1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 30 #pragma ident "%Z%%M% %I% %E% SMI" /* from S5R4 1.28 */ 31 32 /* 33 * This file supports the vfs operations for the NAMEFS file system. 34 */ 35 36 #include <sys/types.h> 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/debug.h> 40 #include <sys/errno.h> 41 #include <sys/kmem.h> 42 #include <sys/inline.h> 43 #include <sys/file.h> 44 #include <sys/proc.h> 45 #include <sys/stat.h> 46 #include <sys/statvfs.h> 47 #include <sys/mount.h> 48 #include <sys/sysmacros.h> 49 #include <sys/var.h> 50 #include <sys/vfs.h> 51 #include <sys/vfs_opreg.h> 52 #include <sys/vnode.h> 53 #include <sys/mode.h> 54 #include <sys/pcb.h> 55 #include <sys/signal.h> 56 #include <sys/user.h> 57 #include <sys/uio.h> 58 #include <sys/cred.h> 59 #include <sys/fs/namenode.h> 60 #include <sys/stream.h> 61 #include <sys/strsubr.h> 62 #include <sys/cmn_err.h> 63 #include <sys/modctl.h> 64 #include <fs/fs_subr.h> 65 #include <sys/policy.h> 66 #include <sys/vmem.h> 67 #include <sys/fs/sdev_impl.h> 68 69 #define NM_INOQUANT (64 * 1024) 70 71 /* 72 * Define global data structures. 73 */ 74 dev_t namedev; 75 int namefstype; 76 struct namenode *nm_filevp_hash[NM_FILEVP_HASH_SIZE]; 77 struct vfs namevfs; 78 kmutex_t ntable_lock; 79 80 static vmem_t *nm_inoarena; /* vmem arena to allocate inode no's from */ 81 static kmutex_t nm_inolock; 82 83 vfsops_t *namefs_vfsops; 84 /* 85 * Functions to allocate node id's starting from 1. Based on vmem routines. 86 * The vmem arena is extended in NM_INOQUANT chunks. 87 */ 88 uint64_t 89 namenodeno_alloc(void) 90 { 91 uint64_t nno; 92 93 mutex_enter(&nm_inolock); 94 nno = (uint64_t)(uintptr_t) 95 vmem_alloc(nm_inoarena, 1, VM_NOSLEEP + VM_FIRSTFIT); 96 if (nno == 0) { 97 (void) vmem_add(nm_inoarena, (void *)(vmem_size(nm_inoarena, 98 VMEM_ALLOC | VMEM_FREE) + 1), NM_INOQUANT, VM_SLEEP); 99 nno = (uint64_t)(uintptr_t) 100 vmem_alloc(nm_inoarena, 1, VM_SLEEP + VM_FIRSTFIT); 101 ASSERT(nno != 0); 102 } 103 mutex_exit(&nm_inolock); 104 ASSERT32(nno <= ULONG_MAX); 105 return (nno); 106 } 107 108 static void 109 namenodeno_init(void) 110 { 111 nm_inoarena = vmem_create("namefs_inodes", (void *)1, NM_INOQUANT, 1, 112 NULL, NULL, NULL, 1, VM_SLEEP); 113 mutex_init(&nm_inolock, NULL, MUTEX_DEFAULT, NULL); 114 } 115 116 void 117 namenodeno_free(uint64_t nn) 118 { 119 void *vaddr = (void *)(uintptr_t)nn; 120 121 ASSERT32((uint64_t)(uintptr_t)vaddr == nn); 122 123 mutex_enter(&nm_inolock); 124 vmem_free(nm_inoarena, vaddr, 1); 125 mutex_exit(&nm_inolock); 126 } 127 128 /* 129 * Insert a namenode into the nm_filevp_hash table. 130 * 131 * Each link has a unique namenode with a unique nm_mountvp field. 132 * The nm_filevp field of the namenode need not be unique, since a 133 * file descriptor may be mounted to multiple nodes at the same time. 134 * We hash on nm_filevp since that's what discriminates the searches 135 * in namefind() and nm_unmountall(). 136 */ 137 void 138 nameinsert(struct namenode *nodep) 139 { 140 struct namenode **bucket; 141 142 ASSERT(MUTEX_HELD(&ntable_lock)); 143 144 bucket = NM_FILEVP_HASH(nodep->nm_filevp); 145 nodep->nm_nextp = *bucket; 146 *bucket = nodep; 147 } 148 149 /* 150 * Remove a namenode from the hash table, if present. 151 */ 152 void 153 nameremove(struct namenode *nodep) 154 { 155 struct namenode *np, **npp; 156 157 ASSERT(MUTEX_HELD(&ntable_lock)); 158 159 for (npp = NM_FILEVP_HASH(nodep->nm_filevp); (np = *npp) != NULL; 160 npp = &np->nm_nextp) { 161 if (np == nodep) { 162 *npp = np->nm_nextp; 163 return; 164 } 165 } 166 } 167 168 /* 169 * Search for a namenode that has a nm_filevp == vp and nm_mountpt == mnt. 170 * If mnt is NULL, return the first link with nm_filevp of vp. 171 * Returns namenode pointer on success, NULL on failure. 172 */ 173 struct namenode * 174 namefind(vnode_t *vp, vnode_t *mnt) 175 { 176 struct namenode *np; 177 178 ASSERT(MUTEX_HELD(&ntable_lock)); 179 for (np = *NM_FILEVP_HASH(vp); np != NULL; np = np->nm_nextp) 180 if (np->nm_filevp == vp && 181 (mnt == NULL || np->nm_mountpt == mnt)) 182 break; 183 return (np); 184 } 185 186 /* 187 * Force the unmouting of a file descriptor from ALL of the nodes 188 * that it was mounted to. 189 * At the present time, the only usage for this routine is in the 190 * event one end of a pipe was mounted. At the time the unmounted 191 * end gets closed down, the mounted end is forced to be unmounted. 192 * 193 * This routine searches the namenode hash list for all namenodes 194 * that have a nm_filevp field equal to vp. Each time one is found, 195 * the dounmount() routine is called. This causes the nm_unmount() 196 * routine to be called and thus, the file descriptor is unmounted 197 * from the node. 198 * 199 * At the start of this routine, the reference count for vp is 200 * incremented to protect the vnode from being released in the 201 * event the mount was the only thing keeping the vnode active. 202 * If that is the case, the VOP_CLOSE operation is applied to 203 * the vnode, prior to it being released. 204 */ 205 static int 206 nm_umountall(vnode_t *vp, cred_t *crp) 207 { 208 vfs_t *vfsp; 209 struct namenode *nodep; 210 int error = 0; 211 int realerr = 0; 212 213 /* 214 * For each namenode that is associated with the file: 215 * If the v_vfsp field is not namevfs, dounmount it. Otherwise, 216 * it was created in nm_open() and will be released in time. 217 * The following loop replicates some code from nm_find. That 218 * routine can't be used as is since the list isn't strictly 219 * consumed as it is traversed. 220 */ 221 mutex_enter(&ntable_lock); 222 nodep = *NM_FILEVP_HASH(vp); 223 while (nodep) { 224 if (nodep->nm_filevp == vp && 225 (vfsp = NMTOV(nodep)->v_vfsp) != NULL && 226 vfsp != &namevfs && (NMTOV(nodep)->v_flag & VROOT)) { 227 228 /* 229 * If the vn_vfswlock fails, skip the vfs since 230 * somebody else may be unmounting it. 231 */ 232 if (vn_vfswlock(vfsp->vfs_vnodecovered)) { 233 realerr = EBUSY; 234 nodep = nodep->nm_nextp; 235 continue; 236 } 237 238 /* 239 * Can't hold ntable_lock across call to do_unmount 240 * because nm_unmount tries to acquire it. This means 241 * there is a window where another mount of vp can 242 * happen so it is possible that after nm_unmountall 243 * there are still some mounts. This situation existed 244 * without MT locking because dounmount can sleep 245 * so another mount could happen during that time. 246 * This situation is unlikely and doesn't really cause 247 * any problems. 248 */ 249 mutex_exit(&ntable_lock); 250 if ((error = dounmount(vfsp, 0, crp)) != 0) 251 realerr = error; 252 mutex_enter(&ntable_lock); 253 /* 254 * Since we dropped the ntable_lock, we 255 * have to start over from the beginning. 256 * If for some reasons dounmount() fails, 257 * start from beginning means that we will keep on 258 * trying unless another thread unmounts it for us. 259 */ 260 nodep = *NM_FILEVP_HASH(vp); 261 } else 262 nodep = nodep->nm_nextp; 263 } 264 mutex_exit(&ntable_lock); 265 return (realerr); 266 } 267 268 /* 269 * Force the unmouting of a file descriptor from ALL of the nodes 270 * that it was mounted to. XXX: fifo_close() calls this routine. 271 * 272 * nm_umountall() may return EBUSY. 273 * nm_unmountall() will keep on trying until it succeeds. 274 */ 275 int 276 nm_unmountall(vnode_t *vp, cred_t *crp) 277 { 278 int error; 279 280 /* 281 * Nm_umuontall() returns only if it succeeds or 282 * return with error EBUSY. If EBUSY, that means 283 * it cannot acquire the lock on the covered vnode, 284 * and we will keep on trying. 285 */ 286 for (;;) { 287 error = nm_umountall(vp, crp); 288 if (error != EBUSY) 289 break; 290 delay(1); /* yield cpu briefly, then try again */ 291 } 292 return (error); 293 } 294 295 /* 296 * Mount a file descriptor onto the node in the file system. 297 * Create a new vnode, update the attributes with info from the 298 * file descriptor and the mount point. The mask, mode, uid, gid, 299 * atime, mtime and ctime are taken from the mountpt. Link count is 300 * set to one, the file system id is namedev and nodeid is unique 301 * for each mounted object. Other attributes are taken from mount point. 302 * Make sure user is owner (or root) with write permissions on mount point. 303 * Hash the new vnode and return 0. 304 * Upon entry to this routine, the file descriptor is in the 305 * fd field of a struct namefd. Copy that structure from user 306 * space and retrieve the file descriptor. 307 */ 308 static int 309 nm_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *crp) 310 { 311 struct namefd namefdp; 312 struct vnode *filevp; /* file descriptor vnode */ 313 struct file *fp; 314 struct vnode *newvp; /* vnode representing this mount */ 315 struct vnode *rvp; /* realvp (if any) for the mountpt */ 316 struct namenode *nodep; /* namenode for this mount */ 317 struct vattr filevattr; /* attributes of file dec. */ 318 struct vattr *vattrp; /* attributes of this mount */ 319 char *resource_name; 320 char *resource_nodetype; 321 statvfs64_t *svfsp; 322 int error = 0; 323 324 /* 325 * Get the file descriptor from user space. 326 * Make sure the file descriptor is valid and has an 327 * associated file pointer. 328 * If so, extract the vnode from the file pointer. 329 */ 330 if (uap->datalen != sizeof (struct namefd)) 331 return (EINVAL); 332 333 if (copyin(uap->dataptr, &namefdp, uap->datalen)) 334 return (EFAULT); 335 336 if ((fp = getf(namefdp.fd)) == NULL) 337 return (EBADF); 338 339 /* 340 * If the mount point already has something mounted 341 * on it, disallow this mount. (This restriction may 342 * be removed in a later release). 343 * Or unmount has completed but the namefs ROOT vnode 344 * count has not decremented to zero, disallow this mount. 345 */ 346 347 mutex_enter(&mvp->v_lock); 348 if ((mvp->v_flag & VROOT) || 349 vfs_matchops(mvp->v_vfsp, namefs_vfsops)) { 350 mutex_exit(&mvp->v_lock); 351 releasef(namefdp.fd); 352 return (EBUSY); 353 } 354 mutex_exit(&mvp->v_lock); 355 356 /* 357 * Cannot allow users to fattach() in /dev/pts. 358 * First, there is no need for doing so and secondly 359 * we cannot allow arbitrary users to park on a 360 * /dev/pts node. 361 */ 362 rvp = NULLVP; 363 if (vn_matchops(mvp, spec_getvnodeops()) && 364 VOP_REALVP(mvp, &rvp, NULL) == 0 && rvp && 365 vn_matchops(rvp, devpts_getvnodeops())) { 366 releasef(namefdp.fd); 367 return (ENOTSUP); 368 } 369 370 filevp = fp->f_vnode; 371 if (filevp->v_type == VDIR || filevp->v_type == VPORT) { 372 releasef(namefdp.fd); 373 return (EINVAL); 374 } 375 376 /* 377 * If the fd being mounted refers to neither a door nor a stream, 378 * make sure the caller is privileged. 379 */ 380 if (filevp->v_type != VDOOR && filevp->v_stream == NULL) { 381 if (secpolicy_fs_mount(crp, filevp, vfsp) != 0) { 382 /* fd is neither a stream nor a door */ 383 releasef(namefdp.fd); 384 return (EINVAL); 385 } 386 } 387 388 /* 389 * Make sure the file descriptor is not the root of some 390 * file system. 391 * If it's not, create a reference and allocate a namenode 392 * to represent this mount request. 393 */ 394 if (filevp->v_flag & VROOT) { 395 releasef(namefdp.fd); 396 return (EBUSY); 397 } 398 399 nodep = kmem_zalloc(sizeof (struct namenode), KM_SLEEP); 400 401 mutex_init(&nodep->nm_lock, NULL, MUTEX_DEFAULT, NULL); 402 vattrp = &nodep->nm_vattr; 403 vattrp->va_mask = AT_ALL; 404 if (error = VOP_GETATTR(mvp, vattrp, 0, crp, NULL)) 405 goto out; 406 407 filevattr.va_mask = AT_ALL; 408 if (error = VOP_GETATTR(filevp, &filevattr, 0, crp, NULL)) 409 goto out; 410 /* 411 * Make sure the user is the owner of the mount point 412 * or has sufficient privileges. 413 */ 414 if (error = secpolicy_vnode_owner(crp, vattrp->va_uid)) 415 goto out; 416 417 /* 418 * Make sure the user has write permissions on the 419 * mount point (or has sufficient privileges). 420 */ 421 if (!(vattrp->va_mode & VWRITE) && 422 secpolicy_vnode_access(crp, mvp, vattrp->va_uid, VWRITE) != 0) { 423 error = EACCES; 424 goto out; 425 } 426 427 /* 428 * If the file descriptor has file/record locking, don't 429 * allow the mount to succeed. 430 */ 431 if (vn_has_flocks(filevp)) { 432 error = EACCES; 433 goto out; 434 } 435 436 /* 437 * Initialize the namenode. 438 */ 439 if (filevp->v_stream) { 440 struct stdata *stp = filevp->v_stream; 441 mutex_enter(&stp->sd_lock); 442 stp->sd_flag |= STRMOUNT; 443 mutex_exit(&stp->sd_lock); 444 } 445 nodep->nm_filevp = filevp; 446 mutex_enter(&fp->f_tlock); 447 fp->f_count++; 448 mutex_exit(&fp->f_tlock); 449 450 releasef(namefdp.fd); 451 nodep->nm_filep = fp; 452 nodep->nm_mountpt = mvp; 453 454 /* 455 * The attributes for the mounted file descriptor were initialized 456 * above by applying VOP_GETATTR to the mount point. Some of 457 * the fields of the attributes structure will be overwritten 458 * by the attributes from the file descriptor. 459 */ 460 vattrp->va_type = filevattr.va_type; 461 vattrp->va_fsid = namedev; 462 vattrp->va_nodeid = namenodeno_alloc(); 463 vattrp->va_nlink = 1; 464 vattrp->va_size = filevattr.va_size; 465 vattrp->va_rdev = filevattr.va_rdev; 466 vattrp->va_blksize = filevattr.va_blksize; 467 vattrp->va_nblocks = filevattr.va_nblocks; 468 vattrp->va_seq = 0; 469 470 /* 471 * Initialize new vnode structure for the mounted file descriptor. 472 */ 473 nodep->nm_vnode = vn_alloc(KM_SLEEP); 474 newvp = NMTOV(nodep); 475 476 newvp->v_flag = filevp->v_flag | VROOT | VNOMAP | VNOSWAP; 477 vn_setops(newvp, nm_vnodeops); 478 newvp->v_vfsp = vfsp; 479 newvp->v_stream = filevp->v_stream; 480 newvp->v_type = filevp->v_type; 481 newvp->v_rdev = filevp->v_rdev; 482 newvp->v_data = (caddr_t)nodep; 483 VFS_HOLD(vfsp); 484 vn_exists(newvp); 485 486 /* 487 * Initialize the vfs structure. 488 */ 489 vfsp->vfs_vnodecovered = NULL; 490 vfsp->vfs_flag |= VFS_UNLINKABLE; 491 vfsp->vfs_bsize = 1024; 492 vfsp->vfs_fstype = namefstype; 493 vfs_make_fsid(&vfsp->vfs_fsid, namedev, namefstype); 494 vfsp->vfs_data = (caddr_t)nodep; 495 vfsp->vfs_dev = namedev; 496 vfsp->vfs_bcount = 0; 497 498 /* 499 * Set the name we mounted from. 500 */ 501 switch (filevp->v_type) { 502 case VPROC: /* VOP_GETATTR() translates this to VREG */ 503 case VREG: resource_nodetype = "file"; break; 504 case VDIR: resource_nodetype = "directory"; break; 505 case VBLK: resource_nodetype = "device"; break; 506 case VCHR: resource_nodetype = "device"; break; 507 case VLNK: resource_nodetype = "link"; break; 508 case VFIFO: resource_nodetype = "fifo"; break; 509 case VDOOR: resource_nodetype = "door"; break; 510 case VSOCK: resource_nodetype = "socket"; break; 511 default: resource_nodetype = "resource"; break; 512 } 513 514 #define RESOURCE_NAME_SZ 128 /* Maximum length of the resource name */ 515 resource_name = kmem_alloc(RESOURCE_NAME_SZ, KM_SLEEP); 516 svfsp = kmem_alloc(sizeof (statvfs64_t), KM_SLEEP); 517 518 error = VFS_STATVFS(filevp->v_vfsp, svfsp); 519 if (error == 0) { 520 (void) snprintf(resource_name, RESOURCE_NAME_SZ, 521 "unspecified_%s_%s", svfsp->f_basetype, resource_nodetype); 522 } else { 523 (void) snprintf(resource_name, RESOURCE_NAME_SZ, 524 "unspecified_%s", resource_nodetype); 525 } 526 527 vfs_setresource(vfsp, resource_name); 528 529 kmem_free(svfsp, sizeof (statvfs64_t)); 530 kmem_free(resource_name, RESOURCE_NAME_SZ); 531 #undef RESOURCE_NAME_SZ 532 533 /* 534 * Insert the namenode. 535 */ 536 mutex_enter(&ntable_lock); 537 nameinsert(nodep); 538 mutex_exit(&ntable_lock); 539 return (0); 540 out: 541 releasef(namefdp.fd); 542 kmem_free(nodep, sizeof (struct namenode)); 543 return (error); 544 } 545 546 /* 547 * Unmount a file descriptor from a node in the file system. 548 * If the user is not the owner of the file and is not privileged, 549 * the request is denied. 550 * Otherwise, remove the namenode from the hash list. 551 * If the mounted file descriptor was that of a stream and this 552 * was the last mount of the stream, turn off the STRMOUNT flag. 553 * If the rootvp is referenced other than through the mount, 554 * nm_inactive will clean up. 555 */ 556 static int 557 nm_unmount(vfs_t *vfsp, int flag, cred_t *crp) 558 { 559 struct namenode *nodep = (struct namenode *)vfsp->vfs_data; 560 vnode_t *vp, *thisvp; 561 struct file *fp = NULL; 562 563 ASSERT((nodep->nm_flag & NMNMNT) == 0); 564 565 /* 566 * forced unmount is not supported by this file system 567 * and thus, ENOTSUP, is being returned. 568 */ 569 if (flag & MS_FORCE) { 570 return (ENOTSUP); 571 } 572 573 vp = nodep->nm_filevp; 574 mutex_enter(&nodep->nm_lock); 575 if (secpolicy_vnode_owner(crp, nodep->nm_vattr.va_uid) != 0) { 576 mutex_exit(&nodep->nm_lock); 577 return (EPERM); 578 } 579 580 mutex_exit(&nodep->nm_lock); 581 582 mutex_enter(&ntable_lock); 583 nameremove(nodep); 584 thisvp = NMTOV(nodep); 585 mutex_enter(&thisvp->v_lock); 586 if (thisvp->v_count-- == 1) { 587 fp = nodep->nm_filep; 588 mutex_exit(&thisvp->v_lock); 589 vn_invalid(thisvp); 590 vn_free(thisvp); 591 VFS_RELE(vfsp); 592 namenodeno_free(nodep->nm_vattr.va_nodeid); 593 kmem_free(nodep, sizeof (struct namenode)); 594 } else { 595 thisvp->v_flag &= ~VROOT; 596 mutex_exit(&thisvp->v_lock); 597 } 598 if (namefind(vp, NULLVP) == NULL && vp->v_stream) { 599 struct stdata *stp = vp->v_stream; 600 mutex_enter(&stp->sd_lock); 601 stp->sd_flag &= ~STRMOUNT; 602 mutex_exit(&stp->sd_lock); 603 } 604 mutex_exit(&ntable_lock); 605 if (fp != NULL) 606 (void) closef(fp); 607 return (0); 608 } 609 610 /* 611 * Create a reference to the root of a mounted file descriptor. 612 * This routine is called from lookupname() in the event a path 613 * is being searched that has a mounted file descriptor in it. 614 */ 615 static int 616 nm_root(vfs_t *vfsp, vnode_t **vpp) 617 { 618 struct namenode *nodep = (struct namenode *)vfsp->vfs_data; 619 struct vnode *vp = NMTOV(nodep); 620 621 VN_HOLD(vp); 622 *vpp = vp; 623 return (0); 624 } 625 626 /* 627 * Return in sp the status of this file system. 628 */ 629 static int 630 nm_statvfs(vfs_t *vfsp, struct statvfs64 *sp) 631 { 632 dev32_t d32; 633 634 bzero(sp, sizeof (*sp)); 635 sp->f_bsize = 1024; 636 sp->f_frsize = 1024; 637 (void) cmpldev(&d32, vfsp->vfs_dev); 638 sp->f_fsid = d32; 639 (void) strcpy(sp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 640 sp->f_flag = vf_to_stf(vfsp->vfs_flag); 641 return (0); 642 } 643 644 /* 645 * Since this file system has no disk blocks of its own, apply 646 * the VOP_FSYNC operation on the mounted file descriptor. 647 */ 648 static int 649 nm_sync(vfs_t *vfsp, short flag, cred_t *crp) 650 { 651 struct namenode *nodep; 652 653 if (vfsp == NULL) 654 return (0); 655 656 nodep = (struct namenode *)vfsp->vfs_data; 657 if (flag & SYNC_CLOSE) 658 return (nm_umountall(nodep->nm_filevp, crp)); 659 660 return (VOP_FSYNC(nodep->nm_filevp, FSYNC, crp, NULL)); 661 } 662 663 /* 664 * File system initialization routine. Save the file system type, 665 * establish a file system device number and initialize nm_filevp_hash[]. 666 */ 667 int 668 nameinit(int fstype, char *name) 669 { 670 static const fs_operation_def_t nm_vfsops_template[] = { 671 VFSNAME_MOUNT, { .vfs_mount = nm_mount }, 672 VFSNAME_UNMOUNT, { .vfs_unmount = nm_unmount }, 673 VFSNAME_ROOT, { .vfs_root = nm_root }, 674 VFSNAME_STATVFS, { .vfs_statvfs = nm_statvfs }, 675 VFSNAME_SYNC, { .vfs_sync = nm_sync }, 676 NULL, NULL 677 }; 678 static const fs_operation_def_t nm_dummy_vfsops_template[] = { 679 VFSNAME_STATVFS, { .vfs_statvfs = nm_statvfs }, 680 VFSNAME_SYNC, { .vfs_sync = nm_sync }, 681 NULL, NULL 682 }; 683 int error; 684 int dev; 685 vfsops_t *dummy_vfsops; 686 687 error = vfs_setfsops(fstype, nm_vfsops_template, &namefs_vfsops); 688 if (error != 0) { 689 cmn_err(CE_WARN, "nameinit: bad vfs ops template"); 690 return (error); 691 } 692 693 error = vfs_makefsops(nm_dummy_vfsops_template, &dummy_vfsops); 694 if (error != 0) { 695 (void) vfs_freevfsops_by_type(fstype); 696 cmn_err(CE_WARN, "nameinit: bad dummy vfs ops template"); 697 return (error); 698 } 699 700 error = vn_make_ops(name, nm_vnodeops_template, &nm_vnodeops); 701 if (error != 0) { 702 (void) vfs_freevfsops_by_type(fstype); 703 vfs_freevfsops(dummy_vfsops); 704 cmn_err(CE_WARN, "nameinit: bad vnode ops template"); 705 return (error); 706 } 707 708 namefstype = fstype; 709 710 if ((dev = getudev()) == (major_t)-1) { 711 cmn_err(CE_WARN, "nameinit: can't get unique device"); 712 dev = 0; 713 } 714 mutex_init(&ntable_lock, NULL, MUTEX_DEFAULT, NULL); 715 namedev = makedevice(dev, 0); 716 bzero(nm_filevp_hash, sizeof (nm_filevp_hash)); 717 vfs_setops(&namevfs, dummy_vfsops); 718 namevfs.vfs_vnodecovered = NULL; 719 namevfs.vfs_bsize = 1024; 720 namevfs.vfs_fstype = namefstype; 721 vfs_make_fsid(&namevfs.vfs_fsid, namedev, namefstype); 722 namevfs.vfs_dev = namedev; 723 return (0); 724 } 725 726 static mntopts_t nm_mntopts = { 727 NULL, 728 0 729 }; 730 731 static vfsdef_t vfw = { 732 VFSDEF_VERSION, 733 "namefs", 734 nameinit, 735 VSW_HASPROTO, 736 &nm_mntopts 737 }; 738 739 /* 740 * Module linkage information for the kernel. 741 */ 742 static struct modlfs modlfs = { 743 &mod_fsops, "filesystem for namefs", &vfw 744 }; 745 746 static struct modlinkage modlinkage = { 747 MODREV_1, (void *)&modlfs, NULL 748 }; 749 750 int 751 _init(void) 752 { 753 namenodeno_init(); 754 return (mod_install(&modlinkage)); 755 } 756 757 int 758 _fini(void) 759 { 760 return (EBUSY); 761 } 762 763 int 764 _info(struct modinfo *modinfop) 765 { 766 return (mod_info(&modlinkage, modinfop)); 767 } 768