1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/systm.h> 34 #include <sys/cred.h> 35 #include <sys/time.h> 36 #include <sys/vnode.h> 37 #include <sys/vfs.h> 38 #include <sys/vfs_opreg.h> 39 #include <sys/file.h> 40 #include <sys/filio.h> 41 #include <sys/uio.h> 42 #include <sys/buf.h> 43 #include <sys/mman.h> 44 #include <sys/pathname.h> 45 #include <sys/dirent.h> 46 #include <sys/debug.h> 47 #include <sys/vmsystm.h> 48 #include <sys/fcntl.h> 49 #include <sys/flock.h> 50 #include <sys/swap.h> 51 #include <sys/errno.h> 52 #include <sys/strsubr.h> 53 #include <sys/sysmacros.h> 54 #include <sys/kmem.h> 55 #include <sys/cmn_err.h> 56 #include <sys/pathconf.h> 57 #include <sys/utsname.h> 58 #include <sys/dnlc.h> 59 #include <sys/acl.h> 60 #include <sys/systeminfo.h> 61 #include <sys/atomic.h> 62 #include <sys/policy.h> 63 #include <sys/sdt.h> 64 65 #include <rpc/types.h> 66 #include <rpc/auth.h> 67 #include <rpc/clnt.h> 68 #include <rpc/rpc_rdma.h> 69 70 #include <nfs/nfs.h> 71 #include <nfs/nfs_clnt.h> 72 #include <nfs/rnode.h> 73 #include <nfs/nfs_acl.h> 74 #include <nfs/lm.h> 75 76 #include <vm/hat.h> 77 #include <vm/as.h> 78 #include <vm/page.h> 79 #include <vm/pvn.h> 80 #include <vm/seg.h> 81 #include <vm/seg_map.h> 82 #include <vm/seg_kpm.h> 83 #include <vm/seg_vn.h> 84 85 #include <fs/fs_subr.h> 86 87 #include <sys/ddi.h> 88 89 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 90 cred_t *); 91 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 92 stable_how *); 93 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *); 94 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *); 95 static int nfs3_accessx(void *, int, cred_t *); 96 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 97 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 98 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl, 99 int, vnode_t **, cred_t *, int); 100 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *); 101 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 102 int, vnode_t **, cred_t *); 103 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 104 caller_context_t *); 105 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 106 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 107 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *); 108 static int nfs3_bio(struct buf *, stable_how *, cred_t *); 109 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 110 page_t *[], size_t, struct seg *, caddr_t, 111 enum seg_rw, cred_t *); 112 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 113 cred_t *); 114 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 115 int, cred_t *); 116 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 117 int, cred_t *); 118 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *); 119 static void nfs3_set_mod(vnode_t *); 120 static void nfs3_get_commit(vnode_t *); 121 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t); 122 #if 0 /* unused */ 123 #ifdef DEBUG 124 static int nfs3_no_uncommitted_pages(vnode_t *); 125 #endif 126 #endif /* unused */ 127 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 128 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *); 129 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3, 130 cred_t *); 131 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3, 132 cred_t *); 133 static void nfs3_delmap_callback(struct as *, void *, uint_t); 134 135 /* 136 * Error flags used to pass information about certain special errors 137 * which need to be handled specially. 138 */ 139 #define NFS_EOF -98 140 #define NFS_VERF_MISMATCH -97 141 142 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 143 #define ALIGN64(x, ptr, sz) \ 144 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 145 if (x) { \ 146 x = sizeof (uint64_t) - (x); \ 147 sz -= (x); \ 148 ptr += (x); \ 149 } 150 151 /* 152 * These are the vnode ops routines which implement the vnode interface to 153 * the networked file system. These routines just take their parameters, 154 * make them look networkish by putting the right info into interface structs, 155 * and then calling the appropriate remote routine(s) to do the work. 156 * 157 * Note on directory name lookup cacheing: If we detect a stale fhandle, 158 * we purge the directory cache relative to that vnode. This way, the 159 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 160 * more details on rnode locking. 161 */ 162 163 static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *); 164 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *, 165 caller_context_t *); 166 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *, 167 caller_context_t *); 168 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *, 169 caller_context_t *); 170 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 171 caller_context_t *); 172 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *, 173 caller_context_t *); 174 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *, 175 caller_context_t *); 176 static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *); 177 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *, 178 caller_context_t *); 179 static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *); 180 static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *); 181 static int nfs3_lookup(vnode_t *, char *, vnode_t **, 182 struct pathname *, int, vnode_t *, cred_t *, 183 caller_context_t *, int *, pathname_t *); 184 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl, 185 int, vnode_t **, cred_t *, int, caller_context_t *, 186 vsecattr_t *); 187 static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *, 188 int); 189 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *, 190 caller_context_t *, int); 191 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 192 caller_context_t *, int); 193 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 194 cred_t *, caller_context_t *, int, vsecattr_t *); 195 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 196 caller_context_t *, int); 197 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *, 198 cred_t *, caller_context_t *, int); 199 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *, 200 caller_context_t *, int); 201 static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *); 202 static int nfs3_rwlock(vnode_t *, int, caller_context_t *); 203 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *); 204 static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 205 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *, 206 page_t *[], size_t, struct seg *, caddr_t, 207 enum seg_rw, cred_t *, caller_context_t *); 208 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 209 caller_context_t *); 210 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 211 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 212 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 213 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 214 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 215 struct flk_callback *, cred_t *, caller_context_t *); 216 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t, 217 cred_t *, caller_context_t *); 218 static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *); 219 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 220 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 221 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *, 222 caller_context_t *); 223 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 224 cred_t *, caller_context_t *); 225 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *, 226 caller_context_t *); 227 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 228 caller_context_t *); 229 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 230 caller_context_t *); 231 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 232 caller_context_t *); 233 234 struct vnodeops *nfs3_vnodeops; 235 236 const fs_operation_def_t nfs3_vnodeops_template[] = { 237 VOPNAME_OPEN, { .vop_open = nfs3_open }, 238 VOPNAME_CLOSE, { .vop_close = nfs3_close }, 239 VOPNAME_READ, { .vop_read = nfs3_read }, 240 VOPNAME_WRITE, { .vop_write = nfs3_write }, 241 VOPNAME_IOCTL, { .vop_ioctl = nfs3_ioctl }, 242 VOPNAME_GETATTR, { .vop_getattr = nfs3_getattr }, 243 VOPNAME_SETATTR, { .vop_setattr = nfs3_setattr }, 244 VOPNAME_ACCESS, { .vop_access = nfs3_access }, 245 VOPNAME_LOOKUP, { .vop_lookup = nfs3_lookup }, 246 VOPNAME_CREATE, { .vop_create = nfs3_create }, 247 VOPNAME_REMOVE, { .vop_remove = nfs3_remove }, 248 VOPNAME_LINK, { .vop_link = nfs3_link }, 249 VOPNAME_RENAME, { .vop_rename = nfs3_rename }, 250 VOPNAME_MKDIR, { .vop_mkdir = nfs3_mkdir }, 251 VOPNAME_RMDIR, { .vop_rmdir = nfs3_rmdir }, 252 VOPNAME_READDIR, { .vop_readdir = nfs3_readdir }, 253 VOPNAME_SYMLINK, { .vop_symlink = nfs3_symlink }, 254 VOPNAME_READLINK, { .vop_readlink = nfs3_readlink }, 255 VOPNAME_FSYNC, { .vop_fsync = nfs3_fsync }, 256 VOPNAME_INACTIVE, { .vop_inactive = nfs3_inactive }, 257 VOPNAME_FID, { .vop_fid = nfs3_fid }, 258 VOPNAME_RWLOCK, { .vop_rwlock = nfs3_rwlock }, 259 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs3_rwunlock }, 260 VOPNAME_SEEK, { .vop_seek = nfs3_seek }, 261 VOPNAME_FRLOCK, { .vop_frlock = nfs3_frlock }, 262 VOPNAME_SPACE, { .vop_space = nfs3_space }, 263 VOPNAME_REALVP, { .vop_realvp = nfs3_realvp }, 264 VOPNAME_GETPAGE, { .vop_getpage = nfs3_getpage }, 265 VOPNAME_PUTPAGE, { .vop_putpage = nfs3_putpage }, 266 VOPNAME_MAP, { .vop_map = nfs3_map }, 267 VOPNAME_ADDMAP, { .vop_addmap = nfs3_addmap }, 268 VOPNAME_DELMAP, { .vop_delmap = nfs3_delmap }, 269 /* no separate nfs3_dump */ 270 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 271 VOPNAME_PATHCONF, { .vop_pathconf = nfs3_pathconf }, 272 VOPNAME_PAGEIO, { .vop_pageio = nfs3_pageio }, 273 VOPNAME_DISPOSE, { .vop_dispose = nfs3_dispose }, 274 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs3_setsecattr }, 275 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs3_getsecattr }, 276 VOPNAME_SHRLOCK, { .vop_shrlock = nfs3_shrlock }, 277 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 278 NULL, NULL 279 }; 280 281 /* 282 * XXX: This is referenced in modstubs.s 283 */ 284 struct vnodeops * 285 nfs3_getvnodeops(void) 286 { 287 return (nfs3_vnodeops); 288 } 289 290 /* ARGSUSED */ 291 static int 292 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 293 { 294 int error; 295 struct vattr va; 296 rnode_t *rp; 297 vnode_t *vp; 298 299 vp = *vpp; 300 if (nfs_zone() != VTOMI(vp)->mi_zone) 301 return (EIO); 302 rp = VTOR(vp); 303 mutex_enter(&rp->r_statelock); 304 if (rp->r_cred == NULL) { 305 crhold(cr); 306 rp->r_cred = cr; 307 } 308 mutex_exit(&rp->r_statelock); 309 310 /* 311 * If there is no cached data or if close-to-open 312 * consistency checking is turned off, we can avoid 313 * the over the wire getattr. Otherwise, if the 314 * file system is mounted readonly, then just verify 315 * the caches are up to date using the normal mechanism. 316 * Else, if the file is not mmap'd, then just mark 317 * the attributes as timed out. They will be refreshed 318 * and the caches validated prior to being used. 319 * Else, the file system is mounted writeable so 320 * force an over the wire GETATTR in order to ensure 321 * that all cached data is valid. 322 */ 323 if (vp->v_count > 1 || 324 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 325 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 326 if (vn_is_readonly(vp)) 327 error = nfs3_validate_caches(vp, cr); 328 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 329 PURGE_ATTRCACHE(vp); 330 error = 0; 331 } else { 332 va.va_mask = AT_ALL; 333 error = nfs3_getattr_otw(vp, &va, cr); 334 } 335 } else 336 error = 0; 337 338 return (error); 339 } 340 341 /* ARGSUSED */ 342 static int 343 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 344 caller_context_t *ct) 345 { 346 rnode_t *rp; 347 int error; 348 struct vattr va; 349 350 /* 351 * zone_enter(2) prevents processes from changing zones with NFS files 352 * open; if we happen to get here from the wrong zone we can't do 353 * anything over the wire. 354 */ 355 if (VTOMI(vp)->mi_zone != nfs_zone()) { 356 /* 357 * We could attempt to clean up locks, except we're sure 358 * that the current process didn't acquire any locks on 359 * the file: any attempt to lock a file belong to another zone 360 * will fail, and one can't lock an NFS file and then change 361 * zones, as that fails too. 362 * 363 * Returning an error here is the sane thing to do. A 364 * subsequent call to VN_RELE() which translates to a 365 * nfs3_inactive() will clean up state: if the zone of the 366 * vnode's origin is still alive and kicking, an async worker 367 * thread will handle the request (from the correct zone), and 368 * everything (minus the commit and final nfs3_getattr_otw() 369 * call) should be OK. If the zone is going away 370 * nfs_async_inactive() will throw away cached pages inline. 371 */ 372 return (EIO); 373 } 374 375 /* 376 * If we are using local locking for this filesystem, then 377 * release all of the SYSV style record locks. Otherwise, 378 * we are doing network locking and we need to release all 379 * of the network locks. All of the locks held by this 380 * process on this file are released no matter what the 381 * incoming reference count is. 382 */ 383 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 384 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 385 cleanshares(vp, ttoproc(curthread)->p_pid); 386 } else 387 nfs_lockrelease(vp, flag, offset, cr); 388 389 if (count > 1) 390 return (0); 391 392 /* 393 * If the file has been `unlinked', then purge the 394 * DNLC so that this vnode will get reycled quicker 395 * and the .nfs* file on the server will get removed. 396 */ 397 rp = VTOR(vp); 398 if (rp->r_unldvp != NULL) 399 dnlc_purge_vp(vp); 400 401 /* 402 * If the file was open for write and there are pages, 403 * then if the file system was mounted using the "no-close- 404 * to-open" semantics, then start an asynchronous flush 405 * of the all of the pages in the file. 406 * else the file system was not mounted using the "no-close- 407 * to-open" semantics, then do a synchronous flush and 408 * commit of all of the dirty and uncommitted pages. 409 * 410 * The asynchronous flush of the pages in the "nocto" path 411 * mostly just associates a cred pointer with the rnode so 412 * writes which happen later will have a better chance of 413 * working. It also starts the data being written to the 414 * server, but without unnecessarily delaying the application. 415 */ 416 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 417 if (VTOMI(vp)->mi_flags & MI_NOCTO) { 418 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC, 419 cr, ct); 420 if (error == EAGAIN) 421 error = 0; 422 } else 423 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 424 if (!error) { 425 mutex_enter(&rp->r_statelock); 426 error = rp->r_error; 427 rp->r_error = 0; 428 mutex_exit(&rp->r_statelock); 429 } 430 } else { 431 mutex_enter(&rp->r_statelock); 432 error = rp->r_error; 433 rp->r_error = 0; 434 mutex_exit(&rp->r_statelock); 435 } 436 437 /* 438 * If RWRITEATTR is set, then issue an over the wire GETATTR to 439 * refresh the attribute cache with a set of attributes which 440 * weren't returned from a WRITE. This will enable the close- 441 * to-open processing to work. 442 */ 443 if (rp->r_flags & RWRITEATTR) 444 (void) nfs3_getattr_otw(vp, &va, cr); 445 446 return (error); 447 } 448 449 /* ARGSUSED */ 450 static int 451 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr) 452 { 453 mntinfo_t *mi; 454 READ3args args; 455 READ3uiores res; 456 int tsize; 457 offset_t offset; 458 ssize_t count; 459 int error; 460 int douprintf; 461 failinfo_t fi; 462 char *sv_hostname; 463 464 mi = VTOMI(vp); 465 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 466 sv_hostname = VTOR(vp)->r_server->sv_hostname; 467 468 douprintf = 1; 469 args.file = *VTOFH3(vp); 470 fi.vp = vp; 471 fi.fhp = (caddr_t)&args.file; 472 fi.copyproc = nfs3copyfh; 473 fi.lookupproc = nfs3lookup; 474 fi.xattrdirproc = acl_getxattrdir3; 475 476 res.uiop = uiop; 477 478 res.wlist = NULL; 479 480 offset = uiop->uio_loffset; 481 count = uiop->uio_resid; 482 483 do { 484 if (mi->mi_io_kstats) { 485 mutex_enter(&mi->mi_lock); 486 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 487 mutex_exit(&mi->mi_lock); 488 } 489 490 do { 491 tsize = MIN(mi->mi_tsize, count); 492 args.offset = (offset3)offset; 493 args.count = (count3)tsize; 494 res.size = (uint_t)tsize; 495 args.res_uiop = uiop; 496 args.res_data_val_alt = NULL; 497 498 error = rfs3call(mi, NFSPROC3_READ, 499 xdr_READ3args, (caddr_t)&args, 500 xdr_READ3uiores, (caddr_t)&res, cr, 501 &douprintf, &res.status, 0, &fi); 502 } while (error == ENFS_TRYAGAIN); 503 504 if (mi->mi_io_kstats) { 505 mutex_enter(&mi->mi_lock); 506 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 507 mutex_exit(&mi->mi_lock); 508 } 509 510 if (error) 511 return (error); 512 513 error = geterrno3(res.status); 514 if (error) 515 return (error); 516 517 if (res.count != res.size) { 518 zcmn_err(getzoneid(), CE_WARN, 519 "nfs3_directio_read: server %s returned incorrect amount", 520 sv_hostname); 521 return (EIO); 522 } 523 count -= res.count; 524 offset += res.count; 525 if (mi->mi_io_kstats) { 526 mutex_enter(&mi->mi_lock); 527 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 528 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 529 mutex_exit(&mi->mi_lock); 530 } 531 lwp_stat_update(LWP_STAT_INBLK, 1); 532 } while (count && !res.eof); 533 534 return (0); 535 } 536 537 /* ARGSUSED */ 538 static int 539 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 540 caller_context_t *ct) 541 { 542 rnode_t *rp; 543 u_offset_t off; 544 offset_t diff; 545 int on; 546 size_t n; 547 caddr_t base; 548 uint_t flags; 549 int error = 0; 550 mntinfo_t *mi; 551 552 rp = VTOR(vp); 553 mi = VTOMI(vp); 554 555 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 556 557 if (nfs_zone() != mi->mi_zone) 558 return (EIO); 559 560 if (vp->v_type != VREG) 561 return (EISDIR); 562 563 if (uiop->uio_resid == 0) 564 return (0); 565 566 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 567 return (EINVAL); 568 569 /* 570 * Bypass VM if caching has been disabled (e.g., locking) or if 571 * using client-side direct I/O and the file is not mmap'd and 572 * there are no cached pages. 573 */ 574 if ((vp->v_flag & VNOCACHE) || 575 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 576 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 577 return (nfs3_directio_read(vp, uiop, cr)); 578 } 579 580 do { 581 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 582 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 583 n = MIN(MAXBSIZE - on, uiop->uio_resid); 584 585 error = nfs3_validate_caches(vp, cr); 586 if (error) 587 break; 588 589 mutex_enter(&rp->r_statelock); 590 while (rp->r_flags & RINCACHEPURGE) { 591 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 592 mutex_exit(&rp->r_statelock); 593 return (EINTR); 594 } 595 } 596 diff = rp->r_size - uiop->uio_loffset; 597 mutex_exit(&rp->r_statelock); 598 if (diff <= 0) 599 break; 600 if (diff < n) 601 n = (size_t)diff; 602 603 if (vpm_enable) { 604 /* 605 * Copy data. 606 */ 607 error = vpm_data_copy(vp, off + on, n, uiop, 608 1, NULL, 0, S_READ); 609 } else { 610 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 611 S_READ); 612 613 error = uiomove(base + on, n, UIO_READ, uiop); 614 } 615 616 if (!error) { 617 /* 618 * If read a whole block or read to eof, 619 * won't need this buffer again soon. 620 */ 621 mutex_enter(&rp->r_statelock); 622 if (n + on == MAXBSIZE || 623 uiop->uio_loffset == rp->r_size) 624 flags = SM_DONTNEED; 625 else 626 flags = 0; 627 mutex_exit(&rp->r_statelock); 628 if (vpm_enable) { 629 error = vpm_sync_pages(vp, off, n, flags); 630 } else { 631 error = segmap_release(segkmap, base, flags); 632 } 633 } else { 634 if (vpm_enable) { 635 (void) vpm_sync_pages(vp, off, n, 0); 636 } else { 637 (void) segmap_release(segkmap, base, 0); 638 } 639 } 640 } while (!error && uiop->uio_resid > 0); 641 642 return (error); 643 } 644 645 /* ARGSUSED */ 646 static int 647 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 648 caller_context_t *ct) 649 { 650 rlim64_t limit = uiop->uio_llimit; 651 rnode_t *rp; 652 u_offset_t off; 653 caddr_t base; 654 uint_t flags; 655 int remainder; 656 size_t n; 657 int on; 658 int error; 659 int resid; 660 offset_t offset; 661 mntinfo_t *mi; 662 uint_t bsize; 663 664 rp = VTOR(vp); 665 666 if (vp->v_type != VREG) 667 return (EISDIR); 668 669 mi = VTOMI(vp); 670 if (nfs_zone() != mi->mi_zone) 671 return (EIO); 672 if (uiop->uio_resid == 0) 673 return (0); 674 675 if (ioflag & FAPPEND) { 676 struct vattr va; 677 678 /* 679 * Must serialize if appending. 680 */ 681 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 682 nfs_rw_exit(&rp->r_rwlock); 683 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 684 INTR(vp))) 685 return (EINTR); 686 } 687 688 va.va_mask = AT_SIZE; 689 error = nfs3getattr(vp, &va, cr); 690 if (error) 691 return (error); 692 uiop->uio_loffset = va.va_size; 693 } 694 695 offset = uiop->uio_loffset + uiop->uio_resid; 696 697 if (uiop->uio_loffset < 0 || offset < 0) 698 return (EINVAL); 699 700 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 701 limit = MAXOFFSET_T; 702 703 /* 704 * Check to make sure that the process will not exceed 705 * its limit on file size. It is okay to write up to 706 * the limit, but not beyond. Thus, the write which 707 * reaches the limit will be short and the next write 708 * will return an error. 709 */ 710 remainder = 0; 711 if (offset > limit) { 712 remainder = offset - limit; 713 uiop->uio_resid = limit - uiop->uio_loffset; 714 if (uiop->uio_resid <= 0) { 715 proc_t *p = ttoproc(curthread); 716 717 uiop->uio_resid += remainder; 718 mutex_enter(&p->p_lock); 719 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 720 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 721 mutex_exit(&p->p_lock); 722 return (EFBIG); 723 } 724 } 725 726 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 727 return (EINTR); 728 729 /* 730 * Bypass VM if caching has been disabled (e.g., locking) or if 731 * using client-side direct I/O and the file is not mmap'd and 732 * there are no cached pages. 733 */ 734 if ((vp->v_flag & VNOCACHE) || 735 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 736 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 737 size_t bufsize; 738 int count; 739 u_offset_t org_offset; 740 stable_how stab_comm; 741 742 nfs3_fwrite: 743 if (rp->r_flags & RSTALE) { 744 resid = uiop->uio_resid; 745 offset = uiop->uio_loffset; 746 error = rp->r_error; 747 goto bottom; 748 } 749 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 750 base = kmem_alloc(bufsize, KM_SLEEP); 751 do { 752 if (ioflag & FDSYNC) 753 stab_comm = DATA_SYNC; 754 else 755 stab_comm = FILE_SYNC; 756 resid = uiop->uio_resid; 757 offset = uiop->uio_loffset; 758 count = MIN(uiop->uio_resid, bufsize); 759 org_offset = uiop->uio_loffset; 760 error = uiomove(base, count, UIO_WRITE, uiop); 761 if (!error) { 762 error = nfs3write(vp, base, org_offset, 763 count, cr, &stab_comm); 764 } 765 } while (!error && uiop->uio_resid > 0); 766 kmem_free(base, bufsize); 767 goto bottom; 768 } 769 770 771 bsize = vp->v_vfsp->vfs_bsize; 772 773 do { 774 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 775 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 776 n = MIN(MAXBSIZE - on, uiop->uio_resid); 777 778 resid = uiop->uio_resid; 779 offset = uiop->uio_loffset; 780 781 if (rp->r_flags & RSTALE) { 782 error = rp->r_error; 783 break; 784 } 785 786 /* 787 * Don't create dirty pages faster than they 788 * can be cleaned so that the system doesn't 789 * get imbalanced. If the async queue is 790 * maxed out, then wait for it to drain before 791 * creating more dirty pages. Also, wait for 792 * any threads doing pagewalks in the vop_getattr 793 * entry points so that they don't block for 794 * long periods. 795 */ 796 mutex_enter(&rp->r_statelock); 797 while ((mi->mi_max_threads != 0 && 798 rp->r_awcount > 2 * mi->mi_max_threads) || 799 rp->r_gcount > 0) 800 cv_wait(&rp->r_cv, &rp->r_statelock); 801 mutex_exit(&rp->r_statelock); 802 803 if (vpm_enable) { 804 /* 805 * It will use kpm mappings, so no need to 806 * pass an address. 807 */ 808 error = writerp(rp, NULL, n, uiop, 0); 809 } else { 810 if (segmap_kpm) { 811 int pon = uiop->uio_loffset & PAGEOFFSET; 812 size_t pn = MIN(PAGESIZE - pon, 813 uiop->uio_resid); 814 int pagecreate; 815 816 mutex_enter(&rp->r_statelock); 817 pagecreate = (pon == 0) && (pn == PAGESIZE || 818 uiop->uio_loffset + pn >= rp->r_size); 819 mutex_exit(&rp->r_statelock); 820 821 base = segmap_getmapflt(segkmap, vp, off + on, 822 pn, !pagecreate, S_WRITE); 823 824 error = writerp(rp, base + pon, n, uiop, 825 pagecreate); 826 827 } else { 828 base = segmap_getmapflt(segkmap, vp, off + on, 829 n, 0, S_READ); 830 error = writerp(rp, base + on, n, uiop, 0); 831 } 832 } 833 834 if (!error) { 835 if (mi->mi_flags & MI_NOAC) 836 flags = SM_WRITE; 837 else if ((uiop->uio_loffset % bsize) == 0 || 838 IS_SWAPVP(vp)) { 839 /* 840 * Have written a whole block. 841 * Start an asynchronous write 842 * and mark the buffer to 843 * indicate that it won't be 844 * needed again soon. 845 */ 846 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 847 } else 848 flags = 0; 849 if ((ioflag & (FSYNC|FDSYNC)) || 850 (rp->r_flags & ROUTOFSPACE)) { 851 flags &= ~SM_ASYNC; 852 flags |= SM_WRITE; 853 } 854 if (vpm_enable) { 855 error = vpm_sync_pages(vp, off, n, flags); 856 } else { 857 error = segmap_release(segkmap, base, flags); 858 } 859 } else { 860 if (vpm_enable) { 861 (void) vpm_sync_pages(vp, off, n, 0); 862 } else { 863 (void) segmap_release(segkmap, base, 0); 864 } 865 /* 866 * In the event that we got an access error while 867 * faulting in a page for a write-only file just 868 * force a write. 869 */ 870 if (error == EACCES) 871 goto nfs3_fwrite; 872 } 873 } while (!error && uiop->uio_resid > 0); 874 875 bottom: 876 if (error) { 877 uiop->uio_resid = resid + remainder; 878 uiop->uio_loffset = offset; 879 } else 880 uiop->uio_resid += remainder; 881 882 nfs_rw_exit(&rp->r_lkserlock); 883 884 return (error); 885 } 886 887 /* 888 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 889 */ 890 static int 891 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 892 int flags, cred_t *cr) 893 { 894 struct buf *bp; 895 int error; 896 page_t *savepp; 897 uchar_t fsdata; 898 stable_how stab_comm; 899 900 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 901 bp = pageio_setup(pp, len, vp, flags); 902 ASSERT(bp != NULL); 903 904 /* 905 * pageio_setup should have set b_addr to 0. This 906 * is correct since we want to do I/O on a page 907 * boundary. bp_mapin will use this addr to calculate 908 * an offset, and then set b_addr to the kernel virtual 909 * address it allocated for us. 910 */ 911 ASSERT(bp->b_un.b_addr == 0); 912 913 bp->b_edev = 0; 914 bp->b_dev = 0; 915 bp->b_lblkno = lbtodb(off); 916 bp->b_file = vp; 917 bp->b_offset = (offset_t)off; 918 bp_mapin(bp); 919 920 /* 921 * Calculate the desired level of stability to write data 922 * on the server and then mark all of the pages to reflect 923 * this. 924 */ 925 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 926 freemem > desfree) { 927 stab_comm = UNSTABLE; 928 fsdata = C_DELAYCOMMIT; 929 } else { 930 stab_comm = FILE_SYNC; 931 fsdata = C_NOCOMMIT; 932 } 933 934 savepp = pp; 935 do { 936 pp->p_fsdata = fsdata; 937 } while ((pp = pp->p_next) != savepp); 938 939 error = nfs3_bio(bp, &stab_comm, cr); 940 941 bp_mapout(bp); 942 pageio_done(bp); 943 944 /* 945 * If the server wrote pages in a more stable fashion than 946 * was requested, then clear all of the marks in the pages 947 * indicating that COMMIT operations were required. 948 */ 949 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) { 950 do { 951 pp->p_fsdata = C_NOCOMMIT; 952 } while ((pp = pp->p_next) != savepp); 953 } 954 955 return (error); 956 } 957 958 /* 959 * Write to file. Writes to remote server in largest size 960 * chunks that the server can handle. Write is synchronous. 961 */ 962 static int 963 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 964 stable_how *stab_comm) 965 { 966 mntinfo_t *mi; 967 WRITE3args args; 968 WRITE3res res; 969 int error; 970 int tsize; 971 rnode_t *rp; 972 int douprintf; 973 974 rp = VTOR(vp); 975 mi = VTOMI(vp); 976 977 ASSERT(nfs_zone() == mi->mi_zone); 978 979 args.file = *VTOFH3(vp); 980 args.stable = *stab_comm; 981 982 *stab_comm = FILE_SYNC; 983 984 douprintf = 1; 985 986 do { 987 if ((vp->v_flag & VNOCACHE) || 988 (rp->r_flags & RDIRECTIO) || 989 (mi->mi_flags & MI_DIRECTIO)) 990 tsize = MIN(mi->mi_stsize, count); 991 else 992 tsize = MIN(mi->mi_curwrite, count); 993 args.offset = (offset3)offset; 994 args.count = (count3)tsize; 995 args.data.data_len = (uint_t)tsize; 996 args.data.data_val = base; 997 998 if (mi->mi_io_kstats) { 999 mutex_enter(&mi->mi_lock); 1000 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1001 mutex_exit(&mi->mi_lock); 1002 } 1003 args.mblk = NULL; 1004 do { 1005 error = rfs3call(mi, NFSPROC3_WRITE, 1006 xdr_WRITE3args, (caddr_t)&args, 1007 xdr_WRITE3res, (caddr_t)&res, cr, 1008 &douprintf, &res.status, 0, NULL); 1009 } while (error == ENFS_TRYAGAIN); 1010 if (mi->mi_io_kstats) { 1011 mutex_enter(&mi->mi_lock); 1012 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1013 mutex_exit(&mi->mi_lock); 1014 } 1015 1016 if (error) 1017 return (error); 1018 error = geterrno3(res.status); 1019 if (!error) { 1020 if (res.resok.count > args.count) { 1021 zcmn_err(getzoneid(), CE_WARN, 1022 "nfs3write: server %s wrote %u, " 1023 "requested was %u", 1024 rp->r_server->sv_hostname, 1025 res.resok.count, args.count); 1026 return (EIO); 1027 } 1028 if (res.resok.committed == UNSTABLE) { 1029 *stab_comm = UNSTABLE; 1030 if (args.stable == DATA_SYNC || 1031 args.stable == FILE_SYNC) { 1032 zcmn_err(getzoneid(), CE_WARN, 1033 "nfs3write: server %s did not commit to stable storage", 1034 rp->r_server->sv_hostname); 1035 return (EIO); 1036 } 1037 } 1038 tsize = (int)res.resok.count; 1039 count -= tsize; 1040 base += tsize; 1041 offset += tsize; 1042 if (mi->mi_io_kstats) { 1043 mutex_enter(&mi->mi_lock); 1044 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 1045 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 1046 tsize; 1047 mutex_exit(&mi->mi_lock); 1048 } 1049 lwp_stat_update(LWP_STAT_OUBLK, 1); 1050 mutex_enter(&rp->r_statelock); 1051 if (rp->r_flags & RHAVEVERF) { 1052 if (rp->r_verf != res.resok.verf) { 1053 nfs3_set_mod(vp); 1054 rp->r_verf = res.resok.verf; 1055 /* 1056 * If the data was written UNSTABLE, 1057 * then might as well stop because 1058 * the whole block will have to get 1059 * rewritten anyway. 1060 */ 1061 if (*stab_comm == UNSTABLE) { 1062 mutex_exit(&rp->r_statelock); 1063 break; 1064 } 1065 } 1066 } else { 1067 rp->r_verf = res.resok.verf; 1068 rp->r_flags |= RHAVEVERF; 1069 } 1070 /* 1071 * Mark the attribute cache as timed out and 1072 * set RWRITEATTR to indicate that the file 1073 * was modified with a WRITE operation and 1074 * that the attributes can not be trusted. 1075 */ 1076 PURGE_ATTRCACHE_LOCKED(rp); 1077 rp->r_flags |= RWRITEATTR; 1078 mutex_exit(&rp->r_statelock); 1079 } 1080 } while (!error && count); 1081 1082 return (error); 1083 } 1084 1085 /* 1086 * Read from a file. Reads data in largest chunks our interface can handle. 1087 */ 1088 static int 1089 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count, 1090 size_t *residp, cred_t *cr) 1091 { 1092 mntinfo_t *mi; 1093 READ3args args; 1094 READ3vres res; 1095 int tsize; 1096 int error; 1097 int douprintf; 1098 failinfo_t fi; 1099 rnode_t *rp; 1100 struct vattr va; 1101 hrtime_t t; 1102 1103 rp = VTOR(vp); 1104 mi = VTOMI(vp); 1105 ASSERT(nfs_zone() == mi->mi_zone); 1106 douprintf = 1; 1107 1108 args.file = *VTOFH3(vp); 1109 fi.vp = vp; 1110 fi.fhp = (caddr_t)&args.file; 1111 fi.copyproc = nfs3copyfh; 1112 fi.lookupproc = nfs3lookup; 1113 fi.xattrdirproc = acl_getxattrdir3; 1114 1115 res.pov.fres.vp = vp; 1116 res.pov.fres.vap = &va; 1117 1118 res.wlist = NULL; 1119 *residp = count; 1120 do { 1121 if (mi->mi_io_kstats) { 1122 mutex_enter(&mi->mi_lock); 1123 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1124 mutex_exit(&mi->mi_lock); 1125 } 1126 1127 do { 1128 if ((vp->v_flag & VNOCACHE) || 1129 (rp->r_flags & RDIRECTIO) || 1130 (mi->mi_flags & MI_DIRECTIO)) 1131 tsize = MIN(mi->mi_tsize, count); 1132 else 1133 tsize = MIN(mi->mi_curread, count); 1134 res.data.data_val = base; 1135 res.data.data_len = tsize; 1136 args.offset = (offset3)offset; 1137 args.count = (count3)tsize; 1138 args.res_uiop = NULL; 1139 args.res_data_val_alt = base; 1140 1141 t = gethrtime(); 1142 error = rfs3call(mi, NFSPROC3_READ, 1143 xdr_READ3args, (caddr_t)&args, 1144 xdr_READ3vres, (caddr_t)&res, cr, 1145 &douprintf, &res.status, 0, &fi); 1146 } while (error == ENFS_TRYAGAIN); 1147 1148 if (mi->mi_io_kstats) { 1149 mutex_enter(&mi->mi_lock); 1150 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1151 mutex_exit(&mi->mi_lock); 1152 } 1153 1154 if (error) 1155 return (error); 1156 1157 error = geterrno3(res.status); 1158 if (error) 1159 return (error); 1160 1161 if (res.count != res.data.data_len) { 1162 zcmn_err(getzoneid(), CE_WARN, 1163 "nfs3read: server %s returned incorrect amount", 1164 rp->r_server->sv_hostname); 1165 return (EIO); 1166 } 1167 1168 count -= res.count; 1169 *residp = count; 1170 base += res.count; 1171 offset += res.count; 1172 if (mi->mi_io_kstats) { 1173 mutex_enter(&mi->mi_lock); 1174 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1175 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 1176 mutex_exit(&mi->mi_lock); 1177 } 1178 lwp_stat_update(LWP_STAT_INBLK, 1); 1179 } while (count && !res.eof); 1180 1181 if (res.pov.attributes) { 1182 mutex_enter(&rp->r_statelock); 1183 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) { 1184 mutex_exit(&rp->r_statelock); 1185 PURGE_ATTRCACHE(vp); 1186 } else { 1187 if (rp->r_mtime <= t) 1188 nfs_attrcache_va(vp, &va); 1189 mutex_exit(&rp->r_statelock); 1190 } 1191 } 1192 1193 return (0); 1194 } 1195 1196 /* ARGSUSED */ 1197 static int 1198 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1199 caller_context_t *ct) 1200 { 1201 1202 if (nfs_zone() != VTOMI(vp)->mi_zone) 1203 return (EIO); 1204 switch (cmd) { 1205 case _FIODIRECTIO: 1206 return (nfs_directio(vp, (int)arg, cr)); 1207 default: 1208 return (ENOTTY); 1209 } 1210 } 1211 1212 /* ARGSUSED */ 1213 static int 1214 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1215 caller_context_t *ct) 1216 { 1217 int error; 1218 rnode_t *rp; 1219 1220 if (nfs_zone() != VTOMI(vp)->mi_zone) 1221 return (EIO); 1222 /* 1223 * If it has been specified that the return value will 1224 * just be used as a hint, and we are only being asked 1225 * for size, fsid or rdevid, then return the client's 1226 * notion of these values without checking to make sure 1227 * that the attribute cache is up to date. 1228 * The whole point is to avoid an over the wire GETATTR 1229 * call. 1230 */ 1231 rp = VTOR(vp); 1232 if (flags & ATTR_HINT) { 1233 if (vap->va_mask == 1234 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1235 mutex_enter(&rp->r_statelock); 1236 if (vap->va_mask | AT_SIZE) 1237 vap->va_size = rp->r_size; 1238 if (vap->va_mask | AT_FSID) 1239 vap->va_fsid = rp->r_attr.va_fsid; 1240 if (vap->va_mask | AT_RDEV) 1241 vap->va_rdev = rp->r_attr.va_rdev; 1242 mutex_exit(&rp->r_statelock); 1243 return (0); 1244 } 1245 } 1246 1247 /* 1248 * Only need to flush pages if asking for the mtime 1249 * and if there any dirty pages or any outstanding 1250 * asynchronous (write) requests for this file. 1251 */ 1252 if (vap->va_mask & AT_MTIME) { 1253 if (vn_has_cached_data(vp) && 1254 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1255 mutex_enter(&rp->r_statelock); 1256 rp->r_gcount++; 1257 mutex_exit(&rp->r_statelock); 1258 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1259 mutex_enter(&rp->r_statelock); 1260 if (error && (error == ENOSPC || error == EDQUOT)) { 1261 if (!rp->r_error) 1262 rp->r_error = error; 1263 } 1264 if (--rp->r_gcount == 0) 1265 cv_broadcast(&rp->r_cv); 1266 mutex_exit(&rp->r_statelock); 1267 } 1268 } 1269 1270 return (nfs3getattr(vp, vap, cr)); 1271 } 1272 1273 /*ARGSUSED4*/ 1274 static int 1275 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1276 caller_context_t *ct) 1277 { 1278 int error; 1279 struct vattr va; 1280 1281 if (vap->va_mask & AT_NOSET) 1282 return (EINVAL); 1283 if (nfs_zone() != VTOMI(vp)->mi_zone) 1284 return (EIO); 1285 1286 va.va_mask = AT_UID | AT_MODE; 1287 error = nfs3getattr(vp, &va, cr); 1288 if (error) 1289 return (error); 1290 1291 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx, 1292 vp); 1293 if (error) 1294 return (error); 1295 1296 return (nfs3setattr(vp, vap, flags, cr)); 1297 } 1298 1299 static int 1300 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1301 { 1302 int error; 1303 uint_t mask; 1304 SETATTR3args args; 1305 SETATTR3res res; 1306 int douprintf; 1307 rnode_t *rp; 1308 struct vattr va; 1309 mode_t omode; 1310 vsecattr_t *vsp; 1311 hrtime_t t; 1312 1313 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1314 mask = vap->va_mask; 1315 1316 rp = VTOR(vp); 1317 1318 /* 1319 * Only need to flush pages if there are any pages and 1320 * if the file is marked as dirty in some fashion. The 1321 * file must be flushed so that we can accurately 1322 * determine the size of the file and the cached data 1323 * after the SETATTR returns. A file is considered to 1324 * be dirty if it is either marked with RDIRTY, has 1325 * outstanding i/o's active, or is mmap'd. In this 1326 * last case, we can't tell whether there are dirty 1327 * pages, so we flush just to be sure. 1328 */ 1329 if (vn_has_cached_data(vp) && 1330 ((rp->r_flags & RDIRTY) || 1331 rp->r_count > 0 || 1332 rp->r_mapcnt > 0)) { 1333 ASSERT(vp->v_type != VCHR); 1334 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1335 if (error && (error == ENOSPC || error == EDQUOT)) { 1336 mutex_enter(&rp->r_statelock); 1337 if (!rp->r_error) 1338 rp->r_error = error; 1339 mutex_exit(&rp->r_statelock); 1340 } 1341 } 1342 1343 args.object = *RTOFH3(rp); 1344 /* 1345 * If the intent is for the server to set the times, 1346 * there is no point in have the mask indicating set mtime or 1347 * atime, because the vap values may be junk, and so result 1348 * in an overflow error. Remove these flags from the vap mask 1349 * before calling in this case, and restore them afterwards. 1350 */ 1351 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) { 1352 /* Use server times, so don't set the args time fields */ 1353 vap->va_mask &= ~(AT_ATIME | AT_MTIME); 1354 error = vattr_to_sattr3(vap, &args.new_attributes); 1355 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME)); 1356 if (mask & AT_ATIME) { 1357 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 1358 } 1359 if (mask & AT_MTIME) { 1360 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 1361 } 1362 } else { 1363 /* Either do not set times or use the client specified times */ 1364 error = vattr_to_sattr3(vap, &args.new_attributes); 1365 } 1366 1367 if (error) { 1368 /* req time field(s) overflow - return immediately */ 1369 return (error); 1370 } 1371 1372 va.va_mask = AT_MODE | AT_CTIME; 1373 error = nfs3getattr(vp, &va, cr); 1374 if (error) 1375 return (error); 1376 omode = va.va_mode; 1377 1378 tryagain: 1379 if (mask & AT_SIZE) { 1380 args.guard.check = TRUE; 1381 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec; 1382 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec; 1383 } else 1384 args.guard.check = FALSE; 1385 1386 douprintf = 1; 1387 1388 t = gethrtime(); 1389 1390 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 1391 xdr_SETATTR3args, (caddr_t)&args, 1392 xdr_SETATTR3res, (caddr_t)&res, cr, 1393 &douprintf, &res.status, 0, NULL); 1394 1395 /* 1396 * Purge the access cache and ACL cache if changing either the 1397 * owner of the file, the group owner, or the mode. These may 1398 * change the access permissions of the file, so purge old 1399 * information and start over again. 1400 */ 1401 if (mask & (AT_UID | AT_GID | AT_MODE)) { 1402 (void) nfs_access_purge_rp(rp); 1403 if (rp->r_secattr != NULL) { 1404 mutex_enter(&rp->r_statelock); 1405 vsp = rp->r_secattr; 1406 rp->r_secattr = NULL; 1407 mutex_exit(&rp->r_statelock); 1408 if (vsp != NULL) 1409 nfs_acl_free(vsp); 1410 } 1411 } 1412 1413 if (error) { 1414 PURGE_ATTRCACHE(vp); 1415 return (error); 1416 } 1417 1418 error = geterrno3(res.status); 1419 if (!error) { 1420 /* 1421 * If changing the size of the file, invalidate 1422 * any local cached data which is no longer part 1423 * of the file. We also possibly invalidate the 1424 * last page in the file. We could use 1425 * pvn_vpzero(), but this would mark the page as 1426 * modified and require it to be written back to 1427 * the server for no particularly good reason. 1428 * This way, if we access it, then we bring it 1429 * back in. A read should be cheaper than a 1430 * write. 1431 */ 1432 if (mask & AT_SIZE) { 1433 nfs_invalidate_pages(vp, 1434 (vap->va_size & PAGEMASK), cr); 1435 } 1436 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 1437 /* 1438 * Some servers will change the mode to clear the setuid 1439 * and setgid bits when changing the uid or gid. The 1440 * client needs to compensate appropriately. 1441 */ 1442 if (mask & (AT_UID | AT_GID)) { 1443 int terror; 1444 1445 va.va_mask = AT_MODE; 1446 terror = nfs3getattr(vp, &va, cr); 1447 if (!terror && 1448 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 1449 (!(mask & AT_MODE) && va.va_mode != omode))) { 1450 va.va_mask = AT_MODE; 1451 if (mask & AT_MODE) 1452 va.va_mode = vap->va_mode; 1453 else 1454 va.va_mode = omode; 1455 (void) nfs3setattr(vp, &va, 0, cr); 1456 } 1457 } 1458 } else { 1459 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 1460 /* 1461 * If we got back a "not synchronized" error, then 1462 * we need to retry with a new guard value. The 1463 * guard value used is the change time. If the 1464 * server returned post_op_attr, then we can just 1465 * retry because we have the latest attributes. 1466 * Otherwise, we issue a GETATTR to get the latest 1467 * attributes and then retry. If we couldn't get 1468 * the attributes this way either, then we give 1469 * up because we can't complete the operation as 1470 * required. 1471 */ 1472 if (res.status == NFS3ERR_NOT_SYNC) { 1473 va.va_mask = AT_CTIME; 1474 if (nfs3getattr(vp, &va, cr) == 0) 1475 goto tryagain; 1476 } 1477 PURGE_STALE_FH(error, vp, cr); 1478 } 1479 1480 return (error); 1481 } 1482 1483 static int 1484 nfs3_accessx(void *vp, int mode, cred_t *cr) 1485 { 1486 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1487 return (nfs3_access(vp, mode, 0, cr, NULL)); 1488 } 1489 1490 /* ARGSUSED */ 1491 static int 1492 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1493 { 1494 int error; 1495 ACCESS3args args; 1496 ACCESS3res res; 1497 int douprintf; 1498 uint32 acc; 1499 rnode_t *rp; 1500 cred_t *cred, *ncr, *ncrfree = NULL; 1501 failinfo_t fi; 1502 nfs_access_type_t cacc; 1503 hrtime_t t; 1504 1505 acc = 0; 1506 if (nfs_zone() != VTOMI(vp)->mi_zone) 1507 return (EIO); 1508 if (mode & VREAD) 1509 acc |= ACCESS3_READ; 1510 if (mode & VWRITE) { 1511 if (vn_is_readonly(vp) && !IS_DEVVP(vp)) 1512 return (EROFS); 1513 if (vp->v_type == VDIR) 1514 acc |= ACCESS3_DELETE; 1515 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND; 1516 } 1517 if (mode & VEXEC) { 1518 if (vp->v_type == VDIR) 1519 acc |= ACCESS3_LOOKUP; 1520 else 1521 acc |= ACCESS3_EXECUTE; 1522 } 1523 1524 rp = VTOR(vp); 1525 args.object = *VTOFH3(vp); 1526 if (vp->v_type == VDIR) { 1527 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY | 1528 ACCESS3_EXTEND | ACCESS3_LOOKUP; 1529 } else { 1530 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND | 1531 ACCESS3_EXECUTE; 1532 } 1533 fi.vp = vp; 1534 fi.fhp = (caddr_t)&args.object; 1535 fi.copyproc = nfs3copyfh; 1536 fi.lookupproc = nfs3lookup; 1537 fi.xattrdirproc = acl_getxattrdir3; 1538 1539 cred = cr; 1540 /* 1541 * ncr and ncrfree both initially 1542 * point to the memory area returned 1543 * by crnetadjust(); 1544 * ncrfree not NULL when exiting means 1545 * that we need to release it 1546 */ 1547 ncr = crnetadjust(cred); 1548 ncrfree = ncr; 1549 tryagain: 1550 if (rp->r_acache != NULL) { 1551 cacc = nfs_access_check(rp, acc, cred); 1552 if (cacc == NFS_ACCESS_ALLOWED) { 1553 if (ncrfree != NULL) 1554 crfree(ncrfree); 1555 return (0); 1556 } 1557 if (cacc == NFS_ACCESS_DENIED) { 1558 /* 1559 * If the cred can be adjusted, try again 1560 * with the new cred. 1561 */ 1562 if (ncr != NULL) { 1563 cred = ncr; 1564 ncr = NULL; 1565 goto tryagain; 1566 } 1567 if (ncrfree != NULL) 1568 crfree(ncrfree); 1569 return (EACCES); 1570 } 1571 } 1572 1573 douprintf = 1; 1574 1575 t = gethrtime(); 1576 1577 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS, 1578 xdr_ACCESS3args, (caddr_t)&args, 1579 xdr_ACCESS3res, (caddr_t)&res, cred, 1580 &douprintf, &res.status, 0, &fi); 1581 1582 if (error) { 1583 if (ncrfree != NULL) 1584 crfree(ncrfree); 1585 return (error); 1586 } 1587 1588 error = geterrno3(res.status); 1589 if (!error) { 1590 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 1591 nfs_access_cache(rp, args.access, res.resok.access, cred); 1592 /* 1593 * we just cached results with cred; if cred is the 1594 * adjusted credentials from crnetadjust, we do not want 1595 * to release them before exiting: hence setting ncrfree 1596 * to NULL 1597 */ 1598 if (cred != cr) 1599 ncrfree = NULL; 1600 if ((acc & res.resok.access) != acc) { 1601 /* 1602 * If the cred can be adjusted, try again 1603 * with the new cred. 1604 */ 1605 if (ncr != NULL) { 1606 cred = ncr; 1607 ncr = NULL; 1608 goto tryagain; 1609 } 1610 error = EACCES; 1611 } 1612 } else { 1613 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 1614 PURGE_STALE_FH(error, vp, cr); 1615 } 1616 1617 if (ncrfree != NULL) 1618 crfree(ncrfree); 1619 1620 return (error); 1621 } 1622 1623 static int nfs3_do_symlink_cache = 1; 1624 1625 /* ARGSUSED */ 1626 static int 1627 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1628 { 1629 int error; 1630 READLINK3args args; 1631 READLINK3res res; 1632 nfspath3 resdata_backup; 1633 rnode_t *rp; 1634 int douprintf; 1635 int len; 1636 failinfo_t fi; 1637 hrtime_t t; 1638 1639 /* 1640 * Can't readlink anything other than a symbolic link. 1641 */ 1642 if (vp->v_type != VLNK) 1643 return (EINVAL); 1644 if (nfs_zone() != VTOMI(vp)->mi_zone) 1645 return (EIO); 1646 1647 rp = VTOR(vp); 1648 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) { 1649 error = nfs3_validate_caches(vp, cr); 1650 if (error) 1651 return (error); 1652 mutex_enter(&rp->r_statelock); 1653 if (rp->r_symlink.contents != NULL) { 1654 error = uiomove(rp->r_symlink.contents, 1655 rp->r_symlink.len, UIO_READ, uiop); 1656 mutex_exit(&rp->r_statelock); 1657 return (error); 1658 } 1659 mutex_exit(&rp->r_statelock); 1660 } 1661 1662 args.symlink = *VTOFH3(vp); 1663 fi.vp = vp; 1664 fi.fhp = (caddr_t)&args.symlink; 1665 fi.copyproc = nfs3copyfh; 1666 fi.lookupproc = nfs3lookup; 1667 fi.xattrdirproc = acl_getxattrdir3; 1668 1669 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1670 1671 resdata_backup = res.resok.data; 1672 1673 douprintf = 1; 1674 1675 t = gethrtime(); 1676 1677 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK, 1678 xdr_READLINK3args, (caddr_t)&args, 1679 xdr_READLINK3res, (caddr_t)&res, cr, 1680 &douprintf, &res.status, 0, &fi); 1681 1682 if (res.resok.data == nfs3nametoolong) 1683 error = EINVAL; 1684 1685 if (error) { 1686 kmem_free(resdata_backup, MAXPATHLEN); 1687 return (error); 1688 } 1689 1690 error = geterrno3(res.status); 1691 if (!error) { 1692 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t, 1693 cr); 1694 len = strlen(res.resok.data); 1695 error = uiomove(res.resok.data, len, UIO_READ, uiop); 1696 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) { 1697 mutex_enter(&rp->r_statelock); 1698 if (rp->r_symlink.contents == NULL) { 1699 rp->r_symlink.contents = res.resok.data; 1700 rp->r_symlink.len = len; 1701 rp->r_symlink.size = MAXPATHLEN; 1702 mutex_exit(&rp->r_statelock); 1703 } else { 1704 mutex_exit(&rp->r_statelock); 1705 1706 kmem_free((void *)res.resok.data, MAXPATHLEN); 1707 } 1708 } else { 1709 kmem_free((void *)res.resok.data, MAXPATHLEN); 1710 } 1711 } else { 1712 nfs3_cache_post_op_attr(vp, 1713 &res.resfail.symlink_attributes, t, cr); 1714 PURGE_STALE_FH(error, vp, cr); 1715 1716 kmem_free((void *)res.resok.data, MAXPATHLEN); 1717 1718 } 1719 1720 /* 1721 * The over the wire error for attempting to readlink something 1722 * other than a symbolic link is ENXIO. However, we need to 1723 * return EINVAL instead of ENXIO, so we map it here. 1724 */ 1725 return (error == ENXIO ? EINVAL : error); 1726 } 1727 1728 /* 1729 * Flush local dirty pages to stable storage on the server. 1730 * 1731 * If FNODSYNC is specified, then there is nothing to do because 1732 * metadata changes are not cached on the client before being 1733 * sent to the server. 1734 */ 1735 /* ARGSUSED */ 1736 static int 1737 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1738 { 1739 int error; 1740 1741 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1742 return (0); 1743 if (nfs_zone() != VTOMI(vp)->mi_zone) 1744 return (EIO); 1745 1746 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 1747 if (!error) 1748 error = VTOR(vp)->r_error; 1749 return (error); 1750 } 1751 1752 /* 1753 * Weirdness: if the file was removed or the target of a rename 1754 * operation while it was open, it got renamed instead. Here we 1755 * remove the renamed file. 1756 */ 1757 /* ARGSUSED */ 1758 static void 1759 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1760 { 1761 rnode_t *rp; 1762 1763 ASSERT(vp != DNLC_NO_VNODE); 1764 1765 /* 1766 * If this is coming from the wrong zone, we let someone in the right 1767 * zone take care of it asynchronously. We can get here due to 1768 * VN_RELE() being called from pageout() or fsflush(). This call may 1769 * potentially turn into an expensive no-op if, for instance, v_count 1770 * gets incremented in the meantime, but it's still correct. 1771 */ 1772 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1773 nfs_async_inactive(vp, cr, nfs3_inactive); 1774 return; 1775 } 1776 1777 rp = VTOR(vp); 1778 redo: 1779 if (rp->r_unldvp != NULL) { 1780 /* 1781 * Save the vnode pointer for the directory where the 1782 * unlinked-open file got renamed, then set it to NULL 1783 * to prevent another thread from getting here before 1784 * we're done with the remove. While we have the 1785 * statelock, make local copies of the pertinent rnode 1786 * fields. If we weren't to do this in an atomic way, the 1787 * the unl* fields could become inconsistent with respect 1788 * to each other due to a race condition between this 1789 * code and nfs_remove(). See bug report 1034328. 1790 */ 1791 mutex_enter(&rp->r_statelock); 1792 if (rp->r_unldvp != NULL) { 1793 vnode_t *unldvp; 1794 char *unlname; 1795 cred_t *unlcred; 1796 REMOVE3args args; 1797 REMOVE3res res; 1798 int douprintf; 1799 int error; 1800 hrtime_t t; 1801 1802 unldvp = rp->r_unldvp; 1803 rp->r_unldvp = NULL; 1804 unlname = rp->r_unlname; 1805 rp->r_unlname = NULL; 1806 unlcred = rp->r_unlcred; 1807 rp->r_unlcred = NULL; 1808 mutex_exit(&rp->r_statelock); 1809 1810 /* 1811 * If there are any dirty pages left, then flush 1812 * them. This is unfortunate because they just 1813 * may get thrown away during the remove operation, 1814 * but we have to do this for correctness. 1815 */ 1816 if (vn_has_cached_data(vp) && 1817 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1818 ASSERT(vp->v_type != VCHR); 1819 error = nfs3_putpage(vp, (offset_t)0, 0, 0, 1820 cr, ct); 1821 if (error) { 1822 mutex_enter(&rp->r_statelock); 1823 if (!rp->r_error) 1824 rp->r_error = error; 1825 mutex_exit(&rp->r_statelock); 1826 } 1827 } 1828 1829 /* 1830 * Do the remove operation on the renamed file 1831 */ 1832 setdiropargs3(&args.object, unlname, unldvp); 1833 1834 douprintf = 1; 1835 1836 t = gethrtime(); 1837 1838 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE, 1839 xdr_diropargs3, (caddr_t)&args, 1840 xdr_REMOVE3res, (caddr_t)&res, unlcred, 1841 &douprintf, &res.status, 0, NULL); 1842 1843 if (error) { 1844 PURGE_ATTRCACHE(unldvp); 1845 } else { 1846 error = geterrno3(res.status); 1847 if (!error) { 1848 nfs3_cache_wcc_data(unldvp, 1849 &res.resok.dir_wcc, t, cr); 1850 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1851 nfs_purge_rddir_cache(unldvp); 1852 } else { 1853 nfs3_cache_wcc_data(unldvp, 1854 &res.resfail.dir_wcc, t, cr); 1855 PURGE_STALE_FH(error, unldvp, cr); 1856 } 1857 } 1858 1859 /* 1860 * Release stuff held for the remove 1861 */ 1862 VN_RELE(unldvp); 1863 kmem_free(unlname, MAXNAMELEN); 1864 crfree(unlcred); 1865 goto redo; 1866 } 1867 mutex_exit(&rp->r_statelock); 1868 } 1869 1870 rp_addfree(rp, cr); 1871 } 1872 1873 /* 1874 * Remote file system operations having to do with directory manipulation. 1875 */ 1876 1877 /* ARGSUSED */ 1878 static int 1879 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1880 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1881 int *direntflags, pathname_t *realpnp) 1882 { 1883 int error; 1884 vnode_t *vp; 1885 vnode_t *avp = NULL; 1886 rnode_t *drp; 1887 1888 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1889 return (EPERM); 1890 1891 drp = VTOR(dvp); 1892 1893 /* 1894 * Are we looking up extended attributes? If so, "dvp" is 1895 * the file or directory for which we want attributes, and 1896 * we need a lookup of the hidden attribute directory 1897 * before we lookup the rest of the path. 1898 */ 1899 if (flags & LOOKUP_XATTR) { 1900 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1901 mntinfo_t *mi; 1902 1903 mi = VTOMI(dvp); 1904 if (!(mi->mi_flags & MI_EXTATTR)) 1905 return (EINVAL); 1906 1907 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1908 return (EINTR); 1909 1910 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1911 if (avp == NULL) 1912 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0); 1913 else 1914 error = 0; 1915 1916 nfs_rw_exit(&drp->r_rwlock); 1917 1918 if (error) { 1919 if (mi->mi_flags & MI_EXTATTR) 1920 return (error); 1921 return (EINVAL); 1922 } 1923 dvp = avp; 1924 drp = VTOR(dvp); 1925 } 1926 1927 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1928 error = EINTR; 1929 goto out; 1930 } 1931 1932 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1933 1934 nfs_rw_exit(&drp->r_rwlock); 1935 1936 /* 1937 * If vnode is a device, create special vnode. 1938 */ 1939 if (!error && IS_DEVVP(*vpp)) { 1940 vp = *vpp; 1941 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1942 VN_RELE(vp); 1943 } 1944 1945 out: 1946 if (avp != NULL) 1947 VN_RELE(avp); 1948 1949 return (error); 1950 } 1951 1952 static int nfs3_lookup_neg_cache = 1; 1953 1954 #ifdef DEBUG 1955 static int nfs3_lookup_dnlc_hits = 0; 1956 static int nfs3_lookup_dnlc_misses = 0; 1957 static int nfs3_lookup_dnlc_neg_hits = 0; 1958 static int nfs3_lookup_dnlc_disappears = 0; 1959 static int nfs3_lookup_dnlc_lookups = 0; 1960 #endif 1961 1962 /* ARGSUSED */ 1963 int 1964 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1965 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1966 { 1967 int error; 1968 rnode_t *drp; 1969 1970 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1971 /* 1972 * If lookup is for "", just return dvp. Don't need 1973 * to send it over the wire, look it up in the dnlc, 1974 * or perform any access checks. 1975 */ 1976 if (*nm == '\0') { 1977 VN_HOLD(dvp); 1978 *vpp = dvp; 1979 return (0); 1980 } 1981 1982 /* 1983 * Can't do lookups in non-directories. 1984 */ 1985 if (dvp->v_type != VDIR) 1986 return (ENOTDIR); 1987 1988 /* 1989 * If we're called with RFSCALL_SOFT, it's important that 1990 * the only rfscall is one we make directly; if we permit 1991 * an access call because we're looking up "." or validating 1992 * a dnlc hit, we'll deadlock because that rfscall will not 1993 * have the RFSCALL_SOFT set. 1994 */ 1995 if (rfscall_flags & RFSCALL_SOFT) 1996 goto callit; 1997 1998 /* 1999 * If lookup is for ".", just return dvp. Don't need 2000 * to send it over the wire or look it up in the dnlc, 2001 * just need to check access. 2002 */ 2003 if (strcmp(nm, ".") == 0) { 2004 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2005 if (error) 2006 return (error); 2007 VN_HOLD(dvp); 2008 *vpp = dvp; 2009 return (0); 2010 } 2011 2012 drp = VTOR(dvp); 2013 if (!(drp->r_flags & RLOOKUP)) { 2014 mutex_enter(&drp->r_statelock); 2015 drp->r_flags |= RLOOKUP; 2016 mutex_exit(&drp->r_statelock); 2017 } 2018 2019 /* 2020 * Lookup this name in the DNLC. If there was a valid entry, 2021 * then return the results of the lookup. 2022 */ 2023 error = nfs3lookup_dnlc(dvp, nm, vpp, cr); 2024 if (error || *vpp != NULL) 2025 return (error); 2026 2027 callit: 2028 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags); 2029 2030 return (error); 2031 } 2032 2033 static int 2034 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 2035 { 2036 int error; 2037 vnode_t *vp; 2038 2039 ASSERT(*nm != '\0'); 2040 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2041 /* 2042 * Lookup this name in the DNLC. If successful, then validate 2043 * the caches and then recheck the DNLC. The DNLC is rechecked 2044 * just in case this entry got invalidated during the call 2045 * to nfs3_validate_caches. 2046 * 2047 * An assumption is being made that it is safe to say that a 2048 * file exists which may not on the server. Any operations to 2049 * the server will fail with ESTALE. 2050 */ 2051 #ifdef DEBUG 2052 nfs3_lookup_dnlc_lookups++; 2053 #endif 2054 vp = dnlc_lookup(dvp, nm); 2055 if (vp != NULL) { 2056 VN_RELE(vp); 2057 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 2058 PURGE_ATTRCACHE(dvp); 2059 } 2060 error = nfs3_validate_caches(dvp, cr); 2061 if (error) 2062 return (error); 2063 vp = dnlc_lookup(dvp, nm); 2064 if (vp != NULL) { 2065 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2066 if (error) { 2067 VN_RELE(vp); 2068 return (error); 2069 } 2070 if (vp == DNLC_NO_VNODE) { 2071 VN_RELE(vp); 2072 #ifdef DEBUG 2073 nfs3_lookup_dnlc_neg_hits++; 2074 #endif 2075 return (ENOENT); 2076 } 2077 *vpp = vp; 2078 #ifdef DEBUG 2079 nfs3_lookup_dnlc_hits++; 2080 #endif 2081 return (0); 2082 } 2083 #ifdef DEBUG 2084 nfs3_lookup_dnlc_disappears++; 2085 #endif 2086 } 2087 #ifdef DEBUG 2088 else 2089 nfs3_lookup_dnlc_misses++; 2090 #endif 2091 2092 *vpp = NULL; 2093 2094 return (0); 2095 } 2096 2097 static int 2098 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 2099 int rfscall_flags) 2100 { 2101 int error; 2102 LOOKUP3args args; 2103 LOOKUP3vres res; 2104 int douprintf; 2105 struct vattr vattr; 2106 struct vattr dvattr; 2107 vnode_t *vp; 2108 failinfo_t fi; 2109 hrtime_t t; 2110 2111 ASSERT(*nm != '\0'); 2112 ASSERT(dvp->v_type == VDIR); 2113 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2114 2115 setdiropargs3(&args.what, nm, dvp); 2116 2117 fi.vp = dvp; 2118 fi.fhp = (caddr_t)&args.what.dir; 2119 fi.copyproc = nfs3copyfh; 2120 fi.lookupproc = nfs3lookup; 2121 fi.xattrdirproc = acl_getxattrdir3; 2122 res.obj_attributes.fres.vp = dvp; 2123 res.obj_attributes.fres.vap = &vattr; 2124 res.dir_attributes.fres.vp = dvp; 2125 res.dir_attributes.fres.vap = &dvattr; 2126 2127 douprintf = 1; 2128 2129 t = gethrtime(); 2130 2131 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP, 2132 xdr_diropargs3, (caddr_t)&args, 2133 xdr_LOOKUP3vres, (caddr_t)&res, cr, 2134 &douprintf, &res.status, rfscall_flags, &fi); 2135 2136 if (error) 2137 return (error); 2138 2139 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr); 2140 2141 error = geterrno3(res.status); 2142 if (error) { 2143 PURGE_STALE_FH(error, dvp, cr); 2144 if (error == ENOENT && nfs3_lookup_neg_cache) 2145 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 2146 return (error); 2147 } 2148 2149 if (res.obj_attributes.attributes) { 2150 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap, 2151 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2152 } else { 2153 vp = makenfs3node_va(&res.object, NULL, 2154 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2155 if (vp->v_type == VNON) { 2156 vattr.va_mask = AT_TYPE; 2157 error = nfs3getattr(vp, &vattr, cr); 2158 if (error) { 2159 VN_RELE(vp); 2160 return (error); 2161 } 2162 vp->v_type = vattr.va_type; 2163 } 2164 } 2165 2166 if (!(rfscall_flags & RFSCALL_SOFT)) 2167 dnlc_update(dvp, nm, vp); 2168 2169 *vpp = vp; 2170 2171 return (error); 2172 } 2173 2174 #ifdef DEBUG 2175 static int nfs3_create_misses = 0; 2176 #endif 2177 2178 /* ARGSUSED */ 2179 static int 2180 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2181 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 2182 vsecattr_t *vsecp) 2183 { 2184 int error; 2185 vnode_t *vp; 2186 rnode_t *rp; 2187 struct vattr vattr; 2188 rnode_t *drp; 2189 vnode_t *tempvp; 2190 2191 drp = VTOR(dvp); 2192 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2193 return (EPERM); 2194 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2195 return (EINTR); 2196 2197 top: 2198 /* 2199 * We make a copy of the attributes because the caller does not 2200 * expect us to change what va points to. 2201 */ 2202 vattr = *va; 2203 2204 /* 2205 * If the pathname is "", just use dvp. Don't need 2206 * to send it over the wire, look it up in the dnlc, 2207 * or perform any access checks. 2208 */ 2209 if (*nm == '\0') { 2210 error = 0; 2211 VN_HOLD(dvp); 2212 vp = dvp; 2213 /* 2214 * If the pathname is ".", just use dvp. Don't need 2215 * to send it over the wire or look it up in the dnlc, 2216 * just need to check access. 2217 */ 2218 } else if (strcmp(nm, ".") == 0) { 2219 error = nfs3_access(dvp, VEXEC, 0, cr, ct); 2220 if (error) { 2221 nfs_rw_exit(&drp->r_rwlock); 2222 return (error); 2223 } 2224 VN_HOLD(dvp); 2225 vp = dvp; 2226 /* 2227 * We need to go over the wire, just to be sure whether the 2228 * file exists or not. Using the DNLC can be dangerous in 2229 * this case when making a decision regarding existence. 2230 */ 2231 } else { 2232 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0); 2233 } 2234 if (!error) { 2235 if (exclusive == EXCL) 2236 error = EEXIST; 2237 else if (vp->v_type == VDIR && (mode & VWRITE)) 2238 error = EISDIR; 2239 else { 2240 /* 2241 * If vnode is a device, create special vnode. 2242 */ 2243 if (IS_DEVVP(vp)) { 2244 tempvp = vp; 2245 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2246 VN_RELE(tempvp); 2247 } 2248 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 2249 if ((vattr.va_mask & AT_SIZE) && 2250 vp->v_type == VREG) { 2251 rp = VTOR(vp); 2252 /* 2253 * Check here for large file handled 2254 * by LF-unaware process (as 2255 * ufs_create() does) 2256 */ 2257 if (!(lfaware & FOFFMAX)) { 2258 mutex_enter(&rp->r_statelock); 2259 if (rp->r_size > MAXOFF32_T) 2260 error = EOVERFLOW; 2261 mutex_exit(&rp->r_statelock); 2262 } 2263 if (!error) { 2264 vattr.va_mask = AT_SIZE; 2265 error = nfs3setattr(vp, 2266 &vattr, 0, cr); 2267 } 2268 } 2269 } 2270 } 2271 nfs_rw_exit(&drp->r_rwlock); 2272 if (error) { 2273 VN_RELE(vp); 2274 } else { 2275 /* 2276 * existing file got truncated, notify. 2277 */ 2278 vnevent_create(vp, ct); 2279 *vpp = vp; 2280 } 2281 return (error); 2282 } 2283 2284 dnlc_remove(dvp, nm); 2285 2286 /* 2287 * Decide what the group-id of the created file should be. 2288 * Set it in attribute list as advisory... 2289 */ 2290 error = setdirgid(dvp, &vattr.va_gid, cr); 2291 if (error) { 2292 nfs_rw_exit(&drp->r_rwlock); 2293 return (error); 2294 } 2295 vattr.va_mask |= AT_GID; 2296 2297 ASSERT(vattr.va_mask & AT_TYPE); 2298 if (vattr.va_type == VREG) { 2299 ASSERT(vattr.va_mask & AT_MODE); 2300 if (MANDMODE(vattr.va_mode)) { 2301 nfs_rw_exit(&drp->r_rwlock); 2302 return (EACCES); 2303 } 2304 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr, 2305 lfaware); 2306 /* 2307 * If this is not an exclusive create, then the CREATE 2308 * request will be made with the GUARDED mode set. This 2309 * means that the server will return EEXIST if the file 2310 * exists. The file could exist because of a retransmitted 2311 * request. In this case, we recover by starting over and 2312 * checking to see whether the file exists. This second 2313 * time through it should and a CREATE request will not be 2314 * sent. 2315 * 2316 * This handles the problem of a dangling CREATE request 2317 * which contains attributes which indicate that the file 2318 * should be truncated. This retransmitted request could 2319 * possibly truncate valid data in the file if not caught 2320 * by the duplicate request mechanism on the server or if 2321 * not caught by other means. The scenario is: 2322 * 2323 * Client transmits CREATE request with size = 0 2324 * Client times out, retransmits request. 2325 * Response to the first request arrives from the server 2326 * and the client proceeds on. 2327 * Client writes data to the file. 2328 * The server now processes retransmitted CREATE request 2329 * and truncates file. 2330 * 2331 * The use of the GUARDED CREATE request prevents this from 2332 * happening because the retransmitted CREATE would fail 2333 * with EEXIST and would not truncate the file. 2334 */ 2335 if (error == EEXIST && exclusive == NONEXCL) { 2336 #ifdef DEBUG 2337 nfs3_create_misses++; 2338 #endif 2339 goto top; 2340 } 2341 nfs_rw_exit(&drp->r_rwlock); 2342 return (error); 2343 } 2344 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 2345 nfs_rw_exit(&drp->r_rwlock); 2346 return (error); 2347 } 2348 2349 /* ARGSUSED */ 2350 static int 2351 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2352 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 2353 { 2354 int error; 2355 CREATE3args args; 2356 CREATE3res res; 2357 int douprintf; 2358 vnode_t *vp; 2359 struct vattr vattr; 2360 nfstime3 *verfp; 2361 rnode_t *rp; 2362 timestruc_t now; 2363 hrtime_t t; 2364 2365 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2366 setdiropargs3(&args.where, nm, dvp); 2367 if (exclusive == EXCL) { 2368 args.how.mode = EXCLUSIVE; 2369 /* 2370 * Construct the create verifier. This verifier needs 2371 * to be unique between different clients. It also needs 2372 * to vary for each exclusive create request generated 2373 * from the client to the server. 2374 * 2375 * The first attempt is made to use the hostid and a 2376 * unique number on the client. If the hostid has not 2377 * been set, the high resolution time that the exclusive 2378 * create request is being made is used. This will work 2379 * unless two different clients, both with the hostid 2380 * not set, attempt an exclusive create request on the 2381 * same file, at exactly the same clock time. The 2382 * chances of this happening seem small enough to be 2383 * reasonable. 2384 */ 2385 verfp = (nfstime3 *)&args.how.createhow3_u.verf; 2386 verfp->seconds = nfs_atoi(hw_serial); 2387 if (verfp->seconds != 0) 2388 verfp->nseconds = newnum(); 2389 else { 2390 gethrestime(&now); 2391 verfp->seconds = now.tv_sec; 2392 verfp->nseconds = now.tv_nsec; 2393 } 2394 /* 2395 * Since the server will use this value for the mtime, 2396 * make sure that it can't overflow. Zero out the MSB. 2397 * The actual value does not matter here, only its uniqeness. 2398 */ 2399 verfp->seconds %= INT32_MAX; 2400 } else { 2401 /* 2402 * Issue the non-exclusive create in guarded mode. This 2403 * may result in some false EEXIST responses for 2404 * retransmitted requests, but these will be handled at 2405 * a higher level. By using GUARDED, duplicate requests 2406 * to do file truncation and possible access problems 2407 * can be avoided. 2408 */ 2409 args.how.mode = GUARDED; 2410 error = vattr_to_sattr3(va, 2411 &args.how.createhow3_u.obj_attributes); 2412 if (error) { 2413 /* req time field(s) overflow - return immediately */ 2414 return (error); 2415 } 2416 } 2417 2418 douprintf = 1; 2419 2420 t = gethrtime(); 2421 2422 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE, 2423 xdr_CREATE3args, (caddr_t)&args, 2424 xdr_CREATE3res, (caddr_t)&res, cr, 2425 &douprintf, &res.status, 0, NULL); 2426 2427 if (error) { 2428 PURGE_ATTRCACHE(dvp); 2429 return (error); 2430 } 2431 2432 error = geterrno3(res.status); 2433 if (!error) { 2434 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2435 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2436 nfs_purge_rddir_cache(dvp); 2437 2438 /* 2439 * On exclusive create the times need to be explicitly 2440 * set to clear any potential verifier that may be stored 2441 * in one of these fields (see comment below). This 2442 * is done here to cover the case where no post op attrs 2443 * were returned or a 'invalid' time was returned in 2444 * the attributes. 2445 */ 2446 if (exclusive == EXCL) 2447 va->va_mask |= (AT_MTIME | AT_ATIME); 2448 2449 if (!res.resok.obj.handle_follows) { 2450 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2451 if (error) 2452 return (error); 2453 } else { 2454 if (res.resok.obj_attributes.attributes) { 2455 vp = makenfs3node(&res.resok.obj.handle, 2456 &res.resok.obj_attributes.attr, 2457 dvp->v_vfsp, t, cr, NULL, NULL); 2458 } else { 2459 vp = makenfs3node(&res.resok.obj.handle, NULL, 2460 dvp->v_vfsp, t, cr, NULL, NULL); 2461 2462 /* 2463 * On an exclusive create, it is possible 2464 * that attributes were returned but those 2465 * postop attributes failed to decode 2466 * properly. If this is the case, 2467 * then most likely the atime or mtime 2468 * were invalid for our client; this 2469 * is caused by the server storing the 2470 * create verifier in one of the time 2471 * fields(most likely mtime). 2472 * So... we are going to setattr just the 2473 * atime/mtime to clear things up. 2474 */ 2475 if (exclusive == EXCL) { 2476 if (error = 2477 nfs3excl_create_settimes(vp, 2478 va, cr)) { 2479 /* 2480 * Setting the times failed. 2481 * Remove the file and return 2482 * the error. 2483 */ 2484 VN_RELE(vp); 2485 (void) nfs3_remove(dvp, 2486 nm, cr, NULL, 0); 2487 return (error); 2488 } 2489 } 2490 2491 /* 2492 * This handles the non-exclusive case 2493 * and the exclusive case where no post op 2494 * attrs were returned. 2495 */ 2496 if (vp->v_type == VNON) { 2497 vattr.va_mask = AT_TYPE; 2498 error = nfs3getattr(vp, &vattr, cr); 2499 if (error) { 2500 VN_RELE(vp); 2501 return (error); 2502 } 2503 vp->v_type = vattr.va_type; 2504 } 2505 } 2506 dnlc_update(dvp, nm, vp); 2507 } 2508 2509 rp = VTOR(vp); 2510 2511 /* 2512 * Check here for large file handled by 2513 * LF-unaware process (as ufs_create() does) 2514 */ 2515 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG && 2516 !(lfaware & FOFFMAX)) { 2517 mutex_enter(&rp->r_statelock); 2518 if (rp->r_size > MAXOFF32_T) { 2519 mutex_exit(&rp->r_statelock); 2520 VN_RELE(vp); 2521 return (EOVERFLOW); 2522 } 2523 mutex_exit(&rp->r_statelock); 2524 } 2525 2526 if (exclusive == EXCL && 2527 (va->va_mask & ~(AT_GID | AT_SIZE))) { 2528 /* 2529 * If doing an exclusive create, then generate 2530 * a SETATTR to set the initial attributes. 2531 * Try to set the mtime and the atime to the 2532 * server's current time. It is somewhat 2533 * expected that these fields will be used to 2534 * store the exclusive create cookie. If not, 2535 * server implementors will need to know that 2536 * a SETATTR will follow an exclusive create 2537 * and the cookie should be destroyed if 2538 * appropriate. This work may have been done 2539 * earlier in this function if post op attrs 2540 * were not available. 2541 * 2542 * The AT_GID and AT_SIZE bits are turned off 2543 * so that the SETATTR request will not attempt 2544 * to process these. The gid will be set 2545 * separately if appropriate. The size is turned 2546 * off because it is assumed that a new file will 2547 * be created empty and if the file wasn't empty, 2548 * then the exclusive create will have failed 2549 * because the file must have existed already. 2550 * Therefore, no truncate operation is needed. 2551 */ 2552 va->va_mask &= ~(AT_GID | AT_SIZE); 2553 error = nfs3setattr(vp, va, 0, cr); 2554 if (error) { 2555 /* 2556 * Couldn't correct the attributes of 2557 * the newly created file and the 2558 * attributes are wrong. Remove the 2559 * file and return an error to the 2560 * application. 2561 */ 2562 VN_RELE(vp); 2563 (void) nfs3_remove(dvp, nm, cr, NULL, 0); 2564 return (error); 2565 } 2566 } 2567 2568 if (va->va_gid != rp->r_attr.va_gid) { 2569 /* 2570 * If the gid on the file isn't right, then 2571 * generate a SETATTR to attempt to change 2572 * it. This may or may not work, depending 2573 * upon the server's semantics for allowing 2574 * file ownership changes. 2575 */ 2576 va->va_mask = AT_GID; 2577 (void) nfs3setattr(vp, va, 0, cr); 2578 } 2579 2580 /* 2581 * If vnode is a device create special vnode 2582 */ 2583 if (IS_DEVVP(vp)) { 2584 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2585 VN_RELE(vp); 2586 } else 2587 *vpp = vp; 2588 } else { 2589 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2590 PURGE_STALE_FH(error, dvp, cr); 2591 } 2592 2593 return (error); 2594 } 2595 2596 /* 2597 * Special setattr function to take care of rest of atime/mtime 2598 * after successful exclusive create. This function exists to avoid 2599 * handling attributes from the server; exclusive the atime/mtime fields 2600 * may be 'invalid' in client's view and therefore can not be trusted. 2601 */ 2602 static int 2603 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr) 2604 { 2605 int error; 2606 uint_t mask; 2607 SETATTR3args args; 2608 SETATTR3res res; 2609 int douprintf; 2610 rnode_t *rp; 2611 hrtime_t t; 2612 2613 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 2614 /* save the caller's mask so that it can be reset later */ 2615 mask = vap->va_mask; 2616 2617 rp = VTOR(vp); 2618 2619 args.object = *RTOFH3(rp); 2620 args.guard.check = FALSE; 2621 2622 /* Use the mask to initialize the arguments */ 2623 vap->va_mask = 0; 2624 error = vattr_to_sattr3(vap, &args.new_attributes); 2625 2626 /* We want to set just atime/mtime on this request */ 2627 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 2628 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 2629 2630 douprintf = 1; 2631 2632 t = gethrtime(); 2633 2634 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 2635 xdr_SETATTR3args, (caddr_t)&args, 2636 xdr_SETATTR3res, (caddr_t)&res, cr, 2637 &douprintf, &res.status, 0, NULL); 2638 2639 if (error) { 2640 vap->va_mask = mask; 2641 return (error); 2642 } 2643 2644 error = geterrno3(res.status); 2645 if (!error) { 2646 /* 2647 * It is important to pick up the attributes. 2648 * Since this is the exclusive create path, the 2649 * attributes on the initial create were ignored 2650 * and we need these to have the correct info. 2651 */ 2652 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 2653 /* 2654 * No need to do the atime/mtime work again so clear 2655 * the bits. 2656 */ 2657 mask &= ~(AT_ATIME | AT_MTIME); 2658 } else { 2659 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 2660 } 2661 2662 vap->va_mask = mask; 2663 2664 return (error); 2665 } 2666 2667 /* ARGSUSED */ 2668 static int 2669 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2670 int mode, vnode_t **vpp, cred_t *cr) 2671 { 2672 int error; 2673 MKNOD3args args; 2674 MKNOD3res res; 2675 int douprintf; 2676 vnode_t *vp; 2677 struct vattr vattr; 2678 hrtime_t t; 2679 2680 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2681 switch (va->va_type) { 2682 case VCHR: 2683 case VBLK: 2684 setdiropargs3(&args.where, nm, dvp); 2685 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK; 2686 error = vattr_to_sattr3(va, 2687 &args.what.mknoddata3_u.device.dev_attributes); 2688 if (error) { 2689 /* req time field(s) overflow - return immediately */ 2690 return (error); 2691 } 2692 args.what.mknoddata3_u.device.spec.specdata1 = 2693 getmajor(va->va_rdev); 2694 args.what.mknoddata3_u.device.spec.specdata2 = 2695 getminor(va->va_rdev); 2696 break; 2697 2698 case VFIFO: 2699 case VSOCK: 2700 setdiropargs3(&args.where, nm, dvp); 2701 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK; 2702 error = vattr_to_sattr3(va, 2703 &args.what.mknoddata3_u.pipe_attributes); 2704 if (error) { 2705 /* req time field(s) overflow - return immediately */ 2706 return (error); 2707 } 2708 break; 2709 2710 default: 2711 return (EINVAL); 2712 } 2713 2714 douprintf = 1; 2715 2716 t = gethrtime(); 2717 2718 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD, 2719 xdr_MKNOD3args, (caddr_t)&args, 2720 xdr_MKNOD3res, (caddr_t)&res, cr, 2721 &douprintf, &res.status, 0, NULL); 2722 2723 if (error) { 2724 PURGE_ATTRCACHE(dvp); 2725 return (error); 2726 } 2727 2728 error = geterrno3(res.status); 2729 if (!error) { 2730 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2731 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2732 nfs_purge_rddir_cache(dvp); 2733 2734 if (!res.resok.obj.handle_follows) { 2735 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2736 if (error) 2737 return (error); 2738 } else { 2739 if (res.resok.obj_attributes.attributes) { 2740 vp = makenfs3node(&res.resok.obj.handle, 2741 &res.resok.obj_attributes.attr, 2742 dvp->v_vfsp, t, cr, NULL, NULL); 2743 } else { 2744 vp = makenfs3node(&res.resok.obj.handle, NULL, 2745 dvp->v_vfsp, t, cr, NULL, NULL); 2746 if (vp->v_type == VNON) { 2747 vattr.va_mask = AT_TYPE; 2748 error = nfs3getattr(vp, &vattr, cr); 2749 if (error) { 2750 VN_RELE(vp); 2751 return (error); 2752 } 2753 vp->v_type = vattr.va_type; 2754 } 2755 2756 } 2757 dnlc_update(dvp, nm, vp); 2758 } 2759 2760 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 2761 va->va_mask = AT_GID; 2762 (void) nfs3setattr(vp, va, 0, cr); 2763 } 2764 2765 /* 2766 * If vnode is a device create special vnode 2767 */ 2768 if (IS_DEVVP(vp)) { 2769 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2770 VN_RELE(vp); 2771 } else 2772 *vpp = vp; 2773 } else { 2774 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2775 PURGE_STALE_FH(error, dvp, cr); 2776 } 2777 return (error); 2778 } 2779 2780 /* 2781 * Weirdness: if the vnode to be removed is open 2782 * we rename it instead of removing it and nfs_inactive 2783 * will remove the new name. 2784 */ 2785 /* ARGSUSED */ 2786 static int 2787 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2788 { 2789 int error; 2790 REMOVE3args args; 2791 REMOVE3res res; 2792 vnode_t *vp; 2793 char *tmpname; 2794 int douprintf; 2795 rnode_t *rp; 2796 rnode_t *drp; 2797 hrtime_t t; 2798 2799 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2800 return (EPERM); 2801 drp = VTOR(dvp); 2802 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2803 return (EINTR); 2804 2805 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2806 if (error) { 2807 nfs_rw_exit(&drp->r_rwlock); 2808 return (error); 2809 } 2810 2811 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2812 VN_RELE(vp); 2813 nfs_rw_exit(&drp->r_rwlock); 2814 return (EPERM); 2815 } 2816 2817 /* 2818 * First just remove the entry from the name cache, as it 2819 * is most likely the only entry for this vp. 2820 */ 2821 dnlc_remove(dvp, nm); 2822 2823 /* 2824 * If the file has a v_count > 1 then there may be more than one 2825 * entry in the name cache due multiple links or an open file, 2826 * but we don't have the real reference count so flush all 2827 * possible entries. 2828 */ 2829 if (vp->v_count > 1) 2830 dnlc_purge_vp(vp); 2831 2832 /* 2833 * Now we have the real reference count on the vnode 2834 */ 2835 rp = VTOR(vp); 2836 mutex_enter(&rp->r_statelock); 2837 if (vp->v_count > 1 && 2838 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2839 mutex_exit(&rp->r_statelock); 2840 tmpname = newname(); 2841 error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct); 2842 if (error) 2843 kmem_free(tmpname, MAXNAMELEN); 2844 else { 2845 mutex_enter(&rp->r_statelock); 2846 if (rp->r_unldvp == NULL) { 2847 VN_HOLD(dvp); 2848 rp->r_unldvp = dvp; 2849 if (rp->r_unlcred != NULL) 2850 crfree(rp->r_unlcred); 2851 crhold(cr); 2852 rp->r_unlcred = cr; 2853 rp->r_unlname = tmpname; 2854 } else { 2855 kmem_free(rp->r_unlname, MAXNAMELEN); 2856 rp->r_unlname = tmpname; 2857 } 2858 mutex_exit(&rp->r_statelock); 2859 } 2860 } else { 2861 mutex_exit(&rp->r_statelock); 2862 /* 2863 * We need to flush any dirty pages which happen to 2864 * be hanging around before removing the file. This 2865 * shouldn't happen very often and mostly on file 2866 * systems mounted "nocto". 2867 */ 2868 if (vn_has_cached_data(vp) && 2869 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2870 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2871 if (error && (error == ENOSPC || error == EDQUOT)) { 2872 mutex_enter(&rp->r_statelock); 2873 if (!rp->r_error) 2874 rp->r_error = error; 2875 mutex_exit(&rp->r_statelock); 2876 } 2877 } 2878 2879 setdiropargs3(&args.object, nm, dvp); 2880 2881 douprintf = 1; 2882 2883 t = gethrtime(); 2884 2885 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE, 2886 xdr_diropargs3, (caddr_t)&args, 2887 xdr_REMOVE3res, (caddr_t)&res, cr, 2888 &douprintf, &res.status, 0, NULL); 2889 2890 /* 2891 * The xattr dir may be gone after last attr is removed, 2892 * so flush it from dnlc. 2893 */ 2894 if (dvp->v_flag & V_XATTRDIR) 2895 dnlc_purge_vp(dvp); 2896 2897 PURGE_ATTRCACHE(vp); 2898 2899 if (error) { 2900 PURGE_ATTRCACHE(dvp); 2901 } else { 2902 error = geterrno3(res.status); 2903 if (!error) { 2904 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, 2905 cr); 2906 if (HAVE_RDDIR_CACHE(drp)) 2907 nfs_purge_rddir_cache(dvp); 2908 } else { 2909 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, 2910 t, cr); 2911 PURGE_STALE_FH(error, dvp, cr); 2912 } 2913 } 2914 } 2915 2916 if (error == 0) { 2917 vnevent_remove(vp, dvp, nm, ct); 2918 } 2919 VN_RELE(vp); 2920 2921 nfs_rw_exit(&drp->r_rwlock); 2922 2923 return (error); 2924 } 2925 2926 /* ARGSUSED */ 2927 static int 2928 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2929 caller_context_t *ct, int flags) 2930 { 2931 int error; 2932 LINK3args args; 2933 LINK3res res; 2934 vnode_t *realvp; 2935 int douprintf; 2936 mntinfo_t *mi; 2937 rnode_t *tdrp; 2938 hrtime_t t; 2939 2940 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2941 return (EPERM); 2942 if (VOP_REALVP(svp, &realvp, ct) == 0) 2943 svp = realvp; 2944 2945 mi = VTOMI(svp); 2946 2947 if (!(mi->mi_flags & MI_LINK)) 2948 return (EOPNOTSUPP); 2949 2950 args.file = *VTOFH3(svp); 2951 setdiropargs3(&args.link, tnm, tdvp); 2952 2953 tdrp = VTOR(tdvp); 2954 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2955 return (EINTR); 2956 2957 dnlc_remove(tdvp, tnm); 2958 2959 douprintf = 1; 2960 2961 t = gethrtime(); 2962 2963 error = rfs3call(mi, NFSPROC3_LINK, 2964 xdr_LINK3args, (caddr_t)&args, 2965 xdr_LINK3res, (caddr_t)&res, cr, 2966 &douprintf, &res.status, 0, NULL); 2967 2968 if (error) { 2969 PURGE_ATTRCACHE(tdvp); 2970 PURGE_ATTRCACHE(svp); 2971 nfs_rw_exit(&tdrp->r_rwlock); 2972 return (error); 2973 } 2974 2975 error = geterrno3(res.status); 2976 2977 if (!error) { 2978 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr); 2979 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr); 2980 if (HAVE_RDDIR_CACHE(tdrp)) 2981 nfs_purge_rddir_cache(tdvp); 2982 dnlc_update(tdvp, tnm, svp); 2983 } else { 2984 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t, 2985 cr); 2986 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr); 2987 if (error == EOPNOTSUPP) { 2988 mutex_enter(&mi->mi_lock); 2989 mi->mi_flags &= ~MI_LINK; 2990 mutex_exit(&mi->mi_lock); 2991 } 2992 } 2993 2994 nfs_rw_exit(&tdrp->r_rwlock); 2995 2996 if (!error) { 2997 /* 2998 * Notify the source file of this link operation. 2999 */ 3000 vnevent_link(svp, ct); 3001 } 3002 return (error); 3003 } 3004 3005 /* ARGSUSED */ 3006 static int 3007 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3008 caller_context_t *ct, int flags) 3009 { 3010 vnode_t *realvp; 3011 3012 if (nfs_zone() != VTOMI(odvp)->mi_zone) 3013 return (EPERM); 3014 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 3015 ndvp = realvp; 3016 3017 return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct)); 3018 } 3019 3020 /* 3021 * nfs3rename does the real work of renaming in NFS Version 3. 3022 */ 3023 static int 3024 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3025 caller_context_t *ct) 3026 { 3027 int error; 3028 RENAME3args args; 3029 RENAME3res res; 3030 int douprintf; 3031 vnode_t *nvp = NULL; 3032 vnode_t *ovp = NULL; 3033 char *tmpname; 3034 rnode_t *rp; 3035 rnode_t *odrp; 3036 rnode_t *ndrp; 3037 hrtime_t t; 3038 3039 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 3040 3041 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 3042 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 3043 return (EINVAL); 3044 3045 odrp = VTOR(odvp); 3046 ndrp = VTOR(ndvp); 3047 if ((intptr_t)odrp < (intptr_t)ndrp) { 3048 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 3049 return (EINTR); 3050 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 3051 nfs_rw_exit(&odrp->r_rwlock); 3052 return (EINTR); 3053 } 3054 } else { 3055 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 3056 return (EINTR); 3057 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 3058 nfs_rw_exit(&ndrp->r_rwlock); 3059 return (EINTR); 3060 } 3061 } 3062 3063 /* 3064 * Lookup the target file. If it exists, it needs to be 3065 * checked to see whether it is a mount point and whether 3066 * it is active (open). 3067 */ 3068 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 3069 if (!error) { 3070 /* 3071 * If this file has been mounted on, then just 3072 * return busy because renaming to it would remove 3073 * the mounted file system from the name space. 3074 */ 3075 if (vn_mountedvfs(nvp) != NULL) { 3076 VN_RELE(nvp); 3077 nfs_rw_exit(&odrp->r_rwlock); 3078 nfs_rw_exit(&ndrp->r_rwlock); 3079 return (EBUSY); 3080 } 3081 3082 /* 3083 * Purge the name cache of all references to this vnode 3084 * so that we can check the reference count to infer 3085 * whether it is active or not. 3086 */ 3087 /* 3088 * First just remove the entry from the name cache, as it 3089 * is most likely the only entry for this vp. 3090 */ 3091 dnlc_remove(ndvp, nnm); 3092 /* 3093 * If the file has a v_count > 1 then there may be more 3094 * than one entry in the name cache due multiple links 3095 * or an open file, but we don't have the real reference 3096 * count so flush all possible entries. 3097 */ 3098 if (nvp->v_count > 1) 3099 dnlc_purge_vp(nvp); 3100 3101 /* 3102 * If the vnode is active and is not a directory, 3103 * arrange to rename it to a 3104 * temporary file so that it will continue to be 3105 * accessible. This implements the "unlink-open-file" 3106 * semantics for the target of a rename operation. 3107 * Before doing this though, make sure that the 3108 * source and target files are not already the same. 3109 */ 3110 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 3111 /* 3112 * Lookup the source name. 3113 */ 3114 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, 3115 cr, 0); 3116 3117 /* 3118 * The source name *should* already exist. 3119 */ 3120 if (error) { 3121 VN_RELE(nvp); 3122 nfs_rw_exit(&odrp->r_rwlock); 3123 nfs_rw_exit(&ndrp->r_rwlock); 3124 return (error); 3125 } 3126 3127 /* 3128 * Compare the two vnodes. If they are the same, 3129 * just release all held vnodes and return success. 3130 */ 3131 if (ovp == nvp) { 3132 VN_RELE(ovp); 3133 VN_RELE(nvp); 3134 nfs_rw_exit(&odrp->r_rwlock); 3135 nfs_rw_exit(&ndrp->r_rwlock); 3136 return (0); 3137 } 3138 3139 /* 3140 * Can't mix and match directories and non- 3141 * directories in rename operations. We already 3142 * know that the target is not a directory. If 3143 * the source is a directory, return an error. 3144 */ 3145 if (ovp->v_type == VDIR) { 3146 VN_RELE(ovp); 3147 VN_RELE(nvp); 3148 nfs_rw_exit(&odrp->r_rwlock); 3149 nfs_rw_exit(&ndrp->r_rwlock); 3150 return (ENOTDIR); 3151 } 3152 3153 /* 3154 * The target file exists, is not the same as 3155 * the source file, and is active. Link it 3156 * to a temporary filename to avoid having 3157 * the server removing the file completely. 3158 */ 3159 tmpname = newname(); 3160 error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0); 3161 if (error == EOPNOTSUPP) { 3162 error = nfs3_rename(ndvp, nnm, ndvp, tmpname, 3163 cr, NULL, 0); 3164 } 3165 if (error) { 3166 kmem_free(tmpname, MAXNAMELEN); 3167 VN_RELE(ovp); 3168 VN_RELE(nvp); 3169 nfs_rw_exit(&odrp->r_rwlock); 3170 nfs_rw_exit(&ndrp->r_rwlock); 3171 return (error); 3172 } 3173 rp = VTOR(nvp); 3174 mutex_enter(&rp->r_statelock); 3175 if (rp->r_unldvp == NULL) { 3176 VN_HOLD(ndvp); 3177 rp->r_unldvp = ndvp; 3178 if (rp->r_unlcred != NULL) 3179 crfree(rp->r_unlcred); 3180 crhold(cr); 3181 rp->r_unlcred = cr; 3182 rp->r_unlname = tmpname; 3183 } else { 3184 kmem_free(rp->r_unlname, MAXNAMELEN); 3185 rp->r_unlname = tmpname; 3186 } 3187 mutex_exit(&rp->r_statelock); 3188 } 3189 } 3190 3191 if (ovp == NULL) { 3192 /* 3193 * When renaming directories to be a subdirectory of a 3194 * different parent, the dnlc entry for ".." will no 3195 * longer be valid, so it must be removed. 3196 * 3197 * We do a lookup here to determine whether we are renaming 3198 * a directory and we need to check if we are renaming 3199 * an unlinked file. This might have already been done 3200 * in previous code, so we check ovp == NULL to avoid 3201 * doing it twice. 3202 */ 3203 3204 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 3205 /* 3206 * The source name *should* already exist. 3207 */ 3208 if (error) { 3209 nfs_rw_exit(&odrp->r_rwlock); 3210 nfs_rw_exit(&ndrp->r_rwlock); 3211 if (nvp) { 3212 VN_RELE(nvp); 3213 } 3214 return (error); 3215 } 3216 ASSERT(ovp != NULL); 3217 } 3218 3219 dnlc_remove(odvp, onm); 3220 dnlc_remove(ndvp, nnm); 3221 3222 setdiropargs3(&args.from, onm, odvp); 3223 setdiropargs3(&args.to, nnm, ndvp); 3224 3225 douprintf = 1; 3226 3227 t = gethrtime(); 3228 3229 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME, 3230 xdr_RENAME3args, (caddr_t)&args, 3231 xdr_RENAME3res, (caddr_t)&res, cr, 3232 &douprintf, &res.status, 0, NULL); 3233 3234 if (error) { 3235 PURGE_ATTRCACHE(odvp); 3236 PURGE_ATTRCACHE(ndvp); 3237 VN_RELE(ovp); 3238 nfs_rw_exit(&odrp->r_rwlock); 3239 nfs_rw_exit(&ndrp->r_rwlock); 3240 if (nvp) { 3241 VN_RELE(nvp); 3242 } 3243 return (error); 3244 } 3245 3246 error = geterrno3(res.status); 3247 3248 if (!error) { 3249 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr); 3250 if (HAVE_RDDIR_CACHE(odrp)) 3251 nfs_purge_rddir_cache(odvp); 3252 if (ndvp != odvp) { 3253 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr); 3254 if (HAVE_RDDIR_CACHE(ndrp)) 3255 nfs_purge_rddir_cache(ndvp); 3256 } 3257 /* 3258 * when renaming directories to be a subdirectory of a 3259 * different parent, the dnlc entry for ".." will no 3260 * longer be valid, so it must be removed 3261 */ 3262 rp = VTOR(ovp); 3263 if (ndvp != odvp) { 3264 if (ovp->v_type == VDIR) { 3265 dnlc_remove(ovp, ".."); 3266 if (HAVE_RDDIR_CACHE(rp)) 3267 nfs_purge_rddir_cache(ovp); 3268 } 3269 } 3270 3271 /* 3272 * If we are renaming the unlinked file, update the 3273 * r_unldvp and r_unlname as needed. 3274 */ 3275 mutex_enter(&rp->r_statelock); 3276 if (rp->r_unldvp != NULL) { 3277 if (strcmp(rp->r_unlname, onm) == 0) { 3278 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 3279 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 3280 3281 if (ndvp != rp->r_unldvp) { 3282 VN_RELE(rp->r_unldvp); 3283 rp->r_unldvp = ndvp; 3284 VN_HOLD(ndvp); 3285 } 3286 } 3287 } 3288 mutex_exit(&rp->r_statelock); 3289 } else { 3290 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr); 3291 if (ndvp != odvp) { 3292 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t, 3293 cr); 3294 } 3295 /* 3296 * System V defines rename to return EEXIST, not 3297 * ENOTEMPTY if the target directory is not empty. 3298 * Over the wire, the error is NFSERR_ENOTEMPTY 3299 * which geterrno maps to ENOTEMPTY. 3300 */ 3301 if (error == ENOTEMPTY) 3302 error = EEXIST; 3303 } 3304 3305 if (error == 0) { 3306 if (nvp) 3307 vnevent_rename_dest(nvp, ndvp, nnm, ct); 3308 3309 if (odvp != ndvp) 3310 vnevent_rename_dest_dir(ndvp, ct); 3311 ASSERT(ovp != NULL); 3312 vnevent_rename_src(ovp, odvp, onm, ct); 3313 } 3314 3315 if (nvp) { 3316 VN_RELE(nvp); 3317 } 3318 VN_RELE(ovp); 3319 3320 nfs_rw_exit(&odrp->r_rwlock); 3321 nfs_rw_exit(&ndrp->r_rwlock); 3322 3323 return (error); 3324 } 3325 3326 /* ARGSUSED */ 3327 static int 3328 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 3329 caller_context_t *ct, int flags, vsecattr_t *vsecp) 3330 { 3331 int error; 3332 MKDIR3args args; 3333 MKDIR3res res; 3334 int douprintf; 3335 struct vattr vattr; 3336 vnode_t *vp; 3337 rnode_t *drp; 3338 hrtime_t t; 3339 3340 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3341 return (EPERM); 3342 setdiropargs3(&args.where, nm, dvp); 3343 3344 /* 3345 * Decide what the group-id and set-gid bit of the created directory 3346 * should be. May have to do a setattr to get the gid right. 3347 */ 3348 error = setdirgid(dvp, &va->va_gid, cr); 3349 if (error) 3350 return (error); 3351 error = setdirmode(dvp, &va->va_mode, cr); 3352 if (error) 3353 return (error); 3354 va->va_mask |= AT_MODE|AT_GID; 3355 3356 error = vattr_to_sattr3(va, &args.attributes); 3357 if (error) { 3358 /* req time field(s) overflow - return immediately */ 3359 return (error); 3360 } 3361 3362 drp = VTOR(dvp); 3363 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3364 return (EINTR); 3365 3366 dnlc_remove(dvp, nm); 3367 3368 douprintf = 1; 3369 3370 t = gethrtime(); 3371 3372 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR, 3373 xdr_MKDIR3args, (caddr_t)&args, 3374 xdr_MKDIR3res, (caddr_t)&res, cr, 3375 &douprintf, &res.status, 0, NULL); 3376 3377 if (error) { 3378 PURGE_ATTRCACHE(dvp); 3379 nfs_rw_exit(&drp->r_rwlock); 3380 return (error); 3381 } 3382 3383 error = geterrno3(res.status); 3384 if (!error) { 3385 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3386 if (HAVE_RDDIR_CACHE(drp)) 3387 nfs_purge_rddir_cache(dvp); 3388 3389 if (!res.resok.obj.handle_follows) { 3390 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3391 if (error) { 3392 nfs_rw_exit(&drp->r_rwlock); 3393 return (error); 3394 } 3395 } else { 3396 if (res.resok.obj_attributes.attributes) { 3397 vp = makenfs3node(&res.resok.obj.handle, 3398 &res.resok.obj_attributes.attr, 3399 dvp->v_vfsp, t, cr, NULL, NULL); 3400 } else { 3401 vp = makenfs3node(&res.resok.obj.handle, NULL, 3402 dvp->v_vfsp, t, cr, NULL, NULL); 3403 if (vp->v_type == VNON) { 3404 vattr.va_mask = AT_TYPE; 3405 error = nfs3getattr(vp, &vattr, cr); 3406 if (error) { 3407 VN_RELE(vp); 3408 nfs_rw_exit(&drp->r_rwlock); 3409 return (error); 3410 } 3411 vp->v_type = vattr.va_type; 3412 } 3413 } 3414 dnlc_update(dvp, nm, vp); 3415 } 3416 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 3417 va->va_mask = AT_GID; 3418 (void) nfs3setattr(vp, va, 0, cr); 3419 } 3420 *vpp = vp; 3421 } else { 3422 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3423 PURGE_STALE_FH(error, dvp, cr); 3424 } 3425 3426 nfs_rw_exit(&drp->r_rwlock); 3427 3428 return (error); 3429 } 3430 3431 /* ARGSUSED */ 3432 static int 3433 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 3434 caller_context_t *ct, int flags) 3435 { 3436 int error; 3437 RMDIR3args args; 3438 RMDIR3res res; 3439 vnode_t *vp; 3440 int douprintf; 3441 rnode_t *drp; 3442 hrtime_t t; 3443 3444 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3445 return (EPERM); 3446 drp = VTOR(dvp); 3447 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3448 return (EINTR); 3449 3450 /* 3451 * Attempt to prevent a rmdir(".") from succeeding. 3452 */ 3453 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3454 if (error) { 3455 nfs_rw_exit(&drp->r_rwlock); 3456 return (error); 3457 } 3458 3459 if (vp == cdir) { 3460 VN_RELE(vp); 3461 nfs_rw_exit(&drp->r_rwlock); 3462 return (EINVAL); 3463 } 3464 3465 setdiropargs3(&args.object, nm, dvp); 3466 3467 /* 3468 * First just remove the entry from the name cache, as it 3469 * is most likely an entry for this vp. 3470 */ 3471 dnlc_remove(dvp, nm); 3472 3473 /* 3474 * If there vnode reference count is greater than one, then 3475 * there may be additional references in the DNLC which will 3476 * need to be purged. First, trying removing the entry for 3477 * the parent directory and see if that removes the additional 3478 * reference(s). If that doesn't do it, then use dnlc_purge_vp 3479 * to completely remove any references to the directory which 3480 * might still exist in the DNLC. 3481 */ 3482 if (vp->v_count > 1) { 3483 dnlc_remove(vp, ".."); 3484 if (vp->v_count > 1) 3485 dnlc_purge_vp(vp); 3486 } 3487 3488 douprintf = 1; 3489 3490 t = gethrtime(); 3491 3492 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR, 3493 xdr_diropargs3, (caddr_t)&args, 3494 xdr_RMDIR3res, (caddr_t)&res, cr, 3495 &douprintf, &res.status, 0, NULL); 3496 3497 PURGE_ATTRCACHE(vp); 3498 3499 if (error) { 3500 PURGE_ATTRCACHE(dvp); 3501 VN_RELE(vp); 3502 nfs_rw_exit(&drp->r_rwlock); 3503 return (error); 3504 } 3505 3506 error = geterrno3(res.status); 3507 if (!error) { 3508 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3509 if (HAVE_RDDIR_CACHE(drp)) 3510 nfs_purge_rddir_cache(dvp); 3511 if (HAVE_RDDIR_CACHE(VTOR(vp))) 3512 nfs_purge_rddir_cache(vp); 3513 } else { 3514 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3515 PURGE_STALE_FH(error, dvp, cr); 3516 /* 3517 * System V defines rmdir to return EEXIST, not 3518 * ENOTEMPTY if the directory is not empty. Over 3519 * the wire, the error is NFSERR_ENOTEMPTY which 3520 * geterrno maps to ENOTEMPTY. 3521 */ 3522 if (error == ENOTEMPTY) 3523 error = EEXIST; 3524 } 3525 3526 if (error == 0) { 3527 vnevent_rmdir(vp, dvp, nm, ct); 3528 } 3529 VN_RELE(vp); 3530 3531 nfs_rw_exit(&drp->r_rwlock); 3532 3533 return (error); 3534 } 3535 3536 /* ARGSUSED */ 3537 static int 3538 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 3539 caller_context_t *ct, int flags) 3540 { 3541 int error; 3542 SYMLINK3args args; 3543 SYMLINK3res res; 3544 int douprintf; 3545 mntinfo_t *mi; 3546 vnode_t *vp; 3547 rnode_t *rp; 3548 char *contents; 3549 rnode_t *drp; 3550 hrtime_t t; 3551 3552 mi = VTOMI(dvp); 3553 3554 if (nfs_zone() != mi->mi_zone) 3555 return (EPERM); 3556 if (!(mi->mi_flags & MI_SYMLINK)) 3557 return (EOPNOTSUPP); 3558 3559 setdiropargs3(&args.where, lnm, dvp); 3560 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes); 3561 if (error) { 3562 /* req time field(s) overflow - return immediately */ 3563 return (error); 3564 } 3565 args.symlink.symlink_data = tnm; 3566 3567 drp = VTOR(dvp); 3568 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3569 return (EINTR); 3570 3571 dnlc_remove(dvp, lnm); 3572 3573 douprintf = 1; 3574 3575 t = gethrtime(); 3576 3577 error = rfs3call(mi, NFSPROC3_SYMLINK, 3578 xdr_SYMLINK3args, (caddr_t)&args, 3579 xdr_SYMLINK3res, (caddr_t)&res, cr, 3580 &douprintf, &res.status, 0, NULL); 3581 3582 if (error) { 3583 PURGE_ATTRCACHE(dvp); 3584 nfs_rw_exit(&drp->r_rwlock); 3585 return (error); 3586 } 3587 3588 error = geterrno3(res.status); 3589 if (!error) { 3590 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3591 if (HAVE_RDDIR_CACHE(drp)) 3592 nfs_purge_rddir_cache(dvp); 3593 3594 if (res.resok.obj.handle_follows) { 3595 if (res.resok.obj_attributes.attributes) { 3596 vp = makenfs3node(&res.resok.obj.handle, 3597 &res.resok.obj_attributes.attr, 3598 dvp->v_vfsp, t, cr, NULL, NULL); 3599 } else { 3600 vp = makenfs3node(&res.resok.obj.handle, NULL, 3601 dvp->v_vfsp, t, cr, NULL, NULL); 3602 vp->v_type = VLNK; 3603 vp->v_rdev = 0; 3604 } 3605 dnlc_update(dvp, lnm, vp); 3606 rp = VTOR(vp); 3607 if (nfs3_do_symlink_cache && 3608 rp->r_symlink.contents == NULL) { 3609 3610 contents = kmem_alloc(MAXPATHLEN, 3611 KM_NOSLEEP); 3612 3613 if (contents != NULL) { 3614 mutex_enter(&rp->r_statelock); 3615 if (rp->r_symlink.contents == NULL) { 3616 rp->r_symlink.len = strlen(tnm); 3617 bcopy(tnm, contents, 3618 rp->r_symlink.len); 3619 rp->r_symlink.contents = 3620 contents; 3621 rp->r_symlink.size = MAXPATHLEN; 3622 mutex_exit(&rp->r_statelock); 3623 } else { 3624 mutex_exit(&rp->r_statelock); 3625 kmem_free((void *)contents, 3626 MAXPATHLEN); 3627 } 3628 } 3629 } 3630 VN_RELE(vp); 3631 } 3632 } else { 3633 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3634 PURGE_STALE_FH(error, dvp, cr); 3635 if (error == EOPNOTSUPP) { 3636 mutex_enter(&mi->mi_lock); 3637 mi->mi_flags &= ~MI_SYMLINK; 3638 mutex_exit(&mi->mi_lock); 3639 } 3640 } 3641 3642 nfs_rw_exit(&drp->r_rwlock); 3643 3644 return (error); 3645 } 3646 3647 #ifdef DEBUG 3648 static int nfs3_readdir_cache_hits = 0; 3649 static int nfs3_readdir_cache_shorts = 0; 3650 static int nfs3_readdir_cache_waits = 0; 3651 static int nfs3_readdir_cache_misses = 0; 3652 static int nfs3_readdir_readahead = 0; 3653 #endif 3654 3655 static int nfs3_shrinkreaddir = 0; 3656 3657 /* 3658 * Read directory entries. 3659 * There are some weird things to look out for here. The uio_loffset 3660 * field is either 0 or it is the offset returned from a previous 3661 * readdir. It is an opaque value used by the server to find the 3662 * correct directory block to read. The count field is the number 3663 * of blocks to read on the server. This is advisory only, the server 3664 * may return only one block's worth of entries. Entries may be compressed 3665 * on the server. 3666 */ 3667 /* ARGSUSED */ 3668 static int 3669 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 3670 caller_context_t *ct, int flags) 3671 { 3672 int error; 3673 size_t count; 3674 rnode_t *rp; 3675 rddir_cache *rdc; 3676 rddir_cache *nrdc; 3677 rddir_cache *rrdc; 3678 #ifdef DEBUG 3679 int missed; 3680 #endif 3681 int doreadahead; 3682 rddir_cache srdc; 3683 avl_index_t where; 3684 3685 if (nfs_zone() != VTOMI(vp)->mi_zone) 3686 return (EIO); 3687 rp = VTOR(vp); 3688 3689 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 3690 3691 /* 3692 * Make sure that the directory cache is valid. 3693 */ 3694 if (HAVE_RDDIR_CACHE(rp)) { 3695 if (nfs_disable_rddir_cache) { 3696 /* 3697 * Setting nfs_disable_rddir_cache in /etc/system 3698 * allows interoperability with servers that do not 3699 * properly update the attributes of directories. 3700 * Any cached information gets purged before an 3701 * access is made to it. 3702 */ 3703 nfs_purge_rddir_cache(vp); 3704 } else { 3705 error = nfs3_validate_caches(vp, cr); 3706 if (error) 3707 return (error); 3708 } 3709 } 3710 3711 /* 3712 * It is possible that some servers may not be able to correctly 3713 * handle a large READDIR or READDIRPLUS request due to bugs in 3714 * their implementation. In order to continue to interoperate 3715 * with them, this workaround is provided to limit the maximum 3716 * size of a READDIRPLUS request to 1024. In any case, the request 3717 * size is limited to MAXBSIZE. 3718 */ 3719 count = MIN(uiop->uio_iov->iov_len, 3720 nfs3_shrinkreaddir ? 1024 : MAXBSIZE); 3721 3722 nrdc = NULL; 3723 #ifdef DEBUG 3724 missed = 0; 3725 #endif 3726 top: 3727 /* 3728 * Short circuit last readdir which always returns 0 bytes. 3729 * This can be done after the directory has been read through 3730 * completely at least once. This will set r_direof which 3731 * can be used to find the value of the last cookie. 3732 */ 3733 mutex_enter(&rp->r_statelock); 3734 if (rp->r_direof != NULL && 3735 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) { 3736 mutex_exit(&rp->r_statelock); 3737 #ifdef DEBUG 3738 nfs3_readdir_cache_shorts++; 3739 #endif 3740 if (eofp) 3741 *eofp = 1; 3742 if (nrdc != NULL) 3743 rddir_cache_rele(nrdc); 3744 return (0); 3745 } 3746 /* 3747 * Look for a cache entry. Cache entries are identified 3748 * by the NFS cookie value and the byte count requested. 3749 */ 3750 srdc.nfs3_cookie = uiop->uio_loffset; 3751 srdc.buflen = count; 3752 rdc = avl_find(&rp->r_dir, &srdc, &where); 3753 if (rdc != NULL) { 3754 rddir_cache_hold(rdc); 3755 /* 3756 * If the cache entry is in the process of being 3757 * filled in, wait until this completes. The 3758 * RDDIRWAIT bit is set to indicate that someone 3759 * is waiting and then the thread currently 3760 * filling the entry is done, it should do a 3761 * cv_broadcast to wakeup all of the threads 3762 * waiting for it to finish. 3763 */ 3764 if (rdc->flags & RDDIR) { 3765 nfs_rw_exit(&rp->r_rwlock); 3766 rdc->flags |= RDDIRWAIT; 3767 #ifdef DEBUG 3768 nfs3_readdir_cache_waits++; 3769 #endif 3770 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3771 /* 3772 * We got interrupted, probably 3773 * the user typed ^C or an alarm 3774 * fired. We free the new entry 3775 * if we allocated one. 3776 */ 3777 mutex_exit(&rp->r_statelock); 3778 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3779 RW_READER, FALSE); 3780 rddir_cache_rele(rdc); 3781 if (nrdc != NULL) 3782 rddir_cache_rele(nrdc); 3783 return (EINTR); 3784 } 3785 mutex_exit(&rp->r_statelock); 3786 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3787 RW_READER, FALSE); 3788 rddir_cache_rele(rdc); 3789 goto top; 3790 } 3791 /* 3792 * Check to see if a readdir is required to 3793 * fill the entry. If so, mark this entry 3794 * as being filled, remove our reference, 3795 * and branch to the code to fill the entry. 3796 */ 3797 if (rdc->flags & RDDIRREQ) { 3798 rdc->flags &= ~RDDIRREQ; 3799 rdc->flags |= RDDIR; 3800 if (nrdc != NULL) 3801 rddir_cache_rele(nrdc); 3802 nrdc = rdc; 3803 mutex_exit(&rp->r_statelock); 3804 goto bottom; 3805 } 3806 #ifdef DEBUG 3807 if (!missed) 3808 nfs3_readdir_cache_hits++; 3809 #endif 3810 /* 3811 * If an error occurred while attempting 3812 * to fill the cache entry, just return it. 3813 */ 3814 if (rdc->error) { 3815 error = rdc->error; 3816 mutex_exit(&rp->r_statelock); 3817 rddir_cache_rele(rdc); 3818 if (nrdc != NULL) 3819 rddir_cache_rele(nrdc); 3820 return (error); 3821 } 3822 3823 /* 3824 * The cache entry is complete and good, 3825 * copyout the dirent structs to the calling 3826 * thread. 3827 */ 3828 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3829 3830 /* 3831 * If no error occurred during the copyout, 3832 * update the offset in the uio struct to 3833 * contain the value of the next cookie 3834 * and set the eof value appropriately. 3835 */ 3836 if (!error) { 3837 uiop->uio_loffset = rdc->nfs3_ncookie; 3838 if (eofp) 3839 *eofp = rdc->eof; 3840 } 3841 3842 /* 3843 * Decide whether to do readahead. 3844 * 3845 * Don't if have already read to the end of 3846 * directory. There is nothing more to read. 3847 * 3848 * Don't if the application is not doing 3849 * lookups in the directory. The readahead 3850 * is only effective if the application can 3851 * be doing work while an async thread is 3852 * handling the over the wire request. 3853 */ 3854 if (rdc->eof) { 3855 rp->r_direof = rdc; 3856 doreadahead = FALSE; 3857 } else if (!(rp->r_flags & RLOOKUP)) 3858 doreadahead = FALSE; 3859 else 3860 doreadahead = TRUE; 3861 3862 if (!doreadahead) { 3863 mutex_exit(&rp->r_statelock); 3864 rddir_cache_rele(rdc); 3865 if (nrdc != NULL) 3866 rddir_cache_rele(nrdc); 3867 return (error); 3868 } 3869 3870 /* 3871 * Check to see whether we found an entry 3872 * for the readahead. If so, we don't need 3873 * to do anything further, so free the new 3874 * entry if one was allocated. Otherwise, 3875 * allocate a new entry, add it to the cache, 3876 * and then initiate an asynchronous readdir 3877 * operation to fill it. 3878 */ 3879 srdc.nfs3_cookie = rdc->nfs3_ncookie; 3880 srdc.buflen = count; 3881 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3882 if (rrdc != NULL) { 3883 if (nrdc != NULL) 3884 rddir_cache_rele(nrdc); 3885 } else { 3886 if (nrdc != NULL) 3887 rrdc = nrdc; 3888 else { 3889 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3890 } 3891 if (rrdc != NULL) { 3892 rrdc->nfs3_cookie = rdc->nfs3_ncookie; 3893 rrdc->buflen = count; 3894 avl_insert(&rp->r_dir, rrdc, where); 3895 rddir_cache_hold(rrdc); 3896 mutex_exit(&rp->r_statelock); 3897 rddir_cache_rele(rdc); 3898 #ifdef DEBUG 3899 nfs3_readdir_readahead++; 3900 #endif 3901 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir); 3902 return (error); 3903 } 3904 } 3905 3906 mutex_exit(&rp->r_statelock); 3907 rddir_cache_rele(rdc); 3908 return (error); 3909 } 3910 3911 /* 3912 * Didn't find an entry in the cache. Construct a new empty 3913 * entry and link it into the cache. Other processes attempting 3914 * to access this entry will need to wait until it is filled in. 3915 * 3916 * Since kmem_alloc may block, another pass through the cache 3917 * will need to be taken to make sure that another process 3918 * hasn't already added an entry to the cache for this request. 3919 */ 3920 if (nrdc == NULL) { 3921 mutex_exit(&rp->r_statelock); 3922 nrdc = rddir_cache_alloc(KM_SLEEP); 3923 nrdc->nfs3_cookie = uiop->uio_loffset; 3924 nrdc->buflen = count; 3925 goto top; 3926 } 3927 3928 /* 3929 * Add this entry to the cache. 3930 */ 3931 avl_insert(&rp->r_dir, nrdc, where); 3932 rddir_cache_hold(nrdc); 3933 mutex_exit(&rp->r_statelock); 3934 3935 bottom: 3936 #ifdef DEBUG 3937 missed = 1; 3938 nfs3_readdir_cache_misses++; 3939 #endif 3940 /* 3941 * Do the readdir. This routine decides whether to use 3942 * READDIR or READDIRPLUS. 3943 */ 3944 error = do_nfs3readdir(vp, nrdc, cr); 3945 3946 /* 3947 * If this operation failed, just return the error which occurred. 3948 */ 3949 if (error != 0) 3950 return (error); 3951 3952 /* 3953 * Since the RPC operation will have taken sometime and blocked 3954 * this process, another pass through the cache will need to be 3955 * taken to find the correct cache entry. It is possible that 3956 * the correct cache entry will not be there (although one was 3957 * added) because the directory changed during the RPC operation 3958 * and the readdir cache was flushed. In this case, just start 3959 * over. It is hoped that this will not happen too often... :-) 3960 */ 3961 nrdc = NULL; 3962 goto top; 3963 /* NOTREACHED */ 3964 } 3965 3966 static int 3967 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3968 { 3969 int error; 3970 rnode_t *rp; 3971 mntinfo_t *mi; 3972 3973 rp = VTOR(vp); 3974 mi = VTOMI(vp); 3975 ASSERT(nfs_zone() == mi->mi_zone); 3976 /* 3977 * Issue the proper request. 3978 * 3979 * If the server does not support READDIRPLUS, then use READDIR. 3980 * 3981 * Otherwise -- 3982 * Issue a READDIRPLUS if reading to fill an empty cache or if 3983 * an application has performed a lookup in the directory which 3984 * required an over the wire lookup. The use of READDIRPLUS 3985 * will help to (re)populate the DNLC. 3986 */ 3987 if (!(mi->mi_flags & MI_READDIRONLY) && 3988 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) { 3989 if (rp->r_flags & RREADDIRPLUS) { 3990 mutex_enter(&rp->r_statelock); 3991 rp->r_flags &= ~RREADDIRPLUS; 3992 mutex_exit(&rp->r_statelock); 3993 } 3994 nfs3readdirplus(vp, rdc, cr); 3995 if (rdc->error == EOPNOTSUPP) 3996 nfs3readdir(vp, rdc, cr); 3997 } else 3998 nfs3readdir(vp, rdc, cr); 3999 4000 mutex_enter(&rp->r_statelock); 4001 rdc->flags &= ~RDDIR; 4002 if (rdc->flags & RDDIRWAIT) { 4003 rdc->flags &= ~RDDIRWAIT; 4004 cv_broadcast(&rdc->cv); 4005 } 4006 error = rdc->error; 4007 if (error) 4008 rdc->flags |= RDDIRREQ; 4009 mutex_exit(&rp->r_statelock); 4010 4011 rddir_cache_rele(rdc); 4012 4013 return (error); 4014 } 4015 4016 static void 4017 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4018 { 4019 int error; 4020 READDIR3args args; 4021 READDIR3vres res; 4022 vattr_t dva; 4023 rnode_t *rp; 4024 int douprintf; 4025 failinfo_t fi, *fip = NULL; 4026 mntinfo_t *mi; 4027 hrtime_t t; 4028 4029 rp = VTOR(vp); 4030 mi = VTOMI(vp); 4031 ASSERT(nfs_zone() == mi->mi_zone); 4032 4033 args.dir = *RTOFH3(rp); 4034 args.cookie = (cookie3)rdc->nfs3_cookie; 4035 args.cookieverf = rp->r_cookieverf; 4036 args.count = rdc->buflen; 4037 4038 /* 4039 * NFS client failover support 4040 * suppress failover unless we have a zero cookie 4041 */ 4042 if (args.cookie == (cookie3) 0) { 4043 fi.vp = vp; 4044 fi.fhp = (caddr_t)&args.dir; 4045 fi.copyproc = nfs3copyfh; 4046 fi.lookupproc = nfs3lookup; 4047 fi.xattrdirproc = acl_getxattrdir3; 4048 fip = &fi; 4049 } 4050 4051 #ifdef DEBUG 4052 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4053 #else 4054 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4055 #endif 4056 4057 res.entries = (dirent64_t *)rdc->entries; 4058 res.entries_size = rdc->buflen; 4059 res.dir_attributes.fres.vap = &dva; 4060 res.dir_attributes.fres.vp = vp; 4061 res.loff = rdc->nfs3_cookie; 4062 4063 douprintf = 1; 4064 4065 if (mi->mi_io_kstats) { 4066 mutex_enter(&mi->mi_lock); 4067 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4068 mutex_exit(&mi->mi_lock); 4069 } 4070 4071 t = gethrtime(); 4072 4073 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR, 4074 xdr_READDIR3args, (caddr_t)&args, 4075 xdr_READDIR3vres, (caddr_t)&res, cr, 4076 &douprintf, &res.status, 0, fip); 4077 4078 if (mi->mi_io_kstats) { 4079 mutex_enter(&mi->mi_lock); 4080 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4081 mutex_exit(&mi->mi_lock); 4082 } 4083 4084 if (error) 4085 goto err; 4086 4087 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr); 4088 4089 error = geterrno3(res.status); 4090 if (error) { 4091 PURGE_STALE_FH(error, vp, cr); 4092 goto err; 4093 } 4094 4095 if (mi->mi_io_kstats) { 4096 mutex_enter(&mi->mi_lock); 4097 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4098 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4099 mutex_exit(&mi->mi_lock); 4100 } 4101 4102 rdc->nfs3_ncookie = res.loff; 4103 rp->r_cookieverf = res.cookieverf; 4104 rdc->eof = res.eof ? 1 : 0; 4105 rdc->entlen = res.size; 4106 ASSERT(rdc->entlen <= rdc->buflen); 4107 rdc->error = 0; 4108 return; 4109 4110 err: 4111 kmem_free(rdc->entries, rdc->buflen); 4112 rdc->entries = NULL; 4113 rdc->error = error; 4114 } 4115 4116 /* 4117 * Read directory entries. 4118 * There are some weird things to look out for here. The uio_loffset 4119 * field is either 0 or it is the offset returned from a previous 4120 * readdir. It is an opaque value used by the server to find the 4121 * correct directory block to read. The count field is the number 4122 * of blocks to read on the server. This is advisory only, the server 4123 * may return only one block's worth of entries. Entries may be compressed 4124 * on the server. 4125 */ 4126 static void 4127 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4128 { 4129 int error; 4130 READDIRPLUS3args args; 4131 READDIRPLUS3vres res; 4132 vattr_t dva; 4133 rnode_t *rp; 4134 mntinfo_t *mi; 4135 int douprintf; 4136 failinfo_t fi, *fip = NULL; 4137 4138 rp = VTOR(vp); 4139 mi = VTOMI(vp); 4140 ASSERT(nfs_zone() == mi->mi_zone); 4141 4142 args.dir = *RTOFH3(rp); 4143 args.cookie = (cookie3)rdc->nfs3_cookie; 4144 args.cookieverf = rp->r_cookieverf; 4145 args.dircount = rdc->buflen; 4146 args.maxcount = mi->mi_tsize; 4147 4148 /* 4149 * NFS client failover support 4150 * suppress failover unless we have a zero cookie 4151 */ 4152 if (args.cookie == (cookie3)0) { 4153 fi.vp = vp; 4154 fi.fhp = (caddr_t)&args.dir; 4155 fi.copyproc = nfs3copyfh; 4156 fi.lookupproc = nfs3lookup; 4157 fi.xattrdirproc = acl_getxattrdir3; 4158 fip = &fi; 4159 } 4160 4161 #ifdef DEBUG 4162 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4163 #else 4164 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4165 #endif 4166 4167 res.entries = (dirent64_t *)rdc->entries; 4168 res.entries_size = rdc->buflen; 4169 res.dir_attributes.fres.vap = &dva; 4170 res.dir_attributes.fres.vp = vp; 4171 res.loff = rdc->nfs3_cookie; 4172 res.credentials = cr; 4173 4174 douprintf = 1; 4175 4176 if (mi->mi_io_kstats) { 4177 mutex_enter(&mi->mi_lock); 4178 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4179 mutex_exit(&mi->mi_lock); 4180 } 4181 4182 res.time = gethrtime(); 4183 4184 error = rfs3call(mi, NFSPROC3_READDIRPLUS, 4185 xdr_READDIRPLUS3args, (caddr_t)&args, 4186 xdr_READDIRPLUS3vres, (caddr_t)&res, cr, 4187 &douprintf, &res.status, 0, fip); 4188 4189 if (mi->mi_io_kstats) { 4190 mutex_enter(&mi->mi_lock); 4191 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4192 mutex_exit(&mi->mi_lock); 4193 } 4194 4195 if (error) { 4196 goto err; 4197 } 4198 4199 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr); 4200 4201 error = geterrno3(res.status); 4202 if (error) { 4203 PURGE_STALE_FH(error, vp, cr); 4204 if (error == EOPNOTSUPP) { 4205 mutex_enter(&mi->mi_lock); 4206 mi->mi_flags |= MI_READDIRONLY; 4207 mutex_exit(&mi->mi_lock); 4208 } 4209 goto err; 4210 } 4211 4212 if (mi->mi_io_kstats) { 4213 mutex_enter(&mi->mi_lock); 4214 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4215 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4216 mutex_exit(&mi->mi_lock); 4217 } 4218 4219 rdc->nfs3_ncookie = res.loff; 4220 rp->r_cookieverf = res.cookieverf; 4221 rdc->eof = res.eof ? 1 : 0; 4222 rdc->entlen = res.size; 4223 ASSERT(rdc->entlen <= rdc->buflen); 4224 rdc->error = 0; 4225 4226 return; 4227 4228 err: 4229 kmem_free(rdc->entries, rdc->buflen); 4230 rdc->entries = NULL; 4231 rdc->error = error; 4232 } 4233 4234 #ifdef DEBUG 4235 static int nfs3_bio_do_stop = 0; 4236 #endif 4237 4238 static int 4239 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr) 4240 { 4241 rnode_t *rp = VTOR(bp->b_vp); 4242 int count; 4243 int error; 4244 cred_t *cred; 4245 offset_t offset; 4246 4247 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 4248 offset = ldbtob(bp->b_lblkno); 4249 4250 DTRACE_IO1(start, struct buf *, bp); 4251 4252 if (bp->b_flags & B_READ) { 4253 mutex_enter(&rp->r_statelock); 4254 if (rp->r_cred != NULL) { 4255 cred = rp->r_cred; 4256 crhold(cred); 4257 } else { 4258 rp->r_cred = cr; 4259 crhold(cr); 4260 cred = cr; 4261 crhold(cred); 4262 } 4263 mutex_exit(&rp->r_statelock); 4264 read_again: 4265 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr, 4266 offset, bp->b_bcount, &bp->b_resid, cred); 4267 crfree(cred); 4268 if (!error) { 4269 if (bp->b_resid) { 4270 /* 4271 * Didn't get it all because we hit EOF, 4272 * zero all the memory beyond the EOF. 4273 */ 4274 /* bzero(rdaddr + */ 4275 bzero(bp->b_un.b_addr + 4276 bp->b_bcount - bp->b_resid, bp->b_resid); 4277 } 4278 mutex_enter(&rp->r_statelock); 4279 if (bp->b_resid == bp->b_bcount && 4280 offset >= rp->r_size) { 4281 /* 4282 * We didn't read anything at all as we are 4283 * past EOF. Return an error indicator back 4284 * but don't destroy the pages (yet). 4285 */ 4286 error = NFS_EOF; 4287 } 4288 mutex_exit(&rp->r_statelock); 4289 } else if (error == EACCES) { 4290 mutex_enter(&rp->r_statelock); 4291 if (cred != cr) { 4292 if (rp->r_cred != NULL) 4293 crfree(rp->r_cred); 4294 rp->r_cred = cr; 4295 crhold(cr); 4296 cred = cr; 4297 crhold(cred); 4298 mutex_exit(&rp->r_statelock); 4299 goto read_again; 4300 } 4301 mutex_exit(&rp->r_statelock); 4302 } 4303 } else { 4304 if (!(rp->r_flags & RSTALE)) { 4305 mutex_enter(&rp->r_statelock); 4306 if (rp->r_cred != NULL) { 4307 cred = rp->r_cred; 4308 crhold(cred); 4309 } else { 4310 rp->r_cred = cr; 4311 crhold(cr); 4312 cred = cr; 4313 crhold(cred); 4314 } 4315 mutex_exit(&rp->r_statelock); 4316 write_again: 4317 mutex_enter(&rp->r_statelock); 4318 count = MIN(bp->b_bcount, rp->r_size - offset); 4319 mutex_exit(&rp->r_statelock); 4320 if (count < 0) 4321 cmn_err(CE_PANIC, "nfs3_bio: write count < 0"); 4322 #ifdef DEBUG 4323 if (count == 0) { 4324 zcmn_err(getzoneid(), CE_WARN, 4325 "nfs3_bio: zero length write at %lld", 4326 offset); 4327 nfs_printfhandle(&rp->r_fh); 4328 if (nfs3_bio_do_stop) 4329 debug_enter("nfs3_bio"); 4330 } 4331 #endif 4332 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset, 4333 count, cred, stab_comm); 4334 if (error == EACCES) { 4335 mutex_enter(&rp->r_statelock); 4336 if (cred != cr) { 4337 if (rp->r_cred != NULL) 4338 crfree(rp->r_cred); 4339 rp->r_cred = cr; 4340 crhold(cr); 4341 crfree(cred); 4342 cred = cr; 4343 crhold(cred); 4344 mutex_exit(&rp->r_statelock); 4345 goto write_again; 4346 } 4347 mutex_exit(&rp->r_statelock); 4348 } 4349 bp->b_error = error; 4350 if (error && error != EINTR) { 4351 /* 4352 * Don't print EDQUOT errors on the console. 4353 * Don't print asynchronous EACCES errors. 4354 * Don't print EFBIG errors. 4355 * Print all other write errors. 4356 */ 4357 if (error != EDQUOT && error != EFBIG && 4358 (error != EACCES || 4359 !(bp->b_flags & B_ASYNC))) 4360 nfs_write_error(bp->b_vp, error, cred); 4361 /* 4362 * Update r_error and r_flags as appropriate. 4363 * If the error was ESTALE, then mark the 4364 * rnode as not being writeable and save 4365 * the error status. Otherwise, save any 4366 * errors which occur from asynchronous 4367 * page invalidations. Any errors occurring 4368 * from other operations should be saved 4369 * by the caller. 4370 */ 4371 mutex_enter(&rp->r_statelock); 4372 if (error == ESTALE) { 4373 rp->r_flags |= RSTALE; 4374 if (!rp->r_error) 4375 rp->r_error = error; 4376 } else if (!rp->r_error && 4377 (bp->b_flags & 4378 (B_INVAL|B_FORCE|B_ASYNC)) == 4379 (B_INVAL|B_FORCE|B_ASYNC)) { 4380 rp->r_error = error; 4381 } 4382 mutex_exit(&rp->r_statelock); 4383 } 4384 crfree(cred); 4385 } else 4386 error = rp->r_error; 4387 } 4388 4389 if (error != 0 && error != NFS_EOF) 4390 bp->b_flags |= B_ERROR; 4391 4392 DTRACE_IO1(done, struct buf *, bp); 4393 4394 return (error); 4395 } 4396 4397 /* ARGSUSED */ 4398 static int 4399 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4400 { 4401 rnode_t *rp; 4402 4403 if (nfs_zone() != VTOMI(vp)->mi_zone) 4404 return (EIO); 4405 rp = VTOR(vp); 4406 4407 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) { 4408 fidp->fid_len = rp->r_fh.fh_len; 4409 return (ENOSPC); 4410 } 4411 fidp->fid_len = rp->r_fh.fh_len; 4412 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len); 4413 return (0); 4414 } 4415 4416 /* ARGSUSED2 */ 4417 static int 4418 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4419 { 4420 rnode_t *rp = VTOR(vp); 4421 4422 if (!write_lock) { 4423 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4424 return (V_WRITELOCK_FALSE); 4425 } 4426 4427 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 4428 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4429 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 4430 return (V_WRITELOCK_FALSE); 4431 nfs_rw_exit(&rp->r_rwlock); 4432 } 4433 4434 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 4435 return (V_WRITELOCK_TRUE); 4436 } 4437 4438 /* ARGSUSED */ 4439 static void 4440 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4441 { 4442 rnode_t *rp = VTOR(vp); 4443 4444 nfs_rw_exit(&rp->r_rwlock); 4445 } 4446 4447 /* ARGSUSED */ 4448 static int 4449 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 4450 { 4451 4452 /* 4453 * Because we stuff the readdir cookie into the offset field 4454 * someone may attempt to do an lseek with the cookie which 4455 * we want to succeed. 4456 */ 4457 if (vp->v_type == VDIR) 4458 return (0); 4459 if (*noffp < 0) 4460 return (EINVAL); 4461 return (0); 4462 } 4463 4464 /* 4465 * number of nfs3_bsize blocks to read ahead. 4466 */ 4467 static int nfs3_nra = 4; 4468 4469 #ifdef DEBUG 4470 static int nfs3_lostpage = 0; /* number of times we lost original page */ 4471 #endif 4472 4473 /* 4474 * Return all the pages from [off..off+len) in file 4475 */ 4476 /* ARGSUSED */ 4477 static int 4478 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4479 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4480 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4481 { 4482 rnode_t *rp; 4483 int error; 4484 mntinfo_t *mi; 4485 4486 if (vp->v_flag & VNOMAP) 4487 return (ENOSYS); 4488 4489 if (nfs_zone() != VTOMI(vp)->mi_zone) 4490 return (EIO); 4491 if (protp != NULL) 4492 *protp = PROT_ALL; 4493 4494 /* 4495 * Now valididate that the caches are up to date. 4496 */ 4497 error = nfs3_validate_caches(vp, cr); 4498 if (error) 4499 return (error); 4500 4501 rp = VTOR(vp); 4502 mi = VTOMI(vp); 4503 retry: 4504 mutex_enter(&rp->r_statelock); 4505 4506 /* 4507 * Don't create dirty pages faster than they 4508 * can be cleaned so that the system doesn't 4509 * get imbalanced. If the async queue is 4510 * maxed out, then wait for it to drain before 4511 * creating more dirty pages. Also, wait for 4512 * any threads doing pagewalks in the vop_getattr 4513 * entry points so that they don't block for 4514 * long periods. 4515 */ 4516 if (rw == S_CREATE) { 4517 while ((mi->mi_max_threads != 0 && 4518 rp->r_awcount > 2 * mi->mi_max_threads) || 4519 rp->r_gcount > 0) 4520 cv_wait(&rp->r_cv, &rp->r_statelock); 4521 } 4522 4523 /* 4524 * If we are getting called as a side effect of an nfs_write() 4525 * operation the local file size might not be extended yet. 4526 * In this case we want to be able to return pages of zeroes. 4527 */ 4528 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 4529 mutex_exit(&rp->r_statelock); 4530 return (EFAULT); /* beyond EOF */ 4531 } 4532 4533 mutex_exit(&rp->r_statelock); 4534 4535 if (len <= PAGESIZE) { 4536 error = nfs3_getapage(vp, off, len, protp, pl, plsz, 4537 seg, addr, rw, cr); 4538 } else { 4539 error = pvn_getpages(nfs3_getapage, vp, off, len, protp, 4540 pl, plsz, seg, addr, rw, cr); 4541 } 4542 4543 switch (error) { 4544 case NFS_EOF: 4545 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 4546 goto retry; 4547 case ESTALE: 4548 PURGE_STALE_FH(error, vp, cr); 4549 } 4550 4551 return (error); 4552 } 4553 4554 /* 4555 * Called from pvn_getpages or nfs3_getpage to get a particular page. 4556 */ 4557 /* ARGSUSED */ 4558 static int 4559 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 4560 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4561 enum seg_rw rw, cred_t *cr) 4562 { 4563 rnode_t *rp; 4564 uint_t bsize; 4565 struct buf *bp; 4566 page_t *pp; 4567 u_offset_t lbn; 4568 u_offset_t io_off; 4569 u_offset_t blkoff; 4570 u_offset_t rablkoff; 4571 size_t io_len; 4572 uint_t blksize; 4573 int error; 4574 int readahead; 4575 int readahead_issued = 0; 4576 int ra_window; /* readahead window */ 4577 page_t *pagefound; 4578 page_t *savepp; 4579 4580 if (nfs_zone() != VTOMI(vp)->mi_zone) 4581 return (EIO); 4582 rp = VTOR(vp); 4583 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4584 4585 reread: 4586 bp = NULL; 4587 pp = NULL; 4588 pagefound = NULL; 4589 4590 if (pl != NULL) 4591 pl[0] = NULL; 4592 4593 error = 0; 4594 lbn = off / bsize; 4595 blkoff = lbn * bsize; 4596 4597 /* 4598 * Queueing up the readahead before doing the synchronous read 4599 * results in a significant increase in read throughput because 4600 * of the increased parallelism between the async threads and 4601 * the process context. 4602 */ 4603 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 4604 rw != S_CREATE && 4605 !(vp->v_flag & VNOCACHE)) { 4606 mutex_enter(&rp->r_statelock); 4607 4608 /* 4609 * Calculate the number of readaheads to do. 4610 * a) No readaheads at offset = 0. 4611 * b) Do maximum(nfs3_nra) readaheads when the readahead 4612 * window is closed. 4613 * c) Do readaheads between 1 to (nfs3_nra - 1) depending 4614 * upon how far the readahead window is open or close. 4615 * d) No readaheads if rp->r_nextr is not within the scope 4616 * of the readahead window (random i/o). 4617 */ 4618 4619 if (off == 0) 4620 readahead = 0; 4621 else if (blkoff == rp->r_nextr) 4622 readahead = nfs3_nra; 4623 else if (rp->r_nextr > blkoff && 4624 ((ra_window = (rp->r_nextr - blkoff) / bsize) 4625 <= (nfs3_nra - 1))) 4626 readahead = nfs3_nra - ra_window; 4627 else 4628 readahead = 0; 4629 4630 rablkoff = rp->r_nextr; 4631 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 4632 mutex_exit(&rp->r_statelock); 4633 if (nfs_async_readahead(vp, rablkoff + bsize, 4634 addr + (rablkoff + bsize - off), seg, cr, 4635 nfs3_readahead) < 0) { 4636 mutex_enter(&rp->r_statelock); 4637 break; 4638 } 4639 readahead--; 4640 rablkoff += bsize; 4641 /* 4642 * Indicate that we did a readahead so 4643 * readahead offset is not updated 4644 * by the synchronous read below. 4645 */ 4646 readahead_issued = 1; 4647 mutex_enter(&rp->r_statelock); 4648 /* 4649 * set readahead offset to 4650 * offset of last async readahead 4651 * request. 4652 */ 4653 rp->r_nextr = rablkoff; 4654 } 4655 mutex_exit(&rp->r_statelock); 4656 } 4657 4658 again: 4659 if ((pagefound = page_exists(vp, off)) == NULL) { 4660 if (pl == NULL) { 4661 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 4662 nfs3_readahead); 4663 } else if (rw == S_CREATE) { 4664 /* 4665 * Block for this page is not allocated, or the offset 4666 * is beyond the current allocation size, or we're 4667 * allocating a swap slot and the page was not found, 4668 * so allocate it and return a zero page. 4669 */ 4670 if ((pp = page_create_va(vp, off, 4671 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 4672 cmn_err(CE_PANIC, "nfs3_getapage: page_create"); 4673 io_len = PAGESIZE; 4674 mutex_enter(&rp->r_statelock); 4675 rp->r_nextr = off + PAGESIZE; 4676 mutex_exit(&rp->r_statelock); 4677 } else { 4678 /* 4679 * Need to go to server to get a BLOCK, exception to 4680 * that being while reading at offset = 0 or doing 4681 * random i/o, in that case read only a PAGE. 4682 */ 4683 mutex_enter(&rp->r_statelock); 4684 if (blkoff < rp->r_size && 4685 blkoff + bsize >= rp->r_size) { 4686 /* 4687 * If only a block or less is left in 4688 * the file, read all that is remaining. 4689 */ 4690 if (rp->r_size <= off) { 4691 /* 4692 * Trying to access beyond EOF, 4693 * set up to get at least one page. 4694 */ 4695 blksize = off + PAGESIZE - blkoff; 4696 } else 4697 blksize = rp->r_size - blkoff; 4698 } else if ((off == 0) || 4699 (off != rp->r_nextr && !readahead_issued)) { 4700 blksize = PAGESIZE; 4701 blkoff = off; /* block = page here */ 4702 } else 4703 blksize = bsize; 4704 mutex_exit(&rp->r_statelock); 4705 4706 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4707 &io_len, blkoff, blksize, 0); 4708 4709 /* 4710 * Some other thread has entered the page, 4711 * so just use it. 4712 */ 4713 if (pp == NULL) 4714 goto again; 4715 4716 /* 4717 * Now round the request size up to page boundaries. 4718 * This ensures that the entire page will be 4719 * initialized to zeroes if EOF is encountered. 4720 */ 4721 io_len = ptob(btopr(io_len)); 4722 4723 bp = pageio_setup(pp, io_len, vp, B_READ); 4724 ASSERT(bp != NULL); 4725 4726 /* 4727 * pageio_setup should have set b_addr to 0. This 4728 * is correct since we want to do I/O on a page 4729 * boundary. bp_mapin will use this addr to calculate 4730 * an offset, and then set b_addr to the kernel virtual 4731 * address it allocated for us. 4732 */ 4733 ASSERT(bp->b_un.b_addr == 0); 4734 4735 bp->b_edev = 0; 4736 bp->b_dev = 0; 4737 bp->b_lblkno = lbtodb(io_off); 4738 bp->b_file = vp; 4739 bp->b_offset = (offset_t)off; 4740 bp_mapin(bp); 4741 4742 /* 4743 * If doing a write beyond what we believe is EOF, 4744 * don't bother trying to read the pages from the 4745 * server, we'll just zero the pages here. We 4746 * don't check that the rw flag is S_WRITE here 4747 * because some implementations may attempt a 4748 * read access to the buffer before copying data. 4749 */ 4750 mutex_enter(&rp->r_statelock); 4751 if (io_off >= rp->r_size && seg == segkmap) { 4752 mutex_exit(&rp->r_statelock); 4753 bzero(bp->b_un.b_addr, io_len); 4754 } else { 4755 mutex_exit(&rp->r_statelock); 4756 error = nfs3_bio(bp, NULL, cr); 4757 } 4758 4759 /* 4760 * Unmap the buffer before freeing it. 4761 */ 4762 bp_mapout(bp); 4763 pageio_done(bp); 4764 4765 savepp = pp; 4766 do { 4767 pp->p_fsdata = C_NOCOMMIT; 4768 } while ((pp = pp->p_next) != savepp); 4769 4770 if (error == NFS_EOF) { 4771 /* 4772 * If doing a write system call just return 4773 * zeroed pages, else user tried to get pages 4774 * beyond EOF, return error. We don't check 4775 * that the rw flag is S_WRITE here because 4776 * some implementations may attempt a read 4777 * access to the buffer before copying data. 4778 */ 4779 if (seg == segkmap) 4780 error = 0; 4781 else 4782 error = EFAULT; 4783 } 4784 4785 if (!readahead_issued && !error) { 4786 mutex_enter(&rp->r_statelock); 4787 rp->r_nextr = io_off + io_len; 4788 mutex_exit(&rp->r_statelock); 4789 } 4790 } 4791 } 4792 4793 out: 4794 if (pl == NULL) 4795 return (error); 4796 4797 if (error) { 4798 if (pp != NULL) 4799 pvn_read_done(pp, B_ERROR); 4800 return (error); 4801 } 4802 4803 if (pagefound) { 4804 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 4805 4806 /* 4807 * Page exists in the cache, acquire the appropriate lock. 4808 * If this fails, start all over again. 4809 */ 4810 if ((pp = page_lookup(vp, off, se)) == NULL) { 4811 #ifdef DEBUG 4812 nfs3_lostpage++; 4813 #endif 4814 goto reread; 4815 } 4816 pl[0] = pp; 4817 pl[1] = NULL; 4818 return (0); 4819 } 4820 4821 if (pp != NULL) 4822 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4823 4824 return (error); 4825 } 4826 4827 static void 4828 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 4829 cred_t *cr) 4830 { 4831 int error; 4832 page_t *pp; 4833 u_offset_t io_off; 4834 size_t io_len; 4835 struct buf *bp; 4836 uint_t bsize, blksize; 4837 rnode_t *rp = VTOR(vp); 4838 page_t *savepp; 4839 4840 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4841 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4842 4843 mutex_enter(&rp->r_statelock); 4844 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 4845 /* 4846 * If less than a block left in file read less 4847 * than a block. 4848 */ 4849 blksize = rp->r_size - blkoff; 4850 } else 4851 blksize = bsize; 4852 mutex_exit(&rp->r_statelock); 4853 4854 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 4855 &io_off, &io_len, blkoff, blksize, 1); 4856 /* 4857 * The isra flag passed to the kluster function is 1, we may have 4858 * gotten a return value of NULL for a variety of reasons (# of free 4859 * pages < minfree, someone entered the page on the vnode etc). In all 4860 * cases, we want to punt on the readahead. 4861 */ 4862 if (pp == NULL) 4863 return; 4864 4865 /* 4866 * Now round the request size up to page boundaries. 4867 * This ensures that the entire page will be 4868 * initialized to zeroes if EOF is encountered. 4869 */ 4870 io_len = ptob(btopr(io_len)); 4871 4872 bp = pageio_setup(pp, io_len, vp, B_READ); 4873 ASSERT(bp != NULL); 4874 4875 /* 4876 * pageio_setup should have set b_addr to 0. This is correct since 4877 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4878 * to calculate an offset, and then set b_addr to the kernel virtual 4879 * address it allocated for us. 4880 */ 4881 ASSERT(bp->b_un.b_addr == 0); 4882 4883 bp->b_edev = 0; 4884 bp->b_dev = 0; 4885 bp->b_lblkno = lbtodb(io_off); 4886 bp->b_file = vp; 4887 bp->b_offset = (offset_t)blkoff; 4888 bp_mapin(bp); 4889 4890 /* 4891 * If doing a write beyond what we believe is EOF, don't bother trying 4892 * to read the pages from the server, we'll just zero the pages here. 4893 * We don't check that the rw flag is S_WRITE here because some 4894 * implementations may attempt a read access to the buffer before 4895 * copying data. 4896 */ 4897 mutex_enter(&rp->r_statelock); 4898 if (io_off >= rp->r_size && seg == segkmap) { 4899 mutex_exit(&rp->r_statelock); 4900 bzero(bp->b_un.b_addr, io_len); 4901 error = 0; 4902 } else { 4903 mutex_exit(&rp->r_statelock); 4904 error = nfs3_bio(bp, NULL, cr); 4905 if (error == NFS_EOF) 4906 error = 0; 4907 } 4908 4909 /* 4910 * Unmap the buffer before freeing it. 4911 */ 4912 bp_mapout(bp); 4913 pageio_done(bp); 4914 4915 savepp = pp; 4916 do { 4917 pp->p_fsdata = C_NOCOMMIT; 4918 } while ((pp = pp->p_next) != savepp); 4919 4920 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4921 4922 /* 4923 * In case of error set readahead offset 4924 * to the lowest offset. 4925 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4926 */ 4927 if (error && rp->r_nextr > io_off) { 4928 mutex_enter(&rp->r_statelock); 4929 if (rp->r_nextr > io_off) 4930 rp->r_nextr = io_off; 4931 mutex_exit(&rp->r_statelock); 4932 } 4933 } 4934 4935 /* 4936 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4937 * If len == 0, do from off to EOF. 4938 * 4939 * The normal cases should be len == 0 && off == 0 (entire vp list), 4940 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4941 * (from pageout). 4942 */ 4943 /* ARGSUSED */ 4944 static int 4945 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4946 caller_context_t *ct) 4947 { 4948 int error; 4949 rnode_t *rp; 4950 4951 ASSERT(cr != NULL); 4952 4953 /* 4954 * XXX - Why should this check be made here? 4955 */ 4956 if (vp->v_flag & VNOMAP) 4957 return (ENOSYS); 4958 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4959 return (0); 4960 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4961 return (EIO); 4962 4963 rp = VTOR(vp); 4964 mutex_enter(&rp->r_statelock); 4965 rp->r_count++; 4966 mutex_exit(&rp->r_statelock); 4967 error = nfs_putpages(vp, off, len, flags, cr); 4968 mutex_enter(&rp->r_statelock); 4969 rp->r_count--; 4970 cv_broadcast(&rp->r_cv); 4971 mutex_exit(&rp->r_statelock); 4972 4973 return (error); 4974 } 4975 4976 /* 4977 * Write out a single page, possibly klustering adjacent dirty pages. 4978 */ 4979 int 4980 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4981 int flags, cred_t *cr) 4982 { 4983 u_offset_t io_off; 4984 u_offset_t lbn_off; 4985 u_offset_t lbn; 4986 size_t io_len; 4987 uint_t bsize; 4988 int error; 4989 rnode_t *rp; 4990 4991 ASSERT(!vn_is_readonly(vp)); 4992 ASSERT(pp != NULL); 4993 ASSERT(cr != NULL); 4994 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 4995 4996 rp = VTOR(vp); 4997 ASSERT(rp->r_count > 0); 4998 4999 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 5000 lbn = pp->p_offset / bsize; 5001 lbn_off = lbn * bsize; 5002 5003 /* 5004 * Find a kluster that fits in one block, or in 5005 * one page if pages are bigger than blocks. If 5006 * there is less file space allocated than a whole 5007 * page, we'll shorten the i/o request below. 5008 */ 5009 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 5010 roundup(bsize, PAGESIZE), flags); 5011 5012 /* 5013 * pvn_write_kluster shouldn't have returned a page with offset 5014 * behind the original page we were given. Verify that. 5015 */ 5016 ASSERT((pp->p_offset / bsize) >= lbn); 5017 5018 /* 5019 * Now pp will have the list of kept dirty pages marked for 5020 * write back. It will also handle invalidation and freeing 5021 * of pages that are not dirty. Check for page length rounding 5022 * problems. 5023 */ 5024 if (io_off + io_len > lbn_off + bsize) { 5025 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 5026 io_len = lbn_off + bsize - io_off; 5027 } 5028 /* 5029 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5030 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 5031 * When RMODINPROGRESS is set it indicates that a uiomove() is in 5032 * progress and the r_size has not been made consistent with the 5033 * new size of the file. When the uiomove() completes the r_size is 5034 * updated and the RMODINPROGRESS flag is cleared. 5035 * 5036 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5037 * consistent value of r_size. Without this handshaking, it is 5038 * possible that nfs(3)_bio() picks up the old value of r_size 5039 * before the uiomove() in writerp() completes. This will result 5040 * in the write through nfs(3)_bio() being dropped. 5041 * 5042 * More precisely, there is a window between the time the uiomove() 5043 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 5044 * operation intervenes in this window, the page will be picked up, 5045 * because it is dirty (it will be unlocked, unless it was 5046 * pagecreate'd). When the page is picked up as dirty, the dirty 5047 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 5048 * checked. This will still be the old size. Therefore the page will 5049 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 5050 * the page will be found to be clean and the write will be dropped. 5051 */ 5052 if (rp->r_flags & RMODINPROGRESS) { 5053 mutex_enter(&rp->r_statelock); 5054 if ((rp->r_flags & RMODINPROGRESS) && 5055 rp->r_modaddr + MAXBSIZE > io_off && 5056 rp->r_modaddr < io_off + io_len) { 5057 page_t *plist; 5058 /* 5059 * A write is in progress for this region of the file. 5060 * If we did not detect RMODINPROGRESS here then this 5061 * path through nfs_putapage() would eventually go to 5062 * nfs(3)_bio() and may not write out all of the data 5063 * in the pages. We end up losing data. So we decide 5064 * to set the modified bit on each page in the page 5065 * list and mark the rnode with RDIRTY. This write 5066 * will be restarted at some later time. 5067 */ 5068 plist = pp; 5069 while (plist != NULL) { 5070 pp = plist; 5071 page_sub(&plist, pp); 5072 hat_setmod(pp); 5073 page_io_unlock(pp); 5074 page_unlock(pp); 5075 } 5076 rp->r_flags |= RDIRTY; 5077 mutex_exit(&rp->r_statelock); 5078 if (offp) 5079 *offp = io_off; 5080 if (lenp) 5081 *lenp = io_len; 5082 return (0); 5083 } 5084 mutex_exit(&rp->r_statelock); 5085 } 5086 5087 if (flags & B_ASYNC) { 5088 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 5089 nfs3_sync_putapage); 5090 } else 5091 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr); 5092 5093 if (offp) 5094 *offp = io_off; 5095 if (lenp) 5096 *lenp = io_len; 5097 return (error); 5098 } 5099 5100 static int 5101 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5102 int flags, cred_t *cr) 5103 { 5104 int error; 5105 rnode_t *rp; 5106 5107 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5108 5109 flags |= B_WRITE; 5110 5111 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5112 5113 rp = VTOR(vp); 5114 5115 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 5116 error == EACCES) && 5117 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 5118 if (!(rp->r_flags & ROUTOFSPACE)) { 5119 mutex_enter(&rp->r_statelock); 5120 rp->r_flags |= ROUTOFSPACE; 5121 mutex_exit(&rp->r_statelock); 5122 } 5123 flags |= B_ERROR; 5124 pvn_write_done(pp, flags); 5125 /* 5126 * If this was not an async thread, then try again to 5127 * write out the pages, but this time, also destroy 5128 * them whether or not the write is successful. This 5129 * will prevent memory from filling up with these 5130 * pages and destroying them is the only alternative 5131 * if they can't be written out. 5132 * 5133 * Don't do this if this is an async thread because 5134 * when the pages are unlocked in pvn_write_done, 5135 * some other thread could have come along, locked 5136 * them, and queued for an async thread. It would be 5137 * possible for all of the async threads to be tied 5138 * up waiting to lock the pages again and they would 5139 * all already be locked and waiting for an async 5140 * thread to handle them. Deadlock. 5141 */ 5142 if (!(flags & B_ASYNC)) { 5143 error = nfs3_putpage(vp, io_off, io_len, 5144 B_INVAL | B_FORCE, cr, NULL); 5145 } 5146 } else { 5147 if (error) 5148 flags |= B_ERROR; 5149 else if (rp->r_flags & ROUTOFSPACE) { 5150 mutex_enter(&rp->r_statelock); 5151 rp->r_flags &= ~ROUTOFSPACE; 5152 mutex_exit(&rp->r_statelock); 5153 } 5154 pvn_write_done(pp, flags); 5155 if (freemem < desfree) 5156 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr); 5157 } 5158 5159 return (error); 5160 } 5161 5162 /* ARGSUSED */ 5163 static int 5164 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5165 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5166 cred_t *cr, caller_context_t *ct) 5167 { 5168 struct segvn_crargs vn_a; 5169 int error; 5170 rnode_t *rp; 5171 struct vattr va; 5172 5173 if (nfs_zone() != VTOMI(vp)->mi_zone) 5174 return (EIO); 5175 5176 if (vp->v_flag & VNOMAP) 5177 return (ENOSYS); 5178 5179 if (off < 0 || off + len < 0) 5180 return (ENXIO); 5181 5182 if (vp->v_type != VREG) 5183 return (ENODEV); 5184 5185 /* 5186 * If there is cached data and if close-to-open consistency 5187 * checking is not turned off and if the file system is not 5188 * mounted readonly, then force an over the wire getattr. 5189 * Otherwise, just invoke nfs3getattr to get a copy of the 5190 * attributes. The attribute cache will be used unless it 5191 * is timed out and if it is, then an over the wire getattr 5192 * will be issued. 5193 */ 5194 va.va_mask = AT_ALL; 5195 if (vn_has_cached_data(vp) && 5196 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 5197 error = nfs3_getattr_otw(vp, &va, cr); 5198 else 5199 error = nfs3getattr(vp, &va, cr); 5200 if (error) 5201 return (error); 5202 5203 /* 5204 * Check to see if the vnode is currently marked as not cachable. 5205 * This means portions of the file are locked (through VOP_FRLOCK). 5206 * In this case the map request must be refused. We use 5207 * rp->r_lkserlock to avoid a race with concurrent lock requests. 5208 */ 5209 rp = VTOR(vp); 5210 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 5211 return (EINTR); 5212 5213 if (vp->v_flag & VNOCACHE) { 5214 error = EAGAIN; 5215 goto done; 5216 } 5217 5218 /* 5219 * Don't allow concurrent locks and mapping if mandatory locking is 5220 * enabled. 5221 */ 5222 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 5223 MANDLOCK(vp, va.va_mode)) { 5224 error = EAGAIN; 5225 goto done; 5226 } 5227 5228 as_rangelock(as); 5229 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5230 if (error != 0) { 5231 as_rangeunlock(as); 5232 goto done; 5233 } 5234 5235 vn_a.vp = vp; 5236 vn_a.offset = off; 5237 vn_a.type = (flags & MAP_TYPE); 5238 vn_a.prot = (uchar_t)prot; 5239 vn_a.maxprot = (uchar_t)maxprot; 5240 vn_a.flags = (flags & ~MAP_TYPE); 5241 vn_a.cred = cr; 5242 vn_a.amp = NULL; 5243 vn_a.szc = 0; 5244 vn_a.lgrp_mem_policy_flags = 0; 5245 5246 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5247 as_rangeunlock(as); 5248 5249 done: 5250 nfs_rw_exit(&rp->r_lkserlock); 5251 return (error); 5252 } 5253 5254 /* ARGSUSED */ 5255 static int 5256 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5257 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5258 cred_t *cr, caller_context_t *ct) 5259 { 5260 rnode_t *rp; 5261 5262 if (vp->v_flag & VNOMAP) 5263 return (ENOSYS); 5264 if (nfs_zone() != VTOMI(vp)->mi_zone) 5265 return (EIO); 5266 5267 /* 5268 * Need to hold rwlock while incrementing the mapcnt so that 5269 * mmap'ing can be serialized with writes so that the caching 5270 * can be handled correctly. 5271 */ 5272 rp = VTOR(vp); 5273 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 5274 return (EINTR); 5275 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 5276 nfs_rw_exit(&rp->r_rwlock); 5277 5278 return (0); 5279 } 5280 5281 /* ARGSUSED */ 5282 static int 5283 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5284 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 5285 caller_context_t *ct) 5286 { 5287 netobj lm_fh3; 5288 int rc; 5289 u_offset_t start, end; 5290 rnode_t *rp; 5291 int error = 0, intr = INTR(vp); 5292 5293 if (nfs_zone() != VTOMI(vp)->mi_zone) 5294 return (EIO); 5295 /* check for valid cmd parameter */ 5296 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 5297 return (EINVAL); 5298 5299 /* Verify l_type. */ 5300 switch (bfp->l_type) { 5301 case F_RDLCK: 5302 if (cmd != F_GETLK && !(flag & FREAD)) 5303 return (EBADF); 5304 break; 5305 case F_WRLCK: 5306 if (cmd != F_GETLK && !(flag & FWRITE)) 5307 return (EBADF); 5308 break; 5309 case F_UNLCK: 5310 intr = 0; 5311 break; 5312 5313 default: 5314 return (EINVAL); 5315 } 5316 5317 /* check the validity of the lock range */ 5318 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 5319 return (rc); 5320 if (rc = flk_check_lock_data(start, end, MAXEND)) 5321 return (rc); 5322 5323 /* 5324 * If the filesystem is mounted using local locking, pass the 5325 * request off to the local locking code. 5326 */ 5327 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 5328 if (cmd == F_SETLK || cmd == F_SETLKW) { 5329 /* 5330 * For complete safety, we should be holding 5331 * r_lkserlock. However, we can't call 5332 * lm_safelock and then fs_frlock while 5333 * holding r_lkserlock, so just invoke 5334 * lm_safelock and expect that this will 5335 * catch enough of the cases. 5336 */ 5337 if (!lm_safelock(vp, bfp, cr)) 5338 return (EAGAIN); 5339 } 5340 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 5341 } 5342 5343 rp = VTOR(vp); 5344 5345 /* 5346 * Check whether the given lock request can proceed, given the 5347 * current file mappings. 5348 */ 5349 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 5350 return (EINTR); 5351 if (cmd == F_SETLK || cmd == F_SETLKW) { 5352 if (!lm_safelock(vp, bfp, cr)) { 5353 rc = EAGAIN; 5354 goto done; 5355 } 5356 } 5357 5358 /* 5359 * Flush the cache after waiting for async I/O to finish. For new 5360 * locks, this is so that the process gets the latest bits from the 5361 * server. For unlocks, this is so that other clients see the 5362 * latest bits once the file has been unlocked. If currently dirty 5363 * pages can't be flushed, then don't allow a lock to be set. But 5364 * allow unlocks to succeed, to avoid having orphan locks on the 5365 * server. 5366 */ 5367 if (cmd != F_GETLK) { 5368 mutex_enter(&rp->r_statelock); 5369 while (rp->r_count > 0) { 5370 if (intr) { 5371 klwp_t *lwp = ttolwp(curthread); 5372 5373 if (lwp != NULL) 5374 lwp->lwp_nostop++; 5375 if (cv_wait_sig(&rp->r_cv, 5376 &rp->r_statelock) == 0) { 5377 if (lwp != NULL) 5378 lwp->lwp_nostop--; 5379 rc = EINTR; 5380 break; 5381 } 5382 if (lwp != NULL) 5383 lwp->lwp_nostop--; 5384 } else 5385 cv_wait(&rp->r_cv, &rp->r_statelock); 5386 } 5387 mutex_exit(&rp->r_statelock); 5388 if (rc != 0) 5389 goto done; 5390 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 5391 if (error) { 5392 if (error == ENOSPC || error == EDQUOT) { 5393 mutex_enter(&rp->r_statelock); 5394 if (!rp->r_error) 5395 rp->r_error = error; 5396 mutex_exit(&rp->r_statelock); 5397 } 5398 if (bfp->l_type != F_UNLCK) { 5399 rc = ENOLCK; 5400 goto done; 5401 } 5402 } 5403 } 5404 5405 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 5406 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 5407 5408 /* 5409 * Call the lock manager to do the real work of contacting 5410 * the server and obtaining the lock. 5411 */ 5412 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp); 5413 5414 if (rc == 0) 5415 nfs_lockcompletion(vp, cmd); 5416 5417 done: 5418 nfs_rw_exit(&rp->r_lkserlock); 5419 return (rc); 5420 } 5421 5422 /* 5423 * Free storage space associated with the specified vnode. The portion 5424 * to be freed is specified by bfp->l_start and bfp->l_len (already 5425 * normalized to a "whence" of 0). 5426 * 5427 * This is an experimental facility whose continued existence is not 5428 * guaranteed. Currently, we only support the special case 5429 * of l_len == 0, meaning free to end of file. 5430 */ 5431 /* ARGSUSED */ 5432 static int 5433 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5434 offset_t offset, cred_t *cr, caller_context_t *ct) 5435 { 5436 int error; 5437 5438 ASSERT(vp->v_type == VREG); 5439 if (cmd != F_FREESP) 5440 return (EINVAL); 5441 if (nfs_zone() != VTOMI(vp)->mi_zone) 5442 return (EIO); 5443 5444 error = convoff(vp, bfp, 0, offset); 5445 if (!error) { 5446 ASSERT(bfp->l_start >= 0); 5447 if (bfp->l_len == 0) { 5448 struct vattr va; 5449 5450 /* 5451 * ftruncate should not change the ctime and 5452 * mtime if we truncate the file to its 5453 * previous size. 5454 */ 5455 va.va_mask = AT_SIZE; 5456 error = nfs3getattr(vp, &va, cr); 5457 if (error || va.va_size == bfp->l_start) 5458 return (error); 5459 va.va_mask = AT_SIZE; 5460 va.va_size = bfp->l_start; 5461 error = nfs3setattr(vp, &va, 0, cr); 5462 } else 5463 error = EINVAL; 5464 } 5465 5466 return (error); 5467 } 5468 5469 /* ARGSUSED */ 5470 static int 5471 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 5472 { 5473 5474 return (EINVAL); 5475 } 5476 5477 /* 5478 * Setup and add an address space callback to do the work of the delmap call. 5479 * The callback will (and must be) deleted in the actual callback function. 5480 * 5481 * This is done in order to take care of the problem that we have with holding 5482 * the address space's a_lock for a long period of time (e.g. if the NFS server 5483 * is down). Callbacks will be executed in the address space code while the 5484 * a_lock is not held. Holding the address space's a_lock causes things such 5485 * as ps and fork to hang because they are trying to acquire this lock as well. 5486 */ 5487 /* ARGSUSED */ 5488 static int 5489 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5490 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5491 cred_t *cr, caller_context_t *ct) 5492 { 5493 int caller_found; 5494 int error; 5495 rnode_t *rp; 5496 nfs_delmap_args_t *dmapp; 5497 nfs_delmapcall_t *delmap_call; 5498 5499 if (vp->v_flag & VNOMAP) 5500 return (ENOSYS); 5501 /* 5502 * A process may not change zones if it has NFS pages mmap'ed 5503 * in, so we can't legitimately get here from the wrong zone. 5504 */ 5505 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5506 5507 rp = VTOR(vp); 5508 5509 /* 5510 * The way that the address space of this process deletes its mapping 5511 * of this file is via the following call chains: 5512 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5513 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5514 * 5515 * With the use of address space callbacks we are allowed to drop the 5516 * address space lock, a_lock, while executing the NFS operations that 5517 * need to go over the wire. Returning EAGAIN to the caller of this 5518 * function is what drives the execution of the callback that we add 5519 * below. The callback will be executed by the address space code 5520 * after dropping the a_lock. When the callback is finished, since 5521 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 5522 * is called again on the same segment to finish the rest of the work 5523 * that needs to happen during unmapping. 5524 * 5525 * This action of calling back into the segment driver causes 5526 * nfs3_delmap() to get called again, but since the callback was 5527 * already executed at this point, it already did the work and there 5528 * is nothing left for us to do. 5529 * 5530 * To Summarize: 5531 * - The first time nfs3_delmap is called by the current thread is when 5532 * we add the caller associated with this delmap to the delmap caller 5533 * list, add the callback, and return EAGAIN. 5534 * - The second time in this call chain when nfs3_delmap is called we 5535 * will find this caller in the delmap caller list and realize there 5536 * is no more work to do thus removing this caller from the list and 5537 * returning the error that was set in the callback execution. 5538 */ 5539 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 5540 if (caller_found) { 5541 /* 5542 * 'error' is from the actual delmap operations. To avoid 5543 * hangs, we need to handle the return of EAGAIN differently 5544 * since this is what drives the callback execution. 5545 * In this case, we don't want to return EAGAIN and do the 5546 * callback execution because there are none to execute. 5547 */ 5548 if (error == EAGAIN) 5549 return (0); 5550 else 5551 return (error); 5552 } 5553 5554 /* current caller was not in the list */ 5555 delmap_call = nfs_init_delmapcall(); 5556 5557 mutex_enter(&rp->r_statelock); 5558 list_insert_tail(&rp->r_indelmap, delmap_call); 5559 mutex_exit(&rp->r_statelock); 5560 5561 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 5562 5563 dmapp->vp = vp; 5564 dmapp->off = off; 5565 dmapp->addr = addr; 5566 dmapp->len = len; 5567 dmapp->prot = prot; 5568 dmapp->maxprot = maxprot; 5569 dmapp->flags = flags; 5570 dmapp->cr = cr; 5571 dmapp->caller = delmap_call; 5572 5573 error = as_add_callback(as, nfs3_delmap_callback, dmapp, 5574 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 5575 5576 return (error ? error : EAGAIN); 5577 } 5578 5579 /* 5580 * Remove some pages from an mmap'd vnode. Just update the 5581 * count of pages. If doing close-to-open, then flush and 5582 * commit all of the pages associated with this file. 5583 * Otherwise, start an asynchronous page flush to write out 5584 * any dirty pages. This will also associate a credential 5585 * with the rnode which can be used to write the pages. 5586 */ 5587 /* ARGSUSED */ 5588 static void 5589 nfs3_delmap_callback(struct as *as, void *arg, uint_t event) 5590 { 5591 int error; 5592 rnode_t *rp; 5593 mntinfo_t *mi; 5594 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 5595 5596 rp = VTOR(dmapp->vp); 5597 mi = VTOMI(dmapp->vp); 5598 5599 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 5600 ASSERT(rp->r_mapcnt >= 0); 5601 5602 /* 5603 * Initiate a page flush and potential commit if there are 5604 * pages, the file system was not mounted readonly, the segment 5605 * was mapped shared, and the pages themselves were writeable. 5606 */ 5607 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 5608 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 5609 mutex_enter(&rp->r_statelock); 5610 rp->r_flags |= RDIRTY; 5611 mutex_exit(&rp->r_statelock); 5612 /* 5613 * If this is a cross-zone access a sync putpage won't work, so 5614 * the best we can do is try an async putpage. That seems 5615 * better than something more draconian such as discarding the 5616 * dirty pages. 5617 */ 5618 if ((mi->mi_flags & MI_NOCTO) || 5619 nfs_zone() != mi->mi_zone) 5620 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5621 B_ASYNC, dmapp->cr, NULL); 5622 else 5623 error = nfs3_putpage_commit(dmapp->vp, dmapp->off, 5624 dmapp->len, dmapp->cr); 5625 if (!error) { 5626 mutex_enter(&rp->r_statelock); 5627 error = rp->r_error; 5628 rp->r_error = 0; 5629 mutex_exit(&rp->r_statelock); 5630 } 5631 } else 5632 error = 0; 5633 5634 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 5635 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5636 B_INVAL, dmapp->cr, NULL); 5637 5638 dmapp->caller->error = error; 5639 (void) as_delete_callback(as, arg); 5640 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 5641 } 5642 5643 static int nfs3_pathconf_disable_cache = 0; 5644 5645 #ifdef DEBUG 5646 static int nfs3_pathconf_cache_hits = 0; 5647 static int nfs3_pathconf_cache_misses = 0; 5648 #endif 5649 5650 /* ARGSUSED */ 5651 static int 5652 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 5653 caller_context_t *ct) 5654 { 5655 int error; 5656 PATHCONF3args args; 5657 PATHCONF3res res; 5658 int douprintf; 5659 failinfo_t fi; 5660 rnode_t *rp; 5661 hrtime_t t; 5662 5663 if (nfs_zone() != VTOMI(vp)->mi_zone) 5664 return (EIO); 5665 /* 5666 * Large file spec - need to base answer on info stored 5667 * on original FSINFO response. 5668 */ 5669 if (cmd == _PC_FILESIZEBITS) { 5670 unsigned long long ll; 5671 long l = 1; 5672 5673 ll = VTOMI(vp)->mi_maxfilesize; 5674 5675 if (ll == 0) { 5676 *valp = 0; 5677 return (0); 5678 } 5679 5680 if (ll & 0xffffffff00000000) { 5681 l += 32; ll >>= 32; 5682 } 5683 if (ll & 0xffff0000) { 5684 l += 16; ll >>= 16; 5685 } 5686 if (ll & 0xff00) { 5687 l += 8; ll >>= 8; 5688 } 5689 if (ll & 0xf0) { 5690 l += 4; ll >>= 4; 5691 } 5692 if (ll & 0xc) { 5693 l += 2; ll >>= 2; 5694 } 5695 if (ll & 0x2) 5696 l += 2; 5697 else if (ll & 0x1) 5698 l += 1; 5699 *valp = l; 5700 return (0); 5701 } 5702 5703 if (cmd == _PC_ACL_ENABLED) { 5704 *valp = _ACL_ACLENT_ENABLED; 5705 return (0); 5706 } 5707 5708 if (cmd == _PC_XATTR_EXISTS) { 5709 error = 0; 5710 *valp = 0; 5711 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5712 vnode_t *avp; 5713 rnode_t *rp; 5714 int error = 0; 5715 mntinfo_t *mi = VTOMI(vp); 5716 5717 if (!(mi->mi_flags & MI_EXTATTR)) 5718 return (0); 5719 5720 rp = VTOR(vp); 5721 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 5722 INTR(vp))) 5723 return (EINTR); 5724 5725 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 5726 if (error || avp == NULL) 5727 error = acl_getxattrdir3(vp, &avp, 0, cr, 0); 5728 5729 nfs_rw_exit(&rp->r_rwlock); 5730 5731 if (error == 0 && avp != NULL) { 5732 error = do_xattr_exists_check(avp, valp, cr); 5733 VN_RELE(avp); 5734 } else if (error == ENOENT) { 5735 error = 0; 5736 *valp = 0; 5737 } 5738 } 5739 return (error); 5740 } 5741 5742 rp = VTOR(vp); 5743 if (rp->r_pathconf != NULL) { 5744 mutex_enter(&rp->r_statelock); 5745 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) { 5746 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf)); 5747 rp->r_pathconf = NULL; 5748 } 5749 if (rp->r_pathconf != NULL) { 5750 error = 0; 5751 switch (cmd) { 5752 case _PC_LINK_MAX: 5753 *valp = rp->r_pathconf->link_max; 5754 break; 5755 case _PC_NAME_MAX: 5756 *valp = rp->r_pathconf->name_max; 5757 break; 5758 case _PC_PATH_MAX: 5759 case _PC_SYMLINK_MAX: 5760 *valp = MAXPATHLEN; 5761 break; 5762 case _PC_CHOWN_RESTRICTED: 5763 *valp = rp->r_pathconf->chown_restricted; 5764 break; 5765 case _PC_NO_TRUNC: 5766 *valp = rp->r_pathconf->no_trunc; 5767 break; 5768 default: 5769 error = EINVAL; 5770 break; 5771 } 5772 mutex_exit(&rp->r_statelock); 5773 #ifdef DEBUG 5774 nfs3_pathconf_cache_hits++; 5775 #endif 5776 return (error); 5777 } 5778 mutex_exit(&rp->r_statelock); 5779 } 5780 #ifdef DEBUG 5781 nfs3_pathconf_cache_misses++; 5782 #endif 5783 5784 args.object = *VTOFH3(vp); 5785 fi.vp = vp; 5786 fi.fhp = (caddr_t)&args.object; 5787 fi.copyproc = nfs3copyfh; 5788 fi.lookupproc = nfs3lookup; 5789 fi.xattrdirproc = acl_getxattrdir3; 5790 5791 douprintf = 1; 5792 5793 t = gethrtime(); 5794 5795 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF, 5796 xdr_nfs_fh3, (caddr_t)&args, 5797 xdr_PATHCONF3res, (caddr_t)&res, cr, 5798 &douprintf, &res.status, 0, &fi); 5799 5800 if (error) 5801 return (error); 5802 5803 error = geterrno3(res.status); 5804 5805 if (!error) { 5806 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 5807 if (!nfs3_pathconf_disable_cache) { 5808 mutex_enter(&rp->r_statelock); 5809 if (rp->r_pathconf == NULL) { 5810 rp->r_pathconf = kmem_alloc( 5811 sizeof (*rp->r_pathconf), KM_NOSLEEP); 5812 if (rp->r_pathconf != NULL) 5813 *rp->r_pathconf = res.resok.info; 5814 } 5815 mutex_exit(&rp->r_statelock); 5816 } 5817 switch (cmd) { 5818 case _PC_LINK_MAX: 5819 *valp = res.resok.info.link_max; 5820 break; 5821 case _PC_NAME_MAX: 5822 *valp = res.resok.info.name_max; 5823 break; 5824 case _PC_PATH_MAX: 5825 case _PC_SYMLINK_MAX: 5826 *valp = MAXPATHLEN; 5827 break; 5828 case _PC_CHOWN_RESTRICTED: 5829 *valp = res.resok.info.chown_restricted; 5830 break; 5831 case _PC_NO_TRUNC: 5832 *valp = res.resok.info.no_trunc; 5833 break; 5834 default: 5835 return (EINVAL); 5836 } 5837 } else { 5838 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 5839 PURGE_STALE_FH(error, vp, cr); 5840 } 5841 5842 return (error); 5843 } 5844 5845 /* 5846 * Called by async thread to do synchronous pageio. Do the i/o, wait 5847 * for it to complete, and cleanup the page list when done. 5848 */ 5849 static int 5850 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5851 int flags, cred_t *cr) 5852 { 5853 int error; 5854 5855 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5856 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5857 if (flags & B_READ) 5858 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 5859 else 5860 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 5861 return (error); 5862 } 5863 5864 /* ARGSUSED */ 5865 static int 5866 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5867 int flags, cred_t *cr, caller_context_t *ct) 5868 { 5869 int error; 5870 rnode_t *rp; 5871 5872 if (pp == NULL) 5873 return (EINVAL); 5874 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5875 return (EIO); 5876 5877 rp = VTOR(vp); 5878 mutex_enter(&rp->r_statelock); 5879 rp->r_count++; 5880 mutex_exit(&rp->r_statelock); 5881 5882 if (flags & B_ASYNC) { 5883 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 5884 nfs3_sync_pageio); 5885 } else 5886 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5887 mutex_enter(&rp->r_statelock); 5888 rp->r_count--; 5889 cv_broadcast(&rp->r_cv); 5890 mutex_exit(&rp->r_statelock); 5891 return (error); 5892 } 5893 5894 /* ARGSUSED */ 5895 static void 5896 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 5897 caller_context_t *ct) 5898 { 5899 int error; 5900 rnode_t *rp; 5901 page_t *plist; 5902 page_t *pptr; 5903 offset3 offset; 5904 count3 len; 5905 k_sigset_t smask; 5906 5907 /* 5908 * We should get called with fl equal to either B_FREE or 5909 * B_INVAL. Any other value is illegal. 5910 * 5911 * The page that we are either supposed to free or destroy 5912 * should be exclusive locked and its io lock should not 5913 * be held. 5914 */ 5915 ASSERT(fl == B_FREE || fl == B_INVAL); 5916 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 5917 rp = VTOR(vp); 5918 5919 /* 5920 * If the page doesn't need to be committed or we shouldn't 5921 * even bother attempting to commit it, then just make sure 5922 * that the p_fsdata byte is clear and then either free or 5923 * destroy the page as appropriate. 5924 */ 5925 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) { 5926 pp->p_fsdata = C_NOCOMMIT; 5927 if (fl == B_FREE) 5928 page_free(pp, dn); 5929 else 5930 page_destroy(pp, dn); 5931 return; 5932 } 5933 5934 /* 5935 * If there is a page invalidation operation going on, then 5936 * if this is one of the pages being destroyed, then just 5937 * clear the p_fsdata byte and then either free or destroy 5938 * the page as appropriate. 5939 */ 5940 mutex_enter(&rp->r_statelock); 5941 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 5942 mutex_exit(&rp->r_statelock); 5943 pp->p_fsdata = C_NOCOMMIT; 5944 if (fl == B_FREE) 5945 page_free(pp, dn); 5946 else 5947 page_destroy(pp, dn); 5948 return; 5949 } 5950 5951 /* 5952 * If we are freeing this page and someone else is already 5953 * waiting to do a commit, then just unlock the page and 5954 * return. That other thread will take care of commiting 5955 * this page. The page can be freed sometime after the 5956 * commit has finished. Otherwise, if the page is marked 5957 * as delay commit, then we may be getting called from 5958 * pvn_write_done, one page at a time. This could result 5959 * in one commit per page, so we end up doing lots of small 5960 * commits instead of fewer larger commits. This is bad, 5961 * we want do as few commits as possible. 5962 */ 5963 if (fl == B_FREE) { 5964 if (rp->r_flags & RCOMMITWAIT) { 5965 page_unlock(pp); 5966 mutex_exit(&rp->r_statelock); 5967 return; 5968 } 5969 if (pp->p_fsdata == C_DELAYCOMMIT) { 5970 pp->p_fsdata = C_COMMIT; 5971 page_unlock(pp); 5972 mutex_exit(&rp->r_statelock); 5973 return; 5974 } 5975 } 5976 5977 /* 5978 * Check to see if there is a signal which would prevent an 5979 * attempt to commit the pages from being successful. If so, 5980 * then don't bother with all of the work to gather pages and 5981 * generate the unsuccessful RPC. Just return from here and 5982 * let the page be committed at some later time. 5983 */ 5984 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT); 5985 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 5986 sigunintr(&smask); 5987 page_unlock(pp); 5988 mutex_exit(&rp->r_statelock); 5989 return; 5990 } 5991 sigunintr(&smask); 5992 5993 /* 5994 * We are starting to need to commit pages, so let's try 5995 * to commit as many as possible at once to reduce the 5996 * overhead. 5997 * 5998 * Set the `commit inprogress' state bit. We must 5999 * first wait until any current one finishes. Then 6000 * we initialize the c_pages list with this page. 6001 */ 6002 while (rp->r_flags & RCOMMIT) { 6003 rp->r_flags |= RCOMMITWAIT; 6004 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6005 rp->r_flags &= ~RCOMMITWAIT; 6006 } 6007 rp->r_flags |= RCOMMIT; 6008 mutex_exit(&rp->r_statelock); 6009 ASSERT(rp->r_commit.c_pages == NULL); 6010 rp->r_commit.c_pages = pp; 6011 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6012 rp->r_commit.c_commlen = PAGESIZE; 6013 6014 /* 6015 * Gather together all other pages which can be committed. 6016 * They will all be chained off r_commit.c_pages. 6017 */ 6018 nfs3_get_commit(vp); 6019 6020 /* 6021 * Clear the `commit inprogress' status and disconnect 6022 * the list of pages to be committed from the rnode. 6023 * At this same time, we also save the starting offset 6024 * and length of data to be committed on the server. 6025 */ 6026 plist = rp->r_commit.c_pages; 6027 rp->r_commit.c_pages = NULL; 6028 offset = rp->r_commit.c_commbase; 6029 len = rp->r_commit.c_commlen; 6030 mutex_enter(&rp->r_statelock); 6031 rp->r_flags &= ~RCOMMIT; 6032 cv_broadcast(&rp->r_commit.c_cv); 6033 mutex_exit(&rp->r_statelock); 6034 6035 if (curproc == proc_pageout || curproc == proc_fsflush || 6036 nfs_zone() != VTOMI(vp)->mi_zone) { 6037 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit); 6038 return; 6039 } 6040 6041 /* 6042 * Actually generate the COMMIT3 over the wire operation. 6043 */ 6044 error = nfs3_commit(vp, offset, len, cr); 6045 6046 /* 6047 * If we got an error during the commit, just unlock all 6048 * of the pages. The pages will get retransmitted to the 6049 * server during a putpage operation. 6050 */ 6051 if (error) { 6052 while (plist != NULL) { 6053 pptr = plist; 6054 page_sub(&plist, pptr); 6055 page_unlock(pptr); 6056 } 6057 return; 6058 } 6059 6060 /* 6061 * We've tried as hard as we can to commit the data to stable 6062 * storage on the server. We release the rest of the pages 6063 * and clear the commit required state. They will be put 6064 * onto the tail of the cachelist if they are nolonger 6065 * mapped. 6066 */ 6067 while (plist != pp) { 6068 pptr = plist; 6069 page_sub(&plist, pptr); 6070 pptr->p_fsdata = C_NOCOMMIT; 6071 (void) page_release(pptr, 1); 6072 } 6073 6074 /* 6075 * It is possible that nfs3_commit didn't return error but 6076 * some other thread has modified the page we are going 6077 * to free/destroy. 6078 * In this case we need to rewrite the page. Do an explicit check 6079 * before attempting to free/destroy the page. If modified, needs to 6080 * be rewritten so unlock the page and return. 6081 */ 6082 if (hat_ismod(pp)) { 6083 pp->p_fsdata = C_NOCOMMIT; 6084 page_unlock(pp); 6085 return; 6086 } 6087 6088 /* 6089 * Now, as appropriate, either free or destroy the page 6090 * that we were called with. 6091 */ 6092 pp->p_fsdata = C_NOCOMMIT; 6093 if (fl == B_FREE) 6094 page_free(pp, dn); 6095 else 6096 page_destroy(pp, dn); 6097 } 6098 6099 static int 6100 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr) 6101 { 6102 int error; 6103 rnode_t *rp; 6104 COMMIT3args args; 6105 COMMIT3res res; 6106 int douprintf; 6107 cred_t *cred; 6108 6109 rp = VTOR(vp); 6110 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6111 6112 mutex_enter(&rp->r_statelock); 6113 if (rp->r_cred != NULL) { 6114 cred = rp->r_cred; 6115 crhold(cred); 6116 } else { 6117 rp->r_cred = cr; 6118 crhold(cr); 6119 cred = cr; 6120 crhold(cred); 6121 } 6122 mutex_exit(&rp->r_statelock); 6123 6124 args.file = *VTOFH3(vp); 6125 args.offset = offset; 6126 args.count = count; 6127 6128 doitagain: 6129 douprintf = 1; 6130 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT, 6131 xdr_COMMIT3args, (caddr_t)&args, 6132 xdr_COMMIT3res, (caddr_t)&res, cred, 6133 &douprintf, &res.status, 0, NULL); 6134 6135 crfree(cred); 6136 6137 if (error) 6138 return (error); 6139 6140 error = geterrno3(res.status); 6141 if (!error) { 6142 ASSERT(rp->r_flags & RHAVEVERF); 6143 mutex_enter(&rp->r_statelock); 6144 if (rp->r_verf == res.resok.verf) { 6145 mutex_exit(&rp->r_statelock); 6146 return (0); 6147 } 6148 nfs3_set_mod(vp); 6149 rp->r_verf = res.resok.verf; 6150 mutex_exit(&rp->r_statelock); 6151 error = NFS_VERF_MISMATCH; 6152 } else { 6153 if (error == EACCES) { 6154 mutex_enter(&rp->r_statelock); 6155 if (cred != cr) { 6156 if (rp->r_cred != NULL) 6157 crfree(rp->r_cred); 6158 rp->r_cred = cr; 6159 crhold(cr); 6160 cred = cr; 6161 crhold(cred); 6162 mutex_exit(&rp->r_statelock); 6163 goto doitagain; 6164 } 6165 mutex_exit(&rp->r_statelock); 6166 } 6167 /* 6168 * Can't do a PURGE_STALE_FH here because this 6169 * can cause a deadlock. nfs3_commit can 6170 * be called from nfs3_dispose which can be called 6171 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH 6172 * can call back to pvn_vplist_dirty. 6173 */ 6174 if (error == ESTALE) { 6175 mutex_enter(&rp->r_statelock); 6176 rp->r_flags |= RSTALE; 6177 if (!rp->r_error) 6178 rp->r_error = error; 6179 mutex_exit(&rp->r_statelock); 6180 PURGE_ATTRCACHE(vp); 6181 } else { 6182 mutex_enter(&rp->r_statelock); 6183 if (!rp->r_error) 6184 rp->r_error = error; 6185 mutex_exit(&rp->r_statelock); 6186 } 6187 } 6188 6189 return (error); 6190 } 6191 6192 static void 6193 nfs3_set_mod(vnode_t *vp) 6194 { 6195 page_t *pp; 6196 kmutex_t *vphm; 6197 6198 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6199 vphm = page_vnode_mutex(vp); 6200 mutex_enter(vphm); 6201 if ((pp = vp->v_pages) != NULL) { 6202 do { 6203 if (pp->p_fsdata != C_NOCOMMIT) { 6204 hat_setmod(pp); 6205 pp->p_fsdata = C_NOCOMMIT; 6206 } 6207 } while ((pp = pp->p_vpnext) != vp->v_pages); 6208 } 6209 mutex_exit(vphm); 6210 } 6211 6212 6213 /* 6214 * This routine is used to gather together a page list of the pages 6215 * which are to be committed on the server. This routine must not 6216 * be called if the calling thread holds any locked pages. 6217 * 6218 * The calling thread must have set RCOMMIT. This bit is used to 6219 * serialize access to the commit structure in the rnode. As long 6220 * as the thread has set RCOMMIT, then it can manipulate the commit 6221 * structure without requiring any other locks. 6222 */ 6223 static void 6224 nfs3_get_commit(vnode_t *vp) 6225 { 6226 rnode_t *rp; 6227 page_t *pp; 6228 kmutex_t *vphm; 6229 6230 rp = VTOR(vp); 6231 6232 ASSERT(rp->r_flags & RCOMMIT); 6233 6234 vphm = page_vnode_mutex(vp); 6235 mutex_enter(vphm); 6236 6237 /* 6238 * If there are no pages associated with this vnode, then 6239 * just return. 6240 */ 6241 if ((pp = vp->v_pages) == NULL) { 6242 mutex_exit(vphm); 6243 return; 6244 } 6245 6246 /* 6247 * Step through all of the pages associated with this vnode 6248 * looking for pages which need to be committed. 6249 */ 6250 do { 6251 /* 6252 * If this page does not need to be committed or is 6253 * modified, then just skip it. 6254 */ 6255 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 6256 continue; 6257 6258 /* 6259 * Attempt to lock the page. If we can't, then 6260 * someone else is messing with it and we will 6261 * just skip it. 6262 */ 6263 if (!page_trylock(pp, SE_EXCL)) 6264 continue; 6265 6266 /* 6267 * If this page does not need to be committed or is 6268 * modified, then just skip it. Recheck now that 6269 * the page is locked. 6270 */ 6271 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6272 page_unlock(pp); 6273 continue; 6274 } 6275 6276 if (PP_ISFREE(pp)) { 6277 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free", 6278 (void *)pp); 6279 } 6280 6281 /* 6282 * The page needs to be committed and we locked it. 6283 * Update the base and length parameters and add it 6284 * to r_pages. 6285 */ 6286 if (rp->r_commit.c_pages == NULL) { 6287 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6288 rp->r_commit.c_commlen = PAGESIZE; 6289 } else if (pp->p_offset < rp->r_commit.c_commbase) { 6290 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 6291 (offset3)pp->p_offset + rp->r_commit.c_commlen; 6292 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6293 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 6294 <= pp->p_offset) { 6295 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6296 rp->r_commit.c_commbase + PAGESIZE; 6297 } 6298 page_add(&rp->r_commit.c_pages, pp); 6299 } while ((pp = pp->p_vpnext) != vp->v_pages); 6300 6301 mutex_exit(vphm); 6302 } 6303 6304 /* 6305 * This routine is used to gather together a page list of the pages 6306 * which are to be committed on the server. This routine must not 6307 * be called if the calling thread holds any locked pages. 6308 * 6309 * The calling thread must have set RCOMMIT. This bit is used to 6310 * serialize access to the commit structure in the rnode. As long 6311 * as the thread has set RCOMMIT, then it can manipulate the commit 6312 * structure without requiring any other locks. 6313 */ 6314 static void 6315 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 6316 { 6317 6318 rnode_t *rp; 6319 page_t *pp; 6320 u_offset_t end; 6321 u_offset_t off; 6322 6323 ASSERT(len != 0); 6324 6325 rp = VTOR(vp); 6326 6327 ASSERT(rp->r_flags & RCOMMIT); 6328 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6329 6330 /* 6331 * If there are no pages associated with this vnode, then 6332 * just return. 6333 */ 6334 if ((pp = vp->v_pages) == NULL) 6335 return; 6336 6337 /* 6338 * Calculate the ending offset. 6339 */ 6340 end = soff + len; 6341 6342 for (off = soff; off < end; off += PAGESIZE) { 6343 /* 6344 * Lookup each page by vp, offset. 6345 */ 6346 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 6347 continue; 6348 6349 /* 6350 * If this page does not need to be committed or is 6351 * modified, then just skip it. 6352 */ 6353 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6354 page_unlock(pp); 6355 continue; 6356 } 6357 6358 ASSERT(PP_ISFREE(pp) == 0); 6359 6360 /* 6361 * The page needs to be committed and we locked it. 6362 * Update the base and length parameters and add it 6363 * to r_pages. 6364 */ 6365 if (rp->r_commit.c_pages == NULL) { 6366 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6367 rp->r_commit.c_commlen = PAGESIZE; 6368 } else { 6369 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6370 rp->r_commit.c_commbase + PAGESIZE; 6371 } 6372 page_add(&rp->r_commit.c_pages, pp); 6373 } 6374 } 6375 6376 #if 0 /* unused */ 6377 #ifdef DEBUG 6378 static int 6379 nfs3_no_uncommitted_pages(vnode_t *vp) 6380 { 6381 page_t *pp; 6382 kmutex_t *vphm; 6383 6384 vphm = page_vnode_mutex(vp); 6385 mutex_enter(vphm); 6386 if ((pp = vp->v_pages) != NULL) { 6387 do { 6388 if (pp->p_fsdata != C_NOCOMMIT) { 6389 mutex_exit(vphm); 6390 return (0); 6391 } 6392 } while ((pp = pp->p_vpnext) != vp->v_pages); 6393 } 6394 mutex_exit(vphm); 6395 6396 return (1); 6397 } 6398 #endif 6399 #endif 6400 6401 static int 6402 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 6403 { 6404 int error; 6405 writeverf3 write_verf; 6406 rnode_t *rp = VTOR(vp); 6407 6408 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6409 /* 6410 * Flush the data portion of the file and then commit any 6411 * portions which need to be committed. This may need to 6412 * be done twice if the server has changed state since 6413 * data was last written. The data will need to be 6414 * rewritten to the server and then a new commit done. 6415 * 6416 * In fact, this may need to be done several times if the 6417 * server is having problems and crashing while we are 6418 * attempting to do this. 6419 */ 6420 6421 top: 6422 /* 6423 * Do a flush based on the poff and plen arguments. This 6424 * will asynchronously write out any modified pages in the 6425 * range specified by (poff, plen). This starts all of the 6426 * i/o operations which will be waited for in the next 6427 * call to nfs3_putpage 6428 */ 6429 6430 mutex_enter(&rp->r_statelock); 6431 write_verf = rp->r_verf; 6432 mutex_exit(&rp->r_statelock); 6433 6434 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 6435 if (error == EAGAIN) 6436 error = 0; 6437 6438 /* 6439 * Do a flush based on the poff and plen arguments. This 6440 * will synchronously write out any modified pages in the 6441 * range specified by (poff, plen) and wait until all of 6442 * the asynchronous i/o's in that range are done as well. 6443 */ 6444 if (!error) 6445 error = nfs3_putpage(vp, poff, plen, 0, cr, NULL); 6446 6447 if (error) 6448 return (error); 6449 6450 mutex_enter(&rp->r_statelock); 6451 if (rp->r_verf != write_verf) { 6452 mutex_exit(&rp->r_statelock); 6453 goto top; 6454 } 6455 mutex_exit(&rp->r_statelock); 6456 6457 /* 6458 * Now commit any pages which might need to be committed. 6459 * If the error, NFS_VERF_MISMATCH, is returned, then 6460 * start over with the flush operation. 6461 */ 6462 6463 error = nfs3_commit_vp(vp, poff, plen, cr); 6464 6465 if (error == NFS_VERF_MISMATCH) 6466 goto top; 6467 6468 return (error); 6469 } 6470 6471 static int 6472 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr) 6473 { 6474 rnode_t *rp; 6475 page_t *plist; 6476 offset3 offset; 6477 count3 len; 6478 6479 6480 rp = VTOR(vp); 6481 6482 if (nfs_zone() != VTOMI(vp)->mi_zone) 6483 return (EIO); 6484 /* 6485 * Set the `commit inprogress' state bit. We must 6486 * first wait until any current one finishes. 6487 */ 6488 mutex_enter(&rp->r_statelock); 6489 while (rp->r_flags & RCOMMIT) { 6490 rp->r_flags |= RCOMMITWAIT; 6491 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6492 rp->r_flags &= ~RCOMMITWAIT; 6493 } 6494 rp->r_flags |= RCOMMIT; 6495 mutex_exit(&rp->r_statelock); 6496 6497 /* 6498 * Gather together all of the pages which need to be 6499 * committed. 6500 */ 6501 if (plen == 0) 6502 nfs3_get_commit(vp); 6503 else 6504 nfs3_get_commit_range(vp, poff, plen); 6505 6506 /* 6507 * Clear the `commit inprogress' bit and disconnect the 6508 * page list which was gathered together in nfs3_get_commit. 6509 */ 6510 plist = rp->r_commit.c_pages; 6511 rp->r_commit.c_pages = NULL; 6512 offset = rp->r_commit.c_commbase; 6513 len = rp->r_commit.c_commlen; 6514 mutex_enter(&rp->r_statelock); 6515 rp->r_flags &= ~RCOMMIT; 6516 cv_broadcast(&rp->r_commit.c_cv); 6517 mutex_exit(&rp->r_statelock); 6518 6519 /* 6520 * If any pages need to be committed, commit them and 6521 * then unlock them so that they can be freed some 6522 * time later. 6523 */ 6524 if (plist != NULL) { 6525 /* 6526 * No error occurred during the flush portion 6527 * of this operation, so now attempt to commit 6528 * the data to stable storage on the server. 6529 * 6530 * This will unlock all of the pages on the list. 6531 */ 6532 return (nfs3_sync_commit(vp, plist, offset, len, cr)); 6533 } 6534 return (0); 6535 } 6536 6537 static int 6538 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6539 cred_t *cr) 6540 { 6541 int error; 6542 page_t *pp; 6543 6544 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6545 error = nfs3_commit(vp, offset, count, cr); 6546 6547 /* 6548 * If we got an error, then just unlock all of the pages 6549 * on the list. 6550 */ 6551 if (error) { 6552 while (plist != NULL) { 6553 pp = plist; 6554 page_sub(&plist, pp); 6555 page_unlock(pp); 6556 } 6557 return (error); 6558 } 6559 /* 6560 * We've tried as hard as we can to commit the data to stable 6561 * storage on the server. We just unlock the pages and clear 6562 * the commit required state. They will get freed later. 6563 */ 6564 while (plist != NULL) { 6565 pp = plist; 6566 page_sub(&plist, pp); 6567 pp->p_fsdata = C_NOCOMMIT; 6568 page_unlock(pp); 6569 } 6570 6571 return (error); 6572 } 6573 6574 static void 6575 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6576 cred_t *cr) 6577 { 6578 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6579 (void) nfs3_sync_commit(vp, plist, offset, count, cr); 6580 } 6581 6582 /* ARGSUSED */ 6583 static int 6584 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6585 caller_context_t *ct) 6586 { 6587 int error; 6588 mntinfo_t *mi; 6589 6590 mi = VTOMI(vp); 6591 6592 if (nfs_zone() != mi->mi_zone) 6593 return (EIO); 6594 6595 if (mi->mi_flags & MI_ACL) { 6596 error = acl_setacl3(vp, vsecattr, flag, cr); 6597 if (mi->mi_flags & MI_ACL) 6598 return (error); 6599 } 6600 6601 return (ENOSYS); 6602 } 6603 6604 /* ARGSUSED */ 6605 static int 6606 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6607 caller_context_t *ct) 6608 { 6609 int error; 6610 mntinfo_t *mi; 6611 6612 mi = VTOMI(vp); 6613 6614 if (nfs_zone() != mi->mi_zone) 6615 return (EIO); 6616 6617 if (mi->mi_flags & MI_ACL) { 6618 error = acl_getacl3(vp, vsecattr, flag, cr); 6619 if (mi->mi_flags & MI_ACL) 6620 return (error); 6621 } 6622 6623 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 6624 } 6625 6626 /* ARGSUSED */ 6627 static int 6628 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 6629 caller_context_t *ct) 6630 { 6631 int error; 6632 struct shrlock nshr; 6633 struct nfs_owner nfs_owner; 6634 netobj lm_fh3; 6635 6636 if (nfs_zone() != VTOMI(vp)->mi_zone) 6637 return (EIO); 6638 6639 /* 6640 * check for valid cmd parameter 6641 */ 6642 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 6643 return (EINVAL); 6644 6645 /* 6646 * Check access permissions 6647 */ 6648 if (cmd == F_SHARE && 6649 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 6650 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 6651 return (EBADF); 6652 6653 /* 6654 * If the filesystem is mounted using local locking, pass the 6655 * request off to the local share code. 6656 */ 6657 if (VTOMI(vp)->mi_flags & MI_LLOCK) 6658 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 6659 6660 switch (cmd) { 6661 case F_SHARE: 6662 case F_UNSHARE: 6663 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 6664 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 6665 6666 /* 6667 * If passed an owner that is too large to fit in an 6668 * nfs_owner it is likely a recursive call from the 6669 * lock manager client and pass it straight through. If 6670 * it is not a nfs_owner then simply return an error. 6671 */ 6672 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 6673 if (((struct nfs_owner *)shr->s_owner)->magic != 6674 NFS_OWNER_MAGIC) 6675 return (EINVAL); 6676 6677 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) { 6678 error = set_errno(error); 6679 } 6680 return (error); 6681 } 6682 /* 6683 * Remote share reservations owner is a combination of 6684 * a magic number, hostname, and the local owner 6685 */ 6686 bzero(&nfs_owner, sizeof (nfs_owner)); 6687 nfs_owner.magic = NFS_OWNER_MAGIC; 6688 (void) strncpy(nfs_owner.hname, uts_nodename(), 6689 sizeof (nfs_owner.hname)); 6690 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 6691 nshr.s_access = shr->s_access; 6692 nshr.s_deny = shr->s_deny; 6693 nshr.s_sysid = 0; 6694 nshr.s_pid = ttoproc(curthread)->p_pid; 6695 nshr.s_own_len = sizeof (nfs_owner); 6696 nshr.s_owner = (caddr_t)&nfs_owner; 6697 6698 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) { 6699 error = set_errno(error); 6700 } 6701 6702 break; 6703 6704 case F_HASREMOTELOCKS: 6705 /* 6706 * NFS client can't store remote locks itself 6707 */ 6708 shr->s_access = 0; 6709 error = 0; 6710 break; 6711 6712 default: 6713 error = EINVAL; 6714 break; 6715 } 6716 6717 return (error); 6718 } 6719