1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 27 * All Rights Reserved 28 */ 29 30 #include <sys/param.h> 31 #include <sys/types.h> 32 #include <sys/systm.h> 33 #include <sys/thread.h> 34 #include <sys/t_lock.h> 35 #include <sys/time.h> 36 #include <sys/vnode.h> 37 #include <sys/vfs.h> 38 #include <sys/errno.h> 39 #include <sys/buf.h> 40 #include <sys/stat.h> 41 #include <sys/cred.h> 42 #include <sys/kmem.h> 43 #include <sys/debug.h> 44 #include <sys/dnlc.h> 45 #include <sys/vmsystm.h> 46 #include <sys/flock.h> 47 #include <sys/share.h> 48 #include <sys/cmn_err.h> 49 #include <sys/tiuser.h> 50 #include <sys/sysmacros.h> 51 #include <sys/callb.h> 52 #include <sys/acl.h> 53 #include <sys/kstat.h> 54 #include <sys/signal.h> 55 #include <sys/disp.h> 56 #include <sys/atomic.h> 57 #include <sys/list.h> 58 #include <sys/sdt.h> 59 60 #include <rpc/types.h> 61 #include <rpc/xdr.h> 62 #include <rpc/auth.h> 63 #include <rpc/clnt.h> 64 65 #include <nfs/nfs.h> 66 #include <nfs/nfs_clnt.h> 67 #include <nfs/nfs_acl.h> 68 69 #include <nfs/nfs4.h> 70 #include <nfs/rnode4.h> 71 #include <nfs/nfs4_clnt.h> 72 73 #include <vm/hat.h> 74 #include <vm/as.h> 75 #include <vm/page.h> 76 #include <vm/pvn.h> 77 #include <vm/seg.h> 78 #include <vm/seg_map.h> 79 #include <vm/seg_vn.h> 80 81 #include <sys/ddi.h> 82 83 /* 84 * Arguments to page-flush thread. 85 */ 86 typedef struct { 87 vnode_t *vp; 88 cred_t *cr; 89 } pgflush_t; 90 91 #ifdef DEBUG 92 int nfs4_client_lease_debug; 93 int nfs4_sharedfh_debug; 94 int nfs4_fname_debug; 95 96 /* temporary: panic if v_type is inconsistent with r_attr va_type */ 97 int nfs4_vtype_debug; 98 99 uint_t nfs4_tsd_key; 100 #endif 101 102 static time_t nfs4_client_resumed = 0; 103 static callb_id_t cid = 0; 104 105 static int nfs4renew(nfs4_server_t *); 106 static void nfs4_attrcache_va(vnode_t *, nfs4_ga_res_t *, int); 107 static void nfs4_pgflush_thread(pgflush_t *); 108 109 static boolean_t nfs4_client_cpr_callb(void *, int); 110 111 struct mi4_globals { 112 kmutex_t mig_lock; /* lock protecting mig_list */ 113 list_t mig_list; /* list of NFS v4 mounts in zone */ 114 boolean_t mig_destructor_called; 115 }; 116 117 static zone_key_t mi4_list_key; 118 119 /* 120 * Attributes caching: 121 * 122 * Attributes are cached in the rnode in struct vattr form. 123 * There is a time associated with the cached attributes (r_time_attr_inval) 124 * which tells whether the attributes are valid. The time is initialized 125 * to the difference between current time and the modify time of the vnode 126 * when new attributes are cached. This allows the attributes for 127 * files that have changed recently to be timed out sooner than for files 128 * that have not changed for a long time. There are minimum and maximum 129 * timeout values that can be set per mount point. 130 */ 131 132 /* 133 * If a cache purge is in progress, wait for it to finish. 134 * 135 * The current thread must not be in the middle of an 136 * nfs4_start_op/nfs4_end_op region. Otherwise, there could be a deadlock 137 * between this thread, a recovery thread, and the page flush thread. 138 */ 139 int 140 nfs4_waitfor_purge_complete(vnode_t *vp) 141 { 142 rnode4_t *rp; 143 k_sigset_t smask; 144 145 rp = VTOR4(vp); 146 if ((rp->r_serial != NULL && rp->r_serial != curthread) || 147 ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread)) { 148 mutex_enter(&rp->r_statelock); 149 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 150 while ((rp->r_serial != NULL && rp->r_serial != curthread) || 151 ((rp->r_flags & R4PGFLUSH) && 152 rp->r_pgflush != curthread)) { 153 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 154 sigunintr(&smask); 155 mutex_exit(&rp->r_statelock); 156 return (EINTR); 157 } 158 } 159 sigunintr(&smask); 160 mutex_exit(&rp->r_statelock); 161 } 162 return (0); 163 } 164 165 /* 166 * Validate caches by checking cached attributes. If they have timed out, 167 * then get new attributes from the server. As a side effect, cache 168 * invalidation is done if the attributes have changed. 169 * 170 * If the attributes have not timed out and if there is a cache 171 * invalidation being done by some other thread, then wait until that 172 * thread has completed the cache invalidation. 173 */ 174 int 175 nfs4_validate_caches(vnode_t *vp, cred_t *cr) 176 { 177 int error; 178 nfs4_ga_res_t gar; 179 180 if (ATTRCACHE4_VALID(vp)) { 181 error = nfs4_waitfor_purge_complete(vp); 182 if (error) 183 return (error); 184 return (0); 185 } 186 187 gar.n4g_va.va_mask = AT_ALL; 188 return (nfs4_getattr_otw(vp, &gar, cr, 0)); 189 } 190 191 /* 192 * Fill in attribute from the cache. 193 * If valid, then return 0 to indicate that no error occurred, 194 * otherwise return 1 to indicate that an error occurred. 195 */ 196 static int 197 nfs4_getattr_cache(vnode_t *vp, struct vattr *vap) 198 { 199 rnode4_t *rp; 200 201 rp = VTOR4(vp); 202 mutex_enter(&rp->r_statelock); 203 mutex_enter(&rp->r_statev4_lock); 204 if (ATTRCACHE4_VALID(vp)) { 205 mutex_exit(&rp->r_statev4_lock); 206 /* 207 * Cached attributes are valid 208 */ 209 *vap = rp->r_attr; 210 mutex_exit(&rp->r_statelock); 211 return (0); 212 } 213 mutex_exit(&rp->r_statev4_lock); 214 mutex_exit(&rp->r_statelock); 215 return (1); 216 } 217 218 219 /* 220 * If returned error is ESTALE flush all caches. The nfs4_purge_caches() 221 * call is synchronous because all the pages were invalidated by the 222 * nfs4_invalidate_pages() call. 223 */ 224 void 225 nfs4_purge_stale_fh(int errno, vnode_t *vp, cred_t *cr) 226 { 227 struct rnode4 *rp = VTOR4(vp); 228 229 /* Ensure that the ..._end_op() call has been done */ 230 ASSERT(tsd_get(nfs4_tsd_key) == NULL); 231 232 if (errno != ESTALE) 233 return; 234 235 mutex_enter(&rp->r_statelock); 236 rp->r_flags |= R4STALE; 237 if (!rp->r_error) 238 rp->r_error = errno; 239 mutex_exit(&rp->r_statelock); 240 if (nfs4_has_pages(vp)) 241 nfs4_invalidate_pages(vp, (u_offset_t)0, cr); 242 nfs4_purge_caches(vp, NFS4_PURGE_DNLC, cr, FALSE); 243 } 244 245 /* 246 * Purge all of the various NFS `data' caches. If "asyncpg" is TRUE, the 247 * page purge is done asynchronously. 248 */ 249 void 250 nfs4_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr, int asyncpg) 251 { 252 rnode4_t *rp; 253 char *contents; 254 vnode_t *xattr; 255 int size; 256 int pgflush; /* are we the page flush thread? */ 257 258 /* 259 * Purge the DNLC for any entries which refer to this file. 260 */ 261 if (vp->v_count > 1 && 262 (vp->v_type == VDIR || purge_dnlc == NFS4_PURGE_DNLC)) 263 dnlc_purge_vp(vp); 264 265 /* 266 * Clear any readdir state bits and purge the readlink response cache. 267 */ 268 rp = VTOR4(vp); 269 mutex_enter(&rp->r_statelock); 270 rp->r_flags &= ~R4LOOKUP; 271 contents = rp->r_symlink.contents; 272 size = rp->r_symlink.size; 273 rp->r_symlink.contents = NULL; 274 275 xattr = rp->r_xattr_dir; 276 rp->r_xattr_dir = NULL; 277 278 /* 279 * Purge pathconf cache too. 280 */ 281 rp->r_pathconf.pc4_xattr_valid = 0; 282 rp->r_pathconf.pc4_cache_valid = 0; 283 284 pgflush = (curthread == rp->r_pgflush); 285 mutex_exit(&rp->r_statelock); 286 287 if (contents != NULL) { 288 289 kmem_free((void *)contents, size); 290 } 291 292 if (xattr != NULL) 293 VN_RELE(xattr); 294 295 /* 296 * Flush the page cache. If the current thread is the page flush 297 * thread, don't initiate a new page flush. There's no need for 298 * it, and doing it correctly is hard. 299 */ 300 if (nfs4_has_pages(vp) && !pgflush) { 301 if (!asyncpg) { 302 (void) nfs4_waitfor_purge_complete(vp); 303 nfs4_flush_pages(vp, cr); 304 } else { 305 pgflush_t *args; 306 307 /* 308 * We don't hold r_statelock while creating the 309 * thread, in case the call blocks. So we use a 310 * flag to indicate that a page flush thread is 311 * active. 312 */ 313 mutex_enter(&rp->r_statelock); 314 if (rp->r_flags & R4PGFLUSH) { 315 mutex_exit(&rp->r_statelock); 316 } else { 317 rp->r_flags |= R4PGFLUSH; 318 mutex_exit(&rp->r_statelock); 319 320 args = kmem_alloc(sizeof (pgflush_t), 321 KM_SLEEP); 322 args->vp = vp; 323 VN_HOLD(args->vp); 324 args->cr = cr; 325 crhold(args->cr); 326 (void) zthread_create(NULL, 0, 327 nfs4_pgflush_thread, args, 0, 328 minclsyspri); 329 } 330 } 331 } 332 333 /* 334 * Flush the readdir response cache. 335 */ 336 nfs4_purge_rddir_cache(vp); 337 } 338 339 /* 340 * Invalidate all pages for the given file, after writing back the dirty 341 * ones. 342 */ 343 344 void 345 nfs4_flush_pages(vnode_t *vp, cred_t *cr) 346 { 347 int error; 348 rnode4_t *rp = VTOR4(vp); 349 350 error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL); 351 if (error == ENOSPC || error == EDQUOT) { 352 mutex_enter(&rp->r_statelock); 353 if (!rp->r_error) 354 rp->r_error = error; 355 mutex_exit(&rp->r_statelock); 356 } 357 } 358 359 /* 360 * Page flush thread. 361 */ 362 363 static void 364 nfs4_pgflush_thread(pgflush_t *args) 365 { 366 rnode4_t *rp = VTOR4(args->vp); 367 368 /* remember which thread we are, so we don't deadlock ourselves */ 369 mutex_enter(&rp->r_statelock); 370 ASSERT(rp->r_pgflush == NULL); 371 rp->r_pgflush = curthread; 372 mutex_exit(&rp->r_statelock); 373 374 nfs4_flush_pages(args->vp, args->cr); 375 376 mutex_enter(&rp->r_statelock); 377 rp->r_pgflush = NULL; 378 rp->r_flags &= ~R4PGFLUSH; 379 cv_broadcast(&rp->r_cv); 380 mutex_exit(&rp->r_statelock); 381 382 VN_RELE(args->vp); 383 crfree(args->cr); 384 kmem_free(args, sizeof (pgflush_t)); 385 zthread_exit(); 386 } 387 388 /* 389 * Purge the readdir cache of all entries which are not currently 390 * being filled. 391 */ 392 void 393 nfs4_purge_rddir_cache(vnode_t *vp) 394 { 395 rnode4_t *rp; 396 397 rp = VTOR4(vp); 398 399 mutex_enter(&rp->r_statelock); 400 rp->r_direof = NULL; 401 rp->r_flags &= ~R4LOOKUP; 402 rp->r_flags |= R4READDIRWATTR; 403 rddir4_cache_purge(rp); 404 mutex_exit(&rp->r_statelock); 405 } 406 407 /* 408 * Set attributes cache for given vnode using virtual attributes. There is 409 * no cache validation, but if the attributes are deemed to be stale, they 410 * are ignored. This corresponds to nfs3_attrcache(). 411 * 412 * Set the timeout value on the attribute cache and fill it 413 * with the passed in attributes. 414 */ 415 void 416 nfs4_attrcache_noinval(vnode_t *vp, nfs4_ga_res_t *garp, hrtime_t t) 417 { 418 rnode4_t *rp = VTOR4(vp); 419 420 mutex_enter(&rp->r_statelock); 421 if (rp->r_time_attr_saved <= t) 422 nfs4_attrcache_va(vp, garp, FALSE); 423 mutex_exit(&rp->r_statelock); 424 } 425 426 /* 427 * Use the passed in virtual attributes to check to see whether the 428 * data and metadata caches are valid, cache the new attributes, and 429 * then do the cache invalidation if required. 430 * 431 * The cache validation and caching of the new attributes is done 432 * atomically via the use of the mutex, r_statelock. If required, 433 * the cache invalidation is done atomically w.r.t. the cache 434 * validation and caching of the attributes via the pseudo lock, 435 * r_serial. 436 * 437 * This routine is used to do cache validation and attributes caching 438 * for operations with a single set of post operation attributes. 439 */ 440 441 void 442 nfs4_attr_cache(vnode_t *vp, nfs4_ga_res_t *garp, 443 hrtime_t t, cred_t *cr, int async, 444 change_info4 *cinfo) 445 { 446 rnode4_t *rp; 447 int mtime_changed = 0; 448 int ctime_changed = 0; 449 vsecattr_t *vsp; 450 int was_serial, set_time_cache_inval, recov; 451 vattr_t *vap = &garp->n4g_va; 452 mntinfo4_t *mi = VTOMI4(vp); 453 len_t preattr_rsize; 454 boolean_t writemodify_set = B_FALSE; 455 boolean_t cachepurge_set = B_FALSE; 456 457 ASSERT(mi->mi_vfsp->vfs_dev == garp->n4g_va.va_fsid); 458 459 /* Is curthread the recovery thread? */ 460 mutex_enter(&mi->mi_lock); 461 recov = (VTOMI4(vp)->mi_recovthread == curthread); 462 mutex_exit(&mi->mi_lock); 463 464 rp = VTOR4(vp); 465 mutex_enter(&rp->r_statelock); 466 was_serial = (rp->r_serial == curthread); 467 if (rp->r_serial && !was_serial) { 468 klwp_t *lwp = ttolwp(curthread); 469 470 /* 471 * If we're the recovery thread, then purge current attrs 472 * and bail out to avoid potential deadlock between another 473 * thread caching attrs (r_serial thread), recov thread, 474 * and an async writer thread. 475 */ 476 if (recov) { 477 PURGE_ATTRCACHE4_LOCKED(rp); 478 mutex_exit(&rp->r_statelock); 479 return; 480 } 481 482 if (lwp != NULL) 483 lwp->lwp_nostop++; 484 while (rp->r_serial != NULL) { 485 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 486 mutex_exit(&rp->r_statelock); 487 if (lwp != NULL) 488 lwp->lwp_nostop--; 489 return; 490 } 491 } 492 if (lwp != NULL) 493 lwp->lwp_nostop--; 494 } 495 496 /* 497 * If there is a page flush thread, the current thread needs to 498 * bail out, to prevent a possible deadlock between the current 499 * thread (which might be in a start_op/end_op region), the 500 * recovery thread, and the page flush thread. Expire the 501 * attribute cache, so that any attributes the current thread was 502 * going to set are not lost. 503 */ 504 if ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread) { 505 PURGE_ATTRCACHE4_LOCKED(rp); 506 mutex_exit(&rp->r_statelock); 507 return; 508 } 509 510 if (rp->r_time_attr_saved > t) { 511 /* 512 * Attributes have been cached since these attributes were 513 * probably made. If there is an inconsistency in what is 514 * cached, mark them invalid. If not, don't act on them. 515 */ 516 if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size)) 517 PURGE_ATTRCACHE4_LOCKED(rp); 518 mutex_exit(&rp->r_statelock); 519 return; 520 } 521 set_time_cache_inval = 0; 522 if (cinfo) { 523 /* 524 * Only directory modifying callers pass non-NULL cinfo. 525 */ 526 ASSERT(vp->v_type == VDIR); 527 /* 528 * If the cache timeout either doesn't exist or hasn't expired, 529 * and dir didn't changed on server before dirmod op 530 * and dir didn't change after dirmod op but before getattr 531 * then there's a chance that the client's cached data for 532 * this object is current (not stale). No immediate cache 533 * flush is required. 534 * 535 */ 536 if ((! rp->r_time_cache_inval || t < rp->r_time_cache_inval) && 537 cinfo->before == rp->r_change && 538 (garp->n4g_change_valid && 539 cinfo->after == garp->n4g_change)) { 540 541 /* 542 * If atomic isn't set, then the before/after info 543 * cannot be blindly trusted. For this case, we tell 544 * nfs4_attrcache_va to cache the attrs but also 545 * establish an absolute maximum cache timeout. When 546 * the timeout is reached, caches will be flushed. 547 */ 548 if (! cinfo->atomic) 549 set_time_cache_inval = 1; 550 } else { 551 552 /* 553 * We're not sure exactly what changed, but we know 554 * what to do. flush all caches for dir. remove the 555 * attr timeout. 556 * 557 * a) timeout expired. flush all caches. 558 * b) r_change != cinfo.before. flush all caches. 559 * c) r_change == cinfo.before, but cinfo.after != 560 * post-op getattr(change). flush all caches. 561 * d) post-op getattr(change) not provided by server. 562 * flush all caches. 563 */ 564 mtime_changed = 1; 565 ctime_changed = 1; 566 rp->r_time_cache_inval = 0; 567 } 568 } else { 569 /* 570 * Write thread after writing data to file on remote server, 571 * will always set R4WRITEMODIFIED to indicate that file on 572 * remote server was modified with a WRITE operation and would 573 * have marked attribute cache as timed out. If R4WRITEMODIFIED 574 * is set, then do not check for mtime and ctime change. 575 */ 576 if (!(rp->r_flags & R4WRITEMODIFIED)) { 577 if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size)) 578 mtime_changed = 1; 579 580 if (rp->r_attr.va_ctime.tv_sec != 581 vap->va_ctime.tv_sec || 582 rp->r_attr.va_ctime.tv_nsec != 583 vap->va_ctime.tv_nsec) 584 ctime_changed = 1; 585 } else { 586 writemodify_set = B_TRUE; 587 } 588 } 589 590 preattr_rsize = rp->r_size; 591 592 nfs4_attrcache_va(vp, garp, set_time_cache_inval); 593 594 /* 595 * If we have updated filesize in nfs4_attrcache_va, as soon as we 596 * drop statelock we will be in transition of purging all 597 * our caches and updating them. It is possible for another 598 * thread to pick this new file size and read in zeroed data. 599 * stall other threads till cache purge is complete. 600 */ 601 if ((!cinfo) && (rp->r_size != preattr_rsize)) { 602 /* 603 * If R4WRITEMODIFIED was set and we have updated the file 604 * size, Server's returned file size need not necessarily 605 * be because of this Client's WRITE. We need to purge 606 * all caches. 607 */ 608 if (writemodify_set) 609 mtime_changed = 1; 610 611 if (mtime_changed && !(rp->r_flags & R4INCACHEPURGE)) { 612 rp->r_flags |= R4INCACHEPURGE; 613 cachepurge_set = B_TRUE; 614 } 615 } 616 617 if (!mtime_changed && !ctime_changed) { 618 mutex_exit(&rp->r_statelock); 619 return; 620 } 621 622 rp->r_serial = curthread; 623 624 mutex_exit(&rp->r_statelock); 625 626 /* 627 * If we're the recov thread, then force async nfs4_purge_caches 628 * to avoid potential deadlock. 629 */ 630 if (mtime_changed) 631 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, recov ? 1 : async); 632 633 if ((rp->r_flags & R4INCACHEPURGE) && cachepurge_set) { 634 mutex_enter(&rp->r_statelock); 635 rp->r_flags &= ~R4INCACHEPURGE; 636 cv_broadcast(&rp->r_cv); 637 mutex_exit(&rp->r_statelock); 638 cachepurge_set = B_FALSE; 639 } 640 641 if (ctime_changed) { 642 (void) nfs4_access_purge_rp(rp); 643 if (rp->r_secattr != NULL) { 644 mutex_enter(&rp->r_statelock); 645 vsp = rp->r_secattr; 646 rp->r_secattr = NULL; 647 mutex_exit(&rp->r_statelock); 648 if (vsp != NULL) 649 nfs4_acl_free_cache(vsp); 650 } 651 } 652 653 if (!was_serial) { 654 mutex_enter(&rp->r_statelock); 655 rp->r_serial = NULL; 656 cv_broadcast(&rp->r_cv); 657 mutex_exit(&rp->r_statelock); 658 } 659 } 660 661 /* 662 * Set attributes cache for given vnode using virtual attributes. 663 * 664 * Set the timeout value on the attribute cache and fill it 665 * with the passed in attributes. 666 * 667 * The caller must be holding r_statelock. 668 */ 669 static void 670 nfs4_attrcache_va(vnode_t *vp, nfs4_ga_res_t *garp, int set_cache_timeout) 671 { 672 rnode4_t *rp; 673 mntinfo4_t *mi; 674 hrtime_t delta; 675 hrtime_t now; 676 vattr_t *vap = &garp->n4g_va; 677 678 rp = VTOR4(vp); 679 680 ASSERT(MUTEX_HELD(&rp->r_statelock)); 681 ASSERT(vap->va_mask == AT_ALL); 682 683 /* Switch to master before checking v_flag */ 684 if (IS_SHADOW(vp, rp)) 685 vp = RTOV4(rp); 686 687 now = gethrtime(); 688 689 mi = VTOMI4(vp); 690 691 /* 692 * Only establish a new cache timeout (if requested). Never 693 * extend a timeout. Never clear a timeout. Clearing a timeout 694 * is done by nfs4_update_dircaches (ancestor in our call chain) 695 */ 696 if (set_cache_timeout && ! rp->r_time_cache_inval) 697 rp->r_time_cache_inval = now + mi->mi_acdirmax; 698 699 /* 700 * Delta is the number of nanoseconds that we will 701 * cache the attributes of the file. It is based on 702 * the number of nanoseconds since the last time that 703 * we detected a change. The assumption is that files 704 * that changed recently are likely to change again. 705 * There is a minimum and a maximum for regular files 706 * and for directories which is enforced though. 707 * 708 * Using the time since last change was detected 709 * eliminates direct comparison or calculation 710 * using mixed client and server times. NFS does 711 * not make any assumptions regarding the client 712 * and server clocks being synchronized. 713 */ 714 if (vap->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec || 715 vap->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec || 716 vap->va_size != rp->r_attr.va_size) { 717 rp->r_time_attr_saved = now; 718 } 719 720 if ((mi->mi_flags & MI4_NOAC) || (vp->v_flag & VNOCACHE)) 721 delta = 0; 722 else { 723 delta = now - rp->r_time_attr_saved; 724 if (vp->v_type == VDIR) { 725 if (delta < mi->mi_acdirmin) 726 delta = mi->mi_acdirmin; 727 else if (delta > mi->mi_acdirmax) 728 delta = mi->mi_acdirmax; 729 } else { 730 if (delta < mi->mi_acregmin) 731 delta = mi->mi_acregmin; 732 else if (delta > mi->mi_acregmax) 733 delta = mi->mi_acregmax; 734 } 735 } 736 rp->r_time_attr_inval = now + delta; 737 738 rp->r_attr = *vap; 739 if (garp->n4g_change_valid) 740 rp->r_change = garp->n4g_change; 741 742 /* 743 * The attributes that were returned may be valid and can 744 * be used, but they may not be allowed to be cached. 745 * Reset the timers to cause immediate invalidation and 746 * clear r_change so no VERIFY operations will suceed 747 */ 748 if (garp->n4g_attrwhy == NFS4_GETATTR_NOCACHE_OK) { 749 rp->r_time_attr_inval = now; 750 rp->r_time_attr_saved = now; 751 rp->r_change = 0; 752 } 753 754 /* 755 * If mounted_on_fileid returned AND the object is a stub, 756 * then set object's va_nodeid to the mounted over fid 757 * returned by server. 758 * 759 * If mounted_on_fileid not provided/supported, then 760 * just set it to 0 for now. Eventually it would be 761 * better to set it to a hashed version of FH. This 762 * would probably be good enough to provide a unique 763 * fid/d_ino within a dir. 764 * 765 * We don't need to carry mounted_on_fileid in the 766 * rnode as long as the client never requests fileid 767 * without also requesting mounted_on_fileid. For 768 * now, it stays. 769 */ 770 if (garp->n4g_mon_fid_valid) { 771 rp->r_mntd_fid = garp->n4g_mon_fid; 772 773 if (RP_ISSTUB(rp)) 774 rp->r_attr.va_nodeid = rp->r_mntd_fid; 775 } 776 777 /* 778 * Check to see if there are valid pathconf bits to 779 * cache in the rnode. 780 */ 781 if (garp->n4g_ext_res) { 782 if (garp->n4g_ext_res->n4g_pc4.pc4_cache_valid) { 783 rp->r_pathconf = garp->n4g_ext_res->n4g_pc4; 784 } else { 785 if (garp->n4g_ext_res->n4g_pc4.pc4_xattr_valid) { 786 rp->r_pathconf.pc4_xattr_valid = TRUE; 787 rp->r_pathconf.pc4_xattr_exists = 788 garp->n4g_ext_res->n4g_pc4.pc4_xattr_exists; 789 } 790 } 791 } 792 /* 793 * Update the size of the file if there is no cached data or if 794 * the cached data is clean and there is no data being written 795 * out. 796 */ 797 if (rp->r_size != vap->va_size && 798 (!vn_has_cached_data(vp) || 799 (!(rp->r_flags & R4DIRTY) && rp->r_count == 0))) { 800 rp->r_size = vap->va_size; 801 } 802 nfs_setswaplike(vp, vap); 803 rp->r_flags &= ~R4WRITEMODIFIED; 804 } 805 806 /* 807 * Get attributes over-the-wire and update attributes cache 808 * if no error occurred in the over-the-wire operation. 809 * Return 0 if successful, otherwise error. 810 */ 811 int 812 nfs4_getattr_otw(vnode_t *vp, nfs4_ga_res_t *garp, cred_t *cr, int get_acl) 813 { 814 mntinfo4_t *mi = VTOMI4(vp); 815 hrtime_t t; 816 nfs4_recov_state_t recov_state; 817 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 818 819 recov_state.rs_flags = 0; 820 recov_state.rs_num_retry_despite_err = 0; 821 822 /* Save the original mount point security flavor */ 823 (void) save_mnt_secinfo(mi->mi_curr_serv); 824 825 recov_retry: 826 827 if ((e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR, 828 &recov_state, NULL))) { 829 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 830 return (e.error); 831 } 832 833 t = gethrtime(); 834 835 nfs4_getattr_otw_norecovery(vp, garp, &e, cr, get_acl); 836 837 if (nfs4_needs_recovery(&e, FALSE, vp->v_vfsp)) { 838 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 839 NULL, OP_GETATTR, NULL, NULL, NULL) == FALSE) { 840 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, 841 &recov_state, 1); 842 goto recov_retry; 843 } 844 } 845 846 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 0); 847 848 if (!e.error) { 849 if (e.stat == NFS4_OK) { 850 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 851 } else { 852 e.error = geterrno4(e.stat); 853 854 nfs4_purge_stale_fh(e.error, vp, cr); 855 } 856 } 857 858 /* 859 * If getattr a node that is a stub for a crossed 860 * mount point, keep the original secinfo flavor for 861 * the current file system, not the crossed one. 862 */ 863 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 864 865 return (e.error); 866 } 867 868 /* 869 * Generate a compound to get attributes over-the-wire. 870 */ 871 void 872 nfs4_getattr_otw_norecovery(vnode_t *vp, nfs4_ga_res_t *garp, 873 nfs4_error_t *ep, cred_t *cr, int get_acl) 874 { 875 COMPOUND4args_clnt args; 876 COMPOUND4res_clnt res; 877 int doqueue; 878 rnode4_t *rp = VTOR4(vp); 879 nfs_argop4 argop[2]; 880 881 args.ctag = TAG_GETATTR; 882 883 args.array_len = 2; 884 args.array = argop; 885 886 /* putfh */ 887 argop[0].argop = OP_CPUTFH; 888 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 889 890 /* getattr */ 891 /* 892 * Unlike nfs version 2 and 3, where getattr returns all the 893 * attributes, nfs version 4 returns only the ones explicitly 894 * asked for. This creates problems, as some system functions 895 * (e.g. cache check) require certain attributes and if the 896 * cached node lacks some attributes such as uid/gid, it can 897 * affect system utilities (e.g. "ls") that rely on the information 898 * to be there. This can lead to anything from system crashes to 899 * corrupted information processed by user apps. 900 * So to ensure that all bases are covered, request at least 901 * the AT_ALL attribute mask. 902 */ 903 argop[1].argop = OP_GETATTR; 904 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 905 if (get_acl) 906 argop[1].nfs_argop4_u.opgetattr.attr_request |= FATTR4_ACL_MASK; 907 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 908 909 doqueue = 1; 910 911 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, ep); 912 913 if (ep->error) 914 return; 915 916 if (res.status != NFS4_OK) { 917 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 918 return; 919 } 920 921 *garp = res.array[1].nfs_resop4_u.opgetattr.ga_res; 922 923 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 924 } 925 926 /* 927 * Return either cached or remote attributes. If get remote attr 928 * use them to check and invalidate caches, then cache the new attributes. 929 */ 930 int 931 nfs4getattr(vnode_t *vp, vattr_t *vap, cred_t *cr) 932 { 933 int error; 934 rnode4_t *rp; 935 nfs4_ga_res_t gar; 936 937 ASSERT(nfs4_consistent_type(vp)); 938 939 /* 940 * If we've got cached attributes, we're done, otherwise go 941 * to the server to get attributes, which will update the cache 942 * in the process. Either way, use the cached attributes for 943 * the caller's vattr_t. 944 * 945 * Note that we ignore the gar set by the OTW call: the attr caching 946 * code may make adjustments when storing to the rnode, and we want 947 * to see those changes here. 948 */ 949 rp = VTOR4(vp); 950 error = 0; 951 mutex_enter(&rp->r_statelock); 952 if (!ATTRCACHE4_VALID(vp)) { 953 mutex_exit(&rp->r_statelock); 954 error = nfs4_getattr_otw(vp, &gar, cr, 0); 955 mutex_enter(&rp->r_statelock); 956 } 957 958 if (!error) 959 *vap = rp->r_attr; 960 961 /* Return the client's view of file size */ 962 vap->va_size = rp->r_size; 963 964 mutex_exit(&rp->r_statelock); 965 966 ASSERT(nfs4_consistent_type(vp)); 967 968 return (error); 969 } 970 971 int 972 nfs4_attr_otw(vnode_t *vp, nfs4_tag_type_t tag_type, 973 nfs4_ga_res_t *garp, bitmap4 reqbitmap, cred_t *cr) 974 { 975 COMPOUND4args_clnt args; 976 COMPOUND4res_clnt res; 977 int doqueue; 978 nfs_argop4 argop[2]; 979 mntinfo4_t *mi = VTOMI4(vp); 980 bool_t needrecov = FALSE; 981 nfs4_recov_state_t recov_state; 982 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 983 nfs4_ga_ext_res_t *gerp; 984 985 recov_state.rs_flags = 0; 986 recov_state.rs_num_retry_despite_err = 0; 987 988 recov_retry: 989 args.ctag = tag_type; 990 991 args.array_len = 2; 992 args.array = argop; 993 994 e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR, &recov_state, NULL); 995 if (e.error) 996 return (e.error); 997 998 /* putfh */ 999 argop[0].argop = OP_CPUTFH; 1000 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 1001 1002 /* getattr */ 1003 argop[1].argop = OP_GETATTR; 1004 argop[1].nfs_argop4_u.opgetattr.attr_request = reqbitmap; 1005 argop[1].nfs_argop4_u.opgetattr.mi = mi; 1006 1007 doqueue = 1; 1008 1009 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1010 "nfs4_attr_otw: %s call, rp %s", needrecov ? "recov" : "first", 1011 rnode4info(VTOR4(vp)))); 1012 1013 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 1014 1015 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 1016 if (!needrecov && e.error) { 1017 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 1018 needrecov); 1019 return (e.error); 1020 } 1021 1022 if (needrecov) { 1023 bool_t abort; 1024 1025 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1026 "nfs4_attr_otw: initiating recovery\n")); 1027 1028 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 1029 NULL, OP_GETATTR, NULL, NULL, NULL); 1030 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 1031 needrecov); 1032 if (!e.error) { 1033 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1034 e.error = geterrno4(res.status); 1035 } 1036 if (abort == FALSE) 1037 goto recov_retry; 1038 return (e.error); 1039 } 1040 1041 if (res.status) { 1042 e.error = geterrno4(res.status); 1043 } else { 1044 gerp = garp->n4g_ext_res; 1045 bcopy(&res.array[1].nfs_resop4_u.opgetattr.ga_res, 1046 garp, sizeof (nfs4_ga_res_t)); 1047 garp->n4g_ext_res = gerp; 1048 if (garp->n4g_ext_res && 1049 res.array[1].nfs_resop4_u.opgetattr.ga_res.n4g_ext_res) 1050 bcopy(res.array[1].nfs_resop4_u.opgetattr. 1051 ga_res.n4g_ext_res, 1052 garp->n4g_ext_res, sizeof (nfs4_ga_ext_res_t)); 1053 } 1054 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1055 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 1056 needrecov); 1057 return (e.error); 1058 } 1059 1060 /* 1061 * Asynchronous I/O parameters. nfs_async_threads is the high-water mark 1062 * for the demand-based allocation of async threads per-mount. The 1063 * nfs_async_timeout is the amount of time a thread will live after it 1064 * becomes idle, unless new I/O requests are received before the thread 1065 * dies. See nfs4_async_putpage and nfs4_async_start. 1066 */ 1067 1068 static void nfs4_async_start(struct vfs *); 1069 static void nfs4_async_pgops_start(struct vfs *); 1070 static void nfs4_async_common_start(struct vfs *, int); 1071 1072 static void 1073 free_async_args4(struct nfs4_async_reqs *args) 1074 { 1075 rnode4_t *rp; 1076 1077 if (args->a_io != NFS4_INACTIVE) { 1078 rp = VTOR4(args->a_vp); 1079 mutex_enter(&rp->r_statelock); 1080 rp->r_count--; 1081 if (args->a_io == NFS4_PUTAPAGE || 1082 args->a_io == NFS4_PAGEIO) 1083 rp->r_awcount--; 1084 cv_broadcast(&rp->r_cv); 1085 mutex_exit(&rp->r_statelock); 1086 VN_RELE(args->a_vp); 1087 } 1088 crfree(args->a_cred); 1089 kmem_free(args, sizeof (*args)); 1090 } 1091 1092 /* 1093 * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and 1094 * pageout(), running in the global zone, have legitimate reasons to do 1095 * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts. We avoid the problem by 1096 * use of a a per-mount "asynchronous requests manager thread" which is 1097 * signaled by the various asynchronous work routines when there is 1098 * asynchronous work to be done. It is responsible for creating new 1099 * worker threads if necessary, and notifying existing worker threads 1100 * that there is work to be done. 1101 * 1102 * In other words, it will "take the specifications from the customers and 1103 * give them to the engineers." 1104 * 1105 * Worker threads die off of their own accord if they are no longer 1106 * needed. 1107 * 1108 * This thread is killed when the zone is going away or the filesystem 1109 * is being unmounted. 1110 */ 1111 void 1112 nfs4_async_manager(vfs_t *vfsp) 1113 { 1114 callb_cpr_t cprinfo; 1115 mntinfo4_t *mi; 1116 uint_t max_threads; 1117 1118 mi = VFTOMI4(vfsp); 1119 1120 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, 1121 "nfs4_async_manager"); 1122 1123 mutex_enter(&mi->mi_async_lock); 1124 /* 1125 * We want to stash the max number of threads that this mount was 1126 * allowed so we can use it later when the variable is set to zero as 1127 * part of the zone/mount going away. 1128 * 1129 * We want to be able to create at least one thread to handle 1130 * asynchronous inactive calls. 1131 */ 1132 max_threads = MAX(mi->mi_max_threads, 1); 1133 /* 1134 * We don't want to wait for mi_max_threads to go to zero, since that 1135 * happens as part of a failed unmount, but this thread should only 1136 * exit when the mount is really going away. 1137 * 1138 * Once MI4_ASYNC_MGR_STOP is set, no more async operations will be 1139 * attempted: the various _async_*() functions know to do things 1140 * inline if mi_max_threads == 0. Henceforth we just drain out the 1141 * outstanding requests. 1142 * 1143 * Note that we still create zthreads even if we notice the zone is 1144 * shutting down (MI4_ASYNC_MGR_STOP is set); this may cause the zone 1145 * shutdown sequence to take slightly longer in some cases, but 1146 * doesn't violate the protocol, as all threads will exit as soon as 1147 * they're done processing the remaining requests. 1148 */ 1149 for (;;) { 1150 while (mi->mi_async_req_count > 0) { 1151 /* 1152 * Paranoia: If the mount started out having 1153 * (mi->mi_max_threads == 0), and the value was 1154 * later changed (via a debugger or somesuch), 1155 * we could be confused since we will think we 1156 * can't create any threads, and the calling 1157 * code (which looks at the current value of 1158 * mi->mi_max_threads, now non-zero) thinks we 1159 * can. 1160 * 1161 * So, because we're paranoid, we create threads 1162 * up to the maximum of the original and the 1163 * current value. This means that future 1164 * (debugger-induced) alterations of 1165 * mi->mi_max_threads are ignored for our 1166 * purposes, but who told them they could change 1167 * random values on a live kernel anyhow? 1168 */ 1169 if (mi->mi_threads[NFS4_ASYNC_QUEUE] < 1170 MAX(mi->mi_max_threads, max_threads)) { 1171 mi->mi_threads[NFS4_ASYNC_QUEUE]++; 1172 mutex_exit(&mi->mi_async_lock); 1173 MI4_HOLD(mi); 1174 VFS_HOLD(vfsp); /* hold for new thread */ 1175 (void) zthread_create(NULL, 0, nfs4_async_start, 1176 vfsp, 0, minclsyspri); 1177 mutex_enter(&mi->mi_async_lock); 1178 } else if (mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] < 1179 NUM_ASYNC_PGOPS_THREADS) { 1180 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE]++; 1181 mutex_exit(&mi->mi_async_lock); 1182 MI4_HOLD(mi); 1183 VFS_HOLD(vfsp); /* hold for new thread */ 1184 (void) zthread_create(NULL, 0, 1185 nfs4_async_pgops_start, vfsp, 0, 1186 minclsyspri); 1187 mutex_enter(&mi->mi_async_lock); 1188 } 1189 NFS4_WAKE_ASYNC_WORKER(mi->mi_async_work_cv); 1190 ASSERT(mi->mi_async_req_count != 0); 1191 mi->mi_async_req_count--; 1192 } 1193 1194 mutex_enter(&mi->mi_lock); 1195 if (mi->mi_flags & MI4_ASYNC_MGR_STOP) { 1196 mutex_exit(&mi->mi_lock); 1197 break; 1198 } 1199 mutex_exit(&mi->mi_lock); 1200 1201 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1202 cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock); 1203 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock); 1204 } 1205 1206 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 1207 "nfs4_async_manager exiting for vfs %p\n", (void *)mi->mi_vfsp)); 1208 /* 1209 * Let everyone know we're done. 1210 */ 1211 mi->mi_manager_thread = NULL; 1212 /* 1213 * Wake up the inactive thread. 1214 */ 1215 cv_broadcast(&mi->mi_inact_req_cv); 1216 /* 1217 * Wake up anyone sitting in nfs4_async_manager_stop() 1218 */ 1219 cv_broadcast(&mi->mi_async_cv); 1220 /* 1221 * There is no explicit call to mutex_exit(&mi->mi_async_lock) 1222 * since CALLB_CPR_EXIT is actually responsible for releasing 1223 * 'mi_async_lock'. 1224 */ 1225 CALLB_CPR_EXIT(&cprinfo); 1226 VFS_RELE(vfsp); /* release thread's hold */ 1227 MI4_RELE(mi); 1228 zthread_exit(); 1229 } 1230 1231 /* 1232 * Signal (and wait for) the async manager thread to clean up and go away. 1233 */ 1234 void 1235 nfs4_async_manager_stop(vfs_t *vfsp) 1236 { 1237 mntinfo4_t *mi = VFTOMI4(vfsp); 1238 1239 mutex_enter(&mi->mi_async_lock); 1240 mutex_enter(&mi->mi_lock); 1241 mi->mi_flags |= MI4_ASYNC_MGR_STOP; 1242 mutex_exit(&mi->mi_lock); 1243 cv_broadcast(&mi->mi_async_reqs_cv); 1244 /* 1245 * Wait for the async manager thread to die. 1246 */ 1247 while (mi->mi_manager_thread != NULL) 1248 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 1249 mutex_exit(&mi->mi_async_lock); 1250 } 1251 1252 int 1253 nfs4_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, 1254 struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *, 1255 u_offset_t, caddr_t, struct seg *, cred_t *)) 1256 { 1257 rnode4_t *rp; 1258 mntinfo4_t *mi; 1259 struct nfs4_async_reqs *args; 1260 1261 rp = VTOR4(vp); 1262 ASSERT(rp->r_freef == NULL); 1263 1264 mi = VTOMI4(vp); 1265 1266 /* 1267 * If addr falls in a different segment, don't bother doing readahead. 1268 */ 1269 if (addr >= seg->s_base + seg->s_size) 1270 return (-1); 1271 1272 /* 1273 * If we can't allocate a request structure, punt on the readahead. 1274 */ 1275 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1276 return (-1); 1277 1278 /* 1279 * If a lock operation is pending, don't initiate any new 1280 * readaheads. Otherwise, bump r_count to indicate the new 1281 * asynchronous I/O. 1282 */ 1283 if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) { 1284 kmem_free(args, sizeof (*args)); 1285 return (-1); 1286 } 1287 mutex_enter(&rp->r_statelock); 1288 rp->r_count++; 1289 mutex_exit(&rp->r_statelock); 1290 nfs_rw_exit(&rp->r_lkserlock); 1291 1292 args->a_next = NULL; 1293 #ifdef DEBUG 1294 args->a_queuer = curthread; 1295 #endif 1296 VN_HOLD(vp); 1297 args->a_vp = vp; 1298 ASSERT(cr != NULL); 1299 crhold(cr); 1300 args->a_cred = cr; 1301 args->a_io = NFS4_READ_AHEAD; 1302 args->a_nfs4_readahead = readahead; 1303 args->a_nfs4_blkoff = blkoff; 1304 args->a_nfs4_seg = seg; 1305 args->a_nfs4_addr = addr; 1306 1307 mutex_enter(&mi->mi_async_lock); 1308 1309 /* 1310 * If asyncio has been disabled, don't bother readahead. 1311 */ 1312 if (mi->mi_max_threads == 0) { 1313 mutex_exit(&mi->mi_async_lock); 1314 goto noasync; 1315 } 1316 1317 /* 1318 * Link request structure into the async list and 1319 * wakeup async thread to do the i/o. 1320 */ 1321 if (mi->mi_async_reqs[NFS4_READ_AHEAD] == NULL) { 1322 mi->mi_async_reqs[NFS4_READ_AHEAD] = args; 1323 mi->mi_async_tail[NFS4_READ_AHEAD] = args; 1324 } else { 1325 mi->mi_async_tail[NFS4_READ_AHEAD]->a_next = args; 1326 mi->mi_async_tail[NFS4_READ_AHEAD] = args; 1327 } 1328 1329 if (mi->mi_io_kstats) { 1330 mutex_enter(&mi->mi_lock); 1331 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1332 mutex_exit(&mi->mi_lock); 1333 } 1334 1335 mi->mi_async_req_count++; 1336 ASSERT(mi->mi_async_req_count != 0); 1337 cv_signal(&mi->mi_async_reqs_cv); 1338 mutex_exit(&mi->mi_async_lock); 1339 return (0); 1340 1341 noasync: 1342 mutex_enter(&rp->r_statelock); 1343 rp->r_count--; 1344 cv_broadcast(&rp->r_cv); 1345 mutex_exit(&rp->r_statelock); 1346 VN_RELE(vp); 1347 crfree(cr); 1348 kmem_free(args, sizeof (*args)); 1349 return (-1); 1350 } 1351 1352 static void 1353 nfs4_async_start(struct vfs *vfsp) 1354 { 1355 nfs4_async_common_start(vfsp, NFS4_ASYNC_QUEUE); 1356 } 1357 1358 static void 1359 nfs4_async_pgops_start(struct vfs *vfsp) 1360 { 1361 nfs4_async_common_start(vfsp, NFS4_ASYNC_PGOPS_QUEUE); 1362 } 1363 1364 /* 1365 * The async queues for each mounted file system are arranged as a 1366 * set of queues, one for each async i/o type. Requests are taken 1367 * from the queues in a round-robin fashion. A number of consecutive 1368 * requests are taken from each queue before moving on to the next 1369 * queue. This functionality may allow the NFS Version 2 server to do 1370 * write clustering, even if the client is mixing writes and reads 1371 * because it will take multiple write requests from the queue 1372 * before processing any of the other async i/o types. 1373 * 1374 * XXX The nfs4_async_common_start thread is unsafe in the light of the present 1375 * model defined by cpr to suspend the system. Specifically over the 1376 * wire calls are cpr-unsafe. The thread should be reevaluated in 1377 * case of future updates to the cpr model. 1378 */ 1379 static void 1380 nfs4_async_common_start(struct vfs *vfsp, int async_queue) 1381 { 1382 struct nfs4_async_reqs *args; 1383 mntinfo4_t *mi = VFTOMI4(vfsp); 1384 clock_t time_left = 1; 1385 callb_cpr_t cprinfo; 1386 int i; 1387 extern int nfs_async_timeout; 1388 int async_types; 1389 kcondvar_t *async_work_cv; 1390 1391 if (async_queue == NFS4_ASYNC_QUEUE) { 1392 async_types = NFS4_ASYNC_TYPES; 1393 async_work_cv = &mi->mi_async_work_cv[NFS4_ASYNC_QUEUE]; 1394 } else { 1395 async_types = NFS4_ASYNC_PGOPS_TYPES; 1396 async_work_cv = &mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE]; 1397 } 1398 1399 /* 1400 * Dynamic initialization of nfs_async_timeout to allow nfs to be 1401 * built in an implementation independent manner. 1402 */ 1403 if (nfs_async_timeout == -1) 1404 nfs_async_timeout = NFS_ASYNC_TIMEOUT; 1405 1406 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas"); 1407 1408 mutex_enter(&mi->mi_async_lock); 1409 for (;;) { 1410 /* 1411 * Find the next queue containing an entry. We start 1412 * at the current queue pointer and then round robin 1413 * through all of them until we either find a non-empty 1414 * queue or have looked through all of them. 1415 */ 1416 for (i = 0; i < async_types; i++) { 1417 args = *mi->mi_async_curr[async_queue]; 1418 if (args != NULL) 1419 break; 1420 mi->mi_async_curr[async_queue]++; 1421 if (mi->mi_async_curr[async_queue] == 1422 &mi->mi_async_reqs[async_types]) { 1423 mi->mi_async_curr[async_queue] = 1424 &mi->mi_async_reqs[0]; 1425 } 1426 } 1427 /* 1428 * If we didn't find a entry, then block until woken up 1429 * again and then look through the queues again. 1430 */ 1431 if (args == NULL) { 1432 /* 1433 * Exiting is considered to be safe for CPR as well 1434 */ 1435 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1436 1437 /* 1438 * Wakeup thread waiting to unmount the file 1439 * system only if all async threads are inactive. 1440 * 1441 * If we've timed-out and there's nothing to do, 1442 * then get rid of this thread. 1443 */ 1444 if (mi->mi_max_threads == 0 || time_left <= 0) { 1445 --mi->mi_threads[async_queue]; 1446 1447 if (mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 && 1448 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0) 1449 cv_signal(&mi->mi_async_cv); 1450 CALLB_CPR_EXIT(&cprinfo); 1451 VFS_RELE(vfsp); /* release thread's hold */ 1452 MI4_RELE(mi); 1453 zthread_exit(); 1454 /* NOTREACHED */ 1455 } 1456 time_left = cv_reltimedwait(async_work_cv, 1457 &mi->mi_async_lock, nfs_async_timeout, 1458 TR_CLOCK_TICK); 1459 1460 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock); 1461 1462 continue; 1463 } else { 1464 time_left = 1; 1465 } 1466 1467 /* 1468 * Remove the request from the async queue and then 1469 * update the current async request queue pointer. If 1470 * the current queue is empty or we have removed enough 1471 * consecutive entries from it, then reset the counter 1472 * for this queue and then move the current pointer to 1473 * the next queue. 1474 */ 1475 *mi->mi_async_curr[async_queue] = args->a_next; 1476 if (*mi->mi_async_curr[async_queue] == NULL || 1477 --mi->mi_async_clusters[args->a_io] == 0) { 1478 mi->mi_async_clusters[args->a_io] = 1479 mi->mi_async_init_clusters; 1480 mi->mi_async_curr[async_queue]++; 1481 if (mi->mi_async_curr[async_queue] == 1482 &mi->mi_async_reqs[async_types]) { 1483 mi->mi_async_curr[async_queue] = 1484 &mi->mi_async_reqs[0]; 1485 } 1486 } 1487 1488 if (args->a_io != NFS4_INACTIVE && mi->mi_io_kstats) { 1489 mutex_enter(&mi->mi_lock); 1490 kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1491 mutex_exit(&mi->mi_lock); 1492 } 1493 1494 mutex_exit(&mi->mi_async_lock); 1495 1496 /* 1497 * Obtain arguments from the async request structure. 1498 */ 1499 if (args->a_io == NFS4_READ_AHEAD && mi->mi_max_threads > 0) { 1500 (*args->a_nfs4_readahead)(args->a_vp, 1501 args->a_nfs4_blkoff, args->a_nfs4_addr, 1502 args->a_nfs4_seg, args->a_cred); 1503 } else if (args->a_io == NFS4_PUTAPAGE) { 1504 (void) (*args->a_nfs4_putapage)(args->a_vp, 1505 args->a_nfs4_pp, args->a_nfs4_off, 1506 args->a_nfs4_len, args->a_nfs4_flags, 1507 args->a_cred); 1508 } else if (args->a_io == NFS4_PAGEIO) { 1509 (void) (*args->a_nfs4_pageio)(args->a_vp, 1510 args->a_nfs4_pp, args->a_nfs4_off, 1511 args->a_nfs4_len, args->a_nfs4_flags, 1512 args->a_cred); 1513 } else if (args->a_io == NFS4_READDIR) { 1514 (void) ((*args->a_nfs4_readdir)(args->a_vp, 1515 args->a_nfs4_rdc, args->a_cred)); 1516 } else if (args->a_io == NFS4_COMMIT) { 1517 (*args->a_nfs4_commit)(args->a_vp, args->a_nfs4_plist, 1518 args->a_nfs4_offset, args->a_nfs4_count, 1519 args->a_cred); 1520 } else if (args->a_io == NFS4_INACTIVE) { 1521 nfs4_inactive_otw(args->a_vp, args->a_cred); 1522 } 1523 1524 /* 1525 * Now, release the vnode and free the credentials 1526 * structure. 1527 */ 1528 free_async_args4(args); 1529 /* 1530 * Reacquire the mutex because it will be needed above. 1531 */ 1532 mutex_enter(&mi->mi_async_lock); 1533 } 1534 } 1535 1536 /* 1537 * nfs4_inactive_thread - look for vnodes that need over-the-wire calls as 1538 * part of VOP_INACTIVE. 1539 */ 1540 1541 void 1542 nfs4_inactive_thread(mntinfo4_t *mi) 1543 { 1544 struct nfs4_async_reqs *args; 1545 callb_cpr_t cprinfo; 1546 vfs_t *vfsp = mi->mi_vfsp; 1547 1548 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, 1549 "nfs4_inactive_thread"); 1550 1551 for (;;) { 1552 mutex_enter(&mi->mi_async_lock); 1553 args = mi->mi_async_reqs[NFS4_INACTIVE]; 1554 if (args == NULL) { 1555 mutex_enter(&mi->mi_lock); 1556 /* 1557 * We don't want to exit until the async manager is done 1558 * with its work; hence the check for mi_manager_thread 1559 * being NULL. 1560 * 1561 * The async manager thread will cv_broadcast() on 1562 * mi_inact_req_cv when it's done, at which point we'll 1563 * wake up and exit. 1564 */ 1565 if (mi->mi_manager_thread == NULL) 1566 goto die; 1567 mi->mi_flags |= MI4_INACTIVE_IDLE; 1568 mutex_exit(&mi->mi_lock); 1569 cv_signal(&mi->mi_async_cv); 1570 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1571 cv_wait(&mi->mi_inact_req_cv, &mi->mi_async_lock); 1572 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock); 1573 mutex_exit(&mi->mi_async_lock); 1574 } else { 1575 mutex_enter(&mi->mi_lock); 1576 mi->mi_flags &= ~MI4_INACTIVE_IDLE; 1577 mutex_exit(&mi->mi_lock); 1578 mi->mi_async_reqs[NFS4_INACTIVE] = args->a_next; 1579 mutex_exit(&mi->mi_async_lock); 1580 nfs4_inactive_otw(args->a_vp, args->a_cred); 1581 crfree(args->a_cred); 1582 kmem_free(args, sizeof (*args)); 1583 } 1584 } 1585 die: 1586 mutex_exit(&mi->mi_lock); 1587 mi->mi_inactive_thread = NULL; 1588 cv_signal(&mi->mi_async_cv); 1589 1590 /* 1591 * There is no explicit call to mutex_exit(&mi->mi_async_lock) since 1592 * CALLB_CPR_EXIT is actually responsible for releasing 'mi_async_lock'. 1593 */ 1594 CALLB_CPR_EXIT(&cprinfo); 1595 1596 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 1597 "nfs4_inactive_thread exiting for vfs %p\n", (void *)vfsp)); 1598 1599 MI4_RELE(mi); 1600 zthread_exit(); 1601 /* NOTREACHED */ 1602 } 1603 1604 /* 1605 * nfs_async_stop: 1606 * Wait for all outstanding putpage operations and the inactive thread to 1607 * complete; nfs4_async_stop_sig() without interruptibility. 1608 */ 1609 void 1610 nfs4_async_stop(struct vfs *vfsp) 1611 { 1612 mntinfo4_t *mi = VFTOMI4(vfsp); 1613 1614 /* 1615 * Wait for all outstanding async operations to complete and for 1616 * worker threads to exit. 1617 */ 1618 mutex_enter(&mi->mi_async_lock); 1619 mi->mi_max_threads = 0; 1620 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv); 1621 while (mi->mi_threads[NFS4_ASYNC_QUEUE] != 0 || 1622 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] != 0) 1623 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 1624 1625 /* 1626 * Wait for the inactive thread to finish doing what it's doing. It 1627 * won't exit until the last reference to the vfs_t goes away. 1628 */ 1629 if (mi->mi_inactive_thread != NULL) { 1630 mutex_enter(&mi->mi_lock); 1631 while (!(mi->mi_flags & MI4_INACTIVE_IDLE) || 1632 (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) { 1633 mutex_exit(&mi->mi_lock); 1634 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 1635 mutex_enter(&mi->mi_lock); 1636 } 1637 mutex_exit(&mi->mi_lock); 1638 } 1639 mutex_exit(&mi->mi_async_lock); 1640 } 1641 1642 /* 1643 * nfs_async_stop_sig: 1644 * Wait for all outstanding putpage operations and the inactive thread to 1645 * complete. If a signal is delivered we will abort and return non-zero; 1646 * otherwise return 0. Since this routine is called from nfs4_unmount, we 1647 * need to make it interruptible. 1648 */ 1649 int 1650 nfs4_async_stop_sig(struct vfs *vfsp) 1651 { 1652 mntinfo4_t *mi = VFTOMI4(vfsp); 1653 ushort_t omax; 1654 bool_t intr = FALSE; 1655 1656 /* 1657 * Wait for all outstanding putpage operations to complete and for 1658 * worker threads to exit. 1659 */ 1660 mutex_enter(&mi->mi_async_lock); 1661 omax = mi->mi_max_threads; 1662 mi->mi_max_threads = 0; 1663 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv); 1664 while (mi->mi_threads[NFS4_ASYNC_QUEUE] != 0 || 1665 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] != 0) { 1666 if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock)) { 1667 intr = TRUE; 1668 goto interrupted; 1669 } 1670 } 1671 1672 /* 1673 * Wait for the inactive thread to finish doing what it's doing. It 1674 * won't exit until the a last reference to the vfs_t goes away. 1675 */ 1676 if (mi->mi_inactive_thread != NULL) { 1677 mutex_enter(&mi->mi_lock); 1678 while (!(mi->mi_flags & MI4_INACTIVE_IDLE) || 1679 (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) { 1680 mutex_exit(&mi->mi_lock); 1681 if (!cv_wait_sig(&mi->mi_async_cv, 1682 &mi->mi_async_lock)) { 1683 intr = TRUE; 1684 goto interrupted; 1685 } 1686 mutex_enter(&mi->mi_lock); 1687 } 1688 mutex_exit(&mi->mi_lock); 1689 } 1690 interrupted: 1691 if (intr) 1692 mi->mi_max_threads = omax; 1693 mutex_exit(&mi->mi_async_lock); 1694 1695 return (intr); 1696 } 1697 1698 int 1699 nfs4_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 1700 int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *, 1701 u_offset_t, size_t, int, cred_t *)) 1702 { 1703 rnode4_t *rp; 1704 mntinfo4_t *mi; 1705 struct nfs4_async_reqs *args; 1706 1707 ASSERT(flags & B_ASYNC); 1708 ASSERT(vp->v_vfsp != NULL); 1709 1710 rp = VTOR4(vp); 1711 ASSERT(rp->r_count > 0); 1712 1713 mi = VTOMI4(vp); 1714 1715 /* 1716 * If we can't allocate a request structure, do the putpage 1717 * operation synchronously in this thread's context. 1718 */ 1719 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1720 goto noasync; 1721 1722 args->a_next = NULL; 1723 #ifdef DEBUG 1724 args->a_queuer = curthread; 1725 #endif 1726 VN_HOLD(vp); 1727 args->a_vp = vp; 1728 ASSERT(cr != NULL); 1729 crhold(cr); 1730 args->a_cred = cr; 1731 args->a_io = NFS4_PUTAPAGE; 1732 args->a_nfs4_putapage = putapage; 1733 args->a_nfs4_pp = pp; 1734 args->a_nfs4_off = off; 1735 args->a_nfs4_len = (uint_t)len; 1736 args->a_nfs4_flags = flags; 1737 1738 mutex_enter(&mi->mi_async_lock); 1739 1740 /* 1741 * If asyncio has been disabled, then make a synchronous request. 1742 * This check is done a second time in case async io was diabled 1743 * while this thread was blocked waiting for memory pressure to 1744 * reduce or for the queue to drain. 1745 */ 1746 if (mi->mi_max_threads == 0) { 1747 mutex_exit(&mi->mi_async_lock); 1748 1749 VN_RELE(vp); 1750 crfree(cr); 1751 kmem_free(args, sizeof (*args)); 1752 goto noasync; 1753 } 1754 1755 /* 1756 * Link request structure into the async list and 1757 * wakeup async thread to do the i/o. 1758 */ 1759 if (mi->mi_async_reqs[NFS4_PUTAPAGE] == NULL) { 1760 mi->mi_async_reqs[NFS4_PUTAPAGE] = args; 1761 mi->mi_async_tail[NFS4_PUTAPAGE] = args; 1762 } else { 1763 mi->mi_async_tail[NFS4_PUTAPAGE]->a_next = args; 1764 mi->mi_async_tail[NFS4_PUTAPAGE] = args; 1765 } 1766 1767 mutex_enter(&rp->r_statelock); 1768 rp->r_count++; 1769 rp->r_awcount++; 1770 mutex_exit(&rp->r_statelock); 1771 1772 if (mi->mi_io_kstats) { 1773 mutex_enter(&mi->mi_lock); 1774 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1775 mutex_exit(&mi->mi_lock); 1776 } 1777 1778 mi->mi_async_req_count++; 1779 ASSERT(mi->mi_async_req_count != 0); 1780 cv_signal(&mi->mi_async_reqs_cv); 1781 mutex_exit(&mi->mi_async_lock); 1782 return (0); 1783 1784 noasync: 1785 1786 if (curproc == proc_pageout || curproc == proc_fsflush || 1787 nfs_zone() == mi->mi_zone) { 1788 /* 1789 * If we get here in the context of the pageout/fsflush, 1790 * or we have run out of memory or we're attempting to 1791 * unmount we refuse to do a sync write, because this may 1792 * hang pageout/fsflush and the machine. In this case, 1793 * we just re-mark the page as dirty and punt on the page. 1794 * 1795 * Make sure B_FORCE isn't set. We can re-mark the 1796 * pages as dirty and unlock the pages in one swoop by 1797 * passing in B_ERROR to pvn_write_done(). However, 1798 * we should make sure B_FORCE isn't set - we don't 1799 * want the page tossed before it gets written out. 1800 */ 1801 if (flags & B_FORCE) 1802 flags &= ~(B_INVAL | B_FORCE); 1803 pvn_write_done(pp, flags | B_ERROR); 1804 return (0); 1805 } 1806 1807 /* 1808 * We'll get here only if (nfs_zone() != mi->mi_zone) 1809 * which means that this was a cross-zone sync putpage. 1810 * 1811 * We pass in B_ERROR to pvn_write_done() to re-mark the pages 1812 * as dirty and unlock them. 1813 * 1814 * We don't want to clear B_FORCE here as the caller presumably 1815 * knows what they're doing if they set it. 1816 */ 1817 pvn_write_done(pp, flags | B_ERROR); 1818 return (EPERM); 1819 } 1820 1821 int 1822 nfs4_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 1823 int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t, 1824 size_t, int, cred_t *)) 1825 { 1826 rnode4_t *rp; 1827 mntinfo4_t *mi; 1828 struct nfs4_async_reqs *args; 1829 1830 ASSERT(flags & B_ASYNC); 1831 ASSERT(vp->v_vfsp != NULL); 1832 1833 rp = VTOR4(vp); 1834 ASSERT(rp->r_count > 0); 1835 1836 mi = VTOMI4(vp); 1837 1838 /* 1839 * If we can't allocate a request structure, do the pageio 1840 * request synchronously in this thread's context. 1841 */ 1842 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1843 goto noasync; 1844 1845 args->a_next = NULL; 1846 #ifdef DEBUG 1847 args->a_queuer = curthread; 1848 #endif 1849 VN_HOLD(vp); 1850 args->a_vp = vp; 1851 ASSERT(cr != NULL); 1852 crhold(cr); 1853 args->a_cred = cr; 1854 args->a_io = NFS4_PAGEIO; 1855 args->a_nfs4_pageio = pageio; 1856 args->a_nfs4_pp = pp; 1857 args->a_nfs4_off = io_off; 1858 args->a_nfs4_len = (uint_t)io_len; 1859 args->a_nfs4_flags = flags; 1860 1861 mutex_enter(&mi->mi_async_lock); 1862 1863 /* 1864 * If asyncio has been disabled, then make a synchronous request. 1865 * This check is done a second time in case async io was diabled 1866 * while this thread was blocked waiting for memory pressure to 1867 * reduce or for the queue to drain. 1868 */ 1869 if (mi->mi_max_threads == 0) { 1870 mutex_exit(&mi->mi_async_lock); 1871 1872 VN_RELE(vp); 1873 crfree(cr); 1874 kmem_free(args, sizeof (*args)); 1875 goto noasync; 1876 } 1877 1878 /* 1879 * Link request structure into the async list and 1880 * wakeup async thread to do the i/o. 1881 */ 1882 if (mi->mi_async_reqs[NFS4_PAGEIO] == NULL) { 1883 mi->mi_async_reqs[NFS4_PAGEIO] = args; 1884 mi->mi_async_tail[NFS4_PAGEIO] = args; 1885 } else { 1886 mi->mi_async_tail[NFS4_PAGEIO]->a_next = args; 1887 mi->mi_async_tail[NFS4_PAGEIO] = args; 1888 } 1889 1890 mutex_enter(&rp->r_statelock); 1891 rp->r_count++; 1892 rp->r_awcount++; 1893 mutex_exit(&rp->r_statelock); 1894 1895 if (mi->mi_io_kstats) { 1896 mutex_enter(&mi->mi_lock); 1897 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1898 mutex_exit(&mi->mi_lock); 1899 } 1900 1901 mi->mi_async_req_count++; 1902 ASSERT(mi->mi_async_req_count != 0); 1903 cv_signal(&mi->mi_async_reqs_cv); 1904 mutex_exit(&mi->mi_async_lock); 1905 return (0); 1906 1907 noasync: 1908 /* 1909 * If we can't do it ASYNC, for reads we do nothing (but cleanup 1910 * the page list), for writes we do it synchronously, except for 1911 * proc_pageout/proc_fsflush as described below. 1912 */ 1913 if (flags & B_READ) { 1914 pvn_read_done(pp, flags | B_ERROR); 1915 return (0); 1916 } 1917 1918 if (curproc == proc_pageout || curproc == proc_fsflush) { 1919 /* 1920 * If we get here in the context of the pageout/fsflush, 1921 * we refuse to do a sync write, because this may hang 1922 * pageout/fsflush (and the machine). In this case, we just 1923 * re-mark the page as dirty and punt on the page. 1924 * 1925 * Make sure B_FORCE isn't set. We can re-mark the 1926 * pages as dirty and unlock the pages in one swoop by 1927 * passing in B_ERROR to pvn_write_done(). However, 1928 * we should make sure B_FORCE isn't set - we don't 1929 * want the page tossed before it gets written out. 1930 */ 1931 if (flags & B_FORCE) 1932 flags &= ~(B_INVAL | B_FORCE); 1933 pvn_write_done(pp, flags | B_ERROR); 1934 return (0); 1935 } 1936 1937 if (nfs_zone() != mi->mi_zone) { 1938 /* 1939 * So this was a cross-zone sync pageio. We pass in B_ERROR 1940 * to pvn_write_done() to re-mark the pages as dirty and unlock 1941 * them. 1942 * 1943 * We don't want to clear B_FORCE here as the caller presumably 1944 * knows what they're doing if they set it. 1945 */ 1946 pvn_write_done(pp, flags | B_ERROR); 1947 return (EPERM); 1948 } 1949 return ((*pageio)(vp, pp, io_off, io_len, flags, cr)); 1950 } 1951 1952 void 1953 nfs4_async_readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr, 1954 int (*readdir)(vnode_t *, rddir4_cache *, cred_t *)) 1955 { 1956 rnode4_t *rp; 1957 mntinfo4_t *mi; 1958 struct nfs4_async_reqs *args; 1959 1960 rp = VTOR4(vp); 1961 ASSERT(rp->r_freef == NULL); 1962 1963 mi = VTOMI4(vp); 1964 1965 /* 1966 * If we can't allocate a request structure, skip the readdir. 1967 */ 1968 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1969 goto noasync; 1970 1971 args->a_next = NULL; 1972 #ifdef DEBUG 1973 args->a_queuer = curthread; 1974 #endif 1975 VN_HOLD(vp); 1976 args->a_vp = vp; 1977 ASSERT(cr != NULL); 1978 crhold(cr); 1979 args->a_cred = cr; 1980 args->a_io = NFS4_READDIR; 1981 args->a_nfs4_readdir = readdir; 1982 args->a_nfs4_rdc = rdc; 1983 1984 mutex_enter(&mi->mi_async_lock); 1985 1986 /* 1987 * If asyncio has been disabled, then skip this request 1988 */ 1989 if (mi->mi_max_threads == 0) { 1990 mutex_exit(&mi->mi_async_lock); 1991 1992 VN_RELE(vp); 1993 crfree(cr); 1994 kmem_free(args, sizeof (*args)); 1995 goto noasync; 1996 } 1997 1998 /* 1999 * Link request structure into the async list and 2000 * wakeup async thread to do the i/o. 2001 */ 2002 if (mi->mi_async_reqs[NFS4_READDIR] == NULL) { 2003 mi->mi_async_reqs[NFS4_READDIR] = args; 2004 mi->mi_async_tail[NFS4_READDIR] = args; 2005 } else { 2006 mi->mi_async_tail[NFS4_READDIR]->a_next = args; 2007 mi->mi_async_tail[NFS4_READDIR] = args; 2008 } 2009 2010 mutex_enter(&rp->r_statelock); 2011 rp->r_count++; 2012 mutex_exit(&rp->r_statelock); 2013 2014 if (mi->mi_io_kstats) { 2015 mutex_enter(&mi->mi_lock); 2016 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 2017 mutex_exit(&mi->mi_lock); 2018 } 2019 2020 mi->mi_async_req_count++; 2021 ASSERT(mi->mi_async_req_count != 0); 2022 cv_signal(&mi->mi_async_reqs_cv); 2023 mutex_exit(&mi->mi_async_lock); 2024 return; 2025 2026 noasync: 2027 mutex_enter(&rp->r_statelock); 2028 rdc->entries = NULL; 2029 /* 2030 * Indicate that no one is trying to fill this entry and 2031 * it still needs to be filled. 2032 */ 2033 rdc->flags &= ~RDDIR; 2034 rdc->flags |= RDDIRREQ; 2035 rddir4_cache_rele(rp, rdc); 2036 mutex_exit(&rp->r_statelock); 2037 } 2038 2039 void 2040 nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 2041 cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3, 2042 cred_t *)) 2043 { 2044 rnode4_t *rp; 2045 mntinfo4_t *mi; 2046 struct nfs4_async_reqs *args; 2047 page_t *pp; 2048 2049 rp = VTOR4(vp); 2050 mi = VTOMI4(vp); 2051 2052 /* 2053 * If we can't allocate a request structure, do the commit 2054 * operation synchronously in this thread's context. 2055 */ 2056 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 2057 goto noasync; 2058 2059 args->a_next = NULL; 2060 #ifdef DEBUG 2061 args->a_queuer = curthread; 2062 #endif 2063 VN_HOLD(vp); 2064 args->a_vp = vp; 2065 ASSERT(cr != NULL); 2066 crhold(cr); 2067 args->a_cred = cr; 2068 args->a_io = NFS4_COMMIT; 2069 args->a_nfs4_commit = commit; 2070 args->a_nfs4_plist = plist; 2071 args->a_nfs4_offset = offset; 2072 args->a_nfs4_count = count; 2073 2074 mutex_enter(&mi->mi_async_lock); 2075 2076 /* 2077 * If asyncio has been disabled, then make a synchronous request. 2078 * This check is done a second time in case async io was diabled 2079 * while this thread was blocked waiting for memory pressure to 2080 * reduce or for the queue to drain. 2081 */ 2082 if (mi->mi_max_threads == 0) { 2083 mutex_exit(&mi->mi_async_lock); 2084 2085 VN_RELE(vp); 2086 crfree(cr); 2087 kmem_free(args, sizeof (*args)); 2088 goto noasync; 2089 } 2090 2091 /* 2092 * Link request structure into the async list and 2093 * wakeup async thread to do the i/o. 2094 */ 2095 if (mi->mi_async_reqs[NFS4_COMMIT] == NULL) { 2096 mi->mi_async_reqs[NFS4_COMMIT] = args; 2097 mi->mi_async_tail[NFS4_COMMIT] = args; 2098 } else { 2099 mi->mi_async_tail[NFS4_COMMIT]->a_next = args; 2100 mi->mi_async_tail[NFS4_COMMIT] = args; 2101 } 2102 2103 mutex_enter(&rp->r_statelock); 2104 rp->r_count++; 2105 mutex_exit(&rp->r_statelock); 2106 2107 if (mi->mi_io_kstats) { 2108 mutex_enter(&mi->mi_lock); 2109 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 2110 mutex_exit(&mi->mi_lock); 2111 } 2112 2113 mi->mi_async_req_count++; 2114 ASSERT(mi->mi_async_req_count != 0); 2115 cv_signal(&mi->mi_async_reqs_cv); 2116 mutex_exit(&mi->mi_async_lock); 2117 return; 2118 2119 noasync: 2120 if (curproc == proc_pageout || curproc == proc_fsflush || 2121 nfs_zone() != mi->mi_zone) { 2122 while (plist != NULL) { 2123 pp = plist; 2124 page_sub(&plist, pp); 2125 pp->p_fsdata = C_COMMIT; 2126 page_unlock(pp); 2127 } 2128 return; 2129 } 2130 (*commit)(vp, plist, offset, count, cr); 2131 } 2132 2133 /* 2134 * nfs4_async_inactive - hand off a VOP_INACTIVE call to a thread. The 2135 * reference to the vnode is handed over to the thread; the caller should 2136 * no longer refer to the vnode. 2137 * 2138 * Unlike most of the async routines, this handoff is needed for 2139 * correctness reasons, not just performance. So doing operations in the 2140 * context of the current thread is not an option. 2141 */ 2142 void 2143 nfs4_async_inactive(vnode_t *vp, cred_t *cr) 2144 { 2145 mntinfo4_t *mi; 2146 struct nfs4_async_reqs *args; 2147 boolean_t signal_inactive_thread = B_FALSE; 2148 2149 mi = VTOMI4(vp); 2150 2151 args = kmem_alloc(sizeof (*args), KM_SLEEP); 2152 args->a_next = NULL; 2153 #ifdef DEBUG 2154 args->a_queuer = curthread; 2155 #endif 2156 args->a_vp = vp; 2157 ASSERT(cr != NULL); 2158 crhold(cr); 2159 args->a_cred = cr; 2160 args->a_io = NFS4_INACTIVE; 2161 2162 /* 2163 * Note that we don't check mi->mi_max_threads here, since we 2164 * *need* to get rid of this vnode regardless of whether someone 2165 * set nfs4_max_threads to zero in /etc/system. 2166 * 2167 * The manager thread knows about this and is willing to create 2168 * at least one thread to accommodate us. 2169 */ 2170 mutex_enter(&mi->mi_async_lock); 2171 if (mi->mi_inactive_thread == NULL) { 2172 rnode4_t *rp; 2173 vnode_t *unldvp = NULL; 2174 char *unlname; 2175 cred_t *unlcred; 2176 2177 mutex_exit(&mi->mi_async_lock); 2178 /* 2179 * We just need to free up the memory associated with the 2180 * vnode, which can be safely done from within the current 2181 * context. 2182 */ 2183 crfree(cr); /* drop our reference */ 2184 kmem_free(args, sizeof (*args)); 2185 rp = VTOR4(vp); 2186 mutex_enter(&rp->r_statelock); 2187 if (rp->r_unldvp != NULL) { 2188 unldvp = rp->r_unldvp; 2189 rp->r_unldvp = NULL; 2190 unlname = rp->r_unlname; 2191 rp->r_unlname = NULL; 2192 unlcred = rp->r_unlcred; 2193 rp->r_unlcred = NULL; 2194 } 2195 mutex_exit(&rp->r_statelock); 2196 /* 2197 * No need to explicitly throw away any cached pages. The 2198 * eventual r4inactive() will attempt a synchronous 2199 * VOP_PUTPAGE() which will immediately fail since the request 2200 * is coming from the wrong zone, and then will proceed to call 2201 * nfs4_invalidate_pages() which will clean things up for us. 2202 * 2203 * Throw away the delegation here so rp4_addfree()'s attempt to 2204 * return any existing delegations becomes a no-op. 2205 */ 2206 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { 2207 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 2208 FALSE); 2209 (void) nfs4delegreturn(rp, NFS4_DR_DISCARD); 2210 nfs_rw_exit(&mi->mi_recovlock); 2211 } 2212 nfs4_clear_open_streams(rp); 2213 2214 rp4_addfree(rp, cr); 2215 if (unldvp != NULL) { 2216 kmem_free(unlname, MAXNAMELEN); 2217 VN_RELE(unldvp); 2218 crfree(unlcred); 2219 } 2220 return; 2221 } 2222 2223 if (mi->mi_manager_thread == NULL) { 2224 /* 2225 * We want to talk to the inactive thread. 2226 */ 2227 signal_inactive_thread = B_TRUE; 2228 } 2229 2230 /* 2231 * Enqueue the vnode and wake up either the special thread (empty 2232 * list) or an async thread. 2233 */ 2234 if (mi->mi_async_reqs[NFS4_INACTIVE] == NULL) { 2235 mi->mi_async_reqs[NFS4_INACTIVE] = args; 2236 mi->mi_async_tail[NFS4_INACTIVE] = args; 2237 signal_inactive_thread = B_TRUE; 2238 } else { 2239 mi->mi_async_tail[NFS4_INACTIVE]->a_next = args; 2240 mi->mi_async_tail[NFS4_INACTIVE] = args; 2241 } 2242 if (signal_inactive_thread) { 2243 cv_signal(&mi->mi_inact_req_cv); 2244 } else { 2245 mi->mi_async_req_count++; 2246 ASSERT(mi->mi_async_req_count != 0); 2247 cv_signal(&mi->mi_async_reqs_cv); 2248 } 2249 2250 mutex_exit(&mi->mi_async_lock); 2251 } 2252 2253 int 2254 writerp4(rnode4_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated) 2255 { 2256 int pagecreate; 2257 int n; 2258 int saved_n; 2259 caddr_t saved_base; 2260 u_offset_t offset; 2261 int error; 2262 int sm_error; 2263 vnode_t *vp = RTOV(rp); 2264 2265 ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid); 2266 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER)); 2267 if (!vpm_enable) { 2268 ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE); 2269 } 2270 2271 /* 2272 * Move bytes in at most PAGESIZE chunks. We must avoid 2273 * spanning pages in uiomove() because page faults may cause 2274 * the cache to be invalidated out from under us. The r_size is not 2275 * updated until after the uiomove. If we push the last page of a 2276 * file before r_size is correct, we will lose the data written past 2277 * the current (and invalid) r_size. 2278 */ 2279 do { 2280 offset = uio->uio_loffset; 2281 pagecreate = 0; 2282 2283 /* 2284 * n is the number of bytes required to satisfy the request 2285 * or the number of bytes to fill out the page. 2286 */ 2287 n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount); 2288 2289 /* 2290 * Check to see if we can skip reading in the page 2291 * and just allocate the memory. We can do this 2292 * if we are going to rewrite the entire mapping 2293 * or if we are going to write to or beyond the current 2294 * end of file from the beginning of the mapping. 2295 * 2296 * The read of r_size is now protected by r_statelock. 2297 */ 2298 mutex_enter(&rp->r_statelock); 2299 /* 2300 * When pgcreated is nonzero the caller has already done 2301 * a segmap_getmapflt with forcefault 0 and S_WRITE. With 2302 * segkpm this means we already have at least one page 2303 * created and mapped at base. 2304 */ 2305 pagecreate = pgcreated || 2306 ((offset & PAGEOFFSET) == 0 && 2307 (n == PAGESIZE || ((offset + n) >= rp->r_size))); 2308 2309 mutex_exit(&rp->r_statelock); 2310 2311 if (!vpm_enable && pagecreate) { 2312 /* 2313 * The last argument tells segmap_pagecreate() to 2314 * always lock the page, as opposed to sometimes 2315 * returning with the page locked. This way we avoid a 2316 * fault on the ensuing uiomove(), but also 2317 * more importantly (to fix bug 1094402) we can 2318 * call segmap_fault() to unlock the page in all 2319 * cases. An alternative would be to modify 2320 * segmap_pagecreate() to tell us when it is 2321 * locking a page, but that's a fairly major 2322 * interface change. 2323 */ 2324 if (pgcreated == 0) 2325 (void) segmap_pagecreate(segkmap, base, 2326 (uint_t)n, 1); 2327 saved_base = base; 2328 saved_n = n; 2329 } 2330 2331 /* 2332 * The number of bytes of data in the last page can not 2333 * be accurately be determined while page is being 2334 * uiomove'd to and the size of the file being updated. 2335 * Thus, inform threads which need to know accurately 2336 * how much data is in the last page of the file. They 2337 * will not do the i/o immediately, but will arrange for 2338 * the i/o to happen later when this modify operation 2339 * will have finished. 2340 */ 2341 ASSERT(!(rp->r_flags & R4MODINPROGRESS)); 2342 mutex_enter(&rp->r_statelock); 2343 rp->r_flags |= R4MODINPROGRESS; 2344 rp->r_modaddr = (offset & MAXBMASK); 2345 mutex_exit(&rp->r_statelock); 2346 2347 if (vpm_enable) { 2348 /* 2349 * Copy data. If new pages are created, part of 2350 * the page that is not written will be initizliazed 2351 * with zeros. 2352 */ 2353 error = vpm_data_copy(vp, offset, n, uio, 2354 !pagecreate, NULL, 0, S_WRITE); 2355 } else { 2356 error = uiomove(base, n, UIO_WRITE, uio); 2357 } 2358 2359 /* 2360 * r_size is the maximum number of 2361 * bytes known to be in the file. 2362 * Make sure it is at least as high as the 2363 * first unwritten byte pointed to by uio_loffset. 2364 */ 2365 mutex_enter(&rp->r_statelock); 2366 if (rp->r_size < uio->uio_loffset) 2367 rp->r_size = uio->uio_loffset; 2368 rp->r_flags &= ~R4MODINPROGRESS; 2369 rp->r_flags |= R4DIRTY; 2370 mutex_exit(&rp->r_statelock); 2371 2372 /* n = # of bytes written */ 2373 n = (int)(uio->uio_loffset - offset); 2374 2375 if (!vpm_enable) { 2376 base += n; 2377 } 2378 2379 tcount -= n; 2380 /* 2381 * If we created pages w/o initializing them completely, 2382 * we need to zero the part that wasn't set up. 2383 * This happens on a most EOF write cases and if 2384 * we had some sort of error during the uiomove. 2385 */ 2386 if (!vpm_enable && pagecreate) { 2387 if ((uio->uio_loffset & PAGEOFFSET) || n == 0) 2388 (void) kzero(base, PAGESIZE - n); 2389 2390 if (pgcreated) { 2391 /* 2392 * Caller is responsible for this page, 2393 * it was not created in this loop. 2394 */ 2395 pgcreated = 0; 2396 } else { 2397 /* 2398 * For bug 1094402: segmap_pagecreate locks 2399 * page. Unlock it. This also unlocks the 2400 * pages allocated by page_create_va() in 2401 * segmap_pagecreate(). 2402 */ 2403 sm_error = segmap_fault(kas.a_hat, segkmap, 2404 saved_base, saved_n, 2405 F_SOFTUNLOCK, S_WRITE); 2406 if (error == 0) 2407 error = sm_error; 2408 } 2409 } 2410 } while (tcount > 0 && error == 0); 2411 2412 return (error); 2413 } 2414 2415 int 2416 nfs4_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr) 2417 { 2418 rnode4_t *rp; 2419 page_t *pp; 2420 u_offset_t eoff; 2421 u_offset_t io_off; 2422 size_t io_len; 2423 int error; 2424 int rdirty; 2425 int err; 2426 2427 rp = VTOR4(vp); 2428 ASSERT(rp->r_count > 0); 2429 2430 if (!nfs4_has_pages(vp)) 2431 return (0); 2432 2433 ASSERT(vp->v_type != VCHR); 2434 2435 /* 2436 * If R4OUTOFSPACE is set, then all writes turn into B_INVAL 2437 * writes. B_FORCE is set to force the VM system to actually 2438 * invalidate the pages, even if the i/o failed. The pages 2439 * need to get invalidated because they can't be written out 2440 * because there isn't any space left on either the server's 2441 * file system or in the user's disk quota. The B_FREE bit 2442 * is cleared to avoid confusion as to whether this is a 2443 * request to place the page on the freelist or to destroy 2444 * it. 2445 */ 2446 if ((rp->r_flags & R4OUTOFSPACE) || 2447 (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) 2448 flags = (flags & ~B_FREE) | B_INVAL | B_FORCE; 2449 2450 if (len == 0) { 2451 /* 2452 * If doing a full file synchronous operation, then clear 2453 * the R4DIRTY bit. If a page gets dirtied while the flush 2454 * is happening, then R4DIRTY will get set again. The 2455 * R4DIRTY bit must get cleared before the flush so that 2456 * we don't lose this information. 2457 * 2458 * If there are no full file async write operations 2459 * pending and RDIRTY bit is set, clear it. 2460 */ 2461 if (off == (u_offset_t)0 && 2462 !(flags & B_ASYNC) && 2463 (rp->r_flags & R4DIRTY)) { 2464 mutex_enter(&rp->r_statelock); 2465 rdirty = (rp->r_flags & R4DIRTY); 2466 rp->r_flags &= ~R4DIRTY; 2467 mutex_exit(&rp->r_statelock); 2468 } else if (flags & B_ASYNC && off == (u_offset_t)0) { 2469 mutex_enter(&rp->r_statelock); 2470 if (rp->r_flags & R4DIRTY && rp->r_awcount == 0) { 2471 rdirty = (rp->r_flags & R4DIRTY); 2472 rp->r_flags &= ~R4DIRTY; 2473 } 2474 mutex_exit(&rp->r_statelock); 2475 } else 2476 rdirty = 0; 2477 2478 /* 2479 * Search the entire vp list for pages >= off, and flush 2480 * the dirty pages. 2481 */ 2482 error = pvn_vplist_dirty(vp, off, rp->r_putapage, 2483 flags, cr); 2484 2485 /* 2486 * If an error occurred and the file was marked as dirty 2487 * before and we aren't forcibly invalidating pages, then 2488 * reset the R4DIRTY flag. 2489 */ 2490 if (error && rdirty && 2491 (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) { 2492 mutex_enter(&rp->r_statelock); 2493 rp->r_flags |= R4DIRTY; 2494 mutex_exit(&rp->r_statelock); 2495 } 2496 } else { 2497 /* 2498 * Do a range from [off...off + len) looking for pages 2499 * to deal with. 2500 */ 2501 error = 0; 2502 io_len = 0; 2503 eoff = off + len; 2504 mutex_enter(&rp->r_statelock); 2505 for (io_off = off; io_off < eoff && io_off < rp->r_size; 2506 io_off += io_len) { 2507 mutex_exit(&rp->r_statelock); 2508 /* 2509 * If we are not invalidating, synchronously 2510 * freeing or writing pages use the routine 2511 * page_lookup_nowait() to prevent reclaiming 2512 * them from the free list. 2513 */ 2514 if ((flags & B_INVAL) || !(flags & B_ASYNC)) { 2515 pp = page_lookup(vp, io_off, 2516 (flags & (B_INVAL | B_FREE)) ? 2517 SE_EXCL : SE_SHARED); 2518 } else { 2519 pp = page_lookup_nowait(vp, io_off, 2520 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2521 } 2522 2523 if (pp == NULL || !pvn_getdirty(pp, flags)) 2524 io_len = PAGESIZE; 2525 else { 2526 err = (*rp->r_putapage)(vp, pp, &io_off, 2527 &io_len, flags, cr); 2528 if (!error) 2529 error = err; 2530 /* 2531 * "io_off" and "io_len" are returned as 2532 * the range of pages we actually wrote. 2533 * This allows us to skip ahead more quickly 2534 * since several pages may've been dealt 2535 * with by this iteration of the loop. 2536 */ 2537 } 2538 mutex_enter(&rp->r_statelock); 2539 } 2540 mutex_exit(&rp->r_statelock); 2541 } 2542 2543 return (error); 2544 } 2545 2546 void 2547 nfs4_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr) 2548 { 2549 rnode4_t *rp; 2550 2551 rp = VTOR4(vp); 2552 if (IS_SHADOW(vp, rp)) 2553 vp = RTOV4(rp); 2554 mutex_enter(&rp->r_statelock); 2555 while (rp->r_flags & R4TRUNCATE) 2556 cv_wait(&rp->r_cv, &rp->r_statelock); 2557 rp->r_flags |= R4TRUNCATE; 2558 if (off == (u_offset_t)0) { 2559 rp->r_flags &= ~R4DIRTY; 2560 if (!(rp->r_flags & R4STALE)) 2561 rp->r_error = 0; 2562 } 2563 rp->r_truncaddr = off; 2564 mutex_exit(&rp->r_statelock); 2565 (void) pvn_vplist_dirty(vp, off, rp->r_putapage, 2566 B_INVAL | B_TRUNC, cr); 2567 mutex_enter(&rp->r_statelock); 2568 rp->r_flags &= ~R4TRUNCATE; 2569 cv_broadcast(&rp->r_cv); 2570 mutex_exit(&rp->r_statelock); 2571 } 2572 2573 static int 2574 nfs4_mnt_kstat_update(kstat_t *ksp, int rw) 2575 { 2576 mntinfo4_t *mi; 2577 struct mntinfo_kstat *mik; 2578 vfs_t *vfsp; 2579 2580 /* this is a read-only kstat. Bail out on a write */ 2581 if (rw == KSTAT_WRITE) 2582 return (EACCES); 2583 2584 2585 /* 2586 * We don't want to wait here as kstat_chain_lock could be held by 2587 * dounmount(). dounmount() takes vfs_reflock before the chain lock 2588 * and thus could lead to a deadlock. 2589 */ 2590 vfsp = (struct vfs *)ksp->ks_private; 2591 2592 mi = VFTOMI4(vfsp); 2593 mik = (struct mntinfo_kstat *)ksp->ks_data; 2594 2595 (void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto); 2596 2597 mik->mik_vers = (uint32_t)mi->mi_vers; 2598 mik->mik_flags = mi->mi_flags; 2599 /* 2600 * The sv_secdata holds the flavor the client specifies. 2601 * If the client uses default and a security negotiation 2602 * occurs, sv_currsec will point to the current flavor 2603 * selected from the server flavor list. 2604 * sv_currsec is NULL if no security negotiation takes place. 2605 */ 2606 mik->mik_secmod = mi->mi_curr_serv->sv_currsec ? 2607 mi->mi_curr_serv->sv_currsec->secmod : 2608 mi->mi_curr_serv->sv_secdata->secmod; 2609 mik->mik_curread = (uint32_t)mi->mi_curread; 2610 mik->mik_curwrite = (uint32_t)mi->mi_curwrite; 2611 mik->mik_retrans = mi->mi_retrans; 2612 mik->mik_timeo = mi->mi_timeo; 2613 mik->mik_acregmin = HR2SEC(mi->mi_acregmin); 2614 mik->mik_acregmax = HR2SEC(mi->mi_acregmax); 2615 mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin); 2616 mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax); 2617 mik->mik_noresponse = (uint32_t)mi->mi_noresponse; 2618 mik->mik_failover = (uint32_t)mi->mi_failover; 2619 mik->mik_remap = (uint32_t)mi->mi_remap; 2620 2621 (void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname); 2622 2623 return (0); 2624 } 2625 2626 void 2627 nfs4_mnt_kstat_init(struct vfs *vfsp) 2628 { 2629 mntinfo4_t *mi = VFTOMI4(vfsp); 2630 2631 /* 2632 * PSARC 2001/697 Contract Private Interface 2633 * All nfs kstats are under SunMC contract 2634 * Please refer to the PSARC listed above and contact 2635 * SunMC before making any changes! 2636 * 2637 * Changes must be reviewed by Solaris File Sharing 2638 * Changes must be communicated to contract-2001-697@sun.com 2639 * 2640 */ 2641 2642 mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev), 2643 NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id); 2644 if (mi->mi_io_kstats) { 2645 if (mi->mi_zone->zone_id != GLOBAL_ZONEID) 2646 kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID); 2647 mi->mi_io_kstats->ks_lock = &mi->mi_lock; 2648 kstat_install(mi->mi_io_kstats); 2649 } 2650 2651 if ((mi->mi_ro_kstats = kstat_create_zone("nfs", 2652 getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW, 2653 sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) { 2654 if (mi->mi_zone->zone_id != GLOBAL_ZONEID) 2655 kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID); 2656 mi->mi_ro_kstats->ks_update = nfs4_mnt_kstat_update; 2657 mi->mi_ro_kstats->ks_private = (void *)vfsp; 2658 kstat_install(mi->mi_ro_kstats); 2659 } 2660 2661 nfs4_mnt_recov_kstat_init(vfsp); 2662 } 2663 2664 void 2665 nfs4_write_error(vnode_t *vp, int error, cred_t *cr) 2666 { 2667 mntinfo4_t *mi; 2668 clock_t now = ddi_get_lbolt(); 2669 2670 mi = VTOMI4(vp); 2671 /* 2672 * In case of forced unmount, do not print any messages 2673 * since it can flood the console with error messages. 2674 */ 2675 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) 2676 return; 2677 2678 /* 2679 * If the mount point is dead, not recoverable, do not 2680 * print error messages that can flood the console. 2681 */ 2682 if (mi->mi_flags & MI4_RECOV_FAIL) 2683 return; 2684 2685 /* 2686 * No use in flooding the console with ENOSPC 2687 * messages from the same file system. 2688 */ 2689 if ((error != ENOSPC && error != EDQUOT) || 2690 now - mi->mi_printftime > 0) { 2691 zoneid_t zoneid = mi->mi_zone->zone_id; 2692 2693 #ifdef DEBUG 2694 nfs_perror(error, "NFS%ld write error on host %s: %m.\n", 2695 mi->mi_vers, VTOR4(vp)->r_server->sv_hostname, NULL); 2696 #else 2697 nfs_perror(error, "NFS write error on host %s: %m.\n", 2698 VTOR4(vp)->r_server->sv_hostname, NULL); 2699 #endif 2700 if (error == ENOSPC || error == EDQUOT) { 2701 zcmn_err(zoneid, CE_CONT, 2702 "^File: userid=%d, groupid=%d\n", 2703 crgetuid(cr), crgetgid(cr)); 2704 if (crgetuid(curthread->t_cred) != crgetuid(cr) || 2705 crgetgid(curthread->t_cred) != crgetgid(cr)) { 2706 zcmn_err(zoneid, CE_CONT, 2707 "^User: userid=%d, groupid=%d\n", 2708 crgetuid(curthread->t_cred), 2709 crgetgid(curthread->t_cred)); 2710 } 2711 mi->mi_printftime = now + 2712 nfs_write_error_interval * hz; 2713 } 2714 sfh4_printfhandle(VTOR4(vp)->r_fh); 2715 #ifdef DEBUG 2716 if (error == EACCES) { 2717 zcmn_err(zoneid, CE_CONT, 2718 "nfs_bio: cred is%s kcred\n", 2719 cr == kcred ? "" : " not"); 2720 } 2721 #endif 2722 } 2723 } 2724 2725 /* 2726 * Return non-zero if the given file can be safely memory mapped. Locks 2727 * are safe if whole-file (length and offset are both zero). 2728 */ 2729 2730 #define SAFE_LOCK(flk) ((flk).l_start == 0 && (flk).l_len == 0) 2731 2732 static int 2733 nfs4_safemap(const vnode_t *vp) 2734 { 2735 locklist_t *llp, *next_llp; 2736 int safe = 1; 2737 rnode4_t *rp = VTOR4(vp); 2738 2739 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER)); 2740 2741 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: " 2742 "vp = %p", (void *)vp)); 2743 2744 /* 2745 * Review all the locks for the vnode, both ones that have been 2746 * acquired and ones that are pending. We assume that 2747 * flk_active_locks_for_vp() has merged any locks that can be 2748 * merged (so that if a process has the entire file locked, it is 2749 * represented as a single lock). 2750 * 2751 * Note that we can't bail out of the loop if we find a non-safe 2752 * lock, because we have to free all the elements in the llp list. 2753 * We might be able to speed up this code slightly by not looking 2754 * at each lock's l_start and l_len fields once we've found a 2755 * non-safe lock. 2756 */ 2757 2758 llp = flk_active_locks_for_vp(vp); 2759 while (llp) { 2760 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, 2761 "nfs4_safemap: active lock (%" PRId64 ", %" PRId64 ")", 2762 llp->ll_flock.l_start, llp->ll_flock.l_len)); 2763 if (!SAFE_LOCK(llp->ll_flock)) { 2764 safe = 0; 2765 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, 2766 "nfs4_safemap: unsafe active lock (%" PRId64 2767 ", %" PRId64 ")", llp->ll_flock.l_start, 2768 llp->ll_flock.l_len)); 2769 } 2770 next_llp = llp->ll_next; 2771 VN_RELE(llp->ll_vp); 2772 kmem_free(llp, sizeof (*llp)); 2773 llp = next_llp; 2774 } 2775 2776 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: %s", 2777 safe ? "safe" : "unsafe")); 2778 return (safe); 2779 } 2780 2781 /* 2782 * Return whether there is a lost LOCK or LOCKU queued up for the given 2783 * file that would make an mmap request unsafe. cf. nfs4_safemap(). 2784 */ 2785 2786 bool_t 2787 nfs4_map_lost_lock_conflict(vnode_t *vp) 2788 { 2789 bool_t conflict = FALSE; 2790 nfs4_lost_rqst_t *lrp; 2791 mntinfo4_t *mi = VTOMI4(vp); 2792 2793 mutex_enter(&mi->mi_lock); 2794 for (lrp = list_head(&mi->mi_lost_state); lrp != NULL; 2795 lrp = list_next(&mi->mi_lost_state, lrp)) { 2796 if (lrp->lr_op != OP_LOCK && lrp->lr_op != OP_LOCKU) 2797 continue; 2798 ASSERT(lrp->lr_vp != NULL); 2799 if (!VOP_CMP(lrp->lr_vp, vp, NULL)) 2800 continue; /* different file */ 2801 if (!SAFE_LOCK(*lrp->lr_flk)) { 2802 conflict = TRUE; 2803 break; 2804 } 2805 } 2806 2807 mutex_exit(&mi->mi_lock); 2808 return (conflict); 2809 } 2810 2811 /* 2812 * nfs_lockcompletion: 2813 * 2814 * If the vnode has a lock that makes it unsafe to cache the file, mark it 2815 * as non cachable (set VNOCACHE bit). 2816 */ 2817 2818 void 2819 nfs4_lockcompletion(vnode_t *vp, int cmd) 2820 { 2821 rnode4_t *rp = VTOR4(vp); 2822 2823 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER)); 2824 ASSERT(!IS_SHADOW(vp, rp)); 2825 2826 if (cmd == F_SETLK || cmd == F_SETLKW) { 2827 2828 if (!nfs4_safemap(vp)) { 2829 mutex_enter(&vp->v_lock); 2830 vp->v_flag |= VNOCACHE; 2831 mutex_exit(&vp->v_lock); 2832 } else { 2833 mutex_enter(&vp->v_lock); 2834 vp->v_flag &= ~VNOCACHE; 2835 mutex_exit(&vp->v_lock); 2836 } 2837 } 2838 /* 2839 * The cached attributes of the file are stale after acquiring 2840 * the lock on the file. They were updated when the file was 2841 * opened, but not updated when the lock was acquired. Therefore the 2842 * cached attributes are invalidated after the lock is obtained. 2843 */ 2844 PURGE_ATTRCACHE4(vp); 2845 } 2846 2847 /* ARGSUSED */ 2848 static void * 2849 nfs4_mi_init(zoneid_t zoneid) 2850 { 2851 struct mi4_globals *mig; 2852 2853 mig = kmem_alloc(sizeof (*mig), KM_SLEEP); 2854 mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL); 2855 list_create(&mig->mig_list, sizeof (mntinfo4_t), 2856 offsetof(mntinfo4_t, mi_zone_node)); 2857 mig->mig_destructor_called = B_FALSE; 2858 return (mig); 2859 } 2860 2861 /* 2862 * Callback routine to tell all NFSv4 mounts in the zone to start tearing down 2863 * state and killing off threads. 2864 */ 2865 /* ARGSUSED */ 2866 static void 2867 nfs4_mi_shutdown(zoneid_t zoneid, void *data) 2868 { 2869 struct mi4_globals *mig = data; 2870 mntinfo4_t *mi; 2871 nfs4_server_t *np; 2872 2873 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 2874 "nfs4_mi_shutdown zone %d\n", zoneid)); 2875 ASSERT(mig != NULL); 2876 for (;;) { 2877 mutex_enter(&mig->mig_lock); 2878 mi = list_head(&mig->mig_list); 2879 if (mi == NULL) { 2880 mutex_exit(&mig->mig_lock); 2881 break; 2882 } 2883 2884 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 2885 "nfs4_mi_shutdown stopping vfs %p\n", (void *)mi->mi_vfsp)); 2886 /* 2887 * purge the DNLC for this filesystem 2888 */ 2889 (void) dnlc_purge_vfsp(mi->mi_vfsp, 0); 2890 /* 2891 * Tell existing async worker threads to exit. 2892 */ 2893 mutex_enter(&mi->mi_async_lock); 2894 mi->mi_max_threads = 0; 2895 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv); 2896 /* 2897 * Set the appropriate flags, signal and wait for both the 2898 * async manager and the inactive thread to exit when they're 2899 * done with their current work. 2900 */ 2901 mutex_enter(&mi->mi_lock); 2902 mi->mi_flags |= (MI4_ASYNC_MGR_STOP|MI4_DEAD); 2903 mutex_exit(&mi->mi_lock); 2904 mutex_exit(&mi->mi_async_lock); 2905 if (mi->mi_manager_thread) { 2906 nfs4_async_manager_stop(mi->mi_vfsp); 2907 } 2908 if (mi->mi_inactive_thread) { 2909 mutex_enter(&mi->mi_async_lock); 2910 cv_signal(&mi->mi_inact_req_cv); 2911 /* 2912 * Wait for the inactive thread to exit. 2913 */ 2914 while (mi->mi_inactive_thread != NULL) { 2915 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 2916 } 2917 mutex_exit(&mi->mi_async_lock); 2918 } 2919 /* 2920 * Wait for the recovery thread to complete, that is, it will 2921 * signal when it is done using the "mi" structure and about 2922 * to exit 2923 */ 2924 mutex_enter(&mi->mi_lock); 2925 while (mi->mi_in_recovery > 0) 2926 cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock); 2927 mutex_exit(&mi->mi_lock); 2928 /* 2929 * We're done when every mi has been done or the list is empty. 2930 * This one is done, remove it from the list. 2931 */ 2932 list_remove(&mig->mig_list, mi); 2933 mutex_exit(&mig->mig_lock); 2934 zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4); 2935 2936 /* 2937 * Release hold on vfs and mi done to prevent race with zone 2938 * shutdown. This releases the hold in nfs4_mi_zonelist_add. 2939 */ 2940 VFS_RELE(mi->mi_vfsp); 2941 MI4_RELE(mi); 2942 } 2943 /* 2944 * Tell each renew thread in the zone to exit 2945 */ 2946 mutex_enter(&nfs4_server_lst_lock); 2947 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) { 2948 mutex_enter(&np->s_lock); 2949 if (np->zoneid == zoneid) { 2950 /* 2951 * We add another hold onto the nfs4_server_t 2952 * because this will make sure tha the nfs4_server_t 2953 * stays around until nfs4_callback_fini_zone destroys 2954 * the zone. This way, the renew thread can 2955 * unconditionally release its holds on the 2956 * nfs4_server_t. 2957 */ 2958 np->s_refcnt++; 2959 nfs4_mark_srv_dead(np); 2960 } 2961 mutex_exit(&np->s_lock); 2962 } 2963 mutex_exit(&nfs4_server_lst_lock); 2964 } 2965 2966 static void 2967 nfs4_mi_free_globals(struct mi4_globals *mig) 2968 { 2969 list_destroy(&mig->mig_list); /* makes sure the list is empty */ 2970 mutex_destroy(&mig->mig_lock); 2971 kmem_free(mig, sizeof (*mig)); 2972 } 2973 2974 /* ARGSUSED */ 2975 static void 2976 nfs4_mi_destroy(zoneid_t zoneid, void *data) 2977 { 2978 struct mi4_globals *mig = data; 2979 2980 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 2981 "nfs4_mi_destroy zone %d\n", zoneid)); 2982 ASSERT(mig != NULL); 2983 mutex_enter(&mig->mig_lock); 2984 if (list_head(&mig->mig_list) != NULL) { 2985 /* Still waiting for VFS_FREEVFS() */ 2986 mig->mig_destructor_called = B_TRUE; 2987 mutex_exit(&mig->mig_lock); 2988 return; 2989 } 2990 nfs4_mi_free_globals(mig); 2991 } 2992 2993 /* 2994 * Add an NFS mount to the per-zone list of NFS mounts. 2995 */ 2996 void 2997 nfs4_mi_zonelist_add(mntinfo4_t *mi) 2998 { 2999 struct mi4_globals *mig; 3000 3001 mig = zone_getspecific(mi4_list_key, mi->mi_zone); 3002 mutex_enter(&mig->mig_lock); 3003 list_insert_head(&mig->mig_list, mi); 3004 /* 3005 * hold added to eliminate race with zone shutdown -this will be 3006 * released in mi_shutdown 3007 */ 3008 MI4_HOLD(mi); 3009 VFS_HOLD(mi->mi_vfsp); 3010 mutex_exit(&mig->mig_lock); 3011 } 3012 3013 /* 3014 * Remove an NFS mount from the per-zone list of NFS mounts. 3015 */ 3016 int 3017 nfs4_mi_zonelist_remove(mntinfo4_t *mi) 3018 { 3019 struct mi4_globals *mig; 3020 int ret = 0; 3021 3022 mig = zone_getspecific(mi4_list_key, mi->mi_zone); 3023 mutex_enter(&mig->mig_lock); 3024 mutex_enter(&mi->mi_lock); 3025 /* if this mi is marked dead, then the zone already released it */ 3026 if (!(mi->mi_flags & MI4_DEAD)) { 3027 list_remove(&mig->mig_list, mi); 3028 mutex_exit(&mi->mi_lock); 3029 3030 /* release the holds put on in zonelist_add(). */ 3031 VFS_RELE(mi->mi_vfsp); 3032 MI4_RELE(mi); 3033 ret = 1; 3034 } else { 3035 mutex_exit(&mi->mi_lock); 3036 } 3037 3038 /* 3039 * We can be called asynchronously by VFS_FREEVFS() after the zone 3040 * shutdown/destroy callbacks have executed; if so, clean up the zone's 3041 * mi globals. 3042 */ 3043 if (list_head(&mig->mig_list) == NULL && 3044 mig->mig_destructor_called == B_TRUE) { 3045 nfs4_mi_free_globals(mig); 3046 return (ret); 3047 } 3048 mutex_exit(&mig->mig_lock); 3049 return (ret); 3050 } 3051 3052 void 3053 nfs_free_mi4(mntinfo4_t *mi) 3054 { 3055 nfs4_open_owner_t *foop; 3056 nfs4_oo_hash_bucket_t *bucketp; 3057 nfs4_debug_msg_t *msgp; 3058 int i; 3059 servinfo4_t *svp; 3060 3061 /* 3062 * Code introduced here should be carefully evaluated to make 3063 * sure none of the freed resources are accessed either directly 3064 * or indirectly after freeing them. For eg: Introducing calls to 3065 * NFS4_DEBUG that use mntinfo4_t structure member after freeing 3066 * the structure members or other routines calling back into NFS 3067 * accessing freed mntinfo4_t structure member. 3068 */ 3069 mutex_enter(&mi->mi_lock); 3070 ASSERT(mi->mi_recovthread == NULL); 3071 ASSERT(mi->mi_flags & MI4_ASYNC_MGR_STOP); 3072 mutex_exit(&mi->mi_lock); 3073 mutex_enter(&mi->mi_async_lock); 3074 ASSERT(mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 && 3075 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0); 3076 ASSERT(mi->mi_manager_thread == NULL); 3077 mutex_exit(&mi->mi_async_lock); 3078 if (mi->mi_io_kstats) { 3079 kstat_delete(mi->mi_io_kstats); 3080 mi->mi_io_kstats = NULL; 3081 } 3082 if (mi->mi_ro_kstats) { 3083 kstat_delete(mi->mi_ro_kstats); 3084 mi->mi_ro_kstats = NULL; 3085 } 3086 if (mi->mi_recov_ksp) { 3087 kstat_delete(mi->mi_recov_ksp); 3088 mi->mi_recov_ksp = NULL; 3089 } 3090 mutex_enter(&mi->mi_msg_list_lock); 3091 while (msgp = list_head(&mi->mi_msg_list)) { 3092 list_remove(&mi->mi_msg_list, msgp); 3093 nfs4_free_msg(msgp); 3094 } 3095 mutex_exit(&mi->mi_msg_list_lock); 3096 list_destroy(&mi->mi_msg_list); 3097 if (mi->mi_fname != NULL) 3098 fn_rele(&mi->mi_fname); 3099 if (mi->mi_rootfh != NULL) 3100 sfh4_rele(&mi->mi_rootfh); 3101 if (mi->mi_srvparentfh != NULL) 3102 sfh4_rele(&mi->mi_srvparentfh); 3103 svp = mi->mi_servers; 3104 sv4_free(svp); 3105 mutex_destroy(&mi->mi_lock); 3106 mutex_destroy(&mi->mi_async_lock); 3107 mutex_destroy(&mi->mi_msg_list_lock); 3108 nfs_rw_destroy(&mi->mi_recovlock); 3109 nfs_rw_destroy(&mi->mi_rename_lock); 3110 nfs_rw_destroy(&mi->mi_fh_lock); 3111 cv_destroy(&mi->mi_failover_cv); 3112 cv_destroy(&mi->mi_async_reqs_cv); 3113 cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_QUEUE]); 3114 cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE]); 3115 cv_destroy(&mi->mi_async_cv); 3116 cv_destroy(&mi->mi_inact_req_cv); 3117 /* 3118 * Destroy the oo hash lists and mutexes for the cred hash table. 3119 */ 3120 for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) { 3121 bucketp = &(mi->mi_oo_list[i]); 3122 /* Destroy any remaining open owners on the list */ 3123 foop = list_head(&bucketp->b_oo_hash_list); 3124 while (foop != NULL) { 3125 list_remove(&bucketp->b_oo_hash_list, foop); 3126 nfs4_destroy_open_owner(foop); 3127 foop = list_head(&bucketp->b_oo_hash_list); 3128 } 3129 list_destroy(&bucketp->b_oo_hash_list); 3130 mutex_destroy(&bucketp->b_lock); 3131 } 3132 /* 3133 * Empty and destroy the freed open owner list. 3134 */ 3135 foop = list_head(&mi->mi_foo_list); 3136 while (foop != NULL) { 3137 list_remove(&mi->mi_foo_list, foop); 3138 nfs4_destroy_open_owner(foop); 3139 foop = list_head(&mi->mi_foo_list); 3140 } 3141 list_destroy(&mi->mi_foo_list); 3142 list_destroy(&mi->mi_bseqid_list); 3143 list_destroy(&mi->mi_lost_state); 3144 avl_destroy(&mi->mi_filehandles); 3145 kmem_free(mi, sizeof (*mi)); 3146 } 3147 void 3148 mi_hold(mntinfo4_t *mi) 3149 { 3150 atomic_add_32(&mi->mi_count, 1); 3151 ASSERT(mi->mi_count != 0); 3152 } 3153 3154 void 3155 mi_rele(mntinfo4_t *mi) 3156 { 3157 ASSERT(mi->mi_count != 0); 3158 if (atomic_add_32_nv(&mi->mi_count, -1) == 0) { 3159 nfs_free_mi4(mi); 3160 } 3161 } 3162 3163 vnode_t nfs4_xattr_notsupp_vnode; 3164 3165 void 3166 nfs4_clnt_init(void) 3167 { 3168 nfs4_vnops_init(); 3169 (void) nfs4_rnode_init(); 3170 (void) nfs4_shadow_init(); 3171 (void) nfs4_acache_init(); 3172 (void) nfs4_subr_init(); 3173 nfs4_acl_init(); 3174 nfs_idmap_init(); 3175 nfs4_callback_init(); 3176 nfs4_secinfo_init(); 3177 #ifdef DEBUG 3178 tsd_create(&nfs4_tsd_key, NULL); 3179 #endif 3180 3181 /* 3182 * Add a CPR callback so that we can update client 3183 * lease after a suspend and resume. 3184 */ 3185 cid = callb_add(nfs4_client_cpr_callb, 0, CB_CL_CPR_RPC, "nfs4"); 3186 3187 zone_key_create(&mi4_list_key, nfs4_mi_init, nfs4_mi_shutdown, 3188 nfs4_mi_destroy); 3189 3190 /* 3191 * Initialise the reference count of the notsupp xattr cache vnode to 1 3192 * so that it never goes away (VOP_INACTIVE isn't called on it). 3193 */ 3194 nfs4_xattr_notsupp_vnode.v_count = 1; 3195 } 3196 3197 void 3198 nfs4_clnt_fini(void) 3199 { 3200 (void) zone_key_delete(mi4_list_key); 3201 nfs4_vnops_fini(); 3202 (void) nfs4_rnode_fini(); 3203 (void) nfs4_shadow_fini(); 3204 (void) nfs4_acache_fini(); 3205 (void) nfs4_subr_fini(); 3206 nfs_idmap_fini(); 3207 nfs4_callback_fini(); 3208 nfs4_secinfo_fini(); 3209 #ifdef DEBUG 3210 tsd_destroy(&nfs4_tsd_key); 3211 #endif 3212 if (cid) 3213 (void) callb_delete(cid); 3214 } 3215 3216 /*ARGSUSED*/ 3217 static boolean_t 3218 nfs4_client_cpr_callb(void *arg, int code) 3219 { 3220 /* 3221 * We get called for Suspend and Resume events. 3222 * For the suspend case we simply don't care! 3223 */ 3224 if (code == CB_CODE_CPR_CHKPT) { 3225 return (B_TRUE); 3226 } 3227 3228 /* 3229 * When we get to here we are in the process of 3230 * resuming the system from a previous suspend. 3231 */ 3232 nfs4_client_resumed = gethrestime_sec(); 3233 return (B_TRUE); 3234 } 3235 3236 void 3237 nfs4_renew_lease_thread(nfs4_server_t *sp) 3238 { 3239 int error = 0; 3240 time_t tmp_last_renewal_time, tmp_time, tmp_now_time, kip_secs; 3241 clock_t tick_delay = 0; 3242 clock_t time_left = 0; 3243 callb_cpr_t cpr_info; 3244 kmutex_t cpr_lock; 3245 3246 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3247 "nfs4_renew_lease_thread: acting on sp 0x%p", (void*)sp)); 3248 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL); 3249 CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, "nfsv4Lease"); 3250 3251 mutex_enter(&sp->s_lock); 3252 /* sp->s_lease_time is set via a GETATTR */ 3253 sp->last_renewal_time = gethrestime_sec(); 3254 sp->lease_valid = NFS4_LEASE_UNINITIALIZED; 3255 ASSERT(sp->s_refcnt >= 1); 3256 3257 for (;;) { 3258 if (!sp->state_ref_count || 3259 sp->lease_valid != NFS4_LEASE_VALID) { 3260 3261 kip_secs = MAX((sp->s_lease_time >> 1) - 3262 (3 * sp->propagation_delay.tv_sec), 1); 3263 3264 tick_delay = SEC_TO_TICK(kip_secs); 3265 3266 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3267 "nfs4_renew_lease_thread: no renew : thread " 3268 "wait %ld secs", kip_secs)); 3269 3270 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3271 "nfs4_renew_lease_thread: no renew : " 3272 "state_ref_count %d, lease_valid %d", 3273 sp->state_ref_count, sp->lease_valid)); 3274 3275 mutex_enter(&cpr_lock); 3276 CALLB_CPR_SAFE_BEGIN(&cpr_info); 3277 mutex_exit(&cpr_lock); 3278 time_left = cv_reltimedwait(&sp->cv_thread_exit, 3279 &sp->s_lock, tick_delay, TR_CLOCK_TICK); 3280 mutex_enter(&cpr_lock); 3281 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 3282 mutex_exit(&cpr_lock); 3283 3284 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3285 "nfs4_renew_lease_thread: no renew: " 3286 "time left %ld", time_left)); 3287 3288 if (sp->s_thread_exit == NFS4_THREAD_EXIT) 3289 goto die; 3290 continue; 3291 } 3292 3293 tmp_last_renewal_time = sp->last_renewal_time; 3294 3295 tmp_time = gethrestime_sec() - sp->last_renewal_time + 3296 (3 * sp->propagation_delay.tv_sec); 3297 3298 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3299 "nfs4_renew_lease_thread: tmp_time %ld, " 3300 "sp->last_renewal_time %ld", tmp_time, 3301 sp->last_renewal_time)); 3302 3303 kip_secs = MAX((sp->s_lease_time >> 1) - tmp_time, 1); 3304 3305 tick_delay = SEC_TO_TICK(kip_secs); 3306 3307 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3308 "nfs4_renew_lease_thread: valid lease: sleep for %ld " 3309 "secs", kip_secs)); 3310 3311 mutex_enter(&cpr_lock); 3312 CALLB_CPR_SAFE_BEGIN(&cpr_info); 3313 mutex_exit(&cpr_lock); 3314 time_left = cv_reltimedwait(&sp->cv_thread_exit, &sp->s_lock, 3315 tick_delay, TR_CLOCK_TICK); 3316 mutex_enter(&cpr_lock); 3317 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 3318 mutex_exit(&cpr_lock); 3319 3320 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3321 "nfs4_renew_lease_thread: valid lease: time left %ld :" 3322 "sp last_renewal_time %ld, nfs4_client_resumed %ld, " 3323 "tmp_last_renewal_time %ld", time_left, 3324 sp->last_renewal_time, nfs4_client_resumed, 3325 tmp_last_renewal_time)); 3326 3327 if (sp->s_thread_exit == NFS4_THREAD_EXIT) 3328 goto die; 3329 3330 if (tmp_last_renewal_time == sp->last_renewal_time || 3331 (nfs4_client_resumed != 0 && 3332 nfs4_client_resumed > sp->last_renewal_time)) { 3333 /* 3334 * Issue RENEW op since we haven't renewed the lease 3335 * since we slept. 3336 */ 3337 tmp_now_time = gethrestime_sec(); 3338 error = nfs4renew(sp); 3339 /* 3340 * Need to re-acquire sp's lock, nfs4renew() 3341 * relinqueshes it. 3342 */ 3343 mutex_enter(&sp->s_lock); 3344 3345 /* 3346 * See if someone changed s_thread_exit while we gave 3347 * up s_lock. 3348 */ 3349 if (sp->s_thread_exit == NFS4_THREAD_EXIT) 3350 goto die; 3351 3352 if (!error) { 3353 /* 3354 * check to see if we implicitly renewed while 3355 * we waited for a reply for our RENEW call. 3356 */ 3357 if (tmp_last_renewal_time == 3358 sp->last_renewal_time) { 3359 /* no implicit renew came */ 3360 sp->last_renewal_time = tmp_now_time; 3361 } else { 3362 NFS4_DEBUG(nfs4_client_lease_debug, 3363 (CE_NOTE, "renew_thread: did " 3364 "implicit renewal before reply " 3365 "from server for RENEW")); 3366 } 3367 } else { 3368 /* figure out error */ 3369 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3370 "renew_thread: nfs4renew returned error" 3371 " %d", error)); 3372 } 3373 3374 } 3375 } 3376 3377 die: 3378 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3379 "nfs4_renew_lease_thread: thread exiting")); 3380 3381 while (sp->s_otw_call_count != 0) { 3382 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3383 "nfs4_renew_lease_thread: waiting for outstanding " 3384 "otw calls to finish for sp 0x%p, current " 3385 "s_otw_call_count %d", (void *)sp, 3386 sp->s_otw_call_count)); 3387 mutex_enter(&cpr_lock); 3388 CALLB_CPR_SAFE_BEGIN(&cpr_info); 3389 mutex_exit(&cpr_lock); 3390 cv_wait(&sp->s_cv_otw_count, &sp->s_lock); 3391 mutex_enter(&cpr_lock); 3392 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 3393 mutex_exit(&cpr_lock); 3394 } 3395 mutex_exit(&sp->s_lock); 3396 3397 nfs4_server_rele(sp); /* free the thread's reference */ 3398 nfs4_server_rele(sp); /* free the list's reference */ 3399 sp = NULL; 3400 3401 done: 3402 mutex_enter(&cpr_lock); 3403 CALLB_CPR_EXIT(&cpr_info); /* drops cpr_lock */ 3404 mutex_destroy(&cpr_lock); 3405 3406 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3407 "nfs4_renew_lease_thread: renew thread exit officially")); 3408 3409 zthread_exit(); 3410 /* NOT REACHED */ 3411 } 3412 3413 /* 3414 * Send out a RENEW op to the server. 3415 * Assumes sp is locked down. 3416 */ 3417 static int 3418 nfs4renew(nfs4_server_t *sp) 3419 { 3420 COMPOUND4args_clnt args; 3421 COMPOUND4res_clnt res; 3422 nfs_argop4 argop[1]; 3423 int doqueue = 1; 3424 int rpc_error; 3425 cred_t *cr; 3426 mntinfo4_t *mi; 3427 timespec_t prop_time, after_time; 3428 int needrecov = FALSE; 3429 nfs4_recov_state_t recov_state; 3430 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3431 3432 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4renew")); 3433 3434 recov_state.rs_flags = 0; 3435 recov_state.rs_num_retry_despite_err = 0; 3436 3437 recov_retry: 3438 mi = sp->mntinfo4_list; 3439 VFS_HOLD(mi->mi_vfsp); 3440 mutex_exit(&sp->s_lock); 3441 ASSERT(mi != NULL); 3442 3443 e.error = nfs4_start_op(mi, NULL, NULL, &recov_state); 3444 if (e.error) { 3445 VFS_RELE(mi->mi_vfsp); 3446 return (e.error); 3447 } 3448 3449 /* Check to see if we're dealing with a marked-dead sp */ 3450 mutex_enter(&sp->s_lock); 3451 if (sp->s_thread_exit == NFS4_THREAD_EXIT) { 3452 mutex_exit(&sp->s_lock); 3453 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3454 VFS_RELE(mi->mi_vfsp); 3455 return (0); 3456 } 3457 3458 /* Make sure mi hasn't changed on us */ 3459 if (mi != sp->mntinfo4_list) { 3460 /* Must drop sp's lock to avoid a recursive mutex enter */ 3461 mutex_exit(&sp->s_lock); 3462 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3463 VFS_RELE(mi->mi_vfsp); 3464 mutex_enter(&sp->s_lock); 3465 goto recov_retry; 3466 } 3467 mutex_exit(&sp->s_lock); 3468 3469 args.ctag = TAG_RENEW; 3470 3471 args.array_len = 1; 3472 args.array = argop; 3473 3474 argop[0].argop = OP_RENEW; 3475 3476 mutex_enter(&sp->s_lock); 3477 argop[0].nfs_argop4_u.oprenew.clientid = sp->clientid; 3478 cr = sp->s_cred; 3479 crhold(cr); 3480 mutex_exit(&sp->s_lock); 3481 3482 ASSERT(cr != NULL); 3483 3484 /* used to figure out RTT for sp */ 3485 gethrestime(&prop_time); 3486 3487 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3488 "nfs4renew: %s call, sp 0x%p", needrecov ? "recov" : "first", 3489 (void*)sp)); 3490 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "before: %ld s %ld ns ", 3491 prop_time.tv_sec, prop_time.tv_nsec)); 3492 3493 DTRACE_PROBE2(nfs4__renew__start, nfs4_server_t *, sp, 3494 mntinfo4_t *, mi); 3495 3496 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3497 crfree(cr); 3498 3499 DTRACE_PROBE2(nfs4__renew__end, nfs4_server_t *, sp, 3500 mntinfo4_t *, mi); 3501 3502 gethrestime(&after_time); 3503 3504 mutex_enter(&sp->s_lock); 3505 sp->propagation_delay.tv_sec = 3506 MAX(1, after_time.tv_sec - prop_time.tv_sec); 3507 mutex_exit(&sp->s_lock); 3508 3509 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "after : %ld s %ld ns ", 3510 after_time.tv_sec, after_time.tv_nsec)); 3511 3512 if (e.error == 0 && res.status == NFS4ERR_CB_PATH_DOWN) { 3513 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3514 nfs4_delegreturn_all(sp); 3515 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3516 VFS_RELE(mi->mi_vfsp); 3517 /* 3518 * If the server returns CB_PATH_DOWN, it has renewed 3519 * the lease and informed us that the callback path is 3520 * down. Since the lease is renewed, just return 0 and 3521 * let the renew thread proceed as normal. 3522 */ 3523 return (0); 3524 } 3525 3526 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3527 if (!needrecov && e.error) { 3528 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3529 VFS_RELE(mi->mi_vfsp); 3530 return (e.error); 3531 } 3532 3533 rpc_error = e.error; 3534 3535 if (needrecov) { 3536 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3537 "nfs4renew: initiating recovery\n")); 3538 3539 if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL, 3540 OP_RENEW, NULL, NULL, NULL) == FALSE) { 3541 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3542 VFS_RELE(mi->mi_vfsp); 3543 if (!e.error) 3544 (void) xdr_free(xdr_COMPOUND4res_clnt, 3545 (caddr_t)&res); 3546 mutex_enter(&sp->s_lock); 3547 goto recov_retry; 3548 } 3549 /* fall through for res.status case */ 3550 } 3551 3552 if (res.status) { 3553 if (res.status == NFS4ERR_LEASE_MOVED) { 3554 /*EMPTY*/ 3555 /* 3556 * XXX need to try every mntinfo4 in sp->mntinfo4_list 3557 * to renew the lease on that server 3558 */ 3559 } 3560 e.error = geterrno4(res.status); 3561 } 3562 3563 if (!rpc_error) 3564 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3565 3566 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3567 3568 VFS_RELE(mi->mi_vfsp); 3569 3570 return (e.error); 3571 } 3572 3573 void 3574 nfs4_inc_state_ref_count(mntinfo4_t *mi) 3575 { 3576 nfs4_server_t *sp; 3577 3578 /* this locks down sp if it is found */ 3579 sp = find_nfs4_server(mi); 3580 3581 if (sp != NULL) { 3582 nfs4_inc_state_ref_count_nolock(sp, mi); 3583 mutex_exit(&sp->s_lock); 3584 nfs4_server_rele(sp); 3585 } 3586 } 3587 3588 /* 3589 * Bump the number of OPEN files (ie: those with state) so we know if this 3590 * nfs4_server has any state to maintain a lease for or not. 3591 * 3592 * Also, marks the nfs4_server's lease valid if it hasn't been done so already. 3593 */ 3594 void 3595 nfs4_inc_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi) 3596 { 3597 ASSERT(mutex_owned(&sp->s_lock)); 3598 3599 sp->state_ref_count++; 3600 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3601 "nfs4_inc_state_ref_count: state_ref_count now %d", 3602 sp->state_ref_count)); 3603 3604 if (sp->lease_valid == NFS4_LEASE_UNINITIALIZED) 3605 sp->lease_valid = NFS4_LEASE_VALID; 3606 3607 /* 3608 * If this call caused the lease to be marked valid and/or 3609 * took the state_ref_count from 0 to 1, then start the time 3610 * on lease renewal. 3611 */ 3612 if (sp->lease_valid == NFS4_LEASE_VALID && sp->state_ref_count == 1) 3613 sp->last_renewal_time = gethrestime_sec(); 3614 3615 /* update the number of open files for mi */ 3616 mi->mi_open_files++; 3617 } 3618 3619 void 3620 nfs4_dec_state_ref_count(mntinfo4_t *mi) 3621 { 3622 nfs4_server_t *sp; 3623 3624 /* this locks down sp if it is found */ 3625 sp = find_nfs4_server_all(mi, 1); 3626 3627 if (sp != NULL) { 3628 nfs4_dec_state_ref_count_nolock(sp, mi); 3629 mutex_exit(&sp->s_lock); 3630 nfs4_server_rele(sp); 3631 } 3632 } 3633 3634 /* 3635 * Decrement the number of OPEN files (ie: those with state) so we know if 3636 * this nfs4_server has any state to maintain a lease for or not. 3637 */ 3638 void 3639 nfs4_dec_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi) 3640 { 3641 ASSERT(mutex_owned(&sp->s_lock)); 3642 ASSERT(sp->state_ref_count != 0); 3643 sp->state_ref_count--; 3644 3645 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3646 "nfs4_dec_state_ref_count: state ref count now %d", 3647 sp->state_ref_count)); 3648 3649 mi->mi_open_files--; 3650 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3651 "nfs4_dec_state_ref_count: mi open files %d, v4 flags 0x%x", 3652 mi->mi_open_files, mi->mi_flags)); 3653 3654 /* We don't have to hold the mi_lock to test mi_flags */ 3655 if (mi->mi_open_files == 0 && 3656 (mi->mi_flags & MI4_REMOVE_ON_LAST_CLOSE)) { 3657 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3658 "nfs4_dec_state_ref_count: remove mntinfo4 %p since " 3659 "we have closed the last open file", (void*)mi)); 3660 nfs4_remove_mi_from_server(mi, sp); 3661 } 3662 } 3663 3664 bool_t 3665 inlease(nfs4_server_t *sp) 3666 { 3667 bool_t result; 3668 3669 ASSERT(mutex_owned(&sp->s_lock)); 3670 3671 if (sp->lease_valid == NFS4_LEASE_VALID && 3672 gethrestime_sec() < sp->last_renewal_time + sp->s_lease_time) 3673 result = TRUE; 3674 else 3675 result = FALSE; 3676 3677 return (result); 3678 } 3679 3680 3681 /* 3682 * Return non-zero if the given nfs4_server_t is going through recovery. 3683 */ 3684 3685 int 3686 nfs4_server_in_recovery(nfs4_server_t *sp) 3687 { 3688 return (nfs_rw_lock_held(&sp->s_recovlock, RW_WRITER)); 3689 } 3690 3691 /* 3692 * Compare two shared filehandle objects. Returns -1, 0, or +1, if the 3693 * first is less than, equal to, or greater than the second. 3694 */ 3695 3696 int 3697 sfh4cmp(const void *p1, const void *p2) 3698 { 3699 const nfs4_sharedfh_t *sfh1 = (const nfs4_sharedfh_t *)p1; 3700 const nfs4_sharedfh_t *sfh2 = (const nfs4_sharedfh_t *)p2; 3701 3702 return (nfs4cmpfh(&sfh1->sfh_fh, &sfh2->sfh_fh)); 3703 } 3704 3705 /* 3706 * Create a table for shared filehandle objects. 3707 */ 3708 3709 void 3710 sfh4_createtab(avl_tree_t *tab) 3711 { 3712 avl_create(tab, sfh4cmp, sizeof (nfs4_sharedfh_t), 3713 offsetof(nfs4_sharedfh_t, sfh_tree)); 3714 } 3715 3716 /* 3717 * Return a shared filehandle object for the given filehandle. The caller 3718 * is responsible for eventually calling sfh4_rele(). 3719 */ 3720 3721 nfs4_sharedfh_t * 3722 sfh4_put(const nfs_fh4 *fh, mntinfo4_t *mi, nfs4_sharedfh_t *key) 3723 { 3724 nfs4_sharedfh_t *sfh, *nsfh; 3725 avl_index_t where; 3726 nfs4_sharedfh_t skey; 3727 3728 if (!key) { 3729 skey.sfh_fh = *fh; 3730 key = &skey; 3731 } 3732 3733 nsfh = kmem_alloc(sizeof (nfs4_sharedfh_t), KM_SLEEP); 3734 nsfh->sfh_fh.nfs_fh4_len = fh->nfs_fh4_len; 3735 /* 3736 * We allocate the largest possible filehandle size because it's 3737 * not that big, and it saves us from possibly having to resize the 3738 * buffer later. 3739 */ 3740 nsfh->sfh_fh.nfs_fh4_val = kmem_alloc(NFS4_FHSIZE, KM_SLEEP); 3741 bcopy(fh->nfs_fh4_val, nsfh->sfh_fh.nfs_fh4_val, fh->nfs_fh4_len); 3742 mutex_init(&nsfh->sfh_lock, NULL, MUTEX_DEFAULT, NULL); 3743 nsfh->sfh_refcnt = 1; 3744 nsfh->sfh_flags = SFH4_IN_TREE; 3745 nsfh->sfh_mi = mi; 3746 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, "sfh4_get: new object (%p)", 3747 (void *)nsfh)); 3748 3749 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0); 3750 sfh = avl_find(&mi->mi_filehandles, key, &where); 3751 if (sfh != NULL) { 3752 mutex_enter(&sfh->sfh_lock); 3753 sfh->sfh_refcnt++; 3754 mutex_exit(&sfh->sfh_lock); 3755 nfs_rw_exit(&mi->mi_fh_lock); 3756 /* free our speculative allocs */ 3757 kmem_free(nsfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE); 3758 kmem_free(nsfh, sizeof (nfs4_sharedfh_t)); 3759 return (sfh); 3760 } 3761 3762 avl_insert(&mi->mi_filehandles, nsfh, where); 3763 nfs_rw_exit(&mi->mi_fh_lock); 3764 3765 return (nsfh); 3766 } 3767 3768 /* 3769 * Return a shared filehandle object for the given filehandle. The caller 3770 * is responsible for eventually calling sfh4_rele(). 3771 */ 3772 3773 nfs4_sharedfh_t * 3774 sfh4_get(const nfs_fh4 *fh, mntinfo4_t *mi) 3775 { 3776 nfs4_sharedfh_t *sfh; 3777 nfs4_sharedfh_t key; 3778 3779 ASSERT(fh->nfs_fh4_len <= NFS4_FHSIZE); 3780 3781 #ifdef DEBUG 3782 if (nfs4_sharedfh_debug) { 3783 nfs4_fhandle_t fhandle; 3784 3785 fhandle.fh_len = fh->nfs_fh4_len; 3786 bcopy(fh->nfs_fh4_val, fhandle.fh_buf, fhandle.fh_len); 3787 zcmn_err(mi->mi_zone->zone_id, CE_NOTE, "sfh4_get:"); 3788 nfs4_printfhandle(&fhandle); 3789 } 3790 #endif 3791 3792 /* 3793 * If there's already an object for the given filehandle, bump the 3794 * reference count and return it. Otherwise, create a new object 3795 * and add it to the AVL tree. 3796 */ 3797 3798 key.sfh_fh = *fh; 3799 3800 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 3801 sfh = avl_find(&mi->mi_filehandles, &key, NULL); 3802 if (sfh != NULL) { 3803 mutex_enter(&sfh->sfh_lock); 3804 sfh->sfh_refcnt++; 3805 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, 3806 "sfh4_get: found existing %p, new refcnt=%d", 3807 (void *)sfh, sfh->sfh_refcnt)); 3808 mutex_exit(&sfh->sfh_lock); 3809 nfs_rw_exit(&mi->mi_fh_lock); 3810 return (sfh); 3811 } 3812 nfs_rw_exit(&mi->mi_fh_lock); 3813 3814 return (sfh4_put(fh, mi, &key)); 3815 } 3816 3817 /* 3818 * Get a reference to the given shared filehandle object. 3819 */ 3820 3821 void 3822 sfh4_hold(nfs4_sharedfh_t *sfh) 3823 { 3824 ASSERT(sfh->sfh_refcnt > 0); 3825 3826 mutex_enter(&sfh->sfh_lock); 3827 sfh->sfh_refcnt++; 3828 NFS4_DEBUG(nfs4_sharedfh_debug, 3829 (CE_NOTE, "sfh4_hold %p, new refcnt=%d", 3830 (void *)sfh, sfh->sfh_refcnt)); 3831 mutex_exit(&sfh->sfh_lock); 3832 } 3833 3834 /* 3835 * Release a reference to the given shared filehandle object and null out 3836 * the given pointer. 3837 */ 3838 3839 void 3840 sfh4_rele(nfs4_sharedfh_t **sfhpp) 3841 { 3842 mntinfo4_t *mi; 3843 nfs4_sharedfh_t *sfh = *sfhpp; 3844 3845 ASSERT(sfh->sfh_refcnt > 0); 3846 3847 mutex_enter(&sfh->sfh_lock); 3848 if (sfh->sfh_refcnt > 1) { 3849 sfh->sfh_refcnt--; 3850 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, 3851 "sfh4_rele %p, new refcnt=%d", 3852 (void *)sfh, sfh->sfh_refcnt)); 3853 mutex_exit(&sfh->sfh_lock); 3854 goto finish; 3855 } 3856 mutex_exit(&sfh->sfh_lock); 3857 3858 /* 3859 * Possibly the last reference, so get the lock for the table in 3860 * case it's time to remove the object from the table. 3861 */ 3862 mi = sfh->sfh_mi; 3863 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0); 3864 mutex_enter(&sfh->sfh_lock); 3865 sfh->sfh_refcnt--; 3866 if (sfh->sfh_refcnt > 0) { 3867 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, 3868 "sfh4_rele %p, new refcnt=%d", 3869 (void *)sfh, sfh->sfh_refcnt)); 3870 mutex_exit(&sfh->sfh_lock); 3871 nfs_rw_exit(&mi->mi_fh_lock); 3872 goto finish; 3873 } 3874 3875 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, 3876 "sfh4_rele %p, last ref", (void *)sfh)); 3877 if (sfh->sfh_flags & SFH4_IN_TREE) { 3878 avl_remove(&mi->mi_filehandles, sfh); 3879 sfh->sfh_flags &= ~SFH4_IN_TREE; 3880 } 3881 mutex_exit(&sfh->sfh_lock); 3882 nfs_rw_exit(&mi->mi_fh_lock); 3883 mutex_destroy(&sfh->sfh_lock); 3884 kmem_free(sfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE); 3885 kmem_free(sfh, sizeof (nfs4_sharedfh_t)); 3886 3887 finish: 3888 *sfhpp = NULL; 3889 } 3890 3891 /* 3892 * Update the filehandle for the given shared filehandle object. 3893 */ 3894 3895 int nfs4_warn_dupfh = 0; /* if set, always warn about dup fhs below */ 3896 3897 void 3898 sfh4_update(nfs4_sharedfh_t *sfh, const nfs_fh4 *newfh) 3899 { 3900 mntinfo4_t *mi = sfh->sfh_mi; 3901 nfs4_sharedfh_t *dupsfh; 3902 avl_index_t where; 3903 nfs4_sharedfh_t key; 3904 3905 #ifdef DEBUG 3906 mutex_enter(&sfh->sfh_lock); 3907 ASSERT(sfh->sfh_refcnt > 0); 3908 mutex_exit(&sfh->sfh_lock); 3909 #endif 3910 ASSERT(newfh->nfs_fh4_len <= NFS4_FHSIZE); 3911 3912 /* 3913 * The basic plan is to remove the shared filehandle object from 3914 * the table, update it to have the new filehandle, then reinsert 3915 * it. 3916 */ 3917 3918 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0); 3919 mutex_enter(&sfh->sfh_lock); 3920 if (sfh->sfh_flags & SFH4_IN_TREE) { 3921 avl_remove(&mi->mi_filehandles, sfh); 3922 sfh->sfh_flags &= ~SFH4_IN_TREE; 3923 } 3924 mutex_exit(&sfh->sfh_lock); 3925 sfh->sfh_fh.nfs_fh4_len = newfh->nfs_fh4_len; 3926 bcopy(newfh->nfs_fh4_val, sfh->sfh_fh.nfs_fh4_val, 3927 sfh->sfh_fh.nfs_fh4_len); 3928 3929 /* 3930 * XXX If there is already a shared filehandle object with the new 3931 * filehandle, we're in trouble, because the rnode code assumes 3932 * that there is only one shared filehandle object for a given 3933 * filehandle. So issue a warning (for read-write mounts only) 3934 * and don't try to re-insert the given object into the table. 3935 * Hopefully the given object will quickly go away and everyone 3936 * will use the new object. 3937 */ 3938 key.sfh_fh = *newfh; 3939 dupsfh = avl_find(&mi->mi_filehandles, &key, &where); 3940 if (dupsfh != NULL) { 3941 if (!(mi->mi_vfsp->vfs_flag & VFS_RDONLY) || nfs4_warn_dupfh) { 3942 zcmn_err(mi->mi_zone->zone_id, CE_WARN, "sfh4_update: " 3943 "duplicate filehandle detected"); 3944 sfh4_printfhandle(dupsfh); 3945 } 3946 } else { 3947 avl_insert(&mi->mi_filehandles, sfh, where); 3948 mutex_enter(&sfh->sfh_lock); 3949 sfh->sfh_flags |= SFH4_IN_TREE; 3950 mutex_exit(&sfh->sfh_lock); 3951 } 3952 nfs_rw_exit(&mi->mi_fh_lock); 3953 } 3954 3955 /* 3956 * Copy out the current filehandle for the given shared filehandle object. 3957 */ 3958 3959 void 3960 sfh4_copyval(const nfs4_sharedfh_t *sfh, nfs4_fhandle_t *fhp) 3961 { 3962 mntinfo4_t *mi = sfh->sfh_mi; 3963 3964 ASSERT(sfh->sfh_refcnt > 0); 3965 3966 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 3967 fhp->fh_len = sfh->sfh_fh.nfs_fh4_len; 3968 ASSERT(fhp->fh_len <= NFS4_FHSIZE); 3969 bcopy(sfh->sfh_fh.nfs_fh4_val, fhp->fh_buf, fhp->fh_len); 3970 nfs_rw_exit(&mi->mi_fh_lock); 3971 } 3972 3973 /* 3974 * Print out the filehandle for the given shared filehandle object. 3975 */ 3976 3977 void 3978 sfh4_printfhandle(const nfs4_sharedfh_t *sfh) 3979 { 3980 nfs4_fhandle_t fhandle; 3981 3982 sfh4_copyval(sfh, &fhandle); 3983 nfs4_printfhandle(&fhandle); 3984 } 3985 3986 /* 3987 * Compare 2 fnames. Returns -1 if the first is "less" than the second, 0 3988 * if they're the same, +1 if the first is "greater" than the second. The 3989 * caller (or whoever's calling the AVL package) is responsible for 3990 * handling locking issues. 3991 */ 3992 3993 static int 3994 fncmp(const void *p1, const void *p2) 3995 { 3996 const nfs4_fname_t *f1 = p1; 3997 const nfs4_fname_t *f2 = p2; 3998 int res; 3999 4000 res = strcmp(f1->fn_name, f2->fn_name); 4001 /* 4002 * The AVL package wants +/-1, not arbitrary positive or negative 4003 * integers. 4004 */ 4005 if (res > 0) 4006 res = 1; 4007 else if (res < 0) 4008 res = -1; 4009 return (res); 4010 } 4011 4012 /* 4013 * Get or create an fname with the given name, as a child of the given 4014 * fname. The caller is responsible for eventually releasing the reference 4015 * (fn_rele()). parent may be NULL. 4016 */ 4017 4018 nfs4_fname_t * 4019 fn_get(nfs4_fname_t *parent, char *name, nfs4_sharedfh_t *sfh) 4020 { 4021 nfs4_fname_t key; 4022 nfs4_fname_t *fnp; 4023 avl_index_t where; 4024 4025 key.fn_name = name; 4026 4027 /* 4028 * If there's already an fname registered with the given name, bump 4029 * its reference count and return it. Otherwise, create a new one 4030 * and add it to the parent's AVL tree. 4031 * 4032 * fname entries we are looking for should match both name 4033 * and sfh stored in the fname. 4034 */ 4035 again: 4036 if (parent != NULL) { 4037 mutex_enter(&parent->fn_lock); 4038 fnp = avl_find(&parent->fn_children, &key, &where); 4039 if (fnp != NULL) { 4040 /* 4041 * This hold on fnp is released below later, 4042 * in case this is not the fnp we want. 4043 */ 4044 fn_hold(fnp); 4045 4046 if (fnp->fn_sfh == sfh) { 4047 /* 4048 * We have found our entry. 4049 * put an hold and return it. 4050 */ 4051 mutex_exit(&parent->fn_lock); 4052 return (fnp); 4053 } 4054 4055 /* 4056 * We have found an entry that has a mismatching 4057 * fn_sfh. This could be a stale entry due to 4058 * server side rename. We will remove this entry 4059 * and make sure no such entries exist. 4060 */ 4061 mutex_exit(&parent->fn_lock); 4062 mutex_enter(&fnp->fn_lock); 4063 if (fnp->fn_parent == parent) { 4064 /* 4065 * Remove ourselves from parent's 4066 * fn_children tree. 4067 */ 4068 mutex_enter(&parent->fn_lock); 4069 avl_remove(&parent->fn_children, fnp); 4070 mutex_exit(&parent->fn_lock); 4071 fn_rele(&fnp->fn_parent); 4072 } 4073 mutex_exit(&fnp->fn_lock); 4074 fn_rele(&fnp); 4075 goto again; 4076 } 4077 } 4078 4079 fnp = kmem_alloc(sizeof (nfs4_fname_t), KM_SLEEP); 4080 mutex_init(&fnp->fn_lock, NULL, MUTEX_DEFAULT, NULL); 4081 fnp->fn_parent = parent; 4082 if (parent != NULL) 4083 fn_hold(parent); 4084 fnp->fn_len = strlen(name); 4085 ASSERT(fnp->fn_len < MAXNAMELEN); 4086 fnp->fn_name = kmem_alloc(fnp->fn_len + 1, KM_SLEEP); 4087 (void) strcpy(fnp->fn_name, name); 4088 fnp->fn_refcnt = 1; 4089 4090 /* 4091 * This hold on sfh is later released 4092 * when we do the final fn_rele() on this fname. 4093 */ 4094 sfh4_hold(sfh); 4095 fnp->fn_sfh = sfh; 4096 4097 avl_create(&fnp->fn_children, fncmp, sizeof (nfs4_fname_t), 4098 offsetof(nfs4_fname_t, fn_tree)); 4099 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE, 4100 "fn_get %p:%s, a new nfs4_fname_t!", 4101 (void *)fnp, fnp->fn_name)); 4102 if (parent != NULL) { 4103 avl_insert(&parent->fn_children, fnp, where); 4104 mutex_exit(&parent->fn_lock); 4105 } 4106 4107 return (fnp); 4108 } 4109 4110 void 4111 fn_hold(nfs4_fname_t *fnp) 4112 { 4113 atomic_add_32(&fnp->fn_refcnt, 1); 4114 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE, 4115 "fn_hold %p:%s, new refcnt=%d", 4116 (void *)fnp, fnp->fn_name, fnp->fn_refcnt)); 4117 } 4118 4119 /* 4120 * Decrement the reference count of the given fname, and destroy it if its 4121 * reference count goes to zero. Nulls out the given pointer. 4122 */ 4123 4124 void 4125 fn_rele(nfs4_fname_t **fnpp) 4126 { 4127 nfs4_fname_t *parent; 4128 uint32_t newref; 4129 nfs4_fname_t *fnp; 4130 4131 recur: 4132 fnp = *fnpp; 4133 *fnpp = NULL; 4134 4135 mutex_enter(&fnp->fn_lock); 4136 parent = fnp->fn_parent; 4137 if (parent != NULL) 4138 mutex_enter(&parent->fn_lock); /* prevent new references */ 4139 newref = atomic_add_32_nv(&fnp->fn_refcnt, -1); 4140 if (newref > 0) { 4141 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE, 4142 "fn_rele %p:%s, new refcnt=%d", 4143 (void *)fnp, fnp->fn_name, fnp->fn_refcnt)); 4144 if (parent != NULL) 4145 mutex_exit(&parent->fn_lock); 4146 mutex_exit(&fnp->fn_lock); 4147 return; 4148 } 4149 4150 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE, 4151 "fn_rele %p:%s, last reference, deleting...", 4152 (void *)fnp, fnp->fn_name)); 4153 if (parent != NULL) { 4154 avl_remove(&parent->fn_children, fnp); 4155 mutex_exit(&parent->fn_lock); 4156 } 4157 kmem_free(fnp->fn_name, fnp->fn_len + 1); 4158 sfh4_rele(&fnp->fn_sfh); 4159 mutex_destroy(&fnp->fn_lock); 4160 avl_destroy(&fnp->fn_children); 4161 kmem_free(fnp, sizeof (nfs4_fname_t)); 4162 /* 4163 * Recursivly fn_rele the parent. 4164 * Use goto instead of a recursive call to avoid stack overflow. 4165 */ 4166 if (parent != NULL) { 4167 fnpp = &parent; 4168 goto recur; 4169 } 4170 } 4171 4172 /* 4173 * Returns the single component name of the given fname, in a MAXNAMELEN 4174 * string buffer, which the caller is responsible for freeing. Note that 4175 * the name may become invalid as a result of fn_move(). 4176 */ 4177 4178 char * 4179 fn_name(nfs4_fname_t *fnp) 4180 { 4181 char *name; 4182 4183 ASSERT(fnp->fn_len < MAXNAMELEN); 4184 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 4185 mutex_enter(&fnp->fn_lock); 4186 (void) strcpy(name, fnp->fn_name); 4187 mutex_exit(&fnp->fn_lock); 4188 4189 return (name); 4190 } 4191 4192 4193 /* 4194 * fn_path_realloc 4195 * 4196 * This function, used only by fn_path, constructs 4197 * a new string which looks like "prepend" + "/" + "current". 4198 * by allocating a new string and freeing the old one. 4199 */ 4200 static void 4201 fn_path_realloc(char **curses, char *prepend) 4202 { 4203 int len, curlen = 0; 4204 char *news; 4205 4206 if (*curses == NULL) { 4207 /* 4208 * Prime the pump, allocate just the 4209 * space for prepend and return that. 4210 */ 4211 len = strlen(prepend) + 1; 4212 news = kmem_alloc(len, KM_SLEEP); 4213 (void) strncpy(news, prepend, len); 4214 } else { 4215 /* 4216 * Allocate the space for a new string 4217 * +1 +1 is for the "/" and the NULL 4218 * byte at the end of it all. 4219 */ 4220 curlen = strlen(*curses); 4221 len = curlen + strlen(prepend) + 1 + 1; 4222 news = kmem_alloc(len, KM_SLEEP); 4223 (void) strncpy(news, prepend, len); 4224 (void) strcat(news, "/"); 4225 (void) strcat(news, *curses); 4226 kmem_free(*curses, curlen + 1); 4227 } 4228 *curses = news; 4229 } 4230 4231 /* 4232 * Returns the path name (starting from the fs root) for the given fname. 4233 * The caller is responsible for freeing. Note that the path may be or 4234 * become invalid as a result of fn_move(). 4235 */ 4236 4237 char * 4238 fn_path(nfs4_fname_t *fnp) 4239 { 4240 char *path; 4241 nfs4_fname_t *nextfnp; 4242 4243 if (fnp == NULL) 4244 return (NULL); 4245 4246 path = NULL; 4247 4248 /* walk up the tree constructing the pathname. */ 4249 4250 fn_hold(fnp); /* adjust for later rele */ 4251 do { 4252 mutex_enter(&fnp->fn_lock); 4253 /* 4254 * Add fn_name in front of the current path 4255 */ 4256 fn_path_realloc(&path, fnp->fn_name); 4257 nextfnp = fnp->fn_parent; 4258 if (nextfnp != NULL) 4259 fn_hold(nextfnp); 4260 mutex_exit(&fnp->fn_lock); 4261 fn_rele(&fnp); 4262 fnp = nextfnp; 4263 } while (fnp != NULL); 4264 4265 return (path); 4266 } 4267 4268 /* 4269 * Return a reference to the parent of the given fname, which the caller is 4270 * responsible for eventually releasing. 4271 */ 4272 4273 nfs4_fname_t * 4274 fn_parent(nfs4_fname_t *fnp) 4275 { 4276 nfs4_fname_t *parent; 4277 4278 mutex_enter(&fnp->fn_lock); 4279 parent = fnp->fn_parent; 4280 if (parent != NULL) 4281 fn_hold(parent); 4282 mutex_exit(&fnp->fn_lock); 4283 4284 return (parent); 4285 } 4286 4287 /* 4288 * Update fnp so that its parent is newparent and its name is newname. 4289 */ 4290 4291 void 4292 fn_move(nfs4_fname_t *fnp, nfs4_fname_t *newparent, char *newname) 4293 { 4294 nfs4_fname_t *parent, *tmpfnp; 4295 ssize_t newlen; 4296 nfs4_fname_t key; 4297 avl_index_t where; 4298 4299 /* 4300 * This assert exists to catch the client trying to rename 4301 * a dir to be a child of itself. This happened at a recent 4302 * bakeoff against a 3rd party (broken) server which allowed 4303 * the rename to succeed. If it trips it means that: 4304 * a) the code in nfs4rename that detects this case is broken 4305 * b) the server is broken (since it allowed the bogus rename) 4306 * 4307 * For non-DEBUG kernels, prepare for a recursive mutex_enter 4308 * panic below from: mutex_enter(&newparent->fn_lock); 4309 */ 4310 ASSERT(fnp != newparent); 4311 4312 /* 4313 * Remove fnp from its current parent, change its name, then add it 4314 * to newparent. It might happen that fnp was replaced by another 4315 * nfs4_fname_t with the same fn_name in parent->fn_children. 4316 * In such case, fnp->fn_parent is NULL and we skip the removal 4317 * of fnp from its current parent. 4318 */ 4319 mutex_enter(&fnp->fn_lock); 4320 parent = fnp->fn_parent; 4321 if (parent != NULL) { 4322 mutex_enter(&parent->fn_lock); 4323 avl_remove(&parent->fn_children, fnp); 4324 mutex_exit(&parent->fn_lock); 4325 fn_rele(&fnp->fn_parent); 4326 } 4327 4328 newlen = strlen(newname); 4329 if (newlen != fnp->fn_len) { 4330 ASSERT(newlen < MAXNAMELEN); 4331 kmem_free(fnp->fn_name, fnp->fn_len + 1); 4332 fnp->fn_name = kmem_alloc(newlen + 1, KM_SLEEP); 4333 fnp->fn_len = newlen; 4334 } 4335 (void) strcpy(fnp->fn_name, newname); 4336 4337 again: 4338 mutex_enter(&newparent->fn_lock); 4339 key.fn_name = fnp->fn_name; 4340 tmpfnp = avl_find(&newparent->fn_children, &key, &where); 4341 if (tmpfnp != NULL) { 4342 /* 4343 * This could be due to a file that was unlinked while 4344 * open, or perhaps the rnode is in the free list. Remove 4345 * it from newparent and let it go away on its own. The 4346 * contorted code is to deal with lock order issues and 4347 * race conditions. 4348 */ 4349 fn_hold(tmpfnp); 4350 mutex_exit(&newparent->fn_lock); 4351 mutex_enter(&tmpfnp->fn_lock); 4352 if (tmpfnp->fn_parent == newparent) { 4353 mutex_enter(&newparent->fn_lock); 4354 avl_remove(&newparent->fn_children, tmpfnp); 4355 mutex_exit(&newparent->fn_lock); 4356 fn_rele(&tmpfnp->fn_parent); 4357 } 4358 mutex_exit(&tmpfnp->fn_lock); 4359 fn_rele(&tmpfnp); 4360 goto again; 4361 } 4362 fnp->fn_parent = newparent; 4363 fn_hold(newparent); 4364 avl_insert(&newparent->fn_children, fnp, where); 4365 mutex_exit(&newparent->fn_lock); 4366 mutex_exit(&fnp->fn_lock); 4367 } 4368 4369 #ifdef DEBUG 4370 /* 4371 * Return non-zero if the type information makes sense for the given vnode. 4372 * Otherwise panic. 4373 */ 4374 int 4375 nfs4_consistent_type(vnode_t *vp) 4376 { 4377 rnode4_t *rp = VTOR4(vp); 4378 4379 if (nfs4_vtype_debug && vp->v_type != VNON && 4380 rp->r_attr.va_type != VNON && vp->v_type != rp->r_attr.va_type) { 4381 cmn_err(CE_PANIC, "vnode %p type mismatch; v_type=%d, " 4382 "rnode attr type=%d", (void *)vp, vp->v_type, 4383 rp->r_attr.va_type); 4384 } 4385 4386 return (1); 4387 } 4388 #endif /* DEBUG */ 4389