1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * The idea behind composition-based stacked filesystems is to add a 31 * vnode to the stack of vnodes for each mount. These vnodes have their 32 * own set of mount options and filesystem-specific functions, so they 33 * can modify data or operations before they are passed along. Such a 34 * filesystem must maintain a mapping from the underlying vnodes to its 35 * interposing vnodes. 36 * 37 * In lofs, this mapping is implemented by a hashtable. Each bucket 38 * contains a count of the number of nodes currently contained, the 39 * chain of vnodes, and a lock to protect the list of vnodes. The 40 * hashtable dynamically grows if the number of vnodes in the table as a 41 * whole exceeds the size of the table left-shifted by 42 * lo_resize_threshold. In order to minimize lock contention, there is 43 * no global lock protecting the hashtable, hence obtaining the 44 * per-bucket locks consists of a dance to make sure we've actually 45 * locked the correct bucket. Acquiring a bucket lock doesn't involve 46 * locking the hashtable itself, so we refrain from freeing old 47 * hashtables, and store them in a linked list of retired hashtables; 48 * the list is freed when the filesystem is unmounted. 49 */ 50 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/vfs.h> 54 #include <sys/vnode.h> 55 #include <sys/cmn_err.h> 56 #include <sys/systm.h> 57 #include <sys/t_lock.h> 58 #include <sys/debug.h> 59 #include <sys/atomic.h> 60 61 #include <sys/fs/lofs_node.h> 62 #include <sys/fs/lofs_info.h> 63 /* 64 * Due to the hashing algorithm, the size of the hash table needs to be a 65 * power of 2. 66 */ 67 #define LOFS_DEFAULT_HTSIZE (1 << 6) 68 69 #define ltablehash(vp, tblsz) ((((intptr_t)(vp))>>10) & ((tblsz)-1)) 70 71 /* 72 * The following macros can only be safely used when the desired bucket 73 * is already locked. 74 */ 75 /* 76 * The lock in the hashtable associated with the given vnode. 77 */ 78 #define TABLE_LOCK(vp, li) \ 79 (&(li)->li_hashtable[ltablehash((vp), (li)->li_htsize)].lh_lock) 80 81 /* 82 * The bucket in the hashtable that the given vnode hashes to. 83 */ 84 #define TABLE_BUCKET(vp, li) \ 85 ((li)->li_hashtable[ltablehash((vp), (li)->li_htsize)].lh_chain) 86 87 /* 88 * Number of elements currently in the bucket that the vnode hashes to. 89 */ 90 #define TABLE_COUNT(vp, li) \ 91 ((li)->li_hashtable[ltablehash((vp), (li)->li_htsize)].lh_count) 92 93 /* 94 * Grab/Drop the lock for the bucket this vnode hashes to. 95 */ 96 #define TABLE_LOCK_ENTER(vp, li) table_lock_enter(vp, li) 97 #define TABLE_LOCK_EXIT(vp, li) \ 98 mutex_exit(&(li)->li_hashtable[ltablehash((vp), \ 99 (li)->li_htsize)].lh_lock) 100 101 static lnode_t *lfind(struct vnode *, struct loinfo *); 102 static void lsave(lnode_t *, struct loinfo *); 103 static struct vfs *makelfsnode(struct vfs *, struct loinfo *); 104 static struct lfsnode *lfsfind(struct vfs *, struct loinfo *); 105 106 uint_t lo_resize_threshold = 1; 107 uint_t lo_resize_factor = 2; 108 109 static kmem_cache_t *lnode_cache; 110 111 /* 112 * Since the hashtable itself isn't protected by a lock, obtaining a 113 * per-bucket lock proceeds as follows: 114 * 115 * (a) li->li_htlock protects li->li_hashtable, li->li_htsize, and 116 * li->li_retired. 117 * 118 * (b) Per-bucket locks (lh_lock) protect the contents of the bucket. 119 * 120 * (c) Locking order for resizing the hashtable is li_htlock then 121 * lh_lock. 122 * 123 * To grab the bucket lock we: 124 * 125 * (1) Stash away the htsize and the pointer to the hashtable to make 126 * sure neither change while we're using them. 127 * 128 * (2) lgrow() updates the pointer to the hashtable before it updates 129 * the size: the worst case scenario is that we have the wrong size (but 130 * the correct table), so we hash to the wrong bucket, grab the wrong 131 * lock, and then realize that things have changed, rewind and start 132 * again. If both the size and the table changed since we loaded them, 133 * we'll realize that too and restart. 134 * 135 * (3) The protocol for growing the hashtable involves holding *all* the 136 * locks in the table, hence the unlocking code (TABLE_LOCK_EXIT()) 137 * doesn't need to do any dances, since neither the table nor the size 138 * can change while any bucket lock is held. 139 * 140 * (4) If the hashtable is growing (by thread t1) while another thread 141 * (t2) is trying to grab a bucket lock, t2 might have a stale reference 142 * to li->li_htsize: 143 * 144 * - t1 grabs all locks in lgrow() 145 * - t2 loads li->li_htsize and li->li_hashtable 146 * - t1 changes li->hashtable 147 * - t2 loads from an offset in the "stale" hashtable and tries to grab 148 * the relevant mutex. 149 * 150 * If t1 had free'd the stale hashtable, t2 would be in trouble. Hence, 151 * stale hashtables are not freed but stored in a list of "retired" 152 * hashtables, which is emptied when the filesystem is unmounted. 153 */ 154 static void 155 table_lock_enter(vnode_t *vp, struct loinfo *li) 156 { 157 struct lobucket *chain; 158 uint_t htsize; 159 uint_t hash; 160 161 for (;;) { 162 htsize = li->li_htsize; 163 membar_consumer(); 164 chain = (struct lobucket *)li->li_hashtable; 165 hash = ltablehash(vp, htsize); 166 mutex_enter(&chain[hash].lh_lock); 167 if (li->li_hashtable == chain && li->li_htsize == htsize) 168 break; 169 mutex_exit(&chain[hash].lh_lock); 170 } 171 } 172 173 void 174 lofs_subrinit(void) 175 { 176 /* 177 * Initialize the cache. 178 */ 179 lnode_cache = kmem_cache_create("lnode_cache", sizeof (lnode_t), 180 0, NULL, NULL, NULL, NULL, NULL, 0); 181 } 182 183 void 184 lofs_subrfini(void) 185 { 186 kmem_cache_destroy(lnode_cache); 187 } 188 189 /* 190 * Initialize a (struct loinfo), and initialize the hashtable to have 191 * htsize buckets. 192 */ 193 void 194 lsetup(struct loinfo *li, uint_t htsize) 195 { 196 li->li_refct = 0; 197 li->li_lfs = NULL; 198 if (htsize == 0) 199 htsize = LOFS_DEFAULT_HTSIZE; 200 li->li_htsize = htsize; 201 li->li_hashtable = kmem_zalloc(htsize * sizeof (*li->li_hashtable), 202 KM_SLEEP); 203 mutex_init(&li->li_lfslock, NULL, MUTEX_DEFAULT, NULL); 204 mutex_init(&li->li_htlock, NULL, MUTEX_DEFAULT, NULL); 205 li->li_retired = NULL; 206 } 207 208 /* 209 * Destroy a (struct loinfo) 210 */ 211 void 212 ldestroy(struct loinfo *li) 213 { 214 uint_t i, htsize; 215 struct lobucket *table; 216 struct lo_retired_ht *lrhp, *trhp; 217 218 mutex_destroy(&li->li_htlock); 219 mutex_destroy(&li->li_lfslock); 220 htsize = li->li_htsize; 221 table = li->li_hashtable; 222 for (i = 0; i < htsize; i++) 223 mutex_destroy(&table[i].lh_lock); 224 kmem_free(table, htsize * sizeof (*li->li_hashtable)); 225 226 /* 227 * Free the retired hashtables. 228 */ 229 lrhp = li->li_retired; 230 while (lrhp != NULL) { 231 trhp = lrhp; 232 lrhp = lrhp->lrh_next; 233 kmem_free(trhp->lrh_table, 234 trhp->lrh_size * sizeof (*li->li_hashtable)); 235 kmem_free(trhp, sizeof (*trhp)); 236 } 237 li->li_retired = NULL; 238 } 239 240 /* 241 * Return a looped back vnode for the given vnode. 242 * If no lnode exists for this vnode create one and put it 243 * in a table hashed by vnode. If the lnode for 244 * this vnode is already in the table return it (ref count is 245 * incremented by lfind). The lnode will be flushed from the 246 * table when lo_inactive calls freelonode. The creation of 247 * a new lnode can be forced via the LOF_FORCE flag even if 248 * the vnode exists in the table. This is used in the creation 249 * of a terminating lnode when looping is detected. A unique 250 * lnode is required for the correct evaluation of the current 251 * working directory. 252 * NOTE: vp is assumed to be a held vnode. 253 */ 254 struct vnode * 255 makelonode(struct vnode *vp, struct loinfo *li, int flag) 256 { 257 lnode_t *lp, *tlp; 258 struct vfs *vfsp; 259 vnode_t *nvp; 260 261 lp = NULL; 262 TABLE_LOCK_ENTER(vp, li); 263 if (flag != LOF_FORCE) 264 lp = lfind(vp, li); 265 if ((flag == LOF_FORCE) || (lp == NULL)) { 266 /* 267 * Optimistically assume that we won't need to sleep. 268 */ 269 lp = kmem_cache_alloc(lnode_cache, KM_NOSLEEP); 270 nvp = vn_alloc(KM_NOSLEEP); 271 if (lp == NULL || nvp == NULL) { 272 TABLE_LOCK_EXIT(vp, li); 273 /* The lnode allocation may have succeeded, save it */ 274 tlp = lp; 275 if (tlp == NULL) { 276 tlp = kmem_cache_alloc(lnode_cache, KM_SLEEP); 277 } 278 if (nvp == NULL) { 279 nvp = vn_alloc(KM_SLEEP); 280 } 281 lp = NULL; 282 TABLE_LOCK_ENTER(vp, li); 283 if (flag != LOF_FORCE) 284 lp = lfind(vp, li); 285 if (lp != NULL) { 286 kmem_cache_free(lnode_cache, tlp); 287 vn_free(nvp); 288 VN_RELE(vp); 289 goto found_lnode; 290 } 291 lp = tlp; 292 } 293 atomic_add_32(&li->li_refct, 1); 294 vfsp = makelfsnode(vp->v_vfsp, li); 295 lp->lo_vnode = nvp; 296 VN_SET_VFS_TYPE_DEV(nvp, vfsp, vp->v_type, vp->v_rdev); 297 nvp->v_flag |= (vp->v_flag & (VNOMOUNT|VNOMAP|VDIROPEN)); 298 vn_setops(nvp, lo_vnodeops); 299 nvp->v_data = (caddr_t)lp; 300 lp->lo_vp = vp; 301 lp->lo_looping = 0; 302 lsave(lp, li); 303 vn_exists(vp); 304 } else { 305 VN_RELE(vp); 306 } 307 308 found_lnode: 309 TABLE_LOCK_EXIT(vp, li); 310 return (ltov(lp)); 311 } 312 313 /* 314 * Get/Make vfs structure for given real vfs 315 */ 316 static struct vfs * 317 makelfsnode(struct vfs *vfsp, struct loinfo *li) 318 { 319 struct lfsnode *lfs; 320 struct lfsnode *tlfs; 321 322 /* 323 * Don't grab any locks for the fast (common) case. 324 */ 325 if (vfsp == li->li_realvfs) 326 return (li->li_mountvfs); 327 ASSERT(li->li_refct > 0); 328 mutex_enter(&li->li_lfslock); 329 if ((lfs = lfsfind(vfsp, li)) == NULL) { 330 mutex_exit(&li->li_lfslock); 331 lfs = kmem_zalloc(sizeof (*lfs), KM_SLEEP); 332 mutex_enter(&li->li_lfslock); 333 if ((tlfs = lfsfind(vfsp, li)) != NULL) { 334 kmem_free(lfs, sizeof (*lfs)); 335 lfs = tlfs; 336 goto found_lfs; 337 } 338 lfs->lfs_realvfs = vfsp; 339 340 /* 341 * Even though the lfsnode is strictly speaking a private 342 * implementation detail of lofs, it should behave as a regular 343 * vfs_t for the benefit of the rest of the kernel. 344 */ 345 VFS_INIT(&lfs->lfs_vfs, lo_vfsops, (caddr_t)li); 346 lfs->lfs_vfs.vfs_fstype = li->li_mountvfs->vfs_fstype; 347 lfs->lfs_vfs.vfs_flag = 348 ((vfsp->vfs_flag | li->li_mflag) & ~li->li_dflag) & 349 INHERIT_VFS_FLAG; 350 lfs->lfs_vfs.vfs_bsize = vfsp->vfs_bsize; 351 lfs->lfs_vfs.vfs_dev = vfsp->vfs_dev; 352 lfs->lfs_vfs.vfs_fsid = vfsp->vfs_fsid; 353 354 if (vfsp->vfs_mntpt != NULL) { 355 lfs->lfs_vfs.vfs_mntpt = vfs_getmntpoint(vfsp); 356 /* Leave a reference to the mountpoint */ 357 } 358 359 (void) VFS_ROOT(vfsp, &lfs->lfs_realrootvp); 360 361 /* 362 * We use 1 instead of 0 as the value to associate with 363 * an idle lfs_vfs. This is to prevent VFS_RELE() 364 * trying to kmem_free() our lfs_t (which is the wrong 365 * size). 366 */ 367 VFS_HOLD(&lfs->lfs_vfs); 368 lfs->lfs_next = li->li_lfs; 369 li->li_lfs = lfs; 370 } 371 372 found_lfs: 373 VFS_HOLD(&lfs->lfs_vfs); 374 mutex_exit(&li->li_lfslock); 375 return (&lfs->lfs_vfs); 376 } 377 378 /* 379 * Free lfs node since no longer in use 380 */ 381 static void 382 freelfsnode(struct lfsnode *lfs, struct loinfo *li) 383 { 384 struct lfsnode *prev = NULL; 385 struct lfsnode *this; 386 387 ASSERT(MUTEX_HELD(&li->li_lfslock)); 388 ASSERT(li->li_refct > 0); 389 for (this = li->li_lfs; this != NULL; this = this->lfs_next) { 390 if (this == lfs) { 391 ASSERT(lfs->lfs_vfs.vfs_count == 1); 392 if (prev == NULL) 393 li->li_lfs = lfs->lfs_next; 394 else 395 prev->lfs_next = lfs->lfs_next; 396 if (lfs->lfs_realrootvp != NULL) { 397 VN_RELE(lfs->lfs_realrootvp); 398 } 399 if (lfs->lfs_vfs.vfs_mntpt != NULL) 400 refstr_rele(lfs->lfs_vfs.vfs_mntpt); 401 sema_destroy(&lfs->lfs_vfs.vfs_reflock); 402 kmem_free(lfs, sizeof (struct lfsnode)); 403 return; 404 } 405 prev = this; 406 } 407 panic("freelfsnode"); 408 /*NOTREACHED*/ 409 } 410 411 /* 412 * Find lfs given real vfs and mount instance(li) 413 */ 414 static struct lfsnode * 415 lfsfind(struct vfs *vfsp, struct loinfo *li) 416 { 417 struct lfsnode *lfs; 418 419 ASSERT(MUTEX_HELD(&li->li_lfslock)); 420 421 /* 422 * We need to handle the case where a UFS filesystem was forced 423 * unmounted and then a subsequent mount got the same vfs 424 * structure. If the new mount lies in the lofs hierarchy, then 425 * this will confuse lofs, because the original vfsp (of the 426 * forced unmounted filesystem) is still around. We check for 427 * this condition here. 428 * 429 * If we find a cache vfsp hit, then we check to see if the 430 * cached filesystem was forced unmounted. Skip all such 431 * entries. This should be safe to do since no 432 * makelonode()->makelfsnode()->lfsfind() calls should be 433 * generated for such force-unmounted filesystems (because (ufs) 434 * lookup would've returned an error). 435 */ 436 for (lfs = li->li_lfs; lfs != NULL; lfs = lfs->lfs_next) { 437 if (lfs->lfs_realvfs == vfsp) { 438 struct vnode *realvp; 439 440 realvp = lfs->lfs_realrootvp; 441 if (realvp == NULL) 442 continue; 443 if (realvp->v_vfsp == NULL || realvp->v_type == VBAD) 444 continue; 445 return (lfs); 446 } 447 } 448 return (NULL); 449 } 450 451 /* 452 * Find real vfs given loopback vfs 453 */ 454 struct vfs * 455 lo_realvfs(struct vfs *vfsp, struct vnode **realrootvpp) 456 { 457 struct loinfo *li = vtoli(vfsp); 458 struct lfsnode *lfs; 459 460 ASSERT(li->li_refct > 0); 461 if (vfsp == li->li_mountvfs) { 462 if (realrootvpp != NULL) 463 *realrootvpp = vtol(li->li_rootvp)->lo_vp; 464 return (li->li_realvfs); 465 } 466 mutex_enter(&li->li_lfslock); 467 for (lfs = li->li_lfs; lfs != NULL; lfs = lfs->lfs_next) { 468 if (vfsp == &lfs->lfs_vfs) { 469 if (realrootvpp != NULL) 470 *realrootvpp = lfs->lfs_realrootvp; 471 mutex_exit(&li->li_lfslock); 472 return (lfs->lfs_realvfs); 473 } 474 } 475 panic("lo_realvfs"); 476 /*NOTREACHED*/ 477 } 478 479 /* 480 * Lnode lookup stuff. 481 * These routines maintain a table of lnodes hashed by vp so 482 * that the lnode for a vp can be found if it already exists. 483 * 484 * NB: A lofs shadow vnode causes exactly one VN_HOLD() on the 485 * underlying vnode. 486 */ 487 488 /* 489 * Retire old hashtables. 490 */ 491 static void 492 lretire(struct loinfo *li, struct lobucket *table, uint_t size) 493 { 494 struct lo_retired_ht *lrhp; 495 496 lrhp = kmem_alloc(sizeof (*lrhp), KM_SLEEP); 497 lrhp->lrh_table = table; 498 lrhp->lrh_size = size; 499 500 mutex_enter(&li->li_htlock); 501 lrhp->lrh_next = li->li_retired; 502 li->li_retired = lrhp; 503 mutex_exit(&li->li_htlock); 504 } 505 506 /* 507 * Grow the hashtable. 508 */ 509 static void 510 lgrow(struct loinfo *li, uint_t newsize) 511 { 512 uint_t oldsize; 513 uint_t i; 514 struct lobucket *oldtable, *newtable; 515 516 /* 517 * It's OK to not have enough memory to resize the hashtable. 518 * We'll go down this path the next time we add something to the 519 * table, and retry the allocation then. 520 */ 521 if ((newtable = kmem_zalloc(newsize * sizeof (*li->li_hashtable), 522 KM_NOSLEEP)) == NULL) 523 return; 524 525 mutex_enter(&li->li_htlock); 526 if (newsize <= li->li_htsize) { 527 mutex_exit(&li->li_htlock); 528 kmem_free(newtable, newsize * sizeof (*li->li_hashtable)); 529 return; 530 } 531 oldsize = li->li_htsize; 532 oldtable = li->li_hashtable; 533 534 /* 535 * Grab all locks so TABLE_LOCK_ENTER() calls block until the 536 * resize is complete. 537 */ 538 for (i = 0; i < oldsize; i++) 539 mutex_enter(&oldtable[i].lh_lock); 540 /* 541 * li->li_hashtable gets set before li->li_htsize, so in the 542 * time between the two assignments, callers of 543 * TABLE_LOCK_ENTER() cannot hash to a bucket beyond oldsize, 544 * hence we only need to grab the locks up to oldsize. 545 */ 546 for (i = 0; i < oldsize; i++) 547 mutex_enter(&newtable[i].lh_lock); 548 /* 549 * Rehash. 550 */ 551 for (i = 0; i < oldsize; i++) { 552 lnode_t *tlp, *nlp; 553 554 for (tlp = oldtable[i].lh_chain; tlp != NULL; tlp = nlp) { 555 uint_t hash = ltablehash(tlp->lo_vp, newsize); 556 557 nlp = tlp->lo_next; 558 tlp->lo_next = newtable[hash].lh_chain; 559 newtable[hash].lh_chain = tlp; 560 newtable[hash].lh_count++; 561 } 562 } 563 564 /* 565 * As soon as we store the new hashtable, future locking operations 566 * will use it. Therefore, we must ensure that all the state we've 567 * just established reaches global visibility before the new hashtable 568 * does. 569 */ 570 membar_producer(); 571 li->li_hashtable = newtable; 572 573 /* 574 * table_lock_enter() relies on the fact that li->li_hashtable 575 * is set to its new value before li->li_htsize. 576 */ 577 membar_producer(); 578 li->li_htsize = newsize; 579 580 /* 581 * The new state is consistent now, so we can drop all the locks. 582 */ 583 for (i = 0; i < oldsize; i++) { 584 mutex_exit(&newtable[i].lh_lock); 585 mutex_exit(&oldtable[i].lh_lock); 586 } 587 mutex_exit(&li->li_htlock); 588 589 lretire(li, oldtable, oldsize); 590 } 591 592 /* 593 * Put a lnode in the table 594 */ 595 static void 596 lsave(lnode_t *lp, struct loinfo *li) 597 { 598 ASSERT(lp->lo_vp); 599 ASSERT(MUTEX_HELD(TABLE_LOCK(lp->lo_vp, li))); 600 601 #ifdef LODEBUG 602 lo_dprint(4, "lsave lp %p hash %d\n", 603 lp, ltablehash(lp->lo_vp, li)); 604 #endif 605 606 TABLE_COUNT(lp->lo_vp, li)++; 607 lp->lo_next = TABLE_BUCKET(lp->lo_vp, li); 608 TABLE_BUCKET(lp->lo_vp, li) = lp; 609 610 if (li->li_refct > (li->li_htsize << lo_resize_threshold)) { 611 TABLE_LOCK_EXIT(lp->lo_vp, li); 612 lgrow(li, li->li_htsize << lo_resize_factor); 613 TABLE_LOCK_ENTER(lp->lo_vp, li); 614 } 615 } 616 617 /* 618 * Our version of vfs_rele() that stops at 1 instead of 0, and calls 619 * freelfsnode() instead of kmem_free(). 620 */ 621 static void 622 lfs_rele(struct lfsnode *lfs, struct loinfo *li) 623 { 624 vfs_t *vfsp = &lfs->lfs_vfs; 625 626 ASSERT(MUTEX_HELD(&li->li_lfslock)); 627 ASSERT(vfsp->vfs_count > 1); 628 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 1) 629 freelfsnode(lfs, li); 630 } 631 632 /* 633 * Remove a lnode from the table 634 */ 635 void 636 freelonode(lnode_t *lp) 637 { 638 lnode_t *lt; 639 lnode_t *ltprev = NULL; 640 struct lfsnode *lfs, *nextlfs; 641 struct vfs *vfsp; 642 struct vnode *vp = ltov(lp); 643 struct vnode *realvp = realvp(vp); 644 struct loinfo *li = vtoli(vp->v_vfsp); 645 646 #ifdef LODEBUG 647 lo_dprint(4, "freelonode lp %p hash %d\n", 648 lp, ltablehash(lp->lo_vp, li)); 649 #endif 650 TABLE_LOCK_ENTER(lp->lo_vp, li); 651 652 mutex_enter(&vp->v_lock); 653 if (vp->v_count > 1) { 654 vp->v_count--; /* release our hold from vn_rele */ 655 mutex_exit(&vp->v_lock); 656 TABLE_LOCK_EXIT(lp->lo_vp, li); 657 return; 658 } 659 mutex_exit(&vp->v_lock); 660 661 for (lt = TABLE_BUCKET(lp->lo_vp, li); lt != NULL; 662 ltprev = lt, lt = lt->lo_next) { 663 if (lt == lp) { 664 #ifdef LODEBUG 665 lo_dprint(4, "freeing %p, vfsp %p\n", 666 vp, vp->v_vfsp); 667 #endif 668 atomic_add_32(&li->li_refct, -1); 669 vfsp = vp->v_vfsp; 670 vn_invalid(vp); 671 if (vfsp != li->li_mountvfs) { 672 mutex_enter(&li->li_lfslock); 673 /* 674 * Check for unused lfs 675 */ 676 lfs = li->li_lfs; 677 while (lfs != NULL) { 678 nextlfs = lfs->lfs_next; 679 if (vfsp == &lfs->lfs_vfs) { 680 lfs_rele(lfs, li); 681 break; 682 } 683 if (lfs->lfs_vfs.vfs_count == 1) { 684 /* 685 * Lfs is idle 686 */ 687 freelfsnode(lfs, li); 688 } 689 lfs = nextlfs; 690 } 691 mutex_exit(&li->li_lfslock); 692 } 693 if (ltprev == NULL) { 694 TABLE_BUCKET(lt->lo_vp, li) = lt->lo_next; 695 } else { 696 ltprev->lo_next = lt->lo_next; 697 } 698 TABLE_COUNT(lt->lo_vp, li)--; 699 TABLE_LOCK_EXIT(lt->lo_vp, li); 700 kmem_cache_free(lnode_cache, lt); 701 vn_free(vp); 702 VN_RELE(realvp); 703 return; 704 } 705 } 706 panic("freelonode"); 707 /*NOTREACHED*/ 708 } 709 710 /* 711 * Lookup a lnode by vp 712 */ 713 static lnode_t * 714 lfind(struct vnode *vp, struct loinfo *li) 715 { 716 lnode_t *lt; 717 718 ASSERT(MUTEX_HELD(TABLE_LOCK(vp, li))); 719 720 lt = TABLE_BUCKET(vp, li); 721 while (lt != NULL) { 722 if (lt->lo_vp == vp) { 723 VN_HOLD(ltov(lt)); 724 return (lt); 725 } 726 lt = lt->lo_next; 727 } 728 return (NULL); 729 } 730 731 #ifdef LODEBUG 732 static int lofsdebug; 733 #endif /* LODEBUG */ 734 735 /* 736 * Utilities used by both client and server 737 * Standard levels: 738 * 0) no debugging 739 * 1) hard failures 740 * 2) soft failures 741 * 3) current test software 742 * 4) main procedure entry points 743 * 5) main procedure exit points 744 * 6) utility procedure entry points 745 * 7) utility procedure exit points 746 * 8) obscure procedure entry points 747 * 9) obscure procedure exit points 748 * 10) random stuff 749 * 11) all <= 1 750 * 12) all <= 2 751 * 13) all <= 3 752 * ... 753 */ 754 755 #ifdef LODEBUG 756 /*VARARGS2*/ 757 lo_dprint(level, str, a1, a2, a3, a4, a5, a6, a7, a8, a9) 758 int level; 759 char *str; 760 int a1, a2, a3, a4, a5, a6, a7, a8, a9; 761 { 762 763 if (lofsdebug == level || (lofsdebug > 10 && (lofsdebug - 10) >= level)) 764 printf(str, a1, a2, a3, a4, a5, a6, a7, a8, a9); 765 } 766 #endif 767