1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/systm.h> 27 #include <sys/kmem.h> 28 #include <sys/cmn_err.h> 29 #include <sys/atomic.h> 30 #include <sys/clconf.h> 31 #include <sys/cladm.h> 32 #include <sys/flock.h> 33 #include <nfs/export.h> 34 #include <nfs/nfs.h> 35 #include <nfs/nfs4.h> 36 #include <nfs/nfssys.h> 37 #include <nfs/lm.h> 38 #include <sys/pathname.h> 39 #include <sys/sdt.h> 40 #include <sys/nvpair.h> 41 42 extern u_longlong_t nfs4_srv_caller_id; 43 44 extern time_t rfs4_start_time; 45 extern uint_t nfs4_srv_vkey; 46 47 stateid4 special0 = { 48 0, 49 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } 50 }; 51 52 stateid4 special1 = { 53 0xffffffff, 54 { 55 (char)0xff, (char)0xff, (char)0xff, (char)0xff, 56 (char)0xff, (char)0xff, (char)0xff, (char)0xff, 57 (char)0xff, (char)0xff, (char)0xff, (char)0xff 58 } 59 }; 60 61 62 #define ISSPECIAL(id) (stateid4_cmp(id, &special0) || \ 63 stateid4_cmp(id, &special1)) 64 65 /* For embedding the cluster nodeid into our clientid */ 66 #define CLUSTER_NODEID_SHIFT 24 67 #define CLUSTER_MAX_NODEID 255 68 69 #ifdef DEBUG 70 int rfs4_debug; 71 #endif 72 73 static uint32_t rfs4_database_debug = 0x00; 74 75 static void rfs4_ss_clid_write(rfs4_client_t *cp, char *leaf); 76 static void rfs4_ss_clid_write_one(rfs4_client_t *cp, char *dir, char *leaf); 77 static void rfs4_dss_clear_oldstate(rfs4_servinst_t *sip); 78 static void rfs4_ss_chkclid_sip(rfs4_client_t *cp, rfs4_servinst_t *sip); 79 80 /* 81 * Couple of simple init/destroy functions for a general waiter 82 */ 83 void 84 rfs4_sw_init(rfs4_state_wait_t *swp) 85 { 86 mutex_init(swp->sw_cv_lock, NULL, MUTEX_DEFAULT, NULL); 87 cv_init(swp->sw_cv, NULL, CV_DEFAULT, NULL); 88 swp->sw_active = FALSE; 89 swp->sw_wait_count = 0; 90 } 91 92 void 93 rfs4_sw_destroy(rfs4_state_wait_t *swp) 94 { 95 mutex_destroy(swp->sw_cv_lock); 96 cv_destroy(swp->sw_cv); 97 } 98 99 void 100 rfs4_sw_enter(rfs4_state_wait_t *swp) 101 { 102 mutex_enter(swp->sw_cv_lock); 103 while (swp->sw_active) { 104 swp->sw_wait_count++; 105 cv_wait(swp->sw_cv, swp->sw_cv_lock); 106 swp->sw_wait_count--; 107 } 108 ASSERT(swp->sw_active == FALSE); 109 swp->sw_active = TRUE; 110 mutex_exit(swp->sw_cv_lock); 111 } 112 113 void 114 rfs4_sw_exit(rfs4_state_wait_t *swp) 115 { 116 mutex_enter(swp->sw_cv_lock); 117 ASSERT(swp->sw_active == TRUE); 118 swp->sw_active = FALSE; 119 if (swp->sw_wait_count != 0) 120 cv_broadcast(swp->sw_cv); 121 mutex_exit(swp->sw_cv_lock); 122 } 123 124 /* 125 * CPR callback id -- not related to v4 callbacks 126 */ 127 static callb_id_t cpr_id = 0; 128 129 static void 130 deep_lock_copy(LOCK4res *dres, LOCK4res *sres) 131 { 132 lock_owner4 *slo = &sres->LOCK4res_u.denied.owner; 133 lock_owner4 *dlo = &dres->LOCK4res_u.denied.owner; 134 135 if (sres->status == NFS4ERR_DENIED) { 136 dlo->owner_val = kmem_alloc(slo->owner_len, KM_SLEEP); 137 bcopy(slo->owner_val, dlo->owner_val, slo->owner_len); 138 } 139 } 140 141 static void 142 deep_lock_free(LOCK4res *res) 143 { 144 lock_owner4 *lo = &res->LOCK4res_u.denied.owner; 145 146 if (res->status == NFS4ERR_DENIED) 147 kmem_free(lo->owner_val, lo->owner_len); 148 } 149 150 static void 151 deep_open_copy(OPEN4res *dres, OPEN4res *sres) 152 { 153 nfsace4 *sacep, *dacep; 154 155 if (sres->status != NFS4_OK) { 156 return; 157 } 158 159 dres->attrset = sres->attrset; 160 161 switch (sres->delegation.delegation_type) { 162 case OPEN_DELEGATE_NONE: 163 return; 164 case OPEN_DELEGATE_READ: 165 sacep = &sres->delegation.open_delegation4_u.read.permissions; 166 dacep = &dres->delegation.open_delegation4_u.read.permissions; 167 break; 168 case OPEN_DELEGATE_WRITE: 169 sacep = &sres->delegation.open_delegation4_u.write.permissions; 170 dacep = &dres->delegation.open_delegation4_u.write.permissions; 171 break; 172 } 173 dacep->who.utf8string_val = 174 kmem_alloc(sacep->who.utf8string_len, KM_SLEEP); 175 bcopy(sacep->who.utf8string_val, dacep->who.utf8string_val, 176 sacep->who.utf8string_len); 177 } 178 179 static void 180 deep_open_free(OPEN4res *res) 181 { 182 nfsace4 *acep; 183 if (res->status != NFS4_OK) 184 return; 185 186 switch (res->delegation.delegation_type) { 187 case OPEN_DELEGATE_NONE: 188 return; 189 case OPEN_DELEGATE_READ: 190 acep = &res->delegation.open_delegation4_u.read.permissions; 191 break; 192 case OPEN_DELEGATE_WRITE: 193 acep = &res->delegation.open_delegation4_u.write.permissions; 194 break; 195 } 196 197 if (acep->who.utf8string_val) { 198 kmem_free(acep->who.utf8string_val, acep->who.utf8string_len); 199 acep->who.utf8string_val = NULL; 200 } 201 } 202 203 void 204 rfs4_free_reply(nfs_resop4 *rp) 205 { 206 switch (rp->resop) { 207 case OP_LOCK: 208 deep_lock_free(&rp->nfs_resop4_u.oplock); 209 break; 210 case OP_OPEN: 211 deep_open_free(&rp->nfs_resop4_u.opopen); 212 default: 213 break; 214 } 215 } 216 217 void 218 rfs4_copy_reply(nfs_resop4 *dst, nfs_resop4 *src) 219 { 220 *dst = *src; 221 222 /* Handle responses that need deep copy */ 223 switch (src->resop) { 224 case OP_LOCK: 225 deep_lock_copy(&dst->nfs_resop4_u.oplock, 226 &src->nfs_resop4_u.oplock); 227 break; 228 case OP_OPEN: 229 deep_open_copy(&dst->nfs_resop4_u.opopen, 230 &src->nfs_resop4_u.opopen); 231 break; 232 default: 233 break; 234 }; 235 } 236 237 /* 238 * This is the implementation of the underlying state engine. The 239 * public interface to this engine is described by 240 * nfs4_state.h. Callers to the engine should hold no state engine 241 * locks when they call in to it. If the protocol needs to lock data 242 * structures it should do so after acquiring all references to them 243 * first and then follow the following lock order: 244 * 245 * client > openowner > state > lo_state > lockowner > file. 246 * 247 * Internally we only allow a thread to hold one hash bucket lock at a 248 * time and the lock is higher in the lock order (must be acquired 249 * first) than the data structure that is on that hash list. 250 * 251 * If a new reference was acquired by the caller, that reference needs 252 * to be released after releasing all acquired locks with the 253 * corresponding rfs4_*_rele routine. 254 */ 255 256 /* 257 * This code is some what prototypical for now. Its purpose currently is to 258 * implement the interfaces sufficiently to finish the higher protocol 259 * elements. This will be replaced by a dynamically resizeable tables 260 * backed by kmem_cache allocator. However synchronization is handled 261 * correctly (I hope) and will not change by much. The mutexes for 262 * the hash buckets that can be used to create new instances of data 263 * structures might be good candidates to evolve into reader writer 264 * locks. If it has to do a creation, it would be holding the 265 * mutex across a kmem_alloc with KM_SLEEP specified. 266 */ 267 268 #ifdef DEBUG 269 #define TABSIZE 17 270 #else 271 #define TABSIZE 2047 272 #endif 273 274 #define ADDRHASH(key) ((unsigned long)(key) >> 3) 275 276 /* Used to serialize create/destroy of rfs4_server_state database */ 277 kmutex_t rfs4_state_lock; 278 static rfs4_database_t *rfs4_server_state = NULL; 279 280 /* Used to serialize lookups of clientids */ 281 static krwlock_t rfs4_findclient_lock; 282 283 /* 284 * For now this "table" is exposed so that the CPR callback 285 * function can tromp through it.. 286 */ 287 rfs4_table_t *rfs4_client_tab; 288 289 static rfs4_index_t *rfs4_clientid_idx; 290 static rfs4_index_t *rfs4_nfsclnt_idx; 291 static rfs4_table_t *rfs4_openowner_tab; 292 static rfs4_index_t *rfs4_openowner_idx; 293 static rfs4_table_t *rfs4_state_tab; 294 static rfs4_index_t *rfs4_state_idx; 295 static rfs4_index_t *rfs4_state_owner_file_idx; 296 static rfs4_index_t *rfs4_state_file_idx; 297 static rfs4_table_t *rfs4_lo_state_tab; 298 static rfs4_index_t *rfs4_lo_state_idx; 299 static rfs4_index_t *rfs4_lo_state_owner_idx; 300 static rfs4_table_t *rfs4_lockowner_tab; 301 static rfs4_index_t *rfs4_lockowner_idx; 302 static rfs4_index_t *rfs4_lockowner_pid_idx; 303 static rfs4_table_t *rfs4_file_tab; 304 static rfs4_index_t *rfs4_file_idx; 305 static rfs4_table_t *rfs4_deleg_state_tab; 306 static rfs4_index_t *rfs4_deleg_idx; 307 static rfs4_index_t *rfs4_deleg_state_idx; 308 309 #define MAXTABSZ 1024*1024 310 311 /* The values below are rfs4_lease_time units */ 312 313 #ifdef DEBUG 314 #define CLIENT_CACHE_TIME 1 315 #define OPENOWNER_CACHE_TIME 1 316 #define STATE_CACHE_TIME 1 317 #define LO_STATE_CACHE_TIME 1 318 #define LOCKOWNER_CACHE_TIME 1 319 #define FILE_CACHE_TIME 3 320 #define DELEG_STATE_CACHE_TIME 1 321 #else 322 #define CLIENT_CACHE_TIME 10 323 #define OPENOWNER_CACHE_TIME 5 324 #define STATE_CACHE_TIME 1 325 #define LO_STATE_CACHE_TIME 1 326 #define LOCKOWNER_CACHE_TIME 3 327 #define FILE_CACHE_TIME 40 328 #define DELEG_STATE_CACHE_TIME 1 329 #endif 330 331 332 static time_t rfs4_client_cache_time = 0; 333 static time_t rfs4_openowner_cache_time = 0; 334 static time_t rfs4_state_cache_time = 0; 335 static time_t rfs4_lo_state_cache_time = 0; 336 static time_t rfs4_lockowner_cache_time = 0; 337 static time_t rfs4_file_cache_time = 0; 338 static time_t rfs4_deleg_state_cache_time = 0; 339 340 static bool_t rfs4_client_create(rfs4_entry_t, void *); 341 static void rfs4_dss_remove_cpleaf(rfs4_client_t *); 342 static void rfs4_dss_remove_leaf(rfs4_servinst_t *, char *, char *); 343 static void rfs4_client_destroy(rfs4_entry_t); 344 static bool_t rfs4_client_expiry(rfs4_entry_t); 345 static uint32_t clientid_hash(void *); 346 static bool_t clientid_compare(rfs4_entry_t, void *); 347 static void *clientid_mkkey(rfs4_entry_t); 348 static uint32_t nfsclnt_hash(void *); 349 static bool_t nfsclnt_compare(rfs4_entry_t, void *); 350 static void *nfsclnt_mkkey(rfs4_entry_t); 351 static bool_t rfs4_openowner_create(rfs4_entry_t, void *); 352 static void rfs4_openowner_destroy(rfs4_entry_t); 353 static bool_t rfs4_openowner_expiry(rfs4_entry_t); 354 static uint32_t openowner_hash(void *); 355 static bool_t openowner_compare(rfs4_entry_t, void *); 356 static void *openowner_mkkey(rfs4_entry_t); 357 static bool_t rfs4_state_create(rfs4_entry_t, void *); 358 static void rfs4_state_destroy(rfs4_entry_t); 359 static bool_t rfs4_state_expiry(rfs4_entry_t); 360 static uint32_t state_hash(void *); 361 static bool_t state_compare(rfs4_entry_t, void *); 362 static void *state_mkkey(rfs4_entry_t); 363 static uint32_t state_owner_file_hash(void *); 364 static bool_t state_owner_file_compare(rfs4_entry_t, void *); 365 static void *state_owner_file_mkkey(rfs4_entry_t); 366 static uint32_t state_file_hash(void *); 367 static bool_t state_file_compare(rfs4_entry_t, void *); 368 static void *state_file_mkkey(rfs4_entry_t); 369 static bool_t rfs4_lo_state_create(rfs4_entry_t, void *); 370 static void rfs4_lo_state_destroy(rfs4_entry_t); 371 static bool_t rfs4_lo_state_expiry(rfs4_entry_t); 372 static uint32_t lo_state_hash(void *); 373 static bool_t lo_state_compare(rfs4_entry_t, void *); 374 static void *lo_state_mkkey(rfs4_entry_t); 375 static uint32_t lo_state_lo_hash(void *); 376 static bool_t lo_state_lo_compare(rfs4_entry_t, void *); 377 static void *lo_state_lo_mkkey(rfs4_entry_t); 378 static bool_t rfs4_lockowner_create(rfs4_entry_t, void *); 379 static void rfs4_lockowner_destroy(rfs4_entry_t); 380 static bool_t rfs4_lockowner_expiry(rfs4_entry_t); 381 static uint32_t lockowner_hash(void *); 382 static bool_t lockowner_compare(rfs4_entry_t, void *); 383 static void *lockowner_mkkey(rfs4_entry_t); 384 static uint32_t pid_hash(void *); 385 static bool_t pid_compare(rfs4_entry_t, void *); 386 static void *pid_mkkey(rfs4_entry_t); 387 static bool_t rfs4_file_create(rfs4_entry_t, void *); 388 static void rfs4_file_destroy(rfs4_entry_t); 389 static uint32_t file_hash(void *); 390 static bool_t file_compare(rfs4_entry_t, void *); 391 static void *file_mkkey(rfs4_entry_t); 392 static bool_t rfs4_deleg_state_create(rfs4_entry_t, void *); 393 static void rfs4_deleg_state_destroy(rfs4_entry_t); 394 static bool_t rfs4_deleg_state_expiry(rfs4_entry_t); 395 static uint32_t deleg_hash(void *); 396 static bool_t deleg_compare(rfs4_entry_t, void *); 397 static void *deleg_mkkey(rfs4_entry_t); 398 static uint32_t deleg_state_hash(void *); 399 static bool_t deleg_state_compare(rfs4_entry_t, void *); 400 static void *deleg_state_mkkey(rfs4_entry_t); 401 402 static void rfs4_state_rele_nounlock(rfs4_state_t *); 403 404 static int rfs4_ss_enabled = 0; 405 406 extern void (*rfs4_client_clrst)(struct nfs4clrst_args *); 407 408 void 409 rfs4_ss_pnfree(rfs4_ss_pn_t *ss_pn) 410 { 411 kmem_free(ss_pn, sizeof (rfs4_ss_pn_t)); 412 } 413 414 static rfs4_ss_pn_t * 415 rfs4_ss_pnalloc(char *dir, char *leaf) 416 { 417 rfs4_ss_pn_t *ss_pn; 418 int dir_len, leaf_len; 419 420 /* 421 * validate we have a resonable path 422 * (account for the '/' and trailing null) 423 */ 424 if ((dir_len = strlen(dir)) > MAXPATHLEN || 425 (leaf_len = strlen(leaf)) > MAXNAMELEN || 426 (dir_len + leaf_len + 2) > MAXPATHLEN) { 427 return (NULL); 428 } 429 430 ss_pn = kmem_alloc(sizeof (rfs4_ss_pn_t), KM_SLEEP); 431 432 (void) snprintf(ss_pn->pn, MAXPATHLEN, "%s/%s", dir, leaf); 433 /* Handy pointer to just the leaf name */ 434 ss_pn->leaf = ss_pn->pn + dir_len + 1; 435 return (ss_pn); 436 } 437 438 439 /* 440 * Move the "leaf" filename from "sdir" directory 441 * to the "ddir" directory. Return the pathname of 442 * the destination unless the rename fails in which 443 * case we need to return the source pathname. 444 */ 445 static rfs4_ss_pn_t * 446 rfs4_ss_movestate(char *sdir, char *ddir, char *leaf) 447 { 448 rfs4_ss_pn_t *src, *dst; 449 450 if ((src = rfs4_ss_pnalloc(sdir, leaf)) == NULL) 451 return (NULL); 452 453 if ((dst = rfs4_ss_pnalloc(ddir, leaf)) == NULL) { 454 rfs4_ss_pnfree(src); 455 return (NULL); 456 } 457 458 /* 459 * If the rename fails we shall return the src 460 * pathname and free the dst. Otherwise we need 461 * to free the src and return the dst pathanme. 462 */ 463 if (vn_rename(src->pn, dst->pn, UIO_SYSSPACE)) { 464 rfs4_ss_pnfree(dst); 465 return (src); 466 } 467 rfs4_ss_pnfree(src); 468 return (dst); 469 } 470 471 472 static rfs4_oldstate_t * 473 rfs4_ss_getstate(vnode_t *dvp, rfs4_ss_pn_t *ss_pn) 474 { 475 struct uio uio; 476 struct iovec iov[3]; 477 478 rfs4_oldstate_t *cl_ss = NULL; 479 vnode_t *vp; 480 vattr_t va; 481 uint_t id_len; 482 int err, kill_file, file_vers; 483 484 if (ss_pn == NULL) 485 return (NULL); 486 487 /* 488 * open the state file. 489 */ 490 if (vn_open(ss_pn->pn, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0) != 0) { 491 return (NULL); 492 } 493 494 if (vp->v_type != VREG) { 495 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 496 VN_RELE(vp); 497 return (NULL); 498 } 499 500 err = VOP_ACCESS(vp, VREAD, 0, CRED(), NULL); 501 if (err) { 502 /* 503 * We don't have read access? better get the heck out. 504 */ 505 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 506 VN_RELE(vp); 507 return (NULL); 508 } 509 510 (void) VOP_RWLOCK(vp, V_WRITELOCK_FALSE, NULL); 511 /* 512 * get the file size to do some basic validation 513 */ 514 va.va_mask = AT_SIZE; 515 err = VOP_GETATTR(vp, &va, 0, CRED(), NULL); 516 517 kill_file = (va.va_size == 0 || va.va_size < 518 (NFS4_VERIFIER_SIZE + sizeof (uint_t)+1)); 519 520 if (err || kill_file) { 521 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 522 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 523 VN_RELE(vp); 524 if (kill_file) { 525 (void) VOP_REMOVE(dvp, ss_pn->leaf, CRED(), NULL, 0); 526 } 527 return (NULL); 528 } 529 530 cl_ss = kmem_alloc(sizeof (rfs4_oldstate_t), KM_SLEEP); 531 532 /* 533 * build iovecs to read in the file_version, verifier and id_len 534 */ 535 iov[0].iov_base = (caddr_t)&file_vers; 536 iov[0].iov_len = sizeof (int); 537 iov[1].iov_base = (caddr_t)&cl_ss->cl_id4.verifier; 538 iov[1].iov_len = NFS4_VERIFIER_SIZE; 539 iov[2].iov_base = (caddr_t)&id_len; 540 iov[2].iov_len = sizeof (uint_t); 541 542 uio.uio_iov = iov; 543 uio.uio_iovcnt = 3; 544 uio.uio_segflg = UIO_SYSSPACE; 545 uio.uio_loffset = 0; 546 uio.uio_resid = sizeof (int) + NFS4_VERIFIER_SIZE + sizeof (uint_t); 547 548 if (err = VOP_READ(vp, &uio, FREAD, CRED(), NULL)) { 549 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 550 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 551 VN_RELE(vp); 552 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 553 return (NULL); 554 } 555 556 /* 557 * if the file_version doesn't match or if the 558 * id_len is zero or the combination of the verifier, 559 * id_len and id_val is bigger than the file we have 560 * a problem. If so ditch the file. 561 */ 562 kill_file = (file_vers != NFS4_SS_VERSION || id_len == 0 || 563 (id_len + NFS4_VERIFIER_SIZE + sizeof (uint_t)) > va.va_size); 564 565 if (err || kill_file) { 566 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 567 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 568 VN_RELE(vp); 569 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 570 if (kill_file) { 571 (void) VOP_REMOVE(dvp, ss_pn->leaf, CRED(), NULL, 0); 572 } 573 return (NULL); 574 } 575 576 /* 577 * now get the client id value 578 */ 579 cl_ss->cl_id4.id_val = kmem_alloc(id_len, KM_SLEEP); 580 iov[0].iov_base = cl_ss->cl_id4.id_val; 581 iov[0].iov_len = id_len; 582 583 uio.uio_iov = iov; 584 uio.uio_iovcnt = 1; 585 uio.uio_segflg = UIO_SYSSPACE; 586 uio.uio_resid = cl_ss->cl_id4.id_len = id_len; 587 588 if (err = VOP_READ(vp, &uio, FREAD, CRED(), NULL)) { 589 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 590 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 591 VN_RELE(vp); 592 kmem_free(cl_ss->cl_id4.id_val, id_len); 593 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 594 return (NULL); 595 } 596 597 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 598 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 599 VN_RELE(vp); 600 return (cl_ss); 601 } 602 603 #ifdef nextdp 604 #undef nextdp 605 #endif 606 #define nextdp(dp) ((struct dirent64 *)((char *)(dp) + (dp)->d_reclen)) 607 608 /* 609 * Add entries from statedir to supplied oldstate list. 610 * Optionally, move all entries from statedir -> destdir. 611 */ 612 void 613 rfs4_ss_oldstate(rfs4_oldstate_t *oldstate, char *statedir, char *destdir) 614 { 615 rfs4_ss_pn_t *ss_pn; 616 rfs4_oldstate_t *cl_ss = NULL; 617 char *dirt = NULL; 618 int err, dir_eof = 0, size = 0; 619 vnode_t *dvp; 620 struct iovec iov; 621 struct uio uio; 622 struct dirent64 *dep; 623 offset_t dirchunk_offset = 0; 624 625 /* 626 * open the state directory 627 */ 628 if (vn_open(statedir, UIO_SYSSPACE, FREAD, 0, &dvp, 0, 0)) 629 return; 630 631 if (dvp->v_type != VDIR || VOP_ACCESS(dvp, VREAD, 0, CRED(), NULL)) 632 goto out; 633 634 dirt = kmem_alloc(RFS4_SS_DIRSIZE, KM_SLEEP); 635 636 /* 637 * Get and process the directory entries 638 */ 639 while (!dir_eof) { 640 (void) VOP_RWLOCK(dvp, V_WRITELOCK_FALSE, NULL); 641 iov.iov_base = dirt; 642 iov.iov_len = RFS4_SS_DIRSIZE; 643 uio.uio_iov = &iov; 644 uio.uio_iovcnt = 1; 645 uio.uio_segflg = UIO_SYSSPACE; 646 uio.uio_loffset = dirchunk_offset; 647 uio.uio_resid = RFS4_SS_DIRSIZE; 648 649 err = VOP_READDIR(dvp, &uio, CRED(), &dir_eof, NULL, 0); 650 VOP_RWUNLOCK(dvp, V_WRITELOCK_FALSE, NULL); 651 if (err) 652 goto out; 653 654 size = RFS4_SS_DIRSIZE - uio.uio_resid; 655 656 /* 657 * Process all the directory entries in this 658 * readdir chunk 659 */ 660 for (dep = (struct dirent64 *)dirt; size > 0; 661 dep = nextdp(dep)) { 662 663 size -= dep->d_reclen; 664 dirchunk_offset = dep->d_off; 665 666 /* 667 * Skip '.' and '..' 668 */ 669 if (NFS_IS_DOTNAME(dep->d_name)) 670 continue; 671 672 ss_pn = rfs4_ss_pnalloc(statedir, dep->d_name); 673 if (ss_pn == NULL) 674 continue; 675 676 if (cl_ss = rfs4_ss_getstate(dvp, ss_pn)) { 677 if (destdir != NULL) { 678 rfs4_ss_pnfree(ss_pn); 679 cl_ss->ss_pn = rfs4_ss_movestate( 680 statedir, destdir, dep->d_name); 681 } else { 682 cl_ss->ss_pn = ss_pn; 683 } 684 insque(cl_ss, oldstate); 685 } else { 686 rfs4_ss_pnfree(ss_pn); 687 } 688 } 689 } 690 691 out: 692 (void) VOP_CLOSE(dvp, FREAD, 1, (offset_t)0, CRED(), NULL); 693 VN_RELE(dvp); 694 if (dirt) 695 kmem_free((caddr_t)dirt, RFS4_SS_DIRSIZE); 696 } 697 698 static void 699 rfs4_ss_init(void) 700 { 701 int npaths = 1; 702 char *default_dss_path = NFS4_DSS_VAR_DIR; 703 704 /* read the default stable storage state */ 705 rfs4_dss_readstate(npaths, &default_dss_path); 706 707 rfs4_ss_enabled = 1; 708 } 709 710 static void 711 rfs4_ss_fini(void) 712 { 713 rfs4_servinst_t *sip; 714 715 mutex_enter(&rfs4_servinst_lock); 716 sip = rfs4_cur_servinst; 717 while (sip != NULL) { 718 rfs4_dss_clear_oldstate(sip); 719 sip = sip->next; 720 } 721 mutex_exit(&rfs4_servinst_lock); 722 } 723 724 /* 725 * Remove all oldstate files referenced by this servinst. 726 */ 727 static void 728 rfs4_dss_clear_oldstate(rfs4_servinst_t *sip) 729 { 730 rfs4_oldstate_t *os_head, *osp; 731 732 rw_enter(&sip->oldstate_lock, RW_WRITER); 733 os_head = sip->oldstate; 734 735 if (os_head == NULL) 736 return; 737 738 /* skip dummy entry */ 739 osp = os_head->next; 740 while (osp != os_head) { 741 char *leaf = osp->ss_pn->leaf; 742 rfs4_oldstate_t *os_next; 743 744 rfs4_dss_remove_leaf(sip, NFS4_DSS_OLDSTATE_LEAF, leaf); 745 746 if (osp->cl_id4.id_val) 747 kmem_free(osp->cl_id4.id_val, osp->cl_id4.id_len); 748 if (osp->ss_pn) 749 kmem_free(osp->ss_pn, sizeof (rfs4_ss_pn_t)); 750 751 os_next = osp->next; 752 remque(osp); 753 kmem_free(osp, sizeof (rfs4_oldstate_t)); 754 osp = os_next; 755 } 756 757 /* free dummy entry */ 758 kmem_free(osp, sizeof (rfs4_oldstate_t)); 759 760 sip->oldstate = NULL; 761 762 rw_exit(&sip->oldstate_lock); 763 } 764 765 /* 766 * Form the state and oldstate paths, and read in the stable storage files. 767 */ 768 void 769 rfs4_dss_readstate(int npaths, char **paths) 770 { 771 int i; 772 char *state, *oldstate; 773 774 state = kmem_alloc(MAXPATHLEN, KM_SLEEP); 775 oldstate = kmem_alloc(MAXPATHLEN, KM_SLEEP); 776 777 for (i = 0; i < npaths; i++) { 778 char *path = paths[i]; 779 780 (void) sprintf(state, "%s/%s", path, NFS4_DSS_STATE_LEAF); 781 (void) sprintf(oldstate, "%s/%s", path, NFS4_DSS_OLDSTATE_LEAF); 782 783 /* 784 * Populate the current server instance's oldstate list. 785 * 786 * 1. Read stable storage data from old state directory, 787 * leaving its contents alone. 788 * 789 * 2. Read stable storage data from state directory, 790 * and move the latter's contents to old state 791 * directory. 792 */ 793 rfs4_ss_oldstate(rfs4_cur_servinst->oldstate, oldstate, NULL); 794 rfs4_ss_oldstate(rfs4_cur_servinst->oldstate, state, oldstate); 795 } 796 797 kmem_free(state, MAXPATHLEN); 798 kmem_free(oldstate, MAXPATHLEN); 799 } 800 801 802 /* 803 * Check if we are still in grace and if the client can be 804 * granted permission to perform reclaims. 805 */ 806 void 807 rfs4_ss_chkclid(rfs4_client_t *cp) 808 { 809 rfs4_servinst_t *sip; 810 811 /* 812 * It should be sufficient to check the oldstate data for just 813 * this client's instance. However, since our per-instance 814 * client grouping is solely temporal, HA-NFSv4 RG failover 815 * might result in clients of the same RG being partitioned into 816 * separate instances. 817 * 818 * Until the client grouping is improved, we must check the 819 * oldstate data for all instances with an active grace period. 820 * 821 * This also serves as the mechanism to remove stale oldstate data. 822 * The first time we check an instance after its grace period has 823 * expired, the oldstate data should be cleared. 824 * 825 * Start at the current instance, and walk the list backwards 826 * to the first. 827 */ 828 mutex_enter(&rfs4_servinst_lock); 829 for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) { 830 rfs4_ss_chkclid_sip(cp, sip); 831 832 /* if the above check found this client, we're done */ 833 if (cp->rc_can_reclaim) 834 break; 835 } 836 mutex_exit(&rfs4_servinst_lock); 837 } 838 839 static void 840 rfs4_ss_chkclid_sip(rfs4_client_t *cp, rfs4_servinst_t *sip) 841 { 842 rfs4_oldstate_t *osp, *os_head; 843 844 /* short circuit everything if this server instance has no oldstate */ 845 rw_enter(&sip->oldstate_lock, RW_READER); 846 os_head = sip->oldstate; 847 rw_exit(&sip->oldstate_lock); 848 if (os_head == NULL) 849 return; 850 851 /* 852 * If this server instance is no longer in a grace period then 853 * the client won't be able to reclaim. No further need for this 854 * instance's oldstate data, so it can be cleared. 855 */ 856 if (!rfs4_servinst_in_grace(sip)) 857 return; 858 859 /* this instance is still in grace; search for the clientid */ 860 861 rw_enter(&sip->oldstate_lock, RW_READER); 862 863 os_head = sip->oldstate; 864 /* skip dummy entry */ 865 osp = os_head->next; 866 while (osp != os_head) { 867 if (osp->cl_id4.id_len == cp->rc_nfs_client.id_len) { 868 if (bcmp(osp->cl_id4.id_val, cp->rc_nfs_client.id_val, 869 osp->cl_id4.id_len) == 0) { 870 cp->rc_can_reclaim = 1; 871 break; 872 } 873 } 874 osp = osp->next; 875 } 876 877 rw_exit(&sip->oldstate_lock); 878 } 879 880 /* 881 * Place client information into stable storage: 1/3. 882 * First, generate the leaf filename, from the client's IP address and 883 * the server-generated short-hand clientid. 884 */ 885 void 886 rfs4_ss_clid(rfs4_client_t *cp, struct svc_req *req) 887 { 888 const char *kinet_ntop6(uchar_t *, char *, size_t); 889 char leaf[MAXNAMELEN], buf[INET6_ADDRSTRLEN]; 890 struct sockaddr *ca; 891 uchar_t *b; 892 893 if (rfs4_ss_enabled == 0) { 894 return; 895 } 896 897 buf[0] = 0; 898 899 900 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 901 if (ca == NULL) { 902 return; 903 } 904 905 /* 906 * Convert the caller's IP address to a dotted string 907 */ 908 if (ca->sa_family == AF_INET) { 909 910 bcopy(svc_getrpccaller(req->rq_xprt)->buf, &cp->rc_addr, 911 sizeof (struct sockaddr_in)); 912 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 913 (void) sprintf(buf, "%03d.%03d.%03d.%03d", b[0] & 0xFF, 914 b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 915 } else if (ca->sa_family == AF_INET6) { 916 struct sockaddr_in6 *sin6; 917 918 sin6 = (struct sockaddr_in6 *)ca; 919 bcopy(svc_getrpccaller(req->rq_xprt)->buf, &cp->rc_addr, 920 sizeof (struct sockaddr_in6)); 921 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 922 buf, INET6_ADDRSTRLEN); 923 } 924 925 (void) snprintf(leaf, MAXNAMELEN, "%s-%llx", buf, 926 (longlong_t)cp->rc_clientid); 927 rfs4_ss_clid_write(cp, leaf); 928 } 929 930 /* 931 * Place client information into stable storage: 2/3. 932 * DSS: distributed stable storage: the file may need to be written to 933 * multiple directories. 934 */ 935 static void 936 rfs4_ss_clid_write(rfs4_client_t *cp, char *leaf) 937 { 938 rfs4_servinst_t *sip; 939 940 /* 941 * It should be sufficient to write the leaf file to (all) DSS paths 942 * associated with just this client's instance. However, since our 943 * per-instance client grouping is solely temporal, HA-NFSv4 RG 944 * failover might result in us losing DSS data. 945 * 946 * Until the client grouping is improved, we must write the DSS data 947 * to all instances' paths. Start at the current instance, and 948 * walk the list backwards to the first. 949 */ 950 mutex_enter(&rfs4_servinst_lock); 951 for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) { 952 int i, npaths = sip->dss_npaths; 953 954 /* write the leaf file to all DSS paths */ 955 for (i = 0; i < npaths; i++) { 956 rfs4_dss_path_t *dss_path = sip->dss_paths[i]; 957 958 /* HA-NFSv4 path might have been failed-away from us */ 959 if (dss_path == NULL) 960 continue; 961 962 rfs4_ss_clid_write_one(cp, dss_path->path, leaf); 963 } 964 } 965 mutex_exit(&rfs4_servinst_lock); 966 } 967 968 /* 969 * Place client information into stable storage: 3/3. 970 * Write the stable storage data to the requested file. 971 */ 972 static void 973 rfs4_ss_clid_write_one(rfs4_client_t *cp, char *dss_path, char *leaf) 974 { 975 int ioflag; 976 int file_vers = NFS4_SS_VERSION; 977 size_t dirlen; 978 struct uio uio; 979 struct iovec iov[4]; 980 char *dir; 981 rfs4_ss_pn_t *ss_pn; 982 vnode_t *vp; 983 nfs_client_id4 *cl_id4 = &(cp->rc_nfs_client); 984 985 /* allow 2 extra bytes for '/' & NUL */ 986 dirlen = strlen(dss_path) + strlen(NFS4_DSS_STATE_LEAF) + 2; 987 dir = kmem_alloc(dirlen, KM_SLEEP); 988 (void) sprintf(dir, "%s/%s", dss_path, NFS4_DSS_STATE_LEAF); 989 990 ss_pn = rfs4_ss_pnalloc(dir, leaf); 991 /* rfs4_ss_pnalloc takes its own copy */ 992 kmem_free(dir, dirlen); 993 if (ss_pn == NULL) 994 return; 995 996 if (vn_open(ss_pn->pn, UIO_SYSSPACE, FCREAT|FWRITE, 0600, &vp, 997 CRCREAT, 0)) { 998 rfs4_ss_pnfree(ss_pn); 999 return; 1000 } 1001 1002 /* 1003 * We need to record leaf - i.e. the filename - so that we know 1004 * what to remove, in the future. However, the dir part of cp->ss_pn 1005 * should never be referenced directly, since it's potentially only 1006 * one of several paths with this leaf in it. 1007 */ 1008 if (cp->rc_ss_pn != NULL) { 1009 if (strcmp(cp->rc_ss_pn->leaf, leaf) == 0) { 1010 /* we've already recorded *this* leaf */ 1011 rfs4_ss_pnfree(ss_pn); 1012 } else { 1013 /* replace with this leaf */ 1014 rfs4_ss_pnfree(cp->rc_ss_pn); 1015 cp->rc_ss_pn = ss_pn; 1016 } 1017 } else { 1018 cp->rc_ss_pn = ss_pn; 1019 } 1020 1021 /* 1022 * Build a scatter list that points to the nfs_client_id4 1023 */ 1024 iov[0].iov_base = (caddr_t)&file_vers; 1025 iov[0].iov_len = sizeof (int); 1026 iov[1].iov_base = (caddr_t)&(cl_id4->verifier); 1027 iov[1].iov_len = NFS4_VERIFIER_SIZE; 1028 iov[2].iov_base = (caddr_t)&(cl_id4->id_len); 1029 iov[2].iov_len = sizeof (uint_t); 1030 iov[3].iov_base = (caddr_t)cl_id4->id_val; 1031 iov[3].iov_len = cl_id4->id_len; 1032 1033 uio.uio_iov = iov; 1034 uio.uio_iovcnt = 4; 1035 uio.uio_loffset = 0; 1036 uio.uio_segflg = UIO_SYSSPACE; 1037 uio.uio_llimit = (rlim64_t)MAXOFFSET_T; 1038 uio.uio_resid = cl_id4->id_len + sizeof (int) + 1039 NFS4_VERIFIER_SIZE + sizeof (uint_t); 1040 1041 ioflag = uio.uio_fmode = (FWRITE|FSYNC); 1042 uio.uio_extflg = UIO_COPY_DEFAULT; 1043 1044 (void) VOP_RWLOCK(vp, V_WRITELOCK_TRUE, NULL); 1045 /* write the full client id to the file. */ 1046 (void) VOP_WRITE(vp, &uio, ioflag, CRED(), NULL); 1047 VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL); 1048 1049 (void) VOP_CLOSE(vp, FWRITE, 1, (offset_t)0, CRED(), NULL); 1050 VN_RELE(vp); 1051 } 1052 1053 /* 1054 * DSS: distributed stable storage. 1055 * Unpack the list of paths passed by nfsd. 1056 * Use nvlist_alloc(9F) to manage the data. 1057 * The caller is responsible for allocating and freeing the buffer. 1058 */ 1059 int 1060 rfs4_dss_setpaths(char *buf, size_t buflen) 1061 { 1062 int error; 1063 1064 /* 1065 * If this is a "warm start", i.e. we previously had DSS paths, 1066 * preserve the old paths. 1067 */ 1068 if (rfs4_dss_paths != NULL) { 1069 /* 1070 * Before we lose the ptr, destroy the nvlist and pathnames 1071 * array from the warm start before this one. 1072 */ 1073 if (rfs4_dss_oldpaths) 1074 nvlist_free(rfs4_dss_oldpaths); 1075 rfs4_dss_oldpaths = rfs4_dss_paths; 1076 } 1077 1078 /* unpack the buffer into a searchable nvlist */ 1079 error = nvlist_unpack(buf, buflen, &rfs4_dss_paths, KM_SLEEP); 1080 if (error) 1081 return (error); 1082 1083 /* 1084 * Search the nvlist for the pathnames nvpair (which is the only nvpair 1085 * in the list, and record its location. 1086 */ 1087 error = nvlist_lookup_string_array(rfs4_dss_paths, NFS4_DSS_NVPAIR_NAME, 1088 &rfs4_dss_newpaths, &rfs4_dss_numnewpaths); 1089 return (error); 1090 } 1091 1092 /* 1093 * Ultimately the nfssys() call NFS4_CLR_STATE endsup here 1094 * to find and mark the client for forced expire. 1095 */ 1096 static void 1097 rfs4_client_scrub(rfs4_entry_t ent, void *arg) 1098 { 1099 rfs4_client_t *cp = (rfs4_client_t *)ent; 1100 struct nfs4clrst_args *clr = arg; 1101 struct sockaddr_in6 *ent_sin6; 1102 struct in6_addr clr_in6; 1103 struct sockaddr_in *ent_sin; 1104 struct in_addr clr_in; 1105 1106 if (clr->addr_type != cp->rc_addr.ss_family) { 1107 return; 1108 } 1109 1110 switch (clr->addr_type) { 1111 1112 case AF_INET6: 1113 /* copyin the address from user space */ 1114 if (copyin(clr->ap, &clr_in6, sizeof (clr_in6))) { 1115 break; 1116 } 1117 1118 ent_sin6 = (struct sockaddr_in6 *)&cp->rc_addr; 1119 1120 /* 1121 * now compare, and if equivalent mark entry 1122 * for forced expiration 1123 */ 1124 if (IN6_ARE_ADDR_EQUAL(&ent_sin6->sin6_addr, &clr_in6)) { 1125 cp->rc_forced_expire = 1; 1126 } 1127 break; 1128 1129 case AF_INET: 1130 /* copyin the address from user space */ 1131 if (copyin(clr->ap, &clr_in, sizeof (clr_in))) { 1132 break; 1133 } 1134 1135 ent_sin = (struct sockaddr_in *)&cp->rc_addr; 1136 1137 /* 1138 * now compare, and if equivalent mark entry 1139 * for forced expiration 1140 */ 1141 if (ent_sin->sin_addr.s_addr == clr_in.s_addr) { 1142 cp->rc_forced_expire = 1; 1143 } 1144 break; 1145 1146 default: 1147 /* force this assert to fail */ 1148 ASSERT(clr->addr_type != clr->addr_type); 1149 } 1150 } 1151 1152 /* 1153 * This is called from nfssys() in order to clear server state 1154 * for the specified client IP Address. 1155 */ 1156 void 1157 rfs4_clear_client_state(struct nfs4clrst_args *clr) 1158 { 1159 (void) rfs4_dbe_walk(rfs4_client_tab, rfs4_client_scrub, clr); 1160 } 1161 1162 /* 1163 * Used to initialize the NFSv4 server's state or database. All of 1164 * the tables are created and timers are set. Only called when NFSv4 1165 * service is provided. 1166 */ 1167 void 1168 rfs4_state_init() 1169 { 1170 int start_grace; 1171 extern boolean_t rfs4_cpr_callb(void *, int); 1172 char *dss_path = NFS4_DSS_VAR_DIR; 1173 1174 mutex_enter(&rfs4_state_lock); 1175 1176 /* 1177 * If the server state database has already been initialized, 1178 * skip it 1179 */ 1180 if (rfs4_server_state != NULL) { 1181 mutex_exit(&rfs4_state_lock); 1182 return; 1183 } 1184 1185 rw_init(&rfs4_findclient_lock, NULL, RW_DEFAULT, NULL); 1186 1187 /* 1188 * Set the boot time. If the server 1189 * has been restarted quickly and has had the opportunity to 1190 * service clients, then the start_time needs to be bumped 1191 * regardless. A small window but it exists... 1192 */ 1193 if (rfs4_start_time != gethrestime_sec()) 1194 rfs4_start_time = gethrestime_sec(); 1195 else 1196 rfs4_start_time++; 1197 1198 /* DSS: distributed stable storage: initialise served paths list */ 1199 rfs4_dss_pathlist = NULL; 1200 1201 /* 1202 * Create the first server instance, or a new one if the server has 1203 * been restarted; see above comments on rfs4_start_time. Don't 1204 * start its grace period; that will be done later, to maximise the 1205 * clients' recovery window. 1206 */ 1207 start_grace = 0; 1208 rfs4_servinst_create(start_grace, 1, &dss_path); 1209 1210 /* reset the "first NFSv4 request" status */ 1211 rfs4_seen_first_compound = 0; 1212 1213 /* 1214 * Add a CPR callback so that we can update client 1215 * access times to extend the lease after a suspend 1216 * and resume (using the same class as rpcmod/connmgr) 1217 */ 1218 cpr_id = callb_add(rfs4_cpr_callb, 0, CB_CL_CPR_RPC, "rfs4"); 1219 1220 /* set the various cache timers for table creation */ 1221 if (rfs4_client_cache_time == 0) 1222 rfs4_client_cache_time = CLIENT_CACHE_TIME; 1223 if (rfs4_openowner_cache_time == 0) 1224 rfs4_openowner_cache_time = OPENOWNER_CACHE_TIME; 1225 if (rfs4_state_cache_time == 0) 1226 rfs4_state_cache_time = STATE_CACHE_TIME; 1227 if (rfs4_lo_state_cache_time == 0) 1228 rfs4_lo_state_cache_time = LO_STATE_CACHE_TIME; 1229 if (rfs4_lockowner_cache_time == 0) 1230 rfs4_lockowner_cache_time = LOCKOWNER_CACHE_TIME; 1231 if (rfs4_file_cache_time == 0) 1232 rfs4_file_cache_time = FILE_CACHE_TIME; 1233 if (rfs4_deleg_state_cache_time == 0) 1234 rfs4_deleg_state_cache_time = DELEG_STATE_CACHE_TIME; 1235 1236 /* Create the overall database to hold all server state */ 1237 rfs4_server_state = rfs4_database_create(rfs4_database_debug); 1238 1239 /* Now create the individual tables */ 1240 rfs4_client_cache_time *= rfs4_lease_time; 1241 rfs4_client_tab = rfs4_table_create(rfs4_server_state, 1242 "Client", 1243 rfs4_client_cache_time, 1244 2, 1245 rfs4_client_create, 1246 rfs4_client_destroy, 1247 rfs4_client_expiry, 1248 sizeof (rfs4_client_t), 1249 TABSIZE, 1250 MAXTABSZ/8, 100); 1251 rfs4_nfsclnt_idx = rfs4_index_create(rfs4_client_tab, 1252 "nfs_client_id4", nfsclnt_hash, 1253 nfsclnt_compare, nfsclnt_mkkey, 1254 TRUE); 1255 rfs4_clientid_idx = rfs4_index_create(rfs4_client_tab, 1256 "client_id", clientid_hash, 1257 clientid_compare, clientid_mkkey, 1258 FALSE); 1259 1260 rfs4_openowner_cache_time *= rfs4_lease_time; 1261 rfs4_openowner_tab = rfs4_table_create(rfs4_server_state, 1262 "OpenOwner", 1263 rfs4_openowner_cache_time, 1264 1, 1265 rfs4_openowner_create, 1266 rfs4_openowner_destroy, 1267 rfs4_openowner_expiry, 1268 sizeof (rfs4_openowner_t), 1269 TABSIZE, 1270 MAXTABSZ, 100); 1271 rfs4_openowner_idx = rfs4_index_create(rfs4_openowner_tab, 1272 "open_owner4", openowner_hash, 1273 openowner_compare, 1274 openowner_mkkey, TRUE); 1275 1276 rfs4_state_cache_time *= rfs4_lease_time; 1277 rfs4_state_tab = rfs4_table_create(rfs4_server_state, 1278 "OpenStateID", 1279 rfs4_state_cache_time, 1280 3, 1281 rfs4_state_create, 1282 rfs4_state_destroy, 1283 rfs4_state_expiry, 1284 sizeof (rfs4_state_t), 1285 TABSIZE, 1286 MAXTABSZ, 100); 1287 1288 rfs4_state_owner_file_idx = rfs4_index_create(rfs4_state_tab, 1289 "Openowner-File", 1290 state_owner_file_hash, 1291 state_owner_file_compare, 1292 state_owner_file_mkkey, TRUE); 1293 1294 rfs4_state_idx = rfs4_index_create(rfs4_state_tab, 1295 "State-id", state_hash, 1296 state_compare, state_mkkey, FALSE); 1297 1298 rfs4_state_file_idx = rfs4_index_create(rfs4_state_tab, 1299 "File", state_file_hash, 1300 state_file_compare, state_file_mkkey, 1301 FALSE); 1302 1303 rfs4_lo_state_cache_time *= rfs4_lease_time; 1304 rfs4_lo_state_tab = rfs4_table_create(rfs4_server_state, 1305 "LockStateID", 1306 rfs4_lo_state_cache_time, 1307 2, 1308 rfs4_lo_state_create, 1309 rfs4_lo_state_destroy, 1310 rfs4_lo_state_expiry, 1311 sizeof (rfs4_lo_state_t), 1312 TABSIZE, 1313 MAXTABSZ, 100); 1314 1315 rfs4_lo_state_owner_idx = rfs4_index_create(rfs4_lo_state_tab, 1316 "lockownerxstate", 1317 lo_state_lo_hash, 1318 lo_state_lo_compare, 1319 lo_state_lo_mkkey, TRUE); 1320 1321 rfs4_lo_state_idx = rfs4_index_create(rfs4_lo_state_tab, 1322 "State-id", 1323 lo_state_hash, lo_state_compare, 1324 lo_state_mkkey, FALSE); 1325 1326 rfs4_lockowner_cache_time *= rfs4_lease_time; 1327 1328 rfs4_lockowner_tab = rfs4_table_create(rfs4_server_state, 1329 "Lockowner", 1330 rfs4_lockowner_cache_time, 1331 2, 1332 rfs4_lockowner_create, 1333 rfs4_lockowner_destroy, 1334 rfs4_lockowner_expiry, 1335 sizeof (rfs4_lockowner_t), 1336 TABSIZE, 1337 MAXTABSZ, 100); 1338 1339 rfs4_lockowner_idx = rfs4_index_create(rfs4_lockowner_tab, 1340 "lock_owner4", lockowner_hash, 1341 lockowner_compare, 1342 lockowner_mkkey, TRUE); 1343 1344 rfs4_lockowner_pid_idx = rfs4_index_create(rfs4_lockowner_tab, 1345 "pid", pid_hash, 1346 pid_compare, pid_mkkey, 1347 FALSE); 1348 1349 rfs4_file_cache_time *= rfs4_lease_time; 1350 rfs4_file_tab = rfs4_table_create(rfs4_server_state, 1351 "File", 1352 rfs4_file_cache_time, 1353 1, 1354 rfs4_file_create, 1355 rfs4_file_destroy, 1356 NULL, 1357 sizeof (rfs4_file_t), 1358 TABSIZE, 1359 MAXTABSZ, -1); 1360 1361 rfs4_file_idx = rfs4_index_create(rfs4_file_tab, 1362 "Filehandle", file_hash, 1363 file_compare, file_mkkey, TRUE); 1364 1365 rfs4_deleg_state_cache_time *= rfs4_lease_time; 1366 rfs4_deleg_state_tab = rfs4_table_create(rfs4_server_state, 1367 "DelegStateID", 1368 rfs4_deleg_state_cache_time, 1369 2, 1370 rfs4_deleg_state_create, 1371 rfs4_deleg_state_destroy, 1372 rfs4_deleg_state_expiry, 1373 sizeof (rfs4_deleg_state_t), 1374 TABSIZE, 1375 MAXTABSZ, 100); 1376 rfs4_deleg_idx = rfs4_index_create(rfs4_deleg_state_tab, 1377 "DelegByFileClient", 1378 deleg_hash, 1379 deleg_compare, 1380 deleg_mkkey, TRUE); 1381 1382 rfs4_deleg_state_idx = rfs4_index_create(rfs4_deleg_state_tab, 1383 "DelegState", 1384 deleg_state_hash, 1385 deleg_state_compare, 1386 deleg_state_mkkey, FALSE); 1387 1388 /* 1389 * Init the stable storage. 1390 */ 1391 rfs4_ss_init(); 1392 1393 rfs4_client_clrst = rfs4_clear_client_state; 1394 1395 mutex_exit(&rfs4_state_lock); 1396 } 1397 1398 1399 /* 1400 * Used at server shutdown to cleanup all of the NFSv4 server's structures 1401 * and other state. 1402 */ 1403 void 1404 rfs4_state_fini() 1405 { 1406 rfs4_database_t *dbp; 1407 1408 mutex_enter(&rfs4_state_lock); 1409 1410 if (rfs4_server_state == NULL) { 1411 mutex_exit(&rfs4_state_lock); 1412 return; 1413 } 1414 1415 rfs4_client_clrst = NULL; 1416 1417 rfs4_set_deleg_policy(SRV_NEVER_DELEGATE); 1418 dbp = rfs4_server_state; 1419 rfs4_server_state = NULL; 1420 1421 /* 1422 * Cleanup the CPR callback. 1423 */ 1424 if (cpr_id) 1425 (void) callb_delete(cpr_id); 1426 1427 rw_destroy(&rfs4_findclient_lock); 1428 1429 /* First stop all of the reaper threads in the database */ 1430 rfs4_database_shutdown(dbp); 1431 /* clean up any dangling stable storage structures */ 1432 rfs4_ss_fini(); 1433 /* Now actually destroy/release the database and its tables */ 1434 rfs4_database_destroy(dbp); 1435 1436 /* Reset the cache timers for next time */ 1437 rfs4_client_cache_time = 0; 1438 rfs4_openowner_cache_time = 0; 1439 rfs4_state_cache_time = 0; 1440 rfs4_lo_state_cache_time = 0; 1441 rfs4_lockowner_cache_time = 0; 1442 rfs4_file_cache_time = 0; 1443 rfs4_deleg_state_cache_time = 0; 1444 1445 mutex_exit(&rfs4_state_lock); 1446 1447 /* destroy server instances and current instance ptr */ 1448 rfs4_servinst_destroy_all(); 1449 1450 /* reset the "first NFSv4 request" status */ 1451 rfs4_seen_first_compound = 0; 1452 1453 /* DSS: distributed stable storage */ 1454 if (rfs4_dss_oldpaths) 1455 nvlist_free(rfs4_dss_oldpaths); 1456 if (rfs4_dss_paths) 1457 nvlist_free(rfs4_dss_paths); 1458 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 1459 } 1460 1461 typedef union { 1462 struct { 1463 uint32_t start_time; 1464 uint32_t c_id; 1465 } impl_id; 1466 clientid4 id4; 1467 } cid; 1468 1469 static int foreign_stateid(stateid_t *id); 1470 static int foreign_clientid(cid *cidp); 1471 static void embed_nodeid(cid *cidp); 1472 1473 typedef union { 1474 struct { 1475 uint32_t c_id; 1476 uint32_t gen_num; 1477 } cv_impl; 1478 verifier4 confirm_verf; 1479 } scid_confirm_verf; 1480 1481 static uint32_t 1482 clientid_hash(void *key) 1483 { 1484 cid *idp = key; 1485 1486 return (idp->impl_id.c_id); 1487 } 1488 1489 static bool_t 1490 clientid_compare(rfs4_entry_t entry, void *key) 1491 { 1492 rfs4_client_t *cp = (rfs4_client_t *)entry; 1493 clientid4 *idp = key; 1494 1495 return (*idp == cp->rc_clientid); 1496 } 1497 1498 static void * 1499 clientid_mkkey(rfs4_entry_t entry) 1500 { 1501 rfs4_client_t *cp = (rfs4_client_t *)entry; 1502 1503 return (&cp->rc_clientid); 1504 } 1505 1506 static uint32_t 1507 nfsclnt_hash(void *key) 1508 { 1509 nfs_client_id4 *client = key; 1510 int i; 1511 uint32_t hash = 0; 1512 1513 for (i = 0; i < client->id_len; i++) { 1514 hash <<= 1; 1515 hash += (uint_t)client->id_val[i]; 1516 } 1517 return (hash); 1518 } 1519 1520 1521 static bool_t 1522 nfsclnt_compare(rfs4_entry_t entry, void *key) 1523 { 1524 rfs4_client_t *cp = (rfs4_client_t *)entry; 1525 nfs_client_id4 *nfs_client = key; 1526 1527 if (cp->rc_nfs_client.id_len != nfs_client->id_len) 1528 return (FALSE); 1529 1530 return (bcmp(cp->rc_nfs_client.id_val, nfs_client->id_val, 1531 nfs_client->id_len) == 0); 1532 } 1533 1534 static void * 1535 nfsclnt_mkkey(rfs4_entry_t entry) 1536 { 1537 rfs4_client_t *cp = (rfs4_client_t *)entry; 1538 1539 return (&cp->rc_nfs_client); 1540 } 1541 1542 static bool_t 1543 rfs4_client_expiry(rfs4_entry_t u_entry) 1544 { 1545 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1546 bool_t cp_expired; 1547 1548 if (rfs4_dbe_is_invalid(cp->rc_dbe)) 1549 return (TRUE); 1550 /* 1551 * If the sysadmin has used clear_locks for this 1552 * entry then forced_expire will be set and we 1553 * want this entry to be reaped. Or the entry 1554 * has exceeded its lease period. 1555 */ 1556 cp_expired = (cp->rc_forced_expire || 1557 (gethrestime_sec() - cp->rc_last_access 1558 > rfs4_lease_time)); 1559 1560 if (!cp->rc_ss_remove && cp_expired) 1561 cp->rc_ss_remove = 1; 1562 return (cp_expired); 1563 } 1564 1565 /* 1566 * Remove the leaf file from all distributed stable storage paths. 1567 */ 1568 static void 1569 rfs4_dss_remove_cpleaf(rfs4_client_t *cp) 1570 { 1571 char *leaf = cp->rc_ss_pn->leaf; 1572 1573 rfs4_dss_remove_leaf(cp->rc_server_instance, NFS4_DSS_STATE_LEAF, leaf); 1574 } 1575 1576 static void 1577 rfs4_dss_remove_leaf(rfs4_servinst_t *sip, char *dir_leaf, char *leaf) 1578 { 1579 int i, npaths = sip->dss_npaths; 1580 1581 for (i = 0; i < npaths; i++) { 1582 rfs4_dss_path_t *dss_path = sip->dss_paths[i]; 1583 char *path, *dir; 1584 size_t pathlen; 1585 1586 /* the HA-NFSv4 path might have been failed-over away from us */ 1587 if (dss_path == NULL) 1588 continue; 1589 1590 dir = dss_path->path; 1591 1592 /* allow 3 extra bytes for two '/' & a NUL */ 1593 pathlen = strlen(dir) + strlen(dir_leaf) + strlen(leaf) + 3; 1594 path = kmem_alloc(pathlen, KM_SLEEP); 1595 (void) sprintf(path, "%s/%s/%s", dir, dir_leaf, leaf); 1596 1597 (void) vn_remove(path, UIO_SYSSPACE, RMFILE); 1598 1599 kmem_free(path, pathlen); 1600 } 1601 } 1602 1603 static void 1604 rfs4_client_destroy(rfs4_entry_t u_entry) 1605 { 1606 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1607 1608 mutex_destroy(cp->rc_cbinfo.cb_lock); 1609 cv_destroy(cp->rc_cbinfo.cb_cv); 1610 cv_destroy(cp->rc_cbinfo.cb_cv_nullcaller); 1611 list_destroy(&cp->rc_openownerlist); 1612 1613 /* free callback info */ 1614 rfs4_cbinfo_free(&cp->rc_cbinfo); 1615 1616 if (cp->rc_cp_confirmed) 1617 rfs4_client_rele(cp->rc_cp_confirmed); 1618 1619 if (cp->rc_ss_pn) { 1620 /* check if the stable storage files need to be removed */ 1621 if (cp->rc_ss_remove) 1622 rfs4_dss_remove_cpleaf(cp); 1623 rfs4_ss_pnfree(cp->rc_ss_pn); 1624 } 1625 1626 /* Free the client supplied client id */ 1627 kmem_free(cp->rc_nfs_client.id_val, cp->rc_nfs_client.id_len); 1628 1629 if (cp->rc_sysidt != LM_NOSYSID) 1630 lm_free_sysidt(cp->rc_sysidt); 1631 } 1632 1633 static bool_t 1634 rfs4_client_create(rfs4_entry_t u_entry, void *arg) 1635 { 1636 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1637 nfs_client_id4 *client = (nfs_client_id4 *)arg; 1638 cid *cidp; 1639 scid_confirm_verf *scvp; 1640 1641 /* Get a clientid to give to the client */ 1642 cidp = (cid *)&cp->rc_clientid; 1643 cidp->impl_id.start_time = rfs4_start_time; 1644 cidp->impl_id.c_id = (uint32_t)rfs4_dbe_getid(cp->rc_dbe); 1645 1646 /* If we are booted as a cluster node, embed our nodeid */ 1647 if (cluster_bootflags & CLUSTER_BOOTED) 1648 embed_nodeid(cidp); 1649 1650 /* Allocate and copy client's client id value */ 1651 cp->rc_nfs_client.id_val = kmem_alloc(client->id_len, KM_SLEEP); 1652 cp->rc_nfs_client.id_len = client->id_len; 1653 bcopy(client->id_val, cp->rc_nfs_client.id_val, client->id_len); 1654 cp->rc_nfs_client.verifier = client->verifier; 1655 1656 /* Init the value for the SETCLIENTID_CONFIRM verifier */ 1657 scvp = (scid_confirm_verf *)&cp->rc_confirm_verf; 1658 scvp->cv_impl.c_id = cidp->impl_id.c_id; 1659 scvp->cv_impl.gen_num = 0; 1660 1661 /* An F_UNLKSYS has been done for this client */ 1662 cp->rc_unlksys_completed = FALSE; 1663 1664 /* We need the client to ack us */ 1665 cp->rc_need_confirm = TRUE; 1666 cp->rc_cp_confirmed = NULL; 1667 1668 /* TRUE all the time until the callback path actually fails */ 1669 cp->rc_cbinfo.cb_notified_of_cb_path_down = TRUE; 1670 1671 /* Initialize the access time to now */ 1672 cp->rc_last_access = gethrestime_sec(); 1673 1674 cp->rc_cr_set = NULL; 1675 1676 cp->rc_sysidt = LM_NOSYSID; 1677 1678 list_create(&cp->rc_openownerlist, sizeof (rfs4_openowner_t), 1679 offsetof(rfs4_openowner_t, ro_node)); 1680 1681 /* set up the callback control structure */ 1682 cp->rc_cbinfo.cb_state = CB_UNINIT; 1683 mutex_init(cp->rc_cbinfo.cb_lock, NULL, MUTEX_DEFAULT, NULL); 1684 cv_init(cp->rc_cbinfo.cb_cv, NULL, CV_DEFAULT, NULL); 1685 cv_init(cp->rc_cbinfo.cb_cv_nullcaller, NULL, CV_DEFAULT, NULL); 1686 1687 /* 1688 * Associate the client_t with the current server instance. 1689 * The hold is solely to satisfy the calling requirement of 1690 * rfs4_servinst_assign(). In this case it's not strictly necessary. 1691 */ 1692 rfs4_dbe_hold(cp->rc_dbe); 1693 rfs4_servinst_assign(cp, rfs4_cur_servinst); 1694 rfs4_dbe_rele(cp->rc_dbe); 1695 1696 return (TRUE); 1697 } 1698 1699 /* 1700 * Caller wants to generate/update the setclientid_confirm verifier 1701 * associated with a client. This is done during the SETCLIENTID 1702 * processing. 1703 */ 1704 void 1705 rfs4_client_scv_next(rfs4_client_t *cp) 1706 { 1707 scid_confirm_verf *scvp; 1708 1709 /* Init the value for the SETCLIENTID_CONFIRM verifier */ 1710 scvp = (scid_confirm_verf *)&cp->rc_confirm_verf; 1711 scvp->cv_impl.gen_num++; 1712 } 1713 1714 void 1715 rfs4_client_rele(rfs4_client_t *cp) 1716 { 1717 rfs4_dbe_rele(cp->rc_dbe); 1718 } 1719 1720 rfs4_client_t * 1721 rfs4_findclient(nfs_client_id4 *client, bool_t *create, rfs4_client_t *oldcp) 1722 { 1723 rfs4_client_t *cp; 1724 1725 1726 if (oldcp) { 1727 rw_enter(&rfs4_findclient_lock, RW_WRITER); 1728 rfs4_dbe_hide(oldcp->rc_dbe); 1729 } else { 1730 rw_enter(&rfs4_findclient_lock, RW_READER); 1731 } 1732 1733 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_nfsclnt_idx, client, 1734 create, (void *)client, RFS4_DBS_VALID); 1735 1736 if (oldcp) 1737 rfs4_dbe_unhide(oldcp->rc_dbe); 1738 1739 rw_exit(&rfs4_findclient_lock); 1740 1741 return (cp); 1742 } 1743 1744 rfs4_client_t * 1745 rfs4_findclient_by_id(clientid4 clientid, bool_t find_unconfirmed) 1746 { 1747 rfs4_client_t *cp; 1748 bool_t create = FALSE; 1749 cid *cidp = (cid *)&clientid; 1750 1751 /* If we're a cluster and the nodeid isn't right, short-circuit */ 1752 if (cluster_bootflags & CLUSTER_BOOTED && foreign_clientid(cidp)) 1753 return (NULL); 1754 1755 rw_enter(&rfs4_findclient_lock, RW_READER); 1756 1757 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, &clientid, 1758 &create, NULL, RFS4_DBS_VALID); 1759 1760 rw_exit(&rfs4_findclient_lock); 1761 1762 if (cp && cp->rc_need_confirm && find_unconfirmed == FALSE) { 1763 rfs4_client_rele(cp); 1764 return (NULL); 1765 } else { 1766 return (cp); 1767 } 1768 } 1769 1770 bool_t 1771 rfs4_lease_expired(rfs4_client_t *cp) 1772 { 1773 bool_t rc; 1774 1775 rfs4_dbe_lock(cp->rc_dbe); 1776 1777 /* 1778 * If the admin has executed clear_locks for this 1779 * client id, force expire will be set, so no need 1780 * to calculate anything because it's "outa here". 1781 */ 1782 if (cp->rc_forced_expire) { 1783 rc = TRUE; 1784 } else { 1785 rc = (gethrestime_sec() - cp->rc_last_access > rfs4_lease_time); 1786 } 1787 1788 /* 1789 * If the lease has expired we will also want 1790 * to remove any stable storage state data. So 1791 * mark the client id accordingly. 1792 */ 1793 if (!cp->rc_ss_remove) 1794 cp->rc_ss_remove = (rc == TRUE); 1795 1796 rfs4_dbe_unlock(cp->rc_dbe); 1797 1798 return (rc); 1799 } 1800 1801 void 1802 rfs4_update_lease(rfs4_client_t *cp) 1803 { 1804 rfs4_dbe_lock(cp->rc_dbe); 1805 if (!cp->rc_forced_expire) 1806 cp->rc_last_access = gethrestime_sec(); 1807 rfs4_dbe_unlock(cp->rc_dbe); 1808 } 1809 1810 1811 static bool_t 1812 EQOPENOWNER(open_owner4 *a, open_owner4 *b) 1813 { 1814 bool_t rc; 1815 1816 if (a->clientid != b->clientid) 1817 return (FALSE); 1818 1819 if (a->owner_len != b->owner_len) 1820 return (FALSE); 1821 1822 rc = (bcmp(a->owner_val, b->owner_val, a->owner_len) == 0); 1823 1824 return (rc); 1825 } 1826 1827 static uint_t 1828 openowner_hash(void *key) 1829 { 1830 int i; 1831 open_owner4 *openowner = key; 1832 uint_t hash = 0; 1833 1834 for (i = 0; i < openowner->owner_len; i++) { 1835 hash <<= 4; 1836 hash += (uint_t)openowner->owner_val[i]; 1837 } 1838 hash += (uint_t)openowner->clientid; 1839 hash |= (openowner->clientid >> 32); 1840 1841 return (hash); 1842 } 1843 1844 static bool_t 1845 openowner_compare(rfs4_entry_t u_entry, void *key) 1846 { 1847 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 1848 open_owner4 *arg = key; 1849 1850 return (EQOPENOWNER(&oo->ro_owner, arg)); 1851 } 1852 1853 void * 1854 openowner_mkkey(rfs4_entry_t u_entry) 1855 { 1856 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 1857 1858 return (&oo->ro_owner); 1859 } 1860 1861 static bool_t 1862 rfs4_openowner_expiry(rfs4_entry_t u_entry) 1863 { 1864 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 1865 1866 if (rfs4_dbe_is_invalid(oo->ro_dbe)) 1867 return (TRUE); 1868 return ((gethrestime_sec() - oo->ro_client->rc_last_access 1869 > rfs4_lease_time)); 1870 } 1871 1872 static void 1873 rfs4_openowner_destroy(rfs4_entry_t u_entry) 1874 { 1875 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 1876 1877 /* Remove open owner from client's lists of open owners */ 1878 rfs4_dbe_lock(oo->ro_client->rc_dbe); 1879 list_remove(&oo->ro_client->rc_openownerlist, oo); 1880 rfs4_dbe_unlock(oo->ro_client->rc_dbe); 1881 1882 /* One less reference to the client */ 1883 rfs4_client_rele(oo->ro_client); 1884 oo->ro_client = NULL; 1885 1886 /* Free the last reply for this lock owner */ 1887 rfs4_free_reply(&oo->ro_reply); 1888 1889 if (oo->ro_reply_fh.nfs_fh4_val) { 1890 kmem_free(oo->ro_reply_fh.nfs_fh4_val, 1891 oo->ro_reply_fh.nfs_fh4_len); 1892 oo->ro_reply_fh.nfs_fh4_val = NULL; 1893 oo->ro_reply_fh.nfs_fh4_len = 0; 1894 } 1895 1896 rfs4_sw_destroy(&oo->ro_sw); 1897 list_destroy(&oo->ro_statelist); 1898 1899 /* Free the lock owner id */ 1900 kmem_free(oo->ro_owner.owner_val, oo->ro_owner.owner_len); 1901 } 1902 1903 void 1904 rfs4_openowner_rele(rfs4_openowner_t *oo) 1905 { 1906 rfs4_dbe_rele(oo->ro_dbe); 1907 } 1908 1909 static bool_t 1910 rfs4_openowner_create(rfs4_entry_t u_entry, void *arg) 1911 { 1912 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 1913 rfs4_openowner_t *argp = (rfs4_openowner_t *)arg; 1914 open_owner4 *openowner = &argp->ro_owner; 1915 seqid4 seqid = argp->ro_open_seqid; 1916 rfs4_client_t *cp; 1917 bool_t create = FALSE; 1918 1919 rw_enter(&rfs4_findclient_lock, RW_READER); 1920 1921 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, 1922 &openowner->clientid, 1923 &create, NULL, RFS4_DBS_VALID); 1924 1925 rw_exit(&rfs4_findclient_lock); 1926 1927 if (cp == NULL) 1928 return (FALSE); 1929 1930 oo->ro_reply_fh.nfs_fh4_len = 0; 1931 oo->ro_reply_fh.nfs_fh4_val = NULL; 1932 1933 oo->ro_owner.clientid = openowner->clientid; 1934 oo->ro_owner.owner_val = 1935 kmem_alloc(openowner->owner_len, KM_SLEEP); 1936 1937 bcopy(openowner->owner_val, 1938 oo->ro_owner.owner_val, openowner->owner_len); 1939 1940 oo->ro_owner.owner_len = openowner->owner_len; 1941 1942 oo->ro_need_confirm = TRUE; 1943 1944 rfs4_sw_init(&oo->ro_sw); 1945 1946 oo->ro_open_seqid = seqid; 1947 bzero(&oo->ro_reply, sizeof (nfs_resop4)); 1948 oo->ro_client = cp; 1949 oo->ro_cr_set = NULL; 1950 1951 list_create(&oo->ro_statelist, sizeof (rfs4_state_t), 1952 offsetof(rfs4_state_t, rs_node)); 1953 1954 /* Insert openowner into client's open owner list */ 1955 rfs4_dbe_lock(cp->rc_dbe); 1956 list_insert_tail(&cp->rc_openownerlist, oo); 1957 rfs4_dbe_unlock(cp->rc_dbe); 1958 1959 return (TRUE); 1960 } 1961 1962 rfs4_openowner_t * 1963 rfs4_findopenowner(open_owner4 *openowner, bool_t *create, seqid4 seqid) 1964 { 1965 rfs4_openowner_t *oo; 1966 rfs4_openowner_t arg; 1967 1968 arg.ro_owner = *openowner; 1969 arg.ro_open_seqid = seqid; 1970 oo = (rfs4_openowner_t *)rfs4_dbsearch(rfs4_openowner_idx, openowner, 1971 create, &arg, RFS4_DBS_VALID); 1972 1973 return (oo); 1974 } 1975 1976 void 1977 rfs4_update_open_sequence(rfs4_openowner_t *oo) 1978 { 1979 1980 rfs4_dbe_lock(oo->ro_dbe); 1981 1982 oo->ro_open_seqid++; 1983 1984 rfs4_dbe_unlock(oo->ro_dbe); 1985 } 1986 1987 void 1988 rfs4_update_open_resp(rfs4_openowner_t *oo, nfs_resop4 *resp, nfs_fh4 *fh) 1989 { 1990 1991 rfs4_dbe_lock(oo->ro_dbe); 1992 1993 rfs4_free_reply(&oo->ro_reply); 1994 1995 rfs4_copy_reply(&oo->ro_reply, resp); 1996 1997 /* Save the filehandle if provided and free if not used */ 1998 if (resp->nfs_resop4_u.opopen.status == NFS4_OK && 1999 fh && fh->nfs_fh4_len) { 2000 if (oo->ro_reply_fh.nfs_fh4_val == NULL) 2001 oo->ro_reply_fh.nfs_fh4_val = 2002 kmem_alloc(fh->nfs_fh4_len, KM_SLEEP); 2003 nfs_fh4_copy(fh, &oo->ro_reply_fh); 2004 } else { 2005 if (oo->ro_reply_fh.nfs_fh4_val) { 2006 kmem_free(oo->ro_reply_fh.nfs_fh4_val, 2007 oo->ro_reply_fh.nfs_fh4_len); 2008 oo->ro_reply_fh.nfs_fh4_val = NULL; 2009 oo->ro_reply_fh.nfs_fh4_len = 0; 2010 } 2011 } 2012 2013 rfs4_dbe_unlock(oo->ro_dbe); 2014 } 2015 2016 static bool_t 2017 lockowner_compare(rfs4_entry_t u_entry, void *key) 2018 { 2019 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2020 lock_owner4 *b = (lock_owner4 *)key; 2021 2022 if (lo->rl_owner.clientid != b->clientid) 2023 return (FALSE); 2024 2025 if (lo->rl_owner.owner_len != b->owner_len) 2026 return (FALSE); 2027 2028 return (bcmp(lo->rl_owner.owner_val, b->owner_val, 2029 lo->rl_owner.owner_len) == 0); 2030 } 2031 2032 void * 2033 lockowner_mkkey(rfs4_entry_t u_entry) 2034 { 2035 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2036 2037 return (&lo->rl_owner); 2038 } 2039 2040 static uint32_t 2041 lockowner_hash(void *key) 2042 { 2043 int i; 2044 lock_owner4 *lockowner = key; 2045 uint_t hash = 0; 2046 2047 for (i = 0; i < lockowner->owner_len; i++) { 2048 hash <<= 4; 2049 hash += (uint_t)lockowner->owner_val[i]; 2050 } 2051 hash += (uint_t)lockowner->clientid; 2052 hash |= (lockowner->clientid >> 32); 2053 2054 return (hash); 2055 } 2056 2057 static uint32_t 2058 pid_hash(void *key) 2059 { 2060 return ((uint32_t)(uintptr_t)key); 2061 } 2062 2063 static void * 2064 pid_mkkey(rfs4_entry_t u_entry) 2065 { 2066 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2067 2068 return ((void *)(uintptr_t)lo->rl_pid); 2069 } 2070 2071 static bool_t 2072 pid_compare(rfs4_entry_t u_entry, void *key) 2073 { 2074 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2075 2076 return (lo->rl_pid == (pid_t)(uintptr_t)key); 2077 } 2078 2079 static void 2080 rfs4_lockowner_destroy(rfs4_entry_t u_entry) 2081 { 2082 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2083 2084 /* Free the lock owner id */ 2085 kmem_free(lo->rl_owner.owner_val, lo->rl_owner.owner_len); 2086 rfs4_client_rele(lo->rl_client); 2087 } 2088 2089 void 2090 rfs4_lockowner_rele(rfs4_lockowner_t *lo) 2091 { 2092 rfs4_dbe_rele(lo->rl_dbe); 2093 } 2094 2095 /* ARGSUSED */ 2096 static bool_t 2097 rfs4_lockowner_expiry(rfs4_entry_t u_entry) 2098 { 2099 /* 2100 * Since expiry is called with no other references on 2101 * this struct, go ahead and have it removed. 2102 */ 2103 return (TRUE); 2104 } 2105 2106 static bool_t 2107 rfs4_lockowner_create(rfs4_entry_t u_entry, void *arg) 2108 { 2109 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2110 lock_owner4 *lockowner = (lock_owner4 *)arg; 2111 rfs4_client_t *cp; 2112 bool_t create = FALSE; 2113 2114 rw_enter(&rfs4_findclient_lock, RW_READER); 2115 2116 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, 2117 &lockowner->clientid, 2118 &create, NULL, RFS4_DBS_VALID); 2119 2120 rw_exit(&rfs4_findclient_lock); 2121 2122 if (cp == NULL) 2123 return (FALSE); 2124 2125 /* Reference client */ 2126 lo->rl_client = cp; 2127 lo->rl_owner.clientid = lockowner->clientid; 2128 lo->rl_owner.owner_val = kmem_alloc(lockowner->owner_len, KM_SLEEP); 2129 bcopy(lockowner->owner_val, lo->rl_owner.owner_val, 2130 lockowner->owner_len); 2131 lo->rl_owner.owner_len = lockowner->owner_len; 2132 lo->rl_pid = rfs4_dbe_getid(lo->rl_dbe); 2133 2134 return (TRUE); 2135 } 2136 2137 rfs4_lockowner_t * 2138 rfs4_findlockowner(lock_owner4 *lockowner, bool_t *create) 2139 { 2140 rfs4_lockowner_t *lo; 2141 2142 lo = (rfs4_lockowner_t *)rfs4_dbsearch(rfs4_lockowner_idx, lockowner, 2143 create, lockowner, RFS4_DBS_VALID); 2144 2145 return (lo); 2146 } 2147 2148 rfs4_lockowner_t * 2149 rfs4_findlockowner_by_pid(pid_t pid) 2150 { 2151 rfs4_lockowner_t *lo; 2152 bool_t create = FALSE; 2153 2154 lo = (rfs4_lockowner_t *)rfs4_dbsearch(rfs4_lockowner_pid_idx, 2155 (void *)(uintptr_t)pid, &create, NULL, RFS4_DBS_VALID); 2156 2157 return (lo); 2158 } 2159 2160 2161 static uint32_t 2162 file_hash(void *key) 2163 { 2164 return (ADDRHASH(key)); 2165 } 2166 2167 static void * 2168 file_mkkey(rfs4_entry_t u_entry) 2169 { 2170 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2171 2172 return (fp->rf_vp); 2173 } 2174 2175 static bool_t 2176 file_compare(rfs4_entry_t u_entry, void *key) 2177 { 2178 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2179 2180 return (fp->rf_vp == (vnode_t *)key); 2181 } 2182 2183 static void 2184 rfs4_file_destroy(rfs4_entry_t u_entry) 2185 { 2186 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2187 2188 list_destroy(&fp->rf_delegstatelist); 2189 2190 if (fp->rf_filehandle.nfs_fh4_val) 2191 kmem_free(fp->rf_filehandle.nfs_fh4_val, 2192 fp->rf_filehandle.nfs_fh4_len); 2193 cv_destroy(fp->rf_dinfo.rd_recall_cv); 2194 if (fp->rf_vp) { 2195 vnode_t *vp = fp->rf_vp; 2196 2197 mutex_enter(&vp->v_vsd_lock); 2198 (void) vsd_set(vp, nfs4_srv_vkey, NULL); 2199 mutex_exit(&vp->v_vsd_lock); 2200 VN_RELE(vp); 2201 fp->rf_vp = NULL; 2202 } 2203 rw_destroy(&fp->rf_file_rwlock); 2204 } 2205 2206 /* 2207 * Used to unlock the underlying dbe struct only 2208 */ 2209 void 2210 rfs4_file_rele(rfs4_file_t *fp) 2211 { 2212 rfs4_dbe_rele(fp->rf_dbe); 2213 } 2214 2215 typedef struct { 2216 vnode_t *vp; 2217 nfs_fh4 *fh; 2218 } rfs4_fcreate_arg; 2219 2220 static bool_t 2221 rfs4_file_create(rfs4_entry_t u_entry, void *arg) 2222 { 2223 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2224 rfs4_fcreate_arg *ap = (rfs4_fcreate_arg *)arg; 2225 vnode_t *vp = ap->vp; 2226 nfs_fh4 *fh = ap->fh; 2227 2228 VN_HOLD(vp); 2229 2230 fp->rf_filehandle.nfs_fh4_len = 0; 2231 fp->rf_filehandle.nfs_fh4_val = NULL; 2232 ASSERT(fh && fh->nfs_fh4_len); 2233 if (fh && fh->nfs_fh4_len) { 2234 fp->rf_filehandle.nfs_fh4_val = 2235 kmem_alloc(fh->nfs_fh4_len, KM_SLEEP); 2236 nfs_fh4_copy(fh, &fp->rf_filehandle); 2237 } 2238 fp->rf_vp = vp; 2239 2240 list_create(&fp->rf_delegstatelist, sizeof (rfs4_deleg_state_t), 2241 offsetof(rfs4_deleg_state_t, rds_node)); 2242 2243 fp->rf_share_deny = fp->rf_share_access = fp->rf_access_read = 0; 2244 fp->rf_access_write = fp->rf_deny_read = fp->rf_deny_write = 0; 2245 2246 mutex_init(fp->rf_dinfo.rd_recall_lock, NULL, MUTEX_DEFAULT, NULL); 2247 cv_init(fp->rf_dinfo.rd_recall_cv, NULL, CV_DEFAULT, NULL); 2248 2249 fp->rf_dinfo.rd_dtype = OPEN_DELEGATE_NONE; 2250 2251 rw_init(&fp->rf_file_rwlock, NULL, RW_DEFAULT, NULL); 2252 2253 mutex_enter(&vp->v_vsd_lock); 2254 VERIFY(vsd_set(vp, nfs4_srv_vkey, (void *)fp) == 0); 2255 mutex_exit(&vp->v_vsd_lock); 2256 2257 return (TRUE); 2258 } 2259 2260 rfs4_file_t * 2261 rfs4_findfile(vnode_t *vp, nfs_fh4 *fh, bool_t *create) 2262 { 2263 rfs4_file_t *fp; 2264 rfs4_fcreate_arg arg; 2265 2266 arg.vp = vp; 2267 arg.fh = fh; 2268 2269 if (*create == TRUE) 2270 fp = (rfs4_file_t *)rfs4_dbsearch(rfs4_file_idx, vp, create, 2271 &arg, RFS4_DBS_VALID); 2272 else { 2273 mutex_enter(&vp->v_vsd_lock); 2274 fp = (rfs4_file_t *)vsd_get(vp, nfs4_srv_vkey); 2275 if (fp) { 2276 rfs4_dbe_lock(fp->rf_dbe); 2277 if (rfs4_dbe_is_invalid(fp->rf_dbe) || 2278 (rfs4_dbe_refcnt(fp->rf_dbe) == 0)) { 2279 rfs4_dbe_unlock(fp->rf_dbe); 2280 fp = NULL; 2281 } else { 2282 rfs4_dbe_hold(fp->rf_dbe); 2283 rfs4_dbe_unlock(fp->rf_dbe); 2284 } 2285 } 2286 mutex_exit(&vp->v_vsd_lock); 2287 } 2288 return (fp); 2289 } 2290 2291 /* 2292 * Find a file in the db and once it is located, take the rw lock. 2293 * Need to check the vnode pointer and if it does not exist (it was 2294 * removed between the db location and check) redo the find. This 2295 * assumes that a file struct that has a NULL vnode pointer is marked 2296 * at 'invalid' and will not be found in the db the second time 2297 * around. 2298 */ 2299 rfs4_file_t * 2300 rfs4_findfile_withlock(vnode_t *vp, nfs_fh4 *fh, bool_t *create) 2301 { 2302 rfs4_file_t *fp; 2303 rfs4_fcreate_arg arg; 2304 bool_t screate = *create; 2305 2306 if (screate == FALSE) { 2307 mutex_enter(&vp->v_vsd_lock); 2308 fp = (rfs4_file_t *)vsd_get(vp, nfs4_srv_vkey); 2309 if (fp) { 2310 rfs4_dbe_lock(fp->rf_dbe); 2311 if (rfs4_dbe_is_invalid(fp->rf_dbe) || 2312 (rfs4_dbe_refcnt(fp->rf_dbe) == 0)) { 2313 rfs4_dbe_unlock(fp->rf_dbe); 2314 mutex_exit(&vp->v_vsd_lock); 2315 fp = NULL; 2316 } else { 2317 rfs4_dbe_hold(fp->rf_dbe); 2318 rfs4_dbe_unlock(fp->rf_dbe); 2319 mutex_exit(&vp->v_vsd_lock); 2320 rw_enter(&fp->rf_file_rwlock, RW_WRITER); 2321 if (fp->rf_vp == NULL) { 2322 rw_exit(&fp->rf_file_rwlock); 2323 rfs4_file_rele(fp); 2324 fp = NULL; 2325 } 2326 } 2327 } else { 2328 mutex_exit(&vp->v_vsd_lock); 2329 } 2330 } else { 2331 retry: 2332 arg.vp = vp; 2333 arg.fh = fh; 2334 2335 fp = (rfs4_file_t *)rfs4_dbsearch(rfs4_file_idx, vp, create, 2336 &arg, RFS4_DBS_VALID); 2337 if (fp != NULL) { 2338 rw_enter(&fp->rf_file_rwlock, RW_WRITER); 2339 if (fp->rf_vp == NULL) { 2340 rw_exit(&fp->rf_file_rwlock); 2341 rfs4_file_rele(fp); 2342 *create = screate; 2343 goto retry; 2344 } 2345 } 2346 } 2347 2348 return (fp); 2349 } 2350 2351 static uint32_t 2352 lo_state_hash(void *key) 2353 { 2354 stateid_t *id = key; 2355 2356 return (id->bits.ident+id->bits.pid); 2357 } 2358 2359 static bool_t 2360 lo_state_compare(rfs4_entry_t u_entry, void *key) 2361 { 2362 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2363 stateid_t *id = key; 2364 bool_t rc; 2365 2366 rc = (lsp->rls_lockid.bits.boottime == id->bits.boottime && 2367 lsp->rls_lockid.bits.type == id->bits.type && 2368 lsp->rls_lockid.bits.ident == id->bits.ident && 2369 lsp->rls_lockid.bits.pid == id->bits.pid); 2370 2371 return (rc); 2372 } 2373 2374 static void * 2375 lo_state_mkkey(rfs4_entry_t u_entry) 2376 { 2377 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2378 2379 return (&lsp->rls_lockid); 2380 } 2381 2382 static bool_t 2383 rfs4_lo_state_expiry(rfs4_entry_t u_entry) 2384 { 2385 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2386 2387 if (rfs4_dbe_is_invalid(lsp->rls_dbe)) 2388 return (TRUE); 2389 if (lsp->rls_state->rs_closed) 2390 return (TRUE); 2391 return ((gethrestime_sec() - 2392 lsp->rls_state->rs_owner->ro_client->rc_last_access 2393 > rfs4_lease_time)); 2394 } 2395 2396 static void 2397 rfs4_lo_state_destroy(rfs4_entry_t u_entry) 2398 { 2399 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2400 2401 rfs4_dbe_lock(lsp->rls_state->rs_dbe); 2402 list_remove(&lsp->rls_state->rs_lostatelist, lsp); 2403 rfs4_dbe_unlock(lsp->rls_state->rs_dbe); 2404 2405 rfs4_sw_destroy(&lsp->rls_sw); 2406 2407 /* Make sure to release the file locks */ 2408 if (lsp->rls_locks_cleaned == FALSE) { 2409 lsp->rls_locks_cleaned = TRUE; 2410 if (lsp->rls_locker->rl_client->rc_sysidt != LM_NOSYSID) { 2411 /* Is the PxFS kernel module loaded? */ 2412 if (lm_remove_file_locks != NULL) { 2413 int new_sysid; 2414 2415 /* Encode the cluster nodeid in new sysid */ 2416 new_sysid = 2417 lsp->rls_locker->rl_client->rc_sysidt; 2418 lm_set_nlmid_flk(&new_sysid); 2419 2420 /* 2421 * This PxFS routine removes file locks for a 2422 * client over all nodes of a cluster. 2423 */ 2424 DTRACE_PROBE1(nfss_i_clust_rm_lck, 2425 int, new_sysid); 2426 (*lm_remove_file_locks)(new_sysid); 2427 } else { 2428 (void) cleanlocks( 2429 lsp->rls_state->rs_finfo->rf_vp, 2430 lsp->rls_locker->rl_pid, 2431 lsp->rls_locker->rl_client->rc_sysidt); 2432 } 2433 } 2434 } 2435 2436 /* Free the last reply for this state */ 2437 rfs4_free_reply(&lsp->rls_reply); 2438 2439 rfs4_lockowner_rele(lsp->rls_locker); 2440 lsp->rls_locker = NULL; 2441 2442 rfs4_state_rele_nounlock(lsp->rls_state); 2443 lsp->rls_state = NULL; 2444 } 2445 2446 static bool_t 2447 rfs4_lo_state_create(rfs4_entry_t u_entry, void *arg) 2448 { 2449 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2450 rfs4_lo_state_t *argp = (rfs4_lo_state_t *)arg; 2451 rfs4_lockowner_t *lo = argp->rls_locker; 2452 rfs4_state_t *sp = argp->rls_state; 2453 2454 lsp->rls_state = sp; 2455 2456 lsp->rls_lockid = sp->rs_stateid; 2457 lsp->rls_lockid.bits.type = LOCKID; 2458 lsp->rls_lockid.bits.chgseq = 0; 2459 lsp->rls_lockid.bits.pid = lo->rl_pid; 2460 2461 lsp->rls_locks_cleaned = FALSE; 2462 lsp->rls_lock_completed = FALSE; 2463 2464 rfs4_sw_init(&lsp->rls_sw); 2465 2466 /* Attached the supplied lock owner */ 2467 rfs4_dbe_hold(lo->rl_dbe); 2468 lsp->rls_locker = lo; 2469 2470 rfs4_dbe_lock(sp->rs_dbe); 2471 list_insert_tail(&sp->rs_lostatelist, lsp); 2472 rfs4_dbe_hold(sp->rs_dbe); 2473 rfs4_dbe_unlock(sp->rs_dbe); 2474 2475 return (TRUE); 2476 } 2477 2478 void 2479 rfs4_lo_state_rele(rfs4_lo_state_t *lsp, bool_t unlock_fp) 2480 { 2481 if (unlock_fp == TRUE) 2482 rw_exit(&lsp->rls_state->rs_finfo->rf_file_rwlock); 2483 rfs4_dbe_rele(lsp->rls_dbe); 2484 } 2485 2486 static rfs4_lo_state_t * 2487 rfs4_findlo_state(stateid_t *id, bool_t lock_fp) 2488 { 2489 rfs4_lo_state_t *lsp; 2490 bool_t create = FALSE; 2491 2492 lsp = (rfs4_lo_state_t *)rfs4_dbsearch(rfs4_lo_state_idx, id, 2493 &create, NULL, RFS4_DBS_VALID); 2494 if (lock_fp == TRUE && lsp != NULL) 2495 rw_enter(&lsp->rls_state->rs_finfo->rf_file_rwlock, RW_READER); 2496 2497 return (lsp); 2498 } 2499 2500 2501 static uint32_t 2502 lo_state_lo_hash(void *key) 2503 { 2504 rfs4_lo_state_t *lsp = key; 2505 2506 return (ADDRHASH(lsp->rls_locker) ^ ADDRHASH(lsp->rls_state)); 2507 } 2508 2509 static bool_t 2510 lo_state_lo_compare(rfs4_entry_t u_entry, void *key) 2511 { 2512 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2513 rfs4_lo_state_t *keyp = key; 2514 2515 return (keyp->rls_locker == lsp->rls_locker && 2516 keyp->rls_state == lsp->rls_state); 2517 } 2518 2519 static void * 2520 lo_state_lo_mkkey(rfs4_entry_t u_entry) 2521 { 2522 return (u_entry); 2523 } 2524 2525 rfs4_lo_state_t * 2526 rfs4_findlo_state_by_owner(rfs4_lockowner_t *lo, rfs4_state_t *sp, 2527 bool_t *create) 2528 { 2529 rfs4_lo_state_t *lsp; 2530 rfs4_lo_state_t arg; 2531 2532 arg.rls_locker = lo; 2533 arg.rls_state = sp; 2534 2535 lsp = (rfs4_lo_state_t *)rfs4_dbsearch(rfs4_lo_state_owner_idx, &arg, 2536 create, &arg, RFS4_DBS_VALID); 2537 2538 return (lsp); 2539 } 2540 2541 static stateid_t 2542 get_stateid(id_t eid) 2543 { 2544 stateid_t id; 2545 2546 id.bits.boottime = rfs4_start_time; 2547 id.bits.ident = eid; 2548 id.bits.chgseq = 0; 2549 id.bits.type = 0; 2550 id.bits.pid = 0; 2551 2552 /* 2553 * If we are booted as a cluster node, embed our nodeid. 2554 * We've already done sanity checks in rfs4_client_create() so no 2555 * need to repeat them here. 2556 */ 2557 id.bits.clnodeid = (cluster_bootflags & CLUSTER_BOOTED) ? 2558 clconf_get_nodeid() : 0; 2559 2560 return (id); 2561 } 2562 2563 /* 2564 * For use only when booted as a cluster node. 2565 * Returns TRUE if the embedded nodeid indicates that this stateid was 2566 * generated on another node. 2567 */ 2568 static int 2569 foreign_stateid(stateid_t *id) 2570 { 2571 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2572 return (id->bits.clnodeid != (uint32_t)clconf_get_nodeid()); 2573 } 2574 2575 /* 2576 * For use only when booted as a cluster node. 2577 * Returns TRUE if the embedded nodeid indicates that this clientid was 2578 * generated on another node. 2579 */ 2580 static int 2581 foreign_clientid(cid *cidp) 2582 { 2583 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2584 return (cidp->impl_id.c_id >> CLUSTER_NODEID_SHIFT != 2585 (uint32_t)clconf_get_nodeid()); 2586 } 2587 2588 /* 2589 * For use only when booted as a cluster node. 2590 * Embed our cluster nodeid into the clientid. 2591 */ 2592 static void 2593 embed_nodeid(cid *cidp) 2594 { 2595 int clnodeid; 2596 /* 2597 * Currently, our state tables are small enough that their 2598 * ids will leave enough bits free for the nodeid. If the 2599 * tables become larger, we mustn't overwrite the id. 2600 * Equally, we only have room for so many bits of nodeid, so 2601 * must check that too. 2602 */ 2603 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2604 ASSERT(cidp->impl_id.c_id >> CLUSTER_NODEID_SHIFT == 0); 2605 clnodeid = clconf_get_nodeid(); 2606 ASSERT(clnodeid <= CLUSTER_MAX_NODEID); 2607 ASSERT(clnodeid != NODEID_UNKNOWN); 2608 cidp->impl_id.c_id |= (clnodeid << CLUSTER_NODEID_SHIFT); 2609 } 2610 2611 static uint32_t 2612 state_hash(void *key) 2613 { 2614 stateid_t *ip = (stateid_t *)key; 2615 2616 return (ip->bits.ident); 2617 } 2618 2619 static bool_t 2620 state_compare(rfs4_entry_t u_entry, void *key) 2621 { 2622 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2623 stateid_t *id = (stateid_t *)key; 2624 bool_t rc; 2625 2626 rc = (sp->rs_stateid.bits.boottime == id->bits.boottime && 2627 sp->rs_stateid.bits.ident == id->bits.ident); 2628 2629 return (rc); 2630 } 2631 2632 static void * 2633 state_mkkey(rfs4_entry_t u_entry) 2634 { 2635 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2636 2637 return (&sp->rs_stateid); 2638 } 2639 2640 static void 2641 rfs4_state_destroy(rfs4_entry_t u_entry) 2642 { 2643 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2644 2645 /* remove from openowner list */ 2646 rfs4_dbe_lock(sp->rs_owner->ro_dbe); 2647 list_remove(&sp->rs_owner->ro_statelist, sp); 2648 rfs4_dbe_unlock(sp->rs_owner->ro_dbe); 2649 2650 list_destroy(&sp->rs_lostatelist); 2651 2652 /* release any share locks for this stateid if it's still open */ 2653 if (!sp->rs_closed) { 2654 rfs4_dbe_lock(sp->rs_dbe); 2655 (void) rfs4_unshare(sp); 2656 rfs4_dbe_unlock(sp->rs_dbe); 2657 } 2658 2659 /* Were done with the file */ 2660 rfs4_file_rele(sp->rs_finfo); 2661 sp->rs_finfo = NULL; 2662 2663 /* And now with the openowner */ 2664 rfs4_openowner_rele(sp->rs_owner); 2665 sp->rs_owner = NULL; 2666 } 2667 2668 static void 2669 rfs4_state_rele_nounlock(rfs4_state_t *sp) 2670 { 2671 rfs4_dbe_rele(sp->rs_dbe); 2672 } 2673 2674 void 2675 rfs4_state_rele(rfs4_state_t *sp) 2676 { 2677 rw_exit(&sp->rs_finfo->rf_file_rwlock); 2678 rfs4_dbe_rele(sp->rs_dbe); 2679 } 2680 2681 static uint32_t 2682 deleg_hash(void *key) 2683 { 2684 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)key; 2685 2686 return (ADDRHASH(dsp->rds_client) ^ ADDRHASH(dsp->rds_finfo)); 2687 } 2688 2689 static bool_t 2690 deleg_compare(rfs4_entry_t u_entry, void *key) 2691 { 2692 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2693 rfs4_deleg_state_t *kdsp = (rfs4_deleg_state_t *)key; 2694 2695 return (dsp->rds_client == kdsp->rds_client && 2696 dsp->rds_finfo == kdsp->rds_finfo); 2697 } 2698 2699 static void * 2700 deleg_mkkey(rfs4_entry_t u_entry) 2701 { 2702 return (u_entry); 2703 } 2704 2705 static uint32_t 2706 deleg_state_hash(void *key) 2707 { 2708 stateid_t *ip = (stateid_t *)key; 2709 2710 return (ip->bits.ident); 2711 } 2712 2713 static bool_t 2714 deleg_state_compare(rfs4_entry_t u_entry, void *key) 2715 { 2716 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2717 stateid_t *id = (stateid_t *)key; 2718 bool_t rc; 2719 2720 if (id->bits.type != DELEGID) 2721 return (FALSE); 2722 2723 rc = (dsp->rds_delegid.bits.boottime == id->bits.boottime && 2724 dsp->rds_delegid.bits.ident == id->bits.ident); 2725 2726 return (rc); 2727 } 2728 2729 static void * 2730 deleg_state_mkkey(rfs4_entry_t u_entry) 2731 { 2732 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2733 2734 return (&dsp->rds_delegid); 2735 } 2736 2737 static bool_t 2738 rfs4_deleg_state_expiry(rfs4_entry_t u_entry) 2739 { 2740 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2741 2742 if (rfs4_dbe_is_invalid(dsp->rds_dbe)) 2743 return (TRUE); 2744 2745 if ((gethrestime_sec() - dsp->rds_client->rc_last_access 2746 > rfs4_lease_time)) { 2747 rfs4_dbe_invalidate(dsp->rds_dbe); 2748 return (TRUE); 2749 } 2750 2751 return (FALSE); 2752 } 2753 2754 static bool_t 2755 rfs4_deleg_state_create(rfs4_entry_t u_entry, void *argp) 2756 { 2757 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2758 rfs4_file_t *fp = ((rfs4_deleg_state_t *)argp)->rds_finfo; 2759 rfs4_client_t *cp = ((rfs4_deleg_state_t *)argp)->rds_client; 2760 2761 rfs4_dbe_hold(fp->rf_dbe); 2762 rfs4_dbe_hold(cp->rc_dbe); 2763 2764 dsp->rds_delegid = get_stateid(rfs4_dbe_getid(dsp->rds_dbe)); 2765 dsp->rds_delegid.bits.type = DELEGID; 2766 dsp->rds_finfo = fp; 2767 dsp->rds_client = cp; 2768 dsp->rds_dtype = OPEN_DELEGATE_NONE; 2769 2770 dsp->rds_time_granted = gethrestime_sec(); /* observability */ 2771 dsp->rds_time_revoked = 0; 2772 2773 list_link_init(&dsp->rds_node); 2774 2775 return (TRUE); 2776 } 2777 2778 static void 2779 rfs4_deleg_state_destroy(rfs4_entry_t u_entry) 2780 { 2781 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2782 2783 /* return delegation if necessary */ 2784 rfs4_return_deleg(dsp, FALSE); 2785 2786 /* Were done with the file */ 2787 rfs4_file_rele(dsp->rds_finfo); 2788 dsp->rds_finfo = NULL; 2789 2790 /* And now with the openowner */ 2791 rfs4_client_rele(dsp->rds_client); 2792 dsp->rds_client = NULL; 2793 } 2794 2795 rfs4_deleg_state_t * 2796 rfs4_finddeleg(rfs4_state_t *sp, bool_t *create) 2797 { 2798 rfs4_deleg_state_t ds, *dsp; 2799 2800 ds.rds_client = sp->rs_owner->ro_client; 2801 ds.rds_finfo = sp->rs_finfo; 2802 2803 dsp = (rfs4_deleg_state_t *)rfs4_dbsearch(rfs4_deleg_idx, &ds, 2804 create, &ds, RFS4_DBS_VALID); 2805 2806 return (dsp); 2807 } 2808 2809 rfs4_deleg_state_t * 2810 rfs4_finddelegstate(stateid_t *id) 2811 { 2812 rfs4_deleg_state_t *dsp; 2813 bool_t create = FALSE; 2814 2815 dsp = (rfs4_deleg_state_t *)rfs4_dbsearch(rfs4_deleg_state_idx, id, 2816 &create, NULL, RFS4_DBS_VALID); 2817 2818 return (dsp); 2819 } 2820 2821 void 2822 rfs4_deleg_state_rele(rfs4_deleg_state_t *dsp) 2823 { 2824 rfs4_dbe_rele(dsp->rds_dbe); 2825 } 2826 2827 void 2828 rfs4_update_lock_sequence(rfs4_lo_state_t *lsp) 2829 { 2830 2831 rfs4_dbe_lock(lsp->rls_dbe); 2832 2833 /* 2834 * If we are skipping sequence id checking, this means that 2835 * this is the first lock request and therefore the sequence 2836 * id does not need to be updated. This only happens on the 2837 * first lock request for a lockowner 2838 */ 2839 if (!lsp->rls_skip_seqid_check) 2840 lsp->rls_seqid++; 2841 2842 rfs4_dbe_unlock(lsp->rls_dbe); 2843 } 2844 2845 void 2846 rfs4_update_lock_resp(rfs4_lo_state_t *lsp, nfs_resop4 *resp) 2847 { 2848 2849 rfs4_dbe_lock(lsp->rls_dbe); 2850 2851 rfs4_free_reply(&lsp->rls_reply); 2852 2853 rfs4_copy_reply(&lsp->rls_reply, resp); 2854 2855 rfs4_dbe_unlock(lsp->rls_dbe); 2856 } 2857 2858 void 2859 rfs4_free_opens(rfs4_openowner_t *oo, bool_t invalidate, 2860 bool_t close_of_client) 2861 { 2862 rfs4_state_t *sp; 2863 2864 rfs4_dbe_lock(oo->ro_dbe); 2865 2866 for (sp = list_head(&oo->ro_statelist); sp != NULL; 2867 sp = list_next(&oo->ro_statelist, sp)) { 2868 rfs4_state_close(sp, FALSE, close_of_client, CRED()); 2869 if (invalidate == TRUE) 2870 rfs4_dbe_invalidate(sp->rs_dbe); 2871 } 2872 2873 rfs4_dbe_invalidate(oo->ro_dbe); 2874 rfs4_dbe_unlock(oo->ro_dbe); 2875 } 2876 2877 static uint32_t 2878 state_owner_file_hash(void *key) 2879 { 2880 rfs4_state_t *sp = key; 2881 2882 return (ADDRHASH(sp->rs_owner) ^ ADDRHASH(sp->rs_finfo)); 2883 } 2884 2885 static bool_t 2886 state_owner_file_compare(rfs4_entry_t u_entry, void *key) 2887 { 2888 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2889 rfs4_state_t *arg = key; 2890 2891 if (sp->rs_closed == TRUE) 2892 return (FALSE); 2893 2894 return (arg->rs_owner == sp->rs_owner && arg->rs_finfo == sp->rs_finfo); 2895 } 2896 2897 static void * 2898 state_owner_file_mkkey(rfs4_entry_t u_entry) 2899 { 2900 return (u_entry); 2901 } 2902 2903 static uint32_t 2904 state_file_hash(void *key) 2905 { 2906 return (ADDRHASH(key)); 2907 } 2908 2909 static bool_t 2910 state_file_compare(rfs4_entry_t u_entry, void *key) 2911 { 2912 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2913 rfs4_file_t *fp = key; 2914 2915 if (sp->rs_closed == TRUE) 2916 return (FALSE); 2917 2918 return (fp == sp->rs_finfo); 2919 } 2920 2921 static void * 2922 state_file_mkkey(rfs4_entry_t u_entry) 2923 { 2924 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2925 2926 return (sp->rs_finfo); 2927 } 2928 2929 rfs4_state_t * 2930 rfs4_findstate_by_owner_file(rfs4_openowner_t *oo, rfs4_file_t *fp, 2931 bool_t *create) 2932 { 2933 rfs4_state_t *sp; 2934 rfs4_state_t key; 2935 2936 key.rs_owner = oo; 2937 key.rs_finfo = fp; 2938 2939 sp = (rfs4_state_t *)rfs4_dbsearch(rfs4_state_owner_file_idx, &key, 2940 create, &key, RFS4_DBS_VALID); 2941 2942 return (sp); 2943 } 2944 2945 /* This returns ANY state struct that refers to this file */ 2946 static rfs4_state_t * 2947 rfs4_findstate_by_file(rfs4_file_t *fp) 2948 { 2949 bool_t create = FALSE; 2950 2951 return ((rfs4_state_t *)rfs4_dbsearch(rfs4_state_file_idx, fp, 2952 &create, fp, RFS4_DBS_VALID)); 2953 } 2954 2955 static bool_t 2956 rfs4_state_expiry(rfs4_entry_t u_entry) 2957 { 2958 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2959 2960 if (rfs4_dbe_is_invalid(sp->rs_dbe)) 2961 return (TRUE); 2962 2963 if (sp->rs_closed == TRUE && 2964 ((gethrestime_sec() - rfs4_dbe_get_timerele(sp->rs_dbe)) 2965 > rfs4_lease_time)) 2966 return (TRUE); 2967 2968 return ((gethrestime_sec() - sp->rs_owner->ro_client->rc_last_access 2969 > rfs4_lease_time)); 2970 } 2971 2972 static bool_t 2973 rfs4_state_create(rfs4_entry_t u_entry, void *argp) 2974 { 2975 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2976 rfs4_file_t *fp = ((rfs4_state_t *)argp)->rs_finfo; 2977 rfs4_openowner_t *oo = ((rfs4_state_t *)argp)->rs_owner; 2978 2979 rfs4_dbe_hold(fp->rf_dbe); 2980 rfs4_dbe_hold(oo->ro_dbe); 2981 sp->rs_stateid = get_stateid(rfs4_dbe_getid(sp->rs_dbe)); 2982 sp->rs_stateid.bits.type = OPENID; 2983 sp->rs_owner = oo; 2984 sp->rs_finfo = fp; 2985 2986 list_create(&sp->rs_lostatelist, sizeof (rfs4_lo_state_t), 2987 offsetof(rfs4_lo_state_t, rls_node)); 2988 2989 /* Insert state on per open owner's list */ 2990 rfs4_dbe_lock(oo->ro_dbe); 2991 list_insert_tail(&oo->ro_statelist, sp); 2992 rfs4_dbe_unlock(oo->ro_dbe); 2993 2994 return (TRUE); 2995 } 2996 2997 static rfs4_state_t * 2998 rfs4_findstate(stateid_t *id, rfs4_dbsearch_type_t find_invalid, bool_t lock_fp) 2999 { 3000 rfs4_state_t *sp; 3001 bool_t create = FALSE; 3002 3003 sp = (rfs4_state_t *)rfs4_dbsearch(rfs4_state_idx, id, 3004 &create, NULL, find_invalid); 3005 if (lock_fp == TRUE && sp != NULL) 3006 rw_enter(&sp->rs_finfo->rf_file_rwlock, RW_READER); 3007 3008 return (sp); 3009 } 3010 3011 void 3012 rfs4_state_close(rfs4_state_t *sp, bool_t lock_held, bool_t close_of_client, 3013 cred_t *cr) 3014 { 3015 /* Remove the associated lo_state owners */ 3016 if (!lock_held) 3017 rfs4_dbe_lock(sp->rs_dbe); 3018 3019 /* 3020 * If refcnt == 0, the dbe is about to be destroyed. 3021 * lock state will be released by the reaper thread. 3022 */ 3023 3024 if (rfs4_dbe_refcnt(sp->rs_dbe) > 0) { 3025 if (sp->rs_closed == FALSE) { 3026 rfs4_release_share_lock_state(sp, cr, close_of_client); 3027 sp->rs_closed = TRUE; 3028 } 3029 } 3030 3031 if (!lock_held) 3032 rfs4_dbe_unlock(sp->rs_dbe); 3033 } 3034 3035 /* 3036 * Remove all state associated with the given client. 3037 */ 3038 void 3039 rfs4_client_state_remove(rfs4_client_t *cp) 3040 { 3041 rfs4_openowner_t *oo; 3042 3043 rfs4_dbe_lock(cp->rc_dbe); 3044 3045 for (oo = list_head(&cp->rc_openownerlist); oo != NULL; 3046 oo = list_next(&cp->rc_openownerlist, oo)) { 3047 rfs4_free_opens(oo, TRUE, TRUE); 3048 } 3049 3050 rfs4_dbe_unlock(cp->rc_dbe); 3051 } 3052 3053 void 3054 rfs4_client_close(rfs4_client_t *cp) 3055 { 3056 /* Mark client as going away. */ 3057 rfs4_dbe_lock(cp->rc_dbe); 3058 rfs4_dbe_invalidate(cp->rc_dbe); 3059 rfs4_dbe_unlock(cp->rc_dbe); 3060 3061 rfs4_client_state_remove(cp); 3062 3063 /* Release the client */ 3064 rfs4_client_rele(cp); 3065 } 3066 3067 nfsstat4 3068 rfs4_check_clientid(clientid4 *cp, int setclid_confirm) 3069 { 3070 cid *cidp = (cid *) cp; 3071 3072 /* 3073 * If we are booted as a cluster node, check the embedded nodeid. 3074 * If it indicates that this clientid was generated on another node, 3075 * inform the client accordingly. 3076 */ 3077 if (cluster_bootflags & CLUSTER_BOOTED && foreign_clientid(cidp)) 3078 return (NFS4ERR_STALE_CLIENTID); 3079 3080 /* 3081 * If the server start time matches the time provided 3082 * by the client (via the clientid) and this is NOT a 3083 * setclientid_confirm then return EXPIRED. 3084 */ 3085 if (!setclid_confirm && cidp->impl_id.start_time == rfs4_start_time) 3086 return (NFS4ERR_EXPIRED); 3087 3088 return (NFS4ERR_STALE_CLIENTID); 3089 } 3090 3091 /* 3092 * This is used when a stateid has not been found amongst the 3093 * current server's state. Check the stateid to see if it 3094 * was from this server instantiation or not. 3095 */ 3096 static nfsstat4 3097 what_stateid_error(stateid_t *id, stateid_type_t type) 3098 { 3099 /* If we are booted as a cluster node, was stateid locally generated? */ 3100 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3101 return (NFS4ERR_STALE_STATEID); 3102 3103 /* If types don't match then no use checking further */ 3104 if (type != id->bits.type) 3105 return (NFS4ERR_BAD_STATEID); 3106 3107 /* From a previous server instantiation, return STALE */ 3108 if (id->bits.boottime < rfs4_start_time) 3109 return (NFS4ERR_STALE_STATEID); 3110 3111 /* 3112 * From this server but the state is most likely beyond lease 3113 * timeout: return NFS4ERR_EXPIRED. However, there is the 3114 * case of a delegation stateid. For delegations, there is a 3115 * case where the state can be removed without the client's 3116 * knowledge/consent: revocation. In the case of delegation 3117 * revocation, the delegation state will be removed and will 3118 * not be found. If the client does something like a 3119 * DELEGRETURN or even a READ/WRITE with a delegatoin stateid 3120 * that has been revoked, the server should return BAD_STATEID 3121 * instead of the more common EXPIRED error. 3122 */ 3123 if (id->bits.boottime == rfs4_start_time) { 3124 if (type == DELEGID) 3125 return (NFS4ERR_BAD_STATEID); 3126 else 3127 return (NFS4ERR_EXPIRED); 3128 } 3129 3130 return (NFS4ERR_BAD_STATEID); 3131 } 3132 3133 /* 3134 * Used later on to find the various state structs. When called from 3135 * rfs4_check_stateid()->rfs4_get_all_state(), no file struct lock is 3136 * taken (it is not needed) and helps on the read/write path with 3137 * respect to performance. 3138 */ 3139 static nfsstat4 3140 rfs4_get_state_lockit(stateid4 *stateid, rfs4_state_t **spp, 3141 rfs4_dbsearch_type_t find_invalid, bool_t lock_fp) 3142 { 3143 stateid_t *id = (stateid_t *)stateid; 3144 rfs4_state_t *sp; 3145 3146 *spp = NULL; 3147 3148 /* If we are booted as a cluster node, was stateid locally generated? */ 3149 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3150 return (NFS4ERR_STALE_STATEID); 3151 3152 sp = rfs4_findstate(id, find_invalid, lock_fp); 3153 if (sp == NULL) { 3154 return (what_stateid_error(id, OPENID)); 3155 } 3156 3157 if (rfs4_lease_expired(sp->rs_owner->ro_client)) { 3158 if (lock_fp == TRUE) 3159 rfs4_state_rele(sp); 3160 else 3161 rfs4_state_rele_nounlock(sp); 3162 return (NFS4ERR_EXPIRED); 3163 } 3164 3165 *spp = sp; 3166 3167 return (NFS4_OK); 3168 } 3169 3170 nfsstat4 3171 rfs4_get_state(stateid4 *stateid, rfs4_state_t **spp, 3172 rfs4_dbsearch_type_t find_invalid) 3173 { 3174 return (rfs4_get_state_lockit(stateid, spp, find_invalid, TRUE)); 3175 } 3176 3177 int 3178 rfs4_check_stateid_seqid(rfs4_state_t *sp, stateid4 *stateid) 3179 { 3180 stateid_t *id = (stateid_t *)stateid; 3181 3182 if (rfs4_lease_expired(sp->rs_owner->ro_client)) 3183 return (NFS4_CHECK_STATEID_EXPIRED); 3184 3185 /* Stateid is some time in the future - that's bad */ 3186 if (sp->rs_stateid.bits.chgseq < id->bits.chgseq) 3187 return (NFS4_CHECK_STATEID_BAD); 3188 3189 if (sp->rs_stateid.bits.chgseq == id->bits.chgseq + 1) 3190 return (NFS4_CHECK_STATEID_REPLAY); 3191 3192 /* Stateid is some time in the past - that's old */ 3193 if (sp->rs_stateid.bits.chgseq > id->bits.chgseq) 3194 return (NFS4_CHECK_STATEID_OLD); 3195 3196 /* Caller needs to know about confirmation before closure */ 3197 if (sp->rs_owner->ro_need_confirm) 3198 return (NFS4_CHECK_STATEID_UNCONFIRMED); 3199 3200 if (sp->rs_closed == TRUE) 3201 return (NFS4_CHECK_STATEID_CLOSED); 3202 3203 return (NFS4_CHECK_STATEID_OKAY); 3204 } 3205 3206 int 3207 rfs4_check_lo_stateid_seqid(rfs4_lo_state_t *lsp, stateid4 *stateid) 3208 { 3209 stateid_t *id = (stateid_t *)stateid; 3210 3211 if (rfs4_lease_expired(lsp->rls_state->rs_owner->ro_client)) 3212 return (NFS4_CHECK_STATEID_EXPIRED); 3213 3214 /* Stateid is some time in the future - that's bad */ 3215 if (lsp->rls_lockid.bits.chgseq < id->bits.chgseq) 3216 return (NFS4_CHECK_STATEID_BAD); 3217 3218 if (lsp->rls_lockid.bits.chgseq == id->bits.chgseq + 1) 3219 return (NFS4_CHECK_STATEID_REPLAY); 3220 3221 /* Stateid is some time in the past - that's old */ 3222 if (lsp->rls_lockid.bits.chgseq > id->bits.chgseq) 3223 return (NFS4_CHECK_STATEID_OLD); 3224 3225 if (lsp->rls_state->rs_closed == TRUE) 3226 return (NFS4_CHECK_STATEID_CLOSED); 3227 3228 return (NFS4_CHECK_STATEID_OKAY); 3229 } 3230 3231 nfsstat4 3232 rfs4_get_deleg_state(stateid4 *stateid, rfs4_deleg_state_t **dspp) 3233 { 3234 stateid_t *id = (stateid_t *)stateid; 3235 rfs4_deleg_state_t *dsp; 3236 3237 *dspp = NULL; 3238 3239 /* If we are booted as a cluster node, was stateid locally generated? */ 3240 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3241 return (NFS4ERR_STALE_STATEID); 3242 3243 dsp = rfs4_finddelegstate(id); 3244 if (dsp == NULL) { 3245 return (what_stateid_error(id, DELEGID)); 3246 } 3247 3248 if (rfs4_lease_expired(dsp->rds_client)) { 3249 rfs4_deleg_state_rele(dsp); 3250 return (NFS4ERR_EXPIRED); 3251 } 3252 3253 *dspp = dsp; 3254 3255 return (NFS4_OK); 3256 } 3257 3258 nfsstat4 3259 rfs4_get_lo_state(stateid4 *stateid, rfs4_lo_state_t **lspp, bool_t lock_fp) 3260 { 3261 stateid_t *id = (stateid_t *)stateid; 3262 rfs4_lo_state_t *lsp; 3263 3264 *lspp = NULL; 3265 3266 /* If we are booted as a cluster node, was stateid locally generated? */ 3267 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3268 return (NFS4ERR_STALE_STATEID); 3269 3270 lsp = rfs4_findlo_state(id, lock_fp); 3271 if (lsp == NULL) { 3272 return (what_stateid_error(id, LOCKID)); 3273 } 3274 3275 if (rfs4_lease_expired(lsp->rls_state->rs_owner->ro_client)) { 3276 rfs4_lo_state_rele(lsp, lock_fp); 3277 return (NFS4ERR_EXPIRED); 3278 } 3279 3280 *lspp = lsp; 3281 3282 return (NFS4_OK); 3283 } 3284 3285 static nfsstat4 3286 rfs4_get_all_state(stateid4 *sid, rfs4_state_t **spp, 3287 rfs4_deleg_state_t **dspp, rfs4_lo_state_t **lspp) 3288 { 3289 rfs4_state_t *sp = NULL; 3290 rfs4_deleg_state_t *dsp = NULL; 3291 rfs4_lo_state_t *lsp = NULL; 3292 stateid_t *id; 3293 nfsstat4 status; 3294 3295 *spp = NULL; *dspp = NULL; *lspp = NULL; 3296 3297 id = (stateid_t *)sid; 3298 switch (id->bits.type) { 3299 case OPENID: 3300 status = rfs4_get_state_lockit(sid, &sp, FALSE, FALSE); 3301 break; 3302 case DELEGID: 3303 status = rfs4_get_deleg_state(sid, &dsp); 3304 break; 3305 case LOCKID: 3306 status = rfs4_get_lo_state(sid, &lsp, FALSE); 3307 if (status == NFS4_OK) { 3308 sp = lsp->rls_state; 3309 rfs4_dbe_hold(sp->rs_dbe); 3310 } 3311 break; 3312 default: 3313 status = NFS4ERR_BAD_STATEID; 3314 } 3315 3316 if (status == NFS4_OK) { 3317 *spp = sp; 3318 *dspp = dsp; 3319 *lspp = lsp; 3320 } 3321 3322 return (status); 3323 } 3324 3325 /* 3326 * Given the I/O mode (FREAD or FWRITE), this checks whether the 3327 * rfs4_state_t struct has access to do this operation and if so 3328 * return NFS4_OK; otherwise the proper NFSv4 error is returned. 3329 */ 3330 nfsstat4 3331 rfs4_state_has_access(rfs4_state_t *sp, int mode, vnode_t *vp) 3332 { 3333 nfsstat4 stat = NFS4_OK; 3334 rfs4_file_t *fp; 3335 bool_t create = FALSE; 3336 3337 rfs4_dbe_lock(sp->rs_dbe); 3338 if (mode == FWRITE) { 3339 if (!(sp->rs_share_access & OPEN4_SHARE_ACCESS_WRITE)) { 3340 stat = NFS4ERR_OPENMODE; 3341 } 3342 } else if (mode == FREAD) { 3343 if (!(sp->rs_share_access & OPEN4_SHARE_ACCESS_READ)) { 3344 /* 3345 * If we have OPENed the file with DENYing access 3346 * to both READ and WRITE then no one else could 3347 * have OPENed the file, hence no conflicting READ 3348 * deny. This check is merely an optimization. 3349 */ 3350 if (sp->rs_share_deny == OPEN4_SHARE_DENY_BOTH) 3351 goto out; 3352 3353 /* Check against file struct's DENY mode */ 3354 fp = rfs4_findfile(vp, NULL, &create); 3355 if (fp != NULL) { 3356 int deny_read = 0; 3357 rfs4_dbe_lock(fp->rf_dbe); 3358 /* 3359 * Check if any other open owner has the file 3360 * OPENed with deny READ. 3361 */ 3362 if (sp->rs_share_deny & OPEN4_SHARE_DENY_READ) 3363 deny_read = 1; 3364 ASSERT(fp->rf_deny_read - deny_read >= 0); 3365 if (fp->rf_deny_read - deny_read > 0) 3366 stat = NFS4ERR_OPENMODE; 3367 rfs4_dbe_unlock(fp->rf_dbe); 3368 rfs4_file_rele(fp); 3369 } 3370 } 3371 } else { 3372 /* Illegal I/O mode */ 3373 stat = NFS4ERR_INVAL; 3374 } 3375 out: 3376 rfs4_dbe_unlock(sp->rs_dbe); 3377 return (stat); 3378 } 3379 3380 /* 3381 * Given the I/O mode (FREAD or FWRITE), the vnode, the stateid and whether 3382 * the file is being truncated, return NFS4_OK if allowed or appropriate 3383 * V4 error if not. Note NFS4ERR_DELAY will be returned and a recall on 3384 * the associated file will be done if the I/O is not consistent with any 3385 * delegation in effect on the file. Should be holding VOP_RWLOCK, either 3386 * as reader or writer as appropriate. rfs4_op_open will acquire the 3387 * VOP_RWLOCK as writer when setting up delegation. If the stateid is bad 3388 * this routine will return NFS4ERR_BAD_STATEID. In addition, through the 3389 * deleg parameter, we will return whether a write delegation is held by 3390 * the client associated with this stateid. 3391 * If the server instance associated with the relevant client is in its 3392 * grace period, return NFS4ERR_GRACE. 3393 */ 3394 3395 nfsstat4 3396 rfs4_check_stateid(int mode, vnode_t *vp, 3397 stateid4 *stateid, bool_t trunc, bool_t *deleg, 3398 bool_t do_access, caller_context_t *ct) 3399 { 3400 rfs4_file_t *fp; 3401 bool_t create = FALSE; 3402 rfs4_state_t *sp; 3403 rfs4_deleg_state_t *dsp; 3404 rfs4_lo_state_t *lsp; 3405 stateid_t *id = (stateid_t *)stateid; 3406 nfsstat4 stat = NFS4_OK; 3407 3408 if (ct != NULL) { 3409 ct->cc_sysid = 0; 3410 ct->cc_pid = 0; 3411 ct->cc_caller_id = nfs4_srv_caller_id; 3412 ct->cc_flags = CC_DONTBLOCK; 3413 } 3414 3415 if (ISSPECIAL(stateid)) { 3416 fp = rfs4_findfile(vp, NULL, &create); 3417 if (fp == NULL) 3418 return (NFS4_OK); 3419 if (fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_NONE) { 3420 rfs4_file_rele(fp); 3421 return (NFS4_OK); 3422 } 3423 if (mode == FWRITE || 3424 fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_WRITE) { 3425 rfs4_recall_deleg(fp, trunc, NULL); 3426 rfs4_file_rele(fp); 3427 return (NFS4ERR_DELAY); 3428 } 3429 rfs4_file_rele(fp); 3430 return (NFS4_OK); 3431 } else { 3432 stat = rfs4_get_all_state(stateid, &sp, &dsp, &lsp); 3433 if (stat != NFS4_OK) 3434 return (stat); 3435 if (lsp != NULL) { 3436 /* Is associated server instance in its grace period? */ 3437 if (rfs4_clnt_in_grace(lsp->rls_locker->rl_client)) { 3438 rfs4_lo_state_rele(lsp, FALSE); 3439 if (sp != NULL) 3440 rfs4_state_rele_nounlock(sp); 3441 return (NFS4ERR_GRACE); 3442 } 3443 if (id->bits.type == LOCKID) { 3444 /* Seqid in the future? - that's bad */ 3445 if (lsp->rls_lockid.bits.chgseq < 3446 id->bits.chgseq) { 3447 rfs4_lo_state_rele(lsp, FALSE); 3448 if (sp != NULL) 3449 rfs4_state_rele_nounlock(sp); 3450 return (NFS4ERR_BAD_STATEID); 3451 } 3452 /* Seqid in the past? - that's old */ 3453 if (lsp->rls_lockid.bits.chgseq > 3454 id->bits.chgseq) { 3455 rfs4_lo_state_rele(lsp, FALSE); 3456 if (sp != NULL) 3457 rfs4_state_rele_nounlock(sp); 3458 return (NFS4ERR_OLD_STATEID); 3459 } 3460 /* Ensure specified filehandle matches */ 3461 if (lsp->rls_state->rs_finfo->rf_vp != vp) { 3462 rfs4_lo_state_rele(lsp, FALSE); 3463 if (sp != NULL) 3464 rfs4_state_rele_nounlock(sp); 3465 return (NFS4ERR_BAD_STATEID); 3466 } 3467 } 3468 if (ct != NULL) { 3469 ct->cc_sysid = 3470 lsp->rls_locker->rl_client->rc_sysidt; 3471 ct->cc_pid = lsp->rls_locker->rl_pid; 3472 } 3473 rfs4_lo_state_rele(lsp, FALSE); 3474 } 3475 3476 /* Stateid provided was an "open" stateid */ 3477 if (sp != NULL) { 3478 /* Is associated server instance in its grace period? */ 3479 if (rfs4_clnt_in_grace(sp->rs_owner->ro_client)) { 3480 rfs4_state_rele_nounlock(sp); 3481 return (NFS4ERR_GRACE); 3482 } 3483 if (id->bits.type == OPENID) { 3484 /* Seqid in the future? - that's bad */ 3485 if (sp->rs_stateid.bits.chgseq < 3486 id->bits.chgseq) { 3487 rfs4_state_rele_nounlock(sp); 3488 return (NFS4ERR_BAD_STATEID); 3489 } 3490 /* Seqid in the past - that's old */ 3491 if (sp->rs_stateid.bits.chgseq > 3492 id->bits.chgseq) { 3493 rfs4_state_rele_nounlock(sp); 3494 return (NFS4ERR_OLD_STATEID); 3495 } 3496 } 3497 /* Ensure specified filehandle matches */ 3498 if (sp->rs_finfo->rf_vp != vp) { 3499 rfs4_state_rele_nounlock(sp); 3500 return (NFS4ERR_BAD_STATEID); 3501 } 3502 3503 if (sp->rs_owner->ro_need_confirm) { 3504 rfs4_state_rele_nounlock(sp); 3505 return (NFS4ERR_BAD_STATEID); 3506 } 3507 3508 if (sp->rs_closed == TRUE) { 3509 rfs4_state_rele_nounlock(sp); 3510 return (NFS4ERR_OLD_STATEID); 3511 } 3512 3513 if (do_access) 3514 stat = rfs4_state_has_access(sp, mode, vp); 3515 else 3516 stat = NFS4_OK; 3517 3518 /* 3519 * Return whether this state has write 3520 * delegation if desired 3521 */ 3522 if (deleg && (sp->rs_finfo->rf_dinfo.rd_dtype == 3523 OPEN_DELEGATE_WRITE)) 3524 *deleg = TRUE; 3525 3526 /* 3527 * We got a valid stateid, so we update the 3528 * lease on the client. Ideally we would like 3529 * to do this after the calling op succeeds, 3530 * but for now this will be good 3531 * enough. Callers of this routine are 3532 * currently insulated from the state stuff. 3533 */ 3534 rfs4_update_lease(sp->rs_owner->ro_client); 3535 3536 /* 3537 * If a delegation is present on this file and 3538 * this is a WRITE, then update the lastwrite 3539 * time to indicate that activity is present. 3540 */ 3541 if (sp->rs_finfo->rf_dinfo.rd_dtype == 3542 OPEN_DELEGATE_WRITE && 3543 mode == FWRITE) { 3544 sp->rs_finfo->rf_dinfo.rd_time_lastwrite = 3545 gethrestime_sec(); 3546 } 3547 3548 rfs4_state_rele_nounlock(sp); 3549 3550 return (stat); 3551 } 3552 3553 if (dsp != NULL) { 3554 /* Is associated server instance in its grace period? */ 3555 if (rfs4_clnt_in_grace(dsp->rds_client)) { 3556 rfs4_deleg_state_rele(dsp); 3557 return (NFS4ERR_GRACE); 3558 } 3559 if (dsp->rds_delegid.bits.chgseq != id->bits.chgseq) { 3560 rfs4_deleg_state_rele(dsp); 3561 return (NFS4ERR_BAD_STATEID); 3562 } 3563 3564 /* Ensure specified filehandle matches */ 3565 if (dsp->rds_finfo->rf_vp != vp) { 3566 rfs4_deleg_state_rele(dsp); 3567 return (NFS4ERR_BAD_STATEID); 3568 } 3569 /* 3570 * Return whether this state has write 3571 * delegation if desired 3572 */ 3573 if (deleg && (dsp->rds_finfo->rf_dinfo.rd_dtype == 3574 OPEN_DELEGATE_WRITE)) 3575 *deleg = TRUE; 3576 3577 rfs4_update_lease(dsp->rds_client); 3578 3579 /* 3580 * If a delegation is present on this file and 3581 * this is a WRITE, then update the lastwrite 3582 * time to indicate that activity is present. 3583 */ 3584 if (dsp->rds_finfo->rf_dinfo.rd_dtype == 3585 OPEN_DELEGATE_WRITE && mode == FWRITE) { 3586 dsp->rds_finfo->rf_dinfo.rd_time_lastwrite = 3587 gethrestime_sec(); 3588 } 3589 3590 /* 3591 * XXX - what happens if this is a WRITE and the 3592 * delegation type of for READ. 3593 */ 3594 rfs4_deleg_state_rele(dsp); 3595 3596 return (stat); 3597 } 3598 /* 3599 * If we got this far, something bad happened 3600 */ 3601 return (NFS4ERR_BAD_STATEID); 3602 } 3603 } 3604 3605 3606 /* 3607 * This is a special function in that for the file struct provided the 3608 * server wants to remove/close all current state associated with the 3609 * file. The prime use of this would be with OP_REMOVE to force the 3610 * release of state and particularly of file locks. 3611 * 3612 * There is an assumption that there is no delegations outstanding on 3613 * this file at this point. The caller should have waited for those 3614 * to be returned or revoked. 3615 */ 3616 void 3617 rfs4_close_all_state(rfs4_file_t *fp) 3618 { 3619 rfs4_state_t *sp; 3620 3621 rfs4_dbe_lock(fp->rf_dbe); 3622 3623 #ifdef DEBUG 3624 /* only applies when server is handing out delegations */ 3625 if (rfs4_deleg_policy != SRV_NEVER_DELEGATE) 3626 ASSERT(fp->rf_dinfo.rd_hold_grant > 0); 3627 #endif 3628 3629 /* No delegations for this file */ 3630 ASSERT(list_is_empty(&fp->rf_delegstatelist)); 3631 3632 /* Make sure that it can not be found */ 3633 rfs4_dbe_invalidate(fp->rf_dbe); 3634 3635 if (fp->rf_vp == NULL) { 3636 rfs4_dbe_unlock(fp->rf_dbe); 3637 return; 3638 } 3639 rfs4_dbe_unlock(fp->rf_dbe); 3640 3641 /* 3642 * Hold as writer to prevent other server threads from 3643 * processing requests related to the file while all state is 3644 * being removed. 3645 */ 3646 rw_enter(&fp->rf_file_rwlock, RW_WRITER); 3647 3648 /* Remove ALL state from the file */ 3649 while (sp = rfs4_findstate_by_file(fp)) { 3650 rfs4_state_close(sp, FALSE, FALSE, CRED()); 3651 rfs4_state_rele_nounlock(sp); 3652 } 3653 3654 /* 3655 * This is only safe since there are no further references to 3656 * the file. 3657 */ 3658 rfs4_dbe_lock(fp->rf_dbe); 3659 if (fp->rf_vp) { 3660 vnode_t *vp = fp->rf_vp; 3661 3662 mutex_enter(&vp->v_vsd_lock); 3663 (void) vsd_set(vp, nfs4_srv_vkey, NULL); 3664 mutex_exit(&vp->v_vsd_lock); 3665 VN_RELE(vp); 3666 fp->rf_vp = NULL; 3667 } 3668 rfs4_dbe_unlock(fp->rf_dbe); 3669 3670 /* Finally let other references to proceed */ 3671 rw_exit(&fp->rf_file_rwlock); 3672 } 3673 3674 /* 3675 * This function is used as a target for the rfs4_dbe_walk() call 3676 * below. The purpose of this function is to see if the 3677 * lockowner_state refers to a file that resides within the exportinfo 3678 * export. If so, then remove the lock_owner state (file locks and 3679 * share "locks") for this object since the intent is the server is 3680 * unexporting the specified directory. Be sure to invalidate the 3681 * object after the state has been released 3682 */ 3683 static void 3684 rfs4_lo_state_walk_callout(rfs4_entry_t u_entry, void *e) 3685 { 3686 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 3687 struct exportinfo *exi = (struct exportinfo *)e; 3688 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3689 fhandle_t *efhp; 3690 3691 efhp = (fhandle_t *)&exi->exi_fh; 3692 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3693 3694 FH_TO_FMT4(efhp, exi_fhp); 3695 3696 finfo_fhp = (nfs_fh4_fmt_t *)lsp->rls_state->rs_finfo-> 3697 rf_filehandle.nfs_fh4_val; 3698 3699 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3700 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3701 exi_fhp->fh4_xlen) == 0) { 3702 rfs4_state_close(lsp->rls_state, FALSE, FALSE, CRED()); 3703 rfs4_dbe_invalidate(lsp->rls_dbe); 3704 rfs4_dbe_invalidate(lsp->rls_state->rs_dbe); 3705 } 3706 } 3707 3708 /* 3709 * This function is used as a target for the rfs4_dbe_walk() call 3710 * below. The purpose of this function is to see if the state refers 3711 * to a file that resides within the exportinfo export. If so, then 3712 * remove the open state for this object since the intent is the 3713 * server is unexporting the specified directory. The main result for 3714 * this type of entry is to invalidate it such it will not be found in 3715 * the future. 3716 */ 3717 static void 3718 rfs4_state_walk_callout(rfs4_entry_t u_entry, void *e) 3719 { 3720 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3721 struct exportinfo *exi = (struct exportinfo *)e; 3722 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3723 fhandle_t *efhp; 3724 3725 efhp = (fhandle_t *)&exi->exi_fh; 3726 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3727 3728 FH_TO_FMT4(efhp, exi_fhp); 3729 3730 finfo_fhp = 3731 (nfs_fh4_fmt_t *)sp->rs_finfo->rf_filehandle.nfs_fh4_val; 3732 3733 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3734 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3735 exi_fhp->fh4_xlen) == 0) { 3736 rfs4_state_close(sp, TRUE, FALSE, CRED()); 3737 rfs4_dbe_invalidate(sp->rs_dbe); 3738 } 3739 } 3740 3741 /* 3742 * This function is used as a target for the rfs4_dbe_walk() call 3743 * below. The purpose of this function is to see if the state refers 3744 * to a file that resides within the exportinfo export. If so, then 3745 * remove the deleg state for this object since the intent is the 3746 * server is unexporting the specified directory. The main result for 3747 * this type of entry is to invalidate it such it will not be found in 3748 * the future. 3749 */ 3750 static void 3751 rfs4_deleg_state_walk_callout(rfs4_entry_t u_entry, void *e) 3752 { 3753 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 3754 struct exportinfo *exi = (struct exportinfo *)e; 3755 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3756 fhandle_t *efhp; 3757 3758 efhp = (fhandle_t *)&exi->exi_fh; 3759 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3760 3761 FH_TO_FMT4(efhp, exi_fhp); 3762 3763 finfo_fhp = 3764 (nfs_fh4_fmt_t *)dsp->rds_finfo->rf_filehandle.nfs_fh4_val; 3765 3766 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3767 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3768 exi_fhp->fh4_xlen) == 0) { 3769 rfs4_dbe_invalidate(dsp->rds_dbe); 3770 } 3771 } 3772 3773 /* 3774 * This function is used as a target for the rfs4_dbe_walk() call 3775 * below. The purpose of this function is to see if the state refers 3776 * to a file that resides within the exportinfo export. If so, then 3777 * release vnode hold for this object since the intent is the server 3778 * is unexporting the specified directory. Invalidation will prevent 3779 * this struct from being found in the future. 3780 */ 3781 static void 3782 rfs4_file_walk_callout(rfs4_entry_t u_entry, void *e) 3783 { 3784 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 3785 struct exportinfo *exi = (struct exportinfo *)e; 3786 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3787 fhandle_t *efhp; 3788 3789 efhp = (fhandle_t *)&exi->exi_fh; 3790 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3791 3792 FH_TO_FMT4(efhp, exi_fhp); 3793 3794 finfo_fhp = (nfs_fh4_fmt_t *)fp->rf_filehandle.nfs_fh4_val; 3795 3796 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3797 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3798 exi_fhp->fh4_xlen) == 0) { 3799 if (fp->rf_vp) { 3800 vnode_t *vp = fp->rf_vp; 3801 3802 /* 3803 * don't leak monitors and remove the reference 3804 * put on the vnode when the delegation was granted. 3805 */ 3806 if (fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_READ) { 3807 (void) fem_uninstall(vp, deleg_rdops, 3808 (void *)fp); 3809 vn_open_downgrade(vp, FREAD); 3810 } else if (fp->rf_dinfo.rd_dtype == 3811 OPEN_DELEGATE_WRITE) { 3812 (void) fem_uninstall(vp, deleg_wrops, 3813 (void *)fp); 3814 vn_open_downgrade(vp, FREAD|FWRITE); 3815 } 3816 mutex_enter(&vp->v_vsd_lock); 3817 (void) vsd_set(vp, nfs4_srv_vkey, NULL); 3818 mutex_exit(&vp->v_vsd_lock); 3819 VN_RELE(vp); 3820 fp->rf_vp = NULL; 3821 } 3822 rfs4_dbe_invalidate(fp->rf_dbe); 3823 } 3824 } 3825 3826 /* 3827 * Given a directory that is being unexported, cleanup/release all 3828 * state in the server that refers to objects residing underneath this 3829 * particular export. The ordering of the release is important. 3830 * Lock_owner, then state and then file. 3831 */ 3832 void 3833 rfs4_clean_state_exi(struct exportinfo *exi) 3834 { 3835 mutex_enter(&rfs4_state_lock); 3836 3837 if (rfs4_server_state == NULL) { 3838 mutex_exit(&rfs4_state_lock); 3839 return; 3840 } 3841 3842 rfs4_dbe_walk(rfs4_lo_state_tab, rfs4_lo_state_walk_callout, exi); 3843 rfs4_dbe_walk(rfs4_state_tab, rfs4_state_walk_callout, exi); 3844 rfs4_dbe_walk(rfs4_deleg_state_tab, rfs4_deleg_state_walk_callout, exi); 3845 rfs4_dbe_walk(rfs4_file_tab, rfs4_file_walk_callout, exi); 3846 3847 mutex_exit(&rfs4_state_lock); 3848 } 3849