1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 /* 29 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/thread.h> 35 #include <sys/sysmacros.h> 36 #include <sys/signal.h> 37 #include <sys/cred.h> 38 #include <sys/user.h> 39 #include <sys/errno.h> 40 #include <sys/vnode.h> 41 #include <sys/mman.h> 42 #include <sys/kmem.h> 43 #include <sys/proc.h> 44 #include <sys/pathname.h> 45 #include <sys/cmn_err.h> 46 #include <sys/systm.h> 47 #include <sys/elf.h> 48 #include <sys/vmsystm.h> 49 #include <sys/debug.h> 50 #include <sys/auxv.h> 51 #include <sys/exec.h> 52 #include <sys/prsystm.h> 53 #include <vm/as.h> 54 #include <vm/rm.h> 55 #include <vm/seg.h> 56 #include <vm/seg_vn.h> 57 #include <sys/modctl.h> 58 #include <sys/systeminfo.h> 59 #include <sys/vmparam.h> 60 #include <sys/machelf.h> 61 #include <sys/shm_impl.h> 62 #include <sys/archsystm.h> 63 #include <sys/fasttrap.h> 64 #include <sys/brand.h> 65 #include "elf_impl.h" 66 #include <sys/sdt.h> 67 #include <sys/siginfo.h> 68 69 extern int at_flags; 70 71 #define ORIGIN_STR "ORIGIN" 72 #define ORIGIN_STR_SIZE 6 73 74 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *); 75 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *, 76 ssize_t *); 77 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *, 78 ssize_t *, caddr_t *, ssize_t *); 79 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *); 80 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t, 81 Phdr **, Phdr **, Phdr **, Phdr **, Phdr *, 82 caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *); 83 84 typedef enum { 85 STR_CTF, 86 STR_SYMTAB, 87 STR_DYNSYM, 88 STR_STRTAB, 89 STR_DYNSTR, 90 STR_SHSTRTAB, 91 STR_NUM 92 } shstrtype_t; 93 94 static const char *shstrtab_data[] = { 95 ".SUNW_ctf", 96 ".symtab", 97 ".dynsym", 98 ".strtab", 99 ".dynstr", 100 ".shstrtab" 101 }; 102 103 typedef struct shstrtab { 104 int sst_ndx[STR_NUM]; 105 int sst_cur; 106 } shstrtab_t; 107 108 static void 109 shstrtab_init(shstrtab_t *s) 110 { 111 bzero(&s->sst_ndx, sizeof (s->sst_ndx)); 112 s->sst_cur = 1; 113 } 114 115 static int 116 shstrtab_ndx(shstrtab_t *s, shstrtype_t type) 117 { 118 int ret; 119 120 if ((ret = s->sst_ndx[type]) != 0) 121 return (ret); 122 123 ret = s->sst_ndx[type] = s->sst_cur; 124 s->sst_cur += strlen(shstrtab_data[type]) + 1; 125 126 return (ret); 127 } 128 129 static size_t 130 shstrtab_size(const shstrtab_t *s) 131 { 132 return (s->sst_cur); 133 } 134 135 static void 136 shstrtab_dump(const shstrtab_t *s, char *buf) 137 { 138 int i, ndx; 139 140 *buf = '\0'; 141 for (i = 0; i < STR_NUM; i++) { 142 if ((ndx = s->sst_ndx[i]) != 0) 143 (void) strcpy(buf + ndx, shstrtab_data[i]); 144 } 145 } 146 147 static int 148 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base) 149 { 150 ASSERT(phdrp->p_type == PT_SUNWDTRACE); 151 152 /* 153 * See the comment in fasttrap.h for information on how to safely 154 * update this program header. 155 */ 156 if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE || 157 (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X)) 158 return (-1); 159 160 args->thrptr = phdrp->p_vaddr + base; 161 162 return (0); 163 } 164 165 /* 166 * Map in the executable pointed to by vp. Returns 0 on success. 167 */ 168 int 169 mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr, 170 intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase, 171 caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap) 172 { 173 size_t len; 174 struct vattr vat; 175 caddr_t phdrbase = NULL; 176 ssize_t phdrsize; 177 int nshdrs, shstrndx, nphdrs; 178 int error = 0; 179 Phdr *uphdr = NULL; 180 Phdr *junk = NULL; 181 Phdr *dynphdr = NULL; 182 Phdr *dtrphdr = NULL; 183 uintptr_t lddata; 184 long execsz; 185 intptr_t minaddr; 186 187 if (lddatap != NULL) 188 *lddatap = NULL; 189 190 if (error = execpermissions(vp, &vat, args)) { 191 uprintf("%s: Cannot execute %s\n", exec_file, args->pathname); 192 return (error); 193 } 194 195 if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx, 196 &nphdrs)) != 0 || 197 (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase, 198 &phdrsize)) != 0) { 199 uprintf("%s: Cannot read %s\n", exec_file, args->pathname); 200 return (error); 201 } 202 203 if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) { 204 uprintf("%s: Nothing to load in %s", exec_file, args->pathname); 205 kmem_free(phdrbase, phdrsize); 206 return (ENOEXEC); 207 } 208 if (lddatap != NULL) 209 *lddatap = lddata; 210 211 if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr, 212 &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr, 213 len, &execsz, brksize)) { 214 uprintf("%s: Cannot map %s\n", exec_file, args->pathname); 215 kmem_free(phdrbase, phdrsize); 216 return (error); 217 } 218 219 /* 220 * Inform our caller if the executable needs an interpreter. 221 */ 222 *interp = (dynphdr == NULL) ? 0 : 1; 223 224 /* 225 * If this is a statically linked executable, voffset should indicate 226 * the address of the executable itself (it normally holds the address 227 * of the interpreter). 228 */ 229 if (ehdr->e_type == ET_EXEC && *interp == 0) 230 *voffset = minaddr; 231 232 if (uphdr != NULL) { 233 *uphdr_vaddr = uphdr->p_vaddr; 234 } else { 235 *uphdr_vaddr = (Addr)-1; 236 } 237 238 kmem_free(phdrbase, phdrsize); 239 return (error); 240 } 241 242 /*ARGSUSED*/ 243 int 244 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap, 245 int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred, 246 int brand_action) 247 { 248 caddr_t phdrbase = NULL; 249 caddr_t bssbase = 0; 250 caddr_t brkbase = 0; 251 size_t brksize = 0; 252 ssize_t dlnsize; 253 aux_entry_t *aux; 254 int error; 255 ssize_t resid; 256 int fd = -1; 257 intptr_t voffset; 258 Phdr *dyphdr = NULL; 259 Phdr *stphdr = NULL; 260 Phdr *uphdr = NULL; 261 Phdr *junk = NULL; 262 size_t len; 263 ssize_t phdrsize; 264 int postfixsize = 0; 265 int i, hsize; 266 Phdr *phdrp; 267 Phdr *dataphdrp = NULL; 268 Phdr *dtrphdr; 269 Phdr *capphdr = NULL; 270 Cap *cap = NULL; 271 ssize_t capsize; 272 int hasu = 0; 273 int hasauxv = 0; 274 int hasdy = 0; 275 int branded = 0; 276 277 struct proc *p = ttoproc(curthread); 278 struct user *up = PTOU(p); 279 struct bigwad { 280 Ehdr ehdr; 281 aux_entry_t elfargs[__KERN_NAUXV_IMPL]; 282 char dl_name[MAXPATHLEN]; 283 char pathbuf[MAXPATHLEN]; 284 struct vattr vattr; 285 struct execenv exenv; 286 } *bigwad; /* kmem_alloc this behemoth so we don't blow stack */ 287 Ehdr *ehdrp; 288 int nshdrs, shstrndx, nphdrs; 289 char *dlnp; 290 char *pathbufp; 291 rlim64_t limit; 292 rlim64_t roundlimit; 293 294 ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64); 295 296 bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP); 297 ehdrp = &bigwad->ehdr; 298 dlnp = bigwad->dl_name; 299 pathbufp = bigwad->pathbuf; 300 301 /* 302 * Obtain ELF and program header information. 303 */ 304 if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx, 305 &nphdrs)) != 0 || 306 (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase, 307 &phdrsize)) != 0) 308 goto out; 309 310 /* 311 * Prevent executing an ELF file that has no entry point. 312 */ 313 if (ehdrp->e_entry == 0) { 314 uprintf("%s: Bad entry point\n", exec_file); 315 goto bad; 316 } 317 318 /* 319 * Put data model that we're exec-ing to into the args passed to 320 * exec_args(), so it will know what it is copying to on new stack. 321 * Now that we know whether we are exec-ing a 32-bit or 64-bit 322 * executable, we can set execsz with the appropriate NCARGS. 323 */ 324 #ifdef _LP64 325 if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) { 326 args->to_model = DATAMODEL_ILP32; 327 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1); 328 } else { 329 args->to_model = DATAMODEL_LP64; 330 args->stk_prot &= ~PROT_EXEC; 331 #if defined(__i386) || defined(__amd64) 332 args->dat_prot &= ~PROT_EXEC; 333 #endif 334 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1); 335 } 336 #else /* _LP64 */ 337 args->to_model = DATAMODEL_ILP32; 338 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1); 339 #endif /* _LP64 */ 340 341 /* 342 * We delay invoking the brand callback until we've figured out 343 * what kind of elf binary we're trying to run, 32-bit or 64-bit. 344 * We do this because now the brand library can just check 345 * args->to_model to see if the target is 32-bit or 64-bit without 346 * having do duplicate all the code above. 347 */ 348 if ((level < 2) && 349 (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 350 error = BROP(p)->b_elfexec(vp, uap, args, 351 idatap, level + 1, execsz, setid, exec_file, cred, 352 brand_action); 353 goto out; 354 } 355 356 /* 357 * Determine aux size now so that stack can be built 358 * in one shot (except actual copyout of aux image), 359 * determine any non-default stack protections, 360 * and still have this code be machine independent. 361 */ 362 hsize = ehdrp->e_phentsize; 363 phdrp = (Phdr *)phdrbase; 364 for (i = nphdrs; i > 0; i--) { 365 switch (phdrp->p_type) { 366 case PT_INTERP: 367 hasauxv = hasdy = 1; 368 break; 369 case PT_PHDR: 370 hasu = 1; 371 break; 372 case PT_SUNWSTACK: 373 args->stk_prot = PROT_USER; 374 if (phdrp->p_flags & PF_R) 375 args->stk_prot |= PROT_READ; 376 if (phdrp->p_flags & PF_W) 377 args->stk_prot |= PROT_WRITE; 378 if (phdrp->p_flags & PF_X) 379 args->stk_prot |= PROT_EXEC; 380 break; 381 case PT_LOAD: 382 dataphdrp = phdrp; 383 break; 384 case PT_SUNWCAP: 385 capphdr = phdrp; 386 break; 387 } 388 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 389 } 390 391 if (ehdrp->e_type != ET_EXEC) { 392 dataphdrp = NULL; 393 hasauxv = 1; 394 } 395 396 /* Copy BSS permissions to args->dat_prot */ 397 if (dataphdrp != NULL) { 398 args->dat_prot = PROT_USER; 399 if (dataphdrp->p_flags & PF_R) 400 args->dat_prot |= PROT_READ; 401 if (dataphdrp->p_flags & PF_W) 402 args->dat_prot |= PROT_WRITE; 403 if (dataphdrp->p_flags & PF_X) 404 args->dat_prot |= PROT_EXEC; 405 } 406 407 /* 408 * If a auxvector will be required - reserve the space for 409 * it now. This may be increased by exec_args if there are 410 * ISA-specific types (included in __KERN_NAUXV_IMPL). 411 */ 412 if (hasauxv) { 413 /* 414 * If a AUX vector is being built - the base AUX 415 * entries are: 416 * 417 * AT_BASE 418 * AT_FLAGS 419 * AT_PAGESZ 420 * AT_SUN_LDSECURE 421 * AT_SUN_HWCAP 422 * AT_SUN_HWCAP2 423 * AT_SUN_PLATFORM 424 * AT_SUN_EXECNAME 425 * AT_NULL 426 * 427 * total == 9 428 */ 429 if (hasdy && hasu) { 430 /* 431 * Has PT_INTERP & PT_PHDR - the auxvectors that 432 * will be built are: 433 * 434 * AT_PHDR 435 * AT_PHENT 436 * AT_PHNUM 437 * AT_ENTRY 438 * AT_LDDATA 439 * 440 * total = 5 441 */ 442 args->auxsize = (9 + 5) * sizeof (aux_entry_t); 443 } else if (hasdy) { 444 /* 445 * Has PT_INTERP but no PT_PHDR 446 * 447 * AT_EXECFD 448 * AT_LDDATA 449 * 450 * total = 2 451 */ 452 args->auxsize = (9 + 2) * sizeof (aux_entry_t); 453 } else { 454 args->auxsize = 9 * sizeof (aux_entry_t); 455 } 456 } else { 457 args->auxsize = 0; 458 } 459 460 /* 461 * If this binary is using an emulator, we need to add an 462 * AT_SUN_EMULATOR aux entry. 463 */ 464 if (args->emulator != NULL) 465 args->auxsize += sizeof (aux_entry_t); 466 467 if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 468 branded = 1; 469 /* 470 * We will be adding 4 entries to the aux vectors. One for 471 * the the brandname and 3 for the brand specific aux vectors. 472 */ 473 args->auxsize += 4 * sizeof (aux_entry_t); 474 } 475 476 /* Hardware/Software capabilities */ 477 if (capphdr != NULL && 478 (capsize = capphdr->p_filesz) > 0 && 479 capsize <= 16 * sizeof (*cap)) { 480 int ncaps = capsize / sizeof (*cap); 481 Cap *cp; 482 483 cap = kmem_alloc(capsize, KM_SLEEP); 484 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap, 485 capsize, (offset_t)capphdr->p_offset, 486 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { 487 uprintf("%s: Cannot read capabilities section\n", 488 exec_file); 489 goto out; 490 } 491 for (cp = cap; cp < cap + ncaps; cp++) { 492 if (cp->c_tag == CA_SUNW_SF_1 && 493 (cp->c_un.c_val & SF1_SUNW_ADDR32)) { 494 if (args->to_model == DATAMODEL_LP64) 495 args->addr32 = 1; 496 break; 497 } 498 } 499 } 500 501 aux = bigwad->elfargs; 502 /* 503 * Move args to the user's stack. 504 */ 505 if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) { 506 if (error == -1) { 507 error = ENOEXEC; 508 goto bad; 509 } 510 goto out; 511 } 512 /* we're single threaded after this point */ 513 514 /* 515 * If this is an ET_DYN executable (shared object), 516 * determine its memory size so that mapelfexec() can load it. 517 */ 518 if (ehdrp->e_type == ET_DYN) 519 len = elfsize(ehdrp, nphdrs, phdrbase, NULL); 520 else 521 len = 0; 522 523 dtrphdr = NULL; 524 525 if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &dyphdr, 526 &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL, 527 len, execsz, &brksize)) != 0) 528 goto bad; 529 530 if (uphdr != NULL && dyphdr == NULL) 531 goto bad; 532 533 if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 534 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file); 535 goto bad; 536 } 537 538 if (dyphdr != NULL) { 539 size_t len; 540 uintptr_t lddata; 541 char *p; 542 struct vnode *nvp; 543 544 dlnsize = dyphdr->p_filesz; 545 546 if (dlnsize > MAXPATHLEN || dlnsize <= 0) 547 goto bad; 548 549 /* 550 * Read in "interpreter" pathname. 551 */ 552 if ((error = vn_rdwr(UIO_READ, vp, dlnp, dyphdr->p_filesz, 553 (offset_t)dyphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 554 CRED(), &resid)) != 0) { 555 uprintf("%s: Cannot obtain interpreter pathname\n", 556 exec_file); 557 goto bad; 558 } 559 560 if (resid != 0 || dlnp[dlnsize - 1] != '\0') 561 goto bad; 562 563 /* 564 * Search for '$ORIGIN' token in interpreter path. 565 * If found, expand it. 566 */ 567 for (p = dlnp; p = strchr(p, '$'); ) { 568 uint_t len, curlen; 569 char *_ptr; 570 571 if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE)) 572 continue; 573 574 curlen = 0; 575 len = p - dlnp - 1; 576 if (len) { 577 bcopy(dlnp, pathbufp, len); 578 curlen += len; 579 } 580 if (_ptr = strrchr(args->pathname, '/')) { 581 len = _ptr - args->pathname; 582 if ((curlen + len) > MAXPATHLEN) 583 break; 584 585 bcopy(args->pathname, &pathbufp[curlen], len); 586 curlen += len; 587 } else { 588 /* 589 * executable is a basename found in the 590 * current directory. So - just substitue 591 * '.' for ORIGIN. 592 */ 593 pathbufp[curlen] = '.'; 594 curlen++; 595 } 596 p += ORIGIN_STR_SIZE; 597 len = strlen(p); 598 599 if ((curlen + len) > MAXPATHLEN) 600 break; 601 bcopy(p, &pathbufp[curlen], len); 602 curlen += len; 603 pathbufp[curlen++] = '\0'; 604 bcopy(pathbufp, dlnp, curlen); 605 } 606 607 /* 608 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1 609 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1). 610 * Just in case /usr is not mounted, change it now. 611 */ 612 if (strcmp(dlnp, USR_LIB_RTLD) == 0) 613 dlnp += 4; 614 error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp); 615 if (error && dlnp != bigwad->dl_name) { 616 /* new kernel, old user-level */ 617 error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW, 618 NULLVPP, &nvp); 619 } 620 if (error) { 621 uprintf("%s: Cannot find %s\n", exec_file, dlnp); 622 goto bad; 623 } 624 625 /* 626 * Setup the "aux" vector. 627 */ 628 if (uphdr) { 629 if (ehdrp->e_type == ET_DYN) { 630 /* don't use the first page */ 631 bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE; 632 bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE; 633 } else { 634 bigwad->exenv.ex_bssbase = bssbase; 635 bigwad->exenv.ex_brkbase = brkbase; 636 } 637 bigwad->exenv.ex_brksize = brksize; 638 bigwad->exenv.ex_magic = elfmagic; 639 bigwad->exenv.ex_vp = vp; 640 setexecenv(&bigwad->exenv); 641 642 ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset) 643 ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize) 644 ADDAUX(aux, AT_PHNUM, nphdrs) 645 ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset) 646 } else { 647 if ((error = execopen(&vp, &fd)) != 0) { 648 VN_RELE(nvp); 649 goto bad; 650 } 651 652 ADDAUX(aux, AT_EXECFD, fd) 653 } 654 655 if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) { 656 VN_RELE(nvp); 657 uprintf("%s: Cannot execute %s\n", exec_file, dlnp); 658 goto bad; 659 } 660 661 /* 662 * Now obtain the ELF header along with the entire program 663 * header contained in "nvp". 664 */ 665 kmem_free(phdrbase, phdrsize); 666 phdrbase = NULL; 667 if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs, 668 &shstrndx, &nphdrs)) != 0 || 669 (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase, 670 &phdrsize)) != 0) { 671 VN_RELE(nvp); 672 uprintf("%s: Cannot read %s\n", exec_file, dlnp); 673 goto bad; 674 } 675 676 /* 677 * Determine memory size of the "interpreter's" loadable 678 * sections. This size is then used to obtain the virtual 679 * address of a hole, in the user's address space, large 680 * enough to map the "interpreter". 681 */ 682 if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) { 683 VN_RELE(nvp); 684 uprintf("%s: Nothing to load in %s\n", exec_file, dlnp); 685 goto bad; 686 } 687 688 dtrphdr = NULL; 689 690 error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk, 691 &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len, 692 execsz, NULL); 693 if (error || junk != NULL) { 694 VN_RELE(nvp); 695 uprintf("%s: Cannot map %s\n", exec_file, dlnp); 696 goto bad; 697 } 698 699 /* 700 * We use the DTrace program header to initialize the 701 * architecture-specific user per-LWP location. The dtrace 702 * fasttrap provider requires ready access to per-LWP scratch 703 * space. We assume that there is only one such program header 704 * in the interpreter. 705 */ 706 if (dtrphdr != NULL && 707 dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 708 VN_RELE(nvp); 709 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp); 710 goto bad; 711 } 712 713 VN_RELE(nvp); 714 ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata) 715 } 716 717 if (hasauxv) { 718 int auxf = AF_SUN_HWCAPVERIFY; 719 /* 720 * Note: AT_SUN_PLATFORM was filled in via exec_args() 721 */ 722 ADDAUX(aux, AT_BASE, voffset) 723 ADDAUX(aux, AT_FLAGS, at_flags) 724 ADDAUX(aux, AT_PAGESZ, PAGESIZE) 725 /* 726 * Linker flags. (security) 727 * p_flag not yet set at this time. 728 * We rely on gexec() to provide us with the information. 729 * If the application is set-uid but this is not reflected 730 * in a mismatch between real/effective uids/gids, then 731 * don't treat this as a set-uid exec. So we care about 732 * the EXECSETID_UGIDS flag but not the ...SETID flag. 733 */ 734 if ((setid &= ~EXECSETID_SETID) != 0) 735 auxf |= AF_SUN_SETUGID; 736 737 /* 738 * If we're running a native process from within a branded 739 * zone under pfexec then we clear the AF_SUN_SETUGID flag so 740 * that the native ld.so.1 is able to link with the native 741 * libraries instead of using the brand libraries that are 742 * installed in the zone. We only do this for processes 743 * which we trust because we see they are already running 744 * under pfexec (where uid != euid). This prevents a 745 * malicious user within the zone from crafting a wrapper to 746 * run native suid commands with unsecure libraries interposed. 747 */ 748 if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) && 749 (setid &= ~EXECSETID_SETID) != 0)) 750 auxf &= ~AF_SUN_SETUGID; 751 752 /* 753 * Record the user addr of the auxflags aux vector entry 754 * since brands may optionally want to manipulate this field. 755 */ 756 args->auxp_auxflags = 757 (char *)((char *)args->stackend + 758 ((char *)&aux->a_type - 759 (char *)bigwad->elfargs)); 760 ADDAUX(aux, AT_SUN_AUXFLAGS, auxf); 761 /* 762 * Hardware capability flag word (performance hints) 763 * Used for choosing faster library routines. 764 * (Potentially different between 32-bit and 64-bit ABIs) 765 */ 766 #if defined(_LP64) 767 if (args->to_model == DATAMODEL_NATIVE) { 768 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 769 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) 770 } else { 771 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32) 772 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2) 773 } 774 #else 775 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 776 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) 777 #endif 778 if (branded) { 779 /* 780 * Reserve space for the brand-private aux vectors, 781 * and record the user addr of that space. 782 */ 783 args->auxp_brand = 784 (char *)((char *)args->stackend + 785 ((char *)&aux->a_type - 786 (char *)bigwad->elfargs)); 787 ADDAUX(aux, AT_SUN_BRAND_AUX1, 0) 788 ADDAUX(aux, AT_SUN_BRAND_AUX2, 0) 789 ADDAUX(aux, AT_SUN_BRAND_AUX3, 0) 790 } 791 792 ADDAUX(aux, AT_NULL, 0) 793 postfixsize = (char *)aux - (char *)bigwad->elfargs; 794 ASSERT(postfixsize == args->auxsize); 795 ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t)); 796 } 797 798 /* 799 * For the 64-bit kernel, the limit is big enough that rounding it up 800 * to a page can overflow the 64-bit limit, so we check for btopr() 801 * overflowing here by comparing it with the unrounded limit in pages. 802 * If it hasn't overflowed, compare the exec size with the rounded up 803 * limit in pages. Otherwise, just compare with the unrounded limit. 804 */ 805 limit = btop(p->p_vmem_ctl); 806 roundlimit = btopr(p->p_vmem_ctl); 807 if ((roundlimit > limit && *execsz > roundlimit) || 808 (roundlimit < limit && *execsz > limit)) { 809 mutex_enter(&p->p_lock); 810 (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, 811 RCA_SAFE); 812 mutex_exit(&p->p_lock); 813 error = ENOMEM; 814 goto bad; 815 } 816 817 bzero(up->u_auxv, sizeof (up->u_auxv)); 818 if (postfixsize) { 819 int num_auxv; 820 821 /* 822 * Copy the aux vector to the user stack. 823 */ 824 error = execpoststack(args, bigwad->elfargs, postfixsize); 825 if (error) 826 goto bad; 827 828 /* 829 * Copy auxv to the process's user structure for use by /proc. 830 * If this is a branded process, the brand's exec routine will 831 * copy it's private entries to the user structure later. It 832 * relies on the fact that the blank entries are at the end. 833 */ 834 num_auxv = postfixsize / sizeof (aux_entry_t); 835 ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t)); 836 aux = bigwad->elfargs; 837 for (i = 0; i < num_auxv; i++) { 838 up->u_auxv[i].a_type = aux[i].a_type; 839 up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val; 840 } 841 } 842 843 /* 844 * Pass back the starting address so we can set the program counter. 845 */ 846 args->entry = (uintptr_t)(ehdrp->e_entry + voffset); 847 848 if (!uphdr) { 849 if (ehdrp->e_type == ET_DYN) { 850 /* 851 * If we are executing a shared library which doesn't 852 * have a interpreter (probably ld.so.1) then 853 * we don't set the brkbase now. Instead we 854 * delay it's setting until the first call 855 * via grow.c::brk(). This permits ld.so.1 to 856 * initialize brkbase to the tail of the executable it 857 * loads (which is where it needs to be). 858 */ 859 bigwad->exenv.ex_brkbase = (caddr_t)0; 860 bigwad->exenv.ex_bssbase = (caddr_t)0; 861 bigwad->exenv.ex_brksize = 0; 862 } else { 863 bigwad->exenv.ex_brkbase = brkbase; 864 bigwad->exenv.ex_bssbase = bssbase; 865 bigwad->exenv.ex_brksize = brksize; 866 } 867 bigwad->exenv.ex_magic = elfmagic; 868 bigwad->exenv.ex_vp = vp; 869 setexecenv(&bigwad->exenv); 870 } 871 872 ASSERT(error == 0); 873 goto out; 874 875 bad: 876 if (fd != -1) /* did we open the a.out yet */ 877 (void) execclose(fd); 878 879 psignal(p, SIGKILL); 880 881 if (error == 0) 882 error = ENOEXEC; 883 out: 884 if (phdrbase != NULL) 885 kmem_free(phdrbase, phdrsize); 886 if (cap != NULL) 887 kmem_free(cap, capsize); 888 kmem_free(bigwad, sizeof (struct bigwad)); 889 return (error); 890 } 891 892 /* 893 * Compute the memory size requirement for the ELF file. 894 */ 895 static size_t 896 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata) 897 { 898 size_t len; 899 Phdr *phdrp = (Phdr *)phdrbase; 900 int hsize = ehdrp->e_phentsize; 901 int first = 1; 902 int dfirst = 1; /* first data segment */ 903 uintptr_t loaddr = 0; 904 uintptr_t hiaddr = 0; 905 uintptr_t lo, hi; 906 int i; 907 908 for (i = nphdrs; i > 0; i--) { 909 if (phdrp->p_type == PT_LOAD) { 910 lo = phdrp->p_vaddr; 911 hi = lo + phdrp->p_memsz; 912 if (first) { 913 loaddr = lo; 914 hiaddr = hi; 915 first = 0; 916 } else { 917 if (loaddr > lo) 918 loaddr = lo; 919 if (hiaddr < hi) 920 hiaddr = hi; 921 } 922 923 /* 924 * save the address of the first data segment 925 * of a object - used for the AT_SUNW_LDDATA 926 * aux entry. 927 */ 928 if ((lddata != NULL) && dfirst && 929 (phdrp->p_flags & PF_W)) { 930 *lddata = lo; 931 dfirst = 0; 932 } 933 } 934 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 935 } 936 937 len = hiaddr - (loaddr & PAGEMASK); 938 len = roundup(len, PAGESIZE); 939 940 return (len); 941 } 942 943 /* 944 * Read in the ELF header and program header table. 945 * SUSV3 requires: 946 * ENOEXEC File format is not recognized 947 * EINVAL Format recognized but execution not supported 948 */ 949 static int 950 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx, 951 int *nphdrs) 952 { 953 int error; 954 ssize_t resid; 955 956 /* 957 * We got here by the first two bytes in ident, 958 * now read the entire ELF header. 959 */ 960 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr, 961 sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0, 962 (rlim64_t)0, credp, &resid)) != 0) 963 return (error); 964 965 /* 966 * Since a separate version is compiled for handling 32-bit and 967 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version 968 * doesn't need to be able to deal with 32-bit ELF files. 969 */ 970 if (resid != 0 || 971 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 972 ehdr->e_ident[EI_MAG3] != ELFMAG3) 973 return (ENOEXEC); 974 975 if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) || 976 #if defined(_ILP32) || defined(_ELF32_COMPAT) 977 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 978 #else 979 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 980 #endif 981 !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine, 982 ehdr->e_flags)) 983 return (EINVAL); 984 985 *nshdrs = ehdr->e_shnum; 986 *shstrndx = ehdr->e_shstrndx; 987 *nphdrs = ehdr->e_phnum; 988 989 /* 990 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need 991 * to read in the section header at index zero to acces the true 992 * values for those fields. 993 */ 994 if ((*nshdrs == 0 && ehdr->e_shoff != 0) || 995 *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) { 996 Shdr shdr; 997 998 if (ehdr->e_shoff == 0) 999 return (EINVAL); 1000 1001 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr, 1002 sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, 1003 (rlim64_t)0, credp, &resid)) != 0) 1004 return (error); 1005 1006 if (*nshdrs == 0) 1007 *nshdrs = shdr.sh_size; 1008 if (*shstrndx == SHN_XINDEX) 1009 *shstrndx = shdr.sh_link; 1010 if (*nphdrs == PN_XNUM && shdr.sh_info != 0) 1011 *nphdrs = shdr.sh_info; 1012 } 1013 1014 return (0); 1015 } 1016 1017 #ifdef _ELF32_COMPAT 1018 extern size_t elf_nphdr_max; 1019 #else 1020 size_t elf_nphdr_max = 1000; 1021 #endif 1022 1023 static int 1024 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs, 1025 caddr_t *phbasep, ssize_t *phsizep) 1026 { 1027 ssize_t resid, minsize; 1028 int err; 1029 1030 /* 1031 * Since we're going to be using e_phentsize to iterate down the 1032 * array of program headers, it must be 8-byte aligned or else 1033 * a we might cause a misaligned access. We use all members through 1034 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so 1035 * e_phentsize must be at least large enough to include those 1036 * members. 1037 */ 1038 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1039 minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags); 1040 #else 1041 minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz); 1042 #endif 1043 if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3)) 1044 return (EINVAL); 1045 1046 *phsizep = nphdrs * ehdr->e_phentsize; 1047 1048 if (*phsizep > sizeof (Phdr) * elf_nphdr_max) { 1049 if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL) 1050 return (ENOMEM); 1051 } else { 1052 *phbasep = kmem_alloc(*phsizep, KM_SLEEP); 1053 } 1054 1055 if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep, 1056 (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1057 credp, &resid)) != 0) { 1058 kmem_free(*phbasep, *phsizep); 1059 *phbasep = NULL; 1060 return (err); 1061 } 1062 1063 return (0); 1064 } 1065 1066 #ifdef _ELF32_COMPAT 1067 extern size_t elf_nshdr_max; 1068 extern size_t elf_shstrtab_max; 1069 #else 1070 size_t elf_nshdr_max = 10000; 1071 size_t elf_shstrtab_max = 100 * 1024; 1072 #endif 1073 1074 1075 static int 1076 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, 1077 int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep, 1078 char **shstrbasep, ssize_t *shstrsizep) 1079 { 1080 ssize_t resid, minsize; 1081 int err; 1082 Shdr *shdr; 1083 1084 /* 1085 * Since we're going to be using e_shentsize to iterate down the 1086 * array of section headers, it must be 8-byte aligned or else 1087 * a we might cause a misaligned access. We use all members through 1088 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize 1089 * must be at least large enough to include that member. The index 1090 * of the string table section must also be valid. 1091 */ 1092 minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize); 1093 if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) || 1094 shstrndx >= nshdrs) 1095 return (EINVAL); 1096 1097 *shsizep = nshdrs * ehdr->e_shentsize; 1098 1099 if (*shsizep > sizeof (Shdr) * elf_nshdr_max) { 1100 if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL) 1101 return (ENOMEM); 1102 } else { 1103 *shbasep = kmem_alloc(*shsizep, KM_SLEEP); 1104 } 1105 1106 if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep, 1107 (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1108 credp, &resid)) != 0) { 1109 kmem_free(*shbasep, *shsizep); 1110 return (err); 1111 } 1112 1113 /* 1114 * Pull the section string table out of the vnode; fail if the size 1115 * is zero. 1116 */ 1117 shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize); 1118 if ((*shstrsizep = shdr->sh_size) == 0) { 1119 kmem_free(*shbasep, *shsizep); 1120 return (EINVAL); 1121 } 1122 1123 if (*shstrsizep > elf_shstrtab_max) { 1124 if ((*shstrbasep = kmem_alloc(*shstrsizep, 1125 KM_NOSLEEP)) == NULL) { 1126 kmem_free(*shbasep, *shsizep); 1127 return (ENOMEM); 1128 } 1129 } else { 1130 *shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP); 1131 } 1132 1133 if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep, 1134 (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 1135 credp, &resid)) != 0) { 1136 kmem_free(*shbasep, *shsizep); 1137 kmem_free(*shstrbasep, *shstrsizep); 1138 return (err); 1139 } 1140 1141 /* 1142 * Make sure the strtab is null-terminated to make sure we 1143 * don't run off the end of the table. 1144 */ 1145 (*shstrbasep)[*shstrsizep - 1] = '\0'; 1146 1147 return (0); 1148 } 1149 1150 static int 1151 mapelfexec( 1152 vnode_t *vp, 1153 Ehdr *ehdr, 1154 int nphdrs, 1155 caddr_t phdrbase, 1156 Phdr **uphdr, 1157 Phdr **dyphdr, 1158 Phdr **stphdr, 1159 Phdr **dtphdr, 1160 Phdr *dataphdrp, 1161 caddr_t *bssbase, 1162 caddr_t *brkbase, 1163 intptr_t *voffset, 1164 intptr_t *minaddr, 1165 size_t len, 1166 long *execsz, 1167 size_t *brksize) 1168 { 1169 Phdr *phdr; 1170 int i, prot, error; 1171 caddr_t addr = NULL; 1172 size_t zfodsz; 1173 int ptload = 0; 1174 int page; 1175 off_t offset; 1176 int hsize = ehdr->e_phentsize; 1177 caddr_t mintmp = (caddr_t)-1; 1178 extern int use_brk_lpg; 1179 1180 if (ehdr->e_type == ET_DYN) { 1181 /* 1182 * Obtain the virtual address of a hole in the 1183 * address space to map the "interpreter". 1184 */ 1185 map_addr(&addr, len, (offset_t)0, 1, 0); 1186 if (addr == NULL) 1187 return (ENOMEM); 1188 *voffset = (intptr_t)addr; 1189 1190 /* 1191 * Calculate the minimum vaddr so it can be subtracted out. 1192 * According to the ELF specification, since PT_LOAD sections 1193 * must be sorted by increasing p_vaddr values, this is 1194 * guaranteed to be the first PT_LOAD section. 1195 */ 1196 phdr = (Phdr *)phdrbase; 1197 for (i = nphdrs; i > 0; i--) { 1198 if (phdr->p_type == PT_LOAD) { 1199 *voffset -= (uintptr_t)phdr->p_vaddr; 1200 break; 1201 } 1202 phdr = (Phdr *)((caddr_t)phdr + hsize); 1203 } 1204 1205 } else { 1206 *voffset = 0; 1207 } 1208 phdr = (Phdr *)phdrbase; 1209 for (i = nphdrs; i > 0; i--) { 1210 switch (phdr->p_type) { 1211 case PT_LOAD: 1212 if ((*dyphdr != NULL) && (*uphdr == NULL)) 1213 return (0); 1214 1215 ptload = 1; 1216 prot = PROT_USER; 1217 if (phdr->p_flags & PF_R) 1218 prot |= PROT_READ; 1219 if (phdr->p_flags & PF_W) 1220 prot |= PROT_WRITE; 1221 if (phdr->p_flags & PF_X) 1222 prot |= PROT_EXEC; 1223 1224 addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset); 1225 1226 /* 1227 * Keep track of the segment with the lowest starting 1228 * address. 1229 */ 1230 if (addr < mintmp) 1231 mintmp = addr; 1232 1233 zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz; 1234 1235 offset = phdr->p_offset; 1236 if (((uintptr_t)offset & PAGEOFFSET) == 1237 ((uintptr_t)addr & PAGEOFFSET) && 1238 (!(vp->v_flag & VNOMAP))) { 1239 page = 1; 1240 } else { 1241 page = 0; 1242 } 1243 1244 /* 1245 * Set the heap pagesize for OOB when the bss size 1246 * is known and use_brk_lpg is not 0. 1247 */ 1248 if (brksize != NULL && use_brk_lpg && 1249 zfodsz != 0 && phdr == dataphdrp && 1250 (prot & PROT_WRITE)) { 1251 size_t tlen = P2NPHASE((uintptr_t)addr + 1252 phdr->p_filesz, PAGESIZE); 1253 1254 if (zfodsz > tlen) { 1255 curproc->p_brkpageszc = 1256 page_szc(map_pgsz(MAPPGSZ_HEAP, 1257 curproc, addr + phdr->p_filesz + 1258 tlen, zfodsz - tlen, 0)); 1259 } 1260 } 1261 1262 if (curproc->p_brkpageszc != 0 && phdr == dataphdrp && 1263 (prot & PROT_WRITE)) { 1264 uint_t szc = curproc->p_brkpageszc; 1265 size_t pgsz = page_get_pagesize(szc); 1266 caddr_t ebss = addr + phdr->p_memsz; 1267 size_t extra_zfodsz; 1268 1269 ASSERT(pgsz > PAGESIZE); 1270 1271 extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz); 1272 1273 if (error = execmap(vp, addr, phdr->p_filesz, 1274 zfodsz + extra_zfodsz, phdr->p_offset, 1275 prot, page, szc)) 1276 goto bad; 1277 if (brksize != NULL) 1278 *brksize = extra_zfodsz; 1279 } else { 1280 if (error = execmap(vp, addr, phdr->p_filesz, 1281 zfodsz, phdr->p_offset, prot, page, 0)) 1282 goto bad; 1283 } 1284 1285 if (bssbase != NULL && addr >= *bssbase && 1286 phdr == dataphdrp) { 1287 *bssbase = addr + phdr->p_filesz; 1288 } 1289 if (brkbase != NULL && addr >= *brkbase) { 1290 *brkbase = addr + phdr->p_memsz; 1291 } 1292 1293 *execsz += btopr(phdr->p_memsz); 1294 break; 1295 1296 case PT_INTERP: 1297 if (ptload) 1298 goto bad; 1299 *dyphdr = phdr; 1300 break; 1301 1302 case PT_SHLIB: 1303 *stphdr = phdr; 1304 break; 1305 1306 case PT_PHDR: 1307 if (ptload) 1308 goto bad; 1309 *uphdr = phdr; 1310 break; 1311 1312 case PT_NULL: 1313 case PT_DYNAMIC: 1314 case PT_NOTE: 1315 break; 1316 1317 case PT_SUNWDTRACE: 1318 if (dtphdr != NULL) 1319 *dtphdr = phdr; 1320 break; 1321 1322 default: 1323 break; 1324 } 1325 phdr = (Phdr *)((caddr_t)phdr + hsize); 1326 } 1327 1328 if (minaddr != NULL) { 1329 ASSERT(mintmp != (caddr_t)-1); 1330 *minaddr = (intptr_t)mintmp; 1331 } 1332 1333 return (0); 1334 bad: 1335 if (error == 0) 1336 error = EINVAL; 1337 return (error); 1338 } 1339 1340 int 1341 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc, 1342 rlim64_t rlimit, cred_t *credp) 1343 { 1344 Note note; 1345 int error; 1346 1347 bzero(¬e, sizeof (note)); 1348 bcopy("CORE", note.name, 4); 1349 note.nhdr.n_type = type; 1350 /* 1351 * The System V ABI states that n_namesz must be the length of the 1352 * string that follows the Nhdr structure including the terminating 1353 * null. The ABI also specifies that sufficient padding should be 1354 * included so that the description that follows the name string 1355 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries 1356 * respectively. However, since this change was not made correctly 1357 * at the time of the 64-bit port, both 32- and 64-bit binaries 1358 * descriptions are only guaranteed to begin on a 4-byte boundary. 1359 */ 1360 note.nhdr.n_namesz = 5; 1361 note.nhdr.n_descsz = roundup(descsz, sizeof (Word)); 1362 1363 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, ¬e, 1364 sizeof (note), rlimit, credp)) 1365 return (error); 1366 1367 *offsetp += sizeof (note); 1368 1369 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc, 1370 note.nhdr.n_descsz, rlimit, credp)) 1371 return (error); 1372 1373 *offsetp += note.nhdr.n_descsz; 1374 return (0); 1375 } 1376 1377 /* 1378 * Copy the section data from one vnode to the section of another vnode. 1379 */ 1380 static void 1381 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset, 1382 void *buf, size_t size, cred_t *credp, rlim64_t rlimit) 1383 { 1384 ssize_t resid; 1385 size_t len, n = src->sh_size; 1386 offset_t off = 0; 1387 1388 while (n != 0) { 1389 len = MIN(size, n); 1390 if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off, 1391 UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 || 1392 resid >= len || 1393 core_write(dst_vp, UIO_SYSSPACE, *doffset + off, 1394 buf, len - resid, rlimit, credp) != 0) { 1395 dst->sh_size = 0; 1396 dst->sh_offset = 0; 1397 return; 1398 } 1399 1400 ASSERT(n >= len - resid); 1401 1402 n -= len - resid; 1403 off += len - resid; 1404 } 1405 1406 *doffset += src->sh_size; 1407 } 1408 1409 #ifdef _ELF32_COMPAT 1410 extern size_t elf_datasz_max; 1411 #else 1412 size_t elf_datasz_max = 1 * 1024 * 1024; 1413 #endif 1414 1415 /* 1416 * This function processes mappings that correspond to load objects to 1417 * examine their respective sections for elfcore(). It's called once with 1418 * v set to NULL to count the number of sections that we're going to need 1419 * and then again with v set to some allocated buffer that we fill in with 1420 * all the section data. 1421 */ 1422 static int 1423 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp, 1424 Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp) 1425 { 1426 vnode_t *lastvp = NULL; 1427 struct seg *seg; 1428 int i, j; 1429 void *data = NULL; 1430 size_t datasz = 0; 1431 shstrtab_t shstrtab; 1432 struct as *as = p->p_as; 1433 int error = 0; 1434 1435 if (v != NULL) 1436 shstrtab_init(&shstrtab); 1437 1438 i = 1; 1439 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1440 uint_t prot; 1441 vnode_t *mvp; 1442 void *tmp = NULL; 1443 caddr_t saddr = seg->s_base; 1444 caddr_t naddr; 1445 caddr_t eaddr; 1446 size_t segsize; 1447 1448 Ehdr ehdr; 1449 int nshdrs, shstrndx, nphdrs; 1450 caddr_t shbase; 1451 ssize_t shsize; 1452 char *shstrbase; 1453 ssize_t shstrsize; 1454 1455 Shdr *shdr; 1456 const char *name; 1457 size_t sz; 1458 uintptr_t off; 1459 1460 int ctf_ndx = 0; 1461 int symtab_ndx = 0; 1462 1463 /* 1464 * Since we're just looking for text segments of load 1465 * objects, we only care about the protection bits; we don't 1466 * care about the actual size of the segment so we use the 1467 * reserved size. If the segment's size is zero, there's 1468 * something fishy going on so we ignore this segment. 1469 */ 1470 if (seg->s_ops != &segvn_ops || 1471 SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 1472 mvp == lastvp || mvp == NULL || mvp->v_type != VREG || 1473 (segsize = pr_getsegsize(seg, 1)) == 0) 1474 continue; 1475 1476 eaddr = saddr + segsize; 1477 prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr); 1478 pr_getprot_done(&tmp); 1479 1480 /* 1481 * Skip this segment unless the protection bits look like 1482 * what we'd expect for a text segment. 1483 */ 1484 if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC) 1485 continue; 1486 1487 if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx, 1488 &nphdrs) != 0 || 1489 getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx, 1490 &shbase, &shsize, &shstrbase, &shstrsize) != 0) 1491 continue; 1492 1493 off = ehdr.e_shentsize; 1494 for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) { 1495 Shdr *symtab = NULL, *strtab; 1496 1497 shdr = (Shdr *)(shbase + off); 1498 1499 if (shdr->sh_name >= shstrsize) 1500 continue; 1501 1502 name = shstrbase + shdr->sh_name; 1503 1504 if (strcmp(name, shstrtab_data[STR_CTF]) == 0) { 1505 if ((content & CC_CONTENT_CTF) == 0 || 1506 ctf_ndx != 0) 1507 continue; 1508 1509 if (shdr->sh_link > 0 && 1510 shdr->sh_link < nshdrs) { 1511 symtab = (Shdr *)(shbase + 1512 shdr->sh_link * ehdr.e_shentsize); 1513 } 1514 1515 if (v != NULL && i < nv - 1) { 1516 if (shdr->sh_size > datasz && 1517 shdr->sh_size <= elf_datasz_max) { 1518 if (data != NULL) 1519 kmem_free(data, datasz); 1520 1521 datasz = shdr->sh_size; 1522 data = kmem_alloc(datasz, 1523 KM_SLEEP); 1524 } 1525 1526 v[i].sh_name = shstrtab_ndx(&shstrtab, 1527 STR_CTF); 1528 v[i].sh_addr = (Addr)(uintptr_t)saddr; 1529 v[i].sh_type = SHT_PROGBITS; 1530 v[i].sh_addralign = 4; 1531 *doffsetp = roundup(*doffsetp, 1532 v[i].sh_addralign); 1533 v[i].sh_offset = *doffsetp; 1534 v[i].sh_size = shdr->sh_size; 1535 if (symtab == NULL) { 1536 v[i].sh_link = 0; 1537 } else if (symtab->sh_type == 1538 SHT_SYMTAB && 1539 symtab_ndx != 0) { 1540 v[i].sh_link = 1541 symtab_ndx; 1542 } else { 1543 v[i].sh_link = i + 1; 1544 } 1545 1546 copy_scn(shdr, mvp, &v[i], vp, 1547 doffsetp, data, datasz, credp, 1548 rlimit); 1549 } 1550 1551 ctf_ndx = i++; 1552 1553 /* 1554 * We've already dumped the symtab. 1555 */ 1556 if (symtab != NULL && 1557 symtab->sh_type == SHT_SYMTAB && 1558 symtab_ndx != 0) 1559 continue; 1560 1561 } else if (strcmp(name, 1562 shstrtab_data[STR_SYMTAB]) == 0) { 1563 if ((content & CC_CONTENT_SYMTAB) == 0 || 1564 symtab != 0) 1565 continue; 1566 1567 symtab = shdr; 1568 } 1569 1570 if (symtab != NULL) { 1571 if ((symtab->sh_type != SHT_DYNSYM && 1572 symtab->sh_type != SHT_SYMTAB) || 1573 symtab->sh_link == 0 || 1574 symtab->sh_link >= nshdrs) 1575 continue; 1576 1577 strtab = (Shdr *)(shbase + 1578 symtab->sh_link * ehdr.e_shentsize); 1579 1580 if (strtab->sh_type != SHT_STRTAB) 1581 continue; 1582 1583 if (v != NULL && i < nv - 2) { 1584 sz = MAX(symtab->sh_size, 1585 strtab->sh_size); 1586 if (sz > datasz && 1587 sz <= elf_datasz_max) { 1588 if (data != NULL) 1589 kmem_free(data, datasz); 1590 1591 datasz = sz; 1592 data = kmem_alloc(datasz, 1593 KM_SLEEP); 1594 } 1595 1596 if (symtab->sh_type == SHT_DYNSYM) { 1597 v[i].sh_name = shstrtab_ndx( 1598 &shstrtab, STR_DYNSYM); 1599 v[i + 1].sh_name = shstrtab_ndx( 1600 &shstrtab, STR_DYNSTR); 1601 } else { 1602 v[i].sh_name = shstrtab_ndx( 1603 &shstrtab, STR_SYMTAB); 1604 v[i + 1].sh_name = shstrtab_ndx( 1605 &shstrtab, STR_STRTAB); 1606 } 1607 1608 v[i].sh_type = symtab->sh_type; 1609 v[i].sh_addr = symtab->sh_addr; 1610 if (ehdr.e_type == ET_DYN || 1611 v[i].sh_addr == 0) 1612 v[i].sh_addr += 1613 (Addr)(uintptr_t)saddr; 1614 v[i].sh_addralign = 1615 symtab->sh_addralign; 1616 *doffsetp = roundup(*doffsetp, 1617 v[i].sh_addralign); 1618 v[i].sh_offset = *doffsetp; 1619 v[i].sh_size = symtab->sh_size; 1620 v[i].sh_link = i + 1; 1621 v[i].sh_entsize = symtab->sh_entsize; 1622 v[i].sh_info = symtab->sh_info; 1623 1624 copy_scn(symtab, mvp, &v[i], vp, 1625 doffsetp, data, datasz, credp, 1626 rlimit); 1627 1628 v[i + 1].sh_type = SHT_STRTAB; 1629 v[i + 1].sh_flags = SHF_STRINGS; 1630 v[i + 1].sh_addr = symtab->sh_addr; 1631 if (ehdr.e_type == ET_DYN || 1632 v[i + 1].sh_addr == 0) 1633 v[i + 1].sh_addr += 1634 (Addr)(uintptr_t)saddr; 1635 v[i + 1].sh_addralign = 1636 strtab->sh_addralign; 1637 *doffsetp = roundup(*doffsetp, 1638 v[i + 1].sh_addralign); 1639 v[i + 1].sh_offset = *doffsetp; 1640 v[i + 1].sh_size = strtab->sh_size; 1641 1642 copy_scn(strtab, mvp, &v[i + 1], vp, 1643 doffsetp, data, datasz, credp, 1644 rlimit); 1645 } 1646 1647 if (symtab->sh_type == SHT_SYMTAB) 1648 symtab_ndx = i; 1649 i += 2; 1650 } 1651 } 1652 1653 kmem_free(shstrbase, shstrsize); 1654 kmem_free(shbase, shsize); 1655 1656 lastvp = mvp; 1657 } 1658 1659 if (v == NULL) { 1660 if (i == 1) 1661 *nshdrsp = 0; 1662 else 1663 *nshdrsp = i + 1; 1664 goto done; 1665 } 1666 1667 if (i != nv - 1) { 1668 cmn_err(CE_WARN, "elfcore: core dump failed for " 1669 "process %d; address space is changing", p->p_pid); 1670 error = EIO; 1671 goto done; 1672 } 1673 1674 v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB); 1675 v[i].sh_size = shstrtab_size(&shstrtab); 1676 v[i].sh_addralign = 1; 1677 *doffsetp = roundup(*doffsetp, v[i].sh_addralign); 1678 v[i].sh_offset = *doffsetp; 1679 v[i].sh_flags = SHF_STRINGS; 1680 v[i].sh_type = SHT_STRTAB; 1681 1682 if (v[i].sh_size > datasz) { 1683 if (data != NULL) 1684 kmem_free(data, datasz); 1685 1686 datasz = v[i].sh_size; 1687 data = kmem_alloc(datasz, 1688 KM_SLEEP); 1689 } 1690 1691 shstrtab_dump(&shstrtab, data); 1692 1693 if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp, 1694 data, v[i].sh_size, rlimit, credp)) != 0) 1695 goto done; 1696 1697 *doffsetp += v[i].sh_size; 1698 1699 done: 1700 if (data != NULL) 1701 kmem_free(data, datasz); 1702 1703 return (error); 1704 } 1705 1706 int 1707 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig, 1708 core_content_t content) 1709 { 1710 offset_t poffset, soffset; 1711 Off doffset; 1712 int error, i, nphdrs, nshdrs; 1713 int overflow = 0; 1714 struct seg *seg; 1715 struct as *as = p->p_as; 1716 union { 1717 Ehdr ehdr; 1718 Phdr phdr[1]; 1719 Shdr shdr[1]; 1720 } *bigwad; 1721 size_t bigsize; 1722 size_t phdrsz, shdrsz; 1723 Ehdr *ehdr; 1724 Phdr *v; 1725 caddr_t brkbase; 1726 size_t brksize; 1727 caddr_t stkbase; 1728 size_t stksize; 1729 int ntries = 0; 1730 klwp_t *lwp = ttolwp(curthread); 1731 1732 top: 1733 /* 1734 * Make sure we have everything we need (registers, etc.). 1735 * All other lwps have already stopped and are in an orderly state. 1736 */ 1737 ASSERT(p == ttoproc(curthread)); 1738 prstop(0, 0); 1739 1740 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1741 nphdrs = prnsegs(as, 0) + 2; /* two CORE note sections */ 1742 1743 /* 1744 * Count the number of section headers we're going to need. 1745 */ 1746 nshdrs = 0; 1747 if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) { 1748 (void) process_scns(content, p, credp, NULL, NULL, NULL, 0, 1749 NULL, &nshdrs); 1750 } 1751 AS_LOCK_EXIT(as, &as->a_lock); 1752 1753 ASSERT(nshdrs == 0 || nshdrs > 1); 1754 1755 /* 1756 * The core file contents may required zero section headers, but if 1757 * we overflow the 16 bits allotted to the program header count in 1758 * the ELF header, we'll need that program header at index zero. 1759 */ 1760 if (nshdrs == 0 && nphdrs >= PN_XNUM) 1761 nshdrs = 1; 1762 1763 phdrsz = nphdrs * sizeof (Phdr); 1764 shdrsz = nshdrs * sizeof (Shdr); 1765 1766 bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz)); 1767 bigwad = kmem_alloc(bigsize, KM_SLEEP); 1768 1769 ehdr = &bigwad->ehdr; 1770 bzero(ehdr, sizeof (*ehdr)); 1771 1772 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1773 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1774 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1775 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1776 ehdr->e_ident[EI_CLASS] = ELFCLASS; 1777 ehdr->e_type = ET_CORE; 1778 1779 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1780 1781 #if defined(__sparc) 1782 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1783 ehdr->e_machine = EM_SPARC; 1784 #elif defined(__i386) || defined(__i386_COMPAT) 1785 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1786 ehdr->e_machine = EM_386; 1787 #else 1788 #error "no recognized machine type is defined" 1789 #endif 1790 1791 #else /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 1792 1793 #if defined(__sparc) 1794 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1795 ehdr->e_machine = EM_SPARCV9; 1796 #elif defined(__amd64) 1797 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1798 ehdr->e_machine = EM_AMD64; 1799 #else 1800 #error "no recognized 64-bit machine type is defined" 1801 #endif 1802 1803 #endif /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 1804 1805 /* 1806 * If the count of program headers or section headers or the index 1807 * of the section string table can't fit in the mere 16 bits 1808 * shortsightedly allotted to them in the ELF header, we use the 1809 * extended formats and put the real values in the section header 1810 * as index 0. 1811 */ 1812 ehdr->e_version = EV_CURRENT; 1813 ehdr->e_ehsize = sizeof (Ehdr); 1814 1815 if (nphdrs >= PN_XNUM) 1816 ehdr->e_phnum = PN_XNUM; 1817 else 1818 ehdr->e_phnum = (unsigned short)nphdrs; 1819 1820 ehdr->e_phoff = sizeof (Ehdr); 1821 ehdr->e_phentsize = sizeof (Phdr); 1822 1823 if (nshdrs > 0) { 1824 if (nshdrs >= SHN_LORESERVE) 1825 ehdr->e_shnum = 0; 1826 else 1827 ehdr->e_shnum = (unsigned short)nshdrs; 1828 1829 if (nshdrs - 1 >= SHN_LORESERVE) 1830 ehdr->e_shstrndx = SHN_XINDEX; 1831 else 1832 ehdr->e_shstrndx = (unsigned short)(nshdrs - 1); 1833 1834 ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs; 1835 ehdr->e_shentsize = sizeof (Shdr); 1836 } 1837 1838 if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr, 1839 sizeof (Ehdr), rlimit, credp)) 1840 goto done; 1841 1842 poffset = sizeof (Ehdr); 1843 soffset = sizeof (Ehdr) + phdrsz; 1844 doffset = sizeof (Ehdr) + phdrsz + shdrsz; 1845 1846 v = &bigwad->phdr[0]; 1847 bzero(v, phdrsz); 1848 1849 setup_old_note_header(&v[0], p); 1850 v[0].p_offset = doffset = roundup(doffset, sizeof (Word)); 1851 doffset += v[0].p_filesz; 1852 1853 setup_note_header(&v[1], p); 1854 v[1].p_offset = doffset = roundup(doffset, sizeof (Word)); 1855 doffset += v[1].p_filesz; 1856 1857 mutex_enter(&p->p_lock); 1858 1859 brkbase = p->p_brkbase; 1860 brksize = p->p_brksize; 1861 1862 stkbase = p->p_usrstack - p->p_stksize; 1863 stksize = p->p_stksize; 1864 1865 mutex_exit(&p->p_lock); 1866 1867 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1868 i = 2; 1869 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1870 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 1871 caddr_t saddr, naddr; 1872 void *tmp = NULL; 1873 extern struct seg_ops segspt_shmops; 1874 1875 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1876 uint_t prot; 1877 size_t size; 1878 int type; 1879 vnode_t *mvp; 1880 1881 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 1882 prot &= PROT_READ | PROT_WRITE | PROT_EXEC; 1883 if ((size = (size_t)(naddr - saddr)) == 0) 1884 continue; 1885 if (i == nphdrs) { 1886 overflow++; 1887 continue; 1888 } 1889 v[i].p_type = PT_LOAD; 1890 v[i].p_vaddr = (Addr)(uintptr_t)saddr; 1891 v[i].p_memsz = size; 1892 if (prot & PROT_READ) 1893 v[i].p_flags |= PF_R; 1894 if (prot & PROT_WRITE) 1895 v[i].p_flags |= PF_W; 1896 if (prot & PROT_EXEC) 1897 v[i].p_flags |= PF_X; 1898 1899 /* 1900 * Figure out which mappings to include in the core. 1901 */ 1902 type = SEGOP_GETTYPE(seg, saddr); 1903 1904 if (saddr == stkbase && size == stksize) { 1905 if (!(content & CC_CONTENT_STACK)) 1906 goto exclude; 1907 1908 } else if (saddr == brkbase && size == brksize) { 1909 if (!(content & CC_CONTENT_HEAP)) 1910 goto exclude; 1911 1912 } else if (seg->s_ops == &segspt_shmops) { 1913 if (type & MAP_NORESERVE) { 1914 if (!(content & CC_CONTENT_DISM)) 1915 goto exclude; 1916 } else { 1917 if (!(content & CC_CONTENT_ISM)) 1918 goto exclude; 1919 } 1920 1921 } else if (seg->s_ops != &segvn_ops) { 1922 goto exclude; 1923 1924 } else if (type & MAP_SHARED) { 1925 if (shmgetid(p, saddr) != SHMID_NONE) { 1926 if (!(content & CC_CONTENT_SHM)) 1927 goto exclude; 1928 1929 } else if (SEGOP_GETVP(seg, seg->s_base, 1930 &mvp) != 0 || mvp == NULL || 1931 mvp->v_type != VREG) { 1932 if (!(content & CC_CONTENT_SHANON)) 1933 goto exclude; 1934 1935 } else { 1936 if (!(content & CC_CONTENT_SHFILE)) 1937 goto exclude; 1938 } 1939 1940 } else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 1941 mvp == NULL || mvp->v_type != VREG) { 1942 if (!(content & CC_CONTENT_ANON)) 1943 goto exclude; 1944 1945 } else if (prot == (PROT_READ | PROT_EXEC)) { 1946 if (!(content & CC_CONTENT_TEXT)) 1947 goto exclude; 1948 1949 } else if (prot == PROT_READ) { 1950 if (!(content & CC_CONTENT_RODATA)) 1951 goto exclude; 1952 1953 } else { 1954 if (!(content & CC_CONTENT_DATA)) 1955 goto exclude; 1956 } 1957 1958 doffset = roundup(doffset, sizeof (Word)); 1959 v[i].p_offset = doffset; 1960 v[i].p_filesz = size; 1961 doffset += size; 1962 exclude: 1963 i++; 1964 } 1965 ASSERT(tmp == NULL); 1966 } 1967 AS_LOCK_EXIT(as, &as->a_lock); 1968 1969 if (overflow || i != nphdrs) { 1970 if (ntries++ == 0) { 1971 kmem_free(bigwad, bigsize); 1972 overflow = 0; 1973 goto top; 1974 } 1975 cmn_err(CE_WARN, "elfcore: core dump failed for " 1976 "process %d; address space is changing", p->p_pid); 1977 error = EIO; 1978 goto done; 1979 } 1980 1981 if ((error = core_write(vp, UIO_SYSSPACE, poffset, 1982 v, phdrsz, rlimit, credp)) != 0) 1983 goto done; 1984 1985 if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit, 1986 credp)) != 0) 1987 goto done; 1988 1989 if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit, 1990 credp, content)) != 0) 1991 goto done; 1992 1993 for (i = 2; i < nphdrs; i++) { 1994 prkillinfo_t killinfo; 1995 sigqueue_t *sq; 1996 int sig, j; 1997 1998 if (v[i].p_filesz == 0) 1999 continue; 2000 2001 /* 2002 * If dumping out this segment fails, rather than failing 2003 * the core dump entirely, we reset the size of the mapping 2004 * to zero to indicate that the data is absent from the core 2005 * file and or in the PF_SUNW_FAILURE flag to differentiate 2006 * this from mappings that were excluded due to the core file 2007 * content settings. 2008 */ 2009 if ((error = core_seg(p, vp, v[i].p_offset, 2010 (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz, 2011 rlimit, credp)) == 0) { 2012 continue; 2013 } 2014 2015 if ((sig = lwp->lwp_cursig) == 0) { 2016 /* 2017 * We failed due to something other than a signal. 2018 * Since the space reserved for the segment is now 2019 * unused, we stash the errno in the first four 2020 * bytes. This undocumented interface will let us 2021 * understand the nature of the failure. 2022 */ 2023 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 2024 &error, sizeof (error), rlimit, credp); 2025 2026 v[i].p_filesz = 0; 2027 v[i].p_flags |= PF_SUNW_FAILURE; 2028 if ((error = core_write(vp, UIO_SYSSPACE, 2029 poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]), 2030 rlimit, credp)) != 0) 2031 goto done; 2032 2033 continue; 2034 } 2035 2036 /* 2037 * We took a signal. We want to abort the dump entirely, but 2038 * we also want to indicate what failed and why. We therefore 2039 * use the space reserved for the first failing segment to 2040 * write our error (which, for purposes of compatability with 2041 * older core dump readers, we set to EINTR) followed by any 2042 * siginfo associated with the signal. 2043 */ 2044 bzero(&killinfo, sizeof (killinfo)); 2045 killinfo.prk_error = EINTR; 2046 2047 sq = sig == SIGKILL ? curproc->p_killsqp : lwp->lwp_curinfo; 2048 2049 if (sq != NULL) { 2050 bcopy(&sq->sq_info, &killinfo.prk_info, 2051 sizeof (sq->sq_info)); 2052 } else { 2053 killinfo.prk_info.si_signo = lwp->lwp_cursig; 2054 killinfo.prk_info.si_code = SI_NOINFO; 2055 } 2056 2057 #if (defined(_SYSCALL32_IMPL) || defined(_LP64)) 2058 /* 2059 * If this is a 32-bit process, we need to translate from the 2060 * native siginfo to the 32-bit variant. (Core readers must 2061 * always have the same data model as their target or must 2062 * be aware of -- and compensate for -- data model differences.) 2063 */ 2064 if (curproc->p_model == DATAMODEL_ILP32) { 2065 siginfo32_t si32; 2066 2067 siginfo_kto32((k_siginfo_t *)&killinfo.prk_info, &si32); 2068 bcopy(&si32, &killinfo.prk_info, sizeof (si32)); 2069 } 2070 #endif 2071 2072 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 2073 &killinfo, sizeof (killinfo), rlimit, credp); 2074 2075 /* 2076 * For the segment on which we took the signal, indicate that 2077 * its data now refers to a siginfo. 2078 */ 2079 v[i].p_filesz = 0; 2080 v[i].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED | 2081 PF_SUNW_SIGINFO; 2082 2083 /* 2084 * And for every other segment, indicate that its absence 2085 * is due to a signal. 2086 */ 2087 for (j = i + 1; j < nphdrs; j++) { 2088 v[j].p_filesz = 0; 2089 v[j].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED; 2090 } 2091 2092 /* 2093 * Finally, write out our modified program headers. 2094 */ 2095 if ((error = core_write(vp, UIO_SYSSPACE, 2096 poffset + sizeof (v[i]) * i, &v[i], 2097 sizeof (v[i]) * (nphdrs - i), rlimit, credp)) != 0) 2098 goto done; 2099 2100 break; 2101 } 2102 2103 if (nshdrs > 0) { 2104 bzero(&bigwad->shdr[0], shdrsz); 2105 2106 if (nshdrs >= SHN_LORESERVE) 2107 bigwad->shdr[0].sh_size = nshdrs; 2108 2109 if (nshdrs - 1 >= SHN_LORESERVE) 2110 bigwad->shdr[0].sh_link = nshdrs - 1; 2111 2112 if (nphdrs >= PN_XNUM) 2113 bigwad->shdr[0].sh_info = nphdrs; 2114 2115 if (nshdrs > 1) { 2116 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 2117 if ((error = process_scns(content, p, credp, vp, 2118 &bigwad->shdr[0], nshdrs, rlimit, &doffset, 2119 NULL)) != 0) { 2120 AS_LOCK_EXIT(as, &as->a_lock); 2121 goto done; 2122 } 2123 AS_LOCK_EXIT(as, &as->a_lock); 2124 } 2125 2126 if ((error = core_write(vp, UIO_SYSSPACE, soffset, 2127 &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0) 2128 goto done; 2129 } 2130 2131 done: 2132 kmem_free(bigwad, bigsize); 2133 return (error); 2134 } 2135 2136 #ifndef _ELF32_COMPAT 2137 2138 static struct execsw esw = { 2139 #ifdef _LP64 2140 elf64magicstr, 2141 #else /* _LP64 */ 2142 elf32magicstr, 2143 #endif /* _LP64 */ 2144 0, 2145 5, 2146 elfexec, 2147 elfcore 2148 }; 2149 2150 static struct modlexec modlexec = { 2151 &mod_execops, "exec module for elf", &esw 2152 }; 2153 2154 #ifdef _LP64 2155 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args, 2156 intpdata_t *idatap, int level, long *execsz, 2157 int setid, caddr_t exec_file, cred_t *cred, 2158 int brand_action); 2159 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp, 2160 rlim64_t rlimit, int sig, core_content_t content); 2161 2162 static struct execsw esw32 = { 2163 elf32magicstr, 2164 0, 2165 5, 2166 elf32exec, 2167 elf32core 2168 }; 2169 2170 static struct modlexec modlexec32 = { 2171 &mod_execops, "32-bit exec module for elf", &esw32 2172 }; 2173 #endif /* _LP64 */ 2174 2175 static struct modlinkage modlinkage = { 2176 MODREV_1, 2177 (void *)&modlexec, 2178 #ifdef _LP64 2179 (void *)&modlexec32, 2180 #endif /* _LP64 */ 2181 NULL 2182 }; 2183 2184 int 2185 _init(void) 2186 { 2187 return (mod_install(&modlinkage)); 2188 } 2189 2190 int 2191 _fini(void) 2192 { 2193 return (mod_remove(&modlinkage)); 2194 } 2195 2196 int 2197 _info(struct modinfo *modinfop) 2198 { 2199 return (mod_info(&modlinkage, modinfop)); 2200 } 2201 2202 #endif /* !_ELF32_COMPAT */ 2203