1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/systm.h> 34 #include <sys/cred.h> 35 #include <sys/time.h> 36 #include <sys/vnode.h> 37 #include <sys/vfs.h> 38 #include <sys/vfs_opreg.h> 39 #include <sys/file.h> 40 #include <sys/filio.h> 41 #include <sys/uio.h> 42 #include <sys/buf.h> 43 #include <sys/mman.h> 44 #include <sys/pathname.h> 45 #include <sys/dirent.h> 46 #include <sys/debug.h> 47 #include <sys/vmsystm.h> 48 #include <sys/fcntl.h> 49 #include <sys/flock.h> 50 #include <sys/swap.h> 51 #include <sys/errno.h> 52 #include <sys/strsubr.h> 53 #include <sys/sysmacros.h> 54 #include <sys/kmem.h> 55 #include <sys/cmn_err.h> 56 #include <sys/pathconf.h> 57 #include <sys/utsname.h> 58 #include <sys/dnlc.h> 59 #include <sys/acl.h> 60 #include <sys/systeminfo.h> 61 #include <sys/atomic.h> 62 #include <sys/policy.h> 63 #include <sys/sdt.h> 64 #include <sys/zone.h> 65 66 #include <rpc/types.h> 67 #include <rpc/auth.h> 68 #include <rpc/clnt.h> 69 #include <rpc/rpc_rdma.h> 70 71 #include <nfs/nfs.h> 72 #include <nfs/nfs_clnt.h> 73 #include <nfs/rnode.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 77 #include <vm/hat.h> 78 #include <vm/as.h> 79 #include <vm/page.h> 80 #include <vm/pvn.h> 81 #include <vm/seg.h> 82 #include <vm/seg_map.h> 83 #include <vm/seg_kpm.h> 84 #include <vm/seg_vn.h> 85 86 #include <fs/fs_subr.h> 87 88 #include <sys/ddi.h> 89 90 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 91 cred_t *); 92 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 93 stable_how *); 94 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *); 95 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *); 96 static int nfs3_accessx(void *, int, cred_t *); 97 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 98 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 99 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl, 100 int, vnode_t **, cred_t *, int); 101 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *); 102 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 103 int, vnode_t **, cred_t *); 104 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 105 caller_context_t *); 106 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 107 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 108 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *); 109 static int nfs3_bio(struct buf *, stable_how *, cred_t *); 110 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 111 page_t *[], size_t, struct seg *, caddr_t, 112 enum seg_rw, cred_t *); 113 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 114 cred_t *); 115 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 116 int, cred_t *); 117 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 118 int, cred_t *); 119 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *); 120 static void nfs3_set_mod(vnode_t *); 121 static void nfs3_get_commit(vnode_t *); 122 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t); 123 #if 0 /* unused */ 124 #ifdef DEBUG 125 static int nfs3_no_uncommitted_pages(vnode_t *); 126 #endif 127 #endif /* unused */ 128 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 129 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *); 130 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3, 131 cred_t *); 132 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3, 133 cred_t *); 134 static void nfs3_delmap_callback(struct as *, void *, uint_t); 135 136 /* 137 * Error flags used to pass information about certain special errors 138 * which need to be handled specially. 139 */ 140 #define NFS_EOF -98 141 #define NFS_VERF_MISMATCH -97 142 143 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 144 #define ALIGN64(x, ptr, sz) \ 145 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 146 if (x) { \ 147 x = sizeof (uint64_t) - (x); \ 148 sz -= (x); \ 149 ptr += (x); \ 150 } 151 152 /* 153 * These are the vnode ops routines which implement the vnode interface to 154 * the networked file system. These routines just take their parameters, 155 * make them look networkish by putting the right info into interface structs, 156 * and then calling the appropriate remote routine(s) to do the work. 157 * 158 * Note on directory name lookup cacheing: If we detect a stale fhandle, 159 * we purge the directory cache relative to that vnode. This way, the 160 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 161 * more details on rnode locking. 162 */ 163 164 static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *); 165 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *, 166 caller_context_t *); 167 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *, 168 caller_context_t *); 169 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *, 170 caller_context_t *); 171 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 172 caller_context_t *); 173 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *, 174 caller_context_t *); 175 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *, 176 caller_context_t *); 177 static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *); 178 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *, 179 caller_context_t *); 180 static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *); 181 static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *); 182 static int nfs3_lookup(vnode_t *, char *, vnode_t **, 183 struct pathname *, int, vnode_t *, cred_t *, 184 caller_context_t *, int *, pathname_t *); 185 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl, 186 int, vnode_t **, cred_t *, int, caller_context_t *, 187 vsecattr_t *); 188 static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *, 189 int); 190 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *, 191 caller_context_t *, int); 192 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 193 caller_context_t *, int); 194 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 195 cred_t *, caller_context_t *, int, vsecattr_t *); 196 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 197 caller_context_t *, int); 198 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *, 199 cred_t *, caller_context_t *, int); 200 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *, 201 caller_context_t *, int); 202 static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *); 203 static int nfs3_rwlock(vnode_t *, int, caller_context_t *); 204 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *); 205 static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 206 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *, 207 page_t *[], size_t, struct seg *, caddr_t, 208 enum seg_rw, cred_t *, caller_context_t *); 209 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 210 caller_context_t *); 211 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 212 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 213 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 214 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 215 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 216 struct flk_callback *, cred_t *, caller_context_t *); 217 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t, 218 cred_t *, caller_context_t *); 219 static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *); 220 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 221 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 222 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *, 223 caller_context_t *); 224 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 225 cred_t *, caller_context_t *); 226 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *, 227 caller_context_t *); 228 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 229 caller_context_t *); 230 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 231 caller_context_t *); 232 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 233 caller_context_t *); 234 235 struct vnodeops *nfs3_vnodeops; 236 237 const fs_operation_def_t nfs3_vnodeops_template[] = { 238 VOPNAME_OPEN, { .vop_open = nfs3_open }, 239 VOPNAME_CLOSE, { .vop_close = nfs3_close }, 240 VOPNAME_READ, { .vop_read = nfs3_read }, 241 VOPNAME_WRITE, { .vop_write = nfs3_write }, 242 VOPNAME_IOCTL, { .vop_ioctl = nfs3_ioctl }, 243 VOPNAME_GETATTR, { .vop_getattr = nfs3_getattr }, 244 VOPNAME_SETATTR, { .vop_setattr = nfs3_setattr }, 245 VOPNAME_ACCESS, { .vop_access = nfs3_access }, 246 VOPNAME_LOOKUP, { .vop_lookup = nfs3_lookup }, 247 VOPNAME_CREATE, { .vop_create = nfs3_create }, 248 VOPNAME_REMOVE, { .vop_remove = nfs3_remove }, 249 VOPNAME_LINK, { .vop_link = nfs3_link }, 250 VOPNAME_RENAME, { .vop_rename = nfs3_rename }, 251 VOPNAME_MKDIR, { .vop_mkdir = nfs3_mkdir }, 252 VOPNAME_RMDIR, { .vop_rmdir = nfs3_rmdir }, 253 VOPNAME_READDIR, { .vop_readdir = nfs3_readdir }, 254 VOPNAME_SYMLINK, { .vop_symlink = nfs3_symlink }, 255 VOPNAME_READLINK, { .vop_readlink = nfs3_readlink }, 256 VOPNAME_FSYNC, { .vop_fsync = nfs3_fsync }, 257 VOPNAME_INACTIVE, { .vop_inactive = nfs3_inactive }, 258 VOPNAME_FID, { .vop_fid = nfs3_fid }, 259 VOPNAME_RWLOCK, { .vop_rwlock = nfs3_rwlock }, 260 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs3_rwunlock }, 261 VOPNAME_SEEK, { .vop_seek = nfs3_seek }, 262 VOPNAME_FRLOCK, { .vop_frlock = nfs3_frlock }, 263 VOPNAME_SPACE, { .vop_space = nfs3_space }, 264 VOPNAME_REALVP, { .vop_realvp = nfs3_realvp }, 265 VOPNAME_GETPAGE, { .vop_getpage = nfs3_getpage }, 266 VOPNAME_PUTPAGE, { .vop_putpage = nfs3_putpage }, 267 VOPNAME_MAP, { .vop_map = nfs3_map }, 268 VOPNAME_ADDMAP, { .vop_addmap = nfs3_addmap }, 269 VOPNAME_DELMAP, { .vop_delmap = nfs3_delmap }, 270 /* no separate nfs3_dump */ 271 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 272 VOPNAME_PATHCONF, { .vop_pathconf = nfs3_pathconf }, 273 VOPNAME_PAGEIO, { .vop_pageio = nfs3_pageio }, 274 VOPNAME_DISPOSE, { .vop_dispose = nfs3_dispose }, 275 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs3_setsecattr }, 276 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs3_getsecattr }, 277 VOPNAME_SHRLOCK, { .vop_shrlock = nfs3_shrlock }, 278 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 279 NULL, NULL 280 }; 281 282 /* 283 * XXX: This is referenced in modstubs.s 284 */ 285 struct vnodeops * 286 nfs3_getvnodeops(void) 287 { 288 return (nfs3_vnodeops); 289 } 290 291 /* ARGSUSED */ 292 static int 293 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 294 { 295 int error; 296 struct vattr va; 297 rnode_t *rp; 298 vnode_t *vp; 299 300 vp = *vpp; 301 if (nfs_zone() != VTOMI(vp)->mi_zone) 302 return (EIO); 303 rp = VTOR(vp); 304 mutex_enter(&rp->r_statelock); 305 if (rp->r_cred == NULL) { 306 crhold(cr); 307 rp->r_cred = cr; 308 } 309 mutex_exit(&rp->r_statelock); 310 311 /* 312 * If there is no cached data or if close-to-open 313 * consistency checking is turned off, we can avoid 314 * the over the wire getattr. Otherwise, if the 315 * file system is mounted readonly, then just verify 316 * the caches are up to date using the normal mechanism. 317 * Else, if the file is not mmap'd, then just mark 318 * the attributes as timed out. They will be refreshed 319 * and the caches validated prior to being used. 320 * Else, the file system is mounted writeable so 321 * force an over the wire GETATTR in order to ensure 322 * that all cached data is valid. 323 */ 324 if (vp->v_count > 1 || 325 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 326 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 327 if (vn_is_readonly(vp)) 328 error = nfs3_validate_caches(vp, cr); 329 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 330 PURGE_ATTRCACHE(vp); 331 error = 0; 332 } else { 333 va.va_mask = AT_ALL; 334 error = nfs3_getattr_otw(vp, &va, cr); 335 } 336 } else 337 error = 0; 338 339 return (error); 340 } 341 342 /* ARGSUSED */ 343 static int 344 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 345 caller_context_t *ct) 346 { 347 rnode_t *rp; 348 int error; 349 struct vattr va; 350 351 /* 352 * zone_enter(2) prevents processes from changing zones with NFS files 353 * open; if we happen to get here from the wrong zone we can't do 354 * anything over the wire. 355 */ 356 if (VTOMI(vp)->mi_zone != nfs_zone()) { 357 /* 358 * We could attempt to clean up locks, except we're sure 359 * that the current process didn't acquire any locks on 360 * the file: any attempt to lock a file belong to another zone 361 * will fail, and one can't lock an NFS file and then change 362 * zones, as that fails too. 363 * 364 * Returning an error here is the sane thing to do. A 365 * subsequent call to VN_RELE() which translates to a 366 * nfs3_inactive() will clean up state: if the zone of the 367 * vnode's origin is still alive and kicking, an async worker 368 * thread will handle the request (from the correct zone), and 369 * everything (minus the commit and final nfs3_getattr_otw() 370 * call) should be OK. If the zone is going away 371 * nfs_async_inactive() will throw away cached pages inline. 372 */ 373 return (EIO); 374 } 375 376 /* 377 * If we are using local locking for this filesystem, then 378 * release all of the SYSV style record locks. Otherwise, 379 * we are doing network locking and we need to release all 380 * of the network locks. All of the locks held by this 381 * process on this file are released no matter what the 382 * incoming reference count is. 383 */ 384 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 385 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 386 cleanshares(vp, ttoproc(curthread)->p_pid); 387 } else 388 nfs_lockrelease(vp, flag, offset, cr); 389 390 if (count > 1) 391 return (0); 392 393 /* 394 * If the file has been `unlinked', then purge the 395 * DNLC so that this vnode will get reycled quicker 396 * and the .nfs* file on the server will get removed. 397 */ 398 rp = VTOR(vp); 399 if (rp->r_unldvp != NULL) 400 dnlc_purge_vp(vp); 401 402 /* 403 * If the file was open for write and there are pages, 404 * then if the file system was mounted using the "no-close- 405 * to-open" semantics, then start an asynchronous flush 406 * of the all of the pages in the file. 407 * else the file system was not mounted using the "no-close- 408 * to-open" semantics, then do a synchronous flush and 409 * commit of all of the dirty and uncommitted pages. 410 * 411 * The asynchronous flush of the pages in the "nocto" path 412 * mostly just associates a cred pointer with the rnode so 413 * writes which happen later will have a better chance of 414 * working. It also starts the data being written to the 415 * server, but without unnecessarily delaying the application. 416 */ 417 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 418 if (VTOMI(vp)->mi_flags & MI_NOCTO) { 419 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC, 420 cr, ct); 421 if (error == EAGAIN) 422 error = 0; 423 } else 424 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 425 if (!error) { 426 mutex_enter(&rp->r_statelock); 427 error = rp->r_error; 428 rp->r_error = 0; 429 mutex_exit(&rp->r_statelock); 430 } 431 } else { 432 mutex_enter(&rp->r_statelock); 433 error = rp->r_error; 434 rp->r_error = 0; 435 mutex_exit(&rp->r_statelock); 436 } 437 438 /* 439 * If RWRITEATTR is set, then issue an over the wire GETATTR to 440 * refresh the attribute cache with a set of attributes which 441 * weren't returned from a WRITE. This will enable the close- 442 * to-open processing to work. 443 */ 444 if (rp->r_flags & RWRITEATTR) 445 (void) nfs3_getattr_otw(vp, &va, cr); 446 447 return (error); 448 } 449 450 /* ARGSUSED */ 451 static int 452 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr) 453 { 454 mntinfo_t *mi; 455 READ3args args; 456 READ3uiores res; 457 int tsize; 458 offset_t offset; 459 ssize_t count; 460 int error; 461 int douprintf; 462 failinfo_t fi; 463 char *sv_hostname; 464 465 mi = VTOMI(vp); 466 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 467 sv_hostname = VTOR(vp)->r_server->sv_hostname; 468 469 douprintf = 1; 470 args.file = *VTOFH3(vp); 471 fi.vp = vp; 472 fi.fhp = (caddr_t)&args.file; 473 fi.copyproc = nfs3copyfh; 474 fi.lookupproc = nfs3lookup; 475 fi.xattrdirproc = acl_getxattrdir3; 476 477 res.uiop = uiop; 478 479 res.wlist = NULL; 480 481 offset = uiop->uio_loffset; 482 count = uiop->uio_resid; 483 484 do { 485 if (mi->mi_io_kstats) { 486 mutex_enter(&mi->mi_lock); 487 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 488 mutex_exit(&mi->mi_lock); 489 } 490 491 do { 492 tsize = MIN(mi->mi_tsize, count); 493 args.offset = (offset3)offset; 494 args.count = (count3)tsize; 495 res.size = (uint_t)tsize; 496 args.res_uiop = uiop; 497 args.res_data_val_alt = NULL; 498 499 error = rfs3call(mi, NFSPROC3_READ, 500 xdr_READ3args, (caddr_t)&args, 501 xdr_READ3uiores, (caddr_t)&res, cr, 502 &douprintf, &res.status, 0, &fi); 503 } while (error == ENFS_TRYAGAIN); 504 505 if (mi->mi_io_kstats) { 506 mutex_enter(&mi->mi_lock); 507 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 508 mutex_exit(&mi->mi_lock); 509 } 510 511 if (error) 512 return (error); 513 514 error = geterrno3(res.status); 515 if (error) 516 return (error); 517 518 if (res.count != res.size) { 519 zcmn_err(getzoneid(), CE_WARN, 520 "nfs3_directio_read: server %s returned incorrect amount", 521 sv_hostname); 522 return (EIO); 523 } 524 count -= res.count; 525 offset += res.count; 526 if (mi->mi_io_kstats) { 527 mutex_enter(&mi->mi_lock); 528 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 529 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 530 mutex_exit(&mi->mi_lock); 531 } 532 lwp_stat_update(LWP_STAT_INBLK, 1); 533 } while (count && !res.eof); 534 535 return (0); 536 } 537 538 /* ARGSUSED */ 539 static int 540 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 541 caller_context_t *ct) 542 { 543 rnode_t *rp; 544 u_offset_t off; 545 offset_t diff; 546 int on; 547 size_t n; 548 caddr_t base; 549 uint_t flags; 550 int error = 0; 551 mntinfo_t *mi; 552 553 rp = VTOR(vp); 554 mi = VTOMI(vp); 555 556 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 557 558 if (nfs_zone() != mi->mi_zone) 559 return (EIO); 560 561 if (vp->v_type != VREG) 562 return (EISDIR); 563 564 if (uiop->uio_resid == 0) 565 return (0); 566 567 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 568 return (EINVAL); 569 570 /* 571 * Bypass VM if caching has been disabled (e.g., locking) or if 572 * using client-side direct I/O and the file is not mmap'd and 573 * there are no cached pages. 574 */ 575 if ((vp->v_flag & VNOCACHE) || 576 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 577 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 578 !vn_has_cached_data(vp))) { 579 return (nfs3_directio_read(vp, uiop, cr)); 580 } 581 582 do { 583 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 584 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 585 n = MIN(MAXBSIZE - on, uiop->uio_resid); 586 587 error = nfs3_validate_caches(vp, cr); 588 if (error) 589 break; 590 591 mutex_enter(&rp->r_statelock); 592 while (rp->r_flags & RINCACHEPURGE) { 593 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 594 mutex_exit(&rp->r_statelock); 595 return (EINTR); 596 } 597 } 598 diff = rp->r_size - uiop->uio_loffset; 599 mutex_exit(&rp->r_statelock); 600 if (diff <= 0) 601 break; 602 if (diff < n) 603 n = (size_t)diff; 604 605 if (vpm_enable) { 606 /* 607 * Copy data. 608 */ 609 error = vpm_data_copy(vp, off + on, n, uiop, 610 1, NULL, 0, S_READ); 611 } else { 612 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 613 S_READ); 614 615 error = uiomove(base + on, n, UIO_READ, uiop); 616 } 617 618 if (!error) { 619 /* 620 * If read a whole block or read to eof, 621 * won't need this buffer again soon. 622 */ 623 mutex_enter(&rp->r_statelock); 624 if (n + on == MAXBSIZE || 625 uiop->uio_loffset == rp->r_size) 626 flags = SM_DONTNEED; 627 else 628 flags = 0; 629 mutex_exit(&rp->r_statelock); 630 if (vpm_enable) { 631 error = vpm_sync_pages(vp, off, n, flags); 632 } else { 633 error = segmap_release(segkmap, base, flags); 634 } 635 } else { 636 if (vpm_enable) { 637 (void) vpm_sync_pages(vp, off, n, 0); 638 } else { 639 (void) segmap_release(segkmap, base, 0); 640 } 641 } 642 } while (!error && uiop->uio_resid > 0); 643 644 return (error); 645 } 646 647 /* ARGSUSED */ 648 static int 649 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 650 caller_context_t *ct) 651 { 652 rlim64_t limit = uiop->uio_llimit; 653 rnode_t *rp; 654 u_offset_t off; 655 caddr_t base; 656 uint_t flags; 657 int remainder; 658 size_t n; 659 int on; 660 int error; 661 int resid; 662 offset_t offset; 663 mntinfo_t *mi; 664 uint_t bsize; 665 666 rp = VTOR(vp); 667 668 if (vp->v_type != VREG) 669 return (EISDIR); 670 671 mi = VTOMI(vp); 672 if (nfs_zone() != mi->mi_zone) 673 return (EIO); 674 if (uiop->uio_resid == 0) 675 return (0); 676 677 if (ioflag & FAPPEND) { 678 struct vattr va; 679 680 /* 681 * Must serialize if appending. 682 */ 683 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 684 nfs_rw_exit(&rp->r_rwlock); 685 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 686 INTR(vp))) 687 return (EINTR); 688 } 689 690 va.va_mask = AT_SIZE; 691 error = nfs3getattr(vp, &va, cr); 692 if (error) 693 return (error); 694 uiop->uio_loffset = va.va_size; 695 } 696 697 offset = uiop->uio_loffset + uiop->uio_resid; 698 699 if (uiop->uio_loffset < 0 || offset < 0) 700 return (EINVAL); 701 702 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 703 limit = MAXOFFSET_T; 704 705 /* 706 * Check to make sure that the process will not exceed 707 * its limit on file size. It is okay to write up to 708 * the limit, but not beyond. Thus, the write which 709 * reaches the limit will be short and the next write 710 * will return an error. 711 */ 712 remainder = 0; 713 if (offset > limit) { 714 remainder = offset - limit; 715 uiop->uio_resid = limit - uiop->uio_loffset; 716 if (uiop->uio_resid <= 0) { 717 proc_t *p = ttoproc(curthread); 718 719 uiop->uio_resid += remainder; 720 mutex_enter(&p->p_lock); 721 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 722 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 723 mutex_exit(&p->p_lock); 724 return (EFBIG); 725 } 726 } 727 728 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 729 return (EINTR); 730 731 /* 732 * Bypass VM if caching has been disabled (e.g., locking) or if 733 * using client-side direct I/O and the file is not mmap'd and 734 * there are no cached pages. 735 */ 736 if ((vp->v_flag & VNOCACHE) || 737 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 738 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 739 !vn_has_cached_data(vp))) { 740 size_t bufsize; 741 int count; 742 u_offset_t org_offset; 743 stable_how stab_comm; 744 745 nfs3_fwrite: 746 if (rp->r_flags & RSTALE) { 747 resid = uiop->uio_resid; 748 offset = uiop->uio_loffset; 749 error = rp->r_error; 750 goto bottom; 751 } 752 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 753 base = kmem_alloc(bufsize, KM_SLEEP); 754 do { 755 if (ioflag & FDSYNC) 756 stab_comm = DATA_SYNC; 757 else 758 stab_comm = FILE_SYNC; 759 resid = uiop->uio_resid; 760 offset = uiop->uio_loffset; 761 count = MIN(uiop->uio_resid, bufsize); 762 org_offset = uiop->uio_loffset; 763 error = uiomove(base, count, UIO_WRITE, uiop); 764 if (!error) { 765 error = nfs3write(vp, base, org_offset, 766 count, cr, &stab_comm); 767 } 768 } while (!error && uiop->uio_resid > 0); 769 kmem_free(base, bufsize); 770 goto bottom; 771 } 772 773 774 bsize = vp->v_vfsp->vfs_bsize; 775 776 do { 777 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 778 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 779 n = MIN(MAXBSIZE - on, uiop->uio_resid); 780 781 resid = uiop->uio_resid; 782 offset = uiop->uio_loffset; 783 784 if (rp->r_flags & RSTALE) { 785 error = rp->r_error; 786 break; 787 } 788 789 /* 790 * Don't create dirty pages faster than they 791 * can be cleaned so that the system doesn't 792 * get imbalanced. If the async queue is 793 * maxed out, then wait for it to drain before 794 * creating more dirty pages. Also, wait for 795 * any threads doing pagewalks in the vop_getattr 796 * entry points so that they don't block for 797 * long periods. 798 */ 799 mutex_enter(&rp->r_statelock); 800 while ((mi->mi_max_threads != 0 && 801 rp->r_awcount > 2 * mi->mi_max_threads) || 802 rp->r_gcount > 0) 803 cv_wait(&rp->r_cv, &rp->r_statelock); 804 mutex_exit(&rp->r_statelock); 805 806 /* 807 * Touch the page and fault it in if it is not in core 808 * before segmap_getmapflt or vpm_data_copy can lock it. 809 * This is to avoid the deadlock if the buffer is mapped 810 * to the same file through mmap which we want to write. 811 */ 812 uio_prefaultpages((long)n, uiop); 813 814 if (vpm_enable) { 815 /* 816 * It will use kpm mappings, so no need to 817 * pass an address. 818 */ 819 error = writerp(rp, NULL, n, uiop, 0); 820 } else { 821 if (segmap_kpm) { 822 int pon = uiop->uio_loffset & PAGEOFFSET; 823 size_t pn = MIN(PAGESIZE - pon, 824 uiop->uio_resid); 825 int pagecreate; 826 827 mutex_enter(&rp->r_statelock); 828 pagecreate = (pon == 0) && (pn == PAGESIZE || 829 uiop->uio_loffset + pn >= rp->r_size); 830 mutex_exit(&rp->r_statelock); 831 832 base = segmap_getmapflt(segkmap, vp, off + on, 833 pn, !pagecreate, S_WRITE); 834 835 error = writerp(rp, base + pon, n, uiop, 836 pagecreate); 837 838 } else { 839 base = segmap_getmapflt(segkmap, vp, off + on, 840 n, 0, S_READ); 841 error = writerp(rp, base + on, n, uiop, 0); 842 } 843 } 844 845 if (!error) { 846 if (mi->mi_flags & MI_NOAC) 847 flags = SM_WRITE; 848 else if ((uiop->uio_loffset % bsize) == 0 || 849 IS_SWAPVP(vp)) { 850 /* 851 * Have written a whole block. 852 * Start an asynchronous write 853 * and mark the buffer to 854 * indicate that it won't be 855 * needed again soon. 856 */ 857 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 858 } else 859 flags = 0; 860 if ((ioflag & (FSYNC|FDSYNC)) || 861 (rp->r_flags & ROUTOFSPACE)) { 862 flags &= ~SM_ASYNC; 863 flags |= SM_WRITE; 864 } 865 if (vpm_enable) { 866 error = vpm_sync_pages(vp, off, n, flags); 867 } else { 868 error = segmap_release(segkmap, base, flags); 869 } 870 } else { 871 if (vpm_enable) { 872 (void) vpm_sync_pages(vp, off, n, 0); 873 } else { 874 (void) segmap_release(segkmap, base, 0); 875 } 876 /* 877 * In the event that we got an access error while 878 * faulting in a page for a write-only file just 879 * force a write. 880 */ 881 if (error == EACCES) 882 goto nfs3_fwrite; 883 } 884 } while (!error && uiop->uio_resid > 0); 885 886 bottom: 887 if (error) { 888 uiop->uio_resid = resid + remainder; 889 uiop->uio_loffset = offset; 890 } else 891 uiop->uio_resid += remainder; 892 893 nfs_rw_exit(&rp->r_lkserlock); 894 895 return (error); 896 } 897 898 /* 899 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 900 */ 901 static int 902 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 903 int flags, cred_t *cr) 904 { 905 struct buf *bp; 906 int error; 907 page_t *savepp; 908 uchar_t fsdata; 909 stable_how stab_comm; 910 911 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 912 bp = pageio_setup(pp, len, vp, flags); 913 ASSERT(bp != NULL); 914 915 /* 916 * pageio_setup should have set b_addr to 0. This 917 * is correct since we want to do I/O on a page 918 * boundary. bp_mapin will use this addr to calculate 919 * an offset, and then set b_addr to the kernel virtual 920 * address it allocated for us. 921 */ 922 ASSERT(bp->b_un.b_addr == 0); 923 924 bp->b_edev = 0; 925 bp->b_dev = 0; 926 bp->b_lblkno = lbtodb(off); 927 bp->b_file = vp; 928 bp->b_offset = (offset_t)off; 929 bp_mapin(bp); 930 931 /* 932 * Calculate the desired level of stability to write data 933 * on the server and then mark all of the pages to reflect 934 * this. 935 */ 936 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 937 freemem > desfree) { 938 stab_comm = UNSTABLE; 939 fsdata = C_DELAYCOMMIT; 940 } else { 941 stab_comm = FILE_SYNC; 942 fsdata = C_NOCOMMIT; 943 } 944 945 savepp = pp; 946 do { 947 pp->p_fsdata = fsdata; 948 } while ((pp = pp->p_next) != savepp); 949 950 error = nfs3_bio(bp, &stab_comm, cr); 951 952 bp_mapout(bp); 953 pageio_done(bp); 954 955 /* 956 * If the server wrote pages in a more stable fashion than 957 * was requested, then clear all of the marks in the pages 958 * indicating that COMMIT operations were required. 959 */ 960 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) { 961 do { 962 pp->p_fsdata = C_NOCOMMIT; 963 } while ((pp = pp->p_next) != savepp); 964 } 965 966 return (error); 967 } 968 969 /* 970 * Write to file. Writes to remote server in largest size 971 * chunks that the server can handle. Write is synchronous. 972 */ 973 static int 974 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 975 stable_how *stab_comm) 976 { 977 mntinfo_t *mi; 978 WRITE3args args; 979 WRITE3res res; 980 int error; 981 int tsize; 982 rnode_t *rp; 983 int douprintf; 984 985 rp = VTOR(vp); 986 mi = VTOMI(vp); 987 988 ASSERT(nfs_zone() == mi->mi_zone); 989 990 args.file = *VTOFH3(vp); 991 args.stable = *stab_comm; 992 993 *stab_comm = FILE_SYNC; 994 995 douprintf = 1; 996 997 do { 998 if ((vp->v_flag & VNOCACHE) || 999 (rp->r_flags & RDIRECTIO) || 1000 (mi->mi_flags & MI_DIRECTIO)) 1001 tsize = MIN(mi->mi_stsize, count); 1002 else 1003 tsize = MIN(mi->mi_curwrite, count); 1004 args.offset = (offset3)offset; 1005 args.count = (count3)tsize; 1006 args.data.data_len = (uint_t)tsize; 1007 args.data.data_val = base; 1008 1009 if (mi->mi_io_kstats) { 1010 mutex_enter(&mi->mi_lock); 1011 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1012 mutex_exit(&mi->mi_lock); 1013 } 1014 args.mblk = NULL; 1015 do { 1016 error = rfs3call(mi, NFSPROC3_WRITE, 1017 xdr_WRITE3args, (caddr_t)&args, 1018 xdr_WRITE3res, (caddr_t)&res, cr, 1019 &douprintf, &res.status, 0, NULL); 1020 } while (error == ENFS_TRYAGAIN); 1021 if (mi->mi_io_kstats) { 1022 mutex_enter(&mi->mi_lock); 1023 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1024 mutex_exit(&mi->mi_lock); 1025 } 1026 1027 if (error) 1028 return (error); 1029 error = geterrno3(res.status); 1030 if (!error) { 1031 if (res.resok.count > args.count) { 1032 zcmn_err(getzoneid(), CE_WARN, 1033 "nfs3write: server %s wrote %u, " 1034 "requested was %u", 1035 rp->r_server->sv_hostname, 1036 res.resok.count, args.count); 1037 return (EIO); 1038 } 1039 if (res.resok.committed == UNSTABLE) { 1040 *stab_comm = UNSTABLE; 1041 if (args.stable == DATA_SYNC || 1042 args.stable == FILE_SYNC) { 1043 zcmn_err(getzoneid(), CE_WARN, 1044 "nfs3write: server %s did not commit to stable storage", 1045 rp->r_server->sv_hostname); 1046 return (EIO); 1047 } 1048 } 1049 tsize = (int)res.resok.count; 1050 count -= tsize; 1051 base += tsize; 1052 offset += tsize; 1053 if (mi->mi_io_kstats) { 1054 mutex_enter(&mi->mi_lock); 1055 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 1056 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 1057 tsize; 1058 mutex_exit(&mi->mi_lock); 1059 } 1060 lwp_stat_update(LWP_STAT_OUBLK, 1); 1061 mutex_enter(&rp->r_statelock); 1062 if (rp->r_flags & RHAVEVERF) { 1063 if (rp->r_verf != res.resok.verf) { 1064 nfs3_set_mod(vp); 1065 rp->r_verf = res.resok.verf; 1066 /* 1067 * If the data was written UNSTABLE, 1068 * then might as well stop because 1069 * the whole block will have to get 1070 * rewritten anyway. 1071 */ 1072 if (*stab_comm == UNSTABLE) { 1073 mutex_exit(&rp->r_statelock); 1074 break; 1075 } 1076 } 1077 } else { 1078 rp->r_verf = res.resok.verf; 1079 rp->r_flags |= RHAVEVERF; 1080 } 1081 /* 1082 * Mark the attribute cache as timed out and 1083 * set RWRITEATTR to indicate that the file 1084 * was modified with a WRITE operation and 1085 * that the attributes can not be trusted. 1086 */ 1087 PURGE_ATTRCACHE_LOCKED(rp); 1088 rp->r_flags |= RWRITEATTR; 1089 mutex_exit(&rp->r_statelock); 1090 } 1091 } while (!error && count); 1092 1093 return (error); 1094 } 1095 1096 /* 1097 * Read from a file. Reads data in largest chunks our interface can handle. 1098 */ 1099 static int 1100 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count, 1101 size_t *residp, cred_t *cr) 1102 { 1103 mntinfo_t *mi; 1104 READ3args args; 1105 READ3vres res; 1106 int tsize; 1107 int error; 1108 int douprintf; 1109 failinfo_t fi; 1110 rnode_t *rp; 1111 struct vattr va; 1112 hrtime_t t; 1113 1114 rp = VTOR(vp); 1115 mi = VTOMI(vp); 1116 ASSERT(nfs_zone() == mi->mi_zone); 1117 douprintf = 1; 1118 1119 args.file = *VTOFH3(vp); 1120 fi.vp = vp; 1121 fi.fhp = (caddr_t)&args.file; 1122 fi.copyproc = nfs3copyfh; 1123 fi.lookupproc = nfs3lookup; 1124 fi.xattrdirproc = acl_getxattrdir3; 1125 1126 res.pov.fres.vp = vp; 1127 res.pov.fres.vap = &va; 1128 1129 res.wlist = NULL; 1130 *residp = count; 1131 do { 1132 if (mi->mi_io_kstats) { 1133 mutex_enter(&mi->mi_lock); 1134 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1135 mutex_exit(&mi->mi_lock); 1136 } 1137 1138 do { 1139 if ((vp->v_flag & VNOCACHE) || 1140 (rp->r_flags & RDIRECTIO) || 1141 (mi->mi_flags & MI_DIRECTIO)) 1142 tsize = MIN(mi->mi_tsize, count); 1143 else 1144 tsize = MIN(mi->mi_curread, count); 1145 res.data.data_val = base; 1146 res.data.data_len = tsize; 1147 args.offset = (offset3)offset; 1148 args.count = (count3)tsize; 1149 args.res_uiop = NULL; 1150 args.res_data_val_alt = base; 1151 1152 t = gethrtime(); 1153 error = rfs3call(mi, NFSPROC3_READ, 1154 xdr_READ3args, (caddr_t)&args, 1155 xdr_READ3vres, (caddr_t)&res, cr, 1156 &douprintf, &res.status, 0, &fi); 1157 } while (error == ENFS_TRYAGAIN); 1158 1159 if (mi->mi_io_kstats) { 1160 mutex_enter(&mi->mi_lock); 1161 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1162 mutex_exit(&mi->mi_lock); 1163 } 1164 1165 if (error) 1166 return (error); 1167 1168 error = geterrno3(res.status); 1169 if (error) 1170 return (error); 1171 1172 if (res.count != res.data.data_len) { 1173 zcmn_err(getzoneid(), CE_WARN, 1174 "nfs3read: server %s returned incorrect amount", 1175 rp->r_server->sv_hostname); 1176 return (EIO); 1177 } 1178 1179 count -= res.count; 1180 *residp = count; 1181 base += res.count; 1182 offset += res.count; 1183 if (mi->mi_io_kstats) { 1184 mutex_enter(&mi->mi_lock); 1185 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1186 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 1187 mutex_exit(&mi->mi_lock); 1188 } 1189 lwp_stat_update(LWP_STAT_INBLK, 1); 1190 } while (count && !res.eof); 1191 1192 if (res.pov.attributes) { 1193 mutex_enter(&rp->r_statelock); 1194 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) { 1195 mutex_exit(&rp->r_statelock); 1196 PURGE_ATTRCACHE(vp); 1197 } else { 1198 if (rp->r_mtime <= t) 1199 nfs_attrcache_va(vp, &va); 1200 mutex_exit(&rp->r_statelock); 1201 } 1202 } 1203 1204 return (0); 1205 } 1206 1207 /* ARGSUSED */ 1208 static int 1209 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1210 caller_context_t *ct) 1211 { 1212 1213 if (nfs_zone() != VTOMI(vp)->mi_zone) 1214 return (EIO); 1215 switch (cmd) { 1216 case _FIODIRECTIO: 1217 return (nfs_directio(vp, (int)arg, cr)); 1218 default: 1219 return (ENOTTY); 1220 } 1221 } 1222 1223 /* ARGSUSED */ 1224 static int 1225 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1226 caller_context_t *ct) 1227 { 1228 int error; 1229 rnode_t *rp; 1230 1231 if (nfs_zone() != VTOMI(vp)->mi_zone) 1232 return (EIO); 1233 /* 1234 * If it has been specified that the return value will 1235 * just be used as a hint, and we are only being asked 1236 * for size, fsid or rdevid, then return the client's 1237 * notion of these values without checking to make sure 1238 * that the attribute cache is up to date. 1239 * The whole point is to avoid an over the wire GETATTR 1240 * call. 1241 */ 1242 rp = VTOR(vp); 1243 if (flags & ATTR_HINT) { 1244 if (vap->va_mask == 1245 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1246 mutex_enter(&rp->r_statelock); 1247 if (vap->va_mask | AT_SIZE) 1248 vap->va_size = rp->r_size; 1249 if (vap->va_mask | AT_FSID) 1250 vap->va_fsid = rp->r_attr.va_fsid; 1251 if (vap->va_mask | AT_RDEV) 1252 vap->va_rdev = rp->r_attr.va_rdev; 1253 mutex_exit(&rp->r_statelock); 1254 return (0); 1255 } 1256 } 1257 1258 /* 1259 * Only need to flush pages if asking for the mtime 1260 * and if there any dirty pages or any outstanding 1261 * asynchronous (write) requests for this file. 1262 */ 1263 if (vap->va_mask & AT_MTIME) { 1264 if (vn_has_cached_data(vp) && 1265 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1266 mutex_enter(&rp->r_statelock); 1267 rp->r_gcount++; 1268 mutex_exit(&rp->r_statelock); 1269 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1270 mutex_enter(&rp->r_statelock); 1271 if (error && (error == ENOSPC || error == EDQUOT)) { 1272 if (!rp->r_error) 1273 rp->r_error = error; 1274 } 1275 if (--rp->r_gcount == 0) 1276 cv_broadcast(&rp->r_cv); 1277 mutex_exit(&rp->r_statelock); 1278 } 1279 } 1280 1281 return (nfs3getattr(vp, vap, cr)); 1282 } 1283 1284 /*ARGSUSED4*/ 1285 static int 1286 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1287 caller_context_t *ct) 1288 { 1289 int error; 1290 struct vattr va; 1291 1292 if (vap->va_mask & AT_NOSET) 1293 return (EINVAL); 1294 if (nfs_zone() != VTOMI(vp)->mi_zone) 1295 return (EIO); 1296 1297 va.va_mask = AT_UID | AT_MODE; 1298 error = nfs3getattr(vp, &va, cr); 1299 if (error) 1300 return (error); 1301 1302 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx, 1303 vp); 1304 if (error) 1305 return (error); 1306 1307 return (nfs3setattr(vp, vap, flags, cr)); 1308 } 1309 1310 static int 1311 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1312 { 1313 int error; 1314 uint_t mask; 1315 SETATTR3args args; 1316 SETATTR3res res; 1317 int douprintf; 1318 rnode_t *rp; 1319 struct vattr va; 1320 mode_t omode; 1321 vsecattr_t *vsp; 1322 hrtime_t t; 1323 1324 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1325 mask = vap->va_mask; 1326 1327 rp = VTOR(vp); 1328 1329 /* 1330 * Only need to flush pages if there are any pages and 1331 * if the file is marked as dirty in some fashion. The 1332 * file must be flushed so that we can accurately 1333 * determine the size of the file and the cached data 1334 * after the SETATTR returns. A file is considered to 1335 * be dirty if it is either marked with RDIRTY, has 1336 * outstanding i/o's active, or is mmap'd. In this 1337 * last case, we can't tell whether there are dirty 1338 * pages, so we flush just to be sure. 1339 */ 1340 if (vn_has_cached_data(vp) && 1341 ((rp->r_flags & RDIRTY) || 1342 rp->r_count > 0 || 1343 rp->r_mapcnt > 0)) { 1344 ASSERT(vp->v_type != VCHR); 1345 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1346 if (error && (error == ENOSPC || error == EDQUOT)) { 1347 mutex_enter(&rp->r_statelock); 1348 if (!rp->r_error) 1349 rp->r_error = error; 1350 mutex_exit(&rp->r_statelock); 1351 } 1352 } 1353 1354 args.object = *RTOFH3(rp); 1355 /* 1356 * If the intent is for the server to set the times, 1357 * there is no point in have the mask indicating set mtime or 1358 * atime, because the vap values may be junk, and so result 1359 * in an overflow error. Remove these flags from the vap mask 1360 * before calling in this case, and restore them afterwards. 1361 */ 1362 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) { 1363 /* Use server times, so don't set the args time fields */ 1364 vap->va_mask &= ~(AT_ATIME | AT_MTIME); 1365 error = vattr_to_sattr3(vap, &args.new_attributes); 1366 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME)); 1367 if (mask & AT_ATIME) { 1368 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 1369 } 1370 if (mask & AT_MTIME) { 1371 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 1372 } 1373 } else { 1374 /* Either do not set times or use the client specified times */ 1375 error = vattr_to_sattr3(vap, &args.new_attributes); 1376 } 1377 1378 if (error) { 1379 /* req time field(s) overflow - return immediately */ 1380 return (error); 1381 } 1382 1383 va.va_mask = AT_MODE | AT_CTIME; 1384 error = nfs3getattr(vp, &va, cr); 1385 if (error) 1386 return (error); 1387 omode = va.va_mode; 1388 1389 tryagain: 1390 if (mask & AT_SIZE) { 1391 args.guard.check = TRUE; 1392 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec; 1393 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec; 1394 } else 1395 args.guard.check = FALSE; 1396 1397 douprintf = 1; 1398 1399 t = gethrtime(); 1400 1401 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 1402 xdr_SETATTR3args, (caddr_t)&args, 1403 xdr_SETATTR3res, (caddr_t)&res, cr, 1404 &douprintf, &res.status, 0, NULL); 1405 1406 /* 1407 * Purge the access cache and ACL cache if changing either the 1408 * owner of the file, the group owner, or the mode. These may 1409 * change the access permissions of the file, so purge old 1410 * information and start over again. 1411 */ 1412 if (mask & (AT_UID | AT_GID | AT_MODE)) { 1413 (void) nfs_access_purge_rp(rp); 1414 if (rp->r_secattr != NULL) { 1415 mutex_enter(&rp->r_statelock); 1416 vsp = rp->r_secattr; 1417 rp->r_secattr = NULL; 1418 mutex_exit(&rp->r_statelock); 1419 if (vsp != NULL) 1420 nfs_acl_free(vsp); 1421 } 1422 } 1423 1424 if (error) { 1425 PURGE_ATTRCACHE(vp); 1426 return (error); 1427 } 1428 1429 error = geterrno3(res.status); 1430 if (!error) { 1431 /* 1432 * If changing the size of the file, invalidate 1433 * any local cached data which is no longer part 1434 * of the file. We also possibly invalidate the 1435 * last page in the file. We could use 1436 * pvn_vpzero(), but this would mark the page as 1437 * modified and require it to be written back to 1438 * the server for no particularly good reason. 1439 * This way, if we access it, then we bring it 1440 * back in. A read should be cheaper than a 1441 * write. 1442 */ 1443 if (mask & AT_SIZE) { 1444 nfs_invalidate_pages(vp, 1445 (vap->va_size & PAGEMASK), cr); 1446 } 1447 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 1448 /* 1449 * Some servers will change the mode to clear the setuid 1450 * and setgid bits when changing the uid or gid. The 1451 * client needs to compensate appropriately. 1452 */ 1453 if (mask & (AT_UID | AT_GID)) { 1454 int terror; 1455 1456 va.va_mask = AT_MODE; 1457 terror = nfs3getattr(vp, &va, cr); 1458 if (!terror && 1459 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 1460 (!(mask & AT_MODE) && va.va_mode != omode))) { 1461 va.va_mask = AT_MODE; 1462 if (mask & AT_MODE) 1463 va.va_mode = vap->va_mode; 1464 else 1465 va.va_mode = omode; 1466 (void) nfs3setattr(vp, &va, 0, cr); 1467 } 1468 } 1469 } else { 1470 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 1471 /* 1472 * If we got back a "not synchronized" error, then 1473 * we need to retry with a new guard value. The 1474 * guard value used is the change time. If the 1475 * server returned post_op_attr, then we can just 1476 * retry because we have the latest attributes. 1477 * Otherwise, we issue a GETATTR to get the latest 1478 * attributes and then retry. If we couldn't get 1479 * the attributes this way either, then we give 1480 * up because we can't complete the operation as 1481 * required. 1482 */ 1483 if (res.status == NFS3ERR_NOT_SYNC) { 1484 va.va_mask = AT_CTIME; 1485 if (nfs3getattr(vp, &va, cr) == 0) 1486 goto tryagain; 1487 } 1488 PURGE_STALE_FH(error, vp, cr); 1489 } 1490 1491 return (error); 1492 } 1493 1494 static int 1495 nfs3_accessx(void *vp, int mode, cred_t *cr) 1496 { 1497 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1498 return (nfs3_access(vp, mode, 0, cr, NULL)); 1499 } 1500 1501 /* ARGSUSED */ 1502 static int 1503 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1504 { 1505 int error; 1506 ACCESS3args args; 1507 ACCESS3res res; 1508 int douprintf; 1509 uint32 acc; 1510 rnode_t *rp; 1511 cred_t *cred, *ncr, *ncrfree = NULL; 1512 failinfo_t fi; 1513 nfs_access_type_t cacc; 1514 hrtime_t t; 1515 1516 acc = 0; 1517 if (nfs_zone() != VTOMI(vp)->mi_zone) 1518 return (EIO); 1519 if (mode & VREAD) 1520 acc |= ACCESS3_READ; 1521 if (mode & VWRITE) { 1522 if (vn_is_readonly(vp) && !IS_DEVVP(vp)) 1523 return (EROFS); 1524 if (vp->v_type == VDIR) 1525 acc |= ACCESS3_DELETE; 1526 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND; 1527 } 1528 if (mode & VEXEC) { 1529 if (vp->v_type == VDIR) 1530 acc |= ACCESS3_LOOKUP; 1531 else 1532 acc |= ACCESS3_EXECUTE; 1533 } 1534 1535 rp = VTOR(vp); 1536 args.object = *VTOFH3(vp); 1537 if (vp->v_type == VDIR) { 1538 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY | 1539 ACCESS3_EXTEND | ACCESS3_LOOKUP; 1540 } else { 1541 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND | 1542 ACCESS3_EXECUTE; 1543 } 1544 fi.vp = vp; 1545 fi.fhp = (caddr_t)&args.object; 1546 fi.copyproc = nfs3copyfh; 1547 fi.lookupproc = nfs3lookup; 1548 fi.xattrdirproc = acl_getxattrdir3; 1549 1550 cred = cr; 1551 /* 1552 * ncr and ncrfree both initially 1553 * point to the memory area returned 1554 * by crnetadjust(); 1555 * ncrfree not NULL when exiting means 1556 * that we need to release it 1557 */ 1558 ncr = crnetadjust(cred); 1559 ncrfree = ncr; 1560 tryagain: 1561 if (rp->r_acache != NULL) { 1562 cacc = nfs_access_check(rp, acc, cred); 1563 if (cacc == NFS_ACCESS_ALLOWED) { 1564 if (ncrfree != NULL) 1565 crfree(ncrfree); 1566 return (0); 1567 } 1568 if (cacc == NFS_ACCESS_DENIED) { 1569 /* 1570 * If the cred can be adjusted, try again 1571 * with the new cred. 1572 */ 1573 if (ncr != NULL) { 1574 cred = ncr; 1575 ncr = NULL; 1576 goto tryagain; 1577 } 1578 if (ncrfree != NULL) 1579 crfree(ncrfree); 1580 return (EACCES); 1581 } 1582 } 1583 1584 douprintf = 1; 1585 1586 t = gethrtime(); 1587 1588 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS, 1589 xdr_ACCESS3args, (caddr_t)&args, 1590 xdr_ACCESS3res, (caddr_t)&res, cred, 1591 &douprintf, &res.status, 0, &fi); 1592 1593 if (error) { 1594 if (ncrfree != NULL) 1595 crfree(ncrfree); 1596 return (error); 1597 } 1598 1599 error = geterrno3(res.status); 1600 if (!error) { 1601 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 1602 nfs_access_cache(rp, args.access, res.resok.access, cred); 1603 /* 1604 * we just cached results with cred; if cred is the 1605 * adjusted credentials from crnetadjust, we do not want 1606 * to release them before exiting: hence setting ncrfree 1607 * to NULL 1608 */ 1609 if (cred != cr) 1610 ncrfree = NULL; 1611 if ((acc & res.resok.access) != acc) { 1612 /* 1613 * If the cred can be adjusted, try again 1614 * with the new cred. 1615 */ 1616 if (ncr != NULL) { 1617 cred = ncr; 1618 ncr = NULL; 1619 goto tryagain; 1620 } 1621 error = EACCES; 1622 } 1623 } else { 1624 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 1625 PURGE_STALE_FH(error, vp, cr); 1626 } 1627 1628 if (ncrfree != NULL) 1629 crfree(ncrfree); 1630 1631 return (error); 1632 } 1633 1634 static int nfs3_do_symlink_cache = 1; 1635 1636 /* ARGSUSED */ 1637 static int 1638 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1639 { 1640 int error; 1641 READLINK3args args; 1642 READLINK3res res; 1643 nfspath3 resdata_backup; 1644 rnode_t *rp; 1645 int douprintf; 1646 int len; 1647 failinfo_t fi; 1648 hrtime_t t; 1649 1650 /* 1651 * Can't readlink anything other than a symbolic link. 1652 */ 1653 if (vp->v_type != VLNK) 1654 return (EINVAL); 1655 if (nfs_zone() != VTOMI(vp)->mi_zone) 1656 return (EIO); 1657 1658 rp = VTOR(vp); 1659 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) { 1660 error = nfs3_validate_caches(vp, cr); 1661 if (error) 1662 return (error); 1663 mutex_enter(&rp->r_statelock); 1664 if (rp->r_symlink.contents != NULL) { 1665 error = uiomove(rp->r_symlink.contents, 1666 rp->r_symlink.len, UIO_READ, uiop); 1667 mutex_exit(&rp->r_statelock); 1668 return (error); 1669 } 1670 mutex_exit(&rp->r_statelock); 1671 } 1672 1673 args.symlink = *VTOFH3(vp); 1674 fi.vp = vp; 1675 fi.fhp = (caddr_t)&args.symlink; 1676 fi.copyproc = nfs3copyfh; 1677 fi.lookupproc = nfs3lookup; 1678 fi.xattrdirproc = acl_getxattrdir3; 1679 1680 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1681 1682 resdata_backup = res.resok.data; 1683 1684 douprintf = 1; 1685 1686 t = gethrtime(); 1687 1688 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK, 1689 xdr_READLINK3args, (caddr_t)&args, 1690 xdr_READLINK3res, (caddr_t)&res, cr, 1691 &douprintf, &res.status, 0, &fi); 1692 1693 if (res.resok.data == nfs3nametoolong) 1694 error = EINVAL; 1695 1696 if (error) { 1697 kmem_free(resdata_backup, MAXPATHLEN); 1698 return (error); 1699 } 1700 1701 error = geterrno3(res.status); 1702 if (!error) { 1703 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t, 1704 cr); 1705 len = strlen(res.resok.data); 1706 error = uiomove(res.resok.data, len, UIO_READ, uiop); 1707 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) { 1708 mutex_enter(&rp->r_statelock); 1709 if (rp->r_symlink.contents == NULL) { 1710 rp->r_symlink.contents = res.resok.data; 1711 rp->r_symlink.len = len; 1712 rp->r_symlink.size = MAXPATHLEN; 1713 mutex_exit(&rp->r_statelock); 1714 } else { 1715 mutex_exit(&rp->r_statelock); 1716 1717 kmem_free((void *)res.resok.data, MAXPATHLEN); 1718 } 1719 } else { 1720 kmem_free((void *)res.resok.data, MAXPATHLEN); 1721 } 1722 } else { 1723 nfs3_cache_post_op_attr(vp, 1724 &res.resfail.symlink_attributes, t, cr); 1725 PURGE_STALE_FH(error, vp, cr); 1726 1727 kmem_free((void *)res.resok.data, MAXPATHLEN); 1728 1729 } 1730 1731 /* 1732 * The over the wire error for attempting to readlink something 1733 * other than a symbolic link is ENXIO. However, we need to 1734 * return EINVAL instead of ENXIO, so we map it here. 1735 */ 1736 return (error == ENXIO ? EINVAL : error); 1737 } 1738 1739 /* 1740 * Flush local dirty pages to stable storage on the server. 1741 * 1742 * If FNODSYNC is specified, then there is nothing to do because 1743 * metadata changes are not cached on the client before being 1744 * sent to the server. 1745 */ 1746 /* ARGSUSED */ 1747 static int 1748 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1749 { 1750 int error; 1751 1752 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1753 return (0); 1754 if (nfs_zone() != VTOMI(vp)->mi_zone) 1755 return (EIO); 1756 1757 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 1758 if (!error) 1759 error = VTOR(vp)->r_error; 1760 return (error); 1761 } 1762 1763 /* 1764 * Weirdness: if the file was removed or the target of a rename 1765 * operation while it was open, it got renamed instead. Here we 1766 * remove the renamed file. 1767 */ 1768 /* ARGSUSED */ 1769 static void 1770 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1771 { 1772 rnode_t *rp; 1773 1774 ASSERT(vp != DNLC_NO_VNODE); 1775 1776 /* 1777 * If this is coming from the wrong zone, we let someone in the right 1778 * zone take care of it asynchronously. We can get here due to 1779 * VN_RELE() being called from pageout() or fsflush(). This call may 1780 * potentially turn into an expensive no-op if, for instance, v_count 1781 * gets incremented in the meantime, but it's still correct. 1782 */ 1783 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1784 nfs_async_inactive(vp, cr, nfs3_inactive); 1785 return; 1786 } 1787 1788 rp = VTOR(vp); 1789 redo: 1790 if (rp->r_unldvp != NULL) { 1791 /* 1792 * Save the vnode pointer for the directory where the 1793 * unlinked-open file got renamed, then set it to NULL 1794 * to prevent another thread from getting here before 1795 * we're done with the remove. While we have the 1796 * statelock, make local copies of the pertinent rnode 1797 * fields. If we weren't to do this in an atomic way, the 1798 * the unl* fields could become inconsistent with respect 1799 * to each other due to a race condition between this 1800 * code and nfs_remove(). See bug report 1034328. 1801 */ 1802 mutex_enter(&rp->r_statelock); 1803 if (rp->r_unldvp != NULL) { 1804 vnode_t *unldvp; 1805 char *unlname; 1806 cred_t *unlcred; 1807 REMOVE3args args; 1808 REMOVE3res res; 1809 int douprintf; 1810 int error; 1811 hrtime_t t; 1812 1813 unldvp = rp->r_unldvp; 1814 rp->r_unldvp = NULL; 1815 unlname = rp->r_unlname; 1816 rp->r_unlname = NULL; 1817 unlcred = rp->r_unlcred; 1818 rp->r_unlcred = NULL; 1819 mutex_exit(&rp->r_statelock); 1820 1821 /* 1822 * If there are any dirty pages left, then flush 1823 * them. This is unfortunate because they just 1824 * may get thrown away during the remove operation, 1825 * but we have to do this for correctness. 1826 */ 1827 if (vn_has_cached_data(vp) && 1828 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1829 ASSERT(vp->v_type != VCHR); 1830 error = nfs3_putpage(vp, (offset_t)0, 0, 0, 1831 cr, ct); 1832 if (error) { 1833 mutex_enter(&rp->r_statelock); 1834 if (!rp->r_error) 1835 rp->r_error = error; 1836 mutex_exit(&rp->r_statelock); 1837 } 1838 } 1839 1840 /* 1841 * Do the remove operation on the renamed file 1842 */ 1843 setdiropargs3(&args.object, unlname, unldvp); 1844 1845 douprintf = 1; 1846 1847 t = gethrtime(); 1848 1849 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE, 1850 xdr_diropargs3, (caddr_t)&args, 1851 xdr_REMOVE3res, (caddr_t)&res, unlcred, 1852 &douprintf, &res.status, 0, NULL); 1853 1854 if (error) { 1855 PURGE_ATTRCACHE(unldvp); 1856 } else { 1857 error = geterrno3(res.status); 1858 if (!error) { 1859 nfs3_cache_wcc_data(unldvp, 1860 &res.resok.dir_wcc, t, cr); 1861 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1862 nfs_purge_rddir_cache(unldvp); 1863 } else { 1864 nfs3_cache_wcc_data(unldvp, 1865 &res.resfail.dir_wcc, t, cr); 1866 PURGE_STALE_FH(error, unldvp, cr); 1867 } 1868 } 1869 1870 /* 1871 * Release stuff held for the remove 1872 */ 1873 VN_RELE(unldvp); 1874 kmem_free(unlname, MAXNAMELEN); 1875 crfree(unlcred); 1876 goto redo; 1877 } 1878 mutex_exit(&rp->r_statelock); 1879 } 1880 1881 rp_addfree(rp, cr); 1882 } 1883 1884 /* 1885 * Remote file system operations having to do with directory manipulation. 1886 */ 1887 1888 /* ARGSUSED */ 1889 static int 1890 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1891 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1892 int *direntflags, pathname_t *realpnp) 1893 { 1894 int error; 1895 vnode_t *vp; 1896 vnode_t *avp = NULL; 1897 rnode_t *drp; 1898 1899 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1900 return (EPERM); 1901 1902 drp = VTOR(dvp); 1903 1904 /* 1905 * Are we looking up extended attributes? If so, "dvp" is 1906 * the file or directory for which we want attributes, and 1907 * we need a lookup of the hidden attribute directory 1908 * before we lookup the rest of the path. 1909 */ 1910 if (flags & LOOKUP_XATTR) { 1911 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1912 mntinfo_t *mi; 1913 1914 mi = VTOMI(dvp); 1915 if (!(mi->mi_flags & MI_EXTATTR)) 1916 return (EINVAL); 1917 1918 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1919 return (EINTR); 1920 1921 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1922 if (avp == NULL) 1923 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0); 1924 else 1925 error = 0; 1926 1927 nfs_rw_exit(&drp->r_rwlock); 1928 1929 if (error) { 1930 if (mi->mi_flags & MI_EXTATTR) 1931 return (error); 1932 return (EINVAL); 1933 } 1934 dvp = avp; 1935 drp = VTOR(dvp); 1936 } 1937 1938 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1939 error = EINTR; 1940 goto out; 1941 } 1942 1943 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1944 1945 nfs_rw_exit(&drp->r_rwlock); 1946 1947 /* 1948 * If vnode is a device, create special vnode. 1949 */ 1950 if (!error && IS_DEVVP(*vpp)) { 1951 vp = *vpp; 1952 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1953 VN_RELE(vp); 1954 } 1955 1956 out: 1957 if (avp != NULL) 1958 VN_RELE(avp); 1959 1960 return (error); 1961 } 1962 1963 static int nfs3_lookup_neg_cache = 1; 1964 1965 #ifdef DEBUG 1966 static int nfs3_lookup_dnlc_hits = 0; 1967 static int nfs3_lookup_dnlc_misses = 0; 1968 static int nfs3_lookup_dnlc_neg_hits = 0; 1969 static int nfs3_lookup_dnlc_disappears = 0; 1970 static int nfs3_lookup_dnlc_lookups = 0; 1971 #endif 1972 1973 /* ARGSUSED */ 1974 int 1975 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1976 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1977 { 1978 int error; 1979 rnode_t *drp; 1980 1981 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1982 /* 1983 * If lookup is for "", just return dvp. Don't need 1984 * to send it over the wire, look it up in the dnlc, 1985 * or perform any access checks. 1986 */ 1987 if (*nm == '\0') { 1988 VN_HOLD(dvp); 1989 *vpp = dvp; 1990 return (0); 1991 } 1992 1993 /* 1994 * Can't do lookups in non-directories. 1995 */ 1996 if (dvp->v_type != VDIR) 1997 return (ENOTDIR); 1998 1999 /* 2000 * If we're called with RFSCALL_SOFT, it's important that 2001 * the only rfscall is one we make directly; if we permit 2002 * an access call because we're looking up "." or validating 2003 * a dnlc hit, we'll deadlock because that rfscall will not 2004 * have the RFSCALL_SOFT set. 2005 */ 2006 if (rfscall_flags & RFSCALL_SOFT) 2007 goto callit; 2008 2009 /* 2010 * If lookup is for ".", just return dvp. Don't need 2011 * to send it over the wire or look it up in the dnlc, 2012 * just need to check access. 2013 */ 2014 if (strcmp(nm, ".") == 0) { 2015 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2016 if (error) 2017 return (error); 2018 VN_HOLD(dvp); 2019 *vpp = dvp; 2020 return (0); 2021 } 2022 2023 drp = VTOR(dvp); 2024 if (!(drp->r_flags & RLOOKUP)) { 2025 mutex_enter(&drp->r_statelock); 2026 drp->r_flags |= RLOOKUP; 2027 mutex_exit(&drp->r_statelock); 2028 } 2029 2030 /* 2031 * Lookup this name in the DNLC. If there was a valid entry, 2032 * then return the results of the lookup. 2033 */ 2034 error = nfs3lookup_dnlc(dvp, nm, vpp, cr); 2035 if (error || *vpp != NULL) 2036 return (error); 2037 2038 callit: 2039 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags); 2040 2041 return (error); 2042 } 2043 2044 static int 2045 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 2046 { 2047 int error; 2048 vnode_t *vp; 2049 2050 ASSERT(*nm != '\0'); 2051 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2052 /* 2053 * Lookup this name in the DNLC. If successful, then validate 2054 * the caches and then recheck the DNLC. The DNLC is rechecked 2055 * just in case this entry got invalidated during the call 2056 * to nfs3_validate_caches. 2057 * 2058 * An assumption is being made that it is safe to say that a 2059 * file exists which may not on the server. Any operations to 2060 * the server will fail with ESTALE. 2061 */ 2062 #ifdef DEBUG 2063 nfs3_lookup_dnlc_lookups++; 2064 #endif 2065 vp = dnlc_lookup(dvp, nm); 2066 if (vp != NULL) { 2067 VN_RELE(vp); 2068 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 2069 PURGE_ATTRCACHE(dvp); 2070 } 2071 error = nfs3_validate_caches(dvp, cr); 2072 if (error) 2073 return (error); 2074 vp = dnlc_lookup(dvp, nm); 2075 if (vp != NULL) { 2076 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2077 if (error) { 2078 VN_RELE(vp); 2079 return (error); 2080 } 2081 if (vp == DNLC_NO_VNODE) { 2082 VN_RELE(vp); 2083 #ifdef DEBUG 2084 nfs3_lookup_dnlc_neg_hits++; 2085 #endif 2086 return (ENOENT); 2087 } 2088 *vpp = vp; 2089 #ifdef DEBUG 2090 nfs3_lookup_dnlc_hits++; 2091 #endif 2092 return (0); 2093 } 2094 #ifdef DEBUG 2095 nfs3_lookup_dnlc_disappears++; 2096 #endif 2097 } 2098 #ifdef DEBUG 2099 else 2100 nfs3_lookup_dnlc_misses++; 2101 #endif 2102 2103 *vpp = NULL; 2104 2105 return (0); 2106 } 2107 2108 static int 2109 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 2110 int rfscall_flags) 2111 { 2112 int error; 2113 LOOKUP3args args; 2114 LOOKUP3vres res; 2115 int douprintf; 2116 struct vattr vattr; 2117 struct vattr dvattr; 2118 vnode_t *vp; 2119 failinfo_t fi; 2120 hrtime_t t; 2121 2122 ASSERT(*nm != '\0'); 2123 ASSERT(dvp->v_type == VDIR); 2124 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2125 2126 setdiropargs3(&args.what, nm, dvp); 2127 2128 fi.vp = dvp; 2129 fi.fhp = (caddr_t)&args.what.dir; 2130 fi.copyproc = nfs3copyfh; 2131 fi.lookupproc = nfs3lookup; 2132 fi.xattrdirproc = acl_getxattrdir3; 2133 res.obj_attributes.fres.vp = dvp; 2134 res.obj_attributes.fres.vap = &vattr; 2135 res.dir_attributes.fres.vp = dvp; 2136 res.dir_attributes.fres.vap = &dvattr; 2137 2138 douprintf = 1; 2139 2140 t = gethrtime(); 2141 2142 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP, 2143 xdr_diropargs3, (caddr_t)&args, 2144 xdr_LOOKUP3vres, (caddr_t)&res, cr, 2145 &douprintf, &res.status, rfscall_flags, &fi); 2146 2147 if (error) 2148 return (error); 2149 2150 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr); 2151 2152 error = geterrno3(res.status); 2153 if (error) { 2154 PURGE_STALE_FH(error, dvp, cr); 2155 if (error == ENOENT && nfs3_lookup_neg_cache) 2156 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 2157 return (error); 2158 } 2159 2160 if (res.obj_attributes.attributes) { 2161 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap, 2162 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2163 } else { 2164 vp = makenfs3node_va(&res.object, NULL, 2165 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2166 if (vp->v_type == VNON) { 2167 vattr.va_mask = AT_TYPE; 2168 error = nfs3getattr(vp, &vattr, cr); 2169 if (error) { 2170 VN_RELE(vp); 2171 return (error); 2172 } 2173 vp->v_type = vattr.va_type; 2174 } 2175 } 2176 2177 if (!(rfscall_flags & RFSCALL_SOFT)) 2178 dnlc_update(dvp, nm, vp); 2179 2180 *vpp = vp; 2181 2182 return (error); 2183 } 2184 2185 #ifdef DEBUG 2186 static int nfs3_create_misses = 0; 2187 #endif 2188 2189 /* ARGSUSED */ 2190 static int 2191 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2192 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 2193 vsecattr_t *vsecp) 2194 { 2195 int error; 2196 vnode_t *vp; 2197 rnode_t *rp; 2198 struct vattr vattr; 2199 rnode_t *drp; 2200 vnode_t *tempvp; 2201 2202 drp = VTOR(dvp); 2203 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2204 return (EPERM); 2205 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2206 return (EINTR); 2207 2208 top: 2209 /* 2210 * We make a copy of the attributes because the caller does not 2211 * expect us to change what va points to. 2212 */ 2213 vattr = *va; 2214 2215 /* 2216 * If the pathname is "", just use dvp. Don't need 2217 * to send it over the wire, look it up in the dnlc, 2218 * or perform any access checks. 2219 */ 2220 if (*nm == '\0') { 2221 error = 0; 2222 VN_HOLD(dvp); 2223 vp = dvp; 2224 /* 2225 * If the pathname is ".", just use dvp. Don't need 2226 * to send it over the wire or look it up in the dnlc, 2227 * just need to check access. 2228 */ 2229 } else if (strcmp(nm, ".") == 0) { 2230 error = nfs3_access(dvp, VEXEC, 0, cr, ct); 2231 if (error) { 2232 nfs_rw_exit(&drp->r_rwlock); 2233 return (error); 2234 } 2235 VN_HOLD(dvp); 2236 vp = dvp; 2237 /* 2238 * We need to go over the wire, just to be sure whether the 2239 * file exists or not. Using the DNLC can be dangerous in 2240 * this case when making a decision regarding existence. 2241 */ 2242 } else { 2243 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0); 2244 } 2245 if (!error) { 2246 if (exclusive == EXCL) 2247 error = EEXIST; 2248 else if (vp->v_type == VDIR && (mode & VWRITE)) 2249 error = EISDIR; 2250 else { 2251 /* 2252 * If vnode is a device, create special vnode. 2253 */ 2254 if (IS_DEVVP(vp)) { 2255 tempvp = vp; 2256 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2257 VN_RELE(tempvp); 2258 } 2259 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 2260 if ((vattr.va_mask & AT_SIZE) && 2261 vp->v_type == VREG) { 2262 rp = VTOR(vp); 2263 /* 2264 * Check here for large file handled 2265 * by LF-unaware process (as 2266 * ufs_create() does) 2267 */ 2268 if (!(lfaware & FOFFMAX)) { 2269 mutex_enter(&rp->r_statelock); 2270 if (rp->r_size > MAXOFF32_T) 2271 error = EOVERFLOW; 2272 mutex_exit(&rp->r_statelock); 2273 } 2274 if (!error) { 2275 vattr.va_mask = AT_SIZE; 2276 error = nfs3setattr(vp, 2277 &vattr, 0, cr); 2278 } 2279 } 2280 } 2281 } 2282 nfs_rw_exit(&drp->r_rwlock); 2283 if (error) { 2284 VN_RELE(vp); 2285 } else { 2286 /* 2287 * existing file got truncated, notify. 2288 */ 2289 vnevent_create(vp, ct); 2290 *vpp = vp; 2291 } 2292 return (error); 2293 } 2294 2295 dnlc_remove(dvp, nm); 2296 2297 /* 2298 * Decide what the group-id of the created file should be. 2299 * Set it in attribute list as advisory... 2300 */ 2301 error = setdirgid(dvp, &vattr.va_gid, cr); 2302 if (error) { 2303 nfs_rw_exit(&drp->r_rwlock); 2304 return (error); 2305 } 2306 vattr.va_mask |= AT_GID; 2307 2308 ASSERT(vattr.va_mask & AT_TYPE); 2309 if (vattr.va_type == VREG) { 2310 ASSERT(vattr.va_mask & AT_MODE); 2311 if (MANDMODE(vattr.va_mode)) { 2312 nfs_rw_exit(&drp->r_rwlock); 2313 return (EACCES); 2314 } 2315 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr, 2316 lfaware); 2317 /* 2318 * If this is not an exclusive create, then the CREATE 2319 * request will be made with the GUARDED mode set. This 2320 * means that the server will return EEXIST if the file 2321 * exists. The file could exist because of a retransmitted 2322 * request. In this case, we recover by starting over and 2323 * checking to see whether the file exists. This second 2324 * time through it should and a CREATE request will not be 2325 * sent. 2326 * 2327 * This handles the problem of a dangling CREATE request 2328 * which contains attributes which indicate that the file 2329 * should be truncated. This retransmitted request could 2330 * possibly truncate valid data in the file if not caught 2331 * by the duplicate request mechanism on the server or if 2332 * not caught by other means. The scenario is: 2333 * 2334 * Client transmits CREATE request with size = 0 2335 * Client times out, retransmits request. 2336 * Response to the first request arrives from the server 2337 * and the client proceeds on. 2338 * Client writes data to the file. 2339 * The server now processes retransmitted CREATE request 2340 * and truncates file. 2341 * 2342 * The use of the GUARDED CREATE request prevents this from 2343 * happening because the retransmitted CREATE would fail 2344 * with EEXIST and would not truncate the file. 2345 */ 2346 if (error == EEXIST && exclusive == NONEXCL) { 2347 #ifdef DEBUG 2348 nfs3_create_misses++; 2349 #endif 2350 goto top; 2351 } 2352 nfs_rw_exit(&drp->r_rwlock); 2353 return (error); 2354 } 2355 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 2356 nfs_rw_exit(&drp->r_rwlock); 2357 return (error); 2358 } 2359 2360 /* ARGSUSED */ 2361 static int 2362 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2363 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 2364 { 2365 int error; 2366 CREATE3args args; 2367 CREATE3res res; 2368 int douprintf; 2369 vnode_t *vp; 2370 struct vattr vattr; 2371 nfstime3 *verfp; 2372 rnode_t *rp; 2373 timestruc_t now; 2374 hrtime_t t; 2375 2376 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2377 setdiropargs3(&args.where, nm, dvp); 2378 if (exclusive == EXCL) { 2379 args.how.mode = EXCLUSIVE; 2380 /* 2381 * Construct the create verifier. This verifier needs 2382 * to be unique between different clients. It also needs 2383 * to vary for each exclusive create request generated 2384 * from the client to the server. 2385 * 2386 * The first attempt is made to use the hostid and a 2387 * unique number on the client. If the hostid has not 2388 * been set, the high resolution time that the exclusive 2389 * create request is being made is used. This will work 2390 * unless two different clients, both with the hostid 2391 * not set, attempt an exclusive create request on the 2392 * same file, at exactly the same clock time. The 2393 * chances of this happening seem small enough to be 2394 * reasonable. 2395 */ 2396 verfp = (nfstime3 *)&args.how.createhow3_u.verf; 2397 verfp->seconds = zone_get_hostid(NULL); 2398 if (verfp->seconds != 0) 2399 verfp->nseconds = newnum(); 2400 else { 2401 gethrestime(&now); 2402 verfp->seconds = now.tv_sec; 2403 verfp->nseconds = now.tv_nsec; 2404 } 2405 /* 2406 * Since the server will use this value for the mtime, 2407 * make sure that it can't overflow. Zero out the MSB. 2408 * The actual value does not matter here, only its uniqeness. 2409 */ 2410 verfp->seconds %= INT32_MAX; 2411 } else { 2412 /* 2413 * Issue the non-exclusive create in guarded mode. This 2414 * may result in some false EEXIST responses for 2415 * retransmitted requests, but these will be handled at 2416 * a higher level. By using GUARDED, duplicate requests 2417 * to do file truncation and possible access problems 2418 * can be avoided. 2419 */ 2420 args.how.mode = GUARDED; 2421 error = vattr_to_sattr3(va, 2422 &args.how.createhow3_u.obj_attributes); 2423 if (error) { 2424 /* req time field(s) overflow - return immediately */ 2425 return (error); 2426 } 2427 } 2428 2429 douprintf = 1; 2430 2431 t = gethrtime(); 2432 2433 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE, 2434 xdr_CREATE3args, (caddr_t)&args, 2435 xdr_CREATE3res, (caddr_t)&res, cr, 2436 &douprintf, &res.status, 0, NULL); 2437 2438 if (error) { 2439 PURGE_ATTRCACHE(dvp); 2440 return (error); 2441 } 2442 2443 error = geterrno3(res.status); 2444 if (!error) { 2445 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2446 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2447 nfs_purge_rddir_cache(dvp); 2448 2449 /* 2450 * On exclusive create the times need to be explicitly 2451 * set to clear any potential verifier that may be stored 2452 * in one of these fields (see comment below). This 2453 * is done here to cover the case where no post op attrs 2454 * were returned or a 'invalid' time was returned in 2455 * the attributes. 2456 */ 2457 if (exclusive == EXCL) 2458 va->va_mask |= (AT_MTIME | AT_ATIME); 2459 2460 if (!res.resok.obj.handle_follows) { 2461 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2462 if (error) 2463 return (error); 2464 } else { 2465 if (res.resok.obj_attributes.attributes) { 2466 vp = makenfs3node(&res.resok.obj.handle, 2467 &res.resok.obj_attributes.attr, 2468 dvp->v_vfsp, t, cr, NULL, NULL); 2469 } else { 2470 vp = makenfs3node(&res.resok.obj.handle, NULL, 2471 dvp->v_vfsp, t, cr, NULL, NULL); 2472 2473 /* 2474 * On an exclusive create, it is possible 2475 * that attributes were returned but those 2476 * postop attributes failed to decode 2477 * properly. If this is the case, 2478 * then most likely the atime or mtime 2479 * were invalid for our client; this 2480 * is caused by the server storing the 2481 * create verifier in one of the time 2482 * fields(most likely mtime). 2483 * So... we are going to setattr just the 2484 * atime/mtime to clear things up. 2485 */ 2486 if (exclusive == EXCL) { 2487 if (error = 2488 nfs3excl_create_settimes(vp, 2489 va, cr)) { 2490 /* 2491 * Setting the times failed. 2492 * Remove the file and return 2493 * the error. 2494 */ 2495 VN_RELE(vp); 2496 (void) nfs3_remove(dvp, 2497 nm, cr, NULL, 0); 2498 return (error); 2499 } 2500 } 2501 2502 /* 2503 * This handles the non-exclusive case 2504 * and the exclusive case where no post op 2505 * attrs were returned. 2506 */ 2507 if (vp->v_type == VNON) { 2508 vattr.va_mask = AT_TYPE; 2509 error = nfs3getattr(vp, &vattr, cr); 2510 if (error) { 2511 VN_RELE(vp); 2512 return (error); 2513 } 2514 vp->v_type = vattr.va_type; 2515 } 2516 } 2517 dnlc_update(dvp, nm, vp); 2518 } 2519 2520 rp = VTOR(vp); 2521 2522 /* 2523 * Check here for large file handled by 2524 * LF-unaware process (as ufs_create() does) 2525 */ 2526 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG && 2527 !(lfaware & FOFFMAX)) { 2528 mutex_enter(&rp->r_statelock); 2529 if (rp->r_size > MAXOFF32_T) { 2530 mutex_exit(&rp->r_statelock); 2531 VN_RELE(vp); 2532 return (EOVERFLOW); 2533 } 2534 mutex_exit(&rp->r_statelock); 2535 } 2536 2537 if (exclusive == EXCL && 2538 (va->va_mask & ~(AT_GID | AT_SIZE))) { 2539 /* 2540 * If doing an exclusive create, then generate 2541 * a SETATTR to set the initial attributes. 2542 * Try to set the mtime and the atime to the 2543 * server's current time. It is somewhat 2544 * expected that these fields will be used to 2545 * store the exclusive create cookie. If not, 2546 * server implementors will need to know that 2547 * a SETATTR will follow an exclusive create 2548 * and the cookie should be destroyed if 2549 * appropriate. This work may have been done 2550 * earlier in this function if post op attrs 2551 * were not available. 2552 * 2553 * The AT_GID and AT_SIZE bits are turned off 2554 * so that the SETATTR request will not attempt 2555 * to process these. The gid will be set 2556 * separately if appropriate. The size is turned 2557 * off because it is assumed that a new file will 2558 * be created empty and if the file wasn't empty, 2559 * then the exclusive create will have failed 2560 * because the file must have existed already. 2561 * Therefore, no truncate operation is needed. 2562 */ 2563 va->va_mask &= ~(AT_GID | AT_SIZE); 2564 error = nfs3setattr(vp, va, 0, cr); 2565 if (error) { 2566 /* 2567 * Couldn't correct the attributes of 2568 * the newly created file and the 2569 * attributes are wrong. Remove the 2570 * file and return an error to the 2571 * application. 2572 */ 2573 VN_RELE(vp); 2574 (void) nfs3_remove(dvp, nm, cr, NULL, 0); 2575 return (error); 2576 } 2577 } 2578 2579 if (va->va_gid != rp->r_attr.va_gid) { 2580 /* 2581 * If the gid on the file isn't right, then 2582 * generate a SETATTR to attempt to change 2583 * it. This may or may not work, depending 2584 * upon the server's semantics for allowing 2585 * file ownership changes. 2586 */ 2587 va->va_mask = AT_GID; 2588 (void) nfs3setattr(vp, va, 0, cr); 2589 } 2590 2591 /* 2592 * If vnode is a device create special vnode 2593 */ 2594 if (IS_DEVVP(vp)) { 2595 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2596 VN_RELE(vp); 2597 } else 2598 *vpp = vp; 2599 } else { 2600 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2601 PURGE_STALE_FH(error, dvp, cr); 2602 } 2603 2604 return (error); 2605 } 2606 2607 /* 2608 * Special setattr function to take care of rest of atime/mtime 2609 * after successful exclusive create. This function exists to avoid 2610 * handling attributes from the server; exclusive the atime/mtime fields 2611 * may be 'invalid' in client's view and therefore can not be trusted. 2612 */ 2613 static int 2614 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr) 2615 { 2616 int error; 2617 uint_t mask; 2618 SETATTR3args args; 2619 SETATTR3res res; 2620 int douprintf; 2621 rnode_t *rp; 2622 hrtime_t t; 2623 2624 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 2625 /* save the caller's mask so that it can be reset later */ 2626 mask = vap->va_mask; 2627 2628 rp = VTOR(vp); 2629 2630 args.object = *RTOFH3(rp); 2631 args.guard.check = FALSE; 2632 2633 /* Use the mask to initialize the arguments */ 2634 vap->va_mask = 0; 2635 error = vattr_to_sattr3(vap, &args.new_attributes); 2636 2637 /* We want to set just atime/mtime on this request */ 2638 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 2639 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 2640 2641 douprintf = 1; 2642 2643 t = gethrtime(); 2644 2645 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 2646 xdr_SETATTR3args, (caddr_t)&args, 2647 xdr_SETATTR3res, (caddr_t)&res, cr, 2648 &douprintf, &res.status, 0, NULL); 2649 2650 if (error) { 2651 vap->va_mask = mask; 2652 return (error); 2653 } 2654 2655 error = geterrno3(res.status); 2656 if (!error) { 2657 /* 2658 * It is important to pick up the attributes. 2659 * Since this is the exclusive create path, the 2660 * attributes on the initial create were ignored 2661 * and we need these to have the correct info. 2662 */ 2663 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 2664 /* 2665 * No need to do the atime/mtime work again so clear 2666 * the bits. 2667 */ 2668 mask &= ~(AT_ATIME | AT_MTIME); 2669 } else { 2670 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 2671 } 2672 2673 vap->va_mask = mask; 2674 2675 return (error); 2676 } 2677 2678 /* ARGSUSED */ 2679 static int 2680 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2681 int mode, vnode_t **vpp, cred_t *cr) 2682 { 2683 int error; 2684 MKNOD3args args; 2685 MKNOD3res res; 2686 int douprintf; 2687 vnode_t *vp; 2688 struct vattr vattr; 2689 hrtime_t t; 2690 2691 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2692 switch (va->va_type) { 2693 case VCHR: 2694 case VBLK: 2695 setdiropargs3(&args.where, nm, dvp); 2696 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK; 2697 error = vattr_to_sattr3(va, 2698 &args.what.mknoddata3_u.device.dev_attributes); 2699 if (error) { 2700 /* req time field(s) overflow - return immediately */ 2701 return (error); 2702 } 2703 args.what.mknoddata3_u.device.spec.specdata1 = 2704 getmajor(va->va_rdev); 2705 args.what.mknoddata3_u.device.spec.specdata2 = 2706 getminor(va->va_rdev); 2707 break; 2708 2709 case VFIFO: 2710 case VSOCK: 2711 setdiropargs3(&args.where, nm, dvp); 2712 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK; 2713 error = vattr_to_sattr3(va, 2714 &args.what.mknoddata3_u.pipe_attributes); 2715 if (error) { 2716 /* req time field(s) overflow - return immediately */ 2717 return (error); 2718 } 2719 break; 2720 2721 default: 2722 return (EINVAL); 2723 } 2724 2725 douprintf = 1; 2726 2727 t = gethrtime(); 2728 2729 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD, 2730 xdr_MKNOD3args, (caddr_t)&args, 2731 xdr_MKNOD3res, (caddr_t)&res, cr, 2732 &douprintf, &res.status, 0, NULL); 2733 2734 if (error) { 2735 PURGE_ATTRCACHE(dvp); 2736 return (error); 2737 } 2738 2739 error = geterrno3(res.status); 2740 if (!error) { 2741 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2742 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2743 nfs_purge_rddir_cache(dvp); 2744 2745 if (!res.resok.obj.handle_follows) { 2746 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2747 if (error) 2748 return (error); 2749 } else { 2750 if (res.resok.obj_attributes.attributes) { 2751 vp = makenfs3node(&res.resok.obj.handle, 2752 &res.resok.obj_attributes.attr, 2753 dvp->v_vfsp, t, cr, NULL, NULL); 2754 } else { 2755 vp = makenfs3node(&res.resok.obj.handle, NULL, 2756 dvp->v_vfsp, t, cr, NULL, NULL); 2757 if (vp->v_type == VNON) { 2758 vattr.va_mask = AT_TYPE; 2759 error = nfs3getattr(vp, &vattr, cr); 2760 if (error) { 2761 VN_RELE(vp); 2762 return (error); 2763 } 2764 vp->v_type = vattr.va_type; 2765 } 2766 2767 } 2768 dnlc_update(dvp, nm, vp); 2769 } 2770 2771 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 2772 va->va_mask = AT_GID; 2773 (void) nfs3setattr(vp, va, 0, cr); 2774 } 2775 2776 /* 2777 * If vnode is a device create special vnode 2778 */ 2779 if (IS_DEVVP(vp)) { 2780 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2781 VN_RELE(vp); 2782 } else 2783 *vpp = vp; 2784 } else { 2785 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2786 PURGE_STALE_FH(error, dvp, cr); 2787 } 2788 return (error); 2789 } 2790 2791 /* 2792 * Weirdness: if the vnode to be removed is open 2793 * we rename it instead of removing it and nfs_inactive 2794 * will remove the new name. 2795 */ 2796 /* ARGSUSED */ 2797 static int 2798 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2799 { 2800 int error; 2801 REMOVE3args args; 2802 REMOVE3res res; 2803 vnode_t *vp; 2804 char *tmpname; 2805 int douprintf; 2806 rnode_t *rp; 2807 rnode_t *drp; 2808 hrtime_t t; 2809 2810 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2811 return (EPERM); 2812 drp = VTOR(dvp); 2813 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2814 return (EINTR); 2815 2816 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2817 if (error) { 2818 nfs_rw_exit(&drp->r_rwlock); 2819 return (error); 2820 } 2821 2822 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2823 VN_RELE(vp); 2824 nfs_rw_exit(&drp->r_rwlock); 2825 return (EPERM); 2826 } 2827 2828 /* 2829 * First just remove the entry from the name cache, as it 2830 * is most likely the only entry for this vp. 2831 */ 2832 dnlc_remove(dvp, nm); 2833 2834 /* 2835 * If the file has a v_count > 1 then there may be more than one 2836 * entry in the name cache due multiple links or an open file, 2837 * but we don't have the real reference count so flush all 2838 * possible entries. 2839 */ 2840 if (vp->v_count > 1) 2841 dnlc_purge_vp(vp); 2842 2843 /* 2844 * Now we have the real reference count on the vnode 2845 */ 2846 rp = VTOR(vp); 2847 mutex_enter(&rp->r_statelock); 2848 if (vp->v_count > 1 && 2849 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2850 mutex_exit(&rp->r_statelock); 2851 tmpname = newname(); 2852 error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct); 2853 if (error) 2854 kmem_free(tmpname, MAXNAMELEN); 2855 else { 2856 mutex_enter(&rp->r_statelock); 2857 if (rp->r_unldvp == NULL) { 2858 VN_HOLD(dvp); 2859 rp->r_unldvp = dvp; 2860 if (rp->r_unlcred != NULL) 2861 crfree(rp->r_unlcred); 2862 crhold(cr); 2863 rp->r_unlcred = cr; 2864 rp->r_unlname = tmpname; 2865 } else { 2866 kmem_free(rp->r_unlname, MAXNAMELEN); 2867 rp->r_unlname = tmpname; 2868 } 2869 mutex_exit(&rp->r_statelock); 2870 } 2871 } else { 2872 mutex_exit(&rp->r_statelock); 2873 /* 2874 * We need to flush any dirty pages which happen to 2875 * be hanging around before removing the file. This 2876 * shouldn't happen very often and mostly on file 2877 * systems mounted "nocto". 2878 */ 2879 if (vn_has_cached_data(vp) && 2880 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2881 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2882 if (error && (error == ENOSPC || error == EDQUOT)) { 2883 mutex_enter(&rp->r_statelock); 2884 if (!rp->r_error) 2885 rp->r_error = error; 2886 mutex_exit(&rp->r_statelock); 2887 } 2888 } 2889 2890 setdiropargs3(&args.object, nm, dvp); 2891 2892 douprintf = 1; 2893 2894 t = gethrtime(); 2895 2896 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE, 2897 xdr_diropargs3, (caddr_t)&args, 2898 xdr_REMOVE3res, (caddr_t)&res, cr, 2899 &douprintf, &res.status, 0, NULL); 2900 2901 /* 2902 * The xattr dir may be gone after last attr is removed, 2903 * so flush it from dnlc. 2904 */ 2905 if (dvp->v_flag & V_XATTRDIR) 2906 dnlc_purge_vp(dvp); 2907 2908 PURGE_ATTRCACHE(vp); 2909 2910 if (error) { 2911 PURGE_ATTRCACHE(dvp); 2912 } else { 2913 error = geterrno3(res.status); 2914 if (!error) { 2915 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, 2916 cr); 2917 if (HAVE_RDDIR_CACHE(drp)) 2918 nfs_purge_rddir_cache(dvp); 2919 } else { 2920 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, 2921 t, cr); 2922 PURGE_STALE_FH(error, dvp, cr); 2923 } 2924 } 2925 } 2926 2927 if (error == 0) { 2928 vnevent_remove(vp, dvp, nm, ct); 2929 } 2930 VN_RELE(vp); 2931 2932 nfs_rw_exit(&drp->r_rwlock); 2933 2934 return (error); 2935 } 2936 2937 /* ARGSUSED */ 2938 static int 2939 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2940 caller_context_t *ct, int flags) 2941 { 2942 int error; 2943 LINK3args args; 2944 LINK3res res; 2945 vnode_t *realvp; 2946 int douprintf; 2947 mntinfo_t *mi; 2948 rnode_t *tdrp; 2949 hrtime_t t; 2950 2951 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2952 return (EPERM); 2953 if (VOP_REALVP(svp, &realvp, ct) == 0) 2954 svp = realvp; 2955 2956 mi = VTOMI(svp); 2957 2958 if (!(mi->mi_flags & MI_LINK)) 2959 return (EOPNOTSUPP); 2960 2961 args.file = *VTOFH3(svp); 2962 setdiropargs3(&args.link, tnm, tdvp); 2963 2964 tdrp = VTOR(tdvp); 2965 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2966 return (EINTR); 2967 2968 dnlc_remove(tdvp, tnm); 2969 2970 douprintf = 1; 2971 2972 t = gethrtime(); 2973 2974 error = rfs3call(mi, NFSPROC3_LINK, 2975 xdr_LINK3args, (caddr_t)&args, 2976 xdr_LINK3res, (caddr_t)&res, cr, 2977 &douprintf, &res.status, 0, NULL); 2978 2979 if (error) { 2980 PURGE_ATTRCACHE(tdvp); 2981 PURGE_ATTRCACHE(svp); 2982 nfs_rw_exit(&tdrp->r_rwlock); 2983 return (error); 2984 } 2985 2986 error = geterrno3(res.status); 2987 2988 if (!error) { 2989 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr); 2990 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr); 2991 if (HAVE_RDDIR_CACHE(tdrp)) 2992 nfs_purge_rddir_cache(tdvp); 2993 dnlc_update(tdvp, tnm, svp); 2994 } else { 2995 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t, 2996 cr); 2997 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr); 2998 if (error == EOPNOTSUPP) { 2999 mutex_enter(&mi->mi_lock); 3000 mi->mi_flags &= ~MI_LINK; 3001 mutex_exit(&mi->mi_lock); 3002 } 3003 } 3004 3005 nfs_rw_exit(&tdrp->r_rwlock); 3006 3007 if (!error) { 3008 /* 3009 * Notify the source file of this link operation. 3010 */ 3011 vnevent_link(svp, ct); 3012 } 3013 return (error); 3014 } 3015 3016 /* ARGSUSED */ 3017 static int 3018 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3019 caller_context_t *ct, int flags) 3020 { 3021 vnode_t *realvp; 3022 3023 if (nfs_zone() != VTOMI(odvp)->mi_zone) 3024 return (EPERM); 3025 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 3026 ndvp = realvp; 3027 3028 return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct)); 3029 } 3030 3031 /* 3032 * nfs3rename does the real work of renaming in NFS Version 3. 3033 */ 3034 static int 3035 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3036 caller_context_t *ct) 3037 { 3038 int error; 3039 RENAME3args args; 3040 RENAME3res res; 3041 int douprintf; 3042 vnode_t *nvp = NULL; 3043 vnode_t *ovp = NULL; 3044 char *tmpname; 3045 rnode_t *rp; 3046 rnode_t *odrp; 3047 rnode_t *ndrp; 3048 hrtime_t t; 3049 3050 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 3051 3052 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 3053 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 3054 return (EINVAL); 3055 3056 odrp = VTOR(odvp); 3057 ndrp = VTOR(ndvp); 3058 if ((intptr_t)odrp < (intptr_t)ndrp) { 3059 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 3060 return (EINTR); 3061 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 3062 nfs_rw_exit(&odrp->r_rwlock); 3063 return (EINTR); 3064 } 3065 } else { 3066 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 3067 return (EINTR); 3068 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 3069 nfs_rw_exit(&ndrp->r_rwlock); 3070 return (EINTR); 3071 } 3072 } 3073 3074 /* 3075 * Lookup the target file. If it exists, it needs to be 3076 * checked to see whether it is a mount point and whether 3077 * it is active (open). 3078 */ 3079 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 3080 if (!error) { 3081 /* 3082 * If this file has been mounted on, then just 3083 * return busy because renaming to it would remove 3084 * the mounted file system from the name space. 3085 */ 3086 if (vn_mountedvfs(nvp) != NULL) { 3087 VN_RELE(nvp); 3088 nfs_rw_exit(&odrp->r_rwlock); 3089 nfs_rw_exit(&ndrp->r_rwlock); 3090 return (EBUSY); 3091 } 3092 3093 /* 3094 * Purge the name cache of all references to this vnode 3095 * so that we can check the reference count to infer 3096 * whether it is active or not. 3097 */ 3098 /* 3099 * First just remove the entry from the name cache, as it 3100 * is most likely the only entry for this vp. 3101 */ 3102 dnlc_remove(ndvp, nnm); 3103 /* 3104 * If the file has a v_count > 1 then there may be more 3105 * than one entry in the name cache due multiple links 3106 * or an open file, but we don't have the real reference 3107 * count so flush all possible entries. 3108 */ 3109 if (nvp->v_count > 1) 3110 dnlc_purge_vp(nvp); 3111 3112 /* 3113 * If the vnode is active and is not a directory, 3114 * arrange to rename it to a 3115 * temporary file so that it will continue to be 3116 * accessible. This implements the "unlink-open-file" 3117 * semantics for the target of a rename operation. 3118 * Before doing this though, make sure that the 3119 * source and target files are not already the same. 3120 */ 3121 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 3122 /* 3123 * Lookup the source name. 3124 */ 3125 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, 3126 cr, 0); 3127 3128 /* 3129 * The source name *should* already exist. 3130 */ 3131 if (error) { 3132 VN_RELE(nvp); 3133 nfs_rw_exit(&odrp->r_rwlock); 3134 nfs_rw_exit(&ndrp->r_rwlock); 3135 return (error); 3136 } 3137 3138 /* 3139 * Compare the two vnodes. If they are the same, 3140 * just release all held vnodes and return success. 3141 */ 3142 if (ovp == nvp) { 3143 VN_RELE(ovp); 3144 VN_RELE(nvp); 3145 nfs_rw_exit(&odrp->r_rwlock); 3146 nfs_rw_exit(&ndrp->r_rwlock); 3147 return (0); 3148 } 3149 3150 /* 3151 * Can't mix and match directories and non- 3152 * directories in rename operations. We already 3153 * know that the target is not a directory. If 3154 * the source is a directory, return an error. 3155 */ 3156 if (ovp->v_type == VDIR) { 3157 VN_RELE(ovp); 3158 VN_RELE(nvp); 3159 nfs_rw_exit(&odrp->r_rwlock); 3160 nfs_rw_exit(&ndrp->r_rwlock); 3161 return (ENOTDIR); 3162 } 3163 3164 /* 3165 * The target file exists, is not the same as 3166 * the source file, and is active. Link it 3167 * to a temporary filename to avoid having 3168 * the server removing the file completely. 3169 */ 3170 tmpname = newname(); 3171 error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0); 3172 if (error == EOPNOTSUPP) { 3173 error = nfs3_rename(ndvp, nnm, ndvp, tmpname, 3174 cr, NULL, 0); 3175 } 3176 if (error) { 3177 kmem_free(tmpname, MAXNAMELEN); 3178 VN_RELE(ovp); 3179 VN_RELE(nvp); 3180 nfs_rw_exit(&odrp->r_rwlock); 3181 nfs_rw_exit(&ndrp->r_rwlock); 3182 return (error); 3183 } 3184 rp = VTOR(nvp); 3185 mutex_enter(&rp->r_statelock); 3186 if (rp->r_unldvp == NULL) { 3187 VN_HOLD(ndvp); 3188 rp->r_unldvp = ndvp; 3189 if (rp->r_unlcred != NULL) 3190 crfree(rp->r_unlcred); 3191 crhold(cr); 3192 rp->r_unlcred = cr; 3193 rp->r_unlname = tmpname; 3194 } else { 3195 kmem_free(rp->r_unlname, MAXNAMELEN); 3196 rp->r_unlname = tmpname; 3197 } 3198 mutex_exit(&rp->r_statelock); 3199 } 3200 } 3201 3202 if (ovp == NULL) { 3203 /* 3204 * When renaming directories to be a subdirectory of a 3205 * different parent, the dnlc entry for ".." will no 3206 * longer be valid, so it must be removed. 3207 * 3208 * We do a lookup here to determine whether we are renaming 3209 * a directory and we need to check if we are renaming 3210 * an unlinked file. This might have already been done 3211 * in previous code, so we check ovp == NULL to avoid 3212 * doing it twice. 3213 */ 3214 3215 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 3216 /* 3217 * The source name *should* already exist. 3218 */ 3219 if (error) { 3220 nfs_rw_exit(&odrp->r_rwlock); 3221 nfs_rw_exit(&ndrp->r_rwlock); 3222 if (nvp) { 3223 VN_RELE(nvp); 3224 } 3225 return (error); 3226 } 3227 ASSERT(ovp != NULL); 3228 } 3229 3230 dnlc_remove(odvp, onm); 3231 dnlc_remove(ndvp, nnm); 3232 3233 setdiropargs3(&args.from, onm, odvp); 3234 setdiropargs3(&args.to, nnm, ndvp); 3235 3236 douprintf = 1; 3237 3238 t = gethrtime(); 3239 3240 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME, 3241 xdr_RENAME3args, (caddr_t)&args, 3242 xdr_RENAME3res, (caddr_t)&res, cr, 3243 &douprintf, &res.status, 0, NULL); 3244 3245 if (error) { 3246 PURGE_ATTRCACHE(odvp); 3247 PURGE_ATTRCACHE(ndvp); 3248 VN_RELE(ovp); 3249 nfs_rw_exit(&odrp->r_rwlock); 3250 nfs_rw_exit(&ndrp->r_rwlock); 3251 if (nvp) { 3252 VN_RELE(nvp); 3253 } 3254 return (error); 3255 } 3256 3257 error = geterrno3(res.status); 3258 3259 if (!error) { 3260 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr); 3261 if (HAVE_RDDIR_CACHE(odrp)) 3262 nfs_purge_rddir_cache(odvp); 3263 if (ndvp != odvp) { 3264 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr); 3265 if (HAVE_RDDIR_CACHE(ndrp)) 3266 nfs_purge_rddir_cache(ndvp); 3267 } 3268 /* 3269 * when renaming directories to be a subdirectory of a 3270 * different parent, the dnlc entry for ".." will no 3271 * longer be valid, so it must be removed 3272 */ 3273 rp = VTOR(ovp); 3274 if (ndvp != odvp) { 3275 if (ovp->v_type == VDIR) { 3276 dnlc_remove(ovp, ".."); 3277 if (HAVE_RDDIR_CACHE(rp)) 3278 nfs_purge_rddir_cache(ovp); 3279 } 3280 } 3281 3282 /* 3283 * If we are renaming the unlinked file, update the 3284 * r_unldvp and r_unlname as needed. 3285 */ 3286 mutex_enter(&rp->r_statelock); 3287 if (rp->r_unldvp != NULL) { 3288 if (strcmp(rp->r_unlname, onm) == 0) { 3289 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 3290 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 3291 3292 if (ndvp != rp->r_unldvp) { 3293 VN_RELE(rp->r_unldvp); 3294 rp->r_unldvp = ndvp; 3295 VN_HOLD(ndvp); 3296 } 3297 } 3298 } 3299 mutex_exit(&rp->r_statelock); 3300 } else { 3301 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr); 3302 if (ndvp != odvp) { 3303 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t, 3304 cr); 3305 } 3306 /* 3307 * System V defines rename to return EEXIST, not 3308 * ENOTEMPTY if the target directory is not empty. 3309 * Over the wire, the error is NFSERR_ENOTEMPTY 3310 * which geterrno maps to ENOTEMPTY. 3311 */ 3312 if (error == ENOTEMPTY) 3313 error = EEXIST; 3314 } 3315 3316 if (error == 0) { 3317 if (nvp) 3318 vnevent_rename_dest(nvp, ndvp, nnm, ct); 3319 3320 if (odvp != ndvp) 3321 vnevent_rename_dest_dir(ndvp, ct); 3322 ASSERT(ovp != NULL); 3323 vnevent_rename_src(ovp, odvp, onm, ct); 3324 } 3325 3326 if (nvp) { 3327 VN_RELE(nvp); 3328 } 3329 VN_RELE(ovp); 3330 3331 nfs_rw_exit(&odrp->r_rwlock); 3332 nfs_rw_exit(&ndrp->r_rwlock); 3333 3334 return (error); 3335 } 3336 3337 /* ARGSUSED */ 3338 static int 3339 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 3340 caller_context_t *ct, int flags, vsecattr_t *vsecp) 3341 { 3342 int error; 3343 MKDIR3args args; 3344 MKDIR3res res; 3345 int douprintf; 3346 struct vattr vattr; 3347 vnode_t *vp; 3348 rnode_t *drp; 3349 hrtime_t t; 3350 3351 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3352 return (EPERM); 3353 setdiropargs3(&args.where, nm, dvp); 3354 3355 /* 3356 * Decide what the group-id and set-gid bit of the created directory 3357 * should be. May have to do a setattr to get the gid right. 3358 */ 3359 error = setdirgid(dvp, &va->va_gid, cr); 3360 if (error) 3361 return (error); 3362 error = setdirmode(dvp, &va->va_mode, cr); 3363 if (error) 3364 return (error); 3365 va->va_mask |= AT_MODE|AT_GID; 3366 3367 error = vattr_to_sattr3(va, &args.attributes); 3368 if (error) { 3369 /* req time field(s) overflow - return immediately */ 3370 return (error); 3371 } 3372 3373 drp = VTOR(dvp); 3374 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3375 return (EINTR); 3376 3377 dnlc_remove(dvp, nm); 3378 3379 douprintf = 1; 3380 3381 t = gethrtime(); 3382 3383 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR, 3384 xdr_MKDIR3args, (caddr_t)&args, 3385 xdr_MKDIR3res, (caddr_t)&res, cr, 3386 &douprintf, &res.status, 0, NULL); 3387 3388 if (error) { 3389 PURGE_ATTRCACHE(dvp); 3390 nfs_rw_exit(&drp->r_rwlock); 3391 return (error); 3392 } 3393 3394 error = geterrno3(res.status); 3395 if (!error) { 3396 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3397 if (HAVE_RDDIR_CACHE(drp)) 3398 nfs_purge_rddir_cache(dvp); 3399 3400 if (!res.resok.obj.handle_follows) { 3401 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3402 if (error) { 3403 nfs_rw_exit(&drp->r_rwlock); 3404 return (error); 3405 } 3406 } else { 3407 if (res.resok.obj_attributes.attributes) { 3408 vp = makenfs3node(&res.resok.obj.handle, 3409 &res.resok.obj_attributes.attr, 3410 dvp->v_vfsp, t, cr, NULL, NULL); 3411 } else { 3412 vp = makenfs3node(&res.resok.obj.handle, NULL, 3413 dvp->v_vfsp, t, cr, NULL, NULL); 3414 if (vp->v_type == VNON) { 3415 vattr.va_mask = AT_TYPE; 3416 error = nfs3getattr(vp, &vattr, cr); 3417 if (error) { 3418 VN_RELE(vp); 3419 nfs_rw_exit(&drp->r_rwlock); 3420 return (error); 3421 } 3422 vp->v_type = vattr.va_type; 3423 } 3424 } 3425 dnlc_update(dvp, nm, vp); 3426 } 3427 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 3428 va->va_mask = AT_GID; 3429 (void) nfs3setattr(vp, va, 0, cr); 3430 } 3431 *vpp = vp; 3432 } else { 3433 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3434 PURGE_STALE_FH(error, dvp, cr); 3435 } 3436 3437 nfs_rw_exit(&drp->r_rwlock); 3438 3439 return (error); 3440 } 3441 3442 /* ARGSUSED */ 3443 static int 3444 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 3445 caller_context_t *ct, int flags) 3446 { 3447 int error; 3448 RMDIR3args args; 3449 RMDIR3res res; 3450 vnode_t *vp; 3451 int douprintf; 3452 rnode_t *drp; 3453 hrtime_t t; 3454 3455 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3456 return (EPERM); 3457 drp = VTOR(dvp); 3458 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3459 return (EINTR); 3460 3461 /* 3462 * Attempt to prevent a rmdir(".") from succeeding. 3463 */ 3464 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3465 if (error) { 3466 nfs_rw_exit(&drp->r_rwlock); 3467 return (error); 3468 } 3469 3470 if (vp == cdir) { 3471 VN_RELE(vp); 3472 nfs_rw_exit(&drp->r_rwlock); 3473 return (EINVAL); 3474 } 3475 3476 setdiropargs3(&args.object, nm, dvp); 3477 3478 /* 3479 * First just remove the entry from the name cache, as it 3480 * is most likely an entry for this vp. 3481 */ 3482 dnlc_remove(dvp, nm); 3483 3484 /* 3485 * If there vnode reference count is greater than one, then 3486 * there may be additional references in the DNLC which will 3487 * need to be purged. First, trying removing the entry for 3488 * the parent directory and see if that removes the additional 3489 * reference(s). If that doesn't do it, then use dnlc_purge_vp 3490 * to completely remove any references to the directory which 3491 * might still exist in the DNLC. 3492 */ 3493 if (vp->v_count > 1) { 3494 dnlc_remove(vp, ".."); 3495 if (vp->v_count > 1) 3496 dnlc_purge_vp(vp); 3497 } 3498 3499 douprintf = 1; 3500 3501 t = gethrtime(); 3502 3503 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR, 3504 xdr_diropargs3, (caddr_t)&args, 3505 xdr_RMDIR3res, (caddr_t)&res, cr, 3506 &douprintf, &res.status, 0, NULL); 3507 3508 PURGE_ATTRCACHE(vp); 3509 3510 if (error) { 3511 PURGE_ATTRCACHE(dvp); 3512 VN_RELE(vp); 3513 nfs_rw_exit(&drp->r_rwlock); 3514 return (error); 3515 } 3516 3517 error = geterrno3(res.status); 3518 if (!error) { 3519 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3520 if (HAVE_RDDIR_CACHE(drp)) 3521 nfs_purge_rddir_cache(dvp); 3522 if (HAVE_RDDIR_CACHE(VTOR(vp))) 3523 nfs_purge_rddir_cache(vp); 3524 } else { 3525 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3526 PURGE_STALE_FH(error, dvp, cr); 3527 /* 3528 * System V defines rmdir to return EEXIST, not 3529 * ENOTEMPTY if the directory is not empty. Over 3530 * the wire, the error is NFSERR_ENOTEMPTY which 3531 * geterrno maps to ENOTEMPTY. 3532 */ 3533 if (error == ENOTEMPTY) 3534 error = EEXIST; 3535 } 3536 3537 if (error == 0) { 3538 vnevent_rmdir(vp, dvp, nm, ct); 3539 } 3540 VN_RELE(vp); 3541 3542 nfs_rw_exit(&drp->r_rwlock); 3543 3544 return (error); 3545 } 3546 3547 /* ARGSUSED */ 3548 static int 3549 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 3550 caller_context_t *ct, int flags) 3551 { 3552 int error; 3553 SYMLINK3args args; 3554 SYMLINK3res res; 3555 int douprintf; 3556 mntinfo_t *mi; 3557 vnode_t *vp; 3558 rnode_t *rp; 3559 char *contents; 3560 rnode_t *drp; 3561 hrtime_t t; 3562 3563 mi = VTOMI(dvp); 3564 3565 if (nfs_zone() != mi->mi_zone) 3566 return (EPERM); 3567 if (!(mi->mi_flags & MI_SYMLINK)) 3568 return (EOPNOTSUPP); 3569 3570 setdiropargs3(&args.where, lnm, dvp); 3571 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes); 3572 if (error) { 3573 /* req time field(s) overflow - return immediately */ 3574 return (error); 3575 } 3576 args.symlink.symlink_data = tnm; 3577 3578 drp = VTOR(dvp); 3579 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3580 return (EINTR); 3581 3582 dnlc_remove(dvp, lnm); 3583 3584 douprintf = 1; 3585 3586 t = gethrtime(); 3587 3588 error = rfs3call(mi, NFSPROC3_SYMLINK, 3589 xdr_SYMLINK3args, (caddr_t)&args, 3590 xdr_SYMLINK3res, (caddr_t)&res, cr, 3591 &douprintf, &res.status, 0, NULL); 3592 3593 if (error) { 3594 PURGE_ATTRCACHE(dvp); 3595 nfs_rw_exit(&drp->r_rwlock); 3596 return (error); 3597 } 3598 3599 error = geterrno3(res.status); 3600 if (!error) { 3601 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3602 if (HAVE_RDDIR_CACHE(drp)) 3603 nfs_purge_rddir_cache(dvp); 3604 3605 if (res.resok.obj.handle_follows) { 3606 if (res.resok.obj_attributes.attributes) { 3607 vp = makenfs3node(&res.resok.obj.handle, 3608 &res.resok.obj_attributes.attr, 3609 dvp->v_vfsp, t, cr, NULL, NULL); 3610 } else { 3611 vp = makenfs3node(&res.resok.obj.handle, NULL, 3612 dvp->v_vfsp, t, cr, NULL, NULL); 3613 vp->v_type = VLNK; 3614 vp->v_rdev = 0; 3615 } 3616 dnlc_update(dvp, lnm, vp); 3617 rp = VTOR(vp); 3618 if (nfs3_do_symlink_cache && 3619 rp->r_symlink.contents == NULL) { 3620 3621 contents = kmem_alloc(MAXPATHLEN, 3622 KM_NOSLEEP); 3623 3624 if (contents != NULL) { 3625 mutex_enter(&rp->r_statelock); 3626 if (rp->r_symlink.contents == NULL) { 3627 rp->r_symlink.len = strlen(tnm); 3628 bcopy(tnm, contents, 3629 rp->r_symlink.len); 3630 rp->r_symlink.contents = 3631 contents; 3632 rp->r_symlink.size = MAXPATHLEN; 3633 mutex_exit(&rp->r_statelock); 3634 } else { 3635 mutex_exit(&rp->r_statelock); 3636 kmem_free((void *)contents, 3637 MAXPATHLEN); 3638 } 3639 } 3640 } 3641 VN_RELE(vp); 3642 } 3643 } else { 3644 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3645 PURGE_STALE_FH(error, dvp, cr); 3646 if (error == EOPNOTSUPP) { 3647 mutex_enter(&mi->mi_lock); 3648 mi->mi_flags &= ~MI_SYMLINK; 3649 mutex_exit(&mi->mi_lock); 3650 } 3651 } 3652 3653 nfs_rw_exit(&drp->r_rwlock); 3654 3655 return (error); 3656 } 3657 3658 #ifdef DEBUG 3659 static int nfs3_readdir_cache_hits = 0; 3660 static int nfs3_readdir_cache_shorts = 0; 3661 static int nfs3_readdir_cache_waits = 0; 3662 static int nfs3_readdir_cache_misses = 0; 3663 static int nfs3_readdir_readahead = 0; 3664 #endif 3665 3666 static int nfs3_shrinkreaddir = 0; 3667 3668 /* 3669 * Read directory entries. 3670 * There are some weird things to look out for here. The uio_loffset 3671 * field is either 0 or it is the offset returned from a previous 3672 * readdir. It is an opaque value used by the server to find the 3673 * correct directory block to read. The count field is the number 3674 * of blocks to read on the server. This is advisory only, the server 3675 * may return only one block's worth of entries. Entries may be compressed 3676 * on the server. 3677 */ 3678 /* ARGSUSED */ 3679 static int 3680 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 3681 caller_context_t *ct, int flags) 3682 { 3683 int error; 3684 size_t count; 3685 rnode_t *rp; 3686 rddir_cache *rdc; 3687 rddir_cache *nrdc; 3688 rddir_cache *rrdc; 3689 #ifdef DEBUG 3690 int missed; 3691 #endif 3692 int doreadahead; 3693 rddir_cache srdc; 3694 avl_index_t where; 3695 3696 if (nfs_zone() != VTOMI(vp)->mi_zone) 3697 return (EIO); 3698 rp = VTOR(vp); 3699 3700 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 3701 3702 /* 3703 * Make sure that the directory cache is valid. 3704 */ 3705 if (HAVE_RDDIR_CACHE(rp)) { 3706 if (nfs_disable_rddir_cache) { 3707 /* 3708 * Setting nfs_disable_rddir_cache in /etc/system 3709 * allows interoperability with servers that do not 3710 * properly update the attributes of directories. 3711 * Any cached information gets purged before an 3712 * access is made to it. 3713 */ 3714 nfs_purge_rddir_cache(vp); 3715 } else { 3716 error = nfs3_validate_caches(vp, cr); 3717 if (error) 3718 return (error); 3719 } 3720 } 3721 3722 /* 3723 * It is possible that some servers may not be able to correctly 3724 * handle a large READDIR or READDIRPLUS request due to bugs in 3725 * their implementation. In order to continue to interoperate 3726 * with them, this workaround is provided to limit the maximum 3727 * size of a READDIRPLUS request to 1024. In any case, the request 3728 * size is limited to MAXBSIZE. 3729 */ 3730 count = MIN(uiop->uio_iov->iov_len, 3731 nfs3_shrinkreaddir ? 1024 : MAXBSIZE); 3732 3733 nrdc = NULL; 3734 #ifdef DEBUG 3735 missed = 0; 3736 #endif 3737 top: 3738 /* 3739 * Short circuit last readdir which always returns 0 bytes. 3740 * This can be done after the directory has been read through 3741 * completely at least once. This will set r_direof which 3742 * can be used to find the value of the last cookie. 3743 */ 3744 mutex_enter(&rp->r_statelock); 3745 if (rp->r_direof != NULL && 3746 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) { 3747 mutex_exit(&rp->r_statelock); 3748 #ifdef DEBUG 3749 nfs3_readdir_cache_shorts++; 3750 #endif 3751 if (eofp) 3752 *eofp = 1; 3753 if (nrdc != NULL) 3754 rddir_cache_rele(nrdc); 3755 return (0); 3756 } 3757 /* 3758 * Look for a cache entry. Cache entries are identified 3759 * by the NFS cookie value and the byte count requested. 3760 */ 3761 srdc.nfs3_cookie = uiop->uio_loffset; 3762 srdc.buflen = count; 3763 rdc = avl_find(&rp->r_dir, &srdc, &where); 3764 if (rdc != NULL) { 3765 rddir_cache_hold(rdc); 3766 /* 3767 * If the cache entry is in the process of being 3768 * filled in, wait until this completes. The 3769 * RDDIRWAIT bit is set to indicate that someone 3770 * is waiting and then the thread currently 3771 * filling the entry is done, it should do a 3772 * cv_broadcast to wakeup all of the threads 3773 * waiting for it to finish. 3774 */ 3775 if (rdc->flags & RDDIR) { 3776 nfs_rw_exit(&rp->r_rwlock); 3777 rdc->flags |= RDDIRWAIT; 3778 #ifdef DEBUG 3779 nfs3_readdir_cache_waits++; 3780 #endif 3781 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3782 /* 3783 * We got interrupted, probably 3784 * the user typed ^C or an alarm 3785 * fired. We free the new entry 3786 * if we allocated one. 3787 */ 3788 mutex_exit(&rp->r_statelock); 3789 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3790 RW_READER, FALSE); 3791 rddir_cache_rele(rdc); 3792 if (nrdc != NULL) 3793 rddir_cache_rele(nrdc); 3794 return (EINTR); 3795 } 3796 mutex_exit(&rp->r_statelock); 3797 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3798 RW_READER, FALSE); 3799 rddir_cache_rele(rdc); 3800 goto top; 3801 } 3802 /* 3803 * Check to see if a readdir is required to 3804 * fill the entry. If so, mark this entry 3805 * as being filled, remove our reference, 3806 * and branch to the code to fill the entry. 3807 */ 3808 if (rdc->flags & RDDIRREQ) { 3809 rdc->flags &= ~RDDIRREQ; 3810 rdc->flags |= RDDIR; 3811 if (nrdc != NULL) 3812 rddir_cache_rele(nrdc); 3813 nrdc = rdc; 3814 mutex_exit(&rp->r_statelock); 3815 goto bottom; 3816 } 3817 #ifdef DEBUG 3818 if (!missed) 3819 nfs3_readdir_cache_hits++; 3820 #endif 3821 /* 3822 * If an error occurred while attempting 3823 * to fill the cache entry, just return it. 3824 */ 3825 if (rdc->error) { 3826 error = rdc->error; 3827 mutex_exit(&rp->r_statelock); 3828 rddir_cache_rele(rdc); 3829 if (nrdc != NULL) 3830 rddir_cache_rele(nrdc); 3831 return (error); 3832 } 3833 3834 /* 3835 * The cache entry is complete and good, 3836 * copyout the dirent structs to the calling 3837 * thread. 3838 */ 3839 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3840 3841 /* 3842 * If no error occurred during the copyout, 3843 * update the offset in the uio struct to 3844 * contain the value of the next cookie 3845 * and set the eof value appropriately. 3846 */ 3847 if (!error) { 3848 uiop->uio_loffset = rdc->nfs3_ncookie; 3849 if (eofp) 3850 *eofp = rdc->eof; 3851 } 3852 3853 /* 3854 * Decide whether to do readahead. 3855 * 3856 * Don't if have already read to the end of 3857 * directory. There is nothing more to read. 3858 * 3859 * Don't if the application is not doing 3860 * lookups in the directory. The readahead 3861 * is only effective if the application can 3862 * be doing work while an async thread is 3863 * handling the over the wire request. 3864 */ 3865 if (rdc->eof) { 3866 rp->r_direof = rdc; 3867 doreadahead = FALSE; 3868 } else if (!(rp->r_flags & RLOOKUP)) 3869 doreadahead = FALSE; 3870 else 3871 doreadahead = TRUE; 3872 3873 if (!doreadahead) { 3874 mutex_exit(&rp->r_statelock); 3875 rddir_cache_rele(rdc); 3876 if (nrdc != NULL) 3877 rddir_cache_rele(nrdc); 3878 return (error); 3879 } 3880 3881 /* 3882 * Check to see whether we found an entry 3883 * for the readahead. If so, we don't need 3884 * to do anything further, so free the new 3885 * entry if one was allocated. Otherwise, 3886 * allocate a new entry, add it to the cache, 3887 * and then initiate an asynchronous readdir 3888 * operation to fill it. 3889 */ 3890 srdc.nfs3_cookie = rdc->nfs3_ncookie; 3891 srdc.buflen = count; 3892 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3893 if (rrdc != NULL) { 3894 if (nrdc != NULL) 3895 rddir_cache_rele(nrdc); 3896 } else { 3897 if (nrdc != NULL) 3898 rrdc = nrdc; 3899 else { 3900 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3901 } 3902 if (rrdc != NULL) { 3903 rrdc->nfs3_cookie = rdc->nfs3_ncookie; 3904 rrdc->buflen = count; 3905 avl_insert(&rp->r_dir, rrdc, where); 3906 rddir_cache_hold(rrdc); 3907 mutex_exit(&rp->r_statelock); 3908 rddir_cache_rele(rdc); 3909 #ifdef DEBUG 3910 nfs3_readdir_readahead++; 3911 #endif 3912 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir); 3913 return (error); 3914 } 3915 } 3916 3917 mutex_exit(&rp->r_statelock); 3918 rddir_cache_rele(rdc); 3919 return (error); 3920 } 3921 3922 /* 3923 * Didn't find an entry in the cache. Construct a new empty 3924 * entry and link it into the cache. Other processes attempting 3925 * to access this entry will need to wait until it is filled in. 3926 * 3927 * Since kmem_alloc may block, another pass through the cache 3928 * will need to be taken to make sure that another process 3929 * hasn't already added an entry to the cache for this request. 3930 */ 3931 if (nrdc == NULL) { 3932 mutex_exit(&rp->r_statelock); 3933 nrdc = rddir_cache_alloc(KM_SLEEP); 3934 nrdc->nfs3_cookie = uiop->uio_loffset; 3935 nrdc->buflen = count; 3936 goto top; 3937 } 3938 3939 /* 3940 * Add this entry to the cache. 3941 */ 3942 avl_insert(&rp->r_dir, nrdc, where); 3943 rddir_cache_hold(nrdc); 3944 mutex_exit(&rp->r_statelock); 3945 3946 bottom: 3947 #ifdef DEBUG 3948 missed = 1; 3949 nfs3_readdir_cache_misses++; 3950 #endif 3951 /* 3952 * Do the readdir. This routine decides whether to use 3953 * READDIR or READDIRPLUS. 3954 */ 3955 error = do_nfs3readdir(vp, nrdc, cr); 3956 3957 /* 3958 * If this operation failed, just return the error which occurred. 3959 */ 3960 if (error != 0) 3961 return (error); 3962 3963 /* 3964 * Since the RPC operation will have taken sometime and blocked 3965 * this process, another pass through the cache will need to be 3966 * taken to find the correct cache entry. It is possible that 3967 * the correct cache entry will not be there (although one was 3968 * added) because the directory changed during the RPC operation 3969 * and the readdir cache was flushed. In this case, just start 3970 * over. It is hoped that this will not happen too often... :-) 3971 */ 3972 nrdc = NULL; 3973 goto top; 3974 /* NOTREACHED */ 3975 } 3976 3977 static int 3978 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3979 { 3980 int error; 3981 rnode_t *rp; 3982 mntinfo_t *mi; 3983 3984 rp = VTOR(vp); 3985 mi = VTOMI(vp); 3986 ASSERT(nfs_zone() == mi->mi_zone); 3987 /* 3988 * Issue the proper request. 3989 * 3990 * If the server does not support READDIRPLUS, then use READDIR. 3991 * 3992 * Otherwise -- 3993 * Issue a READDIRPLUS if reading to fill an empty cache or if 3994 * an application has performed a lookup in the directory which 3995 * required an over the wire lookup. The use of READDIRPLUS 3996 * will help to (re)populate the DNLC. 3997 */ 3998 if (!(mi->mi_flags & MI_READDIRONLY) && 3999 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) { 4000 if (rp->r_flags & RREADDIRPLUS) { 4001 mutex_enter(&rp->r_statelock); 4002 rp->r_flags &= ~RREADDIRPLUS; 4003 mutex_exit(&rp->r_statelock); 4004 } 4005 nfs3readdirplus(vp, rdc, cr); 4006 if (rdc->error == EOPNOTSUPP) 4007 nfs3readdir(vp, rdc, cr); 4008 } else 4009 nfs3readdir(vp, rdc, cr); 4010 4011 mutex_enter(&rp->r_statelock); 4012 rdc->flags &= ~RDDIR; 4013 if (rdc->flags & RDDIRWAIT) { 4014 rdc->flags &= ~RDDIRWAIT; 4015 cv_broadcast(&rdc->cv); 4016 } 4017 error = rdc->error; 4018 if (error) 4019 rdc->flags |= RDDIRREQ; 4020 mutex_exit(&rp->r_statelock); 4021 4022 rddir_cache_rele(rdc); 4023 4024 return (error); 4025 } 4026 4027 static void 4028 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4029 { 4030 int error; 4031 READDIR3args args; 4032 READDIR3vres res; 4033 vattr_t dva; 4034 rnode_t *rp; 4035 int douprintf; 4036 failinfo_t fi, *fip = NULL; 4037 mntinfo_t *mi; 4038 hrtime_t t; 4039 4040 rp = VTOR(vp); 4041 mi = VTOMI(vp); 4042 ASSERT(nfs_zone() == mi->mi_zone); 4043 4044 args.dir = *RTOFH3(rp); 4045 args.cookie = (cookie3)rdc->nfs3_cookie; 4046 args.cookieverf = rp->r_cookieverf; 4047 args.count = rdc->buflen; 4048 4049 /* 4050 * NFS client failover support 4051 * suppress failover unless we have a zero cookie 4052 */ 4053 if (args.cookie == (cookie3) 0) { 4054 fi.vp = vp; 4055 fi.fhp = (caddr_t)&args.dir; 4056 fi.copyproc = nfs3copyfh; 4057 fi.lookupproc = nfs3lookup; 4058 fi.xattrdirproc = acl_getxattrdir3; 4059 fip = &fi; 4060 } 4061 4062 #ifdef DEBUG 4063 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4064 #else 4065 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4066 #endif 4067 4068 res.entries = (dirent64_t *)rdc->entries; 4069 res.entries_size = rdc->buflen; 4070 res.dir_attributes.fres.vap = &dva; 4071 res.dir_attributes.fres.vp = vp; 4072 res.loff = rdc->nfs3_cookie; 4073 4074 douprintf = 1; 4075 4076 if (mi->mi_io_kstats) { 4077 mutex_enter(&mi->mi_lock); 4078 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4079 mutex_exit(&mi->mi_lock); 4080 } 4081 4082 t = gethrtime(); 4083 4084 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR, 4085 xdr_READDIR3args, (caddr_t)&args, 4086 xdr_READDIR3vres, (caddr_t)&res, cr, 4087 &douprintf, &res.status, 0, fip); 4088 4089 if (mi->mi_io_kstats) { 4090 mutex_enter(&mi->mi_lock); 4091 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4092 mutex_exit(&mi->mi_lock); 4093 } 4094 4095 if (error) 4096 goto err; 4097 4098 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr); 4099 4100 error = geterrno3(res.status); 4101 if (error) { 4102 PURGE_STALE_FH(error, vp, cr); 4103 goto err; 4104 } 4105 4106 if (mi->mi_io_kstats) { 4107 mutex_enter(&mi->mi_lock); 4108 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4109 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4110 mutex_exit(&mi->mi_lock); 4111 } 4112 4113 rdc->nfs3_ncookie = res.loff; 4114 rp->r_cookieverf = res.cookieverf; 4115 rdc->eof = res.eof ? 1 : 0; 4116 rdc->entlen = res.size; 4117 ASSERT(rdc->entlen <= rdc->buflen); 4118 rdc->error = 0; 4119 return; 4120 4121 err: 4122 kmem_free(rdc->entries, rdc->buflen); 4123 rdc->entries = NULL; 4124 rdc->error = error; 4125 } 4126 4127 /* 4128 * Read directory entries. 4129 * There are some weird things to look out for here. The uio_loffset 4130 * field is either 0 or it is the offset returned from a previous 4131 * readdir. It is an opaque value used by the server to find the 4132 * correct directory block to read. The count field is the number 4133 * of blocks to read on the server. This is advisory only, the server 4134 * may return only one block's worth of entries. Entries may be compressed 4135 * on the server. 4136 */ 4137 static void 4138 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4139 { 4140 int error; 4141 READDIRPLUS3args args; 4142 READDIRPLUS3vres res; 4143 vattr_t dva; 4144 rnode_t *rp; 4145 mntinfo_t *mi; 4146 int douprintf; 4147 failinfo_t fi, *fip = NULL; 4148 4149 rp = VTOR(vp); 4150 mi = VTOMI(vp); 4151 ASSERT(nfs_zone() == mi->mi_zone); 4152 4153 args.dir = *RTOFH3(rp); 4154 args.cookie = (cookie3)rdc->nfs3_cookie; 4155 args.cookieverf = rp->r_cookieverf; 4156 args.dircount = rdc->buflen; 4157 args.maxcount = mi->mi_tsize; 4158 4159 /* 4160 * NFS client failover support 4161 * suppress failover unless we have a zero cookie 4162 */ 4163 if (args.cookie == (cookie3)0) { 4164 fi.vp = vp; 4165 fi.fhp = (caddr_t)&args.dir; 4166 fi.copyproc = nfs3copyfh; 4167 fi.lookupproc = nfs3lookup; 4168 fi.xattrdirproc = acl_getxattrdir3; 4169 fip = &fi; 4170 } 4171 4172 #ifdef DEBUG 4173 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4174 #else 4175 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4176 #endif 4177 4178 res.entries = (dirent64_t *)rdc->entries; 4179 res.entries_size = rdc->buflen; 4180 res.dir_attributes.fres.vap = &dva; 4181 res.dir_attributes.fres.vp = vp; 4182 res.loff = rdc->nfs3_cookie; 4183 res.credentials = cr; 4184 4185 douprintf = 1; 4186 4187 if (mi->mi_io_kstats) { 4188 mutex_enter(&mi->mi_lock); 4189 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4190 mutex_exit(&mi->mi_lock); 4191 } 4192 4193 res.time = gethrtime(); 4194 4195 error = rfs3call(mi, NFSPROC3_READDIRPLUS, 4196 xdr_READDIRPLUS3args, (caddr_t)&args, 4197 xdr_READDIRPLUS3vres, (caddr_t)&res, cr, 4198 &douprintf, &res.status, 0, fip); 4199 4200 if (mi->mi_io_kstats) { 4201 mutex_enter(&mi->mi_lock); 4202 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4203 mutex_exit(&mi->mi_lock); 4204 } 4205 4206 if (error) { 4207 goto err; 4208 } 4209 4210 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr); 4211 4212 error = geterrno3(res.status); 4213 if (error) { 4214 PURGE_STALE_FH(error, vp, cr); 4215 if (error == EOPNOTSUPP) { 4216 mutex_enter(&mi->mi_lock); 4217 mi->mi_flags |= MI_READDIRONLY; 4218 mutex_exit(&mi->mi_lock); 4219 } 4220 goto err; 4221 } 4222 4223 if (mi->mi_io_kstats) { 4224 mutex_enter(&mi->mi_lock); 4225 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4226 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4227 mutex_exit(&mi->mi_lock); 4228 } 4229 4230 rdc->nfs3_ncookie = res.loff; 4231 rp->r_cookieverf = res.cookieverf; 4232 rdc->eof = res.eof ? 1 : 0; 4233 rdc->entlen = res.size; 4234 ASSERT(rdc->entlen <= rdc->buflen); 4235 rdc->error = 0; 4236 4237 return; 4238 4239 err: 4240 kmem_free(rdc->entries, rdc->buflen); 4241 rdc->entries = NULL; 4242 rdc->error = error; 4243 } 4244 4245 #ifdef DEBUG 4246 static int nfs3_bio_do_stop = 0; 4247 #endif 4248 4249 static int 4250 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr) 4251 { 4252 rnode_t *rp = VTOR(bp->b_vp); 4253 int count; 4254 int error; 4255 cred_t *cred; 4256 offset_t offset; 4257 4258 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 4259 offset = ldbtob(bp->b_lblkno); 4260 4261 DTRACE_IO1(start, struct buf *, bp); 4262 4263 if (bp->b_flags & B_READ) { 4264 mutex_enter(&rp->r_statelock); 4265 if (rp->r_cred != NULL) { 4266 cred = rp->r_cred; 4267 crhold(cred); 4268 } else { 4269 rp->r_cred = cr; 4270 crhold(cr); 4271 cred = cr; 4272 crhold(cred); 4273 } 4274 mutex_exit(&rp->r_statelock); 4275 read_again: 4276 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr, 4277 offset, bp->b_bcount, &bp->b_resid, cred); 4278 crfree(cred); 4279 if (!error) { 4280 if (bp->b_resid) { 4281 /* 4282 * Didn't get it all because we hit EOF, 4283 * zero all the memory beyond the EOF. 4284 */ 4285 /* bzero(rdaddr + */ 4286 bzero(bp->b_un.b_addr + 4287 bp->b_bcount - bp->b_resid, bp->b_resid); 4288 } 4289 mutex_enter(&rp->r_statelock); 4290 if (bp->b_resid == bp->b_bcount && 4291 offset >= rp->r_size) { 4292 /* 4293 * We didn't read anything at all as we are 4294 * past EOF. Return an error indicator back 4295 * but don't destroy the pages (yet). 4296 */ 4297 error = NFS_EOF; 4298 } 4299 mutex_exit(&rp->r_statelock); 4300 } else if (error == EACCES) { 4301 mutex_enter(&rp->r_statelock); 4302 if (cred != cr) { 4303 if (rp->r_cred != NULL) 4304 crfree(rp->r_cred); 4305 rp->r_cred = cr; 4306 crhold(cr); 4307 cred = cr; 4308 crhold(cred); 4309 mutex_exit(&rp->r_statelock); 4310 goto read_again; 4311 } 4312 mutex_exit(&rp->r_statelock); 4313 } 4314 } else { 4315 if (!(rp->r_flags & RSTALE)) { 4316 mutex_enter(&rp->r_statelock); 4317 if (rp->r_cred != NULL) { 4318 cred = rp->r_cred; 4319 crhold(cred); 4320 } else { 4321 rp->r_cred = cr; 4322 crhold(cr); 4323 cred = cr; 4324 crhold(cred); 4325 } 4326 mutex_exit(&rp->r_statelock); 4327 write_again: 4328 mutex_enter(&rp->r_statelock); 4329 count = MIN(bp->b_bcount, rp->r_size - offset); 4330 mutex_exit(&rp->r_statelock); 4331 if (count < 0) 4332 cmn_err(CE_PANIC, "nfs3_bio: write count < 0"); 4333 #ifdef DEBUG 4334 if (count == 0) { 4335 zcmn_err(getzoneid(), CE_WARN, 4336 "nfs3_bio: zero length write at %lld", 4337 offset); 4338 nfs_printfhandle(&rp->r_fh); 4339 if (nfs3_bio_do_stop) 4340 debug_enter("nfs3_bio"); 4341 } 4342 #endif 4343 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset, 4344 count, cred, stab_comm); 4345 if (error == EACCES) { 4346 mutex_enter(&rp->r_statelock); 4347 if (cred != cr) { 4348 if (rp->r_cred != NULL) 4349 crfree(rp->r_cred); 4350 rp->r_cred = cr; 4351 crhold(cr); 4352 crfree(cred); 4353 cred = cr; 4354 crhold(cred); 4355 mutex_exit(&rp->r_statelock); 4356 goto write_again; 4357 } 4358 mutex_exit(&rp->r_statelock); 4359 } 4360 bp->b_error = error; 4361 if (error && error != EINTR) { 4362 /* 4363 * Don't print EDQUOT errors on the console. 4364 * Don't print asynchronous EACCES errors. 4365 * Don't print EFBIG errors. 4366 * Print all other write errors. 4367 */ 4368 if (error != EDQUOT && error != EFBIG && 4369 (error != EACCES || 4370 !(bp->b_flags & B_ASYNC))) 4371 nfs_write_error(bp->b_vp, error, cred); 4372 /* 4373 * Update r_error and r_flags as appropriate. 4374 * If the error was ESTALE, then mark the 4375 * rnode as not being writeable and save 4376 * the error status. Otherwise, save any 4377 * errors which occur from asynchronous 4378 * page invalidations. Any errors occurring 4379 * from other operations should be saved 4380 * by the caller. 4381 */ 4382 mutex_enter(&rp->r_statelock); 4383 if (error == ESTALE) { 4384 rp->r_flags |= RSTALE; 4385 if (!rp->r_error) 4386 rp->r_error = error; 4387 } else if (!rp->r_error && 4388 (bp->b_flags & 4389 (B_INVAL|B_FORCE|B_ASYNC)) == 4390 (B_INVAL|B_FORCE|B_ASYNC)) { 4391 rp->r_error = error; 4392 } 4393 mutex_exit(&rp->r_statelock); 4394 } 4395 crfree(cred); 4396 } else 4397 error = rp->r_error; 4398 } 4399 4400 if (error != 0 && error != NFS_EOF) 4401 bp->b_flags |= B_ERROR; 4402 4403 DTRACE_IO1(done, struct buf *, bp); 4404 4405 return (error); 4406 } 4407 4408 /* ARGSUSED */ 4409 static int 4410 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4411 { 4412 rnode_t *rp; 4413 4414 if (nfs_zone() != VTOMI(vp)->mi_zone) 4415 return (EIO); 4416 rp = VTOR(vp); 4417 4418 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) { 4419 fidp->fid_len = rp->r_fh.fh_len; 4420 return (ENOSPC); 4421 } 4422 fidp->fid_len = rp->r_fh.fh_len; 4423 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len); 4424 return (0); 4425 } 4426 4427 /* ARGSUSED2 */ 4428 static int 4429 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4430 { 4431 rnode_t *rp = VTOR(vp); 4432 4433 if (!write_lock) { 4434 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4435 return (V_WRITELOCK_FALSE); 4436 } 4437 4438 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 4439 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4440 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 4441 return (V_WRITELOCK_FALSE); 4442 nfs_rw_exit(&rp->r_rwlock); 4443 } 4444 4445 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 4446 return (V_WRITELOCK_TRUE); 4447 } 4448 4449 /* ARGSUSED */ 4450 static void 4451 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4452 { 4453 rnode_t *rp = VTOR(vp); 4454 4455 nfs_rw_exit(&rp->r_rwlock); 4456 } 4457 4458 /* ARGSUSED */ 4459 static int 4460 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 4461 { 4462 4463 /* 4464 * Because we stuff the readdir cookie into the offset field 4465 * someone may attempt to do an lseek with the cookie which 4466 * we want to succeed. 4467 */ 4468 if (vp->v_type == VDIR) 4469 return (0); 4470 if (*noffp < 0) 4471 return (EINVAL); 4472 return (0); 4473 } 4474 4475 /* 4476 * number of nfs3_bsize blocks to read ahead. 4477 */ 4478 static int nfs3_nra = 4; 4479 4480 #ifdef DEBUG 4481 static int nfs3_lostpage = 0; /* number of times we lost original page */ 4482 #endif 4483 4484 /* 4485 * Return all the pages from [off..off+len) in file 4486 */ 4487 /* ARGSUSED */ 4488 static int 4489 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4490 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4491 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4492 { 4493 rnode_t *rp; 4494 int error; 4495 mntinfo_t *mi; 4496 4497 if (vp->v_flag & VNOMAP) 4498 return (ENOSYS); 4499 4500 if (nfs_zone() != VTOMI(vp)->mi_zone) 4501 return (EIO); 4502 if (protp != NULL) 4503 *protp = PROT_ALL; 4504 4505 /* 4506 * Now valididate that the caches are up to date. 4507 */ 4508 error = nfs3_validate_caches(vp, cr); 4509 if (error) 4510 return (error); 4511 4512 rp = VTOR(vp); 4513 mi = VTOMI(vp); 4514 retry: 4515 mutex_enter(&rp->r_statelock); 4516 4517 /* 4518 * Don't create dirty pages faster than they 4519 * can be cleaned so that the system doesn't 4520 * get imbalanced. If the async queue is 4521 * maxed out, then wait for it to drain before 4522 * creating more dirty pages. Also, wait for 4523 * any threads doing pagewalks in the vop_getattr 4524 * entry points so that they don't block for 4525 * long periods. 4526 */ 4527 if (rw == S_CREATE) { 4528 while ((mi->mi_max_threads != 0 && 4529 rp->r_awcount > 2 * mi->mi_max_threads) || 4530 rp->r_gcount > 0) 4531 cv_wait(&rp->r_cv, &rp->r_statelock); 4532 } 4533 4534 /* 4535 * If we are getting called as a side effect of an nfs_write() 4536 * operation the local file size might not be extended yet. 4537 * In this case we want to be able to return pages of zeroes. 4538 */ 4539 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 4540 mutex_exit(&rp->r_statelock); 4541 return (EFAULT); /* beyond EOF */ 4542 } 4543 4544 mutex_exit(&rp->r_statelock); 4545 4546 if (len <= PAGESIZE) { 4547 error = nfs3_getapage(vp, off, len, protp, pl, plsz, 4548 seg, addr, rw, cr); 4549 } else { 4550 error = pvn_getpages(nfs3_getapage, vp, off, len, protp, 4551 pl, plsz, seg, addr, rw, cr); 4552 } 4553 4554 switch (error) { 4555 case NFS_EOF: 4556 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 4557 goto retry; 4558 case ESTALE: 4559 PURGE_STALE_FH(error, vp, cr); 4560 } 4561 4562 return (error); 4563 } 4564 4565 /* 4566 * Called from pvn_getpages or nfs3_getpage to get a particular page. 4567 */ 4568 /* ARGSUSED */ 4569 static int 4570 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 4571 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4572 enum seg_rw rw, cred_t *cr) 4573 { 4574 rnode_t *rp; 4575 uint_t bsize; 4576 struct buf *bp; 4577 page_t *pp; 4578 u_offset_t lbn; 4579 u_offset_t io_off; 4580 u_offset_t blkoff; 4581 u_offset_t rablkoff; 4582 size_t io_len; 4583 uint_t blksize; 4584 int error; 4585 int readahead; 4586 int readahead_issued = 0; 4587 int ra_window; /* readahead window */ 4588 page_t *pagefound; 4589 page_t *savepp; 4590 4591 if (nfs_zone() != VTOMI(vp)->mi_zone) 4592 return (EIO); 4593 rp = VTOR(vp); 4594 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4595 4596 reread: 4597 bp = NULL; 4598 pp = NULL; 4599 pagefound = NULL; 4600 4601 if (pl != NULL) 4602 pl[0] = NULL; 4603 4604 error = 0; 4605 lbn = off / bsize; 4606 blkoff = lbn * bsize; 4607 4608 /* 4609 * Queueing up the readahead before doing the synchronous read 4610 * results in a significant increase in read throughput because 4611 * of the increased parallelism between the async threads and 4612 * the process context. 4613 */ 4614 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 4615 rw != S_CREATE && 4616 !(vp->v_flag & VNOCACHE)) { 4617 mutex_enter(&rp->r_statelock); 4618 4619 /* 4620 * Calculate the number of readaheads to do. 4621 * a) No readaheads at offset = 0. 4622 * b) Do maximum(nfs3_nra) readaheads when the readahead 4623 * window is closed. 4624 * c) Do readaheads between 1 to (nfs3_nra - 1) depending 4625 * upon how far the readahead window is open or close. 4626 * d) No readaheads if rp->r_nextr is not within the scope 4627 * of the readahead window (random i/o). 4628 */ 4629 4630 if (off == 0) 4631 readahead = 0; 4632 else if (blkoff == rp->r_nextr) 4633 readahead = nfs3_nra; 4634 else if (rp->r_nextr > blkoff && 4635 ((ra_window = (rp->r_nextr - blkoff) / bsize) 4636 <= (nfs3_nra - 1))) 4637 readahead = nfs3_nra - ra_window; 4638 else 4639 readahead = 0; 4640 4641 rablkoff = rp->r_nextr; 4642 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 4643 mutex_exit(&rp->r_statelock); 4644 if (nfs_async_readahead(vp, rablkoff + bsize, 4645 addr + (rablkoff + bsize - off), seg, cr, 4646 nfs3_readahead) < 0) { 4647 mutex_enter(&rp->r_statelock); 4648 break; 4649 } 4650 readahead--; 4651 rablkoff += bsize; 4652 /* 4653 * Indicate that we did a readahead so 4654 * readahead offset is not updated 4655 * by the synchronous read below. 4656 */ 4657 readahead_issued = 1; 4658 mutex_enter(&rp->r_statelock); 4659 /* 4660 * set readahead offset to 4661 * offset of last async readahead 4662 * request. 4663 */ 4664 rp->r_nextr = rablkoff; 4665 } 4666 mutex_exit(&rp->r_statelock); 4667 } 4668 4669 again: 4670 if ((pagefound = page_exists(vp, off)) == NULL) { 4671 if (pl == NULL) { 4672 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 4673 nfs3_readahead); 4674 } else if (rw == S_CREATE) { 4675 /* 4676 * Block for this page is not allocated, or the offset 4677 * is beyond the current allocation size, or we're 4678 * allocating a swap slot and the page was not found, 4679 * so allocate it and return a zero page. 4680 */ 4681 if ((pp = page_create_va(vp, off, 4682 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 4683 cmn_err(CE_PANIC, "nfs3_getapage: page_create"); 4684 io_len = PAGESIZE; 4685 mutex_enter(&rp->r_statelock); 4686 rp->r_nextr = off + PAGESIZE; 4687 mutex_exit(&rp->r_statelock); 4688 } else { 4689 /* 4690 * Need to go to server to get a BLOCK, exception to 4691 * that being while reading at offset = 0 or doing 4692 * random i/o, in that case read only a PAGE. 4693 */ 4694 mutex_enter(&rp->r_statelock); 4695 if (blkoff < rp->r_size && 4696 blkoff + bsize >= rp->r_size) { 4697 /* 4698 * If only a block or less is left in 4699 * the file, read all that is remaining. 4700 */ 4701 if (rp->r_size <= off) { 4702 /* 4703 * Trying to access beyond EOF, 4704 * set up to get at least one page. 4705 */ 4706 blksize = off + PAGESIZE - blkoff; 4707 } else 4708 blksize = rp->r_size - blkoff; 4709 } else if ((off == 0) || 4710 (off != rp->r_nextr && !readahead_issued)) { 4711 blksize = PAGESIZE; 4712 blkoff = off; /* block = page here */ 4713 } else 4714 blksize = bsize; 4715 mutex_exit(&rp->r_statelock); 4716 4717 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4718 &io_len, blkoff, blksize, 0); 4719 4720 /* 4721 * Some other thread has entered the page, 4722 * so just use it. 4723 */ 4724 if (pp == NULL) 4725 goto again; 4726 4727 /* 4728 * Now round the request size up to page boundaries. 4729 * This ensures that the entire page will be 4730 * initialized to zeroes if EOF is encountered. 4731 */ 4732 io_len = ptob(btopr(io_len)); 4733 4734 bp = pageio_setup(pp, io_len, vp, B_READ); 4735 ASSERT(bp != NULL); 4736 4737 /* 4738 * pageio_setup should have set b_addr to 0. This 4739 * is correct since we want to do I/O on a page 4740 * boundary. bp_mapin will use this addr to calculate 4741 * an offset, and then set b_addr to the kernel virtual 4742 * address it allocated for us. 4743 */ 4744 ASSERT(bp->b_un.b_addr == 0); 4745 4746 bp->b_edev = 0; 4747 bp->b_dev = 0; 4748 bp->b_lblkno = lbtodb(io_off); 4749 bp->b_file = vp; 4750 bp->b_offset = (offset_t)off; 4751 bp_mapin(bp); 4752 4753 /* 4754 * If doing a write beyond what we believe is EOF, 4755 * don't bother trying to read the pages from the 4756 * server, we'll just zero the pages here. We 4757 * don't check that the rw flag is S_WRITE here 4758 * because some implementations may attempt a 4759 * read access to the buffer before copying data. 4760 */ 4761 mutex_enter(&rp->r_statelock); 4762 if (io_off >= rp->r_size && seg == segkmap) { 4763 mutex_exit(&rp->r_statelock); 4764 bzero(bp->b_un.b_addr, io_len); 4765 } else { 4766 mutex_exit(&rp->r_statelock); 4767 error = nfs3_bio(bp, NULL, cr); 4768 } 4769 4770 /* 4771 * Unmap the buffer before freeing it. 4772 */ 4773 bp_mapout(bp); 4774 pageio_done(bp); 4775 4776 savepp = pp; 4777 do { 4778 pp->p_fsdata = C_NOCOMMIT; 4779 } while ((pp = pp->p_next) != savepp); 4780 4781 if (error == NFS_EOF) { 4782 /* 4783 * If doing a write system call just return 4784 * zeroed pages, else user tried to get pages 4785 * beyond EOF, return error. We don't check 4786 * that the rw flag is S_WRITE here because 4787 * some implementations may attempt a read 4788 * access to the buffer before copying data. 4789 */ 4790 if (seg == segkmap) 4791 error = 0; 4792 else 4793 error = EFAULT; 4794 } 4795 4796 if (!readahead_issued && !error) { 4797 mutex_enter(&rp->r_statelock); 4798 rp->r_nextr = io_off + io_len; 4799 mutex_exit(&rp->r_statelock); 4800 } 4801 } 4802 } 4803 4804 out: 4805 if (pl == NULL) 4806 return (error); 4807 4808 if (error) { 4809 if (pp != NULL) 4810 pvn_read_done(pp, B_ERROR); 4811 return (error); 4812 } 4813 4814 if (pagefound) { 4815 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 4816 4817 /* 4818 * Page exists in the cache, acquire the appropriate lock. 4819 * If this fails, start all over again. 4820 */ 4821 if ((pp = page_lookup(vp, off, se)) == NULL) { 4822 #ifdef DEBUG 4823 nfs3_lostpage++; 4824 #endif 4825 goto reread; 4826 } 4827 pl[0] = pp; 4828 pl[1] = NULL; 4829 return (0); 4830 } 4831 4832 if (pp != NULL) 4833 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4834 4835 return (error); 4836 } 4837 4838 static void 4839 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 4840 cred_t *cr) 4841 { 4842 int error; 4843 page_t *pp; 4844 u_offset_t io_off; 4845 size_t io_len; 4846 struct buf *bp; 4847 uint_t bsize, blksize; 4848 rnode_t *rp = VTOR(vp); 4849 page_t *savepp; 4850 4851 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4852 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4853 4854 mutex_enter(&rp->r_statelock); 4855 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 4856 /* 4857 * If less than a block left in file read less 4858 * than a block. 4859 */ 4860 blksize = rp->r_size - blkoff; 4861 } else 4862 blksize = bsize; 4863 mutex_exit(&rp->r_statelock); 4864 4865 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 4866 &io_off, &io_len, blkoff, blksize, 1); 4867 /* 4868 * The isra flag passed to the kluster function is 1, we may have 4869 * gotten a return value of NULL for a variety of reasons (# of free 4870 * pages < minfree, someone entered the page on the vnode etc). In all 4871 * cases, we want to punt on the readahead. 4872 */ 4873 if (pp == NULL) 4874 return; 4875 4876 /* 4877 * Now round the request size up to page boundaries. 4878 * This ensures that the entire page will be 4879 * initialized to zeroes if EOF is encountered. 4880 */ 4881 io_len = ptob(btopr(io_len)); 4882 4883 bp = pageio_setup(pp, io_len, vp, B_READ); 4884 ASSERT(bp != NULL); 4885 4886 /* 4887 * pageio_setup should have set b_addr to 0. This is correct since 4888 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4889 * to calculate an offset, and then set b_addr to the kernel virtual 4890 * address it allocated for us. 4891 */ 4892 ASSERT(bp->b_un.b_addr == 0); 4893 4894 bp->b_edev = 0; 4895 bp->b_dev = 0; 4896 bp->b_lblkno = lbtodb(io_off); 4897 bp->b_file = vp; 4898 bp->b_offset = (offset_t)blkoff; 4899 bp_mapin(bp); 4900 4901 /* 4902 * If doing a write beyond what we believe is EOF, don't bother trying 4903 * to read the pages from the server, we'll just zero the pages here. 4904 * We don't check that the rw flag is S_WRITE here because some 4905 * implementations may attempt a read access to the buffer before 4906 * copying data. 4907 */ 4908 mutex_enter(&rp->r_statelock); 4909 if (io_off >= rp->r_size && seg == segkmap) { 4910 mutex_exit(&rp->r_statelock); 4911 bzero(bp->b_un.b_addr, io_len); 4912 error = 0; 4913 } else { 4914 mutex_exit(&rp->r_statelock); 4915 error = nfs3_bio(bp, NULL, cr); 4916 if (error == NFS_EOF) 4917 error = 0; 4918 } 4919 4920 /* 4921 * Unmap the buffer before freeing it. 4922 */ 4923 bp_mapout(bp); 4924 pageio_done(bp); 4925 4926 savepp = pp; 4927 do { 4928 pp->p_fsdata = C_NOCOMMIT; 4929 } while ((pp = pp->p_next) != savepp); 4930 4931 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4932 4933 /* 4934 * In case of error set readahead offset 4935 * to the lowest offset. 4936 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4937 */ 4938 if (error && rp->r_nextr > io_off) { 4939 mutex_enter(&rp->r_statelock); 4940 if (rp->r_nextr > io_off) 4941 rp->r_nextr = io_off; 4942 mutex_exit(&rp->r_statelock); 4943 } 4944 } 4945 4946 /* 4947 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4948 * If len == 0, do from off to EOF. 4949 * 4950 * The normal cases should be len == 0 && off == 0 (entire vp list), 4951 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4952 * (from pageout). 4953 */ 4954 /* ARGSUSED */ 4955 static int 4956 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4957 caller_context_t *ct) 4958 { 4959 int error; 4960 rnode_t *rp; 4961 4962 ASSERT(cr != NULL); 4963 4964 /* 4965 * XXX - Why should this check be made here? 4966 */ 4967 if (vp->v_flag & VNOMAP) 4968 return (ENOSYS); 4969 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4970 return (0); 4971 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4972 return (EIO); 4973 4974 rp = VTOR(vp); 4975 mutex_enter(&rp->r_statelock); 4976 rp->r_count++; 4977 mutex_exit(&rp->r_statelock); 4978 error = nfs_putpages(vp, off, len, flags, cr); 4979 mutex_enter(&rp->r_statelock); 4980 rp->r_count--; 4981 cv_broadcast(&rp->r_cv); 4982 mutex_exit(&rp->r_statelock); 4983 4984 return (error); 4985 } 4986 4987 /* 4988 * Write out a single page, possibly klustering adjacent dirty pages. 4989 */ 4990 int 4991 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4992 int flags, cred_t *cr) 4993 { 4994 u_offset_t io_off; 4995 u_offset_t lbn_off; 4996 u_offset_t lbn; 4997 size_t io_len; 4998 uint_t bsize; 4999 int error; 5000 rnode_t *rp; 5001 5002 ASSERT(!vn_is_readonly(vp)); 5003 ASSERT(pp != NULL); 5004 ASSERT(cr != NULL); 5005 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 5006 5007 rp = VTOR(vp); 5008 ASSERT(rp->r_count > 0); 5009 5010 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 5011 lbn = pp->p_offset / bsize; 5012 lbn_off = lbn * bsize; 5013 5014 /* 5015 * Find a kluster that fits in one block, or in 5016 * one page if pages are bigger than blocks. If 5017 * there is less file space allocated than a whole 5018 * page, we'll shorten the i/o request below. 5019 */ 5020 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 5021 roundup(bsize, PAGESIZE), flags); 5022 5023 /* 5024 * pvn_write_kluster shouldn't have returned a page with offset 5025 * behind the original page we were given. Verify that. 5026 */ 5027 ASSERT((pp->p_offset / bsize) >= lbn); 5028 5029 /* 5030 * Now pp will have the list of kept dirty pages marked for 5031 * write back. It will also handle invalidation and freeing 5032 * of pages that are not dirty. Check for page length rounding 5033 * problems. 5034 */ 5035 if (io_off + io_len > lbn_off + bsize) { 5036 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 5037 io_len = lbn_off + bsize - io_off; 5038 } 5039 /* 5040 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5041 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 5042 * When RMODINPROGRESS is set it indicates that a uiomove() is in 5043 * progress and the r_size has not been made consistent with the 5044 * new size of the file. When the uiomove() completes the r_size is 5045 * updated and the RMODINPROGRESS flag is cleared. 5046 * 5047 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5048 * consistent value of r_size. Without this handshaking, it is 5049 * possible that nfs(3)_bio() picks up the old value of r_size 5050 * before the uiomove() in writerp() completes. This will result 5051 * in the write through nfs(3)_bio() being dropped. 5052 * 5053 * More precisely, there is a window between the time the uiomove() 5054 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 5055 * operation intervenes in this window, the page will be picked up, 5056 * because it is dirty (it will be unlocked, unless it was 5057 * pagecreate'd). When the page is picked up as dirty, the dirty 5058 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 5059 * checked. This will still be the old size. Therefore the page will 5060 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 5061 * the page will be found to be clean and the write will be dropped. 5062 */ 5063 if (rp->r_flags & RMODINPROGRESS) { 5064 mutex_enter(&rp->r_statelock); 5065 if ((rp->r_flags & RMODINPROGRESS) && 5066 rp->r_modaddr + MAXBSIZE > io_off && 5067 rp->r_modaddr < io_off + io_len) { 5068 page_t *plist; 5069 /* 5070 * A write is in progress for this region of the file. 5071 * If we did not detect RMODINPROGRESS here then this 5072 * path through nfs_putapage() would eventually go to 5073 * nfs(3)_bio() and may not write out all of the data 5074 * in the pages. We end up losing data. So we decide 5075 * to set the modified bit on each page in the page 5076 * list and mark the rnode with RDIRTY. This write 5077 * will be restarted at some later time. 5078 */ 5079 plist = pp; 5080 while (plist != NULL) { 5081 pp = plist; 5082 page_sub(&plist, pp); 5083 hat_setmod(pp); 5084 page_io_unlock(pp); 5085 page_unlock(pp); 5086 } 5087 rp->r_flags |= RDIRTY; 5088 mutex_exit(&rp->r_statelock); 5089 if (offp) 5090 *offp = io_off; 5091 if (lenp) 5092 *lenp = io_len; 5093 return (0); 5094 } 5095 mutex_exit(&rp->r_statelock); 5096 } 5097 5098 if (flags & B_ASYNC) { 5099 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 5100 nfs3_sync_putapage); 5101 } else 5102 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr); 5103 5104 if (offp) 5105 *offp = io_off; 5106 if (lenp) 5107 *lenp = io_len; 5108 return (error); 5109 } 5110 5111 static int 5112 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5113 int flags, cred_t *cr) 5114 { 5115 int error; 5116 rnode_t *rp; 5117 5118 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5119 5120 flags |= B_WRITE; 5121 5122 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5123 5124 rp = VTOR(vp); 5125 5126 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 5127 error == EACCES) && 5128 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 5129 if (!(rp->r_flags & ROUTOFSPACE)) { 5130 mutex_enter(&rp->r_statelock); 5131 rp->r_flags |= ROUTOFSPACE; 5132 mutex_exit(&rp->r_statelock); 5133 } 5134 flags |= B_ERROR; 5135 pvn_write_done(pp, flags); 5136 /* 5137 * If this was not an async thread, then try again to 5138 * write out the pages, but this time, also destroy 5139 * them whether or not the write is successful. This 5140 * will prevent memory from filling up with these 5141 * pages and destroying them is the only alternative 5142 * if they can't be written out. 5143 * 5144 * Don't do this if this is an async thread because 5145 * when the pages are unlocked in pvn_write_done, 5146 * some other thread could have come along, locked 5147 * them, and queued for an async thread. It would be 5148 * possible for all of the async threads to be tied 5149 * up waiting to lock the pages again and they would 5150 * all already be locked and waiting for an async 5151 * thread to handle them. Deadlock. 5152 */ 5153 if (!(flags & B_ASYNC)) { 5154 error = nfs3_putpage(vp, io_off, io_len, 5155 B_INVAL | B_FORCE, cr, NULL); 5156 } 5157 } else { 5158 if (error) 5159 flags |= B_ERROR; 5160 else if (rp->r_flags & ROUTOFSPACE) { 5161 mutex_enter(&rp->r_statelock); 5162 rp->r_flags &= ~ROUTOFSPACE; 5163 mutex_exit(&rp->r_statelock); 5164 } 5165 pvn_write_done(pp, flags); 5166 if (freemem < desfree) 5167 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr); 5168 } 5169 5170 return (error); 5171 } 5172 5173 /* ARGSUSED */ 5174 static int 5175 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5176 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5177 cred_t *cr, caller_context_t *ct) 5178 { 5179 struct segvn_crargs vn_a; 5180 int error; 5181 rnode_t *rp; 5182 struct vattr va; 5183 5184 if (nfs_zone() != VTOMI(vp)->mi_zone) 5185 return (EIO); 5186 5187 if (vp->v_flag & VNOMAP) 5188 return (ENOSYS); 5189 5190 if (off < 0 || off + len < 0) 5191 return (ENXIO); 5192 5193 if (vp->v_type != VREG) 5194 return (ENODEV); 5195 5196 /* 5197 * If there is cached data and if close-to-open consistency 5198 * checking is not turned off and if the file system is not 5199 * mounted readonly, then force an over the wire getattr. 5200 * Otherwise, just invoke nfs3getattr to get a copy of the 5201 * attributes. The attribute cache will be used unless it 5202 * is timed out and if it is, then an over the wire getattr 5203 * will be issued. 5204 */ 5205 va.va_mask = AT_ALL; 5206 if (vn_has_cached_data(vp) && 5207 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 5208 error = nfs3_getattr_otw(vp, &va, cr); 5209 else 5210 error = nfs3getattr(vp, &va, cr); 5211 if (error) 5212 return (error); 5213 5214 /* 5215 * Check to see if the vnode is currently marked as not cachable. 5216 * This means portions of the file are locked (through VOP_FRLOCK). 5217 * In this case the map request must be refused. We use 5218 * rp->r_lkserlock to avoid a race with concurrent lock requests. 5219 */ 5220 rp = VTOR(vp); 5221 5222 /* 5223 * Atomically increment r_inmap after acquiring r_rwlock. The 5224 * idea here is to acquire r_rwlock to block read/write and 5225 * not to protect r_inmap. r_inmap will inform nfs3_read/write() 5226 * that we are in nfs3_map(). Now, r_rwlock is acquired in order 5227 * and we can prevent the deadlock that would have occurred 5228 * when nfs3_addmap() would have acquired it out of order. 5229 * 5230 * Since we are not protecting r_inmap by any lock, we do not 5231 * hold any lock when we decrement it. We atomically decrement 5232 * r_inmap after we release r_lkserlock. 5233 */ 5234 5235 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 5236 return (EINTR); 5237 atomic_add_int(&rp->r_inmap, 1); 5238 nfs_rw_exit(&rp->r_rwlock); 5239 5240 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) { 5241 atomic_add_int(&rp->r_inmap, -1); 5242 return (EINTR); 5243 } 5244 5245 if (vp->v_flag & VNOCACHE) { 5246 error = EAGAIN; 5247 goto done; 5248 } 5249 5250 /* 5251 * Don't allow concurrent locks and mapping if mandatory locking is 5252 * enabled. 5253 */ 5254 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 5255 MANDLOCK(vp, va.va_mode)) { 5256 error = EAGAIN; 5257 goto done; 5258 } 5259 5260 as_rangelock(as); 5261 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5262 if (error != 0) { 5263 as_rangeunlock(as); 5264 goto done; 5265 } 5266 5267 vn_a.vp = vp; 5268 vn_a.offset = off; 5269 vn_a.type = (flags & MAP_TYPE); 5270 vn_a.prot = (uchar_t)prot; 5271 vn_a.maxprot = (uchar_t)maxprot; 5272 vn_a.flags = (flags & ~MAP_TYPE); 5273 vn_a.cred = cr; 5274 vn_a.amp = NULL; 5275 vn_a.szc = 0; 5276 vn_a.lgrp_mem_policy_flags = 0; 5277 5278 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5279 as_rangeunlock(as); 5280 5281 done: 5282 nfs_rw_exit(&rp->r_lkserlock); 5283 atomic_add_int(&rp->r_inmap, -1); 5284 return (error); 5285 } 5286 5287 /* ARGSUSED */ 5288 static int 5289 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5290 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5291 cred_t *cr, caller_context_t *ct) 5292 { 5293 rnode_t *rp; 5294 5295 if (vp->v_flag & VNOMAP) 5296 return (ENOSYS); 5297 if (nfs_zone() != VTOMI(vp)->mi_zone) 5298 return (EIO); 5299 5300 rp = VTOR(vp); 5301 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 5302 5303 return (0); 5304 } 5305 5306 /* ARGSUSED */ 5307 static int 5308 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5309 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 5310 caller_context_t *ct) 5311 { 5312 netobj lm_fh3; 5313 int rc; 5314 u_offset_t start, end; 5315 rnode_t *rp; 5316 int error = 0, intr = INTR(vp); 5317 5318 if (nfs_zone() != VTOMI(vp)->mi_zone) 5319 return (EIO); 5320 /* check for valid cmd parameter */ 5321 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 5322 return (EINVAL); 5323 5324 /* Verify l_type. */ 5325 switch (bfp->l_type) { 5326 case F_RDLCK: 5327 if (cmd != F_GETLK && !(flag & FREAD)) 5328 return (EBADF); 5329 break; 5330 case F_WRLCK: 5331 if (cmd != F_GETLK && !(flag & FWRITE)) 5332 return (EBADF); 5333 break; 5334 case F_UNLCK: 5335 intr = 0; 5336 break; 5337 5338 default: 5339 return (EINVAL); 5340 } 5341 5342 /* check the validity of the lock range */ 5343 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 5344 return (rc); 5345 if (rc = flk_check_lock_data(start, end, MAXEND)) 5346 return (rc); 5347 5348 /* 5349 * If the filesystem is mounted using local locking, pass the 5350 * request off to the local locking code. 5351 */ 5352 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 5353 if (cmd == F_SETLK || cmd == F_SETLKW) { 5354 /* 5355 * For complete safety, we should be holding 5356 * r_lkserlock. However, we can't call 5357 * lm_safelock and then fs_frlock while 5358 * holding r_lkserlock, so just invoke 5359 * lm_safelock and expect that this will 5360 * catch enough of the cases. 5361 */ 5362 if (!lm_safelock(vp, bfp, cr)) 5363 return (EAGAIN); 5364 } 5365 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 5366 } 5367 5368 rp = VTOR(vp); 5369 5370 /* 5371 * Check whether the given lock request can proceed, given the 5372 * current file mappings. 5373 */ 5374 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 5375 return (EINTR); 5376 if (cmd == F_SETLK || cmd == F_SETLKW) { 5377 if (!lm_safelock(vp, bfp, cr)) { 5378 rc = EAGAIN; 5379 goto done; 5380 } 5381 } 5382 5383 /* 5384 * Flush the cache after waiting for async I/O to finish. For new 5385 * locks, this is so that the process gets the latest bits from the 5386 * server. For unlocks, this is so that other clients see the 5387 * latest bits once the file has been unlocked. If currently dirty 5388 * pages can't be flushed, then don't allow a lock to be set. But 5389 * allow unlocks to succeed, to avoid having orphan locks on the 5390 * server. 5391 */ 5392 if (cmd != F_GETLK) { 5393 mutex_enter(&rp->r_statelock); 5394 while (rp->r_count > 0) { 5395 if (intr) { 5396 klwp_t *lwp = ttolwp(curthread); 5397 5398 if (lwp != NULL) 5399 lwp->lwp_nostop++; 5400 if (cv_wait_sig(&rp->r_cv, 5401 &rp->r_statelock) == 0) { 5402 if (lwp != NULL) 5403 lwp->lwp_nostop--; 5404 rc = EINTR; 5405 break; 5406 } 5407 if (lwp != NULL) 5408 lwp->lwp_nostop--; 5409 } else 5410 cv_wait(&rp->r_cv, &rp->r_statelock); 5411 } 5412 mutex_exit(&rp->r_statelock); 5413 if (rc != 0) 5414 goto done; 5415 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 5416 if (error) { 5417 if (error == ENOSPC || error == EDQUOT) { 5418 mutex_enter(&rp->r_statelock); 5419 if (!rp->r_error) 5420 rp->r_error = error; 5421 mutex_exit(&rp->r_statelock); 5422 } 5423 if (bfp->l_type != F_UNLCK) { 5424 rc = ENOLCK; 5425 goto done; 5426 } 5427 } 5428 } 5429 5430 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 5431 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 5432 5433 /* 5434 * Call the lock manager to do the real work of contacting 5435 * the server and obtaining the lock. 5436 */ 5437 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp); 5438 5439 if (rc == 0) 5440 nfs_lockcompletion(vp, cmd); 5441 5442 done: 5443 nfs_rw_exit(&rp->r_lkserlock); 5444 return (rc); 5445 } 5446 5447 /* 5448 * Free storage space associated with the specified vnode. The portion 5449 * to be freed is specified by bfp->l_start and bfp->l_len (already 5450 * normalized to a "whence" of 0). 5451 * 5452 * This is an experimental facility whose continued existence is not 5453 * guaranteed. Currently, we only support the special case 5454 * of l_len == 0, meaning free to end of file. 5455 */ 5456 /* ARGSUSED */ 5457 static int 5458 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5459 offset_t offset, cred_t *cr, caller_context_t *ct) 5460 { 5461 int error; 5462 5463 ASSERT(vp->v_type == VREG); 5464 if (cmd != F_FREESP) 5465 return (EINVAL); 5466 if (nfs_zone() != VTOMI(vp)->mi_zone) 5467 return (EIO); 5468 5469 error = convoff(vp, bfp, 0, offset); 5470 if (!error) { 5471 ASSERT(bfp->l_start >= 0); 5472 if (bfp->l_len == 0) { 5473 struct vattr va; 5474 5475 /* 5476 * ftruncate should not change the ctime and 5477 * mtime if we truncate the file to its 5478 * previous size. 5479 */ 5480 va.va_mask = AT_SIZE; 5481 error = nfs3getattr(vp, &va, cr); 5482 if (error || va.va_size == bfp->l_start) 5483 return (error); 5484 va.va_mask = AT_SIZE; 5485 va.va_size = bfp->l_start; 5486 error = nfs3setattr(vp, &va, 0, cr); 5487 } else 5488 error = EINVAL; 5489 } 5490 5491 return (error); 5492 } 5493 5494 /* ARGSUSED */ 5495 static int 5496 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 5497 { 5498 5499 return (EINVAL); 5500 } 5501 5502 /* 5503 * Setup and add an address space callback to do the work of the delmap call. 5504 * The callback will (and must be) deleted in the actual callback function. 5505 * 5506 * This is done in order to take care of the problem that we have with holding 5507 * the address space's a_lock for a long period of time (e.g. if the NFS server 5508 * is down). Callbacks will be executed in the address space code while the 5509 * a_lock is not held. Holding the address space's a_lock causes things such 5510 * as ps and fork to hang because they are trying to acquire this lock as well. 5511 */ 5512 /* ARGSUSED */ 5513 static int 5514 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5515 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5516 cred_t *cr, caller_context_t *ct) 5517 { 5518 int caller_found; 5519 int error; 5520 rnode_t *rp; 5521 nfs_delmap_args_t *dmapp; 5522 nfs_delmapcall_t *delmap_call; 5523 5524 if (vp->v_flag & VNOMAP) 5525 return (ENOSYS); 5526 /* 5527 * A process may not change zones if it has NFS pages mmap'ed 5528 * in, so we can't legitimately get here from the wrong zone. 5529 */ 5530 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5531 5532 rp = VTOR(vp); 5533 5534 /* 5535 * The way that the address space of this process deletes its mapping 5536 * of this file is via the following call chains: 5537 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5538 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5539 * 5540 * With the use of address space callbacks we are allowed to drop the 5541 * address space lock, a_lock, while executing the NFS operations that 5542 * need to go over the wire. Returning EAGAIN to the caller of this 5543 * function is what drives the execution of the callback that we add 5544 * below. The callback will be executed by the address space code 5545 * after dropping the a_lock. When the callback is finished, since 5546 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 5547 * is called again on the same segment to finish the rest of the work 5548 * that needs to happen during unmapping. 5549 * 5550 * This action of calling back into the segment driver causes 5551 * nfs3_delmap() to get called again, but since the callback was 5552 * already executed at this point, it already did the work and there 5553 * is nothing left for us to do. 5554 * 5555 * To Summarize: 5556 * - The first time nfs3_delmap is called by the current thread is when 5557 * we add the caller associated with this delmap to the delmap caller 5558 * list, add the callback, and return EAGAIN. 5559 * - The second time in this call chain when nfs3_delmap is called we 5560 * will find this caller in the delmap caller list and realize there 5561 * is no more work to do thus removing this caller from the list and 5562 * returning the error that was set in the callback execution. 5563 */ 5564 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 5565 if (caller_found) { 5566 /* 5567 * 'error' is from the actual delmap operations. To avoid 5568 * hangs, we need to handle the return of EAGAIN differently 5569 * since this is what drives the callback execution. 5570 * In this case, we don't want to return EAGAIN and do the 5571 * callback execution because there are none to execute. 5572 */ 5573 if (error == EAGAIN) 5574 return (0); 5575 else 5576 return (error); 5577 } 5578 5579 /* current caller was not in the list */ 5580 delmap_call = nfs_init_delmapcall(); 5581 5582 mutex_enter(&rp->r_statelock); 5583 list_insert_tail(&rp->r_indelmap, delmap_call); 5584 mutex_exit(&rp->r_statelock); 5585 5586 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 5587 5588 dmapp->vp = vp; 5589 dmapp->off = off; 5590 dmapp->addr = addr; 5591 dmapp->len = len; 5592 dmapp->prot = prot; 5593 dmapp->maxprot = maxprot; 5594 dmapp->flags = flags; 5595 dmapp->cr = cr; 5596 dmapp->caller = delmap_call; 5597 5598 error = as_add_callback(as, nfs3_delmap_callback, dmapp, 5599 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 5600 5601 return (error ? error : EAGAIN); 5602 } 5603 5604 /* 5605 * Remove some pages from an mmap'd vnode. Just update the 5606 * count of pages. If doing close-to-open, then flush and 5607 * commit all of the pages associated with this file. 5608 * Otherwise, start an asynchronous page flush to write out 5609 * any dirty pages. This will also associate a credential 5610 * with the rnode which can be used to write the pages. 5611 */ 5612 /* ARGSUSED */ 5613 static void 5614 nfs3_delmap_callback(struct as *as, void *arg, uint_t event) 5615 { 5616 int error; 5617 rnode_t *rp; 5618 mntinfo_t *mi; 5619 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 5620 5621 rp = VTOR(dmapp->vp); 5622 mi = VTOMI(dmapp->vp); 5623 5624 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 5625 ASSERT(rp->r_mapcnt >= 0); 5626 5627 /* 5628 * Initiate a page flush and potential commit if there are 5629 * pages, the file system was not mounted readonly, the segment 5630 * was mapped shared, and the pages themselves were writeable. 5631 */ 5632 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 5633 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 5634 mutex_enter(&rp->r_statelock); 5635 rp->r_flags |= RDIRTY; 5636 mutex_exit(&rp->r_statelock); 5637 /* 5638 * If this is a cross-zone access a sync putpage won't work, so 5639 * the best we can do is try an async putpage. That seems 5640 * better than something more draconian such as discarding the 5641 * dirty pages. 5642 */ 5643 if ((mi->mi_flags & MI_NOCTO) || 5644 nfs_zone() != mi->mi_zone) 5645 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5646 B_ASYNC, dmapp->cr, NULL); 5647 else 5648 error = nfs3_putpage_commit(dmapp->vp, dmapp->off, 5649 dmapp->len, dmapp->cr); 5650 if (!error) { 5651 mutex_enter(&rp->r_statelock); 5652 error = rp->r_error; 5653 rp->r_error = 0; 5654 mutex_exit(&rp->r_statelock); 5655 } 5656 } else 5657 error = 0; 5658 5659 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 5660 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5661 B_INVAL, dmapp->cr, NULL); 5662 5663 dmapp->caller->error = error; 5664 (void) as_delete_callback(as, arg); 5665 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 5666 } 5667 5668 static int nfs3_pathconf_disable_cache = 0; 5669 5670 #ifdef DEBUG 5671 static int nfs3_pathconf_cache_hits = 0; 5672 static int nfs3_pathconf_cache_misses = 0; 5673 #endif 5674 5675 /* ARGSUSED */ 5676 static int 5677 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 5678 caller_context_t *ct) 5679 { 5680 int error; 5681 PATHCONF3args args; 5682 PATHCONF3res res; 5683 int douprintf; 5684 failinfo_t fi; 5685 rnode_t *rp; 5686 hrtime_t t; 5687 5688 if (nfs_zone() != VTOMI(vp)->mi_zone) 5689 return (EIO); 5690 /* 5691 * Large file spec - need to base answer on info stored 5692 * on original FSINFO response. 5693 */ 5694 if (cmd == _PC_FILESIZEBITS) { 5695 unsigned long long ll; 5696 long l = 1; 5697 5698 ll = VTOMI(vp)->mi_maxfilesize; 5699 5700 if (ll == 0) { 5701 *valp = 0; 5702 return (0); 5703 } 5704 5705 if (ll & 0xffffffff00000000) { 5706 l += 32; ll >>= 32; 5707 } 5708 if (ll & 0xffff0000) { 5709 l += 16; ll >>= 16; 5710 } 5711 if (ll & 0xff00) { 5712 l += 8; ll >>= 8; 5713 } 5714 if (ll & 0xf0) { 5715 l += 4; ll >>= 4; 5716 } 5717 if (ll & 0xc) { 5718 l += 2; ll >>= 2; 5719 } 5720 if (ll & 0x2) 5721 l += 2; 5722 else if (ll & 0x1) 5723 l += 1; 5724 *valp = l; 5725 return (0); 5726 } 5727 5728 if (cmd == _PC_ACL_ENABLED) { 5729 *valp = _ACL_ACLENT_ENABLED; 5730 return (0); 5731 } 5732 5733 if (cmd == _PC_XATTR_EXISTS) { 5734 error = 0; 5735 *valp = 0; 5736 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5737 vnode_t *avp; 5738 rnode_t *rp; 5739 int error = 0; 5740 mntinfo_t *mi = VTOMI(vp); 5741 5742 if (!(mi->mi_flags & MI_EXTATTR)) 5743 return (0); 5744 5745 rp = VTOR(vp); 5746 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 5747 INTR(vp))) 5748 return (EINTR); 5749 5750 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 5751 if (error || avp == NULL) 5752 error = acl_getxattrdir3(vp, &avp, 0, cr, 0); 5753 5754 nfs_rw_exit(&rp->r_rwlock); 5755 5756 if (error == 0 && avp != NULL) { 5757 error = do_xattr_exists_check(avp, valp, cr); 5758 VN_RELE(avp); 5759 } else if (error == ENOENT) { 5760 error = 0; 5761 *valp = 0; 5762 } 5763 } 5764 return (error); 5765 } 5766 5767 rp = VTOR(vp); 5768 if (rp->r_pathconf != NULL) { 5769 mutex_enter(&rp->r_statelock); 5770 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) { 5771 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf)); 5772 rp->r_pathconf = NULL; 5773 } 5774 if (rp->r_pathconf != NULL) { 5775 error = 0; 5776 switch (cmd) { 5777 case _PC_LINK_MAX: 5778 *valp = rp->r_pathconf->link_max; 5779 break; 5780 case _PC_NAME_MAX: 5781 *valp = rp->r_pathconf->name_max; 5782 break; 5783 case _PC_PATH_MAX: 5784 case _PC_SYMLINK_MAX: 5785 *valp = MAXPATHLEN; 5786 break; 5787 case _PC_CHOWN_RESTRICTED: 5788 *valp = rp->r_pathconf->chown_restricted; 5789 break; 5790 case _PC_NO_TRUNC: 5791 *valp = rp->r_pathconf->no_trunc; 5792 break; 5793 default: 5794 error = EINVAL; 5795 break; 5796 } 5797 mutex_exit(&rp->r_statelock); 5798 #ifdef DEBUG 5799 nfs3_pathconf_cache_hits++; 5800 #endif 5801 return (error); 5802 } 5803 mutex_exit(&rp->r_statelock); 5804 } 5805 #ifdef DEBUG 5806 nfs3_pathconf_cache_misses++; 5807 #endif 5808 5809 args.object = *VTOFH3(vp); 5810 fi.vp = vp; 5811 fi.fhp = (caddr_t)&args.object; 5812 fi.copyproc = nfs3copyfh; 5813 fi.lookupproc = nfs3lookup; 5814 fi.xattrdirproc = acl_getxattrdir3; 5815 5816 douprintf = 1; 5817 5818 t = gethrtime(); 5819 5820 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF, 5821 xdr_nfs_fh3, (caddr_t)&args, 5822 xdr_PATHCONF3res, (caddr_t)&res, cr, 5823 &douprintf, &res.status, 0, &fi); 5824 5825 if (error) 5826 return (error); 5827 5828 error = geterrno3(res.status); 5829 5830 if (!error) { 5831 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 5832 if (!nfs3_pathconf_disable_cache) { 5833 mutex_enter(&rp->r_statelock); 5834 if (rp->r_pathconf == NULL) { 5835 rp->r_pathconf = kmem_alloc( 5836 sizeof (*rp->r_pathconf), KM_NOSLEEP); 5837 if (rp->r_pathconf != NULL) 5838 *rp->r_pathconf = res.resok.info; 5839 } 5840 mutex_exit(&rp->r_statelock); 5841 } 5842 switch (cmd) { 5843 case _PC_LINK_MAX: 5844 *valp = res.resok.info.link_max; 5845 break; 5846 case _PC_NAME_MAX: 5847 *valp = res.resok.info.name_max; 5848 break; 5849 case _PC_PATH_MAX: 5850 case _PC_SYMLINK_MAX: 5851 *valp = MAXPATHLEN; 5852 break; 5853 case _PC_CHOWN_RESTRICTED: 5854 *valp = res.resok.info.chown_restricted; 5855 break; 5856 case _PC_NO_TRUNC: 5857 *valp = res.resok.info.no_trunc; 5858 break; 5859 default: 5860 return (EINVAL); 5861 } 5862 } else { 5863 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 5864 PURGE_STALE_FH(error, vp, cr); 5865 } 5866 5867 return (error); 5868 } 5869 5870 /* 5871 * Called by async thread to do synchronous pageio. Do the i/o, wait 5872 * for it to complete, and cleanup the page list when done. 5873 */ 5874 static int 5875 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5876 int flags, cred_t *cr) 5877 { 5878 int error; 5879 5880 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5881 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5882 if (flags & B_READ) 5883 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 5884 else 5885 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 5886 return (error); 5887 } 5888 5889 /* ARGSUSED */ 5890 static int 5891 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5892 int flags, cred_t *cr, caller_context_t *ct) 5893 { 5894 int error; 5895 rnode_t *rp; 5896 5897 if (pp == NULL) 5898 return (EINVAL); 5899 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5900 return (EIO); 5901 5902 rp = VTOR(vp); 5903 mutex_enter(&rp->r_statelock); 5904 rp->r_count++; 5905 mutex_exit(&rp->r_statelock); 5906 5907 if (flags & B_ASYNC) { 5908 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 5909 nfs3_sync_pageio); 5910 } else 5911 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5912 mutex_enter(&rp->r_statelock); 5913 rp->r_count--; 5914 cv_broadcast(&rp->r_cv); 5915 mutex_exit(&rp->r_statelock); 5916 return (error); 5917 } 5918 5919 /* ARGSUSED */ 5920 static void 5921 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 5922 caller_context_t *ct) 5923 { 5924 int error; 5925 rnode_t *rp; 5926 page_t *plist; 5927 page_t *pptr; 5928 offset3 offset; 5929 count3 len; 5930 k_sigset_t smask; 5931 5932 /* 5933 * We should get called with fl equal to either B_FREE or 5934 * B_INVAL. Any other value is illegal. 5935 * 5936 * The page that we are either supposed to free or destroy 5937 * should be exclusive locked and its io lock should not 5938 * be held. 5939 */ 5940 ASSERT(fl == B_FREE || fl == B_INVAL); 5941 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 5942 rp = VTOR(vp); 5943 5944 /* 5945 * If the page doesn't need to be committed or we shouldn't 5946 * even bother attempting to commit it, then just make sure 5947 * that the p_fsdata byte is clear and then either free or 5948 * destroy the page as appropriate. 5949 */ 5950 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) { 5951 pp->p_fsdata = C_NOCOMMIT; 5952 if (fl == B_FREE) 5953 page_free(pp, dn); 5954 else 5955 page_destroy(pp, dn); 5956 return; 5957 } 5958 5959 /* 5960 * If there is a page invalidation operation going on, then 5961 * if this is one of the pages being destroyed, then just 5962 * clear the p_fsdata byte and then either free or destroy 5963 * the page as appropriate. 5964 */ 5965 mutex_enter(&rp->r_statelock); 5966 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 5967 mutex_exit(&rp->r_statelock); 5968 pp->p_fsdata = C_NOCOMMIT; 5969 if (fl == B_FREE) 5970 page_free(pp, dn); 5971 else 5972 page_destroy(pp, dn); 5973 return; 5974 } 5975 5976 /* 5977 * If we are freeing this page and someone else is already 5978 * waiting to do a commit, then just unlock the page and 5979 * return. That other thread will take care of commiting 5980 * this page. The page can be freed sometime after the 5981 * commit has finished. Otherwise, if the page is marked 5982 * as delay commit, then we may be getting called from 5983 * pvn_write_done, one page at a time. This could result 5984 * in one commit per page, so we end up doing lots of small 5985 * commits instead of fewer larger commits. This is bad, 5986 * we want do as few commits as possible. 5987 */ 5988 if (fl == B_FREE) { 5989 if (rp->r_flags & RCOMMITWAIT) { 5990 page_unlock(pp); 5991 mutex_exit(&rp->r_statelock); 5992 return; 5993 } 5994 if (pp->p_fsdata == C_DELAYCOMMIT) { 5995 pp->p_fsdata = C_COMMIT; 5996 page_unlock(pp); 5997 mutex_exit(&rp->r_statelock); 5998 return; 5999 } 6000 } 6001 6002 /* 6003 * Check to see if there is a signal which would prevent an 6004 * attempt to commit the pages from being successful. If so, 6005 * then don't bother with all of the work to gather pages and 6006 * generate the unsuccessful RPC. Just return from here and 6007 * let the page be committed at some later time. 6008 */ 6009 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT); 6010 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 6011 sigunintr(&smask); 6012 page_unlock(pp); 6013 mutex_exit(&rp->r_statelock); 6014 return; 6015 } 6016 sigunintr(&smask); 6017 6018 /* 6019 * We are starting to need to commit pages, so let's try 6020 * to commit as many as possible at once to reduce the 6021 * overhead. 6022 * 6023 * Set the `commit inprogress' state bit. We must 6024 * first wait until any current one finishes. Then 6025 * we initialize the c_pages list with this page. 6026 */ 6027 while (rp->r_flags & RCOMMIT) { 6028 rp->r_flags |= RCOMMITWAIT; 6029 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6030 rp->r_flags &= ~RCOMMITWAIT; 6031 } 6032 rp->r_flags |= RCOMMIT; 6033 mutex_exit(&rp->r_statelock); 6034 ASSERT(rp->r_commit.c_pages == NULL); 6035 rp->r_commit.c_pages = pp; 6036 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6037 rp->r_commit.c_commlen = PAGESIZE; 6038 6039 /* 6040 * Gather together all other pages which can be committed. 6041 * They will all be chained off r_commit.c_pages. 6042 */ 6043 nfs3_get_commit(vp); 6044 6045 /* 6046 * Clear the `commit inprogress' status and disconnect 6047 * the list of pages to be committed from the rnode. 6048 * At this same time, we also save the starting offset 6049 * and length of data to be committed on the server. 6050 */ 6051 plist = rp->r_commit.c_pages; 6052 rp->r_commit.c_pages = NULL; 6053 offset = rp->r_commit.c_commbase; 6054 len = rp->r_commit.c_commlen; 6055 mutex_enter(&rp->r_statelock); 6056 rp->r_flags &= ~RCOMMIT; 6057 cv_broadcast(&rp->r_commit.c_cv); 6058 mutex_exit(&rp->r_statelock); 6059 6060 if (curproc == proc_pageout || curproc == proc_fsflush || 6061 nfs_zone() != VTOMI(vp)->mi_zone) { 6062 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit); 6063 return; 6064 } 6065 6066 /* 6067 * Actually generate the COMMIT3 over the wire operation. 6068 */ 6069 error = nfs3_commit(vp, offset, len, cr); 6070 6071 /* 6072 * If we got an error during the commit, just unlock all 6073 * of the pages. The pages will get retransmitted to the 6074 * server during a putpage operation. 6075 */ 6076 if (error) { 6077 while (plist != NULL) { 6078 pptr = plist; 6079 page_sub(&plist, pptr); 6080 page_unlock(pptr); 6081 } 6082 return; 6083 } 6084 6085 /* 6086 * We've tried as hard as we can to commit the data to stable 6087 * storage on the server. We release the rest of the pages 6088 * and clear the commit required state. They will be put 6089 * onto the tail of the cachelist if they are nolonger 6090 * mapped. 6091 */ 6092 while (plist != pp) { 6093 pptr = plist; 6094 page_sub(&plist, pptr); 6095 pptr->p_fsdata = C_NOCOMMIT; 6096 (void) page_release(pptr, 1); 6097 } 6098 6099 /* 6100 * It is possible that nfs3_commit didn't return error but 6101 * some other thread has modified the page we are going 6102 * to free/destroy. 6103 * In this case we need to rewrite the page. Do an explicit check 6104 * before attempting to free/destroy the page. If modified, needs to 6105 * be rewritten so unlock the page and return. 6106 */ 6107 if (hat_ismod(pp)) { 6108 pp->p_fsdata = C_NOCOMMIT; 6109 page_unlock(pp); 6110 return; 6111 } 6112 6113 /* 6114 * Now, as appropriate, either free or destroy the page 6115 * that we were called with. 6116 */ 6117 pp->p_fsdata = C_NOCOMMIT; 6118 if (fl == B_FREE) 6119 page_free(pp, dn); 6120 else 6121 page_destroy(pp, dn); 6122 } 6123 6124 static int 6125 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr) 6126 { 6127 int error; 6128 rnode_t *rp; 6129 COMMIT3args args; 6130 COMMIT3res res; 6131 int douprintf; 6132 cred_t *cred; 6133 6134 rp = VTOR(vp); 6135 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6136 6137 mutex_enter(&rp->r_statelock); 6138 if (rp->r_cred != NULL) { 6139 cred = rp->r_cred; 6140 crhold(cred); 6141 } else { 6142 rp->r_cred = cr; 6143 crhold(cr); 6144 cred = cr; 6145 crhold(cred); 6146 } 6147 mutex_exit(&rp->r_statelock); 6148 6149 args.file = *VTOFH3(vp); 6150 args.offset = offset; 6151 args.count = count; 6152 6153 doitagain: 6154 douprintf = 1; 6155 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT, 6156 xdr_COMMIT3args, (caddr_t)&args, 6157 xdr_COMMIT3res, (caddr_t)&res, cred, 6158 &douprintf, &res.status, 0, NULL); 6159 6160 crfree(cred); 6161 6162 if (error) 6163 return (error); 6164 6165 error = geterrno3(res.status); 6166 if (!error) { 6167 ASSERT(rp->r_flags & RHAVEVERF); 6168 mutex_enter(&rp->r_statelock); 6169 if (rp->r_verf == res.resok.verf) { 6170 mutex_exit(&rp->r_statelock); 6171 return (0); 6172 } 6173 nfs3_set_mod(vp); 6174 rp->r_verf = res.resok.verf; 6175 mutex_exit(&rp->r_statelock); 6176 error = NFS_VERF_MISMATCH; 6177 } else { 6178 if (error == EACCES) { 6179 mutex_enter(&rp->r_statelock); 6180 if (cred != cr) { 6181 if (rp->r_cred != NULL) 6182 crfree(rp->r_cred); 6183 rp->r_cred = cr; 6184 crhold(cr); 6185 cred = cr; 6186 crhold(cred); 6187 mutex_exit(&rp->r_statelock); 6188 goto doitagain; 6189 } 6190 mutex_exit(&rp->r_statelock); 6191 } 6192 /* 6193 * Can't do a PURGE_STALE_FH here because this 6194 * can cause a deadlock. nfs3_commit can 6195 * be called from nfs3_dispose which can be called 6196 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH 6197 * can call back to pvn_vplist_dirty. 6198 */ 6199 if (error == ESTALE) { 6200 mutex_enter(&rp->r_statelock); 6201 rp->r_flags |= RSTALE; 6202 if (!rp->r_error) 6203 rp->r_error = error; 6204 mutex_exit(&rp->r_statelock); 6205 PURGE_ATTRCACHE(vp); 6206 } else { 6207 mutex_enter(&rp->r_statelock); 6208 if (!rp->r_error) 6209 rp->r_error = error; 6210 mutex_exit(&rp->r_statelock); 6211 } 6212 } 6213 6214 return (error); 6215 } 6216 6217 static void 6218 nfs3_set_mod(vnode_t *vp) 6219 { 6220 page_t *pp; 6221 kmutex_t *vphm; 6222 6223 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6224 vphm = page_vnode_mutex(vp); 6225 mutex_enter(vphm); 6226 if ((pp = vp->v_pages) != NULL) { 6227 do { 6228 if (pp->p_fsdata != C_NOCOMMIT) { 6229 hat_setmod(pp); 6230 pp->p_fsdata = C_NOCOMMIT; 6231 } 6232 } while ((pp = pp->p_vpnext) != vp->v_pages); 6233 } 6234 mutex_exit(vphm); 6235 } 6236 6237 6238 /* 6239 * This routine is used to gather together a page list of the pages 6240 * which are to be committed on the server. This routine must not 6241 * be called if the calling thread holds any locked pages. 6242 * 6243 * The calling thread must have set RCOMMIT. This bit is used to 6244 * serialize access to the commit structure in the rnode. As long 6245 * as the thread has set RCOMMIT, then it can manipulate the commit 6246 * structure without requiring any other locks. 6247 */ 6248 static void 6249 nfs3_get_commit(vnode_t *vp) 6250 { 6251 rnode_t *rp; 6252 page_t *pp; 6253 kmutex_t *vphm; 6254 6255 rp = VTOR(vp); 6256 6257 ASSERT(rp->r_flags & RCOMMIT); 6258 6259 vphm = page_vnode_mutex(vp); 6260 mutex_enter(vphm); 6261 6262 /* 6263 * If there are no pages associated with this vnode, then 6264 * just return. 6265 */ 6266 if ((pp = vp->v_pages) == NULL) { 6267 mutex_exit(vphm); 6268 return; 6269 } 6270 6271 /* 6272 * Step through all of the pages associated with this vnode 6273 * looking for pages which need to be committed. 6274 */ 6275 do { 6276 /* 6277 * If this page does not need to be committed or is 6278 * modified, then just skip it. 6279 */ 6280 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 6281 continue; 6282 6283 /* 6284 * Attempt to lock the page. If we can't, then 6285 * someone else is messing with it and we will 6286 * just skip it. 6287 */ 6288 if (!page_trylock(pp, SE_EXCL)) 6289 continue; 6290 6291 /* 6292 * If this page does not need to be committed or is 6293 * modified, then just skip it. Recheck now that 6294 * the page is locked. 6295 */ 6296 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6297 page_unlock(pp); 6298 continue; 6299 } 6300 6301 if (PP_ISFREE(pp)) { 6302 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free", 6303 (void *)pp); 6304 } 6305 6306 /* 6307 * The page needs to be committed and we locked it. 6308 * Update the base and length parameters and add it 6309 * to r_pages. 6310 */ 6311 if (rp->r_commit.c_pages == NULL) { 6312 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6313 rp->r_commit.c_commlen = PAGESIZE; 6314 } else if (pp->p_offset < rp->r_commit.c_commbase) { 6315 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 6316 (offset3)pp->p_offset + rp->r_commit.c_commlen; 6317 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6318 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 6319 <= pp->p_offset) { 6320 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6321 rp->r_commit.c_commbase + PAGESIZE; 6322 } 6323 page_add(&rp->r_commit.c_pages, pp); 6324 } while ((pp = pp->p_vpnext) != vp->v_pages); 6325 6326 mutex_exit(vphm); 6327 } 6328 6329 /* 6330 * This routine is used to gather together a page list of the pages 6331 * which are to be committed on the server. This routine must not 6332 * be called if the calling thread holds any locked pages. 6333 * 6334 * The calling thread must have set RCOMMIT. This bit is used to 6335 * serialize access to the commit structure in the rnode. As long 6336 * as the thread has set RCOMMIT, then it can manipulate the commit 6337 * structure without requiring any other locks. 6338 */ 6339 static void 6340 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 6341 { 6342 6343 rnode_t *rp; 6344 page_t *pp; 6345 u_offset_t end; 6346 u_offset_t off; 6347 6348 ASSERT(len != 0); 6349 6350 rp = VTOR(vp); 6351 6352 ASSERT(rp->r_flags & RCOMMIT); 6353 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6354 6355 /* 6356 * If there are no pages associated with this vnode, then 6357 * just return. 6358 */ 6359 if ((pp = vp->v_pages) == NULL) 6360 return; 6361 6362 /* 6363 * Calculate the ending offset. 6364 */ 6365 end = soff + len; 6366 6367 for (off = soff; off < end; off += PAGESIZE) { 6368 /* 6369 * Lookup each page by vp, offset. 6370 */ 6371 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 6372 continue; 6373 6374 /* 6375 * If this page does not need to be committed or is 6376 * modified, then just skip it. 6377 */ 6378 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6379 page_unlock(pp); 6380 continue; 6381 } 6382 6383 ASSERT(PP_ISFREE(pp) == 0); 6384 6385 /* 6386 * The page needs to be committed and we locked it. 6387 * Update the base and length parameters and add it 6388 * to r_pages. 6389 */ 6390 if (rp->r_commit.c_pages == NULL) { 6391 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6392 rp->r_commit.c_commlen = PAGESIZE; 6393 } else { 6394 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6395 rp->r_commit.c_commbase + PAGESIZE; 6396 } 6397 page_add(&rp->r_commit.c_pages, pp); 6398 } 6399 } 6400 6401 #if 0 /* unused */ 6402 #ifdef DEBUG 6403 static int 6404 nfs3_no_uncommitted_pages(vnode_t *vp) 6405 { 6406 page_t *pp; 6407 kmutex_t *vphm; 6408 6409 vphm = page_vnode_mutex(vp); 6410 mutex_enter(vphm); 6411 if ((pp = vp->v_pages) != NULL) { 6412 do { 6413 if (pp->p_fsdata != C_NOCOMMIT) { 6414 mutex_exit(vphm); 6415 return (0); 6416 } 6417 } while ((pp = pp->p_vpnext) != vp->v_pages); 6418 } 6419 mutex_exit(vphm); 6420 6421 return (1); 6422 } 6423 #endif 6424 #endif 6425 6426 static int 6427 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 6428 { 6429 int error; 6430 writeverf3 write_verf; 6431 rnode_t *rp = VTOR(vp); 6432 6433 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6434 /* 6435 * Flush the data portion of the file and then commit any 6436 * portions which need to be committed. This may need to 6437 * be done twice if the server has changed state since 6438 * data was last written. The data will need to be 6439 * rewritten to the server and then a new commit done. 6440 * 6441 * In fact, this may need to be done several times if the 6442 * server is having problems and crashing while we are 6443 * attempting to do this. 6444 */ 6445 6446 top: 6447 /* 6448 * Do a flush based on the poff and plen arguments. This 6449 * will asynchronously write out any modified pages in the 6450 * range specified by (poff, plen). This starts all of the 6451 * i/o operations which will be waited for in the next 6452 * call to nfs3_putpage 6453 */ 6454 6455 mutex_enter(&rp->r_statelock); 6456 write_verf = rp->r_verf; 6457 mutex_exit(&rp->r_statelock); 6458 6459 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 6460 if (error == EAGAIN) 6461 error = 0; 6462 6463 /* 6464 * Do a flush based on the poff and plen arguments. This 6465 * will synchronously write out any modified pages in the 6466 * range specified by (poff, plen) and wait until all of 6467 * the asynchronous i/o's in that range are done as well. 6468 */ 6469 if (!error) 6470 error = nfs3_putpage(vp, poff, plen, 0, cr, NULL); 6471 6472 if (error) 6473 return (error); 6474 6475 mutex_enter(&rp->r_statelock); 6476 if (rp->r_verf != write_verf) { 6477 mutex_exit(&rp->r_statelock); 6478 goto top; 6479 } 6480 mutex_exit(&rp->r_statelock); 6481 6482 /* 6483 * Now commit any pages which might need to be committed. 6484 * If the error, NFS_VERF_MISMATCH, is returned, then 6485 * start over with the flush operation. 6486 */ 6487 6488 error = nfs3_commit_vp(vp, poff, plen, cr); 6489 6490 if (error == NFS_VERF_MISMATCH) 6491 goto top; 6492 6493 return (error); 6494 } 6495 6496 static int 6497 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr) 6498 { 6499 rnode_t *rp; 6500 page_t *plist; 6501 offset3 offset; 6502 count3 len; 6503 6504 6505 rp = VTOR(vp); 6506 6507 if (nfs_zone() != VTOMI(vp)->mi_zone) 6508 return (EIO); 6509 /* 6510 * Set the `commit inprogress' state bit. We must 6511 * first wait until any current one finishes. 6512 */ 6513 mutex_enter(&rp->r_statelock); 6514 while (rp->r_flags & RCOMMIT) { 6515 rp->r_flags |= RCOMMITWAIT; 6516 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6517 rp->r_flags &= ~RCOMMITWAIT; 6518 } 6519 rp->r_flags |= RCOMMIT; 6520 mutex_exit(&rp->r_statelock); 6521 6522 /* 6523 * Gather together all of the pages which need to be 6524 * committed. 6525 */ 6526 if (plen == 0) 6527 nfs3_get_commit(vp); 6528 else 6529 nfs3_get_commit_range(vp, poff, plen); 6530 6531 /* 6532 * Clear the `commit inprogress' bit and disconnect the 6533 * page list which was gathered together in nfs3_get_commit. 6534 */ 6535 plist = rp->r_commit.c_pages; 6536 rp->r_commit.c_pages = NULL; 6537 offset = rp->r_commit.c_commbase; 6538 len = rp->r_commit.c_commlen; 6539 mutex_enter(&rp->r_statelock); 6540 rp->r_flags &= ~RCOMMIT; 6541 cv_broadcast(&rp->r_commit.c_cv); 6542 mutex_exit(&rp->r_statelock); 6543 6544 /* 6545 * If any pages need to be committed, commit them and 6546 * then unlock them so that they can be freed some 6547 * time later. 6548 */ 6549 if (plist != NULL) { 6550 /* 6551 * No error occurred during the flush portion 6552 * of this operation, so now attempt to commit 6553 * the data to stable storage on the server. 6554 * 6555 * This will unlock all of the pages on the list. 6556 */ 6557 return (nfs3_sync_commit(vp, plist, offset, len, cr)); 6558 } 6559 return (0); 6560 } 6561 6562 static int 6563 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6564 cred_t *cr) 6565 { 6566 int error; 6567 page_t *pp; 6568 6569 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6570 error = nfs3_commit(vp, offset, count, cr); 6571 6572 /* 6573 * If we got an error, then just unlock all of the pages 6574 * on the list. 6575 */ 6576 if (error) { 6577 while (plist != NULL) { 6578 pp = plist; 6579 page_sub(&plist, pp); 6580 page_unlock(pp); 6581 } 6582 return (error); 6583 } 6584 /* 6585 * We've tried as hard as we can to commit the data to stable 6586 * storage on the server. We just unlock the pages and clear 6587 * the commit required state. They will get freed later. 6588 */ 6589 while (plist != NULL) { 6590 pp = plist; 6591 page_sub(&plist, pp); 6592 pp->p_fsdata = C_NOCOMMIT; 6593 page_unlock(pp); 6594 } 6595 6596 return (error); 6597 } 6598 6599 static void 6600 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6601 cred_t *cr) 6602 { 6603 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6604 (void) nfs3_sync_commit(vp, plist, offset, count, cr); 6605 } 6606 6607 /* ARGSUSED */ 6608 static int 6609 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6610 caller_context_t *ct) 6611 { 6612 int error; 6613 mntinfo_t *mi; 6614 6615 mi = VTOMI(vp); 6616 6617 if (nfs_zone() != mi->mi_zone) 6618 return (EIO); 6619 6620 if (mi->mi_flags & MI_ACL) { 6621 error = acl_setacl3(vp, vsecattr, flag, cr); 6622 if (mi->mi_flags & MI_ACL) 6623 return (error); 6624 } 6625 6626 return (ENOSYS); 6627 } 6628 6629 /* ARGSUSED */ 6630 static int 6631 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6632 caller_context_t *ct) 6633 { 6634 int error; 6635 mntinfo_t *mi; 6636 6637 mi = VTOMI(vp); 6638 6639 if (nfs_zone() != mi->mi_zone) 6640 return (EIO); 6641 6642 if (mi->mi_flags & MI_ACL) { 6643 error = acl_getacl3(vp, vsecattr, flag, cr); 6644 if (mi->mi_flags & MI_ACL) 6645 return (error); 6646 } 6647 6648 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 6649 } 6650 6651 /* ARGSUSED */ 6652 static int 6653 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 6654 caller_context_t *ct) 6655 { 6656 int error; 6657 struct shrlock nshr; 6658 struct nfs_owner nfs_owner; 6659 netobj lm_fh3; 6660 6661 if (nfs_zone() != VTOMI(vp)->mi_zone) 6662 return (EIO); 6663 6664 /* 6665 * check for valid cmd parameter 6666 */ 6667 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 6668 return (EINVAL); 6669 6670 /* 6671 * Check access permissions 6672 */ 6673 if (cmd == F_SHARE && 6674 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 6675 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 6676 return (EBADF); 6677 6678 /* 6679 * If the filesystem is mounted using local locking, pass the 6680 * request off to the local share code. 6681 */ 6682 if (VTOMI(vp)->mi_flags & MI_LLOCK) 6683 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 6684 6685 switch (cmd) { 6686 case F_SHARE: 6687 case F_UNSHARE: 6688 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 6689 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 6690 6691 /* 6692 * If passed an owner that is too large to fit in an 6693 * nfs_owner it is likely a recursive call from the 6694 * lock manager client and pass it straight through. If 6695 * it is not a nfs_owner then simply return an error. 6696 */ 6697 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 6698 if (((struct nfs_owner *)shr->s_owner)->magic != 6699 NFS_OWNER_MAGIC) 6700 return (EINVAL); 6701 6702 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) { 6703 error = set_errno(error); 6704 } 6705 return (error); 6706 } 6707 /* 6708 * Remote share reservations owner is a combination of 6709 * a magic number, hostname, and the local owner 6710 */ 6711 bzero(&nfs_owner, sizeof (nfs_owner)); 6712 nfs_owner.magic = NFS_OWNER_MAGIC; 6713 (void) strncpy(nfs_owner.hname, uts_nodename(), 6714 sizeof (nfs_owner.hname)); 6715 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 6716 nshr.s_access = shr->s_access; 6717 nshr.s_deny = shr->s_deny; 6718 nshr.s_sysid = 0; 6719 nshr.s_pid = ttoproc(curthread)->p_pid; 6720 nshr.s_own_len = sizeof (nfs_owner); 6721 nshr.s_owner = (caddr_t)&nfs_owner; 6722 6723 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) { 6724 error = set_errno(error); 6725 } 6726 6727 break; 6728 6729 case F_HASREMOTELOCKS: 6730 /* 6731 * NFS client can't store remote locks itself 6732 */ 6733 shr->s_access = 0; 6734 error = 0; 6735 break; 6736 6737 default: 6738 error = EINVAL; 6739 break; 6740 } 6741 6742 return (error); 6743 } 6744