1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/cred.h> 37 #include <sys/proc.h> 38 #include <sys/user.h> 39 #include <sys/time.h> 40 #include <sys/buf.h> 41 #include <sys/vfs.h> 42 #include <sys/vnode.h> 43 #include <sys/socket.h> 44 #include <sys/uio.h> 45 #include <sys/tiuser.h> 46 #include <sys/swap.h> 47 #include <sys/errno.h> 48 #include <sys/debug.h> 49 #include <sys/kmem.h> 50 #include <sys/kstat.h> 51 #include <sys/cmn_err.h> 52 #include <sys/vtrace.h> 53 #include <sys/session.h> 54 #include <sys/dnlc.h> 55 #include <sys/bitmap.h> 56 #include <sys/acl.h> 57 #include <sys/ddi.h> 58 #include <sys/pathname.h> 59 #include <sys/flock.h> 60 #include <sys/dirent.h> 61 #include <sys/flock.h> 62 #include <sys/callb.h> 63 64 #include <rpc/types.h> 65 #include <rpc/xdr.h> 66 #include <rpc/auth.h> 67 #include <rpc/rpcsec_gss.h> 68 #include <rpc/clnt.h> 69 70 #include <nfs/nfs.h> 71 #include <nfs/nfs_clnt.h> 72 #include <nfs/nfs_acl.h> 73 74 #include <nfs/nfs4.h> 75 #include <nfs/rnode4.h> 76 #include <nfs/nfs4_clnt.h> 77 78 /* 79 * The hash queues for the access to active and cached rnodes 80 * are organized as doubly linked lists. A reader/writer lock 81 * for each hash bucket is used to control access and to synchronize 82 * lookups, additions, and deletions from the hash queue. 83 * 84 * The rnode freelist is organized as a doubly linked list with 85 * a head pointer. Additions and deletions are synchronized via 86 * a single mutex. 87 * 88 * In order to add an rnode to the free list, it must be hashed into 89 * a hash queue and the exclusive lock to the hash queue be held. 90 * If an rnode is not hashed into a hash queue, then it is destroyed 91 * because it represents no valuable information that can be reused 92 * about the file. The exclusive lock to the hash queue must be 93 * held in order to prevent a lookup in the hash queue from finding 94 * the rnode and using it and assuming that the rnode is not on the 95 * freelist. The lookup in the hash queue will have the hash queue 96 * locked, either exclusive or shared. 97 * 98 * The vnode reference count for each rnode is not allowed to drop 99 * below 1. This prevents external entities, such as the VM 100 * subsystem, from acquiring references to vnodes already on the 101 * freelist and then trying to place them back on the freelist 102 * when their reference is released. This means that the when an 103 * rnode is looked up in the hash queues, then either the rnode 104 * is removed from the freelist and that reference is transferred to 105 * the new reference or the vnode reference count must be incremented 106 * accordingly. The mutex for the freelist must be held in order to 107 * accurately test to see if the rnode is on the freelist or not. 108 * The hash queue lock might be held shared and it is possible that 109 * two different threads may race to remove the rnode from the 110 * freelist. This race can be resolved by holding the mutex for the 111 * freelist. Please note that the mutex for the freelist does not 112 * need to be held if the rnode is not on the freelist. It can not be 113 * placed on the freelist due to the requirement that the thread 114 * putting the rnode on the freelist must hold the exclusive lock 115 * to the hash queue and the thread doing the lookup in the hash 116 * queue is holding either a shared or exclusive lock to the hash 117 * queue. 118 * 119 * The lock ordering is: 120 * 121 * hash bucket lock -> vnode lock 122 * hash bucket lock -> freelist lock -> r_statelock 123 */ 124 r4hashq_t *rtable4; 125 126 static kmutex_t rp4freelist_lock; 127 static rnode4_t *rp4freelist = NULL; 128 static long rnode4_new = 0; 129 int rtable4size; 130 static int rtable4mask; 131 static struct kmem_cache *rnode4_cache; 132 static int rnode4_hashlen = 4; 133 134 static void r4inactive(rnode4_t *, cred_t *); 135 static vnode_t *make_rnode4(nfs4_sharedfh_t *, r4hashq_t *, struct vfs *, 136 struct vnodeops *, 137 int (*)(vnode_t *, page_t *, u_offset_t *, size_t *, int, 138 cred_t *), 139 int *, cred_t *); 140 static void rp4_rmfree(rnode4_t *); 141 int nfs4_free_data_reclaim(rnode4_t *); 142 static int nfs4_active_data_reclaim(rnode4_t *); 143 static int nfs4_free_reclaim(void); 144 static int nfs4_active_reclaim(void); 145 static int nfs4_rnode_reclaim(void); 146 static void nfs4_reclaim(void *); 147 static int isrootfh(nfs4_sharedfh_t *, rnode4_t *); 148 static void uninit_rnode4(rnode4_t *); 149 static void destroy_rnode4(rnode4_t *); 150 static void r4_stub_set(rnode4_t *, nfs4_stub_type_t); 151 152 #ifdef DEBUG 153 static int r4_check_for_dups = 0; /* Flag to enable dup rnode detection. */ 154 static int nfs4_rnode_debug = 0; 155 /* if nonzero, kmem_cache_free() rnodes rather than place on freelist */ 156 static int nfs4_rnode_nofreelist = 0; 157 /* give messages on colliding shared filehandles */ 158 static void r4_dup_check(rnode4_t *, vfs_t *); 159 #endif 160 161 /* 162 * If the vnode has pages, run the list and check for any that are 163 * still dangling. We call this routine before putting an rnode on 164 * the free list. 165 */ 166 static int 167 nfs4_dross_pages(vnode_t *vp) 168 { 169 page_t *pp; 170 kmutex_t *vphm; 171 172 vphm = page_vnode_mutex(vp); 173 mutex_enter(vphm); 174 if ((pp = vp->v_pages) != NULL) { 175 do { 176 if (pp->p_fsdata != C_NOCOMMIT) { 177 mutex_exit(vphm); 178 return (1); 179 } 180 } while ((pp = pp->p_vpnext) != vp->v_pages); 181 } 182 mutex_exit(vphm); 183 184 return (0); 185 } 186 187 /* 188 * Flush any pages left on this rnode. 189 */ 190 static void 191 r4flushpages(rnode4_t *rp, cred_t *cr) 192 { 193 vnode_t *vp; 194 int error; 195 196 /* 197 * Before freeing anything, wait until all asynchronous 198 * activity is done on this rnode. This will allow all 199 * asynchronous read ahead and write behind i/o's to 200 * finish. 201 */ 202 mutex_enter(&rp->r_statelock); 203 while (rp->r_count > 0) 204 cv_wait(&rp->r_cv, &rp->r_statelock); 205 mutex_exit(&rp->r_statelock); 206 207 /* 208 * Flush and invalidate all pages associated with the vnode. 209 */ 210 vp = RTOV4(rp); 211 if (nfs4_has_pages(vp)) { 212 ASSERT(vp->v_type != VCHR); 213 if ((rp->r_flags & R4DIRTY) && !rp->r_error) { 214 error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, 0, cr, NULL); 215 if (error && (error == ENOSPC || error == EDQUOT)) { 216 mutex_enter(&rp->r_statelock); 217 if (!rp->r_error) 218 rp->r_error = error; 219 mutex_exit(&rp->r_statelock); 220 } 221 } 222 nfs4_invalidate_pages(vp, (u_offset_t)0, cr); 223 } 224 } 225 226 /* 227 * Free the resources associated with an rnode. 228 */ 229 static void 230 r4inactive(rnode4_t *rp, cred_t *cr) 231 { 232 vnode_t *vp; 233 char *contents; 234 int size; 235 vsecattr_t *vsp; 236 vnode_t *xattr; 237 238 r4flushpages(rp, cr); 239 240 vp = RTOV4(rp); 241 242 /* 243 * Free any held caches which may be 244 * associated with this rnode. 245 */ 246 mutex_enter(&rp->r_statelock); 247 contents = rp->r_symlink.contents; 248 size = rp->r_symlink.size; 249 rp->r_symlink.contents = NULL; 250 vsp = rp->r_secattr; 251 rp->r_secattr = NULL; 252 xattr = rp->r_xattr_dir; 253 rp->r_xattr_dir = NULL; 254 mutex_exit(&rp->r_statelock); 255 256 /* 257 * Free the access cache entries. 258 */ 259 (void) nfs4_access_purge_rp(rp); 260 261 /* 262 * Free the readdir cache entries. 263 */ 264 nfs4_purge_rddir_cache(vp); 265 266 /* 267 * Free the symbolic link cache. 268 */ 269 if (contents != NULL) { 270 271 kmem_free((void *)contents, size); 272 } 273 274 /* 275 * Free any cached ACL. 276 */ 277 if (vsp != NULL) 278 nfs4_acl_free_cache(vsp); 279 280 /* 281 * Release the cached xattr_dir 282 */ 283 if (xattr != NULL) 284 VN_RELE(xattr); 285 } 286 287 /* 288 * We have seen a case that the fh passed in is for "." which 289 * should be a VROOT node, however, the fh is different from the 290 * root fh stored in the mntinfo4_t. The invalid fh might be 291 * from a misbehaved server and will panic the client system at 292 * a later time. To avoid the panic, we drop the bad fh, use 293 * the root fh from mntinfo4_t, and print an error message 294 * for attention. 295 */ 296 nfs4_sharedfh_t * 297 badrootfh_check(nfs4_sharedfh_t *fh, nfs4_fname_t *nm, mntinfo4_t *mi, 298 int *wasbad) 299 { 300 char *s; 301 302 *wasbad = 0; 303 s = fn_name(nm); 304 ASSERT(strcmp(s, "..") != 0); 305 306 if ((s[0] == '.' && s[1] == '\0') && fh && 307 !SFH4_SAME(mi->mi_rootfh, fh)) { 308 #ifdef DEBUG 309 nfs4_fhandle_t fhandle; 310 311 zcmn_err(mi->mi_zone->zone_id, CE_WARN, 312 "Server %s returns a different " 313 "root filehandle for the path %s:", 314 mi->mi_curr_serv->sv_hostname, 315 mi->mi_curr_serv->sv_path); 316 317 /* print the bad fh */ 318 fhandle.fh_len = fh->sfh_fh.nfs_fh4_len; 319 bcopy(fh->sfh_fh.nfs_fh4_val, fhandle.fh_buf, 320 fhandle.fh_len); 321 nfs4_printfhandle(&fhandle); 322 323 /* print mi_rootfh */ 324 fhandle.fh_len = mi->mi_rootfh->sfh_fh.nfs_fh4_len; 325 bcopy(mi->mi_rootfh->sfh_fh.nfs_fh4_val, fhandle.fh_buf, 326 fhandle.fh_len); 327 nfs4_printfhandle(&fhandle); 328 #endif 329 /* use mi_rootfh instead; fh will be rele by the caller */ 330 fh = mi->mi_rootfh; 331 *wasbad = 1; 332 } 333 334 kmem_free(s, MAXNAMELEN); 335 return (fh); 336 } 337 338 void 339 r4_do_attrcache(vnode_t *vp, nfs4_ga_res_t *garp, int newnode, 340 hrtime_t t, cred_t *cr, int index) 341 { 342 int is_stub; 343 vattr_t *attr; 344 /* 345 * Don't add to attrcache if time overflow, but 346 * no need to check because either attr is null or the time 347 * values in it were processed by nfs4_time_ntov(), which checks 348 * for time overflows. 349 */ 350 attr = garp ? &garp->n4g_va : NULL; 351 352 if (attr) { 353 if (!newnode) { 354 rw_exit(&rtable4[index].r_lock); 355 #ifdef DEBUG 356 if (vp->v_type != attr->va_type && 357 vp->v_type != VNON && attr->va_type != VNON) { 358 zcmn_err(VTOMI4(vp)->mi_zone->zone_id, CE_WARN, 359 "makenfs4node: type (%d) doesn't " 360 "match type of found node at %p (%d)", 361 attr->va_type, (void *)vp, vp->v_type); 362 } 363 #endif 364 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 365 } else { 366 rnode4_t *rp = VTOR4(vp); 367 368 vp->v_type = attr->va_type; 369 vp->v_rdev = attr->va_rdev; 370 371 /* 372 * Turn this object into a "stub" object if we 373 * crossed an underlying server fs boundary. 374 * To make this check, during mount we save the 375 * fsid of the server object being mounted. 376 * Here we compare this object's server fsid 377 * with the fsid we saved at mount. If they 378 * are different, we crossed server fs boundary. 379 * 380 * The stub type is set (or not) at rnode 381 * creation time and it never changes for life 382 * of the rnode. 383 * 384 * The stub type is also set during RO failover, 385 * nfs4_remap_file(). 386 * 387 * This stub will be for a mirror-mount. 388 * 389 * We don't bother with taking r_state_lock to 390 * set the stub type because this is a new rnode 391 * and we're holding the hash bucket r_lock RW_WRITER. 392 * No other thread could have obtained access 393 * to this rnode. 394 */ 395 is_stub = 0; 396 if (garp->n4g_fsid_valid) { 397 fattr4_fsid ga_fsid = garp->n4g_fsid; 398 servinfo4_t *svp = rp->r_server; 399 400 rp->r_srv_fsid = ga_fsid; 401 402 (void) nfs_rw_enter_sig(&svp->sv_lock, 403 RW_READER, 0); 404 if (!FATTR4_FSID_EQ(&ga_fsid, &svp->sv_fsid)) 405 is_stub = 1; 406 nfs_rw_exit(&svp->sv_lock); 407 } 408 409 if (is_stub) 410 r4_stub_mirrormount(rp); 411 else 412 r4_stub_none(rp); 413 414 /* Can not cache partial attr */ 415 if (attr->va_mask == AT_ALL) 416 nfs4_attrcache_noinval(vp, garp, t); 417 else 418 PURGE_ATTRCACHE4(vp); 419 420 rw_exit(&rtable4[index].r_lock); 421 } 422 } else { 423 if (newnode) { 424 PURGE_ATTRCACHE4(vp); 425 } 426 rw_exit(&rtable4[index].r_lock); 427 } 428 } 429 430 /* 431 * Find or create an rnode based primarily on filehandle. To be 432 * used when dvp (vnode for parent directory) is not available; 433 * otherwise, makenfs4node() should be used. 434 * 435 * The nfs4_fname_t argument *npp is consumed and nulled out. 436 */ 437 438 vnode_t * 439 makenfs4node_by_fh(nfs4_sharedfh_t *sfh, nfs4_sharedfh_t *psfh, 440 nfs4_fname_t **npp, nfs4_ga_res_t *garp, 441 mntinfo4_t *mi, cred_t *cr, hrtime_t t) 442 { 443 vfs_t *vfsp = mi->mi_vfsp; 444 int newnode = 0; 445 vnode_t *vp; 446 rnode4_t *rp; 447 svnode_t *svp; 448 nfs4_fname_t *name; 449 int index; 450 451 ASSERT(npp && *npp); 452 name = *npp; 453 *npp = NULL; 454 455 index = rtable4hash(sfh); 456 rw_enter(&rtable4[index].r_lock, RW_READER); 457 458 rp = r4find(&rtable4[index], sfh, vfsp); 459 if (rp != NULL) { 460 rw_exit(&rtable4[index].r_lock); 461 vp = RTOV4(rp); 462 fn_rele(&name); 463 return (vp); 464 } 465 466 vp = make_rnode4(sfh, &rtable4[index], vfsp, 467 nfs4_vnodeops, nfs4_putapage, &newnode, cr); 468 if (newnode) { 469 svp = vtosv(vp); 470 svp->sv_forw = svp->sv_back = svp; 471 svp->sv_name = name; 472 if (psfh != NULL) 473 sfh4_hold(psfh); 474 svp->sv_dfh = psfh; 475 } else { 476 fn_rele(&name); 477 } 478 479 ASSERT(RW_LOCK_HELD(&rtable4[index].r_lock)); 480 r4_do_attrcache(vp, garp, newnode, t, cr, index); 481 ASSERT(rw_owner(&rtable4[index].r_lock) != curthread); 482 483 return (vp); 484 } 485 486 /* 487 * Find or create a vnode for the given filehandle, filesystem, parent, and 488 * name. The reference to nm is consumed, so the caller must first do an 489 * fn_hold() if it wants to continue using nm after this call. 490 */ 491 vnode_t * 492 makenfs4node(nfs4_sharedfh_t *fh, nfs4_ga_res_t *garp, struct vfs *vfsp, 493 hrtime_t t, cred_t *cr, vnode_t *dvp, nfs4_fname_t *nm) 494 { 495 vnode_t *vp; 496 int newnode; 497 int index; 498 mntinfo4_t *mi = VFTOMI4(vfsp); 499 int had_badfh = 0; 500 rnode4_t *rp; 501 502 ASSERT(dvp != NULL); 503 504 fh = badrootfh_check(fh, nm, mi, &had_badfh); 505 506 index = rtable4hash(fh); 507 rw_enter(&rtable4[index].r_lock, RW_READER); 508 509 /* 510 * Note: make_rnode4() may upgrade the hash bucket lock to exclusive. 511 */ 512 vp = make_rnode4(fh, &rtable4[index], vfsp, nfs4_vnodeops, 513 nfs4_putapage, &newnode, cr); 514 515 rp = VTOR4(vp); 516 sv_activate(&vp, dvp, &nm, newnode); 517 if (dvp->v_flag & V_XATTRDIR) { 518 mutex_enter(&rp->r_statelock); 519 rp->r_flags |= R4ISXATTR; 520 mutex_exit(&rp->r_statelock); 521 } 522 523 /* if getting a bad file handle, do not cache the attributes. */ 524 if (had_badfh) { 525 rw_exit(&rtable4[index].r_lock); 526 return (vp); 527 } 528 529 ASSERT(RW_LOCK_HELD(&rtable4[index].r_lock)); 530 r4_do_attrcache(vp, garp, newnode, t, cr, index); 531 ASSERT(rw_owner(&rtable4[index].r_lock) != curthread); 532 533 return (vp); 534 } 535 536 /* 537 * Hash on address of filehandle object. 538 * XXX totally untuned. 539 */ 540 541 int 542 rtable4hash(nfs4_sharedfh_t *fh) 543 { 544 return (((uintptr_t)fh / sizeof (*fh)) & rtable4mask); 545 } 546 547 /* 548 * Find or create the vnode for the given filehandle and filesystem. 549 * *newnode is set to zero if the vnode already existed; non-zero if it had 550 * to be created. 551 * 552 * Note: make_rnode4() may upgrade the hash bucket lock to exclusive. 553 */ 554 555 static vnode_t * 556 make_rnode4(nfs4_sharedfh_t *fh, r4hashq_t *rhtp, struct vfs *vfsp, 557 struct vnodeops *vops, 558 int (*putapage)(vnode_t *, page_t *, u_offset_t *, size_t *, int, cred_t *), 559 int *newnode, cred_t *cr) 560 { 561 rnode4_t *rp; 562 rnode4_t *trp; 563 vnode_t *vp; 564 mntinfo4_t *mi; 565 566 ASSERT(RW_READ_HELD(&rhtp->r_lock)); 567 568 mi = VFTOMI4(vfsp); 569 570 start: 571 if ((rp = r4find(rhtp, fh, vfsp)) != NULL) { 572 vp = RTOV4(rp); 573 *newnode = 0; 574 return (vp); 575 } 576 rw_exit(&rhtp->r_lock); 577 578 mutex_enter(&rp4freelist_lock); 579 580 if (rp4freelist != NULL && rnode4_new >= nrnode) { 581 rp = rp4freelist; 582 rp4_rmfree(rp); 583 mutex_exit(&rp4freelist_lock); 584 585 vp = RTOV4(rp); 586 587 if (rp->r_flags & R4HASHED) { 588 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 589 mutex_enter(&vp->v_lock); 590 if (vp->v_count > 1) { 591 vp->v_count--; 592 mutex_exit(&vp->v_lock); 593 rw_exit(&rp->r_hashq->r_lock); 594 rw_enter(&rhtp->r_lock, RW_READER); 595 goto start; 596 } 597 mutex_exit(&vp->v_lock); 598 rp4_rmhash_locked(rp); 599 rw_exit(&rp->r_hashq->r_lock); 600 } 601 602 r4inactive(rp, cr); 603 604 mutex_enter(&vp->v_lock); 605 if (vp->v_count > 1) { 606 vp->v_count--; 607 mutex_exit(&vp->v_lock); 608 rw_enter(&rhtp->r_lock, RW_READER); 609 goto start; 610 } 611 mutex_exit(&vp->v_lock); 612 vn_invalid(vp); 613 614 /* 615 * destroy old locks before bzero'ing and 616 * recreating the locks below. 617 */ 618 uninit_rnode4(rp); 619 620 /* 621 * Make sure that if rnode is recycled then 622 * VFS count is decremented properly before 623 * reuse. 624 */ 625 VFS_RELE(vp->v_vfsp); 626 vn_reinit(vp); 627 } else { 628 vnode_t *new_vp; 629 630 mutex_exit(&rp4freelist_lock); 631 632 rp = kmem_cache_alloc(rnode4_cache, KM_SLEEP); 633 new_vp = vn_alloc(KM_SLEEP); 634 635 atomic_add_long((ulong_t *)&rnode4_new, 1); 636 #ifdef DEBUG 637 clstat4_debug.nrnode.value.ui64++; 638 #endif 639 vp = new_vp; 640 } 641 642 bzero(rp, sizeof (*rp)); 643 rp->r_vnode = vp; 644 nfs_rw_init(&rp->r_rwlock, NULL, RW_DEFAULT, NULL); 645 nfs_rw_init(&rp->r_lkserlock, NULL, RW_DEFAULT, NULL); 646 mutex_init(&rp->r_svlock, NULL, MUTEX_DEFAULT, NULL); 647 mutex_init(&rp->r_statelock, NULL, MUTEX_DEFAULT, NULL); 648 mutex_init(&rp->r_statev4_lock, NULL, MUTEX_DEFAULT, NULL); 649 mutex_init(&rp->r_os_lock, NULL, MUTEX_DEFAULT, NULL); 650 rp->created_v4 = 0; 651 list_create(&rp->r_open_streams, sizeof (nfs4_open_stream_t), 652 offsetof(nfs4_open_stream_t, os_node)); 653 rp->r_lo_head.lo_prev_rnode = &rp->r_lo_head; 654 rp->r_lo_head.lo_next_rnode = &rp->r_lo_head; 655 cv_init(&rp->r_cv, NULL, CV_DEFAULT, NULL); 656 cv_init(&rp->r_commit.c_cv, NULL, CV_DEFAULT, NULL); 657 rp->r_flags = R4READDIRWATTR; 658 rp->r_fh = fh; 659 rp->r_hashq = rhtp; 660 sfh4_hold(rp->r_fh); 661 rp->r_server = mi->mi_curr_serv; 662 rp->r_deleg_type = OPEN_DELEGATE_NONE; 663 rp->r_deleg_needs_recovery = OPEN_DELEGATE_NONE; 664 nfs_rw_init(&rp->r_deleg_recall_lock, NULL, RW_DEFAULT, NULL); 665 666 rddir4_cache_create(rp); 667 rp->r_putapage = putapage; 668 vn_setops(vp, vops); 669 vp->v_data = (caddr_t)rp; 670 vp->v_vfsp = vfsp; 671 VFS_HOLD(vfsp); 672 vp->v_type = VNON; 673 if (isrootfh(fh, rp)) 674 vp->v_flag = VROOT; 675 vn_exists(vp); 676 677 /* 678 * There is a race condition if someone else 679 * alloc's the rnode while no locks are held, so we 680 * check again and recover if found. 681 */ 682 rw_enter(&rhtp->r_lock, RW_WRITER); 683 if ((trp = r4find(rhtp, fh, vfsp)) != NULL) { 684 vp = RTOV4(trp); 685 *newnode = 0; 686 rw_exit(&rhtp->r_lock); 687 rp4_addfree(rp, cr); 688 rw_enter(&rhtp->r_lock, RW_READER); 689 return (vp); 690 } 691 rp4_addhash(rp); 692 *newnode = 1; 693 return (vp); 694 } 695 696 static void 697 uninit_rnode4(rnode4_t *rp) 698 { 699 vnode_t *vp = RTOV4(rp); 700 701 ASSERT(rp != NULL); 702 ASSERT(vp != NULL); 703 ASSERT(vp->v_count == 1); 704 ASSERT(rp->r_count == 0); 705 ASSERT(rp->r_mapcnt == 0); 706 if (rp->r_flags & R4LODANGLERS) { 707 nfs4_flush_lock_owners(rp); 708 } 709 ASSERT(rp->r_lo_head.lo_next_rnode == &rp->r_lo_head); 710 ASSERT(rp->r_lo_head.lo_prev_rnode == &rp->r_lo_head); 711 ASSERT(!(rp->r_flags & R4HASHED)); 712 ASSERT(rp->r_freef == NULL && rp->r_freeb == NULL); 713 nfs4_clear_open_streams(rp); 714 list_destroy(&rp->r_open_streams); 715 716 /* 717 * Destroy the rddir cache first since we need to grab the r_statelock. 718 */ 719 mutex_enter(&rp->r_statelock); 720 rddir4_cache_destroy(rp); 721 mutex_exit(&rp->r_statelock); 722 sv_uninit(&rp->r_svnode); 723 sfh4_rele(&rp->r_fh); 724 nfs_rw_destroy(&rp->r_rwlock); 725 nfs_rw_destroy(&rp->r_lkserlock); 726 mutex_destroy(&rp->r_statelock); 727 mutex_destroy(&rp->r_statev4_lock); 728 mutex_destroy(&rp->r_os_lock); 729 cv_destroy(&rp->r_cv); 730 cv_destroy(&rp->r_commit.c_cv); 731 nfs_rw_destroy(&rp->r_deleg_recall_lock); 732 if (rp->r_flags & R4DELMAPLIST) 733 list_destroy(&rp->r_indelmap); 734 } 735 736 /* 737 * Put an rnode on the free list. 738 * 739 * Rnodes which were allocated above and beyond the normal limit 740 * are immediately freed. 741 */ 742 void 743 rp4_addfree(rnode4_t *rp, cred_t *cr) 744 { 745 vnode_t *vp; 746 vnode_t *xattr; 747 struct vfs *vfsp; 748 749 vp = RTOV4(rp); 750 ASSERT(vp->v_count >= 1); 751 ASSERT(rp->r_freef == NULL && rp->r_freeb == NULL); 752 753 /* 754 * If we have too many rnodes allocated and there are no 755 * references to this rnode, or if the rnode is no longer 756 * accessible by it does not reside in the hash queues, 757 * or if an i/o error occurred while writing to the file, 758 * then just free it instead of putting it on the rnode 759 * freelist. 760 */ 761 vfsp = vp->v_vfsp; 762 if (((rnode4_new > nrnode || !(rp->r_flags & R4HASHED) || 763 #ifdef DEBUG 764 (nfs4_rnode_nofreelist != 0) || 765 #endif 766 rp->r_error || (rp->r_flags & R4RECOVERR) || 767 (vfsp->vfs_flag & VFS_UNMOUNTED)) && rp->r_count == 0)) { 768 if (rp->r_flags & R4HASHED) { 769 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 770 mutex_enter(&vp->v_lock); 771 if (vp->v_count > 1) { 772 vp->v_count--; 773 mutex_exit(&vp->v_lock); 774 rw_exit(&rp->r_hashq->r_lock); 775 return; 776 } 777 mutex_exit(&vp->v_lock); 778 rp4_rmhash_locked(rp); 779 rw_exit(&rp->r_hashq->r_lock); 780 } 781 782 /* 783 * Make sure we don't have a delegation on this rnode 784 * before destroying it. 785 */ 786 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { 787 (void) nfs4delegreturn(rp, 788 NFS4_DR_FORCE|NFS4_DR_PUSH|NFS4_DR_REOPEN); 789 } 790 791 r4inactive(rp, cr); 792 793 /* 794 * Recheck the vnode reference count. We need to 795 * make sure that another reference has not been 796 * acquired while we were not holding v_lock. The 797 * rnode is not in the rnode hash queues; one 798 * way for a reference to have been acquired 799 * is for a VOP_PUTPAGE because the rnode was marked 800 * with R4DIRTY or for a modified page. This 801 * reference may have been acquired before our call 802 * to r4inactive. The i/o may have been completed, 803 * thus allowing r4inactive to complete, but the 804 * reference to the vnode may not have been released 805 * yet. In any case, the rnode can not be destroyed 806 * until the other references to this vnode have been 807 * released. The other references will take care of 808 * either destroying the rnode or placing it on the 809 * rnode freelist. If there are no other references, 810 * then the rnode may be safely destroyed. 811 */ 812 mutex_enter(&vp->v_lock); 813 if (vp->v_count > 1) { 814 vp->v_count--; 815 mutex_exit(&vp->v_lock); 816 return; 817 } 818 mutex_exit(&vp->v_lock); 819 820 destroy_rnode4(rp); 821 return; 822 } 823 824 /* 825 * Lock the hash queue and then recheck the reference count 826 * to ensure that no other threads have acquired a reference 827 * to indicate that the rnode should not be placed on the 828 * freelist. If another reference has been acquired, then 829 * just release this one and let the other thread complete 830 * the processing of adding this rnode to the freelist. 831 */ 832 again: 833 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 834 835 mutex_enter(&vp->v_lock); 836 if (vp->v_count > 1) { 837 vp->v_count--; 838 mutex_exit(&vp->v_lock); 839 rw_exit(&rp->r_hashq->r_lock); 840 return; 841 } 842 mutex_exit(&vp->v_lock); 843 844 /* 845 * Make sure we don't put an rnode with a delegation 846 * on the free list. 847 */ 848 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { 849 rw_exit(&rp->r_hashq->r_lock); 850 (void) nfs4delegreturn(rp, 851 NFS4_DR_FORCE|NFS4_DR_PUSH|NFS4_DR_REOPEN); 852 goto again; 853 } 854 855 /* 856 * Now that we have the hash queue lock, and we know there 857 * are not anymore references on the vnode, check to make 858 * sure there aren't any open streams still on the rnode. 859 * If so, drop the hash queue lock, remove the open streams, 860 * and recheck the v_count. 861 */ 862 mutex_enter(&rp->r_os_lock); 863 if (list_head(&rp->r_open_streams) != NULL) { 864 mutex_exit(&rp->r_os_lock); 865 rw_exit(&rp->r_hashq->r_lock); 866 if (nfs_zone() != VTOMI4(vp)->mi_zone) 867 nfs4_clear_open_streams(rp); 868 else 869 (void) nfs4close_all(vp, cr); 870 goto again; 871 } 872 mutex_exit(&rp->r_os_lock); 873 874 /* 875 * Before we put it on the freelist, make sure there are no pages. 876 * If there are, flush and commit of all of the dirty and 877 * uncommitted pages, assuming the file system isn't read only. 878 */ 879 if (!(vp->v_vfsp->vfs_flag & VFS_RDONLY) && nfs4_dross_pages(vp)) { 880 rw_exit(&rp->r_hashq->r_lock); 881 r4flushpages(rp, cr); 882 goto again; 883 } 884 885 /* 886 * Before we put it on the freelist, make sure there is no 887 * active xattr directory cached, the freelist will not 888 * have its entries r4inactive'd if there is still an active 889 * rnode, thus nothing in the freelist can hold another 890 * rnode active. 891 */ 892 xattr = rp->r_xattr_dir; 893 rp->r_xattr_dir = NULL; 894 895 /* 896 * If there is no cached data or metadata for this file, then 897 * put the rnode on the front of the freelist so that it will 898 * be reused before other rnodes which may have cached data or 899 * metadata associated with them. 900 */ 901 mutex_enter(&rp4freelist_lock); 902 if (rp4freelist == NULL) { 903 rp->r_freef = rp; 904 rp->r_freeb = rp; 905 rp4freelist = rp; 906 } else { 907 rp->r_freef = rp4freelist; 908 rp->r_freeb = rp4freelist->r_freeb; 909 rp4freelist->r_freeb->r_freef = rp; 910 rp4freelist->r_freeb = rp; 911 if (!nfs4_has_pages(vp) && rp->r_dir == NULL && 912 rp->r_symlink.contents == NULL && rp->r_secattr == NULL) 913 rp4freelist = rp; 914 } 915 mutex_exit(&rp4freelist_lock); 916 917 rw_exit(&rp->r_hashq->r_lock); 918 919 if (xattr) 920 VN_RELE(xattr); 921 } 922 923 /* 924 * Remove an rnode from the free list. 925 * 926 * The caller must be holding rp4freelist_lock and the rnode 927 * must be on the freelist. 928 */ 929 static void 930 rp4_rmfree(rnode4_t *rp) 931 { 932 933 ASSERT(MUTEX_HELD(&rp4freelist_lock)); 934 ASSERT(rp->r_freef != NULL && rp->r_freeb != NULL); 935 936 if (rp == rp4freelist) { 937 rp4freelist = rp->r_freef; 938 if (rp == rp4freelist) 939 rp4freelist = NULL; 940 } 941 rp->r_freeb->r_freef = rp->r_freef; 942 rp->r_freef->r_freeb = rp->r_freeb; 943 944 rp->r_freef = rp->r_freeb = NULL; 945 } 946 947 /* 948 * Put a rnode in the hash table. 949 * 950 * The caller must be holding the exclusive hash queue lock 951 */ 952 void 953 rp4_addhash(rnode4_t *rp) 954 { 955 ASSERT(RW_WRITE_HELD(&rp->r_hashq->r_lock)); 956 ASSERT(!(rp->r_flags & R4HASHED)); 957 958 #ifdef DEBUG 959 r4_dup_check(rp, RTOV4(rp)->v_vfsp); 960 #endif 961 962 rp->r_hashf = rp->r_hashq->r_hashf; 963 rp->r_hashq->r_hashf = rp; 964 rp->r_hashb = (rnode4_t *)rp->r_hashq; 965 rp->r_hashf->r_hashb = rp; 966 967 mutex_enter(&rp->r_statelock); 968 rp->r_flags |= R4HASHED; 969 mutex_exit(&rp->r_statelock); 970 } 971 972 /* 973 * Remove a rnode from the hash table. 974 * 975 * The caller must be holding the hash queue lock. 976 */ 977 void 978 rp4_rmhash_locked(rnode4_t *rp) 979 { 980 ASSERT(RW_WRITE_HELD(&rp->r_hashq->r_lock)); 981 ASSERT(rp->r_flags & R4HASHED); 982 983 rp->r_hashb->r_hashf = rp->r_hashf; 984 rp->r_hashf->r_hashb = rp->r_hashb; 985 986 mutex_enter(&rp->r_statelock); 987 rp->r_flags &= ~R4HASHED; 988 mutex_exit(&rp->r_statelock); 989 } 990 991 /* 992 * Remove a rnode from the hash table. 993 * 994 * The caller must not be holding the hash queue lock. 995 */ 996 void 997 rp4_rmhash(rnode4_t *rp) 998 { 999 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 1000 rp4_rmhash_locked(rp); 1001 rw_exit(&rp->r_hashq->r_lock); 1002 } 1003 1004 /* 1005 * Lookup a rnode by fhandle. Ignores rnodes that had failed recovery. 1006 * Returns NULL if no match. If an rnode is returned, the reference count 1007 * on the master vnode is incremented. 1008 * 1009 * The caller must be holding the hash queue lock, either shared or exclusive. 1010 */ 1011 rnode4_t * 1012 r4find(r4hashq_t *rhtp, nfs4_sharedfh_t *fh, struct vfs *vfsp) 1013 { 1014 rnode4_t *rp; 1015 vnode_t *vp; 1016 1017 ASSERT(RW_LOCK_HELD(&rhtp->r_lock)); 1018 1019 for (rp = rhtp->r_hashf; rp != (rnode4_t *)rhtp; rp = rp->r_hashf) { 1020 vp = RTOV4(rp); 1021 if (vp->v_vfsp == vfsp && SFH4_SAME(rp->r_fh, fh)) { 1022 1023 mutex_enter(&rp->r_statelock); 1024 if (rp->r_flags & R4RECOVERR) { 1025 mutex_exit(&rp->r_statelock); 1026 continue; 1027 } 1028 mutex_exit(&rp->r_statelock); 1029 #ifdef DEBUG 1030 r4_dup_check(rp, vfsp); 1031 #endif 1032 if (rp->r_freef != NULL) { 1033 mutex_enter(&rp4freelist_lock); 1034 /* 1035 * If the rnode is on the freelist, 1036 * then remove it and use that reference 1037 * as the new reference. Otherwise, 1038 * need to increment the reference count. 1039 */ 1040 if (rp->r_freef != NULL) { 1041 rp4_rmfree(rp); 1042 mutex_exit(&rp4freelist_lock); 1043 } else { 1044 mutex_exit(&rp4freelist_lock); 1045 VN_HOLD(vp); 1046 } 1047 } else 1048 VN_HOLD(vp); 1049 1050 /* 1051 * if root vnode, set v_flag to indicate that 1052 */ 1053 if (isrootfh(fh, rp)) { 1054 if (!(vp->v_flag & VROOT)) { 1055 mutex_enter(&vp->v_lock); 1056 vp->v_flag |= VROOT; 1057 mutex_exit(&vp->v_lock); 1058 } 1059 } 1060 return (rp); 1061 } 1062 } 1063 return (NULL); 1064 } 1065 1066 /* 1067 * Lookup an rnode by fhandle. Just a wrapper for r4find() 1068 * that assumes the caller hasn't already got the lock 1069 * on the hash bucket. 1070 */ 1071 rnode4_t * 1072 r4find_unlocked(nfs4_sharedfh_t *fh, struct vfs *vfsp) 1073 { 1074 rnode4_t *rp; 1075 int index; 1076 1077 index = rtable4hash(fh); 1078 rw_enter(&rtable4[index].r_lock, RW_READER); 1079 rp = r4find(&rtable4[index], fh, vfsp); 1080 rw_exit(&rtable4[index].r_lock); 1081 1082 return (rp); 1083 } 1084 1085 /* 1086 * Return 1 if there is a active vnode belonging to this vfs in the 1087 * rtable4 cache. 1088 * 1089 * Several of these checks are done without holding the usual 1090 * locks. This is safe because destroy_rtable(), rp_addfree(), 1091 * etc. will redo the necessary checks before actually destroying 1092 * any rnodes. 1093 */ 1094 int 1095 check_rtable4(struct vfs *vfsp) 1096 { 1097 rnode4_t *rp; 1098 vnode_t *vp; 1099 char *busy = NULL; 1100 int index; 1101 1102 for (index = 0; index < rtable4size; index++) { 1103 rw_enter(&rtable4[index].r_lock, RW_READER); 1104 1105 for (rp = rtable4[index].r_hashf; 1106 rp != (rnode4_t *)(&rtable4[index]); 1107 rp = rp->r_hashf) { 1108 1109 vp = RTOV4(rp); 1110 if (vp->v_vfsp == vfsp) { 1111 if (rp->r_freef == NULL) { 1112 busy = "not on free list"; 1113 } else if (nfs4_has_pages(vp) && 1114 (rp->r_flags & R4DIRTY)) { 1115 busy = "dirty pages"; 1116 } else if (rp->r_count > 0) { 1117 busy = "r_count > 0"; 1118 } 1119 1120 if (busy != NULL) { 1121 #ifdef DEBUG 1122 char *path; 1123 1124 path = fn_path(rp->r_svnode.sv_name); 1125 NFS4_DEBUG(nfs4_rnode_debug, 1126 (CE_NOTE, "check_rtable4: " "%s %s", 1127 path, busy)); 1128 kmem_free(path, strlen(path)+1); 1129 #endif 1130 rw_exit(&rtable4[index].r_lock); 1131 return (1); 1132 } 1133 } 1134 } 1135 rw_exit(&rtable4[index].r_lock); 1136 } 1137 return (0); 1138 } 1139 1140 /* 1141 * Destroy inactive vnodes from the hash queues which 1142 * belong to this vfs. All of the vnodes should be inactive. 1143 * It is essential that we destroy all rnodes in case of 1144 * forced unmount as well as in normal unmount case. 1145 */ 1146 1147 void 1148 destroy_rtable4(struct vfs *vfsp, cred_t *cr) 1149 { 1150 int index; 1151 vnode_t *vp; 1152 rnode4_t *rp, *r_hashf, *rlist; 1153 1154 rlist = NULL; 1155 1156 for (index = 0; index < rtable4size; index++) { 1157 rw_enter(&rtable4[index].r_lock, RW_WRITER); 1158 for (rp = rtable4[index].r_hashf; 1159 rp != (rnode4_t *)(&rtable4[index]); 1160 rp = r_hashf) { 1161 /* save the hash pointer before destroying */ 1162 r_hashf = rp->r_hashf; 1163 1164 vp = RTOV4(rp); 1165 if (vp->v_vfsp == vfsp) { 1166 mutex_enter(&rp4freelist_lock); 1167 if (rp->r_freef != NULL) { 1168 rp4_rmfree(rp); 1169 mutex_exit(&rp4freelist_lock); 1170 rp4_rmhash_locked(rp); 1171 rp->r_hashf = rlist; 1172 rlist = rp; 1173 } else 1174 mutex_exit(&rp4freelist_lock); 1175 } 1176 } 1177 rw_exit(&rtable4[index].r_lock); 1178 } 1179 1180 for (rp = rlist; rp != NULL; rp = r_hashf) { 1181 r_hashf = rp->r_hashf; 1182 /* 1183 * This call to rp4_addfree will end up destroying the 1184 * rnode, but in a safe way with the appropriate set 1185 * of checks done. 1186 */ 1187 rp4_addfree(rp, cr); 1188 } 1189 } 1190 1191 /* 1192 * This routine destroys all the resources of an rnode 1193 * and finally the rnode itself. 1194 */ 1195 static void 1196 destroy_rnode4(rnode4_t *rp) 1197 { 1198 vnode_t *vp; 1199 vfs_t *vfsp; 1200 1201 ASSERT(rp->r_deleg_type == OPEN_DELEGATE_NONE); 1202 1203 vp = RTOV4(rp); 1204 vfsp = vp->v_vfsp; 1205 1206 uninit_rnode4(rp); 1207 atomic_add_long((ulong_t *)&rnode4_new, -1); 1208 #ifdef DEBUG 1209 clstat4_debug.nrnode.value.ui64--; 1210 #endif 1211 kmem_cache_free(rnode4_cache, rp); 1212 vn_invalid(vp); 1213 vn_free(vp); 1214 VFS_RELE(vfsp); 1215 } 1216 1217 /* 1218 * Invalidate the attributes on all rnodes forcing the next getattr 1219 * to go over the wire. Used to flush stale uid and gid mappings. 1220 * Maybe done on a per vfsp, or all rnodes (vfsp == NULL) 1221 */ 1222 void 1223 nfs4_rnode_invalidate(struct vfs *vfsp) 1224 { 1225 int index; 1226 rnode4_t *rp; 1227 vnode_t *vp; 1228 1229 /* 1230 * Walk the hash queues looking for rnodes. 1231 */ 1232 for (index = 0; index < rtable4size; index++) { 1233 rw_enter(&rtable4[index].r_lock, RW_READER); 1234 for (rp = rtable4[index].r_hashf; 1235 rp != (rnode4_t *)(&rtable4[index]); 1236 rp = rp->r_hashf) { 1237 vp = RTOV4(rp); 1238 if (vfsp != NULL && vp->v_vfsp != vfsp) 1239 continue; 1240 1241 if (!mutex_tryenter(&rp->r_statelock)) 1242 continue; 1243 1244 /* 1245 * Expire the attributes by resetting the change 1246 * and attr timeout. 1247 */ 1248 rp->r_change = 0; 1249 PURGE_ATTRCACHE4_LOCKED(rp); 1250 mutex_exit(&rp->r_statelock); 1251 } 1252 rw_exit(&rtable4[index].r_lock); 1253 } 1254 } 1255 1256 /* 1257 * Flush all vnodes in this (or every) vfs. 1258 * Used by nfs_sync and by nfs_unmount. 1259 */ 1260 void 1261 r4flush(struct vfs *vfsp, cred_t *cr) 1262 { 1263 int index; 1264 rnode4_t *rp; 1265 vnode_t *vp, **vplist; 1266 long num, cnt; 1267 1268 /* 1269 * Check to see whether there is anything to do. 1270 */ 1271 num = rnode4_new; 1272 if (num == 0) 1273 return; 1274 1275 /* 1276 * Allocate a slot for all currently active rnodes on the 1277 * supposition that they all may need flushing. 1278 */ 1279 vplist = kmem_alloc(num * sizeof (*vplist), KM_SLEEP); 1280 cnt = 0; 1281 1282 /* 1283 * Walk the hash queues looking for rnodes with page 1284 * lists associated with them. Make a list of these 1285 * files. 1286 */ 1287 for (index = 0; index < rtable4size; index++) { 1288 rw_enter(&rtable4[index].r_lock, RW_READER); 1289 for (rp = rtable4[index].r_hashf; 1290 rp != (rnode4_t *)(&rtable4[index]); 1291 rp = rp->r_hashf) { 1292 vp = RTOV4(rp); 1293 /* 1294 * Don't bother sync'ing a vp if it 1295 * is part of virtual swap device or 1296 * if VFS is read-only 1297 */ 1298 if (IS_SWAPVP(vp) || vn_is_readonly(vp)) 1299 continue; 1300 /* 1301 * If flushing all mounted file systems or 1302 * the vnode belongs to this vfs, has pages 1303 * and is marked as either dirty or mmap'd, 1304 * hold and add this vnode to the list of 1305 * vnodes to flush. 1306 */ 1307 if ((vfsp == NULL || vp->v_vfsp == vfsp) && 1308 nfs4_has_pages(vp) && 1309 ((rp->r_flags & R4DIRTY) || rp->r_mapcnt > 0)) { 1310 VN_HOLD(vp); 1311 vplist[cnt++] = vp; 1312 if (cnt == num) { 1313 rw_exit(&rtable4[index].r_lock); 1314 goto toomany; 1315 } 1316 } 1317 } 1318 rw_exit(&rtable4[index].r_lock); 1319 } 1320 toomany: 1321 1322 /* 1323 * Flush and release all of the files on the list. 1324 */ 1325 while (cnt-- > 0) { 1326 vp = vplist[cnt]; 1327 (void) VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_ASYNC, cr, NULL); 1328 VN_RELE(vp); 1329 } 1330 1331 /* 1332 * Free the space allocated to hold the list. 1333 */ 1334 kmem_free(vplist, num * sizeof (*vplist)); 1335 } 1336 1337 int 1338 nfs4_free_data_reclaim(rnode4_t *rp) 1339 { 1340 char *contents; 1341 vnode_t *xattr; 1342 int size; 1343 vsecattr_t *vsp; 1344 int freed; 1345 bool_t rdc = FALSE; 1346 1347 /* 1348 * Free any held caches which may 1349 * be associated with this rnode. 1350 */ 1351 mutex_enter(&rp->r_statelock); 1352 if (rp->r_dir != NULL) 1353 rdc = TRUE; 1354 contents = rp->r_symlink.contents; 1355 size = rp->r_symlink.size; 1356 rp->r_symlink.contents = NULL; 1357 vsp = rp->r_secattr; 1358 rp->r_secattr = NULL; 1359 xattr = rp->r_xattr_dir; 1360 rp->r_xattr_dir = NULL; 1361 mutex_exit(&rp->r_statelock); 1362 1363 /* 1364 * Free the access cache entries. 1365 */ 1366 freed = nfs4_access_purge_rp(rp); 1367 1368 if (rdc == FALSE && contents == NULL && vsp == NULL && xattr == NULL) 1369 return (freed); 1370 1371 /* 1372 * Free the readdir cache entries, incompletely if we can't block. 1373 */ 1374 nfs4_purge_rddir_cache(RTOV4(rp)); 1375 1376 /* 1377 * Free the symbolic link cache. 1378 */ 1379 if (contents != NULL) { 1380 1381 kmem_free((void *)contents, size); 1382 } 1383 1384 /* 1385 * Free any cached ACL. 1386 */ 1387 if (vsp != NULL) 1388 nfs4_acl_free_cache(vsp); 1389 1390 /* 1391 * Release the xattr directory vnode 1392 */ 1393 if (xattr != NULL) 1394 VN_RELE(xattr); 1395 1396 return (1); 1397 } 1398 1399 static int 1400 nfs4_active_data_reclaim(rnode4_t *rp) 1401 { 1402 char *contents; 1403 vnode_t *xattr; 1404 int size; 1405 vsecattr_t *vsp; 1406 int freed; 1407 bool_t rdc = FALSE; 1408 1409 /* 1410 * Free any held credentials and caches which 1411 * may be associated with this rnode. 1412 */ 1413 if (!mutex_tryenter(&rp->r_statelock)) 1414 return (0); 1415 contents = rp->r_symlink.contents; 1416 size = rp->r_symlink.size; 1417 rp->r_symlink.contents = NULL; 1418 vsp = rp->r_secattr; 1419 rp->r_secattr = NULL; 1420 if (rp->r_dir != NULL) 1421 rdc = TRUE; 1422 xattr = rp->r_xattr_dir; 1423 rp->r_xattr_dir = NULL; 1424 mutex_exit(&rp->r_statelock); 1425 1426 /* 1427 * Free the access cache entries. 1428 */ 1429 freed = nfs4_access_purge_rp(rp); 1430 1431 if (contents == NULL && vsp == NULL && rdc == FALSE && xattr == NULL) 1432 return (freed); 1433 1434 /* 1435 * Free the symbolic link cache. 1436 */ 1437 if (contents != NULL) { 1438 1439 kmem_free((void *)contents, size); 1440 } 1441 1442 /* 1443 * Free any cached ACL. 1444 */ 1445 if (vsp != NULL) 1446 nfs4_acl_free_cache(vsp); 1447 1448 nfs4_purge_rddir_cache(RTOV4(rp)); 1449 1450 /* 1451 * Release the xattr directory vnode 1452 */ 1453 if (xattr != NULL) 1454 VN_RELE(xattr); 1455 1456 return (1); 1457 } 1458 1459 static int 1460 nfs4_free_reclaim(void) 1461 { 1462 int freed; 1463 rnode4_t *rp; 1464 1465 #ifdef DEBUG 1466 clstat4_debug.f_reclaim.value.ui64++; 1467 #endif 1468 freed = 0; 1469 mutex_enter(&rp4freelist_lock); 1470 rp = rp4freelist; 1471 if (rp != NULL) { 1472 do { 1473 if (nfs4_free_data_reclaim(rp)) 1474 freed = 1; 1475 } while ((rp = rp->r_freef) != rp4freelist); 1476 } 1477 mutex_exit(&rp4freelist_lock); 1478 return (freed); 1479 } 1480 1481 static int 1482 nfs4_active_reclaim(void) 1483 { 1484 int freed; 1485 int index; 1486 rnode4_t *rp; 1487 1488 #ifdef DEBUG 1489 clstat4_debug.a_reclaim.value.ui64++; 1490 #endif 1491 freed = 0; 1492 for (index = 0; index < rtable4size; index++) { 1493 rw_enter(&rtable4[index].r_lock, RW_READER); 1494 for (rp = rtable4[index].r_hashf; 1495 rp != (rnode4_t *)(&rtable4[index]); 1496 rp = rp->r_hashf) { 1497 if (nfs4_active_data_reclaim(rp)) 1498 freed = 1; 1499 } 1500 rw_exit(&rtable4[index].r_lock); 1501 } 1502 return (freed); 1503 } 1504 1505 static int 1506 nfs4_rnode_reclaim(void) 1507 { 1508 int freed; 1509 rnode4_t *rp; 1510 vnode_t *vp; 1511 1512 #ifdef DEBUG 1513 clstat4_debug.r_reclaim.value.ui64++; 1514 #endif 1515 freed = 0; 1516 mutex_enter(&rp4freelist_lock); 1517 while ((rp = rp4freelist) != NULL) { 1518 rp4_rmfree(rp); 1519 mutex_exit(&rp4freelist_lock); 1520 if (rp->r_flags & R4HASHED) { 1521 vp = RTOV4(rp); 1522 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 1523 mutex_enter(&vp->v_lock); 1524 if (vp->v_count > 1) { 1525 vp->v_count--; 1526 mutex_exit(&vp->v_lock); 1527 rw_exit(&rp->r_hashq->r_lock); 1528 mutex_enter(&rp4freelist_lock); 1529 continue; 1530 } 1531 mutex_exit(&vp->v_lock); 1532 rp4_rmhash_locked(rp); 1533 rw_exit(&rp->r_hashq->r_lock); 1534 } 1535 /* 1536 * This call to rp_addfree will end up destroying the 1537 * rnode, but in a safe way with the appropriate set 1538 * of checks done. 1539 */ 1540 rp4_addfree(rp, CRED()); 1541 mutex_enter(&rp4freelist_lock); 1542 } 1543 mutex_exit(&rp4freelist_lock); 1544 return (freed); 1545 } 1546 1547 /*ARGSUSED*/ 1548 static void 1549 nfs4_reclaim(void *cdrarg) 1550 { 1551 #ifdef DEBUG 1552 clstat4_debug.reclaim.value.ui64++; 1553 #endif 1554 if (nfs4_free_reclaim()) 1555 return; 1556 1557 if (nfs4_active_reclaim()) 1558 return; 1559 1560 (void) nfs4_rnode_reclaim(); 1561 } 1562 1563 /* 1564 * Returns the clientid4 to use for the given mntinfo4. Note that the 1565 * clientid can change if the caller drops mi_recovlock. 1566 */ 1567 1568 clientid4 1569 mi2clientid(mntinfo4_t *mi) 1570 { 1571 nfs4_server_t *sp; 1572 clientid4 clientid = 0; 1573 1574 /* this locks down sp if it is found */ 1575 sp = find_nfs4_server(mi); 1576 if (sp != NULL) { 1577 clientid = sp->clientid; 1578 mutex_exit(&sp->s_lock); 1579 nfs4_server_rele(sp); 1580 } 1581 return (clientid); 1582 } 1583 1584 /* 1585 * Return the current lease time for the server associated with the given 1586 * file. Note that the lease time could change immediately after this 1587 * call. 1588 */ 1589 1590 time_t 1591 r2lease_time(rnode4_t *rp) 1592 { 1593 nfs4_server_t *sp; 1594 time_t lease_time; 1595 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 1596 1597 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0); 1598 1599 /* this locks down sp if it is found */ 1600 sp = find_nfs4_server(VTOMI4(RTOV4(rp))); 1601 1602 if (VTOMI4(RTOV4(rp))->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1603 if (sp != NULL) { 1604 mutex_exit(&sp->s_lock); 1605 nfs4_server_rele(sp); 1606 } 1607 nfs_rw_exit(&mi->mi_recovlock); 1608 return (1); /* 1 second */ 1609 } 1610 1611 ASSERT(sp != NULL); 1612 1613 lease_time = sp->s_lease_time; 1614 1615 mutex_exit(&sp->s_lock); 1616 nfs4_server_rele(sp); 1617 nfs_rw_exit(&mi->mi_recovlock); 1618 1619 return (lease_time); 1620 } 1621 1622 /* 1623 * Return a list with information about all the known open instances for 1624 * a filesystem. The caller must call r4releopenlist() when done with the 1625 * list. 1626 * 1627 * We are safe at looking at os_valid and os_pending_close across dropping 1628 * the 'os_sync_lock' to count up the number of open streams and then 1629 * allocate memory for the osp list due to: 1630 * -Looking at os_pending_close is safe since this routine is 1631 * only called via recovery, and os_pending_close can only be set via 1632 * a non-recovery operation (which are all blocked when recovery 1633 * is active). 1634 * 1635 * -Examining os_valid is safe since non-recovery operations, which 1636 * could potentially switch os_valid to 0, are blocked (via 1637 * nfs4_start_fop) and recovery is single-threaded per mntinfo4_t 1638 * (which means we are the only recovery thread potentially acting 1639 * on this open stream). 1640 */ 1641 1642 nfs4_opinst_t * 1643 r4mkopenlist(mntinfo4_t *mi) 1644 { 1645 nfs4_opinst_t *reopenlist, *rep; 1646 rnode4_t *rp; 1647 vnode_t *vp; 1648 vfs_t *vfsp = mi->mi_vfsp; 1649 int numosp; 1650 nfs4_open_stream_t *osp; 1651 int index; 1652 open_delegation_type4 dtype; 1653 int hold_vnode; 1654 1655 reopenlist = NULL; 1656 1657 for (index = 0; index < rtable4size; index++) { 1658 rw_enter(&rtable4[index].r_lock, RW_READER); 1659 for (rp = rtable4[index].r_hashf; 1660 rp != (rnode4_t *)(&rtable4[index]); 1661 rp = rp->r_hashf) { 1662 1663 vp = RTOV4(rp); 1664 if (vp->v_vfsp != vfsp) 1665 continue; 1666 hold_vnode = 0; 1667 1668 mutex_enter(&rp->r_os_lock); 1669 1670 /* Count the number of valid open_streams of the file */ 1671 numosp = 0; 1672 for (osp = list_head(&rp->r_open_streams); osp != NULL; 1673 osp = list_next(&rp->r_open_streams, osp)) { 1674 mutex_enter(&osp->os_sync_lock); 1675 if (osp->os_valid && !osp->os_pending_close) 1676 numosp++; 1677 mutex_exit(&osp->os_sync_lock); 1678 } 1679 1680 /* Fill in the valid open streams per vp */ 1681 if (numosp > 0) { 1682 int j; 1683 1684 hold_vnode = 1; 1685 1686 /* 1687 * Add a new open instance to the list 1688 */ 1689 rep = kmem_zalloc(sizeof (*reopenlist), 1690 KM_SLEEP); 1691 rep->re_next = reopenlist; 1692 reopenlist = rep; 1693 1694 rep->re_vp = vp; 1695 rep->re_osp = kmem_zalloc( 1696 numosp * sizeof (*(rep->re_osp)), 1697 KM_SLEEP); 1698 rep->re_numosp = numosp; 1699 1700 j = 0; 1701 for (osp = list_head(&rp->r_open_streams); 1702 osp != NULL; 1703 osp = list_next(&rp->r_open_streams, osp)) { 1704 1705 mutex_enter(&osp->os_sync_lock); 1706 if (osp->os_valid && 1707 !osp->os_pending_close) { 1708 osp->os_ref_count++; 1709 rep->re_osp[j] = osp; 1710 j++; 1711 } 1712 mutex_exit(&osp->os_sync_lock); 1713 } 1714 /* 1715 * Assuming valid osp(s) stays valid between 1716 * the time obtaining j and numosp. 1717 */ 1718 ASSERT(j == numosp); 1719 } 1720 1721 mutex_exit(&rp->r_os_lock); 1722 /* do this here to keep v_lock > r_os_lock */ 1723 if (hold_vnode) 1724 VN_HOLD(vp); 1725 mutex_enter(&rp->r_statev4_lock); 1726 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { 1727 /* 1728 * If this rnode holds a delegation, 1729 * but if there are no valid open streams, 1730 * then just discard the delegation 1731 * without doing delegreturn. 1732 */ 1733 if (numosp > 0) 1734 rp->r_deleg_needs_recovery = 1735 rp->r_deleg_type; 1736 } 1737 /* Save the delegation type for use outside the lock */ 1738 dtype = rp->r_deleg_type; 1739 mutex_exit(&rp->r_statev4_lock); 1740 1741 /* 1742 * If we have a delegation then get rid of it. 1743 * We've set rp->r_deleg_needs_recovery so we have 1744 * enough information to recover. 1745 */ 1746 if (dtype != OPEN_DELEGATE_NONE) { 1747 (void) nfs4delegreturn(rp, NFS4_DR_DISCARD); 1748 } 1749 } 1750 rw_exit(&rtable4[index].r_lock); 1751 } 1752 return (reopenlist); 1753 } 1754 1755 /* 1756 * Release the list of open instance references. 1757 */ 1758 1759 void 1760 r4releopenlist(nfs4_opinst_t *reopenp) 1761 { 1762 nfs4_opinst_t *rep, *next; 1763 int i; 1764 1765 for (rep = reopenp; rep; rep = next) { 1766 next = rep->re_next; 1767 1768 for (i = 0; i < rep->re_numosp; i++) 1769 open_stream_rele(rep->re_osp[i], VTOR4(rep->re_vp)); 1770 1771 VN_RELE(rep->re_vp); 1772 kmem_free(rep->re_osp, 1773 rep->re_numosp * sizeof (*(rep->re_osp))); 1774 1775 kmem_free(rep, sizeof (*rep)); 1776 } 1777 } 1778 1779 int 1780 nfs4_rnode_init(void) 1781 { 1782 ulong_t nrnode4_max; 1783 int i; 1784 1785 /* 1786 * Compute the size of the rnode4 hash table 1787 */ 1788 if (nrnode <= 0) 1789 nrnode = ncsize; 1790 nrnode4_max = 1791 (ulong_t)((kmem_maxavail() >> 2) / sizeof (struct rnode4)); 1792 if (nrnode > nrnode4_max || (nrnode == 0 && ncsize == 0)) { 1793 zcmn_err(GLOBAL_ZONEID, CE_NOTE, 1794 "setting nrnode to max value of %ld", nrnode4_max); 1795 nrnode = nrnode4_max; 1796 } 1797 rtable4size = 1 << highbit(nrnode / rnode4_hashlen); 1798 rtable4mask = rtable4size - 1; 1799 1800 /* 1801 * Allocate and initialize the hash buckets 1802 */ 1803 rtable4 = kmem_alloc(rtable4size * sizeof (*rtable4), KM_SLEEP); 1804 for (i = 0; i < rtable4size; i++) { 1805 rtable4[i].r_hashf = (rnode4_t *)(&rtable4[i]); 1806 rtable4[i].r_hashb = (rnode4_t *)(&rtable4[i]); 1807 rw_init(&rtable4[i].r_lock, NULL, RW_DEFAULT, NULL); 1808 } 1809 1810 rnode4_cache = kmem_cache_create("rnode4_cache", sizeof (rnode4_t), 1811 0, NULL, NULL, nfs4_reclaim, NULL, NULL, 0); 1812 1813 return (0); 1814 } 1815 1816 int 1817 nfs4_rnode_fini(void) 1818 { 1819 int i; 1820 1821 /* 1822 * Deallocate the rnode hash queues 1823 */ 1824 kmem_cache_destroy(rnode4_cache); 1825 1826 for (i = 0; i < rtable4size; i++) 1827 rw_destroy(&rtable4[i].r_lock); 1828 1829 kmem_free(rtable4, rtable4size * sizeof (*rtable4)); 1830 1831 return (0); 1832 } 1833 1834 /* 1835 * Return non-zero if the given filehandle refers to the root filehandle 1836 * for the given rnode. 1837 */ 1838 1839 static int 1840 isrootfh(nfs4_sharedfh_t *fh, rnode4_t *rp) 1841 { 1842 int isroot; 1843 1844 isroot = 0; 1845 if (SFH4_SAME(VTOMI4(RTOV4(rp))->mi_rootfh, fh)) 1846 isroot = 1; 1847 1848 return (isroot); 1849 } 1850 1851 /* 1852 * The r4_stub_* routines assume that the rnode is newly activated, and 1853 * that the caller either holds the hash bucket r_lock for this rnode as 1854 * RW_WRITER, or holds r_statelock. 1855 */ 1856 static void 1857 r4_stub_set(rnode4_t *rp, nfs4_stub_type_t type) 1858 { 1859 vnode_t *vp = RTOV4(rp); 1860 krwlock_t *hash_lock = &rp->r_hashq->r_lock; 1861 1862 ASSERT(RW_WRITE_HELD(hash_lock) || MUTEX_HELD(&rp->r_statelock)); 1863 1864 rp->r_stub_type = type; 1865 1866 /* 1867 * Safely switch this vnode to the trigger vnodeops. 1868 * 1869 * Currently, we don't ever switch a trigger vnode back to using 1870 * "regular" v4 vnodeops. NFS4_STUB_NONE is only used to note that 1871 * a new v4 object is not a trigger, and it will already have the 1872 * correct v4 vnodeops by default. So, no "else" case required here. 1873 */ 1874 if (type != NFS4_STUB_NONE) 1875 vn_setops(vp, nfs4_trigger_vnodeops); 1876 } 1877 1878 void 1879 r4_stub_mirrormount(rnode4_t *rp) 1880 { 1881 r4_stub_set(rp, NFS4_STUB_MIRRORMOUNT); 1882 } 1883 1884 void 1885 r4_stub_none(rnode4_t *rp) 1886 { 1887 r4_stub_set(rp, NFS4_STUB_NONE); 1888 } 1889 1890 #ifdef DEBUG 1891 1892 /* 1893 * Look in the rnode table for other rnodes that have the same filehandle. 1894 * Assume the lock is held for the hash chain of checkrp 1895 */ 1896 1897 static void 1898 r4_dup_check(rnode4_t *checkrp, vfs_t *vfsp) 1899 { 1900 rnode4_t *rp; 1901 vnode_t *tvp; 1902 nfs4_fhandle_t fh, fh2; 1903 int index; 1904 1905 if (!r4_check_for_dups) 1906 return; 1907 1908 ASSERT(RW_LOCK_HELD(&checkrp->r_hashq->r_lock)); 1909 1910 sfh4_copyval(checkrp->r_fh, &fh); 1911 1912 for (index = 0; index < rtable4size; index++) { 1913 1914 if (&rtable4[index] != checkrp->r_hashq) 1915 rw_enter(&rtable4[index].r_lock, RW_READER); 1916 1917 for (rp = rtable4[index].r_hashf; 1918 rp != (rnode4_t *)(&rtable4[index]); 1919 rp = rp->r_hashf) { 1920 1921 if (rp == checkrp) 1922 continue; 1923 1924 tvp = RTOV4(rp); 1925 if (tvp->v_vfsp != vfsp) 1926 continue; 1927 1928 sfh4_copyval(rp->r_fh, &fh2); 1929 if (nfs4cmpfhandle(&fh, &fh2) == 0) { 1930 cmn_err(CE_PANIC, "rnodes with same fs, fh " 1931 "(%p, %p)", (void *)checkrp, (void *)rp); 1932 } 1933 } 1934 1935 if (&rtable4[index] != checkrp->r_hashq) 1936 rw_exit(&rtable4[index].r_lock); 1937 } 1938 } 1939 1940 #endif /* DEBUG */ 1941