to do I/O on a page 9891 * boundary. bp_mapin will use this addr to calculate 9892 * an offset, and then set b_addr to the kernel virtual 9893 * address it allocated for us. 9894 */ 9895 ASSERT(bp->b_un.b_addr == 0); 9896 9897 bp->b_edev = 0; 9898 bp->b_dev = 0; 9899 bp->b_lblkno = lbtodb(io_off); 9900 bp->b_file = vp; 9901 bp->b_offset = (offset_t)off; 9902 bp_mapin(bp); 9903 9904 /* 9905 * If doing a write beyond what we believe is EOF, 9906 * don't bother trying to read the pages from the 9907 * server, we'll just zero the pages here. We 9908 * don't check that the rw flag is S_WRITE here 9909 * because some implementations may attempt a 9910 * read access to the buffer before copying data. 9911 */ 9912 mutex_enter(&rp->r_statelock); 9913 if (io_off >= rp->r_size && seg == segkmap) { 9914 mutex_exit(&rp->r_statelock); 9915 bzero(bp->b_un.b_addr, io_len); 9916 } else { 9917 mutex_exit(&rp->r_statelock); 9918 error = nfs4_bio(bp, NULL, cr, FALSE); 9919 } 9920 9921 /* 9922 * Unmap the buffer before freeing it. 9923 */ 9924 bp_mapout(bp); 9925 pageio_done(bp); 9926 9927 savepp = pp; 9928 do { 9929 pp->p_fsdata = C_NOCOMMIT; 9930 } while ((pp = pp->p_next) != savepp); 9931 9932 if (error == NFS_EOF) { 9933 /* 9934 * If doing a write system call just return 9935 * zeroed pages, else user tried to get pages 9936 * beyond EOF, return error. We don't check 9937 * that the rw flag is S_WRITE here because 9938 * some implementations may attempt a read 9939 * access to the buffer before copying data. 9940 */ 9941 if (seg == segkmap) 9942 error = 0; 9943 else 9944 error = EFAULT; 9945 } 9946 9947 if (!readahead_issued && !error) { 9948 mutex_enter(&rp->r_statelock); 9949 rp->r_nextr = io_off + io_len; 9950 mutex_exit(&rp->r_statelock); 9951 } 9952 } 9953 } 9954 9955 out: 9956 if (pl == NULL) 9957 return (error); 9958 9959 if (error) { 9960 if (pp != NULL) 9961 pvn_read_done(pp, B_ERROR); 9962 return (error); 9963 } 9964 9965 if (pagefound) { 9966 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 9967 9968 /* 9969 * Page exists in the cache, acquire the appropriate lock. 9970 * If this fails, start all over again. 9971 */ 9972 if ((pp = page_lookup(vp, off, se)) == NULL) { 9973 #ifdef DEBUG 9974 nfs4_lostpage++; 9975 #endif 9976 goto reread; 9977 } 9978 pl[0] = pp; 9979 pl[1] = NULL; 9980 return (0); 9981 } 9982 9983 if (pp != NULL) 9984 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 9985 9986 return (error); 9987 } 9988 9989 static void 9990 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 9991 cred_t *cr) 9992 { 9993 int error; 9994 page_t *pp; 9995 u_offset_t io_off; 9996 size_t io_len; 9997 struct buf *bp; 9998 uint_t bsize, blksize; 9999 rnode4_t *rp = VTOR4(vp); 10000 page_t *savepp; 10001 10002 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10003 10004 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10005 10006 mutex_enter(&rp->r_statelock); 10007 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 10008 /* 10009 * If less than a block left in file read less 10010 * than a block. 10011 */ 10012 blksize = rp->r_size - blkoff; 10013 } else 10014 blksize = bsize; 10015 mutex_exit(&rp->r_statelock); 10016 10017 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 10018 &io_off, &io_len, blkoff, blksize, 1); 10019 /* 10020 * The isra flag passed to the kluster function is 1, we may have 10021 * gotten a return value of NULL for a variety of reasons (# of free 10022 * pages < minfree, someone entered the page on the vnode etc). In all 10023 * cases, we want to punt on the readahead. 10024 */ 10025 if (pp == NULL) 10026 return; 10027 10028 /* 10029 * Now round the request size up to page boundaries. 10030 * This ensures that the entire page will be 10031 * initialized to zeroes if EOF is encountered. 10032 */ 10033 io_len = ptob(btopr(io_len)); 10034 10035 bp = pageio_setup(pp, io_len, vp, B_READ); 10036 ASSERT(bp != NULL); 10037 10038 /* 10039 * pageio_setup should have set b_addr to 0. This is correct since 10040 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10041 * to calculate an offset, and then set b_addr to the kernel virtual 10042 * address it allocated for us. 10043 */ 10044 ASSERT(bp->b_un.b_addr == 0); 10045 10046 bp->b_edev = 0; 10047 bp->b_dev = 0; 10048 bp->b_lblkno = lbtodb(io_off); 10049 bp->b_file = vp; 10050 bp->b_offset = (offset_t)blkoff; 10051 bp_mapin(bp); 10052 10053 /* 10054 * If doing a write beyond what we believe is EOF, don't bother trying 10055 * to read the pages from the server, we'll just zero the pages here. 10056 * We don't check that the rw flag is S_WRITE here because some 10057 * implementations may attempt a read access to the buffer before 10058 * copying data. 10059 */ 10060 mutex_enter(&rp->r_statelock); 10061 if (io_off >= rp->r_size && seg == segkmap) { 10062 mutex_exit(&rp->r_statelock); 10063 bzero(bp->b_un.b_addr, io_len); 10064 error = 0; 10065 } else { 10066 mutex_exit(&rp->r_statelock); 10067 error = nfs4_bio(bp, NULL, cr, TRUE); 10068 if (error == NFS_EOF) 10069 error = 0; 10070 } 10071 10072 /* 10073 * Unmap the buffer before freeing it. 10074 */ 10075 bp_mapout(bp); 10076 pageio_done(bp); 10077 10078 savepp = pp; 10079 do { 10080 pp->p_fsdata = C_NOCOMMIT; 10081 } while ((pp = pp->p_next) != savepp); 10082 10083 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10084 10085 /* 10086 * In case of error set readahead offset 10087 * to the lowest offset. 10088 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10089 */ 10090 if (error && rp->r_nextr > io_off) { 10091 mutex_enter(&rp->r_statelock); 10092 if (rp->r_nextr > io_off) 10093 rp->r_nextr = io_off; 10094 mutex_exit(&rp->r_statelock); 10095 } 10096 } 10097 10098 /* 10099 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10100 * If len == 0, do from off to EOF. 10101 * 10102 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10103 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10104 * (from pageout). 10105 */ 10106 /* ARGSUSED */ 10107 static int 10108 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10109 caller_context_t *ct) 10110 { 10111 int error; 10112 rnode4_t *rp; 10113 10114 ASSERT(cr != NULL); 10115 10116 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10117 return (EIO); 10118 10119 rp = VTOR4(vp); 10120 if (IS_SHADOW(vp, rp)) 10121 vp = RTOV4(rp); 10122 10123 /* 10124 * XXX - Why should this check be made here? 10125 */ 10126 if (vp->v_flag & VNOMAP) 10127 return (ENOSYS); 10128 10129 if (len == 0 && !(flags & B_INVAL) && 10130 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10131 return (0); 10132 10133 mutex_enter(&rp->r_statelock); 10134 rp->r_count++; 10135 mutex_exit(&rp->r_statelock); 10136 error = nfs4_putpages(vp, off, len, flags, cr); 10137 mutex_enter(&rp->r_statelock); 10138 rp->r_count--; 10139 cv_broadcast(&rp->r_cv); 10140 mutex_exit(&rp->r_statelock); 10141 10142 return (error); 10143 } 10144 10145 /* 10146 * Write out a single page, possibly klustering adjacent dirty pages. 10147 */ 10148 int 10149 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10150 int flags, cred_t *cr) 10151 { 10152 u_offset_t io_off; 10153 u_offset_t lbn_off; 10154 u_offset_t lbn; 10155 size_t io_len; 10156 uint_t bsize; 10157 int error; 10158 rnode4_t *rp; 10159 10160 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10161 ASSERT(pp != NULL); 10162 ASSERT(cr != NULL); 10163 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10164 10165 rp = VTOR4(vp); 10166 ASSERT(rp->r_count > 0); 10167 ASSERT(!IS_SHADOW(vp, rp)); 10168 10169 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10170 lbn = pp->p_offset / bsize; 10171 lbn_off = lbn * bsize; 10172 10173 /* 10174 * Find a kluster that fits in one block, or in 10175 * one page if pages are bigger than blocks. If 10176 * there is less file space allocated than a whole 10177 * page, we'll shorten the i/o request below. 10178 */ 10179 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10180 roundup(bsize, PAGESIZE), flags); 10181 10182 /* 10183 * pvn_write_kluster shouldn't have returned a page with offset 10184 * behind the original page we were given. Verify that. 10185 */ 10186 ASSERT((pp->p_offset / bsize) >= lbn); 10187 10188 /* 10189 * Now pp will have the list of kept dirty pages marked for 10190 * write back. It will also handle invalidation and freeing 10191 * of pages that are not dirty. Check for page length rounding 10192 * problems. 10193 */ 10194 if (io_off + io_len > lbn_off + bsize) { 10195 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10196 io_len = lbn_off + bsize - io_off; 10197 } 10198 /* 10199 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10200 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10201 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10202 * progress and the r_size has not been made consistent with the 10203 * new size of the file. When the uiomove() completes the r_size is 10204 * updated and the R4MODINPROGRESS flag is cleared. 10205 * 10206 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10207 * consistent value of r_size. Without this handshaking, it is 10208 * possible that nfs4_bio() picks up the old value of r_size 10209 * before the uiomove() in writerp4() completes. This will result 10210 * in the write through nfs4_bio() being dropped. 10211 * 10212 * More precisely, there is a window between the time the uiomove() 10213 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10214 * operation intervenes in this window, the page will be picked up, 10215 * because it is dirty (it will be unlocked, unless it was 10216 * pagecreate'd). When the page is picked up as dirty, the dirty 10217 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10218 * checked. This will still be the old size. Therefore the page will 10219 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10220 * the page will be found to be clean and the write will be dropped. 10221 */ 10222 if (rp->r_flags & R4MODINPROGRESS) { 10223 mutex_enter(&rp->r_statelock); 10224 if ((rp->r_flags & R4MODINPROGRESS) && 10225 rp->r_modaddr + MAXBSIZE > io_off && 10226 rp->r_modaddr < io_off + io_len) { 10227 page_t *plist; 10228 /* 10229 * A write is in progress for this region of the file. 10230 * If we did not detect R4MODINPROGRESS here then this 10231 * path through nfs_putapage() would eventually go to 10232 * nfs4_bio() and may not write out all of the data 10233 * in the pages. We end up losing data. So we decide 10234 * to set the modified bit on each page in the page 10235 * list and mark the rnode with R4DIRTY. This write 10236 * will be restarted at some later time. 10237 */ 10238 plist = pp; 10239 while (plist != NULL) { 10240 pp = plist; 10241 page_sub(&plist, pp); 10242 hat_setmod(pp); 10243 page_io_unlock(pp); 10244 page_unlock(pp); 10245 } 10246 rp->r_flags |= R4DIRTY; 10247 mutex_exit(&rp->r_statelock); 10248 if (offp) 10249 *offp = io_off; 10250 if (lenp) 10251 *lenp = io_len; 10252 return (0); 10253 } 10254 mutex_exit(&rp->r_statelock); 10255 } 10256 10257 if (flags & B_ASYNC) { 10258 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10259 nfs4_sync_putapage); 10260 } else 10261 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10262 10263 if (offp) 10264 *offp = io_off; 10265 if (lenp) 10266 *lenp = io_len; 10267 return (error); 10268 } 10269 10270 static int 10271 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10272 int flags, cred_t *cr) 10273 { 10274 int error; 10275 rnode4_t *rp; 10276 10277 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10278 10279 flags |= B_WRITE; 10280 10281 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10282 10283 rp = VTOR4(vp); 10284 10285 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10286 error == EACCES) && 10287 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10288 if (!(rp->r_flags & R4OUTOFSPACE)) { 10289 mutex_enter(&rp->r_statelock); 10290 rp->r_flags |= R4OUTOFSPACE; 10291 mutex_exit(&rp->r_statelock); 10292 } 10293 flags |= B_ERROR; 10294 pvn_write_done(pp, flags); 10295 /* 10296 * If this was not an async thread, then try again to 10297 * write out the pages, but this time, also destroy 10298 * them whether or not the write is successful. This 10299 * will prevent memory from filling up with these 10300 * pages and destroying them is the only alternative 10301 * if they can't be written out. 10302 * 10303 * Don't do this if this is an async thread because 10304 * when the pages are unlocked in pvn_write_done, 10305 * some other thread could have come along, locked 10306 * them, and queued for an async thread. It would be 10307 * possible for all of the async threads to be tied 10308 * up waiting to lock the pages again and they would 10309 * all already be locked and waiting for an async 10310 * thread to handle them. Deadlock. 10311 */ 10312 if (!(flags & B_ASYNC)) { 10313 error = nfs4_putpage(vp, io_off, io_len, 10314 B_INVAL | B_FORCE, cr, NULL); 10315 } 10316 } else { 10317 if (error) 10318 flags |= B_ERROR; 10319 else if (rp->r_flags & R4OUTOFSPACE) { 10320 mutex_enter(&rp->r_statelock); 10321 rp->r_flags &= ~R4OUTOFSPACE; 10322 mutex_exit(&rp->r_statelock); 10323 } 10324 pvn_write_done(pp, flags); 10325 if (freemem < desfree) 10326 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10327 NFS4_WRITE_NOWAIT); 10328 } 10329 10330 return (error); 10331 } 10332 10333 #ifdef DEBUG 10334 int nfs4_force_open_before_mmap = 0; 10335 #endif 10336 10337 /* ARGSUSED */ 10338 static int 10339 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10340 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10341 caller_context_t *ct) 10342 { 10343 struct segvn_crargs vn_a; 10344 int error = 0; 10345 rnode4_t *rp = VTOR4(vp); 10346 mntinfo4_t *mi = VTOMI4(vp); 10347 10348 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10349 return (EIO); 10350 10351 if (vp->v_flag & VNOMAP) 10352 return (ENOSYS); 10353 10354 if (off < 0 || (off + len) < 0) 10355 return (ENXIO); 10356 10357 if (vp->v_type != VREG) 10358 return (ENODEV); 10359 10360 /* 10361 * If the file is delegated to the client don't do anything. 10362 * If the file is not delegated, then validate the data cache. 10363 */ 10364 mutex_enter(&rp->r_statev4_lock); 10365 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10366 mutex_exit(&rp->r_statev4_lock); 10367 error = nfs4_validate_caches(vp, cr); 10368 if (error) 10369 return (error); 10370 } else { 10371 mutex_exit(&rp->r_statev4_lock); 10372 } 10373 10374 /* 10375 * Check to see if the vnode is currently marked as not cachable. 10376 * This means portions of the file are locked (through VOP_FRLOCK). 10377 * In this case the map request must be refused. We use 10378 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10379 */ 10380 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 10381 return (EINTR); 10382 10383 if (vp->v_flag & VNOCACHE) { 10384 error = EAGAIN; 10385 goto done; 10386 } 10387 10388 /* 10389 * Don't allow concurrent locks and mapping if mandatory locking is 10390 * enabled. 10391 */ 10392 if (flk_has_remote_locks(vp)) { 10393 struct vattr va; 10394 va.va_mask = AT_MODE; 10395 error = nfs4getattr(vp, &va, cr); 10396 if (error != 0) 10397 goto done; 10398 if (MANDLOCK(vp, va.va_mode)) { 10399 error = EAGAIN; 10400 goto done; 10401 } 10402 } 10403 10404 /* 10405 * It is possible that the rnode has a lost lock request that we 10406 * are still trying to recover, and that the request conflicts with 10407 * this map request. 10408 * 10409 * An alternative approach would be for nfs4_safemap() to consider 10410 * queued lock requests when deciding whether to set or clear 10411 * VNOCACHE. This would require the frlock code path to call 10412 * nfs4_safemap() after enqueing a lost request. 10413 */ 10414 if (nfs4_map_lost_lock_conflict(vp)) { 10415 error = EAGAIN; 10416 goto done; 10417 } 10418 10419 as_rangelock(as); 10420 if (!(flags & MAP_FIXED)) { 10421 map_addr(addrp, len, off, 1, flags); 10422 if (*addrp == NULL) { 10423 as_rangeunlock(as); 10424 error = ENOMEM; 10425 goto done; 10426 } 10427 } else { 10428 /* 10429 * User specified address - blow away any previous mappings 10430 */ 10431 (void) as_unmap(as, *addrp, len); 10432 } 10433 10434 if (vp->v_type == VREG) { 10435 /* 10436 * We need to retrieve the open stream 10437 */ 10438 nfs4_open_stream_t *osp = NULL; 10439 nfs4_open_owner_t *oop = NULL; 10440 10441 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10442 if (oop != NULL) { 10443 /* returns with 'os_sync_lock' held */ 10444 osp = find_open_stream(oop, rp); 10445 open_owner_rele(oop); 10446 } 10447 if (osp == NULL) { 10448 #ifdef DEBUG 10449 if (nfs4_force_open_before_mmap) { 10450 error = EIO; 10451 goto done; 10452 } 10453 #endif 10454 /* returns with 'os_sync_lock' held */ 10455 error = open_and_get_osp(vp, cr, &osp); 10456 if (osp == NULL) { 10457 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10458 "nfs4_map: we tried to OPEN the file " 10459 "but again no osp, so fail with EIO")); 10460 goto done; 10461 } 10462 } 10463 10464 if (osp->os_failed_reopen) { 10465 mutex_exit(&osp->os_sync_lock); 10466 open_stream_rele(osp, rp); 10467 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10468 "nfs4_map: os_failed_reopen set on " 10469 "osp %p, cr %p, rp %s", (void *)osp, 10470 (void *)cr, rnode4info(rp))); 10471 error = EIO; 10472 goto done; 10473 } 10474 mutex_exit(&osp->os_sync_lock); 10475 open_stream_rele(osp, rp); 10476 } 10477 10478 vn_a.vp = vp; 10479 vn_a.offset = off; 10480 vn_a.type = (flags & MAP_TYPE); 10481 vn_a.prot = (uchar_t)prot; 10482 vn_a.maxprot = (uchar_t)maxprot; 10483 vn_a.flags = (flags & ~MAP_TYPE); 10484 vn_a.cred = cr; 10485 vn_a.amp = NULL; 10486 vn_a.szc = 0; 10487 vn_a.lgrp_mem_policy_flags = 0; 10488 10489 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10490 as_rangeunlock(as); 10491 10492 done: 10493 nfs_rw_exit(&rp->r_lkserlock); 10494 return (error); 10495 } 10496 10497 /* 10498 * We're most likely dealing with a kernel module that likes to READ 10499 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10500 * officially OPEN the file to create the necessary client state 10501 * for bookkeeping of os_mmap_read/write counts. 10502 * 10503 * Since VOP_MAP only passes in a pointer to the vnode rather than 10504 * a double pointer, we can't handle the case where nfs4open_otw() 10505 * returns a different vnode than the one passed into VOP_MAP (since 10506 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10507 * we return NULL and let nfs4_map() fail. Note: the only case where 10508 * this should happen is if the file got removed and replaced with the 10509 * same name on the server (in addition to the fact that we're trying 10510 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10511 */ 10512 static int 10513 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10514 { 10515 rnode4_t *rp, *drp; 10516 vnode_t *dvp, *open_vp; 10517 char file_name[MAXNAMELEN]; 10518 int just_created; 10519 nfs4_open_stream_t *osp; 10520 nfs4_open_owner_t *oop; 10521 int error; 10522 10523 *ospp = NULL; 10524 open_vp = map_vp; 10525 10526 rp = VTOR4(open_vp); 10527 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10528 return (error); 10529 drp = VTOR4(dvp); 10530 10531 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10532 VN_RELE(dvp); 10533 return (EINTR); 10534 } 10535 10536 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10537 nfs_rw_exit(&drp->r_rwlock); 10538 VN_RELE(dvp); 10539 return (error); 10540 } 10541 10542 mutex_enter(&rp->r_statev4_lock); 10543 if (rp->created_v4) { 10544 rp->created_v4 = 0; 10545 mutex_exit(&rp->r_statev4_lock); 10546 10547 dnlc_update(dvp, file_name, open_vp); 10548 /* This is needed so we don't bump the open ref count */ 10549 just_created = 1; 10550 } else { 10551 mutex_exit(&rp->r_statev4_lock); 10552 just_created = 0; 10553 } 10554 10555 VN_HOLD(map_vp); 10556 10557 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10558 just_created); 10559 if (error) { 10560 nfs_rw_exit(&drp->r_rwlock); 10561 VN_RELE(dvp); 10562 VN_RELE(map_vp); 10563 return (error); 10564 } 10565 10566 nfs_rw_exit(&drp->r_rwlock); 10567 VN_RELE(dvp); 10568 10569 /* 10570 * If nfs4open_otw() returned a different vnode then "undo" 10571 * the open and return failure to the caller. 10572 */ 10573 if (!VN_CMP(open_vp, map_vp)) { 10574 nfs4_error_t e; 10575 10576 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10577 "open returned a different vnode")); 10578 /* 10579 * If there's an error, ignore it, 10580 * and let VOP_INACTIVE handle it. 10581 */ 10582 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10583 CLOSE_NORM, 0, 0, 0); 10584 VN_RELE(map_vp); 10585 return (EIO); 10586 } 10587 10588 VN_RELE(map_vp); 10589 10590 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10591 if (!oop) { 10592 nfs4_error_t e; 10593 10594 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10595 "no open owner")); 10596 /* 10597 * If there's an error, ignore it, 10598 * and let VOP_INACTIVE handle it. 10599 */ 10600 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10601 CLOSE_NORM, 0, 0, 0); 10602 return (EIO); 10603 } 10604 osp = find_open_stream(oop, rp); 10605 open_owner_rele(oop); 10606 *ospp = osp; 10607 return (0); 10608 } 10609 10610 /* 10611 * Please be aware that when this function is called, the address space write 10612 * a_lock is held. Do not put over the wire calls in this function. 10613 */ 10614 /* ARGSUSED */ 10615 static int 10616 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10617 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10618 caller_context_t *ct) 10619 { 10620 rnode4_t *rp; 10621 int error = 0; 10622 mntinfo4_t *mi; 10623 10624 mi = VTOMI4(vp); 10625 rp = VTOR4(vp); 10626 10627 if (nfs_zone() != mi->mi_zone) 10628 return (EIO); 10629 if (vp->v_flag & VNOMAP) 10630 return (ENOSYS); 10631 10632 /* 10633 * Need to hold rwlock while incrementing the mapcnt so that 10634 * mmap'ing can be serialized with writes so that the caching 10635 * can be handled correctly. 10636 * 10637 * Don't need to update the open stream first, since this 10638 * mmap can't add any additional share access that isn't 10639 * already contained in the open stream (for the case where we 10640 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10641 * take into account os_mmap_read[write] counts). 10642 */ 10643 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 10644 return (EINTR); 10645 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10646 nfs_rw_exit(&rp->r_rwlock); 10647 10648 if (vp->v_type == VREG) { 10649 /* 10650 * We need to retrieve the open stream and update the counts. 10651 * If there is no open stream here, something is wrong. 10652 */ 10653 nfs4_open_stream_t *osp = NULL; 10654 nfs4_open_owner_t *oop = NULL; 10655 10656 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10657 if (oop != NULL) { 10658 /* returns with 'os_sync_lock' held */ 10659 osp = find_open_stream(oop, rp); 10660 open_owner_rele(oop); 10661 } 10662 if (osp == NULL) { 10663 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10664 "nfs4_addmap: we should have an osp" 10665 "but we don't, so fail with EIO")); 10666 error = EIO; 10667 goto out; 10668 } 10669 10670 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10671 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10672 10673 /* 10674 * Update the map count in the open stream. 10675 * This is necessary in the case where we 10676 * open/mmap/close/, then the server reboots, and we 10677 * attempt to reopen. If the mmap doesn't add share 10678 * access then we send an invalid reopen with 10679 * access = NONE. 10680 * 10681 * We need to specifically check each PROT_* so a mmap 10682 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10683 * read and write access. A simple comparison of prot 10684 * to ~PROT_WRITE to determine read access is insufficient 10685 * since prot can be |= with PROT_USER, etc. 10686 */ 10687 10688 /* 10689 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10690 */ 10691 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10692 osp->os_mmap_write += btopr(len); 10693 if (maxprot & PROT_READ) 10694 osp->os_mmap_read += btopr(len); 10695 if (maxprot & PROT_EXEC) 10696 osp->os_mmap_read += btopr(len); 10697 /* 10698 * Ensure that os_mmap_read gets incremented, even if 10699 * maxprot were to look like PROT_NONE. 10700 */ 10701 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10702 !(maxprot & PROT_EXEC)) 10703 osp->os_mmap_read += btopr(len); 10704 osp->os_mapcnt += btopr(len); 10705 mutex_exit(&osp->os_sync_lock); 10706 open_stream_rele(osp, rp); 10707 } 10708 10709 out: 10710 /* 10711 * If we got an error, then undo our 10712 * incrementing of 'r_mapcnt'. 10713 */ 10714 10715 if (error) { 10716 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10717 ASSERT(rp->r_mapcnt >= 0); 10718 } 10719 return (error); 10720 } 10721 10722 /* ARGSUSED */ 10723 static int 10724 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10725 { 10726 10727 return (VTOR4(vp1) == VTOR4(vp2)); 10728 } 10729 10730 /* ARGSUSED */ 10731 static int 10732 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10733 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10734 caller_context_t *ct) 10735 { 10736 int rc; 10737 u_offset_t start, end; 10738 rnode4_t *rp; 10739 int error = 0, intr = INTR4(vp); 10740 nfs4_error_t e; 10741 10742 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10743 return (EIO); 10744 10745 /* check for valid cmd parameter */ 10746 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10747 return (EINVAL); 10748 10749 /* Verify l_type. */ 10750 switch (bfp->l_type) { 10751 case F_RDLCK: 10752 if (cmd != F_GETLK && !(flag & FREAD)) 10753 return (EBADF); 10754 break; 10755 case F_WRLCK: 10756 if (cmd != F_GETLK && !(flag & FWRITE)) 10757 return (EBADF); 10758 break; 10759 case F_UNLCK: 10760 intr = 0; 10761 break; 10762 10763 default: 10764 return (EINVAL); 10765 } 10766 10767 /* check the validity of the lock range */ 10768 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10769 return (rc); 10770 if (rc = flk_check_lock_data(start, end, MAXEND)) 10771 return (rc); 10772 10773 /* 10774 * If the filesystem is mounted using local locking, pass the 10775 * request off to the local locking code. 10776 */ 10777 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10778 if (cmd == F_SETLK || cmd == F_SETLKW) { 10779 /* 10780 * For complete safety, we should be holding 10781 * r_lkserlock. However, we can't call 10782 * nfs4_safelock and then fs_frlock while 10783 * holding r_lkserlock, so just invoke 10784 * nfs4_safelock and expect that this will 10785 * catch enough of the cases. 10786 */ 10787 if (!nfs4_safelock(vp, bfp, cr)) 10788 return (EAGAIN); 10789 } 10790 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10791 } 10792 10793 rp = VTOR4(vp); 10794 10795 /* 10796 * Check whether the given lock request can proceed, given the 10797 * current file mappings. 10798 */ 10799 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10800 return (EINTR); 10801 if (cmd == F_SETLK || cmd == F_SETLKW) { 10802 if (!nfs4_safelock(vp, bfp, cr)) { 10803 rc = EAGAIN; 10804 goto done; 10805 } 10806 } 10807 10808 /* 10809 * Flush the cache after waiting for async I/O to finish. For new 10810 * locks, this is so that the process gets the latest bits from the 10811 * server. For unlocks, this is so that other clients see the 10812 * latest bits once the file has been unlocked. If currently dirty 10813 * pages can't be flushed, then don't allow a lock to be set. But 10814 * allow unlocks to succeed, to avoid having orphan locks on the 10815 * server. 10816 */ 10817 if (cmd != F_GETLK) { 10818 mutex_enter(&rp->r_statelock); 10819 while (rp->r_count > 0) { 10820 if (intr) { 10821 klwp_t *lwp = ttolwp(curthread); 10822 10823 if (lwp != NULL) 10824 lwp->lwp_nostop++; 10825 if (cv_wait_sig(&rp->r_cv, 10826 &rp->r_statelock) == 0) { 10827 if (lwp != NULL) 10828 lwp->lwp_nostop--; 10829 rc = EINTR; 10830 break; 10831 } 10832 if (lwp != NULL) 10833 lwp->lwp_nostop--; 10834 } else 10835 cv_wait(&rp->r_cv, &rp->r_statelock); 10836 } 10837 mutex_exit(&rp->r_statelock); 10838 if (rc != 0) 10839 goto done; 10840 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10841 if (error) { 10842 if (error == ENOSPC || error == EDQUOT) { 10843 mutex_enter(&rp->r_statelock); 10844 if (!rp->r_error) 10845 rp->r_error = error; 10846 mutex_exit(&rp->r_statelock); 10847 } 10848 if (bfp->l_type != F_UNLCK) { 10849 rc = ENOLCK; 10850 goto done; 10851 } 10852 } 10853 } 10854 10855 /* 10856 * Call the lock manager to do the real work of contacting 10857 * the server and obtaining the lock. 10858 */ 10859 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10860 cr, &e, NULL, NULL); 10861 rc = e.error; 10862 10863 if (rc == 0) 10864 nfs4_lockcompletion(vp, cmd); 10865 10866 done: 10867 nfs_rw_exit(&rp->r_lkserlock); 10868 10869 return (rc); 10870 } 10871 10872 /* 10873 * Free storage space associated with the specified vnode. The portion 10874 * to be freed is specified by bfp->l_start and bfp->l_len (already 10875 * normalized to a "whence" of 0). 10876 * 10877 * This is an experimental facility whose continued existence is not 10878 * guaranteed. Currently, we only support the special case 10879 * of l_len == 0, meaning free to end of file. 10880 */ 10881 /* ARGSUSED */ 10882 static int 10883 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10884 offset_t offset, cred_t *cr, caller_context_t *ct) 10885 { 10886 int error; 10887 10888 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10889 return (EIO); 10890 ASSERT(vp->v_type == VREG); 10891 if (cmd != F_FREESP) 10892 return (EINVAL); 10893 10894 error = convoff(vp, bfp, 0, offset); 10895 if (!error) { 10896 ASSERT(bfp->l_start >= 0); 10897 if (bfp->l_len == 0) { 10898 struct vattr va; 10899 10900 va.va_mask = AT_SIZE; 10901 va.va_size = bfp->l_start; 10902 error = nfs4setattr(vp, &va, 0, cr, NULL); 10903 } else 10904 error = EINVAL; 10905 } 10906 10907 return (error); 10908 } 10909 10910 /* ARGSUSED */ 10911 int 10912 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 10913 { 10914 rnode4_t *rp; 10915 rp = VTOR4(vp); 10916 10917 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 10918 vp = RTOV4(rp); 10919 } 10920 *vpp = vp; 10921 return (0); 10922 } 10923 10924 /* 10925 * Setup and add an address space callback to do the work of the delmap call. 10926 * The callback will (and must be) deleted in the actual callback function. 10927 * 10928 * This is done in order to take care of the problem that we have with holding 10929 * the address space's a_lock for a long period of time (e.g. if the NFS server 10930 * is down). Callbacks will be executed in the address space code while the 10931 * a_lock is not held. Holding the address space's a_lock causes things such 10932 * as ps and fork to hang because they are trying to acquire this lock as well. 10933 */ 10934 /* ARGSUSED */ 10935 static int 10936 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10937 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 10938 caller_context_t *ct) 10939 { 10940 int caller_found; 10941 int error; 10942 rnode4_t *rp; 10943 nfs4_delmap_args_t *dmapp; 10944 nfs4_delmapcall_t *delmap_call; 10945 10946 if (vp->v_flag & VNOMAP) 10947 return (ENOSYS); 10948 10949 /* 10950 * A process may not change zones if it has NFS pages mmap'ed 10951 * in, so we can't legitimately get here from the wrong zone. 10952 */ 10953 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10954 10955 rp = VTOR4(vp); 10956 10957 /* 10958 * The way that the address space of this process deletes its mapping 10959 * of this file is via the following call chains: 10960 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10961 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10962 * 10963 * With the use of address space callbacks we are allowed to drop the 10964 * address space lock, a_lock, while executing the NFS operations that 10965 * need to go over the wire. Returning EAGAIN to the caller of this 10966 * function is what drives the execution of the callback that we add 10967 * below. The callback will be executed by the address space code 10968 * after dropping the a_lock. When the callback is finished, since 10969 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 10970 * is called again on the same segment to finish the rest of the work 10971 * that needs to happen during unmapping. 10972 * 10973 * This action of calling back into the segment driver causes 10974 * nfs4_delmap() to get called again, but since the callback was 10975 * already executed at this point, it already did the work and there 10976 * is nothing left for us to do. 10977 * 10978 * To Summarize: 10979 * - The first time nfs4_delmap is called by the current thread is when 10980 * we add the caller associated with this delmap to the delmap caller 10981 * list, add the callback, and return EAGAIN. 10982 * - The second time in this call chain when nfs4_delmap is called we 10983 * will find this caller in the delmap caller list and realize there 10984 * is no more work to do thus removing this caller from the list and 10985 * returning the error that was set in the callback execution. 10986 */ 10987 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 10988 if (caller_found) { 10989 /* 10990 * 'error' is from the actual delmap operations. To avoid 10991 * hangs, we need to handle the return of EAGAIN differently 10992 * since this is what drives the callback execution. 10993 * In this case, we don't want to return EAGAIN and do the 10994 * callback execution because there are none to execute. 10995 */ 10996 if (error == EAGAIN) 10997 return (0); 10998 else 10999 return (error); 11000 } 11001 11002 /* current caller was not in the list */ 11003 delmap_call = nfs4_init_delmapcall(); 11004 11005 mutex_enter(&rp->r_statelock); 11006 list_insert_tail(&rp->r_indelmap, delmap_call); 11007 mutex_exit(&rp->r_statelock); 11008 11009 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 11010 11011 dmapp->vp = vp; 11012 dmapp->off = off; 11013 dmapp->addr = addr; 11014 dmapp->len = len; 11015 dmapp->prot = prot; 11016 dmapp->maxprot = maxprot; 11017 dmapp->flags = flags; 11018 dmapp->cr = cr; 11019 dmapp->caller = delmap_call; 11020 11021 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11022 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11023 11024 return (error ? error : EAGAIN); 11025 } 11026 11027 static nfs4_delmapcall_t * 11028 nfs4_init_delmapcall() 11029 { 11030 nfs4_delmapcall_t *delmap_call; 11031 11032 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11033 delmap_call->call_id = curthread; 11034 delmap_call->error = 0; 11035 11036 return (delmap_call); 11037 } 11038 11039 static void 11040 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11041 { 11042 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11043 } 11044 11045 /* 11046 * Searches for the current delmap caller (based on curthread) in the list of 11047 * callers. If it is found, we remove it and free the delmap caller. 11048 * Returns: 11049 * 0 if the caller wasn't found 11050 * 1 if the caller was found, removed and freed. *errp will be set 11051 * to what the result of the delmap was. 11052 */ 11053 static int 11054 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11055 { 11056 nfs4_delmapcall_t *delmap_call; 11057 11058 /* 11059 * If the list doesn't exist yet, we create it and return 11060 * that the caller wasn't found. No list = no callers. 11061 */ 11062 mutex_enter(&rp->r_statelock); 11063 if (!(rp->r_flags & R4DELMAPLIST)) { 11064 /* The list does not exist */ 11065 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11066 offsetof(nfs4_delmapcall_t, call_node)); 11067 rp->r_flags |= R4DELMAPLIST; 11068 mutex_exit(&rp->r_statelock); 11069 return (0); 11070 } else { 11071 /* The list exists so search it */ 11072 for (delmap_call = list_head(&rp->r_indelmap); 11073 delmap_call != NULL; 11074 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11075 if (delmap_call->call_id == curthread) { 11076 /* current caller is in the list */ 11077 *errp = delmap_call->error; 11078 list_remove(&rp->r_indelmap, delmap_call); 11079 mutex_exit(&rp->r_statelock); 11080 nfs4_free_delmapcall(delmap_call); 11081 return (1); 11082 } 11083 } 11084 } 11085 mutex_exit(&rp->r_statelock); 11086 return (0); 11087 } 11088 11089 /* 11090 * Remove some pages from an mmap'd vnode. Just update the 11091 * count of pages. If doing close-to-open, then flush and 11092 * commit all of the pages associated with this file. 11093 * Otherwise, start an asynchronous page flush to write out 11094 * any dirty pages. This will also associate a credential 11095 * with the rnode which can be used to write the pages. 11096 */ 11097 /* ARGSUSED */ 11098 static void 11099 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11100 { 11101 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11102 rnode4_t *rp; 11103 mntinfo4_t *mi; 11104 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11105 11106 rp = VTOR4(dmapp->vp); 11107 mi = VTOMI4(dmapp->vp); 11108 11109 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11110 ASSERT(rp->r_mapcnt >= 0); 11111 11112 /* 11113 * Initiate a page flush and potential commit if there are 11114 * pages, the file system was not mounted readonly, the segment 11115 * was mapped shared, and the pages themselves were writeable. 11116 */ 11117 if (nfs4_has_pages(dmapp->vp) && 11118 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11119 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11120 mutex_enter(&rp->r_statelock); 11121 rp->r_flags |= R4DIRTY; 11122 mutex_exit(&rp->r_statelock); 11123 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11124 dmapp->len, dmapp->cr); 11125 if (!e.error) { 11126 mutex_enter(&rp->r_statelock); 11127 e.error = rp->r_error; 11128 rp->r_error = 0; 11129 mutex_exit(&rp->r_statelock); 11130 } 11131 } else 11132 e.error = 0; 11133 11134 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11135 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11136 B_INVAL, dmapp->cr, NULL); 11137 11138 if (e.error) { 11139 e.stat = puterrno4(e.error); 11140 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11141 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11142 dmapp->caller->error = e.error; 11143 } 11144 11145 /* Check to see if we need to close the file */ 11146 11147 if (dmapp->vp->v_type == VREG) { 11148 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11149 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11150 11151 if (e.error != 0 || e.stat != NFS4_OK) { 11152 /* 11153 * Since it is possible that e.error == 0 and 11154 * e.stat != NFS4_OK (and vice versa), 11155 * we do the proper checking in order to get both 11156 * e.error and e.stat reporting the correct info. 11157 */ 11158 if (e.stat == NFS4_OK) 11159 e.stat = puterrno4(e.error); 11160 if (e.error == 0) 11161 e.error = geterrno4(e.stat); 11162 11163 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11164 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11165 dmapp->caller->error = e.error; 11166 } 11167 } 11168 11169 (void) as_delete_callback(as, arg); 11170 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11171 } 11172 11173 11174 static uint_t 11175 fattr4_maxfilesize_to_bits(uint64_t ll) 11176 { 11177 uint_t l = 1; 11178 11179 if (ll == 0) { 11180 return (0); 11181 } 11182 11183 if (ll & 0xffffffff00000000) { 11184 l += 32; ll >>= 32; 11185 } 11186 if (ll & 0xffff0000) { 11187 l += 16; ll >>= 16; 11188 } 11189 if (ll & 0xff00) { 11190 l += 8; ll >>= 8; 11191 } 11192 if (ll & 0xf0) { 11193 l += 4; ll >>= 4; 11194 } 11195 if (ll & 0xc) { 11196 l += 2; ll >>= 2; 11197 } 11198 if (ll & 0x2) { 11199 l += 1; 11200 } 11201 return (l); 11202 } 11203 11204 /* ARGSUSED */ 11205 int 11206 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11207 caller_context_t *ct) 11208 { 11209 int error; 11210 hrtime_t t; 11211 rnode4_t *rp; 11212 nfs4_ga_res_t gar; 11213 nfs4_ga_ext_res_t ger; 11214 11215 gar.n4g_ext_res = &ger; 11216 11217 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11218 return (EIO); 11219 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11220 *valp = MAXPATHLEN; 11221 return (0); 11222 } 11223 if (cmd == _PC_ACL_ENABLED) { 11224 *valp = _ACL_ACE_ENABLED; 11225 return (0); 11226 } 11227 11228 rp = VTOR4(vp); 11229 if (cmd == _PC_XATTR_EXISTS) { 11230 /* 11231 * Eventually should attempt small client readdir before 11232 * going otw with GETATTR(FATTR4_NAMED_ATTR). For now 11233 * just drive the OTW getattr. This is required because 11234 * _PC_XATTR_EXISTS can only return true if attributes 11235 * exist -- simply checking for existence of the attrdir 11236 * is not sufficient. 11237 * 11238 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11239 * is NULL. Once the xadir vp exists, we can create xattrs, 11240 * and we don't have any way to update the "base" object's 11241 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11242 * could help out. 11243 */ 11244 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11245 rp->r_xattr_dir == NULL) { 11246 *valp = rp->r_pathconf.pc4_xattr_exists; 11247 return (0); 11248 } 11249 } else { /* OLD CODE */ 11250 if (ATTRCACHE4_VALID(vp)) { 11251 mutex_enter(&rp->r_statelock); 11252 if (rp->r_pathconf.pc4_cache_valid) { 11253 error = 0; 11254 switch (cmd) { 11255 case _PC_FILESIZEBITS: 11256 *valp = 11257 rp->r_pathconf.pc4_filesizebits; 11258 break; 11259 case _PC_LINK_MAX: 11260 *valp = 11261 rp->r_pathconf.pc4_link_max; 11262 break; 11263 case _PC_NAME_MAX: 11264 *valp = 11265 rp->r_pathconf.pc4_name_max; 11266 break; 11267 case _PC_CHOWN_RESTRICTED: 11268 *valp = 11269 rp->r_pathconf.pc4_chown_restricted; 11270 break; 11271 case _PC_NO_TRUNC: 11272 *valp = 11273 rp->r_pathconf.pc4_no_trunc; 11274 break; 11275 default: 11276 error = EINVAL; 11277 break; 11278 } 11279 mutex_exit(&rp->r_statelock); 11280 #ifdef DEBUG 11281 nfs4_pathconf_cache_hits++; 11282 #endif 11283 return (error); 11284 } 11285 mutex_exit(&rp->r_statelock); 11286 } 11287 } 11288 #ifdef DEBUG 11289 nfs4_pathconf_cache_misses++; 11290 #endif 11291 11292 t = gethrtime(); 11293 11294 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11295 11296 if (error) { 11297 mutex_enter(&rp->r_statelock); 11298 rp->r_pathconf.pc4_cache_valid = FALSE; 11299 rp->r_pathconf.pc4_xattr_valid = FALSE; 11300 mutex_exit(&rp->r_statelock); 11301 return (error); 11302 } 11303 11304 /* interpret the max filesize */ 11305 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11306 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11307 11308 /* Store the attributes we just received */ 11309 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11310 11311 switch (cmd) { 11312 case _PC_FILESIZEBITS: 11313 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11314 break; 11315 case _PC_LINK_MAX: 11316 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11317 break; 11318 case _PC_NAME_MAX: 11319 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11320 break; 11321 case _PC_CHOWN_RESTRICTED: 11322 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11323 break; 11324 case _PC_NO_TRUNC: 11325 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11326 break; 11327 case _PC_XATTR_EXISTS: 11328 *valp = gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists; 11329 break; 11330 default: 11331 return (EINVAL); 11332 } 11333 11334 return (0); 11335 } 11336 11337 /* 11338 * Called by async thread to do synchronous pageio. Do the i/o, wait 11339 * for it to complete, and cleanup the page list when done. 11340 */ 11341 static int 11342 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11343 int flags, cred_t *cr) 11344 { 11345 int error; 11346 11347 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11348 11349 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11350 if (flags & B_READ) 11351 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11352 else 11353 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11354 return (error); 11355 } 11356 11357 /* ARGSUSED */ 11358 static int 11359 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11360 int flags, cred_t *cr, caller_context_t *ct) 11361 { 11362 int error; 11363 rnode4_t *rp; 11364 11365 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11366 return (EIO); 11367 11368 if (pp == NULL) 11369 return (EINVAL); 11370 11371 rp = VTOR4(vp); 11372 mutex_enter(&rp->r_statelock); 11373 rp->r_count++; 11374 mutex_exit(&rp->r_statelock); 11375 11376 if (flags & B_ASYNC) { 11377 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11378 nfs4_sync_pageio); 11379 } else 11380 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11381 mutex_enter(&rp->r_statelock); 11382 rp->r_count--; 11383 cv_broadcast(&rp->r_cv); 11384 mutex_exit(&rp->r_statelock); 11385 return (error); 11386 } 11387 11388 /* ARGSUSED */ 11389 static void 11390 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11391 caller_context_t *ct) 11392 { 11393 int error; 11394 rnode4_t *rp; 11395 page_t *plist; 11396 page_t *pptr; 11397 offset3 offset; 11398 count3 len; 11399 k_sigset_t smask; 11400 11401 /* 11402 * We should get called with fl equal to either B_FREE or 11403 * B_INVAL. Any other value is illegal. 11404 * 11405 * The page that we are either supposed to free or destroy 11406 * should be exclusive locked and its io lock should not 11407 * be held. 11408 */ 11409 ASSERT(fl == B_FREE || fl == B_INVAL); 11410 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11411 11412 rp = VTOR4(vp); 11413 11414 /* 11415 * If the page doesn't need to be committed or we shouldn't 11416 * even bother attempting to commit it, then just make sure 11417 * that the p_fsdata byte is clear and then either free or 11418 * destroy the page as appropriate. 11419 */ 11420 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11421 pp->p_fsdata = C_NOCOMMIT; 11422 if (fl == B_FREE) 11423 page_free(pp, dn); 11424 else 11425 page_destroy(pp, dn); 11426 return; 11427 } 11428 11429 /* 11430 * If there is a page invalidation operation going on, then 11431 * if this is one of the pages being destroyed, then just 11432 * clear the p_fsdata byte and then either free or destroy 11433 * the page as appropriate. 11434 */ 11435 mutex_enter(&rp->r_statelock); 11436 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11437 mutex_exit(&rp->r_statelock); 11438 pp->p_fsdata = C_NOCOMMIT; 11439 if (fl == B_FREE) 11440 page_free(pp, dn); 11441 else 11442 page_destroy(pp, dn); 11443 return; 11444 } 11445 11446 /* 11447 * If we are freeing this page and someone else is already 11448 * waiting to do a commit, then just unlock the page and 11449 * return. That other thread will take care of commiting 11450 * this page. The page can be freed sometime after the 11451 * commit has finished. Otherwise, if the page is marked 11452 * as delay commit, then we may be getting called from 11453 * pvn_write_done, one page at a time. This could result 11454 * in one commit per page, so we end up doing lots of small 11455 * commits instead of fewer larger commits. This is bad, 11456 * we want do as few commits as possible. 11457 */ 11458 if (fl == B_FREE) { 11459 if (rp->r_flags & R4COMMITWAIT) { 11460 page_unlock(pp); 11461 mutex_exit(&rp->r_statelock); 11462 return; 11463 } 11464 if (pp->p_fsdata == C_DELAYCOMMIT) { 11465 pp->p_fsdata = C_COMMIT; 11466 page_unlock(pp); 11467 mutex_exit(&rp->r_statelock); 11468 return; 11469 } 11470 } 11471 11472 /* 11473 * Check to see if there is a signal which would prevent an 11474 * attempt to commit the pages from being successful. If so, 11475 * then don't bother with all of the work to gather pages and 11476 * generate the unsuccessful RPC. Just return from here and 11477 * let the page be committed at some later time. 11478 */ 11479 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11480 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11481 sigunintr(&smask); 11482 page_unlock(pp); 11483 mutex_exit(&rp->r_statelock); 11484 return; 11485 } 11486 sigunintr(&smask); 11487 11488 /* 11489 * We are starting to need to commit pages, so let's try 11490 * to commit as many as possible at once to reduce the 11491 * overhead. 11492 * 11493 * Set the `commit inprogress' state bit. We must 11494 * first wait until any current one finishes. Then 11495 * we initialize the c_pages list with this page. 11496 */ 11497 while (rp->r_flags & R4COMMIT) { 11498 rp->r_flags |= R4COMMITWAIT; 11499 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11500 rp->r_flags &= ~R4COMMITWAIT; 11501 } 11502 rp->r_flags |= R4COMMIT; 11503 mutex_exit(&rp->r_statelock); 11504 ASSERT(rp->r_commit.c_pages == NULL); 11505 rp->r_commit.c_pages = pp; 11506 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11507 rp->r_commit.c_commlen = PAGESIZE; 11508 11509 /* 11510 * Gather together all other pages which can be committed. 11511 * They will all be chained off r_commit.c_pages. 11512 */ 11513 nfs4_get_commit(vp); 11514 11515 /* 11516 * Clear the `commit inprogress' status and disconnect 11517 * the list of pages to be committed from the rnode. 11518 * At this same time, we also save the starting offset 11519 * and length of data to be committed on the server. 11520 */ 11521 plist = rp->r_commit.c_pages; 11522 rp->r_commit.c_pages = NULL; 11523 offset = rp->r_commit.c_commbase; 11524 len = rp->r_commit.c_commlen; 11525 mutex_enter(&rp->r_statelock); 11526 rp->r_flags &= ~R4COMMIT; 11527 cv_broadcast(&rp->r_commit.c_cv); 11528 mutex_exit(&rp->r_statelock); 11529 11530 if (curproc == proc_pageout || curproc == proc_fsflush || 11531 nfs_zone() != VTOMI4(vp)->mi_zone) { 11532 nfs4_async_commit(vp, plist, offset, len, 11533 cr, do_nfs4_async_commit); 11534 return; 11535 } 11536 11537 /* 11538 * Actually generate the COMMIT op over the wire operation. 11539 */ 11540 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11541 11542 /* 11543 * If we got an error during the commit, just unlock all 11544 * of the pages. The pages will get retransmitted to the 11545 * server during a putpage operation. 11546 */ 11547 if (error) { 11548 while (plist != NULL) { 11549 pptr = plist; 11550 page_sub(&plist, pptr); 11551 page_unlock(pptr); 11552 } 11553 return; 11554 } 11555 11556 /* 11557 * We've tried as hard as we can to commit the data to stable 11558 * storage on the server. We just unlock the rest of the pages 11559 * and clear the commit required state. They will be put 11560 * onto the tail of the cachelist if they are nolonger 11561 * mapped. 11562 */ 11563 while (plist != pp) { 11564 pptr = plist; 11565 page_sub(&plist, pptr); 11566 pptr->p_fsdata = C_NOCOMMIT; 11567 page_unlock(pptr); 11568 } 11569 11570 /* 11571 * It is possible that nfs4_commit didn't return error but 11572 * some other thread has modified the page we are going 11573 * to free/destroy. 11574 * In this case we need to rewrite the page. Do an explicit check 11575 * before attempting to free/destroy the page. If modified, needs to 11576 * be rewritten so unlock the page and return. 11577 */ 11578 if (hat_ismod(pp)) { 11579 pp->p_fsdata = C_NOCOMMIT; 11580 page_unlock(pp); 11581 return; 11582 } 11583 11584 /* 11585 * Now, as appropriate, either free or destroy the page 11586 * that we were called with. 11587 */ 11588 pp->p_fsdata = C_NOCOMMIT; 11589 if (fl == B_FREE) 11590 page_free(pp, dn); 11591 else 11592 page_destroy(pp, dn); 11593 } 11594 11595 /* 11596 * Commit requires that the current fh be the file written to. 11597 * The compound op structure is: 11598 * PUTFH(file), COMMIT 11599 */ 11600 static int 11601 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11602 { 11603 COMPOUND4args_clnt args; 11604 COMPOUND4res_clnt res; 11605 COMMIT4res *cm_res; 11606 nfs_argop4 argop[2]; 11607 nfs_resop4 *resop; 11608 int doqueue; 11609 mntinfo4_t *mi; 11610 rnode4_t *rp; 11611 cred_t *cred_otw = NULL; 11612 bool_t needrecov = FALSE; 11613 nfs4_recov_state_t recov_state; 11614 nfs4_open_stream_t *osp = NULL; 11615 bool_t first_time = TRUE; /* first time getting OTW cred */ 11616 bool_t last_time = FALSE; /* last time getting OTW cred */ 11617 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11618 11619 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11620 11621 rp = VTOR4(vp); 11622 11623 mi = VTOMI4(vp); 11624 recov_state.rs_flags = 0; 11625 recov_state.rs_num_retry_despite_err = 0; 11626 get_commit_cred: 11627 /* 11628 * Releases the osp, if a valid open stream is provided. 11629 * Puts a hold on the cred_otw and the new osp (if found). 11630 */ 11631 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11632 &first_time, &last_time); 11633 args.ctag = TAG_COMMIT; 11634 recov_retry: 11635 /* 11636 * Commit ops: putfh file; commit 11637 */ 11638 args.array_len = 2; 11639 args.array = argop; 11640 11641 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11642 &recov_state, NULL); 11643 if (e.error) { 11644 crfree(cred_otw); 11645 if (osp != NULL) 11646 open_stream_rele(osp, rp); 11647 return (e.error); 11648 } 11649 11650 /* putfh directory */ 11651 argop[0].argop = OP_CPUTFH; 11652 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11653 11654 /* commit */ 11655 argop[1].argop = OP_COMMIT; 11656 argop[1].nfs_argop4_u.opcommit.offset = offset; 11657 argop[1].nfs_argop4_u.opcommit.count = count; 11658 11659 doqueue = 1; 11660 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11661 11662 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11663 if (!needrecov && e.error) { 11664 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11665 needrecov); 11666 crfree(cred_otw); 11667 if (e.error == EACCES && last_time == FALSE) 11668 goto get_commit_cred; 11669 if (osp != NULL) 11670 open_stream_rele(osp, rp); 11671 return (e.error); 11672 } 11673 11674 if (needrecov) { 11675 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11676 NULL, OP_COMMIT, NULL) == FALSE) { 11677 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11678 &recov_state, needrecov); 11679 if (!e.error) 11680 (void) xdr_free(xdr_COMPOUND4res_clnt, 11681 (caddr_t)&res); 11682 goto recov_retry; 11683 } 11684 if (e.error) { 11685 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11686 &recov_state, needrecov); 11687 crfree(cred_otw); 11688 if (osp != NULL) 11689 open_stream_rele(osp, rp); 11690 return (e.error); 11691 } 11692 /* fall through for res.status case */ 11693 } 11694 11695 if (res.status) { 11696 e.error = geterrno4(res.status); 11697 if (e.error == EACCES && last_time == FALSE) { 11698 crfree(cred_otw); 11699 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11700 &recov_state, needrecov); 11701 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11702 goto get_commit_cred; 11703 } 11704 /* 11705 * Can't do a nfs4_purge_stale_fh here because this 11706 * can cause a deadlock. nfs4_commit can 11707 * be called from nfs4_dispose which can be called 11708 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11709 * can call back to pvn_vplist_dirty. 11710 */ 11711 if (e.error == ESTALE) { 11712 mutex_enter(&rp->r_statelock); 11713 rp->r_flags |= R4STALE; 11714 if (!rp->r_error) 11715 rp->r_error = e.error; 11716 mutex_exit(&rp->r_statelock); 11717 PURGE_ATTRCACHE4(vp); 11718 } else { 11719 mutex_enter(&rp->r_statelock); 11720 if (!rp->r_error) 11721 rp->r_error = e.error; 11722 mutex_exit(&rp->r_statelock); 11723 } 11724 } else { 11725 ASSERT(rp->r_flags & R4HAVEVERF); 11726 resop = &res.array[1]; /* commit res */ 11727 cm_res = &resop->nfs_resop4_u.opcommit; 11728 mutex_enter(&rp->r_statelock); 11729 if (cm_res->writeverf == rp->r_writeverf) { 11730 mutex_exit(&rp->r_statelock); 11731 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11732 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11733 &recov_state, needrecov); 11734 crfree(cred_otw); 11735 if (osp != NULL) 11736 open_stream_rele(osp, rp); 11737 return (0); 11738 } 11739 nfs4_set_mod(vp); 11740 rp->r_writeverf = cm_res->writeverf; 11741 mutex_exit(&rp->r_statelock); 11742 e.error = NFS_VERF_MISMATCH; 11743 } 11744 11745 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11746 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11747 crfree(cred_otw); 11748 if (osp != NULL) 11749 open_stream_rele(osp, rp); 11750 11751 return (e.error); 11752 } 11753 11754 static void 11755 nfs4_set_mod(vnode_t *vp) 11756 { 11757 page_t *pp; 11758 kmutex_t *vphm; 11759 rnode4_t *rp; 11760 11761 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11762 11763 /* make sure we're looking at the master vnode, not a shadow */ 11764 11765 rp = VTOR4(vp); 11766 if (IS_SHADOW(vp, rp)) 11767 vp = RTOV4(rp); 11768 11769 vphm = page_vnode_mutex(vp); 11770 mutex_enter(vphm); 11771 /* 11772 * If there are no pages associated with this vnode, then 11773 * just return. 11774 */ 11775 if ((pp = vp->v_pages) == NULL) { 11776 mutex_exit(vphm); 11777 return; 11778 } 11779 11780 do { 11781 if (pp->p_fsdata != C_NOCOMMIT) { 11782 hat_setmod(pp); 11783 pp->p_fsdata = C_NOCOMMIT; 11784 } 11785 } while ((pp = pp->p_vpnext) != vp->v_pages); 11786 mutex_exit(vphm); 11787 } 11788 11789 /* 11790 * This function is used to gather a page list of the pages which 11791 * can be committed on the server. 11792 * 11793 * The calling thread must have set R4COMMIT. This bit is used to 11794 * serialize access to the commit structure in the rnode. As long 11795 * as the thread has set R4COMMIT, then it can manipulate the commit 11796 * structure without requiring any other locks. 11797 * 11798 * When this function is called from nfs4_dispose() the page passed 11799 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11800 * will skip it. This is not a problem since we initially add the 11801 * page to the r_commit page list. 11802 * 11803 */ 11804 static void 11805 nfs4_get_commit(vnode_t *vp) 11806 { 11807 rnode4_t *rp; 11808 page_t *pp; 11809 kmutex_t *vphm; 11810 11811 rp = VTOR4(vp); 11812 11813 ASSERT(rp->r_flags & R4COMMIT); 11814 11815 /* make sure we're looking at the master vnode, not a shadow */ 11816 11817 if (IS_SHADOW(vp, rp)) 11818 vp = RTOV4(rp); 11819 11820 vphm = page_vnode_mutex(vp); 11821 mutex_enter(vphm); 11822 11823 /* 11824 * If there are no pages associated with this vnode, then 11825 * just return. 11826 */ 11827 if ((pp = vp->v_pages) == NULL) { 11828 mutex_exit(vphm); 11829 return; 11830 } 11831 11832 /* 11833 * Step through all of the pages associated with this vnode 11834 * looking for pages which need to be committed. 11835 */ 11836 do { 11837 /* 11838 * First short-cut everything (without the page_lock) 11839 * and see if this page does not need to be committed 11840 * or is modified if so then we'll just skip it. 11841 */ 11842 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11843 continue; 11844 11845 /* 11846 * Attempt to lock the page. If we can't, then 11847 * someone else is messing with it or we have been 11848 * called from nfs4_dispose and this is the page that 11849 * nfs4_dispose was called with.. anyway just skip it. 11850 */ 11851 if (!page_trylock(pp, SE_EXCL)) 11852 continue; 11853 11854 /* 11855 * Lets check again now that we have the page lock. 11856 */ 11857 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11858 page_unlock(pp); 11859 continue; 11860 } 11861 11862 /* this had better not be a free page */ 11863 ASSERT(PP_ISFREE(pp) == 0); 11864 11865 /* 11866 * The page needs to be committed and we locked it. 11867 * Update the base and length parameters and add it 11868 * to r_pages. 11869 */ 11870 if (rp->r_commit.c_pages == NULL) { 11871 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11872 rp->r_commit.c_commlen = PAGESIZE; 11873 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11874 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11875 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11876 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11877 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11878 <= pp->p_offset) { 11879 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11880 rp->r_commit.c_commbase + PAGESIZE; 11881 } 11882 page_add(&rp->r_commit.c_pages, pp); 11883 } while ((pp = pp->p_vpnext) != vp->v_pages); 11884 11885 mutex_exit(vphm); 11886 } 11887 11888 /* 11889 * This routine is used to gather together a page list of the pages 11890 * which are to be committed on the server. This routine must not 11891 * be called if the calling thread holds any locked pages. 11892 * 11893 * The calling thread must have set R4COMMIT. This bit is used to 11894 * serialize access to the commit structure in the rnode. As long 11895 * as the thread has set R4COMMIT, then it can manipulate the commit 11896 * structure without requiring any other locks. 11897 */ 11898 static void 11899 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11900 { 11901 11902 rnode4_t *rp; 11903 page_t *pp; 11904 u_offset_t end; 11905 u_offset_t off; 11906 ASSERT(len != 0); 11907 rp = VTOR4(vp); 11908 ASSERT(rp->r_flags & R4COMMIT); 11909 11910 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11911 11912 /* make sure we're looking at the master vnode, not a shadow */ 11913 11914 if (IS_SHADOW(vp, rp)) 11915 vp = RTOV4(rp); 11916 11917 /* 11918 * If there are no pages associated with this vnode, then 11919 * just return. 11920 */ 11921 if ((pp = vp->v_pages) == NULL) 11922 return; 11923 /* 11924 * Calculate the ending offset. 11925 */ 11926 end = soff + len; 11927 for (off = soff; off < end; off += PAGESIZE) { 11928 /* 11929 * Lookup each page by vp, offset. 11930 */ 11931 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 11932 continue; 11933 /* 11934 * If this page does not need to be committed or is 11935 * modified, then just skip it. 11936 */ 11937 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11938 page_unlock(pp); 11939 continue; 11940 } 11941 11942 ASSERT(PP_ISFREE(pp) == 0); 11943 /* 11944 * The page needs to be committed and we locked it. 11945 * Update the base and length parameters and add it 11946 * to r_pages. 11947 */ 11948 if (rp->r_commit.c_pages == NULL) { 11949 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11950 rp->r_commit.c_commlen = PAGESIZE; 11951 } else { 11952 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11953 rp->r_commit.c_commbase + PAGESIZE; 11954 } 11955 page_add(&rp->r_commit.c_pages, pp); 11956 } 11957 } 11958 11959 /* 11960 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 11961 * Flushes and commits data to the server. 11962 */ 11963 static int 11964 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 11965 { 11966 int error; 11967 verifier4 write_verf; 11968 rnode4_t *rp = VTOR4(vp); 11969 11970 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11971 11972 /* 11973 * Flush the data portion of the file and then commit any 11974 * portions which need to be committed. This may need to 11975 * be done twice if the server has changed state since 11976 * data was last written. The data will need to be 11977 * rewritten to the server and then a new commit done. 11978 * 11979 * In fact, this may need to be done several times if the 11980 * server is having problems and crashing while we are 11981 * attempting to do this. 11982 */ 11983 11984 top: 11985 /* 11986 * Do a flush based on the poff and plen arguments. This 11987 * will synchronously write out any modified pages in the 11988 * range specified by (poff, plen). This starts all of the 11989 * i/o operations which will be waited for in the next 11990 * call to nfs4_putpage 11991 */ 11992 11993 mutex_enter(&rp->r_statelock); 11994 write_verf = rp->r_writeverf; 11995 mutex_exit(&rp->r_statelock); 11996 11997 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 11998 if (error == EAGAIN) 11999 error = 0; 12000 12001 /* 12002 * Do a flush based on the poff and plen arguments. This 12003 * will synchronously write out any modified pages in the 12004 * range specified by (poff, plen) and wait until all of 12005 * the asynchronous i/o's in that range are done as well. 12006 */ 12007 if (!error) 12008 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 12009 12010 if (error) 12011 return (error); 12012 12013 mutex_enter(&rp->r_statelock); 12014 if (rp->r_writeverf != write_verf) { 12015 mutex_exit(&rp->r_statelock); 12016 goto top; 12017 } 12018 mutex_exit(&rp->r_statelock); 12019 12020 /* 12021 * Now commit any pages which might need to be committed. 12022 * If the error, NFS_VERF_MISMATCH, is returned, then 12023 * start over with the flush operation. 12024 */ 12025 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12026 12027 if (error == NFS_VERF_MISMATCH) 12028 goto top; 12029 12030 return (error); 12031 } 12032 12033 /* 12034 * nfs4_commit_vp() will wait for other pending commits and 12035 * will either commit the whole file or a range, plen dictates 12036 * if we commit whole file. a value of zero indicates the whole 12037 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12038 */ 12039 static int 12040 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12041 cred_t *cr, int wait_on_writes) 12042 { 12043 rnode4_t *rp; 12044 page_t *plist; 12045 offset3 offset; 12046 count3 len; 12047 12048 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12049 12050 rp = VTOR4(vp); 12051 12052 /* 12053 * before we gather commitable pages make 12054 * sure there are no outstanding async writes 12055 */ 12056 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12057 mutex_enter(&rp->r_statelock); 12058 while (rp->r_count > 0) { 12059 cv_wait(&rp->r_cv, &rp->r_statelock); 12060 } 12061 mutex_exit(&rp->r_statelock); 12062 } 12063 12064 /* 12065 * Set the `commit inprogress' state bit. We must 12066 * first wait until any current one finishes. 12067 */ 12068 mutex_enter(&rp->r_statelock); 12069 while (rp->r_flags & R4COMMIT) { 12070 rp->r_flags |= R4COMMITWAIT; 12071 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12072 rp->r_flags &= ~R4COMMITWAIT; 12073 } 12074 rp->r_flags |= R4COMMIT; 12075 mutex_exit(&rp->r_statelock); 12076 12077 /* 12078 * Gather all of the pages which need to be 12079 * committed. 12080 */ 12081 if (plen == 0) 12082 nfs4_get_commit(vp); 12083 else 12084 nfs4_get_commit_range(vp, poff, plen); 12085 12086 /* 12087 * Clear the `commit inprogress' bit and disconnect the 12088 * page list which was gathered by nfs4_get_commit. 12089 */ 12090 plist = rp->r_commit.c_pages; 12091 rp->r_commit.c_pages = NULL; 12092 offset = rp->r_commit.c_commbase; 12093 len = rp->r_commit.c_commlen; 12094 mutex_enter(&rp->r_statelock); 12095 rp->r_flags &= ~R4COMMIT; 12096 cv_broadcast(&rp->r_commit.c_cv); 12097 mutex_exit(&rp->r_statelock); 12098 12099 /* 12100 * If any pages need to be committed, commit them and 12101 * then unlock them so that they can be freed some 12102 * time later. 12103 */ 12104 if (plist == NULL) 12105 return (0); 12106 12107 /* 12108 * No error occurred during the flush portion 12109 * of this operation, so now attempt to commit 12110 * the data to stable storage on the server. 12111 * 12112 * This will unlock all of the pages on the list. 12113 */ 12114 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12115 } 12116 12117 static int 12118 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12119 cred_t *cr) 12120 { 12121 int error; 12122 page_t *pp; 12123 12124 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12125 12126 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12127 12128 /* 12129 * If we got an error, then just unlock all of the pages 12130 * on the list. 12131 */ 12132 if (error) { 12133 while (plist != NULL) { 12134 pp = plist; 12135 page_sub(&plist, pp); 12136 page_unlock(pp); 12137 } 12138 return (error); 12139 } 12140 /* 12141 * We've tried as hard as we can to commit the data to stable 12142 * storage on the server. We just unlock the pages and clear 12143 * the commit required state. They will get freed later. 12144 */ 12145 while (plist != NULL) { 12146 pp = plist; 12147 page_sub(&plist, pp); 12148 pp->p_fsdata = C_NOCOMMIT; 12149 page_unlock(pp); 12150 } 12151 12152 return (error); 12153 } 12154 12155 static void 12156 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12157 cred_t *cr) 12158 { 12159 12160 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12161 } 12162 12163 /*ARGSUSED*/ 12164 static int 12165 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12166 caller_context_t *ct) 12167 { 12168 int error = 0; 12169 mntinfo4_t *mi; 12170 vattr_t va; 12171 vsecattr_t nfsace4_vsap; 12172 12173 mi = VTOMI4(vp); 12174 if (nfs_zone() != mi->mi_zone) 12175 return (EIO); 12176 if (mi->mi_flags & MI4_ACL) { 12177 /* if we have a delegation, return it */ 12178 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12179 (void) nfs4delegreturn(VTOR4(vp), 12180 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12181 12182 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12183 NFS4_ACL_SET); 12184 if (error) /* EINVAL */ 12185 return (error); 12186 12187 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12188 /* 12189 * These are aclent_t type entries. 12190 */ 12191 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12192 vp->v_type == VDIR, FALSE); 12193 if (error) 12194 return (error); 12195 } else { 12196 /* 12197 * These are ace_t type entries. 12198 */ 12199 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12200 FALSE); 12201 if (error) 12202 return (error); 12203 } 12204 bzero(&va, sizeof (va)); 12205 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12206 vs_ace4_destroy(&nfsace4_vsap); 12207 return (error); 12208 } 12209 return (ENOSYS); 12210 } 12211 12212 /* ARGSUSED */ 12213 int 12214 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12215 caller_context_t *ct) 12216 { 12217 int error; 12218 mntinfo4_t *mi; 12219 nfs4_ga_res_t gar; 12220 rnode4_t *rp = VTOR4(vp); 12221 12222 mi = VTOMI4(vp); 12223 if (nfs_zone() != mi->mi_zone) 12224 return (EIO); 12225 12226 bzero(&gar, sizeof (gar)); 12227 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12228 12229 /* 12230 * vsecattr->vsa_mask holds the original acl request mask. 12231 * This is needed when determining what to return. 12232 * (See: nfs4_create_getsecattr_return()) 12233 */ 12234 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12235 if (error) /* EINVAL */ 12236 return (error); 12237 12238 if (mi->mi_flags & MI4_ACL) { 12239 /* 12240 * Check if the data is cached and the cache is valid. If it 12241 * is we don't go over the wire. 12242 */ 12243 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12244 mutex_enter(&rp->r_statelock); 12245 if (rp->r_secattr != NULL) { 12246 error = nfs4_create_getsecattr_return( 12247 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12248 rp->r_attr.va_gid, 12249 vp->v_type == VDIR); 12250 if (!error) { /* error == 0 - Success! */ 12251 mutex_exit(&rp->r_statelock); 12252 return (error); 12253 } 12254 } 12255 mutex_exit(&rp->r_statelock); 12256 } 12257 12258 /* 12259 * The getattr otw call will always get both the acl, in 12260 * the form of a list of nfsace4's, and the number of acl 12261 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12262 */ 12263 gar.n4g_va.va_mask = AT_ALL; 12264 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12265 if (error) { 12266 vs_ace4_destroy(&gar.n4g_vsa); 12267 if (error == ENOTSUP || error == EOPNOTSUPP) 12268 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12269 return (error); 12270 } 12271 12272 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12273 /* 12274 * No error was returned, but according to the response 12275 * bitmap, neither was an acl. 12276 */ 12277 vs_ace4_destroy(&gar.n4g_vsa); 12278 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12279 return (error); 12280 } 12281 12282 /* 12283 * Update the cache with the ACL. 12284 */ 12285 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12286 12287 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12288 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12289 vp->v_type == VDIR); 12290 vs_ace4_destroy(&gar.n4g_vsa); 12291 if ((error) && (vsecattr->vsa_mask & 12292 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12293 (error != EACCES)) { 12294 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12295 } 12296 return (error); 12297 } 12298 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12299 return (error); 12300 } 12301 12302 /* 12303 * The function returns: 12304 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12305 * - EINVAL if the passed in "acl_mask" is an invalid request. 12306 * 12307 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12308 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12309 * 12310 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12311 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12312 * - We have a count field set without the corresponding acl field set. (e.g. - 12313 * VSA_ACECNT is set, but VSA_ACE is not) 12314 */ 12315 static int 12316 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12317 { 12318 /* Shortcut the masks that are always valid. */ 12319 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12320 return (0); 12321 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12322 return (0); 12323 12324 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12325 /* 12326 * We can't have any VSA_ACL type stuff in the mask now. 12327 */ 12328 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12329 VSA_DFACLCNT)) 12330 return (EINVAL); 12331 12332 if (op == NFS4_ACL_SET) { 12333 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12334 return (EINVAL); 12335 } 12336 } 12337 12338 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12339 /* 12340 * We can't have any VSA_ACE type stuff in the mask now. 12341 */ 12342 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12343 return (EINVAL); 12344 12345 if (op == NFS4_ACL_SET) { 12346 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12347 return (EINVAL); 12348 12349 if ((acl_mask & VSA_DFACLCNT) && 12350 !(acl_mask & VSA_DFACL)) 12351 return (EINVAL); 12352 } 12353 } 12354 return (0); 12355 } 12356 12357 /* 12358 * The theory behind creating the correct getsecattr return is simply this: 12359 * "Don't return anything that the caller is not expecting to have to free." 12360 */ 12361 static int 12362 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12363 uid_t uid, gid_t gid, int isdir) 12364 { 12365 int error = 0; 12366 /* Save the mask since the translators modify it. */ 12367 uint_t orig_mask = vsap->vsa_mask; 12368 12369 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12370 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, 12371 FALSE, ((orig_mask & VSA_ACE) ? FALSE : TRUE)); 12372 12373 if (error) 12374 return (error); 12375 12376 /* 12377 * If the caller only asked for the ace count (VSA_ACECNT) 12378 * don't give them the full acl (VSA_ACE), free it. 12379 */ 12380 if (!orig_mask & VSA_ACE) { 12381 if (vsap->vsa_aclentp != NULL) { 12382 kmem_free(vsap->vsa_aclentp, 12383 vsap->vsa_aclcnt * sizeof (ace_t)); 12384 vsap->vsa_aclentp = NULL; 12385 } 12386 } 12387 vsap->vsa_mask = orig_mask; 12388 12389 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12390 VSA_DFACLCNT)) { 12391 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12392 isdir, FALSE, 12393 ((orig_mask & (VSA_ACL | VSA_DFACL)) ? FALSE : TRUE)); 12394 12395 if (error) 12396 return (error); 12397 12398 /* 12399 * If the caller only asked for the acl count (VSA_ACLCNT) 12400 * and/or the default acl count (VSA_DFACLCNT) don't give them 12401 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12402 */ 12403 if (!orig_mask & VSA_ACL) { 12404 if (vsap->vsa_aclentp != NULL) { 12405 kmem_free(vsap->vsa_aclentp, 12406 vsap->vsa_aclcnt * sizeof (aclent_t)); 12407 vsap->vsa_aclentp = NULL; 12408 } 12409 } 12410 12411 if (!orig_mask & VSA_DFACL) { 12412 if (vsap->vsa_dfaclentp != NULL) { 12413 kmem_free(vsap->vsa_dfaclentp, 12414 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12415 vsap->vsa_dfaclentp = NULL; 12416 } 12417 } 12418 vsap->vsa_mask = orig_mask; 12419 } 12420 return (0); 12421 } 12422 12423 /* ARGSUSED */ 12424 int 12425 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12426 caller_context_t *ct) 12427 { 12428 int error; 12429 12430 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12431 return (EIO); 12432 /* 12433 * check for valid cmd parameter 12434 */ 12435 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12436 return (EINVAL); 12437 12438 /* 12439 * Check access permissions 12440 */ 12441 if ((cmd & F_SHARE) && 12442 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12443 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12444 return (EBADF); 12445 12446 /* 12447 * If the filesystem is mounted using local locking, pass the 12448 * request off to the local share code. 12449 */ 12450 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12451 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12452 12453 switch (cmd) { 12454 case F_SHARE: 12455 case F_UNSHARE: 12456 /* 12457 * This will be properly implemented later, 12458 * see RFE: 4823948 . 12459 */ 12460 error = EAGAIN; 12461 break; 12462 12463 case F_HASREMOTELOCKS: 12464 /* 12465 * NFS client can't store remote locks itself 12466 */ 12467 shr->s_access = 0; 12468 error = 0; 12469 break; 12470 12471 default: 12472 error = EINVAL; 12473 break; 12474 } 12475 12476 return (error); 12477 } 12478 12479 /* 12480 * Common code called by directory ops to update the attrcache 12481 */ 12482 static int 12483 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12484 hrtime_t t, vnode_t *vp, cred_t *cr) 12485 { 12486 int error = 0; 12487 12488 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12489 12490 if (status != NFS4_OK) { 12491 /* getattr not done or failed */ 12492 PURGE_ATTRCACHE4(vp); 12493 return (error); 12494 } 12495 12496 if (garp) { 12497 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12498 } else { 12499 PURGE_ATTRCACHE4(vp); 12500 } 12501 return (error); 12502 } 12503 12504 /* 12505 * Update directory caches for directory modification ops (link, rename, etc.) 12506 * When dinfo is NULL, manage dircaches in the old way. 12507 */ 12508 static void 12509 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12510 dirattr_info_t *dinfo) 12511 { 12512 rnode4_t *drp = VTOR4(dvp); 12513 12514 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12515 12516 /* Purge rddir cache for dir since it changed */ 12517 if (drp->r_dir != NULL) 12518 nfs4_purge_rddir_cache(dvp); 12519 12520 /* 12521 * If caller provided dinfo, then use it to manage dir caches. 12522 */ 12523 if (dinfo != NULL) { 12524 if (vp != NULL) { 12525 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12526 if (!VTOR4(vp)->created_v4) { 12527 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12528 dnlc_update(dvp, nm, vp); 12529 } else { 12530 /* 12531 * XXX don't update if the created_v4 flag is 12532 * set 12533 */ 12534 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12535 NFS4_DEBUG(nfs4_client_state_debug, 12536 (CE_NOTE, "nfs4_update_dircaches: " 12537 "don't update dnlc: created_v4 flag")); 12538 } 12539 } 12540 12541 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12542 dinfo->di_cred, FALSE, cinfo); 12543 12544 return; 12545 } 12546 12547 /* 12548 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12549 * Since caller modified dir but didn't receive post-dirmod-op dir 12550 * attrs, the dir's attrs must be purged. 12551 * 12552 * XXX this check and dnlc update/purge should really be atomic, 12553 * XXX but can't use rnode statelock because it'll deadlock in 12554 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12555 * XXX does occur. 12556 * 12557 * XXX We also may want to check that atomic is true in the 12558 * XXX change_info struct. If it is not, the change_info may 12559 * XXX reflect changes by more than one clients which means that 12560 * XXX our cache may not be valid. 12561 */ 12562 PURGE_ATTRCACHE4(dvp); 12563 if (drp->r_change == cinfo->before) { 12564 /* no changes took place in the directory prior to our link */ 12565 if (vp != NULL) { 12566 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12567 if (!VTOR4(vp)->created_v4) { 12568 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12569 dnlc_update(dvp, nm, vp); 12570 } else { 12571 /* 12572 * XXX dont' update if the created_v4 flag 12573 * is set 12574 */ 12575 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12576 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12577 "nfs4_update_dircaches: don't" 12578 " update dnlc: created_v4 flag")); 12579 } 12580 } 12581 } else { 12582 /* Another client modified directory - purge its dnlc cache */ 12583 dnlc_purge_vp(dvp); 12584 } 12585 } 12586 12587 /* 12588 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12589 * file. 12590 * 12591 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12592 * file (ie: client recovery) and otherwise set to FALSE. 12593 * 12594 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12595 * initiated) calling functions. 12596 * 12597 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12598 * of resending a 'lost' open request. 12599 * 12600 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12601 * server that hands out BAD_SEQID on open confirm. 12602 * 12603 * Errors are returned via the nfs4_error_t parameter. 12604 */ 12605 void 12606 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12607 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12608 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12609 { 12610 COMPOUND4args_clnt args; 12611 COMPOUND4res_clnt res; 12612 nfs_argop4 argop[2]; 12613 nfs_resop4 *resop; 12614 int doqueue = 1; 12615 mntinfo4_t *mi; 12616 OPEN_CONFIRM4args *open_confirm_args; 12617 int needrecov; 12618 12619 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12620 #if DEBUG 12621 mutex_enter(&oop->oo_lock); 12622 ASSERT(oop->oo_seqid_inuse); 12623 mutex_exit(&oop->oo_lock); 12624 #endif 12625 12626 recov_retry_confirm: 12627 nfs4_error_zinit(ep); 12628 *retry_open = FALSE; 12629 12630 if (resend) 12631 args.ctag = TAG_OPEN_CONFIRM_LOST; 12632 else 12633 args.ctag = TAG_OPEN_CONFIRM; 12634 12635 args.array_len = 2; 12636 args.array = argop; 12637 12638 /* putfh target fh */ 12639 argop[0].argop = OP_CPUTFH; 12640 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12641 12642 argop[1].argop = OP_OPEN_CONFIRM; 12643 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12644 12645 (*seqid) += 1; 12646 open_confirm_args->seqid = *seqid; 12647 open_confirm_args->open_stateid = *stateid; 12648 12649 mi = VTOMI4(vp); 12650 12651 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12652 12653 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12654 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12655 } 12656 12657 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12658 if (!needrecov && ep->error) 12659 return; 12660 12661 if (needrecov) { 12662 bool_t abort = FALSE; 12663 12664 if (reopening_file == FALSE) { 12665 nfs4_bseqid_entry_t *bsep = NULL; 12666 12667 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12668 bsep = nfs4_create_bseqid_entry(oop, NULL, 12669 vp, 0, args.ctag, 12670 open_confirm_args->seqid); 12671 12672 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, 12673 NULL, NULL, NULL, OP_OPEN_CONFIRM, bsep); 12674 if (bsep) { 12675 kmem_free(bsep, sizeof (*bsep)); 12676 if (num_bseqid_retryp && 12677 --(*num_bseqid_retryp) == 0) 12678 abort = TRUE; 12679 } 12680 } 12681 if ((ep->error == ETIMEDOUT || 12682 res.status == NFS4ERR_RESOURCE) && 12683 abort == FALSE && resend == FALSE) { 12684 if (!ep->error) 12685 (void) xdr_free(xdr_COMPOUND4res_clnt, 12686 (caddr_t)&res); 12687 12688 delay(SEC_TO_TICK(confirm_retry_sec)); 12689 goto recov_retry_confirm; 12690 } 12691 /* State may have changed so retry the entire OPEN op */ 12692 if (abort == FALSE) 12693 *retry_open = TRUE; 12694 else 12695 *retry_open = FALSE; 12696 if (!ep->error) 12697 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12698 return; 12699 } 12700 12701 if (res.status) { 12702 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12703 return; 12704 } 12705 12706 resop = &res.array[1]; /* open confirm res */ 12707 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12708 stateid, sizeof (*stateid)); 12709 12710 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12711 } 12712 12713 /* 12714 * Return the credentials associated with a client state object. The 12715 * caller is responsible for freeing the credentials. 12716 */ 12717 12718 static cred_t * 12719 state_to_cred(nfs4_open_stream_t *osp) 12720 { 12721 cred_t *cr; 12722 12723 /* 12724 * It's ok to not lock the open stream and open owner to get 12725 * the oo_cred since this is only written once (upon creation) 12726 * and will not change. 12727 */ 12728 cr = osp->os_open_owner->oo_cred; 12729 crhold(cr); 12730 12731 return (cr); 12732 } 12733 12734 /* 12735 * nfs4_find_sysid 12736 * 12737 * Find the sysid for the knetconfig associated with the given mi. 12738 */ 12739 static struct lm_sysid * 12740 nfs4_find_sysid(mntinfo4_t *mi) 12741 { 12742 ASSERT(nfs_zone() == mi->mi_zone); 12743 12744 /* 12745 * Switch from RDMA knconf to original mount knconf 12746 */ 12747 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12748 mi->mi_curr_serv->sv_hostname, NULL)); 12749 } 12750 12751 #ifdef DEBUG 12752 /* 12753 * Return a string version of the call type for easy reading. 12754 */ 12755 static char * 12756 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12757 { 12758 switch (ctype) { 12759 case NFS4_LCK_CTYPE_NORM: 12760 return ("NORMAL"); 12761 case NFS4_LCK_CTYPE_RECLAIM: 12762 return ("RECLAIM"); 12763 case NFS4_LCK_CTYPE_RESEND: 12764 return ("RESEND"); 12765 case NFS4_LCK_CTYPE_REINSTATE: 12766 return ("REINSTATE"); 12767 default: 12768 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12769 "type %d", ctype); 12770 return (""); 12771 } 12772 } 12773 #endif 12774 12775 /* 12776 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12777 * Unlock requests don't have an over-the-wire locktype, so we just return 12778 * something non-threatening. 12779 */ 12780 12781 static nfs_lock_type4 12782 flk_to_locktype(int cmd, int l_type) 12783 { 12784 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12785 12786 switch (l_type) { 12787 case F_UNLCK: 12788 return (READ_LT); 12789 case F_RDLCK: 12790 if (cmd == F_SETLK) 12791 return (READ_LT); 12792 else 12793 return (READW_LT); 12794 case F_WRLCK: 12795 if (cmd == F_SETLK) 12796 return (WRITE_LT); 12797 else 12798 return (WRITEW_LT); 12799 } 12800 panic("flk_to_locktype"); 12801 /*NOTREACHED*/ 12802 } 12803 12804 /* 12805 * Do some preliminary checks for nfs4frlock. 12806 */ 12807 static int 12808 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12809 u_offset_t offset) 12810 { 12811 int error = 0; 12812 12813 /* 12814 * If we are setting a lock, check that the file is opened 12815 * with the correct mode. 12816 */ 12817 if (cmd == F_SETLK || cmd == F_SETLKW) { 12818 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12819 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12820 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12821 "nfs4frlock_validate_args: file was opened with " 12822 "incorrect mode")); 12823 return (EBADF); 12824 } 12825 } 12826 12827 /* Convert the offset. It may need to be restored before returning. */ 12828 if (error = convoff(vp, flk, 0, offset)) { 12829 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12830 "nfs4frlock_validate_args: convoff => error= %d\n", 12831 error)); 12832 return (error); 12833 } 12834 12835 return (error); 12836 } 12837 12838 /* 12839 * Set the flock64's lm_sysid for nfs4frlock. 12840 */ 12841 static int 12842 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12843 { 12844 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12845 12846 /* Find the lm_sysid */ 12847 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12848 12849 if (*lspp == NULL) { 12850 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12851 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12852 return (ENOLCK); 12853 } 12854 12855 flk->l_sysid = lm_sysidt(*lspp); 12856 12857 return (0); 12858 } 12859 12860 /* 12861 * Do the remaining preliminary setup for nfs4frlock. 12862 */ 12863 static void 12864 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12865 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12866 cred_t **cred_otw) 12867 { 12868 /* 12869 * set tick_delay to the base delay time. 12870 * (NFS4_BASE_WAIT_TIME is in secs) 12871 */ 12872 12873 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12874 12875 /* 12876 * If lock is relative to EOF, we need the newest length of the 12877 * file. Therefore invalidate the ATTR_CACHE. 12878 */ 12879 12880 *whencep = flk->l_whence; 12881 12882 if (*whencep == 2) /* SEEK_END */ 12883 PURGE_ATTRCACHE4(vp); 12884 12885 recov_statep->rs_flags = 0; 12886 recov_statep->rs_num_retry_despite_err = 0; 12887 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12888 } 12889 12890 /* 12891 * Initialize and allocate the data structures necessary for 12892 * the nfs4frlock call. 12893 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12894 */ 12895 static void 12896 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12897 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12898 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12899 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 12900 { 12901 int argoplist_size; 12902 int num_ops = 2; 12903 12904 *retry = FALSE; 12905 *did_start_fop = FALSE; 12906 *skip_get_err = FALSE; 12907 lost_rqstp->lr_op = 0; 12908 argoplist_size = num_ops * sizeof (nfs_argop4); 12909 /* fill array with zero */ 12910 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 12911 12912 *argspp = argsp; 12913 *respp = NULL; 12914 12915 argsp->array_len = num_ops; 12916 argsp->array = *argopp; 12917 12918 /* initialize in case of error; will get real value down below */ 12919 argsp->ctag = TAG_NONE; 12920 12921 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 12922 *op_hintp = OH_LOCKU; 12923 else 12924 *op_hintp = OH_OTHER; 12925 } 12926 12927 /* 12928 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 12929 * the proper nfs4_server_t for this instance of nfs4frlock. 12930 * Returns 0 (success) or an errno value. 12931 */ 12932 static int 12933 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 12934 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 12935 bool_t *did_start_fop, bool_t *startrecovp) 12936 { 12937 int error = 0; 12938 rnode4_t *rp; 12939 12940 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12941 12942 if (ctype == NFS4_LCK_CTYPE_NORM) { 12943 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 12944 recov_statep, startrecovp); 12945 if (error) 12946 return (error); 12947 *did_start_fop = TRUE; 12948 } else { 12949 *did_start_fop = FALSE; 12950 *startrecovp = FALSE; 12951 } 12952 12953 if (!error) { 12954 rp = VTOR4(vp); 12955 12956 /* If the file failed recovery, just quit. */ 12957 mutex_enter(&rp->r_statelock); 12958 if (rp->r_flags & R4RECOVERR) { 12959 error = EIO; 12960 } 12961 mutex_exit(&rp->r_statelock); 12962 } 12963 12964 return (error); 12965 } 12966 12967 /* 12968 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 12969 * resend nfs4frlock call is initiated by the recovery framework. 12970 * Acquires the lop and oop seqid synchronization. 12971 */ 12972 static void 12973 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 12974 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 12975 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 12976 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 12977 { 12978 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 12979 int error; 12980 12981 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 12982 (CE_NOTE, 12983 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 12984 ASSERT(resend_rqstp != NULL); 12985 ASSERT(resend_rqstp->lr_op == OP_LOCK || 12986 resend_rqstp->lr_op == OP_LOCKU); 12987 12988 *oopp = resend_rqstp->lr_oop; 12989 if (resend_rqstp->lr_oop) { 12990 open_owner_hold(resend_rqstp->lr_oop); 12991 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 12992 ASSERT(error == 0); /* recov thread always succeeds */ 12993 } 12994 12995 /* Must resend this lost lock/locku request. */ 12996 ASSERT(resend_rqstp->lr_lop != NULL); 12997 *lopp = resend_rqstp->lr_lop; 12998 lock_owner_hold(resend_rqstp->lr_lop); 12999 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 13000 ASSERT(error == 0); /* recov thread always succeeds */ 13001 13002 *ospp = resend_rqstp->lr_osp; 13003 if (*ospp) 13004 open_stream_hold(resend_rqstp->lr_osp); 13005 13006 if (resend_rqstp->lr_op == OP_LOCK) { 13007 LOCK4args *lock_args; 13008 13009 argop->argop = OP_LOCK; 13010 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 13011 lock_args->locktype = resend_rqstp->lr_locktype; 13012 lock_args->reclaim = 13013 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 13014 lock_args->offset = resend_rqstp->lr_flk->l_start; 13015 lock_args->length = resend_rqstp->lr_flk->l_len; 13016 if (lock_args->length == 0) 13017 lock_args->length = ~lock_args->length; 13018 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13019 mi2clientid(mi), &lock_args->locker); 13020 13021 switch (resend_rqstp->lr_ctype) { 13022 case NFS4_LCK_CTYPE_RESEND: 13023 argsp->ctag = TAG_LOCK_RESEND; 13024 break; 13025 case NFS4_LCK_CTYPE_REINSTATE: 13026 argsp->ctag = TAG_LOCK_REINSTATE; 13027 break; 13028 case NFS4_LCK_CTYPE_RECLAIM: 13029 argsp->ctag = TAG_LOCK_RECLAIM; 13030 break; 13031 default: 13032 argsp->ctag = TAG_LOCK_UNKNOWN; 13033 break; 13034 } 13035 } else { 13036 LOCKU4args *locku_args; 13037 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13038 13039 argop->argop = OP_LOCKU; 13040 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13041 locku_args->locktype = READ_LT; 13042 locku_args->seqid = lop->lock_seqid + 1; 13043 mutex_enter(&lop->lo_lock); 13044 locku_args->lock_stateid = lop->lock_stateid; 13045 mutex_exit(&lop->lo_lock); 13046 locku_args->offset = resend_rqstp->lr_flk->l_start; 13047 locku_args->length = resend_rqstp->lr_flk->l_len; 13048 if (locku_args->length == 0) 13049 locku_args->length = ~locku_args->length; 13050 13051 switch (resend_rqstp->lr_ctype) { 13052 case NFS4_LCK_CTYPE_RESEND: 13053 argsp->ctag = TAG_LOCKU_RESEND; 13054 break; 13055 case NFS4_LCK_CTYPE_REINSTATE: 13056 argsp->ctag = TAG_LOCKU_REINSTATE; 13057 break; 13058 default: 13059 argsp->ctag = TAG_LOCK_UNKNOWN; 13060 break; 13061 } 13062 } 13063 } 13064 13065 /* 13066 * Setup the LOCKT4 arguments. 13067 */ 13068 static void 13069 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13070 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13071 rnode4_t *rp) 13072 { 13073 LOCKT4args *lockt_args; 13074 13075 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13076 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13077 argop->argop = OP_LOCKT; 13078 argsp->ctag = TAG_LOCKT; 13079 lockt_args = &argop->nfs_argop4_u.oplockt; 13080 13081 /* 13082 * The locktype will be READ_LT unless it's 13083 * a write lock. We do this because the Solaris 13084 * system call allows the combination of 13085 * F_UNLCK and F_GETLK* and so in that case the 13086 * unlock is mapped to a read. 13087 */ 13088 if (flk->l_type == F_WRLCK) 13089 lockt_args->locktype = WRITE_LT; 13090 else 13091 lockt_args->locktype = READ_LT; 13092 13093 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13094 /* set the lock owner4 args */ 13095 nfs4_setlockowner_args(&lockt_args->owner, rp, 13096 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13097 flk->l_pid); 13098 lockt_args->offset = flk->l_start; 13099 lockt_args->length = flk->l_len; 13100 if (flk->l_len == 0) 13101 lockt_args->length = ~lockt_args->length; 13102 13103 *lockt_argsp = lockt_args; 13104 } 13105 13106 /* 13107 * If the client is holding a delegation, and the open stream to be used 13108 * with this lock request is a delegation open stream, then re-open the stream. 13109 * Sets the nfs4_error_t to all zeros unless the open stream has already 13110 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13111 * means the caller should retry (like a recovery retry). 13112 */ 13113 static void 13114 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13115 { 13116 open_delegation_type4 dt; 13117 bool_t reopen_needed, force; 13118 nfs4_open_stream_t *osp; 13119 open_claim_type4 oclaim; 13120 rnode4_t *rp = VTOR4(vp); 13121 mntinfo4_t *mi = VTOMI4(vp); 13122 13123 ASSERT(nfs_zone() == mi->mi_zone); 13124 13125 nfs4_error_zinit(ep); 13126 13127 mutex_enter(&rp->r_statev4_lock); 13128 dt = rp->r_deleg_type; 13129 mutex_exit(&rp->r_statev4_lock); 13130 13131 if (dt != OPEN_DELEGATE_NONE) { 13132 nfs4_open_owner_t *oop; 13133 13134 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13135 if (!oop) { 13136 ep->stat = NFS4ERR_IO; 13137 return; 13138 } 13139 /* returns with 'os_sync_lock' held */ 13140 osp = find_open_stream(oop, rp); 13141 if (!osp) { 13142 open_owner_rele(oop); 13143 ep->stat = NFS4ERR_IO; 13144 return; 13145 } 13146 13147 if (osp->os_failed_reopen) { 13148 NFS4_DEBUG((nfs4_open_stream_debug || 13149 nfs4_client_lock_debug), (CE_NOTE, 13150 "nfs4frlock_check_deleg: os_failed_reopen set " 13151 "for osp %p, cr %p, rp %s", (void *)osp, 13152 (void *)cr, rnode4info(rp))); 13153 mutex_exit(&osp->os_sync_lock); 13154 open_stream_rele(osp, rp); 13155 open_owner_rele(oop); 13156 ep->stat = NFS4ERR_IO; 13157 return; 13158 } 13159 13160 /* 13161 * Determine whether a reopen is needed. If this 13162 * is a delegation open stream, then send the open 13163 * to the server to give visibility to the open owner. 13164 * Even if it isn't a delegation open stream, we need 13165 * to check if the previous open CLAIM_DELEGATE_CUR 13166 * was sufficient. 13167 */ 13168 13169 reopen_needed = osp->os_delegation || 13170 ((lt == F_RDLCK && 13171 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13172 (lt == F_WRLCK && 13173 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13174 13175 mutex_exit(&osp->os_sync_lock); 13176 open_owner_rele(oop); 13177 13178 if (reopen_needed) { 13179 /* 13180 * Always use CLAIM_PREVIOUS after server reboot. 13181 * The server will reject CLAIM_DELEGATE_CUR if 13182 * it is used during the grace period. 13183 */ 13184 mutex_enter(&mi->mi_lock); 13185 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13186 oclaim = CLAIM_PREVIOUS; 13187 force = TRUE; 13188 } else { 13189 oclaim = CLAIM_DELEGATE_CUR; 13190 force = FALSE; 13191 } 13192 mutex_exit(&mi->mi_lock); 13193 13194 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13195 if (ep->error == EAGAIN) { 13196 nfs4_error_zinit(ep); 13197 ep->stat = NFS4ERR_DELAY; 13198 } 13199 } 13200 open_stream_rele(osp, rp); 13201 osp = NULL; 13202 } 13203 } 13204 13205 /* 13206 * Setup the LOCKU4 arguments. 13207 * Returns errors via the nfs4_error_t. 13208 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13209 * over-the-wire. The caller must release the 13210 * reference on *lopp. 13211 * NFS4ERR_DELAY caller should retry (like recovery retry) 13212 * (other) unrecoverable error. 13213 */ 13214 static void 13215 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13216 LOCKU4args **locku_argsp, flock64_t *flk, 13217 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13218 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13219 bool_t *skip_get_err, bool_t *go_otwp) 13220 { 13221 nfs4_lock_owner_t *lop = NULL; 13222 LOCKU4args *locku_args; 13223 pid_t pid; 13224 bool_t is_spec = FALSE; 13225 rnode4_t *rp = VTOR4(vp); 13226 13227 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13228 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13229 13230 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13231 if (ep->error || ep->stat) 13232 return; 13233 13234 argop->argop = OP_LOCKU; 13235 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13236 argsp->ctag = TAG_LOCKU_REINSTATE; 13237 else 13238 argsp->ctag = TAG_LOCKU; 13239 locku_args = &argop->nfs_argop4_u.oplocku; 13240 *locku_argsp = locku_args; 13241 13242 /* 13243 * XXX what should locku_args->locktype be? 13244 * setting to ALWAYS be READ_LT so at least 13245 * it is a valid locktype. 13246 */ 13247 13248 locku_args->locktype = READ_LT; 13249 13250 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13251 flk->l_pid; 13252 13253 /* 13254 * Get the lock owner stateid. If no lock owner 13255 * exists, return success. 13256 */ 13257 lop = find_lock_owner(rp, pid, LOWN_ANY); 13258 *lopp = lop; 13259 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13260 is_spec = TRUE; 13261 if (!lop || is_spec) { 13262 /* 13263 * No lock owner so no locks to unlock. 13264 * Return success. If there was a failed 13265 * reclaim earlier, the lock might still be 13266 * registered with the local locking code, 13267 * so notify it of the unlock. 13268 * 13269 * If the lockowner is using a special stateid, 13270 * then the original lock request (that created 13271 * this lockowner) was never successful, so we 13272 * have no lock to undo OTW. 13273 */ 13274 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13275 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13276 "(%ld) so return success", (long)pid)); 13277 13278 if (ctype == NFS4_LCK_CTYPE_NORM) 13279 flk->l_pid = curproc->p_pid; 13280 nfs4_register_lock_locally(vp, flk, flag, offset); 13281 /* 13282 * Release our hold and NULL out so final_cleanup 13283 * doesn't try to end a lock seqid sync we 13284 * never started. 13285 */ 13286 if (is_spec) { 13287 lock_owner_rele(lop); 13288 *lopp = NULL; 13289 } 13290 *skip_get_err = TRUE; 13291 *go_otwp = FALSE; 13292 return; 13293 } 13294 13295 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13296 if (ep->error == EAGAIN) { 13297 lock_owner_rele(lop); 13298 *lopp = NULL; 13299 return; 13300 } 13301 13302 mutex_enter(&lop->lo_lock); 13303 locku_args->lock_stateid = lop->lock_stateid; 13304 mutex_exit(&lop->lo_lock); 13305 locku_args->seqid = lop->lock_seqid + 1; 13306 13307 /* leave the ref count on lop, rele after RPC call */ 13308 13309 locku_args->offset = flk->l_start; 13310 locku_args->length = flk->l_len; 13311 if (flk->l_len == 0) 13312 locku_args->length = ~locku_args->length; 13313 13314 *go_otwp = TRUE; 13315 } 13316 13317 /* 13318 * Setup the LOCK4 arguments. 13319 * 13320 * Returns errors via the nfs4_error_t. 13321 * NFS4_OK no problems 13322 * NFS4ERR_DELAY caller should retry (like recovery retry) 13323 * (other) unrecoverable error 13324 */ 13325 static void 13326 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13327 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13328 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13329 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13330 { 13331 LOCK4args *lock_args; 13332 nfs4_open_owner_t *oop = NULL; 13333 nfs4_open_stream_t *osp = NULL; 13334 nfs4_lock_owner_t *lop = NULL; 13335 pid_t pid; 13336 rnode4_t *rp = VTOR4(vp); 13337 13338 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13339 13340 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13341 if (ep->error || ep->stat != NFS4_OK) 13342 return; 13343 13344 argop->argop = OP_LOCK; 13345 if (ctype == NFS4_LCK_CTYPE_NORM) 13346 argsp->ctag = TAG_LOCK; 13347 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13348 argsp->ctag = TAG_RELOCK; 13349 else 13350 argsp->ctag = TAG_LOCK_REINSTATE; 13351 lock_args = &argop->nfs_argop4_u.oplock; 13352 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13353 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13354 /* 13355 * Get the lock owner. If no lock owner exists, 13356 * create a 'temporary' one and grab the open seqid 13357 * synchronization (which puts a hold on the open 13358 * owner and open stream). 13359 * This also grabs the lock seqid synchronization. 13360 */ 13361 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13362 ep->stat = 13363 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13364 13365 if (ep->stat != NFS4_OK) 13366 goto out; 13367 13368 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13369 &lock_args->locker); 13370 13371 lock_args->offset = flk->l_start; 13372 lock_args->length = flk->l_len; 13373 if (flk->l_len == 0) 13374 lock_args->length = ~lock_args->length; 13375 *lock_argsp = lock_args; 13376 out: 13377 *oopp = oop; 13378 *ospp = osp; 13379 *lopp = lop; 13380 } 13381 13382 /* 13383 * After we get the reply from the server, record the proper information 13384 * for possible resend lock requests. 13385 * 13386 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13387 */ 13388 static void 13389 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13390 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13391 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13392 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13393 { 13394 bool_t unlock = (flk->l_type == F_UNLCK); 13395 13396 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13397 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13398 ctype == NFS4_LCK_CTYPE_REINSTATE); 13399 13400 if (error != 0 && !unlock) { 13401 NFS4_DEBUG((nfs4_lost_rqst_debug || 13402 nfs4_client_lock_debug), (CE_NOTE, 13403 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13404 " for lop %p", (void *)lop)); 13405 ASSERT(lop != NULL); 13406 mutex_enter(&lop->lo_lock); 13407 lop->lo_pending_rqsts = 1; 13408 mutex_exit(&lop->lo_lock); 13409 } 13410 13411 lost_rqstp->lr_putfirst = FALSE; 13412 lost_rqstp->lr_op = 0; 13413 13414 /* 13415 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13416 * recovery purposes so that the lock request that was sent 13417 * can be saved and re-issued later. Ditto for EIO from a forced 13418 * unmount. This is done to have the client's local locking state 13419 * match the v4 server's state; that is, the request was 13420 * potentially received and accepted by the server but the client 13421 * thinks it was not. 13422 */ 13423 if (error == ETIMEDOUT || error == EINTR || 13424 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13425 NFS4_DEBUG((nfs4_lost_rqst_debug || 13426 nfs4_client_lock_debug), (CE_NOTE, 13427 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13428 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13429 (void *)lop, (void *)oop, (void *)osp)); 13430 if (unlock) 13431 lost_rqstp->lr_op = OP_LOCKU; 13432 else { 13433 lost_rqstp->lr_op = OP_LOCK; 13434 lost_rqstp->lr_locktype = locktype; 13435 } 13436 /* 13437 * Objects are held and rele'd via the recovery code. 13438 * See nfs4_save_lost_rqst. 13439 */ 13440 lost_rqstp->lr_vp = vp; 13441 lost_rqstp->lr_dvp = NULL; 13442 lost_rqstp->lr_oop = oop; 13443 lost_rqstp->lr_osp = osp; 13444 lost_rqstp->lr_lop = lop; 13445 lost_rqstp->lr_cr = cr; 13446 switch (ctype) { 13447 case NFS4_LCK_CTYPE_NORM: 13448 flk->l_pid = ttoproc(curthread)->p_pid; 13449 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13450 break; 13451 case NFS4_LCK_CTYPE_REINSTATE: 13452 lost_rqstp->lr_putfirst = TRUE; 13453 lost_rqstp->lr_ctype = ctype; 13454 break; 13455 default: 13456 break; 13457 } 13458 lost_rqstp->lr_flk = flk; 13459 } 13460 } 13461 13462 /* 13463 * Update lop's seqid. Also update the seqid stored in a resend request, 13464 * if any. (Some recovery errors increment the seqid, and we may have to 13465 * send the resend request again.) 13466 */ 13467 13468 static void 13469 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13470 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13471 { 13472 if (lock_args) { 13473 if (lock_args->locker.new_lock_owner == TRUE) 13474 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13475 else { 13476 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13477 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13478 } 13479 } else if (locku_args) { 13480 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13481 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13482 } 13483 } 13484 13485 /* 13486 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13487 * COMPOUND4 args/res for calls that need to retry. 13488 * Switches the *cred_otwp to base_cr. 13489 */ 13490 static void 13491 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13492 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13493 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13494 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13495 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13496 { 13497 nfs4_open_owner_t *oop = *oopp; 13498 nfs4_open_stream_t *osp = *ospp; 13499 nfs4_lock_owner_t *lop = *lopp; 13500 nfs_argop4 *argop = (*argspp)->array; 13501 13502 if (*did_start_fop) { 13503 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13504 needrecov); 13505 *did_start_fop = FALSE; 13506 } 13507 ASSERT((*argspp)->array_len == 2); 13508 if (argop[1].argop == OP_LOCK) 13509 nfs4args_lock_free(&argop[1]); 13510 else if (argop[1].argop == OP_LOCKT) 13511 nfs4args_lockt_free(&argop[1]); 13512 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13513 if (!error) 13514 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13515 *argspp = NULL; 13516 *respp = NULL; 13517 13518 if (lop) { 13519 nfs4_end_lock_seqid_sync(lop); 13520 lock_owner_rele(lop); 13521 *lopp = NULL; 13522 } 13523 13524 /* need to free up the reference on osp for lock args */ 13525 if (osp != NULL) { 13526 open_stream_rele(osp, VTOR4(vp)); 13527 *ospp = NULL; 13528 } 13529 13530 /* need to free up the reference on oop for lock args */ 13531 if (oop != NULL) { 13532 nfs4_end_open_seqid_sync(oop); 13533 open_owner_rele(oop); 13534 *oopp = NULL; 13535 } 13536 13537 crfree(*cred_otwp); 13538 *cred_otwp = base_cr; 13539 crhold(*cred_otwp); 13540 } 13541 13542 /* 13543 * Function to process the client's recovery for nfs4frlock. 13544 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13545 * 13546 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13547 * COMPOUND4 args/res for calls that need to retry. 13548 * 13549 * Note: the rp's r_lkserlock is *not* dropped during this path. 13550 */ 13551 static bool_t 13552 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13553 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13554 LOCK4args *lock_args, LOCKU4args *locku_args, 13555 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13556 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13557 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13558 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13559 { 13560 nfs4_open_owner_t *oop = *oopp; 13561 nfs4_open_stream_t *osp = *ospp; 13562 nfs4_lock_owner_t *lop = *lopp; 13563 13564 bool_t abort, retry; 13565 13566 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13567 ASSERT((*argspp) != NULL); 13568 ASSERT((*respp) != NULL); 13569 if (lock_args || locku_args) 13570 ASSERT(lop != NULL); 13571 13572 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13573 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13574 13575 retry = TRUE; 13576 abort = FALSE; 13577 if (needrecov) { 13578 nfs4_bseqid_entry_t *bsep = NULL; 13579 nfs_opnum4 op; 13580 13581 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13582 13583 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13584 seqid4 seqid; 13585 13586 if (lock_args) { 13587 if (lock_args->locker.new_lock_owner == TRUE) 13588 seqid = lock_args->locker.locker4_u. 13589 open_owner.open_seqid; 13590 else 13591 seqid = lock_args->locker.locker4_u. 13592 lock_owner.lock_seqid; 13593 } else if (locku_args) { 13594 seqid = locku_args->seqid; 13595 } else { 13596 seqid = 0; 13597 } 13598 13599 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13600 flk->l_pid, (*argspp)->ctag, seqid); 13601 } 13602 13603 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13604 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13605 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13606 NULL, op, bsep); 13607 13608 if (bsep) 13609 kmem_free(bsep, sizeof (*bsep)); 13610 } 13611 13612 /* 13613 * Return that we do not want to retry the request for 3 cases: 13614 * 1. If we received EINTR or are bailing out because of a forced 13615 * unmount, we came into this code path just for the sake of 13616 * initiating recovery, we now need to return the error. 13617 * 2. If we have aborted recovery. 13618 * 3. We received NFS4ERR_BAD_SEQID. 13619 */ 13620 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13621 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13622 retry = FALSE; 13623 13624 if (*did_start_fop == TRUE) { 13625 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13626 needrecov); 13627 *did_start_fop = FALSE; 13628 } 13629 13630 if (retry == TRUE) { 13631 nfs_argop4 *argop; 13632 13633 argop = (*argspp)->array; 13634 ASSERT((*argspp)->array_len == 2); 13635 13636 if (argop[1].argop == OP_LOCK) 13637 nfs4args_lock_free(&argop[1]); 13638 else if (argop[1].argop == OP_LOCKT) 13639 nfs4args_lockt_free(&argop[1]); 13640 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13641 if (!ep->error) 13642 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13643 *respp = NULL; 13644 *argspp = NULL; 13645 } 13646 13647 if (lop != NULL) { 13648 nfs4_end_lock_seqid_sync(lop); 13649 lock_owner_rele(lop); 13650 } 13651 13652 *lopp = NULL; 13653 13654 /* need to free up the reference on osp for lock args */ 13655 if (osp != NULL) { 13656 open_stream_rele(osp, rp); 13657 *ospp = NULL; 13658 } 13659 13660 /* need to free up the reference on oop for lock args */ 13661 if (oop != NULL) { 13662 nfs4_end_open_seqid_sync(oop); 13663 open_owner_rele(oop); 13664 *oopp = NULL; 13665 } 13666 13667 return (retry); 13668 } 13669 13670 /* 13671 * Handles the successful reply from the server for nfs4frlock. 13672 */ 13673 static void 13674 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13675 vnode_t *vp, int flag, u_offset_t offset, 13676 nfs4_lost_rqst_t *resend_rqstp) 13677 { 13678 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13679 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13680 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13681 if (ctype == NFS4_LCK_CTYPE_NORM) { 13682 flk->l_pid = ttoproc(curthread)->p_pid; 13683 /* 13684 * We do not register lost locks locally in 13685 * the 'resend' case since the user/application 13686 * doesn't think we have the lock. 13687 */ 13688 ASSERT(!resend_rqstp); 13689 nfs4_register_lock_locally(vp, flk, flag, offset); 13690 } 13691 } 13692 } 13693 13694 /* 13695 * Handle the DENIED reply from the server for nfs4frlock. 13696 * Returns TRUE if we should retry the request; FALSE otherwise. 13697 * 13698 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13699 * COMPOUND4 args/res for calls that need to retry. Can also 13700 * drop and regrab the r_lkserlock. 13701 */ 13702 static bool_t 13703 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13704 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13705 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13706 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13707 nfs4_recov_state_t *recov_statep, int needrecov, 13708 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13709 clock_t *tick_delayp, short *whencep, int *errorp, 13710 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13711 bool_t *skip_get_err) 13712 { 13713 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13714 13715 if (lock_args) { 13716 nfs4_open_owner_t *oop = *oopp; 13717 nfs4_open_stream_t *osp = *ospp; 13718 nfs4_lock_owner_t *lop = *lopp; 13719 int intr; 13720 13721 /* 13722 * Blocking lock needs to sleep and retry from the request. 13723 * 13724 * Do not block and wait for 'resend' or 'reinstate' 13725 * lock requests, just return the error. 13726 * 13727 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13728 */ 13729 if (cmd == F_SETLKW) { 13730 rnode4_t *rp = VTOR4(vp); 13731 nfs_argop4 *argop = (*argspp)->array; 13732 13733 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13734 13735 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13736 recov_statep, needrecov); 13737 *did_start_fop = FALSE; 13738 ASSERT((*argspp)->array_len == 2); 13739 if (argop[1].argop == OP_LOCK) 13740 nfs4args_lock_free(&argop[1]); 13741 else if (argop[1].argop == OP_LOCKT) 13742 nfs4args_lockt_free(&argop[1]); 13743 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13744 if (*respp) 13745 (void) xdr_free(xdr_COMPOUND4res_clnt, 13746 (caddr_t)*respp); 13747 *argspp = NULL; 13748 *respp = NULL; 13749 nfs4_end_lock_seqid_sync(lop); 13750 lock_owner_rele(lop); 13751 *lopp = NULL; 13752 if (osp != NULL) { 13753 open_stream_rele(osp, rp); 13754 *ospp = NULL; 13755 } 13756 if (oop != NULL) { 13757 nfs4_end_open_seqid_sync(oop); 13758 open_owner_rele(oop); 13759 *oopp = NULL; 13760 } 13761 13762 nfs_rw_exit(&rp->r_lkserlock); 13763 13764 intr = nfs4_block_and_wait(tick_delayp, rp); 13765 13766 if (intr) { 13767 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13768 RW_WRITER, FALSE); 13769 *errorp = EINTR; 13770 return (FALSE); 13771 } 13772 13773 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13774 RW_WRITER, FALSE); 13775 13776 /* 13777 * Make sure we are still safe to lock with 13778 * regards to mmapping. 13779 */ 13780 if (!nfs4_safelock(vp, flk, cr)) { 13781 *errorp = EAGAIN; 13782 return (FALSE); 13783 } 13784 13785 return (TRUE); 13786 } 13787 if (ctype == NFS4_LCK_CTYPE_NORM) 13788 *errorp = EAGAIN; 13789 *skip_get_err = TRUE; 13790 flk->l_whence = 0; 13791 *whencep = 0; 13792 return (FALSE); 13793 } else if (lockt_args) { 13794 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13795 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13796 13797 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13798 flk, lockt_args); 13799 13800 /* according to NLM code */ 13801 *errorp = 0; 13802 *whencep = 0; 13803 *skip_get_err = TRUE; 13804 return (FALSE); 13805 } 13806 return (FALSE); 13807 } 13808 13809 /* 13810 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13811 */ 13812 static void 13813 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13814 { 13815 switch (resp->status) { 13816 case NFS4ERR_ACCESS: 13817 case NFS4ERR_ADMIN_REVOKED: 13818 case NFS4ERR_BADHANDLE: 13819 case NFS4ERR_BAD_RANGE: 13820 case NFS4ERR_BAD_SEQID: 13821 case NFS4ERR_BAD_STATEID: 13822 case NFS4ERR_BADXDR: 13823 case NFS4ERR_DEADLOCK: 13824 case NFS4ERR_DELAY: 13825 case NFS4ERR_EXPIRED: 13826 case NFS4ERR_FHEXPIRED: 13827 case NFS4ERR_GRACE: 13828 case NFS4ERR_INVAL: 13829 case NFS4ERR_ISDIR: 13830 case NFS4ERR_LEASE_MOVED: 13831 case NFS4ERR_LOCK_NOTSUPP: 13832 case NFS4ERR_LOCK_RANGE: 13833 case NFS4ERR_MOVED: 13834 case NFS4ERR_NOFILEHANDLE: 13835 case NFS4ERR_NO_GRACE: 13836 case NFS4ERR_OLD_STATEID: 13837 case NFS4ERR_OPENMODE: 13838 case NFS4ERR_RECLAIM_BAD: 13839 case NFS4ERR_RECLAIM_CONFLICT: 13840 case NFS4ERR_RESOURCE: 13841 case NFS4ERR_SERVERFAULT: 13842 case NFS4ERR_STALE: 13843 case NFS4ERR_STALE_CLIENTID: 13844 case NFS4ERR_STALE_STATEID: 13845 return; 13846 default: 13847 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13848 "nfs4frlock_results_default: got unrecognizable " 13849 "res.status %d", resp->status)); 13850 *errorp = NFS4ERR_INVAL; 13851 } 13852 } 13853 13854 /* 13855 * The lock request was successful, so update the client's state. 13856 */ 13857 static void 13858 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13859 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13860 vnode_t *vp, flock64_t *flk, cred_t *cr, 13861 nfs4_lost_rqst_t *resend_rqstp) 13862 { 13863 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13864 13865 if (lock_args) { 13866 LOCK4res *lock_res; 13867 13868 lock_res = &resop->nfs_resop4_u.oplock; 13869 /* update the stateid with server's response */ 13870 13871 if (lock_args->locker.new_lock_owner == TRUE) { 13872 mutex_enter(&lop->lo_lock); 13873 lop->lo_just_created = NFS4_PERM_CREATED; 13874 mutex_exit(&lop->lo_lock); 13875 } 13876 13877 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13878 13879 /* 13880 * If the lock was the result of a resending a lost 13881 * request, we've synched up the stateid and seqid 13882 * with the server, but now the server might be out of sync 13883 * with what the application thinks it has for locks. 13884 * Clean that up here. It's unclear whether we should do 13885 * this even if the filesystem has been forcibly unmounted. 13886 * For most servers, it's probably wasted effort, but 13887 * RFC3530 lets servers require that unlocks exactly match 13888 * the locks that are held. 13889 */ 13890 if (resend_rqstp != NULL && 13891 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13892 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13893 } else { 13894 flk->l_whence = 0; 13895 } 13896 } else if (locku_args) { 13897 LOCKU4res *locku_res; 13898 13899 locku_res = &resop->nfs_resop4_u.oplocku; 13900 13901 /* Update the stateid with the server's response */ 13902 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 13903 } else if (lockt_args) { 13904 /* Switch the lock type to express success, see fcntl */ 13905 flk->l_type = F_UNLCK; 13906 flk->l_whence = 0; 13907 } 13908 } 13909 13910 /* 13911 * Do final cleanup before exiting nfs4frlock. 13912 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13913 * COMPOUND4 args/res for calls that haven't already. 13914 */ 13915 static void 13916 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 13917 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 13918 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 13919 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13920 short whence, u_offset_t offset, struct lm_sysid *ls, 13921 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 13922 bool_t did_start_fop, bool_t skip_get_err, 13923 cred_t *cred_otw, cred_t *cred) 13924 { 13925 mntinfo4_t *mi = VTOMI4(vp); 13926 rnode4_t *rp = VTOR4(vp); 13927 int error = *errorp; 13928 nfs_argop4 *argop; 13929 13930 ASSERT(nfs_zone() == mi->mi_zone); 13931 /* 13932 * The client recovery code wants the raw status information, 13933 * so don't map the NFS status code to an errno value for 13934 * non-normal call types. 13935 */ 13936 if (ctype == NFS4_LCK_CTYPE_NORM) { 13937 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 13938 *errorp = geterrno4(resp->status); 13939 if (did_start_fop == TRUE) 13940 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 13941 needrecov); 13942 13943 /* 13944 * We've established a new lock on the server, so invalidate 13945 * the pages associated with the vnode to get the most up to 13946 * date pages from the server after acquiring the lock. We 13947 * want to be sure that the read operation gets the newest data. 13948 * N.B. 13949 * We used to do this in nfs4frlock_results_ok but that doesn't 13950 * work since VOP_PUTPAGE can call nfs4_commit which calls 13951 * nfs4_start_fop. We flush the pages below after calling 13952 * nfs4_end_fop above 13953 */ 13954 if (!error && resp && resp->status == NFS4_OK) { 13955 int error; 13956 13957 error = VOP_PUTPAGE(vp, (u_offset_t)0, 13958 0, B_INVAL, cred, NULL); 13959 13960 if (error && (error == ENOSPC || error == EDQUOT)) { 13961 rnode4_t *rp = VTOR4(vp); 13962 13963 mutex_enter(&rp->r_statelock); 13964 if (!rp->r_error) 13965 rp->r_error = error; 13966 mutex_exit(&rp->r_statelock); 13967 } 13968 } 13969 } 13970 if (argsp) { 13971 ASSERT(argsp->array_len == 2); 13972 argop = argsp->array; 13973 if (argop[1].argop == OP_LOCK) 13974 nfs4args_lock_free(&argop[1]); 13975 else if (argop[1].argop == OP_LOCKT) 13976 nfs4args_lockt_free(&argop[1]); 13977 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13978 if (resp) 13979 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 13980 } 13981 13982 /* free the reference on the lock owner */ 13983 if (lop != NULL) { 13984 nfs4_end_lock_seqid_sync(lop); 13985 lock_owner_rele(lop); 13986 } 13987 13988 /* need to free up the reference on osp for lock args */ 13989 if (osp != NULL) 13990 open_stream_rele(osp, rp); 13991 13992 /* need to free up the reference on oop for lock args */ 13993 if (oop != NULL) { 13994 nfs4_end_open_seqid_sync(oop); 13995 open_owner_rele(oop); 13996 } 13997 13998 (void) convoff(vp, flk, whence, offset); 13999 14000 lm_rel_sysid(ls); 14001 14002 /* 14003 * Record debug information in the event we get EINVAL. 14004 */ 14005 mutex_enter(&mi->mi_lock); 14006 if (*errorp == EINVAL && (lock_args || locku_args) && 14007 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 14008 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 14009 zcmn_err(getzoneid(), CE_NOTE, 14010 "%s operation failed with " 14011 "EINVAL probably since the server, %s," 14012 " doesn't support POSIX style locking", 14013 lock_args ? "LOCK" : "LOCKU", 14014 mi->mi_curr_serv->sv_hostname); 14015 mi->mi_flags |= MI4_LOCK_DEBUG; 14016 } 14017 } 14018 mutex_exit(&mi->mi_lock); 14019 14020 if (cred_otw) 14021 crfree(cred_otw); 14022 } 14023 14024 /* 14025 * This calls the server and the local locking code. 14026 * 14027 * Client locks are registerred locally by oring the sysid with 14028 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 14029 * We need to distinguish between the two to avoid collision in case one 14030 * machine is used as both client and server. 14031 * 14032 * Blocking lock requests will continually retry to acquire the lock 14033 * forever. 14034 * 14035 * The ctype is defined as follows: 14036 * NFS4_LCK_CTYPE_NORM: normal lock request. 14037 * 14038 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14039 * recovery, get the pid from flk instead of curproc, and don't reregister 14040 * the lock locally. 14041 * 14042 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14043 * that we will use the information passed in via resend_rqstp to setup the 14044 * lock/locku request. This resend is the exact same request as the 'lost 14045 * lock', and is initiated by the recovery framework. A successful resend 14046 * request can initiate one or more reinstate requests. 14047 * 14048 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14049 * does not trigger additional reinstate requests. This lock call type is 14050 * set for setting the v4 server's locking state back to match what the 14051 * client's local locking state is in the event of a received 'lost lock'. 14052 * 14053 * Errors are returned via the nfs4_error_t parameter. 14054 */ 14055 void 14056 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14057 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14058 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14059 { 14060 COMPOUND4args_clnt args, *argsp = NULL; 14061 COMPOUND4res_clnt res, *resp = NULL; 14062 nfs_argop4 *argop; 14063 nfs_resop4 *resop; 14064 rnode4_t *rp; 14065 int doqueue = 1; 14066 clock_t tick_delay; /* delay in clock ticks */ 14067 struct lm_sysid *ls; 14068 LOCK4args *lock_args = NULL; 14069 LOCKU4args *locku_args = NULL; 14070 LOCKT4args *lockt_args = NULL; 14071 nfs4_open_owner_t *oop = NULL; 14072 nfs4_open_stream_t *osp = NULL; 14073 nfs4_lock_owner_t *lop = NULL; 14074 bool_t needrecov = FALSE; 14075 nfs4_recov_state_t recov_state; 14076 short whence; 14077 nfs4_op_hint_t op_hint; 14078 nfs4_lost_rqst_t lost_rqst; 14079 bool_t retry = FALSE; 14080 bool_t did_start_fop = FALSE; 14081 bool_t skip_get_err = FALSE; 14082 cred_t *cred_otw = NULL; 14083 bool_t recovonly; /* just queue request */ 14084 int frc_no_reclaim = 0; 14085 #ifdef DEBUG 14086 char *name; 14087 #endif 14088 14089 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14090 14091 #ifdef DEBUG 14092 name = fn_name(VTOSV(vp)->sv_name); 14093 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14094 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14095 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14096 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14097 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14098 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14099 resend_rqstp ? "TRUE" : "FALSE")); 14100 kmem_free(name, MAXNAMELEN); 14101 #endif 14102 14103 nfs4_error_zinit(ep); 14104 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14105 if (ep->error) 14106 return; 14107 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14108 if (ep->error) 14109 return; 14110 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14111 vp, cr, &cred_otw); 14112 14113 recov_retry: 14114 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14115 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14116 rp = VTOR4(vp); 14117 14118 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14119 &did_start_fop, &recovonly); 14120 14121 if (ep->error) 14122 goto out; 14123 14124 if (recovonly) { 14125 /* 14126 * Leave the request for the recovery system to deal with. 14127 */ 14128 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14129 ASSERT(cmd != F_GETLK); 14130 ASSERT(flk->l_type == F_UNLCK); 14131 14132 nfs4_error_init(ep, EINTR); 14133 needrecov = TRUE; 14134 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14135 if (lop != NULL) { 14136 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14137 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14138 (void) nfs4_start_recovery(ep, 14139 VTOMI4(vp), vp, NULL, NULL, 14140 (lost_rqst.lr_op == OP_LOCK || 14141 lost_rqst.lr_op == OP_LOCKU) ? 14142 &lost_rqst : NULL, OP_LOCKU, NULL); 14143 lock_owner_rele(lop); 14144 lop = NULL; 14145 } 14146 flk->l_pid = curproc->p_pid; 14147 nfs4_register_lock_locally(vp, flk, flag, offset); 14148 goto out; 14149 } 14150 14151 /* putfh directory fh */ 14152 argop[0].argop = OP_CPUTFH; 14153 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14154 14155 /* 14156 * Set up the over-the-wire arguments and get references to the 14157 * open owner, etc. 14158 */ 14159 14160 if (ctype == NFS4_LCK_CTYPE_RESEND || 14161 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14162 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14163 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14164 } else { 14165 bool_t go_otw = TRUE; 14166 14167 ASSERT(resend_rqstp == NULL); 14168 14169 switch (cmd) { 14170 case F_GETLK: 14171 case F_O_GETLK: 14172 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14173 &lockt_args, argsp, flk, rp); 14174 break; 14175 case F_SETLKW: 14176 case F_SETLK: 14177 if (flk->l_type == F_UNLCK) 14178 nfs4frlock_setup_locku_args(ctype, 14179 &argop[1], &locku_args, flk, 14180 &lop, ep, argsp, 14181 vp, flag, offset, cr, 14182 &skip_get_err, &go_otw); 14183 else 14184 nfs4frlock_setup_lock_args(ctype, 14185 &lock_args, &oop, &osp, &lop, &argop[1], 14186 argsp, flk, cmd, vp, cr, ep); 14187 14188 if (ep->error) 14189 goto out; 14190 14191 switch (ep->stat) { 14192 case NFS4_OK: 14193 break; 14194 case NFS4ERR_DELAY: 14195 /* recov thread never gets this error */ 14196 ASSERT(resend_rqstp == NULL); 14197 ASSERT(did_start_fop); 14198 14199 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14200 &recov_state, TRUE); 14201 did_start_fop = FALSE; 14202 if (argop[1].argop == OP_LOCK) 14203 nfs4args_lock_free(&argop[1]); 14204 else if (argop[1].argop == OP_LOCKT) 14205 nfs4args_lockt_free(&argop[1]); 14206 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14207 argsp = NULL; 14208 goto recov_retry; 14209 default: 14210 ep->error = EIO; 14211 goto out; 14212 } 14213 break; 14214 default: 14215 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14216 "nfs4_frlock: invalid cmd %d", cmd)); 14217 ep->error = EINVAL; 14218 goto out; 14219 } 14220 14221 if (!go_otw) 14222 goto out; 14223 } 14224 14225 /* XXX should we use the local reclock as a cache ? */ 14226 /* 14227 * Unregister the lock with the local locking code before 14228 * contacting the server. This avoids a potential race where 14229 * another process gets notified that it has been granted a lock 14230 * before we can unregister ourselves locally. 14231 */ 14232 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14233 if (ctype == NFS4_LCK_CTYPE_NORM) 14234 flk->l_pid = ttoproc(curthread)->p_pid; 14235 nfs4_register_lock_locally(vp, flk, flag, offset); 14236 } 14237 14238 /* 14239 * Send the server the lock request. Continually loop with a delay 14240 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14241 */ 14242 resp = &res; 14243 14244 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14245 (CE_NOTE, 14246 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14247 rnode4info(rp))); 14248 14249 if (lock_args && frc_no_reclaim) { 14250 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14251 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14252 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14253 lock_args->reclaim = FALSE; 14254 if (did_reclaimp) 14255 *did_reclaimp = 0; 14256 } 14257 14258 /* 14259 * Do the OTW call. 14260 */ 14261 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14262 14263 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14264 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14265 14266 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14267 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14268 "nfs4frlock: needrecov %d", needrecov)); 14269 14270 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14271 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14272 args.ctag); 14273 14274 /* 14275 * Check if one of these mutually exclusive error cases has 14276 * happened: 14277 * need to swap credentials due to access error 14278 * recovery is needed 14279 * different error (only known case is missing Kerberos ticket) 14280 */ 14281 14282 if ((ep->error == EACCES || 14283 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14284 cred_otw != cr) { 14285 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14286 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14287 cr, &cred_otw); 14288 goto recov_retry; 14289 } 14290 14291 if (needrecov) { 14292 /* 14293 * LOCKT requests don't need to recover from lost 14294 * requests since they don't create/modify state. 14295 */ 14296 if ((ep->error == EINTR || 14297 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14298 lockt_args) 14299 goto out; 14300 /* 14301 * Do not attempt recovery for requests initiated by 14302 * the recovery framework. Let the framework redrive them. 14303 */ 14304 if (ctype != NFS4_LCK_CTYPE_NORM) 14305 goto out; 14306 else { 14307 ASSERT(resend_rqstp == NULL); 14308 } 14309 14310 nfs4frlock_save_lost_rqst(ctype, ep->error, 14311 flk_to_locktype(cmd, flk->l_type), 14312 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14313 14314 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14315 &resp, lock_args, locku_args, &oop, &osp, &lop, 14316 rp, vp, &recov_state, op_hint, &did_start_fop, 14317 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14318 14319 if (retry) { 14320 ASSERT(oop == NULL); 14321 ASSERT(osp == NULL); 14322 ASSERT(lop == NULL); 14323 goto recov_retry; 14324 } 14325 goto out; 14326 } 14327 14328 /* 14329 * Bail out if have reached this point with ep->error set. Can 14330 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14331 * This happens if Kerberos ticket has expired or has been 14332 * destroyed. 14333 */ 14334 if (ep->error != 0) 14335 goto out; 14336 14337 /* 14338 * Process the reply. 14339 */ 14340 switch (resp->status) { 14341 case NFS4_OK: 14342 resop = &resp->array[1]; 14343 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14344 resend_rqstp); 14345 /* 14346 * Have a successful lock operation, now update state. 14347 */ 14348 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14349 resop, lop, vp, flk, cr, resend_rqstp); 14350 break; 14351 14352 case NFS4ERR_DENIED: 14353 resop = &resp->array[1]; 14354 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14355 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14356 &recov_state, needrecov, &argsp, &resp, 14357 &tick_delay, &whence, &ep->error, resop, cr, 14358 &did_start_fop, &skip_get_err); 14359 14360 if (retry) { 14361 ASSERT(oop == NULL); 14362 ASSERT(osp == NULL); 14363 ASSERT(lop == NULL); 14364 goto recov_retry; 14365 } 14366 break; 14367 /* 14368 * If the server won't let us reclaim, fall-back to trying to lock 14369 * the file from scratch. Code elsewhere will check the changeinfo 14370 * to ensure the file hasn't been changed. 14371 */ 14372 case NFS4ERR_NO_GRACE: 14373 if (lock_args && lock_args->reclaim == TRUE) { 14374 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14375 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14376 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14377 frc_no_reclaim = 1; 14378 /* clean up before retrying */ 14379 needrecov = 0; 14380 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14381 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14382 &recov_state, op_hint, &did_start_fop, NULL, flk); 14383 goto recov_retry; 14384 } 14385 /* FALLTHROUGH */ 14386 14387 default: 14388 nfs4frlock_results_default(resp, &ep->error); 14389 break; 14390 } 14391 out: 14392 /* 14393 * Process and cleanup from error. Make interrupted unlock 14394 * requests look successful, since they will be handled by the 14395 * client recovery code. 14396 */ 14397 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14398 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14399 lock_args, locku_args, did_start_fop, 14400 skip_get_err, cred_otw, cr); 14401 14402 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14403 (cmd == F_SETLK || cmd == F_SETLKW)) 14404 ep->error = 0; 14405 } 14406 14407 /* 14408 * nfs4_safelock: 14409 * 14410 * Return non-zero if the given lock request can be handled without 14411 * violating the constraints on concurrent mapping and locking. 14412 */ 14413 14414 static int 14415 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14416 { 14417 rnode4_t *rp = VTOR4(vp); 14418 struct vattr va; 14419 int error; 14420 14421 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14422 ASSERT(rp->r_mapcnt >= 0); 14423 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14424 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14425 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14426 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14427 14428 if (rp->r_mapcnt == 0) 14429 return (1); /* always safe if not mapped */ 14430 14431 /* 14432 * If the file is already mapped and there are locks, then they 14433 * should be all safe locks. So adding or removing a lock is safe 14434 * as long as the new request is safe (i.e., whole-file, meaning 14435 * length and starting offset are both zero). 14436 */ 14437 14438 if (bfp->l_start != 0 || bfp->l_len != 0) { 14439 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14440 "cannot lock a memory mapped file unless locking the " 14441 "entire file: start %"PRIx64", len %"PRIx64, 14442 bfp->l_start, bfp->l_len)); 14443 return (0); 14444 } 14445 14446 /* mandatory locking and mapping don't mix */ 14447 va.va_mask = AT_MODE; 14448 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14449 if (error != 0) { 14450 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14451 "getattr error %d", error)); 14452 return (0); /* treat errors conservatively */ 14453 } 14454 if (MANDLOCK(vp, va.va_mode)) { 14455 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14456 "cannot mandatory lock and mmap a file")); 14457 return (0); 14458 } 14459 14460 return (1); 14461 } 14462 14463 14464 /* 14465 * Register the lock locally within Solaris. 14466 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14467 * recording locks locally. 14468 * 14469 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14470 * are registered locally. 14471 */ 14472 void 14473 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14474 u_offset_t offset) 14475 { 14476 int oldsysid; 14477 int error; 14478 #ifdef DEBUG 14479 char *name; 14480 #endif 14481 14482 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14483 14484 #ifdef DEBUG 14485 name = fn_name(VTOSV(vp)->sv_name); 14486 NFS4_DEBUG(nfs4_client_lock_debug, 14487 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14488 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14489 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14490 flk->l_sysid)); 14491 kmem_free(name, MAXNAMELEN); 14492 #endif 14493 14494 /* register the lock with local locking */ 14495 oldsysid = flk->l_sysid; 14496 flk->l_sysid |= LM_SYSID_CLIENT; 14497 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14498 #ifdef DEBUG 14499 if (error != 0) { 14500 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14501 "nfs4_register_lock_locally: could not register with" 14502 " local locking")); 14503 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14504 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14505 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14506 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14507 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14508 flk->l_type, flk->l_start, flk->l_len)); 14509 (void) reclock(vp, flk, 0, flag, offset, NULL); 14510 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14511 "blocked by pid %d sysid 0x%x type %d " 14512 "off 0x%" PRIx64 " len 0x%" PRIx64, 14513 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14514 flk->l_len)); 14515 } 14516 #endif 14517 flk->l_sysid = oldsysid; 14518 } 14519 14520 /* 14521 * nfs4_lockrelease: 14522 * 14523 * Release any locks on the given vnode that are held by the current 14524 * process. Also removes the lock owner (if one exists) from the rnode's 14525 * list. 14526 */ 14527 static int 14528 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14529 { 14530 flock64_t ld; 14531 int ret, error; 14532 rnode4_t *rp; 14533 nfs4_lock_owner_t *lop; 14534 nfs4_recov_state_t recov_state; 14535 mntinfo4_t *mi; 14536 bool_t possible_orphan = FALSE; 14537 bool_t recovonly; 14538 14539 ASSERT((uintptr_t)vp > KERNELBASE); 14540 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14541 14542 rp = VTOR4(vp); 14543 mi = VTOMI4(vp); 14544 14545 /* 14546 * If we have not locked anything then we can 14547 * just return since we have no work to do. 14548 */ 14549 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14550 return (0); 14551 } 14552 14553 /* 14554 * We need to comprehend that another thread may 14555 * kick off recovery and the lock_owner we have stashed 14556 * in lop might be invalid so we should NOT cache it 14557 * locally! 14558 */ 14559 recov_state.rs_flags = 0; 14560 recov_state.rs_num_retry_despite_err = 0; 14561 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14562 &recovonly); 14563 if (error) { 14564 mutex_enter(&rp->r_statelock); 14565 rp->r_flags |= R4LODANGLERS; 14566 mutex_exit(&rp->r_statelock); 14567 return (error); 14568 } 14569 14570 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14571 14572 /* 14573 * Check if the lock owner might have a lock (request was sent but 14574 * no response was received). Also check if there are any remote 14575 * locks on the file. (In theory we shouldn't have to make this 14576 * second check if there's no lock owner, but for now we'll be 14577 * conservative and do it anyway.) If either condition is true, 14578 * send an unlock for the entire file to the server. 14579 * 14580 * Note that no explicit synchronization is needed here. At worst, 14581 * flk_has_remote_locks() will return a false positive, in which case 14582 * the unlock call wastes time but doesn't harm correctness. 14583 */ 14584 14585 if (lop) { 14586 mutex_enter(&lop->lo_lock); 14587 possible_orphan = lop->lo_pending_rqsts; 14588 mutex_exit(&lop->lo_lock); 14589 lock_owner_rele(lop); 14590 } 14591 14592 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14593 14594 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14595 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14596 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14597 (void *)lop)); 14598 14599 if (possible_orphan || flk_has_remote_locks(vp)) { 14600 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14601 ld.l_whence = 0; /* unlock from start of file */ 14602 ld.l_start = 0; 14603 ld.l_len = 0; /* do entire file */ 14604 14605 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14606 cr, NULL); 14607 14608 if (ret != 0) { 14609 /* 14610 * If VOP_FRLOCK fails, make sure we unregister 14611 * local locks before we continue. 14612 */ 14613 ld.l_pid = ttoproc(curthread)->p_pid; 14614 nfs4_register_lock_locally(vp, &ld, flag, offset); 14615 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14616 "nfs4_lockrelease: lock release error on vp" 14617 " %p: error %d.\n", (void *)vp, ret)); 14618 } 14619 } 14620 14621 recov_state.rs_flags = 0; 14622 recov_state.rs_num_retry_despite_err = 0; 14623 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14624 &recovonly); 14625 if (error) { 14626 mutex_enter(&rp->r_statelock); 14627 rp->r_flags |= R4LODANGLERS; 14628 mutex_exit(&rp->r_statelock); 14629 return (error); 14630 } 14631 14632 /* 14633 * So, here we're going to need to retrieve the lock-owner 14634 * again (in case recovery has done a switch-a-roo) and 14635 * remove it because we can. 14636 */ 14637 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14638 14639 if (lop) { 14640 nfs4_rnode_remove_lock_owner(rp, lop); 14641 lock_owner_rele(lop); 14642 } 14643 14644 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14645 return (0); 14646 } 14647 14648 /* 14649 * Wait for 'tick_delay' clock ticks. 14650 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14651 * NOTE: lock_lease_time is in seconds. 14652 * 14653 * XXX For future improvements, should implement a waiting queue scheme. 14654 */ 14655 static int 14656 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14657 { 14658 long milliseconds_delay; 14659 time_t lock_lease_time; 14660 14661 /* wait tick_delay clock ticks or siginteruptus */ 14662 if (delay_sig(*tick_delay)) { 14663 return (EINTR); 14664 } 14665 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14666 "reissue the lock request: blocked for %ld clock ticks: %ld " 14667 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14668 14669 /* get the lease time */ 14670 lock_lease_time = r2lease_time(rp); 14671 14672 /* drv_hztousec converts ticks to microseconds */ 14673 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14674 if (milliseconds_delay < lock_lease_time * 1000) { 14675 *tick_delay = 2 * *tick_delay; 14676 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14677 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14678 } 14679 return (0); 14680 } 14681 14682 14683 void 14684 nfs4_vnops_init(void) 14685 { 14686 } 14687 14688 void 14689 nfs4_vnops_fini(void) 14690 { 14691 } 14692 14693 /* 14694 * Return a reference to the directory (parent) vnode for a given vnode, 14695 * using the saved pathname information and the directory file handle. The 14696 * caller is responsible for disposing of the reference. 14697 * Returns zero or an errno value. 14698 * 14699 * Caller should set need_start_op to FALSE if it is the recovery 14700 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14701 */ 14702 int 14703 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14704 { 14705 svnode_t *svnp; 14706 vnode_t *dvp = NULL; 14707 servinfo4_t *svp; 14708 nfs4_fname_t *mfname; 14709 int error; 14710 14711 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14712 14713 if (vp->v_flag & VROOT) { 14714 nfs4_sharedfh_t *sfh; 14715 nfs_fh4 fh; 14716 mntinfo4_t *mi; 14717 14718 ASSERT(vp->v_type == VREG); 14719 14720 mi = VTOMI4(vp); 14721 svp = mi->mi_curr_serv; 14722 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14723 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14724 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14725 sfh = sfh4_get(&fh, VTOMI4(vp)); 14726 nfs_rw_exit(&svp->sv_lock); 14727 mfname = mi->mi_fname; 14728 fn_hold(mfname); 14729 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14730 sfh4_rele(&sfh); 14731 14732 if (dvp->v_type == VNON) 14733 dvp->v_type = VDIR; 14734 *dvpp = dvp; 14735 return (0); 14736 } 14737 14738 svnp = VTOSV(vp); 14739 14740 if (svnp == NULL) { 14741 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14742 "shadow node is NULL")); 14743 return (EINVAL); 14744 } 14745 14746 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14747 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14748 "shadow node name or dfh val == NULL")); 14749 return (EINVAL); 14750 } 14751 14752 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14753 (int)need_start_op); 14754 if (error != 0) { 14755 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14756 "nfs4_make_dotdot returned %d", error)); 14757 return (error); 14758 } 14759 if (!dvp) { 14760 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14761 "nfs4_make_dotdot returned a NULL dvp")); 14762 return (EIO); 14763 } 14764 if (dvp->v_type == VNON) 14765 dvp->v_type = VDIR; 14766 ASSERT(dvp->v_type == VDIR); 14767 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14768 mutex_enter(&dvp->v_lock); 14769 dvp->v_flag |= V_XATTRDIR; 14770 mutex_exit(&dvp->v_lock); 14771 } 14772 *dvpp = dvp; 14773 return (0); 14774 } 14775 14776 /* 14777 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14778 * length that fnamep can accept, including the trailing null. 14779 * Returns 0 if okay, returns an errno value if there was a problem. 14780 */ 14781 14782 int 14783 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14784 { 14785 char *fn; 14786 int err = 0; 14787 servinfo4_t *svp; 14788 svnode_t *shvp; 14789 14790 /* 14791 * If the file being opened has VROOT set, then this is 14792 * a "file" mount. sv_name will not be interesting, so 14793 * go back to the servinfo4 to get the original mount 14794 * path and strip off all but the final edge. Otherwise 14795 * just return the name from the shadow vnode. 14796 */ 14797 14798 if (vp->v_flag & VROOT) { 14799 14800 svp = VTOMI4(vp)->mi_curr_serv; 14801 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14802 14803 fn = strrchr(svp->sv_path, '/'); 14804 if (fn == NULL) 14805 err = EINVAL; 14806 else 14807 fn++; 14808 } else { 14809 shvp = VTOSV(vp); 14810 fn = fn_name(shvp->sv_name); 14811 } 14812 14813 if (err == 0) 14814 if (strlen(fn) < maxlen) 14815 (void) strcpy(fnamep, fn); 14816 else 14817 err = ENAMETOOLONG; 14818 14819 if (vp->v_flag & VROOT) 14820 nfs_rw_exit(&svp->sv_lock); 14821 else 14822 kmem_free(fn, MAXNAMELEN); 14823 14824 return (err); 14825 } 14826 14827 /* 14828 * Bookkeeping for a close that doesn't need to go over the wire. 14829 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14830 * it is left at 1. 14831 */ 14832 void 14833 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14834 { 14835 rnode4_t *rp; 14836 mntinfo4_t *mi; 14837 14838 mi = VTOMI4(vp); 14839 rp = VTOR4(vp); 14840 14841 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14842 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14843 ASSERT(nfs_zone() == mi->mi_zone); 14844 ASSERT(mutex_owned(&osp->os_sync_lock)); 14845 ASSERT(*have_lockp); 14846 14847 if (!osp->os_valid || 14848 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14849 return; 14850 } 14851 14852 /* 14853 * This removes the reference obtained at OPEN; ie, 14854 * when the open stream structure was created. 14855 * 14856 * We don't have to worry about calling 'open_stream_rele' 14857 * since we our currently holding a reference to this 14858 * open stream which means the count can not go to 0 with 14859 * this decrement. 14860 */ 14861 ASSERT(osp->os_ref_count >= 2); 14862 osp->os_ref_count--; 14863 osp->os_valid = 0; 14864 mutex_exit(&osp->os_sync_lock); 14865 *have_lockp = 0; 14866 14867 nfs4_dec_state_ref_count(mi); 14868 } 14869 14870 /* 14871 * Close all remaining open streams on the rnode. These open streams 14872 * could be here because: 14873 * - The close attempted at either close or delmap failed 14874 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14875 * - Someone did mknod on a regular file but never opened it 14876 */ 14877 int 14878 nfs4close_all(vnode_t *vp, cred_t *cr) 14879 { 14880 nfs4_open_stream_t *osp; 14881 int error; 14882 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14883 rnode4_t *rp; 14884 14885 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14886 14887 error = 0; 14888 rp = VTOR4(vp); 14889 14890 /* 14891 * At this point, all we know is that the last time 14892 * someone called vn_rele, the count was 1. Since then, 14893 * the vnode could have been re-activated. We want to 14894 * loop through the open streams and close each one, but 14895 * we have to be careful since once we release the rnode 14896 * hash bucket lock, someone else is free to come in and 14897 * re-activate the rnode and add new open streams. The 14898 * strategy is take the rnode hash bucket lock, verify that 14899 * the count is still 1, grab the open stream off the 14900 * head of the list and mark it invalid, then release the 14901 * rnode hash bucket lock and proceed with that open stream. 14902 * This is ok because nfs4close_one() will acquire the proper 14903 * open/create to close/destroy synchronization for open 14904 * streams, and will ensure that if someone has reopened 14905 * the open stream after we've dropped the hash bucket lock 14906 * then we'll just simply return without destroying the 14907 * open stream. 14908 * Repeat until the list is empty. 14909 */ 14910 14911 for (;;) { 14912 14913 /* make sure vnode hasn't been reactivated */ 14914 rw_enter(&rp->r_hashq->r_lock, RW_READER); 14915 mutex_enter(&vp->v_lock); 14916 if (vp->v_count > 1) { 14917 mutex_exit(&vp->v_lock); 14918 rw_exit(&rp->r_hashq->r_lock); 14919 break; 14920 } 14921 /* 14922 * Grabbing r_os_lock before releasing v_lock prevents 14923 * a window where the rnode/open stream could get 14924 * reactivated (and os_force_close set to 0) before we 14925 * had a chance to set os_force_close to 1. 14926 */ 14927 mutex_enter(&rp->r_os_lock); 14928 mutex_exit(&vp->v_lock); 14929 14930 osp = list_head(&rp->r_open_streams); 14931 if (!osp) { 14932 /* nothing left to CLOSE OTW, so return */ 14933 mutex_exit(&rp->r_os_lock); 14934 rw_exit(&rp->r_hashq->r_lock); 14935 break; 14936 } 14937 14938 mutex_enter(&rp->r_statev4_lock); 14939 /* the file can't still be mem mapped */ 14940 ASSERT(rp->r_mapcnt == 0); 14941 if (rp->created_v4) 14942 rp->created_v4 = 0; 14943 mutex_exit(&rp->r_statev4_lock); 14944 14945 /* 14946 * Grab a ref on this open stream; nfs4close_one 14947 * will mark it as invalid 14948 */ 14949 mutex_enter(&osp->os_sync_lock); 14950 osp->os_ref_count++; 14951 osp->os_force_close = 1; 14952 mutex_exit(&osp->os_sync_lock); 14953 mutex_exit(&rp->r_os_lock); 14954 rw_exit(&rp->r_hashq->r_lock); 14955 14956 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 14957 14958 /* Update error if it isn't already non-zero */ 14959 if (error == 0) { 14960 if (e.error) 14961 error = e.error; 14962 else if (e.stat) 14963 error = geterrno4(e.stat); 14964 } 14965 14966 #ifdef DEBUG 14967 nfs4close_all_cnt++; 14968 #endif 14969 /* Release the ref on osp acquired above. */ 14970 open_stream_rele(osp, rp); 14971 14972 /* Proceed to the next open stream, if any */ 14973 } 14974 return (error); 14975 } 14976 14977 /* 14978 * nfs4close_one - close one open stream for a file if needed. 14979 * 14980 * "close_type" indicates which close path this is: 14981 * CLOSE_NORM: close initiated via VOP_CLOSE. 14982 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 14983 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 14984 * the close and release of client state for this open stream 14985 * (unless someone else has the open stream open). 14986 * CLOSE_RESEND: indicates the request is a replay of an earlier request 14987 * (e.g., due to abort because of a signal). 14988 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 14989 * 14990 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 14991 * recovery. Instead, the caller is expected to deal with retries. 14992 * 14993 * The caller can either pass in the osp ('provided_osp') or not. 14994 * 14995 * 'access_bits' represents the access we are closing/downgrading. 14996 * 14997 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 14998 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 14999 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 15000 * 15001 * Errors are returned via the nfs4_error_t. 15002 */ 15003 void 15004 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 15005 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 15006 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 15007 uint_t mmap_flags) 15008 { 15009 nfs4_open_owner_t *oop; 15010 nfs4_open_stream_t *osp = NULL; 15011 int retry = 0; 15012 int num_retries = NFS4_NUM_RECOV_RETRIES; 15013 rnode4_t *rp; 15014 mntinfo4_t *mi; 15015 nfs4_recov_state_t recov_state; 15016 cred_t *cred_otw = NULL; 15017 bool_t recovonly = FALSE; 15018 int isrecov; 15019 int force_close; 15020 int close_failed = 0; 15021 int did_dec_count = 0; 15022 int did_start_op = 0; 15023 int did_force_recovlock = 0; 15024 int did_start_seqid_sync = 0; 15025 int have_sync_lock = 0; 15026 15027 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15028 15029 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15030 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15031 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15032 len, maxprot, mmap_flags, access_bits)); 15033 15034 nfs4_error_zinit(ep); 15035 rp = VTOR4(vp); 15036 mi = VTOMI4(vp); 15037 isrecov = (close_type == CLOSE_RESEND || 15038 close_type == CLOSE_AFTER_RESEND); 15039 15040 /* 15041 * First get the open owner. 15042 */ 15043 if (!provided_osp) { 15044 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15045 } else { 15046 oop = provided_osp->os_open_owner; 15047 ASSERT(oop != NULL); 15048 open_owner_hold(oop); 15049 } 15050 15051 if (!oop) { 15052 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15053 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15054 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15055 (void *)provided_osp, close_type)); 15056 ep->error = EIO; 15057 goto out; 15058 } 15059 15060 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15061 recov_retry: 15062 osp = NULL; 15063 close_failed = 0; 15064 force_close = (close_type == CLOSE_FORCE); 15065 retry = 0; 15066 did_start_op = 0; 15067 did_force_recovlock = 0; 15068 did_start_seqid_sync = 0; 15069 have_sync_lock = 0; 15070 recovonly = FALSE; 15071 recov_state.rs_flags = 0; 15072 recov_state.rs_num_retry_despite_err = 0; 15073 15074 /* 15075 * Second synchronize with recovery. 15076 */ 15077 if (!isrecov) { 15078 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15079 &recov_state, &recovonly); 15080 if (!ep->error) { 15081 did_start_op = 1; 15082 } else { 15083 close_failed = 1; 15084 /* 15085 * If we couldn't get start_fop, but have to 15086 * cleanup state, then at least acquire the 15087 * mi_recovlock so we can synchronize with 15088 * recovery. 15089 */ 15090 if (close_type == CLOSE_FORCE) { 15091 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15092 RW_READER, FALSE); 15093 did_force_recovlock = 1; 15094 } else 15095 goto out; 15096 } 15097 } 15098 15099 /* 15100 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15101 * set 'recovonly' to TRUE since most likely this is due to 15102 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15103 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15104 * to retry, causing us to loop until recovery finishes. Plus we 15105 * don't need protection over the open seqid since we're not going 15106 * OTW, hence don't need to use the seqid. 15107 */ 15108 if (recovonly == FALSE) { 15109 /* need to grab the open owner sync before 'os_sync_lock' */ 15110 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15111 if (ep->error == EAGAIN) { 15112 ASSERT(!isrecov); 15113 if (did_start_op) 15114 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15115 &recov_state, TRUE); 15116 if (did_force_recovlock) 15117 nfs_rw_exit(&mi->mi_recovlock); 15118 goto recov_retry; 15119 } 15120 did_start_seqid_sync = 1; 15121 } 15122 15123 /* 15124 * Third get an open stream and acquire 'os_sync_lock' to 15125 * sychronize the opening/creating of an open stream with the 15126 * closing/destroying of an open stream. 15127 */ 15128 if (!provided_osp) { 15129 /* returns with 'os_sync_lock' held */ 15130 osp = find_open_stream(oop, rp); 15131 if (!osp) { 15132 ep->error = EIO; 15133 goto out; 15134 } 15135 } else { 15136 osp = provided_osp; 15137 open_stream_hold(osp); 15138 mutex_enter(&osp->os_sync_lock); 15139 } 15140 have_sync_lock = 1; 15141 15142 ASSERT(oop == osp->os_open_owner); 15143 15144 /* 15145 * Fourth, do any special pre-OTW CLOSE processing 15146 * based on the specific close type. 15147 */ 15148 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15149 !did_dec_count) { 15150 ASSERT(osp->os_open_ref_count > 0); 15151 osp->os_open_ref_count--; 15152 did_dec_count = 1; 15153 if (osp->os_open_ref_count == 0) 15154 osp->os_final_close = 1; 15155 } 15156 15157 if (close_type == CLOSE_FORCE) { 15158 /* see if somebody reopened the open stream. */ 15159 if (!osp->os_force_close) { 15160 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15161 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15162 "was reopened, vp %p", (void *)osp, (void *)vp)); 15163 ep->error = 0; 15164 ep->stat = NFS4_OK; 15165 goto out; 15166 } 15167 15168 if (!osp->os_final_close && !did_dec_count) { 15169 osp->os_open_ref_count--; 15170 did_dec_count = 1; 15171 } 15172 15173 /* 15174 * We can't depend on os_open_ref_count being 0 due to the 15175 * way executables are opened (VN_RELE to match a VOP_OPEN). 15176 */ 15177 #ifdef NOTYET 15178 ASSERT(osp->os_open_ref_count == 0); 15179 #endif 15180 if (osp->os_open_ref_count != 0) { 15181 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15182 "nfs4close_one: should panic here on an " 15183 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15184 "since this is probably the exec problem.")); 15185 15186 osp->os_open_ref_count = 0; 15187 } 15188 15189 /* 15190 * There is the possibility that nfs4close_one() 15191 * for close_type == CLOSE_DELMAP couldn't find the 15192 * open stream, thus couldn't decrement its os_mapcnt; 15193 * therefore we can't use this ASSERT yet. 15194 */ 15195 #ifdef NOTYET 15196 ASSERT(osp->os_mapcnt == 0); 15197 #endif 15198 osp->os_mapcnt = 0; 15199 } 15200 15201 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15202 ASSERT(osp->os_mapcnt >= btopr(len)); 15203 15204 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15205 osp->os_mmap_write -= btopr(len); 15206 if (maxprot & PROT_READ) 15207 osp->os_mmap_read -= btopr(len); 15208 if (maxprot & PROT_EXEC) 15209 osp->os_mmap_read -= btopr(len); 15210 /* mirror the PROT_NONE check in nfs4_addmap() */ 15211 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15212 !(maxprot & PROT_EXEC)) 15213 osp->os_mmap_read -= btopr(len); 15214 osp->os_mapcnt -= btopr(len); 15215 did_dec_count = 1; 15216 } 15217 15218 if (recovonly) { 15219 nfs4_lost_rqst_t lost_rqst; 15220 15221 /* request should not already be in recovery queue */ 15222 ASSERT(lrp == NULL); 15223 nfs4_error_init(ep, EINTR); 15224 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15225 osp, cred_otw, vp); 15226 mutex_exit(&osp->os_sync_lock); 15227 have_sync_lock = 0; 15228 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15229 lost_rqst.lr_op == OP_CLOSE ? 15230 &lost_rqst : NULL, OP_CLOSE, NULL); 15231 close_failed = 1; 15232 force_close = 0; 15233 goto close_cleanup; 15234 } 15235 15236 /* 15237 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15238 * we stopped operating on the open owner's <old oo_name, old seqid> 15239 * space, which means we stopped operating on the open stream 15240 * too. So don't go OTW (as the seqid is likely bad, and the 15241 * stateid could be stale, potentially triggering a false 15242 * setclientid), and just clean up the client's internal state. 15243 */ 15244 if (osp->os_orig_oo_name != oop->oo_name) { 15245 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15246 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15247 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15248 "oo_name %" PRIx64")", 15249 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15250 oop->oo_name)); 15251 close_failed = 1; 15252 } 15253 15254 /* If the file failed recovery, just quit. */ 15255 mutex_enter(&rp->r_statelock); 15256 if (rp->r_flags & R4RECOVERR) { 15257 close_failed = 1; 15258 } 15259 mutex_exit(&rp->r_statelock); 15260 15261 /* 15262 * If the force close path failed to obtain start_fop 15263 * then skip the OTW close and just remove the state. 15264 */ 15265 if (close_failed) 15266 goto close_cleanup; 15267 15268 /* 15269 * Fifth, check to see if there are still mapped pages or other 15270 * opens using this open stream. If there are then we can't 15271 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15272 */ 15273 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15274 nfs4_lost_rqst_t new_lost_rqst; 15275 bool_t needrecov = FALSE; 15276 cred_t *odg_cred_otw = NULL; 15277 seqid4 open_dg_seqid = 0; 15278 15279 if (osp->os_delegation) { 15280 /* 15281 * If this open stream was never OPENed OTW then we 15282 * surely can't DOWNGRADE it (especially since the 15283 * osp->open_stateid is really a delegation stateid 15284 * when os_delegation is 1). 15285 */ 15286 if (access_bits & FREAD) 15287 osp->os_share_acc_read--; 15288 if (access_bits & FWRITE) 15289 osp->os_share_acc_write--; 15290 osp->os_share_deny_none--; 15291 nfs4_error_zinit(ep); 15292 goto out; 15293 } 15294 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15295 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15296 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15297 if (needrecov && !isrecov) { 15298 bool_t abort; 15299 nfs4_bseqid_entry_t *bsep = NULL; 15300 15301 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15302 bsep = nfs4_create_bseqid_entry(oop, NULL, 15303 vp, 0, 15304 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15305 open_dg_seqid); 15306 15307 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15308 oop, osp, odg_cred_otw, vp, access_bits, 0); 15309 mutex_exit(&osp->os_sync_lock); 15310 have_sync_lock = 0; 15311 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15312 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15313 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15314 bsep); 15315 if (odg_cred_otw) 15316 crfree(odg_cred_otw); 15317 if (bsep) 15318 kmem_free(bsep, sizeof (*bsep)); 15319 15320 if (abort == TRUE) 15321 goto out; 15322 15323 if (did_start_seqid_sync) { 15324 nfs4_end_open_seqid_sync(oop); 15325 did_start_seqid_sync = 0; 15326 } 15327 open_stream_rele(osp, rp); 15328 15329 if (did_start_op) 15330 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15331 &recov_state, FALSE); 15332 if (did_force_recovlock) 15333 nfs_rw_exit(&mi->mi_recovlock); 15334 15335 goto recov_retry; 15336 } else { 15337 if (odg_cred_otw) 15338 crfree(odg_cred_otw); 15339 } 15340 goto out; 15341 } 15342 15343 /* 15344 * If this open stream was created as the results of an open 15345 * while holding a delegation, then just release it; no need 15346 * to do an OTW close. Otherwise do a "normal" OTW close. 15347 */ 15348 if (osp->os_delegation) { 15349 nfs4close_notw(vp, osp, &have_sync_lock); 15350 nfs4_error_zinit(ep); 15351 goto out; 15352 } 15353 15354 /* 15355 * If this stream is not valid, we're done. 15356 */ 15357 if (!osp->os_valid) { 15358 nfs4_error_zinit(ep); 15359 goto out; 15360 } 15361 15362 /* 15363 * Last open or mmap ref has vanished, need to do an OTW close. 15364 * First check to see if a close is still necessary. 15365 */ 15366 if (osp->os_failed_reopen) { 15367 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15368 "don't close OTW osp %p since reopen failed.", 15369 (void *)osp)); 15370 /* 15371 * Reopen of the open stream failed, hence the 15372 * stateid of the open stream is invalid/stale, and 15373 * sending this OTW would incorrectly cause another 15374 * round of recovery. In this case, we need to set 15375 * the 'os_valid' bit to 0 so another thread doesn't 15376 * come in and re-open this open stream before 15377 * this "closing" thread cleans up state (decrementing 15378 * the nfs4_server_t's state_ref_count and decrementing 15379 * the os_ref_count). 15380 */ 15381 osp->os_valid = 0; 15382 /* 15383 * This removes the reference obtained at OPEN; ie, 15384 * when the open stream structure was created. 15385 * 15386 * We don't have to worry about calling 'open_stream_rele' 15387 * since we our currently holding a reference to this 15388 * open stream which means the count can not go to 0 with 15389 * this decrement. 15390 */ 15391 ASSERT(osp->os_ref_count >= 2); 15392 osp->os_ref_count--; 15393 nfs4_error_zinit(ep); 15394 close_failed = 0; 15395 goto close_cleanup; 15396 } 15397 15398 ASSERT(osp->os_ref_count > 1); 15399 15400 /* 15401 * Sixth, try the CLOSE OTW. 15402 */ 15403 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15404 close_type, ep, &have_sync_lock); 15405 15406 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15407 /* 15408 * Let the recovery thread be responsible for 15409 * removing the state for CLOSE. 15410 */ 15411 close_failed = 1; 15412 force_close = 0; 15413 retry = 0; 15414 } 15415 15416 /* See if we need to retry with a different cred */ 15417 if ((ep->error == EACCES || 15418 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15419 cred_otw != cr) { 15420 crfree(cred_otw); 15421 cred_otw = cr; 15422 crhold(cred_otw); 15423 retry = 1; 15424 } 15425 15426 if (ep->error || ep->stat) 15427 close_failed = 1; 15428 15429 if (retry && !isrecov && num_retries-- > 0) { 15430 if (have_sync_lock) { 15431 mutex_exit(&osp->os_sync_lock); 15432 have_sync_lock = 0; 15433 } 15434 if (did_start_seqid_sync) { 15435 nfs4_end_open_seqid_sync(oop); 15436 did_start_seqid_sync = 0; 15437 } 15438 open_stream_rele(osp, rp); 15439 15440 if (did_start_op) 15441 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15442 &recov_state, FALSE); 15443 if (did_force_recovlock) 15444 nfs_rw_exit(&mi->mi_recovlock); 15445 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15446 "nfs4close_one: need to retry the close " 15447 "operation")); 15448 goto recov_retry; 15449 } 15450 close_cleanup: 15451 /* 15452 * Seventh and lastly, process our results. 15453 */ 15454 if (close_failed && force_close) { 15455 /* 15456 * It's ok to drop and regrab the 'os_sync_lock' since 15457 * nfs4close_notw() will recheck to make sure the 15458 * "close"/removal of state should happen. 15459 */ 15460 if (!have_sync_lock) { 15461 mutex_enter(&osp->os_sync_lock); 15462 have_sync_lock = 1; 15463 } 15464 /* 15465 * This is last call, remove the ref on the open 15466 * stream created by open and clean everything up. 15467 */ 15468 osp->os_pending_close = 0; 15469 nfs4close_notw(vp, osp, &have_sync_lock); 15470 nfs4_error_zinit(ep); 15471 } 15472 15473 if (!close_failed) { 15474 if (have_sync_lock) { 15475 osp->os_pending_close = 0; 15476 mutex_exit(&osp->os_sync_lock); 15477 have_sync_lock = 0; 15478 } else { 15479 mutex_enter(&osp->os_sync_lock); 15480 osp->os_pending_close = 0; 15481 mutex_exit(&osp->os_sync_lock); 15482 } 15483 if (did_start_op && recov_state.rs_sp != NULL) { 15484 mutex_enter(&recov_state.rs_sp->s_lock); 15485 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15486 mutex_exit(&recov_state.rs_sp->s_lock); 15487 } else { 15488 nfs4_dec_state_ref_count(mi); 15489 } 15490 nfs4_error_zinit(ep); 15491 } 15492 15493 out: 15494 if (have_sync_lock) 15495 mutex_exit(&osp->os_sync_lock); 15496 if (did_start_op) 15497 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15498 recovonly ? TRUE : FALSE); 15499 if (did_force_recovlock) 15500 nfs_rw_exit(&mi->mi_recovlock); 15501 if (cred_otw) 15502 crfree(cred_otw); 15503 if (osp) 15504 open_stream_rele(osp, rp); 15505 if (oop) { 15506 if (did_start_seqid_sync) 15507 nfs4_end_open_seqid_sync(oop); 15508 open_owner_rele(oop); 15509 } 15510 } 15511 15512 /* 15513 * Convert information returned by the server in the LOCK4denied 15514 * structure to the form required by fcntl. 15515 */ 15516 static void 15517 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15518 { 15519 nfs4_lo_name_t *lo; 15520 15521 #ifdef DEBUG 15522 if (denied_to_flk_debug) { 15523 lockt_denied_debug = lockt_denied; 15524 debug_enter("lockt_denied"); 15525 } 15526 #endif 15527 15528 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15529 flk->l_whence = 0; /* aka SEEK_SET */ 15530 flk->l_start = lockt_denied->offset; 15531 flk->l_len = lockt_denied->length; 15532 15533 /* 15534 * If the blocking clientid matches our client id, then we can 15535 * interpret the lockowner (since we built it). If not, then 15536 * fabricate a sysid and pid. Note that the l_sysid field 15537 * in *flk already has the local sysid. 15538 */ 15539 15540 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15541 15542 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15543 lo = (nfs4_lo_name_t *) 15544 lockt_denied->owner.owner_val; 15545 15546 flk->l_pid = lo->ln_pid; 15547 } else { 15548 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15549 "denied_to_flk: bad lock owner length\n")); 15550 15551 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15552 } 15553 } else { 15554 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15555 "denied_to_flk: foreign clientid\n")); 15556 15557 /* 15558 * Construct a new sysid which should be different from 15559 * sysids of other systems. 15560 */ 15561 15562 flk->l_sysid++; 15563 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15564 } 15565 } 15566 15567 static pid_t 15568 lo_to_pid(lock_owner4 *lop) 15569 { 15570 pid_t pid = 0; 15571 uchar_t *cp; 15572 int i; 15573 15574 cp = (uchar_t *)&lop->clientid; 15575 15576 for (i = 0; i < sizeof (lop->clientid); i++) 15577 pid += (pid_t)*cp++; 15578 15579 cp = (uchar_t *)lop->owner_val; 15580 15581 for (i = 0; i < lop->owner_len; i++) 15582 pid += (pid_t)*cp++; 15583 15584 return (pid); 15585 } 15586 15587 /* 15588 * Given a lock pointer, returns the length of that lock. 15589 * "end" is the last locked offset the "l_len" covers from 15590 * the start of the lock. 15591 */ 15592 static off64_t 15593 lock_to_end(flock64_t *lock) 15594 { 15595 off64_t lock_end; 15596 15597 if (lock->l_len == 0) 15598 lock_end = (off64_t)MAXEND; 15599 else 15600 lock_end = lock->l_start + lock->l_len - 1; 15601 15602 return (lock_end); 15603 } 15604 15605 /* 15606 * Given the end of a lock, it will return you the length "l_len" for that lock. 15607 */ 15608 static off64_t 15609 end_to_len(off64_t start, off64_t end) 15610 { 15611 off64_t lock_len; 15612 15613 ASSERT(end >= start); 15614 if (end == MAXEND) 15615 lock_len = 0; 15616 else 15617 lock_len = end - start + 1; 15618 15619 return (lock_len); 15620 } 15621 15622 /* 15623 * On given end for a lock it determines if it is the last locked offset 15624 * or not, if so keeps it as is, else adds one to return the length for 15625 * valid start. 15626 */ 15627 static off64_t 15628 start_check(off64_t x) 15629 { 15630 if (x == MAXEND) 15631 return (x); 15632 else 15633 return (x + 1); 15634 } 15635 15636 /* 15637 * See if these two locks overlap, and if so return 1; 15638 * otherwise, return 0. 15639 */ 15640 static int 15641 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15642 { 15643 off64_t llfp_end, curfp_end; 15644 15645 llfp_end = lock_to_end(llfp); 15646 curfp_end = lock_to_end(curfp); 15647 15648 if (((llfp_end >= curfp->l_start) && 15649 (llfp->l_start <= curfp->l_start)) || 15650 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15651 return (1); 15652 return (0); 15653 } 15654 15655 /* 15656 * Determine what the intersecting lock region is, and add that to the 15657 * 'nl_llpp' locklist in increasing order (by l_start). 15658 */ 15659 static void 15660 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15661 locklist_t **nl_llpp, vnode_t *vp) 15662 { 15663 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15664 off64_t lost_flp_end, local_flp_end, len, start; 15665 15666 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15667 15668 if (!locks_intersect(lost_flp, local_flp)) 15669 return; 15670 15671 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15672 "locks intersect")); 15673 15674 lost_flp_end = lock_to_end(lost_flp); 15675 local_flp_end = lock_to_end(local_flp); 15676 15677 /* Find the starting point of the intersecting region */ 15678 if (local_flp->l_start > lost_flp->l_start) 15679 start = local_flp->l_start; 15680 else 15681 start = lost_flp->l_start; 15682 15683 /* Find the lenght of the intersecting region */ 15684 if (lost_flp_end < local_flp_end) 15685 len = end_to_len(start, lost_flp_end); 15686 else 15687 len = end_to_len(start, local_flp_end); 15688 15689 /* 15690 * Prepare the flock structure for the intersection found and insert 15691 * it into the new list in increasing l_start order. This list contains 15692 * intersections of locks registered by the client with the local host 15693 * and the lost lock. 15694 * The lock type of this lock is the same as that of the local_flp. 15695 */ 15696 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15697 intersect_llp->ll_flock.l_start = start; 15698 intersect_llp->ll_flock.l_len = len; 15699 intersect_llp->ll_flock.l_type = local_flp->l_type; 15700 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15701 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15702 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15703 intersect_llp->ll_vp = vp; 15704 15705 tmp_fllp = *nl_llpp; 15706 cur_fllp = NULL; 15707 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15708 intersect_llp->ll_flock.l_start) { 15709 cur_fllp = tmp_fllp; 15710 tmp_fllp = tmp_fllp->ll_next; 15711 } 15712 if (cur_fllp == NULL) { 15713 /* first on the list */ 15714 intersect_llp->ll_next = *nl_llpp; 15715 *nl_llpp = intersect_llp; 15716 } else { 15717 intersect_llp->ll_next = cur_fllp->ll_next; 15718 cur_fllp->ll_next = intersect_llp; 15719 } 15720 15721 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15722 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15723 intersect_llp->ll_flock.l_start, 15724 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15725 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15726 } 15727 15728 /* 15729 * Our local locking current state is potentially different than 15730 * what the NFSv4 server thinks we have due to a lost lock that was 15731 * resent and then received. We need to reset our "NFSv4" locking 15732 * state to match the current local locking state for this pid since 15733 * that is what the user/application sees as what the world is. 15734 * 15735 * We cannot afford to drop the open/lock seqid sync since then we can 15736 * get confused about what the current local locking state "is" versus 15737 * "was". 15738 * 15739 * If we are unable to fix up the locks, we send SIGLOST to the affected 15740 * process. This is not done if the filesystem has been forcibly 15741 * unmounted, in case the process has already exited and a new process 15742 * exists with the same pid. 15743 */ 15744 static void 15745 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15746 nfs4_lock_owner_t *lop) 15747 { 15748 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15749 mntinfo4_t *mi = VTOMI4(vp); 15750 const int cmd = F_SETLK; 15751 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15752 flock64_t ul_fl; 15753 15754 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15755 "nfs4_reinstitute_local_lock_state")); 15756 15757 /* 15758 * Find active locks for this vp from the local locking code. 15759 * Scan through this list and find out the locks that intersect with 15760 * the lost lock. Once we find the lock that intersects, add the 15761 * intersection area as a new lock to a new list "ri_llp". The lock 15762 * type of the intersection region lock added to ri_llp is the same 15763 * as that found in the active lock list, "list". The intersecting 15764 * region locks are added to ri_llp in increasing l_start order. 15765 */ 15766 ASSERT(nfs_zone() == mi->mi_zone); 15767 15768 locks = flk_active_locks_for_vp(vp); 15769 ri_llp = NULL; 15770 15771 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15772 ASSERT(llp->ll_vp == vp); 15773 /* 15774 * Pick locks that belong to this pid/lockowner 15775 */ 15776 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15777 continue; 15778 15779 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15780 } 15781 15782 /* 15783 * Now we have the list of intersections with the lost lock. These are 15784 * the locks that were/are active before the server replied to the 15785 * last/lost lock. Issue these locks to the server here. Playing these 15786 * locks to the server will re-establish aur current local locking state 15787 * with the v4 server. 15788 * If we get an error, send SIGLOST to the application for that lock. 15789 */ 15790 15791 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15792 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15793 "nfs4_reinstitute_local_lock_state: need to issue " 15794 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15795 llp->ll_flock.l_start, 15796 llp->ll_flock.l_start + llp->ll_flock.l_len, 15797 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15798 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15799 /* 15800 * No need to relock what we already have 15801 */ 15802 if (llp->ll_flock.l_type == lost_flp->l_type) 15803 continue; 15804 15805 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15806 } 15807 15808 /* 15809 * Now keeping the start of the lost lock as our reference parse the 15810 * newly created ri_llp locklist to find the ranges that we have locked 15811 * with the v4 server but not in the current local locking. We need 15812 * to unlock these ranges. 15813 * These ranges can also be reffered to as those ranges, where the lost 15814 * lock does not overlap with the locks in the ri_llp but are locked 15815 * since the server replied to the lost lock. 15816 */ 15817 cur_start = lost_flp->l_start; 15818 lost_flp_end = lock_to_end(lost_flp); 15819 15820 ul_fl.l_type = F_UNLCK; 15821 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15822 ul_fl.l_sysid = lost_flp->l_sysid; 15823 ul_fl.l_pid = lost_flp->l_pid; 15824 15825 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15826 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15827 15828 if (llp->ll_flock.l_start <= cur_start) { 15829 cur_start = start_check(llp_ll_flock_end); 15830 continue; 15831 } 15832 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15833 "nfs4_reinstitute_local_lock_state: " 15834 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15835 cur_start, llp->ll_flock.l_start)); 15836 15837 ul_fl.l_start = cur_start; 15838 ul_fl.l_len = end_to_len(cur_start, 15839 (llp->ll_flock.l_start - 1)); 15840 15841 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15842 cur_start = start_check(llp_ll_flock_end); 15843 } 15844 15845 /* 15846 * In the case where the lost lock ends after all intersecting locks, 15847 * unlock the last part of the lost lock range. 15848 */ 15849 if (cur_start != start_check(lost_flp_end)) { 15850 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15851 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15852 "lost lock region [%"PRIx64" - %"PRIx64"]", 15853 cur_start, lost_flp->l_start + lost_flp->l_len)); 15854 15855 ul_fl.l_start = cur_start; 15856 /* 15857 * Is it an to-EOF lock? if so unlock till the end 15858 */ 15859 if (lost_flp->l_len == 0) 15860 ul_fl.l_len = 0; 15861 else 15862 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15863 15864 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15865 } 15866 15867 if (locks != NULL) 15868 flk_free_locklist(locks); 15869 15870 /* Free up our newly created locklist */ 15871 for (llp = ri_llp; llp != NULL; ) { 15872 tmp_llp = llp->ll_next; 15873 kmem_free(llp, sizeof (locklist_t)); 15874 llp = tmp_llp; 15875 } 15876 15877 /* 15878 * Now return back to the original calling nfs4frlock() 15879 * and let us naturally drop our seqid syncs. 15880 */ 15881 } 15882 15883 /* 15884 * Create a lost state record for the given lock reinstantiation request 15885 * and push it onto the lost state queue. 15886 */ 15887 static void 15888 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15889 nfs4_lock_owner_t *lop) 15890 { 15891 nfs4_lost_rqst_t req; 15892 nfs_lock_type4 locktype; 15893 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15894 15895 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15896 15897 locktype = flk_to_locktype(cmd, flk->l_type); 15898 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15899 NULL, NULL, lop, flk, &req, cr, vp); 15900 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15901 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15902 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15903 NULL); 15904 } 15905