1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/systm.h> 34 #include <sys/thread.h> 35 #include <sys/t_lock.h> 36 #include <sys/time.h> 37 #include <sys/vnode.h> 38 #include <sys/vfs.h> 39 #include <sys/errno.h> 40 #include <sys/buf.h> 41 #include <sys/stat.h> 42 #include <sys/cred.h> 43 #include <sys/kmem.h> 44 #include <sys/debug.h> 45 #include <sys/dnlc.h> 46 #include <sys/vmsystm.h> 47 #include <sys/flock.h> 48 #include <sys/share.h> 49 #include <sys/cmn_err.h> 50 #include <sys/tiuser.h> 51 #include <sys/sysmacros.h> 52 #include <sys/callb.h> 53 #include <sys/acl.h> 54 #include <sys/kstat.h> 55 #include <sys/signal.h> 56 #include <sys/disp.h> 57 #include <sys/atomic.h> 58 #include <sys/list.h> 59 #include <sys/sdt.h> 60 61 #include <rpc/types.h> 62 #include <rpc/xdr.h> 63 #include <rpc/auth.h> 64 #include <rpc/clnt.h> 65 66 #include <nfs/nfs.h> 67 #include <nfs/nfs_clnt.h> 68 #include <nfs/nfs_acl.h> 69 70 #include <nfs/nfs4.h> 71 #include <nfs/rnode4.h> 72 #include <nfs/nfs4_clnt.h> 73 74 #include <vm/hat.h> 75 #include <vm/as.h> 76 #include <vm/page.h> 77 #include <vm/pvn.h> 78 #include <vm/seg.h> 79 #include <vm/seg_map.h> 80 #include <vm/seg_vn.h> 81 82 #include <sys/ddi.h> 83 84 /* 85 * Arguments to page-flush thread. 86 */ 87 typedef struct { 88 vnode_t *vp; 89 cred_t *cr; 90 } pgflush_t; 91 92 #ifdef DEBUG 93 int nfs4_client_lease_debug; 94 int nfs4_sharedfh_debug; 95 int nfs4_fname_debug; 96 97 /* temporary: panic if v_type is inconsistent with r_attr va_type */ 98 int nfs4_vtype_debug; 99 100 uint_t nfs4_tsd_key; 101 #endif 102 103 static time_t nfs4_client_resumed = 0; 104 static callb_id_t cid = 0; 105 106 static int nfs4renew(nfs4_server_t *); 107 static void nfs4_attrcache_va(vnode_t *, nfs4_ga_res_t *, int); 108 static void nfs4_pgflush_thread(pgflush_t *); 109 110 static boolean_t nfs4_client_cpr_callb(void *, int); 111 112 struct mi4_globals { 113 kmutex_t mig_lock; /* lock protecting mig_list */ 114 list_t mig_list; /* list of NFS v4 mounts in zone */ 115 boolean_t mig_destructor_called; 116 }; 117 118 static zone_key_t mi4_list_key; 119 120 /* 121 * Attributes caching: 122 * 123 * Attributes are cached in the rnode in struct vattr form. 124 * There is a time associated with the cached attributes (r_time_attr_inval) 125 * which tells whether the attributes are valid. The time is initialized 126 * to the difference between current time and the modify time of the vnode 127 * when new attributes are cached. This allows the attributes for 128 * files that have changed recently to be timed out sooner than for files 129 * that have not changed for a long time. There are minimum and maximum 130 * timeout values that can be set per mount point. 131 */ 132 133 /* 134 * If a cache purge is in progress, wait for it to finish. 135 * 136 * The current thread must not be in the middle of an 137 * nfs4_start_op/nfs4_end_op region. Otherwise, there could be a deadlock 138 * between this thread, a recovery thread, and the page flush thread. 139 */ 140 int 141 nfs4_waitfor_purge_complete(vnode_t *vp) 142 { 143 rnode4_t *rp; 144 k_sigset_t smask; 145 146 rp = VTOR4(vp); 147 if ((rp->r_serial != NULL && rp->r_serial != curthread) || 148 ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread)) { 149 mutex_enter(&rp->r_statelock); 150 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 151 while ((rp->r_serial != NULL && rp->r_serial != curthread) || 152 ((rp->r_flags & R4PGFLUSH) && 153 rp->r_pgflush != curthread)) { 154 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 155 sigunintr(&smask); 156 mutex_exit(&rp->r_statelock); 157 return (EINTR); 158 } 159 } 160 sigunintr(&smask); 161 mutex_exit(&rp->r_statelock); 162 } 163 return (0); 164 } 165 166 /* 167 * Validate caches by checking cached attributes. If they have timed out, 168 * then get new attributes from the server. As a side effect, cache 169 * invalidation is done if the attributes have changed. 170 * 171 * If the attributes have not timed out and if there is a cache 172 * invalidation being done by some other thread, then wait until that 173 * thread has completed the cache invalidation. 174 */ 175 int 176 nfs4_validate_caches(vnode_t *vp, cred_t *cr) 177 { 178 int error; 179 nfs4_ga_res_t gar; 180 181 if (ATTRCACHE4_VALID(vp)) { 182 error = nfs4_waitfor_purge_complete(vp); 183 if (error) 184 return (error); 185 return (0); 186 } 187 188 gar.n4g_va.va_mask = AT_ALL; 189 return (nfs4_getattr_otw(vp, &gar, cr, 0)); 190 } 191 192 /* 193 * Fill in attribute from the cache. 194 * If valid, then return 0 to indicate that no error occurred, 195 * otherwise return 1 to indicate that an error occurred. 196 */ 197 static int 198 nfs4_getattr_cache(vnode_t *vp, struct vattr *vap) 199 { 200 rnode4_t *rp; 201 202 rp = VTOR4(vp); 203 mutex_enter(&rp->r_statelock); 204 mutex_enter(&rp->r_statev4_lock); 205 if (ATTRCACHE4_VALID(vp)) { 206 mutex_exit(&rp->r_statev4_lock); 207 /* 208 * Cached attributes are valid 209 */ 210 *vap = rp->r_attr; 211 mutex_exit(&rp->r_statelock); 212 return (0); 213 } 214 mutex_exit(&rp->r_statev4_lock); 215 mutex_exit(&rp->r_statelock); 216 return (1); 217 } 218 219 220 /* 221 * If returned error is ESTALE flush all caches. The nfs4_purge_caches() 222 * call is synchronous because all the pages were invalidated by the 223 * nfs4_invalidate_pages() call. 224 */ 225 void 226 nfs4_purge_stale_fh(int errno, vnode_t *vp, cred_t *cr) 227 { 228 struct rnode4 *rp = VTOR4(vp); 229 230 /* Ensure that the ..._end_op() call has been done */ 231 ASSERT(tsd_get(nfs4_tsd_key) == NULL); 232 233 if (errno != ESTALE) 234 return; 235 236 mutex_enter(&rp->r_statelock); 237 rp->r_flags |= R4STALE; 238 if (!rp->r_error) 239 rp->r_error = errno; 240 mutex_exit(&rp->r_statelock); 241 if (nfs4_has_pages(vp)) 242 nfs4_invalidate_pages(vp, (u_offset_t)0, cr); 243 nfs4_purge_caches(vp, NFS4_PURGE_DNLC, cr, FALSE); 244 } 245 246 /* 247 * Purge all of the various NFS `data' caches. If "asyncpg" is TRUE, the 248 * page purge is done asynchronously. 249 */ 250 void 251 nfs4_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr, int asyncpg) 252 { 253 rnode4_t *rp; 254 char *contents; 255 vnode_t *xattr; 256 int size; 257 int pgflush; /* are we the page flush thread? */ 258 259 /* 260 * Purge the DNLC for any entries which refer to this file. 261 */ 262 if (vp->v_count > 1 && 263 (vp->v_type == VDIR || purge_dnlc == NFS4_PURGE_DNLC)) 264 dnlc_purge_vp(vp); 265 266 /* 267 * Clear any readdir state bits and purge the readlink response cache. 268 */ 269 rp = VTOR4(vp); 270 mutex_enter(&rp->r_statelock); 271 rp->r_flags &= ~R4LOOKUP; 272 contents = rp->r_symlink.contents; 273 size = rp->r_symlink.size; 274 rp->r_symlink.contents = NULL; 275 276 xattr = rp->r_xattr_dir; 277 rp->r_xattr_dir = NULL; 278 279 /* 280 * Purge pathconf cache too. 281 */ 282 rp->r_pathconf.pc4_xattr_valid = 0; 283 rp->r_pathconf.pc4_cache_valid = 0; 284 285 pgflush = (curthread == rp->r_pgflush); 286 mutex_exit(&rp->r_statelock); 287 288 if (contents != NULL) { 289 290 kmem_free((void *)contents, size); 291 } 292 293 if (xattr != NULL) 294 VN_RELE(xattr); 295 296 /* 297 * Flush the page cache. If the current thread is the page flush 298 * thread, don't initiate a new page flush. There's no need for 299 * it, and doing it correctly is hard. 300 */ 301 if (nfs4_has_pages(vp) && !pgflush) { 302 if (!asyncpg) { 303 (void) nfs4_waitfor_purge_complete(vp); 304 nfs4_flush_pages(vp, cr); 305 } else { 306 pgflush_t *args; 307 308 /* 309 * We don't hold r_statelock while creating the 310 * thread, in case the call blocks. So we use a 311 * flag to indicate that a page flush thread is 312 * active. 313 */ 314 mutex_enter(&rp->r_statelock); 315 if (rp->r_flags & R4PGFLUSH) { 316 mutex_exit(&rp->r_statelock); 317 } else { 318 rp->r_flags |= R4PGFLUSH; 319 mutex_exit(&rp->r_statelock); 320 321 args = kmem_alloc(sizeof (pgflush_t), 322 KM_SLEEP); 323 args->vp = vp; 324 VN_HOLD(args->vp); 325 args->cr = cr; 326 crhold(args->cr); 327 (void) zthread_create(NULL, 0, 328 nfs4_pgflush_thread, args, 0, 329 minclsyspri); 330 } 331 } 332 } 333 334 /* 335 * Flush the readdir response cache. 336 */ 337 nfs4_purge_rddir_cache(vp); 338 } 339 340 /* 341 * Invalidate all pages for the given file, after writing back the dirty 342 * ones. 343 */ 344 345 void 346 nfs4_flush_pages(vnode_t *vp, cred_t *cr) 347 { 348 int error; 349 rnode4_t *rp = VTOR4(vp); 350 351 error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL); 352 if (error == ENOSPC || error == EDQUOT) { 353 mutex_enter(&rp->r_statelock); 354 if (!rp->r_error) 355 rp->r_error = error; 356 mutex_exit(&rp->r_statelock); 357 } 358 } 359 360 /* 361 * Page flush thread. 362 */ 363 364 static void 365 nfs4_pgflush_thread(pgflush_t *args) 366 { 367 rnode4_t *rp = VTOR4(args->vp); 368 369 /* remember which thread we are, so we don't deadlock ourselves */ 370 mutex_enter(&rp->r_statelock); 371 ASSERT(rp->r_pgflush == NULL); 372 rp->r_pgflush = curthread; 373 mutex_exit(&rp->r_statelock); 374 375 nfs4_flush_pages(args->vp, args->cr); 376 377 mutex_enter(&rp->r_statelock); 378 rp->r_pgflush = NULL; 379 rp->r_flags &= ~R4PGFLUSH; 380 cv_broadcast(&rp->r_cv); 381 mutex_exit(&rp->r_statelock); 382 383 VN_RELE(args->vp); 384 crfree(args->cr); 385 kmem_free(args, sizeof (pgflush_t)); 386 zthread_exit(); 387 } 388 389 /* 390 * Purge the readdir cache of all entries which are not currently 391 * being filled. 392 */ 393 void 394 nfs4_purge_rddir_cache(vnode_t *vp) 395 { 396 rnode4_t *rp; 397 398 rp = VTOR4(vp); 399 400 mutex_enter(&rp->r_statelock); 401 rp->r_direof = NULL; 402 rp->r_flags &= ~R4LOOKUP; 403 rp->r_flags |= R4READDIRWATTR; 404 rddir4_cache_purge(rp); 405 mutex_exit(&rp->r_statelock); 406 } 407 408 /* 409 * Set attributes cache for given vnode using virtual attributes. There is 410 * no cache validation, but if the attributes are deemed to be stale, they 411 * are ignored. This corresponds to nfs3_attrcache(). 412 * 413 * Set the timeout value on the attribute cache and fill it 414 * with the passed in attributes. 415 */ 416 void 417 nfs4_attrcache_noinval(vnode_t *vp, nfs4_ga_res_t *garp, hrtime_t t) 418 { 419 rnode4_t *rp = VTOR4(vp); 420 421 mutex_enter(&rp->r_statelock); 422 if (rp->r_time_attr_saved <= t) 423 nfs4_attrcache_va(vp, garp, FALSE); 424 mutex_exit(&rp->r_statelock); 425 } 426 427 /* 428 * Use the passed in virtual attributes to check to see whether the 429 * data and metadata caches are valid, cache the new attributes, and 430 * then do the cache invalidation if required. 431 * 432 * The cache validation and caching of the new attributes is done 433 * atomically via the use of the mutex, r_statelock. If required, 434 * the cache invalidation is done atomically w.r.t. the cache 435 * validation and caching of the attributes via the pseudo lock, 436 * r_serial. 437 * 438 * This routine is used to do cache validation and attributes caching 439 * for operations with a single set of post operation attributes. 440 */ 441 442 void 443 nfs4_attr_cache(vnode_t *vp, nfs4_ga_res_t *garp, 444 hrtime_t t, cred_t *cr, int async, 445 change_info4 *cinfo) 446 { 447 rnode4_t *rp; 448 int mtime_changed = 0; 449 int ctime_changed = 0; 450 vsecattr_t *vsp; 451 int was_serial, set_time_cache_inval, recov; 452 vattr_t *vap = &garp->n4g_va; 453 mntinfo4_t *mi = VTOMI4(vp); 454 len_t preattr_rsize; 455 boolean_t writemodify_set = B_FALSE; 456 boolean_t cachepurge_set = B_FALSE; 457 458 ASSERT(mi->mi_vfsp->vfs_dev == garp->n4g_va.va_fsid); 459 460 /* Is curthread the recovery thread? */ 461 mutex_enter(&mi->mi_lock); 462 recov = (VTOMI4(vp)->mi_recovthread == curthread); 463 mutex_exit(&mi->mi_lock); 464 465 rp = VTOR4(vp); 466 mutex_enter(&rp->r_statelock); 467 was_serial = (rp->r_serial == curthread); 468 if (rp->r_serial && !was_serial) { 469 klwp_t *lwp = ttolwp(curthread); 470 471 /* 472 * If we're the recovery thread, then purge current attrs 473 * and bail out to avoid potential deadlock between another 474 * thread caching attrs (r_serial thread), recov thread, 475 * and an async writer thread. 476 */ 477 if (recov) { 478 PURGE_ATTRCACHE4_LOCKED(rp); 479 mutex_exit(&rp->r_statelock); 480 return; 481 } 482 483 if (lwp != NULL) 484 lwp->lwp_nostop++; 485 while (rp->r_serial != NULL) { 486 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 487 mutex_exit(&rp->r_statelock); 488 if (lwp != NULL) 489 lwp->lwp_nostop--; 490 return; 491 } 492 } 493 if (lwp != NULL) 494 lwp->lwp_nostop--; 495 } 496 497 /* 498 * If there is a page flush thread, the current thread needs to 499 * bail out, to prevent a possible deadlock between the current 500 * thread (which might be in a start_op/end_op region), the 501 * recovery thread, and the page flush thread. Expire the 502 * attribute cache, so that any attributes the current thread was 503 * going to set are not lost. 504 */ 505 if ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread) { 506 PURGE_ATTRCACHE4_LOCKED(rp); 507 mutex_exit(&rp->r_statelock); 508 return; 509 } 510 511 if (rp->r_time_attr_saved > t) { 512 /* 513 * Attributes have been cached since these attributes were 514 * probably made. If there is an inconsistency in what is 515 * cached, mark them invalid. If not, don't act on them. 516 */ 517 if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size)) 518 PURGE_ATTRCACHE4_LOCKED(rp); 519 mutex_exit(&rp->r_statelock); 520 return; 521 } 522 set_time_cache_inval = 0; 523 if (cinfo) { 524 /* 525 * Only directory modifying callers pass non-NULL cinfo. 526 */ 527 ASSERT(vp->v_type == VDIR); 528 /* 529 * If the cache timeout either doesn't exist or hasn't expired, 530 * and dir didn't changed on server before dirmod op 531 * and dir didn't change after dirmod op but before getattr 532 * then there's a chance that the client's cached data for 533 * this object is current (not stale). No immediate cache 534 * flush is required. 535 * 536 */ 537 if ((! rp->r_time_cache_inval || t < rp->r_time_cache_inval) && 538 cinfo->before == rp->r_change && 539 (garp->n4g_change_valid && 540 cinfo->after == garp->n4g_change)) { 541 542 /* 543 * If atomic isn't set, then the before/after info 544 * cannot be blindly trusted. For this case, we tell 545 * nfs4_attrcache_va to cache the attrs but also 546 * establish an absolute maximum cache timeout. When 547 * the timeout is reached, caches will be flushed. 548 */ 549 if (! cinfo->atomic) 550 set_time_cache_inval = 1; 551 } else { 552 553 /* 554 * We're not sure exactly what changed, but we know 555 * what to do. flush all caches for dir. remove the 556 * attr timeout. 557 * 558 * a) timeout expired. flush all caches. 559 * b) r_change != cinfo.before. flush all caches. 560 * c) r_change == cinfo.before, but cinfo.after != 561 * post-op getattr(change). flush all caches. 562 * d) post-op getattr(change) not provided by server. 563 * flush all caches. 564 */ 565 mtime_changed = 1; 566 ctime_changed = 1; 567 rp->r_time_cache_inval = 0; 568 } 569 } else { 570 /* 571 * Write thread after writing data to file on remote server, 572 * will always set R4WRITEMODIFIED to indicate that file on 573 * remote server was modified with a WRITE operation and would 574 * have marked attribute cache as timed out. If R4WRITEMODIFIED 575 * is set, then do not check for mtime and ctime change. 576 */ 577 if (!(rp->r_flags & R4WRITEMODIFIED)) { 578 if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size)) 579 mtime_changed = 1; 580 581 if (rp->r_attr.va_ctime.tv_sec != 582 vap->va_ctime.tv_sec || 583 rp->r_attr.va_ctime.tv_nsec != 584 vap->va_ctime.tv_nsec) 585 ctime_changed = 1; 586 } else { 587 writemodify_set = B_TRUE; 588 } 589 } 590 591 preattr_rsize = rp->r_size; 592 593 nfs4_attrcache_va(vp, garp, set_time_cache_inval); 594 595 /* 596 * If we have updated filesize in nfs4_attrcache_va, as soon as we 597 * drop statelock we will be in transition of purging all 598 * our caches and updating them. It is possible for another 599 * thread to pick this new file size and read in zeroed data. 600 * stall other threads till cache purge is complete. 601 */ 602 if ((!cinfo) && (rp->r_size != preattr_rsize)) { 603 /* 604 * If R4WRITEMODIFIED was set and we have updated the file 605 * size, Server's returned file size need not necessarily 606 * be because of this Client's WRITE. We need to purge 607 * all caches. 608 */ 609 if (writemodify_set) 610 mtime_changed = 1; 611 612 if (mtime_changed && !(rp->r_flags & R4INCACHEPURGE)) { 613 rp->r_flags |= R4INCACHEPURGE; 614 cachepurge_set = B_TRUE; 615 } 616 } 617 618 if (!mtime_changed && !ctime_changed) { 619 mutex_exit(&rp->r_statelock); 620 return; 621 } 622 623 rp->r_serial = curthread; 624 625 mutex_exit(&rp->r_statelock); 626 627 /* 628 * If we're the recov thread, then force async nfs4_purge_caches 629 * to avoid potential deadlock. 630 */ 631 if (mtime_changed) 632 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, recov ? 1 : async); 633 634 if ((rp->r_flags & R4INCACHEPURGE) && cachepurge_set) { 635 mutex_enter(&rp->r_statelock); 636 rp->r_flags &= ~R4INCACHEPURGE; 637 cv_broadcast(&rp->r_cv); 638 mutex_exit(&rp->r_statelock); 639 cachepurge_set = B_FALSE; 640 } 641 642 if (ctime_changed) { 643 (void) nfs4_access_purge_rp(rp); 644 if (rp->r_secattr != NULL) { 645 mutex_enter(&rp->r_statelock); 646 vsp = rp->r_secattr; 647 rp->r_secattr = NULL; 648 mutex_exit(&rp->r_statelock); 649 if (vsp != NULL) 650 nfs4_acl_free_cache(vsp); 651 } 652 } 653 654 if (!was_serial) { 655 mutex_enter(&rp->r_statelock); 656 rp->r_serial = NULL; 657 cv_broadcast(&rp->r_cv); 658 mutex_exit(&rp->r_statelock); 659 } 660 } 661 662 /* 663 * Set attributes cache for given vnode using virtual attributes. 664 * 665 * Set the timeout value on the attribute cache and fill it 666 * with the passed in attributes. 667 * 668 * The caller must be holding r_statelock. 669 */ 670 static void 671 nfs4_attrcache_va(vnode_t *vp, nfs4_ga_res_t *garp, int set_cache_timeout) 672 { 673 rnode4_t *rp; 674 mntinfo4_t *mi; 675 hrtime_t delta; 676 hrtime_t now; 677 vattr_t *vap = &garp->n4g_va; 678 679 rp = VTOR4(vp); 680 681 ASSERT(MUTEX_HELD(&rp->r_statelock)); 682 ASSERT(vap->va_mask == AT_ALL); 683 684 /* Switch to master before checking v_flag */ 685 if (IS_SHADOW(vp, rp)) 686 vp = RTOV4(rp); 687 688 now = gethrtime(); 689 690 mi = VTOMI4(vp); 691 692 /* 693 * Only establish a new cache timeout (if requested). Never 694 * extend a timeout. Never clear a timeout. Clearing a timeout 695 * is done by nfs4_update_dircaches (ancestor in our call chain) 696 */ 697 if (set_cache_timeout && ! rp->r_time_cache_inval) 698 rp->r_time_cache_inval = now + mi->mi_acdirmax; 699 700 /* 701 * Delta is the number of nanoseconds that we will 702 * cache the attributes of the file. It is based on 703 * the number of nanoseconds since the last time that 704 * we detected a change. The assumption is that files 705 * that changed recently are likely to change again. 706 * There is a minimum and a maximum for regular files 707 * and for directories which is enforced though. 708 * 709 * Using the time since last change was detected 710 * eliminates direct comparison or calculation 711 * using mixed client and server times. NFS does 712 * not make any assumptions regarding the client 713 * and server clocks being synchronized. 714 */ 715 if (vap->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec || 716 vap->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec || 717 vap->va_size != rp->r_attr.va_size) { 718 rp->r_time_attr_saved = now; 719 } 720 721 if ((mi->mi_flags & MI4_NOAC) || (vp->v_flag & VNOCACHE)) 722 delta = 0; 723 else { 724 delta = now - rp->r_time_attr_saved; 725 if (vp->v_type == VDIR) { 726 if (delta < mi->mi_acdirmin) 727 delta = mi->mi_acdirmin; 728 else if (delta > mi->mi_acdirmax) 729 delta = mi->mi_acdirmax; 730 } else { 731 if (delta < mi->mi_acregmin) 732 delta = mi->mi_acregmin; 733 else if (delta > mi->mi_acregmax) 734 delta = mi->mi_acregmax; 735 } 736 } 737 rp->r_time_attr_inval = now + delta; 738 739 rp->r_attr = *vap; 740 if (garp->n4g_change_valid) 741 rp->r_change = garp->n4g_change; 742 743 /* 744 * The attributes that were returned may be valid and can 745 * be used, but they may not be allowed to be cached. 746 * Reset the timers to cause immediate invalidation and 747 * clear r_change so no VERIFY operations will suceed 748 */ 749 if (garp->n4g_attrwhy == NFS4_GETATTR_NOCACHE_OK) { 750 rp->r_time_attr_inval = now; 751 rp->r_time_attr_saved = now; 752 rp->r_change = 0; 753 } 754 755 /* 756 * If mounted_on_fileid returned AND the object is a stub, 757 * then set object's va_nodeid to the mounted over fid 758 * returned by server. 759 * 760 * If mounted_on_fileid not provided/supported, then 761 * just set it to 0 for now. Eventually it would be 762 * better to set it to a hashed version of FH. This 763 * would probably be good enough to provide a unique 764 * fid/d_ino within a dir. 765 * 766 * We don't need to carry mounted_on_fileid in the 767 * rnode as long as the client never requests fileid 768 * without also requesting mounted_on_fileid. For 769 * now, it stays. 770 */ 771 if (garp->n4g_mon_fid_valid) { 772 rp->r_mntd_fid = garp->n4g_mon_fid; 773 774 if (RP_ISSTUB(rp)) 775 rp->r_attr.va_nodeid = rp->r_mntd_fid; 776 } 777 778 /* 779 * Check to see if there are valid pathconf bits to 780 * cache in the rnode. 781 */ 782 if (garp->n4g_ext_res) { 783 if (garp->n4g_ext_res->n4g_pc4.pc4_cache_valid) { 784 rp->r_pathconf = garp->n4g_ext_res->n4g_pc4; 785 } else { 786 if (garp->n4g_ext_res->n4g_pc4.pc4_xattr_valid) { 787 rp->r_pathconf.pc4_xattr_valid = TRUE; 788 rp->r_pathconf.pc4_xattr_exists = 789 garp->n4g_ext_res->n4g_pc4.pc4_xattr_exists; 790 } 791 } 792 } 793 /* 794 * Update the size of the file if there is no cached data or if 795 * the cached data is clean and there is no data being written 796 * out. 797 */ 798 if (rp->r_size != vap->va_size && 799 (!vn_has_cached_data(vp) || 800 (!(rp->r_flags & R4DIRTY) && rp->r_count == 0))) { 801 rp->r_size = vap->va_size; 802 } 803 nfs_setswaplike(vp, vap); 804 rp->r_flags &= ~R4WRITEMODIFIED; 805 } 806 807 /* 808 * Get attributes over-the-wire and update attributes cache 809 * if no error occurred in the over-the-wire operation. 810 * Return 0 if successful, otherwise error. 811 */ 812 int 813 nfs4_getattr_otw(vnode_t *vp, nfs4_ga_res_t *garp, cred_t *cr, int get_acl) 814 { 815 mntinfo4_t *mi = VTOMI4(vp); 816 hrtime_t t; 817 nfs4_recov_state_t recov_state; 818 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 819 820 recov_state.rs_flags = 0; 821 recov_state.rs_num_retry_despite_err = 0; 822 823 /* Save the original mount point security flavor */ 824 (void) save_mnt_secinfo(mi->mi_curr_serv); 825 826 recov_retry: 827 828 if ((e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR, 829 &recov_state, NULL))) { 830 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 831 return (e.error); 832 } 833 834 t = gethrtime(); 835 836 nfs4_getattr_otw_norecovery(vp, garp, &e, cr, get_acl); 837 838 if (nfs4_needs_recovery(&e, FALSE, vp->v_vfsp)) { 839 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 840 NULL, OP_GETATTR, NULL, NULL, NULL) == FALSE) { 841 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, 842 &recov_state, 1); 843 goto recov_retry; 844 } 845 } 846 847 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 0); 848 849 if (!e.error) { 850 if (e.stat == NFS4_OK) { 851 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 852 } else { 853 e.error = geterrno4(e.stat); 854 855 nfs4_purge_stale_fh(e.error, vp, cr); 856 } 857 } 858 859 /* 860 * If getattr a node that is a stub for a crossed 861 * mount point, keep the original secinfo flavor for 862 * the current file system, not the crossed one. 863 */ 864 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 865 866 return (e.error); 867 } 868 869 /* 870 * Generate a compound to get attributes over-the-wire. 871 */ 872 void 873 nfs4_getattr_otw_norecovery(vnode_t *vp, nfs4_ga_res_t *garp, 874 nfs4_error_t *ep, cred_t *cr, int get_acl) 875 { 876 COMPOUND4args_clnt args; 877 COMPOUND4res_clnt res; 878 int doqueue; 879 rnode4_t *rp = VTOR4(vp); 880 nfs_argop4 argop[2]; 881 882 args.ctag = TAG_GETATTR; 883 884 args.array_len = 2; 885 args.array = argop; 886 887 /* putfh */ 888 argop[0].argop = OP_CPUTFH; 889 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 890 891 /* getattr */ 892 /* 893 * Unlike nfs version 2 and 3, where getattr returns all the 894 * attributes, nfs version 4 returns only the ones explicitly 895 * asked for. This creates problems, as some system functions 896 * (e.g. cache check) require certain attributes and if the 897 * cached node lacks some attributes such as uid/gid, it can 898 * affect system utilities (e.g. "ls") that rely on the information 899 * to be there. This can lead to anything from system crashes to 900 * corrupted information processed by user apps. 901 * So to ensure that all bases are covered, request at least 902 * the AT_ALL attribute mask. 903 */ 904 argop[1].argop = OP_GETATTR; 905 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 906 if (get_acl) 907 argop[1].nfs_argop4_u.opgetattr.attr_request |= FATTR4_ACL_MASK; 908 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 909 910 doqueue = 1; 911 912 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, ep); 913 914 if (ep->error) 915 return; 916 917 if (res.status != NFS4_OK) { 918 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 919 return; 920 } 921 922 *garp = res.array[1].nfs_resop4_u.opgetattr.ga_res; 923 924 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 925 } 926 927 /* 928 * Return either cached or remote attributes. If get remote attr 929 * use them to check and invalidate caches, then cache the new attributes. 930 */ 931 int 932 nfs4getattr(vnode_t *vp, vattr_t *vap, cred_t *cr) 933 { 934 int error; 935 rnode4_t *rp; 936 nfs4_ga_res_t gar; 937 938 ASSERT(nfs4_consistent_type(vp)); 939 940 /* 941 * If we've got cached attributes, we're done, otherwise go 942 * to the server to get attributes, which will update the cache 943 * in the process. Either way, use the cached attributes for 944 * the caller's vattr_t. 945 * 946 * Note that we ignore the gar set by the OTW call: the attr caching 947 * code may make adjustments when storing to the rnode, and we want 948 * to see those changes here. 949 */ 950 rp = VTOR4(vp); 951 error = 0; 952 mutex_enter(&rp->r_statelock); 953 if (!ATTRCACHE4_VALID(vp)) { 954 mutex_exit(&rp->r_statelock); 955 error = nfs4_getattr_otw(vp, &gar, cr, 0); 956 mutex_enter(&rp->r_statelock); 957 } 958 959 if (!error) 960 *vap = rp->r_attr; 961 962 /* Return the client's view of file size */ 963 vap->va_size = rp->r_size; 964 965 mutex_exit(&rp->r_statelock); 966 967 ASSERT(nfs4_consistent_type(vp)); 968 969 return (error); 970 } 971 972 int 973 nfs4_attr_otw(vnode_t *vp, nfs4_tag_type_t tag_type, 974 nfs4_ga_res_t *garp, bitmap4 reqbitmap, cred_t *cr) 975 { 976 COMPOUND4args_clnt args; 977 COMPOUND4res_clnt res; 978 int doqueue; 979 nfs_argop4 argop[2]; 980 mntinfo4_t *mi = VTOMI4(vp); 981 bool_t needrecov = FALSE; 982 nfs4_recov_state_t recov_state; 983 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 984 nfs4_ga_ext_res_t *gerp; 985 986 recov_state.rs_flags = 0; 987 recov_state.rs_num_retry_despite_err = 0; 988 989 recov_retry: 990 args.ctag = tag_type; 991 992 args.array_len = 2; 993 args.array = argop; 994 995 e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR, &recov_state, NULL); 996 if (e.error) 997 return (e.error); 998 999 /* putfh */ 1000 argop[0].argop = OP_CPUTFH; 1001 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 1002 1003 /* getattr */ 1004 argop[1].argop = OP_GETATTR; 1005 argop[1].nfs_argop4_u.opgetattr.attr_request = reqbitmap; 1006 argop[1].nfs_argop4_u.opgetattr.mi = mi; 1007 1008 doqueue = 1; 1009 1010 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1011 "nfs4_attr_otw: %s call, rp %s", needrecov ? "recov" : "first", 1012 rnode4info(VTOR4(vp)))); 1013 1014 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 1015 1016 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 1017 if (!needrecov && e.error) { 1018 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 1019 needrecov); 1020 return (e.error); 1021 } 1022 1023 if (needrecov) { 1024 bool_t abort; 1025 1026 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1027 "nfs4_attr_otw: initiating recovery\n")); 1028 1029 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 1030 NULL, OP_GETATTR, NULL, NULL, NULL); 1031 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 1032 needrecov); 1033 if (!e.error) { 1034 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1035 e.error = geterrno4(res.status); 1036 } 1037 if (abort == FALSE) 1038 goto recov_retry; 1039 return (e.error); 1040 } 1041 1042 if (res.status) { 1043 e.error = geterrno4(res.status); 1044 } else { 1045 gerp = garp->n4g_ext_res; 1046 bcopy(&res.array[1].nfs_resop4_u.opgetattr.ga_res, 1047 garp, sizeof (nfs4_ga_res_t)); 1048 garp->n4g_ext_res = gerp; 1049 if (garp->n4g_ext_res && 1050 res.array[1].nfs_resop4_u.opgetattr.ga_res.n4g_ext_res) 1051 bcopy(res.array[1].nfs_resop4_u.opgetattr. 1052 ga_res.n4g_ext_res, 1053 garp->n4g_ext_res, sizeof (nfs4_ga_ext_res_t)); 1054 } 1055 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1056 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 1057 needrecov); 1058 return (e.error); 1059 } 1060 1061 /* 1062 * Asynchronous I/O parameters. nfs_async_threads is the high-water mark 1063 * for the demand-based allocation of async threads per-mount. The 1064 * nfs_async_timeout is the amount of time a thread will live after it 1065 * becomes idle, unless new I/O requests are received before the thread 1066 * dies. See nfs4_async_putpage and nfs4_async_start. 1067 */ 1068 1069 static void nfs4_async_start(struct vfs *); 1070 static void nfs4_async_pgops_start(struct vfs *); 1071 static void nfs4_async_common_start(struct vfs *, int); 1072 1073 static void 1074 free_async_args4(struct nfs4_async_reqs *args) 1075 { 1076 rnode4_t *rp; 1077 1078 if (args->a_io != NFS4_INACTIVE) { 1079 rp = VTOR4(args->a_vp); 1080 mutex_enter(&rp->r_statelock); 1081 rp->r_count--; 1082 if (args->a_io == NFS4_PUTAPAGE || 1083 args->a_io == NFS4_PAGEIO) 1084 rp->r_awcount--; 1085 cv_broadcast(&rp->r_cv); 1086 mutex_exit(&rp->r_statelock); 1087 VN_RELE(args->a_vp); 1088 } 1089 crfree(args->a_cred); 1090 kmem_free(args, sizeof (*args)); 1091 } 1092 1093 /* 1094 * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and 1095 * pageout(), running in the global zone, have legitimate reasons to do 1096 * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts. We avoid the problem by 1097 * use of a a per-mount "asynchronous requests manager thread" which is 1098 * signaled by the various asynchronous work routines when there is 1099 * asynchronous work to be done. It is responsible for creating new 1100 * worker threads if necessary, and notifying existing worker threads 1101 * that there is work to be done. 1102 * 1103 * In other words, it will "take the specifications from the customers and 1104 * give them to the engineers." 1105 * 1106 * Worker threads die off of their own accord if they are no longer 1107 * needed. 1108 * 1109 * This thread is killed when the zone is going away or the filesystem 1110 * is being unmounted. 1111 */ 1112 void 1113 nfs4_async_manager(vfs_t *vfsp) 1114 { 1115 callb_cpr_t cprinfo; 1116 mntinfo4_t *mi; 1117 uint_t max_threads; 1118 1119 mi = VFTOMI4(vfsp); 1120 1121 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, 1122 "nfs4_async_manager"); 1123 1124 mutex_enter(&mi->mi_async_lock); 1125 /* 1126 * We want to stash the max number of threads that this mount was 1127 * allowed so we can use it later when the variable is set to zero as 1128 * part of the zone/mount going away. 1129 * 1130 * We want to be able to create at least one thread to handle 1131 * asynchronous inactive calls. 1132 */ 1133 max_threads = MAX(mi->mi_max_threads, 1); 1134 /* 1135 * We don't want to wait for mi_max_threads to go to zero, since that 1136 * happens as part of a failed unmount, but this thread should only 1137 * exit when the mount is really going away. 1138 * 1139 * Once MI4_ASYNC_MGR_STOP is set, no more async operations will be 1140 * attempted: the various _async_*() functions know to do things 1141 * inline if mi_max_threads == 0. Henceforth we just drain out the 1142 * outstanding requests. 1143 * 1144 * Note that we still create zthreads even if we notice the zone is 1145 * shutting down (MI4_ASYNC_MGR_STOP is set); this may cause the zone 1146 * shutdown sequence to take slightly longer in some cases, but 1147 * doesn't violate the protocol, as all threads will exit as soon as 1148 * they're done processing the remaining requests. 1149 */ 1150 for (;;) { 1151 while (mi->mi_async_req_count > 0) { 1152 /* 1153 * Paranoia: If the mount started out having 1154 * (mi->mi_max_threads == 0), and the value was 1155 * later changed (via a debugger or somesuch), 1156 * we could be confused since we will think we 1157 * can't create any threads, and the calling 1158 * code (which looks at the current value of 1159 * mi->mi_max_threads, now non-zero) thinks we 1160 * can. 1161 * 1162 * So, because we're paranoid, we create threads 1163 * up to the maximum of the original and the 1164 * current value. This means that future 1165 * (debugger-induced) alterations of 1166 * mi->mi_max_threads are ignored for our 1167 * purposes, but who told them they could change 1168 * random values on a live kernel anyhow? 1169 */ 1170 if (mi->mi_threads[NFS4_ASYNC_QUEUE] < 1171 MAX(mi->mi_max_threads, max_threads)) { 1172 mi->mi_threads[NFS4_ASYNC_QUEUE]++; 1173 mutex_exit(&mi->mi_async_lock); 1174 MI4_HOLD(mi); 1175 VFS_HOLD(vfsp); /* hold for new thread */ 1176 (void) zthread_create(NULL, 0, nfs4_async_start, 1177 vfsp, 0, minclsyspri); 1178 mutex_enter(&mi->mi_async_lock); 1179 } else if (mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] < 1180 NUM_ASYNC_PGOPS_THREADS) { 1181 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE]++; 1182 mutex_exit(&mi->mi_async_lock); 1183 MI4_HOLD(mi); 1184 VFS_HOLD(vfsp); /* hold for new thread */ 1185 (void) zthread_create(NULL, 0, 1186 nfs4_async_pgops_start, vfsp, 0, 1187 minclsyspri); 1188 mutex_enter(&mi->mi_async_lock); 1189 } 1190 NFS4_WAKE_ASYNC_WORKER(mi->mi_async_work_cv); 1191 ASSERT(mi->mi_async_req_count != 0); 1192 mi->mi_async_req_count--; 1193 } 1194 1195 mutex_enter(&mi->mi_lock); 1196 if (mi->mi_flags & MI4_ASYNC_MGR_STOP) { 1197 mutex_exit(&mi->mi_lock); 1198 break; 1199 } 1200 mutex_exit(&mi->mi_lock); 1201 1202 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1203 cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock); 1204 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock); 1205 } 1206 1207 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 1208 "nfs4_async_manager exiting for vfs %p\n", (void *)mi->mi_vfsp)); 1209 /* 1210 * Let everyone know we're done. 1211 */ 1212 mi->mi_manager_thread = NULL; 1213 /* 1214 * Wake up the inactive thread. 1215 */ 1216 cv_broadcast(&mi->mi_inact_req_cv); 1217 /* 1218 * Wake up anyone sitting in nfs4_async_manager_stop() 1219 */ 1220 cv_broadcast(&mi->mi_async_cv); 1221 /* 1222 * There is no explicit call to mutex_exit(&mi->mi_async_lock) 1223 * since CALLB_CPR_EXIT is actually responsible for releasing 1224 * 'mi_async_lock'. 1225 */ 1226 CALLB_CPR_EXIT(&cprinfo); 1227 VFS_RELE(vfsp); /* release thread's hold */ 1228 MI4_RELE(mi); 1229 zthread_exit(); 1230 } 1231 1232 /* 1233 * Signal (and wait for) the async manager thread to clean up and go away. 1234 */ 1235 void 1236 nfs4_async_manager_stop(vfs_t *vfsp) 1237 { 1238 mntinfo4_t *mi = VFTOMI4(vfsp); 1239 1240 mutex_enter(&mi->mi_async_lock); 1241 mutex_enter(&mi->mi_lock); 1242 mi->mi_flags |= MI4_ASYNC_MGR_STOP; 1243 mutex_exit(&mi->mi_lock); 1244 cv_broadcast(&mi->mi_async_reqs_cv); 1245 /* 1246 * Wait for the async manager thread to die. 1247 */ 1248 while (mi->mi_manager_thread != NULL) 1249 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 1250 mutex_exit(&mi->mi_async_lock); 1251 } 1252 1253 int 1254 nfs4_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, 1255 struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *, 1256 u_offset_t, caddr_t, struct seg *, cred_t *)) 1257 { 1258 rnode4_t *rp; 1259 mntinfo4_t *mi; 1260 struct nfs4_async_reqs *args; 1261 1262 rp = VTOR4(vp); 1263 ASSERT(rp->r_freef == NULL); 1264 1265 mi = VTOMI4(vp); 1266 1267 /* 1268 * If addr falls in a different segment, don't bother doing readahead. 1269 */ 1270 if (addr >= seg->s_base + seg->s_size) 1271 return (-1); 1272 1273 /* 1274 * If we can't allocate a request structure, punt on the readahead. 1275 */ 1276 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1277 return (-1); 1278 1279 /* 1280 * If a lock operation is pending, don't initiate any new 1281 * readaheads. Otherwise, bump r_count to indicate the new 1282 * asynchronous I/O. 1283 */ 1284 if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) { 1285 kmem_free(args, sizeof (*args)); 1286 return (-1); 1287 } 1288 mutex_enter(&rp->r_statelock); 1289 rp->r_count++; 1290 mutex_exit(&rp->r_statelock); 1291 nfs_rw_exit(&rp->r_lkserlock); 1292 1293 args->a_next = NULL; 1294 #ifdef DEBUG 1295 args->a_queuer = curthread; 1296 #endif 1297 VN_HOLD(vp); 1298 args->a_vp = vp; 1299 ASSERT(cr != NULL); 1300 crhold(cr); 1301 args->a_cred = cr; 1302 args->a_io = NFS4_READ_AHEAD; 1303 args->a_nfs4_readahead = readahead; 1304 args->a_nfs4_blkoff = blkoff; 1305 args->a_nfs4_seg = seg; 1306 args->a_nfs4_addr = addr; 1307 1308 mutex_enter(&mi->mi_async_lock); 1309 1310 /* 1311 * If asyncio has been disabled, don't bother readahead. 1312 */ 1313 if (mi->mi_max_threads == 0) { 1314 mutex_exit(&mi->mi_async_lock); 1315 goto noasync; 1316 } 1317 1318 /* 1319 * Link request structure into the async list and 1320 * wakeup async thread to do the i/o. 1321 */ 1322 if (mi->mi_async_reqs[NFS4_READ_AHEAD] == NULL) { 1323 mi->mi_async_reqs[NFS4_READ_AHEAD] = args; 1324 mi->mi_async_tail[NFS4_READ_AHEAD] = args; 1325 } else { 1326 mi->mi_async_tail[NFS4_READ_AHEAD]->a_next = args; 1327 mi->mi_async_tail[NFS4_READ_AHEAD] = args; 1328 } 1329 1330 if (mi->mi_io_kstats) { 1331 mutex_enter(&mi->mi_lock); 1332 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1333 mutex_exit(&mi->mi_lock); 1334 } 1335 1336 mi->mi_async_req_count++; 1337 ASSERT(mi->mi_async_req_count != 0); 1338 cv_signal(&mi->mi_async_reqs_cv); 1339 mutex_exit(&mi->mi_async_lock); 1340 return (0); 1341 1342 noasync: 1343 mutex_enter(&rp->r_statelock); 1344 rp->r_count--; 1345 cv_broadcast(&rp->r_cv); 1346 mutex_exit(&rp->r_statelock); 1347 VN_RELE(vp); 1348 crfree(cr); 1349 kmem_free(args, sizeof (*args)); 1350 return (-1); 1351 } 1352 1353 static void 1354 nfs4_async_start(struct vfs *vfsp) 1355 { 1356 nfs4_async_common_start(vfsp, NFS4_ASYNC_QUEUE); 1357 } 1358 1359 static void 1360 nfs4_async_pgops_start(struct vfs *vfsp) 1361 { 1362 nfs4_async_common_start(vfsp, NFS4_ASYNC_PGOPS_QUEUE); 1363 } 1364 1365 /* 1366 * The async queues for each mounted file system are arranged as a 1367 * set of queues, one for each async i/o type. Requests are taken 1368 * from the queues in a round-robin fashion. A number of consecutive 1369 * requests are taken from each queue before moving on to the next 1370 * queue. This functionality may allow the NFS Version 2 server to do 1371 * write clustering, even if the client is mixing writes and reads 1372 * because it will take multiple write requests from the queue 1373 * before processing any of the other async i/o types. 1374 * 1375 * XXX The nfs4_async_common_start thread is unsafe in the light of the present 1376 * model defined by cpr to suspend the system. Specifically over the 1377 * wire calls are cpr-unsafe. The thread should be reevaluated in 1378 * case of future updates to the cpr model. 1379 */ 1380 static void 1381 nfs4_async_common_start(struct vfs *vfsp, int async_queue) 1382 { 1383 struct nfs4_async_reqs *args; 1384 mntinfo4_t *mi = VFTOMI4(vfsp); 1385 clock_t time_left = 1; 1386 callb_cpr_t cprinfo; 1387 int i; 1388 extern int nfs_async_timeout; 1389 int async_types; 1390 kcondvar_t *async_work_cv; 1391 1392 if (async_queue == NFS4_ASYNC_QUEUE) { 1393 async_types = NFS4_ASYNC_TYPES; 1394 async_work_cv = &mi->mi_async_work_cv[NFS4_ASYNC_QUEUE]; 1395 } else { 1396 async_types = NFS4_ASYNC_PGOPS_TYPES; 1397 async_work_cv = &mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE]; 1398 } 1399 1400 /* 1401 * Dynamic initialization of nfs_async_timeout to allow nfs to be 1402 * built in an implementation independent manner. 1403 */ 1404 if (nfs_async_timeout == -1) 1405 nfs_async_timeout = NFS_ASYNC_TIMEOUT; 1406 1407 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas"); 1408 1409 mutex_enter(&mi->mi_async_lock); 1410 for (;;) { 1411 /* 1412 * Find the next queue containing an entry. We start 1413 * at the current queue pointer and then round robin 1414 * through all of them until we either find a non-empty 1415 * queue or have looked through all of them. 1416 */ 1417 for (i = 0; i < async_types; i++) { 1418 args = *mi->mi_async_curr[async_queue]; 1419 if (args != NULL) 1420 break; 1421 mi->mi_async_curr[async_queue]++; 1422 if (mi->mi_async_curr[async_queue] == 1423 &mi->mi_async_reqs[async_types]) { 1424 mi->mi_async_curr[async_queue] = 1425 &mi->mi_async_reqs[0]; 1426 } 1427 } 1428 /* 1429 * If we didn't find a entry, then block until woken up 1430 * again and then look through the queues again. 1431 */ 1432 if (args == NULL) { 1433 /* 1434 * Exiting is considered to be safe for CPR as well 1435 */ 1436 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1437 1438 /* 1439 * Wakeup thread waiting to unmount the file 1440 * system only if all async threads are inactive. 1441 * 1442 * If we've timed-out and there's nothing to do, 1443 * then get rid of this thread. 1444 */ 1445 if (mi->mi_max_threads == 0 || time_left <= 0) { 1446 --mi->mi_threads[async_queue]; 1447 1448 if (mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 && 1449 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0) 1450 cv_signal(&mi->mi_async_cv); 1451 CALLB_CPR_EXIT(&cprinfo); 1452 VFS_RELE(vfsp); /* release thread's hold */ 1453 MI4_RELE(mi); 1454 zthread_exit(); 1455 /* NOTREACHED */ 1456 } 1457 time_left = cv_reltimedwait(async_work_cv, 1458 &mi->mi_async_lock, nfs_async_timeout, 1459 TR_CLOCK_TICK); 1460 1461 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock); 1462 1463 continue; 1464 } else { 1465 time_left = 1; 1466 } 1467 1468 /* 1469 * Remove the request from the async queue and then 1470 * update the current async request queue pointer. If 1471 * the current queue is empty or we have removed enough 1472 * consecutive entries from it, then reset the counter 1473 * for this queue and then move the current pointer to 1474 * the next queue. 1475 */ 1476 *mi->mi_async_curr[async_queue] = args->a_next; 1477 if (*mi->mi_async_curr[async_queue] == NULL || 1478 --mi->mi_async_clusters[args->a_io] == 0) { 1479 mi->mi_async_clusters[args->a_io] = 1480 mi->mi_async_init_clusters; 1481 mi->mi_async_curr[async_queue]++; 1482 if (mi->mi_async_curr[async_queue] == 1483 &mi->mi_async_reqs[async_types]) { 1484 mi->mi_async_curr[async_queue] = 1485 &mi->mi_async_reqs[0]; 1486 } 1487 } 1488 1489 if (args->a_io != NFS4_INACTIVE && mi->mi_io_kstats) { 1490 mutex_enter(&mi->mi_lock); 1491 kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1492 mutex_exit(&mi->mi_lock); 1493 } 1494 1495 mutex_exit(&mi->mi_async_lock); 1496 1497 /* 1498 * Obtain arguments from the async request structure. 1499 */ 1500 if (args->a_io == NFS4_READ_AHEAD && mi->mi_max_threads > 0) { 1501 (*args->a_nfs4_readahead)(args->a_vp, 1502 args->a_nfs4_blkoff, args->a_nfs4_addr, 1503 args->a_nfs4_seg, args->a_cred); 1504 } else if (args->a_io == NFS4_PUTAPAGE) { 1505 (void) (*args->a_nfs4_putapage)(args->a_vp, 1506 args->a_nfs4_pp, args->a_nfs4_off, 1507 args->a_nfs4_len, args->a_nfs4_flags, 1508 args->a_cred); 1509 } else if (args->a_io == NFS4_PAGEIO) { 1510 (void) (*args->a_nfs4_pageio)(args->a_vp, 1511 args->a_nfs4_pp, args->a_nfs4_off, 1512 args->a_nfs4_len, args->a_nfs4_flags, 1513 args->a_cred); 1514 } else if (args->a_io == NFS4_READDIR) { 1515 (void) ((*args->a_nfs4_readdir)(args->a_vp, 1516 args->a_nfs4_rdc, args->a_cred)); 1517 } else if (args->a_io == NFS4_COMMIT) { 1518 (*args->a_nfs4_commit)(args->a_vp, args->a_nfs4_plist, 1519 args->a_nfs4_offset, args->a_nfs4_count, 1520 args->a_cred); 1521 } else if (args->a_io == NFS4_INACTIVE) { 1522 nfs4_inactive_otw(args->a_vp, args->a_cred); 1523 } 1524 1525 /* 1526 * Now, release the vnode and free the credentials 1527 * structure. 1528 */ 1529 free_async_args4(args); 1530 /* 1531 * Reacquire the mutex because it will be needed above. 1532 */ 1533 mutex_enter(&mi->mi_async_lock); 1534 } 1535 } 1536 1537 /* 1538 * nfs4_inactive_thread - look for vnodes that need over-the-wire calls as 1539 * part of VOP_INACTIVE. 1540 */ 1541 1542 void 1543 nfs4_inactive_thread(mntinfo4_t *mi) 1544 { 1545 struct nfs4_async_reqs *args; 1546 callb_cpr_t cprinfo; 1547 vfs_t *vfsp = mi->mi_vfsp; 1548 1549 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, 1550 "nfs4_inactive_thread"); 1551 1552 for (;;) { 1553 mutex_enter(&mi->mi_async_lock); 1554 args = mi->mi_async_reqs[NFS4_INACTIVE]; 1555 if (args == NULL) { 1556 mutex_enter(&mi->mi_lock); 1557 /* 1558 * We don't want to exit until the async manager is done 1559 * with its work; hence the check for mi_manager_thread 1560 * being NULL. 1561 * 1562 * The async manager thread will cv_broadcast() on 1563 * mi_inact_req_cv when it's done, at which point we'll 1564 * wake up and exit. 1565 */ 1566 if (mi->mi_manager_thread == NULL) 1567 goto die; 1568 mi->mi_flags |= MI4_INACTIVE_IDLE; 1569 mutex_exit(&mi->mi_lock); 1570 cv_signal(&mi->mi_async_cv); 1571 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1572 cv_wait(&mi->mi_inact_req_cv, &mi->mi_async_lock); 1573 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock); 1574 mutex_exit(&mi->mi_async_lock); 1575 } else { 1576 mutex_enter(&mi->mi_lock); 1577 mi->mi_flags &= ~MI4_INACTIVE_IDLE; 1578 mutex_exit(&mi->mi_lock); 1579 mi->mi_async_reqs[NFS4_INACTIVE] = args->a_next; 1580 mutex_exit(&mi->mi_async_lock); 1581 nfs4_inactive_otw(args->a_vp, args->a_cred); 1582 crfree(args->a_cred); 1583 kmem_free(args, sizeof (*args)); 1584 } 1585 } 1586 die: 1587 mutex_exit(&mi->mi_lock); 1588 mi->mi_inactive_thread = NULL; 1589 cv_signal(&mi->mi_async_cv); 1590 1591 /* 1592 * There is no explicit call to mutex_exit(&mi->mi_async_lock) since 1593 * CALLB_CPR_EXIT is actually responsible for releasing 'mi_async_lock'. 1594 */ 1595 CALLB_CPR_EXIT(&cprinfo); 1596 1597 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 1598 "nfs4_inactive_thread exiting for vfs %p\n", (void *)vfsp)); 1599 1600 MI4_RELE(mi); 1601 zthread_exit(); 1602 /* NOTREACHED */ 1603 } 1604 1605 /* 1606 * nfs_async_stop: 1607 * Wait for all outstanding putpage operations and the inactive thread to 1608 * complete; nfs4_async_stop_sig() without interruptibility. 1609 */ 1610 void 1611 nfs4_async_stop(struct vfs *vfsp) 1612 { 1613 mntinfo4_t *mi = VFTOMI4(vfsp); 1614 1615 /* 1616 * Wait for all outstanding async operations to complete and for 1617 * worker threads to exit. 1618 */ 1619 mutex_enter(&mi->mi_async_lock); 1620 mi->mi_max_threads = 0; 1621 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv); 1622 while (mi->mi_threads[NFS4_ASYNC_QUEUE] != 0 || 1623 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] != 0) 1624 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 1625 1626 /* 1627 * Wait for the inactive thread to finish doing what it's doing. It 1628 * won't exit until the last reference to the vfs_t goes away. 1629 */ 1630 if (mi->mi_inactive_thread != NULL) { 1631 mutex_enter(&mi->mi_lock); 1632 while (!(mi->mi_flags & MI4_INACTIVE_IDLE) || 1633 (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) { 1634 mutex_exit(&mi->mi_lock); 1635 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 1636 mutex_enter(&mi->mi_lock); 1637 } 1638 mutex_exit(&mi->mi_lock); 1639 } 1640 mutex_exit(&mi->mi_async_lock); 1641 } 1642 1643 /* 1644 * nfs_async_stop_sig: 1645 * Wait for all outstanding putpage operations and the inactive thread to 1646 * complete. If a signal is delivered we will abort and return non-zero; 1647 * otherwise return 0. Since this routine is called from nfs4_unmount, we 1648 * need to make it interruptible. 1649 */ 1650 int 1651 nfs4_async_stop_sig(struct vfs *vfsp) 1652 { 1653 mntinfo4_t *mi = VFTOMI4(vfsp); 1654 ushort_t omax; 1655 bool_t intr = FALSE; 1656 1657 /* 1658 * Wait for all outstanding putpage operations to complete and for 1659 * worker threads to exit. 1660 */ 1661 mutex_enter(&mi->mi_async_lock); 1662 omax = mi->mi_max_threads; 1663 mi->mi_max_threads = 0; 1664 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv); 1665 while (mi->mi_threads[NFS4_ASYNC_QUEUE] != 0 || 1666 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] != 0) { 1667 if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock)) { 1668 intr = TRUE; 1669 goto interrupted; 1670 } 1671 } 1672 1673 /* 1674 * Wait for the inactive thread to finish doing what it's doing. It 1675 * won't exit until the a last reference to the vfs_t goes away. 1676 */ 1677 if (mi->mi_inactive_thread != NULL) { 1678 mutex_enter(&mi->mi_lock); 1679 while (!(mi->mi_flags & MI4_INACTIVE_IDLE) || 1680 (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) { 1681 mutex_exit(&mi->mi_lock); 1682 if (!cv_wait_sig(&mi->mi_async_cv, 1683 &mi->mi_async_lock)) { 1684 intr = TRUE; 1685 goto interrupted; 1686 } 1687 mutex_enter(&mi->mi_lock); 1688 } 1689 mutex_exit(&mi->mi_lock); 1690 } 1691 interrupted: 1692 if (intr) 1693 mi->mi_max_threads = omax; 1694 mutex_exit(&mi->mi_async_lock); 1695 1696 return (intr); 1697 } 1698 1699 int 1700 nfs4_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 1701 int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *, 1702 u_offset_t, size_t, int, cred_t *)) 1703 { 1704 rnode4_t *rp; 1705 mntinfo4_t *mi; 1706 struct nfs4_async_reqs *args; 1707 1708 ASSERT(flags & B_ASYNC); 1709 ASSERT(vp->v_vfsp != NULL); 1710 1711 rp = VTOR4(vp); 1712 ASSERT(rp->r_count > 0); 1713 1714 mi = VTOMI4(vp); 1715 1716 /* 1717 * If we can't allocate a request structure, do the putpage 1718 * operation synchronously in this thread's context. 1719 */ 1720 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1721 goto noasync; 1722 1723 args->a_next = NULL; 1724 #ifdef DEBUG 1725 args->a_queuer = curthread; 1726 #endif 1727 VN_HOLD(vp); 1728 args->a_vp = vp; 1729 ASSERT(cr != NULL); 1730 crhold(cr); 1731 args->a_cred = cr; 1732 args->a_io = NFS4_PUTAPAGE; 1733 args->a_nfs4_putapage = putapage; 1734 args->a_nfs4_pp = pp; 1735 args->a_nfs4_off = off; 1736 args->a_nfs4_len = (uint_t)len; 1737 args->a_nfs4_flags = flags; 1738 1739 mutex_enter(&mi->mi_async_lock); 1740 1741 /* 1742 * If asyncio has been disabled, then make a synchronous request. 1743 * This check is done a second time in case async io was diabled 1744 * while this thread was blocked waiting for memory pressure to 1745 * reduce or for the queue to drain. 1746 */ 1747 if (mi->mi_max_threads == 0) { 1748 mutex_exit(&mi->mi_async_lock); 1749 1750 VN_RELE(vp); 1751 crfree(cr); 1752 kmem_free(args, sizeof (*args)); 1753 goto noasync; 1754 } 1755 1756 /* 1757 * Link request structure into the async list and 1758 * wakeup async thread to do the i/o. 1759 */ 1760 if (mi->mi_async_reqs[NFS4_PUTAPAGE] == NULL) { 1761 mi->mi_async_reqs[NFS4_PUTAPAGE] = args; 1762 mi->mi_async_tail[NFS4_PUTAPAGE] = args; 1763 } else { 1764 mi->mi_async_tail[NFS4_PUTAPAGE]->a_next = args; 1765 mi->mi_async_tail[NFS4_PUTAPAGE] = args; 1766 } 1767 1768 mutex_enter(&rp->r_statelock); 1769 rp->r_count++; 1770 rp->r_awcount++; 1771 mutex_exit(&rp->r_statelock); 1772 1773 if (mi->mi_io_kstats) { 1774 mutex_enter(&mi->mi_lock); 1775 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1776 mutex_exit(&mi->mi_lock); 1777 } 1778 1779 mi->mi_async_req_count++; 1780 ASSERT(mi->mi_async_req_count != 0); 1781 cv_signal(&mi->mi_async_reqs_cv); 1782 mutex_exit(&mi->mi_async_lock); 1783 return (0); 1784 1785 noasync: 1786 1787 if (curproc == proc_pageout || curproc == proc_fsflush || 1788 nfs_zone() == mi->mi_zone) { 1789 /* 1790 * If we get here in the context of the pageout/fsflush, 1791 * or we have run out of memory or we're attempting to 1792 * unmount we refuse to do a sync write, because this may 1793 * hang pageout/fsflush and the machine. In this case, 1794 * we just re-mark the page as dirty and punt on the page. 1795 * 1796 * Make sure B_FORCE isn't set. We can re-mark the 1797 * pages as dirty and unlock the pages in one swoop by 1798 * passing in B_ERROR to pvn_write_done(). However, 1799 * we should make sure B_FORCE isn't set - we don't 1800 * want the page tossed before it gets written out. 1801 */ 1802 if (flags & B_FORCE) 1803 flags &= ~(B_INVAL | B_FORCE); 1804 pvn_write_done(pp, flags | B_ERROR); 1805 return (0); 1806 } 1807 1808 /* 1809 * We'll get here only if (nfs_zone() != mi->mi_zone) 1810 * which means that this was a cross-zone sync putpage. 1811 * 1812 * We pass in B_ERROR to pvn_write_done() to re-mark the pages 1813 * as dirty and unlock them. 1814 * 1815 * We don't want to clear B_FORCE here as the caller presumably 1816 * knows what they're doing if they set it. 1817 */ 1818 pvn_write_done(pp, flags | B_ERROR); 1819 return (EPERM); 1820 } 1821 1822 int 1823 nfs4_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 1824 int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t, 1825 size_t, int, cred_t *)) 1826 { 1827 rnode4_t *rp; 1828 mntinfo4_t *mi; 1829 struct nfs4_async_reqs *args; 1830 1831 ASSERT(flags & B_ASYNC); 1832 ASSERT(vp->v_vfsp != NULL); 1833 1834 rp = VTOR4(vp); 1835 ASSERT(rp->r_count > 0); 1836 1837 mi = VTOMI4(vp); 1838 1839 /* 1840 * If we can't allocate a request structure, do the pageio 1841 * request synchronously in this thread's context. 1842 */ 1843 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1844 goto noasync; 1845 1846 args->a_next = NULL; 1847 #ifdef DEBUG 1848 args->a_queuer = curthread; 1849 #endif 1850 VN_HOLD(vp); 1851 args->a_vp = vp; 1852 ASSERT(cr != NULL); 1853 crhold(cr); 1854 args->a_cred = cr; 1855 args->a_io = NFS4_PAGEIO; 1856 args->a_nfs4_pageio = pageio; 1857 args->a_nfs4_pp = pp; 1858 args->a_nfs4_off = io_off; 1859 args->a_nfs4_len = (uint_t)io_len; 1860 args->a_nfs4_flags = flags; 1861 1862 mutex_enter(&mi->mi_async_lock); 1863 1864 /* 1865 * If asyncio has been disabled, then make a synchronous request. 1866 * This check is done a second time in case async io was diabled 1867 * while this thread was blocked waiting for memory pressure to 1868 * reduce or for the queue to drain. 1869 */ 1870 if (mi->mi_max_threads == 0) { 1871 mutex_exit(&mi->mi_async_lock); 1872 1873 VN_RELE(vp); 1874 crfree(cr); 1875 kmem_free(args, sizeof (*args)); 1876 goto noasync; 1877 } 1878 1879 /* 1880 * Link request structure into the async list and 1881 * wakeup async thread to do the i/o. 1882 */ 1883 if (mi->mi_async_reqs[NFS4_PAGEIO] == NULL) { 1884 mi->mi_async_reqs[NFS4_PAGEIO] = args; 1885 mi->mi_async_tail[NFS4_PAGEIO] = args; 1886 } else { 1887 mi->mi_async_tail[NFS4_PAGEIO]->a_next = args; 1888 mi->mi_async_tail[NFS4_PAGEIO] = args; 1889 } 1890 1891 mutex_enter(&rp->r_statelock); 1892 rp->r_count++; 1893 rp->r_awcount++; 1894 mutex_exit(&rp->r_statelock); 1895 1896 if (mi->mi_io_kstats) { 1897 mutex_enter(&mi->mi_lock); 1898 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1899 mutex_exit(&mi->mi_lock); 1900 } 1901 1902 mi->mi_async_req_count++; 1903 ASSERT(mi->mi_async_req_count != 0); 1904 cv_signal(&mi->mi_async_reqs_cv); 1905 mutex_exit(&mi->mi_async_lock); 1906 return (0); 1907 1908 noasync: 1909 /* 1910 * If we can't do it ASYNC, for reads we do nothing (but cleanup 1911 * the page list), for writes we do it synchronously, except for 1912 * proc_pageout/proc_fsflush as described below. 1913 */ 1914 if (flags & B_READ) { 1915 pvn_read_done(pp, flags | B_ERROR); 1916 return (0); 1917 } 1918 1919 if (curproc == proc_pageout || curproc == proc_fsflush) { 1920 /* 1921 * If we get here in the context of the pageout/fsflush, 1922 * we refuse to do a sync write, because this may hang 1923 * pageout/fsflush (and the machine). In this case, we just 1924 * re-mark the page as dirty and punt on the page. 1925 * 1926 * Make sure B_FORCE isn't set. We can re-mark the 1927 * pages as dirty and unlock the pages in one swoop by 1928 * passing in B_ERROR to pvn_write_done(). However, 1929 * we should make sure B_FORCE isn't set - we don't 1930 * want the page tossed before it gets written out. 1931 */ 1932 if (flags & B_FORCE) 1933 flags &= ~(B_INVAL | B_FORCE); 1934 pvn_write_done(pp, flags | B_ERROR); 1935 return (0); 1936 } 1937 1938 if (nfs_zone() != mi->mi_zone) { 1939 /* 1940 * So this was a cross-zone sync pageio. We pass in B_ERROR 1941 * to pvn_write_done() to re-mark the pages as dirty and unlock 1942 * them. 1943 * 1944 * We don't want to clear B_FORCE here as the caller presumably 1945 * knows what they're doing if they set it. 1946 */ 1947 pvn_write_done(pp, flags | B_ERROR); 1948 return (EPERM); 1949 } 1950 return ((*pageio)(vp, pp, io_off, io_len, flags, cr)); 1951 } 1952 1953 void 1954 nfs4_async_readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr, 1955 int (*readdir)(vnode_t *, rddir4_cache *, cred_t *)) 1956 { 1957 rnode4_t *rp; 1958 mntinfo4_t *mi; 1959 struct nfs4_async_reqs *args; 1960 1961 rp = VTOR4(vp); 1962 ASSERT(rp->r_freef == NULL); 1963 1964 mi = VTOMI4(vp); 1965 1966 /* 1967 * If we can't allocate a request structure, skip the readdir. 1968 */ 1969 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1970 goto noasync; 1971 1972 args->a_next = NULL; 1973 #ifdef DEBUG 1974 args->a_queuer = curthread; 1975 #endif 1976 VN_HOLD(vp); 1977 args->a_vp = vp; 1978 ASSERT(cr != NULL); 1979 crhold(cr); 1980 args->a_cred = cr; 1981 args->a_io = NFS4_READDIR; 1982 args->a_nfs4_readdir = readdir; 1983 args->a_nfs4_rdc = rdc; 1984 1985 mutex_enter(&mi->mi_async_lock); 1986 1987 /* 1988 * If asyncio has been disabled, then skip this request 1989 */ 1990 if (mi->mi_max_threads == 0) { 1991 mutex_exit(&mi->mi_async_lock); 1992 1993 VN_RELE(vp); 1994 crfree(cr); 1995 kmem_free(args, sizeof (*args)); 1996 goto noasync; 1997 } 1998 1999 /* 2000 * Link request structure into the async list and 2001 * wakeup async thread to do the i/o. 2002 */ 2003 if (mi->mi_async_reqs[NFS4_READDIR] == NULL) { 2004 mi->mi_async_reqs[NFS4_READDIR] = args; 2005 mi->mi_async_tail[NFS4_READDIR] = args; 2006 } else { 2007 mi->mi_async_tail[NFS4_READDIR]->a_next = args; 2008 mi->mi_async_tail[NFS4_READDIR] = args; 2009 } 2010 2011 mutex_enter(&rp->r_statelock); 2012 rp->r_count++; 2013 mutex_exit(&rp->r_statelock); 2014 2015 if (mi->mi_io_kstats) { 2016 mutex_enter(&mi->mi_lock); 2017 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 2018 mutex_exit(&mi->mi_lock); 2019 } 2020 2021 mi->mi_async_req_count++; 2022 ASSERT(mi->mi_async_req_count != 0); 2023 cv_signal(&mi->mi_async_reqs_cv); 2024 mutex_exit(&mi->mi_async_lock); 2025 return; 2026 2027 noasync: 2028 mutex_enter(&rp->r_statelock); 2029 rdc->entries = NULL; 2030 /* 2031 * Indicate that no one is trying to fill this entry and 2032 * it still needs to be filled. 2033 */ 2034 rdc->flags &= ~RDDIR; 2035 rdc->flags |= RDDIRREQ; 2036 rddir4_cache_rele(rp, rdc); 2037 mutex_exit(&rp->r_statelock); 2038 } 2039 2040 void 2041 nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 2042 cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3, 2043 cred_t *)) 2044 { 2045 rnode4_t *rp; 2046 mntinfo4_t *mi; 2047 struct nfs4_async_reqs *args; 2048 page_t *pp; 2049 2050 rp = VTOR4(vp); 2051 mi = VTOMI4(vp); 2052 2053 /* 2054 * If we can't allocate a request structure, do the commit 2055 * operation synchronously in this thread's context. 2056 */ 2057 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 2058 goto noasync; 2059 2060 args->a_next = NULL; 2061 #ifdef DEBUG 2062 args->a_queuer = curthread; 2063 #endif 2064 VN_HOLD(vp); 2065 args->a_vp = vp; 2066 ASSERT(cr != NULL); 2067 crhold(cr); 2068 args->a_cred = cr; 2069 args->a_io = NFS4_COMMIT; 2070 args->a_nfs4_commit = commit; 2071 args->a_nfs4_plist = plist; 2072 args->a_nfs4_offset = offset; 2073 args->a_nfs4_count = count; 2074 2075 mutex_enter(&mi->mi_async_lock); 2076 2077 /* 2078 * If asyncio has been disabled, then make a synchronous request. 2079 * This check is done a second time in case async io was diabled 2080 * while this thread was blocked waiting for memory pressure to 2081 * reduce or for the queue to drain. 2082 */ 2083 if (mi->mi_max_threads == 0) { 2084 mutex_exit(&mi->mi_async_lock); 2085 2086 VN_RELE(vp); 2087 crfree(cr); 2088 kmem_free(args, sizeof (*args)); 2089 goto noasync; 2090 } 2091 2092 /* 2093 * Link request structure into the async list and 2094 * wakeup async thread to do the i/o. 2095 */ 2096 if (mi->mi_async_reqs[NFS4_COMMIT] == NULL) { 2097 mi->mi_async_reqs[NFS4_COMMIT] = args; 2098 mi->mi_async_tail[NFS4_COMMIT] = args; 2099 } else { 2100 mi->mi_async_tail[NFS4_COMMIT]->a_next = args; 2101 mi->mi_async_tail[NFS4_COMMIT] = args; 2102 } 2103 2104 mutex_enter(&rp->r_statelock); 2105 rp->r_count++; 2106 mutex_exit(&rp->r_statelock); 2107 2108 if (mi->mi_io_kstats) { 2109 mutex_enter(&mi->mi_lock); 2110 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 2111 mutex_exit(&mi->mi_lock); 2112 } 2113 2114 mi->mi_async_req_count++; 2115 ASSERT(mi->mi_async_req_count != 0); 2116 cv_signal(&mi->mi_async_reqs_cv); 2117 mutex_exit(&mi->mi_async_lock); 2118 return; 2119 2120 noasync: 2121 if (curproc == proc_pageout || curproc == proc_fsflush || 2122 nfs_zone() != mi->mi_zone) { 2123 while (plist != NULL) { 2124 pp = plist; 2125 page_sub(&plist, pp); 2126 pp->p_fsdata = C_COMMIT; 2127 page_unlock(pp); 2128 } 2129 return; 2130 } 2131 (*commit)(vp, plist, offset, count, cr); 2132 } 2133 2134 /* 2135 * nfs4_async_inactive - hand off a VOP_INACTIVE call to a thread. The 2136 * reference to the vnode is handed over to the thread; the caller should 2137 * no longer refer to the vnode. 2138 * 2139 * Unlike most of the async routines, this handoff is needed for 2140 * correctness reasons, not just performance. So doing operations in the 2141 * context of the current thread is not an option. 2142 */ 2143 void 2144 nfs4_async_inactive(vnode_t *vp, cred_t *cr) 2145 { 2146 mntinfo4_t *mi; 2147 struct nfs4_async_reqs *args; 2148 boolean_t signal_inactive_thread = B_FALSE; 2149 2150 mi = VTOMI4(vp); 2151 2152 args = kmem_alloc(sizeof (*args), KM_SLEEP); 2153 args->a_next = NULL; 2154 #ifdef DEBUG 2155 args->a_queuer = curthread; 2156 #endif 2157 args->a_vp = vp; 2158 ASSERT(cr != NULL); 2159 crhold(cr); 2160 args->a_cred = cr; 2161 args->a_io = NFS4_INACTIVE; 2162 2163 /* 2164 * Note that we don't check mi->mi_max_threads here, since we 2165 * *need* to get rid of this vnode regardless of whether someone 2166 * set nfs4_max_threads to zero in /etc/system. 2167 * 2168 * The manager thread knows about this and is willing to create 2169 * at least one thread to accommodate us. 2170 */ 2171 mutex_enter(&mi->mi_async_lock); 2172 if (mi->mi_inactive_thread == NULL) { 2173 rnode4_t *rp; 2174 vnode_t *unldvp = NULL; 2175 char *unlname; 2176 cred_t *unlcred; 2177 2178 mutex_exit(&mi->mi_async_lock); 2179 /* 2180 * We just need to free up the memory associated with the 2181 * vnode, which can be safely done from within the current 2182 * context. 2183 */ 2184 crfree(cr); /* drop our reference */ 2185 kmem_free(args, sizeof (*args)); 2186 rp = VTOR4(vp); 2187 mutex_enter(&rp->r_statelock); 2188 if (rp->r_unldvp != NULL) { 2189 unldvp = rp->r_unldvp; 2190 rp->r_unldvp = NULL; 2191 unlname = rp->r_unlname; 2192 rp->r_unlname = NULL; 2193 unlcred = rp->r_unlcred; 2194 rp->r_unlcred = NULL; 2195 } 2196 mutex_exit(&rp->r_statelock); 2197 /* 2198 * No need to explicitly throw away any cached pages. The 2199 * eventual r4inactive() will attempt a synchronous 2200 * VOP_PUTPAGE() which will immediately fail since the request 2201 * is coming from the wrong zone, and then will proceed to call 2202 * nfs4_invalidate_pages() which will clean things up for us. 2203 * 2204 * Throw away the delegation here so rp4_addfree()'s attempt to 2205 * return any existing delegations becomes a no-op. 2206 */ 2207 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { 2208 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 2209 FALSE); 2210 (void) nfs4delegreturn(rp, NFS4_DR_DISCARD); 2211 nfs_rw_exit(&mi->mi_recovlock); 2212 } 2213 nfs4_clear_open_streams(rp); 2214 2215 rp4_addfree(rp, cr); 2216 if (unldvp != NULL) { 2217 kmem_free(unlname, MAXNAMELEN); 2218 VN_RELE(unldvp); 2219 crfree(unlcred); 2220 } 2221 return; 2222 } 2223 2224 if (mi->mi_manager_thread == NULL) { 2225 /* 2226 * We want to talk to the inactive thread. 2227 */ 2228 signal_inactive_thread = B_TRUE; 2229 } 2230 2231 /* 2232 * Enqueue the vnode and wake up either the special thread (empty 2233 * list) or an async thread. 2234 */ 2235 if (mi->mi_async_reqs[NFS4_INACTIVE] == NULL) { 2236 mi->mi_async_reqs[NFS4_INACTIVE] = args; 2237 mi->mi_async_tail[NFS4_INACTIVE] = args; 2238 signal_inactive_thread = B_TRUE; 2239 } else { 2240 mi->mi_async_tail[NFS4_INACTIVE]->a_next = args; 2241 mi->mi_async_tail[NFS4_INACTIVE] = args; 2242 } 2243 if (signal_inactive_thread) { 2244 cv_signal(&mi->mi_inact_req_cv); 2245 } else { 2246 mi->mi_async_req_count++; 2247 ASSERT(mi->mi_async_req_count != 0); 2248 cv_signal(&mi->mi_async_reqs_cv); 2249 } 2250 2251 mutex_exit(&mi->mi_async_lock); 2252 } 2253 2254 int 2255 writerp4(rnode4_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated) 2256 { 2257 int pagecreate; 2258 int n; 2259 int saved_n; 2260 caddr_t saved_base; 2261 u_offset_t offset; 2262 int error; 2263 int sm_error; 2264 vnode_t *vp = RTOV(rp); 2265 2266 ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid); 2267 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER)); 2268 if (!vpm_enable) { 2269 ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE); 2270 } 2271 2272 /* 2273 * Move bytes in at most PAGESIZE chunks. We must avoid 2274 * spanning pages in uiomove() because page faults may cause 2275 * the cache to be invalidated out from under us. The r_size is not 2276 * updated until after the uiomove. If we push the last page of a 2277 * file before r_size is correct, we will lose the data written past 2278 * the current (and invalid) r_size. 2279 */ 2280 do { 2281 offset = uio->uio_loffset; 2282 pagecreate = 0; 2283 2284 /* 2285 * n is the number of bytes required to satisfy the request 2286 * or the number of bytes to fill out the page. 2287 */ 2288 n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount); 2289 2290 /* 2291 * Check to see if we can skip reading in the page 2292 * and just allocate the memory. We can do this 2293 * if we are going to rewrite the entire mapping 2294 * or if we are going to write to or beyond the current 2295 * end of file from the beginning of the mapping. 2296 * 2297 * The read of r_size is now protected by r_statelock. 2298 */ 2299 mutex_enter(&rp->r_statelock); 2300 /* 2301 * When pgcreated is nonzero the caller has already done 2302 * a segmap_getmapflt with forcefault 0 and S_WRITE. With 2303 * segkpm this means we already have at least one page 2304 * created and mapped at base. 2305 */ 2306 pagecreate = pgcreated || 2307 ((offset & PAGEOFFSET) == 0 && 2308 (n == PAGESIZE || ((offset + n) >= rp->r_size))); 2309 2310 mutex_exit(&rp->r_statelock); 2311 2312 if (!vpm_enable && pagecreate) { 2313 /* 2314 * The last argument tells segmap_pagecreate() to 2315 * always lock the page, as opposed to sometimes 2316 * returning with the page locked. This way we avoid a 2317 * fault on the ensuing uiomove(), but also 2318 * more importantly (to fix bug 1094402) we can 2319 * call segmap_fault() to unlock the page in all 2320 * cases. An alternative would be to modify 2321 * segmap_pagecreate() to tell us when it is 2322 * locking a page, but that's a fairly major 2323 * interface change. 2324 */ 2325 if (pgcreated == 0) 2326 (void) segmap_pagecreate(segkmap, base, 2327 (uint_t)n, 1); 2328 saved_base = base; 2329 saved_n = n; 2330 } 2331 2332 /* 2333 * The number of bytes of data in the last page can not 2334 * be accurately be determined while page is being 2335 * uiomove'd to and the size of the file being updated. 2336 * Thus, inform threads which need to know accurately 2337 * how much data is in the last page of the file. They 2338 * will not do the i/o immediately, but will arrange for 2339 * the i/o to happen later when this modify operation 2340 * will have finished. 2341 */ 2342 ASSERT(!(rp->r_flags & R4MODINPROGRESS)); 2343 mutex_enter(&rp->r_statelock); 2344 rp->r_flags |= R4MODINPROGRESS; 2345 rp->r_modaddr = (offset & MAXBMASK); 2346 mutex_exit(&rp->r_statelock); 2347 2348 if (vpm_enable) { 2349 /* 2350 * Copy data. If new pages are created, part of 2351 * the page that is not written will be initizliazed 2352 * with zeros. 2353 */ 2354 error = vpm_data_copy(vp, offset, n, uio, 2355 !pagecreate, NULL, 0, S_WRITE); 2356 } else { 2357 error = uiomove(base, n, UIO_WRITE, uio); 2358 } 2359 2360 /* 2361 * r_size is the maximum number of 2362 * bytes known to be in the file. 2363 * Make sure it is at least as high as the 2364 * first unwritten byte pointed to by uio_loffset. 2365 */ 2366 mutex_enter(&rp->r_statelock); 2367 if (rp->r_size < uio->uio_loffset) 2368 rp->r_size = uio->uio_loffset; 2369 rp->r_flags &= ~R4MODINPROGRESS; 2370 rp->r_flags |= R4DIRTY; 2371 mutex_exit(&rp->r_statelock); 2372 2373 /* n = # of bytes written */ 2374 n = (int)(uio->uio_loffset - offset); 2375 2376 if (!vpm_enable) { 2377 base += n; 2378 } 2379 2380 tcount -= n; 2381 /* 2382 * If we created pages w/o initializing them completely, 2383 * we need to zero the part that wasn't set up. 2384 * This happens on a most EOF write cases and if 2385 * we had some sort of error during the uiomove. 2386 */ 2387 if (!vpm_enable && pagecreate) { 2388 if ((uio->uio_loffset & PAGEOFFSET) || n == 0) 2389 (void) kzero(base, PAGESIZE - n); 2390 2391 if (pgcreated) { 2392 /* 2393 * Caller is responsible for this page, 2394 * it was not created in this loop. 2395 */ 2396 pgcreated = 0; 2397 } else { 2398 /* 2399 * For bug 1094402: segmap_pagecreate locks 2400 * page. Unlock it. This also unlocks the 2401 * pages allocated by page_create_va() in 2402 * segmap_pagecreate(). 2403 */ 2404 sm_error = segmap_fault(kas.a_hat, segkmap, 2405 saved_base, saved_n, 2406 F_SOFTUNLOCK, S_WRITE); 2407 if (error == 0) 2408 error = sm_error; 2409 } 2410 } 2411 } while (tcount > 0 && error == 0); 2412 2413 return (error); 2414 } 2415 2416 int 2417 nfs4_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr) 2418 { 2419 rnode4_t *rp; 2420 page_t *pp; 2421 u_offset_t eoff; 2422 u_offset_t io_off; 2423 size_t io_len; 2424 int error; 2425 int rdirty; 2426 int err; 2427 2428 rp = VTOR4(vp); 2429 ASSERT(rp->r_count > 0); 2430 2431 if (!nfs4_has_pages(vp)) 2432 return (0); 2433 2434 ASSERT(vp->v_type != VCHR); 2435 2436 /* 2437 * If R4OUTOFSPACE is set, then all writes turn into B_INVAL 2438 * writes. B_FORCE is set to force the VM system to actually 2439 * invalidate the pages, even if the i/o failed. The pages 2440 * need to get invalidated because they can't be written out 2441 * because there isn't any space left on either the server's 2442 * file system or in the user's disk quota. The B_FREE bit 2443 * is cleared to avoid confusion as to whether this is a 2444 * request to place the page on the freelist or to destroy 2445 * it. 2446 */ 2447 if ((rp->r_flags & R4OUTOFSPACE) || 2448 (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) 2449 flags = (flags & ~B_FREE) | B_INVAL | B_FORCE; 2450 2451 if (len == 0) { 2452 /* 2453 * If doing a full file synchronous operation, then clear 2454 * the R4DIRTY bit. If a page gets dirtied while the flush 2455 * is happening, then R4DIRTY will get set again. The 2456 * R4DIRTY bit must get cleared before the flush so that 2457 * we don't lose this information. 2458 * 2459 * If there are no full file async write operations 2460 * pending and RDIRTY bit is set, clear it. 2461 */ 2462 if (off == (u_offset_t)0 && 2463 !(flags & B_ASYNC) && 2464 (rp->r_flags & R4DIRTY)) { 2465 mutex_enter(&rp->r_statelock); 2466 rdirty = (rp->r_flags & R4DIRTY); 2467 rp->r_flags &= ~R4DIRTY; 2468 mutex_exit(&rp->r_statelock); 2469 } else if (flags & B_ASYNC && off == (u_offset_t)0) { 2470 mutex_enter(&rp->r_statelock); 2471 if (rp->r_flags & R4DIRTY && rp->r_awcount == 0) { 2472 rdirty = (rp->r_flags & R4DIRTY); 2473 rp->r_flags &= ~R4DIRTY; 2474 } 2475 mutex_exit(&rp->r_statelock); 2476 } else 2477 rdirty = 0; 2478 2479 /* 2480 * Search the entire vp list for pages >= off, and flush 2481 * the dirty pages. 2482 */ 2483 error = pvn_vplist_dirty(vp, off, rp->r_putapage, 2484 flags, cr); 2485 2486 /* 2487 * If an error occurred and the file was marked as dirty 2488 * before and we aren't forcibly invalidating pages, then 2489 * reset the R4DIRTY flag. 2490 */ 2491 if (error && rdirty && 2492 (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) { 2493 mutex_enter(&rp->r_statelock); 2494 rp->r_flags |= R4DIRTY; 2495 mutex_exit(&rp->r_statelock); 2496 } 2497 } else { 2498 /* 2499 * Do a range from [off...off + len) looking for pages 2500 * to deal with. 2501 */ 2502 error = 0; 2503 io_len = 0; 2504 eoff = off + len; 2505 mutex_enter(&rp->r_statelock); 2506 for (io_off = off; io_off < eoff && io_off < rp->r_size; 2507 io_off += io_len) { 2508 mutex_exit(&rp->r_statelock); 2509 /* 2510 * If we are not invalidating, synchronously 2511 * freeing or writing pages use the routine 2512 * page_lookup_nowait() to prevent reclaiming 2513 * them from the free list. 2514 */ 2515 if ((flags & B_INVAL) || !(flags & B_ASYNC)) { 2516 pp = page_lookup(vp, io_off, 2517 (flags & (B_INVAL | B_FREE)) ? 2518 SE_EXCL : SE_SHARED); 2519 } else { 2520 pp = page_lookup_nowait(vp, io_off, 2521 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2522 } 2523 2524 if (pp == NULL || !pvn_getdirty(pp, flags)) 2525 io_len = PAGESIZE; 2526 else { 2527 err = (*rp->r_putapage)(vp, pp, &io_off, 2528 &io_len, flags, cr); 2529 if (!error) 2530 error = err; 2531 /* 2532 * "io_off" and "io_len" are returned as 2533 * the range of pages we actually wrote. 2534 * This allows us to skip ahead more quickly 2535 * since several pages may've been dealt 2536 * with by this iteration of the loop. 2537 */ 2538 } 2539 mutex_enter(&rp->r_statelock); 2540 } 2541 mutex_exit(&rp->r_statelock); 2542 } 2543 2544 return (error); 2545 } 2546 2547 void 2548 nfs4_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr) 2549 { 2550 rnode4_t *rp; 2551 2552 rp = VTOR4(vp); 2553 if (IS_SHADOW(vp, rp)) 2554 vp = RTOV4(rp); 2555 mutex_enter(&rp->r_statelock); 2556 while (rp->r_flags & R4TRUNCATE) 2557 cv_wait(&rp->r_cv, &rp->r_statelock); 2558 rp->r_flags |= R4TRUNCATE; 2559 if (off == (u_offset_t)0) { 2560 rp->r_flags &= ~R4DIRTY; 2561 if (!(rp->r_flags & R4STALE)) 2562 rp->r_error = 0; 2563 } 2564 rp->r_truncaddr = off; 2565 mutex_exit(&rp->r_statelock); 2566 (void) pvn_vplist_dirty(vp, off, rp->r_putapage, 2567 B_INVAL | B_TRUNC, cr); 2568 mutex_enter(&rp->r_statelock); 2569 rp->r_flags &= ~R4TRUNCATE; 2570 cv_broadcast(&rp->r_cv); 2571 mutex_exit(&rp->r_statelock); 2572 } 2573 2574 static int 2575 nfs4_mnt_kstat_update(kstat_t *ksp, int rw) 2576 { 2577 mntinfo4_t *mi; 2578 struct mntinfo_kstat *mik; 2579 vfs_t *vfsp; 2580 2581 /* this is a read-only kstat. Bail out on a write */ 2582 if (rw == KSTAT_WRITE) 2583 return (EACCES); 2584 2585 2586 /* 2587 * We don't want to wait here as kstat_chain_lock could be held by 2588 * dounmount(). dounmount() takes vfs_reflock before the chain lock 2589 * and thus could lead to a deadlock. 2590 */ 2591 vfsp = (struct vfs *)ksp->ks_private; 2592 2593 mi = VFTOMI4(vfsp); 2594 mik = (struct mntinfo_kstat *)ksp->ks_data; 2595 2596 (void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto); 2597 2598 mik->mik_vers = (uint32_t)mi->mi_vers; 2599 mik->mik_flags = mi->mi_flags; 2600 /* 2601 * The sv_secdata holds the flavor the client specifies. 2602 * If the client uses default and a security negotiation 2603 * occurs, sv_currsec will point to the current flavor 2604 * selected from the server flavor list. 2605 * sv_currsec is NULL if no security negotiation takes place. 2606 */ 2607 mik->mik_secmod = mi->mi_curr_serv->sv_currsec ? 2608 mi->mi_curr_serv->sv_currsec->secmod : 2609 mi->mi_curr_serv->sv_secdata->secmod; 2610 mik->mik_curread = (uint32_t)mi->mi_curread; 2611 mik->mik_curwrite = (uint32_t)mi->mi_curwrite; 2612 mik->mik_retrans = mi->mi_retrans; 2613 mik->mik_timeo = mi->mi_timeo; 2614 mik->mik_acregmin = HR2SEC(mi->mi_acregmin); 2615 mik->mik_acregmax = HR2SEC(mi->mi_acregmax); 2616 mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin); 2617 mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax); 2618 mik->mik_noresponse = (uint32_t)mi->mi_noresponse; 2619 mik->mik_failover = (uint32_t)mi->mi_failover; 2620 mik->mik_remap = (uint32_t)mi->mi_remap; 2621 2622 (void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname); 2623 2624 return (0); 2625 } 2626 2627 void 2628 nfs4_mnt_kstat_init(struct vfs *vfsp) 2629 { 2630 mntinfo4_t *mi = VFTOMI4(vfsp); 2631 2632 /* 2633 * PSARC 2001/697 Contract Private Interface 2634 * All nfs kstats are under SunMC contract 2635 * Please refer to the PSARC listed above and contact 2636 * SunMC before making any changes! 2637 * 2638 * Changes must be reviewed by Solaris File Sharing 2639 * Changes must be communicated to contract-2001-697@sun.com 2640 * 2641 */ 2642 2643 mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev), 2644 NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id); 2645 if (mi->mi_io_kstats) { 2646 if (mi->mi_zone->zone_id != GLOBAL_ZONEID) 2647 kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID); 2648 mi->mi_io_kstats->ks_lock = &mi->mi_lock; 2649 kstat_install(mi->mi_io_kstats); 2650 } 2651 2652 if ((mi->mi_ro_kstats = kstat_create_zone("nfs", 2653 getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW, 2654 sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) { 2655 if (mi->mi_zone->zone_id != GLOBAL_ZONEID) 2656 kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID); 2657 mi->mi_ro_kstats->ks_update = nfs4_mnt_kstat_update; 2658 mi->mi_ro_kstats->ks_private = (void *)vfsp; 2659 kstat_install(mi->mi_ro_kstats); 2660 } 2661 2662 nfs4_mnt_recov_kstat_init(vfsp); 2663 } 2664 2665 void 2666 nfs4_write_error(vnode_t *vp, int error, cred_t *cr) 2667 { 2668 mntinfo4_t *mi; 2669 clock_t now = ddi_get_lbolt(); 2670 2671 mi = VTOMI4(vp); 2672 /* 2673 * In case of forced unmount, do not print any messages 2674 * since it can flood the console with error messages. 2675 */ 2676 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) 2677 return; 2678 2679 /* 2680 * If the mount point is dead, not recoverable, do not 2681 * print error messages that can flood the console. 2682 */ 2683 if (mi->mi_flags & MI4_RECOV_FAIL) 2684 return; 2685 2686 /* 2687 * No use in flooding the console with ENOSPC 2688 * messages from the same file system. 2689 */ 2690 if ((error != ENOSPC && error != EDQUOT) || 2691 now - mi->mi_printftime > 0) { 2692 zoneid_t zoneid = mi->mi_zone->zone_id; 2693 2694 #ifdef DEBUG 2695 nfs_perror(error, "NFS%ld write error on host %s: %m.\n", 2696 mi->mi_vers, VTOR4(vp)->r_server->sv_hostname, NULL); 2697 #else 2698 nfs_perror(error, "NFS write error on host %s: %m.\n", 2699 VTOR4(vp)->r_server->sv_hostname, NULL); 2700 #endif 2701 if (error == ENOSPC || error == EDQUOT) { 2702 zcmn_err(zoneid, CE_CONT, 2703 "^File: userid=%d, groupid=%d\n", 2704 crgetuid(cr), crgetgid(cr)); 2705 if (crgetuid(curthread->t_cred) != crgetuid(cr) || 2706 crgetgid(curthread->t_cred) != crgetgid(cr)) { 2707 zcmn_err(zoneid, CE_CONT, 2708 "^User: userid=%d, groupid=%d\n", 2709 crgetuid(curthread->t_cred), 2710 crgetgid(curthread->t_cred)); 2711 } 2712 mi->mi_printftime = now + 2713 nfs_write_error_interval * hz; 2714 } 2715 sfh4_printfhandle(VTOR4(vp)->r_fh); 2716 #ifdef DEBUG 2717 if (error == EACCES) { 2718 zcmn_err(zoneid, CE_CONT, 2719 "nfs_bio: cred is%s kcred\n", 2720 cr == kcred ? "" : " not"); 2721 } 2722 #endif 2723 } 2724 } 2725 2726 /* 2727 * Return non-zero if the given file can be safely memory mapped. Locks 2728 * are safe if whole-file (length and offset are both zero). 2729 */ 2730 2731 #define SAFE_LOCK(flk) ((flk).l_start == 0 && (flk).l_len == 0) 2732 2733 static int 2734 nfs4_safemap(const vnode_t *vp) 2735 { 2736 locklist_t *llp, *next_llp; 2737 int safe = 1; 2738 rnode4_t *rp = VTOR4(vp); 2739 2740 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER)); 2741 2742 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: " 2743 "vp = %p", (void *)vp)); 2744 2745 /* 2746 * Review all the locks for the vnode, both ones that have been 2747 * acquired and ones that are pending. We assume that 2748 * flk_active_locks_for_vp() has merged any locks that can be 2749 * merged (so that if a process has the entire file locked, it is 2750 * represented as a single lock). 2751 * 2752 * Note that we can't bail out of the loop if we find a non-safe 2753 * lock, because we have to free all the elements in the llp list. 2754 * We might be able to speed up this code slightly by not looking 2755 * at each lock's l_start and l_len fields once we've found a 2756 * non-safe lock. 2757 */ 2758 2759 llp = flk_active_locks_for_vp(vp); 2760 while (llp) { 2761 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, 2762 "nfs4_safemap: active lock (%" PRId64 ", %" PRId64 ")", 2763 llp->ll_flock.l_start, llp->ll_flock.l_len)); 2764 if (!SAFE_LOCK(llp->ll_flock)) { 2765 safe = 0; 2766 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, 2767 "nfs4_safemap: unsafe active lock (%" PRId64 2768 ", %" PRId64 ")", llp->ll_flock.l_start, 2769 llp->ll_flock.l_len)); 2770 } 2771 next_llp = llp->ll_next; 2772 VN_RELE(llp->ll_vp); 2773 kmem_free(llp, sizeof (*llp)); 2774 llp = next_llp; 2775 } 2776 2777 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: %s", 2778 safe ? "safe" : "unsafe")); 2779 return (safe); 2780 } 2781 2782 /* 2783 * Return whether there is a lost LOCK or LOCKU queued up for the given 2784 * file that would make an mmap request unsafe. cf. nfs4_safemap(). 2785 */ 2786 2787 bool_t 2788 nfs4_map_lost_lock_conflict(vnode_t *vp) 2789 { 2790 bool_t conflict = FALSE; 2791 nfs4_lost_rqst_t *lrp; 2792 mntinfo4_t *mi = VTOMI4(vp); 2793 2794 mutex_enter(&mi->mi_lock); 2795 for (lrp = list_head(&mi->mi_lost_state); lrp != NULL; 2796 lrp = list_next(&mi->mi_lost_state, lrp)) { 2797 if (lrp->lr_op != OP_LOCK && lrp->lr_op != OP_LOCKU) 2798 continue; 2799 ASSERT(lrp->lr_vp != NULL); 2800 if (!VOP_CMP(lrp->lr_vp, vp, NULL)) 2801 continue; /* different file */ 2802 if (!SAFE_LOCK(*lrp->lr_flk)) { 2803 conflict = TRUE; 2804 break; 2805 } 2806 } 2807 2808 mutex_exit(&mi->mi_lock); 2809 return (conflict); 2810 } 2811 2812 /* 2813 * nfs_lockcompletion: 2814 * 2815 * If the vnode has a lock that makes it unsafe to cache the file, mark it 2816 * as non cachable (set VNOCACHE bit). 2817 */ 2818 2819 void 2820 nfs4_lockcompletion(vnode_t *vp, int cmd) 2821 { 2822 rnode4_t *rp = VTOR4(vp); 2823 2824 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER)); 2825 ASSERT(!IS_SHADOW(vp, rp)); 2826 2827 if (cmd == F_SETLK || cmd == F_SETLKW) { 2828 2829 if (!nfs4_safemap(vp)) { 2830 mutex_enter(&vp->v_lock); 2831 vp->v_flag |= VNOCACHE; 2832 mutex_exit(&vp->v_lock); 2833 } else { 2834 mutex_enter(&vp->v_lock); 2835 vp->v_flag &= ~VNOCACHE; 2836 mutex_exit(&vp->v_lock); 2837 } 2838 } 2839 /* 2840 * The cached attributes of the file are stale after acquiring 2841 * the lock on the file. They were updated when the file was 2842 * opened, but not updated when the lock was acquired. Therefore the 2843 * cached attributes are invalidated after the lock is obtained. 2844 */ 2845 PURGE_ATTRCACHE4(vp); 2846 } 2847 2848 /* ARGSUSED */ 2849 static void * 2850 nfs4_mi_init(zoneid_t zoneid) 2851 { 2852 struct mi4_globals *mig; 2853 2854 mig = kmem_alloc(sizeof (*mig), KM_SLEEP); 2855 mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL); 2856 list_create(&mig->mig_list, sizeof (mntinfo4_t), 2857 offsetof(mntinfo4_t, mi_zone_node)); 2858 mig->mig_destructor_called = B_FALSE; 2859 return (mig); 2860 } 2861 2862 /* 2863 * Callback routine to tell all NFSv4 mounts in the zone to start tearing down 2864 * state and killing off threads. 2865 */ 2866 /* ARGSUSED */ 2867 static void 2868 nfs4_mi_shutdown(zoneid_t zoneid, void *data) 2869 { 2870 struct mi4_globals *mig = data; 2871 mntinfo4_t *mi; 2872 nfs4_server_t *np; 2873 2874 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 2875 "nfs4_mi_shutdown zone %d\n", zoneid)); 2876 ASSERT(mig != NULL); 2877 for (;;) { 2878 mutex_enter(&mig->mig_lock); 2879 mi = list_head(&mig->mig_list); 2880 if (mi == NULL) { 2881 mutex_exit(&mig->mig_lock); 2882 break; 2883 } 2884 2885 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 2886 "nfs4_mi_shutdown stopping vfs %p\n", (void *)mi->mi_vfsp)); 2887 /* 2888 * purge the DNLC for this filesystem 2889 */ 2890 (void) dnlc_purge_vfsp(mi->mi_vfsp, 0); 2891 /* 2892 * Tell existing async worker threads to exit. 2893 */ 2894 mutex_enter(&mi->mi_async_lock); 2895 mi->mi_max_threads = 0; 2896 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv); 2897 /* 2898 * Set the appropriate flags, signal and wait for both the 2899 * async manager and the inactive thread to exit when they're 2900 * done with their current work. 2901 */ 2902 mutex_enter(&mi->mi_lock); 2903 mi->mi_flags |= (MI4_ASYNC_MGR_STOP|MI4_DEAD); 2904 mutex_exit(&mi->mi_lock); 2905 mutex_exit(&mi->mi_async_lock); 2906 if (mi->mi_manager_thread) { 2907 nfs4_async_manager_stop(mi->mi_vfsp); 2908 } 2909 if (mi->mi_inactive_thread) { 2910 mutex_enter(&mi->mi_async_lock); 2911 cv_signal(&mi->mi_inact_req_cv); 2912 /* 2913 * Wait for the inactive thread to exit. 2914 */ 2915 while (mi->mi_inactive_thread != NULL) { 2916 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 2917 } 2918 mutex_exit(&mi->mi_async_lock); 2919 } 2920 /* 2921 * Wait for the recovery thread to complete, that is, it will 2922 * signal when it is done using the "mi" structure and about 2923 * to exit 2924 */ 2925 mutex_enter(&mi->mi_lock); 2926 while (mi->mi_in_recovery > 0) 2927 cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock); 2928 mutex_exit(&mi->mi_lock); 2929 /* 2930 * We're done when every mi has been done or the list is empty. 2931 * This one is done, remove it from the list. 2932 */ 2933 list_remove(&mig->mig_list, mi); 2934 mutex_exit(&mig->mig_lock); 2935 zone_rele(mi->mi_zone); 2936 /* 2937 * Release hold on vfs and mi done to prevent race with zone 2938 * shutdown. This releases the hold in nfs4_mi_zonelist_add. 2939 */ 2940 VFS_RELE(mi->mi_vfsp); 2941 MI4_RELE(mi); 2942 } 2943 /* 2944 * Tell each renew thread in the zone to exit 2945 */ 2946 mutex_enter(&nfs4_server_lst_lock); 2947 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) { 2948 mutex_enter(&np->s_lock); 2949 if (np->zoneid == zoneid) { 2950 /* 2951 * We add another hold onto the nfs4_server_t 2952 * because this will make sure tha the nfs4_server_t 2953 * stays around until nfs4_callback_fini_zone destroys 2954 * the zone. This way, the renew thread can 2955 * unconditionally release its holds on the 2956 * nfs4_server_t. 2957 */ 2958 np->s_refcnt++; 2959 nfs4_mark_srv_dead(np); 2960 } 2961 mutex_exit(&np->s_lock); 2962 } 2963 mutex_exit(&nfs4_server_lst_lock); 2964 } 2965 2966 static void 2967 nfs4_mi_free_globals(struct mi4_globals *mig) 2968 { 2969 list_destroy(&mig->mig_list); /* makes sure the list is empty */ 2970 mutex_destroy(&mig->mig_lock); 2971 kmem_free(mig, sizeof (*mig)); 2972 } 2973 2974 /* ARGSUSED */ 2975 static void 2976 nfs4_mi_destroy(zoneid_t zoneid, void *data) 2977 { 2978 struct mi4_globals *mig = data; 2979 2980 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 2981 "nfs4_mi_destroy zone %d\n", zoneid)); 2982 ASSERT(mig != NULL); 2983 mutex_enter(&mig->mig_lock); 2984 if (list_head(&mig->mig_list) != NULL) { 2985 /* Still waiting for VFS_FREEVFS() */ 2986 mig->mig_destructor_called = B_TRUE; 2987 mutex_exit(&mig->mig_lock); 2988 return; 2989 } 2990 nfs4_mi_free_globals(mig); 2991 } 2992 2993 /* 2994 * Add an NFS mount to the per-zone list of NFS mounts. 2995 */ 2996 void 2997 nfs4_mi_zonelist_add(mntinfo4_t *mi) 2998 { 2999 struct mi4_globals *mig; 3000 3001 mig = zone_getspecific(mi4_list_key, mi->mi_zone); 3002 mutex_enter(&mig->mig_lock); 3003 list_insert_head(&mig->mig_list, mi); 3004 /* 3005 * hold added to eliminate race with zone shutdown -this will be 3006 * released in mi_shutdown 3007 */ 3008 MI4_HOLD(mi); 3009 VFS_HOLD(mi->mi_vfsp); 3010 mutex_exit(&mig->mig_lock); 3011 } 3012 3013 /* 3014 * Remove an NFS mount from the per-zone list of NFS mounts. 3015 */ 3016 int 3017 nfs4_mi_zonelist_remove(mntinfo4_t *mi) 3018 { 3019 struct mi4_globals *mig; 3020 int ret = 0; 3021 3022 mig = zone_getspecific(mi4_list_key, mi->mi_zone); 3023 mutex_enter(&mig->mig_lock); 3024 mutex_enter(&mi->mi_lock); 3025 /* if this mi is marked dead, then the zone already released it */ 3026 if (!(mi->mi_flags & MI4_DEAD)) { 3027 list_remove(&mig->mig_list, mi); 3028 mutex_exit(&mi->mi_lock); 3029 3030 /* release the holds put on in zonelist_add(). */ 3031 VFS_RELE(mi->mi_vfsp); 3032 MI4_RELE(mi); 3033 ret = 1; 3034 } else { 3035 mutex_exit(&mi->mi_lock); 3036 } 3037 3038 /* 3039 * We can be called asynchronously by VFS_FREEVFS() after the zone 3040 * shutdown/destroy callbacks have executed; if so, clean up the zone's 3041 * mi globals. 3042 */ 3043 if (list_head(&mig->mig_list) == NULL && 3044 mig->mig_destructor_called == B_TRUE) { 3045 nfs4_mi_free_globals(mig); 3046 return (ret); 3047 } 3048 mutex_exit(&mig->mig_lock); 3049 return (ret); 3050 } 3051 3052 void 3053 nfs_free_mi4(mntinfo4_t *mi) 3054 { 3055 nfs4_open_owner_t *foop; 3056 nfs4_oo_hash_bucket_t *bucketp; 3057 nfs4_debug_msg_t *msgp; 3058 int i; 3059 servinfo4_t *svp; 3060 3061 /* 3062 * Code introduced here should be carefully evaluated to make 3063 * sure none of the freed resources are accessed either directly 3064 * or indirectly after freeing them. For eg: Introducing calls to 3065 * NFS4_DEBUG that use mntinfo4_t structure member after freeing 3066 * the structure members or other routines calling back into NFS 3067 * accessing freed mntinfo4_t structure member. 3068 */ 3069 mutex_enter(&mi->mi_lock); 3070 ASSERT(mi->mi_recovthread == NULL); 3071 ASSERT(mi->mi_flags & MI4_ASYNC_MGR_STOP); 3072 mutex_exit(&mi->mi_lock); 3073 mutex_enter(&mi->mi_async_lock); 3074 ASSERT(mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 && 3075 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0); 3076 ASSERT(mi->mi_manager_thread == NULL); 3077 mutex_exit(&mi->mi_async_lock); 3078 if (mi->mi_io_kstats) { 3079 kstat_delete(mi->mi_io_kstats); 3080 mi->mi_io_kstats = NULL; 3081 } 3082 if (mi->mi_ro_kstats) { 3083 kstat_delete(mi->mi_ro_kstats); 3084 mi->mi_ro_kstats = NULL; 3085 } 3086 if (mi->mi_recov_ksp) { 3087 kstat_delete(mi->mi_recov_ksp); 3088 mi->mi_recov_ksp = NULL; 3089 } 3090 mutex_enter(&mi->mi_msg_list_lock); 3091 while (msgp = list_head(&mi->mi_msg_list)) { 3092 list_remove(&mi->mi_msg_list, msgp); 3093 nfs4_free_msg(msgp); 3094 } 3095 mutex_exit(&mi->mi_msg_list_lock); 3096 list_destroy(&mi->mi_msg_list); 3097 if (mi->mi_fname != NULL) 3098 fn_rele(&mi->mi_fname); 3099 if (mi->mi_rootfh != NULL) 3100 sfh4_rele(&mi->mi_rootfh); 3101 if (mi->mi_srvparentfh != NULL) 3102 sfh4_rele(&mi->mi_srvparentfh); 3103 svp = mi->mi_servers; 3104 sv4_free(svp); 3105 mutex_destroy(&mi->mi_lock); 3106 mutex_destroy(&mi->mi_async_lock); 3107 mutex_destroy(&mi->mi_msg_list_lock); 3108 nfs_rw_destroy(&mi->mi_recovlock); 3109 nfs_rw_destroy(&mi->mi_rename_lock); 3110 nfs_rw_destroy(&mi->mi_fh_lock); 3111 cv_destroy(&mi->mi_failover_cv); 3112 cv_destroy(&mi->mi_async_reqs_cv); 3113 cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_QUEUE]); 3114 cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE]); 3115 cv_destroy(&mi->mi_async_cv); 3116 cv_destroy(&mi->mi_inact_req_cv); 3117 /* 3118 * Destroy the oo hash lists and mutexes for the cred hash table. 3119 */ 3120 for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) { 3121 bucketp = &(mi->mi_oo_list[i]); 3122 /* Destroy any remaining open owners on the list */ 3123 foop = list_head(&bucketp->b_oo_hash_list); 3124 while (foop != NULL) { 3125 list_remove(&bucketp->b_oo_hash_list, foop); 3126 nfs4_destroy_open_owner(foop); 3127 foop = list_head(&bucketp->b_oo_hash_list); 3128 } 3129 list_destroy(&bucketp->b_oo_hash_list); 3130 mutex_destroy(&bucketp->b_lock); 3131 } 3132 /* 3133 * Empty and destroy the freed open owner list. 3134 */ 3135 foop = list_head(&mi->mi_foo_list); 3136 while (foop != NULL) { 3137 list_remove(&mi->mi_foo_list, foop); 3138 nfs4_destroy_open_owner(foop); 3139 foop = list_head(&mi->mi_foo_list); 3140 } 3141 list_destroy(&mi->mi_foo_list); 3142 list_destroy(&mi->mi_bseqid_list); 3143 list_destroy(&mi->mi_lost_state); 3144 avl_destroy(&mi->mi_filehandles); 3145 kmem_free(mi, sizeof (*mi)); 3146 } 3147 void 3148 mi_hold(mntinfo4_t *mi) 3149 { 3150 atomic_add_32(&mi->mi_count, 1); 3151 ASSERT(mi->mi_count != 0); 3152 } 3153 3154 void 3155 mi_rele(mntinfo4_t *mi) 3156 { 3157 ASSERT(mi->mi_count != 0); 3158 if (atomic_add_32_nv(&mi->mi_count, -1) == 0) { 3159 nfs_free_mi4(mi); 3160 } 3161 } 3162 3163 vnode_t nfs4_xattr_notsupp_vnode; 3164 3165 void 3166 nfs4_clnt_init(void) 3167 { 3168 nfs4_vnops_init(); 3169 (void) nfs4_rnode_init(); 3170 (void) nfs4_shadow_init(); 3171 (void) nfs4_acache_init(); 3172 (void) nfs4_subr_init(); 3173 nfs4_acl_init(); 3174 nfs_idmap_init(); 3175 nfs4_callback_init(); 3176 nfs4_secinfo_init(); 3177 #ifdef DEBUG 3178 tsd_create(&nfs4_tsd_key, NULL); 3179 #endif 3180 3181 /* 3182 * Add a CPR callback so that we can update client 3183 * lease after a suspend and resume. 3184 */ 3185 cid = callb_add(nfs4_client_cpr_callb, 0, CB_CL_CPR_RPC, "nfs4"); 3186 3187 zone_key_create(&mi4_list_key, nfs4_mi_init, nfs4_mi_shutdown, 3188 nfs4_mi_destroy); 3189 3190 /* 3191 * Initialise the reference count of the notsupp xattr cache vnode to 1 3192 * so that it never goes away (VOP_INACTIVE isn't called on it). 3193 */ 3194 nfs4_xattr_notsupp_vnode.v_count = 1; 3195 } 3196 3197 void 3198 nfs4_clnt_fini(void) 3199 { 3200 (void) zone_key_delete(mi4_list_key); 3201 nfs4_vnops_fini(); 3202 (void) nfs4_rnode_fini(); 3203 (void) nfs4_shadow_fini(); 3204 (void) nfs4_acache_fini(); 3205 (void) nfs4_subr_fini(); 3206 nfs_idmap_fini(); 3207 nfs4_callback_fini(); 3208 nfs4_secinfo_fini(); 3209 #ifdef DEBUG 3210 tsd_destroy(&nfs4_tsd_key); 3211 #endif 3212 if (cid) 3213 (void) callb_delete(cid); 3214 } 3215 3216 /*ARGSUSED*/ 3217 static boolean_t 3218 nfs4_client_cpr_callb(void *arg, int code) 3219 { 3220 /* 3221 * We get called for Suspend and Resume events. 3222 * For the suspend case we simply don't care! 3223 */ 3224 if (code == CB_CODE_CPR_CHKPT) { 3225 return (B_TRUE); 3226 } 3227 3228 /* 3229 * When we get to here we are in the process of 3230 * resuming the system from a previous suspend. 3231 */ 3232 nfs4_client_resumed = gethrestime_sec(); 3233 return (B_TRUE); 3234 } 3235 3236 void 3237 nfs4_renew_lease_thread(nfs4_server_t *sp) 3238 { 3239 int error = 0; 3240 time_t tmp_last_renewal_time, tmp_time, tmp_now_time, kip_secs; 3241 clock_t tick_delay = 0; 3242 clock_t time_left = 0; 3243 callb_cpr_t cpr_info; 3244 kmutex_t cpr_lock; 3245 3246 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3247 "nfs4_renew_lease_thread: acting on sp 0x%p", (void*)sp)); 3248 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL); 3249 CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, "nfsv4Lease"); 3250 3251 mutex_enter(&sp->s_lock); 3252 /* sp->s_lease_time is set via a GETATTR */ 3253 sp->last_renewal_time = gethrestime_sec(); 3254 sp->lease_valid = NFS4_LEASE_UNINITIALIZED; 3255 ASSERT(sp->s_refcnt >= 1); 3256 3257 for (;;) { 3258 if (!sp->state_ref_count || 3259 sp->lease_valid != NFS4_LEASE_VALID) { 3260 3261 kip_secs = MAX((sp->s_lease_time >> 1) - 3262 (3 * sp->propagation_delay.tv_sec), 1); 3263 3264 tick_delay = SEC_TO_TICK(kip_secs); 3265 3266 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3267 "nfs4_renew_lease_thread: no renew : thread " 3268 "wait %ld secs", kip_secs)); 3269 3270 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3271 "nfs4_renew_lease_thread: no renew : " 3272 "state_ref_count %d, lease_valid %d", 3273 sp->state_ref_count, sp->lease_valid)); 3274 3275 mutex_enter(&cpr_lock); 3276 CALLB_CPR_SAFE_BEGIN(&cpr_info); 3277 mutex_exit(&cpr_lock); 3278 time_left = cv_reltimedwait(&sp->cv_thread_exit, 3279 &sp->s_lock, tick_delay, TR_CLOCK_TICK); 3280 mutex_enter(&cpr_lock); 3281 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 3282 mutex_exit(&cpr_lock); 3283 3284 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3285 "nfs4_renew_lease_thread: no renew: " 3286 "time left %ld", time_left)); 3287 3288 if (sp->s_thread_exit == NFS4_THREAD_EXIT) 3289 goto die; 3290 continue; 3291 } 3292 3293 tmp_last_renewal_time = sp->last_renewal_time; 3294 3295 tmp_time = gethrestime_sec() - sp->last_renewal_time + 3296 (3 * sp->propagation_delay.tv_sec); 3297 3298 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3299 "nfs4_renew_lease_thread: tmp_time %ld, " 3300 "sp->last_renewal_time %ld", tmp_time, 3301 sp->last_renewal_time)); 3302 3303 kip_secs = MAX((sp->s_lease_time >> 1) - tmp_time, 1); 3304 3305 tick_delay = SEC_TO_TICK(kip_secs); 3306 3307 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3308 "nfs4_renew_lease_thread: valid lease: sleep for %ld " 3309 "secs", kip_secs)); 3310 3311 mutex_enter(&cpr_lock); 3312 CALLB_CPR_SAFE_BEGIN(&cpr_info); 3313 mutex_exit(&cpr_lock); 3314 time_left = cv_reltimedwait(&sp->cv_thread_exit, &sp->s_lock, 3315 tick_delay, TR_CLOCK_TICK); 3316 mutex_enter(&cpr_lock); 3317 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 3318 mutex_exit(&cpr_lock); 3319 3320 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3321 "nfs4_renew_lease_thread: valid lease: time left %ld :" 3322 "sp last_renewal_time %ld, nfs4_client_resumed %ld, " 3323 "tmp_last_renewal_time %ld", time_left, 3324 sp->last_renewal_time, nfs4_client_resumed, 3325 tmp_last_renewal_time)); 3326 3327 if (sp->s_thread_exit == NFS4_THREAD_EXIT) 3328 goto die; 3329 3330 if (tmp_last_renewal_time == sp->last_renewal_time || 3331 (nfs4_client_resumed != 0 && 3332 nfs4_client_resumed > sp->last_renewal_time)) { 3333 /* 3334 * Issue RENEW op since we haven't renewed the lease 3335 * since we slept. 3336 */ 3337 tmp_now_time = gethrestime_sec(); 3338 error = nfs4renew(sp); 3339 /* 3340 * Need to re-acquire sp's lock, nfs4renew() 3341 * relinqueshes it. 3342 */ 3343 mutex_enter(&sp->s_lock); 3344 3345 /* 3346 * See if someone changed s_thread_exit while we gave 3347 * up s_lock. 3348 */ 3349 if (sp->s_thread_exit == NFS4_THREAD_EXIT) 3350 goto die; 3351 3352 if (!error) { 3353 /* 3354 * check to see if we implicitly renewed while 3355 * we waited for a reply for our RENEW call. 3356 */ 3357 if (tmp_last_renewal_time == 3358 sp->last_renewal_time) { 3359 /* no implicit renew came */ 3360 sp->last_renewal_time = tmp_now_time; 3361 } else { 3362 NFS4_DEBUG(nfs4_client_lease_debug, 3363 (CE_NOTE, "renew_thread: did " 3364 "implicit renewal before reply " 3365 "from server for RENEW")); 3366 } 3367 } else { 3368 /* figure out error */ 3369 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3370 "renew_thread: nfs4renew returned error" 3371 " %d", error)); 3372 } 3373 3374 } 3375 } 3376 3377 die: 3378 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3379 "nfs4_renew_lease_thread: thread exiting")); 3380 3381 while (sp->s_otw_call_count != 0) { 3382 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3383 "nfs4_renew_lease_thread: waiting for outstanding " 3384 "otw calls to finish for sp 0x%p, current " 3385 "s_otw_call_count %d", (void *)sp, 3386 sp->s_otw_call_count)); 3387 mutex_enter(&cpr_lock); 3388 CALLB_CPR_SAFE_BEGIN(&cpr_info); 3389 mutex_exit(&cpr_lock); 3390 cv_wait(&sp->s_cv_otw_count, &sp->s_lock); 3391 mutex_enter(&cpr_lock); 3392 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 3393 mutex_exit(&cpr_lock); 3394 } 3395 mutex_exit(&sp->s_lock); 3396 3397 nfs4_server_rele(sp); /* free the thread's reference */ 3398 nfs4_server_rele(sp); /* free the list's reference */ 3399 sp = NULL; 3400 3401 done: 3402 mutex_enter(&cpr_lock); 3403 CALLB_CPR_EXIT(&cpr_info); /* drops cpr_lock */ 3404 mutex_destroy(&cpr_lock); 3405 3406 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3407 "nfs4_renew_lease_thread: renew thread exit officially")); 3408 3409 zthread_exit(); 3410 /* NOT REACHED */ 3411 } 3412 3413 /* 3414 * Send out a RENEW op to the server. 3415 * Assumes sp is locked down. 3416 */ 3417 static int 3418 nfs4renew(nfs4_server_t *sp) 3419 { 3420 COMPOUND4args_clnt args; 3421 COMPOUND4res_clnt res; 3422 nfs_argop4 argop[1]; 3423 int doqueue = 1; 3424 int rpc_error; 3425 cred_t *cr; 3426 mntinfo4_t *mi; 3427 timespec_t prop_time, after_time; 3428 int needrecov = FALSE; 3429 nfs4_recov_state_t recov_state; 3430 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3431 3432 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4renew")); 3433 3434 recov_state.rs_flags = 0; 3435 recov_state.rs_num_retry_despite_err = 0; 3436 3437 recov_retry: 3438 mi = sp->mntinfo4_list; 3439 VFS_HOLD(mi->mi_vfsp); 3440 mutex_exit(&sp->s_lock); 3441 ASSERT(mi != NULL); 3442 3443 e.error = nfs4_start_op(mi, NULL, NULL, &recov_state); 3444 if (e.error) { 3445 VFS_RELE(mi->mi_vfsp); 3446 return (e.error); 3447 } 3448 3449 /* Check to see if we're dealing with a marked-dead sp */ 3450 mutex_enter(&sp->s_lock); 3451 if (sp->s_thread_exit == NFS4_THREAD_EXIT) { 3452 mutex_exit(&sp->s_lock); 3453 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3454 VFS_RELE(mi->mi_vfsp); 3455 return (0); 3456 } 3457 3458 /* Make sure mi hasn't changed on us */ 3459 if (mi != sp->mntinfo4_list) { 3460 /* Must drop sp's lock to avoid a recursive mutex enter */ 3461 mutex_exit(&sp->s_lock); 3462 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3463 VFS_RELE(mi->mi_vfsp); 3464 mutex_enter(&sp->s_lock); 3465 goto recov_retry; 3466 } 3467 mutex_exit(&sp->s_lock); 3468 3469 args.ctag = TAG_RENEW; 3470 3471 args.array_len = 1; 3472 args.array = argop; 3473 3474 argop[0].argop = OP_RENEW; 3475 3476 mutex_enter(&sp->s_lock); 3477 argop[0].nfs_argop4_u.oprenew.clientid = sp->clientid; 3478 cr = sp->s_cred; 3479 crhold(cr); 3480 mutex_exit(&sp->s_lock); 3481 3482 ASSERT(cr != NULL); 3483 3484 /* used to figure out RTT for sp */ 3485 gethrestime(&prop_time); 3486 3487 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3488 "nfs4renew: %s call, sp 0x%p", needrecov ? "recov" : "first", 3489 (void*)sp)); 3490 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "before: %ld s %ld ns ", 3491 prop_time.tv_sec, prop_time.tv_nsec)); 3492 3493 DTRACE_PROBE2(nfs4__renew__start, nfs4_server_t *, sp, 3494 mntinfo4_t *, mi); 3495 3496 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3497 crfree(cr); 3498 3499 DTRACE_PROBE2(nfs4__renew__end, nfs4_server_t *, sp, 3500 mntinfo4_t *, mi); 3501 3502 gethrestime(&after_time); 3503 3504 mutex_enter(&sp->s_lock); 3505 sp->propagation_delay.tv_sec = 3506 MAX(1, after_time.tv_sec - prop_time.tv_sec); 3507 mutex_exit(&sp->s_lock); 3508 3509 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "after : %ld s %ld ns ", 3510 after_time.tv_sec, after_time.tv_nsec)); 3511 3512 if (e.error == 0 && res.status == NFS4ERR_CB_PATH_DOWN) { 3513 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3514 nfs4_delegreturn_all(sp); 3515 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3516 VFS_RELE(mi->mi_vfsp); 3517 /* 3518 * If the server returns CB_PATH_DOWN, it has renewed 3519 * the lease and informed us that the callback path is 3520 * down. Since the lease is renewed, just return 0 and 3521 * let the renew thread proceed as normal. 3522 */ 3523 return (0); 3524 } 3525 3526 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3527 if (!needrecov && e.error) { 3528 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3529 VFS_RELE(mi->mi_vfsp); 3530 return (e.error); 3531 } 3532 3533 rpc_error = e.error; 3534 3535 if (needrecov) { 3536 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3537 "nfs4renew: initiating recovery\n")); 3538 3539 if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL, 3540 OP_RENEW, NULL, NULL, NULL) == FALSE) { 3541 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3542 VFS_RELE(mi->mi_vfsp); 3543 if (!e.error) 3544 (void) xdr_free(xdr_COMPOUND4res_clnt, 3545 (caddr_t)&res); 3546 mutex_enter(&sp->s_lock); 3547 goto recov_retry; 3548 } 3549 /* fall through for res.status case */ 3550 } 3551 3552 if (res.status) { 3553 if (res.status == NFS4ERR_LEASE_MOVED) { 3554 /*EMPTY*/ 3555 /* 3556 * XXX need to try every mntinfo4 in sp->mntinfo4_list 3557 * to renew the lease on that server 3558 */ 3559 } 3560 e.error = geterrno4(res.status); 3561 } 3562 3563 if (!rpc_error) 3564 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3565 3566 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 3567 3568 VFS_RELE(mi->mi_vfsp); 3569 3570 return (e.error); 3571 } 3572 3573 void 3574 nfs4_inc_state_ref_count(mntinfo4_t *mi) 3575 { 3576 nfs4_server_t *sp; 3577 3578 /* this locks down sp if it is found */ 3579 sp = find_nfs4_server(mi); 3580 3581 if (sp != NULL) { 3582 nfs4_inc_state_ref_count_nolock(sp, mi); 3583 mutex_exit(&sp->s_lock); 3584 nfs4_server_rele(sp); 3585 } 3586 } 3587 3588 /* 3589 * Bump the number of OPEN files (ie: those with state) so we know if this 3590 * nfs4_server has any state to maintain a lease for or not. 3591 * 3592 * Also, marks the nfs4_server's lease valid if it hasn't been done so already. 3593 */ 3594 void 3595 nfs4_inc_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi) 3596 { 3597 ASSERT(mutex_owned(&sp->s_lock)); 3598 3599 sp->state_ref_count++; 3600 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3601 "nfs4_inc_state_ref_count: state_ref_count now %d", 3602 sp->state_ref_count)); 3603 3604 if (sp->lease_valid == NFS4_LEASE_UNINITIALIZED) 3605 sp->lease_valid = NFS4_LEASE_VALID; 3606 3607 /* 3608 * If this call caused the lease to be marked valid and/or 3609 * took the state_ref_count from 0 to 1, then start the time 3610 * on lease renewal. 3611 */ 3612 if (sp->lease_valid == NFS4_LEASE_VALID && sp->state_ref_count == 1) 3613 sp->last_renewal_time = gethrestime_sec(); 3614 3615 /* update the number of open files for mi */ 3616 mi->mi_open_files++; 3617 } 3618 3619 void 3620 nfs4_dec_state_ref_count(mntinfo4_t *mi) 3621 { 3622 nfs4_server_t *sp; 3623 3624 /* this locks down sp if it is found */ 3625 sp = find_nfs4_server_all(mi, 1); 3626 3627 if (sp != NULL) { 3628 nfs4_dec_state_ref_count_nolock(sp, mi); 3629 mutex_exit(&sp->s_lock); 3630 nfs4_server_rele(sp); 3631 } 3632 } 3633 3634 /* 3635 * Decrement the number of OPEN files (ie: those with state) so we know if 3636 * this nfs4_server has any state to maintain a lease for or not. 3637 */ 3638 void 3639 nfs4_dec_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi) 3640 { 3641 ASSERT(mutex_owned(&sp->s_lock)); 3642 ASSERT(sp->state_ref_count != 0); 3643 sp->state_ref_count--; 3644 3645 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3646 "nfs4_dec_state_ref_count: state ref count now %d", 3647 sp->state_ref_count)); 3648 3649 mi->mi_open_files--; 3650 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3651 "nfs4_dec_state_ref_count: mi open files %d, v4 flags 0x%x", 3652 mi->mi_open_files, mi->mi_flags)); 3653 3654 /* We don't have to hold the mi_lock to test mi_flags */ 3655 if (mi->mi_open_files == 0 && 3656 (mi->mi_flags & MI4_REMOVE_ON_LAST_CLOSE)) { 3657 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3658 "nfs4_dec_state_ref_count: remove mntinfo4 %p since " 3659 "we have closed the last open file", (void*)mi)); 3660 nfs4_remove_mi_from_server(mi, sp); 3661 } 3662 } 3663 3664 bool_t 3665 inlease(nfs4_server_t *sp) 3666 { 3667 bool_t result; 3668 3669 ASSERT(mutex_owned(&sp->s_lock)); 3670 3671 if (sp->lease_valid == NFS4_LEASE_VALID && 3672 gethrestime_sec() < sp->last_renewal_time + sp->s_lease_time) 3673 result = TRUE; 3674 else 3675 result = FALSE; 3676 3677 return (result); 3678 } 3679 3680 3681 /* 3682 * Return non-zero if the given nfs4_server_t is going through recovery. 3683 */ 3684 3685 int 3686 nfs4_server_in_recovery(nfs4_server_t *sp) 3687 { 3688 return (nfs_rw_lock_held(&sp->s_recovlock, RW_WRITER)); 3689 } 3690 3691 /* 3692 * Compare two shared filehandle objects. Returns -1, 0, or +1, if the 3693 * first is less than, equal to, or greater than the second. 3694 */ 3695 3696 int 3697 sfh4cmp(const void *p1, const void *p2) 3698 { 3699 const nfs4_sharedfh_t *sfh1 = (const nfs4_sharedfh_t *)p1; 3700 const nfs4_sharedfh_t *sfh2 = (const nfs4_sharedfh_t *)p2; 3701 3702 return (nfs4cmpfh(&sfh1->sfh_fh, &sfh2->sfh_fh)); 3703 } 3704 3705 /* 3706 * Create a table for shared filehandle objects. 3707 */ 3708 3709 void 3710 sfh4_createtab(avl_tree_t *tab) 3711 { 3712 avl_create(tab, sfh4cmp, sizeof (nfs4_sharedfh_t), 3713 offsetof(nfs4_sharedfh_t, sfh_tree)); 3714 } 3715 3716 /* 3717 * Return a shared filehandle object for the given filehandle. The caller 3718 * is responsible for eventually calling sfh4_rele(). 3719 */ 3720 3721 nfs4_sharedfh_t * 3722 sfh4_put(const nfs_fh4 *fh, mntinfo4_t *mi, nfs4_sharedfh_t *key) 3723 { 3724 nfs4_sharedfh_t *sfh, *nsfh; 3725 avl_index_t where; 3726 nfs4_sharedfh_t skey; 3727 3728 if (!key) { 3729 skey.sfh_fh = *fh; 3730 key = &skey; 3731 } 3732 3733 nsfh = kmem_alloc(sizeof (nfs4_sharedfh_t), KM_SLEEP); 3734 nsfh->sfh_fh.nfs_fh4_len = fh->nfs_fh4_len; 3735 /* 3736 * We allocate the largest possible filehandle size because it's 3737 * not that big, and it saves us from possibly having to resize the 3738 * buffer later. 3739 */ 3740 nsfh->sfh_fh.nfs_fh4_val = kmem_alloc(NFS4_FHSIZE, KM_SLEEP); 3741 bcopy(fh->nfs_fh4_val, nsfh->sfh_fh.nfs_fh4_val, fh->nfs_fh4_len); 3742 mutex_init(&nsfh->sfh_lock, NULL, MUTEX_DEFAULT, NULL); 3743 nsfh->sfh_refcnt = 1; 3744 nsfh->sfh_flags = SFH4_IN_TREE; 3745 nsfh->sfh_mi = mi; 3746 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, "sfh4_get: new object (%p)", 3747 (void *)nsfh)); 3748 3749 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0); 3750 sfh = avl_find(&mi->mi_filehandles, key, &where); 3751 if (sfh != NULL) { 3752 mutex_enter(&sfh->sfh_lock); 3753 sfh->sfh_refcnt++; 3754 mutex_exit(&sfh->sfh_lock); 3755 nfs_rw_exit(&mi->mi_fh_lock); 3756 /* free our speculative allocs */ 3757 kmem_free(nsfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE); 3758 kmem_free(nsfh, sizeof (nfs4_sharedfh_t)); 3759 return (sfh); 3760 } 3761 3762 avl_insert(&mi->mi_filehandles, nsfh, where); 3763 nfs_rw_exit(&mi->mi_fh_lock); 3764 3765 return (nsfh); 3766 } 3767 3768 /* 3769 * Return a shared filehandle object for the given filehandle. The caller 3770 * is responsible for eventually calling sfh4_rele(). 3771 */ 3772 3773 nfs4_sharedfh_t * 3774 sfh4_get(const nfs_fh4 *fh, mntinfo4_t *mi) 3775 { 3776 nfs4_sharedfh_t *sfh; 3777 nfs4_sharedfh_t key; 3778 3779 ASSERT(fh->nfs_fh4_len <= NFS4_FHSIZE); 3780 3781 #ifdef DEBUG 3782 if (nfs4_sharedfh_debug) { 3783 nfs4_fhandle_t fhandle; 3784 3785 fhandle.fh_len = fh->nfs_fh4_len; 3786 bcopy(fh->nfs_fh4_val, fhandle.fh_buf, fhandle.fh_len); 3787 zcmn_err(mi->mi_zone->zone_id, CE_NOTE, "sfh4_get:"); 3788 nfs4_printfhandle(&fhandle); 3789 } 3790 #endif 3791 3792 /* 3793 * If there's already an object for the given filehandle, bump the 3794 * reference count and return it. Otherwise, create a new object 3795 * and add it to the AVL tree. 3796 */ 3797 3798 key.sfh_fh = *fh; 3799 3800 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 3801 sfh = avl_find(&mi->mi_filehandles, &key, NULL); 3802 if (sfh != NULL) { 3803 mutex_enter(&sfh->sfh_lock); 3804 sfh->sfh_refcnt++; 3805 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, 3806 "sfh4_get: found existing %p, new refcnt=%d", 3807 (void *)sfh, sfh->sfh_refcnt)); 3808 mutex_exit(&sfh->sfh_lock); 3809 nfs_rw_exit(&mi->mi_fh_lock); 3810 return (sfh); 3811 } 3812 nfs_rw_exit(&mi->mi_fh_lock); 3813 3814 return (sfh4_put(fh, mi, &key)); 3815 } 3816 3817 /* 3818 * Get a reference to the given shared filehandle object. 3819 */ 3820 3821 void 3822 sfh4_hold(nfs4_sharedfh_t *sfh) 3823 { 3824 ASSERT(sfh->sfh_refcnt > 0); 3825 3826 mutex_enter(&sfh->sfh_lock); 3827 sfh->sfh_refcnt++; 3828 NFS4_DEBUG(nfs4_sharedfh_debug, 3829 (CE_NOTE, "sfh4_hold %p, new refcnt=%d", 3830 (void *)sfh, sfh->sfh_refcnt)); 3831 mutex_exit(&sfh->sfh_lock); 3832 } 3833 3834 /* 3835 * Release a reference to the given shared filehandle object and null out 3836 * the given pointer. 3837 */ 3838 3839 void 3840 sfh4_rele(nfs4_sharedfh_t **sfhpp) 3841 { 3842 mntinfo4_t *mi; 3843 nfs4_sharedfh_t *sfh = *sfhpp; 3844 3845 ASSERT(sfh->sfh_refcnt > 0); 3846 3847 mutex_enter(&sfh->sfh_lock); 3848 if (sfh->sfh_refcnt > 1) { 3849 sfh->sfh_refcnt--; 3850 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, 3851 "sfh4_rele %p, new refcnt=%d", 3852 (void *)sfh, sfh->sfh_refcnt)); 3853 mutex_exit(&sfh->sfh_lock); 3854 goto finish; 3855 } 3856 mutex_exit(&sfh->sfh_lock); 3857 3858 /* 3859 * Possibly the last reference, so get the lock for the table in 3860 * case it's time to remove the object from the table. 3861 */ 3862 mi = sfh->sfh_mi; 3863 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0); 3864 mutex_enter(&sfh->sfh_lock); 3865 sfh->sfh_refcnt--; 3866 if (sfh->sfh_refcnt > 0) { 3867 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, 3868 "sfh4_rele %p, new refcnt=%d", 3869 (void *)sfh, sfh->sfh_refcnt)); 3870 mutex_exit(&sfh->sfh_lock); 3871 nfs_rw_exit(&mi->mi_fh_lock); 3872 goto finish; 3873 } 3874 3875 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, 3876 "sfh4_rele %p, last ref", (void *)sfh)); 3877 if (sfh->sfh_flags & SFH4_IN_TREE) { 3878 avl_remove(&mi->mi_filehandles, sfh); 3879 sfh->sfh_flags &= ~SFH4_IN_TREE; 3880 } 3881 mutex_exit(&sfh->sfh_lock); 3882 nfs_rw_exit(&mi->mi_fh_lock); 3883 mutex_destroy(&sfh->sfh_lock); 3884 kmem_free(sfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE); 3885 kmem_free(sfh, sizeof (nfs4_sharedfh_t)); 3886 3887 finish: 3888 *sfhpp = NULL; 3889 } 3890 3891 /* 3892 * Update the filehandle for the given shared filehandle object. 3893 */ 3894 3895 int nfs4_warn_dupfh = 0; /* if set, always warn about dup fhs below */ 3896 3897 void 3898 sfh4_update(nfs4_sharedfh_t *sfh, const nfs_fh4 *newfh) 3899 { 3900 mntinfo4_t *mi = sfh->sfh_mi; 3901 nfs4_sharedfh_t *dupsfh; 3902 avl_index_t where; 3903 nfs4_sharedfh_t key; 3904 3905 #ifdef DEBUG 3906 mutex_enter(&sfh->sfh_lock); 3907 ASSERT(sfh->sfh_refcnt > 0); 3908 mutex_exit(&sfh->sfh_lock); 3909 #endif 3910 ASSERT(newfh->nfs_fh4_len <= NFS4_FHSIZE); 3911 3912 /* 3913 * The basic plan is to remove the shared filehandle object from 3914 * the table, update it to have the new filehandle, then reinsert 3915 * it. 3916 */ 3917 3918 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0); 3919 mutex_enter(&sfh->sfh_lock); 3920 if (sfh->sfh_flags & SFH4_IN_TREE) { 3921 avl_remove(&mi->mi_filehandles, sfh); 3922 sfh->sfh_flags &= ~SFH4_IN_TREE; 3923 } 3924 mutex_exit(&sfh->sfh_lock); 3925 sfh->sfh_fh.nfs_fh4_len = newfh->nfs_fh4_len; 3926 bcopy(newfh->nfs_fh4_val, sfh->sfh_fh.nfs_fh4_val, 3927 sfh->sfh_fh.nfs_fh4_len); 3928 3929 /* 3930 * XXX If there is already a shared filehandle object with the new 3931 * filehandle, we're in trouble, because the rnode code assumes 3932 * that there is only one shared filehandle object for a given 3933 * filehandle. So issue a warning (for read-write mounts only) 3934 * and don't try to re-insert the given object into the table. 3935 * Hopefully the given object will quickly go away and everyone 3936 * will use the new object. 3937 */ 3938 key.sfh_fh = *newfh; 3939 dupsfh = avl_find(&mi->mi_filehandles, &key, &where); 3940 if (dupsfh != NULL) { 3941 if (!(mi->mi_vfsp->vfs_flag & VFS_RDONLY) || nfs4_warn_dupfh) { 3942 zcmn_err(mi->mi_zone->zone_id, CE_WARN, "sfh4_update: " 3943 "duplicate filehandle detected"); 3944 sfh4_printfhandle(dupsfh); 3945 } 3946 } else { 3947 avl_insert(&mi->mi_filehandles, sfh, where); 3948 mutex_enter(&sfh->sfh_lock); 3949 sfh->sfh_flags |= SFH4_IN_TREE; 3950 mutex_exit(&sfh->sfh_lock); 3951 } 3952 nfs_rw_exit(&mi->mi_fh_lock); 3953 } 3954 3955 /* 3956 * Copy out the current filehandle for the given shared filehandle object. 3957 */ 3958 3959 void 3960 sfh4_copyval(const nfs4_sharedfh_t *sfh, nfs4_fhandle_t *fhp) 3961 { 3962 mntinfo4_t *mi = sfh->sfh_mi; 3963 3964 ASSERT(sfh->sfh_refcnt > 0); 3965 3966 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 3967 fhp->fh_len = sfh->sfh_fh.nfs_fh4_len; 3968 ASSERT(fhp->fh_len <= NFS4_FHSIZE); 3969 bcopy(sfh->sfh_fh.nfs_fh4_val, fhp->fh_buf, fhp->fh_len); 3970 nfs_rw_exit(&mi->mi_fh_lock); 3971 } 3972 3973 /* 3974 * Print out the filehandle for the given shared filehandle object. 3975 */ 3976 3977 void 3978 sfh4_printfhandle(const nfs4_sharedfh_t *sfh) 3979 { 3980 nfs4_fhandle_t fhandle; 3981 3982 sfh4_copyval(sfh, &fhandle); 3983 nfs4_printfhandle(&fhandle); 3984 } 3985 3986 /* 3987 * Compare 2 fnames. Returns -1 if the first is "less" than the second, 0 3988 * if they're the same, +1 if the first is "greater" than the second. The 3989 * caller (or whoever's calling the AVL package) is responsible for 3990 * handling locking issues. 3991 */ 3992 3993 static int 3994 fncmp(const void *p1, const void *p2) 3995 { 3996 const nfs4_fname_t *f1 = p1; 3997 const nfs4_fname_t *f2 = p2; 3998 int res; 3999 4000 res = strcmp(f1->fn_name, f2->fn_name); 4001 /* 4002 * The AVL package wants +/-1, not arbitrary positive or negative 4003 * integers. 4004 */ 4005 if (res > 0) 4006 res = 1; 4007 else if (res < 0) 4008 res = -1; 4009 return (res); 4010 } 4011 4012 /* 4013 * Get or create an fname with the given name, as a child of the given 4014 * fname. The caller is responsible for eventually releasing the reference 4015 * (fn_rele()). parent may be NULL. 4016 */ 4017 4018 nfs4_fname_t * 4019 fn_get(nfs4_fname_t *parent, char *name, nfs4_sharedfh_t *sfh) 4020 { 4021 nfs4_fname_t key; 4022 nfs4_fname_t *fnp; 4023 avl_index_t where; 4024 4025 key.fn_name = name; 4026 4027 /* 4028 * If there's already an fname registered with the given name, bump 4029 * its reference count and return it. Otherwise, create a new one 4030 * and add it to the parent's AVL tree. 4031 * 4032 * fname entries we are looking for should match both name 4033 * and sfh stored in the fname. 4034 */ 4035 again: 4036 if (parent != NULL) { 4037 mutex_enter(&parent->fn_lock); 4038 fnp = avl_find(&parent->fn_children, &key, &where); 4039 if (fnp != NULL) { 4040 /* 4041 * This hold on fnp is released below later, 4042 * in case this is not the fnp we want. 4043 */ 4044 fn_hold(fnp); 4045 4046 if (fnp->fn_sfh == sfh) { 4047 /* 4048 * We have found our entry. 4049 * put an hold and return it. 4050 */ 4051 mutex_exit(&parent->fn_lock); 4052 return (fnp); 4053 } 4054 4055 /* 4056 * We have found an entry that has a mismatching 4057 * fn_sfh. This could be a stale entry due to 4058 * server side rename. We will remove this entry 4059 * and make sure no such entries exist. 4060 */ 4061 mutex_exit(&parent->fn_lock); 4062 mutex_enter(&fnp->fn_lock); 4063 if (fnp->fn_parent == parent) { 4064 /* 4065 * Remove ourselves from parent's 4066 * fn_children tree. 4067 */ 4068 mutex_enter(&parent->fn_lock); 4069 avl_remove(&parent->fn_children, fnp); 4070 mutex_exit(&parent->fn_lock); 4071 fn_rele(&fnp->fn_parent); 4072 } 4073 mutex_exit(&fnp->fn_lock); 4074 fn_rele(&fnp); 4075 goto again; 4076 } 4077 } 4078 4079 fnp = kmem_alloc(sizeof (nfs4_fname_t), KM_SLEEP); 4080 mutex_init(&fnp->fn_lock, NULL, MUTEX_DEFAULT, NULL); 4081 fnp->fn_parent = parent; 4082 if (parent != NULL) 4083 fn_hold(parent); 4084 fnp->fn_len = strlen(name); 4085 ASSERT(fnp->fn_len < MAXNAMELEN); 4086 fnp->fn_name = kmem_alloc(fnp->fn_len + 1, KM_SLEEP); 4087 (void) strcpy(fnp->fn_name, name); 4088 fnp->fn_refcnt = 1; 4089 4090 /* 4091 * This hold on sfh is later released 4092 * when we do the final fn_rele() on this fname. 4093 */ 4094 sfh4_hold(sfh); 4095 fnp->fn_sfh = sfh; 4096 4097 avl_create(&fnp->fn_children, fncmp, sizeof (nfs4_fname_t), 4098 offsetof(nfs4_fname_t, fn_tree)); 4099 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE, 4100 "fn_get %p:%s, a new nfs4_fname_t!", 4101 (void *)fnp, fnp->fn_name)); 4102 if (parent != NULL) { 4103 avl_insert(&parent->fn_children, fnp, where); 4104 mutex_exit(&parent->fn_lock); 4105 } 4106 4107 return (fnp); 4108 } 4109 4110 void 4111 fn_hold(nfs4_fname_t *fnp) 4112 { 4113 atomic_add_32(&fnp->fn_refcnt, 1); 4114 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE, 4115 "fn_hold %p:%s, new refcnt=%d", 4116 (void *)fnp, fnp->fn_name, fnp->fn_refcnt)); 4117 } 4118 4119 /* 4120 * Decrement the reference count of the given fname, and destroy it if its 4121 * reference count goes to zero. Nulls out the given pointer. 4122 */ 4123 4124 void 4125 fn_rele(nfs4_fname_t **fnpp) 4126 { 4127 nfs4_fname_t *parent; 4128 uint32_t newref; 4129 nfs4_fname_t *fnp; 4130 4131 recur: 4132 fnp = *fnpp; 4133 *fnpp = NULL; 4134 4135 mutex_enter(&fnp->fn_lock); 4136 parent = fnp->fn_parent; 4137 if (parent != NULL) 4138 mutex_enter(&parent->fn_lock); /* prevent new references */ 4139 newref = atomic_add_32_nv(&fnp->fn_refcnt, -1); 4140 if (newref > 0) { 4141 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE, 4142 "fn_rele %p:%s, new refcnt=%d", 4143 (void *)fnp, fnp->fn_name, fnp->fn_refcnt)); 4144 if (parent != NULL) 4145 mutex_exit(&parent->fn_lock); 4146 mutex_exit(&fnp->fn_lock); 4147 return; 4148 } 4149 4150 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE, 4151 "fn_rele %p:%s, last reference, deleting...", 4152 (void *)fnp, fnp->fn_name)); 4153 if (parent != NULL) { 4154 avl_remove(&parent->fn_children, fnp); 4155 mutex_exit(&parent->fn_lock); 4156 } 4157 kmem_free(fnp->fn_name, fnp->fn_len + 1); 4158 sfh4_rele(&fnp->fn_sfh); 4159 mutex_destroy(&fnp->fn_lock); 4160 avl_destroy(&fnp->fn_children); 4161 kmem_free(fnp, sizeof (nfs4_fname_t)); 4162 /* 4163 * Recursivly fn_rele the parent. 4164 * Use goto instead of a recursive call to avoid stack overflow. 4165 */ 4166 if (parent != NULL) { 4167 fnpp = &parent; 4168 goto recur; 4169 } 4170 } 4171 4172 /* 4173 * Returns the single component name of the given fname, in a MAXNAMELEN 4174 * string buffer, which the caller is responsible for freeing. Note that 4175 * the name may become invalid as a result of fn_move(). 4176 */ 4177 4178 char * 4179 fn_name(nfs4_fname_t *fnp) 4180 { 4181 char *name; 4182 4183 ASSERT(fnp->fn_len < MAXNAMELEN); 4184 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 4185 mutex_enter(&fnp->fn_lock); 4186 (void) strcpy(name, fnp->fn_name); 4187 mutex_exit(&fnp->fn_lock); 4188 4189 return (name); 4190 } 4191 4192 4193 /* 4194 * fn_path_realloc 4195 * 4196 * This function, used only by fn_path, constructs 4197 * a new string which looks like "prepend" + "/" + "current". 4198 * by allocating a new string and freeing the old one. 4199 */ 4200 static void 4201 fn_path_realloc(char **curses, char *prepend) 4202 { 4203 int len, curlen = 0; 4204 char *news; 4205 4206 if (*curses == NULL) { 4207 /* 4208 * Prime the pump, allocate just the 4209 * space for prepend and return that. 4210 */ 4211 len = strlen(prepend) + 1; 4212 news = kmem_alloc(len, KM_SLEEP); 4213 (void) strncpy(news, prepend, len); 4214 } else { 4215 /* 4216 * Allocate the space for a new string 4217 * +1 +1 is for the "/" and the NULL 4218 * byte at the end of it all. 4219 */ 4220 curlen = strlen(*curses); 4221 len = curlen + strlen(prepend) + 1 + 1; 4222 news = kmem_alloc(len, KM_SLEEP); 4223 (void) strncpy(news, prepend, len); 4224 (void) strcat(news, "/"); 4225 (void) strcat(news, *curses); 4226 kmem_free(*curses, curlen + 1); 4227 } 4228 *curses = news; 4229 } 4230 4231 /* 4232 * Returns the path name (starting from the fs root) for the given fname. 4233 * The caller is responsible for freeing. Note that the path may be or 4234 * become invalid as a result of fn_move(). 4235 */ 4236 4237 char * 4238 fn_path(nfs4_fname_t *fnp) 4239 { 4240 char *path; 4241 nfs4_fname_t *nextfnp; 4242 4243 if (fnp == NULL) 4244 return (NULL); 4245 4246 path = NULL; 4247 4248 /* walk up the tree constructing the pathname. */ 4249 4250 fn_hold(fnp); /* adjust for later rele */ 4251 do { 4252 mutex_enter(&fnp->fn_lock); 4253 /* 4254 * Add fn_name in front of the current path 4255 */ 4256 fn_path_realloc(&path, fnp->fn_name); 4257 nextfnp = fnp->fn_parent; 4258 if (nextfnp != NULL) 4259 fn_hold(nextfnp); 4260 mutex_exit(&fnp->fn_lock); 4261 fn_rele(&fnp); 4262 fnp = nextfnp; 4263 } while (fnp != NULL); 4264 4265 return (path); 4266 } 4267 4268 /* 4269 * Return a reference to the parent of the given fname, which the caller is 4270 * responsible for eventually releasing. 4271 */ 4272 4273 nfs4_fname_t * 4274 fn_parent(nfs4_fname_t *fnp) 4275 { 4276 nfs4_fname_t *parent; 4277 4278 mutex_enter(&fnp->fn_lock); 4279 parent = fnp->fn_parent; 4280 if (parent != NULL) 4281 fn_hold(parent); 4282 mutex_exit(&fnp->fn_lock); 4283 4284 return (parent); 4285 } 4286 4287 /* 4288 * Update fnp so that its parent is newparent and its name is newname. 4289 */ 4290 4291 void 4292 fn_move(nfs4_fname_t *fnp, nfs4_fname_t *newparent, char *newname) 4293 { 4294 nfs4_fname_t *parent, *tmpfnp; 4295 ssize_t newlen; 4296 nfs4_fname_t key; 4297 avl_index_t where; 4298 4299 /* 4300 * This assert exists to catch the client trying to rename 4301 * a dir to be a child of itself. This happened at a recent 4302 * bakeoff against a 3rd party (broken) server which allowed 4303 * the rename to succeed. If it trips it means that: 4304 * a) the code in nfs4rename that detects this case is broken 4305 * b) the server is broken (since it allowed the bogus rename) 4306 * 4307 * For non-DEBUG kernels, prepare for a recursive mutex_enter 4308 * panic below from: mutex_enter(&newparent->fn_lock); 4309 */ 4310 ASSERT(fnp != newparent); 4311 4312 /* 4313 * Remove fnp from its current parent, change its name, then add it 4314 * to newparent. It might happen that fnp was replaced by another 4315 * nfs4_fname_t with the same fn_name in parent->fn_children. 4316 * In such case, fnp->fn_parent is NULL and we skip the removal 4317 * of fnp from its current parent. 4318 */ 4319 mutex_enter(&fnp->fn_lock); 4320 parent = fnp->fn_parent; 4321 if (parent != NULL) { 4322 mutex_enter(&parent->fn_lock); 4323 avl_remove(&parent->fn_children, fnp); 4324 mutex_exit(&parent->fn_lock); 4325 fn_rele(&fnp->fn_parent); 4326 } 4327 4328 newlen = strlen(newname); 4329 if (newlen != fnp->fn_len) { 4330 ASSERT(newlen < MAXNAMELEN); 4331 kmem_free(fnp->fn_name, fnp->fn_len + 1); 4332 fnp->fn_name = kmem_alloc(newlen + 1, KM_SLEEP); 4333 fnp->fn_len = newlen; 4334 } 4335 (void) strcpy(fnp->fn_name, newname); 4336 4337 again: 4338 mutex_enter(&newparent->fn_lock); 4339 key.fn_name = fnp->fn_name; 4340 tmpfnp = avl_find(&newparent->fn_children, &key, &where); 4341 if (tmpfnp != NULL) { 4342 /* 4343 * This could be due to a file that was unlinked while 4344 * open, or perhaps the rnode is in the free list. Remove 4345 * it from newparent and let it go away on its own. The 4346 * contorted code is to deal with lock order issues and 4347 * race conditions. 4348 */ 4349 fn_hold(tmpfnp); 4350 mutex_exit(&newparent->fn_lock); 4351 mutex_enter(&tmpfnp->fn_lock); 4352 if (tmpfnp->fn_parent == newparent) { 4353 mutex_enter(&newparent->fn_lock); 4354 avl_remove(&newparent->fn_children, tmpfnp); 4355 mutex_exit(&newparent->fn_lock); 4356 fn_rele(&tmpfnp->fn_parent); 4357 } 4358 mutex_exit(&tmpfnp->fn_lock); 4359 fn_rele(&tmpfnp); 4360 goto again; 4361 } 4362 fnp->fn_parent = newparent; 4363 fn_hold(newparent); 4364 avl_insert(&newparent->fn_children, fnp, where); 4365 mutex_exit(&newparent->fn_lock); 4366 mutex_exit(&fnp->fn_lock); 4367 } 4368 4369 #ifdef DEBUG 4370 /* 4371 * Return non-zero if the type information makes sense for the given vnode. 4372 * Otherwise panic. 4373 */ 4374 int 4375 nfs4_consistent_type(vnode_t *vp) 4376 { 4377 rnode4_t *rp = VTOR4(vp); 4378 4379 if (nfs4_vtype_debug && vp->v_type != VNON && 4380 rp->r_attr.va_type != VNON && vp->v_type != rp->r_attr.va_type) { 4381 cmn_err(CE_PANIC, "vnode %p type mismatch; v_type=%d, " 4382 "rnode attr type=%d", (void *)vp, vp->v_type, 4383 rp->r_attr.va_type); 4384 } 4385 4386 return (1); 4387 } 4388 #endif /* DEBUG */ 4389