1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/systm.h> 34 #include <sys/cred.h> 35 #include <sys/time.h> 36 #include <sys/vnode.h> 37 #include <sys/vfs.h> 38 #include <sys/vfs_opreg.h> 39 #include <sys/file.h> 40 #include <sys/filio.h> 41 #include <sys/uio.h> 42 #include <sys/buf.h> 43 #include <sys/mman.h> 44 #include <sys/pathname.h> 45 #include <sys/dirent.h> 46 #include <sys/debug.h> 47 #include <sys/vmsystm.h> 48 #include <sys/fcntl.h> 49 #include <sys/flock.h> 50 #include <sys/swap.h> 51 #include <sys/errno.h> 52 #include <sys/strsubr.h> 53 #include <sys/sysmacros.h> 54 #include <sys/kmem.h> 55 #include <sys/cmn_err.h> 56 #include <sys/pathconf.h> 57 #include <sys/utsname.h> 58 #include <sys/dnlc.h> 59 #include <sys/acl.h> 60 #include <sys/systeminfo.h> 61 #include <sys/atomic.h> 62 #include <sys/policy.h> 63 #include <sys/sdt.h> 64 #include <sys/zone.h> 65 66 #include <rpc/types.h> 67 #include <rpc/auth.h> 68 #include <rpc/clnt.h> 69 #include <rpc/rpc_rdma.h> 70 71 #include <nfs/nfs.h> 72 #include <nfs/nfs_clnt.h> 73 #include <nfs/rnode.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 77 #include <vm/hat.h> 78 #include <vm/as.h> 79 #include <vm/page.h> 80 #include <vm/pvn.h> 81 #include <vm/seg.h> 82 #include <vm/seg_map.h> 83 #include <vm/seg_kpm.h> 84 #include <vm/seg_vn.h> 85 86 #include <fs/fs_subr.h> 87 88 #include <sys/ddi.h> 89 90 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 91 cred_t *); 92 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 93 stable_how *); 94 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *); 95 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *); 96 static int nfs3_accessx(void *, int, cred_t *); 97 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 98 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 99 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl, 100 int, vnode_t **, cred_t *, int); 101 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *); 102 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 103 int, vnode_t **, cred_t *); 104 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 105 caller_context_t *); 106 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 107 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 108 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *); 109 static int nfs3_bio(struct buf *, stable_how *, cred_t *); 110 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 111 page_t *[], size_t, struct seg *, caddr_t, 112 enum seg_rw, cred_t *); 113 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 114 cred_t *); 115 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 116 int, cred_t *); 117 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 118 int, cred_t *); 119 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *); 120 static void nfs3_set_mod(vnode_t *); 121 static void nfs3_get_commit(vnode_t *); 122 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t); 123 #if 0 /* unused */ 124 #ifdef DEBUG 125 static int nfs3_no_uncommitted_pages(vnode_t *); 126 #endif 127 #endif /* unused */ 128 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 129 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *); 130 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3, 131 cred_t *); 132 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3, 133 cred_t *); 134 static void nfs3_delmap_callback(struct as *, void *, uint_t); 135 136 /* 137 * Error flags used to pass information about certain special errors 138 * which need to be handled specially. 139 */ 140 #define NFS_EOF -98 141 #define NFS_VERF_MISMATCH -97 142 143 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 144 #define ALIGN64(x, ptr, sz) \ 145 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 146 if (x) { \ 147 x = sizeof (uint64_t) - (x); \ 148 sz -= (x); \ 149 ptr += (x); \ 150 } 151 152 /* 153 * These are the vnode ops routines which implement the vnode interface to 154 * the networked file system. These routines just take their parameters, 155 * make them look networkish by putting the right info into interface structs, 156 * and then calling the appropriate remote routine(s) to do the work. 157 * 158 * Note on directory name lookup cacheing: If we detect a stale fhandle, 159 * we purge the directory cache relative to that vnode. This way, the 160 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 161 * more details on rnode locking. 162 */ 163 164 static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *); 165 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *, 166 caller_context_t *); 167 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *, 168 caller_context_t *); 169 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *, 170 caller_context_t *); 171 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 172 caller_context_t *); 173 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *, 174 caller_context_t *); 175 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *, 176 caller_context_t *); 177 static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *); 178 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *, 179 caller_context_t *); 180 static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *); 181 static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *); 182 static int nfs3_lookup(vnode_t *, char *, vnode_t **, 183 struct pathname *, int, vnode_t *, cred_t *, 184 caller_context_t *, int *, pathname_t *); 185 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl, 186 int, vnode_t **, cred_t *, int, caller_context_t *, 187 vsecattr_t *); 188 static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *, 189 int); 190 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *, 191 caller_context_t *, int); 192 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 193 caller_context_t *, int); 194 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 195 cred_t *, caller_context_t *, int, vsecattr_t *); 196 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 197 caller_context_t *, int); 198 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *, 199 cred_t *, caller_context_t *, int); 200 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *, 201 caller_context_t *, int); 202 static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *); 203 static int nfs3_rwlock(vnode_t *, int, caller_context_t *); 204 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *); 205 static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 206 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *, 207 page_t *[], size_t, struct seg *, caddr_t, 208 enum seg_rw, cred_t *, caller_context_t *); 209 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 210 caller_context_t *); 211 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 212 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 213 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 214 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 215 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 216 struct flk_callback *, cred_t *, caller_context_t *); 217 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t, 218 cred_t *, caller_context_t *); 219 static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *); 220 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 221 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 222 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *, 223 caller_context_t *); 224 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 225 cred_t *, caller_context_t *); 226 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *, 227 caller_context_t *); 228 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 229 caller_context_t *); 230 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 231 caller_context_t *); 232 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 233 caller_context_t *); 234 235 struct vnodeops *nfs3_vnodeops; 236 237 const fs_operation_def_t nfs3_vnodeops_template[] = { 238 VOPNAME_OPEN, { .vop_open = nfs3_open }, 239 VOPNAME_CLOSE, { .vop_close = nfs3_close }, 240 VOPNAME_READ, { .vop_read = nfs3_read }, 241 VOPNAME_WRITE, { .vop_write = nfs3_write }, 242 VOPNAME_IOCTL, { .vop_ioctl = nfs3_ioctl }, 243 VOPNAME_GETATTR, { .vop_getattr = nfs3_getattr }, 244 VOPNAME_SETATTR, { .vop_setattr = nfs3_setattr }, 245 VOPNAME_ACCESS, { .vop_access = nfs3_access }, 246 VOPNAME_LOOKUP, { .vop_lookup = nfs3_lookup }, 247 VOPNAME_CREATE, { .vop_create = nfs3_create }, 248 VOPNAME_REMOVE, { .vop_remove = nfs3_remove }, 249 VOPNAME_LINK, { .vop_link = nfs3_link }, 250 VOPNAME_RENAME, { .vop_rename = nfs3_rename }, 251 VOPNAME_MKDIR, { .vop_mkdir = nfs3_mkdir }, 252 VOPNAME_RMDIR, { .vop_rmdir = nfs3_rmdir }, 253 VOPNAME_READDIR, { .vop_readdir = nfs3_readdir }, 254 VOPNAME_SYMLINK, { .vop_symlink = nfs3_symlink }, 255 VOPNAME_READLINK, { .vop_readlink = nfs3_readlink }, 256 VOPNAME_FSYNC, { .vop_fsync = nfs3_fsync }, 257 VOPNAME_INACTIVE, { .vop_inactive = nfs3_inactive }, 258 VOPNAME_FID, { .vop_fid = nfs3_fid }, 259 VOPNAME_RWLOCK, { .vop_rwlock = nfs3_rwlock }, 260 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs3_rwunlock }, 261 VOPNAME_SEEK, { .vop_seek = nfs3_seek }, 262 VOPNAME_FRLOCK, { .vop_frlock = nfs3_frlock }, 263 VOPNAME_SPACE, { .vop_space = nfs3_space }, 264 VOPNAME_REALVP, { .vop_realvp = nfs3_realvp }, 265 VOPNAME_GETPAGE, { .vop_getpage = nfs3_getpage }, 266 VOPNAME_PUTPAGE, { .vop_putpage = nfs3_putpage }, 267 VOPNAME_MAP, { .vop_map = nfs3_map }, 268 VOPNAME_ADDMAP, { .vop_addmap = nfs3_addmap }, 269 VOPNAME_DELMAP, { .vop_delmap = nfs3_delmap }, 270 /* no separate nfs3_dump */ 271 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 272 VOPNAME_PATHCONF, { .vop_pathconf = nfs3_pathconf }, 273 VOPNAME_PAGEIO, { .vop_pageio = nfs3_pageio }, 274 VOPNAME_DISPOSE, { .vop_dispose = nfs3_dispose }, 275 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs3_setsecattr }, 276 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs3_getsecattr }, 277 VOPNAME_SHRLOCK, { .vop_shrlock = nfs3_shrlock }, 278 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 279 NULL, NULL 280 }; 281 282 /* 283 * XXX: This is referenced in modstubs.s 284 */ 285 struct vnodeops * 286 nfs3_getvnodeops(void) 287 { 288 return (nfs3_vnodeops); 289 } 290 291 /* ARGSUSED */ 292 static int 293 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 294 { 295 int error; 296 struct vattr va; 297 rnode_t *rp; 298 vnode_t *vp; 299 300 vp = *vpp; 301 if (nfs_zone() != VTOMI(vp)->mi_zone) 302 return (EIO); 303 rp = VTOR(vp); 304 mutex_enter(&rp->r_statelock); 305 if (rp->r_cred == NULL) { 306 crhold(cr); 307 rp->r_cred = cr; 308 } 309 mutex_exit(&rp->r_statelock); 310 311 /* 312 * If there is no cached data or if close-to-open 313 * consistency checking is turned off, we can avoid 314 * the over the wire getattr. Otherwise, if the 315 * file system is mounted readonly, then just verify 316 * the caches are up to date using the normal mechanism. 317 * Else, if the file is not mmap'd, then just mark 318 * the attributes as timed out. They will be refreshed 319 * and the caches validated prior to being used. 320 * Else, the file system is mounted writeable so 321 * force an over the wire GETATTR in order to ensure 322 * that all cached data is valid. 323 */ 324 if (vp->v_count > 1 || 325 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 326 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 327 if (vn_is_readonly(vp)) 328 error = nfs3_validate_caches(vp, cr); 329 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 330 PURGE_ATTRCACHE(vp); 331 error = 0; 332 } else { 333 va.va_mask = AT_ALL; 334 error = nfs3_getattr_otw(vp, &va, cr); 335 } 336 } else 337 error = 0; 338 339 return (error); 340 } 341 342 /* ARGSUSED */ 343 static int 344 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 345 caller_context_t *ct) 346 { 347 rnode_t *rp; 348 int error; 349 struct vattr va; 350 351 /* 352 * zone_enter(2) prevents processes from changing zones with NFS files 353 * open; if we happen to get here from the wrong zone we can't do 354 * anything over the wire. 355 */ 356 if (VTOMI(vp)->mi_zone != nfs_zone()) { 357 /* 358 * We could attempt to clean up locks, except we're sure 359 * that the current process didn't acquire any locks on 360 * the file: any attempt to lock a file belong to another zone 361 * will fail, and one can't lock an NFS file and then change 362 * zones, as that fails too. 363 * 364 * Returning an error here is the sane thing to do. A 365 * subsequent call to VN_RELE() which translates to a 366 * nfs3_inactive() will clean up state: if the zone of the 367 * vnode's origin is still alive and kicking, an async worker 368 * thread will handle the request (from the correct zone), and 369 * everything (minus the commit and final nfs3_getattr_otw() 370 * call) should be OK. If the zone is going away 371 * nfs_async_inactive() will throw away cached pages inline. 372 */ 373 return (EIO); 374 } 375 376 /* 377 * If we are using local locking for this filesystem, then 378 * release all of the SYSV style record locks. Otherwise, 379 * we are doing network locking and we need to release all 380 * of the network locks. All of the locks held by this 381 * process on this file are released no matter what the 382 * incoming reference count is. 383 */ 384 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 385 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 386 cleanshares(vp, ttoproc(curthread)->p_pid); 387 } else 388 nfs_lockrelease(vp, flag, offset, cr); 389 390 if (count > 1) 391 return (0); 392 393 /* 394 * If the file has been `unlinked', then purge the 395 * DNLC so that this vnode will get reycled quicker 396 * and the .nfs* file on the server will get removed. 397 */ 398 rp = VTOR(vp); 399 if (rp->r_unldvp != NULL) 400 dnlc_purge_vp(vp); 401 402 /* 403 * If the file was open for write and there are pages, 404 * then if the file system was mounted using the "no-close- 405 * to-open" semantics, then start an asynchronous flush 406 * of the all of the pages in the file. 407 * else the file system was not mounted using the "no-close- 408 * to-open" semantics, then do a synchronous flush and 409 * commit of all of the dirty and uncommitted pages. 410 * 411 * The asynchronous flush of the pages in the "nocto" path 412 * mostly just associates a cred pointer with the rnode so 413 * writes which happen later will have a better chance of 414 * working. It also starts the data being written to the 415 * server, but without unnecessarily delaying the application. 416 */ 417 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 418 if (VTOMI(vp)->mi_flags & MI_NOCTO) { 419 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC, 420 cr, ct); 421 if (error == EAGAIN) 422 error = 0; 423 } else 424 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 425 if (!error) { 426 mutex_enter(&rp->r_statelock); 427 error = rp->r_error; 428 rp->r_error = 0; 429 mutex_exit(&rp->r_statelock); 430 } 431 } else { 432 mutex_enter(&rp->r_statelock); 433 error = rp->r_error; 434 rp->r_error = 0; 435 mutex_exit(&rp->r_statelock); 436 } 437 438 /* 439 * If RWRITEATTR is set, then issue an over the wire GETATTR to 440 * refresh the attribute cache with a set of attributes which 441 * weren't returned from a WRITE. This will enable the close- 442 * to-open processing to work. 443 */ 444 if (rp->r_flags & RWRITEATTR) 445 (void) nfs3_getattr_otw(vp, &va, cr); 446 447 return (error); 448 } 449 450 /* ARGSUSED */ 451 static int 452 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr) 453 { 454 mntinfo_t *mi; 455 READ3args args; 456 READ3uiores res; 457 int tsize; 458 offset_t offset; 459 ssize_t count; 460 int error; 461 int douprintf; 462 failinfo_t fi; 463 char *sv_hostname; 464 465 mi = VTOMI(vp); 466 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 467 sv_hostname = VTOR(vp)->r_server->sv_hostname; 468 469 douprintf = 1; 470 args.file = *VTOFH3(vp); 471 fi.vp = vp; 472 fi.fhp = (caddr_t)&args.file; 473 fi.copyproc = nfs3copyfh; 474 fi.lookupproc = nfs3lookup; 475 fi.xattrdirproc = acl_getxattrdir3; 476 477 res.uiop = uiop; 478 479 res.wlist = NULL; 480 481 offset = uiop->uio_loffset; 482 count = uiop->uio_resid; 483 484 do { 485 if (mi->mi_io_kstats) { 486 mutex_enter(&mi->mi_lock); 487 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 488 mutex_exit(&mi->mi_lock); 489 } 490 491 do { 492 tsize = MIN(mi->mi_tsize, count); 493 args.offset = (offset3)offset; 494 args.count = (count3)tsize; 495 res.size = (uint_t)tsize; 496 args.res_uiop = uiop; 497 args.res_data_val_alt = NULL; 498 499 error = rfs3call(mi, NFSPROC3_READ, 500 xdr_READ3args, (caddr_t)&args, 501 xdr_READ3uiores, (caddr_t)&res, cr, 502 &douprintf, &res.status, 0, &fi); 503 } while (error == ENFS_TRYAGAIN); 504 505 if (mi->mi_io_kstats) { 506 mutex_enter(&mi->mi_lock); 507 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 508 mutex_exit(&mi->mi_lock); 509 } 510 511 if (error) 512 return (error); 513 514 error = geterrno3(res.status); 515 if (error) 516 return (error); 517 518 if (res.count != res.size) { 519 zcmn_err(getzoneid(), CE_WARN, 520 "nfs3_directio_read: server %s returned incorrect amount", 521 sv_hostname); 522 return (EIO); 523 } 524 count -= res.count; 525 offset += res.count; 526 if (mi->mi_io_kstats) { 527 mutex_enter(&mi->mi_lock); 528 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 529 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 530 mutex_exit(&mi->mi_lock); 531 } 532 lwp_stat_update(LWP_STAT_INBLK, 1); 533 } while (count && !res.eof); 534 535 return (0); 536 } 537 538 /* ARGSUSED */ 539 static int 540 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 541 caller_context_t *ct) 542 { 543 rnode_t *rp; 544 u_offset_t off; 545 offset_t diff; 546 int on; 547 size_t n; 548 caddr_t base; 549 uint_t flags; 550 int error = 0; 551 mntinfo_t *mi; 552 553 rp = VTOR(vp); 554 mi = VTOMI(vp); 555 556 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 557 558 if (nfs_zone() != mi->mi_zone) 559 return (EIO); 560 561 if (vp->v_type != VREG) 562 return (EISDIR); 563 564 if (uiop->uio_resid == 0) 565 return (0); 566 567 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 568 return (EINVAL); 569 570 /* 571 * Bypass VM if caching has been disabled (e.g., locking) or if 572 * using client-side direct I/O and the file is not mmap'd and 573 * there are no cached pages. 574 */ 575 if ((vp->v_flag & VNOCACHE) || 576 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 577 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 578 !vn_has_cached_data(vp))) { 579 return (nfs3_directio_read(vp, uiop, cr)); 580 } 581 582 do { 583 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 584 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 585 n = MIN(MAXBSIZE - on, uiop->uio_resid); 586 587 error = nfs3_validate_caches(vp, cr); 588 if (error) 589 break; 590 591 mutex_enter(&rp->r_statelock); 592 while (rp->r_flags & RINCACHEPURGE) { 593 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 594 mutex_exit(&rp->r_statelock); 595 return (EINTR); 596 } 597 } 598 diff = rp->r_size - uiop->uio_loffset; 599 mutex_exit(&rp->r_statelock); 600 if (diff <= 0) 601 break; 602 if (diff < n) 603 n = (size_t)diff; 604 605 if (vpm_enable) { 606 /* 607 * Copy data. 608 */ 609 error = vpm_data_copy(vp, off + on, n, uiop, 610 1, NULL, 0, S_READ); 611 } else { 612 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 613 S_READ); 614 615 error = uiomove(base + on, n, UIO_READ, uiop); 616 } 617 618 if (!error) { 619 /* 620 * If read a whole block or read to eof, 621 * won't need this buffer again soon. 622 */ 623 mutex_enter(&rp->r_statelock); 624 if (n + on == MAXBSIZE || 625 uiop->uio_loffset == rp->r_size) 626 flags = SM_DONTNEED; 627 else 628 flags = 0; 629 mutex_exit(&rp->r_statelock); 630 if (vpm_enable) { 631 error = vpm_sync_pages(vp, off, n, flags); 632 } else { 633 error = segmap_release(segkmap, base, flags); 634 } 635 } else { 636 if (vpm_enable) { 637 (void) vpm_sync_pages(vp, off, n, 0); 638 } else { 639 (void) segmap_release(segkmap, base, 0); 640 } 641 } 642 } while (!error && uiop->uio_resid > 0); 643 644 return (error); 645 } 646 647 /* ARGSUSED */ 648 static int 649 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 650 caller_context_t *ct) 651 { 652 rlim64_t limit = uiop->uio_llimit; 653 rnode_t *rp; 654 u_offset_t off; 655 caddr_t base; 656 uint_t flags; 657 int remainder; 658 size_t n; 659 int on; 660 int error; 661 int resid; 662 offset_t offset; 663 mntinfo_t *mi; 664 uint_t bsize; 665 666 rp = VTOR(vp); 667 668 if (vp->v_type != VREG) 669 return (EISDIR); 670 671 mi = VTOMI(vp); 672 if (nfs_zone() != mi->mi_zone) 673 return (EIO); 674 if (uiop->uio_resid == 0) 675 return (0); 676 677 if (ioflag & FAPPEND) { 678 struct vattr va; 679 680 /* 681 * Must serialize if appending. 682 */ 683 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 684 nfs_rw_exit(&rp->r_rwlock); 685 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 686 INTR(vp))) 687 return (EINTR); 688 } 689 690 va.va_mask = AT_SIZE; 691 error = nfs3getattr(vp, &va, cr); 692 if (error) 693 return (error); 694 uiop->uio_loffset = va.va_size; 695 } 696 697 offset = uiop->uio_loffset + uiop->uio_resid; 698 699 if (uiop->uio_loffset < 0 || offset < 0) 700 return (EINVAL); 701 702 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 703 limit = MAXOFFSET_T; 704 705 /* 706 * Check to make sure that the process will not exceed 707 * its limit on file size. It is okay to write up to 708 * the limit, but not beyond. Thus, the write which 709 * reaches the limit will be short and the next write 710 * will return an error. 711 */ 712 remainder = 0; 713 if (offset > limit) { 714 remainder = offset - limit; 715 uiop->uio_resid = limit - uiop->uio_loffset; 716 if (uiop->uio_resid <= 0) { 717 proc_t *p = ttoproc(curthread); 718 719 uiop->uio_resid += remainder; 720 mutex_enter(&p->p_lock); 721 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 722 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 723 mutex_exit(&p->p_lock); 724 return (EFBIG); 725 } 726 } 727 728 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 729 return (EINTR); 730 731 /* 732 * Bypass VM if caching has been disabled (e.g., locking) or if 733 * using client-side direct I/O and the file is not mmap'd and 734 * there are no cached pages. 735 */ 736 if ((vp->v_flag & VNOCACHE) || 737 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 738 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 739 !vn_has_cached_data(vp))) { 740 size_t bufsize; 741 int count; 742 u_offset_t org_offset; 743 stable_how stab_comm; 744 745 nfs3_fwrite: 746 if (rp->r_flags & RSTALE) { 747 resid = uiop->uio_resid; 748 offset = uiop->uio_loffset; 749 error = rp->r_error; 750 /* 751 * A close may have cleared r_error, if so, 752 * propagate ESTALE error return properly 753 */ 754 if (error == 0) 755 error = ESTALE; 756 goto bottom; 757 } 758 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 759 base = kmem_alloc(bufsize, KM_SLEEP); 760 do { 761 if (ioflag & FDSYNC) 762 stab_comm = DATA_SYNC; 763 else 764 stab_comm = FILE_SYNC; 765 resid = uiop->uio_resid; 766 offset = uiop->uio_loffset; 767 count = MIN(uiop->uio_resid, bufsize); 768 org_offset = uiop->uio_loffset; 769 error = uiomove(base, count, UIO_WRITE, uiop); 770 if (!error) { 771 error = nfs3write(vp, base, org_offset, 772 count, cr, &stab_comm); 773 } 774 } while (!error && uiop->uio_resid > 0); 775 kmem_free(base, bufsize); 776 goto bottom; 777 } 778 779 780 bsize = vp->v_vfsp->vfs_bsize; 781 782 do { 783 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 784 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 785 n = MIN(MAXBSIZE - on, uiop->uio_resid); 786 787 resid = uiop->uio_resid; 788 offset = uiop->uio_loffset; 789 790 if (rp->r_flags & RSTALE) { 791 error = rp->r_error; 792 /* 793 * A close may have cleared r_error, if so, 794 * propagate ESTALE error return properly 795 */ 796 if (error == 0) 797 error = ESTALE; 798 break; 799 } 800 801 /* 802 * Don't create dirty pages faster than they 803 * can be cleaned so that the system doesn't 804 * get imbalanced. If the async queue is 805 * maxed out, then wait for it to drain before 806 * creating more dirty pages. Also, wait for 807 * any threads doing pagewalks in the vop_getattr 808 * entry points so that they don't block for 809 * long periods. 810 */ 811 mutex_enter(&rp->r_statelock); 812 while ((mi->mi_max_threads != 0 && 813 rp->r_awcount > 2 * mi->mi_max_threads) || 814 rp->r_gcount > 0) 815 cv_wait(&rp->r_cv, &rp->r_statelock); 816 mutex_exit(&rp->r_statelock); 817 818 /* 819 * Touch the page and fault it in if it is not in core 820 * before segmap_getmapflt or vpm_data_copy can lock it. 821 * This is to avoid the deadlock if the buffer is mapped 822 * to the same file through mmap which we want to write. 823 */ 824 uio_prefaultpages((long)n, uiop); 825 826 if (vpm_enable) { 827 /* 828 * It will use kpm mappings, so no need to 829 * pass an address. 830 */ 831 error = writerp(rp, NULL, n, uiop, 0); 832 } else { 833 if (segmap_kpm) { 834 int pon = uiop->uio_loffset & PAGEOFFSET; 835 size_t pn = MIN(PAGESIZE - pon, 836 uiop->uio_resid); 837 int pagecreate; 838 839 mutex_enter(&rp->r_statelock); 840 pagecreate = (pon == 0) && (pn == PAGESIZE || 841 uiop->uio_loffset + pn >= rp->r_size); 842 mutex_exit(&rp->r_statelock); 843 844 base = segmap_getmapflt(segkmap, vp, off + on, 845 pn, !pagecreate, S_WRITE); 846 847 error = writerp(rp, base + pon, n, uiop, 848 pagecreate); 849 850 } else { 851 base = segmap_getmapflt(segkmap, vp, off + on, 852 n, 0, S_READ); 853 error = writerp(rp, base + on, n, uiop, 0); 854 } 855 } 856 857 if (!error) { 858 if (mi->mi_flags & MI_NOAC) 859 flags = SM_WRITE; 860 else if ((uiop->uio_loffset % bsize) == 0 || 861 IS_SWAPVP(vp)) { 862 /* 863 * Have written a whole block. 864 * Start an asynchronous write 865 * and mark the buffer to 866 * indicate that it won't be 867 * needed again soon. 868 */ 869 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 870 } else 871 flags = 0; 872 if ((ioflag & (FSYNC|FDSYNC)) || 873 (rp->r_flags & ROUTOFSPACE)) { 874 flags &= ~SM_ASYNC; 875 flags |= SM_WRITE; 876 } 877 if (vpm_enable) { 878 error = vpm_sync_pages(vp, off, n, flags); 879 } else { 880 error = segmap_release(segkmap, base, flags); 881 } 882 } else { 883 if (vpm_enable) { 884 (void) vpm_sync_pages(vp, off, n, 0); 885 } else { 886 (void) segmap_release(segkmap, base, 0); 887 } 888 /* 889 * In the event that we got an access error while 890 * faulting in a page for a write-only file just 891 * force a write. 892 */ 893 if (error == EACCES) 894 goto nfs3_fwrite; 895 } 896 } while (!error && uiop->uio_resid > 0); 897 898 bottom: 899 if (error) { 900 uiop->uio_resid = resid + remainder; 901 uiop->uio_loffset = offset; 902 } else 903 uiop->uio_resid += remainder; 904 905 nfs_rw_exit(&rp->r_lkserlock); 906 907 return (error); 908 } 909 910 /* 911 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 912 */ 913 static int 914 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 915 int flags, cred_t *cr) 916 { 917 struct buf *bp; 918 int error; 919 page_t *savepp; 920 uchar_t fsdata; 921 stable_how stab_comm; 922 923 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 924 bp = pageio_setup(pp, len, vp, flags); 925 ASSERT(bp != NULL); 926 927 /* 928 * pageio_setup should have set b_addr to 0. This 929 * is correct since we want to do I/O on a page 930 * boundary. bp_mapin will use this addr to calculate 931 * an offset, and then set b_addr to the kernel virtual 932 * address it allocated for us. 933 */ 934 ASSERT(bp->b_un.b_addr == 0); 935 936 bp->b_edev = 0; 937 bp->b_dev = 0; 938 bp->b_lblkno = lbtodb(off); 939 bp->b_file = vp; 940 bp->b_offset = (offset_t)off; 941 bp_mapin(bp); 942 943 /* 944 * Calculate the desired level of stability to write data 945 * on the server and then mark all of the pages to reflect 946 * this. 947 */ 948 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 949 freemem > desfree) { 950 stab_comm = UNSTABLE; 951 fsdata = C_DELAYCOMMIT; 952 } else { 953 stab_comm = FILE_SYNC; 954 fsdata = C_NOCOMMIT; 955 } 956 957 savepp = pp; 958 do { 959 pp->p_fsdata = fsdata; 960 } while ((pp = pp->p_next) != savepp); 961 962 error = nfs3_bio(bp, &stab_comm, cr); 963 964 bp_mapout(bp); 965 pageio_done(bp); 966 967 /* 968 * If the server wrote pages in a more stable fashion than 969 * was requested, then clear all of the marks in the pages 970 * indicating that COMMIT operations were required. 971 */ 972 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) { 973 do { 974 pp->p_fsdata = C_NOCOMMIT; 975 } while ((pp = pp->p_next) != savepp); 976 } 977 978 return (error); 979 } 980 981 /* 982 * Write to file. Writes to remote server in largest size 983 * chunks that the server can handle. Write is synchronous. 984 */ 985 static int 986 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 987 stable_how *stab_comm) 988 { 989 mntinfo_t *mi; 990 WRITE3args args; 991 WRITE3res res; 992 int error; 993 int tsize; 994 rnode_t *rp; 995 int douprintf; 996 997 rp = VTOR(vp); 998 mi = VTOMI(vp); 999 1000 ASSERT(nfs_zone() == mi->mi_zone); 1001 1002 args.file = *VTOFH3(vp); 1003 args.stable = *stab_comm; 1004 1005 *stab_comm = FILE_SYNC; 1006 1007 douprintf = 1; 1008 1009 do { 1010 if ((vp->v_flag & VNOCACHE) || 1011 (rp->r_flags & RDIRECTIO) || 1012 (mi->mi_flags & MI_DIRECTIO)) 1013 tsize = MIN(mi->mi_stsize, count); 1014 else 1015 tsize = MIN(mi->mi_curwrite, count); 1016 args.offset = (offset3)offset; 1017 args.count = (count3)tsize; 1018 args.data.data_len = (uint_t)tsize; 1019 args.data.data_val = base; 1020 1021 if (mi->mi_io_kstats) { 1022 mutex_enter(&mi->mi_lock); 1023 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1024 mutex_exit(&mi->mi_lock); 1025 } 1026 args.mblk = NULL; 1027 do { 1028 error = rfs3call(mi, NFSPROC3_WRITE, 1029 xdr_WRITE3args, (caddr_t)&args, 1030 xdr_WRITE3res, (caddr_t)&res, cr, 1031 &douprintf, &res.status, 0, NULL); 1032 } while (error == ENFS_TRYAGAIN); 1033 if (mi->mi_io_kstats) { 1034 mutex_enter(&mi->mi_lock); 1035 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1036 mutex_exit(&mi->mi_lock); 1037 } 1038 1039 if (error) 1040 return (error); 1041 error = geterrno3(res.status); 1042 if (!error) { 1043 if (res.resok.count > args.count) { 1044 zcmn_err(getzoneid(), CE_WARN, 1045 "nfs3write: server %s wrote %u, " 1046 "requested was %u", 1047 rp->r_server->sv_hostname, 1048 res.resok.count, args.count); 1049 return (EIO); 1050 } 1051 if (res.resok.committed == UNSTABLE) { 1052 *stab_comm = UNSTABLE; 1053 if (args.stable == DATA_SYNC || 1054 args.stable == FILE_SYNC) { 1055 zcmn_err(getzoneid(), CE_WARN, 1056 "nfs3write: server %s did not commit to stable storage", 1057 rp->r_server->sv_hostname); 1058 return (EIO); 1059 } 1060 } 1061 tsize = (int)res.resok.count; 1062 count -= tsize; 1063 base += tsize; 1064 offset += tsize; 1065 if (mi->mi_io_kstats) { 1066 mutex_enter(&mi->mi_lock); 1067 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 1068 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 1069 tsize; 1070 mutex_exit(&mi->mi_lock); 1071 } 1072 lwp_stat_update(LWP_STAT_OUBLK, 1); 1073 mutex_enter(&rp->r_statelock); 1074 if (rp->r_flags & RHAVEVERF) { 1075 if (rp->r_verf != res.resok.verf) { 1076 nfs3_set_mod(vp); 1077 rp->r_verf = res.resok.verf; 1078 /* 1079 * If the data was written UNSTABLE, 1080 * then might as well stop because 1081 * the whole block will have to get 1082 * rewritten anyway. 1083 */ 1084 if (*stab_comm == UNSTABLE) { 1085 mutex_exit(&rp->r_statelock); 1086 break; 1087 } 1088 } 1089 } else { 1090 rp->r_verf = res.resok.verf; 1091 rp->r_flags |= RHAVEVERF; 1092 } 1093 /* 1094 * Mark the attribute cache as timed out and 1095 * set RWRITEATTR to indicate that the file 1096 * was modified with a WRITE operation and 1097 * that the attributes can not be trusted. 1098 */ 1099 PURGE_ATTRCACHE_LOCKED(rp); 1100 rp->r_flags |= RWRITEATTR; 1101 mutex_exit(&rp->r_statelock); 1102 } 1103 } while (!error && count); 1104 1105 return (error); 1106 } 1107 1108 /* 1109 * Read from a file. Reads data in largest chunks our interface can handle. 1110 */ 1111 static int 1112 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count, 1113 size_t *residp, cred_t *cr) 1114 { 1115 mntinfo_t *mi; 1116 READ3args args; 1117 READ3vres res; 1118 int tsize; 1119 int error; 1120 int douprintf; 1121 failinfo_t fi; 1122 rnode_t *rp; 1123 struct vattr va; 1124 hrtime_t t; 1125 1126 rp = VTOR(vp); 1127 mi = VTOMI(vp); 1128 ASSERT(nfs_zone() == mi->mi_zone); 1129 douprintf = 1; 1130 1131 args.file = *VTOFH3(vp); 1132 fi.vp = vp; 1133 fi.fhp = (caddr_t)&args.file; 1134 fi.copyproc = nfs3copyfh; 1135 fi.lookupproc = nfs3lookup; 1136 fi.xattrdirproc = acl_getxattrdir3; 1137 1138 res.pov.fres.vp = vp; 1139 res.pov.fres.vap = &va; 1140 1141 res.wlist = NULL; 1142 *residp = count; 1143 do { 1144 if (mi->mi_io_kstats) { 1145 mutex_enter(&mi->mi_lock); 1146 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1147 mutex_exit(&mi->mi_lock); 1148 } 1149 1150 do { 1151 if ((vp->v_flag & VNOCACHE) || 1152 (rp->r_flags & RDIRECTIO) || 1153 (mi->mi_flags & MI_DIRECTIO)) 1154 tsize = MIN(mi->mi_tsize, count); 1155 else 1156 tsize = MIN(mi->mi_curread, count); 1157 res.data.data_val = base; 1158 res.data.data_len = tsize; 1159 args.offset = (offset3)offset; 1160 args.count = (count3)tsize; 1161 args.res_uiop = NULL; 1162 args.res_data_val_alt = base; 1163 1164 t = gethrtime(); 1165 error = rfs3call(mi, NFSPROC3_READ, 1166 xdr_READ3args, (caddr_t)&args, 1167 xdr_READ3vres, (caddr_t)&res, cr, 1168 &douprintf, &res.status, 0, &fi); 1169 } while (error == ENFS_TRYAGAIN); 1170 1171 if (mi->mi_io_kstats) { 1172 mutex_enter(&mi->mi_lock); 1173 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1174 mutex_exit(&mi->mi_lock); 1175 } 1176 1177 if (error) 1178 return (error); 1179 1180 error = geterrno3(res.status); 1181 if (error) 1182 return (error); 1183 1184 if (res.count != res.data.data_len) { 1185 zcmn_err(getzoneid(), CE_WARN, 1186 "nfs3read: server %s returned incorrect amount", 1187 rp->r_server->sv_hostname); 1188 return (EIO); 1189 } 1190 1191 count -= res.count; 1192 *residp = count; 1193 base += res.count; 1194 offset += res.count; 1195 if (mi->mi_io_kstats) { 1196 mutex_enter(&mi->mi_lock); 1197 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1198 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 1199 mutex_exit(&mi->mi_lock); 1200 } 1201 lwp_stat_update(LWP_STAT_INBLK, 1); 1202 } while (count && !res.eof); 1203 1204 if (res.pov.attributes) { 1205 mutex_enter(&rp->r_statelock); 1206 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) { 1207 mutex_exit(&rp->r_statelock); 1208 PURGE_ATTRCACHE(vp); 1209 } else { 1210 if (rp->r_mtime <= t) 1211 nfs_attrcache_va(vp, &va); 1212 mutex_exit(&rp->r_statelock); 1213 } 1214 } 1215 1216 return (0); 1217 } 1218 1219 /* ARGSUSED */ 1220 static int 1221 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1222 caller_context_t *ct) 1223 { 1224 1225 if (nfs_zone() != VTOMI(vp)->mi_zone) 1226 return (EIO); 1227 switch (cmd) { 1228 case _FIODIRECTIO: 1229 return (nfs_directio(vp, (int)arg, cr)); 1230 default: 1231 return (ENOTTY); 1232 } 1233 } 1234 1235 /* ARGSUSED */ 1236 static int 1237 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1238 caller_context_t *ct) 1239 { 1240 int error; 1241 rnode_t *rp; 1242 1243 if (nfs_zone() != VTOMI(vp)->mi_zone) 1244 return (EIO); 1245 /* 1246 * If it has been specified that the return value will 1247 * just be used as a hint, and we are only being asked 1248 * for size, fsid or rdevid, then return the client's 1249 * notion of these values without checking to make sure 1250 * that the attribute cache is up to date. 1251 * The whole point is to avoid an over the wire GETATTR 1252 * call. 1253 */ 1254 rp = VTOR(vp); 1255 if (flags & ATTR_HINT) { 1256 if (vap->va_mask == 1257 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1258 mutex_enter(&rp->r_statelock); 1259 if (vap->va_mask | AT_SIZE) 1260 vap->va_size = rp->r_size; 1261 if (vap->va_mask | AT_FSID) 1262 vap->va_fsid = rp->r_attr.va_fsid; 1263 if (vap->va_mask | AT_RDEV) 1264 vap->va_rdev = rp->r_attr.va_rdev; 1265 mutex_exit(&rp->r_statelock); 1266 return (0); 1267 } 1268 } 1269 1270 /* 1271 * Only need to flush pages if asking for the mtime 1272 * and if there any dirty pages or any outstanding 1273 * asynchronous (write) requests for this file. 1274 */ 1275 if (vap->va_mask & AT_MTIME) { 1276 if (vn_has_cached_data(vp) && 1277 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1278 mutex_enter(&rp->r_statelock); 1279 rp->r_gcount++; 1280 mutex_exit(&rp->r_statelock); 1281 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1282 mutex_enter(&rp->r_statelock); 1283 if (error && (error == ENOSPC || error == EDQUOT)) { 1284 if (!rp->r_error) 1285 rp->r_error = error; 1286 } 1287 if (--rp->r_gcount == 0) 1288 cv_broadcast(&rp->r_cv); 1289 mutex_exit(&rp->r_statelock); 1290 } 1291 } 1292 1293 return (nfs3getattr(vp, vap, cr)); 1294 } 1295 1296 /*ARGSUSED4*/ 1297 static int 1298 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1299 caller_context_t *ct) 1300 { 1301 int error; 1302 struct vattr va; 1303 1304 if (vap->va_mask & AT_NOSET) 1305 return (EINVAL); 1306 if (nfs_zone() != VTOMI(vp)->mi_zone) 1307 return (EIO); 1308 1309 va.va_mask = AT_UID | AT_MODE; 1310 error = nfs3getattr(vp, &va, cr); 1311 if (error) 1312 return (error); 1313 1314 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx, 1315 vp); 1316 if (error) 1317 return (error); 1318 1319 return (nfs3setattr(vp, vap, flags, cr)); 1320 } 1321 1322 static int 1323 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1324 { 1325 int error; 1326 uint_t mask; 1327 SETATTR3args args; 1328 SETATTR3res res; 1329 int douprintf; 1330 rnode_t *rp; 1331 struct vattr va; 1332 mode_t omode; 1333 vsecattr_t *vsp; 1334 hrtime_t t; 1335 1336 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1337 mask = vap->va_mask; 1338 1339 rp = VTOR(vp); 1340 1341 /* 1342 * Only need to flush pages if there are any pages and 1343 * if the file is marked as dirty in some fashion. The 1344 * file must be flushed so that we can accurately 1345 * determine the size of the file and the cached data 1346 * after the SETATTR returns. A file is considered to 1347 * be dirty if it is either marked with RDIRTY, has 1348 * outstanding i/o's active, or is mmap'd. In this 1349 * last case, we can't tell whether there are dirty 1350 * pages, so we flush just to be sure. 1351 */ 1352 if (vn_has_cached_data(vp) && 1353 ((rp->r_flags & RDIRTY) || 1354 rp->r_count > 0 || 1355 rp->r_mapcnt > 0)) { 1356 ASSERT(vp->v_type != VCHR); 1357 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1358 if (error && (error == ENOSPC || error == EDQUOT)) { 1359 mutex_enter(&rp->r_statelock); 1360 if (!rp->r_error) 1361 rp->r_error = error; 1362 mutex_exit(&rp->r_statelock); 1363 } 1364 } 1365 1366 args.object = *RTOFH3(rp); 1367 /* 1368 * If the intent is for the server to set the times, 1369 * there is no point in have the mask indicating set mtime or 1370 * atime, because the vap values may be junk, and so result 1371 * in an overflow error. Remove these flags from the vap mask 1372 * before calling in this case, and restore them afterwards. 1373 */ 1374 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) { 1375 /* Use server times, so don't set the args time fields */ 1376 vap->va_mask &= ~(AT_ATIME | AT_MTIME); 1377 error = vattr_to_sattr3(vap, &args.new_attributes); 1378 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME)); 1379 if (mask & AT_ATIME) { 1380 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 1381 } 1382 if (mask & AT_MTIME) { 1383 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 1384 } 1385 } else { 1386 /* Either do not set times or use the client specified times */ 1387 error = vattr_to_sattr3(vap, &args.new_attributes); 1388 } 1389 1390 if (error) { 1391 /* req time field(s) overflow - return immediately */ 1392 return (error); 1393 } 1394 1395 va.va_mask = AT_MODE | AT_CTIME; 1396 error = nfs3getattr(vp, &va, cr); 1397 if (error) 1398 return (error); 1399 omode = va.va_mode; 1400 1401 tryagain: 1402 if (mask & AT_SIZE) { 1403 args.guard.check = TRUE; 1404 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec; 1405 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec; 1406 } else 1407 args.guard.check = FALSE; 1408 1409 douprintf = 1; 1410 1411 t = gethrtime(); 1412 1413 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 1414 xdr_SETATTR3args, (caddr_t)&args, 1415 xdr_SETATTR3res, (caddr_t)&res, cr, 1416 &douprintf, &res.status, 0, NULL); 1417 1418 /* 1419 * Purge the access cache and ACL cache if changing either the 1420 * owner of the file, the group owner, or the mode. These may 1421 * change the access permissions of the file, so purge old 1422 * information and start over again. 1423 */ 1424 if (mask & (AT_UID | AT_GID | AT_MODE)) { 1425 (void) nfs_access_purge_rp(rp); 1426 if (rp->r_secattr != NULL) { 1427 mutex_enter(&rp->r_statelock); 1428 vsp = rp->r_secattr; 1429 rp->r_secattr = NULL; 1430 mutex_exit(&rp->r_statelock); 1431 if (vsp != NULL) 1432 nfs_acl_free(vsp); 1433 } 1434 } 1435 1436 if (error) { 1437 PURGE_ATTRCACHE(vp); 1438 return (error); 1439 } 1440 1441 error = geterrno3(res.status); 1442 if (!error) { 1443 /* 1444 * If changing the size of the file, invalidate 1445 * any local cached data which is no longer part 1446 * of the file. We also possibly invalidate the 1447 * last page in the file. We could use 1448 * pvn_vpzero(), but this would mark the page as 1449 * modified and require it to be written back to 1450 * the server for no particularly good reason. 1451 * This way, if we access it, then we bring it 1452 * back in. A read should be cheaper than a 1453 * write. 1454 */ 1455 if (mask & AT_SIZE) { 1456 nfs_invalidate_pages(vp, 1457 (vap->va_size & PAGEMASK), cr); 1458 } 1459 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 1460 /* 1461 * Some servers will change the mode to clear the setuid 1462 * and setgid bits when changing the uid or gid. The 1463 * client needs to compensate appropriately. 1464 */ 1465 if (mask & (AT_UID | AT_GID)) { 1466 int terror; 1467 1468 va.va_mask = AT_MODE; 1469 terror = nfs3getattr(vp, &va, cr); 1470 if (!terror && 1471 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 1472 (!(mask & AT_MODE) && va.va_mode != omode))) { 1473 va.va_mask = AT_MODE; 1474 if (mask & AT_MODE) 1475 va.va_mode = vap->va_mode; 1476 else 1477 va.va_mode = omode; 1478 (void) nfs3setattr(vp, &va, 0, cr); 1479 } 1480 } 1481 } else { 1482 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 1483 /* 1484 * If we got back a "not synchronized" error, then 1485 * we need to retry with a new guard value. The 1486 * guard value used is the change time. If the 1487 * server returned post_op_attr, then we can just 1488 * retry because we have the latest attributes. 1489 * Otherwise, we issue a GETATTR to get the latest 1490 * attributes and then retry. If we couldn't get 1491 * the attributes this way either, then we give 1492 * up because we can't complete the operation as 1493 * required. 1494 */ 1495 if (res.status == NFS3ERR_NOT_SYNC) { 1496 va.va_mask = AT_CTIME; 1497 if (nfs3getattr(vp, &va, cr) == 0) 1498 goto tryagain; 1499 } 1500 PURGE_STALE_FH(error, vp, cr); 1501 } 1502 1503 return (error); 1504 } 1505 1506 static int 1507 nfs3_accessx(void *vp, int mode, cred_t *cr) 1508 { 1509 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1510 return (nfs3_access(vp, mode, 0, cr, NULL)); 1511 } 1512 1513 /* ARGSUSED */ 1514 static int 1515 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1516 { 1517 int error; 1518 ACCESS3args args; 1519 ACCESS3res res; 1520 int douprintf; 1521 uint32 acc; 1522 rnode_t *rp; 1523 cred_t *cred, *ncr, *ncrfree = NULL; 1524 failinfo_t fi; 1525 nfs_access_type_t cacc; 1526 hrtime_t t; 1527 1528 acc = 0; 1529 if (nfs_zone() != VTOMI(vp)->mi_zone) 1530 return (EIO); 1531 if (mode & VREAD) 1532 acc |= ACCESS3_READ; 1533 if (mode & VWRITE) { 1534 if (vn_is_readonly(vp) && !IS_DEVVP(vp)) 1535 return (EROFS); 1536 if (vp->v_type == VDIR) 1537 acc |= ACCESS3_DELETE; 1538 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND; 1539 } 1540 if (mode & VEXEC) { 1541 if (vp->v_type == VDIR) 1542 acc |= ACCESS3_LOOKUP; 1543 else 1544 acc |= ACCESS3_EXECUTE; 1545 } 1546 1547 rp = VTOR(vp); 1548 args.object = *VTOFH3(vp); 1549 if (vp->v_type == VDIR) { 1550 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY | 1551 ACCESS3_EXTEND | ACCESS3_LOOKUP; 1552 } else { 1553 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND | 1554 ACCESS3_EXECUTE; 1555 } 1556 fi.vp = vp; 1557 fi.fhp = (caddr_t)&args.object; 1558 fi.copyproc = nfs3copyfh; 1559 fi.lookupproc = nfs3lookup; 1560 fi.xattrdirproc = acl_getxattrdir3; 1561 1562 cred = cr; 1563 /* 1564 * ncr and ncrfree both initially 1565 * point to the memory area returned 1566 * by crnetadjust(); 1567 * ncrfree not NULL when exiting means 1568 * that we need to release it 1569 */ 1570 ncr = crnetadjust(cred); 1571 ncrfree = ncr; 1572 tryagain: 1573 if (rp->r_acache != NULL) { 1574 cacc = nfs_access_check(rp, acc, cred); 1575 if (cacc == NFS_ACCESS_ALLOWED) { 1576 if (ncrfree != NULL) 1577 crfree(ncrfree); 1578 return (0); 1579 } 1580 if (cacc == NFS_ACCESS_DENIED) { 1581 /* 1582 * If the cred can be adjusted, try again 1583 * with the new cred. 1584 */ 1585 if (ncr != NULL) { 1586 cred = ncr; 1587 ncr = NULL; 1588 goto tryagain; 1589 } 1590 if (ncrfree != NULL) 1591 crfree(ncrfree); 1592 return (EACCES); 1593 } 1594 } 1595 1596 douprintf = 1; 1597 1598 t = gethrtime(); 1599 1600 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS, 1601 xdr_ACCESS3args, (caddr_t)&args, 1602 xdr_ACCESS3res, (caddr_t)&res, cred, 1603 &douprintf, &res.status, 0, &fi); 1604 1605 if (error) { 1606 if (ncrfree != NULL) 1607 crfree(ncrfree); 1608 return (error); 1609 } 1610 1611 error = geterrno3(res.status); 1612 if (!error) { 1613 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 1614 nfs_access_cache(rp, args.access, res.resok.access, cred); 1615 /* 1616 * we just cached results with cred; if cred is the 1617 * adjusted credentials from crnetadjust, we do not want 1618 * to release them before exiting: hence setting ncrfree 1619 * to NULL 1620 */ 1621 if (cred != cr) 1622 ncrfree = NULL; 1623 if ((acc & res.resok.access) != acc) { 1624 /* 1625 * If the cred can be adjusted, try again 1626 * with the new cred. 1627 */ 1628 if (ncr != NULL) { 1629 cred = ncr; 1630 ncr = NULL; 1631 goto tryagain; 1632 } 1633 error = EACCES; 1634 } 1635 } else { 1636 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 1637 PURGE_STALE_FH(error, vp, cr); 1638 } 1639 1640 if (ncrfree != NULL) 1641 crfree(ncrfree); 1642 1643 return (error); 1644 } 1645 1646 static int nfs3_do_symlink_cache = 1; 1647 1648 /* ARGSUSED */ 1649 static int 1650 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1651 { 1652 int error; 1653 READLINK3args args; 1654 READLINK3res res; 1655 nfspath3 resdata_backup; 1656 rnode_t *rp; 1657 int douprintf; 1658 int len; 1659 failinfo_t fi; 1660 hrtime_t t; 1661 1662 /* 1663 * Can't readlink anything other than a symbolic link. 1664 */ 1665 if (vp->v_type != VLNK) 1666 return (EINVAL); 1667 if (nfs_zone() != VTOMI(vp)->mi_zone) 1668 return (EIO); 1669 1670 rp = VTOR(vp); 1671 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) { 1672 error = nfs3_validate_caches(vp, cr); 1673 if (error) 1674 return (error); 1675 mutex_enter(&rp->r_statelock); 1676 if (rp->r_symlink.contents != NULL) { 1677 error = uiomove(rp->r_symlink.contents, 1678 rp->r_symlink.len, UIO_READ, uiop); 1679 mutex_exit(&rp->r_statelock); 1680 return (error); 1681 } 1682 mutex_exit(&rp->r_statelock); 1683 } 1684 1685 args.symlink = *VTOFH3(vp); 1686 fi.vp = vp; 1687 fi.fhp = (caddr_t)&args.symlink; 1688 fi.copyproc = nfs3copyfh; 1689 fi.lookupproc = nfs3lookup; 1690 fi.xattrdirproc = acl_getxattrdir3; 1691 1692 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1693 1694 resdata_backup = res.resok.data; 1695 1696 douprintf = 1; 1697 1698 t = gethrtime(); 1699 1700 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK, 1701 xdr_READLINK3args, (caddr_t)&args, 1702 xdr_READLINK3res, (caddr_t)&res, cr, 1703 &douprintf, &res.status, 0, &fi); 1704 1705 if (res.resok.data == nfs3nametoolong) 1706 error = EINVAL; 1707 1708 if (error) { 1709 kmem_free(resdata_backup, MAXPATHLEN); 1710 return (error); 1711 } 1712 1713 error = geterrno3(res.status); 1714 if (!error) { 1715 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t, 1716 cr); 1717 len = strlen(res.resok.data); 1718 error = uiomove(res.resok.data, len, UIO_READ, uiop); 1719 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) { 1720 mutex_enter(&rp->r_statelock); 1721 if (rp->r_symlink.contents == NULL) { 1722 rp->r_symlink.contents = res.resok.data; 1723 rp->r_symlink.len = len; 1724 rp->r_symlink.size = MAXPATHLEN; 1725 mutex_exit(&rp->r_statelock); 1726 } else { 1727 mutex_exit(&rp->r_statelock); 1728 1729 kmem_free((void *)res.resok.data, MAXPATHLEN); 1730 } 1731 } else { 1732 kmem_free((void *)res.resok.data, MAXPATHLEN); 1733 } 1734 } else { 1735 nfs3_cache_post_op_attr(vp, 1736 &res.resfail.symlink_attributes, t, cr); 1737 PURGE_STALE_FH(error, vp, cr); 1738 1739 kmem_free((void *)res.resok.data, MAXPATHLEN); 1740 1741 } 1742 1743 /* 1744 * The over the wire error for attempting to readlink something 1745 * other than a symbolic link is ENXIO. However, we need to 1746 * return EINVAL instead of ENXIO, so we map it here. 1747 */ 1748 return (error == ENXIO ? EINVAL : error); 1749 } 1750 1751 /* 1752 * Flush local dirty pages to stable storage on the server. 1753 * 1754 * If FNODSYNC is specified, then there is nothing to do because 1755 * metadata changes are not cached on the client before being 1756 * sent to the server. 1757 */ 1758 /* ARGSUSED */ 1759 static int 1760 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1761 { 1762 int error; 1763 1764 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1765 return (0); 1766 if (nfs_zone() != VTOMI(vp)->mi_zone) 1767 return (EIO); 1768 1769 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 1770 if (!error) 1771 error = VTOR(vp)->r_error; 1772 return (error); 1773 } 1774 1775 /* 1776 * Weirdness: if the file was removed or the target of a rename 1777 * operation while it was open, it got renamed instead. Here we 1778 * remove the renamed file. 1779 */ 1780 /* ARGSUSED */ 1781 static void 1782 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1783 { 1784 rnode_t *rp; 1785 1786 ASSERT(vp != DNLC_NO_VNODE); 1787 1788 /* 1789 * If this is coming from the wrong zone, we let someone in the right 1790 * zone take care of it asynchronously. We can get here due to 1791 * VN_RELE() being called from pageout() or fsflush(). This call may 1792 * potentially turn into an expensive no-op if, for instance, v_count 1793 * gets incremented in the meantime, but it's still correct. 1794 */ 1795 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1796 nfs_async_inactive(vp, cr, nfs3_inactive); 1797 return; 1798 } 1799 1800 rp = VTOR(vp); 1801 redo: 1802 if (rp->r_unldvp != NULL) { 1803 /* 1804 * Save the vnode pointer for the directory where the 1805 * unlinked-open file got renamed, then set it to NULL 1806 * to prevent another thread from getting here before 1807 * we're done with the remove. While we have the 1808 * statelock, make local copies of the pertinent rnode 1809 * fields. If we weren't to do this in an atomic way, the 1810 * the unl* fields could become inconsistent with respect 1811 * to each other due to a race condition between this 1812 * code and nfs_remove(). See bug report 1034328. 1813 */ 1814 mutex_enter(&rp->r_statelock); 1815 if (rp->r_unldvp != NULL) { 1816 vnode_t *unldvp; 1817 char *unlname; 1818 cred_t *unlcred; 1819 REMOVE3args args; 1820 REMOVE3res res; 1821 int douprintf; 1822 int error; 1823 hrtime_t t; 1824 1825 unldvp = rp->r_unldvp; 1826 rp->r_unldvp = NULL; 1827 unlname = rp->r_unlname; 1828 rp->r_unlname = NULL; 1829 unlcred = rp->r_unlcred; 1830 rp->r_unlcred = NULL; 1831 mutex_exit(&rp->r_statelock); 1832 1833 /* 1834 * If there are any dirty pages left, then flush 1835 * them. This is unfortunate because they just 1836 * may get thrown away during the remove operation, 1837 * but we have to do this for correctness. 1838 */ 1839 if (vn_has_cached_data(vp) && 1840 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1841 ASSERT(vp->v_type != VCHR); 1842 error = nfs3_putpage(vp, (offset_t)0, 0, 0, 1843 cr, ct); 1844 if (error) { 1845 mutex_enter(&rp->r_statelock); 1846 if (!rp->r_error) 1847 rp->r_error = error; 1848 mutex_exit(&rp->r_statelock); 1849 } 1850 } 1851 1852 /* 1853 * Do the remove operation on the renamed file 1854 */ 1855 setdiropargs3(&args.object, unlname, unldvp); 1856 1857 douprintf = 1; 1858 1859 t = gethrtime(); 1860 1861 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE, 1862 xdr_diropargs3, (caddr_t)&args, 1863 xdr_REMOVE3res, (caddr_t)&res, unlcred, 1864 &douprintf, &res.status, 0, NULL); 1865 1866 if (error) { 1867 PURGE_ATTRCACHE(unldvp); 1868 } else { 1869 error = geterrno3(res.status); 1870 if (!error) { 1871 nfs3_cache_wcc_data(unldvp, 1872 &res.resok.dir_wcc, t, cr); 1873 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1874 nfs_purge_rddir_cache(unldvp); 1875 } else { 1876 nfs3_cache_wcc_data(unldvp, 1877 &res.resfail.dir_wcc, t, cr); 1878 PURGE_STALE_FH(error, unldvp, cr); 1879 } 1880 } 1881 1882 /* 1883 * Release stuff held for the remove 1884 */ 1885 VN_RELE(unldvp); 1886 kmem_free(unlname, MAXNAMELEN); 1887 crfree(unlcred); 1888 goto redo; 1889 } 1890 mutex_exit(&rp->r_statelock); 1891 } 1892 1893 rp_addfree(rp, cr); 1894 } 1895 1896 /* 1897 * Remote file system operations having to do with directory manipulation. 1898 */ 1899 1900 /* ARGSUSED */ 1901 static int 1902 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1903 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1904 int *direntflags, pathname_t *realpnp) 1905 { 1906 int error; 1907 vnode_t *vp; 1908 vnode_t *avp = NULL; 1909 rnode_t *drp; 1910 1911 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1912 return (EPERM); 1913 1914 drp = VTOR(dvp); 1915 1916 /* 1917 * Are we looking up extended attributes? If so, "dvp" is 1918 * the file or directory for which we want attributes, and 1919 * we need a lookup of the hidden attribute directory 1920 * before we lookup the rest of the path. 1921 */ 1922 if (flags & LOOKUP_XATTR) { 1923 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1924 mntinfo_t *mi; 1925 1926 mi = VTOMI(dvp); 1927 if (!(mi->mi_flags & MI_EXTATTR)) 1928 return (EINVAL); 1929 1930 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1931 return (EINTR); 1932 1933 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1934 if (avp == NULL) 1935 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0); 1936 else 1937 error = 0; 1938 1939 nfs_rw_exit(&drp->r_rwlock); 1940 1941 if (error) { 1942 if (mi->mi_flags & MI_EXTATTR) 1943 return (error); 1944 return (EINVAL); 1945 } 1946 dvp = avp; 1947 drp = VTOR(dvp); 1948 } 1949 1950 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1951 error = EINTR; 1952 goto out; 1953 } 1954 1955 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1956 1957 nfs_rw_exit(&drp->r_rwlock); 1958 1959 /* 1960 * If vnode is a device, create special vnode. 1961 */ 1962 if (!error && IS_DEVVP(*vpp)) { 1963 vp = *vpp; 1964 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1965 VN_RELE(vp); 1966 } 1967 1968 out: 1969 if (avp != NULL) 1970 VN_RELE(avp); 1971 1972 return (error); 1973 } 1974 1975 static int nfs3_lookup_neg_cache = 1; 1976 1977 #ifdef DEBUG 1978 static int nfs3_lookup_dnlc_hits = 0; 1979 static int nfs3_lookup_dnlc_misses = 0; 1980 static int nfs3_lookup_dnlc_neg_hits = 0; 1981 static int nfs3_lookup_dnlc_disappears = 0; 1982 static int nfs3_lookup_dnlc_lookups = 0; 1983 #endif 1984 1985 /* ARGSUSED */ 1986 int 1987 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1988 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1989 { 1990 int error; 1991 rnode_t *drp; 1992 1993 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1994 /* 1995 * If lookup is for "", just return dvp. Don't need 1996 * to send it over the wire, look it up in the dnlc, 1997 * or perform any access checks. 1998 */ 1999 if (*nm == '\0') { 2000 VN_HOLD(dvp); 2001 *vpp = dvp; 2002 return (0); 2003 } 2004 2005 /* 2006 * Can't do lookups in non-directories. 2007 */ 2008 if (dvp->v_type != VDIR) 2009 return (ENOTDIR); 2010 2011 /* 2012 * If we're called with RFSCALL_SOFT, it's important that 2013 * the only rfscall is one we make directly; if we permit 2014 * an access call because we're looking up "." or validating 2015 * a dnlc hit, we'll deadlock because that rfscall will not 2016 * have the RFSCALL_SOFT set. 2017 */ 2018 if (rfscall_flags & RFSCALL_SOFT) 2019 goto callit; 2020 2021 /* 2022 * If lookup is for ".", just return dvp. Don't need 2023 * to send it over the wire or look it up in the dnlc, 2024 * just need to check access. 2025 */ 2026 if (strcmp(nm, ".") == 0) { 2027 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2028 if (error) 2029 return (error); 2030 VN_HOLD(dvp); 2031 *vpp = dvp; 2032 return (0); 2033 } 2034 2035 drp = VTOR(dvp); 2036 if (!(drp->r_flags & RLOOKUP)) { 2037 mutex_enter(&drp->r_statelock); 2038 drp->r_flags |= RLOOKUP; 2039 mutex_exit(&drp->r_statelock); 2040 } 2041 2042 /* 2043 * Lookup this name in the DNLC. If there was a valid entry, 2044 * then return the results of the lookup. 2045 */ 2046 error = nfs3lookup_dnlc(dvp, nm, vpp, cr); 2047 if (error || *vpp != NULL) 2048 return (error); 2049 2050 callit: 2051 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags); 2052 2053 return (error); 2054 } 2055 2056 static int 2057 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 2058 { 2059 int error; 2060 vnode_t *vp; 2061 2062 ASSERT(*nm != '\0'); 2063 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2064 /* 2065 * Lookup this name in the DNLC. If successful, then validate 2066 * the caches and then recheck the DNLC. The DNLC is rechecked 2067 * just in case this entry got invalidated during the call 2068 * to nfs3_validate_caches. 2069 * 2070 * An assumption is being made that it is safe to say that a 2071 * file exists which may not on the server. Any operations to 2072 * the server will fail with ESTALE. 2073 */ 2074 #ifdef DEBUG 2075 nfs3_lookup_dnlc_lookups++; 2076 #endif 2077 vp = dnlc_lookup(dvp, nm); 2078 if (vp != NULL) { 2079 VN_RELE(vp); 2080 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 2081 PURGE_ATTRCACHE(dvp); 2082 } 2083 error = nfs3_validate_caches(dvp, cr); 2084 if (error) 2085 return (error); 2086 vp = dnlc_lookup(dvp, nm); 2087 if (vp != NULL) { 2088 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2089 if (error) { 2090 VN_RELE(vp); 2091 return (error); 2092 } 2093 if (vp == DNLC_NO_VNODE) { 2094 VN_RELE(vp); 2095 #ifdef DEBUG 2096 nfs3_lookup_dnlc_neg_hits++; 2097 #endif 2098 return (ENOENT); 2099 } 2100 *vpp = vp; 2101 #ifdef DEBUG 2102 nfs3_lookup_dnlc_hits++; 2103 #endif 2104 return (0); 2105 } 2106 #ifdef DEBUG 2107 nfs3_lookup_dnlc_disappears++; 2108 #endif 2109 } 2110 #ifdef DEBUG 2111 else 2112 nfs3_lookup_dnlc_misses++; 2113 #endif 2114 2115 *vpp = NULL; 2116 2117 return (0); 2118 } 2119 2120 static int 2121 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 2122 int rfscall_flags) 2123 { 2124 int error; 2125 LOOKUP3args args; 2126 LOOKUP3vres res; 2127 int douprintf; 2128 struct vattr vattr; 2129 struct vattr dvattr; 2130 vnode_t *vp; 2131 failinfo_t fi; 2132 hrtime_t t; 2133 2134 ASSERT(*nm != '\0'); 2135 ASSERT(dvp->v_type == VDIR); 2136 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2137 2138 setdiropargs3(&args.what, nm, dvp); 2139 2140 fi.vp = dvp; 2141 fi.fhp = (caddr_t)&args.what.dir; 2142 fi.copyproc = nfs3copyfh; 2143 fi.lookupproc = nfs3lookup; 2144 fi.xattrdirproc = acl_getxattrdir3; 2145 res.obj_attributes.fres.vp = dvp; 2146 res.obj_attributes.fres.vap = &vattr; 2147 res.dir_attributes.fres.vp = dvp; 2148 res.dir_attributes.fres.vap = &dvattr; 2149 2150 douprintf = 1; 2151 2152 t = gethrtime(); 2153 2154 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP, 2155 xdr_diropargs3, (caddr_t)&args, 2156 xdr_LOOKUP3vres, (caddr_t)&res, cr, 2157 &douprintf, &res.status, rfscall_flags, &fi); 2158 2159 if (error) 2160 return (error); 2161 2162 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr); 2163 2164 error = geterrno3(res.status); 2165 if (error) { 2166 PURGE_STALE_FH(error, dvp, cr); 2167 if (error == ENOENT && nfs3_lookup_neg_cache) 2168 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 2169 return (error); 2170 } 2171 2172 if (res.obj_attributes.attributes) { 2173 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap, 2174 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2175 } else { 2176 vp = makenfs3node_va(&res.object, NULL, 2177 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2178 if (vp->v_type == VNON) { 2179 vattr.va_mask = AT_TYPE; 2180 error = nfs3getattr(vp, &vattr, cr); 2181 if (error) { 2182 VN_RELE(vp); 2183 return (error); 2184 } 2185 vp->v_type = vattr.va_type; 2186 } 2187 } 2188 2189 if (!(rfscall_flags & RFSCALL_SOFT)) 2190 dnlc_update(dvp, nm, vp); 2191 2192 *vpp = vp; 2193 2194 return (error); 2195 } 2196 2197 #ifdef DEBUG 2198 static int nfs3_create_misses = 0; 2199 #endif 2200 2201 /* ARGSUSED */ 2202 static int 2203 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2204 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 2205 vsecattr_t *vsecp) 2206 { 2207 int error; 2208 vnode_t *vp; 2209 rnode_t *rp; 2210 struct vattr vattr; 2211 rnode_t *drp; 2212 vnode_t *tempvp; 2213 2214 drp = VTOR(dvp); 2215 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2216 return (EPERM); 2217 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2218 return (EINTR); 2219 2220 top: 2221 /* 2222 * We make a copy of the attributes because the caller does not 2223 * expect us to change what va points to. 2224 */ 2225 vattr = *va; 2226 2227 /* 2228 * If the pathname is "", just use dvp. Don't need 2229 * to send it over the wire, look it up in the dnlc, 2230 * or perform any access checks. 2231 */ 2232 if (*nm == '\0') { 2233 error = 0; 2234 VN_HOLD(dvp); 2235 vp = dvp; 2236 /* 2237 * If the pathname is ".", just use dvp. Don't need 2238 * to send it over the wire or look it up in the dnlc, 2239 * just need to check access. 2240 */ 2241 } else if (strcmp(nm, ".") == 0) { 2242 error = nfs3_access(dvp, VEXEC, 0, cr, ct); 2243 if (error) { 2244 nfs_rw_exit(&drp->r_rwlock); 2245 return (error); 2246 } 2247 VN_HOLD(dvp); 2248 vp = dvp; 2249 /* 2250 * We need to go over the wire, just to be sure whether the 2251 * file exists or not. Using the DNLC can be dangerous in 2252 * this case when making a decision regarding existence. 2253 */ 2254 } else { 2255 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0); 2256 } 2257 if (!error) { 2258 if (exclusive == EXCL) 2259 error = EEXIST; 2260 else if (vp->v_type == VDIR && (mode & VWRITE)) 2261 error = EISDIR; 2262 else { 2263 /* 2264 * If vnode is a device, create special vnode. 2265 */ 2266 if (IS_DEVVP(vp)) { 2267 tempvp = vp; 2268 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2269 VN_RELE(tempvp); 2270 } 2271 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 2272 if ((vattr.va_mask & AT_SIZE) && 2273 vp->v_type == VREG) { 2274 rp = VTOR(vp); 2275 /* 2276 * Check here for large file handled 2277 * by LF-unaware process (as 2278 * ufs_create() does) 2279 */ 2280 if (!(lfaware & FOFFMAX)) { 2281 mutex_enter(&rp->r_statelock); 2282 if (rp->r_size > MAXOFF32_T) 2283 error = EOVERFLOW; 2284 mutex_exit(&rp->r_statelock); 2285 } 2286 if (!error) { 2287 vattr.va_mask = AT_SIZE; 2288 error = nfs3setattr(vp, 2289 &vattr, 0, cr); 2290 } 2291 } 2292 } 2293 } 2294 nfs_rw_exit(&drp->r_rwlock); 2295 if (error) { 2296 VN_RELE(vp); 2297 } else { 2298 /* 2299 * existing file got truncated, notify. 2300 */ 2301 vnevent_create(vp, ct); 2302 *vpp = vp; 2303 } 2304 return (error); 2305 } 2306 2307 dnlc_remove(dvp, nm); 2308 2309 /* 2310 * Decide what the group-id of the created file should be. 2311 * Set it in attribute list as advisory... 2312 */ 2313 error = setdirgid(dvp, &vattr.va_gid, cr); 2314 if (error) { 2315 nfs_rw_exit(&drp->r_rwlock); 2316 return (error); 2317 } 2318 vattr.va_mask |= AT_GID; 2319 2320 ASSERT(vattr.va_mask & AT_TYPE); 2321 if (vattr.va_type == VREG) { 2322 ASSERT(vattr.va_mask & AT_MODE); 2323 if (MANDMODE(vattr.va_mode)) { 2324 nfs_rw_exit(&drp->r_rwlock); 2325 return (EACCES); 2326 } 2327 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr, 2328 lfaware); 2329 /* 2330 * If this is not an exclusive create, then the CREATE 2331 * request will be made with the GUARDED mode set. This 2332 * means that the server will return EEXIST if the file 2333 * exists. The file could exist because of a retransmitted 2334 * request. In this case, we recover by starting over and 2335 * checking to see whether the file exists. This second 2336 * time through it should and a CREATE request will not be 2337 * sent. 2338 * 2339 * This handles the problem of a dangling CREATE request 2340 * which contains attributes which indicate that the file 2341 * should be truncated. This retransmitted request could 2342 * possibly truncate valid data in the file if not caught 2343 * by the duplicate request mechanism on the server or if 2344 * not caught by other means. The scenario is: 2345 * 2346 * Client transmits CREATE request with size = 0 2347 * Client times out, retransmits request. 2348 * Response to the first request arrives from the server 2349 * and the client proceeds on. 2350 * Client writes data to the file. 2351 * The server now processes retransmitted CREATE request 2352 * and truncates file. 2353 * 2354 * The use of the GUARDED CREATE request prevents this from 2355 * happening because the retransmitted CREATE would fail 2356 * with EEXIST and would not truncate the file. 2357 */ 2358 if (error == EEXIST && exclusive == NONEXCL) { 2359 #ifdef DEBUG 2360 nfs3_create_misses++; 2361 #endif 2362 goto top; 2363 } 2364 nfs_rw_exit(&drp->r_rwlock); 2365 return (error); 2366 } 2367 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 2368 nfs_rw_exit(&drp->r_rwlock); 2369 return (error); 2370 } 2371 2372 /* ARGSUSED */ 2373 static int 2374 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2375 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 2376 { 2377 int error; 2378 CREATE3args args; 2379 CREATE3res res; 2380 int douprintf; 2381 vnode_t *vp; 2382 struct vattr vattr; 2383 nfstime3 *verfp; 2384 rnode_t *rp; 2385 timestruc_t now; 2386 hrtime_t t; 2387 2388 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2389 setdiropargs3(&args.where, nm, dvp); 2390 if (exclusive == EXCL) { 2391 args.how.mode = EXCLUSIVE; 2392 /* 2393 * Construct the create verifier. This verifier needs 2394 * to be unique between different clients. It also needs 2395 * to vary for each exclusive create request generated 2396 * from the client to the server. 2397 * 2398 * The first attempt is made to use the hostid and a 2399 * unique number on the client. If the hostid has not 2400 * been set, the high resolution time that the exclusive 2401 * create request is being made is used. This will work 2402 * unless two different clients, both with the hostid 2403 * not set, attempt an exclusive create request on the 2404 * same file, at exactly the same clock time. The 2405 * chances of this happening seem small enough to be 2406 * reasonable. 2407 */ 2408 verfp = (nfstime3 *)&args.how.createhow3_u.verf; 2409 verfp->seconds = zone_get_hostid(NULL); 2410 if (verfp->seconds != 0) 2411 verfp->nseconds = newnum(); 2412 else { 2413 gethrestime(&now); 2414 verfp->seconds = now.tv_sec; 2415 verfp->nseconds = now.tv_nsec; 2416 } 2417 /* 2418 * Since the server will use this value for the mtime, 2419 * make sure that it can't overflow. Zero out the MSB. 2420 * The actual value does not matter here, only its uniqeness. 2421 */ 2422 verfp->seconds %= INT32_MAX; 2423 } else { 2424 /* 2425 * Issue the non-exclusive create in guarded mode. This 2426 * may result in some false EEXIST responses for 2427 * retransmitted requests, but these will be handled at 2428 * a higher level. By using GUARDED, duplicate requests 2429 * to do file truncation and possible access problems 2430 * can be avoided. 2431 */ 2432 args.how.mode = GUARDED; 2433 error = vattr_to_sattr3(va, 2434 &args.how.createhow3_u.obj_attributes); 2435 if (error) { 2436 /* req time field(s) overflow - return immediately */ 2437 return (error); 2438 } 2439 } 2440 2441 douprintf = 1; 2442 2443 t = gethrtime(); 2444 2445 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE, 2446 xdr_CREATE3args, (caddr_t)&args, 2447 xdr_CREATE3res, (caddr_t)&res, cr, 2448 &douprintf, &res.status, 0, NULL); 2449 2450 if (error) { 2451 PURGE_ATTRCACHE(dvp); 2452 return (error); 2453 } 2454 2455 error = geterrno3(res.status); 2456 if (!error) { 2457 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2458 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2459 nfs_purge_rddir_cache(dvp); 2460 2461 /* 2462 * On exclusive create the times need to be explicitly 2463 * set to clear any potential verifier that may be stored 2464 * in one of these fields (see comment below). This 2465 * is done here to cover the case where no post op attrs 2466 * were returned or a 'invalid' time was returned in 2467 * the attributes. 2468 */ 2469 if (exclusive == EXCL) 2470 va->va_mask |= (AT_MTIME | AT_ATIME); 2471 2472 if (!res.resok.obj.handle_follows) { 2473 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2474 if (error) 2475 return (error); 2476 } else { 2477 if (res.resok.obj_attributes.attributes) { 2478 vp = makenfs3node(&res.resok.obj.handle, 2479 &res.resok.obj_attributes.attr, 2480 dvp->v_vfsp, t, cr, NULL, NULL); 2481 } else { 2482 vp = makenfs3node(&res.resok.obj.handle, NULL, 2483 dvp->v_vfsp, t, cr, NULL, NULL); 2484 2485 /* 2486 * On an exclusive create, it is possible 2487 * that attributes were returned but those 2488 * postop attributes failed to decode 2489 * properly. If this is the case, 2490 * then most likely the atime or mtime 2491 * were invalid for our client; this 2492 * is caused by the server storing the 2493 * create verifier in one of the time 2494 * fields(most likely mtime). 2495 * So... we are going to setattr just the 2496 * atime/mtime to clear things up. 2497 */ 2498 if (exclusive == EXCL) { 2499 if (error = 2500 nfs3excl_create_settimes(vp, 2501 va, cr)) { 2502 /* 2503 * Setting the times failed. 2504 * Remove the file and return 2505 * the error. 2506 */ 2507 VN_RELE(vp); 2508 (void) nfs3_remove(dvp, 2509 nm, cr, NULL, 0); 2510 return (error); 2511 } 2512 } 2513 2514 /* 2515 * This handles the non-exclusive case 2516 * and the exclusive case where no post op 2517 * attrs were returned. 2518 */ 2519 if (vp->v_type == VNON) { 2520 vattr.va_mask = AT_TYPE; 2521 error = nfs3getattr(vp, &vattr, cr); 2522 if (error) { 2523 VN_RELE(vp); 2524 return (error); 2525 } 2526 vp->v_type = vattr.va_type; 2527 } 2528 } 2529 dnlc_update(dvp, nm, vp); 2530 } 2531 2532 rp = VTOR(vp); 2533 2534 /* 2535 * Check here for large file handled by 2536 * LF-unaware process (as ufs_create() does) 2537 */ 2538 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG && 2539 !(lfaware & FOFFMAX)) { 2540 mutex_enter(&rp->r_statelock); 2541 if (rp->r_size > MAXOFF32_T) { 2542 mutex_exit(&rp->r_statelock); 2543 VN_RELE(vp); 2544 return (EOVERFLOW); 2545 } 2546 mutex_exit(&rp->r_statelock); 2547 } 2548 2549 if (exclusive == EXCL && 2550 (va->va_mask & ~(AT_GID | AT_SIZE))) { 2551 /* 2552 * If doing an exclusive create, then generate 2553 * a SETATTR to set the initial attributes. 2554 * Try to set the mtime and the atime to the 2555 * server's current time. It is somewhat 2556 * expected that these fields will be used to 2557 * store the exclusive create cookie. If not, 2558 * server implementors will need to know that 2559 * a SETATTR will follow an exclusive create 2560 * and the cookie should be destroyed if 2561 * appropriate. This work may have been done 2562 * earlier in this function if post op attrs 2563 * were not available. 2564 * 2565 * The AT_GID and AT_SIZE bits are turned off 2566 * so that the SETATTR request will not attempt 2567 * to process these. The gid will be set 2568 * separately if appropriate. The size is turned 2569 * off because it is assumed that a new file will 2570 * be created empty and if the file wasn't empty, 2571 * then the exclusive create will have failed 2572 * because the file must have existed already. 2573 * Therefore, no truncate operation is needed. 2574 */ 2575 va->va_mask &= ~(AT_GID | AT_SIZE); 2576 error = nfs3setattr(vp, va, 0, cr); 2577 if (error) { 2578 /* 2579 * Couldn't correct the attributes of 2580 * the newly created file and the 2581 * attributes are wrong. Remove the 2582 * file and return an error to the 2583 * application. 2584 */ 2585 VN_RELE(vp); 2586 (void) nfs3_remove(dvp, nm, cr, NULL, 0); 2587 return (error); 2588 } 2589 } 2590 2591 if (va->va_gid != rp->r_attr.va_gid) { 2592 /* 2593 * If the gid on the file isn't right, then 2594 * generate a SETATTR to attempt to change 2595 * it. This may or may not work, depending 2596 * upon the server's semantics for allowing 2597 * file ownership changes. 2598 */ 2599 va->va_mask = AT_GID; 2600 (void) nfs3setattr(vp, va, 0, cr); 2601 } 2602 2603 /* 2604 * If vnode is a device create special vnode 2605 */ 2606 if (IS_DEVVP(vp)) { 2607 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2608 VN_RELE(vp); 2609 } else 2610 *vpp = vp; 2611 } else { 2612 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2613 PURGE_STALE_FH(error, dvp, cr); 2614 } 2615 2616 return (error); 2617 } 2618 2619 /* 2620 * Special setattr function to take care of rest of atime/mtime 2621 * after successful exclusive create. This function exists to avoid 2622 * handling attributes from the server; exclusive the atime/mtime fields 2623 * may be 'invalid' in client's view and therefore can not be trusted. 2624 */ 2625 static int 2626 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr) 2627 { 2628 int error; 2629 uint_t mask; 2630 SETATTR3args args; 2631 SETATTR3res res; 2632 int douprintf; 2633 rnode_t *rp; 2634 hrtime_t t; 2635 2636 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 2637 /* save the caller's mask so that it can be reset later */ 2638 mask = vap->va_mask; 2639 2640 rp = VTOR(vp); 2641 2642 args.object = *RTOFH3(rp); 2643 args.guard.check = FALSE; 2644 2645 /* Use the mask to initialize the arguments */ 2646 vap->va_mask = 0; 2647 error = vattr_to_sattr3(vap, &args.new_attributes); 2648 2649 /* We want to set just atime/mtime on this request */ 2650 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 2651 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 2652 2653 douprintf = 1; 2654 2655 t = gethrtime(); 2656 2657 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 2658 xdr_SETATTR3args, (caddr_t)&args, 2659 xdr_SETATTR3res, (caddr_t)&res, cr, 2660 &douprintf, &res.status, 0, NULL); 2661 2662 if (error) { 2663 vap->va_mask = mask; 2664 return (error); 2665 } 2666 2667 error = geterrno3(res.status); 2668 if (!error) { 2669 /* 2670 * It is important to pick up the attributes. 2671 * Since this is the exclusive create path, the 2672 * attributes on the initial create were ignored 2673 * and we need these to have the correct info. 2674 */ 2675 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 2676 /* 2677 * No need to do the atime/mtime work again so clear 2678 * the bits. 2679 */ 2680 mask &= ~(AT_ATIME | AT_MTIME); 2681 } else { 2682 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 2683 } 2684 2685 vap->va_mask = mask; 2686 2687 return (error); 2688 } 2689 2690 /* ARGSUSED */ 2691 static int 2692 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2693 int mode, vnode_t **vpp, cred_t *cr) 2694 { 2695 int error; 2696 MKNOD3args args; 2697 MKNOD3res res; 2698 int douprintf; 2699 vnode_t *vp; 2700 struct vattr vattr; 2701 hrtime_t t; 2702 2703 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2704 switch (va->va_type) { 2705 case VCHR: 2706 case VBLK: 2707 setdiropargs3(&args.where, nm, dvp); 2708 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK; 2709 error = vattr_to_sattr3(va, 2710 &args.what.mknoddata3_u.device.dev_attributes); 2711 if (error) { 2712 /* req time field(s) overflow - return immediately */ 2713 return (error); 2714 } 2715 args.what.mknoddata3_u.device.spec.specdata1 = 2716 getmajor(va->va_rdev); 2717 args.what.mknoddata3_u.device.spec.specdata2 = 2718 getminor(va->va_rdev); 2719 break; 2720 2721 case VFIFO: 2722 case VSOCK: 2723 setdiropargs3(&args.where, nm, dvp); 2724 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK; 2725 error = vattr_to_sattr3(va, 2726 &args.what.mknoddata3_u.pipe_attributes); 2727 if (error) { 2728 /* req time field(s) overflow - return immediately */ 2729 return (error); 2730 } 2731 break; 2732 2733 default: 2734 return (EINVAL); 2735 } 2736 2737 douprintf = 1; 2738 2739 t = gethrtime(); 2740 2741 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD, 2742 xdr_MKNOD3args, (caddr_t)&args, 2743 xdr_MKNOD3res, (caddr_t)&res, cr, 2744 &douprintf, &res.status, 0, NULL); 2745 2746 if (error) { 2747 PURGE_ATTRCACHE(dvp); 2748 return (error); 2749 } 2750 2751 error = geterrno3(res.status); 2752 if (!error) { 2753 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2754 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2755 nfs_purge_rddir_cache(dvp); 2756 2757 if (!res.resok.obj.handle_follows) { 2758 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2759 if (error) 2760 return (error); 2761 } else { 2762 if (res.resok.obj_attributes.attributes) { 2763 vp = makenfs3node(&res.resok.obj.handle, 2764 &res.resok.obj_attributes.attr, 2765 dvp->v_vfsp, t, cr, NULL, NULL); 2766 } else { 2767 vp = makenfs3node(&res.resok.obj.handle, NULL, 2768 dvp->v_vfsp, t, cr, NULL, NULL); 2769 if (vp->v_type == VNON) { 2770 vattr.va_mask = AT_TYPE; 2771 error = nfs3getattr(vp, &vattr, cr); 2772 if (error) { 2773 VN_RELE(vp); 2774 return (error); 2775 } 2776 vp->v_type = vattr.va_type; 2777 } 2778 2779 } 2780 dnlc_update(dvp, nm, vp); 2781 } 2782 2783 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 2784 va->va_mask = AT_GID; 2785 (void) nfs3setattr(vp, va, 0, cr); 2786 } 2787 2788 /* 2789 * If vnode is a device create special vnode 2790 */ 2791 if (IS_DEVVP(vp)) { 2792 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2793 VN_RELE(vp); 2794 } else 2795 *vpp = vp; 2796 } else { 2797 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2798 PURGE_STALE_FH(error, dvp, cr); 2799 } 2800 return (error); 2801 } 2802 2803 /* 2804 * Weirdness: if the vnode to be removed is open 2805 * we rename it instead of removing it and nfs_inactive 2806 * will remove the new name. 2807 */ 2808 /* ARGSUSED */ 2809 static int 2810 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2811 { 2812 int error; 2813 REMOVE3args args; 2814 REMOVE3res res; 2815 vnode_t *vp; 2816 char *tmpname; 2817 int douprintf; 2818 rnode_t *rp; 2819 rnode_t *drp; 2820 hrtime_t t; 2821 2822 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2823 return (EPERM); 2824 drp = VTOR(dvp); 2825 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2826 return (EINTR); 2827 2828 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2829 if (error) { 2830 nfs_rw_exit(&drp->r_rwlock); 2831 return (error); 2832 } 2833 2834 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2835 VN_RELE(vp); 2836 nfs_rw_exit(&drp->r_rwlock); 2837 return (EPERM); 2838 } 2839 2840 /* 2841 * First just remove the entry from the name cache, as it 2842 * is most likely the only entry for this vp. 2843 */ 2844 dnlc_remove(dvp, nm); 2845 2846 /* 2847 * If the file has a v_count > 1 then there may be more than one 2848 * entry in the name cache due multiple links or an open file, 2849 * but we don't have the real reference count so flush all 2850 * possible entries. 2851 */ 2852 if (vp->v_count > 1) 2853 dnlc_purge_vp(vp); 2854 2855 /* 2856 * Now we have the real reference count on the vnode 2857 */ 2858 rp = VTOR(vp); 2859 mutex_enter(&rp->r_statelock); 2860 if (vp->v_count > 1 && 2861 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2862 mutex_exit(&rp->r_statelock); 2863 tmpname = newname(); 2864 error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct); 2865 if (error) 2866 kmem_free(tmpname, MAXNAMELEN); 2867 else { 2868 mutex_enter(&rp->r_statelock); 2869 if (rp->r_unldvp == NULL) { 2870 VN_HOLD(dvp); 2871 rp->r_unldvp = dvp; 2872 if (rp->r_unlcred != NULL) 2873 crfree(rp->r_unlcred); 2874 crhold(cr); 2875 rp->r_unlcred = cr; 2876 rp->r_unlname = tmpname; 2877 } else { 2878 kmem_free(rp->r_unlname, MAXNAMELEN); 2879 rp->r_unlname = tmpname; 2880 } 2881 mutex_exit(&rp->r_statelock); 2882 } 2883 } else { 2884 mutex_exit(&rp->r_statelock); 2885 /* 2886 * We need to flush any dirty pages which happen to 2887 * be hanging around before removing the file. This 2888 * shouldn't happen very often and mostly on file 2889 * systems mounted "nocto". 2890 */ 2891 if (vn_has_cached_data(vp) && 2892 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2893 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2894 if (error && (error == ENOSPC || error == EDQUOT)) { 2895 mutex_enter(&rp->r_statelock); 2896 if (!rp->r_error) 2897 rp->r_error = error; 2898 mutex_exit(&rp->r_statelock); 2899 } 2900 } 2901 2902 setdiropargs3(&args.object, nm, dvp); 2903 2904 douprintf = 1; 2905 2906 t = gethrtime(); 2907 2908 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE, 2909 xdr_diropargs3, (caddr_t)&args, 2910 xdr_REMOVE3res, (caddr_t)&res, cr, 2911 &douprintf, &res.status, 0, NULL); 2912 2913 /* 2914 * The xattr dir may be gone after last attr is removed, 2915 * so flush it from dnlc. 2916 */ 2917 if (dvp->v_flag & V_XATTRDIR) 2918 dnlc_purge_vp(dvp); 2919 2920 PURGE_ATTRCACHE(vp); 2921 2922 if (error) { 2923 PURGE_ATTRCACHE(dvp); 2924 } else { 2925 error = geterrno3(res.status); 2926 if (!error) { 2927 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, 2928 cr); 2929 if (HAVE_RDDIR_CACHE(drp)) 2930 nfs_purge_rddir_cache(dvp); 2931 } else { 2932 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, 2933 t, cr); 2934 PURGE_STALE_FH(error, dvp, cr); 2935 } 2936 } 2937 } 2938 2939 if (error == 0) { 2940 vnevent_remove(vp, dvp, nm, ct); 2941 } 2942 VN_RELE(vp); 2943 2944 nfs_rw_exit(&drp->r_rwlock); 2945 2946 return (error); 2947 } 2948 2949 /* ARGSUSED */ 2950 static int 2951 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2952 caller_context_t *ct, int flags) 2953 { 2954 int error; 2955 LINK3args args; 2956 LINK3res res; 2957 vnode_t *realvp; 2958 int douprintf; 2959 mntinfo_t *mi; 2960 rnode_t *tdrp; 2961 hrtime_t t; 2962 2963 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2964 return (EPERM); 2965 if (VOP_REALVP(svp, &realvp, ct) == 0) 2966 svp = realvp; 2967 2968 mi = VTOMI(svp); 2969 2970 if (!(mi->mi_flags & MI_LINK)) 2971 return (EOPNOTSUPP); 2972 2973 args.file = *VTOFH3(svp); 2974 setdiropargs3(&args.link, tnm, tdvp); 2975 2976 tdrp = VTOR(tdvp); 2977 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2978 return (EINTR); 2979 2980 dnlc_remove(tdvp, tnm); 2981 2982 douprintf = 1; 2983 2984 t = gethrtime(); 2985 2986 error = rfs3call(mi, NFSPROC3_LINK, 2987 xdr_LINK3args, (caddr_t)&args, 2988 xdr_LINK3res, (caddr_t)&res, cr, 2989 &douprintf, &res.status, 0, NULL); 2990 2991 if (error) { 2992 PURGE_ATTRCACHE(tdvp); 2993 PURGE_ATTRCACHE(svp); 2994 nfs_rw_exit(&tdrp->r_rwlock); 2995 return (error); 2996 } 2997 2998 error = geterrno3(res.status); 2999 3000 if (!error) { 3001 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr); 3002 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr); 3003 if (HAVE_RDDIR_CACHE(tdrp)) 3004 nfs_purge_rddir_cache(tdvp); 3005 dnlc_update(tdvp, tnm, svp); 3006 } else { 3007 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t, 3008 cr); 3009 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr); 3010 if (error == EOPNOTSUPP) { 3011 mutex_enter(&mi->mi_lock); 3012 mi->mi_flags &= ~MI_LINK; 3013 mutex_exit(&mi->mi_lock); 3014 } 3015 } 3016 3017 nfs_rw_exit(&tdrp->r_rwlock); 3018 3019 if (!error) { 3020 /* 3021 * Notify the source file of this link operation. 3022 */ 3023 vnevent_link(svp, ct); 3024 } 3025 return (error); 3026 } 3027 3028 /* ARGSUSED */ 3029 static int 3030 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3031 caller_context_t *ct, int flags) 3032 { 3033 vnode_t *realvp; 3034 3035 if (nfs_zone() != VTOMI(odvp)->mi_zone) 3036 return (EPERM); 3037 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 3038 ndvp = realvp; 3039 3040 return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct)); 3041 } 3042 3043 /* 3044 * nfs3rename does the real work of renaming in NFS Version 3. 3045 */ 3046 static int 3047 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3048 caller_context_t *ct) 3049 { 3050 int error; 3051 RENAME3args args; 3052 RENAME3res res; 3053 int douprintf; 3054 vnode_t *nvp = NULL; 3055 vnode_t *ovp = NULL; 3056 char *tmpname; 3057 rnode_t *rp; 3058 rnode_t *odrp; 3059 rnode_t *ndrp; 3060 hrtime_t t; 3061 3062 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 3063 3064 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 3065 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 3066 return (EINVAL); 3067 3068 odrp = VTOR(odvp); 3069 ndrp = VTOR(ndvp); 3070 if ((intptr_t)odrp < (intptr_t)ndrp) { 3071 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 3072 return (EINTR); 3073 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 3074 nfs_rw_exit(&odrp->r_rwlock); 3075 return (EINTR); 3076 } 3077 } else { 3078 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 3079 return (EINTR); 3080 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 3081 nfs_rw_exit(&ndrp->r_rwlock); 3082 return (EINTR); 3083 } 3084 } 3085 3086 /* 3087 * Lookup the target file. If it exists, it needs to be 3088 * checked to see whether it is a mount point and whether 3089 * it is active (open). 3090 */ 3091 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 3092 if (!error) { 3093 /* 3094 * If this file has been mounted on, then just 3095 * return busy because renaming to it would remove 3096 * the mounted file system from the name space. 3097 */ 3098 if (vn_mountedvfs(nvp) != NULL) { 3099 VN_RELE(nvp); 3100 nfs_rw_exit(&odrp->r_rwlock); 3101 nfs_rw_exit(&ndrp->r_rwlock); 3102 return (EBUSY); 3103 } 3104 3105 /* 3106 * Purge the name cache of all references to this vnode 3107 * so that we can check the reference count to infer 3108 * whether it is active or not. 3109 */ 3110 /* 3111 * First just remove the entry from the name cache, as it 3112 * is most likely the only entry for this vp. 3113 */ 3114 dnlc_remove(ndvp, nnm); 3115 /* 3116 * If the file has a v_count > 1 then there may be more 3117 * than one entry in the name cache due multiple links 3118 * or an open file, but we don't have the real reference 3119 * count so flush all possible entries. 3120 */ 3121 if (nvp->v_count > 1) 3122 dnlc_purge_vp(nvp); 3123 3124 /* 3125 * If the vnode is active and is not a directory, 3126 * arrange to rename it to a 3127 * temporary file so that it will continue to be 3128 * accessible. This implements the "unlink-open-file" 3129 * semantics for the target of a rename operation. 3130 * Before doing this though, make sure that the 3131 * source and target files are not already the same. 3132 */ 3133 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 3134 /* 3135 * Lookup the source name. 3136 */ 3137 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, 3138 cr, 0); 3139 3140 /* 3141 * The source name *should* already exist. 3142 */ 3143 if (error) { 3144 VN_RELE(nvp); 3145 nfs_rw_exit(&odrp->r_rwlock); 3146 nfs_rw_exit(&ndrp->r_rwlock); 3147 return (error); 3148 } 3149 3150 /* 3151 * Compare the two vnodes. If they are the same, 3152 * just release all held vnodes and return success. 3153 */ 3154 if (ovp == nvp) { 3155 VN_RELE(ovp); 3156 VN_RELE(nvp); 3157 nfs_rw_exit(&odrp->r_rwlock); 3158 nfs_rw_exit(&ndrp->r_rwlock); 3159 return (0); 3160 } 3161 3162 /* 3163 * Can't mix and match directories and non- 3164 * directories in rename operations. We already 3165 * know that the target is not a directory. If 3166 * the source is a directory, return an error. 3167 */ 3168 if (ovp->v_type == VDIR) { 3169 VN_RELE(ovp); 3170 VN_RELE(nvp); 3171 nfs_rw_exit(&odrp->r_rwlock); 3172 nfs_rw_exit(&ndrp->r_rwlock); 3173 return (ENOTDIR); 3174 } 3175 3176 /* 3177 * The target file exists, is not the same as 3178 * the source file, and is active. Link it 3179 * to a temporary filename to avoid having 3180 * the server removing the file completely. 3181 */ 3182 tmpname = newname(); 3183 error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0); 3184 if (error == EOPNOTSUPP) { 3185 error = nfs3_rename(ndvp, nnm, ndvp, tmpname, 3186 cr, NULL, 0); 3187 } 3188 if (error) { 3189 kmem_free(tmpname, MAXNAMELEN); 3190 VN_RELE(ovp); 3191 VN_RELE(nvp); 3192 nfs_rw_exit(&odrp->r_rwlock); 3193 nfs_rw_exit(&ndrp->r_rwlock); 3194 return (error); 3195 } 3196 rp = VTOR(nvp); 3197 mutex_enter(&rp->r_statelock); 3198 if (rp->r_unldvp == NULL) { 3199 VN_HOLD(ndvp); 3200 rp->r_unldvp = ndvp; 3201 if (rp->r_unlcred != NULL) 3202 crfree(rp->r_unlcred); 3203 crhold(cr); 3204 rp->r_unlcred = cr; 3205 rp->r_unlname = tmpname; 3206 } else { 3207 kmem_free(rp->r_unlname, MAXNAMELEN); 3208 rp->r_unlname = tmpname; 3209 } 3210 mutex_exit(&rp->r_statelock); 3211 } 3212 } 3213 3214 if (ovp == NULL) { 3215 /* 3216 * When renaming directories to be a subdirectory of a 3217 * different parent, the dnlc entry for ".." will no 3218 * longer be valid, so it must be removed. 3219 * 3220 * We do a lookup here to determine whether we are renaming 3221 * a directory and we need to check if we are renaming 3222 * an unlinked file. This might have already been done 3223 * in previous code, so we check ovp == NULL to avoid 3224 * doing it twice. 3225 */ 3226 3227 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 3228 /* 3229 * The source name *should* already exist. 3230 */ 3231 if (error) { 3232 nfs_rw_exit(&odrp->r_rwlock); 3233 nfs_rw_exit(&ndrp->r_rwlock); 3234 if (nvp) { 3235 VN_RELE(nvp); 3236 } 3237 return (error); 3238 } 3239 ASSERT(ovp != NULL); 3240 } 3241 3242 dnlc_remove(odvp, onm); 3243 dnlc_remove(ndvp, nnm); 3244 3245 setdiropargs3(&args.from, onm, odvp); 3246 setdiropargs3(&args.to, nnm, ndvp); 3247 3248 douprintf = 1; 3249 3250 t = gethrtime(); 3251 3252 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME, 3253 xdr_RENAME3args, (caddr_t)&args, 3254 xdr_RENAME3res, (caddr_t)&res, cr, 3255 &douprintf, &res.status, 0, NULL); 3256 3257 if (error) { 3258 PURGE_ATTRCACHE(odvp); 3259 PURGE_ATTRCACHE(ndvp); 3260 VN_RELE(ovp); 3261 nfs_rw_exit(&odrp->r_rwlock); 3262 nfs_rw_exit(&ndrp->r_rwlock); 3263 if (nvp) { 3264 VN_RELE(nvp); 3265 } 3266 return (error); 3267 } 3268 3269 error = geterrno3(res.status); 3270 3271 if (!error) { 3272 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr); 3273 if (HAVE_RDDIR_CACHE(odrp)) 3274 nfs_purge_rddir_cache(odvp); 3275 if (ndvp != odvp) { 3276 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr); 3277 if (HAVE_RDDIR_CACHE(ndrp)) 3278 nfs_purge_rddir_cache(ndvp); 3279 } 3280 /* 3281 * when renaming directories to be a subdirectory of a 3282 * different parent, the dnlc entry for ".." will no 3283 * longer be valid, so it must be removed 3284 */ 3285 rp = VTOR(ovp); 3286 if (ndvp != odvp) { 3287 if (ovp->v_type == VDIR) { 3288 dnlc_remove(ovp, ".."); 3289 if (HAVE_RDDIR_CACHE(rp)) 3290 nfs_purge_rddir_cache(ovp); 3291 } 3292 } 3293 3294 /* 3295 * If we are renaming the unlinked file, update the 3296 * r_unldvp and r_unlname as needed. 3297 */ 3298 mutex_enter(&rp->r_statelock); 3299 if (rp->r_unldvp != NULL) { 3300 if (strcmp(rp->r_unlname, onm) == 0) { 3301 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 3302 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 3303 3304 if (ndvp != rp->r_unldvp) { 3305 VN_RELE(rp->r_unldvp); 3306 rp->r_unldvp = ndvp; 3307 VN_HOLD(ndvp); 3308 } 3309 } 3310 } 3311 mutex_exit(&rp->r_statelock); 3312 } else { 3313 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr); 3314 if (ndvp != odvp) { 3315 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t, 3316 cr); 3317 } 3318 /* 3319 * System V defines rename to return EEXIST, not 3320 * ENOTEMPTY if the target directory is not empty. 3321 * Over the wire, the error is NFSERR_ENOTEMPTY 3322 * which geterrno maps to ENOTEMPTY. 3323 */ 3324 if (error == ENOTEMPTY) 3325 error = EEXIST; 3326 } 3327 3328 if (error == 0) { 3329 if (nvp) 3330 vnevent_rename_dest(nvp, ndvp, nnm, ct); 3331 3332 if (odvp != ndvp) 3333 vnevent_rename_dest_dir(ndvp, ct); 3334 ASSERT(ovp != NULL); 3335 vnevent_rename_src(ovp, odvp, onm, ct); 3336 } 3337 3338 if (nvp) { 3339 VN_RELE(nvp); 3340 } 3341 VN_RELE(ovp); 3342 3343 nfs_rw_exit(&odrp->r_rwlock); 3344 nfs_rw_exit(&ndrp->r_rwlock); 3345 3346 return (error); 3347 } 3348 3349 /* ARGSUSED */ 3350 static int 3351 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 3352 caller_context_t *ct, int flags, vsecattr_t *vsecp) 3353 { 3354 int error; 3355 MKDIR3args args; 3356 MKDIR3res res; 3357 int douprintf; 3358 struct vattr vattr; 3359 vnode_t *vp; 3360 rnode_t *drp; 3361 hrtime_t t; 3362 3363 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3364 return (EPERM); 3365 setdiropargs3(&args.where, nm, dvp); 3366 3367 /* 3368 * Decide what the group-id and set-gid bit of the created directory 3369 * should be. May have to do a setattr to get the gid right. 3370 */ 3371 error = setdirgid(dvp, &va->va_gid, cr); 3372 if (error) 3373 return (error); 3374 error = setdirmode(dvp, &va->va_mode, cr); 3375 if (error) 3376 return (error); 3377 va->va_mask |= AT_MODE|AT_GID; 3378 3379 error = vattr_to_sattr3(va, &args.attributes); 3380 if (error) { 3381 /* req time field(s) overflow - return immediately */ 3382 return (error); 3383 } 3384 3385 drp = VTOR(dvp); 3386 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3387 return (EINTR); 3388 3389 dnlc_remove(dvp, nm); 3390 3391 douprintf = 1; 3392 3393 t = gethrtime(); 3394 3395 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR, 3396 xdr_MKDIR3args, (caddr_t)&args, 3397 xdr_MKDIR3res, (caddr_t)&res, cr, 3398 &douprintf, &res.status, 0, NULL); 3399 3400 if (error) { 3401 PURGE_ATTRCACHE(dvp); 3402 nfs_rw_exit(&drp->r_rwlock); 3403 return (error); 3404 } 3405 3406 error = geterrno3(res.status); 3407 if (!error) { 3408 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3409 if (HAVE_RDDIR_CACHE(drp)) 3410 nfs_purge_rddir_cache(dvp); 3411 3412 if (!res.resok.obj.handle_follows) { 3413 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3414 if (error) { 3415 nfs_rw_exit(&drp->r_rwlock); 3416 return (error); 3417 } 3418 } else { 3419 if (res.resok.obj_attributes.attributes) { 3420 vp = makenfs3node(&res.resok.obj.handle, 3421 &res.resok.obj_attributes.attr, 3422 dvp->v_vfsp, t, cr, NULL, NULL); 3423 } else { 3424 vp = makenfs3node(&res.resok.obj.handle, NULL, 3425 dvp->v_vfsp, t, cr, NULL, NULL); 3426 if (vp->v_type == VNON) { 3427 vattr.va_mask = AT_TYPE; 3428 error = nfs3getattr(vp, &vattr, cr); 3429 if (error) { 3430 VN_RELE(vp); 3431 nfs_rw_exit(&drp->r_rwlock); 3432 return (error); 3433 } 3434 vp->v_type = vattr.va_type; 3435 } 3436 } 3437 dnlc_update(dvp, nm, vp); 3438 } 3439 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 3440 va->va_mask = AT_GID; 3441 (void) nfs3setattr(vp, va, 0, cr); 3442 } 3443 *vpp = vp; 3444 } else { 3445 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3446 PURGE_STALE_FH(error, dvp, cr); 3447 } 3448 3449 nfs_rw_exit(&drp->r_rwlock); 3450 3451 return (error); 3452 } 3453 3454 /* ARGSUSED */ 3455 static int 3456 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 3457 caller_context_t *ct, int flags) 3458 { 3459 int error; 3460 RMDIR3args args; 3461 RMDIR3res res; 3462 vnode_t *vp; 3463 int douprintf; 3464 rnode_t *drp; 3465 hrtime_t t; 3466 3467 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3468 return (EPERM); 3469 drp = VTOR(dvp); 3470 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3471 return (EINTR); 3472 3473 /* 3474 * Attempt to prevent a rmdir(".") from succeeding. 3475 */ 3476 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3477 if (error) { 3478 nfs_rw_exit(&drp->r_rwlock); 3479 return (error); 3480 } 3481 3482 if (vp == cdir) { 3483 VN_RELE(vp); 3484 nfs_rw_exit(&drp->r_rwlock); 3485 return (EINVAL); 3486 } 3487 3488 setdiropargs3(&args.object, nm, dvp); 3489 3490 /* 3491 * First just remove the entry from the name cache, as it 3492 * is most likely an entry for this vp. 3493 */ 3494 dnlc_remove(dvp, nm); 3495 3496 /* 3497 * If there vnode reference count is greater than one, then 3498 * there may be additional references in the DNLC which will 3499 * need to be purged. First, trying removing the entry for 3500 * the parent directory and see if that removes the additional 3501 * reference(s). If that doesn't do it, then use dnlc_purge_vp 3502 * to completely remove any references to the directory which 3503 * might still exist in the DNLC. 3504 */ 3505 if (vp->v_count > 1) { 3506 dnlc_remove(vp, ".."); 3507 if (vp->v_count > 1) 3508 dnlc_purge_vp(vp); 3509 } 3510 3511 douprintf = 1; 3512 3513 t = gethrtime(); 3514 3515 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR, 3516 xdr_diropargs3, (caddr_t)&args, 3517 xdr_RMDIR3res, (caddr_t)&res, cr, 3518 &douprintf, &res.status, 0, NULL); 3519 3520 PURGE_ATTRCACHE(vp); 3521 3522 if (error) { 3523 PURGE_ATTRCACHE(dvp); 3524 VN_RELE(vp); 3525 nfs_rw_exit(&drp->r_rwlock); 3526 return (error); 3527 } 3528 3529 error = geterrno3(res.status); 3530 if (!error) { 3531 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3532 if (HAVE_RDDIR_CACHE(drp)) 3533 nfs_purge_rddir_cache(dvp); 3534 if (HAVE_RDDIR_CACHE(VTOR(vp))) 3535 nfs_purge_rddir_cache(vp); 3536 } else { 3537 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3538 PURGE_STALE_FH(error, dvp, cr); 3539 /* 3540 * System V defines rmdir to return EEXIST, not 3541 * ENOTEMPTY if the directory is not empty. Over 3542 * the wire, the error is NFSERR_ENOTEMPTY which 3543 * geterrno maps to ENOTEMPTY. 3544 */ 3545 if (error == ENOTEMPTY) 3546 error = EEXIST; 3547 } 3548 3549 if (error == 0) { 3550 vnevent_rmdir(vp, dvp, nm, ct); 3551 } 3552 VN_RELE(vp); 3553 3554 nfs_rw_exit(&drp->r_rwlock); 3555 3556 return (error); 3557 } 3558 3559 /* ARGSUSED */ 3560 static int 3561 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 3562 caller_context_t *ct, int flags) 3563 { 3564 int error; 3565 SYMLINK3args args; 3566 SYMLINK3res res; 3567 int douprintf; 3568 mntinfo_t *mi; 3569 vnode_t *vp; 3570 rnode_t *rp; 3571 char *contents; 3572 rnode_t *drp; 3573 hrtime_t t; 3574 3575 mi = VTOMI(dvp); 3576 3577 if (nfs_zone() != mi->mi_zone) 3578 return (EPERM); 3579 if (!(mi->mi_flags & MI_SYMLINK)) 3580 return (EOPNOTSUPP); 3581 3582 setdiropargs3(&args.where, lnm, dvp); 3583 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes); 3584 if (error) { 3585 /* req time field(s) overflow - return immediately */ 3586 return (error); 3587 } 3588 args.symlink.symlink_data = tnm; 3589 3590 drp = VTOR(dvp); 3591 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3592 return (EINTR); 3593 3594 dnlc_remove(dvp, lnm); 3595 3596 douprintf = 1; 3597 3598 t = gethrtime(); 3599 3600 error = rfs3call(mi, NFSPROC3_SYMLINK, 3601 xdr_SYMLINK3args, (caddr_t)&args, 3602 xdr_SYMLINK3res, (caddr_t)&res, cr, 3603 &douprintf, &res.status, 0, NULL); 3604 3605 if (error) { 3606 PURGE_ATTRCACHE(dvp); 3607 nfs_rw_exit(&drp->r_rwlock); 3608 return (error); 3609 } 3610 3611 error = geterrno3(res.status); 3612 if (!error) { 3613 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3614 if (HAVE_RDDIR_CACHE(drp)) 3615 nfs_purge_rddir_cache(dvp); 3616 3617 if (res.resok.obj.handle_follows) { 3618 if (res.resok.obj_attributes.attributes) { 3619 vp = makenfs3node(&res.resok.obj.handle, 3620 &res.resok.obj_attributes.attr, 3621 dvp->v_vfsp, t, cr, NULL, NULL); 3622 } else { 3623 vp = makenfs3node(&res.resok.obj.handle, NULL, 3624 dvp->v_vfsp, t, cr, NULL, NULL); 3625 vp->v_type = VLNK; 3626 vp->v_rdev = 0; 3627 } 3628 dnlc_update(dvp, lnm, vp); 3629 rp = VTOR(vp); 3630 if (nfs3_do_symlink_cache && 3631 rp->r_symlink.contents == NULL) { 3632 3633 contents = kmem_alloc(MAXPATHLEN, 3634 KM_NOSLEEP); 3635 3636 if (contents != NULL) { 3637 mutex_enter(&rp->r_statelock); 3638 if (rp->r_symlink.contents == NULL) { 3639 rp->r_symlink.len = strlen(tnm); 3640 bcopy(tnm, contents, 3641 rp->r_symlink.len); 3642 rp->r_symlink.contents = 3643 contents; 3644 rp->r_symlink.size = MAXPATHLEN; 3645 mutex_exit(&rp->r_statelock); 3646 } else { 3647 mutex_exit(&rp->r_statelock); 3648 kmem_free((void *)contents, 3649 MAXPATHLEN); 3650 } 3651 } 3652 } 3653 VN_RELE(vp); 3654 } 3655 } else { 3656 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3657 PURGE_STALE_FH(error, dvp, cr); 3658 if (error == EOPNOTSUPP) { 3659 mutex_enter(&mi->mi_lock); 3660 mi->mi_flags &= ~MI_SYMLINK; 3661 mutex_exit(&mi->mi_lock); 3662 } 3663 } 3664 3665 nfs_rw_exit(&drp->r_rwlock); 3666 3667 return (error); 3668 } 3669 3670 #ifdef DEBUG 3671 static int nfs3_readdir_cache_hits = 0; 3672 static int nfs3_readdir_cache_shorts = 0; 3673 static int nfs3_readdir_cache_waits = 0; 3674 static int nfs3_readdir_cache_misses = 0; 3675 static int nfs3_readdir_readahead = 0; 3676 #endif 3677 3678 static int nfs3_shrinkreaddir = 0; 3679 3680 /* 3681 * Read directory entries. 3682 * There are some weird things to look out for here. The uio_loffset 3683 * field is either 0 or it is the offset returned from a previous 3684 * readdir. It is an opaque value used by the server to find the 3685 * correct directory block to read. The count field is the number 3686 * of blocks to read on the server. This is advisory only, the server 3687 * may return only one block's worth of entries. Entries may be compressed 3688 * on the server. 3689 */ 3690 /* ARGSUSED */ 3691 static int 3692 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 3693 caller_context_t *ct, int flags) 3694 { 3695 int error; 3696 size_t count; 3697 rnode_t *rp; 3698 rddir_cache *rdc; 3699 rddir_cache *nrdc; 3700 rddir_cache *rrdc; 3701 #ifdef DEBUG 3702 int missed; 3703 #endif 3704 int doreadahead; 3705 rddir_cache srdc; 3706 avl_index_t where; 3707 3708 if (nfs_zone() != VTOMI(vp)->mi_zone) 3709 return (EIO); 3710 rp = VTOR(vp); 3711 3712 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 3713 3714 /* 3715 * Make sure that the directory cache is valid. 3716 */ 3717 if (HAVE_RDDIR_CACHE(rp)) { 3718 if (nfs_disable_rddir_cache) { 3719 /* 3720 * Setting nfs_disable_rddir_cache in /etc/system 3721 * allows interoperability with servers that do not 3722 * properly update the attributes of directories. 3723 * Any cached information gets purged before an 3724 * access is made to it. 3725 */ 3726 nfs_purge_rddir_cache(vp); 3727 } else { 3728 error = nfs3_validate_caches(vp, cr); 3729 if (error) 3730 return (error); 3731 } 3732 } 3733 3734 /* 3735 * It is possible that some servers may not be able to correctly 3736 * handle a large READDIR or READDIRPLUS request due to bugs in 3737 * their implementation. In order to continue to interoperate 3738 * with them, this workaround is provided to limit the maximum 3739 * size of a READDIRPLUS request to 1024. In any case, the request 3740 * size is limited to MAXBSIZE. 3741 */ 3742 count = MIN(uiop->uio_iov->iov_len, 3743 nfs3_shrinkreaddir ? 1024 : MAXBSIZE); 3744 3745 nrdc = NULL; 3746 #ifdef DEBUG 3747 missed = 0; 3748 #endif 3749 top: 3750 /* 3751 * Short circuit last readdir which always returns 0 bytes. 3752 * This can be done after the directory has been read through 3753 * completely at least once. This will set r_direof which 3754 * can be used to find the value of the last cookie. 3755 */ 3756 mutex_enter(&rp->r_statelock); 3757 if (rp->r_direof != NULL && 3758 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) { 3759 mutex_exit(&rp->r_statelock); 3760 #ifdef DEBUG 3761 nfs3_readdir_cache_shorts++; 3762 #endif 3763 if (eofp) 3764 *eofp = 1; 3765 if (nrdc != NULL) 3766 rddir_cache_rele(nrdc); 3767 return (0); 3768 } 3769 /* 3770 * Look for a cache entry. Cache entries are identified 3771 * by the NFS cookie value and the byte count requested. 3772 */ 3773 srdc.nfs3_cookie = uiop->uio_loffset; 3774 srdc.buflen = count; 3775 rdc = avl_find(&rp->r_dir, &srdc, &where); 3776 if (rdc != NULL) { 3777 rddir_cache_hold(rdc); 3778 /* 3779 * If the cache entry is in the process of being 3780 * filled in, wait until this completes. The 3781 * RDDIRWAIT bit is set to indicate that someone 3782 * is waiting and then the thread currently 3783 * filling the entry is done, it should do a 3784 * cv_broadcast to wakeup all of the threads 3785 * waiting for it to finish. 3786 */ 3787 if (rdc->flags & RDDIR) { 3788 nfs_rw_exit(&rp->r_rwlock); 3789 rdc->flags |= RDDIRWAIT; 3790 #ifdef DEBUG 3791 nfs3_readdir_cache_waits++; 3792 #endif 3793 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3794 /* 3795 * We got interrupted, probably 3796 * the user typed ^C or an alarm 3797 * fired. We free the new entry 3798 * if we allocated one. 3799 */ 3800 mutex_exit(&rp->r_statelock); 3801 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3802 RW_READER, FALSE); 3803 rddir_cache_rele(rdc); 3804 if (nrdc != NULL) 3805 rddir_cache_rele(nrdc); 3806 return (EINTR); 3807 } 3808 mutex_exit(&rp->r_statelock); 3809 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3810 RW_READER, FALSE); 3811 rddir_cache_rele(rdc); 3812 goto top; 3813 } 3814 /* 3815 * Check to see if a readdir is required to 3816 * fill the entry. If so, mark this entry 3817 * as being filled, remove our reference, 3818 * and branch to the code to fill the entry. 3819 */ 3820 if (rdc->flags & RDDIRREQ) { 3821 rdc->flags &= ~RDDIRREQ; 3822 rdc->flags |= RDDIR; 3823 if (nrdc != NULL) 3824 rddir_cache_rele(nrdc); 3825 nrdc = rdc; 3826 mutex_exit(&rp->r_statelock); 3827 goto bottom; 3828 } 3829 #ifdef DEBUG 3830 if (!missed) 3831 nfs3_readdir_cache_hits++; 3832 #endif 3833 /* 3834 * If an error occurred while attempting 3835 * to fill the cache entry, just return it. 3836 */ 3837 if (rdc->error) { 3838 error = rdc->error; 3839 mutex_exit(&rp->r_statelock); 3840 rddir_cache_rele(rdc); 3841 if (nrdc != NULL) 3842 rddir_cache_rele(nrdc); 3843 return (error); 3844 } 3845 3846 /* 3847 * The cache entry is complete and good, 3848 * copyout the dirent structs to the calling 3849 * thread. 3850 */ 3851 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3852 3853 /* 3854 * If no error occurred during the copyout, 3855 * update the offset in the uio struct to 3856 * contain the value of the next cookie 3857 * and set the eof value appropriately. 3858 */ 3859 if (!error) { 3860 uiop->uio_loffset = rdc->nfs3_ncookie; 3861 if (eofp) 3862 *eofp = rdc->eof; 3863 } 3864 3865 /* 3866 * Decide whether to do readahead. 3867 * 3868 * Don't if have already read to the end of 3869 * directory. There is nothing more to read. 3870 * 3871 * Don't if the application is not doing 3872 * lookups in the directory. The readahead 3873 * is only effective if the application can 3874 * be doing work while an async thread is 3875 * handling the over the wire request. 3876 */ 3877 if (rdc->eof) { 3878 rp->r_direof = rdc; 3879 doreadahead = FALSE; 3880 } else if (!(rp->r_flags & RLOOKUP)) 3881 doreadahead = FALSE; 3882 else 3883 doreadahead = TRUE; 3884 3885 if (!doreadahead) { 3886 mutex_exit(&rp->r_statelock); 3887 rddir_cache_rele(rdc); 3888 if (nrdc != NULL) 3889 rddir_cache_rele(nrdc); 3890 return (error); 3891 } 3892 3893 /* 3894 * Check to see whether we found an entry 3895 * for the readahead. If so, we don't need 3896 * to do anything further, so free the new 3897 * entry if one was allocated. Otherwise, 3898 * allocate a new entry, add it to the cache, 3899 * and then initiate an asynchronous readdir 3900 * operation to fill it. 3901 */ 3902 srdc.nfs3_cookie = rdc->nfs3_ncookie; 3903 srdc.buflen = count; 3904 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3905 if (rrdc != NULL) { 3906 if (nrdc != NULL) 3907 rddir_cache_rele(nrdc); 3908 } else { 3909 if (nrdc != NULL) 3910 rrdc = nrdc; 3911 else { 3912 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3913 } 3914 if (rrdc != NULL) { 3915 rrdc->nfs3_cookie = rdc->nfs3_ncookie; 3916 rrdc->buflen = count; 3917 avl_insert(&rp->r_dir, rrdc, where); 3918 rddir_cache_hold(rrdc); 3919 mutex_exit(&rp->r_statelock); 3920 rddir_cache_rele(rdc); 3921 #ifdef DEBUG 3922 nfs3_readdir_readahead++; 3923 #endif 3924 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir); 3925 return (error); 3926 } 3927 } 3928 3929 mutex_exit(&rp->r_statelock); 3930 rddir_cache_rele(rdc); 3931 return (error); 3932 } 3933 3934 /* 3935 * Didn't find an entry in the cache. Construct a new empty 3936 * entry and link it into the cache. Other processes attempting 3937 * to access this entry will need to wait until it is filled in. 3938 * 3939 * Since kmem_alloc may block, another pass through the cache 3940 * will need to be taken to make sure that another process 3941 * hasn't already added an entry to the cache for this request. 3942 */ 3943 if (nrdc == NULL) { 3944 mutex_exit(&rp->r_statelock); 3945 nrdc = rddir_cache_alloc(KM_SLEEP); 3946 nrdc->nfs3_cookie = uiop->uio_loffset; 3947 nrdc->buflen = count; 3948 goto top; 3949 } 3950 3951 /* 3952 * Add this entry to the cache. 3953 */ 3954 avl_insert(&rp->r_dir, nrdc, where); 3955 rddir_cache_hold(nrdc); 3956 mutex_exit(&rp->r_statelock); 3957 3958 bottom: 3959 #ifdef DEBUG 3960 missed = 1; 3961 nfs3_readdir_cache_misses++; 3962 #endif 3963 /* 3964 * Do the readdir. This routine decides whether to use 3965 * READDIR or READDIRPLUS. 3966 */ 3967 error = do_nfs3readdir(vp, nrdc, cr); 3968 3969 /* 3970 * If this operation failed, just return the error which occurred. 3971 */ 3972 if (error != 0) 3973 return (error); 3974 3975 /* 3976 * Since the RPC operation will have taken sometime and blocked 3977 * this process, another pass through the cache will need to be 3978 * taken to find the correct cache entry. It is possible that 3979 * the correct cache entry will not be there (although one was 3980 * added) because the directory changed during the RPC operation 3981 * and the readdir cache was flushed. In this case, just start 3982 * over. It is hoped that this will not happen too often... :-) 3983 */ 3984 nrdc = NULL; 3985 goto top; 3986 /* NOTREACHED */ 3987 } 3988 3989 static int 3990 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3991 { 3992 int error; 3993 rnode_t *rp; 3994 mntinfo_t *mi; 3995 3996 rp = VTOR(vp); 3997 mi = VTOMI(vp); 3998 ASSERT(nfs_zone() == mi->mi_zone); 3999 /* 4000 * Issue the proper request. 4001 * 4002 * If the server does not support READDIRPLUS, then use READDIR. 4003 * 4004 * Otherwise -- 4005 * Issue a READDIRPLUS if reading to fill an empty cache or if 4006 * an application has performed a lookup in the directory which 4007 * required an over the wire lookup. The use of READDIRPLUS 4008 * will help to (re)populate the DNLC. 4009 */ 4010 if (!(mi->mi_flags & MI_READDIRONLY) && 4011 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) { 4012 if (rp->r_flags & RREADDIRPLUS) { 4013 mutex_enter(&rp->r_statelock); 4014 rp->r_flags &= ~RREADDIRPLUS; 4015 mutex_exit(&rp->r_statelock); 4016 } 4017 nfs3readdirplus(vp, rdc, cr); 4018 if (rdc->error == EOPNOTSUPP) 4019 nfs3readdir(vp, rdc, cr); 4020 } else 4021 nfs3readdir(vp, rdc, cr); 4022 4023 mutex_enter(&rp->r_statelock); 4024 rdc->flags &= ~RDDIR; 4025 if (rdc->flags & RDDIRWAIT) { 4026 rdc->flags &= ~RDDIRWAIT; 4027 cv_broadcast(&rdc->cv); 4028 } 4029 error = rdc->error; 4030 if (error) 4031 rdc->flags |= RDDIRREQ; 4032 mutex_exit(&rp->r_statelock); 4033 4034 rddir_cache_rele(rdc); 4035 4036 return (error); 4037 } 4038 4039 static void 4040 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4041 { 4042 int error; 4043 READDIR3args args; 4044 READDIR3vres res; 4045 vattr_t dva; 4046 rnode_t *rp; 4047 int douprintf; 4048 failinfo_t fi, *fip = NULL; 4049 mntinfo_t *mi; 4050 hrtime_t t; 4051 4052 rp = VTOR(vp); 4053 mi = VTOMI(vp); 4054 ASSERT(nfs_zone() == mi->mi_zone); 4055 4056 args.dir = *RTOFH3(rp); 4057 args.cookie = (cookie3)rdc->nfs3_cookie; 4058 args.cookieverf = rp->r_cookieverf; 4059 args.count = rdc->buflen; 4060 4061 /* 4062 * NFS client failover support 4063 * suppress failover unless we have a zero cookie 4064 */ 4065 if (args.cookie == (cookie3) 0) { 4066 fi.vp = vp; 4067 fi.fhp = (caddr_t)&args.dir; 4068 fi.copyproc = nfs3copyfh; 4069 fi.lookupproc = nfs3lookup; 4070 fi.xattrdirproc = acl_getxattrdir3; 4071 fip = &fi; 4072 } 4073 4074 #ifdef DEBUG 4075 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4076 #else 4077 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4078 #endif 4079 4080 res.entries = (dirent64_t *)rdc->entries; 4081 res.entries_size = rdc->buflen; 4082 res.dir_attributes.fres.vap = &dva; 4083 res.dir_attributes.fres.vp = vp; 4084 res.loff = rdc->nfs3_cookie; 4085 4086 douprintf = 1; 4087 4088 if (mi->mi_io_kstats) { 4089 mutex_enter(&mi->mi_lock); 4090 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4091 mutex_exit(&mi->mi_lock); 4092 } 4093 4094 t = gethrtime(); 4095 4096 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR, 4097 xdr_READDIR3args, (caddr_t)&args, 4098 xdr_READDIR3vres, (caddr_t)&res, cr, 4099 &douprintf, &res.status, 0, fip); 4100 4101 if (mi->mi_io_kstats) { 4102 mutex_enter(&mi->mi_lock); 4103 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4104 mutex_exit(&mi->mi_lock); 4105 } 4106 4107 if (error) 4108 goto err; 4109 4110 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr); 4111 4112 error = geterrno3(res.status); 4113 if (error) { 4114 PURGE_STALE_FH(error, vp, cr); 4115 goto err; 4116 } 4117 4118 if (mi->mi_io_kstats) { 4119 mutex_enter(&mi->mi_lock); 4120 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4121 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4122 mutex_exit(&mi->mi_lock); 4123 } 4124 4125 rdc->nfs3_ncookie = res.loff; 4126 rp->r_cookieverf = res.cookieverf; 4127 rdc->eof = res.eof ? 1 : 0; 4128 rdc->entlen = res.size; 4129 ASSERT(rdc->entlen <= rdc->buflen); 4130 rdc->error = 0; 4131 return; 4132 4133 err: 4134 kmem_free(rdc->entries, rdc->buflen); 4135 rdc->entries = NULL; 4136 rdc->error = error; 4137 } 4138 4139 /* 4140 * Read directory entries. 4141 * There are some weird things to look out for here. The uio_loffset 4142 * field is either 0 or it is the offset returned from a previous 4143 * readdir. It is an opaque value used by the server to find the 4144 * correct directory block to read. The count field is the number 4145 * of blocks to read on the server. This is advisory only, the server 4146 * may return only one block's worth of entries. Entries may be compressed 4147 * on the server. 4148 */ 4149 static void 4150 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4151 { 4152 int error; 4153 READDIRPLUS3args args; 4154 READDIRPLUS3vres res; 4155 vattr_t dva; 4156 rnode_t *rp; 4157 mntinfo_t *mi; 4158 int douprintf; 4159 failinfo_t fi, *fip = NULL; 4160 4161 rp = VTOR(vp); 4162 mi = VTOMI(vp); 4163 ASSERT(nfs_zone() == mi->mi_zone); 4164 4165 args.dir = *RTOFH3(rp); 4166 args.cookie = (cookie3)rdc->nfs3_cookie; 4167 args.cookieverf = rp->r_cookieverf; 4168 args.dircount = rdc->buflen; 4169 args.maxcount = mi->mi_tsize; 4170 4171 /* 4172 * NFS client failover support 4173 * suppress failover unless we have a zero cookie 4174 */ 4175 if (args.cookie == (cookie3)0) { 4176 fi.vp = vp; 4177 fi.fhp = (caddr_t)&args.dir; 4178 fi.copyproc = nfs3copyfh; 4179 fi.lookupproc = nfs3lookup; 4180 fi.xattrdirproc = acl_getxattrdir3; 4181 fip = &fi; 4182 } 4183 4184 #ifdef DEBUG 4185 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4186 #else 4187 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4188 #endif 4189 4190 res.entries = (dirent64_t *)rdc->entries; 4191 res.entries_size = rdc->buflen; 4192 res.dir_attributes.fres.vap = &dva; 4193 res.dir_attributes.fres.vp = vp; 4194 res.loff = rdc->nfs3_cookie; 4195 res.credentials = cr; 4196 4197 douprintf = 1; 4198 4199 if (mi->mi_io_kstats) { 4200 mutex_enter(&mi->mi_lock); 4201 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4202 mutex_exit(&mi->mi_lock); 4203 } 4204 4205 res.time = gethrtime(); 4206 4207 error = rfs3call(mi, NFSPROC3_READDIRPLUS, 4208 xdr_READDIRPLUS3args, (caddr_t)&args, 4209 xdr_READDIRPLUS3vres, (caddr_t)&res, cr, 4210 &douprintf, &res.status, 0, fip); 4211 4212 if (mi->mi_io_kstats) { 4213 mutex_enter(&mi->mi_lock); 4214 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4215 mutex_exit(&mi->mi_lock); 4216 } 4217 4218 if (error) { 4219 goto err; 4220 } 4221 4222 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr); 4223 4224 error = geterrno3(res.status); 4225 if (error) { 4226 PURGE_STALE_FH(error, vp, cr); 4227 if (error == EOPNOTSUPP) { 4228 mutex_enter(&mi->mi_lock); 4229 mi->mi_flags |= MI_READDIRONLY; 4230 mutex_exit(&mi->mi_lock); 4231 } 4232 goto err; 4233 } 4234 4235 if (mi->mi_io_kstats) { 4236 mutex_enter(&mi->mi_lock); 4237 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4238 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4239 mutex_exit(&mi->mi_lock); 4240 } 4241 4242 rdc->nfs3_ncookie = res.loff; 4243 rp->r_cookieverf = res.cookieverf; 4244 rdc->eof = res.eof ? 1 : 0; 4245 rdc->entlen = res.size; 4246 ASSERT(rdc->entlen <= rdc->buflen); 4247 rdc->error = 0; 4248 4249 return; 4250 4251 err: 4252 kmem_free(rdc->entries, rdc->buflen); 4253 rdc->entries = NULL; 4254 rdc->error = error; 4255 } 4256 4257 #ifdef DEBUG 4258 static int nfs3_bio_do_stop = 0; 4259 #endif 4260 4261 static int 4262 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr) 4263 { 4264 rnode_t *rp = VTOR(bp->b_vp); 4265 int count; 4266 int error; 4267 cred_t *cred; 4268 offset_t offset; 4269 4270 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 4271 offset = ldbtob(bp->b_lblkno); 4272 4273 DTRACE_IO1(start, struct buf *, bp); 4274 4275 if (bp->b_flags & B_READ) { 4276 mutex_enter(&rp->r_statelock); 4277 if (rp->r_cred != NULL) { 4278 cred = rp->r_cred; 4279 crhold(cred); 4280 } else { 4281 rp->r_cred = cr; 4282 crhold(cr); 4283 cred = cr; 4284 crhold(cred); 4285 } 4286 mutex_exit(&rp->r_statelock); 4287 read_again: 4288 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr, 4289 offset, bp->b_bcount, &bp->b_resid, cred); 4290 crfree(cred); 4291 if (!error) { 4292 if (bp->b_resid) { 4293 /* 4294 * Didn't get it all because we hit EOF, 4295 * zero all the memory beyond the EOF. 4296 */ 4297 /* bzero(rdaddr + */ 4298 bzero(bp->b_un.b_addr + 4299 bp->b_bcount - bp->b_resid, bp->b_resid); 4300 } 4301 mutex_enter(&rp->r_statelock); 4302 if (bp->b_resid == bp->b_bcount && 4303 offset >= rp->r_size) { 4304 /* 4305 * We didn't read anything at all as we are 4306 * past EOF. Return an error indicator back 4307 * but don't destroy the pages (yet). 4308 */ 4309 error = NFS_EOF; 4310 } 4311 mutex_exit(&rp->r_statelock); 4312 } else if (error == EACCES) { 4313 mutex_enter(&rp->r_statelock); 4314 if (cred != cr) { 4315 if (rp->r_cred != NULL) 4316 crfree(rp->r_cred); 4317 rp->r_cred = cr; 4318 crhold(cr); 4319 cred = cr; 4320 crhold(cred); 4321 mutex_exit(&rp->r_statelock); 4322 goto read_again; 4323 } 4324 mutex_exit(&rp->r_statelock); 4325 } 4326 } else { 4327 if (!(rp->r_flags & RSTALE)) { 4328 mutex_enter(&rp->r_statelock); 4329 if (rp->r_cred != NULL) { 4330 cred = rp->r_cred; 4331 crhold(cred); 4332 } else { 4333 rp->r_cred = cr; 4334 crhold(cr); 4335 cred = cr; 4336 crhold(cred); 4337 } 4338 mutex_exit(&rp->r_statelock); 4339 write_again: 4340 mutex_enter(&rp->r_statelock); 4341 count = MIN(bp->b_bcount, rp->r_size - offset); 4342 mutex_exit(&rp->r_statelock); 4343 if (count < 0) 4344 cmn_err(CE_PANIC, "nfs3_bio: write count < 0"); 4345 #ifdef DEBUG 4346 if (count == 0) { 4347 zcmn_err(getzoneid(), CE_WARN, 4348 "nfs3_bio: zero length write at %lld", 4349 offset); 4350 nfs_printfhandle(&rp->r_fh); 4351 if (nfs3_bio_do_stop) 4352 debug_enter("nfs3_bio"); 4353 } 4354 #endif 4355 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset, 4356 count, cred, stab_comm); 4357 if (error == EACCES) { 4358 mutex_enter(&rp->r_statelock); 4359 if (cred != cr) { 4360 if (rp->r_cred != NULL) 4361 crfree(rp->r_cred); 4362 rp->r_cred = cr; 4363 crhold(cr); 4364 crfree(cred); 4365 cred = cr; 4366 crhold(cred); 4367 mutex_exit(&rp->r_statelock); 4368 goto write_again; 4369 } 4370 mutex_exit(&rp->r_statelock); 4371 } 4372 bp->b_error = error; 4373 if (error && error != EINTR) { 4374 /* 4375 * Don't print EDQUOT errors on the console. 4376 * Don't print asynchronous EACCES errors. 4377 * Don't print EFBIG errors. 4378 * Print all other write errors. 4379 */ 4380 if (error != EDQUOT && error != EFBIG && 4381 (error != EACCES || 4382 !(bp->b_flags & B_ASYNC))) 4383 nfs_write_error(bp->b_vp, error, cred); 4384 /* 4385 * Update r_error and r_flags as appropriate. 4386 * If the error was ESTALE, then mark the 4387 * rnode as not being writeable and save 4388 * the error status. Otherwise, save any 4389 * errors which occur from asynchronous 4390 * page invalidations. Any errors occurring 4391 * from other operations should be saved 4392 * by the caller. 4393 */ 4394 mutex_enter(&rp->r_statelock); 4395 if (error == ESTALE) { 4396 rp->r_flags |= RSTALE; 4397 if (!rp->r_error) 4398 rp->r_error = error; 4399 } else if (!rp->r_error && 4400 (bp->b_flags & 4401 (B_INVAL|B_FORCE|B_ASYNC)) == 4402 (B_INVAL|B_FORCE|B_ASYNC)) { 4403 rp->r_error = error; 4404 } 4405 mutex_exit(&rp->r_statelock); 4406 } 4407 crfree(cred); 4408 } else { 4409 error = rp->r_error; 4410 /* 4411 * A close may have cleared r_error, if so, 4412 * propagate ESTALE error return properly 4413 */ 4414 if (error == 0) 4415 error = ESTALE; 4416 } 4417 } 4418 4419 if (error != 0 && error != NFS_EOF) 4420 bp->b_flags |= B_ERROR; 4421 4422 DTRACE_IO1(done, struct buf *, bp); 4423 4424 return (error); 4425 } 4426 4427 /* ARGSUSED */ 4428 static int 4429 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4430 { 4431 rnode_t *rp; 4432 4433 if (nfs_zone() != VTOMI(vp)->mi_zone) 4434 return (EIO); 4435 rp = VTOR(vp); 4436 4437 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) { 4438 fidp->fid_len = rp->r_fh.fh_len; 4439 return (ENOSPC); 4440 } 4441 fidp->fid_len = rp->r_fh.fh_len; 4442 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len); 4443 return (0); 4444 } 4445 4446 /* ARGSUSED2 */ 4447 static int 4448 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4449 { 4450 rnode_t *rp = VTOR(vp); 4451 4452 if (!write_lock) { 4453 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4454 return (V_WRITELOCK_FALSE); 4455 } 4456 4457 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 4458 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4459 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 4460 return (V_WRITELOCK_FALSE); 4461 nfs_rw_exit(&rp->r_rwlock); 4462 } 4463 4464 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 4465 return (V_WRITELOCK_TRUE); 4466 } 4467 4468 /* ARGSUSED */ 4469 static void 4470 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4471 { 4472 rnode_t *rp = VTOR(vp); 4473 4474 nfs_rw_exit(&rp->r_rwlock); 4475 } 4476 4477 /* ARGSUSED */ 4478 static int 4479 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 4480 { 4481 4482 /* 4483 * Because we stuff the readdir cookie into the offset field 4484 * someone may attempt to do an lseek with the cookie which 4485 * we want to succeed. 4486 */ 4487 if (vp->v_type == VDIR) 4488 return (0); 4489 if (*noffp < 0) 4490 return (EINVAL); 4491 return (0); 4492 } 4493 4494 /* 4495 * number of nfs3_bsize blocks to read ahead. 4496 */ 4497 static int nfs3_nra = 4; 4498 4499 #ifdef DEBUG 4500 static int nfs3_lostpage = 0; /* number of times we lost original page */ 4501 #endif 4502 4503 /* 4504 * Return all the pages from [off..off+len) in file 4505 */ 4506 /* ARGSUSED */ 4507 static int 4508 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4509 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4510 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4511 { 4512 rnode_t *rp; 4513 int error; 4514 mntinfo_t *mi; 4515 4516 if (vp->v_flag & VNOMAP) 4517 return (ENOSYS); 4518 4519 if (nfs_zone() != VTOMI(vp)->mi_zone) 4520 return (EIO); 4521 if (protp != NULL) 4522 *protp = PROT_ALL; 4523 4524 /* 4525 * Now valididate that the caches are up to date. 4526 */ 4527 error = nfs3_validate_caches(vp, cr); 4528 if (error) 4529 return (error); 4530 4531 rp = VTOR(vp); 4532 mi = VTOMI(vp); 4533 retry: 4534 mutex_enter(&rp->r_statelock); 4535 4536 /* 4537 * Don't create dirty pages faster than they 4538 * can be cleaned so that the system doesn't 4539 * get imbalanced. If the async queue is 4540 * maxed out, then wait for it to drain before 4541 * creating more dirty pages. Also, wait for 4542 * any threads doing pagewalks in the vop_getattr 4543 * entry points so that they don't block for 4544 * long periods. 4545 */ 4546 if (rw == S_CREATE) { 4547 while ((mi->mi_max_threads != 0 && 4548 rp->r_awcount > 2 * mi->mi_max_threads) || 4549 rp->r_gcount > 0) 4550 cv_wait(&rp->r_cv, &rp->r_statelock); 4551 } 4552 4553 /* 4554 * If we are getting called as a side effect of an nfs_write() 4555 * operation the local file size might not be extended yet. 4556 * In this case we want to be able to return pages of zeroes. 4557 */ 4558 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 4559 mutex_exit(&rp->r_statelock); 4560 return (EFAULT); /* beyond EOF */ 4561 } 4562 4563 mutex_exit(&rp->r_statelock); 4564 4565 if (len <= PAGESIZE) { 4566 error = nfs3_getapage(vp, off, len, protp, pl, plsz, 4567 seg, addr, rw, cr); 4568 } else { 4569 error = pvn_getpages(nfs3_getapage, vp, off, len, protp, 4570 pl, plsz, seg, addr, rw, cr); 4571 } 4572 4573 switch (error) { 4574 case NFS_EOF: 4575 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 4576 goto retry; 4577 case ESTALE: 4578 PURGE_STALE_FH(error, vp, cr); 4579 } 4580 4581 return (error); 4582 } 4583 4584 /* 4585 * Called from pvn_getpages or nfs3_getpage to get a particular page. 4586 */ 4587 /* ARGSUSED */ 4588 static int 4589 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 4590 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4591 enum seg_rw rw, cred_t *cr) 4592 { 4593 rnode_t *rp; 4594 uint_t bsize; 4595 struct buf *bp; 4596 page_t *pp; 4597 u_offset_t lbn; 4598 u_offset_t io_off; 4599 u_offset_t blkoff; 4600 u_offset_t rablkoff; 4601 size_t io_len; 4602 uint_t blksize; 4603 int error; 4604 int readahead; 4605 int readahead_issued = 0; 4606 int ra_window; /* readahead window */ 4607 page_t *pagefound; 4608 page_t *savepp; 4609 4610 if (nfs_zone() != VTOMI(vp)->mi_zone) 4611 return (EIO); 4612 rp = VTOR(vp); 4613 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4614 4615 reread: 4616 bp = NULL; 4617 pp = NULL; 4618 pagefound = NULL; 4619 4620 if (pl != NULL) 4621 pl[0] = NULL; 4622 4623 error = 0; 4624 lbn = off / bsize; 4625 blkoff = lbn * bsize; 4626 4627 /* 4628 * Queueing up the readahead before doing the synchronous read 4629 * results in a significant increase in read throughput because 4630 * of the increased parallelism between the async threads and 4631 * the process context. 4632 */ 4633 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 4634 rw != S_CREATE && 4635 !(vp->v_flag & VNOCACHE)) { 4636 mutex_enter(&rp->r_statelock); 4637 4638 /* 4639 * Calculate the number of readaheads to do. 4640 * a) No readaheads at offset = 0. 4641 * b) Do maximum(nfs3_nra) readaheads when the readahead 4642 * window is closed. 4643 * c) Do readaheads between 1 to (nfs3_nra - 1) depending 4644 * upon how far the readahead window is open or close. 4645 * d) No readaheads if rp->r_nextr is not within the scope 4646 * of the readahead window (random i/o). 4647 */ 4648 4649 if (off == 0) 4650 readahead = 0; 4651 else if (blkoff == rp->r_nextr) 4652 readahead = nfs3_nra; 4653 else if (rp->r_nextr > blkoff && 4654 ((ra_window = (rp->r_nextr - blkoff) / bsize) 4655 <= (nfs3_nra - 1))) 4656 readahead = nfs3_nra - ra_window; 4657 else 4658 readahead = 0; 4659 4660 rablkoff = rp->r_nextr; 4661 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 4662 mutex_exit(&rp->r_statelock); 4663 if (nfs_async_readahead(vp, rablkoff + bsize, 4664 addr + (rablkoff + bsize - off), seg, cr, 4665 nfs3_readahead) < 0) { 4666 mutex_enter(&rp->r_statelock); 4667 break; 4668 } 4669 readahead--; 4670 rablkoff += bsize; 4671 /* 4672 * Indicate that we did a readahead so 4673 * readahead offset is not updated 4674 * by the synchronous read below. 4675 */ 4676 readahead_issued = 1; 4677 mutex_enter(&rp->r_statelock); 4678 /* 4679 * set readahead offset to 4680 * offset of last async readahead 4681 * request. 4682 */ 4683 rp->r_nextr = rablkoff; 4684 } 4685 mutex_exit(&rp->r_statelock); 4686 } 4687 4688 again: 4689 if ((pagefound = page_exists(vp, off)) == NULL) { 4690 if (pl == NULL) { 4691 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 4692 nfs3_readahead); 4693 } else if (rw == S_CREATE) { 4694 /* 4695 * Block for this page is not allocated, or the offset 4696 * is beyond the current allocation size, or we're 4697 * allocating a swap slot and the page was not found, 4698 * so allocate it and return a zero page. 4699 */ 4700 if ((pp = page_create_va(vp, off, 4701 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 4702 cmn_err(CE_PANIC, "nfs3_getapage: page_create"); 4703 io_len = PAGESIZE; 4704 mutex_enter(&rp->r_statelock); 4705 rp->r_nextr = off + PAGESIZE; 4706 mutex_exit(&rp->r_statelock); 4707 } else { 4708 /* 4709 * Need to go to server to get a BLOCK, exception to 4710 * that being while reading at offset = 0 or doing 4711 * random i/o, in that case read only a PAGE. 4712 */ 4713 mutex_enter(&rp->r_statelock); 4714 if (blkoff < rp->r_size && 4715 blkoff + bsize >= rp->r_size) { 4716 /* 4717 * If only a block or less is left in 4718 * the file, read all that is remaining. 4719 */ 4720 if (rp->r_size <= off) { 4721 /* 4722 * Trying to access beyond EOF, 4723 * set up to get at least one page. 4724 */ 4725 blksize = off + PAGESIZE - blkoff; 4726 } else 4727 blksize = rp->r_size - blkoff; 4728 } else if ((off == 0) || 4729 (off != rp->r_nextr && !readahead_issued)) { 4730 blksize = PAGESIZE; 4731 blkoff = off; /* block = page here */ 4732 } else 4733 blksize = bsize; 4734 mutex_exit(&rp->r_statelock); 4735 4736 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4737 &io_len, blkoff, blksize, 0); 4738 4739 /* 4740 * Some other thread has entered the page, 4741 * so just use it. 4742 */ 4743 if (pp == NULL) 4744 goto again; 4745 4746 /* 4747 * Now round the request size up to page boundaries. 4748 * This ensures that the entire page will be 4749 * initialized to zeroes if EOF is encountered. 4750 */ 4751 io_len = ptob(btopr(io_len)); 4752 4753 bp = pageio_setup(pp, io_len, vp, B_READ); 4754 ASSERT(bp != NULL); 4755 4756 /* 4757 * pageio_setup should have set b_addr to 0. This 4758 * is correct since we want to do I/O on a page 4759 * boundary. bp_mapin will use this addr to calculate 4760 * an offset, and then set b_addr to the kernel virtual 4761 * address it allocated for us. 4762 */ 4763 ASSERT(bp->b_un.b_addr == 0); 4764 4765 bp->b_edev = 0; 4766 bp->b_dev = 0; 4767 bp->b_lblkno = lbtodb(io_off); 4768 bp->b_file = vp; 4769 bp->b_offset = (offset_t)off; 4770 bp_mapin(bp); 4771 4772 /* 4773 * If doing a write beyond what we believe is EOF, 4774 * don't bother trying to read the pages from the 4775 * server, we'll just zero the pages here. We 4776 * don't check that the rw flag is S_WRITE here 4777 * because some implementations may attempt a 4778 * read access to the buffer before copying data. 4779 */ 4780 mutex_enter(&rp->r_statelock); 4781 if (io_off >= rp->r_size && seg == segkmap) { 4782 mutex_exit(&rp->r_statelock); 4783 bzero(bp->b_un.b_addr, io_len); 4784 } else { 4785 mutex_exit(&rp->r_statelock); 4786 error = nfs3_bio(bp, NULL, cr); 4787 } 4788 4789 /* 4790 * Unmap the buffer before freeing it. 4791 */ 4792 bp_mapout(bp); 4793 pageio_done(bp); 4794 4795 savepp = pp; 4796 do { 4797 pp->p_fsdata = C_NOCOMMIT; 4798 } while ((pp = pp->p_next) != savepp); 4799 4800 if (error == NFS_EOF) { 4801 /* 4802 * If doing a write system call just return 4803 * zeroed pages, else user tried to get pages 4804 * beyond EOF, return error. We don't check 4805 * that the rw flag is S_WRITE here because 4806 * some implementations may attempt a read 4807 * access to the buffer before copying data. 4808 */ 4809 if (seg == segkmap) 4810 error = 0; 4811 else 4812 error = EFAULT; 4813 } 4814 4815 if (!readahead_issued && !error) { 4816 mutex_enter(&rp->r_statelock); 4817 rp->r_nextr = io_off + io_len; 4818 mutex_exit(&rp->r_statelock); 4819 } 4820 } 4821 } 4822 4823 out: 4824 if (pl == NULL) 4825 return (error); 4826 4827 if (error) { 4828 if (pp != NULL) 4829 pvn_read_done(pp, B_ERROR); 4830 return (error); 4831 } 4832 4833 if (pagefound) { 4834 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 4835 4836 /* 4837 * Page exists in the cache, acquire the appropriate lock. 4838 * If this fails, start all over again. 4839 */ 4840 if ((pp = page_lookup(vp, off, se)) == NULL) { 4841 #ifdef DEBUG 4842 nfs3_lostpage++; 4843 #endif 4844 goto reread; 4845 } 4846 pl[0] = pp; 4847 pl[1] = NULL; 4848 return (0); 4849 } 4850 4851 if (pp != NULL) 4852 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4853 4854 return (error); 4855 } 4856 4857 static void 4858 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 4859 cred_t *cr) 4860 { 4861 int error; 4862 page_t *pp; 4863 u_offset_t io_off; 4864 size_t io_len; 4865 struct buf *bp; 4866 uint_t bsize, blksize; 4867 rnode_t *rp = VTOR(vp); 4868 page_t *savepp; 4869 4870 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4871 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4872 4873 mutex_enter(&rp->r_statelock); 4874 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 4875 /* 4876 * If less than a block left in file read less 4877 * than a block. 4878 */ 4879 blksize = rp->r_size - blkoff; 4880 } else 4881 blksize = bsize; 4882 mutex_exit(&rp->r_statelock); 4883 4884 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 4885 &io_off, &io_len, blkoff, blksize, 1); 4886 /* 4887 * The isra flag passed to the kluster function is 1, we may have 4888 * gotten a return value of NULL for a variety of reasons (# of free 4889 * pages < minfree, someone entered the page on the vnode etc). In all 4890 * cases, we want to punt on the readahead. 4891 */ 4892 if (pp == NULL) 4893 return; 4894 4895 /* 4896 * Now round the request size up to page boundaries. 4897 * This ensures that the entire page will be 4898 * initialized to zeroes if EOF is encountered. 4899 */ 4900 io_len = ptob(btopr(io_len)); 4901 4902 bp = pageio_setup(pp, io_len, vp, B_READ); 4903 ASSERT(bp != NULL); 4904 4905 /* 4906 * pageio_setup should have set b_addr to 0. This is correct since 4907 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4908 * to calculate an offset, and then set b_addr to the kernel virtual 4909 * address it allocated for us. 4910 */ 4911 ASSERT(bp->b_un.b_addr == 0); 4912 4913 bp->b_edev = 0; 4914 bp->b_dev = 0; 4915 bp->b_lblkno = lbtodb(io_off); 4916 bp->b_file = vp; 4917 bp->b_offset = (offset_t)blkoff; 4918 bp_mapin(bp); 4919 4920 /* 4921 * If doing a write beyond what we believe is EOF, don't bother trying 4922 * to read the pages from the server, we'll just zero the pages here. 4923 * We don't check that the rw flag is S_WRITE here because some 4924 * implementations may attempt a read access to the buffer before 4925 * copying data. 4926 */ 4927 mutex_enter(&rp->r_statelock); 4928 if (io_off >= rp->r_size && seg == segkmap) { 4929 mutex_exit(&rp->r_statelock); 4930 bzero(bp->b_un.b_addr, io_len); 4931 error = 0; 4932 } else { 4933 mutex_exit(&rp->r_statelock); 4934 error = nfs3_bio(bp, NULL, cr); 4935 if (error == NFS_EOF) 4936 error = 0; 4937 } 4938 4939 /* 4940 * Unmap the buffer before freeing it. 4941 */ 4942 bp_mapout(bp); 4943 pageio_done(bp); 4944 4945 savepp = pp; 4946 do { 4947 pp->p_fsdata = C_NOCOMMIT; 4948 } while ((pp = pp->p_next) != savepp); 4949 4950 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4951 4952 /* 4953 * In case of error set readahead offset 4954 * to the lowest offset. 4955 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4956 */ 4957 if (error && rp->r_nextr > io_off) { 4958 mutex_enter(&rp->r_statelock); 4959 if (rp->r_nextr > io_off) 4960 rp->r_nextr = io_off; 4961 mutex_exit(&rp->r_statelock); 4962 } 4963 } 4964 4965 /* 4966 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4967 * If len == 0, do from off to EOF. 4968 * 4969 * The normal cases should be len == 0 && off == 0 (entire vp list), 4970 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4971 * (from pageout). 4972 */ 4973 /* ARGSUSED */ 4974 static int 4975 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4976 caller_context_t *ct) 4977 { 4978 int error; 4979 rnode_t *rp; 4980 4981 ASSERT(cr != NULL); 4982 4983 /* 4984 * XXX - Why should this check be made here? 4985 */ 4986 if (vp->v_flag & VNOMAP) 4987 return (ENOSYS); 4988 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4989 return (0); 4990 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4991 return (EIO); 4992 4993 rp = VTOR(vp); 4994 mutex_enter(&rp->r_statelock); 4995 rp->r_count++; 4996 mutex_exit(&rp->r_statelock); 4997 error = nfs_putpages(vp, off, len, flags, cr); 4998 mutex_enter(&rp->r_statelock); 4999 rp->r_count--; 5000 cv_broadcast(&rp->r_cv); 5001 mutex_exit(&rp->r_statelock); 5002 5003 return (error); 5004 } 5005 5006 /* 5007 * Write out a single page, possibly klustering adjacent dirty pages. 5008 */ 5009 int 5010 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 5011 int flags, cred_t *cr) 5012 { 5013 u_offset_t io_off; 5014 u_offset_t lbn_off; 5015 u_offset_t lbn; 5016 size_t io_len; 5017 uint_t bsize; 5018 int error; 5019 rnode_t *rp; 5020 5021 ASSERT(!vn_is_readonly(vp)); 5022 ASSERT(pp != NULL); 5023 ASSERT(cr != NULL); 5024 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 5025 5026 rp = VTOR(vp); 5027 ASSERT(rp->r_count > 0); 5028 5029 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 5030 lbn = pp->p_offset / bsize; 5031 lbn_off = lbn * bsize; 5032 5033 /* 5034 * Find a kluster that fits in one block, or in 5035 * one page if pages are bigger than blocks. If 5036 * there is less file space allocated than a whole 5037 * page, we'll shorten the i/o request below. 5038 */ 5039 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 5040 roundup(bsize, PAGESIZE), flags); 5041 5042 /* 5043 * pvn_write_kluster shouldn't have returned a page with offset 5044 * behind the original page we were given. Verify that. 5045 */ 5046 ASSERT((pp->p_offset / bsize) >= lbn); 5047 5048 /* 5049 * Now pp will have the list of kept dirty pages marked for 5050 * write back. It will also handle invalidation and freeing 5051 * of pages that are not dirty. Check for page length rounding 5052 * problems. 5053 */ 5054 if (io_off + io_len > lbn_off + bsize) { 5055 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 5056 io_len = lbn_off + bsize - io_off; 5057 } 5058 /* 5059 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5060 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 5061 * When RMODINPROGRESS is set it indicates that a uiomove() is in 5062 * progress and the r_size has not been made consistent with the 5063 * new size of the file. When the uiomove() completes the r_size is 5064 * updated and the RMODINPROGRESS flag is cleared. 5065 * 5066 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5067 * consistent value of r_size. Without this handshaking, it is 5068 * possible that nfs(3)_bio() picks up the old value of r_size 5069 * before the uiomove() in writerp() completes. This will result 5070 * in the write through nfs(3)_bio() being dropped. 5071 * 5072 * More precisely, there is a window between the time the uiomove() 5073 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 5074 * operation intervenes in this window, the page will be picked up, 5075 * because it is dirty (it will be unlocked, unless it was 5076 * pagecreate'd). When the page is picked up as dirty, the dirty 5077 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 5078 * checked. This will still be the old size. Therefore the page will 5079 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 5080 * the page will be found to be clean and the write will be dropped. 5081 */ 5082 if (rp->r_flags & RMODINPROGRESS) { 5083 mutex_enter(&rp->r_statelock); 5084 if ((rp->r_flags & RMODINPROGRESS) && 5085 rp->r_modaddr + MAXBSIZE > io_off && 5086 rp->r_modaddr < io_off + io_len) { 5087 page_t *plist; 5088 /* 5089 * A write is in progress for this region of the file. 5090 * If we did not detect RMODINPROGRESS here then this 5091 * path through nfs_putapage() would eventually go to 5092 * nfs(3)_bio() and may not write out all of the data 5093 * in the pages. We end up losing data. So we decide 5094 * to set the modified bit on each page in the page 5095 * list and mark the rnode with RDIRTY. This write 5096 * will be restarted at some later time. 5097 */ 5098 plist = pp; 5099 while (plist != NULL) { 5100 pp = plist; 5101 page_sub(&plist, pp); 5102 hat_setmod(pp); 5103 page_io_unlock(pp); 5104 page_unlock(pp); 5105 } 5106 rp->r_flags |= RDIRTY; 5107 mutex_exit(&rp->r_statelock); 5108 if (offp) 5109 *offp = io_off; 5110 if (lenp) 5111 *lenp = io_len; 5112 return (0); 5113 } 5114 mutex_exit(&rp->r_statelock); 5115 } 5116 5117 if (flags & B_ASYNC) { 5118 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 5119 nfs3_sync_putapage); 5120 } else 5121 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr); 5122 5123 if (offp) 5124 *offp = io_off; 5125 if (lenp) 5126 *lenp = io_len; 5127 return (error); 5128 } 5129 5130 static int 5131 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5132 int flags, cred_t *cr) 5133 { 5134 int error; 5135 rnode_t *rp; 5136 5137 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5138 5139 flags |= B_WRITE; 5140 5141 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5142 5143 rp = VTOR(vp); 5144 5145 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 5146 error == EACCES) && 5147 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 5148 if (!(rp->r_flags & ROUTOFSPACE)) { 5149 mutex_enter(&rp->r_statelock); 5150 rp->r_flags |= ROUTOFSPACE; 5151 mutex_exit(&rp->r_statelock); 5152 } 5153 flags |= B_ERROR; 5154 pvn_write_done(pp, flags); 5155 /* 5156 * If this was not an async thread, then try again to 5157 * write out the pages, but this time, also destroy 5158 * them whether or not the write is successful. This 5159 * will prevent memory from filling up with these 5160 * pages and destroying them is the only alternative 5161 * if they can't be written out. 5162 * 5163 * Don't do this if this is an async thread because 5164 * when the pages are unlocked in pvn_write_done, 5165 * some other thread could have come along, locked 5166 * them, and queued for an async thread. It would be 5167 * possible for all of the async threads to be tied 5168 * up waiting to lock the pages again and they would 5169 * all already be locked and waiting for an async 5170 * thread to handle them. Deadlock. 5171 */ 5172 if (!(flags & B_ASYNC)) { 5173 error = nfs3_putpage(vp, io_off, io_len, 5174 B_INVAL | B_FORCE, cr, NULL); 5175 } 5176 } else { 5177 if (error) 5178 flags |= B_ERROR; 5179 else if (rp->r_flags & ROUTOFSPACE) { 5180 mutex_enter(&rp->r_statelock); 5181 rp->r_flags &= ~ROUTOFSPACE; 5182 mutex_exit(&rp->r_statelock); 5183 } 5184 pvn_write_done(pp, flags); 5185 if (freemem < desfree) 5186 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr); 5187 } 5188 5189 return (error); 5190 } 5191 5192 /* ARGSUSED */ 5193 static int 5194 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5195 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5196 cred_t *cr, caller_context_t *ct) 5197 { 5198 struct segvn_crargs vn_a; 5199 int error; 5200 rnode_t *rp; 5201 struct vattr va; 5202 5203 if (nfs_zone() != VTOMI(vp)->mi_zone) 5204 return (EIO); 5205 5206 if (vp->v_flag & VNOMAP) 5207 return (ENOSYS); 5208 5209 if (off < 0 || off + len < 0) 5210 return (ENXIO); 5211 5212 if (vp->v_type != VREG) 5213 return (ENODEV); 5214 5215 /* 5216 * If there is cached data and if close-to-open consistency 5217 * checking is not turned off and if the file system is not 5218 * mounted readonly, then force an over the wire getattr. 5219 * Otherwise, just invoke nfs3getattr to get a copy of the 5220 * attributes. The attribute cache will be used unless it 5221 * is timed out and if it is, then an over the wire getattr 5222 * will be issued. 5223 */ 5224 va.va_mask = AT_ALL; 5225 if (vn_has_cached_data(vp) && 5226 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 5227 error = nfs3_getattr_otw(vp, &va, cr); 5228 else 5229 error = nfs3getattr(vp, &va, cr); 5230 if (error) 5231 return (error); 5232 5233 /* 5234 * Check to see if the vnode is currently marked as not cachable. 5235 * This means portions of the file are locked (through VOP_FRLOCK). 5236 * In this case the map request must be refused. We use 5237 * rp->r_lkserlock to avoid a race with concurrent lock requests. 5238 */ 5239 rp = VTOR(vp); 5240 5241 /* 5242 * Atomically increment r_inmap after acquiring r_rwlock. The 5243 * idea here is to acquire r_rwlock to block read/write and 5244 * not to protect r_inmap. r_inmap will inform nfs3_read/write() 5245 * that we are in nfs3_map(). Now, r_rwlock is acquired in order 5246 * and we can prevent the deadlock that would have occurred 5247 * when nfs3_addmap() would have acquired it out of order. 5248 * 5249 * Since we are not protecting r_inmap by any lock, we do not 5250 * hold any lock when we decrement it. We atomically decrement 5251 * r_inmap after we release r_lkserlock. 5252 */ 5253 5254 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 5255 return (EINTR); 5256 atomic_add_int(&rp->r_inmap, 1); 5257 nfs_rw_exit(&rp->r_rwlock); 5258 5259 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) { 5260 atomic_add_int(&rp->r_inmap, -1); 5261 return (EINTR); 5262 } 5263 5264 if (vp->v_flag & VNOCACHE) { 5265 error = EAGAIN; 5266 goto done; 5267 } 5268 5269 /* 5270 * Don't allow concurrent locks and mapping if mandatory locking is 5271 * enabled. 5272 */ 5273 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 5274 MANDLOCK(vp, va.va_mode)) { 5275 error = EAGAIN; 5276 goto done; 5277 } 5278 5279 as_rangelock(as); 5280 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5281 if (error != 0) { 5282 as_rangeunlock(as); 5283 goto done; 5284 } 5285 5286 vn_a.vp = vp; 5287 vn_a.offset = off; 5288 vn_a.type = (flags & MAP_TYPE); 5289 vn_a.prot = (uchar_t)prot; 5290 vn_a.maxprot = (uchar_t)maxprot; 5291 vn_a.flags = (flags & ~MAP_TYPE); 5292 vn_a.cred = cr; 5293 vn_a.amp = NULL; 5294 vn_a.szc = 0; 5295 vn_a.lgrp_mem_policy_flags = 0; 5296 5297 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5298 as_rangeunlock(as); 5299 5300 done: 5301 nfs_rw_exit(&rp->r_lkserlock); 5302 atomic_add_int(&rp->r_inmap, -1); 5303 return (error); 5304 } 5305 5306 /* ARGSUSED */ 5307 static int 5308 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5309 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5310 cred_t *cr, caller_context_t *ct) 5311 { 5312 rnode_t *rp; 5313 5314 if (vp->v_flag & VNOMAP) 5315 return (ENOSYS); 5316 if (nfs_zone() != VTOMI(vp)->mi_zone) 5317 return (EIO); 5318 5319 rp = VTOR(vp); 5320 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 5321 5322 return (0); 5323 } 5324 5325 /* ARGSUSED */ 5326 static int 5327 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5328 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 5329 caller_context_t *ct) 5330 { 5331 netobj lm_fh3; 5332 int rc; 5333 u_offset_t start, end; 5334 rnode_t *rp; 5335 int error = 0, intr = INTR(vp); 5336 5337 if (nfs_zone() != VTOMI(vp)->mi_zone) 5338 return (EIO); 5339 /* check for valid cmd parameter */ 5340 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 5341 return (EINVAL); 5342 5343 /* Verify l_type. */ 5344 switch (bfp->l_type) { 5345 case F_RDLCK: 5346 if (cmd != F_GETLK && !(flag & FREAD)) 5347 return (EBADF); 5348 break; 5349 case F_WRLCK: 5350 if (cmd != F_GETLK && !(flag & FWRITE)) 5351 return (EBADF); 5352 break; 5353 case F_UNLCK: 5354 intr = 0; 5355 break; 5356 5357 default: 5358 return (EINVAL); 5359 } 5360 5361 /* check the validity of the lock range */ 5362 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 5363 return (rc); 5364 if (rc = flk_check_lock_data(start, end, MAXEND)) 5365 return (rc); 5366 5367 /* 5368 * If the filesystem is mounted using local locking, pass the 5369 * request off to the local locking code. 5370 */ 5371 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 5372 if (cmd == F_SETLK || cmd == F_SETLKW) { 5373 /* 5374 * For complete safety, we should be holding 5375 * r_lkserlock. However, we can't call 5376 * lm_safelock and then fs_frlock while 5377 * holding r_lkserlock, so just invoke 5378 * lm_safelock and expect that this will 5379 * catch enough of the cases. 5380 */ 5381 if (!lm_safelock(vp, bfp, cr)) 5382 return (EAGAIN); 5383 } 5384 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 5385 } 5386 5387 rp = VTOR(vp); 5388 5389 /* 5390 * Check whether the given lock request can proceed, given the 5391 * current file mappings. 5392 */ 5393 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 5394 return (EINTR); 5395 if (cmd == F_SETLK || cmd == F_SETLKW) { 5396 if (!lm_safelock(vp, bfp, cr)) { 5397 rc = EAGAIN; 5398 goto done; 5399 } 5400 } 5401 5402 /* 5403 * Flush the cache after waiting for async I/O to finish. For new 5404 * locks, this is so that the process gets the latest bits from the 5405 * server. For unlocks, this is so that other clients see the 5406 * latest bits once the file has been unlocked. If currently dirty 5407 * pages can't be flushed, then don't allow a lock to be set. But 5408 * allow unlocks to succeed, to avoid having orphan locks on the 5409 * server. 5410 */ 5411 if (cmd != F_GETLK) { 5412 mutex_enter(&rp->r_statelock); 5413 while (rp->r_count > 0) { 5414 if (intr) { 5415 klwp_t *lwp = ttolwp(curthread); 5416 5417 if (lwp != NULL) 5418 lwp->lwp_nostop++; 5419 if (cv_wait_sig(&rp->r_cv, 5420 &rp->r_statelock) == 0) { 5421 if (lwp != NULL) 5422 lwp->lwp_nostop--; 5423 rc = EINTR; 5424 break; 5425 } 5426 if (lwp != NULL) 5427 lwp->lwp_nostop--; 5428 } else 5429 cv_wait(&rp->r_cv, &rp->r_statelock); 5430 } 5431 mutex_exit(&rp->r_statelock); 5432 if (rc != 0) 5433 goto done; 5434 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 5435 if (error) { 5436 if (error == ENOSPC || error == EDQUOT) { 5437 mutex_enter(&rp->r_statelock); 5438 if (!rp->r_error) 5439 rp->r_error = error; 5440 mutex_exit(&rp->r_statelock); 5441 } 5442 if (bfp->l_type != F_UNLCK) { 5443 rc = ENOLCK; 5444 goto done; 5445 } 5446 } 5447 } 5448 5449 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 5450 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 5451 5452 /* 5453 * Call the lock manager to do the real work of contacting 5454 * the server and obtaining the lock. 5455 */ 5456 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp); 5457 5458 if (rc == 0) 5459 nfs_lockcompletion(vp, cmd); 5460 5461 done: 5462 nfs_rw_exit(&rp->r_lkserlock); 5463 return (rc); 5464 } 5465 5466 /* 5467 * Free storage space associated with the specified vnode. The portion 5468 * to be freed is specified by bfp->l_start and bfp->l_len (already 5469 * normalized to a "whence" of 0). 5470 * 5471 * This is an experimental facility whose continued existence is not 5472 * guaranteed. Currently, we only support the special case 5473 * of l_len == 0, meaning free to end of file. 5474 */ 5475 /* ARGSUSED */ 5476 static int 5477 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5478 offset_t offset, cred_t *cr, caller_context_t *ct) 5479 { 5480 int error; 5481 5482 ASSERT(vp->v_type == VREG); 5483 if (cmd != F_FREESP) 5484 return (EINVAL); 5485 if (nfs_zone() != VTOMI(vp)->mi_zone) 5486 return (EIO); 5487 5488 error = convoff(vp, bfp, 0, offset); 5489 if (!error) { 5490 ASSERT(bfp->l_start >= 0); 5491 if (bfp->l_len == 0) { 5492 struct vattr va; 5493 5494 /* 5495 * ftruncate should not change the ctime and 5496 * mtime if we truncate the file to its 5497 * previous size. 5498 */ 5499 va.va_mask = AT_SIZE; 5500 error = nfs3getattr(vp, &va, cr); 5501 if (error || va.va_size == bfp->l_start) 5502 return (error); 5503 va.va_mask = AT_SIZE; 5504 va.va_size = bfp->l_start; 5505 error = nfs3setattr(vp, &va, 0, cr); 5506 } else 5507 error = EINVAL; 5508 } 5509 5510 return (error); 5511 } 5512 5513 /* ARGSUSED */ 5514 static int 5515 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 5516 { 5517 5518 return (EINVAL); 5519 } 5520 5521 /* 5522 * Setup and add an address space callback to do the work of the delmap call. 5523 * The callback will (and must be) deleted in the actual callback function. 5524 * 5525 * This is done in order to take care of the problem that we have with holding 5526 * the address space's a_lock for a long period of time (e.g. if the NFS server 5527 * is down). Callbacks will be executed in the address space code while the 5528 * a_lock is not held. Holding the address space's a_lock causes things such 5529 * as ps and fork to hang because they are trying to acquire this lock as well. 5530 */ 5531 /* ARGSUSED */ 5532 static int 5533 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5534 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5535 cred_t *cr, caller_context_t *ct) 5536 { 5537 int caller_found; 5538 int error; 5539 rnode_t *rp; 5540 nfs_delmap_args_t *dmapp; 5541 nfs_delmapcall_t *delmap_call; 5542 5543 if (vp->v_flag & VNOMAP) 5544 return (ENOSYS); 5545 /* 5546 * A process may not change zones if it has NFS pages mmap'ed 5547 * in, so we can't legitimately get here from the wrong zone. 5548 */ 5549 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5550 5551 rp = VTOR(vp); 5552 5553 /* 5554 * The way that the address space of this process deletes its mapping 5555 * of this file is via the following call chains: 5556 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5557 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5558 * 5559 * With the use of address space callbacks we are allowed to drop the 5560 * address space lock, a_lock, while executing the NFS operations that 5561 * need to go over the wire. Returning EAGAIN to the caller of this 5562 * function is what drives the execution of the callback that we add 5563 * below. The callback will be executed by the address space code 5564 * after dropping the a_lock. When the callback is finished, since 5565 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 5566 * is called again on the same segment to finish the rest of the work 5567 * that needs to happen during unmapping. 5568 * 5569 * This action of calling back into the segment driver causes 5570 * nfs3_delmap() to get called again, but since the callback was 5571 * already executed at this point, it already did the work and there 5572 * is nothing left for us to do. 5573 * 5574 * To Summarize: 5575 * - The first time nfs3_delmap is called by the current thread is when 5576 * we add the caller associated with this delmap to the delmap caller 5577 * list, add the callback, and return EAGAIN. 5578 * - The second time in this call chain when nfs3_delmap is called we 5579 * will find this caller in the delmap caller list and realize there 5580 * is no more work to do thus removing this caller from the list and 5581 * returning the error that was set in the callback execution. 5582 */ 5583 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 5584 if (caller_found) { 5585 /* 5586 * 'error' is from the actual delmap operations. To avoid 5587 * hangs, we need to handle the return of EAGAIN differently 5588 * since this is what drives the callback execution. 5589 * In this case, we don't want to return EAGAIN and do the 5590 * callback execution because there are none to execute. 5591 */ 5592 if (error == EAGAIN) 5593 return (0); 5594 else 5595 return (error); 5596 } 5597 5598 /* current caller was not in the list */ 5599 delmap_call = nfs_init_delmapcall(); 5600 5601 mutex_enter(&rp->r_statelock); 5602 list_insert_tail(&rp->r_indelmap, delmap_call); 5603 mutex_exit(&rp->r_statelock); 5604 5605 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 5606 5607 dmapp->vp = vp; 5608 dmapp->off = off; 5609 dmapp->addr = addr; 5610 dmapp->len = len; 5611 dmapp->prot = prot; 5612 dmapp->maxprot = maxprot; 5613 dmapp->flags = flags; 5614 dmapp->cr = cr; 5615 dmapp->caller = delmap_call; 5616 5617 error = as_add_callback(as, nfs3_delmap_callback, dmapp, 5618 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 5619 5620 return (error ? error : EAGAIN); 5621 } 5622 5623 /* 5624 * Remove some pages from an mmap'd vnode. Just update the 5625 * count of pages. If doing close-to-open, then flush and 5626 * commit all of the pages associated with this file. 5627 * Otherwise, start an asynchronous page flush to write out 5628 * any dirty pages. This will also associate a credential 5629 * with the rnode which can be used to write the pages. 5630 */ 5631 /* ARGSUSED */ 5632 static void 5633 nfs3_delmap_callback(struct as *as, void *arg, uint_t event) 5634 { 5635 int error; 5636 rnode_t *rp; 5637 mntinfo_t *mi; 5638 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 5639 5640 rp = VTOR(dmapp->vp); 5641 mi = VTOMI(dmapp->vp); 5642 5643 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 5644 ASSERT(rp->r_mapcnt >= 0); 5645 5646 /* 5647 * Initiate a page flush and potential commit if there are 5648 * pages, the file system was not mounted readonly, the segment 5649 * was mapped shared, and the pages themselves were writeable. 5650 */ 5651 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 5652 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 5653 mutex_enter(&rp->r_statelock); 5654 rp->r_flags |= RDIRTY; 5655 mutex_exit(&rp->r_statelock); 5656 /* 5657 * If this is a cross-zone access a sync putpage won't work, so 5658 * the best we can do is try an async putpage. That seems 5659 * better than something more draconian such as discarding the 5660 * dirty pages. 5661 */ 5662 if ((mi->mi_flags & MI_NOCTO) || 5663 nfs_zone() != mi->mi_zone) 5664 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5665 B_ASYNC, dmapp->cr, NULL); 5666 else 5667 error = nfs3_putpage_commit(dmapp->vp, dmapp->off, 5668 dmapp->len, dmapp->cr); 5669 if (!error) { 5670 mutex_enter(&rp->r_statelock); 5671 error = rp->r_error; 5672 rp->r_error = 0; 5673 mutex_exit(&rp->r_statelock); 5674 } 5675 } else 5676 error = 0; 5677 5678 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 5679 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5680 B_INVAL, dmapp->cr, NULL); 5681 5682 dmapp->caller->error = error; 5683 (void) as_delete_callback(as, arg); 5684 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 5685 } 5686 5687 static int nfs3_pathconf_disable_cache = 0; 5688 5689 #ifdef DEBUG 5690 static int nfs3_pathconf_cache_hits = 0; 5691 static int nfs3_pathconf_cache_misses = 0; 5692 #endif 5693 5694 /* ARGSUSED */ 5695 static int 5696 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 5697 caller_context_t *ct) 5698 { 5699 int error; 5700 PATHCONF3args args; 5701 PATHCONF3res res; 5702 int douprintf; 5703 failinfo_t fi; 5704 rnode_t *rp; 5705 hrtime_t t; 5706 5707 if (nfs_zone() != VTOMI(vp)->mi_zone) 5708 return (EIO); 5709 /* 5710 * Large file spec - need to base answer on info stored 5711 * on original FSINFO response. 5712 */ 5713 if (cmd == _PC_FILESIZEBITS) { 5714 unsigned long long ll; 5715 long l = 1; 5716 5717 ll = VTOMI(vp)->mi_maxfilesize; 5718 5719 if (ll == 0) { 5720 *valp = 0; 5721 return (0); 5722 } 5723 5724 if (ll & 0xffffffff00000000) { 5725 l += 32; ll >>= 32; 5726 } 5727 if (ll & 0xffff0000) { 5728 l += 16; ll >>= 16; 5729 } 5730 if (ll & 0xff00) { 5731 l += 8; ll >>= 8; 5732 } 5733 if (ll & 0xf0) { 5734 l += 4; ll >>= 4; 5735 } 5736 if (ll & 0xc) { 5737 l += 2; ll >>= 2; 5738 } 5739 if (ll & 0x2) 5740 l += 2; 5741 else if (ll & 0x1) 5742 l += 1; 5743 *valp = l; 5744 return (0); 5745 } 5746 5747 if (cmd == _PC_ACL_ENABLED) { 5748 *valp = _ACL_ACLENT_ENABLED; 5749 return (0); 5750 } 5751 5752 if (cmd == _PC_XATTR_EXISTS) { 5753 error = 0; 5754 *valp = 0; 5755 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5756 vnode_t *avp; 5757 rnode_t *rp; 5758 int error = 0; 5759 mntinfo_t *mi = VTOMI(vp); 5760 5761 if (!(mi->mi_flags & MI_EXTATTR)) 5762 return (0); 5763 5764 rp = VTOR(vp); 5765 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 5766 INTR(vp))) 5767 return (EINTR); 5768 5769 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 5770 if (error || avp == NULL) 5771 error = acl_getxattrdir3(vp, &avp, 0, cr, 0); 5772 5773 nfs_rw_exit(&rp->r_rwlock); 5774 5775 if (error == 0 && avp != NULL) { 5776 error = do_xattr_exists_check(avp, valp, cr); 5777 VN_RELE(avp); 5778 } else if (error == ENOENT) { 5779 error = 0; 5780 *valp = 0; 5781 } 5782 } 5783 return (error); 5784 } 5785 5786 rp = VTOR(vp); 5787 if (rp->r_pathconf != NULL) { 5788 mutex_enter(&rp->r_statelock); 5789 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) { 5790 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf)); 5791 rp->r_pathconf = NULL; 5792 } 5793 if (rp->r_pathconf != NULL) { 5794 error = 0; 5795 switch (cmd) { 5796 case _PC_LINK_MAX: 5797 *valp = rp->r_pathconf->link_max; 5798 break; 5799 case _PC_NAME_MAX: 5800 *valp = rp->r_pathconf->name_max; 5801 break; 5802 case _PC_PATH_MAX: 5803 case _PC_SYMLINK_MAX: 5804 *valp = MAXPATHLEN; 5805 break; 5806 case _PC_CHOWN_RESTRICTED: 5807 *valp = rp->r_pathconf->chown_restricted; 5808 break; 5809 case _PC_NO_TRUNC: 5810 *valp = rp->r_pathconf->no_trunc; 5811 break; 5812 default: 5813 error = EINVAL; 5814 break; 5815 } 5816 mutex_exit(&rp->r_statelock); 5817 #ifdef DEBUG 5818 nfs3_pathconf_cache_hits++; 5819 #endif 5820 return (error); 5821 } 5822 mutex_exit(&rp->r_statelock); 5823 } 5824 #ifdef DEBUG 5825 nfs3_pathconf_cache_misses++; 5826 #endif 5827 5828 args.object = *VTOFH3(vp); 5829 fi.vp = vp; 5830 fi.fhp = (caddr_t)&args.object; 5831 fi.copyproc = nfs3copyfh; 5832 fi.lookupproc = nfs3lookup; 5833 fi.xattrdirproc = acl_getxattrdir3; 5834 5835 douprintf = 1; 5836 5837 t = gethrtime(); 5838 5839 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF, 5840 xdr_nfs_fh3, (caddr_t)&args, 5841 xdr_PATHCONF3res, (caddr_t)&res, cr, 5842 &douprintf, &res.status, 0, &fi); 5843 5844 if (error) 5845 return (error); 5846 5847 error = geterrno3(res.status); 5848 5849 if (!error) { 5850 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 5851 if (!nfs3_pathconf_disable_cache) { 5852 mutex_enter(&rp->r_statelock); 5853 if (rp->r_pathconf == NULL) { 5854 rp->r_pathconf = kmem_alloc( 5855 sizeof (*rp->r_pathconf), KM_NOSLEEP); 5856 if (rp->r_pathconf != NULL) 5857 *rp->r_pathconf = res.resok.info; 5858 } 5859 mutex_exit(&rp->r_statelock); 5860 } 5861 switch (cmd) { 5862 case _PC_LINK_MAX: 5863 *valp = res.resok.info.link_max; 5864 break; 5865 case _PC_NAME_MAX: 5866 *valp = res.resok.info.name_max; 5867 break; 5868 case _PC_PATH_MAX: 5869 case _PC_SYMLINK_MAX: 5870 *valp = MAXPATHLEN; 5871 break; 5872 case _PC_CHOWN_RESTRICTED: 5873 *valp = res.resok.info.chown_restricted; 5874 break; 5875 case _PC_NO_TRUNC: 5876 *valp = res.resok.info.no_trunc; 5877 break; 5878 default: 5879 return (EINVAL); 5880 } 5881 } else { 5882 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 5883 PURGE_STALE_FH(error, vp, cr); 5884 } 5885 5886 return (error); 5887 } 5888 5889 /* 5890 * Called by async thread to do synchronous pageio. Do the i/o, wait 5891 * for it to complete, and cleanup the page list when done. 5892 */ 5893 static int 5894 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5895 int flags, cred_t *cr) 5896 { 5897 int error; 5898 5899 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5900 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5901 if (flags & B_READ) 5902 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 5903 else 5904 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 5905 return (error); 5906 } 5907 5908 /* ARGSUSED */ 5909 static int 5910 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5911 int flags, cred_t *cr, caller_context_t *ct) 5912 { 5913 int error; 5914 rnode_t *rp; 5915 5916 if (pp == NULL) 5917 return (EINVAL); 5918 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5919 return (EIO); 5920 5921 rp = VTOR(vp); 5922 mutex_enter(&rp->r_statelock); 5923 rp->r_count++; 5924 mutex_exit(&rp->r_statelock); 5925 5926 if (flags & B_ASYNC) { 5927 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 5928 nfs3_sync_pageio); 5929 } else 5930 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5931 mutex_enter(&rp->r_statelock); 5932 rp->r_count--; 5933 cv_broadcast(&rp->r_cv); 5934 mutex_exit(&rp->r_statelock); 5935 return (error); 5936 } 5937 5938 /* ARGSUSED */ 5939 static void 5940 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 5941 caller_context_t *ct) 5942 { 5943 int error; 5944 rnode_t *rp; 5945 page_t *plist; 5946 page_t *pptr; 5947 offset3 offset; 5948 count3 len; 5949 k_sigset_t smask; 5950 5951 /* 5952 * We should get called with fl equal to either B_FREE or 5953 * B_INVAL. Any other value is illegal. 5954 * 5955 * The page that we are either supposed to free or destroy 5956 * should be exclusive locked and its io lock should not 5957 * be held. 5958 */ 5959 ASSERT(fl == B_FREE || fl == B_INVAL); 5960 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 5961 rp = VTOR(vp); 5962 5963 /* 5964 * If the page doesn't need to be committed or we shouldn't 5965 * even bother attempting to commit it, then just make sure 5966 * that the p_fsdata byte is clear and then either free or 5967 * destroy the page as appropriate. 5968 */ 5969 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) { 5970 pp->p_fsdata = C_NOCOMMIT; 5971 if (fl == B_FREE) 5972 page_free(pp, dn); 5973 else 5974 page_destroy(pp, dn); 5975 return; 5976 } 5977 5978 /* 5979 * If there is a page invalidation operation going on, then 5980 * if this is one of the pages being destroyed, then just 5981 * clear the p_fsdata byte and then either free or destroy 5982 * the page as appropriate. 5983 */ 5984 mutex_enter(&rp->r_statelock); 5985 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 5986 mutex_exit(&rp->r_statelock); 5987 pp->p_fsdata = C_NOCOMMIT; 5988 if (fl == B_FREE) 5989 page_free(pp, dn); 5990 else 5991 page_destroy(pp, dn); 5992 return; 5993 } 5994 5995 /* 5996 * If we are freeing this page and someone else is already 5997 * waiting to do a commit, then just unlock the page and 5998 * return. That other thread will take care of commiting 5999 * this page. The page can be freed sometime after the 6000 * commit has finished. Otherwise, if the page is marked 6001 * as delay commit, then we may be getting called from 6002 * pvn_write_done, one page at a time. This could result 6003 * in one commit per page, so we end up doing lots of small 6004 * commits instead of fewer larger commits. This is bad, 6005 * we want do as few commits as possible. 6006 */ 6007 if (fl == B_FREE) { 6008 if (rp->r_flags & RCOMMITWAIT) { 6009 page_unlock(pp); 6010 mutex_exit(&rp->r_statelock); 6011 return; 6012 } 6013 if (pp->p_fsdata == C_DELAYCOMMIT) { 6014 pp->p_fsdata = C_COMMIT; 6015 page_unlock(pp); 6016 mutex_exit(&rp->r_statelock); 6017 return; 6018 } 6019 } 6020 6021 /* 6022 * Check to see if there is a signal which would prevent an 6023 * attempt to commit the pages from being successful. If so, 6024 * then don't bother with all of the work to gather pages and 6025 * generate the unsuccessful RPC. Just return from here and 6026 * let the page be committed at some later time. 6027 */ 6028 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT); 6029 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 6030 sigunintr(&smask); 6031 page_unlock(pp); 6032 mutex_exit(&rp->r_statelock); 6033 return; 6034 } 6035 sigunintr(&smask); 6036 6037 /* 6038 * We are starting to need to commit pages, so let's try 6039 * to commit as many as possible at once to reduce the 6040 * overhead. 6041 * 6042 * Set the `commit inprogress' state bit. We must 6043 * first wait until any current one finishes. Then 6044 * we initialize the c_pages list with this page. 6045 */ 6046 while (rp->r_flags & RCOMMIT) { 6047 rp->r_flags |= RCOMMITWAIT; 6048 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6049 rp->r_flags &= ~RCOMMITWAIT; 6050 } 6051 rp->r_flags |= RCOMMIT; 6052 mutex_exit(&rp->r_statelock); 6053 ASSERT(rp->r_commit.c_pages == NULL); 6054 rp->r_commit.c_pages = pp; 6055 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6056 rp->r_commit.c_commlen = PAGESIZE; 6057 6058 /* 6059 * Gather together all other pages which can be committed. 6060 * They will all be chained off r_commit.c_pages. 6061 */ 6062 nfs3_get_commit(vp); 6063 6064 /* 6065 * Clear the `commit inprogress' status and disconnect 6066 * the list of pages to be committed from the rnode. 6067 * At this same time, we also save the starting offset 6068 * and length of data to be committed on the server. 6069 */ 6070 plist = rp->r_commit.c_pages; 6071 rp->r_commit.c_pages = NULL; 6072 offset = rp->r_commit.c_commbase; 6073 len = rp->r_commit.c_commlen; 6074 mutex_enter(&rp->r_statelock); 6075 rp->r_flags &= ~RCOMMIT; 6076 cv_broadcast(&rp->r_commit.c_cv); 6077 mutex_exit(&rp->r_statelock); 6078 6079 if (curproc == proc_pageout || curproc == proc_fsflush || 6080 nfs_zone() != VTOMI(vp)->mi_zone) { 6081 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit); 6082 return; 6083 } 6084 6085 /* 6086 * Actually generate the COMMIT3 over the wire operation. 6087 */ 6088 error = nfs3_commit(vp, offset, len, cr); 6089 6090 /* 6091 * If we got an error during the commit, just unlock all 6092 * of the pages. The pages will get retransmitted to the 6093 * server during a putpage operation. 6094 */ 6095 if (error) { 6096 while (plist != NULL) { 6097 pptr = plist; 6098 page_sub(&plist, pptr); 6099 page_unlock(pptr); 6100 } 6101 return; 6102 } 6103 6104 /* 6105 * We've tried as hard as we can to commit the data to stable 6106 * storage on the server. We release the rest of the pages 6107 * and clear the commit required state. They will be put 6108 * onto the tail of the cachelist if they are nolonger 6109 * mapped. 6110 */ 6111 while (plist != pp) { 6112 pptr = plist; 6113 page_sub(&plist, pptr); 6114 pptr->p_fsdata = C_NOCOMMIT; 6115 (void) page_release(pptr, 1); 6116 } 6117 6118 /* 6119 * It is possible that nfs3_commit didn't return error but 6120 * some other thread has modified the page we are going 6121 * to free/destroy. 6122 * In this case we need to rewrite the page. Do an explicit check 6123 * before attempting to free/destroy the page. If modified, needs to 6124 * be rewritten so unlock the page and return. 6125 */ 6126 if (hat_ismod(pp)) { 6127 pp->p_fsdata = C_NOCOMMIT; 6128 page_unlock(pp); 6129 return; 6130 } 6131 6132 /* 6133 * Now, as appropriate, either free or destroy the page 6134 * that we were called with. 6135 */ 6136 pp->p_fsdata = C_NOCOMMIT; 6137 if (fl == B_FREE) 6138 page_free(pp, dn); 6139 else 6140 page_destroy(pp, dn); 6141 } 6142 6143 static int 6144 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr) 6145 { 6146 int error; 6147 rnode_t *rp; 6148 COMMIT3args args; 6149 COMMIT3res res; 6150 int douprintf; 6151 cred_t *cred; 6152 6153 rp = VTOR(vp); 6154 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6155 6156 mutex_enter(&rp->r_statelock); 6157 if (rp->r_cred != NULL) { 6158 cred = rp->r_cred; 6159 crhold(cred); 6160 } else { 6161 rp->r_cred = cr; 6162 crhold(cr); 6163 cred = cr; 6164 crhold(cred); 6165 } 6166 mutex_exit(&rp->r_statelock); 6167 6168 args.file = *VTOFH3(vp); 6169 args.offset = offset; 6170 args.count = count; 6171 6172 doitagain: 6173 douprintf = 1; 6174 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT, 6175 xdr_COMMIT3args, (caddr_t)&args, 6176 xdr_COMMIT3res, (caddr_t)&res, cred, 6177 &douprintf, &res.status, 0, NULL); 6178 6179 crfree(cred); 6180 6181 if (error) 6182 return (error); 6183 6184 error = geterrno3(res.status); 6185 if (!error) { 6186 ASSERT(rp->r_flags & RHAVEVERF); 6187 mutex_enter(&rp->r_statelock); 6188 if (rp->r_verf == res.resok.verf) { 6189 mutex_exit(&rp->r_statelock); 6190 return (0); 6191 } 6192 nfs3_set_mod(vp); 6193 rp->r_verf = res.resok.verf; 6194 mutex_exit(&rp->r_statelock); 6195 error = NFS_VERF_MISMATCH; 6196 } else { 6197 if (error == EACCES) { 6198 mutex_enter(&rp->r_statelock); 6199 if (cred != cr) { 6200 if (rp->r_cred != NULL) 6201 crfree(rp->r_cred); 6202 rp->r_cred = cr; 6203 crhold(cr); 6204 cred = cr; 6205 crhold(cred); 6206 mutex_exit(&rp->r_statelock); 6207 goto doitagain; 6208 } 6209 mutex_exit(&rp->r_statelock); 6210 } 6211 /* 6212 * Can't do a PURGE_STALE_FH here because this 6213 * can cause a deadlock. nfs3_commit can 6214 * be called from nfs3_dispose which can be called 6215 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH 6216 * can call back to pvn_vplist_dirty. 6217 */ 6218 if (error == ESTALE) { 6219 mutex_enter(&rp->r_statelock); 6220 rp->r_flags |= RSTALE; 6221 if (!rp->r_error) 6222 rp->r_error = error; 6223 mutex_exit(&rp->r_statelock); 6224 PURGE_ATTRCACHE(vp); 6225 } else { 6226 mutex_enter(&rp->r_statelock); 6227 if (!rp->r_error) 6228 rp->r_error = error; 6229 mutex_exit(&rp->r_statelock); 6230 } 6231 } 6232 6233 return (error); 6234 } 6235 6236 static void 6237 nfs3_set_mod(vnode_t *vp) 6238 { 6239 page_t *pp; 6240 kmutex_t *vphm; 6241 6242 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6243 vphm = page_vnode_mutex(vp); 6244 mutex_enter(vphm); 6245 if ((pp = vp->v_pages) != NULL) { 6246 do { 6247 if (pp->p_fsdata != C_NOCOMMIT) { 6248 hat_setmod(pp); 6249 pp->p_fsdata = C_NOCOMMIT; 6250 } 6251 } while ((pp = pp->p_vpnext) != vp->v_pages); 6252 } 6253 mutex_exit(vphm); 6254 } 6255 6256 6257 /* 6258 * This routine is used to gather together a page list of the pages 6259 * which are to be committed on the server. This routine must not 6260 * be called if the calling thread holds any locked pages. 6261 * 6262 * The calling thread must have set RCOMMIT. This bit is used to 6263 * serialize access to the commit structure in the rnode. As long 6264 * as the thread has set RCOMMIT, then it can manipulate the commit 6265 * structure without requiring any other locks. 6266 */ 6267 static void 6268 nfs3_get_commit(vnode_t *vp) 6269 { 6270 rnode_t *rp; 6271 page_t *pp; 6272 kmutex_t *vphm; 6273 6274 rp = VTOR(vp); 6275 6276 ASSERT(rp->r_flags & RCOMMIT); 6277 6278 vphm = page_vnode_mutex(vp); 6279 mutex_enter(vphm); 6280 6281 /* 6282 * If there are no pages associated with this vnode, then 6283 * just return. 6284 */ 6285 if ((pp = vp->v_pages) == NULL) { 6286 mutex_exit(vphm); 6287 return; 6288 } 6289 6290 /* 6291 * Step through all of the pages associated with this vnode 6292 * looking for pages which need to be committed. 6293 */ 6294 do { 6295 /* 6296 * If this page does not need to be committed or is 6297 * modified, then just skip it. 6298 */ 6299 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 6300 continue; 6301 6302 /* 6303 * Attempt to lock the page. If we can't, then 6304 * someone else is messing with it and we will 6305 * just skip it. 6306 */ 6307 if (!page_trylock(pp, SE_EXCL)) 6308 continue; 6309 6310 /* 6311 * If this page does not need to be committed or is 6312 * modified, then just skip it. Recheck now that 6313 * the page is locked. 6314 */ 6315 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6316 page_unlock(pp); 6317 continue; 6318 } 6319 6320 if (PP_ISFREE(pp)) { 6321 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free", 6322 (void *)pp); 6323 } 6324 6325 /* 6326 * The page needs to be committed and we locked it. 6327 * Update the base and length parameters and add it 6328 * to r_pages. 6329 */ 6330 if (rp->r_commit.c_pages == NULL) { 6331 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6332 rp->r_commit.c_commlen = PAGESIZE; 6333 } else if (pp->p_offset < rp->r_commit.c_commbase) { 6334 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 6335 (offset3)pp->p_offset + rp->r_commit.c_commlen; 6336 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6337 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 6338 <= pp->p_offset) { 6339 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6340 rp->r_commit.c_commbase + PAGESIZE; 6341 } 6342 page_add(&rp->r_commit.c_pages, pp); 6343 } while ((pp = pp->p_vpnext) != vp->v_pages); 6344 6345 mutex_exit(vphm); 6346 } 6347 6348 /* 6349 * This routine is used to gather together a page list of the pages 6350 * which are to be committed on the server. This routine must not 6351 * be called if the calling thread holds any locked pages. 6352 * 6353 * The calling thread must have set RCOMMIT. This bit is used to 6354 * serialize access to the commit structure in the rnode. As long 6355 * as the thread has set RCOMMIT, then it can manipulate the commit 6356 * structure without requiring any other locks. 6357 */ 6358 static void 6359 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 6360 { 6361 6362 rnode_t *rp; 6363 page_t *pp; 6364 u_offset_t end; 6365 u_offset_t off; 6366 6367 ASSERT(len != 0); 6368 6369 rp = VTOR(vp); 6370 6371 ASSERT(rp->r_flags & RCOMMIT); 6372 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6373 6374 /* 6375 * If there are no pages associated with this vnode, then 6376 * just return. 6377 */ 6378 if ((pp = vp->v_pages) == NULL) 6379 return; 6380 6381 /* 6382 * Calculate the ending offset. 6383 */ 6384 end = soff + len; 6385 6386 for (off = soff; off < end; off += PAGESIZE) { 6387 /* 6388 * Lookup each page by vp, offset. 6389 */ 6390 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 6391 continue; 6392 6393 /* 6394 * If this page does not need to be committed or is 6395 * modified, then just skip it. 6396 */ 6397 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6398 page_unlock(pp); 6399 continue; 6400 } 6401 6402 ASSERT(PP_ISFREE(pp) == 0); 6403 6404 /* 6405 * The page needs to be committed and we locked it. 6406 * Update the base and length parameters and add it 6407 * to r_pages. 6408 */ 6409 if (rp->r_commit.c_pages == NULL) { 6410 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6411 rp->r_commit.c_commlen = PAGESIZE; 6412 } else { 6413 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6414 rp->r_commit.c_commbase + PAGESIZE; 6415 } 6416 page_add(&rp->r_commit.c_pages, pp); 6417 } 6418 } 6419 6420 #if 0 /* unused */ 6421 #ifdef DEBUG 6422 static int 6423 nfs3_no_uncommitted_pages(vnode_t *vp) 6424 { 6425 page_t *pp; 6426 kmutex_t *vphm; 6427 6428 vphm = page_vnode_mutex(vp); 6429 mutex_enter(vphm); 6430 if ((pp = vp->v_pages) != NULL) { 6431 do { 6432 if (pp->p_fsdata != C_NOCOMMIT) { 6433 mutex_exit(vphm); 6434 return (0); 6435 } 6436 } while ((pp = pp->p_vpnext) != vp->v_pages); 6437 } 6438 mutex_exit(vphm); 6439 6440 return (1); 6441 } 6442 #endif 6443 #endif 6444 6445 static int 6446 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 6447 { 6448 int error; 6449 writeverf3 write_verf; 6450 rnode_t *rp = VTOR(vp); 6451 6452 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6453 /* 6454 * Flush the data portion of the file and then commit any 6455 * portions which need to be committed. This may need to 6456 * be done twice if the server has changed state since 6457 * data was last written. The data will need to be 6458 * rewritten to the server and then a new commit done. 6459 * 6460 * In fact, this may need to be done several times if the 6461 * server is having problems and crashing while we are 6462 * attempting to do this. 6463 */ 6464 6465 top: 6466 /* 6467 * Do a flush based on the poff and plen arguments. This 6468 * will asynchronously write out any modified pages in the 6469 * range specified by (poff, plen). This starts all of the 6470 * i/o operations which will be waited for in the next 6471 * call to nfs3_putpage 6472 */ 6473 6474 mutex_enter(&rp->r_statelock); 6475 write_verf = rp->r_verf; 6476 mutex_exit(&rp->r_statelock); 6477 6478 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 6479 if (error == EAGAIN) 6480 error = 0; 6481 6482 /* 6483 * Do a flush based on the poff and plen arguments. This 6484 * will synchronously write out any modified pages in the 6485 * range specified by (poff, plen) and wait until all of 6486 * the asynchronous i/o's in that range are done as well. 6487 */ 6488 if (!error) 6489 error = nfs3_putpage(vp, poff, plen, 0, cr, NULL); 6490 6491 if (error) 6492 return (error); 6493 6494 mutex_enter(&rp->r_statelock); 6495 if (rp->r_verf != write_verf) { 6496 mutex_exit(&rp->r_statelock); 6497 goto top; 6498 } 6499 mutex_exit(&rp->r_statelock); 6500 6501 /* 6502 * Now commit any pages which might need to be committed. 6503 * If the error, NFS_VERF_MISMATCH, is returned, then 6504 * start over with the flush operation. 6505 */ 6506 6507 error = nfs3_commit_vp(vp, poff, plen, cr); 6508 6509 if (error == NFS_VERF_MISMATCH) 6510 goto top; 6511 6512 return (error); 6513 } 6514 6515 static int 6516 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr) 6517 { 6518 rnode_t *rp; 6519 page_t *plist; 6520 offset3 offset; 6521 count3 len; 6522 6523 6524 rp = VTOR(vp); 6525 6526 if (nfs_zone() != VTOMI(vp)->mi_zone) 6527 return (EIO); 6528 /* 6529 * Set the `commit inprogress' state bit. We must 6530 * first wait until any current one finishes. 6531 */ 6532 mutex_enter(&rp->r_statelock); 6533 while (rp->r_flags & RCOMMIT) { 6534 rp->r_flags |= RCOMMITWAIT; 6535 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6536 rp->r_flags &= ~RCOMMITWAIT; 6537 } 6538 rp->r_flags |= RCOMMIT; 6539 mutex_exit(&rp->r_statelock); 6540 6541 /* 6542 * Gather together all of the pages which need to be 6543 * committed. 6544 */ 6545 if (plen == 0) 6546 nfs3_get_commit(vp); 6547 else 6548 nfs3_get_commit_range(vp, poff, plen); 6549 6550 /* 6551 * Clear the `commit inprogress' bit and disconnect the 6552 * page list which was gathered together in nfs3_get_commit. 6553 */ 6554 plist = rp->r_commit.c_pages; 6555 rp->r_commit.c_pages = NULL; 6556 offset = rp->r_commit.c_commbase; 6557 len = rp->r_commit.c_commlen; 6558 mutex_enter(&rp->r_statelock); 6559 rp->r_flags &= ~RCOMMIT; 6560 cv_broadcast(&rp->r_commit.c_cv); 6561 mutex_exit(&rp->r_statelock); 6562 6563 /* 6564 * If any pages need to be committed, commit them and 6565 * then unlock them so that they can be freed some 6566 * time later. 6567 */ 6568 if (plist != NULL) { 6569 /* 6570 * No error occurred during the flush portion 6571 * of this operation, so now attempt to commit 6572 * the data to stable storage on the server. 6573 * 6574 * This will unlock all of the pages on the list. 6575 */ 6576 return (nfs3_sync_commit(vp, plist, offset, len, cr)); 6577 } 6578 return (0); 6579 } 6580 6581 static int 6582 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6583 cred_t *cr) 6584 { 6585 int error; 6586 page_t *pp; 6587 6588 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6589 error = nfs3_commit(vp, offset, count, cr); 6590 6591 /* 6592 * If we got an error, then just unlock all of the pages 6593 * on the list. 6594 */ 6595 if (error) { 6596 while (plist != NULL) { 6597 pp = plist; 6598 page_sub(&plist, pp); 6599 page_unlock(pp); 6600 } 6601 return (error); 6602 } 6603 /* 6604 * We've tried as hard as we can to commit the data to stable 6605 * storage on the server. We just unlock the pages and clear 6606 * the commit required state. They will get freed later. 6607 */ 6608 while (plist != NULL) { 6609 pp = plist; 6610 page_sub(&plist, pp); 6611 pp->p_fsdata = C_NOCOMMIT; 6612 page_unlock(pp); 6613 } 6614 6615 return (error); 6616 } 6617 6618 static void 6619 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6620 cred_t *cr) 6621 { 6622 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6623 (void) nfs3_sync_commit(vp, plist, offset, count, cr); 6624 } 6625 6626 /* ARGSUSED */ 6627 static int 6628 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6629 caller_context_t *ct) 6630 { 6631 int error; 6632 mntinfo_t *mi; 6633 6634 mi = VTOMI(vp); 6635 6636 if (nfs_zone() != mi->mi_zone) 6637 return (EIO); 6638 6639 if (mi->mi_flags & MI_ACL) { 6640 error = acl_setacl3(vp, vsecattr, flag, cr); 6641 if (mi->mi_flags & MI_ACL) 6642 return (error); 6643 } 6644 6645 return (ENOSYS); 6646 } 6647 6648 /* ARGSUSED */ 6649 static int 6650 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6651 caller_context_t *ct) 6652 { 6653 int error; 6654 mntinfo_t *mi; 6655 6656 mi = VTOMI(vp); 6657 6658 if (nfs_zone() != mi->mi_zone) 6659 return (EIO); 6660 6661 if (mi->mi_flags & MI_ACL) { 6662 error = acl_getacl3(vp, vsecattr, flag, cr); 6663 if (mi->mi_flags & MI_ACL) 6664 return (error); 6665 } 6666 6667 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 6668 } 6669 6670 /* ARGSUSED */ 6671 static int 6672 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 6673 caller_context_t *ct) 6674 { 6675 int error; 6676 struct shrlock nshr; 6677 struct nfs_owner nfs_owner; 6678 netobj lm_fh3; 6679 6680 if (nfs_zone() != VTOMI(vp)->mi_zone) 6681 return (EIO); 6682 6683 /* 6684 * check for valid cmd parameter 6685 */ 6686 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 6687 return (EINVAL); 6688 6689 /* 6690 * Check access permissions 6691 */ 6692 if (cmd == F_SHARE && 6693 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 6694 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 6695 return (EBADF); 6696 6697 /* 6698 * If the filesystem is mounted using local locking, pass the 6699 * request off to the local share code. 6700 */ 6701 if (VTOMI(vp)->mi_flags & MI_LLOCK) 6702 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 6703 6704 switch (cmd) { 6705 case F_SHARE: 6706 case F_UNSHARE: 6707 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 6708 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 6709 6710 /* 6711 * If passed an owner that is too large to fit in an 6712 * nfs_owner it is likely a recursive call from the 6713 * lock manager client and pass it straight through. If 6714 * it is not a nfs_owner then simply return an error. 6715 */ 6716 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 6717 if (((struct nfs_owner *)shr->s_owner)->magic != 6718 NFS_OWNER_MAGIC) 6719 return (EINVAL); 6720 6721 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) { 6722 error = set_errno(error); 6723 } 6724 return (error); 6725 } 6726 /* 6727 * Remote share reservations owner is a combination of 6728 * a magic number, hostname, and the local owner 6729 */ 6730 bzero(&nfs_owner, sizeof (nfs_owner)); 6731 nfs_owner.magic = NFS_OWNER_MAGIC; 6732 (void) strncpy(nfs_owner.hname, uts_nodename(), 6733 sizeof (nfs_owner.hname)); 6734 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 6735 nshr.s_access = shr->s_access; 6736 nshr.s_deny = shr->s_deny; 6737 nshr.s_sysid = 0; 6738 nshr.s_pid = ttoproc(curthread)->p_pid; 6739 nshr.s_own_len = sizeof (nfs_owner); 6740 nshr.s_owner = (caddr_t)&nfs_owner; 6741 6742 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) { 6743 error = set_errno(error); 6744 } 6745 6746 break; 6747 6748 case F_HASREMOTELOCKS: 6749 /* 6750 * NFS client can't store remote locks itself 6751 */ 6752 shr->s_access = 0; 6753 error = 0; 6754 break; 6755 6756 default: 6757 error = EINVAL; 6758 break; 6759 } 6760 6761 return (error); 6762 } 6763