1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 29 * All Rights Reserved 30 */ 31 32 #pragma ident "%Z%%M% %I% %E% SMI" 33 34 #include <sys/param.h> 35 #include <sys/types.h> 36 #include <sys/systm.h> 37 #include <sys/cred.h> 38 #include <sys/time.h> 39 #include <sys/vnode.h> 40 #include <sys/vfs.h> 41 #include <sys/file.h> 42 #include <sys/filio.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/mman.h> 46 #include <sys/pathname.h> 47 #include <sys/dirent.h> 48 #include <sys/debug.h> 49 #include <sys/vmsystm.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/swap.h> 53 #include <sys/errno.h> 54 #include <sys/strsubr.h> 55 #include <sys/sysmacros.h> 56 #include <sys/kmem.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathconf.h> 59 #include <sys/utsname.h> 60 #include <sys/dnlc.h> 61 #include <sys/acl.h> 62 #include <sys/systeminfo.h> 63 #include <sys/policy.h> 64 #include <sys/sdt.h> 65 #include <sys/list.h> 66 #include <sys/stat.h> 67 68 #include <rpc/types.h> 69 #include <rpc/auth.h> 70 #include <rpc/clnt.h> 71 72 #include <nfs/nfs.h> 73 #include <nfs/nfs_clnt.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 #include <nfs/nfs4.h> 77 #include <nfs/nfs4_kprot.h> 78 #include <nfs/rnode4.h> 79 #include <nfs/nfs4_clnt.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/pvn.h> 85 #include <vm/seg.h> 86 #include <vm/seg_map.h> 87 #include <vm/seg_kpm.h> 88 #include <vm/seg_vn.h> 89 90 #include <fs/fs_subr.h> 91 92 #include <sys/ddi.h> 93 #include <sys/int_fmtio.h> 94 95 typedef struct { 96 nfs4_ga_res_t *di_garp; 97 cred_t *di_cred; 98 hrtime_t di_time_call; 99 } dirattr_info_t; 100 101 typedef enum nfs4_acl_op { 102 NFS4_ACL_GET, 103 NFS4_ACL_SET 104 } nfs4_acl_op_t; 105 106 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 107 char *, dirattr_info_t *); 108 109 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 110 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 111 nfs4_error_t *, int *); 112 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 113 cred_t *); 114 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 115 stable_how4 *); 116 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 117 cred_t *, bool_t, struct uio *); 118 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 119 vsecattr_t *); 120 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 121 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 122 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 123 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 124 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 125 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 126 int, vnode_t **, cred_t *); 127 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 128 cred_t *, int, int, enum createmode4, int); 129 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 130 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 131 vnode_t *, char *, cred_t *, nfsstat4 *); 132 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 133 vnode_t *, char *, cred_t *, nfsstat4 *); 134 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 135 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 136 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 137 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 138 page_t *[], size_t, struct seg *, caddr_t, 139 enum seg_rw, cred_t *); 140 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 141 cred_t *); 142 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 143 int, cred_t *); 144 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 145 int, cred_t *); 146 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 147 static void nfs4_set_mod(vnode_t *); 148 static void nfs4_get_commit(vnode_t *); 149 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 150 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 151 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 152 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 153 cred_t *); 154 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 155 cred_t *); 156 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 157 hrtime_t, vnode_t *, cred_t *); 158 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 159 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 160 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 161 u_offset_t); 162 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 163 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 164 static cred_t *state_to_cred(nfs4_open_stream_t *); 165 static int vtoname(vnode_t *, char *, ssize_t); 166 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 167 static pid_t lo_to_pid(lock_owner4 *); 168 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 169 cred_t *, nfs4_lock_owner_t *); 170 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 171 nfs4_lock_owner_t *); 172 static nfs4_open_stream_t *open_and_get_osp(vnode_t *, cred_t *, mntinfo4_t *); 173 static void nfs4_delmap_callback(struct as *, void *, uint_t); 174 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 175 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 176 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 177 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 178 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 179 uid_t, gid_t, int); 180 181 /* 182 * Routines that implement the setting of v4 args for the misc. ops 183 */ 184 static void nfs4args_lock_free(nfs_argop4 *); 185 static void nfs4args_lockt_free(nfs_argop4 *); 186 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 187 int, rnode4_t *, cred_t *, bitmap4, int *, 188 nfs4_stateid_types_t *); 189 static void nfs4args_setattr_free(nfs_argop4 *); 190 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 191 bitmap4); 192 static void nfs4args_verify_free(nfs_argop4 *); 193 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 194 WRITE4args **, nfs4_stateid_types_t *); 195 196 /* 197 * These are the vnode ops functions that implement the vnode interface to 198 * the networked file system. See more comments below at nfs4_vnodeops. 199 */ 200 static int nfs4_open(vnode_t **, int, cred_t *); 201 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *); 202 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 203 caller_context_t *); 204 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 205 caller_context_t *); 206 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *); 207 static int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *); 208 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 209 caller_context_t *); 210 static int nfs4_access(vnode_t *, int, int, cred_t *); 211 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *); 212 static int nfs4_fsync(vnode_t *, int, cred_t *); 213 static void nfs4_inactive(vnode_t *, cred_t *); 214 static int nfs4_lookup(vnode_t *, char *, vnode_t **, 215 struct pathname *, int, vnode_t *, cred_t *); 216 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 217 int, vnode_t **, cred_t *, int); 218 static int nfs4_remove(vnode_t *, char *, cred_t *); 219 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *); 220 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 221 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, 222 vnode_t **, cred_t *); 223 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *); 224 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 225 cred_t *); 226 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *); 227 static int nfs4_fid(vnode_t *, fid_t *); 228 static int nfs4_rwlock(vnode_t *, int, caller_context_t *); 229 static void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 230 static int nfs4_seek(vnode_t *, offset_t, offset_t *); 231 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 232 page_t *[], size_t, struct seg *, caddr_t, 233 enum seg_rw, cred_t *); 234 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *); 235 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, 236 size_t, uchar_t, uchar_t, uint_t, cred_t *); 237 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, 238 size_t, uchar_t, uchar_t, uint_t, cred_t *); 239 static int nfs4_cmp(vnode_t *, vnode_t *); 240 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 241 struct flk_callback *, cred_t *); 242 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 243 cred_t *, caller_context_t *); 244 static int nfs4_realvp(vnode_t *, vnode_t **); 245 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, 246 size_t, uint_t, uint_t, uint_t, cred_t *); 247 static int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *); 248 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 249 cred_t *); 250 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *); 251 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 252 static int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 253 static int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *); 254 255 /* 256 * Used for nfs4_commit_vp() to indicate if we should 257 * wait on pending writes. 258 */ 259 #define NFS4_WRITE_NOWAIT 0 260 #define NFS4_WRITE_WAIT 1 261 262 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 263 264 /* 265 * Error flags used to pass information about certain special errors 266 * which need to be handled specially. 267 */ 268 #define NFS_EOF -98 269 #define NFS_VERF_MISMATCH -97 270 271 /* 272 * Flags used to differentiate between which operation drove the 273 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 274 */ 275 #define NFS4_CLOSE_OP 0x1 276 #define NFS4_DELMAP_OP 0x2 277 #define NFS4_INACTIVE_OP 0x3 278 279 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 280 281 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 282 #define ALIGN64(x, ptr, sz) \ 283 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 284 if (x) { \ 285 x = sizeof (uint64_t) - (x); \ 286 sz -= (x); \ 287 ptr += (x); \ 288 } 289 290 #ifdef DEBUG 291 int nfs4_client_attr_debug = 0; 292 int nfs4_client_state_debug = 0; 293 int nfs4_client_shadow_debug = 0; 294 int nfs4_client_lock_debug = 0; 295 int nfs4_seqid_sync = 0; 296 int nfs4_client_map_debug = 0; 297 static int nfs4_pageio_debug = 0; 298 int nfs4_client_inactive_debug = 0; 299 int nfs4_client_recov_debug = 0; 300 int nfs4_client_recov_stub_debug = 0; 301 int nfs4_client_failover_debug = 0; 302 int nfs4_client_call_debug = 0; 303 int nfs4_client_lookup_debug = 0; 304 int nfs4_client_zone_debug = 0; 305 int nfs4_lost_rqst_debug = 0; 306 int nfs4_rdattrerr_debug = 0; 307 int nfs4_open_stream_debug = 0; 308 309 int nfs4read_error_inject; 310 311 static int nfs4_create_misses = 0; 312 313 static int nfs4_readdir_cache_shorts = 0; 314 static int nfs4_readdir_readahead = 0; 315 316 static int nfs4_bio_do_stop = 0; 317 318 static int nfs4_lostpage = 0; /* number of times we lost original page */ 319 320 int nfs4_mmap_debug = 0; 321 322 static int nfs4_pathconf_cache_hits = 0; 323 static int nfs4_pathconf_cache_misses = 0; 324 325 int nfs4close_all_cnt; 326 int nfs4close_one_debug = 0; 327 int nfs4close_notw_debug = 0; 328 329 int denied_to_flk_debug = 0; 330 void *lockt_denied_debug; 331 332 #endif 333 334 /* 335 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 336 * or NFS4ERR_RESOURCE. 337 */ 338 static int confirm_retry_sec = 30; 339 340 static int nfs4_lookup_neg_cache = 1; 341 342 /* 343 * number of pages to read ahead 344 * optimized for 100 base-T. 345 */ 346 static int nfs4_nra = 4; 347 348 static int nfs4_do_symlink_cache = 1; 349 350 static int nfs4_pathconf_disable_cache = 0; 351 352 /* 353 * These are the vnode ops routines which implement the vnode interface to 354 * the networked file system. These routines just take their parameters, 355 * make them look networkish by putting the right info into interface structs, 356 * and then calling the appropriate remote routine(s) to do the work. 357 * 358 * Note on directory name lookup cacheing: If we detect a stale fhandle, 359 * we purge the directory cache relative to that vnode. This way, the 360 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 361 * more details on rnode locking. 362 */ 363 364 struct vnodeops *nfs4_vnodeops; 365 366 const fs_operation_def_t nfs4_vnodeops_template[] = { 367 VOPNAME_OPEN, nfs4_open, 368 VOPNAME_CLOSE, nfs4_close, 369 VOPNAME_READ, nfs4_read, 370 VOPNAME_WRITE, nfs4_write, 371 VOPNAME_IOCTL, nfs4_ioctl, 372 VOPNAME_GETATTR, nfs4_getattr, 373 VOPNAME_SETATTR, nfs4_setattr, 374 VOPNAME_ACCESS, nfs4_access, 375 VOPNAME_LOOKUP, nfs4_lookup, 376 VOPNAME_CREATE, nfs4_create, 377 VOPNAME_REMOVE, nfs4_remove, 378 VOPNAME_LINK, nfs4_link, 379 VOPNAME_RENAME, nfs4_rename, 380 VOPNAME_MKDIR, nfs4_mkdir, 381 VOPNAME_RMDIR, nfs4_rmdir, 382 VOPNAME_READDIR, nfs4_readdir, 383 VOPNAME_SYMLINK, nfs4_symlink, 384 VOPNAME_READLINK, nfs4_readlink, 385 VOPNAME_FSYNC, nfs4_fsync, 386 VOPNAME_INACTIVE, (fs_generic_func_p) nfs4_inactive, 387 VOPNAME_FID, nfs4_fid, 388 VOPNAME_RWLOCK, nfs4_rwlock, 389 VOPNAME_RWUNLOCK, (fs_generic_func_p) nfs4_rwunlock, 390 VOPNAME_SEEK, nfs4_seek, 391 VOPNAME_FRLOCK, nfs4_frlock, 392 VOPNAME_SPACE, nfs4_space, 393 VOPNAME_REALVP, nfs4_realvp, 394 VOPNAME_GETPAGE, nfs4_getpage, 395 VOPNAME_PUTPAGE, nfs4_putpage, 396 VOPNAME_MAP, (fs_generic_func_p) nfs4_map, 397 VOPNAME_ADDMAP, (fs_generic_func_p) nfs4_addmap, 398 VOPNAME_DELMAP, nfs4_delmap, 399 VOPNAME_DUMP, nfs_dump, /* there is no separate nfs4_dump */ 400 VOPNAME_PATHCONF, nfs4_pathconf, 401 VOPNAME_PAGEIO, nfs4_pageio, 402 VOPNAME_DISPOSE, (fs_generic_func_p) nfs4_dispose, 403 VOPNAME_SETSECATTR, nfs4_setsecattr, 404 VOPNAME_GETSECATTR, nfs4_getsecattr, 405 VOPNAME_SHRLOCK, nfs4_shrlock, 406 NULL, NULL 407 }; 408 409 /* 410 * The following are subroutines and definitions to set args or get res 411 * for the different nfsv4 ops 412 */ 413 414 void 415 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 416 { 417 int i; 418 419 for (i = 0; i < arglen; i++) { 420 if (argop[i].argop == OP_LOOKUP) 421 kmem_free( 422 argop[i].nfs_argop4_u.oplookup.objname.utf8string_val, 423 argop[i].nfs_argop4_u.oplookup.objname.utf8string_len); 424 } 425 } 426 427 static void 428 nfs4args_lock_free(nfs_argop4 *argop) 429 { 430 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 431 432 if (locker->new_lock_owner == TRUE) { 433 open_to_lock_owner4 *open_owner; 434 435 open_owner = &locker->locker4_u.open_owner; 436 if (open_owner->lock_owner.owner_val != NULL) { 437 kmem_free(open_owner->lock_owner.owner_val, 438 open_owner->lock_owner.owner_len); 439 } 440 } 441 } 442 443 static void 444 nfs4args_lockt_free(nfs_argop4 *argop) 445 { 446 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 447 448 if (lowner->owner_val != NULL) { 449 kmem_free(lowner->owner_val, lowner->owner_len); 450 } 451 } 452 453 static void 454 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 455 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 456 nfs4_stateid_types_t *sid_types) 457 { 458 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 459 mntinfo4_t *mi; 460 461 argop->argop = OP_SETATTR; 462 /* 463 * The stateid is set to 0 if client is not modifying the size 464 * and otherwise to whatever nfs4_get_stateid() returns. 465 * 466 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 467 * state struct could be found for the process/file pair. We may 468 * want to change this in the future (by OPENing the file). See 469 * bug # 4474852. 470 */ 471 if (vap->va_mask & AT_SIZE) { 472 473 ASSERT(rp != NULL); 474 mi = VTOMI4(RTOV4(rp)); 475 476 argop->nfs_argop4_u.opsetattr.stateid = 477 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 478 OP_SETATTR, sid_types, FALSE); 479 } else { 480 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 481 sizeof (stateid4)); 482 } 483 484 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 485 if (*error) 486 bzero(attr, sizeof (*attr)); 487 } 488 489 static void 490 nfs4args_setattr_free(nfs_argop4 *argop) 491 { 492 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 493 } 494 495 static int 496 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 497 bitmap4 supp) 498 { 499 fattr4 *attr; 500 int error = 0; 501 502 argop->argop = op; 503 switch (op) { 504 case OP_VERIFY: 505 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 506 break; 507 case OP_NVERIFY: 508 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 509 break; 510 default: 511 return (EINVAL); 512 } 513 if (!error) 514 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 515 if (error) 516 bzero(attr, sizeof (*attr)); 517 return (error); 518 } 519 520 static void 521 nfs4args_verify_free(nfs_argop4 *argop) 522 { 523 switch (argop->argop) { 524 case OP_VERIFY: 525 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 526 break; 527 case OP_NVERIFY: 528 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 529 break; 530 default: 531 break; 532 } 533 } 534 535 static void 536 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 537 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 538 { 539 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 540 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 541 542 argop->argop = OP_WRITE; 543 wargs->stable = stable; 544 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 545 mi, OP_WRITE, sid_tp); 546 wargs->mblk = NULL; 547 *wargs_pp = wargs; 548 } 549 550 void 551 nfs4args_copen_free(OPEN4cargs *open_args) 552 { 553 if (open_args->owner.owner_val) { 554 kmem_free(open_args->owner.owner_val, 555 open_args->owner.owner_len); 556 } 557 if ((open_args->opentype == OPEN4_CREATE) && 558 (open_args->mode != EXCLUSIVE4)) { 559 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 560 } 561 } 562 563 /* 564 * XXX: This is referenced in modstubs.s 565 */ 566 struct vnodeops * 567 nfs4_getvnodeops(void) 568 { 569 return (nfs4_vnodeops); 570 } 571 572 /* 573 * The OPEN operation opens a regular file. 574 * 575 * ARGSUSED 576 */ 577 static int 578 nfs4_open(vnode_t **vpp, int flag, cred_t *cr) 579 { 580 vnode_t *dvp = NULL; 581 rnode4_t *rp; 582 int error; 583 int just_been_created; 584 char fn[MAXNAMELEN]; 585 586 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 587 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 588 return (EIO); 589 rp = VTOR4(*vpp); 590 591 /* 592 * Check to see if opening something besides a regular file; 593 * if so skip the OTW call 594 */ 595 if ((*vpp)->v_type != VREG) { 596 error = nfs4_open_non_reg_file(vpp, flag, cr); 597 return (error); 598 } 599 600 /* 601 * XXX - would like a check right here to know if the file is 602 * executable or not, so as to skip OTW 603 */ 604 605 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) 606 return (error); 607 608 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 609 return (error); 610 611 /* 612 * See if this file has just been CREATEd. 613 * If so, clear the flag and update the dnlc, which was previously 614 * skipped in nfs4_create. 615 * XXX need better serilization on this. 616 * XXX move this into the nf4open_otw call, after we have 617 * XXX acquired the open owner seqid sync. 618 */ 619 mutex_enter(&rp->r_statev4_lock); 620 if (rp->created_v4) { 621 rp->created_v4 = 0; 622 mutex_exit(&rp->r_statev4_lock); 623 624 dnlc_update(dvp, fn, *vpp); 625 /* This is needed so we don't bump the open ref count */ 626 just_been_created = 1; 627 } else { 628 mutex_exit(&rp->r_statev4_lock); 629 just_been_created = 0; 630 } 631 632 /* 633 * If caller specified O_TRUNC/FTRUNC, then be sure to set 634 * FWRITE (to drive successful setattr(size=0) after open) 635 */ 636 if (flag & FTRUNC) 637 flag |= FWRITE; 638 639 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 640 just_been_created); 641 642 if (!error && !((*vpp)->v_flag & VROOT)) 643 dnlc_update(dvp, fn, *vpp); 644 645 /* release the hold from vtodv */ 646 VN_RELE(dvp); 647 648 /* exchange the shadow for the master vnode, if needed */ 649 650 if (error == 0 && IS_SHADOW(*vpp, rp)) 651 sv_exchange(vpp); 652 653 return (error); 654 } 655 656 /* 657 * See if there's a "lost open" request to be saved and recovered. 658 */ 659 static void 660 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 661 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 662 vnode_t *dvp, OPEN4cargs *open_args) 663 { 664 vfs_t *vfsp; 665 char *srccfp; 666 667 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 668 669 if (error != ETIMEDOUT && error != EINTR && 670 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 671 lost_rqstp->lr_op = 0; 672 return; 673 } 674 675 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 676 "nfs4open_save_lost_rqst: error %d", error)); 677 678 lost_rqstp->lr_op = OP_OPEN; 679 /* 680 * The vp (if it is not NULL) and dvp are held and rele'd via 681 * the recovery code. See nfs4_save_lost_rqst. 682 */ 683 lost_rqstp->lr_vp = vp; 684 lost_rqstp->lr_dvp = dvp; 685 lost_rqstp->lr_oop = oop; 686 lost_rqstp->lr_osp = NULL; 687 lost_rqstp->lr_lop = NULL; 688 lost_rqstp->lr_cr = cr; 689 lost_rqstp->lr_flk = NULL; 690 lost_rqstp->lr_oacc = open_args->share_access; 691 lost_rqstp->lr_odeny = open_args->share_deny; 692 lost_rqstp->lr_oclaim = open_args->claim; 693 if (open_args->claim == CLAIM_DELEGATE_CUR) { 694 lost_rqstp->lr_ostateid = 695 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 696 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 697 } else { 698 srccfp = open_args->open_claim4_u.cfile; 699 } 700 lost_rqstp->lr_ofile.utf8string_len = 0; 701 lost_rqstp->lr_ofile.utf8string_val = NULL; 702 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 703 lost_rqstp->lr_putfirst = FALSE; 704 } 705 706 struct nfs4_excl_time { 707 uint32 seconds; 708 uint32 nseconds; 709 }; 710 711 /* 712 * The OPEN operation creates and/or opens a regular file 713 * 714 * ARGSUSED 715 */ 716 static int 717 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 718 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 719 enum createmode4 createmode, int file_just_been_created) 720 { 721 rnode4_t *rp; 722 rnode4_t *drp = VTOR4(dvp); 723 vnode_t *vp = NULL; 724 vnode_t *vpi = *vpp; 725 bool_t needrecov = FALSE; 726 727 int doqueue = 1; 728 729 COMPOUND4args_clnt args; 730 COMPOUND4res_clnt res; 731 nfs_argop4 *argop; 732 nfs_resop4 *resop; 733 int argoplist_size; 734 int idx_open, idx_fattr; 735 736 GETFH4res *gf_res = NULL; 737 OPEN4res *op_res = NULL; 738 nfs4_ga_res_t *garp; 739 fattr4 *attr = NULL; 740 struct nfs4_excl_time verf; 741 bool_t did_excl_setup = FALSE; 742 int created_osp; 743 744 OPEN4cargs *open_args; 745 nfs4_open_owner_t *oop = NULL; 746 nfs4_open_stream_t *osp = NULL; 747 seqid4 seqid = 0; 748 bool_t retry_open = FALSE; 749 nfs4_recov_state_t recov_state; 750 nfs4_lost_rqst_t lost_rqst; 751 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 752 hrtime_t t; 753 int acc = 0; 754 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 755 cred_t *ncr = NULL; 756 757 nfs4_sharedfh_t *otw_sfh; 758 nfs4_sharedfh_t *orig_sfh; 759 int fh_differs = 0; 760 int numops, setgid_flag; 761 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 762 763 /* 764 * Make sure we properly deal with setting the right gid on 765 * a newly created file to reflect the parent's setgid bit 766 */ 767 setgid_flag = 0; 768 if (create_flag && in_va) { 769 770 /* 771 * If the parent's directory has the setgid bit set 772 * _and_ the client was able to get a valid mapping 773 * for the parent dir's owner_group, we want to 774 * append NVERIFY(owner_group == dva.va_gid) and 775 * SETATTR to the CREATE compound. 776 */ 777 mutex_enter(&drp->r_statelock); 778 if (drp->r_attr.va_mode & VSGID && 779 drp->r_attr.va_gid != GID_NOBODY) { 780 in_va->va_gid = drp->r_attr.va_gid; 781 setgid_flag = 1; 782 } 783 mutex_exit(&drp->r_statelock); 784 } 785 786 /* 787 * Normal/non-create compound: 788 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 789 * 790 * Open(create) compound no setgid: 791 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 792 * RESTOREFH + GETATTR 793 * 794 * Open(create) setgid: 795 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 796 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 797 * NVERIFY(grp) + SETATTR 798 */ 799 if (setgid_flag) { 800 numops = 10; 801 idx_open = 1; 802 idx_fattr = 3; 803 } else if (create_flag) { 804 numops = 7; 805 idx_open = 2; 806 idx_fattr = 4; 807 } else { 808 numops = 4; 809 idx_open = 1; 810 idx_fattr = 3; 811 } 812 813 args.array_len = numops; 814 argoplist_size = numops * sizeof (nfs_argop4); 815 argop = kmem_alloc(argoplist_size, KM_SLEEP); 816 817 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 818 "open %s open flag 0x%x cred %p", file_name, open_flag, 819 (void *)cr)); 820 821 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 822 if (create_flag) { 823 /* 824 * We are to create a file. Initialize the passed in vnode 825 * pointer. 826 */ 827 vpi = NULL; 828 } else { 829 /* 830 * Check to see if the client owns a read delegation and is 831 * trying to open for write. If so, then return the delegation 832 * to avoid the server doing a cb_recall and returning DELAY. 833 * NB - we don't use the statev4_lock here because we'd have 834 * to drop the lock anyway and the result would be stale. 835 */ 836 if ((open_flag & FWRITE) && 837 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 838 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 839 840 /* 841 * If the file has a delegation, then do an access check up 842 * front. This avoids having to an access check later after 843 * we've already done start_op, which could deadlock. 844 */ 845 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 846 if (open_flag & FREAD && 847 nfs4_access(vpi, VREAD, 0, cr) == 0) 848 acc |= VREAD; 849 if (open_flag & FWRITE && 850 nfs4_access(vpi, VWRITE, 0, cr) == 0) 851 acc |= VWRITE; 852 } 853 } 854 855 drp = VTOR4(dvp); 856 857 recov_state.rs_flags = 0; 858 recov_state.rs_num_retry_despite_err = 0; 859 cred_otw = cr; 860 861 recov_retry: 862 fh_differs = 0; 863 nfs4_error_zinit(&e); 864 865 /* argop is empty here */ 866 867 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 868 if (ncr != NULL) 869 crfree(ncr); 870 kmem_free(argop, argoplist_size); 871 return (EINTR); 872 } 873 874 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 875 if (e.error) { 876 nfs_rw_exit(&drp->r_rwlock); 877 if (ncr != NULL) 878 crfree(ncr); 879 kmem_free(argop, argoplist_size); 880 return (e.error); 881 } 882 883 args.ctag = TAG_OPEN; 884 args.array_len = numops; 885 args.array = argop; 886 887 /* putfh directory fh */ 888 argop[0].argop = OP_CPUTFH; 889 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 890 891 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 892 argop[idx_open].argop = OP_COPEN; 893 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 894 open_args->claim = CLAIM_NULL; 895 896 /* name of file */ 897 open_args->open_claim4_u.cfile = file_name; 898 open_args->owner.owner_len = 0; 899 open_args->owner.owner_val = NULL; 900 901 if (create_flag) { 902 /* CREATE a file */ 903 open_args->opentype = OPEN4_CREATE; 904 open_args->mode = createmode; 905 if (createmode == EXCLUSIVE4) { 906 if (did_excl_setup == FALSE) { 907 verf.seconds = nfs_atoi(hw_serial); 908 if (verf.seconds != 0) 909 verf.nseconds = newnum(); 910 else { 911 timestruc_t now; 912 913 gethrestime(&now); 914 verf.seconds = now.tv_sec; 915 verf.nseconds = now.tv_nsec; 916 } 917 /* 918 * Since the server will use this value for the 919 * mtime, make sure that it can't overflow. Zero 920 * out the MSB. The actual value does not matter 921 * here, only its uniqeness. 922 */ 923 verf.seconds &= INT32_MAX; 924 did_excl_setup = TRUE; 925 } 926 927 /* Now copy over verifier to OPEN4args. */ 928 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 929 } else { 930 int v_error; 931 bitmap4 supp_attrs; 932 servinfo4_t *svp; 933 934 attr = &open_args->createhow4_u.createattrs; 935 936 svp = drp->r_server; 937 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 938 supp_attrs = svp->sv_supp_attrs; 939 nfs_rw_exit(&svp->sv_lock); 940 941 /* GUARDED4 or UNCHECKED4 */ 942 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 943 supp_attrs); 944 if (v_error) { 945 bzero(attr, sizeof (*attr)); 946 nfs4args_copen_free(open_args); 947 nfs_rw_exit(&drp->r_rwlock); 948 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 949 &recov_state, FALSE); 950 if (ncr != NULL) 951 crfree(ncr); 952 kmem_free(argop, argoplist_size); 953 return (v_error); 954 } 955 } 956 } else { 957 /* NO CREATE */ 958 open_args->opentype = OPEN4_NOCREATE; 959 } 960 961 if (recov_state.rs_sp != NULL) { 962 mutex_enter(&recov_state.rs_sp->s_lock); 963 open_args->owner.clientid = recov_state.rs_sp->clientid; 964 mutex_exit(&recov_state.rs_sp->s_lock); 965 } else { 966 /* XXX should we just fail here? */ 967 open_args->owner.clientid = 0; 968 } 969 970 /* 971 * This increments oop's ref count or creates a temporary 'just_created' 972 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 973 * completes. 974 */ 975 mutex_enter(&VTOMI4(dvp)->mi_lock); 976 977 /* See if a permanent or just created open owner exists */ 978 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 979 if (!oop) { 980 /* 981 * This open owner does not exist so create a temporary 982 * just created one. 983 */ 984 oop = create_open_owner(cr, VTOMI4(dvp)); 985 ASSERT(oop != NULL); 986 } 987 mutex_exit(&VTOMI4(dvp)->mi_lock); 988 989 /* this length never changes, do alloc before seqid sync */ 990 open_args->owner.owner_len = sizeof (oop->oo_name); 991 open_args->owner.owner_val = 992 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 993 994 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 995 if (e.error == EAGAIN) { 996 open_owner_rele(oop); 997 nfs4args_copen_free(open_args); 998 nfs_rw_exit(&drp->r_rwlock); 999 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1000 if (ncr != NULL) { 1001 crfree(ncr); 1002 ncr = NULL; 1003 } 1004 goto recov_retry; 1005 } 1006 1007 /* Check to see if we need to do the OTW call */ 1008 if (!create_flag) { 1009 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1010 file_just_been_created, &e.error, acc, &recov_state)) { 1011 1012 /* 1013 * The OTW open is not necessary. Either 1014 * the open can succeed without it (eg. 1015 * delegation, error == 0) or the open 1016 * must fail due to an access failure 1017 * (error != 0). In either case, tidy 1018 * up and return. 1019 */ 1020 1021 nfs4_end_open_seqid_sync(oop); 1022 open_owner_rele(oop); 1023 nfs4args_copen_free(open_args); 1024 nfs_rw_exit(&drp->r_rwlock); 1025 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1026 if (ncr != NULL) 1027 crfree(ncr); 1028 kmem_free(argop, argoplist_size); 1029 return (e.error); 1030 } 1031 } 1032 1033 bcopy(&oop->oo_name, open_args->owner.owner_val, 1034 open_args->owner.owner_len); 1035 1036 seqid = nfs4_get_open_seqid(oop) + 1; 1037 open_args->seqid = seqid; 1038 open_args->share_access = 0; 1039 if (open_flag & FREAD) 1040 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1041 if (open_flag & FWRITE) 1042 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1043 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1044 1045 1046 1047 /* 1048 * getfh w/sanity check for idx_open/idx_fattr 1049 */ 1050 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1051 argop[idx_open + 1].argop = OP_GETFH; 1052 1053 /* getattr */ 1054 argop[idx_fattr].argop = OP_GETATTR; 1055 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1056 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1057 1058 if (setgid_flag) { 1059 vattr_t _v; 1060 servinfo4_t *svp; 1061 bitmap4 supp_attrs; 1062 1063 svp = drp->r_server; 1064 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1065 supp_attrs = svp->sv_supp_attrs; 1066 nfs_rw_exit(&svp->sv_lock); 1067 1068 /* 1069 * For setgid case, we need to: 1070 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1071 */ 1072 argop[4].argop = OP_SAVEFH; 1073 1074 argop[5].argop = OP_CPUTFH; 1075 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1076 1077 argop[6].argop = OP_GETATTR; 1078 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1079 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1080 1081 argop[7].argop = OP_RESTOREFH; 1082 1083 /* 1084 * nverify 1085 */ 1086 _v.va_mask = AT_GID; 1087 _v.va_gid = in_va->va_gid; 1088 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1089 supp_attrs))) { 1090 1091 /* 1092 * setattr 1093 * 1094 * We _know_ we're not messing with AT_SIZE or 1095 * AT_XTIME, so no need for stateid or flags. 1096 * Also we specify NULL rp since we're only 1097 * interested in setting owner_group attributes. 1098 */ 1099 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1100 supp_attrs, &e.error, 0); 1101 if (e.error) 1102 nfs4args_verify_free(&argop[8]); 1103 } 1104 1105 if (e.error) { 1106 /* 1107 * XXX - Revisit the last argument to nfs4_end_op() 1108 * once 5020486 is fixed. 1109 */ 1110 nfs4_end_open_seqid_sync(oop); 1111 open_owner_rele(oop); 1112 nfs4args_copen_free(open_args); 1113 nfs_rw_exit(&drp->r_rwlock); 1114 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1115 if (ncr != NULL) 1116 crfree(ncr); 1117 kmem_free(argop, argoplist_size); 1118 return (e.error); 1119 } 1120 } else if (create_flag) { 1121 /* 1122 * For setgid case, we need to: 1123 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1124 */ 1125 argop[1].argop = OP_SAVEFH; 1126 1127 argop[5].argop = OP_RESTOREFH; 1128 1129 argop[6].argop = OP_GETATTR; 1130 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1131 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1132 } 1133 1134 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1135 "nfs4open_otw: %s call, nm %s, rp %s", 1136 needrecov ? "recov" : "first", file_name, 1137 rnode4info(VTOR4(dvp)))); 1138 1139 t = gethrtime(); 1140 1141 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1142 1143 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1144 nfs4_set_open_seqid(seqid, oop, args.ctag); 1145 1146 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1147 1148 if (e.error || needrecov) { 1149 bool_t abort = FALSE; 1150 1151 if (needrecov) { 1152 nfs4_bseqid_entry_t *bsep = NULL; 1153 1154 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1155 cred_otw, vpi, dvp, open_args); 1156 1157 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1158 bsep = nfs4_create_bseqid_entry(oop, NULL, 1159 vpi, 0, args.ctag, open_args->seqid); 1160 num_bseqid_retry--; 1161 } 1162 1163 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1164 NULL, lost_rqst.lr_op == OP_OPEN ? 1165 &lost_rqst : NULL, OP_OPEN, bsep); 1166 1167 if (bsep) 1168 kmem_free(bsep, sizeof (*bsep)); 1169 /* give up if we keep getting BAD_SEQID */ 1170 if (num_bseqid_retry == 0) 1171 abort = TRUE; 1172 if (abort == TRUE && e.error == 0) 1173 e.error = geterrno4(res.status); 1174 } 1175 nfs4_end_open_seqid_sync(oop); 1176 open_owner_rele(oop); 1177 nfs_rw_exit(&drp->r_rwlock); 1178 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1179 nfs4args_copen_free(open_args); 1180 if (setgid_flag) { 1181 nfs4args_verify_free(&argop[8]); 1182 nfs4args_setattr_free(&argop[9]); 1183 } 1184 if (!e.error) 1185 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1186 if (ncr != NULL) { 1187 crfree(ncr); 1188 ncr = NULL; 1189 } 1190 if (!needrecov || abort == TRUE || e.error == EINTR || 1191 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1192 kmem_free(argop, argoplist_size); 1193 return (e.error); 1194 } 1195 goto recov_retry; 1196 } 1197 1198 /* 1199 * Will check and update lease after checking the rflag for 1200 * OPEN_CONFIRM in the successful OPEN call. 1201 */ 1202 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1203 1204 /* 1205 * XXX what if we're crossing mount points from server1:/drp 1206 * to server2:/drp/rp. 1207 */ 1208 1209 /* Signal our end of use of the open seqid */ 1210 nfs4_end_open_seqid_sync(oop); 1211 1212 /* 1213 * This will destroy the open owner if it was just created, 1214 * and no one else has put a reference on it. 1215 */ 1216 open_owner_rele(oop); 1217 if (create_flag && (createmode != EXCLUSIVE4) && 1218 res.status == NFS4ERR_BADOWNER) 1219 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1220 1221 e.error = geterrno4(res.status); 1222 nfs4args_copen_free(open_args); 1223 if (setgid_flag) { 1224 nfs4args_verify_free(&argop[8]); 1225 nfs4args_setattr_free(&argop[9]); 1226 } 1227 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1228 nfs_rw_exit(&drp->r_rwlock); 1229 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1230 /* 1231 * If the reply is NFS4ERR_ACCESS, it may be because 1232 * we are root (no root net access). If the real uid 1233 * is not root, then retry with the real uid instead. 1234 */ 1235 if (ncr != NULL) { 1236 crfree(ncr); 1237 ncr = NULL; 1238 } 1239 if (res.status == NFS4ERR_ACCESS && 1240 (ncr = crnetadjust(cred_otw)) != NULL) { 1241 cred_otw = ncr; 1242 goto recov_retry; 1243 } 1244 kmem_free(argop, argoplist_size); 1245 return (e.error); 1246 } 1247 1248 resop = &res.array[idx_open]; /* open res */ 1249 op_res = &resop->nfs_resop4_u.opopen; 1250 1251 #ifdef DEBUG 1252 /* 1253 * verify attrset bitmap 1254 */ 1255 if (create_flag && 1256 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1257 /* make sure attrset returned is what we asked for */ 1258 /* XXX Ignore this 'error' for now */ 1259 if (attr->attrmask != op_res->attrset) 1260 /* EMPTY */; 1261 } 1262 #endif 1263 1264 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1265 mutex_enter(&VTOMI4(dvp)->mi_lock); 1266 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1267 mutex_exit(&VTOMI4(dvp)->mi_lock); 1268 } 1269 1270 resop = &res.array[idx_open + 1]; /* getfh res */ 1271 gf_res = &resop->nfs_resop4_u.opgetfh; 1272 1273 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1274 1275 /* 1276 * The open stateid has been updated on the server but not 1277 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1278 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1279 * WRITE call. That, however, will use the old stateid, so go ahead 1280 * and upate the open stateid now, before any call to makenfs4node. 1281 */ 1282 if (vpi) { 1283 nfs4_open_stream_t *tmp_osp; 1284 rnode4_t *tmp_rp = VTOR4(vpi); 1285 1286 tmp_osp = find_open_stream(oop, tmp_rp); 1287 if (tmp_osp) { 1288 tmp_osp->open_stateid = op_res->stateid; 1289 mutex_exit(&tmp_osp->os_sync_lock); 1290 open_stream_rele(tmp_osp, tmp_rp); 1291 } 1292 1293 /* 1294 * We must determine if the file handle given by the otw open 1295 * is the same as the file handle which was passed in with 1296 * *vpp. This case can be reached if the file we are trying 1297 * to open has been removed and another file has been created 1298 * having the same file name. The passed in vnode is released 1299 * later. 1300 */ 1301 orig_sfh = VTOR4(vpi)->r_fh; 1302 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1303 } 1304 1305 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1306 1307 if (create_flag || fh_differs) { 1308 int rnode_err = 0; 1309 1310 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1311 dvp, fn_get(VTOSV(dvp)->sv_name, file_name)); 1312 1313 if (e.error) 1314 PURGE_ATTRCACHE4(vp); 1315 /* 1316 * For the newly created vp case, make sure the rnode 1317 * isn't bad before using it. 1318 */ 1319 mutex_enter(&(VTOR4(vp))->r_statelock); 1320 if (VTOR4(vp)->r_flags & R4RECOVERR) 1321 rnode_err = EIO; 1322 mutex_exit(&(VTOR4(vp))->r_statelock); 1323 1324 if (rnode_err) { 1325 nfs4_end_open_seqid_sync(oop); 1326 nfs4args_copen_free(open_args); 1327 if (setgid_flag) { 1328 nfs4args_verify_free(&argop[8]); 1329 nfs4args_setattr_free(&argop[9]); 1330 } 1331 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1332 nfs_rw_exit(&drp->r_rwlock); 1333 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1334 needrecov); 1335 open_owner_rele(oop); 1336 VN_RELE(vp); 1337 if (ncr != NULL) 1338 crfree(ncr); 1339 sfh4_rele(&otw_sfh); 1340 kmem_free(argop, argoplist_size); 1341 return (EIO); 1342 } 1343 } else { 1344 vp = vpi; 1345 } 1346 sfh4_rele(&otw_sfh); 1347 1348 /* 1349 * It seems odd to get a full set of attrs and then not update 1350 * the object's attrcache in the non-create case. Create case uses 1351 * the attrs since makenfs4node checks to see if the attrs need to 1352 * be updated (and then updates them). The non-create case should 1353 * update attrs also. 1354 */ 1355 if (! create_flag && ! fh_differs && !e.error) { 1356 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1357 } 1358 1359 nfs4_error_zinit(&e); 1360 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1361 /* This does not do recovery for vp explicitly. */ 1362 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1363 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1364 1365 if (e.error || e.stat) { 1366 nfs4_end_open_seqid_sync(oop); 1367 nfs4args_copen_free(open_args); 1368 if (setgid_flag) { 1369 nfs4args_verify_free(&argop[8]); 1370 nfs4args_setattr_free(&argop[9]); 1371 } 1372 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1373 nfs_rw_exit(&drp->r_rwlock); 1374 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1375 needrecov); 1376 open_owner_rele(oop); 1377 if (create_flag || fh_differs) { 1378 /* rele the makenfs4node */ 1379 VN_RELE(vp); 1380 } 1381 if (ncr != NULL) { 1382 crfree(ncr); 1383 ncr = NULL; 1384 } 1385 if (retry_open == TRUE) { 1386 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1387 "nfs4open_otw: retry the open since OPEN " 1388 "CONFIRM failed with error %d stat %d", 1389 e.error, e.stat)); 1390 if (create_flag && createmode == GUARDED4) { 1391 NFS4_DEBUG(nfs4_client_recov_debug, 1392 (CE_NOTE, "nfs4open_otw: switch " 1393 "createmode from GUARDED4 to " 1394 "UNCHECKED4")); 1395 createmode = UNCHECKED4; 1396 } 1397 goto recov_retry; 1398 } 1399 if (!e.error) { 1400 if (create_flag && (createmode != EXCLUSIVE4) && 1401 e.stat == NFS4ERR_BADOWNER) 1402 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1403 1404 e.error = geterrno4(e.stat); 1405 } 1406 kmem_free(argop, argoplist_size); 1407 return (e.error); 1408 } 1409 } 1410 1411 rp = VTOR4(vp); 1412 1413 mutex_enter(&rp->r_statev4_lock); 1414 if (create_flag) 1415 rp->created_v4 = 1; 1416 mutex_exit(&rp->r_statev4_lock); 1417 1418 mutex_enter(&oop->oo_lock); 1419 /* Doesn't matter if 'oo_just_created' already was set as this */ 1420 oop->oo_just_created = NFS4_PERM_CREATED; 1421 if (oop->oo_cred_otw) 1422 crfree(oop->oo_cred_otw); 1423 oop->oo_cred_otw = cred_otw; 1424 crhold(oop->oo_cred_otw); 1425 mutex_exit(&oop->oo_lock); 1426 1427 /* returns with 'os_sync_lock' held */ 1428 osp = find_or_create_open_stream(oop, rp, &created_osp); 1429 if (!osp) { 1430 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1431 "nfs4open_otw: failed to create an open stream")); 1432 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1433 "signal our end of use of the open seqid")); 1434 1435 nfs4_end_open_seqid_sync(oop); 1436 open_owner_rele(oop); 1437 nfs4args_copen_free(open_args); 1438 if (setgid_flag) { 1439 nfs4args_verify_free(&argop[8]); 1440 nfs4args_setattr_free(&argop[9]); 1441 } 1442 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1443 nfs_rw_exit(&drp->r_rwlock); 1444 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1445 if (create_flag || fh_differs) 1446 VN_RELE(vp); 1447 if (ncr != NULL) 1448 crfree(ncr); 1449 1450 kmem_free(argop, argoplist_size); 1451 return (EINVAL); 1452 1453 } 1454 1455 osp->open_stateid = op_res->stateid; 1456 1457 if (open_flag & FREAD) 1458 osp->os_share_acc_read++; 1459 if (open_flag & FWRITE) 1460 osp->os_share_acc_write++; 1461 osp->os_share_deny_none++; 1462 1463 /* 1464 * Need to reset this bitfield for the possible case where we were 1465 * going to OTW CLOSE the file, got a non-recoverable error, and before 1466 * we could retry the CLOSE, OPENed the file again. 1467 */ 1468 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1469 osp->os_final_close = 0; 1470 osp->os_force_close = 0; 1471 #ifdef DEBUG 1472 if (osp->os_failed_reopen) 1473 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1474 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1475 (void *)osp, (void *)cr, rnode4info(rp))); 1476 #endif 1477 osp->os_failed_reopen = 0; 1478 1479 mutex_exit(&osp->os_sync_lock); 1480 1481 nfs4_end_open_seqid_sync(oop); 1482 1483 if (created_osp && recov_state.rs_sp != NULL) { 1484 mutex_enter(&recov_state.rs_sp->s_lock); 1485 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1486 mutex_exit(&recov_state.rs_sp->s_lock); 1487 } 1488 1489 /* get rid of our reference to find oop */ 1490 open_owner_rele(oop); 1491 1492 open_stream_rele(osp, rp); 1493 1494 /* accept delegation, if any */ 1495 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1496 1497 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1498 1499 if (createmode == EXCLUSIVE4 && 1500 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1501 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1502 " EXCLUSIVE4: sending a SETATTR")); 1503 /* 1504 * If doing an exclusive create, then generate 1505 * a SETATTR to set the initial attributes. 1506 * Try to set the mtime and the atime to the 1507 * server's current time. It is somewhat 1508 * expected that these fields will be used to 1509 * store the exclusive create cookie. If not, 1510 * server implementors will need to know that 1511 * a SETATTR will follow an exclusive create 1512 * and the cookie should be destroyed if 1513 * appropriate. 1514 * 1515 * The AT_GID and AT_SIZE bits are turned off 1516 * so that the SETATTR request will not attempt 1517 * to process these. The gid will be set 1518 * separately if appropriate. The size is turned 1519 * off because it is assumed that a new file will 1520 * be created empty and if the file wasn't empty, 1521 * then the exclusive create will have failed 1522 * because the file must have existed already. 1523 * Therefore, no truncate operation is needed. 1524 */ 1525 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1526 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1527 1528 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1529 if (e.error) { 1530 /* 1531 * Couldn't correct the attributes of 1532 * the newly created file and the 1533 * attributes are wrong. Remove the 1534 * file and return an error to the 1535 * application. 1536 */ 1537 /* XXX will this take care of client state ? */ 1538 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1539 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1540 " remove file", e.error)); 1541 VN_RELE(vp); 1542 (void) nfs4_remove(dvp, file_name, cr); 1543 nfs_rw_exit(&drp->r_rwlock); 1544 goto skip_rwlock_exit; 1545 } 1546 } 1547 1548 /* 1549 * If we created or found the correct vnode, due to create_flag or 1550 * fh_differs being set, then update directory cache attribute, readdir 1551 * and dnlc caches. 1552 */ 1553 if (create_flag || fh_differs) { 1554 dirattr_info_t dinfo, *dinfop; 1555 1556 /* 1557 * Make sure getattr succeeded before using results. 1558 * note: op 7 is getattr(dir) for both flavors of 1559 * open(create). 1560 */ 1561 if (create_flag && res.status == NFS4_OK) { 1562 dinfo.di_time_call = t; 1563 dinfo.di_cred = cr; 1564 dinfo.di_garp = 1565 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1566 dinfop = &dinfo; 1567 } else { 1568 dinfop = NULL; 1569 } 1570 1571 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1572 dinfop); 1573 } 1574 nfs_rw_exit(&drp->r_rwlock); 1575 skip_rwlock_exit: 1576 1577 /* 1578 * If the page cache for this file was flushed from actions 1579 * above, it was done asynchronously and if that is true, 1580 * there is a need to wait here for it to complete. This must 1581 * be done outside of start_fop/end_fop. 1582 */ 1583 (void) nfs4_waitfor_purge_complete(vp); 1584 1585 /* 1586 * It is implicit that we are in the open case (create_flag == 0) since 1587 * fh_differs can only be set to a non-zero value in the open case. 1588 */ 1589 if (fh_differs != 0 && vpi != NULL) 1590 VN_RELE(vpi); 1591 1592 /* 1593 * Be sure to set *vpp to the correct value before returning. 1594 */ 1595 *vpp = vp; 1596 1597 nfs4args_copen_free(open_args); 1598 if (setgid_flag) { 1599 nfs4args_verify_free(&argop[8]); 1600 nfs4args_setattr_free(&argop[9]); 1601 } 1602 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1603 1604 if (ncr) 1605 crfree(ncr); 1606 kmem_free(argop, argoplist_size); 1607 return (e.error); 1608 } 1609 1610 /* 1611 * Reopen an open instance. cf. nfs4open_otw(). 1612 * 1613 * Errors are returned by the nfs4_error_t parameter. 1614 * - ep->error contains an errno value or zero. 1615 * - if it is zero, ep->stat is set to an NFS status code, if any. 1616 * If the file could not be reopened, but the caller should continue, the 1617 * file is marked dead and no error values are returned. If the caller 1618 * should stop recovering open files and start over, either the ep->error 1619 * value or ep->stat will indicate an error (either something that requires 1620 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1621 * filehandles) may be handled silently by this routine. 1622 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1623 * will be started, so the caller should not do it. 1624 * 1625 * Gotos: 1626 * - kill_file : reopen failed in such a fashion to constitute marking the 1627 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1628 * is for cases where recovery is not possible. 1629 * - failed_reopen : same as above, except that the file has already been 1630 * marked dead, so no need to do it again. 1631 * - bailout : reopen failed but we are able to recover and retry the reopen - 1632 * either within this function immediatley or via the calling function. 1633 */ 1634 1635 void 1636 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1637 open_claim_type4 claim, bool_t frc_use_claim_previous, 1638 bool_t is_recov) 1639 { 1640 COMPOUND4args_clnt args; 1641 COMPOUND4res_clnt res; 1642 nfs_argop4 argop[4]; 1643 nfs_resop4 *resop; 1644 OPEN4res *op_res = NULL; 1645 OPEN4cargs *open_args; 1646 GETFH4res *gf_res; 1647 rnode4_t *rp = VTOR4(vp); 1648 int doqueue = 1; 1649 cred_t *cr = NULL, *cred_otw = NULL; 1650 nfs4_open_owner_t *oop = NULL; 1651 seqid4 seqid; 1652 nfs4_ga_res_t *garp; 1653 char fn[MAXNAMELEN]; 1654 nfs4_recov_state_t recov = {NULL, 0}; 1655 nfs4_lost_rqst_t lost_rqst; 1656 mntinfo4_t *mi = VTOMI4(vp); 1657 bool_t abort; 1658 char *failed_msg = ""; 1659 int fh_different; 1660 hrtime_t t; 1661 nfs4_bseqid_entry_t *bsep = NULL; 1662 1663 ASSERT(nfs4_consistent_type(vp)); 1664 ASSERT(nfs_zone() == mi->mi_zone); 1665 1666 nfs4_error_zinit(ep); 1667 1668 /* this is the cred used to find the open owner */ 1669 cr = state_to_cred(osp); 1670 if (cr == NULL) { 1671 failed_msg = "Couldn't reopen: no cred"; 1672 goto kill_file; 1673 } 1674 /* use this cred for OTW operations */ 1675 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1676 1677 top: 1678 nfs4_error_zinit(ep); 1679 1680 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1681 /* File system has been unmounted, quit */ 1682 ep->error = EIO; 1683 failed_msg = "Couldn't reopen: file system has been unmounted"; 1684 goto kill_file; 1685 } 1686 1687 oop = osp->os_open_owner; 1688 1689 ASSERT(oop != NULL); 1690 if (oop == NULL) { /* be defensive in non-DEBUG */ 1691 failed_msg = "can't reopen: no open owner"; 1692 goto kill_file; 1693 } 1694 open_owner_hold(oop); 1695 1696 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1697 if (ep->error) { 1698 open_owner_rele(oop); 1699 oop = NULL; 1700 goto bailout; 1701 } 1702 1703 /* 1704 * If the rnode has a delegation and the delegation has been 1705 * recovered and the server didn't request a recall and the caller 1706 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1707 * recovery) and the rnode hasn't been marked dead, then install 1708 * the delegation stateid in the open stream. Otherwise, proceed 1709 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1710 */ 1711 mutex_enter(&rp->r_statev4_lock); 1712 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1713 !rp->r_deleg_return_pending && 1714 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1715 !rp->r_deleg_needs_recall && 1716 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1717 !(rp->r_flags & R4RECOVERR)) { 1718 mutex_enter(&osp->os_sync_lock); 1719 osp->os_delegation = 1; 1720 osp->open_stateid = rp->r_deleg_stateid; 1721 mutex_exit(&osp->os_sync_lock); 1722 mutex_exit(&rp->r_statev4_lock); 1723 goto bailout; 1724 } 1725 mutex_exit(&rp->r_statev4_lock); 1726 1727 /* 1728 * If the file failed recovery, just quit. This failure need not 1729 * affect other reopens, so don't return an error. 1730 */ 1731 mutex_enter(&rp->r_statelock); 1732 if (rp->r_flags & R4RECOVERR) { 1733 mutex_exit(&rp->r_statelock); 1734 ep->error = 0; 1735 goto failed_reopen; 1736 } 1737 mutex_exit(&rp->r_statelock); 1738 1739 /* 1740 * argop is empty here 1741 * 1742 * PUTFH, OPEN, GETATTR 1743 */ 1744 args.ctag = TAG_REOPEN; 1745 args.array_len = 4; 1746 args.array = argop; 1747 1748 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1749 "nfs4_reopen: file is type %d, id %s", 1750 vp->v_type, rnode4info(VTOR4(vp)))); 1751 1752 argop[0].argop = OP_CPUTFH; 1753 1754 if (claim != CLAIM_PREVIOUS) { 1755 /* 1756 * if this is a file mount then 1757 * use the mntinfo parentfh 1758 */ 1759 argop[0].nfs_argop4_u.opcputfh.sfh = 1760 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1761 VTOSV(vp)->sv_dfh; 1762 } else { 1763 /* putfh fh to reopen */ 1764 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1765 } 1766 1767 argop[1].argop = OP_COPEN; 1768 open_args = &argop[1].nfs_argop4_u.opcopen; 1769 open_args->claim = claim; 1770 1771 if (claim == CLAIM_NULL) { 1772 1773 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1774 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1775 "failed for vp 0x%p for CLAIM_NULL with %m", 1776 (void *)vp); 1777 failed_msg = "Couldn't reopen: vtoname failed for " 1778 "CLAIM_NULL"; 1779 /* nothing allocated yet */ 1780 goto kill_file; 1781 } 1782 1783 open_args->open_claim4_u.cfile = fn; 1784 } else if (claim == CLAIM_PREVIOUS) { 1785 1786 /* 1787 * We have two cases to deal with here: 1788 * 1) We're being called to reopen files in order to satisfy 1789 * a lock operation request which requires us to explicitly 1790 * reopen files which were opened under a delegation. If 1791 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1792 * that case, frc_use_claim_previous is TRUE and we must 1793 * use the rnode's current delegation type (r_deleg_type). 1794 * 2) We're reopening files during some form of recovery. 1795 * In this case, frc_use_claim_previous is FALSE and we 1796 * use the delegation type appropriate for recovery 1797 * (r_deleg_needs_recovery). 1798 */ 1799 mutex_enter(&rp->r_statev4_lock); 1800 open_args->open_claim4_u.delegate_type = 1801 frc_use_claim_previous ? 1802 rp->r_deleg_type : 1803 rp->r_deleg_needs_recovery; 1804 mutex_exit(&rp->r_statev4_lock); 1805 1806 } else if (claim == CLAIM_DELEGATE_CUR) { 1807 1808 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1809 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1810 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1811 "with %m", (void *)vp); 1812 failed_msg = "Couldn't reopen: vtoname failed for " 1813 "CLAIM_DELEGATE_CUR"; 1814 /* nothing allocated yet */ 1815 goto kill_file; 1816 } 1817 1818 mutex_enter(&rp->r_statev4_lock); 1819 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1820 rp->r_deleg_stateid; 1821 mutex_exit(&rp->r_statev4_lock); 1822 1823 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1824 } 1825 open_args->opentype = OPEN4_NOCREATE; 1826 open_args->owner.clientid = mi2clientid(mi); 1827 open_args->owner.owner_len = sizeof (oop->oo_name); 1828 open_args->owner.owner_val = 1829 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1830 bcopy(&oop->oo_name, open_args->owner.owner_val, 1831 open_args->owner.owner_len); 1832 open_args->share_access = 0; 1833 open_args->share_deny = 0; 1834 1835 mutex_enter(&osp->os_sync_lock); 1836 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1837 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1838 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1839 (void *)osp, (void *)rp, osp->os_share_acc_read, 1840 osp->os_share_acc_write, osp->os_open_ref_count, 1841 osp->os_mmap_read, osp->os_mmap_write, claim)); 1842 1843 if (osp->os_share_acc_read || osp->os_mmap_read) 1844 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1845 if (osp->os_share_acc_write || osp->os_mmap_write) 1846 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1847 if (osp->os_share_deny_read) 1848 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1849 if (osp->os_share_deny_write) 1850 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1851 mutex_exit(&osp->os_sync_lock); 1852 1853 seqid = nfs4_get_open_seqid(oop) + 1; 1854 open_args->seqid = seqid; 1855 1856 /* Construct the getfh part of the compound */ 1857 argop[2].argop = OP_GETFH; 1858 1859 /* Construct the getattr part of the compound */ 1860 argop[3].argop = OP_GETATTR; 1861 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1862 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1863 1864 t = gethrtime(); 1865 1866 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1867 1868 if (ep->error) { 1869 if (!is_recov && !frc_use_claim_previous && 1870 (ep->error == EINTR || ep->error == ETIMEDOUT || 1871 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1872 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1873 cred_otw, vp, NULL, open_args); 1874 abort = nfs4_start_recovery(ep, 1875 VTOMI4(vp), vp, NULL, NULL, 1876 lost_rqst.lr_op == OP_OPEN ? 1877 &lost_rqst : NULL, OP_OPEN, NULL); 1878 nfs4args_copen_free(open_args); 1879 goto bailout; 1880 } 1881 1882 nfs4args_copen_free(open_args); 1883 1884 if (ep->error == EACCES && cred_otw != cr) { 1885 crfree(cred_otw); 1886 cred_otw = cr; 1887 crhold(cred_otw); 1888 nfs4_end_open_seqid_sync(oop); 1889 open_owner_rele(oop); 1890 oop = NULL; 1891 goto top; 1892 } 1893 if (ep->error == ETIMEDOUT) 1894 goto bailout; 1895 failed_msg = "Couldn't reopen: rpc error"; 1896 goto kill_file; 1897 } 1898 1899 if (nfs4_need_to_bump_seqid(&res)) 1900 nfs4_set_open_seqid(seqid, oop, args.ctag); 1901 1902 switch (res.status) { 1903 case NFS4_OK: 1904 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1905 mutex_enter(&rp->r_statelock); 1906 rp->r_delay_interval = 0; 1907 mutex_exit(&rp->r_statelock); 1908 } 1909 break; 1910 case NFS4ERR_BAD_SEQID: 1911 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1912 args.ctag, open_args->seqid); 1913 1914 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1915 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1916 NULL, OP_OPEN, bsep); 1917 1918 nfs4args_copen_free(open_args); 1919 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1920 nfs4_end_open_seqid_sync(oop); 1921 open_owner_rele(oop); 1922 oop = NULL; 1923 kmem_free(bsep, sizeof (*bsep)); 1924 1925 goto kill_file; 1926 case NFS4ERR_NO_GRACE: 1927 nfs4args_copen_free(open_args); 1928 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1929 nfs4_end_open_seqid_sync(oop); 1930 open_owner_rele(oop); 1931 oop = NULL; 1932 if (claim == CLAIM_PREVIOUS) { 1933 /* 1934 * Retry as a plain open. We don't need to worry about 1935 * checking the changeinfo: it is acceptable for a 1936 * client to re-open a file and continue processing 1937 * (in the absence of locks). 1938 */ 1939 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1940 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1941 "will retry as CLAIM_NULL")); 1942 claim = CLAIM_NULL; 1943 nfs4_mi_kstat_inc_no_grace(mi); 1944 goto top; 1945 } 1946 failed_msg = 1947 "Couldn't reopen: tried reclaim outside grace period. "; 1948 goto kill_file; 1949 case NFS4ERR_GRACE: 1950 nfs4_set_grace_wait(mi); 1951 nfs4args_copen_free(open_args); 1952 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1953 nfs4_end_open_seqid_sync(oop); 1954 open_owner_rele(oop); 1955 oop = NULL; 1956 ep->error = nfs4_wait_for_grace(mi, &recov); 1957 if (ep->error != 0) 1958 goto bailout; 1959 goto top; 1960 case NFS4ERR_DELAY: 1961 nfs4_set_delay_wait(vp); 1962 nfs4args_copen_free(open_args); 1963 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1964 nfs4_end_open_seqid_sync(oop); 1965 open_owner_rele(oop); 1966 oop = NULL; 1967 ep->error = nfs4_wait_for_delay(vp, &recov); 1968 nfs4_mi_kstat_inc_delay(mi); 1969 if (ep->error != 0) 1970 goto bailout; 1971 goto top; 1972 case NFS4ERR_FHEXPIRED: 1973 /* recover filehandle and retry */ 1974 abort = nfs4_start_recovery(ep, 1975 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL); 1976 nfs4args_copen_free(open_args); 1977 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1978 nfs4_end_open_seqid_sync(oop); 1979 open_owner_rele(oop); 1980 oop = NULL; 1981 if (abort == FALSE) 1982 goto top; 1983 failed_msg = "Couldn't reopen: recovery aborted"; 1984 goto kill_file; 1985 case NFS4ERR_RESOURCE: 1986 case NFS4ERR_STALE_CLIENTID: 1987 case NFS4ERR_WRONGSEC: 1988 case NFS4ERR_EXPIRED: 1989 /* 1990 * Do not mark the file dead and let the calling 1991 * function initiate recovery. 1992 */ 1993 nfs4args_copen_free(open_args); 1994 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1995 nfs4_end_open_seqid_sync(oop); 1996 open_owner_rele(oop); 1997 oop = NULL; 1998 goto bailout; 1999 case NFS4ERR_ACCESS: 2000 if (cred_otw != cr) { 2001 crfree(cred_otw); 2002 cred_otw = cr; 2003 crhold(cred_otw); 2004 nfs4args_copen_free(open_args); 2005 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2006 nfs4_end_open_seqid_sync(oop); 2007 open_owner_rele(oop); 2008 oop = NULL; 2009 goto top; 2010 } 2011 /* fall through */ 2012 default: 2013 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2014 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2015 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2016 rnode4info(VTOR4(vp)))); 2017 failed_msg = "Couldn't reopen: NFSv4 error"; 2018 nfs4args_copen_free(open_args); 2019 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2020 goto kill_file; 2021 } 2022 2023 resop = &res.array[1]; /* open res */ 2024 op_res = &resop->nfs_resop4_u.opopen; 2025 2026 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2027 2028 /* 2029 * Check if the path we reopened really is the same 2030 * file. We could end up in a situation where the file 2031 * was removed and a new file created with the same name. 2032 */ 2033 resop = &res.array[2]; 2034 gf_res = &resop->nfs_resop4_u.opgetfh; 2035 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2036 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2037 if (fh_different) { 2038 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2039 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2040 /* Oops, we don't have the same file */ 2041 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2042 failed_msg = "Couldn't reopen: Persistent " 2043 "file handle changed"; 2044 else 2045 failed_msg = "Couldn't reopen: Volatile " 2046 "(no expire on open) file handle changed"; 2047 2048 nfs4args_copen_free(open_args); 2049 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2050 nfs_rw_exit(&mi->mi_fh_lock); 2051 goto kill_file; 2052 2053 } else { 2054 /* 2055 * We have volatile file handles that don't compare. 2056 * If the fids are the same then we assume that the 2057 * file handle expired but the rnode still refers to 2058 * the same file object. 2059 * 2060 * First check that we have fids or not. 2061 * If we don't we have a dumb server so we will 2062 * just assume every thing is ok for now. 2063 */ 2064 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2065 rp->r_attr.va_mask & AT_NODEID && 2066 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2067 /* 2068 * We have fids, but they don't 2069 * compare. So kill the file. 2070 */ 2071 failed_msg = 2072 "Couldn't reopen: file handle changed" 2073 " due to mismatched fids"; 2074 nfs4args_copen_free(open_args); 2075 (void) xdr_free(xdr_COMPOUND4res_clnt, 2076 (caddr_t)&res); 2077 nfs_rw_exit(&mi->mi_fh_lock); 2078 goto kill_file; 2079 } else { 2080 /* 2081 * We have volatile file handles that refers 2082 * to the same file (at least they have the 2083 * same fid) or we don't have fids so we 2084 * can't tell. :(. We'll be a kind and accepting 2085 * client so we'll update the rnode's file 2086 * handle with the otw handle. 2087 * 2088 * We need to drop mi->mi_fh_lock since 2089 * sh4_update acquires it. Since there is 2090 * only one recovery thread there is no 2091 * race. 2092 */ 2093 nfs_rw_exit(&mi->mi_fh_lock); 2094 sfh4_update(rp->r_fh, &gf_res->object); 2095 } 2096 } 2097 } else { 2098 nfs_rw_exit(&mi->mi_fh_lock); 2099 } 2100 2101 ASSERT(nfs4_consistent_type(vp)); 2102 2103 /* 2104 * If the server wanted an OPEN_CONFIRM but that fails, just start 2105 * over. Presumably if there is a persistent error it will show up 2106 * when we resend the OPEN. 2107 */ 2108 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2109 bool_t retry_open = FALSE; 2110 2111 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2112 cred_otw, is_recov, &retry_open, 2113 oop, FALSE, ep, NULL); 2114 if (ep->error || ep->stat) { 2115 nfs4args_copen_free(open_args); 2116 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2117 nfs4_end_open_seqid_sync(oop); 2118 open_owner_rele(oop); 2119 oop = NULL; 2120 goto top; 2121 } 2122 } 2123 2124 mutex_enter(&osp->os_sync_lock); 2125 osp->open_stateid = op_res->stateid; 2126 osp->os_delegation = 0; 2127 /* 2128 * Need to reset this bitfield for the possible case where we were 2129 * going to OTW CLOSE the file, got a non-recoverable error, and before 2130 * we could retry the CLOSE, OPENed the file again. 2131 */ 2132 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2133 osp->os_final_close = 0; 2134 osp->os_force_close = 0; 2135 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2136 osp->os_dc_openacc = open_args->share_access; 2137 mutex_exit(&osp->os_sync_lock); 2138 2139 nfs4_end_open_seqid_sync(oop); 2140 2141 /* accept delegation, if any */ 2142 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2143 2144 nfs4args_copen_free(open_args); 2145 2146 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2147 2148 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2149 2150 ASSERT(nfs4_consistent_type(vp)); 2151 2152 open_owner_rele(oop); 2153 crfree(cr); 2154 crfree(cred_otw); 2155 return; 2156 2157 kill_file: 2158 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2159 failed_reopen: 2160 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2161 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2162 (void *)osp, (void *)cr, rnode4info(rp))); 2163 mutex_enter(&osp->os_sync_lock); 2164 osp->os_failed_reopen = 1; 2165 mutex_exit(&osp->os_sync_lock); 2166 bailout: 2167 if (oop != NULL) { 2168 nfs4_end_open_seqid_sync(oop); 2169 open_owner_rele(oop); 2170 } 2171 if (cr != NULL) 2172 crfree(cr); 2173 if (cred_otw != NULL) 2174 crfree(cred_otw); 2175 } 2176 2177 /* for . and .. OPENs */ 2178 /* ARGSUSED */ 2179 static int 2180 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2181 { 2182 rnode4_t *rp; 2183 nfs4_ga_res_t gar; 2184 2185 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2186 2187 /* 2188 * If close-to-open consistency checking is turned off or 2189 * if there is no cached data, we can avoid 2190 * the over the wire getattr. Otherwise, force a 2191 * call to the server to get fresh attributes and to 2192 * check caches. This is required for close-to-open 2193 * consistency. 2194 */ 2195 rp = VTOR4(*vpp); 2196 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2197 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2198 return (0); 2199 2200 gar.n4g_va.va_mask = AT_ALL; 2201 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2202 } 2203 2204 /* 2205 * CLOSE a file 2206 */ 2207 static int 2208 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 2209 { 2210 rnode4_t *rp; 2211 int error = 0; 2212 int r_error = 0; 2213 int n4error = 0; 2214 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2215 2216 /* 2217 * Remove client state for this (lockowner, file) pair. 2218 * Issue otw v4 call to have the server do the same. 2219 */ 2220 2221 rp = VTOR4(vp); 2222 2223 /* 2224 * zone_enter(2) prevents processes from changing zones with NFS files 2225 * open; if we happen to get here from the wrong zone we can't do 2226 * anything over the wire. 2227 */ 2228 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2229 /* 2230 * We could attempt to clean up locks, except we're sure 2231 * that the current process didn't acquire any locks on 2232 * the file: any attempt to lock a file belong to another zone 2233 * will fail, and one can't lock an NFS file and then change 2234 * zones, as that fails too. 2235 * 2236 * Returning an error here is the sane thing to do. A 2237 * subsequent call to VN_RELE() which translates to a 2238 * nfs4_inactive() will clean up state: if the zone of the 2239 * vnode's origin is still alive and kicking, the inactive 2240 * thread will handle the request (from the correct zone), and 2241 * everything (minus the OTW close call) should be OK. If the 2242 * zone is going away nfs4_async_inactive() will throw away 2243 * delegations, open streams and cached pages inline. 2244 */ 2245 return (EIO); 2246 } 2247 2248 /* 2249 * If we are using local locking for this filesystem, then 2250 * release all of the SYSV style record locks. Otherwise, 2251 * we are doing network locking and we need to release all 2252 * of the network locks. All of the locks held by this 2253 * process on this file are released no matter what the 2254 * incoming reference count is. 2255 */ 2256 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2257 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2258 cleanshares(vp, ttoproc(curthread)->p_pid); 2259 } else 2260 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2261 2262 if (e.error) 2263 return (e.error); 2264 2265 if (count > 1) 2266 return (0); 2267 2268 /* 2269 * If the file has been `unlinked', then purge the 2270 * DNLC so that this vnode will get reycled quicker 2271 * and the .nfs* file on the server will get removed. 2272 */ 2273 if (rp->r_unldvp != NULL) 2274 dnlc_purge_vp(vp); 2275 2276 /* 2277 * If the file was open for write and there are pages, 2278 * do a synchronous flush and commit of all of the 2279 * dirty and uncommitted pages. 2280 */ 2281 ASSERT(!e.error); 2282 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2283 error = nfs4_putpage_commit(vp, 0, 0, cr); 2284 2285 mutex_enter(&rp->r_statelock); 2286 r_error = rp->r_error; 2287 rp->r_error = 0; 2288 mutex_exit(&rp->r_statelock); 2289 2290 /* 2291 * If this file type is one for which no explicit 'open' was 2292 * done, then bail now (ie. no need for protocol 'close'). If 2293 * there was an error w/the vm subsystem, return _that_ error, 2294 * otherwise, return any errors that may've been reported via 2295 * the rnode. 2296 */ 2297 if (vp->v_type != VREG) 2298 return (error ? error : r_error); 2299 2300 /* 2301 * The sync putpage commit may have failed above, but since 2302 * we're working w/a regular file, we need to do the protocol 2303 * 'close' (nfs4close_one will figure out if an otw close is 2304 * needed or not). Report any errors _after_ doing the protocol 2305 * 'close'. 2306 */ 2307 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2308 n4error = e.error ? e.error : geterrno4(e.stat); 2309 2310 /* 2311 * Error reporting prio (Hi -> Lo) 2312 * 2313 * i) nfs4_putpage_commit (error) 2314 * ii) rnode's (r_error) 2315 * iii) nfs4close_one (n4error) 2316 */ 2317 return (error ? error : (r_error ? r_error : n4error)); 2318 } 2319 2320 /* 2321 * Initialize *lost_rqstp. 2322 */ 2323 2324 static void 2325 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2326 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2327 vnode_t *vp) 2328 { 2329 if (error != ETIMEDOUT && error != EINTR && 2330 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2331 lost_rqstp->lr_op = 0; 2332 return; 2333 } 2334 2335 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2336 "nfs4close_save_lost_rqst: error %d", error)); 2337 2338 lost_rqstp->lr_op = OP_CLOSE; 2339 /* 2340 * The vp is held and rele'd via the recovery code. 2341 * See nfs4_save_lost_rqst. 2342 */ 2343 lost_rqstp->lr_vp = vp; 2344 lost_rqstp->lr_dvp = NULL; 2345 lost_rqstp->lr_oop = oop; 2346 lost_rqstp->lr_osp = osp; 2347 ASSERT(osp != NULL); 2348 ASSERT(mutex_owned(&osp->os_sync_lock)); 2349 osp->os_pending_close = 1; 2350 lost_rqstp->lr_lop = NULL; 2351 lost_rqstp->lr_cr = cr; 2352 lost_rqstp->lr_flk = NULL; 2353 lost_rqstp->lr_putfirst = FALSE; 2354 } 2355 2356 /* 2357 * Assumes you already have the open seqid sync grabbed as well as the 2358 * 'os_sync_lock'. Note: this will release the open seqid sync and 2359 * 'os_sync_lock' if client recovery starts. Calling functions have to 2360 * be prepared to handle this. 2361 * 2362 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2363 * was needed and was started, and that the calling function should retry 2364 * this function; otherwise it is returned as 0. 2365 * 2366 * Errors are returned via the nfs4_error_t parameter. 2367 */ 2368 static void 2369 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2370 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2371 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2372 { 2373 COMPOUND4args_clnt args; 2374 COMPOUND4res_clnt res; 2375 CLOSE4args *close_args; 2376 nfs_resop4 *resop; 2377 nfs_argop4 argop[3]; 2378 int doqueue = 1; 2379 mntinfo4_t *mi; 2380 seqid4 seqid; 2381 vnode_t *vp; 2382 bool_t needrecov = FALSE; 2383 nfs4_lost_rqst_t lost_rqst; 2384 hrtime_t t; 2385 2386 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2387 2388 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2389 2390 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2391 2392 /* Only set this to 1 if recovery is started */ 2393 *recov = 0; 2394 2395 /* do the OTW call to close the file */ 2396 2397 if (close_type == CLOSE_RESEND) 2398 args.ctag = TAG_CLOSE_LOST; 2399 else if (close_type == CLOSE_AFTER_RESEND) 2400 args.ctag = TAG_CLOSE_UNDO; 2401 else 2402 args.ctag = TAG_CLOSE; 2403 2404 args.array_len = 3; 2405 args.array = argop; 2406 2407 vp = RTOV4(rp); 2408 2409 mi = VTOMI4(vp); 2410 2411 /* putfh target fh */ 2412 argop[0].argop = OP_CPUTFH; 2413 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2414 2415 argop[1].argop = OP_GETATTR; 2416 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2417 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2418 2419 argop[2].argop = OP_CLOSE; 2420 close_args = &argop[2].nfs_argop4_u.opclose; 2421 2422 seqid = nfs4_get_open_seqid(oop) + 1; 2423 2424 close_args->seqid = seqid; 2425 close_args->open_stateid = osp->open_stateid; 2426 2427 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2428 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2429 rnode4info(rp))); 2430 2431 t = gethrtime(); 2432 2433 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2434 2435 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2436 nfs4_set_open_seqid(seqid, oop, args.ctag); 2437 } 2438 2439 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2440 if (ep->error && !needrecov) { 2441 /* 2442 * if there was an error and no recovery is to be done 2443 * then then set up the file to flush its cache if 2444 * needed for the next caller. 2445 */ 2446 mutex_enter(&rp->r_statelock); 2447 PURGE_ATTRCACHE4_LOCKED(rp); 2448 rp->r_flags &= ~R4WRITEMODIFIED; 2449 mutex_exit(&rp->r_statelock); 2450 return; 2451 } 2452 2453 if (needrecov) { 2454 bool_t abort; 2455 nfs4_bseqid_entry_t *bsep = NULL; 2456 2457 if (close_type != CLOSE_RESEND) 2458 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2459 osp, cred_otw, vp); 2460 2461 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2462 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2463 0, args.ctag, close_args->seqid); 2464 2465 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2466 "nfs4close_otw: initiating recovery. error %d " 2467 "res.status %d", ep->error, res.status)); 2468 2469 /* 2470 * Drop the 'os_sync_lock' here so we don't hit 2471 * a potential recursive mutex_enter via an 2472 * 'open_stream_hold()'. 2473 */ 2474 mutex_exit(&osp->os_sync_lock); 2475 *have_sync_lockp = 0; 2476 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2477 (close_type != CLOSE_RESEND && 2478 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2479 OP_CLOSE, bsep); 2480 2481 /* drop open seq sync, and let the calling function regrab it */ 2482 nfs4_end_open_seqid_sync(oop); 2483 *did_start_seqid_syncp = 0; 2484 2485 if (bsep) 2486 kmem_free(bsep, sizeof (*bsep)); 2487 /* 2488 * For signals, the caller wants to quit, so don't say to 2489 * retry. For forced unmount, if it's a user thread, it 2490 * wants to quit. If it's a recovery thread, the retry 2491 * will happen higher-up on the call stack. Either way, 2492 * don't say to retry. 2493 */ 2494 if (abort == FALSE && ep->error != EINTR && 2495 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2496 close_type != CLOSE_RESEND && 2497 close_type != CLOSE_AFTER_RESEND) 2498 *recov = 1; 2499 else 2500 *recov = 0; 2501 2502 if (!ep->error) 2503 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2504 return; 2505 } 2506 2507 if (res.status) { 2508 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2509 return; 2510 } 2511 2512 mutex_enter(&rp->r_statev4_lock); 2513 rp->created_v4 = 0; 2514 mutex_exit(&rp->r_statev4_lock); 2515 2516 resop = &res.array[2]; 2517 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2518 osp->os_valid = 0; 2519 2520 /* 2521 * This removes the reference obtained at OPEN; ie, when the 2522 * open stream structure was created. 2523 * 2524 * We don't have to worry about calling 'open_stream_rele' 2525 * since we our currently holding a reference to the open 2526 * stream which means the count cannot go to 0 with this 2527 * decrement. 2528 */ 2529 ASSERT(osp->os_ref_count >= 2); 2530 osp->os_ref_count--; 2531 2532 if (!ep->error) 2533 nfs4_attr_cache(vp, 2534 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2535 t, cred_otw, TRUE, NULL); 2536 2537 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2538 " returning %d", ep->error)); 2539 2540 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2541 } 2542 2543 /* ARGSUSED */ 2544 static int 2545 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2546 caller_context_t *ct) 2547 { 2548 rnode4_t *rp; 2549 u_offset_t off; 2550 offset_t diff; 2551 uint_t on; 2552 uint_t n; 2553 caddr_t base; 2554 uint_t flags; 2555 int error; 2556 mntinfo4_t *mi; 2557 2558 rp = VTOR4(vp); 2559 2560 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2561 2562 if (IS_SHADOW(vp, rp)) 2563 vp = RTOV4(rp); 2564 2565 if (vp->v_type != VREG) 2566 return (EISDIR); 2567 2568 mi = VTOMI4(vp); 2569 2570 if (nfs_zone() != mi->mi_zone) 2571 return (EIO); 2572 2573 if (uiop->uio_resid == 0) 2574 return (0); 2575 2576 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2577 return (EINVAL); 2578 2579 mutex_enter(&rp->r_statelock); 2580 if (rp->r_flags & R4RECOVERRP) 2581 error = (rp->r_error ? rp->r_error : EIO); 2582 else 2583 error = 0; 2584 mutex_exit(&rp->r_statelock); 2585 if (error) 2586 return (error); 2587 2588 /* 2589 * Bypass VM if caching has been disabled (e.g., locking) or if 2590 * using client-side direct I/O and the file is not mmap'd and 2591 * there are no cached pages. 2592 */ 2593 if ((vp->v_flag & VNOCACHE) || 2594 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2595 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2596 size_t resid = 0; 2597 2598 return (nfs4read(vp, NULL, uiop->uio_loffset, 2599 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2600 } 2601 2602 error = 0; 2603 2604 do { 2605 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2606 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2607 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2608 2609 if (error = nfs4_validate_caches(vp, cr)) 2610 break; 2611 2612 mutex_enter(&rp->r_statelock); 2613 diff = rp->r_size - uiop->uio_loffset; 2614 mutex_exit(&rp->r_statelock); 2615 if (diff <= 0) 2616 break; 2617 if (diff < n) 2618 n = (uint_t)diff; 2619 2620 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, S_READ); 2621 2622 error = uiomove(base + on, n, UIO_READ, uiop); 2623 2624 if (!error) { 2625 /* 2626 * If read a whole block or read to eof, 2627 * won't need this buffer again soon. 2628 */ 2629 mutex_enter(&rp->r_statelock); 2630 if (n + on == MAXBSIZE || 2631 uiop->uio_loffset == rp->r_size) 2632 flags = SM_DONTNEED; 2633 else 2634 flags = 0; 2635 mutex_exit(&rp->r_statelock); 2636 error = segmap_release(segkmap, base, flags); 2637 } else 2638 (void) segmap_release(segkmap, base, 0); 2639 } while (!error && uiop->uio_resid > 0); 2640 2641 return (error); 2642 } 2643 2644 /* ARGSUSED */ 2645 static int 2646 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2647 caller_context_t *ct) 2648 { 2649 rlim64_t limit = uiop->uio_llimit; 2650 rnode4_t *rp; 2651 u_offset_t off; 2652 caddr_t base; 2653 uint_t flags; 2654 int remainder; 2655 size_t n; 2656 int on; 2657 int error; 2658 int resid; 2659 u_offset_t offset; 2660 mntinfo4_t *mi; 2661 uint_t bsize; 2662 2663 rp = VTOR4(vp); 2664 2665 if (IS_SHADOW(vp, rp)) 2666 vp = RTOV4(rp); 2667 2668 if (vp->v_type != VREG) 2669 return (EISDIR); 2670 2671 mi = VTOMI4(vp); 2672 2673 if (nfs_zone() != mi->mi_zone) 2674 return (EIO); 2675 2676 if (uiop->uio_resid == 0) 2677 return (0); 2678 2679 mutex_enter(&rp->r_statelock); 2680 if (rp->r_flags & R4RECOVERRP) 2681 error = (rp->r_error ? rp->r_error : EIO); 2682 else 2683 error = 0; 2684 mutex_exit(&rp->r_statelock); 2685 if (error) 2686 return (error); 2687 2688 if (ioflag & FAPPEND) { 2689 struct vattr va; 2690 2691 /* 2692 * Must serialize if appending. 2693 */ 2694 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2695 nfs_rw_exit(&rp->r_rwlock); 2696 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2697 INTR(vp))) 2698 return (EINTR); 2699 } 2700 2701 va.va_mask = AT_SIZE; 2702 error = nfs4getattr(vp, &va, cr); 2703 if (error) 2704 return (error); 2705 uiop->uio_loffset = va.va_size; 2706 } 2707 2708 offset = uiop->uio_loffset + uiop->uio_resid; 2709 2710 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2711 return (EINVAL); 2712 2713 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2714 limit = MAXOFFSET_T; 2715 2716 /* 2717 * Check to make sure that the process will not exceed 2718 * its limit on file size. It is okay to write up to 2719 * the limit, but not beyond. Thus, the write which 2720 * reaches the limit will be short and the next write 2721 * will return an error. 2722 */ 2723 remainder = 0; 2724 if (offset > uiop->uio_llimit) { 2725 remainder = offset - uiop->uio_llimit; 2726 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2727 if (uiop->uio_resid <= 0) { 2728 proc_t *p = ttoproc(curthread); 2729 2730 uiop->uio_resid += remainder; 2731 mutex_enter(&p->p_lock); 2732 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2733 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2734 mutex_exit(&p->p_lock); 2735 return (EFBIG); 2736 } 2737 } 2738 2739 /* update the change attribute, if we have a write delegation */ 2740 2741 mutex_enter(&rp->r_statev4_lock); 2742 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2743 rp->r_deleg_change++; 2744 2745 mutex_exit(&rp->r_statev4_lock); 2746 2747 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2748 return (EINTR); 2749 2750 /* 2751 * Bypass VM if caching has been disabled (e.g., locking) or if 2752 * using client-side direct I/O and the file is not mmap'd and 2753 * there are no cached pages. 2754 */ 2755 if ((vp->v_flag & VNOCACHE) || 2756 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2757 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2758 size_t bufsize; 2759 int count; 2760 u_offset_t org_offset; 2761 stable_how4 stab_comm; 2762 nfs4_fwrite: 2763 if (rp->r_flags & R4STALE) { 2764 resid = uiop->uio_resid; 2765 offset = uiop->uio_loffset; 2766 error = rp->r_error; 2767 goto bottom; 2768 } 2769 2770 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2771 base = kmem_alloc(bufsize, KM_SLEEP); 2772 do { 2773 if (ioflag & FDSYNC) 2774 stab_comm = DATA_SYNC4; 2775 else 2776 stab_comm = FILE_SYNC4; 2777 resid = uiop->uio_resid; 2778 offset = uiop->uio_loffset; 2779 count = MIN(uiop->uio_resid, bufsize); 2780 org_offset = uiop->uio_loffset; 2781 error = uiomove(base, count, UIO_WRITE, uiop); 2782 if (!error) { 2783 error = nfs4write(vp, base, org_offset, 2784 count, cr, &stab_comm); 2785 if (!error) { 2786 mutex_enter(&rp->r_statelock); 2787 if (rp->r_size < uiop->uio_loffset) 2788 rp->r_size = uiop->uio_loffset; 2789 mutex_exit(&rp->r_statelock); 2790 } 2791 } 2792 } while (!error && uiop->uio_resid > 0); 2793 kmem_free(base, bufsize); 2794 goto bottom; 2795 } 2796 2797 bsize = vp->v_vfsp->vfs_bsize; 2798 2799 do { 2800 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2801 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2802 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2803 2804 resid = uiop->uio_resid; 2805 offset = uiop->uio_loffset; 2806 2807 if (rp->r_flags & R4STALE) { 2808 error = rp->r_error; 2809 break; 2810 } 2811 2812 /* 2813 * Don't create dirty pages faster than they 2814 * can be cleaned so that the system doesn't 2815 * get imbalanced. If the async queue is 2816 * maxed out, then wait for it to drain before 2817 * creating more dirty pages. Also, wait for 2818 * any threads doing pagewalks in the vop_getattr 2819 * entry points so that they don't block for 2820 * long periods. 2821 */ 2822 mutex_enter(&rp->r_statelock); 2823 while ((mi->mi_max_threads != 0 && 2824 rp->r_awcount > 2 * mi->mi_max_threads) || 2825 rp->r_gcount > 0) 2826 cv_wait(&rp->r_cv, &rp->r_statelock); 2827 mutex_exit(&rp->r_statelock); 2828 2829 if (segmap_kpm) { 2830 int pon = uiop->uio_loffset & PAGEOFFSET; 2831 size_t pn = MIN(PAGESIZE - pon, uiop->uio_resid); 2832 int pagecreate; 2833 2834 mutex_enter(&rp->r_statelock); 2835 pagecreate = (pon == 0) && (pn == PAGESIZE || 2836 uiop->uio_loffset + pn >= rp->r_size); 2837 mutex_exit(&rp->r_statelock); 2838 2839 base = segmap_getmapflt(segkmap, vp, off + on, 2840 pn, !pagecreate, S_WRITE); 2841 2842 error = writerp4(rp, base + pon, n, uiop, pagecreate); 2843 2844 } else { 2845 base = segmap_getmapflt(segkmap, vp, off + on, 2846 n, 0, S_READ); 2847 error = writerp4(rp, base + on, n, uiop, 0); 2848 } 2849 2850 if (!error) { 2851 if (mi->mi_flags & MI4_NOAC) 2852 flags = SM_WRITE; 2853 else if ((uiop->uio_loffset % bsize) == 0 || 2854 IS_SWAPVP(vp)) { 2855 /* 2856 * Have written a whole block. 2857 * Start an asynchronous write 2858 * and mark the buffer to 2859 * indicate that it won't be 2860 * needed again soon. 2861 */ 2862 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2863 } else 2864 flags = 0; 2865 if ((ioflag & (FSYNC|FDSYNC)) || 2866 (rp->r_flags & R4OUTOFSPACE)) { 2867 flags &= ~SM_ASYNC; 2868 flags |= SM_WRITE; 2869 } 2870 error = segmap_release(segkmap, base, flags); 2871 } else { 2872 (void) segmap_release(segkmap, base, 0); 2873 /* 2874 * In the event that we got an access error while 2875 * faulting in a page for a write-only file just 2876 * force a write. 2877 */ 2878 if (error == EACCES) 2879 goto nfs4_fwrite; 2880 } 2881 } while (!error && uiop->uio_resid > 0); 2882 2883 bottom: 2884 if (error) { 2885 uiop->uio_resid = resid + remainder; 2886 uiop->uio_loffset = offset; 2887 } else { 2888 uiop->uio_resid += remainder; 2889 2890 mutex_enter(&rp->r_statev4_lock); 2891 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 2892 gethrestime(&rp->r_attr.va_mtime); 2893 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 2894 } 2895 mutex_exit(&rp->r_statev4_lock); 2896 } 2897 2898 nfs_rw_exit(&rp->r_lkserlock); 2899 2900 return (error); 2901 } 2902 2903 /* 2904 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2905 */ 2906 static int 2907 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 2908 int flags, cred_t *cr) 2909 { 2910 struct buf *bp; 2911 int error; 2912 page_t *savepp; 2913 uchar_t fsdata; 2914 stable_how4 stab_comm; 2915 2916 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 2917 bp = pageio_setup(pp, len, vp, flags); 2918 ASSERT(bp != NULL); 2919 2920 /* 2921 * pageio_setup should have set b_addr to 0. This 2922 * is correct since we want to do I/O on a page 2923 * boundary. bp_mapin will use this addr to calculate 2924 * an offset, and then set b_addr to the kernel virtual 2925 * address it allocated for us. 2926 */ 2927 ASSERT(bp->b_un.b_addr == 0); 2928 2929 bp->b_edev = 0; 2930 bp->b_dev = 0; 2931 bp->b_lblkno = lbtodb(off); 2932 bp->b_file = vp; 2933 bp->b_offset = (offset_t)off; 2934 bp_mapin(bp); 2935 2936 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 2937 freemem > desfree) 2938 stab_comm = UNSTABLE4; 2939 else 2940 stab_comm = FILE_SYNC4; 2941 2942 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 2943 2944 bp_mapout(bp); 2945 pageio_done(bp); 2946 2947 if (stab_comm == UNSTABLE4) 2948 fsdata = C_DELAYCOMMIT; 2949 else 2950 fsdata = C_NOCOMMIT; 2951 2952 savepp = pp; 2953 do { 2954 pp->p_fsdata = fsdata; 2955 } while ((pp = pp->p_next) != savepp); 2956 2957 return (error); 2958 } 2959 2960 /* 2961 */ 2962 static int 2963 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 2964 { 2965 nfs4_open_owner_t *oop; 2966 nfs4_open_stream_t *osp; 2967 rnode4_t *rp = VTOR4(vp); 2968 mntinfo4_t *mi = VTOMI4(vp); 2969 int reopen_needed; 2970 2971 ASSERT(nfs_zone() == mi->mi_zone); 2972 2973 2974 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 2975 if (!oop) 2976 return (EIO); 2977 2978 /* returns with 'os_sync_lock' held */ 2979 osp = find_open_stream(oop, rp); 2980 if (!osp) { 2981 open_owner_rele(oop); 2982 return (EIO); 2983 } 2984 2985 if (osp->os_failed_reopen) { 2986 mutex_exit(&osp->os_sync_lock); 2987 open_stream_rele(osp, rp); 2988 open_owner_rele(oop); 2989 return (EIO); 2990 } 2991 2992 /* 2993 * Determine whether a reopen is needed. If this 2994 * is a delegation open stream, then the os_delegation bit 2995 * should be set. 2996 */ 2997 2998 reopen_needed = osp->os_delegation; 2999 3000 mutex_exit(&osp->os_sync_lock); 3001 open_owner_rele(oop); 3002 3003 if (reopen_needed) { 3004 nfs4_error_zinit(ep); 3005 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3006 mutex_enter(&osp->os_sync_lock); 3007 if (ep->error || ep->stat || osp->os_failed_reopen) { 3008 mutex_exit(&osp->os_sync_lock); 3009 open_stream_rele(osp, rp); 3010 return (EIO); 3011 } 3012 mutex_exit(&osp->os_sync_lock); 3013 } 3014 open_stream_rele(osp, rp); 3015 3016 return (0); 3017 } 3018 3019 /* 3020 * Write to file. Writes to remote server in largest size 3021 * chunks that the server can handle. Write is synchronous. 3022 */ 3023 static int 3024 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3025 stable_how4 *stab_comm) 3026 { 3027 mntinfo4_t *mi; 3028 COMPOUND4args_clnt args; 3029 COMPOUND4res_clnt res; 3030 WRITE4args *wargs; 3031 WRITE4res *wres; 3032 nfs_argop4 argop[2]; 3033 nfs_resop4 *resop; 3034 int tsize; 3035 stable_how4 stable; 3036 rnode4_t *rp; 3037 int doqueue = 1; 3038 bool_t needrecov; 3039 nfs4_recov_state_t recov_state; 3040 nfs4_stateid_types_t sid_types; 3041 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3042 3043 rp = VTOR4(vp); 3044 mi = VTOMI4(vp); 3045 3046 ASSERT(nfs_zone() == mi->mi_zone); 3047 3048 stable = *stab_comm; 3049 *stab_comm = FILE_SYNC4; 3050 3051 needrecov = FALSE; 3052 recov_state.rs_flags = 0; 3053 recov_state.rs_num_retry_despite_err = 0; 3054 nfs4_init_stateid_types(&sid_types); 3055 3056 recov_retry: 3057 args.ctag = TAG_WRITE; 3058 args.array_len = 2; 3059 args.array = argop; 3060 3061 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3062 &recov_state, NULL); 3063 if (e.error) 3064 return (e.error); 3065 3066 /* 0. putfh target fh */ 3067 argop[0].argop = OP_CPUTFH; 3068 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3069 3070 /* 1. write */ 3071 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3072 3073 do { 3074 3075 wargs->offset = (offset4)offset; 3076 wargs->data_val = base; 3077 3078 if (mi->mi_io_kstats) { 3079 mutex_enter(&mi->mi_lock); 3080 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3081 mutex_exit(&mi->mi_lock); 3082 } 3083 3084 if ((vp->v_flag & VNOCACHE) || 3085 (rp->r_flags & R4DIRECTIO) || 3086 (mi->mi_flags & MI4_DIRECTIO)) 3087 tsize = MIN(mi->mi_stsize, count); 3088 else 3089 tsize = MIN(mi->mi_curwrite, count); 3090 wargs->data_len = (uint_t)tsize; 3091 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3092 3093 if (mi->mi_io_kstats) { 3094 mutex_enter(&mi->mi_lock); 3095 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3096 mutex_exit(&mi->mi_lock); 3097 } 3098 3099 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3100 if (e.error && !needrecov) { 3101 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3102 &recov_state, needrecov); 3103 return (e.error); 3104 } 3105 3106 3107 /* 3108 * Do handling of OLD_STATEID outside 3109 * of the normal recovery framework. 3110 * 3111 * If write receives a BAD stateid error while using a 3112 * delegation stateid, retry using the open stateid (if it 3113 * exists). If it doesn't have an open stateid, reopen the 3114 * file first, then retry. 3115 */ 3116 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3117 sid_types.cur_sid_type != SPEC_SID) { 3118 nfs4_save_stateid(&wargs->stateid, &sid_types); 3119 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3120 &recov_state, needrecov); 3121 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3122 goto recov_retry; 3123 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3124 sid_types.cur_sid_type == DEL_SID) { 3125 nfs4_save_stateid(&wargs->stateid, &sid_types); 3126 mutex_enter(&rp->r_statev4_lock); 3127 rp->r_deleg_return_pending = TRUE; 3128 mutex_exit(&rp->r_statev4_lock); 3129 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3130 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3131 &recov_state, needrecov); 3132 (void) xdr_free(xdr_COMPOUND4res_clnt, 3133 (caddr_t)&res); 3134 return (EIO); 3135 } 3136 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3137 &recov_state, needrecov); 3138 /* hold needed for nfs4delegreturn_thread */ 3139 VN_HOLD(vp); 3140 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3141 NFS4_DR_DISCARD), FALSE); 3142 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3143 goto recov_retry; 3144 } 3145 3146 if (needrecov) { 3147 bool_t abort; 3148 3149 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3150 "nfs4write: client got error %d, res.status %d" 3151 ", so start recovery", e.error, res.status)); 3152 3153 abort = nfs4_start_recovery(&e, 3154 VTOMI4(vp), vp, NULL, &wargs->stateid, 3155 NULL, OP_WRITE, NULL); 3156 if (!e.error) { 3157 e.error = geterrno4(res.status); 3158 (void) xdr_free(xdr_COMPOUND4res_clnt, 3159 (caddr_t)&res); 3160 } 3161 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3162 &recov_state, needrecov); 3163 if (abort == FALSE) 3164 goto recov_retry; 3165 return (e.error); 3166 } 3167 3168 if (res.status) { 3169 e.error = geterrno4(res.status); 3170 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3171 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3172 &recov_state, needrecov); 3173 return (e.error); 3174 } 3175 3176 resop = &res.array[1]; /* write res */ 3177 wres = &resop->nfs_resop4_u.opwrite; 3178 3179 if ((int)wres->count > tsize) { 3180 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3181 3182 zcmn_err(getzoneid(), CE_WARN, 3183 "nfs4write: server wrote %u, requested was %u", 3184 (int)wres->count, tsize); 3185 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3186 &recov_state, needrecov); 3187 return (EIO); 3188 } 3189 if (wres->committed == UNSTABLE4) { 3190 *stab_comm = UNSTABLE4; 3191 if (wargs->stable == DATA_SYNC4 || 3192 wargs->stable == FILE_SYNC4) { 3193 (void) xdr_free(xdr_COMPOUND4res_clnt, 3194 (caddr_t)&res); 3195 zcmn_err(getzoneid(), CE_WARN, 3196 "nfs4write: server %s did not commit " 3197 "to stable storage", 3198 rp->r_server->sv_hostname); 3199 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3200 &recov_state, needrecov); 3201 return (EIO); 3202 } 3203 } 3204 3205 tsize = (int)wres->count; 3206 count -= tsize; 3207 base += tsize; 3208 offset += tsize; 3209 if (mi->mi_io_kstats) { 3210 mutex_enter(&mi->mi_lock); 3211 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3212 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3213 tsize; 3214 mutex_exit(&mi->mi_lock); 3215 } 3216 lwp_stat_update(LWP_STAT_OUBLK, 1); 3217 mutex_enter(&rp->r_statelock); 3218 if (rp->r_flags & R4HAVEVERF) { 3219 if (rp->r_writeverf != wres->writeverf) { 3220 nfs4_set_mod(vp); 3221 rp->r_writeverf = wres->writeverf; 3222 } 3223 } else { 3224 rp->r_writeverf = wres->writeverf; 3225 rp->r_flags |= R4HAVEVERF; 3226 } 3227 PURGE_ATTRCACHE4_LOCKED(rp); 3228 rp->r_flags |= R4WRITEMODIFIED; 3229 gethrestime(&rp->r_attr.va_mtime); 3230 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3231 mutex_exit(&rp->r_statelock); 3232 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3233 } while (count); 3234 3235 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); 3236 3237 return (e.error); 3238 } 3239 3240 /* 3241 * Read from a file. Reads data in largest chunks our interface can handle. 3242 */ 3243 static int 3244 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3245 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3246 { 3247 mntinfo4_t *mi; 3248 COMPOUND4args_clnt args; 3249 COMPOUND4res_clnt res; 3250 READ4args *rargs; 3251 nfs_argop4 argop[2]; 3252 int tsize; 3253 int doqueue; 3254 rnode4_t *rp; 3255 int data_len; 3256 bool_t is_eof; 3257 bool_t needrecov = FALSE; 3258 nfs4_recov_state_t recov_state; 3259 nfs4_stateid_types_t sid_types; 3260 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3261 3262 rp = VTOR4(vp); 3263 mi = VTOMI4(vp); 3264 doqueue = 1; 3265 3266 ASSERT(nfs_zone() == mi->mi_zone); 3267 3268 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3269 3270 args.array_len = 2; 3271 args.array = argop; 3272 3273 nfs4_init_stateid_types(&sid_types); 3274 3275 recov_state.rs_flags = 0; 3276 recov_state.rs_num_retry_despite_err = 0; 3277 3278 recov_retry: 3279 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3280 &recov_state, NULL); 3281 if (e.error) 3282 return (e.error); 3283 3284 /* putfh target fh */ 3285 argop[0].argop = OP_CPUTFH; 3286 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3287 3288 /* read */ 3289 argop[1].argop = OP_READ; 3290 rargs = &argop[1].nfs_argop4_u.opread; 3291 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3292 OP_READ, &sid_types, async); 3293 3294 do { 3295 if (mi->mi_io_kstats) { 3296 mutex_enter(&mi->mi_lock); 3297 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3298 mutex_exit(&mi->mi_lock); 3299 } 3300 3301 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3302 "nfs4read: %s call, rp %s", 3303 needrecov ? "recov" : "first", 3304 rnode4info(rp))); 3305 3306 if ((vp->v_flag & VNOCACHE) || 3307 (rp->r_flags & R4DIRECTIO) || 3308 (mi->mi_flags & MI4_DIRECTIO)) 3309 tsize = MIN(mi->mi_tsize, count); 3310 else 3311 tsize = MIN(mi->mi_curread, count); 3312 rargs->offset = (offset4)offset; 3313 rargs->count = (count4)tsize; 3314 rargs->res_data_val_alt = NULL; 3315 rargs->res_mblk = NULL; 3316 rargs->res_uiop = NULL; 3317 rargs->res_maxsize = 0; 3318 if (uiop) 3319 rargs->res_uiop = uiop; 3320 else 3321 rargs->res_data_val_alt = base; 3322 rargs->res_maxsize = tsize; 3323 3324 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3325 #ifdef DEBUG 3326 if (nfs4read_error_inject) { 3327 res.status = nfs4read_error_inject; 3328 nfs4read_error_inject = 0; 3329 } 3330 #endif 3331 3332 if (mi->mi_io_kstats) { 3333 mutex_enter(&mi->mi_lock); 3334 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3335 mutex_exit(&mi->mi_lock); 3336 } 3337 3338 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3339 if (e.error != 0 && !needrecov) { 3340 nfs4_end_fop(mi, vp, NULL, OH_READ, 3341 &recov_state, needrecov); 3342 return (e.error); 3343 } 3344 3345 /* 3346 * Do proper retry for OLD and BAD stateid errors outside 3347 * of the normal recovery framework. There are two differences 3348 * between async and sync reads. The first is that we allow 3349 * retry on BAD_STATEID for async reads, but not sync reads. 3350 * The second is that we mark the file dead for a failed 3351 * attempt with a special stateid for sync reads, but just 3352 * return EIO for async reads. 3353 * 3354 * If a sync read receives a BAD stateid error while using a 3355 * delegation stateid, retry using the open stateid (if it 3356 * exists). If it doesn't have an open stateid, reopen the 3357 * file first, then retry. 3358 */ 3359 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3360 res.status == NFS4ERR_BAD_STATEID) && async) { 3361 nfs4_end_fop(mi, vp, NULL, OH_READ, 3362 &recov_state, needrecov); 3363 if (sid_types.cur_sid_type == SPEC_SID) { 3364 (void) xdr_free(xdr_COMPOUND4res_clnt, 3365 (caddr_t)&res); 3366 return (EIO); 3367 } 3368 nfs4_save_stateid(&rargs->stateid, &sid_types); 3369 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3370 goto recov_retry; 3371 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3372 !async && sid_types.cur_sid_type != SPEC_SID) { 3373 nfs4_save_stateid(&rargs->stateid, &sid_types); 3374 nfs4_end_fop(mi, vp, NULL, OH_READ, 3375 &recov_state, needrecov); 3376 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3377 goto recov_retry; 3378 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3379 sid_types.cur_sid_type == DEL_SID) { 3380 nfs4_save_stateid(&rargs->stateid, &sid_types); 3381 mutex_enter(&rp->r_statev4_lock); 3382 rp->r_deleg_return_pending = TRUE; 3383 mutex_exit(&rp->r_statev4_lock); 3384 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3385 nfs4_end_fop(mi, vp, NULL, OH_READ, 3386 &recov_state, needrecov); 3387 (void) xdr_free(xdr_COMPOUND4res_clnt, 3388 (caddr_t)&res); 3389 return (EIO); 3390 } 3391 nfs4_end_fop(mi, vp, NULL, OH_READ, 3392 &recov_state, needrecov); 3393 /* hold needed for nfs4delegreturn_thread */ 3394 VN_HOLD(vp); 3395 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3396 NFS4_DR_DISCARD), FALSE); 3397 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3398 goto recov_retry; 3399 } 3400 if (needrecov) { 3401 bool_t abort; 3402 3403 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3404 "nfs4read: initiating recovery\n")); 3405 3406 abort = nfs4_start_recovery(&e, 3407 mi, vp, NULL, &rargs->stateid, 3408 NULL, OP_READ, NULL); 3409 nfs4_end_fop(mi, vp, NULL, OH_READ, 3410 &recov_state, needrecov); 3411 /* 3412 * Do not retry if we got OLD_STATEID using a special 3413 * stateid. This avoids looping with a broken server. 3414 */ 3415 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3416 sid_types.cur_sid_type == SPEC_SID) 3417 abort = TRUE; 3418 3419 if (abort == FALSE) { 3420 /* 3421 * Need to retry all possible stateids in 3422 * case the recovery error wasn't stateid 3423 * related or the stateids have become 3424 * stale (server reboot). 3425 */ 3426 nfs4_init_stateid_types(&sid_types); 3427 (void) xdr_free(xdr_COMPOUND4res_clnt, 3428 (caddr_t)&res); 3429 goto recov_retry; 3430 } 3431 3432 if (!e.error) { 3433 e.error = geterrno4(res.status); 3434 (void) xdr_free(xdr_COMPOUND4res_clnt, 3435 (caddr_t)&res); 3436 } 3437 return (e.error); 3438 } 3439 3440 if (res.status) { 3441 e.error = geterrno4(res.status); 3442 nfs4_end_fop(mi, vp, NULL, OH_READ, 3443 &recov_state, needrecov); 3444 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3445 return (e.error); 3446 } 3447 3448 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3449 count -= data_len; 3450 if (base) 3451 base += data_len; 3452 offset += data_len; 3453 if (mi->mi_io_kstats) { 3454 mutex_enter(&mi->mi_lock); 3455 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3456 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3457 mutex_exit(&mi->mi_lock); 3458 } 3459 lwp_stat_update(LWP_STAT_INBLK, 1); 3460 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3461 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3462 3463 } while (count && !is_eof); 3464 3465 *residp = count; 3466 3467 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3468 3469 return (e.error); 3470 } 3471 3472 /* ARGSUSED */ 3473 static int 3474 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) 3475 { 3476 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3477 return (EIO); 3478 switch (cmd) { 3479 case _FIODIRECTIO: 3480 return (nfs4_directio(vp, (int)arg, cr)); 3481 default: 3482 return (ENOTTY); 3483 } 3484 } 3485 3486 static int 3487 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 3488 { 3489 int error; 3490 rnode4_t *rp = VTOR4(vp); 3491 3492 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3493 return (EIO); 3494 /* 3495 * If it has been specified that the return value will 3496 * just be used as a hint, and we are only being asked 3497 * for size, fsid or rdevid, then return the client's 3498 * notion of these values without checking to make sure 3499 * that the attribute cache is up to date. 3500 * The whole point is to avoid an over the wire GETATTR 3501 * call. 3502 */ 3503 if (flags & ATTR_HINT) { 3504 if (vap->va_mask == 3505 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 3506 mutex_enter(&rp->r_statelock); 3507 if (vap->va_mask | AT_SIZE) 3508 vap->va_size = rp->r_size; 3509 if (vap->va_mask | AT_FSID) 3510 vap->va_fsid = rp->r_attr.va_fsid; 3511 if (vap->va_mask | AT_RDEV) 3512 vap->va_rdev = rp->r_attr.va_rdev; 3513 mutex_exit(&rp->r_statelock); 3514 return (0); 3515 } 3516 } 3517 3518 /* 3519 * Only need to flush pages if asking for the mtime 3520 * and if there any dirty pages or any outstanding 3521 * asynchronous (write) requests for this file. 3522 */ 3523 if (vap->va_mask & AT_MTIME) { 3524 rp = VTOR4(vp); 3525 if (nfs4_has_pages(vp)) { 3526 mutex_enter(&rp->r_statev4_lock); 3527 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3528 mutex_exit(&rp->r_statev4_lock); 3529 if (rp->r_flags & R4DIRTY || 3530 rp->r_awcount > 0) { 3531 mutex_enter(&rp->r_statelock); 3532 rp->r_gcount++; 3533 mutex_exit(&rp->r_statelock); 3534 error = 3535 nfs4_putpage(vp, (u_offset_t)0, 3536 0, 0, cr); 3537 mutex_enter(&rp->r_statelock); 3538 if (error && (error == ENOSPC || 3539 error == EDQUOT)) { 3540 if (!rp->r_error) 3541 rp->r_error = error; 3542 } 3543 if (--rp->r_gcount == 0) 3544 cv_broadcast(&rp->r_cv); 3545 mutex_exit(&rp->r_statelock); 3546 } 3547 } else { 3548 mutex_exit(&rp->r_statev4_lock); 3549 } 3550 } 3551 } 3552 return (nfs4getattr(vp, vap, cr)); 3553 } 3554 3555 int 3556 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3557 { 3558 /* 3559 * If these are the only two bits cleared 3560 * on the server then return 0 (OK) else 3561 * return 1 (BAD). 3562 */ 3563 on_client &= ~(S_ISUID|S_ISGID); 3564 if (on_client == from_server) 3565 return (0); 3566 else 3567 return (1); 3568 } 3569 3570 /*ARGSUSED4*/ 3571 static int 3572 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3573 caller_context_t *ct) 3574 { 3575 if (vap->va_mask & AT_NOSET) 3576 return (EINVAL); 3577 3578 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3579 return (EIO); 3580 3581 /* 3582 * Don't call secpolicy_vnode_setattr, the client cannot 3583 * use its cached attributes to make security decisions 3584 * as the server may be faking mode bits or mapping uid/gid. 3585 * Always just let the server to the checking. 3586 * If we provide the ability to remove basic priviledges 3587 * to setattr (e.g. basic without chmod) then we will 3588 * need to add a check here before calling the server. 3589 */ 3590 3591 return (nfs4setattr(vp, vap, flags, cr, NULL)); 3592 } 3593 3594 /* 3595 * To replace the "guarded" version 3 setattr, we use two types of compound 3596 * setattr requests: 3597 * 1. The "normal" setattr, used when the size of the file isn't being 3598 * changed - { Putfh <fh>; Setattr; Getattr }/ 3599 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3600 * with only ctime as the argument. If the server ctime differs from 3601 * what is cached on the client, the verify will fail, but we would 3602 * already have the ctime from the preceding getattr, so just set it 3603 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3604 * Setattr; Getattr }. 3605 * 3606 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3607 * this setattr and NULL if they are not. 3608 */ 3609 static int 3610 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3611 vsecattr_t *vsap) 3612 { 3613 COMPOUND4args_clnt args; 3614 COMPOUND4res_clnt res, *resp = NULL; 3615 nfs4_ga_res_t *garp = NULL; 3616 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3617 nfs_argop4 argop[5]; 3618 int verify_argop = -1; 3619 int setattr_argop = 1; 3620 nfs_resop4 *resop; 3621 vattr_t va; 3622 rnode4_t *rp; 3623 int doqueue = 1; 3624 uint_t mask = vap->va_mask; 3625 mode_t omode; 3626 vsecattr_t *vsp; 3627 timestruc_t ctime; 3628 bool_t needrecov = FALSE; 3629 nfs4_recov_state_t recov_state; 3630 nfs4_stateid_types_t sid_types; 3631 stateid4 stateid; 3632 hrtime_t t; 3633 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3634 servinfo4_t *svp; 3635 bitmap4 supp_attrs; 3636 3637 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3638 rp = VTOR4(vp); 3639 nfs4_init_stateid_types(&sid_types); 3640 3641 /* 3642 * Only need to flush pages if there are any pages and 3643 * if the file is marked as dirty in some fashion. The 3644 * file must be flushed so that we can accurately 3645 * determine the size of the file and the cached data 3646 * after the SETATTR returns. A file is considered to 3647 * be dirty if it is either marked with R4DIRTY, has 3648 * outstanding i/o's active, or is mmap'd. In this 3649 * last case, we can't tell whether there are dirty 3650 * pages, so we flush just to be sure. 3651 */ 3652 if (nfs4_has_pages(vp) && 3653 ((rp->r_flags & R4DIRTY) || 3654 rp->r_count > 0 || 3655 rp->r_mapcnt > 0)) { 3656 ASSERT(vp->v_type != VCHR); 3657 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr); 3658 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3659 mutex_enter(&rp->r_statelock); 3660 if (!rp->r_error) 3661 rp->r_error = e.error; 3662 mutex_exit(&rp->r_statelock); 3663 } 3664 } 3665 3666 if (mask & AT_SIZE) { 3667 /* 3668 * Verification setattr compound for non-deleg AT_SIZE: 3669 * { Putfh; Getattr; Verify; Setattr; Getattr } 3670 * Set ctime local here (outside the do_again label) 3671 * so that subsequent retries (after failed VERIFY) 3672 * will use ctime from GETATTR results (from failed 3673 * verify compound) as VERIFY arg. 3674 * If file has delegation, then VERIFY(time_metadata) 3675 * is of little added value, so don't bother. 3676 */ 3677 mutex_enter(&rp->r_statev4_lock); 3678 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3679 rp->r_deleg_return_pending) { 3680 numops = 5; 3681 ctime = rp->r_attr.va_ctime; 3682 } 3683 mutex_exit(&rp->r_statev4_lock); 3684 } 3685 3686 recov_state.rs_flags = 0; 3687 recov_state.rs_num_retry_despite_err = 0; 3688 3689 args.ctag = TAG_SETATTR; 3690 do_again: 3691 recov_retry: 3692 setattr_argop = numops - 2; 3693 3694 args.array = argop; 3695 args.array_len = numops; 3696 3697 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3698 if (e.error) 3699 return (e.error); 3700 3701 3702 /* putfh target fh */ 3703 argop[0].argop = OP_CPUTFH; 3704 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3705 3706 if (numops == 5) { 3707 /* 3708 * We only care about the ctime, but need to get mtime 3709 * and size for proper cache update. 3710 */ 3711 /* getattr */ 3712 argop[1].argop = OP_GETATTR; 3713 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3714 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3715 3716 /* verify - set later in loop */ 3717 verify_argop = 2; 3718 } 3719 3720 /* setattr */ 3721 svp = rp->r_server; 3722 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3723 supp_attrs = svp->sv_supp_attrs; 3724 nfs_rw_exit(&svp->sv_lock); 3725 3726 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3727 supp_attrs, &e.error, &sid_types); 3728 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3729 if (e.error) { 3730 /* req time field(s) overflow - return immediately */ 3731 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3732 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3733 opsetattr.obj_attributes); 3734 return (e.error); 3735 } 3736 omode = rp->r_attr.va_mode; 3737 3738 /* getattr */ 3739 argop[numops-1].argop = OP_GETATTR; 3740 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3741 /* 3742 * If we are setting the ACL (indicated only by vsap != NULL), request 3743 * the ACL in this getattr. The ACL returned from this getattr will be 3744 * used in updating the ACL cache. 3745 */ 3746 if (vsap != NULL) 3747 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3748 FATTR4_ACL_MASK; 3749 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3750 3751 /* 3752 * setattr iterates if the object size is set and the cached ctime 3753 * does not match the file ctime. In that case, verify the ctime first. 3754 */ 3755 3756 do { 3757 if (verify_argop != -1) { 3758 /* 3759 * Verify that the ctime match before doing setattr. 3760 */ 3761 va.va_mask = AT_CTIME; 3762 va.va_ctime = ctime; 3763 svp = rp->r_server; 3764 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3765 supp_attrs = svp->sv_supp_attrs; 3766 nfs_rw_exit(&svp->sv_lock); 3767 e.error = nfs4args_verify(&argop[verify_argop], &va, 3768 OP_VERIFY, supp_attrs); 3769 if (e.error) { 3770 /* req time field(s) overflow - return */ 3771 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3772 needrecov); 3773 break; 3774 } 3775 } 3776 3777 doqueue = 1; 3778 3779 t = gethrtime(); 3780 3781 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3782 3783 /* 3784 * Purge the access cache and ACL cache if changing either the 3785 * owner of the file, the group owner, or the mode. These may 3786 * change the access permissions of the file, so purge old 3787 * information and start over again. 3788 */ 3789 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3790 (void) nfs4_access_purge_rp(rp); 3791 if (rp->r_secattr != NULL) { 3792 mutex_enter(&rp->r_statelock); 3793 vsp = rp->r_secattr; 3794 rp->r_secattr = NULL; 3795 mutex_exit(&rp->r_statelock); 3796 if (vsp != NULL) 3797 nfs4_acl_free_cache(vsp); 3798 } 3799 } 3800 3801 /* 3802 * If res.array_len == numops, then everything succeeded, 3803 * except for possibly the final getattr. If only the 3804 * last getattr failed, give up, and don't try recovery. 3805 */ 3806 if (res.array_len == numops) { 3807 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3808 needrecov); 3809 if (! e.error) 3810 resp = &res; 3811 break; 3812 } 3813 3814 /* 3815 * if either rpc call failed or completely succeeded - done 3816 */ 3817 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3818 if (e.error) { 3819 PURGE_ATTRCACHE4(vp); 3820 if (!needrecov) { 3821 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3822 needrecov); 3823 break; 3824 } 3825 } 3826 3827 /* 3828 * Do proper retry for OLD_STATEID outside of the normal 3829 * recovery framework. 3830 */ 3831 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3832 sid_types.cur_sid_type != SPEC_SID && 3833 sid_types.cur_sid_type != NO_SID) { 3834 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3835 needrecov); 3836 nfs4_save_stateid(&stateid, &sid_types); 3837 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3838 opsetattr.obj_attributes); 3839 if (verify_argop != -1) { 3840 nfs4args_verify_free(&argop[verify_argop]); 3841 verify_argop = -1; 3842 } 3843 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3844 goto recov_retry; 3845 } 3846 3847 if (needrecov) { 3848 bool_t abort; 3849 3850 abort = nfs4_start_recovery(&e, 3851 VTOMI4(vp), vp, NULL, NULL, NULL, 3852 OP_SETATTR, NULL); 3853 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3854 needrecov); 3855 /* 3856 * Do not retry if we failed with OLD_STATEID using 3857 * a special stateid. This is done to avoid looping 3858 * with a broken server. 3859 */ 3860 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3861 (sid_types.cur_sid_type == SPEC_SID || 3862 sid_types.cur_sid_type == NO_SID)) 3863 abort = TRUE; 3864 if (!e.error) { 3865 if (res.status == NFS4ERR_BADOWNER) 3866 nfs4_log_badowner(VTOMI4(vp), 3867 OP_SETATTR); 3868 3869 e.error = geterrno4(res.status); 3870 (void) xdr_free(xdr_COMPOUND4res_clnt, 3871 (caddr_t)&res); 3872 } 3873 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3874 opsetattr.obj_attributes); 3875 if (verify_argop != -1) { 3876 nfs4args_verify_free(&argop[verify_argop]); 3877 verify_argop = -1; 3878 } 3879 if (abort == FALSE) { 3880 /* 3881 * Need to retry all possible stateids in 3882 * case the recovery error wasn't stateid 3883 * related or the stateids have become 3884 * stale (server reboot). 3885 */ 3886 nfs4_init_stateid_types(&sid_types); 3887 goto recov_retry; 3888 } 3889 return (e.error); 3890 } 3891 3892 /* 3893 * Need to call nfs4_end_op before nfs4getattr to 3894 * avoid potential nfs4_start_op deadlock. See RFE 3895 * 4777612. Calls to nfs4_invalidate_pages() and 3896 * nfs4_purge_stale_fh() might also generate over the 3897 * wire calls which my cause nfs4_start_op() deadlock. 3898 */ 3899 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3900 3901 /* 3902 * Check to update lease. 3903 */ 3904 resp = &res; 3905 if (res.status == NFS4_OK) { 3906 break; 3907 } 3908 3909 /* 3910 * Check if verify failed to see if try again 3911 */ 3912 if ((verify_argop == -1) || (res.array_len != 3)) { 3913 /* 3914 * can't continue... 3915 */ 3916 if (res.status == NFS4ERR_BADOWNER) 3917 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 3918 3919 e.error = geterrno4(res.status); 3920 } else { 3921 /* 3922 * When the verify request fails, the client ctime is 3923 * not in sync with the server. This is the same as 3924 * the version 3 "not synchronized" error, and we 3925 * handle it in a similar manner (XXX do we need to???). 3926 * Use the ctime returned in the first getattr for 3927 * the input to the next verify. 3928 * If we couldn't get the attributes, then we give up 3929 * because we can't complete the operation as required. 3930 */ 3931 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 3932 } 3933 if (e.error) { 3934 PURGE_ATTRCACHE4(vp); 3935 nfs4_purge_stale_fh(e.error, vp, cr); 3936 } else { 3937 /* 3938 * retry with a new verify value 3939 */ 3940 ctime = garp->n4g_va.va_ctime; 3941 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3942 resp = NULL; 3943 } 3944 if (!e.error) { 3945 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3946 opsetattr.obj_attributes); 3947 if (verify_argop != -1) { 3948 nfs4args_verify_free(&argop[verify_argop]); 3949 verify_argop = -1; 3950 } 3951 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3952 goto do_again; 3953 } 3954 } while (!e.error); 3955 3956 if (e.error) { 3957 /* 3958 * If we are here, rfs4call has an irrecoverable error - return 3959 */ 3960 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3961 opsetattr.obj_attributes); 3962 if (verify_argop != -1) { 3963 nfs4args_verify_free(&argop[verify_argop]); 3964 verify_argop = -1; 3965 } 3966 if (resp) 3967 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 3968 return (e.error); 3969 } 3970 3971 3972 3973 /* 3974 * If changing the size of the file, invalidate 3975 * any local cached data which is no longer part 3976 * of the file. We also possibly invalidate the 3977 * last page in the file. We could use 3978 * pvn_vpzero(), but this would mark the page as 3979 * modified and require it to be written back to 3980 * the server for no particularly good reason. 3981 * This way, if we access it, then we bring it 3982 * back in. A read should be cheaper than a 3983 * write. 3984 */ 3985 if (mask & AT_SIZE) { 3986 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 3987 } 3988 3989 /* either no error or one of the postop getattr failed */ 3990 3991 /* 3992 * XXX Perform a simplified version of wcc checking. Instead of 3993 * have another getattr to get pre-op, just purge cache if 3994 * any of the ops prior to and including the getattr failed. 3995 * If the getattr succeeded then update the attrcache accordingly. 3996 */ 3997 3998 garp = NULL; 3999 if (res.status == NFS4_OK) { 4000 /* 4001 * Last getattr 4002 */ 4003 resop = &res.array[numops - 1]; 4004 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4005 } 4006 /* 4007 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4008 * rather than filling it. See the function itself for details. 4009 */ 4010 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4011 if (garp != NULL) { 4012 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4013 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4014 vs_ace4_destroy(&garp->n4g_vsa); 4015 } else { 4016 if (vsap != NULL) { 4017 /* 4018 * The ACL was supposed to be set and to be 4019 * returned in the last getattr of this 4020 * compound, but for some reason the getattr 4021 * result doesn't contain the ACL. In this 4022 * case, purge the ACL cache. 4023 */ 4024 if (rp->r_secattr != NULL) { 4025 mutex_enter(&rp->r_statelock); 4026 vsp = rp->r_secattr; 4027 rp->r_secattr = NULL; 4028 mutex_exit(&rp->r_statelock); 4029 if (vsp != NULL) 4030 nfs4_acl_free_cache(vsp); 4031 } 4032 } 4033 } 4034 } 4035 4036 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4037 /* 4038 * Set the size, rather than relying on getting it updated 4039 * via a GETATTR. With delegations the client tries to 4040 * suppress GETATTR calls. 4041 */ 4042 mutex_enter(&rp->r_statelock); 4043 rp->r_size = vap->va_size; 4044 mutex_exit(&rp->r_statelock); 4045 } 4046 4047 /* 4048 * Can free up request args and res 4049 */ 4050 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4051 opsetattr.obj_attributes); 4052 if (verify_argop != -1) { 4053 nfs4args_verify_free(&argop[verify_argop]); 4054 verify_argop = -1; 4055 } 4056 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4057 4058 /* 4059 * Some servers will change the mode to clear the setuid 4060 * and setgid bits when changing the uid or gid. The 4061 * client needs to compensate appropriately. 4062 */ 4063 if (mask & (AT_UID | AT_GID)) { 4064 int terror, do_setattr; 4065 4066 do_setattr = 0; 4067 va.va_mask = AT_MODE; 4068 terror = nfs4getattr(vp, &va, cr); 4069 if (!terror && 4070 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4071 (!(mask & AT_MODE) && va.va_mode != omode))) { 4072 va.va_mask = AT_MODE; 4073 if (mask & AT_MODE) { 4074 /* 4075 * We asked the mode to be changed and what 4076 * we just got from the server in getattr is 4077 * not what we wanted it to be, so set it now. 4078 */ 4079 va.va_mode = vap->va_mode; 4080 do_setattr = 1; 4081 } else { 4082 /* 4083 * We did not ask the mode to be changed, 4084 * Check to see that the server just cleared 4085 * I_SUID and I_GUID from it. If not then 4086 * set mode to omode with UID/GID cleared. 4087 */ 4088 if (nfs4_compare_modes(va.va_mode, omode)) { 4089 omode &= ~(S_ISUID|S_ISGID); 4090 va.va_mode = omode; 4091 do_setattr = 1; 4092 } 4093 } 4094 4095 if (do_setattr) 4096 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4097 } 4098 } 4099 4100 return (e.error); 4101 } 4102 4103 /* ARGSUSED */ 4104 static int 4105 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr) 4106 { 4107 COMPOUND4args_clnt args; 4108 COMPOUND4res_clnt res; 4109 int doqueue; 4110 uint32_t acc, resacc, argacc; 4111 rnode4_t *rp; 4112 cred_t *cred, *ncr, *ncrfree = NULL; 4113 nfs4_access_type_t cacc; 4114 int num_ops; 4115 nfs_argop4 argop[3]; 4116 nfs_resop4 *resop; 4117 bool_t needrecov = FALSE, do_getattr; 4118 nfs4_recov_state_t recov_state; 4119 int rpc_error; 4120 hrtime_t t; 4121 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4122 mntinfo4_t *mi = VTOMI4(vp); 4123 4124 if (nfs_zone() != mi->mi_zone) 4125 return (EIO); 4126 4127 acc = 0; 4128 if (mode & VREAD) 4129 acc |= ACCESS4_READ; 4130 if (mode & VWRITE) { 4131 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4132 return (EROFS); 4133 if (vp->v_type == VDIR) 4134 acc |= ACCESS4_DELETE; 4135 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4136 } 4137 if (mode & VEXEC) { 4138 if (vp->v_type == VDIR) 4139 acc |= ACCESS4_LOOKUP; 4140 else 4141 acc |= ACCESS4_EXECUTE; 4142 } 4143 4144 if (VTOR4(vp)->r_acache != NULL) { 4145 e.error = nfs4_validate_caches(vp, cr); 4146 if (e.error) 4147 return (e.error); 4148 } 4149 4150 rp = VTOR4(vp); 4151 if (vp->v_type == VDIR) { 4152 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4153 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4154 } else { 4155 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4156 ACCESS4_EXECUTE; 4157 } 4158 recov_state.rs_flags = 0; 4159 recov_state.rs_num_retry_despite_err = 0; 4160 4161 cred = cr; 4162 /* 4163 * ncr and ncrfree both initially 4164 * point to the memory area returned 4165 * by crnetadjust(); 4166 * ncrfree not NULL when exiting means 4167 * that we need to release it 4168 */ 4169 ncr = crnetadjust(cred); 4170 ncrfree = ncr; 4171 4172 tryagain: 4173 cacc = nfs4_access_check(rp, acc, cred); 4174 if (cacc == NFS4_ACCESS_ALLOWED) { 4175 if (ncrfree != NULL) 4176 crfree(ncrfree); 4177 return (0); 4178 } 4179 if (cacc == NFS4_ACCESS_DENIED) { 4180 /* 4181 * If the cred can be adjusted, try again 4182 * with the new cred. 4183 */ 4184 if (ncr != NULL) { 4185 cred = ncr; 4186 ncr = NULL; 4187 goto tryagain; 4188 } 4189 if (ncrfree != NULL) 4190 crfree(ncrfree); 4191 return (EACCES); 4192 } 4193 4194 recov_retry: 4195 /* 4196 * Don't take with r_statev4_lock here. r_deleg_type could 4197 * change as soon as lock is released. Since it is an int, 4198 * there is no atomicity issue. 4199 */ 4200 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4201 num_ops = do_getattr ? 3 : 2; 4202 4203 args.ctag = TAG_ACCESS; 4204 4205 args.array_len = num_ops; 4206 args.array = argop; 4207 4208 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4209 &recov_state, NULL)) { 4210 if (ncrfree != NULL) 4211 crfree(ncrfree); 4212 return (e.error); 4213 } 4214 4215 /* putfh target fh */ 4216 argop[0].argop = OP_CPUTFH; 4217 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4218 4219 /* access */ 4220 argop[1].argop = OP_ACCESS; 4221 argop[1].nfs_argop4_u.opaccess.access = argacc; 4222 4223 /* getattr */ 4224 if (do_getattr) { 4225 argop[2].argop = OP_GETATTR; 4226 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4227 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4228 } 4229 4230 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4231 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4232 rnode4info(VTOR4(vp)))); 4233 4234 doqueue = 1; 4235 t = gethrtime(); 4236 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4237 rpc_error = e.error; 4238 4239 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4240 if (needrecov) { 4241 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4242 "nfs4_access: initiating recovery\n")); 4243 4244 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4245 NULL, OP_ACCESS, NULL) == FALSE) { 4246 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4247 &recov_state, needrecov); 4248 if (!e.error) 4249 (void) xdr_free(xdr_COMPOUND4res_clnt, 4250 (caddr_t)&res); 4251 goto recov_retry; 4252 } 4253 } 4254 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4255 4256 if (e.error) 4257 goto out; 4258 4259 if (res.status) { 4260 e.error = geterrno4(res.status); 4261 /* 4262 * This might generate over the wire calls throught 4263 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4264 * here to avoid a deadlock. 4265 */ 4266 nfs4_purge_stale_fh(e.error, vp, cr); 4267 goto out; 4268 } 4269 resop = &res.array[1]; /* access res */ 4270 4271 resacc = resop->nfs_resop4_u.opaccess.access; 4272 4273 if (do_getattr) { 4274 resop++; /* getattr res */ 4275 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4276 t, cr, FALSE, NULL); 4277 } 4278 4279 if (!e.error) { 4280 nfs4_access_cache(rp, argacc, resacc, cred); 4281 /* 4282 * we just cached results with cred; if cred is the 4283 * adjusted credentials from crnetadjust, we do not want 4284 * to release them before exiting: hence setting ncrfree 4285 * to NULL 4286 */ 4287 if (cred != cr) 4288 ncrfree = NULL; 4289 /* XXX check the supported bits too? */ 4290 if ((acc & resacc) != acc) { 4291 /* 4292 * The following code implements the semantic 4293 * that a setuid root program has *at least* the 4294 * permissions of the user that is running the 4295 * program. See rfs3call() for more portions 4296 * of the implementation of this functionality. 4297 */ 4298 /* XXX-LP */ 4299 if (ncr != NULL) { 4300 (void) xdr_free(xdr_COMPOUND4res_clnt, 4301 (caddr_t)&res); 4302 cred = ncr; 4303 ncr = NULL; 4304 goto tryagain; 4305 } 4306 e.error = EACCES; 4307 } 4308 } 4309 4310 out: 4311 if (!rpc_error) 4312 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4313 4314 if (ncrfree != NULL) 4315 crfree(ncrfree); 4316 4317 return (e.error); 4318 } 4319 4320 static int 4321 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr) 4322 { 4323 COMPOUND4args_clnt args; 4324 COMPOUND4res_clnt res; 4325 int doqueue; 4326 rnode4_t *rp; 4327 nfs_argop4 argop[3]; 4328 nfs_resop4 *resop; 4329 READLINK4res *lr_res; 4330 nfs4_ga_res_t *garp; 4331 uint_t len; 4332 char *linkdata; 4333 bool_t needrecov = FALSE; 4334 nfs4_recov_state_t recov_state; 4335 hrtime_t t; 4336 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4337 4338 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4339 return (EIO); 4340 /* 4341 * Can't readlink anything other than a symbolic link. 4342 */ 4343 if (vp->v_type != VLNK) 4344 return (EINVAL); 4345 4346 rp = VTOR4(vp); 4347 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4348 e.error = nfs4_validate_caches(vp, cr); 4349 if (e.error) 4350 return (e.error); 4351 mutex_enter(&rp->r_statelock); 4352 if (rp->r_symlink.contents != NULL) { 4353 e.error = uiomove(rp->r_symlink.contents, 4354 rp->r_symlink.len, UIO_READ, uiop); 4355 mutex_exit(&rp->r_statelock); 4356 return (e.error); 4357 } 4358 mutex_exit(&rp->r_statelock); 4359 } 4360 recov_state.rs_flags = 0; 4361 recov_state.rs_num_retry_despite_err = 0; 4362 4363 recov_retry: 4364 args.array_len = 3; 4365 args.array = argop; 4366 args.ctag = TAG_READLINK; 4367 4368 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4369 if (e.error) { 4370 return (e.error); 4371 } 4372 4373 /* 0. putfh symlink fh */ 4374 argop[0].argop = OP_CPUTFH; 4375 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4376 4377 /* 1. readlink */ 4378 argop[1].argop = OP_READLINK; 4379 4380 /* 2. getattr */ 4381 argop[2].argop = OP_GETATTR; 4382 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4383 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4384 4385 doqueue = 1; 4386 4387 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4388 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4389 rnode4info(VTOR4(vp)))); 4390 4391 t = gethrtime(); 4392 4393 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4394 4395 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4396 if (needrecov) { 4397 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4398 "nfs4_readlink: initiating recovery\n")); 4399 4400 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4401 NULL, OP_READLINK, NULL) == FALSE) { 4402 if (!e.error) 4403 (void) xdr_free(xdr_COMPOUND4res_clnt, 4404 (caddr_t)&res); 4405 4406 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4407 needrecov); 4408 goto recov_retry; 4409 } 4410 } 4411 4412 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4413 4414 if (e.error) 4415 return (e.error); 4416 4417 /* 4418 * There is an path in the code below which calls 4419 * nfs4_purge_stale_fh(), which may generate otw calls through 4420 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4421 * here to avoid nfs4_start_op() deadlock. 4422 */ 4423 4424 if (res.status && (res.array_len < args.array_len)) { 4425 /* 4426 * either Putfh or Link failed 4427 */ 4428 e.error = geterrno4(res.status); 4429 nfs4_purge_stale_fh(e.error, vp, cr); 4430 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4431 return (e.error); 4432 } 4433 4434 resop = &res.array[1]; /* readlink res */ 4435 lr_res = &resop->nfs_resop4_u.opreadlink; 4436 4437 /* 4438 * treat symlink names as data 4439 */ 4440 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4441 if (linkdata != NULL) { 4442 int uio_len = len - 1; 4443 /* len includes null byte, which we won't uiomove */ 4444 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4445 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4446 mutex_enter(&rp->r_statelock); 4447 if (rp->r_symlink.contents == NULL) { 4448 rp->r_symlink.contents = linkdata; 4449 rp->r_symlink.len = uio_len; 4450 rp->r_symlink.size = len; 4451 mutex_exit(&rp->r_statelock); 4452 } else { 4453 mutex_exit(&rp->r_statelock); 4454 kmem_free(linkdata, len); 4455 } 4456 } else { 4457 kmem_free(linkdata, len); 4458 } 4459 } 4460 if (res.status == NFS4_OK) { 4461 resop++; /* getattr res */ 4462 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4463 } 4464 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4465 4466 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4467 4468 /* 4469 * The over the wire error for attempting to readlink something 4470 * other than a symbolic link is ENXIO. However, we need to 4471 * return EINVAL instead of ENXIO, so we map it here. 4472 */ 4473 return (e.error == ENXIO ? EINVAL : e.error); 4474 } 4475 4476 /* 4477 * Flush local dirty pages to stable storage on the server. 4478 * 4479 * If FNODSYNC is specified, then there is nothing to do because 4480 * metadata changes are not cached on the client before being 4481 * sent to the server. 4482 */ 4483 static int 4484 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr) 4485 { 4486 int error; 4487 4488 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4489 return (0); 4490 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4491 return (EIO); 4492 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4493 if (!error) 4494 error = VTOR4(vp)->r_error; 4495 return (error); 4496 } 4497 4498 /* 4499 * Weirdness: if the file was removed or the target of a rename 4500 * operation while it was open, it got renamed instead. Here we 4501 * remove the renamed file. 4502 */ 4503 static void 4504 nfs4_inactive(vnode_t *vp, cred_t *cr) 4505 { 4506 rnode4_t *rp; 4507 4508 ASSERT(vp != DNLC_NO_VNODE); 4509 4510 rp = VTOR4(vp); 4511 4512 if (IS_SHADOW(vp, rp)) { 4513 sv_inactive(vp); 4514 return; 4515 } 4516 4517 /* 4518 * If this is coming from the wrong zone, we let someone in the right 4519 * zone take care of it asynchronously. We can get here due to 4520 * VN_RELE() being called from pageout() or fsflush(). This call may 4521 * potentially turn into an expensive no-op if, for instance, v_count 4522 * gets incremented in the meantime, but it's still correct. 4523 */ 4524 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4525 nfs4_async_inactive(vp, cr); 4526 return; 4527 } 4528 4529 /* 4530 * Some of the cleanup steps might require over-the-wire 4531 * operations. Since VOP_INACTIVE can get called as a result of 4532 * other over-the-wire operations (e.g., an attribute cache update 4533 * can lead to a DNLC purge), doing those steps now would lead to a 4534 * nested call to the recovery framework, which can deadlock. So 4535 * do any over-the-wire cleanups asynchronously, in a separate 4536 * thread. 4537 */ 4538 4539 mutex_enter(&rp->r_os_lock); 4540 mutex_enter(&rp->r_statelock); 4541 mutex_enter(&rp->r_statev4_lock); 4542 4543 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4544 mutex_exit(&rp->r_statev4_lock); 4545 mutex_exit(&rp->r_statelock); 4546 mutex_exit(&rp->r_os_lock); 4547 nfs4_async_inactive(vp, cr); 4548 return; 4549 } 4550 4551 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4552 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4553 mutex_exit(&rp->r_statev4_lock); 4554 mutex_exit(&rp->r_statelock); 4555 mutex_exit(&rp->r_os_lock); 4556 nfs4_async_inactive(vp, cr); 4557 return; 4558 } 4559 4560 if (rp->r_unldvp != NULL) { 4561 mutex_exit(&rp->r_statev4_lock); 4562 mutex_exit(&rp->r_statelock); 4563 mutex_exit(&rp->r_os_lock); 4564 nfs4_async_inactive(vp, cr); 4565 return; 4566 } 4567 mutex_exit(&rp->r_statev4_lock); 4568 mutex_exit(&rp->r_statelock); 4569 mutex_exit(&rp->r_os_lock); 4570 4571 rp4_addfree(rp, cr); 4572 } 4573 4574 /* 4575 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4576 * various bits of state. The caller must not refer to vp after this call. 4577 */ 4578 4579 void 4580 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4581 { 4582 rnode4_t *rp = VTOR4(vp); 4583 nfs4_recov_state_t recov_state; 4584 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4585 vnode_t *unldvp; 4586 char *unlname; 4587 cred_t *unlcred; 4588 COMPOUND4args_clnt args; 4589 COMPOUND4res_clnt res, *resp; 4590 nfs_argop4 argop[2]; 4591 int doqueue; 4592 #ifdef DEBUG 4593 char *name; 4594 #endif 4595 4596 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4597 ASSERT(!IS_SHADOW(vp, rp)); 4598 4599 #ifdef DEBUG 4600 name = fn_name(VTOSV(vp)->sv_name); 4601 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4602 "release vnode %s", name)); 4603 kmem_free(name, MAXNAMELEN); 4604 #endif 4605 4606 if (vp->v_type == VREG) { 4607 bool_t recov_failed = FALSE; 4608 4609 e.error = nfs4close_all(vp, cr); 4610 if (e.error) { 4611 /* Check to see if recovery failed */ 4612 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4613 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4614 recov_failed = TRUE; 4615 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4616 if (!recov_failed) { 4617 mutex_enter(&rp->r_statelock); 4618 if (rp->r_flags & R4RECOVERR) 4619 recov_failed = TRUE; 4620 mutex_exit(&rp->r_statelock); 4621 } 4622 if (recov_failed) { 4623 NFS4_DEBUG(nfs4_client_recov_debug, 4624 (CE_NOTE, "nfs4_inactive_otw: " 4625 "close failed (recovery failure)")); 4626 } 4627 } 4628 } 4629 4630 redo: 4631 if (rp->r_unldvp == NULL) { 4632 rp4_addfree(rp, cr); 4633 return; 4634 } 4635 4636 /* 4637 * Save the vnode pointer for the directory where the 4638 * unlinked-open file got renamed, then set it to NULL 4639 * to prevent another thread from getting here before 4640 * we're done with the remove. While we have the 4641 * statelock, make local copies of the pertinent rnode 4642 * fields. If we weren't to do this in an atomic way, the 4643 * the unl* fields could become inconsistent with respect 4644 * to each other due to a race condition between this 4645 * code and nfs_remove(). See bug report 1034328. 4646 */ 4647 mutex_enter(&rp->r_statelock); 4648 if (rp->r_unldvp == NULL) { 4649 mutex_exit(&rp->r_statelock); 4650 rp4_addfree(rp, cr); 4651 return; 4652 } 4653 4654 unldvp = rp->r_unldvp; 4655 rp->r_unldvp = NULL; 4656 unlname = rp->r_unlname; 4657 rp->r_unlname = NULL; 4658 unlcred = rp->r_unlcred; 4659 rp->r_unlcred = NULL; 4660 mutex_exit(&rp->r_statelock); 4661 4662 /* 4663 * If there are any dirty pages left, then flush 4664 * them. This is unfortunate because they just 4665 * may get thrown away during the remove operation, 4666 * but we have to do this for correctness. 4667 */ 4668 if (nfs4_has_pages(vp) && 4669 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4670 ASSERT(vp->v_type != VCHR); 4671 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr); 4672 if (e.error) { 4673 mutex_enter(&rp->r_statelock); 4674 if (!rp->r_error) 4675 rp->r_error = e.error; 4676 mutex_exit(&rp->r_statelock); 4677 } 4678 } 4679 4680 recov_state.rs_flags = 0; 4681 recov_state.rs_num_retry_despite_err = 0; 4682 recov_retry_remove: 4683 /* 4684 * Do the remove operation on the renamed file 4685 */ 4686 args.ctag = TAG_INACTIVE; 4687 4688 /* 4689 * Remove ops: putfh dir; remove 4690 */ 4691 args.array_len = 2; 4692 args.array = argop; 4693 4694 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4695 if (e.error) { 4696 kmem_free(unlname, MAXNAMELEN); 4697 crfree(unlcred); 4698 VN_RELE(unldvp); 4699 /* 4700 * Try again; this time around r_unldvp will be NULL, so we'll 4701 * just call rp4_addfree() and return. 4702 */ 4703 goto redo; 4704 } 4705 4706 /* putfh directory */ 4707 argop[0].argop = OP_CPUTFH; 4708 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4709 4710 /* remove */ 4711 argop[1].argop = OP_CREMOVE; 4712 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4713 4714 doqueue = 1; 4715 resp = &res; 4716 4717 #if 0 /* notyet */ 4718 /* 4719 * Can't do this yet. We may be being called from 4720 * dnlc_purge_XXX while that routine is holding a 4721 * mutex lock to the nc_rele list. The calls to 4722 * nfs3_cache_wcc_data may result in calls to 4723 * dnlc_purge_XXX. This will result in a deadlock. 4724 */ 4725 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4726 if (e.error) { 4727 PURGE_ATTRCACHE4(unldvp); 4728 resp = NULL; 4729 } else if (res.status) { 4730 e.error = geterrno4(res.status); 4731 PURGE_ATTRCACHE4(unldvp); 4732 /* 4733 * This code is inactive right now 4734 * but if made active there should 4735 * be a nfs4_end_op() call before 4736 * nfs4_purge_stale_fh to avoid start_op() 4737 * deadlock. See BugId: 4948726 4738 */ 4739 nfs4_purge_stale_fh(error, unldvp, cr); 4740 } else { 4741 nfs_resop4 *resop; 4742 REMOVE4res *rm_res; 4743 4744 resop = &res.array[1]; 4745 rm_res = &resop->nfs_resop4_u.opremove; 4746 /* 4747 * Update directory cache attribute, 4748 * readdir and dnlc caches. 4749 */ 4750 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4751 } 4752 #else 4753 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4754 4755 PURGE_ATTRCACHE4(unldvp); 4756 #endif 4757 4758 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4759 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4760 NULL, NULL, OP_REMOVE, NULL) == FALSE) { 4761 if (!e.error) 4762 (void) xdr_free(xdr_COMPOUND4res_clnt, 4763 (caddr_t)&res); 4764 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4765 &recov_state, TRUE); 4766 goto recov_retry_remove; 4767 } 4768 } 4769 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4770 4771 /* 4772 * Release stuff held for the remove 4773 */ 4774 VN_RELE(unldvp); 4775 if (!e.error && resp) 4776 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4777 4778 kmem_free(unlname, MAXNAMELEN); 4779 crfree(unlcred); 4780 goto redo; 4781 } 4782 4783 /* 4784 * Remote file system operations having to do with directory manipulation. 4785 */ 4786 /* ARGSUSED3 */ 4787 static int 4788 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4789 int flags, vnode_t *rdir, cred_t *cr) 4790 { 4791 int error; 4792 vnode_t *vp, *avp = NULL; 4793 rnode4_t *drp; 4794 4795 *vpp = NULL; 4796 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4797 return (EPERM); 4798 /* 4799 * if LOOKUP_XATTR, must replace dvp (object) with 4800 * object's attrdir before continuing with lookup 4801 */ 4802 if (flags & LOOKUP_XATTR) { 4803 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4804 if (error) 4805 return (error); 4806 4807 dvp = avp; 4808 4809 /* 4810 * If lookup is for "", just return dvp now. The attrdir 4811 * has already been activated (from nfs4lookup_xattr), and 4812 * the caller will RELE the original dvp -- not 4813 * the attrdir. So, set vpp and return. 4814 * Currently, when the LOOKUP_XATTR flag is 4815 * passed to VOP_LOOKUP, the name is always empty, and 4816 * shortcircuiting here avoids 3 unneeded lock/unlock 4817 * pairs. 4818 * 4819 * If a non-empty name was provided, then it is the 4820 * attribute name, and it will be looked up below. 4821 */ 4822 if (*nm == '\0') { 4823 *vpp = dvp; 4824 return (0); 4825 } 4826 4827 /* 4828 * The vfs layer never sends a name when asking for the 4829 * attrdir, so we should never get here (unless of course 4830 * name is passed at some time in future -- at which time 4831 * we'll blow up here). 4832 */ 4833 ASSERT(0); 4834 } 4835 4836 drp = VTOR4(dvp); 4837 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4838 return (EINTR); 4839 4840 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4841 nfs_rw_exit(&drp->r_rwlock); 4842 4843 /* 4844 * If vnode is a device, create special vnode. 4845 */ 4846 if (!error && ISVDEV((*vpp)->v_type)) { 4847 vp = *vpp; 4848 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 4849 VN_RELE(vp); 4850 } 4851 4852 return (error); 4853 } 4854 4855 /* ARGSUSED */ 4856 static int 4857 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 4858 { 4859 int error; 4860 rnode4_t *drp; 4861 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 4862 mntinfo4_t *mi; 4863 4864 mi = VTOMI4(dvp); 4865 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR)) 4866 return (EINVAL); 4867 4868 drp = VTOR4(dvp); 4869 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4870 return (EINTR); 4871 4872 mutex_enter(&drp->r_statelock); 4873 /* 4874 * If the server doesn't support xattrs just return EINVAL 4875 */ 4876 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 4877 mutex_exit(&drp->r_statelock); 4878 nfs_rw_exit(&drp->r_rwlock); 4879 return (EINVAL); 4880 } 4881 4882 /* 4883 * If there is a cached xattr directory entry, 4884 * use it as long as the attributes are valid. If the 4885 * attributes are not valid, take the simple approach and 4886 * free the cached value and re-fetch a new value. 4887 * 4888 * We don't negative entry cache for now, if we did we 4889 * would need to check if the file has changed on every 4890 * lookup. But xattrs don't exist very often and failing 4891 * an openattr is not much more expensive than and NVERIFY or GETATTR 4892 * so do an openattr over the wire for now. 4893 */ 4894 if (drp->r_xattr_dir != NULL) { 4895 if (ATTRCACHE4_VALID(dvp)) { 4896 VN_HOLD(drp->r_xattr_dir); 4897 *vpp = drp->r_xattr_dir; 4898 mutex_exit(&drp->r_statelock); 4899 nfs_rw_exit(&drp->r_rwlock); 4900 return (0); 4901 } 4902 VN_RELE(drp->r_xattr_dir); 4903 drp->r_xattr_dir = NULL; 4904 } 4905 mutex_exit(&drp->r_statelock); 4906 4907 error = nfs4openattr(dvp, vpp, cflag, cr); 4908 4909 nfs_rw_exit(&drp->r_rwlock); 4910 4911 return (error); 4912 } 4913 4914 static int 4915 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 4916 { 4917 int error; 4918 rnode4_t *drp; 4919 4920 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 4921 4922 /* 4923 * If lookup is for "", just return dvp. Don't need 4924 * to send it over the wire, look it up in the dnlc, 4925 * or perform any access checks. 4926 */ 4927 if (*nm == '\0') { 4928 VN_HOLD(dvp); 4929 *vpp = dvp; 4930 return (0); 4931 } 4932 4933 /* 4934 * Can't do lookups in non-directories. 4935 */ 4936 if (dvp->v_type != VDIR) 4937 return (ENOTDIR); 4938 4939 /* 4940 * If lookup is for ".", just return dvp. Don't need 4941 * to send it over the wire or look it up in the dnlc, 4942 * just need to check access. 4943 */ 4944 if (nm[0] == '.' && nm[1] == '\0') { 4945 error = nfs4_access(dvp, VEXEC, 0, cr); 4946 if (error) 4947 return (error); 4948 VN_HOLD(dvp); 4949 *vpp = dvp; 4950 return (0); 4951 } 4952 4953 drp = VTOR4(dvp); 4954 if (!(drp->r_flags & R4LOOKUP)) { 4955 mutex_enter(&drp->r_statelock); 4956 drp->r_flags |= R4LOOKUP; 4957 mutex_exit(&drp->r_statelock); 4958 } 4959 4960 *vpp = NULL; 4961 /* 4962 * Lookup this name in the DNLC. If there is no entry 4963 * lookup over the wire. 4964 */ 4965 if (!skipdnlc) 4966 *vpp = dnlc_lookup(dvp, nm); 4967 if (*vpp == NULL) { 4968 /* 4969 * We need to go over the wire to lookup the name. 4970 */ 4971 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 4972 } 4973 4974 /* 4975 * We hit on the dnlc 4976 */ 4977 if (*vpp != DNLC_NO_VNODE || 4978 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 4979 /* 4980 * But our attrs may not be valid. 4981 */ 4982 if (ATTRCACHE4_VALID(dvp)) { 4983 error = nfs4_waitfor_purge_complete(dvp); 4984 if (error) { 4985 VN_RELE(*vpp); 4986 *vpp = NULL; 4987 return (error); 4988 } 4989 4990 /* 4991 * If after the purge completes, check to make sure 4992 * our attrs are still valid. 4993 */ 4994 if (ATTRCACHE4_VALID(dvp)) { 4995 /* 4996 * If we waited for a purge we may have 4997 * lost our vnode so look it up again. 4998 */ 4999 VN_RELE(*vpp); 5000 *vpp = dnlc_lookup(dvp, nm); 5001 if (*vpp == NULL) 5002 return (nfs4lookupnew_otw(dvp, 5003 nm, vpp, cr)); 5004 5005 /* 5006 * The access cache should almost always hit 5007 */ 5008 error = nfs4_access(dvp, VEXEC, 0, cr); 5009 5010 if (error) { 5011 VN_RELE(*vpp); 5012 *vpp = NULL; 5013 return (error); 5014 } 5015 if (*vpp == DNLC_NO_VNODE) { 5016 VN_RELE(*vpp); 5017 *vpp = NULL; 5018 return (ENOENT); 5019 } 5020 return (0); 5021 } 5022 } 5023 } 5024 5025 ASSERT(*vpp != NULL); 5026 5027 /* 5028 * We may have gotten here we have one of the following cases: 5029 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5030 * need to validate them. 5031 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5032 * must validate. 5033 * 5034 * Go to the server and check if the directory has changed, if 5035 * it hasn't we are done and can use the dnlc entry. 5036 */ 5037 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5038 } 5039 5040 /* 5041 * Go to the server and check if the directory has changed, if 5042 * it hasn't we are done and can use the dnlc entry. If it 5043 * has changed we get a new copy of its attributes and check 5044 * the access for VEXEC, then relookup the filename and 5045 * get its filehandle and attributes. 5046 * 5047 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5048 * if the NVERIFY failed we must 5049 * purge the caches 5050 * cache new attributes (will set r_time_attr_inval) 5051 * cache new access 5052 * recheck VEXEC access 5053 * add name to dnlc, possibly negative 5054 * if LOOKUP succeeded 5055 * cache new attributes 5056 * else 5057 * set a new r_time_attr_inval for dvp 5058 * check to make sure we have access 5059 * 5060 * The vpp returned is the vnode passed in if the directory is valid, 5061 * a new vnode if successful lookup, or NULL on error. 5062 */ 5063 static int 5064 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5065 { 5066 COMPOUND4args_clnt args; 5067 COMPOUND4res_clnt res; 5068 fattr4 *ver_fattr; 5069 fattr4_change dchange; 5070 int32_t *ptr; 5071 int argoplist_size = 7 * sizeof (nfs_argop4); 5072 nfs_argop4 *argop; 5073 int doqueue; 5074 mntinfo4_t *mi; 5075 nfs4_recov_state_t recov_state; 5076 hrtime_t t; 5077 int isdotdot; 5078 vnode_t *nvp; 5079 nfs_fh4 *fhp; 5080 nfs4_sharedfh_t *sfhp; 5081 nfs4_access_type_t cacc; 5082 rnode4_t *nrp; 5083 rnode4_t *drp = VTOR4(dvp); 5084 nfs4_ga_res_t *garp = NULL; 5085 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5086 5087 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5088 ASSERT(nm != NULL); 5089 ASSERT(nm[0] != '\0'); 5090 ASSERT(dvp->v_type == VDIR); 5091 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5092 ASSERT(*vpp != NULL); 5093 5094 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5095 isdotdot = 1; 5096 args.ctag = TAG_LOOKUP_VPARENT; 5097 } else { 5098 /* 5099 * Do not allow crossing of server mount points. The 5100 * only visible entries in a SRVSTUB dir are . and .. 5101 * This code handles the non-.. case. We can't even get 5102 * this far if looking up ".". 5103 */ 5104 if (VTOR4(dvp)->r_flags & R4SRVSTUB) { 5105 VN_RELE(*vpp); 5106 *vpp = NULL; 5107 return (ENOENT); 5108 } 5109 isdotdot = 0; 5110 args.ctag = TAG_LOOKUP_VALID; 5111 } 5112 5113 mi = VTOMI4(dvp); 5114 recov_state.rs_flags = 0; 5115 recov_state.rs_num_retry_despite_err = 0; 5116 5117 nvp = NULL; 5118 5119 /* Save the original mount point security information */ 5120 (void) save_mnt_secinfo(mi->mi_curr_serv); 5121 5122 recov_retry: 5123 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5124 &recov_state, NULL); 5125 if (e.error) { 5126 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5127 VN_RELE(*vpp); 5128 *vpp = NULL; 5129 return (e.error); 5130 } 5131 5132 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5133 5134 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5135 args.array_len = 7; 5136 args.array = argop; 5137 5138 /* 0. putfh file */ 5139 argop[0].argop = OP_CPUTFH; 5140 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5141 5142 /* 1. nverify the change info */ 5143 argop[1].argop = OP_NVERIFY; 5144 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5145 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5146 ver_fattr->attrlist4 = (char *)&dchange; 5147 ptr = (int32_t *)&dchange; 5148 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5149 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5150 5151 /* 2. getattr directory */ 5152 argop[2].argop = OP_GETATTR; 5153 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5154 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5155 5156 /* 3. access directory */ 5157 argop[3].argop = OP_ACCESS; 5158 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5159 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5160 5161 /* 4. lookup name */ 5162 if (isdotdot) { 5163 argop[4].argop = OP_LOOKUPP; 5164 } else { 5165 argop[4].argop = OP_CLOOKUP; 5166 argop[4].nfs_argop4_u.opclookup.cname = nm; 5167 } 5168 5169 /* 5. resulting file handle */ 5170 argop[5].argop = OP_GETFH; 5171 5172 /* 6. resulting file attributes */ 5173 argop[6].argop = OP_GETATTR; 5174 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5175 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5176 5177 doqueue = 1; 5178 t = gethrtime(); 5179 5180 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5181 5182 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5183 /* 5184 * For WRONGSEC of a non-dotdot case, send secinfo directly 5185 * from this thread, do not go thru the recovery thread since 5186 * we need the nm information. 5187 * 5188 * Not doing dotdot case because there is no specification 5189 * for (PUTFH, SECINFO "..") yet. 5190 */ 5191 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5192 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) { 5193 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5194 &recov_state, FALSE); 5195 } else { 5196 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5197 &recov_state, TRUE); 5198 } 5199 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5200 kmem_free(argop, argoplist_size); 5201 if (!e.error) 5202 goto recov_retry; 5203 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5204 VN_RELE(*vpp); 5205 *vpp = NULL; 5206 return (e.error); 5207 } 5208 5209 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5210 OP_LOOKUP, NULL) == FALSE) { 5211 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5212 &recov_state, TRUE); 5213 5214 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5215 kmem_free(argop, argoplist_size); 5216 goto recov_retry; 5217 } 5218 } 5219 5220 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5221 5222 if (e.error || res.array_len == 0) { 5223 /* 5224 * If e.error isn't set, then reply has no ops (or we couldn't 5225 * be here). The only legal way to reply without an op array 5226 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5227 * be in the reply for all other status values. 5228 * 5229 * For valid replies without an ops array, return ENOTSUP 5230 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5231 * return EIO -- don't trust status. 5232 */ 5233 if (e.error == 0) 5234 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5235 ENOTSUP : EIO; 5236 VN_RELE(*vpp); 5237 *vpp = NULL; 5238 kmem_free(argop, argoplist_size); 5239 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5240 return (e.error); 5241 } 5242 5243 if (res.status != NFS4ERR_SAME) { 5244 e.error = geterrno4(res.status); 5245 5246 /* 5247 * The NVERIFY "failed" so the directory has changed 5248 * First make sure PUTFH succeeded and NVERIFY "failed" 5249 * cleanly. 5250 */ 5251 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5252 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5253 nfs4_purge_stale_fh(e.error, dvp, cr); 5254 VN_RELE(*vpp); 5255 *vpp = NULL; 5256 goto exit; 5257 } 5258 5259 /* 5260 * We know the NVERIFY "failed" so we must: 5261 * purge the caches (access and indirectly dnlc if needed) 5262 */ 5263 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5264 5265 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5266 nfs4_purge_stale_fh(e.error, dvp, cr); 5267 VN_RELE(*vpp); 5268 *vpp = NULL; 5269 goto exit; 5270 } 5271 5272 /* 5273 * Install new cached attributes for the directory 5274 */ 5275 nfs4_attr_cache(dvp, 5276 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5277 t, cr, FALSE, NULL); 5278 5279 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5280 nfs4_purge_stale_fh(e.error, dvp, cr); 5281 VN_RELE(*vpp); 5282 *vpp = NULL; 5283 e.error = geterrno4(res.status); 5284 goto exit; 5285 } 5286 5287 /* 5288 * Now we know the directory is valid, 5289 * cache new directory access 5290 */ 5291 nfs4_access_cache(drp, 5292 args.array[3].nfs_argop4_u.opaccess.access, 5293 res.array[3].nfs_resop4_u.opaccess.access, cr); 5294 5295 /* 5296 * recheck VEXEC access 5297 */ 5298 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5299 if (cacc != NFS4_ACCESS_ALLOWED) { 5300 /* 5301 * Directory permissions might have been revoked 5302 */ 5303 if (cacc == NFS4_ACCESS_DENIED) { 5304 e.error = EACCES; 5305 VN_RELE(*vpp); 5306 *vpp = NULL; 5307 goto exit; 5308 } 5309 5310 /* 5311 * Somehow we must not have asked for enough 5312 * so try a singleton ACCESS, should never happen. 5313 */ 5314 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5315 if (e.error) { 5316 VN_RELE(*vpp); 5317 *vpp = NULL; 5318 goto exit; 5319 } 5320 } 5321 5322 e.error = geterrno4(res.status); 5323 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5324 /* 5325 * The lookup failed, probably no entry 5326 */ 5327 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5328 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5329 } else { 5330 /* 5331 * Might be some other error, so remove 5332 * the dnlc entry to make sure we start all 5333 * over again, next time. 5334 */ 5335 dnlc_remove(dvp, nm); 5336 } 5337 VN_RELE(*vpp); 5338 *vpp = NULL; 5339 goto exit; 5340 } 5341 5342 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5343 /* 5344 * The file exists but we can't get its fh for 5345 * some unknown reason. Remove it from the dnlc 5346 * and error out to be safe. 5347 */ 5348 dnlc_remove(dvp, nm); 5349 VN_RELE(*vpp); 5350 *vpp = NULL; 5351 goto exit; 5352 } 5353 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5354 if (fhp->nfs_fh4_len == 0) { 5355 /* 5356 * The file exists but a bogus fh 5357 * some unknown reason. Remove it from the dnlc 5358 * and error out to be safe. 5359 */ 5360 e.error = ENOENT; 5361 dnlc_remove(dvp, nm); 5362 VN_RELE(*vpp); 5363 *vpp = NULL; 5364 goto exit; 5365 } 5366 sfhp = sfh4_get(fhp, mi); 5367 5368 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5369 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5370 5371 /* 5372 * Make the new rnode 5373 */ 5374 if (isdotdot) { 5375 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5376 if (e.error) { 5377 sfh4_rele(&sfhp); 5378 VN_RELE(*vpp); 5379 *vpp = NULL; 5380 goto exit; 5381 } 5382 /* 5383 * XXX if nfs4_make_dotdot uses an existing rnode 5384 * XXX it doesn't update the attributes. 5385 * XXX for now just save them again to save an OTW 5386 */ 5387 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5388 } else { 5389 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5390 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5391 /* 5392 * If v_type == VNON, then garp was NULL because 5393 * the last op in the compound failed and makenfs4node 5394 * could not find the vnode for sfhp. It created 5395 * a new vnode, so we have nothing to purge here. 5396 */ 5397 if (nvp->v_type == VNON) { 5398 vattr_t vattr; 5399 5400 vattr.va_mask = AT_TYPE; 5401 /* 5402 * N.B. We've already called nfs4_end_fop above. 5403 */ 5404 e.error = nfs4getattr(nvp, &vattr, cr); 5405 if (e.error) { 5406 sfh4_rele(&sfhp); 5407 VN_RELE(*vpp); 5408 *vpp = NULL; 5409 VN_RELE(nvp); 5410 goto exit; 5411 } 5412 nvp->v_type = vattr.va_type; 5413 } 5414 } 5415 sfh4_rele(&sfhp); 5416 5417 nrp = VTOR4(nvp); 5418 mutex_enter(&nrp->r_statev4_lock); 5419 if (!nrp->created_v4) { 5420 mutex_exit(&nrp->r_statev4_lock); 5421 dnlc_update(dvp, nm, nvp); 5422 } else 5423 mutex_exit(&nrp->r_statev4_lock); 5424 5425 VN_RELE(*vpp); 5426 *vpp = nvp; 5427 } else { 5428 hrtime_t now; 5429 hrtime_t delta = 0; 5430 5431 e.error = 0; 5432 5433 /* 5434 * Because the NVERIFY "succeeded" we know that the 5435 * directory attributes are still valid 5436 * so update r_time_attr_inval 5437 */ 5438 now = gethrtime(); 5439 mutex_enter(&drp->r_statelock); 5440 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5441 delta = now - drp->r_time_attr_saved; 5442 if (delta < mi->mi_acdirmin) 5443 delta = mi->mi_acdirmin; 5444 else if (delta > mi->mi_acdirmax) 5445 delta = mi->mi_acdirmax; 5446 } 5447 drp->r_time_attr_inval = now + delta; 5448 mutex_exit(&drp->r_statelock); 5449 dnlc_update(dvp, nm, *vpp); 5450 5451 /* 5452 * Even though we have a valid directory attr cache 5453 * and dnlc entry, we may not have access. 5454 * This should almost always hit the cache. 5455 */ 5456 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5457 if (e.error) { 5458 VN_RELE(*vpp); 5459 *vpp = NULL; 5460 } 5461 5462 if (*vpp == DNLC_NO_VNODE) { 5463 VN_RELE(*vpp); 5464 *vpp = NULL; 5465 e.error = ENOENT; 5466 } 5467 } 5468 5469 exit: 5470 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5471 kmem_free(argop, argoplist_size); 5472 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5473 return (e.error); 5474 } 5475 5476 /* 5477 * We need to go over the wire to lookup the name, but 5478 * while we are there verify the directory has not 5479 * changed but if it has, get new attributes and check access 5480 * 5481 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5482 * NVERIFY GETATTR ACCESS 5483 * 5484 * With the results: 5485 * if the NVERIFY failed we must purge the caches, add new attributes, 5486 * and cache new access. 5487 * set a new r_time_attr_inval 5488 * add name to dnlc, possibly negative 5489 * if LOOKUP succeeded 5490 * cache new attributes 5491 */ 5492 static int 5493 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5494 { 5495 COMPOUND4args_clnt args; 5496 COMPOUND4res_clnt res; 5497 fattr4 *ver_fattr; 5498 fattr4_change dchange; 5499 int32_t *ptr; 5500 nfs4_ga_res_t *garp = NULL; 5501 int argoplist_size = 9 * sizeof (nfs_argop4); 5502 nfs_argop4 *argop; 5503 int doqueue; 5504 mntinfo4_t *mi; 5505 nfs4_recov_state_t recov_state; 5506 hrtime_t t; 5507 int isdotdot; 5508 vnode_t *nvp; 5509 nfs_fh4 *fhp; 5510 nfs4_sharedfh_t *sfhp; 5511 nfs4_access_type_t cacc; 5512 rnode4_t *nrp; 5513 rnode4_t *drp = VTOR4(dvp); 5514 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5515 5516 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5517 ASSERT(nm != NULL); 5518 ASSERT(nm[0] != '\0'); 5519 ASSERT(dvp->v_type == VDIR); 5520 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5521 ASSERT(*vpp == NULL); 5522 5523 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5524 isdotdot = 1; 5525 args.ctag = TAG_LOOKUP_PARENT; 5526 } else { 5527 /* 5528 * Do not allow crossing of server mount points. The 5529 * only visible entries in a SRVSTUB dir are . and .. 5530 * This code handles the non-.. case. We can't even get 5531 * this far if looking up ".". 5532 */ 5533 if (VTOR4(dvp)->r_flags & R4SRVSTUB) 5534 return (ENOENT); 5535 5536 isdotdot = 0; 5537 args.ctag = TAG_LOOKUP; 5538 } 5539 5540 mi = VTOMI4(dvp); 5541 recov_state.rs_flags = 0; 5542 recov_state.rs_num_retry_despite_err = 0; 5543 5544 nvp = NULL; 5545 5546 /* Save the original mount point security information */ 5547 (void) save_mnt_secinfo(mi->mi_curr_serv); 5548 5549 recov_retry: 5550 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5551 &recov_state, NULL); 5552 if (e.error) { 5553 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5554 return (e.error); 5555 } 5556 5557 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5558 5559 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5560 args.array_len = 9; 5561 args.array = argop; 5562 5563 /* 0. putfh file */ 5564 argop[0].argop = OP_CPUTFH; 5565 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5566 5567 /* 1. savefh for the nverify */ 5568 argop[1].argop = OP_SAVEFH; 5569 5570 /* 2. lookup name */ 5571 if (isdotdot) { 5572 argop[2].argop = OP_LOOKUPP; 5573 } else { 5574 argop[2].argop = OP_CLOOKUP; 5575 argop[2].nfs_argop4_u.opclookup.cname = nm; 5576 } 5577 5578 /* 3. resulting file handle */ 5579 argop[3].argop = OP_GETFH; 5580 5581 /* 4. resulting file attributes */ 5582 argop[4].argop = OP_GETATTR; 5583 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5584 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5585 5586 /* 5. restorefh back the directory for the nverify */ 5587 argop[5].argop = OP_RESTOREFH; 5588 5589 /* 6. nverify the change info */ 5590 argop[6].argop = OP_NVERIFY; 5591 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5592 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5593 ver_fattr->attrlist4 = (char *)&dchange; 5594 ptr = (int32_t *)&dchange; 5595 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5596 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5597 5598 /* 7. getattr directory */ 5599 argop[7].argop = OP_GETATTR; 5600 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5601 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5602 5603 /* 8. access directory */ 5604 argop[8].argop = OP_ACCESS; 5605 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5606 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5607 5608 doqueue = 1; 5609 t = gethrtime(); 5610 5611 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5612 5613 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5614 /* 5615 * For WRONGSEC of a non-dotdot case, send secinfo directly 5616 * from this thread, do not go thru the recovery thread since 5617 * we need the nm information. 5618 * 5619 * Not doing dotdot case because there is no specification 5620 * for (PUTFH, SECINFO "..") yet. 5621 */ 5622 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5623 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) { 5624 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5625 &recov_state, FALSE); 5626 } else { 5627 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5628 &recov_state, TRUE); 5629 } 5630 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5631 kmem_free(argop, argoplist_size); 5632 if (!e.error) 5633 goto recov_retry; 5634 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5635 return (e.error); 5636 } 5637 5638 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5639 OP_LOOKUP, NULL) == FALSE) { 5640 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5641 &recov_state, TRUE); 5642 5643 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5644 kmem_free(argop, argoplist_size); 5645 goto recov_retry; 5646 } 5647 } 5648 5649 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5650 5651 if (e.error || res.array_len == 0) { 5652 /* 5653 * If e.error isn't set, then reply has no ops (or we couldn't 5654 * be here). The only legal way to reply without an op array 5655 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5656 * be in the reply for all other status values. 5657 * 5658 * For valid replies without an ops array, return ENOTSUP 5659 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5660 * return EIO -- don't trust status. 5661 */ 5662 if (e.error == 0) 5663 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5664 ENOTSUP : EIO; 5665 5666 kmem_free(argop, argoplist_size); 5667 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5668 return (e.error); 5669 } 5670 5671 e.error = geterrno4(res.status); 5672 5673 /* 5674 * The PUTFH and SAVEFH may have failed. 5675 */ 5676 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5677 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5678 nfs4_purge_stale_fh(e.error, dvp, cr); 5679 goto exit; 5680 } 5681 5682 /* 5683 * Check if the file exists, if it does delay entering 5684 * into the dnlc until after we update the directory 5685 * attributes so we don't cause it to get purged immediately. 5686 */ 5687 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5688 /* 5689 * The lookup failed, probably no entry 5690 */ 5691 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5692 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5693 } 5694 goto exit; 5695 } 5696 5697 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5698 /* 5699 * The file exists but we can't get its fh for 5700 * some unknown reason. Error out to be safe. 5701 */ 5702 goto exit; 5703 } 5704 5705 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5706 if (fhp->nfs_fh4_len == 0) { 5707 /* 5708 * The file exists but a bogus fh 5709 * some unknown reason. Error out to be safe. 5710 */ 5711 e.error = EIO; 5712 goto exit; 5713 } 5714 sfhp = sfh4_get(fhp, mi); 5715 5716 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5717 sfh4_rele(&sfhp); 5718 e.error = EIO; 5719 goto exit; 5720 } 5721 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5722 5723 /* 5724 * The RESTOREFH may have failed 5725 */ 5726 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5727 sfh4_rele(&sfhp); 5728 e.error = EIO; 5729 goto exit; 5730 } 5731 5732 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5733 /* 5734 * First make sure the NVERIFY failed as we expected, 5735 * if it didn't then be conservative and error out 5736 * as we can't trust the directory. 5737 */ 5738 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5739 sfh4_rele(&sfhp); 5740 e.error = EIO; 5741 goto exit; 5742 } 5743 5744 /* 5745 * We know the NVERIFY "failed" so the directory has changed, 5746 * so we must: 5747 * purge the caches (access and indirectly dnlc if needed) 5748 */ 5749 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5750 5751 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5752 sfh4_rele(&sfhp); 5753 goto exit; 5754 } 5755 nfs4_attr_cache(dvp, 5756 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5757 t, cr, FALSE, NULL); 5758 5759 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5760 nfs4_purge_stale_fh(e.error, dvp, cr); 5761 sfh4_rele(&sfhp); 5762 e.error = geterrno4(res.status); 5763 goto exit; 5764 } 5765 5766 /* 5767 * Now we know the directory is valid, 5768 * cache new directory access 5769 */ 5770 nfs4_access_cache(drp, 5771 args.array[8].nfs_argop4_u.opaccess.access, 5772 res.array[8].nfs_resop4_u.opaccess.access, cr); 5773 5774 /* 5775 * recheck VEXEC access 5776 */ 5777 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5778 if (cacc != NFS4_ACCESS_ALLOWED) { 5779 /* 5780 * Directory permissions might have been revoked 5781 */ 5782 if (cacc == NFS4_ACCESS_DENIED) { 5783 sfh4_rele(&sfhp); 5784 e.error = EACCES; 5785 goto exit; 5786 } 5787 5788 /* 5789 * Somehow we must not have asked for enough 5790 * so try a singleton ACCESS should never happen 5791 */ 5792 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5793 if (e.error) { 5794 sfh4_rele(&sfhp); 5795 goto exit; 5796 } 5797 } 5798 5799 e.error = geterrno4(res.status); 5800 } else { 5801 hrtime_t now; 5802 hrtime_t delta = 0; 5803 5804 e.error = 0; 5805 5806 /* 5807 * Because the NVERIFY "succeeded" we know that the 5808 * directory attributes are still valid 5809 * so update r_time_attr_inval 5810 */ 5811 now = gethrtime(); 5812 mutex_enter(&drp->r_statelock); 5813 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5814 delta = now - drp->r_time_attr_saved; 5815 if (delta < mi->mi_acdirmin) 5816 delta = mi->mi_acdirmin; 5817 else if (delta > mi->mi_acdirmax) 5818 delta = mi->mi_acdirmax; 5819 } 5820 drp->r_time_attr_inval = now + delta; 5821 mutex_exit(&drp->r_statelock); 5822 5823 /* 5824 * Even though we have a valid directory attr cache, 5825 * we may not have access. 5826 * This should almost always hit the cache. 5827 */ 5828 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5829 if (e.error) { 5830 sfh4_rele(&sfhp); 5831 goto exit; 5832 } 5833 } 5834 5835 /* 5836 * Now we have successfully completed the lookup, if the 5837 * directory has changed we now have the valid attributes. 5838 * We also know we have directory access. 5839 * Create the new rnode and insert it in the dnlc. 5840 */ 5841 if (isdotdot) { 5842 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5843 if (e.error) { 5844 sfh4_rele(&sfhp); 5845 goto exit; 5846 } 5847 /* 5848 * XXX if nfs4_make_dotdot uses an existing rnode 5849 * XXX it doesn't update the attributes. 5850 * XXX for now just save them again to save an OTW 5851 */ 5852 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5853 } else { 5854 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5855 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5856 } 5857 sfh4_rele(&sfhp); 5858 5859 nrp = VTOR4(nvp); 5860 mutex_enter(&nrp->r_statev4_lock); 5861 if (!nrp->created_v4) { 5862 mutex_exit(&nrp->r_statev4_lock); 5863 dnlc_update(dvp, nm, nvp); 5864 } else 5865 mutex_exit(&nrp->r_statev4_lock); 5866 5867 *vpp = nvp; 5868 5869 exit: 5870 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5871 kmem_free(argop, argoplist_size); 5872 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5873 return (e.error); 5874 } 5875 5876 #ifdef DEBUG 5877 void 5878 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 5879 { 5880 uint_t i, len; 5881 zoneid_t zoneid = getzoneid(); 5882 char *s; 5883 5884 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 5885 for (i = 0; i < argcnt; i++) { 5886 nfs_argop4 *op = &argbase[i]; 5887 switch (op->argop) { 5888 case OP_CPUTFH: 5889 case OP_PUTFH: 5890 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 5891 break; 5892 case OP_PUTROOTFH: 5893 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 5894 break; 5895 case OP_CLOOKUP: 5896 s = op->nfs_argop4_u.opclookup.cname; 5897 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5898 break; 5899 case OP_LOOKUP: 5900 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 5901 &len, NULL); 5902 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5903 kmem_free(s, len); 5904 break; 5905 case OP_LOOKUPP: 5906 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 5907 break; 5908 case OP_GETFH: 5909 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 5910 break; 5911 case OP_GETATTR: 5912 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 5913 break; 5914 case OP_OPENATTR: 5915 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 5916 break; 5917 default: 5918 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 5919 op->argop); 5920 break; 5921 } 5922 } 5923 } 5924 #endif 5925 5926 /* 5927 * nfs4lookup_setup - constructs a multi-lookup compound request. 5928 * 5929 * Given the path "nm1/nm2/.../nmn", the following compound requests 5930 * may be created: 5931 * 5932 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 5933 * is faster, for now. 5934 * 5935 * l4_getattrs indicates the type of compound requested. 5936 * 5937 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 5938 * 5939 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 5940 * 5941 * total number of ops is n + 1. 5942 * 5943 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 5944 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 5945 * before the last component, and only get attributes 5946 * for the last component. Note that the second-to-last 5947 * pathname component is XATTR_RPATH, which does NOT go 5948 * over-the-wire as a lookup. 5949 * 5950 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 5951 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 5952 * 5953 * and total number of ops is n + 5. 5954 * 5955 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 5956 * attribute directory: create lookups plus an OPENATTR 5957 * replacing the last lookup. Note that the last pathname 5958 * component is XATTR_RPATH, which does NOT go over-the-wire 5959 * as a lookup. 5960 * 5961 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 5962 * Openattr; Getfh; Getattr } 5963 * 5964 * and total number of ops is n + 5. 5965 * 5966 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 5967 * nodes too. 5968 * 5969 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 5970 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 5971 * 5972 * and total number of ops is 3*n + 1. 5973 * 5974 * All cases: returns the index in the arg array of the final LOOKUP op, or 5975 * -1 if no LOOKUPs were used. 5976 */ 5977 int 5978 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 5979 { 5980 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 5981 nfs_argop4 *argbase, *argop; 5982 int arglen, argcnt; 5983 int n = 1; /* number of components */ 5984 int nga = 1; /* number of Getattr's in request */ 5985 char c = '\0', *s, *p; 5986 int lookup_idx = -1; 5987 int argoplist_size; 5988 5989 /* set lookuparg response result to 0 */ 5990 lookupargp->resp->status = NFS4_OK; 5991 5992 /* skip leading "/" or "." e.g. ".//./" if there is */ 5993 for (; ; nm++) { 5994 if (*nm != '/' && *nm != '.') 5995 break; 5996 5997 /* ".." is counted as 1 component */ 5998 if (*nm == '.' && *(nm + 1) == '.') 5999 break; 6000 } 6001 6002 /* 6003 * Find n = number of components - nm must be null terminated 6004 * Skip "." components. 6005 */ 6006 if (*nm != '\0') { 6007 for (n = 1, s = nm; *s != '\0'; s++) { 6008 if ((*s == '/') && (*(s + 1) != '/') && 6009 (*(s + 1) != '\0') && 6010 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6011 *(s + 2) == '\0'))) 6012 n++; 6013 } 6014 } else 6015 n = 0; 6016 6017 /* 6018 * nga is number of components that need Getfh+Getattr 6019 */ 6020 switch (l4_getattrs) { 6021 case LKP4_NO_ATTRIBUTES: 6022 nga = 0; 6023 break; 6024 case LKP4_ALL_ATTRIBUTES: 6025 nga = n; 6026 /* 6027 * Always have at least 1 getfh, getattr pair 6028 */ 6029 if (nga == 0) 6030 nga++; 6031 break; 6032 case LKP4_LAST_ATTRDIR: 6033 case LKP4_LAST_NAMED_ATTR: 6034 nga = n+1; 6035 break; 6036 } 6037 6038 /* 6039 * If change to use the filehandle attr instead of getfh 6040 * the following line can be deleted. 6041 */ 6042 nga *= 2; 6043 6044 /* 6045 * calculate number of ops in request as 6046 * header + trailer + lookups + getattrs 6047 */ 6048 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6049 6050 argoplist_size = arglen * sizeof (nfs_argop4); 6051 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6052 lookupargp->argsp->array = argop; 6053 6054 argcnt = lookupargp->header_len; 6055 argop += argcnt; 6056 6057 /* 6058 * loop and create a lookup op and possibly getattr/getfh for 6059 * each component. Skip "." components. 6060 */ 6061 for (s = nm; *s != '\0'; s = p) { 6062 /* 6063 * Set up a pathname struct for each component if needed 6064 */ 6065 while (*s == '/') 6066 s++; 6067 if (*s == '\0') 6068 break; 6069 for (p = s; (*p != '/') && (*p != '\0'); p++); 6070 c = *p; 6071 *p = '\0'; 6072 6073 if (s[0] == '.' && s[1] == '\0') { 6074 *p = c; 6075 continue; 6076 } 6077 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6078 strcmp(s, XATTR_RPATH) == 0) { 6079 /* getfh XXX may not be needed in future */ 6080 argop->argop = OP_GETFH; 6081 argop++; 6082 argcnt++; 6083 6084 /* getattr */ 6085 argop->argop = OP_GETATTR; 6086 argop->nfs_argop4_u.opgetattr.attr_request = 6087 lookupargp->ga_bits; 6088 argop->nfs_argop4_u.opgetattr.mi = 6089 lookupargp->mi; 6090 argop++; 6091 argcnt++; 6092 6093 /* openattr */ 6094 argop->argop = OP_OPENATTR; 6095 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6096 strcmp(s, XATTR_RPATH) == 0) { 6097 /* openattr */ 6098 argop->argop = OP_OPENATTR; 6099 argop++; 6100 argcnt++; 6101 6102 /* getfh XXX may not be needed in future */ 6103 argop->argop = OP_GETFH; 6104 argop++; 6105 argcnt++; 6106 6107 /* getattr */ 6108 argop->argop = OP_GETATTR; 6109 argop->nfs_argop4_u.opgetattr.attr_request = 6110 lookupargp->ga_bits; 6111 argop->nfs_argop4_u.opgetattr.mi = 6112 lookupargp->mi; 6113 argop++; 6114 argcnt++; 6115 *p = c; 6116 continue; 6117 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6118 /* lookupp */ 6119 argop->argop = OP_LOOKUPP; 6120 } else { 6121 /* lookup */ 6122 argop->argop = OP_LOOKUP; 6123 (void) str_to_utf8(s, 6124 &argop->nfs_argop4_u.oplookup.objname); 6125 } 6126 lookup_idx = argcnt; 6127 argop++; 6128 argcnt++; 6129 6130 *p = c; 6131 6132 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6133 /* getfh XXX may not be needed in future */ 6134 argop->argop = OP_GETFH; 6135 argop++; 6136 argcnt++; 6137 6138 /* getattr */ 6139 argop->argop = OP_GETATTR; 6140 argop->nfs_argop4_u.opgetattr.attr_request = 6141 lookupargp->ga_bits; 6142 argop->nfs_argop4_u.opgetattr.mi = 6143 lookupargp->mi; 6144 argop++; 6145 argcnt++; 6146 } 6147 } 6148 6149 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6150 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6151 if (needgetfh) { 6152 /* stick in a post-lookup getfh */ 6153 argop->argop = OP_GETFH; 6154 argcnt++; 6155 argop++; 6156 } 6157 /* post-lookup getattr */ 6158 argop->argop = OP_GETATTR; 6159 argop->nfs_argop4_u.opgetattr.attr_request = 6160 lookupargp->ga_bits; 6161 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6162 argcnt++; 6163 } 6164 argcnt += lookupargp->trailer_len; /* actual op count */ 6165 lookupargp->argsp->array_len = argcnt; 6166 lookupargp->arglen = arglen; 6167 6168 #ifdef DEBUG 6169 if (nfs4_client_lookup_debug) 6170 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6171 #endif 6172 6173 return (lookup_idx); 6174 } 6175 6176 static int 6177 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6178 { 6179 COMPOUND4args_clnt args; 6180 COMPOUND4res_clnt res; 6181 GETFH4res *gf_res = NULL; 6182 nfs_argop4 argop[4]; 6183 nfs_resop4 *resop = NULL; 6184 nfs4_sharedfh_t *sfhp; 6185 hrtime_t t; 6186 nfs4_error_t e; 6187 6188 rnode4_t *drp; 6189 int doqueue = 1; 6190 vnode_t *vp; 6191 int needrecov = 0; 6192 nfs4_recov_state_t recov_state; 6193 6194 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6195 6196 *avp = NULL; 6197 recov_state.rs_flags = 0; 6198 recov_state.rs_num_retry_despite_err = 0; 6199 6200 recov_retry: 6201 /* COMPOUND: putfh, openattr, getfh, getattr */ 6202 args.array_len = 4; 6203 args.array = argop; 6204 args.ctag = TAG_OPENATTR; 6205 6206 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6207 if (e.error) 6208 return (e.error); 6209 6210 drp = VTOR4(dvp); 6211 6212 /* putfh */ 6213 argop[0].argop = OP_CPUTFH; 6214 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6215 6216 /* openattr */ 6217 argop[1].argop = OP_OPENATTR; 6218 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6219 6220 /* getfh */ 6221 argop[2].argop = OP_GETFH; 6222 6223 /* getattr */ 6224 argop[3].argop = OP_GETATTR; 6225 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6226 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6227 6228 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6229 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6230 rnode4info(drp))); 6231 6232 t = gethrtime(); 6233 6234 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6235 6236 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6237 if (needrecov) { 6238 bool_t abort; 6239 6240 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6241 "nfs4openattr: initiating recovery\n")); 6242 6243 abort = nfs4_start_recovery(&e, 6244 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6245 OP_OPENATTR, NULL); 6246 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6247 if (!e.error) { 6248 e.error = geterrno4(res.status); 6249 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6250 } 6251 if (abort == FALSE) 6252 goto recov_retry; 6253 return (e.error); 6254 } 6255 6256 if (e.error) { 6257 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6258 return (e.error); 6259 } 6260 6261 if (res.status) { 6262 /* 6263 * If OTW errro is NOTSUPP, then it should be 6264 * translated to EINVAL. All Solaris file system 6265 * implementations return EINVAL to the syscall layer 6266 * when the attrdir cannot be created due to an 6267 * implementation restriction or noxattr mount option. 6268 */ 6269 if (res.status == NFS4ERR_NOTSUPP) { 6270 mutex_enter(&drp->r_statelock); 6271 if (drp->r_xattr_dir) 6272 VN_RELE(drp->r_xattr_dir); 6273 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6274 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6275 mutex_exit(&drp->r_statelock); 6276 6277 e.error = EINVAL; 6278 } else { 6279 e.error = geterrno4(res.status); 6280 } 6281 6282 if (e.error) { 6283 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6284 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6285 needrecov); 6286 return (e.error); 6287 } 6288 } 6289 6290 resop = &res.array[0]; /* putfh res */ 6291 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6292 6293 resop = &res.array[1]; /* openattr res */ 6294 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6295 6296 resop = &res.array[2]; /* getfh res */ 6297 gf_res = &resop->nfs_resop4_u.opgetfh; 6298 if (gf_res->object.nfs_fh4_len == 0) { 6299 *avp = NULL; 6300 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6301 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6302 return (ENOENT); 6303 } 6304 6305 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6306 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6307 dvp->v_vfsp, t, cr, dvp, 6308 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH)); 6309 sfh4_rele(&sfhp); 6310 6311 if (e.error) 6312 PURGE_ATTRCACHE4(vp); 6313 6314 mutex_enter(&vp->v_lock); 6315 vp->v_flag |= V_XATTRDIR; 6316 mutex_exit(&vp->v_lock); 6317 6318 *avp = vp; 6319 6320 mutex_enter(&drp->r_statelock); 6321 if (drp->r_xattr_dir) 6322 VN_RELE(drp->r_xattr_dir); 6323 VN_HOLD(vp); 6324 drp->r_xattr_dir = vp; 6325 6326 /* 6327 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6328 * NULL. xattrs could be created at any time, and we have no 6329 * way to update pc4_xattr_exists in the base object if/when 6330 * it happens. 6331 */ 6332 drp->r_pathconf.pc4_xattr_valid = 0; 6333 6334 mutex_exit(&drp->r_statelock); 6335 6336 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6337 6338 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6339 6340 return (0); 6341 } 6342 6343 /* ARGSUSED */ 6344 static int 6345 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6346 int mode, vnode_t **vpp, cred_t *cr, int flags) 6347 { 6348 int error; 6349 vnode_t *vp = NULL; 6350 rnode4_t *rp; 6351 struct vattr vattr; 6352 rnode4_t *drp; 6353 vnode_t *tempvp; 6354 enum createmode4 createmode; 6355 bool_t must_trunc = FALSE; 6356 6357 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6358 return (EPERM); 6359 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6360 return (EINVAL); 6361 } 6362 6363 /* . and .. have special meaning in the protocol, reject them. */ 6364 6365 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6366 return (EISDIR); 6367 6368 drp = VTOR4(dvp); 6369 6370 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6371 return (EINTR); 6372 6373 top: 6374 /* 6375 * We make a copy of the attributes because the caller does not 6376 * expect us to change what va points to. 6377 */ 6378 vattr = *va; 6379 6380 /* 6381 * If the pathname is "", then dvp is the root vnode of 6382 * a remote file mounted over a local directory. 6383 * All that needs to be done is access 6384 * checking and truncation. Note that we avoid doing 6385 * open w/ create because the parent directory might 6386 * be in pseudo-fs and the open would fail. 6387 */ 6388 if (*nm == '\0') { 6389 error = 0; 6390 VN_HOLD(dvp); 6391 vp = dvp; 6392 must_trunc = TRUE; 6393 } else { 6394 /* 6395 * We need to go over the wire, just to be sure whether the 6396 * file exists or not. Using the DNLC can be dangerous in 6397 * this case when making a decision regarding existence. 6398 */ 6399 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6400 } 6401 6402 if (exclusive) 6403 createmode = EXCLUSIVE4; 6404 else 6405 createmode = GUARDED4; 6406 6407 /* 6408 * error would be set if the file does not exist on the 6409 * server, so lets go create it. 6410 */ 6411 if (error) { 6412 goto create_otw; 6413 } 6414 6415 /* 6416 * File does exist on the server 6417 */ 6418 if (exclusive == EXCL) 6419 error = EEXIST; 6420 else if (vp->v_type == VDIR && (mode & VWRITE)) 6421 error = EISDIR; 6422 else { 6423 /* 6424 * If vnode is a device, create special vnode. 6425 */ 6426 if (ISVDEV(vp->v_type)) { 6427 tempvp = vp; 6428 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6429 VN_RELE(tempvp); 6430 } 6431 if (!(error = VOP_ACCESS(vp, mode, 0, cr))) { 6432 if ((vattr.va_mask & AT_SIZE) && 6433 vp->v_type == VREG) { 6434 rp = VTOR4(vp); 6435 /* 6436 * Check here for large file handled 6437 * by LF-unaware process (as 6438 * ufs_create() does) 6439 */ 6440 if (!(flags & FOFFMAX)) { 6441 mutex_enter(&rp->r_statelock); 6442 if (rp->r_size > MAXOFF32_T) 6443 error = EOVERFLOW; 6444 mutex_exit(&rp->r_statelock); 6445 } 6446 6447 /* if error is set then we need to return */ 6448 if (error) { 6449 nfs_rw_exit(&drp->r_rwlock); 6450 VN_RELE(vp); 6451 return (error); 6452 } 6453 6454 if (must_trunc) { 6455 vattr.va_mask = AT_SIZE; 6456 error = nfs4setattr(vp, &vattr, 0, cr, 6457 NULL); 6458 } else { 6459 /* 6460 * we know we have a regular file that already 6461 * exists and we may end up truncating the file 6462 * as a result of the open_otw, so flush out 6463 * any dirty pages for this file first. 6464 */ 6465 if (nfs4_has_pages(vp) && 6466 ((rp->r_flags & R4DIRTY) || 6467 rp->r_count > 0 || 6468 rp->r_mapcnt > 0)) { 6469 error = nfs4_putpage(vp, 6470 (offset_t)0, 0, 0, cr); 6471 if (error && (error == ENOSPC || 6472 error == EDQUOT)) { 6473 mutex_enter( 6474 &rp->r_statelock); 6475 if (!rp->r_error) 6476 rp->r_error = 6477 error; 6478 mutex_exit( 6479 &rp->r_statelock); 6480 } 6481 } 6482 vattr.va_mask = (AT_SIZE | 6483 AT_TYPE | AT_MODE); 6484 vattr.va_type = VREG; 6485 createmode = UNCHECKED4; 6486 goto create_otw; 6487 } 6488 } 6489 } 6490 } 6491 nfs_rw_exit(&drp->r_rwlock); 6492 if (error) { 6493 VN_RELE(vp); 6494 } else { 6495 *vpp = vp; 6496 } 6497 return (error); 6498 6499 create_otw: 6500 dnlc_remove(dvp, nm); 6501 6502 ASSERT(vattr.va_mask & AT_TYPE); 6503 6504 /* 6505 * If not a regular file let nfs4mknod() handle it. 6506 */ 6507 if (vattr.va_type != VREG) { 6508 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6509 nfs_rw_exit(&drp->r_rwlock); 6510 return (error); 6511 } 6512 6513 /* 6514 * It _is_ a regular file. 6515 */ 6516 ASSERT(vattr.va_mask & AT_MODE); 6517 if (MANDMODE(vattr.va_mode)) { 6518 nfs_rw_exit(&drp->r_rwlock); 6519 return (EACCES); 6520 } 6521 6522 /* 6523 * If this happens to be a mknod of a regular file, then flags will 6524 * have neither FREAD or FWRITE. However, we must set at least one 6525 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6526 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6527 * set (based on openmode specified by app). 6528 */ 6529 if ((flags & (FREAD|FWRITE)) == 0) 6530 flags |= (FREAD|FWRITE); 6531 6532 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6533 6534 if (vp != NULL) { 6535 /* if create was successful, throw away the file's pages */ 6536 if (!error && (vattr.va_mask & AT_SIZE)) 6537 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6538 cr); 6539 /* release the lookup hold */ 6540 VN_RELE(vp); 6541 vp = NULL; 6542 } 6543 6544 /* 6545 * validate that we opened a regular file. This handles a misbehaving 6546 * server that returns an incorrect FH. 6547 */ 6548 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6549 error = EISDIR; 6550 VN_RELE(*vpp); 6551 } 6552 6553 /* 6554 * If this is not an exclusive create, then the CREATE 6555 * request will be made with the GUARDED mode set. This 6556 * means that the server will return EEXIST if the file 6557 * exists. The file could exist because of a retransmitted 6558 * request. In this case, we recover by starting over and 6559 * checking to see whether the file exists. This second 6560 * time through it should and a CREATE request will not be 6561 * sent. 6562 * 6563 * This handles the problem of a dangling CREATE request 6564 * which contains attributes which indicate that the file 6565 * should be truncated. This retransmitted request could 6566 * possibly truncate valid data in the file if not caught 6567 * by the duplicate request mechanism on the server or if 6568 * not caught by other means. The scenario is: 6569 * 6570 * Client transmits CREATE request with size = 0 6571 * Client times out, retransmits request. 6572 * Response to the first request arrives from the server 6573 * and the client proceeds on. 6574 * Client writes data to the file. 6575 * The server now processes retransmitted CREATE request 6576 * and truncates file. 6577 * 6578 * The use of the GUARDED CREATE request prevents this from 6579 * happening because the retransmitted CREATE would fail 6580 * with EEXIST and would not truncate the file. 6581 */ 6582 if (error == EEXIST && exclusive == NONEXCL) { 6583 #ifdef DEBUG 6584 nfs4_create_misses++; 6585 #endif 6586 goto top; 6587 } 6588 nfs_rw_exit(&drp->r_rwlock); 6589 return (error); 6590 } 6591 6592 /* 6593 * Create compound (for mkdir, mknod, symlink): 6594 * { Putfh <dfh>; Create; Getfh; Getattr } 6595 * It's okay if setattr failed to set gid - this is not considered 6596 * an error, but purge attrs in that case. 6597 */ 6598 static int 6599 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6600 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6601 { 6602 int need_end_op = FALSE; 6603 COMPOUND4args_clnt args; 6604 COMPOUND4res_clnt res, *resp = NULL; 6605 nfs_argop4 *argop; 6606 nfs_resop4 *resop; 6607 int doqueue; 6608 mntinfo4_t *mi; 6609 rnode4_t *drp = VTOR4(dvp); 6610 change_info4 *cinfo; 6611 GETFH4res *gf_res; 6612 struct vattr vattr; 6613 vnode_t *vp; 6614 fattr4 *crattr; 6615 bool_t needrecov = FALSE; 6616 nfs4_recov_state_t recov_state; 6617 nfs4_sharedfh_t *sfhp = NULL; 6618 hrtime_t t; 6619 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6620 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6621 dirattr_info_t dinfo, *dinfop; 6622 servinfo4_t *svp; 6623 bitmap4 supp_attrs; 6624 6625 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6626 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6627 6628 mi = VTOMI4(dvp); 6629 6630 /* 6631 * Make sure we properly deal with setting the right gid 6632 * on a new directory to reflect the parent's setgid bit 6633 */ 6634 setgid_flag = 0; 6635 if (type == NF4DIR) { 6636 struct vattr dva; 6637 6638 va->va_mode &= ~VSGID; 6639 dva.va_mask = AT_MODE | AT_GID; 6640 if (VOP_GETATTR(dvp, &dva, 0, cr) == 0) { 6641 6642 /* 6643 * If the parent's directory has the setgid bit set 6644 * _and_ the client was able to get a valid mapping 6645 * for the parent dir's owner_group, we want to 6646 * append NVERIFY(owner_group == dva.va_gid) and 6647 * SETTATTR to the CREATE compound. 6648 */ 6649 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6650 setgid_flag = 1; 6651 va->va_mode |= VSGID; 6652 if (dva.va_gid != GID_NOBODY) { 6653 va->va_mask |= AT_GID; 6654 va->va_gid = dva.va_gid; 6655 } 6656 } 6657 } 6658 } 6659 6660 /* 6661 * Create ops: 6662 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6663 * 5:restorefh(dir) 6:getattr(dir) 6664 * 6665 * if (setgid) 6666 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6667 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6668 * 8:nverify 9:setattr 6669 */ 6670 if (setgid_flag) { 6671 numops = 10; 6672 idx_create = 1; 6673 idx_fattr = 3; 6674 } else { 6675 numops = 7; 6676 idx_create = 2; 6677 idx_fattr = 4; 6678 } 6679 6680 ASSERT(nfs_zone() == mi->mi_zone); 6681 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6682 return (EINTR); 6683 } 6684 recov_state.rs_flags = 0; 6685 recov_state.rs_num_retry_despite_err = 0; 6686 6687 argoplist_size = numops * sizeof (nfs_argop4); 6688 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6689 6690 recov_retry: 6691 if (type == NF4LNK) 6692 args.ctag = TAG_SYMLINK; 6693 else if (type == NF4DIR) 6694 args.ctag = TAG_MKDIR; 6695 else 6696 args.ctag = TAG_MKNOD; 6697 6698 args.array_len = numops; 6699 args.array = argop; 6700 6701 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6702 nfs_rw_exit(&drp->r_rwlock); 6703 kmem_free(argop, argoplist_size); 6704 return (e.error); 6705 } 6706 need_end_op = TRUE; 6707 6708 6709 /* 0: putfh directory */ 6710 argop[0].argop = OP_CPUTFH; 6711 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6712 6713 /* 1/2: Create object */ 6714 argop[idx_create].argop = OP_CCREATE; 6715 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6716 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6717 if (type == NF4LNK) { 6718 /* 6719 * symlink, treat name as data 6720 */ 6721 ASSERT(data != NULL); 6722 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6723 (char *)data; 6724 } 6725 if (type == NF4BLK || type == NF4CHR) { 6726 ASSERT(data != NULL); 6727 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6728 *((specdata4 *)data); 6729 } 6730 6731 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6732 6733 svp = drp->r_server; 6734 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6735 supp_attrs = svp->sv_supp_attrs; 6736 nfs_rw_exit(&svp->sv_lock); 6737 6738 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6739 nfs_rw_exit(&drp->r_rwlock); 6740 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6741 e.error = EINVAL; 6742 kmem_free(argop, argoplist_size); 6743 return (e.error); 6744 } 6745 6746 /* 2/3: getfh fh of created object */ 6747 ASSERT(idx_create + 1 == idx_fattr - 1); 6748 argop[idx_create + 1].argop = OP_GETFH; 6749 6750 /* 3/4: getattr of new object */ 6751 argop[idx_fattr].argop = OP_GETATTR; 6752 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6753 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6754 6755 if (setgid_flag) { 6756 vattr_t _v; 6757 6758 argop[4].argop = OP_SAVEFH; 6759 6760 argop[5].argop = OP_CPUTFH; 6761 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6762 6763 argop[6].argop = OP_GETATTR; 6764 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6765 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6766 6767 argop[7].argop = OP_RESTOREFH; 6768 6769 /* 6770 * nverify 6771 * 6772 * XXX - Revisit the last argument to nfs4_end_op() 6773 * once 5020486 is fixed. 6774 */ 6775 _v.va_mask = AT_GID; 6776 _v.va_gid = va->va_gid; 6777 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6778 supp_attrs)) { 6779 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6780 nfs_rw_exit(&drp->r_rwlock); 6781 nfs4_fattr4_free(crattr); 6782 kmem_free(argop, argoplist_size); 6783 return (e.error); 6784 } 6785 6786 /* 6787 * setattr 6788 * 6789 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6790 * so no need for stateid or flags. Also we specify NULL 6791 * rp since we're only interested in setting owner_group 6792 * attributes. 6793 */ 6794 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6795 &e.error, 0); 6796 6797 if (e.error) { 6798 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6799 nfs_rw_exit(&drp->r_rwlock); 6800 nfs4_fattr4_free(crattr); 6801 nfs4args_verify_free(&argop[8]); 6802 kmem_free(argop, argoplist_size); 6803 return (e.error); 6804 } 6805 } else { 6806 argop[1].argop = OP_SAVEFH; 6807 6808 argop[5].argop = OP_RESTOREFH; 6809 6810 argop[6].argop = OP_GETATTR; 6811 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6812 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6813 } 6814 6815 dnlc_remove(dvp, nm); 6816 6817 doqueue = 1; 6818 t = gethrtime(); 6819 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 6820 6821 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 6822 if (e.error) { 6823 PURGE_ATTRCACHE4(dvp); 6824 if (!needrecov) 6825 goto out; 6826 } 6827 6828 if (needrecov) { 6829 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 6830 OP_CREATE, NULL) == FALSE) { 6831 nfs4_end_op(mi, dvp, NULL, &recov_state, 6832 needrecov); 6833 need_end_op = FALSE; 6834 nfs4_fattr4_free(crattr); 6835 if (setgid_flag) { 6836 nfs4args_verify_free(&argop[8]); 6837 nfs4args_setattr_free(&argop[9]); 6838 } 6839 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6840 goto recov_retry; 6841 } 6842 } 6843 6844 resp = &res; 6845 6846 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 6847 6848 if (res.status == NFS4ERR_BADOWNER) 6849 nfs4_log_badowner(mi, OP_CREATE); 6850 6851 e.error = geterrno4(res.status); 6852 6853 /* 6854 * This check is left over from when create was implemented 6855 * using a setattr op (instead of createattrs). If the 6856 * putfh/create/getfh failed, the error was returned. If 6857 * setattr/getattr failed, we keep going. 6858 * 6859 * It might be better to get rid of the GETFH also, and just 6860 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 6861 * Then if any of the operations failed, we could return the 6862 * error now, and remove much of the error code below. 6863 */ 6864 if (res.array_len <= idx_fattr) { 6865 /* 6866 * Either Putfh, Create or Getfh failed. 6867 */ 6868 PURGE_ATTRCACHE4(dvp); 6869 /* 6870 * nfs4_purge_stale_fh() may generate otw calls through 6871 * nfs4_invalidate_pages. Hence the need to call 6872 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 6873 */ 6874 nfs4_end_op(mi, dvp, NULL, &recov_state, 6875 needrecov); 6876 need_end_op = FALSE; 6877 nfs4_purge_stale_fh(e.error, dvp, cr); 6878 goto out; 6879 } 6880 } 6881 6882 resop = &res.array[idx_create]; /* create res */ 6883 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 6884 6885 resop = &res.array[idx_create + 1]; /* getfh res */ 6886 gf_res = &resop->nfs_resop4_u.opgetfh; 6887 6888 sfhp = sfh4_get(&gf_res->object, mi); 6889 if (e.error) { 6890 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 6891 fn_get(VTOSV(dvp)->sv_name, nm)); 6892 if (vp->v_type == VNON) { 6893 vattr.va_mask = AT_TYPE; 6894 /* 6895 * Need to call nfs4_end_op before nfs4getattr to avoid 6896 * potential nfs4_start_op deadlock. See RFE 4777612. 6897 */ 6898 nfs4_end_op(mi, dvp, NULL, &recov_state, 6899 needrecov); 6900 need_end_op = FALSE; 6901 e.error = nfs4getattr(vp, &vattr, cr); 6902 if (e.error) { 6903 VN_RELE(vp); 6904 *vpp = NULL; 6905 goto out; 6906 } 6907 vp->v_type = vattr.va_type; 6908 } 6909 e.error = 0; 6910 } else { 6911 *vpp = vp = makenfs4node(sfhp, 6912 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 6913 dvp->v_vfsp, t, cr, 6914 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 6915 } 6916 6917 /* 6918 * If compound succeeded, then update dir attrs 6919 */ 6920 if (res.status == NFS4_OK) { 6921 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 6922 dinfo.di_cred = cr; 6923 dinfo.di_time_call = t; 6924 dinfop = &dinfo; 6925 } else 6926 dinfop = NULL; 6927 6928 /* Update directory cache attribute, readdir and dnlc caches */ 6929 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 6930 6931 out: 6932 if (sfhp != NULL) 6933 sfh4_rele(&sfhp); 6934 nfs_rw_exit(&drp->r_rwlock); 6935 nfs4_fattr4_free(crattr); 6936 if (setgid_flag) { 6937 nfs4args_verify_free(&argop[8]); 6938 nfs4args_setattr_free(&argop[9]); 6939 } 6940 if (resp) 6941 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 6942 if (need_end_op) 6943 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6944 6945 kmem_free(argop, argoplist_size); 6946 return (e.error); 6947 } 6948 6949 /* ARGSUSED */ 6950 static int 6951 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6952 int mode, vnode_t **vpp, cred_t *cr) 6953 { 6954 int error; 6955 vnode_t *vp; 6956 nfs_ftype4 type; 6957 specdata4 spec, *specp = NULL; 6958 6959 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6960 6961 switch (va->va_type) { 6962 case VCHR: 6963 case VBLK: 6964 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 6965 spec.specdata1 = getmajor(va->va_rdev); 6966 spec.specdata2 = getminor(va->va_rdev); 6967 specp = &spec; 6968 break; 6969 6970 case VFIFO: 6971 type = NF4FIFO; 6972 break; 6973 case VSOCK: 6974 type = NF4SOCK; 6975 break; 6976 6977 default: 6978 return (EINVAL); 6979 } 6980 6981 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 6982 if (error) { 6983 return (error); 6984 } 6985 6986 /* 6987 * This might not be needed any more; special case to deal 6988 * with problematic v2/v3 servers. Since create was unable 6989 * to set group correctly, not sure what hope setattr has. 6990 */ 6991 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 6992 va->va_mask = AT_GID; 6993 (void) nfs4setattr(vp, va, 0, cr, NULL); 6994 } 6995 6996 /* 6997 * If vnode is a device create special vnode 6998 */ 6999 if (ISVDEV(vp->v_type)) { 7000 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7001 VN_RELE(vp); 7002 } else { 7003 *vpp = vp; 7004 } 7005 return (error); 7006 } 7007 7008 /* 7009 * Remove requires that the current fh be the target directory. 7010 * After the operation, the current fh is unchanged. 7011 * The compound op structure is: 7012 * PUTFH(targetdir), REMOVE 7013 * 7014 * Weirdness: if the vnode to be removed is open 7015 * we rename it instead of removing it and nfs_inactive 7016 * will remove the new name. 7017 */ 7018 static int 7019 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr) 7020 { 7021 COMPOUND4args_clnt args; 7022 COMPOUND4res_clnt res, *resp = NULL; 7023 REMOVE4res *rm_res; 7024 nfs_argop4 argop[3]; 7025 nfs_resop4 *resop; 7026 vnode_t *vp; 7027 char *tmpname; 7028 int doqueue; 7029 mntinfo4_t *mi; 7030 rnode4_t *rp; 7031 rnode4_t *drp; 7032 int needrecov = 0; 7033 nfs4_recov_state_t recov_state; 7034 int isopen; 7035 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7036 dirattr_info_t dinfo; 7037 7038 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7039 return (EPERM); 7040 drp = VTOR4(dvp); 7041 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7042 return (EINTR); 7043 7044 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7045 if (e.error) { 7046 nfs_rw_exit(&drp->r_rwlock); 7047 return (e.error); 7048 } 7049 7050 if (vp->v_type == VDIR) { 7051 VN_RELE(vp); 7052 nfs_rw_exit(&drp->r_rwlock); 7053 return (EISDIR); 7054 } 7055 7056 /* 7057 * First just remove the entry from the name cache, as it 7058 * is most likely the only entry for this vp. 7059 */ 7060 dnlc_remove(dvp, nm); 7061 7062 rp = VTOR4(vp); 7063 7064 /* 7065 * For regular file types, check to see if the file is open by looking 7066 * at the open streams. 7067 * For all other types, check the reference count on the vnode. Since 7068 * they are not opened OTW they never have an open stream. 7069 * 7070 * If the file is open, rename it to .nfsXXXX. 7071 */ 7072 if (vp->v_type != VREG) { 7073 /* 7074 * If the file has a v_count > 1 then there may be more than one 7075 * entry in the name cache due multiple links or an open file, 7076 * but we don't have the real reference count so flush all 7077 * possible entries. 7078 */ 7079 if (vp->v_count > 1) 7080 dnlc_purge_vp(vp); 7081 7082 /* 7083 * Now we have the real reference count. 7084 */ 7085 isopen = vp->v_count > 1; 7086 } else { 7087 mutex_enter(&rp->r_os_lock); 7088 isopen = list_head(&rp->r_open_streams) != NULL; 7089 mutex_exit(&rp->r_os_lock); 7090 } 7091 7092 mutex_enter(&rp->r_statelock); 7093 if (isopen && 7094 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7095 mutex_exit(&rp->r_statelock); 7096 tmpname = newname(); 7097 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr); 7098 if (e.error) 7099 kmem_free(tmpname, MAXNAMELEN); 7100 else { 7101 mutex_enter(&rp->r_statelock); 7102 if (rp->r_unldvp == NULL) { 7103 VN_HOLD(dvp); 7104 rp->r_unldvp = dvp; 7105 if (rp->r_unlcred != NULL) 7106 crfree(rp->r_unlcred); 7107 crhold(cr); 7108 rp->r_unlcred = cr; 7109 rp->r_unlname = tmpname; 7110 } else { 7111 kmem_free(rp->r_unlname, MAXNAMELEN); 7112 rp->r_unlname = tmpname; 7113 } 7114 mutex_exit(&rp->r_statelock); 7115 } 7116 VN_RELE(vp); 7117 nfs_rw_exit(&drp->r_rwlock); 7118 return (e.error); 7119 } 7120 /* 7121 * Actually remove the file/dir 7122 */ 7123 mutex_exit(&rp->r_statelock); 7124 7125 /* 7126 * We need to flush any dirty pages which happen to 7127 * be hanging around before removing the file. 7128 * This shouldn't happen very often since in NFSv4 7129 * we should be close to open consistent. 7130 */ 7131 if (nfs4_has_pages(vp) && 7132 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7133 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr); 7134 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7135 mutex_enter(&rp->r_statelock); 7136 if (!rp->r_error) 7137 rp->r_error = e.error; 7138 mutex_exit(&rp->r_statelock); 7139 } 7140 } 7141 7142 mi = VTOMI4(dvp); 7143 7144 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7145 recov_state.rs_flags = 0; 7146 recov_state.rs_num_retry_despite_err = 0; 7147 7148 recov_retry: 7149 /* 7150 * Remove ops: putfh dir; remove 7151 */ 7152 args.ctag = TAG_REMOVE; 7153 args.array_len = 3; 7154 args.array = argop; 7155 7156 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7157 if (e.error) { 7158 nfs_rw_exit(&drp->r_rwlock); 7159 VN_RELE(vp); 7160 return (e.error); 7161 } 7162 7163 /* putfh directory */ 7164 argop[0].argop = OP_CPUTFH; 7165 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7166 7167 /* remove */ 7168 argop[1].argop = OP_CREMOVE; 7169 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7170 7171 /* getattr dir */ 7172 argop[2].argop = OP_GETATTR; 7173 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7174 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7175 7176 doqueue = 1; 7177 dinfo.di_time_call = gethrtime(); 7178 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7179 7180 PURGE_ATTRCACHE4(vp); 7181 7182 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7183 if (e.error) 7184 PURGE_ATTRCACHE4(dvp); 7185 7186 if (needrecov) { 7187 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7188 NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { 7189 if (!e.error) 7190 (void) xdr_free(xdr_COMPOUND4res_clnt, 7191 (caddr_t)&res); 7192 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7193 needrecov); 7194 goto recov_retry; 7195 } 7196 } 7197 7198 /* 7199 * Matching nfs4_end_op() for start_op() above. 7200 * There is a path in the code below which calls 7201 * nfs4_purge_stale_fh(), which may generate otw calls through 7202 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7203 * here to avoid nfs4_start_op() deadlock. 7204 */ 7205 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7206 7207 if (!e.error) { 7208 resp = &res; 7209 7210 if (res.status) { 7211 e.error = geterrno4(res.status); 7212 PURGE_ATTRCACHE4(dvp); 7213 nfs4_purge_stale_fh(e.error, dvp, cr); 7214 } else { 7215 resop = &res.array[1]; /* remove res */ 7216 rm_res = &resop->nfs_resop4_u.opremove; 7217 7218 dinfo.di_garp = 7219 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7220 dinfo.di_cred = cr; 7221 7222 /* Update directory attr, readdir and dnlc caches */ 7223 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7224 &dinfo); 7225 } 7226 } 7227 nfs_rw_exit(&drp->r_rwlock); 7228 if (resp) 7229 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7230 7231 VN_RELE(vp); 7232 return (e.error); 7233 } 7234 7235 /* 7236 * Link requires that the current fh be the target directory and the 7237 * saved fh be the source fh. After the operation, the current fh is unchanged. 7238 * Thus the compound op structure is: 7239 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7240 * GETATTR(file) 7241 */ 7242 static int 7243 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr) 7244 { 7245 COMPOUND4args_clnt args; 7246 COMPOUND4res_clnt res, *resp = NULL; 7247 LINK4res *ln_res; 7248 int argoplist_size = 7 * sizeof (nfs_argop4); 7249 nfs_argop4 *argop; 7250 nfs_resop4 *resop; 7251 vnode_t *realvp, *nvp; 7252 int doqueue; 7253 mntinfo4_t *mi; 7254 rnode4_t *tdrp; 7255 bool_t needrecov = FALSE; 7256 nfs4_recov_state_t recov_state; 7257 hrtime_t t; 7258 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7259 dirattr_info_t dinfo; 7260 7261 ASSERT(*tnm != '\0'); 7262 ASSERT(tdvp->v_type == VDIR); 7263 ASSERT(nfs4_consistent_type(tdvp)); 7264 ASSERT(nfs4_consistent_type(svp)); 7265 7266 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7267 return (EPERM); 7268 if (VOP_REALVP(svp, &realvp) == 0) { 7269 svp = realvp; 7270 ASSERT(nfs4_consistent_type(svp)); 7271 } 7272 7273 tdrp = VTOR4(tdvp); 7274 mi = VTOMI4(svp); 7275 7276 if (!(mi->mi_flags & MI4_LINK)) { 7277 return (EOPNOTSUPP); 7278 } 7279 recov_state.rs_flags = 0; 7280 recov_state.rs_num_retry_despite_err = 0; 7281 7282 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7283 return (EINTR); 7284 7285 recov_retry: 7286 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7287 7288 args.ctag = TAG_LINK; 7289 7290 /* 7291 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7292 * restorefh; getattr(fl) 7293 */ 7294 args.array_len = 7; 7295 args.array = argop; 7296 7297 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7298 if (e.error) { 7299 kmem_free(argop, argoplist_size); 7300 nfs_rw_exit(&tdrp->r_rwlock); 7301 return (e.error); 7302 } 7303 7304 /* 0. putfh file */ 7305 argop[0].argop = OP_CPUTFH; 7306 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7307 7308 /* 1. save current fh to free up the space for the dir */ 7309 argop[1].argop = OP_SAVEFH; 7310 7311 /* 2. putfh targetdir */ 7312 argop[2].argop = OP_CPUTFH; 7313 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7314 7315 /* 3. link: current_fh is targetdir, saved_fh is source */ 7316 argop[3].argop = OP_CLINK; 7317 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7318 7319 /* 4. Get attributes of dir */ 7320 argop[4].argop = OP_GETATTR; 7321 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7322 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7323 7324 /* 5. If link was successful, restore current vp to file */ 7325 argop[5].argop = OP_RESTOREFH; 7326 7327 /* 6. Get attributes of linked object */ 7328 argop[6].argop = OP_GETATTR; 7329 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7330 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7331 7332 dnlc_remove(tdvp, tnm); 7333 7334 doqueue = 1; 7335 t = gethrtime(); 7336 7337 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7338 7339 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7340 if (e.error != 0 && !needrecov) { 7341 PURGE_ATTRCACHE4(tdvp); 7342 PURGE_ATTRCACHE4(svp); 7343 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7344 goto out; 7345 } 7346 7347 if (needrecov) { 7348 bool_t abort; 7349 7350 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7351 NULL, NULL, OP_LINK, NULL); 7352 if (abort == FALSE) { 7353 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7354 needrecov); 7355 kmem_free(argop, argoplist_size); 7356 if (!e.error) 7357 (void) xdr_free(xdr_COMPOUND4res_clnt, 7358 (caddr_t)&res); 7359 goto recov_retry; 7360 } else { 7361 if (e.error != 0) { 7362 PURGE_ATTRCACHE4(tdvp); 7363 PURGE_ATTRCACHE4(svp); 7364 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7365 &recov_state, needrecov); 7366 goto out; 7367 } 7368 /* fall through for res.status case */ 7369 } 7370 } 7371 7372 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7373 7374 resp = &res; 7375 if (res.status) { 7376 /* If link succeeded, then don't return error */ 7377 e.error = geterrno4(res.status); 7378 if (res.array_len <= 4) { 7379 /* 7380 * Either Putfh, Savefh, Putfh dir, or Link failed 7381 */ 7382 PURGE_ATTRCACHE4(svp); 7383 PURGE_ATTRCACHE4(tdvp); 7384 if (e.error == EOPNOTSUPP) { 7385 mutex_enter(&mi->mi_lock); 7386 mi->mi_flags &= ~MI4_LINK; 7387 mutex_exit(&mi->mi_lock); 7388 } 7389 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7390 /* XXX-LP */ 7391 if (e.error == EISDIR && crgetuid(cr) != 0) 7392 e.error = EPERM; 7393 goto out; 7394 } 7395 } 7396 7397 /* either no error or one of the postop getattr failed */ 7398 7399 /* 7400 * XXX - if LINK succeeded, but no attrs were returned for link 7401 * file, purge its cache. 7402 * 7403 * XXX Perform a simplified version of wcc checking. Instead of 7404 * have another getattr to get pre-op, just purge cache if 7405 * any of the ops prior to and including the getattr failed. 7406 * If the getattr succeeded then update the attrcache accordingly. 7407 */ 7408 7409 /* 7410 * update cache with link file postattrs. 7411 * Note: at this point resop points to link res. 7412 */ 7413 resop = &res.array[3]; /* link res */ 7414 ln_res = &resop->nfs_resop4_u.oplink; 7415 if (res.status == NFS4_OK) { 7416 e.error = nfs4_update_attrcache(res.status, 7417 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7418 t, svp, cr); 7419 } 7420 7421 /* 7422 * Call makenfs4node to create the new shadow vp for tnm. 7423 * We pass NULL attrs because we just cached attrs for 7424 * the src object. All we're trying to accomplish is to 7425 * to create the new shadow vnode. 7426 */ 7427 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7428 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm)); 7429 7430 /* Update target cache attribute, readdir and dnlc caches */ 7431 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7432 dinfo.di_time_call = t; 7433 dinfo.di_cred = cr; 7434 7435 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7436 ASSERT(nfs4_consistent_type(tdvp)); 7437 ASSERT(nfs4_consistent_type(svp)); 7438 ASSERT(nfs4_consistent_type(nvp)); 7439 VN_RELE(nvp); 7440 7441 out: 7442 kmem_free(argop, argoplist_size); 7443 if (resp) 7444 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7445 7446 nfs_rw_exit(&tdrp->r_rwlock); 7447 7448 return (e.error); 7449 } 7450 7451 static int 7452 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 7453 { 7454 vnode_t *realvp; 7455 7456 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7457 return (EPERM); 7458 if (VOP_REALVP(ndvp, &realvp) == 0) 7459 ndvp = realvp; 7460 7461 return (nfs4rename(odvp, onm, ndvp, nnm, cr)); 7462 } 7463 7464 /* 7465 * nfs4rename does the real work of renaming in NFS Version 4. 7466 * 7467 * A file handle is considered volatile for renaming purposes if either 7468 * of the volatile bits are turned on. However, the compound may differ 7469 * based on the likelihood of the filehandle to change during rename. 7470 */ 7471 static int 7472 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 7473 { 7474 int error; 7475 mntinfo4_t *mi; 7476 vnode_t *nvp; 7477 vnode_t *ovp = NULL; 7478 char *tmpname = NULL; 7479 rnode4_t *rp; 7480 rnode4_t *odrp; 7481 rnode4_t *ndrp; 7482 int did_link = 0; 7483 int do_link = 1; 7484 nfsstat4 stat = NFS4_OK; 7485 7486 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7487 ASSERT(nfs4_consistent_type(odvp)); 7488 ASSERT(nfs4_consistent_type(ndvp)); 7489 7490 if (onm[0] == '.' && (onm[1] == '\0' || 7491 (onm[1] == '.' && onm[2] == '\0'))) 7492 return (EINVAL); 7493 7494 if (nnm[0] == '.' && (nnm[1] == '\0' || 7495 (nnm[1] == '.' && nnm[2] == '\0'))) 7496 return (EINVAL); 7497 7498 odrp = VTOR4(odvp); 7499 ndrp = VTOR4(ndvp); 7500 if ((intptr_t)odrp < (intptr_t)ndrp) { 7501 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7502 return (EINTR); 7503 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7504 nfs_rw_exit(&odrp->r_rwlock); 7505 return (EINTR); 7506 } 7507 } else { 7508 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7509 return (EINTR); 7510 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7511 nfs_rw_exit(&ndrp->r_rwlock); 7512 return (EINTR); 7513 } 7514 } 7515 7516 /* 7517 * Lookup the target file. If it exists, it needs to be 7518 * checked to see whether it is a mount point and whether 7519 * it is active (open). 7520 */ 7521 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7522 if (!error) { 7523 int isactive; 7524 7525 ASSERT(nfs4_consistent_type(nvp)); 7526 /* 7527 * If this file has been mounted on, then just 7528 * return busy because renaming to it would remove 7529 * the mounted file system from the name space. 7530 */ 7531 if (vn_ismntpt(nvp)) { 7532 VN_RELE(nvp); 7533 nfs_rw_exit(&odrp->r_rwlock); 7534 nfs_rw_exit(&ndrp->r_rwlock); 7535 return (EBUSY); 7536 } 7537 7538 /* 7539 * First just remove the entry from the name cache, as it 7540 * is most likely the only entry for this vp. 7541 */ 7542 dnlc_remove(ndvp, nnm); 7543 7544 rp = VTOR4(nvp); 7545 7546 if (nvp->v_type != VREG) { 7547 /* 7548 * Purge the name cache of all references to this vnode 7549 * so that we can check the reference count to infer 7550 * whether it is active or not. 7551 */ 7552 if (nvp->v_count > 1) 7553 dnlc_purge_vp(nvp); 7554 7555 isactive = nvp->v_count > 1; 7556 } else { 7557 mutex_enter(&rp->r_os_lock); 7558 isactive = list_head(&rp->r_open_streams) != NULL; 7559 mutex_exit(&rp->r_os_lock); 7560 } 7561 7562 /* 7563 * If the vnode is active and is not a directory, 7564 * arrange to rename it to a 7565 * temporary file so that it will continue to be 7566 * accessible. This implements the "unlink-open-file" 7567 * semantics for the target of a rename operation. 7568 * Before doing this though, make sure that the 7569 * source and target files are not already the same. 7570 */ 7571 if (isactive && nvp->v_type != VDIR) { 7572 /* 7573 * Lookup the source name. 7574 */ 7575 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7576 7577 /* 7578 * The source name *should* already exist. 7579 */ 7580 if (error) { 7581 VN_RELE(nvp); 7582 nfs_rw_exit(&odrp->r_rwlock); 7583 nfs_rw_exit(&ndrp->r_rwlock); 7584 return (error); 7585 } 7586 7587 ASSERT(nfs4_consistent_type(ovp)); 7588 7589 /* 7590 * Compare the two vnodes. If they are the same, 7591 * just release all held vnodes and return success. 7592 */ 7593 if (VN_CMP(ovp, nvp)) { 7594 VN_RELE(ovp); 7595 VN_RELE(nvp); 7596 nfs_rw_exit(&odrp->r_rwlock); 7597 nfs_rw_exit(&ndrp->r_rwlock); 7598 return (0); 7599 } 7600 7601 /* 7602 * Can't mix and match directories and non- 7603 * directories in rename operations. We already 7604 * know that the target is not a directory. If 7605 * the source is a directory, return an error. 7606 */ 7607 if (ovp->v_type == VDIR) { 7608 VN_RELE(ovp); 7609 VN_RELE(nvp); 7610 nfs_rw_exit(&odrp->r_rwlock); 7611 nfs_rw_exit(&ndrp->r_rwlock); 7612 return (ENOTDIR); 7613 } 7614 link_call: 7615 /* 7616 * The target file exists, is not the same as 7617 * the source file, and is active. We first 7618 * try to Link it to a temporary filename to 7619 * avoid having the server removing the file 7620 * completely (which could cause data loss to 7621 * the user's POV in the event the Rename fails 7622 * -- see bug 1165874). 7623 */ 7624 /* 7625 * The do_link and did_link booleans are 7626 * introduced in the event we get NFS4ERR_FILE_OPEN 7627 * returned for the Rename. Some servers can 7628 * not Rename over an Open file, so they return 7629 * this error. The client needs to Remove the 7630 * newly created Link and do two Renames, just 7631 * as if the server didn't support LINK. 7632 */ 7633 tmpname = newname(); 7634 error = 0; 7635 7636 if (do_link) { 7637 error = nfs4_link(ndvp, nvp, tmpname, cr); 7638 } 7639 if (error == EOPNOTSUPP || !do_link) { 7640 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7641 cr); 7642 did_link = 0; 7643 } else { 7644 did_link = 1; 7645 } 7646 if (error) { 7647 kmem_free(tmpname, MAXNAMELEN); 7648 VN_RELE(ovp); 7649 VN_RELE(nvp); 7650 nfs_rw_exit(&odrp->r_rwlock); 7651 nfs_rw_exit(&ndrp->r_rwlock); 7652 return (error); 7653 } 7654 7655 mutex_enter(&rp->r_statelock); 7656 if (rp->r_unldvp == NULL) { 7657 VN_HOLD(ndvp); 7658 rp->r_unldvp = ndvp; 7659 if (rp->r_unlcred != NULL) 7660 crfree(rp->r_unlcred); 7661 crhold(cr); 7662 rp->r_unlcred = cr; 7663 rp->r_unlname = tmpname; 7664 } else { 7665 if (rp->r_unlname) 7666 kmem_free(rp->r_unlname, MAXNAMELEN); 7667 rp->r_unlname = tmpname; 7668 } 7669 mutex_exit(&rp->r_statelock); 7670 } 7671 7672 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7673 7674 ASSERT(nfs4_consistent_type(nvp)); 7675 VN_RELE(nvp); 7676 } 7677 7678 if (ovp == NULL) { 7679 /* 7680 * When renaming directories to be a subdirectory of a 7681 * different parent, the dnlc entry for ".." will no 7682 * longer be valid, so it must be removed. 7683 * 7684 * We do a lookup here to determine whether we are renaming 7685 * a directory and we need to check if we are renaming 7686 * an unlinked file. This might have already been done 7687 * in previous code, so we check ovp == NULL to avoid 7688 * doing it twice. 7689 */ 7690 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7691 /* 7692 * The source name *should* already exist. 7693 */ 7694 if (error) { 7695 nfs_rw_exit(&odrp->r_rwlock); 7696 nfs_rw_exit(&ndrp->r_rwlock); 7697 return (error); 7698 } 7699 ASSERT(ovp != NULL); 7700 ASSERT(nfs4_consistent_type(ovp)); 7701 } 7702 7703 /* 7704 * Is the object being renamed a dir, and if so, is 7705 * it being renamed to a child of itself? The underlying 7706 * fs should ultimately return EINVAL for this case; 7707 * however, buggy beta non-Solaris NFSv4 servers at 7708 * interop testing events have allowed this behavior, 7709 * and it caused our client to panic due to a recursive 7710 * mutex_enter in fn_move. 7711 * 7712 * The tedious locking in fn_move could be changed to 7713 * deal with this case, and the client could avoid the 7714 * panic; however, the client would just confuse itself 7715 * later and misbehave. A better way to handle the broken 7716 * server is to detect this condition and return EINVAL 7717 * without ever sending the the bogus rename to the server. 7718 * We know the rename is invalid -- just fail it now. 7719 */ 7720 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7721 VN_RELE(ovp); 7722 nfs_rw_exit(&odrp->r_rwlock); 7723 nfs_rw_exit(&ndrp->r_rwlock); 7724 return (EINVAL); 7725 } 7726 7727 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7728 7729 /* 7730 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7731 * possible for the filehandle to change due to the rename. 7732 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7733 * the fh will not change because of the rename, but we still need 7734 * to update its rnode entry with the new name for 7735 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7736 * has no effect on these for now, but for future improvements, 7737 * we might want to use it too to simplify handling of files 7738 * that are open with that flag on. (XXX) 7739 */ 7740 mi = VTOMI4(odvp); 7741 if (NFS4_VOLATILE_FH(mi)) { 7742 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7743 &stat); 7744 } else { 7745 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7746 &stat); 7747 } 7748 ASSERT(nfs4_consistent_type(odvp)); 7749 ASSERT(nfs4_consistent_type(ndvp)); 7750 ASSERT(nfs4_consistent_type(ovp)); 7751 7752 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7753 do_link = 0; 7754 /* 7755 * Before the 'link_call' code, we did a nfs4_lookup 7756 * that puts a VN_HOLD on nvp. After the nfs4_link 7757 * call we call VN_RELE to match that hold. We need 7758 * to place an additional VN_HOLD here since we will 7759 * be hitting that VN_RELE again. 7760 */ 7761 VN_HOLD(nvp); 7762 7763 (void) nfs4_remove(ndvp, tmpname, cr); 7764 7765 /* Undo the unlinked file naming stuff we just did */ 7766 mutex_enter(&rp->r_statelock); 7767 if (rp->r_unldvp) { 7768 VN_RELE(ndvp); 7769 rp->r_unldvp = NULL; 7770 if (rp->r_unlcred != NULL) 7771 crfree(rp->r_unlcred); 7772 rp->r_unlcred = NULL; 7773 /* rp->r_unlanme points to tmpname */ 7774 if (rp->r_unlname) 7775 kmem_free(rp->r_unlname, MAXNAMELEN); 7776 rp->r_unlname = NULL; 7777 } 7778 mutex_exit(&rp->r_statelock); 7779 7780 goto link_call; 7781 } 7782 7783 if (error) { 7784 VN_RELE(ovp); 7785 nfs_rw_exit(&odrp->r_rwlock); 7786 nfs_rw_exit(&ndrp->r_rwlock); 7787 return (error); 7788 } 7789 7790 /* 7791 * when renaming directories to be a subdirectory of a 7792 * different parent, the dnlc entry for ".." will no 7793 * longer be valid, so it must be removed 7794 */ 7795 rp = VTOR4(ovp); 7796 if (ndvp != odvp) { 7797 if (ovp->v_type == VDIR) { 7798 dnlc_remove(ovp, ".."); 7799 if (rp->r_dir != NULL) 7800 nfs4_purge_rddir_cache(ovp); 7801 } 7802 } 7803 7804 /* 7805 * If we are renaming the unlinked file, update the 7806 * r_unldvp and r_unlname as needed. 7807 */ 7808 mutex_enter(&rp->r_statelock); 7809 if (rp->r_unldvp != NULL) { 7810 if (strcmp(rp->r_unlname, onm) == 0) { 7811 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 7812 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 7813 if (ndvp != rp->r_unldvp) { 7814 VN_RELE(rp->r_unldvp); 7815 rp->r_unldvp = ndvp; 7816 VN_HOLD(ndvp); 7817 } 7818 } 7819 } 7820 mutex_exit(&rp->r_statelock); 7821 7822 VN_RELE(ovp); 7823 7824 nfs_rw_exit(&odrp->r_rwlock); 7825 nfs_rw_exit(&ndrp->r_rwlock); 7826 7827 return (error); 7828 } 7829 7830 /* 7831 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 7832 * when it is known that the filehandle is persistent through rename. 7833 * 7834 * Rename requires that the current fh be the target directory and the 7835 * saved fh be the source directory. After the operation, the current fh 7836 * is unchanged. 7837 * The compound op structure for persistent fh rename is: 7838 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 7839 * Rather than bother with the directory postop args, we'll simply 7840 * update that a change occured in the cache, so no post-op getattrs. 7841 */ 7842 static int 7843 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 7844 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 7845 { 7846 COMPOUND4args_clnt args; 7847 COMPOUND4res_clnt res, *resp = NULL; 7848 nfs_argop4 *argop; 7849 nfs_resop4 *resop; 7850 int doqueue, argoplist_size; 7851 mntinfo4_t *mi; 7852 rnode4_t *odrp = VTOR4(odvp); 7853 rnode4_t *ndrp = VTOR4(ndvp); 7854 RENAME4res *rn_res; 7855 bool_t needrecov; 7856 nfs4_recov_state_t recov_state; 7857 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7858 dirattr_info_t dinfo, *dinfop; 7859 7860 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7861 7862 recov_state.rs_flags = 0; 7863 recov_state.rs_num_retry_despite_err = 0; 7864 7865 /* 7866 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 7867 * 7868 * If source/target are different dirs, then append putfh(src); getattr 7869 */ 7870 args.array_len = (odvp == ndvp) ? 5 : 7; 7871 argoplist_size = args.array_len * sizeof (nfs_argop4); 7872 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 7873 7874 recov_retry: 7875 *statp = NFS4_OK; 7876 7877 /* No need to Lookup the file, persistent fh */ 7878 args.ctag = TAG_RENAME; 7879 7880 mi = VTOMI4(odvp); 7881 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 7882 if (e.error) { 7883 kmem_free(argop, argoplist_size); 7884 return (e.error); 7885 } 7886 7887 /* 0: putfh source directory */ 7888 argop[0].argop = OP_CPUTFH; 7889 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 7890 7891 /* 1: Save source fh to free up current for target */ 7892 argop[1].argop = OP_SAVEFH; 7893 7894 /* 2: putfh targetdir */ 7895 argop[2].argop = OP_CPUTFH; 7896 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 7897 7898 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 7899 argop[3].argop = OP_CRENAME; 7900 argop[3].nfs_argop4_u.opcrename.coldname = onm; 7901 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 7902 7903 /* 4: getattr (targetdir) */ 7904 argop[4].argop = OP_GETATTR; 7905 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7906 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7907 7908 if (ndvp != odvp) { 7909 7910 /* 5: putfh (sourcedir) */ 7911 argop[5].argop = OP_CPUTFH; 7912 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 7913 7914 /* 6: getattr (sourcedir) */ 7915 argop[6].argop = OP_GETATTR; 7916 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7917 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7918 } 7919 7920 dnlc_remove(odvp, onm); 7921 dnlc_remove(ndvp, nnm); 7922 7923 doqueue = 1; 7924 dinfo.di_time_call = gethrtime(); 7925 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7926 7927 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7928 if (e.error) { 7929 PURGE_ATTRCACHE4(odvp); 7930 PURGE_ATTRCACHE4(ndvp); 7931 } else { 7932 *statp = res.status; 7933 } 7934 7935 if (needrecov) { 7936 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 7937 OP_RENAME, NULL) == FALSE) { 7938 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 7939 if (!e.error) 7940 (void) xdr_free(xdr_COMPOUND4res_clnt, 7941 (caddr_t)&res); 7942 goto recov_retry; 7943 } 7944 } 7945 7946 if (!e.error) { 7947 resp = &res; 7948 /* 7949 * as long as OP_RENAME 7950 */ 7951 if (res.status != NFS4_OK && res.array_len <= 4) { 7952 e.error = geterrno4(res.status); 7953 PURGE_ATTRCACHE4(odvp); 7954 PURGE_ATTRCACHE4(ndvp); 7955 /* 7956 * System V defines rename to return EEXIST, not 7957 * ENOTEMPTY if the target directory is not empty. 7958 * Over the wire, the error is NFSERR_ENOTEMPTY 7959 * which geterrno4 maps to ENOTEMPTY. 7960 */ 7961 if (e.error == ENOTEMPTY) 7962 e.error = EEXIST; 7963 } else { 7964 7965 resop = &res.array[3]; /* rename res */ 7966 rn_res = &resop->nfs_resop4_u.oprename; 7967 7968 if (res.status == NFS4_OK) { 7969 /* 7970 * Update target attribute, readdir and dnlc 7971 * caches. 7972 */ 7973 dinfo.di_garp = 7974 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7975 dinfo.di_cred = cr; 7976 dinfop = &dinfo; 7977 } else 7978 dinfop = NULL; 7979 7980 nfs4_update_dircaches(&rn_res->target_cinfo, 7981 ndvp, NULL, NULL, dinfop); 7982 7983 /* 7984 * Update source attribute, readdir and dnlc caches 7985 * 7986 */ 7987 if (ndvp != odvp) { 7988 if (dinfop) 7989 dinfo.di_garp = 7990 &(res.array[6].nfs_resop4_u. 7991 opgetattr.ga_res); 7992 7993 nfs4_update_dircaches(&rn_res->source_cinfo, 7994 odvp, NULL, NULL, dinfop); 7995 } 7996 7997 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 7998 nnm); 7999 } 8000 } 8001 8002 if (resp) 8003 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8004 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8005 kmem_free(argop, argoplist_size); 8006 8007 return (e.error); 8008 } 8009 8010 /* 8011 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8012 * it is possible for the filehandle to change due to the rename. 8013 * 8014 * The compound req in this case includes a post-rename lookup and getattr 8015 * to ensure that we have the correct fh and attributes for the object. 8016 * 8017 * Rename requires that the current fh be the target directory and the 8018 * saved fh be the source directory. After the operation, the current fh 8019 * is unchanged. 8020 * 8021 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8022 * update the filehandle for the renamed object. We also get the old 8023 * filehandle for historical reasons; this should be taken out sometime. 8024 * This results in a rather cumbersome compound... 8025 * 8026 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8027 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8028 * 8029 */ 8030 static int 8031 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8032 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8033 { 8034 COMPOUND4args_clnt args; 8035 COMPOUND4res_clnt res, *resp = NULL; 8036 int argoplist_size; 8037 nfs_argop4 *argop; 8038 nfs_resop4 *resop; 8039 int doqueue; 8040 mntinfo4_t *mi; 8041 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8042 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8043 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8044 RENAME4res *rn_res; 8045 GETFH4res *ngf_res; 8046 bool_t needrecov; 8047 nfs4_recov_state_t recov_state; 8048 hrtime_t t; 8049 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8050 dirattr_info_t dinfo, *dinfop = &dinfo; 8051 8052 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8053 8054 recov_state.rs_flags = 0; 8055 recov_state.rs_num_retry_despite_err = 0; 8056 8057 recov_retry: 8058 *statp = NFS4_OK; 8059 8060 /* 8061 * There is a window between the RPC and updating the path and 8062 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8063 * code, so that it doesn't try to use the old path during that 8064 * window. 8065 */ 8066 mutex_enter(&orp->r_statelock); 8067 while (orp->r_flags & R4RECEXPFH) { 8068 klwp_t *lwp = ttolwp(curthread); 8069 8070 if (lwp != NULL) 8071 lwp->lwp_nostop++; 8072 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8073 mutex_exit(&orp->r_statelock); 8074 if (lwp != NULL) 8075 lwp->lwp_nostop--; 8076 return (EINTR); 8077 } 8078 if (lwp != NULL) 8079 lwp->lwp_nostop--; 8080 } 8081 orp->r_flags |= R4RECEXPFH; 8082 mutex_exit(&orp->r_statelock); 8083 8084 mi = VTOMI4(odvp); 8085 8086 args.ctag = TAG_RENAME_VFH; 8087 args.array_len = (odvp == ndvp) ? 10 : 12; 8088 argoplist_size = args.array_len * sizeof (nfs_argop4); 8089 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8090 8091 /* 8092 * Rename ops: 8093 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8094 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8095 * LOOKUP(trgt), GETFH(new), GETATTR, 8096 * 8097 * if (odvp != ndvp) 8098 * add putfh(sourcedir), getattr(sourcedir) } 8099 */ 8100 args.array = argop; 8101 8102 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8103 &recov_state, NULL); 8104 if (e.error) { 8105 kmem_free(argop, argoplist_size); 8106 mutex_enter(&orp->r_statelock); 8107 orp->r_flags &= ~R4RECEXPFH; 8108 cv_broadcast(&orp->r_cv); 8109 mutex_exit(&orp->r_statelock); 8110 return (e.error); 8111 } 8112 8113 /* 0: putfh source directory */ 8114 argop[0].argop = OP_CPUTFH; 8115 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8116 8117 /* 1: Save source fh to free up current for target */ 8118 argop[1].argop = OP_SAVEFH; 8119 8120 /* 2: Lookup pre-rename fh of renamed object */ 8121 argop[2].argop = OP_CLOOKUP; 8122 argop[2].nfs_argop4_u.opclookup.cname = onm; 8123 8124 /* 3: getfh fh of renamed object (before rename) */ 8125 argop[3].argop = OP_GETFH; 8126 8127 /* 4: putfh targetdir */ 8128 argop[4].argop = OP_CPUTFH; 8129 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8130 8131 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8132 argop[5].argop = OP_CRENAME; 8133 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8134 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8135 8136 /* 6: getattr of target dir (post op attrs) */ 8137 argop[6].argop = OP_GETATTR; 8138 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8139 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8140 8141 /* 7: Lookup post-rename fh of renamed object */ 8142 argop[7].argop = OP_CLOOKUP; 8143 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8144 8145 /* 8: getfh fh of renamed object (after rename) */ 8146 argop[8].argop = OP_GETFH; 8147 8148 /* 9: getattr of renamed object */ 8149 argop[9].argop = OP_GETATTR; 8150 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8151 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8152 8153 /* 8154 * If source/target dirs are different, then get new post-op 8155 * attrs for source dir also. 8156 */ 8157 if (ndvp != odvp) { 8158 /* 10: putfh (sourcedir) */ 8159 argop[10].argop = OP_CPUTFH; 8160 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8161 8162 /* 11: getattr (sourcedir) */ 8163 argop[11].argop = OP_GETATTR; 8164 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8165 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8166 } 8167 8168 dnlc_remove(odvp, onm); 8169 dnlc_remove(ndvp, nnm); 8170 8171 doqueue = 1; 8172 t = gethrtime(); 8173 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8174 8175 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8176 if (e.error) { 8177 PURGE_ATTRCACHE4(odvp); 8178 PURGE_ATTRCACHE4(ndvp); 8179 if (!needrecov) { 8180 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8181 &recov_state, needrecov); 8182 goto out; 8183 } 8184 } else { 8185 *statp = res.status; 8186 } 8187 8188 if (needrecov) { 8189 bool_t abort; 8190 8191 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8192 OP_RENAME, NULL); 8193 if (abort == FALSE) { 8194 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8195 &recov_state, needrecov); 8196 kmem_free(argop, argoplist_size); 8197 if (!e.error) 8198 (void) xdr_free(xdr_COMPOUND4res_clnt, 8199 (caddr_t)&res); 8200 mutex_enter(&orp->r_statelock); 8201 orp->r_flags &= ~R4RECEXPFH; 8202 cv_broadcast(&orp->r_cv); 8203 mutex_exit(&orp->r_statelock); 8204 goto recov_retry; 8205 } else { 8206 if (e.error != 0) { 8207 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8208 &recov_state, needrecov); 8209 goto out; 8210 } 8211 /* fall through for res.status case */ 8212 } 8213 } 8214 8215 resp = &res; 8216 /* 8217 * If OP_RENAME (or any prev op) failed, then return an error. 8218 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8219 */ 8220 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8221 /* 8222 * Error in an op other than last Getattr 8223 */ 8224 e.error = geterrno4(res.status); 8225 PURGE_ATTRCACHE4(odvp); 8226 PURGE_ATTRCACHE4(ndvp); 8227 /* 8228 * System V defines rename to return EEXIST, not 8229 * ENOTEMPTY if the target directory is not empty. 8230 * Over the wire, the error is NFSERR_ENOTEMPTY 8231 * which geterrno4 maps to ENOTEMPTY. 8232 */ 8233 if (e.error == ENOTEMPTY) 8234 e.error = EEXIST; 8235 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8236 needrecov); 8237 goto out; 8238 } 8239 8240 /* rename results */ 8241 rn_res = &res.array[5].nfs_resop4_u.oprename; 8242 8243 if (res.status == NFS4_OK) { 8244 /* Update target attribute, readdir and dnlc caches */ 8245 dinfo.di_garp = 8246 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8247 dinfo.di_cred = cr; 8248 dinfo.di_time_call = t; 8249 } else 8250 dinfop = NULL; 8251 8252 /* Update source cache attribute, readdir and dnlc caches */ 8253 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8254 8255 /* Update source cache attribute, readdir and dnlc caches */ 8256 if (ndvp != odvp) { 8257 8258 /* 8259 * If dinfop is non-NULL, then compound succeded, so 8260 * set di_garp to attrs for source dir. dinfop is only 8261 * set to NULL when compound fails. 8262 */ 8263 if (dinfop) 8264 dinfo.di_garp = 8265 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8266 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8267 dinfop); 8268 } 8269 8270 /* 8271 * Update the rnode with the new component name and args, 8272 * and if the file handle changed, also update it with the new fh. 8273 * This is only necessary if the target object has an rnode 8274 * entry and there is no need to create one for it. 8275 */ 8276 resop = &res.array[8]; /* getfh new res */ 8277 ngf_res = &resop->nfs_resop4_u.opgetfh; 8278 8279 /* 8280 * Update the path and filehandle for the renamed object. 8281 */ 8282 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8283 8284 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8285 8286 if (res.status == NFS4_OK) { 8287 resop++; /* getattr res */ 8288 e.error = nfs4_update_attrcache(res.status, 8289 &resop->nfs_resop4_u.opgetattr.ga_res, 8290 t, ovp, cr); 8291 } 8292 8293 out: 8294 kmem_free(argop, argoplist_size); 8295 if (resp) 8296 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8297 mutex_enter(&orp->r_statelock); 8298 orp->r_flags &= ~R4RECEXPFH; 8299 cv_broadcast(&orp->r_cv); 8300 mutex_exit(&orp->r_statelock); 8301 8302 return (e.error); 8303 } 8304 8305 static int 8306 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr) 8307 { 8308 int error; 8309 vnode_t *vp; 8310 8311 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8312 return (EPERM); 8313 /* 8314 * As ".." has special meaning and rather than send a mkdir 8315 * over the wire to just let the server freak out, we just 8316 * short circuit it here and return EEXIST 8317 */ 8318 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8319 return (EEXIST); 8320 8321 /* 8322 * Decision to get the right gid and setgid bit of the 8323 * new directory is now made in call_nfs4_create_req. 8324 */ 8325 va->va_mask |= AT_MODE; 8326 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8327 if (error) 8328 return (error); 8329 8330 *vpp = vp; 8331 return (0); 8332 } 8333 8334 8335 /* 8336 * rmdir is using the same remove v4 op as does remove. 8337 * Remove requires that the current fh be the target directory. 8338 * After the operation, the current fh is unchanged. 8339 * The compound op structure is: 8340 * PUTFH(targetdir), REMOVE 8341 */ 8342 static int 8343 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr) 8344 { 8345 int need_end_op = FALSE; 8346 COMPOUND4args_clnt args; 8347 COMPOUND4res_clnt res, *resp = NULL; 8348 REMOVE4res *rm_res; 8349 nfs_argop4 argop[3]; 8350 nfs_resop4 *resop; 8351 vnode_t *vp; 8352 int doqueue; 8353 mntinfo4_t *mi; 8354 rnode4_t *drp; 8355 bool_t needrecov = FALSE; 8356 nfs4_recov_state_t recov_state; 8357 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8358 dirattr_info_t dinfo, *dinfop; 8359 8360 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8361 return (EPERM); 8362 /* 8363 * As ".." has special meaning and rather than send a rmdir 8364 * over the wire to just let the server freak out, we just 8365 * short circuit it here and return EEXIST 8366 */ 8367 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8368 return (EEXIST); 8369 8370 drp = VTOR4(dvp); 8371 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8372 return (EINTR); 8373 8374 /* 8375 * Attempt to prevent a rmdir(".") from succeeding. 8376 */ 8377 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8378 if (e.error) { 8379 nfs_rw_exit(&drp->r_rwlock); 8380 return (e.error); 8381 } 8382 if (vp == cdir) { 8383 VN_RELE(vp); 8384 nfs_rw_exit(&drp->r_rwlock); 8385 return (EINVAL); 8386 } 8387 8388 /* 8389 * Since nfsv4 remove op works on both files and directories, 8390 * check that the removed object is indeed a directory. 8391 */ 8392 if (vp->v_type != VDIR) { 8393 VN_RELE(vp); 8394 nfs_rw_exit(&drp->r_rwlock); 8395 return (ENOTDIR); 8396 } 8397 8398 /* 8399 * First just remove the entry from the name cache, as it 8400 * is most likely an entry for this vp. 8401 */ 8402 dnlc_remove(dvp, nm); 8403 8404 /* 8405 * If there vnode reference count is greater than one, then 8406 * there may be additional references in the DNLC which will 8407 * need to be purged. First, trying removing the entry for 8408 * the parent directory and see if that removes the additional 8409 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8410 * to completely remove any references to the directory which 8411 * might still exist in the DNLC. 8412 */ 8413 if (vp->v_count > 1) { 8414 dnlc_remove(vp, ".."); 8415 if (vp->v_count > 1) 8416 dnlc_purge_vp(vp); 8417 } 8418 8419 mi = VTOMI4(dvp); 8420 recov_state.rs_flags = 0; 8421 recov_state.rs_num_retry_despite_err = 0; 8422 8423 recov_retry: 8424 args.ctag = TAG_RMDIR; 8425 8426 /* 8427 * Rmdir ops: putfh dir; remove 8428 */ 8429 args.array_len = 3; 8430 args.array = argop; 8431 8432 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8433 if (e.error) { 8434 nfs_rw_exit(&drp->r_rwlock); 8435 return (e.error); 8436 } 8437 need_end_op = TRUE; 8438 8439 /* putfh directory */ 8440 argop[0].argop = OP_CPUTFH; 8441 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8442 8443 /* remove */ 8444 argop[1].argop = OP_CREMOVE; 8445 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8446 8447 /* getattr (postop attrs for dir that contained removed dir) */ 8448 argop[2].argop = OP_GETATTR; 8449 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8450 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8451 8452 dinfo.di_time_call = gethrtime(); 8453 doqueue = 1; 8454 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8455 8456 PURGE_ATTRCACHE4(vp); 8457 8458 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8459 if (e.error) { 8460 PURGE_ATTRCACHE4(dvp); 8461 } 8462 8463 if (needrecov) { 8464 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8465 NULL, OP_REMOVE, NULL) == FALSE) { 8466 if (!e.error) 8467 (void) xdr_free(xdr_COMPOUND4res_clnt, 8468 (caddr_t)&res); 8469 8470 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8471 needrecov); 8472 need_end_op = FALSE; 8473 goto recov_retry; 8474 } 8475 } 8476 8477 if (!e.error) { 8478 resp = &res; 8479 8480 /* 8481 * Only return error if first 2 ops (OP_REMOVE or earlier) 8482 * failed. 8483 */ 8484 if (res.status != NFS4_OK && res.array_len <= 2) { 8485 e.error = geterrno4(res.status); 8486 PURGE_ATTRCACHE4(dvp); 8487 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8488 &recov_state, needrecov); 8489 need_end_op = FALSE; 8490 nfs4_purge_stale_fh(e.error, dvp, cr); 8491 /* 8492 * System V defines rmdir to return EEXIST, not 8493 * ENOTEMPTY if the directory is not empty. Over 8494 * the wire, the error is NFSERR_ENOTEMPTY which 8495 * geterrno4 maps to ENOTEMPTY. 8496 */ 8497 if (e.error == ENOTEMPTY) 8498 e.error = EEXIST; 8499 } else { 8500 resop = &res.array[1]; /* remove res */ 8501 rm_res = &resop->nfs_resop4_u.opremove; 8502 8503 if (res.status == NFS4_OK) { 8504 resop = &res.array[2]; /* dir attrs */ 8505 dinfo.di_garp = 8506 &resop->nfs_resop4_u.opgetattr.ga_res; 8507 dinfo.di_cred = cr; 8508 dinfop = &dinfo; 8509 } else 8510 dinfop = NULL; 8511 8512 /* Update dir attribute, readdir and dnlc caches */ 8513 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8514 dinfop); 8515 8516 /* destroy rddir cache for dir that was removed */ 8517 if (VTOR4(vp)->r_dir != NULL) 8518 nfs4_purge_rddir_cache(vp); 8519 } 8520 } 8521 8522 if (need_end_op) 8523 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8524 8525 nfs_rw_exit(&drp->r_rwlock); 8526 8527 if (resp) 8528 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8529 8530 VN_RELE(vp); 8531 8532 return (e.error); 8533 } 8534 8535 static int 8536 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr) 8537 { 8538 int error; 8539 vnode_t *vp; 8540 rnode4_t *rp; 8541 char *contents; 8542 mntinfo4_t *mi = VTOMI4(dvp); 8543 8544 if (nfs_zone() != mi->mi_zone) 8545 return (EPERM); 8546 if (!(mi->mi_flags & MI4_SYMLINK)) 8547 return (EOPNOTSUPP); 8548 8549 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8550 if (error) { 8551 return (error); 8552 } 8553 8554 ASSERT(nfs4_consistent_type(vp)); 8555 rp = VTOR4(vp); 8556 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8557 8558 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8559 8560 if (contents != NULL) { 8561 mutex_enter(&rp->r_statelock); 8562 if (rp->r_symlink.contents == NULL) { 8563 rp->r_symlink.len = strlen(tnm); 8564 bcopy(tnm, contents, rp->r_symlink.len); 8565 rp->r_symlink.contents = contents; 8566 rp->r_symlink.size = MAXPATHLEN; 8567 mutex_exit(&rp->r_statelock); 8568 } else { 8569 mutex_exit(&rp->r_statelock); 8570 kmem_free((void *)contents, MAXPATHLEN); 8571 } 8572 } 8573 } 8574 VN_RELE(vp); 8575 8576 return (error); 8577 } 8578 8579 8580 /* 8581 * Read directory entries. 8582 * There are some weird things to look out for here. The uio_loffset 8583 * field is either 0 or it is the offset returned from a previous 8584 * readdir. It is an opaque value used by the server to find the 8585 * correct directory block to read. The count field is the number 8586 * of blocks to read on the server. This is advisory only, the server 8587 * may return only one block's worth of entries. Entries may be compressed 8588 * on the server. 8589 */ 8590 static int 8591 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp) 8592 { 8593 int error; 8594 uint_t count; 8595 rnode4_t *rp; 8596 rddir4_cache *rdc; 8597 rddir4_cache *rrdc; 8598 8599 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8600 return (EIO); 8601 rp = VTOR4(vp); 8602 8603 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8604 8605 /* 8606 * Make sure that the directory cache is valid. 8607 */ 8608 if (rp->r_dir != NULL) { 8609 if (nfs_disable_rddir_cache != 0) { 8610 /* 8611 * Setting nfs_disable_rddir_cache in /etc/system 8612 * allows interoperability with servers that do not 8613 * properly update the attributes of directories. 8614 * Any cached information gets purged before an 8615 * access is made to it. 8616 */ 8617 nfs4_purge_rddir_cache(vp); 8618 } 8619 8620 error = nfs4_validate_caches(vp, cr); 8621 if (error) 8622 return (error); 8623 } 8624 8625 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8626 8627 /* 8628 * Short circuit last readdir which always returns 0 bytes. 8629 * This can be done after the directory has been read through 8630 * completely at least once. This will set r_direof which 8631 * can be used to find the value of the last cookie. 8632 */ 8633 mutex_enter(&rp->r_statelock); 8634 if (rp->r_direof != NULL && 8635 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8636 mutex_exit(&rp->r_statelock); 8637 #ifdef DEBUG 8638 nfs4_readdir_cache_shorts++; 8639 #endif 8640 if (eofp) 8641 *eofp = 1; 8642 return (0); 8643 } 8644 8645 /* 8646 * Look for a cache entry. Cache entries are identified 8647 * by the NFS cookie value and the byte count requested. 8648 */ 8649 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8650 8651 /* 8652 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8653 */ 8654 if (rdc == NULL) { 8655 mutex_exit(&rp->r_statelock); 8656 return (EINTR); 8657 } 8658 8659 /* 8660 * Check to see if we need to fill this entry in. 8661 */ 8662 if (rdc->flags & RDDIRREQ) { 8663 rdc->flags &= ~RDDIRREQ; 8664 rdc->flags |= RDDIR; 8665 mutex_exit(&rp->r_statelock); 8666 8667 /* 8668 * Do the readdir. 8669 */ 8670 nfs4readdir(vp, rdc, cr); 8671 8672 /* 8673 * Reaquire the lock, so that we can continue 8674 */ 8675 mutex_enter(&rp->r_statelock); 8676 /* 8677 * The entry is now complete 8678 */ 8679 rdc->flags &= ~RDDIR; 8680 } 8681 8682 ASSERT(!(rdc->flags & RDDIR)); 8683 8684 /* 8685 * If an error occurred while attempting 8686 * to fill the cache entry, mark the entry invalid and 8687 * just return the error. 8688 */ 8689 if (rdc->error) { 8690 error = rdc->error; 8691 rdc->flags |= RDDIRREQ; 8692 rddir4_cache_rele(rp, rdc); 8693 mutex_exit(&rp->r_statelock); 8694 return (error); 8695 } 8696 8697 /* 8698 * The cache entry is complete and good, 8699 * copyout the dirent structs to the calling 8700 * thread. 8701 */ 8702 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 8703 8704 /* 8705 * If no error occurred during the copyout, 8706 * update the offset in the uio struct to 8707 * contain the value of the next NFS 4 cookie 8708 * and set the eof value appropriately. 8709 */ 8710 if (!error) { 8711 uiop->uio_loffset = rdc->nfs4_ncookie; 8712 if (eofp) 8713 *eofp = rdc->eof; 8714 } 8715 8716 /* 8717 * Decide whether to do readahead. Don't if we 8718 * have already read to the end of directory. 8719 */ 8720 if (rdc->eof) { 8721 /* 8722 * Make the entry the direof only if it is cached 8723 */ 8724 if (rdc->flags & RDDIRCACHED) 8725 rp->r_direof = rdc; 8726 rddir4_cache_rele(rp, rdc); 8727 mutex_exit(&rp->r_statelock); 8728 return (error); 8729 } 8730 8731 /* Determine if a readdir readahead should be done */ 8732 if (!(rp->r_flags & R4LOOKUP)) { 8733 rddir4_cache_rele(rp, rdc); 8734 mutex_exit(&rp->r_statelock); 8735 return (error); 8736 } 8737 8738 /* 8739 * Now look for a readahead entry. 8740 * 8741 * Check to see whether we found an entry for the readahead. 8742 * If so, we don't need to do anything further, so free the new 8743 * entry if one was allocated. Otherwise, allocate a new entry, add 8744 * it to the cache, and then initiate an asynchronous readdir 8745 * operation to fill it. 8746 */ 8747 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 8748 8749 /* 8750 * A readdir cache entry could not be obtained for the readahead. In 8751 * this case we skip the readahead and return. 8752 */ 8753 if (rrdc == NULL) { 8754 rddir4_cache_rele(rp, rdc); 8755 mutex_exit(&rp->r_statelock); 8756 return (error); 8757 } 8758 8759 /* 8760 * Check to see if we need to fill this entry in. 8761 */ 8762 if (rrdc->flags & RDDIRREQ) { 8763 rrdc->flags &= ~RDDIRREQ; 8764 rrdc->flags |= RDDIR; 8765 rddir4_cache_rele(rp, rdc); 8766 mutex_exit(&rp->r_statelock); 8767 #ifdef DEBUG 8768 nfs4_readdir_readahead++; 8769 #endif 8770 /* 8771 * Do the readdir. 8772 */ 8773 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 8774 return (error); 8775 } 8776 8777 rddir4_cache_rele(rp, rrdc); 8778 rddir4_cache_rele(rp, rdc); 8779 mutex_exit(&rp->r_statelock); 8780 return (error); 8781 } 8782 8783 static int 8784 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8785 { 8786 int error; 8787 rnode4_t *rp; 8788 8789 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 8790 8791 rp = VTOR4(vp); 8792 8793 /* 8794 * Obtain the readdir results for the caller. 8795 */ 8796 nfs4readdir(vp, rdc, cr); 8797 8798 mutex_enter(&rp->r_statelock); 8799 /* 8800 * The entry is now complete 8801 */ 8802 rdc->flags &= ~RDDIR; 8803 8804 error = rdc->error; 8805 if (error) 8806 rdc->flags |= RDDIRREQ; 8807 rddir4_cache_rele(rp, rdc); 8808 mutex_exit(&rp->r_statelock); 8809 8810 return (error); 8811 } 8812 8813 static void 8814 nfs4readdir_stub(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8815 { 8816 int stublength; 8817 dirent64_t *dp; 8818 u_longlong_t nodeid, pnodeid; 8819 vnode_t *dotdotvp = NULL; 8820 rnode4_t *rp = VTOR4(vp); 8821 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 8822 8823 rdc->error = 0; 8824 rdc->entries = 0; 8825 rdc->actlen = rdc->entlen = 0; 8826 rdc->eof = TRUE; 8827 8828 /* Check for EOF case for readdir of stub */ 8829 if (cookie != 0 && cookie != 1) 8830 return; 8831 8832 nodeid = rp->r_attr.va_nodeid; 8833 if (vp->v_flag & VROOT) { 8834 pnodeid = nodeid; /* root of mount point */ 8835 } else { 8836 if (rdc->error = nfs4_lookup(vp, "..", &dotdotvp, 0, 0, 0, cr)) 8837 return; 8838 pnodeid = VTOR4(dotdotvp)->r_attr.va_nodeid; 8839 VN_RELE(dotdotvp); 8840 } 8841 8842 stublength = DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2); 8843 rdc->entries = kmem_alloc(stublength, KM_SLEEP); 8844 rdc->entlen = rdc->buflen = stublength; 8845 rdc->eof = TRUE; 8846 8847 dp = (dirent64_t *)rdc->entries; 8848 8849 if (rdc->nfs4_cookie == (nfs_cookie4)0) { 8850 bcopy(nfs4_dot_entries, rdc->entries, 8851 DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2)); 8852 dp->d_ino = nodeid; 8853 dp = (struct dirent64 *)(((char *)dp) + DIRENT64_RECLEN(1)); 8854 dp->d_ino = pnodeid; 8855 rdc->actlen = DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2); 8856 } else { /* for ".." entry */ 8857 bcopy(nfs4_dot_dot_entry, rdc->entries, DIRENT64_RECLEN(2)); 8858 dp->d_ino = pnodeid; 8859 rdc->actlen = DIRENT64_RECLEN(2); 8860 } 8861 rdc->nfs4_ncookie = rdc->actlen; 8862 } 8863 8864 /* 8865 * Read directory entries. 8866 * There are some weird things to look out for here. The uio_loffset 8867 * field is either 0 or it is the offset returned from a previous 8868 * readdir. It is an opaque value used by the server to find the 8869 * correct directory block to read. The count field is the number 8870 * of blocks to read on the server. This is advisory only, the server 8871 * may return only one block's worth of entries. Entries may be compressed 8872 * on the server. 8873 * 8874 * Generates the following compound request: 8875 * 1. If readdir offset is zero and no dnlc entry for parent exists, 8876 * must include a Lookupp as well. In this case, send: 8877 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 8878 * 2. Otherwise just do: { Putfh <fh>; Readdir } 8879 * 8880 * Get complete attributes and filehandles for entries if this is the 8881 * first read of the directory. Otherwise, just get fileid's. 8882 */ 8883 static void 8884 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8885 { 8886 COMPOUND4args_clnt args; 8887 COMPOUND4res_clnt res; 8888 READDIR4args *rargs; 8889 READDIR4res_clnt *rd_res; 8890 bitmap4 rd_bitsval; 8891 nfs_argop4 argop[5]; 8892 nfs_resop4 *resop; 8893 rnode4_t *rp = VTOR4(vp); 8894 mntinfo4_t *mi = VTOMI4(vp); 8895 int doqueue; 8896 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 8897 vnode_t *dvp; 8898 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 8899 int num_ops, res_opcnt; 8900 bool_t needrecov = FALSE; 8901 nfs4_recov_state_t recov_state; 8902 hrtime_t t; 8903 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8904 8905 ASSERT(nfs_zone() == mi->mi_zone); 8906 ASSERT(rdc->flags & RDDIR); 8907 ASSERT(rdc->entries == NULL); 8908 8909 if (rp->r_flags & R4SRVSTUB) { 8910 nfs4readdir_stub(vp, rdc, cr); 8911 return; 8912 } 8913 8914 num_ops = 2; 8915 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 8916 /* 8917 * Since nfsv4 readdir may not return entries for "." and "..", 8918 * the client must recreate them: 8919 * To find the correct nodeid, do the following: 8920 * For current node, get nodeid from dnlc. 8921 * - if current node is rootvp, set pnodeid to nodeid. 8922 * - else if parent is in the dnlc, get its nodeid from there. 8923 * - else add LOOKUPP+GETATTR to compound. 8924 */ 8925 nodeid = rp->r_attr.va_nodeid; 8926 if (vp->v_flag & VROOT) { 8927 pnodeid = nodeid; /* root of mount point */ 8928 } else { 8929 dvp = dnlc_lookup(vp, ".."); 8930 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 8931 /* parent in dnlc cache - no need for otw */ 8932 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 8933 } else { 8934 /* 8935 * parent not in dnlc cache, 8936 * do lookupp to get its id 8937 */ 8938 num_ops = 5; 8939 pnodeid = 0; /* set later by getattr parent */ 8940 } 8941 if (dvp) 8942 VN_RELE(dvp); 8943 } 8944 } 8945 recov_state.rs_flags = 0; 8946 recov_state.rs_num_retry_despite_err = 0; 8947 8948 /* Save the original mount point security flavor */ 8949 (void) save_mnt_secinfo(mi->mi_curr_serv); 8950 8951 recov_retry: 8952 args.ctag = TAG_READDIR; 8953 8954 args.array = argop; 8955 args.array_len = num_ops; 8956 8957 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 8958 &recov_state, NULL)) { 8959 /* 8960 * If readdir a node that is a stub for a crossed mount point, 8961 * keep the original secinfo flavor for the current file 8962 * system, not the crossed one. 8963 */ 8964 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 8965 rdc->error = e.error; 8966 return; 8967 } 8968 8969 /* 8970 * Determine which attrs to request for dirents. This code 8971 * must be protected by nfs4_start/end_fop because of r_server 8972 * (which will change during failover recovery). 8973 * 8974 */ 8975 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 8976 /* 8977 * Get all vattr attrs plus filehandle and rdattr_error 8978 */ 8979 rd_bitsval = NFS4_VATTR_MASK | 8980 FATTR4_RDATTR_ERROR_MASK | 8981 FATTR4_FILEHANDLE_MASK; 8982 8983 if (rp->r_flags & R4READDIRWATTR) { 8984 mutex_enter(&rp->r_statelock); 8985 rp->r_flags &= ~R4READDIRWATTR; 8986 mutex_exit(&rp->r_statelock); 8987 } 8988 } else { 8989 servinfo4_t *svp = rp->r_server; 8990 8991 /* 8992 * Already read directory. Use readdir with 8993 * no attrs (except for mounted_on_fileid) for updates. 8994 */ 8995 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 8996 8997 /* 8998 * request mounted on fileid if supported, else request 8999 * fileid. maybe we should verify that fileid is supported 9000 * and request something else if not. 9001 */ 9002 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9003 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9004 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9005 nfs_rw_exit(&svp->sv_lock); 9006 } 9007 9008 /* putfh directory fh */ 9009 argop[0].argop = OP_CPUTFH; 9010 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9011 9012 argop[1].argop = OP_READDIR; 9013 rargs = &argop[1].nfs_argop4_u.opreaddir; 9014 /* 9015 * 1 and 2 are reserved for client "." and ".." entry offset. 9016 * cookie 0 should be used over-the-wire to start reading at 9017 * the beginning of the directory excluding "." and "..". 9018 */ 9019 if (rdc->nfs4_cookie == 0 || 9020 rdc->nfs4_cookie == 1 || 9021 rdc->nfs4_cookie == 2) { 9022 rargs->cookie = (nfs_cookie4)0; 9023 rargs->cookieverf = 0; 9024 } else { 9025 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9026 mutex_enter(&rp->r_statelock); 9027 rargs->cookieverf = rp->r_cookieverf4; 9028 mutex_exit(&rp->r_statelock); 9029 } 9030 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9031 rargs->maxcount = mi->mi_tsize; 9032 rargs->attr_request = rd_bitsval; 9033 rargs->rdc = rdc; 9034 rargs->dvp = vp; 9035 rargs->mi = mi; 9036 rargs->cr = cr; 9037 9038 9039 /* 9040 * If count < than the minimum required, we return no entries 9041 * and fail with EINVAL 9042 */ 9043 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9044 rdc->error = EINVAL; 9045 goto out; 9046 } 9047 9048 if (args.array_len == 5) { 9049 /* 9050 * Add lookupp and getattr for parent nodeid. 9051 */ 9052 argop[2].argop = OP_LOOKUPP; 9053 9054 argop[3].argop = OP_GETFH; 9055 9056 /* getattr parent */ 9057 argop[4].argop = OP_GETATTR; 9058 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9059 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9060 } 9061 9062 doqueue = 1; 9063 9064 if (mi->mi_io_kstats) { 9065 mutex_enter(&mi->mi_lock); 9066 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9067 mutex_exit(&mi->mi_lock); 9068 } 9069 9070 /* capture the time of this call */ 9071 rargs->t = t = gethrtime(); 9072 9073 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9074 9075 if (mi->mi_io_kstats) { 9076 mutex_enter(&mi->mi_lock); 9077 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9078 mutex_exit(&mi->mi_lock); 9079 } 9080 9081 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9082 9083 /* 9084 * If RPC error occurred and it isn't an error that 9085 * triggers recovery, then go ahead and fail now. 9086 */ 9087 if (e.error != 0 && !needrecov) { 9088 rdc->error = e.error; 9089 goto out; 9090 } 9091 9092 if (needrecov) { 9093 bool_t abort; 9094 9095 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9096 "nfs4readdir: initiating recovery.\n")); 9097 9098 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9099 NULL, OP_READDIR, NULL); 9100 if (abort == FALSE) { 9101 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9102 &recov_state, needrecov); 9103 if (!e.error) 9104 (void) xdr_free(xdr_COMPOUND4res_clnt, 9105 (caddr_t)&res); 9106 if (rdc->entries != NULL) { 9107 kmem_free(rdc->entries, rdc->entlen); 9108 rdc->entries = NULL; 9109 } 9110 goto recov_retry; 9111 } 9112 9113 if (e.error != 0) { 9114 rdc->error = e.error; 9115 goto out; 9116 } 9117 9118 /* fall through for res.status case */ 9119 } 9120 9121 res_opcnt = res.array_len; 9122 9123 /* 9124 * If compound failed first 2 ops (PUTFH+READDIR), then return 9125 * failure here. Subsequent ops are for filling out dot-dot 9126 * dirent, and if they fail, we still want to give the caller 9127 * the dirents returned by (the successful) READDIR op, so we need 9128 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9129 * 9130 * One example where PUTFH+READDIR ops would succeed but 9131 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9132 * but lacks x. In this case, a POSIX server's VOP_READDIR 9133 * would succeed; however, VOP_LOOKUP(..) would fail since no 9134 * x perm. We need to come up with a non-vendor-specific way 9135 * for a POSIX server to return d_ino from dotdot's dirent if 9136 * client only requests mounted_on_fileid, and just say the 9137 * LOOKUPP succeeded and fill out the GETATTR. However, if 9138 * client requested any mandatory attrs, server would be required 9139 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9140 * for dotdot. 9141 */ 9142 9143 if (res.status) { 9144 if (res_opcnt <= 2) { 9145 e.error = geterrno4(res.status); 9146 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9147 &recov_state, needrecov); 9148 nfs4_purge_stale_fh(e.error, vp, cr); 9149 rdc->error = e.error; 9150 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9151 if (rdc->entries != NULL) { 9152 kmem_free(rdc->entries, rdc->entlen); 9153 rdc->entries = NULL; 9154 } 9155 /* 9156 * If readdir a node that is a stub for a 9157 * crossed mount point, keep the original 9158 * secinfo flavor for the current file system, 9159 * not the crossed one. 9160 */ 9161 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9162 return; 9163 } 9164 } 9165 9166 resop = &res.array[1]; /* readdir res */ 9167 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9168 9169 mutex_enter(&rp->r_statelock); 9170 rp->r_cookieverf4 = rd_res->cookieverf; 9171 mutex_exit(&rp->r_statelock); 9172 9173 /* 9174 * For "." and ".." entries 9175 * e.g. 9176 * seek(cookie=0) -> "." entry with d_off = 1 9177 * seek(cookie=1) -> ".." entry with d_off = 2 9178 */ 9179 if (cookie == (nfs_cookie4) 0) { 9180 if (rd_res->dotp) 9181 rd_res->dotp->d_ino = nodeid; 9182 if (rd_res->dotdotp) 9183 rd_res->dotdotp->d_ino = pnodeid; 9184 } 9185 if (cookie == (nfs_cookie4) 1) { 9186 if (rd_res->dotdotp) 9187 rd_res->dotdotp->d_ino = pnodeid; 9188 } 9189 9190 9191 /* LOOKUPP+GETATTR attemped */ 9192 if (args.array_len == 5 && rd_res->dotdotp) { 9193 if (res.status == NFS4_OK && res_opcnt == 5) { 9194 nfs_fh4 *fhp; 9195 nfs4_sharedfh_t *sfhp; 9196 vnode_t *pvp; 9197 nfs4_ga_res_t *garp; 9198 9199 resop++; /* lookupp */ 9200 resop++; /* getfh */ 9201 fhp = &resop->nfs_resop4_u.opgetfh.object; 9202 9203 resop++; /* getattr of parent */ 9204 9205 /* 9206 * First, take care of finishing the 9207 * readdir results. 9208 */ 9209 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9210 /* 9211 * The d_ino of .. must be the inode number 9212 * of the mounted filesystem. 9213 */ 9214 if (garp->n4g_va.va_mask & AT_NODEID) 9215 rd_res->dotdotp->d_ino = 9216 garp->n4g_va.va_nodeid; 9217 9218 9219 /* 9220 * Next, create the ".." dnlc entry 9221 */ 9222 sfhp = sfh4_get(fhp, mi); 9223 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9224 dnlc_update(vp, "..", pvp); 9225 VN_RELE(pvp); 9226 } 9227 sfh4_rele(&sfhp); 9228 } 9229 } 9230 9231 if (mi->mi_io_kstats) { 9232 mutex_enter(&mi->mi_lock); 9233 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9234 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9235 mutex_exit(&mi->mi_lock); 9236 } 9237 9238 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9239 9240 out: 9241 /* 9242 * If readdir a node that is a stub for a crossed mount point, 9243 * keep the original secinfo flavor for the current file system, 9244 * not the crossed one. 9245 */ 9246 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9247 9248 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9249 } 9250 9251 9252 static int 9253 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9254 { 9255 rnode4_t *rp = VTOR4(bp->b_vp); 9256 int count; 9257 int error; 9258 cred_t *cred_otw = NULL; 9259 offset_t offset; 9260 nfs4_open_stream_t *osp = NULL; 9261 bool_t first_time = TRUE; /* first time getting otw cred */ 9262 bool_t last_time = FALSE; /* last time getting otw cred */ 9263 9264 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9265 9266 DTRACE_IO1(start, struct buf *, bp); 9267 offset = ldbtob(bp->b_lblkno); 9268 9269 if (bp->b_flags & B_READ) { 9270 read_again: 9271 /* 9272 * Releases the osp, if it is provided. 9273 * Puts a hold on the cred_otw and the new osp (if found). 9274 */ 9275 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9276 &first_time, &last_time); 9277 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9278 offset, bp->b_bcount, 9279 &bp->b_resid, cred_otw, 9280 readahead, NULL); 9281 crfree(cred_otw); 9282 if (!error) { 9283 if (bp->b_resid) { 9284 /* 9285 * Didn't get it all because we hit EOF, 9286 * zero all the memory beyond the EOF. 9287 */ 9288 /* bzero(rdaddr + */ 9289 bzero(bp->b_un.b_addr + 9290 bp->b_bcount - bp->b_resid, bp->b_resid); 9291 } 9292 mutex_enter(&rp->r_statelock); 9293 if (bp->b_resid == bp->b_bcount && 9294 offset >= rp->r_size) { 9295 /* 9296 * We didn't read anything at all as we are 9297 * past EOF. Return an error indicator back 9298 * but don't destroy the pages (yet). 9299 */ 9300 error = NFS_EOF; 9301 } 9302 mutex_exit(&rp->r_statelock); 9303 } else if (error == EACCES && last_time == FALSE) { 9304 goto read_again; 9305 } 9306 } else { 9307 if (!(rp->r_flags & R4STALE)) { 9308 write_again: 9309 /* 9310 * Releases the osp, if it is provided. 9311 * Puts a hold on the cred_otw and the new 9312 * osp (if found). 9313 */ 9314 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9315 &first_time, &last_time); 9316 mutex_enter(&rp->r_statelock); 9317 count = MIN(bp->b_bcount, rp->r_size - offset); 9318 mutex_exit(&rp->r_statelock); 9319 if (count < 0) 9320 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9321 #ifdef DEBUG 9322 if (count == 0) { 9323 zoneid_t zoneid = getzoneid(); 9324 9325 zcmn_err(zoneid, CE_WARN, 9326 "nfs4_bio: zero length write at %lld", 9327 offset); 9328 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9329 "b_bcount=%ld, file size=%lld", 9330 rp->r_flags, (long)bp->b_bcount, 9331 rp->r_size); 9332 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9333 if (nfs4_bio_do_stop) 9334 debug_enter("nfs4_bio"); 9335 } 9336 #endif 9337 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9338 count, cred_otw, stab_comm); 9339 if (error == EACCES && last_time == FALSE) { 9340 crfree(cred_otw); 9341 goto write_again; 9342 } 9343 bp->b_error = error; 9344 if (error && error != EINTR && 9345 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9346 /* 9347 * Don't print EDQUOT errors on the console. 9348 * Don't print asynchronous EACCES errors. 9349 * Don't print EFBIG errors. 9350 * Print all other write errors. 9351 */ 9352 if (error != EDQUOT && error != EFBIG && 9353 (error != EACCES || 9354 !(bp->b_flags & B_ASYNC))) 9355 nfs4_write_error(bp->b_vp, 9356 error, cred_otw); 9357 /* 9358 * Update r_error and r_flags as appropriate. 9359 * If the error was ESTALE, then mark the 9360 * rnode as not being writeable and save 9361 * the error status. Otherwise, save any 9362 * errors which occur from asynchronous 9363 * page invalidations. Any errors occurring 9364 * from other operations should be saved 9365 * by the caller. 9366 */ 9367 mutex_enter(&rp->r_statelock); 9368 if (error == ESTALE) { 9369 rp->r_flags |= R4STALE; 9370 if (!rp->r_error) 9371 rp->r_error = error; 9372 } else if (!rp->r_error && 9373 (bp->b_flags & 9374 (B_INVAL|B_FORCE|B_ASYNC)) == 9375 (B_INVAL|B_FORCE|B_ASYNC)) { 9376 rp->r_error = error; 9377 } 9378 mutex_exit(&rp->r_statelock); 9379 } 9380 crfree(cred_otw); 9381 } else 9382 error = rp->r_error; 9383 } 9384 9385 if (error != 0 && error != NFS_EOF) 9386 bp->b_flags |= B_ERROR; 9387 9388 if (osp) 9389 open_stream_rele(osp, rp); 9390 9391 DTRACE_IO1(done, struct buf *, bp); 9392 9393 return (error); 9394 } 9395 9396 /* ARGSUSED */ 9397 static int 9398 nfs4_fid(vnode_t *vp, fid_t *fidp) 9399 { 9400 return (EREMOTE); 9401 } 9402 9403 /* ARGSUSED2 */ 9404 static int 9405 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9406 { 9407 rnode4_t *rp = VTOR4(vp); 9408 9409 if (!write_lock) { 9410 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9411 return (V_WRITELOCK_FALSE); 9412 } 9413 9414 if ((rp->r_flags & R4DIRECTIO) || 9415 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9416 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9417 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9418 return (V_WRITELOCK_FALSE); 9419 nfs_rw_exit(&rp->r_rwlock); 9420 } 9421 9422 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9423 return (V_WRITELOCK_TRUE); 9424 } 9425 9426 /* ARGSUSED */ 9427 static void 9428 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9429 { 9430 rnode4_t *rp = VTOR4(vp); 9431 9432 nfs_rw_exit(&rp->r_rwlock); 9433 } 9434 9435 /* ARGSUSED */ 9436 static int 9437 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 9438 { 9439 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9440 return (EIO); 9441 9442 /* 9443 * Because we stuff the readdir cookie into the offset field 9444 * someone may attempt to do an lseek with the cookie which 9445 * we want to succeed. 9446 */ 9447 if (vp->v_type == VDIR) 9448 return (0); 9449 if (*noffp < 0) 9450 return (EINVAL); 9451 return (0); 9452 } 9453 9454 9455 /* 9456 * Return all the pages from [off..off+len) in file 9457 */ 9458 static int 9459 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9460 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9461 enum seg_rw rw, cred_t *cr) 9462 { 9463 rnode4_t *rp; 9464 int error; 9465 mntinfo4_t *mi; 9466 9467 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9468 return (EIO); 9469 rp = VTOR4(vp); 9470 if (IS_SHADOW(vp, rp)) 9471 vp = RTOV4(rp); 9472 9473 if (vp->v_flag & VNOMAP) 9474 return (ENOSYS); 9475 9476 if (protp != NULL) 9477 *protp = PROT_ALL; 9478 9479 /* 9480 * Now validate that the caches are up to date. 9481 */ 9482 if (error = nfs4_validate_caches(vp, cr)) 9483 return (error); 9484 9485 mi = VTOMI4(vp); 9486 retry: 9487 mutex_enter(&rp->r_statelock); 9488 9489 /* 9490 * Don't create dirty pages faster than they 9491 * can be cleaned so that the system doesn't 9492 * get imbalanced. If the async queue is 9493 * maxed out, then wait for it to drain before 9494 * creating more dirty pages. Also, wait for 9495 * any threads doing pagewalks in the vop_getattr 9496 * entry points so that they don't block for 9497 * long periods. 9498 */ 9499 if (rw == S_CREATE) { 9500 while ((mi->mi_max_threads != 0 && 9501 rp->r_awcount > 2 * mi->mi_max_threads) || 9502 rp->r_gcount > 0) 9503 cv_wait(&rp->r_cv, &rp->r_statelock); 9504 } 9505 9506 /* 9507 * If we are getting called as a side effect of an nfs_write() 9508 * operation the local file size might not be extended yet. 9509 * In this case we want to be able to return pages of zeroes. 9510 */ 9511 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9512 NFS4_DEBUG(nfs4_pageio_debug, 9513 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9514 "len=%llu, size=%llu, attrsize =%llu", off, 9515 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9516 mutex_exit(&rp->r_statelock); 9517 return (EFAULT); /* beyond EOF */ 9518 } 9519 9520 mutex_exit(&rp->r_statelock); 9521 9522 if (len <= PAGESIZE) { 9523 error = nfs4_getapage(vp, off, len, protp, pl, plsz, 9524 seg, addr, rw, cr); 9525 NFS4_DEBUG(nfs4_pageio_debug && error, 9526 (CE_NOTE, "getpage error %d; off=%lld, " 9527 "len=%lld", error, off, (u_longlong_t)len)); 9528 } else { 9529 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9530 pl, plsz, seg, addr, rw, cr); 9531 NFS4_DEBUG(nfs4_pageio_debug && error, 9532 (CE_NOTE, "getpages error %d; off=%lld, " 9533 "len=%lld", error, off, (u_longlong_t)len)); 9534 } 9535 9536 switch (error) { 9537 case NFS_EOF: 9538 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9539 goto retry; 9540 case ESTALE: 9541 nfs4_purge_stale_fh(error, vp, cr); 9542 } 9543 9544 return (error); 9545 } 9546 9547 /* 9548 * Called from pvn_getpages or nfs4_getpage to get a particular page. 9549 */ 9550 /* ARGSUSED */ 9551 static int 9552 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9553 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9554 enum seg_rw rw, cred_t *cr) 9555 { 9556 rnode4_t *rp; 9557 uint_t bsize; 9558 struct buf *bp; 9559 page_t *pp; 9560 u_offset_t lbn; 9561 u_offset_t io_off; 9562 u_offset_t blkoff; 9563 u_offset_t rablkoff; 9564 size_t io_len; 9565 uint_t blksize; 9566 int error; 9567 int readahead; 9568 int readahead_issued = 0; 9569 int ra_window; /* readahead window */ 9570 page_t *pagefound; 9571 page_t *savepp; 9572 9573 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9574 return (EIO); 9575 9576 rp = VTOR4(vp); 9577 ASSERT(!IS_SHADOW(vp, rp)); 9578 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9579 9580 reread: 9581 bp = NULL; 9582 pp = NULL; 9583 pagefound = NULL; 9584 9585 if (pl != NULL) 9586 pl[0] = NULL; 9587 9588 error = 0; 9589 lbn = off / bsize; 9590 blkoff = lbn * bsize; 9591 9592 /* 9593 * Queueing up the readahead before doing the synchronous read 9594 * results in a significant increase in read throughput because 9595 * of the increased parallelism between the async threads and 9596 * the process context. 9597 */ 9598 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9599 rw != S_CREATE && 9600 !(vp->v_flag & VNOCACHE)) { 9601 mutex_enter(&rp->r_statelock); 9602 9603 /* 9604 * Calculate the number of readaheads to do. 9605 * a) No readaheads at offset = 0. 9606 * b) Do maximum(nfs4_nra) readaheads when the readahead 9607 * window is closed. 9608 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9609 * upon how far the readahead window is open or close. 9610 * d) No readaheads if rp->r_nextr is not within the scope 9611 * of the readahead window (random i/o). 9612 */ 9613 9614 if (off == 0) 9615 readahead = 0; 9616 else if (blkoff == rp->r_nextr) 9617 readahead = nfs4_nra; 9618 else if (rp->r_nextr > blkoff && 9619 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9620 <= (nfs4_nra - 1))) 9621 readahead = nfs4_nra - ra_window; 9622 else 9623 readahead = 0; 9624 9625 rablkoff = rp->r_nextr; 9626 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9627 mutex_exit(&rp->r_statelock); 9628 if (nfs4_async_readahead(vp, rablkoff + bsize, 9629 addr + (rablkoff + bsize - off), 9630 seg, cr, nfs4_readahead) < 0) { 9631 mutex_enter(&rp->r_statelock); 9632 break; 9633 } 9634 readahead--; 9635 rablkoff += bsize; 9636 /* 9637 * Indicate that we did a readahead so 9638 * readahead offset is not updated 9639 * by the synchronous read below. 9640 */ 9641 readahead_issued = 1; 9642 mutex_enter(&rp->r_statelock); 9643 /* 9644 * set readahead offset to 9645 * offset of last async readahead 9646 * request. 9647 */ 9648 rp->r_nextr = rablkoff; 9649 } 9650 mutex_exit(&rp->r_statelock); 9651 } 9652 9653 again: 9654 if ((pagefound = page_exists(vp, off)) == NULL) { 9655 if (pl == NULL) { 9656 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9657 nfs4_readahead); 9658 } else if (rw == S_CREATE) { 9659 /* 9660 * Block for this page is not allocated, or the offset 9661 * is beyond the current allocation size, or we're 9662 * allocating a swap slot and the page was not found, 9663 * so allocate it and return a zero page. 9664 */ 9665 if ((pp = page_create_va(vp, off, 9666 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9667 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9668 io_len = PAGESIZE; 9669 mutex_enter(&rp->r_statelock); 9670 rp->r_nextr = off + PAGESIZE; 9671 mutex_exit(&rp->r_statelock); 9672 } else { 9673 /* 9674 * Need to go to server to get a block 9675 */ 9676 mutex_enter(&rp->r_statelock); 9677 if (blkoff < rp->r_size && 9678 blkoff + bsize > rp->r_size) { 9679 /* 9680 * If less than a block left in 9681 * file read less than a block. 9682 */ 9683 if (rp->r_size <= off) { 9684 /* 9685 * Trying to access beyond EOF, 9686 * set up to get at least one page. 9687 */ 9688 blksize = off + PAGESIZE - blkoff; 9689 } else 9690 blksize = rp->r_size - blkoff; 9691 } else if ((off == 0) || 9692 (off != rp->r_nextr && !readahead_issued)) { 9693 blksize = PAGESIZE; 9694 blkoff = off; /* block = page here */ 9695 } else 9696 blksize = bsize; 9697 mutex_exit(&rp->r_statelock); 9698 9699 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9700 &io_len, blkoff, blksize, 0); 9701 9702 /* 9703 * Some other thread has entered the page, 9704 * so just use it. 9705 */ 9706 if (pp == NULL) 9707 goto again; 9708 9709 /* 9710 * Now round the request size up to page boundaries. 9711 * This ensures that the entire page will be 9712 * initialized to zeroes if EOF is encountered. 9713 */ 9714 io_len = ptob(btopr(io_len)); 9715 9716 bp = pageio_setup(pp, io_len, vp, B_READ); 9717 ASSERT(bp != NULL); 9718 9719 /* 9720 * pageio_setup should have set b_addr to 0. This 9721 * is correct since we want to do I/O on a page 9722 * boundary. bp_mapin will use this addr to calculate 9723 * an offset, and then set b_addr to the kernel virtual 9724 * address it allocated for us. 9725 */ 9726 ASSERT(bp->b_un.b_addr == 0); 9727 9728 bp->b_edev = 0; 9729 bp->b_dev = 0; 9730 bp->b_lblkno = lbtodb(io_off); 9731 bp->b_file = vp; 9732 bp->b_offset = (offset_t)off; 9733 bp_mapin(bp); 9734 9735 /* 9736 * If doing a write beyond what we believe is EOF, 9737 * don't bother trying to read the pages from the 9738 * server, we'll just zero the pages here. We 9739 * don't check that the rw flag is S_WRITE here 9740 * because some implementations may attempt a 9741 * read access to the buffer before copying data. 9742 */ 9743 mutex_enter(&rp->r_statelock); 9744 if (io_off >= rp->r_size && seg == segkmap) { 9745 mutex_exit(&rp->r_statelock); 9746 bzero(bp->b_un.b_addr, io_len); 9747 } else { 9748 mutex_exit(&rp->r_statelock); 9749 error = nfs4_bio(bp, NULL, cr, FALSE); 9750 } 9751 9752 /* 9753 * Unmap the buffer before freeing it. 9754 */ 9755 bp_mapout(bp); 9756 pageio_done(bp); 9757 9758 savepp = pp; 9759 do { 9760 pp->p_fsdata = C_NOCOMMIT; 9761 } while ((pp = pp->p_next) != savepp); 9762 9763 if (error == NFS_EOF) { 9764 /* 9765 * If doing a write system call just return 9766 * zeroed pages, else user tried to get pages 9767 * beyond EOF, return error. We don't check 9768 * that the rw flag is S_WRITE here because 9769 * some implementations may attempt a read 9770 * access to the buffer before copying data. 9771 */ 9772 if (seg == segkmap) 9773 error = 0; 9774 else 9775 error = EFAULT; 9776 } 9777 9778 if (!readahead_issued && !error) { 9779 mutex_enter(&rp->r_statelock); 9780 rp->r_nextr = io_off + io_len; 9781 mutex_exit(&rp->r_statelock); 9782 } 9783 } 9784 } 9785 9786 out: 9787 if (pl == NULL) 9788 return (error); 9789 9790 if (error) { 9791 if (pp != NULL) 9792 pvn_read_done(pp, B_ERROR); 9793 return (error); 9794 } 9795 9796 if (pagefound) { 9797 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 9798 9799 /* 9800 * Page exists in the cache, acquire the appropriate lock. 9801 * If this fails, start all over again. 9802 */ 9803 if ((pp = page_lookup(vp, off, se)) == NULL) { 9804 #ifdef DEBUG 9805 nfs4_lostpage++; 9806 #endif 9807 goto reread; 9808 } 9809 pl[0] = pp; 9810 pl[1] = NULL; 9811 return (0); 9812 } 9813 9814 if (pp != NULL) 9815 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 9816 9817 return (error); 9818 } 9819 9820 static void 9821 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 9822 cred_t *cr) 9823 { 9824 int error; 9825 page_t *pp; 9826 u_offset_t io_off; 9827 size_t io_len; 9828 struct buf *bp; 9829 uint_t bsize, blksize; 9830 rnode4_t *rp = VTOR4(vp); 9831 page_t *savepp; 9832 9833 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9834 9835 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9836 9837 mutex_enter(&rp->r_statelock); 9838 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 9839 /* 9840 * If less than a block left in file read less 9841 * than a block. 9842 */ 9843 blksize = rp->r_size - blkoff; 9844 } else 9845 blksize = bsize; 9846 mutex_exit(&rp->r_statelock); 9847 9848 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 9849 &io_off, &io_len, blkoff, blksize, 1); 9850 /* 9851 * The isra flag passed to the kluster function is 1, we may have 9852 * gotten a return value of NULL for a variety of reasons (# of free 9853 * pages < minfree, someone entered the page on the vnode etc). In all 9854 * cases, we want to punt on the readahead. 9855 */ 9856 if (pp == NULL) 9857 return; 9858 9859 /* 9860 * Now round the request size up to page boundaries. 9861 * This ensures that the entire page will be 9862 * initialized to zeroes if EOF is encountered. 9863 */ 9864 io_len = ptob(btopr(io_len)); 9865 9866 bp = pageio_setup(pp, io_len, vp, B_READ); 9867 ASSERT(bp != NULL); 9868 9869 /* 9870 * pageio_setup should have set b_addr to 0. This is correct since 9871 * we want to do I/O on a page boundary. bp_mapin() will use this addr 9872 * to calculate an offset, and then set b_addr to the kernel virtual 9873 * address it allocated for us. 9874 */ 9875 ASSERT(bp->b_un.b_addr == 0); 9876 9877 bp->b_edev = 0; 9878 bp->b_dev = 0; 9879 bp->b_lblkno = lbtodb(io_off); 9880 bp->b_file = vp; 9881 bp->b_offset = (offset_t)blkoff; 9882 bp_mapin(bp); 9883 9884 /* 9885 * If doing a write beyond what we believe is EOF, don't bother trying 9886 * to read the pages from the server, we'll just zero the pages here. 9887 * We don't check that the rw flag is S_WRITE here because some 9888 * implementations may attempt a read access to the buffer before 9889 * copying data. 9890 */ 9891 mutex_enter(&rp->r_statelock); 9892 if (io_off >= rp->r_size && seg == segkmap) { 9893 mutex_exit(&rp->r_statelock); 9894 bzero(bp->b_un.b_addr, io_len); 9895 error = 0; 9896 } else { 9897 mutex_exit(&rp->r_statelock); 9898 error = nfs4_bio(bp, NULL, cr, TRUE); 9899 if (error == NFS_EOF) 9900 error = 0; 9901 } 9902 9903 /* 9904 * Unmap the buffer before freeing it. 9905 */ 9906 bp_mapout(bp); 9907 pageio_done(bp); 9908 9909 savepp = pp; 9910 do { 9911 pp->p_fsdata = C_NOCOMMIT; 9912 } while ((pp = pp->p_next) != savepp); 9913 9914 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 9915 9916 /* 9917 * In case of error set readahead offset 9918 * to the lowest offset. 9919 * pvn_read_done() calls VN_DISPOSE to destroy the pages 9920 */ 9921 if (error && rp->r_nextr > io_off) { 9922 mutex_enter(&rp->r_statelock); 9923 if (rp->r_nextr > io_off) 9924 rp->r_nextr = io_off; 9925 mutex_exit(&rp->r_statelock); 9926 } 9927 } 9928 9929 /* 9930 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 9931 * If len == 0, do from off to EOF. 9932 * 9933 * The normal cases should be len == 0 && off == 0 (entire vp list) or 9934 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 9935 * (from pageout). 9936 */ 9937 static int 9938 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 9939 { 9940 int error; 9941 rnode4_t *rp; 9942 9943 ASSERT(cr != NULL); 9944 9945 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 9946 return (EIO); 9947 9948 rp = VTOR4(vp); 9949 if (IS_SHADOW(vp, rp)) 9950 vp = RTOV4(rp); 9951 9952 /* 9953 * XXX - Why should this check be made here? 9954 */ 9955 if (vp->v_flag & VNOMAP) 9956 return (ENOSYS); 9957 9958 if (len == 0 && !(flags & B_INVAL) && 9959 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 9960 return (0); 9961 9962 mutex_enter(&rp->r_statelock); 9963 rp->r_count++; 9964 mutex_exit(&rp->r_statelock); 9965 error = nfs4_putpages(vp, off, len, flags, cr); 9966 mutex_enter(&rp->r_statelock); 9967 rp->r_count--; 9968 cv_broadcast(&rp->r_cv); 9969 mutex_exit(&rp->r_statelock); 9970 9971 return (error); 9972 } 9973 9974 /* 9975 * Write out a single page, possibly klustering adjacent dirty pages. 9976 */ 9977 int 9978 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 9979 int flags, cred_t *cr) 9980 { 9981 u_offset_t io_off; 9982 u_offset_t lbn_off; 9983 u_offset_t lbn; 9984 size_t io_len; 9985 uint_t bsize; 9986 int error; 9987 rnode4_t *rp; 9988 9989 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 9990 ASSERT(pp != NULL); 9991 ASSERT(cr != NULL); 9992 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 9993 9994 rp = VTOR4(vp); 9995 ASSERT(rp->r_count > 0); 9996 ASSERT(!IS_SHADOW(vp, rp)); 9997 9998 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9999 lbn = pp->p_offset / bsize; 10000 lbn_off = lbn * bsize; 10001 10002 /* 10003 * Find a kluster that fits in one block, or in 10004 * one page if pages are bigger than blocks. If 10005 * there is less file space allocated than a whole 10006 * page, we'll shorten the i/o request below. 10007 */ 10008 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10009 roundup(bsize, PAGESIZE), flags); 10010 10011 /* 10012 * pvn_write_kluster shouldn't have returned a page with offset 10013 * behind the original page we were given. Verify that. 10014 */ 10015 ASSERT((pp->p_offset / bsize) >= lbn); 10016 10017 /* 10018 * Now pp will have the list of kept dirty pages marked for 10019 * write back. It will also handle invalidation and freeing 10020 * of pages that are not dirty. Check for page length rounding 10021 * problems. 10022 */ 10023 if (io_off + io_len > lbn_off + bsize) { 10024 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10025 io_len = lbn_off + bsize - io_off; 10026 } 10027 /* 10028 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10029 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10030 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10031 * progress and the r_size has not been made consistent with the 10032 * new size of the file. When the uiomove() completes the r_size is 10033 * updated and the R4MODINPROGRESS flag is cleared. 10034 * 10035 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10036 * consistent value of r_size. Without this handshaking, it is 10037 * possible that nfs4_bio() picks up the old value of r_size 10038 * before the uiomove() in writerp4() completes. This will result 10039 * in the write through nfs4_bio() being dropped. 10040 * 10041 * More precisely, there is a window between the time the uiomove() 10042 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10043 * operation intervenes in this window, the page will be picked up, 10044 * because it is dirty (it will be unlocked, unless it was 10045 * pagecreate'd). When the page is picked up as dirty, the dirty 10046 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10047 * checked. This will still be the old size. Therefore the page will 10048 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10049 * the page will be found to be clean and the write will be dropped. 10050 */ 10051 if (rp->r_flags & R4MODINPROGRESS) { 10052 mutex_enter(&rp->r_statelock); 10053 if ((rp->r_flags & R4MODINPROGRESS) && 10054 rp->r_modaddr + MAXBSIZE > io_off && 10055 rp->r_modaddr < io_off + io_len) { 10056 page_t *plist; 10057 /* 10058 * A write is in progress for this region of the file. 10059 * If we did not detect R4MODINPROGRESS here then this 10060 * path through nfs_putapage() would eventually go to 10061 * nfs4_bio() and may not write out all of the data 10062 * in the pages. We end up losing data. So we decide 10063 * to set the modified bit on each page in the page 10064 * list and mark the rnode with R4DIRTY. This write 10065 * will be restarted at some later time. 10066 */ 10067 plist = pp; 10068 while (plist != NULL) { 10069 pp = plist; 10070 page_sub(&plist, pp); 10071 hat_setmod(pp); 10072 page_io_unlock(pp); 10073 page_unlock(pp); 10074 } 10075 rp->r_flags |= R4DIRTY; 10076 mutex_exit(&rp->r_statelock); 10077 if (offp) 10078 *offp = io_off; 10079 if (lenp) 10080 *lenp = io_len; 10081 return (0); 10082 } 10083 mutex_exit(&rp->r_statelock); 10084 } 10085 10086 if (flags & B_ASYNC) { 10087 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10088 nfs4_sync_putapage); 10089 } else 10090 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10091 10092 if (offp) 10093 *offp = io_off; 10094 if (lenp) 10095 *lenp = io_len; 10096 return (error); 10097 } 10098 10099 static int 10100 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10101 int flags, cred_t *cr) 10102 { 10103 int error; 10104 rnode4_t *rp; 10105 10106 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10107 10108 flags |= B_WRITE; 10109 10110 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10111 10112 rp = VTOR4(vp); 10113 10114 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10115 error == EACCES) && 10116 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10117 if (!(rp->r_flags & R4OUTOFSPACE)) { 10118 mutex_enter(&rp->r_statelock); 10119 rp->r_flags |= R4OUTOFSPACE; 10120 mutex_exit(&rp->r_statelock); 10121 } 10122 flags |= B_ERROR; 10123 pvn_write_done(pp, flags); 10124 /* 10125 * If this was not an async thread, then try again to 10126 * write out the pages, but this time, also destroy 10127 * them whether or not the write is successful. This 10128 * will prevent memory from filling up with these 10129 * pages and destroying them is the only alternative 10130 * if they can't be written out. 10131 * 10132 * Don't do this if this is an async thread because 10133 * when the pages are unlocked in pvn_write_done, 10134 * some other thread could have come along, locked 10135 * them, and queued for an async thread. It would be 10136 * possible for all of the async threads to be tied 10137 * up waiting to lock the pages again and they would 10138 * all already be locked and waiting for an async 10139 * thread to handle them. Deadlock. 10140 */ 10141 if (!(flags & B_ASYNC)) { 10142 error = nfs4_putpage(vp, io_off, io_len, 10143 B_INVAL | B_FORCE, cr); 10144 } 10145 } else { 10146 if (error) 10147 flags |= B_ERROR; 10148 else if (rp->r_flags & R4OUTOFSPACE) { 10149 mutex_enter(&rp->r_statelock); 10150 rp->r_flags &= ~R4OUTOFSPACE; 10151 mutex_exit(&rp->r_statelock); 10152 } 10153 pvn_write_done(pp, flags); 10154 if (freemem < desfree) 10155 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10156 NFS4_WRITE_NOWAIT); 10157 } 10158 10159 return (error); 10160 } 10161 10162 #ifdef DEBUG 10163 int nfs4_force_open_before_mmap = 0; 10164 #endif 10165 10166 static int 10167 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10168 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 10169 { 10170 struct segvn_crargs vn_a; 10171 int error = 0; 10172 rnode4_t *rp = VTOR4(vp); 10173 mntinfo4_t *mi = VTOMI4(vp); 10174 10175 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10176 return (EIO); 10177 10178 if (vp->v_flag & VNOMAP) 10179 return (ENOSYS); 10180 10181 if (off < 0 || (off + len) < 0) 10182 return (ENXIO); 10183 10184 if (vp->v_type != VREG) 10185 return (ENODEV); 10186 10187 /* 10188 * If the file is delegated to the client don't do anything. 10189 * If the file is not delegated, then validate the data cache. 10190 */ 10191 mutex_enter(&rp->r_statev4_lock); 10192 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10193 mutex_exit(&rp->r_statev4_lock); 10194 error = nfs4_validate_caches(vp, cr); 10195 if (error) 10196 return (error); 10197 } else { 10198 mutex_exit(&rp->r_statev4_lock); 10199 } 10200 10201 /* 10202 * Check to see if the vnode is currently marked as not cachable. 10203 * This means portions of the file are locked (through VOP_FRLOCK). 10204 * In this case the map request must be refused. We use 10205 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10206 */ 10207 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 10208 return (EINTR); 10209 10210 if (vp->v_flag & VNOCACHE) { 10211 error = EAGAIN; 10212 goto done; 10213 } 10214 10215 /* 10216 * Don't allow concurrent locks and mapping if mandatory locking is 10217 * enabled. 10218 */ 10219 if (flk_has_remote_locks(vp)) { 10220 struct vattr va; 10221 va.va_mask = AT_MODE; 10222 error = nfs4getattr(vp, &va, cr); 10223 if (error != 0) 10224 goto done; 10225 if (MANDLOCK(vp, va.va_mode)) { 10226 error = EAGAIN; 10227 goto done; 10228 } 10229 } 10230 10231 /* 10232 * It is possible that the rnode has a lost lock request that we 10233 * are still trying to recover, and that the request conflicts with 10234 * this map request. 10235 * 10236 * An alternative approach would be for nfs4_safemap() to consider 10237 * queued lock requests when deciding whether to set or clear 10238 * VNOCACHE. This would require the frlock code path to call 10239 * nfs4_safemap() after enqueing a lost request. 10240 */ 10241 if (nfs4_map_lost_lock_conflict(vp)) { 10242 error = EAGAIN; 10243 goto done; 10244 } 10245 10246 as_rangelock(as); 10247 if (!(flags & MAP_FIXED)) { 10248 map_addr(addrp, len, off, 1, flags); 10249 if (*addrp == NULL) { 10250 as_rangeunlock(as); 10251 error = ENOMEM; 10252 goto done; 10253 } 10254 } else { 10255 /* 10256 * User specified address - blow away any previous mappings 10257 */ 10258 (void) as_unmap(as, *addrp, len); 10259 } 10260 10261 if (vp->v_type == VREG) { 10262 /* 10263 * We need to retrieve the open stream 10264 */ 10265 nfs4_open_stream_t *osp = NULL; 10266 nfs4_open_owner_t *oop = NULL; 10267 10268 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10269 if (oop != NULL) { 10270 /* returns with 'os_sync_lock' held */ 10271 osp = find_open_stream(oop, rp); 10272 open_owner_rele(oop); 10273 } 10274 if (osp == NULL) { 10275 #ifdef DEBUG 10276 if (nfs4_force_open_before_mmap) { 10277 error = EIO; 10278 goto done; 10279 } 10280 #endif 10281 /* returns with 'os_sync_lock' held */ 10282 osp = open_and_get_osp(vp, cr, mi); 10283 if (osp == NULL) { 10284 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10285 "nfs4_map: we tried to OPEN the file " 10286 "but again no osp, so fail with EIO")); 10287 error = EIO; 10288 goto done; 10289 } 10290 } 10291 10292 if (osp->os_failed_reopen) { 10293 mutex_exit(&osp->os_sync_lock); 10294 open_stream_rele(osp, rp); 10295 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10296 "nfs4_map: os_failed_reopen set on " 10297 "osp %p, cr %p, rp %s", (void *)osp, 10298 (void *)cr, rnode4info(rp))); 10299 error = EIO; 10300 goto done; 10301 } 10302 mutex_exit(&osp->os_sync_lock); 10303 open_stream_rele(osp, rp); 10304 } 10305 10306 vn_a.vp = vp; 10307 vn_a.offset = off; 10308 vn_a.type = (flags & MAP_TYPE); 10309 vn_a.prot = (uchar_t)prot; 10310 vn_a.maxprot = (uchar_t)maxprot; 10311 vn_a.flags = (flags & ~MAP_TYPE); 10312 vn_a.cred = cr; 10313 vn_a.amp = NULL; 10314 vn_a.szc = 0; 10315 vn_a.lgrp_mem_policy_flags = 0; 10316 10317 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10318 as_rangeunlock(as); 10319 10320 done: 10321 nfs_rw_exit(&rp->r_lkserlock); 10322 return (error); 10323 } 10324 10325 /* 10326 * We're most likely dealing with a kernel module that likes to READ 10327 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10328 * officially OPEN the file to create the necessary client state 10329 * for bookkeeping of os_mmap_read/write counts. 10330 * 10331 * Since VOP_MAP only passes in a pointer to the vnode rather than 10332 * a double pointer, we can't handle the case where nfs4open_otw() 10333 * returns a different vnode than the one passed into VOP_MAP (since 10334 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10335 * we return NULL and let nfs4_map() fail. Note: the only case where 10336 * this should happen is if the file got removed and replaced with the 10337 * same name on the server (in addition to the fact that we're trying 10338 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10339 */ 10340 static nfs4_open_stream_t * 10341 open_and_get_osp(vnode_t *map_vp, cred_t *cr, mntinfo4_t *mi) 10342 { 10343 rnode4_t *rp, *drp; 10344 vnode_t *dvp, *open_vp; 10345 char *file_name; 10346 int just_created; 10347 nfs4_sharedfh_t *sfh; 10348 nfs4_open_stream_t *osp; 10349 nfs4_open_owner_t *oop; 10350 10351 open_vp = map_vp; 10352 sfh = (open_vp->v_flag & VROOT) ? mi->mi_srvparentfh : 10353 VTOSV(open_vp)->sv_dfh; 10354 drp = r4find_unlocked(sfh, open_vp->v_vfsp); 10355 if (!drp) 10356 return (NULL); 10357 10358 file_name = fn_name(VTOSV(open_vp)->sv_name); 10359 10360 rp = VTOR4(open_vp); 10361 dvp = RTOV4(drp); 10362 mutex_enter(&rp->r_statev4_lock); 10363 if (rp->created_v4) { 10364 rp->created_v4 = 0; 10365 mutex_exit(&rp->r_statev4_lock); 10366 10367 dnlc_update(dvp, file_name, open_vp); 10368 /* This is needed so we don't bump the open ref count */ 10369 just_created = 1; 10370 } else { 10371 mutex_exit(&rp->r_statev4_lock); 10372 just_created = 0; 10373 } 10374 10375 VN_HOLD(map_vp); 10376 10377 if (nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10378 just_created)) { 10379 kmem_free(file_name, MAXNAMELEN); 10380 VN_RELE(dvp); 10381 VN_RELE(map_vp); 10382 return (NULL); 10383 } 10384 10385 kmem_free(file_name, MAXNAMELEN); 10386 VN_RELE(dvp); 10387 10388 /* 10389 * If nfs4open_otw() returned a different vnode then "undo" 10390 * the open and return failure to the caller. 10391 */ 10392 if (!VN_CMP(open_vp, map_vp)) { 10393 nfs4_error_t e; 10394 10395 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10396 "open returned a different vnode")); 10397 /* 10398 * If there's an error, ignore it, 10399 * and let VOP_INACTIVE handle it. 10400 */ 10401 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10402 CLOSE_NORM, 0, 0, 0); 10403 VN_RELE(map_vp); 10404 return (NULL); 10405 } 10406 10407 VN_RELE(map_vp); 10408 10409 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10410 if (!oop) { 10411 nfs4_error_t e; 10412 10413 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10414 "no open owner")); 10415 /* 10416 * If there's an error, ignore it, 10417 * and let VOP_INACTIVE handle it. 10418 */ 10419 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10420 CLOSE_NORM, 0, 0, 0); 10421 return (NULL); 10422 } 10423 osp = find_open_stream(oop, rp); 10424 open_owner_rele(oop); 10425 return (osp); 10426 } 10427 10428 /* 10429 * Please be aware that when this function is called, the address space write 10430 * a_lock is held. Do not put over the wire calls in this function. 10431 */ 10432 /* ARGSUSED */ 10433 static int 10434 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10435 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 10436 { 10437 rnode4_t *rp; 10438 int error = 0; 10439 mntinfo4_t *mi; 10440 10441 mi = VTOMI4(vp); 10442 rp = VTOR4(vp); 10443 10444 if (nfs_zone() != mi->mi_zone) 10445 return (EIO); 10446 if (vp->v_flag & VNOMAP) 10447 return (ENOSYS); 10448 10449 /* 10450 * Need to hold rwlock while incrementing the mapcnt so that 10451 * mmap'ing can be serialized with writes so that the caching 10452 * can be handled correctly. 10453 * 10454 * Don't need to update the open stream first, since this 10455 * mmap can't add any additional share access that isn't 10456 * already contained in the open stream (for the case where we 10457 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10458 * take into account os_mmap_read[write] counts). 10459 */ 10460 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 10461 return (EINTR); 10462 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10463 nfs_rw_exit(&rp->r_rwlock); 10464 10465 if (vp->v_type == VREG) { 10466 /* 10467 * We need to retrieve the open stream and update the counts. 10468 * If there is no open stream here, something is wrong. 10469 */ 10470 nfs4_open_stream_t *osp = NULL; 10471 nfs4_open_owner_t *oop = NULL; 10472 10473 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10474 if (oop != NULL) { 10475 /* returns with 'os_sync_lock' held */ 10476 osp = find_open_stream(oop, rp); 10477 open_owner_rele(oop); 10478 } 10479 if (osp == NULL) { 10480 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10481 "nfs4_addmap: we should have an osp" 10482 "but we don't, so fail with EIO")); 10483 error = EIO; 10484 goto out; 10485 } 10486 10487 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10488 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10489 10490 /* 10491 * Update the map count in the open stream. 10492 * This is necessary in the case where we 10493 * open/mmap/close/, then the server reboots, and we 10494 * attempt to reopen. If the mmap doesn't add share 10495 * access then we send an invalid reopen with 10496 * access = NONE. 10497 * 10498 * We need to specifically check each PROT_* so a mmap 10499 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10500 * read and write access. A simple comparison of prot 10501 * to ~PROT_WRITE to determine read access is insufficient 10502 * since prot can be |= with PROT_USER, etc. 10503 */ 10504 10505 /* 10506 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10507 */ 10508 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10509 osp->os_mmap_write += btopr(len); 10510 if (maxprot & PROT_READ) 10511 osp->os_mmap_read += btopr(len); 10512 if (maxprot & PROT_EXEC) 10513 osp->os_mmap_read += btopr(len); 10514 /* 10515 * Ensure that os_mmap_read gets incremented, even if 10516 * maxprot were to look like PROT_NONE. 10517 */ 10518 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10519 !(maxprot & PROT_EXEC)) 10520 osp->os_mmap_read += btopr(len); 10521 osp->os_mapcnt += btopr(len); 10522 mutex_exit(&osp->os_sync_lock); 10523 open_stream_rele(osp, rp); 10524 } 10525 10526 out: 10527 /* 10528 * If we got an error, then undo our 10529 * incrementing of 'r_mapcnt'. 10530 */ 10531 10532 if (error) { 10533 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10534 ASSERT(rp->r_mapcnt >= 0); 10535 } 10536 return (error); 10537 } 10538 10539 static int 10540 nfs4_cmp(vnode_t *vp1, vnode_t *vp2) 10541 { 10542 10543 return (VTOR4(vp1) == VTOR4(vp2)); 10544 } 10545 10546 static int 10547 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10548 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr) 10549 { 10550 int rc; 10551 u_offset_t start, end; 10552 rnode4_t *rp; 10553 int error = 0, intr = INTR4(vp); 10554 nfs4_error_t e; 10555 10556 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10557 return (EIO); 10558 10559 /* check for valid cmd parameter */ 10560 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10561 return (EINVAL); 10562 10563 /* Verify l_type. */ 10564 switch (bfp->l_type) { 10565 case F_RDLCK: 10566 if (cmd != F_GETLK && !(flag & FREAD)) 10567 return (EBADF); 10568 break; 10569 case F_WRLCK: 10570 if (cmd != F_GETLK && !(flag & FWRITE)) 10571 return (EBADF); 10572 break; 10573 case F_UNLCK: 10574 intr = 0; 10575 break; 10576 10577 default: 10578 return (EINVAL); 10579 } 10580 10581 /* check the validity of the lock range */ 10582 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10583 return (rc); 10584 if (rc = flk_check_lock_data(start, end, MAXEND)) 10585 return (rc); 10586 10587 /* 10588 * If the filesystem is mounted using local locking, pass the 10589 * request off to the local locking code. 10590 */ 10591 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10592 if (cmd == F_SETLK || cmd == F_SETLKW) { 10593 /* 10594 * For complete safety, we should be holding 10595 * r_lkserlock. However, we can't call 10596 * nfs4_safelock and then fs_frlock while 10597 * holding r_lkserlock, so just invoke 10598 * nfs4_safelock and expect that this will 10599 * catch enough of the cases. 10600 */ 10601 if (!nfs4_safelock(vp, bfp, cr)) 10602 return (EAGAIN); 10603 } 10604 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 10605 } 10606 10607 rp = VTOR4(vp); 10608 10609 /* 10610 * Check whether the given lock request can proceed, given the 10611 * current file mappings. 10612 */ 10613 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10614 return (EINTR); 10615 if (cmd == F_SETLK || cmd == F_SETLKW) { 10616 if (!nfs4_safelock(vp, bfp, cr)) { 10617 rc = EAGAIN; 10618 goto done; 10619 } 10620 } 10621 10622 /* 10623 * Flush the cache after waiting for async I/O to finish. For new 10624 * locks, this is so that the process gets the latest bits from the 10625 * server. For unlocks, this is so that other clients see the 10626 * latest bits once the file has been unlocked. If currently dirty 10627 * pages can't be flushed, then don't allow a lock to be set. But 10628 * allow unlocks to succeed, to avoid having orphan locks on the 10629 * server. 10630 */ 10631 if (cmd != F_GETLK) { 10632 mutex_enter(&rp->r_statelock); 10633 while (rp->r_count > 0) { 10634 if (intr) { 10635 klwp_t *lwp = ttolwp(curthread); 10636 10637 if (lwp != NULL) 10638 lwp->lwp_nostop++; 10639 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) == 0) { 10640 if (lwp != NULL) 10641 lwp->lwp_nostop--; 10642 rc = EINTR; 10643 break; 10644 } 10645 if (lwp != NULL) 10646 lwp->lwp_nostop--; 10647 } else 10648 cv_wait(&rp->r_cv, &rp->r_statelock); 10649 } 10650 mutex_exit(&rp->r_statelock); 10651 if (rc != 0) 10652 goto done; 10653 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr); 10654 if (error) { 10655 if (error == ENOSPC || error == EDQUOT) { 10656 mutex_enter(&rp->r_statelock); 10657 if (!rp->r_error) 10658 rp->r_error = error; 10659 mutex_exit(&rp->r_statelock); 10660 } 10661 if (bfp->l_type != F_UNLCK) { 10662 rc = ENOLCK; 10663 goto done; 10664 } 10665 } 10666 } 10667 10668 /* 10669 * Call the lock manager to do the real work of contacting 10670 * the server and obtaining the lock. 10671 */ 10672 10673 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10674 cr, &e, NULL, NULL); 10675 rc = e.error; 10676 10677 if (rc == 0) 10678 nfs4_lockcompletion(vp, cmd); 10679 10680 done: 10681 nfs_rw_exit(&rp->r_lkserlock); 10682 10683 return (rc); 10684 } 10685 10686 /* 10687 * Free storage space associated with the specified vnode. The portion 10688 * to be freed is specified by bfp->l_start and bfp->l_len (already 10689 * normalized to a "whence" of 0). 10690 * 10691 * This is an experimental facility whose continued existence is not 10692 * guaranteed. Currently, we only support the special case 10693 * of l_len == 0, meaning free to end of file. 10694 */ 10695 /* ARGSUSED */ 10696 static int 10697 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10698 offset_t offset, cred_t *cr, caller_context_t *ct) 10699 { 10700 int error; 10701 10702 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10703 return (EIO); 10704 ASSERT(vp->v_type == VREG); 10705 if (cmd != F_FREESP) 10706 return (EINVAL); 10707 10708 error = convoff(vp, bfp, 0, offset); 10709 if (!error) { 10710 ASSERT(bfp->l_start >= 0); 10711 if (bfp->l_len == 0) { 10712 struct vattr va; 10713 10714 va.va_mask = AT_SIZE; 10715 va.va_size = bfp->l_start; 10716 error = nfs4setattr(vp, &va, 0, cr, NULL); 10717 } else 10718 error = EINVAL; 10719 } 10720 10721 return (error); 10722 } 10723 10724 /* ARGSUSED */ 10725 static int 10726 nfs4_realvp(vnode_t *vp, vnode_t **vpp) 10727 { 10728 return (EINVAL); 10729 } 10730 10731 /* 10732 * Setup and add an address space callback to do the work of the delmap call. 10733 * The callback will (and must be) deleted in the actual callback function. 10734 * 10735 * This is done in order to take care of the problem that we have with holding 10736 * the address space's a_lock for a long period of time (e.g. if the NFS server 10737 * is down). Callbacks will be executed in the address space code while the 10738 * a_lock is not held. Holding the address space's a_lock causes things such 10739 * as ps and fork to hang because they are trying to acquire this lock as well. 10740 */ 10741 /* ARGSUSED */ 10742 static int 10743 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10744 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 10745 { 10746 int caller_found; 10747 int error; 10748 rnode4_t *rp; 10749 nfs4_delmap_args_t *dmapp; 10750 nfs4_delmapcall_t *delmap_call; 10751 10752 if (vp->v_flag & VNOMAP) 10753 return (ENOSYS); 10754 10755 /* 10756 * A process may not change zones if it has NFS pages mmap'ed 10757 * in, so we can't legitimately get here from the wrong zone. 10758 */ 10759 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10760 10761 rp = VTOR4(vp); 10762 10763 /* 10764 * The way that the address space of this process deletes its mapping 10765 * of this file is via the following call chains: 10766 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10767 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10768 * 10769 * With the use of address space callbacks we are allowed to drop the 10770 * address space lock, a_lock, while executing the NFS operations that 10771 * need to go over the wire. Returning EAGAIN to the caller of this 10772 * function is what drives the execution of the callback that we add 10773 * below. The callback will be executed by the address space code 10774 * after dropping the a_lock. When the callback is finished, since 10775 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 10776 * is called again on the same segment to finish the rest of the work 10777 * that needs to happen during unmapping. 10778 * 10779 * This action of calling back into the segment driver causes 10780 * nfs4_delmap() to get called again, but since the callback was 10781 * already executed at this point, it already did the work and there 10782 * is nothing left for us to do. 10783 * 10784 * To Summarize: 10785 * - The first time nfs4_delmap is called by the current thread is when 10786 * we add the caller associated with this delmap to the delmap caller 10787 * list, add the callback, and return EAGAIN. 10788 * - The second time in this call chain when nfs4_delmap is called we 10789 * will find this caller in the delmap caller list and realize there 10790 * is no more work to do thus removing this caller from the list and 10791 * returning the error that was set in the callback execution. 10792 */ 10793 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 10794 if (caller_found) { 10795 /* 10796 * 'error' is from the actual delmap operations. To avoid 10797 * hangs, we need to handle the return of EAGAIN differently 10798 * since this is what drives the callback execution. 10799 * In this case, we don't want to return EAGAIN and do the 10800 * callback execution because there are none to execute. 10801 */ 10802 if (error == EAGAIN) 10803 return (0); 10804 else 10805 return (error); 10806 } 10807 10808 /* current caller was not in the list */ 10809 delmap_call = nfs4_init_delmapcall(); 10810 10811 mutex_enter(&rp->r_statelock); 10812 list_insert_tail(&rp->r_indelmap, delmap_call); 10813 mutex_exit(&rp->r_statelock); 10814 10815 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 10816 10817 dmapp->vp = vp; 10818 dmapp->off = off; 10819 dmapp->addr = addr; 10820 dmapp->len = len; 10821 dmapp->prot = prot; 10822 dmapp->maxprot = maxprot; 10823 dmapp->flags = flags; 10824 dmapp->cr = cr; 10825 dmapp->caller = delmap_call; 10826 10827 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 10828 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 10829 10830 return (error ? error : EAGAIN); 10831 } 10832 10833 static nfs4_delmapcall_t * 10834 nfs4_init_delmapcall() 10835 { 10836 nfs4_delmapcall_t *delmap_call; 10837 10838 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 10839 delmap_call->call_id = curthread; 10840 delmap_call->error = 0; 10841 10842 return (delmap_call); 10843 } 10844 10845 static void 10846 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 10847 { 10848 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 10849 } 10850 10851 /* 10852 * Searches for the current delmap caller (based on curthread) in the list of 10853 * callers. If it is found, we remove it and free the delmap caller. 10854 * Returns: 10855 * 0 if the caller wasn't found 10856 * 1 if the caller was found, removed and freed. *errp will be set 10857 * to what the result of the delmap was. 10858 */ 10859 static int 10860 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 10861 { 10862 nfs4_delmapcall_t *delmap_call; 10863 10864 /* 10865 * If the list doesn't exist yet, we create it and return 10866 * that the caller wasn't found. No list = no callers. 10867 */ 10868 mutex_enter(&rp->r_statelock); 10869 if (!(rp->r_flags & R4DELMAPLIST)) { 10870 /* The list does not exist */ 10871 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 10872 offsetof(nfs4_delmapcall_t, call_node)); 10873 rp->r_flags |= R4DELMAPLIST; 10874 mutex_exit(&rp->r_statelock); 10875 return (0); 10876 } else { 10877 /* The list exists so search it */ 10878 for (delmap_call = list_head(&rp->r_indelmap); 10879 delmap_call != NULL; 10880 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 10881 if (delmap_call->call_id == curthread) { 10882 /* current caller is in the list */ 10883 *errp = delmap_call->error; 10884 list_remove(&rp->r_indelmap, delmap_call); 10885 mutex_exit(&rp->r_statelock); 10886 nfs4_free_delmapcall(delmap_call); 10887 return (1); 10888 } 10889 } 10890 } 10891 mutex_exit(&rp->r_statelock); 10892 return (0); 10893 } 10894 10895 /* 10896 * Remove some pages from an mmap'd vnode. Just update the 10897 * count of pages. If doing close-to-open, then flush and 10898 * commit all of the pages associated with this file. 10899 * Otherwise, start an asynchronous page flush to write out 10900 * any dirty pages. This will also associate a credential 10901 * with the rnode which can be used to write the pages. 10902 */ 10903 /* ARGSUSED */ 10904 static void 10905 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 10906 { 10907 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 10908 rnode4_t *rp; 10909 mntinfo4_t *mi; 10910 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 10911 10912 rp = VTOR4(dmapp->vp); 10913 mi = VTOMI4(dmapp->vp); 10914 10915 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 10916 ASSERT(rp->r_mapcnt >= 0); 10917 10918 /* 10919 * Initiate a page flush and potential commit if there are 10920 * pages, the file system was not mounted readonly, the segment 10921 * was mapped shared, and the pages themselves were writeable. 10922 */ 10923 if (nfs4_has_pages(dmapp->vp) && 10924 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 10925 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 10926 mutex_enter(&rp->r_statelock); 10927 rp->r_flags |= R4DIRTY; 10928 mutex_exit(&rp->r_statelock); 10929 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 10930 dmapp->len, dmapp->cr); 10931 if (!e.error) { 10932 mutex_enter(&rp->r_statelock); 10933 e.error = rp->r_error; 10934 rp->r_error = 0; 10935 mutex_exit(&rp->r_statelock); 10936 } 10937 } else 10938 e.error = 0; 10939 10940 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 10941 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 10942 B_INVAL, dmapp->cr); 10943 10944 if (e.error) { 10945 e.stat = puterrno4(e.error); 10946 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 10947 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 10948 dmapp->caller->error = e.error; 10949 } 10950 10951 /* Check to see if we need to close the file */ 10952 10953 if (dmapp->vp->v_type == VREG) { 10954 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 10955 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 10956 10957 if (e.error != 0 || e.stat != NFS4_OK) { 10958 /* 10959 * Since it is possible that e.error == 0 and 10960 * e.stat != NFS4_OK (and vice versa), 10961 * we do the proper checking in order to get both 10962 * e.error and e.stat reporting the correct info. 10963 */ 10964 if (e.stat == NFS4_OK) 10965 e.stat = puterrno4(e.error); 10966 if (e.error == 0) 10967 e.error = geterrno4(e.stat); 10968 10969 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 10970 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 10971 dmapp->caller->error = e.error; 10972 } 10973 } 10974 10975 (void) as_delete_callback(as, arg); 10976 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 10977 } 10978 10979 10980 static uint_t 10981 fattr4_maxfilesize_to_bits(uint64_t ll) 10982 { 10983 uint_t l = 1; 10984 10985 if (ll == 0) { 10986 return (0); 10987 } 10988 10989 if (ll & 0xffffffff00000000) { 10990 l += 32; ll >>= 32; 10991 } 10992 if (ll & 0xffff0000) { 10993 l += 16; ll >>= 16; 10994 } 10995 if (ll & 0xff00) { 10996 l += 8; ll >>= 8; 10997 } 10998 if (ll & 0xf0) { 10999 l += 4; ll >>= 4; 11000 } 11001 if (ll & 0xc) { 11002 l += 2; ll >>= 2; 11003 } 11004 if (ll & 0x2) { 11005 l += 1; 11006 } 11007 return (l); 11008 } 11009 11010 static int 11011 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 11012 { 11013 int error; 11014 hrtime_t t; 11015 rnode4_t *rp; 11016 nfs4_ga_res_t gar; 11017 nfs4_ga_ext_res_t ger; 11018 11019 gar.n4g_ext_res = &ger; 11020 11021 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11022 return (EIO); 11023 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11024 *valp = MAXPATHLEN; 11025 return (0); 11026 } 11027 if (cmd == _PC_ACL_ENABLED) { 11028 *valp = _ACL_ACE_ENABLED; 11029 return (0); 11030 } 11031 11032 rp = VTOR4(vp); 11033 if (cmd == _PC_XATTR_EXISTS) { 11034 /* 11035 * Eventually should attempt small client readdir before 11036 * going otw with GETATTR(FATTR4_NAMED_ATTR). For now 11037 * just drive the OTW getattr. This is required because 11038 * _PC_XATTR_EXISTS can only return true if attributes 11039 * exist -- simply checking for existance of the attrdir 11040 * is not sufficient. 11041 * 11042 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11043 * is NULL. Once the xadir vp exists, we can create xattrs, 11044 * and we don't have any way to update the "base" object's 11045 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11046 * could help out. 11047 */ 11048 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11049 rp->r_xattr_dir == NULL) { 11050 *valp = rp->r_pathconf.pc4_xattr_exists; 11051 return (0); 11052 } 11053 } else { /* OLD CODE */ 11054 if (ATTRCACHE4_VALID(vp)) { 11055 mutex_enter(&rp->r_statelock); 11056 if (rp->r_pathconf.pc4_cache_valid) { 11057 error = 0; 11058 switch (cmd) { 11059 case _PC_FILESIZEBITS: 11060 *valp = 11061 rp->r_pathconf.pc4_filesizebits; 11062 break; 11063 case _PC_LINK_MAX: 11064 *valp = 11065 rp->r_pathconf.pc4_link_max; 11066 break; 11067 case _PC_NAME_MAX: 11068 *valp = 11069 rp->r_pathconf.pc4_name_max; 11070 break; 11071 case _PC_CHOWN_RESTRICTED: 11072 *valp = 11073 rp->r_pathconf.pc4_chown_restricted; 11074 break; 11075 case _PC_NO_TRUNC: 11076 *valp = 11077 rp->r_pathconf.pc4_no_trunc; 11078 break; 11079 default: 11080 error = EINVAL; 11081 break; 11082 } 11083 mutex_exit(&rp->r_statelock); 11084 #ifdef DEBUG 11085 nfs4_pathconf_cache_hits++; 11086 #endif 11087 return (error); 11088 } 11089 mutex_exit(&rp->r_statelock); 11090 } 11091 } 11092 #ifdef DEBUG 11093 nfs4_pathconf_cache_misses++; 11094 #endif 11095 11096 t = gethrtime(); 11097 11098 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11099 11100 if (error) { 11101 mutex_enter(&rp->r_statelock); 11102 rp->r_pathconf.pc4_cache_valid = FALSE; 11103 rp->r_pathconf.pc4_xattr_valid = FALSE; 11104 mutex_exit(&rp->r_statelock); 11105 return (error); 11106 } 11107 11108 /* interpret the max filesize */ 11109 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11110 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11111 11112 /* Store the attributes we just received */ 11113 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11114 11115 switch (cmd) { 11116 case _PC_FILESIZEBITS: 11117 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11118 break; 11119 case _PC_LINK_MAX: 11120 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11121 break; 11122 case _PC_NAME_MAX: 11123 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11124 break; 11125 case _PC_CHOWN_RESTRICTED: 11126 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11127 break; 11128 case _PC_NO_TRUNC: 11129 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11130 break; 11131 case _PC_XATTR_EXISTS: 11132 *valp = gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists; 11133 break; 11134 default: 11135 return (EINVAL); 11136 } 11137 11138 return (0); 11139 } 11140 11141 /* 11142 * Called by async thread to do synchronous pageio. Do the i/o, wait 11143 * for it to complete, and cleanup the page list when done. 11144 */ 11145 static int 11146 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11147 int flags, cred_t *cr) 11148 { 11149 int error; 11150 11151 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11152 11153 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11154 if (flags & B_READ) 11155 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11156 else 11157 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11158 return (error); 11159 } 11160 11161 static int 11162 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11163 int flags, cred_t *cr) 11164 { 11165 int error; 11166 rnode4_t *rp; 11167 11168 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11169 return (EIO); 11170 11171 if (pp == NULL) 11172 return (EINVAL); 11173 11174 rp = VTOR4(vp); 11175 mutex_enter(&rp->r_statelock); 11176 rp->r_count++; 11177 mutex_exit(&rp->r_statelock); 11178 11179 if (flags & B_ASYNC) { 11180 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11181 nfs4_sync_pageio); 11182 } else 11183 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11184 mutex_enter(&rp->r_statelock); 11185 rp->r_count--; 11186 cv_broadcast(&rp->r_cv); 11187 mutex_exit(&rp->r_statelock); 11188 return (error); 11189 } 11190 11191 static void 11192 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr) 11193 { 11194 int error; 11195 rnode4_t *rp; 11196 page_t *plist; 11197 page_t *pptr; 11198 offset3 offset; 11199 count3 len; 11200 k_sigset_t smask; 11201 11202 /* 11203 * We should get called with fl equal to either B_FREE or 11204 * B_INVAL. Any other value is illegal. 11205 * 11206 * The page that we are either supposed to free or destroy 11207 * should be exclusive locked and its io lock should not 11208 * be held. 11209 */ 11210 ASSERT(fl == B_FREE || fl == B_INVAL); 11211 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11212 11213 rp = VTOR4(vp); 11214 11215 /* 11216 * If the page doesn't need to be committed or we shouldn't 11217 * even bother attempting to commit it, then just make sure 11218 * that the p_fsdata byte is clear and then either free or 11219 * destroy the page as appropriate. 11220 */ 11221 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11222 pp->p_fsdata = C_NOCOMMIT; 11223 if (fl == B_FREE) 11224 page_free(pp, dn); 11225 else 11226 page_destroy(pp, dn); 11227 return; 11228 } 11229 11230 /* 11231 * If there is a page invalidation operation going on, then 11232 * if this is one of the pages being destroyed, then just 11233 * clear the p_fsdata byte and then either free or destroy 11234 * the page as appropriate. 11235 */ 11236 mutex_enter(&rp->r_statelock); 11237 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11238 mutex_exit(&rp->r_statelock); 11239 pp->p_fsdata = C_NOCOMMIT; 11240 if (fl == B_FREE) 11241 page_free(pp, dn); 11242 else 11243 page_destroy(pp, dn); 11244 return; 11245 } 11246 11247 /* 11248 * If we are freeing this page and someone else is already 11249 * waiting to do a commit, then just unlock the page and 11250 * return. That other thread will take care of commiting 11251 * this page. The page can be freed sometime after the 11252 * commit has finished. Otherwise, if the page is marked 11253 * as delay commit, then we may be getting called from 11254 * pvn_write_done, one page at a time. This could result 11255 * in one commit per page, so we end up doing lots of small 11256 * commits instead of fewer larger commits. This is bad, 11257 * we want do as few commits as possible. 11258 */ 11259 if (fl == B_FREE) { 11260 if (rp->r_flags & R4COMMITWAIT) { 11261 page_unlock(pp); 11262 mutex_exit(&rp->r_statelock); 11263 return; 11264 } 11265 if (pp->p_fsdata == C_DELAYCOMMIT) { 11266 pp->p_fsdata = C_COMMIT; 11267 page_unlock(pp); 11268 mutex_exit(&rp->r_statelock); 11269 return; 11270 } 11271 } 11272 11273 /* 11274 * Check to see if there is a signal which would prevent an 11275 * attempt to commit the pages from being successful. If so, 11276 * then don't bother with all of the work to gather pages and 11277 * generate the unsuccessful RPC. Just return from here and 11278 * let the page be committed at some later time. 11279 */ 11280 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11281 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11282 sigunintr(&smask); 11283 page_unlock(pp); 11284 mutex_exit(&rp->r_statelock); 11285 return; 11286 } 11287 sigunintr(&smask); 11288 11289 /* 11290 * We are starting to need to commit pages, so let's try 11291 * to commit as many as possible at once to reduce the 11292 * overhead. 11293 * 11294 * Set the `commit inprogress' state bit. We must 11295 * first wait until any current one finishes. Then 11296 * we initialize the c_pages list with this page. 11297 */ 11298 while (rp->r_flags & R4COMMIT) { 11299 rp->r_flags |= R4COMMITWAIT; 11300 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11301 rp->r_flags &= ~R4COMMITWAIT; 11302 } 11303 rp->r_flags |= R4COMMIT; 11304 mutex_exit(&rp->r_statelock); 11305 ASSERT(rp->r_commit.c_pages == NULL); 11306 rp->r_commit.c_pages = pp; 11307 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11308 rp->r_commit.c_commlen = PAGESIZE; 11309 11310 /* 11311 * Gather together all other pages which can be committed. 11312 * They will all be chained off r_commit.c_pages. 11313 */ 11314 nfs4_get_commit(vp); 11315 11316 /* 11317 * Clear the `commit inprogress' status and disconnect 11318 * the list of pages to be committed from the rnode. 11319 * At this same time, we also save the starting offset 11320 * and length of data to be committed on the server. 11321 */ 11322 plist = rp->r_commit.c_pages; 11323 rp->r_commit.c_pages = NULL; 11324 offset = rp->r_commit.c_commbase; 11325 len = rp->r_commit.c_commlen; 11326 mutex_enter(&rp->r_statelock); 11327 rp->r_flags &= ~R4COMMIT; 11328 cv_broadcast(&rp->r_commit.c_cv); 11329 mutex_exit(&rp->r_statelock); 11330 11331 if (curproc == proc_pageout || curproc == proc_fsflush || 11332 nfs_zone() != VTOMI4(vp)->mi_zone) { 11333 nfs4_async_commit(vp, plist, offset, len, 11334 cr, do_nfs4_async_commit); 11335 return; 11336 } 11337 11338 /* 11339 * Actually generate the COMMIT op over the wire operation. 11340 */ 11341 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11342 11343 /* 11344 * If we got an error during the commit, just unlock all 11345 * of the pages. The pages will get retransmitted to the 11346 * server during a putpage operation. 11347 */ 11348 if (error) { 11349 while (plist != NULL) { 11350 pptr = plist; 11351 page_sub(&plist, pptr); 11352 page_unlock(pptr); 11353 } 11354 return; 11355 } 11356 11357 /* 11358 * We've tried as hard as we can to commit the data to stable 11359 * storage on the server. We just unlock the rest of the pages 11360 * and clear the commit required state. They will be put 11361 * onto the tail of the cachelist if they are nolonger 11362 * mapped. 11363 */ 11364 while (plist != pp) { 11365 pptr = plist; 11366 page_sub(&plist, pptr); 11367 pptr->p_fsdata = C_NOCOMMIT; 11368 page_unlock(pptr); 11369 } 11370 11371 /* 11372 * It is possible that nfs4_commit didn't return error but 11373 * some other thread has modified the page we are going 11374 * to free/destroy. 11375 * In this case we need to rewrite the page. Do an explicit check 11376 * before attempting to free/destroy the page. If modified, needs to 11377 * be rewritten so unlock the page and return. 11378 */ 11379 if (hat_ismod(pp)) { 11380 pp->p_fsdata = C_NOCOMMIT; 11381 page_unlock(pp); 11382 return; 11383 } 11384 11385 /* 11386 * Now, as appropriate, either free or destroy the page 11387 * that we were called with. 11388 */ 11389 pp->p_fsdata = C_NOCOMMIT; 11390 if (fl == B_FREE) 11391 page_free(pp, dn); 11392 else 11393 page_destroy(pp, dn); 11394 } 11395 11396 /* 11397 * Commit requires that the current fh be the file written to. 11398 * The compound op structure is: 11399 * PUTFH(file), COMMIT 11400 */ 11401 static int 11402 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11403 { 11404 COMPOUND4args_clnt args; 11405 COMPOUND4res_clnt res; 11406 COMMIT4res *cm_res; 11407 nfs_argop4 argop[2]; 11408 nfs_resop4 *resop; 11409 int doqueue; 11410 mntinfo4_t *mi; 11411 rnode4_t *rp; 11412 cred_t *cred_otw = NULL; 11413 bool_t needrecov = FALSE; 11414 nfs4_recov_state_t recov_state; 11415 nfs4_open_stream_t *osp = NULL; 11416 bool_t first_time = TRUE; /* first time getting OTW cred */ 11417 bool_t last_time = FALSE; /* last time getting OTW cred */ 11418 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11419 11420 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11421 11422 rp = VTOR4(vp); 11423 11424 mi = VTOMI4(vp); 11425 recov_state.rs_flags = 0; 11426 recov_state.rs_num_retry_despite_err = 0; 11427 get_commit_cred: 11428 /* 11429 * Releases the osp, if a valid open stream is provided. 11430 * Puts a hold on the cred_otw and the new osp (if found). 11431 */ 11432 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11433 &first_time, &last_time); 11434 args.ctag = TAG_COMMIT; 11435 recov_retry: 11436 /* 11437 * Commit ops: putfh file; commit 11438 */ 11439 args.array_len = 2; 11440 args.array = argop; 11441 11442 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11443 &recov_state, NULL); 11444 if (e.error) { 11445 crfree(cred_otw); 11446 if (osp != NULL) 11447 open_stream_rele(osp, rp); 11448 return (e.error); 11449 } 11450 11451 /* putfh directory */ 11452 argop[0].argop = OP_CPUTFH; 11453 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11454 11455 /* commit */ 11456 argop[1].argop = OP_COMMIT; 11457 argop[1].nfs_argop4_u.opcommit.offset = offset; 11458 argop[1].nfs_argop4_u.opcommit.count = count; 11459 11460 doqueue = 1; 11461 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11462 11463 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11464 if (!needrecov && e.error) { 11465 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11466 needrecov); 11467 crfree(cred_otw); 11468 if (e.error == EACCES && last_time == FALSE) 11469 goto get_commit_cred; 11470 if (osp != NULL) 11471 open_stream_rele(osp, rp); 11472 return (e.error); 11473 } 11474 11475 if (needrecov) { 11476 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11477 NULL, OP_COMMIT, NULL) == FALSE) { 11478 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11479 &recov_state, needrecov); 11480 if (!e.error) 11481 (void) xdr_free(xdr_COMPOUND4res_clnt, 11482 (caddr_t)&res); 11483 goto recov_retry; 11484 } 11485 if (e.error) { 11486 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11487 &recov_state, needrecov); 11488 crfree(cred_otw); 11489 if (osp != NULL) 11490 open_stream_rele(osp, rp); 11491 return (e.error); 11492 } 11493 /* fall through for res.status case */ 11494 } 11495 11496 if (res.status) { 11497 e.error = geterrno4(res.status); 11498 if (e.error == EACCES && last_time == FALSE) { 11499 crfree(cred_otw); 11500 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11501 &recov_state, needrecov); 11502 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11503 goto get_commit_cred; 11504 } 11505 /* 11506 * Can't do a nfs4_purge_stale_fh here because this 11507 * can cause a deadlock. nfs4_commit can 11508 * be called from nfs4_dispose which can be called 11509 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11510 * can call back to pvn_vplist_dirty. 11511 */ 11512 if (e.error == ESTALE) { 11513 mutex_enter(&rp->r_statelock); 11514 rp->r_flags |= R4STALE; 11515 if (!rp->r_error) 11516 rp->r_error = e.error; 11517 mutex_exit(&rp->r_statelock); 11518 PURGE_ATTRCACHE4(vp); 11519 } else { 11520 mutex_enter(&rp->r_statelock); 11521 if (!rp->r_error) 11522 rp->r_error = e.error; 11523 mutex_exit(&rp->r_statelock); 11524 } 11525 } else { 11526 ASSERT(rp->r_flags & R4HAVEVERF); 11527 resop = &res.array[1]; /* commit res */ 11528 cm_res = &resop->nfs_resop4_u.opcommit; 11529 mutex_enter(&rp->r_statelock); 11530 if (cm_res->writeverf == rp->r_writeverf) { 11531 mutex_exit(&rp->r_statelock); 11532 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11533 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11534 &recov_state, needrecov); 11535 crfree(cred_otw); 11536 if (osp != NULL) 11537 open_stream_rele(osp, rp); 11538 return (0); 11539 } 11540 nfs4_set_mod(vp); 11541 rp->r_writeverf = cm_res->writeverf; 11542 mutex_exit(&rp->r_statelock); 11543 e.error = NFS_VERF_MISMATCH; 11544 } 11545 11546 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11547 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11548 crfree(cred_otw); 11549 if (osp != NULL) 11550 open_stream_rele(osp, rp); 11551 11552 return (e.error); 11553 } 11554 11555 static void 11556 nfs4_set_mod(vnode_t *vp) 11557 { 11558 page_t *pp; 11559 kmutex_t *vphm; 11560 rnode4_t *rp; 11561 11562 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11563 11564 /* make sure we're looking at the master vnode, not a shadow */ 11565 11566 rp = VTOR4(vp); 11567 if (IS_SHADOW(vp, rp)) 11568 vp = RTOV4(rp); 11569 11570 vphm = page_vnode_mutex(vp); 11571 mutex_enter(vphm); 11572 /* 11573 * If there are no pages associated with this vnode, then 11574 * just return. 11575 */ 11576 if ((pp = vp->v_pages) == NULL) { 11577 mutex_exit(vphm); 11578 return; 11579 } 11580 11581 do { 11582 if (pp->p_fsdata != C_NOCOMMIT) { 11583 hat_setmod(pp); 11584 pp->p_fsdata = C_NOCOMMIT; 11585 } 11586 } while ((pp = pp->p_vpnext) != vp->v_pages); 11587 mutex_exit(vphm); 11588 } 11589 11590 /* 11591 * This function is used to gather a page list of the pages which 11592 * can be committed on the server. 11593 * 11594 * The calling thread must have set R4COMMIT. This bit is used to 11595 * serialize access to the commit structure in the rnode. As long 11596 * as the thread has set R4COMMIT, then it can manipulate the commit 11597 * structure without requiring any other locks. 11598 * 11599 * When this function is called from nfs4_dispose() the page passed 11600 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11601 * will skip it. This is not a problem since we initially add the 11602 * page to the r_commit page list. 11603 * 11604 */ 11605 static void 11606 nfs4_get_commit(vnode_t *vp) 11607 { 11608 rnode4_t *rp; 11609 page_t *pp; 11610 kmutex_t *vphm; 11611 11612 rp = VTOR4(vp); 11613 11614 ASSERT(rp->r_flags & R4COMMIT); 11615 11616 /* make sure we're looking at the master vnode, not a shadow */ 11617 11618 if (IS_SHADOW(vp, rp)) 11619 vp = RTOV4(rp); 11620 11621 vphm = page_vnode_mutex(vp); 11622 mutex_enter(vphm); 11623 11624 /* 11625 * If there are no pages associated with this vnode, then 11626 * just return. 11627 */ 11628 if ((pp = vp->v_pages) == NULL) { 11629 mutex_exit(vphm); 11630 return; 11631 } 11632 11633 /* 11634 * Step through all of the pages associated with this vnode 11635 * looking for pages which need to be committed. 11636 */ 11637 do { 11638 /* 11639 * First short-cut everything (without the page_lock) 11640 * and see if this page does not need to be committed 11641 * or is modified if so then we'll just skip it. 11642 */ 11643 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11644 continue; 11645 11646 /* 11647 * Attempt to lock the page. If we can't, then 11648 * someone else is messing with it or we have been 11649 * called from nfs4_dispose and this is the page that 11650 * nfs4_dispose was called with.. anyway just skip it. 11651 */ 11652 if (!page_trylock(pp, SE_EXCL)) 11653 continue; 11654 11655 /* 11656 * Lets check again now that we have the page lock. 11657 */ 11658 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11659 page_unlock(pp); 11660 continue; 11661 } 11662 11663 /* this had better not be a free page */ 11664 ASSERT(PP_ISFREE(pp) == 0); 11665 11666 /* 11667 * The page needs to be committed and we locked it. 11668 * Update the base and length parameters and add it 11669 * to r_pages. 11670 */ 11671 if (rp->r_commit.c_pages == NULL) { 11672 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11673 rp->r_commit.c_commlen = PAGESIZE; 11674 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11675 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11676 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11677 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11678 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11679 <= pp->p_offset) { 11680 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11681 rp->r_commit.c_commbase + PAGESIZE; 11682 } 11683 page_add(&rp->r_commit.c_pages, pp); 11684 } while ((pp = pp->p_vpnext) != vp->v_pages); 11685 11686 mutex_exit(vphm); 11687 } 11688 11689 /* 11690 * This routine is used to gather together a page list of the pages 11691 * which are to be committed on the server. This routine must not 11692 * be called if the calling thread holds any locked pages. 11693 * 11694 * The calling thread must have set R4COMMIT. This bit is used to 11695 * serialize access to the commit structure in the rnode. As long 11696 * as the thread has set R4COMMIT, then it can manipulate the commit 11697 * structure without requiring any other locks. 11698 */ 11699 static void 11700 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11701 { 11702 11703 rnode4_t *rp; 11704 page_t *pp; 11705 u_offset_t end; 11706 u_offset_t off; 11707 ASSERT(len != 0); 11708 rp = VTOR4(vp); 11709 ASSERT(rp->r_flags & R4COMMIT); 11710 11711 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11712 11713 /* make sure we're looking at the master vnode, not a shadow */ 11714 11715 if (IS_SHADOW(vp, rp)) 11716 vp = RTOV4(rp); 11717 11718 /* 11719 * If there are no pages associated with this vnode, then 11720 * just return. 11721 */ 11722 if ((pp = vp->v_pages) == NULL) 11723 return; 11724 /* 11725 * Calculate the ending offset. 11726 */ 11727 end = soff + len; 11728 for (off = soff; off < end; off += PAGESIZE) { 11729 /* 11730 * Lookup each page by vp, offset. 11731 */ 11732 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 11733 continue; 11734 /* 11735 * If this page does not need to be committed or is 11736 * modified, then just skip it. 11737 */ 11738 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11739 page_unlock(pp); 11740 continue; 11741 } 11742 11743 ASSERT(PP_ISFREE(pp) == 0); 11744 /* 11745 * The page needs to be committed and we locked it. 11746 * Update the base and length parameters and add it 11747 * to r_pages. 11748 */ 11749 if (rp->r_commit.c_pages == NULL) { 11750 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11751 rp->r_commit.c_commlen = PAGESIZE; 11752 } else { 11753 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11754 rp->r_commit.c_commbase + PAGESIZE; 11755 } 11756 page_add(&rp->r_commit.c_pages, pp); 11757 } 11758 } 11759 11760 /* 11761 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 11762 * Flushes and commits data to the server. 11763 */ 11764 static int 11765 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 11766 { 11767 int error; 11768 verifier4 write_verf; 11769 rnode4_t *rp = VTOR4(vp); 11770 11771 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11772 11773 /* 11774 * Flush the data portion of the file and then commit any 11775 * portions which need to be committed. This may need to 11776 * be done twice if the server has changed state since 11777 * data was last written. The data will need to be 11778 * rewritten to the server and then a new commit done. 11779 * 11780 * In fact, this may need to be done several times if the 11781 * server is having problems and crashing while we are 11782 * attempting to do this. 11783 */ 11784 11785 top: 11786 /* 11787 * Do a flush based on the poff and plen arguments. This 11788 * will synchronously write out any modified pages in the 11789 * range specified by (poff, plen). This starts all of the 11790 * i/o operations which will be waited for in the next 11791 * call to nfs4_putpage 11792 */ 11793 11794 mutex_enter(&rp->r_statelock); 11795 write_verf = rp->r_writeverf; 11796 mutex_exit(&rp->r_statelock); 11797 11798 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr); 11799 if (error == EAGAIN) 11800 error = 0; 11801 11802 /* 11803 * Do a flush based on the poff and plen arguments. This 11804 * will synchronously write out any modified pages in the 11805 * range specified by (poff, plen) and wait until all of 11806 * the asynchronous i/o's in that range are done as well. 11807 */ 11808 if (!error) 11809 error = nfs4_putpage(vp, poff, plen, 0, cr); 11810 11811 if (error) 11812 return (error); 11813 11814 mutex_enter(&rp->r_statelock); 11815 if (rp->r_writeverf != write_verf) { 11816 mutex_exit(&rp->r_statelock); 11817 goto top; 11818 } 11819 mutex_exit(&rp->r_statelock); 11820 11821 /* 11822 * Now commit any pages which might need to be committed. 11823 * If the error, NFS_VERF_MISMATCH, is returned, then 11824 * start over with the flush operation. 11825 */ 11826 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 11827 11828 if (error == NFS_VERF_MISMATCH) 11829 goto top; 11830 11831 return (error); 11832 } 11833 11834 /* 11835 * nfs4_commit_vp() will wait for other pending commits and 11836 * will either commit the whole file or a range, plen dictates 11837 * if we commit whole file. a value of zero indicates the whole 11838 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 11839 */ 11840 static int 11841 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 11842 cred_t *cr, int wait_on_writes) 11843 { 11844 rnode4_t *rp; 11845 page_t *plist; 11846 offset3 offset; 11847 count3 len; 11848 11849 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11850 11851 rp = VTOR4(vp); 11852 11853 /* 11854 * before we gather commitable pages make 11855 * sure there are no outstanding async writes 11856 */ 11857 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 11858 mutex_enter(&rp->r_statelock); 11859 while (rp->r_count > 0) { 11860 cv_wait(&rp->r_cv, &rp->r_statelock); 11861 } 11862 mutex_exit(&rp->r_statelock); 11863 } 11864 11865 /* 11866 * Set the `commit inprogress' state bit. We must 11867 * first wait until any current one finishes. 11868 */ 11869 mutex_enter(&rp->r_statelock); 11870 while (rp->r_flags & R4COMMIT) { 11871 rp->r_flags |= R4COMMITWAIT; 11872 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11873 rp->r_flags &= ~R4COMMITWAIT; 11874 } 11875 rp->r_flags |= R4COMMIT; 11876 mutex_exit(&rp->r_statelock); 11877 11878 /* 11879 * Gather all of the pages which need to be 11880 * committed. 11881 */ 11882 if (plen == 0) 11883 nfs4_get_commit(vp); 11884 else 11885 nfs4_get_commit_range(vp, poff, plen); 11886 11887 /* 11888 * Clear the `commit inprogress' bit and disconnect the 11889 * page list which was gathered by nfs4_get_commit. 11890 */ 11891 plist = rp->r_commit.c_pages; 11892 rp->r_commit.c_pages = NULL; 11893 offset = rp->r_commit.c_commbase; 11894 len = rp->r_commit.c_commlen; 11895 mutex_enter(&rp->r_statelock); 11896 rp->r_flags &= ~R4COMMIT; 11897 cv_broadcast(&rp->r_commit.c_cv); 11898 mutex_exit(&rp->r_statelock); 11899 11900 /* 11901 * If any pages need to be committed, commit them and 11902 * then unlock them so that they can be freed some 11903 * time later. 11904 */ 11905 if (plist == NULL) 11906 return (0); 11907 11908 /* 11909 * No error occurred during the flush portion 11910 * of this operation, so now attempt to commit 11911 * the data to stable storage on the server. 11912 * 11913 * This will unlock all of the pages on the list. 11914 */ 11915 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 11916 } 11917 11918 static int 11919 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 11920 cred_t *cr) 11921 { 11922 int error; 11923 page_t *pp; 11924 11925 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11926 11927 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 11928 11929 /* 11930 * If we got an error, then just unlock all of the pages 11931 * on the list. 11932 */ 11933 if (error) { 11934 while (plist != NULL) { 11935 pp = plist; 11936 page_sub(&plist, pp); 11937 page_unlock(pp); 11938 } 11939 return (error); 11940 } 11941 /* 11942 * We've tried as hard as we can to commit the data to stable 11943 * storage on the server. We just unlock the pages and clear 11944 * the commit required state. They will get freed later. 11945 */ 11946 while (plist != NULL) { 11947 pp = plist; 11948 page_sub(&plist, pp); 11949 pp->p_fsdata = C_NOCOMMIT; 11950 page_unlock(pp); 11951 } 11952 11953 return (error); 11954 } 11955 11956 static void 11957 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 11958 cred_t *cr) 11959 { 11960 11961 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 11962 } 11963 11964 /*ARGSUSED*/ 11965 static int 11966 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 11967 { 11968 int error = 0; 11969 mntinfo4_t *mi; 11970 vattr_t va; 11971 vsecattr_t nfsace4_vsap; 11972 11973 mi = VTOMI4(vp); 11974 if (nfs_zone() != mi->mi_zone) 11975 return (EIO); 11976 if (mi->mi_flags & MI4_ACL) { 11977 /* if we have a delegation, return it */ 11978 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 11979 (void) nfs4delegreturn(VTOR4(vp), 11980 NFS4_DR_REOPEN|NFS4_DR_PUSH); 11981 11982 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 11983 NFS4_ACL_SET); 11984 if (error) /* EINVAL */ 11985 return (error); 11986 11987 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 11988 /* 11989 * These are aclent_t type entries. 11990 */ 11991 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 11992 vp->v_type == VDIR, FALSE); 11993 if (error) 11994 return (error); 11995 } else { 11996 /* 11997 * These are ace_t type entries. 11998 */ 11999 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12000 FALSE); 12001 if (error) 12002 return (error); 12003 } 12004 bzero(&va, sizeof (va)); 12005 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12006 vs_ace4_destroy(&nfsace4_vsap); 12007 return (error); 12008 } 12009 return (ENOSYS); 12010 } 12011 12012 static int 12013 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 12014 { 12015 int error; 12016 mntinfo4_t *mi; 12017 nfs4_ga_res_t gar; 12018 rnode4_t *rp = VTOR4(vp); 12019 12020 mi = VTOMI4(vp); 12021 if (nfs_zone() != mi->mi_zone) 12022 return (EIO); 12023 12024 bzero(&gar, sizeof (gar)); 12025 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12026 12027 /* 12028 * vsecattr->vsa_mask holds the original acl request mask. 12029 * This is needed when determining what to return. 12030 * (See: nfs4_create_getsecattr_return()) 12031 */ 12032 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12033 if (error) /* EINVAL */ 12034 return (error); 12035 12036 if (mi->mi_flags & MI4_ACL) { 12037 /* 12038 * Check if the data is cached and the cache is valid. If it 12039 * is we don't go over the wire. 12040 */ 12041 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12042 mutex_enter(&rp->r_statelock); 12043 if (rp->r_secattr != NULL) { 12044 error = nfs4_create_getsecattr_return( 12045 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12046 rp->r_attr.va_gid, 12047 vp->v_type == VDIR); 12048 if (!error) { /* error == 0 - Success! */ 12049 mutex_exit(&rp->r_statelock); 12050 return (error); 12051 } 12052 } 12053 mutex_exit(&rp->r_statelock); 12054 } 12055 12056 /* 12057 * The getattr otw call will always get both the acl, in 12058 * the form of a list of nfsace4's, and the number of acl 12059 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12060 */ 12061 gar.n4g_va.va_mask = AT_ALL; 12062 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12063 if (error) { 12064 vs_ace4_destroy(&gar.n4g_vsa); 12065 if (error == ENOTSUP || error == EOPNOTSUPP) 12066 error = fs_fab_acl(vp, vsecattr, flag, cr); 12067 return (error); 12068 } 12069 12070 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12071 /* 12072 * No error was returned, but according to the response 12073 * bitmap, neither was an acl. 12074 */ 12075 vs_ace4_destroy(&gar.n4g_vsa); 12076 error = fs_fab_acl(vp, vsecattr, flag, cr); 12077 return (error); 12078 } 12079 12080 /* 12081 * Update the cache with the ACL. 12082 */ 12083 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12084 12085 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12086 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12087 vp->v_type == VDIR); 12088 vs_ace4_destroy(&gar.n4g_vsa); 12089 if ((error) && (vsecattr->vsa_mask & 12090 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12091 (error != EACCES)) { 12092 error = fs_fab_acl(vp, vsecattr, flag, cr); 12093 } 12094 return (error); 12095 } 12096 error = fs_fab_acl(vp, vsecattr, flag, cr); 12097 return (error); 12098 } 12099 12100 /* 12101 * The function returns: 12102 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12103 * - EINVAL if the passed in "acl_mask" is an invalid request. 12104 * 12105 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12106 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12107 * 12108 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12109 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12110 * - We have a count field set without the corresponding acl field set. (e.g. - 12111 * VSA_ACECNT is set, but VSA_ACE is not) 12112 */ 12113 static int 12114 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12115 { 12116 /* Shortcut the masks that are always valid. */ 12117 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12118 return (0); 12119 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12120 return (0); 12121 12122 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12123 /* 12124 * We can't have any VSA_ACL type stuff in the mask now. 12125 */ 12126 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12127 VSA_DFACLCNT)) 12128 return (EINVAL); 12129 12130 if (op == NFS4_ACL_SET) { 12131 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12132 return (EINVAL); 12133 } 12134 } 12135 12136 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12137 /* 12138 * We can't have any VSA_ACE type stuff in the mask now. 12139 */ 12140 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12141 return (EINVAL); 12142 12143 if (op == NFS4_ACL_SET) { 12144 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12145 return (EINVAL); 12146 12147 if ((acl_mask & VSA_DFACLCNT) && 12148 !(acl_mask & VSA_DFACL)) 12149 return (EINVAL); 12150 } 12151 } 12152 return (0); 12153 } 12154 12155 /* 12156 * The theory behind creating the correct getsecattr return is simply this: 12157 * "Don't return anything that the caller is not expecting to have to free." 12158 */ 12159 static int 12160 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12161 uid_t uid, gid_t gid, int isdir) 12162 { 12163 int error = 0; 12164 /* Save the mask since the translators modify it. */ 12165 uint_t orig_mask = vsap->vsa_mask; 12166 12167 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12168 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, 12169 FALSE, ((orig_mask & VSA_ACE) ? FALSE : TRUE)); 12170 12171 if (error) 12172 return (error); 12173 12174 /* 12175 * If the caller only asked for the ace count (VSA_ACECNT) 12176 * don't give them the full acl (VSA_ACE), free it. 12177 */ 12178 if (!orig_mask & VSA_ACE) { 12179 if (vsap->vsa_aclentp != NULL) { 12180 kmem_free(vsap->vsa_aclentp, 12181 vsap->vsa_aclcnt * sizeof (ace_t)); 12182 vsap->vsa_aclentp = NULL; 12183 } 12184 } 12185 vsap->vsa_mask = orig_mask; 12186 12187 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12188 VSA_DFACLCNT)) { 12189 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12190 isdir, FALSE, 12191 ((orig_mask & (VSA_ACL | VSA_DFACL)) ? FALSE : TRUE)); 12192 12193 if (error) 12194 return (error); 12195 12196 /* 12197 * If the caller only asked for the acl count (VSA_ACLCNT) 12198 * and/or the default acl count (VSA_DFACLCNT) don't give them 12199 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12200 */ 12201 if (!orig_mask & VSA_ACL) { 12202 if (vsap->vsa_aclentp != NULL) { 12203 kmem_free(vsap->vsa_aclentp, 12204 vsap->vsa_aclcnt * sizeof (aclent_t)); 12205 vsap->vsa_aclentp = NULL; 12206 } 12207 } 12208 12209 if (!orig_mask & VSA_DFACL) { 12210 if (vsap->vsa_dfaclentp != NULL) { 12211 kmem_free(vsap->vsa_dfaclentp, 12212 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12213 vsap->vsa_dfaclentp = NULL; 12214 } 12215 } 12216 vsap->vsa_mask = orig_mask; 12217 } 12218 return (0); 12219 } 12220 12221 static int 12222 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr) 12223 { 12224 int error; 12225 12226 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12227 return (EIO); 12228 /* 12229 * check for valid cmd parameter 12230 */ 12231 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12232 return (EINVAL); 12233 12234 /* 12235 * Check access permissions 12236 */ 12237 if ((cmd & F_SHARE) && 12238 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12239 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12240 return (EBADF); 12241 12242 /* 12243 * If the filesystem is mounted using local locking, pass the 12244 * request off to the local share code. 12245 */ 12246 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12247 return (fs_shrlock(vp, cmd, shr, flag, cr)); 12248 12249 switch (cmd) { 12250 case F_SHARE: 12251 case F_UNSHARE: 12252 /* 12253 * This will be properly implemented later, 12254 * see RFE: 4823948 . 12255 */ 12256 error = EAGAIN; 12257 break; 12258 12259 case F_HASREMOTELOCKS: 12260 /* 12261 * NFS client can't store remote locks itself 12262 */ 12263 shr->s_access = 0; 12264 error = 0; 12265 break; 12266 12267 default: 12268 error = EINVAL; 12269 break; 12270 } 12271 12272 return (error); 12273 } 12274 12275 /* 12276 * Common code called by directory ops to update the attrcache 12277 */ 12278 static int 12279 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12280 hrtime_t t, vnode_t *vp, cred_t *cr) 12281 { 12282 int error = 0; 12283 12284 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12285 12286 if (status != NFS4_OK) { 12287 /* getattr not done or failed */ 12288 PURGE_ATTRCACHE4(vp); 12289 return (error); 12290 } 12291 12292 if (garp) { 12293 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12294 } else { 12295 PURGE_ATTRCACHE4(vp); 12296 } 12297 return (error); 12298 } 12299 12300 /* 12301 * Update directory caches for directory modification ops (link, rename, etc.) 12302 * When dinfo is NULL, manage dircaches in the old way. 12303 */ 12304 static void 12305 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12306 dirattr_info_t *dinfo) 12307 { 12308 rnode4_t *drp = VTOR4(dvp); 12309 12310 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12311 12312 /* Purge rddir cache for dir since it changed */ 12313 if (drp->r_dir != NULL) 12314 nfs4_purge_rddir_cache(dvp); 12315 12316 /* 12317 * If caller provided dinfo, then use it to manage dir caches. 12318 */ 12319 if (dinfo != NULL) { 12320 if (vp != NULL) { 12321 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12322 if (!VTOR4(vp)->created_v4) { 12323 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12324 dnlc_update(dvp, nm, vp); 12325 } else { 12326 /* 12327 * XXX don't update if the created_v4 flag is 12328 * set 12329 */ 12330 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12331 NFS4_DEBUG(nfs4_client_state_debug, 12332 (CE_NOTE, "nfs4_update_dircaches: " 12333 "don't update dnlc: created_v4 flag")); 12334 } 12335 } 12336 12337 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12338 dinfo->di_cred, FALSE, cinfo); 12339 12340 return; 12341 } 12342 12343 /* 12344 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12345 * Since caller modified dir but didn't receive post-dirmod-op dir 12346 * attrs, the dir's attrs must be purged. 12347 * 12348 * XXX this check and dnlc update/purge should really be atomic, 12349 * XXX but can't use rnode statelock because it'll deadlock in 12350 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12351 * XXX does occur. 12352 * 12353 * XXX We also may want to check that atomic is true in the 12354 * XXX change_info struct. If it is not, the change_info may 12355 * XXX reflect changes by more than one clients which means that 12356 * XXX our cache may not be valid. 12357 */ 12358 PURGE_ATTRCACHE4(dvp); 12359 if (drp->r_change == cinfo->before) { 12360 /* no changes took place in the directory prior to our link */ 12361 if (vp != NULL) { 12362 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12363 if (!VTOR4(vp)->created_v4) { 12364 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12365 dnlc_update(dvp, nm, vp); 12366 } else { 12367 /* 12368 * XXX dont' update if the created_v4 flag 12369 * is set 12370 */ 12371 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12372 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12373 "nfs4_update_dircaches: don't" 12374 " update dnlc: created_v4 flag")); 12375 } 12376 } 12377 } else { 12378 /* Another client modified directory - purge its dnlc cache */ 12379 dnlc_purge_vp(dvp); 12380 } 12381 } 12382 12383 /* 12384 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12385 * file. 12386 * 12387 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12388 * file (ie: client recovery) and otherwise set to FALSE. 12389 * 12390 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12391 * initiated) calling functions. 12392 * 12393 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12394 * of resending a 'lost' open request. 12395 * 12396 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12397 * server that hands out BAD_SEQID on open confirm. 12398 * 12399 * Errors are returned via the nfs4_error_t parameter. 12400 */ 12401 void 12402 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12403 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12404 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12405 { 12406 COMPOUND4args_clnt args; 12407 COMPOUND4res_clnt res; 12408 nfs_argop4 argop[2]; 12409 nfs_resop4 *resop; 12410 int doqueue = 1; 12411 mntinfo4_t *mi; 12412 OPEN_CONFIRM4args *open_confirm_args; 12413 int needrecov; 12414 12415 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12416 #if DEBUG 12417 mutex_enter(&oop->oo_lock); 12418 ASSERT(oop->oo_seqid_inuse); 12419 mutex_exit(&oop->oo_lock); 12420 #endif 12421 12422 recov_retry_confirm: 12423 nfs4_error_zinit(ep); 12424 *retry_open = FALSE; 12425 12426 if (resend) 12427 args.ctag = TAG_OPEN_CONFIRM_LOST; 12428 else 12429 args.ctag = TAG_OPEN_CONFIRM; 12430 12431 args.array_len = 2; 12432 args.array = argop; 12433 12434 /* putfh target fh */ 12435 argop[0].argop = OP_CPUTFH; 12436 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12437 12438 argop[1].argop = OP_OPEN_CONFIRM; 12439 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12440 12441 (*seqid) += 1; 12442 open_confirm_args->seqid = *seqid; 12443 open_confirm_args->open_stateid = *stateid; 12444 12445 mi = VTOMI4(vp); 12446 12447 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12448 12449 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12450 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12451 } 12452 12453 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12454 if (!needrecov && ep->error) 12455 return; 12456 12457 if (needrecov) { 12458 bool_t abort = FALSE; 12459 12460 if (reopening_file == FALSE) { 12461 nfs4_bseqid_entry_t *bsep = NULL; 12462 12463 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12464 bsep = nfs4_create_bseqid_entry(oop, NULL, 12465 vp, 0, args.ctag, 12466 open_confirm_args->seqid); 12467 12468 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, 12469 NULL, NULL, NULL, OP_OPEN_CONFIRM, bsep); 12470 if (bsep) { 12471 kmem_free(bsep, sizeof (*bsep)); 12472 if (num_bseqid_retryp && 12473 --(*num_bseqid_retryp) == 0) 12474 abort = TRUE; 12475 } 12476 } 12477 if ((ep->error == ETIMEDOUT || 12478 res.status == NFS4ERR_RESOURCE) && 12479 abort == FALSE && resend == FALSE) { 12480 if (!ep->error) 12481 (void) xdr_free(xdr_COMPOUND4res_clnt, 12482 (caddr_t)&res); 12483 12484 delay(SEC_TO_TICK(confirm_retry_sec)); 12485 goto recov_retry_confirm; 12486 } 12487 /* State may have changed so retry the entire OPEN op */ 12488 if (abort == FALSE) 12489 *retry_open = TRUE; 12490 else 12491 *retry_open = FALSE; 12492 if (!ep->error) 12493 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12494 return; 12495 } 12496 12497 if (res.status) { 12498 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12499 return; 12500 } 12501 12502 resop = &res.array[1]; /* open confirm res */ 12503 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12504 stateid, sizeof (*stateid)); 12505 12506 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12507 } 12508 12509 /* 12510 * Return the credentials associated with a client state object. The 12511 * caller is responsible for freeing the credentials. 12512 */ 12513 12514 static cred_t * 12515 state_to_cred(nfs4_open_stream_t *osp) 12516 { 12517 cred_t *cr; 12518 12519 /* 12520 * It's ok to not lock the open stream and open owner to get 12521 * the oo_cred since this is only written once (upon creation) 12522 * and will not change. 12523 */ 12524 cr = osp->os_open_owner->oo_cred; 12525 crhold(cr); 12526 12527 return (cr); 12528 } 12529 12530 /* 12531 * nfs4_find_sysid 12532 * 12533 * Find the sysid for the knetconfig associated with the given mi. 12534 */ 12535 static struct lm_sysid * 12536 nfs4_find_sysid(mntinfo4_t *mi) 12537 { 12538 ASSERT(nfs_zone() == mi->mi_zone); 12539 12540 /* 12541 * Switch from RDMA knconf to original mount knconf 12542 */ 12543 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12544 mi->mi_curr_serv->sv_hostname, NULL)); 12545 } 12546 12547 #ifdef DEBUG 12548 /* 12549 * Return a string version of the call type for easy reading. 12550 */ 12551 static char * 12552 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12553 { 12554 switch (ctype) { 12555 case NFS4_LCK_CTYPE_NORM: 12556 return ("NORMAL"); 12557 case NFS4_LCK_CTYPE_RECLAIM: 12558 return ("RECLAIM"); 12559 case NFS4_LCK_CTYPE_RESEND: 12560 return ("RESEND"); 12561 case NFS4_LCK_CTYPE_REINSTATE: 12562 return ("REINSTATE"); 12563 default: 12564 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12565 "type %d", ctype); 12566 return (""); 12567 } 12568 } 12569 #endif 12570 12571 /* 12572 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12573 * Unlock requests don't have an over-the-wire locktype, so we just return 12574 * something non-threatening. 12575 */ 12576 12577 static nfs_lock_type4 12578 flk_to_locktype(int cmd, int l_type) 12579 { 12580 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12581 12582 switch (l_type) { 12583 case F_UNLCK: 12584 return (READ_LT); 12585 case F_RDLCK: 12586 if (cmd == F_SETLK) 12587 return (READ_LT); 12588 else 12589 return (READW_LT); 12590 case F_WRLCK: 12591 if (cmd == F_SETLK) 12592 return (WRITE_LT); 12593 else 12594 return (WRITEW_LT); 12595 } 12596 panic("flk_to_locktype"); 12597 /*NOTREACHED*/ 12598 } 12599 12600 /* 12601 * Do some preliminary checks for nfs4frlock. 12602 */ 12603 static int 12604 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12605 u_offset_t offset) 12606 { 12607 int error = 0; 12608 12609 /* 12610 * If we are setting a lock, check that the file is opened 12611 * with the correct mode. 12612 */ 12613 if (cmd == F_SETLK || cmd == F_SETLKW) { 12614 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12615 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12616 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12617 "nfs4frlock_validate_args: file was opened with " 12618 "incorrect mode")); 12619 return (EBADF); 12620 } 12621 } 12622 12623 /* Convert the offset. It may need to be restored before returning. */ 12624 if (error = convoff(vp, flk, 0, offset)) { 12625 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12626 "nfs4frlock_validate_args: convoff => error= %d\n", 12627 error)); 12628 return (error); 12629 } 12630 12631 return (error); 12632 } 12633 12634 /* 12635 * Set the flock64's lm_sysid for nfs4frlock. 12636 */ 12637 static int 12638 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12639 { 12640 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12641 12642 /* Find the lm_sysid */ 12643 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12644 12645 if (*lspp == NULL) { 12646 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12647 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12648 return (ENOLCK); 12649 } 12650 12651 flk->l_sysid = lm_sysidt(*lspp); 12652 12653 return (0); 12654 } 12655 12656 /* 12657 * Do the remaining preliminary setup for nfs4frlock. 12658 */ 12659 static void 12660 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12661 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12662 cred_t **cred_otw) 12663 { 12664 /* 12665 * set tick_delay to the base delay time. 12666 * (NFS4_BASE_WAIT_TIME is in secs) 12667 */ 12668 12669 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12670 12671 /* 12672 * If lock is relative to EOF, we need the newest length of the 12673 * file. Therefore invalidate the ATTR_CACHE. 12674 */ 12675 12676 *whencep = flk->l_whence; 12677 12678 if (*whencep == 2) /* SEEK_END */ 12679 PURGE_ATTRCACHE4(vp); 12680 12681 recov_statep->rs_flags = 0; 12682 recov_statep->rs_num_retry_despite_err = 0; 12683 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12684 } 12685 12686 /* 12687 * Initialize and allocate the data structures necessary for 12688 * the nfs4frlock call. 12689 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12690 */ 12691 static void 12692 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12693 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12694 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12695 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 12696 { 12697 int argoplist_size; 12698 int num_ops = 2; 12699 12700 *retry = FALSE; 12701 *did_start_fop = FALSE; 12702 *skip_get_err = FALSE; 12703 lost_rqstp->lr_op = 0; 12704 argoplist_size = num_ops * sizeof (nfs_argop4); 12705 /* fill array with zero */ 12706 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 12707 12708 *argspp = argsp; 12709 *respp = NULL; 12710 12711 argsp->array_len = num_ops; 12712 argsp->array = *argopp; 12713 12714 /* initialize in case of error; will get real value down below */ 12715 argsp->ctag = TAG_NONE; 12716 12717 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 12718 *op_hintp = OH_LOCKU; 12719 else 12720 *op_hintp = OH_OTHER; 12721 } 12722 12723 /* 12724 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 12725 * the proper nfs4_server_t for this instance of nfs4frlock. 12726 * Returns 0 (success) or an errno value. 12727 */ 12728 static int 12729 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 12730 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 12731 bool_t *did_start_fop, bool_t *startrecovp) 12732 { 12733 int error = 0; 12734 rnode4_t *rp; 12735 12736 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12737 12738 if (ctype == NFS4_LCK_CTYPE_NORM) { 12739 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 12740 recov_statep, startrecovp); 12741 if (error) 12742 return (error); 12743 *did_start_fop = TRUE; 12744 } else { 12745 *did_start_fop = FALSE; 12746 *startrecovp = FALSE; 12747 } 12748 12749 if (!error) { 12750 rp = VTOR4(vp); 12751 12752 /* If the file failed recovery, just quit. */ 12753 mutex_enter(&rp->r_statelock); 12754 if (rp->r_flags & R4RECOVERR) { 12755 error = EIO; 12756 } 12757 mutex_exit(&rp->r_statelock); 12758 } 12759 12760 return (error); 12761 } 12762 12763 /* 12764 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 12765 * resend nfs4frlock call is initiated by the recovery framework. 12766 * Acquires the lop and oop seqid synchronization. 12767 */ 12768 static void 12769 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 12770 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 12771 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 12772 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 12773 { 12774 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 12775 int error; 12776 12777 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 12778 (CE_NOTE, 12779 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 12780 ASSERT(resend_rqstp != NULL); 12781 ASSERT(resend_rqstp->lr_op == OP_LOCK || 12782 resend_rqstp->lr_op == OP_LOCKU); 12783 12784 *oopp = resend_rqstp->lr_oop; 12785 if (resend_rqstp->lr_oop) { 12786 open_owner_hold(resend_rqstp->lr_oop); 12787 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 12788 ASSERT(error == 0); /* recov thread always succeeds */ 12789 } 12790 12791 /* Must resend this lost lock/locku request. */ 12792 ASSERT(resend_rqstp->lr_lop != NULL); 12793 *lopp = resend_rqstp->lr_lop; 12794 lock_owner_hold(resend_rqstp->lr_lop); 12795 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 12796 ASSERT(error == 0); /* recov thread always succeeds */ 12797 12798 *ospp = resend_rqstp->lr_osp; 12799 if (*ospp) 12800 open_stream_hold(resend_rqstp->lr_osp); 12801 12802 if (resend_rqstp->lr_op == OP_LOCK) { 12803 LOCK4args *lock_args; 12804 12805 argop->argop = OP_LOCK; 12806 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 12807 lock_args->locktype = resend_rqstp->lr_locktype; 12808 lock_args->reclaim = 12809 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 12810 lock_args->offset = resend_rqstp->lr_flk->l_start; 12811 lock_args->length = resend_rqstp->lr_flk->l_len; 12812 if (lock_args->length == 0) 12813 lock_args->length = ~lock_args->length; 12814 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 12815 mi2clientid(mi), &lock_args->locker); 12816 12817 switch (resend_rqstp->lr_ctype) { 12818 case NFS4_LCK_CTYPE_RESEND: 12819 argsp->ctag = TAG_LOCK_RESEND; 12820 break; 12821 case NFS4_LCK_CTYPE_REINSTATE: 12822 argsp->ctag = TAG_LOCK_REINSTATE; 12823 break; 12824 case NFS4_LCK_CTYPE_RECLAIM: 12825 argsp->ctag = TAG_LOCK_RECLAIM; 12826 break; 12827 default: 12828 argsp->ctag = TAG_LOCK_UNKNOWN; 12829 break; 12830 } 12831 } else { 12832 LOCKU4args *locku_args; 12833 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 12834 12835 argop->argop = OP_LOCKU; 12836 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 12837 locku_args->locktype = READ_LT; 12838 locku_args->seqid = lop->lock_seqid + 1; 12839 mutex_enter(&lop->lo_lock); 12840 locku_args->lock_stateid = lop->lock_stateid; 12841 mutex_exit(&lop->lo_lock); 12842 locku_args->offset = resend_rqstp->lr_flk->l_start; 12843 locku_args->length = resend_rqstp->lr_flk->l_len; 12844 if (locku_args->length == 0) 12845 locku_args->length = ~locku_args->length; 12846 12847 switch (resend_rqstp->lr_ctype) { 12848 case NFS4_LCK_CTYPE_RESEND: 12849 argsp->ctag = TAG_LOCKU_RESEND; 12850 break; 12851 case NFS4_LCK_CTYPE_REINSTATE: 12852 argsp->ctag = TAG_LOCKU_REINSTATE; 12853 break; 12854 default: 12855 argsp->ctag = TAG_LOCK_UNKNOWN; 12856 break; 12857 } 12858 } 12859 } 12860 12861 /* 12862 * Setup the LOCKT4 arguments. 12863 */ 12864 static void 12865 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 12866 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 12867 rnode4_t *rp) 12868 { 12869 LOCKT4args *lockt_args; 12870 12871 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 12872 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 12873 argop->argop = OP_LOCKT; 12874 argsp->ctag = TAG_LOCKT; 12875 lockt_args = &argop->nfs_argop4_u.oplockt; 12876 12877 /* 12878 * The locktype will be READ_LT unless it's 12879 * a write lock. We do this because the Solaris 12880 * system call allows the combination of 12881 * F_UNLCK and F_GETLK* and so in that case the 12882 * unlock is mapped to a read. 12883 */ 12884 if (flk->l_type == F_WRLCK) 12885 lockt_args->locktype = WRITE_LT; 12886 else 12887 lockt_args->locktype = READ_LT; 12888 12889 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 12890 /* set the lock owner4 args */ 12891 nfs4_setlockowner_args(&lockt_args->owner, rp, 12892 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 12893 flk->l_pid); 12894 lockt_args->offset = flk->l_start; 12895 lockt_args->length = flk->l_len; 12896 if (flk->l_len == 0) 12897 lockt_args->length = ~lockt_args->length; 12898 12899 *lockt_argsp = lockt_args; 12900 } 12901 12902 /* 12903 * If the client is holding a delegation, and the open stream to be used 12904 * with this lock request is a delegation open stream, then re-open the stream. 12905 * Sets the nfs4_error_t to all zeros unless the open stream has already 12906 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 12907 * means the caller should retry (like a recovery retry). 12908 */ 12909 static void 12910 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 12911 { 12912 open_delegation_type4 dt; 12913 bool_t reopen_needed, force; 12914 nfs4_open_stream_t *osp; 12915 open_claim_type4 oclaim; 12916 rnode4_t *rp = VTOR4(vp); 12917 mntinfo4_t *mi = VTOMI4(vp); 12918 12919 ASSERT(nfs_zone() == mi->mi_zone); 12920 12921 nfs4_error_zinit(ep); 12922 12923 mutex_enter(&rp->r_statev4_lock); 12924 dt = rp->r_deleg_type; 12925 mutex_exit(&rp->r_statev4_lock); 12926 12927 if (dt != OPEN_DELEGATE_NONE) { 12928 nfs4_open_owner_t *oop; 12929 12930 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 12931 if (!oop) { 12932 ep->stat = NFS4ERR_IO; 12933 return; 12934 } 12935 /* returns with 'os_sync_lock' held */ 12936 osp = find_open_stream(oop, rp); 12937 if (!osp) { 12938 open_owner_rele(oop); 12939 ep->stat = NFS4ERR_IO; 12940 return; 12941 } 12942 12943 if (osp->os_failed_reopen) { 12944 NFS4_DEBUG((nfs4_open_stream_debug || 12945 nfs4_client_lock_debug), (CE_NOTE, 12946 "nfs4frlock_check_deleg: os_failed_reopen set " 12947 "for osp %p, cr %p, rp %s", (void *)osp, 12948 (void *)cr, rnode4info(rp))); 12949 mutex_exit(&osp->os_sync_lock); 12950 open_stream_rele(osp, rp); 12951 open_owner_rele(oop); 12952 ep->stat = NFS4ERR_IO; 12953 return; 12954 } 12955 12956 /* 12957 * Determine whether a reopen is needed. If this 12958 * is a delegation open stream, then send the open 12959 * to the server to give visibility to the open owner. 12960 * Even if it isn't a delegation open stream, we need 12961 * to check if the previous open CLAIM_DELEGATE_CUR 12962 * was sufficient. 12963 */ 12964 12965 reopen_needed = osp->os_delegation || 12966 ((lt == F_RDLCK && 12967 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 12968 (lt == F_WRLCK && 12969 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 12970 12971 mutex_exit(&osp->os_sync_lock); 12972 open_owner_rele(oop); 12973 12974 if (reopen_needed) { 12975 /* 12976 * Always use CLAIM_PREVIOUS after server reboot. 12977 * The server will reject CLAIM_DELEGATE_CUR if 12978 * it is used during the grace period. 12979 */ 12980 mutex_enter(&mi->mi_lock); 12981 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 12982 oclaim = CLAIM_PREVIOUS; 12983 force = TRUE; 12984 } else { 12985 oclaim = CLAIM_DELEGATE_CUR; 12986 force = FALSE; 12987 } 12988 mutex_exit(&mi->mi_lock); 12989 12990 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 12991 if (ep->error == EAGAIN) { 12992 nfs4_error_zinit(ep); 12993 ep->stat = NFS4ERR_DELAY; 12994 } 12995 } 12996 open_stream_rele(osp, rp); 12997 osp = NULL; 12998 } 12999 } 13000 13001 /* 13002 * Setup the LOCKU4 arguments. 13003 * Returns errors via the nfs4_error_t. 13004 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13005 * over-the-wire. The caller must release the 13006 * reference on *lopp. 13007 * NFS4ERR_DELAY caller should retry (like recovery retry) 13008 * (other) unrecoverable error. 13009 */ 13010 static void 13011 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13012 LOCKU4args **locku_argsp, flock64_t *flk, 13013 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13014 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13015 bool_t *skip_get_err, bool_t *go_otwp) 13016 { 13017 nfs4_lock_owner_t *lop = NULL; 13018 LOCKU4args *locku_args; 13019 pid_t pid; 13020 bool_t is_spec = FALSE; 13021 rnode4_t *rp = VTOR4(vp); 13022 13023 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13024 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13025 13026 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13027 if (ep->error || ep->stat) 13028 return; 13029 13030 argop->argop = OP_LOCKU; 13031 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13032 argsp->ctag = TAG_LOCKU_REINSTATE; 13033 else 13034 argsp->ctag = TAG_LOCKU; 13035 locku_args = &argop->nfs_argop4_u.oplocku; 13036 *locku_argsp = locku_args; 13037 13038 /* 13039 * XXX what should locku_args->locktype be? 13040 * setting to ALWAYS be READ_LT so at least 13041 * it is a valid locktype. 13042 */ 13043 13044 locku_args->locktype = READ_LT; 13045 13046 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13047 flk->l_pid; 13048 13049 /* 13050 * Get the lock owner stateid. If no lock owner 13051 * exists, return success. 13052 */ 13053 lop = find_lock_owner(rp, pid, LOWN_ANY); 13054 *lopp = lop; 13055 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13056 is_spec = TRUE; 13057 if (!lop || is_spec) { 13058 /* 13059 * No lock owner so no locks to unlock. 13060 * Return success. If there was a failed 13061 * reclaim earlier, the lock might still be 13062 * registered with the local locking code, 13063 * so notify it of the unlock. 13064 * 13065 * If the lockowner is using a special stateid, 13066 * then the original lock request (that created 13067 * this lockowner) was never successful, so we 13068 * have no lock to undo OTW. 13069 */ 13070 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13071 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13072 "(%ld) so return success", (long)pid)); 13073 13074 if (ctype == NFS4_LCK_CTYPE_NORM) 13075 flk->l_pid = curproc->p_pid; 13076 nfs4_register_lock_locally(vp, flk, flag, offset); 13077 /* 13078 * Release our hold and NULL out so final_cleanup 13079 * doesn't try to end a lock seqid sync we 13080 * never started. 13081 */ 13082 if (is_spec) { 13083 lock_owner_rele(lop); 13084 *lopp = NULL; 13085 } 13086 *skip_get_err = TRUE; 13087 *go_otwp = FALSE; 13088 return; 13089 } 13090 13091 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13092 if (ep->error == EAGAIN) { 13093 lock_owner_rele(lop); 13094 *lopp = NULL; 13095 return; 13096 } 13097 13098 mutex_enter(&lop->lo_lock); 13099 locku_args->lock_stateid = lop->lock_stateid; 13100 mutex_exit(&lop->lo_lock); 13101 locku_args->seqid = lop->lock_seqid + 1; 13102 13103 /* leave the ref count on lop, rele after RPC call */ 13104 13105 locku_args->offset = flk->l_start; 13106 locku_args->length = flk->l_len; 13107 if (flk->l_len == 0) 13108 locku_args->length = ~locku_args->length; 13109 13110 *go_otwp = TRUE; 13111 } 13112 13113 /* 13114 * Setup the LOCK4 arguments. 13115 * 13116 * Returns errors via the nfs4_error_t. 13117 * NFS4_OK no problems 13118 * NFS4ERR_DELAY caller should retry (like recovery retry) 13119 * (other) unrecoverable error 13120 */ 13121 static void 13122 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13123 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13124 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13125 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13126 { 13127 LOCK4args *lock_args; 13128 nfs4_open_owner_t *oop = NULL; 13129 nfs4_open_stream_t *osp = NULL; 13130 nfs4_lock_owner_t *lop = NULL; 13131 pid_t pid; 13132 rnode4_t *rp = VTOR4(vp); 13133 13134 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13135 13136 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13137 if (ep->error || ep->stat != NFS4_OK) 13138 return; 13139 13140 argop->argop = OP_LOCK; 13141 if (ctype == NFS4_LCK_CTYPE_NORM) 13142 argsp->ctag = TAG_LOCK; 13143 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13144 argsp->ctag = TAG_RELOCK; 13145 else 13146 argsp->ctag = TAG_LOCK_REINSTATE; 13147 lock_args = &argop->nfs_argop4_u.oplock; 13148 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13149 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13150 /* 13151 * Get the lock owner. If no lock owner exists, 13152 * create a 'temporary' one and grab the open seqid 13153 * synchronization (which puts a hold on the open 13154 * owner and open stream). 13155 * This also grabs the lock seqid synchronization. 13156 */ 13157 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13158 ep->stat = 13159 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13160 13161 if (ep->stat != NFS4_OK) 13162 goto out; 13163 13164 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13165 &lock_args->locker); 13166 13167 lock_args->offset = flk->l_start; 13168 lock_args->length = flk->l_len; 13169 if (flk->l_len == 0) 13170 lock_args->length = ~lock_args->length; 13171 *lock_argsp = lock_args; 13172 out: 13173 *oopp = oop; 13174 *ospp = osp; 13175 *lopp = lop; 13176 } 13177 13178 /* 13179 * After we get the reply from the server, record the proper information 13180 * for possible resend lock requests. 13181 * 13182 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13183 */ 13184 static void 13185 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13186 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13187 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13188 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13189 { 13190 bool_t unlock = (flk->l_type == F_UNLCK); 13191 13192 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13193 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13194 ctype == NFS4_LCK_CTYPE_REINSTATE); 13195 13196 if (error != 0 && !unlock) { 13197 NFS4_DEBUG((nfs4_lost_rqst_debug || 13198 nfs4_client_lock_debug), (CE_NOTE, 13199 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13200 " for lop %p", (void *)lop)); 13201 ASSERT(lop != NULL); 13202 mutex_enter(&lop->lo_lock); 13203 lop->lo_pending_rqsts = 1; 13204 mutex_exit(&lop->lo_lock); 13205 } 13206 13207 lost_rqstp->lr_putfirst = FALSE; 13208 lost_rqstp->lr_op = 0; 13209 13210 /* 13211 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13212 * recovery purposes so that the lock request that was sent 13213 * can be saved and re-issued later. Ditto for EIO from a forced 13214 * unmount. This is done to have the client's local locking state 13215 * match the v4 server's state; that is, the request was 13216 * potentially received and accepted by the server but the client 13217 * thinks it was not. 13218 */ 13219 if (error == ETIMEDOUT || error == EINTR || 13220 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13221 NFS4_DEBUG((nfs4_lost_rqst_debug || 13222 nfs4_client_lock_debug), (CE_NOTE, 13223 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13224 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13225 (void *)lop, (void *)oop, (void *)osp)); 13226 if (unlock) 13227 lost_rqstp->lr_op = OP_LOCKU; 13228 else { 13229 lost_rqstp->lr_op = OP_LOCK; 13230 lost_rqstp->lr_locktype = locktype; 13231 } 13232 /* 13233 * Objects are held and rele'd via the recovery code. 13234 * See nfs4_save_lost_rqst. 13235 */ 13236 lost_rqstp->lr_vp = vp; 13237 lost_rqstp->lr_dvp = NULL; 13238 lost_rqstp->lr_oop = oop; 13239 lost_rqstp->lr_osp = osp; 13240 lost_rqstp->lr_lop = lop; 13241 lost_rqstp->lr_cr = cr; 13242 switch (ctype) { 13243 case NFS4_LCK_CTYPE_NORM: 13244 flk->l_pid = ttoproc(curthread)->p_pid; 13245 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13246 break; 13247 case NFS4_LCK_CTYPE_REINSTATE: 13248 lost_rqstp->lr_putfirst = TRUE; 13249 lost_rqstp->lr_ctype = ctype; 13250 break; 13251 default: 13252 break; 13253 } 13254 lost_rqstp->lr_flk = flk; 13255 } 13256 } 13257 13258 /* 13259 * Update lop's seqid. Also update the seqid stored in a resend request, 13260 * if any. (Some recovery errors increment the seqid, and we may have to 13261 * send the resend request again.) 13262 */ 13263 13264 static void 13265 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13266 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13267 { 13268 if (lock_args) { 13269 if (lock_args->locker.new_lock_owner == TRUE) 13270 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13271 else { 13272 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13273 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13274 } 13275 } else if (locku_args) { 13276 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13277 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13278 } 13279 } 13280 13281 /* 13282 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13283 * COMPOUND4 args/res for calls that need to retry. 13284 * Switches the *cred_otwp to base_cr. 13285 */ 13286 static void 13287 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13288 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13289 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13290 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13291 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13292 { 13293 nfs4_open_owner_t *oop = *oopp; 13294 nfs4_open_stream_t *osp = *ospp; 13295 nfs4_lock_owner_t *lop = *lopp; 13296 nfs_argop4 *argop = (*argspp)->array; 13297 13298 if (*did_start_fop) { 13299 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13300 needrecov); 13301 *did_start_fop = FALSE; 13302 } 13303 ASSERT((*argspp)->array_len == 2); 13304 if (argop[1].argop == OP_LOCK) 13305 nfs4args_lock_free(&argop[1]); 13306 else if (argop[1].argop == OP_LOCKT) 13307 nfs4args_lockt_free(&argop[1]); 13308 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13309 if (!error) 13310 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13311 *argspp = NULL; 13312 *respp = NULL; 13313 13314 if (lop) { 13315 nfs4_end_lock_seqid_sync(lop); 13316 lock_owner_rele(lop); 13317 *lopp = NULL; 13318 } 13319 13320 /* need to free up the reference on osp for lock args */ 13321 if (osp != NULL) { 13322 open_stream_rele(osp, VTOR4(vp)); 13323 *ospp = NULL; 13324 } 13325 13326 /* need to free up the reference on oop for lock args */ 13327 if (oop != NULL) { 13328 nfs4_end_open_seqid_sync(oop); 13329 open_owner_rele(oop); 13330 *oopp = NULL; 13331 } 13332 13333 crfree(*cred_otwp); 13334 *cred_otwp = base_cr; 13335 crhold(*cred_otwp); 13336 } 13337 13338 /* 13339 * Function to process the client's recovery for nfs4frlock. 13340 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13341 * 13342 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13343 * COMPOUND4 args/res for calls that need to retry. 13344 * 13345 * Note: the rp's r_lkserlock is *not* dropped during this path. 13346 */ 13347 static bool_t 13348 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13349 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13350 LOCK4args *lock_args, LOCKU4args *locku_args, 13351 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13352 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13353 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13354 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13355 { 13356 nfs4_open_owner_t *oop = *oopp; 13357 nfs4_open_stream_t *osp = *ospp; 13358 nfs4_lock_owner_t *lop = *lopp; 13359 13360 bool_t abort, retry; 13361 13362 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13363 ASSERT((*argspp) != NULL); 13364 ASSERT((*respp) != NULL); 13365 if (lock_args || locku_args) 13366 ASSERT(lop != NULL); 13367 13368 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13369 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13370 13371 retry = TRUE; 13372 abort = FALSE; 13373 if (needrecov) { 13374 nfs4_bseqid_entry_t *bsep = NULL; 13375 nfs_opnum4 op; 13376 13377 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13378 13379 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13380 seqid4 seqid; 13381 13382 if (lock_args) { 13383 if (lock_args->locker.new_lock_owner == TRUE) 13384 seqid = lock_args->locker.locker4_u. 13385 open_owner.open_seqid; 13386 else 13387 seqid = lock_args->locker.locker4_u. 13388 lock_owner.lock_seqid; 13389 } else if (locku_args) { 13390 seqid = locku_args->seqid; 13391 } else { 13392 seqid = 0; 13393 } 13394 13395 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13396 flk->l_pid, (*argspp)->ctag, seqid); 13397 } 13398 13399 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13400 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13401 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13402 NULL, op, bsep); 13403 13404 if (bsep) 13405 kmem_free(bsep, sizeof (*bsep)); 13406 } 13407 13408 /* 13409 * Return that we do not want to retry the request for 3 cases: 13410 * 1. If we received EINTR or are bailing out because of a forced 13411 * unmount, we came into this code path just for the sake of 13412 * initiating recovery, we now need to return the error. 13413 * 2. If we have aborted recovery. 13414 * 3. We received NFS4ERR_BAD_SEQID. 13415 */ 13416 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13417 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13418 retry = FALSE; 13419 13420 if (*did_start_fop == TRUE) { 13421 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13422 needrecov); 13423 *did_start_fop = FALSE; 13424 } 13425 13426 if (retry == TRUE) { 13427 nfs_argop4 *argop; 13428 13429 argop = (*argspp)->array; 13430 ASSERT((*argspp)->array_len == 2); 13431 13432 if (argop[1].argop == OP_LOCK) 13433 nfs4args_lock_free(&argop[1]); 13434 else if (argop[1].argop == OP_LOCKT) 13435 nfs4args_lockt_free(&argop[1]); 13436 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13437 if (!ep->error) 13438 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13439 *respp = NULL; 13440 *argspp = NULL; 13441 } 13442 13443 if (lop != NULL) { 13444 nfs4_end_lock_seqid_sync(lop); 13445 lock_owner_rele(lop); 13446 } 13447 13448 *lopp = NULL; 13449 13450 /* need to free up the reference on osp for lock args */ 13451 if (osp != NULL) { 13452 open_stream_rele(osp, rp); 13453 *ospp = NULL; 13454 } 13455 13456 /* need to free up the reference on oop for lock args */ 13457 if (oop != NULL) { 13458 nfs4_end_open_seqid_sync(oop); 13459 open_owner_rele(oop); 13460 *oopp = NULL; 13461 } 13462 13463 return (retry); 13464 } 13465 13466 /* 13467 * Handles the succesful reply from the server for nfs4frlock. 13468 */ 13469 static void 13470 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13471 vnode_t *vp, int flag, u_offset_t offset, 13472 nfs4_lost_rqst_t *resend_rqstp) 13473 { 13474 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13475 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13476 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13477 if (ctype == NFS4_LCK_CTYPE_NORM) { 13478 flk->l_pid = ttoproc(curthread)->p_pid; 13479 /* 13480 * We do not register lost locks locally in 13481 * the 'resend' case since the user/application 13482 * doesn't think we have the lock. 13483 */ 13484 ASSERT(!resend_rqstp); 13485 nfs4_register_lock_locally(vp, flk, flag, offset); 13486 } 13487 } 13488 } 13489 13490 /* 13491 * Handle the DENIED reply from the server for nfs4frlock. 13492 * Returns TRUE if we should retry the request; FALSE otherwise. 13493 * 13494 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13495 * COMPOUND4 args/res for calls that need to retry. Can also 13496 * drop and regrab the r_lkserlock. 13497 */ 13498 static bool_t 13499 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13500 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13501 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13502 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13503 nfs4_recov_state_t *recov_statep, int needrecov, 13504 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13505 clock_t *tick_delayp, short *whencep, int *errorp, 13506 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13507 bool_t *skip_get_err) 13508 { 13509 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13510 13511 if (lock_args) { 13512 nfs4_open_owner_t *oop = *oopp; 13513 nfs4_open_stream_t *osp = *ospp; 13514 nfs4_lock_owner_t *lop = *lopp; 13515 int intr; 13516 13517 /* 13518 * Blocking lock needs to sleep and retry from the request. 13519 * 13520 * Do not block and wait for 'resend' or 'reinstate' 13521 * lock requests, just return the error. 13522 * 13523 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13524 */ 13525 if (cmd == F_SETLKW) { 13526 rnode4_t *rp = VTOR4(vp); 13527 nfs_argop4 *argop = (*argspp)->array; 13528 13529 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13530 13531 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13532 recov_statep, needrecov); 13533 *did_start_fop = FALSE; 13534 ASSERT((*argspp)->array_len == 2); 13535 if (argop[1].argop == OP_LOCK) 13536 nfs4args_lock_free(&argop[1]); 13537 else if (argop[1].argop == OP_LOCKT) 13538 nfs4args_lockt_free(&argop[1]); 13539 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13540 if (*respp) 13541 (void) xdr_free(xdr_COMPOUND4res_clnt, 13542 (caddr_t)*respp); 13543 *argspp = NULL; 13544 *respp = NULL; 13545 nfs4_end_lock_seqid_sync(lop); 13546 lock_owner_rele(lop); 13547 *lopp = NULL; 13548 if (osp != NULL) { 13549 open_stream_rele(osp, rp); 13550 *ospp = NULL; 13551 } 13552 if (oop != NULL) { 13553 nfs4_end_open_seqid_sync(oop); 13554 open_owner_rele(oop); 13555 *oopp = NULL; 13556 } 13557 13558 nfs_rw_exit(&rp->r_lkserlock); 13559 13560 intr = nfs4_block_and_wait(tick_delayp, rp); 13561 13562 if (intr) { 13563 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13564 RW_WRITER, FALSE); 13565 *errorp = EINTR; 13566 return (FALSE); 13567 } 13568 13569 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13570 RW_WRITER, FALSE); 13571 13572 /* 13573 * Make sure we are still safe to lock with 13574 * regards to mmapping. 13575 */ 13576 if (!nfs4_safelock(vp, flk, cr)) { 13577 *errorp = EAGAIN; 13578 return (FALSE); 13579 } 13580 13581 return (TRUE); 13582 } 13583 if (ctype == NFS4_LCK_CTYPE_NORM) 13584 *errorp = EAGAIN; 13585 *skip_get_err = TRUE; 13586 flk->l_whence = 0; 13587 *whencep = 0; 13588 return (FALSE); 13589 } else if (lockt_args) { 13590 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13591 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13592 13593 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13594 flk, lockt_args); 13595 13596 /* according to NLM code */ 13597 *errorp = 0; 13598 *whencep = 0; 13599 *skip_get_err = TRUE; 13600 return (FALSE); 13601 } 13602 return (FALSE); 13603 } 13604 13605 /* 13606 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13607 */ 13608 static void 13609 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13610 { 13611 switch (resp->status) { 13612 case NFS4ERR_ACCESS: 13613 case NFS4ERR_ADMIN_REVOKED: 13614 case NFS4ERR_BADHANDLE: 13615 case NFS4ERR_BAD_RANGE: 13616 case NFS4ERR_BAD_SEQID: 13617 case NFS4ERR_BAD_STATEID: 13618 case NFS4ERR_BADXDR: 13619 case NFS4ERR_DEADLOCK: 13620 case NFS4ERR_DELAY: 13621 case NFS4ERR_EXPIRED: 13622 case NFS4ERR_FHEXPIRED: 13623 case NFS4ERR_GRACE: 13624 case NFS4ERR_INVAL: 13625 case NFS4ERR_ISDIR: 13626 case NFS4ERR_LEASE_MOVED: 13627 case NFS4ERR_LOCK_NOTSUPP: 13628 case NFS4ERR_LOCK_RANGE: 13629 case NFS4ERR_MOVED: 13630 case NFS4ERR_NOFILEHANDLE: 13631 case NFS4ERR_NO_GRACE: 13632 case NFS4ERR_OLD_STATEID: 13633 case NFS4ERR_OPENMODE: 13634 case NFS4ERR_RECLAIM_BAD: 13635 case NFS4ERR_RECLAIM_CONFLICT: 13636 case NFS4ERR_RESOURCE: 13637 case NFS4ERR_SERVERFAULT: 13638 case NFS4ERR_STALE: 13639 case NFS4ERR_STALE_CLIENTID: 13640 case NFS4ERR_STALE_STATEID: 13641 return; 13642 default: 13643 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13644 "nfs4frlock_results_default: got unrecognizable " 13645 "res.status %d", resp->status)); 13646 *errorp = NFS4ERR_INVAL; 13647 } 13648 } 13649 13650 /* 13651 * The lock request was successful, so update the client's state. 13652 */ 13653 static void 13654 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13655 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13656 vnode_t *vp, flock64_t *flk, cred_t *cr, 13657 nfs4_lost_rqst_t *resend_rqstp) 13658 { 13659 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13660 13661 if (lock_args) { 13662 LOCK4res *lock_res; 13663 13664 lock_res = &resop->nfs_resop4_u.oplock; 13665 /* update the stateid with server's response */ 13666 13667 if (lock_args->locker.new_lock_owner == TRUE) { 13668 mutex_enter(&lop->lo_lock); 13669 lop->lo_just_created = NFS4_PERM_CREATED; 13670 mutex_exit(&lop->lo_lock); 13671 } 13672 13673 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13674 13675 /* 13676 * If the lock was the result of a resending a lost 13677 * request, we've synched up the stateid and seqid 13678 * with the server, but now the server might be out of sync 13679 * with what the application thinks it has for locks. 13680 * Clean that up here. It's unclear whether we should do 13681 * this even if the filesystem has been forcibly unmounted. 13682 * For most servers, it's probably wasted effort, but 13683 * RFC3530 lets servers require that unlocks exactly match 13684 * the locks that are held. 13685 */ 13686 if (resend_rqstp != NULL && 13687 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13688 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13689 } else { 13690 flk->l_whence = 0; 13691 } 13692 } else if (locku_args) { 13693 LOCKU4res *locku_res; 13694 13695 locku_res = &resop->nfs_resop4_u.oplocku; 13696 13697 /* Update the stateid with the server's response */ 13698 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 13699 } else if (lockt_args) { 13700 /* Switch the lock type to express success, see fcntl */ 13701 flk->l_type = F_UNLCK; 13702 flk->l_whence = 0; 13703 } 13704 } 13705 13706 /* 13707 * Do final cleanup before exiting nfs4frlock. 13708 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13709 * COMPOUND4 args/res for calls that haven't already. 13710 */ 13711 static void 13712 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 13713 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 13714 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 13715 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13716 short whence, u_offset_t offset, struct lm_sysid *ls, 13717 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 13718 bool_t did_start_fop, bool_t skip_get_err, 13719 cred_t *cred_otw, cred_t *cred) 13720 { 13721 mntinfo4_t *mi = VTOMI4(vp); 13722 rnode4_t *rp = VTOR4(vp); 13723 int error = *errorp; 13724 nfs_argop4 *argop; 13725 13726 ASSERT(nfs_zone() == mi->mi_zone); 13727 /* 13728 * The client recovery code wants the raw status information, 13729 * so don't map the NFS status code to an errno value for 13730 * non-normal call types. 13731 */ 13732 if (ctype == NFS4_LCK_CTYPE_NORM) { 13733 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 13734 *errorp = geterrno4(resp->status); 13735 if (did_start_fop == TRUE) 13736 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 13737 needrecov); 13738 13739 if (!error && resp && resp->status == NFS4_OK) { 13740 /* 13741 * We've established a new lock on the server, so invalidate 13742 * the pages associated with the vnode to get the most up to 13743 * date pages from the server after acquiring the lock. We 13744 * want to be sure that the read operation gets the newest data. 13745 * N.B. 13746 * We used to do this in nfs4frlock_results_ok but that doesn't 13747 * work since VOP_PUTPAGE can call nfs4_commit which calls 13748 * nfs4_start_fop. We flush the pages below after calling 13749 * nfs4_end_fop above 13750 */ 13751 int error; 13752 13753 error = VOP_PUTPAGE(vp, (u_offset_t)0, 13754 0, B_INVAL, cred); 13755 13756 if (error && (error == ENOSPC || error == EDQUOT)) { 13757 rnode4_t *rp = VTOR4(vp); 13758 13759 mutex_enter(&rp->r_statelock); 13760 if (!rp->r_error) 13761 rp->r_error = error; 13762 mutex_exit(&rp->r_statelock); 13763 } 13764 } 13765 } 13766 if (argsp) { 13767 ASSERT(argsp->array_len == 2); 13768 argop = argsp->array; 13769 if (argop[1].argop == OP_LOCK) 13770 nfs4args_lock_free(&argop[1]); 13771 else if (argop[1].argop == OP_LOCKT) 13772 nfs4args_lockt_free(&argop[1]); 13773 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13774 if (resp) 13775 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 13776 } 13777 13778 /* free the reference on the lock owner */ 13779 if (lop != NULL) { 13780 nfs4_end_lock_seqid_sync(lop); 13781 lock_owner_rele(lop); 13782 } 13783 13784 /* need to free up the reference on osp for lock args */ 13785 if (osp != NULL) 13786 open_stream_rele(osp, rp); 13787 13788 /* need to free up the reference on oop for lock args */ 13789 if (oop != NULL) { 13790 nfs4_end_open_seqid_sync(oop); 13791 open_owner_rele(oop); 13792 } 13793 13794 (void) convoff(vp, flk, whence, offset); 13795 13796 lm_rel_sysid(ls); 13797 13798 /* 13799 * Record debug information in the event we get EINVAL. 13800 */ 13801 mutex_enter(&mi->mi_lock); 13802 if (*errorp == EINVAL && (lock_args || locku_args) && 13803 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 13804 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 13805 zcmn_err(getzoneid(), CE_NOTE, 13806 "%s operation failed with " 13807 "EINVAL probably since the server, %s," 13808 " doesn't support POSIX style locking", 13809 lock_args ? "LOCK" : "LOCKU", 13810 mi->mi_curr_serv->sv_hostname); 13811 mi->mi_flags |= MI4_LOCK_DEBUG; 13812 } 13813 } 13814 mutex_exit(&mi->mi_lock); 13815 13816 if (cred_otw) 13817 crfree(cred_otw); 13818 } 13819 13820 /* 13821 * This calls the server and the local locking code. 13822 * 13823 * Client locks are registerred locally by oring the sysid with 13824 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 13825 * We need to distinguish between the two to avoid collision in case one 13826 * machine is used as both client and server. 13827 * 13828 * Blocking lock requests will continually retry to acquire the lock 13829 * forever. 13830 * 13831 * The ctype is defined as follows: 13832 * NFS4_LCK_CTYPE_NORM: normal lock request. 13833 * 13834 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 13835 * recovery, get the pid from flk instead of curproc, and don't reregister 13836 * the lock locally. 13837 * 13838 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 13839 * that we will use the information passed in via resend_rqstp to setup the 13840 * lock/locku request. This resend is the exact same request as the 'lost 13841 * lock', and is initiated by the recovery framework. A successful resend 13842 * request can initiate one or more reinstate requests. 13843 * 13844 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 13845 * does not trigger additional reinstate requests. This lock call type is 13846 * set for setting the v4 server's locking state back to match what the 13847 * client's local locking state is in the event of a received 'lost lock'. 13848 * 13849 * Errors are returned via the nfs4_error_t parameter. 13850 */ 13851 void 13852 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 13853 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 13854 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 13855 { 13856 COMPOUND4args_clnt args, *argsp = NULL; 13857 COMPOUND4res_clnt res, *resp = NULL; 13858 nfs_argop4 *argop; 13859 nfs_resop4 *resop; 13860 rnode4_t *rp; 13861 int doqueue = 1; 13862 clock_t tick_delay; /* delay in clock ticks */ 13863 struct lm_sysid *ls; 13864 LOCK4args *lock_args = NULL; 13865 LOCKU4args *locku_args = NULL; 13866 LOCKT4args *lockt_args = NULL; 13867 nfs4_open_owner_t *oop = NULL; 13868 nfs4_open_stream_t *osp = NULL; 13869 nfs4_lock_owner_t *lop = NULL; 13870 bool_t needrecov = FALSE; 13871 nfs4_recov_state_t recov_state; 13872 short whence; 13873 nfs4_op_hint_t op_hint; 13874 nfs4_lost_rqst_t lost_rqst; 13875 bool_t retry = FALSE; 13876 bool_t did_start_fop = FALSE; 13877 bool_t skip_get_err = FALSE; 13878 cred_t *cred_otw = NULL; 13879 bool_t recovonly; /* just queue request */ 13880 int frc_no_reclaim = 0; 13881 #ifdef DEBUG 13882 char *name; 13883 #endif 13884 13885 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13886 13887 #ifdef DEBUG 13888 name = fn_name(VTOSV(vp)->sv_name); 13889 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 13890 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 13891 "length %"PRIu64", pid %d, sysid %d, call type %s, " 13892 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 13893 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 13894 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 13895 resend_rqstp ? "TRUE" : "FALSE")); 13896 kmem_free(name, MAXNAMELEN); 13897 #endif 13898 13899 nfs4_error_zinit(ep); 13900 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 13901 if (ep->error) 13902 return; 13903 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 13904 if (ep->error) 13905 return; 13906 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 13907 vp, cr, &cred_otw); 13908 13909 recov_retry: 13910 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 13911 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 13912 rp = VTOR4(vp); 13913 13914 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 13915 &did_start_fop, &recovonly); 13916 13917 if (ep->error) 13918 goto out; 13919 13920 if (recovonly) { 13921 /* 13922 * Leave the request for the recovery system to deal with. 13923 */ 13924 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13925 ASSERT(cmd != F_GETLK); 13926 ASSERT(flk->l_type == F_UNLCK); 13927 13928 nfs4_error_init(ep, EINTR); 13929 needrecov = TRUE; 13930 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 13931 if (lop != NULL) { 13932 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 13933 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 13934 (void) nfs4_start_recovery(ep, 13935 VTOMI4(vp), vp, NULL, NULL, 13936 (lost_rqst.lr_op == OP_LOCK || 13937 lost_rqst.lr_op == OP_LOCKU) ? 13938 &lost_rqst : NULL, OP_LOCKU, NULL); 13939 lock_owner_rele(lop); 13940 lop = NULL; 13941 } 13942 flk->l_pid = curproc->p_pid; 13943 nfs4_register_lock_locally(vp, flk, flag, offset); 13944 goto out; 13945 } 13946 13947 /* putfh directory fh */ 13948 argop[0].argop = OP_CPUTFH; 13949 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 13950 13951 /* 13952 * Set up the over-the-wire arguments and get references to the 13953 * open owner, etc. 13954 */ 13955 13956 if (ctype == NFS4_LCK_CTYPE_RESEND || 13957 ctype == NFS4_LCK_CTYPE_REINSTATE) { 13958 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 13959 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 13960 } else { 13961 bool_t go_otw = TRUE; 13962 13963 ASSERT(resend_rqstp == NULL); 13964 13965 switch (cmd) { 13966 case F_GETLK: 13967 case F_O_GETLK: 13968 nfs4frlock_setup_lockt_args(ctype, &argop[1], 13969 &lockt_args, argsp, flk, rp); 13970 break; 13971 case F_SETLKW: 13972 case F_SETLK: 13973 if (flk->l_type == F_UNLCK) 13974 nfs4frlock_setup_locku_args(ctype, 13975 &argop[1], &locku_args, flk, 13976 &lop, ep, argsp, 13977 vp, flag, offset, cr, 13978 &skip_get_err, &go_otw); 13979 else 13980 nfs4frlock_setup_lock_args(ctype, 13981 &lock_args, &oop, &osp, &lop, &argop[1], 13982 argsp, flk, cmd, vp, cr, ep); 13983 13984 if (ep->error) 13985 goto out; 13986 13987 switch (ep->stat) { 13988 case NFS4_OK: 13989 break; 13990 case NFS4ERR_DELAY: 13991 /* recov thread never gets this error */ 13992 ASSERT(resend_rqstp == NULL); 13993 ASSERT(did_start_fop); 13994 13995 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13996 &recov_state, TRUE); 13997 did_start_fop = FALSE; 13998 if (argop[1].argop == OP_LOCK) 13999 nfs4args_lock_free(&argop[1]); 14000 else if (argop[1].argop == OP_LOCKT) 14001 nfs4args_lockt_free(&argop[1]); 14002 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14003 argsp = NULL; 14004 goto recov_retry; 14005 default: 14006 ep->error = EIO; 14007 goto out; 14008 } 14009 break; 14010 default: 14011 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14012 "nfs4_frlock: invalid cmd %d", cmd)); 14013 ep->error = EINVAL; 14014 goto out; 14015 } 14016 14017 if (!go_otw) 14018 goto out; 14019 } 14020 14021 /* XXX should we use the local reclock as a cache ? */ 14022 /* 14023 * Unregister the lock with the local locking code before 14024 * contacting the server. This avoids a potential race where 14025 * another process gets notified that it has been granted a lock 14026 * before we can unregister ourselves locally. 14027 */ 14028 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14029 if (ctype == NFS4_LCK_CTYPE_NORM) 14030 flk->l_pid = ttoproc(curthread)->p_pid; 14031 nfs4_register_lock_locally(vp, flk, flag, offset); 14032 } 14033 14034 /* 14035 * Send the server the lock request. Continually loop with a delay 14036 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14037 */ 14038 resp = &res; 14039 14040 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14041 (CE_NOTE, 14042 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14043 rnode4info(rp))); 14044 14045 if (lock_args && frc_no_reclaim) { 14046 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14047 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14048 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14049 lock_args->reclaim = FALSE; 14050 if (did_reclaimp) 14051 *did_reclaimp = 0; 14052 } 14053 14054 /* 14055 * Do the OTW call. 14056 */ 14057 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14058 14059 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14060 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14061 14062 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14063 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14064 "nfs4frlock: needrecov %d", needrecov)); 14065 14066 if (ep->error != 0 && !needrecov && ep->error != EACCES) 14067 goto out; 14068 14069 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14070 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14071 args.ctag); 14072 14073 if ((ep->error == EACCES || 14074 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14075 cred_otw != cr) { 14076 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14077 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14078 cr, &cred_otw); 14079 goto recov_retry; 14080 } 14081 14082 if (needrecov) { 14083 /* 14084 * LOCKT requests don't need to recover from lost 14085 * requests since they don't create/modify state. 14086 */ 14087 if ((ep->error == EINTR || 14088 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14089 lockt_args) 14090 goto out; 14091 /* 14092 * Do not attempt recovery for requests initiated by 14093 * the recovery framework. Let the framework redrive them. 14094 */ 14095 if (ctype != NFS4_LCK_CTYPE_NORM) 14096 goto out; 14097 else { 14098 ASSERT(resend_rqstp == NULL); 14099 } 14100 14101 nfs4frlock_save_lost_rqst(ctype, ep->error, 14102 flk_to_locktype(cmd, flk->l_type), 14103 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14104 14105 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14106 &resp, lock_args, locku_args, &oop, &osp, &lop, 14107 rp, vp, &recov_state, op_hint, &did_start_fop, 14108 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14109 14110 if (retry) { 14111 ASSERT(oop == NULL); 14112 ASSERT(osp == NULL); 14113 ASSERT(lop == NULL); 14114 goto recov_retry; 14115 } 14116 goto out; 14117 } 14118 14119 /* 14120 * Process the reply. 14121 */ 14122 switch (resp->status) { 14123 case NFS4_OK: 14124 resop = &resp->array[1]; 14125 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14126 resend_rqstp); 14127 /* 14128 * Have a successful lock operation, now update state. 14129 */ 14130 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14131 resop, lop, vp, flk, cr, resend_rqstp); 14132 break; 14133 14134 case NFS4ERR_DENIED: 14135 resop = &resp->array[1]; 14136 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14137 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14138 &recov_state, needrecov, &argsp, &resp, 14139 &tick_delay, &whence, &ep->error, resop, cr, 14140 &did_start_fop, &skip_get_err); 14141 14142 if (retry) { 14143 ASSERT(oop == NULL); 14144 ASSERT(osp == NULL); 14145 ASSERT(lop == NULL); 14146 goto recov_retry; 14147 } 14148 break; 14149 /* 14150 * If the server won't let us reclaim, fall-back to trying to lock 14151 * the file from scratch. Code elsewhere will check the changeinfo 14152 * to ensure the file hasn't been changed. 14153 */ 14154 case NFS4ERR_NO_GRACE: 14155 if (lock_args && lock_args->reclaim == TRUE) { 14156 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14157 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14158 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14159 frc_no_reclaim = 1; 14160 /* clean up before retrying */ 14161 needrecov = 0; 14162 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14163 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14164 &recov_state, op_hint, &did_start_fop, NULL, flk); 14165 goto recov_retry; 14166 } 14167 /* FALLTHROUGH */ 14168 14169 default: 14170 nfs4frlock_results_default(resp, &ep->error); 14171 break; 14172 } 14173 out: 14174 /* 14175 * Process and cleanup from error. Make interrupted unlock 14176 * requests look successful, since they will be handled by the 14177 * client recovery code. 14178 */ 14179 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14180 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14181 lock_args, locku_args, did_start_fop, 14182 skip_get_err, cred_otw, cr); 14183 14184 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14185 (cmd == F_SETLK || cmd == F_SETLKW)) 14186 ep->error = 0; 14187 } 14188 14189 /* 14190 * nfs4_safelock: 14191 * 14192 * Return non-zero if the given lock request can be handled without 14193 * violating the constraints on concurrent mapping and locking. 14194 */ 14195 14196 static int 14197 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14198 { 14199 rnode4_t *rp = VTOR4(vp); 14200 struct vattr va; 14201 int error; 14202 14203 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14204 ASSERT(rp->r_mapcnt >= 0); 14205 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14206 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14207 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14208 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14209 14210 if (rp->r_mapcnt == 0) 14211 return (1); /* always safe if not mapped */ 14212 14213 /* 14214 * If the file is already mapped and there are locks, then they 14215 * should be all safe locks. So adding or removing a lock is safe 14216 * as long as the new request is safe (i.e., whole-file, meaning 14217 * length and starting offset are both zero). 14218 */ 14219 14220 if (bfp->l_start != 0 || bfp->l_len != 0) { 14221 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14222 "cannot lock a memory mapped file unless locking the " 14223 "entire file: start %"PRIx64", len %"PRIx64, 14224 bfp->l_start, bfp->l_len)); 14225 return (0); 14226 } 14227 14228 /* mandatory locking and mapping don't mix */ 14229 va.va_mask = AT_MODE; 14230 error = VOP_GETATTR(vp, &va, 0, cr); 14231 if (error != 0) { 14232 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14233 "getattr error %d", error)); 14234 return (0); /* treat errors conservatively */ 14235 } 14236 if (MANDLOCK(vp, va.va_mode)) { 14237 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14238 "cannot mandatory lock and mmap a file")); 14239 return (0); 14240 } 14241 14242 return (1); 14243 } 14244 14245 14246 /* 14247 * Register the lock locally within Solaris. 14248 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14249 * recording locks locally. 14250 * 14251 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14252 * are registered locally. 14253 */ 14254 void 14255 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14256 u_offset_t offset) 14257 { 14258 int oldsysid; 14259 int error; 14260 #ifdef DEBUG 14261 char *name; 14262 #endif 14263 14264 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14265 14266 #ifdef DEBUG 14267 name = fn_name(VTOSV(vp)->sv_name); 14268 NFS4_DEBUG(nfs4_client_lock_debug, 14269 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14270 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14271 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14272 flk->l_sysid)); 14273 kmem_free(name, MAXNAMELEN); 14274 #endif 14275 14276 /* register the lock with local locking */ 14277 oldsysid = flk->l_sysid; 14278 flk->l_sysid |= LM_SYSID_CLIENT; 14279 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14280 #ifdef DEBUG 14281 if (error != 0) { 14282 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14283 "nfs4_register_lock_locally: could not register with" 14284 " local locking")); 14285 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14286 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14287 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14288 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14289 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14290 flk->l_type, flk->l_start, flk->l_len)); 14291 (void) reclock(vp, flk, 0, flag, offset, NULL); 14292 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14293 "blocked by pid %d sysid 0x%x type %d " 14294 "off 0x%" PRIx64 " len 0x%" PRIx64, 14295 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14296 flk->l_len)); 14297 } 14298 #endif 14299 flk->l_sysid = oldsysid; 14300 } 14301 14302 /* 14303 * nfs4_lockrelease: 14304 * 14305 * Release any locks on the given vnode that are held by the current 14306 * process. Also removes the lock owner (if one exists) from the rnode's 14307 * list. 14308 */ 14309 static int 14310 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14311 { 14312 flock64_t ld; 14313 int ret, error; 14314 rnode4_t *rp; 14315 nfs4_lock_owner_t *lop; 14316 nfs4_recov_state_t recov_state; 14317 mntinfo4_t *mi; 14318 bool_t possible_orphan = FALSE; 14319 bool_t recovonly; 14320 14321 ASSERT((uintptr_t)vp > KERNELBASE); 14322 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14323 14324 rp = VTOR4(vp); 14325 mi = VTOMI4(vp); 14326 14327 /* 14328 * If we have not locked anything then we can 14329 * just return since we have no work to do. 14330 */ 14331 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14332 return (0); 14333 } 14334 14335 /* 14336 * We need to comprehend that another thread may 14337 * kick off recovery and the lock_owner we have stashed 14338 * in lop might be invalid so we should NOT cache it 14339 * locally! 14340 */ 14341 recov_state.rs_flags = 0; 14342 recov_state.rs_num_retry_despite_err = 0; 14343 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14344 &recovonly); 14345 if (error) { 14346 mutex_enter(&rp->r_statelock); 14347 rp->r_flags |= R4LODANGLERS; 14348 mutex_exit(&rp->r_statelock); 14349 return (error); 14350 } 14351 14352 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14353 14354 /* 14355 * Check if the lock owner might have a lock (request was sent but 14356 * no response was received). Also check if there are any remote 14357 * locks on the file. (In theory we shouldn't have to make this 14358 * second check if there's no lock owner, but for now we'll be 14359 * conservative and do it anyway.) If either condition is true, 14360 * send an unlock for the entire file to the server. 14361 * 14362 * Note that no explicit synchronization is needed here. At worst, 14363 * flk_has_remote_locks() will return a false positive, in which case 14364 * the unlock call wastes time but doesn't harm correctness. 14365 */ 14366 14367 if (lop) { 14368 mutex_enter(&lop->lo_lock); 14369 possible_orphan = lop->lo_pending_rqsts; 14370 mutex_exit(&lop->lo_lock); 14371 lock_owner_rele(lop); 14372 } 14373 14374 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14375 14376 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14377 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14378 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14379 (void *)lop)); 14380 14381 if (possible_orphan || flk_has_remote_locks(vp)) { 14382 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14383 ld.l_whence = 0; /* unlock from start of file */ 14384 ld.l_start = 0; 14385 ld.l_len = 0; /* do entire file */ 14386 14387 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr); 14388 14389 if (ret != 0) { 14390 /* 14391 * If VOP_FRLOCK fails, make sure we unregister 14392 * local locks before we continue. 14393 */ 14394 ld.l_pid = ttoproc(curthread)->p_pid; 14395 nfs4_register_lock_locally(vp, &ld, flag, offset); 14396 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14397 "nfs4_lockrelease: lock release error on vp" 14398 " %p: error %d.\n", (void *)vp, ret)); 14399 } 14400 } 14401 14402 recov_state.rs_flags = 0; 14403 recov_state.rs_num_retry_despite_err = 0; 14404 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14405 &recovonly); 14406 if (error) { 14407 mutex_enter(&rp->r_statelock); 14408 rp->r_flags |= R4LODANGLERS; 14409 mutex_exit(&rp->r_statelock); 14410 return (error); 14411 } 14412 14413 /* 14414 * So, here we're going to need to retrieve the lock-owner 14415 * again (in case recovery has done a switch-a-roo) and 14416 * remove it because we can. 14417 */ 14418 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14419 14420 if (lop) { 14421 nfs4_rnode_remove_lock_owner(rp, lop); 14422 lock_owner_rele(lop); 14423 } 14424 14425 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14426 return (0); 14427 } 14428 14429 /* 14430 * Wait for 'tick_delay' clock ticks. 14431 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14432 * NOTE: lock_lease_time is in seconds. 14433 * 14434 * XXX For future improvements, should implement a waiting queue scheme. 14435 */ 14436 static int 14437 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14438 { 14439 long milliseconds_delay; 14440 time_t lock_lease_time; 14441 14442 /* wait tick_delay clock ticks or siginteruptus */ 14443 if (delay_sig(*tick_delay)) { 14444 return (EINTR); 14445 } 14446 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14447 "reissue the lock request: blocked for %ld clock ticks: %ld " 14448 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14449 14450 /* get the lease time */ 14451 lock_lease_time = r2lease_time(rp); 14452 14453 /* drv_hztousec converts ticks to microseconds */ 14454 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14455 if (milliseconds_delay < lock_lease_time * 1000) { 14456 *tick_delay = 2 * *tick_delay; 14457 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14458 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14459 } 14460 return (0); 14461 } 14462 14463 14464 void 14465 nfs4_vnops_init(void) 14466 { 14467 } 14468 14469 void 14470 nfs4_vnops_fini(void) 14471 { 14472 } 14473 14474 /* 14475 * Return a reference to the directory (parent) vnode for a given vnode, 14476 * using the saved pathname information and the directory file handle. The 14477 * caller is responsible for disposing of the reference. 14478 * Returns zero or an errno value. 14479 * 14480 * Caller should set need_start_op to FALSE if it is the recovery 14481 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14482 */ 14483 int 14484 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14485 { 14486 svnode_t *svnp; 14487 vnode_t *dvp = NULL; 14488 servinfo4_t *svp; 14489 nfs4_fname_t *mfname; 14490 int error; 14491 14492 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14493 14494 if (vp->v_flag & VROOT) { 14495 nfs4_sharedfh_t *sfh; 14496 nfs_fh4 fh; 14497 mntinfo4_t *mi; 14498 14499 ASSERT(vp->v_type == VREG); 14500 14501 mi = VTOMI4(vp); 14502 svp = mi->mi_curr_serv; 14503 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14504 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14505 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14506 sfh = sfh4_get(&fh, VTOMI4(vp)); 14507 nfs_rw_exit(&svp->sv_lock); 14508 mfname = mi->mi_fname; 14509 fn_hold(mfname); 14510 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14511 sfh4_rele(&sfh); 14512 14513 if (dvp->v_type == VNON) 14514 dvp->v_type = VDIR; 14515 *dvpp = dvp; 14516 return (0); 14517 } 14518 14519 svnp = VTOSV(vp); 14520 14521 if (svnp == NULL) { 14522 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14523 "shadow node is NULL")); 14524 return (EINVAL); 14525 } 14526 14527 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14528 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14529 "shadow node name or dfh val == NULL")); 14530 return (EINVAL); 14531 } 14532 14533 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14534 (int)need_start_op); 14535 if (error != 0) { 14536 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14537 "nfs4_make_dotdot returned %d", error)); 14538 return (error); 14539 } 14540 if (!dvp) { 14541 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14542 "nfs4_make_dotdot returned a NULL dvp")); 14543 return (EIO); 14544 } 14545 if (dvp->v_type == VNON) 14546 dvp->v_type = VDIR; 14547 ASSERT(dvp->v_type == VDIR); 14548 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14549 mutex_enter(&dvp->v_lock); 14550 dvp->v_flag |= V_XATTRDIR; 14551 mutex_exit(&dvp->v_lock); 14552 } 14553 *dvpp = dvp; 14554 return (0); 14555 } 14556 14557 /* 14558 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14559 * length that fnamep can accept, including the trailing null. 14560 * Returns 0 if okay, returns an errno value if there was a problem. 14561 */ 14562 14563 int 14564 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14565 { 14566 char *fn; 14567 int err = 0; 14568 servinfo4_t *svp; 14569 svnode_t *shvp; 14570 14571 /* 14572 * If the file being opened has VROOT set, then this is 14573 * a "file" mount. sv_name will not be interesting, so 14574 * go back to the servinfo4 to get the original mount 14575 * path and strip off all but the final edge. Otherwise 14576 * just return the name from the shadow vnode. 14577 */ 14578 14579 if (vp->v_flag & VROOT) { 14580 14581 svp = VTOMI4(vp)->mi_curr_serv; 14582 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14583 14584 fn = strrchr(svp->sv_path, '/'); 14585 if (fn == NULL) 14586 err = EINVAL; 14587 else 14588 fn++; 14589 } else { 14590 shvp = VTOSV(vp); 14591 fn = fn_name(shvp->sv_name); 14592 } 14593 14594 if (err == 0) 14595 if (strlen(fn) < maxlen) 14596 (void) strcpy(fnamep, fn); 14597 else 14598 err = ENAMETOOLONG; 14599 14600 if (vp->v_flag & VROOT) 14601 nfs_rw_exit(&svp->sv_lock); 14602 else 14603 kmem_free(fn, MAXNAMELEN); 14604 14605 return (err); 14606 } 14607 14608 /* 14609 * If the vnode has pages, run the list and check for 14610 * any that are still dangling. We call this function 14611 * before the OTW CLOSE occurs so we can B_INVAL the 14612 * danglers. 14613 */ 14614 static int 14615 nfs4_dross_pages(vnode_t *vp) 14616 { 14617 page_t *pp; 14618 kmutex_t *vphm; 14619 rnode4_t *rp; 14620 14621 /* make sure we're looking at the master vnode, not a shadow */ 14622 rp = VTOR4(vp); 14623 if (IS_SHADOW(vp, rp)) 14624 vp = RTOV4(rp); 14625 14626 vphm = page_vnode_mutex(vp); 14627 mutex_enter(vphm); 14628 if ((pp = vp->v_pages) != NULL) { 14629 do { 14630 if (pp->p_fsdata != C_NOCOMMIT) { 14631 mutex_exit(vphm); 14632 return (1); 14633 } 14634 } while ((pp = pp->p_vpnext) != vp->v_pages); 14635 } 14636 mutex_exit(vphm); 14637 14638 return (0); 14639 } 14640 14641 /* 14642 * Bookkeeping for a close that doesn't need to go over the wire. 14643 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14644 * it is left at 1. 14645 */ 14646 void 14647 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14648 { 14649 rnode4_t *rp; 14650 mntinfo4_t *mi; 14651 14652 mi = VTOMI4(vp); 14653 rp = VTOR4(vp); 14654 14655 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14656 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14657 ASSERT(nfs_zone() == mi->mi_zone); 14658 ASSERT(mutex_owned(&osp->os_sync_lock)); 14659 ASSERT(*have_lockp); 14660 14661 if (!osp->os_valid || 14662 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14663 return; 14664 } 14665 14666 /* 14667 * This removes the reference obtained at OPEN; ie, 14668 * when the open stream structure was created. 14669 * 14670 * We don't have to worry about calling 'open_stream_rele' 14671 * since we our currently holding a reference to this 14672 * open stream which means the count can not go to 0 with 14673 * this decrement. 14674 */ 14675 ASSERT(osp->os_ref_count >= 2); 14676 osp->os_ref_count--; 14677 osp->os_valid = 0; 14678 mutex_exit(&osp->os_sync_lock); 14679 *have_lockp = 0; 14680 14681 nfs4_dec_state_ref_count(mi); 14682 } 14683 14684 /* 14685 * Close all remaining open streams on the rnode. These open streams 14686 * could be here because: 14687 * - The close attempted at either close or delmap failed 14688 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14689 * - Someone did mknod on a regular file but never opened it 14690 */ 14691 int 14692 nfs4close_all(vnode_t *vp, cred_t *cr) 14693 { 14694 nfs4_open_stream_t *osp; 14695 int error; 14696 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14697 rnode4_t *rp; 14698 14699 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14700 14701 error = 0; 14702 rp = VTOR4(vp); 14703 14704 /* 14705 * At this point, all we know is that the last time 14706 * someone called vn_rele, the count was 1. Since then, 14707 * the vnode could have been re-activated. We want to 14708 * loop through the open streams and close each one, but 14709 * we have to be careful since once we release the rnode 14710 * hash bucket lock, someone else is free to come in and 14711 * re-activate the rnode and add new open streams. The 14712 * strategy is take the rnode hash bucket lock, verify that 14713 * the count is still 1, grab the open stream off the 14714 * head of the list and mark it invalid, then release the 14715 * rnode hash bucket lock and proceed with that open stream. 14716 * This is ok because nfs4close_one() will acquire the proper 14717 * open/create to close/destroy synchronization for open 14718 * streams, and will ensure that if someone has reopened 14719 * the open stream after we've dropped the hash bucket lock 14720 * then we'll just simply return without destroying the 14721 * open stream. 14722 * Repeat until the list is empty. 14723 */ 14724 14725 for (;;) { 14726 14727 /* make sure vnode hasn't been reactivated */ 14728 rw_enter(&rp->r_hashq->r_lock, RW_READER); 14729 mutex_enter(&vp->v_lock); 14730 if (vp->v_count > 1) { 14731 mutex_exit(&vp->v_lock); 14732 rw_exit(&rp->r_hashq->r_lock); 14733 break; 14734 } 14735 /* 14736 * Grabbing r_os_lock before releasing v_lock prevents 14737 * a window where the rnode/open stream could get 14738 * reactivated (and os_force_close set to 0) before we 14739 * had a chance to set os_force_close to 1. 14740 */ 14741 mutex_enter(&rp->r_os_lock); 14742 mutex_exit(&vp->v_lock); 14743 14744 osp = list_head(&rp->r_open_streams); 14745 if (!osp) { 14746 /* nothing left to CLOSE OTW, so return */ 14747 mutex_exit(&rp->r_os_lock); 14748 rw_exit(&rp->r_hashq->r_lock); 14749 break; 14750 } 14751 14752 mutex_enter(&rp->r_statev4_lock); 14753 /* the file can't still be mem mapped */ 14754 ASSERT(rp->r_mapcnt == 0); 14755 if (rp->created_v4) 14756 rp->created_v4 = 0; 14757 mutex_exit(&rp->r_statev4_lock); 14758 14759 /* 14760 * Grab a ref on this open stream; nfs4close_one 14761 * will mark it as invalid 14762 */ 14763 mutex_enter(&osp->os_sync_lock); 14764 osp->os_ref_count++; 14765 osp->os_force_close = 1; 14766 mutex_exit(&osp->os_sync_lock); 14767 mutex_exit(&rp->r_os_lock); 14768 rw_exit(&rp->r_hashq->r_lock); 14769 14770 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 14771 14772 /* Update error if it isn't already non-zero */ 14773 if (error == 0) { 14774 if (e.error) 14775 error = e.error; 14776 else if (e.stat) 14777 error = geterrno4(e.stat); 14778 } 14779 14780 #ifdef DEBUG 14781 nfs4close_all_cnt++; 14782 #endif 14783 /* Release the ref on osp acquired above. */ 14784 open_stream_rele(osp, rp); 14785 14786 /* Proceed to the next open stream, if any */ 14787 } 14788 return (error); 14789 } 14790 14791 /* 14792 * nfs4close_one - close one open stream for a file if needed. 14793 * 14794 * "close_type" indicates which close path this is: 14795 * CLOSE_NORM: close initiated via VOP_CLOSE. 14796 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 14797 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 14798 * the close and release of client state for this open stream 14799 * (unless someone else has the open stream open). 14800 * CLOSE_RESEND: indicates the request is a replay of an earlier request 14801 * (e.g., due to abort because of a signal). 14802 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 14803 * 14804 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 14805 * recovery. Instead, the caller is expected to deal with retries. 14806 * 14807 * The caller can either pass in the osp ('provided_osp') or not. 14808 * 14809 * 'access_bits' represents the access we are closing/downgrading. 14810 * 14811 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 14812 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 14813 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 14814 * 14815 * Errors are returned via the nfs4_error_t. 14816 */ 14817 void 14818 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 14819 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 14820 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 14821 uint_t mmap_flags) 14822 { 14823 nfs4_open_owner_t *oop; 14824 nfs4_open_stream_t *osp = NULL; 14825 int retry = 0; 14826 int num_retries = NFS4_NUM_RECOV_RETRIES; 14827 rnode4_t *rp; 14828 mntinfo4_t *mi; 14829 nfs4_recov_state_t recov_state; 14830 cred_t *cred_otw = NULL; 14831 bool_t recovonly = FALSE; 14832 int isrecov; 14833 int force_close; 14834 int close_failed = 0; 14835 int did_dec_count = 0; 14836 int did_start_op = 0; 14837 int did_force_recovlock = 0; 14838 int did_start_seqid_sync = 0; 14839 int have_sync_lock = 0; 14840 14841 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14842 14843 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 14844 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 14845 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 14846 len, maxprot, mmap_flags, access_bits)); 14847 14848 nfs4_error_zinit(ep); 14849 rp = VTOR4(vp); 14850 mi = VTOMI4(vp); 14851 isrecov = (close_type == CLOSE_RESEND || 14852 close_type == CLOSE_AFTER_RESEND); 14853 14854 /* 14855 * First get the open owner. 14856 */ 14857 if (!provided_osp) { 14858 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 14859 } else { 14860 oop = provided_osp->os_open_owner; 14861 ASSERT(oop != NULL); 14862 open_owner_hold(oop); 14863 } 14864 14865 if (!oop) { 14866 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 14867 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 14868 "close type %d", (void *)rp, (void *)mi, (void *)cr, 14869 (void *)provided_osp, close_type)); 14870 ep->error = EIO; 14871 goto out; 14872 } 14873 14874 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 14875 recov_retry: 14876 osp = NULL; 14877 close_failed = 0; 14878 force_close = (close_type == CLOSE_FORCE); 14879 retry = 0; 14880 did_start_op = 0; 14881 did_force_recovlock = 0; 14882 did_start_seqid_sync = 0; 14883 have_sync_lock = 0; 14884 recovonly = FALSE; 14885 recov_state.rs_flags = 0; 14886 recov_state.rs_num_retry_despite_err = 0; 14887 14888 /* 14889 * Second synchronize with recovery. 14890 */ 14891 if (!isrecov) { 14892 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 14893 &recov_state, &recovonly); 14894 if (!ep->error) { 14895 did_start_op = 1; 14896 } else { 14897 close_failed = 1; 14898 /* 14899 * If we couldn't get start_fop, but have to 14900 * cleanup state, then at least acquire the 14901 * mi_recovlock so we can synchronize with 14902 * recovery. 14903 */ 14904 if (close_type == CLOSE_FORCE) { 14905 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 14906 RW_READER, FALSE); 14907 did_force_recovlock = 1; 14908 } else 14909 goto out; 14910 } 14911 } 14912 14913 /* 14914 * We cannot attempt to get the open seqid sync if nfs4_start_fop 14915 * set 'recovonly' to TRUE since most likely this is due to 14916 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 14917 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 14918 * to retry, causing us to loop until recovery finishes. Plus we 14919 * don't need protection over the open seqid since we're not going 14920 * OTW, hence don't need to use the seqid. 14921 */ 14922 if (recovonly == FALSE) { 14923 /* need to grab the open owner sync before 'os_sync_lock' */ 14924 ep->error = nfs4_start_open_seqid_sync(oop, mi); 14925 if (ep->error == EAGAIN) { 14926 ASSERT(!isrecov); 14927 if (did_start_op) 14928 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 14929 &recov_state, TRUE); 14930 if (did_force_recovlock) 14931 nfs_rw_exit(&mi->mi_recovlock); 14932 goto recov_retry; 14933 } 14934 did_start_seqid_sync = 1; 14935 } 14936 14937 /* 14938 * Third get an open stream and acquire 'os_sync_lock' to 14939 * sychronize the opening/creating of an open stream with the 14940 * closing/destroying of an open stream. 14941 */ 14942 if (!provided_osp) { 14943 /* returns with 'os_sync_lock' held */ 14944 osp = find_open_stream(oop, rp); 14945 if (!osp) { 14946 ep->error = EIO; 14947 goto out; 14948 } 14949 } else { 14950 osp = provided_osp; 14951 open_stream_hold(osp); 14952 mutex_enter(&osp->os_sync_lock); 14953 } 14954 have_sync_lock = 1; 14955 14956 ASSERT(oop == osp->os_open_owner); 14957 14958 /* 14959 * Fourth, do any special pre-OTW CLOSE processing 14960 * based on the specific close type. 14961 */ 14962 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 14963 !did_dec_count) { 14964 ASSERT(osp->os_open_ref_count > 0); 14965 osp->os_open_ref_count--; 14966 did_dec_count = 1; 14967 if (osp->os_open_ref_count == 0) 14968 osp->os_final_close = 1; 14969 } 14970 14971 if (close_type == CLOSE_FORCE) { 14972 /* see if somebody reopened the open stream. */ 14973 if (!osp->os_force_close) { 14974 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 14975 "nfs4close_one: skip CLOSE_FORCE as osp %p " 14976 "was reopened, vp %p", (void *)osp, (void *)vp)); 14977 ep->error = 0; 14978 ep->stat = NFS4_OK; 14979 goto out; 14980 } 14981 14982 if (!osp->os_final_close && !did_dec_count) { 14983 osp->os_open_ref_count--; 14984 did_dec_count = 1; 14985 } 14986 14987 /* 14988 * We can't depend on os_open_ref_count being 0 due to the 14989 * way executables are opened (VN_RELE to match a VOP_OPEN). 14990 */ 14991 #ifdef NOTYET 14992 ASSERT(osp->os_open_ref_count == 0); 14993 #endif 14994 if (osp->os_open_ref_count != 0) { 14995 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 14996 "nfs4close_one: should panic here on an " 14997 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 14998 "since this is probably the exec problem.")); 14999 15000 osp->os_open_ref_count = 0; 15001 } 15002 15003 /* 15004 * There is the possibility that nfs4close_one() 15005 * for close_type == CLOSE_DELMAP couldn't find the 15006 * open stream, thus couldn't decrement its os_mapcnt; 15007 * therefore we can't use this ASSERT yet. 15008 */ 15009 #ifdef NOTYET 15010 ASSERT(osp->os_mapcnt == 0); 15011 #endif 15012 osp->os_mapcnt = 0; 15013 } 15014 15015 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15016 ASSERT(osp->os_mapcnt >= btopr(len)); 15017 15018 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15019 osp->os_mmap_write -= btopr(len); 15020 if (maxprot & PROT_READ) 15021 osp->os_mmap_read -= btopr(len); 15022 if (maxprot & PROT_EXEC) 15023 osp->os_mmap_read -= btopr(len); 15024 /* mirror the PROT_NONE check in nfs4_addmap() */ 15025 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15026 !(maxprot & PROT_EXEC)) 15027 osp->os_mmap_read -= btopr(len); 15028 osp->os_mapcnt -= btopr(len); 15029 did_dec_count = 1; 15030 } 15031 15032 if (recovonly) { 15033 nfs4_lost_rqst_t lost_rqst; 15034 15035 /* request should not already be in recovery queue */ 15036 ASSERT(lrp == NULL); 15037 nfs4_error_init(ep, EINTR); 15038 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15039 osp, cred_otw, vp); 15040 mutex_exit(&osp->os_sync_lock); 15041 have_sync_lock = 0; 15042 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15043 lost_rqst.lr_op == OP_CLOSE ? 15044 &lost_rqst : NULL, OP_CLOSE, NULL); 15045 close_failed = 1; 15046 force_close = 0; 15047 goto close_cleanup; 15048 } 15049 15050 /* 15051 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15052 * we stopped operating on the open owner's <old oo_name, old seqid> 15053 * space, which means we stopped operating on the open stream 15054 * too. So don't go OTW (as the seqid is likely bad, and the 15055 * stateid could be stale, potentially triggering a false 15056 * setclientid), and just clean up the client's internal state. 15057 */ 15058 if (osp->os_orig_oo_name != oop->oo_name) { 15059 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15060 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15061 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15062 "oo_name %" PRIx64")", 15063 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15064 oop->oo_name)); 15065 close_failed = 1; 15066 } 15067 15068 /* If the file failed recovery, just quit. */ 15069 mutex_enter(&rp->r_statelock); 15070 if (rp->r_flags & R4RECOVERR) { 15071 close_failed = 1; 15072 } 15073 mutex_exit(&rp->r_statelock); 15074 15075 /* 15076 * If the force close path failed to obtain start_fop 15077 * then skip the OTW close and just remove the state. 15078 */ 15079 if (close_failed) 15080 goto close_cleanup; 15081 15082 /* 15083 * Fifth, check to see if there are still mapped pages or other 15084 * opens using this open stream. If there are then we can't 15085 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15086 */ 15087 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15088 nfs4_lost_rqst_t new_lost_rqst; 15089 bool_t needrecov = FALSE; 15090 cred_t *odg_cred_otw = NULL; 15091 seqid4 open_dg_seqid = 0; 15092 15093 if (osp->os_delegation) { 15094 /* 15095 * If this open stream was never OPENed OTW then we 15096 * surely can't DOWNGRADE it (especially since the 15097 * osp->open_stateid is really a delegation stateid 15098 * when os_delegation is 1). 15099 */ 15100 if (access_bits & FREAD) 15101 osp->os_share_acc_read--; 15102 if (access_bits & FWRITE) 15103 osp->os_share_acc_write--; 15104 osp->os_share_deny_none--; 15105 nfs4_error_zinit(ep); 15106 goto out; 15107 } 15108 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15109 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15110 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15111 if (needrecov && !isrecov) { 15112 bool_t abort; 15113 nfs4_bseqid_entry_t *bsep = NULL; 15114 15115 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15116 bsep = nfs4_create_bseqid_entry(oop, NULL, 15117 vp, 0, 15118 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15119 open_dg_seqid); 15120 15121 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15122 oop, osp, odg_cred_otw, vp, access_bits, 0); 15123 mutex_exit(&osp->os_sync_lock); 15124 have_sync_lock = 0; 15125 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15126 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15127 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15128 bsep); 15129 if (odg_cred_otw) 15130 crfree(odg_cred_otw); 15131 if (bsep) 15132 kmem_free(bsep, sizeof (*bsep)); 15133 15134 if (abort == TRUE) 15135 goto out; 15136 15137 if (did_start_seqid_sync) { 15138 nfs4_end_open_seqid_sync(oop); 15139 did_start_seqid_sync = 0; 15140 } 15141 open_stream_rele(osp, rp); 15142 15143 if (did_start_op) 15144 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15145 &recov_state, FALSE); 15146 if (did_force_recovlock) 15147 nfs_rw_exit(&mi->mi_recovlock); 15148 15149 goto recov_retry; 15150 } else { 15151 if (odg_cred_otw) 15152 crfree(odg_cred_otw); 15153 } 15154 goto out; 15155 } 15156 15157 /* 15158 * If this open stream was created as the results of an open 15159 * while holding a delegation, then just release it; no need 15160 * to do an OTW close. Otherwise do a "normal" OTW close. 15161 */ 15162 if (osp->os_delegation) { 15163 nfs4close_notw(vp, osp, &have_sync_lock); 15164 nfs4_error_zinit(ep); 15165 goto out; 15166 } 15167 15168 /* 15169 * If this stream is not valid, we're done. 15170 */ 15171 if (!osp->os_valid) { 15172 nfs4_error_zinit(ep); 15173 goto out; 15174 } 15175 15176 /* 15177 * Last open or mmap ref has vanished, need to do an OTW close. 15178 * First check to see if a close is still necessary. 15179 */ 15180 if (osp->os_failed_reopen) { 15181 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15182 "don't close OTW osp %p since reopen failed.", 15183 (void *)osp)); 15184 /* 15185 * Reopen of the open stream failed, hence the 15186 * stateid of the open stream is invalid/stale, and 15187 * sending this OTW would incorrectly cause another 15188 * round of recovery. In this case, we need to set 15189 * the 'os_valid' bit to 0 so another thread doesn't 15190 * come in and re-open this open stream before 15191 * this "closing" thread cleans up state (decrementing 15192 * the nfs4_server_t's state_ref_count and decrementing 15193 * the os_ref_count). 15194 */ 15195 osp->os_valid = 0; 15196 /* 15197 * This removes the reference obtained at OPEN; ie, 15198 * when the open stream structure was created. 15199 * 15200 * We don't have to worry about calling 'open_stream_rele' 15201 * since we our currently holding a reference to this 15202 * open stream which means the count can not go to 0 with 15203 * this decrement. 15204 */ 15205 ASSERT(osp->os_ref_count >= 2); 15206 osp->os_ref_count--; 15207 nfs4_error_zinit(ep); 15208 close_failed = 0; 15209 goto close_cleanup; 15210 } 15211 15212 ASSERT(osp->os_ref_count > 1); 15213 15214 if (!(vp->v_vfsp->vfs_flag & VFS_RDONLY) && 15215 nfs4_dross_pages(vp)) { 15216 nfs4_invalidate_pages(vp, 0, cred_otw); 15217 } 15218 15219 /* 15220 * Sixth, try the CLOSE OTW. 15221 */ 15222 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15223 close_type, ep, &have_sync_lock); 15224 15225 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15226 /* 15227 * Let the recovery thread be responsible for 15228 * removing the state for CLOSE. 15229 */ 15230 close_failed = 1; 15231 force_close = 0; 15232 retry = 0; 15233 } 15234 15235 /* See if we need to retry with a different cred */ 15236 if ((ep->error == EACCES || 15237 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15238 cred_otw != cr) { 15239 crfree(cred_otw); 15240 cred_otw = cr; 15241 crhold(cred_otw); 15242 retry = 1; 15243 } 15244 15245 if (ep->error || ep->stat) 15246 close_failed = 1; 15247 15248 if (retry && !isrecov && num_retries-- > 0) { 15249 if (have_sync_lock) { 15250 mutex_exit(&osp->os_sync_lock); 15251 have_sync_lock = 0; 15252 } 15253 if (did_start_seqid_sync) { 15254 nfs4_end_open_seqid_sync(oop); 15255 did_start_seqid_sync = 0; 15256 } 15257 open_stream_rele(osp, rp); 15258 15259 if (did_start_op) 15260 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15261 &recov_state, FALSE); 15262 if (did_force_recovlock) 15263 nfs_rw_exit(&mi->mi_recovlock); 15264 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15265 "nfs4close_one: need to retry the close " 15266 "operation")); 15267 goto recov_retry; 15268 } 15269 close_cleanup: 15270 /* 15271 * Seventh and lastly, process our results. 15272 */ 15273 if (close_failed && force_close) { 15274 /* 15275 * It's ok to drop and regrab the 'os_sync_lock' since 15276 * nfs4close_notw() will recheck to make sure the 15277 * "close"/removal of state should happen. 15278 */ 15279 if (!have_sync_lock) { 15280 mutex_enter(&osp->os_sync_lock); 15281 have_sync_lock = 1; 15282 } 15283 /* 15284 * This is last call, remove the ref on the open 15285 * stream created by open and clean everything up. 15286 */ 15287 osp->os_pending_close = 0; 15288 nfs4close_notw(vp, osp, &have_sync_lock); 15289 nfs4_error_zinit(ep); 15290 } 15291 15292 if (!close_failed) { 15293 if (have_sync_lock) { 15294 osp->os_pending_close = 0; 15295 mutex_exit(&osp->os_sync_lock); 15296 have_sync_lock = 0; 15297 } else { 15298 mutex_enter(&osp->os_sync_lock); 15299 osp->os_pending_close = 0; 15300 mutex_exit(&osp->os_sync_lock); 15301 } 15302 if (did_start_op && recov_state.rs_sp != NULL) { 15303 mutex_enter(&recov_state.rs_sp->s_lock); 15304 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15305 mutex_exit(&recov_state.rs_sp->s_lock); 15306 } else { 15307 nfs4_dec_state_ref_count(mi); 15308 } 15309 nfs4_error_zinit(ep); 15310 } 15311 15312 out: 15313 if (have_sync_lock) 15314 mutex_exit(&osp->os_sync_lock); 15315 if (did_start_op) 15316 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15317 recovonly ? TRUE : FALSE); 15318 if (did_force_recovlock) 15319 nfs_rw_exit(&mi->mi_recovlock); 15320 if (cred_otw) 15321 crfree(cred_otw); 15322 if (osp) 15323 open_stream_rele(osp, rp); 15324 if (oop) { 15325 if (did_start_seqid_sync) 15326 nfs4_end_open_seqid_sync(oop); 15327 open_owner_rele(oop); 15328 } 15329 } 15330 15331 /* 15332 * Convert information returned by the server in the LOCK4denied 15333 * structure to the form required by fcntl. 15334 */ 15335 static void 15336 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15337 { 15338 nfs4_lo_name_t *lo; 15339 15340 #ifdef DEBUG 15341 if (denied_to_flk_debug) { 15342 lockt_denied_debug = lockt_denied; 15343 debug_enter("lockt_denied"); 15344 } 15345 #endif 15346 15347 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15348 flk->l_whence = 0; /* aka SEEK_SET */ 15349 flk->l_start = lockt_denied->offset; 15350 flk->l_len = lockt_denied->length; 15351 15352 /* 15353 * If the blocking clientid matches our client id, then we can 15354 * interpret the lockowner (since we built it). If not, then 15355 * fabricate a sysid and pid. Note that the l_sysid field 15356 * in *flk already has the local sysid. 15357 */ 15358 15359 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15360 15361 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15362 lo = (nfs4_lo_name_t *) 15363 lockt_denied->owner.owner_val; 15364 15365 flk->l_pid = lo->ln_pid; 15366 } else { 15367 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15368 "denied_to_flk: bad lock owner length\n")); 15369 15370 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15371 } 15372 } else { 15373 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15374 "denied_to_flk: foreign clientid\n")); 15375 15376 /* 15377 * Construct a new sysid which should be different from 15378 * sysids of other systems. 15379 */ 15380 15381 flk->l_sysid++; 15382 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15383 } 15384 } 15385 15386 static pid_t 15387 lo_to_pid(lock_owner4 *lop) 15388 { 15389 pid_t pid = 0; 15390 uchar_t *cp; 15391 int i; 15392 15393 cp = (uchar_t *)&lop->clientid; 15394 15395 for (i = 0; i < sizeof (lop->clientid); i++) 15396 pid += (pid_t)*cp++; 15397 15398 cp = (uchar_t *)lop->owner_val; 15399 15400 for (i = 0; i < lop->owner_len; i++) 15401 pid += (pid_t)*cp++; 15402 15403 return (pid); 15404 } 15405 15406 /* 15407 * Given a lock pointer, returns the length of that lock. 15408 * "end" is the last locked offset the "l_len" covers from 15409 * the start of the lock. 15410 */ 15411 static off64_t 15412 lock_to_end(flock64_t *lock) 15413 { 15414 off64_t lock_end; 15415 15416 if (lock->l_len == 0) 15417 lock_end = (off64_t)MAXEND; 15418 else 15419 lock_end = lock->l_start + lock->l_len - 1; 15420 15421 return (lock_end); 15422 } 15423 15424 /* 15425 * Given the end of a lock, it will return you the length "l_len" for that lock. 15426 */ 15427 static off64_t 15428 end_to_len(off64_t start, off64_t end) 15429 { 15430 off64_t lock_len; 15431 15432 ASSERT(end >= start); 15433 if (end == MAXEND) 15434 lock_len = 0; 15435 else 15436 lock_len = end - start + 1; 15437 15438 return (lock_len); 15439 } 15440 15441 /* 15442 * On given end for a lock it determines if it is the last locked offset 15443 * or not, if so keeps it as is, else adds one to return the length for 15444 * valid start. 15445 */ 15446 static off64_t 15447 start_check(off64_t x) 15448 { 15449 if (x == MAXEND) 15450 return (x); 15451 else 15452 return (x + 1); 15453 } 15454 15455 /* 15456 * See if these two locks overlap, and if so return 1; 15457 * otherwise, return 0. 15458 */ 15459 static int 15460 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15461 { 15462 off64_t llfp_end, curfp_end; 15463 15464 llfp_end = lock_to_end(llfp); 15465 curfp_end = lock_to_end(curfp); 15466 15467 if (((llfp_end >= curfp->l_start) && 15468 (llfp->l_start <= curfp->l_start)) || 15469 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15470 return (1); 15471 return (0); 15472 } 15473 15474 /* 15475 * Determine what the interseting lock region is, and add that to the 15476 * 'nl_llpp' locklist in increasing order (by l_start). 15477 */ 15478 static void 15479 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15480 locklist_t **nl_llpp, vnode_t *vp) 15481 { 15482 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15483 off64_t lost_flp_end, local_flp_end, len, start; 15484 15485 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15486 15487 if (!locks_intersect(lost_flp, local_flp)) 15488 return; 15489 15490 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15491 "locks intersect")); 15492 15493 lost_flp_end = lock_to_end(lost_flp); 15494 local_flp_end = lock_to_end(local_flp); 15495 15496 /* Find the starting point of the intersecting region */ 15497 if (local_flp->l_start > lost_flp->l_start) 15498 start = local_flp->l_start; 15499 else 15500 start = lost_flp->l_start; 15501 15502 /* Find the lenght of the intersecting region */ 15503 if (lost_flp_end < local_flp_end) 15504 len = end_to_len(start, lost_flp_end); 15505 else 15506 len = end_to_len(start, local_flp_end); 15507 15508 /* 15509 * Prepare the flock structure for the intersection found and insert 15510 * it into the new list in increasing l_start order. This list contains 15511 * intersections of locks registered by the client with the local host 15512 * and the lost lock. 15513 * The lock type of this lock is the same as that of the local_flp. 15514 */ 15515 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15516 intersect_llp->ll_flock.l_start = start; 15517 intersect_llp->ll_flock.l_len = len; 15518 intersect_llp->ll_flock.l_type = local_flp->l_type; 15519 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15520 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15521 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15522 intersect_llp->ll_vp = vp; 15523 15524 tmp_fllp = *nl_llpp; 15525 cur_fllp = NULL; 15526 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15527 intersect_llp->ll_flock.l_start) { 15528 cur_fllp = tmp_fllp; 15529 tmp_fllp = tmp_fllp->ll_next; 15530 } 15531 if (cur_fllp == NULL) { 15532 /* first on the list */ 15533 intersect_llp->ll_next = *nl_llpp; 15534 *nl_llpp = intersect_llp; 15535 } else { 15536 intersect_llp->ll_next = cur_fllp->ll_next; 15537 cur_fllp->ll_next = intersect_llp; 15538 } 15539 15540 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15541 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15542 intersect_llp->ll_flock.l_start, 15543 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15544 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15545 } 15546 15547 /* 15548 * Our local locking current state is potentially different than 15549 * what the NFSv4 server thinks we have due to a lost lock that was 15550 * resent and then received. We need to reset our "NFSv4" locking 15551 * state to match the current local locking state for this pid since 15552 * that is what the user/application sees as what the world is. 15553 * 15554 * We cannot afford to drop the open/lock seqid sync since then we can 15555 * get confused about what the current local locking state "is" versus 15556 * "was". 15557 * 15558 * If we are unable to fix up the locks, we send SIGLOST to the affected 15559 * process. This is not done if the filesystem has been forcibly 15560 * unmounted, in case the process has already exited and a new process 15561 * exists with the same pid. 15562 */ 15563 static void 15564 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15565 nfs4_lock_owner_t *lop) 15566 { 15567 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15568 mntinfo4_t *mi = VTOMI4(vp); 15569 const int cmd = F_SETLK; 15570 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15571 flock64_t ul_fl; 15572 15573 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15574 "nfs4_reinstitute_local_lock_state")); 15575 15576 /* 15577 * Find active locks for this vp from the local locking code. 15578 * Scan through this list and find out the locks that intersect with 15579 * the lost lock. Once we find the lock that intersects, add the 15580 * intersection area as a new lock to a new list "ri_llp". The lock 15581 * type of the intersection region lock added to ri_llp is the same 15582 * as that found in the active lock list, "list". The intersecting 15583 * region locks are added to ri_llp in increasing l_start order. 15584 */ 15585 ASSERT(nfs_zone() == mi->mi_zone); 15586 15587 locks = flk_active_locks_for_vp(vp); 15588 ri_llp = NULL; 15589 15590 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15591 ASSERT(llp->ll_vp == vp); 15592 /* 15593 * Pick locks that belong to this pid/lockowner 15594 */ 15595 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15596 continue; 15597 15598 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15599 } 15600 15601 /* 15602 * Now we have the list of intersections with the lost lock. These are 15603 * the locks that were/are active before the server replied to the 15604 * last/lost lock. Issue these locks to the server here. Playing these 15605 * locks to the server will re-establish aur current local locking state 15606 * with the v4 server. 15607 * If we get an error, send SIGLOST to the application for that lock. 15608 */ 15609 15610 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15611 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15612 "nfs4_reinstitute_local_lock_state: need to issue " 15613 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15614 llp->ll_flock.l_start, 15615 llp->ll_flock.l_start + llp->ll_flock.l_len, 15616 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15617 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15618 /* 15619 * No need to relock what we already have 15620 */ 15621 if (llp->ll_flock.l_type == lost_flp->l_type) 15622 continue; 15623 15624 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15625 } 15626 15627 /* 15628 * Now keeping the start of the lost lock as our reference parse the 15629 * newly created ri_llp locklist to find the ranges that we have locked 15630 * with the v4 server but not in the current local locking. We need 15631 * to unlock these ranges. 15632 * These ranges can also be reffered to as those ranges, where the lost 15633 * lock does not overlap with the locks in the ri_llp but are locked 15634 * since the server replied to the lost lock. 15635 */ 15636 cur_start = lost_flp->l_start; 15637 lost_flp_end = lock_to_end(lost_flp); 15638 15639 ul_fl.l_type = F_UNLCK; 15640 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15641 ul_fl.l_sysid = lost_flp->l_sysid; 15642 ul_fl.l_pid = lost_flp->l_pid; 15643 15644 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15645 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15646 15647 if (llp->ll_flock.l_start <= cur_start) { 15648 cur_start = start_check(llp_ll_flock_end); 15649 continue; 15650 } 15651 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15652 "nfs4_reinstitute_local_lock_state: " 15653 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15654 cur_start, llp->ll_flock.l_start)); 15655 15656 ul_fl.l_start = cur_start; 15657 ul_fl.l_len = end_to_len(cur_start, 15658 (llp->ll_flock.l_start - 1)); 15659 15660 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15661 cur_start = start_check(llp_ll_flock_end); 15662 } 15663 15664 /* 15665 * In the case where the lost lock ends after all intersecting locks, 15666 * unlock the last part of the lost lock range. 15667 */ 15668 if (cur_start != start_check(lost_flp_end)) { 15669 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15670 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15671 "lost lock region [%"PRIx64" - %"PRIx64"]", 15672 cur_start, lost_flp->l_start + lost_flp->l_len)); 15673 15674 ul_fl.l_start = cur_start; 15675 /* 15676 * Is it an to-EOF lock? if so unlock till the end 15677 */ 15678 if (lost_flp->l_len == 0) 15679 ul_fl.l_len = 0; 15680 else 15681 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15682 15683 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15684 } 15685 15686 if (locks != NULL) 15687 flk_free_locklist(locks); 15688 15689 /* Free up our newly created locklist */ 15690 for (llp = ri_llp; llp != NULL; ) { 15691 tmp_llp = llp->ll_next; 15692 kmem_free(llp, sizeof (locklist_t)); 15693 llp = tmp_llp; 15694 } 15695 15696 /* 15697 * Now return back to the original calling nfs4frlock() 15698 * and let us naturally drop our seqid syncs. 15699 */ 15700 } 15701 15702 /* 15703 * Create a lost state record for the given lock reinstantiation request 15704 * and push it onto the lost state queue. 15705 */ 15706 static void 15707 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15708 nfs4_lock_owner_t *lop) 15709 { 15710 nfs4_lost_rqst_t req; 15711 nfs_lock_type4 locktype; 15712 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15713 15714 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15715 15716 locktype = flk_to_locktype(cmd, flk->l_type); 15717 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15718 NULL, NULL, lop, flk, &req, cr, vp); 15719 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15720 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15721 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15722 NULL); 15723 } 15724