1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/systm.h> 34 #include <sys/cred.h> 35 #include <sys/time.h> 36 #include <sys/vnode.h> 37 #include <sys/vfs.h> 38 #include <sys/vfs_opreg.h> 39 #include <sys/file.h> 40 #include <sys/filio.h> 41 #include <sys/uio.h> 42 #include <sys/buf.h> 43 #include <sys/mman.h> 44 #include <sys/pathname.h> 45 #include <sys/dirent.h> 46 #include <sys/debug.h> 47 #include <sys/vmsystm.h> 48 #include <sys/fcntl.h> 49 #include <sys/flock.h> 50 #include <sys/swap.h> 51 #include <sys/errno.h> 52 #include <sys/strsubr.h> 53 #include <sys/sysmacros.h> 54 #include <sys/kmem.h> 55 #include <sys/cmn_err.h> 56 #include <sys/pathconf.h> 57 #include <sys/utsname.h> 58 #include <sys/dnlc.h> 59 #include <sys/acl.h> 60 #include <sys/systeminfo.h> 61 #include <sys/atomic.h> 62 #include <sys/policy.h> 63 #include <sys/sdt.h> 64 65 #include <rpc/types.h> 66 #include <rpc/auth.h> 67 #include <rpc/clnt.h> 68 #include <rpc/rpc_rdma.h> 69 70 #include <nfs/nfs.h> 71 #include <nfs/nfs_clnt.h> 72 #include <nfs/rnode.h> 73 #include <nfs/nfs_acl.h> 74 #include <nfs/lm.h> 75 76 #include <vm/hat.h> 77 #include <vm/as.h> 78 #include <vm/page.h> 79 #include <vm/pvn.h> 80 #include <vm/seg.h> 81 #include <vm/seg_map.h> 82 #include <vm/seg_kpm.h> 83 #include <vm/seg_vn.h> 84 85 #include <fs/fs_subr.h> 86 87 #include <sys/ddi.h> 88 89 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 90 cred_t *); 91 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 92 stable_how *); 93 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *); 94 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *); 95 static int nfs3_accessx(void *, int, cred_t *); 96 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 97 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 98 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl, 99 int, vnode_t **, cred_t *, int); 100 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *); 101 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 102 int, vnode_t **, cred_t *); 103 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 104 caller_context_t *); 105 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 106 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 107 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *); 108 static int nfs3_bio(struct buf *, stable_how *, cred_t *); 109 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 110 page_t *[], size_t, struct seg *, caddr_t, 111 enum seg_rw, cred_t *); 112 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 113 cred_t *); 114 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 115 int, cred_t *); 116 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 117 int, cred_t *); 118 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *); 119 static void nfs3_set_mod(vnode_t *); 120 static void nfs3_get_commit(vnode_t *); 121 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t); 122 #if 0 /* unused */ 123 #ifdef DEBUG 124 static int nfs3_no_uncommitted_pages(vnode_t *); 125 #endif 126 #endif /* unused */ 127 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 128 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *); 129 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3, 130 cred_t *); 131 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3, 132 cred_t *); 133 static void nfs3_delmap_callback(struct as *, void *, uint_t); 134 135 /* 136 * Error flags used to pass information about certain special errors 137 * which need to be handled specially. 138 */ 139 #define NFS_EOF -98 140 #define NFS_VERF_MISMATCH -97 141 142 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 143 #define ALIGN64(x, ptr, sz) \ 144 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 145 if (x) { \ 146 x = sizeof (uint64_t) - (x); \ 147 sz -= (x); \ 148 ptr += (x); \ 149 } 150 151 /* 152 * These are the vnode ops routines which implement the vnode interface to 153 * the networked file system. These routines just take their parameters, 154 * make them look networkish by putting the right info into interface structs, 155 * and then calling the appropriate remote routine(s) to do the work. 156 * 157 * Note on directory name lookup cacheing: If we detect a stale fhandle, 158 * we purge the directory cache relative to that vnode. This way, the 159 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 160 * more details on rnode locking. 161 */ 162 163 static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *); 164 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *, 165 caller_context_t *); 166 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *, 167 caller_context_t *); 168 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *, 169 caller_context_t *); 170 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 171 caller_context_t *); 172 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *, 173 caller_context_t *); 174 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *, 175 caller_context_t *); 176 static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *); 177 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *, 178 caller_context_t *); 179 static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *); 180 static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *); 181 static int nfs3_lookup(vnode_t *, char *, vnode_t **, 182 struct pathname *, int, vnode_t *, cred_t *, 183 caller_context_t *, int *, pathname_t *); 184 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl, 185 int, vnode_t **, cred_t *, int, caller_context_t *, 186 vsecattr_t *); 187 static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *, 188 int); 189 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *, 190 caller_context_t *, int); 191 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 192 caller_context_t *, int); 193 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 194 cred_t *, caller_context_t *, int, vsecattr_t *); 195 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 196 caller_context_t *, int); 197 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *, 198 cred_t *, caller_context_t *, int); 199 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *, 200 caller_context_t *, int); 201 static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *); 202 static int nfs3_rwlock(vnode_t *, int, caller_context_t *); 203 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *); 204 static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 205 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *, 206 page_t *[], size_t, struct seg *, caddr_t, 207 enum seg_rw, cred_t *, caller_context_t *); 208 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 209 caller_context_t *); 210 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 211 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 212 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 213 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 214 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 215 struct flk_callback *, cred_t *, caller_context_t *); 216 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t, 217 cred_t *, caller_context_t *); 218 static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *); 219 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 220 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 221 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *, 222 caller_context_t *); 223 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 224 cred_t *, caller_context_t *); 225 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *, 226 caller_context_t *); 227 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 228 caller_context_t *); 229 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 230 caller_context_t *); 231 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 232 caller_context_t *); 233 234 struct vnodeops *nfs3_vnodeops; 235 236 const fs_operation_def_t nfs3_vnodeops_template[] = { 237 VOPNAME_OPEN, { .vop_open = nfs3_open }, 238 VOPNAME_CLOSE, { .vop_close = nfs3_close }, 239 VOPNAME_READ, { .vop_read = nfs3_read }, 240 VOPNAME_WRITE, { .vop_write = nfs3_write }, 241 VOPNAME_IOCTL, { .vop_ioctl = nfs3_ioctl }, 242 VOPNAME_GETATTR, { .vop_getattr = nfs3_getattr }, 243 VOPNAME_SETATTR, { .vop_setattr = nfs3_setattr }, 244 VOPNAME_ACCESS, { .vop_access = nfs3_access }, 245 VOPNAME_LOOKUP, { .vop_lookup = nfs3_lookup }, 246 VOPNAME_CREATE, { .vop_create = nfs3_create }, 247 VOPNAME_REMOVE, { .vop_remove = nfs3_remove }, 248 VOPNAME_LINK, { .vop_link = nfs3_link }, 249 VOPNAME_RENAME, { .vop_rename = nfs3_rename }, 250 VOPNAME_MKDIR, { .vop_mkdir = nfs3_mkdir }, 251 VOPNAME_RMDIR, { .vop_rmdir = nfs3_rmdir }, 252 VOPNAME_READDIR, { .vop_readdir = nfs3_readdir }, 253 VOPNAME_SYMLINK, { .vop_symlink = nfs3_symlink }, 254 VOPNAME_READLINK, { .vop_readlink = nfs3_readlink }, 255 VOPNAME_FSYNC, { .vop_fsync = nfs3_fsync }, 256 VOPNAME_INACTIVE, { .vop_inactive = nfs3_inactive }, 257 VOPNAME_FID, { .vop_fid = nfs3_fid }, 258 VOPNAME_RWLOCK, { .vop_rwlock = nfs3_rwlock }, 259 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs3_rwunlock }, 260 VOPNAME_SEEK, { .vop_seek = nfs3_seek }, 261 VOPNAME_FRLOCK, { .vop_frlock = nfs3_frlock }, 262 VOPNAME_SPACE, { .vop_space = nfs3_space }, 263 VOPNAME_REALVP, { .vop_realvp = nfs3_realvp }, 264 VOPNAME_GETPAGE, { .vop_getpage = nfs3_getpage }, 265 VOPNAME_PUTPAGE, { .vop_putpage = nfs3_putpage }, 266 VOPNAME_MAP, { .vop_map = nfs3_map }, 267 VOPNAME_ADDMAP, { .vop_addmap = nfs3_addmap }, 268 VOPNAME_DELMAP, { .vop_delmap = nfs3_delmap }, 269 /* no separate nfs3_dump */ 270 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 271 VOPNAME_PATHCONF, { .vop_pathconf = nfs3_pathconf }, 272 VOPNAME_PAGEIO, { .vop_pageio = nfs3_pageio }, 273 VOPNAME_DISPOSE, { .vop_dispose = nfs3_dispose }, 274 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs3_setsecattr }, 275 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs3_getsecattr }, 276 VOPNAME_SHRLOCK, { .vop_shrlock = nfs3_shrlock }, 277 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 278 NULL, NULL 279 }; 280 281 /* 282 * XXX: This is referenced in modstubs.s 283 */ 284 struct vnodeops * 285 nfs3_getvnodeops(void) 286 { 287 return (nfs3_vnodeops); 288 } 289 290 /* ARGSUSED */ 291 static int 292 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 293 { 294 int error; 295 struct vattr va; 296 rnode_t *rp; 297 vnode_t *vp; 298 299 vp = *vpp; 300 if (nfs_zone() != VTOMI(vp)->mi_zone) 301 return (EIO); 302 rp = VTOR(vp); 303 mutex_enter(&rp->r_statelock); 304 if (rp->r_cred == NULL) { 305 crhold(cr); 306 rp->r_cred = cr; 307 } 308 mutex_exit(&rp->r_statelock); 309 310 /* 311 * If there is no cached data or if close-to-open 312 * consistency checking is turned off, we can avoid 313 * the over the wire getattr. Otherwise, if the 314 * file system is mounted readonly, then just verify 315 * the caches are up to date using the normal mechanism. 316 * Else, if the file is not mmap'd, then just mark 317 * the attributes as timed out. They will be refreshed 318 * and the caches validated prior to being used. 319 * Else, the file system is mounted writeable so 320 * force an over the wire GETATTR in order to ensure 321 * that all cached data is valid. 322 */ 323 if (vp->v_count > 1 || 324 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 325 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 326 if (vn_is_readonly(vp)) 327 error = nfs3_validate_caches(vp, cr); 328 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 329 PURGE_ATTRCACHE(vp); 330 error = 0; 331 } else { 332 va.va_mask = AT_ALL; 333 error = nfs3_getattr_otw(vp, &va, cr); 334 } 335 } else 336 error = 0; 337 338 return (error); 339 } 340 341 /* ARGSUSED */ 342 static int 343 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 344 caller_context_t *ct) 345 { 346 rnode_t *rp; 347 int error; 348 struct vattr va; 349 350 /* 351 * zone_enter(2) prevents processes from changing zones with NFS files 352 * open; if we happen to get here from the wrong zone we can't do 353 * anything over the wire. 354 */ 355 if (VTOMI(vp)->mi_zone != nfs_zone()) { 356 /* 357 * We could attempt to clean up locks, except we're sure 358 * that the current process didn't acquire any locks on 359 * the file: any attempt to lock a file belong to another zone 360 * will fail, and one can't lock an NFS file and then change 361 * zones, as that fails too. 362 * 363 * Returning an error here is the sane thing to do. A 364 * subsequent call to VN_RELE() which translates to a 365 * nfs3_inactive() will clean up state: if the zone of the 366 * vnode's origin is still alive and kicking, an async worker 367 * thread will handle the request (from the correct zone), and 368 * everything (minus the commit and final nfs3_getattr_otw() 369 * call) should be OK. If the zone is going away 370 * nfs_async_inactive() will throw away cached pages inline. 371 */ 372 return (EIO); 373 } 374 375 /* 376 * If we are using local locking for this filesystem, then 377 * release all of the SYSV style record locks. Otherwise, 378 * we are doing network locking and we need to release all 379 * of the network locks. All of the locks held by this 380 * process on this file are released no matter what the 381 * incoming reference count is. 382 */ 383 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 384 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 385 cleanshares(vp, ttoproc(curthread)->p_pid); 386 } else 387 nfs_lockrelease(vp, flag, offset, cr); 388 389 if (count > 1) 390 return (0); 391 392 /* 393 * If the file has been `unlinked', then purge the 394 * DNLC so that this vnode will get reycled quicker 395 * and the .nfs* file on the server will get removed. 396 */ 397 rp = VTOR(vp); 398 if (rp->r_unldvp != NULL) 399 dnlc_purge_vp(vp); 400 401 /* 402 * If the file was open for write and there are pages, 403 * then if the file system was mounted using the "no-close- 404 * to-open" semantics, then start an asynchronous flush 405 * of the all of the pages in the file. 406 * else the file system was not mounted using the "no-close- 407 * to-open" semantics, then do a synchronous flush and 408 * commit of all of the dirty and uncommitted pages. 409 * 410 * The asynchronous flush of the pages in the "nocto" path 411 * mostly just associates a cred pointer with the rnode so 412 * writes which happen later will have a better chance of 413 * working. It also starts the data being written to the 414 * server, but without unnecessarily delaying the application. 415 */ 416 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 417 if (VTOMI(vp)->mi_flags & MI_NOCTO) { 418 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC, 419 cr, ct); 420 if (error == EAGAIN) 421 error = 0; 422 } else 423 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 424 if (!error) { 425 mutex_enter(&rp->r_statelock); 426 error = rp->r_error; 427 rp->r_error = 0; 428 mutex_exit(&rp->r_statelock); 429 } 430 } else { 431 mutex_enter(&rp->r_statelock); 432 error = rp->r_error; 433 rp->r_error = 0; 434 mutex_exit(&rp->r_statelock); 435 } 436 437 /* 438 * If RWRITEATTR is set, then issue an over the wire GETATTR to 439 * refresh the attribute cache with a set of attributes which 440 * weren't returned from a WRITE. This will enable the close- 441 * to-open processing to work. 442 */ 443 if (rp->r_flags & RWRITEATTR) 444 (void) nfs3_getattr_otw(vp, &va, cr); 445 446 return (error); 447 } 448 449 /* ARGSUSED */ 450 static int 451 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr) 452 { 453 mntinfo_t *mi; 454 READ3args args; 455 READ3uiores res; 456 int tsize; 457 offset_t offset; 458 ssize_t count; 459 int error; 460 int douprintf; 461 failinfo_t fi; 462 char *sv_hostname; 463 464 mi = VTOMI(vp); 465 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 466 sv_hostname = VTOR(vp)->r_server->sv_hostname; 467 468 douprintf = 1; 469 args.file = *VTOFH3(vp); 470 fi.vp = vp; 471 fi.fhp = (caddr_t)&args.file; 472 fi.copyproc = nfs3copyfh; 473 fi.lookupproc = nfs3lookup; 474 fi.xattrdirproc = acl_getxattrdir3; 475 476 res.uiop = uiop; 477 478 res.wlist = NULL; 479 480 offset = uiop->uio_loffset; 481 count = uiop->uio_resid; 482 483 do { 484 if (mi->mi_io_kstats) { 485 mutex_enter(&mi->mi_lock); 486 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 487 mutex_exit(&mi->mi_lock); 488 } 489 490 do { 491 tsize = MIN(mi->mi_tsize, count); 492 args.offset = (offset3)offset; 493 args.count = (count3)tsize; 494 res.size = (uint_t)tsize; 495 args.res_uiop = uiop; 496 args.res_data_val_alt = NULL; 497 498 error = rfs3call(mi, NFSPROC3_READ, 499 xdr_READ3args, (caddr_t)&args, 500 xdr_READ3uiores, (caddr_t)&res, cr, 501 &douprintf, &res.status, 0, &fi); 502 } while (error == ENFS_TRYAGAIN); 503 504 if (mi->mi_io_kstats) { 505 mutex_enter(&mi->mi_lock); 506 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 507 mutex_exit(&mi->mi_lock); 508 } 509 510 if (error) 511 return (error); 512 513 error = geterrno3(res.status); 514 if (error) 515 return (error); 516 517 if (res.count != res.size) { 518 zcmn_err(getzoneid(), CE_WARN, 519 "nfs3_directio_read: server %s returned incorrect amount", 520 sv_hostname); 521 return (EIO); 522 } 523 count -= res.count; 524 offset += res.count; 525 if (mi->mi_io_kstats) { 526 mutex_enter(&mi->mi_lock); 527 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 528 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 529 mutex_exit(&mi->mi_lock); 530 } 531 lwp_stat_update(LWP_STAT_INBLK, 1); 532 } while (count && !res.eof); 533 534 return (0); 535 } 536 537 /* ARGSUSED */ 538 static int 539 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 540 caller_context_t *ct) 541 { 542 rnode_t *rp; 543 u_offset_t off; 544 offset_t diff; 545 int on; 546 size_t n; 547 caddr_t base; 548 uint_t flags; 549 int error = 0; 550 mntinfo_t *mi; 551 552 rp = VTOR(vp); 553 mi = VTOMI(vp); 554 555 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 556 557 if (nfs_zone() != mi->mi_zone) 558 return (EIO); 559 560 if (vp->v_type != VREG) 561 return (EISDIR); 562 563 if (uiop->uio_resid == 0) 564 return (0); 565 566 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 567 return (EINVAL); 568 569 /* 570 * Bypass VM if caching has been disabled (e.g., locking) or if 571 * using client-side direct I/O and the file is not mmap'd and 572 * there are no cached pages. 573 */ 574 if ((vp->v_flag & VNOCACHE) || 575 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 576 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 577 !vn_has_cached_data(vp))) { 578 return (nfs3_directio_read(vp, uiop, cr)); 579 } 580 581 do { 582 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 583 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 584 n = MIN(MAXBSIZE - on, uiop->uio_resid); 585 586 error = nfs3_validate_caches(vp, cr); 587 if (error) 588 break; 589 590 mutex_enter(&rp->r_statelock); 591 while (rp->r_flags & RINCACHEPURGE) { 592 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 593 mutex_exit(&rp->r_statelock); 594 return (EINTR); 595 } 596 } 597 diff = rp->r_size - uiop->uio_loffset; 598 mutex_exit(&rp->r_statelock); 599 if (diff <= 0) 600 break; 601 if (diff < n) 602 n = (size_t)diff; 603 604 if (vpm_enable) { 605 /* 606 * Copy data. 607 */ 608 error = vpm_data_copy(vp, off + on, n, uiop, 609 1, NULL, 0, S_READ); 610 } else { 611 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 612 S_READ); 613 614 error = uiomove(base + on, n, UIO_READ, uiop); 615 } 616 617 if (!error) { 618 /* 619 * If read a whole block or read to eof, 620 * won't need this buffer again soon. 621 */ 622 mutex_enter(&rp->r_statelock); 623 if (n + on == MAXBSIZE || 624 uiop->uio_loffset == rp->r_size) 625 flags = SM_DONTNEED; 626 else 627 flags = 0; 628 mutex_exit(&rp->r_statelock); 629 if (vpm_enable) { 630 error = vpm_sync_pages(vp, off, n, flags); 631 } else { 632 error = segmap_release(segkmap, base, flags); 633 } 634 } else { 635 if (vpm_enable) { 636 (void) vpm_sync_pages(vp, off, n, 0); 637 } else { 638 (void) segmap_release(segkmap, base, 0); 639 } 640 } 641 } while (!error && uiop->uio_resid > 0); 642 643 return (error); 644 } 645 646 /* ARGSUSED */ 647 static int 648 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 649 caller_context_t *ct) 650 { 651 rlim64_t limit = uiop->uio_llimit; 652 rnode_t *rp; 653 u_offset_t off; 654 caddr_t base; 655 uint_t flags; 656 int remainder; 657 size_t n; 658 int on; 659 int error; 660 int resid; 661 offset_t offset; 662 mntinfo_t *mi; 663 uint_t bsize; 664 665 rp = VTOR(vp); 666 667 if (vp->v_type != VREG) 668 return (EISDIR); 669 670 mi = VTOMI(vp); 671 if (nfs_zone() != mi->mi_zone) 672 return (EIO); 673 if (uiop->uio_resid == 0) 674 return (0); 675 676 if (ioflag & FAPPEND) { 677 struct vattr va; 678 679 /* 680 * Must serialize if appending. 681 */ 682 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 683 nfs_rw_exit(&rp->r_rwlock); 684 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 685 INTR(vp))) 686 return (EINTR); 687 } 688 689 va.va_mask = AT_SIZE; 690 error = nfs3getattr(vp, &va, cr); 691 if (error) 692 return (error); 693 uiop->uio_loffset = va.va_size; 694 } 695 696 offset = uiop->uio_loffset + uiop->uio_resid; 697 698 if (uiop->uio_loffset < 0 || offset < 0) 699 return (EINVAL); 700 701 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 702 limit = MAXOFFSET_T; 703 704 /* 705 * Check to make sure that the process will not exceed 706 * its limit on file size. It is okay to write up to 707 * the limit, but not beyond. Thus, the write which 708 * reaches the limit will be short and the next write 709 * will return an error. 710 */ 711 remainder = 0; 712 if (offset > limit) { 713 remainder = offset - limit; 714 uiop->uio_resid = limit - uiop->uio_loffset; 715 if (uiop->uio_resid <= 0) { 716 proc_t *p = ttoproc(curthread); 717 718 uiop->uio_resid += remainder; 719 mutex_enter(&p->p_lock); 720 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 721 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 722 mutex_exit(&p->p_lock); 723 return (EFBIG); 724 } 725 } 726 727 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 728 return (EINTR); 729 730 /* 731 * Bypass VM if caching has been disabled (e.g., locking) or if 732 * using client-side direct I/O and the file is not mmap'd and 733 * there are no cached pages. 734 */ 735 if ((vp->v_flag & VNOCACHE) || 736 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 737 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 738 !vn_has_cached_data(vp))) { 739 size_t bufsize; 740 int count; 741 u_offset_t org_offset; 742 stable_how stab_comm; 743 744 nfs3_fwrite: 745 if (rp->r_flags & RSTALE) { 746 resid = uiop->uio_resid; 747 offset = uiop->uio_loffset; 748 error = rp->r_error; 749 goto bottom; 750 } 751 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 752 base = kmem_alloc(bufsize, KM_SLEEP); 753 do { 754 if (ioflag & FDSYNC) 755 stab_comm = DATA_SYNC; 756 else 757 stab_comm = FILE_SYNC; 758 resid = uiop->uio_resid; 759 offset = uiop->uio_loffset; 760 count = MIN(uiop->uio_resid, bufsize); 761 org_offset = uiop->uio_loffset; 762 error = uiomove(base, count, UIO_WRITE, uiop); 763 if (!error) { 764 error = nfs3write(vp, base, org_offset, 765 count, cr, &stab_comm); 766 } 767 } while (!error && uiop->uio_resid > 0); 768 kmem_free(base, bufsize); 769 goto bottom; 770 } 771 772 773 bsize = vp->v_vfsp->vfs_bsize; 774 775 do { 776 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 777 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 778 n = MIN(MAXBSIZE - on, uiop->uio_resid); 779 780 resid = uiop->uio_resid; 781 offset = uiop->uio_loffset; 782 783 if (rp->r_flags & RSTALE) { 784 error = rp->r_error; 785 break; 786 } 787 788 /* 789 * Don't create dirty pages faster than they 790 * can be cleaned so that the system doesn't 791 * get imbalanced. If the async queue is 792 * maxed out, then wait for it to drain before 793 * creating more dirty pages. Also, wait for 794 * any threads doing pagewalks in the vop_getattr 795 * entry points so that they don't block for 796 * long periods. 797 */ 798 mutex_enter(&rp->r_statelock); 799 while ((mi->mi_max_threads != 0 && 800 rp->r_awcount > 2 * mi->mi_max_threads) || 801 rp->r_gcount > 0) 802 cv_wait(&rp->r_cv, &rp->r_statelock); 803 mutex_exit(&rp->r_statelock); 804 805 /* 806 * Touch the page and fault it in if it is not in core 807 * before segmap_getmapflt or vpm_data_copy can lock it. 808 * This is to avoid the deadlock if the buffer is mapped 809 * to the same file through mmap which we want to write. 810 */ 811 uio_prefaultpages((long)n, uiop); 812 813 if (vpm_enable) { 814 /* 815 * It will use kpm mappings, so no need to 816 * pass an address. 817 */ 818 error = writerp(rp, NULL, n, uiop, 0); 819 } else { 820 if (segmap_kpm) { 821 int pon = uiop->uio_loffset & PAGEOFFSET; 822 size_t pn = MIN(PAGESIZE - pon, 823 uiop->uio_resid); 824 int pagecreate; 825 826 mutex_enter(&rp->r_statelock); 827 pagecreate = (pon == 0) && (pn == PAGESIZE || 828 uiop->uio_loffset + pn >= rp->r_size); 829 mutex_exit(&rp->r_statelock); 830 831 base = segmap_getmapflt(segkmap, vp, off + on, 832 pn, !pagecreate, S_WRITE); 833 834 error = writerp(rp, base + pon, n, uiop, 835 pagecreate); 836 837 } else { 838 base = segmap_getmapflt(segkmap, vp, off + on, 839 n, 0, S_READ); 840 error = writerp(rp, base + on, n, uiop, 0); 841 } 842 } 843 844 if (!error) { 845 if (mi->mi_flags & MI_NOAC) 846 flags = SM_WRITE; 847 else if ((uiop->uio_loffset % bsize) == 0 || 848 IS_SWAPVP(vp)) { 849 /* 850 * Have written a whole block. 851 * Start an asynchronous write 852 * and mark the buffer to 853 * indicate that it won't be 854 * needed again soon. 855 */ 856 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 857 } else 858 flags = 0; 859 if ((ioflag & (FSYNC|FDSYNC)) || 860 (rp->r_flags & ROUTOFSPACE)) { 861 flags &= ~SM_ASYNC; 862 flags |= SM_WRITE; 863 } 864 if (vpm_enable) { 865 error = vpm_sync_pages(vp, off, n, flags); 866 } else { 867 error = segmap_release(segkmap, base, flags); 868 } 869 } else { 870 if (vpm_enable) { 871 (void) vpm_sync_pages(vp, off, n, 0); 872 } else { 873 (void) segmap_release(segkmap, base, 0); 874 } 875 /* 876 * In the event that we got an access error while 877 * faulting in a page for a write-only file just 878 * force a write. 879 */ 880 if (error == EACCES) 881 goto nfs3_fwrite; 882 } 883 } while (!error && uiop->uio_resid > 0); 884 885 bottom: 886 if (error) { 887 uiop->uio_resid = resid + remainder; 888 uiop->uio_loffset = offset; 889 } else 890 uiop->uio_resid += remainder; 891 892 nfs_rw_exit(&rp->r_lkserlock); 893 894 return (error); 895 } 896 897 /* 898 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 899 */ 900 static int 901 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 902 int flags, cred_t *cr) 903 { 904 struct buf *bp; 905 int error; 906 page_t *savepp; 907 uchar_t fsdata; 908 stable_how stab_comm; 909 910 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 911 bp = pageio_setup(pp, len, vp, flags); 912 ASSERT(bp != NULL); 913 914 /* 915 * pageio_setup should have set b_addr to 0. This 916 * is correct since we want to do I/O on a page 917 * boundary. bp_mapin will use this addr to calculate 918 * an offset, and then set b_addr to the kernel virtual 919 * address it allocated for us. 920 */ 921 ASSERT(bp->b_un.b_addr == 0); 922 923 bp->b_edev = 0; 924 bp->b_dev = 0; 925 bp->b_lblkno = lbtodb(off); 926 bp->b_file = vp; 927 bp->b_offset = (offset_t)off; 928 bp_mapin(bp); 929 930 /* 931 * Calculate the desired level of stability to write data 932 * on the server and then mark all of the pages to reflect 933 * this. 934 */ 935 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 936 freemem > desfree) { 937 stab_comm = UNSTABLE; 938 fsdata = C_DELAYCOMMIT; 939 } else { 940 stab_comm = FILE_SYNC; 941 fsdata = C_NOCOMMIT; 942 } 943 944 savepp = pp; 945 do { 946 pp->p_fsdata = fsdata; 947 } while ((pp = pp->p_next) != savepp); 948 949 error = nfs3_bio(bp, &stab_comm, cr); 950 951 bp_mapout(bp); 952 pageio_done(bp); 953 954 /* 955 * If the server wrote pages in a more stable fashion than 956 * was requested, then clear all of the marks in the pages 957 * indicating that COMMIT operations were required. 958 */ 959 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) { 960 do { 961 pp->p_fsdata = C_NOCOMMIT; 962 } while ((pp = pp->p_next) != savepp); 963 } 964 965 return (error); 966 } 967 968 /* 969 * Write to file. Writes to remote server in largest size 970 * chunks that the server can handle. Write is synchronous. 971 */ 972 static int 973 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 974 stable_how *stab_comm) 975 { 976 mntinfo_t *mi; 977 WRITE3args args; 978 WRITE3res res; 979 int error; 980 int tsize; 981 rnode_t *rp; 982 int douprintf; 983 984 rp = VTOR(vp); 985 mi = VTOMI(vp); 986 987 ASSERT(nfs_zone() == mi->mi_zone); 988 989 args.file = *VTOFH3(vp); 990 args.stable = *stab_comm; 991 992 *stab_comm = FILE_SYNC; 993 994 douprintf = 1; 995 996 do { 997 if ((vp->v_flag & VNOCACHE) || 998 (rp->r_flags & RDIRECTIO) || 999 (mi->mi_flags & MI_DIRECTIO)) 1000 tsize = MIN(mi->mi_stsize, count); 1001 else 1002 tsize = MIN(mi->mi_curwrite, count); 1003 args.offset = (offset3)offset; 1004 args.count = (count3)tsize; 1005 args.data.data_len = (uint_t)tsize; 1006 args.data.data_val = base; 1007 1008 if (mi->mi_io_kstats) { 1009 mutex_enter(&mi->mi_lock); 1010 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1011 mutex_exit(&mi->mi_lock); 1012 } 1013 args.mblk = NULL; 1014 do { 1015 error = rfs3call(mi, NFSPROC3_WRITE, 1016 xdr_WRITE3args, (caddr_t)&args, 1017 xdr_WRITE3res, (caddr_t)&res, cr, 1018 &douprintf, &res.status, 0, NULL); 1019 } while (error == ENFS_TRYAGAIN); 1020 if (mi->mi_io_kstats) { 1021 mutex_enter(&mi->mi_lock); 1022 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1023 mutex_exit(&mi->mi_lock); 1024 } 1025 1026 if (error) 1027 return (error); 1028 error = geterrno3(res.status); 1029 if (!error) { 1030 if (res.resok.count > args.count) { 1031 zcmn_err(getzoneid(), CE_WARN, 1032 "nfs3write: server %s wrote %u, " 1033 "requested was %u", 1034 rp->r_server->sv_hostname, 1035 res.resok.count, args.count); 1036 return (EIO); 1037 } 1038 if (res.resok.committed == UNSTABLE) { 1039 *stab_comm = UNSTABLE; 1040 if (args.stable == DATA_SYNC || 1041 args.stable == FILE_SYNC) { 1042 zcmn_err(getzoneid(), CE_WARN, 1043 "nfs3write: server %s did not commit to stable storage", 1044 rp->r_server->sv_hostname); 1045 return (EIO); 1046 } 1047 } 1048 tsize = (int)res.resok.count; 1049 count -= tsize; 1050 base += tsize; 1051 offset += tsize; 1052 if (mi->mi_io_kstats) { 1053 mutex_enter(&mi->mi_lock); 1054 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 1055 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 1056 tsize; 1057 mutex_exit(&mi->mi_lock); 1058 } 1059 lwp_stat_update(LWP_STAT_OUBLK, 1); 1060 mutex_enter(&rp->r_statelock); 1061 if (rp->r_flags & RHAVEVERF) { 1062 if (rp->r_verf != res.resok.verf) { 1063 nfs3_set_mod(vp); 1064 rp->r_verf = res.resok.verf; 1065 /* 1066 * If the data was written UNSTABLE, 1067 * then might as well stop because 1068 * the whole block will have to get 1069 * rewritten anyway. 1070 */ 1071 if (*stab_comm == UNSTABLE) { 1072 mutex_exit(&rp->r_statelock); 1073 break; 1074 } 1075 } 1076 } else { 1077 rp->r_verf = res.resok.verf; 1078 rp->r_flags |= RHAVEVERF; 1079 } 1080 /* 1081 * Mark the attribute cache as timed out and 1082 * set RWRITEATTR to indicate that the file 1083 * was modified with a WRITE operation and 1084 * that the attributes can not be trusted. 1085 */ 1086 PURGE_ATTRCACHE_LOCKED(rp); 1087 rp->r_flags |= RWRITEATTR; 1088 mutex_exit(&rp->r_statelock); 1089 } 1090 } while (!error && count); 1091 1092 return (error); 1093 } 1094 1095 /* 1096 * Read from a file. Reads data in largest chunks our interface can handle. 1097 */ 1098 static int 1099 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count, 1100 size_t *residp, cred_t *cr) 1101 { 1102 mntinfo_t *mi; 1103 READ3args args; 1104 READ3vres res; 1105 int tsize; 1106 int error; 1107 int douprintf; 1108 failinfo_t fi; 1109 rnode_t *rp; 1110 struct vattr va; 1111 hrtime_t t; 1112 1113 rp = VTOR(vp); 1114 mi = VTOMI(vp); 1115 ASSERT(nfs_zone() == mi->mi_zone); 1116 douprintf = 1; 1117 1118 args.file = *VTOFH3(vp); 1119 fi.vp = vp; 1120 fi.fhp = (caddr_t)&args.file; 1121 fi.copyproc = nfs3copyfh; 1122 fi.lookupproc = nfs3lookup; 1123 fi.xattrdirproc = acl_getxattrdir3; 1124 1125 res.pov.fres.vp = vp; 1126 res.pov.fres.vap = &va; 1127 1128 res.wlist = NULL; 1129 *residp = count; 1130 do { 1131 if (mi->mi_io_kstats) { 1132 mutex_enter(&mi->mi_lock); 1133 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1134 mutex_exit(&mi->mi_lock); 1135 } 1136 1137 do { 1138 if ((vp->v_flag & VNOCACHE) || 1139 (rp->r_flags & RDIRECTIO) || 1140 (mi->mi_flags & MI_DIRECTIO)) 1141 tsize = MIN(mi->mi_tsize, count); 1142 else 1143 tsize = MIN(mi->mi_curread, count); 1144 res.data.data_val = base; 1145 res.data.data_len = tsize; 1146 args.offset = (offset3)offset; 1147 args.count = (count3)tsize; 1148 args.res_uiop = NULL; 1149 args.res_data_val_alt = base; 1150 1151 t = gethrtime(); 1152 error = rfs3call(mi, NFSPROC3_READ, 1153 xdr_READ3args, (caddr_t)&args, 1154 xdr_READ3vres, (caddr_t)&res, cr, 1155 &douprintf, &res.status, 0, &fi); 1156 } while (error == ENFS_TRYAGAIN); 1157 1158 if (mi->mi_io_kstats) { 1159 mutex_enter(&mi->mi_lock); 1160 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1161 mutex_exit(&mi->mi_lock); 1162 } 1163 1164 if (error) 1165 return (error); 1166 1167 error = geterrno3(res.status); 1168 if (error) 1169 return (error); 1170 1171 if (res.count != res.data.data_len) { 1172 zcmn_err(getzoneid(), CE_WARN, 1173 "nfs3read: server %s returned incorrect amount", 1174 rp->r_server->sv_hostname); 1175 return (EIO); 1176 } 1177 1178 count -= res.count; 1179 *residp = count; 1180 base += res.count; 1181 offset += res.count; 1182 if (mi->mi_io_kstats) { 1183 mutex_enter(&mi->mi_lock); 1184 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1185 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 1186 mutex_exit(&mi->mi_lock); 1187 } 1188 lwp_stat_update(LWP_STAT_INBLK, 1); 1189 } while (count && !res.eof); 1190 1191 if (res.pov.attributes) { 1192 mutex_enter(&rp->r_statelock); 1193 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) { 1194 mutex_exit(&rp->r_statelock); 1195 PURGE_ATTRCACHE(vp); 1196 } else { 1197 if (rp->r_mtime <= t) 1198 nfs_attrcache_va(vp, &va); 1199 mutex_exit(&rp->r_statelock); 1200 } 1201 } 1202 1203 return (0); 1204 } 1205 1206 /* ARGSUSED */ 1207 static int 1208 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1209 caller_context_t *ct) 1210 { 1211 1212 if (nfs_zone() != VTOMI(vp)->mi_zone) 1213 return (EIO); 1214 switch (cmd) { 1215 case _FIODIRECTIO: 1216 return (nfs_directio(vp, (int)arg, cr)); 1217 default: 1218 return (ENOTTY); 1219 } 1220 } 1221 1222 /* ARGSUSED */ 1223 static int 1224 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1225 caller_context_t *ct) 1226 { 1227 int error; 1228 rnode_t *rp; 1229 1230 if (nfs_zone() != VTOMI(vp)->mi_zone) 1231 return (EIO); 1232 /* 1233 * If it has been specified that the return value will 1234 * just be used as a hint, and we are only being asked 1235 * for size, fsid or rdevid, then return the client's 1236 * notion of these values without checking to make sure 1237 * that the attribute cache is up to date. 1238 * The whole point is to avoid an over the wire GETATTR 1239 * call. 1240 */ 1241 rp = VTOR(vp); 1242 if (flags & ATTR_HINT) { 1243 if (vap->va_mask == 1244 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1245 mutex_enter(&rp->r_statelock); 1246 if (vap->va_mask | AT_SIZE) 1247 vap->va_size = rp->r_size; 1248 if (vap->va_mask | AT_FSID) 1249 vap->va_fsid = rp->r_attr.va_fsid; 1250 if (vap->va_mask | AT_RDEV) 1251 vap->va_rdev = rp->r_attr.va_rdev; 1252 mutex_exit(&rp->r_statelock); 1253 return (0); 1254 } 1255 } 1256 1257 /* 1258 * Only need to flush pages if asking for the mtime 1259 * and if there any dirty pages or any outstanding 1260 * asynchronous (write) requests for this file. 1261 */ 1262 if (vap->va_mask & AT_MTIME) { 1263 if (vn_has_cached_data(vp) && 1264 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1265 mutex_enter(&rp->r_statelock); 1266 rp->r_gcount++; 1267 mutex_exit(&rp->r_statelock); 1268 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1269 mutex_enter(&rp->r_statelock); 1270 if (error && (error == ENOSPC || error == EDQUOT)) { 1271 if (!rp->r_error) 1272 rp->r_error = error; 1273 } 1274 if (--rp->r_gcount == 0) 1275 cv_broadcast(&rp->r_cv); 1276 mutex_exit(&rp->r_statelock); 1277 } 1278 } 1279 1280 return (nfs3getattr(vp, vap, cr)); 1281 } 1282 1283 /*ARGSUSED4*/ 1284 static int 1285 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1286 caller_context_t *ct) 1287 { 1288 int error; 1289 struct vattr va; 1290 1291 if (vap->va_mask & AT_NOSET) 1292 return (EINVAL); 1293 if (nfs_zone() != VTOMI(vp)->mi_zone) 1294 return (EIO); 1295 1296 va.va_mask = AT_UID | AT_MODE; 1297 error = nfs3getattr(vp, &va, cr); 1298 if (error) 1299 return (error); 1300 1301 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx, 1302 vp); 1303 if (error) 1304 return (error); 1305 1306 return (nfs3setattr(vp, vap, flags, cr)); 1307 } 1308 1309 static int 1310 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1311 { 1312 int error; 1313 uint_t mask; 1314 SETATTR3args args; 1315 SETATTR3res res; 1316 int douprintf; 1317 rnode_t *rp; 1318 struct vattr va; 1319 mode_t omode; 1320 vsecattr_t *vsp; 1321 hrtime_t t; 1322 1323 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1324 mask = vap->va_mask; 1325 1326 rp = VTOR(vp); 1327 1328 /* 1329 * Only need to flush pages if there are any pages and 1330 * if the file is marked as dirty in some fashion. The 1331 * file must be flushed so that we can accurately 1332 * determine the size of the file and the cached data 1333 * after the SETATTR returns. A file is considered to 1334 * be dirty if it is either marked with RDIRTY, has 1335 * outstanding i/o's active, or is mmap'd. In this 1336 * last case, we can't tell whether there are dirty 1337 * pages, so we flush just to be sure. 1338 */ 1339 if (vn_has_cached_data(vp) && 1340 ((rp->r_flags & RDIRTY) || 1341 rp->r_count > 0 || 1342 rp->r_mapcnt > 0)) { 1343 ASSERT(vp->v_type != VCHR); 1344 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1345 if (error && (error == ENOSPC || error == EDQUOT)) { 1346 mutex_enter(&rp->r_statelock); 1347 if (!rp->r_error) 1348 rp->r_error = error; 1349 mutex_exit(&rp->r_statelock); 1350 } 1351 } 1352 1353 args.object = *RTOFH3(rp); 1354 /* 1355 * If the intent is for the server to set the times, 1356 * there is no point in have the mask indicating set mtime or 1357 * atime, because the vap values may be junk, and so result 1358 * in an overflow error. Remove these flags from the vap mask 1359 * before calling in this case, and restore them afterwards. 1360 */ 1361 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) { 1362 /* Use server times, so don't set the args time fields */ 1363 vap->va_mask &= ~(AT_ATIME | AT_MTIME); 1364 error = vattr_to_sattr3(vap, &args.new_attributes); 1365 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME)); 1366 if (mask & AT_ATIME) { 1367 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 1368 } 1369 if (mask & AT_MTIME) { 1370 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 1371 } 1372 } else { 1373 /* Either do not set times or use the client specified times */ 1374 error = vattr_to_sattr3(vap, &args.new_attributes); 1375 } 1376 1377 if (error) { 1378 /* req time field(s) overflow - return immediately */ 1379 return (error); 1380 } 1381 1382 va.va_mask = AT_MODE | AT_CTIME; 1383 error = nfs3getattr(vp, &va, cr); 1384 if (error) 1385 return (error); 1386 omode = va.va_mode; 1387 1388 tryagain: 1389 if (mask & AT_SIZE) { 1390 args.guard.check = TRUE; 1391 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec; 1392 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec; 1393 } else 1394 args.guard.check = FALSE; 1395 1396 douprintf = 1; 1397 1398 t = gethrtime(); 1399 1400 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 1401 xdr_SETATTR3args, (caddr_t)&args, 1402 xdr_SETATTR3res, (caddr_t)&res, cr, 1403 &douprintf, &res.status, 0, NULL); 1404 1405 /* 1406 * Purge the access cache and ACL cache if changing either the 1407 * owner of the file, the group owner, or the mode. These may 1408 * change the access permissions of the file, so purge old 1409 * information and start over again. 1410 */ 1411 if (mask & (AT_UID | AT_GID | AT_MODE)) { 1412 (void) nfs_access_purge_rp(rp); 1413 if (rp->r_secattr != NULL) { 1414 mutex_enter(&rp->r_statelock); 1415 vsp = rp->r_secattr; 1416 rp->r_secattr = NULL; 1417 mutex_exit(&rp->r_statelock); 1418 if (vsp != NULL) 1419 nfs_acl_free(vsp); 1420 } 1421 } 1422 1423 if (error) { 1424 PURGE_ATTRCACHE(vp); 1425 return (error); 1426 } 1427 1428 error = geterrno3(res.status); 1429 if (!error) { 1430 /* 1431 * If changing the size of the file, invalidate 1432 * any local cached data which is no longer part 1433 * of the file. We also possibly invalidate the 1434 * last page in the file. We could use 1435 * pvn_vpzero(), but this would mark the page as 1436 * modified and require it to be written back to 1437 * the server for no particularly good reason. 1438 * This way, if we access it, then we bring it 1439 * back in. A read should be cheaper than a 1440 * write. 1441 */ 1442 if (mask & AT_SIZE) { 1443 nfs_invalidate_pages(vp, 1444 (vap->va_size & PAGEMASK), cr); 1445 } 1446 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 1447 /* 1448 * Some servers will change the mode to clear the setuid 1449 * and setgid bits when changing the uid or gid. The 1450 * client needs to compensate appropriately. 1451 */ 1452 if (mask & (AT_UID | AT_GID)) { 1453 int terror; 1454 1455 va.va_mask = AT_MODE; 1456 terror = nfs3getattr(vp, &va, cr); 1457 if (!terror && 1458 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 1459 (!(mask & AT_MODE) && va.va_mode != omode))) { 1460 va.va_mask = AT_MODE; 1461 if (mask & AT_MODE) 1462 va.va_mode = vap->va_mode; 1463 else 1464 va.va_mode = omode; 1465 (void) nfs3setattr(vp, &va, 0, cr); 1466 } 1467 } 1468 } else { 1469 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 1470 /* 1471 * If we got back a "not synchronized" error, then 1472 * we need to retry with a new guard value. The 1473 * guard value used is the change time. If the 1474 * server returned post_op_attr, then we can just 1475 * retry because we have the latest attributes. 1476 * Otherwise, we issue a GETATTR to get the latest 1477 * attributes and then retry. If we couldn't get 1478 * the attributes this way either, then we give 1479 * up because we can't complete the operation as 1480 * required. 1481 */ 1482 if (res.status == NFS3ERR_NOT_SYNC) { 1483 va.va_mask = AT_CTIME; 1484 if (nfs3getattr(vp, &va, cr) == 0) 1485 goto tryagain; 1486 } 1487 PURGE_STALE_FH(error, vp, cr); 1488 } 1489 1490 return (error); 1491 } 1492 1493 static int 1494 nfs3_accessx(void *vp, int mode, cred_t *cr) 1495 { 1496 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1497 return (nfs3_access(vp, mode, 0, cr, NULL)); 1498 } 1499 1500 /* ARGSUSED */ 1501 static int 1502 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1503 { 1504 int error; 1505 ACCESS3args args; 1506 ACCESS3res res; 1507 int douprintf; 1508 uint32 acc; 1509 rnode_t *rp; 1510 cred_t *cred, *ncr, *ncrfree = NULL; 1511 failinfo_t fi; 1512 nfs_access_type_t cacc; 1513 hrtime_t t; 1514 1515 acc = 0; 1516 if (nfs_zone() != VTOMI(vp)->mi_zone) 1517 return (EIO); 1518 if (mode & VREAD) 1519 acc |= ACCESS3_READ; 1520 if (mode & VWRITE) { 1521 if (vn_is_readonly(vp) && !IS_DEVVP(vp)) 1522 return (EROFS); 1523 if (vp->v_type == VDIR) 1524 acc |= ACCESS3_DELETE; 1525 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND; 1526 } 1527 if (mode & VEXEC) { 1528 if (vp->v_type == VDIR) 1529 acc |= ACCESS3_LOOKUP; 1530 else 1531 acc |= ACCESS3_EXECUTE; 1532 } 1533 1534 rp = VTOR(vp); 1535 args.object = *VTOFH3(vp); 1536 if (vp->v_type == VDIR) { 1537 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY | 1538 ACCESS3_EXTEND | ACCESS3_LOOKUP; 1539 } else { 1540 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND | 1541 ACCESS3_EXECUTE; 1542 } 1543 fi.vp = vp; 1544 fi.fhp = (caddr_t)&args.object; 1545 fi.copyproc = nfs3copyfh; 1546 fi.lookupproc = nfs3lookup; 1547 fi.xattrdirproc = acl_getxattrdir3; 1548 1549 cred = cr; 1550 /* 1551 * ncr and ncrfree both initially 1552 * point to the memory area returned 1553 * by crnetadjust(); 1554 * ncrfree not NULL when exiting means 1555 * that we need to release it 1556 */ 1557 ncr = crnetadjust(cred); 1558 ncrfree = ncr; 1559 tryagain: 1560 if (rp->r_acache != NULL) { 1561 cacc = nfs_access_check(rp, acc, cred); 1562 if (cacc == NFS_ACCESS_ALLOWED) { 1563 if (ncrfree != NULL) 1564 crfree(ncrfree); 1565 return (0); 1566 } 1567 if (cacc == NFS_ACCESS_DENIED) { 1568 /* 1569 * If the cred can be adjusted, try again 1570 * with the new cred. 1571 */ 1572 if (ncr != NULL) { 1573 cred = ncr; 1574 ncr = NULL; 1575 goto tryagain; 1576 } 1577 if (ncrfree != NULL) 1578 crfree(ncrfree); 1579 return (EACCES); 1580 } 1581 } 1582 1583 douprintf = 1; 1584 1585 t = gethrtime(); 1586 1587 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS, 1588 xdr_ACCESS3args, (caddr_t)&args, 1589 xdr_ACCESS3res, (caddr_t)&res, cred, 1590 &douprintf, &res.status, 0, &fi); 1591 1592 if (error) { 1593 if (ncrfree != NULL) 1594 crfree(ncrfree); 1595 return (error); 1596 } 1597 1598 error = geterrno3(res.status); 1599 if (!error) { 1600 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 1601 nfs_access_cache(rp, args.access, res.resok.access, cred); 1602 /* 1603 * we just cached results with cred; if cred is the 1604 * adjusted credentials from crnetadjust, we do not want 1605 * to release them before exiting: hence setting ncrfree 1606 * to NULL 1607 */ 1608 if (cred != cr) 1609 ncrfree = NULL; 1610 if ((acc & res.resok.access) != acc) { 1611 /* 1612 * If the cred can be adjusted, try again 1613 * with the new cred. 1614 */ 1615 if (ncr != NULL) { 1616 cred = ncr; 1617 ncr = NULL; 1618 goto tryagain; 1619 } 1620 error = EACCES; 1621 } 1622 } else { 1623 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 1624 PURGE_STALE_FH(error, vp, cr); 1625 } 1626 1627 if (ncrfree != NULL) 1628 crfree(ncrfree); 1629 1630 return (error); 1631 } 1632 1633 static int nfs3_do_symlink_cache = 1; 1634 1635 /* ARGSUSED */ 1636 static int 1637 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1638 { 1639 int error; 1640 READLINK3args args; 1641 READLINK3res res; 1642 nfspath3 resdata_backup; 1643 rnode_t *rp; 1644 int douprintf; 1645 int len; 1646 failinfo_t fi; 1647 hrtime_t t; 1648 1649 /* 1650 * Can't readlink anything other than a symbolic link. 1651 */ 1652 if (vp->v_type != VLNK) 1653 return (EINVAL); 1654 if (nfs_zone() != VTOMI(vp)->mi_zone) 1655 return (EIO); 1656 1657 rp = VTOR(vp); 1658 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) { 1659 error = nfs3_validate_caches(vp, cr); 1660 if (error) 1661 return (error); 1662 mutex_enter(&rp->r_statelock); 1663 if (rp->r_symlink.contents != NULL) { 1664 error = uiomove(rp->r_symlink.contents, 1665 rp->r_symlink.len, UIO_READ, uiop); 1666 mutex_exit(&rp->r_statelock); 1667 return (error); 1668 } 1669 mutex_exit(&rp->r_statelock); 1670 } 1671 1672 args.symlink = *VTOFH3(vp); 1673 fi.vp = vp; 1674 fi.fhp = (caddr_t)&args.symlink; 1675 fi.copyproc = nfs3copyfh; 1676 fi.lookupproc = nfs3lookup; 1677 fi.xattrdirproc = acl_getxattrdir3; 1678 1679 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1680 1681 resdata_backup = res.resok.data; 1682 1683 douprintf = 1; 1684 1685 t = gethrtime(); 1686 1687 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK, 1688 xdr_READLINK3args, (caddr_t)&args, 1689 xdr_READLINK3res, (caddr_t)&res, cr, 1690 &douprintf, &res.status, 0, &fi); 1691 1692 if (res.resok.data == nfs3nametoolong) 1693 error = EINVAL; 1694 1695 if (error) { 1696 kmem_free(resdata_backup, MAXPATHLEN); 1697 return (error); 1698 } 1699 1700 error = geterrno3(res.status); 1701 if (!error) { 1702 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t, 1703 cr); 1704 len = strlen(res.resok.data); 1705 error = uiomove(res.resok.data, len, UIO_READ, uiop); 1706 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) { 1707 mutex_enter(&rp->r_statelock); 1708 if (rp->r_symlink.contents == NULL) { 1709 rp->r_symlink.contents = res.resok.data; 1710 rp->r_symlink.len = len; 1711 rp->r_symlink.size = MAXPATHLEN; 1712 mutex_exit(&rp->r_statelock); 1713 } else { 1714 mutex_exit(&rp->r_statelock); 1715 1716 kmem_free((void *)res.resok.data, MAXPATHLEN); 1717 } 1718 } else { 1719 kmem_free((void *)res.resok.data, MAXPATHLEN); 1720 } 1721 } else { 1722 nfs3_cache_post_op_attr(vp, 1723 &res.resfail.symlink_attributes, t, cr); 1724 PURGE_STALE_FH(error, vp, cr); 1725 1726 kmem_free((void *)res.resok.data, MAXPATHLEN); 1727 1728 } 1729 1730 /* 1731 * The over the wire error for attempting to readlink something 1732 * other than a symbolic link is ENXIO. However, we need to 1733 * return EINVAL instead of ENXIO, so we map it here. 1734 */ 1735 return (error == ENXIO ? EINVAL : error); 1736 } 1737 1738 /* 1739 * Flush local dirty pages to stable storage on the server. 1740 * 1741 * If FNODSYNC is specified, then there is nothing to do because 1742 * metadata changes are not cached on the client before being 1743 * sent to the server. 1744 */ 1745 /* ARGSUSED */ 1746 static int 1747 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1748 { 1749 int error; 1750 1751 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1752 return (0); 1753 if (nfs_zone() != VTOMI(vp)->mi_zone) 1754 return (EIO); 1755 1756 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 1757 if (!error) 1758 error = VTOR(vp)->r_error; 1759 return (error); 1760 } 1761 1762 /* 1763 * Weirdness: if the file was removed or the target of a rename 1764 * operation while it was open, it got renamed instead. Here we 1765 * remove the renamed file. 1766 */ 1767 /* ARGSUSED */ 1768 static void 1769 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1770 { 1771 rnode_t *rp; 1772 1773 ASSERT(vp != DNLC_NO_VNODE); 1774 1775 /* 1776 * If this is coming from the wrong zone, we let someone in the right 1777 * zone take care of it asynchronously. We can get here due to 1778 * VN_RELE() being called from pageout() or fsflush(). This call may 1779 * potentially turn into an expensive no-op if, for instance, v_count 1780 * gets incremented in the meantime, but it's still correct. 1781 */ 1782 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1783 nfs_async_inactive(vp, cr, nfs3_inactive); 1784 return; 1785 } 1786 1787 rp = VTOR(vp); 1788 redo: 1789 if (rp->r_unldvp != NULL) { 1790 /* 1791 * Save the vnode pointer for the directory where the 1792 * unlinked-open file got renamed, then set it to NULL 1793 * to prevent another thread from getting here before 1794 * we're done with the remove. While we have the 1795 * statelock, make local copies of the pertinent rnode 1796 * fields. If we weren't to do this in an atomic way, the 1797 * the unl* fields could become inconsistent with respect 1798 * to each other due to a race condition between this 1799 * code and nfs_remove(). See bug report 1034328. 1800 */ 1801 mutex_enter(&rp->r_statelock); 1802 if (rp->r_unldvp != NULL) { 1803 vnode_t *unldvp; 1804 char *unlname; 1805 cred_t *unlcred; 1806 REMOVE3args args; 1807 REMOVE3res res; 1808 int douprintf; 1809 int error; 1810 hrtime_t t; 1811 1812 unldvp = rp->r_unldvp; 1813 rp->r_unldvp = NULL; 1814 unlname = rp->r_unlname; 1815 rp->r_unlname = NULL; 1816 unlcred = rp->r_unlcred; 1817 rp->r_unlcred = NULL; 1818 mutex_exit(&rp->r_statelock); 1819 1820 /* 1821 * If there are any dirty pages left, then flush 1822 * them. This is unfortunate because they just 1823 * may get thrown away during the remove operation, 1824 * but we have to do this for correctness. 1825 */ 1826 if (vn_has_cached_data(vp) && 1827 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1828 ASSERT(vp->v_type != VCHR); 1829 error = nfs3_putpage(vp, (offset_t)0, 0, 0, 1830 cr, ct); 1831 if (error) { 1832 mutex_enter(&rp->r_statelock); 1833 if (!rp->r_error) 1834 rp->r_error = error; 1835 mutex_exit(&rp->r_statelock); 1836 } 1837 } 1838 1839 /* 1840 * Do the remove operation on the renamed file 1841 */ 1842 setdiropargs3(&args.object, unlname, unldvp); 1843 1844 douprintf = 1; 1845 1846 t = gethrtime(); 1847 1848 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE, 1849 xdr_diropargs3, (caddr_t)&args, 1850 xdr_REMOVE3res, (caddr_t)&res, unlcred, 1851 &douprintf, &res.status, 0, NULL); 1852 1853 if (error) { 1854 PURGE_ATTRCACHE(unldvp); 1855 } else { 1856 error = geterrno3(res.status); 1857 if (!error) { 1858 nfs3_cache_wcc_data(unldvp, 1859 &res.resok.dir_wcc, t, cr); 1860 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1861 nfs_purge_rddir_cache(unldvp); 1862 } else { 1863 nfs3_cache_wcc_data(unldvp, 1864 &res.resfail.dir_wcc, t, cr); 1865 PURGE_STALE_FH(error, unldvp, cr); 1866 } 1867 } 1868 1869 /* 1870 * Release stuff held for the remove 1871 */ 1872 VN_RELE(unldvp); 1873 kmem_free(unlname, MAXNAMELEN); 1874 crfree(unlcred); 1875 goto redo; 1876 } 1877 mutex_exit(&rp->r_statelock); 1878 } 1879 1880 rp_addfree(rp, cr); 1881 } 1882 1883 /* 1884 * Remote file system operations having to do with directory manipulation. 1885 */ 1886 1887 /* ARGSUSED */ 1888 static int 1889 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1890 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1891 int *direntflags, pathname_t *realpnp) 1892 { 1893 int error; 1894 vnode_t *vp; 1895 vnode_t *avp = NULL; 1896 rnode_t *drp; 1897 1898 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1899 return (EPERM); 1900 1901 drp = VTOR(dvp); 1902 1903 /* 1904 * Are we looking up extended attributes? If so, "dvp" is 1905 * the file or directory for which we want attributes, and 1906 * we need a lookup of the hidden attribute directory 1907 * before we lookup the rest of the path. 1908 */ 1909 if (flags & LOOKUP_XATTR) { 1910 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1911 mntinfo_t *mi; 1912 1913 mi = VTOMI(dvp); 1914 if (!(mi->mi_flags & MI_EXTATTR)) 1915 return (EINVAL); 1916 1917 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1918 return (EINTR); 1919 1920 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1921 if (avp == NULL) 1922 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0); 1923 else 1924 error = 0; 1925 1926 nfs_rw_exit(&drp->r_rwlock); 1927 1928 if (error) { 1929 if (mi->mi_flags & MI_EXTATTR) 1930 return (error); 1931 return (EINVAL); 1932 } 1933 dvp = avp; 1934 drp = VTOR(dvp); 1935 } 1936 1937 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1938 error = EINTR; 1939 goto out; 1940 } 1941 1942 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1943 1944 nfs_rw_exit(&drp->r_rwlock); 1945 1946 /* 1947 * If vnode is a device, create special vnode. 1948 */ 1949 if (!error && IS_DEVVP(*vpp)) { 1950 vp = *vpp; 1951 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1952 VN_RELE(vp); 1953 } 1954 1955 out: 1956 if (avp != NULL) 1957 VN_RELE(avp); 1958 1959 return (error); 1960 } 1961 1962 static int nfs3_lookup_neg_cache = 1; 1963 1964 #ifdef DEBUG 1965 static int nfs3_lookup_dnlc_hits = 0; 1966 static int nfs3_lookup_dnlc_misses = 0; 1967 static int nfs3_lookup_dnlc_neg_hits = 0; 1968 static int nfs3_lookup_dnlc_disappears = 0; 1969 static int nfs3_lookup_dnlc_lookups = 0; 1970 #endif 1971 1972 /* ARGSUSED */ 1973 int 1974 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1975 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1976 { 1977 int error; 1978 rnode_t *drp; 1979 1980 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1981 /* 1982 * If lookup is for "", just return dvp. Don't need 1983 * to send it over the wire, look it up in the dnlc, 1984 * or perform any access checks. 1985 */ 1986 if (*nm == '\0') { 1987 VN_HOLD(dvp); 1988 *vpp = dvp; 1989 return (0); 1990 } 1991 1992 /* 1993 * Can't do lookups in non-directories. 1994 */ 1995 if (dvp->v_type != VDIR) 1996 return (ENOTDIR); 1997 1998 /* 1999 * If we're called with RFSCALL_SOFT, it's important that 2000 * the only rfscall is one we make directly; if we permit 2001 * an access call because we're looking up "." or validating 2002 * a dnlc hit, we'll deadlock because that rfscall will not 2003 * have the RFSCALL_SOFT set. 2004 */ 2005 if (rfscall_flags & RFSCALL_SOFT) 2006 goto callit; 2007 2008 /* 2009 * If lookup is for ".", just return dvp. Don't need 2010 * to send it over the wire or look it up in the dnlc, 2011 * just need to check access. 2012 */ 2013 if (strcmp(nm, ".") == 0) { 2014 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2015 if (error) 2016 return (error); 2017 VN_HOLD(dvp); 2018 *vpp = dvp; 2019 return (0); 2020 } 2021 2022 drp = VTOR(dvp); 2023 if (!(drp->r_flags & RLOOKUP)) { 2024 mutex_enter(&drp->r_statelock); 2025 drp->r_flags |= RLOOKUP; 2026 mutex_exit(&drp->r_statelock); 2027 } 2028 2029 /* 2030 * Lookup this name in the DNLC. If there was a valid entry, 2031 * then return the results of the lookup. 2032 */ 2033 error = nfs3lookup_dnlc(dvp, nm, vpp, cr); 2034 if (error || *vpp != NULL) 2035 return (error); 2036 2037 callit: 2038 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags); 2039 2040 return (error); 2041 } 2042 2043 static int 2044 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 2045 { 2046 int error; 2047 vnode_t *vp; 2048 2049 ASSERT(*nm != '\0'); 2050 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2051 /* 2052 * Lookup this name in the DNLC. If successful, then validate 2053 * the caches and then recheck the DNLC. The DNLC is rechecked 2054 * just in case this entry got invalidated during the call 2055 * to nfs3_validate_caches. 2056 * 2057 * An assumption is being made that it is safe to say that a 2058 * file exists which may not on the server. Any operations to 2059 * the server will fail with ESTALE. 2060 */ 2061 #ifdef DEBUG 2062 nfs3_lookup_dnlc_lookups++; 2063 #endif 2064 vp = dnlc_lookup(dvp, nm); 2065 if (vp != NULL) { 2066 VN_RELE(vp); 2067 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 2068 PURGE_ATTRCACHE(dvp); 2069 } 2070 error = nfs3_validate_caches(dvp, cr); 2071 if (error) 2072 return (error); 2073 vp = dnlc_lookup(dvp, nm); 2074 if (vp != NULL) { 2075 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2076 if (error) { 2077 VN_RELE(vp); 2078 return (error); 2079 } 2080 if (vp == DNLC_NO_VNODE) { 2081 VN_RELE(vp); 2082 #ifdef DEBUG 2083 nfs3_lookup_dnlc_neg_hits++; 2084 #endif 2085 return (ENOENT); 2086 } 2087 *vpp = vp; 2088 #ifdef DEBUG 2089 nfs3_lookup_dnlc_hits++; 2090 #endif 2091 return (0); 2092 } 2093 #ifdef DEBUG 2094 nfs3_lookup_dnlc_disappears++; 2095 #endif 2096 } 2097 #ifdef DEBUG 2098 else 2099 nfs3_lookup_dnlc_misses++; 2100 #endif 2101 2102 *vpp = NULL; 2103 2104 return (0); 2105 } 2106 2107 static int 2108 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 2109 int rfscall_flags) 2110 { 2111 int error; 2112 LOOKUP3args args; 2113 LOOKUP3vres res; 2114 int douprintf; 2115 struct vattr vattr; 2116 struct vattr dvattr; 2117 vnode_t *vp; 2118 failinfo_t fi; 2119 hrtime_t t; 2120 2121 ASSERT(*nm != '\0'); 2122 ASSERT(dvp->v_type == VDIR); 2123 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2124 2125 setdiropargs3(&args.what, nm, dvp); 2126 2127 fi.vp = dvp; 2128 fi.fhp = (caddr_t)&args.what.dir; 2129 fi.copyproc = nfs3copyfh; 2130 fi.lookupproc = nfs3lookup; 2131 fi.xattrdirproc = acl_getxattrdir3; 2132 res.obj_attributes.fres.vp = dvp; 2133 res.obj_attributes.fres.vap = &vattr; 2134 res.dir_attributes.fres.vp = dvp; 2135 res.dir_attributes.fres.vap = &dvattr; 2136 2137 douprintf = 1; 2138 2139 t = gethrtime(); 2140 2141 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP, 2142 xdr_diropargs3, (caddr_t)&args, 2143 xdr_LOOKUP3vres, (caddr_t)&res, cr, 2144 &douprintf, &res.status, rfscall_flags, &fi); 2145 2146 if (error) 2147 return (error); 2148 2149 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr); 2150 2151 error = geterrno3(res.status); 2152 if (error) { 2153 PURGE_STALE_FH(error, dvp, cr); 2154 if (error == ENOENT && nfs3_lookup_neg_cache) 2155 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 2156 return (error); 2157 } 2158 2159 if (res.obj_attributes.attributes) { 2160 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap, 2161 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2162 } else { 2163 vp = makenfs3node_va(&res.object, NULL, 2164 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2165 if (vp->v_type == VNON) { 2166 vattr.va_mask = AT_TYPE; 2167 error = nfs3getattr(vp, &vattr, cr); 2168 if (error) { 2169 VN_RELE(vp); 2170 return (error); 2171 } 2172 vp->v_type = vattr.va_type; 2173 } 2174 } 2175 2176 if (!(rfscall_flags & RFSCALL_SOFT)) 2177 dnlc_update(dvp, nm, vp); 2178 2179 *vpp = vp; 2180 2181 return (error); 2182 } 2183 2184 #ifdef DEBUG 2185 static int nfs3_create_misses = 0; 2186 #endif 2187 2188 /* ARGSUSED */ 2189 static int 2190 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2191 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 2192 vsecattr_t *vsecp) 2193 { 2194 int error; 2195 vnode_t *vp; 2196 rnode_t *rp; 2197 struct vattr vattr; 2198 rnode_t *drp; 2199 vnode_t *tempvp; 2200 2201 drp = VTOR(dvp); 2202 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2203 return (EPERM); 2204 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2205 return (EINTR); 2206 2207 top: 2208 /* 2209 * We make a copy of the attributes because the caller does not 2210 * expect us to change what va points to. 2211 */ 2212 vattr = *va; 2213 2214 /* 2215 * If the pathname is "", just use dvp. Don't need 2216 * to send it over the wire, look it up in the dnlc, 2217 * or perform any access checks. 2218 */ 2219 if (*nm == '\0') { 2220 error = 0; 2221 VN_HOLD(dvp); 2222 vp = dvp; 2223 /* 2224 * If the pathname is ".", just use dvp. Don't need 2225 * to send it over the wire or look it up in the dnlc, 2226 * just need to check access. 2227 */ 2228 } else if (strcmp(nm, ".") == 0) { 2229 error = nfs3_access(dvp, VEXEC, 0, cr, ct); 2230 if (error) { 2231 nfs_rw_exit(&drp->r_rwlock); 2232 return (error); 2233 } 2234 VN_HOLD(dvp); 2235 vp = dvp; 2236 /* 2237 * We need to go over the wire, just to be sure whether the 2238 * file exists or not. Using the DNLC can be dangerous in 2239 * this case when making a decision regarding existence. 2240 */ 2241 } else { 2242 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0); 2243 } 2244 if (!error) { 2245 if (exclusive == EXCL) 2246 error = EEXIST; 2247 else if (vp->v_type == VDIR && (mode & VWRITE)) 2248 error = EISDIR; 2249 else { 2250 /* 2251 * If vnode is a device, create special vnode. 2252 */ 2253 if (IS_DEVVP(vp)) { 2254 tempvp = vp; 2255 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2256 VN_RELE(tempvp); 2257 } 2258 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 2259 if ((vattr.va_mask & AT_SIZE) && 2260 vp->v_type == VREG) { 2261 rp = VTOR(vp); 2262 /* 2263 * Check here for large file handled 2264 * by LF-unaware process (as 2265 * ufs_create() does) 2266 */ 2267 if (!(lfaware & FOFFMAX)) { 2268 mutex_enter(&rp->r_statelock); 2269 if (rp->r_size > MAXOFF32_T) 2270 error = EOVERFLOW; 2271 mutex_exit(&rp->r_statelock); 2272 } 2273 if (!error) { 2274 vattr.va_mask = AT_SIZE; 2275 error = nfs3setattr(vp, 2276 &vattr, 0, cr); 2277 } 2278 } 2279 } 2280 } 2281 nfs_rw_exit(&drp->r_rwlock); 2282 if (error) { 2283 VN_RELE(vp); 2284 } else { 2285 /* 2286 * existing file got truncated, notify. 2287 */ 2288 vnevent_create(vp, ct); 2289 *vpp = vp; 2290 } 2291 return (error); 2292 } 2293 2294 dnlc_remove(dvp, nm); 2295 2296 /* 2297 * Decide what the group-id of the created file should be. 2298 * Set it in attribute list as advisory... 2299 */ 2300 error = setdirgid(dvp, &vattr.va_gid, cr); 2301 if (error) { 2302 nfs_rw_exit(&drp->r_rwlock); 2303 return (error); 2304 } 2305 vattr.va_mask |= AT_GID; 2306 2307 ASSERT(vattr.va_mask & AT_TYPE); 2308 if (vattr.va_type == VREG) { 2309 ASSERT(vattr.va_mask & AT_MODE); 2310 if (MANDMODE(vattr.va_mode)) { 2311 nfs_rw_exit(&drp->r_rwlock); 2312 return (EACCES); 2313 } 2314 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr, 2315 lfaware); 2316 /* 2317 * If this is not an exclusive create, then the CREATE 2318 * request will be made with the GUARDED mode set. This 2319 * means that the server will return EEXIST if the file 2320 * exists. The file could exist because of a retransmitted 2321 * request. In this case, we recover by starting over and 2322 * checking to see whether the file exists. This second 2323 * time through it should and a CREATE request will not be 2324 * sent. 2325 * 2326 * This handles the problem of a dangling CREATE request 2327 * which contains attributes which indicate that the file 2328 * should be truncated. This retransmitted request could 2329 * possibly truncate valid data in the file if not caught 2330 * by the duplicate request mechanism on the server or if 2331 * not caught by other means. The scenario is: 2332 * 2333 * Client transmits CREATE request with size = 0 2334 * Client times out, retransmits request. 2335 * Response to the first request arrives from the server 2336 * and the client proceeds on. 2337 * Client writes data to the file. 2338 * The server now processes retransmitted CREATE request 2339 * and truncates file. 2340 * 2341 * The use of the GUARDED CREATE request prevents this from 2342 * happening because the retransmitted CREATE would fail 2343 * with EEXIST and would not truncate the file. 2344 */ 2345 if (error == EEXIST && exclusive == NONEXCL) { 2346 #ifdef DEBUG 2347 nfs3_create_misses++; 2348 #endif 2349 goto top; 2350 } 2351 nfs_rw_exit(&drp->r_rwlock); 2352 return (error); 2353 } 2354 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 2355 nfs_rw_exit(&drp->r_rwlock); 2356 return (error); 2357 } 2358 2359 /* ARGSUSED */ 2360 static int 2361 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2362 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 2363 { 2364 int error; 2365 CREATE3args args; 2366 CREATE3res res; 2367 int douprintf; 2368 vnode_t *vp; 2369 struct vattr vattr; 2370 nfstime3 *verfp; 2371 rnode_t *rp; 2372 timestruc_t now; 2373 hrtime_t t; 2374 2375 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2376 setdiropargs3(&args.where, nm, dvp); 2377 if (exclusive == EXCL) { 2378 args.how.mode = EXCLUSIVE; 2379 /* 2380 * Construct the create verifier. This verifier needs 2381 * to be unique between different clients. It also needs 2382 * to vary for each exclusive create request generated 2383 * from the client to the server. 2384 * 2385 * The first attempt is made to use the hostid and a 2386 * unique number on the client. If the hostid has not 2387 * been set, the high resolution time that the exclusive 2388 * create request is being made is used. This will work 2389 * unless two different clients, both with the hostid 2390 * not set, attempt an exclusive create request on the 2391 * same file, at exactly the same clock time. The 2392 * chances of this happening seem small enough to be 2393 * reasonable. 2394 */ 2395 verfp = (nfstime3 *)&args.how.createhow3_u.verf; 2396 verfp->seconds = nfs_atoi(hw_serial); 2397 if (verfp->seconds != 0) 2398 verfp->nseconds = newnum(); 2399 else { 2400 gethrestime(&now); 2401 verfp->seconds = now.tv_sec; 2402 verfp->nseconds = now.tv_nsec; 2403 } 2404 /* 2405 * Since the server will use this value for the mtime, 2406 * make sure that it can't overflow. Zero out the MSB. 2407 * The actual value does not matter here, only its uniqeness. 2408 */ 2409 verfp->seconds %= INT32_MAX; 2410 } else { 2411 /* 2412 * Issue the non-exclusive create in guarded mode. This 2413 * may result in some false EEXIST responses for 2414 * retransmitted requests, but these will be handled at 2415 * a higher level. By using GUARDED, duplicate requests 2416 * to do file truncation and possible access problems 2417 * can be avoided. 2418 */ 2419 args.how.mode = GUARDED; 2420 error = vattr_to_sattr3(va, 2421 &args.how.createhow3_u.obj_attributes); 2422 if (error) { 2423 /* req time field(s) overflow - return immediately */ 2424 return (error); 2425 } 2426 } 2427 2428 douprintf = 1; 2429 2430 t = gethrtime(); 2431 2432 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE, 2433 xdr_CREATE3args, (caddr_t)&args, 2434 xdr_CREATE3res, (caddr_t)&res, cr, 2435 &douprintf, &res.status, 0, NULL); 2436 2437 if (error) { 2438 PURGE_ATTRCACHE(dvp); 2439 return (error); 2440 } 2441 2442 error = geterrno3(res.status); 2443 if (!error) { 2444 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2445 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2446 nfs_purge_rddir_cache(dvp); 2447 2448 /* 2449 * On exclusive create the times need to be explicitly 2450 * set to clear any potential verifier that may be stored 2451 * in one of these fields (see comment below). This 2452 * is done here to cover the case where no post op attrs 2453 * were returned or a 'invalid' time was returned in 2454 * the attributes. 2455 */ 2456 if (exclusive == EXCL) 2457 va->va_mask |= (AT_MTIME | AT_ATIME); 2458 2459 if (!res.resok.obj.handle_follows) { 2460 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2461 if (error) 2462 return (error); 2463 } else { 2464 if (res.resok.obj_attributes.attributes) { 2465 vp = makenfs3node(&res.resok.obj.handle, 2466 &res.resok.obj_attributes.attr, 2467 dvp->v_vfsp, t, cr, NULL, NULL); 2468 } else { 2469 vp = makenfs3node(&res.resok.obj.handle, NULL, 2470 dvp->v_vfsp, t, cr, NULL, NULL); 2471 2472 /* 2473 * On an exclusive create, it is possible 2474 * that attributes were returned but those 2475 * postop attributes failed to decode 2476 * properly. If this is the case, 2477 * then most likely the atime or mtime 2478 * were invalid for our client; this 2479 * is caused by the server storing the 2480 * create verifier in one of the time 2481 * fields(most likely mtime). 2482 * So... we are going to setattr just the 2483 * atime/mtime to clear things up. 2484 */ 2485 if (exclusive == EXCL) { 2486 if (error = 2487 nfs3excl_create_settimes(vp, 2488 va, cr)) { 2489 /* 2490 * Setting the times failed. 2491 * Remove the file and return 2492 * the error. 2493 */ 2494 VN_RELE(vp); 2495 (void) nfs3_remove(dvp, 2496 nm, cr, NULL, 0); 2497 return (error); 2498 } 2499 } 2500 2501 /* 2502 * This handles the non-exclusive case 2503 * and the exclusive case where no post op 2504 * attrs were returned. 2505 */ 2506 if (vp->v_type == VNON) { 2507 vattr.va_mask = AT_TYPE; 2508 error = nfs3getattr(vp, &vattr, cr); 2509 if (error) { 2510 VN_RELE(vp); 2511 return (error); 2512 } 2513 vp->v_type = vattr.va_type; 2514 } 2515 } 2516 dnlc_update(dvp, nm, vp); 2517 } 2518 2519 rp = VTOR(vp); 2520 2521 /* 2522 * Check here for large file handled by 2523 * LF-unaware process (as ufs_create() does) 2524 */ 2525 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG && 2526 !(lfaware & FOFFMAX)) { 2527 mutex_enter(&rp->r_statelock); 2528 if (rp->r_size > MAXOFF32_T) { 2529 mutex_exit(&rp->r_statelock); 2530 VN_RELE(vp); 2531 return (EOVERFLOW); 2532 } 2533 mutex_exit(&rp->r_statelock); 2534 } 2535 2536 if (exclusive == EXCL && 2537 (va->va_mask & ~(AT_GID | AT_SIZE))) { 2538 /* 2539 * If doing an exclusive create, then generate 2540 * a SETATTR to set the initial attributes. 2541 * Try to set the mtime and the atime to the 2542 * server's current time. It is somewhat 2543 * expected that these fields will be used to 2544 * store the exclusive create cookie. If not, 2545 * server implementors will need to know that 2546 * a SETATTR will follow an exclusive create 2547 * and the cookie should be destroyed if 2548 * appropriate. This work may have been done 2549 * earlier in this function if post op attrs 2550 * were not available. 2551 * 2552 * The AT_GID and AT_SIZE bits are turned off 2553 * so that the SETATTR request will not attempt 2554 * to process these. The gid will be set 2555 * separately if appropriate. The size is turned 2556 * off because it is assumed that a new file will 2557 * be created empty and if the file wasn't empty, 2558 * then the exclusive create will have failed 2559 * because the file must have existed already. 2560 * Therefore, no truncate operation is needed. 2561 */ 2562 va->va_mask &= ~(AT_GID | AT_SIZE); 2563 error = nfs3setattr(vp, va, 0, cr); 2564 if (error) { 2565 /* 2566 * Couldn't correct the attributes of 2567 * the newly created file and the 2568 * attributes are wrong. Remove the 2569 * file and return an error to the 2570 * application. 2571 */ 2572 VN_RELE(vp); 2573 (void) nfs3_remove(dvp, nm, cr, NULL, 0); 2574 return (error); 2575 } 2576 } 2577 2578 if (va->va_gid != rp->r_attr.va_gid) { 2579 /* 2580 * If the gid on the file isn't right, then 2581 * generate a SETATTR to attempt to change 2582 * it. This may or may not work, depending 2583 * upon the server's semantics for allowing 2584 * file ownership changes. 2585 */ 2586 va->va_mask = AT_GID; 2587 (void) nfs3setattr(vp, va, 0, cr); 2588 } 2589 2590 /* 2591 * If vnode is a device create special vnode 2592 */ 2593 if (IS_DEVVP(vp)) { 2594 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2595 VN_RELE(vp); 2596 } else 2597 *vpp = vp; 2598 } else { 2599 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2600 PURGE_STALE_FH(error, dvp, cr); 2601 } 2602 2603 return (error); 2604 } 2605 2606 /* 2607 * Special setattr function to take care of rest of atime/mtime 2608 * after successful exclusive create. This function exists to avoid 2609 * handling attributes from the server; exclusive the atime/mtime fields 2610 * may be 'invalid' in client's view and therefore can not be trusted. 2611 */ 2612 static int 2613 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr) 2614 { 2615 int error; 2616 uint_t mask; 2617 SETATTR3args args; 2618 SETATTR3res res; 2619 int douprintf; 2620 rnode_t *rp; 2621 hrtime_t t; 2622 2623 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 2624 /* save the caller's mask so that it can be reset later */ 2625 mask = vap->va_mask; 2626 2627 rp = VTOR(vp); 2628 2629 args.object = *RTOFH3(rp); 2630 args.guard.check = FALSE; 2631 2632 /* Use the mask to initialize the arguments */ 2633 vap->va_mask = 0; 2634 error = vattr_to_sattr3(vap, &args.new_attributes); 2635 2636 /* We want to set just atime/mtime on this request */ 2637 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 2638 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 2639 2640 douprintf = 1; 2641 2642 t = gethrtime(); 2643 2644 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 2645 xdr_SETATTR3args, (caddr_t)&args, 2646 xdr_SETATTR3res, (caddr_t)&res, cr, 2647 &douprintf, &res.status, 0, NULL); 2648 2649 if (error) { 2650 vap->va_mask = mask; 2651 return (error); 2652 } 2653 2654 error = geterrno3(res.status); 2655 if (!error) { 2656 /* 2657 * It is important to pick up the attributes. 2658 * Since this is the exclusive create path, the 2659 * attributes on the initial create were ignored 2660 * and we need these to have the correct info. 2661 */ 2662 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 2663 /* 2664 * No need to do the atime/mtime work again so clear 2665 * the bits. 2666 */ 2667 mask &= ~(AT_ATIME | AT_MTIME); 2668 } else { 2669 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 2670 } 2671 2672 vap->va_mask = mask; 2673 2674 return (error); 2675 } 2676 2677 /* ARGSUSED */ 2678 static int 2679 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2680 int mode, vnode_t **vpp, cred_t *cr) 2681 { 2682 int error; 2683 MKNOD3args args; 2684 MKNOD3res res; 2685 int douprintf; 2686 vnode_t *vp; 2687 struct vattr vattr; 2688 hrtime_t t; 2689 2690 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2691 switch (va->va_type) { 2692 case VCHR: 2693 case VBLK: 2694 setdiropargs3(&args.where, nm, dvp); 2695 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK; 2696 error = vattr_to_sattr3(va, 2697 &args.what.mknoddata3_u.device.dev_attributes); 2698 if (error) { 2699 /* req time field(s) overflow - return immediately */ 2700 return (error); 2701 } 2702 args.what.mknoddata3_u.device.spec.specdata1 = 2703 getmajor(va->va_rdev); 2704 args.what.mknoddata3_u.device.spec.specdata2 = 2705 getminor(va->va_rdev); 2706 break; 2707 2708 case VFIFO: 2709 case VSOCK: 2710 setdiropargs3(&args.where, nm, dvp); 2711 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK; 2712 error = vattr_to_sattr3(va, 2713 &args.what.mknoddata3_u.pipe_attributes); 2714 if (error) { 2715 /* req time field(s) overflow - return immediately */ 2716 return (error); 2717 } 2718 break; 2719 2720 default: 2721 return (EINVAL); 2722 } 2723 2724 douprintf = 1; 2725 2726 t = gethrtime(); 2727 2728 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD, 2729 xdr_MKNOD3args, (caddr_t)&args, 2730 xdr_MKNOD3res, (caddr_t)&res, cr, 2731 &douprintf, &res.status, 0, NULL); 2732 2733 if (error) { 2734 PURGE_ATTRCACHE(dvp); 2735 return (error); 2736 } 2737 2738 error = geterrno3(res.status); 2739 if (!error) { 2740 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2741 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2742 nfs_purge_rddir_cache(dvp); 2743 2744 if (!res.resok.obj.handle_follows) { 2745 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2746 if (error) 2747 return (error); 2748 } else { 2749 if (res.resok.obj_attributes.attributes) { 2750 vp = makenfs3node(&res.resok.obj.handle, 2751 &res.resok.obj_attributes.attr, 2752 dvp->v_vfsp, t, cr, NULL, NULL); 2753 } else { 2754 vp = makenfs3node(&res.resok.obj.handle, NULL, 2755 dvp->v_vfsp, t, cr, NULL, NULL); 2756 if (vp->v_type == VNON) { 2757 vattr.va_mask = AT_TYPE; 2758 error = nfs3getattr(vp, &vattr, cr); 2759 if (error) { 2760 VN_RELE(vp); 2761 return (error); 2762 } 2763 vp->v_type = vattr.va_type; 2764 } 2765 2766 } 2767 dnlc_update(dvp, nm, vp); 2768 } 2769 2770 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 2771 va->va_mask = AT_GID; 2772 (void) nfs3setattr(vp, va, 0, cr); 2773 } 2774 2775 /* 2776 * If vnode is a device create special vnode 2777 */ 2778 if (IS_DEVVP(vp)) { 2779 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2780 VN_RELE(vp); 2781 } else 2782 *vpp = vp; 2783 } else { 2784 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2785 PURGE_STALE_FH(error, dvp, cr); 2786 } 2787 return (error); 2788 } 2789 2790 /* 2791 * Weirdness: if the vnode to be removed is open 2792 * we rename it instead of removing it and nfs_inactive 2793 * will remove the new name. 2794 */ 2795 /* ARGSUSED */ 2796 static int 2797 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2798 { 2799 int error; 2800 REMOVE3args args; 2801 REMOVE3res res; 2802 vnode_t *vp; 2803 char *tmpname; 2804 int douprintf; 2805 rnode_t *rp; 2806 rnode_t *drp; 2807 hrtime_t t; 2808 2809 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2810 return (EPERM); 2811 drp = VTOR(dvp); 2812 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2813 return (EINTR); 2814 2815 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2816 if (error) { 2817 nfs_rw_exit(&drp->r_rwlock); 2818 return (error); 2819 } 2820 2821 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2822 VN_RELE(vp); 2823 nfs_rw_exit(&drp->r_rwlock); 2824 return (EPERM); 2825 } 2826 2827 /* 2828 * First just remove the entry from the name cache, as it 2829 * is most likely the only entry for this vp. 2830 */ 2831 dnlc_remove(dvp, nm); 2832 2833 /* 2834 * If the file has a v_count > 1 then there may be more than one 2835 * entry in the name cache due multiple links or an open file, 2836 * but we don't have the real reference count so flush all 2837 * possible entries. 2838 */ 2839 if (vp->v_count > 1) 2840 dnlc_purge_vp(vp); 2841 2842 /* 2843 * Now we have the real reference count on the vnode 2844 */ 2845 rp = VTOR(vp); 2846 mutex_enter(&rp->r_statelock); 2847 if (vp->v_count > 1 && 2848 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2849 mutex_exit(&rp->r_statelock); 2850 tmpname = newname(); 2851 error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct); 2852 if (error) 2853 kmem_free(tmpname, MAXNAMELEN); 2854 else { 2855 mutex_enter(&rp->r_statelock); 2856 if (rp->r_unldvp == NULL) { 2857 VN_HOLD(dvp); 2858 rp->r_unldvp = dvp; 2859 if (rp->r_unlcred != NULL) 2860 crfree(rp->r_unlcred); 2861 crhold(cr); 2862 rp->r_unlcred = cr; 2863 rp->r_unlname = tmpname; 2864 } else { 2865 kmem_free(rp->r_unlname, MAXNAMELEN); 2866 rp->r_unlname = tmpname; 2867 } 2868 mutex_exit(&rp->r_statelock); 2869 } 2870 } else { 2871 mutex_exit(&rp->r_statelock); 2872 /* 2873 * We need to flush any dirty pages which happen to 2874 * be hanging around before removing the file. This 2875 * shouldn't happen very often and mostly on file 2876 * systems mounted "nocto". 2877 */ 2878 if (vn_has_cached_data(vp) && 2879 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2880 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2881 if (error && (error == ENOSPC || error == EDQUOT)) { 2882 mutex_enter(&rp->r_statelock); 2883 if (!rp->r_error) 2884 rp->r_error = error; 2885 mutex_exit(&rp->r_statelock); 2886 } 2887 } 2888 2889 setdiropargs3(&args.object, nm, dvp); 2890 2891 douprintf = 1; 2892 2893 t = gethrtime(); 2894 2895 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE, 2896 xdr_diropargs3, (caddr_t)&args, 2897 xdr_REMOVE3res, (caddr_t)&res, cr, 2898 &douprintf, &res.status, 0, NULL); 2899 2900 /* 2901 * The xattr dir may be gone after last attr is removed, 2902 * so flush it from dnlc. 2903 */ 2904 if (dvp->v_flag & V_XATTRDIR) 2905 dnlc_purge_vp(dvp); 2906 2907 PURGE_ATTRCACHE(vp); 2908 2909 if (error) { 2910 PURGE_ATTRCACHE(dvp); 2911 } else { 2912 error = geterrno3(res.status); 2913 if (!error) { 2914 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, 2915 cr); 2916 if (HAVE_RDDIR_CACHE(drp)) 2917 nfs_purge_rddir_cache(dvp); 2918 } else { 2919 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, 2920 t, cr); 2921 PURGE_STALE_FH(error, dvp, cr); 2922 } 2923 } 2924 } 2925 2926 if (error == 0) { 2927 vnevent_remove(vp, dvp, nm, ct); 2928 } 2929 VN_RELE(vp); 2930 2931 nfs_rw_exit(&drp->r_rwlock); 2932 2933 return (error); 2934 } 2935 2936 /* ARGSUSED */ 2937 static int 2938 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2939 caller_context_t *ct, int flags) 2940 { 2941 int error; 2942 LINK3args args; 2943 LINK3res res; 2944 vnode_t *realvp; 2945 int douprintf; 2946 mntinfo_t *mi; 2947 rnode_t *tdrp; 2948 hrtime_t t; 2949 2950 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2951 return (EPERM); 2952 if (VOP_REALVP(svp, &realvp, ct) == 0) 2953 svp = realvp; 2954 2955 mi = VTOMI(svp); 2956 2957 if (!(mi->mi_flags & MI_LINK)) 2958 return (EOPNOTSUPP); 2959 2960 args.file = *VTOFH3(svp); 2961 setdiropargs3(&args.link, tnm, tdvp); 2962 2963 tdrp = VTOR(tdvp); 2964 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2965 return (EINTR); 2966 2967 dnlc_remove(tdvp, tnm); 2968 2969 douprintf = 1; 2970 2971 t = gethrtime(); 2972 2973 error = rfs3call(mi, NFSPROC3_LINK, 2974 xdr_LINK3args, (caddr_t)&args, 2975 xdr_LINK3res, (caddr_t)&res, cr, 2976 &douprintf, &res.status, 0, NULL); 2977 2978 if (error) { 2979 PURGE_ATTRCACHE(tdvp); 2980 PURGE_ATTRCACHE(svp); 2981 nfs_rw_exit(&tdrp->r_rwlock); 2982 return (error); 2983 } 2984 2985 error = geterrno3(res.status); 2986 2987 if (!error) { 2988 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr); 2989 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr); 2990 if (HAVE_RDDIR_CACHE(tdrp)) 2991 nfs_purge_rddir_cache(tdvp); 2992 dnlc_update(tdvp, tnm, svp); 2993 } else { 2994 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t, 2995 cr); 2996 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr); 2997 if (error == EOPNOTSUPP) { 2998 mutex_enter(&mi->mi_lock); 2999 mi->mi_flags &= ~MI_LINK; 3000 mutex_exit(&mi->mi_lock); 3001 } 3002 } 3003 3004 nfs_rw_exit(&tdrp->r_rwlock); 3005 3006 if (!error) { 3007 /* 3008 * Notify the source file of this link operation. 3009 */ 3010 vnevent_link(svp, ct); 3011 } 3012 return (error); 3013 } 3014 3015 /* ARGSUSED */ 3016 static int 3017 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3018 caller_context_t *ct, int flags) 3019 { 3020 vnode_t *realvp; 3021 3022 if (nfs_zone() != VTOMI(odvp)->mi_zone) 3023 return (EPERM); 3024 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 3025 ndvp = realvp; 3026 3027 return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct)); 3028 } 3029 3030 /* 3031 * nfs3rename does the real work of renaming in NFS Version 3. 3032 */ 3033 static int 3034 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3035 caller_context_t *ct) 3036 { 3037 int error; 3038 RENAME3args args; 3039 RENAME3res res; 3040 int douprintf; 3041 vnode_t *nvp = NULL; 3042 vnode_t *ovp = NULL; 3043 char *tmpname; 3044 rnode_t *rp; 3045 rnode_t *odrp; 3046 rnode_t *ndrp; 3047 hrtime_t t; 3048 3049 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 3050 3051 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 3052 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 3053 return (EINVAL); 3054 3055 odrp = VTOR(odvp); 3056 ndrp = VTOR(ndvp); 3057 if ((intptr_t)odrp < (intptr_t)ndrp) { 3058 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 3059 return (EINTR); 3060 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 3061 nfs_rw_exit(&odrp->r_rwlock); 3062 return (EINTR); 3063 } 3064 } else { 3065 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 3066 return (EINTR); 3067 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 3068 nfs_rw_exit(&ndrp->r_rwlock); 3069 return (EINTR); 3070 } 3071 } 3072 3073 /* 3074 * Lookup the target file. If it exists, it needs to be 3075 * checked to see whether it is a mount point and whether 3076 * it is active (open). 3077 */ 3078 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 3079 if (!error) { 3080 /* 3081 * If this file has been mounted on, then just 3082 * return busy because renaming to it would remove 3083 * the mounted file system from the name space. 3084 */ 3085 if (vn_mountedvfs(nvp) != NULL) { 3086 VN_RELE(nvp); 3087 nfs_rw_exit(&odrp->r_rwlock); 3088 nfs_rw_exit(&ndrp->r_rwlock); 3089 return (EBUSY); 3090 } 3091 3092 /* 3093 * Purge the name cache of all references to this vnode 3094 * so that we can check the reference count to infer 3095 * whether it is active or not. 3096 */ 3097 /* 3098 * First just remove the entry from the name cache, as it 3099 * is most likely the only entry for this vp. 3100 */ 3101 dnlc_remove(ndvp, nnm); 3102 /* 3103 * If the file has a v_count > 1 then there may be more 3104 * than one entry in the name cache due multiple links 3105 * or an open file, but we don't have the real reference 3106 * count so flush all possible entries. 3107 */ 3108 if (nvp->v_count > 1) 3109 dnlc_purge_vp(nvp); 3110 3111 /* 3112 * If the vnode is active and is not a directory, 3113 * arrange to rename it to a 3114 * temporary file so that it will continue to be 3115 * accessible. This implements the "unlink-open-file" 3116 * semantics for the target of a rename operation. 3117 * Before doing this though, make sure that the 3118 * source and target files are not already the same. 3119 */ 3120 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 3121 /* 3122 * Lookup the source name. 3123 */ 3124 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, 3125 cr, 0); 3126 3127 /* 3128 * The source name *should* already exist. 3129 */ 3130 if (error) { 3131 VN_RELE(nvp); 3132 nfs_rw_exit(&odrp->r_rwlock); 3133 nfs_rw_exit(&ndrp->r_rwlock); 3134 return (error); 3135 } 3136 3137 /* 3138 * Compare the two vnodes. If they are the same, 3139 * just release all held vnodes and return success. 3140 */ 3141 if (ovp == nvp) { 3142 VN_RELE(ovp); 3143 VN_RELE(nvp); 3144 nfs_rw_exit(&odrp->r_rwlock); 3145 nfs_rw_exit(&ndrp->r_rwlock); 3146 return (0); 3147 } 3148 3149 /* 3150 * Can't mix and match directories and non- 3151 * directories in rename operations. We already 3152 * know that the target is not a directory. If 3153 * the source is a directory, return an error. 3154 */ 3155 if (ovp->v_type == VDIR) { 3156 VN_RELE(ovp); 3157 VN_RELE(nvp); 3158 nfs_rw_exit(&odrp->r_rwlock); 3159 nfs_rw_exit(&ndrp->r_rwlock); 3160 return (ENOTDIR); 3161 } 3162 3163 /* 3164 * The target file exists, is not the same as 3165 * the source file, and is active. Link it 3166 * to a temporary filename to avoid having 3167 * the server removing the file completely. 3168 */ 3169 tmpname = newname(); 3170 error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0); 3171 if (error == EOPNOTSUPP) { 3172 error = nfs3_rename(ndvp, nnm, ndvp, tmpname, 3173 cr, NULL, 0); 3174 } 3175 if (error) { 3176 kmem_free(tmpname, MAXNAMELEN); 3177 VN_RELE(ovp); 3178 VN_RELE(nvp); 3179 nfs_rw_exit(&odrp->r_rwlock); 3180 nfs_rw_exit(&ndrp->r_rwlock); 3181 return (error); 3182 } 3183 rp = VTOR(nvp); 3184 mutex_enter(&rp->r_statelock); 3185 if (rp->r_unldvp == NULL) { 3186 VN_HOLD(ndvp); 3187 rp->r_unldvp = ndvp; 3188 if (rp->r_unlcred != NULL) 3189 crfree(rp->r_unlcred); 3190 crhold(cr); 3191 rp->r_unlcred = cr; 3192 rp->r_unlname = tmpname; 3193 } else { 3194 kmem_free(rp->r_unlname, MAXNAMELEN); 3195 rp->r_unlname = tmpname; 3196 } 3197 mutex_exit(&rp->r_statelock); 3198 } 3199 } 3200 3201 if (ovp == NULL) { 3202 /* 3203 * When renaming directories to be a subdirectory of a 3204 * different parent, the dnlc entry for ".." will no 3205 * longer be valid, so it must be removed. 3206 * 3207 * We do a lookup here to determine whether we are renaming 3208 * a directory and we need to check if we are renaming 3209 * an unlinked file. This might have already been done 3210 * in previous code, so we check ovp == NULL to avoid 3211 * doing it twice. 3212 */ 3213 3214 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 3215 /* 3216 * The source name *should* already exist. 3217 */ 3218 if (error) { 3219 nfs_rw_exit(&odrp->r_rwlock); 3220 nfs_rw_exit(&ndrp->r_rwlock); 3221 if (nvp) { 3222 VN_RELE(nvp); 3223 } 3224 return (error); 3225 } 3226 ASSERT(ovp != NULL); 3227 } 3228 3229 dnlc_remove(odvp, onm); 3230 dnlc_remove(ndvp, nnm); 3231 3232 setdiropargs3(&args.from, onm, odvp); 3233 setdiropargs3(&args.to, nnm, ndvp); 3234 3235 douprintf = 1; 3236 3237 t = gethrtime(); 3238 3239 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME, 3240 xdr_RENAME3args, (caddr_t)&args, 3241 xdr_RENAME3res, (caddr_t)&res, cr, 3242 &douprintf, &res.status, 0, NULL); 3243 3244 if (error) { 3245 PURGE_ATTRCACHE(odvp); 3246 PURGE_ATTRCACHE(ndvp); 3247 VN_RELE(ovp); 3248 nfs_rw_exit(&odrp->r_rwlock); 3249 nfs_rw_exit(&ndrp->r_rwlock); 3250 if (nvp) { 3251 VN_RELE(nvp); 3252 } 3253 return (error); 3254 } 3255 3256 error = geterrno3(res.status); 3257 3258 if (!error) { 3259 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr); 3260 if (HAVE_RDDIR_CACHE(odrp)) 3261 nfs_purge_rddir_cache(odvp); 3262 if (ndvp != odvp) { 3263 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr); 3264 if (HAVE_RDDIR_CACHE(ndrp)) 3265 nfs_purge_rddir_cache(ndvp); 3266 } 3267 /* 3268 * when renaming directories to be a subdirectory of a 3269 * different parent, the dnlc entry for ".." will no 3270 * longer be valid, so it must be removed 3271 */ 3272 rp = VTOR(ovp); 3273 if (ndvp != odvp) { 3274 if (ovp->v_type == VDIR) { 3275 dnlc_remove(ovp, ".."); 3276 if (HAVE_RDDIR_CACHE(rp)) 3277 nfs_purge_rddir_cache(ovp); 3278 } 3279 } 3280 3281 /* 3282 * If we are renaming the unlinked file, update the 3283 * r_unldvp and r_unlname as needed. 3284 */ 3285 mutex_enter(&rp->r_statelock); 3286 if (rp->r_unldvp != NULL) { 3287 if (strcmp(rp->r_unlname, onm) == 0) { 3288 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 3289 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 3290 3291 if (ndvp != rp->r_unldvp) { 3292 VN_RELE(rp->r_unldvp); 3293 rp->r_unldvp = ndvp; 3294 VN_HOLD(ndvp); 3295 } 3296 } 3297 } 3298 mutex_exit(&rp->r_statelock); 3299 } else { 3300 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr); 3301 if (ndvp != odvp) { 3302 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t, 3303 cr); 3304 } 3305 /* 3306 * System V defines rename to return EEXIST, not 3307 * ENOTEMPTY if the target directory is not empty. 3308 * Over the wire, the error is NFSERR_ENOTEMPTY 3309 * which geterrno maps to ENOTEMPTY. 3310 */ 3311 if (error == ENOTEMPTY) 3312 error = EEXIST; 3313 } 3314 3315 if (error == 0) { 3316 if (nvp) 3317 vnevent_rename_dest(nvp, ndvp, nnm, ct); 3318 3319 if (odvp != ndvp) 3320 vnevent_rename_dest_dir(ndvp, ct); 3321 ASSERT(ovp != NULL); 3322 vnevent_rename_src(ovp, odvp, onm, ct); 3323 } 3324 3325 if (nvp) { 3326 VN_RELE(nvp); 3327 } 3328 VN_RELE(ovp); 3329 3330 nfs_rw_exit(&odrp->r_rwlock); 3331 nfs_rw_exit(&ndrp->r_rwlock); 3332 3333 return (error); 3334 } 3335 3336 /* ARGSUSED */ 3337 static int 3338 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 3339 caller_context_t *ct, int flags, vsecattr_t *vsecp) 3340 { 3341 int error; 3342 MKDIR3args args; 3343 MKDIR3res res; 3344 int douprintf; 3345 struct vattr vattr; 3346 vnode_t *vp; 3347 rnode_t *drp; 3348 hrtime_t t; 3349 3350 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3351 return (EPERM); 3352 setdiropargs3(&args.where, nm, dvp); 3353 3354 /* 3355 * Decide what the group-id and set-gid bit of the created directory 3356 * should be. May have to do a setattr to get the gid right. 3357 */ 3358 error = setdirgid(dvp, &va->va_gid, cr); 3359 if (error) 3360 return (error); 3361 error = setdirmode(dvp, &va->va_mode, cr); 3362 if (error) 3363 return (error); 3364 va->va_mask |= AT_MODE|AT_GID; 3365 3366 error = vattr_to_sattr3(va, &args.attributes); 3367 if (error) { 3368 /* req time field(s) overflow - return immediately */ 3369 return (error); 3370 } 3371 3372 drp = VTOR(dvp); 3373 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3374 return (EINTR); 3375 3376 dnlc_remove(dvp, nm); 3377 3378 douprintf = 1; 3379 3380 t = gethrtime(); 3381 3382 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR, 3383 xdr_MKDIR3args, (caddr_t)&args, 3384 xdr_MKDIR3res, (caddr_t)&res, cr, 3385 &douprintf, &res.status, 0, NULL); 3386 3387 if (error) { 3388 PURGE_ATTRCACHE(dvp); 3389 nfs_rw_exit(&drp->r_rwlock); 3390 return (error); 3391 } 3392 3393 error = geterrno3(res.status); 3394 if (!error) { 3395 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3396 if (HAVE_RDDIR_CACHE(drp)) 3397 nfs_purge_rddir_cache(dvp); 3398 3399 if (!res.resok.obj.handle_follows) { 3400 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3401 if (error) { 3402 nfs_rw_exit(&drp->r_rwlock); 3403 return (error); 3404 } 3405 } else { 3406 if (res.resok.obj_attributes.attributes) { 3407 vp = makenfs3node(&res.resok.obj.handle, 3408 &res.resok.obj_attributes.attr, 3409 dvp->v_vfsp, t, cr, NULL, NULL); 3410 } else { 3411 vp = makenfs3node(&res.resok.obj.handle, NULL, 3412 dvp->v_vfsp, t, cr, NULL, NULL); 3413 if (vp->v_type == VNON) { 3414 vattr.va_mask = AT_TYPE; 3415 error = nfs3getattr(vp, &vattr, cr); 3416 if (error) { 3417 VN_RELE(vp); 3418 nfs_rw_exit(&drp->r_rwlock); 3419 return (error); 3420 } 3421 vp->v_type = vattr.va_type; 3422 } 3423 } 3424 dnlc_update(dvp, nm, vp); 3425 } 3426 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 3427 va->va_mask = AT_GID; 3428 (void) nfs3setattr(vp, va, 0, cr); 3429 } 3430 *vpp = vp; 3431 } else { 3432 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3433 PURGE_STALE_FH(error, dvp, cr); 3434 } 3435 3436 nfs_rw_exit(&drp->r_rwlock); 3437 3438 return (error); 3439 } 3440 3441 /* ARGSUSED */ 3442 static int 3443 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 3444 caller_context_t *ct, int flags) 3445 { 3446 int error; 3447 RMDIR3args args; 3448 RMDIR3res res; 3449 vnode_t *vp; 3450 int douprintf; 3451 rnode_t *drp; 3452 hrtime_t t; 3453 3454 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3455 return (EPERM); 3456 drp = VTOR(dvp); 3457 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3458 return (EINTR); 3459 3460 /* 3461 * Attempt to prevent a rmdir(".") from succeeding. 3462 */ 3463 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3464 if (error) { 3465 nfs_rw_exit(&drp->r_rwlock); 3466 return (error); 3467 } 3468 3469 if (vp == cdir) { 3470 VN_RELE(vp); 3471 nfs_rw_exit(&drp->r_rwlock); 3472 return (EINVAL); 3473 } 3474 3475 setdiropargs3(&args.object, nm, dvp); 3476 3477 /* 3478 * First just remove the entry from the name cache, as it 3479 * is most likely an entry for this vp. 3480 */ 3481 dnlc_remove(dvp, nm); 3482 3483 /* 3484 * If there vnode reference count is greater than one, then 3485 * there may be additional references in the DNLC which will 3486 * need to be purged. First, trying removing the entry for 3487 * the parent directory and see if that removes the additional 3488 * reference(s). If that doesn't do it, then use dnlc_purge_vp 3489 * to completely remove any references to the directory which 3490 * might still exist in the DNLC. 3491 */ 3492 if (vp->v_count > 1) { 3493 dnlc_remove(vp, ".."); 3494 if (vp->v_count > 1) 3495 dnlc_purge_vp(vp); 3496 } 3497 3498 douprintf = 1; 3499 3500 t = gethrtime(); 3501 3502 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR, 3503 xdr_diropargs3, (caddr_t)&args, 3504 xdr_RMDIR3res, (caddr_t)&res, cr, 3505 &douprintf, &res.status, 0, NULL); 3506 3507 PURGE_ATTRCACHE(vp); 3508 3509 if (error) { 3510 PURGE_ATTRCACHE(dvp); 3511 VN_RELE(vp); 3512 nfs_rw_exit(&drp->r_rwlock); 3513 return (error); 3514 } 3515 3516 error = geterrno3(res.status); 3517 if (!error) { 3518 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3519 if (HAVE_RDDIR_CACHE(drp)) 3520 nfs_purge_rddir_cache(dvp); 3521 if (HAVE_RDDIR_CACHE(VTOR(vp))) 3522 nfs_purge_rddir_cache(vp); 3523 } else { 3524 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3525 PURGE_STALE_FH(error, dvp, cr); 3526 /* 3527 * System V defines rmdir to return EEXIST, not 3528 * ENOTEMPTY if the directory is not empty. Over 3529 * the wire, the error is NFSERR_ENOTEMPTY which 3530 * geterrno maps to ENOTEMPTY. 3531 */ 3532 if (error == ENOTEMPTY) 3533 error = EEXIST; 3534 } 3535 3536 if (error == 0) { 3537 vnevent_rmdir(vp, dvp, nm, ct); 3538 } 3539 VN_RELE(vp); 3540 3541 nfs_rw_exit(&drp->r_rwlock); 3542 3543 return (error); 3544 } 3545 3546 /* ARGSUSED */ 3547 static int 3548 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 3549 caller_context_t *ct, int flags) 3550 { 3551 int error; 3552 SYMLINK3args args; 3553 SYMLINK3res res; 3554 int douprintf; 3555 mntinfo_t *mi; 3556 vnode_t *vp; 3557 rnode_t *rp; 3558 char *contents; 3559 rnode_t *drp; 3560 hrtime_t t; 3561 3562 mi = VTOMI(dvp); 3563 3564 if (nfs_zone() != mi->mi_zone) 3565 return (EPERM); 3566 if (!(mi->mi_flags & MI_SYMLINK)) 3567 return (EOPNOTSUPP); 3568 3569 setdiropargs3(&args.where, lnm, dvp); 3570 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes); 3571 if (error) { 3572 /* req time field(s) overflow - return immediately */ 3573 return (error); 3574 } 3575 args.symlink.symlink_data = tnm; 3576 3577 drp = VTOR(dvp); 3578 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3579 return (EINTR); 3580 3581 dnlc_remove(dvp, lnm); 3582 3583 douprintf = 1; 3584 3585 t = gethrtime(); 3586 3587 error = rfs3call(mi, NFSPROC3_SYMLINK, 3588 xdr_SYMLINK3args, (caddr_t)&args, 3589 xdr_SYMLINK3res, (caddr_t)&res, cr, 3590 &douprintf, &res.status, 0, NULL); 3591 3592 if (error) { 3593 PURGE_ATTRCACHE(dvp); 3594 nfs_rw_exit(&drp->r_rwlock); 3595 return (error); 3596 } 3597 3598 error = geterrno3(res.status); 3599 if (!error) { 3600 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3601 if (HAVE_RDDIR_CACHE(drp)) 3602 nfs_purge_rddir_cache(dvp); 3603 3604 if (res.resok.obj.handle_follows) { 3605 if (res.resok.obj_attributes.attributes) { 3606 vp = makenfs3node(&res.resok.obj.handle, 3607 &res.resok.obj_attributes.attr, 3608 dvp->v_vfsp, t, cr, NULL, NULL); 3609 } else { 3610 vp = makenfs3node(&res.resok.obj.handle, NULL, 3611 dvp->v_vfsp, t, cr, NULL, NULL); 3612 vp->v_type = VLNK; 3613 vp->v_rdev = 0; 3614 } 3615 dnlc_update(dvp, lnm, vp); 3616 rp = VTOR(vp); 3617 if (nfs3_do_symlink_cache && 3618 rp->r_symlink.contents == NULL) { 3619 3620 contents = kmem_alloc(MAXPATHLEN, 3621 KM_NOSLEEP); 3622 3623 if (contents != NULL) { 3624 mutex_enter(&rp->r_statelock); 3625 if (rp->r_symlink.contents == NULL) { 3626 rp->r_symlink.len = strlen(tnm); 3627 bcopy(tnm, contents, 3628 rp->r_symlink.len); 3629 rp->r_symlink.contents = 3630 contents; 3631 rp->r_symlink.size = MAXPATHLEN; 3632 mutex_exit(&rp->r_statelock); 3633 } else { 3634 mutex_exit(&rp->r_statelock); 3635 kmem_free((void *)contents, 3636 MAXPATHLEN); 3637 } 3638 } 3639 } 3640 VN_RELE(vp); 3641 } 3642 } else { 3643 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3644 PURGE_STALE_FH(error, dvp, cr); 3645 if (error == EOPNOTSUPP) { 3646 mutex_enter(&mi->mi_lock); 3647 mi->mi_flags &= ~MI_SYMLINK; 3648 mutex_exit(&mi->mi_lock); 3649 } 3650 } 3651 3652 nfs_rw_exit(&drp->r_rwlock); 3653 3654 return (error); 3655 } 3656 3657 #ifdef DEBUG 3658 static int nfs3_readdir_cache_hits = 0; 3659 static int nfs3_readdir_cache_shorts = 0; 3660 static int nfs3_readdir_cache_waits = 0; 3661 static int nfs3_readdir_cache_misses = 0; 3662 static int nfs3_readdir_readahead = 0; 3663 #endif 3664 3665 static int nfs3_shrinkreaddir = 0; 3666 3667 /* 3668 * Read directory entries. 3669 * There are some weird things to look out for here. The uio_loffset 3670 * field is either 0 or it is the offset returned from a previous 3671 * readdir. It is an opaque value used by the server to find the 3672 * correct directory block to read. The count field is the number 3673 * of blocks to read on the server. This is advisory only, the server 3674 * may return only one block's worth of entries. Entries may be compressed 3675 * on the server. 3676 */ 3677 /* ARGSUSED */ 3678 static int 3679 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 3680 caller_context_t *ct, int flags) 3681 { 3682 int error; 3683 size_t count; 3684 rnode_t *rp; 3685 rddir_cache *rdc; 3686 rddir_cache *nrdc; 3687 rddir_cache *rrdc; 3688 #ifdef DEBUG 3689 int missed; 3690 #endif 3691 int doreadahead; 3692 rddir_cache srdc; 3693 avl_index_t where; 3694 3695 if (nfs_zone() != VTOMI(vp)->mi_zone) 3696 return (EIO); 3697 rp = VTOR(vp); 3698 3699 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 3700 3701 /* 3702 * Make sure that the directory cache is valid. 3703 */ 3704 if (HAVE_RDDIR_CACHE(rp)) { 3705 if (nfs_disable_rddir_cache) { 3706 /* 3707 * Setting nfs_disable_rddir_cache in /etc/system 3708 * allows interoperability with servers that do not 3709 * properly update the attributes of directories. 3710 * Any cached information gets purged before an 3711 * access is made to it. 3712 */ 3713 nfs_purge_rddir_cache(vp); 3714 } else { 3715 error = nfs3_validate_caches(vp, cr); 3716 if (error) 3717 return (error); 3718 } 3719 } 3720 3721 /* 3722 * It is possible that some servers may not be able to correctly 3723 * handle a large READDIR or READDIRPLUS request due to bugs in 3724 * their implementation. In order to continue to interoperate 3725 * with them, this workaround is provided to limit the maximum 3726 * size of a READDIRPLUS request to 1024. In any case, the request 3727 * size is limited to MAXBSIZE. 3728 */ 3729 count = MIN(uiop->uio_iov->iov_len, 3730 nfs3_shrinkreaddir ? 1024 : MAXBSIZE); 3731 3732 nrdc = NULL; 3733 #ifdef DEBUG 3734 missed = 0; 3735 #endif 3736 top: 3737 /* 3738 * Short circuit last readdir which always returns 0 bytes. 3739 * This can be done after the directory has been read through 3740 * completely at least once. This will set r_direof which 3741 * can be used to find the value of the last cookie. 3742 */ 3743 mutex_enter(&rp->r_statelock); 3744 if (rp->r_direof != NULL && 3745 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) { 3746 mutex_exit(&rp->r_statelock); 3747 #ifdef DEBUG 3748 nfs3_readdir_cache_shorts++; 3749 #endif 3750 if (eofp) 3751 *eofp = 1; 3752 if (nrdc != NULL) 3753 rddir_cache_rele(nrdc); 3754 return (0); 3755 } 3756 /* 3757 * Look for a cache entry. Cache entries are identified 3758 * by the NFS cookie value and the byte count requested. 3759 */ 3760 srdc.nfs3_cookie = uiop->uio_loffset; 3761 srdc.buflen = count; 3762 rdc = avl_find(&rp->r_dir, &srdc, &where); 3763 if (rdc != NULL) { 3764 rddir_cache_hold(rdc); 3765 /* 3766 * If the cache entry is in the process of being 3767 * filled in, wait until this completes. The 3768 * RDDIRWAIT bit is set to indicate that someone 3769 * is waiting and then the thread currently 3770 * filling the entry is done, it should do a 3771 * cv_broadcast to wakeup all of the threads 3772 * waiting for it to finish. 3773 */ 3774 if (rdc->flags & RDDIR) { 3775 nfs_rw_exit(&rp->r_rwlock); 3776 rdc->flags |= RDDIRWAIT; 3777 #ifdef DEBUG 3778 nfs3_readdir_cache_waits++; 3779 #endif 3780 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3781 /* 3782 * We got interrupted, probably 3783 * the user typed ^C or an alarm 3784 * fired. We free the new entry 3785 * if we allocated one. 3786 */ 3787 mutex_exit(&rp->r_statelock); 3788 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3789 RW_READER, FALSE); 3790 rddir_cache_rele(rdc); 3791 if (nrdc != NULL) 3792 rddir_cache_rele(nrdc); 3793 return (EINTR); 3794 } 3795 mutex_exit(&rp->r_statelock); 3796 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3797 RW_READER, FALSE); 3798 rddir_cache_rele(rdc); 3799 goto top; 3800 } 3801 /* 3802 * Check to see if a readdir is required to 3803 * fill the entry. If so, mark this entry 3804 * as being filled, remove our reference, 3805 * and branch to the code to fill the entry. 3806 */ 3807 if (rdc->flags & RDDIRREQ) { 3808 rdc->flags &= ~RDDIRREQ; 3809 rdc->flags |= RDDIR; 3810 if (nrdc != NULL) 3811 rddir_cache_rele(nrdc); 3812 nrdc = rdc; 3813 mutex_exit(&rp->r_statelock); 3814 goto bottom; 3815 } 3816 #ifdef DEBUG 3817 if (!missed) 3818 nfs3_readdir_cache_hits++; 3819 #endif 3820 /* 3821 * If an error occurred while attempting 3822 * to fill the cache entry, just return it. 3823 */ 3824 if (rdc->error) { 3825 error = rdc->error; 3826 mutex_exit(&rp->r_statelock); 3827 rddir_cache_rele(rdc); 3828 if (nrdc != NULL) 3829 rddir_cache_rele(nrdc); 3830 return (error); 3831 } 3832 3833 /* 3834 * The cache entry is complete and good, 3835 * copyout the dirent structs to the calling 3836 * thread. 3837 */ 3838 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3839 3840 /* 3841 * If no error occurred during the copyout, 3842 * update the offset in the uio struct to 3843 * contain the value of the next cookie 3844 * and set the eof value appropriately. 3845 */ 3846 if (!error) { 3847 uiop->uio_loffset = rdc->nfs3_ncookie; 3848 if (eofp) 3849 *eofp = rdc->eof; 3850 } 3851 3852 /* 3853 * Decide whether to do readahead. 3854 * 3855 * Don't if have already read to the end of 3856 * directory. There is nothing more to read. 3857 * 3858 * Don't if the application is not doing 3859 * lookups in the directory. The readahead 3860 * is only effective if the application can 3861 * be doing work while an async thread is 3862 * handling the over the wire request. 3863 */ 3864 if (rdc->eof) { 3865 rp->r_direof = rdc; 3866 doreadahead = FALSE; 3867 } else if (!(rp->r_flags & RLOOKUP)) 3868 doreadahead = FALSE; 3869 else 3870 doreadahead = TRUE; 3871 3872 if (!doreadahead) { 3873 mutex_exit(&rp->r_statelock); 3874 rddir_cache_rele(rdc); 3875 if (nrdc != NULL) 3876 rddir_cache_rele(nrdc); 3877 return (error); 3878 } 3879 3880 /* 3881 * Check to see whether we found an entry 3882 * for the readahead. If so, we don't need 3883 * to do anything further, so free the new 3884 * entry if one was allocated. Otherwise, 3885 * allocate a new entry, add it to the cache, 3886 * and then initiate an asynchronous readdir 3887 * operation to fill it. 3888 */ 3889 srdc.nfs3_cookie = rdc->nfs3_ncookie; 3890 srdc.buflen = count; 3891 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3892 if (rrdc != NULL) { 3893 if (nrdc != NULL) 3894 rddir_cache_rele(nrdc); 3895 } else { 3896 if (nrdc != NULL) 3897 rrdc = nrdc; 3898 else { 3899 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3900 } 3901 if (rrdc != NULL) { 3902 rrdc->nfs3_cookie = rdc->nfs3_ncookie; 3903 rrdc->buflen = count; 3904 avl_insert(&rp->r_dir, rrdc, where); 3905 rddir_cache_hold(rrdc); 3906 mutex_exit(&rp->r_statelock); 3907 rddir_cache_rele(rdc); 3908 #ifdef DEBUG 3909 nfs3_readdir_readahead++; 3910 #endif 3911 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir); 3912 return (error); 3913 } 3914 } 3915 3916 mutex_exit(&rp->r_statelock); 3917 rddir_cache_rele(rdc); 3918 return (error); 3919 } 3920 3921 /* 3922 * Didn't find an entry in the cache. Construct a new empty 3923 * entry and link it into the cache. Other processes attempting 3924 * to access this entry will need to wait until it is filled in. 3925 * 3926 * Since kmem_alloc may block, another pass through the cache 3927 * will need to be taken to make sure that another process 3928 * hasn't already added an entry to the cache for this request. 3929 */ 3930 if (nrdc == NULL) { 3931 mutex_exit(&rp->r_statelock); 3932 nrdc = rddir_cache_alloc(KM_SLEEP); 3933 nrdc->nfs3_cookie = uiop->uio_loffset; 3934 nrdc->buflen = count; 3935 goto top; 3936 } 3937 3938 /* 3939 * Add this entry to the cache. 3940 */ 3941 avl_insert(&rp->r_dir, nrdc, where); 3942 rddir_cache_hold(nrdc); 3943 mutex_exit(&rp->r_statelock); 3944 3945 bottom: 3946 #ifdef DEBUG 3947 missed = 1; 3948 nfs3_readdir_cache_misses++; 3949 #endif 3950 /* 3951 * Do the readdir. This routine decides whether to use 3952 * READDIR or READDIRPLUS. 3953 */ 3954 error = do_nfs3readdir(vp, nrdc, cr); 3955 3956 /* 3957 * If this operation failed, just return the error which occurred. 3958 */ 3959 if (error != 0) 3960 return (error); 3961 3962 /* 3963 * Since the RPC operation will have taken sometime and blocked 3964 * this process, another pass through the cache will need to be 3965 * taken to find the correct cache entry. It is possible that 3966 * the correct cache entry will not be there (although one was 3967 * added) because the directory changed during the RPC operation 3968 * and the readdir cache was flushed. In this case, just start 3969 * over. It is hoped that this will not happen too often... :-) 3970 */ 3971 nrdc = NULL; 3972 goto top; 3973 /* NOTREACHED */ 3974 } 3975 3976 static int 3977 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3978 { 3979 int error; 3980 rnode_t *rp; 3981 mntinfo_t *mi; 3982 3983 rp = VTOR(vp); 3984 mi = VTOMI(vp); 3985 ASSERT(nfs_zone() == mi->mi_zone); 3986 /* 3987 * Issue the proper request. 3988 * 3989 * If the server does not support READDIRPLUS, then use READDIR. 3990 * 3991 * Otherwise -- 3992 * Issue a READDIRPLUS if reading to fill an empty cache or if 3993 * an application has performed a lookup in the directory which 3994 * required an over the wire lookup. The use of READDIRPLUS 3995 * will help to (re)populate the DNLC. 3996 */ 3997 if (!(mi->mi_flags & MI_READDIRONLY) && 3998 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) { 3999 if (rp->r_flags & RREADDIRPLUS) { 4000 mutex_enter(&rp->r_statelock); 4001 rp->r_flags &= ~RREADDIRPLUS; 4002 mutex_exit(&rp->r_statelock); 4003 } 4004 nfs3readdirplus(vp, rdc, cr); 4005 if (rdc->error == EOPNOTSUPP) 4006 nfs3readdir(vp, rdc, cr); 4007 } else 4008 nfs3readdir(vp, rdc, cr); 4009 4010 mutex_enter(&rp->r_statelock); 4011 rdc->flags &= ~RDDIR; 4012 if (rdc->flags & RDDIRWAIT) { 4013 rdc->flags &= ~RDDIRWAIT; 4014 cv_broadcast(&rdc->cv); 4015 } 4016 error = rdc->error; 4017 if (error) 4018 rdc->flags |= RDDIRREQ; 4019 mutex_exit(&rp->r_statelock); 4020 4021 rddir_cache_rele(rdc); 4022 4023 return (error); 4024 } 4025 4026 static void 4027 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4028 { 4029 int error; 4030 READDIR3args args; 4031 READDIR3vres res; 4032 vattr_t dva; 4033 rnode_t *rp; 4034 int douprintf; 4035 failinfo_t fi, *fip = NULL; 4036 mntinfo_t *mi; 4037 hrtime_t t; 4038 4039 rp = VTOR(vp); 4040 mi = VTOMI(vp); 4041 ASSERT(nfs_zone() == mi->mi_zone); 4042 4043 args.dir = *RTOFH3(rp); 4044 args.cookie = (cookie3)rdc->nfs3_cookie; 4045 args.cookieverf = rp->r_cookieverf; 4046 args.count = rdc->buflen; 4047 4048 /* 4049 * NFS client failover support 4050 * suppress failover unless we have a zero cookie 4051 */ 4052 if (args.cookie == (cookie3) 0) { 4053 fi.vp = vp; 4054 fi.fhp = (caddr_t)&args.dir; 4055 fi.copyproc = nfs3copyfh; 4056 fi.lookupproc = nfs3lookup; 4057 fi.xattrdirproc = acl_getxattrdir3; 4058 fip = &fi; 4059 } 4060 4061 #ifdef DEBUG 4062 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4063 #else 4064 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4065 #endif 4066 4067 res.entries = (dirent64_t *)rdc->entries; 4068 res.entries_size = rdc->buflen; 4069 res.dir_attributes.fres.vap = &dva; 4070 res.dir_attributes.fres.vp = vp; 4071 res.loff = rdc->nfs3_cookie; 4072 4073 douprintf = 1; 4074 4075 if (mi->mi_io_kstats) { 4076 mutex_enter(&mi->mi_lock); 4077 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4078 mutex_exit(&mi->mi_lock); 4079 } 4080 4081 t = gethrtime(); 4082 4083 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR, 4084 xdr_READDIR3args, (caddr_t)&args, 4085 xdr_READDIR3vres, (caddr_t)&res, cr, 4086 &douprintf, &res.status, 0, fip); 4087 4088 if (mi->mi_io_kstats) { 4089 mutex_enter(&mi->mi_lock); 4090 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4091 mutex_exit(&mi->mi_lock); 4092 } 4093 4094 if (error) 4095 goto err; 4096 4097 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr); 4098 4099 error = geterrno3(res.status); 4100 if (error) { 4101 PURGE_STALE_FH(error, vp, cr); 4102 goto err; 4103 } 4104 4105 if (mi->mi_io_kstats) { 4106 mutex_enter(&mi->mi_lock); 4107 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4108 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4109 mutex_exit(&mi->mi_lock); 4110 } 4111 4112 rdc->nfs3_ncookie = res.loff; 4113 rp->r_cookieverf = res.cookieverf; 4114 rdc->eof = res.eof ? 1 : 0; 4115 rdc->entlen = res.size; 4116 ASSERT(rdc->entlen <= rdc->buflen); 4117 rdc->error = 0; 4118 return; 4119 4120 err: 4121 kmem_free(rdc->entries, rdc->buflen); 4122 rdc->entries = NULL; 4123 rdc->error = error; 4124 } 4125 4126 /* 4127 * Read directory entries. 4128 * There are some weird things to look out for here. The uio_loffset 4129 * field is either 0 or it is the offset returned from a previous 4130 * readdir. It is an opaque value used by the server to find the 4131 * correct directory block to read. The count field is the number 4132 * of blocks to read on the server. This is advisory only, the server 4133 * may return only one block's worth of entries. Entries may be compressed 4134 * on the server. 4135 */ 4136 static void 4137 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4138 { 4139 int error; 4140 READDIRPLUS3args args; 4141 READDIRPLUS3vres res; 4142 vattr_t dva; 4143 rnode_t *rp; 4144 mntinfo_t *mi; 4145 int douprintf; 4146 failinfo_t fi, *fip = NULL; 4147 4148 rp = VTOR(vp); 4149 mi = VTOMI(vp); 4150 ASSERT(nfs_zone() == mi->mi_zone); 4151 4152 args.dir = *RTOFH3(rp); 4153 args.cookie = (cookie3)rdc->nfs3_cookie; 4154 args.cookieverf = rp->r_cookieverf; 4155 args.dircount = rdc->buflen; 4156 args.maxcount = mi->mi_tsize; 4157 4158 /* 4159 * NFS client failover support 4160 * suppress failover unless we have a zero cookie 4161 */ 4162 if (args.cookie == (cookie3)0) { 4163 fi.vp = vp; 4164 fi.fhp = (caddr_t)&args.dir; 4165 fi.copyproc = nfs3copyfh; 4166 fi.lookupproc = nfs3lookup; 4167 fi.xattrdirproc = acl_getxattrdir3; 4168 fip = &fi; 4169 } 4170 4171 #ifdef DEBUG 4172 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4173 #else 4174 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4175 #endif 4176 4177 res.entries = (dirent64_t *)rdc->entries; 4178 res.entries_size = rdc->buflen; 4179 res.dir_attributes.fres.vap = &dva; 4180 res.dir_attributes.fres.vp = vp; 4181 res.loff = rdc->nfs3_cookie; 4182 res.credentials = cr; 4183 4184 douprintf = 1; 4185 4186 if (mi->mi_io_kstats) { 4187 mutex_enter(&mi->mi_lock); 4188 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4189 mutex_exit(&mi->mi_lock); 4190 } 4191 4192 res.time = gethrtime(); 4193 4194 error = rfs3call(mi, NFSPROC3_READDIRPLUS, 4195 xdr_READDIRPLUS3args, (caddr_t)&args, 4196 xdr_READDIRPLUS3vres, (caddr_t)&res, cr, 4197 &douprintf, &res.status, 0, fip); 4198 4199 if (mi->mi_io_kstats) { 4200 mutex_enter(&mi->mi_lock); 4201 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4202 mutex_exit(&mi->mi_lock); 4203 } 4204 4205 if (error) { 4206 goto err; 4207 } 4208 4209 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr); 4210 4211 error = geterrno3(res.status); 4212 if (error) { 4213 PURGE_STALE_FH(error, vp, cr); 4214 if (error == EOPNOTSUPP) { 4215 mutex_enter(&mi->mi_lock); 4216 mi->mi_flags |= MI_READDIRONLY; 4217 mutex_exit(&mi->mi_lock); 4218 } 4219 goto err; 4220 } 4221 4222 if (mi->mi_io_kstats) { 4223 mutex_enter(&mi->mi_lock); 4224 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4225 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4226 mutex_exit(&mi->mi_lock); 4227 } 4228 4229 rdc->nfs3_ncookie = res.loff; 4230 rp->r_cookieverf = res.cookieverf; 4231 rdc->eof = res.eof ? 1 : 0; 4232 rdc->entlen = res.size; 4233 ASSERT(rdc->entlen <= rdc->buflen); 4234 rdc->error = 0; 4235 4236 return; 4237 4238 err: 4239 kmem_free(rdc->entries, rdc->buflen); 4240 rdc->entries = NULL; 4241 rdc->error = error; 4242 } 4243 4244 #ifdef DEBUG 4245 static int nfs3_bio_do_stop = 0; 4246 #endif 4247 4248 static int 4249 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr) 4250 { 4251 rnode_t *rp = VTOR(bp->b_vp); 4252 int count; 4253 int error; 4254 cred_t *cred; 4255 offset_t offset; 4256 4257 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 4258 offset = ldbtob(bp->b_lblkno); 4259 4260 DTRACE_IO1(start, struct buf *, bp); 4261 4262 if (bp->b_flags & B_READ) { 4263 mutex_enter(&rp->r_statelock); 4264 if (rp->r_cred != NULL) { 4265 cred = rp->r_cred; 4266 crhold(cred); 4267 } else { 4268 rp->r_cred = cr; 4269 crhold(cr); 4270 cred = cr; 4271 crhold(cred); 4272 } 4273 mutex_exit(&rp->r_statelock); 4274 read_again: 4275 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr, 4276 offset, bp->b_bcount, &bp->b_resid, cred); 4277 crfree(cred); 4278 if (!error) { 4279 if (bp->b_resid) { 4280 /* 4281 * Didn't get it all because we hit EOF, 4282 * zero all the memory beyond the EOF. 4283 */ 4284 /* bzero(rdaddr + */ 4285 bzero(bp->b_un.b_addr + 4286 bp->b_bcount - bp->b_resid, bp->b_resid); 4287 } 4288 mutex_enter(&rp->r_statelock); 4289 if (bp->b_resid == bp->b_bcount && 4290 offset >= rp->r_size) { 4291 /* 4292 * We didn't read anything at all as we are 4293 * past EOF. Return an error indicator back 4294 * but don't destroy the pages (yet). 4295 */ 4296 error = NFS_EOF; 4297 } 4298 mutex_exit(&rp->r_statelock); 4299 } else if (error == EACCES) { 4300 mutex_enter(&rp->r_statelock); 4301 if (cred != cr) { 4302 if (rp->r_cred != NULL) 4303 crfree(rp->r_cred); 4304 rp->r_cred = cr; 4305 crhold(cr); 4306 cred = cr; 4307 crhold(cred); 4308 mutex_exit(&rp->r_statelock); 4309 goto read_again; 4310 } 4311 mutex_exit(&rp->r_statelock); 4312 } 4313 } else { 4314 if (!(rp->r_flags & RSTALE)) { 4315 mutex_enter(&rp->r_statelock); 4316 if (rp->r_cred != NULL) { 4317 cred = rp->r_cred; 4318 crhold(cred); 4319 } else { 4320 rp->r_cred = cr; 4321 crhold(cr); 4322 cred = cr; 4323 crhold(cred); 4324 } 4325 mutex_exit(&rp->r_statelock); 4326 write_again: 4327 mutex_enter(&rp->r_statelock); 4328 count = MIN(bp->b_bcount, rp->r_size - offset); 4329 mutex_exit(&rp->r_statelock); 4330 if (count < 0) 4331 cmn_err(CE_PANIC, "nfs3_bio: write count < 0"); 4332 #ifdef DEBUG 4333 if (count == 0) { 4334 zcmn_err(getzoneid(), CE_WARN, 4335 "nfs3_bio: zero length write at %lld", 4336 offset); 4337 nfs_printfhandle(&rp->r_fh); 4338 if (nfs3_bio_do_stop) 4339 debug_enter("nfs3_bio"); 4340 } 4341 #endif 4342 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset, 4343 count, cred, stab_comm); 4344 if (error == EACCES) { 4345 mutex_enter(&rp->r_statelock); 4346 if (cred != cr) { 4347 if (rp->r_cred != NULL) 4348 crfree(rp->r_cred); 4349 rp->r_cred = cr; 4350 crhold(cr); 4351 crfree(cred); 4352 cred = cr; 4353 crhold(cred); 4354 mutex_exit(&rp->r_statelock); 4355 goto write_again; 4356 } 4357 mutex_exit(&rp->r_statelock); 4358 } 4359 bp->b_error = error; 4360 if (error && error != EINTR) { 4361 /* 4362 * Don't print EDQUOT errors on the console. 4363 * Don't print asynchronous EACCES errors. 4364 * Don't print EFBIG errors. 4365 * Print all other write errors. 4366 */ 4367 if (error != EDQUOT && error != EFBIG && 4368 (error != EACCES || 4369 !(bp->b_flags & B_ASYNC))) 4370 nfs_write_error(bp->b_vp, error, cred); 4371 /* 4372 * Update r_error and r_flags as appropriate. 4373 * If the error was ESTALE, then mark the 4374 * rnode as not being writeable and save 4375 * the error status. Otherwise, save any 4376 * errors which occur from asynchronous 4377 * page invalidations. Any errors occurring 4378 * from other operations should be saved 4379 * by the caller. 4380 */ 4381 mutex_enter(&rp->r_statelock); 4382 if (error == ESTALE) { 4383 rp->r_flags |= RSTALE; 4384 if (!rp->r_error) 4385 rp->r_error = error; 4386 } else if (!rp->r_error && 4387 (bp->b_flags & 4388 (B_INVAL|B_FORCE|B_ASYNC)) == 4389 (B_INVAL|B_FORCE|B_ASYNC)) { 4390 rp->r_error = error; 4391 } 4392 mutex_exit(&rp->r_statelock); 4393 } 4394 crfree(cred); 4395 } else 4396 error = rp->r_error; 4397 } 4398 4399 if (error != 0 && error != NFS_EOF) 4400 bp->b_flags |= B_ERROR; 4401 4402 DTRACE_IO1(done, struct buf *, bp); 4403 4404 return (error); 4405 } 4406 4407 /* ARGSUSED */ 4408 static int 4409 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4410 { 4411 rnode_t *rp; 4412 4413 if (nfs_zone() != VTOMI(vp)->mi_zone) 4414 return (EIO); 4415 rp = VTOR(vp); 4416 4417 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) { 4418 fidp->fid_len = rp->r_fh.fh_len; 4419 return (ENOSPC); 4420 } 4421 fidp->fid_len = rp->r_fh.fh_len; 4422 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len); 4423 return (0); 4424 } 4425 4426 /* ARGSUSED2 */ 4427 static int 4428 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4429 { 4430 rnode_t *rp = VTOR(vp); 4431 4432 if (!write_lock) { 4433 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4434 return (V_WRITELOCK_FALSE); 4435 } 4436 4437 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 4438 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4439 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 4440 return (V_WRITELOCK_FALSE); 4441 nfs_rw_exit(&rp->r_rwlock); 4442 } 4443 4444 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 4445 return (V_WRITELOCK_TRUE); 4446 } 4447 4448 /* ARGSUSED */ 4449 static void 4450 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4451 { 4452 rnode_t *rp = VTOR(vp); 4453 4454 nfs_rw_exit(&rp->r_rwlock); 4455 } 4456 4457 /* ARGSUSED */ 4458 static int 4459 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 4460 { 4461 4462 /* 4463 * Because we stuff the readdir cookie into the offset field 4464 * someone may attempt to do an lseek with the cookie which 4465 * we want to succeed. 4466 */ 4467 if (vp->v_type == VDIR) 4468 return (0); 4469 if (*noffp < 0) 4470 return (EINVAL); 4471 return (0); 4472 } 4473 4474 /* 4475 * number of nfs3_bsize blocks to read ahead. 4476 */ 4477 static int nfs3_nra = 4; 4478 4479 #ifdef DEBUG 4480 static int nfs3_lostpage = 0; /* number of times we lost original page */ 4481 #endif 4482 4483 /* 4484 * Return all the pages from [off..off+len) in file 4485 */ 4486 /* ARGSUSED */ 4487 static int 4488 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4489 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4490 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4491 { 4492 rnode_t *rp; 4493 int error; 4494 mntinfo_t *mi; 4495 4496 if (vp->v_flag & VNOMAP) 4497 return (ENOSYS); 4498 4499 if (nfs_zone() != VTOMI(vp)->mi_zone) 4500 return (EIO); 4501 if (protp != NULL) 4502 *protp = PROT_ALL; 4503 4504 /* 4505 * Now valididate that the caches are up to date. 4506 */ 4507 error = nfs3_validate_caches(vp, cr); 4508 if (error) 4509 return (error); 4510 4511 rp = VTOR(vp); 4512 mi = VTOMI(vp); 4513 retry: 4514 mutex_enter(&rp->r_statelock); 4515 4516 /* 4517 * Don't create dirty pages faster than they 4518 * can be cleaned so that the system doesn't 4519 * get imbalanced. If the async queue is 4520 * maxed out, then wait for it to drain before 4521 * creating more dirty pages. Also, wait for 4522 * any threads doing pagewalks in the vop_getattr 4523 * entry points so that they don't block for 4524 * long periods. 4525 */ 4526 if (rw == S_CREATE) { 4527 while ((mi->mi_max_threads != 0 && 4528 rp->r_awcount > 2 * mi->mi_max_threads) || 4529 rp->r_gcount > 0) 4530 cv_wait(&rp->r_cv, &rp->r_statelock); 4531 } 4532 4533 /* 4534 * If we are getting called as a side effect of an nfs_write() 4535 * operation the local file size might not be extended yet. 4536 * In this case we want to be able to return pages of zeroes. 4537 */ 4538 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 4539 mutex_exit(&rp->r_statelock); 4540 return (EFAULT); /* beyond EOF */ 4541 } 4542 4543 mutex_exit(&rp->r_statelock); 4544 4545 if (len <= PAGESIZE) { 4546 error = nfs3_getapage(vp, off, len, protp, pl, plsz, 4547 seg, addr, rw, cr); 4548 } else { 4549 error = pvn_getpages(nfs3_getapage, vp, off, len, protp, 4550 pl, plsz, seg, addr, rw, cr); 4551 } 4552 4553 switch (error) { 4554 case NFS_EOF: 4555 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 4556 goto retry; 4557 case ESTALE: 4558 PURGE_STALE_FH(error, vp, cr); 4559 } 4560 4561 return (error); 4562 } 4563 4564 /* 4565 * Called from pvn_getpages or nfs3_getpage to get a particular page. 4566 */ 4567 /* ARGSUSED */ 4568 static int 4569 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 4570 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4571 enum seg_rw rw, cred_t *cr) 4572 { 4573 rnode_t *rp; 4574 uint_t bsize; 4575 struct buf *bp; 4576 page_t *pp; 4577 u_offset_t lbn; 4578 u_offset_t io_off; 4579 u_offset_t blkoff; 4580 u_offset_t rablkoff; 4581 size_t io_len; 4582 uint_t blksize; 4583 int error; 4584 int readahead; 4585 int readahead_issued = 0; 4586 int ra_window; /* readahead window */ 4587 page_t *pagefound; 4588 page_t *savepp; 4589 4590 if (nfs_zone() != VTOMI(vp)->mi_zone) 4591 return (EIO); 4592 rp = VTOR(vp); 4593 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4594 4595 reread: 4596 bp = NULL; 4597 pp = NULL; 4598 pagefound = NULL; 4599 4600 if (pl != NULL) 4601 pl[0] = NULL; 4602 4603 error = 0; 4604 lbn = off / bsize; 4605 blkoff = lbn * bsize; 4606 4607 /* 4608 * Queueing up the readahead before doing the synchronous read 4609 * results in a significant increase in read throughput because 4610 * of the increased parallelism between the async threads and 4611 * the process context. 4612 */ 4613 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 4614 rw != S_CREATE && 4615 !(vp->v_flag & VNOCACHE)) { 4616 mutex_enter(&rp->r_statelock); 4617 4618 /* 4619 * Calculate the number of readaheads to do. 4620 * a) No readaheads at offset = 0. 4621 * b) Do maximum(nfs3_nra) readaheads when the readahead 4622 * window is closed. 4623 * c) Do readaheads between 1 to (nfs3_nra - 1) depending 4624 * upon how far the readahead window is open or close. 4625 * d) No readaheads if rp->r_nextr is not within the scope 4626 * of the readahead window (random i/o). 4627 */ 4628 4629 if (off == 0) 4630 readahead = 0; 4631 else if (blkoff == rp->r_nextr) 4632 readahead = nfs3_nra; 4633 else if (rp->r_nextr > blkoff && 4634 ((ra_window = (rp->r_nextr - blkoff) / bsize) 4635 <= (nfs3_nra - 1))) 4636 readahead = nfs3_nra - ra_window; 4637 else 4638 readahead = 0; 4639 4640 rablkoff = rp->r_nextr; 4641 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 4642 mutex_exit(&rp->r_statelock); 4643 if (nfs_async_readahead(vp, rablkoff + bsize, 4644 addr + (rablkoff + bsize - off), seg, cr, 4645 nfs3_readahead) < 0) { 4646 mutex_enter(&rp->r_statelock); 4647 break; 4648 } 4649 readahead--; 4650 rablkoff += bsize; 4651 /* 4652 * Indicate that we did a readahead so 4653 * readahead offset is not updated 4654 * by the synchronous read below. 4655 */ 4656 readahead_issued = 1; 4657 mutex_enter(&rp->r_statelock); 4658 /* 4659 * set readahead offset to 4660 * offset of last async readahead 4661 * request. 4662 */ 4663 rp->r_nextr = rablkoff; 4664 } 4665 mutex_exit(&rp->r_statelock); 4666 } 4667 4668 again: 4669 if ((pagefound = page_exists(vp, off)) == NULL) { 4670 if (pl == NULL) { 4671 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 4672 nfs3_readahead); 4673 } else if (rw == S_CREATE) { 4674 /* 4675 * Block for this page is not allocated, or the offset 4676 * is beyond the current allocation size, or we're 4677 * allocating a swap slot and the page was not found, 4678 * so allocate it and return a zero page. 4679 */ 4680 if ((pp = page_create_va(vp, off, 4681 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 4682 cmn_err(CE_PANIC, "nfs3_getapage: page_create"); 4683 io_len = PAGESIZE; 4684 mutex_enter(&rp->r_statelock); 4685 rp->r_nextr = off + PAGESIZE; 4686 mutex_exit(&rp->r_statelock); 4687 } else { 4688 /* 4689 * Need to go to server to get a BLOCK, exception to 4690 * that being while reading at offset = 0 or doing 4691 * random i/o, in that case read only a PAGE. 4692 */ 4693 mutex_enter(&rp->r_statelock); 4694 if (blkoff < rp->r_size && 4695 blkoff + bsize >= rp->r_size) { 4696 /* 4697 * If only a block or less is left in 4698 * the file, read all that is remaining. 4699 */ 4700 if (rp->r_size <= off) { 4701 /* 4702 * Trying to access beyond EOF, 4703 * set up to get at least one page. 4704 */ 4705 blksize = off + PAGESIZE - blkoff; 4706 } else 4707 blksize = rp->r_size - blkoff; 4708 } else if ((off == 0) || 4709 (off != rp->r_nextr && !readahead_issued)) { 4710 blksize = PAGESIZE; 4711 blkoff = off; /* block = page here */ 4712 } else 4713 blksize = bsize; 4714 mutex_exit(&rp->r_statelock); 4715 4716 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4717 &io_len, blkoff, blksize, 0); 4718 4719 /* 4720 * Some other thread has entered the page, 4721 * so just use it. 4722 */ 4723 if (pp == NULL) 4724 goto again; 4725 4726 /* 4727 * Now round the request size up to page boundaries. 4728 * This ensures that the entire page will be 4729 * initialized to zeroes if EOF is encountered. 4730 */ 4731 io_len = ptob(btopr(io_len)); 4732 4733 bp = pageio_setup(pp, io_len, vp, B_READ); 4734 ASSERT(bp != NULL); 4735 4736 /* 4737 * pageio_setup should have set b_addr to 0. This 4738 * is correct since we want to do I/O on a page 4739 * boundary. bp_mapin will use this addr to calculate 4740 * an offset, and then set b_addr to the kernel virtual 4741 * address it allocated for us. 4742 */ 4743 ASSERT(bp->b_un.b_addr == 0); 4744 4745 bp->b_edev = 0; 4746 bp->b_dev = 0; 4747 bp->b_lblkno = lbtodb(io_off); 4748 bp->b_file = vp; 4749 bp->b_offset = (offset_t)off; 4750 bp_mapin(bp); 4751 4752 /* 4753 * If doing a write beyond what we believe is EOF, 4754 * don't bother trying to read the pages from the 4755 * server, we'll just zero the pages here. We 4756 * don't check that the rw flag is S_WRITE here 4757 * because some implementations may attempt a 4758 * read access to the buffer before copying data. 4759 */ 4760 mutex_enter(&rp->r_statelock); 4761 if (io_off >= rp->r_size && seg == segkmap) { 4762 mutex_exit(&rp->r_statelock); 4763 bzero(bp->b_un.b_addr, io_len); 4764 } else { 4765 mutex_exit(&rp->r_statelock); 4766 error = nfs3_bio(bp, NULL, cr); 4767 } 4768 4769 /* 4770 * Unmap the buffer before freeing it. 4771 */ 4772 bp_mapout(bp); 4773 pageio_done(bp); 4774 4775 savepp = pp; 4776 do { 4777 pp->p_fsdata = C_NOCOMMIT; 4778 } while ((pp = pp->p_next) != savepp); 4779 4780 if (error == NFS_EOF) { 4781 /* 4782 * If doing a write system call just return 4783 * zeroed pages, else user tried to get pages 4784 * beyond EOF, return error. We don't check 4785 * that the rw flag is S_WRITE here because 4786 * some implementations may attempt a read 4787 * access to the buffer before copying data. 4788 */ 4789 if (seg == segkmap) 4790 error = 0; 4791 else 4792 error = EFAULT; 4793 } 4794 4795 if (!readahead_issued && !error) { 4796 mutex_enter(&rp->r_statelock); 4797 rp->r_nextr = io_off + io_len; 4798 mutex_exit(&rp->r_statelock); 4799 } 4800 } 4801 } 4802 4803 out: 4804 if (pl == NULL) 4805 return (error); 4806 4807 if (error) { 4808 if (pp != NULL) 4809 pvn_read_done(pp, B_ERROR); 4810 return (error); 4811 } 4812 4813 if (pagefound) { 4814 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 4815 4816 /* 4817 * Page exists in the cache, acquire the appropriate lock. 4818 * If this fails, start all over again. 4819 */ 4820 if ((pp = page_lookup(vp, off, se)) == NULL) { 4821 #ifdef DEBUG 4822 nfs3_lostpage++; 4823 #endif 4824 goto reread; 4825 } 4826 pl[0] = pp; 4827 pl[1] = NULL; 4828 return (0); 4829 } 4830 4831 if (pp != NULL) 4832 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4833 4834 return (error); 4835 } 4836 4837 static void 4838 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 4839 cred_t *cr) 4840 { 4841 int error; 4842 page_t *pp; 4843 u_offset_t io_off; 4844 size_t io_len; 4845 struct buf *bp; 4846 uint_t bsize, blksize; 4847 rnode_t *rp = VTOR(vp); 4848 page_t *savepp; 4849 4850 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4851 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4852 4853 mutex_enter(&rp->r_statelock); 4854 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 4855 /* 4856 * If less than a block left in file read less 4857 * than a block. 4858 */ 4859 blksize = rp->r_size - blkoff; 4860 } else 4861 blksize = bsize; 4862 mutex_exit(&rp->r_statelock); 4863 4864 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 4865 &io_off, &io_len, blkoff, blksize, 1); 4866 /* 4867 * The isra flag passed to the kluster function is 1, we may have 4868 * gotten a return value of NULL for a variety of reasons (# of free 4869 * pages < minfree, someone entered the page on the vnode etc). In all 4870 * cases, we want to punt on the readahead. 4871 */ 4872 if (pp == NULL) 4873 return; 4874 4875 /* 4876 * Now round the request size up to page boundaries. 4877 * This ensures that the entire page will be 4878 * initialized to zeroes if EOF is encountered. 4879 */ 4880 io_len = ptob(btopr(io_len)); 4881 4882 bp = pageio_setup(pp, io_len, vp, B_READ); 4883 ASSERT(bp != NULL); 4884 4885 /* 4886 * pageio_setup should have set b_addr to 0. This is correct since 4887 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4888 * to calculate an offset, and then set b_addr to the kernel virtual 4889 * address it allocated for us. 4890 */ 4891 ASSERT(bp->b_un.b_addr == 0); 4892 4893 bp->b_edev = 0; 4894 bp->b_dev = 0; 4895 bp->b_lblkno = lbtodb(io_off); 4896 bp->b_file = vp; 4897 bp->b_offset = (offset_t)blkoff; 4898 bp_mapin(bp); 4899 4900 /* 4901 * If doing a write beyond what we believe is EOF, don't bother trying 4902 * to read the pages from the server, we'll just zero the pages here. 4903 * We don't check that the rw flag is S_WRITE here because some 4904 * implementations may attempt a read access to the buffer before 4905 * copying data. 4906 */ 4907 mutex_enter(&rp->r_statelock); 4908 if (io_off >= rp->r_size && seg == segkmap) { 4909 mutex_exit(&rp->r_statelock); 4910 bzero(bp->b_un.b_addr, io_len); 4911 error = 0; 4912 } else { 4913 mutex_exit(&rp->r_statelock); 4914 error = nfs3_bio(bp, NULL, cr); 4915 if (error == NFS_EOF) 4916 error = 0; 4917 } 4918 4919 /* 4920 * Unmap the buffer before freeing it. 4921 */ 4922 bp_mapout(bp); 4923 pageio_done(bp); 4924 4925 savepp = pp; 4926 do { 4927 pp->p_fsdata = C_NOCOMMIT; 4928 } while ((pp = pp->p_next) != savepp); 4929 4930 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4931 4932 /* 4933 * In case of error set readahead offset 4934 * to the lowest offset. 4935 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4936 */ 4937 if (error && rp->r_nextr > io_off) { 4938 mutex_enter(&rp->r_statelock); 4939 if (rp->r_nextr > io_off) 4940 rp->r_nextr = io_off; 4941 mutex_exit(&rp->r_statelock); 4942 } 4943 } 4944 4945 /* 4946 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4947 * If len == 0, do from off to EOF. 4948 * 4949 * The normal cases should be len == 0 && off == 0 (entire vp list), 4950 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4951 * (from pageout). 4952 */ 4953 /* ARGSUSED */ 4954 static int 4955 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4956 caller_context_t *ct) 4957 { 4958 int error; 4959 rnode_t *rp; 4960 4961 ASSERT(cr != NULL); 4962 4963 /* 4964 * XXX - Why should this check be made here? 4965 */ 4966 if (vp->v_flag & VNOMAP) 4967 return (ENOSYS); 4968 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4969 return (0); 4970 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4971 return (EIO); 4972 4973 rp = VTOR(vp); 4974 mutex_enter(&rp->r_statelock); 4975 rp->r_count++; 4976 mutex_exit(&rp->r_statelock); 4977 error = nfs_putpages(vp, off, len, flags, cr); 4978 mutex_enter(&rp->r_statelock); 4979 rp->r_count--; 4980 cv_broadcast(&rp->r_cv); 4981 mutex_exit(&rp->r_statelock); 4982 4983 return (error); 4984 } 4985 4986 /* 4987 * Write out a single page, possibly klustering adjacent dirty pages. 4988 */ 4989 int 4990 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4991 int flags, cred_t *cr) 4992 { 4993 u_offset_t io_off; 4994 u_offset_t lbn_off; 4995 u_offset_t lbn; 4996 size_t io_len; 4997 uint_t bsize; 4998 int error; 4999 rnode_t *rp; 5000 5001 ASSERT(!vn_is_readonly(vp)); 5002 ASSERT(pp != NULL); 5003 ASSERT(cr != NULL); 5004 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 5005 5006 rp = VTOR(vp); 5007 ASSERT(rp->r_count > 0); 5008 5009 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 5010 lbn = pp->p_offset / bsize; 5011 lbn_off = lbn * bsize; 5012 5013 /* 5014 * Find a kluster that fits in one block, or in 5015 * one page if pages are bigger than blocks. If 5016 * there is less file space allocated than a whole 5017 * page, we'll shorten the i/o request below. 5018 */ 5019 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 5020 roundup(bsize, PAGESIZE), flags); 5021 5022 /* 5023 * pvn_write_kluster shouldn't have returned a page with offset 5024 * behind the original page we were given. Verify that. 5025 */ 5026 ASSERT((pp->p_offset / bsize) >= lbn); 5027 5028 /* 5029 * Now pp will have the list of kept dirty pages marked for 5030 * write back. It will also handle invalidation and freeing 5031 * of pages that are not dirty. Check for page length rounding 5032 * problems. 5033 */ 5034 if (io_off + io_len > lbn_off + bsize) { 5035 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 5036 io_len = lbn_off + bsize - io_off; 5037 } 5038 /* 5039 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5040 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 5041 * When RMODINPROGRESS is set it indicates that a uiomove() is in 5042 * progress and the r_size has not been made consistent with the 5043 * new size of the file. When the uiomove() completes the r_size is 5044 * updated and the RMODINPROGRESS flag is cleared. 5045 * 5046 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5047 * consistent value of r_size. Without this handshaking, it is 5048 * possible that nfs(3)_bio() picks up the old value of r_size 5049 * before the uiomove() in writerp() completes. This will result 5050 * in the write through nfs(3)_bio() being dropped. 5051 * 5052 * More precisely, there is a window between the time the uiomove() 5053 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 5054 * operation intervenes in this window, the page will be picked up, 5055 * because it is dirty (it will be unlocked, unless it was 5056 * pagecreate'd). When the page is picked up as dirty, the dirty 5057 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 5058 * checked. This will still be the old size. Therefore the page will 5059 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 5060 * the page will be found to be clean and the write will be dropped. 5061 */ 5062 if (rp->r_flags & RMODINPROGRESS) { 5063 mutex_enter(&rp->r_statelock); 5064 if ((rp->r_flags & RMODINPROGRESS) && 5065 rp->r_modaddr + MAXBSIZE > io_off && 5066 rp->r_modaddr < io_off + io_len) { 5067 page_t *plist; 5068 /* 5069 * A write is in progress for this region of the file. 5070 * If we did not detect RMODINPROGRESS here then this 5071 * path through nfs_putapage() would eventually go to 5072 * nfs(3)_bio() and may not write out all of the data 5073 * in the pages. We end up losing data. So we decide 5074 * to set the modified bit on each page in the page 5075 * list and mark the rnode with RDIRTY. This write 5076 * will be restarted at some later time. 5077 */ 5078 plist = pp; 5079 while (plist != NULL) { 5080 pp = plist; 5081 page_sub(&plist, pp); 5082 hat_setmod(pp); 5083 page_io_unlock(pp); 5084 page_unlock(pp); 5085 } 5086 rp->r_flags |= RDIRTY; 5087 mutex_exit(&rp->r_statelock); 5088 if (offp) 5089 *offp = io_off; 5090 if (lenp) 5091 *lenp = io_len; 5092 return (0); 5093 } 5094 mutex_exit(&rp->r_statelock); 5095 } 5096 5097 if (flags & B_ASYNC) { 5098 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 5099 nfs3_sync_putapage); 5100 } else 5101 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr); 5102 5103 if (offp) 5104 *offp = io_off; 5105 if (lenp) 5106 *lenp = io_len; 5107 return (error); 5108 } 5109 5110 static int 5111 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5112 int flags, cred_t *cr) 5113 { 5114 int error; 5115 rnode_t *rp; 5116 5117 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5118 5119 flags |= B_WRITE; 5120 5121 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5122 5123 rp = VTOR(vp); 5124 5125 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 5126 error == EACCES) && 5127 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 5128 if (!(rp->r_flags & ROUTOFSPACE)) { 5129 mutex_enter(&rp->r_statelock); 5130 rp->r_flags |= ROUTOFSPACE; 5131 mutex_exit(&rp->r_statelock); 5132 } 5133 flags |= B_ERROR; 5134 pvn_write_done(pp, flags); 5135 /* 5136 * If this was not an async thread, then try again to 5137 * write out the pages, but this time, also destroy 5138 * them whether or not the write is successful. This 5139 * will prevent memory from filling up with these 5140 * pages and destroying them is the only alternative 5141 * if they can't be written out. 5142 * 5143 * Don't do this if this is an async thread because 5144 * when the pages are unlocked in pvn_write_done, 5145 * some other thread could have come along, locked 5146 * them, and queued for an async thread. It would be 5147 * possible for all of the async threads to be tied 5148 * up waiting to lock the pages again and they would 5149 * all already be locked and waiting for an async 5150 * thread to handle them. Deadlock. 5151 */ 5152 if (!(flags & B_ASYNC)) { 5153 error = nfs3_putpage(vp, io_off, io_len, 5154 B_INVAL | B_FORCE, cr, NULL); 5155 } 5156 } else { 5157 if (error) 5158 flags |= B_ERROR; 5159 else if (rp->r_flags & ROUTOFSPACE) { 5160 mutex_enter(&rp->r_statelock); 5161 rp->r_flags &= ~ROUTOFSPACE; 5162 mutex_exit(&rp->r_statelock); 5163 } 5164 pvn_write_done(pp, flags); 5165 if (freemem < desfree) 5166 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr); 5167 } 5168 5169 return (error); 5170 } 5171 5172 /* ARGSUSED */ 5173 static int 5174 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5175 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5176 cred_t *cr, caller_context_t *ct) 5177 { 5178 struct segvn_crargs vn_a; 5179 int error; 5180 rnode_t *rp; 5181 struct vattr va; 5182 5183 if (nfs_zone() != VTOMI(vp)->mi_zone) 5184 return (EIO); 5185 5186 if (vp->v_flag & VNOMAP) 5187 return (ENOSYS); 5188 5189 if (off < 0 || off + len < 0) 5190 return (ENXIO); 5191 5192 if (vp->v_type != VREG) 5193 return (ENODEV); 5194 5195 /* 5196 * If there is cached data and if close-to-open consistency 5197 * checking is not turned off and if the file system is not 5198 * mounted readonly, then force an over the wire getattr. 5199 * Otherwise, just invoke nfs3getattr to get a copy of the 5200 * attributes. The attribute cache will be used unless it 5201 * is timed out and if it is, then an over the wire getattr 5202 * will be issued. 5203 */ 5204 va.va_mask = AT_ALL; 5205 if (vn_has_cached_data(vp) && 5206 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 5207 error = nfs3_getattr_otw(vp, &va, cr); 5208 else 5209 error = nfs3getattr(vp, &va, cr); 5210 if (error) 5211 return (error); 5212 5213 /* 5214 * Check to see if the vnode is currently marked as not cachable. 5215 * This means portions of the file are locked (through VOP_FRLOCK). 5216 * In this case the map request must be refused. We use 5217 * rp->r_lkserlock to avoid a race with concurrent lock requests. 5218 */ 5219 rp = VTOR(vp); 5220 5221 /* 5222 * Atomically increment r_inmap after acquiring r_rwlock. The 5223 * idea here is to acquire r_rwlock to block read/write and 5224 * not to protect r_inmap. r_inmap will inform nfs3_read/write() 5225 * that we are in nfs3_map(). Now, r_rwlock is acquired in order 5226 * and we can prevent the deadlock that would have occurred 5227 * when nfs3_addmap() would have acquired it out of order. 5228 * 5229 * Since we are not protecting r_inmap by any lock, we do not 5230 * hold any lock when we decrement it. We atomically decrement 5231 * r_inmap after we release r_lkserlock. 5232 */ 5233 5234 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 5235 return (EINTR); 5236 atomic_add_int(&rp->r_inmap, 1); 5237 nfs_rw_exit(&rp->r_rwlock); 5238 5239 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) { 5240 atomic_add_int(&rp->r_inmap, -1); 5241 return (EINTR); 5242 } 5243 5244 if (vp->v_flag & VNOCACHE) { 5245 error = EAGAIN; 5246 goto done; 5247 } 5248 5249 /* 5250 * Don't allow concurrent locks and mapping if mandatory locking is 5251 * enabled. 5252 */ 5253 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 5254 MANDLOCK(vp, va.va_mode)) { 5255 error = EAGAIN; 5256 goto done; 5257 } 5258 5259 as_rangelock(as); 5260 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5261 if (error != 0) { 5262 as_rangeunlock(as); 5263 goto done; 5264 } 5265 5266 vn_a.vp = vp; 5267 vn_a.offset = off; 5268 vn_a.type = (flags & MAP_TYPE); 5269 vn_a.prot = (uchar_t)prot; 5270 vn_a.maxprot = (uchar_t)maxprot; 5271 vn_a.flags = (flags & ~MAP_TYPE); 5272 vn_a.cred = cr; 5273 vn_a.amp = NULL; 5274 vn_a.szc = 0; 5275 vn_a.lgrp_mem_policy_flags = 0; 5276 5277 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5278 as_rangeunlock(as); 5279 5280 done: 5281 nfs_rw_exit(&rp->r_lkserlock); 5282 atomic_add_int(&rp->r_inmap, -1); 5283 return (error); 5284 } 5285 5286 /* ARGSUSED */ 5287 static int 5288 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5289 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5290 cred_t *cr, caller_context_t *ct) 5291 { 5292 rnode_t *rp; 5293 5294 if (vp->v_flag & VNOMAP) 5295 return (ENOSYS); 5296 if (nfs_zone() != VTOMI(vp)->mi_zone) 5297 return (EIO); 5298 5299 rp = VTOR(vp); 5300 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 5301 5302 return (0); 5303 } 5304 5305 /* ARGSUSED */ 5306 static int 5307 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5308 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 5309 caller_context_t *ct) 5310 { 5311 netobj lm_fh3; 5312 int rc; 5313 u_offset_t start, end; 5314 rnode_t *rp; 5315 int error = 0, intr = INTR(vp); 5316 5317 if (nfs_zone() != VTOMI(vp)->mi_zone) 5318 return (EIO); 5319 /* check for valid cmd parameter */ 5320 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 5321 return (EINVAL); 5322 5323 /* Verify l_type. */ 5324 switch (bfp->l_type) { 5325 case F_RDLCK: 5326 if (cmd != F_GETLK && !(flag & FREAD)) 5327 return (EBADF); 5328 break; 5329 case F_WRLCK: 5330 if (cmd != F_GETLK && !(flag & FWRITE)) 5331 return (EBADF); 5332 break; 5333 case F_UNLCK: 5334 intr = 0; 5335 break; 5336 5337 default: 5338 return (EINVAL); 5339 } 5340 5341 /* check the validity of the lock range */ 5342 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 5343 return (rc); 5344 if (rc = flk_check_lock_data(start, end, MAXEND)) 5345 return (rc); 5346 5347 /* 5348 * If the filesystem is mounted using local locking, pass the 5349 * request off to the local locking code. 5350 */ 5351 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 5352 if (cmd == F_SETLK || cmd == F_SETLKW) { 5353 /* 5354 * For complete safety, we should be holding 5355 * r_lkserlock. However, we can't call 5356 * lm_safelock and then fs_frlock while 5357 * holding r_lkserlock, so just invoke 5358 * lm_safelock and expect that this will 5359 * catch enough of the cases. 5360 */ 5361 if (!lm_safelock(vp, bfp, cr)) 5362 return (EAGAIN); 5363 } 5364 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 5365 } 5366 5367 rp = VTOR(vp); 5368 5369 /* 5370 * Check whether the given lock request can proceed, given the 5371 * current file mappings. 5372 */ 5373 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 5374 return (EINTR); 5375 if (cmd == F_SETLK || cmd == F_SETLKW) { 5376 if (!lm_safelock(vp, bfp, cr)) { 5377 rc = EAGAIN; 5378 goto done; 5379 } 5380 } 5381 5382 /* 5383 * Flush the cache after waiting for async I/O to finish. For new 5384 * locks, this is so that the process gets the latest bits from the 5385 * server. For unlocks, this is so that other clients see the 5386 * latest bits once the file has been unlocked. If currently dirty 5387 * pages can't be flushed, then don't allow a lock to be set. But 5388 * allow unlocks to succeed, to avoid having orphan locks on the 5389 * server. 5390 */ 5391 if (cmd != F_GETLK) { 5392 mutex_enter(&rp->r_statelock); 5393 while (rp->r_count > 0) { 5394 if (intr) { 5395 klwp_t *lwp = ttolwp(curthread); 5396 5397 if (lwp != NULL) 5398 lwp->lwp_nostop++; 5399 if (cv_wait_sig(&rp->r_cv, 5400 &rp->r_statelock) == 0) { 5401 if (lwp != NULL) 5402 lwp->lwp_nostop--; 5403 rc = EINTR; 5404 break; 5405 } 5406 if (lwp != NULL) 5407 lwp->lwp_nostop--; 5408 } else 5409 cv_wait(&rp->r_cv, &rp->r_statelock); 5410 } 5411 mutex_exit(&rp->r_statelock); 5412 if (rc != 0) 5413 goto done; 5414 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 5415 if (error) { 5416 if (error == ENOSPC || error == EDQUOT) { 5417 mutex_enter(&rp->r_statelock); 5418 if (!rp->r_error) 5419 rp->r_error = error; 5420 mutex_exit(&rp->r_statelock); 5421 } 5422 if (bfp->l_type != F_UNLCK) { 5423 rc = ENOLCK; 5424 goto done; 5425 } 5426 } 5427 } 5428 5429 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 5430 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 5431 5432 /* 5433 * Call the lock manager to do the real work of contacting 5434 * the server and obtaining the lock. 5435 */ 5436 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp); 5437 5438 if (rc == 0) 5439 nfs_lockcompletion(vp, cmd); 5440 5441 done: 5442 nfs_rw_exit(&rp->r_lkserlock); 5443 return (rc); 5444 } 5445 5446 /* 5447 * Free storage space associated with the specified vnode. The portion 5448 * to be freed is specified by bfp->l_start and bfp->l_len (already 5449 * normalized to a "whence" of 0). 5450 * 5451 * This is an experimental facility whose continued existence is not 5452 * guaranteed. Currently, we only support the special case 5453 * of l_len == 0, meaning free to end of file. 5454 */ 5455 /* ARGSUSED */ 5456 static int 5457 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5458 offset_t offset, cred_t *cr, caller_context_t *ct) 5459 { 5460 int error; 5461 5462 ASSERT(vp->v_type == VREG); 5463 if (cmd != F_FREESP) 5464 return (EINVAL); 5465 if (nfs_zone() != VTOMI(vp)->mi_zone) 5466 return (EIO); 5467 5468 error = convoff(vp, bfp, 0, offset); 5469 if (!error) { 5470 ASSERT(bfp->l_start >= 0); 5471 if (bfp->l_len == 0) { 5472 struct vattr va; 5473 5474 /* 5475 * ftruncate should not change the ctime and 5476 * mtime if we truncate the file to its 5477 * previous size. 5478 */ 5479 va.va_mask = AT_SIZE; 5480 error = nfs3getattr(vp, &va, cr); 5481 if (error || va.va_size == bfp->l_start) 5482 return (error); 5483 va.va_mask = AT_SIZE; 5484 va.va_size = bfp->l_start; 5485 error = nfs3setattr(vp, &va, 0, cr); 5486 } else 5487 error = EINVAL; 5488 } 5489 5490 return (error); 5491 } 5492 5493 /* ARGSUSED */ 5494 static int 5495 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 5496 { 5497 5498 return (EINVAL); 5499 } 5500 5501 /* 5502 * Setup and add an address space callback to do the work of the delmap call. 5503 * The callback will (and must be) deleted in the actual callback function. 5504 * 5505 * This is done in order to take care of the problem that we have with holding 5506 * the address space's a_lock for a long period of time (e.g. if the NFS server 5507 * is down). Callbacks will be executed in the address space code while the 5508 * a_lock is not held. Holding the address space's a_lock causes things such 5509 * as ps and fork to hang because they are trying to acquire this lock as well. 5510 */ 5511 /* ARGSUSED */ 5512 static int 5513 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5514 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5515 cred_t *cr, caller_context_t *ct) 5516 { 5517 int caller_found; 5518 int error; 5519 rnode_t *rp; 5520 nfs_delmap_args_t *dmapp; 5521 nfs_delmapcall_t *delmap_call; 5522 5523 if (vp->v_flag & VNOMAP) 5524 return (ENOSYS); 5525 /* 5526 * A process may not change zones if it has NFS pages mmap'ed 5527 * in, so we can't legitimately get here from the wrong zone. 5528 */ 5529 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5530 5531 rp = VTOR(vp); 5532 5533 /* 5534 * The way that the address space of this process deletes its mapping 5535 * of this file is via the following call chains: 5536 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5537 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5538 * 5539 * With the use of address space callbacks we are allowed to drop the 5540 * address space lock, a_lock, while executing the NFS operations that 5541 * need to go over the wire. Returning EAGAIN to the caller of this 5542 * function is what drives the execution of the callback that we add 5543 * below. The callback will be executed by the address space code 5544 * after dropping the a_lock. When the callback is finished, since 5545 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 5546 * is called again on the same segment to finish the rest of the work 5547 * that needs to happen during unmapping. 5548 * 5549 * This action of calling back into the segment driver causes 5550 * nfs3_delmap() to get called again, but since the callback was 5551 * already executed at this point, it already did the work and there 5552 * is nothing left for us to do. 5553 * 5554 * To Summarize: 5555 * - The first time nfs3_delmap is called by the current thread is when 5556 * we add the caller associated with this delmap to the delmap caller 5557 * list, add the callback, and return EAGAIN. 5558 * - The second time in this call chain when nfs3_delmap is called we 5559 * will find this caller in the delmap caller list and realize there 5560 * is no more work to do thus removing this caller from the list and 5561 * returning the error that was set in the callback execution. 5562 */ 5563 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 5564 if (caller_found) { 5565 /* 5566 * 'error' is from the actual delmap operations. To avoid 5567 * hangs, we need to handle the return of EAGAIN differently 5568 * since this is what drives the callback execution. 5569 * In this case, we don't want to return EAGAIN and do the 5570 * callback execution because there are none to execute. 5571 */ 5572 if (error == EAGAIN) 5573 return (0); 5574 else 5575 return (error); 5576 } 5577 5578 /* current caller was not in the list */ 5579 delmap_call = nfs_init_delmapcall(); 5580 5581 mutex_enter(&rp->r_statelock); 5582 list_insert_tail(&rp->r_indelmap, delmap_call); 5583 mutex_exit(&rp->r_statelock); 5584 5585 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 5586 5587 dmapp->vp = vp; 5588 dmapp->off = off; 5589 dmapp->addr = addr; 5590 dmapp->len = len; 5591 dmapp->prot = prot; 5592 dmapp->maxprot = maxprot; 5593 dmapp->flags = flags; 5594 dmapp->cr = cr; 5595 dmapp->caller = delmap_call; 5596 5597 error = as_add_callback(as, nfs3_delmap_callback, dmapp, 5598 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 5599 5600 return (error ? error : EAGAIN); 5601 } 5602 5603 /* 5604 * Remove some pages from an mmap'd vnode. Just update the 5605 * count of pages. If doing close-to-open, then flush and 5606 * commit all of the pages associated with this file. 5607 * Otherwise, start an asynchronous page flush to write out 5608 * any dirty pages. This will also associate a credential 5609 * with the rnode which can be used to write the pages. 5610 */ 5611 /* ARGSUSED */ 5612 static void 5613 nfs3_delmap_callback(struct as *as, void *arg, uint_t event) 5614 { 5615 int error; 5616 rnode_t *rp; 5617 mntinfo_t *mi; 5618 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 5619 5620 rp = VTOR(dmapp->vp); 5621 mi = VTOMI(dmapp->vp); 5622 5623 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 5624 ASSERT(rp->r_mapcnt >= 0); 5625 5626 /* 5627 * Initiate a page flush and potential commit if there are 5628 * pages, the file system was not mounted readonly, the segment 5629 * was mapped shared, and the pages themselves were writeable. 5630 */ 5631 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 5632 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 5633 mutex_enter(&rp->r_statelock); 5634 rp->r_flags |= RDIRTY; 5635 mutex_exit(&rp->r_statelock); 5636 /* 5637 * If this is a cross-zone access a sync putpage won't work, so 5638 * the best we can do is try an async putpage. That seems 5639 * better than something more draconian such as discarding the 5640 * dirty pages. 5641 */ 5642 if ((mi->mi_flags & MI_NOCTO) || 5643 nfs_zone() != mi->mi_zone) 5644 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5645 B_ASYNC, dmapp->cr, NULL); 5646 else 5647 error = nfs3_putpage_commit(dmapp->vp, dmapp->off, 5648 dmapp->len, dmapp->cr); 5649 if (!error) { 5650 mutex_enter(&rp->r_statelock); 5651 error = rp->r_error; 5652 rp->r_error = 0; 5653 mutex_exit(&rp->r_statelock); 5654 } 5655 } else 5656 error = 0; 5657 5658 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 5659 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5660 B_INVAL, dmapp->cr, NULL); 5661 5662 dmapp->caller->error = error; 5663 (void) as_delete_callback(as, arg); 5664 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 5665 } 5666 5667 static int nfs3_pathconf_disable_cache = 0; 5668 5669 #ifdef DEBUG 5670 static int nfs3_pathconf_cache_hits = 0; 5671 static int nfs3_pathconf_cache_misses = 0; 5672 #endif 5673 5674 /* ARGSUSED */ 5675 static int 5676 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 5677 caller_context_t *ct) 5678 { 5679 int error; 5680 PATHCONF3args args; 5681 PATHCONF3res res; 5682 int douprintf; 5683 failinfo_t fi; 5684 rnode_t *rp; 5685 hrtime_t t; 5686 5687 if (nfs_zone() != VTOMI(vp)->mi_zone) 5688 return (EIO); 5689 /* 5690 * Large file spec - need to base answer on info stored 5691 * on original FSINFO response. 5692 */ 5693 if (cmd == _PC_FILESIZEBITS) { 5694 unsigned long long ll; 5695 long l = 1; 5696 5697 ll = VTOMI(vp)->mi_maxfilesize; 5698 5699 if (ll == 0) { 5700 *valp = 0; 5701 return (0); 5702 } 5703 5704 if (ll & 0xffffffff00000000) { 5705 l += 32; ll >>= 32; 5706 } 5707 if (ll & 0xffff0000) { 5708 l += 16; ll >>= 16; 5709 } 5710 if (ll & 0xff00) { 5711 l += 8; ll >>= 8; 5712 } 5713 if (ll & 0xf0) { 5714 l += 4; ll >>= 4; 5715 } 5716 if (ll & 0xc) { 5717 l += 2; ll >>= 2; 5718 } 5719 if (ll & 0x2) 5720 l += 2; 5721 else if (ll & 0x1) 5722 l += 1; 5723 *valp = l; 5724 return (0); 5725 } 5726 5727 if (cmd == _PC_ACL_ENABLED) { 5728 *valp = _ACL_ACLENT_ENABLED; 5729 return (0); 5730 } 5731 5732 if (cmd == _PC_XATTR_EXISTS) { 5733 error = 0; 5734 *valp = 0; 5735 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5736 vnode_t *avp; 5737 rnode_t *rp; 5738 int error = 0; 5739 mntinfo_t *mi = VTOMI(vp); 5740 5741 if (!(mi->mi_flags & MI_EXTATTR)) 5742 return (0); 5743 5744 rp = VTOR(vp); 5745 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 5746 INTR(vp))) 5747 return (EINTR); 5748 5749 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 5750 if (error || avp == NULL) 5751 error = acl_getxattrdir3(vp, &avp, 0, cr, 0); 5752 5753 nfs_rw_exit(&rp->r_rwlock); 5754 5755 if (error == 0 && avp != NULL) { 5756 error = do_xattr_exists_check(avp, valp, cr); 5757 VN_RELE(avp); 5758 } else if (error == ENOENT) { 5759 error = 0; 5760 *valp = 0; 5761 } 5762 } 5763 return (error); 5764 } 5765 5766 rp = VTOR(vp); 5767 if (rp->r_pathconf != NULL) { 5768 mutex_enter(&rp->r_statelock); 5769 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) { 5770 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf)); 5771 rp->r_pathconf = NULL; 5772 } 5773 if (rp->r_pathconf != NULL) { 5774 error = 0; 5775 switch (cmd) { 5776 case _PC_LINK_MAX: 5777 *valp = rp->r_pathconf->link_max; 5778 break; 5779 case _PC_NAME_MAX: 5780 *valp = rp->r_pathconf->name_max; 5781 break; 5782 case _PC_PATH_MAX: 5783 case _PC_SYMLINK_MAX: 5784 *valp = MAXPATHLEN; 5785 break; 5786 case _PC_CHOWN_RESTRICTED: 5787 *valp = rp->r_pathconf->chown_restricted; 5788 break; 5789 case _PC_NO_TRUNC: 5790 *valp = rp->r_pathconf->no_trunc; 5791 break; 5792 default: 5793 error = EINVAL; 5794 break; 5795 } 5796 mutex_exit(&rp->r_statelock); 5797 #ifdef DEBUG 5798 nfs3_pathconf_cache_hits++; 5799 #endif 5800 return (error); 5801 } 5802 mutex_exit(&rp->r_statelock); 5803 } 5804 #ifdef DEBUG 5805 nfs3_pathconf_cache_misses++; 5806 #endif 5807 5808 args.object = *VTOFH3(vp); 5809 fi.vp = vp; 5810 fi.fhp = (caddr_t)&args.object; 5811 fi.copyproc = nfs3copyfh; 5812 fi.lookupproc = nfs3lookup; 5813 fi.xattrdirproc = acl_getxattrdir3; 5814 5815 douprintf = 1; 5816 5817 t = gethrtime(); 5818 5819 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF, 5820 xdr_nfs_fh3, (caddr_t)&args, 5821 xdr_PATHCONF3res, (caddr_t)&res, cr, 5822 &douprintf, &res.status, 0, &fi); 5823 5824 if (error) 5825 return (error); 5826 5827 error = geterrno3(res.status); 5828 5829 if (!error) { 5830 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 5831 if (!nfs3_pathconf_disable_cache) { 5832 mutex_enter(&rp->r_statelock); 5833 if (rp->r_pathconf == NULL) { 5834 rp->r_pathconf = kmem_alloc( 5835 sizeof (*rp->r_pathconf), KM_NOSLEEP); 5836 if (rp->r_pathconf != NULL) 5837 *rp->r_pathconf = res.resok.info; 5838 } 5839 mutex_exit(&rp->r_statelock); 5840 } 5841 switch (cmd) { 5842 case _PC_LINK_MAX: 5843 *valp = res.resok.info.link_max; 5844 break; 5845 case _PC_NAME_MAX: 5846 *valp = res.resok.info.name_max; 5847 break; 5848 case _PC_PATH_MAX: 5849 case _PC_SYMLINK_MAX: 5850 *valp = MAXPATHLEN; 5851 break; 5852 case _PC_CHOWN_RESTRICTED: 5853 *valp = res.resok.info.chown_restricted; 5854 break; 5855 case _PC_NO_TRUNC: 5856 *valp = res.resok.info.no_trunc; 5857 break; 5858 default: 5859 return (EINVAL); 5860 } 5861 } else { 5862 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 5863 PURGE_STALE_FH(error, vp, cr); 5864 } 5865 5866 return (error); 5867 } 5868 5869 /* 5870 * Called by async thread to do synchronous pageio. Do the i/o, wait 5871 * for it to complete, and cleanup the page list when done. 5872 */ 5873 static int 5874 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5875 int flags, cred_t *cr) 5876 { 5877 int error; 5878 5879 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5880 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5881 if (flags & B_READ) 5882 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 5883 else 5884 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 5885 return (error); 5886 } 5887 5888 /* ARGSUSED */ 5889 static int 5890 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5891 int flags, cred_t *cr, caller_context_t *ct) 5892 { 5893 int error; 5894 rnode_t *rp; 5895 5896 if (pp == NULL) 5897 return (EINVAL); 5898 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5899 return (EIO); 5900 5901 rp = VTOR(vp); 5902 mutex_enter(&rp->r_statelock); 5903 rp->r_count++; 5904 mutex_exit(&rp->r_statelock); 5905 5906 if (flags & B_ASYNC) { 5907 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 5908 nfs3_sync_pageio); 5909 } else 5910 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5911 mutex_enter(&rp->r_statelock); 5912 rp->r_count--; 5913 cv_broadcast(&rp->r_cv); 5914 mutex_exit(&rp->r_statelock); 5915 return (error); 5916 } 5917 5918 /* ARGSUSED */ 5919 static void 5920 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 5921 caller_context_t *ct) 5922 { 5923 int error; 5924 rnode_t *rp; 5925 page_t *plist; 5926 page_t *pptr; 5927 offset3 offset; 5928 count3 len; 5929 k_sigset_t smask; 5930 5931 /* 5932 * We should get called with fl equal to either B_FREE or 5933 * B_INVAL. Any other value is illegal. 5934 * 5935 * The page that we are either supposed to free or destroy 5936 * should be exclusive locked and its io lock should not 5937 * be held. 5938 */ 5939 ASSERT(fl == B_FREE || fl == B_INVAL); 5940 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 5941 rp = VTOR(vp); 5942 5943 /* 5944 * If the page doesn't need to be committed or we shouldn't 5945 * even bother attempting to commit it, then just make sure 5946 * that the p_fsdata byte is clear and then either free or 5947 * destroy the page as appropriate. 5948 */ 5949 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) { 5950 pp->p_fsdata = C_NOCOMMIT; 5951 if (fl == B_FREE) 5952 page_free(pp, dn); 5953 else 5954 page_destroy(pp, dn); 5955 return; 5956 } 5957 5958 /* 5959 * If there is a page invalidation operation going on, then 5960 * if this is one of the pages being destroyed, then just 5961 * clear the p_fsdata byte and then either free or destroy 5962 * the page as appropriate. 5963 */ 5964 mutex_enter(&rp->r_statelock); 5965 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 5966 mutex_exit(&rp->r_statelock); 5967 pp->p_fsdata = C_NOCOMMIT; 5968 if (fl == B_FREE) 5969 page_free(pp, dn); 5970 else 5971 page_destroy(pp, dn); 5972 return; 5973 } 5974 5975 /* 5976 * If we are freeing this page and someone else is already 5977 * waiting to do a commit, then just unlock the page and 5978 * return. That other thread will take care of commiting 5979 * this page. The page can be freed sometime after the 5980 * commit has finished. Otherwise, if the page is marked 5981 * as delay commit, then we may be getting called from 5982 * pvn_write_done, one page at a time. This could result 5983 * in one commit per page, so we end up doing lots of small 5984 * commits instead of fewer larger commits. This is bad, 5985 * we want do as few commits as possible. 5986 */ 5987 if (fl == B_FREE) { 5988 if (rp->r_flags & RCOMMITWAIT) { 5989 page_unlock(pp); 5990 mutex_exit(&rp->r_statelock); 5991 return; 5992 } 5993 if (pp->p_fsdata == C_DELAYCOMMIT) { 5994 pp->p_fsdata = C_COMMIT; 5995 page_unlock(pp); 5996 mutex_exit(&rp->r_statelock); 5997 return; 5998 } 5999 } 6000 6001 /* 6002 * Check to see if there is a signal which would prevent an 6003 * attempt to commit the pages from being successful. If so, 6004 * then don't bother with all of the work to gather pages and 6005 * generate the unsuccessful RPC. Just return from here and 6006 * let the page be committed at some later time. 6007 */ 6008 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT); 6009 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 6010 sigunintr(&smask); 6011 page_unlock(pp); 6012 mutex_exit(&rp->r_statelock); 6013 return; 6014 } 6015 sigunintr(&smask); 6016 6017 /* 6018 * We are starting to need to commit pages, so let's try 6019 * to commit as many as possible at once to reduce the 6020 * overhead. 6021 * 6022 * Set the `commit inprogress' state bit. We must 6023 * first wait until any current one finishes. Then 6024 * we initialize the c_pages list with this page. 6025 */ 6026 while (rp->r_flags & RCOMMIT) { 6027 rp->r_flags |= RCOMMITWAIT; 6028 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6029 rp->r_flags &= ~RCOMMITWAIT; 6030 } 6031 rp->r_flags |= RCOMMIT; 6032 mutex_exit(&rp->r_statelock); 6033 ASSERT(rp->r_commit.c_pages == NULL); 6034 rp->r_commit.c_pages = pp; 6035 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6036 rp->r_commit.c_commlen = PAGESIZE; 6037 6038 /* 6039 * Gather together all other pages which can be committed. 6040 * They will all be chained off r_commit.c_pages. 6041 */ 6042 nfs3_get_commit(vp); 6043 6044 /* 6045 * Clear the `commit inprogress' status and disconnect 6046 * the list of pages to be committed from the rnode. 6047 * At this same time, we also save the starting offset 6048 * and length of data to be committed on the server. 6049 */ 6050 plist = rp->r_commit.c_pages; 6051 rp->r_commit.c_pages = NULL; 6052 offset = rp->r_commit.c_commbase; 6053 len = rp->r_commit.c_commlen; 6054 mutex_enter(&rp->r_statelock); 6055 rp->r_flags &= ~RCOMMIT; 6056 cv_broadcast(&rp->r_commit.c_cv); 6057 mutex_exit(&rp->r_statelock); 6058 6059 if (curproc == proc_pageout || curproc == proc_fsflush || 6060 nfs_zone() != VTOMI(vp)->mi_zone) { 6061 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit); 6062 return; 6063 } 6064 6065 /* 6066 * Actually generate the COMMIT3 over the wire operation. 6067 */ 6068 error = nfs3_commit(vp, offset, len, cr); 6069 6070 /* 6071 * If we got an error during the commit, just unlock all 6072 * of the pages. The pages will get retransmitted to the 6073 * server during a putpage operation. 6074 */ 6075 if (error) { 6076 while (plist != NULL) { 6077 pptr = plist; 6078 page_sub(&plist, pptr); 6079 page_unlock(pptr); 6080 } 6081 return; 6082 } 6083 6084 /* 6085 * We've tried as hard as we can to commit the data to stable 6086 * storage on the server. We release the rest of the pages 6087 * and clear the commit required state. They will be put 6088 * onto the tail of the cachelist if they are nolonger 6089 * mapped. 6090 */ 6091 while (plist != pp) { 6092 pptr = plist; 6093 page_sub(&plist, pptr); 6094 pptr->p_fsdata = C_NOCOMMIT; 6095 (void) page_release(pptr, 1); 6096 } 6097 6098 /* 6099 * It is possible that nfs3_commit didn't return error but 6100 * some other thread has modified the page we are going 6101 * to free/destroy. 6102 * In this case we need to rewrite the page. Do an explicit check 6103 * before attempting to free/destroy the page. If modified, needs to 6104 * be rewritten so unlock the page and return. 6105 */ 6106 if (hat_ismod(pp)) { 6107 pp->p_fsdata = C_NOCOMMIT; 6108 page_unlock(pp); 6109 return; 6110 } 6111 6112 /* 6113 * Now, as appropriate, either free or destroy the page 6114 * that we were called with. 6115 */ 6116 pp->p_fsdata = C_NOCOMMIT; 6117 if (fl == B_FREE) 6118 page_free(pp, dn); 6119 else 6120 page_destroy(pp, dn); 6121 } 6122 6123 static int 6124 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr) 6125 { 6126 int error; 6127 rnode_t *rp; 6128 COMMIT3args args; 6129 COMMIT3res res; 6130 int douprintf; 6131 cred_t *cred; 6132 6133 rp = VTOR(vp); 6134 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6135 6136 mutex_enter(&rp->r_statelock); 6137 if (rp->r_cred != NULL) { 6138 cred = rp->r_cred; 6139 crhold(cred); 6140 } else { 6141 rp->r_cred = cr; 6142 crhold(cr); 6143 cred = cr; 6144 crhold(cred); 6145 } 6146 mutex_exit(&rp->r_statelock); 6147 6148 args.file = *VTOFH3(vp); 6149 args.offset = offset; 6150 args.count = count; 6151 6152 doitagain: 6153 douprintf = 1; 6154 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT, 6155 xdr_COMMIT3args, (caddr_t)&args, 6156 xdr_COMMIT3res, (caddr_t)&res, cred, 6157 &douprintf, &res.status, 0, NULL); 6158 6159 crfree(cred); 6160 6161 if (error) 6162 return (error); 6163 6164 error = geterrno3(res.status); 6165 if (!error) { 6166 ASSERT(rp->r_flags & RHAVEVERF); 6167 mutex_enter(&rp->r_statelock); 6168 if (rp->r_verf == res.resok.verf) { 6169 mutex_exit(&rp->r_statelock); 6170 return (0); 6171 } 6172 nfs3_set_mod(vp); 6173 rp->r_verf = res.resok.verf; 6174 mutex_exit(&rp->r_statelock); 6175 error = NFS_VERF_MISMATCH; 6176 } else { 6177 if (error == EACCES) { 6178 mutex_enter(&rp->r_statelock); 6179 if (cred != cr) { 6180 if (rp->r_cred != NULL) 6181 crfree(rp->r_cred); 6182 rp->r_cred = cr; 6183 crhold(cr); 6184 cred = cr; 6185 crhold(cred); 6186 mutex_exit(&rp->r_statelock); 6187 goto doitagain; 6188 } 6189 mutex_exit(&rp->r_statelock); 6190 } 6191 /* 6192 * Can't do a PURGE_STALE_FH here because this 6193 * can cause a deadlock. nfs3_commit can 6194 * be called from nfs3_dispose which can be called 6195 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH 6196 * can call back to pvn_vplist_dirty. 6197 */ 6198 if (error == ESTALE) { 6199 mutex_enter(&rp->r_statelock); 6200 rp->r_flags |= RSTALE; 6201 if (!rp->r_error) 6202 rp->r_error = error; 6203 mutex_exit(&rp->r_statelock); 6204 PURGE_ATTRCACHE(vp); 6205 } else { 6206 mutex_enter(&rp->r_statelock); 6207 if (!rp->r_error) 6208 rp->r_error = error; 6209 mutex_exit(&rp->r_statelock); 6210 } 6211 } 6212 6213 return (error); 6214 } 6215 6216 static void 6217 nfs3_set_mod(vnode_t *vp) 6218 { 6219 page_t *pp; 6220 kmutex_t *vphm; 6221 6222 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6223 vphm = page_vnode_mutex(vp); 6224 mutex_enter(vphm); 6225 if ((pp = vp->v_pages) != NULL) { 6226 do { 6227 if (pp->p_fsdata != C_NOCOMMIT) { 6228 hat_setmod(pp); 6229 pp->p_fsdata = C_NOCOMMIT; 6230 } 6231 } while ((pp = pp->p_vpnext) != vp->v_pages); 6232 } 6233 mutex_exit(vphm); 6234 } 6235 6236 6237 /* 6238 * This routine is used to gather together a page list of the pages 6239 * which are to be committed on the server. This routine must not 6240 * be called if the calling thread holds any locked pages. 6241 * 6242 * The calling thread must have set RCOMMIT. This bit is used to 6243 * serialize access to the commit structure in the rnode. As long 6244 * as the thread has set RCOMMIT, then it can manipulate the commit 6245 * structure without requiring any other locks. 6246 */ 6247 static void 6248 nfs3_get_commit(vnode_t *vp) 6249 { 6250 rnode_t *rp; 6251 page_t *pp; 6252 kmutex_t *vphm; 6253 6254 rp = VTOR(vp); 6255 6256 ASSERT(rp->r_flags & RCOMMIT); 6257 6258 vphm = page_vnode_mutex(vp); 6259 mutex_enter(vphm); 6260 6261 /* 6262 * If there are no pages associated with this vnode, then 6263 * just return. 6264 */ 6265 if ((pp = vp->v_pages) == NULL) { 6266 mutex_exit(vphm); 6267 return; 6268 } 6269 6270 /* 6271 * Step through all of the pages associated with this vnode 6272 * looking for pages which need to be committed. 6273 */ 6274 do { 6275 /* 6276 * If this page does not need to be committed or is 6277 * modified, then just skip it. 6278 */ 6279 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 6280 continue; 6281 6282 /* 6283 * Attempt to lock the page. If we can't, then 6284 * someone else is messing with it and we will 6285 * just skip it. 6286 */ 6287 if (!page_trylock(pp, SE_EXCL)) 6288 continue; 6289 6290 /* 6291 * If this page does not need to be committed or is 6292 * modified, then just skip it. Recheck now that 6293 * the page is locked. 6294 */ 6295 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6296 page_unlock(pp); 6297 continue; 6298 } 6299 6300 if (PP_ISFREE(pp)) { 6301 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free", 6302 (void *)pp); 6303 } 6304 6305 /* 6306 * The page needs to be committed and we locked it. 6307 * Update the base and length parameters and add it 6308 * to r_pages. 6309 */ 6310 if (rp->r_commit.c_pages == NULL) { 6311 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6312 rp->r_commit.c_commlen = PAGESIZE; 6313 } else if (pp->p_offset < rp->r_commit.c_commbase) { 6314 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 6315 (offset3)pp->p_offset + rp->r_commit.c_commlen; 6316 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6317 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 6318 <= pp->p_offset) { 6319 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6320 rp->r_commit.c_commbase + PAGESIZE; 6321 } 6322 page_add(&rp->r_commit.c_pages, pp); 6323 } while ((pp = pp->p_vpnext) != vp->v_pages); 6324 6325 mutex_exit(vphm); 6326 } 6327 6328 /* 6329 * This routine is used to gather together a page list of the pages 6330 * which are to be committed on the server. This routine must not 6331 * be called if the calling thread holds any locked pages. 6332 * 6333 * The calling thread must have set RCOMMIT. This bit is used to 6334 * serialize access to the commit structure in the rnode. As long 6335 * as the thread has set RCOMMIT, then it can manipulate the commit 6336 * structure without requiring any other locks. 6337 */ 6338 static void 6339 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 6340 { 6341 6342 rnode_t *rp; 6343 page_t *pp; 6344 u_offset_t end; 6345 u_offset_t off; 6346 6347 ASSERT(len != 0); 6348 6349 rp = VTOR(vp); 6350 6351 ASSERT(rp->r_flags & RCOMMIT); 6352 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6353 6354 /* 6355 * If there are no pages associated with this vnode, then 6356 * just return. 6357 */ 6358 if ((pp = vp->v_pages) == NULL) 6359 return; 6360 6361 /* 6362 * Calculate the ending offset. 6363 */ 6364 end = soff + len; 6365 6366 for (off = soff; off < end; off += PAGESIZE) { 6367 /* 6368 * Lookup each page by vp, offset. 6369 */ 6370 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 6371 continue; 6372 6373 /* 6374 * If this page does not need to be committed or is 6375 * modified, then just skip it. 6376 */ 6377 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6378 page_unlock(pp); 6379 continue; 6380 } 6381 6382 ASSERT(PP_ISFREE(pp) == 0); 6383 6384 /* 6385 * The page needs to be committed and we locked it. 6386 * Update the base and length parameters and add it 6387 * to r_pages. 6388 */ 6389 if (rp->r_commit.c_pages == NULL) { 6390 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6391 rp->r_commit.c_commlen = PAGESIZE; 6392 } else { 6393 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6394 rp->r_commit.c_commbase + PAGESIZE; 6395 } 6396 page_add(&rp->r_commit.c_pages, pp); 6397 } 6398 } 6399 6400 #if 0 /* unused */ 6401 #ifdef DEBUG 6402 static int 6403 nfs3_no_uncommitted_pages(vnode_t *vp) 6404 { 6405 page_t *pp; 6406 kmutex_t *vphm; 6407 6408 vphm = page_vnode_mutex(vp); 6409 mutex_enter(vphm); 6410 if ((pp = vp->v_pages) != NULL) { 6411 do { 6412 if (pp->p_fsdata != C_NOCOMMIT) { 6413 mutex_exit(vphm); 6414 return (0); 6415 } 6416 } while ((pp = pp->p_vpnext) != vp->v_pages); 6417 } 6418 mutex_exit(vphm); 6419 6420 return (1); 6421 } 6422 #endif 6423 #endif 6424 6425 static int 6426 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 6427 { 6428 int error; 6429 writeverf3 write_verf; 6430 rnode_t *rp = VTOR(vp); 6431 6432 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6433 /* 6434 * Flush the data portion of the file and then commit any 6435 * portions which need to be committed. This may need to 6436 * be done twice if the server has changed state since 6437 * data was last written. The data will need to be 6438 * rewritten to the server and then a new commit done. 6439 * 6440 * In fact, this may need to be done several times if the 6441 * server is having problems and crashing while we are 6442 * attempting to do this. 6443 */ 6444 6445 top: 6446 /* 6447 * Do a flush based on the poff and plen arguments. This 6448 * will asynchronously write out any modified pages in the 6449 * range specified by (poff, plen). This starts all of the 6450 * i/o operations which will be waited for in the next 6451 * call to nfs3_putpage 6452 */ 6453 6454 mutex_enter(&rp->r_statelock); 6455 write_verf = rp->r_verf; 6456 mutex_exit(&rp->r_statelock); 6457 6458 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 6459 if (error == EAGAIN) 6460 error = 0; 6461 6462 /* 6463 * Do a flush based on the poff and plen arguments. This 6464 * will synchronously write out any modified pages in the 6465 * range specified by (poff, plen) and wait until all of 6466 * the asynchronous i/o's in that range are done as well. 6467 */ 6468 if (!error) 6469 error = nfs3_putpage(vp, poff, plen, 0, cr, NULL); 6470 6471 if (error) 6472 return (error); 6473 6474 mutex_enter(&rp->r_statelock); 6475 if (rp->r_verf != write_verf) { 6476 mutex_exit(&rp->r_statelock); 6477 goto top; 6478 } 6479 mutex_exit(&rp->r_statelock); 6480 6481 /* 6482 * Now commit any pages which might need to be committed. 6483 * If the error, NFS_VERF_MISMATCH, is returned, then 6484 * start over with the flush operation. 6485 */ 6486 6487 error = nfs3_commit_vp(vp, poff, plen, cr); 6488 6489 if (error == NFS_VERF_MISMATCH) 6490 goto top; 6491 6492 return (error); 6493 } 6494 6495 static int 6496 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr) 6497 { 6498 rnode_t *rp; 6499 page_t *plist; 6500 offset3 offset; 6501 count3 len; 6502 6503 6504 rp = VTOR(vp); 6505 6506 if (nfs_zone() != VTOMI(vp)->mi_zone) 6507 return (EIO); 6508 /* 6509 * Set the `commit inprogress' state bit. We must 6510 * first wait until any current one finishes. 6511 */ 6512 mutex_enter(&rp->r_statelock); 6513 while (rp->r_flags & RCOMMIT) { 6514 rp->r_flags |= RCOMMITWAIT; 6515 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6516 rp->r_flags &= ~RCOMMITWAIT; 6517 } 6518 rp->r_flags |= RCOMMIT; 6519 mutex_exit(&rp->r_statelock); 6520 6521 /* 6522 * Gather together all of the pages which need to be 6523 * committed. 6524 */ 6525 if (plen == 0) 6526 nfs3_get_commit(vp); 6527 else 6528 nfs3_get_commit_range(vp, poff, plen); 6529 6530 /* 6531 * Clear the `commit inprogress' bit and disconnect the 6532 * page list which was gathered together in nfs3_get_commit. 6533 */ 6534 plist = rp->r_commit.c_pages; 6535 rp->r_commit.c_pages = NULL; 6536 offset = rp->r_commit.c_commbase; 6537 len = rp->r_commit.c_commlen; 6538 mutex_enter(&rp->r_statelock); 6539 rp->r_flags &= ~RCOMMIT; 6540 cv_broadcast(&rp->r_commit.c_cv); 6541 mutex_exit(&rp->r_statelock); 6542 6543 /* 6544 * If any pages need to be committed, commit them and 6545 * then unlock them so that they can be freed some 6546 * time later. 6547 */ 6548 if (plist != NULL) { 6549 /* 6550 * No error occurred during the flush portion 6551 * of this operation, so now attempt to commit 6552 * the data to stable storage on the server. 6553 * 6554 * This will unlock all of the pages on the list. 6555 */ 6556 return (nfs3_sync_commit(vp, plist, offset, len, cr)); 6557 } 6558 return (0); 6559 } 6560 6561 static int 6562 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6563 cred_t *cr) 6564 { 6565 int error; 6566 page_t *pp; 6567 6568 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6569 error = nfs3_commit(vp, offset, count, cr); 6570 6571 /* 6572 * If we got an error, then just unlock all of the pages 6573 * on the list. 6574 */ 6575 if (error) { 6576 while (plist != NULL) { 6577 pp = plist; 6578 page_sub(&plist, pp); 6579 page_unlock(pp); 6580 } 6581 return (error); 6582 } 6583 /* 6584 * We've tried as hard as we can to commit the data to stable 6585 * storage on the server. We just unlock the pages and clear 6586 * the commit required state. They will get freed later. 6587 */ 6588 while (plist != NULL) { 6589 pp = plist; 6590 page_sub(&plist, pp); 6591 pp->p_fsdata = C_NOCOMMIT; 6592 page_unlock(pp); 6593 } 6594 6595 return (error); 6596 } 6597 6598 static void 6599 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6600 cred_t *cr) 6601 { 6602 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6603 (void) nfs3_sync_commit(vp, plist, offset, count, cr); 6604 } 6605 6606 /* ARGSUSED */ 6607 static int 6608 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6609 caller_context_t *ct) 6610 { 6611 int error; 6612 mntinfo_t *mi; 6613 6614 mi = VTOMI(vp); 6615 6616 if (nfs_zone() != mi->mi_zone) 6617 return (EIO); 6618 6619 if (mi->mi_flags & MI_ACL) { 6620 error = acl_setacl3(vp, vsecattr, flag, cr); 6621 if (mi->mi_flags & MI_ACL) 6622 return (error); 6623 } 6624 6625 return (ENOSYS); 6626 } 6627 6628 /* ARGSUSED */ 6629 static int 6630 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6631 caller_context_t *ct) 6632 { 6633 int error; 6634 mntinfo_t *mi; 6635 6636 mi = VTOMI(vp); 6637 6638 if (nfs_zone() != mi->mi_zone) 6639 return (EIO); 6640 6641 if (mi->mi_flags & MI_ACL) { 6642 error = acl_getacl3(vp, vsecattr, flag, cr); 6643 if (mi->mi_flags & MI_ACL) 6644 return (error); 6645 } 6646 6647 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 6648 } 6649 6650 /* ARGSUSED */ 6651 static int 6652 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 6653 caller_context_t *ct) 6654 { 6655 int error; 6656 struct shrlock nshr; 6657 struct nfs_owner nfs_owner; 6658 netobj lm_fh3; 6659 6660 if (nfs_zone() != VTOMI(vp)->mi_zone) 6661 return (EIO); 6662 6663 /* 6664 * check for valid cmd parameter 6665 */ 6666 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 6667 return (EINVAL); 6668 6669 /* 6670 * Check access permissions 6671 */ 6672 if (cmd == F_SHARE && 6673 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 6674 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 6675 return (EBADF); 6676 6677 /* 6678 * If the filesystem is mounted using local locking, pass the 6679 * request off to the local share code. 6680 */ 6681 if (VTOMI(vp)->mi_flags & MI_LLOCK) 6682 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 6683 6684 switch (cmd) { 6685 case F_SHARE: 6686 case F_UNSHARE: 6687 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 6688 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 6689 6690 /* 6691 * If passed an owner that is too large to fit in an 6692 * nfs_owner it is likely a recursive call from the 6693 * lock manager client and pass it straight through. If 6694 * it is not a nfs_owner then simply return an error. 6695 */ 6696 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 6697 if (((struct nfs_owner *)shr->s_owner)->magic != 6698 NFS_OWNER_MAGIC) 6699 return (EINVAL); 6700 6701 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) { 6702 error = set_errno(error); 6703 } 6704 return (error); 6705 } 6706 /* 6707 * Remote share reservations owner is a combination of 6708 * a magic number, hostname, and the local owner 6709 */ 6710 bzero(&nfs_owner, sizeof (nfs_owner)); 6711 nfs_owner.magic = NFS_OWNER_MAGIC; 6712 (void) strncpy(nfs_owner.hname, uts_nodename(), 6713 sizeof (nfs_owner.hname)); 6714 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 6715 nshr.s_access = shr->s_access; 6716 nshr.s_deny = shr->s_deny; 6717 nshr.s_sysid = 0; 6718 nshr.s_pid = ttoproc(curthread)->p_pid; 6719 nshr.s_own_len = sizeof (nfs_owner); 6720 nshr.s_owner = (caddr_t)&nfs_owner; 6721 6722 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) { 6723 error = set_errno(error); 6724 } 6725 6726 break; 6727 6728 case F_HASREMOTELOCKS: 6729 /* 6730 * NFS client can't store remote locks itself 6731 */ 6732 shr->s_access = 0; 6733 error = 0; 6734 break; 6735 6736 default: 6737 error = EINVAL; 6738 break; 6739 } 6740 6741 return (error); 6742 } 6743