1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 */ 30 31 /* 32 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 33 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 34 */ 35 36 #include <sys/param.h> 37 #include <sys/types.h> 38 #include <sys/systm.h> 39 #include <sys/cred.h> 40 #include <sys/time.h> 41 #include <sys/vnode.h> 42 #include <sys/vfs.h> 43 #include <sys/vfs_opreg.h> 44 #include <sys/file.h> 45 #include <sys/filio.h> 46 #include <sys/uio.h> 47 #include <sys/buf.h> 48 #include <sys/mman.h> 49 #include <sys/pathname.h> 50 #include <sys/dirent.h> 51 #include <sys/debug.h> 52 #include <sys/vmsystm.h> 53 #include <sys/fcntl.h> 54 #include <sys/flock.h> 55 #include <sys/swap.h> 56 #include <sys/errno.h> 57 #include <sys/strsubr.h> 58 #include <sys/sysmacros.h> 59 #include <sys/kmem.h> 60 #include <sys/cmn_err.h> 61 #include <sys/pathconf.h> 62 #include <sys/utsname.h> 63 #include <sys/dnlc.h> 64 #include <sys/acl.h> 65 #include <sys/systeminfo.h> 66 #include <sys/atomic.h> 67 #include <sys/policy.h> 68 #include <sys/sdt.h> 69 #include <sys/zone.h> 70 71 #include <rpc/types.h> 72 #include <rpc/auth.h> 73 #include <rpc/clnt.h> 74 #include <rpc/rpc_rdma.h> 75 76 #include <nfs/nfs.h> 77 #include <nfs/nfs_clnt.h> 78 #include <nfs/rnode.h> 79 #include <nfs/nfs_acl.h> 80 #include <nfs/lm.h> 81 82 #include <vm/hat.h> 83 #include <vm/as.h> 84 #include <vm/page.h> 85 #include <vm/pvn.h> 86 #include <vm/seg.h> 87 #include <vm/seg_map.h> 88 #include <vm/seg_kpm.h> 89 #include <vm/seg_vn.h> 90 91 #include <fs/fs_subr.h> 92 93 #include <sys/ddi.h> 94 95 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 96 cred_t *); 97 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 98 stable_how *); 99 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *); 100 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *); 101 static int nfs3_accessx(void *, int, cred_t *); 102 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 103 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 104 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl, 105 int, vnode_t **, cred_t *, int); 106 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *); 107 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 108 int, vnode_t **, cred_t *); 109 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 110 caller_context_t *); 111 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 112 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 113 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *); 114 static int nfs3_bio(struct buf *, stable_how *, cred_t *); 115 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 116 page_t *[], size_t, struct seg *, caddr_t, 117 enum seg_rw, cred_t *); 118 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 119 cred_t *); 120 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 121 int, cred_t *); 122 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 123 int, cred_t *); 124 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *); 125 static void nfs3_set_mod(vnode_t *); 126 static void nfs3_get_commit(vnode_t *); 127 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t); 128 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 129 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *); 130 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3, 131 cred_t *); 132 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3, 133 cred_t *); 134 static void nfs3_delmap_callback(struct as *, void *, uint_t); 135 136 /* 137 * Error flags used to pass information about certain special errors 138 * which need to be handled specially. 139 */ 140 #define NFS_EOF -98 141 #define NFS_VERF_MISMATCH -97 142 143 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 144 #define ALIGN64(x, ptr, sz) \ 145 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 146 if (x) { \ 147 x = sizeof (uint64_t) - (x); \ 148 sz -= (x); \ 149 ptr += (x); \ 150 } 151 152 /* 153 * These are the vnode ops routines which implement the vnode interface to 154 * the networked file system. These routines just take their parameters, 155 * make them look networkish by putting the right info into interface structs, 156 * and then calling the appropriate remote routine(s) to do the work. 157 * 158 * Note on directory name lookup cacheing: If we detect a stale fhandle, 159 * we purge the directory cache relative to that vnode. This way, the 160 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 161 * more details on rnode locking. 162 */ 163 164 static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *); 165 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *, 166 caller_context_t *); 167 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *, 168 caller_context_t *); 169 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *, 170 caller_context_t *); 171 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 172 caller_context_t *); 173 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *, 174 caller_context_t *); 175 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *, 176 caller_context_t *); 177 static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *); 178 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *, 179 caller_context_t *); 180 static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *); 181 static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *); 182 static int nfs3_lookup(vnode_t *, char *, vnode_t **, 183 struct pathname *, int, vnode_t *, cred_t *, 184 caller_context_t *, int *, pathname_t *); 185 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl, 186 int, vnode_t **, cred_t *, int, caller_context_t *, 187 vsecattr_t *); 188 static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *, 189 int); 190 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *, 191 caller_context_t *, int); 192 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 193 caller_context_t *, int); 194 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 195 cred_t *, caller_context_t *, int, vsecattr_t *); 196 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 197 caller_context_t *, int); 198 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *, 199 cred_t *, caller_context_t *, int); 200 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *, 201 caller_context_t *, int); 202 static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *); 203 static int nfs3_rwlock(vnode_t *, int, caller_context_t *); 204 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *); 205 static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 206 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *, 207 page_t *[], size_t, struct seg *, caddr_t, 208 enum seg_rw, cred_t *, caller_context_t *); 209 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 210 caller_context_t *); 211 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 212 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 213 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 214 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 215 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 216 struct flk_callback *, cred_t *, caller_context_t *); 217 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t, 218 cred_t *, caller_context_t *); 219 static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *); 220 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 221 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 222 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *, 223 caller_context_t *); 224 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 225 cred_t *, caller_context_t *); 226 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *, 227 caller_context_t *); 228 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 229 caller_context_t *); 230 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 231 caller_context_t *); 232 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 233 caller_context_t *); 234 235 struct vnodeops *nfs3_vnodeops; 236 237 const fs_operation_def_t nfs3_vnodeops_template[] = { 238 VOPNAME_OPEN, { .vop_open = nfs3_open }, 239 VOPNAME_CLOSE, { .vop_close = nfs3_close }, 240 VOPNAME_READ, { .vop_read = nfs3_read }, 241 VOPNAME_WRITE, { .vop_write = nfs3_write }, 242 VOPNAME_IOCTL, { .vop_ioctl = nfs3_ioctl }, 243 VOPNAME_GETATTR, { .vop_getattr = nfs3_getattr }, 244 VOPNAME_SETATTR, { .vop_setattr = nfs3_setattr }, 245 VOPNAME_ACCESS, { .vop_access = nfs3_access }, 246 VOPNAME_LOOKUP, { .vop_lookup = nfs3_lookup }, 247 VOPNAME_CREATE, { .vop_create = nfs3_create }, 248 VOPNAME_REMOVE, { .vop_remove = nfs3_remove }, 249 VOPNAME_LINK, { .vop_link = nfs3_link }, 250 VOPNAME_RENAME, { .vop_rename = nfs3_rename }, 251 VOPNAME_MKDIR, { .vop_mkdir = nfs3_mkdir }, 252 VOPNAME_RMDIR, { .vop_rmdir = nfs3_rmdir }, 253 VOPNAME_READDIR, { .vop_readdir = nfs3_readdir }, 254 VOPNAME_SYMLINK, { .vop_symlink = nfs3_symlink }, 255 VOPNAME_READLINK, { .vop_readlink = nfs3_readlink }, 256 VOPNAME_FSYNC, { .vop_fsync = nfs3_fsync }, 257 VOPNAME_INACTIVE, { .vop_inactive = nfs3_inactive }, 258 VOPNAME_FID, { .vop_fid = nfs3_fid }, 259 VOPNAME_RWLOCK, { .vop_rwlock = nfs3_rwlock }, 260 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs3_rwunlock }, 261 VOPNAME_SEEK, { .vop_seek = nfs3_seek }, 262 VOPNAME_FRLOCK, { .vop_frlock = nfs3_frlock }, 263 VOPNAME_SPACE, { .vop_space = nfs3_space }, 264 VOPNAME_REALVP, { .vop_realvp = nfs3_realvp }, 265 VOPNAME_GETPAGE, { .vop_getpage = nfs3_getpage }, 266 VOPNAME_PUTPAGE, { .vop_putpage = nfs3_putpage }, 267 VOPNAME_MAP, { .vop_map = nfs3_map }, 268 VOPNAME_ADDMAP, { .vop_addmap = nfs3_addmap }, 269 VOPNAME_DELMAP, { .vop_delmap = nfs3_delmap }, 270 /* no separate nfs3_dump */ 271 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 272 VOPNAME_PATHCONF, { .vop_pathconf = nfs3_pathconf }, 273 VOPNAME_PAGEIO, { .vop_pageio = nfs3_pageio }, 274 VOPNAME_DISPOSE, { .vop_dispose = nfs3_dispose }, 275 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs3_setsecattr }, 276 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs3_getsecattr }, 277 VOPNAME_SHRLOCK, { .vop_shrlock = nfs3_shrlock }, 278 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 279 NULL, NULL 280 }; 281 282 /* 283 * XXX: This is referenced in modstubs.s 284 */ 285 struct vnodeops * 286 nfs3_getvnodeops(void) 287 { 288 return (nfs3_vnodeops); 289 } 290 291 /* ARGSUSED */ 292 static int 293 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 294 { 295 int error; 296 struct vattr va; 297 rnode_t *rp; 298 vnode_t *vp; 299 300 vp = *vpp; 301 if (nfs_zone() != VTOMI(vp)->mi_zone) 302 return (EIO); 303 rp = VTOR(vp); 304 mutex_enter(&rp->r_statelock); 305 if (rp->r_cred == NULL) { 306 crhold(cr); 307 rp->r_cred = cr; 308 } 309 mutex_exit(&rp->r_statelock); 310 311 /* 312 * If there is no cached data or if close-to-open 313 * consistency checking is turned off, we can avoid 314 * the over the wire getattr. Otherwise, if the 315 * file system is mounted readonly, then just verify 316 * the caches are up to date using the normal mechanism. 317 * Else, if the file is not mmap'd, then just mark 318 * the attributes as timed out. They will be refreshed 319 * and the caches validated prior to being used. 320 * Else, the file system is mounted writeable so 321 * force an over the wire GETATTR in order to ensure 322 * that all cached data is valid. 323 */ 324 if (vp->v_count > 1 || 325 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 326 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 327 if (vn_is_readonly(vp)) 328 error = nfs3_validate_caches(vp, cr); 329 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 330 PURGE_ATTRCACHE(vp); 331 error = 0; 332 } else { 333 va.va_mask = AT_ALL; 334 error = nfs3_getattr_otw(vp, &va, cr); 335 } 336 } else 337 error = 0; 338 339 return (error); 340 } 341 342 /* ARGSUSED */ 343 static int 344 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 345 caller_context_t *ct) 346 { 347 rnode_t *rp; 348 int error; 349 struct vattr va; 350 351 /* 352 * zone_enter(2) prevents processes from changing zones with NFS files 353 * open; if we happen to get here from the wrong zone we can't do 354 * anything over the wire. 355 */ 356 if (VTOMI(vp)->mi_zone != nfs_zone()) { 357 /* 358 * We could attempt to clean up locks, except we're sure 359 * that the current process didn't acquire any locks on 360 * the file: any attempt to lock a file belong to another zone 361 * will fail, and one can't lock an NFS file and then change 362 * zones, as that fails too. 363 * 364 * Returning an error here is the sane thing to do. A 365 * subsequent call to VN_RELE() which translates to a 366 * nfs3_inactive() will clean up state: if the zone of the 367 * vnode's origin is still alive and kicking, an async worker 368 * thread will handle the request (from the correct zone), and 369 * everything (minus the commit and final nfs3_getattr_otw() 370 * call) should be OK. If the zone is going away 371 * nfs_async_inactive() will throw away cached pages inline. 372 */ 373 return (EIO); 374 } 375 376 /* 377 * If we are using local locking for this filesystem, then 378 * release all of the SYSV style record locks. Otherwise, 379 * we are doing network locking and we need to release all 380 * of the network locks. All of the locks held by this 381 * process on this file are released no matter what the 382 * incoming reference count is. 383 */ 384 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 385 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 386 cleanshares(vp, ttoproc(curthread)->p_pid); 387 } else 388 nfs_lockrelease(vp, flag, offset, cr); 389 390 if (count > 1) 391 return (0); 392 393 /* 394 * If the file has been `unlinked', then purge the 395 * DNLC so that this vnode will get reycled quicker 396 * and the .nfs* file on the server will get removed. 397 */ 398 rp = VTOR(vp); 399 if (rp->r_unldvp != NULL) 400 dnlc_purge_vp(vp); 401 402 /* 403 * If the file was open for write and there are pages, 404 * then if the file system was mounted using the "no-close- 405 * to-open" semantics, then start an asynchronous flush 406 * of the all of the pages in the file. 407 * else the file system was not mounted using the "no-close- 408 * to-open" semantics, then do a synchronous flush and 409 * commit of all of the dirty and uncommitted pages. 410 * 411 * The asynchronous flush of the pages in the "nocto" path 412 * mostly just associates a cred pointer with the rnode so 413 * writes which happen later will have a better chance of 414 * working. It also starts the data being written to the 415 * server, but without unnecessarily delaying the application. 416 */ 417 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 418 if (VTOMI(vp)->mi_flags & MI_NOCTO) { 419 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC, 420 cr, ct); 421 if (error == EAGAIN) 422 error = 0; 423 } else 424 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 425 if (!error) { 426 mutex_enter(&rp->r_statelock); 427 error = rp->r_error; 428 rp->r_error = 0; 429 mutex_exit(&rp->r_statelock); 430 } 431 } else { 432 mutex_enter(&rp->r_statelock); 433 error = rp->r_error; 434 rp->r_error = 0; 435 mutex_exit(&rp->r_statelock); 436 } 437 438 /* 439 * If RWRITEATTR is set, then issue an over the wire GETATTR to 440 * refresh the attribute cache with a set of attributes which 441 * weren't returned from a WRITE. This will enable the close- 442 * to-open processing to work. 443 */ 444 if (rp->r_flags & RWRITEATTR) 445 (void) nfs3_getattr_otw(vp, &va, cr); 446 447 return (error); 448 } 449 450 /* ARGSUSED */ 451 static int 452 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr) 453 { 454 mntinfo_t *mi; 455 READ3args args; 456 READ3uiores res; 457 int tsize; 458 offset_t offset; 459 ssize_t count; 460 int error; 461 int douprintf; 462 failinfo_t fi; 463 char *sv_hostname; 464 465 mi = VTOMI(vp); 466 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 467 sv_hostname = VTOR(vp)->r_server->sv_hostname; 468 469 douprintf = 1; 470 args.file = *VTOFH3(vp); 471 fi.vp = vp; 472 fi.fhp = (caddr_t)&args.file; 473 fi.copyproc = nfs3copyfh; 474 fi.lookupproc = nfs3lookup; 475 fi.xattrdirproc = acl_getxattrdir3; 476 477 res.uiop = uiop; 478 479 res.wlist = NULL; 480 481 offset = uiop->uio_loffset; 482 count = uiop->uio_resid; 483 484 do { 485 if (mi->mi_io_kstats) { 486 mutex_enter(&mi->mi_lock); 487 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 488 mutex_exit(&mi->mi_lock); 489 } 490 491 do { 492 tsize = MIN(mi->mi_tsize, count); 493 args.offset = (offset3)offset; 494 args.count = (count3)tsize; 495 res.size = (uint_t)tsize; 496 args.res_uiop = uiop; 497 args.res_data_val_alt = NULL; 498 499 error = rfs3call(mi, NFSPROC3_READ, 500 xdr_READ3args, (caddr_t)&args, 501 xdr_READ3uiores, (caddr_t)&res, cr, 502 &douprintf, &res.status, 0, &fi); 503 } while (error == ENFS_TRYAGAIN); 504 505 if (mi->mi_io_kstats) { 506 mutex_enter(&mi->mi_lock); 507 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 508 mutex_exit(&mi->mi_lock); 509 } 510 511 if (error) 512 return (error); 513 514 error = geterrno3(res.status); 515 if (error) 516 return (error); 517 518 if (res.count != res.size) { 519 zcmn_err(getzoneid(), CE_WARN, 520 "nfs3_directio_read: server %s returned incorrect amount", 521 sv_hostname); 522 return (EIO); 523 } 524 count -= res.count; 525 offset += res.count; 526 if (mi->mi_io_kstats) { 527 mutex_enter(&mi->mi_lock); 528 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 529 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 530 mutex_exit(&mi->mi_lock); 531 } 532 lwp_stat_update(LWP_STAT_INBLK, 1); 533 } while (count && !res.eof); 534 535 return (0); 536 } 537 538 /* ARGSUSED */ 539 static int 540 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 541 caller_context_t *ct) 542 { 543 rnode_t *rp; 544 u_offset_t off; 545 offset_t diff; 546 int on; 547 size_t n; 548 caddr_t base; 549 uint_t flags; 550 int error = 0; 551 mntinfo_t *mi; 552 553 rp = VTOR(vp); 554 mi = VTOMI(vp); 555 556 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 557 558 if (nfs_zone() != mi->mi_zone) 559 return (EIO); 560 561 if (vp->v_type != VREG) 562 return (EISDIR); 563 564 if (uiop->uio_resid == 0) 565 return (0); 566 567 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 568 return (EINVAL); 569 570 /* 571 * Bypass VM if caching has been disabled (e.g., locking) or if 572 * using client-side direct I/O and the file is not mmap'd and 573 * there are no cached pages. 574 */ 575 if ((vp->v_flag & VNOCACHE) || 576 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 577 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 578 !vn_has_cached_data(vp))) { 579 return (nfs3_directio_read(vp, uiop, cr)); 580 } 581 582 do { 583 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 584 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 585 n = MIN(MAXBSIZE - on, uiop->uio_resid); 586 587 error = nfs3_validate_caches(vp, cr); 588 if (error) 589 break; 590 591 mutex_enter(&rp->r_statelock); 592 while (rp->r_flags & RINCACHEPURGE) { 593 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 594 mutex_exit(&rp->r_statelock); 595 return (EINTR); 596 } 597 } 598 diff = rp->r_size - uiop->uio_loffset; 599 mutex_exit(&rp->r_statelock); 600 if (diff <= 0) 601 break; 602 if (diff < n) 603 n = (size_t)diff; 604 605 if (vpm_enable) { 606 /* 607 * Copy data. 608 */ 609 error = vpm_data_copy(vp, off + on, n, uiop, 610 1, NULL, 0, S_READ); 611 } else { 612 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 613 S_READ); 614 615 error = uiomove(base + on, n, UIO_READ, uiop); 616 } 617 618 if (!error) { 619 /* 620 * If read a whole block or read to eof, 621 * won't need this buffer again soon. 622 */ 623 mutex_enter(&rp->r_statelock); 624 if (n + on == MAXBSIZE || 625 uiop->uio_loffset == rp->r_size) 626 flags = SM_DONTNEED; 627 else 628 flags = 0; 629 mutex_exit(&rp->r_statelock); 630 if (vpm_enable) { 631 error = vpm_sync_pages(vp, off, n, flags); 632 } else { 633 error = segmap_release(segkmap, base, flags); 634 } 635 } else { 636 if (vpm_enable) { 637 (void) vpm_sync_pages(vp, off, n, 0); 638 } else { 639 (void) segmap_release(segkmap, base, 0); 640 } 641 } 642 } while (!error && uiop->uio_resid > 0); 643 644 return (error); 645 } 646 647 /* ARGSUSED */ 648 static int 649 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 650 caller_context_t *ct) 651 { 652 rlim64_t limit = uiop->uio_llimit; 653 rnode_t *rp; 654 u_offset_t off; 655 caddr_t base; 656 uint_t flags; 657 int remainder; 658 size_t n; 659 int on; 660 int error; 661 int resid; 662 offset_t offset; 663 mntinfo_t *mi; 664 uint_t bsize; 665 666 rp = VTOR(vp); 667 668 if (vp->v_type != VREG) 669 return (EISDIR); 670 671 mi = VTOMI(vp); 672 if (nfs_zone() != mi->mi_zone) 673 return (EIO); 674 if (uiop->uio_resid == 0) 675 return (0); 676 677 if (ioflag & FAPPEND) { 678 struct vattr va; 679 680 /* 681 * Must serialize if appending. 682 */ 683 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 684 nfs_rw_exit(&rp->r_rwlock); 685 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 686 INTR(vp))) 687 return (EINTR); 688 } 689 690 va.va_mask = AT_SIZE; 691 error = nfs3getattr(vp, &va, cr); 692 if (error) 693 return (error); 694 uiop->uio_loffset = va.va_size; 695 } 696 697 offset = uiop->uio_loffset + uiop->uio_resid; 698 699 if (uiop->uio_loffset < 0 || offset < 0) 700 return (EINVAL); 701 702 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 703 limit = MAXOFFSET_T; 704 705 /* 706 * Check to make sure that the process will not exceed 707 * its limit on file size. It is okay to write up to 708 * the limit, but not beyond. Thus, the write which 709 * reaches the limit will be short and the next write 710 * will return an error. 711 */ 712 remainder = 0; 713 if (offset > limit) { 714 remainder = offset - limit; 715 uiop->uio_resid = limit - uiop->uio_loffset; 716 if (uiop->uio_resid <= 0) { 717 proc_t *p = ttoproc(curthread); 718 719 uiop->uio_resid += remainder; 720 mutex_enter(&p->p_lock); 721 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 722 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 723 mutex_exit(&p->p_lock); 724 return (EFBIG); 725 } 726 } 727 728 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 729 return (EINTR); 730 731 /* 732 * Bypass VM if caching has been disabled (e.g., locking) or if 733 * using client-side direct I/O and the file is not mmap'd and 734 * there are no cached pages. 735 */ 736 if ((vp->v_flag & VNOCACHE) || 737 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 738 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 739 !vn_has_cached_data(vp))) { 740 size_t bufsize; 741 int count; 742 u_offset_t org_offset; 743 stable_how stab_comm; 744 745 nfs3_fwrite: 746 if (rp->r_flags & RSTALE) { 747 resid = uiop->uio_resid; 748 offset = uiop->uio_loffset; 749 error = rp->r_error; 750 /* 751 * A close may have cleared r_error, if so, 752 * propagate ESTALE error return properly 753 */ 754 if (error == 0) 755 error = ESTALE; 756 goto bottom; 757 } 758 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 759 base = kmem_alloc(bufsize, KM_SLEEP); 760 do { 761 if (ioflag & FDSYNC) 762 stab_comm = DATA_SYNC; 763 else 764 stab_comm = FILE_SYNC; 765 resid = uiop->uio_resid; 766 offset = uiop->uio_loffset; 767 count = MIN(uiop->uio_resid, bufsize); 768 org_offset = uiop->uio_loffset; 769 error = uiomove(base, count, UIO_WRITE, uiop); 770 if (!error) { 771 error = nfs3write(vp, base, org_offset, 772 count, cr, &stab_comm); 773 } 774 } while (!error && uiop->uio_resid > 0); 775 kmem_free(base, bufsize); 776 goto bottom; 777 } 778 779 780 bsize = vp->v_vfsp->vfs_bsize; 781 782 do { 783 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 784 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 785 n = MIN(MAXBSIZE - on, uiop->uio_resid); 786 787 resid = uiop->uio_resid; 788 offset = uiop->uio_loffset; 789 790 if (rp->r_flags & RSTALE) { 791 error = rp->r_error; 792 /* 793 * A close may have cleared r_error, if so, 794 * propagate ESTALE error return properly 795 */ 796 if (error == 0) 797 error = ESTALE; 798 break; 799 } 800 801 /* 802 * Don't create dirty pages faster than they 803 * can be cleaned so that the system doesn't 804 * get imbalanced. If the async queue is 805 * maxed out, then wait for it to drain before 806 * creating more dirty pages. Also, wait for 807 * any threads doing pagewalks in the vop_getattr 808 * entry points so that they don't block for 809 * long periods. 810 */ 811 mutex_enter(&rp->r_statelock); 812 while ((mi->mi_max_threads != 0 && 813 rp->r_awcount > 2 * mi->mi_max_threads) || 814 rp->r_gcount > 0) { 815 if (INTR(vp)) { 816 klwp_t *lwp = ttolwp(curthread); 817 818 if (lwp != NULL) 819 lwp->lwp_nostop++; 820 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 821 mutex_exit(&rp->r_statelock); 822 if (lwp != NULL) 823 lwp->lwp_nostop--; 824 error = EINTR; 825 goto bottom; 826 } 827 if (lwp != NULL) 828 lwp->lwp_nostop--; 829 } else 830 cv_wait(&rp->r_cv, &rp->r_statelock); 831 } 832 mutex_exit(&rp->r_statelock); 833 834 /* 835 * Touch the page and fault it in if it is not in core 836 * before segmap_getmapflt or vpm_data_copy can lock it. 837 * This is to avoid the deadlock if the buffer is mapped 838 * to the same file through mmap which we want to write. 839 */ 840 uio_prefaultpages((long)n, uiop); 841 842 if (vpm_enable) { 843 /* 844 * It will use kpm mappings, so no need to 845 * pass an address. 846 */ 847 error = writerp(rp, NULL, n, uiop, 0); 848 } else { 849 if (segmap_kpm) { 850 int pon = uiop->uio_loffset & PAGEOFFSET; 851 size_t pn = MIN(PAGESIZE - pon, 852 uiop->uio_resid); 853 int pagecreate; 854 855 mutex_enter(&rp->r_statelock); 856 pagecreate = (pon == 0) && (pn == PAGESIZE || 857 uiop->uio_loffset + pn >= rp->r_size); 858 mutex_exit(&rp->r_statelock); 859 860 base = segmap_getmapflt(segkmap, vp, off + on, 861 pn, !pagecreate, S_WRITE); 862 863 error = writerp(rp, base + pon, n, uiop, 864 pagecreate); 865 866 } else { 867 base = segmap_getmapflt(segkmap, vp, off + on, 868 n, 0, S_READ); 869 error = writerp(rp, base + on, n, uiop, 0); 870 } 871 } 872 873 if (!error) { 874 if (mi->mi_flags & MI_NOAC) 875 flags = SM_WRITE; 876 else if ((uiop->uio_loffset % bsize) == 0 || 877 IS_SWAPVP(vp)) { 878 /* 879 * Have written a whole block. 880 * Start an asynchronous write 881 * and mark the buffer to 882 * indicate that it won't be 883 * needed again soon. 884 */ 885 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 886 } else 887 flags = 0; 888 if ((ioflag & (FSYNC|FDSYNC)) || 889 (rp->r_flags & ROUTOFSPACE)) { 890 flags &= ~SM_ASYNC; 891 flags |= SM_WRITE; 892 } 893 if (vpm_enable) { 894 error = vpm_sync_pages(vp, off, n, flags); 895 } else { 896 error = segmap_release(segkmap, base, flags); 897 } 898 } else { 899 if (vpm_enable) { 900 (void) vpm_sync_pages(vp, off, n, 0); 901 } else { 902 (void) segmap_release(segkmap, base, 0); 903 } 904 /* 905 * In the event that we got an access error while 906 * faulting in a page for a write-only file just 907 * force a write. 908 */ 909 if (error == EACCES) 910 goto nfs3_fwrite; 911 } 912 } while (!error && uiop->uio_resid > 0); 913 914 bottom: 915 if (error) { 916 uiop->uio_resid = resid + remainder; 917 uiop->uio_loffset = offset; 918 } else 919 uiop->uio_resid += remainder; 920 921 nfs_rw_exit(&rp->r_lkserlock); 922 923 return (error); 924 } 925 926 /* 927 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 928 */ 929 static int 930 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 931 int flags, cred_t *cr) 932 { 933 struct buf *bp; 934 int error; 935 page_t *savepp; 936 uchar_t fsdata; 937 stable_how stab_comm; 938 939 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 940 bp = pageio_setup(pp, len, vp, flags); 941 ASSERT(bp != NULL); 942 943 /* 944 * pageio_setup should have set b_addr to 0. This 945 * is correct since we want to do I/O on a page 946 * boundary. bp_mapin will use this addr to calculate 947 * an offset, and then set b_addr to the kernel virtual 948 * address it allocated for us. 949 */ 950 ASSERT(bp->b_un.b_addr == 0); 951 952 bp->b_edev = 0; 953 bp->b_dev = 0; 954 bp->b_lblkno = lbtodb(off); 955 bp->b_file = vp; 956 bp->b_offset = (offset_t)off; 957 bp_mapin(bp); 958 959 /* 960 * Calculate the desired level of stability to write data 961 * on the server and then mark all of the pages to reflect 962 * this. 963 */ 964 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 965 freemem > desfree) { 966 stab_comm = UNSTABLE; 967 fsdata = C_DELAYCOMMIT; 968 } else { 969 stab_comm = FILE_SYNC; 970 fsdata = C_NOCOMMIT; 971 } 972 973 savepp = pp; 974 do { 975 pp->p_fsdata = fsdata; 976 } while ((pp = pp->p_next) != savepp); 977 978 error = nfs3_bio(bp, &stab_comm, cr); 979 980 bp_mapout(bp); 981 pageio_done(bp); 982 983 /* 984 * If the server wrote pages in a more stable fashion than 985 * was requested, then clear all of the marks in the pages 986 * indicating that COMMIT operations were required. 987 */ 988 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) { 989 do { 990 pp->p_fsdata = C_NOCOMMIT; 991 } while ((pp = pp->p_next) != savepp); 992 } 993 994 return (error); 995 } 996 997 /* 998 * Write to file. Writes to remote server in largest size 999 * chunks that the server can handle. Write is synchronous. 1000 */ 1001 static int 1002 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 1003 stable_how *stab_comm) 1004 { 1005 mntinfo_t *mi; 1006 WRITE3args args; 1007 WRITE3res res; 1008 int error; 1009 int tsize; 1010 rnode_t *rp; 1011 int douprintf; 1012 1013 rp = VTOR(vp); 1014 mi = VTOMI(vp); 1015 1016 ASSERT(nfs_zone() == mi->mi_zone); 1017 1018 args.file = *VTOFH3(vp); 1019 args.stable = *stab_comm; 1020 1021 *stab_comm = FILE_SYNC; 1022 1023 douprintf = 1; 1024 1025 do { 1026 if ((vp->v_flag & VNOCACHE) || 1027 (rp->r_flags & RDIRECTIO) || 1028 (mi->mi_flags & MI_DIRECTIO)) 1029 tsize = MIN(mi->mi_stsize, count); 1030 else 1031 tsize = MIN(mi->mi_curwrite, count); 1032 args.offset = (offset3)offset; 1033 args.count = (count3)tsize; 1034 args.data.data_len = (uint_t)tsize; 1035 args.data.data_val = base; 1036 1037 if (mi->mi_io_kstats) { 1038 mutex_enter(&mi->mi_lock); 1039 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1040 mutex_exit(&mi->mi_lock); 1041 } 1042 args.mblk = NULL; 1043 do { 1044 error = rfs3call(mi, NFSPROC3_WRITE, 1045 xdr_WRITE3args, (caddr_t)&args, 1046 xdr_WRITE3res, (caddr_t)&res, cr, 1047 &douprintf, &res.status, 0, NULL); 1048 } while (error == ENFS_TRYAGAIN); 1049 if (mi->mi_io_kstats) { 1050 mutex_enter(&mi->mi_lock); 1051 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1052 mutex_exit(&mi->mi_lock); 1053 } 1054 1055 if (error) 1056 return (error); 1057 error = geterrno3(res.status); 1058 if (!error) { 1059 if (res.resok.count > args.count) { 1060 zcmn_err(getzoneid(), CE_WARN, 1061 "nfs3write: server %s wrote %u, " 1062 "requested was %u", 1063 rp->r_server->sv_hostname, 1064 res.resok.count, args.count); 1065 return (EIO); 1066 } 1067 if (res.resok.committed == UNSTABLE) { 1068 *stab_comm = UNSTABLE; 1069 if (args.stable == DATA_SYNC || 1070 args.stable == FILE_SYNC) { 1071 zcmn_err(getzoneid(), CE_WARN, 1072 "nfs3write: server %s did not commit to stable storage", 1073 rp->r_server->sv_hostname); 1074 return (EIO); 1075 } 1076 } 1077 tsize = (int)res.resok.count; 1078 count -= tsize; 1079 base += tsize; 1080 offset += tsize; 1081 if (mi->mi_io_kstats) { 1082 mutex_enter(&mi->mi_lock); 1083 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 1084 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 1085 tsize; 1086 mutex_exit(&mi->mi_lock); 1087 } 1088 lwp_stat_update(LWP_STAT_OUBLK, 1); 1089 mutex_enter(&rp->r_statelock); 1090 if (rp->r_flags & RHAVEVERF) { 1091 if (rp->r_verf != res.resok.verf) { 1092 nfs3_set_mod(vp); 1093 rp->r_verf = res.resok.verf; 1094 /* 1095 * If the data was written UNSTABLE, 1096 * then might as well stop because 1097 * the whole block will have to get 1098 * rewritten anyway. 1099 */ 1100 if (*stab_comm == UNSTABLE) { 1101 mutex_exit(&rp->r_statelock); 1102 break; 1103 } 1104 } 1105 } else { 1106 rp->r_verf = res.resok.verf; 1107 rp->r_flags |= RHAVEVERF; 1108 } 1109 /* 1110 * Mark the attribute cache as timed out and 1111 * set RWRITEATTR to indicate that the file 1112 * was modified with a WRITE operation and 1113 * that the attributes can not be trusted. 1114 */ 1115 PURGE_ATTRCACHE_LOCKED(rp); 1116 rp->r_flags |= RWRITEATTR; 1117 mutex_exit(&rp->r_statelock); 1118 } 1119 } while (!error && count); 1120 1121 return (error); 1122 } 1123 1124 /* 1125 * Read from a file. Reads data in largest chunks our interface can handle. 1126 */ 1127 static int 1128 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count, 1129 size_t *residp, cred_t *cr) 1130 { 1131 mntinfo_t *mi; 1132 READ3args args; 1133 READ3vres res; 1134 int tsize; 1135 int error; 1136 int douprintf; 1137 failinfo_t fi; 1138 rnode_t *rp; 1139 struct vattr va; 1140 hrtime_t t; 1141 1142 rp = VTOR(vp); 1143 mi = VTOMI(vp); 1144 ASSERT(nfs_zone() == mi->mi_zone); 1145 douprintf = 1; 1146 1147 args.file = *VTOFH3(vp); 1148 fi.vp = vp; 1149 fi.fhp = (caddr_t)&args.file; 1150 fi.copyproc = nfs3copyfh; 1151 fi.lookupproc = nfs3lookup; 1152 fi.xattrdirproc = acl_getxattrdir3; 1153 1154 res.pov.fres.vp = vp; 1155 res.pov.fres.vap = &va; 1156 1157 res.wlist = NULL; 1158 *residp = count; 1159 do { 1160 if (mi->mi_io_kstats) { 1161 mutex_enter(&mi->mi_lock); 1162 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1163 mutex_exit(&mi->mi_lock); 1164 } 1165 1166 do { 1167 if ((vp->v_flag & VNOCACHE) || 1168 (rp->r_flags & RDIRECTIO) || 1169 (mi->mi_flags & MI_DIRECTIO)) 1170 tsize = MIN(mi->mi_tsize, count); 1171 else 1172 tsize = MIN(mi->mi_curread, count); 1173 res.data.data_val = base; 1174 res.data.data_len = tsize; 1175 args.offset = (offset3)offset; 1176 args.count = (count3)tsize; 1177 args.res_uiop = NULL; 1178 args.res_data_val_alt = base; 1179 1180 t = gethrtime(); 1181 error = rfs3call(mi, NFSPROC3_READ, 1182 xdr_READ3args, (caddr_t)&args, 1183 xdr_READ3vres, (caddr_t)&res, cr, 1184 &douprintf, &res.status, 0, &fi); 1185 } while (error == ENFS_TRYAGAIN); 1186 1187 if (mi->mi_io_kstats) { 1188 mutex_enter(&mi->mi_lock); 1189 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1190 mutex_exit(&mi->mi_lock); 1191 } 1192 1193 if (error) 1194 return (error); 1195 1196 error = geterrno3(res.status); 1197 if (error) 1198 return (error); 1199 1200 if (res.count != res.data.data_len) { 1201 zcmn_err(getzoneid(), CE_WARN, 1202 "nfs3read: server %s returned incorrect amount", 1203 rp->r_server->sv_hostname); 1204 return (EIO); 1205 } 1206 1207 count -= res.count; 1208 *residp = count; 1209 base += res.count; 1210 offset += res.count; 1211 if (mi->mi_io_kstats) { 1212 mutex_enter(&mi->mi_lock); 1213 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1214 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 1215 mutex_exit(&mi->mi_lock); 1216 } 1217 lwp_stat_update(LWP_STAT_INBLK, 1); 1218 } while (count && !res.eof); 1219 1220 if (res.pov.attributes) { 1221 mutex_enter(&rp->r_statelock); 1222 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) { 1223 mutex_exit(&rp->r_statelock); 1224 PURGE_ATTRCACHE(vp); 1225 } else { 1226 if (rp->r_mtime <= t) 1227 nfs_attrcache_va(vp, &va); 1228 mutex_exit(&rp->r_statelock); 1229 } 1230 } 1231 1232 return (0); 1233 } 1234 1235 /* ARGSUSED */ 1236 static int 1237 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1238 caller_context_t *ct) 1239 { 1240 1241 if (nfs_zone() != VTOMI(vp)->mi_zone) 1242 return (EIO); 1243 switch (cmd) { 1244 case _FIODIRECTIO: 1245 return (nfs_directio(vp, (int)arg, cr)); 1246 default: 1247 return (ENOTTY); 1248 } 1249 } 1250 1251 /* ARGSUSED */ 1252 static int 1253 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1254 caller_context_t *ct) 1255 { 1256 int error; 1257 rnode_t *rp; 1258 1259 if (nfs_zone() != VTOMI(vp)->mi_zone) 1260 return (EIO); 1261 /* 1262 * If it has been specified that the return value will 1263 * just be used as a hint, and we are only being asked 1264 * for size, fsid or rdevid, then return the client's 1265 * notion of these values without checking to make sure 1266 * that the attribute cache is up to date. 1267 * The whole point is to avoid an over the wire GETATTR 1268 * call. 1269 */ 1270 rp = VTOR(vp); 1271 if (flags & ATTR_HINT) { 1272 if (vap->va_mask == 1273 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1274 mutex_enter(&rp->r_statelock); 1275 if (vap->va_mask | AT_SIZE) 1276 vap->va_size = rp->r_size; 1277 if (vap->va_mask | AT_FSID) 1278 vap->va_fsid = rp->r_attr.va_fsid; 1279 if (vap->va_mask | AT_RDEV) 1280 vap->va_rdev = rp->r_attr.va_rdev; 1281 mutex_exit(&rp->r_statelock); 1282 return (0); 1283 } 1284 } 1285 1286 /* 1287 * Only need to flush pages if asking for the mtime 1288 * and if there any dirty pages or any outstanding 1289 * asynchronous (write) requests for this file. 1290 */ 1291 if (vap->va_mask & AT_MTIME) { 1292 if (vn_has_cached_data(vp) && 1293 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1294 mutex_enter(&rp->r_statelock); 1295 rp->r_gcount++; 1296 mutex_exit(&rp->r_statelock); 1297 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1298 mutex_enter(&rp->r_statelock); 1299 if (error && (error == ENOSPC || error == EDQUOT)) { 1300 if (!rp->r_error) 1301 rp->r_error = error; 1302 } 1303 if (--rp->r_gcount == 0) 1304 cv_broadcast(&rp->r_cv); 1305 mutex_exit(&rp->r_statelock); 1306 } 1307 } 1308 1309 return (nfs3getattr(vp, vap, cr)); 1310 } 1311 1312 /*ARGSUSED4*/ 1313 static int 1314 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1315 caller_context_t *ct) 1316 { 1317 int error; 1318 struct vattr va; 1319 1320 if (vap->va_mask & AT_NOSET) 1321 return (EINVAL); 1322 if (nfs_zone() != VTOMI(vp)->mi_zone) 1323 return (EIO); 1324 1325 va.va_mask = AT_UID | AT_MODE; 1326 error = nfs3getattr(vp, &va, cr); 1327 if (error) 1328 return (error); 1329 1330 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx, 1331 vp); 1332 if (error) 1333 return (error); 1334 1335 error = nfs3setattr(vp, vap, flags, cr); 1336 1337 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0) 1338 vnevent_truncate(vp, ct); 1339 1340 return (error); 1341 } 1342 1343 static int 1344 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1345 { 1346 int error; 1347 uint_t mask; 1348 SETATTR3args args; 1349 SETATTR3res res; 1350 int douprintf; 1351 rnode_t *rp; 1352 struct vattr va; 1353 mode_t omode; 1354 vsecattr_t *vsp; 1355 hrtime_t t; 1356 1357 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1358 mask = vap->va_mask; 1359 1360 rp = VTOR(vp); 1361 1362 /* 1363 * Only need to flush pages if there are any pages and 1364 * if the file is marked as dirty in some fashion. The 1365 * file must be flushed so that we can accurately 1366 * determine the size of the file and the cached data 1367 * after the SETATTR returns. A file is considered to 1368 * be dirty if it is either marked with RDIRTY, has 1369 * outstanding i/o's active, or is mmap'd. In this 1370 * last case, we can't tell whether there are dirty 1371 * pages, so we flush just to be sure. 1372 */ 1373 if (vn_has_cached_data(vp) && 1374 ((rp->r_flags & RDIRTY) || 1375 rp->r_count > 0 || 1376 rp->r_mapcnt > 0)) { 1377 ASSERT(vp->v_type != VCHR); 1378 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1379 if (error && (error == ENOSPC || error == EDQUOT)) { 1380 mutex_enter(&rp->r_statelock); 1381 if (!rp->r_error) 1382 rp->r_error = error; 1383 mutex_exit(&rp->r_statelock); 1384 } 1385 } 1386 1387 args.object = *RTOFH3(rp); 1388 /* 1389 * If the intent is for the server to set the times, 1390 * there is no point in have the mask indicating set mtime or 1391 * atime, because the vap values may be junk, and so result 1392 * in an overflow error. Remove these flags from the vap mask 1393 * before calling in this case, and restore them afterwards. 1394 */ 1395 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) { 1396 /* Use server times, so don't set the args time fields */ 1397 vap->va_mask &= ~(AT_ATIME | AT_MTIME); 1398 error = vattr_to_sattr3(vap, &args.new_attributes); 1399 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME)); 1400 if (mask & AT_ATIME) { 1401 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 1402 } 1403 if (mask & AT_MTIME) { 1404 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 1405 } 1406 } else { 1407 /* Either do not set times or use the client specified times */ 1408 error = vattr_to_sattr3(vap, &args.new_attributes); 1409 } 1410 1411 if (error) { 1412 /* req time field(s) overflow - return immediately */ 1413 return (error); 1414 } 1415 1416 va.va_mask = AT_MODE | AT_CTIME; 1417 error = nfs3getattr(vp, &va, cr); 1418 if (error) 1419 return (error); 1420 omode = va.va_mode; 1421 1422 tryagain: 1423 if (mask & AT_SIZE) { 1424 args.guard.check = TRUE; 1425 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec; 1426 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec; 1427 } else 1428 args.guard.check = FALSE; 1429 1430 douprintf = 1; 1431 1432 t = gethrtime(); 1433 1434 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 1435 xdr_SETATTR3args, (caddr_t)&args, 1436 xdr_SETATTR3res, (caddr_t)&res, cr, 1437 &douprintf, &res.status, 0, NULL); 1438 1439 /* 1440 * Purge the access cache and ACL cache if changing either the 1441 * owner of the file, the group owner, or the mode. These may 1442 * change the access permissions of the file, so purge old 1443 * information and start over again. 1444 */ 1445 if (mask & (AT_UID | AT_GID | AT_MODE)) { 1446 (void) nfs_access_purge_rp(rp); 1447 if (rp->r_secattr != NULL) { 1448 mutex_enter(&rp->r_statelock); 1449 vsp = rp->r_secattr; 1450 rp->r_secattr = NULL; 1451 mutex_exit(&rp->r_statelock); 1452 if (vsp != NULL) 1453 nfs_acl_free(vsp); 1454 } 1455 } 1456 1457 if (error) { 1458 PURGE_ATTRCACHE(vp); 1459 return (error); 1460 } 1461 1462 error = geterrno3(res.status); 1463 if (!error) { 1464 /* 1465 * If changing the size of the file, invalidate 1466 * any local cached data which is no longer part 1467 * of the file. We also possibly invalidate the 1468 * last page in the file. We could use 1469 * pvn_vpzero(), but this would mark the page as 1470 * modified and require it to be written back to 1471 * the server for no particularly good reason. 1472 * This way, if we access it, then we bring it 1473 * back in. A read should be cheaper than a 1474 * write. 1475 */ 1476 if (mask & AT_SIZE) { 1477 nfs_invalidate_pages(vp, 1478 (vap->va_size & PAGEMASK), cr); 1479 } 1480 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 1481 /* 1482 * Some servers will change the mode to clear the setuid 1483 * and setgid bits when changing the uid or gid. The 1484 * client needs to compensate appropriately. 1485 */ 1486 if (mask & (AT_UID | AT_GID)) { 1487 int terror; 1488 1489 va.va_mask = AT_MODE; 1490 terror = nfs3getattr(vp, &va, cr); 1491 if (!terror && 1492 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 1493 (!(mask & AT_MODE) && va.va_mode != omode))) { 1494 va.va_mask = AT_MODE; 1495 if (mask & AT_MODE) 1496 va.va_mode = vap->va_mode; 1497 else 1498 va.va_mode = omode; 1499 (void) nfs3setattr(vp, &va, 0, cr); 1500 } 1501 } 1502 } else { 1503 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 1504 /* 1505 * If we got back a "not synchronized" error, then 1506 * we need to retry with a new guard value. The 1507 * guard value used is the change time. If the 1508 * server returned post_op_attr, then we can just 1509 * retry because we have the latest attributes. 1510 * Otherwise, we issue a GETATTR to get the latest 1511 * attributes and then retry. If we couldn't get 1512 * the attributes this way either, then we give 1513 * up because we can't complete the operation as 1514 * required. 1515 */ 1516 if (res.status == NFS3ERR_NOT_SYNC) { 1517 va.va_mask = AT_CTIME; 1518 if (nfs3getattr(vp, &va, cr) == 0) 1519 goto tryagain; 1520 } 1521 PURGE_STALE_FH(error, vp, cr); 1522 } 1523 1524 return (error); 1525 } 1526 1527 static int 1528 nfs3_accessx(void *vp, int mode, cred_t *cr) 1529 { 1530 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1531 return (nfs3_access(vp, mode, 0, cr, NULL)); 1532 } 1533 1534 /* ARGSUSED */ 1535 static int 1536 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1537 { 1538 int error; 1539 ACCESS3args args; 1540 ACCESS3res res; 1541 int douprintf; 1542 uint32 acc; 1543 rnode_t *rp; 1544 cred_t *cred, *ncr, *ncrfree = NULL; 1545 failinfo_t fi; 1546 nfs_access_type_t cacc; 1547 hrtime_t t; 1548 1549 acc = 0; 1550 if (nfs_zone() != VTOMI(vp)->mi_zone) 1551 return (EIO); 1552 if (mode & VREAD) 1553 acc |= ACCESS3_READ; 1554 if (mode & VWRITE) { 1555 if (vn_is_readonly(vp) && !IS_DEVVP(vp)) 1556 return (EROFS); 1557 if (vp->v_type == VDIR) 1558 acc |= ACCESS3_DELETE; 1559 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND; 1560 } 1561 if (mode & VEXEC) { 1562 if (vp->v_type == VDIR) 1563 acc |= ACCESS3_LOOKUP; 1564 else 1565 acc |= ACCESS3_EXECUTE; 1566 } 1567 1568 rp = VTOR(vp); 1569 args.object = *VTOFH3(vp); 1570 if (vp->v_type == VDIR) { 1571 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY | 1572 ACCESS3_EXTEND | ACCESS3_LOOKUP; 1573 } else { 1574 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND | 1575 ACCESS3_EXECUTE; 1576 } 1577 fi.vp = vp; 1578 fi.fhp = (caddr_t)&args.object; 1579 fi.copyproc = nfs3copyfh; 1580 fi.lookupproc = nfs3lookup; 1581 fi.xattrdirproc = acl_getxattrdir3; 1582 1583 cred = cr; 1584 /* 1585 * ncr and ncrfree both initially 1586 * point to the memory area returned 1587 * by crnetadjust(); 1588 * ncrfree not NULL when exiting means 1589 * that we need to release it 1590 */ 1591 ncr = crnetadjust(cred); 1592 ncrfree = ncr; 1593 tryagain: 1594 if (rp->r_acache != NULL) { 1595 cacc = nfs_access_check(rp, acc, cred); 1596 if (cacc == NFS_ACCESS_ALLOWED) { 1597 if (ncrfree != NULL) 1598 crfree(ncrfree); 1599 return (0); 1600 } 1601 if (cacc == NFS_ACCESS_DENIED) { 1602 /* 1603 * If the cred can be adjusted, try again 1604 * with the new cred. 1605 */ 1606 if (ncr != NULL) { 1607 cred = ncr; 1608 ncr = NULL; 1609 goto tryagain; 1610 } 1611 if (ncrfree != NULL) 1612 crfree(ncrfree); 1613 return (EACCES); 1614 } 1615 } 1616 1617 douprintf = 1; 1618 1619 t = gethrtime(); 1620 1621 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS, 1622 xdr_ACCESS3args, (caddr_t)&args, 1623 xdr_ACCESS3res, (caddr_t)&res, cred, 1624 &douprintf, &res.status, 0, &fi); 1625 1626 if (error) { 1627 if (ncrfree != NULL) 1628 crfree(ncrfree); 1629 return (error); 1630 } 1631 1632 error = geterrno3(res.status); 1633 if (!error) { 1634 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 1635 nfs_access_cache(rp, args.access, res.resok.access, cred); 1636 /* 1637 * we just cached results with cred; if cred is the 1638 * adjusted credentials from crnetadjust, we do not want 1639 * to release them before exiting: hence setting ncrfree 1640 * to NULL 1641 */ 1642 if (cred != cr) 1643 ncrfree = NULL; 1644 if ((acc & res.resok.access) != acc) { 1645 /* 1646 * If the cred can be adjusted, try again 1647 * with the new cred. 1648 */ 1649 if (ncr != NULL) { 1650 cred = ncr; 1651 ncr = NULL; 1652 goto tryagain; 1653 } 1654 error = EACCES; 1655 } 1656 } else { 1657 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 1658 PURGE_STALE_FH(error, vp, cr); 1659 } 1660 1661 if (ncrfree != NULL) 1662 crfree(ncrfree); 1663 1664 return (error); 1665 } 1666 1667 static int nfs3_do_symlink_cache = 1; 1668 1669 /* ARGSUSED */ 1670 static int 1671 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1672 { 1673 int error; 1674 READLINK3args args; 1675 READLINK3res res; 1676 nfspath3 resdata_backup; 1677 rnode_t *rp; 1678 int douprintf; 1679 int len; 1680 failinfo_t fi; 1681 hrtime_t t; 1682 1683 /* 1684 * Can't readlink anything other than a symbolic link. 1685 */ 1686 if (vp->v_type != VLNK) 1687 return (EINVAL); 1688 if (nfs_zone() != VTOMI(vp)->mi_zone) 1689 return (EIO); 1690 1691 rp = VTOR(vp); 1692 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) { 1693 error = nfs3_validate_caches(vp, cr); 1694 if (error) 1695 return (error); 1696 mutex_enter(&rp->r_statelock); 1697 if (rp->r_symlink.contents != NULL) { 1698 error = uiomove(rp->r_symlink.contents, 1699 rp->r_symlink.len, UIO_READ, uiop); 1700 mutex_exit(&rp->r_statelock); 1701 return (error); 1702 } 1703 mutex_exit(&rp->r_statelock); 1704 } 1705 1706 args.symlink = *VTOFH3(vp); 1707 fi.vp = vp; 1708 fi.fhp = (caddr_t)&args.symlink; 1709 fi.copyproc = nfs3copyfh; 1710 fi.lookupproc = nfs3lookup; 1711 fi.xattrdirproc = acl_getxattrdir3; 1712 1713 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1714 1715 resdata_backup = res.resok.data; 1716 1717 douprintf = 1; 1718 1719 t = gethrtime(); 1720 1721 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK, 1722 xdr_READLINK3args, (caddr_t)&args, 1723 xdr_READLINK3res, (caddr_t)&res, cr, 1724 &douprintf, &res.status, 0, &fi); 1725 1726 if (res.resok.data == nfs3nametoolong) 1727 error = EINVAL; 1728 1729 if (error) { 1730 kmem_free(resdata_backup, MAXPATHLEN); 1731 return (error); 1732 } 1733 1734 error = geterrno3(res.status); 1735 if (!error) { 1736 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t, 1737 cr); 1738 len = strlen(res.resok.data); 1739 error = uiomove(res.resok.data, len, UIO_READ, uiop); 1740 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) { 1741 mutex_enter(&rp->r_statelock); 1742 if (rp->r_symlink.contents == NULL) { 1743 rp->r_symlink.contents = res.resok.data; 1744 rp->r_symlink.len = len; 1745 rp->r_symlink.size = MAXPATHLEN; 1746 mutex_exit(&rp->r_statelock); 1747 } else { 1748 mutex_exit(&rp->r_statelock); 1749 1750 kmem_free((void *)res.resok.data, MAXPATHLEN); 1751 } 1752 } else { 1753 kmem_free((void *)res.resok.data, MAXPATHLEN); 1754 } 1755 } else { 1756 nfs3_cache_post_op_attr(vp, 1757 &res.resfail.symlink_attributes, t, cr); 1758 PURGE_STALE_FH(error, vp, cr); 1759 1760 kmem_free((void *)res.resok.data, MAXPATHLEN); 1761 1762 } 1763 1764 /* 1765 * The over the wire error for attempting to readlink something 1766 * other than a symbolic link is ENXIO. However, we need to 1767 * return EINVAL instead of ENXIO, so we map it here. 1768 */ 1769 return (error == ENXIO ? EINVAL : error); 1770 } 1771 1772 /* 1773 * Flush local dirty pages to stable storage on the server. 1774 * 1775 * If FNODSYNC is specified, then there is nothing to do because 1776 * metadata changes are not cached on the client before being 1777 * sent to the server. 1778 */ 1779 /* ARGSUSED */ 1780 static int 1781 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1782 { 1783 int error; 1784 1785 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1786 return (0); 1787 if (nfs_zone() != VTOMI(vp)->mi_zone) 1788 return (EIO); 1789 1790 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 1791 if (!error) 1792 error = VTOR(vp)->r_error; 1793 return (error); 1794 } 1795 1796 /* 1797 * Weirdness: if the file was removed or the target of a rename 1798 * operation while it was open, it got renamed instead. Here we 1799 * remove the renamed file. 1800 */ 1801 /* ARGSUSED */ 1802 static void 1803 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1804 { 1805 rnode_t *rp; 1806 1807 ASSERT(vp != DNLC_NO_VNODE); 1808 1809 /* 1810 * If this is coming from the wrong zone, we let someone in the right 1811 * zone take care of it asynchronously. We can get here due to 1812 * VN_RELE() being called from pageout() or fsflush(). This call may 1813 * potentially turn into an expensive no-op if, for instance, v_count 1814 * gets incremented in the meantime, but it's still correct. 1815 */ 1816 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1817 nfs_async_inactive(vp, cr, nfs3_inactive); 1818 return; 1819 } 1820 1821 rp = VTOR(vp); 1822 redo: 1823 if (rp->r_unldvp != NULL) { 1824 /* 1825 * Save the vnode pointer for the directory where the 1826 * unlinked-open file got renamed, then set it to NULL 1827 * to prevent another thread from getting here before 1828 * we're done with the remove. While we have the 1829 * statelock, make local copies of the pertinent rnode 1830 * fields. If we weren't to do this in an atomic way, the 1831 * the unl* fields could become inconsistent with respect 1832 * to each other due to a race condition between this 1833 * code and nfs_remove(). See bug report 1034328. 1834 */ 1835 mutex_enter(&rp->r_statelock); 1836 if (rp->r_unldvp != NULL) { 1837 vnode_t *unldvp; 1838 char *unlname; 1839 cred_t *unlcred; 1840 REMOVE3args args; 1841 REMOVE3res res; 1842 int douprintf; 1843 int error; 1844 hrtime_t t; 1845 1846 unldvp = rp->r_unldvp; 1847 rp->r_unldvp = NULL; 1848 unlname = rp->r_unlname; 1849 rp->r_unlname = NULL; 1850 unlcred = rp->r_unlcred; 1851 rp->r_unlcred = NULL; 1852 mutex_exit(&rp->r_statelock); 1853 1854 /* 1855 * If there are any dirty pages left, then flush 1856 * them. This is unfortunate because they just 1857 * may get thrown away during the remove operation, 1858 * but we have to do this for correctness. 1859 */ 1860 if (vn_has_cached_data(vp) && 1861 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1862 ASSERT(vp->v_type != VCHR); 1863 error = nfs3_putpage(vp, (offset_t)0, 0, 0, 1864 cr, ct); 1865 if (error) { 1866 mutex_enter(&rp->r_statelock); 1867 if (!rp->r_error) 1868 rp->r_error = error; 1869 mutex_exit(&rp->r_statelock); 1870 } 1871 } 1872 1873 /* 1874 * Do the remove operation on the renamed file 1875 */ 1876 setdiropargs3(&args.object, unlname, unldvp); 1877 1878 douprintf = 1; 1879 1880 t = gethrtime(); 1881 1882 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE, 1883 xdr_diropargs3, (caddr_t)&args, 1884 xdr_REMOVE3res, (caddr_t)&res, unlcred, 1885 &douprintf, &res.status, 0, NULL); 1886 1887 if (error) { 1888 PURGE_ATTRCACHE(unldvp); 1889 } else { 1890 error = geterrno3(res.status); 1891 if (!error) { 1892 nfs3_cache_wcc_data(unldvp, 1893 &res.resok.dir_wcc, t, cr); 1894 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1895 nfs_purge_rddir_cache(unldvp); 1896 } else { 1897 nfs3_cache_wcc_data(unldvp, 1898 &res.resfail.dir_wcc, t, cr); 1899 PURGE_STALE_FH(error, unldvp, cr); 1900 } 1901 } 1902 1903 /* 1904 * Release stuff held for the remove 1905 */ 1906 VN_RELE(unldvp); 1907 kmem_free(unlname, MAXNAMELEN); 1908 crfree(unlcred); 1909 goto redo; 1910 } 1911 mutex_exit(&rp->r_statelock); 1912 } 1913 1914 rp_addfree(rp, cr); 1915 } 1916 1917 /* 1918 * Remote file system operations having to do with directory manipulation. 1919 */ 1920 1921 /* ARGSUSED */ 1922 static int 1923 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1924 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1925 int *direntflags, pathname_t *realpnp) 1926 { 1927 int error; 1928 vnode_t *vp; 1929 vnode_t *avp = NULL; 1930 rnode_t *drp; 1931 1932 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1933 return (EPERM); 1934 1935 drp = VTOR(dvp); 1936 1937 /* 1938 * Are we looking up extended attributes? If so, "dvp" is 1939 * the file or directory for which we want attributes, and 1940 * we need a lookup of the hidden attribute directory 1941 * before we lookup the rest of the path. 1942 */ 1943 if (flags & LOOKUP_XATTR) { 1944 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1945 mntinfo_t *mi; 1946 1947 mi = VTOMI(dvp); 1948 if (!(mi->mi_flags & MI_EXTATTR)) 1949 return (EINVAL); 1950 1951 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1952 return (EINTR); 1953 1954 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1955 if (avp == NULL) 1956 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0); 1957 else 1958 error = 0; 1959 1960 nfs_rw_exit(&drp->r_rwlock); 1961 1962 if (error) { 1963 if (mi->mi_flags & MI_EXTATTR) 1964 return (error); 1965 return (EINVAL); 1966 } 1967 dvp = avp; 1968 drp = VTOR(dvp); 1969 } 1970 1971 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1972 error = EINTR; 1973 goto out; 1974 } 1975 1976 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1977 1978 nfs_rw_exit(&drp->r_rwlock); 1979 1980 /* 1981 * If vnode is a device, create special vnode. 1982 */ 1983 if (!error && IS_DEVVP(*vpp)) { 1984 vp = *vpp; 1985 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1986 VN_RELE(vp); 1987 } 1988 1989 out: 1990 if (avp != NULL) 1991 VN_RELE(avp); 1992 1993 return (error); 1994 } 1995 1996 static int nfs3_lookup_neg_cache = 1; 1997 1998 #ifdef DEBUG 1999 static int nfs3_lookup_dnlc_hits = 0; 2000 static int nfs3_lookup_dnlc_misses = 0; 2001 static int nfs3_lookup_dnlc_neg_hits = 0; 2002 static int nfs3_lookup_dnlc_disappears = 0; 2003 static int nfs3_lookup_dnlc_lookups = 0; 2004 #endif 2005 2006 /* ARGSUSED */ 2007 int 2008 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 2009 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 2010 { 2011 int error; 2012 rnode_t *drp; 2013 2014 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2015 /* 2016 * If lookup is for "", just return dvp. Don't need 2017 * to send it over the wire, look it up in the dnlc, 2018 * or perform any access checks. 2019 */ 2020 if (*nm == '\0') { 2021 VN_HOLD(dvp); 2022 *vpp = dvp; 2023 return (0); 2024 } 2025 2026 /* 2027 * Can't do lookups in non-directories. 2028 */ 2029 if (dvp->v_type != VDIR) 2030 return (ENOTDIR); 2031 2032 /* 2033 * If we're called with RFSCALL_SOFT, it's important that 2034 * the only rfscall is one we make directly; if we permit 2035 * an access call because we're looking up "." or validating 2036 * a dnlc hit, we'll deadlock because that rfscall will not 2037 * have the RFSCALL_SOFT set. 2038 */ 2039 if (rfscall_flags & RFSCALL_SOFT) 2040 goto callit; 2041 2042 /* 2043 * If lookup is for ".", just return dvp. Don't need 2044 * to send it over the wire or look it up in the dnlc, 2045 * just need to check access. 2046 */ 2047 if (strcmp(nm, ".") == 0) { 2048 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2049 if (error) 2050 return (error); 2051 VN_HOLD(dvp); 2052 *vpp = dvp; 2053 return (0); 2054 } 2055 2056 drp = VTOR(dvp); 2057 if (!(drp->r_flags & RLOOKUP)) { 2058 mutex_enter(&drp->r_statelock); 2059 drp->r_flags |= RLOOKUP; 2060 mutex_exit(&drp->r_statelock); 2061 } 2062 2063 /* 2064 * Lookup this name in the DNLC. If there was a valid entry, 2065 * then return the results of the lookup. 2066 */ 2067 error = nfs3lookup_dnlc(dvp, nm, vpp, cr); 2068 if (error || *vpp != NULL) 2069 return (error); 2070 2071 callit: 2072 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags); 2073 2074 return (error); 2075 } 2076 2077 static int 2078 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 2079 { 2080 int error; 2081 vnode_t *vp; 2082 2083 ASSERT(*nm != '\0'); 2084 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2085 /* 2086 * Lookup this name in the DNLC. If successful, then validate 2087 * the caches and then recheck the DNLC. The DNLC is rechecked 2088 * just in case this entry got invalidated during the call 2089 * to nfs3_validate_caches. 2090 * 2091 * An assumption is being made that it is safe to say that a 2092 * file exists which may not on the server. Any operations to 2093 * the server will fail with ESTALE. 2094 */ 2095 #ifdef DEBUG 2096 nfs3_lookup_dnlc_lookups++; 2097 #endif 2098 vp = dnlc_lookup(dvp, nm); 2099 if (vp != NULL) { 2100 VN_RELE(vp); 2101 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 2102 PURGE_ATTRCACHE(dvp); 2103 } 2104 error = nfs3_validate_caches(dvp, cr); 2105 if (error) 2106 return (error); 2107 vp = dnlc_lookup(dvp, nm); 2108 if (vp != NULL) { 2109 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2110 if (error) { 2111 VN_RELE(vp); 2112 return (error); 2113 } 2114 if (vp == DNLC_NO_VNODE) { 2115 VN_RELE(vp); 2116 #ifdef DEBUG 2117 nfs3_lookup_dnlc_neg_hits++; 2118 #endif 2119 return (ENOENT); 2120 } 2121 *vpp = vp; 2122 #ifdef DEBUG 2123 nfs3_lookup_dnlc_hits++; 2124 #endif 2125 return (0); 2126 } 2127 #ifdef DEBUG 2128 nfs3_lookup_dnlc_disappears++; 2129 #endif 2130 } 2131 #ifdef DEBUG 2132 else 2133 nfs3_lookup_dnlc_misses++; 2134 #endif 2135 2136 *vpp = NULL; 2137 2138 return (0); 2139 } 2140 2141 static int 2142 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 2143 int rfscall_flags) 2144 { 2145 int error; 2146 LOOKUP3args args; 2147 LOOKUP3vres res; 2148 int douprintf; 2149 struct vattr vattr; 2150 struct vattr dvattr; 2151 vnode_t *vp; 2152 failinfo_t fi; 2153 hrtime_t t; 2154 2155 ASSERT(*nm != '\0'); 2156 ASSERT(dvp->v_type == VDIR); 2157 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2158 2159 setdiropargs3(&args.what, nm, dvp); 2160 2161 fi.vp = dvp; 2162 fi.fhp = (caddr_t)&args.what.dir; 2163 fi.copyproc = nfs3copyfh; 2164 fi.lookupproc = nfs3lookup; 2165 fi.xattrdirproc = acl_getxattrdir3; 2166 res.obj_attributes.fres.vp = dvp; 2167 res.obj_attributes.fres.vap = &vattr; 2168 res.dir_attributes.fres.vp = dvp; 2169 res.dir_attributes.fres.vap = &dvattr; 2170 2171 douprintf = 1; 2172 2173 t = gethrtime(); 2174 2175 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP, 2176 xdr_diropargs3, (caddr_t)&args, 2177 xdr_LOOKUP3vres, (caddr_t)&res, cr, 2178 &douprintf, &res.status, rfscall_flags, &fi); 2179 2180 if (error) 2181 return (error); 2182 2183 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr); 2184 2185 error = geterrno3(res.status); 2186 if (error) { 2187 PURGE_STALE_FH(error, dvp, cr); 2188 if (error == ENOENT && nfs3_lookup_neg_cache) 2189 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 2190 return (error); 2191 } 2192 2193 if (res.obj_attributes.attributes) { 2194 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap, 2195 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2196 } else { 2197 vp = makenfs3node_va(&res.object, NULL, 2198 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2199 if (vp->v_type == VNON) { 2200 vattr.va_mask = AT_TYPE; 2201 error = nfs3getattr(vp, &vattr, cr); 2202 if (error) { 2203 VN_RELE(vp); 2204 return (error); 2205 } 2206 vp->v_type = vattr.va_type; 2207 } 2208 } 2209 2210 if (!(rfscall_flags & RFSCALL_SOFT)) 2211 dnlc_update(dvp, nm, vp); 2212 2213 *vpp = vp; 2214 2215 return (error); 2216 } 2217 2218 #ifdef DEBUG 2219 static int nfs3_create_misses = 0; 2220 #endif 2221 2222 /* ARGSUSED */ 2223 static int 2224 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2225 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 2226 vsecattr_t *vsecp) 2227 { 2228 int error; 2229 vnode_t *vp; 2230 rnode_t *rp; 2231 struct vattr vattr; 2232 rnode_t *drp; 2233 vnode_t *tempvp; 2234 2235 drp = VTOR(dvp); 2236 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2237 return (EPERM); 2238 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2239 return (EINTR); 2240 2241 top: 2242 /* 2243 * We make a copy of the attributes because the caller does not 2244 * expect us to change what va points to. 2245 */ 2246 vattr = *va; 2247 2248 /* 2249 * If the pathname is "", just use dvp. Don't need 2250 * to send it over the wire, look it up in the dnlc, 2251 * or perform any access checks. 2252 */ 2253 if (*nm == '\0') { 2254 error = 0; 2255 VN_HOLD(dvp); 2256 vp = dvp; 2257 /* 2258 * If the pathname is ".", just use dvp. Don't need 2259 * to send it over the wire or look it up in the dnlc, 2260 * just need to check access. 2261 */ 2262 } else if (strcmp(nm, ".") == 0) { 2263 error = nfs3_access(dvp, VEXEC, 0, cr, ct); 2264 if (error) { 2265 nfs_rw_exit(&drp->r_rwlock); 2266 return (error); 2267 } 2268 VN_HOLD(dvp); 2269 vp = dvp; 2270 /* 2271 * We need to go over the wire, just to be sure whether the 2272 * file exists or not. Using the DNLC can be dangerous in 2273 * this case when making a decision regarding existence. 2274 */ 2275 } else { 2276 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0); 2277 } 2278 if (!error) { 2279 if (exclusive == EXCL) 2280 error = EEXIST; 2281 else if (vp->v_type == VDIR && (mode & VWRITE)) 2282 error = EISDIR; 2283 else { 2284 /* 2285 * If vnode is a device, create special vnode. 2286 */ 2287 if (IS_DEVVP(vp)) { 2288 tempvp = vp; 2289 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2290 VN_RELE(tempvp); 2291 } 2292 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 2293 if ((vattr.va_mask & AT_SIZE) && 2294 vp->v_type == VREG) { 2295 rp = VTOR(vp); 2296 /* 2297 * Check here for large file handled 2298 * by LF-unaware process (as 2299 * ufs_create() does) 2300 */ 2301 if (!(lfaware & FOFFMAX)) { 2302 mutex_enter(&rp->r_statelock); 2303 if (rp->r_size > MAXOFF32_T) 2304 error = EOVERFLOW; 2305 mutex_exit(&rp->r_statelock); 2306 } 2307 if (!error) { 2308 vattr.va_mask = AT_SIZE; 2309 error = nfs3setattr(vp, 2310 &vattr, 0, cr); 2311 2312 /* 2313 * Existing file was truncated; 2314 * emit a create event. 2315 */ 2316 vnevent_create(vp, ct); 2317 } 2318 } 2319 } 2320 } 2321 nfs_rw_exit(&drp->r_rwlock); 2322 if (error) { 2323 VN_RELE(vp); 2324 } else { 2325 *vpp = vp; 2326 } 2327 2328 return (error); 2329 } 2330 2331 dnlc_remove(dvp, nm); 2332 2333 /* 2334 * Decide what the group-id of the created file should be. 2335 * Set it in attribute list as advisory... 2336 */ 2337 error = setdirgid(dvp, &vattr.va_gid, cr); 2338 if (error) { 2339 nfs_rw_exit(&drp->r_rwlock); 2340 return (error); 2341 } 2342 vattr.va_mask |= AT_GID; 2343 2344 ASSERT(vattr.va_mask & AT_TYPE); 2345 if (vattr.va_type == VREG) { 2346 ASSERT(vattr.va_mask & AT_MODE); 2347 if (MANDMODE(vattr.va_mode)) { 2348 nfs_rw_exit(&drp->r_rwlock); 2349 return (EACCES); 2350 } 2351 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr, 2352 lfaware); 2353 /* 2354 * If this is not an exclusive create, then the CREATE 2355 * request will be made with the GUARDED mode set. This 2356 * means that the server will return EEXIST if the file 2357 * exists. The file could exist because of a retransmitted 2358 * request. In this case, we recover by starting over and 2359 * checking to see whether the file exists. This second 2360 * time through it should and a CREATE request will not be 2361 * sent. 2362 * 2363 * This handles the problem of a dangling CREATE request 2364 * which contains attributes which indicate that the file 2365 * should be truncated. This retransmitted request could 2366 * possibly truncate valid data in the file if not caught 2367 * by the duplicate request mechanism on the server or if 2368 * not caught by other means. The scenario is: 2369 * 2370 * Client transmits CREATE request with size = 0 2371 * Client times out, retransmits request. 2372 * Response to the first request arrives from the server 2373 * and the client proceeds on. 2374 * Client writes data to the file. 2375 * The server now processes retransmitted CREATE request 2376 * and truncates file. 2377 * 2378 * The use of the GUARDED CREATE request prevents this from 2379 * happening because the retransmitted CREATE would fail 2380 * with EEXIST and would not truncate the file. 2381 */ 2382 if (error == EEXIST && exclusive == NONEXCL) { 2383 #ifdef DEBUG 2384 nfs3_create_misses++; 2385 #endif 2386 goto top; 2387 } 2388 nfs_rw_exit(&drp->r_rwlock); 2389 return (error); 2390 } 2391 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 2392 nfs_rw_exit(&drp->r_rwlock); 2393 return (error); 2394 } 2395 2396 /* ARGSUSED */ 2397 static int 2398 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2399 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 2400 { 2401 int error; 2402 CREATE3args args; 2403 CREATE3res res; 2404 int douprintf; 2405 vnode_t *vp; 2406 struct vattr vattr; 2407 nfstime3 *verfp; 2408 rnode_t *rp; 2409 timestruc_t now; 2410 hrtime_t t; 2411 2412 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2413 setdiropargs3(&args.where, nm, dvp); 2414 if (exclusive == EXCL) { 2415 args.how.mode = EXCLUSIVE; 2416 /* 2417 * Construct the create verifier. This verifier needs 2418 * to be unique between different clients. It also needs 2419 * to vary for each exclusive create request generated 2420 * from the client to the server. 2421 * 2422 * The first attempt is made to use the hostid and a 2423 * unique number on the client. If the hostid has not 2424 * been set, the high resolution time that the exclusive 2425 * create request is being made is used. This will work 2426 * unless two different clients, both with the hostid 2427 * not set, attempt an exclusive create request on the 2428 * same file, at exactly the same clock time. The 2429 * chances of this happening seem small enough to be 2430 * reasonable. 2431 */ 2432 verfp = (nfstime3 *)&args.how.createhow3_u.verf; 2433 verfp->seconds = zone_get_hostid(NULL); 2434 if (verfp->seconds != 0) 2435 verfp->nseconds = newnum(); 2436 else { 2437 gethrestime(&now); 2438 verfp->seconds = now.tv_sec; 2439 verfp->nseconds = now.tv_nsec; 2440 } 2441 /* 2442 * Since the server will use this value for the mtime, 2443 * make sure that it can't overflow. Zero out the MSB. 2444 * The actual value does not matter here, only its uniqeness. 2445 */ 2446 verfp->seconds %= INT32_MAX; 2447 } else { 2448 /* 2449 * Issue the non-exclusive create in guarded mode. This 2450 * may result in some false EEXIST responses for 2451 * retransmitted requests, but these will be handled at 2452 * a higher level. By using GUARDED, duplicate requests 2453 * to do file truncation and possible access problems 2454 * can be avoided. 2455 */ 2456 args.how.mode = GUARDED; 2457 error = vattr_to_sattr3(va, 2458 &args.how.createhow3_u.obj_attributes); 2459 if (error) { 2460 /* req time field(s) overflow - return immediately */ 2461 return (error); 2462 } 2463 } 2464 2465 douprintf = 1; 2466 2467 t = gethrtime(); 2468 2469 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE, 2470 xdr_CREATE3args, (caddr_t)&args, 2471 xdr_CREATE3res, (caddr_t)&res, cr, 2472 &douprintf, &res.status, 0, NULL); 2473 2474 if (error) { 2475 PURGE_ATTRCACHE(dvp); 2476 return (error); 2477 } 2478 2479 error = geterrno3(res.status); 2480 if (!error) { 2481 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2482 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2483 nfs_purge_rddir_cache(dvp); 2484 2485 /* 2486 * On exclusive create the times need to be explicitly 2487 * set to clear any potential verifier that may be stored 2488 * in one of these fields (see comment below). This 2489 * is done here to cover the case where no post op attrs 2490 * were returned or a 'invalid' time was returned in 2491 * the attributes. 2492 */ 2493 if (exclusive == EXCL) 2494 va->va_mask |= (AT_MTIME | AT_ATIME); 2495 2496 if (!res.resok.obj.handle_follows) { 2497 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2498 if (error) 2499 return (error); 2500 } else { 2501 if (res.resok.obj_attributes.attributes) { 2502 vp = makenfs3node(&res.resok.obj.handle, 2503 &res.resok.obj_attributes.attr, 2504 dvp->v_vfsp, t, cr, NULL, NULL); 2505 } else { 2506 vp = makenfs3node(&res.resok.obj.handle, NULL, 2507 dvp->v_vfsp, t, cr, NULL, NULL); 2508 2509 /* 2510 * On an exclusive create, it is possible 2511 * that attributes were returned but those 2512 * postop attributes failed to decode 2513 * properly. If this is the case, 2514 * then most likely the atime or mtime 2515 * were invalid for our client; this 2516 * is caused by the server storing the 2517 * create verifier in one of the time 2518 * fields(most likely mtime). 2519 * So... we are going to setattr just the 2520 * atime/mtime to clear things up. 2521 */ 2522 if (exclusive == EXCL) { 2523 if (error = 2524 nfs3excl_create_settimes(vp, 2525 va, cr)) { 2526 /* 2527 * Setting the times failed. 2528 * Remove the file and return 2529 * the error. 2530 */ 2531 VN_RELE(vp); 2532 (void) nfs3_remove(dvp, 2533 nm, cr, NULL, 0); 2534 return (error); 2535 } 2536 } 2537 2538 /* 2539 * This handles the non-exclusive case 2540 * and the exclusive case where no post op 2541 * attrs were returned. 2542 */ 2543 if (vp->v_type == VNON) { 2544 vattr.va_mask = AT_TYPE; 2545 error = nfs3getattr(vp, &vattr, cr); 2546 if (error) { 2547 VN_RELE(vp); 2548 return (error); 2549 } 2550 vp->v_type = vattr.va_type; 2551 } 2552 } 2553 dnlc_update(dvp, nm, vp); 2554 } 2555 2556 rp = VTOR(vp); 2557 2558 /* 2559 * Check here for large file handled by 2560 * LF-unaware process (as ufs_create() does) 2561 */ 2562 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG && 2563 !(lfaware & FOFFMAX)) { 2564 mutex_enter(&rp->r_statelock); 2565 if (rp->r_size > MAXOFF32_T) { 2566 mutex_exit(&rp->r_statelock); 2567 VN_RELE(vp); 2568 return (EOVERFLOW); 2569 } 2570 mutex_exit(&rp->r_statelock); 2571 } 2572 2573 if (exclusive == EXCL && 2574 (va->va_mask & ~(AT_GID | AT_SIZE))) { 2575 /* 2576 * If doing an exclusive create, then generate 2577 * a SETATTR to set the initial attributes. 2578 * Try to set the mtime and the atime to the 2579 * server's current time. It is somewhat 2580 * expected that these fields will be used to 2581 * store the exclusive create cookie. If not, 2582 * server implementors will need to know that 2583 * a SETATTR will follow an exclusive create 2584 * and the cookie should be destroyed if 2585 * appropriate. This work may have been done 2586 * earlier in this function if post op attrs 2587 * were not available. 2588 * 2589 * The AT_GID and AT_SIZE bits are turned off 2590 * so that the SETATTR request will not attempt 2591 * to process these. The gid will be set 2592 * separately if appropriate. The size is turned 2593 * off because it is assumed that a new file will 2594 * be created empty and if the file wasn't empty, 2595 * then the exclusive create will have failed 2596 * because the file must have existed already. 2597 * Therefore, no truncate operation is needed. 2598 */ 2599 va->va_mask &= ~(AT_GID | AT_SIZE); 2600 error = nfs3setattr(vp, va, 0, cr); 2601 if (error) { 2602 /* 2603 * Couldn't correct the attributes of 2604 * the newly created file and the 2605 * attributes are wrong. Remove the 2606 * file and return an error to the 2607 * application. 2608 */ 2609 VN_RELE(vp); 2610 (void) nfs3_remove(dvp, nm, cr, NULL, 0); 2611 return (error); 2612 } 2613 } 2614 2615 if (va->va_gid != rp->r_attr.va_gid) { 2616 /* 2617 * If the gid on the file isn't right, then 2618 * generate a SETATTR to attempt to change 2619 * it. This may or may not work, depending 2620 * upon the server's semantics for allowing 2621 * file ownership changes. 2622 */ 2623 va->va_mask = AT_GID; 2624 (void) nfs3setattr(vp, va, 0, cr); 2625 } 2626 2627 /* 2628 * If vnode is a device create special vnode 2629 */ 2630 if (IS_DEVVP(vp)) { 2631 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2632 VN_RELE(vp); 2633 } else 2634 *vpp = vp; 2635 } else { 2636 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2637 PURGE_STALE_FH(error, dvp, cr); 2638 } 2639 2640 return (error); 2641 } 2642 2643 /* 2644 * Special setattr function to take care of rest of atime/mtime 2645 * after successful exclusive create. This function exists to avoid 2646 * handling attributes from the server; exclusive the atime/mtime fields 2647 * may be 'invalid' in client's view and therefore can not be trusted. 2648 */ 2649 static int 2650 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr) 2651 { 2652 int error; 2653 uint_t mask; 2654 SETATTR3args args; 2655 SETATTR3res res; 2656 int douprintf; 2657 rnode_t *rp; 2658 hrtime_t t; 2659 2660 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 2661 /* save the caller's mask so that it can be reset later */ 2662 mask = vap->va_mask; 2663 2664 rp = VTOR(vp); 2665 2666 args.object = *RTOFH3(rp); 2667 args.guard.check = FALSE; 2668 2669 /* Use the mask to initialize the arguments */ 2670 vap->va_mask = 0; 2671 error = vattr_to_sattr3(vap, &args.new_attributes); 2672 2673 /* We want to set just atime/mtime on this request */ 2674 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 2675 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 2676 2677 douprintf = 1; 2678 2679 t = gethrtime(); 2680 2681 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 2682 xdr_SETATTR3args, (caddr_t)&args, 2683 xdr_SETATTR3res, (caddr_t)&res, cr, 2684 &douprintf, &res.status, 0, NULL); 2685 2686 if (error) { 2687 vap->va_mask = mask; 2688 return (error); 2689 } 2690 2691 error = geterrno3(res.status); 2692 if (!error) { 2693 /* 2694 * It is important to pick up the attributes. 2695 * Since this is the exclusive create path, the 2696 * attributes on the initial create were ignored 2697 * and we need these to have the correct info. 2698 */ 2699 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 2700 /* 2701 * No need to do the atime/mtime work again so clear 2702 * the bits. 2703 */ 2704 mask &= ~(AT_ATIME | AT_MTIME); 2705 } else { 2706 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 2707 } 2708 2709 vap->va_mask = mask; 2710 2711 return (error); 2712 } 2713 2714 /* ARGSUSED */ 2715 static int 2716 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2717 int mode, vnode_t **vpp, cred_t *cr) 2718 { 2719 int error; 2720 MKNOD3args args; 2721 MKNOD3res res; 2722 int douprintf; 2723 vnode_t *vp; 2724 struct vattr vattr; 2725 hrtime_t t; 2726 2727 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2728 switch (va->va_type) { 2729 case VCHR: 2730 case VBLK: 2731 setdiropargs3(&args.where, nm, dvp); 2732 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK; 2733 error = vattr_to_sattr3(va, 2734 &args.what.mknoddata3_u.device.dev_attributes); 2735 if (error) { 2736 /* req time field(s) overflow - return immediately */ 2737 return (error); 2738 } 2739 args.what.mknoddata3_u.device.spec.specdata1 = 2740 getmajor(va->va_rdev); 2741 args.what.mknoddata3_u.device.spec.specdata2 = 2742 getminor(va->va_rdev); 2743 break; 2744 2745 case VFIFO: 2746 case VSOCK: 2747 setdiropargs3(&args.where, nm, dvp); 2748 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK; 2749 error = vattr_to_sattr3(va, 2750 &args.what.mknoddata3_u.pipe_attributes); 2751 if (error) { 2752 /* req time field(s) overflow - return immediately */ 2753 return (error); 2754 } 2755 break; 2756 2757 default: 2758 return (EINVAL); 2759 } 2760 2761 douprintf = 1; 2762 2763 t = gethrtime(); 2764 2765 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD, 2766 xdr_MKNOD3args, (caddr_t)&args, 2767 xdr_MKNOD3res, (caddr_t)&res, cr, 2768 &douprintf, &res.status, 0, NULL); 2769 2770 if (error) { 2771 PURGE_ATTRCACHE(dvp); 2772 return (error); 2773 } 2774 2775 error = geterrno3(res.status); 2776 if (!error) { 2777 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2778 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2779 nfs_purge_rddir_cache(dvp); 2780 2781 if (!res.resok.obj.handle_follows) { 2782 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2783 if (error) 2784 return (error); 2785 } else { 2786 if (res.resok.obj_attributes.attributes) { 2787 vp = makenfs3node(&res.resok.obj.handle, 2788 &res.resok.obj_attributes.attr, 2789 dvp->v_vfsp, t, cr, NULL, NULL); 2790 } else { 2791 vp = makenfs3node(&res.resok.obj.handle, NULL, 2792 dvp->v_vfsp, t, cr, NULL, NULL); 2793 if (vp->v_type == VNON) { 2794 vattr.va_mask = AT_TYPE; 2795 error = nfs3getattr(vp, &vattr, cr); 2796 if (error) { 2797 VN_RELE(vp); 2798 return (error); 2799 } 2800 vp->v_type = vattr.va_type; 2801 } 2802 2803 } 2804 dnlc_update(dvp, nm, vp); 2805 } 2806 2807 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 2808 va->va_mask = AT_GID; 2809 (void) nfs3setattr(vp, va, 0, cr); 2810 } 2811 2812 /* 2813 * If vnode is a device create special vnode 2814 */ 2815 if (IS_DEVVP(vp)) { 2816 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2817 VN_RELE(vp); 2818 } else 2819 *vpp = vp; 2820 } else { 2821 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2822 PURGE_STALE_FH(error, dvp, cr); 2823 } 2824 return (error); 2825 } 2826 2827 /* 2828 * Weirdness: if the vnode to be removed is open 2829 * we rename it instead of removing it and nfs_inactive 2830 * will remove the new name. 2831 */ 2832 /* ARGSUSED */ 2833 static int 2834 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2835 { 2836 int error; 2837 REMOVE3args args; 2838 REMOVE3res res; 2839 vnode_t *vp; 2840 char *tmpname; 2841 int douprintf; 2842 rnode_t *rp; 2843 rnode_t *drp; 2844 hrtime_t t; 2845 2846 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2847 return (EPERM); 2848 drp = VTOR(dvp); 2849 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2850 return (EINTR); 2851 2852 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2853 if (error) { 2854 nfs_rw_exit(&drp->r_rwlock); 2855 return (error); 2856 } 2857 2858 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2859 VN_RELE(vp); 2860 nfs_rw_exit(&drp->r_rwlock); 2861 return (EPERM); 2862 } 2863 2864 /* 2865 * First just remove the entry from the name cache, as it 2866 * is most likely the only entry for this vp. 2867 */ 2868 dnlc_remove(dvp, nm); 2869 2870 /* 2871 * If the file has a v_count > 1 then there may be more than one 2872 * entry in the name cache due multiple links or an open file, 2873 * but we don't have the real reference count so flush all 2874 * possible entries. 2875 */ 2876 if (vp->v_count > 1) 2877 dnlc_purge_vp(vp); 2878 2879 /* 2880 * Now we have the real reference count on the vnode 2881 */ 2882 rp = VTOR(vp); 2883 mutex_enter(&rp->r_statelock); 2884 if (vp->v_count > 1 && 2885 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2886 mutex_exit(&rp->r_statelock); 2887 tmpname = newname(); 2888 error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct); 2889 if (error) 2890 kmem_free(tmpname, MAXNAMELEN); 2891 else { 2892 mutex_enter(&rp->r_statelock); 2893 if (rp->r_unldvp == NULL) { 2894 VN_HOLD(dvp); 2895 rp->r_unldvp = dvp; 2896 if (rp->r_unlcred != NULL) 2897 crfree(rp->r_unlcred); 2898 crhold(cr); 2899 rp->r_unlcred = cr; 2900 rp->r_unlname = tmpname; 2901 } else { 2902 kmem_free(rp->r_unlname, MAXNAMELEN); 2903 rp->r_unlname = tmpname; 2904 } 2905 mutex_exit(&rp->r_statelock); 2906 } 2907 } else { 2908 mutex_exit(&rp->r_statelock); 2909 /* 2910 * We need to flush any dirty pages which happen to 2911 * be hanging around before removing the file. This 2912 * shouldn't happen very often and mostly on file 2913 * systems mounted "nocto". 2914 */ 2915 if (vn_has_cached_data(vp) && 2916 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2917 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2918 if (error && (error == ENOSPC || error == EDQUOT)) { 2919 mutex_enter(&rp->r_statelock); 2920 if (!rp->r_error) 2921 rp->r_error = error; 2922 mutex_exit(&rp->r_statelock); 2923 } 2924 } 2925 2926 setdiropargs3(&args.object, nm, dvp); 2927 2928 douprintf = 1; 2929 2930 t = gethrtime(); 2931 2932 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE, 2933 xdr_diropargs3, (caddr_t)&args, 2934 xdr_REMOVE3res, (caddr_t)&res, cr, 2935 &douprintf, &res.status, 0, NULL); 2936 2937 /* 2938 * The xattr dir may be gone after last attr is removed, 2939 * so flush it from dnlc. 2940 */ 2941 if (dvp->v_flag & V_XATTRDIR) 2942 dnlc_purge_vp(dvp); 2943 2944 PURGE_ATTRCACHE(vp); 2945 2946 if (error) { 2947 PURGE_ATTRCACHE(dvp); 2948 } else { 2949 error = geterrno3(res.status); 2950 if (!error) { 2951 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, 2952 cr); 2953 if (HAVE_RDDIR_CACHE(drp)) 2954 nfs_purge_rddir_cache(dvp); 2955 } else { 2956 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, 2957 t, cr); 2958 PURGE_STALE_FH(error, dvp, cr); 2959 } 2960 } 2961 } 2962 2963 if (error == 0) { 2964 vnevent_remove(vp, dvp, nm, ct); 2965 } 2966 VN_RELE(vp); 2967 2968 nfs_rw_exit(&drp->r_rwlock); 2969 2970 return (error); 2971 } 2972 2973 /* ARGSUSED */ 2974 static int 2975 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2976 caller_context_t *ct, int flags) 2977 { 2978 int error; 2979 LINK3args args; 2980 LINK3res res; 2981 vnode_t *realvp; 2982 int douprintf; 2983 mntinfo_t *mi; 2984 rnode_t *tdrp; 2985 hrtime_t t; 2986 2987 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2988 return (EPERM); 2989 if (VOP_REALVP(svp, &realvp, ct) == 0) 2990 svp = realvp; 2991 2992 mi = VTOMI(svp); 2993 2994 if (!(mi->mi_flags & MI_LINK)) 2995 return (EOPNOTSUPP); 2996 2997 args.file = *VTOFH3(svp); 2998 setdiropargs3(&args.link, tnm, tdvp); 2999 3000 tdrp = VTOR(tdvp); 3001 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 3002 return (EINTR); 3003 3004 dnlc_remove(tdvp, tnm); 3005 3006 douprintf = 1; 3007 3008 t = gethrtime(); 3009 3010 error = rfs3call(mi, NFSPROC3_LINK, 3011 xdr_LINK3args, (caddr_t)&args, 3012 xdr_LINK3res, (caddr_t)&res, cr, 3013 &douprintf, &res.status, 0, NULL); 3014 3015 if (error) { 3016 PURGE_ATTRCACHE(tdvp); 3017 PURGE_ATTRCACHE(svp); 3018 nfs_rw_exit(&tdrp->r_rwlock); 3019 return (error); 3020 } 3021 3022 error = geterrno3(res.status); 3023 3024 if (!error) { 3025 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr); 3026 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr); 3027 if (HAVE_RDDIR_CACHE(tdrp)) 3028 nfs_purge_rddir_cache(tdvp); 3029 dnlc_update(tdvp, tnm, svp); 3030 } else { 3031 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t, 3032 cr); 3033 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr); 3034 if (error == EOPNOTSUPP) { 3035 mutex_enter(&mi->mi_lock); 3036 mi->mi_flags &= ~MI_LINK; 3037 mutex_exit(&mi->mi_lock); 3038 } 3039 } 3040 3041 nfs_rw_exit(&tdrp->r_rwlock); 3042 3043 if (!error) { 3044 /* 3045 * Notify the source file of this link operation. 3046 */ 3047 vnevent_link(svp, ct); 3048 } 3049 return (error); 3050 } 3051 3052 /* ARGSUSED */ 3053 static int 3054 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3055 caller_context_t *ct, int flags) 3056 { 3057 vnode_t *realvp; 3058 3059 if (nfs_zone() != VTOMI(odvp)->mi_zone) 3060 return (EPERM); 3061 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 3062 ndvp = realvp; 3063 3064 return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct)); 3065 } 3066 3067 /* 3068 * nfs3rename does the real work of renaming in NFS Version 3. 3069 */ 3070 static int 3071 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3072 caller_context_t *ct) 3073 { 3074 int error; 3075 RENAME3args args; 3076 RENAME3res res; 3077 int douprintf; 3078 vnode_t *nvp = NULL; 3079 vnode_t *ovp = NULL; 3080 char *tmpname; 3081 rnode_t *rp; 3082 rnode_t *odrp; 3083 rnode_t *ndrp; 3084 hrtime_t t; 3085 3086 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 3087 3088 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 3089 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 3090 return (EINVAL); 3091 3092 odrp = VTOR(odvp); 3093 ndrp = VTOR(ndvp); 3094 if ((intptr_t)odrp < (intptr_t)ndrp) { 3095 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 3096 return (EINTR); 3097 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 3098 nfs_rw_exit(&odrp->r_rwlock); 3099 return (EINTR); 3100 } 3101 } else { 3102 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 3103 return (EINTR); 3104 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 3105 nfs_rw_exit(&ndrp->r_rwlock); 3106 return (EINTR); 3107 } 3108 } 3109 3110 /* 3111 * Lookup the target file. If it exists, it needs to be 3112 * checked to see whether it is a mount point and whether 3113 * it is active (open). 3114 */ 3115 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 3116 if (!error) { 3117 /* 3118 * If this file has been mounted on, then just 3119 * return busy because renaming to it would remove 3120 * the mounted file system from the name space. 3121 */ 3122 if (vn_mountedvfs(nvp) != NULL) { 3123 VN_RELE(nvp); 3124 nfs_rw_exit(&odrp->r_rwlock); 3125 nfs_rw_exit(&ndrp->r_rwlock); 3126 return (EBUSY); 3127 } 3128 3129 /* 3130 * Purge the name cache of all references to this vnode 3131 * so that we can check the reference count to infer 3132 * whether it is active or not. 3133 */ 3134 /* 3135 * First just remove the entry from the name cache, as it 3136 * is most likely the only entry for this vp. 3137 */ 3138 dnlc_remove(ndvp, nnm); 3139 /* 3140 * If the file has a v_count > 1 then there may be more 3141 * than one entry in the name cache due multiple links 3142 * or an open file, but we don't have the real reference 3143 * count so flush all possible entries. 3144 */ 3145 if (nvp->v_count > 1) 3146 dnlc_purge_vp(nvp); 3147 3148 /* 3149 * If the vnode is active and is not a directory, 3150 * arrange to rename it to a 3151 * temporary file so that it will continue to be 3152 * accessible. This implements the "unlink-open-file" 3153 * semantics for the target of a rename operation. 3154 * Before doing this though, make sure that the 3155 * source and target files are not already the same. 3156 */ 3157 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 3158 /* 3159 * Lookup the source name. 3160 */ 3161 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, 3162 cr, 0); 3163 3164 /* 3165 * The source name *should* already exist. 3166 */ 3167 if (error) { 3168 VN_RELE(nvp); 3169 nfs_rw_exit(&odrp->r_rwlock); 3170 nfs_rw_exit(&ndrp->r_rwlock); 3171 return (error); 3172 } 3173 3174 /* 3175 * Compare the two vnodes. If they are the same, 3176 * just release all held vnodes and return success. 3177 */ 3178 if (ovp == nvp) { 3179 VN_RELE(ovp); 3180 VN_RELE(nvp); 3181 nfs_rw_exit(&odrp->r_rwlock); 3182 nfs_rw_exit(&ndrp->r_rwlock); 3183 return (0); 3184 } 3185 3186 /* 3187 * Can't mix and match directories and non- 3188 * directories in rename operations. We already 3189 * know that the target is not a directory. If 3190 * the source is a directory, return an error. 3191 */ 3192 if (ovp->v_type == VDIR) { 3193 VN_RELE(ovp); 3194 VN_RELE(nvp); 3195 nfs_rw_exit(&odrp->r_rwlock); 3196 nfs_rw_exit(&ndrp->r_rwlock); 3197 return (ENOTDIR); 3198 } 3199 3200 /* 3201 * The target file exists, is not the same as 3202 * the source file, and is active. Link it 3203 * to a temporary filename to avoid having 3204 * the server removing the file completely. 3205 */ 3206 tmpname = newname(); 3207 error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0); 3208 if (error == EOPNOTSUPP) { 3209 error = nfs3_rename(ndvp, nnm, ndvp, tmpname, 3210 cr, NULL, 0); 3211 } 3212 if (error) { 3213 kmem_free(tmpname, MAXNAMELEN); 3214 VN_RELE(ovp); 3215 VN_RELE(nvp); 3216 nfs_rw_exit(&odrp->r_rwlock); 3217 nfs_rw_exit(&ndrp->r_rwlock); 3218 return (error); 3219 } 3220 rp = VTOR(nvp); 3221 mutex_enter(&rp->r_statelock); 3222 if (rp->r_unldvp == NULL) { 3223 VN_HOLD(ndvp); 3224 rp->r_unldvp = ndvp; 3225 if (rp->r_unlcred != NULL) 3226 crfree(rp->r_unlcred); 3227 crhold(cr); 3228 rp->r_unlcred = cr; 3229 rp->r_unlname = tmpname; 3230 } else { 3231 kmem_free(rp->r_unlname, MAXNAMELEN); 3232 rp->r_unlname = tmpname; 3233 } 3234 mutex_exit(&rp->r_statelock); 3235 } 3236 } 3237 3238 if (ovp == NULL) { 3239 /* 3240 * When renaming directories to be a subdirectory of a 3241 * different parent, the dnlc entry for ".." will no 3242 * longer be valid, so it must be removed. 3243 * 3244 * We do a lookup here to determine whether we are renaming 3245 * a directory and we need to check if we are renaming 3246 * an unlinked file. This might have already been done 3247 * in previous code, so we check ovp == NULL to avoid 3248 * doing it twice. 3249 */ 3250 3251 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 3252 /* 3253 * The source name *should* already exist. 3254 */ 3255 if (error) { 3256 nfs_rw_exit(&odrp->r_rwlock); 3257 nfs_rw_exit(&ndrp->r_rwlock); 3258 if (nvp) { 3259 VN_RELE(nvp); 3260 } 3261 return (error); 3262 } 3263 ASSERT(ovp != NULL); 3264 } 3265 3266 dnlc_remove(odvp, onm); 3267 dnlc_remove(ndvp, nnm); 3268 3269 setdiropargs3(&args.from, onm, odvp); 3270 setdiropargs3(&args.to, nnm, ndvp); 3271 3272 douprintf = 1; 3273 3274 t = gethrtime(); 3275 3276 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME, 3277 xdr_RENAME3args, (caddr_t)&args, 3278 xdr_RENAME3res, (caddr_t)&res, cr, 3279 &douprintf, &res.status, 0, NULL); 3280 3281 if (error) { 3282 PURGE_ATTRCACHE(odvp); 3283 PURGE_ATTRCACHE(ndvp); 3284 VN_RELE(ovp); 3285 nfs_rw_exit(&odrp->r_rwlock); 3286 nfs_rw_exit(&ndrp->r_rwlock); 3287 if (nvp) { 3288 VN_RELE(nvp); 3289 } 3290 return (error); 3291 } 3292 3293 error = geterrno3(res.status); 3294 3295 if (!error) { 3296 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr); 3297 if (HAVE_RDDIR_CACHE(odrp)) 3298 nfs_purge_rddir_cache(odvp); 3299 if (ndvp != odvp) { 3300 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr); 3301 if (HAVE_RDDIR_CACHE(ndrp)) 3302 nfs_purge_rddir_cache(ndvp); 3303 } 3304 /* 3305 * when renaming directories to be a subdirectory of a 3306 * different parent, the dnlc entry for ".." will no 3307 * longer be valid, so it must be removed 3308 */ 3309 rp = VTOR(ovp); 3310 if (ndvp != odvp) { 3311 if (ovp->v_type == VDIR) { 3312 dnlc_remove(ovp, ".."); 3313 if (HAVE_RDDIR_CACHE(rp)) 3314 nfs_purge_rddir_cache(ovp); 3315 } 3316 } 3317 3318 /* 3319 * If we are renaming the unlinked file, update the 3320 * r_unldvp and r_unlname as needed. 3321 */ 3322 mutex_enter(&rp->r_statelock); 3323 if (rp->r_unldvp != NULL) { 3324 if (strcmp(rp->r_unlname, onm) == 0) { 3325 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 3326 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 3327 3328 if (ndvp != rp->r_unldvp) { 3329 VN_RELE(rp->r_unldvp); 3330 rp->r_unldvp = ndvp; 3331 VN_HOLD(ndvp); 3332 } 3333 } 3334 } 3335 mutex_exit(&rp->r_statelock); 3336 } else { 3337 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr); 3338 if (ndvp != odvp) { 3339 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t, 3340 cr); 3341 } 3342 /* 3343 * System V defines rename to return EEXIST, not 3344 * ENOTEMPTY if the target directory is not empty. 3345 * Over the wire, the error is NFSERR_ENOTEMPTY 3346 * which geterrno maps to ENOTEMPTY. 3347 */ 3348 if (error == ENOTEMPTY) 3349 error = EEXIST; 3350 } 3351 3352 if (error == 0) { 3353 if (nvp) 3354 vnevent_rename_dest(nvp, ndvp, nnm, ct); 3355 3356 if (odvp != ndvp) 3357 vnevent_rename_dest_dir(ndvp, ct); 3358 ASSERT(ovp != NULL); 3359 vnevent_rename_src(ovp, odvp, onm, ct); 3360 } 3361 3362 if (nvp) { 3363 VN_RELE(nvp); 3364 } 3365 VN_RELE(ovp); 3366 3367 nfs_rw_exit(&odrp->r_rwlock); 3368 nfs_rw_exit(&ndrp->r_rwlock); 3369 3370 return (error); 3371 } 3372 3373 /* ARGSUSED */ 3374 static int 3375 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 3376 caller_context_t *ct, int flags, vsecattr_t *vsecp) 3377 { 3378 int error; 3379 MKDIR3args args; 3380 MKDIR3res res; 3381 int douprintf; 3382 struct vattr vattr; 3383 vnode_t *vp; 3384 rnode_t *drp; 3385 hrtime_t t; 3386 3387 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3388 return (EPERM); 3389 setdiropargs3(&args.where, nm, dvp); 3390 3391 /* 3392 * Decide what the group-id and set-gid bit of the created directory 3393 * should be. May have to do a setattr to get the gid right. 3394 */ 3395 error = setdirgid(dvp, &va->va_gid, cr); 3396 if (error) 3397 return (error); 3398 error = setdirmode(dvp, &va->va_mode, cr); 3399 if (error) 3400 return (error); 3401 va->va_mask |= AT_MODE|AT_GID; 3402 3403 error = vattr_to_sattr3(va, &args.attributes); 3404 if (error) { 3405 /* req time field(s) overflow - return immediately */ 3406 return (error); 3407 } 3408 3409 drp = VTOR(dvp); 3410 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3411 return (EINTR); 3412 3413 dnlc_remove(dvp, nm); 3414 3415 douprintf = 1; 3416 3417 t = gethrtime(); 3418 3419 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR, 3420 xdr_MKDIR3args, (caddr_t)&args, 3421 xdr_MKDIR3res, (caddr_t)&res, cr, 3422 &douprintf, &res.status, 0, NULL); 3423 3424 if (error) { 3425 PURGE_ATTRCACHE(dvp); 3426 nfs_rw_exit(&drp->r_rwlock); 3427 return (error); 3428 } 3429 3430 error = geterrno3(res.status); 3431 if (!error) { 3432 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3433 if (HAVE_RDDIR_CACHE(drp)) 3434 nfs_purge_rddir_cache(dvp); 3435 3436 if (!res.resok.obj.handle_follows) { 3437 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3438 if (error) { 3439 nfs_rw_exit(&drp->r_rwlock); 3440 return (error); 3441 } 3442 } else { 3443 if (res.resok.obj_attributes.attributes) { 3444 vp = makenfs3node(&res.resok.obj.handle, 3445 &res.resok.obj_attributes.attr, 3446 dvp->v_vfsp, t, cr, NULL, NULL); 3447 } else { 3448 vp = makenfs3node(&res.resok.obj.handle, NULL, 3449 dvp->v_vfsp, t, cr, NULL, NULL); 3450 if (vp->v_type == VNON) { 3451 vattr.va_mask = AT_TYPE; 3452 error = nfs3getattr(vp, &vattr, cr); 3453 if (error) { 3454 VN_RELE(vp); 3455 nfs_rw_exit(&drp->r_rwlock); 3456 return (error); 3457 } 3458 vp->v_type = vattr.va_type; 3459 } 3460 } 3461 dnlc_update(dvp, nm, vp); 3462 } 3463 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 3464 va->va_mask = AT_GID; 3465 (void) nfs3setattr(vp, va, 0, cr); 3466 } 3467 *vpp = vp; 3468 } else { 3469 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3470 PURGE_STALE_FH(error, dvp, cr); 3471 } 3472 3473 nfs_rw_exit(&drp->r_rwlock); 3474 3475 return (error); 3476 } 3477 3478 /* ARGSUSED */ 3479 static int 3480 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 3481 caller_context_t *ct, int flags) 3482 { 3483 int error; 3484 RMDIR3args args; 3485 RMDIR3res res; 3486 vnode_t *vp; 3487 int douprintf; 3488 rnode_t *drp; 3489 hrtime_t t; 3490 3491 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3492 return (EPERM); 3493 drp = VTOR(dvp); 3494 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3495 return (EINTR); 3496 3497 /* 3498 * Attempt to prevent a rmdir(".") from succeeding. 3499 */ 3500 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3501 if (error) { 3502 nfs_rw_exit(&drp->r_rwlock); 3503 return (error); 3504 } 3505 3506 if (vp == cdir) { 3507 VN_RELE(vp); 3508 nfs_rw_exit(&drp->r_rwlock); 3509 return (EINVAL); 3510 } 3511 3512 setdiropargs3(&args.object, nm, dvp); 3513 3514 /* 3515 * First just remove the entry from the name cache, as it 3516 * is most likely an entry for this vp. 3517 */ 3518 dnlc_remove(dvp, nm); 3519 3520 /* 3521 * If there vnode reference count is greater than one, then 3522 * there may be additional references in the DNLC which will 3523 * need to be purged. First, trying removing the entry for 3524 * the parent directory and see if that removes the additional 3525 * reference(s). If that doesn't do it, then use dnlc_purge_vp 3526 * to completely remove any references to the directory which 3527 * might still exist in the DNLC. 3528 */ 3529 if (vp->v_count > 1) { 3530 dnlc_remove(vp, ".."); 3531 if (vp->v_count > 1) 3532 dnlc_purge_vp(vp); 3533 } 3534 3535 douprintf = 1; 3536 3537 t = gethrtime(); 3538 3539 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR, 3540 xdr_diropargs3, (caddr_t)&args, 3541 xdr_RMDIR3res, (caddr_t)&res, cr, 3542 &douprintf, &res.status, 0, NULL); 3543 3544 PURGE_ATTRCACHE(vp); 3545 3546 if (error) { 3547 PURGE_ATTRCACHE(dvp); 3548 VN_RELE(vp); 3549 nfs_rw_exit(&drp->r_rwlock); 3550 return (error); 3551 } 3552 3553 error = geterrno3(res.status); 3554 if (!error) { 3555 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3556 if (HAVE_RDDIR_CACHE(drp)) 3557 nfs_purge_rddir_cache(dvp); 3558 if (HAVE_RDDIR_CACHE(VTOR(vp))) 3559 nfs_purge_rddir_cache(vp); 3560 } else { 3561 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3562 PURGE_STALE_FH(error, dvp, cr); 3563 /* 3564 * System V defines rmdir to return EEXIST, not 3565 * ENOTEMPTY if the directory is not empty. Over 3566 * the wire, the error is NFSERR_ENOTEMPTY which 3567 * geterrno maps to ENOTEMPTY. 3568 */ 3569 if (error == ENOTEMPTY) 3570 error = EEXIST; 3571 } 3572 3573 if (error == 0) { 3574 vnevent_rmdir(vp, dvp, nm, ct); 3575 } 3576 VN_RELE(vp); 3577 3578 nfs_rw_exit(&drp->r_rwlock); 3579 3580 return (error); 3581 } 3582 3583 /* ARGSUSED */ 3584 static int 3585 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 3586 caller_context_t *ct, int flags) 3587 { 3588 int error; 3589 SYMLINK3args args; 3590 SYMLINK3res res; 3591 int douprintf; 3592 mntinfo_t *mi; 3593 vnode_t *vp; 3594 rnode_t *rp; 3595 char *contents; 3596 rnode_t *drp; 3597 hrtime_t t; 3598 3599 mi = VTOMI(dvp); 3600 3601 if (nfs_zone() != mi->mi_zone) 3602 return (EPERM); 3603 if (!(mi->mi_flags & MI_SYMLINK)) 3604 return (EOPNOTSUPP); 3605 3606 setdiropargs3(&args.where, lnm, dvp); 3607 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes); 3608 if (error) { 3609 /* req time field(s) overflow - return immediately */ 3610 return (error); 3611 } 3612 args.symlink.symlink_data = tnm; 3613 3614 drp = VTOR(dvp); 3615 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3616 return (EINTR); 3617 3618 dnlc_remove(dvp, lnm); 3619 3620 douprintf = 1; 3621 3622 t = gethrtime(); 3623 3624 error = rfs3call(mi, NFSPROC3_SYMLINK, 3625 xdr_SYMLINK3args, (caddr_t)&args, 3626 xdr_SYMLINK3res, (caddr_t)&res, cr, 3627 &douprintf, &res.status, 0, NULL); 3628 3629 if (error) { 3630 PURGE_ATTRCACHE(dvp); 3631 nfs_rw_exit(&drp->r_rwlock); 3632 return (error); 3633 } 3634 3635 error = geterrno3(res.status); 3636 if (!error) { 3637 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3638 if (HAVE_RDDIR_CACHE(drp)) 3639 nfs_purge_rddir_cache(dvp); 3640 3641 if (res.resok.obj.handle_follows) { 3642 if (res.resok.obj_attributes.attributes) { 3643 vp = makenfs3node(&res.resok.obj.handle, 3644 &res.resok.obj_attributes.attr, 3645 dvp->v_vfsp, t, cr, NULL, NULL); 3646 } else { 3647 vp = makenfs3node(&res.resok.obj.handle, NULL, 3648 dvp->v_vfsp, t, cr, NULL, NULL); 3649 vp->v_type = VLNK; 3650 vp->v_rdev = 0; 3651 } 3652 dnlc_update(dvp, lnm, vp); 3653 rp = VTOR(vp); 3654 if (nfs3_do_symlink_cache && 3655 rp->r_symlink.contents == NULL) { 3656 3657 contents = kmem_alloc(MAXPATHLEN, 3658 KM_NOSLEEP); 3659 3660 if (contents != NULL) { 3661 mutex_enter(&rp->r_statelock); 3662 if (rp->r_symlink.contents == NULL) { 3663 rp->r_symlink.len = strlen(tnm); 3664 bcopy(tnm, contents, 3665 rp->r_symlink.len); 3666 rp->r_symlink.contents = 3667 contents; 3668 rp->r_symlink.size = MAXPATHLEN; 3669 mutex_exit(&rp->r_statelock); 3670 } else { 3671 mutex_exit(&rp->r_statelock); 3672 kmem_free((void *)contents, 3673 MAXPATHLEN); 3674 } 3675 } 3676 } 3677 VN_RELE(vp); 3678 } 3679 } else { 3680 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3681 PURGE_STALE_FH(error, dvp, cr); 3682 if (error == EOPNOTSUPP) { 3683 mutex_enter(&mi->mi_lock); 3684 mi->mi_flags &= ~MI_SYMLINK; 3685 mutex_exit(&mi->mi_lock); 3686 } 3687 } 3688 3689 nfs_rw_exit(&drp->r_rwlock); 3690 3691 return (error); 3692 } 3693 3694 #ifdef DEBUG 3695 static int nfs3_readdir_cache_hits = 0; 3696 static int nfs3_readdir_cache_shorts = 0; 3697 static int nfs3_readdir_cache_waits = 0; 3698 static int nfs3_readdir_cache_misses = 0; 3699 static int nfs3_readdir_readahead = 0; 3700 #endif 3701 3702 static int nfs3_shrinkreaddir = 0; 3703 3704 /* 3705 * Read directory entries. 3706 * There are some weird things to look out for here. The uio_loffset 3707 * field is either 0 or it is the offset returned from a previous 3708 * readdir. It is an opaque value used by the server to find the 3709 * correct directory block to read. The count field is the number 3710 * of blocks to read on the server. This is advisory only, the server 3711 * may return only one block's worth of entries. Entries may be compressed 3712 * on the server. 3713 */ 3714 /* ARGSUSED */ 3715 static int 3716 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 3717 caller_context_t *ct, int flags) 3718 { 3719 int error; 3720 size_t count; 3721 rnode_t *rp; 3722 rddir_cache *rdc; 3723 rddir_cache *nrdc; 3724 rddir_cache *rrdc; 3725 #ifdef DEBUG 3726 int missed; 3727 #endif 3728 int doreadahead; 3729 rddir_cache srdc; 3730 avl_index_t where; 3731 3732 if (nfs_zone() != VTOMI(vp)->mi_zone) 3733 return (EIO); 3734 rp = VTOR(vp); 3735 3736 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 3737 3738 /* 3739 * Make sure that the directory cache is valid. 3740 */ 3741 if (HAVE_RDDIR_CACHE(rp)) { 3742 if (nfs_disable_rddir_cache) { 3743 /* 3744 * Setting nfs_disable_rddir_cache in /etc/system 3745 * allows interoperability with servers that do not 3746 * properly update the attributes of directories. 3747 * Any cached information gets purged before an 3748 * access is made to it. 3749 */ 3750 nfs_purge_rddir_cache(vp); 3751 } else { 3752 error = nfs3_validate_caches(vp, cr); 3753 if (error) 3754 return (error); 3755 } 3756 } 3757 3758 /* 3759 * It is possible that some servers may not be able to correctly 3760 * handle a large READDIR or READDIRPLUS request due to bugs in 3761 * their implementation. In order to continue to interoperate 3762 * with them, this workaround is provided to limit the maximum 3763 * size of a READDIRPLUS request to 1024. In any case, the request 3764 * size is limited to MAXBSIZE. 3765 */ 3766 count = MIN(uiop->uio_iov->iov_len, 3767 nfs3_shrinkreaddir ? 1024 : MAXBSIZE); 3768 3769 nrdc = NULL; 3770 #ifdef DEBUG 3771 missed = 0; 3772 #endif 3773 top: 3774 /* 3775 * Short circuit last readdir which always returns 0 bytes. 3776 * This can be done after the directory has been read through 3777 * completely at least once. This will set r_direof which 3778 * can be used to find the value of the last cookie. 3779 */ 3780 mutex_enter(&rp->r_statelock); 3781 if (rp->r_direof != NULL && 3782 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) { 3783 mutex_exit(&rp->r_statelock); 3784 #ifdef DEBUG 3785 nfs3_readdir_cache_shorts++; 3786 #endif 3787 if (eofp) 3788 *eofp = 1; 3789 if (nrdc != NULL) 3790 rddir_cache_rele(nrdc); 3791 return (0); 3792 } 3793 /* 3794 * Look for a cache entry. Cache entries are identified 3795 * by the NFS cookie value and the byte count requested. 3796 */ 3797 srdc.nfs3_cookie = uiop->uio_loffset; 3798 srdc.buflen = count; 3799 rdc = avl_find(&rp->r_dir, &srdc, &where); 3800 if (rdc != NULL) { 3801 rddir_cache_hold(rdc); 3802 /* 3803 * If the cache entry is in the process of being 3804 * filled in, wait until this completes. The 3805 * RDDIRWAIT bit is set to indicate that someone 3806 * is waiting and then the thread currently 3807 * filling the entry is done, it should do a 3808 * cv_broadcast to wakeup all of the threads 3809 * waiting for it to finish. 3810 */ 3811 if (rdc->flags & RDDIR) { 3812 nfs_rw_exit(&rp->r_rwlock); 3813 rdc->flags |= RDDIRWAIT; 3814 #ifdef DEBUG 3815 nfs3_readdir_cache_waits++; 3816 #endif 3817 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3818 /* 3819 * We got interrupted, probably 3820 * the user typed ^C or an alarm 3821 * fired. We free the new entry 3822 * if we allocated one. 3823 */ 3824 mutex_exit(&rp->r_statelock); 3825 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3826 RW_READER, FALSE); 3827 rddir_cache_rele(rdc); 3828 if (nrdc != NULL) 3829 rddir_cache_rele(nrdc); 3830 return (EINTR); 3831 } 3832 mutex_exit(&rp->r_statelock); 3833 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3834 RW_READER, FALSE); 3835 rddir_cache_rele(rdc); 3836 goto top; 3837 } 3838 /* 3839 * Check to see if a readdir is required to 3840 * fill the entry. If so, mark this entry 3841 * as being filled, remove our reference, 3842 * and branch to the code to fill the entry. 3843 */ 3844 if (rdc->flags & RDDIRREQ) { 3845 rdc->flags &= ~RDDIRREQ; 3846 rdc->flags |= RDDIR; 3847 if (nrdc != NULL) 3848 rddir_cache_rele(nrdc); 3849 nrdc = rdc; 3850 mutex_exit(&rp->r_statelock); 3851 goto bottom; 3852 } 3853 #ifdef DEBUG 3854 if (!missed) 3855 nfs3_readdir_cache_hits++; 3856 #endif 3857 /* 3858 * If an error occurred while attempting 3859 * to fill the cache entry, just return it. 3860 */ 3861 if (rdc->error) { 3862 error = rdc->error; 3863 mutex_exit(&rp->r_statelock); 3864 rddir_cache_rele(rdc); 3865 if (nrdc != NULL) 3866 rddir_cache_rele(nrdc); 3867 return (error); 3868 } 3869 3870 /* 3871 * The cache entry is complete and good, 3872 * copyout the dirent structs to the calling 3873 * thread. 3874 */ 3875 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3876 3877 /* 3878 * If no error occurred during the copyout, 3879 * update the offset in the uio struct to 3880 * contain the value of the next cookie 3881 * and set the eof value appropriately. 3882 */ 3883 if (!error) { 3884 uiop->uio_loffset = rdc->nfs3_ncookie; 3885 if (eofp) 3886 *eofp = rdc->eof; 3887 } 3888 3889 /* 3890 * Decide whether to do readahead. 3891 * 3892 * Don't if have already read to the end of 3893 * directory. There is nothing more to read. 3894 * 3895 * Don't if the application is not doing 3896 * lookups in the directory. The readahead 3897 * is only effective if the application can 3898 * be doing work while an async thread is 3899 * handling the over the wire request. 3900 */ 3901 if (rdc->eof) { 3902 rp->r_direof = rdc; 3903 doreadahead = FALSE; 3904 } else if (!(rp->r_flags & RLOOKUP)) 3905 doreadahead = FALSE; 3906 else 3907 doreadahead = TRUE; 3908 3909 if (!doreadahead) { 3910 mutex_exit(&rp->r_statelock); 3911 rddir_cache_rele(rdc); 3912 if (nrdc != NULL) 3913 rddir_cache_rele(nrdc); 3914 return (error); 3915 } 3916 3917 /* 3918 * Check to see whether we found an entry 3919 * for the readahead. If so, we don't need 3920 * to do anything further, so free the new 3921 * entry if one was allocated. Otherwise, 3922 * allocate a new entry, add it to the cache, 3923 * and then initiate an asynchronous readdir 3924 * operation to fill it. 3925 */ 3926 srdc.nfs3_cookie = rdc->nfs3_ncookie; 3927 srdc.buflen = count; 3928 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3929 if (rrdc != NULL) { 3930 if (nrdc != NULL) 3931 rddir_cache_rele(nrdc); 3932 } else { 3933 if (nrdc != NULL) 3934 rrdc = nrdc; 3935 else { 3936 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3937 } 3938 if (rrdc != NULL) { 3939 rrdc->nfs3_cookie = rdc->nfs3_ncookie; 3940 rrdc->buflen = count; 3941 avl_insert(&rp->r_dir, rrdc, where); 3942 rddir_cache_hold(rrdc); 3943 mutex_exit(&rp->r_statelock); 3944 rddir_cache_rele(rdc); 3945 #ifdef DEBUG 3946 nfs3_readdir_readahead++; 3947 #endif 3948 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir); 3949 return (error); 3950 } 3951 } 3952 3953 mutex_exit(&rp->r_statelock); 3954 rddir_cache_rele(rdc); 3955 return (error); 3956 } 3957 3958 /* 3959 * Didn't find an entry in the cache. Construct a new empty 3960 * entry and link it into the cache. Other processes attempting 3961 * to access this entry will need to wait until it is filled in. 3962 * 3963 * Since kmem_alloc may block, another pass through the cache 3964 * will need to be taken to make sure that another process 3965 * hasn't already added an entry to the cache for this request. 3966 */ 3967 if (nrdc == NULL) { 3968 mutex_exit(&rp->r_statelock); 3969 nrdc = rddir_cache_alloc(KM_SLEEP); 3970 nrdc->nfs3_cookie = uiop->uio_loffset; 3971 nrdc->buflen = count; 3972 goto top; 3973 } 3974 3975 /* 3976 * Add this entry to the cache. 3977 */ 3978 avl_insert(&rp->r_dir, nrdc, where); 3979 rddir_cache_hold(nrdc); 3980 mutex_exit(&rp->r_statelock); 3981 3982 bottom: 3983 #ifdef DEBUG 3984 missed = 1; 3985 nfs3_readdir_cache_misses++; 3986 #endif 3987 /* 3988 * Do the readdir. This routine decides whether to use 3989 * READDIR or READDIRPLUS. 3990 */ 3991 error = do_nfs3readdir(vp, nrdc, cr); 3992 3993 /* 3994 * If this operation failed, just return the error which occurred. 3995 */ 3996 if (error != 0) 3997 return (error); 3998 3999 /* 4000 * Since the RPC operation will have taken sometime and blocked 4001 * this process, another pass through the cache will need to be 4002 * taken to find the correct cache entry. It is possible that 4003 * the correct cache entry will not be there (although one was 4004 * added) because the directory changed during the RPC operation 4005 * and the readdir cache was flushed. In this case, just start 4006 * over. It is hoped that this will not happen too often... :-) 4007 */ 4008 nrdc = NULL; 4009 goto top; 4010 /* NOTREACHED */ 4011 } 4012 4013 static int 4014 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4015 { 4016 int error; 4017 rnode_t *rp; 4018 mntinfo_t *mi; 4019 4020 rp = VTOR(vp); 4021 mi = VTOMI(vp); 4022 ASSERT(nfs_zone() == mi->mi_zone); 4023 /* 4024 * Issue the proper request. 4025 * 4026 * If the server does not support READDIRPLUS, then use READDIR. 4027 * 4028 * Otherwise -- 4029 * Issue a READDIRPLUS if reading to fill an empty cache or if 4030 * an application has performed a lookup in the directory which 4031 * required an over the wire lookup. The use of READDIRPLUS 4032 * will help to (re)populate the DNLC. 4033 */ 4034 if (!(mi->mi_flags & MI_READDIRONLY) && 4035 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) { 4036 if (rp->r_flags & RREADDIRPLUS) { 4037 mutex_enter(&rp->r_statelock); 4038 rp->r_flags &= ~RREADDIRPLUS; 4039 mutex_exit(&rp->r_statelock); 4040 } 4041 nfs3readdirplus(vp, rdc, cr); 4042 if (rdc->error == EOPNOTSUPP) 4043 nfs3readdir(vp, rdc, cr); 4044 } else 4045 nfs3readdir(vp, rdc, cr); 4046 4047 mutex_enter(&rp->r_statelock); 4048 rdc->flags &= ~RDDIR; 4049 if (rdc->flags & RDDIRWAIT) { 4050 rdc->flags &= ~RDDIRWAIT; 4051 cv_broadcast(&rdc->cv); 4052 } 4053 error = rdc->error; 4054 if (error) 4055 rdc->flags |= RDDIRREQ; 4056 mutex_exit(&rp->r_statelock); 4057 4058 rddir_cache_rele(rdc); 4059 4060 return (error); 4061 } 4062 4063 static void 4064 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4065 { 4066 int error; 4067 READDIR3args args; 4068 READDIR3vres res; 4069 vattr_t dva; 4070 rnode_t *rp; 4071 int douprintf; 4072 failinfo_t fi, *fip = NULL; 4073 mntinfo_t *mi; 4074 hrtime_t t; 4075 4076 rp = VTOR(vp); 4077 mi = VTOMI(vp); 4078 ASSERT(nfs_zone() == mi->mi_zone); 4079 4080 args.dir = *RTOFH3(rp); 4081 args.cookie = (cookie3)rdc->nfs3_cookie; 4082 args.cookieverf = rp->r_cookieverf; 4083 args.count = rdc->buflen; 4084 4085 /* 4086 * NFS client failover support 4087 * suppress failover unless we have a zero cookie 4088 */ 4089 if (args.cookie == (cookie3) 0) { 4090 fi.vp = vp; 4091 fi.fhp = (caddr_t)&args.dir; 4092 fi.copyproc = nfs3copyfh; 4093 fi.lookupproc = nfs3lookup; 4094 fi.xattrdirproc = acl_getxattrdir3; 4095 fip = &fi; 4096 } 4097 4098 #ifdef DEBUG 4099 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4100 #else 4101 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4102 #endif 4103 4104 res.entries = (dirent64_t *)rdc->entries; 4105 res.entries_size = rdc->buflen; 4106 res.dir_attributes.fres.vap = &dva; 4107 res.dir_attributes.fres.vp = vp; 4108 res.loff = rdc->nfs3_cookie; 4109 4110 douprintf = 1; 4111 4112 if (mi->mi_io_kstats) { 4113 mutex_enter(&mi->mi_lock); 4114 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4115 mutex_exit(&mi->mi_lock); 4116 } 4117 4118 t = gethrtime(); 4119 4120 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR, 4121 xdr_READDIR3args, (caddr_t)&args, 4122 xdr_READDIR3vres, (caddr_t)&res, cr, 4123 &douprintf, &res.status, 0, fip); 4124 4125 if (mi->mi_io_kstats) { 4126 mutex_enter(&mi->mi_lock); 4127 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4128 mutex_exit(&mi->mi_lock); 4129 } 4130 4131 if (error) 4132 goto err; 4133 4134 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr); 4135 4136 error = geterrno3(res.status); 4137 if (error) { 4138 PURGE_STALE_FH(error, vp, cr); 4139 goto err; 4140 } 4141 4142 if (mi->mi_io_kstats) { 4143 mutex_enter(&mi->mi_lock); 4144 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4145 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4146 mutex_exit(&mi->mi_lock); 4147 } 4148 4149 rdc->nfs3_ncookie = res.loff; 4150 rp->r_cookieverf = res.cookieverf; 4151 rdc->eof = res.eof ? 1 : 0; 4152 rdc->entlen = res.size; 4153 ASSERT(rdc->entlen <= rdc->buflen); 4154 rdc->error = 0; 4155 return; 4156 4157 err: 4158 kmem_free(rdc->entries, rdc->buflen); 4159 rdc->entries = NULL; 4160 rdc->error = error; 4161 } 4162 4163 /* 4164 * Read directory entries. 4165 * There are some weird things to look out for here. The uio_loffset 4166 * field is either 0 or it is the offset returned from a previous 4167 * readdir. It is an opaque value used by the server to find the 4168 * correct directory block to read. The count field is the number 4169 * of blocks to read on the server. This is advisory only, the server 4170 * may return only one block's worth of entries. Entries may be compressed 4171 * on the server. 4172 */ 4173 static void 4174 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4175 { 4176 int error; 4177 READDIRPLUS3args args; 4178 READDIRPLUS3vres res; 4179 vattr_t dva; 4180 rnode_t *rp; 4181 mntinfo_t *mi; 4182 int douprintf; 4183 failinfo_t fi, *fip = NULL; 4184 4185 rp = VTOR(vp); 4186 mi = VTOMI(vp); 4187 ASSERT(nfs_zone() == mi->mi_zone); 4188 4189 args.dir = *RTOFH3(rp); 4190 args.cookie = (cookie3)rdc->nfs3_cookie; 4191 args.cookieverf = rp->r_cookieverf; 4192 args.dircount = rdc->buflen; 4193 args.maxcount = mi->mi_tsize; 4194 4195 /* 4196 * NFS client failover support 4197 * suppress failover unless we have a zero cookie 4198 */ 4199 if (args.cookie == (cookie3)0) { 4200 fi.vp = vp; 4201 fi.fhp = (caddr_t)&args.dir; 4202 fi.copyproc = nfs3copyfh; 4203 fi.lookupproc = nfs3lookup; 4204 fi.xattrdirproc = acl_getxattrdir3; 4205 fip = &fi; 4206 } 4207 4208 #ifdef DEBUG 4209 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4210 #else 4211 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4212 #endif 4213 4214 res.entries = (dirent64_t *)rdc->entries; 4215 res.entries_size = rdc->buflen; 4216 res.dir_attributes.fres.vap = &dva; 4217 res.dir_attributes.fres.vp = vp; 4218 res.loff = rdc->nfs3_cookie; 4219 res.credentials = cr; 4220 4221 douprintf = 1; 4222 4223 if (mi->mi_io_kstats) { 4224 mutex_enter(&mi->mi_lock); 4225 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4226 mutex_exit(&mi->mi_lock); 4227 } 4228 4229 res.time = gethrtime(); 4230 4231 error = rfs3call(mi, NFSPROC3_READDIRPLUS, 4232 xdr_READDIRPLUS3args, (caddr_t)&args, 4233 xdr_READDIRPLUS3vres, (caddr_t)&res, cr, 4234 &douprintf, &res.status, 0, fip); 4235 4236 if (mi->mi_io_kstats) { 4237 mutex_enter(&mi->mi_lock); 4238 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4239 mutex_exit(&mi->mi_lock); 4240 } 4241 4242 if (error) { 4243 goto err; 4244 } 4245 4246 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr); 4247 4248 error = geterrno3(res.status); 4249 if (error) { 4250 PURGE_STALE_FH(error, vp, cr); 4251 if (error == EOPNOTSUPP) { 4252 mutex_enter(&mi->mi_lock); 4253 mi->mi_flags |= MI_READDIRONLY; 4254 mutex_exit(&mi->mi_lock); 4255 } 4256 goto err; 4257 } 4258 4259 if (mi->mi_io_kstats) { 4260 mutex_enter(&mi->mi_lock); 4261 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4262 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4263 mutex_exit(&mi->mi_lock); 4264 } 4265 4266 rdc->nfs3_ncookie = res.loff; 4267 rp->r_cookieverf = res.cookieverf; 4268 rdc->eof = res.eof ? 1 : 0; 4269 rdc->entlen = res.size; 4270 ASSERT(rdc->entlen <= rdc->buflen); 4271 rdc->error = 0; 4272 4273 return; 4274 4275 err: 4276 kmem_free(rdc->entries, rdc->buflen); 4277 rdc->entries = NULL; 4278 rdc->error = error; 4279 } 4280 4281 #ifdef DEBUG 4282 static int nfs3_bio_do_stop = 0; 4283 #endif 4284 4285 static int 4286 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr) 4287 { 4288 rnode_t *rp = VTOR(bp->b_vp); 4289 int count; 4290 int error; 4291 cred_t *cred; 4292 offset_t offset; 4293 4294 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 4295 offset = ldbtob(bp->b_lblkno); 4296 4297 DTRACE_IO1(start, struct buf *, bp); 4298 4299 if (bp->b_flags & B_READ) { 4300 mutex_enter(&rp->r_statelock); 4301 if (rp->r_cred != NULL) { 4302 cred = rp->r_cred; 4303 crhold(cred); 4304 } else { 4305 rp->r_cred = cr; 4306 crhold(cr); 4307 cred = cr; 4308 crhold(cred); 4309 } 4310 mutex_exit(&rp->r_statelock); 4311 read_again: 4312 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr, 4313 offset, bp->b_bcount, &bp->b_resid, cred); 4314 crfree(cred); 4315 if (!error) { 4316 if (bp->b_resid) { 4317 /* 4318 * Didn't get it all because we hit EOF, 4319 * zero all the memory beyond the EOF. 4320 */ 4321 /* bzero(rdaddr + */ 4322 bzero(bp->b_un.b_addr + 4323 bp->b_bcount - bp->b_resid, bp->b_resid); 4324 } 4325 mutex_enter(&rp->r_statelock); 4326 if (bp->b_resid == bp->b_bcount && 4327 offset >= rp->r_size) { 4328 /* 4329 * We didn't read anything at all as we are 4330 * past EOF. Return an error indicator back 4331 * but don't destroy the pages (yet). 4332 */ 4333 error = NFS_EOF; 4334 } 4335 mutex_exit(&rp->r_statelock); 4336 } else if (error == EACCES) { 4337 mutex_enter(&rp->r_statelock); 4338 if (cred != cr) { 4339 if (rp->r_cred != NULL) 4340 crfree(rp->r_cred); 4341 rp->r_cred = cr; 4342 crhold(cr); 4343 cred = cr; 4344 crhold(cred); 4345 mutex_exit(&rp->r_statelock); 4346 goto read_again; 4347 } 4348 mutex_exit(&rp->r_statelock); 4349 } 4350 } else { 4351 if (!(rp->r_flags & RSTALE)) { 4352 mutex_enter(&rp->r_statelock); 4353 if (rp->r_cred != NULL) { 4354 cred = rp->r_cred; 4355 crhold(cred); 4356 } else { 4357 rp->r_cred = cr; 4358 crhold(cr); 4359 cred = cr; 4360 crhold(cred); 4361 } 4362 mutex_exit(&rp->r_statelock); 4363 write_again: 4364 mutex_enter(&rp->r_statelock); 4365 count = MIN(bp->b_bcount, rp->r_size - offset); 4366 mutex_exit(&rp->r_statelock); 4367 if (count < 0) 4368 cmn_err(CE_PANIC, "nfs3_bio: write count < 0"); 4369 #ifdef DEBUG 4370 if (count == 0) { 4371 zcmn_err(getzoneid(), CE_WARN, 4372 "nfs3_bio: zero length write at %lld", 4373 offset); 4374 nfs_printfhandle(&rp->r_fh); 4375 if (nfs3_bio_do_stop) 4376 debug_enter("nfs3_bio"); 4377 } 4378 #endif 4379 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset, 4380 count, cred, stab_comm); 4381 if (error == EACCES) { 4382 mutex_enter(&rp->r_statelock); 4383 if (cred != cr) { 4384 if (rp->r_cred != NULL) 4385 crfree(rp->r_cred); 4386 rp->r_cred = cr; 4387 crhold(cr); 4388 crfree(cred); 4389 cred = cr; 4390 crhold(cred); 4391 mutex_exit(&rp->r_statelock); 4392 goto write_again; 4393 } 4394 mutex_exit(&rp->r_statelock); 4395 } 4396 bp->b_error = error; 4397 if (error && error != EINTR) { 4398 /* 4399 * Don't print EDQUOT errors on the console. 4400 * Don't print asynchronous EACCES errors. 4401 * Don't print EFBIG errors. 4402 * Print all other write errors. 4403 */ 4404 if (error != EDQUOT && error != EFBIG && 4405 (error != EACCES || 4406 !(bp->b_flags & B_ASYNC))) 4407 nfs_write_error(bp->b_vp, error, cred); 4408 /* 4409 * Update r_error and r_flags as appropriate. 4410 * If the error was ESTALE, then mark the 4411 * rnode as not being writeable and save 4412 * the error status. Otherwise, save any 4413 * errors which occur from asynchronous 4414 * page invalidations. Any errors occurring 4415 * from other operations should be saved 4416 * by the caller. 4417 */ 4418 mutex_enter(&rp->r_statelock); 4419 if (error == ESTALE) { 4420 rp->r_flags |= RSTALE; 4421 if (!rp->r_error) 4422 rp->r_error = error; 4423 } else if (!rp->r_error && 4424 (bp->b_flags & 4425 (B_INVAL|B_FORCE|B_ASYNC)) == 4426 (B_INVAL|B_FORCE|B_ASYNC)) { 4427 rp->r_error = error; 4428 } 4429 mutex_exit(&rp->r_statelock); 4430 } 4431 crfree(cred); 4432 } else { 4433 error = rp->r_error; 4434 /* 4435 * A close may have cleared r_error, if so, 4436 * propagate ESTALE error return properly 4437 */ 4438 if (error == 0) 4439 error = ESTALE; 4440 } 4441 } 4442 4443 if (error != 0 && error != NFS_EOF) 4444 bp->b_flags |= B_ERROR; 4445 4446 DTRACE_IO1(done, struct buf *, bp); 4447 4448 return (error); 4449 } 4450 4451 /* ARGSUSED */ 4452 static int 4453 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4454 { 4455 rnode_t *rp; 4456 4457 if (nfs_zone() != VTOMI(vp)->mi_zone) 4458 return (EIO); 4459 rp = VTOR(vp); 4460 4461 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) { 4462 fidp->fid_len = rp->r_fh.fh_len; 4463 return (ENOSPC); 4464 } 4465 fidp->fid_len = rp->r_fh.fh_len; 4466 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len); 4467 return (0); 4468 } 4469 4470 /* ARGSUSED2 */ 4471 static int 4472 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4473 { 4474 rnode_t *rp = VTOR(vp); 4475 4476 if (!write_lock) { 4477 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4478 return (V_WRITELOCK_FALSE); 4479 } 4480 4481 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 4482 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4483 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 4484 return (V_WRITELOCK_FALSE); 4485 nfs_rw_exit(&rp->r_rwlock); 4486 } 4487 4488 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 4489 return (V_WRITELOCK_TRUE); 4490 } 4491 4492 /* ARGSUSED */ 4493 static void 4494 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4495 { 4496 rnode_t *rp = VTOR(vp); 4497 4498 nfs_rw_exit(&rp->r_rwlock); 4499 } 4500 4501 /* ARGSUSED */ 4502 static int 4503 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 4504 { 4505 4506 /* 4507 * Because we stuff the readdir cookie into the offset field 4508 * someone may attempt to do an lseek with the cookie which 4509 * we want to succeed. 4510 */ 4511 if (vp->v_type == VDIR) 4512 return (0); 4513 if (*noffp < 0) 4514 return (EINVAL); 4515 return (0); 4516 } 4517 4518 /* 4519 * number of nfs3_bsize blocks to read ahead. 4520 */ 4521 static int nfs3_nra = 4; 4522 4523 #ifdef DEBUG 4524 static int nfs3_lostpage = 0; /* number of times we lost original page */ 4525 #endif 4526 4527 /* 4528 * Return all the pages from [off..off+len) in file 4529 */ 4530 /* ARGSUSED */ 4531 static int 4532 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4533 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4534 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4535 { 4536 rnode_t *rp; 4537 int error; 4538 mntinfo_t *mi; 4539 4540 if (vp->v_flag & VNOMAP) 4541 return (ENOSYS); 4542 4543 if (nfs_zone() != VTOMI(vp)->mi_zone) 4544 return (EIO); 4545 if (protp != NULL) 4546 *protp = PROT_ALL; 4547 4548 /* 4549 * Now valididate that the caches are up to date. 4550 */ 4551 error = nfs3_validate_caches(vp, cr); 4552 if (error) 4553 return (error); 4554 4555 rp = VTOR(vp); 4556 mi = VTOMI(vp); 4557 retry: 4558 mutex_enter(&rp->r_statelock); 4559 4560 /* 4561 * Don't create dirty pages faster than they 4562 * can be cleaned so that the system doesn't 4563 * get imbalanced. If the async queue is 4564 * maxed out, then wait for it to drain before 4565 * creating more dirty pages. Also, wait for 4566 * any threads doing pagewalks in the vop_getattr 4567 * entry points so that they don't block for 4568 * long periods. 4569 */ 4570 if (rw == S_CREATE) { 4571 while ((mi->mi_max_threads != 0 && 4572 rp->r_awcount > 2 * mi->mi_max_threads) || 4573 rp->r_gcount > 0) 4574 cv_wait(&rp->r_cv, &rp->r_statelock); 4575 } 4576 4577 /* 4578 * If we are getting called as a side effect of an nfs_write() 4579 * operation the local file size might not be extended yet. 4580 * In this case we want to be able to return pages of zeroes. 4581 */ 4582 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 4583 mutex_exit(&rp->r_statelock); 4584 return (EFAULT); /* beyond EOF */ 4585 } 4586 4587 mutex_exit(&rp->r_statelock); 4588 4589 error = pvn_getpages(nfs3_getapage, vp, off, len, protp, 4590 pl, plsz, seg, addr, rw, cr); 4591 4592 switch (error) { 4593 case NFS_EOF: 4594 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 4595 goto retry; 4596 case ESTALE: 4597 PURGE_STALE_FH(error, vp, cr); 4598 } 4599 4600 return (error); 4601 } 4602 4603 /* 4604 * Called from pvn_getpages to get a particular page. 4605 */ 4606 /* ARGSUSED */ 4607 static int 4608 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 4609 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4610 enum seg_rw rw, cred_t *cr) 4611 { 4612 rnode_t *rp; 4613 uint_t bsize; 4614 struct buf *bp; 4615 page_t *pp; 4616 u_offset_t lbn; 4617 u_offset_t io_off; 4618 u_offset_t blkoff; 4619 u_offset_t rablkoff; 4620 size_t io_len; 4621 uint_t blksize; 4622 int error; 4623 int readahead; 4624 int readahead_issued = 0; 4625 int ra_window; /* readahead window */ 4626 page_t *pagefound; 4627 page_t *savepp; 4628 4629 if (nfs_zone() != VTOMI(vp)->mi_zone) 4630 return (EIO); 4631 rp = VTOR(vp); 4632 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4633 4634 reread: 4635 bp = NULL; 4636 pp = NULL; 4637 pagefound = NULL; 4638 4639 if (pl != NULL) 4640 pl[0] = NULL; 4641 4642 error = 0; 4643 lbn = off / bsize; 4644 blkoff = lbn * bsize; 4645 4646 /* 4647 * Queueing up the readahead before doing the synchronous read 4648 * results in a significant increase in read throughput because 4649 * of the increased parallelism between the async threads and 4650 * the process context. 4651 */ 4652 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 4653 rw != S_CREATE && 4654 !(vp->v_flag & VNOCACHE)) { 4655 mutex_enter(&rp->r_statelock); 4656 4657 /* 4658 * Calculate the number of readaheads to do. 4659 * a) No readaheads at offset = 0. 4660 * b) Do maximum(nfs3_nra) readaheads when the readahead 4661 * window is closed. 4662 * c) Do readaheads between 1 to (nfs3_nra - 1) depending 4663 * upon how far the readahead window is open or close. 4664 * d) No readaheads if rp->r_nextr is not within the scope 4665 * of the readahead window (random i/o). 4666 */ 4667 4668 if (off == 0) 4669 readahead = 0; 4670 else if (blkoff == rp->r_nextr) 4671 readahead = nfs3_nra; 4672 else if (rp->r_nextr > blkoff && 4673 ((ra_window = (rp->r_nextr - blkoff) / bsize) 4674 <= (nfs3_nra - 1))) 4675 readahead = nfs3_nra - ra_window; 4676 else 4677 readahead = 0; 4678 4679 rablkoff = rp->r_nextr; 4680 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 4681 mutex_exit(&rp->r_statelock); 4682 if (nfs_async_readahead(vp, rablkoff + bsize, 4683 addr + (rablkoff + bsize - off), seg, cr, 4684 nfs3_readahead) < 0) { 4685 mutex_enter(&rp->r_statelock); 4686 break; 4687 } 4688 readahead--; 4689 rablkoff += bsize; 4690 /* 4691 * Indicate that we did a readahead so 4692 * readahead offset is not updated 4693 * by the synchronous read below. 4694 */ 4695 readahead_issued = 1; 4696 mutex_enter(&rp->r_statelock); 4697 /* 4698 * set readahead offset to 4699 * offset of last async readahead 4700 * request. 4701 */ 4702 rp->r_nextr = rablkoff; 4703 } 4704 mutex_exit(&rp->r_statelock); 4705 } 4706 4707 again: 4708 if ((pagefound = page_exists(vp, off)) == NULL) { 4709 if (pl == NULL) { 4710 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 4711 nfs3_readahead); 4712 } else if (rw == S_CREATE) { 4713 /* 4714 * Block for this page is not allocated, or the offset 4715 * is beyond the current allocation size, or we're 4716 * allocating a swap slot and the page was not found, 4717 * so allocate it and return a zero page. 4718 */ 4719 if ((pp = page_create_va(vp, off, 4720 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 4721 cmn_err(CE_PANIC, "nfs3_getapage: page_create"); 4722 io_len = PAGESIZE; 4723 mutex_enter(&rp->r_statelock); 4724 rp->r_nextr = off + PAGESIZE; 4725 mutex_exit(&rp->r_statelock); 4726 } else { 4727 /* 4728 * Need to go to server to get a BLOCK, exception to 4729 * that being while reading at offset = 0 or doing 4730 * random i/o, in that case read only a PAGE. 4731 */ 4732 mutex_enter(&rp->r_statelock); 4733 if (blkoff < rp->r_size && 4734 blkoff + bsize >= rp->r_size) { 4735 /* 4736 * If only a block or less is left in 4737 * the file, read all that is remaining. 4738 */ 4739 if (rp->r_size <= off) { 4740 /* 4741 * Trying to access beyond EOF, 4742 * set up to get at least one page. 4743 */ 4744 blksize = off + PAGESIZE - blkoff; 4745 } else 4746 blksize = rp->r_size - blkoff; 4747 } else if ((off == 0) || 4748 (off != rp->r_nextr && !readahead_issued)) { 4749 blksize = PAGESIZE; 4750 blkoff = off; /* block = page here */ 4751 } else 4752 blksize = bsize; 4753 mutex_exit(&rp->r_statelock); 4754 4755 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4756 &io_len, blkoff, blksize, 0); 4757 4758 /* 4759 * Some other thread has entered the page, 4760 * so just use it. 4761 */ 4762 if (pp == NULL) 4763 goto again; 4764 4765 /* 4766 * Now round the request size up to page boundaries. 4767 * This ensures that the entire page will be 4768 * initialized to zeroes if EOF is encountered. 4769 */ 4770 io_len = ptob(btopr(io_len)); 4771 4772 bp = pageio_setup(pp, io_len, vp, B_READ); 4773 ASSERT(bp != NULL); 4774 4775 /* 4776 * pageio_setup should have set b_addr to 0. This 4777 * is correct since we want to do I/O on a page 4778 * boundary. bp_mapin will use this addr to calculate 4779 * an offset, and then set b_addr to the kernel virtual 4780 * address it allocated for us. 4781 */ 4782 ASSERT(bp->b_un.b_addr == 0); 4783 4784 bp->b_edev = 0; 4785 bp->b_dev = 0; 4786 bp->b_lblkno = lbtodb(io_off); 4787 bp->b_file = vp; 4788 bp->b_offset = (offset_t)off; 4789 bp_mapin(bp); 4790 4791 /* 4792 * If doing a write beyond what we believe is EOF, 4793 * don't bother trying to read the pages from the 4794 * server, we'll just zero the pages here. We 4795 * don't check that the rw flag is S_WRITE here 4796 * because some implementations may attempt a 4797 * read access to the buffer before copying data. 4798 */ 4799 mutex_enter(&rp->r_statelock); 4800 if (io_off >= rp->r_size && seg == segkmap) { 4801 mutex_exit(&rp->r_statelock); 4802 bzero(bp->b_un.b_addr, io_len); 4803 } else { 4804 mutex_exit(&rp->r_statelock); 4805 error = nfs3_bio(bp, NULL, cr); 4806 } 4807 4808 /* 4809 * Unmap the buffer before freeing it. 4810 */ 4811 bp_mapout(bp); 4812 pageio_done(bp); 4813 4814 savepp = pp; 4815 do { 4816 pp->p_fsdata = C_NOCOMMIT; 4817 } while ((pp = pp->p_next) != savepp); 4818 4819 if (error == NFS_EOF) { 4820 /* 4821 * If doing a write system call just return 4822 * zeroed pages, else user tried to get pages 4823 * beyond EOF, return error. We don't check 4824 * that the rw flag is S_WRITE here because 4825 * some implementations may attempt a read 4826 * access to the buffer before copying data. 4827 */ 4828 if (seg == segkmap) 4829 error = 0; 4830 else 4831 error = EFAULT; 4832 } 4833 4834 if (!readahead_issued && !error) { 4835 mutex_enter(&rp->r_statelock); 4836 rp->r_nextr = io_off + io_len; 4837 mutex_exit(&rp->r_statelock); 4838 } 4839 } 4840 } 4841 4842 out: 4843 if (pl == NULL) 4844 return (error); 4845 4846 if (error) { 4847 if (pp != NULL) 4848 pvn_read_done(pp, B_ERROR); 4849 return (error); 4850 } 4851 4852 if (pagefound) { 4853 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 4854 4855 /* 4856 * Page exists in the cache, acquire the appropriate lock. 4857 * If this fails, start all over again. 4858 */ 4859 if ((pp = page_lookup(vp, off, se)) == NULL) { 4860 #ifdef DEBUG 4861 nfs3_lostpage++; 4862 #endif 4863 goto reread; 4864 } 4865 pl[0] = pp; 4866 pl[1] = NULL; 4867 return (0); 4868 } 4869 4870 if (pp != NULL) 4871 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4872 4873 return (error); 4874 } 4875 4876 static void 4877 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 4878 cred_t *cr) 4879 { 4880 int error; 4881 page_t *pp; 4882 u_offset_t io_off; 4883 size_t io_len; 4884 struct buf *bp; 4885 uint_t bsize, blksize; 4886 rnode_t *rp = VTOR(vp); 4887 page_t *savepp; 4888 4889 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4890 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4891 4892 mutex_enter(&rp->r_statelock); 4893 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 4894 /* 4895 * If less than a block left in file read less 4896 * than a block. 4897 */ 4898 blksize = rp->r_size - blkoff; 4899 } else 4900 blksize = bsize; 4901 mutex_exit(&rp->r_statelock); 4902 4903 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 4904 &io_off, &io_len, blkoff, blksize, 1); 4905 /* 4906 * The isra flag passed to the kluster function is 1, we may have 4907 * gotten a return value of NULL for a variety of reasons (# of free 4908 * pages < minfree, someone entered the page on the vnode etc). In all 4909 * cases, we want to punt on the readahead. 4910 */ 4911 if (pp == NULL) 4912 return; 4913 4914 /* 4915 * Now round the request size up to page boundaries. 4916 * This ensures that the entire page will be 4917 * initialized to zeroes if EOF is encountered. 4918 */ 4919 io_len = ptob(btopr(io_len)); 4920 4921 bp = pageio_setup(pp, io_len, vp, B_READ); 4922 ASSERT(bp != NULL); 4923 4924 /* 4925 * pageio_setup should have set b_addr to 0. This is correct since 4926 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4927 * to calculate an offset, and then set b_addr to the kernel virtual 4928 * address it allocated for us. 4929 */ 4930 ASSERT(bp->b_un.b_addr == 0); 4931 4932 bp->b_edev = 0; 4933 bp->b_dev = 0; 4934 bp->b_lblkno = lbtodb(io_off); 4935 bp->b_file = vp; 4936 bp->b_offset = (offset_t)blkoff; 4937 bp_mapin(bp); 4938 4939 /* 4940 * If doing a write beyond what we believe is EOF, don't bother trying 4941 * to read the pages from the server, we'll just zero the pages here. 4942 * We don't check that the rw flag is S_WRITE here because some 4943 * implementations may attempt a read access to the buffer before 4944 * copying data. 4945 */ 4946 mutex_enter(&rp->r_statelock); 4947 if (io_off >= rp->r_size && seg == segkmap) { 4948 mutex_exit(&rp->r_statelock); 4949 bzero(bp->b_un.b_addr, io_len); 4950 error = 0; 4951 } else { 4952 mutex_exit(&rp->r_statelock); 4953 error = nfs3_bio(bp, NULL, cr); 4954 if (error == NFS_EOF) 4955 error = 0; 4956 } 4957 4958 /* 4959 * Unmap the buffer before freeing it. 4960 */ 4961 bp_mapout(bp); 4962 pageio_done(bp); 4963 4964 savepp = pp; 4965 do { 4966 pp->p_fsdata = C_NOCOMMIT; 4967 } while ((pp = pp->p_next) != savepp); 4968 4969 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4970 4971 /* 4972 * In case of error set readahead offset 4973 * to the lowest offset. 4974 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4975 */ 4976 if (error && rp->r_nextr > io_off) { 4977 mutex_enter(&rp->r_statelock); 4978 if (rp->r_nextr > io_off) 4979 rp->r_nextr = io_off; 4980 mutex_exit(&rp->r_statelock); 4981 } 4982 } 4983 4984 /* 4985 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4986 * If len == 0, do from off to EOF. 4987 * 4988 * The normal cases should be len == 0 && off == 0 (entire vp list), 4989 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4990 * (from pageout). 4991 */ 4992 /* ARGSUSED */ 4993 static int 4994 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4995 caller_context_t *ct) 4996 { 4997 int error; 4998 rnode_t *rp; 4999 5000 ASSERT(cr != NULL); 5001 5002 /* 5003 * XXX - Why should this check be made here? 5004 */ 5005 if (vp->v_flag & VNOMAP) 5006 return (ENOSYS); 5007 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 5008 return (0); 5009 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5010 return (EIO); 5011 5012 rp = VTOR(vp); 5013 mutex_enter(&rp->r_statelock); 5014 rp->r_count++; 5015 mutex_exit(&rp->r_statelock); 5016 error = nfs_putpages(vp, off, len, flags, cr); 5017 mutex_enter(&rp->r_statelock); 5018 rp->r_count--; 5019 cv_broadcast(&rp->r_cv); 5020 mutex_exit(&rp->r_statelock); 5021 5022 return (error); 5023 } 5024 5025 /* 5026 * Write out a single page, possibly klustering adjacent dirty pages. 5027 */ 5028 int 5029 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 5030 int flags, cred_t *cr) 5031 { 5032 u_offset_t io_off; 5033 u_offset_t lbn_off; 5034 u_offset_t lbn; 5035 size_t io_len; 5036 uint_t bsize; 5037 int error; 5038 rnode_t *rp; 5039 5040 ASSERT(!vn_is_readonly(vp)); 5041 ASSERT(pp != NULL); 5042 ASSERT(cr != NULL); 5043 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 5044 5045 rp = VTOR(vp); 5046 ASSERT(rp->r_count > 0); 5047 5048 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 5049 lbn = pp->p_offset / bsize; 5050 lbn_off = lbn * bsize; 5051 5052 /* 5053 * Find a kluster that fits in one block, or in 5054 * one page if pages are bigger than blocks. If 5055 * there is less file space allocated than a whole 5056 * page, we'll shorten the i/o request below. 5057 */ 5058 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 5059 roundup(bsize, PAGESIZE), flags); 5060 5061 /* 5062 * pvn_write_kluster shouldn't have returned a page with offset 5063 * behind the original page we were given. Verify that. 5064 */ 5065 ASSERT((pp->p_offset / bsize) >= lbn); 5066 5067 /* 5068 * Now pp will have the list of kept dirty pages marked for 5069 * write back. It will also handle invalidation and freeing 5070 * of pages that are not dirty. Check for page length rounding 5071 * problems. 5072 */ 5073 if (io_off + io_len > lbn_off + bsize) { 5074 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 5075 io_len = lbn_off + bsize - io_off; 5076 } 5077 /* 5078 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5079 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 5080 * When RMODINPROGRESS is set it indicates that a uiomove() is in 5081 * progress and the r_size has not been made consistent with the 5082 * new size of the file. When the uiomove() completes the r_size is 5083 * updated and the RMODINPROGRESS flag is cleared. 5084 * 5085 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5086 * consistent value of r_size. Without this handshaking, it is 5087 * possible that nfs(3)_bio() picks up the old value of r_size 5088 * before the uiomove() in writerp() completes. This will result 5089 * in the write through nfs(3)_bio() being dropped. 5090 * 5091 * More precisely, there is a window between the time the uiomove() 5092 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 5093 * operation intervenes in this window, the page will be picked up, 5094 * because it is dirty (it will be unlocked, unless it was 5095 * pagecreate'd). When the page is picked up as dirty, the dirty 5096 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 5097 * checked. This will still be the old size. Therefore the page will 5098 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 5099 * the page will be found to be clean and the write will be dropped. 5100 */ 5101 if (rp->r_flags & RMODINPROGRESS) { 5102 mutex_enter(&rp->r_statelock); 5103 if ((rp->r_flags & RMODINPROGRESS) && 5104 rp->r_modaddr + MAXBSIZE > io_off && 5105 rp->r_modaddr < io_off + io_len) { 5106 page_t *plist; 5107 /* 5108 * A write is in progress for this region of the file. 5109 * If we did not detect RMODINPROGRESS here then this 5110 * path through nfs_putapage() would eventually go to 5111 * nfs(3)_bio() and may not write out all of the data 5112 * in the pages. We end up losing data. So we decide 5113 * to set the modified bit on each page in the page 5114 * list and mark the rnode with RDIRTY. This write 5115 * will be restarted at some later time. 5116 */ 5117 plist = pp; 5118 while (plist != NULL) { 5119 pp = plist; 5120 page_sub(&plist, pp); 5121 hat_setmod(pp); 5122 page_io_unlock(pp); 5123 page_unlock(pp); 5124 } 5125 rp->r_flags |= RDIRTY; 5126 mutex_exit(&rp->r_statelock); 5127 if (offp) 5128 *offp = io_off; 5129 if (lenp) 5130 *lenp = io_len; 5131 return (0); 5132 } 5133 mutex_exit(&rp->r_statelock); 5134 } 5135 5136 if (flags & B_ASYNC) { 5137 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 5138 nfs3_sync_putapage); 5139 } else 5140 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr); 5141 5142 if (offp) 5143 *offp = io_off; 5144 if (lenp) 5145 *lenp = io_len; 5146 return (error); 5147 } 5148 5149 static int 5150 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5151 int flags, cred_t *cr) 5152 { 5153 int error; 5154 rnode_t *rp; 5155 5156 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5157 5158 flags |= B_WRITE; 5159 5160 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5161 5162 rp = VTOR(vp); 5163 5164 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 5165 error == EACCES) && 5166 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 5167 if (!(rp->r_flags & ROUTOFSPACE)) { 5168 mutex_enter(&rp->r_statelock); 5169 rp->r_flags |= ROUTOFSPACE; 5170 mutex_exit(&rp->r_statelock); 5171 } 5172 flags |= B_ERROR; 5173 pvn_write_done(pp, flags); 5174 /* 5175 * If this was not an async thread, then try again to 5176 * write out the pages, but this time, also destroy 5177 * them whether or not the write is successful. This 5178 * will prevent memory from filling up with these 5179 * pages and destroying them is the only alternative 5180 * if they can't be written out. 5181 * 5182 * Don't do this if this is an async thread because 5183 * when the pages are unlocked in pvn_write_done, 5184 * some other thread could have come along, locked 5185 * them, and queued for an async thread. It would be 5186 * possible for all of the async threads to be tied 5187 * up waiting to lock the pages again and they would 5188 * all already be locked and waiting for an async 5189 * thread to handle them. Deadlock. 5190 */ 5191 if (!(flags & B_ASYNC)) { 5192 error = nfs3_putpage(vp, io_off, io_len, 5193 B_INVAL | B_FORCE, cr, NULL); 5194 } 5195 } else { 5196 if (error) 5197 flags |= B_ERROR; 5198 else if (rp->r_flags & ROUTOFSPACE) { 5199 mutex_enter(&rp->r_statelock); 5200 rp->r_flags &= ~ROUTOFSPACE; 5201 mutex_exit(&rp->r_statelock); 5202 } 5203 pvn_write_done(pp, flags); 5204 if (freemem < desfree) 5205 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr); 5206 } 5207 5208 return (error); 5209 } 5210 5211 /* ARGSUSED */ 5212 static int 5213 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5214 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5215 cred_t *cr, caller_context_t *ct) 5216 { 5217 struct segvn_crargs vn_a; 5218 int error; 5219 rnode_t *rp; 5220 struct vattr va; 5221 5222 if (nfs_zone() != VTOMI(vp)->mi_zone) 5223 return (EIO); 5224 5225 if (vp->v_flag & VNOMAP) 5226 return (ENOSYS); 5227 5228 if (off < 0 || off + len < 0) 5229 return (ENXIO); 5230 5231 if (vp->v_type != VREG) 5232 return (ENODEV); 5233 5234 /* 5235 * If there is cached data and if close-to-open consistency 5236 * checking is not turned off and if the file system is not 5237 * mounted readonly, then force an over the wire getattr. 5238 * Otherwise, just invoke nfs3getattr to get a copy of the 5239 * attributes. The attribute cache will be used unless it 5240 * is timed out and if it is, then an over the wire getattr 5241 * will be issued. 5242 */ 5243 va.va_mask = AT_ALL; 5244 if (vn_has_cached_data(vp) && 5245 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 5246 error = nfs3_getattr_otw(vp, &va, cr); 5247 else 5248 error = nfs3getattr(vp, &va, cr); 5249 if (error) 5250 return (error); 5251 5252 /* 5253 * Check to see if the vnode is currently marked as not cachable. 5254 * This means portions of the file are locked (through VOP_FRLOCK). 5255 * In this case the map request must be refused. We use 5256 * rp->r_lkserlock to avoid a race with concurrent lock requests. 5257 */ 5258 rp = VTOR(vp); 5259 5260 /* 5261 * Atomically increment r_inmap after acquiring r_rwlock. The 5262 * idea here is to acquire r_rwlock to block read/write and 5263 * not to protect r_inmap. r_inmap will inform nfs3_read/write() 5264 * that we are in nfs3_map(). Now, r_rwlock is acquired in order 5265 * and we can prevent the deadlock that would have occurred 5266 * when nfs3_addmap() would have acquired it out of order. 5267 * 5268 * Since we are not protecting r_inmap by any lock, we do not 5269 * hold any lock when we decrement it. We atomically decrement 5270 * r_inmap after we release r_lkserlock. 5271 */ 5272 5273 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 5274 return (EINTR); 5275 atomic_inc_uint(&rp->r_inmap); 5276 nfs_rw_exit(&rp->r_rwlock); 5277 5278 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) { 5279 atomic_dec_uint(&rp->r_inmap); 5280 return (EINTR); 5281 } 5282 5283 if (vp->v_flag & VNOCACHE) { 5284 error = EAGAIN; 5285 goto done; 5286 } 5287 5288 /* 5289 * Don't allow concurrent locks and mapping if mandatory locking is 5290 * enabled. 5291 */ 5292 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 5293 MANDLOCK(vp, va.va_mode)) { 5294 error = EAGAIN; 5295 goto done; 5296 } 5297 5298 as_rangelock(as); 5299 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5300 if (error != 0) { 5301 as_rangeunlock(as); 5302 goto done; 5303 } 5304 5305 vn_a.vp = vp; 5306 vn_a.offset = off; 5307 vn_a.type = (flags & MAP_TYPE); 5308 vn_a.prot = (uchar_t)prot; 5309 vn_a.maxprot = (uchar_t)maxprot; 5310 vn_a.flags = (flags & ~MAP_TYPE); 5311 vn_a.cred = cr; 5312 vn_a.amp = NULL; 5313 vn_a.szc = 0; 5314 vn_a.lgrp_mem_policy_flags = 0; 5315 5316 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5317 as_rangeunlock(as); 5318 5319 done: 5320 nfs_rw_exit(&rp->r_lkserlock); 5321 atomic_dec_uint(&rp->r_inmap); 5322 return (error); 5323 } 5324 5325 /* ARGSUSED */ 5326 static int 5327 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5328 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5329 cred_t *cr, caller_context_t *ct) 5330 { 5331 rnode_t *rp; 5332 5333 if (vp->v_flag & VNOMAP) 5334 return (ENOSYS); 5335 if (nfs_zone() != VTOMI(vp)->mi_zone) 5336 return (EIO); 5337 5338 rp = VTOR(vp); 5339 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 5340 5341 return (0); 5342 } 5343 5344 /* ARGSUSED */ 5345 static int 5346 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5347 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 5348 caller_context_t *ct) 5349 { 5350 netobj lm_fh3; 5351 int rc; 5352 u_offset_t start, end; 5353 rnode_t *rp; 5354 int error = 0, intr = INTR(vp); 5355 5356 if (nfs_zone() != VTOMI(vp)->mi_zone) 5357 return (EIO); 5358 /* check for valid cmd parameter */ 5359 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 5360 return (EINVAL); 5361 5362 /* Verify l_type. */ 5363 switch (bfp->l_type) { 5364 case F_RDLCK: 5365 if (cmd != F_GETLK && !(flag & FREAD)) 5366 return (EBADF); 5367 break; 5368 case F_WRLCK: 5369 if (cmd != F_GETLK && !(flag & FWRITE)) 5370 return (EBADF); 5371 break; 5372 case F_UNLCK: 5373 intr = 0; 5374 break; 5375 5376 default: 5377 return (EINVAL); 5378 } 5379 5380 /* check the validity of the lock range */ 5381 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 5382 return (rc); 5383 if (rc = flk_check_lock_data(start, end, MAXEND)) 5384 return (rc); 5385 5386 /* 5387 * If the filesystem is mounted using local locking, pass the 5388 * request off to the local locking code. 5389 */ 5390 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 5391 if (cmd == F_SETLK || cmd == F_SETLKW) { 5392 /* 5393 * For complete safety, we should be holding 5394 * r_lkserlock. However, we can't call 5395 * lm_safelock and then fs_frlock while 5396 * holding r_lkserlock, so just invoke 5397 * lm_safelock and expect that this will 5398 * catch enough of the cases. 5399 */ 5400 if (!lm_safelock(vp, bfp, cr)) 5401 return (EAGAIN); 5402 } 5403 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 5404 } 5405 5406 rp = VTOR(vp); 5407 5408 /* 5409 * Check whether the given lock request can proceed, given the 5410 * current file mappings. 5411 */ 5412 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 5413 return (EINTR); 5414 if (cmd == F_SETLK || cmd == F_SETLKW) { 5415 if (!lm_safelock(vp, bfp, cr)) { 5416 rc = EAGAIN; 5417 goto done; 5418 } 5419 } 5420 5421 /* 5422 * Flush the cache after waiting for async I/O to finish. For new 5423 * locks, this is so that the process gets the latest bits from the 5424 * server. For unlocks, this is so that other clients see the 5425 * latest bits once the file has been unlocked. If currently dirty 5426 * pages can't be flushed, then don't allow a lock to be set. But 5427 * allow unlocks to succeed, to avoid having orphan locks on the 5428 * server. 5429 */ 5430 if (cmd != F_GETLK) { 5431 mutex_enter(&rp->r_statelock); 5432 while (rp->r_count > 0) { 5433 if (intr) { 5434 klwp_t *lwp = ttolwp(curthread); 5435 5436 if (lwp != NULL) 5437 lwp->lwp_nostop++; 5438 if (cv_wait_sig(&rp->r_cv, 5439 &rp->r_statelock) == 0) { 5440 if (lwp != NULL) 5441 lwp->lwp_nostop--; 5442 rc = EINTR; 5443 break; 5444 } 5445 if (lwp != NULL) 5446 lwp->lwp_nostop--; 5447 } else 5448 cv_wait(&rp->r_cv, &rp->r_statelock); 5449 } 5450 mutex_exit(&rp->r_statelock); 5451 if (rc != 0) 5452 goto done; 5453 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 5454 if (error) { 5455 if (error == ENOSPC || error == EDQUOT) { 5456 mutex_enter(&rp->r_statelock); 5457 if (!rp->r_error) 5458 rp->r_error = error; 5459 mutex_exit(&rp->r_statelock); 5460 } 5461 if (bfp->l_type != F_UNLCK) { 5462 rc = ENOLCK; 5463 goto done; 5464 } 5465 } 5466 } 5467 5468 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 5469 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 5470 5471 /* 5472 * Call the lock manager to do the real work of contacting 5473 * the server and obtaining the lock. 5474 */ 5475 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp); 5476 5477 if (rc == 0) 5478 nfs_lockcompletion(vp, cmd); 5479 5480 done: 5481 nfs_rw_exit(&rp->r_lkserlock); 5482 return (rc); 5483 } 5484 5485 /* 5486 * Free storage space associated with the specified vnode. The portion 5487 * to be freed is specified by bfp->l_start and bfp->l_len (already 5488 * normalized to a "whence" of 0). 5489 * 5490 * This is an experimental facility whose continued existence is not 5491 * guaranteed. Currently, we only support the special case 5492 * of l_len == 0, meaning free to end of file. 5493 */ 5494 /* ARGSUSED */ 5495 static int 5496 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5497 offset_t offset, cred_t *cr, caller_context_t *ct) 5498 { 5499 int error; 5500 5501 ASSERT(vp->v_type == VREG); 5502 if (cmd != F_FREESP) 5503 return (EINVAL); 5504 if (nfs_zone() != VTOMI(vp)->mi_zone) 5505 return (EIO); 5506 5507 error = convoff(vp, bfp, 0, offset); 5508 if (!error) { 5509 ASSERT(bfp->l_start >= 0); 5510 if (bfp->l_len == 0) { 5511 struct vattr va; 5512 5513 /* 5514 * ftruncate should not change the ctime and 5515 * mtime if we truncate the file to its 5516 * previous size. 5517 */ 5518 va.va_mask = AT_SIZE; 5519 error = nfs3getattr(vp, &va, cr); 5520 if (error || va.va_size == bfp->l_start) 5521 return (error); 5522 va.va_mask = AT_SIZE; 5523 va.va_size = bfp->l_start; 5524 error = nfs3setattr(vp, &va, 0, cr); 5525 5526 if (error == 0 && bfp->l_start == 0) 5527 vnevent_truncate(vp, ct); 5528 } else 5529 error = EINVAL; 5530 } 5531 5532 return (error); 5533 } 5534 5535 /* ARGSUSED */ 5536 static int 5537 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 5538 { 5539 5540 return (EINVAL); 5541 } 5542 5543 /* 5544 * Setup and add an address space callback to do the work of the delmap call. 5545 * The callback will (and must be) deleted in the actual callback function. 5546 * 5547 * This is done in order to take care of the problem that we have with holding 5548 * the address space's a_lock for a long period of time (e.g. if the NFS server 5549 * is down). Callbacks will be executed in the address space code while the 5550 * a_lock is not held. Holding the address space's a_lock causes things such 5551 * as ps and fork to hang because they are trying to acquire this lock as well. 5552 */ 5553 /* ARGSUSED */ 5554 static int 5555 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5556 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5557 cred_t *cr, caller_context_t *ct) 5558 { 5559 int caller_found; 5560 int error; 5561 rnode_t *rp; 5562 nfs_delmap_args_t *dmapp; 5563 nfs_delmapcall_t *delmap_call; 5564 5565 if (vp->v_flag & VNOMAP) 5566 return (ENOSYS); 5567 /* 5568 * A process may not change zones if it has NFS pages mmap'ed 5569 * in, so we can't legitimately get here from the wrong zone. 5570 */ 5571 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5572 5573 rp = VTOR(vp); 5574 5575 /* 5576 * The way that the address space of this process deletes its mapping 5577 * of this file is via the following call chains: 5578 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5579 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5580 * 5581 * With the use of address space callbacks we are allowed to drop the 5582 * address space lock, a_lock, while executing the NFS operations that 5583 * need to go over the wire. Returning EAGAIN to the caller of this 5584 * function is what drives the execution of the callback that we add 5585 * below. The callback will be executed by the address space code 5586 * after dropping the a_lock. When the callback is finished, since 5587 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 5588 * is called again on the same segment to finish the rest of the work 5589 * that needs to happen during unmapping. 5590 * 5591 * This action of calling back into the segment driver causes 5592 * nfs3_delmap() to get called again, but since the callback was 5593 * already executed at this point, it already did the work and there 5594 * is nothing left for us to do. 5595 * 5596 * To Summarize: 5597 * - The first time nfs3_delmap is called by the current thread is when 5598 * we add the caller associated with this delmap to the delmap caller 5599 * list, add the callback, and return EAGAIN. 5600 * - The second time in this call chain when nfs3_delmap is called we 5601 * will find this caller in the delmap caller list and realize there 5602 * is no more work to do thus removing this caller from the list and 5603 * returning the error that was set in the callback execution. 5604 */ 5605 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 5606 if (caller_found) { 5607 /* 5608 * 'error' is from the actual delmap operations. To avoid 5609 * hangs, we need to handle the return of EAGAIN differently 5610 * since this is what drives the callback execution. 5611 * In this case, we don't want to return EAGAIN and do the 5612 * callback execution because there are none to execute. 5613 */ 5614 if (error == EAGAIN) 5615 return (0); 5616 else 5617 return (error); 5618 } 5619 5620 /* current caller was not in the list */ 5621 delmap_call = nfs_init_delmapcall(); 5622 5623 mutex_enter(&rp->r_statelock); 5624 list_insert_tail(&rp->r_indelmap, delmap_call); 5625 mutex_exit(&rp->r_statelock); 5626 5627 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 5628 5629 dmapp->vp = vp; 5630 dmapp->off = off; 5631 dmapp->addr = addr; 5632 dmapp->len = len; 5633 dmapp->prot = prot; 5634 dmapp->maxprot = maxprot; 5635 dmapp->flags = flags; 5636 dmapp->cr = cr; 5637 dmapp->caller = delmap_call; 5638 5639 error = as_add_callback(as, nfs3_delmap_callback, dmapp, 5640 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 5641 5642 return (error ? error : EAGAIN); 5643 } 5644 5645 /* 5646 * Remove some pages from an mmap'd vnode. Just update the 5647 * count of pages. If doing close-to-open, then flush and 5648 * commit all of the pages associated with this file. 5649 * Otherwise, start an asynchronous page flush to write out 5650 * any dirty pages. This will also associate a credential 5651 * with the rnode which can be used to write the pages. 5652 */ 5653 /* ARGSUSED */ 5654 static void 5655 nfs3_delmap_callback(struct as *as, void *arg, uint_t event) 5656 { 5657 int error; 5658 rnode_t *rp; 5659 mntinfo_t *mi; 5660 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 5661 5662 rp = VTOR(dmapp->vp); 5663 mi = VTOMI(dmapp->vp); 5664 5665 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 5666 ASSERT(rp->r_mapcnt >= 0); 5667 5668 /* 5669 * Initiate a page flush and potential commit if there are 5670 * pages, the file system was not mounted readonly, the segment 5671 * was mapped shared, and the pages themselves were writeable. 5672 */ 5673 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 5674 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 5675 mutex_enter(&rp->r_statelock); 5676 rp->r_flags |= RDIRTY; 5677 mutex_exit(&rp->r_statelock); 5678 /* 5679 * If this is a cross-zone access a sync putpage won't work, so 5680 * the best we can do is try an async putpage. That seems 5681 * better than something more draconian such as discarding the 5682 * dirty pages. 5683 */ 5684 if ((mi->mi_flags & MI_NOCTO) || 5685 nfs_zone() != mi->mi_zone) 5686 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5687 B_ASYNC, dmapp->cr, NULL); 5688 else 5689 error = nfs3_putpage_commit(dmapp->vp, dmapp->off, 5690 dmapp->len, dmapp->cr); 5691 if (!error) { 5692 mutex_enter(&rp->r_statelock); 5693 error = rp->r_error; 5694 rp->r_error = 0; 5695 mutex_exit(&rp->r_statelock); 5696 } 5697 } else 5698 error = 0; 5699 5700 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 5701 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5702 B_INVAL, dmapp->cr, NULL); 5703 5704 dmapp->caller->error = error; 5705 (void) as_delete_callback(as, arg); 5706 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 5707 } 5708 5709 static int nfs3_pathconf_disable_cache = 0; 5710 5711 #ifdef DEBUG 5712 static int nfs3_pathconf_cache_hits = 0; 5713 static int nfs3_pathconf_cache_misses = 0; 5714 #endif 5715 5716 /* ARGSUSED */ 5717 static int 5718 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 5719 caller_context_t *ct) 5720 { 5721 int error; 5722 PATHCONF3args args; 5723 PATHCONF3res res; 5724 int douprintf; 5725 failinfo_t fi; 5726 rnode_t *rp; 5727 hrtime_t t; 5728 5729 if (nfs_zone() != VTOMI(vp)->mi_zone) 5730 return (EIO); 5731 /* 5732 * Large file spec - need to base answer on info stored 5733 * on original FSINFO response. 5734 */ 5735 if (cmd == _PC_FILESIZEBITS) { 5736 unsigned long long ll; 5737 long l = 1; 5738 5739 ll = VTOMI(vp)->mi_maxfilesize; 5740 5741 if (ll == 0) { 5742 *valp = 0; 5743 return (0); 5744 } 5745 5746 if (ll & 0xffffffff00000000) { 5747 l += 32; ll >>= 32; 5748 } 5749 if (ll & 0xffff0000) { 5750 l += 16; ll >>= 16; 5751 } 5752 if (ll & 0xff00) { 5753 l += 8; ll >>= 8; 5754 } 5755 if (ll & 0xf0) { 5756 l += 4; ll >>= 4; 5757 } 5758 if (ll & 0xc) { 5759 l += 2; ll >>= 2; 5760 } 5761 if (ll & 0x2) 5762 l += 2; 5763 else if (ll & 0x1) 5764 l += 1; 5765 *valp = l; 5766 return (0); 5767 } 5768 5769 if (cmd == _PC_ACL_ENABLED) { 5770 *valp = _ACL_ACLENT_ENABLED; 5771 return (0); 5772 } 5773 5774 if (cmd == _PC_XATTR_EXISTS) { 5775 error = 0; 5776 *valp = 0; 5777 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5778 vnode_t *avp; 5779 rnode_t *rp; 5780 int error = 0; 5781 mntinfo_t *mi = VTOMI(vp); 5782 5783 if (!(mi->mi_flags & MI_EXTATTR)) 5784 return (0); 5785 5786 rp = VTOR(vp); 5787 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 5788 INTR(vp))) 5789 return (EINTR); 5790 5791 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 5792 if (error || avp == NULL) 5793 error = acl_getxattrdir3(vp, &avp, 0, cr, 0); 5794 5795 nfs_rw_exit(&rp->r_rwlock); 5796 5797 if (error == 0 && avp != NULL) { 5798 error = do_xattr_exists_check(avp, valp, cr); 5799 VN_RELE(avp); 5800 } else if (error == ENOENT) { 5801 error = 0; 5802 *valp = 0; 5803 } 5804 } 5805 return (error); 5806 } 5807 5808 rp = VTOR(vp); 5809 if (rp->r_pathconf != NULL) { 5810 mutex_enter(&rp->r_statelock); 5811 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) { 5812 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf)); 5813 rp->r_pathconf = NULL; 5814 } 5815 if (rp->r_pathconf != NULL) { 5816 error = 0; 5817 switch (cmd) { 5818 case _PC_LINK_MAX: 5819 *valp = rp->r_pathconf->link_max; 5820 break; 5821 case _PC_NAME_MAX: 5822 *valp = rp->r_pathconf->name_max; 5823 break; 5824 case _PC_PATH_MAX: 5825 case _PC_SYMLINK_MAX: 5826 *valp = MAXPATHLEN; 5827 break; 5828 case _PC_CHOWN_RESTRICTED: 5829 *valp = rp->r_pathconf->chown_restricted; 5830 break; 5831 case _PC_NO_TRUNC: 5832 *valp = rp->r_pathconf->no_trunc; 5833 break; 5834 default: 5835 error = EINVAL; 5836 break; 5837 } 5838 mutex_exit(&rp->r_statelock); 5839 #ifdef DEBUG 5840 nfs3_pathconf_cache_hits++; 5841 #endif 5842 return (error); 5843 } 5844 mutex_exit(&rp->r_statelock); 5845 } 5846 #ifdef DEBUG 5847 nfs3_pathconf_cache_misses++; 5848 #endif 5849 5850 args.object = *VTOFH3(vp); 5851 fi.vp = vp; 5852 fi.fhp = (caddr_t)&args.object; 5853 fi.copyproc = nfs3copyfh; 5854 fi.lookupproc = nfs3lookup; 5855 fi.xattrdirproc = acl_getxattrdir3; 5856 5857 douprintf = 1; 5858 5859 t = gethrtime(); 5860 5861 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF, 5862 xdr_nfs_fh3, (caddr_t)&args, 5863 xdr_PATHCONF3res, (caddr_t)&res, cr, 5864 &douprintf, &res.status, 0, &fi); 5865 5866 if (error) 5867 return (error); 5868 5869 error = geterrno3(res.status); 5870 5871 if (!error) { 5872 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 5873 if (!nfs3_pathconf_disable_cache) { 5874 mutex_enter(&rp->r_statelock); 5875 if (rp->r_pathconf == NULL) { 5876 rp->r_pathconf = kmem_alloc( 5877 sizeof (*rp->r_pathconf), KM_NOSLEEP); 5878 if (rp->r_pathconf != NULL) 5879 *rp->r_pathconf = res.resok.info; 5880 } 5881 mutex_exit(&rp->r_statelock); 5882 } 5883 switch (cmd) { 5884 case _PC_LINK_MAX: 5885 *valp = res.resok.info.link_max; 5886 break; 5887 case _PC_NAME_MAX: 5888 *valp = res.resok.info.name_max; 5889 break; 5890 case _PC_PATH_MAX: 5891 case _PC_SYMLINK_MAX: 5892 *valp = MAXPATHLEN; 5893 break; 5894 case _PC_CHOWN_RESTRICTED: 5895 *valp = res.resok.info.chown_restricted; 5896 break; 5897 case _PC_NO_TRUNC: 5898 *valp = res.resok.info.no_trunc; 5899 break; 5900 default: 5901 return (EINVAL); 5902 } 5903 } else { 5904 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 5905 PURGE_STALE_FH(error, vp, cr); 5906 } 5907 5908 return (error); 5909 } 5910 5911 /* 5912 * Called by async thread to do synchronous pageio. Do the i/o, wait 5913 * for it to complete, and cleanup the page list when done. 5914 */ 5915 static int 5916 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5917 int flags, cred_t *cr) 5918 { 5919 int error; 5920 5921 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5922 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5923 if (flags & B_READ) 5924 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 5925 else 5926 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 5927 return (error); 5928 } 5929 5930 /* ARGSUSED */ 5931 static int 5932 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5933 int flags, cred_t *cr, caller_context_t *ct) 5934 { 5935 int error; 5936 rnode_t *rp; 5937 5938 if (pp == NULL) 5939 return (EINVAL); 5940 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5941 return (EIO); 5942 5943 rp = VTOR(vp); 5944 mutex_enter(&rp->r_statelock); 5945 rp->r_count++; 5946 mutex_exit(&rp->r_statelock); 5947 5948 if (flags & B_ASYNC) { 5949 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 5950 nfs3_sync_pageio); 5951 } else 5952 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5953 mutex_enter(&rp->r_statelock); 5954 rp->r_count--; 5955 cv_broadcast(&rp->r_cv); 5956 mutex_exit(&rp->r_statelock); 5957 return (error); 5958 } 5959 5960 /* ARGSUSED */ 5961 static void 5962 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 5963 caller_context_t *ct) 5964 { 5965 int error; 5966 rnode_t *rp; 5967 page_t *plist; 5968 page_t *pptr; 5969 offset3 offset; 5970 count3 len; 5971 k_sigset_t smask; 5972 5973 /* 5974 * We should get called with fl equal to either B_FREE or 5975 * B_INVAL. Any other value is illegal. 5976 * 5977 * The page that we are either supposed to free or destroy 5978 * should be exclusive locked and its io lock should not 5979 * be held. 5980 */ 5981 ASSERT(fl == B_FREE || fl == B_INVAL); 5982 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 5983 rp = VTOR(vp); 5984 5985 /* 5986 * If the page doesn't need to be committed or we shouldn't 5987 * even bother attempting to commit it, then just make sure 5988 * that the p_fsdata byte is clear and then either free or 5989 * destroy the page as appropriate. 5990 */ 5991 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) { 5992 pp->p_fsdata = C_NOCOMMIT; 5993 if (fl == B_FREE) 5994 page_free(pp, dn); 5995 else 5996 page_destroy(pp, dn); 5997 return; 5998 } 5999 6000 /* 6001 * If there is a page invalidation operation going on, then 6002 * if this is one of the pages being destroyed, then just 6003 * clear the p_fsdata byte and then either free or destroy 6004 * the page as appropriate. 6005 */ 6006 mutex_enter(&rp->r_statelock); 6007 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 6008 mutex_exit(&rp->r_statelock); 6009 pp->p_fsdata = C_NOCOMMIT; 6010 if (fl == B_FREE) 6011 page_free(pp, dn); 6012 else 6013 page_destroy(pp, dn); 6014 return; 6015 } 6016 6017 /* 6018 * If we are freeing this page and someone else is already 6019 * waiting to do a commit, then just unlock the page and 6020 * return. That other thread will take care of commiting 6021 * this page. The page can be freed sometime after the 6022 * commit has finished. Otherwise, if the page is marked 6023 * as delay commit, then we may be getting called from 6024 * pvn_write_done, one page at a time. This could result 6025 * in one commit per page, so we end up doing lots of small 6026 * commits instead of fewer larger commits. This is bad, 6027 * we want do as few commits as possible. 6028 */ 6029 if (fl == B_FREE) { 6030 if (rp->r_flags & RCOMMITWAIT) { 6031 page_unlock(pp); 6032 mutex_exit(&rp->r_statelock); 6033 return; 6034 } 6035 if (pp->p_fsdata == C_DELAYCOMMIT) { 6036 pp->p_fsdata = C_COMMIT; 6037 page_unlock(pp); 6038 mutex_exit(&rp->r_statelock); 6039 return; 6040 } 6041 } 6042 6043 /* 6044 * Check to see if there is a signal which would prevent an 6045 * attempt to commit the pages from being successful. If so, 6046 * then don't bother with all of the work to gather pages and 6047 * generate the unsuccessful RPC. Just return from here and 6048 * let the page be committed at some later time. 6049 */ 6050 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT); 6051 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 6052 sigunintr(&smask); 6053 page_unlock(pp); 6054 mutex_exit(&rp->r_statelock); 6055 return; 6056 } 6057 sigunintr(&smask); 6058 6059 /* 6060 * We are starting to need to commit pages, so let's try 6061 * to commit as many as possible at once to reduce the 6062 * overhead. 6063 * 6064 * Set the `commit inprogress' state bit. We must 6065 * first wait until any current one finishes. Then 6066 * we initialize the c_pages list with this page. 6067 */ 6068 while (rp->r_flags & RCOMMIT) { 6069 rp->r_flags |= RCOMMITWAIT; 6070 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6071 rp->r_flags &= ~RCOMMITWAIT; 6072 } 6073 rp->r_flags |= RCOMMIT; 6074 mutex_exit(&rp->r_statelock); 6075 ASSERT(rp->r_commit.c_pages == NULL); 6076 rp->r_commit.c_pages = pp; 6077 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6078 rp->r_commit.c_commlen = PAGESIZE; 6079 6080 /* 6081 * Gather together all other pages which can be committed. 6082 * They will all be chained off r_commit.c_pages. 6083 */ 6084 nfs3_get_commit(vp); 6085 6086 /* 6087 * Clear the `commit inprogress' status and disconnect 6088 * the list of pages to be committed from the rnode. 6089 * At this same time, we also save the starting offset 6090 * and length of data to be committed on the server. 6091 */ 6092 plist = rp->r_commit.c_pages; 6093 rp->r_commit.c_pages = NULL; 6094 offset = rp->r_commit.c_commbase; 6095 len = rp->r_commit.c_commlen; 6096 mutex_enter(&rp->r_statelock); 6097 rp->r_flags &= ~RCOMMIT; 6098 cv_broadcast(&rp->r_commit.c_cv); 6099 mutex_exit(&rp->r_statelock); 6100 6101 if (curproc == proc_pageout || curproc == proc_fsflush || 6102 nfs_zone() != VTOMI(vp)->mi_zone) { 6103 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit); 6104 return; 6105 } 6106 6107 /* 6108 * Actually generate the COMMIT3 over the wire operation. 6109 */ 6110 error = nfs3_commit(vp, offset, len, cr); 6111 6112 /* 6113 * If we got an error during the commit, just unlock all 6114 * of the pages. The pages will get retransmitted to the 6115 * server during a putpage operation. 6116 */ 6117 if (error) { 6118 while (plist != NULL) { 6119 pptr = plist; 6120 page_sub(&plist, pptr); 6121 page_unlock(pptr); 6122 } 6123 return; 6124 } 6125 6126 /* 6127 * We've tried as hard as we can to commit the data to stable 6128 * storage on the server. We release the rest of the pages 6129 * and clear the commit required state. They will be put 6130 * onto the tail of the cachelist if they are nolonger 6131 * mapped. 6132 */ 6133 while (plist != pp) { 6134 pptr = plist; 6135 page_sub(&plist, pptr); 6136 pptr->p_fsdata = C_NOCOMMIT; 6137 (void) page_release(pptr, 1); 6138 } 6139 6140 /* 6141 * It is possible that nfs3_commit didn't return error but 6142 * some other thread has modified the page we are going 6143 * to free/destroy. 6144 * In this case we need to rewrite the page. Do an explicit check 6145 * before attempting to free/destroy the page. If modified, needs to 6146 * be rewritten so unlock the page and return. 6147 */ 6148 if (hat_ismod(pp)) { 6149 pp->p_fsdata = C_NOCOMMIT; 6150 page_unlock(pp); 6151 return; 6152 } 6153 6154 /* 6155 * Now, as appropriate, either free or destroy the page 6156 * that we were called with. 6157 */ 6158 pp->p_fsdata = C_NOCOMMIT; 6159 if (fl == B_FREE) 6160 page_free(pp, dn); 6161 else 6162 page_destroy(pp, dn); 6163 } 6164 6165 static int 6166 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr) 6167 { 6168 int error; 6169 rnode_t *rp; 6170 COMMIT3args args; 6171 COMMIT3res res; 6172 int douprintf; 6173 cred_t *cred; 6174 6175 rp = VTOR(vp); 6176 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6177 6178 mutex_enter(&rp->r_statelock); 6179 if (rp->r_cred != NULL) { 6180 cred = rp->r_cred; 6181 crhold(cred); 6182 } else { 6183 rp->r_cred = cr; 6184 crhold(cr); 6185 cred = cr; 6186 crhold(cred); 6187 } 6188 mutex_exit(&rp->r_statelock); 6189 6190 args.file = *VTOFH3(vp); 6191 args.offset = offset; 6192 args.count = count; 6193 6194 doitagain: 6195 douprintf = 1; 6196 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT, 6197 xdr_COMMIT3args, (caddr_t)&args, 6198 xdr_COMMIT3res, (caddr_t)&res, cred, 6199 &douprintf, &res.status, 0, NULL); 6200 6201 crfree(cred); 6202 6203 if (error) 6204 return (error); 6205 6206 error = geterrno3(res.status); 6207 if (!error) { 6208 ASSERT(rp->r_flags & RHAVEVERF); 6209 mutex_enter(&rp->r_statelock); 6210 if (rp->r_verf == res.resok.verf) { 6211 mutex_exit(&rp->r_statelock); 6212 return (0); 6213 } 6214 nfs3_set_mod(vp); 6215 rp->r_verf = res.resok.verf; 6216 mutex_exit(&rp->r_statelock); 6217 error = NFS_VERF_MISMATCH; 6218 } else { 6219 if (error == EACCES) { 6220 mutex_enter(&rp->r_statelock); 6221 if (cred != cr) { 6222 if (rp->r_cred != NULL) 6223 crfree(rp->r_cred); 6224 rp->r_cred = cr; 6225 crhold(cr); 6226 cred = cr; 6227 crhold(cred); 6228 mutex_exit(&rp->r_statelock); 6229 goto doitagain; 6230 } 6231 mutex_exit(&rp->r_statelock); 6232 } 6233 /* 6234 * Can't do a PURGE_STALE_FH here because this 6235 * can cause a deadlock. nfs3_commit can 6236 * be called from nfs3_dispose which can be called 6237 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH 6238 * can call back to pvn_vplist_dirty. 6239 */ 6240 if (error == ESTALE) { 6241 mutex_enter(&rp->r_statelock); 6242 rp->r_flags |= RSTALE; 6243 if (!rp->r_error) 6244 rp->r_error = error; 6245 mutex_exit(&rp->r_statelock); 6246 PURGE_ATTRCACHE(vp); 6247 } else { 6248 mutex_enter(&rp->r_statelock); 6249 if (!rp->r_error) 6250 rp->r_error = error; 6251 mutex_exit(&rp->r_statelock); 6252 } 6253 } 6254 6255 return (error); 6256 } 6257 6258 static void 6259 nfs3_set_mod(vnode_t *vp) 6260 { 6261 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6262 6263 pvn_vplist_setdirty(vp, nfs_setmod_check); 6264 } 6265 6266 /* 6267 * This routine is used to gather together a page list of the pages 6268 * which are to be committed on the server. This routine must not 6269 * be called if the calling thread holds any locked pages. 6270 * 6271 * The calling thread must have set RCOMMIT. This bit is used to 6272 * serialize access to the commit structure in the rnode. As long 6273 * as the thread has set RCOMMIT, then it can manipulate the commit 6274 * structure without requiring any other locks. 6275 */ 6276 static void 6277 nfs3_get_commit(vnode_t *vp) 6278 { 6279 rnode_t *rp; 6280 page_t *pp; 6281 kmutex_t *vphm; 6282 6283 rp = VTOR(vp); 6284 6285 ASSERT(rp->r_flags & RCOMMIT); 6286 6287 vphm = page_vnode_mutex(vp); 6288 mutex_enter(vphm); 6289 6290 /* 6291 * If there are no pages associated with this vnode, then 6292 * just return. 6293 */ 6294 if ((pp = vp->v_pages) == NULL) { 6295 mutex_exit(vphm); 6296 return; 6297 } 6298 6299 /* 6300 * Step through all of the pages associated with this vnode 6301 * looking for pages which need to be committed. 6302 */ 6303 do { 6304 /* Skip marker pages. */ 6305 if (pp->p_hash == PVN_VPLIST_HASH_TAG) 6306 continue; 6307 6308 /* 6309 * If this page does not need to be committed or is 6310 * modified, then just skip it. 6311 */ 6312 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 6313 continue; 6314 6315 /* 6316 * Attempt to lock the page. If we can't, then 6317 * someone else is messing with it and we will 6318 * just skip it. 6319 */ 6320 if (!page_trylock(pp, SE_EXCL)) 6321 continue; 6322 6323 /* 6324 * If this page does not need to be committed or is 6325 * modified, then just skip it. Recheck now that 6326 * the page is locked. 6327 */ 6328 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6329 page_unlock(pp); 6330 continue; 6331 } 6332 6333 if (PP_ISFREE(pp)) { 6334 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free", 6335 (void *)pp); 6336 } 6337 6338 /* 6339 * The page needs to be committed and we locked it. 6340 * Update the base and length parameters and add it 6341 * to r_pages. 6342 */ 6343 if (rp->r_commit.c_pages == NULL) { 6344 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6345 rp->r_commit.c_commlen = PAGESIZE; 6346 } else if (pp->p_offset < rp->r_commit.c_commbase) { 6347 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 6348 (offset3)pp->p_offset + rp->r_commit.c_commlen; 6349 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6350 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 6351 <= pp->p_offset) { 6352 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6353 rp->r_commit.c_commbase + PAGESIZE; 6354 } 6355 page_add(&rp->r_commit.c_pages, pp); 6356 } while ((pp = pp->p_vpnext) != vp->v_pages); 6357 6358 mutex_exit(vphm); 6359 } 6360 6361 /* 6362 * This routine is used to gather together a page list of the pages 6363 * which are to be committed on the server. This routine must not 6364 * be called if the calling thread holds any locked pages. 6365 * 6366 * The calling thread must have set RCOMMIT. This bit is used to 6367 * serialize access to the commit structure in the rnode. As long 6368 * as the thread has set RCOMMIT, then it can manipulate the commit 6369 * structure without requiring any other locks. 6370 */ 6371 static void 6372 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 6373 { 6374 6375 rnode_t *rp; 6376 page_t *pp; 6377 u_offset_t end; 6378 u_offset_t off; 6379 6380 ASSERT(len != 0); 6381 6382 rp = VTOR(vp); 6383 6384 ASSERT(rp->r_flags & RCOMMIT); 6385 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6386 6387 /* 6388 * If there are no pages associated with this vnode, then 6389 * just return. 6390 */ 6391 if ((pp = vp->v_pages) == NULL) 6392 return; 6393 6394 /* 6395 * Calculate the ending offset. 6396 */ 6397 end = soff + len; 6398 6399 for (off = soff; off < end; off += PAGESIZE) { 6400 /* 6401 * Lookup each page by vp, offset. 6402 */ 6403 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 6404 continue; 6405 6406 /* 6407 * If this page does not need to be committed or is 6408 * modified, then just skip it. 6409 */ 6410 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6411 page_unlock(pp); 6412 continue; 6413 } 6414 6415 ASSERT(PP_ISFREE(pp) == 0); 6416 6417 /* 6418 * The page needs to be committed and we locked it. 6419 * Update the base and length parameters and add it 6420 * to r_pages. 6421 */ 6422 if (rp->r_commit.c_pages == NULL) { 6423 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6424 rp->r_commit.c_commlen = PAGESIZE; 6425 } else { 6426 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6427 rp->r_commit.c_commbase + PAGESIZE; 6428 } 6429 page_add(&rp->r_commit.c_pages, pp); 6430 } 6431 } 6432 6433 static int 6434 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 6435 { 6436 int error; 6437 writeverf3 write_verf; 6438 rnode_t *rp = VTOR(vp); 6439 6440 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6441 /* 6442 * Flush the data portion of the file and then commit any 6443 * portions which need to be committed. This may need to 6444 * be done twice if the server has changed state since 6445 * data was last written. The data will need to be 6446 * rewritten to the server and then a new commit done. 6447 * 6448 * In fact, this may need to be done several times if the 6449 * server is having problems and crashing while we are 6450 * attempting to do this. 6451 */ 6452 6453 top: 6454 /* 6455 * Do a flush based on the poff and plen arguments. This 6456 * will asynchronously write out any modified pages in the 6457 * range specified by (poff, plen). This starts all of the 6458 * i/o operations which will be waited for in the next 6459 * call to nfs3_putpage 6460 */ 6461 6462 mutex_enter(&rp->r_statelock); 6463 write_verf = rp->r_verf; 6464 mutex_exit(&rp->r_statelock); 6465 6466 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 6467 if (error == EAGAIN) 6468 error = 0; 6469 6470 /* 6471 * Do a flush based on the poff and plen arguments. This 6472 * will synchronously write out any modified pages in the 6473 * range specified by (poff, plen) and wait until all of 6474 * the asynchronous i/o's in that range are done as well. 6475 */ 6476 if (!error) 6477 error = nfs3_putpage(vp, poff, plen, 0, cr, NULL); 6478 6479 if (error) 6480 return (error); 6481 6482 mutex_enter(&rp->r_statelock); 6483 if (rp->r_verf != write_verf) { 6484 mutex_exit(&rp->r_statelock); 6485 goto top; 6486 } 6487 mutex_exit(&rp->r_statelock); 6488 6489 /* 6490 * Now commit any pages which might need to be committed. 6491 * If the error, NFS_VERF_MISMATCH, is returned, then 6492 * start over with the flush operation. 6493 */ 6494 6495 error = nfs3_commit_vp(vp, poff, plen, cr); 6496 6497 if (error == NFS_VERF_MISMATCH) 6498 goto top; 6499 6500 return (error); 6501 } 6502 6503 static int 6504 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr) 6505 { 6506 rnode_t *rp; 6507 page_t *plist; 6508 offset3 offset; 6509 count3 len; 6510 6511 6512 rp = VTOR(vp); 6513 6514 if (nfs_zone() != VTOMI(vp)->mi_zone) 6515 return (EIO); 6516 /* 6517 * Set the `commit inprogress' state bit. We must 6518 * first wait until any current one finishes. 6519 */ 6520 mutex_enter(&rp->r_statelock); 6521 while (rp->r_flags & RCOMMIT) { 6522 rp->r_flags |= RCOMMITWAIT; 6523 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6524 rp->r_flags &= ~RCOMMITWAIT; 6525 } 6526 rp->r_flags |= RCOMMIT; 6527 mutex_exit(&rp->r_statelock); 6528 6529 /* 6530 * Gather together all of the pages which need to be 6531 * committed. 6532 */ 6533 if (plen == 0) 6534 nfs3_get_commit(vp); 6535 else 6536 nfs3_get_commit_range(vp, poff, plen); 6537 6538 /* 6539 * Clear the `commit inprogress' bit and disconnect the 6540 * page list which was gathered together in nfs3_get_commit. 6541 */ 6542 plist = rp->r_commit.c_pages; 6543 rp->r_commit.c_pages = NULL; 6544 offset = rp->r_commit.c_commbase; 6545 len = rp->r_commit.c_commlen; 6546 mutex_enter(&rp->r_statelock); 6547 rp->r_flags &= ~RCOMMIT; 6548 cv_broadcast(&rp->r_commit.c_cv); 6549 mutex_exit(&rp->r_statelock); 6550 6551 /* 6552 * If any pages need to be committed, commit them and 6553 * then unlock them so that they can be freed some 6554 * time later. 6555 */ 6556 if (plist != NULL) { 6557 /* 6558 * No error occurred during the flush portion 6559 * of this operation, so now attempt to commit 6560 * the data to stable storage on the server. 6561 * 6562 * This will unlock all of the pages on the list. 6563 */ 6564 return (nfs3_sync_commit(vp, plist, offset, len, cr)); 6565 } 6566 return (0); 6567 } 6568 6569 static int 6570 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6571 cred_t *cr) 6572 { 6573 int error; 6574 page_t *pp; 6575 6576 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6577 error = nfs3_commit(vp, offset, count, cr); 6578 6579 /* 6580 * If we got an error, then just unlock all of the pages 6581 * on the list. 6582 */ 6583 if (error) { 6584 while (plist != NULL) { 6585 pp = plist; 6586 page_sub(&plist, pp); 6587 page_unlock(pp); 6588 } 6589 return (error); 6590 } 6591 /* 6592 * We've tried as hard as we can to commit the data to stable 6593 * storage on the server. We just unlock the pages and clear 6594 * the commit required state. They will get freed later. 6595 */ 6596 while (plist != NULL) { 6597 pp = plist; 6598 page_sub(&plist, pp); 6599 pp->p_fsdata = C_NOCOMMIT; 6600 page_unlock(pp); 6601 } 6602 6603 return (error); 6604 } 6605 6606 static void 6607 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6608 cred_t *cr) 6609 { 6610 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6611 (void) nfs3_sync_commit(vp, plist, offset, count, cr); 6612 } 6613 6614 /* ARGSUSED */ 6615 static int 6616 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6617 caller_context_t *ct) 6618 { 6619 int error; 6620 mntinfo_t *mi; 6621 6622 mi = VTOMI(vp); 6623 6624 if (nfs_zone() != mi->mi_zone) 6625 return (EIO); 6626 6627 if (mi->mi_flags & MI_ACL) { 6628 error = acl_setacl3(vp, vsecattr, flag, cr); 6629 if (mi->mi_flags & MI_ACL) 6630 return (error); 6631 } 6632 6633 return (ENOSYS); 6634 } 6635 6636 /* ARGSUSED */ 6637 static int 6638 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6639 caller_context_t *ct) 6640 { 6641 int error; 6642 mntinfo_t *mi; 6643 6644 mi = VTOMI(vp); 6645 6646 if (nfs_zone() != mi->mi_zone) 6647 return (EIO); 6648 6649 if (mi->mi_flags & MI_ACL) { 6650 error = acl_getacl3(vp, vsecattr, flag, cr); 6651 if (mi->mi_flags & MI_ACL) 6652 return (error); 6653 } 6654 6655 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 6656 } 6657 6658 /* ARGSUSED */ 6659 static int 6660 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 6661 caller_context_t *ct) 6662 { 6663 int error; 6664 struct shrlock nshr; 6665 struct nfs_owner nfs_owner; 6666 netobj lm_fh3; 6667 6668 if (nfs_zone() != VTOMI(vp)->mi_zone) 6669 return (EIO); 6670 6671 /* 6672 * check for valid cmd parameter 6673 */ 6674 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 6675 return (EINVAL); 6676 6677 /* 6678 * Check access permissions 6679 */ 6680 if (cmd == F_SHARE && 6681 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 6682 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 6683 return (EBADF); 6684 6685 /* 6686 * If the filesystem is mounted using local locking, pass the 6687 * request off to the local share code. 6688 */ 6689 if (VTOMI(vp)->mi_flags & MI_LLOCK) 6690 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 6691 6692 switch (cmd) { 6693 case F_SHARE: 6694 case F_UNSHARE: 6695 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 6696 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 6697 6698 /* 6699 * If passed an owner that is too large to fit in an 6700 * nfs_owner it is likely a recursive call from the 6701 * lock manager client and pass it straight through. If 6702 * it is not a nfs_owner then simply return an error. 6703 */ 6704 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 6705 if (((struct nfs_owner *)shr->s_owner)->magic != 6706 NFS_OWNER_MAGIC) 6707 return (EINVAL); 6708 6709 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) { 6710 error = set_errno(error); 6711 } 6712 return (error); 6713 } 6714 /* 6715 * Remote share reservations owner is a combination of 6716 * a magic number, hostname, and the local owner 6717 */ 6718 bzero(&nfs_owner, sizeof (nfs_owner)); 6719 nfs_owner.magic = NFS_OWNER_MAGIC; 6720 (void) strncpy(nfs_owner.hname, uts_nodename(), 6721 sizeof (nfs_owner.hname)); 6722 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 6723 nshr.s_access = shr->s_access; 6724 nshr.s_deny = shr->s_deny; 6725 nshr.s_sysid = 0; 6726 nshr.s_pid = ttoproc(curthread)->p_pid; 6727 nshr.s_own_len = sizeof (nfs_owner); 6728 nshr.s_owner = (caddr_t)&nfs_owner; 6729 6730 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) { 6731 error = set_errno(error); 6732 } 6733 6734 break; 6735 6736 case F_HASREMOTELOCKS: 6737 /* 6738 * NFS client can't store remote locks itself 6739 */ 6740 shr->s_access = 0; 6741 error = 0; 6742 break; 6743 6744 default: 6745 error = EINVAL; 6746 break; 6747 } 6748 6749 return (error); 6750 } 6751