1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Vnode operations for the High Sierra filesystem 29 */ 30 31 #include <sys/types.h> 32 #include <sys/t_lock.h> 33 #include <sys/param.h> 34 #include <sys/time.h> 35 #include <sys/systm.h> 36 #include <sys/sysmacros.h> 37 #include <sys/resource.h> 38 #include <sys/signal.h> 39 #include <sys/cred.h> 40 #include <sys/user.h> 41 #include <sys/buf.h> 42 #include <sys/vfs.h> 43 #include <sys/vfs_opreg.h> 44 #include <sys/stat.h> 45 #include <sys/vnode.h> 46 #include <sys/mode.h> 47 #include <sys/proc.h> 48 #include <sys/disp.h> 49 #include <sys/file.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/kmem.h> 53 #include <sys/uio.h> 54 #include <sys/conf.h> 55 #include <sys/errno.h> 56 #include <sys/mman.h> 57 #include <sys/pathname.h> 58 #include <sys/debug.h> 59 #include <sys/vmsystm.h> 60 #include <sys/cmn_err.h> 61 #include <sys/fbuf.h> 62 #include <sys/dirent.h> 63 #include <sys/errno.h> 64 #include <sys/dkio.h> 65 #include <sys/cmn_err.h> 66 #include <sys/atomic.h> 67 68 #include <vm/hat.h> 69 #include <vm/page.h> 70 #include <vm/pvn.h> 71 #include <vm/as.h> 72 #include <vm/seg.h> 73 #include <vm/seg_map.h> 74 #include <vm/seg_kmem.h> 75 #include <vm/seg_vn.h> 76 #include <vm/rm.h> 77 #include <vm/page.h> 78 #include <sys/swap.h> 79 #include <sys/avl.h> 80 #include <sys/sunldi.h> 81 #include <sys/ddi.h> 82 #include <sys/sunddi.h> 83 #include <sys/sdt.h> 84 85 /* 86 * For struct modlinkage 87 */ 88 #include <sys/modctl.h> 89 90 #include <sys/fs/hsfs_spec.h> 91 #include <sys/fs/hsfs_node.h> 92 #include <sys/fs/hsfs_impl.h> 93 #include <sys/fs/hsfs_susp.h> 94 #include <sys/fs/hsfs_rrip.h> 95 96 #include <fs/fs_subr.h> 97 98 /* # of contiguous requests to detect sequential access pattern */ 99 static int seq_contig_requests = 2; 100 101 /* 102 * This is the max number os taskq threads that will be created 103 * if required. Since we are using a Dynamic TaskQ by default only 104 * one thread is created initially. 105 * 106 * NOTE: In the usual hsfs use case this per fs instance number 107 * of taskq threads should not place any undue load on a system. 108 * Even on an unusual system with say 100 CDROM drives, 800 threads 109 * will not be created unless all the drives are loaded and all 110 * of them are saturated with I/O at the same time! If there is at 111 * all a complaint of system load due to such an unusual case it 112 * should be easy enough to change to one per-machine Dynamic TaskQ 113 * for all hsfs mounts with a nthreads of say 32. 114 */ 115 static int hsfs_taskq_nthreads = 8; /* # of taskq threads per fs */ 116 117 /* Min count of adjacent bufs that will avoid buf coalescing */ 118 static int hsched_coalesce_min = 2; 119 120 /* 121 * Kmem caches for heavily used small allocations. Using these kmem 122 * caches provides a factor of 3 reduction in system time and greatly 123 * aids overall throughput esp. on SPARC. 124 */ 125 struct kmem_cache *hio_cache; 126 struct kmem_cache *hio_info_cache; 127 128 /* 129 * This tunable allows us to ignore inode numbers from rrip-1.12. 130 * In this case, we fall back to our default inode algorithm. 131 */ 132 extern int use_rrip_inodes; 133 134 /* 135 * Free behind logic from UFS to tame our thirst for 136 * the page cache. 137 * See usr/src/uts/common/fs/ufs/ufs_vnops.c for more 138 * explanation. 139 */ 140 static int freebehind = 1; 141 static int smallfile = 0; 142 static int cache_read_ahead = 0; 143 static u_offset_t smallfile64 = 32 * 1024; 144 #define SMALLFILE1_D 1000 145 #define SMALLFILE2_D 10 146 static u_offset_t smallfile1 = 32 * 1024; 147 static u_offset_t smallfile2 = 32 * 1024; 148 static clock_t smallfile_update = 0; /* when to recompute */ 149 static uint_t smallfile1_d = SMALLFILE1_D; 150 static uint_t smallfile2_d = SMALLFILE2_D; 151 152 static int hsched_deadline_compare(const void *x1, const void *x2); 153 static int hsched_offset_compare(const void *x1, const void *x2); 154 static void hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra); 155 int hsched_invoke_strategy(struct hsfs *fsp); 156 157 /* ARGSUSED */ 158 static int 159 hsfs_fsync(vnode_t *cp, 160 int syncflag, 161 cred_t *cred, 162 caller_context_t *ct) 163 { 164 return (0); 165 } 166 167 168 /*ARGSUSED*/ 169 static int 170 hsfs_read(struct vnode *vp, 171 struct uio *uiop, 172 int ioflag, 173 struct cred *cred, 174 struct caller_context *ct) 175 { 176 caddr_t base; 177 offset_t diff; 178 int error; 179 struct hsnode *hp; 180 uint_t filesize; 181 int dofree; 182 183 hp = VTOH(vp); 184 /* 185 * if vp is of type VDIR, make sure dirent 186 * is filled up with all info (because of ptbl) 187 */ 188 if (vp->v_type == VDIR) { 189 if (hp->hs_dirent.ext_size == 0) 190 hs_filldirent(vp, &hp->hs_dirent); 191 } 192 filesize = hp->hs_dirent.ext_size; 193 194 /* Sanity checks. */ 195 if (uiop->uio_resid == 0 || /* No data wanted. */ 196 uiop->uio_loffset > HS_MAXFILEOFF || /* Offset too big. */ 197 uiop->uio_loffset >= filesize) /* Past EOF. */ 198 return (0); 199 200 do { 201 /* 202 * We want to ask for only the "right" amount of data. 203 * In this case that means:- 204 * 205 * We can't get data from beyond our EOF. If asked, 206 * we will give a short read. 207 * 208 * segmap_getmapflt returns buffers of MAXBSIZE bytes. 209 * These buffers are always MAXBSIZE aligned. 210 * If our starting offset is not MAXBSIZE aligned, 211 * we can only ask for less than MAXBSIZE bytes. 212 * 213 * If our requested offset and length are such that 214 * they belong in different MAXBSIZE aligned slots 215 * then we'll be making more than one call on 216 * segmap_getmapflt. 217 * 218 * This diagram shows the variables we use and their 219 * relationships. 220 * 221 * |<-----MAXBSIZE----->| 222 * +--------------------------...+ 223 * |.....mapon->|<--n-->|....*...|EOF 224 * +--------------------------...+ 225 * uio_loffset->| 226 * uio_resid....|<---------->| 227 * diff.........|<-------------->| 228 * 229 * So, in this case our offset is not aligned 230 * and our request takes us outside of the 231 * MAXBSIZE window. We will break this up into 232 * two segmap_getmapflt calls. 233 */ 234 size_t nbytes; 235 offset_t mapon; 236 size_t n; 237 uint_t flags; 238 239 mapon = uiop->uio_loffset & MAXBOFFSET; 240 diff = filesize - uiop->uio_loffset; 241 nbytes = (size_t)MIN(MAXBSIZE - mapon, uiop->uio_resid); 242 n = MIN(diff, nbytes); 243 if (n <= 0) { 244 /* EOF or request satisfied. */ 245 return (0); 246 } 247 248 /* 249 * Freebehind computation taken from: 250 * usr/src/uts/common/fs/ufs/ufs_vnops.c 251 */ 252 if (drv_hztousec(ddi_get_lbolt()) >= smallfile_update) { 253 uint64_t percpufreeb; 254 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D; 255 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D; 256 percpufreeb = ptob((uint64_t)freemem) / ncpus_online; 257 smallfile1 = percpufreeb / smallfile1_d; 258 smallfile2 = percpufreeb / smallfile2_d; 259 smallfile1 = MAX(smallfile1, smallfile); 260 smallfile1 = MAX(smallfile1, smallfile64); 261 smallfile2 = MAX(smallfile1, smallfile2); 262 smallfile_update = drv_hztousec(ddi_get_lbolt()) 263 + 1000000; 264 } 265 266 dofree = freebehind && 267 hp->hs_prev_offset == uiop->uio_loffset && 268 hp->hs_ra_bytes > 0; 269 270 base = segmap_getmapflt(segkmap, vp, 271 (u_offset_t)uiop->uio_loffset, n, 1, S_READ); 272 273 error = uiomove(base + mapon, n, UIO_READ, uiop); 274 275 if (error == 0) { 276 /* 277 * if read a whole block, or read to eof, 278 * won't need this buffer again soon. 279 */ 280 if (n + mapon == MAXBSIZE || 281 uiop->uio_loffset == filesize) 282 flags = SM_DONTNEED; 283 else 284 flags = 0; 285 286 if (dofree) { 287 flags = SM_FREE | SM_ASYNC; 288 if ((cache_read_ahead == 0) && 289 uiop->uio_loffset > smallfile2) 290 flags |= SM_DONTNEED; 291 } 292 293 error = segmap_release(segkmap, base, flags); 294 } else 295 (void) segmap_release(segkmap, base, 0); 296 } while (error == 0 && uiop->uio_resid > 0); 297 298 return (error); 299 } 300 301 /*ARGSUSED2*/ 302 static int 303 hsfs_getattr( 304 struct vnode *vp, 305 struct vattr *vap, 306 int flags, 307 struct cred *cred, 308 caller_context_t *ct) 309 { 310 struct hsnode *hp; 311 struct vfs *vfsp; 312 struct hsfs *fsp; 313 314 hp = VTOH(vp); 315 fsp = VFS_TO_HSFS(vp->v_vfsp); 316 vfsp = vp->v_vfsp; 317 318 if ((hp->hs_dirent.ext_size == 0) && (vp->v_type == VDIR)) { 319 hs_filldirent(vp, &hp->hs_dirent); 320 } 321 vap->va_type = IFTOVT(hp->hs_dirent.mode); 322 vap->va_mode = hp->hs_dirent.mode; 323 vap->va_uid = hp->hs_dirent.uid; 324 vap->va_gid = hp->hs_dirent.gid; 325 326 vap->va_fsid = vfsp->vfs_dev; 327 vap->va_nodeid = (ino64_t)hp->hs_nodeid; 328 vap->va_nlink = hp->hs_dirent.nlink; 329 vap->va_size = (offset_t)hp->hs_dirent.ext_size; 330 331 vap->va_atime.tv_sec = hp->hs_dirent.adate.tv_sec; 332 vap->va_atime.tv_nsec = hp->hs_dirent.adate.tv_usec*1000; 333 vap->va_mtime.tv_sec = hp->hs_dirent.mdate.tv_sec; 334 vap->va_mtime.tv_nsec = hp->hs_dirent.mdate.tv_usec*1000; 335 vap->va_ctime.tv_sec = hp->hs_dirent.cdate.tv_sec; 336 vap->va_ctime.tv_nsec = hp->hs_dirent.cdate.tv_usec*1000; 337 if (vp->v_type == VCHR || vp->v_type == VBLK) 338 vap->va_rdev = hp->hs_dirent.r_dev; 339 else 340 vap->va_rdev = 0; 341 vap->va_blksize = vfsp->vfs_bsize; 342 /* no. of blocks = no. of data blocks + no. of xar blocks */ 343 vap->va_nblocks = (fsblkcnt64_t)howmany(vap->va_size + (u_longlong_t) 344 (hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift), DEV_BSIZE); 345 vap->va_seq = hp->hs_seq; 346 return (0); 347 } 348 349 /*ARGSUSED*/ 350 static int 351 hsfs_readlink(struct vnode *vp, 352 struct uio *uiop, 353 struct cred *cred, 354 caller_context_t *ct) 355 { 356 struct hsnode *hp; 357 358 if (vp->v_type != VLNK) 359 return (EINVAL); 360 361 hp = VTOH(vp); 362 363 if (hp->hs_dirent.sym_link == (char *)NULL) 364 return (ENOENT); 365 366 return (uiomove(hp->hs_dirent.sym_link, 367 (size_t)MIN(hp->hs_dirent.ext_size, 368 uiop->uio_resid), UIO_READ, uiop)); 369 } 370 371 /*ARGSUSED*/ 372 static void 373 hsfs_inactive(struct vnode *vp, 374 struct cred *cred, 375 caller_context_t *ct) 376 { 377 struct hsnode *hp; 378 struct hsfs *fsp; 379 380 int nopage; 381 382 hp = VTOH(vp); 383 fsp = VFS_TO_HSFS(vp->v_vfsp); 384 /* 385 * Note: acquiring and holding v_lock for quite a while 386 * here serializes on the vnode; this is unfortunate, but 387 * likely not to overly impact performance, as the underlying 388 * device (CDROM drive) is quite slow. 389 */ 390 rw_enter(&fsp->hsfs_hash_lock, RW_WRITER); 391 mutex_enter(&hp->hs_contents_lock); 392 mutex_enter(&vp->v_lock); 393 394 if (vp->v_count < 1) { 395 panic("hsfs_inactive: v_count < 1"); 396 /*NOTREACHED*/ 397 } 398 399 if (vp->v_count > 1 || (hp->hs_flags & HREF) == 0) { 400 vp->v_count--; /* release hold from vn_rele */ 401 mutex_exit(&vp->v_lock); 402 mutex_exit(&hp->hs_contents_lock); 403 rw_exit(&fsp->hsfs_hash_lock); 404 return; 405 } 406 vp->v_count--; /* release hold from vn_rele */ 407 if (vp->v_count == 0) { 408 /* 409 * Free the hsnode. 410 * If there are no pages associated with the 411 * hsnode, give it back to the kmem_cache, 412 * else put at the end of this file system's 413 * internal free list. 414 */ 415 nopage = !vn_has_cached_data(vp); 416 hp->hs_flags = 0; 417 /* 418 * exit these locks now, since hs_freenode may 419 * kmem_free the hsnode and embedded vnode 420 */ 421 mutex_exit(&vp->v_lock); 422 mutex_exit(&hp->hs_contents_lock); 423 hs_freenode(vp, fsp, nopage); 424 } else { 425 mutex_exit(&vp->v_lock); 426 mutex_exit(&hp->hs_contents_lock); 427 } 428 rw_exit(&fsp->hsfs_hash_lock); 429 } 430 431 432 /*ARGSUSED*/ 433 static int 434 hsfs_lookup( 435 struct vnode *dvp, 436 char *nm, 437 struct vnode **vpp, 438 struct pathname *pnp, 439 int flags, 440 struct vnode *rdir, 441 struct cred *cred, 442 caller_context_t *ct, 443 int *direntflags, 444 pathname_t *realpnp) 445 { 446 int error; 447 int namelen = (int)strlen(nm); 448 449 if (*nm == '\0') { 450 VN_HOLD(dvp); 451 *vpp = dvp; 452 return (0); 453 } 454 455 /* 456 * If we're looking for ourself, life is simple. 457 */ 458 if (namelen == 1 && *nm == '.') { 459 if (error = hs_access(dvp, (mode_t)VEXEC, cred)) 460 return (error); 461 VN_HOLD(dvp); 462 *vpp = dvp; 463 return (0); 464 } 465 466 return (hs_dirlook(dvp, nm, namelen, vpp, cred)); 467 } 468 469 470 /*ARGSUSED*/ 471 static int 472 hsfs_readdir( 473 struct vnode *vp, 474 struct uio *uiop, 475 struct cred *cred, 476 int *eofp, 477 caller_context_t *ct, 478 int flags) 479 { 480 struct hsnode *dhp; 481 struct hsfs *fsp; 482 struct hs_direntry hd; 483 struct dirent64 *nd; 484 int error; 485 uint_t offset; /* real offset in directory */ 486 uint_t dirsiz; /* real size of directory */ 487 uchar_t *blkp; 488 int hdlen; /* length of hs directory entry */ 489 long ndlen; /* length of dirent entry */ 490 int bytes_wanted; 491 size_t bufsize; /* size of dirent buffer */ 492 char *outbuf; /* ptr to dirent buffer */ 493 char *dname; 494 int dnamelen; 495 size_t dname_size; 496 struct fbuf *fbp; 497 uint_t last_offset; /* last index into current dir block */ 498 ino64_t dirino; /* temporary storage before storing in dirent */ 499 off_t diroff; 500 501 dhp = VTOH(vp); 502 fsp = VFS_TO_HSFS(vp->v_vfsp); 503 if (dhp->hs_dirent.ext_size == 0) 504 hs_filldirent(vp, &dhp->hs_dirent); 505 dirsiz = dhp->hs_dirent.ext_size; 506 if (uiop->uio_loffset >= dirsiz) { /* at or beyond EOF */ 507 if (eofp) 508 *eofp = 1; 509 return (0); 510 } 511 ASSERT(uiop->uio_loffset <= HS_MAXFILEOFF); 512 offset = uiop->uio_loffset; 513 514 dname_size = fsp->hsfs_namemax + 1; /* 1 for the ending NUL */ 515 dname = kmem_alloc(dname_size, KM_SLEEP); 516 bufsize = uiop->uio_resid + sizeof (struct dirent64); 517 518 outbuf = kmem_alloc(bufsize, KM_SLEEP); 519 nd = (struct dirent64 *)outbuf; 520 521 while (offset < dirsiz) { 522 bytes_wanted = MIN(MAXBSIZE, dirsiz - (offset & MAXBMASK)); 523 524 error = fbread(vp, (offset_t)(offset & MAXBMASK), 525 (unsigned int)bytes_wanted, S_READ, &fbp); 526 if (error) 527 goto done; 528 529 blkp = (uchar_t *)fbp->fb_addr; 530 last_offset = (offset & MAXBMASK) + fbp->fb_count; 531 532 #define rel_offset(offset) ((offset) & MAXBOFFSET) /* index into blkp */ 533 534 while (offset < last_offset) { 535 /* 536 * Very similar validation code is found in 537 * process_dirblock(), hsfs_node.c. 538 * For an explanation, see there. 539 * It may make sense for the future to 540 * "consolidate" the code in hs_parsedir(), 541 * process_dirblock() and hsfs_readdir() into 542 * a single utility function. 543 */ 544 hdlen = (int)((uchar_t) 545 HDE_DIR_LEN(&blkp[rel_offset(offset)])); 546 if (hdlen < HDE_ROOT_DIR_REC_SIZE || 547 offset + hdlen > last_offset) { 548 /* 549 * advance to next sector boundary 550 */ 551 offset = roundup(offset + 1, HS_SECTOR_SIZE); 552 if (hdlen) 553 hs_log_bogus_disk_warning(fsp, 554 HSFS_ERR_TRAILING_JUNK, 0); 555 556 continue; 557 } 558 559 bzero(&hd, sizeof (hd)); 560 561 /* 562 * Just ignore invalid directory entries. 563 * XXX - maybe hs_parsedir() will detect EXISTENCE bit 564 */ 565 if (!hs_parsedir(fsp, &blkp[rel_offset(offset)], 566 &hd, dname, &dnamelen, last_offset - offset)) { 567 /* 568 * Determine if there is enough room 569 */ 570 ndlen = (long)DIRENT64_RECLEN((dnamelen)); 571 572 if ((ndlen + ((char *)nd - outbuf)) > 573 uiop->uio_resid) { 574 fbrelse(fbp, S_READ); 575 goto done; /* output buffer full */ 576 } 577 578 diroff = offset + hdlen; 579 /* 580 * If the media carries rrip-v1.12 or newer, 581 * and we trust the inodes from the rrip data 582 * (use_rrip_inodes != 0), use that data. If the 583 * media has been created by a recent mkisofs 584 * version, we may trust all numbers in the 585 * starting extent number; otherwise, we cannot 586 * do this for zero sized files and symlinks, 587 * because if we did we'd end up mapping all of 588 * them to the same node. We use HS_DUMMY_INO 589 * in this case and make sure that we will not 590 * map all files to the same meta data. 591 */ 592 if (hd.inode != 0 && use_rrip_inodes) { 593 dirino = hd.inode; 594 } else if ((hd.ext_size == 0 || 595 hd.sym_link != (char *)NULL) && 596 (fsp->hsfs_flags & HSFSMNT_INODE) == 0) { 597 dirino = HS_DUMMY_INO; 598 } else { 599 dirino = hd.ext_lbn; 600 } 601 602 /* strncpy(9f) will zero uninitialized bytes */ 603 604 ASSERT(strlen(dname) + 1 <= 605 DIRENT64_NAMELEN(ndlen)); 606 (void) strncpy(nd->d_name, dname, 607 DIRENT64_NAMELEN(ndlen)); 608 nd->d_reclen = (ushort_t)ndlen; 609 nd->d_off = (offset_t)diroff; 610 nd->d_ino = dirino; 611 nd = (struct dirent64 *)((char *)nd + ndlen); 612 613 /* 614 * free up space allocated for symlink 615 */ 616 if (hd.sym_link != (char *)NULL) { 617 kmem_free(hd.sym_link, 618 (size_t)(hd.ext_size+1)); 619 hd.sym_link = (char *)NULL; 620 } 621 } 622 offset += hdlen; 623 } 624 fbrelse(fbp, S_READ); 625 } 626 627 /* 628 * Got here for one of the following reasons: 629 * 1) outbuf is full (error == 0) 630 * 2) end of directory reached (error == 0) 631 * 3) error reading directory sector (error != 0) 632 * 4) directory entry crosses sector boundary (error == 0) 633 * 634 * If any directory entries have been copied, don't report 635 * case 4. Instead, return the valid directory entries. 636 * 637 * If no entries have been copied, report the error. 638 * If case 4, this will be indistiguishable from EOF. 639 */ 640 done: 641 ndlen = ((char *)nd - outbuf); 642 if (ndlen != 0) { 643 error = uiomove(outbuf, (size_t)ndlen, UIO_READ, uiop); 644 uiop->uio_loffset = offset; 645 } 646 kmem_free(dname, dname_size); 647 kmem_free(outbuf, bufsize); 648 if (eofp && error == 0) 649 *eofp = (uiop->uio_loffset >= dirsiz); 650 return (error); 651 } 652 653 /*ARGSUSED2*/ 654 static int 655 hsfs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 656 { 657 struct hsnode *hp; 658 struct hsfid *fid; 659 660 if (fidp->fid_len < (sizeof (*fid) - sizeof (fid->hf_len))) { 661 fidp->fid_len = sizeof (*fid) - sizeof (fid->hf_len); 662 return (ENOSPC); 663 } 664 665 fid = (struct hsfid *)fidp; 666 fid->hf_len = sizeof (*fid) - sizeof (fid->hf_len); 667 hp = VTOH(vp); 668 mutex_enter(&hp->hs_contents_lock); 669 fid->hf_dir_lbn = hp->hs_dir_lbn; 670 fid->hf_dir_off = (ushort_t)hp->hs_dir_off; 671 fid->hf_ino = hp->hs_nodeid; 672 mutex_exit(&hp->hs_contents_lock); 673 return (0); 674 } 675 676 /*ARGSUSED*/ 677 static int 678 hsfs_open(struct vnode **vpp, 679 int flag, 680 struct cred *cred, 681 caller_context_t *ct) 682 { 683 return (0); 684 } 685 686 /*ARGSUSED*/ 687 static int 688 hsfs_close( 689 struct vnode *vp, 690 int flag, 691 int count, 692 offset_t offset, 693 struct cred *cred, 694 caller_context_t *ct) 695 { 696 (void) cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 697 cleanshares(vp, ttoproc(curthread)->p_pid); 698 return (0); 699 } 700 701 /*ARGSUSED2*/ 702 static int 703 hsfs_access(struct vnode *vp, 704 int mode, 705 int flags, 706 cred_t *cred, 707 caller_context_t *ct) 708 { 709 return (hs_access(vp, (mode_t)mode, cred)); 710 } 711 712 /* 713 * the seek time of a CD-ROM is very slow, and data transfer 714 * rate is even worse (max. 150K per sec). The design 715 * decision is to reduce access to cd-rom as much as possible, 716 * and to transfer a sizable block (read-ahead) of data at a time. 717 * UFS style of read ahead one block at a time is not appropriate, 718 * and is not supported 719 */ 720 721 /* 722 * KLUSTSIZE should be a multiple of PAGESIZE and <= MAXPHYS. 723 */ 724 #define KLUSTSIZE (56 * 1024) 725 /* we don't support read ahead */ 726 int hsfs_lostpage; /* no. of times we lost original page */ 727 728 /* 729 * Used to prevent biodone() from releasing buf resources that 730 * we didn't allocate in quite the usual way. 731 */ 732 /*ARGSUSED*/ 733 int 734 hsfs_iodone(struct buf *bp) 735 { 736 sema_v(&bp->b_io); 737 return (0); 738 } 739 740 /* 741 * The taskq thread that invokes the scheduling function to ensure 742 * that all readaheads are complete and cleans up the associated 743 * memory and releases the page lock. 744 */ 745 void 746 hsfs_ra_task(void *arg) 747 { 748 struct hio_info *info = arg; 749 uint_t count; 750 struct buf *wbuf; 751 752 ASSERT(info->pp != NULL); 753 754 for (count = 0; count < info->bufsused; count++) { 755 wbuf = &(info->bufs[count]); 756 757 DTRACE_PROBE1(hsfs_io_wait_ra, struct buf *, wbuf); 758 while (sema_tryp(&(info->sema[count])) == 0) { 759 if (hsched_invoke_strategy(info->fsp)) { 760 sema_p(&(info->sema[count])); 761 break; 762 } 763 } 764 sema_destroy(&(info->sema[count])); 765 DTRACE_PROBE1(hsfs_io_done_ra, struct buf *, wbuf); 766 biofini(&(info->bufs[count])); 767 } 768 for (count = 0; count < info->bufsused; count++) { 769 if (info->vas[count] != NULL) { 770 ppmapout(info->vas[count]); 771 } 772 } 773 kmem_free(info->vas, info->bufcnt * sizeof (caddr_t)); 774 kmem_free(info->bufs, info->bufcnt * sizeof (struct buf)); 775 kmem_free(info->sema, info->bufcnt * sizeof (ksema_t)); 776 777 pvn_read_done(info->pp, 0); 778 kmem_cache_free(hio_info_cache, info); 779 } 780 781 /* 782 * Submit asynchronous readahead requests to the I/O scheduler 783 * depending on the number of pages to read ahead. These requests 784 * are asynchronous to the calling thread but I/O requests issued 785 * subsequently by other threads with higher LBNs must wait for 786 * these readaheads to complete since we have a single ordered 787 * I/O pipeline. Thus these readaheads are semi-asynchronous. 788 * A TaskQ handles waiting for the readaheads to complete. 789 * 790 * This function is mostly a copy of hsfs_getapage but somewhat 791 * simpler. A readahead request is aborted if page allocation 792 * fails. 793 */ 794 /*ARGSUSED*/ 795 static int 796 hsfs_getpage_ra( 797 struct vnode *vp, 798 u_offset_t off, 799 struct seg *seg, 800 caddr_t addr, 801 struct hsnode *hp, 802 struct hsfs *fsp, 803 int xarsiz, 804 offset_t bof, 805 int chunk_lbn_count, 806 int chunk_data_bytes) 807 { 808 struct buf *bufs; 809 caddr_t *vas; 810 caddr_t va; 811 struct page *pp, *searchp, *lastp; 812 struct vnode *devvp; 813 ulong_t byte_offset; 814 size_t io_len_tmp; 815 uint_t io_off, io_len; 816 uint_t xlen; 817 uint_t filsiz; 818 uint_t secsize; 819 uint_t bufcnt; 820 uint_t bufsused; 821 uint_t count; 822 uint_t io_end; 823 uint_t which_chunk_lbn; 824 uint_t offset_lbn; 825 uint_t offset_extra; 826 offset_t offset_bytes; 827 uint_t remaining_bytes; 828 uint_t extension; 829 int remainder; /* must be signed */ 830 diskaddr_t driver_block; 831 u_offset_t io_off_tmp; 832 ksema_t *fio_done; 833 struct hio_info *info; 834 size_t len; 835 836 ASSERT(fsp->hqueue != NULL); 837 838 if (addr >= seg->s_base + seg->s_size) { 839 return (-1); 840 } 841 842 devvp = fsp->hsfs_devvp; 843 secsize = fsp->hsfs_vol.lbn_size; /* bytes per logical block */ 844 845 /* file data size */ 846 filsiz = hp->hs_dirent.ext_size; 847 848 if (off >= filsiz) 849 return (0); 850 851 extension = 0; 852 pp = NULL; 853 854 extension += hp->hs_ra_bytes; 855 856 /* 857 * Some CD writers (e.g. Kodak Photo CD writers) 858 * create CDs in TAO mode and reserve tracks that 859 * are not completely written. Some sectors remain 860 * unreadable for this reason and give I/O errors. 861 * Also, there's no point in reading sectors 862 * we'll never look at. So, if we're asked to go 863 * beyond the end of a file, truncate to the length 864 * of that file. 865 * 866 * Additionally, this behaviour is required by section 867 * 6.4.5 of ISO 9660:1988(E). 868 */ 869 len = MIN(extension ? extension : PAGESIZE, filsiz - off); 870 871 /* A little paranoia */ 872 if (len <= 0) 873 return (-1); 874 875 /* 876 * After all that, make sure we're asking for things in units 877 * that bdev_strategy() will understand (see bug 4202551). 878 */ 879 len = roundup(len, DEV_BSIZE); 880 881 pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp, 882 &io_len_tmp, off, len, 1); 883 884 if (pp == NULL) { 885 hp->hs_num_contig = 0; 886 hp->hs_ra_bytes = 0; 887 hp->hs_prev_offset = 0; 888 return (-1); 889 } 890 891 io_off = (uint_t)io_off_tmp; 892 io_len = (uint_t)io_len_tmp; 893 894 /* check for truncation */ 895 /* 896 * xxx Clean up and return EIO instead? 897 * xxx Ought to go to u_offset_t for everything, but we 898 * xxx call lots of things that want uint_t arguments. 899 */ 900 ASSERT(io_off == io_off_tmp); 901 902 /* 903 * get enough buffers for worst-case scenario 904 * (i.e., no coalescing possible). 905 */ 906 bufcnt = (len + secsize - 1) / secsize; 907 bufs = kmem_alloc(bufcnt * sizeof (struct buf), KM_SLEEP); 908 vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP); 909 910 /* 911 * Allocate a array of semaphores since we are doing I/O 912 * scheduling. 913 */ 914 fio_done = kmem_alloc(bufcnt * sizeof (ksema_t), KM_SLEEP); 915 916 /* 917 * If our filesize is not an integer multiple of PAGESIZE, 918 * we zero that part of the last page that's between EOF and 919 * the PAGESIZE boundary. 920 */ 921 xlen = io_len & PAGEOFFSET; 922 if (xlen != 0) 923 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 924 925 DTRACE_PROBE2(hsfs_readahead, struct vnode *, vp, uint_t, io_len); 926 927 va = NULL; 928 lastp = NULL; 929 searchp = pp; 930 io_end = io_off + io_len; 931 for (count = 0, byte_offset = io_off; 932 byte_offset < io_end; 933 count++) { 934 ASSERT(count < bufcnt); 935 936 bioinit(&bufs[count]); 937 bufs[count].b_edev = devvp->v_rdev; 938 bufs[count].b_dev = cmpdev(devvp->v_rdev); 939 bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ; 940 bufs[count].b_iodone = hsfs_iodone; 941 bufs[count].b_vp = vp; 942 bufs[count].b_file = vp; 943 944 /* Compute disk address for interleaving. */ 945 946 /* considered without skips */ 947 which_chunk_lbn = byte_offset / chunk_data_bytes; 948 949 /* factor in skips */ 950 offset_lbn = which_chunk_lbn * chunk_lbn_count; 951 952 /* convert to physical byte offset for lbn */ 953 offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp); 954 955 /* don't forget offset into lbn */ 956 offset_extra = byte_offset % chunk_data_bytes; 957 958 /* get virtual block number for driver */ 959 driver_block = lbtodb(bof + xarsiz 960 + offset_bytes + offset_extra); 961 962 if (lastp != searchp) { 963 /* this branch taken first time through loop */ 964 va = vas[count] = ppmapin(searchp, PROT_WRITE, 965 (caddr_t)-1); 966 /* ppmapin() guarantees not to return NULL */ 967 } else { 968 vas[count] = NULL; 969 } 970 971 bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE; 972 bufs[count].b_offset = 973 (offset_t)(byte_offset - io_off + off); 974 975 /* 976 * We specifically use the b_lblkno member here 977 * as even in the 32 bit world driver_block can 978 * get very large in line with the ISO9660 spec. 979 */ 980 981 bufs[count].b_lblkno = driver_block; 982 983 remaining_bytes = ((which_chunk_lbn + 1) * chunk_data_bytes) 984 - byte_offset; 985 986 /* 987 * remaining_bytes can't be zero, as we derived 988 * which_chunk_lbn directly from byte_offset. 989 */ 990 if ((remaining_bytes + byte_offset) < (off + len)) { 991 /* coalesce-read the rest of the chunk */ 992 bufs[count].b_bcount = remaining_bytes; 993 } else { 994 /* get the final bits */ 995 bufs[count].b_bcount = off + len - byte_offset; 996 } 997 998 remainder = PAGESIZE - (byte_offset % PAGESIZE); 999 if (bufs[count].b_bcount > remainder) { 1000 bufs[count].b_bcount = remainder; 1001 } 1002 1003 bufs[count].b_bufsize = bufs[count].b_bcount; 1004 if (((offset_t)byte_offset + bufs[count].b_bcount) > 1005 HS_MAXFILEOFF) { 1006 break; 1007 } 1008 byte_offset += bufs[count].b_bcount; 1009 1010 /* 1011 * We are scheduling I/O so we need to enqueue 1012 * requests rather than calling bdev_strategy 1013 * here. A later invocation of the scheduling 1014 * function will take care of doing the actual 1015 * I/O as it selects requests from the queue as 1016 * per the scheduling logic. 1017 */ 1018 struct hio *hsio = kmem_cache_alloc(hio_cache, 1019 KM_SLEEP); 1020 1021 sema_init(&fio_done[count], 0, NULL, 1022 SEMA_DEFAULT, NULL); 1023 hsio->bp = &bufs[count]; 1024 hsio->sema = &fio_done[count]; 1025 hsio->io_lblkno = bufs[count].b_lblkno; 1026 hsio->nblocks = howmany(hsio->bp->b_bcount, 1027 DEV_BSIZE); 1028 1029 /* used for deadline */ 1030 hsio->io_timestamp = drv_hztousec(ddi_get_lbolt()); 1031 1032 /* for I/O coalescing */ 1033 hsio->contig_chain = NULL; 1034 hsched_enqueue_io(fsp, hsio, 1); 1035 1036 lwp_stat_update(LWP_STAT_INBLK, 1); 1037 lastp = searchp; 1038 if ((remainder - bufs[count].b_bcount) < 1) { 1039 searchp = searchp->p_next; 1040 } 1041 } 1042 1043 bufsused = count; 1044 info = kmem_cache_alloc(hio_info_cache, KM_SLEEP); 1045 info->bufs = bufs; 1046 info->vas = vas; 1047 info->sema = fio_done; 1048 info->bufsused = bufsused; 1049 info->bufcnt = bufcnt; 1050 info->fsp = fsp; 1051 info->pp = pp; 1052 1053 (void) taskq_dispatch(fsp->hqueue->ra_task, 1054 hsfs_ra_task, info, KM_SLEEP); 1055 /* 1056 * The I/O locked pages are unlocked in our taskq thread. 1057 */ 1058 return (0); 1059 } 1060 1061 /* 1062 * Each file may have a different interleaving on disk. This makes 1063 * things somewhat interesting. The gist is that there are some 1064 * number of contiguous data sectors, followed by some other number 1065 * of contiguous skip sectors. The sum of those two sets of sectors 1066 * defines the interleave size. Unfortunately, it means that we generally 1067 * can't simply read N sectors starting at a given offset to satisfy 1068 * any given request. 1069 * 1070 * What we do is get the relevant memory pages via pvn_read_kluster(), 1071 * then stride through the interleaves, setting up a buf for each 1072 * sector that needs to be brought in. Instead of kmem_alloc'ing 1073 * space for the sectors, though, we just point at the appropriate 1074 * spot in the relevant page for each of them. This saves us a bunch 1075 * of copying. 1076 * 1077 * NOTICE: The code below in hsfs_getapage is mostly same as the code 1078 * in hsfs_getpage_ra above (with some omissions). If you are 1079 * making any change to this function, please also look at 1080 * hsfs_getpage_ra. 1081 */ 1082 /*ARGSUSED*/ 1083 static int 1084 hsfs_getapage( 1085 struct vnode *vp, 1086 u_offset_t off, 1087 size_t len, 1088 uint_t *protp, 1089 struct page *pl[], 1090 size_t plsz, 1091 struct seg *seg, 1092 caddr_t addr, 1093 enum seg_rw rw, 1094 struct cred *cred) 1095 { 1096 struct hsnode *hp; 1097 struct hsfs *fsp; 1098 int err; 1099 struct buf *bufs; 1100 caddr_t *vas; 1101 caddr_t va; 1102 struct page *pp, *searchp, *lastp; 1103 page_t *pagefound; 1104 offset_t bof; 1105 struct vnode *devvp; 1106 ulong_t byte_offset; 1107 size_t io_len_tmp; 1108 uint_t io_off, io_len; 1109 uint_t xlen; 1110 uint_t filsiz; 1111 uint_t secsize; 1112 uint_t bufcnt; 1113 uint_t bufsused; 1114 uint_t count; 1115 uint_t io_end; 1116 uint_t which_chunk_lbn; 1117 uint_t offset_lbn; 1118 uint_t offset_extra; 1119 offset_t offset_bytes; 1120 uint_t remaining_bytes; 1121 uint_t extension; 1122 int remainder; /* must be signed */ 1123 int chunk_lbn_count; 1124 int chunk_data_bytes; 1125 int xarsiz; 1126 diskaddr_t driver_block; 1127 u_offset_t io_off_tmp; 1128 ksema_t *fio_done; 1129 int calcdone; 1130 1131 /* 1132 * We don't support asynchronous operation at the moment, so 1133 * just pretend we did it. If the pages are ever actually 1134 * needed, they'll get brought in then. 1135 */ 1136 if (pl == NULL) 1137 return (0); 1138 1139 hp = VTOH(vp); 1140 fsp = VFS_TO_HSFS(vp->v_vfsp); 1141 devvp = fsp->hsfs_devvp; 1142 secsize = fsp->hsfs_vol.lbn_size; /* bytes per logical block */ 1143 1144 /* file data size */ 1145 filsiz = hp->hs_dirent.ext_size; 1146 1147 /* disk addr for start of file */ 1148 bof = LBN_TO_BYTE((offset_t)hp->hs_dirent.ext_lbn, vp->v_vfsp); 1149 1150 /* xarsiz byte must be skipped for data */ 1151 xarsiz = hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift; 1152 1153 /* how many logical blocks in an interleave (data+skip) */ 1154 chunk_lbn_count = hp->hs_dirent.intlf_sz + hp->hs_dirent.intlf_sk; 1155 1156 if (chunk_lbn_count == 0) { 1157 chunk_lbn_count = 1; 1158 } 1159 1160 /* 1161 * Convert interleaving size into bytes. The zero case 1162 * (no interleaving) optimization is handled as a side- 1163 * effect of the read-ahead logic. 1164 */ 1165 if (hp->hs_dirent.intlf_sz == 0) { 1166 chunk_data_bytes = LBN_TO_BYTE(1, vp->v_vfsp); 1167 /* 1168 * Optimization: If our pagesize is a multiple of LBN 1169 * bytes, we can avoid breaking up a page into individual 1170 * lbn-sized requests. 1171 */ 1172 if (PAGESIZE % chunk_data_bytes == 0) { 1173 chunk_lbn_count = BYTE_TO_LBN(PAGESIZE, vp->v_vfsp); 1174 chunk_data_bytes = PAGESIZE; 1175 } 1176 } else { 1177 chunk_data_bytes = 1178 LBN_TO_BYTE(hp->hs_dirent.intlf_sz, vp->v_vfsp); 1179 } 1180 1181 reread: 1182 err = 0; 1183 pagefound = 0; 1184 calcdone = 0; 1185 1186 /* 1187 * Do some read-ahead. This mostly saves us a bit of 1188 * system cpu time more than anything else when doing 1189 * sequential reads. At some point, could do the 1190 * read-ahead asynchronously which might gain us something 1191 * on wall time, but it seems unlikely.... 1192 * 1193 * We do the easy case here, which is to read through 1194 * the end of the chunk, minus whatever's at the end that 1195 * won't exactly fill a page. 1196 */ 1197 if (hp->hs_ra_bytes > 0 && chunk_data_bytes != PAGESIZE) { 1198 which_chunk_lbn = (off + len) / chunk_data_bytes; 1199 extension = ((which_chunk_lbn + 1) * chunk_data_bytes) - off; 1200 extension -= (extension % PAGESIZE); 1201 } else { 1202 extension = roundup(len, PAGESIZE); 1203 } 1204 1205 atomic_inc_64(&fsp->total_pages_requested); 1206 1207 pp = NULL; 1208 again: 1209 /* search for page in buffer */ 1210 if ((pagefound = page_exists(vp, off)) == 0) { 1211 /* 1212 * Need to really do disk IO to get the page. 1213 */ 1214 if (!calcdone) { 1215 extension += hp->hs_ra_bytes; 1216 1217 /* 1218 * Some cd writers don't write sectors that aren't 1219 * used. Also, there's no point in reading sectors 1220 * we'll never look at. So, if we're asked to go 1221 * beyond the end of a file, truncate to the length 1222 * of that file. 1223 * 1224 * Additionally, this behaviour is required by section 1225 * 6.4.5 of ISO 9660:1988(E). 1226 */ 1227 len = MIN(extension ? extension : PAGESIZE, 1228 filsiz - off); 1229 1230 /* A little paranoia. */ 1231 ASSERT(len > 0); 1232 1233 /* 1234 * After all that, make sure we're asking for things 1235 * in units that bdev_strategy() will understand 1236 * (see bug 4202551). 1237 */ 1238 len = roundup(len, DEV_BSIZE); 1239 calcdone = 1; 1240 } 1241 1242 pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp, 1243 &io_len_tmp, off, len, 0); 1244 1245 if (pp == NULL) { 1246 /* 1247 * Pressure on memory, roll back readahead 1248 */ 1249 hp->hs_num_contig = 0; 1250 hp->hs_ra_bytes = 0; 1251 hp->hs_prev_offset = 0; 1252 goto again; 1253 } 1254 1255 io_off = (uint_t)io_off_tmp; 1256 io_len = (uint_t)io_len_tmp; 1257 1258 /* check for truncation */ 1259 /* 1260 * xxx Clean up and return EIO instead? 1261 * xxx Ought to go to u_offset_t for everything, but we 1262 * xxx call lots of things that want uint_t arguments. 1263 */ 1264 ASSERT(io_off == io_off_tmp); 1265 1266 /* 1267 * get enough buffers for worst-case scenario 1268 * (i.e., no coalescing possible). 1269 */ 1270 bufcnt = (len + secsize - 1) / secsize; 1271 bufs = kmem_zalloc(bufcnt * sizeof (struct buf), KM_SLEEP); 1272 vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP); 1273 1274 /* 1275 * Allocate a array of semaphores if we are doing I/O 1276 * scheduling. 1277 */ 1278 if (fsp->hqueue != NULL) 1279 fio_done = kmem_alloc(bufcnt * sizeof (ksema_t), 1280 KM_SLEEP); 1281 for (count = 0; count < bufcnt; count++) { 1282 bioinit(&bufs[count]); 1283 bufs[count].b_edev = devvp->v_rdev; 1284 bufs[count].b_dev = cmpdev(devvp->v_rdev); 1285 bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ; 1286 bufs[count].b_iodone = hsfs_iodone; 1287 bufs[count].b_vp = vp; 1288 bufs[count].b_file = vp; 1289 } 1290 1291 /* 1292 * If our filesize is not an integer multiple of PAGESIZE, 1293 * we zero that part of the last page that's between EOF and 1294 * the PAGESIZE boundary. 1295 */ 1296 xlen = io_len & PAGEOFFSET; 1297 if (xlen != 0) 1298 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 1299 1300 va = NULL; 1301 lastp = NULL; 1302 searchp = pp; 1303 io_end = io_off + io_len; 1304 for (count = 0, byte_offset = io_off; 1305 byte_offset < io_end; count++) { 1306 ASSERT(count < bufcnt); 1307 1308 /* Compute disk address for interleaving. */ 1309 1310 /* considered without skips */ 1311 which_chunk_lbn = byte_offset / chunk_data_bytes; 1312 1313 /* factor in skips */ 1314 offset_lbn = which_chunk_lbn * chunk_lbn_count; 1315 1316 /* convert to physical byte offset for lbn */ 1317 offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp); 1318 1319 /* don't forget offset into lbn */ 1320 offset_extra = byte_offset % chunk_data_bytes; 1321 1322 /* get virtual block number for driver */ 1323 driver_block = 1324 lbtodb(bof + xarsiz + offset_bytes + offset_extra); 1325 1326 if (lastp != searchp) { 1327 /* this branch taken first time through loop */ 1328 va = vas[count] = 1329 ppmapin(searchp, PROT_WRITE, (caddr_t)-1); 1330 /* ppmapin() guarantees not to return NULL */ 1331 } else { 1332 vas[count] = NULL; 1333 } 1334 1335 bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE; 1336 bufs[count].b_offset = 1337 (offset_t)(byte_offset - io_off + off); 1338 1339 /* 1340 * We specifically use the b_lblkno member here 1341 * as even in the 32 bit world driver_block can 1342 * get very large in line with the ISO9660 spec. 1343 */ 1344 1345 bufs[count].b_lblkno = driver_block; 1346 1347 remaining_bytes = 1348 ((which_chunk_lbn + 1) * chunk_data_bytes) 1349 - byte_offset; 1350 1351 /* 1352 * remaining_bytes can't be zero, as we derived 1353 * which_chunk_lbn directly from byte_offset. 1354 */ 1355 if ((remaining_bytes + byte_offset) < (off + len)) { 1356 /* coalesce-read the rest of the chunk */ 1357 bufs[count].b_bcount = remaining_bytes; 1358 } else { 1359 /* get the final bits */ 1360 bufs[count].b_bcount = off + len - byte_offset; 1361 } 1362 1363 /* 1364 * It would be nice to do multiple pages' 1365 * worth at once here when the opportunity 1366 * arises, as that has been shown to improve 1367 * our wall time. However, to do that 1368 * requires that we use the pageio subsystem, 1369 * which doesn't mix well with what we're 1370 * already using here. We can't use pageio 1371 * all the time, because that subsystem 1372 * assumes that a page is stored in N 1373 * contiguous blocks on the device. 1374 * Interleaving violates that assumption. 1375 * 1376 * Update: This is now not so big a problem 1377 * because of the I/O scheduler sitting below 1378 * that can re-order and coalesce I/O requests. 1379 */ 1380 1381 remainder = PAGESIZE - (byte_offset % PAGESIZE); 1382 if (bufs[count].b_bcount > remainder) { 1383 bufs[count].b_bcount = remainder; 1384 } 1385 1386 bufs[count].b_bufsize = bufs[count].b_bcount; 1387 if (((offset_t)byte_offset + bufs[count].b_bcount) > 1388 HS_MAXFILEOFF) { 1389 break; 1390 } 1391 byte_offset += bufs[count].b_bcount; 1392 1393 if (fsp->hqueue == NULL) { 1394 (void) bdev_strategy(&bufs[count]); 1395 1396 } else { 1397 /* 1398 * We are scheduling I/O so we need to enqueue 1399 * requests rather than calling bdev_strategy 1400 * here. A later invocation of the scheduling 1401 * function will take care of doing the actual 1402 * I/O as it selects requests from the queue as 1403 * per the scheduling logic. 1404 */ 1405 struct hio *hsio = kmem_cache_alloc(hio_cache, 1406 KM_SLEEP); 1407 1408 sema_init(&fio_done[count], 0, NULL, 1409 SEMA_DEFAULT, NULL); 1410 hsio->bp = &bufs[count]; 1411 hsio->sema = &fio_done[count]; 1412 hsio->io_lblkno = bufs[count].b_lblkno; 1413 hsio->nblocks = howmany(hsio->bp->b_bcount, 1414 DEV_BSIZE); 1415 1416 /* used for deadline */ 1417 hsio->io_timestamp = 1418 drv_hztousec(ddi_get_lbolt()); 1419 1420 /* for I/O coalescing */ 1421 hsio->contig_chain = NULL; 1422 hsched_enqueue_io(fsp, hsio, 0); 1423 } 1424 1425 lwp_stat_update(LWP_STAT_INBLK, 1); 1426 lastp = searchp; 1427 if ((remainder - bufs[count].b_bcount) < 1) { 1428 searchp = searchp->p_next; 1429 } 1430 } 1431 1432 bufsused = count; 1433 /* Now wait for everything to come in */ 1434 if (fsp->hqueue == NULL) { 1435 for (count = 0; count < bufsused; count++) { 1436 if (err == 0) { 1437 err = biowait(&bufs[count]); 1438 } else 1439 (void) biowait(&bufs[count]); 1440 } 1441 } else { 1442 for (count = 0; count < bufsused; count++) { 1443 struct buf *wbuf; 1444 1445 /* 1446 * Invoke scheduling function till our buf 1447 * is processed. In doing this it might 1448 * process bufs enqueued by other threads 1449 * which is good. 1450 */ 1451 wbuf = &bufs[count]; 1452 DTRACE_PROBE1(hsfs_io_wait, struct buf *, wbuf); 1453 while (sema_tryp(&fio_done[count]) == 0) { 1454 /* 1455 * hsched_invoke_strategy will return 1 1456 * if the I/O queue is empty. This means 1457 * that there is another thread who has 1458 * issued our buf and is waiting. So we 1459 * just block instead of spinning. 1460 */ 1461 if (hsched_invoke_strategy(fsp)) { 1462 sema_p(&fio_done[count]); 1463 break; 1464 } 1465 } 1466 sema_destroy(&fio_done[count]); 1467 DTRACE_PROBE1(hsfs_io_done, struct buf *, wbuf); 1468 1469 if (err == 0) { 1470 err = geterror(wbuf); 1471 } 1472 } 1473 kmem_free(fio_done, bufcnt * sizeof (ksema_t)); 1474 } 1475 1476 /* Don't leak resources */ 1477 for (count = 0; count < bufcnt; count++) { 1478 biofini(&bufs[count]); 1479 if (count < bufsused && vas[count] != NULL) { 1480 ppmapout(vas[count]); 1481 } 1482 } 1483 1484 kmem_free(vas, bufcnt * sizeof (caddr_t)); 1485 kmem_free(bufs, bufcnt * sizeof (struct buf)); 1486 } 1487 1488 if (err) { 1489 pvn_read_done(pp, B_ERROR); 1490 return (err); 1491 } 1492 1493 /* 1494 * Lock the requested page, and the one after it if possible. 1495 * Don't bother if our caller hasn't given us a place to stash 1496 * the page pointers, since otherwise we'd lock pages that would 1497 * never get unlocked. 1498 */ 1499 if (pagefound) { 1500 int index; 1501 ulong_t soff; 1502 1503 /* 1504 * Make sure it's in memory before we say it's here. 1505 */ 1506 if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) { 1507 hsfs_lostpage++; 1508 goto reread; 1509 } 1510 1511 pl[0] = pp; 1512 index = 1; 1513 atomic_inc_64(&fsp->cache_read_pages); 1514 1515 /* 1516 * Try to lock the next page, if it exists, without 1517 * blocking. 1518 */ 1519 plsz -= PAGESIZE; 1520 /* LINTED (plsz is unsigned) */ 1521 for (soff = off + PAGESIZE; plsz > 0; 1522 soff += PAGESIZE, plsz -= PAGESIZE) { 1523 pp = page_lookup_nowait(vp, (u_offset_t)soff, 1524 SE_SHARED); 1525 if (pp == NULL) 1526 break; 1527 pl[index++] = pp; 1528 } 1529 pl[index] = NULL; 1530 1531 /* 1532 * Schedule a semi-asynchronous readahead if we are 1533 * accessing the last cached page for the current 1534 * file. 1535 * 1536 * Doing this here means that readaheads will be 1537 * issued only if cache-hits occur. This is an advantage 1538 * since cache-hits would mean that readahead is giving 1539 * the desired benefit. If cache-hits do not occur there 1540 * is no point in reading ahead of time - the system 1541 * is loaded anyway. 1542 */ 1543 if (fsp->hqueue != NULL && 1544 hp->hs_prev_offset - off == PAGESIZE && 1545 hp->hs_prev_offset < filsiz && 1546 hp->hs_ra_bytes > 0 && 1547 !page_exists(vp, hp->hs_prev_offset)) { 1548 (void) hsfs_getpage_ra(vp, hp->hs_prev_offset, seg, 1549 addr + PAGESIZE, hp, fsp, xarsiz, bof, 1550 chunk_lbn_count, chunk_data_bytes); 1551 } 1552 1553 return (0); 1554 } 1555 1556 if (pp != NULL) { 1557 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 1558 } 1559 1560 return (err); 1561 } 1562 1563 /*ARGSUSED*/ 1564 static int 1565 hsfs_getpage( 1566 struct vnode *vp, 1567 offset_t off, 1568 size_t len, 1569 uint_t *protp, 1570 struct page *pl[], 1571 size_t plsz, 1572 struct seg *seg, 1573 caddr_t addr, 1574 enum seg_rw rw, 1575 struct cred *cred, 1576 caller_context_t *ct) 1577 { 1578 int err; 1579 uint_t filsiz; 1580 struct hsfs *fsp; 1581 struct hsnode *hp; 1582 1583 fsp = VFS_TO_HSFS(vp->v_vfsp); 1584 hp = VTOH(vp); 1585 1586 /* does not support write */ 1587 if (rw == S_WRITE) { 1588 panic("write attempt on READ ONLY HSFS"); 1589 /*NOTREACHED*/ 1590 } 1591 1592 if (vp->v_flag & VNOMAP) { 1593 return (ENOSYS); 1594 } 1595 1596 ASSERT(off <= HS_MAXFILEOFF); 1597 1598 /* 1599 * Determine file data size for EOF check. 1600 */ 1601 filsiz = hp->hs_dirent.ext_size; 1602 if ((off + len) > (offset_t)(filsiz + PAGEOFFSET) && seg != segkmap) 1603 return (EFAULT); /* beyond EOF */ 1604 1605 /* 1606 * Async Read-ahead computation. 1607 * This attempts to detect sequential access pattern and 1608 * enables reading extra pages ahead of time. 1609 */ 1610 if (fsp->hqueue != NULL) { 1611 /* 1612 * This check for sequential access also takes into 1613 * account segmap weirdness when reading in chunks 1614 * less than the segmap size of 8K. 1615 */ 1616 if (hp->hs_prev_offset == off || (off < 1617 hp->hs_prev_offset && off + MAX(len, PAGESIZE) 1618 >= hp->hs_prev_offset)) { 1619 if (hp->hs_num_contig < 1620 (seq_contig_requests - 1)) { 1621 hp->hs_num_contig++; 1622 1623 } else { 1624 /* 1625 * We increase readahead quantum till 1626 * a predefined max. max_readahead_bytes 1627 * is a multiple of PAGESIZE. 1628 */ 1629 if (hp->hs_ra_bytes < 1630 fsp->hqueue->max_ra_bytes) { 1631 hp->hs_ra_bytes += PAGESIZE; 1632 } 1633 } 1634 } else { 1635 /* 1636 * Not contiguous so reduce read ahead counters. 1637 */ 1638 if (hp->hs_ra_bytes > 0) 1639 hp->hs_ra_bytes -= PAGESIZE; 1640 1641 if (hp->hs_ra_bytes <= 0) { 1642 hp->hs_ra_bytes = 0; 1643 if (hp->hs_num_contig > 0) 1644 hp->hs_num_contig--; 1645 } 1646 } 1647 /* 1648 * Length must be rounded up to page boundary. 1649 * since we read in units of pages. 1650 */ 1651 hp->hs_prev_offset = off + roundup(len, PAGESIZE); 1652 DTRACE_PROBE1(hsfs_compute_ra, struct hsnode *, hp); 1653 } 1654 if (protp != NULL) 1655 *protp = PROT_ALL; 1656 1657 if (len <= PAGESIZE) 1658 err = hsfs_getapage(vp, (u_offset_t)off, len, protp, pl, plsz, 1659 seg, addr, rw, cred); 1660 else 1661 err = pvn_getpages(hsfs_getapage, vp, off, len, protp, 1662 pl, plsz, seg, addr, rw, cred); 1663 1664 return (err); 1665 } 1666 1667 1668 1669 /* 1670 * This function should never be called. We need to have it to pass 1671 * it as an argument to other functions. 1672 */ 1673 /*ARGSUSED*/ 1674 int 1675 hsfs_putapage( 1676 vnode_t *vp, 1677 page_t *pp, 1678 u_offset_t *offp, 1679 size_t *lenp, 1680 int flags, 1681 cred_t *cr) 1682 { 1683 /* should never happen - just destroy it */ 1684 cmn_err(CE_NOTE, "hsfs_putapage: dirty HSFS page"); 1685 pvn_write_done(pp, B_ERROR | B_WRITE | B_INVAL | B_FORCE | flags); 1686 return (0); 1687 } 1688 1689 1690 /* 1691 * The only flags we support are B_INVAL, B_FREE and B_DONTNEED. 1692 * B_INVAL is set by: 1693 * 1694 * 1) the MC_SYNC command of memcntl(2) to support the MS_INVALIDATE flag. 1695 * 2) the MC_ADVISE command of memcntl(2) with the MADV_DONTNEED advice 1696 * which translates to an MC_SYNC with the MS_INVALIDATE flag. 1697 * 1698 * The B_FREE (as well as the B_DONTNEED) flag is set when the 1699 * MADV_SEQUENTIAL advice has been used. VOP_PUTPAGE is invoked 1700 * from SEGVN to release pages behind a pagefault. 1701 */ 1702 /*ARGSUSED*/ 1703 static int 1704 hsfs_putpage( 1705 struct vnode *vp, 1706 offset_t off, 1707 size_t len, 1708 int flags, 1709 struct cred *cr, 1710 caller_context_t *ct) 1711 { 1712 int error = 0; 1713 1714 if (vp->v_count == 0) { 1715 panic("hsfs_putpage: bad v_count"); 1716 /*NOTREACHED*/ 1717 } 1718 1719 if (vp->v_flag & VNOMAP) 1720 return (ENOSYS); 1721 1722 ASSERT(off <= HS_MAXFILEOFF); 1723 1724 if (!vn_has_cached_data(vp)) /* no pages mapped */ 1725 return (0); 1726 1727 if (len == 0) { /* from 'off' to EOF */ 1728 error = pvn_vplist_dirty(vp, off, hsfs_putapage, flags, cr); 1729 } else { 1730 offset_t end_off = off + len; 1731 offset_t file_size = VTOH(vp)->hs_dirent.ext_size; 1732 offset_t io_off; 1733 1734 file_size = (file_size + PAGESIZE - 1) & PAGEMASK; 1735 if (end_off > file_size) 1736 end_off = file_size; 1737 1738 for (io_off = off; io_off < end_off; io_off += PAGESIZE) { 1739 page_t *pp; 1740 1741 /* 1742 * We insist on getting the page only if we are 1743 * about to invalidate, free or write it and 1744 * the B_ASYNC flag is not set. 1745 */ 1746 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 1747 pp = page_lookup(vp, io_off, 1748 (flags & (B_INVAL | B_FREE)) ? 1749 SE_EXCL : SE_SHARED); 1750 } else { 1751 pp = page_lookup_nowait(vp, io_off, 1752 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 1753 } 1754 1755 if (pp == NULL) 1756 continue; 1757 1758 /* 1759 * Normally pvn_getdirty() should return 0, which 1760 * impies that it has done the job for us. 1761 * The shouldn't-happen scenario is when it returns 1. 1762 * This means that the page has been modified and 1763 * needs to be put back. 1764 * Since we can't write on a CD, we fake a failed 1765 * I/O and force pvn_write_done() to destroy the page. 1766 */ 1767 if (pvn_getdirty(pp, flags) == 1) { 1768 cmn_err(CE_NOTE, 1769 "hsfs_putpage: dirty HSFS page"); 1770 pvn_write_done(pp, flags | 1771 B_ERROR | B_WRITE | B_INVAL | B_FORCE); 1772 } 1773 } 1774 } 1775 return (error); 1776 } 1777 1778 1779 /*ARGSUSED*/ 1780 static int 1781 hsfs_map( 1782 struct vnode *vp, 1783 offset_t off, 1784 struct as *as, 1785 caddr_t *addrp, 1786 size_t len, 1787 uchar_t prot, 1788 uchar_t maxprot, 1789 uint_t flags, 1790 struct cred *cred, 1791 caller_context_t *ct) 1792 { 1793 struct segvn_crargs vn_a; 1794 int error; 1795 1796 /* VFS_RECORD(vp->v_vfsp, VS_MAP, VS_CALL); */ 1797 1798 if (vp->v_flag & VNOMAP) 1799 return (ENOSYS); 1800 1801 if (off > HS_MAXFILEOFF || off < 0 || 1802 (off + len) < 0 || (off + len) > HS_MAXFILEOFF) 1803 return (ENXIO); 1804 1805 if (vp->v_type != VREG) { 1806 return (ENODEV); 1807 } 1808 1809 /* 1810 * If file is being locked, disallow mapping. 1811 */ 1812 if (vn_has_mandatory_locks(vp, VTOH(vp)->hs_dirent.mode)) 1813 return (EAGAIN); 1814 1815 as_rangelock(as); 1816 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 1817 if (error != 0) { 1818 as_rangeunlock(as); 1819 return (error); 1820 } 1821 1822 vn_a.vp = vp; 1823 vn_a.offset = off; 1824 vn_a.type = flags & MAP_TYPE; 1825 vn_a.prot = prot; 1826 vn_a.maxprot = maxprot; 1827 vn_a.flags = flags & ~MAP_TYPE; 1828 vn_a.cred = cred; 1829 vn_a.amp = NULL; 1830 vn_a.szc = 0; 1831 vn_a.lgrp_mem_policy_flags = 0; 1832 1833 error = as_map(as, *addrp, len, segvn_create, &vn_a); 1834 as_rangeunlock(as); 1835 return (error); 1836 } 1837 1838 /* ARGSUSED */ 1839 static int 1840 hsfs_addmap( 1841 struct vnode *vp, 1842 offset_t off, 1843 struct as *as, 1844 caddr_t addr, 1845 size_t len, 1846 uchar_t prot, 1847 uchar_t maxprot, 1848 uint_t flags, 1849 struct cred *cr, 1850 caller_context_t *ct) 1851 { 1852 struct hsnode *hp; 1853 1854 if (vp->v_flag & VNOMAP) 1855 return (ENOSYS); 1856 1857 hp = VTOH(vp); 1858 mutex_enter(&hp->hs_contents_lock); 1859 hp->hs_mapcnt += btopr(len); 1860 mutex_exit(&hp->hs_contents_lock); 1861 return (0); 1862 } 1863 1864 /*ARGSUSED*/ 1865 static int 1866 hsfs_delmap( 1867 struct vnode *vp, 1868 offset_t off, 1869 struct as *as, 1870 caddr_t addr, 1871 size_t len, 1872 uint_t prot, 1873 uint_t maxprot, 1874 uint_t flags, 1875 struct cred *cr, 1876 caller_context_t *ct) 1877 { 1878 struct hsnode *hp; 1879 1880 if (vp->v_flag & VNOMAP) 1881 return (ENOSYS); 1882 1883 hp = VTOH(vp); 1884 mutex_enter(&hp->hs_contents_lock); 1885 hp->hs_mapcnt -= btopr(len); /* Count released mappings */ 1886 ASSERT(hp->hs_mapcnt >= 0); 1887 mutex_exit(&hp->hs_contents_lock); 1888 return (0); 1889 } 1890 1891 /* ARGSUSED */ 1892 static int 1893 hsfs_seek( 1894 struct vnode *vp, 1895 offset_t ooff, 1896 offset_t *noffp, 1897 caller_context_t *ct) 1898 { 1899 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 1900 } 1901 1902 /* ARGSUSED */ 1903 static int 1904 hsfs_frlock( 1905 struct vnode *vp, 1906 int cmd, 1907 struct flock64 *bfp, 1908 int flag, 1909 offset_t offset, 1910 struct flk_callback *flk_cbp, 1911 cred_t *cr, 1912 caller_context_t *ct) 1913 { 1914 struct hsnode *hp = VTOH(vp); 1915 1916 /* 1917 * If the file is being mapped, disallow fs_frlock. 1918 * We are not holding the hs_contents_lock while checking 1919 * hs_mapcnt because the current locking strategy drops all 1920 * locks before calling fs_frlock. 1921 * So, hs_mapcnt could change before we enter fs_frlock making 1922 * it meaningless to have held hs_contents_lock in the first place. 1923 */ 1924 if (hp->hs_mapcnt > 0 && MANDLOCK(vp, hp->hs_dirent.mode)) 1925 return (EAGAIN); 1926 1927 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 1928 } 1929 1930 static int 1931 hsched_deadline_compare(const void *x1, const void *x2) 1932 { 1933 const struct hio *h1 = x1; 1934 const struct hio *h2 = x2; 1935 1936 if (h1->io_timestamp < h2->io_timestamp) 1937 return (-1); 1938 if (h1->io_timestamp > h2->io_timestamp) 1939 return (1); 1940 1941 if (h1->io_lblkno < h2->io_lblkno) 1942 return (-1); 1943 if (h1->io_lblkno > h2->io_lblkno) 1944 return (1); 1945 1946 if (h1 < h2) 1947 return (-1); 1948 if (h1 > h2) 1949 return (1); 1950 1951 return (0); 1952 } 1953 1954 static int 1955 hsched_offset_compare(const void *x1, const void *x2) 1956 { 1957 const struct hio *h1 = x1; 1958 const struct hio *h2 = x2; 1959 1960 if (h1->io_lblkno < h2->io_lblkno) 1961 return (-1); 1962 if (h1->io_lblkno > h2->io_lblkno) 1963 return (1); 1964 1965 if (h1 < h2) 1966 return (-1); 1967 if (h1 > h2) 1968 return (1); 1969 1970 return (0); 1971 } 1972 1973 void 1974 hsched_init_caches(void) 1975 { 1976 hio_cache = kmem_cache_create("hsfs_hio_cache", 1977 sizeof (struct hio), 0, NULL, 1978 NULL, NULL, NULL, NULL, 0); 1979 1980 hio_info_cache = kmem_cache_create("hsfs_hio_info_cache", 1981 sizeof (struct hio_info), 0, NULL, 1982 NULL, NULL, NULL, NULL, 0); 1983 } 1984 1985 void 1986 hsched_fini_caches(void) 1987 { 1988 kmem_cache_destroy(hio_cache); 1989 kmem_cache_destroy(hio_info_cache); 1990 } 1991 1992 /* 1993 * Initialize I/O scheduling structures. This is called via hsfs_mount 1994 */ 1995 void 1996 hsched_init(struct hsfs *fsp, int fsid, struct modlinkage *modlinkage) 1997 { 1998 struct hsfs_queue *hqueue = fsp->hqueue; 1999 struct vnode *vp = fsp->hsfs_devvp; 2000 2001 /* TaskQ name of the form: hsched_task_ + stringof(int) */ 2002 char namebuf[23]; 2003 int error, err; 2004 struct dk_cinfo info; 2005 ldi_handle_t lh; 2006 ldi_ident_t li; 2007 2008 /* 2009 * Default maxtransfer = 16k chunk 2010 */ 2011 hqueue->dev_maxtransfer = 16384; 2012 2013 /* 2014 * Try to fetch the maximum device transfer size. This is used to 2015 * ensure that a coalesced block does not exceed the maxtransfer. 2016 */ 2017 err = ldi_ident_from_mod(modlinkage, &li); 2018 if (err) { 2019 cmn_err(CE_NOTE, "hsched_init: Querying device failed"); 2020 cmn_err(CE_NOTE, "hsched_init: ldi_ident_from_mod err=%d\n", 2021 err); 2022 goto set_ra; 2023 } 2024 2025 err = ldi_open_by_dev(&(vp->v_rdev), OTYP_CHR, FREAD, CRED(), &lh, li); 2026 ldi_ident_release(li); 2027 if (err) { 2028 cmn_err(CE_NOTE, "hsched_init: Querying device failed"); 2029 cmn_err(CE_NOTE, "hsched_init: ldi_open err=%d\n", err); 2030 goto set_ra; 2031 } 2032 2033 error = ldi_ioctl(lh, DKIOCINFO, (intptr_t)&info, FKIOCTL, 2034 CRED(), &err); 2035 err = ldi_close(lh, FREAD, CRED()); 2036 if (err) { 2037 cmn_err(CE_NOTE, "hsched_init: Querying device failed"); 2038 cmn_err(CE_NOTE, "hsched_init: ldi_close err=%d\n", err); 2039 } 2040 2041 if (error == 0) { 2042 hqueue->dev_maxtransfer = ldbtob(info.dki_maxtransfer); 2043 } 2044 2045 set_ra: 2046 /* 2047 * Max size of data to read ahead for sequential access pattern. 2048 * Conservative to avoid letting the underlying CD drive to spin 2049 * down, in case the application is reading slowly. 2050 * We read ahead upto a max of 4 pages. 2051 */ 2052 hqueue->max_ra_bytes = PAGESIZE * 8; 2053 2054 mutex_init(&(hqueue->hsfs_queue_lock), NULL, MUTEX_DEFAULT, NULL); 2055 mutex_init(&(hqueue->strategy_lock), NULL, MUTEX_DEFAULT, NULL); 2056 avl_create(&(hqueue->read_tree), hsched_offset_compare, 2057 sizeof (struct hio), offsetof(struct hio, io_offset_node)); 2058 avl_create(&(hqueue->deadline_tree), hsched_deadline_compare, 2059 sizeof (struct hio), offsetof(struct hio, io_deadline_node)); 2060 2061 (void) snprintf(namebuf, sizeof (namebuf), "hsched_task_%d", fsid); 2062 hqueue->ra_task = taskq_create(namebuf, hsfs_taskq_nthreads, 2063 minclsyspri + 2, 1, 104857600 / PAGESIZE, TASKQ_DYNAMIC); 2064 2065 hqueue->next = NULL; 2066 hqueue->nbuf = kmem_zalloc(sizeof (struct buf), KM_SLEEP); 2067 } 2068 2069 void 2070 hsched_fini(struct hsfs_queue *hqueue) 2071 { 2072 if (hqueue != NULL) { 2073 /* 2074 * Remove the sentinel if there was one. 2075 */ 2076 if (hqueue->next != NULL) { 2077 avl_remove(&hqueue->read_tree, hqueue->next); 2078 kmem_cache_free(hio_cache, hqueue->next); 2079 } 2080 avl_destroy(&(hqueue->read_tree)); 2081 avl_destroy(&(hqueue->deadline_tree)); 2082 mutex_destroy(&(hqueue->hsfs_queue_lock)); 2083 mutex_destroy(&(hqueue->strategy_lock)); 2084 2085 /* 2086 * If there are any existing readahead threads running 2087 * taskq_destroy will wait for them to finish. 2088 */ 2089 taskq_destroy(hqueue->ra_task); 2090 kmem_free(hqueue->nbuf, sizeof (struct buf)); 2091 } 2092 } 2093 2094 /* 2095 * Determine if two I/O requests are adjacent to each other so 2096 * that they can coalesced. 2097 */ 2098 #define IS_ADJACENT(io, nio) \ 2099 (((io)->io_lblkno + (io)->nblocks == (nio)->io_lblkno) && \ 2100 (io)->bp->b_edev == (nio)->bp->b_edev) 2101 2102 /* 2103 * This performs the actual I/O scheduling logic. We use the Circular 2104 * Look algorithm here. Sort the I/O requests in ascending order of 2105 * logical block number and process them starting with the lowest 2106 * numbered block and progressing towards higher block numbers in the 2107 * queue. Once there are no more higher numbered blocks, start again 2108 * with the lowest one. This is good for CD/DVD as you keep moving 2109 * the head in one direction along the outward spiral track and avoid 2110 * too many seeks as much as possible. The re-ordering also allows 2111 * us to coalesce adjacent requests into one larger request. 2112 * This is thus essentially a 1-way Elevator with front merging. 2113 * 2114 * In addition each read request here has a deadline and will be 2115 * processed out of turn if the deadline (500ms) expires. 2116 * 2117 * This function is necessarily serialized via hqueue->strategy_lock. 2118 * This function sits just below hsfs_getapage and processes all read 2119 * requests orginating from that function. 2120 */ 2121 int 2122 hsched_invoke_strategy(struct hsfs *fsp) 2123 { 2124 struct hsfs_queue *hqueue; 2125 struct buf *nbuf; 2126 struct hio *fio, *nio, *tio, *prev, *last; 2127 size_t bsize, soffset, offset, data; 2128 int bioret, bufcount; 2129 struct vnode *fvp; 2130 ksema_t *io_done; 2131 caddr_t iodata; 2132 2133 hqueue = fsp->hqueue; 2134 mutex_enter(&hqueue->strategy_lock); 2135 mutex_enter(&hqueue->hsfs_queue_lock); 2136 2137 /* 2138 * Check for Deadline expiration first 2139 */ 2140 fio = avl_first(&hqueue->deadline_tree); 2141 2142 /* 2143 * Paranoid check for empty I/O queue. Both deadline 2144 * and read trees contain same data sorted in different 2145 * ways. So empty deadline tree = empty read tree. 2146 */ 2147 if (fio == NULL) { 2148 /* 2149 * Remove the sentinel if there was one. 2150 */ 2151 if (hqueue->next != NULL) { 2152 avl_remove(&hqueue->read_tree, hqueue->next); 2153 kmem_cache_free(hio_cache, hqueue->next); 2154 hqueue->next = NULL; 2155 } 2156 mutex_exit(&hqueue->hsfs_queue_lock); 2157 mutex_exit(&hqueue->strategy_lock); 2158 return (1); 2159 } 2160 2161 if (drv_hztousec(ddi_get_lbolt()) - fio->io_timestamp 2162 < HSFS_READ_DEADLINE) { 2163 /* 2164 * Apply standard scheduling logic. This uses the 2165 * C-LOOK approach. Process I/O requests in ascending 2166 * order of logical block address till no subsequent 2167 * higher numbered block request remains. Then start 2168 * again from the lowest numbered block in the queue. 2169 * 2170 * We do this cheaply here by means of a sentinel. 2171 * The last processed I/O structure from the previous 2172 * invocation of this func, is left dangling in the 2173 * read_tree so that we can easily scan to the next 2174 * higher numbered request and remove the sentinel. 2175 */ 2176 fio = NULL; 2177 if (hqueue->next != NULL) { 2178 fio = AVL_NEXT(&hqueue->read_tree, hqueue->next); 2179 avl_remove(&hqueue->read_tree, hqueue->next); 2180 kmem_cache_free(hio_cache, hqueue->next); 2181 hqueue->next = NULL; 2182 } 2183 if (fio == NULL) { 2184 fio = avl_first(&hqueue->read_tree); 2185 } 2186 } else if (hqueue->next != NULL) { 2187 DTRACE_PROBE1(hsfs_deadline_expiry, struct hio *, fio); 2188 2189 avl_remove(&hqueue->read_tree, hqueue->next); 2190 kmem_cache_free(hio_cache, hqueue->next); 2191 hqueue->next = NULL; 2192 } 2193 2194 /* 2195 * In addition we try to coalesce contiguous 2196 * requests into one bigger request. 2197 */ 2198 bufcount = 1; 2199 bsize = ldbtob(fio->nblocks); 2200 fvp = fio->bp->b_file; 2201 nio = AVL_NEXT(&hqueue->read_tree, fio); 2202 tio = fio; 2203 while (nio != NULL && IS_ADJACENT(tio, nio) && 2204 bsize < hqueue->dev_maxtransfer) { 2205 avl_remove(&hqueue->deadline_tree, tio); 2206 avl_remove(&hqueue->read_tree, tio); 2207 tio->contig_chain = nio; 2208 bsize += ldbtob(nio->nblocks); 2209 prev = tio; 2210 tio = nio; 2211 2212 /* 2213 * This check is required to detect the case where 2214 * we are merging adjacent buffers belonging to 2215 * different files. fvp is used to set the b_file 2216 * parameter in the coalesced buf. b_file is used 2217 * by DTrace so we do not want DTrace to accrue 2218 * requests to two different files to any one file. 2219 */ 2220 if (fvp && tio->bp->b_file != fvp) { 2221 fvp = NULL; 2222 } 2223 2224 nio = AVL_NEXT(&hqueue->read_tree, nio); 2225 bufcount++; 2226 } 2227 2228 /* 2229 * tio is not removed from the read_tree as it serves as a sentinel 2230 * to cheaply allow us to scan to the next higher numbered I/O 2231 * request. 2232 */ 2233 hqueue->next = tio; 2234 avl_remove(&hqueue->deadline_tree, tio); 2235 mutex_exit(&hqueue->hsfs_queue_lock); 2236 DTRACE_PROBE3(hsfs_io_dequeued, struct hio *, fio, int, bufcount, 2237 size_t, bsize); 2238 2239 /* 2240 * The benefit of coalescing occurs if the the savings in I/O outweighs 2241 * the cost of doing the additional work below. 2242 * It was observed that coalescing 2 buffers results in diminishing 2243 * returns, so we do coalescing if we have >2 adjacent bufs. 2244 */ 2245 if (bufcount > hsched_coalesce_min) { 2246 /* 2247 * We have coalesced blocks. First allocate mem and buf for 2248 * the entire coalesced chunk. 2249 * Since we are guaranteed single-threaded here we pre-allocate 2250 * one buf at mount time and that is re-used every time. This 2251 * is a synthesized buf structure that uses kmem_alloced chunk. 2252 * Not quite a normal buf attached to pages. 2253 */ 2254 fsp->coalesced_bytes += bsize; 2255 nbuf = hqueue->nbuf; 2256 bioinit(nbuf); 2257 nbuf->b_edev = fio->bp->b_edev; 2258 nbuf->b_dev = fio->bp->b_dev; 2259 nbuf->b_flags = fio->bp->b_flags; 2260 nbuf->b_iodone = fio->bp->b_iodone; 2261 iodata = kmem_alloc(bsize, KM_SLEEP); 2262 nbuf->b_un.b_addr = iodata; 2263 nbuf->b_lblkno = fio->bp->b_lblkno; 2264 nbuf->b_vp = fvp; 2265 nbuf->b_file = fvp; 2266 nbuf->b_bcount = bsize; 2267 nbuf->b_bufsize = bsize; 2268 2269 DTRACE_PROBE3(hsfs_coalesced_io_start, struct hio *, fio, int, 2270 bufcount, size_t, bsize); 2271 2272 /* 2273 * Perform I/O for the coalesced block. 2274 */ 2275 (void) bdev_strategy(nbuf); 2276 2277 /* 2278 * Duplicate the last IO node to leave the sentinel alone. 2279 * The sentinel is freed in the next invocation of this 2280 * function. 2281 */ 2282 prev->contig_chain = kmem_cache_alloc(hio_cache, KM_SLEEP); 2283 prev->contig_chain->bp = tio->bp; 2284 prev->contig_chain->sema = tio->sema; 2285 tio = prev->contig_chain; 2286 tio->contig_chain = NULL; 2287 soffset = ldbtob(fio->bp->b_lblkno); 2288 nio = fio; 2289 2290 bioret = biowait(nbuf); 2291 data = bsize - nbuf->b_resid; 2292 biofini(nbuf); 2293 mutex_exit(&hqueue->strategy_lock); 2294 2295 /* 2296 * We use the b_resid parameter to detect how much 2297 * data was succesfully transferred. We will signal 2298 * a success to all the fully retrieved actual bufs 2299 * before coalescing, rest is signaled as error, 2300 * if any. 2301 */ 2302 tio = nio; 2303 DTRACE_PROBE3(hsfs_coalesced_io_done, struct hio *, nio, 2304 int, bioret, size_t, data); 2305 2306 /* 2307 * Copy data and signal success to all the bufs 2308 * which can be fully satisfied from b_resid. 2309 */ 2310 while (nio != NULL && data >= nio->bp->b_bcount) { 2311 offset = ldbtob(nio->bp->b_lblkno) - soffset; 2312 bcopy(iodata + offset, nio->bp->b_un.b_addr, 2313 nio->bp->b_bcount); 2314 data -= nio->bp->b_bcount; 2315 bioerror(nio->bp, 0); 2316 biodone(nio->bp); 2317 sema_v(nio->sema); 2318 tio = nio; 2319 nio = nio->contig_chain; 2320 kmem_cache_free(hio_cache, tio); 2321 } 2322 2323 /* 2324 * Signal error to all the leftover bufs (if any) 2325 * after b_resid data is exhausted. 2326 */ 2327 while (nio != NULL) { 2328 nio->bp->b_resid = nio->bp->b_bcount - data; 2329 bzero(nio->bp->b_un.b_addr + data, nio->bp->b_resid); 2330 bioerror(nio->bp, bioret); 2331 biodone(nio->bp); 2332 sema_v(nio->sema); 2333 tio = nio; 2334 nio = nio->contig_chain; 2335 kmem_cache_free(hio_cache, tio); 2336 data = 0; 2337 } 2338 kmem_free(iodata, bsize); 2339 } else { 2340 2341 nbuf = tio->bp; 2342 io_done = tio->sema; 2343 nio = fio; 2344 last = tio; 2345 2346 while (nio != NULL) { 2347 (void) bdev_strategy(nio->bp); 2348 nio = nio->contig_chain; 2349 } 2350 nio = fio; 2351 mutex_exit(&hqueue->strategy_lock); 2352 2353 while (nio != NULL) { 2354 if (nio == last) { 2355 (void) biowait(nbuf); 2356 sema_v(io_done); 2357 break; 2358 /* sentinel last not freed. See above. */ 2359 } else { 2360 (void) biowait(nio->bp); 2361 sema_v(nio->sema); 2362 } 2363 tio = nio; 2364 nio = nio->contig_chain; 2365 kmem_cache_free(hio_cache, tio); 2366 } 2367 } 2368 return (0); 2369 } 2370 2371 /* 2372 * Insert an I/O request in the I/O scheduler's pipeline 2373 * Using AVL tree makes it easy to reorder the I/O request 2374 * based on logical block number. 2375 */ 2376 static void 2377 hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra) 2378 { 2379 struct hsfs_queue *hqueue = fsp->hqueue; 2380 2381 mutex_enter(&hqueue->hsfs_queue_lock); 2382 2383 fsp->physical_read_bytes += hsio->bp->b_bcount; 2384 if (ra) 2385 fsp->readahead_bytes += hsio->bp->b_bcount; 2386 2387 avl_add(&hqueue->deadline_tree, hsio); 2388 avl_add(&hqueue->read_tree, hsio); 2389 2390 DTRACE_PROBE3(hsfs_io_enqueued, struct hio *, hsio, 2391 struct hsfs_queue *, hqueue, int, ra); 2392 2393 mutex_exit(&hqueue->hsfs_queue_lock); 2394 } 2395 2396 /* ARGSUSED */ 2397 static int 2398 hsfs_pathconf(struct vnode *vp, 2399 int cmd, 2400 ulong_t *valp, 2401 struct cred *cr, 2402 caller_context_t *ct) 2403 { 2404 struct hsfs *fsp; 2405 2406 int error = 0; 2407 2408 switch (cmd) { 2409 2410 case _PC_NAME_MAX: 2411 fsp = VFS_TO_HSFS(vp->v_vfsp); 2412 *valp = fsp->hsfs_namemax; 2413 break; 2414 2415 case _PC_FILESIZEBITS: 2416 *valp = 33; /* Without multi extent support: 4 GB - 2k */ 2417 break; 2418 2419 case _PC_TIMESTAMP_RESOLUTION: 2420 /* 2421 * HSFS keeps, at best, 1/100 second timestamp resolution. 2422 */ 2423 *valp = 10000000L; 2424 break; 2425 2426 default: 2427 error = fs_pathconf(vp, cmd, valp, cr, ct); 2428 break; 2429 } 2430 2431 return (error); 2432 } 2433 2434 2435 2436 const fs_operation_def_t hsfs_vnodeops_template[] = { 2437 VOPNAME_OPEN, { .vop_open = hsfs_open }, 2438 VOPNAME_CLOSE, { .vop_close = hsfs_close }, 2439 VOPNAME_READ, { .vop_read = hsfs_read }, 2440 VOPNAME_GETATTR, { .vop_getattr = hsfs_getattr }, 2441 VOPNAME_ACCESS, { .vop_access = hsfs_access }, 2442 VOPNAME_LOOKUP, { .vop_lookup = hsfs_lookup }, 2443 VOPNAME_READDIR, { .vop_readdir = hsfs_readdir }, 2444 VOPNAME_READLINK, { .vop_readlink = hsfs_readlink }, 2445 VOPNAME_FSYNC, { .vop_fsync = hsfs_fsync }, 2446 VOPNAME_INACTIVE, { .vop_inactive = hsfs_inactive }, 2447 VOPNAME_FID, { .vop_fid = hsfs_fid }, 2448 VOPNAME_SEEK, { .vop_seek = hsfs_seek }, 2449 VOPNAME_FRLOCK, { .vop_frlock = hsfs_frlock }, 2450 VOPNAME_GETPAGE, { .vop_getpage = hsfs_getpage }, 2451 VOPNAME_PUTPAGE, { .vop_putpage = hsfs_putpage }, 2452 VOPNAME_MAP, { .vop_map = hsfs_map }, 2453 VOPNAME_ADDMAP, { .vop_addmap = hsfs_addmap }, 2454 VOPNAME_DELMAP, { .vop_delmap = hsfs_delmap }, 2455 VOPNAME_PATHCONF, { .vop_pathconf = hsfs_pathconf }, 2456 NULL, NULL 2457 }; 2458 2459 struct vnodeops *hsfs_vnodeops; 2460