1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/systm.h> 27 #include <sys/kmem.h> 28 #include <sys/cmn_err.h> 29 #include <sys/atomic.h> 30 #include <sys/clconf.h> 31 #include <sys/cladm.h> 32 #include <sys/flock.h> 33 #include <nfs/export.h> 34 #include <nfs/nfs.h> 35 #include <nfs/nfs4.h> 36 #include <nfs/nfssys.h> 37 #include <nfs/lm.h> 38 #include <sys/pathname.h> 39 #include <sys/sdt.h> 40 #include <sys/nvpair.h> 41 42 extern u_longlong_t nfs4_srv_caller_id; 43 44 extern time_t rfs4_start_time; 45 extern uint_t nfs4_srv_vkey; 46 47 stateid4 special0 = { 48 0, 49 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } 50 }; 51 52 stateid4 special1 = { 53 0xffffffff, 54 { 55 (char)0xff, (char)0xff, (char)0xff, (char)0xff, 56 (char)0xff, (char)0xff, (char)0xff, (char)0xff, 57 (char)0xff, (char)0xff, (char)0xff, (char)0xff 58 } 59 }; 60 61 62 #define ISSPECIAL(id) (stateid4_cmp(id, &special0) || \ 63 stateid4_cmp(id, &special1)) 64 65 /* For embedding the cluster nodeid into our clientid */ 66 #define CLUSTER_NODEID_SHIFT 24 67 #define CLUSTER_MAX_NODEID 255 68 69 #ifdef DEBUG 70 int rfs4_debug; 71 #endif 72 73 static uint32_t rfs4_database_debug = 0x00; 74 75 static void rfs4_ss_clid_write(rfs4_client_t *cp, char *leaf); 76 static void rfs4_ss_clid_write_one(rfs4_client_t *cp, char *dir, char *leaf); 77 static void rfs4_dss_clear_oldstate(rfs4_servinst_t *sip); 78 static void rfs4_ss_chkclid_sip(rfs4_client_t *cp, rfs4_servinst_t *sip); 79 80 /* 81 * Couple of simple init/destroy functions for a general waiter 82 */ 83 void 84 rfs4_sw_init(rfs4_state_wait_t *swp) 85 { 86 mutex_init(swp->sw_cv_lock, NULL, MUTEX_DEFAULT, NULL); 87 cv_init(swp->sw_cv, NULL, CV_DEFAULT, NULL); 88 swp->sw_active = FALSE; 89 swp->sw_wait_count = 0; 90 } 91 92 void 93 rfs4_sw_destroy(rfs4_state_wait_t *swp) 94 { 95 mutex_destroy(swp->sw_cv_lock); 96 cv_destroy(swp->sw_cv); 97 } 98 99 void 100 rfs4_sw_enter(rfs4_state_wait_t *swp) 101 { 102 mutex_enter(swp->sw_cv_lock); 103 while (swp->sw_active) { 104 swp->sw_wait_count++; 105 cv_wait(swp->sw_cv, swp->sw_cv_lock); 106 swp->sw_wait_count--; 107 } 108 ASSERT(swp->sw_active == FALSE); 109 swp->sw_active = TRUE; 110 mutex_exit(swp->sw_cv_lock); 111 } 112 113 void 114 rfs4_sw_exit(rfs4_state_wait_t *swp) 115 { 116 mutex_enter(swp->sw_cv_lock); 117 ASSERT(swp->sw_active == TRUE); 118 swp->sw_active = FALSE; 119 if (swp->sw_wait_count != 0) 120 cv_broadcast(swp->sw_cv); 121 mutex_exit(swp->sw_cv_lock); 122 } 123 124 /* 125 * CPR callback id -- not related to v4 callbacks 126 */ 127 static callb_id_t cpr_id = 0; 128 129 static void 130 deep_lock_copy(LOCK4res *dres, LOCK4res *sres) 131 { 132 lock_owner4 *slo = &sres->LOCK4res_u.denied.owner; 133 lock_owner4 *dlo = &dres->LOCK4res_u.denied.owner; 134 135 if (sres->status == NFS4ERR_DENIED) { 136 dlo->owner_val = kmem_alloc(slo->owner_len, KM_SLEEP); 137 bcopy(slo->owner_val, dlo->owner_val, slo->owner_len); 138 } 139 } 140 141 static void 142 deep_lock_free(LOCK4res *res) 143 { 144 lock_owner4 *lo = &res->LOCK4res_u.denied.owner; 145 146 if (res->status == NFS4ERR_DENIED) 147 kmem_free(lo->owner_val, lo->owner_len); 148 } 149 150 static void 151 deep_open_copy(OPEN4res *dres, OPEN4res *sres) 152 { 153 nfsace4 *sacep, *dacep; 154 155 if (sres->status != NFS4_OK) { 156 return; 157 } 158 159 dres->attrset = sres->attrset; 160 161 switch (sres->delegation.delegation_type) { 162 case OPEN_DELEGATE_NONE: 163 return; 164 case OPEN_DELEGATE_READ: 165 sacep = &sres->delegation.open_delegation4_u.read.permissions; 166 dacep = &dres->delegation.open_delegation4_u.read.permissions; 167 break; 168 case OPEN_DELEGATE_WRITE: 169 sacep = &sres->delegation.open_delegation4_u.write.permissions; 170 dacep = &dres->delegation.open_delegation4_u.write.permissions; 171 break; 172 } 173 dacep->who.utf8string_val = 174 kmem_alloc(sacep->who.utf8string_len, KM_SLEEP); 175 bcopy(sacep->who.utf8string_val, dacep->who.utf8string_val, 176 sacep->who.utf8string_len); 177 } 178 179 static void 180 deep_open_free(OPEN4res *res) 181 { 182 nfsace4 *acep; 183 if (res->status != NFS4_OK) 184 return; 185 186 switch (res->delegation.delegation_type) { 187 case OPEN_DELEGATE_NONE: 188 return; 189 case OPEN_DELEGATE_READ: 190 acep = &res->delegation.open_delegation4_u.read.permissions; 191 break; 192 case OPEN_DELEGATE_WRITE: 193 acep = &res->delegation.open_delegation4_u.write.permissions; 194 break; 195 } 196 197 if (acep->who.utf8string_val) { 198 kmem_free(acep->who.utf8string_val, acep->who.utf8string_len); 199 acep->who.utf8string_val = NULL; 200 } 201 } 202 203 void 204 rfs4_free_reply(nfs_resop4 *rp) 205 { 206 switch (rp->resop) { 207 case OP_LOCK: 208 deep_lock_free(&rp->nfs_resop4_u.oplock); 209 break; 210 case OP_OPEN: 211 deep_open_free(&rp->nfs_resop4_u.opopen); 212 default: 213 break; 214 } 215 } 216 217 void 218 rfs4_copy_reply(nfs_resop4 *dst, nfs_resop4 *src) 219 { 220 *dst = *src; 221 222 /* Handle responses that need deep copy */ 223 switch (src->resop) { 224 case OP_LOCK: 225 deep_lock_copy(&dst->nfs_resop4_u.oplock, 226 &src->nfs_resop4_u.oplock); 227 break; 228 case OP_OPEN: 229 deep_open_copy(&dst->nfs_resop4_u.opopen, 230 &src->nfs_resop4_u.opopen); 231 break; 232 default: 233 break; 234 }; 235 } 236 237 /* 238 * This is the implementation of the underlying state engine. The 239 * public interface to this engine is described by 240 * nfs4_state.h. Callers to the engine should hold no state engine 241 * locks when they call in to it. If the protocol needs to lock data 242 * structures it should do so after acquiring all references to them 243 * first and then follow the following lock order: 244 * 245 * client > openowner > state > lo_state > lockowner > file. 246 * 247 * Internally we only allow a thread to hold one hash bucket lock at a 248 * time and the lock is higher in the lock order (must be acquired 249 * first) than the data structure that is on that hash list. 250 * 251 * If a new reference was acquired by the caller, that reference needs 252 * to be released after releasing all acquired locks with the 253 * corresponding rfs4_*_rele routine. 254 */ 255 256 /* 257 * This code is some what prototypical for now. Its purpose currently is to 258 * implement the interfaces sufficiently to finish the higher protocol 259 * elements. This will be replaced by a dynamically resizeable tables 260 * backed by kmem_cache allocator. However synchronization is handled 261 * correctly (I hope) and will not change by much. The mutexes for 262 * the hash buckets that can be used to create new instances of data 263 * structures might be good candidates to evolve into reader writer 264 * locks. If it has to do a creation, it would be holding the 265 * mutex across a kmem_alloc with KM_SLEEP specified. 266 */ 267 268 #ifdef DEBUG 269 #define TABSIZE 17 270 #else 271 #define TABSIZE 2047 272 #endif 273 274 #define ADDRHASH(key) ((unsigned long)(key) >> 3) 275 276 /* Used to serialize create/destroy of rfs4_server_state database */ 277 kmutex_t rfs4_state_lock; 278 static rfs4_database_t *rfs4_server_state = NULL; 279 280 /* Used to serialize lookups of clientids */ 281 static krwlock_t rfs4_findclient_lock; 282 283 /* 284 * For now this "table" is exposed so that the CPR callback 285 * function can tromp through it.. 286 */ 287 rfs4_table_t *rfs4_client_tab; 288 289 static rfs4_index_t *rfs4_clientid_idx; 290 static rfs4_index_t *rfs4_nfsclnt_idx; 291 static rfs4_table_t *rfs4_clntip_tab; 292 static rfs4_index_t *rfs4_clntip_idx; 293 static rfs4_table_t *rfs4_openowner_tab; 294 static rfs4_index_t *rfs4_openowner_idx; 295 static rfs4_table_t *rfs4_state_tab; 296 static rfs4_index_t *rfs4_state_idx; 297 static rfs4_index_t *rfs4_state_owner_file_idx; 298 static rfs4_index_t *rfs4_state_file_idx; 299 static rfs4_table_t *rfs4_lo_state_tab; 300 static rfs4_index_t *rfs4_lo_state_idx; 301 static rfs4_index_t *rfs4_lo_state_owner_idx; 302 static rfs4_table_t *rfs4_lockowner_tab; 303 static rfs4_index_t *rfs4_lockowner_idx; 304 static rfs4_index_t *rfs4_lockowner_pid_idx; 305 static rfs4_table_t *rfs4_file_tab; 306 static rfs4_index_t *rfs4_file_idx; 307 static rfs4_table_t *rfs4_deleg_state_tab; 308 static rfs4_index_t *rfs4_deleg_idx; 309 static rfs4_index_t *rfs4_deleg_state_idx; 310 311 #define MAXTABSZ 1024*1024 312 313 /* The values below are rfs4_lease_time units */ 314 315 #ifdef DEBUG 316 #define CLIENT_CACHE_TIME 1 317 #define OPENOWNER_CACHE_TIME 1 318 #define STATE_CACHE_TIME 1 319 #define LO_STATE_CACHE_TIME 1 320 #define LOCKOWNER_CACHE_TIME 1 321 #define FILE_CACHE_TIME 3 322 #define DELEG_STATE_CACHE_TIME 1 323 #else 324 #define CLIENT_CACHE_TIME 10 325 #define OPENOWNER_CACHE_TIME 5 326 #define STATE_CACHE_TIME 1 327 #define LO_STATE_CACHE_TIME 1 328 #define LOCKOWNER_CACHE_TIME 3 329 #define FILE_CACHE_TIME 40 330 #define DELEG_STATE_CACHE_TIME 1 331 #endif 332 333 334 static time_t rfs4_client_cache_time = 0; 335 static time_t rfs4_clntip_cache_time = 0; 336 static time_t rfs4_openowner_cache_time = 0; 337 static time_t rfs4_state_cache_time = 0; 338 static time_t rfs4_lo_state_cache_time = 0; 339 static time_t rfs4_lockowner_cache_time = 0; 340 static time_t rfs4_file_cache_time = 0; 341 static time_t rfs4_deleg_state_cache_time = 0; 342 343 static bool_t rfs4_client_create(rfs4_entry_t, void *); 344 static void rfs4_dss_remove_cpleaf(rfs4_client_t *); 345 static void rfs4_dss_remove_leaf(rfs4_servinst_t *, char *, char *); 346 static void rfs4_client_destroy(rfs4_entry_t); 347 static bool_t rfs4_client_expiry(rfs4_entry_t); 348 static uint32_t clientid_hash(void *); 349 static bool_t clientid_compare(rfs4_entry_t, void *); 350 static void *clientid_mkkey(rfs4_entry_t); 351 static uint32_t nfsclnt_hash(void *); 352 static bool_t nfsclnt_compare(rfs4_entry_t, void *); 353 static void *nfsclnt_mkkey(rfs4_entry_t); 354 static bool_t rfs4_clntip_expiry(rfs4_entry_t); 355 static void rfs4_clntip_destroy(rfs4_entry_t); 356 static bool_t rfs4_clntip_create(rfs4_entry_t, void *); 357 static uint32_t clntip_hash(void *); 358 static bool_t clntip_compare(rfs4_entry_t, void *); 359 static void *clntip_mkkey(rfs4_entry_t); 360 static bool_t rfs4_openowner_create(rfs4_entry_t, void *); 361 static void rfs4_openowner_destroy(rfs4_entry_t); 362 static bool_t rfs4_openowner_expiry(rfs4_entry_t); 363 static uint32_t openowner_hash(void *); 364 static bool_t openowner_compare(rfs4_entry_t, void *); 365 static void *openowner_mkkey(rfs4_entry_t); 366 static bool_t rfs4_state_create(rfs4_entry_t, void *); 367 static void rfs4_state_destroy(rfs4_entry_t); 368 static bool_t rfs4_state_expiry(rfs4_entry_t); 369 static uint32_t state_hash(void *); 370 static bool_t state_compare(rfs4_entry_t, void *); 371 static void *state_mkkey(rfs4_entry_t); 372 static uint32_t state_owner_file_hash(void *); 373 static bool_t state_owner_file_compare(rfs4_entry_t, void *); 374 static void *state_owner_file_mkkey(rfs4_entry_t); 375 static uint32_t state_file_hash(void *); 376 static bool_t state_file_compare(rfs4_entry_t, void *); 377 static void *state_file_mkkey(rfs4_entry_t); 378 static bool_t rfs4_lo_state_create(rfs4_entry_t, void *); 379 static void rfs4_lo_state_destroy(rfs4_entry_t); 380 static bool_t rfs4_lo_state_expiry(rfs4_entry_t); 381 static uint32_t lo_state_hash(void *); 382 static bool_t lo_state_compare(rfs4_entry_t, void *); 383 static void *lo_state_mkkey(rfs4_entry_t); 384 static uint32_t lo_state_lo_hash(void *); 385 static bool_t lo_state_lo_compare(rfs4_entry_t, void *); 386 static void *lo_state_lo_mkkey(rfs4_entry_t); 387 static bool_t rfs4_lockowner_create(rfs4_entry_t, void *); 388 static void rfs4_lockowner_destroy(rfs4_entry_t); 389 static bool_t rfs4_lockowner_expiry(rfs4_entry_t); 390 static uint32_t lockowner_hash(void *); 391 static bool_t lockowner_compare(rfs4_entry_t, void *); 392 static void *lockowner_mkkey(rfs4_entry_t); 393 static uint32_t pid_hash(void *); 394 static bool_t pid_compare(rfs4_entry_t, void *); 395 static void *pid_mkkey(rfs4_entry_t); 396 static bool_t rfs4_file_create(rfs4_entry_t, void *); 397 static void rfs4_file_destroy(rfs4_entry_t); 398 static uint32_t file_hash(void *); 399 static bool_t file_compare(rfs4_entry_t, void *); 400 static void *file_mkkey(rfs4_entry_t); 401 static bool_t rfs4_deleg_state_create(rfs4_entry_t, void *); 402 static void rfs4_deleg_state_destroy(rfs4_entry_t); 403 static bool_t rfs4_deleg_state_expiry(rfs4_entry_t); 404 static uint32_t deleg_hash(void *); 405 static bool_t deleg_compare(rfs4_entry_t, void *); 406 static void *deleg_mkkey(rfs4_entry_t); 407 static uint32_t deleg_state_hash(void *); 408 static bool_t deleg_state_compare(rfs4_entry_t, void *); 409 static void *deleg_state_mkkey(rfs4_entry_t); 410 411 static void rfs4_state_rele_nounlock(rfs4_state_t *); 412 413 static int rfs4_ss_enabled = 0; 414 415 extern void (*rfs4_client_clrst)(struct nfs4clrst_args *); 416 417 void 418 rfs4_ss_pnfree(rfs4_ss_pn_t *ss_pn) 419 { 420 kmem_free(ss_pn, sizeof (rfs4_ss_pn_t)); 421 } 422 423 static rfs4_ss_pn_t * 424 rfs4_ss_pnalloc(char *dir, char *leaf) 425 { 426 rfs4_ss_pn_t *ss_pn; 427 int dir_len, leaf_len; 428 429 /* 430 * validate we have a resonable path 431 * (account for the '/' and trailing null) 432 */ 433 if ((dir_len = strlen(dir)) > MAXPATHLEN || 434 (leaf_len = strlen(leaf)) > MAXNAMELEN || 435 (dir_len + leaf_len + 2) > MAXPATHLEN) { 436 return (NULL); 437 } 438 439 ss_pn = kmem_alloc(sizeof (rfs4_ss_pn_t), KM_SLEEP); 440 441 (void) snprintf(ss_pn->pn, MAXPATHLEN, "%s/%s", dir, leaf); 442 /* Handy pointer to just the leaf name */ 443 ss_pn->leaf = ss_pn->pn + dir_len + 1; 444 return (ss_pn); 445 } 446 447 448 /* 449 * Move the "leaf" filename from "sdir" directory 450 * to the "ddir" directory. Return the pathname of 451 * the destination unless the rename fails in which 452 * case we need to return the source pathname. 453 */ 454 static rfs4_ss_pn_t * 455 rfs4_ss_movestate(char *sdir, char *ddir, char *leaf) 456 { 457 rfs4_ss_pn_t *src, *dst; 458 459 if ((src = rfs4_ss_pnalloc(sdir, leaf)) == NULL) 460 return (NULL); 461 462 if ((dst = rfs4_ss_pnalloc(ddir, leaf)) == NULL) { 463 rfs4_ss_pnfree(src); 464 return (NULL); 465 } 466 467 /* 468 * If the rename fails we shall return the src 469 * pathname and free the dst. Otherwise we need 470 * to free the src and return the dst pathanme. 471 */ 472 if (vn_rename(src->pn, dst->pn, UIO_SYSSPACE)) { 473 rfs4_ss_pnfree(dst); 474 return (src); 475 } 476 rfs4_ss_pnfree(src); 477 return (dst); 478 } 479 480 481 static rfs4_oldstate_t * 482 rfs4_ss_getstate(vnode_t *dvp, rfs4_ss_pn_t *ss_pn) 483 { 484 struct uio uio; 485 struct iovec iov[3]; 486 487 rfs4_oldstate_t *cl_ss = NULL; 488 vnode_t *vp; 489 vattr_t va; 490 uint_t id_len; 491 int err, kill_file, file_vers; 492 493 if (ss_pn == NULL) 494 return (NULL); 495 496 /* 497 * open the state file. 498 */ 499 if (vn_open(ss_pn->pn, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0) != 0) { 500 return (NULL); 501 } 502 503 if (vp->v_type != VREG) { 504 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 505 VN_RELE(vp); 506 return (NULL); 507 } 508 509 err = VOP_ACCESS(vp, VREAD, 0, CRED(), NULL); 510 if (err) { 511 /* 512 * We don't have read access? better get the heck out. 513 */ 514 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 515 VN_RELE(vp); 516 return (NULL); 517 } 518 519 (void) VOP_RWLOCK(vp, V_WRITELOCK_FALSE, NULL); 520 /* 521 * get the file size to do some basic validation 522 */ 523 va.va_mask = AT_SIZE; 524 err = VOP_GETATTR(vp, &va, 0, CRED(), NULL); 525 526 kill_file = (va.va_size == 0 || va.va_size < 527 (NFS4_VERIFIER_SIZE + sizeof (uint_t)+1)); 528 529 if (err || kill_file) { 530 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 531 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 532 VN_RELE(vp); 533 if (kill_file) { 534 (void) VOP_REMOVE(dvp, ss_pn->leaf, CRED(), NULL, 0); 535 } 536 return (NULL); 537 } 538 539 cl_ss = kmem_alloc(sizeof (rfs4_oldstate_t), KM_SLEEP); 540 541 /* 542 * build iovecs to read in the file_version, verifier and id_len 543 */ 544 iov[0].iov_base = (caddr_t)&file_vers; 545 iov[0].iov_len = sizeof (int); 546 iov[1].iov_base = (caddr_t)&cl_ss->cl_id4.verifier; 547 iov[1].iov_len = NFS4_VERIFIER_SIZE; 548 iov[2].iov_base = (caddr_t)&id_len; 549 iov[2].iov_len = sizeof (uint_t); 550 551 uio.uio_iov = iov; 552 uio.uio_iovcnt = 3; 553 uio.uio_segflg = UIO_SYSSPACE; 554 uio.uio_loffset = 0; 555 uio.uio_resid = sizeof (int) + NFS4_VERIFIER_SIZE + sizeof (uint_t); 556 557 if (err = VOP_READ(vp, &uio, FREAD, CRED(), NULL)) { 558 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 559 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 560 VN_RELE(vp); 561 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 562 return (NULL); 563 } 564 565 /* 566 * if the file_version doesn't match or if the 567 * id_len is zero or the combination of the verifier, 568 * id_len and id_val is bigger than the file we have 569 * a problem. If so ditch the file. 570 */ 571 kill_file = (file_vers != NFS4_SS_VERSION || id_len == 0 || 572 (id_len + NFS4_VERIFIER_SIZE + sizeof (uint_t)) > va.va_size); 573 574 if (err || kill_file) { 575 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 576 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 577 VN_RELE(vp); 578 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 579 if (kill_file) { 580 (void) VOP_REMOVE(dvp, ss_pn->leaf, CRED(), NULL, 0); 581 } 582 return (NULL); 583 } 584 585 /* 586 * now get the client id value 587 */ 588 cl_ss->cl_id4.id_val = kmem_alloc(id_len, KM_SLEEP); 589 iov[0].iov_base = cl_ss->cl_id4.id_val; 590 iov[0].iov_len = id_len; 591 592 uio.uio_iov = iov; 593 uio.uio_iovcnt = 1; 594 uio.uio_segflg = UIO_SYSSPACE; 595 uio.uio_resid = cl_ss->cl_id4.id_len = id_len; 596 597 if (err = VOP_READ(vp, &uio, FREAD, CRED(), NULL)) { 598 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 599 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 600 VN_RELE(vp); 601 kmem_free(cl_ss->cl_id4.id_val, id_len); 602 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 603 return (NULL); 604 } 605 606 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 607 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 608 VN_RELE(vp); 609 return (cl_ss); 610 } 611 612 #ifdef nextdp 613 #undef nextdp 614 #endif 615 #define nextdp(dp) ((struct dirent64 *)((char *)(dp) + (dp)->d_reclen)) 616 617 /* 618 * Add entries from statedir to supplied oldstate list. 619 * Optionally, move all entries from statedir -> destdir. 620 */ 621 void 622 rfs4_ss_oldstate(rfs4_oldstate_t *oldstate, char *statedir, char *destdir) 623 { 624 rfs4_ss_pn_t *ss_pn; 625 rfs4_oldstate_t *cl_ss = NULL; 626 char *dirt = NULL; 627 int err, dir_eof = 0, size = 0; 628 vnode_t *dvp; 629 struct iovec iov; 630 struct uio uio; 631 struct dirent64 *dep; 632 offset_t dirchunk_offset = 0; 633 634 /* 635 * open the state directory 636 */ 637 if (vn_open(statedir, UIO_SYSSPACE, FREAD, 0, &dvp, 0, 0)) 638 return; 639 640 if (dvp->v_type != VDIR || VOP_ACCESS(dvp, VREAD, 0, CRED(), NULL)) 641 goto out; 642 643 dirt = kmem_alloc(RFS4_SS_DIRSIZE, KM_SLEEP); 644 645 /* 646 * Get and process the directory entries 647 */ 648 while (!dir_eof) { 649 (void) VOP_RWLOCK(dvp, V_WRITELOCK_FALSE, NULL); 650 iov.iov_base = dirt; 651 iov.iov_len = RFS4_SS_DIRSIZE; 652 uio.uio_iov = &iov; 653 uio.uio_iovcnt = 1; 654 uio.uio_segflg = UIO_SYSSPACE; 655 uio.uio_loffset = dirchunk_offset; 656 uio.uio_resid = RFS4_SS_DIRSIZE; 657 658 err = VOP_READDIR(dvp, &uio, CRED(), &dir_eof, NULL, 0); 659 VOP_RWUNLOCK(dvp, V_WRITELOCK_FALSE, NULL); 660 if (err) 661 goto out; 662 663 size = RFS4_SS_DIRSIZE - uio.uio_resid; 664 665 /* 666 * Process all the directory entries in this 667 * readdir chunk 668 */ 669 for (dep = (struct dirent64 *)dirt; size > 0; 670 dep = nextdp(dep)) { 671 672 size -= dep->d_reclen; 673 dirchunk_offset = dep->d_off; 674 675 /* 676 * Skip '.' and '..' 677 */ 678 if (NFS_IS_DOTNAME(dep->d_name)) 679 continue; 680 681 ss_pn = rfs4_ss_pnalloc(statedir, dep->d_name); 682 if (ss_pn == NULL) 683 continue; 684 685 if (cl_ss = rfs4_ss_getstate(dvp, ss_pn)) { 686 if (destdir != NULL) { 687 rfs4_ss_pnfree(ss_pn); 688 cl_ss->ss_pn = rfs4_ss_movestate( 689 statedir, destdir, dep->d_name); 690 } else { 691 cl_ss->ss_pn = ss_pn; 692 } 693 insque(cl_ss, oldstate); 694 } else { 695 rfs4_ss_pnfree(ss_pn); 696 } 697 } 698 } 699 700 out: 701 (void) VOP_CLOSE(dvp, FREAD, 1, (offset_t)0, CRED(), NULL); 702 VN_RELE(dvp); 703 if (dirt) 704 kmem_free((caddr_t)dirt, RFS4_SS_DIRSIZE); 705 } 706 707 static void 708 rfs4_ss_init(void) 709 { 710 int npaths = 1; 711 char *default_dss_path = NFS4_DSS_VAR_DIR; 712 713 /* read the default stable storage state */ 714 rfs4_dss_readstate(npaths, &default_dss_path); 715 716 rfs4_ss_enabled = 1; 717 } 718 719 static void 720 rfs4_ss_fini(void) 721 { 722 rfs4_servinst_t *sip; 723 724 mutex_enter(&rfs4_servinst_lock); 725 sip = rfs4_cur_servinst; 726 while (sip != NULL) { 727 rfs4_dss_clear_oldstate(sip); 728 sip = sip->next; 729 } 730 mutex_exit(&rfs4_servinst_lock); 731 } 732 733 /* 734 * Remove all oldstate files referenced by this servinst. 735 */ 736 static void 737 rfs4_dss_clear_oldstate(rfs4_servinst_t *sip) 738 { 739 rfs4_oldstate_t *os_head, *osp; 740 741 rw_enter(&sip->oldstate_lock, RW_WRITER); 742 os_head = sip->oldstate; 743 744 if (os_head == NULL) 745 return; 746 747 /* skip dummy entry */ 748 osp = os_head->next; 749 while (osp != os_head) { 750 char *leaf = osp->ss_pn->leaf; 751 rfs4_oldstate_t *os_next; 752 753 rfs4_dss_remove_leaf(sip, NFS4_DSS_OLDSTATE_LEAF, leaf); 754 755 if (osp->cl_id4.id_val) 756 kmem_free(osp->cl_id4.id_val, osp->cl_id4.id_len); 757 if (osp->ss_pn) 758 kmem_free(osp->ss_pn, sizeof (rfs4_ss_pn_t)); 759 760 os_next = osp->next; 761 remque(osp); 762 kmem_free(osp, sizeof (rfs4_oldstate_t)); 763 osp = os_next; 764 } 765 766 /* free dummy entry */ 767 kmem_free(osp, sizeof (rfs4_oldstate_t)); 768 769 sip->oldstate = NULL; 770 771 rw_exit(&sip->oldstate_lock); 772 } 773 774 /* 775 * Form the state and oldstate paths, and read in the stable storage files. 776 */ 777 void 778 rfs4_dss_readstate(int npaths, char **paths) 779 { 780 int i; 781 char *state, *oldstate; 782 783 state = kmem_alloc(MAXPATHLEN, KM_SLEEP); 784 oldstate = kmem_alloc(MAXPATHLEN, KM_SLEEP); 785 786 for (i = 0; i < npaths; i++) { 787 char *path = paths[i]; 788 789 (void) sprintf(state, "%s/%s", path, NFS4_DSS_STATE_LEAF); 790 (void) sprintf(oldstate, "%s/%s", path, NFS4_DSS_OLDSTATE_LEAF); 791 792 /* 793 * Populate the current server instance's oldstate list. 794 * 795 * 1. Read stable storage data from old state directory, 796 * leaving its contents alone. 797 * 798 * 2. Read stable storage data from state directory, 799 * and move the latter's contents to old state 800 * directory. 801 */ 802 rfs4_ss_oldstate(rfs4_cur_servinst->oldstate, oldstate, NULL); 803 rfs4_ss_oldstate(rfs4_cur_servinst->oldstate, state, oldstate); 804 } 805 806 kmem_free(state, MAXPATHLEN); 807 kmem_free(oldstate, MAXPATHLEN); 808 } 809 810 811 /* 812 * Check if we are still in grace and if the client can be 813 * granted permission to perform reclaims. 814 */ 815 void 816 rfs4_ss_chkclid(rfs4_client_t *cp) 817 { 818 rfs4_servinst_t *sip; 819 820 /* 821 * It should be sufficient to check the oldstate data for just 822 * this client's instance. However, since our per-instance 823 * client grouping is solely temporal, HA-NFSv4 RG failover 824 * might result in clients of the same RG being partitioned into 825 * separate instances. 826 * 827 * Until the client grouping is improved, we must check the 828 * oldstate data for all instances with an active grace period. 829 * 830 * This also serves as the mechanism to remove stale oldstate data. 831 * The first time we check an instance after its grace period has 832 * expired, the oldstate data should be cleared. 833 * 834 * Start at the current instance, and walk the list backwards 835 * to the first. 836 */ 837 mutex_enter(&rfs4_servinst_lock); 838 for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) { 839 rfs4_ss_chkclid_sip(cp, sip); 840 841 /* if the above check found this client, we're done */ 842 if (cp->rc_can_reclaim) 843 break; 844 } 845 mutex_exit(&rfs4_servinst_lock); 846 } 847 848 static void 849 rfs4_ss_chkclid_sip(rfs4_client_t *cp, rfs4_servinst_t *sip) 850 { 851 rfs4_oldstate_t *osp, *os_head; 852 853 /* short circuit everything if this server instance has no oldstate */ 854 rw_enter(&sip->oldstate_lock, RW_READER); 855 os_head = sip->oldstate; 856 rw_exit(&sip->oldstate_lock); 857 if (os_head == NULL) 858 return; 859 860 /* 861 * If this server instance is no longer in a grace period then 862 * the client won't be able to reclaim. No further need for this 863 * instance's oldstate data, so it can be cleared. 864 */ 865 if (!rfs4_servinst_in_grace(sip)) 866 return; 867 868 /* this instance is still in grace; search for the clientid */ 869 870 rw_enter(&sip->oldstate_lock, RW_READER); 871 872 os_head = sip->oldstate; 873 /* skip dummy entry */ 874 osp = os_head->next; 875 while (osp != os_head) { 876 if (osp->cl_id4.id_len == cp->rc_nfs_client.id_len) { 877 if (bcmp(osp->cl_id4.id_val, cp->rc_nfs_client.id_val, 878 osp->cl_id4.id_len) == 0) { 879 cp->rc_can_reclaim = 1; 880 break; 881 } 882 } 883 osp = osp->next; 884 } 885 886 rw_exit(&sip->oldstate_lock); 887 } 888 889 /* 890 * Place client information into stable storage: 1/3. 891 * First, generate the leaf filename, from the client's IP address and 892 * the server-generated short-hand clientid. 893 */ 894 void 895 rfs4_ss_clid(rfs4_client_t *cp) 896 { 897 const char *kinet_ntop6(uchar_t *, char *, size_t); 898 char leaf[MAXNAMELEN], buf[INET6_ADDRSTRLEN]; 899 struct sockaddr *ca; 900 uchar_t *b; 901 902 if (rfs4_ss_enabled == 0) { 903 return; 904 } 905 906 buf[0] = 0; 907 908 ca = (struct sockaddr *)&cp->rc_addr; 909 910 /* 911 * Convert the caller's IP address to a dotted string 912 */ 913 if (ca->sa_family == AF_INET) { 914 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 915 (void) sprintf(buf, "%03d.%03d.%03d.%03d", b[0] & 0xFF, 916 b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 917 } else if (ca->sa_family == AF_INET6) { 918 struct sockaddr_in6 *sin6; 919 920 sin6 = (struct sockaddr_in6 *)ca; 921 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 922 buf, INET6_ADDRSTRLEN); 923 } 924 925 (void) snprintf(leaf, MAXNAMELEN, "%s-%llx", buf, 926 (longlong_t)cp->rc_clientid); 927 rfs4_ss_clid_write(cp, leaf); 928 } 929 930 /* 931 * Place client information into stable storage: 2/3. 932 * DSS: distributed stable storage: the file may need to be written to 933 * multiple directories. 934 */ 935 static void 936 rfs4_ss_clid_write(rfs4_client_t *cp, char *leaf) 937 { 938 rfs4_servinst_t *sip; 939 940 /* 941 * It should be sufficient to write the leaf file to (all) DSS paths 942 * associated with just this client's instance. However, since our 943 * per-instance client grouping is solely temporal, HA-NFSv4 RG 944 * failover might result in us losing DSS data. 945 * 946 * Until the client grouping is improved, we must write the DSS data 947 * to all instances' paths. Start at the current instance, and 948 * walk the list backwards to the first. 949 */ 950 mutex_enter(&rfs4_servinst_lock); 951 for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) { 952 int i, npaths = sip->dss_npaths; 953 954 /* write the leaf file to all DSS paths */ 955 for (i = 0; i < npaths; i++) { 956 rfs4_dss_path_t *dss_path = sip->dss_paths[i]; 957 958 /* HA-NFSv4 path might have been failed-away from us */ 959 if (dss_path == NULL) 960 continue; 961 962 rfs4_ss_clid_write_one(cp, dss_path->path, leaf); 963 } 964 } 965 mutex_exit(&rfs4_servinst_lock); 966 } 967 968 /* 969 * Place client information into stable storage: 3/3. 970 * Write the stable storage data to the requested file. 971 */ 972 static void 973 rfs4_ss_clid_write_one(rfs4_client_t *cp, char *dss_path, char *leaf) 974 { 975 int ioflag; 976 int file_vers = NFS4_SS_VERSION; 977 size_t dirlen; 978 struct uio uio; 979 struct iovec iov[4]; 980 char *dir; 981 rfs4_ss_pn_t *ss_pn; 982 vnode_t *vp; 983 nfs_client_id4 *cl_id4 = &(cp->rc_nfs_client); 984 985 /* allow 2 extra bytes for '/' & NUL */ 986 dirlen = strlen(dss_path) + strlen(NFS4_DSS_STATE_LEAF) + 2; 987 dir = kmem_alloc(dirlen, KM_SLEEP); 988 (void) sprintf(dir, "%s/%s", dss_path, NFS4_DSS_STATE_LEAF); 989 990 ss_pn = rfs4_ss_pnalloc(dir, leaf); 991 /* rfs4_ss_pnalloc takes its own copy */ 992 kmem_free(dir, dirlen); 993 if (ss_pn == NULL) 994 return; 995 996 if (vn_open(ss_pn->pn, UIO_SYSSPACE, FCREAT|FWRITE, 0600, &vp, 997 CRCREAT, 0)) { 998 rfs4_ss_pnfree(ss_pn); 999 return; 1000 } 1001 1002 /* 1003 * We need to record leaf - i.e. the filename - so that we know 1004 * what to remove, in the future. However, the dir part of cp->ss_pn 1005 * should never be referenced directly, since it's potentially only 1006 * one of several paths with this leaf in it. 1007 */ 1008 if (cp->rc_ss_pn != NULL) { 1009 if (strcmp(cp->rc_ss_pn->leaf, leaf) == 0) { 1010 /* we've already recorded *this* leaf */ 1011 rfs4_ss_pnfree(ss_pn); 1012 } else { 1013 /* replace with this leaf */ 1014 rfs4_ss_pnfree(cp->rc_ss_pn); 1015 cp->rc_ss_pn = ss_pn; 1016 } 1017 } else { 1018 cp->rc_ss_pn = ss_pn; 1019 } 1020 1021 /* 1022 * Build a scatter list that points to the nfs_client_id4 1023 */ 1024 iov[0].iov_base = (caddr_t)&file_vers; 1025 iov[0].iov_len = sizeof (int); 1026 iov[1].iov_base = (caddr_t)&(cl_id4->verifier); 1027 iov[1].iov_len = NFS4_VERIFIER_SIZE; 1028 iov[2].iov_base = (caddr_t)&(cl_id4->id_len); 1029 iov[2].iov_len = sizeof (uint_t); 1030 iov[3].iov_base = (caddr_t)cl_id4->id_val; 1031 iov[3].iov_len = cl_id4->id_len; 1032 1033 uio.uio_iov = iov; 1034 uio.uio_iovcnt = 4; 1035 uio.uio_loffset = 0; 1036 uio.uio_segflg = UIO_SYSSPACE; 1037 uio.uio_llimit = (rlim64_t)MAXOFFSET_T; 1038 uio.uio_resid = cl_id4->id_len + sizeof (int) + 1039 NFS4_VERIFIER_SIZE + sizeof (uint_t); 1040 1041 ioflag = uio.uio_fmode = (FWRITE|FSYNC); 1042 uio.uio_extflg = UIO_COPY_DEFAULT; 1043 1044 (void) VOP_RWLOCK(vp, V_WRITELOCK_TRUE, NULL); 1045 /* write the full client id to the file. */ 1046 (void) VOP_WRITE(vp, &uio, ioflag, CRED(), NULL); 1047 VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL); 1048 1049 (void) VOP_CLOSE(vp, FWRITE, 1, (offset_t)0, CRED(), NULL); 1050 VN_RELE(vp); 1051 } 1052 1053 /* 1054 * DSS: distributed stable storage. 1055 * Unpack the list of paths passed by nfsd. 1056 * Use nvlist_alloc(9F) to manage the data. 1057 * The caller is responsible for allocating and freeing the buffer. 1058 */ 1059 int 1060 rfs4_dss_setpaths(char *buf, size_t buflen) 1061 { 1062 int error; 1063 1064 /* 1065 * If this is a "warm start", i.e. we previously had DSS paths, 1066 * preserve the old paths. 1067 */ 1068 if (rfs4_dss_paths != NULL) { 1069 /* 1070 * Before we lose the ptr, destroy the nvlist and pathnames 1071 * array from the warm start before this one. 1072 */ 1073 if (rfs4_dss_oldpaths) 1074 nvlist_free(rfs4_dss_oldpaths); 1075 rfs4_dss_oldpaths = rfs4_dss_paths; 1076 } 1077 1078 /* unpack the buffer into a searchable nvlist */ 1079 error = nvlist_unpack(buf, buflen, &rfs4_dss_paths, KM_SLEEP); 1080 if (error) 1081 return (error); 1082 1083 /* 1084 * Search the nvlist for the pathnames nvpair (which is the only nvpair 1085 * in the list, and record its location. 1086 */ 1087 error = nvlist_lookup_string_array(rfs4_dss_paths, NFS4_DSS_NVPAIR_NAME, 1088 &rfs4_dss_newpaths, &rfs4_dss_numnewpaths); 1089 return (error); 1090 } 1091 1092 /* 1093 * Ultimately the nfssys() call NFS4_CLR_STATE endsup here 1094 * to find and mark the client for forced expire. 1095 */ 1096 static void 1097 rfs4_client_scrub(rfs4_entry_t ent, void *arg) 1098 { 1099 rfs4_client_t *cp = (rfs4_client_t *)ent; 1100 struct nfs4clrst_args *clr = arg; 1101 struct sockaddr_in6 *ent_sin6; 1102 struct in6_addr clr_in6; 1103 struct sockaddr_in *ent_sin; 1104 struct in_addr clr_in; 1105 1106 if (clr->addr_type != cp->rc_addr.ss_family) { 1107 return; 1108 } 1109 1110 switch (clr->addr_type) { 1111 1112 case AF_INET6: 1113 /* copyin the address from user space */ 1114 if (copyin(clr->ap, &clr_in6, sizeof (clr_in6))) { 1115 break; 1116 } 1117 1118 ent_sin6 = (struct sockaddr_in6 *)&cp->rc_addr; 1119 1120 /* 1121 * now compare, and if equivalent mark entry 1122 * for forced expiration 1123 */ 1124 if (IN6_ARE_ADDR_EQUAL(&ent_sin6->sin6_addr, &clr_in6)) { 1125 cp->rc_forced_expire = 1; 1126 } 1127 break; 1128 1129 case AF_INET: 1130 /* copyin the address from user space */ 1131 if (copyin(clr->ap, &clr_in, sizeof (clr_in))) { 1132 break; 1133 } 1134 1135 ent_sin = (struct sockaddr_in *)&cp->rc_addr; 1136 1137 /* 1138 * now compare, and if equivalent mark entry 1139 * for forced expiration 1140 */ 1141 if (ent_sin->sin_addr.s_addr == clr_in.s_addr) { 1142 cp->rc_forced_expire = 1; 1143 } 1144 break; 1145 1146 default: 1147 /* force this assert to fail */ 1148 ASSERT(clr->addr_type != clr->addr_type); 1149 } 1150 } 1151 1152 /* 1153 * This is called from nfssys() in order to clear server state 1154 * for the specified client IP Address. 1155 */ 1156 void 1157 rfs4_clear_client_state(struct nfs4clrst_args *clr) 1158 { 1159 (void) rfs4_dbe_walk(rfs4_client_tab, rfs4_client_scrub, clr); 1160 } 1161 1162 /* 1163 * Used to initialize the NFSv4 server's state or database. All of 1164 * the tables are created and timers are set. Only called when NFSv4 1165 * service is provided. 1166 */ 1167 void 1168 rfs4_state_init() 1169 { 1170 int start_grace; 1171 extern boolean_t rfs4_cpr_callb(void *, int); 1172 char *dss_path = NFS4_DSS_VAR_DIR; 1173 1174 mutex_enter(&rfs4_state_lock); 1175 1176 /* 1177 * If the server state database has already been initialized, 1178 * skip it 1179 */ 1180 if (rfs4_server_state != NULL) { 1181 mutex_exit(&rfs4_state_lock); 1182 return; 1183 } 1184 1185 rw_init(&rfs4_findclient_lock, NULL, RW_DEFAULT, NULL); 1186 1187 /* 1188 * Set the boot time. If the server 1189 * has been restarted quickly and has had the opportunity to 1190 * service clients, then the start_time needs to be bumped 1191 * regardless. A small window but it exists... 1192 */ 1193 if (rfs4_start_time != gethrestime_sec()) 1194 rfs4_start_time = gethrestime_sec(); 1195 else 1196 rfs4_start_time++; 1197 1198 /* DSS: distributed stable storage: initialise served paths list */ 1199 rfs4_dss_pathlist = NULL; 1200 1201 /* 1202 * Create the first server instance, or a new one if the server has 1203 * been restarted; see above comments on rfs4_start_time. Don't 1204 * start its grace period; that will be done later, to maximise the 1205 * clients' recovery window. 1206 */ 1207 start_grace = 0; 1208 rfs4_servinst_create(start_grace, 1, &dss_path); 1209 1210 /* reset the "first NFSv4 request" status */ 1211 rfs4_seen_first_compound = 0; 1212 1213 /* 1214 * Add a CPR callback so that we can update client 1215 * access times to extend the lease after a suspend 1216 * and resume (using the same class as rpcmod/connmgr) 1217 */ 1218 cpr_id = callb_add(rfs4_cpr_callb, 0, CB_CL_CPR_RPC, "rfs4"); 1219 1220 /* set the various cache timers for table creation */ 1221 if (rfs4_client_cache_time == 0) 1222 rfs4_client_cache_time = CLIENT_CACHE_TIME; 1223 if (rfs4_openowner_cache_time == 0) 1224 rfs4_openowner_cache_time = OPENOWNER_CACHE_TIME; 1225 if (rfs4_state_cache_time == 0) 1226 rfs4_state_cache_time = STATE_CACHE_TIME; 1227 if (rfs4_lo_state_cache_time == 0) 1228 rfs4_lo_state_cache_time = LO_STATE_CACHE_TIME; 1229 if (rfs4_lockowner_cache_time == 0) 1230 rfs4_lockowner_cache_time = LOCKOWNER_CACHE_TIME; 1231 if (rfs4_file_cache_time == 0) 1232 rfs4_file_cache_time = FILE_CACHE_TIME; 1233 if (rfs4_deleg_state_cache_time == 0) 1234 rfs4_deleg_state_cache_time = DELEG_STATE_CACHE_TIME; 1235 1236 /* Create the overall database to hold all server state */ 1237 rfs4_server_state = rfs4_database_create(rfs4_database_debug); 1238 1239 /* Now create the individual tables */ 1240 rfs4_client_cache_time *= rfs4_lease_time; 1241 rfs4_client_tab = rfs4_table_create(rfs4_server_state, 1242 "Client", 1243 rfs4_client_cache_time, 1244 2, 1245 rfs4_client_create, 1246 rfs4_client_destroy, 1247 rfs4_client_expiry, 1248 sizeof (rfs4_client_t), 1249 TABSIZE, 1250 MAXTABSZ/8, 100); 1251 rfs4_nfsclnt_idx = rfs4_index_create(rfs4_client_tab, 1252 "nfs_client_id4", nfsclnt_hash, 1253 nfsclnt_compare, nfsclnt_mkkey, 1254 TRUE); 1255 rfs4_clientid_idx = rfs4_index_create(rfs4_client_tab, 1256 "client_id", clientid_hash, 1257 clientid_compare, clientid_mkkey, 1258 FALSE); 1259 1260 rfs4_clntip_cache_time = 86400 * 365; /* about a year */ 1261 rfs4_clntip_tab = rfs4_table_create(rfs4_server_state, 1262 "ClntIP", 1263 rfs4_clntip_cache_time, 1264 1, 1265 rfs4_clntip_create, 1266 rfs4_clntip_destroy, 1267 rfs4_clntip_expiry, 1268 sizeof (rfs4_clntip_t), 1269 TABSIZE, 1270 MAXTABSZ, 100); 1271 rfs4_clntip_idx = rfs4_index_create(rfs4_clntip_tab, 1272 "client_ip", clntip_hash, 1273 clntip_compare, clntip_mkkey, 1274 TRUE); 1275 1276 rfs4_openowner_cache_time *= rfs4_lease_time; 1277 rfs4_openowner_tab = rfs4_table_create(rfs4_server_state, 1278 "OpenOwner", 1279 rfs4_openowner_cache_time, 1280 1, 1281 rfs4_openowner_create, 1282 rfs4_openowner_destroy, 1283 rfs4_openowner_expiry, 1284 sizeof (rfs4_openowner_t), 1285 TABSIZE, 1286 MAXTABSZ, 100); 1287 rfs4_openowner_idx = rfs4_index_create(rfs4_openowner_tab, 1288 "open_owner4", openowner_hash, 1289 openowner_compare, 1290 openowner_mkkey, TRUE); 1291 1292 rfs4_state_cache_time *= rfs4_lease_time; 1293 rfs4_state_tab = rfs4_table_create(rfs4_server_state, 1294 "OpenStateID", 1295 rfs4_state_cache_time, 1296 3, 1297 rfs4_state_create, 1298 rfs4_state_destroy, 1299 rfs4_state_expiry, 1300 sizeof (rfs4_state_t), 1301 TABSIZE, 1302 MAXTABSZ, 100); 1303 1304 rfs4_state_owner_file_idx = rfs4_index_create(rfs4_state_tab, 1305 "Openowner-File", 1306 state_owner_file_hash, 1307 state_owner_file_compare, 1308 state_owner_file_mkkey, TRUE); 1309 1310 rfs4_state_idx = rfs4_index_create(rfs4_state_tab, 1311 "State-id", state_hash, 1312 state_compare, state_mkkey, FALSE); 1313 1314 rfs4_state_file_idx = rfs4_index_create(rfs4_state_tab, 1315 "File", state_file_hash, 1316 state_file_compare, state_file_mkkey, 1317 FALSE); 1318 1319 rfs4_lo_state_cache_time *= rfs4_lease_time; 1320 rfs4_lo_state_tab = rfs4_table_create(rfs4_server_state, 1321 "LockStateID", 1322 rfs4_lo_state_cache_time, 1323 2, 1324 rfs4_lo_state_create, 1325 rfs4_lo_state_destroy, 1326 rfs4_lo_state_expiry, 1327 sizeof (rfs4_lo_state_t), 1328 TABSIZE, 1329 MAXTABSZ, 100); 1330 1331 rfs4_lo_state_owner_idx = rfs4_index_create(rfs4_lo_state_tab, 1332 "lockownerxstate", 1333 lo_state_lo_hash, 1334 lo_state_lo_compare, 1335 lo_state_lo_mkkey, TRUE); 1336 1337 rfs4_lo_state_idx = rfs4_index_create(rfs4_lo_state_tab, 1338 "State-id", 1339 lo_state_hash, lo_state_compare, 1340 lo_state_mkkey, FALSE); 1341 1342 rfs4_lockowner_cache_time *= rfs4_lease_time; 1343 1344 rfs4_lockowner_tab = rfs4_table_create(rfs4_server_state, 1345 "Lockowner", 1346 rfs4_lockowner_cache_time, 1347 2, 1348 rfs4_lockowner_create, 1349 rfs4_lockowner_destroy, 1350 rfs4_lockowner_expiry, 1351 sizeof (rfs4_lockowner_t), 1352 TABSIZE, 1353 MAXTABSZ, 100); 1354 1355 rfs4_lockowner_idx = rfs4_index_create(rfs4_lockowner_tab, 1356 "lock_owner4", lockowner_hash, 1357 lockowner_compare, 1358 lockowner_mkkey, TRUE); 1359 1360 rfs4_lockowner_pid_idx = rfs4_index_create(rfs4_lockowner_tab, 1361 "pid", pid_hash, 1362 pid_compare, pid_mkkey, 1363 FALSE); 1364 1365 rfs4_file_cache_time *= rfs4_lease_time; 1366 rfs4_file_tab = rfs4_table_create(rfs4_server_state, 1367 "File", 1368 rfs4_file_cache_time, 1369 1, 1370 rfs4_file_create, 1371 rfs4_file_destroy, 1372 NULL, 1373 sizeof (rfs4_file_t), 1374 TABSIZE, 1375 MAXTABSZ, -1); 1376 1377 rfs4_file_idx = rfs4_index_create(rfs4_file_tab, 1378 "Filehandle", file_hash, 1379 file_compare, file_mkkey, TRUE); 1380 1381 rfs4_deleg_state_cache_time *= rfs4_lease_time; 1382 rfs4_deleg_state_tab = rfs4_table_create(rfs4_server_state, 1383 "DelegStateID", 1384 rfs4_deleg_state_cache_time, 1385 2, 1386 rfs4_deleg_state_create, 1387 rfs4_deleg_state_destroy, 1388 rfs4_deleg_state_expiry, 1389 sizeof (rfs4_deleg_state_t), 1390 TABSIZE, 1391 MAXTABSZ, 100); 1392 rfs4_deleg_idx = rfs4_index_create(rfs4_deleg_state_tab, 1393 "DelegByFileClient", 1394 deleg_hash, 1395 deleg_compare, 1396 deleg_mkkey, TRUE); 1397 1398 rfs4_deleg_state_idx = rfs4_index_create(rfs4_deleg_state_tab, 1399 "DelegState", 1400 deleg_state_hash, 1401 deleg_state_compare, 1402 deleg_state_mkkey, FALSE); 1403 1404 /* 1405 * Init the stable storage. 1406 */ 1407 rfs4_ss_init(); 1408 1409 rfs4_client_clrst = rfs4_clear_client_state; 1410 1411 mutex_exit(&rfs4_state_lock); 1412 } 1413 1414 1415 /* 1416 * Used at server shutdown to cleanup all of the NFSv4 server's structures 1417 * and other state. 1418 */ 1419 void 1420 rfs4_state_fini() 1421 { 1422 rfs4_database_t *dbp; 1423 1424 mutex_enter(&rfs4_state_lock); 1425 1426 if (rfs4_server_state == NULL) { 1427 mutex_exit(&rfs4_state_lock); 1428 return; 1429 } 1430 1431 rfs4_client_clrst = NULL; 1432 1433 rfs4_set_deleg_policy(SRV_NEVER_DELEGATE); 1434 dbp = rfs4_server_state; 1435 rfs4_server_state = NULL; 1436 1437 /* 1438 * Cleanup the CPR callback. 1439 */ 1440 if (cpr_id) 1441 (void) callb_delete(cpr_id); 1442 1443 rw_destroy(&rfs4_findclient_lock); 1444 1445 /* First stop all of the reaper threads in the database */ 1446 rfs4_database_shutdown(dbp); 1447 /* clean up any dangling stable storage structures */ 1448 rfs4_ss_fini(); 1449 /* Now actually destroy/release the database and its tables */ 1450 rfs4_database_destroy(dbp); 1451 1452 /* Reset the cache timers for next time */ 1453 rfs4_client_cache_time = 0; 1454 rfs4_openowner_cache_time = 0; 1455 rfs4_state_cache_time = 0; 1456 rfs4_lo_state_cache_time = 0; 1457 rfs4_lockowner_cache_time = 0; 1458 rfs4_file_cache_time = 0; 1459 rfs4_deleg_state_cache_time = 0; 1460 1461 mutex_exit(&rfs4_state_lock); 1462 1463 /* destroy server instances and current instance ptr */ 1464 rfs4_servinst_destroy_all(); 1465 1466 /* reset the "first NFSv4 request" status */ 1467 rfs4_seen_first_compound = 0; 1468 1469 /* DSS: distributed stable storage */ 1470 if (rfs4_dss_oldpaths) 1471 nvlist_free(rfs4_dss_oldpaths); 1472 if (rfs4_dss_paths) 1473 nvlist_free(rfs4_dss_paths); 1474 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 1475 } 1476 1477 typedef union { 1478 struct { 1479 uint32_t start_time; 1480 uint32_t c_id; 1481 } impl_id; 1482 clientid4 id4; 1483 } cid; 1484 1485 static int foreign_stateid(stateid_t *id); 1486 static int foreign_clientid(cid *cidp); 1487 static void embed_nodeid(cid *cidp); 1488 1489 typedef union { 1490 struct { 1491 uint32_t c_id; 1492 uint32_t gen_num; 1493 } cv_impl; 1494 verifier4 confirm_verf; 1495 } scid_confirm_verf; 1496 1497 static uint32_t 1498 clientid_hash(void *key) 1499 { 1500 cid *idp = key; 1501 1502 return (idp->impl_id.c_id); 1503 } 1504 1505 static bool_t 1506 clientid_compare(rfs4_entry_t entry, void *key) 1507 { 1508 rfs4_client_t *cp = (rfs4_client_t *)entry; 1509 clientid4 *idp = key; 1510 1511 return (*idp == cp->rc_clientid); 1512 } 1513 1514 static void * 1515 clientid_mkkey(rfs4_entry_t entry) 1516 { 1517 rfs4_client_t *cp = (rfs4_client_t *)entry; 1518 1519 return (&cp->rc_clientid); 1520 } 1521 1522 static uint32_t 1523 nfsclnt_hash(void *key) 1524 { 1525 nfs_client_id4 *client = key; 1526 int i; 1527 uint32_t hash = 0; 1528 1529 for (i = 0; i < client->id_len; i++) { 1530 hash <<= 1; 1531 hash += (uint_t)client->id_val[i]; 1532 } 1533 return (hash); 1534 } 1535 1536 1537 static bool_t 1538 nfsclnt_compare(rfs4_entry_t entry, void *key) 1539 { 1540 rfs4_client_t *cp = (rfs4_client_t *)entry; 1541 nfs_client_id4 *nfs_client = key; 1542 1543 if (cp->rc_nfs_client.id_len != nfs_client->id_len) 1544 return (FALSE); 1545 1546 return (bcmp(cp->rc_nfs_client.id_val, nfs_client->id_val, 1547 nfs_client->id_len) == 0); 1548 } 1549 1550 static void * 1551 nfsclnt_mkkey(rfs4_entry_t entry) 1552 { 1553 rfs4_client_t *cp = (rfs4_client_t *)entry; 1554 1555 return (&cp->rc_nfs_client); 1556 } 1557 1558 static bool_t 1559 rfs4_client_expiry(rfs4_entry_t u_entry) 1560 { 1561 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1562 bool_t cp_expired; 1563 1564 if (rfs4_dbe_is_invalid(cp->rc_dbe)) { 1565 cp->rc_ss_remove = 1; 1566 return (TRUE); 1567 } 1568 /* 1569 * If the sysadmin has used clear_locks for this 1570 * entry then forced_expire will be set and we 1571 * want this entry to be reaped. Or the entry 1572 * has exceeded its lease period. 1573 */ 1574 cp_expired = (cp->rc_forced_expire || 1575 (gethrestime_sec() - cp->rc_last_access 1576 > rfs4_lease_time)); 1577 1578 if (!cp->rc_ss_remove && cp_expired) 1579 cp->rc_ss_remove = 1; 1580 return (cp_expired); 1581 } 1582 1583 /* 1584 * Remove the leaf file from all distributed stable storage paths. 1585 */ 1586 static void 1587 rfs4_dss_remove_cpleaf(rfs4_client_t *cp) 1588 { 1589 rfs4_servinst_t *sip; 1590 char *leaf = cp->rc_ss_pn->leaf; 1591 1592 /* 1593 * since the state files are written to all DSS 1594 * paths we must remove this leaf file instance 1595 * from all server instances. 1596 */ 1597 1598 mutex_enter(&rfs4_servinst_lock); 1599 for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) { 1600 /* remove the leaf file associated with this server instance */ 1601 rfs4_dss_remove_leaf(sip, NFS4_DSS_STATE_LEAF, leaf); 1602 } 1603 mutex_exit(&rfs4_servinst_lock); 1604 } 1605 1606 static void 1607 rfs4_dss_remove_leaf(rfs4_servinst_t *sip, char *dir_leaf, char *leaf) 1608 { 1609 int i, npaths = sip->dss_npaths; 1610 1611 for (i = 0; i < npaths; i++) { 1612 rfs4_dss_path_t *dss_path = sip->dss_paths[i]; 1613 char *path, *dir; 1614 size_t pathlen; 1615 1616 /* the HA-NFSv4 path might have been failed-over away from us */ 1617 if (dss_path == NULL) 1618 continue; 1619 1620 dir = dss_path->path; 1621 1622 /* allow 3 extra bytes for two '/' & a NUL */ 1623 pathlen = strlen(dir) + strlen(dir_leaf) + strlen(leaf) + 3; 1624 path = kmem_alloc(pathlen, KM_SLEEP); 1625 (void) sprintf(path, "%s/%s/%s", dir, dir_leaf, leaf); 1626 1627 (void) vn_remove(path, UIO_SYSSPACE, RMFILE); 1628 1629 kmem_free(path, pathlen); 1630 } 1631 } 1632 1633 static void 1634 rfs4_client_destroy(rfs4_entry_t u_entry) 1635 { 1636 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1637 1638 mutex_destroy(cp->rc_cbinfo.cb_lock); 1639 cv_destroy(cp->rc_cbinfo.cb_cv); 1640 cv_destroy(cp->rc_cbinfo.cb_cv_nullcaller); 1641 list_destroy(&cp->rc_openownerlist); 1642 1643 /* free callback info */ 1644 rfs4_cbinfo_free(&cp->rc_cbinfo); 1645 1646 if (cp->rc_cp_confirmed) 1647 rfs4_client_rele(cp->rc_cp_confirmed); 1648 1649 if (cp->rc_ss_pn) { 1650 /* check if the stable storage files need to be removed */ 1651 if (cp->rc_ss_remove) 1652 rfs4_dss_remove_cpleaf(cp); 1653 rfs4_ss_pnfree(cp->rc_ss_pn); 1654 } 1655 1656 /* Free the client supplied client id */ 1657 kmem_free(cp->rc_nfs_client.id_val, cp->rc_nfs_client.id_len); 1658 1659 if (cp->rc_sysidt != LM_NOSYSID) 1660 lm_free_sysidt(cp->rc_sysidt); 1661 } 1662 1663 static bool_t 1664 rfs4_client_create(rfs4_entry_t u_entry, void *arg) 1665 { 1666 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1667 nfs_client_id4 *client = (nfs_client_id4 *)arg; 1668 struct sockaddr *ca; 1669 cid *cidp; 1670 scid_confirm_verf *scvp; 1671 1672 /* Get a clientid to give to the client */ 1673 cidp = (cid *)&cp->rc_clientid; 1674 cidp->impl_id.start_time = rfs4_start_time; 1675 cidp->impl_id.c_id = (uint32_t)rfs4_dbe_getid(cp->rc_dbe); 1676 1677 /* If we are booted as a cluster node, embed our nodeid */ 1678 if (cluster_bootflags & CLUSTER_BOOTED) 1679 embed_nodeid(cidp); 1680 1681 /* Allocate and copy client's client id value */ 1682 cp->rc_nfs_client.id_val = kmem_alloc(client->id_len, KM_SLEEP); 1683 cp->rc_nfs_client.id_len = client->id_len; 1684 bcopy(client->id_val, cp->rc_nfs_client.id_val, client->id_len); 1685 cp->rc_nfs_client.verifier = client->verifier; 1686 1687 /* Copy client's IP address */ 1688 ca = client->cl_addr; 1689 if (ca->sa_family == AF_INET) 1690 bcopy(ca, &cp->rc_addr, sizeof (struct sockaddr_in)); 1691 else if (ca->sa_family == AF_INET6) 1692 bcopy(ca, &cp->rc_addr, sizeof (struct sockaddr_in6)); 1693 cp->rc_nfs_client.cl_addr = (struct sockaddr *)&cp->rc_addr; 1694 1695 /* Init the value for the SETCLIENTID_CONFIRM verifier */ 1696 scvp = (scid_confirm_verf *)&cp->rc_confirm_verf; 1697 scvp->cv_impl.c_id = cidp->impl_id.c_id; 1698 scvp->cv_impl.gen_num = 0; 1699 1700 /* An F_UNLKSYS has been done for this client */ 1701 cp->rc_unlksys_completed = FALSE; 1702 1703 /* We need the client to ack us */ 1704 cp->rc_need_confirm = TRUE; 1705 cp->rc_cp_confirmed = NULL; 1706 1707 /* TRUE all the time until the callback path actually fails */ 1708 cp->rc_cbinfo.cb_notified_of_cb_path_down = TRUE; 1709 1710 /* Initialize the access time to now */ 1711 cp->rc_last_access = gethrestime_sec(); 1712 1713 cp->rc_cr_set = NULL; 1714 1715 cp->rc_sysidt = LM_NOSYSID; 1716 1717 list_create(&cp->rc_openownerlist, sizeof (rfs4_openowner_t), 1718 offsetof(rfs4_openowner_t, ro_node)); 1719 1720 /* set up the callback control structure */ 1721 cp->rc_cbinfo.cb_state = CB_UNINIT; 1722 mutex_init(cp->rc_cbinfo.cb_lock, NULL, MUTEX_DEFAULT, NULL); 1723 cv_init(cp->rc_cbinfo.cb_cv, NULL, CV_DEFAULT, NULL); 1724 cv_init(cp->rc_cbinfo.cb_cv_nullcaller, NULL, CV_DEFAULT, NULL); 1725 1726 /* 1727 * Associate the client_t with the current server instance. 1728 * The hold is solely to satisfy the calling requirement of 1729 * rfs4_servinst_assign(). In this case it's not strictly necessary. 1730 */ 1731 rfs4_dbe_hold(cp->rc_dbe); 1732 rfs4_servinst_assign(cp, rfs4_cur_servinst); 1733 rfs4_dbe_rele(cp->rc_dbe); 1734 1735 return (TRUE); 1736 } 1737 1738 /* 1739 * Caller wants to generate/update the setclientid_confirm verifier 1740 * associated with a client. This is done during the SETCLIENTID 1741 * processing. 1742 */ 1743 void 1744 rfs4_client_scv_next(rfs4_client_t *cp) 1745 { 1746 scid_confirm_verf *scvp; 1747 1748 /* Init the value for the SETCLIENTID_CONFIRM verifier */ 1749 scvp = (scid_confirm_verf *)&cp->rc_confirm_verf; 1750 scvp->cv_impl.gen_num++; 1751 } 1752 1753 void 1754 rfs4_client_rele(rfs4_client_t *cp) 1755 { 1756 rfs4_dbe_rele(cp->rc_dbe); 1757 } 1758 1759 rfs4_client_t * 1760 rfs4_findclient(nfs_client_id4 *client, bool_t *create, rfs4_client_t *oldcp) 1761 { 1762 rfs4_client_t *cp; 1763 1764 1765 if (oldcp) { 1766 rw_enter(&rfs4_findclient_lock, RW_WRITER); 1767 rfs4_dbe_hide(oldcp->rc_dbe); 1768 } else { 1769 rw_enter(&rfs4_findclient_lock, RW_READER); 1770 } 1771 1772 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_nfsclnt_idx, client, 1773 create, (void *)client, RFS4_DBS_VALID); 1774 1775 if (oldcp) 1776 rfs4_dbe_unhide(oldcp->rc_dbe); 1777 1778 rw_exit(&rfs4_findclient_lock); 1779 1780 return (cp); 1781 } 1782 1783 rfs4_client_t * 1784 rfs4_findclient_by_id(clientid4 clientid, bool_t find_unconfirmed) 1785 { 1786 rfs4_client_t *cp; 1787 bool_t create = FALSE; 1788 cid *cidp = (cid *)&clientid; 1789 1790 /* If we're a cluster and the nodeid isn't right, short-circuit */ 1791 if (cluster_bootflags & CLUSTER_BOOTED && foreign_clientid(cidp)) 1792 return (NULL); 1793 1794 rw_enter(&rfs4_findclient_lock, RW_READER); 1795 1796 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, &clientid, 1797 &create, NULL, RFS4_DBS_VALID); 1798 1799 rw_exit(&rfs4_findclient_lock); 1800 1801 if (cp && cp->rc_need_confirm && find_unconfirmed == FALSE) { 1802 rfs4_client_rele(cp); 1803 return (NULL); 1804 } else { 1805 return (cp); 1806 } 1807 } 1808 1809 static uint32_t 1810 clntip_hash(void *key) 1811 { 1812 struct sockaddr *addr = key; 1813 int i, len = 0; 1814 uint32_t hash = 0; 1815 1816 if (addr->sa_family == AF_INET) 1817 len = sizeof (struct sockaddr_in); 1818 else if (addr->sa_family == AF_INET6) 1819 len = sizeof (struct sockaddr_in6); 1820 1821 for (i = 0; i < len; i++) { 1822 hash <<= 1; 1823 hash += (uint_t)(((char *)addr)[i]); 1824 } 1825 return (hash); 1826 } 1827 1828 static bool_t 1829 clntip_compare(rfs4_entry_t entry, void *key) 1830 { 1831 rfs4_clntip_t *cp = (rfs4_clntip_t *)entry; 1832 struct sockaddr *addr = key; 1833 int len = 0; 1834 1835 if (addr->sa_family == AF_INET) 1836 len = sizeof (struct sockaddr_in); 1837 else if (addr->sa_family == AF_INET6) 1838 len = sizeof (struct sockaddr_in6); 1839 else 1840 return (0); 1841 1842 return (bcmp(&cp->ri_addr, addr, len) == 0); 1843 } 1844 1845 static void * 1846 clntip_mkkey(rfs4_entry_t entry) 1847 { 1848 rfs4_clntip_t *cp = (rfs4_clntip_t *)entry; 1849 1850 return (&cp->ri_addr); 1851 } 1852 1853 static bool_t 1854 rfs4_clntip_expiry(rfs4_entry_t u_entry) 1855 { 1856 rfs4_clntip_t *cp = (rfs4_clntip_t *)u_entry; 1857 1858 if (rfs4_dbe_is_invalid(cp->ri_dbe)) 1859 return (TRUE); 1860 return (FALSE); 1861 } 1862 1863 /* ARGSUSED */ 1864 static void 1865 rfs4_clntip_destroy(rfs4_entry_t u_entry) 1866 { 1867 } 1868 1869 static bool_t 1870 rfs4_clntip_create(rfs4_entry_t u_entry, void *arg) 1871 { 1872 rfs4_clntip_t *cp = (rfs4_clntip_t *)u_entry; 1873 struct sockaddr *ca = (struct sockaddr *)arg; 1874 1875 /* Copy client's IP address */ 1876 if (ca->sa_family == AF_INET) 1877 bcopy(ca, &cp->ri_addr, sizeof (struct sockaddr_in)); 1878 else if (ca->sa_family == AF_INET6) 1879 bcopy(ca, &cp->ri_addr, sizeof (struct sockaddr_in6)); 1880 else 1881 return (FALSE); 1882 cp->ri_no_referrals = 1; 1883 1884 return (TRUE); 1885 } 1886 1887 rfs4_clntip_t * 1888 rfs4_find_clntip(struct sockaddr *addr, bool_t *create) 1889 { 1890 rfs4_clntip_t *cp; 1891 1892 rw_enter(&rfs4_findclient_lock, RW_READER); 1893 1894 cp = (rfs4_clntip_t *)rfs4_dbsearch(rfs4_clntip_idx, addr, 1895 create, addr, RFS4_DBS_VALID); 1896 1897 rw_exit(&rfs4_findclient_lock); 1898 1899 return (cp); 1900 } 1901 1902 void 1903 rfs4_invalidate_clntip(struct sockaddr *addr) 1904 { 1905 rfs4_clntip_t *cp; 1906 bool_t create = FALSE; 1907 1908 rw_enter(&rfs4_findclient_lock, RW_READER); 1909 1910 cp = (rfs4_clntip_t *)rfs4_dbsearch(rfs4_clntip_idx, addr, 1911 &create, NULL, RFS4_DBS_VALID); 1912 if (cp == NULL) { 1913 rw_exit(&rfs4_findclient_lock); 1914 return; 1915 } 1916 rfs4_dbe_invalidate(cp->ri_dbe); 1917 rfs4_dbe_rele(cp->ri_dbe); 1918 1919 rw_exit(&rfs4_findclient_lock); 1920 } 1921 1922 bool_t 1923 rfs4_lease_expired(rfs4_client_t *cp) 1924 { 1925 bool_t rc; 1926 1927 rfs4_dbe_lock(cp->rc_dbe); 1928 1929 /* 1930 * If the admin has executed clear_locks for this 1931 * client id, force expire will be set, so no need 1932 * to calculate anything because it's "outa here". 1933 */ 1934 if (cp->rc_forced_expire) { 1935 rc = TRUE; 1936 } else { 1937 rc = (gethrestime_sec() - cp->rc_last_access > rfs4_lease_time); 1938 } 1939 1940 /* 1941 * If the lease has expired we will also want 1942 * to remove any stable storage state data. So 1943 * mark the client id accordingly. 1944 */ 1945 if (!cp->rc_ss_remove) 1946 cp->rc_ss_remove = (rc == TRUE); 1947 1948 rfs4_dbe_unlock(cp->rc_dbe); 1949 1950 return (rc); 1951 } 1952 1953 void 1954 rfs4_update_lease(rfs4_client_t *cp) 1955 { 1956 rfs4_dbe_lock(cp->rc_dbe); 1957 if (!cp->rc_forced_expire) 1958 cp->rc_last_access = gethrestime_sec(); 1959 rfs4_dbe_unlock(cp->rc_dbe); 1960 } 1961 1962 1963 static bool_t 1964 EQOPENOWNER(open_owner4 *a, open_owner4 *b) 1965 { 1966 bool_t rc; 1967 1968 if (a->clientid != b->clientid) 1969 return (FALSE); 1970 1971 if (a->owner_len != b->owner_len) 1972 return (FALSE); 1973 1974 rc = (bcmp(a->owner_val, b->owner_val, a->owner_len) == 0); 1975 1976 return (rc); 1977 } 1978 1979 static uint_t 1980 openowner_hash(void *key) 1981 { 1982 int i; 1983 open_owner4 *openowner = key; 1984 uint_t hash = 0; 1985 1986 for (i = 0; i < openowner->owner_len; i++) { 1987 hash <<= 4; 1988 hash += (uint_t)openowner->owner_val[i]; 1989 } 1990 hash += (uint_t)openowner->clientid; 1991 hash |= (openowner->clientid >> 32); 1992 1993 return (hash); 1994 } 1995 1996 static bool_t 1997 openowner_compare(rfs4_entry_t u_entry, void *key) 1998 { 1999 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 2000 open_owner4 *arg = key; 2001 2002 return (EQOPENOWNER(&oo->ro_owner, arg)); 2003 } 2004 2005 void * 2006 openowner_mkkey(rfs4_entry_t u_entry) 2007 { 2008 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 2009 2010 return (&oo->ro_owner); 2011 } 2012 2013 static bool_t 2014 rfs4_openowner_expiry(rfs4_entry_t u_entry) 2015 { 2016 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 2017 2018 if (rfs4_dbe_is_invalid(oo->ro_dbe)) 2019 return (TRUE); 2020 return ((gethrestime_sec() - oo->ro_client->rc_last_access 2021 > rfs4_lease_time)); 2022 } 2023 2024 static void 2025 rfs4_openowner_destroy(rfs4_entry_t u_entry) 2026 { 2027 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 2028 2029 /* Remove open owner from client's lists of open owners */ 2030 rfs4_dbe_lock(oo->ro_client->rc_dbe); 2031 list_remove(&oo->ro_client->rc_openownerlist, oo); 2032 rfs4_dbe_unlock(oo->ro_client->rc_dbe); 2033 2034 /* One less reference to the client */ 2035 rfs4_client_rele(oo->ro_client); 2036 oo->ro_client = NULL; 2037 2038 /* Free the last reply for this lock owner */ 2039 rfs4_free_reply(&oo->ro_reply); 2040 2041 if (oo->ro_reply_fh.nfs_fh4_val) { 2042 kmem_free(oo->ro_reply_fh.nfs_fh4_val, 2043 oo->ro_reply_fh.nfs_fh4_len); 2044 oo->ro_reply_fh.nfs_fh4_val = NULL; 2045 oo->ro_reply_fh.nfs_fh4_len = 0; 2046 } 2047 2048 rfs4_sw_destroy(&oo->ro_sw); 2049 list_destroy(&oo->ro_statelist); 2050 2051 /* Free the lock owner id */ 2052 kmem_free(oo->ro_owner.owner_val, oo->ro_owner.owner_len); 2053 } 2054 2055 void 2056 rfs4_openowner_rele(rfs4_openowner_t *oo) 2057 { 2058 rfs4_dbe_rele(oo->ro_dbe); 2059 } 2060 2061 static bool_t 2062 rfs4_openowner_create(rfs4_entry_t u_entry, void *arg) 2063 { 2064 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 2065 rfs4_openowner_t *argp = (rfs4_openowner_t *)arg; 2066 open_owner4 *openowner = &argp->ro_owner; 2067 seqid4 seqid = argp->ro_open_seqid; 2068 rfs4_client_t *cp; 2069 bool_t create = FALSE; 2070 2071 rw_enter(&rfs4_findclient_lock, RW_READER); 2072 2073 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, 2074 &openowner->clientid, 2075 &create, NULL, RFS4_DBS_VALID); 2076 2077 rw_exit(&rfs4_findclient_lock); 2078 2079 if (cp == NULL) 2080 return (FALSE); 2081 2082 oo->ro_reply_fh.nfs_fh4_len = 0; 2083 oo->ro_reply_fh.nfs_fh4_val = NULL; 2084 2085 oo->ro_owner.clientid = openowner->clientid; 2086 oo->ro_owner.owner_val = 2087 kmem_alloc(openowner->owner_len, KM_SLEEP); 2088 2089 bcopy(openowner->owner_val, 2090 oo->ro_owner.owner_val, openowner->owner_len); 2091 2092 oo->ro_owner.owner_len = openowner->owner_len; 2093 2094 oo->ro_need_confirm = TRUE; 2095 2096 rfs4_sw_init(&oo->ro_sw); 2097 2098 oo->ro_open_seqid = seqid; 2099 bzero(&oo->ro_reply, sizeof (nfs_resop4)); 2100 oo->ro_client = cp; 2101 oo->ro_cr_set = NULL; 2102 2103 list_create(&oo->ro_statelist, sizeof (rfs4_state_t), 2104 offsetof(rfs4_state_t, rs_node)); 2105 2106 /* Insert openowner into client's open owner list */ 2107 rfs4_dbe_lock(cp->rc_dbe); 2108 list_insert_tail(&cp->rc_openownerlist, oo); 2109 rfs4_dbe_unlock(cp->rc_dbe); 2110 2111 return (TRUE); 2112 } 2113 2114 rfs4_openowner_t * 2115 rfs4_findopenowner(open_owner4 *openowner, bool_t *create, seqid4 seqid) 2116 { 2117 rfs4_openowner_t *oo; 2118 rfs4_openowner_t arg; 2119 2120 arg.ro_owner = *openowner; 2121 arg.ro_open_seqid = seqid; 2122 oo = (rfs4_openowner_t *)rfs4_dbsearch(rfs4_openowner_idx, openowner, 2123 create, &arg, RFS4_DBS_VALID); 2124 2125 return (oo); 2126 } 2127 2128 void 2129 rfs4_update_open_sequence(rfs4_openowner_t *oo) 2130 { 2131 2132 rfs4_dbe_lock(oo->ro_dbe); 2133 2134 oo->ro_open_seqid++; 2135 2136 rfs4_dbe_unlock(oo->ro_dbe); 2137 } 2138 2139 void 2140 rfs4_update_open_resp(rfs4_openowner_t *oo, nfs_resop4 *resp, nfs_fh4 *fh) 2141 { 2142 2143 rfs4_dbe_lock(oo->ro_dbe); 2144 2145 rfs4_free_reply(&oo->ro_reply); 2146 2147 rfs4_copy_reply(&oo->ro_reply, resp); 2148 2149 /* Save the filehandle if provided and free if not used */ 2150 if (resp->nfs_resop4_u.opopen.status == NFS4_OK && 2151 fh && fh->nfs_fh4_len) { 2152 if (oo->ro_reply_fh.nfs_fh4_val == NULL) 2153 oo->ro_reply_fh.nfs_fh4_val = 2154 kmem_alloc(fh->nfs_fh4_len, KM_SLEEP); 2155 nfs_fh4_copy(fh, &oo->ro_reply_fh); 2156 } else { 2157 if (oo->ro_reply_fh.nfs_fh4_val) { 2158 kmem_free(oo->ro_reply_fh.nfs_fh4_val, 2159 oo->ro_reply_fh.nfs_fh4_len); 2160 oo->ro_reply_fh.nfs_fh4_val = NULL; 2161 oo->ro_reply_fh.nfs_fh4_len = 0; 2162 } 2163 } 2164 2165 rfs4_dbe_unlock(oo->ro_dbe); 2166 } 2167 2168 static bool_t 2169 lockowner_compare(rfs4_entry_t u_entry, void *key) 2170 { 2171 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2172 lock_owner4 *b = (lock_owner4 *)key; 2173 2174 if (lo->rl_owner.clientid != b->clientid) 2175 return (FALSE); 2176 2177 if (lo->rl_owner.owner_len != b->owner_len) 2178 return (FALSE); 2179 2180 return (bcmp(lo->rl_owner.owner_val, b->owner_val, 2181 lo->rl_owner.owner_len) == 0); 2182 } 2183 2184 void * 2185 lockowner_mkkey(rfs4_entry_t u_entry) 2186 { 2187 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2188 2189 return (&lo->rl_owner); 2190 } 2191 2192 static uint32_t 2193 lockowner_hash(void *key) 2194 { 2195 int i; 2196 lock_owner4 *lockowner = key; 2197 uint_t hash = 0; 2198 2199 for (i = 0; i < lockowner->owner_len; i++) { 2200 hash <<= 4; 2201 hash += (uint_t)lockowner->owner_val[i]; 2202 } 2203 hash += (uint_t)lockowner->clientid; 2204 hash |= (lockowner->clientid >> 32); 2205 2206 return (hash); 2207 } 2208 2209 static uint32_t 2210 pid_hash(void *key) 2211 { 2212 return ((uint32_t)(uintptr_t)key); 2213 } 2214 2215 static void * 2216 pid_mkkey(rfs4_entry_t u_entry) 2217 { 2218 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2219 2220 return ((void *)(uintptr_t)lo->rl_pid); 2221 } 2222 2223 static bool_t 2224 pid_compare(rfs4_entry_t u_entry, void *key) 2225 { 2226 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2227 2228 return (lo->rl_pid == (pid_t)(uintptr_t)key); 2229 } 2230 2231 static void 2232 rfs4_lockowner_destroy(rfs4_entry_t u_entry) 2233 { 2234 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2235 2236 /* Free the lock owner id */ 2237 kmem_free(lo->rl_owner.owner_val, lo->rl_owner.owner_len); 2238 rfs4_client_rele(lo->rl_client); 2239 } 2240 2241 void 2242 rfs4_lockowner_rele(rfs4_lockowner_t *lo) 2243 { 2244 rfs4_dbe_rele(lo->rl_dbe); 2245 } 2246 2247 /* ARGSUSED */ 2248 static bool_t 2249 rfs4_lockowner_expiry(rfs4_entry_t u_entry) 2250 { 2251 /* 2252 * Since expiry is called with no other references on 2253 * this struct, go ahead and have it removed. 2254 */ 2255 return (TRUE); 2256 } 2257 2258 static bool_t 2259 rfs4_lockowner_create(rfs4_entry_t u_entry, void *arg) 2260 { 2261 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2262 lock_owner4 *lockowner = (lock_owner4 *)arg; 2263 rfs4_client_t *cp; 2264 bool_t create = FALSE; 2265 2266 rw_enter(&rfs4_findclient_lock, RW_READER); 2267 2268 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, 2269 &lockowner->clientid, 2270 &create, NULL, RFS4_DBS_VALID); 2271 2272 rw_exit(&rfs4_findclient_lock); 2273 2274 if (cp == NULL) 2275 return (FALSE); 2276 2277 /* Reference client */ 2278 lo->rl_client = cp; 2279 lo->rl_owner.clientid = lockowner->clientid; 2280 lo->rl_owner.owner_val = kmem_alloc(lockowner->owner_len, KM_SLEEP); 2281 bcopy(lockowner->owner_val, lo->rl_owner.owner_val, 2282 lockowner->owner_len); 2283 lo->rl_owner.owner_len = lockowner->owner_len; 2284 lo->rl_pid = rfs4_dbe_getid(lo->rl_dbe); 2285 2286 return (TRUE); 2287 } 2288 2289 rfs4_lockowner_t * 2290 rfs4_findlockowner(lock_owner4 *lockowner, bool_t *create) 2291 { 2292 rfs4_lockowner_t *lo; 2293 2294 lo = (rfs4_lockowner_t *)rfs4_dbsearch(rfs4_lockowner_idx, lockowner, 2295 create, lockowner, RFS4_DBS_VALID); 2296 2297 return (lo); 2298 } 2299 2300 rfs4_lockowner_t * 2301 rfs4_findlockowner_by_pid(pid_t pid) 2302 { 2303 rfs4_lockowner_t *lo; 2304 bool_t create = FALSE; 2305 2306 lo = (rfs4_lockowner_t *)rfs4_dbsearch(rfs4_lockowner_pid_idx, 2307 (void *)(uintptr_t)pid, &create, NULL, RFS4_DBS_VALID); 2308 2309 return (lo); 2310 } 2311 2312 2313 static uint32_t 2314 file_hash(void *key) 2315 { 2316 return (ADDRHASH(key)); 2317 } 2318 2319 static void * 2320 file_mkkey(rfs4_entry_t u_entry) 2321 { 2322 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2323 2324 return (fp->rf_vp); 2325 } 2326 2327 static bool_t 2328 file_compare(rfs4_entry_t u_entry, void *key) 2329 { 2330 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2331 2332 return (fp->rf_vp == (vnode_t *)key); 2333 } 2334 2335 static void 2336 rfs4_file_destroy(rfs4_entry_t u_entry) 2337 { 2338 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2339 2340 list_destroy(&fp->rf_delegstatelist); 2341 2342 if (fp->rf_filehandle.nfs_fh4_val) 2343 kmem_free(fp->rf_filehandle.nfs_fh4_val, 2344 fp->rf_filehandle.nfs_fh4_len); 2345 cv_destroy(fp->rf_dinfo.rd_recall_cv); 2346 if (fp->rf_vp) { 2347 vnode_t *vp = fp->rf_vp; 2348 2349 mutex_enter(&vp->v_vsd_lock); 2350 (void) vsd_set(vp, nfs4_srv_vkey, NULL); 2351 mutex_exit(&vp->v_vsd_lock); 2352 VN_RELE(vp); 2353 fp->rf_vp = NULL; 2354 } 2355 rw_destroy(&fp->rf_file_rwlock); 2356 } 2357 2358 /* 2359 * Used to unlock the underlying dbe struct only 2360 */ 2361 void 2362 rfs4_file_rele(rfs4_file_t *fp) 2363 { 2364 rfs4_dbe_rele(fp->rf_dbe); 2365 } 2366 2367 typedef struct { 2368 vnode_t *vp; 2369 nfs_fh4 *fh; 2370 } rfs4_fcreate_arg; 2371 2372 static bool_t 2373 rfs4_file_create(rfs4_entry_t u_entry, void *arg) 2374 { 2375 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2376 rfs4_fcreate_arg *ap = (rfs4_fcreate_arg *)arg; 2377 vnode_t *vp = ap->vp; 2378 nfs_fh4 *fh = ap->fh; 2379 2380 VN_HOLD(vp); 2381 2382 fp->rf_filehandle.nfs_fh4_len = 0; 2383 fp->rf_filehandle.nfs_fh4_val = NULL; 2384 ASSERT(fh && fh->nfs_fh4_len); 2385 if (fh && fh->nfs_fh4_len) { 2386 fp->rf_filehandle.nfs_fh4_val = 2387 kmem_alloc(fh->nfs_fh4_len, KM_SLEEP); 2388 nfs_fh4_copy(fh, &fp->rf_filehandle); 2389 } 2390 fp->rf_vp = vp; 2391 2392 list_create(&fp->rf_delegstatelist, sizeof (rfs4_deleg_state_t), 2393 offsetof(rfs4_deleg_state_t, rds_node)); 2394 2395 fp->rf_share_deny = fp->rf_share_access = fp->rf_access_read = 0; 2396 fp->rf_access_write = fp->rf_deny_read = fp->rf_deny_write = 0; 2397 2398 mutex_init(fp->rf_dinfo.rd_recall_lock, NULL, MUTEX_DEFAULT, NULL); 2399 cv_init(fp->rf_dinfo.rd_recall_cv, NULL, CV_DEFAULT, NULL); 2400 2401 fp->rf_dinfo.rd_dtype = OPEN_DELEGATE_NONE; 2402 2403 rw_init(&fp->rf_file_rwlock, NULL, RW_DEFAULT, NULL); 2404 2405 mutex_enter(&vp->v_vsd_lock); 2406 VERIFY(vsd_set(vp, nfs4_srv_vkey, (void *)fp) == 0); 2407 mutex_exit(&vp->v_vsd_lock); 2408 2409 return (TRUE); 2410 } 2411 2412 rfs4_file_t * 2413 rfs4_findfile(vnode_t *vp, nfs_fh4 *fh, bool_t *create) 2414 { 2415 rfs4_file_t *fp; 2416 rfs4_fcreate_arg arg; 2417 2418 arg.vp = vp; 2419 arg.fh = fh; 2420 2421 if (*create == TRUE) 2422 fp = (rfs4_file_t *)rfs4_dbsearch(rfs4_file_idx, vp, create, 2423 &arg, RFS4_DBS_VALID); 2424 else { 2425 mutex_enter(&vp->v_vsd_lock); 2426 fp = (rfs4_file_t *)vsd_get(vp, nfs4_srv_vkey); 2427 if (fp) { 2428 rfs4_dbe_lock(fp->rf_dbe); 2429 if (rfs4_dbe_is_invalid(fp->rf_dbe) || 2430 (rfs4_dbe_refcnt(fp->rf_dbe) == 0)) { 2431 rfs4_dbe_unlock(fp->rf_dbe); 2432 fp = NULL; 2433 } else { 2434 rfs4_dbe_hold(fp->rf_dbe); 2435 rfs4_dbe_unlock(fp->rf_dbe); 2436 } 2437 } 2438 mutex_exit(&vp->v_vsd_lock); 2439 } 2440 return (fp); 2441 } 2442 2443 /* 2444 * Find a file in the db and once it is located, take the rw lock. 2445 * Need to check the vnode pointer and if it does not exist (it was 2446 * removed between the db location and check) redo the find. This 2447 * assumes that a file struct that has a NULL vnode pointer is marked 2448 * at 'invalid' and will not be found in the db the second time 2449 * around. 2450 */ 2451 rfs4_file_t * 2452 rfs4_findfile_withlock(vnode_t *vp, nfs_fh4 *fh, bool_t *create) 2453 { 2454 rfs4_file_t *fp; 2455 rfs4_fcreate_arg arg; 2456 bool_t screate = *create; 2457 2458 if (screate == FALSE) { 2459 mutex_enter(&vp->v_vsd_lock); 2460 fp = (rfs4_file_t *)vsd_get(vp, nfs4_srv_vkey); 2461 if (fp) { 2462 rfs4_dbe_lock(fp->rf_dbe); 2463 if (rfs4_dbe_is_invalid(fp->rf_dbe) || 2464 (rfs4_dbe_refcnt(fp->rf_dbe) == 0)) { 2465 rfs4_dbe_unlock(fp->rf_dbe); 2466 mutex_exit(&vp->v_vsd_lock); 2467 fp = NULL; 2468 } else { 2469 rfs4_dbe_hold(fp->rf_dbe); 2470 rfs4_dbe_unlock(fp->rf_dbe); 2471 mutex_exit(&vp->v_vsd_lock); 2472 rw_enter(&fp->rf_file_rwlock, RW_WRITER); 2473 if (fp->rf_vp == NULL) { 2474 rw_exit(&fp->rf_file_rwlock); 2475 rfs4_file_rele(fp); 2476 fp = NULL; 2477 } 2478 } 2479 } else { 2480 mutex_exit(&vp->v_vsd_lock); 2481 } 2482 } else { 2483 retry: 2484 arg.vp = vp; 2485 arg.fh = fh; 2486 2487 fp = (rfs4_file_t *)rfs4_dbsearch(rfs4_file_idx, vp, create, 2488 &arg, RFS4_DBS_VALID); 2489 if (fp != NULL) { 2490 rw_enter(&fp->rf_file_rwlock, RW_WRITER); 2491 if (fp->rf_vp == NULL) { 2492 rw_exit(&fp->rf_file_rwlock); 2493 rfs4_file_rele(fp); 2494 *create = screate; 2495 goto retry; 2496 } 2497 } 2498 } 2499 2500 return (fp); 2501 } 2502 2503 static uint32_t 2504 lo_state_hash(void *key) 2505 { 2506 stateid_t *id = key; 2507 2508 return (id->bits.ident+id->bits.pid); 2509 } 2510 2511 static bool_t 2512 lo_state_compare(rfs4_entry_t u_entry, void *key) 2513 { 2514 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2515 stateid_t *id = key; 2516 bool_t rc; 2517 2518 rc = (lsp->rls_lockid.bits.boottime == id->bits.boottime && 2519 lsp->rls_lockid.bits.type == id->bits.type && 2520 lsp->rls_lockid.bits.ident == id->bits.ident && 2521 lsp->rls_lockid.bits.pid == id->bits.pid); 2522 2523 return (rc); 2524 } 2525 2526 static void * 2527 lo_state_mkkey(rfs4_entry_t u_entry) 2528 { 2529 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2530 2531 return (&lsp->rls_lockid); 2532 } 2533 2534 static bool_t 2535 rfs4_lo_state_expiry(rfs4_entry_t u_entry) 2536 { 2537 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2538 2539 if (rfs4_dbe_is_invalid(lsp->rls_dbe)) 2540 return (TRUE); 2541 if (lsp->rls_state->rs_closed) 2542 return (TRUE); 2543 return ((gethrestime_sec() - 2544 lsp->rls_state->rs_owner->ro_client->rc_last_access 2545 > rfs4_lease_time)); 2546 } 2547 2548 static void 2549 rfs4_lo_state_destroy(rfs4_entry_t u_entry) 2550 { 2551 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2552 2553 rfs4_dbe_lock(lsp->rls_state->rs_dbe); 2554 list_remove(&lsp->rls_state->rs_lostatelist, lsp); 2555 rfs4_dbe_unlock(lsp->rls_state->rs_dbe); 2556 2557 rfs4_sw_destroy(&lsp->rls_sw); 2558 2559 /* Make sure to release the file locks */ 2560 if (lsp->rls_locks_cleaned == FALSE) { 2561 lsp->rls_locks_cleaned = TRUE; 2562 if (lsp->rls_locker->rl_client->rc_sysidt != LM_NOSYSID) { 2563 /* Is the PxFS kernel module loaded? */ 2564 if (lm_remove_file_locks != NULL) { 2565 int new_sysid; 2566 2567 /* Encode the cluster nodeid in new sysid */ 2568 new_sysid = 2569 lsp->rls_locker->rl_client->rc_sysidt; 2570 lm_set_nlmid_flk(&new_sysid); 2571 2572 /* 2573 * This PxFS routine removes file locks for a 2574 * client over all nodes of a cluster. 2575 */ 2576 DTRACE_PROBE1(nfss_i_clust_rm_lck, 2577 int, new_sysid); 2578 (*lm_remove_file_locks)(new_sysid); 2579 } else { 2580 (void) cleanlocks( 2581 lsp->rls_state->rs_finfo->rf_vp, 2582 lsp->rls_locker->rl_pid, 2583 lsp->rls_locker->rl_client->rc_sysidt); 2584 } 2585 } 2586 } 2587 2588 /* Free the last reply for this state */ 2589 rfs4_free_reply(&lsp->rls_reply); 2590 2591 rfs4_lockowner_rele(lsp->rls_locker); 2592 lsp->rls_locker = NULL; 2593 2594 rfs4_state_rele_nounlock(lsp->rls_state); 2595 lsp->rls_state = NULL; 2596 } 2597 2598 static bool_t 2599 rfs4_lo_state_create(rfs4_entry_t u_entry, void *arg) 2600 { 2601 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2602 rfs4_lo_state_t *argp = (rfs4_lo_state_t *)arg; 2603 rfs4_lockowner_t *lo = argp->rls_locker; 2604 rfs4_state_t *sp = argp->rls_state; 2605 2606 lsp->rls_state = sp; 2607 2608 lsp->rls_lockid = sp->rs_stateid; 2609 lsp->rls_lockid.bits.type = LOCKID; 2610 lsp->rls_lockid.bits.chgseq = 0; 2611 lsp->rls_lockid.bits.pid = lo->rl_pid; 2612 2613 lsp->rls_locks_cleaned = FALSE; 2614 lsp->rls_lock_completed = FALSE; 2615 2616 rfs4_sw_init(&lsp->rls_sw); 2617 2618 /* Attached the supplied lock owner */ 2619 rfs4_dbe_hold(lo->rl_dbe); 2620 lsp->rls_locker = lo; 2621 2622 rfs4_dbe_lock(sp->rs_dbe); 2623 list_insert_tail(&sp->rs_lostatelist, lsp); 2624 rfs4_dbe_hold(sp->rs_dbe); 2625 rfs4_dbe_unlock(sp->rs_dbe); 2626 2627 return (TRUE); 2628 } 2629 2630 void 2631 rfs4_lo_state_rele(rfs4_lo_state_t *lsp, bool_t unlock_fp) 2632 { 2633 if (unlock_fp == TRUE) 2634 rw_exit(&lsp->rls_state->rs_finfo->rf_file_rwlock); 2635 rfs4_dbe_rele(lsp->rls_dbe); 2636 } 2637 2638 static rfs4_lo_state_t * 2639 rfs4_findlo_state(stateid_t *id, bool_t lock_fp) 2640 { 2641 rfs4_lo_state_t *lsp; 2642 bool_t create = FALSE; 2643 2644 lsp = (rfs4_lo_state_t *)rfs4_dbsearch(rfs4_lo_state_idx, id, 2645 &create, NULL, RFS4_DBS_VALID); 2646 if (lock_fp == TRUE && lsp != NULL) 2647 rw_enter(&lsp->rls_state->rs_finfo->rf_file_rwlock, RW_READER); 2648 2649 return (lsp); 2650 } 2651 2652 2653 static uint32_t 2654 lo_state_lo_hash(void *key) 2655 { 2656 rfs4_lo_state_t *lsp = key; 2657 2658 return (ADDRHASH(lsp->rls_locker) ^ ADDRHASH(lsp->rls_state)); 2659 } 2660 2661 static bool_t 2662 lo_state_lo_compare(rfs4_entry_t u_entry, void *key) 2663 { 2664 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2665 rfs4_lo_state_t *keyp = key; 2666 2667 return (keyp->rls_locker == lsp->rls_locker && 2668 keyp->rls_state == lsp->rls_state); 2669 } 2670 2671 static void * 2672 lo_state_lo_mkkey(rfs4_entry_t u_entry) 2673 { 2674 return (u_entry); 2675 } 2676 2677 rfs4_lo_state_t * 2678 rfs4_findlo_state_by_owner(rfs4_lockowner_t *lo, rfs4_state_t *sp, 2679 bool_t *create) 2680 { 2681 rfs4_lo_state_t *lsp; 2682 rfs4_lo_state_t arg; 2683 2684 arg.rls_locker = lo; 2685 arg.rls_state = sp; 2686 2687 lsp = (rfs4_lo_state_t *)rfs4_dbsearch(rfs4_lo_state_owner_idx, &arg, 2688 create, &arg, RFS4_DBS_VALID); 2689 2690 return (lsp); 2691 } 2692 2693 static stateid_t 2694 get_stateid(id_t eid) 2695 { 2696 stateid_t id; 2697 2698 id.bits.boottime = rfs4_start_time; 2699 id.bits.ident = eid; 2700 id.bits.chgseq = 0; 2701 id.bits.type = 0; 2702 id.bits.pid = 0; 2703 2704 /* 2705 * If we are booted as a cluster node, embed our nodeid. 2706 * We've already done sanity checks in rfs4_client_create() so no 2707 * need to repeat them here. 2708 */ 2709 id.bits.clnodeid = (cluster_bootflags & CLUSTER_BOOTED) ? 2710 clconf_get_nodeid() : 0; 2711 2712 return (id); 2713 } 2714 2715 /* 2716 * For use only when booted as a cluster node. 2717 * Returns TRUE if the embedded nodeid indicates that this stateid was 2718 * generated on another node. 2719 */ 2720 static int 2721 foreign_stateid(stateid_t *id) 2722 { 2723 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2724 return (id->bits.clnodeid != (uint32_t)clconf_get_nodeid()); 2725 } 2726 2727 /* 2728 * For use only when booted as a cluster node. 2729 * Returns TRUE if the embedded nodeid indicates that this clientid was 2730 * generated on another node. 2731 */ 2732 static int 2733 foreign_clientid(cid *cidp) 2734 { 2735 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2736 return (cidp->impl_id.c_id >> CLUSTER_NODEID_SHIFT != 2737 (uint32_t)clconf_get_nodeid()); 2738 } 2739 2740 /* 2741 * For use only when booted as a cluster node. 2742 * Embed our cluster nodeid into the clientid. 2743 */ 2744 static void 2745 embed_nodeid(cid *cidp) 2746 { 2747 int clnodeid; 2748 /* 2749 * Currently, our state tables are small enough that their 2750 * ids will leave enough bits free for the nodeid. If the 2751 * tables become larger, we mustn't overwrite the id. 2752 * Equally, we only have room for so many bits of nodeid, so 2753 * must check that too. 2754 */ 2755 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2756 ASSERT(cidp->impl_id.c_id >> CLUSTER_NODEID_SHIFT == 0); 2757 clnodeid = clconf_get_nodeid(); 2758 ASSERT(clnodeid <= CLUSTER_MAX_NODEID); 2759 ASSERT(clnodeid != NODEID_UNKNOWN); 2760 cidp->impl_id.c_id |= (clnodeid << CLUSTER_NODEID_SHIFT); 2761 } 2762 2763 static uint32_t 2764 state_hash(void *key) 2765 { 2766 stateid_t *ip = (stateid_t *)key; 2767 2768 return (ip->bits.ident); 2769 } 2770 2771 static bool_t 2772 state_compare(rfs4_entry_t u_entry, void *key) 2773 { 2774 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2775 stateid_t *id = (stateid_t *)key; 2776 bool_t rc; 2777 2778 rc = (sp->rs_stateid.bits.boottime == id->bits.boottime && 2779 sp->rs_stateid.bits.ident == id->bits.ident); 2780 2781 return (rc); 2782 } 2783 2784 static void * 2785 state_mkkey(rfs4_entry_t u_entry) 2786 { 2787 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2788 2789 return (&sp->rs_stateid); 2790 } 2791 2792 static void 2793 rfs4_state_destroy(rfs4_entry_t u_entry) 2794 { 2795 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2796 2797 /* remove from openowner list */ 2798 rfs4_dbe_lock(sp->rs_owner->ro_dbe); 2799 list_remove(&sp->rs_owner->ro_statelist, sp); 2800 rfs4_dbe_unlock(sp->rs_owner->ro_dbe); 2801 2802 list_destroy(&sp->rs_lostatelist); 2803 2804 /* release any share locks for this stateid if it's still open */ 2805 if (!sp->rs_closed) { 2806 rfs4_dbe_lock(sp->rs_dbe); 2807 (void) rfs4_unshare(sp); 2808 rfs4_dbe_unlock(sp->rs_dbe); 2809 } 2810 2811 /* Were done with the file */ 2812 rfs4_file_rele(sp->rs_finfo); 2813 sp->rs_finfo = NULL; 2814 2815 /* And now with the openowner */ 2816 rfs4_openowner_rele(sp->rs_owner); 2817 sp->rs_owner = NULL; 2818 } 2819 2820 static void 2821 rfs4_state_rele_nounlock(rfs4_state_t *sp) 2822 { 2823 rfs4_dbe_rele(sp->rs_dbe); 2824 } 2825 2826 void 2827 rfs4_state_rele(rfs4_state_t *sp) 2828 { 2829 rw_exit(&sp->rs_finfo->rf_file_rwlock); 2830 rfs4_dbe_rele(sp->rs_dbe); 2831 } 2832 2833 static uint32_t 2834 deleg_hash(void *key) 2835 { 2836 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)key; 2837 2838 return (ADDRHASH(dsp->rds_client) ^ ADDRHASH(dsp->rds_finfo)); 2839 } 2840 2841 static bool_t 2842 deleg_compare(rfs4_entry_t u_entry, void *key) 2843 { 2844 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2845 rfs4_deleg_state_t *kdsp = (rfs4_deleg_state_t *)key; 2846 2847 return (dsp->rds_client == kdsp->rds_client && 2848 dsp->rds_finfo == kdsp->rds_finfo); 2849 } 2850 2851 static void * 2852 deleg_mkkey(rfs4_entry_t u_entry) 2853 { 2854 return (u_entry); 2855 } 2856 2857 static uint32_t 2858 deleg_state_hash(void *key) 2859 { 2860 stateid_t *ip = (stateid_t *)key; 2861 2862 return (ip->bits.ident); 2863 } 2864 2865 static bool_t 2866 deleg_state_compare(rfs4_entry_t u_entry, void *key) 2867 { 2868 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2869 stateid_t *id = (stateid_t *)key; 2870 bool_t rc; 2871 2872 if (id->bits.type != DELEGID) 2873 return (FALSE); 2874 2875 rc = (dsp->rds_delegid.bits.boottime == id->bits.boottime && 2876 dsp->rds_delegid.bits.ident == id->bits.ident); 2877 2878 return (rc); 2879 } 2880 2881 static void * 2882 deleg_state_mkkey(rfs4_entry_t u_entry) 2883 { 2884 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2885 2886 return (&dsp->rds_delegid); 2887 } 2888 2889 static bool_t 2890 rfs4_deleg_state_expiry(rfs4_entry_t u_entry) 2891 { 2892 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2893 2894 if (rfs4_dbe_is_invalid(dsp->rds_dbe)) 2895 return (TRUE); 2896 2897 if ((gethrestime_sec() - dsp->rds_client->rc_last_access 2898 > rfs4_lease_time)) { 2899 rfs4_dbe_invalidate(dsp->rds_dbe); 2900 return (TRUE); 2901 } 2902 2903 return (FALSE); 2904 } 2905 2906 static bool_t 2907 rfs4_deleg_state_create(rfs4_entry_t u_entry, void *argp) 2908 { 2909 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2910 rfs4_file_t *fp = ((rfs4_deleg_state_t *)argp)->rds_finfo; 2911 rfs4_client_t *cp = ((rfs4_deleg_state_t *)argp)->rds_client; 2912 2913 rfs4_dbe_hold(fp->rf_dbe); 2914 rfs4_dbe_hold(cp->rc_dbe); 2915 2916 dsp->rds_delegid = get_stateid(rfs4_dbe_getid(dsp->rds_dbe)); 2917 dsp->rds_delegid.bits.type = DELEGID; 2918 dsp->rds_finfo = fp; 2919 dsp->rds_client = cp; 2920 dsp->rds_dtype = OPEN_DELEGATE_NONE; 2921 2922 dsp->rds_time_granted = gethrestime_sec(); /* observability */ 2923 dsp->rds_time_revoked = 0; 2924 2925 list_link_init(&dsp->rds_node); 2926 2927 return (TRUE); 2928 } 2929 2930 static void 2931 rfs4_deleg_state_destroy(rfs4_entry_t u_entry) 2932 { 2933 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2934 2935 /* return delegation if necessary */ 2936 rfs4_return_deleg(dsp, FALSE); 2937 2938 /* Were done with the file */ 2939 rfs4_file_rele(dsp->rds_finfo); 2940 dsp->rds_finfo = NULL; 2941 2942 /* And now with the openowner */ 2943 rfs4_client_rele(dsp->rds_client); 2944 dsp->rds_client = NULL; 2945 } 2946 2947 rfs4_deleg_state_t * 2948 rfs4_finddeleg(rfs4_state_t *sp, bool_t *create) 2949 { 2950 rfs4_deleg_state_t ds, *dsp; 2951 2952 ds.rds_client = sp->rs_owner->ro_client; 2953 ds.rds_finfo = sp->rs_finfo; 2954 2955 dsp = (rfs4_deleg_state_t *)rfs4_dbsearch(rfs4_deleg_idx, &ds, 2956 create, &ds, RFS4_DBS_VALID); 2957 2958 return (dsp); 2959 } 2960 2961 rfs4_deleg_state_t * 2962 rfs4_finddelegstate(stateid_t *id) 2963 { 2964 rfs4_deleg_state_t *dsp; 2965 bool_t create = FALSE; 2966 2967 dsp = (rfs4_deleg_state_t *)rfs4_dbsearch(rfs4_deleg_state_idx, id, 2968 &create, NULL, RFS4_DBS_VALID); 2969 2970 return (dsp); 2971 } 2972 2973 void 2974 rfs4_deleg_state_rele(rfs4_deleg_state_t *dsp) 2975 { 2976 rfs4_dbe_rele(dsp->rds_dbe); 2977 } 2978 2979 void 2980 rfs4_update_lock_sequence(rfs4_lo_state_t *lsp) 2981 { 2982 2983 rfs4_dbe_lock(lsp->rls_dbe); 2984 2985 /* 2986 * If we are skipping sequence id checking, this means that 2987 * this is the first lock request and therefore the sequence 2988 * id does not need to be updated. This only happens on the 2989 * first lock request for a lockowner 2990 */ 2991 if (!lsp->rls_skip_seqid_check) 2992 lsp->rls_seqid++; 2993 2994 rfs4_dbe_unlock(lsp->rls_dbe); 2995 } 2996 2997 void 2998 rfs4_update_lock_resp(rfs4_lo_state_t *lsp, nfs_resop4 *resp) 2999 { 3000 3001 rfs4_dbe_lock(lsp->rls_dbe); 3002 3003 rfs4_free_reply(&lsp->rls_reply); 3004 3005 rfs4_copy_reply(&lsp->rls_reply, resp); 3006 3007 rfs4_dbe_unlock(lsp->rls_dbe); 3008 } 3009 3010 void 3011 rfs4_free_opens(rfs4_openowner_t *oo, bool_t invalidate, 3012 bool_t close_of_client) 3013 { 3014 rfs4_state_t *sp; 3015 3016 rfs4_dbe_lock(oo->ro_dbe); 3017 3018 for (sp = list_head(&oo->ro_statelist); sp != NULL; 3019 sp = list_next(&oo->ro_statelist, sp)) { 3020 rfs4_state_close(sp, FALSE, close_of_client, CRED()); 3021 if (invalidate == TRUE) 3022 rfs4_dbe_invalidate(sp->rs_dbe); 3023 } 3024 3025 rfs4_dbe_invalidate(oo->ro_dbe); 3026 rfs4_dbe_unlock(oo->ro_dbe); 3027 } 3028 3029 static uint32_t 3030 state_owner_file_hash(void *key) 3031 { 3032 rfs4_state_t *sp = key; 3033 3034 return (ADDRHASH(sp->rs_owner) ^ ADDRHASH(sp->rs_finfo)); 3035 } 3036 3037 static bool_t 3038 state_owner_file_compare(rfs4_entry_t u_entry, void *key) 3039 { 3040 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3041 rfs4_state_t *arg = key; 3042 3043 if (sp->rs_closed == TRUE) 3044 return (FALSE); 3045 3046 return (arg->rs_owner == sp->rs_owner && arg->rs_finfo == sp->rs_finfo); 3047 } 3048 3049 static void * 3050 state_owner_file_mkkey(rfs4_entry_t u_entry) 3051 { 3052 return (u_entry); 3053 } 3054 3055 static uint32_t 3056 state_file_hash(void *key) 3057 { 3058 return (ADDRHASH(key)); 3059 } 3060 3061 static bool_t 3062 state_file_compare(rfs4_entry_t u_entry, void *key) 3063 { 3064 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3065 rfs4_file_t *fp = key; 3066 3067 if (sp->rs_closed == TRUE) 3068 return (FALSE); 3069 3070 return (fp == sp->rs_finfo); 3071 } 3072 3073 static void * 3074 state_file_mkkey(rfs4_entry_t u_entry) 3075 { 3076 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3077 3078 return (sp->rs_finfo); 3079 } 3080 3081 rfs4_state_t * 3082 rfs4_findstate_by_owner_file(rfs4_openowner_t *oo, rfs4_file_t *fp, 3083 bool_t *create) 3084 { 3085 rfs4_state_t *sp; 3086 rfs4_state_t key; 3087 3088 key.rs_owner = oo; 3089 key.rs_finfo = fp; 3090 3091 sp = (rfs4_state_t *)rfs4_dbsearch(rfs4_state_owner_file_idx, &key, 3092 create, &key, RFS4_DBS_VALID); 3093 3094 return (sp); 3095 } 3096 3097 /* This returns ANY state struct that refers to this file */ 3098 static rfs4_state_t * 3099 rfs4_findstate_by_file(rfs4_file_t *fp) 3100 { 3101 bool_t create = FALSE; 3102 3103 return ((rfs4_state_t *)rfs4_dbsearch(rfs4_state_file_idx, fp, 3104 &create, fp, RFS4_DBS_VALID)); 3105 } 3106 3107 static bool_t 3108 rfs4_state_expiry(rfs4_entry_t u_entry) 3109 { 3110 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3111 3112 if (rfs4_dbe_is_invalid(sp->rs_dbe)) 3113 return (TRUE); 3114 3115 if (sp->rs_closed == TRUE && 3116 ((gethrestime_sec() - rfs4_dbe_get_timerele(sp->rs_dbe)) 3117 > rfs4_lease_time)) 3118 return (TRUE); 3119 3120 return ((gethrestime_sec() - sp->rs_owner->ro_client->rc_last_access 3121 > rfs4_lease_time)); 3122 } 3123 3124 static bool_t 3125 rfs4_state_create(rfs4_entry_t u_entry, void *argp) 3126 { 3127 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3128 rfs4_file_t *fp = ((rfs4_state_t *)argp)->rs_finfo; 3129 rfs4_openowner_t *oo = ((rfs4_state_t *)argp)->rs_owner; 3130 3131 rfs4_dbe_hold(fp->rf_dbe); 3132 rfs4_dbe_hold(oo->ro_dbe); 3133 sp->rs_stateid = get_stateid(rfs4_dbe_getid(sp->rs_dbe)); 3134 sp->rs_stateid.bits.type = OPENID; 3135 sp->rs_owner = oo; 3136 sp->rs_finfo = fp; 3137 3138 list_create(&sp->rs_lostatelist, sizeof (rfs4_lo_state_t), 3139 offsetof(rfs4_lo_state_t, rls_node)); 3140 3141 /* Insert state on per open owner's list */ 3142 rfs4_dbe_lock(oo->ro_dbe); 3143 list_insert_tail(&oo->ro_statelist, sp); 3144 rfs4_dbe_unlock(oo->ro_dbe); 3145 3146 return (TRUE); 3147 } 3148 3149 static rfs4_state_t * 3150 rfs4_findstate(stateid_t *id, rfs4_dbsearch_type_t find_invalid, bool_t lock_fp) 3151 { 3152 rfs4_state_t *sp; 3153 bool_t create = FALSE; 3154 3155 sp = (rfs4_state_t *)rfs4_dbsearch(rfs4_state_idx, id, 3156 &create, NULL, find_invalid); 3157 if (lock_fp == TRUE && sp != NULL) 3158 rw_enter(&sp->rs_finfo->rf_file_rwlock, RW_READER); 3159 3160 return (sp); 3161 } 3162 3163 void 3164 rfs4_state_close(rfs4_state_t *sp, bool_t lock_held, bool_t close_of_client, 3165 cred_t *cr) 3166 { 3167 /* Remove the associated lo_state owners */ 3168 if (!lock_held) 3169 rfs4_dbe_lock(sp->rs_dbe); 3170 3171 /* 3172 * If refcnt == 0, the dbe is about to be destroyed. 3173 * lock state will be released by the reaper thread. 3174 */ 3175 3176 if (rfs4_dbe_refcnt(sp->rs_dbe) > 0) { 3177 if (sp->rs_closed == FALSE) { 3178 rfs4_release_share_lock_state(sp, cr, close_of_client); 3179 sp->rs_closed = TRUE; 3180 } 3181 } 3182 3183 if (!lock_held) 3184 rfs4_dbe_unlock(sp->rs_dbe); 3185 } 3186 3187 /* 3188 * Remove all state associated with the given client. 3189 */ 3190 void 3191 rfs4_client_state_remove(rfs4_client_t *cp) 3192 { 3193 rfs4_openowner_t *oo; 3194 3195 rfs4_dbe_lock(cp->rc_dbe); 3196 3197 for (oo = list_head(&cp->rc_openownerlist); oo != NULL; 3198 oo = list_next(&cp->rc_openownerlist, oo)) { 3199 rfs4_free_opens(oo, TRUE, TRUE); 3200 } 3201 3202 rfs4_dbe_unlock(cp->rc_dbe); 3203 } 3204 3205 void 3206 rfs4_client_close(rfs4_client_t *cp) 3207 { 3208 /* Mark client as going away. */ 3209 rfs4_dbe_lock(cp->rc_dbe); 3210 rfs4_dbe_invalidate(cp->rc_dbe); 3211 rfs4_dbe_unlock(cp->rc_dbe); 3212 3213 rfs4_client_state_remove(cp); 3214 3215 /* Release the client */ 3216 rfs4_client_rele(cp); 3217 } 3218 3219 nfsstat4 3220 rfs4_check_clientid(clientid4 *cp, int setclid_confirm) 3221 { 3222 cid *cidp = (cid *) cp; 3223 3224 /* 3225 * If we are booted as a cluster node, check the embedded nodeid. 3226 * If it indicates that this clientid was generated on another node, 3227 * inform the client accordingly. 3228 */ 3229 if (cluster_bootflags & CLUSTER_BOOTED && foreign_clientid(cidp)) 3230 return (NFS4ERR_STALE_CLIENTID); 3231 3232 /* 3233 * If the server start time matches the time provided 3234 * by the client (via the clientid) and this is NOT a 3235 * setclientid_confirm then return EXPIRED. 3236 */ 3237 if (!setclid_confirm && cidp->impl_id.start_time == rfs4_start_time) 3238 return (NFS4ERR_EXPIRED); 3239 3240 return (NFS4ERR_STALE_CLIENTID); 3241 } 3242 3243 /* 3244 * This is used when a stateid has not been found amongst the 3245 * current server's state. Check the stateid to see if it 3246 * was from this server instantiation or not. 3247 */ 3248 static nfsstat4 3249 what_stateid_error(stateid_t *id, stateid_type_t type) 3250 { 3251 /* If we are booted as a cluster node, was stateid locally generated? */ 3252 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3253 return (NFS4ERR_STALE_STATEID); 3254 3255 /* If types don't match then no use checking further */ 3256 if (type != id->bits.type) 3257 return (NFS4ERR_BAD_STATEID); 3258 3259 /* From a previous server instantiation, return STALE */ 3260 if (id->bits.boottime < rfs4_start_time) 3261 return (NFS4ERR_STALE_STATEID); 3262 3263 /* 3264 * From this server but the state is most likely beyond lease 3265 * timeout: return NFS4ERR_EXPIRED. However, there is the 3266 * case of a delegation stateid. For delegations, there is a 3267 * case where the state can be removed without the client's 3268 * knowledge/consent: revocation. In the case of delegation 3269 * revocation, the delegation state will be removed and will 3270 * not be found. If the client does something like a 3271 * DELEGRETURN or even a READ/WRITE with a delegatoin stateid 3272 * that has been revoked, the server should return BAD_STATEID 3273 * instead of the more common EXPIRED error. 3274 */ 3275 if (id->bits.boottime == rfs4_start_time) { 3276 if (type == DELEGID) 3277 return (NFS4ERR_BAD_STATEID); 3278 else 3279 return (NFS4ERR_EXPIRED); 3280 } 3281 3282 return (NFS4ERR_BAD_STATEID); 3283 } 3284 3285 /* 3286 * Used later on to find the various state structs. When called from 3287 * rfs4_check_stateid()->rfs4_get_all_state(), no file struct lock is 3288 * taken (it is not needed) and helps on the read/write path with 3289 * respect to performance. 3290 */ 3291 static nfsstat4 3292 rfs4_get_state_lockit(stateid4 *stateid, rfs4_state_t **spp, 3293 rfs4_dbsearch_type_t find_invalid, bool_t lock_fp) 3294 { 3295 stateid_t *id = (stateid_t *)stateid; 3296 rfs4_state_t *sp; 3297 3298 *spp = NULL; 3299 3300 /* If we are booted as a cluster node, was stateid locally generated? */ 3301 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3302 return (NFS4ERR_STALE_STATEID); 3303 3304 sp = rfs4_findstate(id, find_invalid, lock_fp); 3305 if (sp == NULL) { 3306 return (what_stateid_error(id, OPENID)); 3307 } 3308 3309 if (rfs4_lease_expired(sp->rs_owner->ro_client)) { 3310 if (lock_fp == TRUE) 3311 rfs4_state_rele(sp); 3312 else 3313 rfs4_state_rele_nounlock(sp); 3314 return (NFS4ERR_EXPIRED); 3315 } 3316 3317 *spp = sp; 3318 3319 return (NFS4_OK); 3320 } 3321 3322 nfsstat4 3323 rfs4_get_state(stateid4 *stateid, rfs4_state_t **spp, 3324 rfs4_dbsearch_type_t find_invalid) 3325 { 3326 return (rfs4_get_state_lockit(stateid, spp, find_invalid, TRUE)); 3327 } 3328 3329 int 3330 rfs4_check_stateid_seqid(rfs4_state_t *sp, stateid4 *stateid) 3331 { 3332 stateid_t *id = (stateid_t *)stateid; 3333 3334 if (rfs4_lease_expired(sp->rs_owner->ro_client)) 3335 return (NFS4_CHECK_STATEID_EXPIRED); 3336 3337 /* Stateid is some time in the future - that's bad */ 3338 if (sp->rs_stateid.bits.chgseq < id->bits.chgseq) 3339 return (NFS4_CHECK_STATEID_BAD); 3340 3341 if (sp->rs_stateid.bits.chgseq == id->bits.chgseq + 1) 3342 return (NFS4_CHECK_STATEID_REPLAY); 3343 3344 /* Stateid is some time in the past - that's old */ 3345 if (sp->rs_stateid.bits.chgseq > id->bits.chgseq) 3346 return (NFS4_CHECK_STATEID_OLD); 3347 3348 /* Caller needs to know about confirmation before closure */ 3349 if (sp->rs_owner->ro_need_confirm) 3350 return (NFS4_CHECK_STATEID_UNCONFIRMED); 3351 3352 if (sp->rs_closed == TRUE) 3353 return (NFS4_CHECK_STATEID_CLOSED); 3354 3355 return (NFS4_CHECK_STATEID_OKAY); 3356 } 3357 3358 int 3359 rfs4_check_lo_stateid_seqid(rfs4_lo_state_t *lsp, stateid4 *stateid) 3360 { 3361 stateid_t *id = (stateid_t *)stateid; 3362 3363 if (rfs4_lease_expired(lsp->rls_state->rs_owner->ro_client)) 3364 return (NFS4_CHECK_STATEID_EXPIRED); 3365 3366 /* Stateid is some time in the future - that's bad */ 3367 if (lsp->rls_lockid.bits.chgseq < id->bits.chgseq) 3368 return (NFS4_CHECK_STATEID_BAD); 3369 3370 if (lsp->rls_lockid.bits.chgseq == id->bits.chgseq + 1) 3371 return (NFS4_CHECK_STATEID_REPLAY); 3372 3373 /* Stateid is some time in the past - that's old */ 3374 if (lsp->rls_lockid.bits.chgseq > id->bits.chgseq) 3375 return (NFS4_CHECK_STATEID_OLD); 3376 3377 if (lsp->rls_state->rs_closed == TRUE) 3378 return (NFS4_CHECK_STATEID_CLOSED); 3379 3380 return (NFS4_CHECK_STATEID_OKAY); 3381 } 3382 3383 nfsstat4 3384 rfs4_get_deleg_state(stateid4 *stateid, rfs4_deleg_state_t **dspp) 3385 { 3386 stateid_t *id = (stateid_t *)stateid; 3387 rfs4_deleg_state_t *dsp; 3388 3389 *dspp = NULL; 3390 3391 /* If we are booted as a cluster node, was stateid locally generated? */ 3392 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3393 return (NFS4ERR_STALE_STATEID); 3394 3395 dsp = rfs4_finddelegstate(id); 3396 if (dsp == NULL) { 3397 return (what_stateid_error(id, DELEGID)); 3398 } 3399 3400 if (rfs4_lease_expired(dsp->rds_client)) { 3401 rfs4_deleg_state_rele(dsp); 3402 return (NFS4ERR_EXPIRED); 3403 } 3404 3405 *dspp = dsp; 3406 3407 return (NFS4_OK); 3408 } 3409 3410 nfsstat4 3411 rfs4_get_lo_state(stateid4 *stateid, rfs4_lo_state_t **lspp, bool_t lock_fp) 3412 { 3413 stateid_t *id = (stateid_t *)stateid; 3414 rfs4_lo_state_t *lsp; 3415 3416 *lspp = NULL; 3417 3418 /* If we are booted as a cluster node, was stateid locally generated? */ 3419 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3420 return (NFS4ERR_STALE_STATEID); 3421 3422 lsp = rfs4_findlo_state(id, lock_fp); 3423 if (lsp == NULL) { 3424 return (what_stateid_error(id, LOCKID)); 3425 } 3426 3427 if (rfs4_lease_expired(lsp->rls_state->rs_owner->ro_client)) { 3428 rfs4_lo_state_rele(lsp, lock_fp); 3429 return (NFS4ERR_EXPIRED); 3430 } 3431 3432 *lspp = lsp; 3433 3434 return (NFS4_OK); 3435 } 3436 3437 static nfsstat4 3438 rfs4_get_all_state(stateid4 *sid, rfs4_state_t **spp, 3439 rfs4_deleg_state_t **dspp, rfs4_lo_state_t **lspp) 3440 { 3441 rfs4_state_t *sp = NULL; 3442 rfs4_deleg_state_t *dsp = NULL; 3443 rfs4_lo_state_t *lsp = NULL; 3444 stateid_t *id; 3445 nfsstat4 status; 3446 3447 *spp = NULL; *dspp = NULL; *lspp = NULL; 3448 3449 id = (stateid_t *)sid; 3450 switch (id->bits.type) { 3451 case OPENID: 3452 status = rfs4_get_state_lockit(sid, &sp, FALSE, FALSE); 3453 break; 3454 case DELEGID: 3455 status = rfs4_get_deleg_state(sid, &dsp); 3456 break; 3457 case LOCKID: 3458 status = rfs4_get_lo_state(sid, &lsp, FALSE); 3459 if (status == NFS4_OK) { 3460 sp = lsp->rls_state; 3461 rfs4_dbe_hold(sp->rs_dbe); 3462 } 3463 break; 3464 default: 3465 status = NFS4ERR_BAD_STATEID; 3466 } 3467 3468 if (status == NFS4_OK) { 3469 *spp = sp; 3470 *dspp = dsp; 3471 *lspp = lsp; 3472 } 3473 3474 return (status); 3475 } 3476 3477 /* 3478 * Given the I/O mode (FREAD or FWRITE), this checks whether the 3479 * rfs4_state_t struct has access to do this operation and if so 3480 * return NFS4_OK; otherwise the proper NFSv4 error is returned. 3481 */ 3482 nfsstat4 3483 rfs4_state_has_access(rfs4_state_t *sp, int mode, vnode_t *vp) 3484 { 3485 nfsstat4 stat = NFS4_OK; 3486 rfs4_file_t *fp; 3487 bool_t create = FALSE; 3488 3489 rfs4_dbe_lock(sp->rs_dbe); 3490 if (mode == FWRITE) { 3491 if (!(sp->rs_share_access & OPEN4_SHARE_ACCESS_WRITE)) { 3492 stat = NFS4ERR_OPENMODE; 3493 } 3494 } else if (mode == FREAD) { 3495 if (!(sp->rs_share_access & OPEN4_SHARE_ACCESS_READ)) { 3496 /* 3497 * If we have OPENed the file with DENYing access 3498 * to both READ and WRITE then no one else could 3499 * have OPENed the file, hence no conflicting READ 3500 * deny. This check is merely an optimization. 3501 */ 3502 if (sp->rs_share_deny == OPEN4_SHARE_DENY_BOTH) 3503 goto out; 3504 3505 /* Check against file struct's DENY mode */ 3506 fp = rfs4_findfile(vp, NULL, &create); 3507 if (fp != NULL) { 3508 int deny_read = 0; 3509 rfs4_dbe_lock(fp->rf_dbe); 3510 /* 3511 * Check if any other open owner has the file 3512 * OPENed with deny READ. 3513 */ 3514 if (sp->rs_share_deny & OPEN4_SHARE_DENY_READ) 3515 deny_read = 1; 3516 ASSERT(fp->rf_deny_read - deny_read >= 0); 3517 if (fp->rf_deny_read - deny_read > 0) 3518 stat = NFS4ERR_OPENMODE; 3519 rfs4_dbe_unlock(fp->rf_dbe); 3520 rfs4_file_rele(fp); 3521 } 3522 } 3523 } else { 3524 /* Illegal I/O mode */ 3525 stat = NFS4ERR_INVAL; 3526 } 3527 out: 3528 rfs4_dbe_unlock(sp->rs_dbe); 3529 return (stat); 3530 } 3531 3532 /* 3533 * Given the I/O mode (FREAD or FWRITE), the vnode, the stateid and whether 3534 * the file is being truncated, return NFS4_OK if allowed or appropriate 3535 * V4 error if not. Note NFS4ERR_DELAY will be returned and a recall on 3536 * the associated file will be done if the I/O is not consistent with any 3537 * delegation in effect on the file. Should be holding VOP_RWLOCK, either 3538 * as reader or writer as appropriate. rfs4_op_open will acquire the 3539 * VOP_RWLOCK as writer when setting up delegation. If the stateid is bad 3540 * this routine will return NFS4ERR_BAD_STATEID. In addition, through the 3541 * deleg parameter, we will return whether a write delegation is held by 3542 * the client associated with this stateid. 3543 * If the server instance associated with the relevant client is in its 3544 * grace period, return NFS4ERR_GRACE. 3545 */ 3546 3547 nfsstat4 3548 rfs4_check_stateid(int mode, vnode_t *vp, 3549 stateid4 *stateid, bool_t trunc, bool_t *deleg, 3550 bool_t do_access, caller_context_t *ct) 3551 { 3552 rfs4_file_t *fp; 3553 bool_t create = FALSE; 3554 rfs4_state_t *sp; 3555 rfs4_deleg_state_t *dsp; 3556 rfs4_lo_state_t *lsp; 3557 stateid_t *id = (stateid_t *)stateid; 3558 nfsstat4 stat = NFS4_OK; 3559 3560 if (ct != NULL) { 3561 ct->cc_sysid = 0; 3562 ct->cc_pid = 0; 3563 ct->cc_caller_id = nfs4_srv_caller_id; 3564 ct->cc_flags = CC_DONTBLOCK; 3565 } 3566 3567 if (ISSPECIAL(stateid)) { 3568 fp = rfs4_findfile(vp, NULL, &create); 3569 if (fp == NULL) 3570 return (NFS4_OK); 3571 if (fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_NONE) { 3572 rfs4_file_rele(fp); 3573 return (NFS4_OK); 3574 } 3575 if (mode == FWRITE || 3576 fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_WRITE) { 3577 rfs4_recall_deleg(fp, trunc, NULL); 3578 rfs4_file_rele(fp); 3579 return (NFS4ERR_DELAY); 3580 } 3581 rfs4_file_rele(fp); 3582 return (NFS4_OK); 3583 } else { 3584 stat = rfs4_get_all_state(stateid, &sp, &dsp, &lsp); 3585 if (stat != NFS4_OK) 3586 return (stat); 3587 if (lsp != NULL) { 3588 /* Is associated server instance in its grace period? */ 3589 if (rfs4_clnt_in_grace(lsp->rls_locker->rl_client)) { 3590 rfs4_lo_state_rele(lsp, FALSE); 3591 if (sp != NULL) 3592 rfs4_state_rele_nounlock(sp); 3593 return (NFS4ERR_GRACE); 3594 } 3595 if (id->bits.type == LOCKID) { 3596 /* Seqid in the future? - that's bad */ 3597 if (lsp->rls_lockid.bits.chgseq < 3598 id->bits.chgseq) { 3599 rfs4_lo_state_rele(lsp, FALSE); 3600 if (sp != NULL) 3601 rfs4_state_rele_nounlock(sp); 3602 return (NFS4ERR_BAD_STATEID); 3603 } 3604 /* Seqid in the past? - that's old */ 3605 if (lsp->rls_lockid.bits.chgseq > 3606 id->bits.chgseq) { 3607 rfs4_lo_state_rele(lsp, FALSE); 3608 if (sp != NULL) 3609 rfs4_state_rele_nounlock(sp); 3610 return (NFS4ERR_OLD_STATEID); 3611 } 3612 /* Ensure specified filehandle matches */ 3613 if (lsp->rls_state->rs_finfo->rf_vp != vp) { 3614 rfs4_lo_state_rele(lsp, FALSE); 3615 if (sp != NULL) 3616 rfs4_state_rele_nounlock(sp); 3617 return (NFS4ERR_BAD_STATEID); 3618 } 3619 } 3620 if (ct != NULL) { 3621 ct->cc_sysid = 3622 lsp->rls_locker->rl_client->rc_sysidt; 3623 ct->cc_pid = lsp->rls_locker->rl_pid; 3624 } 3625 rfs4_lo_state_rele(lsp, FALSE); 3626 } 3627 3628 /* Stateid provided was an "open" stateid */ 3629 if (sp != NULL) { 3630 /* Is associated server instance in its grace period? */ 3631 if (rfs4_clnt_in_grace(sp->rs_owner->ro_client)) { 3632 rfs4_state_rele_nounlock(sp); 3633 return (NFS4ERR_GRACE); 3634 } 3635 if (id->bits.type == OPENID) { 3636 /* Seqid in the future? - that's bad */ 3637 if (sp->rs_stateid.bits.chgseq < 3638 id->bits.chgseq) { 3639 rfs4_state_rele_nounlock(sp); 3640 return (NFS4ERR_BAD_STATEID); 3641 } 3642 /* Seqid in the past - that's old */ 3643 if (sp->rs_stateid.bits.chgseq > 3644 id->bits.chgseq) { 3645 rfs4_state_rele_nounlock(sp); 3646 return (NFS4ERR_OLD_STATEID); 3647 } 3648 } 3649 /* Ensure specified filehandle matches */ 3650 if (sp->rs_finfo->rf_vp != vp) { 3651 rfs4_state_rele_nounlock(sp); 3652 return (NFS4ERR_BAD_STATEID); 3653 } 3654 3655 if (sp->rs_owner->ro_need_confirm) { 3656 rfs4_state_rele_nounlock(sp); 3657 return (NFS4ERR_BAD_STATEID); 3658 } 3659 3660 if (sp->rs_closed == TRUE) { 3661 rfs4_state_rele_nounlock(sp); 3662 return (NFS4ERR_OLD_STATEID); 3663 } 3664 3665 if (do_access) 3666 stat = rfs4_state_has_access(sp, mode, vp); 3667 else 3668 stat = NFS4_OK; 3669 3670 /* 3671 * Return whether this state has write 3672 * delegation if desired 3673 */ 3674 if (deleg && (sp->rs_finfo->rf_dinfo.rd_dtype == 3675 OPEN_DELEGATE_WRITE)) 3676 *deleg = TRUE; 3677 3678 /* 3679 * We got a valid stateid, so we update the 3680 * lease on the client. Ideally we would like 3681 * to do this after the calling op succeeds, 3682 * but for now this will be good 3683 * enough. Callers of this routine are 3684 * currently insulated from the state stuff. 3685 */ 3686 rfs4_update_lease(sp->rs_owner->ro_client); 3687 3688 /* 3689 * If a delegation is present on this file and 3690 * this is a WRITE, then update the lastwrite 3691 * time to indicate that activity is present. 3692 */ 3693 if (sp->rs_finfo->rf_dinfo.rd_dtype == 3694 OPEN_DELEGATE_WRITE && 3695 mode == FWRITE) { 3696 sp->rs_finfo->rf_dinfo.rd_time_lastwrite = 3697 gethrestime_sec(); 3698 } 3699 3700 rfs4_state_rele_nounlock(sp); 3701 3702 return (stat); 3703 } 3704 3705 if (dsp != NULL) { 3706 /* Is associated server instance in its grace period? */ 3707 if (rfs4_clnt_in_grace(dsp->rds_client)) { 3708 rfs4_deleg_state_rele(dsp); 3709 return (NFS4ERR_GRACE); 3710 } 3711 if (dsp->rds_delegid.bits.chgseq != id->bits.chgseq) { 3712 rfs4_deleg_state_rele(dsp); 3713 return (NFS4ERR_BAD_STATEID); 3714 } 3715 3716 /* Ensure specified filehandle matches */ 3717 if (dsp->rds_finfo->rf_vp != vp) { 3718 rfs4_deleg_state_rele(dsp); 3719 return (NFS4ERR_BAD_STATEID); 3720 } 3721 /* 3722 * Return whether this state has write 3723 * delegation if desired 3724 */ 3725 if (deleg && (dsp->rds_finfo->rf_dinfo.rd_dtype == 3726 OPEN_DELEGATE_WRITE)) 3727 *deleg = TRUE; 3728 3729 rfs4_update_lease(dsp->rds_client); 3730 3731 /* 3732 * If a delegation is present on this file and 3733 * this is a WRITE, then update the lastwrite 3734 * time to indicate that activity is present. 3735 */ 3736 if (dsp->rds_finfo->rf_dinfo.rd_dtype == 3737 OPEN_DELEGATE_WRITE && mode == FWRITE) { 3738 dsp->rds_finfo->rf_dinfo.rd_time_lastwrite = 3739 gethrestime_sec(); 3740 } 3741 3742 /* 3743 * XXX - what happens if this is a WRITE and the 3744 * delegation type of for READ. 3745 */ 3746 rfs4_deleg_state_rele(dsp); 3747 3748 return (stat); 3749 } 3750 /* 3751 * If we got this far, something bad happened 3752 */ 3753 return (NFS4ERR_BAD_STATEID); 3754 } 3755 } 3756 3757 3758 /* 3759 * This is a special function in that for the file struct provided the 3760 * server wants to remove/close all current state associated with the 3761 * file. The prime use of this would be with OP_REMOVE to force the 3762 * release of state and particularly of file locks. 3763 * 3764 * There is an assumption that there is no delegations outstanding on 3765 * this file at this point. The caller should have waited for those 3766 * to be returned or revoked. 3767 */ 3768 void 3769 rfs4_close_all_state(rfs4_file_t *fp) 3770 { 3771 rfs4_state_t *sp; 3772 3773 rfs4_dbe_lock(fp->rf_dbe); 3774 3775 #ifdef DEBUG 3776 /* only applies when server is handing out delegations */ 3777 if (rfs4_deleg_policy != SRV_NEVER_DELEGATE) 3778 ASSERT(fp->rf_dinfo.rd_hold_grant > 0); 3779 #endif 3780 3781 /* No delegations for this file */ 3782 ASSERT(list_is_empty(&fp->rf_delegstatelist)); 3783 3784 /* Make sure that it can not be found */ 3785 rfs4_dbe_invalidate(fp->rf_dbe); 3786 3787 if (fp->rf_vp == NULL) { 3788 rfs4_dbe_unlock(fp->rf_dbe); 3789 return; 3790 } 3791 rfs4_dbe_unlock(fp->rf_dbe); 3792 3793 /* 3794 * Hold as writer to prevent other server threads from 3795 * processing requests related to the file while all state is 3796 * being removed. 3797 */ 3798 rw_enter(&fp->rf_file_rwlock, RW_WRITER); 3799 3800 /* Remove ALL state from the file */ 3801 while (sp = rfs4_findstate_by_file(fp)) { 3802 rfs4_state_close(sp, FALSE, FALSE, CRED()); 3803 rfs4_state_rele_nounlock(sp); 3804 } 3805 3806 /* 3807 * This is only safe since there are no further references to 3808 * the file. 3809 */ 3810 rfs4_dbe_lock(fp->rf_dbe); 3811 if (fp->rf_vp) { 3812 vnode_t *vp = fp->rf_vp; 3813 3814 mutex_enter(&vp->v_vsd_lock); 3815 (void) vsd_set(vp, nfs4_srv_vkey, NULL); 3816 mutex_exit(&vp->v_vsd_lock); 3817 VN_RELE(vp); 3818 fp->rf_vp = NULL; 3819 } 3820 rfs4_dbe_unlock(fp->rf_dbe); 3821 3822 /* Finally let other references to proceed */ 3823 rw_exit(&fp->rf_file_rwlock); 3824 } 3825 3826 /* 3827 * This function is used as a target for the rfs4_dbe_walk() call 3828 * below. The purpose of this function is to see if the 3829 * lockowner_state refers to a file that resides within the exportinfo 3830 * export. If so, then remove the lock_owner state (file locks and 3831 * share "locks") for this object since the intent is the server is 3832 * unexporting the specified directory. Be sure to invalidate the 3833 * object after the state has been released 3834 */ 3835 static void 3836 rfs4_lo_state_walk_callout(rfs4_entry_t u_entry, void *e) 3837 { 3838 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 3839 struct exportinfo *exi = (struct exportinfo *)e; 3840 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3841 fhandle_t *efhp; 3842 3843 efhp = (fhandle_t *)&exi->exi_fh; 3844 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3845 3846 FH_TO_FMT4(efhp, exi_fhp); 3847 3848 finfo_fhp = (nfs_fh4_fmt_t *)lsp->rls_state->rs_finfo-> 3849 rf_filehandle.nfs_fh4_val; 3850 3851 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3852 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3853 exi_fhp->fh4_xlen) == 0) { 3854 rfs4_state_close(lsp->rls_state, FALSE, FALSE, CRED()); 3855 rfs4_dbe_invalidate(lsp->rls_dbe); 3856 rfs4_dbe_invalidate(lsp->rls_state->rs_dbe); 3857 } 3858 } 3859 3860 /* 3861 * This function is used as a target for the rfs4_dbe_walk() call 3862 * below. The purpose of this function is to see if the state refers 3863 * to a file that resides within the exportinfo export. If so, then 3864 * remove the open state for this object since the intent is the 3865 * server is unexporting the specified directory. The main result for 3866 * this type of entry is to invalidate it such it will not be found in 3867 * the future. 3868 */ 3869 static void 3870 rfs4_state_walk_callout(rfs4_entry_t u_entry, void *e) 3871 { 3872 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3873 struct exportinfo *exi = (struct exportinfo *)e; 3874 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3875 fhandle_t *efhp; 3876 3877 efhp = (fhandle_t *)&exi->exi_fh; 3878 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3879 3880 FH_TO_FMT4(efhp, exi_fhp); 3881 3882 finfo_fhp = 3883 (nfs_fh4_fmt_t *)sp->rs_finfo->rf_filehandle.nfs_fh4_val; 3884 3885 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3886 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3887 exi_fhp->fh4_xlen) == 0) { 3888 rfs4_state_close(sp, TRUE, FALSE, CRED()); 3889 rfs4_dbe_invalidate(sp->rs_dbe); 3890 } 3891 } 3892 3893 /* 3894 * This function is used as a target for the rfs4_dbe_walk() call 3895 * below. The purpose of this function is to see if the state refers 3896 * to a file that resides within the exportinfo export. If so, then 3897 * remove the deleg state for this object since the intent is the 3898 * server is unexporting the specified directory. The main result for 3899 * this type of entry is to invalidate it such it will not be found in 3900 * the future. 3901 */ 3902 static void 3903 rfs4_deleg_state_walk_callout(rfs4_entry_t u_entry, void *e) 3904 { 3905 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 3906 struct exportinfo *exi = (struct exportinfo *)e; 3907 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3908 fhandle_t *efhp; 3909 3910 efhp = (fhandle_t *)&exi->exi_fh; 3911 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3912 3913 FH_TO_FMT4(efhp, exi_fhp); 3914 3915 finfo_fhp = 3916 (nfs_fh4_fmt_t *)dsp->rds_finfo->rf_filehandle.nfs_fh4_val; 3917 3918 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3919 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3920 exi_fhp->fh4_xlen) == 0) { 3921 rfs4_dbe_invalidate(dsp->rds_dbe); 3922 } 3923 } 3924 3925 /* 3926 * This function is used as a target for the rfs4_dbe_walk() call 3927 * below. The purpose of this function is to see if the state refers 3928 * to a file that resides within the exportinfo export. If so, then 3929 * release vnode hold for this object since the intent is the server 3930 * is unexporting the specified directory. Invalidation will prevent 3931 * this struct from being found in the future. 3932 */ 3933 static void 3934 rfs4_file_walk_callout(rfs4_entry_t u_entry, void *e) 3935 { 3936 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 3937 struct exportinfo *exi = (struct exportinfo *)e; 3938 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3939 fhandle_t *efhp; 3940 3941 efhp = (fhandle_t *)&exi->exi_fh; 3942 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3943 3944 FH_TO_FMT4(efhp, exi_fhp); 3945 3946 finfo_fhp = (nfs_fh4_fmt_t *)fp->rf_filehandle.nfs_fh4_val; 3947 3948 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3949 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3950 exi_fhp->fh4_xlen) == 0) { 3951 if (fp->rf_vp) { 3952 vnode_t *vp = fp->rf_vp; 3953 3954 /* 3955 * don't leak monitors and remove the reference 3956 * put on the vnode when the delegation was granted. 3957 */ 3958 if (fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_READ) { 3959 (void) fem_uninstall(vp, deleg_rdops, 3960 (void *)fp); 3961 vn_open_downgrade(vp, FREAD); 3962 } else if (fp->rf_dinfo.rd_dtype == 3963 OPEN_DELEGATE_WRITE) { 3964 (void) fem_uninstall(vp, deleg_wrops, 3965 (void *)fp); 3966 vn_open_downgrade(vp, FREAD|FWRITE); 3967 } 3968 mutex_enter(&vp->v_vsd_lock); 3969 (void) vsd_set(vp, nfs4_srv_vkey, NULL); 3970 mutex_exit(&vp->v_vsd_lock); 3971 VN_RELE(vp); 3972 fp->rf_vp = NULL; 3973 } 3974 rfs4_dbe_invalidate(fp->rf_dbe); 3975 } 3976 } 3977 3978 /* 3979 * Given a directory that is being unexported, cleanup/release all 3980 * state in the server that refers to objects residing underneath this 3981 * particular export. The ordering of the release is important. 3982 * Lock_owner, then state and then file. 3983 */ 3984 void 3985 rfs4_clean_state_exi(struct exportinfo *exi) 3986 { 3987 mutex_enter(&rfs4_state_lock); 3988 3989 if (rfs4_server_state == NULL) { 3990 mutex_exit(&rfs4_state_lock); 3991 return; 3992 } 3993 3994 rfs4_dbe_walk(rfs4_lo_state_tab, rfs4_lo_state_walk_callout, exi); 3995 rfs4_dbe_walk(rfs4_state_tab, rfs4_state_walk_callout, exi); 3996 rfs4_dbe_walk(rfs4_deleg_state_tab, rfs4_deleg_state_walk_callout, exi); 3997 rfs4_dbe_walk(rfs4_file_tab, rfs4_file_walk_callout, exi); 3998 3999 mutex_exit(&rfs4_state_lock); 4000 } 4001