1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 */ 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/cred.h> 37 #include <sys/time.h> 38 #include <sys/vnode.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/file.h> 42 #include <sys/filio.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/mman.h> 46 #include <sys/pathname.h> 47 #include <sys/dirent.h> 48 #include <sys/debug.h> 49 #include <sys/vmsystm.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/swap.h> 53 #include <sys/errno.h> 54 #include <sys/strsubr.h> 55 #include <sys/sysmacros.h> 56 #include <sys/kmem.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathconf.h> 59 #include <sys/utsname.h> 60 #include <sys/dnlc.h> 61 #include <sys/acl.h> 62 #include <sys/systeminfo.h> 63 #include <sys/atomic.h> 64 #include <sys/policy.h> 65 #include <sys/sdt.h> 66 67 #include <rpc/types.h> 68 #include <rpc/auth.h> 69 #include <rpc/clnt.h> 70 71 #include <nfs/nfs.h> 72 #include <nfs/nfs_clnt.h> 73 #include <nfs/rnode.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 77 #include <vm/hat.h> 78 #include <vm/as.h> 79 #include <vm/page.h> 80 #include <vm/pvn.h> 81 #include <vm/seg.h> 82 #include <vm/seg_map.h> 83 #include <vm/seg_kpm.h> 84 #include <vm/seg_vn.h> 85 86 #include <fs/fs_subr.h> 87 88 #include <sys/ddi.h> 89 90 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 91 cred_t *); 92 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 93 stable_how *); 94 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *); 95 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *); 96 static int nfs3_accessx(void *, int, cred_t *); 97 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 98 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 99 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl, 100 int, vnode_t **, cred_t *, int); 101 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *); 102 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 103 int, vnode_t **, cred_t *); 104 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 105 caller_context_t *); 106 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 107 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 108 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *); 109 static int nfs3_bio(struct buf *, stable_how *, cred_t *); 110 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 111 page_t *[], size_t, struct seg *, caddr_t, 112 enum seg_rw, cred_t *); 113 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 114 cred_t *); 115 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 116 int, cred_t *); 117 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 118 int, cred_t *); 119 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *); 120 static void nfs3_set_mod(vnode_t *); 121 static void nfs3_get_commit(vnode_t *); 122 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t); 123 #if 0 /* unused */ 124 #ifdef DEBUG 125 static int nfs3_no_uncommitted_pages(vnode_t *); 126 #endif 127 #endif /* unused */ 128 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 129 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *); 130 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3, 131 cred_t *); 132 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3, 133 cred_t *); 134 static void nfs3_delmap_callback(struct as *, void *, uint_t); 135 136 /* 137 * Error flags used to pass information about certain special errors 138 * which need to be handled specially. 139 */ 140 #define NFS_EOF -98 141 #define NFS_VERF_MISMATCH -97 142 143 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 144 #define ALIGN64(x, ptr, sz) \ 145 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 146 if (x) { \ 147 x = sizeof (uint64_t) - (x); \ 148 sz -= (x); \ 149 ptr += (x); \ 150 } 151 152 /* 153 * These are the vnode ops routines which implement the vnode interface to 154 * the networked file system. These routines just take their parameters, 155 * make them look networkish by putting the right info into interface structs, 156 * and then calling the appropriate remote routine(s) to do the work. 157 * 158 * Note on directory name lookup cacheing: If we detect a stale fhandle, 159 * we purge the directory cache relative to that vnode. This way, the 160 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 161 * more details on rnode locking. 162 */ 163 164 static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *); 165 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *, 166 caller_context_t *); 167 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *, 168 caller_context_t *); 169 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *, 170 caller_context_t *); 171 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 172 caller_context_t *); 173 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *, 174 caller_context_t *); 175 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *, 176 caller_context_t *); 177 static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *); 178 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *, 179 caller_context_t *); 180 static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *); 181 static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *); 182 static int nfs3_lookup(vnode_t *, char *, vnode_t **, 183 struct pathname *, int, vnode_t *, cred_t *, 184 caller_context_t *, int *, pathname_t *); 185 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl, 186 int, vnode_t **, cred_t *, int, caller_context_t *, 187 vsecattr_t *); 188 static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *, 189 int); 190 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *, 191 caller_context_t *, int); 192 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 193 caller_context_t *, int); 194 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 195 cred_t *, caller_context_t *, int, vsecattr_t *); 196 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 197 caller_context_t *, int); 198 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *, 199 cred_t *, caller_context_t *, int); 200 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *, 201 caller_context_t *, int); 202 static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *); 203 static int nfs3_rwlock(vnode_t *, int, caller_context_t *); 204 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *); 205 static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 206 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *, 207 page_t *[], size_t, struct seg *, caddr_t, 208 enum seg_rw, cred_t *, caller_context_t *); 209 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 210 caller_context_t *); 211 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 212 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 213 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 214 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 215 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 216 struct flk_callback *, cred_t *, caller_context_t *); 217 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t, 218 cred_t *, caller_context_t *); 219 static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *); 220 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 221 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 222 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *, 223 caller_context_t *); 224 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 225 cred_t *, caller_context_t *); 226 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *, 227 caller_context_t *); 228 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 229 caller_context_t *); 230 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 231 caller_context_t *); 232 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 233 caller_context_t *); 234 235 struct vnodeops *nfs3_vnodeops; 236 237 const fs_operation_def_t nfs3_vnodeops_template[] = { 238 VOPNAME_OPEN, { .vop_open = nfs3_open }, 239 VOPNAME_CLOSE, { .vop_close = nfs3_close }, 240 VOPNAME_READ, { .vop_read = nfs3_read }, 241 VOPNAME_WRITE, { .vop_write = nfs3_write }, 242 VOPNAME_IOCTL, { .vop_ioctl = nfs3_ioctl }, 243 VOPNAME_GETATTR, { .vop_getattr = nfs3_getattr }, 244 VOPNAME_SETATTR, { .vop_setattr = nfs3_setattr }, 245 VOPNAME_ACCESS, { .vop_access = nfs3_access }, 246 VOPNAME_LOOKUP, { .vop_lookup = nfs3_lookup }, 247 VOPNAME_CREATE, { .vop_create = nfs3_create }, 248 VOPNAME_REMOVE, { .vop_remove = nfs3_remove }, 249 VOPNAME_LINK, { .vop_link = nfs3_link }, 250 VOPNAME_RENAME, { .vop_rename = nfs3_rename }, 251 VOPNAME_MKDIR, { .vop_mkdir = nfs3_mkdir }, 252 VOPNAME_RMDIR, { .vop_rmdir = nfs3_rmdir }, 253 VOPNAME_READDIR, { .vop_readdir = nfs3_readdir }, 254 VOPNAME_SYMLINK, { .vop_symlink = nfs3_symlink }, 255 VOPNAME_READLINK, { .vop_readlink = nfs3_readlink }, 256 VOPNAME_FSYNC, { .vop_fsync = nfs3_fsync }, 257 VOPNAME_INACTIVE, { .vop_inactive = nfs3_inactive }, 258 VOPNAME_FID, { .vop_fid = nfs3_fid }, 259 VOPNAME_RWLOCK, { .vop_rwlock = nfs3_rwlock }, 260 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs3_rwunlock }, 261 VOPNAME_SEEK, { .vop_seek = nfs3_seek }, 262 VOPNAME_FRLOCK, { .vop_frlock = nfs3_frlock }, 263 VOPNAME_SPACE, { .vop_space = nfs3_space }, 264 VOPNAME_REALVP, { .vop_realvp = nfs3_realvp }, 265 VOPNAME_GETPAGE, { .vop_getpage = nfs3_getpage }, 266 VOPNAME_PUTPAGE, { .vop_putpage = nfs3_putpage }, 267 VOPNAME_MAP, { .vop_map = nfs3_map }, 268 VOPNAME_ADDMAP, { .vop_addmap = nfs3_addmap }, 269 VOPNAME_DELMAP, { .vop_delmap = nfs3_delmap }, 270 /* no separate nfs3_dump */ 271 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 272 VOPNAME_PATHCONF, { .vop_pathconf = nfs3_pathconf }, 273 VOPNAME_PAGEIO, { .vop_pageio = nfs3_pageio }, 274 VOPNAME_DISPOSE, { .vop_dispose = nfs3_dispose }, 275 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs3_setsecattr }, 276 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs3_getsecattr }, 277 VOPNAME_SHRLOCK, { .vop_shrlock = nfs3_shrlock }, 278 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 279 NULL, NULL 280 }; 281 282 /* 283 * XXX: This is referenced in modstubs.s 284 */ 285 struct vnodeops * 286 nfs3_getvnodeops(void) 287 { 288 return (nfs3_vnodeops); 289 } 290 291 /* ARGSUSED */ 292 static int 293 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 294 { 295 int error; 296 struct vattr va; 297 rnode_t *rp; 298 vnode_t *vp; 299 300 vp = *vpp; 301 if (nfs_zone() != VTOMI(vp)->mi_zone) 302 return (EIO); 303 rp = VTOR(vp); 304 mutex_enter(&rp->r_statelock); 305 if (rp->r_cred == NULL) { 306 crhold(cr); 307 rp->r_cred = cr; 308 } 309 mutex_exit(&rp->r_statelock); 310 311 /* 312 * If there is no cached data or if close-to-open 313 * consistency checking is turned off, we can avoid 314 * the over the wire getattr. Otherwise, if the 315 * file system is mounted readonly, then just verify 316 * the caches are up to date using the normal mechanism. 317 * Else, if the file is not mmap'd, then just mark 318 * the attributes as timed out. They will be refreshed 319 * and the caches validated prior to being used. 320 * Else, the file system is mounted writeable so 321 * force an over the wire GETATTR in order to ensure 322 * that all cached data is valid. 323 */ 324 if (vp->v_count > 1 || 325 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 326 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 327 if (vn_is_readonly(vp)) 328 error = nfs3_validate_caches(vp, cr); 329 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 330 PURGE_ATTRCACHE(vp); 331 error = 0; 332 } else { 333 va.va_mask = AT_ALL; 334 error = nfs3_getattr_otw(vp, &va, cr); 335 } 336 } else 337 error = 0; 338 339 return (error); 340 } 341 342 /* ARGSUSED */ 343 static int 344 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 345 caller_context_t *ct) 346 { 347 rnode_t *rp; 348 int error; 349 struct vattr va; 350 351 /* 352 * zone_enter(2) prevents processes from changing zones with NFS files 353 * open; if we happen to get here from the wrong zone we can't do 354 * anything over the wire. 355 */ 356 if (VTOMI(vp)->mi_zone != nfs_zone()) { 357 /* 358 * We could attempt to clean up locks, except we're sure 359 * that the current process didn't acquire any locks on 360 * the file: any attempt to lock a file belong to another zone 361 * will fail, and one can't lock an NFS file and then change 362 * zones, as that fails too. 363 * 364 * Returning an error here is the sane thing to do. A 365 * subsequent call to VN_RELE() which translates to a 366 * nfs3_inactive() will clean up state: if the zone of the 367 * vnode's origin is still alive and kicking, an async worker 368 * thread will handle the request (from the correct zone), and 369 * everything (minus the commit and final nfs3_getattr_otw() 370 * call) should be OK. If the zone is going away 371 * nfs_async_inactive() will throw away cached pages inline. 372 */ 373 return (EIO); 374 } 375 376 /* 377 * If we are using local locking for this filesystem, then 378 * release all of the SYSV style record locks. Otherwise, 379 * we are doing network locking and we need to release all 380 * of the network locks. All of the locks held by this 381 * process on this file are released no matter what the 382 * incoming reference count is. 383 */ 384 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 385 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 386 cleanshares(vp, ttoproc(curthread)->p_pid); 387 } else 388 nfs_lockrelease(vp, flag, offset, cr); 389 390 if (count > 1) 391 return (0); 392 393 /* 394 * If the file has been `unlinked', then purge the 395 * DNLC so that this vnode will get reycled quicker 396 * and the .nfs* file on the server will get removed. 397 */ 398 rp = VTOR(vp); 399 if (rp->r_unldvp != NULL) 400 dnlc_purge_vp(vp); 401 402 /* 403 * If the file was open for write and there are pages, 404 * then if the file system was mounted using the "no-close- 405 * to-open" semantics, then start an asynchronous flush 406 * of the all of the pages in the file. 407 * else the file system was not mounted using the "no-close- 408 * to-open" semantics, then do a synchronous flush and 409 * commit of all of the dirty and uncommitted pages. 410 * 411 * The asynchronous flush of the pages in the "nocto" path 412 * mostly just associates a cred pointer with the rnode so 413 * writes which happen later will have a better chance of 414 * working. It also starts the data being written to the 415 * server, but without unnecessarily delaying the application. 416 */ 417 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 418 if (VTOMI(vp)->mi_flags & MI_NOCTO) { 419 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC, 420 cr, ct); 421 if (error == EAGAIN) 422 error = 0; 423 } else 424 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 425 if (!error) { 426 mutex_enter(&rp->r_statelock); 427 error = rp->r_error; 428 rp->r_error = 0; 429 mutex_exit(&rp->r_statelock); 430 } 431 } else { 432 mutex_enter(&rp->r_statelock); 433 error = rp->r_error; 434 rp->r_error = 0; 435 mutex_exit(&rp->r_statelock); 436 } 437 438 /* 439 * If RWRITEATTR is set, then issue an over the wire GETATTR to 440 * refresh the attribute cache with a set of attributes which 441 * weren't returned from a WRITE. This will enable the close- 442 * to-open processing to work. 443 */ 444 if (rp->r_flags & RWRITEATTR) 445 (void) nfs3_getattr_otw(vp, &va, cr); 446 447 return (error); 448 } 449 450 /* ARGSUSED */ 451 static int 452 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr) 453 { 454 mntinfo_t *mi; 455 READ3args args; 456 READ3uiores res; 457 int tsize; 458 offset_t offset; 459 ssize_t count; 460 int error; 461 int douprintf; 462 failinfo_t fi; 463 char *sv_hostname; 464 465 mi = VTOMI(vp); 466 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 467 sv_hostname = VTOR(vp)->r_server->sv_hostname; 468 469 douprintf = 1; 470 args.file = *VTOFH3(vp); 471 fi.vp = vp; 472 fi.fhp = (caddr_t)&args.file; 473 fi.copyproc = nfs3copyfh; 474 fi.lookupproc = nfs3lookup; 475 fi.xattrdirproc = acl_getxattrdir3; 476 477 res.uiop = uiop; 478 479 offset = uiop->uio_loffset; 480 count = uiop->uio_resid; 481 482 do { 483 if (mi->mi_io_kstats) { 484 mutex_enter(&mi->mi_lock); 485 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 486 mutex_exit(&mi->mi_lock); 487 } 488 489 do { 490 tsize = MIN(mi->mi_tsize, count); 491 args.offset = (offset3)offset; 492 args.count = (count3)tsize; 493 res.size = (uint_t)tsize; 494 error = rfs3call(mi, NFSPROC3_READ, 495 xdr_READ3args, (caddr_t)&args, 496 xdr_READ3uiores, (caddr_t)&res, cr, 497 &douprintf, &res.status, 0, &fi); 498 } while (error == ENFS_TRYAGAIN); 499 500 if (mi->mi_io_kstats) { 501 mutex_enter(&mi->mi_lock); 502 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 503 mutex_exit(&mi->mi_lock); 504 } 505 506 if (error) 507 return (error); 508 509 error = geterrno3(res.status); 510 if (error) 511 return (error); 512 513 if (res.count != res.size) { 514 zcmn_err(getzoneid(), CE_WARN, 515 "nfs3_directio_read: server %s returned incorrect amount", 516 sv_hostname); 517 return (EIO); 518 } 519 count -= res.count; 520 offset += res.count; 521 if (mi->mi_io_kstats) { 522 mutex_enter(&mi->mi_lock); 523 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 524 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 525 mutex_exit(&mi->mi_lock); 526 } 527 lwp_stat_update(LWP_STAT_INBLK, 1); 528 } while (count && !res.eof); 529 530 return (0); 531 } 532 533 /* ARGSUSED */ 534 static int 535 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 536 caller_context_t *ct) 537 { 538 rnode_t *rp; 539 u_offset_t off; 540 offset_t diff; 541 int on; 542 size_t n; 543 caddr_t base; 544 uint_t flags; 545 int error = 0; 546 mntinfo_t *mi; 547 548 rp = VTOR(vp); 549 mi = VTOMI(vp); 550 551 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 552 553 if (nfs_zone() != mi->mi_zone) 554 return (EIO); 555 556 if (vp->v_type != VREG) 557 return (EISDIR); 558 559 if (uiop->uio_resid == 0) 560 return (0); 561 562 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 563 return (EINVAL); 564 565 /* 566 * Bypass VM if caching has been disabled (e.g., locking) or if 567 * using client-side direct I/O and the file is not mmap'd and 568 * there are no cached pages. 569 */ 570 if ((vp->v_flag & VNOCACHE) || 571 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 572 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 573 return (nfs3_directio_read(vp, uiop, cr)); 574 } 575 576 do { 577 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 578 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 579 n = MIN(MAXBSIZE - on, uiop->uio_resid); 580 581 error = nfs3_validate_caches(vp, cr); 582 if (error) 583 break; 584 585 mutex_enter(&rp->r_statelock); 586 while (rp->r_flags & RINCACHEPURGE) { 587 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 588 mutex_exit(&rp->r_statelock); 589 return (EINTR); 590 } 591 } 592 diff = rp->r_size - uiop->uio_loffset; 593 mutex_exit(&rp->r_statelock); 594 if (diff <= 0) 595 break; 596 if (diff < n) 597 n = (size_t)diff; 598 599 if (vpm_enable) { 600 /* 601 * Copy data. 602 */ 603 error = vpm_data_copy(vp, off + on, n, uiop, 604 1, NULL, 0, S_READ); 605 } else { 606 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 607 S_READ); 608 609 error = uiomove(base + on, n, UIO_READ, uiop); 610 } 611 612 if (!error) { 613 /* 614 * If read a whole block or read to eof, 615 * won't need this buffer again soon. 616 */ 617 mutex_enter(&rp->r_statelock); 618 if (n + on == MAXBSIZE || 619 uiop->uio_loffset == rp->r_size) 620 flags = SM_DONTNEED; 621 else 622 flags = 0; 623 mutex_exit(&rp->r_statelock); 624 if (vpm_enable) { 625 error = vpm_sync_pages(vp, off, n, flags); 626 } else { 627 error = segmap_release(segkmap, base, flags); 628 } 629 } else { 630 if (vpm_enable) { 631 (void) vpm_sync_pages(vp, off, n, 0); 632 } else { 633 (void) segmap_release(segkmap, base, 0); 634 } 635 } 636 } while (!error && uiop->uio_resid > 0); 637 638 return (error); 639 } 640 641 /* ARGSUSED */ 642 static int 643 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 644 caller_context_t *ct) 645 { 646 rlim64_t limit = uiop->uio_llimit; 647 rnode_t *rp; 648 u_offset_t off; 649 caddr_t base; 650 uint_t flags; 651 int remainder; 652 size_t n; 653 int on; 654 int error; 655 int resid; 656 offset_t offset; 657 mntinfo_t *mi; 658 uint_t bsize; 659 660 rp = VTOR(vp); 661 662 if (vp->v_type != VREG) 663 return (EISDIR); 664 665 mi = VTOMI(vp); 666 if (nfs_zone() != mi->mi_zone) 667 return (EIO); 668 if (uiop->uio_resid == 0) 669 return (0); 670 671 if (ioflag & FAPPEND) { 672 struct vattr va; 673 674 /* 675 * Must serialize if appending. 676 */ 677 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 678 nfs_rw_exit(&rp->r_rwlock); 679 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 680 INTR(vp))) 681 return (EINTR); 682 } 683 684 va.va_mask = AT_SIZE; 685 error = nfs3getattr(vp, &va, cr); 686 if (error) 687 return (error); 688 uiop->uio_loffset = va.va_size; 689 } 690 691 offset = uiop->uio_loffset + uiop->uio_resid; 692 693 if (uiop->uio_loffset < 0 || offset < 0) 694 return (EINVAL); 695 696 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 697 limit = MAXOFFSET_T; 698 699 /* 700 * Check to make sure that the process will not exceed 701 * its limit on file size. It is okay to write up to 702 * the limit, but not beyond. Thus, the write which 703 * reaches the limit will be short and the next write 704 * will return an error. 705 */ 706 remainder = 0; 707 if (offset > limit) { 708 remainder = offset - limit; 709 uiop->uio_resid = limit - uiop->uio_loffset; 710 if (uiop->uio_resid <= 0) { 711 proc_t *p = ttoproc(curthread); 712 713 uiop->uio_resid += remainder; 714 mutex_enter(&p->p_lock); 715 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 716 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 717 mutex_exit(&p->p_lock); 718 return (EFBIG); 719 } 720 } 721 722 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 723 return (EINTR); 724 725 /* 726 * Bypass VM if caching has been disabled (e.g., locking) or if 727 * using client-side direct I/O and the file is not mmap'd and 728 * there are no cached pages. 729 */ 730 if ((vp->v_flag & VNOCACHE) || 731 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 732 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 733 size_t bufsize; 734 int count; 735 u_offset_t org_offset; 736 stable_how stab_comm; 737 738 nfs3_fwrite: 739 if (rp->r_flags & RSTALE) { 740 resid = uiop->uio_resid; 741 offset = uiop->uio_loffset; 742 error = rp->r_error; 743 goto bottom; 744 } 745 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 746 base = kmem_alloc(bufsize, KM_SLEEP); 747 do { 748 if (ioflag & FDSYNC) 749 stab_comm = DATA_SYNC; 750 else 751 stab_comm = FILE_SYNC; 752 resid = uiop->uio_resid; 753 offset = uiop->uio_loffset; 754 count = MIN(uiop->uio_resid, bufsize); 755 org_offset = uiop->uio_loffset; 756 error = uiomove(base, count, UIO_WRITE, uiop); 757 if (!error) { 758 error = nfs3write(vp, base, org_offset, 759 count, cr, &stab_comm); 760 } 761 } while (!error && uiop->uio_resid > 0); 762 kmem_free(base, bufsize); 763 goto bottom; 764 } 765 766 767 bsize = vp->v_vfsp->vfs_bsize; 768 769 do { 770 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 771 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 772 n = MIN(MAXBSIZE - on, uiop->uio_resid); 773 774 resid = uiop->uio_resid; 775 offset = uiop->uio_loffset; 776 777 if (rp->r_flags & RSTALE) { 778 error = rp->r_error; 779 break; 780 } 781 782 /* 783 * Don't create dirty pages faster than they 784 * can be cleaned so that the system doesn't 785 * get imbalanced. If the async queue is 786 * maxed out, then wait for it to drain before 787 * creating more dirty pages. Also, wait for 788 * any threads doing pagewalks in the vop_getattr 789 * entry points so that they don't block for 790 * long periods. 791 */ 792 mutex_enter(&rp->r_statelock); 793 while ((mi->mi_max_threads != 0 && 794 rp->r_awcount > 2 * mi->mi_max_threads) || 795 rp->r_gcount > 0) 796 cv_wait(&rp->r_cv, &rp->r_statelock); 797 mutex_exit(&rp->r_statelock); 798 799 if (vpm_enable) { 800 /* 801 * It will use kpm mappings, so no need to 802 * pass an address. 803 */ 804 error = writerp(rp, NULL, n, uiop, 0); 805 } else { 806 if (segmap_kpm) { 807 int pon = uiop->uio_loffset & PAGEOFFSET; 808 size_t pn = MIN(PAGESIZE - pon, 809 uiop->uio_resid); 810 int pagecreate; 811 812 mutex_enter(&rp->r_statelock); 813 pagecreate = (pon == 0) && (pn == PAGESIZE || 814 uiop->uio_loffset + pn >= rp->r_size); 815 mutex_exit(&rp->r_statelock); 816 817 base = segmap_getmapflt(segkmap, vp, off + on, 818 pn, !pagecreate, S_WRITE); 819 820 error = writerp(rp, base + pon, n, uiop, 821 pagecreate); 822 823 } else { 824 base = segmap_getmapflt(segkmap, vp, off + on, 825 n, 0, S_READ); 826 error = writerp(rp, base + on, n, uiop, 0); 827 } 828 } 829 830 if (!error) { 831 if (mi->mi_flags & MI_NOAC) 832 flags = SM_WRITE; 833 else if ((uiop->uio_loffset % bsize) == 0 || 834 IS_SWAPVP(vp)) { 835 /* 836 * Have written a whole block. 837 * Start an asynchronous write 838 * and mark the buffer to 839 * indicate that it won't be 840 * needed again soon. 841 */ 842 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 843 } else 844 flags = 0; 845 if ((ioflag & (FSYNC|FDSYNC)) || 846 (rp->r_flags & ROUTOFSPACE)) { 847 flags &= ~SM_ASYNC; 848 flags |= SM_WRITE; 849 } 850 if (vpm_enable) { 851 error = vpm_sync_pages(vp, off, n, flags); 852 } else { 853 error = segmap_release(segkmap, base, flags); 854 } 855 } else { 856 if (vpm_enable) { 857 (void) vpm_sync_pages(vp, off, n, 0); 858 } else { 859 (void) segmap_release(segkmap, base, 0); 860 } 861 /* 862 * In the event that we got an access error while 863 * faulting in a page for a write-only file just 864 * force a write. 865 */ 866 if (error == EACCES) 867 goto nfs3_fwrite; 868 } 869 } while (!error && uiop->uio_resid > 0); 870 871 bottom: 872 if (error) { 873 uiop->uio_resid = resid + remainder; 874 uiop->uio_loffset = offset; 875 } else 876 uiop->uio_resid += remainder; 877 878 nfs_rw_exit(&rp->r_lkserlock); 879 880 return (error); 881 } 882 883 /* 884 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 885 */ 886 static int 887 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 888 int flags, cred_t *cr) 889 { 890 struct buf *bp; 891 int error; 892 page_t *savepp; 893 uchar_t fsdata; 894 stable_how stab_comm; 895 896 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 897 bp = pageio_setup(pp, len, vp, flags); 898 ASSERT(bp != NULL); 899 900 /* 901 * pageio_setup should have set b_addr to 0. This 902 * is correct since we want to do I/O on a page 903 * boundary. bp_mapin will use this addr to calculate 904 * an offset, and then set b_addr to the kernel virtual 905 * address it allocated for us. 906 */ 907 ASSERT(bp->b_un.b_addr == 0); 908 909 bp->b_edev = 0; 910 bp->b_dev = 0; 911 bp->b_lblkno = lbtodb(off); 912 bp->b_file = vp; 913 bp->b_offset = (offset_t)off; 914 bp_mapin(bp); 915 916 /* 917 * Calculate the desired level of stability to write data 918 * on the server and then mark all of the pages to reflect 919 * this. 920 */ 921 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 922 freemem > desfree) { 923 stab_comm = UNSTABLE; 924 fsdata = C_DELAYCOMMIT; 925 } else { 926 stab_comm = FILE_SYNC; 927 fsdata = C_NOCOMMIT; 928 } 929 930 savepp = pp; 931 do { 932 pp->p_fsdata = fsdata; 933 } while ((pp = pp->p_next) != savepp); 934 935 error = nfs3_bio(bp, &stab_comm, cr); 936 937 bp_mapout(bp); 938 pageio_done(bp); 939 940 /* 941 * If the server wrote pages in a more stable fashion than 942 * was requested, then clear all of the marks in the pages 943 * indicating that COMMIT operations were required. 944 */ 945 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) { 946 do { 947 pp->p_fsdata = C_NOCOMMIT; 948 } while ((pp = pp->p_next) != savepp); 949 } 950 951 return (error); 952 } 953 954 /* 955 * Write to file. Writes to remote server in largest size 956 * chunks that the server can handle. Write is synchronous. 957 */ 958 static int 959 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 960 stable_how *stab_comm) 961 { 962 mntinfo_t *mi; 963 WRITE3args args; 964 WRITE3res res; 965 int error; 966 int tsize; 967 rnode_t *rp; 968 int douprintf; 969 970 rp = VTOR(vp); 971 mi = VTOMI(vp); 972 973 ASSERT(nfs_zone() == mi->mi_zone); 974 975 args.file = *VTOFH3(vp); 976 args.stable = *stab_comm; 977 978 *stab_comm = FILE_SYNC; 979 980 douprintf = 1; 981 982 do { 983 if ((vp->v_flag & VNOCACHE) || 984 (rp->r_flags & RDIRECTIO) || 985 (mi->mi_flags & MI_DIRECTIO)) 986 tsize = MIN(mi->mi_stsize, count); 987 else 988 tsize = MIN(mi->mi_curwrite, count); 989 args.offset = (offset3)offset; 990 args.count = (count3)tsize; 991 args.data.data_len = (uint_t)tsize; 992 args.data.data_val = base; 993 994 if (mi->mi_io_kstats) { 995 mutex_enter(&mi->mi_lock); 996 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 997 mutex_exit(&mi->mi_lock); 998 } 999 args.mblk = NULL; 1000 do { 1001 error = rfs3call(mi, NFSPROC3_WRITE, 1002 xdr_WRITE3args, (caddr_t)&args, 1003 xdr_WRITE3res, (caddr_t)&res, cr, 1004 &douprintf, &res.status, 0, NULL); 1005 } while (error == ENFS_TRYAGAIN); 1006 if (mi->mi_io_kstats) { 1007 mutex_enter(&mi->mi_lock); 1008 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1009 mutex_exit(&mi->mi_lock); 1010 } 1011 1012 if (error) 1013 return (error); 1014 error = geterrno3(res.status); 1015 if (!error) { 1016 if (res.resok.count > args.count) { 1017 zcmn_err(getzoneid(), CE_WARN, 1018 "nfs3write: server %s wrote %u, " 1019 "requested was %u", 1020 rp->r_server->sv_hostname, 1021 res.resok.count, args.count); 1022 return (EIO); 1023 } 1024 if (res.resok.committed == UNSTABLE) { 1025 *stab_comm = UNSTABLE; 1026 if (args.stable == DATA_SYNC || 1027 args.stable == FILE_SYNC) { 1028 zcmn_err(getzoneid(), CE_WARN, 1029 "nfs3write: server %s did not commit to stable storage", 1030 rp->r_server->sv_hostname); 1031 return (EIO); 1032 } 1033 } 1034 tsize = (int)res.resok.count; 1035 count -= tsize; 1036 base += tsize; 1037 offset += tsize; 1038 if (mi->mi_io_kstats) { 1039 mutex_enter(&mi->mi_lock); 1040 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 1041 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 1042 tsize; 1043 mutex_exit(&mi->mi_lock); 1044 } 1045 lwp_stat_update(LWP_STAT_OUBLK, 1); 1046 mutex_enter(&rp->r_statelock); 1047 if (rp->r_flags & RHAVEVERF) { 1048 if (rp->r_verf != res.resok.verf) { 1049 nfs3_set_mod(vp); 1050 rp->r_verf = res.resok.verf; 1051 /* 1052 * If the data was written UNSTABLE, 1053 * then might as well stop because 1054 * the whole block will have to get 1055 * rewritten anyway. 1056 */ 1057 if (*stab_comm == UNSTABLE) { 1058 mutex_exit(&rp->r_statelock); 1059 break; 1060 } 1061 } 1062 } else { 1063 rp->r_verf = res.resok.verf; 1064 rp->r_flags |= RHAVEVERF; 1065 } 1066 /* 1067 * Mark the attribute cache as timed out and 1068 * set RWRITEATTR to indicate that the file 1069 * was modified with a WRITE operation and 1070 * that the attributes can not be trusted. 1071 */ 1072 PURGE_ATTRCACHE_LOCKED(rp); 1073 rp->r_flags |= RWRITEATTR; 1074 mutex_exit(&rp->r_statelock); 1075 } 1076 } while (!error && count); 1077 1078 return (error); 1079 } 1080 1081 /* 1082 * Read from a file. Reads data in largest chunks our interface can handle. 1083 */ 1084 static int 1085 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count, 1086 size_t *residp, cred_t *cr) 1087 { 1088 mntinfo_t *mi; 1089 READ3args args; 1090 READ3vres res; 1091 int tsize; 1092 int error; 1093 int douprintf; 1094 failinfo_t fi; 1095 rnode_t *rp; 1096 struct vattr va; 1097 hrtime_t t; 1098 1099 rp = VTOR(vp); 1100 mi = VTOMI(vp); 1101 ASSERT(nfs_zone() == mi->mi_zone); 1102 douprintf = 1; 1103 1104 args.file = *VTOFH3(vp); 1105 fi.vp = vp; 1106 fi.fhp = (caddr_t)&args.file; 1107 fi.copyproc = nfs3copyfh; 1108 fi.lookupproc = nfs3lookup; 1109 fi.xattrdirproc = acl_getxattrdir3; 1110 1111 res.pov.fres.vp = vp; 1112 res.pov.fres.vap = &va; 1113 1114 *residp = count; 1115 do { 1116 if (mi->mi_io_kstats) { 1117 mutex_enter(&mi->mi_lock); 1118 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1119 mutex_exit(&mi->mi_lock); 1120 } 1121 1122 do { 1123 if ((vp->v_flag & VNOCACHE) || 1124 (rp->r_flags & RDIRECTIO) || 1125 (mi->mi_flags & MI_DIRECTIO)) 1126 tsize = MIN(mi->mi_tsize, count); 1127 else 1128 tsize = MIN(mi->mi_curread, count); 1129 res.data.data_val = base; 1130 res.data.data_len = tsize; 1131 args.offset = (offset3)offset; 1132 args.count = (count3)tsize; 1133 t = gethrtime(); 1134 error = rfs3call(mi, NFSPROC3_READ, 1135 xdr_READ3args, (caddr_t)&args, 1136 xdr_READ3vres, (caddr_t)&res, cr, 1137 &douprintf, &res.status, 0, &fi); 1138 } while (error == ENFS_TRYAGAIN); 1139 1140 if (mi->mi_io_kstats) { 1141 mutex_enter(&mi->mi_lock); 1142 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1143 mutex_exit(&mi->mi_lock); 1144 } 1145 1146 if (error) 1147 return (error); 1148 1149 error = geterrno3(res.status); 1150 if (error) 1151 return (error); 1152 1153 if (res.count != res.data.data_len) { 1154 zcmn_err(getzoneid(), CE_WARN, 1155 "nfs3read: server %s returned incorrect amount", 1156 rp->r_server->sv_hostname); 1157 return (EIO); 1158 } 1159 1160 count -= res.count; 1161 *residp = count; 1162 base += res.count; 1163 offset += res.count; 1164 if (mi->mi_io_kstats) { 1165 mutex_enter(&mi->mi_lock); 1166 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1167 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 1168 mutex_exit(&mi->mi_lock); 1169 } 1170 lwp_stat_update(LWP_STAT_INBLK, 1); 1171 } while (count && !res.eof); 1172 1173 if (res.pov.attributes) { 1174 mutex_enter(&rp->r_statelock); 1175 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) { 1176 mutex_exit(&rp->r_statelock); 1177 PURGE_ATTRCACHE(vp); 1178 } else { 1179 if (rp->r_mtime <= t) 1180 nfs_attrcache_va(vp, &va); 1181 mutex_exit(&rp->r_statelock); 1182 } 1183 } 1184 1185 return (0); 1186 } 1187 1188 /* ARGSUSED */ 1189 static int 1190 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1191 caller_context_t *ct) 1192 { 1193 1194 if (nfs_zone() != VTOMI(vp)->mi_zone) 1195 return (EIO); 1196 switch (cmd) { 1197 case _FIODIRECTIO: 1198 return (nfs_directio(vp, (int)arg, cr)); 1199 default: 1200 return (ENOTTY); 1201 } 1202 } 1203 1204 /* ARGSUSED */ 1205 static int 1206 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1207 caller_context_t *ct) 1208 { 1209 int error; 1210 rnode_t *rp; 1211 1212 if (nfs_zone() != VTOMI(vp)->mi_zone) 1213 return (EIO); 1214 /* 1215 * If it has been specified that the return value will 1216 * just be used as a hint, and we are only being asked 1217 * for size, fsid or rdevid, then return the client's 1218 * notion of these values without checking to make sure 1219 * that the attribute cache is up to date. 1220 * The whole point is to avoid an over the wire GETATTR 1221 * call. 1222 */ 1223 rp = VTOR(vp); 1224 if (flags & ATTR_HINT) { 1225 if (vap->va_mask == 1226 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1227 mutex_enter(&rp->r_statelock); 1228 if (vap->va_mask | AT_SIZE) 1229 vap->va_size = rp->r_size; 1230 if (vap->va_mask | AT_FSID) 1231 vap->va_fsid = rp->r_attr.va_fsid; 1232 if (vap->va_mask | AT_RDEV) 1233 vap->va_rdev = rp->r_attr.va_rdev; 1234 mutex_exit(&rp->r_statelock); 1235 return (0); 1236 } 1237 } 1238 1239 /* 1240 * Only need to flush pages if asking for the mtime 1241 * and if there any dirty pages or any outstanding 1242 * asynchronous (write) requests for this file. 1243 */ 1244 if (vap->va_mask & AT_MTIME) { 1245 if (vn_has_cached_data(vp) && 1246 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1247 mutex_enter(&rp->r_statelock); 1248 rp->r_gcount++; 1249 mutex_exit(&rp->r_statelock); 1250 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1251 mutex_enter(&rp->r_statelock); 1252 if (error && (error == ENOSPC || error == EDQUOT)) { 1253 if (!rp->r_error) 1254 rp->r_error = error; 1255 } 1256 if (--rp->r_gcount == 0) 1257 cv_broadcast(&rp->r_cv); 1258 mutex_exit(&rp->r_statelock); 1259 } 1260 } 1261 1262 return (nfs3getattr(vp, vap, cr)); 1263 } 1264 1265 /*ARGSUSED4*/ 1266 static int 1267 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1268 caller_context_t *ct) 1269 { 1270 int error; 1271 struct vattr va; 1272 1273 if (vap->va_mask & AT_NOSET) 1274 return (EINVAL); 1275 if (nfs_zone() != VTOMI(vp)->mi_zone) 1276 return (EIO); 1277 1278 va.va_mask = AT_UID | AT_MODE; 1279 error = nfs3getattr(vp, &va, cr); 1280 if (error) 1281 return (error); 1282 1283 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx, 1284 vp); 1285 if (error) 1286 return (error); 1287 1288 return (nfs3setattr(vp, vap, flags, cr)); 1289 } 1290 1291 static int 1292 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1293 { 1294 int error; 1295 uint_t mask; 1296 SETATTR3args args; 1297 SETATTR3res res; 1298 int douprintf; 1299 rnode_t *rp; 1300 struct vattr va; 1301 mode_t omode; 1302 vsecattr_t *vsp; 1303 hrtime_t t; 1304 1305 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1306 mask = vap->va_mask; 1307 1308 rp = VTOR(vp); 1309 1310 /* 1311 * Only need to flush pages if there are any pages and 1312 * if the file is marked as dirty in some fashion. The 1313 * file must be flushed so that we can accurately 1314 * determine the size of the file and the cached data 1315 * after the SETATTR returns. A file is considered to 1316 * be dirty if it is either marked with RDIRTY, has 1317 * outstanding i/o's active, or is mmap'd. In this 1318 * last case, we can't tell whether there are dirty 1319 * pages, so we flush just to be sure. 1320 */ 1321 if (vn_has_cached_data(vp) && 1322 ((rp->r_flags & RDIRTY) || 1323 rp->r_count > 0 || 1324 rp->r_mapcnt > 0)) { 1325 ASSERT(vp->v_type != VCHR); 1326 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1327 if (error && (error == ENOSPC || error == EDQUOT)) { 1328 mutex_enter(&rp->r_statelock); 1329 if (!rp->r_error) 1330 rp->r_error = error; 1331 mutex_exit(&rp->r_statelock); 1332 } 1333 } 1334 1335 args.object = *RTOFH3(rp); 1336 /* 1337 * If the intent is for the server to set the times, 1338 * there is no point in have the mask indicating set mtime or 1339 * atime, because the vap values may be junk, and so result 1340 * in an overflow error. Remove these flags from the vap mask 1341 * before calling in this case, and restore them afterwards. 1342 */ 1343 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) { 1344 /* Use server times, so don't set the args time fields */ 1345 vap->va_mask &= ~(AT_ATIME | AT_MTIME); 1346 error = vattr_to_sattr3(vap, &args.new_attributes); 1347 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME)); 1348 if (mask & AT_ATIME) { 1349 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 1350 } 1351 if (mask & AT_MTIME) { 1352 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 1353 } 1354 } else { 1355 /* Either do not set times or use the client specified times */ 1356 error = vattr_to_sattr3(vap, &args.new_attributes); 1357 } 1358 1359 if (error) { 1360 /* req time field(s) overflow - return immediately */ 1361 return (error); 1362 } 1363 1364 va.va_mask = AT_MODE | AT_CTIME; 1365 error = nfs3getattr(vp, &va, cr); 1366 if (error) 1367 return (error); 1368 omode = va.va_mode; 1369 1370 tryagain: 1371 if (mask & AT_SIZE) { 1372 args.guard.check = TRUE; 1373 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec; 1374 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec; 1375 } else 1376 args.guard.check = FALSE; 1377 1378 douprintf = 1; 1379 1380 t = gethrtime(); 1381 1382 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 1383 xdr_SETATTR3args, (caddr_t)&args, 1384 xdr_SETATTR3res, (caddr_t)&res, cr, 1385 &douprintf, &res.status, 0, NULL); 1386 1387 /* 1388 * Purge the access cache and ACL cache if changing either the 1389 * owner of the file, the group owner, or the mode. These may 1390 * change the access permissions of the file, so purge old 1391 * information and start over again. 1392 */ 1393 if (mask & (AT_UID | AT_GID | AT_MODE)) { 1394 (void) nfs_access_purge_rp(rp); 1395 if (rp->r_secattr != NULL) { 1396 mutex_enter(&rp->r_statelock); 1397 vsp = rp->r_secattr; 1398 rp->r_secattr = NULL; 1399 mutex_exit(&rp->r_statelock); 1400 if (vsp != NULL) 1401 nfs_acl_free(vsp); 1402 } 1403 } 1404 1405 if (error) { 1406 PURGE_ATTRCACHE(vp); 1407 return (error); 1408 } 1409 1410 error = geterrno3(res.status); 1411 if (!error) { 1412 /* 1413 * If changing the size of the file, invalidate 1414 * any local cached data which is no longer part 1415 * of the file. We also possibly invalidate the 1416 * last page in the file. We could use 1417 * pvn_vpzero(), but this would mark the page as 1418 * modified and require it to be written back to 1419 * the server for no particularly good reason. 1420 * This way, if we access it, then we bring it 1421 * back in. A read should be cheaper than a 1422 * write. 1423 */ 1424 if (mask & AT_SIZE) { 1425 nfs_invalidate_pages(vp, 1426 (vap->va_size & PAGEMASK), cr); 1427 } 1428 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 1429 /* 1430 * Some servers will change the mode to clear the setuid 1431 * and setgid bits when changing the uid or gid. The 1432 * client needs to compensate appropriately. 1433 */ 1434 if (mask & (AT_UID | AT_GID)) { 1435 int terror; 1436 1437 va.va_mask = AT_MODE; 1438 terror = nfs3getattr(vp, &va, cr); 1439 if (!terror && 1440 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 1441 (!(mask & AT_MODE) && va.va_mode != omode))) { 1442 va.va_mask = AT_MODE; 1443 if (mask & AT_MODE) 1444 va.va_mode = vap->va_mode; 1445 else 1446 va.va_mode = omode; 1447 (void) nfs3setattr(vp, &va, 0, cr); 1448 } 1449 } 1450 } else { 1451 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 1452 /* 1453 * If we got back a "not synchronized" error, then 1454 * we need to retry with a new guard value. The 1455 * guard value used is the change time. If the 1456 * server returned post_op_attr, then we can just 1457 * retry because we have the latest attributes. 1458 * Otherwise, we issue a GETATTR to get the latest 1459 * attributes and then retry. If we couldn't get 1460 * the attributes this way either, then we give 1461 * up because we can't complete the operation as 1462 * required. 1463 */ 1464 if (res.status == NFS3ERR_NOT_SYNC) { 1465 va.va_mask = AT_CTIME; 1466 if (nfs3getattr(vp, &va, cr) == 0) 1467 goto tryagain; 1468 } 1469 PURGE_STALE_FH(error, vp, cr); 1470 } 1471 1472 return (error); 1473 } 1474 1475 static int 1476 nfs3_accessx(void *vp, int mode, cred_t *cr) 1477 { 1478 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1479 return (nfs3_access(vp, mode, 0, cr, NULL)); 1480 } 1481 1482 /* ARGSUSED */ 1483 static int 1484 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1485 { 1486 int error; 1487 ACCESS3args args; 1488 ACCESS3res res; 1489 int douprintf; 1490 uint32 acc; 1491 rnode_t *rp; 1492 cred_t *cred, *ncr, *ncrfree = NULL; 1493 failinfo_t fi; 1494 nfs_access_type_t cacc; 1495 hrtime_t t; 1496 1497 acc = 0; 1498 if (nfs_zone() != VTOMI(vp)->mi_zone) 1499 return (EIO); 1500 if (mode & VREAD) 1501 acc |= ACCESS3_READ; 1502 if (mode & VWRITE) { 1503 if (vn_is_readonly(vp) && !IS_DEVVP(vp)) 1504 return (EROFS); 1505 if (vp->v_type == VDIR) 1506 acc |= ACCESS3_DELETE; 1507 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND; 1508 } 1509 if (mode & VEXEC) { 1510 if (vp->v_type == VDIR) 1511 acc |= ACCESS3_LOOKUP; 1512 else 1513 acc |= ACCESS3_EXECUTE; 1514 } 1515 1516 rp = VTOR(vp); 1517 args.object = *VTOFH3(vp); 1518 if (vp->v_type == VDIR) { 1519 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY | 1520 ACCESS3_EXTEND | ACCESS3_LOOKUP; 1521 } else { 1522 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND | 1523 ACCESS3_EXECUTE; 1524 } 1525 fi.vp = vp; 1526 fi.fhp = (caddr_t)&args.object; 1527 fi.copyproc = nfs3copyfh; 1528 fi.lookupproc = nfs3lookup; 1529 fi.xattrdirproc = acl_getxattrdir3; 1530 1531 cred = cr; 1532 /* 1533 * ncr and ncrfree both initially 1534 * point to the memory area returned 1535 * by crnetadjust(); 1536 * ncrfree not NULL when exiting means 1537 * that we need to release it 1538 */ 1539 ncr = crnetadjust(cred); 1540 ncrfree = ncr; 1541 tryagain: 1542 if (rp->r_acache != NULL) { 1543 cacc = nfs_access_check(rp, acc, cred); 1544 if (cacc == NFS_ACCESS_ALLOWED) { 1545 if (ncrfree != NULL) 1546 crfree(ncrfree); 1547 return (0); 1548 } 1549 if (cacc == NFS_ACCESS_DENIED) { 1550 /* 1551 * If the cred can be adjusted, try again 1552 * with the new cred. 1553 */ 1554 if (ncr != NULL) { 1555 cred = ncr; 1556 ncr = NULL; 1557 goto tryagain; 1558 } 1559 if (ncrfree != NULL) 1560 crfree(ncrfree); 1561 return (EACCES); 1562 } 1563 } 1564 1565 douprintf = 1; 1566 1567 t = gethrtime(); 1568 1569 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS, 1570 xdr_ACCESS3args, (caddr_t)&args, 1571 xdr_ACCESS3res, (caddr_t)&res, cred, 1572 &douprintf, &res.status, 0, &fi); 1573 1574 if (error) { 1575 if (ncrfree != NULL) 1576 crfree(ncrfree); 1577 return (error); 1578 } 1579 1580 error = geterrno3(res.status); 1581 if (!error) { 1582 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 1583 nfs_access_cache(rp, args.access, res.resok.access, cred); 1584 /* 1585 * we just cached results with cred; if cred is the 1586 * adjusted credentials from crnetadjust, we do not want 1587 * to release them before exiting: hence setting ncrfree 1588 * to NULL 1589 */ 1590 if (cred != cr) 1591 ncrfree = NULL; 1592 if ((acc & res.resok.access) != acc) { 1593 /* 1594 * If the cred can be adjusted, try again 1595 * with the new cred. 1596 */ 1597 if (ncr != NULL) { 1598 cred = ncr; 1599 ncr = NULL; 1600 goto tryagain; 1601 } 1602 error = EACCES; 1603 } 1604 } else { 1605 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 1606 PURGE_STALE_FH(error, vp, cr); 1607 } 1608 1609 if (ncrfree != NULL) 1610 crfree(ncrfree); 1611 1612 return (error); 1613 } 1614 1615 static int nfs3_do_symlink_cache = 1; 1616 1617 /* ARGSUSED */ 1618 static int 1619 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1620 { 1621 int error; 1622 READLINK3args args; 1623 READLINK3res res; 1624 nfspath3 resdata_backup; 1625 rnode_t *rp; 1626 int douprintf; 1627 int len; 1628 failinfo_t fi; 1629 hrtime_t t; 1630 1631 /* 1632 * Can't readlink anything other than a symbolic link. 1633 */ 1634 if (vp->v_type != VLNK) 1635 return (EINVAL); 1636 if (nfs_zone() != VTOMI(vp)->mi_zone) 1637 return (EIO); 1638 1639 rp = VTOR(vp); 1640 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) { 1641 error = nfs3_validate_caches(vp, cr); 1642 if (error) 1643 return (error); 1644 mutex_enter(&rp->r_statelock); 1645 if (rp->r_symlink.contents != NULL) { 1646 error = uiomove(rp->r_symlink.contents, 1647 rp->r_symlink.len, UIO_READ, uiop); 1648 mutex_exit(&rp->r_statelock); 1649 return (error); 1650 } 1651 mutex_exit(&rp->r_statelock); 1652 } 1653 1654 args.symlink = *VTOFH3(vp); 1655 fi.vp = vp; 1656 fi.fhp = (caddr_t)&args.symlink; 1657 fi.copyproc = nfs3copyfh; 1658 fi.lookupproc = nfs3lookup; 1659 fi.xattrdirproc = acl_getxattrdir3; 1660 1661 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1662 1663 resdata_backup = res.resok.data; 1664 1665 douprintf = 1; 1666 1667 t = gethrtime(); 1668 1669 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK, 1670 xdr_nfs_fh3, (caddr_t)&args, 1671 xdr_READLINK3res, (caddr_t)&res, cr, 1672 &douprintf, &res.status, 0, &fi); 1673 1674 if (res.resok.data == nfs3nametoolong) 1675 error = EINVAL; 1676 1677 if (error) { 1678 kmem_free(resdata_backup, MAXPATHLEN); 1679 return (error); 1680 } 1681 1682 error = geterrno3(res.status); 1683 if (!error) { 1684 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t, 1685 cr); 1686 len = strlen(res.resok.data); 1687 error = uiomove(res.resok.data, len, UIO_READ, uiop); 1688 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) { 1689 mutex_enter(&rp->r_statelock); 1690 if (rp->r_symlink.contents == NULL) { 1691 rp->r_symlink.contents = res.resok.data; 1692 rp->r_symlink.len = len; 1693 rp->r_symlink.size = MAXPATHLEN; 1694 mutex_exit(&rp->r_statelock); 1695 } else { 1696 mutex_exit(&rp->r_statelock); 1697 1698 kmem_free((void *)res.resok.data, MAXPATHLEN); 1699 } 1700 } else { 1701 kmem_free((void *)res.resok.data, MAXPATHLEN); 1702 } 1703 } else { 1704 nfs3_cache_post_op_attr(vp, 1705 &res.resfail.symlink_attributes, t, cr); 1706 PURGE_STALE_FH(error, vp, cr); 1707 1708 kmem_free((void *)res.resok.data, MAXPATHLEN); 1709 1710 } 1711 1712 /* 1713 * The over the wire error for attempting to readlink something 1714 * other than a symbolic link is ENXIO. However, we need to 1715 * return EINVAL instead of ENXIO, so we map it here. 1716 */ 1717 return (error == ENXIO ? EINVAL : error); 1718 } 1719 1720 /* 1721 * Flush local dirty pages to stable storage on the server. 1722 * 1723 * If FNODSYNC is specified, then there is nothing to do because 1724 * metadata changes are not cached on the client before being 1725 * sent to the server. 1726 */ 1727 /* ARGSUSED */ 1728 static int 1729 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1730 { 1731 int error; 1732 1733 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1734 return (0); 1735 if (nfs_zone() != VTOMI(vp)->mi_zone) 1736 return (EIO); 1737 1738 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 1739 if (!error) 1740 error = VTOR(vp)->r_error; 1741 return (error); 1742 } 1743 1744 /* 1745 * Weirdness: if the file was removed or the target of a rename 1746 * operation while it was open, it got renamed instead. Here we 1747 * remove the renamed file. 1748 */ 1749 /* ARGSUSED */ 1750 static void 1751 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1752 { 1753 rnode_t *rp; 1754 1755 ASSERT(vp != DNLC_NO_VNODE); 1756 1757 /* 1758 * If this is coming from the wrong zone, we let someone in the right 1759 * zone take care of it asynchronously. We can get here due to 1760 * VN_RELE() being called from pageout() or fsflush(). This call may 1761 * potentially turn into an expensive no-op if, for instance, v_count 1762 * gets incremented in the meantime, but it's still correct. 1763 */ 1764 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1765 nfs_async_inactive(vp, cr, nfs3_inactive); 1766 return; 1767 } 1768 1769 rp = VTOR(vp); 1770 redo: 1771 if (rp->r_unldvp != NULL) { 1772 /* 1773 * Save the vnode pointer for the directory where the 1774 * unlinked-open file got renamed, then set it to NULL 1775 * to prevent another thread from getting here before 1776 * we're done with the remove. While we have the 1777 * statelock, make local copies of the pertinent rnode 1778 * fields. If we weren't to do this in an atomic way, the 1779 * the unl* fields could become inconsistent with respect 1780 * to each other due to a race condition between this 1781 * code and nfs_remove(). See bug report 1034328. 1782 */ 1783 mutex_enter(&rp->r_statelock); 1784 if (rp->r_unldvp != NULL) { 1785 vnode_t *unldvp; 1786 char *unlname; 1787 cred_t *unlcred; 1788 REMOVE3args args; 1789 REMOVE3res res; 1790 int douprintf; 1791 int error; 1792 hrtime_t t; 1793 1794 unldvp = rp->r_unldvp; 1795 rp->r_unldvp = NULL; 1796 unlname = rp->r_unlname; 1797 rp->r_unlname = NULL; 1798 unlcred = rp->r_unlcred; 1799 rp->r_unlcred = NULL; 1800 mutex_exit(&rp->r_statelock); 1801 1802 /* 1803 * If there are any dirty pages left, then flush 1804 * them. This is unfortunate because they just 1805 * may get thrown away during the remove operation, 1806 * but we have to do this for correctness. 1807 */ 1808 if (vn_has_cached_data(vp) && 1809 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1810 ASSERT(vp->v_type != VCHR); 1811 error = nfs3_putpage(vp, (offset_t)0, 0, 0, 1812 cr, ct); 1813 if (error) { 1814 mutex_enter(&rp->r_statelock); 1815 if (!rp->r_error) 1816 rp->r_error = error; 1817 mutex_exit(&rp->r_statelock); 1818 } 1819 } 1820 1821 /* 1822 * Do the remove operation on the renamed file 1823 */ 1824 setdiropargs3(&args.object, unlname, unldvp); 1825 1826 douprintf = 1; 1827 1828 t = gethrtime(); 1829 1830 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE, 1831 xdr_diropargs3, (caddr_t)&args, 1832 xdr_REMOVE3res, (caddr_t)&res, unlcred, 1833 &douprintf, &res.status, 0, NULL); 1834 1835 if (error) { 1836 PURGE_ATTRCACHE(unldvp); 1837 } else { 1838 error = geterrno3(res.status); 1839 if (!error) { 1840 nfs3_cache_wcc_data(unldvp, 1841 &res.resok.dir_wcc, t, cr); 1842 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1843 nfs_purge_rddir_cache(unldvp); 1844 } else { 1845 nfs3_cache_wcc_data(unldvp, 1846 &res.resfail.dir_wcc, t, cr); 1847 PURGE_STALE_FH(error, unldvp, cr); 1848 } 1849 } 1850 1851 /* 1852 * Release stuff held for the remove 1853 */ 1854 VN_RELE(unldvp); 1855 kmem_free(unlname, MAXNAMELEN); 1856 crfree(unlcred); 1857 goto redo; 1858 } 1859 mutex_exit(&rp->r_statelock); 1860 } 1861 1862 rp_addfree(rp, cr); 1863 } 1864 1865 /* 1866 * Remote file system operations having to do with directory manipulation. 1867 */ 1868 1869 /* ARGSUSED */ 1870 static int 1871 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1872 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1873 int *direntflags, pathname_t *realpnp) 1874 { 1875 int error; 1876 vnode_t *vp; 1877 vnode_t *avp = NULL; 1878 rnode_t *drp; 1879 1880 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1881 return (EPERM); 1882 1883 drp = VTOR(dvp); 1884 1885 /* 1886 * Are we looking up extended attributes? If so, "dvp" is 1887 * the file or directory for which we want attributes, and 1888 * we need a lookup of the hidden attribute directory 1889 * before we lookup the rest of the path. 1890 */ 1891 if (flags & LOOKUP_XATTR) { 1892 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1893 mntinfo_t *mi; 1894 1895 mi = VTOMI(dvp); 1896 if (!(mi->mi_flags & MI_EXTATTR)) 1897 return (EINVAL); 1898 1899 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1900 return (EINTR); 1901 1902 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1903 if (avp == NULL) 1904 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0); 1905 else 1906 error = 0; 1907 1908 nfs_rw_exit(&drp->r_rwlock); 1909 1910 if (error) { 1911 if (mi->mi_flags & MI_EXTATTR) 1912 return (error); 1913 return (EINVAL); 1914 } 1915 dvp = avp; 1916 drp = VTOR(dvp); 1917 } 1918 1919 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1920 error = EINTR; 1921 goto out; 1922 } 1923 1924 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1925 1926 nfs_rw_exit(&drp->r_rwlock); 1927 1928 /* 1929 * If vnode is a device, create special vnode. 1930 */ 1931 if (!error && IS_DEVVP(*vpp)) { 1932 vp = *vpp; 1933 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1934 VN_RELE(vp); 1935 } 1936 1937 out: 1938 if (avp != NULL) 1939 VN_RELE(avp); 1940 1941 return (error); 1942 } 1943 1944 static int nfs3_lookup_neg_cache = 1; 1945 1946 #ifdef DEBUG 1947 static int nfs3_lookup_dnlc_hits = 0; 1948 static int nfs3_lookup_dnlc_misses = 0; 1949 static int nfs3_lookup_dnlc_neg_hits = 0; 1950 static int nfs3_lookup_dnlc_disappears = 0; 1951 static int nfs3_lookup_dnlc_lookups = 0; 1952 #endif 1953 1954 /* ARGSUSED */ 1955 int 1956 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1957 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1958 { 1959 int error; 1960 rnode_t *drp; 1961 1962 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1963 /* 1964 * If lookup is for "", just return dvp. Don't need 1965 * to send it over the wire, look it up in the dnlc, 1966 * or perform any access checks. 1967 */ 1968 if (*nm == '\0') { 1969 VN_HOLD(dvp); 1970 *vpp = dvp; 1971 return (0); 1972 } 1973 1974 /* 1975 * Can't do lookups in non-directories. 1976 */ 1977 if (dvp->v_type != VDIR) 1978 return (ENOTDIR); 1979 1980 /* 1981 * If we're called with RFSCALL_SOFT, it's important that 1982 * the only rfscall is one we make directly; if we permit 1983 * an access call because we're looking up "." or validating 1984 * a dnlc hit, we'll deadlock because that rfscall will not 1985 * have the RFSCALL_SOFT set. 1986 */ 1987 if (rfscall_flags & RFSCALL_SOFT) 1988 goto callit; 1989 1990 /* 1991 * If lookup is for ".", just return dvp. Don't need 1992 * to send it over the wire or look it up in the dnlc, 1993 * just need to check access. 1994 */ 1995 if (strcmp(nm, ".") == 0) { 1996 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 1997 if (error) 1998 return (error); 1999 VN_HOLD(dvp); 2000 *vpp = dvp; 2001 return (0); 2002 } 2003 2004 drp = VTOR(dvp); 2005 if (!(drp->r_flags & RLOOKUP)) { 2006 mutex_enter(&drp->r_statelock); 2007 drp->r_flags |= RLOOKUP; 2008 mutex_exit(&drp->r_statelock); 2009 } 2010 2011 /* 2012 * Lookup this name in the DNLC. If there was a valid entry, 2013 * then return the results of the lookup. 2014 */ 2015 error = nfs3lookup_dnlc(dvp, nm, vpp, cr); 2016 if (error || *vpp != NULL) 2017 return (error); 2018 2019 callit: 2020 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags); 2021 2022 return (error); 2023 } 2024 2025 static int 2026 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 2027 { 2028 int error; 2029 vnode_t *vp; 2030 2031 ASSERT(*nm != '\0'); 2032 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2033 /* 2034 * Lookup this name in the DNLC. If successful, then validate 2035 * the caches and then recheck the DNLC. The DNLC is rechecked 2036 * just in case this entry got invalidated during the call 2037 * to nfs3_validate_caches. 2038 * 2039 * An assumption is being made that it is safe to say that a 2040 * file exists which may not on the server. Any operations to 2041 * the server will fail with ESTALE. 2042 */ 2043 #ifdef DEBUG 2044 nfs3_lookup_dnlc_lookups++; 2045 #endif 2046 vp = dnlc_lookup(dvp, nm); 2047 if (vp != NULL) { 2048 VN_RELE(vp); 2049 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 2050 PURGE_ATTRCACHE(dvp); 2051 } 2052 error = nfs3_validate_caches(dvp, cr); 2053 if (error) 2054 return (error); 2055 vp = dnlc_lookup(dvp, nm); 2056 if (vp != NULL) { 2057 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2058 if (error) { 2059 VN_RELE(vp); 2060 return (error); 2061 } 2062 if (vp == DNLC_NO_VNODE) { 2063 VN_RELE(vp); 2064 #ifdef DEBUG 2065 nfs3_lookup_dnlc_neg_hits++; 2066 #endif 2067 return (ENOENT); 2068 } 2069 *vpp = vp; 2070 #ifdef DEBUG 2071 nfs3_lookup_dnlc_hits++; 2072 #endif 2073 return (0); 2074 } 2075 #ifdef DEBUG 2076 nfs3_lookup_dnlc_disappears++; 2077 #endif 2078 } 2079 #ifdef DEBUG 2080 else 2081 nfs3_lookup_dnlc_misses++; 2082 #endif 2083 2084 *vpp = NULL; 2085 2086 return (0); 2087 } 2088 2089 static int 2090 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 2091 int rfscall_flags) 2092 { 2093 int error; 2094 LOOKUP3args args; 2095 LOOKUP3vres res; 2096 int douprintf; 2097 struct vattr vattr; 2098 struct vattr dvattr; 2099 vnode_t *vp; 2100 failinfo_t fi; 2101 hrtime_t t; 2102 2103 ASSERT(*nm != '\0'); 2104 ASSERT(dvp->v_type == VDIR); 2105 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2106 2107 setdiropargs3(&args.what, nm, dvp); 2108 2109 fi.vp = dvp; 2110 fi.fhp = (caddr_t)&args.what.dir; 2111 fi.copyproc = nfs3copyfh; 2112 fi.lookupproc = nfs3lookup; 2113 fi.xattrdirproc = acl_getxattrdir3; 2114 res.obj_attributes.fres.vp = dvp; 2115 res.obj_attributes.fres.vap = &vattr; 2116 res.dir_attributes.fres.vp = dvp; 2117 res.dir_attributes.fres.vap = &dvattr; 2118 2119 douprintf = 1; 2120 2121 t = gethrtime(); 2122 2123 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP, 2124 xdr_diropargs3, (caddr_t)&args, 2125 xdr_LOOKUP3vres, (caddr_t)&res, cr, 2126 &douprintf, &res.status, rfscall_flags, &fi); 2127 2128 if (error) 2129 return (error); 2130 2131 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr); 2132 2133 error = geterrno3(res.status); 2134 if (error) { 2135 PURGE_STALE_FH(error, dvp, cr); 2136 if (error == ENOENT && nfs3_lookup_neg_cache) 2137 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 2138 return (error); 2139 } 2140 2141 if (res.obj_attributes.attributes) { 2142 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap, 2143 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2144 } else { 2145 vp = makenfs3node_va(&res.object, NULL, 2146 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2147 if (vp->v_type == VNON) { 2148 vattr.va_mask = AT_TYPE; 2149 error = nfs3getattr(vp, &vattr, cr); 2150 if (error) { 2151 VN_RELE(vp); 2152 return (error); 2153 } 2154 vp->v_type = vattr.va_type; 2155 } 2156 } 2157 2158 if (!(rfscall_flags & RFSCALL_SOFT)) 2159 dnlc_update(dvp, nm, vp); 2160 2161 *vpp = vp; 2162 2163 return (error); 2164 } 2165 2166 #ifdef DEBUG 2167 static int nfs3_create_misses = 0; 2168 #endif 2169 2170 /* ARGSUSED */ 2171 static int 2172 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2173 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 2174 vsecattr_t *vsecp) 2175 { 2176 int error; 2177 vnode_t *vp; 2178 rnode_t *rp; 2179 struct vattr vattr; 2180 rnode_t *drp; 2181 vnode_t *tempvp; 2182 2183 drp = VTOR(dvp); 2184 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2185 return (EPERM); 2186 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2187 return (EINTR); 2188 2189 top: 2190 /* 2191 * We make a copy of the attributes because the caller does not 2192 * expect us to change what va points to. 2193 */ 2194 vattr = *va; 2195 2196 /* 2197 * If the pathname is "", just use dvp. Don't need 2198 * to send it over the wire, look it up in the dnlc, 2199 * or perform any access checks. 2200 */ 2201 if (*nm == '\0') { 2202 error = 0; 2203 VN_HOLD(dvp); 2204 vp = dvp; 2205 /* 2206 * If the pathname is ".", just use dvp. Don't need 2207 * to send it over the wire or look it up in the dnlc, 2208 * just need to check access. 2209 */ 2210 } else if (strcmp(nm, ".") == 0) { 2211 error = nfs3_access(dvp, VEXEC, 0, cr, ct); 2212 if (error) { 2213 nfs_rw_exit(&drp->r_rwlock); 2214 return (error); 2215 } 2216 VN_HOLD(dvp); 2217 vp = dvp; 2218 /* 2219 * We need to go over the wire, just to be sure whether the 2220 * file exists or not. Using the DNLC can be dangerous in 2221 * this case when making a decision regarding existence. 2222 */ 2223 } else { 2224 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0); 2225 } 2226 if (!error) { 2227 if (exclusive == EXCL) 2228 error = EEXIST; 2229 else if (vp->v_type == VDIR && (mode & VWRITE)) 2230 error = EISDIR; 2231 else { 2232 /* 2233 * If vnode is a device, create special vnode. 2234 */ 2235 if (IS_DEVVP(vp)) { 2236 tempvp = vp; 2237 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2238 VN_RELE(tempvp); 2239 } 2240 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 2241 if ((vattr.va_mask & AT_SIZE) && 2242 vp->v_type == VREG) { 2243 rp = VTOR(vp); 2244 /* 2245 * Check here for large file handled 2246 * by LF-unaware process (as 2247 * ufs_create() does) 2248 */ 2249 if (!(lfaware & FOFFMAX)) { 2250 mutex_enter(&rp->r_statelock); 2251 if (rp->r_size > MAXOFF32_T) 2252 error = EOVERFLOW; 2253 mutex_exit(&rp->r_statelock); 2254 } 2255 if (!error) { 2256 vattr.va_mask = AT_SIZE; 2257 error = nfs3setattr(vp, 2258 &vattr, 0, cr); 2259 } 2260 } 2261 } 2262 } 2263 nfs_rw_exit(&drp->r_rwlock); 2264 if (error) { 2265 VN_RELE(vp); 2266 } else { 2267 /* 2268 * existing file got truncated, notify. 2269 */ 2270 vnevent_create(vp, ct); 2271 *vpp = vp; 2272 } 2273 return (error); 2274 } 2275 2276 dnlc_remove(dvp, nm); 2277 2278 /* 2279 * Decide what the group-id of the created file should be. 2280 * Set it in attribute list as advisory... 2281 */ 2282 error = setdirgid(dvp, &vattr.va_gid, cr); 2283 if (error) { 2284 nfs_rw_exit(&drp->r_rwlock); 2285 return (error); 2286 } 2287 vattr.va_mask |= AT_GID; 2288 2289 ASSERT(vattr.va_mask & AT_TYPE); 2290 if (vattr.va_type == VREG) { 2291 ASSERT(vattr.va_mask & AT_MODE); 2292 if (MANDMODE(vattr.va_mode)) { 2293 nfs_rw_exit(&drp->r_rwlock); 2294 return (EACCES); 2295 } 2296 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr, 2297 lfaware); 2298 /* 2299 * If this is not an exclusive create, then the CREATE 2300 * request will be made with the GUARDED mode set. This 2301 * means that the server will return EEXIST if the file 2302 * exists. The file could exist because of a retransmitted 2303 * request. In this case, we recover by starting over and 2304 * checking to see whether the file exists. This second 2305 * time through it should and a CREATE request will not be 2306 * sent. 2307 * 2308 * This handles the problem of a dangling CREATE request 2309 * which contains attributes which indicate that the file 2310 * should be truncated. This retransmitted request could 2311 * possibly truncate valid data in the file if not caught 2312 * by the duplicate request mechanism on the server or if 2313 * not caught by other means. The scenario is: 2314 * 2315 * Client transmits CREATE request with size = 0 2316 * Client times out, retransmits request. 2317 * Response to the first request arrives from the server 2318 * and the client proceeds on. 2319 * Client writes data to the file. 2320 * The server now processes retransmitted CREATE request 2321 * and truncates file. 2322 * 2323 * The use of the GUARDED CREATE request prevents this from 2324 * happening because the retransmitted CREATE would fail 2325 * with EEXIST and would not truncate the file. 2326 */ 2327 if (error == EEXIST && exclusive == NONEXCL) { 2328 #ifdef DEBUG 2329 nfs3_create_misses++; 2330 #endif 2331 goto top; 2332 } 2333 nfs_rw_exit(&drp->r_rwlock); 2334 return (error); 2335 } 2336 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 2337 nfs_rw_exit(&drp->r_rwlock); 2338 return (error); 2339 } 2340 2341 /* ARGSUSED */ 2342 static int 2343 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2344 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 2345 { 2346 int error; 2347 CREATE3args args; 2348 CREATE3res res; 2349 int douprintf; 2350 vnode_t *vp; 2351 struct vattr vattr; 2352 nfstime3 *verfp; 2353 rnode_t *rp; 2354 timestruc_t now; 2355 hrtime_t t; 2356 2357 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2358 setdiropargs3(&args.where, nm, dvp); 2359 if (exclusive == EXCL) { 2360 args.how.mode = EXCLUSIVE; 2361 /* 2362 * Construct the create verifier. This verifier needs 2363 * to be unique between different clients. It also needs 2364 * to vary for each exclusive create request generated 2365 * from the client to the server. 2366 * 2367 * The first attempt is made to use the hostid and a 2368 * unique number on the client. If the hostid has not 2369 * been set, the high resolution time that the exclusive 2370 * create request is being made is used. This will work 2371 * unless two different clients, both with the hostid 2372 * not set, attempt an exclusive create request on the 2373 * same file, at exactly the same clock time. The 2374 * chances of this happening seem small enough to be 2375 * reasonable. 2376 */ 2377 verfp = (nfstime3 *)&args.how.createhow3_u.verf; 2378 verfp->seconds = nfs_atoi(hw_serial); 2379 if (verfp->seconds != 0) 2380 verfp->nseconds = newnum(); 2381 else { 2382 gethrestime(&now); 2383 verfp->seconds = now.tv_sec; 2384 verfp->nseconds = now.tv_nsec; 2385 } 2386 /* 2387 * Since the server will use this value for the mtime, 2388 * make sure that it can't overflow. Zero out the MSB. 2389 * The actual value does not matter here, only its uniqeness. 2390 */ 2391 verfp->seconds %= INT32_MAX; 2392 } else { 2393 /* 2394 * Issue the non-exclusive create in guarded mode. This 2395 * may result in some false EEXIST responses for 2396 * retransmitted requests, but these will be handled at 2397 * a higher level. By using GUARDED, duplicate requests 2398 * to do file truncation and possible access problems 2399 * can be avoided. 2400 */ 2401 args.how.mode = GUARDED; 2402 error = vattr_to_sattr3(va, 2403 &args.how.createhow3_u.obj_attributes); 2404 if (error) { 2405 /* req time field(s) overflow - return immediately */ 2406 return (error); 2407 } 2408 } 2409 2410 douprintf = 1; 2411 2412 t = gethrtime(); 2413 2414 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE, 2415 xdr_CREATE3args, (caddr_t)&args, 2416 xdr_CREATE3res, (caddr_t)&res, cr, 2417 &douprintf, &res.status, 0, NULL); 2418 2419 if (error) { 2420 PURGE_ATTRCACHE(dvp); 2421 return (error); 2422 } 2423 2424 error = geterrno3(res.status); 2425 if (!error) { 2426 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2427 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2428 nfs_purge_rddir_cache(dvp); 2429 2430 /* 2431 * On exclusive create the times need to be explicitly 2432 * set to clear any potential verifier that may be stored 2433 * in one of these fields (see comment below). This 2434 * is done here to cover the case where no post op attrs 2435 * were returned or a 'invalid' time was returned in 2436 * the attributes. 2437 */ 2438 if (exclusive == EXCL) 2439 va->va_mask |= (AT_MTIME | AT_ATIME); 2440 2441 if (!res.resok.obj.handle_follows) { 2442 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2443 if (error) 2444 return (error); 2445 } else { 2446 if (res.resok.obj_attributes.attributes) { 2447 vp = makenfs3node(&res.resok.obj.handle, 2448 &res.resok.obj_attributes.attr, 2449 dvp->v_vfsp, t, cr, NULL, NULL); 2450 } else { 2451 vp = makenfs3node(&res.resok.obj.handle, NULL, 2452 dvp->v_vfsp, t, cr, NULL, NULL); 2453 2454 /* 2455 * On an exclusive create, it is possible 2456 * that attributes were returned but those 2457 * postop attributes failed to decode 2458 * properly. If this is the case, 2459 * then most likely the atime or mtime 2460 * were invalid for our client; this 2461 * is caused by the server storing the 2462 * create verifier in one of the time 2463 * fields(most likely mtime). 2464 * So... we are going to setattr just the 2465 * atime/mtime to clear things up. 2466 */ 2467 if (exclusive == EXCL) { 2468 if (error = 2469 nfs3excl_create_settimes(vp, 2470 va, cr)) { 2471 /* 2472 * Setting the times failed. 2473 * Remove the file and return 2474 * the error. 2475 */ 2476 VN_RELE(vp); 2477 (void) nfs3_remove(dvp, 2478 nm, cr, NULL, 0); 2479 return (error); 2480 } 2481 } 2482 2483 /* 2484 * This handles the non-exclusive case 2485 * and the exclusive case where no post op 2486 * attrs were returned. 2487 */ 2488 if (vp->v_type == VNON) { 2489 vattr.va_mask = AT_TYPE; 2490 error = nfs3getattr(vp, &vattr, cr); 2491 if (error) { 2492 VN_RELE(vp); 2493 return (error); 2494 } 2495 vp->v_type = vattr.va_type; 2496 } 2497 } 2498 dnlc_update(dvp, nm, vp); 2499 } 2500 2501 rp = VTOR(vp); 2502 2503 /* 2504 * Check here for large file handled by 2505 * LF-unaware process (as ufs_create() does) 2506 */ 2507 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG && 2508 !(lfaware & FOFFMAX)) { 2509 mutex_enter(&rp->r_statelock); 2510 if (rp->r_size > MAXOFF32_T) { 2511 mutex_exit(&rp->r_statelock); 2512 VN_RELE(vp); 2513 return (EOVERFLOW); 2514 } 2515 mutex_exit(&rp->r_statelock); 2516 } 2517 2518 if (exclusive == EXCL && 2519 (va->va_mask & ~(AT_GID | AT_SIZE))) { 2520 /* 2521 * If doing an exclusive create, then generate 2522 * a SETATTR to set the initial attributes. 2523 * Try to set the mtime and the atime to the 2524 * server's current time. It is somewhat 2525 * expected that these fields will be used to 2526 * store the exclusive create cookie. If not, 2527 * server implementors will need to know that 2528 * a SETATTR will follow an exclusive create 2529 * and the cookie should be destroyed if 2530 * appropriate. This work may have been done 2531 * earlier in this function if post op attrs 2532 * were not available. 2533 * 2534 * The AT_GID and AT_SIZE bits are turned off 2535 * so that the SETATTR request will not attempt 2536 * to process these. The gid will be set 2537 * separately if appropriate. The size is turned 2538 * off because it is assumed that a new file will 2539 * be created empty and if the file wasn't empty, 2540 * then the exclusive create will have failed 2541 * because the file must have existed already. 2542 * Therefore, no truncate operation is needed. 2543 */ 2544 va->va_mask &= ~(AT_GID | AT_SIZE); 2545 error = nfs3setattr(vp, va, 0, cr); 2546 if (error) { 2547 /* 2548 * Couldn't correct the attributes of 2549 * the newly created file and the 2550 * attributes are wrong. Remove the 2551 * file and return an error to the 2552 * application. 2553 */ 2554 VN_RELE(vp); 2555 (void) nfs3_remove(dvp, nm, cr, NULL, 0); 2556 return (error); 2557 } 2558 } 2559 2560 if (va->va_gid != rp->r_attr.va_gid) { 2561 /* 2562 * If the gid on the file isn't right, then 2563 * generate a SETATTR to attempt to change 2564 * it. This may or may not work, depending 2565 * upon the server's semantics for allowing 2566 * file ownership changes. 2567 */ 2568 va->va_mask = AT_GID; 2569 (void) nfs3setattr(vp, va, 0, cr); 2570 } 2571 2572 /* 2573 * If vnode is a device create special vnode 2574 */ 2575 if (IS_DEVVP(vp)) { 2576 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2577 VN_RELE(vp); 2578 } else 2579 *vpp = vp; 2580 } else { 2581 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2582 PURGE_STALE_FH(error, dvp, cr); 2583 } 2584 2585 return (error); 2586 } 2587 2588 /* 2589 * Special setattr function to take care of rest of atime/mtime 2590 * after successful exclusive create. This function exists to avoid 2591 * handling attributes from the server; exclusive the atime/mtime fields 2592 * may be 'invalid' in client's view and therefore can not be trusted. 2593 */ 2594 static int 2595 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr) 2596 { 2597 int error; 2598 uint_t mask; 2599 SETATTR3args args; 2600 SETATTR3res res; 2601 int douprintf; 2602 rnode_t *rp; 2603 hrtime_t t; 2604 2605 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 2606 /* save the caller's mask so that it can be reset later */ 2607 mask = vap->va_mask; 2608 2609 rp = VTOR(vp); 2610 2611 args.object = *RTOFH3(rp); 2612 args.guard.check = FALSE; 2613 2614 /* Use the mask to initialize the arguments */ 2615 vap->va_mask = 0; 2616 error = vattr_to_sattr3(vap, &args.new_attributes); 2617 2618 /* We want to set just atime/mtime on this request */ 2619 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 2620 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 2621 2622 douprintf = 1; 2623 2624 t = gethrtime(); 2625 2626 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 2627 xdr_SETATTR3args, (caddr_t)&args, 2628 xdr_SETATTR3res, (caddr_t)&res, cr, 2629 &douprintf, &res.status, 0, NULL); 2630 2631 if (error) { 2632 vap->va_mask = mask; 2633 return (error); 2634 } 2635 2636 error = geterrno3(res.status); 2637 if (!error) { 2638 /* 2639 * It is important to pick up the attributes. 2640 * Since this is the exclusive create path, the 2641 * attributes on the initial create were ignored 2642 * and we need these to have the correct info. 2643 */ 2644 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 2645 /* 2646 * No need to do the atime/mtime work again so clear 2647 * the bits. 2648 */ 2649 mask &= ~(AT_ATIME | AT_MTIME); 2650 } else { 2651 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 2652 } 2653 2654 vap->va_mask = mask; 2655 2656 return (error); 2657 } 2658 2659 /* ARGSUSED */ 2660 static int 2661 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2662 int mode, vnode_t **vpp, cred_t *cr) 2663 { 2664 int error; 2665 MKNOD3args args; 2666 MKNOD3res res; 2667 int douprintf; 2668 vnode_t *vp; 2669 struct vattr vattr; 2670 hrtime_t t; 2671 2672 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2673 switch (va->va_type) { 2674 case VCHR: 2675 case VBLK: 2676 setdiropargs3(&args.where, nm, dvp); 2677 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK; 2678 error = vattr_to_sattr3(va, 2679 &args.what.mknoddata3_u.device.dev_attributes); 2680 if (error) { 2681 /* req time field(s) overflow - return immediately */ 2682 return (error); 2683 } 2684 args.what.mknoddata3_u.device.spec.specdata1 = 2685 getmajor(va->va_rdev); 2686 args.what.mknoddata3_u.device.spec.specdata2 = 2687 getminor(va->va_rdev); 2688 break; 2689 2690 case VFIFO: 2691 case VSOCK: 2692 setdiropargs3(&args.where, nm, dvp); 2693 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK; 2694 error = vattr_to_sattr3(va, 2695 &args.what.mknoddata3_u.pipe_attributes); 2696 if (error) { 2697 /* req time field(s) overflow - return immediately */ 2698 return (error); 2699 } 2700 break; 2701 2702 default: 2703 return (EINVAL); 2704 } 2705 2706 douprintf = 1; 2707 2708 t = gethrtime(); 2709 2710 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD, 2711 xdr_MKNOD3args, (caddr_t)&args, 2712 xdr_MKNOD3res, (caddr_t)&res, cr, 2713 &douprintf, &res.status, 0, NULL); 2714 2715 if (error) { 2716 PURGE_ATTRCACHE(dvp); 2717 return (error); 2718 } 2719 2720 error = geterrno3(res.status); 2721 if (!error) { 2722 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2723 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2724 nfs_purge_rddir_cache(dvp); 2725 2726 if (!res.resok.obj.handle_follows) { 2727 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2728 if (error) 2729 return (error); 2730 } else { 2731 if (res.resok.obj_attributes.attributes) { 2732 vp = makenfs3node(&res.resok.obj.handle, 2733 &res.resok.obj_attributes.attr, 2734 dvp->v_vfsp, t, cr, NULL, NULL); 2735 } else { 2736 vp = makenfs3node(&res.resok.obj.handle, NULL, 2737 dvp->v_vfsp, t, cr, NULL, NULL); 2738 if (vp->v_type == VNON) { 2739 vattr.va_mask = AT_TYPE; 2740 error = nfs3getattr(vp, &vattr, cr); 2741 if (error) { 2742 VN_RELE(vp); 2743 return (error); 2744 } 2745 vp->v_type = vattr.va_type; 2746 } 2747 2748 } 2749 dnlc_update(dvp, nm, vp); 2750 } 2751 2752 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 2753 va->va_mask = AT_GID; 2754 (void) nfs3setattr(vp, va, 0, cr); 2755 } 2756 2757 /* 2758 * If vnode is a device create special vnode 2759 */ 2760 if (IS_DEVVP(vp)) { 2761 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2762 VN_RELE(vp); 2763 } else 2764 *vpp = vp; 2765 } else { 2766 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2767 PURGE_STALE_FH(error, dvp, cr); 2768 } 2769 return (error); 2770 } 2771 2772 /* 2773 * Weirdness: if the vnode to be removed is open 2774 * we rename it instead of removing it and nfs_inactive 2775 * will remove the new name. 2776 */ 2777 /* ARGSUSED */ 2778 static int 2779 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2780 { 2781 int error; 2782 REMOVE3args args; 2783 REMOVE3res res; 2784 vnode_t *vp; 2785 char *tmpname; 2786 int douprintf; 2787 rnode_t *rp; 2788 rnode_t *drp; 2789 hrtime_t t; 2790 2791 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2792 return (EPERM); 2793 drp = VTOR(dvp); 2794 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2795 return (EINTR); 2796 2797 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2798 if (error) { 2799 nfs_rw_exit(&drp->r_rwlock); 2800 return (error); 2801 } 2802 2803 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2804 VN_RELE(vp); 2805 nfs_rw_exit(&drp->r_rwlock); 2806 return (EPERM); 2807 } 2808 2809 /* 2810 * First just remove the entry from the name cache, as it 2811 * is most likely the only entry for this vp. 2812 */ 2813 dnlc_remove(dvp, nm); 2814 2815 /* 2816 * If the file has a v_count > 1 then there may be more than one 2817 * entry in the name cache due multiple links or an open file, 2818 * but we don't have the real reference count so flush all 2819 * possible entries. 2820 */ 2821 if (vp->v_count > 1) 2822 dnlc_purge_vp(vp); 2823 2824 /* 2825 * Now we have the real reference count on the vnode 2826 */ 2827 rp = VTOR(vp); 2828 mutex_enter(&rp->r_statelock); 2829 if (vp->v_count > 1 && 2830 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2831 mutex_exit(&rp->r_statelock); 2832 tmpname = newname(); 2833 error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct); 2834 if (error) 2835 kmem_free(tmpname, MAXNAMELEN); 2836 else { 2837 mutex_enter(&rp->r_statelock); 2838 if (rp->r_unldvp == NULL) { 2839 VN_HOLD(dvp); 2840 rp->r_unldvp = dvp; 2841 if (rp->r_unlcred != NULL) 2842 crfree(rp->r_unlcred); 2843 crhold(cr); 2844 rp->r_unlcred = cr; 2845 rp->r_unlname = tmpname; 2846 } else { 2847 kmem_free(rp->r_unlname, MAXNAMELEN); 2848 rp->r_unlname = tmpname; 2849 } 2850 mutex_exit(&rp->r_statelock); 2851 } 2852 } else { 2853 mutex_exit(&rp->r_statelock); 2854 /* 2855 * We need to flush any dirty pages which happen to 2856 * be hanging around before removing the file. This 2857 * shouldn't happen very often and mostly on file 2858 * systems mounted "nocto". 2859 */ 2860 if (vn_has_cached_data(vp) && 2861 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2862 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2863 if (error && (error == ENOSPC || error == EDQUOT)) { 2864 mutex_enter(&rp->r_statelock); 2865 if (!rp->r_error) 2866 rp->r_error = error; 2867 mutex_exit(&rp->r_statelock); 2868 } 2869 } 2870 2871 setdiropargs3(&args.object, nm, dvp); 2872 2873 douprintf = 1; 2874 2875 t = gethrtime(); 2876 2877 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE, 2878 xdr_diropargs3, (caddr_t)&args, 2879 xdr_REMOVE3res, (caddr_t)&res, cr, 2880 &douprintf, &res.status, 0, NULL); 2881 2882 /* 2883 * The xattr dir may be gone after last attr is removed, 2884 * so flush it from dnlc. 2885 */ 2886 if (dvp->v_flag & V_XATTRDIR) 2887 dnlc_purge_vp(dvp); 2888 2889 PURGE_ATTRCACHE(vp); 2890 2891 if (error) { 2892 PURGE_ATTRCACHE(dvp); 2893 } else { 2894 error = geterrno3(res.status); 2895 if (!error) { 2896 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, 2897 cr); 2898 if (HAVE_RDDIR_CACHE(drp)) 2899 nfs_purge_rddir_cache(dvp); 2900 } else { 2901 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, 2902 t, cr); 2903 PURGE_STALE_FH(error, dvp, cr); 2904 } 2905 } 2906 } 2907 2908 if (error == 0) { 2909 vnevent_remove(vp, dvp, nm, ct); 2910 } 2911 VN_RELE(vp); 2912 2913 nfs_rw_exit(&drp->r_rwlock); 2914 2915 return (error); 2916 } 2917 2918 /* ARGSUSED */ 2919 static int 2920 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2921 caller_context_t *ct, int flags) 2922 { 2923 int error; 2924 LINK3args args; 2925 LINK3res res; 2926 vnode_t *realvp; 2927 int douprintf; 2928 mntinfo_t *mi; 2929 rnode_t *tdrp; 2930 hrtime_t t; 2931 2932 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2933 return (EPERM); 2934 if (VOP_REALVP(svp, &realvp, ct) == 0) 2935 svp = realvp; 2936 2937 mi = VTOMI(svp); 2938 2939 if (!(mi->mi_flags & MI_LINK)) 2940 return (EOPNOTSUPP); 2941 2942 args.file = *VTOFH3(svp); 2943 setdiropargs3(&args.link, tnm, tdvp); 2944 2945 tdrp = VTOR(tdvp); 2946 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2947 return (EINTR); 2948 2949 dnlc_remove(tdvp, tnm); 2950 2951 douprintf = 1; 2952 2953 t = gethrtime(); 2954 2955 error = rfs3call(mi, NFSPROC3_LINK, 2956 xdr_LINK3args, (caddr_t)&args, 2957 xdr_LINK3res, (caddr_t)&res, cr, 2958 &douprintf, &res.status, 0, NULL); 2959 2960 if (error) { 2961 PURGE_ATTRCACHE(tdvp); 2962 PURGE_ATTRCACHE(svp); 2963 nfs_rw_exit(&tdrp->r_rwlock); 2964 return (error); 2965 } 2966 2967 error = geterrno3(res.status); 2968 2969 if (!error) { 2970 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr); 2971 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr); 2972 if (HAVE_RDDIR_CACHE(tdrp)) 2973 nfs_purge_rddir_cache(tdvp); 2974 dnlc_update(tdvp, tnm, svp); 2975 } else { 2976 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t, 2977 cr); 2978 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr); 2979 if (error == EOPNOTSUPP) { 2980 mutex_enter(&mi->mi_lock); 2981 mi->mi_flags &= ~MI_LINK; 2982 mutex_exit(&mi->mi_lock); 2983 } 2984 } 2985 2986 nfs_rw_exit(&tdrp->r_rwlock); 2987 2988 if (!error) { 2989 /* 2990 * Notify the source file of this link operation. 2991 */ 2992 vnevent_link(svp, ct); 2993 } 2994 return (error); 2995 } 2996 2997 /* ARGSUSED */ 2998 static int 2999 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3000 caller_context_t *ct, int flags) 3001 { 3002 vnode_t *realvp; 3003 3004 if (nfs_zone() != VTOMI(odvp)->mi_zone) 3005 return (EPERM); 3006 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 3007 ndvp = realvp; 3008 3009 return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct)); 3010 } 3011 3012 /* 3013 * nfs3rename does the real work of renaming in NFS Version 3. 3014 */ 3015 static int 3016 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3017 caller_context_t *ct) 3018 { 3019 int error; 3020 RENAME3args args; 3021 RENAME3res res; 3022 int douprintf; 3023 vnode_t *nvp = NULL; 3024 vnode_t *ovp = NULL; 3025 char *tmpname; 3026 rnode_t *rp; 3027 rnode_t *odrp; 3028 rnode_t *ndrp; 3029 hrtime_t t; 3030 3031 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 3032 3033 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 3034 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 3035 return (EINVAL); 3036 3037 odrp = VTOR(odvp); 3038 ndrp = VTOR(ndvp); 3039 if ((intptr_t)odrp < (intptr_t)ndrp) { 3040 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 3041 return (EINTR); 3042 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 3043 nfs_rw_exit(&odrp->r_rwlock); 3044 return (EINTR); 3045 } 3046 } else { 3047 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 3048 return (EINTR); 3049 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 3050 nfs_rw_exit(&ndrp->r_rwlock); 3051 return (EINTR); 3052 } 3053 } 3054 3055 /* 3056 * Lookup the target file. If it exists, it needs to be 3057 * checked to see whether it is a mount point and whether 3058 * it is active (open). 3059 */ 3060 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 3061 if (!error) { 3062 /* 3063 * If this file has been mounted on, then just 3064 * return busy because renaming to it would remove 3065 * the mounted file system from the name space. 3066 */ 3067 if (vn_mountedvfs(nvp) != NULL) { 3068 VN_RELE(nvp); 3069 nfs_rw_exit(&odrp->r_rwlock); 3070 nfs_rw_exit(&ndrp->r_rwlock); 3071 return (EBUSY); 3072 } 3073 3074 /* 3075 * Purge the name cache of all references to this vnode 3076 * so that we can check the reference count to infer 3077 * whether it is active or not. 3078 */ 3079 /* 3080 * First just remove the entry from the name cache, as it 3081 * is most likely the only entry for this vp. 3082 */ 3083 dnlc_remove(ndvp, nnm); 3084 /* 3085 * If the file has a v_count > 1 then there may be more 3086 * than one entry in the name cache due multiple links 3087 * or an open file, but we don't have the real reference 3088 * count so flush all possible entries. 3089 */ 3090 if (nvp->v_count > 1) 3091 dnlc_purge_vp(nvp); 3092 3093 /* 3094 * If the vnode is active and is not a directory, 3095 * arrange to rename it to a 3096 * temporary file so that it will continue to be 3097 * accessible. This implements the "unlink-open-file" 3098 * semantics for the target of a rename operation. 3099 * Before doing this though, make sure that the 3100 * source and target files are not already the same. 3101 */ 3102 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 3103 /* 3104 * Lookup the source name. 3105 */ 3106 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, 3107 cr, 0); 3108 3109 /* 3110 * The source name *should* already exist. 3111 */ 3112 if (error) { 3113 VN_RELE(nvp); 3114 nfs_rw_exit(&odrp->r_rwlock); 3115 nfs_rw_exit(&ndrp->r_rwlock); 3116 return (error); 3117 } 3118 3119 /* 3120 * Compare the two vnodes. If they are the same, 3121 * just release all held vnodes and return success. 3122 */ 3123 if (ovp == nvp) { 3124 VN_RELE(ovp); 3125 VN_RELE(nvp); 3126 nfs_rw_exit(&odrp->r_rwlock); 3127 nfs_rw_exit(&ndrp->r_rwlock); 3128 return (0); 3129 } 3130 3131 /* 3132 * Can't mix and match directories and non- 3133 * directories in rename operations. We already 3134 * know that the target is not a directory. If 3135 * the source is a directory, return an error. 3136 */ 3137 if (ovp->v_type == VDIR) { 3138 VN_RELE(ovp); 3139 VN_RELE(nvp); 3140 nfs_rw_exit(&odrp->r_rwlock); 3141 nfs_rw_exit(&ndrp->r_rwlock); 3142 return (ENOTDIR); 3143 } 3144 3145 /* 3146 * The target file exists, is not the same as 3147 * the source file, and is active. Link it 3148 * to a temporary filename to avoid having 3149 * the server removing the file completely. 3150 */ 3151 tmpname = newname(); 3152 error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0); 3153 if (error == EOPNOTSUPP) { 3154 error = nfs3_rename(ndvp, nnm, ndvp, tmpname, 3155 cr, NULL, 0); 3156 } 3157 if (error) { 3158 kmem_free(tmpname, MAXNAMELEN); 3159 VN_RELE(ovp); 3160 VN_RELE(nvp); 3161 nfs_rw_exit(&odrp->r_rwlock); 3162 nfs_rw_exit(&ndrp->r_rwlock); 3163 return (error); 3164 } 3165 rp = VTOR(nvp); 3166 mutex_enter(&rp->r_statelock); 3167 if (rp->r_unldvp == NULL) { 3168 VN_HOLD(ndvp); 3169 rp->r_unldvp = ndvp; 3170 if (rp->r_unlcred != NULL) 3171 crfree(rp->r_unlcred); 3172 crhold(cr); 3173 rp->r_unlcred = cr; 3174 rp->r_unlname = tmpname; 3175 } else { 3176 kmem_free(rp->r_unlname, MAXNAMELEN); 3177 rp->r_unlname = tmpname; 3178 } 3179 mutex_exit(&rp->r_statelock); 3180 } 3181 } 3182 3183 if (ovp == NULL) { 3184 /* 3185 * When renaming directories to be a subdirectory of a 3186 * different parent, the dnlc entry for ".." will no 3187 * longer be valid, so it must be removed. 3188 * 3189 * We do a lookup here to determine whether we are renaming 3190 * a directory and we need to check if we are renaming 3191 * an unlinked file. This might have already been done 3192 * in previous code, so we check ovp == NULL to avoid 3193 * doing it twice. 3194 */ 3195 3196 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 3197 /* 3198 * The source name *should* already exist. 3199 */ 3200 if (error) { 3201 nfs_rw_exit(&odrp->r_rwlock); 3202 nfs_rw_exit(&ndrp->r_rwlock); 3203 if (nvp) { 3204 VN_RELE(nvp); 3205 } 3206 return (error); 3207 } 3208 ASSERT(ovp != NULL); 3209 } 3210 3211 dnlc_remove(odvp, onm); 3212 dnlc_remove(ndvp, nnm); 3213 3214 setdiropargs3(&args.from, onm, odvp); 3215 setdiropargs3(&args.to, nnm, ndvp); 3216 3217 douprintf = 1; 3218 3219 t = gethrtime(); 3220 3221 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME, 3222 xdr_RENAME3args, (caddr_t)&args, 3223 xdr_RENAME3res, (caddr_t)&res, cr, 3224 &douprintf, &res.status, 0, NULL); 3225 3226 if (error) { 3227 PURGE_ATTRCACHE(odvp); 3228 PURGE_ATTRCACHE(ndvp); 3229 VN_RELE(ovp); 3230 nfs_rw_exit(&odrp->r_rwlock); 3231 nfs_rw_exit(&ndrp->r_rwlock); 3232 if (nvp) { 3233 VN_RELE(nvp); 3234 } 3235 return (error); 3236 } 3237 3238 error = geterrno3(res.status); 3239 3240 if (!error) { 3241 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr); 3242 if (HAVE_RDDIR_CACHE(odrp)) 3243 nfs_purge_rddir_cache(odvp); 3244 if (ndvp != odvp) { 3245 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr); 3246 if (HAVE_RDDIR_CACHE(ndrp)) 3247 nfs_purge_rddir_cache(ndvp); 3248 } 3249 /* 3250 * when renaming directories to be a subdirectory of a 3251 * different parent, the dnlc entry for ".." will no 3252 * longer be valid, so it must be removed 3253 */ 3254 rp = VTOR(ovp); 3255 if (ndvp != odvp) { 3256 if (ovp->v_type == VDIR) { 3257 dnlc_remove(ovp, ".."); 3258 if (HAVE_RDDIR_CACHE(rp)) 3259 nfs_purge_rddir_cache(ovp); 3260 } 3261 } 3262 3263 /* 3264 * If we are renaming the unlinked file, update the 3265 * r_unldvp and r_unlname as needed. 3266 */ 3267 mutex_enter(&rp->r_statelock); 3268 if (rp->r_unldvp != NULL) { 3269 if (strcmp(rp->r_unlname, onm) == 0) { 3270 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 3271 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 3272 3273 if (ndvp != rp->r_unldvp) { 3274 VN_RELE(rp->r_unldvp); 3275 rp->r_unldvp = ndvp; 3276 VN_HOLD(ndvp); 3277 } 3278 } 3279 } 3280 mutex_exit(&rp->r_statelock); 3281 } else { 3282 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr); 3283 if (ndvp != odvp) { 3284 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t, 3285 cr); 3286 } 3287 /* 3288 * System V defines rename to return EEXIST, not 3289 * ENOTEMPTY if the target directory is not empty. 3290 * Over the wire, the error is NFSERR_ENOTEMPTY 3291 * which geterrno maps to ENOTEMPTY. 3292 */ 3293 if (error == ENOTEMPTY) 3294 error = EEXIST; 3295 } 3296 3297 if (error == 0) { 3298 if (nvp) 3299 vnevent_rename_dest(nvp, ndvp, nnm, ct); 3300 3301 if (odvp != ndvp) 3302 vnevent_rename_dest_dir(ndvp, ct); 3303 ASSERT(ovp != NULL); 3304 vnevent_rename_src(ovp, odvp, onm, ct); 3305 } 3306 3307 if (nvp) { 3308 VN_RELE(nvp); 3309 } 3310 VN_RELE(ovp); 3311 3312 nfs_rw_exit(&odrp->r_rwlock); 3313 nfs_rw_exit(&ndrp->r_rwlock); 3314 3315 return (error); 3316 } 3317 3318 /* ARGSUSED */ 3319 static int 3320 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 3321 caller_context_t *ct, int flags, vsecattr_t *vsecp) 3322 { 3323 int error; 3324 MKDIR3args args; 3325 MKDIR3res res; 3326 int douprintf; 3327 struct vattr vattr; 3328 vnode_t *vp; 3329 rnode_t *drp; 3330 hrtime_t t; 3331 3332 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3333 return (EPERM); 3334 setdiropargs3(&args.where, nm, dvp); 3335 3336 /* 3337 * Decide what the group-id and set-gid bit of the created directory 3338 * should be. May have to do a setattr to get the gid right. 3339 */ 3340 error = setdirgid(dvp, &va->va_gid, cr); 3341 if (error) 3342 return (error); 3343 error = setdirmode(dvp, &va->va_mode, cr); 3344 if (error) 3345 return (error); 3346 va->va_mask |= AT_MODE|AT_GID; 3347 3348 error = vattr_to_sattr3(va, &args.attributes); 3349 if (error) { 3350 /* req time field(s) overflow - return immediately */ 3351 return (error); 3352 } 3353 3354 drp = VTOR(dvp); 3355 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3356 return (EINTR); 3357 3358 dnlc_remove(dvp, nm); 3359 3360 douprintf = 1; 3361 3362 t = gethrtime(); 3363 3364 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR, 3365 xdr_MKDIR3args, (caddr_t)&args, 3366 xdr_MKDIR3res, (caddr_t)&res, cr, 3367 &douprintf, &res.status, 0, NULL); 3368 3369 if (error) { 3370 PURGE_ATTRCACHE(dvp); 3371 nfs_rw_exit(&drp->r_rwlock); 3372 return (error); 3373 } 3374 3375 error = geterrno3(res.status); 3376 if (!error) { 3377 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3378 if (HAVE_RDDIR_CACHE(drp)) 3379 nfs_purge_rddir_cache(dvp); 3380 3381 if (!res.resok.obj.handle_follows) { 3382 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3383 if (error) { 3384 nfs_rw_exit(&drp->r_rwlock); 3385 return (error); 3386 } 3387 } else { 3388 if (res.resok.obj_attributes.attributes) { 3389 vp = makenfs3node(&res.resok.obj.handle, 3390 &res.resok.obj_attributes.attr, 3391 dvp->v_vfsp, t, cr, NULL, NULL); 3392 } else { 3393 vp = makenfs3node(&res.resok.obj.handle, NULL, 3394 dvp->v_vfsp, t, cr, NULL, NULL); 3395 if (vp->v_type == VNON) { 3396 vattr.va_mask = AT_TYPE; 3397 error = nfs3getattr(vp, &vattr, cr); 3398 if (error) { 3399 VN_RELE(vp); 3400 nfs_rw_exit(&drp->r_rwlock); 3401 return (error); 3402 } 3403 vp->v_type = vattr.va_type; 3404 } 3405 } 3406 dnlc_update(dvp, nm, vp); 3407 } 3408 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 3409 va->va_mask = AT_GID; 3410 (void) nfs3setattr(vp, va, 0, cr); 3411 } 3412 *vpp = vp; 3413 } else { 3414 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3415 PURGE_STALE_FH(error, dvp, cr); 3416 } 3417 3418 nfs_rw_exit(&drp->r_rwlock); 3419 3420 return (error); 3421 } 3422 3423 /* ARGSUSED */ 3424 static int 3425 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 3426 caller_context_t *ct, int flags) 3427 { 3428 int error; 3429 RMDIR3args args; 3430 RMDIR3res res; 3431 vnode_t *vp; 3432 int douprintf; 3433 rnode_t *drp; 3434 hrtime_t t; 3435 3436 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3437 return (EPERM); 3438 drp = VTOR(dvp); 3439 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3440 return (EINTR); 3441 3442 /* 3443 * Attempt to prevent a rmdir(".") from succeeding. 3444 */ 3445 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3446 if (error) { 3447 nfs_rw_exit(&drp->r_rwlock); 3448 return (error); 3449 } 3450 3451 if (vp == cdir) { 3452 VN_RELE(vp); 3453 nfs_rw_exit(&drp->r_rwlock); 3454 return (EINVAL); 3455 } 3456 3457 setdiropargs3(&args.object, nm, dvp); 3458 3459 /* 3460 * First just remove the entry from the name cache, as it 3461 * is most likely an entry for this vp. 3462 */ 3463 dnlc_remove(dvp, nm); 3464 3465 /* 3466 * If there vnode reference count is greater than one, then 3467 * there may be additional references in the DNLC which will 3468 * need to be purged. First, trying removing the entry for 3469 * the parent directory and see if that removes the additional 3470 * reference(s). If that doesn't do it, then use dnlc_purge_vp 3471 * to completely remove any references to the directory which 3472 * might still exist in the DNLC. 3473 */ 3474 if (vp->v_count > 1) { 3475 dnlc_remove(vp, ".."); 3476 if (vp->v_count > 1) 3477 dnlc_purge_vp(vp); 3478 } 3479 3480 douprintf = 1; 3481 3482 t = gethrtime(); 3483 3484 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR, 3485 xdr_diropargs3, (caddr_t)&args, 3486 xdr_RMDIR3res, (caddr_t)&res, cr, 3487 &douprintf, &res.status, 0, NULL); 3488 3489 PURGE_ATTRCACHE(vp); 3490 3491 if (error) { 3492 PURGE_ATTRCACHE(dvp); 3493 VN_RELE(vp); 3494 nfs_rw_exit(&drp->r_rwlock); 3495 return (error); 3496 } 3497 3498 error = geterrno3(res.status); 3499 if (!error) { 3500 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3501 if (HAVE_RDDIR_CACHE(drp)) 3502 nfs_purge_rddir_cache(dvp); 3503 if (HAVE_RDDIR_CACHE(VTOR(vp))) 3504 nfs_purge_rddir_cache(vp); 3505 } else { 3506 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3507 PURGE_STALE_FH(error, dvp, cr); 3508 /* 3509 * System V defines rmdir to return EEXIST, not 3510 * ENOTEMPTY if the directory is not empty. Over 3511 * the wire, the error is NFSERR_ENOTEMPTY which 3512 * geterrno maps to ENOTEMPTY. 3513 */ 3514 if (error == ENOTEMPTY) 3515 error = EEXIST; 3516 } 3517 3518 if (error == 0) { 3519 vnevent_rmdir(vp, dvp, nm, ct); 3520 } 3521 VN_RELE(vp); 3522 3523 nfs_rw_exit(&drp->r_rwlock); 3524 3525 return (error); 3526 } 3527 3528 /* ARGSUSED */ 3529 static int 3530 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 3531 caller_context_t *ct, int flags) 3532 { 3533 int error; 3534 SYMLINK3args args; 3535 SYMLINK3res res; 3536 int douprintf; 3537 mntinfo_t *mi; 3538 vnode_t *vp; 3539 rnode_t *rp; 3540 char *contents; 3541 rnode_t *drp; 3542 hrtime_t t; 3543 3544 mi = VTOMI(dvp); 3545 3546 if (nfs_zone() != mi->mi_zone) 3547 return (EPERM); 3548 if (!(mi->mi_flags & MI_SYMLINK)) 3549 return (EOPNOTSUPP); 3550 3551 setdiropargs3(&args.where, lnm, dvp); 3552 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes); 3553 if (error) { 3554 /* req time field(s) overflow - return immediately */ 3555 return (error); 3556 } 3557 args.symlink.symlink_data = tnm; 3558 3559 drp = VTOR(dvp); 3560 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3561 return (EINTR); 3562 3563 dnlc_remove(dvp, lnm); 3564 3565 douprintf = 1; 3566 3567 t = gethrtime(); 3568 3569 error = rfs3call(mi, NFSPROC3_SYMLINK, 3570 xdr_SYMLINK3args, (caddr_t)&args, 3571 xdr_SYMLINK3res, (caddr_t)&res, cr, 3572 &douprintf, &res.status, 0, NULL); 3573 3574 if (error) { 3575 PURGE_ATTRCACHE(dvp); 3576 nfs_rw_exit(&drp->r_rwlock); 3577 return (error); 3578 } 3579 3580 error = geterrno3(res.status); 3581 if (!error) { 3582 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3583 if (HAVE_RDDIR_CACHE(drp)) 3584 nfs_purge_rddir_cache(dvp); 3585 3586 if (res.resok.obj.handle_follows) { 3587 if (res.resok.obj_attributes.attributes) { 3588 vp = makenfs3node(&res.resok.obj.handle, 3589 &res.resok.obj_attributes.attr, 3590 dvp->v_vfsp, t, cr, NULL, NULL); 3591 } else { 3592 vp = makenfs3node(&res.resok.obj.handle, NULL, 3593 dvp->v_vfsp, t, cr, NULL, NULL); 3594 vp->v_type = VLNK; 3595 vp->v_rdev = 0; 3596 } 3597 dnlc_update(dvp, lnm, vp); 3598 rp = VTOR(vp); 3599 if (nfs3_do_symlink_cache && 3600 rp->r_symlink.contents == NULL) { 3601 3602 contents = kmem_alloc(MAXPATHLEN, 3603 KM_NOSLEEP); 3604 3605 if (contents != NULL) { 3606 mutex_enter(&rp->r_statelock); 3607 if (rp->r_symlink.contents == NULL) { 3608 rp->r_symlink.len = strlen(tnm); 3609 bcopy(tnm, contents, 3610 rp->r_symlink.len); 3611 rp->r_symlink.contents = 3612 contents; 3613 rp->r_symlink.size = MAXPATHLEN; 3614 mutex_exit(&rp->r_statelock); 3615 } else { 3616 mutex_exit(&rp->r_statelock); 3617 kmem_free((void *)contents, 3618 MAXPATHLEN); 3619 } 3620 } 3621 } 3622 VN_RELE(vp); 3623 } 3624 } else { 3625 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3626 PURGE_STALE_FH(error, dvp, cr); 3627 if (error == EOPNOTSUPP) { 3628 mutex_enter(&mi->mi_lock); 3629 mi->mi_flags &= ~MI_SYMLINK; 3630 mutex_exit(&mi->mi_lock); 3631 } 3632 } 3633 3634 nfs_rw_exit(&drp->r_rwlock); 3635 3636 return (error); 3637 } 3638 3639 #ifdef DEBUG 3640 static int nfs3_readdir_cache_hits = 0; 3641 static int nfs3_readdir_cache_shorts = 0; 3642 static int nfs3_readdir_cache_waits = 0; 3643 static int nfs3_readdir_cache_misses = 0; 3644 static int nfs3_readdir_readahead = 0; 3645 #endif 3646 3647 static int nfs3_shrinkreaddir = 0; 3648 3649 /* 3650 * Read directory entries. 3651 * There are some weird things to look out for here. The uio_loffset 3652 * field is either 0 or it is the offset returned from a previous 3653 * readdir. It is an opaque value used by the server to find the 3654 * correct directory block to read. The count field is the number 3655 * of blocks to read on the server. This is advisory only, the server 3656 * may return only one block's worth of entries. Entries may be compressed 3657 * on the server. 3658 */ 3659 /* ARGSUSED */ 3660 static int 3661 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 3662 caller_context_t *ct, int flags) 3663 { 3664 int error; 3665 size_t count; 3666 rnode_t *rp; 3667 rddir_cache *rdc; 3668 rddir_cache *nrdc; 3669 rddir_cache *rrdc; 3670 #ifdef DEBUG 3671 int missed; 3672 #endif 3673 int doreadahead; 3674 rddir_cache srdc; 3675 avl_index_t where; 3676 3677 if (nfs_zone() != VTOMI(vp)->mi_zone) 3678 return (EIO); 3679 rp = VTOR(vp); 3680 3681 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 3682 3683 /* 3684 * Make sure that the directory cache is valid. 3685 */ 3686 if (HAVE_RDDIR_CACHE(rp)) { 3687 if (nfs_disable_rddir_cache) { 3688 /* 3689 * Setting nfs_disable_rddir_cache in /etc/system 3690 * allows interoperability with servers that do not 3691 * properly update the attributes of directories. 3692 * Any cached information gets purged before an 3693 * access is made to it. 3694 */ 3695 nfs_purge_rddir_cache(vp); 3696 } else { 3697 error = nfs3_validate_caches(vp, cr); 3698 if (error) 3699 return (error); 3700 } 3701 } 3702 3703 /* 3704 * It is possible that some servers may not be able to correctly 3705 * handle a large READDIR or READDIRPLUS request due to bugs in 3706 * their implementation. In order to continue to interoperate 3707 * with them, this workaround is provided to limit the maximum 3708 * size of a READDIRPLUS request to 1024. In any case, the request 3709 * size is limited to MAXBSIZE. 3710 */ 3711 count = MIN(uiop->uio_iov->iov_len, 3712 nfs3_shrinkreaddir ? 1024 : MAXBSIZE); 3713 3714 nrdc = NULL; 3715 #ifdef DEBUG 3716 missed = 0; 3717 #endif 3718 top: 3719 /* 3720 * Short circuit last readdir which always returns 0 bytes. 3721 * This can be done after the directory has been read through 3722 * completely at least once. This will set r_direof which 3723 * can be used to find the value of the last cookie. 3724 */ 3725 mutex_enter(&rp->r_statelock); 3726 if (rp->r_direof != NULL && 3727 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) { 3728 mutex_exit(&rp->r_statelock); 3729 #ifdef DEBUG 3730 nfs3_readdir_cache_shorts++; 3731 #endif 3732 if (eofp) 3733 *eofp = 1; 3734 if (nrdc != NULL) 3735 rddir_cache_rele(nrdc); 3736 return (0); 3737 } 3738 /* 3739 * Look for a cache entry. Cache entries are identified 3740 * by the NFS cookie value and the byte count requested. 3741 */ 3742 srdc.nfs3_cookie = uiop->uio_loffset; 3743 srdc.buflen = count; 3744 rdc = avl_find(&rp->r_dir, &srdc, &where); 3745 if (rdc != NULL) { 3746 rddir_cache_hold(rdc); 3747 /* 3748 * If the cache entry is in the process of being 3749 * filled in, wait until this completes. The 3750 * RDDIRWAIT bit is set to indicate that someone 3751 * is waiting and then the thread currently 3752 * filling the entry is done, it should do a 3753 * cv_broadcast to wakeup all of the threads 3754 * waiting for it to finish. 3755 */ 3756 if (rdc->flags & RDDIR) { 3757 nfs_rw_exit(&rp->r_rwlock); 3758 rdc->flags |= RDDIRWAIT; 3759 #ifdef DEBUG 3760 nfs3_readdir_cache_waits++; 3761 #endif 3762 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3763 /* 3764 * We got interrupted, probably 3765 * the user typed ^C or an alarm 3766 * fired. We free the new entry 3767 * if we allocated one. 3768 */ 3769 mutex_exit(&rp->r_statelock); 3770 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3771 RW_READER, FALSE); 3772 rddir_cache_rele(rdc); 3773 if (nrdc != NULL) 3774 rddir_cache_rele(nrdc); 3775 return (EINTR); 3776 } 3777 mutex_exit(&rp->r_statelock); 3778 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3779 RW_READER, FALSE); 3780 rddir_cache_rele(rdc); 3781 goto top; 3782 } 3783 /* 3784 * Check to see if a readdir is required to 3785 * fill the entry. If so, mark this entry 3786 * as being filled, remove our reference, 3787 * and branch to the code to fill the entry. 3788 */ 3789 if (rdc->flags & RDDIRREQ) { 3790 rdc->flags &= ~RDDIRREQ; 3791 rdc->flags |= RDDIR; 3792 if (nrdc != NULL) 3793 rddir_cache_rele(nrdc); 3794 nrdc = rdc; 3795 mutex_exit(&rp->r_statelock); 3796 goto bottom; 3797 } 3798 #ifdef DEBUG 3799 if (!missed) 3800 nfs3_readdir_cache_hits++; 3801 #endif 3802 /* 3803 * If an error occurred while attempting 3804 * to fill the cache entry, just return it. 3805 */ 3806 if (rdc->error) { 3807 error = rdc->error; 3808 mutex_exit(&rp->r_statelock); 3809 rddir_cache_rele(rdc); 3810 if (nrdc != NULL) 3811 rddir_cache_rele(nrdc); 3812 return (error); 3813 } 3814 3815 /* 3816 * The cache entry is complete and good, 3817 * copyout the dirent structs to the calling 3818 * thread. 3819 */ 3820 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3821 3822 /* 3823 * If no error occurred during the copyout, 3824 * update the offset in the uio struct to 3825 * contain the value of the next cookie 3826 * and set the eof value appropriately. 3827 */ 3828 if (!error) { 3829 uiop->uio_loffset = rdc->nfs3_ncookie; 3830 if (eofp) 3831 *eofp = rdc->eof; 3832 } 3833 3834 /* 3835 * Decide whether to do readahead. 3836 * 3837 * Don't if have already read to the end of 3838 * directory. There is nothing more to read. 3839 * 3840 * Don't if the application is not doing 3841 * lookups in the directory. The readahead 3842 * is only effective if the application can 3843 * be doing work while an async thread is 3844 * handling the over the wire request. 3845 */ 3846 if (rdc->eof) { 3847 rp->r_direof = rdc; 3848 doreadahead = FALSE; 3849 } else if (!(rp->r_flags & RLOOKUP)) 3850 doreadahead = FALSE; 3851 else 3852 doreadahead = TRUE; 3853 3854 if (!doreadahead) { 3855 mutex_exit(&rp->r_statelock); 3856 rddir_cache_rele(rdc); 3857 if (nrdc != NULL) 3858 rddir_cache_rele(nrdc); 3859 return (error); 3860 } 3861 3862 /* 3863 * Check to see whether we found an entry 3864 * for the readahead. If so, we don't need 3865 * to do anything further, so free the new 3866 * entry if one was allocated. Otherwise, 3867 * allocate a new entry, add it to the cache, 3868 * and then initiate an asynchronous readdir 3869 * operation to fill it. 3870 */ 3871 srdc.nfs3_cookie = rdc->nfs3_ncookie; 3872 srdc.buflen = count; 3873 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3874 if (rrdc != NULL) { 3875 if (nrdc != NULL) 3876 rddir_cache_rele(nrdc); 3877 } else { 3878 if (nrdc != NULL) 3879 rrdc = nrdc; 3880 else { 3881 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3882 } 3883 if (rrdc != NULL) { 3884 rrdc->nfs3_cookie = rdc->nfs3_ncookie; 3885 rrdc->buflen = count; 3886 avl_insert(&rp->r_dir, rrdc, where); 3887 rddir_cache_hold(rrdc); 3888 mutex_exit(&rp->r_statelock); 3889 rddir_cache_rele(rdc); 3890 #ifdef DEBUG 3891 nfs3_readdir_readahead++; 3892 #endif 3893 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir); 3894 return (error); 3895 } 3896 } 3897 3898 mutex_exit(&rp->r_statelock); 3899 rddir_cache_rele(rdc); 3900 return (error); 3901 } 3902 3903 /* 3904 * Didn't find an entry in the cache. Construct a new empty 3905 * entry and link it into the cache. Other processes attempting 3906 * to access this entry will need to wait until it is filled in. 3907 * 3908 * Since kmem_alloc may block, another pass through the cache 3909 * will need to be taken to make sure that another process 3910 * hasn't already added an entry to the cache for this request. 3911 */ 3912 if (nrdc == NULL) { 3913 mutex_exit(&rp->r_statelock); 3914 nrdc = rddir_cache_alloc(KM_SLEEP); 3915 nrdc->nfs3_cookie = uiop->uio_loffset; 3916 nrdc->buflen = count; 3917 goto top; 3918 } 3919 3920 /* 3921 * Add this entry to the cache. 3922 */ 3923 avl_insert(&rp->r_dir, nrdc, where); 3924 rddir_cache_hold(nrdc); 3925 mutex_exit(&rp->r_statelock); 3926 3927 bottom: 3928 #ifdef DEBUG 3929 missed = 1; 3930 nfs3_readdir_cache_misses++; 3931 #endif 3932 /* 3933 * Do the readdir. This routine decides whether to use 3934 * READDIR or READDIRPLUS. 3935 */ 3936 error = do_nfs3readdir(vp, nrdc, cr); 3937 3938 /* 3939 * If this operation failed, just return the error which occurred. 3940 */ 3941 if (error != 0) 3942 return (error); 3943 3944 /* 3945 * Since the RPC operation will have taken sometime and blocked 3946 * this process, another pass through the cache will need to be 3947 * taken to find the correct cache entry. It is possible that 3948 * the correct cache entry will not be there (although one was 3949 * added) because the directory changed during the RPC operation 3950 * and the readdir cache was flushed. In this case, just start 3951 * over. It is hoped that this will not happen too often... :-) 3952 */ 3953 nrdc = NULL; 3954 goto top; 3955 /* NOTREACHED */ 3956 } 3957 3958 static int 3959 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3960 { 3961 int error; 3962 rnode_t *rp; 3963 mntinfo_t *mi; 3964 3965 rp = VTOR(vp); 3966 mi = VTOMI(vp); 3967 ASSERT(nfs_zone() == mi->mi_zone); 3968 /* 3969 * Issue the proper request. 3970 * 3971 * If the server does not support READDIRPLUS, then use READDIR. 3972 * 3973 * Otherwise -- 3974 * Issue a READDIRPLUS if reading to fill an empty cache or if 3975 * an application has performed a lookup in the directory which 3976 * required an over the wire lookup. The use of READDIRPLUS 3977 * will help to (re)populate the DNLC. 3978 */ 3979 if (!(mi->mi_flags & MI_READDIRONLY) && 3980 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) { 3981 if (rp->r_flags & RREADDIRPLUS) { 3982 mutex_enter(&rp->r_statelock); 3983 rp->r_flags &= ~RREADDIRPLUS; 3984 mutex_exit(&rp->r_statelock); 3985 } 3986 nfs3readdirplus(vp, rdc, cr); 3987 if (rdc->error == EOPNOTSUPP) 3988 nfs3readdir(vp, rdc, cr); 3989 } else 3990 nfs3readdir(vp, rdc, cr); 3991 3992 mutex_enter(&rp->r_statelock); 3993 rdc->flags &= ~RDDIR; 3994 if (rdc->flags & RDDIRWAIT) { 3995 rdc->flags &= ~RDDIRWAIT; 3996 cv_broadcast(&rdc->cv); 3997 } 3998 error = rdc->error; 3999 if (error) 4000 rdc->flags |= RDDIRREQ; 4001 mutex_exit(&rp->r_statelock); 4002 4003 rddir_cache_rele(rdc); 4004 4005 return (error); 4006 } 4007 4008 static void 4009 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4010 { 4011 int error; 4012 READDIR3args args; 4013 READDIR3vres res; 4014 vattr_t dva; 4015 rnode_t *rp; 4016 int douprintf; 4017 failinfo_t fi, *fip = NULL; 4018 mntinfo_t *mi; 4019 hrtime_t t; 4020 4021 rp = VTOR(vp); 4022 mi = VTOMI(vp); 4023 ASSERT(nfs_zone() == mi->mi_zone); 4024 4025 args.dir = *RTOFH3(rp); 4026 args.cookie = (cookie3)rdc->nfs3_cookie; 4027 args.cookieverf = rp->r_cookieverf; 4028 args.count = rdc->buflen; 4029 4030 /* 4031 * NFS client failover support 4032 * suppress failover unless we have a zero cookie 4033 */ 4034 if (args.cookie == (cookie3) 0) { 4035 fi.vp = vp; 4036 fi.fhp = (caddr_t)&args.dir; 4037 fi.copyproc = nfs3copyfh; 4038 fi.lookupproc = nfs3lookup; 4039 fi.xattrdirproc = acl_getxattrdir3; 4040 fip = &fi; 4041 } 4042 4043 #ifdef DEBUG 4044 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4045 #else 4046 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4047 #endif 4048 4049 res.entries = (dirent64_t *)rdc->entries; 4050 res.entries_size = rdc->buflen; 4051 res.dir_attributes.fres.vap = &dva; 4052 res.dir_attributes.fres.vp = vp; 4053 res.loff = rdc->nfs3_cookie; 4054 4055 douprintf = 1; 4056 4057 if (mi->mi_io_kstats) { 4058 mutex_enter(&mi->mi_lock); 4059 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4060 mutex_exit(&mi->mi_lock); 4061 } 4062 4063 t = gethrtime(); 4064 4065 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR, 4066 xdr_READDIR3args, (caddr_t)&args, 4067 xdr_READDIR3vres, (caddr_t)&res, cr, 4068 &douprintf, &res.status, 0, fip); 4069 4070 if (mi->mi_io_kstats) { 4071 mutex_enter(&mi->mi_lock); 4072 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4073 mutex_exit(&mi->mi_lock); 4074 } 4075 4076 if (error) 4077 goto err; 4078 4079 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr); 4080 4081 error = geterrno3(res.status); 4082 if (error) { 4083 PURGE_STALE_FH(error, vp, cr); 4084 goto err; 4085 } 4086 4087 if (mi->mi_io_kstats) { 4088 mutex_enter(&mi->mi_lock); 4089 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4090 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4091 mutex_exit(&mi->mi_lock); 4092 } 4093 4094 rdc->nfs3_ncookie = res.loff; 4095 rp->r_cookieverf = res.cookieverf; 4096 rdc->eof = res.eof ? 1 : 0; 4097 rdc->entlen = res.size; 4098 ASSERT(rdc->entlen <= rdc->buflen); 4099 rdc->error = 0; 4100 return; 4101 4102 err: 4103 kmem_free(rdc->entries, rdc->buflen); 4104 rdc->entries = NULL; 4105 rdc->error = error; 4106 } 4107 4108 /* 4109 * Read directory entries. 4110 * There are some weird things to look out for here. The uio_loffset 4111 * field is either 0 or it is the offset returned from a previous 4112 * readdir. It is an opaque value used by the server to find the 4113 * correct directory block to read. The count field is the number 4114 * of blocks to read on the server. This is advisory only, the server 4115 * may return only one block's worth of entries. Entries may be compressed 4116 * on the server. 4117 */ 4118 static void 4119 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4120 { 4121 int error; 4122 READDIRPLUS3args args; 4123 READDIRPLUS3vres res; 4124 vattr_t dva; 4125 rnode_t *rp; 4126 mntinfo_t *mi; 4127 int douprintf; 4128 failinfo_t fi, *fip = NULL; 4129 4130 rp = VTOR(vp); 4131 mi = VTOMI(vp); 4132 ASSERT(nfs_zone() == mi->mi_zone); 4133 4134 args.dir = *RTOFH3(rp); 4135 args.cookie = (cookie3)rdc->nfs3_cookie; 4136 args.cookieverf = rp->r_cookieverf; 4137 args.dircount = rdc->buflen; 4138 args.maxcount = mi->mi_tsize; 4139 4140 /* 4141 * NFS client failover support 4142 * suppress failover unless we have a zero cookie 4143 */ 4144 if (args.cookie == (cookie3)0) { 4145 fi.vp = vp; 4146 fi.fhp = (caddr_t)&args.dir; 4147 fi.copyproc = nfs3copyfh; 4148 fi.lookupproc = nfs3lookup; 4149 fi.xattrdirproc = acl_getxattrdir3; 4150 fip = &fi; 4151 } 4152 4153 #ifdef DEBUG 4154 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4155 #else 4156 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4157 #endif 4158 4159 res.entries = (dirent64_t *)rdc->entries; 4160 res.entries_size = rdc->buflen; 4161 res.dir_attributes.fres.vap = &dva; 4162 res.dir_attributes.fres.vp = vp; 4163 res.loff = rdc->nfs3_cookie; 4164 res.credentials = cr; 4165 4166 douprintf = 1; 4167 4168 if (mi->mi_io_kstats) { 4169 mutex_enter(&mi->mi_lock); 4170 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4171 mutex_exit(&mi->mi_lock); 4172 } 4173 4174 res.time = gethrtime(); 4175 4176 error = rfs3call(mi, NFSPROC3_READDIRPLUS, 4177 xdr_READDIRPLUS3args, (caddr_t)&args, 4178 xdr_READDIRPLUS3vres, (caddr_t)&res, cr, 4179 &douprintf, &res.status, 0, fip); 4180 4181 if (mi->mi_io_kstats) { 4182 mutex_enter(&mi->mi_lock); 4183 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4184 mutex_exit(&mi->mi_lock); 4185 } 4186 4187 if (error) { 4188 goto err; 4189 } 4190 4191 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr); 4192 4193 error = geterrno3(res.status); 4194 if (error) { 4195 PURGE_STALE_FH(error, vp, cr); 4196 if (error == EOPNOTSUPP) { 4197 mutex_enter(&mi->mi_lock); 4198 mi->mi_flags |= MI_READDIRONLY; 4199 mutex_exit(&mi->mi_lock); 4200 } 4201 goto err; 4202 } 4203 4204 if (mi->mi_io_kstats) { 4205 mutex_enter(&mi->mi_lock); 4206 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4207 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4208 mutex_exit(&mi->mi_lock); 4209 } 4210 4211 rdc->nfs3_ncookie = res.loff; 4212 rp->r_cookieverf = res.cookieverf; 4213 rdc->eof = res.eof ? 1 : 0; 4214 rdc->entlen = res.size; 4215 ASSERT(rdc->entlen <= rdc->buflen); 4216 rdc->error = 0; 4217 4218 return; 4219 4220 err: 4221 kmem_free(rdc->entries, rdc->buflen); 4222 rdc->entries = NULL; 4223 rdc->error = error; 4224 } 4225 4226 #ifdef DEBUG 4227 static int nfs3_bio_do_stop = 0; 4228 #endif 4229 4230 static int 4231 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr) 4232 { 4233 rnode_t *rp = VTOR(bp->b_vp); 4234 int count; 4235 int error; 4236 cred_t *cred; 4237 offset_t offset; 4238 4239 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 4240 offset = ldbtob(bp->b_lblkno); 4241 4242 DTRACE_IO1(start, struct buf *, bp); 4243 4244 if (bp->b_flags & B_READ) { 4245 mutex_enter(&rp->r_statelock); 4246 if (rp->r_cred != NULL) { 4247 cred = rp->r_cred; 4248 crhold(cred); 4249 } else { 4250 rp->r_cred = cr; 4251 crhold(cr); 4252 cred = cr; 4253 crhold(cred); 4254 } 4255 mutex_exit(&rp->r_statelock); 4256 read_again: 4257 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr, 4258 offset, bp->b_bcount, &bp->b_resid, cred); 4259 crfree(cred); 4260 if (!error) { 4261 if (bp->b_resid) { 4262 /* 4263 * Didn't get it all because we hit EOF, 4264 * zero all the memory beyond the EOF. 4265 */ 4266 /* bzero(rdaddr + */ 4267 bzero(bp->b_un.b_addr + 4268 bp->b_bcount - bp->b_resid, bp->b_resid); 4269 } 4270 mutex_enter(&rp->r_statelock); 4271 if (bp->b_resid == bp->b_bcount && 4272 offset >= rp->r_size) { 4273 /* 4274 * We didn't read anything at all as we are 4275 * past EOF. Return an error indicator back 4276 * but don't destroy the pages (yet). 4277 */ 4278 error = NFS_EOF; 4279 } 4280 mutex_exit(&rp->r_statelock); 4281 } else if (error == EACCES) { 4282 mutex_enter(&rp->r_statelock); 4283 if (cred != cr) { 4284 if (rp->r_cred != NULL) 4285 crfree(rp->r_cred); 4286 rp->r_cred = cr; 4287 crhold(cr); 4288 cred = cr; 4289 crhold(cred); 4290 mutex_exit(&rp->r_statelock); 4291 goto read_again; 4292 } 4293 mutex_exit(&rp->r_statelock); 4294 } 4295 } else { 4296 if (!(rp->r_flags & RSTALE)) { 4297 mutex_enter(&rp->r_statelock); 4298 if (rp->r_cred != NULL) { 4299 cred = rp->r_cred; 4300 crhold(cred); 4301 } else { 4302 rp->r_cred = cr; 4303 crhold(cr); 4304 cred = cr; 4305 crhold(cred); 4306 } 4307 mutex_exit(&rp->r_statelock); 4308 write_again: 4309 mutex_enter(&rp->r_statelock); 4310 count = MIN(bp->b_bcount, rp->r_size - offset); 4311 mutex_exit(&rp->r_statelock); 4312 if (count < 0) 4313 cmn_err(CE_PANIC, "nfs3_bio: write count < 0"); 4314 #ifdef DEBUG 4315 if (count == 0) { 4316 zcmn_err(getzoneid(), CE_WARN, 4317 "nfs3_bio: zero length write at %lld", 4318 offset); 4319 nfs_printfhandle(&rp->r_fh); 4320 if (nfs3_bio_do_stop) 4321 debug_enter("nfs3_bio"); 4322 } 4323 #endif 4324 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset, 4325 count, cred, stab_comm); 4326 if (error == EACCES) { 4327 mutex_enter(&rp->r_statelock); 4328 if (cred != cr) { 4329 if (rp->r_cred != NULL) 4330 crfree(rp->r_cred); 4331 rp->r_cred = cr; 4332 crhold(cr); 4333 crfree(cred); 4334 cred = cr; 4335 crhold(cred); 4336 mutex_exit(&rp->r_statelock); 4337 goto write_again; 4338 } 4339 mutex_exit(&rp->r_statelock); 4340 } 4341 bp->b_error = error; 4342 if (error && error != EINTR) { 4343 /* 4344 * Don't print EDQUOT errors on the console. 4345 * Don't print asynchronous EACCES errors. 4346 * Don't print EFBIG errors. 4347 * Print all other write errors. 4348 */ 4349 if (error != EDQUOT && error != EFBIG && 4350 (error != EACCES || 4351 !(bp->b_flags & B_ASYNC))) 4352 nfs_write_error(bp->b_vp, error, cred); 4353 /* 4354 * Update r_error and r_flags as appropriate. 4355 * If the error was ESTALE, then mark the 4356 * rnode as not being writeable and save 4357 * the error status. Otherwise, save any 4358 * errors which occur from asynchronous 4359 * page invalidations. Any errors occurring 4360 * from other operations should be saved 4361 * by the caller. 4362 */ 4363 mutex_enter(&rp->r_statelock); 4364 if (error == ESTALE) { 4365 rp->r_flags |= RSTALE; 4366 if (!rp->r_error) 4367 rp->r_error = error; 4368 } else if (!rp->r_error && 4369 (bp->b_flags & 4370 (B_INVAL|B_FORCE|B_ASYNC)) == 4371 (B_INVAL|B_FORCE|B_ASYNC)) { 4372 rp->r_error = error; 4373 } 4374 mutex_exit(&rp->r_statelock); 4375 } 4376 crfree(cred); 4377 } else 4378 error = rp->r_error; 4379 } 4380 4381 if (error != 0 && error != NFS_EOF) 4382 bp->b_flags |= B_ERROR; 4383 4384 DTRACE_IO1(done, struct buf *, bp); 4385 4386 return (error); 4387 } 4388 4389 /* ARGSUSED */ 4390 static int 4391 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4392 { 4393 rnode_t *rp; 4394 4395 if (nfs_zone() != VTOMI(vp)->mi_zone) 4396 return (EIO); 4397 rp = VTOR(vp); 4398 4399 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) { 4400 fidp->fid_len = rp->r_fh.fh_len; 4401 return (ENOSPC); 4402 } 4403 fidp->fid_len = rp->r_fh.fh_len; 4404 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len); 4405 return (0); 4406 } 4407 4408 /* ARGSUSED2 */ 4409 static int 4410 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4411 { 4412 rnode_t *rp = VTOR(vp); 4413 4414 if (!write_lock) { 4415 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4416 return (V_WRITELOCK_FALSE); 4417 } 4418 4419 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 4420 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4421 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 4422 return (V_WRITELOCK_FALSE); 4423 nfs_rw_exit(&rp->r_rwlock); 4424 } 4425 4426 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 4427 return (V_WRITELOCK_TRUE); 4428 } 4429 4430 /* ARGSUSED */ 4431 static void 4432 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4433 { 4434 rnode_t *rp = VTOR(vp); 4435 4436 nfs_rw_exit(&rp->r_rwlock); 4437 } 4438 4439 /* ARGSUSED */ 4440 static int 4441 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 4442 { 4443 4444 /* 4445 * Because we stuff the readdir cookie into the offset field 4446 * someone may attempt to do an lseek with the cookie which 4447 * we want to succeed. 4448 */ 4449 if (vp->v_type == VDIR) 4450 return (0); 4451 if (*noffp < 0) 4452 return (EINVAL); 4453 return (0); 4454 } 4455 4456 /* 4457 * number of nfs3_bsize blocks to read ahead. 4458 */ 4459 static int nfs3_nra = 4; 4460 4461 #ifdef DEBUG 4462 static int nfs3_lostpage = 0; /* number of times we lost original page */ 4463 #endif 4464 4465 /* 4466 * Return all the pages from [off..off+len) in file 4467 */ 4468 /* ARGSUSED */ 4469 static int 4470 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4471 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4472 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4473 { 4474 rnode_t *rp; 4475 int error; 4476 mntinfo_t *mi; 4477 4478 if (vp->v_flag & VNOMAP) 4479 return (ENOSYS); 4480 4481 if (nfs_zone() != VTOMI(vp)->mi_zone) 4482 return (EIO); 4483 if (protp != NULL) 4484 *protp = PROT_ALL; 4485 4486 /* 4487 * Now valididate that the caches are up to date. 4488 */ 4489 error = nfs3_validate_caches(vp, cr); 4490 if (error) 4491 return (error); 4492 4493 rp = VTOR(vp); 4494 mi = VTOMI(vp); 4495 retry: 4496 mutex_enter(&rp->r_statelock); 4497 4498 /* 4499 * Don't create dirty pages faster than they 4500 * can be cleaned so that the system doesn't 4501 * get imbalanced. If the async queue is 4502 * maxed out, then wait for it to drain before 4503 * creating more dirty pages. Also, wait for 4504 * any threads doing pagewalks in the vop_getattr 4505 * entry points so that they don't block for 4506 * long periods. 4507 */ 4508 if (rw == S_CREATE) { 4509 while ((mi->mi_max_threads != 0 && 4510 rp->r_awcount > 2 * mi->mi_max_threads) || 4511 rp->r_gcount > 0) 4512 cv_wait(&rp->r_cv, &rp->r_statelock); 4513 } 4514 4515 /* 4516 * If we are getting called as a side effect of an nfs_write() 4517 * operation the local file size might not be extended yet. 4518 * In this case we want to be able to return pages of zeroes. 4519 */ 4520 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 4521 mutex_exit(&rp->r_statelock); 4522 return (EFAULT); /* beyond EOF */ 4523 } 4524 4525 mutex_exit(&rp->r_statelock); 4526 4527 if (len <= PAGESIZE) { 4528 error = nfs3_getapage(vp, off, len, protp, pl, plsz, 4529 seg, addr, rw, cr); 4530 } else { 4531 error = pvn_getpages(nfs3_getapage, vp, off, len, protp, 4532 pl, plsz, seg, addr, rw, cr); 4533 } 4534 4535 switch (error) { 4536 case NFS_EOF: 4537 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 4538 goto retry; 4539 case ESTALE: 4540 PURGE_STALE_FH(error, vp, cr); 4541 } 4542 4543 return (error); 4544 } 4545 4546 /* 4547 * Called from pvn_getpages or nfs3_getpage to get a particular page. 4548 */ 4549 /* ARGSUSED */ 4550 static int 4551 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 4552 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4553 enum seg_rw rw, cred_t *cr) 4554 { 4555 rnode_t *rp; 4556 uint_t bsize; 4557 struct buf *bp; 4558 page_t *pp; 4559 u_offset_t lbn; 4560 u_offset_t io_off; 4561 u_offset_t blkoff; 4562 u_offset_t rablkoff; 4563 size_t io_len; 4564 uint_t blksize; 4565 int error; 4566 int readahead; 4567 int readahead_issued = 0; 4568 int ra_window; /* readahead window */ 4569 page_t *pagefound; 4570 page_t *savepp; 4571 4572 if (nfs_zone() != VTOMI(vp)->mi_zone) 4573 return (EIO); 4574 rp = VTOR(vp); 4575 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4576 4577 reread: 4578 bp = NULL; 4579 pp = NULL; 4580 pagefound = NULL; 4581 4582 if (pl != NULL) 4583 pl[0] = NULL; 4584 4585 error = 0; 4586 lbn = off / bsize; 4587 blkoff = lbn * bsize; 4588 4589 /* 4590 * Queueing up the readahead before doing the synchronous read 4591 * results in a significant increase in read throughput because 4592 * of the increased parallelism between the async threads and 4593 * the process context. 4594 */ 4595 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 4596 rw != S_CREATE && 4597 !(vp->v_flag & VNOCACHE)) { 4598 mutex_enter(&rp->r_statelock); 4599 4600 /* 4601 * Calculate the number of readaheads to do. 4602 * a) No readaheads at offset = 0. 4603 * b) Do maximum(nfs3_nra) readaheads when the readahead 4604 * window is closed. 4605 * c) Do readaheads between 1 to (nfs3_nra - 1) depending 4606 * upon how far the readahead window is open or close. 4607 * d) No readaheads if rp->r_nextr is not within the scope 4608 * of the readahead window (random i/o). 4609 */ 4610 4611 if (off == 0) 4612 readahead = 0; 4613 else if (blkoff == rp->r_nextr) 4614 readahead = nfs3_nra; 4615 else if (rp->r_nextr > blkoff && 4616 ((ra_window = (rp->r_nextr - blkoff) / bsize) 4617 <= (nfs3_nra - 1))) 4618 readahead = nfs3_nra - ra_window; 4619 else 4620 readahead = 0; 4621 4622 rablkoff = rp->r_nextr; 4623 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 4624 mutex_exit(&rp->r_statelock); 4625 if (nfs_async_readahead(vp, rablkoff + bsize, 4626 addr + (rablkoff + bsize - off), seg, cr, 4627 nfs3_readahead) < 0) { 4628 mutex_enter(&rp->r_statelock); 4629 break; 4630 } 4631 readahead--; 4632 rablkoff += bsize; 4633 /* 4634 * Indicate that we did a readahead so 4635 * readahead offset is not updated 4636 * by the synchronous read below. 4637 */ 4638 readahead_issued = 1; 4639 mutex_enter(&rp->r_statelock); 4640 /* 4641 * set readahead offset to 4642 * offset of last async readahead 4643 * request. 4644 */ 4645 rp->r_nextr = rablkoff; 4646 } 4647 mutex_exit(&rp->r_statelock); 4648 } 4649 4650 again: 4651 if ((pagefound = page_exists(vp, off)) == NULL) { 4652 if (pl == NULL) { 4653 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 4654 nfs3_readahead); 4655 } else if (rw == S_CREATE) { 4656 /* 4657 * Block for this page is not allocated, or the offset 4658 * is beyond the current allocation size, or we're 4659 * allocating a swap slot and the page was not found, 4660 * so allocate it and return a zero page. 4661 */ 4662 if ((pp = page_create_va(vp, off, 4663 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 4664 cmn_err(CE_PANIC, "nfs3_getapage: page_create"); 4665 io_len = PAGESIZE; 4666 mutex_enter(&rp->r_statelock); 4667 rp->r_nextr = off + PAGESIZE; 4668 mutex_exit(&rp->r_statelock); 4669 } else { 4670 /* 4671 * Need to go to server to get a BLOCK, exception to 4672 * that being while reading at offset = 0 or doing 4673 * random i/o, in that case read only a PAGE. 4674 */ 4675 mutex_enter(&rp->r_statelock); 4676 if (blkoff < rp->r_size && 4677 blkoff + bsize >= rp->r_size) { 4678 /* 4679 * If only a block or less is left in 4680 * the file, read all that is remaining. 4681 */ 4682 if (rp->r_size <= off) { 4683 /* 4684 * Trying to access beyond EOF, 4685 * set up to get at least one page. 4686 */ 4687 blksize = off + PAGESIZE - blkoff; 4688 } else 4689 blksize = rp->r_size - blkoff; 4690 } else if ((off == 0) || 4691 (off != rp->r_nextr && !readahead_issued)) { 4692 blksize = PAGESIZE; 4693 blkoff = off; /* block = page here */ 4694 } else 4695 blksize = bsize; 4696 mutex_exit(&rp->r_statelock); 4697 4698 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4699 &io_len, blkoff, blksize, 0); 4700 4701 /* 4702 * Some other thread has entered the page, 4703 * so just use it. 4704 */ 4705 if (pp == NULL) 4706 goto again; 4707 4708 /* 4709 * Now round the request size up to page boundaries. 4710 * This ensures that the entire page will be 4711 * initialized to zeroes if EOF is encountered. 4712 */ 4713 io_len = ptob(btopr(io_len)); 4714 4715 bp = pageio_setup(pp, io_len, vp, B_READ); 4716 ASSERT(bp != NULL); 4717 4718 /* 4719 * pageio_setup should have set b_addr to 0. This 4720 * is correct since we want to do I/O on a page 4721 * boundary. bp_mapin will use this addr to calculate 4722 * an offset, and then set b_addr to the kernel virtual 4723 * address it allocated for us. 4724 */ 4725 ASSERT(bp->b_un.b_addr == 0); 4726 4727 bp->b_edev = 0; 4728 bp->b_dev = 0; 4729 bp->b_lblkno = lbtodb(io_off); 4730 bp->b_file = vp; 4731 bp->b_offset = (offset_t)off; 4732 bp_mapin(bp); 4733 4734 /* 4735 * If doing a write beyond what we believe is EOF, 4736 * don't bother trying to read the pages from the 4737 * server, we'll just zero the pages here. We 4738 * don't check that the rw flag is S_WRITE here 4739 * because some implementations may attempt a 4740 * read access to the buffer before copying data. 4741 */ 4742 mutex_enter(&rp->r_statelock); 4743 if (io_off >= rp->r_size && seg == segkmap) { 4744 mutex_exit(&rp->r_statelock); 4745 bzero(bp->b_un.b_addr, io_len); 4746 } else { 4747 mutex_exit(&rp->r_statelock); 4748 error = nfs3_bio(bp, NULL, cr); 4749 } 4750 4751 /* 4752 * Unmap the buffer before freeing it. 4753 */ 4754 bp_mapout(bp); 4755 pageio_done(bp); 4756 4757 savepp = pp; 4758 do { 4759 pp->p_fsdata = C_NOCOMMIT; 4760 } while ((pp = pp->p_next) != savepp); 4761 4762 if (error == NFS_EOF) { 4763 /* 4764 * If doing a write system call just return 4765 * zeroed pages, else user tried to get pages 4766 * beyond EOF, return error. We don't check 4767 * that the rw flag is S_WRITE here because 4768 * some implementations may attempt a read 4769 * access to the buffer before copying data. 4770 */ 4771 if (seg == segkmap) 4772 error = 0; 4773 else 4774 error = EFAULT; 4775 } 4776 4777 if (!readahead_issued && !error) { 4778 mutex_enter(&rp->r_statelock); 4779 rp->r_nextr = io_off + io_len; 4780 mutex_exit(&rp->r_statelock); 4781 } 4782 } 4783 } 4784 4785 out: 4786 if (pl == NULL) 4787 return (error); 4788 4789 if (error) { 4790 if (pp != NULL) 4791 pvn_read_done(pp, B_ERROR); 4792 return (error); 4793 } 4794 4795 if (pagefound) { 4796 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 4797 4798 /* 4799 * Page exists in the cache, acquire the appropriate lock. 4800 * If this fails, start all over again. 4801 */ 4802 if ((pp = page_lookup(vp, off, se)) == NULL) { 4803 #ifdef DEBUG 4804 nfs3_lostpage++; 4805 #endif 4806 goto reread; 4807 } 4808 pl[0] = pp; 4809 pl[1] = NULL; 4810 return (0); 4811 } 4812 4813 if (pp != NULL) 4814 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4815 4816 return (error); 4817 } 4818 4819 static void 4820 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 4821 cred_t *cr) 4822 { 4823 int error; 4824 page_t *pp; 4825 u_offset_t io_off; 4826 size_t io_len; 4827 struct buf *bp; 4828 uint_t bsize, blksize; 4829 rnode_t *rp = VTOR(vp); 4830 page_t *savepp; 4831 4832 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4833 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4834 4835 mutex_enter(&rp->r_statelock); 4836 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 4837 /* 4838 * If less than a block left in file read less 4839 * than a block. 4840 */ 4841 blksize = rp->r_size - blkoff; 4842 } else 4843 blksize = bsize; 4844 mutex_exit(&rp->r_statelock); 4845 4846 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 4847 &io_off, &io_len, blkoff, blksize, 1); 4848 /* 4849 * The isra flag passed to the kluster function is 1, we may have 4850 * gotten a return value of NULL for a variety of reasons (# of free 4851 * pages < minfree, someone entered the page on the vnode etc). In all 4852 * cases, we want to punt on the readahead. 4853 */ 4854 if (pp == NULL) 4855 return; 4856 4857 /* 4858 * Now round the request size up to page boundaries. 4859 * This ensures that the entire page will be 4860 * initialized to zeroes if EOF is encountered. 4861 */ 4862 io_len = ptob(btopr(io_len)); 4863 4864 bp = pageio_setup(pp, io_len, vp, B_READ); 4865 ASSERT(bp != NULL); 4866 4867 /* 4868 * pageio_setup should have set b_addr to 0. This is correct since 4869 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4870 * to calculate an offset, and then set b_addr to the kernel virtual 4871 * address it allocated for us. 4872 */ 4873 ASSERT(bp->b_un.b_addr == 0); 4874 4875 bp->b_edev = 0; 4876 bp->b_dev = 0; 4877 bp->b_lblkno = lbtodb(io_off); 4878 bp->b_file = vp; 4879 bp->b_offset = (offset_t)blkoff; 4880 bp_mapin(bp); 4881 4882 /* 4883 * If doing a write beyond what we believe is EOF, don't bother trying 4884 * to read the pages from the server, we'll just zero the pages here. 4885 * We don't check that the rw flag is S_WRITE here because some 4886 * implementations may attempt a read access to the buffer before 4887 * copying data. 4888 */ 4889 mutex_enter(&rp->r_statelock); 4890 if (io_off >= rp->r_size && seg == segkmap) { 4891 mutex_exit(&rp->r_statelock); 4892 bzero(bp->b_un.b_addr, io_len); 4893 error = 0; 4894 } else { 4895 mutex_exit(&rp->r_statelock); 4896 error = nfs3_bio(bp, NULL, cr); 4897 if (error == NFS_EOF) 4898 error = 0; 4899 } 4900 4901 /* 4902 * Unmap the buffer before freeing it. 4903 */ 4904 bp_mapout(bp); 4905 pageio_done(bp); 4906 4907 savepp = pp; 4908 do { 4909 pp->p_fsdata = C_NOCOMMIT; 4910 } while ((pp = pp->p_next) != savepp); 4911 4912 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4913 4914 /* 4915 * In case of error set readahead offset 4916 * to the lowest offset. 4917 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4918 */ 4919 if (error && rp->r_nextr > io_off) { 4920 mutex_enter(&rp->r_statelock); 4921 if (rp->r_nextr > io_off) 4922 rp->r_nextr = io_off; 4923 mutex_exit(&rp->r_statelock); 4924 } 4925 } 4926 4927 /* 4928 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4929 * If len == 0, do from off to EOF. 4930 * 4931 * The normal cases should be len == 0 && off == 0 (entire vp list), 4932 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4933 * (from pageout). 4934 */ 4935 /* ARGSUSED */ 4936 static int 4937 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4938 caller_context_t *ct) 4939 { 4940 int error; 4941 rnode_t *rp; 4942 4943 ASSERT(cr != NULL); 4944 4945 /* 4946 * XXX - Why should this check be made here? 4947 */ 4948 if (vp->v_flag & VNOMAP) 4949 return (ENOSYS); 4950 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4951 return (0); 4952 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4953 return (EIO); 4954 4955 rp = VTOR(vp); 4956 mutex_enter(&rp->r_statelock); 4957 rp->r_count++; 4958 mutex_exit(&rp->r_statelock); 4959 error = nfs_putpages(vp, off, len, flags, cr); 4960 mutex_enter(&rp->r_statelock); 4961 rp->r_count--; 4962 cv_broadcast(&rp->r_cv); 4963 mutex_exit(&rp->r_statelock); 4964 4965 return (error); 4966 } 4967 4968 /* 4969 * Write out a single page, possibly klustering adjacent dirty pages. 4970 */ 4971 int 4972 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4973 int flags, cred_t *cr) 4974 { 4975 u_offset_t io_off; 4976 u_offset_t lbn_off; 4977 u_offset_t lbn; 4978 size_t io_len; 4979 uint_t bsize; 4980 int error; 4981 rnode_t *rp; 4982 4983 ASSERT(!vn_is_readonly(vp)); 4984 ASSERT(pp != NULL); 4985 ASSERT(cr != NULL); 4986 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 4987 4988 rp = VTOR(vp); 4989 ASSERT(rp->r_count > 0); 4990 4991 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4992 lbn = pp->p_offset / bsize; 4993 lbn_off = lbn * bsize; 4994 4995 /* 4996 * Find a kluster that fits in one block, or in 4997 * one page if pages are bigger than blocks. If 4998 * there is less file space allocated than a whole 4999 * page, we'll shorten the i/o request below. 5000 */ 5001 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 5002 roundup(bsize, PAGESIZE), flags); 5003 5004 /* 5005 * pvn_write_kluster shouldn't have returned a page with offset 5006 * behind the original page we were given. Verify that. 5007 */ 5008 ASSERT((pp->p_offset / bsize) >= lbn); 5009 5010 /* 5011 * Now pp will have the list of kept dirty pages marked for 5012 * write back. It will also handle invalidation and freeing 5013 * of pages that are not dirty. Check for page length rounding 5014 * problems. 5015 */ 5016 if (io_off + io_len > lbn_off + bsize) { 5017 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 5018 io_len = lbn_off + bsize - io_off; 5019 } 5020 /* 5021 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5022 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 5023 * When RMODINPROGRESS is set it indicates that a uiomove() is in 5024 * progress and the r_size has not been made consistent with the 5025 * new size of the file. When the uiomove() completes the r_size is 5026 * updated and the RMODINPROGRESS flag is cleared. 5027 * 5028 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5029 * consistent value of r_size. Without this handshaking, it is 5030 * possible that nfs(3)_bio() picks up the old value of r_size 5031 * before the uiomove() in writerp() completes. This will result 5032 * in the write through nfs(3)_bio() being dropped. 5033 * 5034 * More precisely, there is a window between the time the uiomove() 5035 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 5036 * operation intervenes in this window, the page will be picked up, 5037 * because it is dirty (it will be unlocked, unless it was 5038 * pagecreate'd). When the page is picked up as dirty, the dirty 5039 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 5040 * checked. This will still be the old size. Therefore the page will 5041 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 5042 * the page will be found to be clean and the write will be dropped. 5043 */ 5044 if (rp->r_flags & RMODINPROGRESS) { 5045 mutex_enter(&rp->r_statelock); 5046 if ((rp->r_flags & RMODINPROGRESS) && 5047 rp->r_modaddr + MAXBSIZE > io_off && 5048 rp->r_modaddr < io_off + io_len) { 5049 page_t *plist; 5050 /* 5051 * A write is in progress for this region of the file. 5052 * If we did not detect RMODINPROGRESS here then this 5053 * path through nfs_putapage() would eventually go to 5054 * nfs(3)_bio() and may not write out all of the data 5055 * in the pages. We end up losing data. So we decide 5056 * to set the modified bit on each page in the page 5057 * list and mark the rnode with RDIRTY. This write 5058 * will be restarted at some later time. 5059 */ 5060 plist = pp; 5061 while (plist != NULL) { 5062 pp = plist; 5063 page_sub(&plist, pp); 5064 hat_setmod(pp); 5065 page_io_unlock(pp); 5066 page_unlock(pp); 5067 } 5068 rp->r_flags |= RDIRTY; 5069 mutex_exit(&rp->r_statelock); 5070 if (offp) 5071 *offp = io_off; 5072 if (lenp) 5073 *lenp = io_len; 5074 return (0); 5075 } 5076 mutex_exit(&rp->r_statelock); 5077 } 5078 5079 if (flags & B_ASYNC) { 5080 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 5081 nfs3_sync_putapage); 5082 } else 5083 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr); 5084 5085 if (offp) 5086 *offp = io_off; 5087 if (lenp) 5088 *lenp = io_len; 5089 return (error); 5090 } 5091 5092 static int 5093 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5094 int flags, cred_t *cr) 5095 { 5096 int error; 5097 rnode_t *rp; 5098 5099 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5100 5101 flags |= B_WRITE; 5102 5103 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5104 5105 rp = VTOR(vp); 5106 5107 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 5108 error == EACCES) && 5109 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 5110 if (!(rp->r_flags & ROUTOFSPACE)) { 5111 mutex_enter(&rp->r_statelock); 5112 rp->r_flags |= ROUTOFSPACE; 5113 mutex_exit(&rp->r_statelock); 5114 } 5115 flags |= B_ERROR; 5116 pvn_write_done(pp, flags); 5117 /* 5118 * If this was not an async thread, then try again to 5119 * write out the pages, but this time, also destroy 5120 * them whether or not the write is successful. This 5121 * will prevent memory from filling up with these 5122 * pages and destroying them is the only alternative 5123 * if they can't be written out. 5124 * 5125 * Don't do this if this is an async thread because 5126 * when the pages are unlocked in pvn_write_done, 5127 * some other thread could have come along, locked 5128 * them, and queued for an async thread. It would be 5129 * possible for all of the async threads to be tied 5130 * up waiting to lock the pages again and they would 5131 * all already be locked and waiting for an async 5132 * thread to handle them. Deadlock. 5133 */ 5134 if (!(flags & B_ASYNC)) { 5135 error = nfs3_putpage(vp, io_off, io_len, 5136 B_INVAL | B_FORCE, cr, NULL); 5137 } 5138 } else { 5139 if (error) 5140 flags |= B_ERROR; 5141 else if (rp->r_flags & ROUTOFSPACE) { 5142 mutex_enter(&rp->r_statelock); 5143 rp->r_flags &= ~ROUTOFSPACE; 5144 mutex_exit(&rp->r_statelock); 5145 } 5146 pvn_write_done(pp, flags); 5147 if (freemem < desfree) 5148 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr); 5149 } 5150 5151 return (error); 5152 } 5153 5154 /* ARGSUSED */ 5155 static int 5156 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5157 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5158 cred_t *cr, caller_context_t *ct) 5159 { 5160 struct segvn_crargs vn_a; 5161 int error; 5162 rnode_t *rp; 5163 struct vattr va; 5164 5165 if (nfs_zone() != VTOMI(vp)->mi_zone) 5166 return (EIO); 5167 5168 if (vp->v_flag & VNOMAP) 5169 return (ENOSYS); 5170 5171 if (off < 0 || off + len < 0) 5172 return (ENXIO); 5173 5174 if (vp->v_type != VREG) 5175 return (ENODEV); 5176 5177 /* 5178 * If there is cached data and if close-to-open consistency 5179 * checking is not turned off and if the file system is not 5180 * mounted readonly, then force an over the wire getattr. 5181 * Otherwise, just invoke nfs3getattr to get a copy of the 5182 * attributes. The attribute cache will be used unless it 5183 * is timed out and if it is, then an over the wire getattr 5184 * will be issued. 5185 */ 5186 va.va_mask = AT_ALL; 5187 if (vn_has_cached_data(vp) && 5188 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 5189 error = nfs3_getattr_otw(vp, &va, cr); 5190 else 5191 error = nfs3getattr(vp, &va, cr); 5192 if (error) 5193 return (error); 5194 5195 /* 5196 * Check to see if the vnode is currently marked as not cachable. 5197 * This means portions of the file are locked (through VOP_FRLOCK). 5198 * In this case the map request must be refused. We use 5199 * rp->r_lkserlock to avoid a race with concurrent lock requests. 5200 */ 5201 rp = VTOR(vp); 5202 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 5203 return (EINTR); 5204 5205 if (vp->v_flag & VNOCACHE) { 5206 error = EAGAIN; 5207 goto done; 5208 } 5209 5210 /* 5211 * Don't allow concurrent locks and mapping if mandatory locking is 5212 * enabled. 5213 */ 5214 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 5215 MANDLOCK(vp, va.va_mode)) { 5216 error = EAGAIN; 5217 goto done; 5218 } 5219 5220 as_rangelock(as); 5221 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5222 if (error != 0) { 5223 as_rangeunlock(as); 5224 goto done; 5225 } 5226 5227 vn_a.vp = vp; 5228 vn_a.offset = off; 5229 vn_a.type = (flags & MAP_TYPE); 5230 vn_a.prot = (uchar_t)prot; 5231 vn_a.maxprot = (uchar_t)maxprot; 5232 vn_a.flags = (flags & ~MAP_TYPE); 5233 vn_a.cred = cr; 5234 vn_a.amp = NULL; 5235 vn_a.szc = 0; 5236 vn_a.lgrp_mem_policy_flags = 0; 5237 5238 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5239 as_rangeunlock(as); 5240 5241 done: 5242 nfs_rw_exit(&rp->r_lkserlock); 5243 return (error); 5244 } 5245 5246 /* ARGSUSED */ 5247 static int 5248 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5249 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5250 cred_t *cr, caller_context_t *ct) 5251 { 5252 rnode_t *rp; 5253 5254 if (vp->v_flag & VNOMAP) 5255 return (ENOSYS); 5256 if (nfs_zone() != VTOMI(vp)->mi_zone) 5257 return (EIO); 5258 5259 /* 5260 * Need to hold rwlock while incrementing the mapcnt so that 5261 * mmap'ing can be serialized with writes so that the caching 5262 * can be handled correctly. 5263 */ 5264 rp = VTOR(vp); 5265 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 5266 return (EINTR); 5267 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 5268 nfs_rw_exit(&rp->r_rwlock); 5269 5270 return (0); 5271 } 5272 5273 /* ARGSUSED */ 5274 static int 5275 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5276 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 5277 caller_context_t *ct) 5278 { 5279 netobj lm_fh3; 5280 int rc; 5281 u_offset_t start, end; 5282 rnode_t *rp; 5283 int error = 0, intr = INTR(vp); 5284 5285 if (nfs_zone() != VTOMI(vp)->mi_zone) 5286 return (EIO); 5287 /* check for valid cmd parameter */ 5288 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 5289 return (EINVAL); 5290 5291 /* Verify l_type. */ 5292 switch (bfp->l_type) { 5293 case F_RDLCK: 5294 if (cmd != F_GETLK && !(flag & FREAD)) 5295 return (EBADF); 5296 break; 5297 case F_WRLCK: 5298 if (cmd != F_GETLK && !(flag & FWRITE)) 5299 return (EBADF); 5300 break; 5301 case F_UNLCK: 5302 intr = 0; 5303 break; 5304 5305 default: 5306 return (EINVAL); 5307 } 5308 5309 /* check the validity of the lock range */ 5310 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 5311 return (rc); 5312 if (rc = flk_check_lock_data(start, end, MAXEND)) 5313 return (rc); 5314 5315 /* 5316 * If the filesystem is mounted using local locking, pass the 5317 * request off to the local locking code. 5318 */ 5319 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 5320 if (cmd == F_SETLK || cmd == F_SETLKW) { 5321 /* 5322 * For complete safety, we should be holding 5323 * r_lkserlock. However, we can't call 5324 * lm_safelock and then fs_frlock while 5325 * holding r_lkserlock, so just invoke 5326 * lm_safelock and expect that this will 5327 * catch enough of the cases. 5328 */ 5329 if (!lm_safelock(vp, bfp, cr)) 5330 return (EAGAIN); 5331 } 5332 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 5333 } 5334 5335 rp = VTOR(vp); 5336 5337 /* 5338 * Check whether the given lock request can proceed, given the 5339 * current file mappings. 5340 */ 5341 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 5342 return (EINTR); 5343 if (cmd == F_SETLK || cmd == F_SETLKW) { 5344 if (!lm_safelock(vp, bfp, cr)) { 5345 rc = EAGAIN; 5346 goto done; 5347 } 5348 } 5349 5350 /* 5351 * Flush the cache after waiting for async I/O to finish. For new 5352 * locks, this is so that the process gets the latest bits from the 5353 * server. For unlocks, this is so that other clients see the 5354 * latest bits once the file has been unlocked. If currently dirty 5355 * pages can't be flushed, then don't allow a lock to be set. But 5356 * allow unlocks to succeed, to avoid having orphan locks on the 5357 * server. 5358 */ 5359 if (cmd != F_GETLK) { 5360 mutex_enter(&rp->r_statelock); 5361 while (rp->r_count > 0) { 5362 if (intr) { 5363 klwp_t *lwp = ttolwp(curthread); 5364 5365 if (lwp != NULL) 5366 lwp->lwp_nostop++; 5367 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) == 0) { 5368 if (lwp != NULL) 5369 lwp->lwp_nostop--; 5370 rc = EINTR; 5371 break; 5372 } 5373 if (lwp != NULL) 5374 lwp->lwp_nostop--; 5375 } else 5376 cv_wait(&rp->r_cv, &rp->r_statelock); 5377 } 5378 mutex_exit(&rp->r_statelock); 5379 if (rc != 0) 5380 goto done; 5381 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 5382 if (error) { 5383 if (error == ENOSPC || error == EDQUOT) { 5384 mutex_enter(&rp->r_statelock); 5385 if (!rp->r_error) 5386 rp->r_error = error; 5387 mutex_exit(&rp->r_statelock); 5388 } 5389 if (bfp->l_type != F_UNLCK) { 5390 rc = ENOLCK; 5391 goto done; 5392 } 5393 } 5394 } 5395 5396 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 5397 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 5398 5399 /* 5400 * Call the lock manager to do the real work of contacting 5401 * the server and obtaining the lock. 5402 */ 5403 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp); 5404 5405 if (rc == 0) 5406 nfs_lockcompletion(vp, cmd); 5407 5408 done: 5409 nfs_rw_exit(&rp->r_lkserlock); 5410 return (rc); 5411 } 5412 5413 /* 5414 * Free storage space associated with the specified vnode. The portion 5415 * to be freed is specified by bfp->l_start and bfp->l_len (already 5416 * normalized to a "whence" of 0). 5417 * 5418 * This is an experimental facility whose continued existence is not 5419 * guaranteed. Currently, we only support the special case 5420 * of l_len == 0, meaning free to end of file. 5421 */ 5422 /* ARGSUSED */ 5423 static int 5424 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5425 offset_t offset, cred_t *cr, caller_context_t *ct) 5426 { 5427 int error; 5428 5429 ASSERT(vp->v_type == VREG); 5430 if (cmd != F_FREESP) 5431 return (EINVAL); 5432 if (nfs_zone() != VTOMI(vp)->mi_zone) 5433 return (EIO); 5434 5435 error = convoff(vp, bfp, 0, offset); 5436 if (!error) { 5437 ASSERT(bfp->l_start >= 0); 5438 if (bfp->l_len == 0) { 5439 struct vattr va; 5440 5441 /* 5442 * ftruncate should not change the ctime and 5443 * mtime if we truncate the file to its 5444 * previous size. 5445 */ 5446 va.va_mask = AT_SIZE; 5447 error = nfs3getattr(vp, &va, cr); 5448 if (error || va.va_size == bfp->l_start) 5449 return (error); 5450 va.va_mask = AT_SIZE; 5451 va.va_size = bfp->l_start; 5452 error = nfs3setattr(vp, &va, 0, cr); 5453 } else 5454 error = EINVAL; 5455 } 5456 5457 return (error); 5458 } 5459 5460 /* ARGSUSED */ 5461 static int 5462 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 5463 { 5464 5465 return (EINVAL); 5466 } 5467 5468 /* 5469 * Setup and add an address space callback to do the work of the delmap call. 5470 * The callback will (and must be) deleted in the actual callback function. 5471 * 5472 * This is done in order to take care of the problem that we have with holding 5473 * the address space's a_lock for a long period of time (e.g. if the NFS server 5474 * is down). Callbacks will be executed in the address space code while the 5475 * a_lock is not held. Holding the address space's a_lock causes things such 5476 * as ps and fork to hang because they are trying to acquire this lock as well. 5477 */ 5478 /* ARGSUSED */ 5479 static int 5480 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5481 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5482 cred_t *cr, caller_context_t *ct) 5483 { 5484 int caller_found; 5485 int error; 5486 rnode_t *rp; 5487 nfs_delmap_args_t *dmapp; 5488 nfs_delmapcall_t *delmap_call; 5489 5490 if (vp->v_flag & VNOMAP) 5491 return (ENOSYS); 5492 /* 5493 * A process may not change zones if it has NFS pages mmap'ed 5494 * in, so we can't legitimately get here from the wrong zone. 5495 */ 5496 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5497 5498 rp = VTOR(vp); 5499 5500 /* 5501 * The way that the address space of this process deletes its mapping 5502 * of this file is via the following call chains: 5503 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5504 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5505 * 5506 * With the use of address space callbacks we are allowed to drop the 5507 * address space lock, a_lock, while executing the NFS operations that 5508 * need to go over the wire. Returning EAGAIN to the caller of this 5509 * function is what drives the execution of the callback that we add 5510 * below. The callback will be executed by the address space code 5511 * after dropping the a_lock. When the callback is finished, since 5512 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 5513 * is called again on the same segment to finish the rest of the work 5514 * that needs to happen during unmapping. 5515 * 5516 * This action of calling back into the segment driver causes 5517 * nfs3_delmap() to get called again, but since the callback was 5518 * already executed at this point, it already did the work and there 5519 * is nothing left for us to do. 5520 * 5521 * To Summarize: 5522 * - The first time nfs3_delmap is called by the current thread is when 5523 * we add the caller associated with this delmap to the delmap caller 5524 * list, add the callback, and return EAGAIN. 5525 * - The second time in this call chain when nfs3_delmap is called we 5526 * will find this caller in the delmap caller list and realize there 5527 * is no more work to do thus removing this caller from the list and 5528 * returning the error that was set in the callback execution. 5529 */ 5530 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 5531 if (caller_found) { 5532 /* 5533 * 'error' is from the actual delmap operations. To avoid 5534 * hangs, we need to handle the return of EAGAIN differently 5535 * since this is what drives the callback execution. 5536 * In this case, we don't want to return EAGAIN and do the 5537 * callback execution because there are none to execute. 5538 */ 5539 if (error == EAGAIN) 5540 return (0); 5541 else 5542 return (error); 5543 } 5544 5545 /* current caller was not in the list */ 5546 delmap_call = nfs_init_delmapcall(); 5547 5548 mutex_enter(&rp->r_statelock); 5549 list_insert_tail(&rp->r_indelmap, delmap_call); 5550 mutex_exit(&rp->r_statelock); 5551 5552 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 5553 5554 dmapp->vp = vp; 5555 dmapp->off = off; 5556 dmapp->addr = addr; 5557 dmapp->len = len; 5558 dmapp->prot = prot; 5559 dmapp->maxprot = maxprot; 5560 dmapp->flags = flags; 5561 dmapp->cr = cr; 5562 dmapp->caller = delmap_call; 5563 5564 error = as_add_callback(as, nfs3_delmap_callback, dmapp, 5565 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 5566 5567 return (error ? error : EAGAIN); 5568 } 5569 5570 /* 5571 * Remove some pages from an mmap'd vnode. Just update the 5572 * count of pages. If doing close-to-open, then flush and 5573 * commit all of the pages associated with this file. 5574 * Otherwise, start an asynchronous page flush to write out 5575 * any dirty pages. This will also associate a credential 5576 * with the rnode which can be used to write the pages. 5577 */ 5578 /* ARGSUSED */ 5579 static void 5580 nfs3_delmap_callback(struct as *as, void *arg, uint_t event) 5581 { 5582 int error; 5583 rnode_t *rp; 5584 mntinfo_t *mi; 5585 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 5586 5587 rp = VTOR(dmapp->vp); 5588 mi = VTOMI(dmapp->vp); 5589 5590 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 5591 ASSERT(rp->r_mapcnt >= 0); 5592 5593 /* 5594 * Initiate a page flush and potential commit if there are 5595 * pages, the file system was not mounted readonly, the segment 5596 * was mapped shared, and the pages themselves were writeable. 5597 */ 5598 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 5599 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 5600 mutex_enter(&rp->r_statelock); 5601 rp->r_flags |= RDIRTY; 5602 mutex_exit(&rp->r_statelock); 5603 /* 5604 * If this is a cross-zone access a sync putpage won't work, so 5605 * the best we can do is try an async putpage. That seems 5606 * better than something more draconian such as discarding the 5607 * dirty pages. 5608 */ 5609 if ((mi->mi_flags & MI_NOCTO) || 5610 nfs_zone() != mi->mi_zone) 5611 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5612 B_ASYNC, dmapp->cr, NULL); 5613 else 5614 error = nfs3_putpage_commit(dmapp->vp, dmapp->off, 5615 dmapp->len, dmapp->cr); 5616 if (!error) { 5617 mutex_enter(&rp->r_statelock); 5618 error = rp->r_error; 5619 rp->r_error = 0; 5620 mutex_exit(&rp->r_statelock); 5621 } 5622 } else 5623 error = 0; 5624 5625 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 5626 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5627 B_INVAL, dmapp->cr, NULL); 5628 5629 dmapp->caller->error = error; 5630 (void) as_delete_callback(as, arg); 5631 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 5632 } 5633 5634 static int nfs3_pathconf_disable_cache = 0; 5635 5636 #ifdef DEBUG 5637 static int nfs3_pathconf_cache_hits = 0; 5638 static int nfs3_pathconf_cache_misses = 0; 5639 #endif 5640 5641 /* ARGSUSED */ 5642 static int 5643 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 5644 caller_context_t *ct) 5645 { 5646 int error; 5647 PATHCONF3args args; 5648 PATHCONF3res res; 5649 int douprintf; 5650 failinfo_t fi; 5651 rnode_t *rp; 5652 hrtime_t t; 5653 5654 if (nfs_zone() != VTOMI(vp)->mi_zone) 5655 return (EIO); 5656 /* 5657 * Large file spec - need to base answer on info stored 5658 * on original FSINFO response. 5659 */ 5660 if (cmd == _PC_FILESIZEBITS) { 5661 unsigned long long ll; 5662 long l = 1; 5663 5664 ll = VTOMI(vp)->mi_maxfilesize; 5665 5666 if (ll == 0) { 5667 *valp = 0; 5668 return (0); 5669 } 5670 5671 if (ll & 0xffffffff00000000) { 5672 l += 32; ll >>= 32; 5673 } 5674 if (ll & 0xffff0000) { 5675 l += 16; ll >>= 16; 5676 } 5677 if (ll & 0xff00) { 5678 l += 8; ll >>= 8; 5679 } 5680 if (ll & 0xf0) { 5681 l += 4; ll >>= 4; 5682 } 5683 if (ll & 0xc) { 5684 l += 2; ll >>= 2; 5685 } 5686 if (ll & 0x2) 5687 l += 2; 5688 else if (ll & 0x1) 5689 l += 1; 5690 *valp = l; 5691 return (0); 5692 } 5693 5694 if (cmd == _PC_ACL_ENABLED) { 5695 *valp = _ACL_ACLENT_ENABLED; 5696 return (0); 5697 } 5698 5699 if (cmd == _PC_XATTR_EXISTS) { 5700 error = 0; 5701 *valp = 0; 5702 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5703 vnode_t *avp; 5704 rnode_t *rp; 5705 int error = 0; 5706 mntinfo_t *mi = VTOMI(vp); 5707 5708 if (!(mi->mi_flags & MI_EXTATTR)) 5709 return (0); 5710 5711 rp = VTOR(vp); 5712 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 5713 INTR(vp))) 5714 return (EINTR); 5715 5716 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 5717 if (error || avp == NULL) 5718 error = acl_getxattrdir3(vp, &avp, 0, cr, 0); 5719 5720 nfs_rw_exit(&rp->r_rwlock); 5721 5722 if (error == 0 && avp != NULL) { 5723 VN_RELE(avp); 5724 *valp = 1; 5725 } else if (error == ENOENT) 5726 error = 0; 5727 } 5728 return (error); 5729 } 5730 5731 rp = VTOR(vp); 5732 if (rp->r_pathconf != NULL) { 5733 mutex_enter(&rp->r_statelock); 5734 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) { 5735 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf)); 5736 rp->r_pathconf = NULL; 5737 } 5738 if (rp->r_pathconf != NULL) { 5739 error = 0; 5740 switch (cmd) { 5741 case _PC_LINK_MAX: 5742 *valp = rp->r_pathconf->link_max; 5743 break; 5744 case _PC_NAME_MAX: 5745 *valp = rp->r_pathconf->name_max; 5746 break; 5747 case _PC_PATH_MAX: 5748 case _PC_SYMLINK_MAX: 5749 *valp = MAXPATHLEN; 5750 break; 5751 case _PC_CHOWN_RESTRICTED: 5752 *valp = rp->r_pathconf->chown_restricted; 5753 break; 5754 case _PC_NO_TRUNC: 5755 *valp = rp->r_pathconf->no_trunc; 5756 break; 5757 default: 5758 error = EINVAL; 5759 break; 5760 } 5761 mutex_exit(&rp->r_statelock); 5762 #ifdef DEBUG 5763 nfs3_pathconf_cache_hits++; 5764 #endif 5765 return (error); 5766 } 5767 mutex_exit(&rp->r_statelock); 5768 } 5769 #ifdef DEBUG 5770 nfs3_pathconf_cache_misses++; 5771 #endif 5772 5773 args.object = *VTOFH3(vp); 5774 fi.vp = vp; 5775 fi.fhp = (caddr_t)&args.object; 5776 fi.copyproc = nfs3copyfh; 5777 fi.lookupproc = nfs3lookup; 5778 fi.xattrdirproc = acl_getxattrdir3; 5779 5780 douprintf = 1; 5781 5782 t = gethrtime(); 5783 5784 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF, 5785 xdr_nfs_fh3, (caddr_t)&args, 5786 xdr_PATHCONF3res, (caddr_t)&res, cr, 5787 &douprintf, &res.status, 0, &fi); 5788 5789 if (error) 5790 return (error); 5791 5792 error = geterrno3(res.status); 5793 5794 if (!error) { 5795 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 5796 if (!nfs3_pathconf_disable_cache) { 5797 mutex_enter(&rp->r_statelock); 5798 if (rp->r_pathconf == NULL) { 5799 rp->r_pathconf = kmem_alloc( 5800 sizeof (*rp->r_pathconf), KM_NOSLEEP); 5801 if (rp->r_pathconf != NULL) 5802 *rp->r_pathconf = res.resok.info; 5803 } 5804 mutex_exit(&rp->r_statelock); 5805 } 5806 switch (cmd) { 5807 case _PC_LINK_MAX: 5808 *valp = res.resok.info.link_max; 5809 break; 5810 case _PC_NAME_MAX: 5811 *valp = res.resok.info.name_max; 5812 break; 5813 case _PC_PATH_MAX: 5814 case _PC_SYMLINK_MAX: 5815 *valp = MAXPATHLEN; 5816 break; 5817 case _PC_CHOWN_RESTRICTED: 5818 *valp = res.resok.info.chown_restricted; 5819 break; 5820 case _PC_NO_TRUNC: 5821 *valp = res.resok.info.no_trunc; 5822 break; 5823 default: 5824 return (EINVAL); 5825 } 5826 } else { 5827 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 5828 PURGE_STALE_FH(error, vp, cr); 5829 } 5830 5831 return (error); 5832 } 5833 5834 /* 5835 * Called by async thread to do synchronous pageio. Do the i/o, wait 5836 * for it to complete, and cleanup the page list when done. 5837 */ 5838 static int 5839 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5840 int flags, cred_t *cr) 5841 { 5842 int error; 5843 5844 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5845 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5846 if (flags & B_READ) 5847 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 5848 else 5849 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 5850 return (error); 5851 } 5852 5853 /* ARGSUSED */ 5854 static int 5855 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5856 int flags, cred_t *cr, caller_context_t *ct) 5857 { 5858 int error; 5859 rnode_t *rp; 5860 5861 if (pp == NULL) 5862 return (EINVAL); 5863 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5864 return (EIO); 5865 5866 rp = VTOR(vp); 5867 mutex_enter(&rp->r_statelock); 5868 rp->r_count++; 5869 mutex_exit(&rp->r_statelock); 5870 5871 if (flags & B_ASYNC) { 5872 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 5873 nfs3_sync_pageio); 5874 } else 5875 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5876 mutex_enter(&rp->r_statelock); 5877 rp->r_count--; 5878 cv_broadcast(&rp->r_cv); 5879 mutex_exit(&rp->r_statelock); 5880 return (error); 5881 } 5882 5883 /* ARGSUSED */ 5884 static void 5885 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 5886 caller_context_t *ct) 5887 { 5888 int error; 5889 rnode_t *rp; 5890 page_t *plist; 5891 page_t *pptr; 5892 offset3 offset; 5893 count3 len; 5894 k_sigset_t smask; 5895 5896 /* 5897 * We should get called with fl equal to either B_FREE or 5898 * B_INVAL. Any other value is illegal. 5899 * 5900 * The page that we are either supposed to free or destroy 5901 * should be exclusive locked and its io lock should not 5902 * be held. 5903 */ 5904 ASSERT(fl == B_FREE || fl == B_INVAL); 5905 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 5906 rp = VTOR(vp); 5907 5908 /* 5909 * If the page doesn't need to be committed or we shouldn't 5910 * even bother attempting to commit it, then just make sure 5911 * that the p_fsdata byte is clear and then either free or 5912 * destroy the page as appropriate. 5913 */ 5914 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) { 5915 pp->p_fsdata = C_NOCOMMIT; 5916 if (fl == B_FREE) 5917 page_free(pp, dn); 5918 else 5919 page_destroy(pp, dn); 5920 return; 5921 } 5922 5923 /* 5924 * If there is a page invalidation operation going on, then 5925 * if this is one of the pages being destroyed, then just 5926 * clear the p_fsdata byte and then either free or destroy 5927 * the page as appropriate. 5928 */ 5929 mutex_enter(&rp->r_statelock); 5930 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 5931 mutex_exit(&rp->r_statelock); 5932 pp->p_fsdata = C_NOCOMMIT; 5933 if (fl == B_FREE) 5934 page_free(pp, dn); 5935 else 5936 page_destroy(pp, dn); 5937 return; 5938 } 5939 5940 /* 5941 * If we are freeing this page and someone else is already 5942 * waiting to do a commit, then just unlock the page and 5943 * return. That other thread will take care of commiting 5944 * this page. The page can be freed sometime after the 5945 * commit has finished. Otherwise, if the page is marked 5946 * as delay commit, then we may be getting called from 5947 * pvn_write_done, one page at a time. This could result 5948 * in one commit per page, so we end up doing lots of small 5949 * commits instead of fewer larger commits. This is bad, 5950 * we want do as few commits as possible. 5951 */ 5952 if (fl == B_FREE) { 5953 if (rp->r_flags & RCOMMITWAIT) { 5954 page_unlock(pp); 5955 mutex_exit(&rp->r_statelock); 5956 return; 5957 } 5958 if (pp->p_fsdata == C_DELAYCOMMIT) { 5959 pp->p_fsdata = C_COMMIT; 5960 page_unlock(pp); 5961 mutex_exit(&rp->r_statelock); 5962 return; 5963 } 5964 } 5965 5966 /* 5967 * Check to see if there is a signal which would prevent an 5968 * attempt to commit the pages from being successful. If so, 5969 * then don't bother with all of the work to gather pages and 5970 * generate the unsuccessful RPC. Just return from here and 5971 * let the page be committed at some later time. 5972 */ 5973 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT); 5974 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 5975 sigunintr(&smask); 5976 page_unlock(pp); 5977 mutex_exit(&rp->r_statelock); 5978 return; 5979 } 5980 sigunintr(&smask); 5981 5982 /* 5983 * We are starting to need to commit pages, so let's try 5984 * to commit as many as possible at once to reduce the 5985 * overhead. 5986 * 5987 * Set the `commit inprogress' state bit. We must 5988 * first wait until any current one finishes. Then 5989 * we initialize the c_pages list with this page. 5990 */ 5991 while (rp->r_flags & RCOMMIT) { 5992 rp->r_flags |= RCOMMITWAIT; 5993 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 5994 rp->r_flags &= ~RCOMMITWAIT; 5995 } 5996 rp->r_flags |= RCOMMIT; 5997 mutex_exit(&rp->r_statelock); 5998 ASSERT(rp->r_commit.c_pages == NULL); 5999 rp->r_commit.c_pages = pp; 6000 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6001 rp->r_commit.c_commlen = PAGESIZE; 6002 6003 /* 6004 * Gather together all other pages which can be committed. 6005 * They will all be chained off r_commit.c_pages. 6006 */ 6007 nfs3_get_commit(vp); 6008 6009 /* 6010 * Clear the `commit inprogress' status and disconnect 6011 * the list of pages to be committed from the rnode. 6012 * At this same time, we also save the starting offset 6013 * and length of data to be committed on the server. 6014 */ 6015 plist = rp->r_commit.c_pages; 6016 rp->r_commit.c_pages = NULL; 6017 offset = rp->r_commit.c_commbase; 6018 len = rp->r_commit.c_commlen; 6019 mutex_enter(&rp->r_statelock); 6020 rp->r_flags &= ~RCOMMIT; 6021 cv_broadcast(&rp->r_commit.c_cv); 6022 mutex_exit(&rp->r_statelock); 6023 6024 if (curproc == proc_pageout || curproc == proc_fsflush || 6025 nfs_zone() != VTOMI(vp)->mi_zone) { 6026 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit); 6027 return; 6028 } 6029 6030 /* 6031 * Actually generate the COMMIT3 over the wire operation. 6032 */ 6033 error = nfs3_commit(vp, offset, len, cr); 6034 6035 /* 6036 * If we got an error during the commit, just unlock all 6037 * of the pages. The pages will get retransmitted to the 6038 * server during a putpage operation. 6039 */ 6040 if (error) { 6041 while (plist != NULL) { 6042 pptr = plist; 6043 page_sub(&plist, pptr); 6044 page_unlock(pptr); 6045 } 6046 return; 6047 } 6048 6049 /* 6050 * We've tried as hard as we can to commit the data to stable 6051 * storage on the server. We release the rest of the pages 6052 * and clear the commit required state. They will be put 6053 * onto the tail of the cachelist if they are nolonger 6054 * mapped. 6055 */ 6056 while (plist != pp) { 6057 pptr = plist; 6058 page_sub(&plist, pptr); 6059 pptr->p_fsdata = C_NOCOMMIT; 6060 (void) page_release(pptr, 1); 6061 } 6062 6063 /* 6064 * It is possible that nfs3_commit didn't return error but 6065 * some other thread has modified the page we are going 6066 * to free/destroy. 6067 * In this case we need to rewrite the page. Do an explicit check 6068 * before attempting to free/destroy the page. If modified, needs to 6069 * be rewritten so unlock the page and return. 6070 */ 6071 if (hat_ismod(pp)) { 6072 pp->p_fsdata = C_NOCOMMIT; 6073 page_unlock(pp); 6074 return; 6075 } 6076 6077 /* 6078 * Now, as appropriate, either free or destroy the page 6079 * that we were called with. 6080 */ 6081 pp->p_fsdata = C_NOCOMMIT; 6082 if (fl == B_FREE) 6083 page_free(pp, dn); 6084 else 6085 page_destroy(pp, dn); 6086 } 6087 6088 static int 6089 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr) 6090 { 6091 int error; 6092 rnode_t *rp; 6093 COMMIT3args args; 6094 COMMIT3res res; 6095 int douprintf; 6096 cred_t *cred; 6097 6098 rp = VTOR(vp); 6099 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6100 6101 mutex_enter(&rp->r_statelock); 6102 if (rp->r_cred != NULL) { 6103 cred = rp->r_cred; 6104 crhold(cred); 6105 } else { 6106 rp->r_cred = cr; 6107 crhold(cr); 6108 cred = cr; 6109 crhold(cred); 6110 } 6111 mutex_exit(&rp->r_statelock); 6112 6113 args.file = *VTOFH3(vp); 6114 args.offset = offset; 6115 args.count = count; 6116 6117 doitagain: 6118 douprintf = 1; 6119 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT, 6120 xdr_COMMIT3args, (caddr_t)&args, 6121 xdr_COMMIT3res, (caddr_t)&res, cred, 6122 &douprintf, &res.status, 0, NULL); 6123 6124 crfree(cred); 6125 6126 if (error) 6127 return (error); 6128 6129 error = geterrno3(res.status); 6130 if (!error) { 6131 ASSERT(rp->r_flags & RHAVEVERF); 6132 mutex_enter(&rp->r_statelock); 6133 if (rp->r_verf == res.resok.verf) { 6134 mutex_exit(&rp->r_statelock); 6135 return (0); 6136 } 6137 nfs3_set_mod(vp); 6138 rp->r_verf = res.resok.verf; 6139 mutex_exit(&rp->r_statelock); 6140 error = NFS_VERF_MISMATCH; 6141 } else { 6142 if (error == EACCES) { 6143 mutex_enter(&rp->r_statelock); 6144 if (cred != cr) { 6145 if (rp->r_cred != NULL) 6146 crfree(rp->r_cred); 6147 rp->r_cred = cr; 6148 crhold(cr); 6149 cred = cr; 6150 crhold(cred); 6151 mutex_exit(&rp->r_statelock); 6152 goto doitagain; 6153 } 6154 mutex_exit(&rp->r_statelock); 6155 } 6156 /* 6157 * Can't do a PURGE_STALE_FH here because this 6158 * can cause a deadlock. nfs3_commit can 6159 * be called from nfs3_dispose which can be called 6160 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH 6161 * can call back to pvn_vplist_dirty. 6162 */ 6163 if (error == ESTALE) { 6164 mutex_enter(&rp->r_statelock); 6165 rp->r_flags |= RSTALE; 6166 if (!rp->r_error) 6167 rp->r_error = error; 6168 mutex_exit(&rp->r_statelock); 6169 PURGE_ATTRCACHE(vp); 6170 } else { 6171 mutex_enter(&rp->r_statelock); 6172 if (!rp->r_error) 6173 rp->r_error = error; 6174 mutex_exit(&rp->r_statelock); 6175 } 6176 } 6177 6178 return (error); 6179 } 6180 6181 static void 6182 nfs3_set_mod(vnode_t *vp) 6183 { 6184 page_t *pp; 6185 kmutex_t *vphm; 6186 6187 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6188 vphm = page_vnode_mutex(vp); 6189 mutex_enter(vphm); 6190 if ((pp = vp->v_pages) != NULL) { 6191 do { 6192 if (pp->p_fsdata != C_NOCOMMIT) { 6193 hat_setmod(pp); 6194 pp->p_fsdata = C_NOCOMMIT; 6195 } 6196 } while ((pp = pp->p_vpnext) != vp->v_pages); 6197 } 6198 mutex_exit(vphm); 6199 } 6200 6201 6202 /* 6203 * This routine is used to gather together a page list of the pages 6204 * which are to be committed on the server. This routine must not 6205 * be called if the calling thread holds any locked pages. 6206 * 6207 * The calling thread must have set RCOMMIT. This bit is used to 6208 * serialize access to the commit structure in the rnode. As long 6209 * as the thread has set RCOMMIT, then it can manipulate the commit 6210 * structure without requiring any other locks. 6211 */ 6212 static void 6213 nfs3_get_commit(vnode_t *vp) 6214 { 6215 rnode_t *rp; 6216 page_t *pp; 6217 kmutex_t *vphm; 6218 6219 rp = VTOR(vp); 6220 6221 ASSERT(rp->r_flags & RCOMMIT); 6222 6223 vphm = page_vnode_mutex(vp); 6224 mutex_enter(vphm); 6225 6226 /* 6227 * If there are no pages associated with this vnode, then 6228 * just return. 6229 */ 6230 if ((pp = vp->v_pages) == NULL) { 6231 mutex_exit(vphm); 6232 return; 6233 } 6234 6235 /* 6236 * Step through all of the pages associated with this vnode 6237 * looking for pages which need to be committed. 6238 */ 6239 do { 6240 /* 6241 * If this page does not need to be committed or is 6242 * modified, then just skip it. 6243 */ 6244 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 6245 continue; 6246 6247 /* 6248 * Attempt to lock the page. If we can't, then 6249 * someone else is messing with it and we will 6250 * just skip it. 6251 */ 6252 if (!page_trylock(pp, SE_EXCL)) 6253 continue; 6254 6255 /* 6256 * If this page does not need to be committed or is 6257 * modified, then just skip it. Recheck now that 6258 * the page is locked. 6259 */ 6260 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6261 page_unlock(pp); 6262 continue; 6263 } 6264 6265 if (PP_ISFREE(pp)) { 6266 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free", 6267 (void *)pp); 6268 } 6269 6270 /* 6271 * The page needs to be committed and we locked it. 6272 * Update the base and length parameters and add it 6273 * to r_pages. 6274 */ 6275 if (rp->r_commit.c_pages == NULL) { 6276 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6277 rp->r_commit.c_commlen = PAGESIZE; 6278 } else if (pp->p_offset < rp->r_commit.c_commbase) { 6279 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 6280 (offset3)pp->p_offset + rp->r_commit.c_commlen; 6281 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6282 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 6283 <= pp->p_offset) { 6284 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6285 rp->r_commit.c_commbase + PAGESIZE; 6286 } 6287 page_add(&rp->r_commit.c_pages, pp); 6288 } while ((pp = pp->p_vpnext) != vp->v_pages); 6289 6290 mutex_exit(vphm); 6291 } 6292 6293 /* 6294 * This routine is used to gather together a page list of the pages 6295 * which are to be committed on the server. This routine must not 6296 * be called if the calling thread holds any locked pages. 6297 * 6298 * The calling thread must have set RCOMMIT. This bit is used to 6299 * serialize access to the commit structure in the rnode. As long 6300 * as the thread has set RCOMMIT, then it can manipulate the commit 6301 * structure without requiring any other locks. 6302 */ 6303 static void 6304 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 6305 { 6306 6307 rnode_t *rp; 6308 page_t *pp; 6309 u_offset_t end; 6310 u_offset_t off; 6311 6312 ASSERT(len != 0); 6313 6314 rp = VTOR(vp); 6315 6316 ASSERT(rp->r_flags & RCOMMIT); 6317 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6318 6319 /* 6320 * If there are no pages associated with this vnode, then 6321 * just return. 6322 */ 6323 if ((pp = vp->v_pages) == NULL) 6324 return; 6325 6326 /* 6327 * Calculate the ending offset. 6328 */ 6329 end = soff + len; 6330 6331 for (off = soff; off < end; off += PAGESIZE) { 6332 /* 6333 * Lookup each page by vp, offset. 6334 */ 6335 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 6336 continue; 6337 6338 /* 6339 * If this page does not need to be committed or is 6340 * modified, then just skip it. 6341 */ 6342 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6343 page_unlock(pp); 6344 continue; 6345 } 6346 6347 ASSERT(PP_ISFREE(pp) == 0); 6348 6349 /* 6350 * The page needs to be committed and we locked it. 6351 * Update the base and length parameters and add it 6352 * to r_pages. 6353 */ 6354 if (rp->r_commit.c_pages == NULL) { 6355 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6356 rp->r_commit.c_commlen = PAGESIZE; 6357 } else { 6358 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6359 rp->r_commit.c_commbase + PAGESIZE; 6360 } 6361 page_add(&rp->r_commit.c_pages, pp); 6362 } 6363 } 6364 6365 #if 0 /* unused */ 6366 #ifdef DEBUG 6367 static int 6368 nfs3_no_uncommitted_pages(vnode_t *vp) 6369 { 6370 page_t *pp; 6371 kmutex_t *vphm; 6372 6373 vphm = page_vnode_mutex(vp); 6374 mutex_enter(vphm); 6375 if ((pp = vp->v_pages) != NULL) { 6376 do { 6377 if (pp->p_fsdata != C_NOCOMMIT) { 6378 mutex_exit(vphm); 6379 return (0); 6380 } 6381 } while ((pp = pp->p_vpnext) != vp->v_pages); 6382 } 6383 mutex_exit(vphm); 6384 6385 return (1); 6386 } 6387 #endif 6388 #endif 6389 6390 static int 6391 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 6392 { 6393 int error; 6394 writeverf3 write_verf; 6395 rnode_t *rp = VTOR(vp); 6396 6397 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6398 /* 6399 * Flush the data portion of the file and then commit any 6400 * portions which need to be committed. This may need to 6401 * be done twice if the server has changed state since 6402 * data was last written. The data will need to be 6403 * rewritten to the server and then a new commit done. 6404 * 6405 * In fact, this may need to be done several times if the 6406 * server is having problems and crashing while we are 6407 * attempting to do this. 6408 */ 6409 6410 top: 6411 /* 6412 * Do a flush based on the poff and plen arguments. This 6413 * will asynchronously write out any modified pages in the 6414 * range specified by (poff, plen). This starts all of the 6415 * i/o operations which will be waited for in the next 6416 * call to nfs3_putpage 6417 */ 6418 6419 mutex_enter(&rp->r_statelock); 6420 write_verf = rp->r_verf; 6421 mutex_exit(&rp->r_statelock); 6422 6423 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 6424 if (error == EAGAIN) 6425 error = 0; 6426 6427 /* 6428 * Do a flush based on the poff and plen arguments. This 6429 * will synchronously write out any modified pages in the 6430 * range specified by (poff, plen) and wait until all of 6431 * the asynchronous i/o's in that range are done as well. 6432 */ 6433 if (!error) 6434 error = nfs3_putpage(vp, poff, plen, 0, cr, NULL); 6435 6436 if (error) 6437 return (error); 6438 6439 mutex_enter(&rp->r_statelock); 6440 if (rp->r_verf != write_verf) { 6441 mutex_exit(&rp->r_statelock); 6442 goto top; 6443 } 6444 mutex_exit(&rp->r_statelock); 6445 6446 /* 6447 * Now commit any pages which might need to be committed. 6448 * If the error, NFS_VERF_MISMATCH, is returned, then 6449 * start over with the flush operation. 6450 */ 6451 6452 error = nfs3_commit_vp(vp, poff, plen, cr); 6453 6454 if (error == NFS_VERF_MISMATCH) 6455 goto top; 6456 6457 return (error); 6458 } 6459 6460 static int 6461 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr) 6462 { 6463 rnode_t *rp; 6464 page_t *plist; 6465 offset3 offset; 6466 count3 len; 6467 6468 6469 rp = VTOR(vp); 6470 6471 if (nfs_zone() != VTOMI(vp)->mi_zone) 6472 return (EIO); 6473 /* 6474 * Set the `commit inprogress' state bit. We must 6475 * first wait until any current one finishes. 6476 */ 6477 mutex_enter(&rp->r_statelock); 6478 while (rp->r_flags & RCOMMIT) { 6479 rp->r_flags |= RCOMMITWAIT; 6480 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6481 rp->r_flags &= ~RCOMMITWAIT; 6482 } 6483 rp->r_flags |= RCOMMIT; 6484 mutex_exit(&rp->r_statelock); 6485 6486 /* 6487 * Gather together all of the pages which need to be 6488 * committed. 6489 */ 6490 if (plen == 0) 6491 nfs3_get_commit(vp); 6492 else 6493 nfs3_get_commit_range(vp, poff, plen); 6494 6495 /* 6496 * Clear the `commit inprogress' bit and disconnect the 6497 * page list which was gathered together in nfs3_get_commit. 6498 */ 6499 plist = rp->r_commit.c_pages; 6500 rp->r_commit.c_pages = NULL; 6501 offset = rp->r_commit.c_commbase; 6502 len = rp->r_commit.c_commlen; 6503 mutex_enter(&rp->r_statelock); 6504 rp->r_flags &= ~RCOMMIT; 6505 cv_broadcast(&rp->r_commit.c_cv); 6506 mutex_exit(&rp->r_statelock); 6507 6508 /* 6509 * If any pages need to be committed, commit them and 6510 * then unlock them so that they can be freed some 6511 * time later. 6512 */ 6513 if (plist != NULL) { 6514 /* 6515 * No error occurred during the flush portion 6516 * of this operation, so now attempt to commit 6517 * the data to stable storage on the server. 6518 * 6519 * This will unlock all of the pages on the list. 6520 */ 6521 return (nfs3_sync_commit(vp, plist, offset, len, cr)); 6522 } 6523 return (0); 6524 } 6525 6526 static int 6527 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6528 cred_t *cr) 6529 { 6530 int error; 6531 page_t *pp; 6532 6533 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6534 error = nfs3_commit(vp, offset, count, cr); 6535 6536 /* 6537 * If we got an error, then just unlock all of the pages 6538 * on the list. 6539 */ 6540 if (error) { 6541 while (plist != NULL) { 6542 pp = plist; 6543 page_sub(&plist, pp); 6544 page_unlock(pp); 6545 } 6546 return (error); 6547 } 6548 /* 6549 * We've tried as hard as we can to commit the data to stable 6550 * storage on the server. We just unlock the pages and clear 6551 * the commit required state. They will get freed later. 6552 */ 6553 while (plist != NULL) { 6554 pp = plist; 6555 page_sub(&plist, pp); 6556 pp->p_fsdata = C_NOCOMMIT; 6557 page_unlock(pp); 6558 } 6559 6560 return (error); 6561 } 6562 6563 static void 6564 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6565 cred_t *cr) 6566 { 6567 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6568 (void) nfs3_sync_commit(vp, plist, offset, count, cr); 6569 } 6570 6571 /* ARGSUSED */ 6572 static int 6573 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6574 caller_context_t *ct) 6575 { 6576 int error; 6577 mntinfo_t *mi; 6578 6579 mi = VTOMI(vp); 6580 6581 if (nfs_zone() != mi->mi_zone) 6582 return (EIO); 6583 6584 if (mi->mi_flags & MI_ACL) { 6585 error = acl_setacl3(vp, vsecattr, flag, cr); 6586 if (mi->mi_flags & MI_ACL) 6587 return (error); 6588 } 6589 6590 return (ENOSYS); 6591 } 6592 6593 /* ARGSUSED */ 6594 static int 6595 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6596 caller_context_t *ct) 6597 { 6598 int error; 6599 mntinfo_t *mi; 6600 6601 mi = VTOMI(vp); 6602 6603 if (nfs_zone() != mi->mi_zone) 6604 return (EIO); 6605 6606 if (mi->mi_flags & MI_ACL) { 6607 error = acl_getacl3(vp, vsecattr, flag, cr); 6608 if (mi->mi_flags & MI_ACL) 6609 return (error); 6610 } 6611 6612 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 6613 } 6614 6615 /* ARGSUSED */ 6616 static int 6617 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 6618 caller_context_t *ct) 6619 { 6620 int error; 6621 struct shrlock nshr; 6622 struct nfs_owner nfs_owner; 6623 netobj lm_fh3; 6624 6625 if (nfs_zone() != VTOMI(vp)->mi_zone) 6626 return (EIO); 6627 6628 /* 6629 * check for valid cmd parameter 6630 */ 6631 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 6632 return (EINVAL); 6633 6634 /* 6635 * Check access permissions 6636 */ 6637 if (cmd == F_SHARE && 6638 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 6639 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 6640 return (EBADF); 6641 6642 /* 6643 * If the filesystem is mounted using local locking, pass the 6644 * request off to the local share code. 6645 */ 6646 if (VTOMI(vp)->mi_flags & MI_LLOCK) 6647 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 6648 6649 switch (cmd) { 6650 case F_SHARE: 6651 case F_UNSHARE: 6652 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 6653 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 6654 6655 /* 6656 * If passed an owner that is too large to fit in an 6657 * nfs_owner it is likely a recursive call from the 6658 * lock manager client and pass it straight through. If 6659 * it is not a nfs_owner then simply return an error. 6660 */ 6661 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 6662 if (((struct nfs_owner *)shr->s_owner)->magic != 6663 NFS_OWNER_MAGIC) 6664 return (EINVAL); 6665 6666 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) { 6667 error = set_errno(error); 6668 } 6669 return (error); 6670 } 6671 /* 6672 * Remote share reservations owner is a combination of 6673 * a magic number, hostname, and the local owner 6674 */ 6675 bzero(&nfs_owner, sizeof (nfs_owner)); 6676 nfs_owner.magic = NFS_OWNER_MAGIC; 6677 (void) strncpy(nfs_owner.hname, uts_nodename(), 6678 sizeof (nfs_owner.hname)); 6679 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 6680 nshr.s_access = shr->s_access; 6681 nshr.s_deny = shr->s_deny; 6682 nshr.s_sysid = 0; 6683 nshr.s_pid = ttoproc(curthread)->p_pid; 6684 nshr.s_own_len = sizeof (nfs_owner); 6685 nshr.s_owner = (caddr_t)&nfs_owner; 6686 6687 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) { 6688 error = set_errno(error); 6689 } 6690 6691 break; 6692 6693 case F_HASREMOTELOCKS: 6694 /* 6695 * NFS client can't store remote locks itself 6696 */ 6697 shr->s_access = 0; 6698 error = 0; 6699 break; 6700 6701 default: 6702 error = EINVAL; 6703 break; 6704 } 6705 6706 return (error); 6707 } 6708