1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 #include <sys/systm.h> 27 #include <sys/kmem.h> 28 #include <sys/cmn_err.h> 29 #include <sys/atomic.h> 30 #include <sys/clconf.h> 31 #include <sys/cladm.h> 32 #include <sys/flock.h> 33 #include <nfs/export.h> 34 #include <nfs/nfs.h> 35 #include <nfs/nfs4.h> 36 #include <nfs/nfssys.h> 37 #include <nfs/lm.h> 38 #include <sys/pathname.h> 39 #include <sys/sdt.h> 40 #include <sys/nvpair.h> 41 42 extern u_longlong_t nfs4_srv_caller_id; 43 44 extern time_t rfs4_start_time; 45 extern uint_t nfs4_srv_vkey; 46 47 stateid4 special0 = { 48 0, 49 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } 50 }; 51 52 stateid4 special1 = { 53 0xffffffff, 54 { 55 (char)0xff, (char)0xff, (char)0xff, (char)0xff, 56 (char)0xff, (char)0xff, (char)0xff, (char)0xff, 57 (char)0xff, (char)0xff, (char)0xff, (char)0xff 58 } 59 }; 60 61 62 #define ISSPECIAL(id) (stateid4_cmp(id, &special0) || \ 63 stateid4_cmp(id, &special1)) 64 65 /* For embedding the cluster nodeid into our clientid */ 66 #define CLUSTER_NODEID_SHIFT 24 67 #define CLUSTER_MAX_NODEID 255 68 69 #ifdef DEBUG 70 int rfs4_debug; 71 #endif 72 73 static uint32_t rfs4_database_debug = 0x00; 74 75 static void rfs4_ss_clid_write(rfs4_client_t *cp, char *leaf); 76 static void rfs4_ss_clid_write_one(rfs4_client_t *cp, char *dir, char *leaf); 77 static void rfs4_dss_clear_oldstate(rfs4_servinst_t *sip); 78 static void rfs4_ss_chkclid_sip(rfs4_client_t *cp, rfs4_servinst_t *sip); 79 80 /* 81 * Couple of simple init/destroy functions for a general waiter 82 */ 83 void 84 rfs4_sw_init(rfs4_state_wait_t *swp) 85 { 86 mutex_init(swp->sw_cv_lock, NULL, MUTEX_DEFAULT, NULL); 87 cv_init(swp->sw_cv, NULL, CV_DEFAULT, NULL); 88 swp->sw_active = FALSE; 89 swp->sw_wait_count = 0; 90 } 91 92 void 93 rfs4_sw_destroy(rfs4_state_wait_t *swp) 94 { 95 mutex_destroy(swp->sw_cv_lock); 96 cv_destroy(swp->sw_cv); 97 } 98 99 void 100 rfs4_sw_enter(rfs4_state_wait_t *swp) 101 { 102 mutex_enter(swp->sw_cv_lock); 103 while (swp->sw_active) { 104 swp->sw_wait_count++; 105 cv_wait(swp->sw_cv, swp->sw_cv_lock); 106 swp->sw_wait_count--; 107 } 108 ASSERT(swp->sw_active == FALSE); 109 swp->sw_active = TRUE; 110 mutex_exit(swp->sw_cv_lock); 111 } 112 113 void 114 rfs4_sw_exit(rfs4_state_wait_t *swp) 115 { 116 mutex_enter(swp->sw_cv_lock); 117 ASSERT(swp->sw_active == TRUE); 118 swp->sw_active = FALSE; 119 if (swp->sw_wait_count != 0) 120 cv_broadcast(swp->sw_cv); 121 mutex_exit(swp->sw_cv_lock); 122 } 123 124 /* 125 * CPR callback id -- not related to v4 callbacks 126 */ 127 static callb_id_t cpr_id = 0; 128 129 static void 130 deep_lock_copy(LOCK4res *dres, LOCK4res *sres) 131 { 132 lock_owner4 *slo = &sres->LOCK4res_u.denied.owner; 133 lock_owner4 *dlo = &dres->LOCK4res_u.denied.owner; 134 135 if (sres->status == NFS4ERR_DENIED) { 136 dlo->owner_val = kmem_alloc(slo->owner_len, KM_SLEEP); 137 bcopy(slo->owner_val, dlo->owner_val, slo->owner_len); 138 } 139 } 140 141 static void 142 deep_lock_free(LOCK4res *res) 143 { 144 lock_owner4 *lo = &res->LOCK4res_u.denied.owner; 145 146 if (res->status == NFS4ERR_DENIED) 147 kmem_free(lo->owner_val, lo->owner_len); 148 } 149 150 static void 151 deep_open_copy(OPEN4res *dres, OPEN4res *sres) 152 { 153 nfsace4 *sacep, *dacep; 154 155 if (sres->status != NFS4_OK) { 156 return; 157 } 158 159 dres->attrset = sres->attrset; 160 161 switch (sres->delegation.delegation_type) { 162 case OPEN_DELEGATE_NONE: 163 return; 164 case OPEN_DELEGATE_READ: 165 sacep = &sres->delegation.open_delegation4_u.read.permissions; 166 dacep = &dres->delegation.open_delegation4_u.read.permissions; 167 break; 168 case OPEN_DELEGATE_WRITE: 169 sacep = &sres->delegation.open_delegation4_u.write.permissions; 170 dacep = &dres->delegation.open_delegation4_u.write.permissions; 171 break; 172 } 173 dacep->who.utf8string_val = 174 kmem_alloc(sacep->who.utf8string_len, KM_SLEEP); 175 bcopy(sacep->who.utf8string_val, dacep->who.utf8string_val, 176 sacep->who.utf8string_len); 177 } 178 179 static void 180 deep_open_free(OPEN4res *res) 181 { 182 nfsace4 *acep; 183 if (res->status != NFS4_OK) 184 return; 185 186 switch (res->delegation.delegation_type) { 187 case OPEN_DELEGATE_NONE: 188 return; 189 case OPEN_DELEGATE_READ: 190 acep = &res->delegation.open_delegation4_u.read.permissions; 191 break; 192 case OPEN_DELEGATE_WRITE: 193 acep = &res->delegation.open_delegation4_u.write.permissions; 194 break; 195 } 196 197 if (acep->who.utf8string_val) { 198 kmem_free(acep->who.utf8string_val, acep->who.utf8string_len); 199 acep->who.utf8string_val = NULL; 200 } 201 } 202 203 void 204 rfs4_free_reply(nfs_resop4 *rp) 205 { 206 switch (rp->resop) { 207 case OP_LOCK: 208 deep_lock_free(&rp->nfs_resop4_u.oplock); 209 break; 210 case OP_OPEN: 211 deep_open_free(&rp->nfs_resop4_u.opopen); 212 default: 213 break; 214 } 215 } 216 217 void 218 rfs4_copy_reply(nfs_resop4 *dst, nfs_resop4 *src) 219 { 220 *dst = *src; 221 222 /* Handle responses that need deep copy */ 223 switch (src->resop) { 224 case OP_LOCK: 225 deep_lock_copy(&dst->nfs_resop4_u.oplock, 226 &src->nfs_resop4_u.oplock); 227 break; 228 case OP_OPEN: 229 deep_open_copy(&dst->nfs_resop4_u.opopen, 230 &src->nfs_resop4_u.opopen); 231 break; 232 default: 233 break; 234 }; 235 } 236 237 /* 238 * This is the implementation of the underlying state engine. The 239 * public interface to this engine is described by 240 * nfs4_state.h. Callers to the engine should hold no state engine 241 * locks when they call in to it. If the protocol needs to lock data 242 * structures it should do so after acquiring all references to them 243 * first and then follow the following lock order: 244 * 245 * client > openowner > state > lo_state > lockowner > file. 246 * 247 * Internally we only allow a thread to hold one hash bucket lock at a 248 * time and the lock is higher in the lock order (must be acquired 249 * first) than the data structure that is on that hash list. 250 * 251 * If a new reference was acquired by the caller, that reference needs 252 * to be released after releasing all acquired locks with the 253 * corresponding rfs4_*_rele routine. 254 */ 255 256 /* 257 * This code is some what prototypical for now. Its purpose currently is to 258 * implement the interfaces sufficiently to finish the higher protocol 259 * elements. This will be replaced by a dynamically resizeable tables 260 * backed by kmem_cache allocator. However synchronization is handled 261 * correctly (I hope) and will not change by much. The mutexes for 262 * the hash buckets that can be used to create new instances of data 263 * structures might be good candidates to evolve into reader writer 264 * locks. If it has to do a creation, it would be holding the 265 * mutex across a kmem_alloc with KM_SLEEP specified. 266 */ 267 268 #ifdef DEBUG 269 #define TABSIZE 17 270 #else 271 #define TABSIZE 2047 272 #endif 273 274 #define ADDRHASH(key) ((unsigned long)(key) >> 3) 275 276 /* Used to serialize create/destroy of rfs4_server_state database */ 277 kmutex_t rfs4_state_lock; 278 static rfs4_database_t *rfs4_server_state = NULL; 279 280 /* Used to serialize lookups of clientids */ 281 static krwlock_t rfs4_findclient_lock; 282 283 /* 284 * For now this "table" is exposed so that the CPR callback 285 * function can tromp through it.. 286 */ 287 rfs4_table_t *rfs4_client_tab; 288 289 static rfs4_index_t *rfs4_clientid_idx; 290 static rfs4_index_t *rfs4_nfsclnt_idx; 291 static rfs4_table_t *rfs4_clntip_tab; 292 static rfs4_index_t *rfs4_clntip_idx; 293 static rfs4_table_t *rfs4_openowner_tab; 294 static rfs4_index_t *rfs4_openowner_idx; 295 static rfs4_table_t *rfs4_state_tab; 296 static rfs4_index_t *rfs4_state_idx; 297 static rfs4_index_t *rfs4_state_owner_file_idx; 298 static rfs4_index_t *rfs4_state_file_idx; 299 static rfs4_table_t *rfs4_lo_state_tab; 300 static rfs4_index_t *rfs4_lo_state_idx; 301 static rfs4_index_t *rfs4_lo_state_owner_idx; 302 static rfs4_table_t *rfs4_lockowner_tab; 303 static rfs4_index_t *rfs4_lockowner_idx; 304 static rfs4_index_t *rfs4_lockowner_pid_idx; 305 static rfs4_table_t *rfs4_file_tab; 306 static rfs4_index_t *rfs4_file_idx; 307 static rfs4_table_t *rfs4_deleg_state_tab; 308 static rfs4_index_t *rfs4_deleg_idx; 309 static rfs4_index_t *rfs4_deleg_state_idx; 310 311 #define MAXTABSZ 1024*1024 312 313 /* The values below are rfs4_lease_time units */ 314 315 #ifdef DEBUG 316 #define CLIENT_CACHE_TIME 1 317 #define OPENOWNER_CACHE_TIME 1 318 #define STATE_CACHE_TIME 1 319 #define LO_STATE_CACHE_TIME 1 320 #define LOCKOWNER_CACHE_TIME 1 321 #define FILE_CACHE_TIME 3 322 #define DELEG_STATE_CACHE_TIME 1 323 #else 324 #define CLIENT_CACHE_TIME 10 325 #define OPENOWNER_CACHE_TIME 5 326 #define STATE_CACHE_TIME 1 327 #define LO_STATE_CACHE_TIME 1 328 #define LOCKOWNER_CACHE_TIME 3 329 #define FILE_CACHE_TIME 40 330 #define DELEG_STATE_CACHE_TIME 1 331 #endif 332 333 334 static time_t rfs4_client_cache_time = 0; 335 static time_t rfs4_clntip_cache_time = 0; 336 static time_t rfs4_openowner_cache_time = 0; 337 static time_t rfs4_state_cache_time = 0; 338 static time_t rfs4_lo_state_cache_time = 0; 339 static time_t rfs4_lockowner_cache_time = 0; 340 static time_t rfs4_file_cache_time = 0; 341 static time_t rfs4_deleg_state_cache_time = 0; 342 343 static bool_t rfs4_client_create(rfs4_entry_t, void *); 344 static void rfs4_dss_remove_cpleaf(rfs4_client_t *); 345 static void rfs4_dss_remove_leaf(rfs4_servinst_t *, char *, char *); 346 static void rfs4_client_destroy(rfs4_entry_t); 347 static bool_t rfs4_client_expiry(rfs4_entry_t); 348 static uint32_t clientid_hash(void *); 349 static bool_t clientid_compare(rfs4_entry_t, void *); 350 static void *clientid_mkkey(rfs4_entry_t); 351 static uint32_t nfsclnt_hash(void *); 352 static bool_t nfsclnt_compare(rfs4_entry_t, void *); 353 static void *nfsclnt_mkkey(rfs4_entry_t); 354 static bool_t rfs4_clntip_expiry(rfs4_entry_t); 355 static void rfs4_clntip_destroy(rfs4_entry_t); 356 static bool_t rfs4_clntip_create(rfs4_entry_t, void *); 357 static uint32_t clntip_hash(void *); 358 static bool_t clntip_compare(rfs4_entry_t, void *); 359 static void *clntip_mkkey(rfs4_entry_t); 360 static bool_t rfs4_openowner_create(rfs4_entry_t, void *); 361 static void rfs4_openowner_destroy(rfs4_entry_t); 362 static bool_t rfs4_openowner_expiry(rfs4_entry_t); 363 static uint32_t openowner_hash(void *); 364 static bool_t openowner_compare(rfs4_entry_t, void *); 365 static void *openowner_mkkey(rfs4_entry_t); 366 static bool_t rfs4_state_create(rfs4_entry_t, void *); 367 static void rfs4_state_destroy(rfs4_entry_t); 368 static bool_t rfs4_state_expiry(rfs4_entry_t); 369 static uint32_t state_hash(void *); 370 static bool_t state_compare(rfs4_entry_t, void *); 371 static void *state_mkkey(rfs4_entry_t); 372 static uint32_t state_owner_file_hash(void *); 373 static bool_t state_owner_file_compare(rfs4_entry_t, void *); 374 static void *state_owner_file_mkkey(rfs4_entry_t); 375 static uint32_t state_file_hash(void *); 376 static bool_t state_file_compare(rfs4_entry_t, void *); 377 static void *state_file_mkkey(rfs4_entry_t); 378 static bool_t rfs4_lo_state_create(rfs4_entry_t, void *); 379 static void rfs4_lo_state_destroy(rfs4_entry_t); 380 static bool_t rfs4_lo_state_expiry(rfs4_entry_t); 381 static uint32_t lo_state_hash(void *); 382 static bool_t lo_state_compare(rfs4_entry_t, void *); 383 static void *lo_state_mkkey(rfs4_entry_t); 384 static uint32_t lo_state_lo_hash(void *); 385 static bool_t lo_state_lo_compare(rfs4_entry_t, void *); 386 static void *lo_state_lo_mkkey(rfs4_entry_t); 387 static bool_t rfs4_lockowner_create(rfs4_entry_t, void *); 388 static void rfs4_lockowner_destroy(rfs4_entry_t); 389 static bool_t rfs4_lockowner_expiry(rfs4_entry_t); 390 static uint32_t lockowner_hash(void *); 391 static bool_t lockowner_compare(rfs4_entry_t, void *); 392 static void *lockowner_mkkey(rfs4_entry_t); 393 static uint32_t pid_hash(void *); 394 static bool_t pid_compare(rfs4_entry_t, void *); 395 static void *pid_mkkey(rfs4_entry_t); 396 static bool_t rfs4_file_create(rfs4_entry_t, void *); 397 static void rfs4_file_destroy(rfs4_entry_t); 398 static uint32_t file_hash(void *); 399 static bool_t file_compare(rfs4_entry_t, void *); 400 static void *file_mkkey(rfs4_entry_t); 401 static bool_t rfs4_deleg_state_create(rfs4_entry_t, void *); 402 static void rfs4_deleg_state_destroy(rfs4_entry_t); 403 static bool_t rfs4_deleg_state_expiry(rfs4_entry_t); 404 static uint32_t deleg_hash(void *); 405 static bool_t deleg_compare(rfs4_entry_t, void *); 406 static void *deleg_mkkey(rfs4_entry_t); 407 static uint32_t deleg_state_hash(void *); 408 static bool_t deleg_state_compare(rfs4_entry_t, void *); 409 static void *deleg_state_mkkey(rfs4_entry_t); 410 411 static void rfs4_state_rele_nounlock(rfs4_state_t *); 412 413 static int rfs4_ss_enabled = 0; 414 415 extern void (*rfs4_client_clrst)(struct nfs4clrst_args *); 416 417 void 418 rfs4_ss_pnfree(rfs4_ss_pn_t *ss_pn) 419 { 420 kmem_free(ss_pn, sizeof (rfs4_ss_pn_t)); 421 } 422 423 static rfs4_ss_pn_t * 424 rfs4_ss_pnalloc(char *dir, char *leaf) 425 { 426 rfs4_ss_pn_t *ss_pn; 427 int dir_len, leaf_len; 428 429 /* 430 * validate we have a resonable path 431 * (account for the '/' and trailing null) 432 */ 433 if ((dir_len = strlen(dir)) > MAXPATHLEN || 434 (leaf_len = strlen(leaf)) > MAXNAMELEN || 435 (dir_len + leaf_len + 2) > MAXPATHLEN) { 436 return (NULL); 437 } 438 439 ss_pn = kmem_alloc(sizeof (rfs4_ss_pn_t), KM_SLEEP); 440 441 (void) snprintf(ss_pn->pn, MAXPATHLEN, "%s/%s", dir, leaf); 442 /* Handy pointer to just the leaf name */ 443 ss_pn->leaf = ss_pn->pn + dir_len + 1; 444 return (ss_pn); 445 } 446 447 448 /* 449 * Move the "leaf" filename from "sdir" directory 450 * to the "ddir" directory. Return the pathname of 451 * the destination unless the rename fails in which 452 * case we need to return the source pathname. 453 */ 454 static rfs4_ss_pn_t * 455 rfs4_ss_movestate(char *sdir, char *ddir, char *leaf) 456 { 457 rfs4_ss_pn_t *src, *dst; 458 459 if ((src = rfs4_ss_pnalloc(sdir, leaf)) == NULL) 460 return (NULL); 461 462 if ((dst = rfs4_ss_pnalloc(ddir, leaf)) == NULL) { 463 rfs4_ss_pnfree(src); 464 return (NULL); 465 } 466 467 /* 468 * If the rename fails we shall return the src 469 * pathname and free the dst. Otherwise we need 470 * to free the src and return the dst pathanme. 471 */ 472 if (vn_rename(src->pn, dst->pn, UIO_SYSSPACE)) { 473 rfs4_ss_pnfree(dst); 474 return (src); 475 } 476 rfs4_ss_pnfree(src); 477 return (dst); 478 } 479 480 481 static rfs4_oldstate_t * 482 rfs4_ss_getstate(vnode_t *dvp, rfs4_ss_pn_t *ss_pn) 483 { 484 struct uio uio; 485 struct iovec iov[3]; 486 487 rfs4_oldstate_t *cl_ss = NULL; 488 vnode_t *vp; 489 vattr_t va; 490 uint_t id_len; 491 int err, kill_file, file_vers; 492 493 if (ss_pn == NULL) 494 return (NULL); 495 496 /* 497 * open the state file. 498 */ 499 if (vn_open(ss_pn->pn, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0) != 0) { 500 return (NULL); 501 } 502 503 if (vp->v_type != VREG) { 504 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 505 VN_RELE(vp); 506 return (NULL); 507 } 508 509 err = VOP_ACCESS(vp, VREAD, 0, CRED(), NULL); 510 if (err) { 511 /* 512 * We don't have read access? better get the heck out. 513 */ 514 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 515 VN_RELE(vp); 516 return (NULL); 517 } 518 519 (void) VOP_RWLOCK(vp, V_WRITELOCK_FALSE, NULL); 520 /* 521 * get the file size to do some basic validation 522 */ 523 va.va_mask = AT_SIZE; 524 err = VOP_GETATTR(vp, &va, 0, CRED(), NULL); 525 526 kill_file = (va.va_size == 0 || va.va_size < 527 (NFS4_VERIFIER_SIZE + sizeof (uint_t)+1)); 528 529 if (err || kill_file) { 530 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 531 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 532 VN_RELE(vp); 533 if (kill_file) { 534 (void) VOP_REMOVE(dvp, ss_pn->leaf, CRED(), NULL, 0); 535 } 536 return (NULL); 537 } 538 539 cl_ss = kmem_alloc(sizeof (rfs4_oldstate_t), KM_SLEEP); 540 541 /* 542 * build iovecs to read in the file_version, verifier and id_len 543 */ 544 iov[0].iov_base = (caddr_t)&file_vers; 545 iov[0].iov_len = sizeof (int); 546 iov[1].iov_base = (caddr_t)&cl_ss->cl_id4.verifier; 547 iov[1].iov_len = NFS4_VERIFIER_SIZE; 548 iov[2].iov_base = (caddr_t)&id_len; 549 iov[2].iov_len = sizeof (uint_t); 550 551 uio.uio_iov = iov; 552 uio.uio_iovcnt = 3; 553 uio.uio_segflg = UIO_SYSSPACE; 554 uio.uio_loffset = 0; 555 uio.uio_resid = sizeof (int) + NFS4_VERIFIER_SIZE + sizeof (uint_t); 556 557 if (err = VOP_READ(vp, &uio, FREAD, CRED(), NULL)) { 558 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 559 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 560 VN_RELE(vp); 561 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 562 return (NULL); 563 } 564 565 /* 566 * if the file_version doesn't match or if the 567 * id_len is zero or the combination of the verifier, 568 * id_len and id_val is bigger than the file we have 569 * a problem. If so ditch the file. 570 */ 571 kill_file = (file_vers != NFS4_SS_VERSION || id_len == 0 || 572 (id_len + NFS4_VERIFIER_SIZE + sizeof (uint_t)) > va.va_size); 573 574 if (err || kill_file) { 575 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 576 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 577 VN_RELE(vp); 578 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 579 if (kill_file) { 580 (void) VOP_REMOVE(dvp, ss_pn->leaf, CRED(), NULL, 0); 581 } 582 return (NULL); 583 } 584 585 /* 586 * now get the client id value 587 */ 588 cl_ss->cl_id4.id_val = kmem_alloc(id_len, KM_SLEEP); 589 iov[0].iov_base = cl_ss->cl_id4.id_val; 590 iov[0].iov_len = id_len; 591 592 uio.uio_iov = iov; 593 uio.uio_iovcnt = 1; 594 uio.uio_segflg = UIO_SYSSPACE; 595 uio.uio_resid = cl_ss->cl_id4.id_len = id_len; 596 597 if (err = VOP_READ(vp, &uio, FREAD, CRED(), NULL)) { 598 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 599 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 600 VN_RELE(vp); 601 kmem_free(cl_ss->cl_id4.id_val, id_len); 602 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 603 return (NULL); 604 } 605 606 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 607 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 608 VN_RELE(vp); 609 return (cl_ss); 610 } 611 612 #ifdef nextdp 613 #undef nextdp 614 #endif 615 #define nextdp(dp) ((struct dirent64 *)((char *)(dp) + (dp)->d_reclen)) 616 617 /* 618 * Add entries from statedir to supplied oldstate list. 619 * Optionally, move all entries from statedir -> destdir. 620 */ 621 void 622 rfs4_ss_oldstate(rfs4_oldstate_t *oldstate, char *statedir, char *destdir) 623 { 624 rfs4_ss_pn_t *ss_pn; 625 rfs4_oldstate_t *cl_ss = NULL; 626 char *dirt = NULL; 627 int err, dir_eof = 0, size = 0; 628 vnode_t *dvp; 629 struct iovec iov; 630 struct uio uio; 631 struct dirent64 *dep; 632 offset_t dirchunk_offset = 0; 633 634 /* 635 * open the state directory 636 */ 637 if (vn_open(statedir, UIO_SYSSPACE, FREAD, 0, &dvp, 0, 0)) 638 return; 639 640 if (dvp->v_type != VDIR || VOP_ACCESS(dvp, VREAD, 0, CRED(), NULL)) 641 goto out; 642 643 dirt = kmem_alloc(RFS4_SS_DIRSIZE, KM_SLEEP); 644 645 /* 646 * Get and process the directory entries 647 */ 648 while (!dir_eof) { 649 (void) VOP_RWLOCK(dvp, V_WRITELOCK_FALSE, NULL); 650 iov.iov_base = dirt; 651 iov.iov_len = RFS4_SS_DIRSIZE; 652 uio.uio_iov = &iov; 653 uio.uio_iovcnt = 1; 654 uio.uio_segflg = UIO_SYSSPACE; 655 uio.uio_loffset = dirchunk_offset; 656 uio.uio_resid = RFS4_SS_DIRSIZE; 657 658 err = VOP_READDIR(dvp, &uio, CRED(), &dir_eof, NULL, 0); 659 VOP_RWUNLOCK(dvp, V_WRITELOCK_FALSE, NULL); 660 if (err) 661 goto out; 662 663 size = RFS4_SS_DIRSIZE - uio.uio_resid; 664 665 /* 666 * Process all the directory entries in this 667 * readdir chunk 668 */ 669 for (dep = (struct dirent64 *)dirt; size > 0; 670 dep = nextdp(dep)) { 671 672 size -= dep->d_reclen; 673 dirchunk_offset = dep->d_off; 674 675 /* 676 * Skip '.' and '..' 677 */ 678 if (NFS_IS_DOTNAME(dep->d_name)) 679 continue; 680 681 ss_pn = rfs4_ss_pnalloc(statedir, dep->d_name); 682 if (ss_pn == NULL) 683 continue; 684 685 if (cl_ss = rfs4_ss_getstate(dvp, ss_pn)) { 686 if (destdir != NULL) { 687 rfs4_ss_pnfree(ss_pn); 688 cl_ss->ss_pn = rfs4_ss_movestate( 689 statedir, destdir, dep->d_name); 690 } else { 691 cl_ss->ss_pn = ss_pn; 692 } 693 insque(cl_ss, oldstate); 694 } else { 695 rfs4_ss_pnfree(ss_pn); 696 } 697 } 698 } 699 700 out: 701 (void) VOP_CLOSE(dvp, FREAD, 1, (offset_t)0, CRED(), NULL); 702 VN_RELE(dvp); 703 if (dirt) 704 kmem_free((caddr_t)dirt, RFS4_SS_DIRSIZE); 705 } 706 707 static void 708 rfs4_ss_init(void) 709 { 710 int npaths = 1; 711 char *default_dss_path = NFS4_DSS_VAR_DIR; 712 713 /* read the default stable storage state */ 714 rfs4_dss_readstate(npaths, &default_dss_path); 715 716 rfs4_ss_enabled = 1; 717 } 718 719 static void 720 rfs4_ss_fini(void) 721 { 722 rfs4_servinst_t *sip; 723 724 mutex_enter(&rfs4_servinst_lock); 725 sip = rfs4_cur_servinst; 726 while (sip != NULL) { 727 rfs4_dss_clear_oldstate(sip); 728 sip = sip->next; 729 } 730 mutex_exit(&rfs4_servinst_lock); 731 } 732 733 /* 734 * Remove all oldstate files referenced by this servinst. 735 */ 736 static void 737 rfs4_dss_clear_oldstate(rfs4_servinst_t *sip) 738 { 739 rfs4_oldstate_t *os_head, *osp; 740 741 rw_enter(&sip->oldstate_lock, RW_WRITER); 742 os_head = sip->oldstate; 743 744 if (os_head == NULL) { 745 rw_exit(&sip->oldstate_lock); 746 return; 747 } 748 749 /* skip dummy entry */ 750 osp = os_head->next; 751 while (osp != os_head) { 752 char *leaf = osp->ss_pn->leaf; 753 rfs4_oldstate_t *os_next; 754 755 rfs4_dss_remove_leaf(sip, NFS4_DSS_OLDSTATE_LEAF, leaf); 756 757 if (osp->cl_id4.id_val) 758 kmem_free(osp->cl_id4.id_val, osp->cl_id4.id_len); 759 rfs4_ss_pnfree(osp->ss_pn); 760 761 os_next = osp->next; 762 remque(osp); 763 kmem_free(osp, sizeof (rfs4_oldstate_t)); 764 osp = os_next; 765 } 766 767 rw_exit(&sip->oldstate_lock); 768 } 769 770 /* 771 * Form the state and oldstate paths, and read in the stable storage files. 772 */ 773 void 774 rfs4_dss_readstate(int npaths, char **paths) 775 { 776 int i; 777 char *state, *oldstate; 778 779 state = kmem_alloc(MAXPATHLEN, KM_SLEEP); 780 oldstate = kmem_alloc(MAXPATHLEN, KM_SLEEP); 781 782 for (i = 0; i < npaths; i++) { 783 char *path = paths[i]; 784 785 (void) sprintf(state, "%s/%s", path, NFS4_DSS_STATE_LEAF); 786 (void) sprintf(oldstate, "%s/%s", path, NFS4_DSS_OLDSTATE_LEAF); 787 788 /* 789 * Populate the current server instance's oldstate list. 790 * 791 * 1. Read stable storage data from old state directory, 792 * leaving its contents alone. 793 * 794 * 2. Read stable storage data from state directory, 795 * and move the latter's contents to old state 796 * directory. 797 */ 798 rfs4_ss_oldstate(rfs4_cur_servinst->oldstate, oldstate, NULL); 799 rfs4_ss_oldstate(rfs4_cur_servinst->oldstate, state, oldstate); 800 } 801 802 kmem_free(state, MAXPATHLEN); 803 kmem_free(oldstate, MAXPATHLEN); 804 } 805 806 807 /* 808 * Check if we are still in grace and if the client can be 809 * granted permission to perform reclaims. 810 */ 811 void 812 rfs4_ss_chkclid(rfs4_client_t *cp) 813 { 814 rfs4_servinst_t *sip; 815 816 /* 817 * It should be sufficient to check the oldstate data for just 818 * this client's instance. However, since our per-instance 819 * client grouping is solely temporal, HA-NFSv4 RG failover 820 * might result in clients of the same RG being partitioned into 821 * separate instances. 822 * 823 * Until the client grouping is improved, we must check the 824 * oldstate data for all instances with an active grace period. 825 * 826 * This also serves as the mechanism to remove stale oldstate data. 827 * The first time we check an instance after its grace period has 828 * expired, the oldstate data should be cleared. 829 * 830 * Start at the current instance, and walk the list backwards 831 * to the first. 832 */ 833 mutex_enter(&rfs4_servinst_lock); 834 for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) { 835 rfs4_ss_chkclid_sip(cp, sip); 836 837 /* if the above check found this client, we're done */ 838 if (cp->rc_can_reclaim) 839 break; 840 } 841 mutex_exit(&rfs4_servinst_lock); 842 } 843 844 static void 845 rfs4_ss_chkclid_sip(rfs4_client_t *cp, rfs4_servinst_t *sip) 846 { 847 rfs4_oldstate_t *osp, *os_head; 848 849 /* short circuit everything if this server instance has no oldstate */ 850 rw_enter(&sip->oldstate_lock, RW_READER); 851 os_head = sip->oldstate; 852 rw_exit(&sip->oldstate_lock); 853 if (os_head == NULL) 854 return; 855 856 /* 857 * If this server instance is no longer in a grace period then 858 * the client won't be able to reclaim. No further need for this 859 * instance's oldstate data, so it can be cleared. 860 */ 861 if (!rfs4_servinst_in_grace(sip)) 862 return; 863 864 /* this instance is still in grace; search for the clientid */ 865 866 rw_enter(&sip->oldstate_lock, RW_READER); 867 868 os_head = sip->oldstate; 869 /* skip dummy entry */ 870 osp = os_head->next; 871 while (osp != os_head) { 872 if (osp->cl_id4.id_len == cp->rc_nfs_client.id_len) { 873 if (bcmp(osp->cl_id4.id_val, cp->rc_nfs_client.id_val, 874 osp->cl_id4.id_len) == 0) { 875 cp->rc_can_reclaim = 1; 876 break; 877 } 878 } 879 osp = osp->next; 880 } 881 882 rw_exit(&sip->oldstate_lock); 883 } 884 885 /* 886 * Place client information into stable storage: 1/3. 887 * First, generate the leaf filename, from the client's IP address and 888 * the server-generated short-hand clientid. 889 */ 890 void 891 rfs4_ss_clid(rfs4_client_t *cp) 892 { 893 const char *kinet_ntop6(uchar_t *, char *, size_t); 894 char leaf[MAXNAMELEN], buf[INET6_ADDRSTRLEN]; 895 struct sockaddr *ca; 896 uchar_t *b; 897 898 if (rfs4_ss_enabled == 0) { 899 return; 900 } 901 902 buf[0] = 0; 903 904 ca = (struct sockaddr *)&cp->rc_addr; 905 906 /* 907 * Convert the caller's IP address to a dotted string 908 */ 909 if (ca->sa_family == AF_INET) { 910 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 911 (void) sprintf(buf, "%03d.%03d.%03d.%03d", b[0] & 0xFF, 912 b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 913 } else if (ca->sa_family == AF_INET6) { 914 struct sockaddr_in6 *sin6; 915 916 sin6 = (struct sockaddr_in6 *)ca; 917 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 918 buf, INET6_ADDRSTRLEN); 919 } 920 921 (void) snprintf(leaf, MAXNAMELEN, "%s-%llx", buf, 922 (longlong_t)cp->rc_clientid); 923 rfs4_ss_clid_write(cp, leaf); 924 } 925 926 /* 927 * Place client information into stable storage: 2/3. 928 * DSS: distributed stable storage: the file may need to be written to 929 * multiple directories. 930 */ 931 static void 932 rfs4_ss_clid_write(rfs4_client_t *cp, char *leaf) 933 { 934 rfs4_servinst_t *sip; 935 936 /* 937 * It should be sufficient to write the leaf file to (all) DSS paths 938 * associated with just this client's instance. However, since our 939 * per-instance client grouping is solely temporal, HA-NFSv4 RG 940 * failover might result in us losing DSS data. 941 * 942 * Until the client grouping is improved, we must write the DSS data 943 * to all instances' paths. Start at the current instance, and 944 * walk the list backwards to the first. 945 */ 946 mutex_enter(&rfs4_servinst_lock); 947 for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) { 948 int i, npaths = sip->dss_npaths; 949 950 /* write the leaf file to all DSS paths */ 951 for (i = 0; i < npaths; i++) { 952 rfs4_dss_path_t *dss_path = sip->dss_paths[i]; 953 954 /* HA-NFSv4 path might have been failed-away from us */ 955 if (dss_path == NULL) 956 continue; 957 958 rfs4_ss_clid_write_one(cp, dss_path->path, leaf); 959 } 960 } 961 mutex_exit(&rfs4_servinst_lock); 962 } 963 964 /* 965 * Place client information into stable storage: 3/3. 966 * Write the stable storage data to the requested file. 967 */ 968 static void 969 rfs4_ss_clid_write_one(rfs4_client_t *cp, char *dss_path, char *leaf) 970 { 971 int ioflag; 972 int file_vers = NFS4_SS_VERSION; 973 size_t dirlen; 974 struct uio uio; 975 struct iovec iov[4]; 976 char *dir; 977 rfs4_ss_pn_t *ss_pn; 978 vnode_t *vp; 979 nfs_client_id4 *cl_id4 = &(cp->rc_nfs_client); 980 981 /* allow 2 extra bytes for '/' & NUL */ 982 dirlen = strlen(dss_path) + strlen(NFS4_DSS_STATE_LEAF) + 2; 983 dir = kmem_alloc(dirlen, KM_SLEEP); 984 (void) sprintf(dir, "%s/%s", dss_path, NFS4_DSS_STATE_LEAF); 985 986 ss_pn = rfs4_ss_pnalloc(dir, leaf); 987 /* rfs4_ss_pnalloc takes its own copy */ 988 kmem_free(dir, dirlen); 989 if (ss_pn == NULL) 990 return; 991 992 if (vn_open(ss_pn->pn, UIO_SYSSPACE, FCREAT|FWRITE, 0600, &vp, 993 CRCREAT, 0)) { 994 rfs4_ss_pnfree(ss_pn); 995 return; 996 } 997 998 /* 999 * We need to record leaf - i.e. the filename - so that we know 1000 * what to remove, in the future. However, the dir part of cp->ss_pn 1001 * should never be referenced directly, since it's potentially only 1002 * one of several paths with this leaf in it. 1003 */ 1004 if (cp->rc_ss_pn != NULL) { 1005 if (strcmp(cp->rc_ss_pn->leaf, leaf) == 0) { 1006 /* we've already recorded *this* leaf */ 1007 rfs4_ss_pnfree(ss_pn); 1008 } else { 1009 /* replace with this leaf */ 1010 rfs4_ss_pnfree(cp->rc_ss_pn); 1011 cp->rc_ss_pn = ss_pn; 1012 } 1013 } else { 1014 cp->rc_ss_pn = ss_pn; 1015 } 1016 1017 /* 1018 * Build a scatter list that points to the nfs_client_id4 1019 */ 1020 iov[0].iov_base = (caddr_t)&file_vers; 1021 iov[0].iov_len = sizeof (int); 1022 iov[1].iov_base = (caddr_t)&(cl_id4->verifier); 1023 iov[1].iov_len = NFS4_VERIFIER_SIZE; 1024 iov[2].iov_base = (caddr_t)&(cl_id4->id_len); 1025 iov[2].iov_len = sizeof (uint_t); 1026 iov[3].iov_base = (caddr_t)cl_id4->id_val; 1027 iov[3].iov_len = cl_id4->id_len; 1028 1029 uio.uio_iov = iov; 1030 uio.uio_iovcnt = 4; 1031 uio.uio_loffset = 0; 1032 uio.uio_segflg = UIO_SYSSPACE; 1033 uio.uio_llimit = (rlim64_t)MAXOFFSET_T; 1034 uio.uio_resid = cl_id4->id_len + sizeof (int) + 1035 NFS4_VERIFIER_SIZE + sizeof (uint_t); 1036 1037 ioflag = uio.uio_fmode = (FWRITE|FSYNC); 1038 uio.uio_extflg = UIO_COPY_DEFAULT; 1039 1040 (void) VOP_RWLOCK(vp, V_WRITELOCK_TRUE, NULL); 1041 /* write the full client id to the file. */ 1042 (void) VOP_WRITE(vp, &uio, ioflag, CRED(), NULL); 1043 VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL); 1044 1045 (void) VOP_CLOSE(vp, FWRITE, 1, (offset_t)0, CRED(), NULL); 1046 VN_RELE(vp); 1047 } 1048 1049 /* 1050 * DSS: distributed stable storage. 1051 * Unpack the list of paths passed by nfsd. 1052 * Use nvlist_alloc(9F) to manage the data. 1053 * The caller is responsible for allocating and freeing the buffer. 1054 */ 1055 int 1056 rfs4_dss_setpaths(char *buf, size_t buflen) 1057 { 1058 int error; 1059 1060 /* 1061 * If this is a "warm start", i.e. we previously had DSS paths, 1062 * preserve the old paths. 1063 */ 1064 if (rfs4_dss_paths != NULL) { 1065 /* 1066 * Before we lose the ptr, destroy the nvlist and pathnames 1067 * array from the warm start before this one. 1068 */ 1069 if (rfs4_dss_oldpaths) 1070 nvlist_free(rfs4_dss_oldpaths); 1071 rfs4_dss_oldpaths = rfs4_dss_paths; 1072 } 1073 1074 /* unpack the buffer into a searchable nvlist */ 1075 error = nvlist_unpack(buf, buflen, &rfs4_dss_paths, KM_SLEEP); 1076 if (error) 1077 return (error); 1078 1079 /* 1080 * Search the nvlist for the pathnames nvpair (which is the only nvpair 1081 * in the list, and record its location. 1082 */ 1083 error = nvlist_lookup_string_array(rfs4_dss_paths, NFS4_DSS_NVPAIR_NAME, 1084 &rfs4_dss_newpaths, &rfs4_dss_numnewpaths); 1085 return (error); 1086 } 1087 1088 /* 1089 * Ultimately the nfssys() call NFS4_CLR_STATE endsup here 1090 * to find and mark the client for forced expire. 1091 */ 1092 static void 1093 rfs4_client_scrub(rfs4_entry_t ent, void *arg) 1094 { 1095 rfs4_client_t *cp = (rfs4_client_t *)ent; 1096 struct nfs4clrst_args *clr = arg; 1097 struct sockaddr_in6 *ent_sin6; 1098 struct in6_addr clr_in6; 1099 struct sockaddr_in *ent_sin; 1100 struct in_addr clr_in; 1101 1102 if (clr->addr_type != cp->rc_addr.ss_family) { 1103 return; 1104 } 1105 1106 switch (clr->addr_type) { 1107 1108 case AF_INET6: 1109 /* copyin the address from user space */ 1110 if (copyin(clr->ap, &clr_in6, sizeof (clr_in6))) { 1111 break; 1112 } 1113 1114 ent_sin6 = (struct sockaddr_in6 *)&cp->rc_addr; 1115 1116 /* 1117 * now compare, and if equivalent mark entry 1118 * for forced expiration 1119 */ 1120 if (IN6_ARE_ADDR_EQUAL(&ent_sin6->sin6_addr, &clr_in6)) { 1121 cp->rc_forced_expire = 1; 1122 } 1123 break; 1124 1125 case AF_INET: 1126 /* copyin the address from user space */ 1127 if (copyin(clr->ap, &clr_in, sizeof (clr_in))) { 1128 break; 1129 } 1130 1131 ent_sin = (struct sockaddr_in *)&cp->rc_addr; 1132 1133 /* 1134 * now compare, and if equivalent mark entry 1135 * for forced expiration 1136 */ 1137 if (ent_sin->sin_addr.s_addr == clr_in.s_addr) { 1138 cp->rc_forced_expire = 1; 1139 } 1140 break; 1141 1142 default: 1143 /* force this assert to fail */ 1144 ASSERT(clr->addr_type != clr->addr_type); 1145 } 1146 } 1147 1148 /* 1149 * This is called from nfssys() in order to clear server state 1150 * for the specified client IP Address. 1151 */ 1152 void 1153 rfs4_clear_client_state(struct nfs4clrst_args *clr) 1154 { 1155 (void) rfs4_dbe_walk(rfs4_client_tab, rfs4_client_scrub, clr); 1156 } 1157 1158 /* 1159 * Used to initialize the NFSv4 server's state or database. All of 1160 * the tables are created and timers are set. Only called when NFSv4 1161 * service is provided. 1162 */ 1163 void 1164 rfs4_state_init() 1165 { 1166 int start_grace; 1167 extern boolean_t rfs4_cpr_callb(void *, int); 1168 char *dss_path = NFS4_DSS_VAR_DIR; 1169 time_t start_time; 1170 1171 mutex_enter(&rfs4_state_lock); 1172 1173 /* 1174 * If the server state database has already been initialized, 1175 * skip it 1176 */ 1177 if (rfs4_server_state != NULL) { 1178 mutex_exit(&rfs4_state_lock); 1179 return; 1180 } 1181 1182 rw_init(&rfs4_findclient_lock, NULL, RW_DEFAULT, NULL); 1183 1184 /* 1185 * Set the boot time. If the server 1186 * has been restarted quickly and has had the opportunity to 1187 * service clients, then the start_time needs to be bumped 1188 * regardless. A small window but it exists... 1189 */ 1190 start_time = gethrestime_sec(); 1191 if (rfs4_start_time < start_time) 1192 rfs4_start_time = start_time; 1193 else 1194 rfs4_start_time++; 1195 1196 /* DSS: distributed stable storage: initialise served paths list */ 1197 rfs4_dss_pathlist = NULL; 1198 1199 /* 1200 * Create the first server instance, or a new one if the server has 1201 * been restarted; see above comments on rfs4_start_time. Don't 1202 * start its grace period; that will be done later, to maximise the 1203 * clients' recovery window. 1204 */ 1205 start_grace = 0; 1206 rfs4_servinst_create(start_grace, 1, &dss_path); 1207 1208 /* reset the "first NFSv4 request" status */ 1209 rfs4_seen_first_compound = 0; 1210 1211 /* 1212 * Add a CPR callback so that we can update client 1213 * access times to extend the lease after a suspend 1214 * and resume (using the same class as rpcmod/connmgr) 1215 */ 1216 cpr_id = callb_add(rfs4_cpr_callb, 0, CB_CL_CPR_RPC, "rfs4"); 1217 1218 /* set the various cache timers for table creation */ 1219 if (rfs4_client_cache_time == 0) 1220 rfs4_client_cache_time = CLIENT_CACHE_TIME; 1221 if (rfs4_openowner_cache_time == 0) 1222 rfs4_openowner_cache_time = OPENOWNER_CACHE_TIME; 1223 if (rfs4_state_cache_time == 0) 1224 rfs4_state_cache_time = STATE_CACHE_TIME; 1225 if (rfs4_lo_state_cache_time == 0) 1226 rfs4_lo_state_cache_time = LO_STATE_CACHE_TIME; 1227 if (rfs4_lockowner_cache_time == 0) 1228 rfs4_lockowner_cache_time = LOCKOWNER_CACHE_TIME; 1229 if (rfs4_file_cache_time == 0) 1230 rfs4_file_cache_time = FILE_CACHE_TIME; 1231 if (rfs4_deleg_state_cache_time == 0) 1232 rfs4_deleg_state_cache_time = DELEG_STATE_CACHE_TIME; 1233 1234 /* Create the overall database to hold all server state */ 1235 rfs4_server_state = rfs4_database_create(rfs4_database_debug); 1236 1237 /* Now create the individual tables */ 1238 rfs4_client_cache_time *= rfs4_lease_time; 1239 rfs4_client_tab = rfs4_table_create(rfs4_server_state, 1240 "Client", 1241 rfs4_client_cache_time, 1242 2, 1243 rfs4_client_create, 1244 rfs4_client_destroy, 1245 rfs4_client_expiry, 1246 sizeof (rfs4_client_t), 1247 TABSIZE, 1248 MAXTABSZ/8, 100); 1249 rfs4_nfsclnt_idx = rfs4_index_create(rfs4_client_tab, 1250 "nfs_client_id4", nfsclnt_hash, 1251 nfsclnt_compare, nfsclnt_mkkey, 1252 TRUE); 1253 rfs4_clientid_idx = rfs4_index_create(rfs4_client_tab, 1254 "client_id", clientid_hash, 1255 clientid_compare, clientid_mkkey, 1256 FALSE); 1257 1258 rfs4_clntip_cache_time = 86400 * 365; /* about a year */ 1259 rfs4_clntip_tab = rfs4_table_create(rfs4_server_state, 1260 "ClntIP", 1261 rfs4_clntip_cache_time, 1262 1, 1263 rfs4_clntip_create, 1264 rfs4_clntip_destroy, 1265 rfs4_clntip_expiry, 1266 sizeof (rfs4_clntip_t), 1267 TABSIZE, 1268 MAXTABSZ, 100); 1269 rfs4_clntip_idx = rfs4_index_create(rfs4_clntip_tab, 1270 "client_ip", clntip_hash, 1271 clntip_compare, clntip_mkkey, 1272 TRUE); 1273 1274 rfs4_openowner_cache_time *= rfs4_lease_time; 1275 rfs4_openowner_tab = rfs4_table_create(rfs4_server_state, 1276 "OpenOwner", 1277 rfs4_openowner_cache_time, 1278 1, 1279 rfs4_openowner_create, 1280 rfs4_openowner_destroy, 1281 rfs4_openowner_expiry, 1282 sizeof (rfs4_openowner_t), 1283 TABSIZE, 1284 MAXTABSZ, 100); 1285 rfs4_openowner_idx = rfs4_index_create(rfs4_openowner_tab, 1286 "open_owner4", openowner_hash, 1287 openowner_compare, 1288 openowner_mkkey, TRUE); 1289 1290 rfs4_state_cache_time *= rfs4_lease_time; 1291 rfs4_state_tab = rfs4_table_create(rfs4_server_state, 1292 "OpenStateID", 1293 rfs4_state_cache_time, 1294 3, 1295 rfs4_state_create, 1296 rfs4_state_destroy, 1297 rfs4_state_expiry, 1298 sizeof (rfs4_state_t), 1299 TABSIZE, 1300 MAXTABSZ, 100); 1301 1302 rfs4_state_owner_file_idx = rfs4_index_create(rfs4_state_tab, 1303 "Openowner-File", 1304 state_owner_file_hash, 1305 state_owner_file_compare, 1306 state_owner_file_mkkey, TRUE); 1307 1308 rfs4_state_idx = rfs4_index_create(rfs4_state_tab, 1309 "State-id", state_hash, 1310 state_compare, state_mkkey, FALSE); 1311 1312 rfs4_state_file_idx = rfs4_index_create(rfs4_state_tab, 1313 "File", state_file_hash, 1314 state_file_compare, state_file_mkkey, 1315 FALSE); 1316 1317 rfs4_lo_state_cache_time *= rfs4_lease_time; 1318 rfs4_lo_state_tab = rfs4_table_create(rfs4_server_state, 1319 "LockStateID", 1320 rfs4_lo_state_cache_time, 1321 2, 1322 rfs4_lo_state_create, 1323 rfs4_lo_state_destroy, 1324 rfs4_lo_state_expiry, 1325 sizeof (rfs4_lo_state_t), 1326 TABSIZE, 1327 MAXTABSZ, 100); 1328 1329 rfs4_lo_state_owner_idx = rfs4_index_create(rfs4_lo_state_tab, 1330 "lockownerxstate", 1331 lo_state_lo_hash, 1332 lo_state_lo_compare, 1333 lo_state_lo_mkkey, TRUE); 1334 1335 rfs4_lo_state_idx = rfs4_index_create(rfs4_lo_state_tab, 1336 "State-id", 1337 lo_state_hash, lo_state_compare, 1338 lo_state_mkkey, FALSE); 1339 1340 rfs4_lockowner_cache_time *= rfs4_lease_time; 1341 1342 rfs4_lockowner_tab = rfs4_table_create(rfs4_server_state, 1343 "Lockowner", 1344 rfs4_lockowner_cache_time, 1345 2, 1346 rfs4_lockowner_create, 1347 rfs4_lockowner_destroy, 1348 rfs4_lockowner_expiry, 1349 sizeof (rfs4_lockowner_t), 1350 TABSIZE, 1351 MAXTABSZ, 100); 1352 1353 rfs4_lockowner_idx = rfs4_index_create(rfs4_lockowner_tab, 1354 "lock_owner4", lockowner_hash, 1355 lockowner_compare, 1356 lockowner_mkkey, TRUE); 1357 1358 rfs4_lockowner_pid_idx = rfs4_index_create(rfs4_lockowner_tab, 1359 "pid", pid_hash, 1360 pid_compare, pid_mkkey, 1361 FALSE); 1362 1363 rfs4_file_cache_time *= rfs4_lease_time; 1364 rfs4_file_tab = rfs4_table_create(rfs4_server_state, 1365 "File", 1366 rfs4_file_cache_time, 1367 1, 1368 rfs4_file_create, 1369 rfs4_file_destroy, 1370 NULL, 1371 sizeof (rfs4_file_t), 1372 TABSIZE, 1373 MAXTABSZ, -1); 1374 1375 rfs4_file_idx = rfs4_index_create(rfs4_file_tab, 1376 "Filehandle", file_hash, 1377 file_compare, file_mkkey, TRUE); 1378 1379 rfs4_deleg_state_cache_time *= rfs4_lease_time; 1380 rfs4_deleg_state_tab = rfs4_table_create(rfs4_server_state, 1381 "DelegStateID", 1382 rfs4_deleg_state_cache_time, 1383 2, 1384 rfs4_deleg_state_create, 1385 rfs4_deleg_state_destroy, 1386 rfs4_deleg_state_expiry, 1387 sizeof (rfs4_deleg_state_t), 1388 TABSIZE, 1389 MAXTABSZ, 100); 1390 rfs4_deleg_idx = rfs4_index_create(rfs4_deleg_state_tab, 1391 "DelegByFileClient", 1392 deleg_hash, 1393 deleg_compare, 1394 deleg_mkkey, TRUE); 1395 1396 rfs4_deleg_state_idx = rfs4_index_create(rfs4_deleg_state_tab, 1397 "DelegState", 1398 deleg_state_hash, 1399 deleg_state_compare, 1400 deleg_state_mkkey, FALSE); 1401 1402 /* 1403 * Init the stable storage. 1404 */ 1405 rfs4_ss_init(); 1406 1407 rfs4_client_clrst = rfs4_clear_client_state; 1408 1409 mutex_exit(&rfs4_state_lock); 1410 } 1411 1412 1413 /* 1414 * Used at server shutdown to cleanup all of the NFSv4 server's structures 1415 * and other state. 1416 */ 1417 void 1418 rfs4_state_fini() 1419 { 1420 rfs4_database_t *dbp; 1421 1422 mutex_enter(&rfs4_state_lock); 1423 1424 if (rfs4_server_state == NULL) { 1425 mutex_exit(&rfs4_state_lock); 1426 return; 1427 } 1428 1429 rfs4_client_clrst = NULL; 1430 1431 rfs4_set_deleg_policy(SRV_NEVER_DELEGATE); 1432 dbp = rfs4_server_state; 1433 rfs4_server_state = NULL; 1434 1435 /* 1436 * Cleanup the CPR callback. 1437 */ 1438 if (cpr_id) 1439 (void) callb_delete(cpr_id); 1440 1441 rw_destroy(&rfs4_findclient_lock); 1442 1443 /* First stop all of the reaper threads in the database */ 1444 rfs4_database_shutdown(dbp); 1445 /* clean up any dangling stable storage structures */ 1446 rfs4_ss_fini(); 1447 /* Now actually destroy/release the database and its tables */ 1448 rfs4_database_destroy(dbp); 1449 1450 /* Reset the cache timers for next time */ 1451 rfs4_client_cache_time = 0; 1452 rfs4_openowner_cache_time = 0; 1453 rfs4_state_cache_time = 0; 1454 rfs4_lo_state_cache_time = 0; 1455 rfs4_lockowner_cache_time = 0; 1456 rfs4_file_cache_time = 0; 1457 rfs4_deleg_state_cache_time = 0; 1458 1459 mutex_exit(&rfs4_state_lock); 1460 1461 /* destroy server instances and current instance ptr */ 1462 rfs4_servinst_destroy_all(); 1463 1464 /* reset the "first NFSv4 request" status */ 1465 rfs4_seen_first_compound = 0; 1466 1467 /* DSS: distributed stable storage */ 1468 if (rfs4_dss_oldpaths) 1469 nvlist_free(rfs4_dss_oldpaths); 1470 if (rfs4_dss_paths) 1471 nvlist_free(rfs4_dss_paths); 1472 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 1473 } 1474 1475 typedef union { 1476 struct { 1477 uint32_t start_time; 1478 uint32_t c_id; 1479 } impl_id; 1480 clientid4 id4; 1481 } cid; 1482 1483 static int foreign_stateid(stateid_t *id); 1484 static int foreign_clientid(cid *cidp); 1485 static void embed_nodeid(cid *cidp); 1486 1487 typedef union { 1488 struct { 1489 uint32_t c_id; 1490 uint32_t gen_num; 1491 } cv_impl; 1492 verifier4 confirm_verf; 1493 } scid_confirm_verf; 1494 1495 static uint32_t 1496 clientid_hash(void *key) 1497 { 1498 cid *idp = key; 1499 1500 return (idp->impl_id.c_id); 1501 } 1502 1503 static bool_t 1504 clientid_compare(rfs4_entry_t entry, void *key) 1505 { 1506 rfs4_client_t *cp = (rfs4_client_t *)entry; 1507 clientid4 *idp = key; 1508 1509 return (*idp == cp->rc_clientid); 1510 } 1511 1512 static void * 1513 clientid_mkkey(rfs4_entry_t entry) 1514 { 1515 rfs4_client_t *cp = (rfs4_client_t *)entry; 1516 1517 return (&cp->rc_clientid); 1518 } 1519 1520 static uint32_t 1521 nfsclnt_hash(void *key) 1522 { 1523 nfs_client_id4 *client = key; 1524 int i; 1525 uint32_t hash = 0; 1526 1527 for (i = 0; i < client->id_len; i++) { 1528 hash <<= 1; 1529 hash += (uint_t)client->id_val[i]; 1530 } 1531 return (hash); 1532 } 1533 1534 1535 static bool_t 1536 nfsclnt_compare(rfs4_entry_t entry, void *key) 1537 { 1538 rfs4_client_t *cp = (rfs4_client_t *)entry; 1539 nfs_client_id4 *nfs_client = key; 1540 1541 if (cp->rc_nfs_client.id_len != nfs_client->id_len) 1542 return (FALSE); 1543 1544 return (bcmp(cp->rc_nfs_client.id_val, nfs_client->id_val, 1545 nfs_client->id_len) == 0); 1546 } 1547 1548 static void * 1549 nfsclnt_mkkey(rfs4_entry_t entry) 1550 { 1551 rfs4_client_t *cp = (rfs4_client_t *)entry; 1552 1553 return (&cp->rc_nfs_client); 1554 } 1555 1556 static bool_t 1557 rfs4_client_expiry(rfs4_entry_t u_entry) 1558 { 1559 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1560 bool_t cp_expired; 1561 1562 if (rfs4_dbe_is_invalid(cp->rc_dbe)) { 1563 cp->rc_ss_remove = 1; 1564 return (TRUE); 1565 } 1566 /* 1567 * If the sysadmin has used clear_locks for this 1568 * entry then forced_expire will be set and we 1569 * want this entry to be reaped. Or the entry 1570 * has exceeded its lease period. 1571 */ 1572 cp_expired = (cp->rc_forced_expire || 1573 (gethrestime_sec() - cp->rc_last_access 1574 > rfs4_lease_time)); 1575 1576 if (!cp->rc_ss_remove && cp_expired) 1577 cp->rc_ss_remove = 1; 1578 return (cp_expired); 1579 } 1580 1581 /* 1582 * Remove the leaf file from all distributed stable storage paths. 1583 */ 1584 static void 1585 rfs4_dss_remove_cpleaf(rfs4_client_t *cp) 1586 { 1587 rfs4_servinst_t *sip; 1588 char *leaf = cp->rc_ss_pn->leaf; 1589 1590 /* 1591 * since the state files are written to all DSS 1592 * paths we must remove this leaf file instance 1593 * from all server instances. 1594 */ 1595 1596 mutex_enter(&rfs4_servinst_lock); 1597 for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) { 1598 /* remove the leaf file associated with this server instance */ 1599 rfs4_dss_remove_leaf(sip, NFS4_DSS_STATE_LEAF, leaf); 1600 } 1601 mutex_exit(&rfs4_servinst_lock); 1602 } 1603 1604 static void 1605 rfs4_dss_remove_leaf(rfs4_servinst_t *sip, char *dir_leaf, char *leaf) 1606 { 1607 int i, npaths = sip->dss_npaths; 1608 1609 for (i = 0; i < npaths; i++) { 1610 rfs4_dss_path_t *dss_path = sip->dss_paths[i]; 1611 char *path, *dir; 1612 size_t pathlen; 1613 1614 /* the HA-NFSv4 path might have been failed-over away from us */ 1615 if (dss_path == NULL) 1616 continue; 1617 1618 dir = dss_path->path; 1619 1620 /* allow 3 extra bytes for two '/' & a NUL */ 1621 pathlen = strlen(dir) + strlen(dir_leaf) + strlen(leaf) + 3; 1622 path = kmem_alloc(pathlen, KM_SLEEP); 1623 (void) sprintf(path, "%s/%s/%s", dir, dir_leaf, leaf); 1624 1625 (void) vn_remove(path, UIO_SYSSPACE, RMFILE); 1626 1627 kmem_free(path, pathlen); 1628 } 1629 } 1630 1631 static void 1632 rfs4_client_destroy(rfs4_entry_t u_entry) 1633 { 1634 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1635 1636 mutex_destroy(cp->rc_cbinfo.cb_lock); 1637 cv_destroy(cp->rc_cbinfo.cb_cv); 1638 cv_destroy(cp->rc_cbinfo.cb_cv_nullcaller); 1639 list_destroy(&cp->rc_openownerlist); 1640 1641 /* free callback info */ 1642 rfs4_cbinfo_free(&cp->rc_cbinfo); 1643 1644 if (cp->rc_cp_confirmed) 1645 rfs4_client_rele(cp->rc_cp_confirmed); 1646 1647 if (cp->rc_ss_pn) { 1648 /* check if the stable storage files need to be removed */ 1649 if (cp->rc_ss_remove) 1650 rfs4_dss_remove_cpleaf(cp); 1651 rfs4_ss_pnfree(cp->rc_ss_pn); 1652 } 1653 1654 /* Free the client supplied client id */ 1655 kmem_free(cp->rc_nfs_client.id_val, cp->rc_nfs_client.id_len); 1656 1657 if (cp->rc_sysidt != LM_NOSYSID) 1658 lm_free_sysidt(cp->rc_sysidt); 1659 } 1660 1661 static bool_t 1662 rfs4_client_create(rfs4_entry_t u_entry, void *arg) 1663 { 1664 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1665 nfs_client_id4 *client = (nfs_client_id4 *)arg; 1666 struct sockaddr *ca; 1667 cid *cidp; 1668 scid_confirm_verf *scvp; 1669 1670 /* Get a clientid to give to the client */ 1671 cidp = (cid *)&cp->rc_clientid; 1672 cidp->impl_id.start_time = rfs4_start_time; 1673 cidp->impl_id.c_id = (uint32_t)rfs4_dbe_getid(cp->rc_dbe); 1674 1675 /* If we are booted as a cluster node, embed our nodeid */ 1676 if (cluster_bootflags & CLUSTER_BOOTED) 1677 embed_nodeid(cidp); 1678 1679 /* Allocate and copy client's client id value */ 1680 cp->rc_nfs_client.id_val = kmem_alloc(client->id_len, KM_SLEEP); 1681 cp->rc_nfs_client.id_len = client->id_len; 1682 bcopy(client->id_val, cp->rc_nfs_client.id_val, client->id_len); 1683 cp->rc_nfs_client.verifier = client->verifier; 1684 1685 /* Copy client's IP address */ 1686 ca = client->cl_addr; 1687 if (ca->sa_family == AF_INET) 1688 bcopy(ca, &cp->rc_addr, sizeof (struct sockaddr_in)); 1689 else if (ca->sa_family == AF_INET6) 1690 bcopy(ca, &cp->rc_addr, sizeof (struct sockaddr_in6)); 1691 cp->rc_nfs_client.cl_addr = (struct sockaddr *)&cp->rc_addr; 1692 1693 /* Init the value for the SETCLIENTID_CONFIRM verifier */ 1694 scvp = (scid_confirm_verf *)&cp->rc_confirm_verf; 1695 scvp->cv_impl.c_id = cidp->impl_id.c_id; 1696 scvp->cv_impl.gen_num = 0; 1697 1698 /* An F_UNLKSYS has been done for this client */ 1699 cp->rc_unlksys_completed = FALSE; 1700 1701 /* We need the client to ack us */ 1702 cp->rc_need_confirm = TRUE; 1703 cp->rc_cp_confirmed = NULL; 1704 1705 /* TRUE all the time until the callback path actually fails */ 1706 cp->rc_cbinfo.cb_notified_of_cb_path_down = TRUE; 1707 1708 /* Initialize the access time to now */ 1709 cp->rc_last_access = gethrestime_sec(); 1710 1711 cp->rc_cr_set = NULL; 1712 1713 cp->rc_sysidt = LM_NOSYSID; 1714 1715 list_create(&cp->rc_openownerlist, sizeof (rfs4_openowner_t), 1716 offsetof(rfs4_openowner_t, ro_node)); 1717 1718 /* set up the callback control structure */ 1719 cp->rc_cbinfo.cb_state = CB_UNINIT; 1720 mutex_init(cp->rc_cbinfo.cb_lock, NULL, MUTEX_DEFAULT, NULL); 1721 cv_init(cp->rc_cbinfo.cb_cv, NULL, CV_DEFAULT, NULL); 1722 cv_init(cp->rc_cbinfo.cb_cv_nullcaller, NULL, CV_DEFAULT, NULL); 1723 1724 /* 1725 * Associate the client_t with the current server instance. 1726 * The hold is solely to satisfy the calling requirement of 1727 * rfs4_servinst_assign(). In this case it's not strictly necessary. 1728 */ 1729 rfs4_dbe_hold(cp->rc_dbe); 1730 rfs4_servinst_assign(cp, rfs4_cur_servinst); 1731 rfs4_dbe_rele(cp->rc_dbe); 1732 1733 return (TRUE); 1734 } 1735 1736 /* 1737 * Caller wants to generate/update the setclientid_confirm verifier 1738 * associated with a client. This is done during the SETCLIENTID 1739 * processing. 1740 */ 1741 void 1742 rfs4_client_scv_next(rfs4_client_t *cp) 1743 { 1744 scid_confirm_verf *scvp; 1745 1746 /* Init the value for the SETCLIENTID_CONFIRM verifier */ 1747 scvp = (scid_confirm_verf *)&cp->rc_confirm_verf; 1748 scvp->cv_impl.gen_num++; 1749 } 1750 1751 void 1752 rfs4_client_rele(rfs4_client_t *cp) 1753 { 1754 rfs4_dbe_rele(cp->rc_dbe); 1755 } 1756 1757 rfs4_client_t * 1758 rfs4_findclient(nfs_client_id4 *client, bool_t *create, rfs4_client_t *oldcp) 1759 { 1760 rfs4_client_t *cp; 1761 1762 1763 if (oldcp) { 1764 rw_enter(&rfs4_findclient_lock, RW_WRITER); 1765 rfs4_dbe_hide(oldcp->rc_dbe); 1766 } else { 1767 rw_enter(&rfs4_findclient_lock, RW_READER); 1768 } 1769 1770 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_nfsclnt_idx, client, 1771 create, (void *)client, RFS4_DBS_VALID); 1772 1773 if (oldcp) 1774 rfs4_dbe_unhide(oldcp->rc_dbe); 1775 1776 rw_exit(&rfs4_findclient_lock); 1777 1778 return (cp); 1779 } 1780 1781 rfs4_client_t * 1782 rfs4_findclient_by_id(clientid4 clientid, bool_t find_unconfirmed) 1783 { 1784 rfs4_client_t *cp; 1785 bool_t create = FALSE; 1786 cid *cidp = (cid *)&clientid; 1787 1788 /* If we're a cluster and the nodeid isn't right, short-circuit */ 1789 if (cluster_bootflags & CLUSTER_BOOTED && foreign_clientid(cidp)) 1790 return (NULL); 1791 1792 rw_enter(&rfs4_findclient_lock, RW_READER); 1793 1794 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, &clientid, 1795 &create, NULL, RFS4_DBS_VALID); 1796 1797 rw_exit(&rfs4_findclient_lock); 1798 1799 if (cp && cp->rc_need_confirm && find_unconfirmed == FALSE) { 1800 rfs4_client_rele(cp); 1801 return (NULL); 1802 } else { 1803 return (cp); 1804 } 1805 } 1806 1807 static uint32_t 1808 clntip_hash(void *key) 1809 { 1810 struct sockaddr *addr = key; 1811 int i, len = 0; 1812 uint32_t hash = 0; 1813 char *ptr; 1814 1815 if (addr->sa_family == AF_INET) { 1816 struct sockaddr_in *a = (struct sockaddr_in *)addr; 1817 len = sizeof (struct in_addr); 1818 ptr = (char *)&a->sin_addr; 1819 } else if (addr->sa_family == AF_INET6) { 1820 struct sockaddr_in6 *a = (struct sockaddr_in6 *)addr; 1821 len = sizeof (struct in6_addr); 1822 ptr = (char *)&a->sin6_addr; 1823 } else 1824 return (0); 1825 1826 for (i = 0; i < len; i++) { 1827 hash <<= 1; 1828 hash += (uint_t)ptr[i]; 1829 } 1830 return (hash); 1831 } 1832 1833 static bool_t 1834 clntip_compare(rfs4_entry_t entry, void *key) 1835 { 1836 rfs4_clntip_t *cp = (rfs4_clntip_t *)entry; 1837 struct sockaddr *addr = key; 1838 int len = 0; 1839 char *p1, *p2; 1840 1841 if (addr->sa_family == AF_INET) { 1842 struct sockaddr_in *a1 = (struct sockaddr_in *)&cp->ri_addr; 1843 struct sockaddr_in *a2 = (struct sockaddr_in *)addr; 1844 len = sizeof (struct in_addr); 1845 p1 = (char *)&a1->sin_addr; 1846 p2 = (char *)&a2->sin_addr; 1847 } else if (addr->sa_family == AF_INET6) { 1848 struct sockaddr_in6 *a1 = (struct sockaddr_in6 *)&cp->ri_addr; 1849 struct sockaddr_in6 *a2 = (struct sockaddr_in6 *)addr; 1850 len = sizeof (struct in6_addr); 1851 p1 = (char *)&a1->sin6_addr; 1852 p2 = (char *)&a2->sin6_addr; 1853 } else 1854 return (0); 1855 1856 return (bcmp(p1, p2, len) == 0); 1857 } 1858 1859 static void * 1860 clntip_mkkey(rfs4_entry_t entry) 1861 { 1862 rfs4_clntip_t *cp = (rfs4_clntip_t *)entry; 1863 1864 return (&cp->ri_addr); 1865 } 1866 1867 static bool_t 1868 rfs4_clntip_expiry(rfs4_entry_t u_entry) 1869 { 1870 rfs4_clntip_t *cp = (rfs4_clntip_t *)u_entry; 1871 1872 if (rfs4_dbe_is_invalid(cp->ri_dbe)) 1873 return (TRUE); 1874 return (FALSE); 1875 } 1876 1877 /* ARGSUSED */ 1878 static void 1879 rfs4_clntip_destroy(rfs4_entry_t u_entry) 1880 { 1881 } 1882 1883 static bool_t 1884 rfs4_clntip_create(rfs4_entry_t u_entry, void *arg) 1885 { 1886 rfs4_clntip_t *cp = (rfs4_clntip_t *)u_entry; 1887 struct sockaddr *ca = (struct sockaddr *)arg; 1888 1889 /* Copy client's IP address */ 1890 if (ca->sa_family == AF_INET) 1891 bcopy(ca, &cp->ri_addr, sizeof (struct sockaddr_in)); 1892 else if (ca->sa_family == AF_INET6) 1893 bcopy(ca, &cp->ri_addr, sizeof (struct sockaddr_in6)); 1894 else 1895 return (FALSE); 1896 cp->ri_no_referrals = 1; 1897 1898 return (TRUE); 1899 } 1900 1901 rfs4_clntip_t * 1902 rfs4_find_clntip(struct sockaddr *addr, bool_t *create) 1903 { 1904 rfs4_clntip_t *cp; 1905 1906 rw_enter(&rfs4_findclient_lock, RW_READER); 1907 1908 cp = (rfs4_clntip_t *)rfs4_dbsearch(rfs4_clntip_idx, addr, 1909 create, addr, RFS4_DBS_VALID); 1910 1911 rw_exit(&rfs4_findclient_lock); 1912 1913 return (cp); 1914 } 1915 1916 void 1917 rfs4_invalidate_clntip(struct sockaddr *addr) 1918 { 1919 rfs4_clntip_t *cp; 1920 bool_t create = FALSE; 1921 1922 rw_enter(&rfs4_findclient_lock, RW_READER); 1923 1924 cp = (rfs4_clntip_t *)rfs4_dbsearch(rfs4_clntip_idx, addr, 1925 &create, NULL, RFS4_DBS_VALID); 1926 if (cp == NULL) { 1927 rw_exit(&rfs4_findclient_lock); 1928 return; 1929 } 1930 rfs4_dbe_invalidate(cp->ri_dbe); 1931 rfs4_dbe_rele(cp->ri_dbe); 1932 1933 rw_exit(&rfs4_findclient_lock); 1934 } 1935 1936 bool_t 1937 rfs4_lease_expired(rfs4_client_t *cp) 1938 { 1939 bool_t rc; 1940 1941 rfs4_dbe_lock(cp->rc_dbe); 1942 1943 /* 1944 * If the admin has executed clear_locks for this 1945 * client id, force expire will be set, so no need 1946 * to calculate anything because it's "outa here". 1947 */ 1948 if (cp->rc_forced_expire) { 1949 rc = TRUE; 1950 } else { 1951 rc = (gethrestime_sec() - cp->rc_last_access > rfs4_lease_time); 1952 } 1953 1954 /* 1955 * If the lease has expired we will also want 1956 * to remove any stable storage state data. So 1957 * mark the client id accordingly. 1958 */ 1959 if (!cp->rc_ss_remove) 1960 cp->rc_ss_remove = (rc == TRUE); 1961 1962 rfs4_dbe_unlock(cp->rc_dbe); 1963 1964 return (rc); 1965 } 1966 1967 void 1968 rfs4_update_lease(rfs4_client_t *cp) 1969 { 1970 rfs4_dbe_lock(cp->rc_dbe); 1971 if (!cp->rc_forced_expire) 1972 cp->rc_last_access = gethrestime_sec(); 1973 rfs4_dbe_unlock(cp->rc_dbe); 1974 } 1975 1976 1977 static bool_t 1978 EQOPENOWNER(open_owner4 *a, open_owner4 *b) 1979 { 1980 bool_t rc; 1981 1982 if (a->clientid != b->clientid) 1983 return (FALSE); 1984 1985 if (a->owner_len != b->owner_len) 1986 return (FALSE); 1987 1988 rc = (bcmp(a->owner_val, b->owner_val, a->owner_len) == 0); 1989 1990 return (rc); 1991 } 1992 1993 static uint_t 1994 openowner_hash(void *key) 1995 { 1996 int i; 1997 open_owner4 *openowner = key; 1998 uint_t hash = 0; 1999 2000 for (i = 0; i < openowner->owner_len; i++) { 2001 hash <<= 4; 2002 hash += (uint_t)openowner->owner_val[i]; 2003 } 2004 hash += (uint_t)openowner->clientid; 2005 hash |= (openowner->clientid >> 32); 2006 2007 return (hash); 2008 } 2009 2010 static bool_t 2011 openowner_compare(rfs4_entry_t u_entry, void *key) 2012 { 2013 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 2014 open_owner4 *arg = key; 2015 2016 return (EQOPENOWNER(&oo->ro_owner, arg)); 2017 } 2018 2019 void * 2020 openowner_mkkey(rfs4_entry_t u_entry) 2021 { 2022 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 2023 2024 return (&oo->ro_owner); 2025 } 2026 2027 /* ARGSUSED */ 2028 static bool_t 2029 rfs4_openowner_expiry(rfs4_entry_t u_entry) 2030 { 2031 /* openstateid held us and did all needed delay */ 2032 return (TRUE); 2033 } 2034 2035 static void 2036 rfs4_openowner_destroy(rfs4_entry_t u_entry) 2037 { 2038 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 2039 2040 /* Remove open owner from client's lists of open owners */ 2041 rfs4_dbe_lock(oo->ro_client->rc_dbe); 2042 list_remove(&oo->ro_client->rc_openownerlist, oo); 2043 rfs4_dbe_unlock(oo->ro_client->rc_dbe); 2044 2045 /* One less reference to the client */ 2046 rfs4_client_rele(oo->ro_client); 2047 oo->ro_client = NULL; 2048 2049 /* Free the last reply for this lock owner */ 2050 rfs4_free_reply(&oo->ro_reply); 2051 2052 if (oo->ro_reply_fh.nfs_fh4_val) { 2053 kmem_free(oo->ro_reply_fh.nfs_fh4_val, 2054 oo->ro_reply_fh.nfs_fh4_len); 2055 oo->ro_reply_fh.nfs_fh4_val = NULL; 2056 oo->ro_reply_fh.nfs_fh4_len = 0; 2057 } 2058 2059 rfs4_sw_destroy(&oo->ro_sw); 2060 list_destroy(&oo->ro_statelist); 2061 2062 /* Free the lock owner id */ 2063 kmem_free(oo->ro_owner.owner_val, oo->ro_owner.owner_len); 2064 } 2065 2066 void 2067 rfs4_openowner_rele(rfs4_openowner_t *oo) 2068 { 2069 rfs4_dbe_rele(oo->ro_dbe); 2070 } 2071 2072 static bool_t 2073 rfs4_openowner_create(rfs4_entry_t u_entry, void *arg) 2074 { 2075 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 2076 rfs4_openowner_t *argp = (rfs4_openowner_t *)arg; 2077 open_owner4 *openowner = &argp->ro_owner; 2078 seqid4 seqid = argp->ro_open_seqid; 2079 rfs4_client_t *cp; 2080 bool_t create = FALSE; 2081 2082 rw_enter(&rfs4_findclient_lock, RW_READER); 2083 2084 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, 2085 &openowner->clientid, 2086 &create, NULL, RFS4_DBS_VALID); 2087 2088 rw_exit(&rfs4_findclient_lock); 2089 2090 if (cp == NULL) 2091 return (FALSE); 2092 2093 oo->ro_reply_fh.nfs_fh4_len = 0; 2094 oo->ro_reply_fh.nfs_fh4_val = NULL; 2095 2096 oo->ro_owner.clientid = openowner->clientid; 2097 oo->ro_owner.owner_val = 2098 kmem_alloc(openowner->owner_len, KM_SLEEP); 2099 2100 bcopy(openowner->owner_val, 2101 oo->ro_owner.owner_val, openowner->owner_len); 2102 2103 oo->ro_owner.owner_len = openowner->owner_len; 2104 2105 oo->ro_need_confirm = TRUE; 2106 2107 rfs4_sw_init(&oo->ro_sw); 2108 2109 oo->ro_open_seqid = seqid; 2110 bzero(&oo->ro_reply, sizeof (nfs_resop4)); 2111 oo->ro_client = cp; 2112 oo->ro_cr_set = NULL; 2113 2114 list_create(&oo->ro_statelist, sizeof (rfs4_state_t), 2115 offsetof(rfs4_state_t, rs_node)); 2116 2117 /* Insert openowner into client's open owner list */ 2118 rfs4_dbe_lock(cp->rc_dbe); 2119 list_insert_tail(&cp->rc_openownerlist, oo); 2120 rfs4_dbe_unlock(cp->rc_dbe); 2121 2122 return (TRUE); 2123 } 2124 2125 rfs4_openowner_t * 2126 rfs4_findopenowner(open_owner4 *openowner, bool_t *create, seqid4 seqid) 2127 { 2128 rfs4_openowner_t *oo; 2129 rfs4_openowner_t arg; 2130 2131 arg.ro_owner = *openowner; 2132 arg.ro_open_seqid = seqid; 2133 oo = (rfs4_openowner_t *)rfs4_dbsearch(rfs4_openowner_idx, openowner, 2134 create, &arg, RFS4_DBS_VALID); 2135 2136 return (oo); 2137 } 2138 2139 void 2140 rfs4_update_open_sequence(rfs4_openowner_t *oo) 2141 { 2142 2143 rfs4_dbe_lock(oo->ro_dbe); 2144 2145 oo->ro_open_seqid++; 2146 2147 rfs4_dbe_unlock(oo->ro_dbe); 2148 } 2149 2150 void 2151 rfs4_update_open_resp(rfs4_openowner_t *oo, nfs_resop4 *resp, nfs_fh4 *fh) 2152 { 2153 2154 rfs4_dbe_lock(oo->ro_dbe); 2155 2156 rfs4_free_reply(&oo->ro_reply); 2157 2158 rfs4_copy_reply(&oo->ro_reply, resp); 2159 2160 /* Save the filehandle if provided and free if not used */ 2161 if (resp->nfs_resop4_u.opopen.status == NFS4_OK && 2162 fh && fh->nfs_fh4_len) { 2163 if (oo->ro_reply_fh.nfs_fh4_val == NULL) 2164 oo->ro_reply_fh.nfs_fh4_val = 2165 kmem_alloc(fh->nfs_fh4_len, KM_SLEEP); 2166 nfs_fh4_copy(fh, &oo->ro_reply_fh); 2167 } else { 2168 if (oo->ro_reply_fh.nfs_fh4_val) { 2169 kmem_free(oo->ro_reply_fh.nfs_fh4_val, 2170 oo->ro_reply_fh.nfs_fh4_len); 2171 oo->ro_reply_fh.nfs_fh4_val = NULL; 2172 oo->ro_reply_fh.nfs_fh4_len = 0; 2173 } 2174 } 2175 2176 rfs4_dbe_unlock(oo->ro_dbe); 2177 } 2178 2179 static bool_t 2180 lockowner_compare(rfs4_entry_t u_entry, void *key) 2181 { 2182 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2183 lock_owner4 *b = (lock_owner4 *)key; 2184 2185 if (lo->rl_owner.clientid != b->clientid) 2186 return (FALSE); 2187 2188 if (lo->rl_owner.owner_len != b->owner_len) 2189 return (FALSE); 2190 2191 return (bcmp(lo->rl_owner.owner_val, b->owner_val, 2192 lo->rl_owner.owner_len) == 0); 2193 } 2194 2195 void * 2196 lockowner_mkkey(rfs4_entry_t u_entry) 2197 { 2198 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2199 2200 return (&lo->rl_owner); 2201 } 2202 2203 static uint32_t 2204 lockowner_hash(void *key) 2205 { 2206 int i; 2207 lock_owner4 *lockowner = key; 2208 uint_t hash = 0; 2209 2210 for (i = 0; i < lockowner->owner_len; i++) { 2211 hash <<= 4; 2212 hash += (uint_t)lockowner->owner_val[i]; 2213 } 2214 hash += (uint_t)lockowner->clientid; 2215 hash |= (lockowner->clientid >> 32); 2216 2217 return (hash); 2218 } 2219 2220 static uint32_t 2221 pid_hash(void *key) 2222 { 2223 return ((uint32_t)(uintptr_t)key); 2224 } 2225 2226 static void * 2227 pid_mkkey(rfs4_entry_t u_entry) 2228 { 2229 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2230 2231 return ((void *)(uintptr_t)lo->rl_pid); 2232 } 2233 2234 static bool_t 2235 pid_compare(rfs4_entry_t u_entry, void *key) 2236 { 2237 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2238 2239 return (lo->rl_pid == (pid_t)(uintptr_t)key); 2240 } 2241 2242 static void 2243 rfs4_lockowner_destroy(rfs4_entry_t u_entry) 2244 { 2245 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2246 2247 /* Free the lock owner id */ 2248 kmem_free(lo->rl_owner.owner_val, lo->rl_owner.owner_len); 2249 rfs4_client_rele(lo->rl_client); 2250 } 2251 2252 void 2253 rfs4_lockowner_rele(rfs4_lockowner_t *lo) 2254 { 2255 rfs4_dbe_rele(lo->rl_dbe); 2256 } 2257 2258 /* ARGSUSED */ 2259 static bool_t 2260 rfs4_lockowner_expiry(rfs4_entry_t u_entry) 2261 { 2262 /* 2263 * Since expiry is called with no other references on 2264 * this struct, go ahead and have it removed. 2265 */ 2266 return (TRUE); 2267 } 2268 2269 static bool_t 2270 rfs4_lockowner_create(rfs4_entry_t u_entry, void *arg) 2271 { 2272 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2273 lock_owner4 *lockowner = (lock_owner4 *)arg; 2274 rfs4_client_t *cp; 2275 bool_t create = FALSE; 2276 2277 rw_enter(&rfs4_findclient_lock, RW_READER); 2278 2279 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, 2280 &lockowner->clientid, 2281 &create, NULL, RFS4_DBS_VALID); 2282 2283 rw_exit(&rfs4_findclient_lock); 2284 2285 if (cp == NULL) 2286 return (FALSE); 2287 2288 /* Reference client */ 2289 lo->rl_client = cp; 2290 lo->rl_owner.clientid = lockowner->clientid; 2291 lo->rl_owner.owner_val = kmem_alloc(lockowner->owner_len, KM_SLEEP); 2292 bcopy(lockowner->owner_val, lo->rl_owner.owner_val, 2293 lockowner->owner_len); 2294 lo->rl_owner.owner_len = lockowner->owner_len; 2295 lo->rl_pid = rfs4_dbe_getid(lo->rl_dbe); 2296 2297 return (TRUE); 2298 } 2299 2300 rfs4_lockowner_t * 2301 rfs4_findlockowner(lock_owner4 *lockowner, bool_t *create) 2302 { 2303 rfs4_lockowner_t *lo; 2304 2305 lo = (rfs4_lockowner_t *)rfs4_dbsearch(rfs4_lockowner_idx, lockowner, 2306 create, lockowner, RFS4_DBS_VALID); 2307 2308 return (lo); 2309 } 2310 2311 rfs4_lockowner_t * 2312 rfs4_findlockowner_by_pid(pid_t pid) 2313 { 2314 rfs4_lockowner_t *lo; 2315 bool_t create = FALSE; 2316 2317 lo = (rfs4_lockowner_t *)rfs4_dbsearch(rfs4_lockowner_pid_idx, 2318 (void *)(uintptr_t)pid, &create, NULL, RFS4_DBS_VALID); 2319 2320 return (lo); 2321 } 2322 2323 2324 static uint32_t 2325 file_hash(void *key) 2326 { 2327 return (ADDRHASH(key)); 2328 } 2329 2330 static void * 2331 file_mkkey(rfs4_entry_t u_entry) 2332 { 2333 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2334 2335 return (fp->rf_vp); 2336 } 2337 2338 static bool_t 2339 file_compare(rfs4_entry_t u_entry, void *key) 2340 { 2341 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2342 2343 return (fp->rf_vp == (vnode_t *)key); 2344 } 2345 2346 static void 2347 rfs4_file_destroy(rfs4_entry_t u_entry) 2348 { 2349 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2350 2351 list_destroy(&fp->rf_delegstatelist); 2352 2353 if (fp->rf_filehandle.nfs_fh4_val) 2354 kmem_free(fp->rf_filehandle.nfs_fh4_val, 2355 fp->rf_filehandle.nfs_fh4_len); 2356 cv_destroy(fp->rf_dinfo.rd_recall_cv); 2357 if (fp->rf_vp) { 2358 vnode_t *vp = fp->rf_vp; 2359 2360 mutex_enter(&vp->v_vsd_lock); 2361 (void) vsd_set(vp, nfs4_srv_vkey, NULL); 2362 mutex_exit(&vp->v_vsd_lock); 2363 VN_RELE(vp); 2364 fp->rf_vp = NULL; 2365 } 2366 rw_destroy(&fp->rf_file_rwlock); 2367 } 2368 2369 /* 2370 * Used to unlock the underlying dbe struct only 2371 */ 2372 void 2373 rfs4_file_rele(rfs4_file_t *fp) 2374 { 2375 rfs4_dbe_rele(fp->rf_dbe); 2376 } 2377 2378 typedef struct { 2379 vnode_t *vp; 2380 nfs_fh4 *fh; 2381 } rfs4_fcreate_arg; 2382 2383 static bool_t 2384 rfs4_file_create(rfs4_entry_t u_entry, void *arg) 2385 { 2386 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2387 rfs4_fcreate_arg *ap = (rfs4_fcreate_arg *)arg; 2388 vnode_t *vp = ap->vp; 2389 nfs_fh4 *fh = ap->fh; 2390 2391 VN_HOLD(vp); 2392 2393 fp->rf_filehandle.nfs_fh4_len = 0; 2394 fp->rf_filehandle.nfs_fh4_val = NULL; 2395 ASSERT(fh && fh->nfs_fh4_len); 2396 if (fh && fh->nfs_fh4_len) { 2397 fp->rf_filehandle.nfs_fh4_val = 2398 kmem_alloc(fh->nfs_fh4_len, KM_SLEEP); 2399 nfs_fh4_copy(fh, &fp->rf_filehandle); 2400 } 2401 fp->rf_vp = vp; 2402 2403 list_create(&fp->rf_delegstatelist, sizeof (rfs4_deleg_state_t), 2404 offsetof(rfs4_deleg_state_t, rds_node)); 2405 2406 fp->rf_share_deny = fp->rf_share_access = fp->rf_access_read = 0; 2407 fp->rf_access_write = fp->rf_deny_read = fp->rf_deny_write = 0; 2408 2409 mutex_init(fp->rf_dinfo.rd_recall_lock, NULL, MUTEX_DEFAULT, NULL); 2410 cv_init(fp->rf_dinfo.rd_recall_cv, NULL, CV_DEFAULT, NULL); 2411 2412 fp->rf_dinfo.rd_dtype = OPEN_DELEGATE_NONE; 2413 2414 rw_init(&fp->rf_file_rwlock, NULL, RW_DEFAULT, NULL); 2415 2416 mutex_enter(&vp->v_vsd_lock); 2417 VERIFY(vsd_set(vp, nfs4_srv_vkey, (void *)fp) == 0); 2418 mutex_exit(&vp->v_vsd_lock); 2419 2420 return (TRUE); 2421 } 2422 2423 rfs4_file_t * 2424 rfs4_findfile(vnode_t *vp, nfs_fh4 *fh, bool_t *create) 2425 { 2426 rfs4_file_t *fp; 2427 rfs4_fcreate_arg arg; 2428 2429 arg.vp = vp; 2430 arg.fh = fh; 2431 2432 if (*create == TRUE) 2433 fp = (rfs4_file_t *)rfs4_dbsearch(rfs4_file_idx, vp, create, 2434 &arg, RFS4_DBS_VALID); 2435 else { 2436 mutex_enter(&vp->v_vsd_lock); 2437 fp = (rfs4_file_t *)vsd_get(vp, nfs4_srv_vkey); 2438 if (fp) { 2439 rfs4_dbe_lock(fp->rf_dbe); 2440 if (rfs4_dbe_is_invalid(fp->rf_dbe) || 2441 (rfs4_dbe_refcnt(fp->rf_dbe) == 0)) { 2442 rfs4_dbe_unlock(fp->rf_dbe); 2443 fp = NULL; 2444 } else { 2445 rfs4_dbe_hold(fp->rf_dbe); 2446 rfs4_dbe_unlock(fp->rf_dbe); 2447 } 2448 } 2449 mutex_exit(&vp->v_vsd_lock); 2450 } 2451 return (fp); 2452 } 2453 2454 /* 2455 * Find a file in the db and once it is located, take the rw lock. 2456 * Need to check the vnode pointer and if it does not exist (it was 2457 * removed between the db location and check) redo the find. This 2458 * assumes that a file struct that has a NULL vnode pointer is marked 2459 * at 'invalid' and will not be found in the db the second time 2460 * around. 2461 */ 2462 rfs4_file_t * 2463 rfs4_findfile_withlock(vnode_t *vp, nfs_fh4 *fh, bool_t *create) 2464 { 2465 rfs4_file_t *fp; 2466 rfs4_fcreate_arg arg; 2467 bool_t screate = *create; 2468 2469 if (screate == FALSE) { 2470 mutex_enter(&vp->v_vsd_lock); 2471 fp = (rfs4_file_t *)vsd_get(vp, nfs4_srv_vkey); 2472 if (fp) { 2473 rfs4_dbe_lock(fp->rf_dbe); 2474 if (rfs4_dbe_is_invalid(fp->rf_dbe) || 2475 (rfs4_dbe_refcnt(fp->rf_dbe) == 0)) { 2476 rfs4_dbe_unlock(fp->rf_dbe); 2477 mutex_exit(&vp->v_vsd_lock); 2478 fp = NULL; 2479 } else { 2480 rfs4_dbe_hold(fp->rf_dbe); 2481 rfs4_dbe_unlock(fp->rf_dbe); 2482 mutex_exit(&vp->v_vsd_lock); 2483 rw_enter(&fp->rf_file_rwlock, RW_WRITER); 2484 if (fp->rf_vp == NULL) { 2485 rw_exit(&fp->rf_file_rwlock); 2486 rfs4_file_rele(fp); 2487 fp = NULL; 2488 } 2489 } 2490 } else { 2491 mutex_exit(&vp->v_vsd_lock); 2492 } 2493 } else { 2494 retry: 2495 arg.vp = vp; 2496 arg.fh = fh; 2497 2498 fp = (rfs4_file_t *)rfs4_dbsearch(rfs4_file_idx, vp, create, 2499 &arg, RFS4_DBS_VALID); 2500 if (fp != NULL) { 2501 rw_enter(&fp->rf_file_rwlock, RW_WRITER); 2502 if (fp->rf_vp == NULL) { 2503 rw_exit(&fp->rf_file_rwlock); 2504 rfs4_file_rele(fp); 2505 *create = screate; 2506 goto retry; 2507 } 2508 } 2509 } 2510 2511 return (fp); 2512 } 2513 2514 static uint32_t 2515 lo_state_hash(void *key) 2516 { 2517 stateid_t *id = key; 2518 2519 return (id->bits.ident+id->bits.pid); 2520 } 2521 2522 static bool_t 2523 lo_state_compare(rfs4_entry_t u_entry, void *key) 2524 { 2525 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2526 stateid_t *id = key; 2527 bool_t rc; 2528 2529 rc = (lsp->rls_lockid.bits.boottime == id->bits.boottime && 2530 lsp->rls_lockid.bits.type == id->bits.type && 2531 lsp->rls_lockid.bits.ident == id->bits.ident && 2532 lsp->rls_lockid.bits.pid == id->bits.pid); 2533 2534 return (rc); 2535 } 2536 2537 static void * 2538 lo_state_mkkey(rfs4_entry_t u_entry) 2539 { 2540 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2541 2542 return (&lsp->rls_lockid); 2543 } 2544 2545 static bool_t 2546 rfs4_lo_state_expiry(rfs4_entry_t u_entry) 2547 { 2548 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2549 2550 if (rfs4_dbe_is_invalid(lsp->rls_dbe)) 2551 return (TRUE); 2552 if (lsp->rls_state->rs_closed) 2553 return (TRUE); 2554 return ((gethrestime_sec() - 2555 lsp->rls_state->rs_owner->ro_client->rc_last_access 2556 > rfs4_lease_time)); 2557 } 2558 2559 static void 2560 rfs4_lo_state_destroy(rfs4_entry_t u_entry) 2561 { 2562 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2563 2564 rfs4_dbe_lock(lsp->rls_state->rs_dbe); 2565 list_remove(&lsp->rls_state->rs_lostatelist, lsp); 2566 rfs4_dbe_unlock(lsp->rls_state->rs_dbe); 2567 2568 rfs4_sw_destroy(&lsp->rls_sw); 2569 2570 /* Make sure to release the file locks */ 2571 if (lsp->rls_locks_cleaned == FALSE) { 2572 lsp->rls_locks_cleaned = TRUE; 2573 if (lsp->rls_locker->rl_client->rc_sysidt != LM_NOSYSID) { 2574 /* Is the PxFS kernel module loaded? */ 2575 if (lm_remove_file_locks != NULL) { 2576 int new_sysid; 2577 2578 /* Encode the cluster nodeid in new sysid */ 2579 new_sysid = 2580 lsp->rls_locker->rl_client->rc_sysidt; 2581 lm_set_nlmid_flk(&new_sysid); 2582 2583 /* 2584 * This PxFS routine removes file locks for a 2585 * client over all nodes of a cluster. 2586 */ 2587 DTRACE_PROBE1(nfss_i_clust_rm_lck, 2588 int, new_sysid); 2589 (*lm_remove_file_locks)(new_sysid); 2590 } else { 2591 (void) cleanlocks( 2592 lsp->rls_state->rs_finfo->rf_vp, 2593 lsp->rls_locker->rl_pid, 2594 lsp->rls_locker->rl_client->rc_sysidt); 2595 } 2596 } 2597 } 2598 2599 /* Free the last reply for this state */ 2600 rfs4_free_reply(&lsp->rls_reply); 2601 2602 rfs4_lockowner_rele(lsp->rls_locker); 2603 lsp->rls_locker = NULL; 2604 2605 rfs4_state_rele_nounlock(lsp->rls_state); 2606 lsp->rls_state = NULL; 2607 } 2608 2609 static bool_t 2610 rfs4_lo_state_create(rfs4_entry_t u_entry, void *arg) 2611 { 2612 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2613 rfs4_lo_state_t *argp = (rfs4_lo_state_t *)arg; 2614 rfs4_lockowner_t *lo = argp->rls_locker; 2615 rfs4_state_t *sp = argp->rls_state; 2616 2617 lsp->rls_state = sp; 2618 2619 lsp->rls_lockid = sp->rs_stateid; 2620 lsp->rls_lockid.bits.type = LOCKID; 2621 lsp->rls_lockid.bits.chgseq = 0; 2622 lsp->rls_lockid.bits.pid = lo->rl_pid; 2623 2624 lsp->rls_locks_cleaned = FALSE; 2625 lsp->rls_lock_completed = FALSE; 2626 2627 rfs4_sw_init(&lsp->rls_sw); 2628 2629 /* Attached the supplied lock owner */ 2630 rfs4_dbe_hold(lo->rl_dbe); 2631 lsp->rls_locker = lo; 2632 2633 rfs4_dbe_lock(sp->rs_dbe); 2634 list_insert_tail(&sp->rs_lostatelist, lsp); 2635 rfs4_dbe_hold(sp->rs_dbe); 2636 rfs4_dbe_unlock(sp->rs_dbe); 2637 2638 return (TRUE); 2639 } 2640 2641 void 2642 rfs4_lo_state_rele(rfs4_lo_state_t *lsp, bool_t unlock_fp) 2643 { 2644 if (unlock_fp == TRUE) 2645 rw_exit(&lsp->rls_state->rs_finfo->rf_file_rwlock); 2646 rfs4_dbe_rele(lsp->rls_dbe); 2647 } 2648 2649 static rfs4_lo_state_t * 2650 rfs4_findlo_state(stateid_t *id, bool_t lock_fp) 2651 { 2652 rfs4_lo_state_t *lsp; 2653 bool_t create = FALSE; 2654 2655 lsp = (rfs4_lo_state_t *)rfs4_dbsearch(rfs4_lo_state_idx, id, 2656 &create, NULL, RFS4_DBS_VALID); 2657 if (lock_fp == TRUE && lsp != NULL) 2658 rw_enter(&lsp->rls_state->rs_finfo->rf_file_rwlock, RW_READER); 2659 2660 return (lsp); 2661 } 2662 2663 2664 static uint32_t 2665 lo_state_lo_hash(void *key) 2666 { 2667 rfs4_lo_state_t *lsp = key; 2668 2669 return (ADDRHASH(lsp->rls_locker) ^ ADDRHASH(lsp->rls_state)); 2670 } 2671 2672 static bool_t 2673 lo_state_lo_compare(rfs4_entry_t u_entry, void *key) 2674 { 2675 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2676 rfs4_lo_state_t *keyp = key; 2677 2678 return (keyp->rls_locker == lsp->rls_locker && 2679 keyp->rls_state == lsp->rls_state); 2680 } 2681 2682 static void * 2683 lo_state_lo_mkkey(rfs4_entry_t u_entry) 2684 { 2685 return (u_entry); 2686 } 2687 2688 rfs4_lo_state_t * 2689 rfs4_findlo_state_by_owner(rfs4_lockowner_t *lo, rfs4_state_t *sp, 2690 bool_t *create) 2691 { 2692 rfs4_lo_state_t *lsp; 2693 rfs4_lo_state_t arg; 2694 2695 arg.rls_locker = lo; 2696 arg.rls_state = sp; 2697 2698 lsp = (rfs4_lo_state_t *)rfs4_dbsearch(rfs4_lo_state_owner_idx, &arg, 2699 create, &arg, RFS4_DBS_VALID); 2700 2701 return (lsp); 2702 } 2703 2704 static stateid_t 2705 get_stateid(id_t eid) 2706 { 2707 stateid_t id; 2708 2709 id.bits.boottime = rfs4_start_time; 2710 id.bits.ident = eid; 2711 id.bits.chgseq = 0; 2712 id.bits.type = 0; 2713 id.bits.pid = 0; 2714 2715 /* 2716 * If we are booted as a cluster node, embed our nodeid. 2717 * We've already done sanity checks in rfs4_client_create() so no 2718 * need to repeat them here. 2719 */ 2720 id.bits.clnodeid = (cluster_bootflags & CLUSTER_BOOTED) ? 2721 clconf_get_nodeid() : 0; 2722 2723 return (id); 2724 } 2725 2726 /* 2727 * For use only when booted as a cluster node. 2728 * Returns TRUE if the embedded nodeid indicates that this stateid was 2729 * generated on another node. 2730 */ 2731 static int 2732 foreign_stateid(stateid_t *id) 2733 { 2734 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2735 return (id->bits.clnodeid != (uint32_t)clconf_get_nodeid()); 2736 } 2737 2738 /* 2739 * For use only when booted as a cluster node. 2740 * Returns TRUE if the embedded nodeid indicates that this clientid was 2741 * generated on another node. 2742 */ 2743 static int 2744 foreign_clientid(cid *cidp) 2745 { 2746 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2747 return (cidp->impl_id.c_id >> CLUSTER_NODEID_SHIFT != 2748 (uint32_t)clconf_get_nodeid()); 2749 } 2750 2751 /* 2752 * For use only when booted as a cluster node. 2753 * Embed our cluster nodeid into the clientid. 2754 */ 2755 static void 2756 embed_nodeid(cid *cidp) 2757 { 2758 int clnodeid; 2759 /* 2760 * Currently, our state tables are small enough that their 2761 * ids will leave enough bits free for the nodeid. If the 2762 * tables become larger, we mustn't overwrite the id. 2763 * Equally, we only have room for so many bits of nodeid, so 2764 * must check that too. 2765 */ 2766 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2767 ASSERT(cidp->impl_id.c_id >> CLUSTER_NODEID_SHIFT == 0); 2768 clnodeid = clconf_get_nodeid(); 2769 ASSERT(clnodeid <= CLUSTER_MAX_NODEID); 2770 ASSERT(clnodeid != NODEID_UNKNOWN); 2771 cidp->impl_id.c_id |= (clnodeid << CLUSTER_NODEID_SHIFT); 2772 } 2773 2774 static uint32_t 2775 state_hash(void *key) 2776 { 2777 stateid_t *ip = (stateid_t *)key; 2778 2779 return (ip->bits.ident); 2780 } 2781 2782 static bool_t 2783 state_compare(rfs4_entry_t u_entry, void *key) 2784 { 2785 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2786 stateid_t *id = (stateid_t *)key; 2787 bool_t rc; 2788 2789 rc = (sp->rs_stateid.bits.boottime == id->bits.boottime && 2790 sp->rs_stateid.bits.ident == id->bits.ident); 2791 2792 return (rc); 2793 } 2794 2795 static void * 2796 state_mkkey(rfs4_entry_t u_entry) 2797 { 2798 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2799 2800 return (&sp->rs_stateid); 2801 } 2802 2803 static void 2804 rfs4_state_destroy(rfs4_entry_t u_entry) 2805 { 2806 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2807 2808 /* remove from openowner list */ 2809 rfs4_dbe_lock(sp->rs_owner->ro_dbe); 2810 list_remove(&sp->rs_owner->ro_statelist, sp); 2811 rfs4_dbe_unlock(sp->rs_owner->ro_dbe); 2812 2813 list_destroy(&sp->rs_lostatelist); 2814 2815 /* release any share locks for this stateid if it's still open */ 2816 if (!sp->rs_closed) { 2817 rfs4_dbe_lock(sp->rs_dbe); 2818 (void) rfs4_unshare(sp); 2819 rfs4_dbe_unlock(sp->rs_dbe); 2820 } 2821 2822 /* Were done with the file */ 2823 rfs4_file_rele(sp->rs_finfo); 2824 sp->rs_finfo = NULL; 2825 2826 /* And now with the openowner */ 2827 rfs4_openowner_rele(sp->rs_owner); 2828 sp->rs_owner = NULL; 2829 } 2830 2831 static void 2832 rfs4_state_rele_nounlock(rfs4_state_t *sp) 2833 { 2834 rfs4_dbe_rele(sp->rs_dbe); 2835 } 2836 2837 void 2838 rfs4_state_rele(rfs4_state_t *sp) 2839 { 2840 rw_exit(&sp->rs_finfo->rf_file_rwlock); 2841 rfs4_dbe_rele(sp->rs_dbe); 2842 } 2843 2844 static uint32_t 2845 deleg_hash(void *key) 2846 { 2847 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)key; 2848 2849 return (ADDRHASH(dsp->rds_client) ^ ADDRHASH(dsp->rds_finfo)); 2850 } 2851 2852 static bool_t 2853 deleg_compare(rfs4_entry_t u_entry, void *key) 2854 { 2855 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2856 rfs4_deleg_state_t *kdsp = (rfs4_deleg_state_t *)key; 2857 2858 return (dsp->rds_client == kdsp->rds_client && 2859 dsp->rds_finfo == kdsp->rds_finfo); 2860 } 2861 2862 static void * 2863 deleg_mkkey(rfs4_entry_t u_entry) 2864 { 2865 return (u_entry); 2866 } 2867 2868 static uint32_t 2869 deleg_state_hash(void *key) 2870 { 2871 stateid_t *ip = (stateid_t *)key; 2872 2873 return (ip->bits.ident); 2874 } 2875 2876 static bool_t 2877 deleg_state_compare(rfs4_entry_t u_entry, void *key) 2878 { 2879 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2880 stateid_t *id = (stateid_t *)key; 2881 bool_t rc; 2882 2883 if (id->bits.type != DELEGID) 2884 return (FALSE); 2885 2886 rc = (dsp->rds_delegid.bits.boottime == id->bits.boottime && 2887 dsp->rds_delegid.bits.ident == id->bits.ident); 2888 2889 return (rc); 2890 } 2891 2892 static void * 2893 deleg_state_mkkey(rfs4_entry_t u_entry) 2894 { 2895 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2896 2897 return (&dsp->rds_delegid); 2898 } 2899 2900 static bool_t 2901 rfs4_deleg_state_expiry(rfs4_entry_t u_entry) 2902 { 2903 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2904 2905 if (rfs4_dbe_is_invalid(dsp->rds_dbe)) 2906 return (TRUE); 2907 2908 if (dsp->rds_dtype == OPEN_DELEGATE_NONE) 2909 return (TRUE); 2910 2911 if ((gethrestime_sec() - dsp->rds_client->rc_last_access 2912 > rfs4_lease_time)) { 2913 rfs4_dbe_invalidate(dsp->rds_dbe); 2914 return (TRUE); 2915 } 2916 2917 return (FALSE); 2918 } 2919 2920 static bool_t 2921 rfs4_deleg_state_create(rfs4_entry_t u_entry, void *argp) 2922 { 2923 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2924 rfs4_file_t *fp = ((rfs4_deleg_state_t *)argp)->rds_finfo; 2925 rfs4_client_t *cp = ((rfs4_deleg_state_t *)argp)->rds_client; 2926 2927 rfs4_dbe_hold(fp->rf_dbe); 2928 rfs4_dbe_hold(cp->rc_dbe); 2929 2930 dsp->rds_delegid = get_stateid(rfs4_dbe_getid(dsp->rds_dbe)); 2931 dsp->rds_delegid.bits.type = DELEGID; 2932 dsp->rds_finfo = fp; 2933 dsp->rds_client = cp; 2934 dsp->rds_dtype = OPEN_DELEGATE_NONE; 2935 2936 dsp->rds_time_granted = gethrestime_sec(); /* observability */ 2937 dsp->rds_time_revoked = 0; 2938 2939 list_link_init(&dsp->rds_node); 2940 2941 return (TRUE); 2942 } 2943 2944 static void 2945 rfs4_deleg_state_destroy(rfs4_entry_t u_entry) 2946 { 2947 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2948 2949 /* return delegation if necessary */ 2950 rfs4_return_deleg(dsp, FALSE); 2951 2952 /* Were done with the file */ 2953 rfs4_file_rele(dsp->rds_finfo); 2954 dsp->rds_finfo = NULL; 2955 2956 /* And now with the openowner */ 2957 rfs4_client_rele(dsp->rds_client); 2958 dsp->rds_client = NULL; 2959 } 2960 2961 rfs4_deleg_state_t * 2962 rfs4_finddeleg(rfs4_state_t *sp, bool_t *create) 2963 { 2964 rfs4_deleg_state_t ds, *dsp; 2965 2966 ds.rds_client = sp->rs_owner->ro_client; 2967 ds.rds_finfo = sp->rs_finfo; 2968 2969 dsp = (rfs4_deleg_state_t *)rfs4_dbsearch(rfs4_deleg_idx, &ds, 2970 create, &ds, RFS4_DBS_VALID); 2971 2972 return (dsp); 2973 } 2974 2975 rfs4_deleg_state_t * 2976 rfs4_finddelegstate(stateid_t *id) 2977 { 2978 rfs4_deleg_state_t *dsp; 2979 bool_t create = FALSE; 2980 2981 dsp = (rfs4_deleg_state_t *)rfs4_dbsearch(rfs4_deleg_state_idx, id, 2982 &create, NULL, RFS4_DBS_VALID); 2983 2984 return (dsp); 2985 } 2986 2987 void 2988 rfs4_deleg_state_rele(rfs4_deleg_state_t *dsp) 2989 { 2990 rfs4_dbe_rele(dsp->rds_dbe); 2991 } 2992 2993 void 2994 rfs4_update_lock_sequence(rfs4_lo_state_t *lsp) 2995 { 2996 2997 rfs4_dbe_lock(lsp->rls_dbe); 2998 2999 /* 3000 * If we are skipping sequence id checking, this means that 3001 * this is the first lock request and therefore the sequence 3002 * id does not need to be updated. This only happens on the 3003 * first lock request for a lockowner 3004 */ 3005 if (!lsp->rls_skip_seqid_check) 3006 lsp->rls_seqid++; 3007 3008 rfs4_dbe_unlock(lsp->rls_dbe); 3009 } 3010 3011 void 3012 rfs4_update_lock_resp(rfs4_lo_state_t *lsp, nfs_resop4 *resp) 3013 { 3014 3015 rfs4_dbe_lock(lsp->rls_dbe); 3016 3017 rfs4_free_reply(&lsp->rls_reply); 3018 3019 rfs4_copy_reply(&lsp->rls_reply, resp); 3020 3021 rfs4_dbe_unlock(lsp->rls_dbe); 3022 } 3023 3024 void 3025 rfs4_free_opens(rfs4_openowner_t *oo, bool_t invalidate, 3026 bool_t close_of_client) 3027 { 3028 rfs4_state_t *sp; 3029 3030 rfs4_dbe_lock(oo->ro_dbe); 3031 3032 for (sp = list_head(&oo->ro_statelist); sp != NULL; 3033 sp = list_next(&oo->ro_statelist, sp)) { 3034 rfs4_state_close(sp, FALSE, close_of_client, CRED()); 3035 if (invalidate == TRUE) 3036 rfs4_dbe_invalidate(sp->rs_dbe); 3037 } 3038 3039 rfs4_dbe_invalidate(oo->ro_dbe); 3040 rfs4_dbe_unlock(oo->ro_dbe); 3041 } 3042 3043 static uint32_t 3044 state_owner_file_hash(void *key) 3045 { 3046 rfs4_state_t *sp = key; 3047 3048 return (ADDRHASH(sp->rs_owner) ^ ADDRHASH(sp->rs_finfo)); 3049 } 3050 3051 static bool_t 3052 state_owner_file_compare(rfs4_entry_t u_entry, void *key) 3053 { 3054 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3055 rfs4_state_t *arg = key; 3056 3057 if (sp->rs_closed == TRUE) 3058 return (FALSE); 3059 3060 return (arg->rs_owner == sp->rs_owner && arg->rs_finfo == sp->rs_finfo); 3061 } 3062 3063 static void * 3064 state_owner_file_mkkey(rfs4_entry_t u_entry) 3065 { 3066 return (u_entry); 3067 } 3068 3069 static uint32_t 3070 state_file_hash(void *key) 3071 { 3072 return (ADDRHASH(key)); 3073 } 3074 3075 static bool_t 3076 state_file_compare(rfs4_entry_t u_entry, void *key) 3077 { 3078 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3079 rfs4_file_t *fp = key; 3080 3081 if (sp->rs_closed == TRUE) 3082 return (FALSE); 3083 3084 return (fp == sp->rs_finfo); 3085 } 3086 3087 static void * 3088 state_file_mkkey(rfs4_entry_t u_entry) 3089 { 3090 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3091 3092 return (sp->rs_finfo); 3093 } 3094 3095 rfs4_state_t * 3096 rfs4_findstate_by_owner_file(rfs4_openowner_t *oo, rfs4_file_t *fp, 3097 bool_t *create) 3098 { 3099 rfs4_state_t *sp; 3100 rfs4_state_t key; 3101 3102 key.rs_owner = oo; 3103 key.rs_finfo = fp; 3104 3105 sp = (rfs4_state_t *)rfs4_dbsearch(rfs4_state_owner_file_idx, &key, 3106 create, &key, RFS4_DBS_VALID); 3107 3108 return (sp); 3109 } 3110 3111 /* This returns ANY state struct that refers to this file */ 3112 static rfs4_state_t * 3113 rfs4_findstate_by_file(rfs4_file_t *fp) 3114 { 3115 bool_t create = FALSE; 3116 3117 return ((rfs4_state_t *)rfs4_dbsearch(rfs4_state_file_idx, fp, 3118 &create, fp, RFS4_DBS_VALID)); 3119 } 3120 3121 static bool_t 3122 rfs4_state_expiry(rfs4_entry_t u_entry) 3123 { 3124 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3125 3126 if (rfs4_dbe_is_invalid(sp->rs_dbe)) 3127 return (TRUE); 3128 3129 if (sp->rs_closed == TRUE && 3130 ((gethrestime_sec() - rfs4_dbe_get_timerele(sp->rs_dbe)) 3131 > rfs4_lease_time)) 3132 return (TRUE); 3133 3134 return ((gethrestime_sec() - sp->rs_owner->ro_client->rc_last_access 3135 > rfs4_lease_time)); 3136 } 3137 3138 static bool_t 3139 rfs4_state_create(rfs4_entry_t u_entry, void *argp) 3140 { 3141 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3142 rfs4_file_t *fp = ((rfs4_state_t *)argp)->rs_finfo; 3143 rfs4_openowner_t *oo = ((rfs4_state_t *)argp)->rs_owner; 3144 3145 rfs4_dbe_hold(fp->rf_dbe); 3146 rfs4_dbe_hold(oo->ro_dbe); 3147 sp->rs_stateid = get_stateid(rfs4_dbe_getid(sp->rs_dbe)); 3148 sp->rs_stateid.bits.type = OPENID; 3149 sp->rs_owner = oo; 3150 sp->rs_finfo = fp; 3151 3152 list_create(&sp->rs_lostatelist, sizeof (rfs4_lo_state_t), 3153 offsetof(rfs4_lo_state_t, rls_node)); 3154 3155 /* Insert state on per open owner's list */ 3156 rfs4_dbe_lock(oo->ro_dbe); 3157 list_insert_tail(&oo->ro_statelist, sp); 3158 rfs4_dbe_unlock(oo->ro_dbe); 3159 3160 return (TRUE); 3161 } 3162 3163 static rfs4_state_t * 3164 rfs4_findstate(stateid_t *id, rfs4_dbsearch_type_t find_invalid, bool_t lock_fp) 3165 { 3166 rfs4_state_t *sp; 3167 bool_t create = FALSE; 3168 3169 sp = (rfs4_state_t *)rfs4_dbsearch(rfs4_state_idx, id, 3170 &create, NULL, find_invalid); 3171 if (lock_fp == TRUE && sp != NULL) 3172 rw_enter(&sp->rs_finfo->rf_file_rwlock, RW_READER); 3173 3174 return (sp); 3175 } 3176 3177 void 3178 rfs4_state_close(rfs4_state_t *sp, bool_t lock_held, bool_t close_of_client, 3179 cred_t *cr) 3180 { 3181 /* Remove the associated lo_state owners */ 3182 if (!lock_held) 3183 rfs4_dbe_lock(sp->rs_dbe); 3184 3185 /* 3186 * If refcnt == 0, the dbe is about to be destroyed. 3187 * lock state will be released by the reaper thread. 3188 */ 3189 3190 if (rfs4_dbe_refcnt(sp->rs_dbe) > 0) { 3191 if (sp->rs_closed == FALSE) { 3192 rfs4_release_share_lock_state(sp, cr, close_of_client); 3193 sp->rs_closed = TRUE; 3194 } 3195 } 3196 3197 if (!lock_held) 3198 rfs4_dbe_unlock(sp->rs_dbe); 3199 } 3200 3201 /* 3202 * Remove all state associated with the given client. 3203 */ 3204 void 3205 rfs4_client_state_remove(rfs4_client_t *cp) 3206 { 3207 rfs4_openowner_t *oo; 3208 3209 rfs4_dbe_lock(cp->rc_dbe); 3210 3211 for (oo = list_head(&cp->rc_openownerlist); oo != NULL; 3212 oo = list_next(&cp->rc_openownerlist, oo)) { 3213 rfs4_free_opens(oo, TRUE, TRUE); 3214 } 3215 3216 rfs4_dbe_unlock(cp->rc_dbe); 3217 } 3218 3219 void 3220 rfs4_client_close(rfs4_client_t *cp) 3221 { 3222 /* Mark client as going away. */ 3223 rfs4_dbe_lock(cp->rc_dbe); 3224 rfs4_dbe_invalidate(cp->rc_dbe); 3225 rfs4_dbe_unlock(cp->rc_dbe); 3226 3227 rfs4_client_state_remove(cp); 3228 3229 /* Release the client */ 3230 rfs4_client_rele(cp); 3231 } 3232 3233 nfsstat4 3234 rfs4_check_clientid(clientid4 *cp, int setclid_confirm) 3235 { 3236 cid *cidp = (cid *) cp; 3237 3238 /* 3239 * If we are booted as a cluster node, check the embedded nodeid. 3240 * If it indicates that this clientid was generated on another node, 3241 * inform the client accordingly. 3242 */ 3243 if (cluster_bootflags & CLUSTER_BOOTED && foreign_clientid(cidp)) 3244 return (NFS4ERR_STALE_CLIENTID); 3245 3246 /* 3247 * If the server start time matches the time provided 3248 * by the client (via the clientid) and this is NOT a 3249 * setclientid_confirm then return EXPIRED. 3250 */ 3251 if (!setclid_confirm && cidp->impl_id.start_time == rfs4_start_time) 3252 return (NFS4ERR_EXPIRED); 3253 3254 return (NFS4ERR_STALE_CLIENTID); 3255 } 3256 3257 /* 3258 * This is used when a stateid has not been found amongst the 3259 * current server's state. Check the stateid to see if it 3260 * was from this server instantiation or not. 3261 */ 3262 static nfsstat4 3263 what_stateid_error(stateid_t *id, stateid_type_t type) 3264 { 3265 /* If we are booted as a cluster node, was stateid locally generated? */ 3266 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3267 return (NFS4ERR_STALE_STATEID); 3268 3269 /* If types don't match then no use checking further */ 3270 if (type != id->bits.type) 3271 return (NFS4ERR_BAD_STATEID); 3272 3273 /* From a different server instantiation, return STALE */ 3274 if (id->bits.boottime != rfs4_start_time) 3275 return (NFS4ERR_STALE_STATEID); 3276 3277 /* 3278 * From this server but the state is most likely beyond lease 3279 * timeout: return NFS4ERR_EXPIRED. However, there is the 3280 * case of a delegation stateid. For delegations, there is a 3281 * case where the state can be removed without the client's 3282 * knowledge/consent: revocation. In the case of delegation 3283 * revocation, the delegation state will be removed and will 3284 * not be found. If the client does something like a 3285 * DELEGRETURN or even a READ/WRITE with a delegatoin stateid 3286 * that has been revoked, the server should return BAD_STATEID 3287 * instead of the more common EXPIRED error. 3288 */ 3289 if (id->bits.boottime == rfs4_start_time) { 3290 if (type == DELEGID) 3291 return (NFS4ERR_BAD_STATEID); 3292 else 3293 return (NFS4ERR_EXPIRED); 3294 } 3295 3296 return (NFS4ERR_BAD_STATEID); 3297 } 3298 3299 /* 3300 * Used later on to find the various state structs. When called from 3301 * rfs4_check_stateid()->rfs4_get_all_state(), no file struct lock is 3302 * taken (it is not needed) and helps on the read/write path with 3303 * respect to performance. 3304 */ 3305 static nfsstat4 3306 rfs4_get_state_lockit(stateid4 *stateid, rfs4_state_t **spp, 3307 rfs4_dbsearch_type_t find_invalid, bool_t lock_fp) 3308 { 3309 stateid_t *id = (stateid_t *)stateid; 3310 rfs4_state_t *sp; 3311 3312 *spp = NULL; 3313 3314 /* If we are booted as a cluster node, was stateid locally generated? */ 3315 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3316 return (NFS4ERR_STALE_STATEID); 3317 3318 sp = rfs4_findstate(id, find_invalid, lock_fp); 3319 if (sp == NULL) { 3320 return (what_stateid_error(id, OPENID)); 3321 } 3322 3323 if (rfs4_lease_expired(sp->rs_owner->ro_client)) { 3324 if (lock_fp == TRUE) 3325 rfs4_state_rele(sp); 3326 else 3327 rfs4_state_rele_nounlock(sp); 3328 return (NFS4ERR_EXPIRED); 3329 } 3330 3331 *spp = sp; 3332 3333 return (NFS4_OK); 3334 } 3335 3336 nfsstat4 3337 rfs4_get_state(stateid4 *stateid, rfs4_state_t **spp, 3338 rfs4_dbsearch_type_t find_invalid) 3339 { 3340 return (rfs4_get_state_lockit(stateid, spp, find_invalid, TRUE)); 3341 } 3342 3343 int 3344 rfs4_check_stateid_seqid(rfs4_state_t *sp, stateid4 *stateid) 3345 { 3346 stateid_t *id = (stateid_t *)stateid; 3347 3348 if (rfs4_lease_expired(sp->rs_owner->ro_client)) 3349 return (NFS4_CHECK_STATEID_EXPIRED); 3350 3351 /* Stateid is some time in the future - that's bad */ 3352 if (sp->rs_stateid.bits.chgseq < id->bits.chgseq) 3353 return (NFS4_CHECK_STATEID_BAD); 3354 3355 if (sp->rs_stateid.bits.chgseq == id->bits.chgseq + 1) 3356 return (NFS4_CHECK_STATEID_REPLAY); 3357 3358 /* Stateid is some time in the past - that's old */ 3359 if (sp->rs_stateid.bits.chgseq > id->bits.chgseq) 3360 return (NFS4_CHECK_STATEID_OLD); 3361 3362 /* Caller needs to know about confirmation before closure */ 3363 if (sp->rs_owner->ro_need_confirm) 3364 return (NFS4_CHECK_STATEID_UNCONFIRMED); 3365 3366 if (sp->rs_closed == TRUE) 3367 return (NFS4_CHECK_STATEID_CLOSED); 3368 3369 return (NFS4_CHECK_STATEID_OKAY); 3370 } 3371 3372 int 3373 rfs4_check_lo_stateid_seqid(rfs4_lo_state_t *lsp, stateid4 *stateid) 3374 { 3375 stateid_t *id = (stateid_t *)stateid; 3376 3377 if (rfs4_lease_expired(lsp->rls_state->rs_owner->ro_client)) 3378 return (NFS4_CHECK_STATEID_EXPIRED); 3379 3380 /* Stateid is some time in the future - that's bad */ 3381 if (lsp->rls_lockid.bits.chgseq < id->bits.chgseq) 3382 return (NFS4_CHECK_STATEID_BAD); 3383 3384 if (lsp->rls_lockid.bits.chgseq == id->bits.chgseq + 1) 3385 return (NFS4_CHECK_STATEID_REPLAY); 3386 3387 /* Stateid is some time in the past - that's old */ 3388 if (lsp->rls_lockid.bits.chgseq > id->bits.chgseq) 3389 return (NFS4_CHECK_STATEID_OLD); 3390 3391 if (lsp->rls_state->rs_closed == TRUE) 3392 return (NFS4_CHECK_STATEID_CLOSED); 3393 3394 return (NFS4_CHECK_STATEID_OKAY); 3395 } 3396 3397 nfsstat4 3398 rfs4_get_deleg_state(stateid4 *stateid, rfs4_deleg_state_t **dspp) 3399 { 3400 stateid_t *id = (stateid_t *)stateid; 3401 rfs4_deleg_state_t *dsp; 3402 3403 *dspp = NULL; 3404 3405 /* If we are booted as a cluster node, was stateid locally generated? */ 3406 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3407 return (NFS4ERR_STALE_STATEID); 3408 3409 dsp = rfs4_finddelegstate(id); 3410 if (dsp == NULL) { 3411 return (what_stateid_error(id, DELEGID)); 3412 } 3413 3414 if (rfs4_lease_expired(dsp->rds_client)) { 3415 rfs4_deleg_state_rele(dsp); 3416 return (NFS4ERR_EXPIRED); 3417 } 3418 3419 *dspp = dsp; 3420 3421 return (NFS4_OK); 3422 } 3423 3424 nfsstat4 3425 rfs4_get_lo_state(stateid4 *stateid, rfs4_lo_state_t **lspp, bool_t lock_fp) 3426 { 3427 stateid_t *id = (stateid_t *)stateid; 3428 rfs4_lo_state_t *lsp; 3429 3430 *lspp = NULL; 3431 3432 /* If we are booted as a cluster node, was stateid locally generated? */ 3433 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3434 return (NFS4ERR_STALE_STATEID); 3435 3436 lsp = rfs4_findlo_state(id, lock_fp); 3437 if (lsp == NULL) { 3438 return (what_stateid_error(id, LOCKID)); 3439 } 3440 3441 if (rfs4_lease_expired(lsp->rls_state->rs_owner->ro_client)) { 3442 rfs4_lo_state_rele(lsp, lock_fp); 3443 return (NFS4ERR_EXPIRED); 3444 } 3445 3446 *lspp = lsp; 3447 3448 return (NFS4_OK); 3449 } 3450 3451 static nfsstat4 3452 rfs4_get_all_state(stateid4 *sid, rfs4_state_t **spp, 3453 rfs4_deleg_state_t **dspp, rfs4_lo_state_t **lspp) 3454 { 3455 rfs4_state_t *sp = NULL; 3456 rfs4_deleg_state_t *dsp = NULL; 3457 rfs4_lo_state_t *lsp = NULL; 3458 stateid_t *id; 3459 nfsstat4 status; 3460 3461 *spp = NULL; *dspp = NULL; *lspp = NULL; 3462 3463 id = (stateid_t *)sid; 3464 switch (id->bits.type) { 3465 case OPENID: 3466 status = rfs4_get_state_lockit(sid, &sp, FALSE, FALSE); 3467 break; 3468 case DELEGID: 3469 status = rfs4_get_deleg_state(sid, &dsp); 3470 break; 3471 case LOCKID: 3472 status = rfs4_get_lo_state(sid, &lsp, FALSE); 3473 if (status == NFS4_OK) { 3474 sp = lsp->rls_state; 3475 rfs4_dbe_hold(sp->rs_dbe); 3476 } 3477 break; 3478 default: 3479 status = NFS4ERR_BAD_STATEID; 3480 } 3481 3482 if (status == NFS4_OK) { 3483 *spp = sp; 3484 *dspp = dsp; 3485 *lspp = lsp; 3486 } 3487 3488 return (status); 3489 } 3490 3491 /* 3492 * Given the I/O mode (FREAD or FWRITE), this checks whether the 3493 * rfs4_state_t struct has access to do this operation and if so 3494 * return NFS4_OK; otherwise the proper NFSv4 error is returned. 3495 */ 3496 nfsstat4 3497 rfs4_state_has_access(rfs4_state_t *sp, int mode, vnode_t *vp) 3498 { 3499 nfsstat4 stat = NFS4_OK; 3500 rfs4_file_t *fp; 3501 bool_t create = FALSE; 3502 3503 rfs4_dbe_lock(sp->rs_dbe); 3504 if (mode == FWRITE) { 3505 if (!(sp->rs_share_access & OPEN4_SHARE_ACCESS_WRITE)) { 3506 stat = NFS4ERR_OPENMODE; 3507 } 3508 } else if (mode == FREAD) { 3509 if (!(sp->rs_share_access & OPEN4_SHARE_ACCESS_READ)) { 3510 /* 3511 * If we have OPENed the file with DENYing access 3512 * to both READ and WRITE then no one else could 3513 * have OPENed the file, hence no conflicting READ 3514 * deny. This check is merely an optimization. 3515 */ 3516 if (sp->rs_share_deny == OPEN4_SHARE_DENY_BOTH) 3517 goto out; 3518 3519 /* Check against file struct's DENY mode */ 3520 fp = rfs4_findfile(vp, NULL, &create); 3521 if (fp != NULL) { 3522 int deny_read = 0; 3523 rfs4_dbe_lock(fp->rf_dbe); 3524 /* 3525 * Check if any other open owner has the file 3526 * OPENed with deny READ. 3527 */ 3528 if (sp->rs_share_deny & OPEN4_SHARE_DENY_READ) 3529 deny_read = 1; 3530 ASSERT(fp->rf_deny_read >= deny_read); 3531 if (fp->rf_deny_read > deny_read) 3532 stat = NFS4ERR_OPENMODE; 3533 rfs4_dbe_unlock(fp->rf_dbe); 3534 rfs4_file_rele(fp); 3535 } 3536 } 3537 } else { 3538 /* Illegal I/O mode */ 3539 stat = NFS4ERR_INVAL; 3540 } 3541 out: 3542 rfs4_dbe_unlock(sp->rs_dbe); 3543 return (stat); 3544 } 3545 3546 /* 3547 * Given the I/O mode (FREAD or FWRITE), the vnode, the stateid and whether 3548 * the file is being truncated, return NFS4_OK if allowed or appropriate 3549 * V4 error if not. Note NFS4ERR_DELAY will be returned and a recall on 3550 * the associated file will be done if the I/O is not consistent with any 3551 * delegation in effect on the file. Should be holding VOP_RWLOCK, either 3552 * as reader or writer as appropriate. rfs4_op_open will acquire the 3553 * VOP_RWLOCK as writer when setting up delegation. If the stateid is bad 3554 * this routine will return NFS4ERR_BAD_STATEID. In addition, through the 3555 * deleg parameter, we will return whether a write delegation is held by 3556 * the client associated with this stateid. 3557 * If the server instance associated with the relevant client is in its 3558 * grace period, return NFS4ERR_GRACE. 3559 */ 3560 3561 nfsstat4 3562 rfs4_check_stateid(int mode, vnode_t *vp, 3563 stateid4 *stateid, bool_t trunc, bool_t *deleg, 3564 bool_t do_access, caller_context_t *ct) 3565 { 3566 rfs4_file_t *fp; 3567 bool_t create = FALSE; 3568 rfs4_state_t *sp; 3569 rfs4_deleg_state_t *dsp; 3570 rfs4_lo_state_t *lsp; 3571 stateid_t *id = (stateid_t *)stateid; 3572 nfsstat4 stat = NFS4_OK; 3573 3574 if (ct != NULL) { 3575 ct->cc_sysid = 0; 3576 ct->cc_pid = 0; 3577 ct->cc_caller_id = nfs4_srv_caller_id; 3578 ct->cc_flags = CC_DONTBLOCK; 3579 } 3580 3581 if (ISSPECIAL(stateid)) { 3582 fp = rfs4_findfile(vp, NULL, &create); 3583 if (fp == NULL) 3584 return (NFS4_OK); 3585 if (fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_NONE) { 3586 rfs4_file_rele(fp); 3587 return (NFS4_OK); 3588 } 3589 if (mode == FWRITE || 3590 fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_WRITE) { 3591 rfs4_recall_deleg(fp, trunc, NULL); 3592 rfs4_file_rele(fp); 3593 return (NFS4ERR_DELAY); 3594 } 3595 rfs4_file_rele(fp); 3596 return (NFS4_OK); 3597 } else { 3598 stat = rfs4_get_all_state(stateid, &sp, &dsp, &lsp); 3599 if (stat != NFS4_OK) 3600 return (stat); 3601 if (lsp != NULL) { 3602 /* Is associated server instance in its grace period? */ 3603 if (rfs4_clnt_in_grace(lsp->rls_locker->rl_client)) { 3604 rfs4_lo_state_rele(lsp, FALSE); 3605 if (sp != NULL) 3606 rfs4_state_rele_nounlock(sp); 3607 return (NFS4ERR_GRACE); 3608 } 3609 if (id->bits.type == LOCKID) { 3610 /* Seqid in the future? - that's bad */ 3611 if (lsp->rls_lockid.bits.chgseq < 3612 id->bits.chgseq) { 3613 rfs4_lo_state_rele(lsp, FALSE); 3614 if (sp != NULL) 3615 rfs4_state_rele_nounlock(sp); 3616 return (NFS4ERR_BAD_STATEID); 3617 } 3618 /* Seqid in the past? - that's old */ 3619 if (lsp->rls_lockid.bits.chgseq > 3620 id->bits.chgseq) { 3621 rfs4_lo_state_rele(lsp, FALSE); 3622 if (sp != NULL) 3623 rfs4_state_rele_nounlock(sp); 3624 return (NFS4ERR_OLD_STATEID); 3625 } 3626 /* Ensure specified filehandle matches */ 3627 if (lsp->rls_state->rs_finfo->rf_vp != vp) { 3628 rfs4_lo_state_rele(lsp, FALSE); 3629 if (sp != NULL) 3630 rfs4_state_rele_nounlock(sp); 3631 return (NFS4ERR_BAD_STATEID); 3632 } 3633 } 3634 if (ct != NULL) { 3635 ct->cc_sysid = 3636 lsp->rls_locker->rl_client->rc_sysidt; 3637 ct->cc_pid = lsp->rls_locker->rl_pid; 3638 } 3639 rfs4_lo_state_rele(lsp, FALSE); 3640 } 3641 3642 /* Stateid provided was an "open" stateid */ 3643 if (sp != NULL) { 3644 /* Is associated server instance in its grace period? */ 3645 if (rfs4_clnt_in_grace(sp->rs_owner->ro_client)) { 3646 rfs4_state_rele_nounlock(sp); 3647 return (NFS4ERR_GRACE); 3648 } 3649 if (id->bits.type == OPENID) { 3650 /* Seqid in the future? - that's bad */ 3651 if (sp->rs_stateid.bits.chgseq < 3652 id->bits.chgseq) { 3653 rfs4_state_rele_nounlock(sp); 3654 return (NFS4ERR_BAD_STATEID); 3655 } 3656 /* Seqid in the past - that's old */ 3657 if (sp->rs_stateid.bits.chgseq > 3658 id->bits.chgseq) { 3659 rfs4_state_rele_nounlock(sp); 3660 return (NFS4ERR_OLD_STATEID); 3661 } 3662 } 3663 /* Ensure specified filehandle matches */ 3664 if (sp->rs_finfo->rf_vp != vp) { 3665 rfs4_state_rele_nounlock(sp); 3666 return (NFS4ERR_BAD_STATEID); 3667 } 3668 3669 if (sp->rs_owner->ro_need_confirm) { 3670 rfs4_state_rele_nounlock(sp); 3671 return (NFS4ERR_BAD_STATEID); 3672 } 3673 3674 if (sp->rs_closed == TRUE) { 3675 rfs4_state_rele_nounlock(sp); 3676 return (NFS4ERR_OLD_STATEID); 3677 } 3678 3679 if (do_access) 3680 stat = rfs4_state_has_access(sp, mode, vp); 3681 else 3682 stat = NFS4_OK; 3683 3684 /* 3685 * Return whether this state has write 3686 * delegation if desired 3687 */ 3688 if (deleg && (sp->rs_finfo->rf_dinfo.rd_dtype == 3689 OPEN_DELEGATE_WRITE)) 3690 *deleg = TRUE; 3691 3692 /* 3693 * We got a valid stateid, so we update the 3694 * lease on the client. Ideally we would like 3695 * to do this after the calling op succeeds, 3696 * but for now this will be good 3697 * enough. Callers of this routine are 3698 * currently insulated from the state stuff. 3699 */ 3700 rfs4_update_lease(sp->rs_owner->ro_client); 3701 3702 /* 3703 * If a delegation is present on this file and 3704 * this is a WRITE, then update the lastwrite 3705 * time to indicate that activity is present. 3706 */ 3707 if (sp->rs_finfo->rf_dinfo.rd_dtype == 3708 OPEN_DELEGATE_WRITE && 3709 mode == FWRITE) { 3710 sp->rs_finfo->rf_dinfo.rd_time_lastwrite = 3711 gethrestime_sec(); 3712 } 3713 3714 rfs4_state_rele_nounlock(sp); 3715 3716 return (stat); 3717 } 3718 3719 if (dsp != NULL) { 3720 /* Is associated server instance in its grace period? */ 3721 if (rfs4_clnt_in_grace(dsp->rds_client)) { 3722 rfs4_deleg_state_rele(dsp); 3723 return (NFS4ERR_GRACE); 3724 } 3725 if (dsp->rds_delegid.bits.chgseq != id->bits.chgseq) { 3726 rfs4_deleg_state_rele(dsp); 3727 return (NFS4ERR_BAD_STATEID); 3728 } 3729 3730 /* Ensure specified filehandle matches */ 3731 if (dsp->rds_finfo->rf_vp != vp) { 3732 rfs4_deleg_state_rele(dsp); 3733 return (NFS4ERR_BAD_STATEID); 3734 } 3735 /* 3736 * Return whether this state has write 3737 * delegation if desired 3738 */ 3739 if (deleg && (dsp->rds_finfo->rf_dinfo.rd_dtype == 3740 OPEN_DELEGATE_WRITE)) 3741 *deleg = TRUE; 3742 3743 rfs4_update_lease(dsp->rds_client); 3744 3745 /* 3746 * If a delegation is present on this file and 3747 * this is a WRITE, then update the lastwrite 3748 * time to indicate that activity is present. 3749 */ 3750 if (dsp->rds_finfo->rf_dinfo.rd_dtype == 3751 OPEN_DELEGATE_WRITE && mode == FWRITE) { 3752 dsp->rds_finfo->rf_dinfo.rd_time_lastwrite = 3753 gethrestime_sec(); 3754 } 3755 3756 /* 3757 * XXX - what happens if this is a WRITE and the 3758 * delegation type of for READ. 3759 */ 3760 rfs4_deleg_state_rele(dsp); 3761 3762 return (stat); 3763 } 3764 /* 3765 * If we got this far, something bad happened 3766 */ 3767 return (NFS4ERR_BAD_STATEID); 3768 } 3769 } 3770 3771 3772 /* 3773 * This is a special function in that for the file struct provided the 3774 * server wants to remove/close all current state associated with the 3775 * file. The prime use of this would be with OP_REMOVE to force the 3776 * release of state and particularly of file locks. 3777 * 3778 * There is an assumption that there is no delegations outstanding on 3779 * this file at this point. The caller should have waited for those 3780 * to be returned or revoked. 3781 */ 3782 void 3783 rfs4_close_all_state(rfs4_file_t *fp) 3784 { 3785 rfs4_state_t *sp; 3786 3787 rfs4_dbe_lock(fp->rf_dbe); 3788 3789 #ifdef DEBUG 3790 /* only applies when server is handing out delegations */ 3791 if (rfs4_deleg_policy != SRV_NEVER_DELEGATE) 3792 ASSERT(fp->rf_dinfo.rd_hold_grant > 0); 3793 #endif 3794 3795 /* No delegations for this file */ 3796 ASSERT(list_is_empty(&fp->rf_delegstatelist)); 3797 3798 /* Make sure that it can not be found */ 3799 rfs4_dbe_invalidate(fp->rf_dbe); 3800 3801 if (fp->rf_vp == NULL) { 3802 rfs4_dbe_unlock(fp->rf_dbe); 3803 return; 3804 } 3805 rfs4_dbe_unlock(fp->rf_dbe); 3806 3807 /* 3808 * Hold as writer to prevent other server threads from 3809 * processing requests related to the file while all state is 3810 * being removed. 3811 */ 3812 rw_enter(&fp->rf_file_rwlock, RW_WRITER); 3813 3814 /* Remove ALL state from the file */ 3815 while (sp = rfs4_findstate_by_file(fp)) { 3816 rfs4_state_close(sp, FALSE, FALSE, CRED()); 3817 rfs4_state_rele_nounlock(sp); 3818 } 3819 3820 /* 3821 * This is only safe since there are no further references to 3822 * the file. 3823 */ 3824 rfs4_dbe_lock(fp->rf_dbe); 3825 if (fp->rf_vp) { 3826 vnode_t *vp = fp->rf_vp; 3827 3828 mutex_enter(&vp->v_vsd_lock); 3829 (void) vsd_set(vp, nfs4_srv_vkey, NULL); 3830 mutex_exit(&vp->v_vsd_lock); 3831 VN_RELE(vp); 3832 fp->rf_vp = NULL; 3833 } 3834 rfs4_dbe_unlock(fp->rf_dbe); 3835 3836 /* Finally let other references to proceed */ 3837 rw_exit(&fp->rf_file_rwlock); 3838 } 3839 3840 /* 3841 * This function is used as a target for the rfs4_dbe_walk() call 3842 * below. The purpose of this function is to see if the 3843 * lockowner_state refers to a file that resides within the exportinfo 3844 * export. If so, then remove the lock_owner state (file locks and 3845 * share "locks") for this object since the intent is the server is 3846 * unexporting the specified directory. Be sure to invalidate the 3847 * object after the state has been released 3848 */ 3849 static void 3850 rfs4_lo_state_walk_callout(rfs4_entry_t u_entry, void *e) 3851 { 3852 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 3853 struct exportinfo *exi = (struct exportinfo *)e; 3854 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3855 fhandle_t *efhp; 3856 3857 efhp = (fhandle_t *)&exi->exi_fh; 3858 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3859 3860 FH_TO_FMT4(efhp, exi_fhp); 3861 3862 finfo_fhp = (nfs_fh4_fmt_t *)lsp->rls_state->rs_finfo-> 3863 rf_filehandle.nfs_fh4_val; 3864 3865 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3866 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3867 exi_fhp->fh4_xlen) == 0) { 3868 rfs4_state_close(lsp->rls_state, FALSE, FALSE, CRED()); 3869 rfs4_dbe_invalidate(lsp->rls_dbe); 3870 rfs4_dbe_invalidate(lsp->rls_state->rs_dbe); 3871 } 3872 } 3873 3874 /* 3875 * This function is used as a target for the rfs4_dbe_walk() call 3876 * below. The purpose of this function is to see if the state refers 3877 * to a file that resides within the exportinfo export. If so, then 3878 * remove the open state for this object since the intent is the 3879 * server is unexporting the specified directory. The main result for 3880 * this type of entry is to invalidate it such it will not be found in 3881 * the future. 3882 */ 3883 static void 3884 rfs4_state_walk_callout(rfs4_entry_t u_entry, void *e) 3885 { 3886 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3887 struct exportinfo *exi = (struct exportinfo *)e; 3888 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3889 fhandle_t *efhp; 3890 3891 efhp = (fhandle_t *)&exi->exi_fh; 3892 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3893 3894 FH_TO_FMT4(efhp, exi_fhp); 3895 3896 finfo_fhp = 3897 (nfs_fh4_fmt_t *)sp->rs_finfo->rf_filehandle.nfs_fh4_val; 3898 3899 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3900 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3901 exi_fhp->fh4_xlen) == 0) { 3902 rfs4_state_close(sp, TRUE, FALSE, CRED()); 3903 rfs4_dbe_invalidate(sp->rs_dbe); 3904 } 3905 } 3906 3907 /* 3908 * This function is used as a target for the rfs4_dbe_walk() call 3909 * below. The purpose of this function is to see if the state refers 3910 * to a file that resides within the exportinfo export. If so, then 3911 * remove the deleg state for this object since the intent is the 3912 * server is unexporting the specified directory. The main result for 3913 * this type of entry is to invalidate it such it will not be found in 3914 * the future. 3915 */ 3916 static void 3917 rfs4_deleg_state_walk_callout(rfs4_entry_t u_entry, void *e) 3918 { 3919 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 3920 struct exportinfo *exi = (struct exportinfo *)e; 3921 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3922 fhandle_t *efhp; 3923 3924 efhp = (fhandle_t *)&exi->exi_fh; 3925 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3926 3927 FH_TO_FMT4(efhp, exi_fhp); 3928 3929 finfo_fhp = 3930 (nfs_fh4_fmt_t *)dsp->rds_finfo->rf_filehandle.nfs_fh4_val; 3931 3932 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3933 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3934 exi_fhp->fh4_xlen) == 0) { 3935 rfs4_dbe_invalidate(dsp->rds_dbe); 3936 } 3937 } 3938 3939 /* 3940 * This function is used as a target for the rfs4_dbe_walk() call 3941 * below. The purpose of this function is to see if the state refers 3942 * to a file that resides within the exportinfo export. If so, then 3943 * release vnode hold for this object since the intent is the server 3944 * is unexporting the specified directory. Invalidation will prevent 3945 * this struct from being found in the future. 3946 */ 3947 static void 3948 rfs4_file_walk_callout(rfs4_entry_t u_entry, void *e) 3949 { 3950 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 3951 struct exportinfo *exi = (struct exportinfo *)e; 3952 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3953 fhandle_t *efhp; 3954 3955 efhp = (fhandle_t *)&exi->exi_fh; 3956 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3957 3958 FH_TO_FMT4(efhp, exi_fhp); 3959 3960 finfo_fhp = (nfs_fh4_fmt_t *)fp->rf_filehandle.nfs_fh4_val; 3961 3962 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3963 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3964 exi_fhp->fh4_xlen) == 0) { 3965 if (fp->rf_vp) { 3966 vnode_t *vp = fp->rf_vp; 3967 3968 /* 3969 * don't leak monitors and remove the reference 3970 * put on the vnode when the delegation was granted. 3971 */ 3972 if (fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_READ) { 3973 (void) fem_uninstall(vp, deleg_rdops, 3974 (void *)fp); 3975 vn_open_downgrade(vp, FREAD); 3976 } else if (fp->rf_dinfo.rd_dtype == 3977 OPEN_DELEGATE_WRITE) { 3978 (void) fem_uninstall(vp, deleg_wrops, 3979 (void *)fp); 3980 vn_open_downgrade(vp, FREAD|FWRITE); 3981 } 3982 mutex_enter(&vp->v_vsd_lock); 3983 (void) vsd_set(vp, nfs4_srv_vkey, NULL); 3984 mutex_exit(&vp->v_vsd_lock); 3985 VN_RELE(vp); 3986 fp->rf_vp = NULL; 3987 } 3988 rfs4_dbe_invalidate(fp->rf_dbe); 3989 } 3990 } 3991 3992 /* 3993 * Given a directory that is being unexported, cleanup/release all 3994 * state in the server that refers to objects residing underneath this 3995 * particular export. The ordering of the release is important. 3996 * Lock_owner, then state and then file. 3997 */ 3998 void 3999 rfs4_clean_state_exi(struct exportinfo *exi) 4000 { 4001 mutex_enter(&rfs4_state_lock); 4002 4003 if (rfs4_server_state == NULL) { 4004 mutex_exit(&rfs4_state_lock); 4005 return; 4006 } 4007 4008 rfs4_dbe_walk(rfs4_lo_state_tab, rfs4_lo_state_walk_callout, exi); 4009 rfs4_dbe_walk(rfs4_state_tab, rfs4_state_walk_callout, exi); 4010 rfs4_dbe_walk(rfs4_deleg_state_tab, rfs4_deleg_state_walk_callout, exi); 4011 rfs4_dbe_walk(rfs4_file_tab, rfs4_file_walk_callout, exi); 4012 4013 mutex_exit(&rfs4_state_lock); 4014 } 4015