1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 */ 30 31 /* 32 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 33 */ 34 35 #include <sys/param.h> 36 #include <sys/types.h> 37 #include <sys/systm.h> 38 #include <sys/cred.h> 39 #include <sys/time.h> 40 #include <sys/vnode.h> 41 #include <sys/vfs.h> 42 #include <sys/vfs_opreg.h> 43 #include <sys/file.h> 44 #include <sys/filio.h> 45 #include <sys/uio.h> 46 #include <sys/buf.h> 47 #include <sys/mman.h> 48 #include <sys/pathname.h> 49 #include <sys/dirent.h> 50 #include <sys/debug.h> 51 #include <sys/vmsystm.h> 52 #include <sys/fcntl.h> 53 #include <sys/flock.h> 54 #include <sys/swap.h> 55 #include <sys/errno.h> 56 #include <sys/strsubr.h> 57 #include <sys/sysmacros.h> 58 #include <sys/kmem.h> 59 #include <sys/cmn_err.h> 60 #include <sys/pathconf.h> 61 #include <sys/utsname.h> 62 #include <sys/dnlc.h> 63 #include <sys/acl.h> 64 #include <sys/systeminfo.h> 65 #include <sys/atomic.h> 66 #include <sys/policy.h> 67 #include <sys/sdt.h> 68 #include <sys/zone.h> 69 70 #include <rpc/types.h> 71 #include <rpc/auth.h> 72 #include <rpc/clnt.h> 73 #include <rpc/rpc_rdma.h> 74 75 #include <nfs/nfs.h> 76 #include <nfs/nfs_clnt.h> 77 #include <nfs/rnode.h> 78 #include <nfs/nfs_acl.h> 79 #include <nfs/lm.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/pvn.h> 85 #include <vm/seg.h> 86 #include <vm/seg_map.h> 87 #include <vm/seg_kpm.h> 88 #include <vm/seg_vn.h> 89 90 #include <fs/fs_subr.h> 91 92 #include <sys/ddi.h> 93 94 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 95 cred_t *); 96 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 97 stable_how *); 98 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *); 99 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *); 100 static int nfs3_accessx(void *, int, cred_t *); 101 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 102 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 103 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl, 104 int, vnode_t **, cred_t *, int); 105 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *); 106 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 107 int, vnode_t **, cred_t *); 108 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 109 caller_context_t *); 110 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 111 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 112 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *); 113 static int nfs3_bio(struct buf *, stable_how *, cred_t *); 114 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 115 page_t *[], size_t, struct seg *, caddr_t, 116 enum seg_rw, cred_t *); 117 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 118 cred_t *); 119 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 120 int, cred_t *); 121 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 122 int, cred_t *); 123 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *); 124 static void nfs3_set_mod(vnode_t *); 125 static void nfs3_get_commit(vnode_t *); 126 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t); 127 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 128 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *); 129 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3, 130 cred_t *); 131 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3, 132 cred_t *); 133 static void nfs3_delmap_callback(struct as *, void *, uint_t); 134 135 /* 136 * Error flags used to pass information about certain special errors 137 * which need to be handled specially. 138 */ 139 #define NFS_EOF -98 140 #define NFS_VERF_MISMATCH -97 141 142 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 143 #define ALIGN64(x, ptr, sz) \ 144 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 145 if (x) { \ 146 x = sizeof (uint64_t) - (x); \ 147 sz -= (x); \ 148 ptr += (x); \ 149 } 150 151 /* 152 * These are the vnode ops routines which implement the vnode interface to 153 * the networked file system. These routines just take their parameters, 154 * make them look networkish by putting the right info into interface structs, 155 * and then calling the appropriate remote routine(s) to do the work. 156 * 157 * Note on directory name lookup cacheing: If we detect a stale fhandle, 158 * we purge the directory cache relative to that vnode. This way, the 159 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 160 * more details on rnode locking. 161 */ 162 163 static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *); 164 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *, 165 caller_context_t *); 166 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *, 167 caller_context_t *); 168 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *, 169 caller_context_t *); 170 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 171 caller_context_t *); 172 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *, 173 caller_context_t *); 174 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *, 175 caller_context_t *); 176 static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *); 177 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *, 178 caller_context_t *); 179 static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *); 180 static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *); 181 static int nfs3_lookup(vnode_t *, char *, vnode_t **, 182 struct pathname *, int, vnode_t *, cred_t *, 183 caller_context_t *, int *, pathname_t *); 184 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl, 185 int, vnode_t **, cred_t *, int, caller_context_t *, 186 vsecattr_t *); 187 static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *, 188 int); 189 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *, 190 caller_context_t *, int); 191 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 192 caller_context_t *, int); 193 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 194 cred_t *, caller_context_t *, int, vsecattr_t *); 195 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 196 caller_context_t *, int); 197 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *, 198 cred_t *, caller_context_t *, int); 199 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *, 200 caller_context_t *, int); 201 static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *); 202 static int nfs3_rwlock(vnode_t *, int, caller_context_t *); 203 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *); 204 static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 205 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *, 206 page_t *[], size_t, struct seg *, caddr_t, 207 enum seg_rw, cred_t *, caller_context_t *); 208 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 209 caller_context_t *); 210 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 211 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 212 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 213 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 214 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 215 struct flk_callback *, cred_t *, caller_context_t *); 216 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t, 217 cred_t *, caller_context_t *); 218 static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *); 219 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 220 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 221 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *, 222 caller_context_t *); 223 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 224 cred_t *, caller_context_t *); 225 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *, 226 caller_context_t *); 227 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 228 caller_context_t *); 229 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 230 caller_context_t *); 231 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 232 caller_context_t *); 233 234 struct vnodeops *nfs3_vnodeops; 235 236 const fs_operation_def_t nfs3_vnodeops_template[] = { 237 VOPNAME_OPEN, { .vop_open = nfs3_open }, 238 VOPNAME_CLOSE, { .vop_close = nfs3_close }, 239 VOPNAME_READ, { .vop_read = nfs3_read }, 240 VOPNAME_WRITE, { .vop_write = nfs3_write }, 241 VOPNAME_IOCTL, { .vop_ioctl = nfs3_ioctl }, 242 VOPNAME_GETATTR, { .vop_getattr = nfs3_getattr }, 243 VOPNAME_SETATTR, { .vop_setattr = nfs3_setattr }, 244 VOPNAME_ACCESS, { .vop_access = nfs3_access }, 245 VOPNAME_LOOKUP, { .vop_lookup = nfs3_lookup }, 246 VOPNAME_CREATE, { .vop_create = nfs3_create }, 247 VOPNAME_REMOVE, { .vop_remove = nfs3_remove }, 248 VOPNAME_LINK, { .vop_link = nfs3_link }, 249 VOPNAME_RENAME, { .vop_rename = nfs3_rename }, 250 VOPNAME_MKDIR, { .vop_mkdir = nfs3_mkdir }, 251 VOPNAME_RMDIR, { .vop_rmdir = nfs3_rmdir }, 252 VOPNAME_READDIR, { .vop_readdir = nfs3_readdir }, 253 VOPNAME_SYMLINK, { .vop_symlink = nfs3_symlink }, 254 VOPNAME_READLINK, { .vop_readlink = nfs3_readlink }, 255 VOPNAME_FSYNC, { .vop_fsync = nfs3_fsync }, 256 VOPNAME_INACTIVE, { .vop_inactive = nfs3_inactive }, 257 VOPNAME_FID, { .vop_fid = nfs3_fid }, 258 VOPNAME_RWLOCK, { .vop_rwlock = nfs3_rwlock }, 259 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs3_rwunlock }, 260 VOPNAME_SEEK, { .vop_seek = nfs3_seek }, 261 VOPNAME_FRLOCK, { .vop_frlock = nfs3_frlock }, 262 VOPNAME_SPACE, { .vop_space = nfs3_space }, 263 VOPNAME_REALVP, { .vop_realvp = nfs3_realvp }, 264 VOPNAME_GETPAGE, { .vop_getpage = nfs3_getpage }, 265 VOPNAME_PUTPAGE, { .vop_putpage = nfs3_putpage }, 266 VOPNAME_MAP, { .vop_map = nfs3_map }, 267 VOPNAME_ADDMAP, { .vop_addmap = nfs3_addmap }, 268 VOPNAME_DELMAP, { .vop_delmap = nfs3_delmap }, 269 /* no separate nfs3_dump */ 270 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 271 VOPNAME_PATHCONF, { .vop_pathconf = nfs3_pathconf }, 272 VOPNAME_PAGEIO, { .vop_pageio = nfs3_pageio }, 273 VOPNAME_DISPOSE, { .vop_dispose = nfs3_dispose }, 274 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs3_setsecattr }, 275 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs3_getsecattr }, 276 VOPNAME_SHRLOCK, { .vop_shrlock = nfs3_shrlock }, 277 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 278 NULL, NULL 279 }; 280 281 /* 282 * XXX: This is referenced in modstubs.s 283 */ 284 struct vnodeops * 285 nfs3_getvnodeops(void) 286 { 287 return (nfs3_vnodeops); 288 } 289 290 /* ARGSUSED */ 291 static int 292 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 293 { 294 int error; 295 struct vattr va; 296 rnode_t *rp; 297 vnode_t *vp; 298 299 vp = *vpp; 300 if (nfs_zone() != VTOMI(vp)->mi_zone) 301 return (EIO); 302 rp = VTOR(vp); 303 mutex_enter(&rp->r_statelock); 304 if (rp->r_cred == NULL) { 305 crhold(cr); 306 rp->r_cred = cr; 307 } 308 mutex_exit(&rp->r_statelock); 309 310 /* 311 * If there is no cached data or if close-to-open 312 * consistency checking is turned off, we can avoid 313 * the over the wire getattr. Otherwise, if the 314 * file system is mounted readonly, then just verify 315 * the caches are up to date using the normal mechanism. 316 * Else, if the file is not mmap'd, then just mark 317 * the attributes as timed out. They will be refreshed 318 * and the caches validated prior to being used. 319 * Else, the file system is mounted writeable so 320 * force an over the wire GETATTR in order to ensure 321 * that all cached data is valid. 322 */ 323 if (vp->v_count > 1 || 324 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 325 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 326 if (vn_is_readonly(vp)) 327 error = nfs3_validate_caches(vp, cr); 328 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 329 PURGE_ATTRCACHE(vp); 330 error = 0; 331 } else { 332 va.va_mask = AT_ALL; 333 error = nfs3_getattr_otw(vp, &va, cr); 334 } 335 } else 336 error = 0; 337 338 return (error); 339 } 340 341 /* ARGSUSED */ 342 static int 343 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 344 caller_context_t *ct) 345 { 346 rnode_t *rp; 347 int error; 348 struct vattr va; 349 350 /* 351 * zone_enter(2) prevents processes from changing zones with NFS files 352 * open; if we happen to get here from the wrong zone we can't do 353 * anything over the wire. 354 */ 355 if (VTOMI(vp)->mi_zone != nfs_zone()) { 356 /* 357 * We could attempt to clean up locks, except we're sure 358 * that the current process didn't acquire any locks on 359 * the file: any attempt to lock a file belong to another zone 360 * will fail, and one can't lock an NFS file and then change 361 * zones, as that fails too. 362 * 363 * Returning an error here is the sane thing to do. A 364 * subsequent call to VN_RELE() which translates to a 365 * nfs3_inactive() will clean up state: if the zone of the 366 * vnode's origin is still alive and kicking, an async worker 367 * thread will handle the request (from the correct zone), and 368 * everything (minus the commit and final nfs3_getattr_otw() 369 * call) should be OK. If the zone is going away 370 * nfs_async_inactive() will throw away cached pages inline. 371 */ 372 return (EIO); 373 } 374 375 /* 376 * If we are using local locking for this filesystem, then 377 * release all of the SYSV style record locks. Otherwise, 378 * we are doing network locking and we need to release all 379 * of the network locks. All of the locks held by this 380 * process on this file are released no matter what the 381 * incoming reference count is. 382 */ 383 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 384 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 385 cleanshares(vp, ttoproc(curthread)->p_pid); 386 } else 387 nfs_lockrelease(vp, flag, offset, cr); 388 389 if (count > 1) 390 return (0); 391 392 /* 393 * If the file has been `unlinked', then purge the 394 * DNLC so that this vnode will get reycled quicker 395 * and the .nfs* file on the server will get removed. 396 */ 397 rp = VTOR(vp); 398 if (rp->r_unldvp != NULL) 399 dnlc_purge_vp(vp); 400 401 /* 402 * If the file was open for write and there are pages, 403 * then if the file system was mounted using the "no-close- 404 * to-open" semantics, then start an asynchronous flush 405 * of the all of the pages in the file. 406 * else the file system was not mounted using the "no-close- 407 * to-open" semantics, then do a synchronous flush and 408 * commit of all of the dirty and uncommitted pages. 409 * 410 * The asynchronous flush of the pages in the "nocto" path 411 * mostly just associates a cred pointer with the rnode so 412 * writes which happen later will have a better chance of 413 * working. It also starts the data being written to the 414 * server, but without unnecessarily delaying the application. 415 */ 416 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 417 if (VTOMI(vp)->mi_flags & MI_NOCTO) { 418 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC, 419 cr, ct); 420 if (error == EAGAIN) 421 error = 0; 422 } else 423 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 424 if (!error) { 425 mutex_enter(&rp->r_statelock); 426 error = rp->r_error; 427 rp->r_error = 0; 428 mutex_exit(&rp->r_statelock); 429 } 430 } else { 431 mutex_enter(&rp->r_statelock); 432 error = rp->r_error; 433 rp->r_error = 0; 434 mutex_exit(&rp->r_statelock); 435 } 436 437 /* 438 * If RWRITEATTR is set, then issue an over the wire GETATTR to 439 * refresh the attribute cache with a set of attributes which 440 * weren't returned from a WRITE. This will enable the close- 441 * to-open processing to work. 442 */ 443 if (rp->r_flags & RWRITEATTR) 444 (void) nfs3_getattr_otw(vp, &va, cr); 445 446 return (error); 447 } 448 449 /* ARGSUSED */ 450 static int 451 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr) 452 { 453 mntinfo_t *mi; 454 READ3args args; 455 READ3uiores res; 456 int tsize; 457 offset_t offset; 458 ssize_t count; 459 int error; 460 int douprintf; 461 failinfo_t fi; 462 char *sv_hostname; 463 464 mi = VTOMI(vp); 465 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 466 sv_hostname = VTOR(vp)->r_server->sv_hostname; 467 468 douprintf = 1; 469 args.file = *VTOFH3(vp); 470 fi.vp = vp; 471 fi.fhp = (caddr_t)&args.file; 472 fi.copyproc = nfs3copyfh; 473 fi.lookupproc = nfs3lookup; 474 fi.xattrdirproc = acl_getxattrdir3; 475 476 res.uiop = uiop; 477 478 res.wlist = NULL; 479 480 offset = uiop->uio_loffset; 481 count = uiop->uio_resid; 482 483 do { 484 if (mi->mi_io_kstats) { 485 mutex_enter(&mi->mi_lock); 486 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 487 mutex_exit(&mi->mi_lock); 488 } 489 490 do { 491 tsize = MIN(mi->mi_tsize, count); 492 args.offset = (offset3)offset; 493 args.count = (count3)tsize; 494 res.size = (uint_t)tsize; 495 args.res_uiop = uiop; 496 args.res_data_val_alt = NULL; 497 498 error = rfs3call(mi, NFSPROC3_READ, 499 xdr_READ3args, (caddr_t)&args, 500 xdr_READ3uiores, (caddr_t)&res, cr, 501 &douprintf, &res.status, 0, &fi); 502 } while (error == ENFS_TRYAGAIN); 503 504 if (mi->mi_io_kstats) { 505 mutex_enter(&mi->mi_lock); 506 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 507 mutex_exit(&mi->mi_lock); 508 } 509 510 if (error) 511 return (error); 512 513 error = geterrno3(res.status); 514 if (error) 515 return (error); 516 517 if (res.count != res.size) { 518 zcmn_err(getzoneid(), CE_WARN, 519 "nfs3_directio_read: server %s returned incorrect amount", 520 sv_hostname); 521 return (EIO); 522 } 523 count -= res.count; 524 offset += res.count; 525 if (mi->mi_io_kstats) { 526 mutex_enter(&mi->mi_lock); 527 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 528 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 529 mutex_exit(&mi->mi_lock); 530 } 531 lwp_stat_update(LWP_STAT_INBLK, 1); 532 } while (count && !res.eof); 533 534 return (0); 535 } 536 537 /* ARGSUSED */ 538 static int 539 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 540 caller_context_t *ct) 541 { 542 rnode_t *rp; 543 u_offset_t off; 544 offset_t diff; 545 int on; 546 size_t n; 547 caddr_t base; 548 uint_t flags; 549 int error = 0; 550 mntinfo_t *mi; 551 552 rp = VTOR(vp); 553 mi = VTOMI(vp); 554 555 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 556 557 if (nfs_zone() != mi->mi_zone) 558 return (EIO); 559 560 if (vp->v_type != VREG) 561 return (EISDIR); 562 563 if (uiop->uio_resid == 0) 564 return (0); 565 566 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 567 return (EINVAL); 568 569 /* 570 * Bypass VM if caching has been disabled (e.g., locking) or if 571 * using client-side direct I/O and the file is not mmap'd and 572 * there are no cached pages. 573 */ 574 if ((vp->v_flag & VNOCACHE) || 575 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 576 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 577 !vn_has_cached_data(vp))) { 578 return (nfs3_directio_read(vp, uiop, cr)); 579 } 580 581 do { 582 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 583 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 584 n = MIN(MAXBSIZE - on, uiop->uio_resid); 585 586 error = nfs3_validate_caches(vp, cr); 587 if (error) 588 break; 589 590 mutex_enter(&rp->r_statelock); 591 while (rp->r_flags & RINCACHEPURGE) { 592 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 593 mutex_exit(&rp->r_statelock); 594 return (EINTR); 595 } 596 } 597 diff = rp->r_size - uiop->uio_loffset; 598 mutex_exit(&rp->r_statelock); 599 if (diff <= 0) 600 break; 601 if (diff < n) 602 n = (size_t)diff; 603 604 if (vpm_enable) { 605 /* 606 * Copy data. 607 */ 608 error = vpm_data_copy(vp, off + on, n, uiop, 609 1, NULL, 0, S_READ); 610 } else { 611 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 612 S_READ); 613 614 error = uiomove(base + on, n, UIO_READ, uiop); 615 } 616 617 if (!error) { 618 /* 619 * If read a whole block or read to eof, 620 * won't need this buffer again soon. 621 */ 622 mutex_enter(&rp->r_statelock); 623 if (n + on == MAXBSIZE || 624 uiop->uio_loffset == rp->r_size) 625 flags = SM_DONTNEED; 626 else 627 flags = 0; 628 mutex_exit(&rp->r_statelock); 629 if (vpm_enable) { 630 error = vpm_sync_pages(vp, off, n, flags); 631 } else { 632 error = segmap_release(segkmap, base, flags); 633 } 634 } else { 635 if (vpm_enable) { 636 (void) vpm_sync_pages(vp, off, n, 0); 637 } else { 638 (void) segmap_release(segkmap, base, 0); 639 } 640 } 641 } while (!error && uiop->uio_resid > 0); 642 643 return (error); 644 } 645 646 /* ARGSUSED */ 647 static int 648 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 649 caller_context_t *ct) 650 { 651 rlim64_t limit = uiop->uio_llimit; 652 rnode_t *rp; 653 u_offset_t off; 654 caddr_t base; 655 uint_t flags; 656 int remainder; 657 size_t n; 658 int on; 659 int error; 660 int resid; 661 offset_t offset; 662 mntinfo_t *mi; 663 uint_t bsize; 664 665 rp = VTOR(vp); 666 667 if (vp->v_type != VREG) 668 return (EISDIR); 669 670 mi = VTOMI(vp); 671 if (nfs_zone() != mi->mi_zone) 672 return (EIO); 673 if (uiop->uio_resid == 0) 674 return (0); 675 676 if (ioflag & FAPPEND) { 677 struct vattr va; 678 679 /* 680 * Must serialize if appending. 681 */ 682 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 683 nfs_rw_exit(&rp->r_rwlock); 684 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 685 INTR(vp))) 686 return (EINTR); 687 } 688 689 va.va_mask = AT_SIZE; 690 error = nfs3getattr(vp, &va, cr); 691 if (error) 692 return (error); 693 uiop->uio_loffset = va.va_size; 694 } 695 696 offset = uiop->uio_loffset + uiop->uio_resid; 697 698 if (uiop->uio_loffset < 0 || offset < 0) 699 return (EINVAL); 700 701 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 702 limit = MAXOFFSET_T; 703 704 /* 705 * Check to make sure that the process will not exceed 706 * its limit on file size. It is okay to write up to 707 * the limit, but not beyond. Thus, the write which 708 * reaches the limit will be short and the next write 709 * will return an error. 710 */ 711 remainder = 0; 712 if (offset > limit) { 713 remainder = offset - limit; 714 uiop->uio_resid = limit - uiop->uio_loffset; 715 if (uiop->uio_resid <= 0) { 716 proc_t *p = ttoproc(curthread); 717 718 uiop->uio_resid += remainder; 719 mutex_enter(&p->p_lock); 720 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 721 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 722 mutex_exit(&p->p_lock); 723 return (EFBIG); 724 } 725 } 726 727 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 728 return (EINTR); 729 730 /* 731 * Bypass VM if caching has been disabled (e.g., locking) or if 732 * using client-side direct I/O and the file is not mmap'd and 733 * there are no cached pages. 734 */ 735 if ((vp->v_flag & VNOCACHE) || 736 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 737 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 738 !vn_has_cached_data(vp))) { 739 size_t bufsize; 740 int count; 741 u_offset_t org_offset; 742 stable_how stab_comm; 743 744 nfs3_fwrite: 745 if (rp->r_flags & RSTALE) { 746 resid = uiop->uio_resid; 747 offset = uiop->uio_loffset; 748 error = rp->r_error; 749 /* 750 * A close may have cleared r_error, if so, 751 * propagate ESTALE error return properly 752 */ 753 if (error == 0) 754 error = ESTALE; 755 goto bottom; 756 } 757 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 758 base = kmem_alloc(bufsize, KM_SLEEP); 759 do { 760 if (ioflag & FDSYNC) 761 stab_comm = DATA_SYNC; 762 else 763 stab_comm = FILE_SYNC; 764 resid = uiop->uio_resid; 765 offset = uiop->uio_loffset; 766 count = MIN(uiop->uio_resid, bufsize); 767 org_offset = uiop->uio_loffset; 768 error = uiomove(base, count, UIO_WRITE, uiop); 769 if (!error) { 770 error = nfs3write(vp, base, org_offset, 771 count, cr, &stab_comm); 772 } 773 } while (!error && uiop->uio_resid > 0); 774 kmem_free(base, bufsize); 775 goto bottom; 776 } 777 778 779 bsize = vp->v_vfsp->vfs_bsize; 780 781 do { 782 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 783 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 784 n = MIN(MAXBSIZE - on, uiop->uio_resid); 785 786 resid = uiop->uio_resid; 787 offset = uiop->uio_loffset; 788 789 if (rp->r_flags & RSTALE) { 790 error = rp->r_error; 791 /* 792 * A close may have cleared r_error, if so, 793 * propagate ESTALE error return properly 794 */ 795 if (error == 0) 796 error = ESTALE; 797 break; 798 } 799 800 /* 801 * Don't create dirty pages faster than they 802 * can be cleaned so that the system doesn't 803 * get imbalanced. If the async queue is 804 * maxed out, then wait for it to drain before 805 * creating more dirty pages. Also, wait for 806 * any threads doing pagewalks in the vop_getattr 807 * entry points so that they don't block for 808 * long periods. 809 */ 810 mutex_enter(&rp->r_statelock); 811 while ((mi->mi_max_threads != 0 && 812 rp->r_awcount > 2 * mi->mi_max_threads) || 813 rp->r_gcount > 0) { 814 if (INTR(vp)) { 815 klwp_t *lwp = ttolwp(curthread); 816 817 if (lwp != NULL) 818 lwp->lwp_nostop++; 819 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 820 mutex_exit(&rp->r_statelock); 821 if (lwp != NULL) 822 lwp->lwp_nostop--; 823 error = EINTR; 824 goto bottom; 825 } 826 if (lwp != NULL) 827 lwp->lwp_nostop--; 828 } else 829 cv_wait(&rp->r_cv, &rp->r_statelock); 830 } 831 mutex_exit(&rp->r_statelock); 832 833 /* 834 * Touch the page and fault it in if it is not in core 835 * before segmap_getmapflt or vpm_data_copy can lock it. 836 * This is to avoid the deadlock if the buffer is mapped 837 * to the same file through mmap which we want to write. 838 */ 839 uio_prefaultpages((long)n, uiop); 840 841 if (vpm_enable) { 842 /* 843 * It will use kpm mappings, so no need to 844 * pass an address. 845 */ 846 error = writerp(rp, NULL, n, uiop, 0); 847 } else { 848 if (segmap_kpm) { 849 int pon = uiop->uio_loffset & PAGEOFFSET; 850 size_t pn = MIN(PAGESIZE - pon, 851 uiop->uio_resid); 852 int pagecreate; 853 854 mutex_enter(&rp->r_statelock); 855 pagecreate = (pon == 0) && (pn == PAGESIZE || 856 uiop->uio_loffset + pn >= rp->r_size); 857 mutex_exit(&rp->r_statelock); 858 859 base = segmap_getmapflt(segkmap, vp, off + on, 860 pn, !pagecreate, S_WRITE); 861 862 error = writerp(rp, base + pon, n, uiop, 863 pagecreate); 864 865 } else { 866 base = segmap_getmapflt(segkmap, vp, off + on, 867 n, 0, S_READ); 868 error = writerp(rp, base + on, n, uiop, 0); 869 } 870 } 871 872 if (!error) { 873 if (mi->mi_flags & MI_NOAC) 874 flags = SM_WRITE; 875 else if ((uiop->uio_loffset % bsize) == 0 || 876 IS_SWAPVP(vp)) { 877 /* 878 * Have written a whole block. 879 * Start an asynchronous write 880 * and mark the buffer to 881 * indicate that it won't be 882 * needed again soon. 883 */ 884 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 885 } else 886 flags = 0; 887 if ((ioflag & (FSYNC|FDSYNC)) || 888 (rp->r_flags & ROUTOFSPACE)) { 889 flags &= ~SM_ASYNC; 890 flags |= SM_WRITE; 891 } 892 if (vpm_enable) { 893 error = vpm_sync_pages(vp, off, n, flags); 894 } else { 895 error = segmap_release(segkmap, base, flags); 896 } 897 } else { 898 if (vpm_enable) { 899 (void) vpm_sync_pages(vp, off, n, 0); 900 } else { 901 (void) segmap_release(segkmap, base, 0); 902 } 903 /* 904 * In the event that we got an access error while 905 * faulting in a page for a write-only file just 906 * force a write. 907 */ 908 if (error == EACCES) 909 goto nfs3_fwrite; 910 } 911 } while (!error && uiop->uio_resid > 0); 912 913 bottom: 914 if (error) { 915 uiop->uio_resid = resid + remainder; 916 uiop->uio_loffset = offset; 917 } else 918 uiop->uio_resid += remainder; 919 920 nfs_rw_exit(&rp->r_lkserlock); 921 922 return (error); 923 } 924 925 /* 926 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 927 */ 928 static int 929 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 930 int flags, cred_t *cr) 931 { 932 struct buf *bp; 933 int error; 934 page_t *savepp; 935 uchar_t fsdata; 936 stable_how stab_comm; 937 938 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 939 bp = pageio_setup(pp, len, vp, flags); 940 ASSERT(bp != NULL); 941 942 /* 943 * pageio_setup should have set b_addr to 0. This 944 * is correct since we want to do I/O on a page 945 * boundary. bp_mapin will use this addr to calculate 946 * an offset, and then set b_addr to the kernel virtual 947 * address it allocated for us. 948 */ 949 ASSERT(bp->b_un.b_addr == 0); 950 951 bp->b_edev = 0; 952 bp->b_dev = 0; 953 bp->b_lblkno = lbtodb(off); 954 bp->b_file = vp; 955 bp->b_offset = (offset_t)off; 956 bp_mapin(bp); 957 958 /* 959 * Calculate the desired level of stability to write data 960 * on the server and then mark all of the pages to reflect 961 * this. 962 */ 963 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 964 freemem > desfree) { 965 stab_comm = UNSTABLE; 966 fsdata = C_DELAYCOMMIT; 967 } else { 968 stab_comm = FILE_SYNC; 969 fsdata = C_NOCOMMIT; 970 } 971 972 savepp = pp; 973 do { 974 pp->p_fsdata = fsdata; 975 } while ((pp = pp->p_next) != savepp); 976 977 error = nfs3_bio(bp, &stab_comm, cr); 978 979 bp_mapout(bp); 980 pageio_done(bp); 981 982 /* 983 * If the server wrote pages in a more stable fashion than 984 * was requested, then clear all of the marks in the pages 985 * indicating that COMMIT operations were required. 986 */ 987 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) { 988 do { 989 pp->p_fsdata = C_NOCOMMIT; 990 } while ((pp = pp->p_next) != savepp); 991 } 992 993 return (error); 994 } 995 996 /* 997 * Write to file. Writes to remote server in largest size 998 * chunks that the server can handle. Write is synchronous. 999 */ 1000 static int 1001 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 1002 stable_how *stab_comm) 1003 { 1004 mntinfo_t *mi; 1005 WRITE3args args; 1006 WRITE3res res; 1007 int error; 1008 int tsize; 1009 rnode_t *rp; 1010 int douprintf; 1011 1012 rp = VTOR(vp); 1013 mi = VTOMI(vp); 1014 1015 ASSERT(nfs_zone() == mi->mi_zone); 1016 1017 args.file = *VTOFH3(vp); 1018 args.stable = *stab_comm; 1019 1020 *stab_comm = FILE_SYNC; 1021 1022 douprintf = 1; 1023 1024 do { 1025 if ((vp->v_flag & VNOCACHE) || 1026 (rp->r_flags & RDIRECTIO) || 1027 (mi->mi_flags & MI_DIRECTIO)) 1028 tsize = MIN(mi->mi_stsize, count); 1029 else 1030 tsize = MIN(mi->mi_curwrite, count); 1031 args.offset = (offset3)offset; 1032 args.count = (count3)tsize; 1033 args.data.data_len = (uint_t)tsize; 1034 args.data.data_val = base; 1035 1036 if (mi->mi_io_kstats) { 1037 mutex_enter(&mi->mi_lock); 1038 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1039 mutex_exit(&mi->mi_lock); 1040 } 1041 args.mblk = NULL; 1042 do { 1043 error = rfs3call(mi, NFSPROC3_WRITE, 1044 xdr_WRITE3args, (caddr_t)&args, 1045 xdr_WRITE3res, (caddr_t)&res, cr, 1046 &douprintf, &res.status, 0, NULL); 1047 } while (error == ENFS_TRYAGAIN); 1048 if (mi->mi_io_kstats) { 1049 mutex_enter(&mi->mi_lock); 1050 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1051 mutex_exit(&mi->mi_lock); 1052 } 1053 1054 if (error) 1055 return (error); 1056 error = geterrno3(res.status); 1057 if (!error) { 1058 if (res.resok.count > args.count) { 1059 zcmn_err(getzoneid(), CE_WARN, 1060 "nfs3write: server %s wrote %u, " 1061 "requested was %u", 1062 rp->r_server->sv_hostname, 1063 res.resok.count, args.count); 1064 return (EIO); 1065 } 1066 if (res.resok.committed == UNSTABLE) { 1067 *stab_comm = UNSTABLE; 1068 if (args.stable == DATA_SYNC || 1069 args.stable == FILE_SYNC) { 1070 zcmn_err(getzoneid(), CE_WARN, 1071 "nfs3write: server %s did not commit to stable storage", 1072 rp->r_server->sv_hostname); 1073 return (EIO); 1074 } 1075 } 1076 tsize = (int)res.resok.count; 1077 count -= tsize; 1078 base += tsize; 1079 offset += tsize; 1080 if (mi->mi_io_kstats) { 1081 mutex_enter(&mi->mi_lock); 1082 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 1083 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 1084 tsize; 1085 mutex_exit(&mi->mi_lock); 1086 } 1087 lwp_stat_update(LWP_STAT_OUBLK, 1); 1088 mutex_enter(&rp->r_statelock); 1089 if (rp->r_flags & RHAVEVERF) { 1090 if (rp->r_verf != res.resok.verf) { 1091 nfs3_set_mod(vp); 1092 rp->r_verf = res.resok.verf; 1093 /* 1094 * If the data was written UNSTABLE, 1095 * then might as well stop because 1096 * the whole block will have to get 1097 * rewritten anyway. 1098 */ 1099 if (*stab_comm == UNSTABLE) { 1100 mutex_exit(&rp->r_statelock); 1101 break; 1102 } 1103 } 1104 } else { 1105 rp->r_verf = res.resok.verf; 1106 rp->r_flags |= RHAVEVERF; 1107 } 1108 /* 1109 * Mark the attribute cache as timed out and 1110 * set RWRITEATTR to indicate that the file 1111 * was modified with a WRITE operation and 1112 * that the attributes can not be trusted. 1113 */ 1114 PURGE_ATTRCACHE_LOCKED(rp); 1115 rp->r_flags |= RWRITEATTR; 1116 mutex_exit(&rp->r_statelock); 1117 } 1118 } while (!error && count); 1119 1120 return (error); 1121 } 1122 1123 /* 1124 * Read from a file. Reads data in largest chunks our interface can handle. 1125 */ 1126 static int 1127 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count, 1128 size_t *residp, cred_t *cr) 1129 { 1130 mntinfo_t *mi; 1131 READ3args args; 1132 READ3vres res; 1133 int tsize; 1134 int error; 1135 int douprintf; 1136 failinfo_t fi; 1137 rnode_t *rp; 1138 struct vattr va; 1139 hrtime_t t; 1140 1141 rp = VTOR(vp); 1142 mi = VTOMI(vp); 1143 ASSERT(nfs_zone() == mi->mi_zone); 1144 douprintf = 1; 1145 1146 args.file = *VTOFH3(vp); 1147 fi.vp = vp; 1148 fi.fhp = (caddr_t)&args.file; 1149 fi.copyproc = nfs3copyfh; 1150 fi.lookupproc = nfs3lookup; 1151 fi.xattrdirproc = acl_getxattrdir3; 1152 1153 res.pov.fres.vp = vp; 1154 res.pov.fres.vap = &va; 1155 1156 res.wlist = NULL; 1157 *residp = count; 1158 do { 1159 if (mi->mi_io_kstats) { 1160 mutex_enter(&mi->mi_lock); 1161 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1162 mutex_exit(&mi->mi_lock); 1163 } 1164 1165 do { 1166 if ((vp->v_flag & VNOCACHE) || 1167 (rp->r_flags & RDIRECTIO) || 1168 (mi->mi_flags & MI_DIRECTIO)) 1169 tsize = MIN(mi->mi_tsize, count); 1170 else 1171 tsize = MIN(mi->mi_curread, count); 1172 res.data.data_val = base; 1173 res.data.data_len = tsize; 1174 args.offset = (offset3)offset; 1175 args.count = (count3)tsize; 1176 args.res_uiop = NULL; 1177 args.res_data_val_alt = base; 1178 1179 t = gethrtime(); 1180 error = rfs3call(mi, NFSPROC3_READ, 1181 xdr_READ3args, (caddr_t)&args, 1182 xdr_READ3vres, (caddr_t)&res, cr, 1183 &douprintf, &res.status, 0, &fi); 1184 } while (error == ENFS_TRYAGAIN); 1185 1186 if (mi->mi_io_kstats) { 1187 mutex_enter(&mi->mi_lock); 1188 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1189 mutex_exit(&mi->mi_lock); 1190 } 1191 1192 if (error) 1193 return (error); 1194 1195 error = geterrno3(res.status); 1196 if (error) 1197 return (error); 1198 1199 if (res.count != res.data.data_len) { 1200 zcmn_err(getzoneid(), CE_WARN, 1201 "nfs3read: server %s returned incorrect amount", 1202 rp->r_server->sv_hostname); 1203 return (EIO); 1204 } 1205 1206 count -= res.count; 1207 *residp = count; 1208 base += res.count; 1209 offset += res.count; 1210 if (mi->mi_io_kstats) { 1211 mutex_enter(&mi->mi_lock); 1212 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1213 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 1214 mutex_exit(&mi->mi_lock); 1215 } 1216 lwp_stat_update(LWP_STAT_INBLK, 1); 1217 } while (count && !res.eof); 1218 1219 if (res.pov.attributes) { 1220 mutex_enter(&rp->r_statelock); 1221 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) { 1222 mutex_exit(&rp->r_statelock); 1223 PURGE_ATTRCACHE(vp); 1224 } else { 1225 if (rp->r_mtime <= t) 1226 nfs_attrcache_va(vp, &va); 1227 mutex_exit(&rp->r_statelock); 1228 } 1229 } 1230 1231 return (0); 1232 } 1233 1234 /* ARGSUSED */ 1235 static int 1236 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1237 caller_context_t *ct) 1238 { 1239 1240 if (nfs_zone() != VTOMI(vp)->mi_zone) 1241 return (EIO); 1242 switch (cmd) { 1243 case _FIODIRECTIO: 1244 return (nfs_directio(vp, (int)arg, cr)); 1245 default: 1246 return (ENOTTY); 1247 } 1248 } 1249 1250 /* ARGSUSED */ 1251 static int 1252 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1253 caller_context_t *ct) 1254 { 1255 int error; 1256 rnode_t *rp; 1257 1258 if (nfs_zone() != VTOMI(vp)->mi_zone) 1259 return (EIO); 1260 /* 1261 * If it has been specified that the return value will 1262 * just be used as a hint, and we are only being asked 1263 * for size, fsid or rdevid, then return the client's 1264 * notion of these values without checking to make sure 1265 * that the attribute cache is up to date. 1266 * The whole point is to avoid an over the wire GETATTR 1267 * call. 1268 */ 1269 rp = VTOR(vp); 1270 if (flags & ATTR_HINT) { 1271 if (vap->va_mask == 1272 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1273 mutex_enter(&rp->r_statelock); 1274 if (vap->va_mask | AT_SIZE) 1275 vap->va_size = rp->r_size; 1276 if (vap->va_mask | AT_FSID) 1277 vap->va_fsid = rp->r_attr.va_fsid; 1278 if (vap->va_mask | AT_RDEV) 1279 vap->va_rdev = rp->r_attr.va_rdev; 1280 mutex_exit(&rp->r_statelock); 1281 return (0); 1282 } 1283 } 1284 1285 /* 1286 * Only need to flush pages if asking for the mtime 1287 * and if there any dirty pages or any outstanding 1288 * asynchronous (write) requests for this file. 1289 */ 1290 if (vap->va_mask & AT_MTIME) { 1291 if (vn_has_cached_data(vp) && 1292 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1293 mutex_enter(&rp->r_statelock); 1294 rp->r_gcount++; 1295 mutex_exit(&rp->r_statelock); 1296 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1297 mutex_enter(&rp->r_statelock); 1298 if (error && (error == ENOSPC || error == EDQUOT)) { 1299 if (!rp->r_error) 1300 rp->r_error = error; 1301 } 1302 if (--rp->r_gcount == 0) 1303 cv_broadcast(&rp->r_cv); 1304 mutex_exit(&rp->r_statelock); 1305 } 1306 } 1307 1308 return (nfs3getattr(vp, vap, cr)); 1309 } 1310 1311 /*ARGSUSED4*/ 1312 static int 1313 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1314 caller_context_t *ct) 1315 { 1316 int error; 1317 struct vattr va; 1318 1319 if (vap->va_mask & AT_NOSET) 1320 return (EINVAL); 1321 if (nfs_zone() != VTOMI(vp)->mi_zone) 1322 return (EIO); 1323 1324 va.va_mask = AT_UID | AT_MODE; 1325 error = nfs3getattr(vp, &va, cr); 1326 if (error) 1327 return (error); 1328 1329 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx, 1330 vp); 1331 if (error) 1332 return (error); 1333 1334 error = nfs3setattr(vp, vap, flags, cr); 1335 1336 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0) 1337 vnevent_truncate(vp, ct); 1338 1339 return (error); 1340 } 1341 1342 static int 1343 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1344 { 1345 int error; 1346 uint_t mask; 1347 SETATTR3args args; 1348 SETATTR3res res; 1349 int douprintf; 1350 rnode_t *rp; 1351 struct vattr va; 1352 mode_t omode; 1353 vsecattr_t *vsp; 1354 hrtime_t t; 1355 1356 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1357 mask = vap->va_mask; 1358 1359 rp = VTOR(vp); 1360 1361 /* 1362 * Only need to flush pages if there are any pages and 1363 * if the file is marked as dirty in some fashion. The 1364 * file must be flushed so that we can accurately 1365 * determine the size of the file and the cached data 1366 * after the SETATTR returns. A file is considered to 1367 * be dirty if it is either marked with RDIRTY, has 1368 * outstanding i/o's active, or is mmap'd. In this 1369 * last case, we can't tell whether there are dirty 1370 * pages, so we flush just to be sure. 1371 */ 1372 if (vn_has_cached_data(vp) && 1373 ((rp->r_flags & RDIRTY) || 1374 rp->r_count > 0 || 1375 rp->r_mapcnt > 0)) { 1376 ASSERT(vp->v_type != VCHR); 1377 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1378 if (error && (error == ENOSPC || error == EDQUOT)) { 1379 mutex_enter(&rp->r_statelock); 1380 if (!rp->r_error) 1381 rp->r_error = error; 1382 mutex_exit(&rp->r_statelock); 1383 } 1384 } 1385 1386 args.object = *RTOFH3(rp); 1387 /* 1388 * If the intent is for the server to set the times, 1389 * there is no point in have the mask indicating set mtime or 1390 * atime, because the vap values may be junk, and so result 1391 * in an overflow error. Remove these flags from the vap mask 1392 * before calling in this case, and restore them afterwards. 1393 */ 1394 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) { 1395 /* Use server times, so don't set the args time fields */ 1396 vap->va_mask &= ~(AT_ATIME | AT_MTIME); 1397 error = vattr_to_sattr3(vap, &args.new_attributes); 1398 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME)); 1399 if (mask & AT_ATIME) { 1400 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 1401 } 1402 if (mask & AT_MTIME) { 1403 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 1404 } 1405 } else { 1406 /* Either do not set times or use the client specified times */ 1407 error = vattr_to_sattr3(vap, &args.new_attributes); 1408 } 1409 1410 if (error) { 1411 /* req time field(s) overflow - return immediately */ 1412 return (error); 1413 } 1414 1415 va.va_mask = AT_MODE | AT_CTIME; 1416 error = nfs3getattr(vp, &va, cr); 1417 if (error) 1418 return (error); 1419 omode = va.va_mode; 1420 1421 tryagain: 1422 if (mask & AT_SIZE) { 1423 args.guard.check = TRUE; 1424 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec; 1425 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec; 1426 } else 1427 args.guard.check = FALSE; 1428 1429 douprintf = 1; 1430 1431 t = gethrtime(); 1432 1433 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 1434 xdr_SETATTR3args, (caddr_t)&args, 1435 xdr_SETATTR3res, (caddr_t)&res, cr, 1436 &douprintf, &res.status, 0, NULL); 1437 1438 /* 1439 * Purge the access cache and ACL cache if changing either the 1440 * owner of the file, the group owner, or the mode. These may 1441 * change the access permissions of the file, so purge old 1442 * information and start over again. 1443 */ 1444 if (mask & (AT_UID | AT_GID | AT_MODE)) { 1445 (void) nfs_access_purge_rp(rp); 1446 if (rp->r_secattr != NULL) { 1447 mutex_enter(&rp->r_statelock); 1448 vsp = rp->r_secattr; 1449 rp->r_secattr = NULL; 1450 mutex_exit(&rp->r_statelock); 1451 if (vsp != NULL) 1452 nfs_acl_free(vsp); 1453 } 1454 } 1455 1456 if (error) { 1457 PURGE_ATTRCACHE(vp); 1458 return (error); 1459 } 1460 1461 error = geterrno3(res.status); 1462 if (!error) { 1463 /* 1464 * If changing the size of the file, invalidate 1465 * any local cached data which is no longer part 1466 * of the file. We also possibly invalidate the 1467 * last page in the file. We could use 1468 * pvn_vpzero(), but this would mark the page as 1469 * modified and require it to be written back to 1470 * the server for no particularly good reason. 1471 * This way, if we access it, then we bring it 1472 * back in. A read should be cheaper than a 1473 * write. 1474 */ 1475 if (mask & AT_SIZE) { 1476 nfs_invalidate_pages(vp, 1477 (vap->va_size & PAGEMASK), cr); 1478 } 1479 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 1480 /* 1481 * Some servers will change the mode to clear the setuid 1482 * and setgid bits when changing the uid or gid. The 1483 * client needs to compensate appropriately. 1484 */ 1485 if (mask & (AT_UID | AT_GID)) { 1486 int terror; 1487 1488 va.va_mask = AT_MODE; 1489 terror = nfs3getattr(vp, &va, cr); 1490 if (!terror && 1491 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 1492 (!(mask & AT_MODE) && va.va_mode != omode))) { 1493 va.va_mask = AT_MODE; 1494 if (mask & AT_MODE) 1495 va.va_mode = vap->va_mode; 1496 else 1497 va.va_mode = omode; 1498 (void) nfs3setattr(vp, &va, 0, cr); 1499 } 1500 } 1501 } else { 1502 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 1503 /* 1504 * If we got back a "not synchronized" error, then 1505 * we need to retry with a new guard value. The 1506 * guard value used is the change time. If the 1507 * server returned post_op_attr, then we can just 1508 * retry because we have the latest attributes. 1509 * Otherwise, we issue a GETATTR to get the latest 1510 * attributes and then retry. If we couldn't get 1511 * the attributes this way either, then we give 1512 * up because we can't complete the operation as 1513 * required. 1514 */ 1515 if (res.status == NFS3ERR_NOT_SYNC) { 1516 va.va_mask = AT_CTIME; 1517 if (nfs3getattr(vp, &va, cr) == 0) 1518 goto tryagain; 1519 } 1520 PURGE_STALE_FH(error, vp, cr); 1521 } 1522 1523 return (error); 1524 } 1525 1526 static int 1527 nfs3_accessx(void *vp, int mode, cred_t *cr) 1528 { 1529 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1530 return (nfs3_access(vp, mode, 0, cr, NULL)); 1531 } 1532 1533 /* ARGSUSED */ 1534 static int 1535 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1536 { 1537 int error; 1538 ACCESS3args args; 1539 ACCESS3res res; 1540 int douprintf; 1541 uint32 acc; 1542 rnode_t *rp; 1543 cred_t *cred, *ncr, *ncrfree = NULL; 1544 failinfo_t fi; 1545 nfs_access_type_t cacc; 1546 hrtime_t t; 1547 1548 acc = 0; 1549 if (nfs_zone() != VTOMI(vp)->mi_zone) 1550 return (EIO); 1551 if (mode & VREAD) 1552 acc |= ACCESS3_READ; 1553 if (mode & VWRITE) { 1554 if (vn_is_readonly(vp) && !IS_DEVVP(vp)) 1555 return (EROFS); 1556 if (vp->v_type == VDIR) 1557 acc |= ACCESS3_DELETE; 1558 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND; 1559 } 1560 if (mode & VEXEC) { 1561 if (vp->v_type == VDIR) 1562 acc |= ACCESS3_LOOKUP; 1563 else 1564 acc |= ACCESS3_EXECUTE; 1565 } 1566 1567 rp = VTOR(vp); 1568 args.object = *VTOFH3(vp); 1569 if (vp->v_type == VDIR) { 1570 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY | 1571 ACCESS3_EXTEND | ACCESS3_LOOKUP; 1572 } else { 1573 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND | 1574 ACCESS3_EXECUTE; 1575 } 1576 fi.vp = vp; 1577 fi.fhp = (caddr_t)&args.object; 1578 fi.copyproc = nfs3copyfh; 1579 fi.lookupproc = nfs3lookup; 1580 fi.xattrdirproc = acl_getxattrdir3; 1581 1582 cred = cr; 1583 /* 1584 * ncr and ncrfree both initially 1585 * point to the memory area returned 1586 * by crnetadjust(); 1587 * ncrfree not NULL when exiting means 1588 * that we need to release it 1589 */ 1590 ncr = crnetadjust(cred); 1591 ncrfree = ncr; 1592 tryagain: 1593 if (rp->r_acache != NULL) { 1594 cacc = nfs_access_check(rp, acc, cred); 1595 if (cacc == NFS_ACCESS_ALLOWED) { 1596 if (ncrfree != NULL) 1597 crfree(ncrfree); 1598 return (0); 1599 } 1600 if (cacc == NFS_ACCESS_DENIED) { 1601 /* 1602 * If the cred can be adjusted, try again 1603 * with the new cred. 1604 */ 1605 if (ncr != NULL) { 1606 cred = ncr; 1607 ncr = NULL; 1608 goto tryagain; 1609 } 1610 if (ncrfree != NULL) 1611 crfree(ncrfree); 1612 return (EACCES); 1613 } 1614 } 1615 1616 douprintf = 1; 1617 1618 t = gethrtime(); 1619 1620 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS, 1621 xdr_ACCESS3args, (caddr_t)&args, 1622 xdr_ACCESS3res, (caddr_t)&res, cred, 1623 &douprintf, &res.status, 0, &fi); 1624 1625 if (error) { 1626 if (ncrfree != NULL) 1627 crfree(ncrfree); 1628 return (error); 1629 } 1630 1631 error = geterrno3(res.status); 1632 if (!error) { 1633 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 1634 nfs_access_cache(rp, args.access, res.resok.access, cred); 1635 /* 1636 * we just cached results with cred; if cred is the 1637 * adjusted credentials from crnetadjust, we do not want 1638 * to release them before exiting: hence setting ncrfree 1639 * to NULL 1640 */ 1641 if (cred != cr) 1642 ncrfree = NULL; 1643 if ((acc & res.resok.access) != acc) { 1644 /* 1645 * If the cred can be adjusted, try again 1646 * with the new cred. 1647 */ 1648 if (ncr != NULL) { 1649 cred = ncr; 1650 ncr = NULL; 1651 goto tryagain; 1652 } 1653 error = EACCES; 1654 } 1655 } else { 1656 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 1657 PURGE_STALE_FH(error, vp, cr); 1658 } 1659 1660 if (ncrfree != NULL) 1661 crfree(ncrfree); 1662 1663 return (error); 1664 } 1665 1666 static int nfs3_do_symlink_cache = 1; 1667 1668 /* ARGSUSED */ 1669 static int 1670 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1671 { 1672 int error; 1673 READLINK3args args; 1674 READLINK3res res; 1675 nfspath3 resdata_backup; 1676 rnode_t *rp; 1677 int douprintf; 1678 int len; 1679 failinfo_t fi; 1680 hrtime_t t; 1681 1682 /* 1683 * Can't readlink anything other than a symbolic link. 1684 */ 1685 if (vp->v_type != VLNK) 1686 return (EINVAL); 1687 if (nfs_zone() != VTOMI(vp)->mi_zone) 1688 return (EIO); 1689 1690 rp = VTOR(vp); 1691 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) { 1692 error = nfs3_validate_caches(vp, cr); 1693 if (error) 1694 return (error); 1695 mutex_enter(&rp->r_statelock); 1696 if (rp->r_symlink.contents != NULL) { 1697 error = uiomove(rp->r_symlink.contents, 1698 rp->r_symlink.len, UIO_READ, uiop); 1699 mutex_exit(&rp->r_statelock); 1700 return (error); 1701 } 1702 mutex_exit(&rp->r_statelock); 1703 } 1704 1705 args.symlink = *VTOFH3(vp); 1706 fi.vp = vp; 1707 fi.fhp = (caddr_t)&args.symlink; 1708 fi.copyproc = nfs3copyfh; 1709 fi.lookupproc = nfs3lookup; 1710 fi.xattrdirproc = acl_getxattrdir3; 1711 1712 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1713 1714 resdata_backup = res.resok.data; 1715 1716 douprintf = 1; 1717 1718 t = gethrtime(); 1719 1720 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK, 1721 xdr_READLINK3args, (caddr_t)&args, 1722 xdr_READLINK3res, (caddr_t)&res, cr, 1723 &douprintf, &res.status, 0, &fi); 1724 1725 if (res.resok.data == nfs3nametoolong) 1726 error = EINVAL; 1727 1728 if (error) { 1729 kmem_free(resdata_backup, MAXPATHLEN); 1730 return (error); 1731 } 1732 1733 error = geterrno3(res.status); 1734 if (!error) { 1735 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t, 1736 cr); 1737 len = strlen(res.resok.data); 1738 error = uiomove(res.resok.data, len, UIO_READ, uiop); 1739 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) { 1740 mutex_enter(&rp->r_statelock); 1741 if (rp->r_symlink.contents == NULL) { 1742 rp->r_symlink.contents = res.resok.data; 1743 rp->r_symlink.len = len; 1744 rp->r_symlink.size = MAXPATHLEN; 1745 mutex_exit(&rp->r_statelock); 1746 } else { 1747 mutex_exit(&rp->r_statelock); 1748 1749 kmem_free((void *)res.resok.data, MAXPATHLEN); 1750 } 1751 } else { 1752 kmem_free((void *)res.resok.data, MAXPATHLEN); 1753 } 1754 } else { 1755 nfs3_cache_post_op_attr(vp, 1756 &res.resfail.symlink_attributes, t, cr); 1757 PURGE_STALE_FH(error, vp, cr); 1758 1759 kmem_free((void *)res.resok.data, MAXPATHLEN); 1760 1761 } 1762 1763 /* 1764 * The over the wire error for attempting to readlink something 1765 * other than a symbolic link is ENXIO. However, we need to 1766 * return EINVAL instead of ENXIO, so we map it here. 1767 */ 1768 return (error == ENXIO ? EINVAL : error); 1769 } 1770 1771 /* 1772 * Flush local dirty pages to stable storage on the server. 1773 * 1774 * If FNODSYNC is specified, then there is nothing to do because 1775 * metadata changes are not cached on the client before being 1776 * sent to the server. 1777 */ 1778 /* ARGSUSED */ 1779 static int 1780 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1781 { 1782 int error; 1783 1784 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1785 return (0); 1786 if (nfs_zone() != VTOMI(vp)->mi_zone) 1787 return (EIO); 1788 1789 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 1790 if (!error) 1791 error = VTOR(vp)->r_error; 1792 return (error); 1793 } 1794 1795 /* 1796 * Weirdness: if the file was removed or the target of a rename 1797 * operation while it was open, it got renamed instead. Here we 1798 * remove the renamed file. 1799 */ 1800 /* ARGSUSED */ 1801 static void 1802 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1803 { 1804 rnode_t *rp; 1805 1806 ASSERT(vp != DNLC_NO_VNODE); 1807 1808 /* 1809 * If this is coming from the wrong zone, we let someone in the right 1810 * zone take care of it asynchronously. We can get here due to 1811 * VN_RELE() being called from pageout() or fsflush(). This call may 1812 * potentially turn into an expensive no-op if, for instance, v_count 1813 * gets incremented in the meantime, but it's still correct. 1814 */ 1815 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1816 nfs_async_inactive(vp, cr, nfs3_inactive); 1817 return; 1818 } 1819 1820 rp = VTOR(vp); 1821 redo: 1822 if (rp->r_unldvp != NULL) { 1823 /* 1824 * Save the vnode pointer for the directory where the 1825 * unlinked-open file got renamed, then set it to NULL 1826 * to prevent another thread from getting here before 1827 * we're done with the remove. While we have the 1828 * statelock, make local copies of the pertinent rnode 1829 * fields. If we weren't to do this in an atomic way, the 1830 * the unl* fields could become inconsistent with respect 1831 * to each other due to a race condition between this 1832 * code and nfs_remove(). See bug report 1034328. 1833 */ 1834 mutex_enter(&rp->r_statelock); 1835 if (rp->r_unldvp != NULL) { 1836 vnode_t *unldvp; 1837 char *unlname; 1838 cred_t *unlcred; 1839 REMOVE3args args; 1840 REMOVE3res res; 1841 int douprintf; 1842 int error; 1843 hrtime_t t; 1844 1845 unldvp = rp->r_unldvp; 1846 rp->r_unldvp = NULL; 1847 unlname = rp->r_unlname; 1848 rp->r_unlname = NULL; 1849 unlcred = rp->r_unlcred; 1850 rp->r_unlcred = NULL; 1851 mutex_exit(&rp->r_statelock); 1852 1853 /* 1854 * If there are any dirty pages left, then flush 1855 * them. This is unfortunate because they just 1856 * may get thrown away during the remove operation, 1857 * but we have to do this for correctness. 1858 */ 1859 if (vn_has_cached_data(vp) && 1860 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1861 ASSERT(vp->v_type != VCHR); 1862 error = nfs3_putpage(vp, (offset_t)0, 0, 0, 1863 cr, ct); 1864 if (error) { 1865 mutex_enter(&rp->r_statelock); 1866 if (!rp->r_error) 1867 rp->r_error = error; 1868 mutex_exit(&rp->r_statelock); 1869 } 1870 } 1871 1872 /* 1873 * Do the remove operation on the renamed file 1874 */ 1875 setdiropargs3(&args.object, unlname, unldvp); 1876 1877 douprintf = 1; 1878 1879 t = gethrtime(); 1880 1881 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE, 1882 xdr_diropargs3, (caddr_t)&args, 1883 xdr_REMOVE3res, (caddr_t)&res, unlcred, 1884 &douprintf, &res.status, 0, NULL); 1885 1886 if (error) { 1887 PURGE_ATTRCACHE(unldvp); 1888 } else { 1889 error = geterrno3(res.status); 1890 if (!error) { 1891 nfs3_cache_wcc_data(unldvp, 1892 &res.resok.dir_wcc, t, cr); 1893 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1894 nfs_purge_rddir_cache(unldvp); 1895 } else { 1896 nfs3_cache_wcc_data(unldvp, 1897 &res.resfail.dir_wcc, t, cr); 1898 PURGE_STALE_FH(error, unldvp, cr); 1899 } 1900 } 1901 1902 /* 1903 * Release stuff held for the remove 1904 */ 1905 VN_RELE(unldvp); 1906 kmem_free(unlname, MAXNAMELEN); 1907 crfree(unlcred); 1908 goto redo; 1909 } 1910 mutex_exit(&rp->r_statelock); 1911 } 1912 1913 rp_addfree(rp, cr); 1914 } 1915 1916 /* 1917 * Remote file system operations having to do with directory manipulation. 1918 */ 1919 1920 /* ARGSUSED */ 1921 static int 1922 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1923 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1924 int *direntflags, pathname_t *realpnp) 1925 { 1926 int error; 1927 vnode_t *vp; 1928 vnode_t *avp = NULL; 1929 rnode_t *drp; 1930 1931 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1932 return (EPERM); 1933 1934 drp = VTOR(dvp); 1935 1936 /* 1937 * Are we looking up extended attributes? If so, "dvp" is 1938 * the file or directory for which we want attributes, and 1939 * we need a lookup of the hidden attribute directory 1940 * before we lookup the rest of the path. 1941 */ 1942 if (flags & LOOKUP_XATTR) { 1943 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1944 mntinfo_t *mi; 1945 1946 mi = VTOMI(dvp); 1947 if (!(mi->mi_flags & MI_EXTATTR)) 1948 return (EINVAL); 1949 1950 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1951 return (EINTR); 1952 1953 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1954 if (avp == NULL) 1955 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0); 1956 else 1957 error = 0; 1958 1959 nfs_rw_exit(&drp->r_rwlock); 1960 1961 if (error) { 1962 if (mi->mi_flags & MI_EXTATTR) 1963 return (error); 1964 return (EINVAL); 1965 } 1966 dvp = avp; 1967 drp = VTOR(dvp); 1968 } 1969 1970 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1971 error = EINTR; 1972 goto out; 1973 } 1974 1975 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1976 1977 nfs_rw_exit(&drp->r_rwlock); 1978 1979 /* 1980 * If vnode is a device, create special vnode. 1981 */ 1982 if (!error && IS_DEVVP(*vpp)) { 1983 vp = *vpp; 1984 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1985 VN_RELE(vp); 1986 } 1987 1988 out: 1989 if (avp != NULL) 1990 VN_RELE(avp); 1991 1992 return (error); 1993 } 1994 1995 static int nfs3_lookup_neg_cache = 1; 1996 1997 #ifdef DEBUG 1998 static int nfs3_lookup_dnlc_hits = 0; 1999 static int nfs3_lookup_dnlc_misses = 0; 2000 static int nfs3_lookup_dnlc_neg_hits = 0; 2001 static int nfs3_lookup_dnlc_disappears = 0; 2002 static int nfs3_lookup_dnlc_lookups = 0; 2003 #endif 2004 2005 /* ARGSUSED */ 2006 int 2007 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 2008 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 2009 { 2010 int error; 2011 rnode_t *drp; 2012 2013 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2014 /* 2015 * If lookup is for "", just return dvp. Don't need 2016 * to send it over the wire, look it up in the dnlc, 2017 * or perform any access checks. 2018 */ 2019 if (*nm == '\0') { 2020 VN_HOLD(dvp); 2021 *vpp = dvp; 2022 return (0); 2023 } 2024 2025 /* 2026 * Can't do lookups in non-directories. 2027 */ 2028 if (dvp->v_type != VDIR) 2029 return (ENOTDIR); 2030 2031 /* 2032 * If we're called with RFSCALL_SOFT, it's important that 2033 * the only rfscall is one we make directly; if we permit 2034 * an access call because we're looking up "." or validating 2035 * a dnlc hit, we'll deadlock because that rfscall will not 2036 * have the RFSCALL_SOFT set. 2037 */ 2038 if (rfscall_flags & RFSCALL_SOFT) 2039 goto callit; 2040 2041 /* 2042 * If lookup is for ".", just return dvp. Don't need 2043 * to send it over the wire or look it up in the dnlc, 2044 * just need to check access. 2045 */ 2046 if (strcmp(nm, ".") == 0) { 2047 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2048 if (error) 2049 return (error); 2050 VN_HOLD(dvp); 2051 *vpp = dvp; 2052 return (0); 2053 } 2054 2055 drp = VTOR(dvp); 2056 if (!(drp->r_flags & RLOOKUP)) { 2057 mutex_enter(&drp->r_statelock); 2058 drp->r_flags |= RLOOKUP; 2059 mutex_exit(&drp->r_statelock); 2060 } 2061 2062 /* 2063 * Lookup this name in the DNLC. If there was a valid entry, 2064 * then return the results of the lookup. 2065 */ 2066 error = nfs3lookup_dnlc(dvp, nm, vpp, cr); 2067 if (error || *vpp != NULL) 2068 return (error); 2069 2070 callit: 2071 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags); 2072 2073 return (error); 2074 } 2075 2076 static int 2077 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 2078 { 2079 int error; 2080 vnode_t *vp; 2081 2082 ASSERT(*nm != '\0'); 2083 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2084 /* 2085 * Lookup this name in the DNLC. If successful, then validate 2086 * the caches and then recheck the DNLC. The DNLC is rechecked 2087 * just in case this entry got invalidated during the call 2088 * to nfs3_validate_caches. 2089 * 2090 * An assumption is being made that it is safe to say that a 2091 * file exists which may not on the server. Any operations to 2092 * the server will fail with ESTALE. 2093 */ 2094 #ifdef DEBUG 2095 nfs3_lookup_dnlc_lookups++; 2096 #endif 2097 vp = dnlc_lookup(dvp, nm); 2098 if (vp != NULL) { 2099 VN_RELE(vp); 2100 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 2101 PURGE_ATTRCACHE(dvp); 2102 } 2103 error = nfs3_validate_caches(dvp, cr); 2104 if (error) 2105 return (error); 2106 vp = dnlc_lookup(dvp, nm); 2107 if (vp != NULL) { 2108 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2109 if (error) { 2110 VN_RELE(vp); 2111 return (error); 2112 } 2113 if (vp == DNLC_NO_VNODE) { 2114 VN_RELE(vp); 2115 #ifdef DEBUG 2116 nfs3_lookup_dnlc_neg_hits++; 2117 #endif 2118 return (ENOENT); 2119 } 2120 *vpp = vp; 2121 #ifdef DEBUG 2122 nfs3_lookup_dnlc_hits++; 2123 #endif 2124 return (0); 2125 } 2126 #ifdef DEBUG 2127 nfs3_lookup_dnlc_disappears++; 2128 #endif 2129 } 2130 #ifdef DEBUG 2131 else 2132 nfs3_lookup_dnlc_misses++; 2133 #endif 2134 2135 *vpp = NULL; 2136 2137 return (0); 2138 } 2139 2140 static int 2141 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 2142 int rfscall_flags) 2143 { 2144 int error; 2145 LOOKUP3args args; 2146 LOOKUP3vres res; 2147 int douprintf; 2148 struct vattr vattr; 2149 struct vattr dvattr; 2150 vnode_t *vp; 2151 failinfo_t fi; 2152 hrtime_t t; 2153 2154 ASSERT(*nm != '\0'); 2155 ASSERT(dvp->v_type == VDIR); 2156 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2157 2158 setdiropargs3(&args.what, nm, dvp); 2159 2160 fi.vp = dvp; 2161 fi.fhp = (caddr_t)&args.what.dir; 2162 fi.copyproc = nfs3copyfh; 2163 fi.lookupproc = nfs3lookup; 2164 fi.xattrdirproc = acl_getxattrdir3; 2165 res.obj_attributes.fres.vp = dvp; 2166 res.obj_attributes.fres.vap = &vattr; 2167 res.dir_attributes.fres.vp = dvp; 2168 res.dir_attributes.fres.vap = &dvattr; 2169 2170 douprintf = 1; 2171 2172 t = gethrtime(); 2173 2174 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP, 2175 xdr_diropargs3, (caddr_t)&args, 2176 xdr_LOOKUP3vres, (caddr_t)&res, cr, 2177 &douprintf, &res.status, rfscall_flags, &fi); 2178 2179 if (error) 2180 return (error); 2181 2182 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr); 2183 2184 error = geterrno3(res.status); 2185 if (error) { 2186 PURGE_STALE_FH(error, dvp, cr); 2187 if (error == ENOENT && nfs3_lookup_neg_cache) 2188 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 2189 return (error); 2190 } 2191 2192 if (res.obj_attributes.attributes) { 2193 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap, 2194 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2195 } else { 2196 vp = makenfs3node_va(&res.object, NULL, 2197 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2198 if (vp->v_type == VNON) { 2199 vattr.va_mask = AT_TYPE; 2200 error = nfs3getattr(vp, &vattr, cr); 2201 if (error) { 2202 VN_RELE(vp); 2203 return (error); 2204 } 2205 vp->v_type = vattr.va_type; 2206 } 2207 } 2208 2209 if (!(rfscall_flags & RFSCALL_SOFT)) 2210 dnlc_update(dvp, nm, vp); 2211 2212 *vpp = vp; 2213 2214 return (error); 2215 } 2216 2217 #ifdef DEBUG 2218 static int nfs3_create_misses = 0; 2219 #endif 2220 2221 /* ARGSUSED */ 2222 static int 2223 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2224 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 2225 vsecattr_t *vsecp) 2226 { 2227 int error; 2228 vnode_t *vp; 2229 rnode_t *rp; 2230 struct vattr vattr; 2231 rnode_t *drp; 2232 vnode_t *tempvp; 2233 2234 drp = VTOR(dvp); 2235 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2236 return (EPERM); 2237 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2238 return (EINTR); 2239 2240 top: 2241 /* 2242 * We make a copy of the attributes because the caller does not 2243 * expect us to change what va points to. 2244 */ 2245 vattr = *va; 2246 2247 /* 2248 * If the pathname is "", just use dvp. Don't need 2249 * to send it over the wire, look it up in the dnlc, 2250 * or perform any access checks. 2251 */ 2252 if (*nm == '\0') { 2253 error = 0; 2254 VN_HOLD(dvp); 2255 vp = dvp; 2256 /* 2257 * If the pathname is ".", just use dvp. Don't need 2258 * to send it over the wire or look it up in the dnlc, 2259 * just need to check access. 2260 */ 2261 } else if (strcmp(nm, ".") == 0) { 2262 error = nfs3_access(dvp, VEXEC, 0, cr, ct); 2263 if (error) { 2264 nfs_rw_exit(&drp->r_rwlock); 2265 return (error); 2266 } 2267 VN_HOLD(dvp); 2268 vp = dvp; 2269 /* 2270 * We need to go over the wire, just to be sure whether the 2271 * file exists or not. Using the DNLC can be dangerous in 2272 * this case when making a decision regarding existence. 2273 */ 2274 } else { 2275 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0); 2276 } 2277 if (!error) { 2278 if (exclusive == EXCL) 2279 error = EEXIST; 2280 else if (vp->v_type == VDIR && (mode & VWRITE)) 2281 error = EISDIR; 2282 else { 2283 /* 2284 * If vnode is a device, create special vnode. 2285 */ 2286 if (IS_DEVVP(vp)) { 2287 tempvp = vp; 2288 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2289 VN_RELE(tempvp); 2290 } 2291 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 2292 if ((vattr.va_mask & AT_SIZE) && 2293 vp->v_type == VREG) { 2294 rp = VTOR(vp); 2295 /* 2296 * Check here for large file handled 2297 * by LF-unaware process (as 2298 * ufs_create() does) 2299 */ 2300 if (!(lfaware & FOFFMAX)) { 2301 mutex_enter(&rp->r_statelock); 2302 if (rp->r_size > MAXOFF32_T) 2303 error = EOVERFLOW; 2304 mutex_exit(&rp->r_statelock); 2305 } 2306 if (!error) { 2307 vattr.va_mask = AT_SIZE; 2308 error = nfs3setattr(vp, 2309 &vattr, 0, cr); 2310 2311 /* 2312 * Existing file was truncated; 2313 * emit a create event. 2314 */ 2315 vnevent_create(vp, ct); 2316 } 2317 } 2318 } 2319 } 2320 nfs_rw_exit(&drp->r_rwlock); 2321 if (error) { 2322 VN_RELE(vp); 2323 } else { 2324 *vpp = vp; 2325 } 2326 2327 return (error); 2328 } 2329 2330 dnlc_remove(dvp, nm); 2331 2332 /* 2333 * Decide what the group-id of the created file should be. 2334 * Set it in attribute list as advisory... 2335 */ 2336 error = setdirgid(dvp, &vattr.va_gid, cr); 2337 if (error) { 2338 nfs_rw_exit(&drp->r_rwlock); 2339 return (error); 2340 } 2341 vattr.va_mask |= AT_GID; 2342 2343 ASSERT(vattr.va_mask & AT_TYPE); 2344 if (vattr.va_type == VREG) { 2345 ASSERT(vattr.va_mask & AT_MODE); 2346 if (MANDMODE(vattr.va_mode)) { 2347 nfs_rw_exit(&drp->r_rwlock); 2348 return (EACCES); 2349 } 2350 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr, 2351 lfaware); 2352 /* 2353 * If this is not an exclusive create, then the CREATE 2354 * request will be made with the GUARDED mode set. This 2355 * means that the server will return EEXIST if the file 2356 * exists. The file could exist because of a retransmitted 2357 * request. In this case, we recover by starting over and 2358 * checking to see whether the file exists. This second 2359 * time through it should and a CREATE request will not be 2360 * sent. 2361 * 2362 * This handles the problem of a dangling CREATE request 2363 * which contains attributes which indicate that the file 2364 * should be truncated. This retransmitted request could 2365 * possibly truncate valid data in the file if not caught 2366 * by the duplicate request mechanism on the server or if 2367 * not caught by other means. The scenario is: 2368 * 2369 * Client transmits CREATE request with size = 0 2370 * Client times out, retransmits request. 2371 * Response to the first request arrives from the server 2372 * and the client proceeds on. 2373 * Client writes data to the file. 2374 * The server now processes retransmitted CREATE request 2375 * and truncates file. 2376 * 2377 * The use of the GUARDED CREATE request prevents this from 2378 * happening because the retransmitted CREATE would fail 2379 * with EEXIST and would not truncate the file. 2380 */ 2381 if (error == EEXIST && exclusive == NONEXCL) { 2382 #ifdef DEBUG 2383 nfs3_create_misses++; 2384 #endif 2385 goto top; 2386 } 2387 nfs_rw_exit(&drp->r_rwlock); 2388 return (error); 2389 } 2390 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 2391 nfs_rw_exit(&drp->r_rwlock); 2392 return (error); 2393 } 2394 2395 /* ARGSUSED */ 2396 static int 2397 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2398 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 2399 { 2400 int error; 2401 CREATE3args args; 2402 CREATE3res res; 2403 int douprintf; 2404 vnode_t *vp; 2405 struct vattr vattr; 2406 nfstime3 *verfp; 2407 rnode_t *rp; 2408 timestruc_t now; 2409 hrtime_t t; 2410 2411 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2412 setdiropargs3(&args.where, nm, dvp); 2413 if (exclusive == EXCL) { 2414 args.how.mode = EXCLUSIVE; 2415 /* 2416 * Construct the create verifier. This verifier needs 2417 * to be unique between different clients. It also needs 2418 * to vary for each exclusive create request generated 2419 * from the client to the server. 2420 * 2421 * The first attempt is made to use the hostid and a 2422 * unique number on the client. If the hostid has not 2423 * been set, the high resolution time that the exclusive 2424 * create request is being made is used. This will work 2425 * unless two different clients, both with the hostid 2426 * not set, attempt an exclusive create request on the 2427 * same file, at exactly the same clock time. The 2428 * chances of this happening seem small enough to be 2429 * reasonable. 2430 */ 2431 verfp = (nfstime3 *)&args.how.createhow3_u.verf; 2432 verfp->seconds = zone_get_hostid(NULL); 2433 if (verfp->seconds != 0) 2434 verfp->nseconds = newnum(); 2435 else { 2436 gethrestime(&now); 2437 verfp->seconds = now.tv_sec; 2438 verfp->nseconds = now.tv_nsec; 2439 } 2440 /* 2441 * Since the server will use this value for the mtime, 2442 * make sure that it can't overflow. Zero out the MSB. 2443 * The actual value does not matter here, only its uniqeness. 2444 */ 2445 verfp->seconds %= INT32_MAX; 2446 } else { 2447 /* 2448 * Issue the non-exclusive create in guarded mode. This 2449 * may result in some false EEXIST responses for 2450 * retransmitted requests, but these will be handled at 2451 * a higher level. By using GUARDED, duplicate requests 2452 * to do file truncation and possible access problems 2453 * can be avoided. 2454 */ 2455 args.how.mode = GUARDED; 2456 error = vattr_to_sattr3(va, 2457 &args.how.createhow3_u.obj_attributes); 2458 if (error) { 2459 /* req time field(s) overflow - return immediately */ 2460 return (error); 2461 } 2462 } 2463 2464 douprintf = 1; 2465 2466 t = gethrtime(); 2467 2468 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE, 2469 xdr_CREATE3args, (caddr_t)&args, 2470 xdr_CREATE3res, (caddr_t)&res, cr, 2471 &douprintf, &res.status, 0, NULL); 2472 2473 if (error) { 2474 PURGE_ATTRCACHE(dvp); 2475 return (error); 2476 } 2477 2478 error = geterrno3(res.status); 2479 if (!error) { 2480 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2481 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2482 nfs_purge_rddir_cache(dvp); 2483 2484 /* 2485 * On exclusive create the times need to be explicitly 2486 * set to clear any potential verifier that may be stored 2487 * in one of these fields (see comment below). This 2488 * is done here to cover the case where no post op attrs 2489 * were returned or a 'invalid' time was returned in 2490 * the attributes. 2491 */ 2492 if (exclusive == EXCL) 2493 va->va_mask |= (AT_MTIME | AT_ATIME); 2494 2495 if (!res.resok.obj.handle_follows) { 2496 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2497 if (error) 2498 return (error); 2499 } else { 2500 if (res.resok.obj_attributes.attributes) { 2501 vp = makenfs3node(&res.resok.obj.handle, 2502 &res.resok.obj_attributes.attr, 2503 dvp->v_vfsp, t, cr, NULL, NULL); 2504 } else { 2505 vp = makenfs3node(&res.resok.obj.handle, NULL, 2506 dvp->v_vfsp, t, cr, NULL, NULL); 2507 2508 /* 2509 * On an exclusive create, it is possible 2510 * that attributes were returned but those 2511 * postop attributes failed to decode 2512 * properly. If this is the case, 2513 * then most likely the atime or mtime 2514 * were invalid for our client; this 2515 * is caused by the server storing the 2516 * create verifier in one of the time 2517 * fields(most likely mtime). 2518 * So... we are going to setattr just the 2519 * atime/mtime to clear things up. 2520 */ 2521 if (exclusive == EXCL) { 2522 if (error = 2523 nfs3excl_create_settimes(vp, 2524 va, cr)) { 2525 /* 2526 * Setting the times failed. 2527 * Remove the file and return 2528 * the error. 2529 */ 2530 VN_RELE(vp); 2531 (void) nfs3_remove(dvp, 2532 nm, cr, NULL, 0); 2533 return (error); 2534 } 2535 } 2536 2537 /* 2538 * This handles the non-exclusive case 2539 * and the exclusive case where no post op 2540 * attrs were returned. 2541 */ 2542 if (vp->v_type == VNON) { 2543 vattr.va_mask = AT_TYPE; 2544 error = nfs3getattr(vp, &vattr, cr); 2545 if (error) { 2546 VN_RELE(vp); 2547 return (error); 2548 } 2549 vp->v_type = vattr.va_type; 2550 } 2551 } 2552 dnlc_update(dvp, nm, vp); 2553 } 2554 2555 rp = VTOR(vp); 2556 2557 /* 2558 * Check here for large file handled by 2559 * LF-unaware process (as ufs_create() does) 2560 */ 2561 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG && 2562 !(lfaware & FOFFMAX)) { 2563 mutex_enter(&rp->r_statelock); 2564 if (rp->r_size > MAXOFF32_T) { 2565 mutex_exit(&rp->r_statelock); 2566 VN_RELE(vp); 2567 return (EOVERFLOW); 2568 } 2569 mutex_exit(&rp->r_statelock); 2570 } 2571 2572 if (exclusive == EXCL && 2573 (va->va_mask & ~(AT_GID | AT_SIZE))) { 2574 /* 2575 * If doing an exclusive create, then generate 2576 * a SETATTR to set the initial attributes. 2577 * Try to set the mtime and the atime to the 2578 * server's current time. It is somewhat 2579 * expected that these fields will be used to 2580 * store the exclusive create cookie. If not, 2581 * server implementors will need to know that 2582 * a SETATTR will follow an exclusive create 2583 * and the cookie should be destroyed if 2584 * appropriate. This work may have been done 2585 * earlier in this function if post op attrs 2586 * were not available. 2587 * 2588 * The AT_GID and AT_SIZE bits are turned off 2589 * so that the SETATTR request will not attempt 2590 * to process these. The gid will be set 2591 * separately if appropriate. The size is turned 2592 * off because it is assumed that a new file will 2593 * be created empty and if the file wasn't empty, 2594 * then the exclusive create will have failed 2595 * because the file must have existed already. 2596 * Therefore, no truncate operation is needed. 2597 */ 2598 va->va_mask &= ~(AT_GID | AT_SIZE); 2599 error = nfs3setattr(vp, va, 0, cr); 2600 if (error) { 2601 /* 2602 * Couldn't correct the attributes of 2603 * the newly created file and the 2604 * attributes are wrong. Remove the 2605 * file and return an error to the 2606 * application. 2607 */ 2608 VN_RELE(vp); 2609 (void) nfs3_remove(dvp, nm, cr, NULL, 0); 2610 return (error); 2611 } 2612 } 2613 2614 if (va->va_gid != rp->r_attr.va_gid) { 2615 /* 2616 * If the gid on the file isn't right, then 2617 * generate a SETATTR to attempt to change 2618 * it. This may or may not work, depending 2619 * upon the server's semantics for allowing 2620 * file ownership changes. 2621 */ 2622 va->va_mask = AT_GID; 2623 (void) nfs3setattr(vp, va, 0, cr); 2624 } 2625 2626 /* 2627 * If vnode is a device create special vnode 2628 */ 2629 if (IS_DEVVP(vp)) { 2630 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2631 VN_RELE(vp); 2632 } else 2633 *vpp = vp; 2634 } else { 2635 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2636 PURGE_STALE_FH(error, dvp, cr); 2637 } 2638 2639 return (error); 2640 } 2641 2642 /* 2643 * Special setattr function to take care of rest of atime/mtime 2644 * after successful exclusive create. This function exists to avoid 2645 * handling attributes from the server; exclusive the atime/mtime fields 2646 * may be 'invalid' in client's view and therefore can not be trusted. 2647 */ 2648 static int 2649 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr) 2650 { 2651 int error; 2652 uint_t mask; 2653 SETATTR3args args; 2654 SETATTR3res res; 2655 int douprintf; 2656 rnode_t *rp; 2657 hrtime_t t; 2658 2659 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 2660 /* save the caller's mask so that it can be reset later */ 2661 mask = vap->va_mask; 2662 2663 rp = VTOR(vp); 2664 2665 args.object = *RTOFH3(rp); 2666 args.guard.check = FALSE; 2667 2668 /* Use the mask to initialize the arguments */ 2669 vap->va_mask = 0; 2670 error = vattr_to_sattr3(vap, &args.new_attributes); 2671 2672 /* We want to set just atime/mtime on this request */ 2673 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 2674 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 2675 2676 douprintf = 1; 2677 2678 t = gethrtime(); 2679 2680 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 2681 xdr_SETATTR3args, (caddr_t)&args, 2682 xdr_SETATTR3res, (caddr_t)&res, cr, 2683 &douprintf, &res.status, 0, NULL); 2684 2685 if (error) { 2686 vap->va_mask = mask; 2687 return (error); 2688 } 2689 2690 error = geterrno3(res.status); 2691 if (!error) { 2692 /* 2693 * It is important to pick up the attributes. 2694 * Since this is the exclusive create path, the 2695 * attributes on the initial create were ignored 2696 * and we need these to have the correct info. 2697 */ 2698 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 2699 /* 2700 * No need to do the atime/mtime work again so clear 2701 * the bits. 2702 */ 2703 mask &= ~(AT_ATIME | AT_MTIME); 2704 } else { 2705 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 2706 } 2707 2708 vap->va_mask = mask; 2709 2710 return (error); 2711 } 2712 2713 /* ARGSUSED */ 2714 static int 2715 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2716 int mode, vnode_t **vpp, cred_t *cr) 2717 { 2718 int error; 2719 MKNOD3args args; 2720 MKNOD3res res; 2721 int douprintf; 2722 vnode_t *vp; 2723 struct vattr vattr; 2724 hrtime_t t; 2725 2726 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2727 switch (va->va_type) { 2728 case VCHR: 2729 case VBLK: 2730 setdiropargs3(&args.where, nm, dvp); 2731 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK; 2732 error = vattr_to_sattr3(va, 2733 &args.what.mknoddata3_u.device.dev_attributes); 2734 if (error) { 2735 /* req time field(s) overflow - return immediately */ 2736 return (error); 2737 } 2738 args.what.mknoddata3_u.device.spec.specdata1 = 2739 getmajor(va->va_rdev); 2740 args.what.mknoddata3_u.device.spec.specdata2 = 2741 getminor(va->va_rdev); 2742 break; 2743 2744 case VFIFO: 2745 case VSOCK: 2746 setdiropargs3(&args.where, nm, dvp); 2747 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK; 2748 error = vattr_to_sattr3(va, 2749 &args.what.mknoddata3_u.pipe_attributes); 2750 if (error) { 2751 /* req time field(s) overflow - return immediately */ 2752 return (error); 2753 } 2754 break; 2755 2756 default: 2757 return (EINVAL); 2758 } 2759 2760 douprintf = 1; 2761 2762 t = gethrtime(); 2763 2764 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD, 2765 xdr_MKNOD3args, (caddr_t)&args, 2766 xdr_MKNOD3res, (caddr_t)&res, cr, 2767 &douprintf, &res.status, 0, NULL); 2768 2769 if (error) { 2770 PURGE_ATTRCACHE(dvp); 2771 return (error); 2772 } 2773 2774 error = geterrno3(res.status); 2775 if (!error) { 2776 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2777 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2778 nfs_purge_rddir_cache(dvp); 2779 2780 if (!res.resok.obj.handle_follows) { 2781 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2782 if (error) 2783 return (error); 2784 } else { 2785 if (res.resok.obj_attributes.attributes) { 2786 vp = makenfs3node(&res.resok.obj.handle, 2787 &res.resok.obj_attributes.attr, 2788 dvp->v_vfsp, t, cr, NULL, NULL); 2789 } else { 2790 vp = makenfs3node(&res.resok.obj.handle, NULL, 2791 dvp->v_vfsp, t, cr, NULL, NULL); 2792 if (vp->v_type == VNON) { 2793 vattr.va_mask = AT_TYPE; 2794 error = nfs3getattr(vp, &vattr, cr); 2795 if (error) { 2796 VN_RELE(vp); 2797 return (error); 2798 } 2799 vp->v_type = vattr.va_type; 2800 } 2801 2802 } 2803 dnlc_update(dvp, nm, vp); 2804 } 2805 2806 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 2807 va->va_mask = AT_GID; 2808 (void) nfs3setattr(vp, va, 0, cr); 2809 } 2810 2811 /* 2812 * If vnode is a device create special vnode 2813 */ 2814 if (IS_DEVVP(vp)) { 2815 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2816 VN_RELE(vp); 2817 } else 2818 *vpp = vp; 2819 } else { 2820 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2821 PURGE_STALE_FH(error, dvp, cr); 2822 } 2823 return (error); 2824 } 2825 2826 /* 2827 * Weirdness: if the vnode to be removed is open 2828 * we rename it instead of removing it and nfs_inactive 2829 * will remove the new name. 2830 */ 2831 /* ARGSUSED */ 2832 static int 2833 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2834 { 2835 int error; 2836 REMOVE3args args; 2837 REMOVE3res res; 2838 vnode_t *vp; 2839 char *tmpname; 2840 int douprintf; 2841 rnode_t *rp; 2842 rnode_t *drp; 2843 hrtime_t t; 2844 2845 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2846 return (EPERM); 2847 drp = VTOR(dvp); 2848 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2849 return (EINTR); 2850 2851 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2852 if (error) { 2853 nfs_rw_exit(&drp->r_rwlock); 2854 return (error); 2855 } 2856 2857 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2858 VN_RELE(vp); 2859 nfs_rw_exit(&drp->r_rwlock); 2860 return (EPERM); 2861 } 2862 2863 /* 2864 * First just remove the entry from the name cache, as it 2865 * is most likely the only entry for this vp. 2866 */ 2867 dnlc_remove(dvp, nm); 2868 2869 /* 2870 * If the file has a v_count > 1 then there may be more than one 2871 * entry in the name cache due multiple links or an open file, 2872 * but we don't have the real reference count so flush all 2873 * possible entries. 2874 */ 2875 if (vp->v_count > 1) 2876 dnlc_purge_vp(vp); 2877 2878 /* 2879 * Now we have the real reference count on the vnode 2880 */ 2881 rp = VTOR(vp); 2882 mutex_enter(&rp->r_statelock); 2883 if (vp->v_count > 1 && 2884 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2885 mutex_exit(&rp->r_statelock); 2886 tmpname = newname(); 2887 error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct); 2888 if (error) 2889 kmem_free(tmpname, MAXNAMELEN); 2890 else { 2891 mutex_enter(&rp->r_statelock); 2892 if (rp->r_unldvp == NULL) { 2893 VN_HOLD(dvp); 2894 rp->r_unldvp = dvp; 2895 if (rp->r_unlcred != NULL) 2896 crfree(rp->r_unlcred); 2897 crhold(cr); 2898 rp->r_unlcred = cr; 2899 rp->r_unlname = tmpname; 2900 } else { 2901 kmem_free(rp->r_unlname, MAXNAMELEN); 2902 rp->r_unlname = tmpname; 2903 } 2904 mutex_exit(&rp->r_statelock); 2905 } 2906 } else { 2907 mutex_exit(&rp->r_statelock); 2908 /* 2909 * We need to flush any dirty pages which happen to 2910 * be hanging around before removing the file. This 2911 * shouldn't happen very often and mostly on file 2912 * systems mounted "nocto". 2913 */ 2914 if (vn_has_cached_data(vp) && 2915 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2916 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2917 if (error && (error == ENOSPC || error == EDQUOT)) { 2918 mutex_enter(&rp->r_statelock); 2919 if (!rp->r_error) 2920 rp->r_error = error; 2921 mutex_exit(&rp->r_statelock); 2922 } 2923 } 2924 2925 setdiropargs3(&args.object, nm, dvp); 2926 2927 douprintf = 1; 2928 2929 t = gethrtime(); 2930 2931 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE, 2932 xdr_diropargs3, (caddr_t)&args, 2933 xdr_REMOVE3res, (caddr_t)&res, cr, 2934 &douprintf, &res.status, 0, NULL); 2935 2936 /* 2937 * The xattr dir may be gone after last attr is removed, 2938 * so flush it from dnlc. 2939 */ 2940 if (dvp->v_flag & V_XATTRDIR) 2941 dnlc_purge_vp(dvp); 2942 2943 PURGE_ATTRCACHE(vp); 2944 2945 if (error) { 2946 PURGE_ATTRCACHE(dvp); 2947 } else { 2948 error = geterrno3(res.status); 2949 if (!error) { 2950 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, 2951 cr); 2952 if (HAVE_RDDIR_CACHE(drp)) 2953 nfs_purge_rddir_cache(dvp); 2954 } else { 2955 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, 2956 t, cr); 2957 PURGE_STALE_FH(error, dvp, cr); 2958 } 2959 } 2960 } 2961 2962 if (error == 0) { 2963 vnevent_remove(vp, dvp, nm, ct); 2964 } 2965 VN_RELE(vp); 2966 2967 nfs_rw_exit(&drp->r_rwlock); 2968 2969 return (error); 2970 } 2971 2972 /* ARGSUSED */ 2973 static int 2974 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2975 caller_context_t *ct, int flags) 2976 { 2977 int error; 2978 LINK3args args; 2979 LINK3res res; 2980 vnode_t *realvp; 2981 int douprintf; 2982 mntinfo_t *mi; 2983 rnode_t *tdrp; 2984 hrtime_t t; 2985 2986 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2987 return (EPERM); 2988 if (VOP_REALVP(svp, &realvp, ct) == 0) 2989 svp = realvp; 2990 2991 mi = VTOMI(svp); 2992 2993 if (!(mi->mi_flags & MI_LINK)) 2994 return (EOPNOTSUPP); 2995 2996 args.file = *VTOFH3(svp); 2997 setdiropargs3(&args.link, tnm, tdvp); 2998 2999 tdrp = VTOR(tdvp); 3000 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 3001 return (EINTR); 3002 3003 dnlc_remove(tdvp, tnm); 3004 3005 douprintf = 1; 3006 3007 t = gethrtime(); 3008 3009 error = rfs3call(mi, NFSPROC3_LINK, 3010 xdr_LINK3args, (caddr_t)&args, 3011 xdr_LINK3res, (caddr_t)&res, cr, 3012 &douprintf, &res.status, 0, NULL); 3013 3014 if (error) { 3015 PURGE_ATTRCACHE(tdvp); 3016 PURGE_ATTRCACHE(svp); 3017 nfs_rw_exit(&tdrp->r_rwlock); 3018 return (error); 3019 } 3020 3021 error = geterrno3(res.status); 3022 3023 if (!error) { 3024 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr); 3025 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr); 3026 if (HAVE_RDDIR_CACHE(tdrp)) 3027 nfs_purge_rddir_cache(tdvp); 3028 dnlc_update(tdvp, tnm, svp); 3029 } else { 3030 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t, 3031 cr); 3032 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr); 3033 if (error == EOPNOTSUPP) { 3034 mutex_enter(&mi->mi_lock); 3035 mi->mi_flags &= ~MI_LINK; 3036 mutex_exit(&mi->mi_lock); 3037 } 3038 } 3039 3040 nfs_rw_exit(&tdrp->r_rwlock); 3041 3042 if (!error) { 3043 /* 3044 * Notify the source file of this link operation. 3045 */ 3046 vnevent_link(svp, ct); 3047 } 3048 return (error); 3049 } 3050 3051 /* ARGSUSED */ 3052 static int 3053 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3054 caller_context_t *ct, int flags) 3055 { 3056 vnode_t *realvp; 3057 3058 if (nfs_zone() != VTOMI(odvp)->mi_zone) 3059 return (EPERM); 3060 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 3061 ndvp = realvp; 3062 3063 return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct)); 3064 } 3065 3066 /* 3067 * nfs3rename does the real work of renaming in NFS Version 3. 3068 */ 3069 static int 3070 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3071 caller_context_t *ct) 3072 { 3073 int error; 3074 RENAME3args args; 3075 RENAME3res res; 3076 int douprintf; 3077 vnode_t *nvp = NULL; 3078 vnode_t *ovp = NULL; 3079 char *tmpname; 3080 rnode_t *rp; 3081 rnode_t *odrp; 3082 rnode_t *ndrp; 3083 hrtime_t t; 3084 3085 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 3086 3087 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 3088 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 3089 return (EINVAL); 3090 3091 odrp = VTOR(odvp); 3092 ndrp = VTOR(ndvp); 3093 if ((intptr_t)odrp < (intptr_t)ndrp) { 3094 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 3095 return (EINTR); 3096 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 3097 nfs_rw_exit(&odrp->r_rwlock); 3098 return (EINTR); 3099 } 3100 } else { 3101 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 3102 return (EINTR); 3103 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 3104 nfs_rw_exit(&ndrp->r_rwlock); 3105 return (EINTR); 3106 } 3107 } 3108 3109 /* 3110 * Lookup the target file. If it exists, it needs to be 3111 * checked to see whether it is a mount point and whether 3112 * it is active (open). 3113 */ 3114 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 3115 if (!error) { 3116 /* 3117 * If this file has been mounted on, then just 3118 * return busy because renaming to it would remove 3119 * the mounted file system from the name space. 3120 */ 3121 if (vn_mountedvfs(nvp) != NULL) { 3122 VN_RELE(nvp); 3123 nfs_rw_exit(&odrp->r_rwlock); 3124 nfs_rw_exit(&ndrp->r_rwlock); 3125 return (EBUSY); 3126 } 3127 3128 /* 3129 * Purge the name cache of all references to this vnode 3130 * so that we can check the reference count to infer 3131 * whether it is active or not. 3132 */ 3133 /* 3134 * First just remove the entry from the name cache, as it 3135 * is most likely the only entry for this vp. 3136 */ 3137 dnlc_remove(ndvp, nnm); 3138 /* 3139 * If the file has a v_count > 1 then there may be more 3140 * than one entry in the name cache due multiple links 3141 * or an open file, but we don't have the real reference 3142 * count so flush all possible entries. 3143 */ 3144 if (nvp->v_count > 1) 3145 dnlc_purge_vp(nvp); 3146 3147 /* 3148 * If the vnode is active and is not a directory, 3149 * arrange to rename it to a 3150 * temporary file so that it will continue to be 3151 * accessible. This implements the "unlink-open-file" 3152 * semantics for the target of a rename operation. 3153 * Before doing this though, make sure that the 3154 * source and target files are not already the same. 3155 */ 3156 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 3157 /* 3158 * Lookup the source name. 3159 */ 3160 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, 3161 cr, 0); 3162 3163 /* 3164 * The source name *should* already exist. 3165 */ 3166 if (error) { 3167 VN_RELE(nvp); 3168 nfs_rw_exit(&odrp->r_rwlock); 3169 nfs_rw_exit(&ndrp->r_rwlock); 3170 return (error); 3171 } 3172 3173 /* 3174 * Compare the two vnodes. If they are the same, 3175 * just release all held vnodes and return success. 3176 */ 3177 if (ovp == nvp) { 3178 VN_RELE(ovp); 3179 VN_RELE(nvp); 3180 nfs_rw_exit(&odrp->r_rwlock); 3181 nfs_rw_exit(&ndrp->r_rwlock); 3182 return (0); 3183 } 3184 3185 /* 3186 * Can't mix and match directories and non- 3187 * directories in rename operations. We already 3188 * know that the target is not a directory. If 3189 * the source is a directory, return an error. 3190 */ 3191 if (ovp->v_type == VDIR) { 3192 VN_RELE(ovp); 3193 VN_RELE(nvp); 3194 nfs_rw_exit(&odrp->r_rwlock); 3195 nfs_rw_exit(&ndrp->r_rwlock); 3196 return (ENOTDIR); 3197 } 3198 3199 /* 3200 * The target file exists, is not the same as 3201 * the source file, and is active. Link it 3202 * to a temporary filename to avoid having 3203 * the server removing the file completely. 3204 */ 3205 tmpname = newname(); 3206 error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0); 3207 if (error == EOPNOTSUPP) { 3208 error = nfs3_rename(ndvp, nnm, ndvp, tmpname, 3209 cr, NULL, 0); 3210 } 3211 if (error) { 3212 kmem_free(tmpname, MAXNAMELEN); 3213 VN_RELE(ovp); 3214 VN_RELE(nvp); 3215 nfs_rw_exit(&odrp->r_rwlock); 3216 nfs_rw_exit(&ndrp->r_rwlock); 3217 return (error); 3218 } 3219 rp = VTOR(nvp); 3220 mutex_enter(&rp->r_statelock); 3221 if (rp->r_unldvp == NULL) { 3222 VN_HOLD(ndvp); 3223 rp->r_unldvp = ndvp; 3224 if (rp->r_unlcred != NULL) 3225 crfree(rp->r_unlcred); 3226 crhold(cr); 3227 rp->r_unlcred = cr; 3228 rp->r_unlname = tmpname; 3229 } else { 3230 kmem_free(rp->r_unlname, MAXNAMELEN); 3231 rp->r_unlname = tmpname; 3232 } 3233 mutex_exit(&rp->r_statelock); 3234 } 3235 } 3236 3237 if (ovp == NULL) { 3238 /* 3239 * When renaming directories to be a subdirectory of a 3240 * different parent, the dnlc entry for ".." will no 3241 * longer be valid, so it must be removed. 3242 * 3243 * We do a lookup here to determine whether we are renaming 3244 * a directory and we need to check if we are renaming 3245 * an unlinked file. This might have already been done 3246 * in previous code, so we check ovp == NULL to avoid 3247 * doing it twice. 3248 */ 3249 3250 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 3251 /* 3252 * The source name *should* already exist. 3253 */ 3254 if (error) { 3255 nfs_rw_exit(&odrp->r_rwlock); 3256 nfs_rw_exit(&ndrp->r_rwlock); 3257 if (nvp) { 3258 VN_RELE(nvp); 3259 } 3260 return (error); 3261 } 3262 ASSERT(ovp != NULL); 3263 } 3264 3265 dnlc_remove(odvp, onm); 3266 dnlc_remove(ndvp, nnm); 3267 3268 setdiropargs3(&args.from, onm, odvp); 3269 setdiropargs3(&args.to, nnm, ndvp); 3270 3271 douprintf = 1; 3272 3273 t = gethrtime(); 3274 3275 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME, 3276 xdr_RENAME3args, (caddr_t)&args, 3277 xdr_RENAME3res, (caddr_t)&res, cr, 3278 &douprintf, &res.status, 0, NULL); 3279 3280 if (error) { 3281 PURGE_ATTRCACHE(odvp); 3282 PURGE_ATTRCACHE(ndvp); 3283 VN_RELE(ovp); 3284 nfs_rw_exit(&odrp->r_rwlock); 3285 nfs_rw_exit(&ndrp->r_rwlock); 3286 if (nvp) { 3287 VN_RELE(nvp); 3288 } 3289 return (error); 3290 } 3291 3292 error = geterrno3(res.status); 3293 3294 if (!error) { 3295 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr); 3296 if (HAVE_RDDIR_CACHE(odrp)) 3297 nfs_purge_rddir_cache(odvp); 3298 if (ndvp != odvp) { 3299 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr); 3300 if (HAVE_RDDIR_CACHE(ndrp)) 3301 nfs_purge_rddir_cache(ndvp); 3302 } 3303 /* 3304 * when renaming directories to be a subdirectory of a 3305 * different parent, the dnlc entry for ".." will no 3306 * longer be valid, so it must be removed 3307 */ 3308 rp = VTOR(ovp); 3309 if (ndvp != odvp) { 3310 if (ovp->v_type == VDIR) { 3311 dnlc_remove(ovp, ".."); 3312 if (HAVE_RDDIR_CACHE(rp)) 3313 nfs_purge_rddir_cache(ovp); 3314 } 3315 } 3316 3317 /* 3318 * If we are renaming the unlinked file, update the 3319 * r_unldvp and r_unlname as needed. 3320 */ 3321 mutex_enter(&rp->r_statelock); 3322 if (rp->r_unldvp != NULL) { 3323 if (strcmp(rp->r_unlname, onm) == 0) { 3324 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 3325 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 3326 3327 if (ndvp != rp->r_unldvp) { 3328 VN_RELE(rp->r_unldvp); 3329 rp->r_unldvp = ndvp; 3330 VN_HOLD(ndvp); 3331 } 3332 } 3333 } 3334 mutex_exit(&rp->r_statelock); 3335 } else { 3336 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr); 3337 if (ndvp != odvp) { 3338 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t, 3339 cr); 3340 } 3341 /* 3342 * System V defines rename to return EEXIST, not 3343 * ENOTEMPTY if the target directory is not empty. 3344 * Over the wire, the error is NFSERR_ENOTEMPTY 3345 * which geterrno maps to ENOTEMPTY. 3346 */ 3347 if (error == ENOTEMPTY) 3348 error = EEXIST; 3349 } 3350 3351 if (error == 0) { 3352 if (nvp) 3353 vnevent_rename_dest(nvp, ndvp, nnm, ct); 3354 3355 if (odvp != ndvp) 3356 vnevent_rename_dest_dir(ndvp, ct); 3357 ASSERT(ovp != NULL); 3358 vnevent_rename_src(ovp, odvp, onm, ct); 3359 } 3360 3361 if (nvp) { 3362 VN_RELE(nvp); 3363 } 3364 VN_RELE(ovp); 3365 3366 nfs_rw_exit(&odrp->r_rwlock); 3367 nfs_rw_exit(&ndrp->r_rwlock); 3368 3369 return (error); 3370 } 3371 3372 /* ARGSUSED */ 3373 static int 3374 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 3375 caller_context_t *ct, int flags, vsecattr_t *vsecp) 3376 { 3377 int error; 3378 MKDIR3args args; 3379 MKDIR3res res; 3380 int douprintf; 3381 struct vattr vattr; 3382 vnode_t *vp; 3383 rnode_t *drp; 3384 hrtime_t t; 3385 3386 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3387 return (EPERM); 3388 setdiropargs3(&args.where, nm, dvp); 3389 3390 /* 3391 * Decide what the group-id and set-gid bit of the created directory 3392 * should be. May have to do a setattr to get the gid right. 3393 */ 3394 error = setdirgid(dvp, &va->va_gid, cr); 3395 if (error) 3396 return (error); 3397 error = setdirmode(dvp, &va->va_mode, cr); 3398 if (error) 3399 return (error); 3400 va->va_mask |= AT_MODE|AT_GID; 3401 3402 error = vattr_to_sattr3(va, &args.attributes); 3403 if (error) { 3404 /* req time field(s) overflow - return immediately */ 3405 return (error); 3406 } 3407 3408 drp = VTOR(dvp); 3409 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3410 return (EINTR); 3411 3412 dnlc_remove(dvp, nm); 3413 3414 douprintf = 1; 3415 3416 t = gethrtime(); 3417 3418 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR, 3419 xdr_MKDIR3args, (caddr_t)&args, 3420 xdr_MKDIR3res, (caddr_t)&res, cr, 3421 &douprintf, &res.status, 0, NULL); 3422 3423 if (error) { 3424 PURGE_ATTRCACHE(dvp); 3425 nfs_rw_exit(&drp->r_rwlock); 3426 return (error); 3427 } 3428 3429 error = geterrno3(res.status); 3430 if (!error) { 3431 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3432 if (HAVE_RDDIR_CACHE(drp)) 3433 nfs_purge_rddir_cache(dvp); 3434 3435 if (!res.resok.obj.handle_follows) { 3436 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3437 if (error) { 3438 nfs_rw_exit(&drp->r_rwlock); 3439 return (error); 3440 } 3441 } else { 3442 if (res.resok.obj_attributes.attributes) { 3443 vp = makenfs3node(&res.resok.obj.handle, 3444 &res.resok.obj_attributes.attr, 3445 dvp->v_vfsp, t, cr, NULL, NULL); 3446 } else { 3447 vp = makenfs3node(&res.resok.obj.handle, NULL, 3448 dvp->v_vfsp, t, cr, NULL, NULL); 3449 if (vp->v_type == VNON) { 3450 vattr.va_mask = AT_TYPE; 3451 error = nfs3getattr(vp, &vattr, cr); 3452 if (error) { 3453 VN_RELE(vp); 3454 nfs_rw_exit(&drp->r_rwlock); 3455 return (error); 3456 } 3457 vp->v_type = vattr.va_type; 3458 } 3459 } 3460 dnlc_update(dvp, nm, vp); 3461 } 3462 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 3463 va->va_mask = AT_GID; 3464 (void) nfs3setattr(vp, va, 0, cr); 3465 } 3466 *vpp = vp; 3467 } else { 3468 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3469 PURGE_STALE_FH(error, dvp, cr); 3470 } 3471 3472 nfs_rw_exit(&drp->r_rwlock); 3473 3474 return (error); 3475 } 3476 3477 /* ARGSUSED */ 3478 static int 3479 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 3480 caller_context_t *ct, int flags) 3481 { 3482 int error; 3483 RMDIR3args args; 3484 RMDIR3res res; 3485 vnode_t *vp; 3486 int douprintf; 3487 rnode_t *drp; 3488 hrtime_t t; 3489 3490 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3491 return (EPERM); 3492 drp = VTOR(dvp); 3493 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3494 return (EINTR); 3495 3496 /* 3497 * Attempt to prevent a rmdir(".") from succeeding. 3498 */ 3499 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3500 if (error) { 3501 nfs_rw_exit(&drp->r_rwlock); 3502 return (error); 3503 } 3504 3505 if (vp == cdir) { 3506 VN_RELE(vp); 3507 nfs_rw_exit(&drp->r_rwlock); 3508 return (EINVAL); 3509 } 3510 3511 setdiropargs3(&args.object, nm, dvp); 3512 3513 /* 3514 * First just remove the entry from the name cache, as it 3515 * is most likely an entry for this vp. 3516 */ 3517 dnlc_remove(dvp, nm); 3518 3519 /* 3520 * If there vnode reference count is greater than one, then 3521 * there may be additional references in the DNLC which will 3522 * need to be purged. First, trying removing the entry for 3523 * the parent directory and see if that removes the additional 3524 * reference(s). If that doesn't do it, then use dnlc_purge_vp 3525 * to completely remove any references to the directory which 3526 * might still exist in the DNLC. 3527 */ 3528 if (vp->v_count > 1) { 3529 dnlc_remove(vp, ".."); 3530 if (vp->v_count > 1) 3531 dnlc_purge_vp(vp); 3532 } 3533 3534 douprintf = 1; 3535 3536 t = gethrtime(); 3537 3538 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR, 3539 xdr_diropargs3, (caddr_t)&args, 3540 xdr_RMDIR3res, (caddr_t)&res, cr, 3541 &douprintf, &res.status, 0, NULL); 3542 3543 PURGE_ATTRCACHE(vp); 3544 3545 if (error) { 3546 PURGE_ATTRCACHE(dvp); 3547 VN_RELE(vp); 3548 nfs_rw_exit(&drp->r_rwlock); 3549 return (error); 3550 } 3551 3552 error = geterrno3(res.status); 3553 if (!error) { 3554 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3555 if (HAVE_RDDIR_CACHE(drp)) 3556 nfs_purge_rddir_cache(dvp); 3557 if (HAVE_RDDIR_CACHE(VTOR(vp))) 3558 nfs_purge_rddir_cache(vp); 3559 } else { 3560 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3561 PURGE_STALE_FH(error, dvp, cr); 3562 /* 3563 * System V defines rmdir to return EEXIST, not 3564 * ENOTEMPTY if the directory is not empty. Over 3565 * the wire, the error is NFSERR_ENOTEMPTY which 3566 * geterrno maps to ENOTEMPTY. 3567 */ 3568 if (error == ENOTEMPTY) 3569 error = EEXIST; 3570 } 3571 3572 if (error == 0) { 3573 vnevent_rmdir(vp, dvp, nm, ct); 3574 } 3575 VN_RELE(vp); 3576 3577 nfs_rw_exit(&drp->r_rwlock); 3578 3579 return (error); 3580 } 3581 3582 /* ARGSUSED */ 3583 static int 3584 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 3585 caller_context_t *ct, int flags) 3586 { 3587 int error; 3588 SYMLINK3args args; 3589 SYMLINK3res res; 3590 int douprintf; 3591 mntinfo_t *mi; 3592 vnode_t *vp; 3593 rnode_t *rp; 3594 char *contents; 3595 rnode_t *drp; 3596 hrtime_t t; 3597 3598 mi = VTOMI(dvp); 3599 3600 if (nfs_zone() != mi->mi_zone) 3601 return (EPERM); 3602 if (!(mi->mi_flags & MI_SYMLINK)) 3603 return (EOPNOTSUPP); 3604 3605 setdiropargs3(&args.where, lnm, dvp); 3606 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes); 3607 if (error) { 3608 /* req time field(s) overflow - return immediately */ 3609 return (error); 3610 } 3611 args.symlink.symlink_data = tnm; 3612 3613 drp = VTOR(dvp); 3614 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3615 return (EINTR); 3616 3617 dnlc_remove(dvp, lnm); 3618 3619 douprintf = 1; 3620 3621 t = gethrtime(); 3622 3623 error = rfs3call(mi, NFSPROC3_SYMLINK, 3624 xdr_SYMLINK3args, (caddr_t)&args, 3625 xdr_SYMLINK3res, (caddr_t)&res, cr, 3626 &douprintf, &res.status, 0, NULL); 3627 3628 if (error) { 3629 PURGE_ATTRCACHE(dvp); 3630 nfs_rw_exit(&drp->r_rwlock); 3631 return (error); 3632 } 3633 3634 error = geterrno3(res.status); 3635 if (!error) { 3636 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3637 if (HAVE_RDDIR_CACHE(drp)) 3638 nfs_purge_rddir_cache(dvp); 3639 3640 if (res.resok.obj.handle_follows) { 3641 if (res.resok.obj_attributes.attributes) { 3642 vp = makenfs3node(&res.resok.obj.handle, 3643 &res.resok.obj_attributes.attr, 3644 dvp->v_vfsp, t, cr, NULL, NULL); 3645 } else { 3646 vp = makenfs3node(&res.resok.obj.handle, NULL, 3647 dvp->v_vfsp, t, cr, NULL, NULL); 3648 vp->v_type = VLNK; 3649 vp->v_rdev = 0; 3650 } 3651 dnlc_update(dvp, lnm, vp); 3652 rp = VTOR(vp); 3653 if (nfs3_do_symlink_cache && 3654 rp->r_symlink.contents == NULL) { 3655 3656 contents = kmem_alloc(MAXPATHLEN, 3657 KM_NOSLEEP); 3658 3659 if (contents != NULL) { 3660 mutex_enter(&rp->r_statelock); 3661 if (rp->r_symlink.contents == NULL) { 3662 rp->r_symlink.len = strlen(tnm); 3663 bcopy(tnm, contents, 3664 rp->r_symlink.len); 3665 rp->r_symlink.contents = 3666 contents; 3667 rp->r_symlink.size = MAXPATHLEN; 3668 mutex_exit(&rp->r_statelock); 3669 } else { 3670 mutex_exit(&rp->r_statelock); 3671 kmem_free((void *)contents, 3672 MAXPATHLEN); 3673 } 3674 } 3675 } 3676 VN_RELE(vp); 3677 } 3678 } else { 3679 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3680 PURGE_STALE_FH(error, dvp, cr); 3681 if (error == EOPNOTSUPP) { 3682 mutex_enter(&mi->mi_lock); 3683 mi->mi_flags &= ~MI_SYMLINK; 3684 mutex_exit(&mi->mi_lock); 3685 } 3686 } 3687 3688 nfs_rw_exit(&drp->r_rwlock); 3689 3690 return (error); 3691 } 3692 3693 #ifdef DEBUG 3694 static int nfs3_readdir_cache_hits = 0; 3695 static int nfs3_readdir_cache_shorts = 0; 3696 static int nfs3_readdir_cache_waits = 0; 3697 static int nfs3_readdir_cache_misses = 0; 3698 static int nfs3_readdir_readahead = 0; 3699 #endif 3700 3701 static int nfs3_shrinkreaddir = 0; 3702 3703 /* 3704 * Read directory entries. 3705 * There are some weird things to look out for here. The uio_loffset 3706 * field is either 0 or it is the offset returned from a previous 3707 * readdir. It is an opaque value used by the server to find the 3708 * correct directory block to read. The count field is the number 3709 * of blocks to read on the server. This is advisory only, the server 3710 * may return only one block's worth of entries. Entries may be compressed 3711 * on the server. 3712 */ 3713 /* ARGSUSED */ 3714 static int 3715 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 3716 caller_context_t *ct, int flags) 3717 { 3718 int error; 3719 size_t count; 3720 rnode_t *rp; 3721 rddir_cache *rdc; 3722 rddir_cache *nrdc; 3723 rddir_cache *rrdc; 3724 #ifdef DEBUG 3725 int missed; 3726 #endif 3727 int doreadahead; 3728 rddir_cache srdc; 3729 avl_index_t where; 3730 3731 if (nfs_zone() != VTOMI(vp)->mi_zone) 3732 return (EIO); 3733 rp = VTOR(vp); 3734 3735 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 3736 3737 /* 3738 * Make sure that the directory cache is valid. 3739 */ 3740 if (HAVE_RDDIR_CACHE(rp)) { 3741 if (nfs_disable_rddir_cache) { 3742 /* 3743 * Setting nfs_disable_rddir_cache in /etc/system 3744 * allows interoperability with servers that do not 3745 * properly update the attributes of directories. 3746 * Any cached information gets purged before an 3747 * access is made to it. 3748 */ 3749 nfs_purge_rddir_cache(vp); 3750 } else { 3751 error = nfs3_validate_caches(vp, cr); 3752 if (error) 3753 return (error); 3754 } 3755 } 3756 3757 /* 3758 * It is possible that some servers may not be able to correctly 3759 * handle a large READDIR or READDIRPLUS request due to bugs in 3760 * their implementation. In order to continue to interoperate 3761 * with them, this workaround is provided to limit the maximum 3762 * size of a READDIRPLUS request to 1024. In any case, the request 3763 * size is limited to MAXBSIZE. 3764 */ 3765 count = MIN(uiop->uio_iov->iov_len, 3766 nfs3_shrinkreaddir ? 1024 : MAXBSIZE); 3767 3768 nrdc = NULL; 3769 #ifdef DEBUG 3770 missed = 0; 3771 #endif 3772 top: 3773 /* 3774 * Short circuit last readdir which always returns 0 bytes. 3775 * This can be done after the directory has been read through 3776 * completely at least once. This will set r_direof which 3777 * can be used to find the value of the last cookie. 3778 */ 3779 mutex_enter(&rp->r_statelock); 3780 if (rp->r_direof != NULL && 3781 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) { 3782 mutex_exit(&rp->r_statelock); 3783 #ifdef DEBUG 3784 nfs3_readdir_cache_shorts++; 3785 #endif 3786 if (eofp) 3787 *eofp = 1; 3788 if (nrdc != NULL) 3789 rddir_cache_rele(nrdc); 3790 return (0); 3791 } 3792 /* 3793 * Look for a cache entry. Cache entries are identified 3794 * by the NFS cookie value and the byte count requested. 3795 */ 3796 srdc.nfs3_cookie = uiop->uio_loffset; 3797 srdc.buflen = count; 3798 rdc = avl_find(&rp->r_dir, &srdc, &where); 3799 if (rdc != NULL) { 3800 rddir_cache_hold(rdc); 3801 /* 3802 * If the cache entry is in the process of being 3803 * filled in, wait until this completes. The 3804 * RDDIRWAIT bit is set to indicate that someone 3805 * is waiting and then the thread currently 3806 * filling the entry is done, it should do a 3807 * cv_broadcast to wakeup all of the threads 3808 * waiting for it to finish. 3809 */ 3810 if (rdc->flags & RDDIR) { 3811 nfs_rw_exit(&rp->r_rwlock); 3812 rdc->flags |= RDDIRWAIT; 3813 #ifdef DEBUG 3814 nfs3_readdir_cache_waits++; 3815 #endif 3816 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3817 /* 3818 * We got interrupted, probably 3819 * the user typed ^C or an alarm 3820 * fired. We free the new entry 3821 * if we allocated one. 3822 */ 3823 mutex_exit(&rp->r_statelock); 3824 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3825 RW_READER, FALSE); 3826 rddir_cache_rele(rdc); 3827 if (nrdc != NULL) 3828 rddir_cache_rele(nrdc); 3829 return (EINTR); 3830 } 3831 mutex_exit(&rp->r_statelock); 3832 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3833 RW_READER, FALSE); 3834 rddir_cache_rele(rdc); 3835 goto top; 3836 } 3837 /* 3838 * Check to see if a readdir is required to 3839 * fill the entry. If so, mark this entry 3840 * as being filled, remove our reference, 3841 * and branch to the code to fill the entry. 3842 */ 3843 if (rdc->flags & RDDIRREQ) { 3844 rdc->flags &= ~RDDIRREQ; 3845 rdc->flags |= RDDIR; 3846 if (nrdc != NULL) 3847 rddir_cache_rele(nrdc); 3848 nrdc = rdc; 3849 mutex_exit(&rp->r_statelock); 3850 goto bottom; 3851 } 3852 #ifdef DEBUG 3853 if (!missed) 3854 nfs3_readdir_cache_hits++; 3855 #endif 3856 /* 3857 * If an error occurred while attempting 3858 * to fill the cache entry, just return it. 3859 */ 3860 if (rdc->error) { 3861 error = rdc->error; 3862 mutex_exit(&rp->r_statelock); 3863 rddir_cache_rele(rdc); 3864 if (nrdc != NULL) 3865 rddir_cache_rele(nrdc); 3866 return (error); 3867 } 3868 3869 /* 3870 * The cache entry is complete and good, 3871 * copyout the dirent structs to the calling 3872 * thread. 3873 */ 3874 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3875 3876 /* 3877 * If no error occurred during the copyout, 3878 * update the offset in the uio struct to 3879 * contain the value of the next cookie 3880 * and set the eof value appropriately. 3881 */ 3882 if (!error) { 3883 uiop->uio_loffset = rdc->nfs3_ncookie; 3884 if (eofp) 3885 *eofp = rdc->eof; 3886 } 3887 3888 /* 3889 * Decide whether to do readahead. 3890 * 3891 * Don't if have already read to the end of 3892 * directory. There is nothing more to read. 3893 * 3894 * Don't if the application is not doing 3895 * lookups in the directory. The readahead 3896 * is only effective if the application can 3897 * be doing work while an async thread is 3898 * handling the over the wire request. 3899 */ 3900 if (rdc->eof) { 3901 rp->r_direof = rdc; 3902 doreadahead = FALSE; 3903 } else if (!(rp->r_flags & RLOOKUP)) 3904 doreadahead = FALSE; 3905 else 3906 doreadahead = TRUE; 3907 3908 if (!doreadahead) { 3909 mutex_exit(&rp->r_statelock); 3910 rddir_cache_rele(rdc); 3911 if (nrdc != NULL) 3912 rddir_cache_rele(nrdc); 3913 return (error); 3914 } 3915 3916 /* 3917 * Check to see whether we found an entry 3918 * for the readahead. If so, we don't need 3919 * to do anything further, so free the new 3920 * entry if one was allocated. Otherwise, 3921 * allocate a new entry, add it to the cache, 3922 * and then initiate an asynchronous readdir 3923 * operation to fill it. 3924 */ 3925 srdc.nfs3_cookie = rdc->nfs3_ncookie; 3926 srdc.buflen = count; 3927 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3928 if (rrdc != NULL) { 3929 if (nrdc != NULL) 3930 rddir_cache_rele(nrdc); 3931 } else { 3932 if (nrdc != NULL) 3933 rrdc = nrdc; 3934 else { 3935 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3936 } 3937 if (rrdc != NULL) { 3938 rrdc->nfs3_cookie = rdc->nfs3_ncookie; 3939 rrdc->buflen = count; 3940 avl_insert(&rp->r_dir, rrdc, where); 3941 rddir_cache_hold(rrdc); 3942 mutex_exit(&rp->r_statelock); 3943 rddir_cache_rele(rdc); 3944 #ifdef DEBUG 3945 nfs3_readdir_readahead++; 3946 #endif 3947 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir); 3948 return (error); 3949 } 3950 } 3951 3952 mutex_exit(&rp->r_statelock); 3953 rddir_cache_rele(rdc); 3954 return (error); 3955 } 3956 3957 /* 3958 * Didn't find an entry in the cache. Construct a new empty 3959 * entry and link it into the cache. Other processes attempting 3960 * to access this entry will need to wait until it is filled in. 3961 * 3962 * Since kmem_alloc may block, another pass through the cache 3963 * will need to be taken to make sure that another process 3964 * hasn't already added an entry to the cache for this request. 3965 */ 3966 if (nrdc == NULL) { 3967 mutex_exit(&rp->r_statelock); 3968 nrdc = rddir_cache_alloc(KM_SLEEP); 3969 nrdc->nfs3_cookie = uiop->uio_loffset; 3970 nrdc->buflen = count; 3971 goto top; 3972 } 3973 3974 /* 3975 * Add this entry to the cache. 3976 */ 3977 avl_insert(&rp->r_dir, nrdc, where); 3978 rddir_cache_hold(nrdc); 3979 mutex_exit(&rp->r_statelock); 3980 3981 bottom: 3982 #ifdef DEBUG 3983 missed = 1; 3984 nfs3_readdir_cache_misses++; 3985 #endif 3986 /* 3987 * Do the readdir. This routine decides whether to use 3988 * READDIR or READDIRPLUS. 3989 */ 3990 error = do_nfs3readdir(vp, nrdc, cr); 3991 3992 /* 3993 * If this operation failed, just return the error which occurred. 3994 */ 3995 if (error != 0) 3996 return (error); 3997 3998 /* 3999 * Since the RPC operation will have taken sometime and blocked 4000 * this process, another pass through the cache will need to be 4001 * taken to find the correct cache entry. It is possible that 4002 * the correct cache entry will not be there (although one was 4003 * added) because the directory changed during the RPC operation 4004 * and the readdir cache was flushed. In this case, just start 4005 * over. It is hoped that this will not happen too often... :-) 4006 */ 4007 nrdc = NULL; 4008 goto top; 4009 /* NOTREACHED */ 4010 } 4011 4012 static int 4013 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4014 { 4015 int error; 4016 rnode_t *rp; 4017 mntinfo_t *mi; 4018 4019 rp = VTOR(vp); 4020 mi = VTOMI(vp); 4021 ASSERT(nfs_zone() == mi->mi_zone); 4022 /* 4023 * Issue the proper request. 4024 * 4025 * If the server does not support READDIRPLUS, then use READDIR. 4026 * 4027 * Otherwise -- 4028 * Issue a READDIRPLUS if reading to fill an empty cache or if 4029 * an application has performed a lookup in the directory which 4030 * required an over the wire lookup. The use of READDIRPLUS 4031 * will help to (re)populate the DNLC. 4032 */ 4033 if (!(mi->mi_flags & MI_READDIRONLY) && 4034 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) { 4035 if (rp->r_flags & RREADDIRPLUS) { 4036 mutex_enter(&rp->r_statelock); 4037 rp->r_flags &= ~RREADDIRPLUS; 4038 mutex_exit(&rp->r_statelock); 4039 } 4040 nfs3readdirplus(vp, rdc, cr); 4041 if (rdc->error == EOPNOTSUPP) 4042 nfs3readdir(vp, rdc, cr); 4043 } else 4044 nfs3readdir(vp, rdc, cr); 4045 4046 mutex_enter(&rp->r_statelock); 4047 rdc->flags &= ~RDDIR; 4048 if (rdc->flags & RDDIRWAIT) { 4049 rdc->flags &= ~RDDIRWAIT; 4050 cv_broadcast(&rdc->cv); 4051 } 4052 error = rdc->error; 4053 if (error) 4054 rdc->flags |= RDDIRREQ; 4055 mutex_exit(&rp->r_statelock); 4056 4057 rddir_cache_rele(rdc); 4058 4059 return (error); 4060 } 4061 4062 static void 4063 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4064 { 4065 int error; 4066 READDIR3args args; 4067 READDIR3vres res; 4068 vattr_t dva; 4069 rnode_t *rp; 4070 int douprintf; 4071 failinfo_t fi, *fip = NULL; 4072 mntinfo_t *mi; 4073 hrtime_t t; 4074 4075 rp = VTOR(vp); 4076 mi = VTOMI(vp); 4077 ASSERT(nfs_zone() == mi->mi_zone); 4078 4079 args.dir = *RTOFH3(rp); 4080 args.cookie = (cookie3)rdc->nfs3_cookie; 4081 args.cookieverf = rp->r_cookieverf; 4082 args.count = rdc->buflen; 4083 4084 /* 4085 * NFS client failover support 4086 * suppress failover unless we have a zero cookie 4087 */ 4088 if (args.cookie == (cookie3) 0) { 4089 fi.vp = vp; 4090 fi.fhp = (caddr_t)&args.dir; 4091 fi.copyproc = nfs3copyfh; 4092 fi.lookupproc = nfs3lookup; 4093 fi.xattrdirproc = acl_getxattrdir3; 4094 fip = &fi; 4095 } 4096 4097 #ifdef DEBUG 4098 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4099 #else 4100 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4101 #endif 4102 4103 res.entries = (dirent64_t *)rdc->entries; 4104 res.entries_size = rdc->buflen; 4105 res.dir_attributes.fres.vap = &dva; 4106 res.dir_attributes.fres.vp = vp; 4107 res.loff = rdc->nfs3_cookie; 4108 4109 douprintf = 1; 4110 4111 if (mi->mi_io_kstats) { 4112 mutex_enter(&mi->mi_lock); 4113 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4114 mutex_exit(&mi->mi_lock); 4115 } 4116 4117 t = gethrtime(); 4118 4119 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR, 4120 xdr_READDIR3args, (caddr_t)&args, 4121 xdr_READDIR3vres, (caddr_t)&res, cr, 4122 &douprintf, &res.status, 0, fip); 4123 4124 if (mi->mi_io_kstats) { 4125 mutex_enter(&mi->mi_lock); 4126 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4127 mutex_exit(&mi->mi_lock); 4128 } 4129 4130 if (error) 4131 goto err; 4132 4133 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr); 4134 4135 error = geterrno3(res.status); 4136 if (error) { 4137 PURGE_STALE_FH(error, vp, cr); 4138 goto err; 4139 } 4140 4141 if (mi->mi_io_kstats) { 4142 mutex_enter(&mi->mi_lock); 4143 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4144 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4145 mutex_exit(&mi->mi_lock); 4146 } 4147 4148 rdc->nfs3_ncookie = res.loff; 4149 rp->r_cookieverf = res.cookieverf; 4150 rdc->eof = res.eof ? 1 : 0; 4151 rdc->entlen = res.size; 4152 ASSERT(rdc->entlen <= rdc->buflen); 4153 rdc->error = 0; 4154 return; 4155 4156 err: 4157 kmem_free(rdc->entries, rdc->buflen); 4158 rdc->entries = NULL; 4159 rdc->error = error; 4160 } 4161 4162 /* 4163 * Read directory entries. 4164 * There are some weird things to look out for here. The uio_loffset 4165 * field is either 0 or it is the offset returned from a previous 4166 * readdir. It is an opaque value used by the server to find the 4167 * correct directory block to read. The count field is the number 4168 * of blocks to read on the server. This is advisory only, the server 4169 * may return only one block's worth of entries. Entries may be compressed 4170 * on the server. 4171 */ 4172 static void 4173 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4174 { 4175 int error; 4176 READDIRPLUS3args args; 4177 READDIRPLUS3vres res; 4178 vattr_t dva; 4179 rnode_t *rp; 4180 mntinfo_t *mi; 4181 int douprintf; 4182 failinfo_t fi, *fip = NULL; 4183 4184 rp = VTOR(vp); 4185 mi = VTOMI(vp); 4186 ASSERT(nfs_zone() == mi->mi_zone); 4187 4188 args.dir = *RTOFH3(rp); 4189 args.cookie = (cookie3)rdc->nfs3_cookie; 4190 args.cookieverf = rp->r_cookieverf; 4191 args.dircount = rdc->buflen; 4192 args.maxcount = mi->mi_tsize; 4193 4194 /* 4195 * NFS client failover support 4196 * suppress failover unless we have a zero cookie 4197 */ 4198 if (args.cookie == (cookie3)0) { 4199 fi.vp = vp; 4200 fi.fhp = (caddr_t)&args.dir; 4201 fi.copyproc = nfs3copyfh; 4202 fi.lookupproc = nfs3lookup; 4203 fi.xattrdirproc = acl_getxattrdir3; 4204 fip = &fi; 4205 } 4206 4207 #ifdef DEBUG 4208 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4209 #else 4210 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4211 #endif 4212 4213 res.entries = (dirent64_t *)rdc->entries; 4214 res.entries_size = rdc->buflen; 4215 res.dir_attributes.fres.vap = &dva; 4216 res.dir_attributes.fres.vp = vp; 4217 res.loff = rdc->nfs3_cookie; 4218 res.credentials = cr; 4219 4220 douprintf = 1; 4221 4222 if (mi->mi_io_kstats) { 4223 mutex_enter(&mi->mi_lock); 4224 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4225 mutex_exit(&mi->mi_lock); 4226 } 4227 4228 res.time = gethrtime(); 4229 4230 error = rfs3call(mi, NFSPROC3_READDIRPLUS, 4231 xdr_READDIRPLUS3args, (caddr_t)&args, 4232 xdr_READDIRPLUS3vres, (caddr_t)&res, cr, 4233 &douprintf, &res.status, 0, fip); 4234 4235 if (mi->mi_io_kstats) { 4236 mutex_enter(&mi->mi_lock); 4237 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4238 mutex_exit(&mi->mi_lock); 4239 } 4240 4241 if (error) { 4242 goto err; 4243 } 4244 4245 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr); 4246 4247 error = geterrno3(res.status); 4248 if (error) { 4249 PURGE_STALE_FH(error, vp, cr); 4250 if (error == EOPNOTSUPP) { 4251 mutex_enter(&mi->mi_lock); 4252 mi->mi_flags |= MI_READDIRONLY; 4253 mutex_exit(&mi->mi_lock); 4254 } 4255 goto err; 4256 } 4257 4258 if (mi->mi_io_kstats) { 4259 mutex_enter(&mi->mi_lock); 4260 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4261 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4262 mutex_exit(&mi->mi_lock); 4263 } 4264 4265 rdc->nfs3_ncookie = res.loff; 4266 rp->r_cookieverf = res.cookieverf; 4267 rdc->eof = res.eof ? 1 : 0; 4268 rdc->entlen = res.size; 4269 ASSERT(rdc->entlen <= rdc->buflen); 4270 rdc->error = 0; 4271 4272 return; 4273 4274 err: 4275 kmem_free(rdc->entries, rdc->buflen); 4276 rdc->entries = NULL; 4277 rdc->error = error; 4278 } 4279 4280 #ifdef DEBUG 4281 static int nfs3_bio_do_stop = 0; 4282 #endif 4283 4284 static int 4285 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr) 4286 { 4287 rnode_t *rp = VTOR(bp->b_vp); 4288 int count; 4289 int error; 4290 cred_t *cred; 4291 offset_t offset; 4292 4293 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 4294 offset = ldbtob(bp->b_lblkno); 4295 4296 DTRACE_IO1(start, struct buf *, bp); 4297 4298 if (bp->b_flags & B_READ) { 4299 mutex_enter(&rp->r_statelock); 4300 if (rp->r_cred != NULL) { 4301 cred = rp->r_cred; 4302 crhold(cred); 4303 } else { 4304 rp->r_cred = cr; 4305 crhold(cr); 4306 cred = cr; 4307 crhold(cred); 4308 } 4309 mutex_exit(&rp->r_statelock); 4310 read_again: 4311 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr, 4312 offset, bp->b_bcount, &bp->b_resid, cred); 4313 crfree(cred); 4314 if (!error) { 4315 if (bp->b_resid) { 4316 /* 4317 * Didn't get it all because we hit EOF, 4318 * zero all the memory beyond the EOF. 4319 */ 4320 /* bzero(rdaddr + */ 4321 bzero(bp->b_un.b_addr + 4322 bp->b_bcount - bp->b_resid, bp->b_resid); 4323 } 4324 mutex_enter(&rp->r_statelock); 4325 if (bp->b_resid == bp->b_bcount && 4326 offset >= rp->r_size) { 4327 /* 4328 * We didn't read anything at all as we are 4329 * past EOF. Return an error indicator back 4330 * but don't destroy the pages (yet). 4331 */ 4332 error = NFS_EOF; 4333 } 4334 mutex_exit(&rp->r_statelock); 4335 } else if (error == EACCES) { 4336 mutex_enter(&rp->r_statelock); 4337 if (cred != cr) { 4338 if (rp->r_cred != NULL) 4339 crfree(rp->r_cred); 4340 rp->r_cred = cr; 4341 crhold(cr); 4342 cred = cr; 4343 crhold(cred); 4344 mutex_exit(&rp->r_statelock); 4345 goto read_again; 4346 } 4347 mutex_exit(&rp->r_statelock); 4348 } 4349 } else { 4350 if (!(rp->r_flags & RSTALE)) { 4351 mutex_enter(&rp->r_statelock); 4352 if (rp->r_cred != NULL) { 4353 cred = rp->r_cred; 4354 crhold(cred); 4355 } else { 4356 rp->r_cred = cr; 4357 crhold(cr); 4358 cred = cr; 4359 crhold(cred); 4360 } 4361 mutex_exit(&rp->r_statelock); 4362 write_again: 4363 mutex_enter(&rp->r_statelock); 4364 count = MIN(bp->b_bcount, rp->r_size - offset); 4365 mutex_exit(&rp->r_statelock); 4366 if (count < 0) 4367 cmn_err(CE_PANIC, "nfs3_bio: write count < 0"); 4368 #ifdef DEBUG 4369 if (count == 0) { 4370 zcmn_err(getzoneid(), CE_WARN, 4371 "nfs3_bio: zero length write at %lld", 4372 offset); 4373 nfs_printfhandle(&rp->r_fh); 4374 if (nfs3_bio_do_stop) 4375 debug_enter("nfs3_bio"); 4376 } 4377 #endif 4378 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset, 4379 count, cred, stab_comm); 4380 if (error == EACCES) { 4381 mutex_enter(&rp->r_statelock); 4382 if (cred != cr) { 4383 if (rp->r_cred != NULL) 4384 crfree(rp->r_cred); 4385 rp->r_cred = cr; 4386 crhold(cr); 4387 crfree(cred); 4388 cred = cr; 4389 crhold(cred); 4390 mutex_exit(&rp->r_statelock); 4391 goto write_again; 4392 } 4393 mutex_exit(&rp->r_statelock); 4394 } 4395 bp->b_error = error; 4396 if (error && error != EINTR) { 4397 /* 4398 * Don't print EDQUOT errors on the console. 4399 * Don't print asynchronous EACCES errors. 4400 * Don't print EFBIG errors. 4401 * Print all other write errors. 4402 */ 4403 if (error != EDQUOT && error != EFBIG && 4404 (error != EACCES || 4405 !(bp->b_flags & B_ASYNC))) 4406 nfs_write_error(bp->b_vp, error, cred); 4407 /* 4408 * Update r_error and r_flags as appropriate. 4409 * If the error was ESTALE, then mark the 4410 * rnode as not being writeable and save 4411 * the error status. Otherwise, save any 4412 * errors which occur from asynchronous 4413 * page invalidations. Any errors occurring 4414 * from other operations should be saved 4415 * by the caller. 4416 */ 4417 mutex_enter(&rp->r_statelock); 4418 if (error == ESTALE) { 4419 rp->r_flags |= RSTALE; 4420 if (!rp->r_error) 4421 rp->r_error = error; 4422 } else if (!rp->r_error && 4423 (bp->b_flags & 4424 (B_INVAL|B_FORCE|B_ASYNC)) == 4425 (B_INVAL|B_FORCE|B_ASYNC)) { 4426 rp->r_error = error; 4427 } 4428 mutex_exit(&rp->r_statelock); 4429 } 4430 crfree(cred); 4431 } else { 4432 error = rp->r_error; 4433 /* 4434 * A close may have cleared r_error, if so, 4435 * propagate ESTALE error return properly 4436 */ 4437 if (error == 0) 4438 error = ESTALE; 4439 } 4440 } 4441 4442 if (error != 0 && error != NFS_EOF) 4443 bp->b_flags |= B_ERROR; 4444 4445 DTRACE_IO1(done, struct buf *, bp); 4446 4447 return (error); 4448 } 4449 4450 /* ARGSUSED */ 4451 static int 4452 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4453 { 4454 rnode_t *rp; 4455 4456 if (nfs_zone() != VTOMI(vp)->mi_zone) 4457 return (EIO); 4458 rp = VTOR(vp); 4459 4460 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) { 4461 fidp->fid_len = rp->r_fh.fh_len; 4462 return (ENOSPC); 4463 } 4464 fidp->fid_len = rp->r_fh.fh_len; 4465 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len); 4466 return (0); 4467 } 4468 4469 /* ARGSUSED2 */ 4470 static int 4471 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4472 { 4473 rnode_t *rp = VTOR(vp); 4474 4475 if (!write_lock) { 4476 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4477 return (V_WRITELOCK_FALSE); 4478 } 4479 4480 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 4481 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4482 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 4483 return (V_WRITELOCK_FALSE); 4484 nfs_rw_exit(&rp->r_rwlock); 4485 } 4486 4487 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 4488 return (V_WRITELOCK_TRUE); 4489 } 4490 4491 /* ARGSUSED */ 4492 static void 4493 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4494 { 4495 rnode_t *rp = VTOR(vp); 4496 4497 nfs_rw_exit(&rp->r_rwlock); 4498 } 4499 4500 /* ARGSUSED */ 4501 static int 4502 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 4503 { 4504 4505 /* 4506 * Because we stuff the readdir cookie into the offset field 4507 * someone may attempt to do an lseek with the cookie which 4508 * we want to succeed. 4509 */ 4510 if (vp->v_type == VDIR) 4511 return (0); 4512 if (*noffp < 0) 4513 return (EINVAL); 4514 return (0); 4515 } 4516 4517 /* 4518 * number of nfs3_bsize blocks to read ahead. 4519 */ 4520 static int nfs3_nra = 4; 4521 4522 #ifdef DEBUG 4523 static int nfs3_lostpage = 0; /* number of times we lost original page */ 4524 #endif 4525 4526 /* 4527 * Return all the pages from [off..off+len) in file 4528 */ 4529 /* ARGSUSED */ 4530 static int 4531 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4532 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4533 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4534 { 4535 rnode_t *rp; 4536 int error; 4537 mntinfo_t *mi; 4538 4539 if (vp->v_flag & VNOMAP) 4540 return (ENOSYS); 4541 4542 if (nfs_zone() != VTOMI(vp)->mi_zone) 4543 return (EIO); 4544 if (protp != NULL) 4545 *protp = PROT_ALL; 4546 4547 /* 4548 * Now valididate that the caches are up to date. 4549 */ 4550 error = nfs3_validate_caches(vp, cr); 4551 if (error) 4552 return (error); 4553 4554 rp = VTOR(vp); 4555 mi = VTOMI(vp); 4556 retry: 4557 mutex_enter(&rp->r_statelock); 4558 4559 /* 4560 * Don't create dirty pages faster than they 4561 * can be cleaned so that the system doesn't 4562 * get imbalanced. If the async queue is 4563 * maxed out, then wait for it to drain before 4564 * creating more dirty pages. Also, wait for 4565 * any threads doing pagewalks in the vop_getattr 4566 * entry points so that they don't block for 4567 * long periods. 4568 */ 4569 if (rw == S_CREATE) { 4570 while ((mi->mi_max_threads != 0 && 4571 rp->r_awcount > 2 * mi->mi_max_threads) || 4572 rp->r_gcount > 0) 4573 cv_wait(&rp->r_cv, &rp->r_statelock); 4574 } 4575 4576 /* 4577 * If we are getting called as a side effect of an nfs_write() 4578 * operation the local file size might not be extended yet. 4579 * In this case we want to be able to return pages of zeroes. 4580 */ 4581 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 4582 mutex_exit(&rp->r_statelock); 4583 return (EFAULT); /* beyond EOF */ 4584 } 4585 4586 mutex_exit(&rp->r_statelock); 4587 4588 if (len <= PAGESIZE) { 4589 error = nfs3_getapage(vp, off, len, protp, pl, plsz, 4590 seg, addr, rw, cr); 4591 } else { 4592 error = pvn_getpages(nfs3_getapage, vp, off, len, protp, 4593 pl, plsz, seg, addr, rw, cr); 4594 } 4595 4596 switch (error) { 4597 case NFS_EOF: 4598 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 4599 goto retry; 4600 case ESTALE: 4601 PURGE_STALE_FH(error, vp, cr); 4602 } 4603 4604 return (error); 4605 } 4606 4607 /* 4608 * Called from pvn_getpages or nfs3_getpage to get a particular page. 4609 */ 4610 /* ARGSUSED */ 4611 static int 4612 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 4613 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4614 enum seg_rw rw, cred_t *cr) 4615 { 4616 rnode_t *rp; 4617 uint_t bsize; 4618 struct buf *bp; 4619 page_t *pp; 4620 u_offset_t lbn; 4621 u_offset_t io_off; 4622 u_offset_t blkoff; 4623 u_offset_t rablkoff; 4624 size_t io_len; 4625 uint_t blksize; 4626 int error; 4627 int readahead; 4628 int readahead_issued = 0; 4629 int ra_window; /* readahead window */ 4630 page_t *pagefound; 4631 page_t *savepp; 4632 4633 if (nfs_zone() != VTOMI(vp)->mi_zone) 4634 return (EIO); 4635 rp = VTOR(vp); 4636 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4637 4638 reread: 4639 bp = NULL; 4640 pp = NULL; 4641 pagefound = NULL; 4642 4643 if (pl != NULL) 4644 pl[0] = NULL; 4645 4646 error = 0; 4647 lbn = off / bsize; 4648 blkoff = lbn * bsize; 4649 4650 /* 4651 * Queueing up the readahead before doing the synchronous read 4652 * results in a significant increase in read throughput because 4653 * of the increased parallelism between the async threads and 4654 * the process context. 4655 */ 4656 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 4657 rw != S_CREATE && 4658 !(vp->v_flag & VNOCACHE)) { 4659 mutex_enter(&rp->r_statelock); 4660 4661 /* 4662 * Calculate the number of readaheads to do. 4663 * a) No readaheads at offset = 0. 4664 * b) Do maximum(nfs3_nra) readaheads when the readahead 4665 * window is closed. 4666 * c) Do readaheads between 1 to (nfs3_nra - 1) depending 4667 * upon how far the readahead window is open or close. 4668 * d) No readaheads if rp->r_nextr is not within the scope 4669 * of the readahead window (random i/o). 4670 */ 4671 4672 if (off == 0) 4673 readahead = 0; 4674 else if (blkoff == rp->r_nextr) 4675 readahead = nfs3_nra; 4676 else if (rp->r_nextr > blkoff && 4677 ((ra_window = (rp->r_nextr - blkoff) / bsize) 4678 <= (nfs3_nra - 1))) 4679 readahead = nfs3_nra - ra_window; 4680 else 4681 readahead = 0; 4682 4683 rablkoff = rp->r_nextr; 4684 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 4685 mutex_exit(&rp->r_statelock); 4686 if (nfs_async_readahead(vp, rablkoff + bsize, 4687 addr + (rablkoff + bsize - off), seg, cr, 4688 nfs3_readahead) < 0) { 4689 mutex_enter(&rp->r_statelock); 4690 break; 4691 } 4692 readahead--; 4693 rablkoff += bsize; 4694 /* 4695 * Indicate that we did a readahead so 4696 * readahead offset is not updated 4697 * by the synchronous read below. 4698 */ 4699 readahead_issued = 1; 4700 mutex_enter(&rp->r_statelock); 4701 /* 4702 * set readahead offset to 4703 * offset of last async readahead 4704 * request. 4705 */ 4706 rp->r_nextr = rablkoff; 4707 } 4708 mutex_exit(&rp->r_statelock); 4709 } 4710 4711 again: 4712 if ((pagefound = page_exists(vp, off)) == NULL) { 4713 if (pl == NULL) { 4714 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 4715 nfs3_readahead); 4716 } else if (rw == S_CREATE) { 4717 /* 4718 * Block for this page is not allocated, or the offset 4719 * is beyond the current allocation size, or we're 4720 * allocating a swap slot and the page was not found, 4721 * so allocate it and return a zero page. 4722 */ 4723 if ((pp = page_create_va(vp, off, 4724 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 4725 cmn_err(CE_PANIC, "nfs3_getapage: page_create"); 4726 io_len = PAGESIZE; 4727 mutex_enter(&rp->r_statelock); 4728 rp->r_nextr = off + PAGESIZE; 4729 mutex_exit(&rp->r_statelock); 4730 } else { 4731 /* 4732 * Need to go to server to get a BLOCK, exception to 4733 * that being while reading at offset = 0 or doing 4734 * random i/o, in that case read only a PAGE. 4735 */ 4736 mutex_enter(&rp->r_statelock); 4737 if (blkoff < rp->r_size && 4738 blkoff + bsize >= rp->r_size) { 4739 /* 4740 * If only a block or less is left in 4741 * the file, read all that is remaining. 4742 */ 4743 if (rp->r_size <= off) { 4744 /* 4745 * Trying to access beyond EOF, 4746 * set up to get at least one page. 4747 */ 4748 blksize = off + PAGESIZE - blkoff; 4749 } else 4750 blksize = rp->r_size - blkoff; 4751 } else if ((off == 0) || 4752 (off != rp->r_nextr && !readahead_issued)) { 4753 blksize = PAGESIZE; 4754 blkoff = off; /* block = page here */ 4755 } else 4756 blksize = bsize; 4757 mutex_exit(&rp->r_statelock); 4758 4759 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4760 &io_len, blkoff, blksize, 0); 4761 4762 /* 4763 * Some other thread has entered the page, 4764 * so just use it. 4765 */ 4766 if (pp == NULL) 4767 goto again; 4768 4769 /* 4770 * Now round the request size up to page boundaries. 4771 * This ensures that the entire page will be 4772 * initialized to zeroes if EOF is encountered. 4773 */ 4774 io_len = ptob(btopr(io_len)); 4775 4776 bp = pageio_setup(pp, io_len, vp, B_READ); 4777 ASSERT(bp != NULL); 4778 4779 /* 4780 * pageio_setup should have set b_addr to 0. This 4781 * is correct since we want to do I/O on a page 4782 * boundary. bp_mapin will use this addr to calculate 4783 * an offset, and then set b_addr to the kernel virtual 4784 * address it allocated for us. 4785 */ 4786 ASSERT(bp->b_un.b_addr == 0); 4787 4788 bp->b_edev = 0; 4789 bp->b_dev = 0; 4790 bp->b_lblkno = lbtodb(io_off); 4791 bp->b_file = vp; 4792 bp->b_offset = (offset_t)off; 4793 bp_mapin(bp); 4794 4795 /* 4796 * If doing a write beyond what we believe is EOF, 4797 * don't bother trying to read the pages from the 4798 * server, we'll just zero the pages here. We 4799 * don't check that the rw flag is S_WRITE here 4800 * because some implementations may attempt a 4801 * read access to the buffer before copying data. 4802 */ 4803 mutex_enter(&rp->r_statelock); 4804 if (io_off >= rp->r_size && seg == segkmap) { 4805 mutex_exit(&rp->r_statelock); 4806 bzero(bp->b_un.b_addr, io_len); 4807 } else { 4808 mutex_exit(&rp->r_statelock); 4809 error = nfs3_bio(bp, NULL, cr); 4810 } 4811 4812 /* 4813 * Unmap the buffer before freeing it. 4814 */ 4815 bp_mapout(bp); 4816 pageio_done(bp); 4817 4818 savepp = pp; 4819 do { 4820 pp->p_fsdata = C_NOCOMMIT; 4821 } while ((pp = pp->p_next) != savepp); 4822 4823 if (error == NFS_EOF) { 4824 /* 4825 * If doing a write system call just return 4826 * zeroed pages, else user tried to get pages 4827 * beyond EOF, return error. We don't check 4828 * that the rw flag is S_WRITE here because 4829 * some implementations may attempt a read 4830 * access to the buffer before copying data. 4831 */ 4832 if (seg == segkmap) 4833 error = 0; 4834 else 4835 error = EFAULT; 4836 } 4837 4838 if (!readahead_issued && !error) { 4839 mutex_enter(&rp->r_statelock); 4840 rp->r_nextr = io_off + io_len; 4841 mutex_exit(&rp->r_statelock); 4842 } 4843 } 4844 } 4845 4846 out: 4847 if (pl == NULL) 4848 return (error); 4849 4850 if (error) { 4851 if (pp != NULL) 4852 pvn_read_done(pp, B_ERROR); 4853 return (error); 4854 } 4855 4856 if (pagefound) { 4857 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 4858 4859 /* 4860 * Page exists in the cache, acquire the appropriate lock. 4861 * If this fails, start all over again. 4862 */ 4863 if ((pp = page_lookup(vp, off, se)) == NULL) { 4864 #ifdef DEBUG 4865 nfs3_lostpage++; 4866 #endif 4867 goto reread; 4868 } 4869 pl[0] = pp; 4870 pl[1] = NULL; 4871 return (0); 4872 } 4873 4874 if (pp != NULL) 4875 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4876 4877 return (error); 4878 } 4879 4880 static void 4881 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 4882 cred_t *cr) 4883 { 4884 int error; 4885 page_t *pp; 4886 u_offset_t io_off; 4887 size_t io_len; 4888 struct buf *bp; 4889 uint_t bsize, blksize; 4890 rnode_t *rp = VTOR(vp); 4891 page_t *savepp; 4892 4893 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4894 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4895 4896 mutex_enter(&rp->r_statelock); 4897 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 4898 /* 4899 * If less than a block left in file read less 4900 * than a block. 4901 */ 4902 blksize = rp->r_size - blkoff; 4903 } else 4904 blksize = bsize; 4905 mutex_exit(&rp->r_statelock); 4906 4907 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 4908 &io_off, &io_len, blkoff, blksize, 1); 4909 /* 4910 * The isra flag passed to the kluster function is 1, we may have 4911 * gotten a return value of NULL for a variety of reasons (# of free 4912 * pages < minfree, someone entered the page on the vnode etc). In all 4913 * cases, we want to punt on the readahead. 4914 */ 4915 if (pp == NULL) 4916 return; 4917 4918 /* 4919 * Now round the request size up to page boundaries. 4920 * This ensures that the entire page will be 4921 * initialized to zeroes if EOF is encountered. 4922 */ 4923 io_len = ptob(btopr(io_len)); 4924 4925 bp = pageio_setup(pp, io_len, vp, B_READ); 4926 ASSERT(bp != NULL); 4927 4928 /* 4929 * pageio_setup should have set b_addr to 0. This is correct since 4930 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4931 * to calculate an offset, and then set b_addr to the kernel virtual 4932 * address it allocated for us. 4933 */ 4934 ASSERT(bp->b_un.b_addr == 0); 4935 4936 bp->b_edev = 0; 4937 bp->b_dev = 0; 4938 bp->b_lblkno = lbtodb(io_off); 4939 bp->b_file = vp; 4940 bp->b_offset = (offset_t)blkoff; 4941 bp_mapin(bp); 4942 4943 /* 4944 * If doing a write beyond what we believe is EOF, don't bother trying 4945 * to read the pages from the server, we'll just zero the pages here. 4946 * We don't check that the rw flag is S_WRITE here because some 4947 * implementations may attempt a read access to the buffer before 4948 * copying data. 4949 */ 4950 mutex_enter(&rp->r_statelock); 4951 if (io_off >= rp->r_size && seg == segkmap) { 4952 mutex_exit(&rp->r_statelock); 4953 bzero(bp->b_un.b_addr, io_len); 4954 error = 0; 4955 } else { 4956 mutex_exit(&rp->r_statelock); 4957 error = nfs3_bio(bp, NULL, cr); 4958 if (error == NFS_EOF) 4959 error = 0; 4960 } 4961 4962 /* 4963 * Unmap the buffer before freeing it. 4964 */ 4965 bp_mapout(bp); 4966 pageio_done(bp); 4967 4968 savepp = pp; 4969 do { 4970 pp->p_fsdata = C_NOCOMMIT; 4971 } while ((pp = pp->p_next) != savepp); 4972 4973 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4974 4975 /* 4976 * In case of error set readahead offset 4977 * to the lowest offset. 4978 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4979 */ 4980 if (error && rp->r_nextr > io_off) { 4981 mutex_enter(&rp->r_statelock); 4982 if (rp->r_nextr > io_off) 4983 rp->r_nextr = io_off; 4984 mutex_exit(&rp->r_statelock); 4985 } 4986 } 4987 4988 /* 4989 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4990 * If len == 0, do from off to EOF. 4991 * 4992 * The normal cases should be len == 0 && off == 0 (entire vp list), 4993 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4994 * (from pageout). 4995 */ 4996 /* ARGSUSED */ 4997 static int 4998 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4999 caller_context_t *ct) 5000 { 5001 int error; 5002 rnode_t *rp; 5003 5004 ASSERT(cr != NULL); 5005 5006 /* 5007 * XXX - Why should this check be made here? 5008 */ 5009 if (vp->v_flag & VNOMAP) 5010 return (ENOSYS); 5011 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 5012 return (0); 5013 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5014 return (EIO); 5015 5016 rp = VTOR(vp); 5017 mutex_enter(&rp->r_statelock); 5018 rp->r_count++; 5019 mutex_exit(&rp->r_statelock); 5020 error = nfs_putpages(vp, off, len, flags, cr); 5021 mutex_enter(&rp->r_statelock); 5022 rp->r_count--; 5023 cv_broadcast(&rp->r_cv); 5024 mutex_exit(&rp->r_statelock); 5025 5026 return (error); 5027 } 5028 5029 /* 5030 * Write out a single page, possibly klustering adjacent dirty pages. 5031 */ 5032 int 5033 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 5034 int flags, cred_t *cr) 5035 { 5036 u_offset_t io_off; 5037 u_offset_t lbn_off; 5038 u_offset_t lbn; 5039 size_t io_len; 5040 uint_t bsize; 5041 int error; 5042 rnode_t *rp; 5043 5044 ASSERT(!vn_is_readonly(vp)); 5045 ASSERT(pp != NULL); 5046 ASSERT(cr != NULL); 5047 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 5048 5049 rp = VTOR(vp); 5050 ASSERT(rp->r_count > 0); 5051 5052 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 5053 lbn = pp->p_offset / bsize; 5054 lbn_off = lbn * bsize; 5055 5056 /* 5057 * Find a kluster that fits in one block, or in 5058 * one page if pages are bigger than blocks. If 5059 * there is less file space allocated than a whole 5060 * page, we'll shorten the i/o request below. 5061 */ 5062 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 5063 roundup(bsize, PAGESIZE), flags); 5064 5065 /* 5066 * pvn_write_kluster shouldn't have returned a page with offset 5067 * behind the original page we were given. Verify that. 5068 */ 5069 ASSERT((pp->p_offset / bsize) >= lbn); 5070 5071 /* 5072 * Now pp will have the list of kept dirty pages marked for 5073 * write back. It will also handle invalidation and freeing 5074 * of pages that are not dirty. Check for page length rounding 5075 * problems. 5076 */ 5077 if (io_off + io_len > lbn_off + bsize) { 5078 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 5079 io_len = lbn_off + bsize - io_off; 5080 } 5081 /* 5082 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5083 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 5084 * When RMODINPROGRESS is set it indicates that a uiomove() is in 5085 * progress and the r_size has not been made consistent with the 5086 * new size of the file. When the uiomove() completes the r_size is 5087 * updated and the RMODINPROGRESS flag is cleared. 5088 * 5089 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5090 * consistent value of r_size. Without this handshaking, it is 5091 * possible that nfs(3)_bio() picks up the old value of r_size 5092 * before the uiomove() in writerp() completes. This will result 5093 * in the write through nfs(3)_bio() being dropped. 5094 * 5095 * More precisely, there is a window between the time the uiomove() 5096 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 5097 * operation intervenes in this window, the page will be picked up, 5098 * because it is dirty (it will be unlocked, unless it was 5099 * pagecreate'd). When the page is picked up as dirty, the dirty 5100 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 5101 * checked. This will still be the old size. Therefore the page will 5102 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 5103 * the page will be found to be clean and the write will be dropped. 5104 */ 5105 if (rp->r_flags & RMODINPROGRESS) { 5106 mutex_enter(&rp->r_statelock); 5107 if ((rp->r_flags & RMODINPROGRESS) && 5108 rp->r_modaddr + MAXBSIZE > io_off && 5109 rp->r_modaddr < io_off + io_len) { 5110 page_t *plist; 5111 /* 5112 * A write is in progress for this region of the file. 5113 * If we did not detect RMODINPROGRESS here then this 5114 * path through nfs_putapage() would eventually go to 5115 * nfs(3)_bio() and may not write out all of the data 5116 * in the pages. We end up losing data. So we decide 5117 * to set the modified bit on each page in the page 5118 * list and mark the rnode with RDIRTY. This write 5119 * will be restarted at some later time. 5120 */ 5121 plist = pp; 5122 while (plist != NULL) { 5123 pp = plist; 5124 page_sub(&plist, pp); 5125 hat_setmod(pp); 5126 page_io_unlock(pp); 5127 page_unlock(pp); 5128 } 5129 rp->r_flags |= RDIRTY; 5130 mutex_exit(&rp->r_statelock); 5131 if (offp) 5132 *offp = io_off; 5133 if (lenp) 5134 *lenp = io_len; 5135 return (0); 5136 } 5137 mutex_exit(&rp->r_statelock); 5138 } 5139 5140 if (flags & B_ASYNC) { 5141 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 5142 nfs3_sync_putapage); 5143 } else 5144 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr); 5145 5146 if (offp) 5147 *offp = io_off; 5148 if (lenp) 5149 *lenp = io_len; 5150 return (error); 5151 } 5152 5153 static int 5154 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5155 int flags, cred_t *cr) 5156 { 5157 int error; 5158 rnode_t *rp; 5159 5160 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5161 5162 flags |= B_WRITE; 5163 5164 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5165 5166 rp = VTOR(vp); 5167 5168 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 5169 error == EACCES) && 5170 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 5171 if (!(rp->r_flags & ROUTOFSPACE)) { 5172 mutex_enter(&rp->r_statelock); 5173 rp->r_flags |= ROUTOFSPACE; 5174 mutex_exit(&rp->r_statelock); 5175 } 5176 flags |= B_ERROR; 5177 pvn_write_done(pp, flags); 5178 /* 5179 * If this was not an async thread, then try again to 5180 * write out the pages, but this time, also destroy 5181 * them whether or not the write is successful. This 5182 * will prevent memory from filling up with these 5183 * pages and destroying them is the only alternative 5184 * if they can't be written out. 5185 * 5186 * Don't do this if this is an async thread because 5187 * when the pages are unlocked in pvn_write_done, 5188 * some other thread could have come along, locked 5189 * them, and queued for an async thread. It would be 5190 * possible for all of the async threads to be tied 5191 * up waiting to lock the pages again and they would 5192 * all already be locked and waiting for an async 5193 * thread to handle them. Deadlock. 5194 */ 5195 if (!(flags & B_ASYNC)) { 5196 error = nfs3_putpage(vp, io_off, io_len, 5197 B_INVAL | B_FORCE, cr, NULL); 5198 } 5199 } else { 5200 if (error) 5201 flags |= B_ERROR; 5202 else if (rp->r_flags & ROUTOFSPACE) { 5203 mutex_enter(&rp->r_statelock); 5204 rp->r_flags &= ~ROUTOFSPACE; 5205 mutex_exit(&rp->r_statelock); 5206 } 5207 pvn_write_done(pp, flags); 5208 if (freemem < desfree) 5209 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr); 5210 } 5211 5212 return (error); 5213 } 5214 5215 /* ARGSUSED */ 5216 static int 5217 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5218 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5219 cred_t *cr, caller_context_t *ct) 5220 { 5221 struct segvn_crargs vn_a; 5222 int error; 5223 rnode_t *rp; 5224 struct vattr va; 5225 5226 if (nfs_zone() != VTOMI(vp)->mi_zone) 5227 return (EIO); 5228 5229 if (vp->v_flag & VNOMAP) 5230 return (ENOSYS); 5231 5232 if (off < 0 || off + len < 0) 5233 return (ENXIO); 5234 5235 if (vp->v_type != VREG) 5236 return (ENODEV); 5237 5238 /* 5239 * If there is cached data and if close-to-open consistency 5240 * checking is not turned off and if the file system is not 5241 * mounted readonly, then force an over the wire getattr. 5242 * Otherwise, just invoke nfs3getattr to get a copy of the 5243 * attributes. The attribute cache will be used unless it 5244 * is timed out and if it is, then an over the wire getattr 5245 * will be issued. 5246 */ 5247 va.va_mask = AT_ALL; 5248 if (vn_has_cached_data(vp) && 5249 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 5250 error = nfs3_getattr_otw(vp, &va, cr); 5251 else 5252 error = nfs3getattr(vp, &va, cr); 5253 if (error) 5254 return (error); 5255 5256 /* 5257 * Check to see if the vnode is currently marked as not cachable. 5258 * This means portions of the file are locked (through VOP_FRLOCK). 5259 * In this case the map request must be refused. We use 5260 * rp->r_lkserlock to avoid a race with concurrent lock requests. 5261 */ 5262 rp = VTOR(vp); 5263 5264 /* 5265 * Atomically increment r_inmap after acquiring r_rwlock. The 5266 * idea here is to acquire r_rwlock to block read/write and 5267 * not to protect r_inmap. r_inmap will inform nfs3_read/write() 5268 * that we are in nfs3_map(). Now, r_rwlock is acquired in order 5269 * and we can prevent the deadlock that would have occurred 5270 * when nfs3_addmap() would have acquired it out of order. 5271 * 5272 * Since we are not protecting r_inmap by any lock, we do not 5273 * hold any lock when we decrement it. We atomically decrement 5274 * r_inmap after we release r_lkserlock. 5275 */ 5276 5277 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 5278 return (EINTR); 5279 atomic_add_int(&rp->r_inmap, 1); 5280 nfs_rw_exit(&rp->r_rwlock); 5281 5282 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) { 5283 atomic_add_int(&rp->r_inmap, -1); 5284 return (EINTR); 5285 } 5286 5287 if (vp->v_flag & VNOCACHE) { 5288 error = EAGAIN; 5289 goto done; 5290 } 5291 5292 /* 5293 * Don't allow concurrent locks and mapping if mandatory locking is 5294 * enabled. 5295 */ 5296 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 5297 MANDLOCK(vp, va.va_mode)) { 5298 error = EAGAIN; 5299 goto done; 5300 } 5301 5302 as_rangelock(as); 5303 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5304 if (error != 0) { 5305 as_rangeunlock(as); 5306 goto done; 5307 } 5308 5309 vn_a.vp = vp; 5310 vn_a.offset = off; 5311 vn_a.type = (flags & MAP_TYPE); 5312 vn_a.prot = (uchar_t)prot; 5313 vn_a.maxprot = (uchar_t)maxprot; 5314 vn_a.flags = (flags & ~MAP_TYPE); 5315 vn_a.cred = cr; 5316 vn_a.amp = NULL; 5317 vn_a.szc = 0; 5318 vn_a.lgrp_mem_policy_flags = 0; 5319 5320 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5321 as_rangeunlock(as); 5322 5323 done: 5324 nfs_rw_exit(&rp->r_lkserlock); 5325 atomic_add_int(&rp->r_inmap, -1); 5326 return (error); 5327 } 5328 5329 /* ARGSUSED */ 5330 static int 5331 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5332 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5333 cred_t *cr, caller_context_t *ct) 5334 { 5335 rnode_t *rp; 5336 5337 if (vp->v_flag & VNOMAP) 5338 return (ENOSYS); 5339 if (nfs_zone() != VTOMI(vp)->mi_zone) 5340 return (EIO); 5341 5342 rp = VTOR(vp); 5343 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 5344 5345 return (0); 5346 } 5347 5348 /* ARGSUSED */ 5349 static int 5350 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5351 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 5352 caller_context_t *ct) 5353 { 5354 netobj lm_fh3; 5355 int rc; 5356 u_offset_t start, end; 5357 rnode_t *rp; 5358 int error = 0, intr = INTR(vp); 5359 5360 if (nfs_zone() != VTOMI(vp)->mi_zone) 5361 return (EIO); 5362 /* check for valid cmd parameter */ 5363 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 5364 return (EINVAL); 5365 5366 /* Verify l_type. */ 5367 switch (bfp->l_type) { 5368 case F_RDLCK: 5369 if (cmd != F_GETLK && !(flag & FREAD)) 5370 return (EBADF); 5371 break; 5372 case F_WRLCK: 5373 if (cmd != F_GETLK && !(flag & FWRITE)) 5374 return (EBADF); 5375 break; 5376 case F_UNLCK: 5377 intr = 0; 5378 break; 5379 5380 default: 5381 return (EINVAL); 5382 } 5383 5384 /* check the validity of the lock range */ 5385 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 5386 return (rc); 5387 if (rc = flk_check_lock_data(start, end, MAXEND)) 5388 return (rc); 5389 5390 /* 5391 * If the filesystem is mounted using local locking, pass the 5392 * request off to the local locking code. 5393 */ 5394 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 5395 if (cmd == F_SETLK || cmd == F_SETLKW) { 5396 /* 5397 * For complete safety, we should be holding 5398 * r_lkserlock. However, we can't call 5399 * lm_safelock and then fs_frlock while 5400 * holding r_lkserlock, so just invoke 5401 * lm_safelock and expect that this will 5402 * catch enough of the cases. 5403 */ 5404 if (!lm_safelock(vp, bfp, cr)) 5405 return (EAGAIN); 5406 } 5407 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 5408 } 5409 5410 rp = VTOR(vp); 5411 5412 /* 5413 * Check whether the given lock request can proceed, given the 5414 * current file mappings. 5415 */ 5416 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 5417 return (EINTR); 5418 if (cmd == F_SETLK || cmd == F_SETLKW) { 5419 if (!lm_safelock(vp, bfp, cr)) { 5420 rc = EAGAIN; 5421 goto done; 5422 } 5423 } 5424 5425 /* 5426 * Flush the cache after waiting for async I/O to finish. For new 5427 * locks, this is so that the process gets the latest bits from the 5428 * server. For unlocks, this is so that other clients see the 5429 * latest bits once the file has been unlocked. If currently dirty 5430 * pages can't be flushed, then don't allow a lock to be set. But 5431 * allow unlocks to succeed, to avoid having orphan locks on the 5432 * server. 5433 */ 5434 if (cmd != F_GETLK) { 5435 mutex_enter(&rp->r_statelock); 5436 while (rp->r_count > 0) { 5437 if (intr) { 5438 klwp_t *lwp = ttolwp(curthread); 5439 5440 if (lwp != NULL) 5441 lwp->lwp_nostop++; 5442 if (cv_wait_sig(&rp->r_cv, 5443 &rp->r_statelock) == 0) { 5444 if (lwp != NULL) 5445 lwp->lwp_nostop--; 5446 rc = EINTR; 5447 break; 5448 } 5449 if (lwp != NULL) 5450 lwp->lwp_nostop--; 5451 } else 5452 cv_wait(&rp->r_cv, &rp->r_statelock); 5453 } 5454 mutex_exit(&rp->r_statelock); 5455 if (rc != 0) 5456 goto done; 5457 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 5458 if (error) { 5459 if (error == ENOSPC || error == EDQUOT) { 5460 mutex_enter(&rp->r_statelock); 5461 if (!rp->r_error) 5462 rp->r_error = error; 5463 mutex_exit(&rp->r_statelock); 5464 } 5465 if (bfp->l_type != F_UNLCK) { 5466 rc = ENOLCK; 5467 goto done; 5468 } 5469 } 5470 } 5471 5472 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 5473 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 5474 5475 /* 5476 * Call the lock manager to do the real work of contacting 5477 * the server and obtaining the lock. 5478 */ 5479 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp); 5480 5481 if (rc == 0) 5482 nfs_lockcompletion(vp, cmd); 5483 5484 done: 5485 nfs_rw_exit(&rp->r_lkserlock); 5486 return (rc); 5487 } 5488 5489 /* 5490 * Free storage space associated with the specified vnode. The portion 5491 * to be freed is specified by bfp->l_start and bfp->l_len (already 5492 * normalized to a "whence" of 0). 5493 * 5494 * This is an experimental facility whose continued existence is not 5495 * guaranteed. Currently, we only support the special case 5496 * of l_len == 0, meaning free to end of file. 5497 */ 5498 /* ARGSUSED */ 5499 static int 5500 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5501 offset_t offset, cred_t *cr, caller_context_t *ct) 5502 { 5503 int error; 5504 5505 ASSERT(vp->v_type == VREG); 5506 if (cmd != F_FREESP) 5507 return (EINVAL); 5508 if (nfs_zone() != VTOMI(vp)->mi_zone) 5509 return (EIO); 5510 5511 error = convoff(vp, bfp, 0, offset); 5512 if (!error) { 5513 ASSERT(bfp->l_start >= 0); 5514 if (bfp->l_len == 0) { 5515 struct vattr va; 5516 5517 /* 5518 * ftruncate should not change the ctime and 5519 * mtime if we truncate the file to its 5520 * previous size. 5521 */ 5522 va.va_mask = AT_SIZE; 5523 error = nfs3getattr(vp, &va, cr); 5524 if (error || va.va_size == bfp->l_start) 5525 return (error); 5526 va.va_mask = AT_SIZE; 5527 va.va_size = bfp->l_start; 5528 error = nfs3setattr(vp, &va, 0, cr); 5529 5530 if (error == 0 && bfp->l_start == 0) 5531 vnevent_truncate(vp, ct); 5532 } else 5533 error = EINVAL; 5534 } 5535 5536 return (error); 5537 } 5538 5539 /* ARGSUSED */ 5540 static int 5541 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 5542 { 5543 5544 return (EINVAL); 5545 } 5546 5547 /* 5548 * Setup and add an address space callback to do the work of the delmap call. 5549 * The callback will (and must be) deleted in the actual callback function. 5550 * 5551 * This is done in order to take care of the problem that we have with holding 5552 * the address space's a_lock for a long period of time (e.g. if the NFS server 5553 * is down). Callbacks will be executed in the address space code while the 5554 * a_lock is not held. Holding the address space's a_lock causes things such 5555 * as ps and fork to hang because they are trying to acquire this lock as well. 5556 */ 5557 /* ARGSUSED */ 5558 static int 5559 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5560 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5561 cred_t *cr, caller_context_t *ct) 5562 { 5563 int caller_found; 5564 int error; 5565 rnode_t *rp; 5566 nfs_delmap_args_t *dmapp; 5567 nfs_delmapcall_t *delmap_call; 5568 5569 if (vp->v_flag & VNOMAP) 5570 return (ENOSYS); 5571 /* 5572 * A process may not change zones if it has NFS pages mmap'ed 5573 * in, so we can't legitimately get here from the wrong zone. 5574 */ 5575 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5576 5577 rp = VTOR(vp); 5578 5579 /* 5580 * The way that the address space of this process deletes its mapping 5581 * of this file is via the following call chains: 5582 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5583 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5584 * 5585 * With the use of address space callbacks we are allowed to drop the 5586 * address space lock, a_lock, while executing the NFS operations that 5587 * need to go over the wire. Returning EAGAIN to the caller of this 5588 * function is what drives the execution of the callback that we add 5589 * below. The callback will be executed by the address space code 5590 * after dropping the a_lock. When the callback is finished, since 5591 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 5592 * is called again on the same segment to finish the rest of the work 5593 * that needs to happen during unmapping. 5594 * 5595 * This action of calling back into the segment driver causes 5596 * nfs3_delmap() to get called again, but since the callback was 5597 * already executed at this point, it already did the work and there 5598 * is nothing left for us to do. 5599 * 5600 * To Summarize: 5601 * - The first time nfs3_delmap is called by the current thread is when 5602 * we add the caller associated with this delmap to the delmap caller 5603 * list, add the callback, and return EAGAIN. 5604 * - The second time in this call chain when nfs3_delmap is called we 5605 * will find this caller in the delmap caller list and realize there 5606 * is no more work to do thus removing this caller from the list and 5607 * returning the error that was set in the callback execution. 5608 */ 5609 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 5610 if (caller_found) { 5611 /* 5612 * 'error' is from the actual delmap operations. To avoid 5613 * hangs, we need to handle the return of EAGAIN differently 5614 * since this is what drives the callback execution. 5615 * In this case, we don't want to return EAGAIN and do the 5616 * callback execution because there are none to execute. 5617 */ 5618 if (error == EAGAIN) 5619 return (0); 5620 else 5621 return (error); 5622 } 5623 5624 /* current caller was not in the list */ 5625 delmap_call = nfs_init_delmapcall(); 5626 5627 mutex_enter(&rp->r_statelock); 5628 list_insert_tail(&rp->r_indelmap, delmap_call); 5629 mutex_exit(&rp->r_statelock); 5630 5631 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 5632 5633 dmapp->vp = vp; 5634 dmapp->off = off; 5635 dmapp->addr = addr; 5636 dmapp->len = len; 5637 dmapp->prot = prot; 5638 dmapp->maxprot = maxprot; 5639 dmapp->flags = flags; 5640 dmapp->cr = cr; 5641 dmapp->caller = delmap_call; 5642 5643 error = as_add_callback(as, nfs3_delmap_callback, dmapp, 5644 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 5645 5646 return (error ? error : EAGAIN); 5647 } 5648 5649 /* 5650 * Remove some pages from an mmap'd vnode. Just update the 5651 * count of pages. If doing close-to-open, then flush and 5652 * commit all of the pages associated with this file. 5653 * Otherwise, start an asynchronous page flush to write out 5654 * any dirty pages. This will also associate a credential 5655 * with the rnode which can be used to write the pages. 5656 */ 5657 /* ARGSUSED */ 5658 static void 5659 nfs3_delmap_callback(struct as *as, void *arg, uint_t event) 5660 { 5661 int error; 5662 rnode_t *rp; 5663 mntinfo_t *mi; 5664 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 5665 5666 rp = VTOR(dmapp->vp); 5667 mi = VTOMI(dmapp->vp); 5668 5669 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 5670 ASSERT(rp->r_mapcnt >= 0); 5671 5672 /* 5673 * Initiate a page flush and potential commit if there are 5674 * pages, the file system was not mounted readonly, the segment 5675 * was mapped shared, and the pages themselves were writeable. 5676 */ 5677 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 5678 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 5679 mutex_enter(&rp->r_statelock); 5680 rp->r_flags |= RDIRTY; 5681 mutex_exit(&rp->r_statelock); 5682 /* 5683 * If this is a cross-zone access a sync putpage won't work, so 5684 * the best we can do is try an async putpage. That seems 5685 * better than something more draconian such as discarding the 5686 * dirty pages. 5687 */ 5688 if ((mi->mi_flags & MI_NOCTO) || 5689 nfs_zone() != mi->mi_zone) 5690 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5691 B_ASYNC, dmapp->cr, NULL); 5692 else 5693 error = nfs3_putpage_commit(dmapp->vp, dmapp->off, 5694 dmapp->len, dmapp->cr); 5695 if (!error) { 5696 mutex_enter(&rp->r_statelock); 5697 error = rp->r_error; 5698 rp->r_error = 0; 5699 mutex_exit(&rp->r_statelock); 5700 } 5701 } else 5702 error = 0; 5703 5704 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 5705 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5706 B_INVAL, dmapp->cr, NULL); 5707 5708 dmapp->caller->error = error; 5709 (void) as_delete_callback(as, arg); 5710 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 5711 } 5712 5713 static int nfs3_pathconf_disable_cache = 0; 5714 5715 #ifdef DEBUG 5716 static int nfs3_pathconf_cache_hits = 0; 5717 static int nfs3_pathconf_cache_misses = 0; 5718 #endif 5719 5720 /* ARGSUSED */ 5721 static int 5722 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 5723 caller_context_t *ct) 5724 { 5725 int error; 5726 PATHCONF3args args; 5727 PATHCONF3res res; 5728 int douprintf; 5729 failinfo_t fi; 5730 rnode_t *rp; 5731 hrtime_t t; 5732 5733 if (nfs_zone() != VTOMI(vp)->mi_zone) 5734 return (EIO); 5735 /* 5736 * Large file spec - need to base answer on info stored 5737 * on original FSINFO response. 5738 */ 5739 if (cmd == _PC_FILESIZEBITS) { 5740 unsigned long long ll; 5741 long l = 1; 5742 5743 ll = VTOMI(vp)->mi_maxfilesize; 5744 5745 if (ll == 0) { 5746 *valp = 0; 5747 return (0); 5748 } 5749 5750 if (ll & 0xffffffff00000000) { 5751 l += 32; ll >>= 32; 5752 } 5753 if (ll & 0xffff0000) { 5754 l += 16; ll >>= 16; 5755 } 5756 if (ll & 0xff00) { 5757 l += 8; ll >>= 8; 5758 } 5759 if (ll & 0xf0) { 5760 l += 4; ll >>= 4; 5761 } 5762 if (ll & 0xc) { 5763 l += 2; ll >>= 2; 5764 } 5765 if (ll & 0x2) 5766 l += 2; 5767 else if (ll & 0x1) 5768 l += 1; 5769 *valp = l; 5770 return (0); 5771 } 5772 5773 if (cmd == _PC_ACL_ENABLED) { 5774 *valp = _ACL_ACLENT_ENABLED; 5775 return (0); 5776 } 5777 5778 if (cmd == _PC_XATTR_EXISTS) { 5779 error = 0; 5780 *valp = 0; 5781 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5782 vnode_t *avp; 5783 rnode_t *rp; 5784 int error = 0; 5785 mntinfo_t *mi = VTOMI(vp); 5786 5787 if (!(mi->mi_flags & MI_EXTATTR)) 5788 return (0); 5789 5790 rp = VTOR(vp); 5791 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 5792 INTR(vp))) 5793 return (EINTR); 5794 5795 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 5796 if (error || avp == NULL) 5797 error = acl_getxattrdir3(vp, &avp, 0, cr, 0); 5798 5799 nfs_rw_exit(&rp->r_rwlock); 5800 5801 if (error == 0 && avp != NULL) { 5802 error = do_xattr_exists_check(avp, valp, cr); 5803 VN_RELE(avp); 5804 } else if (error == ENOENT) { 5805 error = 0; 5806 *valp = 0; 5807 } 5808 } 5809 return (error); 5810 } 5811 5812 rp = VTOR(vp); 5813 if (rp->r_pathconf != NULL) { 5814 mutex_enter(&rp->r_statelock); 5815 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) { 5816 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf)); 5817 rp->r_pathconf = NULL; 5818 } 5819 if (rp->r_pathconf != NULL) { 5820 error = 0; 5821 switch (cmd) { 5822 case _PC_LINK_MAX: 5823 *valp = rp->r_pathconf->link_max; 5824 break; 5825 case _PC_NAME_MAX: 5826 *valp = rp->r_pathconf->name_max; 5827 break; 5828 case _PC_PATH_MAX: 5829 case _PC_SYMLINK_MAX: 5830 *valp = MAXPATHLEN; 5831 break; 5832 case _PC_CHOWN_RESTRICTED: 5833 *valp = rp->r_pathconf->chown_restricted; 5834 break; 5835 case _PC_NO_TRUNC: 5836 *valp = rp->r_pathconf->no_trunc; 5837 break; 5838 default: 5839 error = EINVAL; 5840 break; 5841 } 5842 mutex_exit(&rp->r_statelock); 5843 #ifdef DEBUG 5844 nfs3_pathconf_cache_hits++; 5845 #endif 5846 return (error); 5847 } 5848 mutex_exit(&rp->r_statelock); 5849 } 5850 #ifdef DEBUG 5851 nfs3_pathconf_cache_misses++; 5852 #endif 5853 5854 args.object = *VTOFH3(vp); 5855 fi.vp = vp; 5856 fi.fhp = (caddr_t)&args.object; 5857 fi.copyproc = nfs3copyfh; 5858 fi.lookupproc = nfs3lookup; 5859 fi.xattrdirproc = acl_getxattrdir3; 5860 5861 douprintf = 1; 5862 5863 t = gethrtime(); 5864 5865 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF, 5866 xdr_nfs_fh3, (caddr_t)&args, 5867 xdr_PATHCONF3res, (caddr_t)&res, cr, 5868 &douprintf, &res.status, 0, &fi); 5869 5870 if (error) 5871 return (error); 5872 5873 error = geterrno3(res.status); 5874 5875 if (!error) { 5876 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 5877 if (!nfs3_pathconf_disable_cache) { 5878 mutex_enter(&rp->r_statelock); 5879 if (rp->r_pathconf == NULL) { 5880 rp->r_pathconf = kmem_alloc( 5881 sizeof (*rp->r_pathconf), KM_NOSLEEP); 5882 if (rp->r_pathconf != NULL) 5883 *rp->r_pathconf = res.resok.info; 5884 } 5885 mutex_exit(&rp->r_statelock); 5886 } 5887 switch (cmd) { 5888 case _PC_LINK_MAX: 5889 *valp = res.resok.info.link_max; 5890 break; 5891 case _PC_NAME_MAX: 5892 *valp = res.resok.info.name_max; 5893 break; 5894 case _PC_PATH_MAX: 5895 case _PC_SYMLINK_MAX: 5896 *valp = MAXPATHLEN; 5897 break; 5898 case _PC_CHOWN_RESTRICTED: 5899 *valp = res.resok.info.chown_restricted; 5900 break; 5901 case _PC_NO_TRUNC: 5902 *valp = res.resok.info.no_trunc; 5903 break; 5904 default: 5905 return (EINVAL); 5906 } 5907 } else { 5908 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 5909 PURGE_STALE_FH(error, vp, cr); 5910 } 5911 5912 return (error); 5913 } 5914 5915 /* 5916 * Called by async thread to do synchronous pageio. Do the i/o, wait 5917 * for it to complete, and cleanup the page list when done. 5918 */ 5919 static int 5920 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5921 int flags, cred_t *cr) 5922 { 5923 int error; 5924 5925 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5926 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5927 if (flags & B_READ) 5928 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 5929 else 5930 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 5931 return (error); 5932 } 5933 5934 /* ARGSUSED */ 5935 static int 5936 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5937 int flags, cred_t *cr, caller_context_t *ct) 5938 { 5939 int error; 5940 rnode_t *rp; 5941 5942 if (pp == NULL) 5943 return (EINVAL); 5944 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5945 return (EIO); 5946 5947 rp = VTOR(vp); 5948 mutex_enter(&rp->r_statelock); 5949 rp->r_count++; 5950 mutex_exit(&rp->r_statelock); 5951 5952 if (flags & B_ASYNC) { 5953 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 5954 nfs3_sync_pageio); 5955 } else 5956 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5957 mutex_enter(&rp->r_statelock); 5958 rp->r_count--; 5959 cv_broadcast(&rp->r_cv); 5960 mutex_exit(&rp->r_statelock); 5961 return (error); 5962 } 5963 5964 /* ARGSUSED */ 5965 static void 5966 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 5967 caller_context_t *ct) 5968 { 5969 int error; 5970 rnode_t *rp; 5971 page_t *plist; 5972 page_t *pptr; 5973 offset3 offset; 5974 count3 len; 5975 k_sigset_t smask; 5976 5977 /* 5978 * We should get called with fl equal to either B_FREE or 5979 * B_INVAL. Any other value is illegal. 5980 * 5981 * The page that we are either supposed to free or destroy 5982 * should be exclusive locked and its io lock should not 5983 * be held. 5984 */ 5985 ASSERT(fl == B_FREE || fl == B_INVAL); 5986 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 5987 rp = VTOR(vp); 5988 5989 /* 5990 * If the page doesn't need to be committed or we shouldn't 5991 * even bother attempting to commit it, then just make sure 5992 * that the p_fsdata byte is clear and then either free or 5993 * destroy the page as appropriate. 5994 */ 5995 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) { 5996 pp->p_fsdata = C_NOCOMMIT; 5997 if (fl == B_FREE) 5998 page_free(pp, dn); 5999 else 6000 page_destroy(pp, dn); 6001 return; 6002 } 6003 6004 /* 6005 * If there is a page invalidation operation going on, then 6006 * if this is one of the pages being destroyed, then just 6007 * clear the p_fsdata byte and then either free or destroy 6008 * the page as appropriate. 6009 */ 6010 mutex_enter(&rp->r_statelock); 6011 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 6012 mutex_exit(&rp->r_statelock); 6013 pp->p_fsdata = C_NOCOMMIT; 6014 if (fl == B_FREE) 6015 page_free(pp, dn); 6016 else 6017 page_destroy(pp, dn); 6018 return; 6019 } 6020 6021 /* 6022 * If we are freeing this page and someone else is already 6023 * waiting to do a commit, then just unlock the page and 6024 * return. That other thread will take care of commiting 6025 * this page. The page can be freed sometime after the 6026 * commit has finished. Otherwise, if the page is marked 6027 * as delay commit, then we may be getting called from 6028 * pvn_write_done, one page at a time. This could result 6029 * in one commit per page, so we end up doing lots of small 6030 * commits instead of fewer larger commits. This is bad, 6031 * we want do as few commits as possible. 6032 */ 6033 if (fl == B_FREE) { 6034 if (rp->r_flags & RCOMMITWAIT) { 6035 page_unlock(pp); 6036 mutex_exit(&rp->r_statelock); 6037 return; 6038 } 6039 if (pp->p_fsdata == C_DELAYCOMMIT) { 6040 pp->p_fsdata = C_COMMIT; 6041 page_unlock(pp); 6042 mutex_exit(&rp->r_statelock); 6043 return; 6044 } 6045 } 6046 6047 /* 6048 * Check to see if there is a signal which would prevent an 6049 * attempt to commit the pages from being successful. If so, 6050 * then don't bother with all of the work to gather pages and 6051 * generate the unsuccessful RPC. Just return from here and 6052 * let the page be committed at some later time. 6053 */ 6054 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT); 6055 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 6056 sigunintr(&smask); 6057 page_unlock(pp); 6058 mutex_exit(&rp->r_statelock); 6059 return; 6060 } 6061 sigunintr(&smask); 6062 6063 /* 6064 * We are starting to need to commit pages, so let's try 6065 * to commit as many as possible at once to reduce the 6066 * overhead. 6067 * 6068 * Set the `commit inprogress' state bit. We must 6069 * first wait until any current one finishes. Then 6070 * we initialize the c_pages list with this page. 6071 */ 6072 while (rp->r_flags & RCOMMIT) { 6073 rp->r_flags |= RCOMMITWAIT; 6074 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6075 rp->r_flags &= ~RCOMMITWAIT; 6076 } 6077 rp->r_flags |= RCOMMIT; 6078 mutex_exit(&rp->r_statelock); 6079 ASSERT(rp->r_commit.c_pages == NULL); 6080 rp->r_commit.c_pages = pp; 6081 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6082 rp->r_commit.c_commlen = PAGESIZE; 6083 6084 /* 6085 * Gather together all other pages which can be committed. 6086 * They will all be chained off r_commit.c_pages. 6087 */ 6088 nfs3_get_commit(vp); 6089 6090 /* 6091 * Clear the `commit inprogress' status and disconnect 6092 * the list of pages to be committed from the rnode. 6093 * At this same time, we also save the starting offset 6094 * and length of data to be committed on the server. 6095 */ 6096 plist = rp->r_commit.c_pages; 6097 rp->r_commit.c_pages = NULL; 6098 offset = rp->r_commit.c_commbase; 6099 len = rp->r_commit.c_commlen; 6100 mutex_enter(&rp->r_statelock); 6101 rp->r_flags &= ~RCOMMIT; 6102 cv_broadcast(&rp->r_commit.c_cv); 6103 mutex_exit(&rp->r_statelock); 6104 6105 if (curproc == proc_pageout || curproc == proc_fsflush || 6106 nfs_zone() != VTOMI(vp)->mi_zone) { 6107 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit); 6108 return; 6109 } 6110 6111 /* 6112 * Actually generate the COMMIT3 over the wire operation. 6113 */ 6114 error = nfs3_commit(vp, offset, len, cr); 6115 6116 /* 6117 * If we got an error during the commit, just unlock all 6118 * of the pages. The pages will get retransmitted to the 6119 * server during a putpage operation. 6120 */ 6121 if (error) { 6122 while (plist != NULL) { 6123 pptr = plist; 6124 page_sub(&plist, pptr); 6125 page_unlock(pptr); 6126 } 6127 return; 6128 } 6129 6130 /* 6131 * We've tried as hard as we can to commit the data to stable 6132 * storage on the server. We release the rest of the pages 6133 * and clear the commit required state. They will be put 6134 * onto the tail of the cachelist if they are nolonger 6135 * mapped. 6136 */ 6137 while (plist != pp) { 6138 pptr = plist; 6139 page_sub(&plist, pptr); 6140 pptr->p_fsdata = C_NOCOMMIT; 6141 (void) page_release(pptr, 1); 6142 } 6143 6144 /* 6145 * It is possible that nfs3_commit didn't return error but 6146 * some other thread has modified the page we are going 6147 * to free/destroy. 6148 * In this case we need to rewrite the page. Do an explicit check 6149 * before attempting to free/destroy the page. If modified, needs to 6150 * be rewritten so unlock the page and return. 6151 */ 6152 if (hat_ismod(pp)) { 6153 pp->p_fsdata = C_NOCOMMIT; 6154 page_unlock(pp); 6155 return; 6156 } 6157 6158 /* 6159 * Now, as appropriate, either free or destroy the page 6160 * that we were called with. 6161 */ 6162 pp->p_fsdata = C_NOCOMMIT; 6163 if (fl == B_FREE) 6164 page_free(pp, dn); 6165 else 6166 page_destroy(pp, dn); 6167 } 6168 6169 static int 6170 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr) 6171 { 6172 int error; 6173 rnode_t *rp; 6174 COMMIT3args args; 6175 COMMIT3res res; 6176 int douprintf; 6177 cred_t *cred; 6178 6179 rp = VTOR(vp); 6180 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6181 6182 mutex_enter(&rp->r_statelock); 6183 if (rp->r_cred != NULL) { 6184 cred = rp->r_cred; 6185 crhold(cred); 6186 } else { 6187 rp->r_cred = cr; 6188 crhold(cr); 6189 cred = cr; 6190 crhold(cred); 6191 } 6192 mutex_exit(&rp->r_statelock); 6193 6194 args.file = *VTOFH3(vp); 6195 args.offset = offset; 6196 args.count = count; 6197 6198 doitagain: 6199 douprintf = 1; 6200 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT, 6201 xdr_COMMIT3args, (caddr_t)&args, 6202 xdr_COMMIT3res, (caddr_t)&res, cred, 6203 &douprintf, &res.status, 0, NULL); 6204 6205 crfree(cred); 6206 6207 if (error) 6208 return (error); 6209 6210 error = geterrno3(res.status); 6211 if (!error) { 6212 ASSERT(rp->r_flags & RHAVEVERF); 6213 mutex_enter(&rp->r_statelock); 6214 if (rp->r_verf == res.resok.verf) { 6215 mutex_exit(&rp->r_statelock); 6216 return (0); 6217 } 6218 nfs3_set_mod(vp); 6219 rp->r_verf = res.resok.verf; 6220 mutex_exit(&rp->r_statelock); 6221 error = NFS_VERF_MISMATCH; 6222 } else { 6223 if (error == EACCES) { 6224 mutex_enter(&rp->r_statelock); 6225 if (cred != cr) { 6226 if (rp->r_cred != NULL) 6227 crfree(rp->r_cred); 6228 rp->r_cred = cr; 6229 crhold(cr); 6230 cred = cr; 6231 crhold(cred); 6232 mutex_exit(&rp->r_statelock); 6233 goto doitagain; 6234 } 6235 mutex_exit(&rp->r_statelock); 6236 } 6237 /* 6238 * Can't do a PURGE_STALE_FH here because this 6239 * can cause a deadlock. nfs3_commit can 6240 * be called from nfs3_dispose which can be called 6241 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH 6242 * can call back to pvn_vplist_dirty. 6243 */ 6244 if (error == ESTALE) { 6245 mutex_enter(&rp->r_statelock); 6246 rp->r_flags |= RSTALE; 6247 if (!rp->r_error) 6248 rp->r_error = error; 6249 mutex_exit(&rp->r_statelock); 6250 PURGE_ATTRCACHE(vp); 6251 } else { 6252 mutex_enter(&rp->r_statelock); 6253 if (!rp->r_error) 6254 rp->r_error = error; 6255 mutex_exit(&rp->r_statelock); 6256 } 6257 } 6258 6259 return (error); 6260 } 6261 6262 static void 6263 nfs3_set_mod(vnode_t *vp) 6264 { 6265 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6266 6267 pvn_vplist_setdirty(vp, nfs_setmod_check); 6268 } 6269 6270 /* 6271 * This routine is used to gather together a page list of the pages 6272 * which are to be committed on the server. This routine must not 6273 * be called if the calling thread holds any locked pages. 6274 * 6275 * The calling thread must have set RCOMMIT. This bit is used to 6276 * serialize access to the commit structure in the rnode. As long 6277 * as the thread has set RCOMMIT, then it can manipulate the commit 6278 * structure without requiring any other locks. 6279 */ 6280 static void 6281 nfs3_get_commit(vnode_t *vp) 6282 { 6283 rnode_t *rp; 6284 page_t *pp; 6285 kmutex_t *vphm; 6286 6287 rp = VTOR(vp); 6288 6289 ASSERT(rp->r_flags & RCOMMIT); 6290 6291 vphm = page_vnode_mutex(vp); 6292 mutex_enter(vphm); 6293 6294 /* 6295 * If there are no pages associated with this vnode, then 6296 * just return. 6297 */ 6298 if ((pp = vp->v_pages) == NULL) { 6299 mutex_exit(vphm); 6300 return; 6301 } 6302 6303 /* 6304 * Step through all of the pages associated with this vnode 6305 * looking for pages which need to be committed. 6306 */ 6307 do { 6308 /* Skip marker pages. */ 6309 if (pp->p_hash == PVN_VPLIST_HASH_TAG) 6310 continue; 6311 6312 /* 6313 * If this page does not need to be committed or is 6314 * modified, then just skip it. 6315 */ 6316 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 6317 continue; 6318 6319 /* 6320 * Attempt to lock the page. If we can't, then 6321 * someone else is messing with it and we will 6322 * just skip it. 6323 */ 6324 if (!page_trylock(pp, SE_EXCL)) 6325 continue; 6326 6327 /* 6328 * If this page does not need to be committed or is 6329 * modified, then just skip it. Recheck now that 6330 * the page is locked. 6331 */ 6332 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6333 page_unlock(pp); 6334 continue; 6335 } 6336 6337 if (PP_ISFREE(pp)) { 6338 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free", 6339 (void *)pp); 6340 } 6341 6342 /* 6343 * The page needs to be committed and we locked it. 6344 * Update the base and length parameters and add it 6345 * to r_pages. 6346 */ 6347 if (rp->r_commit.c_pages == NULL) { 6348 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6349 rp->r_commit.c_commlen = PAGESIZE; 6350 } else if (pp->p_offset < rp->r_commit.c_commbase) { 6351 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 6352 (offset3)pp->p_offset + rp->r_commit.c_commlen; 6353 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6354 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 6355 <= pp->p_offset) { 6356 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6357 rp->r_commit.c_commbase + PAGESIZE; 6358 } 6359 page_add(&rp->r_commit.c_pages, pp); 6360 } while ((pp = pp->p_vpnext) != vp->v_pages); 6361 6362 mutex_exit(vphm); 6363 } 6364 6365 /* 6366 * This routine is used to gather together a page list of the pages 6367 * which are to be committed on the server. This routine must not 6368 * be called if the calling thread holds any locked pages. 6369 * 6370 * The calling thread must have set RCOMMIT. This bit is used to 6371 * serialize access to the commit structure in the rnode. As long 6372 * as the thread has set RCOMMIT, then it can manipulate the commit 6373 * structure without requiring any other locks. 6374 */ 6375 static void 6376 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 6377 { 6378 6379 rnode_t *rp; 6380 page_t *pp; 6381 u_offset_t end; 6382 u_offset_t off; 6383 6384 ASSERT(len != 0); 6385 6386 rp = VTOR(vp); 6387 6388 ASSERT(rp->r_flags & RCOMMIT); 6389 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6390 6391 /* 6392 * If there are no pages associated with this vnode, then 6393 * just return. 6394 */ 6395 if ((pp = vp->v_pages) == NULL) 6396 return; 6397 6398 /* 6399 * Calculate the ending offset. 6400 */ 6401 end = soff + len; 6402 6403 for (off = soff; off < end; off += PAGESIZE) { 6404 /* 6405 * Lookup each page by vp, offset. 6406 */ 6407 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 6408 continue; 6409 6410 /* 6411 * If this page does not need to be committed or is 6412 * modified, then just skip it. 6413 */ 6414 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6415 page_unlock(pp); 6416 continue; 6417 } 6418 6419 ASSERT(PP_ISFREE(pp) == 0); 6420 6421 /* 6422 * The page needs to be committed and we locked it. 6423 * Update the base and length parameters and add it 6424 * to r_pages. 6425 */ 6426 if (rp->r_commit.c_pages == NULL) { 6427 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6428 rp->r_commit.c_commlen = PAGESIZE; 6429 } else { 6430 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6431 rp->r_commit.c_commbase + PAGESIZE; 6432 } 6433 page_add(&rp->r_commit.c_pages, pp); 6434 } 6435 } 6436 6437 static int 6438 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 6439 { 6440 int error; 6441 writeverf3 write_verf; 6442 rnode_t *rp = VTOR(vp); 6443 6444 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6445 /* 6446 * Flush the data portion of the file and then commit any 6447 * portions which need to be committed. This may need to 6448 * be done twice if the server has changed state since 6449 * data was last written. The data will need to be 6450 * rewritten to the server and then a new commit done. 6451 * 6452 * In fact, this may need to be done several times if the 6453 * server is having problems and crashing while we are 6454 * attempting to do this. 6455 */ 6456 6457 top: 6458 /* 6459 * Do a flush based on the poff and plen arguments. This 6460 * will asynchronously write out any modified pages in the 6461 * range specified by (poff, plen). This starts all of the 6462 * i/o operations which will be waited for in the next 6463 * call to nfs3_putpage 6464 */ 6465 6466 mutex_enter(&rp->r_statelock); 6467 write_verf = rp->r_verf; 6468 mutex_exit(&rp->r_statelock); 6469 6470 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 6471 if (error == EAGAIN) 6472 error = 0; 6473 6474 /* 6475 * Do a flush based on the poff and plen arguments. This 6476 * will synchronously write out any modified pages in the 6477 * range specified by (poff, plen) and wait until all of 6478 * the asynchronous i/o's in that range are done as well. 6479 */ 6480 if (!error) 6481 error = nfs3_putpage(vp, poff, plen, 0, cr, NULL); 6482 6483 if (error) 6484 return (error); 6485 6486 mutex_enter(&rp->r_statelock); 6487 if (rp->r_verf != write_verf) { 6488 mutex_exit(&rp->r_statelock); 6489 goto top; 6490 } 6491 mutex_exit(&rp->r_statelock); 6492 6493 /* 6494 * Now commit any pages which might need to be committed. 6495 * If the error, NFS_VERF_MISMATCH, is returned, then 6496 * start over with the flush operation. 6497 */ 6498 6499 error = nfs3_commit_vp(vp, poff, plen, cr); 6500 6501 if (error == NFS_VERF_MISMATCH) 6502 goto top; 6503 6504 return (error); 6505 } 6506 6507 static int 6508 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr) 6509 { 6510 rnode_t *rp; 6511 page_t *plist; 6512 offset3 offset; 6513 count3 len; 6514 6515 6516 rp = VTOR(vp); 6517 6518 if (nfs_zone() != VTOMI(vp)->mi_zone) 6519 return (EIO); 6520 /* 6521 * Set the `commit inprogress' state bit. We must 6522 * first wait until any current one finishes. 6523 */ 6524 mutex_enter(&rp->r_statelock); 6525 while (rp->r_flags & RCOMMIT) { 6526 rp->r_flags |= RCOMMITWAIT; 6527 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6528 rp->r_flags &= ~RCOMMITWAIT; 6529 } 6530 rp->r_flags |= RCOMMIT; 6531 mutex_exit(&rp->r_statelock); 6532 6533 /* 6534 * Gather together all of the pages which need to be 6535 * committed. 6536 */ 6537 if (plen == 0) 6538 nfs3_get_commit(vp); 6539 else 6540 nfs3_get_commit_range(vp, poff, plen); 6541 6542 /* 6543 * Clear the `commit inprogress' bit and disconnect the 6544 * page list which was gathered together in nfs3_get_commit. 6545 */ 6546 plist = rp->r_commit.c_pages; 6547 rp->r_commit.c_pages = NULL; 6548 offset = rp->r_commit.c_commbase; 6549 len = rp->r_commit.c_commlen; 6550 mutex_enter(&rp->r_statelock); 6551 rp->r_flags &= ~RCOMMIT; 6552 cv_broadcast(&rp->r_commit.c_cv); 6553 mutex_exit(&rp->r_statelock); 6554 6555 /* 6556 * If any pages need to be committed, commit them and 6557 * then unlock them so that they can be freed some 6558 * time later. 6559 */ 6560 if (plist != NULL) { 6561 /* 6562 * No error occurred during the flush portion 6563 * of this operation, so now attempt to commit 6564 * the data to stable storage on the server. 6565 * 6566 * This will unlock all of the pages on the list. 6567 */ 6568 return (nfs3_sync_commit(vp, plist, offset, len, cr)); 6569 } 6570 return (0); 6571 } 6572 6573 static int 6574 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6575 cred_t *cr) 6576 { 6577 int error; 6578 page_t *pp; 6579 6580 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6581 error = nfs3_commit(vp, offset, count, cr); 6582 6583 /* 6584 * If we got an error, then just unlock all of the pages 6585 * on the list. 6586 */ 6587 if (error) { 6588 while (plist != NULL) { 6589 pp = plist; 6590 page_sub(&plist, pp); 6591 page_unlock(pp); 6592 } 6593 return (error); 6594 } 6595 /* 6596 * We've tried as hard as we can to commit the data to stable 6597 * storage on the server. We just unlock the pages and clear 6598 * the commit required state. They will get freed later. 6599 */ 6600 while (plist != NULL) { 6601 pp = plist; 6602 page_sub(&plist, pp); 6603 pp->p_fsdata = C_NOCOMMIT; 6604 page_unlock(pp); 6605 } 6606 6607 return (error); 6608 } 6609 6610 static void 6611 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6612 cred_t *cr) 6613 { 6614 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6615 (void) nfs3_sync_commit(vp, plist, offset, count, cr); 6616 } 6617 6618 /* ARGSUSED */ 6619 static int 6620 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6621 caller_context_t *ct) 6622 { 6623 int error; 6624 mntinfo_t *mi; 6625 6626 mi = VTOMI(vp); 6627 6628 if (nfs_zone() != mi->mi_zone) 6629 return (EIO); 6630 6631 if (mi->mi_flags & MI_ACL) { 6632 error = acl_setacl3(vp, vsecattr, flag, cr); 6633 if (mi->mi_flags & MI_ACL) 6634 return (error); 6635 } 6636 6637 return (ENOSYS); 6638 } 6639 6640 /* ARGSUSED */ 6641 static int 6642 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6643 caller_context_t *ct) 6644 { 6645 int error; 6646 mntinfo_t *mi; 6647 6648 mi = VTOMI(vp); 6649 6650 if (nfs_zone() != mi->mi_zone) 6651 return (EIO); 6652 6653 if (mi->mi_flags & MI_ACL) { 6654 error = acl_getacl3(vp, vsecattr, flag, cr); 6655 if (mi->mi_flags & MI_ACL) 6656 return (error); 6657 } 6658 6659 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 6660 } 6661 6662 /* ARGSUSED */ 6663 static int 6664 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 6665 caller_context_t *ct) 6666 { 6667 int error; 6668 struct shrlock nshr; 6669 struct nfs_owner nfs_owner; 6670 netobj lm_fh3; 6671 6672 if (nfs_zone() != VTOMI(vp)->mi_zone) 6673 return (EIO); 6674 6675 /* 6676 * check for valid cmd parameter 6677 */ 6678 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 6679 return (EINVAL); 6680 6681 /* 6682 * Check access permissions 6683 */ 6684 if (cmd == F_SHARE && 6685 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 6686 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 6687 return (EBADF); 6688 6689 /* 6690 * If the filesystem is mounted using local locking, pass the 6691 * request off to the local share code. 6692 */ 6693 if (VTOMI(vp)->mi_flags & MI_LLOCK) 6694 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 6695 6696 switch (cmd) { 6697 case F_SHARE: 6698 case F_UNSHARE: 6699 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 6700 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 6701 6702 /* 6703 * If passed an owner that is too large to fit in an 6704 * nfs_owner it is likely a recursive call from the 6705 * lock manager client and pass it straight through. If 6706 * it is not a nfs_owner then simply return an error. 6707 */ 6708 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 6709 if (((struct nfs_owner *)shr->s_owner)->magic != 6710 NFS_OWNER_MAGIC) 6711 return (EINVAL); 6712 6713 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) { 6714 error = set_errno(error); 6715 } 6716 return (error); 6717 } 6718 /* 6719 * Remote share reservations owner is a combination of 6720 * a magic number, hostname, and the local owner 6721 */ 6722 bzero(&nfs_owner, sizeof (nfs_owner)); 6723 nfs_owner.magic = NFS_OWNER_MAGIC; 6724 (void) strncpy(nfs_owner.hname, uts_nodename(), 6725 sizeof (nfs_owner.hname)); 6726 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 6727 nshr.s_access = shr->s_access; 6728 nshr.s_deny = shr->s_deny; 6729 nshr.s_sysid = 0; 6730 nshr.s_pid = ttoproc(curthread)->p_pid; 6731 nshr.s_own_len = sizeof (nfs_owner); 6732 nshr.s_owner = (caddr_t)&nfs_owner; 6733 6734 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) { 6735 error = set_errno(error); 6736 } 6737 6738 break; 6739 6740 case F_HASREMOTELOCKS: 6741 /* 6742 * NFS client can't store remote locks itself 6743 */ 6744 shr->s_access = 0; 6745 error = 0; 6746 break; 6747 6748 default: 6749 error = EINVAL; 6750 break; 6751 } 6752 6753 return (error); 6754 } 6755