1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/systm.h> 34 #include <sys/thread.h> 35 #include <sys/t_lock.h> 36 #include <sys/time.h> 37 #include <sys/vnode.h> 38 #include <sys/vfs.h> 39 #include <sys/errno.h> 40 #include <sys/buf.h> 41 #include <sys/stat.h> 42 #include <sys/cred.h> 43 #include <sys/kmem.h> 44 #include <sys/debug.h> 45 #include <sys/dnlc.h> 46 #include <sys/vmsystm.h> 47 #include <sys/flock.h> 48 #include <sys/share.h> 49 #include <sys/cmn_err.h> 50 #include <sys/tiuser.h> 51 #include <sys/sysmacros.h> 52 #include <sys/callb.h> 53 #include <sys/acl.h> 54 #include <sys/kstat.h> 55 #include <sys/signal.h> 56 #include <sys/disp.h> 57 #include <sys/atomic.h> 58 #include <sys/list.h> 59 #include <sys/sdt.h> 60 61 #include <rpc/types.h> 62 #include <rpc/xdr.h> 63 #include <rpc/auth.h> 64 #include <rpc/clnt.h> 65 66 #include <nfs/nfs.h> 67 #include <nfs/nfs_clnt.h> 68 #include <nfs/nfs_acl.h> 69 70 #include <nfs/nfs4.h> 71 #include <nfs/rnode4.h> 72 #include <nfs/nfs4_clnt.h> 73 74 #include <vm/hat.h> 75 #include <vm/as.h> 76 #include <vm/page.h> 77 #include <vm/pvn.h> 78 #include <vm/seg.h> 79 #include <vm/seg_map.h> 80 #include <vm/seg_vn.h> 81 82 #include <sys/ddi.h> 83 84 /* 85 * Arguments to page-flush thread. 86 */ 87 typedef struct { 88 vnode_t *vp; 89 cred_t *cr; 90 } pgflush_t; 91 92 #ifdef DEBUG 93 int nfs4_client_lease_debug; 94 int nfs4_sharedfh_debug; 95 int nfs4_fname_debug; 96 97 /* temporary: panic if v_type is inconsistent with r_attr va_type */ 98 int nfs4_vtype_debug; 99 100 uint_t nfs4_tsd_key; 101 #endif 102 103 static time_t nfs4_client_resumed = 0; 104 static callb_id_t cid = 0; 105 106 static int nfs4renew(nfs4_server_t *); 107 static void nfs4_attrcache_va(vnode_t *, nfs4_ga_res_t *, int); 108 static void nfs4_pgflush_thread(pgflush_t *); 109 110 static boolean_t nfs4_client_cpr_callb(void *, int); 111 112 struct mi4_globals { 113 kmutex_t mig_lock; /* lock protecting mig_list */ 114 list_t mig_list; /* list of NFS v4 mounts in zone */ 115 boolean_t mig_destructor_called; 116 }; 117 118 static zone_key_t mi4_list_key; 119 120 /* 121 * Attributes caching: 122 * 123 * Attributes are cached in the rnode in struct vattr form. 124 * There is a time associated with the cached attributes (r_time_attr_inval) 125 * which tells whether the attributes are valid. The time is initialized 126 * to the difference between current time and the modify time of the vnode 127 * when new attributes are cached. This allows the attributes for 128 * files that have changed recently to be timed out sooner than for files 129 * that have not changed for a long time. There are minimum and maximum 130 * timeout values that can be set per mount point. 131 */ 132 133 /* 134 * If a cache purge is in progress, wait for it to finish. 135 * 136 * The current thread must not be in the middle of an 137 * nfs4_start_op/nfs4_end_op region. Otherwise, there could be a deadlock 138 * between this thread, a recovery thread, and the page flush thread. 139 */ 140 int 141 nfs4_waitfor_purge_complete(vnode_t *vp) 142 { 143 rnode4_t *rp; 144 k_sigset_t smask; 145 146 rp = VTOR4(vp); 147 if ((rp->r_serial != NULL && rp->r_serial != curthread) || 148 ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread)) { 149 mutex_enter(&rp->r_statelock); 150 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 151 while ((rp->r_serial != NULL && rp->r_serial != curthread) || 152 ((rp->r_flags & R4PGFLUSH) && 153 rp->r_pgflush != curthread)) { 154 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 155 sigunintr(&smask); 156 mutex_exit(&rp->r_statelock); 157 return (EINTR); 158 } 159 } 160 sigunintr(&smask); 161 mutex_exit(&rp->r_statelock); 162 } 163 return (0); 164 } 165 166 /* 167 * Validate caches by checking cached attributes. If they have timed out, 168 * then get new attributes from the server. As a side effect, cache 169 * invalidation is done if the attributes have changed. 170 * 171 * If the attributes have not timed out and if there is a cache 172 * invalidation being done by some other thread, then wait until that 173 * thread has completed the cache invalidation. 174 */ 175 int 176 nfs4_validate_caches(vnode_t *vp, cred_t *cr) 177 { 178 int error; 179 nfs4_ga_res_t gar; 180 181 if (ATTRCACHE4_VALID(vp)) { 182 error = nfs4_waitfor_purge_complete(vp); 183 if (error) 184 return (error); 185 return (0); 186 } 187 188 gar.n4g_va.va_mask = AT_ALL; 189 return (nfs4_getattr_otw(vp, &gar, cr, 0)); 190 } 191 192 /* 193 * Fill in attribute from the cache. 194 * If valid, then return 0 to indicate that no error occurred, 195 * otherwise return 1 to indicate that an error occurred. 196 */ 197 static int 198 nfs4_getattr_cache(vnode_t *vp, struct vattr *vap) 199 { 200 rnode4_t *rp; 201 202 rp = VTOR4(vp); 203 mutex_enter(&rp->r_statelock); 204 mutex_enter(&rp->r_statev4_lock); 205 if (ATTRCACHE4_VALID(vp)) { 206 mutex_exit(&rp->r_statev4_lock); 207 /* 208 * Cached attributes are valid 209 */ 210 *vap = rp->r_attr; 211 mutex_exit(&rp->r_statelock); 212 return (0); 213 } 214 mutex_exit(&rp->r_statev4_lock); 215 mutex_exit(&rp->r_statelock); 216 return (1); 217 } 218 219 220 /* 221 * If returned error is ESTALE flush all caches. The nfs4_purge_caches() 222 * call is synchronous because all the pages were invalidated by the 223 * nfs4_invalidate_pages() call. 224 */ 225 void 226 nfs4_purge_stale_fh(int errno, vnode_t *vp, cred_t *cr) 227 { 228 struct rnode4 *rp = VTOR4(vp); 229 230 /* Ensure that the ..._end_op() call has been done */ 231 ASSERT(tsd_get(nfs4_tsd_key) == NULL); 232 233 if (errno != ESTALE) 234 return; 235 236 mutex_enter(&rp->r_statelock); 237 rp->r_flags |= R4STALE; 238 if (!rp->r_error) 239 rp->r_error = errno; 240 mutex_exit(&rp->r_statelock); 241 if (nfs4_has_pages(vp)) 242 nfs4_invalidate_pages(vp, (u_offset_t)0, cr); 243 nfs4_purge_caches(vp, NFS4_PURGE_DNLC, cr, FALSE); 244 } 245 246 /* 247 * Purge all of the various NFS `data' caches. If "asyncpg" is TRUE, the 248 * page purge is done asynchronously. 249 */ 250 void 251 nfs4_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr, int asyncpg) 252 { 253 rnode4_t *rp; 254 char *contents; 255 vnode_t *xattr; 256 int size; 257 int pgflush; /* are we the page flush thread? */ 258 259 /* 260 * Purge the DNLC for any entries which refer to this file. 261 */ 262 if (vp->v_count > 1 && 263 (vp->v_type == VDIR || purge_dnlc == NFS4_PURGE_DNLC)) 264 dnlc_purge_vp(vp); 265 266 /* 267 * Clear any readdir state bits and purge the readlink response cache. 268 */ 269 rp = VTOR4(vp); 270 mutex_enter(&rp->r_statelock); 271 rp->r_flags &= ~R4LOOKUP; 272 contents = rp->r_symlink.contents; 273 size = rp->r_symlink.size; 274 rp->r_symlink.contents = NULL; 275 276 xattr = rp->r_xattr_dir; 277 rp->r_xattr_dir = NULL; 278 279 /* 280 * Purge pathconf cache too. 281 */ 282 rp->r_pathconf.pc4_xattr_valid = 0; 283 rp->r_pathconf.pc4_cache_valid = 0; 284 285 pgflush = (curthread == rp->r_pgflush); 286 mutex_exit(&rp->r_statelock); 287 288 if (contents != NULL) { 289 290 kmem_free((void *)contents, size); 291 } 292 293 if (xattr != NULL) 294 VN_RELE(xattr); 295 296 /* 297 * Flush the page cache. If the current thread is the page flush 298 * thread, don't initiate a new page flush. There's no need for 299 * it, and doing it correctly is hard. 300 */ 301 if (nfs4_has_pages(vp) && !pgflush) { 302 if (!asyncpg) { 303 (void) nfs4_waitfor_purge_complete(vp); 304 nfs4_flush_pages(vp, cr); 305 } else { 306 pgflush_t *args; 307 308 /* 309 * We don't hold r_statelock while creating the 310 * thread, in case the call blocks. So we use a 311 * flag to indicate that a page flush thread is 312 * active. 313 */ 314 mutex_enter(&rp->r_statelock); 315 if (rp->r_flags & R4PGFLUSH) { 316 mutex_exit(&rp->r_statelock); 317 } else { 318 rp->r_flags |= R4PGFLUSH; 319 mutex_exit(&rp->r_statelock); 320 321 args = kmem_alloc(sizeof (pgflush_t), 322 KM_SLEEP); 323 args->vp = vp; 324 VN_HOLD(args->vp); 325 args->cr = cr; 326 crhold(args->cr); 327 (void) zthread_create(NULL, 0, 328 nfs4_pgflush_thread, args, 0, 329 minclsyspri); 330 } 331 } 332 } 333 334 /* 335 * Flush the readdir response cache. 336 */ 337 nfs4_purge_rddir_cache(vp); 338 } 339 340 /* 341 * Invalidate all pages for the given file, after writing back the dirty 342 * ones. 343 */ 344 345 void 346 nfs4_flush_pages(vnode_t *vp, cred_t *cr) 347 { 348 int error; 349 rnode4_t *rp = VTOR4(vp); 350 351 error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL); 352 if (error == ENOSPC || error == EDQUOT) { 353 mutex_enter(&rp->r_statelock); 354 if (!rp->r_error) 355 rp->r_error = error; 356 mutex_exit(&rp->r_statelock); 357 } 358 } 359 360 /* 361 * Page flush thread. 362 */ 363 364 static void 365 nfs4_pgflush_thread(pgflush_t *args) 366 { 367 rnode4_t *rp = VTOR4(args->vp); 368 369 /* remember which thread we are, so we don't deadlock ourselves */ 370 mutex_enter(&rp->r_statelock); 371 ASSERT(rp->r_pgflush == NULL); 372 rp->r_pgflush = curthread; 373 mutex_exit(&rp->r_statelock); 374 375 nfs4_flush_pages(args->vp, args->cr); 376 377 mutex_enter(&rp->r_statelock); 378 rp->r_pgflush = NULL; 379 rp->r_flags &= ~R4PGFLUSH; 380 cv_broadcast(&rp->r_cv); 381 mutex_exit(&rp->r_statelock); 382 383 VN_RELE(args->vp); 384 crfree(args->cr); 385 kmem_free(args, sizeof (pgflush_t)); 386 zthread_exit(); 387 } 388 389 /* 390 * Purge the readdir cache of all entries which are not currently 391 * being filled. 392 */ 393 void 394 nfs4_purge_rddir_cache(vnode_t *vp) 395 { 396 rnode4_t *rp; 397 398 rp = VTOR4(vp); 399 400 mutex_enter(&rp->r_statelock); 401 rp->r_direof = NULL; 402 rp->r_flags &= ~R4LOOKUP; 403 rp->r_flags |= R4READDIRWATTR; 404 rddir4_cache_purge(rp); 405 mutex_exit(&rp->r_statelock); 406 } 407 408 /* 409 * Set attributes cache for given vnode using virtual attributes. There is 410 * no cache validation, but if the attributes are deemed to be stale, they 411 * are ignored. This corresponds to nfs3_attrcache(). 412 * 413 * Set the timeout value on the attribute cache and fill it 414 * with the passed in attributes. 415 */ 416 void 417 nfs4_attrcache_noinval(vnode_t *vp, nfs4_ga_res_t *garp, hrtime_t t) 418 { 419 rnode4_t *rp = VTOR4(vp); 420 421 mutex_enter(&rp->r_statelock); 422 if (rp->r_time_attr_saved <= t) 423 nfs4_attrcache_va(vp, garp, FALSE); 424 mutex_exit(&rp->r_statelock); 425 } 426 427 /* 428 * Use the passed in virtual attributes to check to see whether the 429 * data and metadata caches are valid, cache the new attributes, and 430 * then do the cache invalidation if required. 431 * 432 * The cache validation and caching of the new attributes is done 433 * atomically via the use of the mutex, r_statelock. If required, 434 * the cache invalidation is done atomically w.r.t. the cache 435 * validation and caching of the attributes via the pseudo lock, 436 * r_serial. 437 * 438 * This routine is used to do cache validation and attributes caching 439 * for operations with a single set of post operation attributes. 440 */ 441 442 void 443 nfs4_attr_cache(vnode_t *vp, nfs4_ga_res_t *garp, 444 hrtime_t t, cred_t *cr, int async, 445 change_info4 *cinfo) 446 { 447 rnode4_t *rp; 448 int mtime_changed = 0; 449 int ctime_changed = 0; 450 vsecattr_t *vsp; 451 int was_serial, set_time_cache_inval, recov; 452 vattr_t *vap = &garp->n4g_va; 453 mntinfo4_t *mi = VTOMI4(vp); 454 len_t preattr_rsize; 455 boolean_t writemodify_set = B_FALSE; 456 boolean_t cachepurge_set = B_FALSE; 457 458 ASSERT(mi->mi_vfsp->vfs_dev == garp->n4g_va.va_fsid); 459 460 /* Is curthread the recovery thread? */ 461 mutex_enter(&mi->mi_lock); 462 recov = (VTOMI4(vp)->mi_recovthread == curthread); 463 mutex_exit(&mi->mi_lock); 464 465 rp = VTOR4(vp); 466 mutex_enter(&rp->r_statelock); 467 was_serial = (rp->r_serial == curthread); 468 if (rp->r_serial && !was_serial) { 469 klwp_t *lwp = ttolwp(curthread); 470 471 /* 472 * If we're the recovery thread, then purge current attrs 473 * and bail out to avoid potential deadlock between another 474 * thread caching attrs (r_serial thread), recov thread, 475 * and an async writer thread. 476 */ 477 if (recov) { 478 PURGE_ATTRCACHE4_LOCKED(rp); 479 mutex_exit(&rp->r_statelock); 480 return; 481 } 482 483 if (lwp != NULL) 484 lwp->lwp_nostop++; 485 while (rp->r_serial != NULL) { 486 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 487 mutex_exit(&rp->r_statelock); 488 if (lwp != NULL) 489 lwp->lwp_nostop--; 490 return; 491 } 492 } 493 if (lwp != NULL) 494 lwp->lwp_nostop--; 495 } 496 497 /* 498 * If there is a page flush thread, the current thread needs to 499 * bail out, to prevent a possible deadlock between the current 500 * thread (which might be in a start_op/end_op region), the 501 * recovery thread, and the page flush thread. Expire the 502 * attribute cache, so that any attributes the current thread was 503 * going to set are not lost. 504 */ 505 if ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread) { 506 PURGE_ATTRCACHE4_LOCKED(rp); 507 mutex_exit(&rp->r_statelock); 508 return; 509 } 510 511 if (rp->r_time_attr_saved > t) { 512 /* 513 * Attributes have been cached since these attributes were 514 * probably made. If there is an inconsistency in what is 515 * cached, mark them invalid. If not, don't act on them. 516 */ 517 if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size)) 518 PURGE_ATTRCACHE4_LOCKED(rp); 519 mutex_exit(&rp->r_statelock); 520 return; 521 } 522 set_time_cache_inval = 0; 523 if (cinfo) { 524 /* 525 * Only directory modifying callers pass non-NULL cinfo. 526 */ 527 ASSERT(vp->v_type == VDIR); 528 /* 529 * If the cache timeout either doesn't exist or hasn't expired, 530 * and dir didn't changed on server before dirmod op 531 * and dir didn't change after dirmod op but before getattr 532 * then there's a chance that the client's cached data for 533 * this object is current (not stale). No immediate cache 534 * flush is required. 535 * 536 */ 537 if ((! rp->r_time_cache_inval || t < rp->r_time_cache_inval) && 538 cinfo->before == rp->r_change && 539 (garp->n4g_change_valid && 540 cinfo->after == garp->n4g_change)) { 541 542 /* 543 * If atomic isn't set, then the before/after info 544 * cannot be blindly trusted. For this case, we tell 545 * nfs4_attrcache_va to cache the attrs but also 546 * establish an absolute maximum cache timeout. When 547 * the timeout is reached, caches will be flushed. 548 */ 549 if (! cinfo->atomic) 550 set_time_cache_inval = 1; 551 } else { 552 553 /* 554 * We're not sure exactly what changed, but we know 555 * what to do. flush all caches for dir. remove the 556 * attr timeout. 557 * 558 * a) timeout expired. flush all caches. 559 * b) r_change != cinfo.before. flush all caches. 560 * c) r_change == cinfo.before, but cinfo.after != 561 * post-op getattr(change). flush all caches. 562 * d) post-op getattr(change) not provided by server. 563 * flush all caches. 564 */ 565 mtime_changed = 1; 566 ctime_changed = 1; 567 rp->r_time_cache_inval = 0; 568 } 569 } else { 570 /* 571 * Write thread after writing data to file on remote server, 572 * will always set R4WRITEMODIFIED to indicate that file on 573 * remote server was modified with a WRITE operation and would 574 * have marked attribute cache as timed out. If R4WRITEMODIFIED 575 * is set, then do not check for mtime and ctime change. 576 */ 577 if (!(rp->r_flags & R4WRITEMODIFIED)) { 578 if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size)) 579 mtime_changed = 1; 580 581 if (rp->r_attr.va_ctime.tv_sec != 582 vap->va_ctime.tv_sec || 583 rp->r_attr.va_ctime.tv_nsec != 584 vap->va_ctime.tv_nsec) 585 ctime_changed = 1; 586 } else { 587 writemodify_set = B_TRUE; 588 } 589 } 590 591 preattr_rsize = rp->r_size; 592 593 nfs4_attrcache_va(vp, garp, set_time_cache_inval); 594 595 /* 596 * If we have updated filesize in nfs4_attrcache_va, as soon as we 597 * drop statelock we will be in transition of purging all 598 * our caches and updating them. It is possible for another 599 * thread to pick this new file size and read in zeroed data. 600 * stall other threads till cache purge is complete. 601 */ 602 if ((!cinfo) && (rp->r_size != preattr_rsize)) { 603 /* 604 * If R4WRITEMODIFIED was set and we have updated the file 605 * size, Server's returned file size need not necessarily 606 * be because of this Client's WRITE. We need to purge 607 * all caches. 608 */ 609 if (writemodify_set) 610 mtime_changed = 1; 611 612 if (mtime_changed && !(rp->r_flags & R4INCACHEPURGE)) { 613 rp->r_flags |= R4INCACHEPURGE; 614 cachepurge_set = B_TRUE; 615 } 616 } 617 618 if (!mtime_changed && !ctime_changed) { 619 mutex_exit(&rp->r_statelock); 620 return; 621 } 622 623 rp->r_serial = curthread; 624 625 mutex_exit(&rp->r_statelock); 626 627 /* 628 * If we're the recov thread, then force async nfs4_purge_caches 629 * to avoid potential deadlock. 630 */ 631 if (mtime_changed) 632 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, recov ? 1 : async); 633 634 if ((rp->r_flags & R4INCACHEPURGE) && cachepurge_set) { 635 mutex_enter(&rp->r_statelock); 636 rp->r_flags &= ~R4INCACHEPURGE; 637 cv_broadcast(&rp->r_cv); 638 mutex_exit(&rp->r_statelock); 639 cachepurge_set = B_FALSE; 640 } 641 642 if (ctime_changed) { 643 (void) nfs4_access_purge_rp(rp); 644 if (rp->r_secattr != NULL) { 645 mutex_enter(&rp->r_statelock); 646 vsp = rp->r_secattr; 647 rp->r_secattr = NULL; 648 mutex_exit(&rp->r_statelock); 649 if (vsp != NULL) 650 nfs4_acl_free_cache(vsp); 651 } 652 } 653 654 if (!was_serial) { 655 mutex_enter(&rp->r_statelock); 656 rp->r_serial = NULL; 657 cv_broadcast(&rp->r_cv); 658 mutex_exit(&rp->r_statelock); 659 } 660 } 661 662 /* 663 * Set attributes cache for given vnode using virtual attributes. 664 * 665 * Set the timeout value on the attribute cache and fill it 666 * with the passed in attributes. 667 * 668 * The caller must be holding r_statelock. 669 */ 670 static void 671 nfs4_attrcache_va(vnode_t *vp, nfs4_ga_res_t *garp, int set_cache_timeout) 672 { 673 rnode4_t *rp; 674 mntinfo4_t *mi; 675 hrtime_t delta; 676 hrtime_t now; 677 vattr_t *vap = &garp->n4g_va; 678 679 rp = VTOR4(vp); 680 681 ASSERT(MUTEX_HELD(&rp->r_statelock)); 682 ASSERT(vap->va_mask == AT_ALL); 683 684 /* Switch to master before checking v_flag */ 685 if (IS_SHADOW(vp, rp)) 686 vp = RTOV4(rp); 687 688 now = gethrtime(); 689 690 mi = VTOMI4(vp); 691 692 /* 693 * Only establish a new cache timeout (if requested). Never 694 * extend a timeout. Never clear a timeout. Clearing a timeout 695 * is done by nfs4_update_dircaches (ancestor in our call chain) 696 */ 697 if (set_cache_timeout && ! rp->r_time_cache_inval) 698 rp->r_time_cache_inval = now + mi->mi_acdirmax; 699 700 /* 701 * Delta is the number of nanoseconds that we will 702 * cache the attributes of the file. It is based on 703 * the number of nanoseconds since the last time that 704 * we detected a change. The assumption is that files 705 * that changed recently are likely to change again. 706 * There is a minimum and a maximum for regular files 707 * and for directories which is enforced though. 708 * 709 * Using the time since last change was detected 710 * eliminates direct comparison or calculation 711 * using mixed client and server times. NFS does 712 * not make any assumptions regarding the client 713 * and server clocks being synchronized. 714 */ 715 if (vap->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec || 716 vap->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec || 717 vap->va_size != rp->r_attr.va_size) { 718 rp->r_time_attr_saved = now; 719 } 720 721 if ((mi->mi_flags & MI4_NOAC) || (vp->v_flag & VNOCACHE)) 722 delta = 0; 723 else { 724 delta = now - rp->r_time_attr_saved; 725 if (vp->v_type == VDIR) { 726 if (delta < mi->mi_acdirmin) 727 delta = mi->mi_acdirmin; 728 else if (delta > mi->mi_acdirmax) 729 delta = mi->mi_acdirmax; 730 } else { 731 if (delta < mi->mi_acregmin) 732 delta = mi->mi_acregmin; 733 else if (delta > mi->mi_acregmax) 734 delta = mi->mi_acregmax; 735 } 736 } 737 rp->r_time_attr_inval = now + delta; 738 739 rp->r_attr = *vap; 740 if (garp->n4g_change_valid) 741 rp->r_change = garp->n4g_change; 742 743 /* 744 * The attributes that were returned may be valid and can 745 * be used, but they may not be allowed to be cached. 746 * Reset the timers to cause immediate invalidation and 747 * clear r_change so no VERIFY operations will suceed 748 */ 749 if (garp->n4g_attrwhy == NFS4_GETATTR_NOCACHE_OK) { 750 rp->r_time_attr_inval = now; 751 rp->r_time_attr_saved = now; 752 rp->r_change = 0; 753 } 754 755 /* 756 * If mounted_on_fileid returned AND the object is a stub, 757 * then set object's va_nodeid to the mounted over fid 758 * returned by server. 759 * 760 * If mounted_on_fileid not provided/supported, then 761 * just set it to 0 for now. Eventually it would be 762 * better to set it to a hashed version of FH. This 763 * would probably be good enough to provide a unique 764 * fid/d_ino within a dir. 765 * 766 * We don't need to carry mounted_on_fileid in the 767 * rnode as long as the client never requests fileid 768 * without also requesting mounted_on_fileid. For 769 * now, it stays. 770 */ 771 if (garp->n4g_mon_fid_valid) { 772 rp->r_mntd_fid = garp->n4g_mon_fid; 773 774 if (RP_ISSTUB(rp)) 775 rp->r_attr.va_nodeid = rp->r_mntd_fid; 776 } 777 778 /* 779 * Check to see if there are valid pathconf bits to 780 * cache in the rnode. 781 */ 782 if (garp->n4g_ext_res) { 783 if (garp->n4g_ext_res->n4g_pc4.pc4_cache_valid) { 784 rp->r_pathconf = garp->n4g_ext_res->n4g_pc4; 785 } else { 786 if (garp->n4g_ext_res->n4g_pc4.pc4_xattr_valid) { 787 rp->r_pathconf.pc4_xattr_valid = TRUE; 788 rp->r_pathconf.pc4_xattr_exists = 789 garp->n4g_ext_res->n4g_pc4.pc4_xattr_exists; 790 } 791 } 792 } 793 /* 794 * Update the size of the file if there is no cached data or if 795 * the cached data is clean and there is no data being written 796 * out. 797 */ 798 if (rp->r_size != vap->va_size && 799 (!vn_has_cached_data(vp) || 800 (!(rp->r_flags & R4DIRTY) && rp->r_count == 0))) { 801 rp->r_size = vap->va_size; 802 } 803 nfs_setswaplike(vp, vap); 804 rp->r_flags &= ~R4WRITEMODIFIED; 805 } 806 807 /* 808 * Get attributes over-the-wire and update attributes cache 809 * if no error occurred in the over-the-wire operation. 810 * Return 0 if successful, otherwise error. 811 */ 812 int 813 nfs4_getattr_otw(vnode_t *vp, nfs4_ga_res_t *garp, cred_t *cr, int get_acl) 814 { 815 mntinfo4_t *mi = VTOMI4(vp); 816 hrtime_t t; 817 nfs4_recov_state_t recov_state; 818 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 819 820 recov_state.rs_flags = 0; 821 recov_state.rs_num_retry_despite_err = 0; 822 823 /* Save the original mount point security flavor */ 824 (void) save_mnt_secinfo(mi->mi_curr_serv); 825 826 recov_retry: 827 828 if ((e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR, 829 &recov_state, NULL))) { 830 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 831 return (e.error); 832 } 833 834 t = gethrtime(); 835 836 nfs4_getattr_otw_norecovery(vp, garp, &e, cr, get_acl); 837 838 if (nfs4_needs_recovery(&e, FALSE, vp->v_vfsp)) { 839 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 840 NULL, OP_GETATTR, NULL) == FALSE) { 841 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, 842 &recov_state, 1); 843 goto recov_retry; 844 } 845 } 846 847 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 0); 848 849 if (!e.error) { 850 if (e.stat == NFS4_OK) { 851 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 852 } else { 853 e.error = geterrno4(e.stat); 854 855 nfs4_purge_stale_fh(e.error, vp, cr); 856 } 857 } 858 859 /* 860 * If getattr a node that is a stub for a crossed 861 * mount point, keep the original secinfo flavor for 862 * the current file system, not the crossed one. 863 */ 864 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 865 866 return (e.error); 867 } 868 869 /* 870 * Generate a compound to get attributes over-the-wire. 871 */ 872 void 873 nfs4_getattr_otw_norecovery(vnode_t *vp, nfs4_ga_res_t *garp, 874 nfs4_error_t *ep, cred_t *cr, int get_acl) 875 { 876 COMPOUND4args_clnt args; 877 COMPOUND4res_clnt res; 878 int doqueue; 879 rnode4_t *rp = VTOR4(vp); 880 nfs_argop4 argop[2]; 881 882 args.ctag = TAG_GETATTR; 883 884 args.array_len = 2; 885 args.array = argop; 886 887 /* putfh */ 888 argop[0].argop = OP_CPUTFH; 889 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 890 891 /* getattr */ 892 /* 893 * Unlike nfs version 2 and 3, where getattr returns all the 894 * attributes, nfs version 4 returns only the ones explicitly 895 * asked for. This creates problems, as some system functions 896 * (e.g. cache check) require certain attributes and if the 897 * cached node lacks some attributes such as uid/gid, it can 898 * affect system utilities (e.g. "ls") that rely on the information 899 * to be there. This can lead to anything from system crashes to 900 * corrupted information processed by user apps. 901 * So to ensure that all bases are covered, request at least 902 * the AT_ALL attribute mask. 903 */ 904 argop[1].argop = OP_GETATTR; 905 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 906 if (get_acl) 907 argop[1].nfs_argop4_u.opgetattr.attr_request |= FATTR4_ACL_MASK; 908 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 909 910 doqueue = 1; 911 912 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, ep); 913 914 if (ep->error) 915 return; 916 917 if (res.status != NFS4_OK) { 918 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 919 return; 920 } 921 922 *garp = res.array[1].nfs_resop4_u.opgetattr.ga_res; 923 924 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 925 } 926 927 /* 928 * Return either cached or remote attributes. If get remote attr 929 * use them to check and invalidate caches, then cache the new attributes. 930 */ 931 int 932 nfs4getattr(vnode_t *vp, vattr_t *vap, cred_t *cr) 933 { 934 int error; 935 rnode4_t *rp; 936 nfs4_ga_res_t gar; 937 938 ASSERT(nfs4_consistent_type(vp)); 939 940 /* 941 * If we've got cached attributes, we're done, otherwise go 942 * to the server to get attributes, which will update the cache 943 * in the process. Either way, use the cached attributes for 944 * the caller's vattr_t. 945 * 946 * Note that we ignore the gar set by the OTW call: the attr caching 947 * code may make adjustments when storing to the rnode, and we want 948 * to see those changes here. 949 */ 950 rp = VTOR4(vp); 951 error = 0; 952 mutex_enter(&rp->r_statelock); 953 if (!ATTRCACHE4_VALID(vp)) { 954 mutex_exit(&rp->r_statelock); 955 error = nfs4_getattr_otw(vp, &gar, cr, 0); 956 mutex_enter(&rp->r_statelock); 957 } 958 959 if (!error) 960 *vap = rp->r_attr; 961 962 /* Return the client's view of file size */ 963 vap->va_size = rp->r_size; 964 965 mutex_exit(&rp->r_statelock); 966 967 ASSERT(nfs4_consistent_type(vp)); 968 969 return (error); 970 } 971 972 int 973 nfs4_attr_otw(vnode_t *vp, nfs4_tag_type_t tag_type, 974 nfs4_ga_res_t *garp, bitmap4 reqbitmap, cred_t *cr) 975 { 976 COMPOUND4args_clnt args; 977 COMPOUND4res_clnt res; 978 int doqueue; 979 nfs_argop4 argop[2]; 980 mntinfo4_t *mi = VTOMI4(vp); 981 bool_t needrecov = FALSE; 982 nfs4_recov_state_t recov_state; 983 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 984 nfs4_ga_ext_res_t *gerp; 985 986 recov_state.rs_flags = 0; 987 recov_state.rs_num_retry_despite_err = 0; 988 989 recov_retry: 990 args.ctag = tag_type; 991 992 args.array_len = 2; 993 args.array = argop; 994 995 e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR, &recov_state, NULL); 996 if (e.error) 997 return (e.error); 998 999 /* putfh */ 1000 argop[0].argop = OP_CPUTFH; 1001 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 1002 1003 /* getattr */ 1004 argop[1].argop = OP_GETATTR; 1005 argop[1].nfs_argop4_u.opgetattr.attr_request = reqbitmap; 1006 argop[1].nfs_argop4_u.opgetattr.mi = mi; 1007 1008 doqueue = 1; 1009 1010 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1011 "nfs4_attr_otw: %s call, rp %s", needrecov ? "recov" : "first", 1012 rnode4info(VTOR4(vp)))); 1013 1014 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 1015 1016 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 1017 if (!needrecov && e.error) { 1018 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 1019 needrecov); 1020 return (e.error); 1021 } 1022 1023 if (needrecov) { 1024 bool_t abort; 1025 1026 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1027 "nfs4_attr_otw: initiating recovery\n")); 1028 1029 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 1030 NULL, OP_GETATTR, NULL); 1031 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 1032 needrecov); 1033 if (!e.error) { 1034 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1035 e.error = geterrno4(res.status); 1036 } 1037 if (abort == FALSE) 1038 goto recov_retry; 1039 return (e.error); 1040 } 1041 1042 if (res.status) { 1043 e.error = geterrno4(res.status); 1044 } else { 1045 gerp = garp->n4g_ext_res; 1046 bcopy(&res.array[1].nfs_resop4_u.opgetattr.ga_res, 1047 garp, sizeof (nfs4_ga_res_t)); 1048 garp->n4g_ext_res = gerp; 1049 if (garp->n4g_ext_res && 1050 res.array[1].nfs_resop4_u.opgetattr.ga_res.n4g_ext_res) 1051 bcopy(res.array[1].nfs_resop4_u.opgetattr. 1052 ga_res.n4g_ext_res, 1053 garp->n4g_ext_res, sizeof (nfs4_ga_ext_res_t)); 1054 } 1055 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1056 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 1057 needrecov); 1058 return (e.error); 1059 } 1060 1061 /* 1062 * Asynchronous I/O parameters. nfs_async_threads is the high-water mark 1063 * for the demand-based allocation of async threads per-mount. The 1064 * nfs_async_timeout is the amount of time a thread will live after it 1065 * becomes idle, unless new I/O requests are received before the thread 1066 * dies. See nfs4_async_putpage and nfs4_async_start. 1067 */ 1068 1069 static void nfs4_async_start(struct vfs *); 1070 1071 static void 1072 free_async_args4(struct nfs4_async_reqs *args) 1073 { 1074 rnode4_t *rp; 1075 1076 if (args->a_io != NFS4_INACTIVE) { 1077 rp = VTOR4(args->a_vp); 1078 mutex_enter(&rp->r_statelock); 1079 rp->r_count--; 1080 if (args->a_io == NFS4_PUTAPAGE || 1081 args->a_io == NFS4_PAGEIO) 1082 rp->r_awcount--; 1083 cv_broadcast(&rp->r_cv); 1084 mutex_exit(&rp->r_statelock); 1085 VN_RELE(args->a_vp); 1086 } 1087 crfree(args->a_cred); 1088 kmem_free(args, sizeof (*args)); 1089 } 1090 1091 /* 1092 * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and 1093 * pageout(), running in the global zone, have legitimate reasons to do 1094 * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts. We avoid the problem by 1095 * use of a a per-mount "asynchronous requests manager thread" which is 1096 * signaled by the various asynchronous work routines when there is 1097 * asynchronous work to be done. It is responsible for creating new 1098 * worker threads if necessary, and notifying existing worker threads 1099 * that there is work to be done. 1100 * 1101 * In other words, it will "take the specifications from the customers and 1102 * give them to the engineers." 1103 * 1104 * Worker threads die off of their own accord if they are no longer 1105 * needed. 1106 * 1107 * This thread is killed when the zone is going away or the filesystem 1108 * is being unmounted. 1109 */ 1110 void 1111 nfs4_async_manager(vfs_t *vfsp) 1112 { 1113 callb_cpr_t cprinfo; 1114 mntinfo4_t *mi; 1115 uint_t max_threads; 1116 1117 mi = VFTOMI4(vfsp); 1118 1119 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, 1120 "nfs4_async_manager"); 1121 1122 mutex_enter(&mi->mi_async_lock); 1123 /* 1124 * We want to stash the max number of threads that this mount was 1125 * allowed so we can use it later when the variable is set to zero as 1126 * part of the zone/mount going away. 1127 * 1128 * We want to be able to create at least one thread to handle 1129 * asyncrhonous inactive calls. 1130 */ 1131 max_threads = MAX(mi->mi_max_threads, 1); 1132 mutex_enter(&mi->mi_lock); 1133 /* 1134 * We don't want to wait for mi_max_threads to go to zero, since that 1135 * happens as part of a failed unmount, but this thread should only 1136 * exit when the mount is really going away. 1137 * 1138 * Once MI4_ASYNC_MGR_STOP is set, no more async operations will be 1139 * attempted: the various _async_*() functions know to do things 1140 * inline if mi_max_threads == 0. Henceforth we just drain out the 1141 * outstanding requests. 1142 * 1143 * Note that we still create zthreads even if we notice the zone is 1144 * shutting down (MI4_ASYNC_MGR_STOP is set); this may cause the zone 1145 * shutdown sequence to take slightly longer in some cases, but 1146 * doesn't violate the protocol, as all threads will exit as soon as 1147 * they're done processing the remaining requests. 1148 */ 1149 while (!(mi->mi_flags & MI4_ASYNC_MGR_STOP) || 1150 mi->mi_async_req_count > 0) { 1151 mutex_exit(&mi->mi_lock); 1152 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1153 cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock); 1154 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock); 1155 while (mi->mi_async_req_count > 0) { 1156 /* 1157 * Paranoia: If the mount started out having 1158 * (mi->mi_max_threads == 0), and the value was 1159 * later changed (via a debugger or somesuch), 1160 * we could be confused since we will think we 1161 * can't create any threads, and the calling 1162 * code (which looks at the current value of 1163 * mi->mi_max_threads, now non-zero) thinks we 1164 * can. 1165 * 1166 * So, because we're paranoid, we create threads 1167 * up to the maximum of the original and the 1168 * current value. This means that future 1169 * (debugger-induced) alterations of 1170 * mi->mi_max_threads are ignored for our 1171 * purposes, but who told them they could change 1172 * random values on a live kernel anyhow? 1173 */ 1174 if (mi->mi_threads < 1175 MAX(mi->mi_max_threads, max_threads)) { 1176 mi->mi_threads++; 1177 mutex_exit(&mi->mi_async_lock); 1178 MI4_HOLD(mi); 1179 VFS_HOLD(vfsp); /* hold for new thread */ 1180 (void) zthread_create(NULL, 0, nfs4_async_start, 1181 vfsp, 0, minclsyspri); 1182 mutex_enter(&mi->mi_async_lock); 1183 } 1184 cv_signal(&mi->mi_async_work_cv); 1185 ASSERT(mi->mi_async_req_count != 0); 1186 mi->mi_async_req_count--; 1187 } 1188 mutex_enter(&mi->mi_lock); 1189 } 1190 mutex_exit(&mi->mi_lock); 1191 1192 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 1193 "nfs4_async_manager exiting for vfs %p\n", (void *)mi->mi_vfsp)); 1194 /* 1195 * Let everyone know we're done. 1196 */ 1197 mi->mi_manager_thread = NULL; 1198 /* 1199 * Wake up the inactive thread. 1200 */ 1201 cv_broadcast(&mi->mi_inact_req_cv); 1202 /* 1203 * Wake up anyone sitting in nfs4_async_manager_stop() 1204 */ 1205 cv_broadcast(&mi->mi_async_cv); 1206 /* 1207 * There is no explicit call to mutex_exit(&mi->mi_async_lock) 1208 * since CALLB_CPR_EXIT is actually responsible for releasing 1209 * 'mi_async_lock'. 1210 */ 1211 CALLB_CPR_EXIT(&cprinfo); 1212 VFS_RELE(vfsp); /* release thread's hold */ 1213 MI4_RELE(mi); 1214 zthread_exit(); 1215 } 1216 1217 /* 1218 * Signal (and wait for) the async manager thread to clean up and go away. 1219 */ 1220 void 1221 nfs4_async_manager_stop(vfs_t *vfsp) 1222 { 1223 mntinfo4_t *mi = VFTOMI4(vfsp); 1224 1225 mutex_enter(&mi->mi_async_lock); 1226 mutex_enter(&mi->mi_lock); 1227 mi->mi_flags |= MI4_ASYNC_MGR_STOP; 1228 mutex_exit(&mi->mi_lock); 1229 cv_broadcast(&mi->mi_async_reqs_cv); 1230 /* 1231 * Wait for the async manager thread to die. 1232 */ 1233 while (mi->mi_manager_thread != NULL) 1234 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 1235 mutex_exit(&mi->mi_async_lock); 1236 } 1237 1238 int 1239 nfs4_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, 1240 struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *, 1241 u_offset_t, caddr_t, struct seg *, cred_t *)) 1242 { 1243 rnode4_t *rp; 1244 mntinfo4_t *mi; 1245 struct nfs4_async_reqs *args; 1246 1247 rp = VTOR4(vp); 1248 ASSERT(rp->r_freef == NULL); 1249 1250 mi = VTOMI4(vp); 1251 1252 /* 1253 * If addr falls in a different segment, don't bother doing readahead. 1254 */ 1255 if (addr >= seg->s_base + seg->s_size) 1256 return (-1); 1257 1258 /* 1259 * If we can't allocate a request structure, punt on the readahead. 1260 */ 1261 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1262 return (-1); 1263 1264 /* 1265 * If a lock operation is pending, don't initiate any new 1266 * readaheads. Otherwise, bump r_count to indicate the new 1267 * asynchronous I/O. 1268 */ 1269 if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) { 1270 kmem_free(args, sizeof (*args)); 1271 return (-1); 1272 } 1273 mutex_enter(&rp->r_statelock); 1274 rp->r_count++; 1275 mutex_exit(&rp->r_statelock); 1276 nfs_rw_exit(&rp->r_lkserlock); 1277 1278 args->a_next = NULL; 1279 #ifdef DEBUG 1280 args->a_queuer = curthread; 1281 #endif 1282 VN_HOLD(vp); 1283 args->a_vp = vp; 1284 ASSERT(cr != NULL); 1285 crhold(cr); 1286 args->a_cred = cr; 1287 args->a_io = NFS4_READ_AHEAD; 1288 args->a_nfs4_readahead = readahead; 1289 args->a_nfs4_blkoff = blkoff; 1290 args->a_nfs4_seg = seg; 1291 args->a_nfs4_addr = addr; 1292 1293 mutex_enter(&mi->mi_async_lock); 1294 1295 /* 1296 * If asyncio has been disabled, don't bother readahead. 1297 */ 1298 if (mi->mi_max_threads == 0) { 1299 mutex_exit(&mi->mi_async_lock); 1300 goto noasync; 1301 } 1302 1303 /* 1304 * Link request structure into the async list and 1305 * wakeup async thread to do the i/o. 1306 */ 1307 if (mi->mi_async_reqs[NFS4_READ_AHEAD] == NULL) { 1308 mi->mi_async_reqs[NFS4_READ_AHEAD] = args; 1309 mi->mi_async_tail[NFS4_READ_AHEAD] = args; 1310 } else { 1311 mi->mi_async_tail[NFS4_READ_AHEAD]->a_next = args; 1312 mi->mi_async_tail[NFS4_READ_AHEAD] = args; 1313 } 1314 1315 if (mi->mi_io_kstats) { 1316 mutex_enter(&mi->mi_lock); 1317 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1318 mutex_exit(&mi->mi_lock); 1319 } 1320 1321 mi->mi_async_req_count++; 1322 ASSERT(mi->mi_async_req_count != 0); 1323 cv_signal(&mi->mi_async_reqs_cv); 1324 mutex_exit(&mi->mi_async_lock); 1325 return (0); 1326 1327 noasync: 1328 mutex_enter(&rp->r_statelock); 1329 rp->r_count--; 1330 cv_broadcast(&rp->r_cv); 1331 mutex_exit(&rp->r_statelock); 1332 VN_RELE(vp); 1333 crfree(cr); 1334 kmem_free(args, sizeof (*args)); 1335 return (-1); 1336 } 1337 1338 /* 1339 * The async queues for each mounted file system are arranged as a 1340 * set of queues, one for each async i/o type. Requests are taken 1341 * from the queues in a round-robin fashion. A number of consecutive 1342 * requests are taken from each queue before moving on to the next 1343 * queue. This functionality may allow the NFS Version 2 server to do 1344 * write clustering, even if the client is mixing writes and reads 1345 * because it will take multiple write requests from the queue 1346 * before processing any of the other async i/o types. 1347 * 1348 * XXX The nfs4_async_start thread is unsafe in the light of the present 1349 * model defined by cpr to suspend the system. Specifically over the 1350 * wire calls are cpr-unsafe. The thread should be reevaluated in 1351 * case of future updates to the cpr model. 1352 */ 1353 static void 1354 nfs4_async_start(struct vfs *vfsp) 1355 { 1356 struct nfs4_async_reqs *args; 1357 mntinfo4_t *mi = VFTOMI4(vfsp); 1358 clock_t time_left = 1; 1359 callb_cpr_t cprinfo; 1360 int i; 1361 extern int nfs_async_timeout; 1362 1363 /* 1364 * Dynamic initialization of nfs_async_timeout to allow nfs to be 1365 * built in an implementation independent manner. 1366 */ 1367 if (nfs_async_timeout == -1) 1368 nfs_async_timeout = NFS_ASYNC_TIMEOUT; 1369 1370 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas"); 1371 1372 mutex_enter(&mi->mi_async_lock); 1373 for (;;) { 1374 /* 1375 * Find the next queue containing an entry. We start 1376 * at the current queue pointer and then round robin 1377 * through all of them until we either find a non-empty 1378 * queue or have looked through all of them. 1379 */ 1380 for (i = 0; i < NFS4_ASYNC_TYPES; i++) { 1381 args = *mi->mi_async_curr; 1382 if (args != NULL) 1383 break; 1384 mi->mi_async_curr++; 1385 if (mi->mi_async_curr == 1386 &mi->mi_async_reqs[NFS4_ASYNC_TYPES]) 1387 mi->mi_async_curr = &mi->mi_async_reqs[0]; 1388 } 1389 /* 1390 * If we didn't find a entry, then block until woken up 1391 * again and then look through the queues again. 1392 */ 1393 if (args == NULL) { 1394 /* 1395 * Exiting is considered to be safe for CPR as well 1396 */ 1397 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1398 1399 /* 1400 * Wakeup thread waiting to unmount the file 1401 * system only if all async threads are inactive. 1402 * 1403 * If we've timed-out and there's nothing to do, 1404 * then get rid of this thread. 1405 */ 1406 if (mi->mi_max_threads == 0 || time_left <= 0) { 1407 if (--mi->mi_threads == 0) 1408 cv_signal(&mi->mi_async_cv); 1409 CALLB_CPR_EXIT(&cprinfo); 1410 VFS_RELE(vfsp); /* release thread's hold */ 1411 MI4_RELE(mi); 1412 zthread_exit(); 1413 /* NOTREACHED */ 1414 } 1415 time_left = cv_timedwait(&mi->mi_async_work_cv, 1416 &mi->mi_async_lock, nfs_async_timeout + lbolt); 1417 1418 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock); 1419 1420 continue; 1421 } else { 1422 time_left = 1; 1423 } 1424 1425 /* 1426 * Remove the request from the async queue and then 1427 * update the current async request queue pointer. If 1428 * the current queue is empty or we have removed enough 1429 * consecutive entries from it, then reset the counter 1430 * for this queue and then move the current pointer to 1431 * the next queue. 1432 */ 1433 *mi->mi_async_curr = args->a_next; 1434 if (*mi->mi_async_curr == NULL || 1435 --mi->mi_async_clusters[args->a_io] == 0) { 1436 mi->mi_async_clusters[args->a_io] = 1437 mi->mi_async_init_clusters; 1438 mi->mi_async_curr++; 1439 if (mi->mi_async_curr == 1440 &mi->mi_async_reqs[NFS4_ASYNC_TYPES]) 1441 mi->mi_async_curr = &mi->mi_async_reqs[0]; 1442 } 1443 1444 if (args->a_io != NFS4_INACTIVE && mi->mi_io_kstats) { 1445 mutex_enter(&mi->mi_lock); 1446 kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1447 mutex_exit(&mi->mi_lock); 1448 } 1449 1450 mutex_exit(&mi->mi_async_lock); 1451 1452 /* 1453 * Obtain arguments from the async request structure. 1454 */ 1455 if (args->a_io == NFS4_READ_AHEAD && mi->mi_max_threads > 0) { 1456 (*args->a_nfs4_readahead)(args->a_vp, 1457 args->a_nfs4_blkoff, args->a_nfs4_addr, 1458 args->a_nfs4_seg, args->a_cred); 1459 } else if (args->a_io == NFS4_PUTAPAGE) { 1460 (void) (*args->a_nfs4_putapage)(args->a_vp, 1461 args->a_nfs4_pp, args->a_nfs4_off, 1462 args->a_nfs4_len, args->a_nfs4_flags, 1463 args->a_cred); 1464 } else if (args->a_io == NFS4_PAGEIO) { 1465 (void) (*args->a_nfs4_pageio)(args->a_vp, 1466 args->a_nfs4_pp, args->a_nfs4_off, 1467 args->a_nfs4_len, args->a_nfs4_flags, 1468 args->a_cred); 1469 } else if (args->a_io == NFS4_READDIR) { 1470 (void) ((*args->a_nfs4_readdir)(args->a_vp, 1471 args->a_nfs4_rdc, args->a_cred)); 1472 } else if (args->a_io == NFS4_COMMIT) { 1473 (*args->a_nfs4_commit)(args->a_vp, args->a_nfs4_plist, 1474 args->a_nfs4_offset, args->a_nfs4_count, 1475 args->a_cred); 1476 } else if (args->a_io == NFS4_INACTIVE) { 1477 nfs4_inactive_otw(args->a_vp, args->a_cred); 1478 } 1479 1480 /* 1481 * Now, release the vnode and free the credentials 1482 * structure. 1483 */ 1484 free_async_args4(args); 1485 /* 1486 * Reacquire the mutex because it will be needed above. 1487 */ 1488 mutex_enter(&mi->mi_async_lock); 1489 } 1490 } 1491 1492 /* 1493 * nfs4_inactive_thread - look for vnodes that need over-the-wire calls as 1494 * part of VOP_INACTIVE. 1495 */ 1496 1497 void 1498 nfs4_inactive_thread(mntinfo4_t *mi) 1499 { 1500 struct nfs4_async_reqs *args; 1501 callb_cpr_t cprinfo; 1502 vfs_t *vfsp = mi->mi_vfsp; 1503 1504 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, 1505 "nfs4_inactive_thread"); 1506 1507 for (;;) { 1508 mutex_enter(&mi->mi_async_lock); 1509 args = mi->mi_async_reqs[NFS4_INACTIVE]; 1510 if (args == NULL) { 1511 mutex_enter(&mi->mi_lock); 1512 /* 1513 * We don't want to exit until the async manager is done 1514 * with its work; hence the check for mi_manager_thread 1515 * being NULL. 1516 * 1517 * The async manager thread will cv_broadcast() on 1518 * mi_inact_req_cv when it's done, at which point we'll 1519 * wake up and exit. 1520 */ 1521 if (mi->mi_manager_thread == NULL) 1522 goto die; 1523 mi->mi_flags |= MI4_INACTIVE_IDLE; 1524 mutex_exit(&mi->mi_lock); 1525 cv_signal(&mi->mi_async_cv); 1526 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1527 cv_wait(&mi->mi_inact_req_cv, &mi->mi_async_lock); 1528 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock); 1529 mutex_exit(&mi->mi_async_lock); 1530 } else { 1531 mutex_enter(&mi->mi_lock); 1532 mi->mi_flags &= ~MI4_INACTIVE_IDLE; 1533 mutex_exit(&mi->mi_lock); 1534 mi->mi_async_reqs[NFS4_INACTIVE] = args->a_next; 1535 mutex_exit(&mi->mi_async_lock); 1536 nfs4_inactive_otw(args->a_vp, args->a_cred); 1537 crfree(args->a_cred); 1538 kmem_free(args, sizeof (*args)); 1539 } 1540 } 1541 die: 1542 mutex_exit(&mi->mi_lock); 1543 mi->mi_inactive_thread = NULL; 1544 cv_signal(&mi->mi_async_cv); 1545 1546 /* 1547 * There is no explicit call to mutex_exit(&mi->mi_async_lock) since 1548 * CALLB_CPR_EXIT is actually responsible for releasing 'mi_async_lock'. 1549 */ 1550 CALLB_CPR_EXIT(&cprinfo); 1551 1552 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 1553 "nfs4_inactive_thread exiting for vfs %p\n", (void *)vfsp)); 1554 1555 MI4_RELE(mi); 1556 zthread_exit(); 1557 /* NOTREACHED */ 1558 } 1559 1560 /* 1561 * nfs_async_stop: 1562 * Wait for all outstanding putpage operations and the inactive thread to 1563 * complete; nfs4_async_stop_sig() without interruptibility. 1564 */ 1565 void 1566 nfs4_async_stop(struct vfs *vfsp) 1567 { 1568 mntinfo4_t *mi = VFTOMI4(vfsp); 1569 1570 /* 1571 * Wait for all outstanding async operations to complete and for 1572 * worker threads to exit. 1573 */ 1574 mutex_enter(&mi->mi_async_lock); 1575 mi->mi_max_threads = 0; 1576 cv_broadcast(&mi->mi_async_work_cv); 1577 while (mi->mi_threads != 0) 1578 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 1579 1580 /* 1581 * Wait for the inactive thread to finish doing what it's doing. It 1582 * won't exit until the last reference to the vfs_t goes away. 1583 */ 1584 if (mi->mi_inactive_thread != NULL) { 1585 mutex_enter(&mi->mi_lock); 1586 while (!(mi->mi_flags & MI4_INACTIVE_IDLE) || 1587 (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) { 1588 mutex_exit(&mi->mi_lock); 1589 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 1590 mutex_enter(&mi->mi_lock); 1591 } 1592 mutex_exit(&mi->mi_lock); 1593 } 1594 mutex_exit(&mi->mi_async_lock); 1595 } 1596 1597 /* 1598 * nfs_async_stop_sig: 1599 * Wait for all outstanding putpage operations and the inactive thread to 1600 * complete. If a signal is delivered we will abort and return non-zero; 1601 * otherwise return 0. Since this routine is called from nfs4_unmount, we 1602 * need to make it interruptible. 1603 */ 1604 int 1605 nfs4_async_stop_sig(struct vfs *vfsp) 1606 { 1607 mntinfo4_t *mi = VFTOMI4(vfsp); 1608 ushort_t omax; 1609 bool_t intr = FALSE; 1610 1611 /* 1612 * Wait for all outstanding putpage operations to complete and for 1613 * worker threads to exit. 1614 */ 1615 mutex_enter(&mi->mi_async_lock); 1616 omax = mi->mi_max_threads; 1617 mi->mi_max_threads = 0; 1618 cv_broadcast(&mi->mi_async_work_cv); 1619 while (mi->mi_threads != 0) { 1620 if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock)) { 1621 intr = TRUE; 1622 goto interrupted; 1623 } 1624 } 1625 1626 /* 1627 * Wait for the inactive thread to finish doing what it's doing. It 1628 * won't exit until the a last reference to the vfs_t goes away. 1629 */ 1630 if (mi->mi_inactive_thread != NULL) { 1631 mutex_enter(&mi->mi_lock); 1632 while (!(mi->mi_flags & MI4_INACTIVE_IDLE) || 1633 (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) { 1634 mutex_exit(&mi->mi_lock); 1635 if (!cv_wait_sig(&mi->mi_async_cv, 1636 &mi->mi_async_lock)) { 1637 intr = TRUE; 1638 goto interrupted; 1639 } 1640 mutex_enter(&mi->mi_lock); 1641 } 1642 mutex_exit(&mi->mi_lock); 1643 } 1644 interrupted: 1645 if (intr) 1646 mi->mi_max_threads = omax; 1647 mutex_exit(&mi->mi_async_lock); 1648 1649 return (intr); 1650 } 1651 1652 int 1653 nfs4_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 1654 int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *, 1655 u_offset_t, size_t, int, cred_t *)) 1656 { 1657 rnode4_t *rp; 1658 mntinfo4_t *mi; 1659 struct nfs4_async_reqs *args; 1660 1661 ASSERT(flags & B_ASYNC); 1662 ASSERT(vp->v_vfsp != NULL); 1663 1664 rp = VTOR4(vp); 1665 ASSERT(rp->r_count > 0); 1666 1667 mi = VTOMI4(vp); 1668 1669 /* 1670 * If we can't allocate a request structure, do the putpage 1671 * operation synchronously in this thread's context. 1672 */ 1673 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1674 goto noasync; 1675 1676 args->a_next = NULL; 1677 #ifdef DEBUG 1678 args->a_queuer = curthread; 1679 #endif 1680 VN_HOLD(vp); 1681 args->a_vp = vp; 1682 ASSERT(cr != NULL); 1683 crhold(cr); 1684 args->a_cred = cr; 1685 args->a_io = NFS4_PUTAPAGE; 1686 args->a_nfs4_putapage = putapage; 1687 args->a_nfs4_pp = pp; 1688 args->a_nfs4_off = off; 1689 args->a_nfs4_len = (uint_t)len; 1690 args->a_nfs4_flags = flags; 1691 1692 mutex_enter(&mi->mi_async_lock); 1693 1694 /* 1695 * If asyncio has been disabled, then make a synchronous request. 1696 * This check is done a second time in case async io was diabled 1697 * while this thread was blocked waiting for memory pressure to 1698 * reduce or for the queue to drain. 1699 */ 1700 if (mi->mi_max_threads == 0) { 1701 mutex_exit(&mi->mi_async_lock); 1702 1703 VN_RELE(vp); 1704 crfree(cr); 1705 kmem_free(args, sizeof (*args)); 1706 goto noasync; 1707 } 1708 1709 /* 1710 * Link request structure into the async list and 1711 * wakeup async thread to do the i/o. 1712 */ 1713 if (mi->mi_async_reqs[NFS4_PUTAPAGE] == NULL) { 1714 mi->mi_async_reqs[NFS4_PUTAPAGE] = args; 1715 mi->mi_async_tail[NFS4_PUTAPAGE] = args; 1716 } else { 1717 mi->mi_async_tail[NFS4_PUTAPAGE]->a_next = args; 1718 mi->mi_async_tail[NFS4_PUTAPAGE] = args; 1719 } 1720 1721 mutex_enter(&rp->r_statelock); 1722 rp->r_count++; 1723 rp->r_awcount++; 1724 mutex_exit(&rp->r_statelock); 1725 1726 if (mi->mi_io_kstats) { 1727 mutex_enter(&mi->mi_lock); 1728 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1729 mutex_exit(&mi->mi_lock); 1730 } 1731 1732 mi->mi_async_req_count++; 1733 ASSERT(mi->mi_async_req_count != 0); 1734 cv_signal(&mi->mi_async_reqs_cv); 1735 mutex_exit(&mi->mi_async_lock); 1736 return (0); 1737 1738 noasync: 1739 1740 if (curproc == proc_pageout || curproc == proc_fsflush || 1741 nfs_zone() == mi->mi_zone) { 1742 /* 1743 * If we get here in the context of the pageout/fsflush, 1744 * or we have run out of memory or we're attempting to 1745 * unmount we refuse to do a sync write, because this may 1746 * hang pageout/fsflush and the machine. In this case, 1747 * we just re-mark the page as dirty and punt on the page. 1748 * 1749 * Make sure B_FORCE isn't set. We can re-mark the 1750 * pages as dirty and unlock the pages in one swoop by 1751 * passing in B_ERROR to pvn_write_done(). However, 1752 * we should make sure B_FORCE isn't set - we don't 1753 * want the page tossed before it gets written out. 1754 */ 1755 if (flags & B_FORCE) 1756 flags &= ~(B_INVAL | B_FORCE); 1757 pvn_write_done(pp, flags | B_ERROR); 1758 return (0); 1759 } 1760 1761 /* 1762 * We'll get here only if (nfs_zone() != mi->mi_zone) 1763 * which means that this was a cross-zone sync putpage. 1764 * 1765 * We pass in B_ERROR to pvn_write_done() to re-mark the pages 1766 * as dirty and unlock them. 1767 * 1768 * We don't want to clear B_FORCE here as the caller presumably 1769 * knows what they're doing if they set it. 1770 */ 1771 pvn_write_done(pp, flags | B_ERROR); 1772 return (EPERM); 1773 } 1774 1775 int 1776 nfs4_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 1777 int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t, 1778 size_t, int, cred_t *)) 1779 { 1780 rnode4_t *rp; 1781 mntinfo4_t *mi; 1782 struct nfs4_async_reqs *args; 1783 1784 ASSERT(flags & B_ASYNC); 1785 ASSERT(vp->v_vfsp != NULL); 1786 1787 rp = VTOR4(vp); 1788 ASSERT(rp->r_count > 0); 1789 1790 mi = VTOMI4(vp); 1791 1792 /* 1793 * If we can't allocate a request structure, do the pageio 1794 * request synchronously in this thread's context. 1795 */ 1796 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1797 goto noasync; 1798 1799 args->a_next = NULL; 1800 #ifdef DEBUG 1801 args->a_queuer = curthread; 1802 #endif 1803 VN_HOLD(vp); 1804 args->a_vp = vp; 1805 ASSERT(cr != NULL); 1806 crhold(cr); 1807 args->a_cred = cr; 1808 args->a_io = NFS4_PAGEIO; 1809 args->a_nfs4_pageio = pageio; 1810 args->a_nfs4_pp = pp; 1811 args->a_nfs4_off = io_off; 1812 args->a_nfs4_len = (uint_t)io_len; 1813 args->a_nfs4_flags = flags; 1814 1815 mutex_enter(&mi->mi_async_lock); 1816 1817 /* 1818 * If asyncio has been disabled, then make a synchronous request. 1819 * This check is done a second time in case async io was diabled 1820 * while this thread was blocked waiting for memory pressure to 1821 * reduce or for the queue to drain. 1822 */ 1823 if (mi->mi_max_threads == 0) { 1824 mutex_exit(&mi->mi_async_lock); 1825 1826 VN_RELE(vp); 1827 crfree(cr); 1828 kmem_free(args, sizeof (*args)); 1829 goto noasync; 1830 } 1831 1832 /* 1833 * Link request structure into the async list and 1834 * wakeup async thread to do the i/o. 1835 */ 1836 if (mi->mi_async_reqs[NFS4_PAGEIO] == NULL) { 1837 mi->mi_async_reqs[NFS4_PAGEIO] = args; 1838 mi->mi_async_tail[NFS4_PAGEIO] = args; 1839 } else { 1840 mi->mi_async_tail[NFS4_PAGEIO]->a_next = args; 1841 mi->mi_async_tail[NFS4_PAGEIO] = args; 1842 } 1843 1844 mutex_enter(&rp->r_statelock); 1845 rp->r_count++; 1846 rp->r_awcount++; 1847 mutex_exit(&rp->r_statelock); 1848 1849 if (mi->mi_io_kstats) { 1850 mutex_enter(&mi->mi_lock); 1851 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1852 mutex_exit(&mi->mi_lock); 1853 } 1854 1855 mi->mi_async_req_count++; 1856 ASSERT(mi->mi_async_req_count != 0); 1857 cv_signal(&mi->mi_async_reqs_cv); 1858 mutex_exit(&mi->mi_async_lock); 1859 return (0); 1860 1861 noasync: 1862 /* 1863 * If we can't do it ASYNC, for reads we do nothing (but cleanup 1864 * the page list), for writes we do it synchronously, except for 1865 * proc_pageout/proc_fsflush as described below. 1866 */ 1867 if (flags & B_READ) { 1868 pvn_read_done(pp, flags | B_ERROR); 1869 return (0); 1870 } 1871 1872 if (curproc == proc_pageout || curproc == proc_fsflush) { 1873 /* 1874 * If we get here in the context of the pageout/fsflush, 1875 * we refuse to do a sync write, because this may hang 1876 * pageout/fsflush (and the machine). In this case, we just 1877 * re-mark the page as dirty and punt on the page. 1878 * 1879 * Make sure B_FORCE isn't set. We can re-mark the 1880 * pages as dirty and unlock the pages in one swoop by 1881 * passing in B_ERROR to pvn_write_done(). However, 1882 * we should make sure B_FORCE isn't set - we don't 1883 * want the page tossed before it gets written out. 1884 */ 1885 if (flags & B_FORCE) 1886 flags &= ~(B_INVAL | B_FORCE); 1887 pvn_write_done(pp, flags | B_ERROR); 1888 return (0); 1889 } 1890 1891 if (nfs_zone() != mi->mi_zone) { 1892 /* 1893 * So this was a cross-zone sync pageio. We pass in B_ERROR 1894 * to pvn_write_done() to re-mark the pages as dirty and unlock 1895 * them. 1896 * 1897 * We don't want to clear B_FORCE here as the caller presumably 1898 * knows what they're doing if they set it. 1899 */ 1900 pvn_write_done(pp, flags | B_ERROR); 1901 return (EPERM); 1902 } 1903 return ((*pageio)(vp, pp, io_off, io_len, flags, cr)); 1904 } 1905 1906 void 1907 nfs4_async_readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr, 1908 int (*readdir)(vnode_t *, rddir4_cache *, cred_t *)) 1909 { 1910 rnode4_t *rp; 1911 mntinfo4_t *mi; 1912 struct nfs4_async_reqs *args; 1913 1914 rp = VTOR4(vp); 1915 ASSERT(rp->r_freef == NULL); 1916 1917 mi = VTOMI4(vp); 1918 1919 /* 1920 * If we can't allocate a request structure, skip the readdir. 1921 */ 1922 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1923 goto noasync; 1924 1925 args->a_next = NULL; 1926 #ifdef DEBUG 1927 args->a_queuer = curthread; 1928 #endif 1929 VN_HOLD(vp); 1930 args->a_vp = vp; 1931 ASSERT(cr != NULL); 1932 crhold(cr); 1933 args->a_cred = cr; 1934 args->a_io = NFS4_READDIR; 1935 args->a_nfs4_readdir = readdir; 1936 args->a_nfs4_rdc = rdc; 1937 1938 mutex_enter(&mi->mi_async_lock); 1939 1940 /* 1941 * If asyncio has been disabled, then skip this request 1942 */ 1943 if (mi->mi_max_threads == 0) { 1944 mutex_exit(&mi->mi_async_lock); 1945 1946 VN_RELE(vp); 1947 crfree(cr); 1948 kmem_free(args, sizeof (*args)); 1949 goto noasync; 1950 } 1951 1952 /* 1953 * Link request structure into the async list and 1954 * wakeup async thread to do the i/o. 1955 */ 1956 if (mi->mi_async_reqs[NFS4_READDIR] == NULL) { 1957 mi->mi_async_reqs[NFS4_READDIR] = args; 1958 mi->mi_async_tail[NFS4_READDIR] = args; 1959 } else { 1960 mi->mi_async_tail[NFS4_READDIR]->a_next = args; 1961 mi->mi_async_tail[NFS4_READDIR] = args; 1962 } 1963 1964 mutex_enter(&rp->r_statelock); 1965 rp->r_count++; 1966 mutex_exit(&rp->r_statelock); 1967 1968 if (mi->mi_io_kstats) { 1969 mutex_enter(&mi->mi_lock); 1970 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1971 mutex_exit(&mi->mi_lock); 1972 } 1973 1974 mi->mi_async_req_count++; 1975 ASSERT(mi->mi_async_req_count != 0); 1976 cv_signal(&mi->mi_async_reqs_cv); 1977 mutex_exit(&mi->mi_async_lock); 1978 return; 1979 1980 noasync: 1981 mutex_enter(&rp->r_statelock); 1982 rdc->entries = NULL; 1983 /* 1984 * Indicate that no one is trying to fill this entry and 1985 * it still needs to be filled. 1986 */ 1987 rdc->flags &= ~RDDIR; 1988 rdc->flags |= RDDIRREQ; 1989 rddir4_cache_rele(rp, rdc); 1990 mutex_exit(&rp->r_statelock); 1991 } 1992 1993 void 1994 nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 1995 cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3, 1996 cred_t *)) 1997 { 1998 rnode4_t *rp; 1999 mntinfo4_t *mi; 2000 struct nfs4_async_reqs *args; 2001 page_t *pp; 2002 2003 rp = VTOR4(vp); 2004 mi = VTOMI4(vp); 2005 2006 /* 2007 * If we can't allocate a request structure, do the commit 2008 * operation synchronously in this thread's context. 2009 */ 2010 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 2011 goto noasync; 2012 2013 args->a_next = NULL; 2014 #ifdef DEBUG 2015 args->a_queuer = curthread; 2016 #endif 2017 VN_HOLD(vp); 2018 args->a_vp = vp; 2019 ASSERT(cr != NULL); 2020 crhold(cr); 2021 args->a_cred = cr; 2022 args->a_io = NFS4_COMMIT; 2023 args->a_nfs4_commit = commit; 2024 args->a_nfs4_plist = plist; 2025 args->a_nfs4_offset = offset; 2026 args->a_nfs4_count = count; 2027 2028 mutex_enter(&mi->mi_async_lock); 2029 2030 /* 2031 * If asyncio has been disabled, then make a synchronous request. 2032 * This check is done a second time in case async io was diabled 2033 * while this thread was blocked waiting for memory pressure to 2034 * reduce or for the queue to drain. 2035 */ 2036 if (mi->mi_max_threads == 0) { 2037 mutex_exit(&mi->mi_async_lock); 2038 2039 VN_RELE(vp); 2040 crfree(cr); 2041 kmem_free(args, sizeof (*args)); 2042 goto noasync; 2043 } 2044 2045 /* 2046 * Link request structure into the async list and 2047 * wakeup async thread to do the i/o. 2048 */ 2049 if (mi->mi_async_reqs[NFS4_COMMIT] == NULL) { 2050 mi->mi_async_reqs[NFS4_COMMIT] = args; 2051 mi->mi_async_tail[NFS4_COMMIT] = args; 2052 } else { 2053 mi->mi_async_tail[NFS4_COMMIT]->a_next = args; 2054 mi->mi_async_tail[NFS4_COMMIT] = args; 2055 } 2056 2057 mutex_enter(&rp->r_statelock); 2058 rp->r_count++; 2059 mutex_exit(&rp->r_statelock); 2060 2061 if (mi->mi_io_kstats) { 2062 mutex_enter(&mi->mi_lock); 2063 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 2064 mutex_exit(&mi->mi_lock); 2065 } 2066 2067 mi->mi_async_req_count++; 2068 ASSERT(mi->mi_async_req_count != 0); 2069 cv_signal(&mi->mi_async_reqs_cv); 2070 mutex_exit(&mi->mi_async_lock); 2071 return; 2072 2073 noasync: 2074 if (curproc == proc_pageout || curproc == proc_fsflush || 2075 nfs_zone() != mi->mi_zone) { 2076 while (plist != NULL) { 2077 pp = plist; 2078 page_sub(&plist, pp); 2079 pp->p_fsdata = C_COMMIT; 2080 page_unlock(pp); 2081 } 2082 return; 2083 } 2084 (*commit)(vp, plist, offset, count, cr); 2085 } 2086 2087 /* 2088 * nfs4_async_inactive - hand off a VOP_INACTIVE call to a thread. The 2089 * reference to the vnode is handed over to the thread; the caller should 2090 * no longer refer to the vnode. 2091 * 2092 * Unlike most of the async routines, this handoff is needed for 2093 * correctness reasons, not just performance. So doing operations in the 2094 * context of the current thread is not an option. 2095 */ 2096 void 2097 nfs4_async_inactive(vnode_t *vp, cred_t *cr) 2098 { 2099 mntinfo4_t *mi; 2100 struct nfs4_async_reqs *args; 2101 boolean_t signal_inactive_thread = B_FALSE; 2102 2103 mi = VTOMI4(vp); 2104 2105 args = kmem_alloc(sizeof (*args), KM_SLEEP); 2106 args->a_next = NULL; 2107 #ifdef DEBUG 2108 args->a_queuer = curthread; 2109 #endif 2110 args->a_vp = vp; 2111 ASSERT(cr != NULL); 2112 crhold(cr); 2113 args->a_cred = cr; 2114 args->a_io = NFS4_INACTIVE; 2115 2116 /* 2117 * Note that we don't check mi->mi_max_threads here, since we 2118 * *need* to get rid of this vnode regardless of whether someone 2119 * set nfs4_max_threads to zero in /etc/system. 2120 * 2121 * The manager thread knows about this and is willing to create 2122 * at least one thread to accommodate us. 2123 */ 2124 mutex_enter(&mi->mi_async_lock); 2125 if (mi->mi_inactive_thread == NULL) { 2126 rnode4_t *rp; 2127 vnode_t *unldvp = NULL; 2128 char *unlname; 2129 cred_t *unlcred; 2130 2131 mutex_exit(&mi->mi_async_lock); 2132 /* 2133 * We just need to free up the memory associated with the 2134 * vnode, which can be safely done from within the current 2135 * context. 2136 */ 2137 crfree(cr); /* drop our reference */ 2138 kmem_free(args, sizeof (*args)); 2139 rp = VTOR4(vp); 2140 mutex_enter(&rp->r_statelock); 2141 if (rp->r_unldvp != NULL) { 2142 unldvp = rp->r_unldvp; 2143 rp->r_unldvp = NULL; 2144 unlname = rp->r_unlname; 2145 rp->r_unlname = NULL; 2146 unlcred = rp->r_unlcred; 2147 rp->r_unlcred = NULL; 2148 } 2149 mutex_exit(&rp->r_statelock); 2150 /* 2151 * No need to explicitly throw away any cached pages. The 2152 * eventual r4inactive() will attempt a synchronous 2153 * VOP_PUTPAGE() which will immediately fail since the request 2154 * is coming from the wrong zone, and then will proceed to call 2155 * nfs4_invalidate_pages() which will clean things up for us. 2156 * 2157 * Throw away the delegation here so rp4_addfree()'s attempt to 2158 * return any existing delegations becomes a no-op. 2159 */ 2160 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { 2161 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 2162 FALSE); 2163 (void) nfs4delegreturn(rp, NFS4_DR_DISCARD); 2164 nfs_rw_exit(&mi->mi_recovlock); 2165 } 2166 nfs4_clear_open_streams(rp); 2167 2168 rp4_addfree(rp, cr); 2169 if (unldvp != NULL) { 2170 kmem_free(unlname, MAXNAMELEN); 2171 VN_RELE(unldvp); 2172 crfree(unlcred); 2173 } 2174 return; 2175 } 2176 2177 if (mi->mi_manager_thread == NULL) { 2178 /* 2179 * We want to talk to the inactive thread. 2180 */ 2181 signal_inactive_thread = B_TRUE; 2182 } 2183 2184 /* 2185 * Enqueue the vnode and wake up either the special thread (empty 2186 * list) or an async thread. 2187 */ 2188 if (mi->mi_async_reqs[NFS4_INACTIVE] == NULL) { 2189 mi->mi_async_reqs[NFS4_INACTIVE] = args; 2190 mi->mi_async_tail[NFS4_INACTIVE] = args; 2191 signal_inactive_thread = B_TRUE; 2192 } else { 2193 mi->mi_async_tail[NFS4_INACTIVE]->a_next = args; 2194 mi->mi_async_tail[NFS4_INACTIVE] = args; 2195 } 2196 if (signal_inactive_thread) { 2197 cv_signal(&mi->mi_inact_req_cv); 2198 } else { 2199 mi->mi_async_req_count++; 2200 ASSERT(mi->mi_async_req_count != 0); 2201 cv_signal(&mi->mi_async_reqs_cv); 2202 } 2203 2204 mutex_exit(&mi->mi_async_lock); 2205 } 2206 2207 int 2208 writerp4(rnode4_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated) 2209 { 2210 int pagecreate; 2211 int n; 2212 int saved_n; 2213 caddr_t saved_base; 2214 u_offset_t offset; 2215 int error; 2216 int sm_error; 2217 vnode_t *vp = RTOV(rp); 2218 2219 ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid); 2220 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER)); 2221 if (!vpm_enable) { 2222 ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE); 2223 } 2224 2225 /* 2226 * Move bytes in at most PAGESIZE chunks. We must avoid 2227 * spanning pages in uiomove() because page faults may cause 2228 * the cache to be invalidated out from under us. The r_size is not 2229 * updated until after the uiomove. If we push the last page of a 2230 * file before r_size is correct, we will lose the data written past 2231 * the current (and invalid) r_size. 2232 */ 2233 do { 2234 offset = uio->uio_loffset; 2235 pagecreate = 0; 2236 2237 /* 2238 * n is the number of bytes required to satisfy the request 2239 * or the number of bytes to fill out the page. 2240 */ 2241 n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount); 2242 2243 /* 2244 * Check to see if we can skip reading in the page 2245 * and just allocate the memory. We can do this 2246 * if we are going to rewrite the entire mapping 2247 * or if we are going to write to or beyond the current 2248 * end of file from the beginning of the mapping. 2249 * 2250 * The read of r_size is now protected by r_statelock. 2251 */ 2252 mutex_enter(&rp->r_statelock); 2253 /* 2254 * When pgcreated is nonzero the caller has already done 2255 * a segmap_getmapflt with forcefault 0 and S_WRITE. With 2256 * segkpm this means we already have at least one page 2257 * created and mapped at base. 2258 */ 2259 pagecreate = pgcreated || 2260 ((offset & PAGEOFFSET) == 0 && 2261 (n == PAGESIZE || ((offset + n) >= rp->r_size))); 2262 2263 mutex_exit(&rp->r_statelock); 2264 2265 if (!vpm_enable && pagecreate) { 2266 /* 2267 * The last argument tells segmap_pagecreate() to 2268 * always lock the page, as opposed to sometimes 2269 * returning with the page locked. This way we avoid a 2270 * fault on the ensuing uiomove(), but also 2271 * more importantly (to fix bug 1094402) we can 2272 * call segmap_fault() to unlock the page in all 2273 * cases. An alternative would be to modify 2274 * segmap_pagecreate() to tell us when it is 2275 * locking a page, but that's a fairly major 2276 * interface change. 2277 */ 2278 if (pgcreated == 0) 2279 (void) segmap_pagecreate(segkmap, base, 2280 (uint_t)n, 1); 2281 saved_base = base; 2282 saved_n = n; 2283 } 2284 2285 /* 2286 * The number of bytes of data in the last page can not 2287 * be accurately be determined while page is being 2288 * uiomove'd to and the size of the file being updated. 2289 * Thus, inform threads which need to know accurately 2290 * how much data is in the last page of the file. They 2291 * will not do the i/o immediately, but will arrange for 2292 * the i/o to happen later when this modify operation 2293 * will have finished. 2294 */ 2295 ASSERT(!(rp->r_flags & R4MODINPROGRESS)); 2296 mutex_enter(&rp->r_statelock); 2297 rp->r_flags |= R4MODINPROGRESS; 2298 rp->r_modaddr = (offset & MAXBMASK); 2299 mutex_exit(&rp->r_statelock); 2300 2301 if (vpm_enable) { 2302 /* 2303 * Copy data. If new pages are created, part of 2304 * the page that is not written will be initizliazed 2305 * with zeros. 2306 */ 2307 error = vpm_data_copy(vp, offset, n, uio, 2308 !pagecreate, NULL, 0, S_WRITE); 2309 } else { 2310 error = uiomove(base, n, UIO_WRITE, uio); 2311 } 2312 2313 /* 2314 * r_size is the maximum number of 2315 * bytes known to be in the file. 2316 * Make sure it is at least as high as the 2317 * first unwritten byte pointed to by uio_loffset. 2318 */ 2319 mutex_enter(&rp->r_statelock); 2320 if (rp->r_size < uio->uio_loffset) 2321 rp->r_size = uio->uio_loffset; 2322 rp->r_flags &= ~R4MODINPROGRESS; 2323 rp->r_flags |= R4DIRTY; 2324 mutex_exit(&rp->r_statelock); 2325 2326 /* n = # of bytes written */ 2327 n = (int)(uio->uio_loffset - offset); 2328 2329 if (!vpm_enable) { 2330 base += n; 2331 } 2332 2333 tcount -= n; 2334 /* 2335 * If we created pages w/o initializing them completely, 2336 * we need to zero the part that wasn't set up. 2337 * This happens on a most EOF write cases and if 2338 * we had some sort of error during the uiomove. 2339 */ 2340 if (!vpm_enable && pagecreate) { 2341 if ((uio->uio_loffset & PAGEOFFSET) || n == 0) 2342 (void) kzero(base, PAGESIZE - n); 2343 2344 if (pgcreated) { 2345 /* 2346 * Caller is responsible for this page, 2347 * it was not created in this loop. 2348 */ 2349 pgcreated = 0; 2350 } else { 2351 /* 2352 * For bug 1094402: segmap_pagecreate locks 2353 * page. Unlock it. This also unlocks the 2354 * pages allocated by page_create_va() in 2355 * segmap_pagecreate(). 2356 */ 2357 sm_error = segmap_fault(kas.a_hat, segkmap, 2358 saved_base, saved_n, 2359 F_SOFTUNLOCK, S_WRITE); 2360 if (error == 0) 2361 error = sm_error; 2362 } 2363 } 2364 } while (tcount > 0 && error == 0); 2365 2366 return (error); 2367 } 2368 2369 int 2370 nfs4_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr) 2371 { 2372 rnode4_t *rp; 2373 page_t *pp; 2374 u_offset_t eoff; 2375 u_offset_t io_off; 2376 size_t io_len; 2377 int error; 2378 int rdirty; 2379 int err; 2380 2381 rp = VTOR4(vp); 2382 ASSERT(rp->r_count > 0); 2383 2384 if (!nfs4_has_pages(vp)) 2385 return (0); 2386 2387 ASSERT(vp->v_type != VCHR); 2388 2389 /* 2390 * If R4OUTOFSPACE is set, then all writes turn into B_INVAL 2391 * writes. B_FORCE is set to force the VM system to actually 2392 * invalidate the pages, even if the i/o failed. The pages 2393 * need to get invalidated because they can't be written out 2394 * because there isn't any space left on either the server's 2395 * file system or in the user's disk quota. The B_FREE bit 2396 * is cleared to avoid confusion as to whether this is a 2397 * request to place the page on the freelist or to destroy 2398 * it. 2399 */ 2400 if ((rp->r_flags & R4OUTOFSPACE) || 2401 (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) 2402 flags = (flags & ~B_FREE) | B_INVAL | B_FORCE; 2403 2404 if (len == 0) { 2405 /* 2406 * If doing a full file synchronous operation, then clear 2407 * the R4DIRTY bit. If a page gets dirtied while the flush 2408 * is happening, then R4DIRTY will get set again. The 2409 * R4DIRTY bit must get cleared before the flush so that 2410 * we don't lose this information. 2411 * 2412 * If there are no full file async write operations 2413 * pending and RDIRTY bit is set, clear it. 2414 */ 2415 if (off == (u_offset_t)0 && 2416 !(flags & B_ASYNC) && 2417 (rp->r_flags & R4DIRTY)) { 2418 mutex_enter(&rp->r_statelock); 2419 rdirty = (rp->r_flags & R4DIRTY); 2420 rp->r_flags &= ~R4DIRTY; 2421 mutex_exit(&rp->r_statelock); 2422 } else if (flags & B_ASYNC && off == (u_offset_t)0) { 2423 mutex_enter(&rp->r_statelock); 2424 if (rp->r_flags & R4DIRTY && rp->r_awcount == 0) { 2425 rdirty = (rp->r_flags & R4DIRTY); 2426 rp->r_flags &= ~R4DIRTY; 2427 } 2428 mutex_exit(&rp->r_statelock); 2429 } else 2430 rdirty = 0; 2431 2432 /* 2433 * Search the entire vp list for pages >= off, and flush 2434 * the dirty pages. 2435 */ 2436 error = pvn_vplist_dirty(vp, off, rp->r_putapage, 2437 flags, cr); 2438 2439 /* 2440 * If an error occurred and the file was marked as dirty 2441 * before and we aren't forcibly invalidating pages, then 2442 * reset the R4DIRTY flag. 2443 */ 2444 if (error && rdirty && 2445 (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) { 2446 mutex_enter(&rp->r_statelock); 2447 rp->r_flags |= R4DIRTY; 2448 mutex_exit(&rp->r_statelock); 2449 } 2450 } else { 2451 /* 2452 * Do a range from [off...off + len) looking for pages 2453 * to deal with. 2454 */ 2455 error = 0; 2456 io_len = 0; 2457 eoff = off + len; 2458 mutex_enter(&rp->r_statelock); 2459 for (io_off = off; io_off < eoff && io_off < rp->r_size; 2460 io_off += io_len) { 2461 mutex_exit(&rp->r_statelock); 2462 /* 2463 * If we are not invalidating, synchronously 2464 * freeing or writing pages use the routine 2465 * page_lookup_nowait() to prevent reclaiming 2466 * them from the free list. 2467 */ 2468 if ((flags & B_INVAL) || !(flags & B_ASYNC)) { 2469 pp = page_lookup(vp, io_off, 2470 (flags & (B_INVAL | B_FREE)) ? 2471 SE_EXCL : SE_SHARED); 2472 } else { 2473 pp = page_lookup_nowait(vp, io_off, 2474 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2475 } 2476 2477 if (pp == NULL || !pvn_getdirty(pp, flags)) 2478 io_len = PAGESIZE; 2479 else { 2480 err = (*rp->r_putapage)(vp, pp, &io_off, 2481 &io_len, flags, cr); 2482 if (!error) 2483 error = err; 2484 /* 2485 * "io_off" and "io_len" are returned as 2486 * the range of pages we actually wrote. 2487 * This allows us to skip ahead more quickly 2488 * since several pages may've been dealt 2489 * with by this iteration of the loop. 2490 */ 2491 } 2492 mutex_enter(&rp->r_statelock); 2493 } 2494 mutex_exit(&rp->r_statelock); 2495 } 2496 2497 return (error); 2498 } 2499 2500 void 2501 nfs4_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr) 2502 { 2503 rnode4_t *rp; 2504 2505 rp = VTOR4(vp); 2506 if (IS_SHADOW(vp, rp)) 2507 vp = RTOV4(rp); 2508 mutex_enter(&rp->r_statelock); 2509 while (rp->r_flags & R4TRUNCATE) 2510 cv_wait(&rp->r_cv, &rp->r_statelock); 2511 rp->r_flags |= R4TRUNCATE; 2512 if (off == (u_offset_t)0) { 2513 rp->r_flags &= ~R4DIRTY; 2514 if (!(rp->r_flags & R4STALE)) 2515 rp->r_error = 0; 2516 } 2517 rp->r_truncaddr = off; 2518 mutex_exit(&rp->r_statelock); 2519 (void) pvn_vplist_dirty(vp, off, rp->r_putapage, 2520 B_INVAL | B_TRUNC, cr); 2521 mutex_enter(&rp->r_statelock); 2522 rp->r_flags &= ~R4TRUNCATE; 2523 cv_broadcast(&rp->r_cv); 2524 mutex_exit(&rp->r_statelock); 2525 } 2526 2527 static int 2528 nfs4_mnt_kstat_update(kstat_t *ksp, int rw) 2529 { 2530 mntinfo4_t *mi; 2531 struct mntinfo_kstat *mik; 2532 vfs_t *vfsp; 2533 2534 /* this is a read-only kstat. Bail out on a write */ 2535 if (rw == KSTAT_WRITE) 2536 return (EACCES); 2537 2538 2539 /* 2540 * We don't want to wait here as kstat_chain_lock could be held by 2541 * dounmount(). dounmount() takes vfs_reflock before the chain lock 2542 * and thus could lead to a deadlock. 2543 */ 2544 vfsp = (struct vfs *)ksp->ks_private; 2545 2546 mi = VFTOMI4(vfsp); 2547 mik = (struct mntinfo_kstat *)ksp->ks_data; 2548 2549 (void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto); 2550 2551 mik->mik_vers = (uint32_t)mi->mi_vers; 2552 mik->mik_flags = mi->mi_flags; 2553 /* 2554 * The sv_secdata holds the flavor the client specifies. 2555 * If the client uses default and a security negotiation 2556 * occurs, sv_currsec will point to the current flavor 2557 * selected from the server flavor list. 2558 * sv_currsec is NULL if no security negotiation takes place. 2559 */ 2560 mik->mik_secmod = mi->mi_curr_serv->sv_currsec ? 2561 mi->mi_curr_serv->sv_currsec->secmod : 2562 mi->mi_curr_serv->sv_secdata->secmod; 2563 mik->mik_curread = (uint32_t)mi->mi_curread; 2564 mik->mik_curwrite = (uint32_t)mi->mi_curwrite; 2565 mik->mik_retrans = mi->mi_retrans; 2566 mik->mik_timeo = mi->mi_timeo; 2567 mik->mik_acregmin = HR2SEC(mi->mi_acregmin); 2568 mik->mik_acregmax = HR2SEC(mi->mi_acregmax); 2569 mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin); 2570 mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax); 2571 mik->mik_noresponse = (uint32_t)mi->mi_noresponse; 2572 mik->mik_failover = (uint32_t)mi->mi_failover; 2573 mik->mik_remap = (uint32_t)mi->mi_remap; 2574 2575 (void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname); 2576 2577 return (0); 2578 } 2579 2580 void 2581 nfs4_mnt_kstat_init(struct vfs *vfsp) 2582 { 2583 mntinfo4_t *mi = VFTOMI4(vfsp); 2584 2585 /* 2586 * PSARC 2001/697 Contract Private Interface 2587 * All nfs kstats are under SunMC contract 2588 * Please refer to the PSARC listed above and contact 2589 * SunMC before making any changes! 2590 * 2591 * Changes must be reviewed by Solaris File Sharing 2592 * Changes must be communicated to contract-2001-697@sun.com 2593 * 2594 */ 2595 2596 mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev), 2597 NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id); 2598 if (mi->mi_io_kstats) { 2599 if (mi->mi_zone->zone_id != GLOBAL_ZONEID) 2600 kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID); 2601 mi->mi_io_kstats->ks_lock = &mi->mi_lock; 2602 kstat_install(mi->mi_io_kstats); 2603 } 2604 2605 if ((mi->mi_ro_kstats = kstat_create_zone("nfs", 2606 getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW, 2607 sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) { 2608 if (mi->mi_zone->zone_id != GLOBAL_ZONEID) 2609 kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID); 2610 mi->mi_ro_kstats->ks_update = nfs4_mnt_kstat_update; 2611 mi->mi_ro_kstats->ks_private = (void *)vfsp; 2612 kstat_install(mi->mi_ro_kstats); 2613 } 2614 2615 nfs4_mnt_recov_kstat_init(vfsp); 2616 } 2617 2618 void 2619 nfs4_write_error(vnode_t *vp, int error, cred_t *cr) 2620 { 2621 mntinfo4_t *mi; 2622 2623 mi = VTOMI4(vp); 2624 /* 2625 * In case of forced unmount, do not print any messages 2626 * since it can flood the console with error messages. 2627 */ 2628 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) 2629 return; 2630 2631 /* 2632 * If the mount point is dead, not recoverable, do not 2633 * print error messages that can flood the console. 2634 */ 2635 if (mi->mi_flags & MI4_RECOV_FAIL) 2636 return; 2637 2638 /* 2639 * No use in flooding the console with ENOSPC 2640 * messages from the same file system. 2641 */ 2642 if ((error != ENOSPC && error != EDQUOT) || 2643 lbolt - mi->mi_printftime > 0) { 2644 zoneid_t zoneid = mi->mi_zone->zone_id; 2645 2646 #ifdef DEBUG 2647 nfs_perror(error, "NFS%ld write error on host %s: %m.\n", 2648 mi->mi_vers, VTOR4(vp)->r_server->sv_hostname, NULL); 2649 #else 2650 nfs_perror(error, "NFS write error on host %s: %m.\n", 2651 VTOR4(vp)->r_server->sv_hostname, NULL); 2652 #endif 2653 if (error == ENOSPC || error == EDQUOT) { 2654 zcmn_err(zoneid, CE_CONT, 2655 "^File: userid=%d, groupid=%d\n", 2656 crgetuid(cr), crgetgid(cr)); 2657 if (crgetuid(curthread->t_cred) != crgetuid(cr) || 2658 crgetgid(curthread->t_cred) != crgetgid(cr)) { 2659 zcmn_err(zoneid, CE_CONT, 2660 "^User: userid=%d, groupid=%d\n", 2661 crgetuid(curthread->t_cred), 2662 crgetgid(curthread->t_cred)); 2663 } 2664 mi->mi_printftime = lbolt + 2665 nfs_write_error_interval * hz; 2666 } 2667 sfh4_printfhandle(VTOR4(vp)->r_fh); 2668 #ifdef DEBUG 2669 if (error == EACCES) { 2670 zcmn_err(zoneid, CE_CONT, 2671 "nfs_bio: cred is%s kcred\n", 2672 cr == kcred ? "" : " not"); 2673 } 2674 #endif 2675 } 2676 } 2677 2678 /* 2679 * Return non-zero if the given file can be safely memory mapped. Locks 2680 * are safe if whole-file (length and offset are both zero). 2681 */ 2682 2683 #define SAFE_LOCK(flk) ((flk).l_start == 0 && (flk).l_len == 0) 2684 2685 static int 2686 nfs4_safemap(const vnode_t *vp) 2687 { 2688 locklist_t *llp, *next_llp; 2689 int safe = 1; 2690 rnode4_t *rp = VTOR4(vp); 2691 2692 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER)); 2693 2694 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: " 2695 "vp = %p", (void *)vp)); 2696 2697 /* 2698 * Review all the locks for the vnode, both ones that have been 2699 * acquired and ones that are pending. We assume that 2700 * flk_active_locks_for_vp() has merged any locks that can be 2701 * merged (so that if a process has the entire file locked, it is 2702 * represented as a single lock). 2703 * 2704 * Note that we can't bail out of the loop if we find a non-safe 2705 * lock, because we have to free all the elements in the llp list. 2706 * We might be able to speed up this code slightly by not looking 2707 * at each lock's l_start and l_len fields once we've found a 2708 * non-safe lock. 2709 */ 2710 2711 llp = flk_active_locks_for_vp(vp); 2712 while (llp) { 2713 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, 2714 "nfs4_safemap: active lock (%" PRId64 ", %" PRId64 ")", 2715 llp->ll_flock.l_start, llp->ll_flock.l_len)); 2716 if (!SAFE_LOCK(llp->ll_flock)) { 2717 safe = 0; 2718 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, 2719 "nfs4_safemap: unsafe active lock (%" PRId64 2720 ", %" PRId64 ")", llp->ll_flock.l_start, 2721 llp->ll_flock.l_len)); 2722 } 2723 next_llp = llp->ll_next; 2724 VN_RELE(llp->ll_vp); 2725 kmem_free(llp, sizeof (*llp)); 2726 llp = next_llp; 2727 } 2728 2729 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: %s", 2730 safe ? "safe" : "unsafe")); 2731 return (safe); 2732 } 2733 2734 /* 2735 * Return whether there is a lost LOCK or LOCKU queued up for the given 2736 * file that would make an mmap request unsafe. cf. nfs4_safemap(). 2737 */ 2738 2739 bool_t 2740 nfs4_map_lost_lock_conflict(vnode_t *vp) 2741 { 2742 bool_t conflict = FALSE; 2743 nfs4_lost_rqst_t *lrp; 2744 mntinfo4_t *mi = VTOMI4(vp); 2745 2746 mutex_enter(&mi->mi_lock); 2747 for (lrp = list_head(&mi->mi_lost_state); lrp != NULL; 2748 lrp = list_next(&mi->mi_lost_state, lrp)) { 2749 if (lrp->lr_op != OP_LOCK && lrp->lr_op != OP_LOCKU) 2750 continue; 2751 ASSERT(lrp->lr_vp != NULL); 2752 if (!VOP_CMP(lrp->lr_vp, vp, NULL)) 2753 continue; /* different file */ 2754 if (!SAFE_LOCK(*lrp->lr_flk)) { 2755 conflict = TRUE; 2756 break; 2757 } 2758 } 2759 2760 mutex_exit(&mi->mi_lock); 2761 return (conflict); 2762 } 2763 2764 /* 2765 * nfs_lockcompletion: 2766 * 2767 * If the vnode has a lock that makes it unsafe to cache the file, mark it 2768 * as non cachable (set VNOCACHE bit). 2769 */ 2770 2771 void 2772 nfs4_lockcompletion(vnode_t *vp, int cmd) 2773 { 2774 rnode4_t *rp = VTOR4(vp); 2775 2776 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER)); 2777 ASSERT(!IS_SHADOW(vp, rp)); 2778 2779 if (cmd == F_SETLK || cmd == F_SETLKW) { 2780 2781 if (!nfs4_safemap(vp)) { 2782 mutex_enter(&vp->v_lock); 2783 vp->v_flag |= VNOCACHE; 2784 mutex_exit(&vp->v_lock); 2785 } else { 2786 mutex_enter(&vp->v_lock); 2787 vp->v_flag &= ~VNOCACHE; 2788 mutex_exit(&vp->v_lock); 2789 } 2790 } 2791 /* 2792 * The cached attributes of the file are stale after acquiring 2793 * the lock on the file. They were updated when the file was 2794 * opened, but not updated when the lock was acquired. Therefore the 2795 * cached attributes are invalidated after the lock is obtained. 2796 */ 2797 PURGE_ATTRCACHE4(vp); 2798 } 2799 2800 /* ARGSUSED */ 2801 static void * 2802 nfs4_mi_init(zoneid_t zoneid) 2803 { 2804 struct mi4_globals *mig; 2805 2806 mig = kmem_alloc(sizeof (*mig), KM_SLEEP); 2807 mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL); 2808 list_create(&mig->mig_list, sizeof (mntinfo4_t), 2809 offsetof(mntinfo4_t, mi_zone_node)); 2810 mig->mig_destructor_called = B_FALSE; 2811 return (mig); 2812 } 2813 2814 /* 2815 * Callback routine to tell all NFSv4 mounts in the zone to start tearing down 2816 * state and killing off threads. 2817 */ 2818 /* ARGSUSED */ 2819 static void 2820 nfs4_mi_shutdown(zoneid_t zoneid, void *data) 2821 { 2822 struct mi4_globals *mig = data; 2823 mntinfo4_t *mi; 2824 nfs4_server_t *np; 2825 2826 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 2827 "nfs4_mi_shutdown zone %d\n", zoneid)); 2828 ASSERT(mig != NULL); 2829 for (;;) { 2830 mutex_enter(&mig->mig_lock); 2831 mi = list_head(&mig->mig_list); 2832 if (mi == NULL) { 2833 mutex_exit(&mig->mig_lock); 2834 break; 2835 } 2836 2837 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 2838 "nfs4_mi_shutdown stopping vfs %p\n", (void *)mi->mi_vfsp)); 2839 /* 2840 * purge the DNLC for this filesystem 2841 */ 2842 (void) dnlc_purge_vfsp(mi->mi_vfsp, 0); 2843 /* 2844 * Tell existing async worker threads to exit. 2845 */ 2846 mutex_enter(&mi->mi_async_lock); 2847 mi->mi_max_threads = 0; 2848 cv_broadcast(&mi->mi_async_work_cv); 2849 /* 2850 * Set the appropriate flags, signal and wait for both the 2851 * async manager and the inactive thread to exit when they're 2852 * done with their current work. 2853 */ 2854 mutex_enter(&mi->mi_lock); 2855 mi->mi_flags |= (MI4_ASYNC_MGR_STOP|MI4_DEAD); 2856 mutex_exit(&mi->mi_lock); 2857 mutex_exit(&mi->mi_async_lock); 2858 if (mi->mi_manager_thread) { 2859 nfs4_async_manager_stop(mi->mi_vfsp); 2860 } 2861 if (mi->mi_inactive_thread) { 2862 mutex_enter(&mi->mi_async_lock); 2863 cv_signal(&mi->mi_inact_req_cv); 2864 /* 2865 * Wait for the inactive thread to exit. 2866 */ 2867 while (mi->mi_inactive_thread != NULL) { 2868 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 2869 } 2870 mutex_exit(&mi->mi_async_lock); 2871 } 2872 /* 2873 * Wait for the recovery thread to complete, that is, it will 2874 * signal when it is done using the "mi" structure and about 2875 * to exit 2876 */ 2877 mutex_enter(&mi->mi_lock); 2878 while (mi->mi_in_recovery > 0) 2879 cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock); 2880 mutex_exit(&mi->mi_lock); 2881 /* 2882 * We're done when every mi has been done or the list is empty. 2883 * This one is done, remove it from the list. 2884 */ 2885 list_remove(&mig->mig_list, mi); 2886 mutex_exit(&mig->mig_lock); 2887 zone_rele(mi->mi_zone); 2888 /* 2889 * Release hold on vfs and mi done to prevent race with zone 2890 * shutdown. This releases the hold in nfs4_mi_zonelist_add. 2891 */ 2892 VFS_RELE(mi->mi_vfsp); 2893 MI4_RELE(mi); 2894 } 2895 /* 2896 * Tell each renew thread in the zone to exit 2897 */ 2898 mutex_enter(&nfs4_server_lst_lock); 2899 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) { 2900 mutex_enter(&np->s_lock); 2901 if (np->zoneid == zoneid) { 2902 /* 2903 * We add another hold onto the nfs4_server_t 2904 * because this will make sure tha the nfs4_server_t 2905 * stays around until nfs4_callback_fini_zone destroys 2906 * the zone. This way, the renew thread can 2907 * unconditionally release its holds on the 2908 * nfs4_server_t. 2909 */ 2910 np->s_refcnt++; 2911 nfs4_mark_srv_dead(np); 2912 } 2913 mutex_exit(&np->s_lock); 2914 } 2915 mutex_exit(&nfs4_server_lst_lock); 2916 } 2917 2918 static void 2919 nfs4_mi_free_globals(struct mi4_globals *mig) 2920 { 2921 list_destroy(&mig->mig_list); /* makes sure the list is empty */ 2922 mutex_destroy(&mig->mig_lock); 2923 kmem_free(mig, sizeof (*mig)); 2924 } 2925 2926 /* ARGSUSED */ 2927 static void 2928 nfs4_mi_destroy(zoneid_t zoneid, void *data) 2929 { 2930 struct mi4_globals *mig = data; 2931 2932 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 2933 "nfs4_mi_destroy zone %d\n", zoneid)); 2934 ASSERT(mig != NULL); 2935 mutex_enter(&mig->mig_lock); 2936 if (list_head(&mig->mig_list) != NULL) { 2937 /* Still waiting for VFS_FREEVFS() */ 2938 mig->mig_destructor_called = B_TRUE; 2939 mutex_exit(&mig->mig_lock); 2940 return; 2941 } 2942 nfs4_mi_free_globals(mig); 2943 } 2944 2945 /* 2946 * Add an NFS mount to the per-zone list of NFS mounts. 2947 */ 2948 void 2949 nfs4_mi_zonelist_add(mntinfo4_t *mi) 2950 { 2951 struct mi4_globals *mig; 2952 2953 mig = zone_getspecific(mi4_list_key, mi->mi_zone); 2954 mutex_enter(&mig->mig_lock); 2955 list_insert_head(&mig->mig_list, mi); 2956 /* 2957 * hold added to eliminate race with zone shutdown -this will be 2958 * released in mi_shutdown 2959 */ 2960 MI4_HOLD(mi); 2961 VFS_HOLD(mi->mi_vfsp); 2962 mutex_exit(&mig->mig_lock); 2963 } 2964 2965 /* 2966 * Remove an NFS mount from the per-zone list of NFS mounts. 2967 */ 2968 int 2969 nfs4_mi_zonelist_remove(mntinfo4_t *mi) 2970 { 2971 struct mi4_globals *mig; 2972 int ret = 0; 2973 2974 mig = zone_getspecific(mi4_list_key, mi->mi_zone); 2975 mutex_enter(&mig->mig_lock); 2976 mutex_enter(&mi->mi_lock); 2977 /* if this mi is marked dead, then the zone already released it */ 2978 if (!(mi->mi_flags & MI4_DEAD)) { 2979 list_remove(&mig->mig_list, mi); 2980 mutex_exit(&mi->mi_lock); 2981 2982 /* release the holds put on in zonelist_add(). */ 2983 VFS_RELE(mi->mi_vfsp); 2984 MI4_RELE(mi); 2985 ret = 1; 2986 } else { 2987 mutex_exit(&mi->mi_lock); 2988 } 2989 2990 /* 2991 * We can be called asynchronously by VFS_FREEVFS() after the zone 2992 * shutdown/destroy callbacks have executed; if so, clean up the zone's 2993 * mi globals. 2994 */ 2995 if (list_head(&mig->mig_list) == NULL && 2996 mig->mig_destructor_called == B_TRUE) { 2997 nfs4_mi_free_globals(mig); 2998 return (ret); 2999 } 3000 mutex_exit(&mig->mig_lock); 3001 return (ret); 3002 } 3003 3004 void 3005 nfs_free_mi4(mntinfo4_t *mi) 3006 { 3007 nfs4_open_owner_t *foop; 3008 nfs4_oo_hash_bucket_t *bucketp; 3009 nfs4_debug_msg_t *msgp; 3010 int i; 3011 servinfo4_t *svp; 3012 3013 /* 3014 * Code introduced here should be carefully evaluated to make 3015 * sure none of the freed resources are accessed either directly 3016 * or indirectly after freeing them. For eg: Introducing calls to 3017 * NFS4_DEBUG that use mntinfo4_t structure member after freeing 3018 * the structure members or other routines calling back into NFS 3019 * accessing freed mntinfo4_t structure member. 3020 */ 3021 mutex_enter(&mi->mi_lock); 3022 ASSERT(mi->mi_recovthread == NULL); 3023 ASSERT(mi->mi_flags & MI4_ASYNC_MGR_STOP); 3024 mutex_exit(&mi->mi_lock); 3025 mutex_enter(&mi->mi_async_lock); 3026 ASSERT(mi->mi_threads == 0); 3027 ASSERT(mi->mi_manager_thread == NULL); 3028 mutex_exit(&mi->mi_async_lock); 3029 if (mi->mi_io_kstats) { 3030 kstat_delete(mi->mi_io_kstats); 3031 mi->mi_io_kstats = NULL; 3032 } 3033 if (mi->mi_ro_kstats) { 3034 kstat_delete(mi->mi_ro_kstats); 3035 mi->mi_ro_kstats = NULL; 3036 } 3037 if (mi->mi_recov_ksp) { 3038 kstat_delete(mi->mi_recov_ksp); 3039 mi->mi_recov_ksp = NULL; 3040 } 3041 mutex_enter(&mi->mi_msg_list_lock); 3042 while (msgp = list_head(&mi->mi_msg_list)) { 3043 list_remove(&mi->mi_msg_list, msgp); 3044 nfs4_free_msg(msgp); 3045 } 3046 mutex_exit(&mi->mi_msg_list_lock); 3047 list_destroy(&mi->mi_msg_list); 3048 if (mi->mi_fname != NULL) 3049 fn_rele(&mi->mi_fname); 3050 if (mi->mi_rootfh != NULL) 3051 sfh4_rele(&mi->mi_rootfh); 3052 if (mi->mi_srvparentfh != NULL) 3053 sfh4_rele(&mi->mi_srvparentfh); 3054 svp = mi->mi_servers; 3055 sv4_free(svp); 3056 mutex_destroy(&mi->mi_lock); 3057 mutex_destroy(&mi->mi_async_lock); 3058 mutex_destroy(&mi->mi_msg_list_lock); 3059 nfs_rw_destroy(&mi->mi_recovlock); 3060 nfs_rw_destroy(&mi->mi_rename_lock); 3061 nfs_rw_destroy(&mi->mi_fh_lock); 3062 cv_destroy(&mi->mi_failover_cv); 3063 cv_destroy(&mi->mi_async_reqs_cv); 3064 cv_destroy(&mi->mi_async_work_cv); 3065 cv_destroy(&mi->mi_async_cv); 3066 cv_destroy(&mi->mi_inact_req_cv); 3067 /* 3068 * Destroy the oo hash lists and mutexes for the cred hash table. 3069 */ 3070 for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) { 3071 bucketp = &(mi->mi_oo_list[i]); 3072 /* Destroy any remaining open owners on the list */ 3073 foop = list_head(&bucketp->b_oo_hash_list); 3074 while (foop != NULL) { 3075 list_remove(&bucketp->b_oo_hash_list, foop); 3076 nfs4_destroy_open_owner(foop); 3077 foop = list_head(&bucketp->b_oo_hash_list); 3078 } 3079 list_destroy(&bucketp->b_oo_hash_list); 3080 mutex_destroy(&bucketp->b_lock); 3081 } 3082 /* 3083 * Empty and destroy the freed open owner list. 3084 */ 3085 foop = list_head(&mi->mi_foo_list); 3086 while (foop != NULL) { 3087 list_remove(&mi->mi_foo_list, foop); 3088 nfs4_destroy_open_owner(foop); 3089 foop = list_head(&mi->mi_foo_list); 3090 } 3091 list_destroy(&mi->mi_foo_list); 3092 list_destroy(&mi->mi_bseqid_list); 3093 list_destroy(&mi->mi_lost_state); 3094 avl_destroy(&mi->mi_filehandles); 3095 kmem_free(mi, sizeof (*mi)); 3096 } 3097 void 3098 mi_hold(mntinfo4_t *mi) 3099 { 3100 atomic_add_32(&mi->mi_count, 1); 3101 ASSERT(mi->mi_count != 0); 3102 } 3103 3104 void 3105 mi_rele(mntinfo4_t *mi) 3106 { 3107 ASSERT(mi->mi_count != 0); 3108 if (atomic_add_32_nv(&mi->mi_count, -1) == 0) { 3109 nfs_free_mi4(mi); 3110 } 3111 } 3112 3113 vnode_t nfs4_xattr_notsupp_vnode; 3114 3115 void 3116 nfs4_clnt_init(void) 3117 { 3118 nfs4_vnops_init(); 3119 (void) nfs4_rnode_init(); 3120 (void) nfs4_shadow_init(); 3121 (void) nfs4_acache_init(); 3122 (void) nfs4_subr_init(); 3123 nfs4_acl_init(); 3124 nfs_idmap_init(); 3125 nfs4_callback_init(); 3126 nfs4_secinfo_init(); 3127 #ifdef DEBUG 3128 tsd_create(&nfs4_tsd_key, NULL); 3129 #endif 3130 3131 /* 3132 * Add a CPR callback so that we can update client 3133 * lease after a suspend and resume. 3134 */ 3135 cid = callb_add(nfs4_client_cpr_callb, 0, CB_CL_CPR_RPC, "nfs4"); 3136 3137 zone_key_create(&mi4_list_key, nfs4_mi_init, nfs4_mi_shutdown, 3138 nfs4_mi_destroy); 3139 3140 /* 3141 * Initialise the reference count of the notsupp xattr cache vnode to 1 3142 * so that it never goes away (VOP_INACTIVE isn't called on it). 3143 */ 3144 nfs4_xattr_notsupp_vnode.v_count = 1; 3145 } 3146 3147 void 3148 nfs4_clnt_fini(void) 3149 { 3150 (void) zone_key_delete(mi4_list_key); 3151 nfs4_vnops_fini(); 3152 (void) nfs4_rnode_fini(); 3153 (void) nfs4_shadow_fini(); 3154 (void) nfs4_acache_fini(); 3155 (void) nfs4_subr_fini(); 3156 nfs_idmap_fini(); 3157 nfs4_callback_fini(); 3158 nfs4_secinfo_fini(); 3159 #ifdef DEBUG 3160 tsd_destroy(&nfs4_tsd_key); 3161 #endif 3162 if (cid) 3163 (void) callb_delete(cid); 3164 } 3165 3166 /*ARGSUSED*/ 3167 static boolean_t 3168 nfs4_client_cpr_callb(void *arg, int code) 3169 { 3170 /* 3171 * We get called for Suspend and Resume events. 3172 * For the suspend case we simply don't care! 3173 */ 3174 if (code == CB_CODE_CPR_CHKPT) { 3175 return (B_TRUE); 3176 } 3177 3178 /* 3179 * When we get to here we are in the process of 3180 * resuming the system from a previous suspend. 3181 */ 3182 nfs4_client_resumed = gethrestime_sec(); 3183 return (B_TRUE); 3184 } 3185 3186 void 3187 nfs4_renew_lease_thread(nfs4_server_t *sp) 3188 { 3189 int error = 0; 3190 time_t tmp_last_renewal_time, tmp_time, tmp_now_time, kip_secs; 3191 clock_t tick_delay = 0; 3192 clock_t time_left = 0; 3193 callb_cpr_t cpr_info; 3194 kmutex_t cpr_lock; 3195 3196 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3197 "nfs4_renew_lease_thread: acting on sp 0x%p", (void*)sp)); 3198 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL); 3199 CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, "nfsv4Lease"); 3200 3201 mutex_enter(&sp->s_lock); 3202 /* sp->s_lease_time is set via a GETATTR */ 3203 sp->last_renewal_time = gethrestime_sec(); 3204 sp->lease_valid = NFS4_LEASE_UNINITIALIZED; 3205 ASSERT(sp->s_refcnt >= 1); 3206 3207 for (;;) { 3208 if (!sp->state_ref_count || 3209 sp->lease_valid != NFS4_LEASE_VALID) { 3210 3211 kip_secs = MAX((sp->s_lease_time >> 1) - 3212 (3 * sp->propagation_delay.tv_sec), 1); 3213 3214 tick_delay = SEC_TO_TICK(kip_secs); 3215 3216 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3217 "nfs4_renew_lease_thread: no renew : thread " 3218 "wait %ld secs", kip_secs)); 3219 3220 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3221 "nfs4_renew_lease_thread: no renew : " 3222 "state_ref_count %d, lease_valid %d", 3223 sp->state_ref_count, sp->lease_valid)); 3224 3225 mutex_enter(&cpr_lock); 3226 CALLB_CPR_SAFE_BEGIN(&cpr_info); 3227 mutex_exit(&cpr_lock); 3228 time_left = cv_timedwait(&sp->cv_thread_exit, 3229 &sp->s_lock, tick_delay + lbolt); 3230 mutex_enter(&cpr_lock); 3231 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 3232 mutex_exit(&cpr_lock); 3233 3234 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3235 "nfs4_renew_lease_thread: no renew: " 3236 "time left %ld", time_left)); 3237 3238 if (sp->s_thread_exit == NFS4_THREAD_EXIT) 3239 goto die; 3240 continue; 3241 } 3242 3243 tmp_last_renewal_time = sp->last_renewal_time; 3244 3245 tmp_time = gethrestime_sec() - sp->last_renewal_time + 3246 (3 * sp->propagation_delay.tv_sec); 3247 3248 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3249 "nfs4_renew_lease_thread: tmp_time %ld, " 3250 "sp->last_renewal_time %ld", tmp_time, 3251 sp->last_renewal_time)); 3252 3253 kip_secs = MAX((sp->s_lease_time >> 1) - tmp_time, 1); 3254 3255 tick_delay = SEC_TO_TICK(kip_secs); 3256 3257 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3258 "nfs4_renew_lease_thread: valid lease: sleep for %ld " 3259 "secs", kip_secs)); 3260 3261 mutex_enter(&cpr_lock); 3262 CALLB_CPR_SAFE_BEGIN(&cpr_info); 3263 mutex_exit(&cpr_lock); 3264 time_left = cv_timedwait(&sp->cv_thread_exit, &sp->s_lock, 3265 tick_delay + lbolt); 3266 mutex_enter(&cpr_lock); 3267 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 3268 mutex_exit(&cpr_lock); 3269 3270 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3271 "nfs4_renew_lease_thread: valid lease: time left %ld :" 3272 "sp last_renewal_time %ld, nfs4_client_resumed %ld, " 3273 "tmp_last_renewal_time %ld", time_left, 3274 sp->last_renewal_time, nfs4_client_resumed, 3275 tmp_last_renewal_time)); 3276 3277 if (sp->s_thread_exit == NFS4_THREAD_EXIT) 3278 goto die; 3279 3280 if (tmp_last_renewal_time == sp->last_renewal_time || 3281 (nfs4_client_resumed != 0 && 3282 nfs4_client_resumed > sp->last_renewal_time)) { 3283 /* 3284 * Issue RENEW op since we haven't renewed the lease 3285 * since we slept. 3286 */ 3287 tmp_now_time = gethrestime_sec(); 3288 error = nfs4renew(sp); 3289 /* 3290 * Need to re-acquire sp's lock, nfs4renew() 3291 * relinqueshes it. 3292 */ 3293 mutex_enter(&sp->s_lock); 3294 3295 /* 3296 * See if someone changed s_thread_exit while we gave 3297 * up s_lock. 3298 */ 3299 if (sp->s_thread_exit == NFS4_THREAD_EXIT) 3300 goto die; 3301 3302 if (!error) { 3303 /* 3304 * check to see if we implicitly renewed while 3305 * we waited for a reply for our RENEW call. 3306 */ 3307 if (tmp_last_renewal_time == 3308 sp->last_renewal_time) { 3309 /* no implicit renew came */ 3310 sp->last_renewal_time = tmp_now_time; 3311 } else { 3312 NFS4_DEBUG(nfs4_client_lease_debug, 3313 (CE_NOTE, "renew_thread: did " 3314 "implicit renewal before reply " 3315 "from server for RENEW")); 3316 } 3317 } else { 3318 /* figure out error */ 3319 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3320 "renew_thread: nfs4renew returned error" 3321 " %d", error)); 3322 } 3323 3324 } 3325 } 3326 3327 die: 3328 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3329 "nfs4_renew_lease_thread: thread exiting")); 3330 3331 while (sp->s_otw_call_count != 0) { 3332 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3333 "nfs4_renew_lease_thread: waiting for outstanding " 3334 "otw calls to finish for sp 0x%p, current " 3335 "s_otw_call_count %d", (void *)sp, 3336 sp->s_otw_call_count)); 3337 mutex_enter(&cpr_lock); 3338 CALLB_CPR_SAFE_BEGIN(&cpr_info); 3339 mutex_exit(&cpr_lock); 3340 cv_wait(&sp->s_cv_otw_count, &sp->s_lock); 3341 mutex_enter(&cpr_lock); 3342 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 3343 mutex_exit(&cpr_lock); 3344 } 3345 mutex_exit(&sp->s_lock); 3346 3347 nfs4_server_rele(sp); /* free the thread's reference */ 3348 nfs4_server_rele(sp); /* free the list's reference */ 3349 sp = NULL; 3350 3351 done: 3352 mutex_enter(&cpr_lock); 3353 CALLB_CPR_EXIT(&cpr_info); /* drops cpr_lock */ 3354 mutex_destroy(&cpr_lock); 3355 3356 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3357 "nfs4_renew_lease_thread: renew thread exit officially")); 3358 3359 zthread_exit(); 3360 /* NOT REACHED */ 3361 } 3362 3363 /* 3364 * Send out a RENEW op to the server. 3365 * Assumes sp is locked down. 3366 */ 3367 static int 3368 nfs4renew(nfs4_server_t *sp) 3369 { 3370 COMPOUND4args_clnt args; 3371 COMPOUND4res_clnt res; 3372 nfs_argop4 argop[1]; 3373 int doqueue = 1; 3374 int rpc_error; 3375 cred_t *cr; 3376 mntinfo4_t *mi; 3377 timespec_t prop_time, after_time; 3378 int needrecov = FALSE; 3379 nfs4_recov_state_t recov_state; 3380 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3381 3382 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4renew")); 3383 3384 recov_state.rs_flags = 0; 3385 recov_state.rs_num_retry_despite_err = 0; 3386 3387 recov_retry: 3388 mi = sp->mntinfo4_list; 3389 VFS_HOLD(mi->mi_vfsp); 3390 mutex_exit(&sp->s_lock); 3391 ASSERT(mi != NULL); 3392 3393 e.error = nfs4_start_op(mi, NULL, NULL, &recov_state); 3394 if (e.error) { 3395 VFS_RELE(mi->mi_vfsp); 3396 return (e.error); 3397 } 3398 3399 /* Check to see if we're dealing with a marked-dead sp */ 3400 mutex_enter(&sp->s_lock); 3401 if (sp->s_thread_exit == NFS4_THREAD_EXIT) { 3402 mutex_exit(&sp->s_lock); 3403 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3404 VFS_RELE(mi->mi_vfsp); 3405 return (0); 3406 } 3407 3408 /* Make sure mi hasn't changed on us */ 3409 if (mi != sp->mntinfo4_list) { 3410 /* Must drop sp's lock to avoid a recursive mutex enter */ 3411 mutex_exit(&sp->s_lock); 3412 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3413 VFS_RELE(mi->mi_vfsp); 3414 mutex_enter(&sp->s_lock); 3415 goto recov_retry; 3416 } 3417 mutex_exit(&sp->s_lock); 3418 3419 args.ctag = TAG_RENEW; 3420 3421 args.array_len = 1; 3422 args.array = argop; 3423 3424 argop[0].argop = OP_RENEW; 3425 3426 mutex_enter(&sp->s_lock); 3427 argop[0].nfs_argop4_u.oprenew.clientid = sp->clientid; 3428 cr = sp->s_cred; 3429 crhold(cr); 3430 mutex_exit(&sp->s_lock); 3431 3432 ASSERT(cr != NULL); 3433 3434 /* used to figure out RTT for sp */ 3435 gethrestime(&prop_time); 3436 3437 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3438 "nfs4renew: %s call, sp 0x%p", needrecov ? "recov" : "first", 3439 (void*)sp)); 3440 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "before: %ld s %ld ns ", 3441 prop_time.tv_sec, prop_time.tv_nsec)); 3442 3443 DTRACE_PROBE2(nfs4__renew__start, nfs4_server_t *, sp, 3444 mntinfo4_t *, mi); 3445 3446 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3447 crfree(cr); 3448 3449 DTRACE_PROBE2(nfs4__renew__end, nfs4_server_t *, sp, 3450 mntinfo4_t *, mi); 3451 3452 gethrestime(&after_time); 3453 3454 mutex_enter(&sp->s_lock); 3455 sp->propagation_delay.tv_sec = 3456 MAX(1, after_time.tv_sec - prop_time.tv_sec); 3457 mutex_exit(&sp->s_lock); 3458 3459 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "after : %ld s %ld ns ", 3460 after_time.tv_sec, after_time.tv_nsec)); 3461 3462 if (e.error == 0 && res.status == NFS4ERR_CB_PATH_DOWN) { 3463 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3464 nfs4_delegreturn_all(sp); 3465 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3466 VFS_RELE(mi->mi_vfsp); 3467 /* 3468 * If the server returns CB_PATH_DOWN, it has renewed 3469 * the lease and informed us that the callback path is 3470 * down. Since the lease is renewed, just return 0 and 3471 * let the renew thread proceed as normal. 3472 */ 3473 return (0); 3474 } 3475 3476 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3477 if (!needrecov && e.error) { 3478 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3479 VFS_RELE(mi->mi_vfsp); 3480 return (e.error); 3481 } 3482 3483 rpc_error = e.error; 3484 3485 if (needrecov) { 3486 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3487 "nfs4renew: initiating recovery\n")); 3488 3489 if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL, 3490 OP_RENEW, NULL) == FALSE) { 3491 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3492 VFS_RELE(mi->mi_vfsp); 3493 if (!e.error) 3494 (void) xdr_free(xdr_COMPOUND4res_clnt, 3495 (caddr_t)&res); 3496 mutex_enter(&sp->s_lock); 3497 goto recov_retry; 3498 } 3499 /* fall through for res.status case */ 3500 } 3501 3502 if (res.status) { 3503 if (res.status == NFS4ERR_LEASE_MOVED) { 3504 /*EMPTY*/ 3505 /* 3506 * XXX need to try every mntinfo4 in sp->mntinfo4_list 3507 * to renew the lease on that server 3508 */ 3509 } 3510 e.error = geterrno4(res.status); 3511 } 3512 3513 if (!rpc_error) 3514 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3515 3516 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3517 3518 VFS_RELE(mi->mi_vfsp); 3519 3520 return (e.error); 3521 } 3522 3523 void 3524 nfs4_inc_state_ref_count(mntinfo4_t *mi) 3525 { 3526 nfs4_server_t *sp; 3527 3528 /* this locks down sp if it is found */ 3529 sp = find_nfs4_server(mi); 3530 3531 if (sp != NULL) { 3532 nfs4_inc_state_ref_count_nolock(sp, mi); 3533 mutex_exit(&sp->s_lock); 3534 nfs4_server_rele(sp); 3535 } 3536 } 3537 3538 /* 3539 * Bump the number of OPEN files (ie: those with state) so we know if this 3540 * nfs4_server has any state to maintain a lease for or not. 3541 * 3542 * Also, marks the nfs4_server's lease valid if it hasn't been done so already. 3543 */ 3544 void 3545 nfs4_inc_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi) 3546 { 3547 ASSERT(mutex_owned(&sp->s_lock)); 3548 3549 sp->state_ref_count++; 3550 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3551 "nfs4_inc_state_ref_count: state_ref_count now %d", 3552 sp->state_ref_count)); 3553 3554 if (sp->lease_valid == NFS4_LEASE_UNINITIALIZED) 3555 sp->lease_valid = NFS4_LEASE_VALID; 3556 3557 /* 3558 * If this call caused the lease to be marked valid and/or 3559 * took the state_ref_count from 0 to 1, then start the time 3560 * on lease renewal. 3561 */ 3562 if (sp->lease_valid == NFS4_LEASE_VALID && sp->state_ref_count == 1) 3563 sp->last_renewal_time = gethrestime_sec(); 3564 3565 /* update the number of open files for mi */ 3566 mi->mi_open_files++; 3567 } 3568 3569 void 3570 nfs4_dec_state_ref_count(mntinfo4_t *mi) 3571 { 3572 nfs4_server_t *sp; 3573 3574 /* this locks down sp if it is found */ 3575 sp = find_nfs4_server_all(mi, 1); 3576 3577 if (sp != NULL) { 3578 nfs4_dec_state_ref_count_nolock(sp, mi); 3579 mutex_exit(&sp->s_lock); 3580 nfs4_server_rele(sp); 3581 } 3582 } 3583 3584 /* 3585 * Decrement the number of OPEN files (ie: those with state) so we know if 3586 * this nfs4_server has any state to maintain a lease for or not. 3587 */ 3588 void 3589 nfs4_dec_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi) 3590 { 3591 ASSERT(mutex_owned(&sp->s_lock)); 3592 ASSERT(sp->state_ref_count != 0); 3593 sp->state_ref_count--; 3594 3595 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3596 "nfs4_dec_state_ref_count: state ref count now %d", 3597 sp->state_ref_count)); 3598 3599 mi->mi_open_files--; 3600 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3601 "nfs4_dec_state_ref_count: mi open files %d, v4 flags 0x%x", 3602 mi->mi_open_files, mi->mi_flags)); 3603 3604 /* We don't have to hold the mi_lock to test mi_flags */ 3605 if (mi->mi_open_files == 0 && 3606 (mi->mi_flags & MI4_REMOVE_ON_LAST_CLOSE)) { 3607 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3608 "nfs4_dec_state_ref_count: remove mntinfo4 %p since " 3609 "we have closed the last open file", (void*)mi)); 3610 nfs4_remove_mi_from_server(mi, sp); 3611 } 3612 } 3613 3614 bool_t 3615 inlease(nfs4_server_t *sp) 3616 { 3617 bool_t result; 3618 3619 ASSERT(mutex_owned(&sp->s_lock)); 3620 3621 if (sp->lease_valid == NFS4_LEASE_VALID && 3622 gethrestime_sec() < sp->last_renewal_time + sp->s_lease_time) 3623 result = TRUE; 3624 else 3625 result = FALSE; 3626 3627 return (result); 3628 } 3629 3630 3631 /* 3632 * Return non-zero if the given nfs4_server_t is going through recovery. 3633 */ 3634 3635 int 3636 nfs4_server_in_recovery(nfs4_server_t *sp) 3637 { 3638 return (nfs_rw_lock_held(&sp->s_recovlock, RW_WRITER)); 3639 } 3640 3641 /* 3642 * Compare two shared filehandle objects. Returns -1, 0, or +1, if the 3643 * first is less than, equal to, or greater than the second. 3644 */ 3645 3646 int 3647 sfh4cmp(const void *p1, const void *p2) 3648 { 3649 const nfs4_sharedfh_t *sfh1 = (const nfs4_sharedfh_t *)p1; 3650 const nfs4_sharedfh_t *sfh2 = (const nfs4_sharedfh_t *)p2; 3651 3652 return (nfs4cmpfh(&sfh1->sfh_fh, &sfh2->sfh_fh)); 3653 } 3654 3655 /* 3656 * Create a table for shared filehandle objects. 3657 */ 3658 3659 void 3660 sfh4_createtab(avl_tree_t *tab) 3661 { 3662 avl_create(tab, sfh4cmp, sizeof (nfs4_sharedfh_t), 3663 offsetof(nfs4_sharedfh_t, sfh_tree)); 3664 } 3665 3666 /* 3667 * Return a shared filehandle object for the given filehandle. The caller 3668 * is responsible for eventually calling sfh4_rele(). 3669 */ 3670 3671 nfs4_sharedfh_t * 3672 sfh4_put(const nfs_fh4 *fh, mntinfo4_t *mi, nfs4_sharedfh_t *key) 3673 { 3674 nfs4_sharedfh_t *sfh, *nsfh; 3675 avl_index_t where; 3676 nfs4_sharedfh_t skey; 3677 3678 if (!key) { 3679 skey.sfh_fh = *fh; 3680 key = &skey; 3681 } 3682 3683 nsfh = kmem_alloc(sizeof (nfs4_sharedfh_t), KM_SLEEP); 3684 nsfh->sfh_fh.nfs_fh4_len = fh->nfs_fh4_len; 3685 /* 3686 * We allocate the largest possible filehandle size because it's 3687 * not that big, and it saves us from possibly having to resize the 3688 * buffer later. 3689 */ 3690 nsfh->sfh_fh.nfs_fh4_val = kmem_alloc(NFS4_FHSIZE, KM_SLEEP); 3691 bcopy(fh->nfs_fh4_val, nsfh->sfh_fh.nfs_fh4_val, fh->nfs_fh4_len); 3692 mutex_init(&nsfh->sfh_lock, NULL, MUTEX_DEFAULT, NULL); 3693 nsfh->sfh_refcnt = 1; 3694 nsfh->sfh_flags = SFH4_IN_TREE; 3695 nsfh->sfh_mi = mi; 3696 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, "sfh4_get: new object (%p)", 3697 (void *)nsfh)); 3698 3699 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0); 3700 sfh = avl_find(&mi->mi_filehandles, key, &where); 3701 if (sfh != NULL) { 3702 mutex_enter(&sfh->sfh_lock); 3703 sfh->sfh_refcnt++; 3704 mutex_exit(&sfh->sfh_lock); 3705 nfs_rw_exit(&mi->mi_fh_lock); 3706 /* free our speculative allocs */ 3707 kmem_free(nsfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE); 3708 kmem_free(nsfh, sizeof (nfs4_sharedfh_t)); 3709 return (sfh); 3710 } 3711 3712 avl_insert(&mi->mi_filehandles, nsfh, where); 3713 nfs_rw_exit(&mi->mi_fh_lock); 3714 3715 return (nsfh); 3716 } 3717 3718 /* 3719 * Return a shared filehandle object for the given filehandle. The caller 3720 * is responsible for eventually calling sfh4_rele(). 3721 */ 3722 3723 nfs4_sharedfh_t * 3724 sfh4_get(const nfs_fh4 *fh, mntinfo4_t *mi) 3725 { 3726 nfs4_sharedfh_t *sfh; 3727 nfs4_sharedfh_t key; 3728 3729 ASSERT(fh->nfs_fh4_len <= NFS4_FHSIZE); 3730 3731 #ifdef DEBUG 3732 if (nfs4_sharedfh_debug) { 3733 nfs4_fhandle_t fhandle; 3734 3735 fhandle.fh_len = fh->nfs_fh4_len; 3736 bcopy(fh->nfs_fh4_val, fhandle.fh_buf, fhandle.fh_len); 3737 zcmn_err(mi->mi_zone->zone_id, CE_NOTE, "sfh4_get:"); 3738 nfs4_printfhandle(&fhandle); 3739 } 3740 #endif 3741 3742 /* 3743 * If there's already an object for the given filehandle, bump the 3744 * reference count and return it. Otherwise, create a new object 3745 * and add it to the AVL tree. 3746 */ 3747 3748 key.sfh_fh = *fh; 3749 3750 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 3751 sfh = avl_find(&mi->mi_filehandles, &key, NULL); 3752 if (sfh != NULL) { 3753 mutex_enter(&sfh->sfh_lock); 3754 sfh->sfh_refcnt++; 3755 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, 3756 "sfh4_get: found existing %p, new refcnt=%d", 3757 (void *)sfh, sfh->sfh_refcnt)); 3758 mutex_exit(&sfh->sfh_lock); 3759 nfs_rw_exit(&mi->mi_fh_lock); 3760 return (sfh); 3761 } 3762 nfs_rw_exit(&mi->mi_fh_lock); 3763 3764 return (sfh4_put(fh, mi, &key)); 3765 } 3766 3767 /* 3768 * Get a reference to the given shared filehandle object. 3769 */ 3770 3771 void 3772 sfh4_hold(nfs4_sharedfh_t *sfh) 3773 { 3774 ASSERT(sfh->sfh_refcnt > 0); 3775 3776 mutex_enter(&sfh->sfh_lock); 3777 sfh->sfh_refcnt++; 3778 NFS4_DEBUG(nfs4_sharedfh_debug, 3779 (CE_NOTE, "sfh4_hold %p, new refcnt=%d", 3780 (void *)sfh, sfh->sfh_refcnt)); 3781 mutex_exit(&sfh->sfh_lock); 3782 } 3783 3784 /* 3785 * Release a reference to the given shared filehandle object and null out 3786 * the given pointer. 3787 */ 3788 3789 void 3790 sfh4_rele(nfs4_sharedfh_t **sfhpp) 3791 { 3792 mntinfo4_t *mi; 3793 nfs4_sharedfh_t *sfh = *sfhpp; 3794 3795 ASSERT(sfh->sfh_refcnt > 0); 3796 3797 mutex_enter(&sfh->sfh_lock); 3798 if (sfh->sfh_refcnt > 1) { 3799 sfh->sfh_refcnt--; 3800 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, 3801 "sfh4_rele %p, new refcnt=%d", 3802 (void *)sfh, sfh->sfh_refcnt)); 3803 mutex_exit(&sfh->sfh_lock); 3804 goto finish; 3805 } 3806 mutex_exit(&sfh->sfh_lock); 3807 3808 /* 3809 * Possibly the last reference, so get the lock for the table in 3810 * case it's time to remove the object from the table. 3811 */ 3812 mi = sfh->sfh_mi; 3813 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0); 3814 mutex_enter(&sfh->sfh_lock); 3815 sfh->sfh_refcnt--; 3816 if (sfh->sfh_refcnt > 0) { 3817 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, 3818 "sfh4_rele %p, new refcnt=%d", 3819 (void *)sfh, sfh->sfh_refcnt)); 3820 mutex_exit(&sfh->sfh_lock); 3821 nfs_rw_exit(&mi->mi_fh_lock); 3822 goto finish; 3823 } 3824 3825 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, 3826 "sfh4_rele %p, last ref", (void *)sfh)); 3827 if (sfh->sfh_flags & SFH4_IN_TREE) { 3828 avl_remove(&mi->mi_filehandles, sfh); 3829 sfh->sfh_flags &= ~SFH4_IN_TREE; 3830 } 3831 mutex_exit(&sfh->sfh_lock); 3832 nfs_rw_exit(&mi->mi_fh_lock); 3833 mutex_destroy(&sfh->sfh_lock); 3834 kmem_free(sfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE); 3835 kmem_free(sfh, sizeof (nfs4_sharedfh_t)); 3836 3837 finish: 3838 *sfhpp = NULL; 3839 } 3840 3841 /* 3842 * Update the filehandle for the given shared filehandle object. 3843 */ 3844 3845 int nfs4_warn_dupfh = 0; /* if set, always warn about dup fhs below */ 3846 3847 void 3848 sfh4_update(nfs4_sharedfh_t *sfh, const nfs_fh4 *newfh) 3849 { 3850 mntinfo4_t *mi = sfh->sfh_mi; 3851 nfs4_sharedfh_t *dupsfh; 3852 avl_index_t where; 3853 nfs4_sharedfh_t key; 3854 3855 #ifdef DEBUG 3856 mutex_enter(&sfh->sfh_lock); 3857 ASSERT(sfh->sfh_refcnt > 0); 3858 mutex_exit(&sfh->sfh_lock); 3859 #endif 3860 ASSERT(newfh->nfs_fh4_len <= NFS4_FHSIZE); 3861 3862 /* 3863 * The basic plan is to remove the shared filehandle object from 3864 * the table, update it to have the new filehandle, then reinsert 3865 * it. 3866 */ 3867 3868 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0); 3869 mutex_enter(&sfh->sfh_lock); 3870 if (sfh->sfh_flags & SFH4_IN_TREE) { 3871 avl_remove(&mi->mi_filehandles, sfh); 3872 sfh->sfh_flags &= ~SFH4_IN_TREE; 3873 } 3874 mutex_exit(&sfh->sfh_lock); 3875 sfh->sfh_fh.nfs_fh4_len = newfh->nfs_fh4_len; 3876 bcopy(newfh->nfs_fh4_val, sfh->sfh_fh.nfs_fh4_val, 3877 sfh->sfh_fh.nfs_fh4_len); 3878 3879 /* 3880 * XXX If there is already a shared filehandle object with the new 3881 * filehandle, we're in trouble, because the rnode code assumes 3882 * that there is only one shared filehandle object for a given 3883 * filehandle. So issue a warning (for read-write mounts only) 3884 * and don't try to re-insert the given object into the table. 3885 * Hopefully the given object will quickly go away and everyone 3886 * will use the new object. 3887 */ 3888 key.sfh_fh = *newfh; 3889 dupsfh = avl_find(&mi->mi_filehandles, &key, &where); 3890 if (dupsfh != NULL) { 3891 if (!(mi->mi_vfsp->vfs_flag & VFS_RDONLY) || nfs4_warn_dupfh) { 3892 zcmn_err(mi->mi_zone->zone_id, CE_WARN, "sfh4_update: " 3893 "duplicate filehandle detected"); 3894 sfh4_printfhandle(dupsfh); 3895 } 3896 } else { 3897 avl_insert(&mi->mi_filehandles, sfh, where); 3898 mutex_enter(&sfh->sfh_lock); 3899 sfh->sfh_flags |= SFH4_IN_TREE; 3900 mutex_exit(&sfh->sfh_lock); 3901 } 3902 nfs_rw_exit(&mi->mi_fh_lock); 3903 } 3904 3905 /* 3906 * Copy out the current filehandle for the given shared filehandle object. 3907 */ 3908 3909 void 3910 sfh4_copyval(const nfs4_sharedfh_t *sfh, nfs4_fhandle_t *fhp) 3911 { 3912 mntinfo4_t *mi = sfh->sfh_mi; 3913 3914 ASSERT(sfh->sfh_refcnt > 0); 3915 3916 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 3917 fhp->fh_len = sfh->sfh_fh.nfs_fh4_len; 3918 ASSERT(fhp->fh_len <= NFS4_FHSIZE); 3919 bcopy(sfh->sfh_fh.nfs_fh4_val, fhp->fh_buf, fhp->fh_len); 3920 nfs_rw_exit(&mi->mi_fh_lock); 3921 } 3922 3923 /* 3924 * Print out the filehandle for the given shared filehandle object. 3925 */ 3926 3927 void 3928 sfh4_printfhandle(const nfs4_sharedfh_t *sfh) 3929 { 3930 nfs4_fhandle_t fhandle; 3931 3932 sfh4_copyval(sfh, &fhandle); 3933 nfs4_printfhandle(&fhandle); 3934 } 3935 3936 /* 3937 * Compare 2 fnames. Returns -1 if the first is "less" than the second, 0 3938 * if they're the same, +1 if the first is "greater" than the second. The 3939 * caller (or whoever's calling the AVL package) is responsible for 3940 * handling locking issues. 3941 */ 3942 3943 static int 3944 fncmp(const void *p1, const void *p2) 3945 { 3946 const nfs4_fname_t *f1 = p1; 3947 const nfs4_fname_t *f2 = p2; 3948 int res; 3949 3950 res = strcmp(f1->fn_name, f2->fn_name); 3951 /* 3952 * The AVL package wants +/-1, not arbitrary positive or negative 3953 * integers. 3954 */ 3955 if (res > 0) 3956 res = 1; 3957 else if (res < 0) 3958 res = -1; 3959 return (res); 3960 } 3961 3962 /* 3963 * Get or create an fname with the given name, as a child of the given 3964 * fname. The caller is responsible for eventually releasing the reference 3965 * (fn_rele()). parent may be NULL. 3966 */ 3967 3968 nfs4_fname_t * 3969 fn_get(nfs4_fname_t *parent, char *name, nfs4_sharedfh_t *sfh) 3970 { 3971 nfs4_fname_t key; 3972 nfs4_fname_t *fnp; 3973 avl_index_t where; 3974 3975 key.fn_name = name; 3976 3977 /* 3978 * If there's already an fname registered with the given name, bump 3979 * its reference count and return it. Otherwise, create a new one 3980 * and add it to the parent's AVL tree. 3981 * 3982 * fname entries we are looking for should match both name 3983 * and sfh stored in the fname. 3984 */ 3985 again: 3986 if (parent != NULL) { 3987 mutex_enter(&parent->fn_lock); 3988 fnp = avl_find(&parent->fn_children, &key, &where); 3989 if (fnp != NULL) { 3990 /* 3991 * This hold on fnp is released below later, 3992 * in case this is not the fnp we want. 3993 */ 3994 fn_hold(fnp); 3995 3996 if (fnp->fn_sfh == sfh) { 3997 /* 3998 * We have found our entry. 3999 * put an hold and return it. 4000 */ 4001 mutex_exit(&parent->fn_lock); 4002 return (fnp); 4003 } 4004 4005 /* 4006 * We have found an entry that has a mismatching 4007 * fn_sfh. This could be a stale entry due to 4008 * server side rename. We will remove this entry 4009 * and make sure no such entries exist. 4010 */ 4011 mutex_exit(&parent->fn_lock); 4012 mutex_enter(&fnp->fn_lock); 4013 if (fnp->fn_parent == parent) { 4014 /* 4015 * Remove ourselves from parent's 4016 * fn_children tree. 4017 */ 4018 mutex_enter(&parent->fn_lock); 4019 avl_remove(&parent->fn_children, fnp); 4020 mutex_exit(&parent->fn_lock); 4021 fn_rele(&fnp->fn_parent); 4022 } 4023 mutex_exit(&fnp->fn_lock); 4024 fn_rele(&fnp); 4025 goto again; 4026 } 4027 } 4028 4029 fnp = kmem_alloc(sizeof (nfs4_fname_t), KM_SLEEP); 4030 mutex_init(&fnp->fn_lock, NULL, MUTEX_DEFAULT, NULL); 4031 fnp->fn_parent = parent; 4032 if (parent != NULL) 4033 fn_hold(parent); 4034 fnp->fn_len = strlen(name); 4035 ASSERT(fnp->fn_len < MAXNAMELEN); 4036 fnp->fn_name = kmem_alloc(fnp->fn_len + 1, KM_SLEEP); 4037 (void) strcpy(fnp->fn_name, name); 4038 fnp->fn_refcnt = 1; 4039 4040 /* 4041 * This hold on sfh is later released 4042 * when we do the final fn_rele() on this fname. 4043 */ 4044 sfh4_hold(sfh); 4045 fnp->fn_sfh = sfh; 4046 4047 avl_create(&fnp->fn_children, fncmp, sizeof (nfs4_fname_t), 4048 offsetof(nfs4_fname_t, fn_tree)); 4049 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE, 4050 "fn_get %p:%s, a new nfs4_fname_t!", 4051 (void *)fnp, fnp->fn_name)); 4052 if (parent != NULL) { 4053 avl_insert(&parent->fn_children, fnp, where); 4054 mutex_exit(&parent->fn_lock); 4055 } 4056 4057 return (fnp); 4058 } 4059 4060 void 4061 fn_hold(nfs4_fname_t *fnp) 4062 { 4063 atomic_add_32(&fnp->fn_refcnt, 1); 4064 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE, 4065 "fn_hold %p:%s, new refcnt=%d", 4066 (void *)fnp, fnp->fn_name, fnp->fn_refcnt)); 4067 } 4068 4069 /* 4070 * Decrement the reference count of the given fname, and destroy it if its 4071 * reference count goes to zero. Nulls out the given pointer. 4072 */ 4073 4074 void 4075 fn_rele(nfs4_fname_t **fnpp) 4076 { 4077 nfs4_fname_t *parent; 4078 uint32_t newref; 4079 nfs4_fname_t *fnp; 4080 4081 recur: 4082 fnp = *fnpp; 4083 *fnpp = NULL; 4084 4085 mutex_enter(&fnp->fn_lock); 4086 parent = fnp->fn_parent; 4087 if (parent != NULL) 4088 mutex_enter(&parent->fn_lock); /* prevent new references */ 4089 newref = atomic_add_32_nv(&fnp->fn_refcnt, -1); 4090 if (newref > 0) { 4091 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE, 4092 "fn_rele %p:%s, new refcnt=%d", 4093 (void *)fnp, fnp->fn_name, fnp->fn_refcnt)); 4094 if (parent != NULL) 4095 mutex_exit(&parent->fn_lock); 4096 mutex_exit(&fnp->fn_lock); 4097 return; 4098 } 4099 4100 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE, 4101 "fn_rele %p:%s, last reference, deleting...", 4102 (void *)fnp, fnp->fn_name)); 4103 if (parent != NULL) { 4104 avl_remove(&parent->fn_children, fnp); 4105 mutex_exit(&parent->fn_lock); 4106 } 4107 kmem_free(fnp->fn_name, fnp->fn_len + 1); 4108 sfh4_rele(&fnp->fn_sfh); 4109 mutex_destroy(&fnp->fn_lock); 4110 avl_destroy(&fnp->fn_children); 4111 kmem_free(fnp, sizeof (nfs4_fname_t)); 4112 /* 4113 * Recursivly fn_rele the parent. 4114 * Use goto instead of a recursive call to avoid stack overflow. 4115 */ 4116 if (parent != NULL) { 4117 fnpp = &parent; 4118 goto recur; 4119 } 4120 } 4121 4122 /* 4123 * Returns the single component name of the given fname, in a MAXNAMELEN 4124 * string buffer, which the caller is responsible for freeing. Note that 4125 * the name may become invalid as a result of fn_move(). 4126 */ 4127 4128 char * 4129 fn_name(nfs4_fname_t *fnp) 4130 { 4131 char *name; 4132 4133 ASSERT(fnp->fn_len < MAXNAMELEN); 4134 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 4135 mutex_enter(&fnp->fn_lock); 4136 (void) strcpy(name, fnp->fn_name); 4137 mutex_exit(&fnp->fn_lock); 4138 4139 return (name); 4140 } 4141 4142 4143 /* 4144 * fn_path_realloc 4145 * 4146 * This function, used only by fn_path, constructs 4147 * a new string which looks like "prepend" + "/" + "current". 4148 * by allocating a new string and freeing the old one. 4149 */ 4150 static void 4151 fn_path_realloc(char **curses, char *prepend) 4152 { 4153 int len, curlen = 0; 4154 char *news; 4155 4156 if (*curses == NULL) { 4157 /* 4158 * Prime the pump, allocate just the 4159 * space for prepend and return that. 4160 */ 4161 len = strlen(prepend) + 1; 4162 news = kmem_alloc(len, KM_SLEEP); 4163 (void) strncpy(news, prepend, len); 4164 } else { 4165 /* 4166 * Allocate the space for a new string 4167 * +1 +1 is for the "/" and the NULL 4168 * byte at the end of it all. 4169 */ 4170 curlen = strlen(*curses); 4171 len = curlen + strlen(prepend) + 1 + 1; 4172 news = kmem_alloc(len, KM_SLEEP); 4173 (void) strncpy(news, prepend, len); 4174 (void) strcat(news, "/"); 4175 (void) strcat(news, *curses); 4176 kmem_free(*curses, curlen + 1); 4177 } 4178 *curses = news; 4179 } 4180 4181 /* 4182 * Returns the path name (starting from the fs root) for the given fname. 4183 * The caller is responsible for freeing. Note that the path may be or 4184 * become invalid as a result of fn_move(). 4185 */ 4186 4187 char * 4188 fn_path(nfs4_fname_t *fnp) 4189 { 4190 char *path; 4191 nfs4_fname_t *nextfnp; 4192 4193 if (fnp == NULL) 4194 return (NULL); 4195 4196 path = NULL; 4197 4198 /* walk up the tree constructing the pathname. */ 4199 4200 fn_hold(fnp); /* adjust for later rele */ 4201 do { 4202 mutex_enter(&fnp->fn_lock); 4203 /* 4204 * Add fn_name in front of the current path 4205 */ 4206 fn_path_realloc(&path, fnp->fn_name); 4207 nextfnp = fnp->fn_parent; 4208 if (nextfnp != NULL) 4209 fn_hold(nextfnp); 4210 mutex_exit(&fnp->fn_lock); 4211 fn_rele(&fnp); 4212 fnp = nextfnp; 4213 } while (fnp != NULL); 4214 4215 return (path); 4216 } 4217 4218 /* 4219 * Return a reference to the parent of the given fname, which the caller is 4220 * responsible for eventually releasing. 4221 */ 4222 4223 nfs4_fname_t * 4224 fn_parent(nfs4_fname_t *fnp) 4225 { 4226 nfs4_fname_t *parent; 4227 4228 mutex_enter(&fnp->fn_lock); 4229 parent = fnp->fn_parent; 4230 if (parent != NULL) 4231 fn_hold(parent); 4232 mutex_exit(&fnp->fn_lock); 4233 4234 return (parent); 4235 } 4236 4237 /* 4238 * Update fnp so that its parent is newparent and its name is newname. 4239 */ 4240 4241 void 4242 fn_move(nfs4_fname_t *fnp, nfs4_fname_t *newparent, char *newname) 4243 { 4244 nfs4_fname_t *parent, *tmpfnp; 4245 ssize_t newlen; 4246 nfs4_fname_t key; 4247 avl_index_t where; 4248 4249 /* 4250 * This assert exists to catch the client trying to rename 4251 * a dir to be a child of itself. This happened at a recent 4252 * bakeoff against a 3rd party (broken) server which allowed 4253 * the rename to succeed. If it trips it means that: 4254 * a) the code in nfs4rename that detects this case is broken 4255 * b) the server is broken (since it allowed the bogus rename) 4256 * 4257 * For non-DEBUG kernels, prepare for a recursive mutex_enter 4258 * panic below from: mutex_enter(&newparent->fn_lock); 4259 */ 4260 ASSERT(fnp != newparent); 4261 4262 /* 4263 * Remove fnp from its current parent, change its name, then add it 4264 * to newparent. It might happen that fnp was replaced by another 4265 * nfs4_fname_t with the same fn_name in parent->fn_children. 4266 * In such case, fnp->fn_parent is NULL and we skip the removal 4267 * of fnp from its current parent. 4268 */ 4269 mutex_enter(&fnp->fn_lock); 4270 parent = fnp->fn_parent; 4271 if (parent != NULL) { 4272 mutex_enter(&parent->fn_lock); 4273 avl_remove(&parent->fn_children, fnp); 4274 mutex_exit(&parent->fn_lock); 4275 fn_rele(&fnp->fn_parent); 4276 } 4277 4278 newlen = strlen(newname); 4279 if (newlen != fnp->fn_len) { 4280 ASSERT(newlen < MAXNAMELEN); 4281 kmem_free(fnp->fn_name, fnp->fn_len + 1); 4282 fnp->fn_name = kmem_alloc(newlen + 1, KM_SLEEP); 4283 fnp->fn_len = newlen; 4284 } 4285 (void) strcpy(fnp->fn_name, newname); 4286 4287 again: 4288 mutex_enter(&newparent->fn_lock); 4289 key.fn_name = fnp->fn_name; 4290 tmpfnp = avl_find(&newparent->fn_children, &key, &where); 4291 if (tmpfnp != NULL) { 4292 /* 4293 * This could be due to a file that was unlinked while 4294 * open, or perhaps the rnode is in the free list. Remove 4295 * it from newparent and let it go away on its own. The 4296 * contorted code is to deal with lock order issues and 4297 * race conditions. 4298 */ 4299 fn_hold(tmpfnp); 4300 mutex_exit(&newparent->fn_lock); 4301 mutex_enter(&tmpfnp->fn_lock); 4302 if (tmpfnp->fn_parent == newparent) { 4303 mutex_enter(&newparent->fn_lock); 4304 avl_remove(&newparent->fn_children, tmpfnp); 4305 mutex_exit(&newparent->fn_lock); 4306 fn_rele(&tmpfnp->fn_parent); 4307 } 4308 mutex_exit(&tmpfnp->fn_lock); 4309 fn_rele(&tmpfnp); 4310 goto again; 4311 } 4312 fnp->fn_parent = newparent; 4313 fn_hold(newparent); 4314 avl_insert(&newparent->fn_children, fnp, where); 4315 mutex_exit(&newparent->fn_lock); 4316 mutex_exit(&fnp->fn_lock); 4317 } 4318 4319 #ifdef DEBUG 4320 /* 4321 * Return non-zero if the type information makes sense for the given vnode. 4322 * Otherwise panic. 4323 */ 4324 int 4325 nfs4_consistent_type(vnode_t *vp) 4326 { 4327 rnode4_t *rp = VTOR4(vp); 4328 4329 if (nfs4_vtype_debug && vp->v_type != VNON && 4330 rp->r_attr.va_type != VNON && vp->v_type != rp->r_attr.va_type) { 4331 cmn_err(CE_PANIC, "vnode %p type mismatch; v_type=%d, " 4332 "rnode attr type=%d", (void *)vp, vp->v_type, 4333 rp->r_attr.va_type); 4334 } 4335 4336 return (1); 4337 } 4338 #endif /* DEBUG */ 4339