1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * DTrace - Dynamic Tracing for Solaris 29 * 30 * This is the implementation of the Solaris Dynamic Tracing framework 31 * (DTrace). The user-visible interface to DTrace is described at length in 32 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 33 * library, the in-kernel DTrace framework, and the DTrace providers are 34 * described in the block comments in the <sys/dtrace.h> header file. The 35 * internal architecture of DTrace is described in the block comments in the 36 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 37 * implementation very much assume mastery of all of these sources; if one has 38 * an unanswered question about the implementation, one should consult them 39 * first. 40 * 41 * The functions here are ordered roughly as follows: 42 * 43 * - Probe context functions 44 * - Probe hashing functions 45 * - Non-probe context utility functions 46 * - Matching functions 47 * - Provider-to-Framework API functions 48 * - Probe management functions 49 * - DIF object functions 50 * - Format functions 51 * - Predicate functions 52 * - ECB functions 53 * - Buffer functions 54 * - Enabling functions 55 * - DOF functions 56 * - Anonymous enabling functions 57 * - Consumer state functions 58 * - Helper functions 59 * - Hook functions 60 * - Driver cookbook functions 61 * 62 * Each group of functions begins with a block comment labelled the "DTrace 63 * [Group] Functions", allowing one to find each block by searching forward 64 * on capital-f functions. 65 */ 66 #include <sys/errno.h> 67 #include <sys/stat.h> 68 #include <sys/modctl.h> 69 #include <sys/conf.h> 70 #include <sys/systm.h> 71 #include <sys/ddi.h> 72 #include <sys/sunddi.h> 73 #include <sys/cpuvar.h> 74 #include <sys/kmem.h> 75 #include <sys/strsubr.h> 76 #include <sys/sysmacros.h> 77 #include <sys/dtrace_impl.h> 78 #include <sys/atomic.h> 79 #include <sys/cmn_err.h> 80 #include <sys/mutex_impl.h> 81 #include <sys/rwlock_impl.h> 82 #include <sys/ctf_api.h> 83 #include <sys/panic.h> 84 #include <sys/priv_impl.h> 85 #include <sys/policy.h> 86 #include <sys/cred_impl.h> 87 #include <sys/procfs_isa.h> 88 #include <sys/taskq.h> 89 #include <sys/mkdev.h> 90 #include <sys/kdi.h> 91 #include <sys/zone.h> 92 #include <sys/socket.h> 93 #include <netinet/in.h> 94 95 /* 96 * DTrace Tunable Variables 97 * 98 * The following variables may be tuned by adding a line to /etc/system that 99 * includes both the name of the DTrace module ("dtrace") and the name of the 100 * variable. For example: 101 * 102 * set dtrace:dtrace_destructive_disallow = 1 103 * 104 * In general, the only variables that one should be tuning this way are those 105 * that affect system-wide DTrace behavior, and for which the default behavior 106 * is undesirable. Most of these variables are tunable on a per-consumer 107 * basis using DTrace options, and need not be tuned on a system-wide basis. 108 * When tuning these variables, avoid pathological values; while some attempt 109 * is made to verify the integrity of these variables, they are not considered 110 * part of the supported interface to DTrace, and they are therefore not 111 * checked comprehensively. Further, these variables should not be tuned 112 * dynamically via "mdb -kw" or other means; they should only be tuned via 113 * /etc/system. 114 */ 115 int dtrace_destructive_disallow = 0; 116 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 117 size_t dtrace_difo_maxsize = (256 * 1024); 118 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 119 size_t dtrace_global_maxsize = (16 * 1024); 120 size_t dtrace_actions_max = (16 * 1024); 121 size_t dtrace_retain_max = 1024; 122 dtrace_optval_t dtrace_helper_actions_max = 32; 123 dtrace_optval_t dtrace_helper_providers_max = 32; 124 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 125 size_t dtrace_strsize_default = 256; 126 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 127 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 128 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 129 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 130 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 132 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_nspec_default = 1; 134 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 135 dtrace_optval_t dtrace_stackframes_default = 20; 136 dtrace_optval_t dtrace_ustackframes_default = 20; 137 dtrace_optval_t dtrace_jstackframes_default = 50; 138 dtrace_optval_t dtrace_jstackstrsize_default = 512; 139 int dtrace_msgdsize_max = 128; 140 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 141 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 142 int dtrace_devdepth_max = 32; 143 int dtrace_err_verbose; 144 hrtime_t dtrace_deadman_interval = NANOSEC; 145 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 146 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 147 148 /* 149 * DTrace External Variables 150 * 151 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 152 * available to DTrace consumers via the backtick (`) syntax. One of these, 153 * dtrace_zero, is made deliberately so: it is provided as a source of 154 * well-known, zero-filled memory. While this variable is not documented, 155 * it is used by some translators as an implementation detail. 156 */ 157 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 158 159 /* 160 * DTrace Internal Variables 161 */ 162 static dev_info_t *dtrace_devi; /* device info */ 163 static vmem_t *dtrace_arena; /* probe ID arena */ 164 static vmem_t *dtrace_minor; /* minor number arena */ 165 static taskq_t *dtrace_taskq; /* task queue */ 166 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 167 static int dtrace_nprobes; /* number of probes */ 168 static dtrace_provider_t *dtrace_provider; /* provider list */ 169 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 170 static int dtrace_opens; /* number of opens */ 171 static int dtrace_helpers; /* number of helpers */ 172 static void *dtrace_softstate; /* softstate pointer */ 173 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 174 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 175 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 176 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 177 static int dtrace_toxranges; /* number of toxic ranges */ 178 static int dtrace_toxranges_max; /* size of toxic range array */ 179 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 180 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 181 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 182 static kthread_t *dtrace_panicked; /* panicking thread */ 183 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 184 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 185 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 186 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 187 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 188 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 189 190 /* 191 * DTrace Locking 192 * DTrace is protected by three (relatively coarse-grained) locks: 193 * 194 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 195 * including enabling state, probes, ECBs, consumer state, helper state, 196 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 197 * probe context is lock-free -- synchronization is handled via the 198 * dtrace_sync() cross call mechanism. 199 * 200 * (2) dtrace_provider_lock is required when manipulating provider state, or 201 * when provider state must be held constant. 202 * 203 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 204 * when meta provider state must be held constant. 205 * 206 * The lock ordering between these three locks is dtrace_meta_lock before 207 * dtrace_provider_lock before dtrace_lock. (In particular, there are 208 * several places where dtrace_provider_lock is held by the framework as it 209 * calls into the providers -- which then call back into the framework, 210 * grabbing dtrace_lock.) 211 * 212 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 213 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 214 * role as a coarse-grained lock; it is acquired before both of these locks. 215 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 216 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 217 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 218 * acquired _between_ dtrace_provider_lock and dtrace_lock. 219 */ 220 static kmutex_t dtrace_lock; /* probe state lock */ 221 static kmutex_t dtrace_provider_lock; /* provider state lock */ 222 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 223 224 /* 225 * DTrace Provider Variables 226 * 227 * These are the variables relating to DTrace as a provider (that is, the 228 * provider of the BEGIN, END, and ERROR probes). 229 */ 230 static dtrace_pattr_t dtrace_provider_attr = { 231 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 232 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 233 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 236 }; 237 238 static void 239 dtrace_nullop(void) 240 {} 241 242 static int 243 dtrace_enable_nullop(void) 244 { 245 return (0); 246 } 247 248 static dtrace_pops_t dtrace_provider_ops = { 249 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 250 (void (*)(void *, struct modctl *))dtrace_nullop, 251 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 252 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 253 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 254 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 255 NULL, 256 NULL, 257 NULL, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 259 }; 260 261 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 262 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 263 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 264 265 /* 266 * DTrace Helper Tracing Variables 267 */ 268 uint32_t dtrace_helptrace_next = 0; 269 uint32_t dtrace_helptrace_nlocals; 270 char *dtrace_helptrace_buffer; 271 int dtrace_helptrace_bufsize = 512 * 1024; 272 273 #ifdef DEBUG 274 int dtrace_helptrace_enabled = 1; 275 #else 276 int dtrace_helptrace_enabled = 0; 277 #endif 278 279 /* 280 * DTrace Error Hashing 281 * 282 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 283 * table. This is very useful for checking coverage of tests that are 284 * expected to induce DIF or DOF processing errors, and may be useful for 285 * debugging problems in the DIF code generator or in DOF generation . The 286 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 287 */ 288 #ifdef DEBUG 289 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 290 static const char *dtrace_errlast; 291 static kthread_t *dtrace_errthread; 292 static kmutex_t dtrace_errlock; 293 #endif 294 295 /* 296 * DTrace Macros and Constants 297 * 298 * These are various macros that are useful in various spots in the 299 * implementation, along with a few random constants that have no meaning 300 * outside of the implementation. There is no real structure to this cpp 301 * mishmash -- but is there ever? 302 */ 303 #define DTRACE_HASHSTR(hash, probe) \ 304 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 305 306 #define DTRACE_HASHNEXT(hash, probe) \ 307 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 308 309 #define DTRACE_HASHPREV(hash, probe) \ 310 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 311 312 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 313 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 314 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 315 316 #define DTRACE_AGGHASHSIZE_SLEW 17 317 318 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 319 320 /* 321 * The key for a thread-local variable consists of the lower 61 bits of the 322 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 323 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 324 * equal to a variable identifier. This is necessary (but not sufficient) to 325 * assure that global associative arrays never collide with thread-local 326 * variables. To guarantee that they cannot collide, we must also define the 327 * order for keying dynamic variables. That order is: 328 * 329 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 330 * 331 * Because the variable-key and the tls-key are in orthogonal spaces, there is 332 * no way for a global variable key signature to match a thread-local key 333 * signature. 334 */ 335 #define DTRACE_TLS_THRKEY(where) { \ 336 uint_t intr = 0; \ 337 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 338 for (; actv; actv >>= 1) \ 339 intr++; \ 340 ASSERT(intr < (1 << 3)); \ 341 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 342 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 343 } 344 345 #define DT_BSWAP_8(x) ((x) & 0xff) 346 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 347 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 348 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 349 350 #define DT_MASK_LO 0x00000000FFFFFFFFULL 351 352 #define DTRACE_STORE(type, tomax, offset, what) \ 353 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 354 355 #ifndef __i386 356 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 357 if (addr & (size - 1)) { \ 358 *flags |= CPU_DTRACE_BADALIGN; \ 359 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 360 return (0); \ 361 } 362 #else 363 #define DTRACE_ALIGNCHECK(addr, size, flags) 364 #endif 365 366 /* 367 * Test whether a range of memory starting at testaddr of size testsz falls 368 * within the range of memory described by addr, sz. We take care to avoid 369 * problems with overflow and underflow of the unsigned quantities, and 370 * disallow all negative sizes. Ranges of size 0 are allowed. 371 */ 372 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 373 ((testaddr) - (baseaddr) < (basesz) && \ 374 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 375 (testaddr) + (testsz) >= (testaddr)) 376 377 /* 378 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 379 * alloc_sz on the righthand side of the comparison in order to avoid overflow 380 * or underflow in the comparison with it. This is simpler than the INRANGE 381 * check above, because we know that the dtms_scratch_ptr is valid in the 382 * range. Allocations of size zero are allowed. 383 */ 384 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 385 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 386 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 387 388 #define DTRACE_LOADFUNC(bits) \ 389 /*CSTYLED*/ \ 390 uint##bits##_t \ 391 dtrace_load##bits(uintptr_t addr) \ 392 { \ 393 size_t size = bits / NBBY; \ 394 /*CSTYLED*/ \ 395 uint##bits##_t rval; \ 396 int i; \ 397 volatile uint16_t *flags = (volatile uint16_t *) \ 398 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 399 \ 400 DTRACE_ALIGNCHECK(addr, size, flags); \ 401 \ 402 for (i = 0; i < dtrace_toxranges; i++) { \ 403 if (addr >= dtrace_toxrange[i].dtt_limit) \ 404 continue; \ 405 \ 406 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 407 continue; \ 408 \ 409 /* \ 410 * This address falls within a toxic region; return 0. \ 411 */ \ 412 *flags |= CPU_DTRACE_BADADDR; \ 413 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 414 return (0); \ 415 } \ 416 \ 417 *flags |= CPU_DTRACE_NOFAULT; \ 418 /*CSTYLED*/ \ 419 rval = *((volatile uint##bits##_t *)addr); \ 420 *flags &= ~CPU_DTRACE_NOFAULT; \ 421 \ 422 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 423 } 424 425 #ifdef _LP64 426 #define dtrace_loadptr dtrace_load64 427 #else 428 #define dtrace_loadptr dtrace_load32 429 #endif 430 431 #define DTRACE_DYNHASH_FREE 0 432 #define DTRACE_DYNHASH_SINK 1 433 #define DTRACE_DYNHASH_VALID 2 434 435 #define DTRACE_MATCH_FAIL -1 436 #define DTRACE_MATCH_NEXT 0 437 #define DTRACE_MATCH_DONE 1 438 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 439 #define DTRACE_STATE_ALIGN 64 440 441 #define DTRACE_FLAGS2FLT(flags) \ 442 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 443 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 444 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 445 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 446 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 447 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 448 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 449 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 450 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 451 DTRACEFLT_UNKNOWN) 452 453 #define DTRACEACT_ISSTRING(act) \ 454 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 455 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 456 457 static size_t dtrace_strlen(const char *, size_t); 458 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 459 static void dtrace_enabling_provide(dtrace_provider_t *); 460 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 461 static void dtrace_enabling_matchall(void); 462 static dtrace_state_t *dtrace_anon_grab(void); 463 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 464 dtrace_state_t *, uint64_t, uint64_t); 465 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 466 static void dtrace_buffer_drop(dtrace_buffer_t *); 467 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 468 dtrace_state_t *, dtrace_mstate_t *); 469 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 470 dtrace_optval_t); 471 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 472 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 473 474 /* 475 * DTrace Probe Context Functions 476 * 477 * These functions are called from probe context. Because probe context is 478 * any context in which C may be called, arbitrarily locks may be held, 479 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 480 * As a result, functions called from probe context may only call other DTrace 481 * support functions -- they may not interact at all with the system at large. 482 * (Note that the ASSERT macro is made probe-context safe by redefining it in 483 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 484 * loads are to be performed from probe context, they _must_ be in terms of 485 * the safe dtrace_load*() variants. 486 * 487 * Some functions in this block are not actually called from probe context; 488 * for these functions, there will be a comment above the function reading 489 * "Note: not called from probe context." 490 */ 491 void 492 dtrace_panic(const char *format, ...) 493 { 494 va_list alist; 495 496 va_start(alist, format); 497 dtrace_vpanic(format, alist); 498 va_end(alist); 499 } 500 501 int 502 dtrace_assfail(const char *a, const char *f, int l) 503 { 504 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 505 506 /* 507 * We just need something here that even the most clever compiler 508 * cannot optimize away. 509 */ 510 return (a[(uintptr_t)f]); 511 } 512 513 /* 514 * Atomically increment a specified error counter from probe context. 515 */ 516 static void 517 dtrace_error(uint32_t *counter) 518 { 519 /* 520 * Most counters stored to in probe context are per-CPU counters. 521 * However, there are some error conditions that are sufficiently 522 * arcane that they don't merit per-CPU storage. If these counters 523 * are incremented concurrently on different CPUs, scalability will be 524 * adversely affected -- but we don't expect them to be white-hot in a 525 * correctly constructed enabling... 526 */ 527 uint32_t oval, nval; 528 529 do { 530 oval = *counter; 531 532 if ((nval = oval + 1) == 0) { 533 /* 534 * If the counter would wrap, set it to 1 -- assuring 535 * that the counter is never zero when we have seen 536 * errors. (The counter must be 32-bits because we 537 * aren't guaranteed a 64-bit compare&swap operation.) 538 * To save this code both the infamy of being fingered 539 * by a priggish news story and the indignity of being 540 * the target of a neo-puritan witch trial, we're 541 * carefully avoiding any colorful description of the 542 * likelihood of this condition -- but suffice it to 543 * say that it is only slightly more likely than the 544 * overflow of predicate cache IDs, as discussed in 545 * dtrace_predicate_create(). 546 */ 547 nval = 1; 548 } 549 } while (dtrace_cas32(counter, oval, nval) != oval); 550 } 551 552 /* 553 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 554 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 555 */ 556 DTRACE_LOADFUNC(8) 557 DTRACE_LOADFUNC(16) 558 DTRACE_LOADFUNC(32) 559 DTRACE_LOADFUNC(64) 560 561 static int 562 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 563 { 564 if (dest < mstate->dtms_scratch_base) 565 return (0); 566 567 if (dest + size < dest) 568 return (0); 569 570 if (dest + size > mstate->dtms_scratch_ptr) 571 return (0); 572 573 return (1); 574 } 575 576 static int 577 dtrace_canstore_statvar(uint64_t addr, size_t sz, 578 dtrace_statvar_t **svars, int nsvars) 579 { 580 int i; 581 582 for (i = 0; i < nsvars; i++) { 583 dtrace_statvar_t *svar = svars[i]; 584 585 if (svar == NULL || svar->dtsv_size == 0) 586 continue; 587 588 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 589 return (1); 590 } 591 592 return (0); 593 } 594 595 /* 596 * Check to see if the address is within a memory region to which a store may 597 * be issued. This includes the DTrace scratch areas, and any DTrace variable 598 * region. The caller of dtrace_canstore() is responsible for performing any 599 * alignment checks that are needed before stores are actually executed. 600 */ 601 static int 602 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 603 dtrace_vstate_t *vstate) 604 { 605 /* 606 * First, check to see if the address is in scratch space... 607 */ 608 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 609 mstate->dtms_scratch_size)) 610 return (1); 611 612 /* 613 * Now check to see if it's a dynamic variable. This check will pick 614 * up both thread-local variables and any global dynamically-allocated 615 * variables. 616 */ 617 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 618 vstate->dtvs_dynvars.dtds_size)) { 619 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 620 uintptr_t base = (uintptr_t)dstate->dtds_base + 621 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 622 uintptr_t chunkoffs; 623 624 /* 625 * Before we assume that we can store here, we need to make 626 * sure that it isn't in our metadata -- storing to our 627 * dynamic variable metadata would corrupt our state. For 628 * the range to not include any dynamic variable metadata, 629 * it must: 630 * 631 * (1) Start above the hash table that is at the base of 632 * the dynamic variable space 633 * 634 * (2) Have a starting chunk offset that is beyond the 635 * dtrace_dynvar_t that is at the base of every chunk 636 * 637 * (3) Not span a chunk boundary 638 * 639 */ 640 if (addr < base) 641 return (0); 642 643 chunkoffs = (addr - base) % dstate->dtds_chunksize; 644 645 if (chunkoffs < sizeof (dtrace_dynvar_t)) 646 return (0); 647 648 if (chunkoffs + sz > dstate->dtds_chunksize) 649 return (0); 650 651 return (1); 652 } 653 654 /* 655 * Finally, check the static local and global variables. These checks 656 * take the longest, so we perform them last. 657 */ 658 if (dtrace_canstore_statvar(addr, sz, 659 vstate->dtvs_locals, vstate->dtvs_nlocals)) 660 return (1); 661 662 if (dtrace_canstore_statvar(addr, sz, 663 vstate->dtvs_globals, vstate->dtvs_nglobals)) 664 return (1); 665 666 return (0); 667 } 668 669 670 /* 671 * Convenience routine to check to see if the address is within a memory 672 * region in which a load may be issued given the user's privilege level; 673 * if not, it sets the appropriate error flags and loads 'addr' into the 674 * illegal value slot. 675 * 676 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 677 * appropriate memory access protection. 678 */ 679 static int 680 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 681 dtrace_vstate_t *vstate) 682 { 683 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 684 685 /* 686 * If we hold the privilege to read from kernel memory, then 687 * everything is readable. 688 */ 689 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 690 return (1); 691 692 /* 693 * You can obviously read that which you can store. 694 */ 695 if (dtrace_canstore(addr, sz, mstate, vstate)) 696 return (1); 697 698 /* 699 * We're allowed to read from our own string table. 700 */ 701 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 702 mstate->dtms_difo->dtdo_strlen)) 703 return (1); 704 705 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 706 *illval = addr; 707 return (0); 708 } 709 710 /* 711 * Convenience routine to check to see if a given string is within a memory 712 * region in which a load may be issued given the user's privilege level; 713 * this exists so that we don't need to issue unnecessary dtrace_strlen() 714 * calls in the event that the user has all privileges. 715 */ 716 static int 717 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 718 dtrace_vstate_t *vstate) 719 { 720 size_t strsz; 721 722 /* 723 * If we hold the privilege to read from kernel memory, then 724 * everything is readable. 725 */ 726 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 727 return (1); 728 729 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 730 if (dtrace_canload(addr, strsz, mstate, vstate)) 731 return (1); 732 733 return (0); 734 } 735 736 /* 737 * Convenience routine to check to see if a given variable is within a memory 738 * region in which a load may be issued given the user's privilege level. 739 */ 740 static int 741 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 742 dtrace_vstate_t *vstate) 743 { 744 size_t sz; 745 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 746 747 /* 748 * If we hold the privilege to read from kernel memory, then 749 * everything is readable. 750 */ 751 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 752 return (1); 753 754 if (type->dtdt_kind == DIF_TYPE_STRING) 755 sz = dtrace_strlen(src, 756 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 757 else 758 sz = type->dtdt_size; 759 760 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 761 } 762 763 /* 764 * Compare two strings using safe loads. 765 */ 766 static int 767 dtrace_strncmp(char *s1, char *s2, size_t limit) 768 { 769 uint8_t c1, c2; 770 volatile uint16_t *flags; 771 772 if (s1 == s2 || limit == 0) 773 return (0); 774 775 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 776 777 do { 778 if (s1 == NULL) { 779 c1 = '\0'; 780 } else { 781 c1 = dtrace_load8((uintptr_t)s1++); 782 } 783 784 if (s2 == NULL) { 785 c2 = '\0'; 786 } else { 787 c2 = dtrace_load8((uintptr_t)s2++); 788 } 789 790 if (c1 != c2) 791 return (c1 - c2); 792 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 793 794 return (0); 795 } 796 797 /* 798 * Compute strlen(s) for a string using safe memory accesses. The additional 799 * len parameter is used to specify a maximum length to ensure completion. 800 */ 801 static size_t 802 dtrace_strlen(const char *s, size_t lim) 803 { 804 uint_t len; 805 806 for (len = 0; len != lim; len++) { 807 if (dtrace_load8((uintptr_t)s++) == '\0') 808 break; 809 } 810 811 return (len); 812 } 813 814 /* 815 * Check if an address falls within a toxic region. 816 */ 817 static int 818 dtrace_istoxic(uintptr_t kaddr, size_t size) 819 { 820 uintptr_t taddr, tsize; 821 int i; 822 823 for (i = 0; i < dtrace_toxranges; i++) { 824 taddr = dtrace_toxrange[i].dtt_base; 825 tsize = dtrace_toxrange[i].dtt_limit - taddr; 826 827 if (kaddr - taddr < tsize) { 828 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 829 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 830 return (1); 831 } 832 833 if (taddr - kaddr < size) { 834 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 835 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 836 return (1); 837 } 838 } 839 840 return (0); 841 } 842 843 /* 844 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 845 * memory specified by the DIF program. The dst is assumed to be safe memory 846 * that we can store to directly because it is managed by DTrace. As with 847 * standard bcopy, overlapping copies are handled properly. 848 */ 849 static void 850 dtrace_bcopy(const void *src, void *dst, size_t len) 851 { 852 if (len != 0) { 853 uint8_t *s1 = dst; 854 const uint8_t *s2 = src; 855 856 if (s1 <= s2) { 857 do { 858 *s1++ = dtrace_load8((uintptr_t)s2++); 859 } while (--len != 0); 860 } else { 861 s2 += len; 862 s1 += len; 863 864 do { 865 *--s1 = dtrace_load8((uintptr_t)--s2); 866 } while (--len != 0); 867 } 868 } 869 } 870 871 /* 872 * Copy src to dst using safe memory accesses, up to either the specified 873 * length, or the point that a nul byte is encountered. The src is assumed to 874 * be unsafe memory specified by the DIF program. The dst is assumed to be 875 * safe memory that we can store to directly because it is managed by DTrace. 876 * Unlike dtrace_bcopy(), overlapping regions are not handled. 877 */ 878 static void 879 dtrace_strcpy(const void *src, void *dst, size_t len) 880 { 881 if (len != 0) { 882 uint8_t *s1 = dst, c; 883 const uint8_t *s2 = src; 884 885 do { 886 *s1++ = c = dtrace_load8((uintptr_t)s2++); 887 } while (--len != 0 && c != '\0'); 888 } 889 } 890 891 /* 892 * Copy src to dst, deriving the size and type from the specified (BYREF) 893 * variable type. The src is assumed to be unsafe memory specified by the DIF 894 * program. The dst is assumed to be DTrace variable memory that is of the 895 * specified type; we assume that we can store to directly. 896 */ 897 static void 898 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 899 { 900 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 901 902 if (type->dtdt_kind == DIF_TYPE_STRING) { 903 dtrace_strcpy(src, dst, type->dtdt_size); 904 } else { 905 dtrace_bcopy(src, dst, type->dtdt_size); 906 } 907 } 908 909 /* 910 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 911 * unsafe memory specified by the DIF program. The s2 data is assumed to be 912 * safe memory that we can access directly because it is managed by DTrace. 913 */ 914 static int 915 dtrace_bcmp(const void *s1, const void *s2, size_t len) 916 { 917 volatile uint16_t *flags; 918 919 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 920 921 if (s1 == s2) 922 return (0); 923 924 if (s1 == NULL || s2 == NULL) 925 return (1); 926 927 if (s1 != s2 && len != 0) { 928 const uint8_t *ps1 = s1; 929 const uint8_t *ps2 = s2; 930 931 do { 932 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 933 return (1); 934 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 935 } 936 return (0); 937 } 938 939 /* 940 * Zero the specified region using a simple byte-by-byte loop. Note that this 941 * is for safe DTrace-managed memory only. 942 */ 943 static void 944 dtrace_bzero(void *dst, size_t len) 945 { 946 uchar_t *cp; 947 948 for (cp = dst; len != 0; len--) 949 *cp++ = 0; 950 } 951 952 static void 953 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 954 { 955 uint64_t result[2]; 956 957 result[0] = addend1[0] + addend2[0]; 958 result[1] = addend1[1] + addend2[1] + 959 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 960 961 sum[0] = result[0]; 962 sum[1] = result[1]; 963 } 964 965 /* 966 * Shift the 128-bit value in a by b. If b is positive, shift left. 967 * If b is negative, shift right. 968 */ 969 static void 970 dtrace_shift_128(uint64_t *a, int b) 971 { 972 uint64_t mask; 973 974 if (b == 0) 975 return; 976 977 if (b < 0) { 978 b = -b; 979 if (b >= 64) { 980 a[0] = a[1] >> (b - 64); 981 a[1] = 0; 982 } else { 983 a[0] >>= b; 984 mask = 1LL << (64 - b); 985 mask -= 1; 986 a[0] |= ((a[1] & mask) << (64 - b)); 987 a[1] >>= b; 988 } 989 } else { 990 if (b >= 64) { 991 a[1] = a[0] << (b - 64); 992 a[0] = 0; 993 } else { 994 a[1] <<= b; 995 mask = a[0] >> (64 - b); 996 a[1] |= mask; 997 a[0] <<= b; 998 } 999 } 1000 } 1001 1002 /* 1003 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1004 * use native multiplication on those, and then re-combine into the 1005 * resulting 128-bit value. 1006 * 1007 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1008 * hi1 * hi2 << 64 + 1009 * hi1 * lo2 << 32 + 1010 * hi2 * lo1 << 32 + 1011 * lo1 * lo2 1012 */ 1013 static void 1014 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1015 { 1016 uint64_t hi1, hi2, lo1, lo2; 1017 uint64_t tmp[2]; 1018 1019 hi1 = factor1 >> 32; 1020 hi2 = factor2 >> 32; 1021 1022 lo1 = factor1 & DT_MASK_LO; 1023 lo2 = factor2 & DT_MASK_LO; 1024 1025 product[0] = lo1 * lo2; 1026 product[1] = hi1 * hi2; 1027 1028 tmp[0] = hi1 * lo2; 1029 tmp[1] = 0; 1030 dtrace_shift_128(tmp, 32); 1031 dtrace_add_128(product, tmp, product); 1032 1033 tmp[0] = hi2 * lo1; 1034 tmp[1] = 0; 1035 dtrace_shift_128(tmp, 32); 1036 dtrace_add_128(product, tmp, product); 1037 } 1038 1039 /* 1040 * This privilege check should be used by actions and subroutines to 1041 * verify that the user credentials of the process that enabled the 1042 * invoking ECB match the target credentials 1043 */ 1044 static int 1045 dtrace_priv_proc_common_user(dtrace_state_t *state) 1046 { 1047 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1048 1049 /* 1050 * We should always have a non-NULL state cred here, since if cred 1051 * is null (anonymous tracing), we fast-path bypass this routine. 1052 */ 1053 ASSERT(s_cr != NULL); 1054 1055 if ((cr = CRED()) != NULL && 1056 s_cr->cr_uid == cr->cr_uid && 1057 s_cr->cr_uid == cr->cr_ruid && 1058 s_cr->cr_uid == cr->cr_suid && 1059 s_cr->cr_gid == cr->cr_gid && 1060 s_cr->cr_gid == cr->cr_rgid && 1061 s_cr->cr_gid == cr->cr_sgid) 1062 return (1); 1063 1064 return (0); 1065 } 1066 1067 /* 1068 * This privilege check should be used by actions and subroutines to 1069 * verify that the zone of the process that enabled the invoking ECB 1070 * matches the target credentials 1071 */ 1072 static int 1073 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1074 { 1075 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1076 1077 /* 1078 * We should always have a non-NULL state cred here, since if cred 1079 * is null (anonymous tracing), we fast-path bypass this routine. 1080 */ 1081 ASSERT(s_cr != NULL); 1082 1083 if ((cr = CRED()) != NULL && 1084 s_cr->cr_zone == cr->cr_zone) 1085 return (1); 1086 1087 return (0); 1088 } 1089 1090 /* 1091 * This privilege check should be used by actions and subroutines to 1092 * verify that the process has not setuid or changed credentials. 1093 */ 1094 static int 1095 dtrace_priv_proc_common_nocd() 1096 { 1097 proc_t *proc; 1098 1099 if ((proc = ttoproc(curthread)) != NULL && 1100 !(proc->p_flag & SNOCD)) 1101 return (1); 1102 1103 return (0); 1104 } 1105 1106 static int 1107 dtrace_priv_proc_destructive(dtrace_state_t *state) 1108 { 1109 int action = state->dts_cred.dcr_action; 1110 1111 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1112 dtrace_priv_proc_common_zone(state) == 0) 1113 goto bad; 1114 1115 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1116 dtrace_priv_proc_common_user(state) == 0) 1117 goto bad; 1118 1119 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1120 dtrace_priv_proc_common_nocd() == 0) 1121 goto bad; 1122 1123 return (1); 1124 1125 bad: 1126 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1127 1128 return (0); 1129 } 1130 1131 static int 1132 dtrace_priv_proc_control(dtrace_state_t *state) 1133 { 1134 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1135 return (1); 1136 1137 if (dtrace_priv_proc_common_zone(state) && 1138 dtrace_priv_proc_common_user(state) && 1139 dtrace_priv_proc_common_nocd()) 1140 return (1); 1141 1142 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1143 1144 return (0); 1145 } 1146 1147 static int 1148 dtrace_priv_proc(dtrace_state_t *state) 1149 { 1150 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1151 return (1); 1152 1153 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1154 1155 return (0); 1156 } 1157 1158 static int 1159 dtrace_priv_kernel(dtrace_state_t *state) 1160 { 1161 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1162 return (1); 1163 1164 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1165 1166 return (0); 1167 } 1168 1169 static int 1170 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1171 { 1172 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1173 return (1); 1174 1175 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1176 1177 return (0); 1178 } 1179 1180 /* 1181 * Note: not called from probe context. This function is called 1182 * asynchronously (and at a regular interval) from outside of probe context to 1183 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1184 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1185 */ 1186 void 1187 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1188 { 1189 dtrace_dynvar_t *dirty; 1190 dtrace_dstate_percpu_t *dcpu; 1191 int i, work = 0; 1192 1193 for (i = 0; i < NCPU; i++) { 1194 dcpu = &dstate->dtds_percpu[i]; 1195 1196 ASSERT(dcpu->dtdsc_rinsing == NULL); 1197 1198 /* 1199 * If the dirty list is NULL, there is no dirty work to do. 1200 */ 1201 if (dcpu->dtdsc_dirty == NULL) 1202 continue; 1203 1204 /* 1205 * If the clean list is non-NULL, then we're not going to do 1206 * any work for this CPU -- it means that there has not been 1207 * a dtrace_dynvar() allocation on this CPU (or from this CPU) 1208 * since the last time we cleaned house. 1209 */ 1210 if (dcpu->dtdsc_clean != NULL) 1211 continue; 1212 1213 work = 1; 1214 1215 /* 1216 * Atomically move the dirty list aside. 1217 */ 1218 do { 1219 dirty = dcpu->dtdsc_dirty; 1220 1221 /* 1222 * Before we zap the dirty list, set the rinsing list. 1223 * (This allows for a potential assertion in 1224 * dtrace_dynvar(): if a free dynamic variable appears 1225 * on a hash chain, either the dirty list or the 1226 * rinsing list for some CPU must be non-NULL.) 1227 */ 1228 dcpu->dtdsc_rinsing = dirty; 1229 dtrace_membar_producer(); 1230 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1231 dirty, NULL) != dirty); 1232 } 1233 1234 if (!work) { 1235 /* 1236 * We have no work to do; we can simply return. 1237 */ 1238 return; 1239 } 1240 1241 dtrace_sync(); 1242 1243 for (i = 0; i < NCPU; i++) { 1244 dcpu = &dstate->dtds_percpu[i]; 1245 1246 if (dcpu->dtdsc_rinsing == NULL) 1247 continue; 1248 1249 /* 1250 * We are now guaranteed that no hash chain contains a pointer 1251 * into this dirty list; we can make it clean. 1252 */ 1253 ASSERT(dcpu->dtdsc_clean == NULL); 1254 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1255 dcpu->dtdsc_rinsing = NULL; 1256 } 1257 1258 /* 1259 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1260 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1261 * This prevents a race whereby a CPU incorrectly decides that 1262 * the state should be something other than DTRACE_DSTATE_CLEAN 1263 * after dtrace_dynvar_clean() has completed. 1264 */ 1265 dtrace_sync(); 1266 1267 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1268 } 1269 1270 /* 1271 * Depending on the value of the op parameter, this function looks-up, 1272 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1273 * allocation is requested, this function will return a pointer to a 1274 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1275 * variable can be allocated. If NULL is returned, the appropriate counter 1276 * will be incremented. 1277 */ 1278 dtrace_dynvar_t * 1279 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1280 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1281 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1282 { 1283 uint64_t hashval = DTRACE_DYNHASH_VALID; 1284 dtrace_dynhash_t *hash = dstate->dtds_hash; 1285 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1286 processorid_t me = CPU->cpu_id, cpu = me; 1287 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1288 size_t bucket, ksize; 1289 size_t chunksize = dstate->dtds_chunksize; 1290 uintptr_t kdata, lock, nstate; 1291 uint_t i; 1292 1293 ASSERT(nkeys != 0); 1294 1295 /* 1296 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1297 * algorithm. For the by-value portions, we perform the algorithm in 1298 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1299 * bit, and seems to have only a minute effect on distribution. For 1300 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1301 * over each referenced byte. It's painful to do this, but it's much 1302 * better than pathological hash distribution. The efficacy of the 1303 * hashing algorithm (and a comparison with other algorithms) may be 1304 * found by running the ::dtrace_dynstat MDB dcmd. 1305 */ 1306 for (i = 0; i < nkeys; i++) { 1307 if (key[i].dttk_size == 0) { 1308 uint64_t val = key[i].dttk_value; 1309 1310 hashval += (val >> 48) & 0xffff; 1311 hashval += (hashval << 10); 1312 hashval ^= (hashval >> 6); 1313 1314 hashval += (val >> 32) & 0xffff; 1315 hashval += (hashval << 10); 1316 hashval ^= (hashval >> 6); 1317 1318 hashval += (val >> 16) & 0xffff; 1319 hashval += (hashval << 10); 1320 hashval ^= (hashval >> 6); 1321 1322 hashval += val & 0xffff; 1323 hashval += (hashval << 10); 1324 hashval ^= (hashval >> 6); 1325 } else { 1326 /* 1327 * This is incredibly painful, but it beats the hell 1328 * out of the alternative. 1329 */ 1330 uint64_t j, size = key[i].dttk_size; 1331 uintptr_t base = (uintptr_t)key[i].dttk_value; 1332 1333 if (!dtrace_canload(base, size, mstate, vstate)) 1334 break; 1335 1336 for (j = 0; j < size; j++) { 1337 hashval += dtrace_load8(base + j); 1338 hashval += (hashval << 10); 1339 hashval ^= (hashval >> 6); 1340 } 1341 } 1342 } 1343 1344 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1345 return (NULL); 1346 1347 hashval += (hashval << 3); 1348 hashval ^= (hashval >> 11); 1349 hashval += (hashval << 15); 1350 1351 /* 1352 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1353 * comes out to be one of our two sentinel hash values. If this 1354 * actually happens, we set the hashval to be a value known to be a 1355 * non-sentinel value. 1356 */ 1357 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1358 hashval = DTRACE_DYNHASH_VALID; 1359 1360 /* 1361 * Yes, it's painful to do a divide here. If the cycle count becomes 1362 * important here, tricks can be pulled to reduce it. (However, it's 1363 * critical that hash collisions be kept to an absolute minimum; 1364 * they're much more painful than a divide.) It's better to have a 1365 * solution that generates few collisions and still keeps things 1366 * relatively simple. 1367 */ 1368 bucket = hashval % dstate->dtds_hashsize; 1369 1370 if (op == DTRACE_DYNVAR_DEALLOC) { 1371 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1372 1373 for (;;) { 1374 while ((lock = *lockp) & 1) 1375 continue; 1376 1377 if (dtrace_casptr((void *)lockp, 1378 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1379 break; 1380 } 1381 1382 dtrace_membar_producer(); 1383 } 1384 1385 top: 1386 prev = NULL; 1387 lock = hash[bucket].dtdh_lock; 1388 1389 dtrace_membar_consumer(); 1390 1391 start = hash[bucket].dtdh_chain; 1392 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1393 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1394 op != DTRACE_DYNVAR_DEALLOC)); 1395 1396 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1397 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1398 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1399 1400 if (dvar->dtdv_hashval != hashval) { 1401 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1402 /* 1403 * We've reached the sink, and therefore the 1404 * end of the hash chain; we can kick out of 1405 * the loop knowing that we have seen a valid 1406 * snapshot of state. 1407 */ 1408 ASSERT(dvar->dtdv_next == NULL); 1409 ASSERT(dvar == &dtrace_dynhash_sink); 1410 break; 1411 } 1412 1413 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1414 /* 1415 * We've gone off the rails: somewhere along 1416 * the line, one of the members of this hash 1417 * chain was deleted. Note that we could also 1418 * detect this by simply letting this loop run 1419 * to completion, as we would eventually hit 1420 * the end of the dirty list. However, we 1421 * want to avoid running the length of the 1422 * dirty list unnecessarily (it might be quite 1423 * long), so we catch this as early as 1424 * possible by detecting the hash marker. In 1425 * this case, we simply set dvar to NULL and 1426 * break; the conditional after the loop will 1427 * send us back to top. 1428 */ 1429 dvar = NULL; 1430 break; 1431 } 1432 1433 goto next; 1434 } 1435 1436 if (dtuple->dtt_nkeys != nkeys) 1437 goto next; 1438 1439 for (i = 0; i < nkeys; i++, dkey++) { 1440 if (dkey->dttk_size != key[i].dttk_size) 1441 goto next; /* size or type mismatch */ 1442 1443 if (dkey->dttk_size != 0) { 1444 if (dtrace_bcmp( 1445 (void *)(uintptr_t)key[i].dttk_value, 1446 (void *)(uintptr_t)dkey->dttk_value, 1447 dkey->dttk_size)) 1448 goto next; 1449 } else { 1450 if (dkey->dttk_value != key[i].dttk_value) 1451 goto next; 1452 } 1453 } 1454 1455 if (op != DTRACE_DYNVAR_DEALLOC) 1456 return (dvar); 1457 1458 ASSERT(dvar->dtdv_next == NULL || 1459 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1460 1461 if (prev != NULL) { 1462 ASSERT(hash[bucket].dtdh_chain != dvar); 1463 ASSERT(start != dvar); 1464 ASSERT(prev->dtdv_next == dvar); 1465 prev->dtdv_next = dvar->dtdv_next; 1466 } else { 1467 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1468 start, dvar->dtdv_next) != start) { 1469 /* 1470 * We have failed to atomically swing the 1471 * hash table head pointer, presumably because 1472 * of a conflicting allocation on another CPU. 1473 * We need to reread the hash chain and try 1474 * again. 1475 */ 1476 goto top; 1477 } 1478 } 1479 1480 dtrace_membar_producer(); 1481 1482 /* 1483 * Now set the hash value to indicate that it's free. 1484 */ 1485 ASSERT(hash[bucket].dtdh_chain != dvar); 1486 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1487 1488 dtrace_membar_producer(); 1489 1490 /* 1491 * Set the next pointer to point at the dirty list, and 1492 * atomically swing the dirty pointer to the newly freed dvar. 1493 */ 1494 do { 1495 next = dcpu->dtdsc_dirty; 1496 dvar->dtdv_next = next; 1497 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1498 1499 /* 1500 * Finally, unlock this hash bucket. 1501 */ 1502 ASSERT(hash[bucket].dtdh_lock == lock); 1503 ASSERT(lock & 1); 1504 hash[bucket].dtdh_lock++; 1505 1506 return (NULL); 1507 next: 1508 prev = dvar; 1509 continue; 1510 } 1511 1512 if (dvar == NULL) { 1513 /* 1514 * If dvar is NULL, it is because we went off the rails: 1515 * one of the elements that we traversed in the hash chain 1516 * was deleted while we were traversing it. In this case, 1517 * we assert that we aren't doing a dealloc (deallocs lock 1518 * the hash bucket to prevent themselves from racing with 1519 * one another), and retry the hash chain traversal. 1520 */ 1521 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1522 goto top; 1523 } 1524 1525 if (op != DTRACE_DYNVAR_ALLOC) { 1526 /* 1527 * If we are not to allocate a new variable, we want to 1528 * return NULL now. Before we return, check that the value 1529 * of the lock word hasn't changed. If it has, we may have 1530 * seen an inconsistent snapshot. 1531 */ 1532 if (op == DTRACE_DYNVAR_NOALLOC) { 1533 if (hash[bucket].dtdh_lock != lock) 1534 goto top; 1535 } else { 1536 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1537 ASSERT(hash[bucket].dtdh_lock == lock); 1538 ASSERT(lock & 1); 1539 hash[bucket].dtdh_lock++; 1540 } 1541 1542 return (NULL); 1543 } 1544 1545 /* 1546 * We need to allocate a new dynamic variable. The size we need is the 1547 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1548 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1549 * the size of any referred-to data (dsize). We then round the final 1550 * size up to the chunksize for allocation. 1551 */ 1552 for (ksize = 0, i = 0; i < nkeys; i++) 1553 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1554 1555 /* 1556 * This should be pretty much impossible, but could happen if, say, 1557 * strange DIF specified the tuple. Ideally, this should be an 1558 * assertion and not an error condition -- but that requires that the 1559 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1560 * bullet-proof. (That is, it must not be able to be fooled by 1561 * malicious DIF.) Given the lack of backwards branches in DIF, 1562 * solving this would presumably not amount to solving the Halting 1563 * Problem -- but it still seems awfully hard. 1564 */ 1565 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1566 ksize + dsize > chunksize) { 1567 dcpu->dtdsc_drops++; 1568 return (NULL); 1569 } 1570 1571 nstate = DTRACE_DSTATE_EMPTY; 1572 1573 do { 1574 retry: 1575 free = dcpu->dtdsc_free; 1576 1577 if (free == NULL) { 1578 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1579 void *rval; 1580 1581 if (clean == NULL) { 1582 /* 1583 * We're out of dynamic variable space on 1584 * this CPU. Unless we have tried all CPUs, 1585 * we'll try to allocate from a different 1586 * CPU. 1587 */ 1588 switch (dstate->dtds_state) { 1589 case DTRACE_DSTATE_CLEAN: { 1590 void *sp = &dstate->dtds_state; 1591 1592 if (++cpu >= NCPU) 1593 cpu = 0; 1594 1595 if (dcpu->dtdsc_dirty != NULL && 1596 nstate == DTRACE_DSTATE_EMPTY) 1597 nstate = DTRACE_DSTATE_DIRTY; 1598 1599 if (dcpu->dtdsc_rinsing != NULL) 1600 nstate = DTRACE_DSTATE_RINSING; 1601 1602 dcpu = &dstate->dtds_percpu[cpu]; 1603 1604 if (cpu != me) 1605 goto retry; 1606 1607 (void) dtrace_cas32(sp, 1608 DTRACE_DSTATE_CLEAN, nstate); 1609 1610 /* 1611 * To increment the correct bean 1612 * counter, take another lap. 1613 */ 1614 goto retry; 1615 } 1616 1617 case DTRACE_DSTATE_DIRTY: 1618 dcpu->dtdsc_dirty_drops++; 1619 break; 1620 1621 case DTRACE_DSTATE_RINSING: 1622 dcpu->dtdsc_rinsing_drops++; 1623 break; 1624 1625 case DTRACE_DSTATE_EMPTY: 1626 dcpu->dtdsc_drops++; 1627 break; 1628 } 1629 1630 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1631 return (NULL); 1632 } 1633 1634 /* 1635 * The clean list appears to be non-empty. We want to 1636 * move the clean list to the free list; we start by 1637 * moving the clean pointer aside. 1638 */ 1639 if (dtrace_casptr(&dcpu->dtdsc_clean, 1640 clean, NULL) != clean) { 1641 /* 1642 * We are in one of two situations: 1643 * 1644 * (a) The clean list was switched to the 1645 * free list by another CPU. 1646 * 1647 * (b) The clean list was added to by the 1648 * cleansing cyclic. 1649 * 1650 * In either of these situations, we can 1651 * just reattempt the free list allocation. 1652 */ 1653 goto retry; 1654 } 1655 1656 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1657 1658 /* 1659 * Now we'll move the clean list to the free list. 1660 * It's impossible for this to fail: the only way 1661 * the free list can be updated is through this 1662 * code path, and only one CPU can own the clean list. 1663 * Thus, it would only be possible for this to fail if 1664 * this code were racing with dtrace_dynvar_clean(). 1665 * (That is, if dtrace_dynvar_clean() updated the clean 1666 * list, and we ended up racing to update the free 1667 * list.) This race is prevented by the dtrace_sync() 1668 * in dtrace_dynvar_clean() -- which flushes the 1669 * owners of the clean lists out before resetting 1670 * the clean lists. 1671 */ 1672 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1673 ASSERT(rval == NULL); 1674 goto retry; 1675 } 1676 1677 dvar = free; 1678 new_free = dvar->dtdv_next; 1679 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1680 1681 /* 1682 * We have now allocated a new chunk. We copy the tuple keys into the 1683 * tuple array and copy any referenced key data into the data space 1684 * following the tuple array. As we do this, we relocate dttk_value 1685 * in the final tuple to point to the key data address in the chunk. 1686 */ 1687 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1688 dvar->dtdv_data = (void *)(kdata + ksize); 1689 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1690 1691 for (i = 0; i < nkeys; i++) { 1692 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1693 size_t kesize = key[i].dttk_size; 1694 1695 if (kesize != 0) { 1696 dtrace_bcopy( 1697 (const void *)(uintptr_t)key[i].dttk_value, 1698 (void *)kdata, kesize); 1699 dkey->dttk_value = kdata; 1700 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1701 } else { 1702 dkey->dttk_value = key[i].dttk_value; 1703 } 1704 1705 dkey->dttk_size = kesize; 1706 } 1707 1708 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1709 dvar->dtdv_hashval = hashval; 1710 dvar->dtdv_next = start; 1711 1712 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1713 return (dvar); 1714 1715 /* 1716 * The cas has failed. Either another CPU is adding an element to 1717 * this hash chain, or another CPU is deleting an element from this 1718 * hash chain. The simplest way to deal with both of these cases 1719 * (though not necessarily the most efficient) is to free our 1720 * allocated block and tail-call ourselves. Note that the free is 1721 * to the dirty list and _not_ to the free list. This is to prevent 1722 * races with allocators, above. 1723 */ 1724 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1725 1726 dtrace_membar_producer(); 1727 1728 do { 1729 free = dcpu->dtdsc_dirty; 1730 dvar->dtdv_next = free; 1731 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1732 1733 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1734 } 1735 1736 /*ARGSUSED*/ 1737 static void 1738 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1739 { 1740 if ((int64_t)nval < (int64_t)*oval) 1741 *oval = nval; 1742 } 1743 1744 /*ARGSUSED*/ 1745 static void 1746 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1747 { 1748 if ((int64_t)nval > (int64_t)*oval) 1749 *oval = nval; 1750 } 1751 1752 static void 1753 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1754 { 1755 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1756 int64_t val = (int64_t)nval; 1757 1758 if (val < 0) { 1759 for (i = 0; i < zero; i++) { 1760 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1761 quanta[i] += incr; 1762 return; 1763 } 1764 } 1765 } else { 1766 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1767 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1768 quanta[i - 1] += incr; 1769 return; 1770 } 1771 } 1772 1773 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1774 return; 1775 } 1776 1777 ASSERT(0); 1778 } 1779 1780 static void 1781 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1782 { 1783 uint64_t arg = *lquanta++; 1784 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1785 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1786 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1787 int32_t val = (int32_t)nval, level; 1788 1789 ASSERT(step != 0); 1790 ASSERT(levels != 0); 1791 1792 if (val < base) { 1793 /* 1794 * This is an underflow. 1795 */ 1796 lquanta[0] += incr; 1797 return; 1798 } 1799 1800 level = (val - base) / step; 1801 1802 if (level < levels) { 1803 lquanta[level + 1] += incr; 1804 return; 1805 } 1806 1807 /* 1808 * This is an overflow. 1809 */ 1810 lquanta[levels + 1] += incr; 1811 } 1812 1813 /*ARGSUSED*/ 1814 static void 1815 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 1816 { 1817 data[0]++; 1818 data[1] += nval; 1819 } 1820 1821 /*ARGSUSED*/ 1822 static void 1823 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 1824 { 1825 int64_t snval = (int64_t)nval; 1826 uint64_t tmp[2]; 1827 1828 data[0]++; 1829 data[1] += nval; 1830 1831 /* 1832 * What we want to say here is: 1833 * 1834 * data[2] += nval * nval; 1835 * 1836 * But given that nval is 64-bit, we could easily overflow, so 1837 * we do this as 128-bit arithmetic. 1838 */ 1839 if (snval < 0) 1840 snval = -snval; 1841 1842 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 1843 dtrace_add_128(data + 2, tmp, data + 2); 1844 } 1845 1846 /*ARGSUSED*/ 1847 static void 1848 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 1849 { 1850 *oval = *oval + 1; 1851 } 1852 1853 /*ARGSUSED*/ 1854 static void 1855 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 1856 { 1857 *oval += nval; 1858 } 1859 1860 /* 1861 * Aggregate given the tuple in the principal data buffer, and the aggregating 1862 * action denoted by the specified dtrace_aggregation_t. The aggregation 1863 * buffer is specified as the buf parameter. This routine does not return 1864 * failure; if there is no space in the aggregation buffer, the data will be 1865 * dropped, and a corresponding counter incremented. 1866 */ 1867 static void 1868 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 1869 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 1870 { 1871 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 1872 uint32_t i, ndx, size, fsize; 1873 uint32_t align = sizeof (uint64_t) - 1; 1874 dtrace_aggbuffer_t *agb; 1875 dtrace_aggkey_t *key; 1876 uint32_t hashval = 0, limit, isstr; 1877 caddr_t tomax, data, kdata; 1878 dtrace_actkind_t action; 1879 dtrace_action_t *act; 1880 uintptr_t offs; 1881 1882 if (buf == NULL) 1883 return; 1884 1885 if (!agg->dtag_hasarg) { 1886 /* 1887 * Currently, only quantize() and lquantize() take additional 1888 * arguments, and they have the same semantics: an increment 1889 * value that defaults to 1 when not present. If additional 1890 * aggregating actions take arguments, the setting of the 1891 * default argument value will presumably have to become more 1892 * sophisticated... 1893 */ 1894 arg = 1; 1895 } 1896 1897 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 1898 size = rec->dtrd_offset - agg->dtag_base; 1899 fsize = size + rec->dtrd_size; 1900 1901 ASSERT(dbuf->dtb_tomax != NULL); 1902 data = dbuf->dtb_tomax + offset + agg->dtag_base; 1903 1904 if ((tomax = buf->dtb_tomax) == NULL) { 1905 dtrace_buffer_drop(buf); 1906 return; 1907 } 1908 1909 /* 1910 * The metastructure is always at the bottom of the buffer. 1911 */ 1912 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 1913 sizeof (dtrace_aggbuffer_t)); 1914 1915 if (buf->dtb_offset == 0) { 1916 /* 1917 * We just kludge up approximately 1/8th of the size to be 1918 * buckets. If this guess ends up being routinely 1919 * off-the-mark, we may need to dynamically readjust this 1920 * based on past performance. 1921 */ 1922 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 1923 1924 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 1925 (uintptr_t)tomax || hashsize == 0) { 1926 /* 1927 * We've been given a ludicrously small buffer; 1928 * increment our drop count and leave. 1929 */ 1930 dtrace_buffer_drop(buf); 1931 return; 1932 } 1933 1934 /* 1935 * And now, a pathetic attempt to try to get a an odd (or 1936 * perchance, a prime) hash size for better hash distribution. 1937 */ 1938 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 1939 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 1940 1941 agb->dtagb_hashsize = hashsize; 1942 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 1943 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 1944 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 1945 1946 for (i = 0; i < agb->dtagb_hashsize; i++) 1947 agb->dtagb_hash[i] = NULL; 1948 } 1949 1950 ASSERT(agg->dtag_first != NULL); 1951 ASSERT(agg->dtag_first->dta_intuple); 1952 1953 /* 1954 * Calculate the hash value based on the key. Note that we _don't_ 1955 * include the aggid in the hashing (but we will store it as part of 1956 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 1957 * algorithm: a simple, quick algorithm that has no known funnels, and 1958 * gets good distribution in practice. The efficacy of the hashing 1959 * algorithm (and a comparison with other algorithms) may be found by 1960 * running the ::dtrace_aggstat MDB dcmd. 1961 */ 1962 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1963 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1964 limit = i + act->dta_rec.dtrd_size; 1965 ASSERT(limit <= size); 1966 isstr = DTRACEACT_ISSTRING(act); 1967 1968 for (; i < limit; i++) { 1969 hashval += data[i]; 1970 hashval += (hashval << 10); 1971 hashval ^= (hashval >> 6); 1972 1973 if (isstr && data[i] == '\0') 1974 break; 1975 } 1976 } 1977 1978 hashval += (hashval << 3); 1979 hashval ^= (hashval >> 11); 1980 hashval += (hashval << 15); 1981 1982 /* 1983 * Yes, the divide here is expensive -- but it's generally the least 1984 * of the performance issues given the amount of data that we iterate 1985 * over to compute hash values, compare data, etc. 1986 */ 1987 ndx = hashval % agb->dtagb_hashsize; 1988 1989 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 1990 ASSERT((caddr_t)key >= tomax); 1991 ASSERT((caddr_t)key < tomax + buf->dtb_size); 1992 1993 if (hashval != key->dtak_hashval || key->dtak_size != size) 1994 continue; 1995 1996 kdata = key->dtak_data; 1997 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 1998 1999 for (act = agg->dtag_first; act->dta_intuple; 2000 act = act->dta_next) { 2001 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2002 limit = i + act->dta_rec.dtrd_size; 2003 ASSERT(limit <= size); 2004 isstr = DTRACEACT_ISSTRING(act); 2005 2006 for (; i < limit; i++) { 2007 if (kdata[i] != data[i]) 2008 goto next; 2009 2010 if (isstr && data[i] == '\0') 2011 break; 2012 } 2013 } 2014 2015 if (action != key->dtak_action) { 2016 /* 2017 * We are aggregating on the same value in the same 2018 * aggregation with two different aggregating actions. 2019 * (This should have been picked up in the compiler, 2020 * so we may be dealing with errant or devious DIF.) 2021 * This is an error condition; we indicate as much, 2022 * and return. 2023 */ 2024 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2025 return; 2026 } 2027 2028 /* 2029 * This is a hit: we need to apply the aggregator to 2030 * the value at this key. 2031 */ 2032 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2033 return; 2034 next: 2035 continue; 2036 } 2037 2038 /* 2039 * We didn't find it. We need to allocate some zero-filled space, 2040 * link it into the hash table appropriately, and apply the aggregator 2041 * to the (zero-filled) value. 2042 */ 2043 offs = buf->dtb_offset; 2044 while (offs & (align - 1)) 2045 offs += sizeof (uint32_t); 2046 2047 /* 2048 * If we don't have enough room to both allocate a new key _and_ 2049 * its associated data, increment the drop count and return. 2050 */ 2051 if ((uintptr_t)tomax + offs + fsize > 2052 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2053 dtrace_buffer_drop(buf); 2054 return; 2055 } 2056 2057 /*CONSTCOND*/ 2058 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2059 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2060 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2061 2062 key->dtak_data = kdata = tomax + offs; 2063 buf->dtb_offset = offs + fsize; 2064 2065 /* 2066 * Now copy the data across. 2067 */ 2068 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2069 2070 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2071 kdata[i] = data[i]; 2072 2073 /* 2074 * Because strings are not zeroed out by default, we need to iterate 2075 * looking for actions that store strings, and we need to explicitly 2076 * pad these strings out with zeroes. 2077 */ 2078 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2079 int nul; 2080 2081 if (!DTRACEACT_ISSTRING(act)) 2082 continue; 2083 2084 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2085 limit = i + act->dta_rec.dtrd_size; 2086 ASSERT(limit <= size); 2087 2088 for (nul = 0; i < limit; i++) { 2089 if (nul) { 2090 kdata[i] = '\0'; 2091 continue; 2092 } 2093 2094 if (data[i] != '\0') 2095 continue; 2096 2097 nul = 1; 2098 } 2099 } 2100 2101 for (i = size; i < fsize; i++) 2102 kdata[i] = 0; 2103 2104 key->dtak_hashval = hashval; 2105 key->dtak_size = size; 2106 key->dtak_action = action; 2107 key->dtak_next = agb->dtagb_hash[ndx]; 2108 agb->dtagb_hash[ndx] = key; 2109 2110 /* 2111 * Finally, apply the aggregator. 2112 */ 2113 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2114 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2115 } 2116 2117 /* 2118 * Given consumer state, this routine finds a speculation in the INACTIVE 2119 * state and transitions it into the ACTIVE state. If there is no speculation 2120 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2121 * incremented -- it is up to the caller to take appropriate action. 2122 */ 2123 static int 2124 dtrace_speculation(dtrace_state_t *state) 2125 { 2126 int i = 0; 2127 dtrace_speculation_state_t current; 2128 uint32_t *stat = &state->dts_speculations_unavail, count; 2129 2130 while (i < state->dts_nspeculations) { 2131 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2132 2133 current = spec->dtsp_state; 2134 2135 if (current != DTRACESPEC_INACTIVE) { 2136 if (current == DTRACESPEC_COMMITTINGMANY || 2137 current == DTRACESPEC_COMMITTING || 2138 current == DTRACESPEC_DISCARDING) 2139 stat = &state->dts_speculations_busy; 2140 i++; 2141 continue; 2142 } 2143 2144 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2145 current, DTRACESPEC_ACTIVE) == current) 2146 return (i + 1); 2147 } 2148 2149 /* 2150 * We couldn't find a speculation. If we found as much as a single 2151 * busy speculation buffer, we'll attribute this failure as "busy" 2152 * instead of "unavail". 2153 */ 2154 do { 2155 count = *stat; 2156 } while (dtrace_cas32(stat, count, count + 1) != count); 2157 2158 return (0); 2159 } 2160 2161 /* 2162 * This routine commits an active speculation. If the specified speculation 2163 * is not in a valid state to perform a commit(), this routine will silently do 2164 * nothing. The state of the specified speculation is transitioned according 2165 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2166 */ 2167 static void 2168 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2169 dtrace_specid_t which) 2170 { 2171 dtrace_speculation_t *spec; 2172 dtrace_buffer_t *src, *dest; 2173 uintptr_t daddr, saddr, dlimit; 2174 dtrace_speculation_state_t current, new; 2175 intptr_t offs; 2176 2177 if (which == 0) 2178 return; 2179 2180 if (which > state->dts_nspeculations) { 2181 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2182 return; 2183 } 2184 2185 spec = &state->dts_speculations[which - 1]; 2186 src = &spec->dtsp_buffer[cpu]; 2187 dest = &state->dts_buffer[cpu]; 2188 2189 do { 2190 current = spec->dtsp_state; 2191 2192 if (current == DTRACESPEC_COMMITTINGMANY) 2193 break; 2194 2195 switch (current) { 2196 case DTRACESPEC_INACTIVE: 2197 case DTRACESPEC_DISCARDING: 2198 return; 2199 2200 case DTRACESPEC_COMMITTING: 2201 /* 2202 * This is only possible if we are (a) commit()'ing 2203 * without having done a prior speculate() on this CPU 2204 * and (b) racing with another commit() on a different 2205 * CPU. There's nothing to do -- we just assert that 2206 * our offset is 0. 2207 */ 2208 ASSERT(src->dtb_offset == 0); 2209 return; 2210 2211 case DTRACESPEC_ACTIVE: 2212 new = DTRACESPEC_COMMITTING; 2213 break; 2214 2215 case DTRACESPEC_ACTIVEONE: 2216 /* 2217 * This speculation is active on one CPU. If our 2218 * buffer offset is non-zero, we know that the one CPU 2219 * must be us. Otherwise, we are committing on a 2220 * different CPU from the speculate(), and we must 2221 * rely on being asynchronously cleaned. 2222 */ 2223 if (src->dtb_offset != 0) { 2224 new = DTRACESPEC_COMMITTING; 2225 break; 2226 } 2227 /*FALLTHROUGH*/ 2228 2229 case DTRACESPEC_ACTIVEMANY: 2230 new = DTRACESPEC_COMMITTINGMANY; 2231 break; 2232 2233 default: 2234 ASSERT(0); 2235 } 2236 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2237 current, new) != current); 2238 2239 /* 2240 * We have set the state to indicate that we are committing this 2241 * speculation. Now reserve the necessary space in the destination 2242 * buffer. 2243 */ 2244 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2245 sizeof (uint64_t), state, NULL)) < 0) { 2246 dtrace_buffer_drop(dest); 2247 goto out; 2248 } 2249 2250 /* 2251 * We have the space; copy the buffer across. (Note that this is a 2252 * highly subobtimal bcopy(); in the unlikely event that this becomes 2253 * a serious performance issue, a high-performance DTrace-specific 2254 * bcopy() should obviously be invented.) 2255 */ 2256 daddr = (uintptr_t)dest->dtb_tomax + offs; 2257 dlimit = daddr + src->dtb_offset; 2258 saddr = (uintptr_t)src->dtb_tomax; 2259 2260 /* 2261 * First, the aligned portion. 2262 */ 2263 while (dlimit - daddr >= sizeof (uint64_t)) { 2264 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2265 2266 daddr += sizeof (uint64_t); 2267 saddr += sizeof (uint64_t); 2268 } 2269 2270 /* 2271 * Now any left-over bit... 2272 */ 2273 while (dlimit - daddr) 2274 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2275 2276 /* 2277 * Finally, commit the reserved space in the destination buffer. 2278 */ 2279 dest->dtb_offset = offs + src->dtb_offset; 2280 2281 out: 2282 /* 2283 * If we're lucky enough to be the only active CPU on this speculation 2284 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2285 */ 2286 if (current == DTRACESPEC_ACTIVE || 2287 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2288 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2289 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2290 2291 ASSERT(rval == DTRACESPEC_COMMITTING); 2292 } 2293 2294 src->dtb_offset = 0; 2295 src->dtb_xamot_drops += src->dtb_drops; 2296 src->dtb_drops = 0; 2297 } 2298 2299 /* 2300 * This routine discards an active speculation. If the specified speculation 2301 * is not in a valid state to perform a discard(), this routine will silently 2302 * do nothing. The state of the specified speculation is transitioned 2303 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2304 */ 2305 static void 2306 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2307 dtrace_specid_t which) 2308 { 2309 dtrace_speculation_t *spec; 2310 dtrace_speculation_state_t current, new; 2311 dtrace_buffer_t *buf; 2312 2313 if (which == 0) 2314 return; 2315 2316 if (which > state->dts_nspeculations) { 2317 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2318 return; 2319 } 2320 2321 spec = &state->dts_speculations[which - 1]; 2322 buf = &spec->dtsp_buffer[cpu]; 2323 2324 do { 2325 current = spec->dtsp_state; 2326 2327 switch (current) { 2328 case DTRACESPEC_INACTIVE: 2329 case DTRACESPEC_COMMITTINGMANY: 2330 case DTRACESPEC_COMMITTING: 2331 case DTRACESPEC_DISCARDING: 2332 return; 2333 2334 case DTRACESPEC_ACTIVE: 2335 case DTRACESPEC_ACTIVEMANY: 2336 new = DTRACESPEC_DISCARDING; 2337 break; 2338 2339 case DTRACESPEC_ACTIVEONE: 2340 if (buf->dtb_offset != 0) { 2341 new = DTRACESPEC_INACTIVE; 2342 } else { 2343 new = DTRACESPEC_DISCARDING; 2344 } 2345 break; 2346 2347 default: 2348 ASSERT(0); 2349 } 2350 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2351 current, new) != current); 2352 2353 buf->dtb_offset = 0; 2354 buf->dtb_drops = 0; 2355 } 2356 2357 /* 2358 * Note: not called from probe context. This function is called 2359 * asynchronously from cross call context to clean any speculations that are 2360 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2361 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2362 * speculation. 2363 */ 2364 static void 2365 dtrace_speculation_clean_here(dtrace_state_t *state) 2366 { 2367 dtrace_icookie_t cookie; 2368 processorid_t cpu = CPU->cpu_id; 2369 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2370 dtrace_specid_t i; 2371 2372 cookie = dtrace_interrupt_disable(); 2373 2374 if (dest->dtb_tomax == NULL) { 2375 dtrace_interrupt_enable(cookie); 2376 return; 2377 } 2378 2379 for (i = 0; i < state->dts_nspeculations; i++) { 2380 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2381 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2382 2383 if (src->dtb_tomax == NULL) 2384 continue; 2385 2386 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2387 src->dtb_offset = 0; 2388 continue; 2389 } 2390 2391 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2392 continue; 2393 2394 if (src->dtb_offset == 0) 2395 continue; 2396 2397 dtrace_speculation_commit(state, cpu, i + 1); 2398 } 2399 2400 dtrace_interrupt_enable(cookie); 2401 } 2402 2403 /* 2404 * Note: not called from probe context. This function is called 2405 * asynchronously (and at a regular interval) to clean any speculations that 2406 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2407 * is work to be done, it cross calls all CPUs to perform that work; 2408 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2409 * INACTIVE state until they have been cleaned by all CPUs. 2410 */ 2411 static void 2412 dtrace_speculation_clean(dtrace_state_t *state) 2413 { 2414 int work = 0, rv; 2415 dtrace_specid_t i; 2416 2417 for (i = 0; i < state->dts_nspeculations; i++) { 2418 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2419 2420 ASSERT(!spec->dtsp_cleaning); 2421 2422 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2423 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2424 continue; 2425 2426 work++; 2427 spec->dtsp_cleaning = 1; 2428 } 2429 2430 if (!work) 2431 return; 2432 2433 dtrace_xcall(DTRACE_CPUALL, 2434 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2435 2436 /* 2437 * We now know that all CPUs have committed or discarded their 2438 * speculation buffers, as appropriate. We can now set the state 2439 * to inactive. 2440 */ 2441 for (i = 0; i < state->dts_nspeculations; i++) { 2442 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2443 dtrace_speculation_state_t current, new; 2444 2445 if (!spec->dtsp_cleaning) 2446 continue; 2447 2448 current = spec->dtsp_state; 2449 ASSERT(current == DTRACESPEC_DISCARDING || 2450 current == DTRACESPEC_COMMITTINGMANY); 2451 2452 new = DTRACESPEC_INACTIVE; 2453 2454 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2455 ASSERT(rv == current); 2456 spec->dtsp_cleaning = 0; 2457 } 2458 } 2459 2460 /* 2461 * Called as part of a speculate() to get the speculative buffer associated 2462 * with a given speculation. Returns NULL if the specified speculation is not 2463 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2464 * the active CPU is not the specified CPU -- the speculation will be 2465 * atomically transitioned into the ACTIVEMANY state. 2466 */ 2467 static dtrace_buffer_t * 2468 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2469 dtrace_specid_t which) 2470 { 2471 dtrace_speculation_t *spec; 2472 dtrace_speculation_state_t current, new; 2473 dtrace_buffer_t *buf; 2474 2475 if (which == 0) 2476 return (NULL); 2477 2478 if (which > state->dts_nspeculations) { 2479 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2480 return (NULL); 2481 } 2482 2483 spec = &state->dts_speculations[which - 1]; 2484 buf = &spec->dtsp_buffer[cpuid]; 2485 2486 do { 2487 current = spec->dtsp_state; 2488 2489 switch (current) { 2490 case DTRACESPEC_INACTIVE: 2491 case DTRACESPEC_COMMITTINGMANY: 2492 case DTRACESPEC_DISCARDING: 2493 return (NULL); 2494 2495 case DTRACESPEC_COMMITTING: 2496 ASSERT(buf->dtb_offset == 0); 2497 return (NULL); 2498 2499 case DTRACESPEC_ACTIVEONE: 2500 /* 2501 * This speculation is currently active on one CPU. 2502 * Check the offset in the buffer; if it's non-zero, 2503 * that CPU must be us (and we leave the state alone). 2504 * If it's zero, assume that we're starting on a new 2505 * CPU -- and change the state to indicate that the 2506 * speculation is active on more than one CPU. 2507 */ 2508 if (buf->dtb_offset != 0) 2509 return (buf); 2510 2511 new = DTRACESPEC_ACTIVEMANY; 2512 break; 2513 2514 case DTRACESPEC_ACTIVEMANY: 2515 return (buf); 2516 2517 case DTRACESPEC_ACTIVE: 2518 new = DTRACESPEC_ACTIVEONE; 2519 break; 2520 2521 default: 2522 ASSERT(0); 2523 } 2524 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2525 current, new) != current); 2526 2527 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2528 return (buf); 2529 } 2530 2531 /* 2532 * Return a string. In the event that the user lacks the privilege to access 2533 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2534 * don't fail access checking. 2535 * 2536 * dtrace_dif_variable() uses this routine as a helper for various 2537 * builtin values such as 'execname' and 'probefunc.' 2538 */ 2539 uintptr_t 2540 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2541 dtrace_mstate_t *mstate) 2542 { 2543 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2544 uintptr_t ret; 2545 size_t strsz; 2546 2547 /* 2548 * The easy case: this probe is allowed to read all of memory, so 2549 * we can just return this as a vanilla pointer. 2550 */ 2551 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2552 return (addr); 2553 2554 /* 2555 * This is the tougher case: we copy the string in question from 2556 * kernel memory into scratch memory and return it that way: this 2557 * ensures that we won't trip up when access checking tests the 2558 * BYREF return value. 2559 */ 2560 strsz = dtrace_strlen((char *)addr, size) + 1; 2561 2562 if (mstate->dtms_scratch_ptr + strsz > 2563 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2564 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2565 return (NULL); 2566 } 2567 2568 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2569 strsz); 2570 ret = mstate->dtms_scratch_ptr; 2571 mstate->dtms_scratch_ptr += strsz; 2572 return (ret); 2573 } 2574 2575 /* 2576 * This function implements the DIF emulator's variable lookups. The emulator 2577 * passes a reserved variable identifier and optional built-in array index. 2578 */ 2579 static uint64_t 2580 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2581 uint64_t ndx) 2582 { 2583 /* 2584 * If we're accessing one of the uncached arguments, we'll turn this 2585 * into a reference in the args array. 2586 */ 2587 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2588 ndx = v - DIF_VAR_ARG0; 2589 v = DIF_VAR_ARGS; 2590 } 2591 2592 switch (v) { 2593 case DIF_VAR_ARGS: 2594 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2595 if (ndx >= sizeof (mstate->dtms_arg) / 2596 sizeof (mstate->dtms_arg[0])) { 2597 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2598 dtrace_provider_t *pv; 2599 uint64_t val; 2600 2601 pv = mstate->dtms_probe->dtpr_provider; 2602 if (pv->dtpv_pops.dtps_getargval != NULL) 2603 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2604 mstate->dtms_probe->dtpr_id, 2605 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2606 else 2607 val = dtrace_getarg(ndx, aframes); 2608 2609 /* 2610 * This is regrettably required to keep the compiler 2611 * from tail-optimizing the call to dtrace_getarg(). 2612 * The condition always evaluates to true, but the 2613 * compiler has no way of figuring that out a priori. 2614 * (None of this would be necessary if the compiler 2615 * could be relied upon to _always_ tail-optimize 2616 * the call to dtrace_getarg() -- but it can't.) 2617 */ 2618 if (mstate->dtms_probe != NULL) 2619 return (val); 2620 2621 ASSERT(0); 2622 } 2623 2624 return (mstate->dtms_arg[ndx]); 2625 2626 case DIF_VAR_UREGS: { 2627 klwp_t *lwp; 2628 2629 if (!dtrace_priv_proc(state)) 2630 return (0); 2631 2632 if ((lwp = curthread->t_lwp) == NULL) { 2633 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2634 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2635 return (0); 2636 } 2637 2638 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2639 } 2640 2641 case DIF_VAR_CURTHREAD: 2642 if (!dtrace_priv_kernel(state)) 2643 return (0); 2644 return ((uint64_t)(uintptr_t)curthread); 2645 2646 case DIF_VAR_TIMESTAMP: 2647 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2648 mstate->dtms_timestamp = dtrace_gethrtime(); 2649 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2650 } 2651 return (mstate->dtms_timestamp); 2652 2653 case DIF_VAR_VTIMESTAMP: 2654 ASSERT(dtrace_vtime_references != 0); 2655 return (curthread->t_dtrace_vtime); 2656 2657 case DIF_VAR_WALLTIMESTAMP: 2658 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2659 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2660 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2661 } 2662 return (mstate->dtms_walltimestamp); 2663 2664 case DIF_VAR_IPL: 2665 if (!dtrace_priv_kernel(state)) 2666 return (0); 2667 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2668 mstate->dtms_ipl = dtrace_getipl(); 2669 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2670 } 2671 return (mstate->dtms_ipl); 2672 2673 case DIF_VAR_EPID: 2674 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2675 return (mstate->dtms_epid); 2676 2677 case DIF_VAR_ID: 2678 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2679 return (mstate->dtms_probe->dtpr_id); 2680 2681 case DIF_VAR_STACKDEPTH: 2682 if (!dtrace_priv_kernel(state)) 2683 return (0); 2684 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2685 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2686 2687 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2688 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2689 } 2690 return (mstate->dtms_stackdepth); 2691 2692 case DIF_VAR_USTACKDEPTH: 2693 if (!dtrace_priv_proc(state)) 2694 return (0); 2695 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2696 /* 2697 * See comment in DIF_VAR_PID. 2698 */ 2699 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2700 CPU_ON_INTR(CPU)) { 2701 mstate->dtms_ustackdepth = 0; 2702 } else { 2703 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2704 mstate->dtms_ustackdepth = 2705 dtrace_getustackdepth(); 2706 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2707 } 2708 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2709 } 2710 return (mstate->dtms_ustackdepth); 2711 2712 case DIF_VAR_CALLER: 2713 if (!dtrace_priv_kernel(state)) 2714 return (0); 2715 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2716 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2717 2718 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2719 /* 2720 * If this is an unanchored probe, we are 2721 * required to go through the slow path: 2722 * dtrace_caller() only guarantees correct 2723 * results for anchored probes. 2724 */ 2725 pc_t caller[2]; 2726 2727 dtrace_getpcstack(caller, 2, aframes, 2728 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2729 mstate->dtms_caller = caller[1]; 2730 } else if ((mstate->dtms_caller = 2731 dtrace_caller(aframes)) == -1) { 2732 /* 2733 * We have failed to do this the quick way; 2734 * we must resort to the slower approach of 2735 * calling dtrace_getpcstack(). 2736 */ 2737 pc_t caller; 2738 2739 dtrace_getpcstack(&caller, 1, aframes, NULL); 2740 mstate->dtms_caller = caller; 2741 } 2742 2743 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2744 } 2745 return (mstate->dtms_caller); 2746 2747 case DIF_VAR_UCALLER: 2748 if (!dtrace_priv_proc(state)) 2749 return (0); 2750 2751 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 2752 uint64_t ustack[3]; 2753 2754 /* 2755 * dtrace_getupcstack() fills in the first uint64_t 2756 * with the current PID. The second uint64_t will 2757 * be the program counter at user-level. The third 2758 * uint64_t will contain the caller, which is what 2759 * we're after. 2760 */ 2761 ustack[2] = NULL; 2762 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2763 dtrace_getupcstack(ustack, 3); 2764 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2765 mstate->dtms_ucaller = ustack[2]; 2766 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 2767 } 2768 2769 return (mstate->dtms_ucaller); 2770 2771 case DIF_VAR_PROBEPROV: 2772 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2773 return (dtrace_dif_varstr( 2774 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 2775 state, mstate)); 2776 2777 case DIF_VAR_PROBEMOD: 2778 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2779 return (dtrace_dif_varstr( 2780 (uintptr_t)mstate->dtms_probe->dtpr_mod, 2781 state, mstate)); 2782 2783 case DIF_VAR_PROBEFUNC: 2784 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2785 return (dtrace_dif_varstr( 2786 (uintptr_t)mstate->dtms_probe->dtpr_func, 2787 state, mstate)); 2788 2789 case DIF_VAR_PROBENAME: 2790 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2791 return (dtrace_dif_varstr( 2792 (uintptr_t)mstate->dtms_probe->dtpr_name, 2793 state, mstate)); 2794 2795 case DIF_VAR_PID: 2796 if (!dtrace_priv_proc(state)) 2797 return (0); 2798 2799 /* 2800 * Note that we are assuming that an unanchored probe is 2801 * always due to a high-level interrupt. (And we're assuming 2802 * that there is only a single high level interrupt.) 2803 */ 2804 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2805 return (pid0.pid_id); 2806 2807 /* 2808 * It is always safe to dereference one's own t_procp pointer: 2809 * it always points to a valid, allocated proc structure. 2810 * Further, it is always safe to dereference the p_pidp member 2811 * of one's own proc structure. (These are truisms becuase 2812 * threads and processes don't clean up their own state -- 2813 * they leave that task to whomever reaps them.) 2814 */ 2815 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 2816 2817 case DIF_VAR_PPID: 2818 if (!dtrace_priv_proc(state)) 2819 return (0); 2820 2821 /* 2822 * See comment in DIF_VAR_PID. 2823 */ 2824 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2825 return (pid0.pid_id); 2826 2827 /* 2828 * It is always safe to dereference one's own t_procp pointer: 2829 * it always points to a valid, allocated proc structure. 2830 * (This is true because threads don't clean up their own 2831 * state -- they leave that task to whomever reaps them.) 2832 */ 2833 return ((uint64_t)curthread->t_procp->p_ppid); 2834 2835 case DIF_VAR_TID: 2836 /* 2837 * See comment in DIF_VAR_PID. 2838 */ 2839 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2840 return (0); 2841 2842 return ((uint64_t)curthread->t_tid); 2843 2844 case DIF_VAR_EXECNAME: 2845 if (!dtrace_priv_proc(state)) 2846 return (0); 2847 2848 /* 2849 * See comment in DIF_VAR_PID. 2850 */ 2851 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2852 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 2853 2854 /* 2855 * It is always safe to dereference one's own t_procp pointer: 2856 * it always points to a valid, allocated proc structure. 2857 * (This is true because threads don't clean up their own 2858 * state -- they leave that task to whomever reaps them.) 2859 */ 2860 return (dtrace_dif_varstr( 2861 (uintptr_t)curthread->t_procp->p_user.u_comm, 2862 state, mstate)); 2863 2864 case DIF_VAR_ZONENAME: 2865 if (!dtrace_priv_proc(state)) 2866 return (0); 2867 2868 /* 2869 * See comment in DIF_VAR_PID. 2870 */ 2871 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2872 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 2873 2874 /* 2875 * It is always safe to dereference one's own t_procp pointer: 2876 * it always points to a valid, allocated proc structure. 2877 * (This is true because threads don't clean up their own 2878 * state -- they leave that task to whomever reaps them.) 2879 */ 2880 return (dtrace_dif_varstr( 2881 (uintptr_t)curthread->t_procp->p_zone->zone_name, 2882 state, mstate)); 2883 2884 case DIF_VAR_UID: 2885 if (!dtrace_priv_proc(state)) 2886 return (0); 2887 2888 /* 2889 * See comment in DIF_VAR_PID. 2890 */ 2891 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2892 return ((uint64_t)p0.p_cred->cr_uid); 2893 2894 /* 2895 * It is always safe to dereference one's own t_procp pointer: 2896 * it always points to a valid, allocated proc structure. 2897 * (This is true because threads don't clean up their own 2898 * state -- they leave that task to whomever reaps them.) 2899 * 2900 * Additionally, it is safe to dereference one's own process 2901 * credential, since this is never NULL after process birth. 2902 */ 2903 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 2904 2905 case DIF_VAR_GID: 2906 if (!dtrace_priv_proc(state)) 2907 return (0); 2908 2909 /* 2910 * See comment in DIF_VAR_PID. 2911 */ 2912 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2913 return ((uint64_t)p0.p_cred->cr_gid); 2914 2915 /* 2916 * It is always safe to dereference one's own t_procp pointer: 2917 * it always points to a valid, allocated proc structure. 2918 * (This is true because threads don't clean up their own 2919 * state -- they leave that task to whomever reaps them.) 2920 * 2921 * Additionally, it is safe to dereference one's own process 2922 * credential, since this is never NULL after process birth. 2923 */ 2924 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 2925 2926 case DIF_VAR_ERRNO: { 2927 klwp_t *lwp; 2928 if (!dtrace_priv_proc(state)) 2929 return (0); 2930 2931 /* 2932 * See comment in DIF_VAR_PID. 2933 */ 2934 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2935 return (0); 2936 2937 /* 2938 * It is always safe to dereference one's own t_lwp pointer in 2939 * the event that this pointer is non-NULL. (This is true 2940 * because threads and lwps don't clean up their own state -- 2941 * they leave that task to whomever reaps them.) 2942 */ 2943 if ((lwp = curthread->t_lwp) == NULL) 2944 return (0); 2945 2946 return ((uint64_t)lwp->lwp_errno); 2947 } 2948 default: 2949 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2950 return (0); 2951 } 2952 } 2953 2954 /* 2955 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 2956 * Notice that we don't bother validating the proper number of arguments or 2957 * their types in the tuple stack. This isn't needed because all argument 2958 * interpretation is safe because of our load safety -- the worst that can 2959 * happen is that a bogus program can obtain bogus results. 2960 */ 2961 static void 2962 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 2963 dtrace_key_t *tupregs, int nargs, 2964 dtrace_mstate_t *mstate, dtrace_state_t *state) 2965 { 2966 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 2967 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 2968 dtrace_vstate_t *vstate = &state->dts_vstate; 2969 2970 union { 2971 mutex_impl_t mi; 2972 uint64_t mx; 2973 } m; 2974 2975 union { 2976 krwlock_t ri; 2977 uintptr_t rw; 2978 } r; 2979 2980 switch (subr) { 2981 case DIF_SUBR_RAND: 2982 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 2983 break; 2984 2985 case DIF_SUBR_MUTEX_OWNED: 2986 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2987 mstate, vstate)) { 2988 regs[rd] = NULL; 2989 break; 2990 } 2991 2992 m.mx = dtrace_load64(tupregs[0].dttk_value); 2993 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 2994 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 2995 else 2996 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 2997 break; 2998 2999 case DIF_SUBR_MUTEX_OWNER: 3000 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3001 mstate, vstate)) { 3002 regs[rd] = NULL; 3003 break; 3004 } 3005 3006 m.mx = dtrace_load64(tupregs[0].dttk_value); 3007 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3008 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3009 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3010 else 3011 regs[rd] = 0; 3012 break; 3013 3014 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3015 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3016 mstate, vstate)) { 3017 regs[rd] = NULL; 3018 break; 3019 } 3020 3021 m.mx = dtrace_load64(tupregs[0].dttk_value); 3022 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3023 break; 3024 3025 case DIF_SUBR_MUTEX_TYPE_SPIN: 3026 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3027 mstate, vstate)) { 3028 regs[rd] = NULL; 3029 break; 3030 } 3031 3032 m.mx = dtrace_load64(tupregs[0].dttk_value); 3033 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3034 break; 3035 3036 case DIF_SUBR_RW_READ_HELD: { 3037 uintptr_t tmp; 3038 3039 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3040 mstate, vstate)) { 3041 regs[rd] = NULL; 3042 break; 3043 } 3044 3045 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3046 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3047 break; 3048 } 3049 3050 case DIF_SUBR_RW_WRITE_HELD: 3051 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3052 mstate, vstate)) { 3053 regs[rd] = NULL; 3054 break; 3055 } 3056 3057 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3058 regs[rd] = _RW_WRITE_HELD(&r.ri); 3059 break; 3060 3061 case DIF_SUBR_RW_ISWRITER: 3062 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3063 mstate, vstate)) { 3064 regs[rd] = NULL; 3065 break; 3066 } 3067 3068 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3069 regs[rd] = _RW_ISWRITER(&r.ri); 3070 break; 3071 3072 case DIF_SUBR_BCOPY: { 3073 /* 3074 * We need to be sure that the destination is in the scratch 3075 * region -- no other region is allowed. 3076 */ 3077 uintptr_t src = tupregs[0].dttk_value; 3078 uintptr_t dest = tupregs[1].dttk_value; 3079 size_t size = tupregs[2].dttk_value; 3080 3081 if (!dtrace_inscratch(dest, size, mstate)) { 3082 *flags |= CPU_DTRACE_BADADDR; 3083 *illval = regs[rd]; 3084 break; 3085 } 3086 3087 if (!dtrace_canload(src, size, mstate, vstate)) { 3088 regs[rd] = NULL; 3089 break; 3090 } 3091 3092 dtrace_bcopy((void *)src, (void *)dest, size); 3093 break; 3094 } 3095 3096 case DIF_SUBR_ALLOCA: 3097 case DIF_SUBR_COPYIN: { 3098 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3099 uint64_t size = 3100 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3101 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3102 3103 /* 3104 * This action doesn't require any credential checks since 3105 * probes will not activate in user contexts to which the 3106 * enabling user does not have permissions. 3107 */ 3108 3109 /* 3110 * Rounding up the user allocation size could have overflowed 3111 * a large, bogus allocation (like -1ULL) to 0. 3112 */ 3113 if (scratch_size < size || 3114 !DTRACE_INSCRATCH(mstate, scratch_size)) { 3115 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3116 regs[rd] = NULL; 3117 break; 3118 } 3119 3120 if (subr == DIF_SUBR_COPYIN) { 3121 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3122 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3123 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3124 } 3125 3126 mstate->dtms_scratch_ptr += scratch_size; 3127 regs[rd] = dest; 3128 break; 3129 } 3130 3131 case DIF_SUBR_COPYINTO: { 3132 uint64_t size = tupregs[1].dttk_value; 3133 uintptr_t dest = tupregs[2].dttk_value; 3134 3135 /* 3136 * This action doesn't require any credential checks since 3137 * probes will not activate in user contexts to which the 3138 * enabling user does not have permissions. 3139 */ 3140 if (!dtrace_inscratch(dest, size, mstate)) { 3141 *flags |= CPU_DTRACE_BADADDR; 3142 *illval = regs[rd]; 3143 break; 3144 } 3145 3146 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3147 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3148 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3149 break; 3150 } 3151 3152 case DIF_SUBR_COPYINSTR: { 3153 uintptr_t dest = mstate->dtms_scratch_ptr; 3154 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3155 3156 if (nargs > 1 && tupregs[1].dttk_value < size) 3157 size = tupregs[1].dttk_value + 1; 3158 3159 /* 3160 * This action doesn't require any credential checks since 3161 * probes will not activate in user contexts to which the 3162 * enabling user does not have permissions. 3163 */ 3164 if (!DTRACE_INSCRATCH(mstate, size)) { 3165 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3166 regs[rd] = NULL; 3167 break; 3168 } 3169 3170 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3171 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3172 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3173 3174 ((char *)dest)[size - 1] = '\0'; 3175 mstate->dtms_scratch_ptr += size; 3176 regs[rd] = dest; 3177 break; 3178 } 3179 3180 case DIF_SUBR_MSGSIZE: 3181 case DIF_SUBR_MSGDSIZE: { 3182 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3183 uintptr_t wptr, rptr; 3184 size_t count = 0; 3185 int cont = 0; 3186 3187 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3188 3189 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3190 vstate)) { 3191 regs[rd] = NULL; 3192 break; 3193 } 3194 3195 wptr = dtrace_loadptr(baddr + 3196 offsetof(mblk_t, b_wptr)); 3197 3198 rptr = dtrace_loadptr(baddr + 3199 offsetof(mblk_t, b_rptr)); 3200 3201 if (wptr < rptr) { 3202 *flags |= CPU_DTRACE_BADADDR; 3203 *illval = tupregs[0].dttk_value; 3204 break; 3205 } 3206 3207 daddr = dtrace_loadptr(baddr + 3208 offsetof(mblk_t, b_datap)); 3209 3210 baddr = dtrace_loadptr(baddr + 3211 offsetof(mblk_t, b_cont)); 3212 3213 /* 3214 * We want to prevent against denial-of-service here, 3215 * so we're only going to search the list for 3216 * dtrace_msgdsize_max mblks. 3217 */ 3218 if (cont++ > dtrace_msgdsize_max) { 3219 *flags |= CPU_DTRACE_ILLOP; 3220 break; 3221 } 3222 3223 if (subr == DIF_SUBR_MSGDSIZE) { 3224 if (dtrace_load8(daddr + 3225 offsetof(dblk_t, db_type)) != M_DATA) 3226 continue; 3227 } 3228 3229 count += wptr - rptr; 3230 } 3231 3232 if (!(*flags & CPU_DTRACE_FAULT)) 3233 regs[rd] = count; 3234 3235 break; 3236 } 3237 3238 case DIF_SUBR_PROGENYOF: { 3239 pid_t pid = tupregs[0].dttk_value; 3240 proc_t *p; 3241 int rval = 0; 3242 3243 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3244 3245 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3246 if (p->p_pidp->pid_id == pid) { 3247 rval = 1; 3248 break; 3249 } 3250 } 3251 3252 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3253 3254 regs[rd] = rval; 3255 break; 3256 } 3257 3258 case DIF_SUBR_SPECULATION: 3259 regs[rd] = dtrace_speculation(state); 3260 break; 3261 3262 case DIF_SUBR_COPYOUT: { 3263 uintptr_t kaddr = tupregs[0].dttk_value; 3264 uintptr_t uaddr = tupregs[1].dttk_value; 3265 uint64_t size = tupregs[2].dttk_value; 3266 3267 if (!dtrace_destructive_disallow && 3268 dtrace_priv_proc_control(state) && 3269 !dtrace_istoxic(kaddr, size)) { 3270 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3271 dtrace_copyout(kaddr, uaddr, size, flags); 3272 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3273 } 3274 break; 3275 } 3276 3277 case DIF_SUBR_COPYOUTSTR: { 3278 uintptr_t kaddr = tupregs[0].dttk_value; 3279 uintptr_t uaddr = tupregs[1].dttk_value; 3280 uint64_t size = tupregs[2].dttk_value; 3281 3282 if (!dtrace_destructive_disallow && 3283 dtrace_priv_proc_control(state) && 3284 !dtrace_istoxic(kaddr, size)) { 3285 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3286 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3287 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3288 } 3289 break; 3290 } 3291 3292 case DIF_SUBR_STRLEN: { 3293 size_t sz; 3294 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3295 sz = dtrace_strlen((char *)addr, 3296 state->dts_options[DTRACEOPT_STRSIZE]); 3297 3298 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3299 regs[rd] = NULL; 3300 break; 3301 } 3302 3303 regs[rd] = sz; 3304 3305 break; 3306 } 3307 3308 case DIF_SUBR_STRCHR: 3309 case DIF_SUBR_STRRCHR: { 3310 /* 3311 * We're going to iterate over the string looking for the 3312 * specified character. We will iterate until we have reached 3313 * the string length or we have found the character. If this 3314 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3315 * of the specified character instead of the first. 3316 */ 3317 uintptr_t saddr = tupregs[0].dttk_value; 3318 uintptr_t addr = tupregs[0].dttk_value; 3319 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3320 char c, target = (char)tupregs[1].dttk_value; 3321 3322 for (regs[rd] = NULL; addr < limit; addr++) { 3323 if ((c = dtrace_load8(addr)) == target) { 3324 regs[rd] = addr; 3325 3326 if (subr == DIF_SUBR_STRCHR) 3327 break; 3328 } 3329 3330 if (c == '\0') 3331 break; 3332 } 3333 3334 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3335 regs[rd] = NULL; 3336 break; 3337 } 3338 3339 break; 3340 } 3341 3342 case DIF_SUBR_STRSTR: 3343 case DIF_SUBR_INDEX: 3344 case DIF_SUBR_RINDEX: { 3345 /* 3346 * We're going to iterate over the string looking for the 3347 * specified string. We will iterate until we have reached 3348 * the string length or we have found the string. (Yes, this 3349 * is done in the most naive way possible -- but considering 3350 * that the string we're searching for is likely to be 3351 * relatively short, the complexity of Rabin-Karp or similar 3352 * hardly seems merited.) 3353 */ 3354 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3355 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3356 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3357 size_t len = dtrace_strlen(addr, size); 3358 size_t sublen = dtrace_strlen(substr, size); 3359 char *limit = addr + len, *orig = addr; 3360 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3361 int inc = 1; 3362 3363 regs[rd] = notfound; 3364 3365 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3366 regs[rd] = NULL; 3367 break; 3368 } 3369 3370 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3371 vstate)) { 3372 regs[rd] = NULL; 3373 break; 3374 } 3375 3376 /* 3377 * strstr() and index()/rindex() have similar semantics if 3378 * both strings are the empty string: strstr() returns a 3379 * pointer to the (empty) string, and index() and rindex() 3380 * both return index 0 (regardless of any position argument). 3381 */ 3382 if (sublen == 0 && len == 0) { 3383 if (subr == DIF_SUBR_STRSTR) 3384 regs[rd] = (uintptr_t)addr; 3385 else 3386 regs[rd] = 0; 3387 break; 3388 } 3389 3390 if (subr != DIF_SUBR_STRSTR) { 3391 if (subr == DIF_SUBR_RINDEX) { 3392 limit = orig - 1; 3393 addr += len; 3394 inc = -1; 3395 } 3396 3397 /* 3398 * Both index() and rindex() take an optional position 3399 * argument that denotes the starting position. 3400 */ 3401 if (nargs == 3) { 3402 int64_t pos = (int64_t)tupregs[2].dttk_value; 3403 3404 /* 3405 * If the position argument to index() is 3406 * negative, Perl implicitly clamps it at 3407 * zero. This semantic is a little surprising 3408 * given the special meaning of negative 3409 * positions to similar Perl functions like 3410 * substr(), but it appears to reflect a 3411 * notion that index() can start from a 3412 * negative index and increment its way up to 3413 * the string. Given this notion, Perl's 3414 * rindex() is at least self-consistent in 3415 * that it implicitly clamps positions greater 3416 * than the string length to be the string 3417 * length. Where Perl completely loses 3418 * coherence, however, is when the specified 3419 * substring is the empty string (""). In 3420 * this case, even if the position is 3421 * negative, rindex() returns 0 -- and even if 3422 * the position is greater than the length, 3423 * index() returns the string length. These 3424 * semantics violate the notion that index() 3425 * should never return a value less than the 3426 * specified position and that rindex() should 3427 * never return a value greater than the 3428 * specified position. (One assumes that 3429 * these semantics are artifacts of Perl's 3430 * implementation and not the results of 3431 * deliberate design -- it beggars belief that 3432 * even Larry Wall could desire such oddness.) 3433 * While in the abstract one would wish for 3434 * consistent position semantics across 3435 * substr(), index() and rindex() -- or at the 3436 * very least self-consistent position 3437 * semantics for index() and rindex() -- we 3438 * instead opt to keep with the extant Perl 3439 * semantics, in all their broken glory. (Do 3440 * we have more desire to maintain Perl's 3441 * semantics than Perl does? Probably.) 3442 */ 3443 if (subr == DIF_SUBR_RINDEX) { 3444 if (pos < 0) { 3445 if (sublen == 0) 3446 regs[rd] = 0; 3447 break; 3448 } 3449 3450 if (pos > len) 3451 pos = len; 3452 } else { 3453 if (pos < 0) 3454 pos = 0; 3455 3456 if (pos >= len) { 3457 if (sublen == 0) 3458 regs[rd] = len; 3459 break; 3460 } 3461 } 3462 3463 addr = orig + pos; 3464 } 3465 } 3466 3467 for (regs[rd] = notfound; addr != limit; addr += inc) { 3468 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3469 if (subr != DIF_SUBR_STRSTR) { 3470 /* 3471 * As D index() and rindex() are 3472 * modeled on Perl (and not on awk), 3473 * we return a zero-based (and not a 3474 * one-based) index. (For you Perl 3475 * weenies: no, we're not going to add 3476 * $[ -- and shouldn't you be at a con 3477 * or something?) 3478 */ 3479 regs[rd] = (uintptr_t)(addr - orig); 3480 break; 3481 } 3482 3483 ASSERT(subr == DIF_SUBR_STRSTR); 3484 regs[rd] = (uintptr_t)addr; 3485 break; 3486 } 3487 } 3488 3489 break; 3490 } 3491 3492 case DIF_SUBR_STRTOK: { 3493 uintptr_t addr = tupregs[0].dttk_value; 3494 uintptr_t tokaddr = tupregs[1].dttk_value; 3495 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3496 uintptr_t limit, toklimit = tokaddr + size; 3497 uint8_t c, tokmap[32]; /* 256 / 8 */ 3498 char *dest = (char *)mstate->dtms_scratch_ptr; 3499 int i; 3500 3501 /* 3502 * Check both the token buffer and (later) the input buffer, 3503 * since both could be non-scratch addresses. 3504 */ 3505 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3506 regs[rd] = NULL; 3507 break; 3508 } 3509 3510 if (!DTRACE_INSCRATCH(mstate, size)) { 3511 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3512 regs[rd] = NULL; 3513 break; 3514 } 3515 3516 if (addr == NULL) { 3517 /* 3518 * If the address specified is NULL, we use our saved 3519 * strtok pointer from the mstate. Note that this 3520 * means that the saved strtok pointer is _only_ 3521 * valid within multiple enablings of the same probe -- 3522 * it behaves like an implicit clause-local variable. 3523 */ 3524 addr = mstate->dtms_strtok; 3525 } else { 3526 /* 3527 * If the user-specified address is non-NULL we must 3528 * access check it. This is the only time we have 3529 * a chance to do so, since this address may reside 3530 * in the string table of this clause-- future calls 3531 * (when we fetch addr from mstate->dtms_strtok) 3532 * would fail this access check. 3533 */ 3534 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3535 regs[rd] = NULL; 3536 break; 3537 } 3538 } 3539 3540 /* 3541 * First, zero the token map, and then process the token 3542 * string -- setting a bit in the map for every character 3543 * found in the token string. 3544 */ 3545 for (i = 0; i < sizeof (tokmap); i++) 3546 tokmap[i] = 0; 3547 3548 for (; tokaddr < toklimit; tokaddr++) { 3549 if ((c = dtrace_load8(tokaddr)) == '\0') 3550 break; 3551 3552 ASSERT((c >> 3) < sizeof (tokmap)); 3553 tokmap[c >> 3] |= (1 << (c & 0x7)); 3554 } 3555 3556 for (limit = addr + size; addr < limit; addr++) { 3557 /* 3558 * We're looking for a character that is _not_ contained 3559 * in the token string. 3560 */ 3561 if ((c = dtrace_load8(addr)) == '\0') 3562 break; 3563 3564 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3565 break; 3566 } 3567 3568 if (c == '\0') { 3569 /* 3570 * We reached the end of the string without finding 3571 * any character that was not in the token string. 3572 * We return NULL in this case, and we set the saved 3573 * address to NULL as well. 3574 */ 3575 regs[rd] = NULL; 3576 mstate->dtms_strtok = NULL; 3577 break; 3578 } 3579 3580 /* 3581 * From here on, we're copying into the destination string. 3582 */ 3583 for (i = 0; addr < limit && i < size - 1; addr++) { 3584 if ((c = dtrace_load8(addr)) == '\0') 3585 break; 3586 3587 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3588 break; 3589 3590 ASSERT(i < size); 3591 dest[i++] = c; 3592 } 3593 3594 ASSERT(i < size); 3595 dest[i] = '\0'; 3596 regs[rd] = (uintptr_t)dest; 3597 mstate->dtms_scratch_ptr += size; 3598 mstate->dtms_strtok = addr; 3599 break; 3600 } 3601 3602 case DIF_SUBR_SUBSTR: { 3603 uintptr_t s = tupregs[0].dttk_value; 3604 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3605 char *d = (char *)mstate->dtms_scratch_ptr; 3606 int64_t index = (int64_t)tupregs[1].dttk_value; 3607 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3608 size_t len = dtrace_strlen((char *)s, size); 3609 int64_t i = 0; 3610 3611 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3612 regs[rd] = NULL; 3613 break; 3614 } 3615 3616 if (!DTRACE_INSCRATCH(mstate, size)) { 3617 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3618 regs[rd] = NULL; 3619 break; 3620 } 3621 3622 if (nargs <= 2) 3623 remaining = (int64_t)size; 3624 3625 if (index < 0) { 3626 index += len; 3627 3628 if (index < 0 && index + remaining > 0) { 3629 remaining += index; 3630 index = 0; 3631 } 3632 } 3633 3634 if (index >= len || index < 0) { 3635 remaining = 0; 3636 } else if (remaining < 0) { 3637 remaining += len - index; 3638 } else if (index + remaining > size) { 3639 remaining = size - index; 3640 } 3641 3642 for (i = 0; i < remaining; i++) { 3643 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 3644 break; 3645 } 3646 3647 d[i] = '\0'; 3648 3649 mstate->dtms_scratch_ptr += size; 3650 regs[rd] = (uintptr_t)d; 3651 break; 3652 } 3653 3654 case DIF_SUBR_GETMAJOR: 3655 #ifdef _LP64 3656 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3657 #else 3658 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3659 #endif 3660 break; 3661 3662 case DIF_SUBR_GETMINOR: 3663 #ifdef _LP64 3664 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3665 #else 3666 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3667 #endif 3668 break; 3669 3670 case DIF_SUBR_DDI_PATHNAME: { 3671 /* 3672 * This one is a galactic mess. We are going to roughly 3673 * emulate ddi_pathname(), but it's made more complicated 3674 * by the fact that we (a) want to include the minor name and 3675 * (b) must proceed iteratively instead of recursively. 3676 */ 3677 uintptr_t dest = mstate->dtms_scratch_ptr; 3678 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3679 char *start = (char *)dest, *end = start + size - 1; 3680 uintptr_t daddr = tupregs[0].dttk_value; 3681 int64_t minor = (int64_t)tupregs[1].dttk_value; 3682 char *s; 3683 int i, len, depth = 0; 3684 3685 /* 3686 * Due to all the pointer jumping we do and context we must 3687 * rely upon, we just mandate that the user must have kernel 3688 * read privileges to use this routine. 3689 */ 3690 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 3691 *flags |= CPU_DTRACE_KPRIV; 3692 *illval = daddr; 3693 regs[rd] = NULL; 3694 } 3695 3696 if (!DTRACE_INSCRATCH(mstate, size)) { 3697 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3698 regs[rd] = NULL; 3699 break; 3700 } 3701 3702 *end = '\0'; 3703 3704 /* 3705 * We want to have a name for the minor. In order to do this, 3706 * we need to walk the minor list from the devinfo. We want 3707 * to be sure that we don't infinitely walk a circular list, 3708 * so we check for circularity by sending a scout pointer 3709 * ahead two elements for every element that we iterate over; 3710 * if the list is circular, these will ultimately point to the 3711 * same element. You may recognize this little trick as the 3712 * answer to a stupid interview question -- one that always 3713 * seems to be asked by those who had to have it laboriously 3714 * explained to them, and who can't even concisely describe 3715 * the conditions under which one would be forced to resort to 3716 * this technique. Needless to say, those conditions are 3717 * found here -- and probably only here. Is this the only use 3718 * of this infamous trick in shipping, production code? If it 3719 * isn't, it probably should be... 3720 */ 3721 if (minor != -1) { 3722 uintptr_t maddr = dtrace_loadptr(daddr + 3723 offsetof(struct dev_info, devi_minor)); 3724 3725 uintptr_t next = offsetof(struct ddi_minor_data, next); 3726 uintptr_t name = offsetof(struct ddi_minor_data, 3727 d_minor) + offsetof(struct ddi_minor, name); 3728 uintptr_t dev = offsetof(struct ddi_minor_data, 3729 d_minor) + offsetof(struct ddi_minor, dev); 3730 uintptr_t scout; 3731 3732 if (maddr != NULL) 3733 scout = dtrace_loadptr(maddr + next); 3734 3735 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3736 uint64_t m; 3737 #ifdef _LP64 3738 m = dtrace_load64(maddr + dev) & MAXMIN64; 3739 #else 3740 m = dtrace_load32(maddr + dev) & MAXMIN; 3741 #endif 3742 if (m != minor) { 3743 maddr = dtrace_loadptr(maddr + next); 3744 3745 if (scout == NULL) 3746 continue; 3747 3748 scout = dtrace_loadptr(scout + next); 3749 3750 if (scout == NULL) 3751 continue; 3752 3753 scout = dtrace_loadptr(scout + next); 3754 3755 if (scout == NULL) 3756 continue; 3757 3758 if (scout == maddr) { 3759 *flags |= CPU_DTRACE_ILLOP; 3760 break; 3761 } 3762 3763 continue; 3764 } 3765 3766 /* 3767 * We have the minor data. Now we need to 3768 * copy the minor's name into the end of the 3769 * pathname. 3770 */ 3771 s = (char *)dtrace_loadptr(maddr + name); 3772 len = dtrace_strlen(s, size); 3773 3774 if (*flags & CPU_DTRACE_FAULT) 3775 break; 3776 3777 if (len != 0) { 3778 if ((end -= (len + 1)) < start) 3779 break; 3780 3781 *end = ':'; 3782 } 3783 3784 for (i = 1; i <= len; i++) 3785 end[i] = dtrace_load8((uintptr_t)s++); 3786 break; 3787 } 3788 } 3789 3790 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3791 ddi_node_state_t devi_state; 3792 3793 devi_state = dtrace_load32(daddr + 3794 offsetof(struct dev_info, devi_node_state)); 3795 3796 if (*flags & CPU_DTRACE_FAULT) 3797 break; 3798 3799 if (devi_state >= DS_INITIALIZED) { 3800 s = (char *)dtrace_loadptr(daddr + 3801 offsetof(struct dev_info, devi_addr)); 3802 len = dtrace_strlen(s, size); 3803 3804 if (*flags & CPU_DTRACE_FAULT) 3805 break; 3806 3807 if (len != 0) { 3808 if ((end -= (len + 1)) < start) 3809 break; 3810 3811 *end = '@'; 3812 } 3813 3814 for (i = 1; i <= len; i++) 3815 end[i] = dtrace_load8((uintptr_t)s++); 3816 } 3817 3818 /* 3819 * Now for the node name... 3820 */ 3821 s = (char *)dtrace_loadptr(daddr + 3822 offsetof(struct dev_info, devi_node_name)); 3823 3824 daddr = dtrace_loadptr(daddr + 3825 offsetof(struct dev_info, devi_parent)); 3826 3827 /* 3828 * If our parent is NULL (that is, if we're the root 3829 * node), we're going to use the special path 3830 * "devices". 3831 */ 3832 if (daddr == NULL) 3833 s = "devices"; 3834 3835 len = dtrace_strlen(s, size); 3836 if (*flags & CPU_DTRACE_FAULT) 3837 break; 3838 3839 if ((end -= (len + 1)) < start) 3840 break; 3841 3842 for (i = 1; i <= len; i++) 3843 end[i] = dtrace_load8((uintptr_t)s++); 3844 *end = '/'; 3845 3846 if (depth++ > dtrace_devdepth_max) { 3847 *flags |= CPU_DTRACE_ILLOP; 3848 break; 3849 } 3850 } 3851 3852 if (end < start) 3853 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3854 3855 if (daddr == NULL) { 3856 regs[rd] = (uintptr_t)end; 3857 mstate->dtms_scratch_ptr += size; 3858 } 3859 3860 break; 3861 } 3862 3863 case DIF_SUBR_STRJOIN: { 3864 char *d = (char *)mstate->dtms_scratch_ptr; 3865 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3866 uintptr_t s1 = tupregs[0].dttk_value; 3867 uintptr_t s2 = tupregs[1].dttk_value; 3868 int i = 0; 3869 3870 if (!dtrace_strcanload(s1, size, mstate, vstate) || 3871 !dtrace_strcanload(s2, size, mstate, vstate)) { 3872 regs[rd] = NULL; 3873 break; 3874 } 3875 3876 if (!DTRACE_INSCRATCH(mstate, size)) { 3877 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3878 regs[rd] = NULL; 3879 break; 3880 } 3881 3882 for (;;) { 3883 if (i >= size) { 3884 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3885 regs[rd] = NULL; 3886 break; 3887 } 3888 3889 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 3890 i--; 3891 break; 3892 } 3893 } 3894 3895 for (;;) { 3896 if (i >= size) { 3897 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3898 regs[rd] = NULL; 3899 break; 3900 } 3901 3902 if ((d[i++] = dtrace_load8(s2++)) == '\0') 3903 break; 3904 } 3905 3906 if (i < size) { 3907 mstate->dtms_scratch_ptr += i; 3908 regs[rd] = (uintptr_t)d; 3909 } 3910 3911 break; 3912 } 3913 3914 case DIF_SUBR_LLTOSTR: { 3915 int64_t i = (int64_t)tupregs[0].dttk_value; 3916 int64_t val = i < 0 ? i * -1 : i; 3917 uint64_t size = 22; /* enough room for 2^64 in decimal */ 3918 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 3919 3920 if (!DTRACE_INSCRATCH(mstate, size)) { 3921 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3922 regs[rd] = NULL; 3923 break; 3924 } 3925 3926 for (*end-- = '\0'; val; val /= 10) 3927 *end-- = '0' + (val % 10); 3928 3929 if (i == 0) 3930 *end-- = '0'; 3931 3932 if (i < 0) 3933 *end-- = '-'; 3934 3935 regs[rd] = (uintptr_t)end + 1; 3936 mstate->dtms_scratch_ptr += size; 3937 break; 3938 } 3939 3940 case DIF_SUBR_HTONS: 3941 case DIF_SUBR_NTOHS: 3942 #ifdef _BIG_ENDIAN 3943 regs[rd] = (uint16_t)tupregs[0].dttk_value; 3944 #else 3945 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 3946 #endif 3947 break; 3948 3949 3950 case DIF_SUBR_HTONL: 3951 case DIF_SUBR_NTOHL: 3952 #ifdef _BIG_ENDIAN 3953 regs[rd] = (uint32_t)tupregs[0].dttk_value; 3954 #else 3955 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 3956 #endif 3957 break; 3958 3959 3960 case DIF_SUBR_HTONLL: 3961 case DIF_SUBR_NTOHLL: 3962 #ifdef _BIG_ENDIAN 3963 regs[rd] = (uint64_t)tupregs[0].dttk_value; 3964 #else 3965 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 3966 #endif 3967 break; 3968 3969 3970 case DIF_SUBR_DIRNAME: 3971 case DIF_SUBR_BASENAME: { 3972 char *dest = (char *)mstate->dtms_scratch_ptr; 3973 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3974 uintptr_t src = tupregs[0].dttk_value; 3975 int i, j, len = dtrace_strlen((char *)src, size); 3976 int lastbase = -1, firstbase = -1, lastdir = -1; 3977 int start, end; 3978 3979 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 3980 regs[rd] = NULL; 3981 break; 3982 } 3983 3984 if (!DTRACE_INSCRATCH(mstate, size)) { 3985 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3986 regs[rd] = NULL; 3987 break; 3988 } 3989 3990 /* 3991 * The basename and dirname for a zero-length string is 3992 * defined to be "." 3993 */ 3994 if (len == 0) { 3995 len = 1; 3996 src = (uintptr_t)"."; 3997 } 3998 3999 /* 4000 * Start from the back of the string, moving back toward the 4001 * front until we see a character that isn't a slash. That 4002 * character is the last character in the basename. 4003 */ 4004 for (i = len - 1; i >= 0; i--) { 4005 if (dtrace_load8(src + i) != '/') 4006 break; 4007 } 4008 4009 if (i >= 0) 4010 lastbase = i; 4011 4012 /* 4013 * Starting from the last character in the basename, move 4014 * towards the front until we find a slash. The character 4015 * that we processed immediately before that is the first 4016 * character in the basename. 4017 */ 4018 for (; i >= 0; i--) { 4019 if (dtrace_load8(src + i) == '/') 4020 break; 4021 } 4022 4023 if (i >= 0) 4024 firstbase = i + 1; 4025 4026 /* 4027 * Now keep going until we find a non-slash character. That 4028 * character is the last character in the dirname. 4029 */ 4030 for (; i >= 0; i--) { 4031 if (dtrace_load8(src + i) != '/') 4032 break; 4033 } 4034 4035 if (i >= 0) 4036 lastdir = i; 4037 4038 ASSERT(!(lastbase == -1 && firstbase != -1)); 4039 ASSERT(!(firstbase == -1 && lastdir != -1)); 4040 4041 if (lastbase == -1) { 4042 /* 4043 * We didn't find a non-slash character. We know that 4044 * the length is non-zero, so the whole string must be 4045 * slashes. In either the dirname or the basename 4046 * case, we return '/'. 4047 */ 4048 ASSERT(firstbase == -1); 4049 firstbase = lastbase = lastdir = 0; 4050 } 4051 4052 if (firstbase == -1) { 4053 /* 4054 * The entire string consists only of a basename 4055 * component. If we're looking for dirname, we need 4056 * to change our string to be just "."; if we're 4057 * looking for a basename, we'll just set the first 4058 * character of the basename to be 0. 4059 */ 4060 if (subr == DIF_SUBR_DIRNAME) { 4061 ASSERT(lastdir == -1); 4062 src = (uintptr_t)"."; 4063 lastdir = 0; 4064 } else { 4065 firstbase = 0; 4066 } 4067 } 4068 4069 if (subr == DIF_SUBR_DIRNAME) { 4070 if (lastdir == -1) { 4071 /* 4072 * We know that we have a slash in the name -- 4073 * or lastdir would be set to 0, above. And 4074 * because lastdir is -1, we know that this 4075 * slash must be the first character. (That 4076 * is, the full string must be of the form 4077 * "/basename".) In this case, the last 4078 * character of the directory name is 0. 4079 */ 4080 lastdir = 0; 4081 } 4082 4083 start = 0; 4084 end = lastdir; 4085 } else { 4086 ASSERT(subr == DIF_SUBR_BASENAME); 4087 ASSERT(firstbase != -1 && lastbase != -1); 4088 start = firstbase; 4089 end = lastbase; 4090 } 4091 4092 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 4093 dest[j] = dtrace_load8(src + i); 4094 4095 dest[j] = '\0'; 4096 regs[rd] = (uintptr_t)dest; 4097 mstate->dtms_scratch_ptr += size; 4098 break; 4099 } 4100 4101 case DIF_SUBR_CLEANPATH: { 4102 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4103 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4104 uintptr_t src = tupregs[0].dttk_value; 4105 int i = 0, j = 0; 4106 4107 if (!dtrace_strcanload(src, size, mstate, vstate)) { 4108 regs[rd] = NULL; 4109 break; 4110 } 4111 4112 if (!DTRACE_INSCRATCH(mstate, size)) { 4113 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4114 regs[rd] = NULL; 4115 break; 4116 } 4117 4118 /* 4119 * Move forward, loading each character. 4120 */ 4121 do { 4122 c = dtrace_load8(src + i++); 4123 next: 4124 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 4125 break; 4126 4127 if (c != '/') { 4128 dest[j++] = c; 4129 continue; 4130 } 4131 4132 c = dtrace_load8(src + i++); 4133 4134 if (c == '/') { 4135 /* 4136 * We have two slashes -- we can just advance 4137 * to the next character. 4138 */ 4139 goto next; 4140 } 4141 4142 if (c != '.') { 4143 /* 4144 * This is not "." and it's not ".." -- we can 4145 * just store the "/" and this character and 4146 * drive on. 4147 */ 4148 dest[j++] = '/'; 4149 dest[j++] = c; 4150 continue; 4151 } 4152 4153 c = dtrace_load8(src + i++); 4154 4155 if (c == '/') { 4156 /* 4157 * This is a "/./" component. We're not going 4158 * to store anything in the destination buffer; 4159 * we're just going to go to the next component. 4160 */ 4161 goto next; 4162 } 4163 4164 if (c != '.') { 4165 /* 4166 * This is not ".." -- we can just store the 4167 * "/." and this character and continue 4168 * processing. 4169 */ 4170 dest[j++] = '/'; 4171 dest[j++] = '.'; 4172 dest[j++] = c; 4173 continue; 4174 } 4175 4176 c = dtrace_load8(src + i++); 4177 4178 if (c != '/' && c != '\0') { 4179 /* 4180 * This is not ".." -- it's "..[mumble]". 4181 * We'll store the "/.." and this character 4182 * and continue processing. 4183 */ 4184 dest[j++] = '/'; 4185 dest[j++] = '.'; 4186 dest[j++] = '.'; 4187 dest[j++] = c; 4188 continue; 4189 } 4190 4191 /* 4192 * This is "/../" or "/..\0". We need to back up 4193 * our destination pointer until we find a "/". 4194 */ 4195 i--; 4196 while (j != 0 && dest[--j] != '/') 4197 continue; 4198 4199 if (c == '\0') 4200 dest[++j] = '/'; 4201 } while (c != '\0'); 4202 4203 dest[j] = '\0'; 4204 regs[rd] = (uintptr_t)dest; 4205 mstate->dtms_scratch_ptr += size; 4206 break; 4207 } 4208 4209 case DIF_SUBR_INET_NTOA: 4210 case DIF_SUBR_INET_NTOA6: 4211 case DIF_SUBR_INET_NTOP: { 4212 size_t size; 4213 int af, argi, i; 4214 char *base, *end; 4215 4216 if (subr == DIF_SUBR_INET_NTOP) { 4217 af = (int)tupregs[0].dttk_value; 4218 argi = 1; 4219 } else { 4220 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4221 argi = 0; 4222 } 4223 4224 if (af == AF_INET) { 4225 ipaddr_t ip4; 4226 uint8_t *ptr8, val; 4227 4228 /* 4229 * Safely load the IPv4 address. 4230 */ 4231 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4232 4233 /* 4234 * Check an IPv4 string will fit in scratch. 4235 */ 4236 size = INET_ADDRSTRLEN; 4237 if (!DTRACE_INSCRATCH(mstate, size)) { 4238 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4239 regs[rd] = NULL; 4240 break; 4241 } 4242 base = (char *)mstate->dtms_scratch_ptr; 4243 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4244 4245 /* 4246 * Stringify as a dotted decimal quad. 4247 */ 4248 *end-- = '\0'; 4249 ptr8 = (uint8_t *)&ip4; 4250 for (i = 3; i >= 0; i--) { 4251 val = ptr8[i]; 4252 4253 if (val == 0) { 4254 *end-- = '0'; 4255 } else { 4256 for (; val; val /= 10) { 4257 *end-- = '0' + (val % 10); 4258 } 4259 } 4260 4261 if (i > 0) 4262 *end-- = '.'; 4263 } 4264 ASSERT(end + 1 >= base); 4265 4266 } else if (af == AF_INET6) { 4267 struct in6_addr ip6; 4268 int firstzero, tryzero, numzero, v6end; 4269 uint16_t val; 4270 const char digits[] = "0123456789abcdef"; 4271 4272 /* 4273 * Stringify using RFC 1884 convention 2 - 16 bit 4274 * hexadecimal values with a zero-run compression. 4275 * Lower case hexadecimal digits are used. 4276 * eg, fe80::214:4fff:fe0b:76c8. 4277 * The IPv4 embedded form is returned for inet_ntop, 4278 * just the IPv4 string is returned for inet_ntoa6. 4279 */ 4280 4281 /* 4282 * Safely load the IPv6 address. 4283 */ 4284 dtrace_bcopy( 4285 (void *)(uintptr_t)tupregs[argi].dttk_value, 4286 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4287 4288 /* 4289 * Check an IPv6 string will fit in scratch. 4290 */ 4291 size = INET6_ADDRSTRLEN; 4292 if (!DTRACE_INSCRATCH(mstate, size)) { 4293 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4294 regs[rd] = NULL; 4295 break; 4296 } 4297 base = (char *)mstate->dtms_scratch_ptr; 4298 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4299 *end-- = '\0'; 4300 4301 /* 4302 * Find the longest run of 16 bit zero values 4303 * for the single allowed zero compression - "::". 4304 */ 4305 firstzero = -1; 4306 tryzero = -1; 4307 numzero = 1; 4308 for (i = 0; i < sizeof (struct in6_addr); i++) { 4309 if (ip6._S6_un._S6_u8[i] == 0 && 4310 tryzero == -1 && i % 2 == 0) { 4311 tryzero = i; 4312 continue; 4313 } 4314 4315 if (tryzero != -1 && 4316 (ip6._S6_un._S6_u8[i] != 0 || 4317 i == sizeof (struct in6_addr) - 1)) { 4318 4319 if (i - tryzero <= numzero) { 4320 tryzero = -1; 4321 continue; 4322 } 4323 4324 firstzero = tryzero; 4325 numzero = i - i % 2 - tryzero; 4326 tryzero = -1; 4327 4328 if (ip6._S6_un._S6_u8[i] == 0 && 4329 i == sizeof (struct in6_addr) - 1) 4330 numzero += 2; 4331 } 4332 } 4333 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4334 4335 /* 4336 * Check for an IPv4 embedded address. 4337 */ 4338 v6end = sizeof (struct in6_addr) - 2; 4339 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4340 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4341 for (i = sizeof (struct in6_addr) - 1; 4342 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4343 ASSERT(end >= base); 4344 4345 val = ip6._S6_un._S6_u8[i]; 4346 4347 if (val == 0) { 4348 *end-- = '0'; 4349 } else { 4350 for (; val; val /= 10) { 4351 *end-- = '0' + val % 10; 4352 } 4353 } 4354 4355 if (i > DTRACE_V4MAPPED_OFFSET) 4356 *end-- = '.'; 4357 } 4358 4359 if (subr == DIF_SUBR_INET_NTOA6) 4360 goto inetout; 4361 4362 /* 4363 * Set v6end to skip the IPv4 address that 4364 * we have already stringified. 4365 */ 4366 v6end = 10; 4367 } 4368 4369 /* 4370 * Build the IPv6 string by working through the 4371 * address in reverse. 4372 */ 4373 for (i = v6end; i >= 0; i -= 2) { 4374 ASSERT(end >= base); 4375 4376 if (i == firstzero + numzero - 2) { 4377 *end-- = ':'; 4378 *end-- = ':'; 4379 i -= numzero - 2; 4380 continue; 4381 } 4382 4383 if (i < 14 && i != firstzero - 2) 4384 *end-- = ':'; 4385 4386 val = (ip6._S6_un._S6_u8[i] << 8) + 4387 ip6._S6_un._S6_u8[i + 1]; 4388 4389 if (val == 0) { 4390 *end-- = '0'; 4391 } else { 4392 for (; val; val /= 16) { 4393 *end-- = digits[val % 16]; 4394 } 4395 } 4396 } 4397 ASSERT(end + 1 >= base); 4398 4399 } else { 4400 /* 4401 * The user didn't use AH_INET or AH_INET6. 4402 */ 4403 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4404 regs[rd] = NULL; 4405 break; 4406 } 4407 4408 inetout: regs[rd] = (uintptr_t)end + 1; 4409 mstate->dtms_scratch_ptr += size; 4410 break; 4411 } 4412 4413 } 4414 } 4415 4416 /* 4417 * Emulate the execution of DTrace IR instructions specified by the given 4418 * DIF object. This function is deliberately void of assertions as all of 4419 * the necessary checks are handled by a call to dtrace_difo_validate(). 4420 */ 4421 static uint64_t 4422 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4423 dtrace_vstate_t *vstate, dtrace_state_t *state) 4424 { 4425 const dif_instr_t *text = difo->dtdo_buf; 4426 const uint_t textlen = difo->dtdo_len; 4427 const char *strtab = difo->dtdo_strtab; 4428 const uint64_t *inttab = difo->dtdo_inttab; 4429 4430 uint64_t rval = 0; 4431 dtrace_statvar_t *svar; 4432 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4433 dtrace_difv_t *v; 4434 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4435 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4436 4437 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4438 uint64_t regs[DIF_DIR_NREGS]; 4439 uint64_t *tmp; 4440 4441 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4442 int64_t cc_r; 4443 uint_t pc = 0, id, opc; 4444 uint8_t ttop = 0; 4445 dif_instr_t instr; 4446 uint_t r1, r2, rd; 4447 4448 /* 4449 * We stash the current DIF object into the machine state: we need it 4450 * for subsequent access checking. 4451 */ 4452 mstate->dtms_difo = difo; 4453 4454 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4455 4456 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4457 opc = pc; 4458 4459 instr = text[pc++]; 4460 r1 = DIF_INSTR_R1(instr); 4461 r2 = DIF_INSTR_R2(instr); 4462 rd = DIF_INSTR_RD(instr); 4463 4464 switch (DIF_INSTR_OP(instr)) { 4465 case DIF_OP_OR: 4466 regs[rd] = regs[r1] | regs[r2]; 4467 break; 4468 case DIF_OP_XOR: 4469 regs[rd] = regs[r1] ^ regs[r2]; 4470 break; 4471 case DIF_OP_AND: 4472 regs[rd] = regs[r1] & regs[r2]; 4473 break; 4474 case DIF_OP_SLL: 4475 regs[rd] = regs[r1] << regs[r2]; 4476 break; 4477 case DIF_OP_SRL: 4478 regs[rd] = regs[r1] >> regs[r2]; 4479 break; 4480 case DIF_OP_SUB: 4481 regs[rd] = regs[r1] - regs[r2]; 4482 break; 4483 case DIF_OP_ADD: 4484 regs[rd] = regs[r1] + regs[r2]; 4485 break; 4486 case DIF_OP_MUL: 4487 regs[rd] = regs[r1] * regs[r2]; 4488 break; 4489 case DIF_OP_SDIV: 4490 if (regs[r2] == 0) { 4491 regs[rd] = 0; 4492 *flags |= CPU_DTRACE_DIVZERO; 4493 } else { 4494 regs[rd] = (int64_t)regs[r1] / 4495 (int64_t)regs[r2]; 4496 } 4497 break; 4498 4499 case DIF_OP_UDIV: 4500 if (regs[r2] == 0) { 4501 regs[rd] = 0; 4502 *flags |= CPU_DTRACE_DIVZERO; 4503 } else { 4504 regs[rd] = regs[r1] / regs[r2]; 4505 } 4506 break; 4507 4508 case DIF_OP_SREM: 4509 if (regs[r2] == 0) { 4510 regs[rd] = 0; 4511 *flags |= CPU_DTRACE_DIVZERO; 4512 } else { 4513 regs[rd] = (int64_t)regs[r1] % 4514 (int64_t)regs[r2]; 4515 } 4516 break; 4517 4518 case DIF_OP_UREM: 4519 if (regs[r2] == 0) { 4520 regs[rd] = 0; 4521 *flags |= CPU_DTRACE_DIVZERO; 4522 } else { 4523 regs[rd] = regs[r1] % regs[r2]; 4524 } 4525 break; 4526 4527 case DIF_OP_NOT: 4528 regs[rd] = ~regs[r1]; 4529 break; 4530 case DIF_OP_MOV: 4531 regs[rd] = regs[r1]; 4532 break; 4533 case DIF_OP_CMP: 4534 cc_r = regs[r1] - regs[r2]; 4535 cc_n = cc_r < 0; 4536 cc_z = cc_r == 0; 4537 cc_v = 0; 4538 cc_c = regs[r1] < regs[r2]; 4539 break; 4540 case DIF_OP_TST: 4541 cc_n = cc_v = cc_c = 0; 4542 cc_z = regs[r1] == 0; 4543 break; 4544 case DIF_OP_BA: 4545 pc = DIF_INSTR_LABEL(instr); 4546 break; 4547 case DIF_OP_BE: 4548 if (cc_z) 4549 pc = DIF_INSTR_LABEL(instr); 4550 break; 4551 case DIF_OP_BNE: 4552 if (cc_z == 0) 4553 pc = DIF_INSTR_LABEL(instr); 4554 break; 4555 case DIF_OP_BG: 4556 if ((cc_z | (cc_n ^ cc_v)) == 0) 4557 pc = DIF_INSTR_LABEL(instr); 4558 break; 4559 case DIF_OP_BGU: 4560 if ((cc_c | cc_z) == 0) 4561 pc = DIF_INSTR_LABEL(instr); 4562 break; 4563 case DIF_OP_BGE: 4564 if ((cc_n ^ cc_v) == 0) 4565 pc = DIF_INSTR_LABEL(instr); 4566 break; 4567 case DIF_OP_BGEU: 4568 if (cc_c == 0) 4569 pc = DIF_INSTR_LABEL(instr); 4570 break; 4571 case DIF_OP_BL: 4572 if (cc_n ^ cc_v) 4573 pc = DIF_INSTR_LABEL(instr); 4574 break; 4575 case DIF_OP_BLU: 4576 if (cc_c) 4577 pc = DIF_INSTR_LABEL(instr); 4578 break; 4579 case DIF_OP_BLE: 4580 if (cc_z | (cc_n ^ cc_v)) 4581 pc = DIF_INSTR_LABEL(instr); 4582 break; 4583 case DIF_OP_BLEU: 4584 if (cc_c | cc_z) 4585 pc = DIF_INSTR_LABEL(instr); 4586 break; 4587 case DIF_OP_RLDSB: 4588 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4589 *flags |= CPU_DTRACE_KPRIV; 4590 *illval = regs[r1]; 4591 break; 4592 } 4593 /*FALLTHROUGH*/ 4594 case DIF_OP_LDSB: 4595 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4596 break; 4597 case DIF_OP_RLDSH: 4598 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4599 *flags |= CPU_DTRACE_KPRIV; 4600 *illval = regs[r1]; 4601 break; 4602 } 4603 /*FALLTHROUGH*/ 4604 case DIF_OP_LDSH: 4605 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4606 break; 4607 case DIF_OP_RLDSW: 4608 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4609 *flags |= CPU_DTRACE_KPRIV; 4610 *illval = regs[r1]; 4611 break; 4612 } 4613 /*FALLTHROUGH*/ 4614 case DIF_OP_LDSW: 4615 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4616 break; 4617 case DIF_OP_RLDUB: 4618 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4619 *flags |= CPU_DTRACE_KPRIV; 4620 *illval = regs[r1]; 4621 break; 4622 } 4623 /*FALLTHROUGH*/ 4624 case DIF_OP_LDUB: 4625 regs[rd] = dtrace_load8(regs[r1]); 4626 break; 4627 case DIF_OP_RLDUH: 4628 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4629 *flags |= CPU_DTRACE_KPRIV; 4630 *illval = regs[r1]; 4631 break; 4632 } 4633 /*FALLTHROUGH*/ 4634 case DIF_OP_LDUH: 4635 regs[rd] = dtrace_load16(regs[r1]); 4636 break; 4637 case DIF_OP_RLDUW: 4638 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4639 *flags |= CPU_DTRACE_KPRIV; 4640 *illval = regs[r1]; 4641 break; 4642 } 4643 /*FALLTHROUGH*/ 4644 case DIF_OP_LDUW: 4645 regs[rd] = dtrace_load32(regs[r1]); 4646 break; 4647 case DIF_OP_RLDX: 4648 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 4649 *flags |= CPU_DTRACE_KPRIV; 4650 *illval = regs[r1]; 4651 break; 4652 } 4653 /*FALLTHROUGH*/ 4654 case DIF_OP_LDX: 4655 regs[rd] = dtrace_load64(regs[r1]); 4656 break; 4657 case DIF_OP_ULDSB: 4658 regs[rd] = (int8_t) 4659 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4660 break; 4661 case DIF_OP_ULDSH: 4662 regs[rd] = (int16_t) 4663 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4664 break; 4665 case DIF_OP_ULDSW: 4666 regs[rd] = (int32_t) 4667 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4668 break; 4669 case DIF_OP_ULDUB: 4670 regs[rd] = 4671 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4672 break; 4673 case DIF_OP_ULDUH: 4674 regs[rd] = 4675 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4676 break; 4677 case DIF_OP_ULDUW: 4678 regs[rd] = 4679 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4680 break; 4681 case DIF_OP_ULDX: 4682 regs[rd] = 4683 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 4684 break; 4685 case DIF_OP_RET: 4686 rval = regs[rd]; 4687 pc = textlen; 4688 break; 4689 case DIF_OP_NOP: 4690 break; 4691 case DIF_OP_SETX: 4692 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 4693 break; 4694 case DIF_OP_SETS: 4695 regs[rd] = (uint64_t)(uintptr_t) 4696 (strtab + DIF_INSTR_STRING(instr)); 4697 break; 4698 case DIF_OP_SCMP: { 4699 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 4700 uintptr_t s1 = regs[r1]; 4701 uintptr_t s2 = regs[r2]; 4702 4703 if (s1 != NULL && 4704 !dtrace_strcanload(s1, sz, mstate, vstate)) 4705 break; 4706 if (s2 != NULL && 4707 !dtrace_strcanload(s2, sz, mstate, vstate)) 4708 break; 4709 4710 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 4711 4712 cc_n = cc_r < 0; 4713 cc_z = cc_r == 0; 4714 cc_v = cc_c = 0; 4715 break; 4716 } 4717 case DIF_OP_LDGA: 4718 regs[rd] = dtrace_dif_variable(mstate, state, 4719 r1, regs[r2]); 4720 break; 4721 case DIF_OP_LDGS: 4722 id = DIF_INSTR_VAR(instr); 4723 4724 if (id >= DIF_VAR_OTHER_UBASE) { 4725 uintptr_t a; 4726 4727 id -= DIF_VAR_OTHER_UBASE; 4728 svar = vstate->dtvs_globals[id]; 4729 ASSERT(svar != NULL); 4730 v = &svar->dtsv_var; 4731 4732 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 4733 regs[rd] = svar->dtsv_data; 4734 break; 4735 } 4736 4737 a = (uintptr_t)svar->dtsv_data; 4738 4739 if (*(uint8_t *)a == UINT8_MAX) { 4740 /* 4741 * If the 0th byte is set to UINT8_MAX 4742 * then this is to be treated as a 4743 * reference to a NULL variable. 4744 */ 4745 regs[rd] = NULL; 4746 } else { 4747 regs[rd] = a + sizeof (uint64_t); 4748 } 4749 4750 break; 4751 } 4752 4753 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 4754 break; 4755 4756 case DIF_OP_STGS: 4757 id = DIF_INSTR_VAR(instr); 4758 4759 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4760 id -= DIF_VAR_OTHER_UBASE; 4761 4762 svar = vstate->dtvs_globals[id]; 4763 ASSERT(svar != NULL); 4764 v = &svar->dtsv_var; 4765 4766 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4767 uintptr_t a = (uintptr_t)svar->dtsv_data; 4768 4769 ASSERT(a != NULL); 4770 ASSERT(svar->dtsv_size != 0); 4771 4772 if (regs[rd] == NULL) { 4773 *(uint8_t *)a = UINT8_MAX; 4774 break; 4775 } else { 4776 *(uint8_t *)a = 0; 4777 a += sizeof (uint64_t); 4778 } 4779 if (!dtrace_vcanload( 4780 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4781 mstate, vstate)) 4782 break; 4783 4784 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4785 (void *)a, &v->dtdv_type); 4786 break; 4787 } 4788 4789 svar->dtsv_data = regs[rd]; 4790 break; 4791 4792 case DIF_OP_LDTA: 4793 /* 4794 * There are no DTrace built-in thread-local arrays at 4795 * present. This opcode is saved for future work. 4796 */ 4797 *flags |= CPU_DTRACE_ILLOP; 4798 regs[rd] = 0; 4799 break; 4800 4801 case DIF_OP_LDLS: 4802 id = DIF_INSTR_VAR(instr); 4803 4804 if (id < DIF_VAR_OTHER_UBASE) { 4805 /* 4806 * For now, this has no meaning. 4807 */ 4808 regs[rd] = 0; 4809 break; 4810 } 4811 4812 id -= DIF_VAR_OTHER_UBASE; 4813 4814 ASSERT(id < vstate->dtvs_nlocals); 4815 ASSERT(vstate->dtvs_locals != NULL); 4816 4817 svar = vstate->dtvs_locals[id]; 4818 ASSERT(svar != NULL); 4819 v = &svar->dtsv_var; 4820 4821 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4822 uintptr_t a = (uintptr_t)svar->dtsv_data; 4823 size_t sz = v->dtdv_type.dtdt_size; 4824 4825 sz += sizeof (uint64_t); 4826 ASSERT(svar->dtsv_size == NCPU * sz); 4827 a += CPU->cpu_id * sz; 4828 4829 if (*(uint8_t *)a == UINT8_MAX) { 4830 /* 4831 * If the 0th byte is set to UINT8_MAX 4832 * then this is to be treated as a 4833 * reference to a NULL variable. 4834 */ 4835 regs[rd] = NULL; 4836 } else { 4837 regs[rd] = a + sizeof (uint64_t); 4838 } 4839 4840 break; 4841 } 4842 4843 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4844 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4845 regs[rd] = tmp[CPU->cpu_id]; 4846 break; 4847 4848 case DIF_OP_STLS: 4849 id = DIF_INSTR_VAR(instr); 4850 4851 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4852 id -= DIF_VAR_OTHER_UBASE; 4853 ASSERT(id < vstate->dtvs_nlocals); 4854 4855 ASSERT(vstate->dtvs_locals != NULL); 4856 svar = vstate->dtvs_locals[id]; 4857 ASSERT(svar != NULL); 4858 v = &svar->dtsv_var; 4859 4860 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4861 uintptr_t a = (uintptr_t)svar->dtsv_data; 4862 size_t sz = v->dtdv_type.dtdt_size; 4863 4864 sz += sizeof (uint64_t); 4865 ASSERT(svar->dtsv_size == NCPU * sz); 4866 a += CPU->cpu_id * sz; 4867 4868 if (regs[rd] == NULL) { 4869 *(uint8_t *)a = UINT8_MAX; 4870 break; 4871 } else { 4872 *(uint8_t *)a = 0; 4873 a += sizeof (uint64_t); 4874 } 4875 4876 if (!dtrace_vcanload( 4877 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4878 mstate, vstate)) 4879 break; 4880 4881 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4882 (void *)a, &v->dtdv_type); 4883 break; 4884 } 4885 4886 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4887 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4888 tmp[CPU->cpu_id] = regs[rd]; 4889 break; 4890 4891 case DIF_OP_LDTS: { 4892 dtrace_dynvar_t *dvar; 4893 dtrace_key_t *key; 4894 4895 id = DIF_INSTR_VAR(instr); 4896 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4897 id -= DIF_VAR_OTHER_UBASE; 4898 v = &vstate->dtvs_tlocals[id]; 4899 4900 key = &tupregs[DIF_DTR_NREGS]; 4901 key[0].dttk_value = (uint64_t)id; 4902 key[0].dttk_size = 0; 4903 DTRACE_TLS_THRKEY(key[1].dttk_value); 4904 key[1].dttk_size = 0; 4905 4906 dvar = dtrace_dynvar(dstate, 2, key, 4907 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 4908 mstate, vstate); 4909 4910 if (dvar == NULL) { 4911 regs[rd] = 0; 4912 break; 4913 } 4914 4915 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4916 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4917 } else { 4918 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4919 } 4920 4921 break; 4922 } 4923 4924 case DIF_OP_STTS: { 4925 dtrace_dynvar_t *dvar; 4926 dtrace_key_t *key; 4927 4928 id = DIF_INSTR_VAR(instr); 4929 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4930 id -= DIF_VAR_OTHER_UBASE; 4931 4932 key = &tupregs[DIF_DTR_NREGS]; 4933 key[0].dttk_value = (uint64_t)id; 4934 key[0].dttk_size = 0; 4935 DTRACE_TLS_THRKEY(key[1].dttk_value); 4936 key[1].dttk_size = 0; 4937 v = &vstate->dtvs_tlocals[id]; 4938 4939 dvar = dtrace_dynvar(dstate, 2, key, 4940 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4941 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4942 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4943 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 4944 4945 /* 4946 * Given that we're storing to thread-local data, 4947 * we need to flush our predicate cache. 4948 */ 4949 curthread->t_predcache = NULL; 4950 4951 if (dvar == NULL) 4952 break; 4953 4954 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4955 if (!dtrace_vcanload( 4956 (void *)(uintptr_t)regs[rd], 4957 &v->dtdv_type, mstate, vstate)) 4958 break; 4959 4960 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4961 dvar->dtdv_data, &v->dtdv_type); 4962 } else { 4963 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4964 } 4965 4966 break; 4967 } 4968 4969 case DIF_OP_SRA: 4970 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 4971 break; 4972 4973 case DIF_OP_CALL: 4974 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 4975 regs, tupregs, ttop, mstate, state); 4976 break; 4977 4978 case DIF_OP_PUSHTR: 4979 if (ttop == DIF_DTR_NREGS) { 4980 *flags |= CPU_DTRACE_TUPOFLOW; 4981 break; 4982 } 4983 4984 if (r1 == DIF_TYPE_STRING) { 4985 /* 4986 * If this is a string type and the size is 0, 4987 * we'll use the system-wide default string 4988 * size. Note that we are _not_ looking at 4989 * the value of the DTRACEOPT_STRSIZE option; 4990 * had this been set, we would expect to have 4991 * a non-zero size value in the "pushtr". 4992 */ 4993 tupregs[ttop].dttk_size = 4994 dtrace_strlen((char *)(uintptr_t)regs[rd], 4995 regs[r2] ? regs[r2] : 4996 dtrace_strsize_default) + 1; 4997 } else { 4998 tupregs[ttop].dttk_size = regs[r2]; 4999 } 5000 5001 tupregs[ttop++].dttk_value = regs[rd]; 5002 break; 5003 5004 case DIF_OP_PUSHTV: 5005 if (ttop == DIF_DTR_NREGS) { 5006 *flags |= CPU_DTRACE_TUPOFLOW; 5007 break; 5008 } 5009 5010 tupregs[ttop].dttk_value = regs[rd]; 5011 tupregs[ttop++].dttk_size = 0; 5012 break; 5013 5014 case DIF_OP_POPTS: 5015 if (ttop != 0) 5016 ttop--; 5017 break; 5018 5019 case DIF_OP_FLUSHTS: 5020 ttop = 0; 5021 break; 5022 5023 case DIF_OP_LDGAA: 5024 case DIF_OP_LDTAA: { 5025 dtrace_dynvar_t *dvar; 5026 dtrace_key_t *key = tupregs; 5027 uint_t nkeys = ttop; 5028 5029 id = DIF_INSTR_VAR(instr); 5030 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5031 id -= DIF_VAR_OTHER_UBASE; 5032 5033 key[nkeys].dttk_value = (uint64_t)id; 5034 key[nkeys++].dttk_size = 0; 5035 5036 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 5037 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5038 key[nkeys++].dttk_size = 0; 5039 v = &vstate->dtvs_tlocals[id]; 5040 } else { 5041 v = &vstate->dtvs_globals[id]->dtsv_var; 5042 } 5043 5044 dvar = dtrace_dynvar(dstate, nkeys, key, 5045 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5046 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5047 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 5048 5049 if (dvar == NULL) { 5050 regs[rd] = 0; 5051 break; 5052 } 5053 5054 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5055 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5056 } else { 5057 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5058 } 5059 5060 break; 5061 } 5062 5063 case DIF_OP_STGAA: 5064 case DIF_OP_STTAA: { 5065 dtrace_dynvar_t *dvar; 5066 dtrace_key_t *key = tupregs; 5067 uint_t nkeys = ttop; 5068 5069 id = DIF_INSTR_VAR(instr); 5070 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5071 id -= DIF_VAR_OTHER_UBASE; 5072 5073 key[nkeys].dttk_value = (uint64_t)id; 5074 key[nkeys++].dttk_size = 0; 5075 5076 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 5077 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5078 key[nkeys++].dttk_size = 0; 5079 v = &vstate->dtvs_tlocals[id]; 5080 } else { 5081 v = &vstate->dtvs_globals[id]->dtsv_var; 5082 } 5083 5084 dvar = dtrace_dynvar(dstate, nkeys, key, 5085 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5086 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5087 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5088 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5089 5090 if (dvar == NULL) 5091 break; 5092 5093 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5094 if (!dtrace_vcanload( 5095 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5096 mstate, vstate)) 5097 break; 5098 5099 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5100 dvar->dtdv_data, &v->dtdv_type); 5101 } else { 5102 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5103 } 5104 5105 break; 5106 } 5107 5108 case DIF_OP_ALLOCS: { 5109 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5110 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 5111 5112 /* 5113 * Rounding up the user allocation size could have 5114 * overflowed large, bogus allocations (like -1ULL) to 5115 * 0. 5116 */ 5117 if (size < regs[r1] || 5118 !DTRACE_INSCRATCH(mstate, size)) { 5119 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5120 regs[rd] = NULL; 5121 break; 5122 } 5123 5124 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 5125 mstate->dtms_scratch_ptr += size; 5126 regs[rd] = ptr; 5127 break; 5128 } 5129 5130 case DIF_OP_COPYS: 5131 if (!dtrace_canstore(regs[rd], regs[r2], 5132 mstate, vstate)) { 5133 *flags |= CPU_DTRACE_BADADDR; 5134 *illval = regs[rd]; 5135 break; 5136 } 5137 5138 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 5139 break; 5140 5141 dtrace_bcopy((void *)(uintptr_t)regs[r1], 5142 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 5143 break; 5144 5145 case DIF_OP_STB: 5146 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 5147 *flags |= CPU_DTRACE_BADADDR; 5148 *illval = regs[rd]; 5149 break; 5150 } 5151 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 5152 break; 5153 5154 case DIF_OP_STH: 5155 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 5156 *flags |= CPU_DTRACE_BADADDR; 5157 *illval = regs[rd]; 5158 break; 5159 } 5160 if (regs[rd] & 1) { 5161 *flags |= CPU_DTRACE_BADALIGN; 5162 *illval = regs[rd]; 5163 break; 5164 } 5165 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5166 break; 5167 5168 case DIF_OP_STW: 5169 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5170 *flags |= CPU_DTRACE_BADADDR; 5171 *illval = regs[rd]; 5172 break; 5173 } 5174 if (regs[rd] & 3) { 5175 *flags |= CPU_DTRACE_BADALIGN; 5176 *illval = regs[rd]; 5177 break; 5178 } 5179 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5180 break; 5181 5182 case DIF_OP_STX: 5183 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5184 *flags |= CPU_DTRACE_BADADDR; 5185 *illval = regs[rd]; 5186 break; 5187 } 5188 if (regs[rd] & 7) { 5189 *flags |= CPU_DTRACE_BADALIGN; 5190 *illval = regs[rd]; 5191 break; 5192 } 5193 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5194 break; 5195 } 5196 } 5197 5198 if (!(*flags & CPU_DTRACE_FAULT)) 5199 return (rval); 5200 5201 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5202 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5203 5204 return (0); 5205 } 5206 5207 static void 5208 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5209 { 5210 dtrace_probe_t *probe = ecb->dte_probe; 5211 dtrace_provider_t *prov = probe->dtpr_provider; 5212 char c[DTRACE_FULLNAMELEN + 80], *str; 5213 char *msg = "dtrace: breakpoint action at probe "; 5214 char *ecbmsg = " (ecb "; 5215 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5216 uintptr_t val = (uintptr_t)ecb; 5217 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5218 5219 if (dtrace_destructive_disallow) 5220 return; 5221 5222 /* 5223 * It's impossible to be taking action on the NULL probe. 5224 */ 5225 ASSERT(probe != NULL); 5226 5227 /* 5228 * This is a poor man's (destitute man's?) sprintf(): we want to 5229 * print the provider name, module name, function name and name of 5230 * the probe, along with the hex address of the ECB with the breakpoint 5231 * action -- all of which we must place in the character buffer by 5232 * hand. 5233 */ 5234 while (*msg != '\0') 5235 c[i++] = *msg++; 5236 5237 for (str = prov->dtpv_name; *str != '\0'; str++) 5238 c[i++] = *str; 5239 c[i++] = ':'; 5240 5241 for (str = probe->dtpr_mod; *str != '\0'; str++) 5242 c[i++] = *str; 5243 c[i++] = ':'; 5244 5245 for (str = probe->dtpr_func; *str != '\0'; str++) 5246 c[i++] = *str; 5247 c[i++] = ':'; 5248 5249 for (str = probe->dtpr_name; *str != '\0'; str++) 5250 c[i++] = *str; 5251 5252 while (*ecbmsg != '\0') 5253 c[i++] = *ecbmsg++; 5254 5255 while (shift >= 0) { 5256 mask = (uintptr_t)0xf << shift; 5257 5258 if (val >= ((uintptr_t)1 << shift)) 5259 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5260 shift -= 4; 5261 } 5262 5263 c[i++] = ')'; 5264 c[i] = '\0'; 5265 5266 debug_enter(c); 5267 } 5268 5269 static void 5270 dtrace_action_panic(dtrace_ecb_t *ecb) 5271 { 5272 dtrace_probe_t *probe = ecb->dte_probe; 5273 5274 /* 5275 * It's impossible to be taking action on the NULL probe. 5276 */ 5277 ASSERT(probe != NULL); 5278 5279 if (dtrace_destructive_disallow) 5280 return; 5281 5282 if (dtrace_panicked != NULL) 5283 return; 5284 5285 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5286 return; 5287 5288 /* 5289 * We won the right to panic. (We want to be sure that only one 5290 * thread calls panic() from dtrace_probe(), and that panic() is 5291 * called exactly once.) 5292 */ 5293 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5294 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5295 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5296 } 5297 5298 static void 5299 dtrace_action_raise(uint64_t sig) 5300 { 5301 if (dtrace_destructive_disallow) 5302 return; 5303 5304 if (sig >= NSIG) { 5305 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5306 return; 5307 } 5308 5309 /* 5310 * raise() has a queue depth of 1 -- we ignore all subsequent 5311 * invocations of the raise() action. 5312 */ 5313 if (curthread->t_dtrace_sig == 0) 5314 curthread->t_dtrace_sig = (uint8_t)sig; 5315 5316 curthread->t_sig_check = 1; 5317 aston(curthread); 5318 } 5319 5320 static void 5321 dtrace_action_stop(void) 5322 { 5323 if (dtrace_destructive_disallow) 5324 return; 5325 5326 if (!curthread->t_dtrace_stop) { 5327 curthread->t_dtrace_stop = 1; 5328 curthread->t_sig_check = 1; 5329 aston(curthread); 5330 } 5331 } 5332 5333 static void 5334 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5335 { 5336 hrtime_t now; 5337 volatile uint16_t *flags; 5338 cpu_t *cpu = CPU; 5339 5340 if (dtrace_destructive_disallow) 5341 return; 5342 5343 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5344 5345 now = dtrace_gethrtime(); 5346 5347 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5348 /* 5349 * We need to advance the mark to the current time. 5350 */ 5351 cpu->cpu_dtrace_chillmark = now; 5352 cpu->cpu_dtrace_chilled = 0; 5353 } 5354 5355 /* 5356 * Now check to see if the requested chill time would take us over 5357 * the maximum amount of time allowed in the chill interval. (Or 5358 * worse, if the calculation itself induces overflow.) 5359 */ 5360 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5361 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5362 *flags |= CPU_DTRACE_ILLOP; 5363 return; 5364 } 5365 5366 while (dtrace_gethrtime() - now < val) 5367 continue; 5368 5369 /* 5370 * Normally, we assure that the value of the variable "timestamp" does 5371 * not change within an ECB. The presence of chill() represents an 5372 * exception to this rule, however. 5373 */ 5374 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5375 cpu->cpu_dtrace_chilled += val; 5376 } 5377 5378 static void 5379 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5380 uint64_t *buf, uint64_t arg) 5381 { 5382 int nframes = DTRACE_USTACK_NFRAMES(arg); 5383 int strsize = DTRACE_USTACK_STRSIZE(arg); 5384 uint64_t *pcs = &buf[1], *fps; 5385 char *str = (char *)&pcs[nframes]; 5386 int size, offs = 0, i, j; 5387 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5388 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5389 char *sym; 5390 5391 /* 5392 * Should be taking a faster path if string space has not been 5393 * allocated. 5394 */ 5395 ASSERT(strsize != 0); 5396 5397 /* 5398 * We will first allocate some temporary space for the frame pointers. 5399 */ 5400 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5401 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5402 (nframes * sizeof (uint64_t)); 5403 5404 if (!DTRACE_INSCRATCH(mstate, size)) { 5405 /* 5406 * Not enough room for our frame pointers -- need to indicate 5407 * that we ran out of scratch space. 5408 */ 5409 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5410 return; 5411 } 5412 5413 mstate->dtms_scratch_ptr += size; 5414 saved = mstate->dtms_scratch_ptr; 5415 5416 /* 5417 * Now get a stack with both program counters and frame pointers. 5418 */ 5419 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5420 dtrace_getufpstack(buf, fps, nframes + 1); 5421 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5422 5423 /* 5424 * If that faulted, we're cooked. 5425 */ 5426 if (*flags & CPU_DTRACE_FAULT) 5427 goto out; 5428 5429 /* 5430 * Now we want to walk up the stack, calling the USTACK helper. For 5431 * each iteration, we restore the scratch pointer. 5432 */ 5433 for (i = 0; i < nframes; i++) { 5434 mstate->dtms_scratch_ptr = saved; 5435 5436 if (offs >= strsize) 5437 break; 5438 5439 sym = (char *)(uintptr_t)dtrace_helper( 5440 DTRACE_HELPER_ACTION_USTACK, 5441 mstate, state, pcs[i], fps[i]); 5442 5443 /* 5444 * If we faulted while running the helper, we're going to 5445 * clear the fault and null out the corresponding string. 5446 */ 5447 if (*flags & CPU_DTRACE_FAULT) { 5448 *flags &= ~CPU_DTRACE_FAULT; 5449 str[offs++] = '\0'; 5450 continue; 5451 } 5452 5453 if (sym == NULL) { 5454 str[offs++] = '\0'; 5455 continue; 5456 } 5457 5458 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5459 5460 /* 5461 * Now copy in the string that the helper returned to us. 5462 */ 5463 for (j = 0; offs + j < strsize; j++) { 5464 if ((str[offs + j] = sym[j]) == '\0') 5465 break; 5466 } 5467 5468 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5469 5470 offs += j + 1; 5471 } 5472 5473 if (offs >= strsize) { 5474 /* 5475 * If we didn't have room for all of the strings, we don't 5476 * abort processing -- this needn't be a fatal error -- but we 5477 * still want to increment a counter (dts_stkstroverflows) to 5478 * allow this condition to be warned about. (If this is from 5479 * a jstack() action, it is easily tuned via jstackstrsize.) 5480 */ 5481 dtrace_error(&state->dts_stkstroverflows); 5482 } 5483 5484 while (offs < strsize) 5485 str[offs++] = '\0'; 5486 5487 out: 5488 mstate->dtms_scratch_ptr = old; 5489 } 5490 5491 /* 5492 * If you're looking for the epicenter of DTrace, you just found it. This 5493 * is the function called by the provider to fire a probe -- from which all 5494 * subsequent probe-context DTrace activity emanates. 5495 */ 5496 void 5497 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5498 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5499 { 5500 processorid_t cpuid; 5501 dtrace_icookie_t cookie; 5502 dtrace_probe_t *probe; 5503 dtrace_mstate_t mstate; 5504 dtrace_ecb_t *ecb; 5505 dtrace_action_t *act; 5506 intptr_t offs; 5507 size_t size; 5508 int vtime, onintr; 5509 volatile uint16_t *flags; 5510 hrtime_t now; 5511 5512 /* 5513 * Kick out immediately if this CPU is still being born (in which case 5514 * curthread will be set to -1) or the current thread can't allow 5515 * probes in its current context. 5516 */ 5517 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 5518 return; 5519 5520 cookie = dtrace_interrupt_disable(); 5521 probe = dtrace_probes[id - 1]; 5522 cpuid = CPU->cpu_id; 5523 onintr = CPU_ON_INTR(CPU); 5524 5525 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5526 probe->dtpr_predcache == curthread->t_predcache) { 5527 /* 5528 * We have hit in the predicate cache; we know that 5529 * this predicate would evaluate to be false. 5530 */ 5531 dtrace_interrupt_enable(cookie); 5532 return; 5533 } 5534 5535 if (panic_quiesce) { 5536 /* 5537 * We don't trace anything if we're panicking. 5538 */ 5539 dtrace_interrupt_enable(cookie); 5540 return; 5541 } 5542 5543 now = dtrace_gethrtime(); 5544 vtime = dtrace_vtime_references != 0; 5545 5546 if (vtime && curthread->t_dtrace_start) 5547 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5548 5549 mstate.dtms_difo = NULL; 5550 mstate.dtms_probe = probe; 5551 mstate.dtms_strtok = NULL; 5552 mstate.dtms_arg[0] = arg0; 5553 mstate.dtms_arg[1] = arg1; 5554 mstate.dtms_arg[2] = arg2; 5555 mstate.dtms_arg[3] = arg3; 5556 mstate.dtms_arg[4] = arg4; 5557 5558 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5559 5560 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5561 dtrace_predicate_t *pred = ecb->dte_predicate; 5562 dtrace_state_t *state = ecb->dte_state; 5563 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5564 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5565 dtrace_vstate_t *vstate = &state->dts_vstate; 5566 dtrace_provider_t *prov = probe->dtpr_provider; 5567 int committed = 0; 5568 caddr_t tomax; 5569 5570 /* 5571 * A little subtlety with the following (seemingly innocuous) 5572 * declaration of the automatic 'val': by looking at the 5573 * code, you might think that it could be declared in the 5574 * action processing loop, below. (That is, it's only used in 5575 * the action processing loop.) However, it must be declared 5576 * out of that scope because in the case of DIF expression 5577 * arguments to aggregating actions, one iteration of the 5578 * action loop will use the last iteration's value. 5579 */ 5580 #ifdef lint 5581 uint64_t val = 0; 5582 #else 5583 uint64_t val; 5584 #endif 5585 5586 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5587 *flags &= ~CPU_DTRACE_ERROR; 5588 5589 if (prov == dtrace_provider) { 5590 /* 5591 * If dtrace itself is the provider of this probe, 5592 * we're only going to continue processing the ECB if 5593 * arg0 (the dtrace_state_t) is equal to the ECB's 5594 * creating state. (This prevents disjoint consumers 5595 * from seeing one another's metaprobes.) 5596 */ 5597 if (arg0 != (uint64_t)(uintptr_t)state) 5598 continue; 5599 } 5600 5601 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5602 /* 5603 * We're not currently active. If our provider isn't 5604 * the dtrace pseudo provider, we're not interested. 5605 */ 5606 if (prov != dtrace_provider) 5607 continue; 5608 5609 /* 5610 * Now we must further check if we are in the BEGIN 5611 * probe. If we are, we will only continue processing 5612 * if we're still in WARMUP -- if one BEGIN enabling 5613 * has invoked the exit() action, we don't want to 5614 * evaluate subsequent BEGIN enablings. 5615 */ 5616 if (probe->dtpr_id == dtrace_probeid_begin && 5617 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5618 ASSERT(state->dts_activity == 5619 DTRACE_ACTIVITY_DRAINING); 5620 continue; 5621 } 5622 } 5623 5624 if (ecb->dte_cond) { 5625 /* 5626 * If the dte_cond bits indicate that this 5627 * consumer is only allowed to see user-mode firings 5628 * of this probe, call the provider's dtps_usermode() 5629 * entry point to check that the probe was fired 5630 * while in a user context. Skip this ECB if that's 5631 * not the case. 5632 */ 5633 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 5634 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 5635 probe->dtpr_id, probe->dtpr_arg) == 0) 5636 continue; 5637 5638 /* 5639 * This is more subtle than it looks. We have to be 5640 * absolutely certain that CRED() isn't going to 5641 * change out from under us so it's only legit to 5642 * examine that structure if we're in constrained 5643 * situations. Currently, the only times we'll this 5644 * check is if a non-super-user has enabled the 5645 * profile or syscall providers -- providers that 5646 * allow visibility of all processes. For the 5647 * profile case, the check above will ensure that 5648 * we're examining a user context. 5649 */ 5650 if (ecb->dte_cond & DTRACE_COND_OWNER) { 5651 cred_t *cr; 5652 cred_t *s_cr = 5653 ecb->dte_state->dts_cred.dcr_cred; 5654 proc_t *proc; 5655 5656 ASSERT(s_cr != NULL); 5657 5658 if ((cr = CRED()) == NULL || 5659 s_cr->cr_uid != cr->cr_uid || 5660 s_cr->cr_uid != cr->cr_ruid || 5661 s_cr->cr_uid != cr->cr_suid || 5662 s_cr->cr_gid != cr->cr_gid || 5663 s_cr->cr_gid != cr->cr_rgid || 5664 s_cr->cr_gid != cr->cr_sgid || 5665 (proc = ttoproc(curthread)) == NULL || 5666 (proc->p_flag & SNOCD)) 5667 continue; 5668 } 5669 5670 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 5671 cred_t *cr; 5672 cred_t *s_cr = 5673 ecb->dte_state->dts_cred.dcr_cred; 5674 5675 ASSERT(s_cr != NULL); 5676 5677 if ((cr = CRED()) == NULL || 5678 s_cr->cr_zone->zone_id != 5679 cr->cr_zone->zone_id) 5680 continue; 5681 } 5682 } 5683 5684 if (now - state->dts_alive > dtrace_deadman_timeout) { 5685 /* 5686 * We seem to be dead. Unless we (a) have kernel 5687 * destructive permissions (b) have expicitly enabled 5688 * destructive actions and (c) destructive actions have 5689 * not been disabled, we're going to transition into 5690 * the KILLED state, from which no further processing 5691 * on this state will be performed. 5692 */ 5693 if (!dtrace_priv_kernel_destructive(state) || 5694 !state->dts_cred.dcr_destructive || 5695 dtrace_destructive_disallow) { 5696 void *activity = &state->dts_activity; 5697 dtrace_activity_t current; 5698 5699 do { 5700 current = state->dts_activity; 5701 } while (dtrace_cas32(activity, current, 5702 DTRACE_ACTIVITY_KILLED) != current); 5703 5704 continue; 5705 } 5706 } 5707 5708 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 5709 ecb->dte_alignment, state, &mstate)) < 0) 5710 continue; 5711 5712 tomax = buf->dtb_tomax; 5713 ASSERT(tomax != NULL); 5714 5715 if (ecb->dte_size != 0) 5716 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 5717 5718 mstate.dtms_epid = ecb->dte_epid; 5719 mstate.dtms_present |= DTRACE_MSTATE_EPID; 5720 5721 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 5722 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 5723 else 5724 mstate.dtms_access = 0; 5725 5726 if (pred != NULL) { 5727 dtrace_difo_t *dp = pred->dtp_difo; 5728 int rval; 5729 5730 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 5731 5732 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 5733 dtrace_cacheid_t cid = probe->dtpr_predcache; 5734 5735 if (cid != DTRACE_CACHEIDNONE && !onintr) { 5736 /* 5737 * Update the predicate cache... 5738 */ 5739 ASSERT(cid == pred->dtp_cacheid); 5740 curthread->t_predcache = cid; 5741 } 5742 5743 continue; 5744 } 5745 } 5746 5747 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 5748 act != NULL; act = act->dta_next) { 5749 size_t valoffs; 5750 dtrace_difo_t *dp; 5751 dtrace_recdesc_t *rec = &act->dta_rec; 5752 5753 size = rec->dtrd_size; 5754 valoffs = offs + rec->dtrd_offset; 5755 5756 if (DTRACEACT_ISAGG(act->dta_kind)) { 5757 uint64_t v = 0xbad; 5758 dtrace_aggregation_t *agg; 5759 5760 agg = (dtrace_aggregation_t *)act; 5761 5762 if ((dp = act->dta_difo) != NULL) 5763 v = dtrace_dif_emulate(dp, 5764 &mstate, vstate, state); 5765 5766 if (*flags & CPU_DTRACE_ERROR) 5767 continue; 5768 5769 /* 5770 * Note that we always pass the expression 5771 * value from the previous iteration of the 5772 * action loop. This value will only be used 5773 * if there is an expression argument to the 5774 * aggregating action, denoted by the 5775 * dtag_hasarg field. 5776 */ 5777 dtrace_aggregate(agg, buf, 5778 offs, aggbuf, v, val); 5779 continue; 5780 } 5781 5782 switch (act->dta_kind) { 5783 case DTRACEACT_STOP: 5784 if (dtrace_priv_proc_destructive(state)) 5785 dtrace_action_stop(); 5786 continue; 5787 5788 case DTRACEACT_BREAKPOINT: 5789 if (dtrace_priv_kernel_destructive(state)) 5790 dtrace_action_breakpoint(ecb); 5791 continue; 5792 5793 case DTRACEACT_PANIC: 5794 if (dtrace_priv_kernel_destructive(state)) 5795 dtrace_action_panic(ecb); 5796 continue; 5797 5798 case DTRACEACT_STACK: 5799 if (!dtrace_priv_kernel(state)) 5800 continue; 5801 5802 dtrace_getpcstack((pc_t *)(tomax + valoffs), 5803 size / sizeof (pc_t), probe->dtpr_aframes, 5804 DTRACE_ANCHORED(probe) ? NULL : 5805 (uint32_t *)arg0); 5806 5807 continue; 5808 5809 case DTRACEACT_JSTACK: 5810 case DTRACEACT_USTACK: 5811 if (!dtrace_priv_proc(state)) 5812 continue; 5813 5814 /* 5815 * See comment in DIF_VAR_PID. 5816 */ 5817 if (DTRACE_ANCHORED(mstate.dtms_probe) && 5818 CPU_ON_INTR(CPU)) { 5819 int depth = DTRACE_USTACK_NFRAMES( 5820 rec->dtrd_arg) + 1; 5821 5822 dtrace_bzero((void *)(tomax + valoffs), 5823 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 5824 + depth * sizeof (uint64_t)); 5825 5826 continue; 5827 } 5828 5829 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 5830 curproc->p_dtrace_helpers != NULL) { 5831 /* 5832 * This is the slow path -- we have 5833 * allocated string space, and we're 5834 * getting the stack of a process that 5835 * has helpers. Call into a separate 5836 * routine to perform this processing. 5837 */ 5838 dtrace_action_ustack(&mstate, state, 5839 (uint64_t *)(tomax + valoffs), 5840 rec->dtrd_arg); 5841 continue; 5842 } 5843 5844 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5845 dtrace_getupcstack((uint64_t *) 5846 (tomax + valoffs), 5847 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 5848 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5849 continue; 5850 5851 default: 5852 break; 5853 } 5854 5855 dp = act->dta_difo; 5856 ASSERT(dp != NULL); 5857 5858 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 5859 5860 if (*flags & CPU_DTRACE_ERROR) 5861 continue; 5862 5863 switch (act->dta_kind) { 5864 case DTRACEACT_SPECULATE: 5865 ASSERT(buf == &state->dts_buffer[cpuid]); 5866 buf = dtrace_speculation_buffer(state, 5867 cpuid, val); 5868 5869 if (buf == NULL) { 5870 *flags |= CPU_DTRACE_DROP; 5871 continue; 5872 } 5873 5874 offs = dtrace_buffer_reserve(buf, 5875 ecb->dte_needed, ecb->dte_alignment, 5876 state, NULL); 5877 5878 if (offs < 0) { 5879 *flags |= CPU_DTRACE_DROP; 5880 continue; 5881 } 5882 5883 tomax = buf->dtb_tomax; 5884 ASSERT(tomax != NULL); 5885 5886 if (ecb->dte_size != 0) 5887 DTRACE_STORE(uint32_t, tomax, offs, 5888 ecb->dte_epid); 5889 continue; 5890 5891 case DTRACEACT_CHILL: 5892 if (dtrace_priv_kernel_destructive(state)) 5893 dtrace_action_chill(&mstate, val); 5894 continue; 5895 5896 case DTRACEACT_RAISE: 5897 if (dtrace_priv_proc_destructive(state)) 5898 dtrace_action_raise(val); 5899 continue; 5900 5901 case DTRACEACT_COMMIT: 5902 ASSERT(!committed); 5903 5904 /* 5905 * We need to commit our buffer state. 5906 */ 5907 if (ecb->dte_size) 5908 buf->dtb_offset = offs + ecb->dte_size; 5909 buf = &state->dts_buffer[cpuid]; 5910 dtrace_speculation_commit(state, cpuid, val); 5911 committed = 1; 5912 continue; 5913 5914 case DTRACEACT_DISCARD: 5915 dtrace_speculation_discard(state, cpuid, val); 5916 continue; 5917 5918 case DTRACEACT_DIFEXPR: 5919 case DTRACEACT_LIBACT: 5920 case DTRACEACT_PRINTF: 5921 case DTRACEACT_PRINTA: 5922 case DTRACEACT_SYSTEM: 5923 case DTRACEACT_FREOPEN: 5924 break; 5925 5926 case DTRACEACT_SYM: 5927 case DTRACEACT_MOD: 5928 if (!dtrace_priv_kernel(state)) 5929 continue; 5930 break; 5931 5932 case DTRACEACT_USYM: 5933 case DTRACEACT_UMOD: 5934 case DTRACEACT_UADDR: { 5935 struct pid *pid = curthread->t_procp->p_pidp; 5936 5937 if (!dtrace_priv_proc(state)) 5938 continue; 5939 5940 DTRACE_STORE(uint64_t, tomax, 5941 valoffs, (uint64_t)pid->pid_id); 5942 DTRACE_STORE(uint64_t, tomax, 5943 valoffs + sizeof (uint64_t), val); 5944 5945 continue; 5946 } 5947 5948 case DTRACEACT_EXIT: { 5949 /* 5950 * For the exit action, we are going to attempt 5951 * to atomically set our activity to be 5952 * draining. If this fails (either because 5953 * another CPU has beat us to the exit action, 5954 * or because our current activity is something 5955 * other than ACTIVE or WARMUP), we will 5956 * continue. This assures that the exit action 5957 * can be successfully recorded at most once 5958 * when we're in the ACTIVE state. If we're 5959 * encountering the exit() action while in 5960 * COOLDOWN, however, we want to honor the new 5961 * status code. (We know that we're the only 5962 * thread in COOLDOWN, so there is no race.) 5963 */ 5964 void *activity = &state->dts_activity; 5965 dtrace_activity_t current = state->dts_activity; 5966 5967 if (current == DTRACE_ACTIVITY_COOLDOWN) 5968 break; 5969 5970 if (current != DTRACE_ACTIVITY_WARMUP) 5971 current = DTRACE_ACTIVITY_ACTIVE; 5972 5973 if (dtrace_cas32(activity, current, 5974 DTRACE_ACTIVITY_DRAINING) != current) { 5975 *flags |= CPU_DTRACE_DROP; 5976 continue; 5977 } 5978 5979 break; 5980 } 5981 5982 default: 5983 ASSERT(0); 5984 } 5985 5986 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 5987 uintptr_t end = valoffs + size; 5988 5989 if (!dtrace_vcanload((void *)(uintptr_t)val, 5990 &dp->dtdo_rtype, &mstate, vstate)) 5991 continue; 5992 5993 /* 5994 * If this is a string, we're going to only 5995 * load until we find the zero byte -- after 5996 * which we'll store zero bytes. 5997 */ 5998 if (dp->dtdo_rtype.dtdt_kind == 5999 DIF_TYPE_STRING) { 6000 char c = '\0' + 1; 6001 int intuple = act->dta_intuple; 6002 size_t s; 6003 6004 for (s = 0; s < size; s++) { 6005 if (c != '\0') 6006 c = dtrace_load8(val++); 6007 6008 DTRACE_STORE(uint8_t, tomax, 6009 valoffs++, c); 6010 6011 if (c == '\0' && intuple) 6012 break; 6013 } 6014 6015 continue; 6016 } 6017 6018 while (valoffs < end) { 6019 DTRACE_STORE(uint8_t, tomax, valoffs++, 6020 dtrace_load8(val++)); 6021 } 6022 6023 continue; 6024 } 6025 6026 switch (size) { 6027 case 0: 6028 break; 6029 6030 case sizeof (uint8_t): 6031 DTRACE_STORE(uint8_t, tomax, valoffs, val); 6032 break; 6033 case sizeof (uint16_t): 6034 DTRACE_STORE(uint16_t, tomax, valoffs, val); 6035 break; 6036 case sizeof (uint32_t): 6037 DTRACE_STORE(uint32_t, tomax, valoffs, val); 6038 break; 6039 case sizeof (uint64_t): 6040 DTRACE_STORE(uint64_t, tomax, valoffs, val); 6041 break; 6042 default: 6043 /* 6044 * Any other size should have been returned by 6045 * reference, not by value. 6046 */ 6047 ASSERT(0); 6048 break; 6049 } 6050 } 6051 6052 if (*flags & CPU_DTRACE_DROP) 6053 continue; 6054 6055 if (*flags & CPU_DTRACE_FAULT) { 6056 int ndx; 6057 dtrace_action_t *err; 6058 6059 buf->dtb_errors++; 6060 6061 if (probe->dtpr_id == dtrace_probeid_error) { 6062 /* 6063 * There's nothing we can do -- we had an 6064 * error on the error probe. We bump an 6065 * error counter to at least indicate that 6066 * this condition happened. 6067 */ 6068 dtrace_error(&state->dts_dblerrors); 6069 continue; 6070 } 6071 6072 if (vtime) { 6073 /* 6074 * Before recursing on dtrace_probe(), we 6075 * need to explicitly clear out our start 6076 * time to prevent it from being accumulated 6077 * into t_dtrace_vtime. 6078 */ 6079 curthread->t_dtrace_start = 0; 6080 } 6081 6082 /* 6083 * Iterate over the actions to figure out which action 6084 * we were processing when we experienced the error. 6085 * Note that act points _past_ the faulting action; if 6086 * act is ecb->dte_action, the fault was in the 6087 * predicate, if it's ecb->dte_action->dta_next it's 6088 * in action #1, and so on. 6089 */ 6090 for (err = ecb->dte_action, ndx = 0; 6091 err != act; err = err->dta_next, ndx++) 6092 continue; 6093 6094 dtrace_probe_error(state, ecb->dte_epid, ndx, 6095 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 6096 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 6097 cpu_core[cpuid].cpuc_dtrace_illval); 6098 6099 continue; 6100 } 6101 6102 if (!committed) 6103 buf->dtb_offset = offs + ecb->dte_size; 6104 } 6105 6106 if (vtime) 6107 curthread->t_dtrace_start = dtrace_gethrtime(); 6108 6109 dtrace_interrupt_enable(cookie); 6110 } 6111 6112 /* 6113 * DTrace Probe Hashing Functions 6114 * 6115 * The functions in this section (and indeed, the functions in remaining 6116 * sections) are not _called_ from probe context. (Any exceptions to this are 6117 * marked with a "Note:".) Rather, they are called from elsewhere in the 6118 * DTrace framework to look-up probes in, add probes to and remove probes from 6119 * the DTrace probe hashes. (Each probe is hashed by each element of the 6120 * probe tuple -- allowing for fast lookups, regardless of what was 6121 * specified.) 6122 */ 6123 static uint_t 6124 dtrace_hash_str(char *p) 6125 { 6126 unsigned int g; 6127 uint_t hval = 0; 6128 6129 while (*p) { 6130 hval = (hval << 4) + *p++; 6131 if ((g = (hval & 0xf0000000)) != 0) 6132 hval ^= g >> 24; 6133 hval &= ~g; 6134 } 6135 return (hval); 6136 } 6137 6138 static dtrace_hash_t * 6139 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 6140 { 6141 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 6142 6143 hash->dth_stroffs = stroffs; 6144 hash->dth_nextoffs = nextoffs; 6145 hash->dth_prevoffs = prevoffs; 6146 6147 hash->dth_size = 1; 6148 hash->dth_mask = hash->dth_size - 1; 6149 6150 hash->dth_tab = kmem_zalloc(hash->dth_size * 6151 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 6152 6153 return (hash); 6154 } 6155 6156 static void 6157 dtrace_hash_destroy(dtrace_hash_t *hash) 6158 { 6159 #ifdef DEBUG 6160 int i; 6161 6162 for (i = 0; i < hash->dth_size; i++) 6163 ASSERT(hash->dth_tab[i] == NULL); 6164 #endif 6165 6166 kmem_free(hash->dth_tab, 6167 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6168 kmem_free(hash, sizeof (dtrace_hash_t)); 6169 } 6170 6171 static void 6172 dtrace_hash_resize(dtrace_hash_t *hash) 6173 { 6174 int size = hash->dth_size, i, ndx; 6175 int new_size = hash->dth_size << 1; 6176 int new_mask = new_size - 1; 6177 dtrace_hashbucket_t **new_tab, *bucket, *next; 6178 6179 ASSERT((new_size & new_mask) == 0); 6180 6181 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6182 6183 for (i = 0; i < size; i++) { 6184 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6185 dtrace_probe_t *probe = bucket->dthb_chain; 6186 6187 ASSERT(probe != NULL); 6188 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6189 6190 next = bucket->dthb_next; 6191 bucket->dthb_next = new_tab[ndx]; 6192 new_tab[ndx] = bucket; 6193 } 6194 } 6195 6196 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6197 hash->dth_tab = new_tab; 6198 hash->dth_size = new_size; 6199 hash->dth_mask = new_mask; 6200 } 6201 6202 static void 6203 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6204 { 6205 int hashval = DTRACE_HASHSTR(hash, new); 6206 int ndx = hashval & hash->dth_mask; 6207 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6208 dtrace_probe_t **nextp, **prevp; 6209 6210 for (; bucket != NULL; bucket = bucket->dthb_next) { 6211 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6212 goto add; 6213 } 6214 6215 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6216 dtrace_hash_resize(hash); 6217 dtrace_hash_add(hash, new); 6218 return; 6219 } 6220 6221 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6222 bucket->dthb_next = hash->dth_tab[ndx]; 6223 hash->dth_tab[ndx] = bucket; 6224 hash->dth_nbuckets++; 6225 6226 add: 6227 nextp = DTRACE_HASHNEXT(hash, new); 6228 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6229 *nextp = bucket->dthb_chain; 6230 6231 if (bucket->dthb_chain != NULL) { 6232 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6233 ASSERT(*prevp == NULL); 6234 *prevp = new; 6235 } 6236 6237 bucket->dthb_chain = new; 6238 bucket->dthb_len++; 6239 } 6240 6241 static dtrace_probe_t * 6242 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6243 { 6244 int hashval = DTRACE_HASHSTR(hash, template); 6245 int ndx = hashval & hash->dth_mask; 6246 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6247 6248 for (; bucket != NULL; bucket = bucket->dthb_next) { 6249 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6250 return (bucket->dthb_chain); 6251 } 6252 6253 return (NULL); 6254 } 6255 6256 static int 6257 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6258 { 6259 int hashval = DTRACE_HASHSTR(hash, template); 6260 int ndx = hashval & hash->dth_mask; 6261 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6262 6263 for (; bucket != NULL; bucket = bucket->dthb_next) { 6264 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6265 return (bucket->dthb_len); 6266 } 6267 6268 return (NULL); 6269 } 6270 6271 static void 6272 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6273 { 6274 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6275 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6276 6277 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6278 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6279 6280 /* 6281 * Find the bucket that we're removing this probe from. 6282 */ 6283 for (; bucket != NULL; bucket = bucket->dthb_next) { 6284 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6285 break; 6286 } 6287 6288 ASSERT(bucket != NULL); 6289 6290 if (*prevp == NULL) { 6291 if (*nextp == NULL) { 6292 /* 6293 * The removed probe was the only probe on this 6294 * bucket; we need to remove the bucket. 6295 */ 6296 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6297 6298 ASSERT(bucket->dthb_chain == probe); 6299 ASSERT(b != NULL); 6300 6301 if (b == bucket) { 6302 hash->dth_tab[ndx] = bucket->dthb_next; 6303 } else { 6304 while (b->dthb_next != bucket) 6305 b = b->dthb_next; 6306 b->dthb_next = bucket->dthb_next; 6307 } 6308 6309 ASSERT(hash->dth_nbuckets > 0); 6310 hash->dth_nbuckets--; 6311 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6312 return; 6313 } 6314 6315 bucket->dthb_chain = *nextp; 6316 } else { 6317 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6318 } 6319 6320 if (*nextp != NULL) 6321 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6322 } 6323 6324 /* 6325 * DTrace Utility Functions 6326 * 6327 * These are random utility functions that are _not_ called from probe context. 6328 */ 6329 static int 6330 dtrace_badattr(const dtrace_attribute_t *a) 6331 { 6332 return (a->dtat_name > DTRACE_STABILITY_MAX || 6333 a->dtat_data > DTRACE_STABILITY_MAX || 6334 a->dtat_class > DTRACE_CLASS_MAX); 6335 } 6336 6337 /* 6338 * Return a duplicate copy of a string. If the specified string is NULL, 6339 * this function returns a zero-length string. 6340 */ 6341 static char * 6342 dtrace_strdup(const char *str) 6343 { 6344 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6345 6346 if (str != NULL) 6347 (void) strcpy(new, str); 6348 6349 return (new); 6350 } 6351 6352 #define DTRACE_ISALPHA(c) \ 6353 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6354 6355 static int 6356 dtrace_badname(const char *s) 6357 { 6358 char c; 6359 6360 if (s == NULL || (c = *s++) == '\0') 6361 return (0); 6362 6363 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6364 return (1); 6365 6366 while ((c = *s++) != '\0') { 6367 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6368 c != '-' && c != '_' && c != '.' && c != '`') 6369 return (1); 6370 } 6371 6372 return (0); 6373 } 6374 6375 static void 6376 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6377 { 6378 uint32_t priv; 6379 6380 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6381 /* 6382 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6383 */ 6384 priv = DTRACE_PRIV_ALL; 6385 } else { 6386 *uidp = crgetuid(cr); 6387 *zoneidp = crgetzoneid(cr); 6388 6389 priv = 0; 6390 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6391 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6392 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6393 priv |= DTRACE_PRIV_USER; 6394 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6395 priv |= DTRACE_PRIV_PROC; 6396 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6397 priv |= DTRACE_PRIV_OWNER; 6398 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6399 priv |= DTRACE_PRIV_ZONEOWNER; 6400 } 6401 6402 *privp = priv; 6403 } 6404 6405 #ifdef DTRACE_ERRDEBUG 6406 static void 6407 dtrace_errdebug(const char *str) 6408 { 6409 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6410 int occupied = 0; 6411 6412 mutex_enter(&dtrace_errlock); 6413 dtrace_errlast = str; 6414 dtrace_errthread = curthread; 6415 6416 while (occupied++ < DTRACE_ERRHASHSZ) { 6417 if (dtrace_errhash[hval].dter_msg == str) { 6418 dtrace_errhash[hval].dter_count++; 6419 goto out; 6420 } 6421 6422 if (dtrace_errhash[hval].dter_msg != NULL) { 6423 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6424 continue; 6425 } 6426 6427 dtrace_errhash[hval].dter_msg = str; 6428 dtrace_errhash[hval].dter_count = 1; 6429 goto out; 6430 } 6431 6432 panic("dtrace: undersized error hash"); 6433 out: 6434 mutex_exit(&dtrace_errlock); 6435 } 6436 #endif 6437 6438 /* 6439 * DTrace Matching Functions 6440 * 6441 * These functions are used to match groups of probes, given some elements of 6442 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6443 */ 6444 static int 6445 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6446 zoneid_t zoneid) 6447 { 6448 if (priv != DTRACE_PRIV_ALL) { 6449 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6450 uint32_t match = priv & ppriv; 6451 6452 /* 6453 * No PRIV_DTRACE_* privileges... 6454 */ 6455 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6456 DTRACE_PRIV_KERNEL)) == 0) 6457 return (0); 6458 6459 /* 6460 * No matching bits, but there were bits to match... 6461 */ 6462 if (match == 0 && ppriv != 0) 6463 return (0); 6464 6465 /* 6466 * Need to have permissions to the process, but don't... 6467 */ 6468 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6469 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6470 return (0); 6471 } 6472 6473 /* 6474 * Need to be in the same zone unless we possess the 6475 * privilege to examine all zones. 6476 */ 6477 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6478 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6479 return (0); 6480 } 6481 } 6482 6483 return (1); 6484 } 6485 6486 /* 6487 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6488 * consists of input pattern strings and an ops-vector to evaluate them. 6489 * This function returns >0 for match, 0 for no match, and <0 for error. 6490 */ 6491 static int 6492 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6493 uint32_t priv, uid_t uid, zoneid_t zoneid) 6494 { 6495 dtrace_provider_t *pvp = prp->dtpr_provider; 6496 int rv; 6497 6498 if (pvp->dtpv_defunct) 6499 return (0); 6500 6501 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6502 return (rv); 6503 6504 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6505 return (rv); 6506 6507 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6508 return (rv); 6509 6510 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6511 return (rv); 6512 6513 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6514 return (0); 6515 6516 return (rv); 6517 } 6518 6519 /* 6520 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6521 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 6522 * libc's version, the kernel version only applies to 8-bit ASCII strings. 6523 * In addition, all of the recursion cases except for '*' matching have been 6524 * unwound. For '*', we still implement recursive evaluation, but a depth 6525 * counter is maintained and matching is aborted if we recurse too deep. 6526 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 6527 */ 6528 static int 6529 dtrace_match_glob(const char *s, const char *p, int depth) 6530 { 6531 const char *olds; 6532 char s1, c; 6533 int gs; 6534 6535 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 6536 return (-1); 6537 6538 if (s == NULL) 6539 s = ""; /* treat NULL as empty string */ 6540 6541 top: 6542 olds = s; 6543 s1 = *s++; 6544 6545 if (p == NULL) 6546 return (0); 6547 6548 if ((c = *p++) == '\0') 6549 return (s1 == '\0'); 6550 6551 switch (c) { 6552 case '[': { 6553 int ok = 0, notflag = 0; 6554 char lc = '\0'; 6555 6556 if (s1 == '\0') 6557 return (0); 6558 6559 if (*p == '!') { 6560 notflag = 1; 6561 p++; 6562 } 6563 6564 if ((c = *p++) == '\0') 6565 return (0); 6566 6567 do { 6568 if (c == '-' && lc != '\0' && *p != ']') { 6569 if ((c = *p++) == '\0') 6570 return (0); 6571 if (c == '\\' && (c = *p++) == '\0') 6572 return (0); 6573 6574 if (notflag) { 6575 if (s1 < lc || s1 > c) 6576 ok++; 6577 else 6578 return (0); 6579 } else if (lc <= s1 && s1 <= c) 6580 ok++; 6581 6582 } else if (c == '\\' && (c = *p++) == '\0') 6583 return (0); 6584 6585 lc = c; /* save left-hand 'c' for next iteration */ 6586 6587 if (notflag) { 6588 if (s1 != c) 6589 ok++; 6590 else 6591 return (0); 6592 } else if (s1 == c) 6593 ok++; 6594 6595 if ((c = *p++) == '\0') 6596 return (0); 6597 6598 } while (c != ']'); 6599 6600 if (ok) 6601 goto top; 6602 6603 return (0); 6604 } 6605 6606 case '\\': 6607 if ((c = *p++) == '\0') 6608 return (0); 6609 /*FALLTHRU*/ 6610 6611 default: 6612 if (c != s1) 6613 return (0); 6614 /*FALLTHRU*/ 6615 6616 case '?': 6617 if (s1 != '\0') 6618 goto top; 6619 return (0); 6620 6621 case '*': 6622 while (*p == '*') 6623 p++; /* consecutive *'s are identical to a single one */ 6624 6625 if (*p == '\0') 6626 return (1); 6627 6628 for (s = olds; *s != '\0'; s++) { 6629 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 6630 return (gs); 6631 } 6632 6633 return (0); 6634 } 6635 } 6636 6637 /*ARGSUSED*/ 6638 static int 6639 dtrace_match_string(const char *s, const char *p, int depth) 6640 { 6641 return (s != NULL && strcmp(s, p) == 0); 6642 } 6643 6644 /*ARGSUSED*/ 6645 static int 6646 dtrace_match_nul(const char *s, const char *p, int depth) 6647 { 6648 return (1); /* always match the empty pattern */ 6649 } 6650 6651 /*ARGSUSED*/ 6652 static int 6653 dtrace_match_nonzero(const char *s, const char *p, int depth) 6654 { 6655 return (s != NULL && s[0] != '\0'); 6656 } 6657 6658 static int 6659 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 6660 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 6661 { 6662 dtrace_probe_t template, *probe; 6663 dtrace_hash_t *hash = NULL; 6664 int len, rc, best = INT_MAX, nmatched = 0; 6665 dtrace_id_t i; 6666 6667 ASSERT(MUTEX_HELD(&dtrace_lock)); 6668 6669 /* 6670 * If the probe ID is specified in the key, just lookup by ID and 6671 * invoke the match callback once if a matching probe is found. 6672 */ 6673 if (pkp->dtpk_id != DTRACE_IDNONE) { 6674 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 6675 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 6676 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 6677 return (DTRACE_MATCH_FAIL); 6678 nmatched++; 6679 } 6680 return (nmatched); 6681 } 6682 6683 template.dtpr_mod = (char *)pkp->dtpk_mod; 6684 template.dtpr_func = (char *)pkp->dtpk_func; 6685 template.dtpr_name = (char *)pkp->dtpk_name; 6686 6687 /* 6688 * We want to find the most distinct of the module name, function 6689 * name, and name. So for each one that is not a glob pattern or 6690 * empty string, we perform a lookup in the corresponding hash and 6691 * use the hash table with the fewest collisions to do our search. 6692 */ 6693 if (pkp->dtpk_mmatch == &dtrace_match_string && 6694 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 6695 best = len; 6696 hash = dtrace_bymod; 6697 } 6698 6699 if (pkp->dtpk_fmatch == &dtrace_match_string && 6700 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 6701 best = len; 6702 hash = dtrace_byfunc; 6703 } 6704 6705 if (pkp->dtpk_nmatch == &dtrace_match_string && 6706 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 6707 best = len; 6708 hash = dtrace_byname; 6709 } 6710 6711 /* 6712 * If we did not select a hash table, iterate over every probe and 6713 * invoke our callback for each one that matches our input probe key. 6714 */ 6715 if (hash == NULL) { 6716 for (i = 0; i < dtrace_nprobes; i++) { 6717 if ((probe = dtrace_probes[i]) == NULL || 6718 dtrace_match_probe(probe, pkp, priv, uid, 6719 zoneid) <= 0) 6720 continue; 6721 6722 nmatched++; 6723 6724 if ((rc = (*matched)(probe, arg)) != 6725 DTRACE_MATCH_NEXT) { 6726 if (rc == DTRACE_MATCH_FAIL) 6727 return (DTRACE_MATCH_FAIL); 6728 break; 6729 } 6730 } 6731 6732 return (nmatched); 6733 } 6734 6735 /* 6736 * If we selected a hash table, iterate over each probe of the same key 6737 * name and invoke the callback for every probe that matches the other 6738 * attributes of our input probe key. 6739 */ 6740 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 6741 probe = *(DTRACE_HASHNEXT(hash, probe))) { 6742 6743 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 6744 continue; 6745 6746 nmatched++; 6747 6748 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 6749 if (rc == DTRACE_MATCH_FAIL) 6750 return (DTRACE_MATCH_FAIL); 6751 break; 6752 } 6753 } 6754 6755 return (nmatched); 6756 } 6757 6758 /* 6759 * Return the function pointer dtrace_probecmp() should use to compare the 6760 * specified pattern with a string. For NULL or empty patterns, we select 6761 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 6762 * For non-empty non-glob strings, we use dtrace_match_string(). 6763 */ 6764 static dtrace_probekey_f * 6765 dtrace_probekey_func(const char *p) 6766 { 6767 char c; 6768 6769 if (p == NULL || *p == '\0') 6770 return (&dtrace_match_nul); 6771 6772 while ((c = *p++) != '\0') { 6773 if (c == '[' || c == '?' || c == '*' || c == '\\') 6774 return (&dtrace_match_glob); 6775 } 6776 6777 return (&dtrace_match_string); 6778 } 6779 6780 /* 6781 * Build a probe comparison key for use with dtrace_match_probe() from the 6782 * given probe description. By convention, a null key only matches anchored 6783 * probes: if each field is the empty string, reset dtpk_fmatch to 6784 * dtrace_match_nonzero(). 6785 */ 6786 static void 6787 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 6788 { 6789 pkp->dtpk_prov = pdp->dtpd_provider; 6790 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 6791 6792 pkp->dtpk_mod = pdp->dtpd_mod; 6793 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 6794 6795 pkp->dtpk_func = pdp->dtpd_func; 6796 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 6797 6798 pkp->dtpk_name = pdp->dtpd_name; 6799 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 6800 6801 pkp->dtpk_id = pdp->dtpd_id; 6802 6803 if (pkp->dtpk_id == DTRACE_IDNONE && 6804 pkp->dtpk_pmatch == &dtrace_match_nul && 6805 pkp->dtpk_mmatch == &dtrace_match_nul && 6806 pkp->dtpk_fmatch == &dtrace_match_nul && 6807 pkp->dtpk_nmatch == &dtrace_match_nul) 6808 pkp->dtpk_fmatch = &dtrace_match_nonzero; 6809 } 6810 6811 /* 6812 * DTrace Provider-to-Framework API Functions 6813 * 6814 * These functions implement much of the Provider-to-Framework API, as 6815 * described in <sys/dtrace.h>. The parts of the API not in this section are 6816 * the functions in the API for probe management (found below), and 6817 * dtrace_probe() itself (found above). 6818 */ 6819 6820 /* 6821 * Register the calling provider with the DTrace framework. This should 6822 * generally be called by DTrace providers in their attach(9E) entry point. 6823 */ 6824 int 6825 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 6826 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 6827 { 6828 dtrace_provider_t *provider; 6829 6830 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 6831 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6832 "arguments", name ? name : "<NULL>"); 6833 return (EINVAL); 6834 } 6835 6836 if (name[0] == '\0' || dtrace_badname(name)) { 6837 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6838 "provider name", name); 6839 return (EINVAL); 6840 } 6841 6842 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 6843 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 6844 pops->dtps_destroy == NULL || 6845 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 6846 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6847 "provider ops", name); 6848 return (EINVAL); 6849 } 6850 6851 if (dtrace_badattr(&pap->dtpa_provider) || 6852 dtrace_badattr(&pap->dtpa_mod) || 6853 dtrace_badattr(&pap->dtpa_func) || 6854 dtrace_badattr(&pap->dtpa_name) || 6855 dtrace_badattr(&pap->dtpa_args)) { 6856 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6857 "provider attributes", name); 6858 return (EINVAL); 6859 } 6860 6861 if (priv & ~DTRACE_PRIV_ALL) { 6862 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6863 "privilege attributes", name); 6864 return (EINVAL); 6865 } 6866 6867 if ((priv & DTRACE_PRIV_KERNEL) && 6868 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 6869 pops->dtps_usermode == NULL) { 6870 cmn_err(CE_WARN, "failed to register provider '%s': need " 6871 "dtps_usermode() op for given privilege attributes", name); 6872 return (EINVAL); 6873 } 6874 6875 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 6876 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 6877 (void) strcpy(provider->dtpv_name, name); 6878 6879 provider->dtpv_attr = *pap; 6880 provider->dtpv_priv.dtpp_flags = priv; 6881 if (cr != NULL) { 6882 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 6883 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 6884 } 6885 provider->dtpv_pops = *pops; 6886 6887 if (pops->dtps_provide == NULL) { 6888 ASSERT(pops->dtps_provide_module != NULL); 6889 provider->dtpv_pops.dtps_provide = 6890 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 6891 } 6892 6893 if (pops->dtps_provide_module == NULL) { 6894 ASSERT(pops->dtps_provide != NULL); 6895 provider->dtpv_pops.dtps_provide_module = 6896 (void (*)(void *, struct modctl *))dtrace_nullop; 6897 } 6898 6899 if (pops->dtps_suspend == NULL) { 6900 ASSERT(pops->dtps_resume == NULL); 6901 provider->dtpv_pops.dtps_suspend = 6902 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6903 provider->dtpv_pops.dtps_resume = 6904 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6905 } 6906 6907 provider->dtpv_arg = arg; 6908 *idp = (dtrace_provider_id_t)provider; 6909 6910 if (pops == &dtrace_provider_ops) { 6911 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6912 ASSERT(MUTEX_HELD(&dtrace_lock)); 6913 ASSERT(dtrace_anon.dta_enabling == NULL); 6914 6915 /* 6916 * We make sure that the DTrace provider is at the head of 6917 * the provider chain. 6918 */ 6919 provider->dtpv_next = dtrace_provider; 6920 dtrace_provider = provider; 6921 return (0); 6922 } 6923 6924 mutex_enter(&dtrace_provider_lock); 6925 mutex_enter(&dtrace_lock); 6926 6927 /* 6928 * If there is at least one provider registered, we'll add this 6929 * provider after the first provider. 6930 */ 6931 if (dtrace_provider != NULL) { 6932 provider->dtpv_next = dtrace_provider->dtpv_next; 6933 dtrace_provider->dtpv_next = provider; 6934 } else { 6935 dtrace_provider = provider; 6936 } 6937 6938 if (dtrace_retained != NULL) { 6939 dtrace_enabling_provide(provider); 6940 6941 /* 6942 * Now we need to call dtrace_enabling_matchall() -- which 6943 * will acquire cpu_lock and dtrace_lock. We therefore need 6944 * to drop all of our locks before calling into it... 6945 */ 6946 mutex_exit(&dtrace_lock); 6947 mutex_exit(&dtrace_provider_lock); 6948 dtrace_enabling_matchall(); 6949 6950 return (0); 6951 } 6952 6953 mutex_exit(&dtrace_lock); 6954 mutex_exit(&dtrace_provider_lock); 6955 6956 return (0); 6957 } 6958 6959 /* 6960 * Unregister the specified provider from the DTrace framework. This should 6961 * generally be called by DTrace providers in their detach(9E) entry point. 6962 */ 6963 int 6964 dtrace_unregister(dtrace_provider_id_t id) 6965 { 6966 dtrace_provider_t *old = (dtrace_provider_t *)id; 6967 dtrace_provider_t *prev = NULL; 6968 int i, self = 0; 6969 dtrace_probe_t *probe, *first = NULL; 6970 6971 if (old->dtpv_pops.dtps_enable == 6972 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 6973 /* 6974 * If DTrace itself is the provider, we're called with locks 6975 * already held. 6976 */ 6977 ASSERT(old == dtrace_provider); 6978 ASSERT(dtrace_devi != NULL); 6979 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6980 ASSERT(MUTEX_HELD(&dtrace_lock)); 6981 self = 1; 6982 6983 if (dtrace_provider->dtpv_next != NULL) { 6984 /* 6985 * There's another provider here; return failure. 6986 */ 6987 return (EBUSY); 6988 } 6989 } else { 6990 mutex_enter(&dtrace_provider_lock); 6991 mutex_enter(&mod_lock); 6992 mutex_enter(&dtrace_lock); 6993 } 6994 6995 /* 6996 * If anyone has /dev/dtrace open, or if there are anonymous enabled 6997 * probes, we refuse to let providers slither away, unless this 6998 * provider has already been explicitly invalidated. 6999 */ 7000 if (!old->dtpv_defunct && 7001 (dtrace_opens || (dtrace_anon.dta_state != NULL && 7002 dtrace_anon.dta_state->dts_necbs > 0))) { 7003 if (!self) { 7004 mutex_exit(&dtrace_lock); 7005 mutex_exit(&mod_lock); 7006 mutex_exit(&dtrace_provider_lock); 7007 } 7008 return (EBUSY); 7009 } 7010 7011 /* 7012 * Attempt to destroy the probes associated with this provider. 7013 */ 7014 for (i = 0; i < dtrace_nprobes; i++) { 7015 if ((probe = dtrace_probes[i]) == NULL) 7016 continue; 7017 7018 if (probe->dtpr_provider != old) 7019 continue; 7020 7021 if (probe->dtpr_ecb == NULL) 7022 continue; 7023 7024 /* 7025 * We have at least one ECB; we can't remove this provider. 7026 */ 7027 if (!self) { 7028 mutex_exit(&dtrace_lock); 7029 mutex_exit(&mod_lock); 7030 mutex_exit(&dtrace_provider_lock); 7031 } 7032 return (EBUSY); 7033 } 7034 7035 /* 7036 * All of the probes for this provider are disabled; we can safely 7037 * remove all of them from their hash chains and from the probe array. 7038 */ 7039 for (i = 0; i < dtrace_nprobes; i++) { 7040 if ((probe = dtrace_probes[i]) == NULL) 7041 continue; 7042 7043 if (probe->dtpr_provider != old) 7044 continue; 7045 7046 dtrace_probes[i] = NULL; 7047 7048 dtrace_hash_remove(dtrace_bymod, probe); 7049 dtrace_hash_remove(dtrace_byfunc, probe); 7050 dtrace_hash_remove(dtrace_byname, probe); 7051 7052 if (first == NULL) { 7053 first = probe; 7054 probe->dtpr_nextmod = NULL; 7055 } else { 7056 probe->dtpr_nextmod = first; 7057 first = probe; 7058 } 7059 } 7060 7061 /* 7062 * The provider's probes have been removed from the hash chains and 7063 * from the probe array. Now issue a dtrace_sync() to be sure that 7064 * everyone has cleared out from any probe array processing. 7065 */ 7066 dtrace_sync(); 7067 7068 for (probe = first; probe != NULL; probe = first) { 7069 first = probe->dtpr_nextmod; 7070 7071 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 7072 probe->dtpr_arg); 7073 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7074 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7075 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7076 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 7077 kmem_free(probe, sizeof (dtrace_probe_t)); 7078 } 7079 7080 if ((prev = dtrace_provider) == old) { 7081 ASSERT(self || dtrace_devi == NULL); 7082 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 7083 dtrace_provider = old->dtpv_next; 7084 } else { 7085 while (prev != NULL && prev->dtpv_next != old) 7086 prev = prev->dtpv_next; 7087 7088 if (prev == NULL) { 7089 panic("attempt to unregister non-existent " 7090 "dtrace provider %p\n", (void *)id); 7091 } 7092 7093 prev->dtpv_next = old->dtpv_next; 7094 } 7095 7096 if (!self) { 7097 mutex_exit(&dtrace_lock); 7098 mutex_exit(&mod_lock); 7099 mutex_exit(&dtrace_provider_lock); 7100 } 7101 7102 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 7103 kmem_free(old, sizeof (dtrace_provider_t)); 7104 7105 return (0); 7106 } 7107 7108 /* 7109 * Invalidate the specified provider. All subsequent probe lookups for the 7110 * specified provider will fail, but its probes will not be removed. 7111 */ 7112 void 7113 dtrace_invalidate(dtrace_provider_id_t id) 7114 { 7115 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 7116 7117 ASSERT(pvp->dtpv_pops.dtps_enable != 7118 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7119 7120 mutex_enter(&dtrace_provider_lock); 7121 mutex_enter(&dtrace_lock); 7122 7123 pvp->dtpv_defunct = 1; 7124 7125 mutex_exit(&dtrace_lock); 7126 mutex_exit(&dtrace_provider_lock); 7127 } 7128 7129 /* 7130 * Indicate whether or not DTrace has attached. 7131 */ 7132 int 7133 dtrace_attached(void) 7134 { 7135 /* 7136 * dtrace_provider will be non-NULL iff the DTrace driver has 7137 * attached. (It's non-NULL because DTrace is always itself a 7138 * provider.) 7139 */ 7140 return (dtrace_provider != NULL); 7141 } 7142 7143 /* 7144 * Remove all the unenabled probes for the given provider. This function is 7145 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7146 * -- just as many of its associated probes as it can. 7147 */ 7148 int 7149 dtrace_condense(dtrace_provider_id_t id) 7150 { 7151 dtrace_provider_t *prov = (dtrace_provider_t *)id; 7152 int i; 7153 dtrace_probe_t *probe; 7154 7155 /* 7156 * Make sure this isn't the dtrace provider itself. 7157 */ 7158 ASSERT(prov->dtpv_pops.dtps_enable != 7159 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7160 7161 mutex_enter(&dtrace_provider_lock); 7162 mutex_enter(&dtrace_lock); 7163 7164 /* 7165 * Attempt to destroy the probes associated with this provider. 7166 */ 7167 for (i = 0; i < dtrace_nprobes; i++) { 7168 if ((probe = dtrace_probes[i]) == NULL) 7169 continue; 7170 7171 if (probe->dtpr_provider != prov) 7172 continue; 7173 7174 if (probe->dtpr_ecb != NULL) 7175 continue; 7176 7177 dtrace_probes[i] = NULL; 7178 7179 dtrace_hash_remove(dtrace_bymod, probe); 7180 dtrace_hash_remove(dtrace_byfunc, probe); 7181 dtrace_hash_remove(dtrace_byname, probe); 7182 7183 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7184 probe->dtpr_arg); 7185 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7186 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7187 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7188 kmem_free(probe, sizeof (dtrace_probe_t)); 7189 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7190 } 7191 7192 mutex_exit(&dtrace_lock); 7193 mutex_exit(&dtrace_provider_lock); 7194 7195 return (0); 7196 } 7197 7198 /* 7199 * DTrace Probe Management Functions 7200 * 7201 * The functions in this section perform the DTrace probe management, 7202 * including functions to create probes, look-up probes, and call into the 7203 * providers to request that probes be provided. Some of these functions are 7204 * in the Provider-to-Framework API; these functions can be identified by the 7205 * fact that they are not declared "static". 7206 */ 7207 7208 /* 7209 * Create a probe with the specified module name, function name, and name. 7210 */ 7211 dtrace_id_t 7212 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7213 const char *func, const char *name, int aframes, void *arg) 7214 { 7215 dtrace_probe_t *probe, **probes; 7216 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7217 dtrace_id_t id; 7218 7219 if (provider == dtrace_provider) { 7220 ASSERT(MUTEX_HELD(&dtrace_lock)); 7221 } else { 7222 mutex_enter(&dtrace_lock); 7223 } 7224 7225 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7226 VM_BESTFIT | VM_SLEEP); 7227 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7228 7229 probe->dtpr_id = id; 7230 probe->dtpr_gen = dtrace_probegen++; 7231 probe->dtpr_mod = dtrace_strdup(mod); 7232 probe->dtpr_func = dtrace_strdup(func); 7233 probe->dtpr_name = dtrace_strdup(name); 7234 probe->dtpr_arg = arg; 7235 probe->dtpr_aframes = aframes; 7236 probe->dtpr_provider = provider; 7237 7238 dtrace_hash_add(dtrace_bymod, probe); 7239 dtrace_hash_add(dtrace_byfunc, probe); 7240 dtrace_hash_add(dtrace_byname, probe); 7241 7242 if (id - 1 >= dtrace_nprobes) { 7243 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7244 size_t nsize = osize << 1; 7245 7246 if (nsize == 0) { 7247 ASSERT(osize == 0); 7248 ASSERT(dtrace_probes == NULL); 7249 nsize = sizeof (dtrace_probe_t *); 7250 } 7251 7252 probes = kmem_zalloc(nsize, KM_SLEEP); 7253 7254 if (dtrace_probes == NULL) { 7255 ASSERT(osize == 0); 7256 dtrace_probes = probes; 7257 dtrace_nprobes = 1; 7258 } else { 7259 dtrace_probe_t **oprobes = dtrace_probes; 7260 7261 bcopy(oprobes, probes, osize); 7262 dtrace_membar_producer(); 7263 dtrace_probes = probes; 7264 7265 dtrace_sync(); 7266 7267 /* 7268 * All CPUs are now seeing the new probes array; we can 7269 * safely free the old array. 7270 */ 7271 kmem_free(oprobes, osize); 7272 dtrace_nprobes <<= 1; 7273 } 7274 7275 ASSERT(id - 1 < dtrace_nprobes); 7276 } 7277 7278 ASSERT(dtrace_probes[id - 1] == NULL); 7279 dtrace_probes[id - 1] = probe; 7280 7281 if (provider != dtrace_provider) 7282 mutex_exit(&dtrace_lock); 7283 7284 return (id); 7285 } 7286 7287 static dtrace_probe_t * 7288 dtrace_probe_lookup_id(dtrace_id_t id) 7289 { 7290 ASSERT(MUTEX_HELD(&dtrace_lock)); 7291 7292 if (id == 0 || id > dtrace_nprobes) 7293 return (NULL); 7294 7295 return (dtrace_probes[id - 1]); 7296 } 7297 7298 static int 7299 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7300 { 7301 *((dtrace_id_t *)arg) = probe->dtpr_id; 7302 7303 return (DTRACE_MATCH_DONE); 7304 } 7305 7306 /* 7307 * Look up a probe based on provider and one or more of module name, function 7308 * name and probe name. 7309 */ 7310 dtrace_id_t 7311 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 7312 const char *func, const char *name) 7313 { 7314 dtrace_probekey_t pkey; 7315 dtrace_id_t id; 7316 int match; 7317 7318 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7319 pkey.dtpk_pmatch = &dtrace_match_string; 7320 pkey.dtpk_mod = mod; 7321 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7322 pkey.dtpk_func = func; 7323 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7324 pkey.dtpk_name = name; 7325 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7326 pkey.dtpk_id = DTRACE_IDNONE; 7327 7328 mutex_enter(&dtrace_lock); 7329 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7330 dtrace_probe_lookup_match, &id); 7331 mutex_exit(&dtrace_lock); 7332 7333 ASSERT(match == 1 || match == 0); 7334 return (match ? id : 0); 7335 } 7336 7337 /* 7338 * Returns the probe argument associated with the specified probe. 7339 */ 7340 void * 7341 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7342 { 7343 dtrace_probe_t *probe; 7344 void *rval = NULL; 7345 7346 mutex_enter(&dtrace_lock); 7347 7348 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7349 probe->dtpr_provider == (dtrace_provider_t *)id) 7350 rval = probe->dtpr_arg; 7351 7352 mutex_exit(&dtrace_lock); 7353 7354 return (rval); 7355 } 7356 7357 /* 7358 * Copy a probe into a probe description. 7359 */ 7360 static void 7361 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7362 { 7363 bzero(pdp, sizeof (dtrace_probedesc_t)); 7364 pdp->dtpd_id = prp->dtpr_id; 7365 7366 (void) strncpy(pdp->dtpd_provider, 7367 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7368 7369 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7370 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7371 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7372 } 7373 7374 /* 7375 * Called to indicate that a probe -- or probes -- should be provided by a 7376 * specfied provider. If the specified description is NULL, the provider will 7377 * be told to provide all of its probes. (This is done whenever a new 7378 * consumer comes along, or whenever a retained enabling is to be matched.) If 7379 * the specified description is non-NULL, the provider is given the 7380 * opportunity to dynamically provide the specified probe, allowing providers 7381 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7382 * probes.) If the provider is NULL, the operations will be applied to all 7383 * providers; if the provider is non-NULL the operations will only be applied 7384 * to the specified provider. The dtrace_provider_lock must be held, and the 7385 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7386 * will need to grab the dtrace_lock when it reenters the framework through 7387 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7388 */ 7389 static void 7390 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7391 { 7392 struct modctl *ctl; 7393 int all = 0; 7394 7395 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7396 7397 if (prv == NULL) { 7398 all = 1; 7399 prv = dtrace_provider; 7400 } 7401 7402 do { 7403 /* 7404 * First, call the blanket provide operation. 7405 */ 7406 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7407 7408 /* 7409 * Now call the per-module provide operation. We will grab 7410 * mod_lock to prevent the list from being modified. Note 7411 * that this also prevents the mod_busy bits from changing. 7412 * (mod_busy can only be changed with mod_lock held.) 7413 */ 7414 mutex_enter(&mod_lock); 7415 7416 ctl = &modules; 7417 do { 7418 if (ctl->mod_busy || ctl->mod_mp == NULL) 7419 continue; 7420 7421 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7422 7423 } while ((ctl = ctl->mod_next) != &modules); 7424 7425 mutex_exit(&mod_lock); 7426 } while (all && (prv = prv->dtpv_next) != NULL); 7427 } 7428 7429 /* 7430 * Iterate over each probe, and call the Framework-to-Provider API function 7431 * denoted by offs. 7432 */ 7433 static void 7434 dtrace_probe_foreach(uintptr_t offs) 7435 { 7436 dtrace_provider_t *prov; 7437 void (*func)(void *, dtrace_id_t, void *); 7438 dtrace_probe_t *probe; 7439 dtrace_icookie_t cookie; 7440 int i; 7441 7442 /* 7443 * We disable interrupts to walk through the probe array. This is 7444 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7445 * won't see stale data. 7446 */ 7447 cookie = dtrace_interrupt_disable(); 7448 7449 for (i = 0; i < dtrace_nprobes; i++) { 7450 if ((probe = dtrace_probes[i]) == NULL) 7451 continue; 7452 7453 if (probe->dtpr_ecb == NULL) { 7454 /* 7455 * This probe isn't enabled -- don't call the function. 7456 */ 7457 continue; 7458 } 7459 7460 prov = probe->dtpr_provider; 7461 func = *((void(**)(void *, dtrace_id_t, void *)) 7462 ((uintptr_t)&prov->dtpv_pops + offs)); 7463 7464 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7465 } 7466 7467 dtrace_interrupt_enable(cookie); 7468 } 7469 7470 static int 7471 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7472 { 7473 dtrace_probekey_t pkey; 7474 uint32_t priv; 7475 uid_t uid; 7476 zoneid_t zoneid; 7477 7478 ASSERT(MUTEX_HELD(&dtrace_lock)); 7479 dtrace_ecb_create_cache = NULL; 7480 7481 if (desc == NULL) { 7482 /* 7483 * If we're passed a NULL description, we're being asked to 7484 * create an ECB with a NULL probe. 7485 */ 7486 (void) dtrace_ecb_create_enable(NULL, enab); 7487 return (0); 7488 } 7489 7490 dtrace_probekey(desc, &pkey); 7491 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7492 &priv, &uid, &zoneid); 7493 7494 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7495 enab)); 7496 } 7497 7498 /* 7499 * DTrace Helper Provider Functions 7500 */ 7501 static void 7502 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7503 { 7504 attr->dtat_name = DOF_ATTR_NAME(dofattr); 7505 attr->dtat_data = DOF_ATTR_DATA(dofattr); 7506 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 7507 } 7508 7509 static void 7510 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 7511 const dof_provider_t *dofprov, char *strtab) 7512 { 7513 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 7514 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 7515 dofprov->dofpv_provattr); 7516 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 7517 dofprov->dofpv_modattr); 7518 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 7519 dofprov->dofpv_funcattr); 7520 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 7521 dofprov->dofpv_nameattr); 7522 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 7523 dofprov->dofpv_argsattr); 7524 } 7525 7526 static void 7527 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7528 { 7529 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7530 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7531 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 7532 dof_provider_t *provider; 7533 dof_probe_t *probe; 7534 uint32_t *off, *enoff; 7535 uint8_t *arg; 7536 char *strtab; 7537 uint_t i, nprobes; 7538 dtrace_helper_provdesc_t dhpv; 7539 dtrace_helper_probedesc_t dhpb; 7540 dtrace_meta_t *meta = dtrace_meta_pid; 7541 dtrace_mops_t *mops = &meta->dtm_mops; 7542 void *parg; 7543 7544 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7545 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7546 provider->dofpv_strtab * dof->dofh_secsize); 7547 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7548 provider->dofpv_probes * dof->dofh_secsize); 7549 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7550 provider->dofpv_prargs * dof->dofh_secsize); 7551 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7552 provider->dofpv_proffs * dof->dofh_secsize); 7553 7554 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7555 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 7556 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 7557 enoff = NULL; 7558 7559 /* 7560 * See dtrace_helper_provider_validate(). 7561 */ 7562 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 7563 provider->dofpv_prenoffs != DOF_SECT_NONE) { 7564 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7565 provider->dofpv_prenoffs * dof->dofh_secsize); 7566 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 7567 } 7568 7569 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 7570 7571 /* 7572 * Create the provider. 7573 */ 7574 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7575 7576 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 7577 return; 7578 7579 meta->dtm_count++; 7580 7581 /* 7582 * Create the probes. 7583 */ 7584 for (i = 0; i < nprobes; i++) { 7585 probe = (dof_probe_t *)(uintptr_t)(daddr + 7586 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 7587 7588 dhpb.dthpb_mod = dhp->dofhp_mod; 7589 dhpb.dthpb_func = strtab + probe->dofpr_func; 7590 dhpb.dthpb_name = strtab + probe->dofpr_name; 7591 dhpb.dthpb_base = probe->dofpr_addr; 7592 dhpb.dthpb_offs = off + probe->dofpr_offidx; 7593 dhpb.dthpb_noffs = probe->dofpr_noffs; 7594 if (enoff != NULL) { 7595 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 7596 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 7597 } else { 7598 dhpb.dthpb_enoffs = NULL; 7599 dhpb.dthpb_nenoffs = 0; 7600 } 7601 dhpb.dthpb_args = arg + probe->dofpr_argidx; 7602 dhpb.dthpb_nargc = probe->dofpr_nargc; 7603 dhpb.dthpb_xargc = probe->dofpr_xargc; 7604 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 7605 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 7606 7607 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 7608 } 7609 } 7610 7611 static void 7612 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 7613 { 7614 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7615 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7616 int i; 7617 7618 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7619 7620 for (i = 0; i < dof->dofh_secnum; i++) { 7621 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7622 dof->dofh_secoff + i * dof->dofh_secsize); 7623 7624 if (sec->dofs_type != DOF_SECT_PROVIDER) 7625 continue; 7626 7627 dtrace_helper_provide_one(dhp, sec, pid); 7628 } 7629 7630 /* 7631 * We may have just created probes, so we must now rematch against 7632 * any retained enablings. Note that this call will acquire both 7633 * cpu_lock and dtrace_lock; the fact that we are holding 7634 * dtrace_meta_lock now is what defines the ordering with respect to 7635 * these three locks. 7636 */ 7637 dtrace_enabling_matchall(); 7638 } 7639 7640 static void 7641 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7642 { 7643 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7644 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7645 dof_sec_t *str_sec; 7646 dof_provider_t *provider; 7647 char *strtab; 7648 dtrace_helper_provdesc_t dhpv; 7649 dtrace_meta_t *meta = dtrace_meta_pid; 7650 dtrace_mops_t *mops = &meta->dtm_mops; 7651 7652 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7653 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7654 provider->dofpv_strtab * dof->dofh_secsize); 7655 7656 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7657 7658 /* 7659 * Create the provider. 7660 */ 7661 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7662 7663 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 7664 7665 meta->dtm_count--; 7666 } 7667 7668 static void 7669 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 7670 { 7671 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7672 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7673 int i; 7674 7675 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7676 7677 for (i = 0; i < dof->dofh_secnum; i++) { 7678 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7679 dof->dofh_secoff + i * dof->dofh_secsize); 7680 7681 if (sec->dofs_type != DOF_SECT_PROVIDER) 7682 continue; 7683 7684 dtrace_helper_provider_remove_one(dhp, sec, pid); 7685 } 7686 } 7687 7688 /* 7689 * DTrace Meta Provider-to-Framework API Functions 7690 * 7691 * These functions implement the Meta Provider-to-Framework API, as described 7692 * in <sys/dtrace.h>. 7693 */ 7694 int 7695 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 7696 dtrace_meta_provider_id_t *idp) 7697 { 7698 dtrace_meta_t *meta; 7699 dtrace_helpers_t *help, *next; 7700 int i; 7701 7702 *idp = DTRACE_METAPROVNONE; 7703 7704 /* 7705 * We strictly don't need the name, but we hold onto it for 7706 * debuggability. All hail error queues! 7707 */ 7708 if (name == NULL) { 7709 cmn_err(CE_WARN, "failed to register meta-provider: " 7710 "invalid name"); 7711 return (EINVAL); 7712 } 7713 7714 if (mops == NULL || 7715 mops->dtms_create_probe == NULL || 7716 mops->dtms_provide_pid == NULL || 7717 mops->dtms_remove_pid == NULL) { 7718 cmn_err(CE_WARN, "failed to register meta-register %s: " 7719 "invalid ops", name); 7720 return (EINVAL); 7721 } 7722 7723 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 7724 meta->dtm_mops = *mops; 7725 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7726 (void) strcpy(meta->dtm_name, name); 7727 meta->dtm_arg = arg; 7728 7729 mutex_enter(&dtrace_meta_lock); 7730 mutex_enter(&dtrace_lock); 7731 7732 if (dtrace_meta_pid != NULL) { 7733 mutex_exit(&dtrace_lock); 7734 mutex_exit(&dtrace_meta_lock); 7735 cmn_err(CE_WARN, "failed to register meta-register %s: " 7736 "user-land meta-provider exists", name); 7737 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 7738 kmem_free(meta, sizeof (dtrace_meta_t)); 7739 return (EINVAL); 7740 } 7741 7742 dtrace_meta_pid = meta; 7743 *idp = (dtrace_meta_provider_id_t)meta; 7744 7745 /* 7746 * If there are providers and probes ready to go, pass them 7747 * off to the new meta provider now. 7748 */ 7749 7750 help = dtrace_deferred_pid; 7751 dtrace_deferred_pid = NULL; 7752 7753 mutex_exit(&dtrace_lock); 7754 7755 while (help != NULL) { 7756 for (i = 0; i < help->dthps_nprovs; i++) { 7757 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 7758 help->dthps_pid); 7759 } 7760 7761 next = help->dthps_next; 7762 help->dthps_next = NULL; 7763 help->dthps_prev = NULL; 7764 help->dthps_deferred = 0; 7765 help = next; 7766 } 7767 7768 mutex_exit(&dtrace_meta_lock); 7769 7770 return (0); 7771 } 7772 7773 int 7774 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 7775 { 7776 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 7777 7778 mutex_enter(&dtrace_meta_lock); 7779 mutex_enter(&dtrace_lock); 7780 7781 if (old == dtrace_meta_pid) { 7782 pp = &dtrace_meta_pid; 7783 } else { 7784 panic("attempt to unregister non-existent " 7785 "dtrace meta-provider %p\n", (void *)old); 7786 } 7787 7788 if (old->dtm_count != 0) { 7789 mutex_exit(&dtrace_lock); 7790 mutex_exit(&dtrace_meta_lock); 7791 return (EBUSY); 7792 } 7793 7794 *pp = NULL; 7795 7796 mutex_exit(&dtrace_lock); 7797 mutex_exit(&dtrace_meta_lock); 7798 7799 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 7800 kmem_free(old, sizeof (dtrace_meta_t)); 7801 7802 return (0); 7803 } 7804 7805 7806 /* 7807 * DTrace DIF Object Functions 7808 */ 7809 static int 7810 dtrace_difo_err(uint_t pc, const char *format, ...) 7811 { 7812 if (dtrace_err_verbose) { 7813 va_list alist; 7814 7815 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 7816 va_start(alist, format); 7817 (void) vuprintf(format, alist); 7818 va_end(alist); 7819 } 7820 7821 #ifdef DTRACE_ERRDEBUG 7822 dtrace_errdebug(format); 7823 #endif 7824 return (1); 7825 } 7826 7827 /* 7828 * Validate a DTrace DIF object by checking the IR instructions. The following 7829 * rules are currently enforced by dtrace_difo_validate(): 7830 * 7831 * 1. Each instruction must have a valid opcode 7832 * 2. Each register, string, variable, or subroutine reference must be valid 7833 * 3. No instruction can modify register %r0 (must be zero) 7834 * 4. All instruction reserved bits must be set to zero 7835 * 5. The last instruction must be a "ret" instruction 7836 * 6. All branch targets must reference a valid instruction _after_ the branch 7837 */ 7838 static int 7839 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 7840 cred_t *cr) 7841 { 7842 int err = 0, i; 7843 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 7844 int kcheckload; 7845 uint_t pc; 7846 7847 kcheckload = cr == NULL || 7848 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 7849 7850 dp->dtdo_destructive = 0; 7851 7852 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 7853 dif_instr_t instr = dp->dtdo_buf[pc]; 7854 7855 uint_t r1 = DIF_INSTR_R1(instr); 7856 uint_t r2 = DIF_INSTR_R2(instr); 7857 uint_t rd = DIF_INSTR_RD(instr); 7858 uint_t rs = DIF_INSTR_RS(instr); 7859 uint_t label = DIF_INSTR_LABEL(instr); 7860 uint_t v = DIF_INSTR_VAR(instr); 7861 uint_t subr = DIF_INSTR_SUBR(instr); 7862 uint_t type = DIF_INSTR_TYPE(instr); 7863 uint_t op = DIF_INSTR_OP(instr); 7864 7865 switch (op) { 7866 case DIF_OP_OR: 7867 case DIF_OP_XOR: 7868 case DIF_OP_AND: 7869 case DIF_OP_SLL: 7870 case DIF_OP_SRL: 7871 case DIF_OP_SRA: 7872 case DIF_OP_SUB: 7873 case DIF_OP_ADD: 7874 case DIF_OP_MUL: 7875 case DIF_OP_SDIV: 7876 case DIF_OP_UDIV: 7877 case DIF_OP_SREM: 7878 case DIF_OP_UREM: 7879 case DIF_OP_COPYS: 7880 if (r1 >= nregs) 7881 err += efunc(pc, "invalid register %u\n", r1); 7882 if (r2 >= nregs) 7883 err += efunc(pc, "invalid register %u\n", r2); 7884 if (rd >= nregs) 7885 err += efunc(pc, "invalid register %u\n", rd); 7886 if (rd == 0) 7887 err += efunc(pc, "cannot write to %r0\n"); 7888 break; 7889 case DIF_OP_NOT: 7890 case DIF_OP_MOV: 7891 case DIF_OP_ALLOCS: 7892 if (r1 >= nregs) 7893 err += efunc(pc, "invalid register %u\n", r1); 7894 if (r2 != 0) 7895 err += efunc(pc, "non-zero reserved bits\n"); 7896 if (rd >= nregs) 7897 err += efunc(pc, "invalid register %u\n", rd); 7898 if (rd == 0) 7899 err += efunc(pc, "cannot write to %r0\n"); 7900 break; 7901 case DIF_OP_LDSB: 7902 case DIF_OP_LDSH: 7903 case DIF_OP_LDSW: 7904 case DIF_OP_LDUB: 7905 case DIF_OP_LDUH: 7906 case DIF_OP_LDUW: 7907 case DIF_OP_LDX: 7908 if (r1 >= nregs) 7909 err += efunc(pc, "invalid register %u\n", r1); 7910 if (r2 != 0) 7911 err += efunc(pc, "non-zero reserved bits\n"); 7912 if (rd >= nregs) 7913 err += efunc(pc, "invalid register %u\n", rd); 7914 if (rd == 0) 7915 err += efunc(pc, "cannot write to %r0\n"); 7916 if (kcheckload) 7917 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 7918 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 7919 break; 7920 case DIF_OP_RLDSB: 7921 case DIF_OP_RLDSH: 7922 case DIF_OP_RLDSW: 7923 case DIF_OP_RLDUB: 7924 case DIF_OP_RLDUH: 7925 case DIF_OP_RLDUW: 7926 case DIF_OP_RLDX: 7927 if (r1 >= nregs) 7928 err += efunc(pc, "invalid register %u\n", r1); 7929 if (r2 != 0) 7930 err += efunc(pc, "non-zero reserved bits\n"); 7931 if (rd >= nregs) 7932 err += efunc(pc, "invalid register %u\n", rd); 7933 if (rd == 0) 7934 err += efunc(pc, "cannot write to %r0\n"); 7935 break; 7936 case DIF_OP_ULDSB: 7937 case DIF_OP_ULDSH: 7938 case DIF_OP_ULDSW: 7939 case DIF_OP_ULDUB: 7940 case DIF_OP_ULDUH: 7941 case DIF_OP_ULDUW: 7942 case DIF_OP_ULDX: 7943 if (r1 >= nregs) 7944 err += efunc(pc, "invalid register %u\n", r1); 7945 if (r2 != 0) 7946 err += efunc(pc, "non-zero reserved bits\n"); 7947 if (rd >= nregs) 7948 err += efunc(pc, "invalid register %u\n", rd); 7949 if (rd == 0) 7950 err += efunc(pc, "cannot write to %r0\n"); 7951 break; 7952 case DIF_OP_STB: 7953 case DIF_OP_STH: 7954 case DIF_OP_STW: 7955 case DIF_OP_STX: 7956 if (r1 >= nregs) 7957 err += efunc(pc, "invalid register %u\n", r1); 7958 if (r2 != 0) 7959 err += efunc(pc, "non-zero reserved bits\n"); 7960 if (rd >= nregs) 7961 err += efunc(pc, "invalid register %u\n", rd); 7962 if (rd == 0) 7963 err += efunc(pc, "cannot write to 0 address\n"); 7964 break; 7965 case DIF_OP_CMP: 7966 case DIF_OP_SCMP: 7967 if (r1 >= nregs) 7968 err += efunc(pc, "invalid register %u\n", r1); 7969 if (r2 >= nregs) 7970 err += efunc(pc, "invalid register %u\n", r2); 7971 if (rd != 0) 7972 err += efunc(pc, "non-zero reserved bits\n"); 7973 break; 7974 case DIF_OP_TST: 7975 if (r1 >= nregs) 7976 err += efunc(pc, "invalid register %u\n", r1); 7977 if (r2 != 0 || rd != 0) 7978 err += efunc(pc, "non-zero reserved bits\n"); 7979 break; 7980 case DIF_OP_BA: 7981 case DIF_OP_BE: 7982 case DIF_OP_BNE: 7983 case DIF_OP_BG: 7984 case DIF_OP_BGU: 7985 case DIF_OP_BGE: 7986 case DIF_OP_BGEU: 7987 case DIF_OP_BL: 7988 case DIF_OP_BLU: 7989 case DIF_OP_BLE: 7990 case DIF_OP_BLEU: 7991 if (label >= dp->dtdo_len) { 7992 err += efunc(pc, "invalid branch target %u\n", 7993 label); 7994 } 7995 if (label <= pc) { 7996 err += efunc(pc, "backward branch to %u\n", 7997 label); 7998 } 7999 break; 8000 case DIF_OP_RET: 8001 if (r1 != 0 || r2 != 0) 8002 err += efunc(pc, "non-zero reserved bits\n"); 8003 if (rd >= nregs) 8004 err += efunc(pc, "invalid register %u\n", rd); 8005 break; 8006 case DIF_OP_NOP: 8007 case DIF_OP_POPTS: 8008 case DIF_OP_FLUSHTS: 8009 if (r1 != 0 || r2 != 0 || rd != 0) 8010 err += efunc(pc, "non-zero reserved bits\n"); 8011 break; 8012 case DIF_OP_SETX: 8013 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 8014 err += efunc(pc, "invalid integer ref %u\n", 8015 DIF_INSTR_INTEGER(instr)); 8016 } 8017 if (rd >= nregs) 8018 err += efunc(pc, "invalid register %u\n", rd); 8019 if (rd == 0) 8020 err += efunc(pc, "cannot write to %r0\n"); 8021 break; 8022 case DIF_OP_SETS: 8023 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 8024 err += efunc(pc, "invalid string ref %u\n", 8025 DIF_INSTR_STRING(instr)); 8026 } 8027 if (rd >= nregs) 8028 err += efunc(pc, "invalid register %u\n", rd); 8029 if (rd == 0) 8030 err += efunc(pc, "cannot write to %r0\n"); 8031 break; 8032 case DIF_OP_LDGA: 8033 case DIF_OP_LDTA: 8034 if (r1 > DIF_VAR_ARRAY_MAX) 8035 err += efunc(pc, "invalid array %u\n", r1); 8036 if (r2 >= nregs) 8037 err += efunc(pc, "invalid register %u\n", r2); 8038 if (rd >= nregs) 8039 err += efunc(pc, "invalid register %u\n", rd); 8040 if (rd == 0) 8041 err += efunc(pc, "cannot write to %r0\n"); 8042 break; 8043 case DIF_OP_LDGS: 8044 case DIF_OP_LDTS: 8045 case DIF_OP_LDLS: 8046 case DIF_OP_LDGAA: 8047 case DIF_OP_LDTAA: 8048 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 8049 err += efunc(pc, "invalid variable %u\n", v); 8050 if (rd >= nregs) 8051 err += efunc(pc, "invalid register %u\n", rd); 8052 if (rd == 0) 8053 err += efunc(pc, "cannot write to %r0\n"); 8054 break; 8055 case DIF_OP_STGS: 8056 case DIF_OP_STTS: 8057 case DIF_OP_STLS: 8058 case DIF_OP_STGAA: 8059 case DIF_OP_STTAA: 8060 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 8061 err += efunc(pc, "invalid variable %u\n", v); 8062 if (rs >= nregs) 8063 err += efunc(pc, "invalid register %u\n", rd); 8064 break; 8065 case DIF_OP_CALL: 8066 if (subr > DIF_SUBR_MAX) 8067 err += efunc(pc, "invalid subr %u\n", subr); 8068 if (rd >= nregs) 8069 err += efunc(pc, "invalid register %u\n", rd); 8070 if (rd == 0) 8071 err += efunc(pc, "cannot write to %r0\n"); 8072 8073 if (subr == DIF_SUBR_COPYOUT || 8074 subr == DIF_SUBR_COPYOUTSTR) { 8075 dp->dtdo_destructive = 1; 8076 } 8077 break; 8078 case DIF_OP_PUSHTR: 8079 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 8080 err += efunc(pc, "invalid ref type %u\n", type); 8081 if (r2 >= nregs) 8082 err += efunc(pc, "invalid register %u\n", r2); 8083 if (rs >= nregs) 8084 err += efunc(pc, "invalid register %u\n", rs); 8085 break; 8086 case DIF_OP_PUSHTV: 8087 if (type != DIF_TYPE_CTF) 8088 err += efunc(pc, "invalid val type %u\n", type); 8089 if (r2 >= nregs) 8090 err += efunc(pc, "invalid register %u\n", r2); 8091 if (rs >= nregs) 8092 err += efunc(pc, "invalid register %u\n", rs); 8093 break; 8094 default: 8095 err += efunc(pc, "invalid opcode %u\n", 8096 DIF_INSTR_OP(instr)); 8097 } 8098 } 8099 8100 if (dp->dtdo_len != 0 && 8101 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 8102 err += efunc(dp->dtdo_len - 1, 8103 "expected 'ret' as last DIF instruction\n"); 8104 } 8105 8106 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 8107 /* 8108 * If we're not returning by reference, the size must be either 8109 * 0 or the size of one of the base types. 8110 */ 8111 switch (dp->dtdo_rtype.dtdt_size) { 8112 case 0: 8113 case sizeof (uint8_t): 8114 case sizeof (uint16_t): 8115 case sizeof (uint32_t): 8116 case sizeof (uint64_t): 8117 break; 8118 8119 default: 8120 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 8121 } 8122 } 8123 8124 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 8125 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 8126 dtrace_diftype_t *vt, *et; 8127 uint_t id, ndx; 8128 8129 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 8130 v->dtdv_scope != DIFV_SCOPE_THREAD && 8131 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 8132 err += efunc(i, "unrecognized variable scope %d\n", 8133 v->dtdv_scope); 8134 break; 8135 } 8136 8137 if (v->dtdv_kind != DIFV_KIND_ARRAY && 8138 v->dtdv_kind != DIFV_KIND_SCALAR) { 8139 err += efunc(i, "unrecognized variable type %d\n", 8140 v->dtdv_kind); 8141 break; 8142 } 8143 8144 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 8145 err += efunc(i, "%d exceeds variable id limit\n", id); 8146 break; 8147 } 8148 8149 if (id < DIF_VAR_OTHER_UBASE) 8150 continue; 8151 8152 /* 8153 * For user-defined variables, we need to check that this 8154 * definition is identical to any previous definition that we 8155 * encountered. 8156 */ 8157 ndx = id - DIF_VAR_OTHER_UBASE; 8158 8159 switch (v->dtdv_scope) { 8160 case DIFV_SCOPE_GLOBAL: 8161 if (ndx < vstate->dtvs_nglobals) { 8162 dtrace_statvar_t *svar; 8163 8164 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 8165 existing = &svar->dtsv_var; 8166 } 8167 8168 break; 8169 8170 case DIFV_SCOPE_THREAD: 8171 if (ndx < vstate->dtvs_ntlocals) 8172 existing = &vstate->dtvs_tlocals[ndx]; 8173 break; 8174 8175 case DIFV_SCOPE_LOCAL: 8176 if (ndx < vstate->dtvs_nlocals) { 8177 dtrace_statvar_t *svar; 8178 8179 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8180 existing = &svar->dtsv_var; 8181 } 8182 8183 break; 8184 } 8185 8186 vt = &v->dtdv_type; 8187 8188 if (vt->dtdt_flags & DIF_TF_BYREF) { 8189 if (vt->dtdt_size == 0) { 8190 err += efunc(i, "zero-sized variable\n"); 8191 break; 8192 } 8193 8194 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8195 vt->dtdt_size > dtrace_global_maxsize) { 8196 err += efunc(i, "oversized by-ref global\n"); 8197 break; 8198 } 8199 } 8200 8201 if (existing == NULL || existing->dtdv_id == 0) 8202 continue; 8203 8204 ASSERT(existing->dtdv_id == v->dtdv_id); 8205 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8206 8207 if (existing->dtdv_kind != v->dtdv_kind) 8208 err += efunc(i, "%d changed variable kind\n", id); 8209 8210 et = &existing->dtdv_type; 8211 8212 if (vt->dtdt_flags != et->dtdt_flags) { 8213 err += efunc(i, "%d changed variable type flags\n", id); 8214 break; 8215 } 8216 8217 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8218 err += efunc(i, "%d changed variable type size\n", id); 8219 break; 8220 } 8221 } 8222 8223 return (err); 8224 } 8225 8226 /* 8227 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8228 * are much more constrained than normal DIFOs. Specifically, they may 8229 * not: 8230 * 8231 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8232 * miscellaneous string routines 8233 * 2. Access DTrace variables other than the args[] array, and the 8234 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8235 * 3. Have thread-local variables. 8236 * 4. Have dynamic variables. 8237 */ 8238 static int 8239 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8240 { 8241 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8242 int err = 0; 8243 uint_t pc; 8244 8245 for (pc = 0; pc < dp->dtdo_len; pc++) { 8246 dif_instr_t instr = dp->dtdo_buf[pc]; 8247 8248 uint_t v = DIF_INSTR_VAR(instr); 8249 uint_t subr = DIF_INSTR_SUBR(instr); 8250 uint_t op = DIF_INSTR_OP(instr); 8251 8252 switch (op) { 8253 case DIF_OP_OR: 8254 case DIF_OP_XOR: 8255 case DIF_OP_AND: 8256 case DIF_OP_SLL: 8257 case DIF_OP_SRL: 8258 case DIF_OP_SRA: 8259 case DIF_OP_SUB: 8260 case DIF_OP_ADD: 8261 case DIF_OP_MUL: 8262 case DIF_OP_SDIV: 8263 case DIF_OP_UDIV: 8264 case DIF_OP_SREM: 8265 case DIF_OP_UREM: 8266 case DIF_OP_COPYS: 8267 case DIF_OP_NOT: 8268 case DIF_OP_MOV: 8269 case DIF_OP_RLDSB: 8270 case DIF_OP_RLDSH: 8271 case DIF_OP_RLDSW: 8272 case DIF_OP_RLDUB: 8273 case DIF_OP_RLDUH: 8274 case DIF_OP_RLDUW: 8275 case DIF_OP_RLDX: 8276 case DIF_OP_ULDSB: 8277 case DIF_OP_ULDSH: 8278 case DIF_OP_ULDSW: 8279 case DIF_OP_ULDUB: 8280 case DIF_OP_ULDUH: 8281 case DIF_OP_ULDUW: 8282 case DIF_OP_ULDX: 8283 case DIF_OP_STB: 8284 case DIF_OP_STH: 8285 case DIF_OP_STW: 8286 case DIF_OP_STX: 8287 case DIF_OP_ALLOCS: 8288 case DIF_OP_CMP: 8289 case DIF_OP_SCMP: 8290 case DIF_OP_TST: 8291 case DIF_OP_BA: 8292 case DIF_OP_BE: 8293 case DIF_OP_BNE: 8294 case DIF_OP_BG: 8295 case DIF_OP_BGU: 8296 case DIF_OP_BGE: 8297 case DIF_OP_BGEU: 8298 case DIF_OP_BL: 8299 case DIF_OP_BLU: 8300 case DIF_OP_BLE: 8301 case DIF_OP_BLEU: 8302 case DIF_OP_RET: 8303 case DIF_OP_NOP: 8304 case DIF_OP_POPTS: 8305 case DIF_OP_FLUSHTS: 8306 case DIF_OP_SETX: 8307 case DIF_OP_SETS: 8308 case DIF_OP_LDGA: 8309 case DIF_OP_LDLS: 8310 case DIF_OP_STGS: 8311 case DIF_OP_STLS: 8312 case DIF_OP_PUSHTR: 8313 case DIF_OP_PUSHTV: 8314 break; 8315 8316 case DIF_OP_LDGS: 8317 if (v >= DIF_VAR_OTHER_UBASE) 8318 break; 8319 8320 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8321 break; 8322 8323 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8324 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8325 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8326 v == DIF_VAR_UID || v == DIF_VAR_GID) 8327 break; 8328 8329 err += efunc(pc, "illegal variable %u\n", v); 8330 break; 8331 8332 case DIF_OP_LDTA: 8333 case DIF_OP_LDTS: 8334 case DIF_OP_LDGAA: 8335 case DIF_OP_LDTAA: 8336 err += efunc(pc, "illegal dynamic variable load\n"); 8337 break; 8338 8339 case DIF_OP_STTS: 8340 case DIF_OP_STGAA: 8341 case DIF_OP_STTAA: 8342 err += efunc(pc, "illegal dynamic variable store\n"); 8343 break; 8344 8345 case DIF_OP_CALL: 8346 if (subr == DIF_SUBR_ALLOCA || 8347 subr == DIF_SUBR_BCOPY || 8348 subr == DIF_SUBR_COPYIN || 8349 subr == DIF_SUBR_COPYINTO || 8350 subr == DIF_SUBR_COPYINSTR || 8351 subr == DIF_SUBR_INDEX || 8352 subr == DIF_SUBR_INET_NTOA || 8353 subr == DIF_SUBR_INET_NTOA6 || 8354 subr == DIF_SUBR_INET_NTOP || 8355 subr == DIF_SUBR_LLTOSTR || 8356 subr == DIF_SUBR_RINDEX || 8357 subr == DIF_SUBR_STRCHR || 8358 subr == DIF_SUBR_STRJOIN || 8359 subr == DIF_SUBR_STRRCHR || 8360 subr == DIF_SUBR_STRSTR || 8361 subr == DIF_SUBR_HTONS || 8362 subr == DIF_SUBR_HTONL || 8363 subr == DIF_SUBR_HTONLL || 8364 subr == DIF_SUBR_NTOHS || 8365 subr == DIF_SUBR_NTOHL || 8366 subr == DIF_SUBR_NTOHLL) 8367 break; 8368 8369 err += efunc(pc, "invalid subr %u\n", subr); 8370 break; 8371 8372 default: 8373 err += efunc(pc, "invalid opcode %u\n", 8374 DIF_INSTR_OP(instr)); 8375 } 8376 } 8377 8378 return (err); 8379 } 8380 8381 /* 8382 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8383 * basis; 0 if not. 8384 */ 8385 static int 8386 dtrace_difo_cacheable(dtrace_difo_t *dp) 8387 { 8388 int i; 8389 8390 if (dp == NULL) 8391 return (0); 8392 8393 for (i = 0; i < dp->dtdo_varlen; i++) { 8394 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8395 8396 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8397 continue; 8398 8399 switch (v->dtdv_id) { 8400 case DIF_VAR_CURTHREAD: 8401 case DIF_VAR_PID: 8402 case DIF_VAR_TID: 8403 case DIF_VAR_EXECNAME: 8404 case DIF_VAR_ZONENAME: 8405 break; 8406 8407 default: 8408 return (0); 8409 } 8410 } 8411 8412 /* 8413 * This DIF object may be cacheable. Now we need to look for any 8414 * array loading instructions, any memory loading instructions, or 8415 * any stores to thread-local variables. 8416 */ 8417 for (i = 0; i < dp->dtdo_len; i++) { 8418 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8419 8420 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8421 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8422 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8423 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8424 return (0); 8425 } 8426 8427 return (1); 8428 } 8429 8430 static void 8431 dtrace_difo_hold(dtrace_difo_t *dp) 8432 { 8433 int i; 8434 8435 ASSERT(MUTEX_HELD(&dtrace_lock)); 8436 8437 dp->dtdo_refcnt++; 8438 ASSERT(dp->dtdo_refcnt != 0); 8439 8440 /* 8441 * We need to check this DIF object for references to the variable 8442 * DIF_VAR_VTIMESTAMP. 8443 */ 8444 for (i = 0; i < dp->dtdo_varlen; i++) { 8445 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8446 8447 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8448 continue; 8449 8450 if (dtrace_vtime_references++ == 0) 8451 dtrace_vtime_enable(); 8452 } 8453 } 8454 8455 /* 8456 * This routine calculates the dynamic variable chunksize for a given DIF 8457 * object. The calculation is not fool-proof, and can probably be tricked by 8458 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8459 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8460 * if a dynamic variable size exceeds the chunksize. 8461 */ 8462 static void 8463 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8464 { 8465 uint64_t sval; 8466 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8467 const dif_instr_t *text = dp->dtdo_buf; 8468 uint_t pc, srd = 0; 8469 uint_t ttop = 0; 8470 size_t size, ksize; 8471 uint_t id, i; 8472 8473 for (pc = 0; pc < dp->dtdo_len; pc++) { 8474 dif_instr_t instr = text[pc]; 8475 uint_t op = DIF_INSTR_OP(instr); 8476 uint_t rd = DIF_INSTR_RD(instr); 8477 uint_t r1 = DIF_INSTR_R1(instr); 8478 uint_t nkeys = 0; 8479 uchar_t scope; 8480 8481 dtrace_key_t *key = tupregs; 8482 8483 switch (op) { 8484 case DIF_OP_SETX: 8485 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8486 srd = rd; 8487 continue; 8488 8489 case DIF_OP_STTS: 8490 key = &tupregs[DIF_DTR_NREGS]; 8491 key[0].dttk_size = 0; 8492 key[1].dttk_size = 0; 8493 nkeys = 2; 8494 scope = DIFV_SCOPE_THREAD; 8495 break; 8496 8497 case DIF_OP_STGAA: 8498 case DIF_OP_STTAA: 8499 nkeys = ttop; 8500 8501 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 8502 key[nkeys++].dttk_size = 0; 8503 8504 key[nkeys++].dttk_size = 0; 8505 8506 if (op == DIF_OP_STTAA) { 8507 scope = DIFV_SCOPE_THREAD; 8508 } else { 8509 scope = DIFV_SCOPE_GLOBAL; 8510 } 8511 8512 break; 8513 8514 case DIF_OP_PUSHTR: 8515 if (ttop == DIF_DTR_NREGS) 8516 return; 8517 8518 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 8519 /* 8520 * If the register for the size of the "pushtr" 8521 * is %r0 (or the value is 0) and the type is 8522 * a string, we'll use the system-wide default 8523 * string size. 8524 */ 8525 tupregs[ttop++].dttk_size = 8526 dtrace_strsize_default; 8527 } else { 8528 if (srd == 0) 8529 return; 8530 8531 tupregs[ttop++].dttk_size = sval; 8532 } 8533 8534 break; 8535 8536 case DIF_OP_PUSHTV: 8537 if (ttop == DIF_DTR_NREGS) 8538 return; 8539 8540 tupregs[ttop++].dttk_size = 0; 8541 break; 8542 8543 case DIF_OP_FLUSHTS: 8544 ttop = 0; 8545 break; 8546 8547 case DIF_OP_POPTS: 8548 if (ttop != 0) 8549 ttop--; 8550 break; 8551 } 8552 8553 sval = 0; 8554 srd = 0; 8555 8556 if (nkeys == 0) 8557 continue; 8558 8559 /* 8560 * We have a dynamic variable allocation; calculate its size. 8561 */ 8562 for (ksize = 0, i = 0; i < nkeys; i++) 8563 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 8564 8565 size = sizeof (dtrace_dynvar_t); 8566 size += sizeof (dtrace_key_t) * (nkeys - 1); 8567 size += ksize; 8568 8569 /* 8570 * Now we need to determine the size of the stored data. 8571 */ 8572 id = DIF_INSTR_VAR(instr); 8573 8574 for (i = 0; i < dp->dtdo_varlen; i++) { 8575 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8576 8577 if (v->dtdv_id == id && v->dtdv_scope == scope) { 8578 size += v->dtdv_type.dtdt_size; 8579 break; 8580 } 8581 } 8582 8583 if (i == dp->dtdo_varlen) 8584 return; 8585 8586 /* 8587 * We have the size. If this is larger than the chunk size 8588 * for our dynamic variable state, reset the chunk size. 8589 */ 8590 size = P2ROUNDUP(size, sizeof (uint64_t)); 8591 8592 if (size > vstate->dtvs_dynvars.dtds_chunksize) 8593 vstate->dtvs_dynvars.dtds_chunksize = size; 8594 } 8595 } 8596 8597 static void 8598 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8599 { 8600 int i, oldsvars, osz, nsz, otlocals, ntlocals; 8601 uint_t id; 8602 8603 ASSERT(MUTEX_HELD(&dtrace_lock)); 8604 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 8605 8606 for (i = 0; i < dp->dtdo_varlen; i++) { 8607 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8608 dtrace_statvar_t *svar, ***svarp; 8609 size_t dsize = 0; 8610 uint8_t scope = v->dtdv_scope; 8611 int *np; 8612 8613 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8614 continue; 8615 8616 id -= DIF_VAR_OTHER_UBASE; 8617 8618 switch (scope) { 8619 case DIFV_SCOPE_THREAD: 8620 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 8621 dtrace_difv_t *tlocals; 8622 8623 if ((ntlocals = (otlocals << 1)) == 0) 8624 ntlocals = 1; 8625 8626 osz = otlocals * sizeof (dtrace_difv_t); 8627 nsz = ntlocals * sizeof (dtrace_difv_t); 8628 8629 tlocals = kmem_zalloc(nsz, KM_SLEEP); 8630 8631 if (osz != 0) { 8632 bcopy(vstate->dtvs_tlocals, 8633 tlocals, osz); 8634 kmem_free(vstate->dtvs_tlocals, osz); 8635 } 8636 8637 vstate->dtvs_tlocals = tlocals; 8638 vstate->dtvs_ntlocals = ntlocals; 8639 } 8640 8641 vstate->dtvs_tlocals[id] = *v; 8642 continue; 8643 8644 case DIFV_SCOPE_LOCAL: 8645 np = &vstate->dtvs_nlocals; 8646 svarp = &vstate->dtvs_locals; 8647 8648 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8649 dsize = NCPU * (v->dtdv_type.dtdt_size + 8650 sizeof (uint64_t)); 8651 else 8652 dsize = NCPU * sizeof (uint64_t); 8653 8654 break; 8655 8656 case DIFV_SCOPE_GLOBAL: 8657 np = &vstate->dtvs_nglobals; 8658 svarp = &vstate->dtvs_globals; 8659 8660 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8661 dsize = v->dtdv_type.dtdt_size + 8662 sizeof (uint64_t); 8663 8664 break; 8665 8666 default: 8667 ASSERT(0); 8668 } 8669 8670 while (id >= (oldsvars = *np)) { 8671 dtrace_statvar_t **statics; 8672 int newsvars, oldsize, newsize; 8673 8674 if ((newsvars = (oldsvars << 1)) == 0) 8675 newsvars = 1; 8676 8677 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 8678 newsize = newsvars * sizeof (dtrace_statvar_t *); 8679 8680 statics = kmem_zalloc(newsize, KM_SLEEP); 8681 8682 if (oldsize != 0) { 8683 bcopy(*svarp, statics, oldsize); 8684 kmem_free(*svarp, oldsize); 8685 } 8686 8687 *svarp = statics; 8688 *np = newsvars; 8689 } 8690 8691 if ((svar = (*svarp)[id]) == NULL) { 8692 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 8693 svar->dtsv_var = *v; 8694 8695 if ((svar->dtsv_size = dsize) != 0) { 8696 svar->dtsv_data = (uint64_t)(uintptr_t) 8697 kmem_zalloc(dsize, KM_SLEEP); 8698 } 8699 8700 (*svarp)[id] = svar; 8701 } 8702 8703 svar->dtsv_refcnt++; 8704 } 8705 8706 dtrace_difo_chunksize(dp, vstate); 8707 dtrace_difo_hold(dp); 8708 } 8709 8710 static dtrace_difo_t * 8711 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8712 { 8713 dtrace_difo_t *new; 8714 size_t sz; 8715 8716 ASSERT(dp->dtdo_buf != NULL); 8717 ASSERT(dp->dtdo_refcnt != 0); 8718 8719 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 8720 8721 ASSERT(dp->dtdo_buf != NULL); 8722 sz = dp->dtdo_len * sizeof (dif_instr_t); 8723 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 8724 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 8725 new->dtdo_len = dp->dtdo_len; 8726 8727 if (dp->dtdo_strtab != NULL) { 8728 ASSERT(dp->dtdo_strlen != 0); 8729 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 8730 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 8731 new->dtdo_strlen = dp->dtdo_strlen; 8732 } 8733 8734 if (dp->dtdo_inttab != NULL) { 8735 ASSERT(dp->dtdo_intlen != 0); 8736 sz = dp->dtdo_intlen * sizeof (uint64_t); 8737 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 8738 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 8739 new->dtdo_intlen = dp->dtdo_intlen; 8740 } 8741 8742 if (dp->dtdo_vartab != NULL) { 8743 ASSERT(dp->dtdo_varlen != 0); 8744 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 8745 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 8746 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 8747 new->dtdo_varlen = dp->dtdo_varlen; 8748 } 8749 8750 dtrace_difo_init(new, vstate); 8751 return (new); 8752 } 8753 8754 static void 8755 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8756 { 8757 int i; 8758 8759 ASSERT(dp->dtdo_refcnt == 0); 8760 8761 for (i = 0; i < dp->dtdo_varlen; i++) { 8762 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8763 dtrace_statvar_t *svar, **svarp; 8764 uint_t id; 8765 uint8_t scope = v->dtdv_scope; 8766 int *np; 8767 8768 switch (scope) { 8769 case DIFV_SCOPE_THREAD: 8770 continue; 8771 8772 case DIFV_SCOPE_LOCAL: 8773 np = &vstate->dtvs_nlocals; 8774 svarp = vstate->dtvs_locals; 8775 break; 8776 8777 case DIFV_SCOPE_GLOBAL: 8778 np = &vstate->dtvs_nglobals; 8779 svarp = vstate->dtvs_globals; 8780 break; 8781 8782 default: 8783 ASSERT(0); 8784 } 8785 8786 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8787 continue; 8788 8789 id -= DIF_VAR_OTHER_UBASE; 8790 ASSERT(id < *np); 8791 8792 svar = svarp[id]; 8793 ASSERT(svar != NULL); 8794 ASSERT(svar->dtsv_refcnt > 0); 8795 8796 if (--svar->dtsv_refcnt > 0) 8797 continue; 8798 8799 if (svar->dtsv_size != 0) { 8800 ASSERT(svar->dtsv_data != NULL); 8801 kmem_free((void *)(uintptr_t)svar->dtsv_data, 8802 svar->dtsv_size); 8803 } 8804 8805 kmem_free(svar, sizeof (dtrace_statvar_t)); 8806 svarp[id] = NULL; 8807 } 8808 8809 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 8810 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 8811 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 8812 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 8813 8814 kmem_free(dp, sizeof (dtrace_difo_t)); 8815 } 8816 8817 static void 8818 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8819 { 8820 int i; 8821 8822 ASSERT(MUTEX_HELD(&dtrace_lock)); 8823 ASSERT(dp->dtdo_refcnt != 0); 8824 8825 for (i = 0; i < dp->dtdo_varlen; i++) { 8826 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8827 8828 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8829 continue; 8830 8831 ASSERT(dtrace_vtime_references > 0); 8832 if (--dtrace_vtime_references == 0) 8833 dtrace_vtime_disable(); 8834 } 8835 8836 if (--dp->dtdo_refcnt == 0) 8837 dtrace_difo_destroy(dp, vstate); 8838 } 8839 8840 /* 8841 * DTrace Format Functions 8842 */ 8843 static uint16_t 8844 dtrace_format_add(dtrace_state_t *state, char *str) 8845 { 8846 char *fmt, **new; 8847 uint16_t ndx, len = strlen(str) + 1; 8848 8849 fmt = kmem_zalloc(len, KM_SLEEP); 8850 bcopy(str, fmt, len); 8851 8852 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 8853 if (state->dts_formats[ndx] == NULL) { 8854 state->dts_formats[ndx] = fmt; 8855 return (ndx + 1); 8856 } 8857 } 8858 8859 if (state->dts_nformats == USHRT_MAX) { 8860 /* 8861 * This is only likely if a denial-of-service attack is being 8862 * attempted. As such, it's okay to fail silently here. 8863 */ 8864 kmem_free(fmt, len); 8865 return (0); 8866 } 8867 8868 /* 8869 * For simplicity, we always resize the formats array to be exactly the 8870 * number of formats. 8871 */ 8872 ndx = state->dts_nformats++; 8873 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 8874 8875 if (state->dts_formats != NULL) { 8876 ASSERT(ndx != 0); 8877 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 8878 kmem_free(state->dts_formats, ndx * sizeof (char *)); 8879 } 8880 8881 state->dts_formats = new; 8882 state->dts_formats[ndx] = fmt; 8883 8884 return (ndx + 1); 8885 } 8886 8887 static void 8888 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 8889 { 8890 char *fmt; 8891 8892 ASSERT(state->dts_formats != NULL); 8893 ASSERT(format <= state->dts_nformats); 8894 ASSERT(state->dts_formats[format - 1] != NULL); 8895 8896 fmt = state->dts_formats[format - 1]; 8897 kmem_free(fmt, strlen(fmt) + 1); 8898 state->dts_formats[format - 1] = NULL; 8899 } 8900 8901 static void 8902 dtrace_format_destroy(dtrace_state_t *state) 8903 { 8904 int i; 8905 8906 if (state->dts_nformats == 0) { 8907 ASSERT(state->dts_formats == NULL); 8908 return; 8909 } 8910 8911 ASSERT(state->dts_formats != NULL); 8912 8913 for (i = 0; i < state->dts_nformats; i++) { 8914 char *fmt = state->dts_formats[i]; 8915 8916 if (fmt == NULL) 8917 continue; 8918 8919 kmem_free(fmt, strlen(fmt) + 1); 8920 } 8921 8922 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 8923 state->dts_nformats = 0; 8924 state->dts_formats = NULL; 8925 } 8926 8927 /* 8928 * DTrace Predicate Functions 8929 */ 8930 static dtrace_predicate_t * 8931 dtrace_predicate_create(dtrace_difo_t *dp) 8932 { 8933 dtrace_predicate_t *pred; 8934 8935 ASSERT(MUTEX_HELD(&dtrace_lock)); 8936 ASSERT(dp->dtdo_refcnt != 0); 8937 8938 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 8939 pred->dtp_difo = dp; 8940 pred->dtp_refcnt = 1; 8941 8942 if (!dtrace_difo_cacheable(dp)) 8943 return (pred); 8944 8945 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 8946 /* 8947 * This is only theoretically possible -- we have had 2^32 8948 * cacheable predicates on this machine. We cannot allow any 8949 * more predicates to become cacheable: as unlikely as it is, 8950 * there may be a thread caching a (now stale) predicate cache 8951 * ID. (N.B.: the temptation is being successfully resisted to 8952 * have this cmn_err() "Holy shit -- we executed this code!") 8953 */ 8954 return (pred); 8955 } 8956 8957 pred->dtp_cacheid = dtrace_predcache_id++; 8958 8959 return (pred); 8960 } 8961 8962 static void 8963 dtrace_predicate_hold(dtrace_predicate_t *pred) 8964 { 8965 ASSERT(MUTEX_HELD(&dtrace_lock)); 8966 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 8967 ASSERT(pred->dtp_refcnt > 0); 8968 8969 pred->dtp_refcnt++; 8970 } 8971 8972 static void 8973 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 8974 { 8975 dtrace_difo_t *dp = pred->dtp_difo; 8976 8977 ASSERT(MUTEX_HELD(&dtrace_lock)); 8978 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 8979 ASSERT(pred->dtp_refcnt > 0); 8980 8981 if (--pred->dtp_refcnt == 0) { 8982 dtrace_difo_release(pred->dtp_difo, vstate); 8983 kmem_free(pred, sizeof (dtrace_predicate_t)); 8984 } 8985 } 8986 8987 /* 8988 * DTrace Action Description Functions 8989 */ 8990 static dtrace_actdesc_t * 8991 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 8992 uint64_t uarg, uint64_t arg) 8993 { 8994 dtrace_actdesc_t *act; 8995 8996 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 8997 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 8998 8999 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 9000 act->dtad_kind = kind; 9001 act->dtad_ntuple = ntuple; 9002 act->dtad_uarg = uarg; 9003 act->dtad_arg = arg; 9004 act->dtad_refcnt = 1; 9005 9006 return (act); 9007 } 9008 9009 static void 9010 dtrace_actdesc_hold(dtrace_actdesc_t *act) 9011 { 9012 ASSERT(act->dtad_refcnt >= 1); 9013 act->dtad_refcnt++; 9014 } 9015 9016 static void 9017 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 9018 { 9019 dtrace_actkind_t kind = act->dtad_kind; 9020 dtrace_difo_t *dp; 9021 9022 ASSERT(act->dtad_refcnt >= 1); 9023 9024 if (--act->dtad_refcnt != 0) 9025 return; 9026 9027 if ((dp = act->dtad_difo) != NULL) 9028 dtrace_difo_release(dp, vstate); 9029 9030 if (DTRACEACT_ISPRINTFLIKE(kind)) { 9031 char *str = (char *)(uintptr_t)act->dtad_arg; 9032 9033 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 9034 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 9035 9036 if (str != NULL) 9037 kmem_free(str, strlen(str) + 1); 9038 } 9039 9040 kmem_free(act, sizeof (dtrace_actdesc_t)); 9041 } 9042 9043 /* 9044 * DTrace ECB Functions 9045 */ 9046 static dtrace_ecb_t * 9047 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 9048 { 9049 dtrace_ecb_t *ecb; 9050 dtrace_epid_t epid; 9051 9052 ASSERT(MUTEX_HELD(&dtrace_lock)); 9053 9054 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 9055 ecb->dte_predicate = NULL; 9056 ecb->dte_probe = probe; 9057 9058 /* 9059 * The default size is the size of the default action: recording 9060 * the epid. 9061 */ 9062 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9063 ecb->dte_alignment = sizeof (dtrace_epid_t); 9064 9065 epid = state->dts_epid++; 9066 9067 if (epid - 1 >= state->dts_necbs) { 9068 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 9069 int necbs = state->dts_necbs << 1; 9070 9071 ASSERT(epid == state->dts_necbs + 1); 9072 9073 if (necbs == 0) { 9074 ASSERT(oecbs == NULL); 9075 necbs = 1; 9076 } 9077 9078 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 9079 9080 if (oecbs != NULL) 9081 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 9082 9083 dtrace_membar_producer(); 9084 state->dts_ecbs = ecbs; 9085 9086 if (oecbs != NULL) { 9087 /* 9088 * If this state is active, we must dtrace_sync() 9089 * before we can free the old dts_ecbs array: we're 9090 * coming in hot, and there may be active ring 9091 * buffer processing (which indexes into the dts_ecbs 9092 * array) on another CPU. 9093 */ 9094 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 9095 dtrace_sync(); 9096 9097 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 9098 } 9099 9100 dtrace_membar_producer(); 9101 state->dts_necbs = necbs; 9102 } 9103 9104 ecb->dte_state = state; 9105 9106 ASSERT(state->dts_ecbs[epid - 1] == NULL); 9107 dtrace_membar_producer(); 9108 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 9109 9110 return (ecb); 9111 } 9112 9113 static int 9114 dtrace_ecb_enable(dtrace_ecb_t *ecb) 9115 { 9116 dtrace_probe_t *probe = ecb->dte_probe; 9117 9118 ASSERT(MUTEX_HELD(&cpu_lock)); 9119 ASSERT(MUTEX_HELD(&dtrace_lock)); 9120 ASSERT(ecb->dte_next == NULL); 9121 9122 if (probe == NULL) { 9123 /* 9124 * This is the NULL probe -- there's nothing to do. 9125 */ 9126 return (0); 9127 } 9128 9129 if (probe->dtpr_ecb == NULL) { 9130 dtrace_provider_t *prov = probe->dtpr_provider; 9131 9132 /* 9133 * We're the first ECB on this probe. 9134 */ 9135 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 9136 9137 if (ecb->dte_predicate != NULL) 9138 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 9139 9140 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 9141 probe->dtpr_id, probe->dtpr_arg)); 9142 } else { 9143 /* 9144 * This probe is already active. Swing the last pointer to 9145 * point to the new ECB, and issue a dtrace_sync() to assure 9146 * that all CPUs have seen the change. 9147 */ 9148 ASSERT(probe->dtpr_ecb_last != NULL); 9149 probe->dtpr_ecb_last->dte_next = ecb; 9150 probe->dtpr_ecb_last = ecb; 9151 probe->dtpr_predcache = 0; 9152 9153 dtrace_sync(); 9154 return (0); 9155 } 9156 } 9157 9158 static void 9159 dtrace_ecb_resize(dtrace_ecb_t *ecb) 9160 { 9161 uint32_t maxalign = sizeof (dtrace_epid_t); 9162 uint32_t align = sizeof (uint8_t), offs, diff; 9163 dtrace_action_t *act; 9164 int wastuple = 0; 9165 uint32_t aggbase = UINT32_MAX; 9166 dtrace_state_t *state = ecb->dte_state; 9167 9168 /* 9169 * If we record anything, we always record the epid. (And we always 9170 * record it first.) 9171 */ 9172 offs = sizeof (dtrace_epid_t); 9173 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9174 9175 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9176 dtrace_recdesc_t *rec = &act->dta_rec; 9177 9178 if ((align = rec->dtrd_alignment) > maxalign) 9179 maxalign = align; 9180 9181 if (!wastuple && act->dta_intuple) { 9182 /* 9183 * This is the first record in a tuple. Align the 9184 * offset to be at offset 4 in an 8-byte aligned 9185 * block. 9186 */ 9187 diff = offs + sizeof (dtrace_aggid_t); 9188 9189 if (diff = (diff & (sizeof (uint64_t) - 1))) 9190 offs += sizeof (uint64_t) - diff; 9191 9192 aggbase = offs - sizeof (dtrace_aggid_t); 9193 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 9194 } 9195 9196 /*LINTED*/ 9197 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 9198 /* 9199 * The current offset is not properly aligned; align it. 9200 */ 9201 offs += align - diff; 9202 } 9203 9204 rec->dtrd_offset = offs; 9205 9206 if (offs + rec->dtrd_size > ecb->dte_needed) { 9207 ecb->dte_needed = offs + rec->dtrd_size; 9208 9209 if (ecb->dte_needed > state->dts_needed) 9210 state->dts_needed = ecb->dte_needed; 9211 } 9212 9213 if (DTRACEACT_ISAGG(act->dta_kind)) { 9214 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9215 dtrace_action_t *first = agg->dtag_first, *prev; 9216 9217 ASSERT(rec->dtrd_size != 0 && first != NULL); 9218 ASSERT(wastuple); 9219 ASSERT(aggbase != UINT32_MAX); 9220 9221 agg->dtag_base = aggbase; 9222 9223 while ((prev = first->dta_prev) != NULL && 9224 DTRACEACT_ISAGG(prev->dta_kind)) { 9225 agg = (dtrace_aggregation_t *)prev; 9226 first = agg->dtag_first; 9227 } 9228 9229 if (prev != NULL) { 9230 offs = prev->dta_rec.dtrd_offset + 9231 prev->dta_rec.dtrd_size; 9232 } else { 9233 offs = sizeof (dtrace_epid_t); 9234 } 9235 wastuple = 0; 9236 } else { 9237 if (!act->dta_intuple) 9238 ecb->dte_size = offs + rec->dtrd_size; 9239 9240 offs += rec->dtrd_size; 9241 } 9242 9243 wastuple = act->dta_intuple; 9244 } 9245 9246 if ((act = ecb->dte_action) != NULL && 9247 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9248 ecb->dte_size == sizeof (dtrace_epid_t)) { 9249 /* 9250 * If the size is still sizeof (dtrace_epid_t), then all 9251 * actions store no data; set the size to 0. 9252 */ 9253 ecb->dte_alignment = maxalign; 9254 ecb->dte_size = 0; 9255 9256 /* 9257 * If the needed space is still sizeof (dtrace_epid_t), then 9258 * all actions need no additional space; set the needed 9259 * size to 0. 9260 */ 9261 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 9262 ecb->dte_needed = 0; 9263 9264 return; 9265 } 9266 9267 /* 9268 * Set our alignment, and make sure that the dte_size and dte_needed 9269 * are aligned to the size of an EPID. 9270 */ 9271 ecb->dte_alignment = maxalign; 9272 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 9273 ~(sizeof (dtrace_epid_t) - 1); 9274 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 9275 ~(sizeof (dtrace_epid_t) - 1); 9276 ASSERT(ecb->dte_size <= ecb->dte_needed); 9277 } 9278 9279 static dtrace_action_t * 9280 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9281 { 9282 dtrace_aggregation_t *agg; 9283 size_t size = sizeof (uint64_t); 9284 int ntuple = desc->dtad_ntuple; 9285 dtrace_action_t *act; 9286 dtrace_recdesc_t *frec; 9287 dtrace_aggid_t aggid; 9288 dtrace_state_t *state = ecb->dte_state; 9289 9290 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9291 agg->dtag_ecb = ecb; 9292 9293 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9294 9295 switch (desc->dtad_kind) { 9296 case DTRACEAGG_MIN: 9297 agg->dtag_initial = INT64_MAX; 9298 agg->dtag_aggregate = dtrace_aggregate_min; 9299 break; 9300 9301 case DTRACEAGG_MAX: 9302 agg->dtag_initial = INT64_MIN; 9303 agg->dtag_aggregate = dtrace_aggregate_max; 9304 break; 9305 9306 case DTRACEAGG_COUNT: 9307 agg->dtag_aggregate = dtrace_aggregate_count; 9308 break; 9309 9310 case DTRACEAGG_QUANTIZE: 9311 agg->dtag_aggregate = dtrace_aggregate_quantize; 9312 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9313 sizeof (uint64_t); 9314 break; 9315 9316 case DTRACEAGG_LQUANTIZE: { 9317 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9318 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9319 9320 agg->dtag_initial = desc->dtad_arg; 9321 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9322 9323 if (step == 0 || levels == 0) 9324 goto err; 9325 9326 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9327 break; 9328 } 9329 9330 case DTRACEAGG_AVG: 9331 agg->dtag_aggregate = dtrace_aggregate_avg; 9332 size = sizeof (uint64_t) * 2; 9333 break; 9334 9335 case DTRACEAGG_STDDEV: 9336 agg->dtag_aggregate = dtrace_aggregate_stddev; 9337 size = sizeof (uint64_t) * 4; 9338 break; 9339 9340 case DTRACEAGG_SUM: 9341 agg->dtag_aggregate = dtrace_aggregate_sum; 9342 break; 9343 9344 default: 9345 goto err; 9346 } 9347 9348 agg->dtag_action.dta_rec.dtrd_size = size; 9349 9350 if (ntuple == 0) 9351 goto err; 9352 9353 /* 9354 * We must make sure that we have enough actions for the n-tuple. 9355 */ 9356 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9357 if (DTRACEACT_ISAGG(act->dta_kind)) 9358 break; 9359 9360 if (--ntuple == 0) { 9361 /* 9362 * This is the action with which our n-tuple begins. 9363 */ 9364 agg->dtag_first = act; 9365 goto success; 9366 } 9367 } 9368 9369 /* 9370 * This n-tuple is short by ntuple elements. Return failure. 9371 */ 9372 ASSERT(ntuple != 0); 9373 err: 9374 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9375 return (NULL); 9376 9377 success: 9378 /* 9379 * If the last action in the tuple has a size of zero, it's actually 9380 * an expression argument for the aggregating action. 9381 */ 9382 ASSERT(ecb->dte_action_last != NULL); 9383 act = ecb->dte_action_last; 9384 9385 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9386 ASSERT(act->dta_difo != NULL); 9387 9388 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9389 agg->dtag_hasarg = 1; 9390 } 9391 9392 /* 9393 * We need to allocate an id for this aggregation. 9394 */ 9395 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9396 VM_BESTFIT | VM_SLEEP); 9397 9398 if (aggid - 1 >= state->dts_naggregations) { 9399 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9400 dtrace_aggregation_t **aggs; 9401 int naggs = state->dts_naggregations << 1; 9402 int onaggs = state->dts_naggregations; 9403 9404 ASSERT(aggid == state->dts_naggregations + 1); 9405 9406 if (naggs == 0) { 9407 ASSERT(oaggs == NULL); 9408 naggs = 1; 9409 } 9410 9411 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9412 9413 if (oaggs != NULL) { 9414 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9415 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9416 } 9417 9418 state->dts_aggregations = aggs; 9419 state->dts_naggregations = naggs; 9420 } 9421 9422 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9423 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9424 9425 frec = &agg->dtag_first->dta_rec; 9426 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9427 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9428 9429 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9430 ASSERT(!act->dta_intuple); 9431 act->dta_intuple = 1; 9432 } 9433 9434 return (&agg->dtag_action); 9435 } 9436 9437 static void 9438 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9439 { 9440 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9441 dtrace_state_t *state = ecb->dte_state; 9442 dtrace_aggid_t aggid = agg->dtag_id; 9443 9444 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9445 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9446 9447 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9448 state->dts_aggregations[aggid - 1] = NULL; 9449 9450 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9451 } 9452 9453 static int 9454 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9455 { 9456 dtrace_action_t *action, *last; 9457 dtrace_difo_t *dp = desc->dtad_difo; 9458 uint32_t size = 0, align = sizeof (uint8_t), mask; 9459 uint16_t format = 0; 9460 dtrace_recdesc_t *rec; 9461 dtrace_state_t *state = ecb->dte_state; 9462 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9463 uint64_t arg = desc->dtad_arg; 9464 9465 ASSERT(MUTEX_HELD(&dtrace_lock)); 9466 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9467 9468 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9469 /* 9470 * If this is an aggregating action, there must be neither 9471 * a speculate nor a commit on the action chain. 9472 */ 9473 dtrace_action_t *act; 9474 9475 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9476 if (act->dta_kind == DTRACEACT_COMMIT) 9477 return (EINVAL); 9478 9479 if (act->dta_kind == DTRACEACT_SPECULATE) 9480 return (EINVAL); 9481 } 9482 9483 action = dtrace_ecb_aggregation_create(ecb, desc); 9484 9485 if (action == NULL) 9486 return (EINVAL); 9487 } else { 9488 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9489 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9490 dp != NULL && dp->dtdo_destructive)) { 9491 state->dts_destructive = 1; 9492 } 9493 9494 switch (desc->dtad_kind) { 9495 case DTRACEACT_PRINTF: 9496 case DTRACEACT_PRINTA: 9497 case DTRACEACT_SYSTEM: 9498 case DTRACEACT_FREOPEN: 9499 /* 9500 * We know that our arg is a string -- turn it into a 9501 * format. 9502 */ 9503 if (arg == NULL) { 9504 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); 9505 format = 0; 9506 } else { 9507 ASSERT(arg != NULL); 9508 ASSERT(arg > KERNELBASE); 9509 format = dtrace_format_add(state, 9510 (char *)(uintptr_t)arg); 9511 } 9512 9513 /*FALLTHROUGH*/ 9514 case DTRACEACT_LIBACT: 9515 case DTRACEACT_DIFEXPR: 9516 if (dp == NULL) 9517 return (EINVAL); 9518 9519 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 9520 break; 9521 9522 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 9523 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9524 return (EINVAL); 9525 9526 size = opt[DTRACEOPT_STRSIZE]; 9527 } 9528 9529 break; 9530 9531 case DTRACEACT_STACK: 9532 if ((nframes = arg) == 0) { 9533 nframes = opt[DTRACEOPT_STACKFRAMES]; 9534 ASSERT(nframes > 0); 9535 arg = nframes; 9536 } 9537 9538 size = nframes * sizeof (pc_t); 9539 break; 9540 9541 case DTRACEACT_JSTACK: 9542 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 9543 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 9544 9545 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 9546 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 9547 9548 arg = DTRACE_USTACK_ARG(nframes, strsize); 9549 9550 /*FALLTHROUGH*/ 9551 case DTRACEACT_USTACK: 9552 if (desc->dtad_kind != DTRACEACT_JSTACK && 9553 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 9554 strsize = DTRACE_USTACK_STRSIZE(arg); 9555 nframes = opt[DTRACEOPT_USTACKFRAMES]; 9556 ASSERT(nframes > 0); 9557 arg = DTRACE_USTACK_ARG(nframes, strsize); 9558 } 9559 9560 /* 9561 * Save a slot for the pid. 9562 */ 9563 size = (nframes + 1) * sizeof (uint64_t); 9564 size += DTRACE_USTACK_STRSIZE(arg); 9565 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 9566 9567 break; 9568 9569 case DTRACEACT_SYM: 9570 case DTRACEACT_MOD: 9571 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 9572 sizeof (uint64_t)) || 9573 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9574 return (EINVAL); 9575 break; 9576 9577 case DTRACEACT_USYM: 9578 case DTRACEACT_UMOD: 9579 case DTRACEACT_UADDR: 9580 if (dp == NULL || 9581 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 9582 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9583 return (EINVAL); 9584 9585 /* 9586 * We have a slot for the pid, plus a slot for the 9587 * argument. To keep things simple (aligned with 9588 * bitness-neutral sizing), we store each as a 64-bit 9589 * quantity. 9590 */ 9591 size = 2 * sizeof (uint64_t); 9592 break; 9593 9594 case DTRACEACT_STOP: 9595 case DTRACEACT_BREAKPOINT: 9596 case DTRACEACT_PANIC: 9597 break; 9598 9599 case DTRACEACT_CHILL: 9600 case DTRACEACT_DISCARD: 9601 case DTRACEACT_RAISE: 9602 if (dp == NULL) 9603 return (EINVAL); 9604 break; 9605 9606 case DTRACEACT_EXIT: 9607 if (dp == NULL || 9608 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 9609 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9610 return (EINVAL); 9611 break; 9612 9613 case DTRACEACT_SPECULATE: 9614 if (ecb->dte_size > sizeof (dtrace_epid_t)) 9615 return (EINVAL); 9616 9617 if (dp == NULL) 9618 return (EINVAL); 9619 9620 state->dts_speculates = 1; 9621 break; 9622 9623 case DTRACEACT_COMMIT: { 9624 dtrace_action_t *act = ecb->dte_action; 9625 9626 for (; act != NULL; act = act->dta_next) { 9627 if (act->dta_kind == DTRACEACT_COMMIT) 9628 return (EINVAL); 9629 } 9630 9631 if (dp == NULL) 9632 return (EINVAL); 9633 break; 9634 } 9635 9636 default: 9637 return (EINVAL); 9638 } 9639 9640 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 9641 /* 9642 * If this is a data-storing action or a speculate, 9643 * we must be sure that there isn't a commit on the 9644 * action chain. 9645 */ 9646 dtrace_action_t *act = ecb->dte_action; 9647 9648 for (; act != NULL; act = act->dta_next) { 9649 if (act->dta_kind == DTRACEACT_COMMIT) 9650 return (EINVAL); 9651 } 9652 } 9653 9654 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 9655 action->dta_rec.dtrd_size = size; 9656 } 9657 9658 action->dta_refcnt = 1; 9659 rec = &action->dta_rec; 9660 size = rec->dtrd_size; 9661 9662 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 9663 if (!(size & mask)) { 9664 align = mask + 1; 9665 break; 9666 } 9667 } 9668 9669 action->dta_kind = desc->dtad_kind; 9670 9671 if ((action->dta_difo = dp) != NULL) 9672 dtrace_difo_hold(dp); 9673 9674 rec->dtrd_action = action->dta_kind; 9675 rec->dtrd_arg = arg; 9676 rec->dtrd_uarg = desc->dtad_uarg; 9677 rec->dtrd_alignment = (uint16_t)align; 9678 rec->dtrd_format = format; 9679 9680 if ((last = ecb->dte_action_last) != NULL) { 9681 ASSERT(ecb->dte_action != NULL); 9682 action->dta_prev = last; 9683 last->dta_next = action; 9684 } else { 9685 ASSERT(ecb->dte_action == NULL); 9686 ecb->dte_action = action; 9687 } 9688 9689 ecb->dte_action_last = action; 9690 9691 return (0); 9692 } 9693 9694 static void 9695 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 9696 { 9697 dtrace_action_t *act = ecb->dte_action, *next; 9698 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 9699 dtrace_difo_t *dp; 9700 uint16_t format; 9701 9702 if (act != NULL && act->dta_refcnt > 1) { 9703 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 9704 act->dta_refcnt--; 9705 } else { 9706 for (; act != NULL; act = next) { 9707 next = act->dta_next; 9708 ASSERT(next != NULL || act == ecb->dte_action_last); 9709 ASSERT(act->dta_refcnt == 1); 9710 9711 if ((format = act->dta_rec.dtrd_format) != 0) 9712 dtrace_format_remove(ecb->dte_state, format); 9713 9714 if ((dp = act->dta_difo) != NULL) 9715 dtrace_difo_release(dp, vstate); 9716 9717 if (DTRACEACT_ISAGG(act->dta_kind)) { 9718 dtrace_ecb_aggregation_destroy(ecb, act); 9719 } else { 9720 kmem_free(act, sizeof (dtrace_action_t)); 9721 } 9722 } 9723 } 9724 9725 ecb->dte_action = NULL; 9726 ecb->dte_action_last = NULL; 9727 ecb->dte_size = sizeof (dtrace_epid_t); 9728 } 9729 9730 static void 9731 dtrace_ecb_disable(dtrace_ecb_t *ecb) 9732 { 9733 /* 9734 * We disable the ECB by removing it from its probe. 9735 */ 9736 dtrace_ecb_t *pecb, *prev = NULL; 9737 dtrace_probe_t *probe = ecb->dte_probe; 9738 9739 ASSERT(MUTEX_HELD(&dtrace_lock)); 9740 9741 if (probe == NULL) { 9742 /* 9743 * This is the NULL probe; there is nothing to disable. 9744 */ 9745 return; 9746 } 9747 9748 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 9749 if (pecb == ecb) 9750 break; 9751 prev = pecb; 9752 } 9753 9754 ASSERT(pecb != NULL); 9755 9756 if (prev == NULL) { 9757 probe->dtpr_ecb = ecb->dte_next; 9758 } else { 9759 prev->dte_next = ecb->dte_next; 9760 } 9761 9762 if (ecb == probe->dtpr_ecb_last) { 9763 ASSERT(ecb->dte_next == NULL); 9764 probe->dtpr_ecb_last = prev; 9765 } 9766 9767 /* 9768 * The ECB has been disconnected from the probe; now sync to assure 9769 * that all CPUs have seen the change before returning. 9770 */ 9771 dtrace_sync(); 9772 9773 if (probe->dtpr_ecb == NULL) { 9774 /* 9775 * That was the last ECB on the probe; clear the predicate 9776 * cache ID for the probe, disable it and sync one more time 9777 * to assure that we'll never hit it again. 9778 */ 9779 dtrace_provider_t *prov = probe->dtpr_provider; 9780 9781 ASSERT(ecb->dte_next == NULL); 9782 ASSERT(probe->dtpr_ecb_last == NULL); 9783 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 9784 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 9785 probe->dtpr_id, probe->dtpr_arg); 9786 dtrace_sync(); 9787 } else { 9788 /* 9789 * There is at least one ECB remaining on the probe. If there 9790 * is _exactly_ one, set the probe's predicate cache ID to be 9791 * the predicate cache ID of the remaining ECB. 9792 */ 9793 ASSERT(probe->dtpr_ecb_last != NULL); 9794 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 9795 9796 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 9797 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 9798 9799 ASSERT(probe->dtpr_ecb->dte_next == NULL); 9800 9801 if (p != NULL) 9802 probe->dtpr_predcache = p->dtp_cacheid; 9803 } 9804 9805 ecb->dte_next = NULL; 9806 } 9807 } 9808 9809 static void 9810 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 9811 { 9812 dtrace_state_t *state = ecb->dte_state; 9813 dtrace_vstate_t *vstate = &state->dts_vstate; 9814 dtrace_predicate_t *pred; 9815 dtrace_epid_t epid = ecb->dte_epid; 9816 9817 ASSERT(MUTEX_HELD(&dtrace_lock)); 9818 ASSERT(ecb->dte_next == NULL); 9819 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 9820 9821 if ((pred = ecb->dte_predicate) != NULL) 9822 dtrace_predicate_release(pred, vstate); 9823 9824 dtrace_ecb_action_remove(ecb); 9825 9826 ASSERT(state->dts_ecbs[epid - 1] == ecb); 9827 state->dts_ecbs[epid - 1] = NULL; 9828 9829 kmem_free(ecb, sizeof (dtrace_ecb_t)); 9830 } 9831 9832 static dtrace_ecb_t * 9833 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 9834 dtrace_enabling_t *enab) 9835 { 9836 dtrace_ecb_t *ecb; 9837 dtrace_predicate_t *pred; 9838 dtrace_actdesc_t *act; 9839 dtrace_provider_t *prov; 9840 dtrace_ecbdesc_t *desc = enab->dten_current; 9841 9842 ASSERT(MUTEX_HELD(&dtrace_lock)); 9843 ASSERT(state != NULL); 9844 9845 ecb = dtrace_ecb_add(state, probe); 9846 ecb->dte_uarg = desc->dted_uarg; 9847 9848 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 9849 dtrace_predicate_hold(pred); 9850 ecb->dte_predicate = pred; 9851 } 9852 9853 if (probe != NULL) { 9854 /* 9855 * If the provider shows more leg than the consumer is old 9856 * enough to see, we need to enable the appropriate implicit 9857 * predicate bits to prevent the ecb from activating at 9858 * revealing times. 9859 * 9860 * Providers specifying DTRACE_PRIV_USER at register time 9861 * are stating that they need the /proc-style privilege 9862 * model to be enforced, and this is what DTRACE_COND_OWNER 9863 * and DTRACE_COND_ZONEOWNER will then do at probe time. 9864 */ 9865 prov = probe->dtpr_provider; 9866 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 9867 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9868 ecb->dte_cond |= DTRACE_COND_OWNER; 9869 9870 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 9871 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9872 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 9873 9874 /* 9875 * If the provider shows us kernel innards and the user 9876 * is lacking sufficient privilege, enable the 9877 * DTRACE_COND_USERMODE implicit predicate. 9878 */ 9879 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 9880 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 9881 ecb->dte_cond |= DTRACE_COND_USERMODE; 9882 } 9883 9884 if (dtrace_ecb_create_cache != NULL) { 9885 /* 9886 * If we have a cached ecb, we'll use its action list instead 9887 * of creating our own (saving both time and space). 9888 */ 9889 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 9890 dtrace_action_t *act = cached->dte_action; 9891 9892 if (act != NULL) { 9893 ASSERT(act->dta_refcnt > 0); 9894 act->dta_refcnt++; 9895 ecb->dte_action = act; 9896 ecb->dte_action_last = cached->dte_action_last; 9897 ecb->dte_needed = cached->dte_needed; 9898 ecb->dte_size = cached->dte_size; 9899 ecb->dte_alignment = cached->dte_alignment; 9900 } 9901 9902 return (ecb); 9903 } 9904 9905 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 9906 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 9907 dtrace_ecb_destroy(ecb); 9908 return (NULL); 9909 } 9910 } 9911 9912 dtrace_ecb_resize(ecb); 9913 9914 return (dtrace_ecb_create_cache = ecb); 9915 } 9916 9917 static int 9918 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 9919 { 9920 dtrace_ecb_t *ecb; 9921 dtrace_enabling_t *enab = arg; 9922 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 9923 9924 ASSERT(state != NULL); 9925 9926 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 9927 /* 9928 * This probe was created in a generation for which this 9929 * enabling has previously created ECBs; we don't want to 9930 * enable it again, so just kick out. 9931 */ 9932 return (DTRACE_MATCH_NEXT); 9933 } 9934 9935 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 9936 return (DTRACE_MATCH_DONE); 9937 9938 if (dtrace_ecb_enable(ecb) < 0) 9939 return (DTRACE_MATCH_FAIL); 9940 9941 return (DTRACE_MATCH_NEXT); 9942 } 9943 9944 static dtrace_ecb_t * 9945 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 9946 { 9947 dtrace_ecb_t *ecb; 9948 9949 ASSERT(MUTEX_HELD(&dtrace_lock)); 9950 9951 if (id == 0 || id > state->dts_necbs) 9952 return (NULL); 9953 9954 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 9955 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 9956 9957 return (state->dts_ecbs[id - 1]); 9958 } 9959 9960 static dtrace_aggregation_t * 9961 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 9962 { 9963 dtrace_aggregation_t *agg; 9964 9965 ASSERT(MUTEX_HELD(&dtrace_lock)); 9966 9967 if (id == 0 || id > state->dts_naggregations) 9968 return (NULL); 9969 9970 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 9971 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 9972 agg->dtag_id == id); 9973 9974 return (state->dts_aggregations[id - 1]); 9975 } 9976 9977 /* 9978 * DTrace Buffer Functions 9979 * 9980 * The following functions manipulate DTrace buffers. Most of these functions 9981 * are called in the context of establishing or processing consumer state; 9982 * exceptions are explicitly noted. 9983 */ 9984 9985 /* 9986 * Note: called from cross call context. This function switches the two 9987 * buffers on a given CPU. The atomicity of this operation is assured by 9988 * disabling interrupts while the actual switch takes place; the disabling of 9989 * interrupts serializes the execution with any execution of dtrace_probe() on 9990 * the same CPU. 9991 */ 9992 static void 9993 dtrace_buffer_switch(dtrace_buffer_t *buf) 9994 { 9995 caddr_t tomax = buf->dtb_tomax; 9996 caddr_t xamot = buf->dtb_xamot; 9997 dtrace_icookie_t cookie; 9998 9999 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10000 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 10001 10002 cookie = dtrace_interrupt_disable(); 10003 buf->dtb_tomax = xamot; 10004 buf->dtb_xamot = tomax; 10005 buf->dtb_xamot_drops = buf->dtb_drops; 10006 buf->dtb_xamot_offset = buf->dtb_offset; 10007 buf->dtb_xamot_errors = buf->dtb_errors; 10008 buf->dtb_xamot_flags = buf->dtb_flags; 10009 buf->dtb_offset = 0; 10010 buf->dtb_drops = 0; 10011 buf->dtb_errors = 0; 10012 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 10013 dtrace_interrupt_enable(cookie); 10014 } 10015 10016 /* 10017 * Note: called from cross call context. This function activates a buffer 10018 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 10019 * is guaranteed by the disabling of interrupts. 10020 */ 10021 static void 10022 dtrace_buffer_activate(dtrace_state_t *state) 10023 { 10024 dtrace_buffer_t *buf; 10025 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 10026 10027 buf = &state->dts_buffer[CPU->cpu_id]; 10028 10029 if (buf->dtb_tomax != NULL) { 10030 /* 10031 * We might like to assert that the buffer is marked inactive, 10032 * but this isn't necessarily true: the buffer for the CPU 10033 * that processes the BEGIN probe has its buffer activated 10034 * manually. In this case, we take the (harmless) action 10035 * re-clearing the bit INACTIVE bit. 10036 */ 10037 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 10038 } 10039 10040 dtrace_interrupt_enable(cookie); 10041 } 10042 10043 static int 10044 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 10045 processorid_t cpu) 10046 { 10047 cpu_t *cp; 10048 dtrace_buffer_t *buf; 10049 10050 ASSERT(MUTEX_HELD(&cpu_lock)); 10051 ASSERT(MUTEX_HELD(&dtrace_lock)); 10052 10053 if (size > dtrace_nonroot_maxsize && 10054 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 10055 return (EFBIG); 10056 10057 cp = cpu_list; 10058 10059 do { 10060 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10061 continue; 10062 10063 buf = &bufs[cp->cpu_id]; 10064 10065 /* 10066 * If there is already a buffer allocated for this CPU, it 10067 * is only possible that this is a DR event. In this case, 10068 * the buffer size must match our specified size. 10069 */ 10070 if (buf->dtb_tomax != NULL) { 10071 ASSERT(buf->dtb_size == size); 10072 continue; 10073 } 10074 10075 ASSERT(buf->dtb_xamot == NULL); 10076 10077 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 10078 goto err; 10079 10080 buf->dtb_size = size; 10081 buf->dtb_flags = flags; 10082 buf->dtb_offset = 0; 10083 buf->dtb_drops = 0; 10084 10085 if (flags & DTRACEBUF_NOSWITCH) 10086 continue; 10087 10088 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 10089 goto err; 10090 } while ((cp = cp->cpu_next) != cpu_list); 10091 10092 return (0); 10093 10094 err: 10095 cp = cpu_list; 10096 10097 do { 10098 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10099 continue; 10100 10101 buf = &bufs[cp->cpu_id]; 10102 10103 if (buf->dtb_xamot != NULL) { 10104 ASSERT(buf->dtb_tomax != NULL); 10105 ASSERT(buf->dtb_size == size); 10106 kmem_free(buf->dtb_xamot, size); 10107 } 10108 10109 if (buf->dtb_tomax != NULL) { 10110 ASSERT(buf->dtb_size == size); 10111 kmem_free(buf->dtb_tomax, size); 10112 } 10113 10114 buf->dtb_tomax = NULL; 10115 buf->dtb_xamot = NULL; 10116 buf->dtb_size = 0; 10117 } while ((cp = cp->cpu_next) != cpu_list); 10118 10119 return (ENOMEM); 10120 } 10121 10122 /* 10123 * Note: called from probe context. This function just increments the drop 10124 * count on a buffer. It has been made a function to allow for the 10125 * possibility of understanding the source of mysterious drop counts. (A 10126 * problem for which one may be particularly disappointed that DTrace cannot 10127 * be used to understand DTrace.) 10128 */ 10129 static void 10130 dtrace_buffer_drop(dtrace_buffer_t *buf) 10131 { 10132 buf->dtb_drops++; 10133 } 10134 10135 /* 10136 * Note: called from probe context. This function is called to reserve space 10137 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 10138 * mstate. Returns the new offset in the buffer, or a negative value if an 10139 * error has occurred. 10140 */ 10141 static intptr_t 10142 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 10143 dtrace_state_t *state, dtrace_mstate_t *mstate) 10144 { 10145 intptr_t offs = buf->dtb_offset, soffs; 10146 intptr_t woffs; 10147 caddr_t tomax; 10148 size_t total; 10149 10150 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 10151 return (-1); 10152 10153 if ((tomax = buf->dtb_tomax) == NULL) { 10154 dtrace_buffer_drop(buf); 10155 return (-1); 10156 } 10157 10158 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 10159 while (offs & (align - 1)) { 10160 /* 10161 * Assert that our alignment is off by a number which 10162 * is itself sizeof (uint32_t) aligned. 10163 */ 10164 ASSERT(!((align - (offs & (align - 1))) & 10165 (sizeof (uint32_t) - 1))); 10166 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10167 offs += sizeof (uint32_t); 10168 } 10169 10170 if ((soffs = offs + needed) > buf->dtb_size) { 10171 dtrace_buffer_drop(buf); 10172 return (-1); 10173 } 10174 10175 if (mstate == NULL) 10176 return (offs); 10177 10178 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10179 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10180 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10181 10182 return (offs); 10183 } 10184 10185 if (buf->dtb_flags & DTRACEBUF_FILL) { 10186 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10187 (buf->dtb_flags & DTRACEBUF_FULL)) 10188 return (-1); 10189 goto out; 10190 } 10191 10192 total = needed + (offs & (align - 1)); 10193 10194 /* 10195 * For a ring buffer, life is quite a bit more complicated. Before 10196 * we can store any padding, we need to adjust our wrapping offset. 10197 * (If we've never before wrapped or we're not about to, no adjustment 10198 * is required.) 10199 */ 10200 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10201 offs + total > buf->dtb_size) { 10202 woffs = buf->dtb_xamot_offset; 10203 10204 if (offs + total > buf->dtb_size) { 10205 /* 10206 * We can't fit in the end of the buffer. First, a 10207 * sanity check that we can fit in the buffer at all. 10208 */ 10209 if (total > buf->dtb_size) { 10210 dtrace_buffer_drop(buf); 10211 return (-1); 10212 } 10213 10214 /* 10215 * We're going to be storing at the top of the buffer, 10216 * so now we need to deal with the wrapped offset. We 10217 * only reset our wrapped offset to 0 if it is 10218 * currently greater than the current offset. If it 10219 * is less than the current offset, it is because a 10220 * previous allocation induced a wrap -- but the 10221 * allocation didn't subsequently take the space due 10222 * to an error or false predicate evaluation. In this 10223 * case, we'll just leave the wrapped offset alone: if 10224 * the wrapped offset hasn't been advanced far enough 10225 * for this allocation, it will be adjusted in the 10226 * lower loop. 10227 */ 10228 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10229 if (woffs >= offs) 10230 woffs = 0; 10231 } else { 10232 woffs = 0; 10233 } 10234 10235 /* 10236 * Now we know that we're going to be storing to the 10237 * top of the buffer and that there is room for us 10238 * there. We need to clear the buffer from the current 10239 * offset to the end (there may be old gunk there). 10240 */ 10241 while (offs < buf->dtb_size) 10242 tomax[offs++] = 0; 10243 10244 /* 10245 * We need to set our offset to zero. And because we 10246 * are wrapping, we need to set the bit indicating as 10247 * much. We can also adjust our needed space back 10248 * down to the space required by the ECB -- we know 10249 * that the top of the buffer is aligned. 10250 */ 10251 offs = 0; 10252 total = needed; 10253 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10254 } else { 10255 /* 10256 * There is room for us in the buffer, so we simply 10257 * need to check the wrapped offset. 10258 */ 10259 if (woffs < offs) { 10260 /* 10261 * The wrapped offset is less than the offset. 10262 * This can happen if we allocated buffer space 10263 * that induced a wrap, but then we didn't 10264 * subsequently take the space due to an error 10265 * or false predicate evaluation. This is 10266 * okay; we know that _this_ allocation isn't 10267 * going to induce a wrap. We still can't 10268 * reset the wrapped offset to be zero, 10269 * however: the space may have been trashed in 10270 * the previous failed probe attempt. But at 10271 * least the wrapped offset doesn't need to 10272 * be adjusted at all... 10273 */ 10274 goto out; 10275 } 10276 } 10277 10278 while (offs + total > woffs) { 10279 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10280 size_t size; 10281 10282 if (epid == DTRACE_EPIDNONE) { 10283 size = sizeof (uint32_t); 10284 } else { 10285 ASSERT(epid <= state->dts_necbs); 10286 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10287 10288 size = state->dts_ecbs[epid - 1]->dte_size; 10289 } 10290 10291 ASSERT(woffs + size <= buf->dtb_size); 10292 ASSERT(size != 0); 10293 10294 if (woffs + size == buf->dtb_size) { 10295 /* 10296 * We've reached the end of the buffer; we want 10297 * to set the wrapped offset to 0 and break 10298 * out. However, if the offs is 0, then we're 10299 * in a strange edge-condition: the amount of 10300 * space that we want to reserve plus the size 10301 * of the record that we're overwriting is 10302 * greater than the size of the buffer. This 10303 * is problematic because if we reserve the 10304 * space but subsequently don't consume it (due 10305 * to a failed predicate or error) the wrapped 10306 * offset will be 0 -- yet the EPID at offset 0 10307 * will not be committed. This situation is 10308 * relatively easy to deal with: if we're in 10309 * this case, the buffer is indistinguishable 10310 * from one that hasn't wrapped; we need only 10311 * finish the job by clearing the wrapped bit, 10312 * explicitly setting the offset to be 0, and 10313 * zero'ing out the old data in the buffer. 10314 */ 10315 if (offs == 0) { 10316 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10317 buf->dtb_offset = 0; 10318 woffs = total; 10319 10320 while (woffs < buf->dtb_size) 10321 tomax[woffs++] = 0; 10322 } 10323 10324 woffs = 0; 10325 break; 10326 } 10327 10328 woffs += size; 10329 } 10330 10331 /* 10332 * We have a wrapped offset. It may be that the wrapped offset 10333 * has become zero -- that's okay. 10334 */ 10335 buf->dtb_xamot_offset = woffs; 10336 } 10337 10338 out: 10339 /* 10340 * Now we can plow the buffer with any necessary padding. 10341 */ 10342 while (offs & (align - 1)) { 10343 /* 10344 * Assert that our alignment is off by a number which 10345 * is itself sizeof (uint32_t) aligned. 10346 */ 10347 ASSERT(!((align - (offs & (align - 1))) & 10348 (sizeof (uint32_t) - 1))); 10349 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10350 offs += sizeof (uint32_t); 10351 } 10352 10353 if (buf->dtb_flags & DTRACEBUF_FILL) { 10354 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10355 buf->dtb_flags |= DTRACEBUF_FULL; 10356 return (-1); 10357 } 10358 } 10359 10360 if (mstate == NULL) 10361 return (offs); 10362 10363 /* 10364 * For ring buffers and fill buffers, the scratch space is always 10365 * the inactive buffer. 10366 */ 10367 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10368 mstate->dtms_scratch_size = buf->dtb_size; 10369 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10370 10371 return (offs); 10372 } 10373 10374 static void 10375 dtrace_buffer_polish(dtrace_buffer_t *buf) 10376 { 10377 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10378 ASSERT(MUTEX_HELD(&dtrace_lock)); 10379 10380 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10381 return; 10382 10383 /* 10384 * We need to polish the ring buffer. There are three cases: 10385 * 10386 * - The first (and presumably most common) is that there is no gap 10387 * between the buffer offset and the wrapped offset. In this case, 10388 * there is nothing in the buffer that isn't valid data; we can 10389 * mark the buffer as polished and return. 10390 * 10391 * - The second (less common than the first but still more common 10392 * than the third) is that there is a gap between the buffer offset 10393 * and the wrapped offset, and the wrapped offset is larger than the 10394 * buffer offset. This can happen because of an alignment issue, or 10395 * can happen because of a call to dtrace_buffer_reserve() that 10396 * didn't subsequently consume the buffer space. In this case, 10397 * we need to zero the data from the buffer offset to the wrapped 10398 * offset. 10399 * 10400 * - The third (and least common) is that there is a gap between the 10401 * buffer offset and the wrapped offset, but the wrapped offset is 10402 * _less_ than the buffer offset. This can only happen because a 10403 * call to dtrace_buffer_reserve() induced a wrap, but the space 10404 * was not subsequently consumed. In this case, we need to zero the 10405 * space from the offset to the end of the buffer _and_ from the 10406 * top of the buffer to the wrapped offset. 10407 */ 10408 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10409 bzero(buf->dtb_tomax + buf->dtb_offset, 10410 buf->dtb_xamot_offset - buf->dtb_offset); 10411 } 10412 10413 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10414 bzero(buf->dtb_tomax + buf->dtb_offset, 10415 buf->dtb_size - buf->dtb_offset); 10416 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10417 } 10418 } 10419 10420 static void 10421 dtrace_buffer_free(dtrace_buffer_t *bufs) 10422 { 10423 int i; 10424 10425 for (i = 0; i < NCPU; i++) { 10426 dtrace_buffer_t *buf = &bufs[i]; 10427 10428 if (buf->dtb_tomax == NULL) { 10429 ASSERT(buf->dtb_xamot == NULL); 10430 ASSERT(buf->dtb_size == 0); 10431 continue; 10432 } 10433 10434 if (buf->dtb_xamot != NULL) { 10435 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10436 kmem_free(buf->dtb_xamot, buf->dtb_size); 10437 } 10438 10439 kmem_free(buf->dtb_tomax, buf->dtb_size); 10440 buf->dtb_size = 0; 10441 buf->dtb_tomax = NULL; 10442 buf->dtb_xamot = NULL; 10443 } 10444 } 10445 10446 /* 10447 * DTrace Enabling Functions 10448 */ 10449 static dtrace_enabling_t * 10450 dtrace_enabling_create(dtrace_vstate_t *vstate) 10451 { 10452 dtrace_enabling_t *enab; 10453 10454 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 10455 enab->dten_vstate = vstate; 10456 10457 return (enab); 10458 } 10459 10460 static void 10461 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 10462 { 10463 dtrace_ecbdesc_t **ndesc; 10464 size_t osize, nsize; 10465 10466 /* 10467 * We can't add to enablings after we've enabled them, or after we've 10468 * retained them. 10469 */ 10470 ASSERT(enab->dten_probegen == 0); 10471 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10472 10473 if (enab->dten_ndesc < enab->dten_maxdesc) { 10474 enab->dten_desc[enab->dten_ndesc++] = ecb; 10475 return; 10476 } 10477 10478 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10479 10480 if (enab->dten_maxdesc == 0) { 10481 enab->dten_maxdesc = 1; 10482 } else { 10483 enab->dten_maxdesc <<= 1; 10484 } 10485 10486 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 10487 10488 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10489 ndesc = kmem_zalloc(nsize, KM_SLEEP); 10490 bcopy(enab->dten_desc, ndesc, osize); 10491 kmem_free(enab->dten_desc, osize); 10492 10493 enab->dten_desc = ndesc; 10494 enab->dten_desc[enab->dten_ndesc++] = ecb; 10495 } 10496 10497 static void 10498 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 10499 dtrace_probedesc_t *pd) 10500 { 10501 dtrace_ecbdesc_t *new; 10502 dtrace_predicate_t *pred; 10503 dtrace_actdesc_t *act; 10504 10505 /* 10506 * We're going to create a new ECB description that matches the 10507 * specified ECB in every way, but has the specified probe description. 10508 */ 10509 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10510 10511 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 10512 dtrace_predicate_hold(pred); 10513 10514 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 10515 dtrace_actdesc_hold(act); 10516 10517 new->dted_action = ecb->dted_action; 10518 new->dted_pred = ecb->dted_pred; 10519 new->dted_probe = *pd; 10520 new->dted_uarg = ecb->dted_uarg; 10521 10522 dtrace_enabling_add(enab, new); 10523 } 10524 10525 static void 10526 dtrace_enabling_dump(dtrace_enabling_t *enab) 10527 { 10528 int i; 10529 10530 for (i = 0; i < enab->dten_ndesc; i++) { 10531 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 10532 10533 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 10534 desc->dtpd_provider, desc->dtpd_mod, 10535 desc->dtpd_func, desc->dtpd_name); 10536 } 10537 } 10538 10539 static void 10540 dtrace_enabling_destroy(dtrace_enabling_t *enab) 10541 { 10542 int i; 10543 dtrace_ecbdesc_t *ep; 10544 dtrace_vstate_t *vstate = enab->dten_vstate; 10545 10546 ASSERT(MUTEX_HELD(&dtrace_lock)); 10547 10548 for (i = 0; i < enab->dten_ndesc; i++) { 10549 dtrace_actdesc_t *act, *next; 10550 dtrace_predicate_t *pred; 10551 10552 ep = enab->dten_desc[i]; 10553 10554 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 10555 dtrace_predicate_release(pred, vstate); 10556 10557 for (act = ep->dted_action; act != NULL; act = next) { 10558 next = act->dtad_next; 10559 dtrace_actdesc_release(act, vstate); 10560 } 10561 10562 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10563 } 10564 10565 kmem_free(enab->dten_desc, 10566 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 10567 10568 /* 10569 * If this was a retained enabling, decrement the dts_nretained count 10570 * and take it off of the dtrace_retained list. 10571 */ 10572 if (enab->dten_prev != NULL || enab->dten_next != NULL || 10573 dtrace_retained == enab) { 10574 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10575 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 10576 enab->dten_vstate->dtvs_state->dts_nretained--; 10577 dtrace_retained_gen++; 10578 } 10579 10580 if (enab->dten_prev == NULL) { 10581 if (dtrace_retained == enab) { 10582 dtrace_retained = enab->dten_next; 10583 10584 if (dtrace_retained != NULL) 10585 dtrace_retained->dten_prev = NULL; 10586 } 10587 } else { 10588 ASSERT(enab != dtrace_retained); 10589 ASSERT(dtrace_retained != NULL); 10590 enab->dten_prev->dten_next = enab->dten_next; 10591 } 10592 10593 if (enab->dten_next != NULL) { 10594 ASSERT(dtrace_retained != NULL); 10595 enab->dten_next->dten_prev = enab->dten_prev; 10596 } 10597 10598 kmem_free(enab, sizeof (dtrace_enabling_t)); 10599 } 10600 10601 static int 10602 dtrace_enabling_retain(dtrace_enabling_t *enab) 10603 { 10604 dtrace_state_t *state; 10605 10606 ASSERT(MUTEX_HELD(&dtrace_lock)); 10607 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10608 ASSERT(enab->dten_vstate != NULL); 10609 10610 state = enab->dten_vstate->dtvs_state; 10611 ASSERT(state != NULL); 10612 10613 /* 10614 * We only allow each state to retain dtrace_retain_max enablings. 10615 */ 10616 if (state->dts_nretained >= dtrace_retain_max) 10617 return (ENOSPC); 10618 10619 state->dts_nretained++; 10620 dtrace_retained_gen++; 10621 10622 if (dtrace_retained == NULL) { 10623 dtrace_retained = enab; 10624 return (0); 10625 } 10626 10627 enab->dten_next = dtrace_retained; 10628 dtrace_retained->dten_prev = enab; 10629 dtrace_retained = enab; 10630 10631 return (0); 10632 } 10633 10634 static int 10635 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 10636 dtrace_probedesc_t *create) 10637 { 10638 dtrace_enabling_t *new, *enab; 10639 int found = 0, err = ENOENT; 10640 10641 ASSERT(MUTEX_HELD(&dtrace_lock)); 10642 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 10643 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 10644 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 10645 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 10646 10647 new = dtrace_enabling_create(&state->dts_vstate); 10648 10649 /* 10650 * Iterate over all retained enablings, looking for enablings that 10651 * match the specified state. 10652 */ 10653 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10654 int i; 10655 10656 /* 10657 * dtvs_state can only be NULL for helper enablings -- and 10658 * helper enablings can't be retained. 10659 */ 10660 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10661 10662 if (enab->dten_vstate->dtvs_state != state) 10663 continue; 10664 10665 /* 10666 * Now iterate over each probe description; we're looking for 10667 * an exact match to the specified probe description. 10668 */ 10669 for (i = 0; i < enab->dten_ndesc; i++) { 10670 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10671 dtrace_probedesc_t *pd = &ep->dted_probe; 10672 10673 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 10674 continue; 10675 10676 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 10677 continue; 10678 10679 if (strcmp(pd->dtpd_func, match->dtpd_func)) 10680 continue; 10681 10682 if (strcmp(pd->dtpd_name, match->dtpd_name)) 10683 continue; 10684 10685 /* 10686 * We have a winning probe! Add it to our growing 10687 * enabling. 10688 */ 10689 found = 1; 10690 dtrace_enabling_addlike(new, ep, create); 10691 } 10692 } 10693 10694 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 10695 dtrace_enabling_destroy(new); 10696 return (err); 10697 } 10698 10699 return (0); 10700 } 10701 10702 static void 10703 dtrace_enabling_retract(dtrace_state_t *state) 10704 { 10705 dtrace_enabling_t *enab, *next; 10706 10707 ASSERT(MUTEX_HELD(&dtrace_lock)); 10708 10709 /* 10710 * Iterate over all retained enablings, destroy the enablings retained 10711 * for the specified state. 10712 */ 10713 for (enab = dtrace_retained; enab != NULL; enab = next) { 10714 next = enab->dten_next; 10715 10716 /* 10717 * dtvs_state can only be NULL for helper enablings -- and 10718 * helper enablings can't be retained. 10719 */ 10720 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10721 10722 if (enab->dten_vstate->dtvs_state == state) { 10723 ASSERT(state->dts_nretained > 0); 10724 dtrace_enabling_destroy(enab); 10725 } 10726 } 10727 10728 ASSERT(state->dts_nretained == 0); 10729 } 10730 10731 static int 10732 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 10733 { 10734 int i = 0; 10735 int total_matched = 0, matched = 0; 10736 10737 ASSERT(MUTEX_HELD(&cpu_lock)); 10738 ASSERT(MUTEX_HELD(&dtrace_lock)); 10739 10740 for (i = 0; i < enab->dten_ndesc; i++) { 10741 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10742 10743 enab->dten_current = ep; 10744 enab->dten_error = 0; 10745 10746 /* 10747 * If a provider failed to enable a probe then get out and 10748 * let the consumer know we failed. 10749 */ 10750 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 10751 return (EBUSY); 10752 10753 total_matched += matched; 10754 10755 if (enab->dten_error != 0) { 10756 /* 10757 * If we get an error half-way through enabling the 10758 * probes, we kick out -- perhaps with some number of 10759 * them enabled. Leaving enabled probes enabled may 10760 * be slightly confusing for user-level, but we expect 10761 * that no one will attempt to actually drive on in 10762 * the face of such errors. If this is an anonymous 10763 * enabling (indicated with a NULL nmatched pointer), 10764 * we cmn_err() a message. We aren't expecting to 10765 * get such an error -- such as it can exist at all, 10766 * it would be a result of corrupted DOF in the driver 10767 * properties. 10768 */ 10769 if (nmatched == NULL) { 10770 cmn_err(CE_WARN, "dtrace_enabling_match() " 10771 "error on %p: %d", (void *)ep, 10772 enab->dten_error); 10773 } 10774 10775 return (enab->dten_error); 10776 } 10777 } 10778 10779 enab->dten_probegen = dtrace_probegen; 10780 if (nmatched != NULL) 10781 *nmatched = total_matched; 10782 10783 return (0); 10784 } 10785 10786 static void 10787 dtrace_enabling_matchall(void) 10788 { 10789 dtrace_enabling_t *enab; 10790 10791 mutex_enter(&cpu_lock); 10792 mutex_enter(&dtrace_lock); 10793 10794 /* 10795 * Iterate over all retained enablings to see if any probes match 10796 * against them. We only perform this operation on enablings for which 10797 * we have sufficient permissions by virtue of being in the global zone 10798 * or in the same zone as the DTrace client. Because we can be called 10799 * after dtrace_detach() has been called, we cannot assert that there 10800 * are retained enablings. We can safely load from dtrace_retained, 10801 * however: the taskq_destroy() at the end of dtrace_detach() will 10802 * block pending our completion. 10803 */ 10804 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10805 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 10806 10807 if (INGLOBALZONE(curproc) || 10808 cr != NULL && getzoneid() == crgetzoneid(cr)) 10809 (void) dtrace_enabling_match(enab, NULL); 10810 } 10811 10812 mutex_exit(&dtrace_lock); 10813 mutex_exit(&cpu_lock); 10814 } 10815 10816 /* 10817 * If an enabling is to be enabled without having matched probes (that is, if 10818 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 10819 * enabling must be _primed_ by creating an ECB for every ECB description. 10820 * This must be done to assure that we know the number of speculations, the 10821 * number of aggregations, the minimum buffer size needed, etc. before we 10822 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 10823 * enabling any probes, we create ECBs for every ECB decription, but with a 10824 * NULL probe -- which is exactly what this function does. 10825 */ 10826 static void 10827 dtrace_enabling_prime(dtrace_state_t *state) 10828 { 10829 dtrace_enabling_t *enab; 10830 int i; 10831 10832 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10833 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10834 10835 if (enab->dten_vstate->dtvs_state != state) 10836 continue; 10837 10838 /* 10839 * We don't want to prime an enabling more than once, lest 10840 * we allow a malicious user to induce resource exhaustion. 10841 * (The ECBs that result from priming an enabling aren't 10842 * leaked -- but they also aren't deallocated until the 10843 * consumer state is destroyed.) 10844 */ 10845 if (enab->dten_primed) 10846 continue; 10847 10848 for (i = 0; i < enab->dten_ndesc; i++) { 10849 enab->dten_current = enab->dten_desc[i]; 10850 (void) dtrace_probe_enable(NULL, enab); 10851 } 10852 10853 enab->dten_primed = 1; 10854 } 10855 } 10856 10857 /* 10858 * Called to indicate that probes should be provided due to retained 10859 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 10860 * must take an initial lap through the enabling calling the dtps_provide() 10861 * entry point explicitly to allow for autocreated probes. 10862 */ 10863 static void 10864 dtrace_enabling_provide(dtrace_provider_t *prv) 10865 { 10866 int i, all = 0; 10867 dtrace_probedesc_t desc; 10868 dtrace_genid_t gen; 10869 10870 ASSERT(MUTEX_HELD(&dtrace_lock)); 10871 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 10872 10873 if (prv == NULL) { 10874 all = 1; 10875 prv = dtrace_provider; 10876 } 10877 10878 do { 10879 dtrace_enabling_t *enab; 10880 void *parg = prv->dtpv_arg; 10881 10882 retry: 10883 gen = dtrace_retained_gen; 10884 for (enab = dtrace_retained; enab != NULL; 10885 enab = enab->dten_next) { 10886 for (i = 0; i < enab->dten_ndesc; i++) { 10887 desc = enab->dten_desc[i]->dted_probe; 10888 mutex_exit(&dtrace_lock); 10889 prv->dtpv_pops.dtps_provide(parg, &desc); 10890 mutex_enter(&dtrace_lock); 10891 /* 10892 * Process the retained enablings again if 10893 * they have changed while we weren't holding 10894 * dtrace_lock. 10895 */ 10896 if (gen != dtrace_retained_gen) 10897 goto retry; 10898 } 10899 } 10900 } while (all && (prv = prv->dtpv_next) != NULL); 10901 10902 mutex_exit(&dtrace_lock); 10903 dtrace_probe_provide(NULL, all ? NULL : prv); 10904 mutex_enter(&dtrace_lock); 10905 } 10906 10907 /* 10908 * DTrace DOF Functions 10909 */ 10910 /*ARGSUSED*/ 10911 static void 10912 dtrace_dof_error(dof_hdr_t *dof, const char *str) 10913 { 10914 if (dtrace_err_verbose) 10915 cmn_err(CE_WARN, "failed to process DOF: %s", str); 10916 10917 #ifdef DTRACE_ERRDEBUG 10918 dtrace_errdebug(str); 10919 #endif 10920 } 10921 10922 /* 10923 * Create DOF out of a currently enabled state. Right now, we only create 10924 * DOF containing the run-time options -- but this could be expanded to create 10925 * complete DOF representing the enabled state. 10926 */ 10927 static dof_hdr_t * 10928 dtrace_dof_create(dtrace_state_t *state) 10929 { 10930 dof_hdr_t *dof; 10931 dof_sec_t *sec; 10932 dof_optdesc_t *opt; 10933 int i, len = sizeof (dof_hdr_t) + 10934 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 10935 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10936 10937 ASSERT(MUTEX_HELD(&dtrace_lock)); 10938 10939 dof = kmem_zalloc(len, KM_SLEEP); 10940 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 10941 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 10942 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 10943 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 10944 10945 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 10946 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 10947 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 10948 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 10949 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 10950 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 10951 10952 dof->dofh_flags = 0; 10953 dof->dofh_hdrsize = sizeof (dof_hdr_t); 10954 dof->dofh_secsize = sizeof (dof_sec_t); 10955 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 10956 dof->dofh_secoff = sizeof (dof_hdr_t); 10957 dof->dofh_loadsz = len; 10958 dof->dofh_filesz = len; 10959 dof->dofh_pad = 0; 10960 10961 /* 10962 * Fill in the option section header... 10963 */ 10964 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 10965 sec->dofs_type = DOF_SECT_OPTDESC; 10966 sec->dofs_align = sizeof (uint64_t); 10967 sec->dofs_flags = DOF_SECF_LOAD; 10968 sec->dofs_entsize = sizeof (dof_optdesc_t); 10969 10970 opt = (dof_optdesc_t *)((uintptr_t)sec + 10971 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 10972 10973 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 10974 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10975 10976 for (i = 0; i < DTRACEOPT_MAX; i++) { 10977 opt[i].dofo_option = i; 10978 opt[i].dofo_strtab = DOF_SECIDX_NONE; 10979 opt[i].dofo_value = state->dts_options[i]; 10980 } 10981 10982 return (dof); 10983 } 10984 10985 static dof_hdr_t * 10986 dtrace_dof_copyin(uintptr_t uarg, int *errp) 10987 { 10988 dof_hdr_t hdr, *dof; 10989 10990 ASSERT(!MUTEX_HELD(&dtrace_lock)); 10991 10992 /* 10993 * First, we're going to copyin() the sizeof (dof_hdr_t). 10994 */ 10995 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 10996 dtrace_dof_error(NULL, "failed to copyin DOF header"); 10997 *errp = EFAULT; 10998 return (NULL); 10999 } 11000 11001 /* 11002 * Now we'll allocate the entire DOF and copy it in -- provided 11003 * that the length isn't outrageous. 11004 */ 11005 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 11006 dtrace_dof_error(&hdr, "load size exceeds maximum"); 11007 *errp = E2BIG; 11008 return (NULL); 11009 } 11010 11011 if (hdr.dofh_loadsz < sizeof (hdr)) { 11012 dtrace_dof_error(&hdr, "invalid load size"); 11013 *errp = EINVAL; 11014 return (NULL); 11015 } 11016 11017 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 11018 11019 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) { 11020 kmem_free(dof, hdr.dofh_loadsz); 11021 *errp = EFAULT; 11022 return (NULL); 11023 } 11024 11025 return (dof); 11026 } 11027 11028 static dof_hdr_t * 11029 dtrace_dof_property(const char *name) 11030 { 11031 uchar_t *buf; 11032 uint64_t loadsz; 11033 unsigned int len, i; 11034 dof_hdr_t *dof; 11035 11036 /* 11037 * Unfortunately, array of values in .conf files are always (and 11038 * only) interpreted to be integer arrays. We must read our DOF 11039 * as an integer array, and then squeeze it into a byte array. 11040 */ 11041 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 11042 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 11043 return (NULL); 11044 11045 for (i = 0; i < len; i++) 11046 buf[i] = (uchar_t)(((int *)buf)[i]); 11047 11048 if (len < sizeof (dof_hdr_t)) { 11049 ddi_prop_free(buf); 11050 dtrace_dof_error(NULL, "truncated header"); 11051 return (NULL); 11052 } 11053 11054 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 11055 ddi_prop_free(buf); 11056 dtrace_dof_error(NULL, "truncated DOF"); 11057 return (NULL); 11058 } 11059 11060 if (loadsz >= dtrace_dof_maxsize) { 11061 ddi_prop_free(buf); 11062 dtrace_dof_error(NULL, "oversized DOF"); 11063 return (NULL); 11064 } 11065 11066 dof = kmem_alloc(loadsz, KM_SLEEP); 11067 bcopy(buf, dof, loadsz); 11068 ddi_prop_free(buf); 11069 11070 return (dof); 11071 } 11072 11073 static void 11074 dtrace_dof_destroy(dof_hdr_t *dof) 11075 { 11076 kmem_free(dof, dof->dofh_loadsz); 11077 } 11078 11079 /* 11080 * Return the dof_sec_t pointer corresponding to a given section index. If the 11081 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 11082 * a type other than DOF_SECT_NONE is specified, the header is checked against 11083 * this type and NULL is returned if the types do not match. 11084 */ 11085 static dof_sec_t * 11086 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 11087 { 11088 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 11089 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 11090 11091 if (i >= dof->dofh_secnum) { 11092 dtrace_dof_error(dof, "referenced section index is invalid"); 11093 return (NULL); 11094 } 11095 11096 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 11097 dtrace_dof_error(dof, "referenced section is not loadable"); 11098 return (NULL); 11099 } 11100 11101 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 11102 dtrace_dof_error(dof, "referenced section is the wrong type"); 11103 return (NULL); 11104 } 11105 11106 return (sec); 11107 } 11108 11109 static dtrace_probedesc_t * 11110 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 11111 { 11112 dof_probedesc_t *probe; 11113 dof_sec_t *strtab; 11114 uintptr_t daddr = (uintptr_t)dof; 11115 uintptr_t str; 11116 size_t size; 11117 11118 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 11119 dtrace_dof_error(dof, "invalid probe section"); 11120 return (NULL); 11121 } 11122 11123 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11124 dtrace_dof_error(dof, "bad alignment in probe description"); 11125 return (NULL); 11126 } 11127 11128 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 11129 dtrace_dof_error(dof, "truncated probe description"); 11130 return (NULL); 11131 } 11132 11133 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 11134 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 11135 11136 if (strtab == NULL) 11137 return (NULL); 11138 11139 str = daddr + strtab->dofs_offset; 11140 size = strtab->dofs_size; 11141 11142 if (probe->dofp_provider >= strtab->dofs_size) { 11143 dtrace_dof_error(dof, "corrupt probe provider"); 11144 return (NULL); 11145 } 11146 11147 (void) strncpy(desc->dtpd_provider, 11148 (char *)(str + probe->dofp_provider), 11149 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 11150 11151 if (probe->dofp_mod >= strtab->dofs_size) { 11152 dtrace_dof_error(dof, "corrupt probe module"); 11153 return (NULL); 11154 } 11155 11156 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 11157 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 11158 11159 if (probe->dofp_func >= strtab->dofs_size) { 11160 dtrace_dof_error(dof, "corrupt probe function"); 11161 return (NULL); 11162 } 11163 11164 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 11165 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 11166 11167 if (probe->dofp_name >= strtab->dofs_size) { 11168 dtrace_dof_error(dof, "corrupt probe name"); 11169 return (NULL); 11170 } 11171 11172 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 11173 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 11174 11175 return (desc); 11176 } 11177 11178 static dtrace_difo_t * 11179 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11180 cred_t *cr) 11181 { 11182 dtrace_difo_t *dp; 11183 size_t ttl = 0; 11184 dof_difohdr_t *dofd; 11185 uintptr_t daddr = (uintptr_t)dof; 11186 size_t max = dtrace_difo_maxsize; 11187 int i, l, n; 11188 11189 static const struct { 11190 int section; 11191 int bufoffs; 11192 int lenoffs; 11193 int entsize; 11194 int align; 11195 const char *msg; 11196 } difo[] = { 11197 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11198 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11199 sizeof (dif_instr_t), "multiple DIF sections" }, 11200 11201 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11202 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11203 sizeof (uint64_t), "multiple integer tables" }, 11204 11205 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11206 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11207 sizeof (char), "multiple string tables" }, 11208 11209 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11210 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11211 sizeof (uint_t), "multiple variable tables" }, 11212 11213 { DOF_SECT_NONE, 0, 0, 0, NULL } 11214 }; 11215 11216 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11217 dtrace_dof_error(dof, "invalid DIFO header section"); 11218 return (NULL); 11219 } 11220 11221 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11222 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11223 return (NULL); 11224 } 11225 11226 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11227 sec->dofs_size % sizeof (dof_secidx_t)) { 11228 dtrace_dof_error(dof, "bad size in DIFO header"); 11229 return (NULL); 11230 } 11231 11232 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11233 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11234 11235 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11236 dp->dtdo_rtype = dofd->dofd_rtype; 11237 11238 for (l = 0; l < n; l++) { 11239 dof_sec_t *subsec; 11240 void **bufp; 11241 uint32_t *lenp; 11242 11243 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11244 dofd->dofd_links[l])) == NULL) 11245 goto err; /* invalid section link */ 11246 11247 if (ttl + subsec->dofs_size > max) { 11248 dtrace_dof_error(dof, "exceeds maximum size"); 11249 goto err; 11250 } 11251 11252 ttl += subsec->dofs_size; 11253 11254 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11255 if (subsec->dofs_type != difo[i].section) 11256 continue; 11257 11258 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11259 dtrace_dof_error(dof, "section not loaded"); 11260 goto err; 11261 } 11262 11263 if (subsec->dofs_align != difo[i].align) { 11264 dtrace_dof_error(dof, "bad alignment"); 11265 goto err; 11266 } 11267 11268 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11269 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11270 11271 if (*bufp != NULL) { 11272 dtrace_dof_error(dof, difo[i].msg); 11273 goto err; 11274 } 11275 11276 if (difo[i].entsize != subsec->dofs_entsize) { 11277 dtrace_dof_error(dof, "entry size mismatch"); 11278 goto err; 11279 } 11280 11281 if (subsec->dofs_entsize != 0 && 11282 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11283 dtrace_dof_error(dof, "corrupt entry size"); 11284 goto err; 11285 } 11286 11287 *lenp = subsec->dofs_size; 11288 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11289 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11290 *bufp, subsec->dofs_size); 11291 11292 if (subsec->dofs_entsize != 0) 11293 *lenp /= subsec->dofs_entsize; 11294 11295 break; 11296 } 11297 11298 /* 11299 * If we encounter a loadable DIFO sub-section that is not 11300 * known to us, assume this is a broken program and fail. 11301 */ 11302 if (difo[i].section == DOF_SECT_NONE && 11303 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11304 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11305 goto err; 11306 } 11307 } 11308 11309 if (dp->dtdo_buf == NULL) { 11310 /* 11311 * We can't have a DIF object without DIF text. 11312 */ 11313 dtrace_dof_error(dof, "missing DIF text"); 11314 goto err; 11315 } 11316 11317 /* 11318 * Before we validate the DIF object, run through the variable table 11319 * looking for the strings -- if any of their size are under, we'll set 11320 * their size to be the system-wide default string size. Note that 11321 * this should _not_ happen if the "strsize" option has been set -- 11322 * in this case, the compiler should have set the size to reflect the 11323 * setting of the option. 11324 */ 11325 for (i = 0; i < dp->dtdo_varlen; i++) { 11326 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11327 dtrace_diftype_t *t = &v->dtdv_type; 11328 11329 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 11330 continue; 11331 11332 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 11333 t->dtdt_size = dtrace_strsize_default; 11334 } 11335 11336 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 11337 goto err; 11338 11339 dtrace_difo_init(dp, vstate); 11340 return (dp); 11341 11342 err: 11343 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11344 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11345 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11346 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11347 11348 kmem_free(dp, sizeof (dtrace_difo_t)); 11349 return (NULL); 11350 } 11351 11352 static dtrace_predicate_t * 11353 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11354 cred_t *cr) 11355 { 11356 dtrace_difo_t *dp; 11357 11358 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 11359 return (NULL); 11360 11361 return (dtrace_predicate_create(dp)); 11362 } 11363 11364 static dtrace_actdesc_t * 11365 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11366 cred_t *cr) 11367 { 11368 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 11369 dof_actdesc_t *desc; 11370 dof_sec_t *difosec; 11371 size_t offs; 11372 uintptr_t daddr = (uintptr_t)dof; 11373 uint64_t arg; 11374 dtrace_actkind_t kind; 11375 11376 if (sec->dofs_type != DOF_SECT_ACTDESC) { 11377 dtrace_dof_error(dof, "invalid action section"); 11378 return (NULL); 11379 } 11380 11381 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 11382 dtrace_dof_error(dof, "truncated action description"); 11383 return (NULL); 11384 } 11385 11386 if (sec->dofs_align != sizeof (uint64_t)) { 11387 dtrace_dof_error(dof, "bad alignment in action description"); 11388 return (NULL); 11389 } 11390 11391 if (sec->dofs_size < sec->dofs_entsize) { 11392 dtrace_dof_error(dof, "section entry size exceeds total size"); 11393 return (NULL); 11394 } 11395 11396 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 11397 dtrace_dof_error(dof, "bad entry size in action description"); 11398 return (NULL); 11399 } 11400 11401 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 11402 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 11403 return (NULL); 11404 } 11405 11406 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 11407 desc = (dof_actdesc_t *)(daddr + 11408 (uintptr_t)sec->dofs_offset + offs); 11409 kind = (dtrace_actkind_t)desc->dofa_kind; 11410 11411 if (DTRACEACT_ISPRINTFLIKE(kind) && 11412 (kind != DTRACEACT_PRINTA || 11413 desc->dofa_strtab != DOF_SECIDX_NONE)) { 11414 dof_sec_t *strtab; 11415 char *str, *fmt; 11416 uint64_t i; 11417 11418 /* 11419 * printf()-like actions must have a format string. 11420 */ 11421 if ((strtab = dtrace_dof_sect(dof, 11422 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 11423 goto err; 11424 11425 str = (char *)((uintptr_t)dof + 11426 (uintptr_t)strtab->dofs_offset); 11427 11428 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 11429 if (str[i] == '\0') 11430 break; 11431 } 11432 11433 if (i >= strtab->dofs_size) { 11434 dtrace_dof_error(dof, "bogus format string"); 11435 goto err; 11436 } 11437 11438 if (i == desc->dofa_arg) { 11439 dtrace_dof_error(dof, "empty format string"); 11440 goto err; 11441 } 11442 11443 i -= desc->dofa_arg; 11444 fmt = kmem_alloc(i + 1, KM_SLEEP); 11445 bcopy(&str[desc->dofa_arg], fmt, i + 1); 11446 arg = (uint64_t)(uintptr_t)fmt; 11447 } else { 11448 if (kind == DTRACEACT_PRINTA) { 11449 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 11450 arg = 0; 11451 } else { 11452 arg = desc->dofa_arg; 11453 } 11454 } 11455 11456 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 11457 desc->dofa_uarg, arg); 11458 11459 if (last != NULL) { 11460 last->dtad_next = act; 11461 } else { 11462 first = act; 11463 } 11464 11465 last = act; 11466 11467 if (desc->dofa_difo == DOF_SECIDX_NONE) 11468 continue; 11469 11470 if ((difosec = dtrace_dof_sect(dof, 11471 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 11472 goto err; 11473 11474 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 11475 11476 if (act->dtad_difo == NULL) 11477 goto err; 11478 } 11479 11480 ASSERT(first != NULL); 11481 return (first); 11482 11483 err: 11484 for (act = first; act != NULL; act = next) { 11485 next = act->dtad_next; 11486 dtrace_actdesc_release(act, vstate); 11487 } 11488 11489 return (NULL); 11490 } 11491 11492 static dtrace_ecbdesc_t * 11493 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11494 cred_t *cr) 11495 { 11496 dtrace_ecbdesc_t *ep; 11497 dof_ecbdesc_t *ecb; 11498 dtrace_probedesc_t *desc; 11499 dtrace_predicate_t *pred = NULL; 11500 11501 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 11502 dtrace_dof_error(dof, "truncated ECB description"); 11503 return (NULL); 11504 } 11505 11506 if (sec->dofs_align != sizeof (uint64_t)) { 11507 dtrace_dof_error(dof, "bad alignment in ECB description"); 11508 return (NULL); 11509 } 11510 11511 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 11512 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 11513 11514 if (sec == NULL) 11515 return (NULL); 11516 11517 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11518 ep->dted_uarg = ecb->dofe_uarg; 11519 desc = &ep->dted_probe; 11520 11521 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 11522 goto err; 11523 11524 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 11525 if ((sec = dtrace_dof_sect(dof, 11526 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 11527 goto err; 11528 11529 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 11530 goto err; 11531 11532 ep->dted_pred.dtpdd_predicate = pred; 11533 } 11534 11535 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 11536 if ((sec = dtrace_dof_sect(dof, 11537 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 11538 goto err; 11539 11540 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 11541 11542 if (ep->dted_action == NULL) 11543 goto err; 11544 } 11545 11546 return (ep); 11547 11548 err: 11549 if (pred != NULL) 11550 dtrace_predicate_release(pred, vstate); 11551 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11552 return (NULL); 11553 } 11554 11555 /* 11556 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 11557 * specified DOF. At present, this amounts to simply adding 'ubase' to the 11558 * site of any user SETX relocations to account for load object base address. 11559 * In the future, if we need other relocations, this function can be extended. 11560 */ 11561 static int 11562 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 11563 { 11564 uintptr_t daddr = (uintptr_t)dof; 11565 dof_relohdr_t *dofr = 11566 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11567 dof_sec_t *ss, *rs, *ts; 11568 dof_relodesc_t *r; 11569 uint_t i, n; 11570 11571 if (sec->dofs_size < sizeof (dof_relohdr_t) || 11572 sec->dofs_align != sizeof (dof_secidx_t)) { 11573 dtrace_dof_error(dof, "invalid relocation header"); 11574 return (-1); 11575 } 11576 11577 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 11578 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 11579 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 11580 11581 if (ss == NULL || rs == NULL || ts == NULL) 11582 return (-1); /* dtrace_dof_error() has been called already */ 11583 11584 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 11585 rs->dofs_align != sizeof (uint64_t)) { 11586 dtrace_dof_error(dof, "invalid relocation section"); 11587 return (-1); 11588 } 11589 11590 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 11591 n = rs->dofs_size / rs->dofs_entsize; 11592 11593 for (i = 0; i < n; i++) { 11594 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 11595 11596 switch (r->dofr_type) { 11597 case DOF_RELO_NONE: 11598 break; 11599 case DOF_RELO_SETX: 11600 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 11601 sizeof (uint64_t) > ts->dofs_size) { 11602 dtrace_dof_error(dof, "bad relocation offset"); 11603 return (-1); 11604 } 11605 11606 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 11607 dtrace_dof_error(dof, "misaligned setx relo"); 11608 return (-1); 11609 } 11610 11611 *(uint64_t *)taddr += ubase; 11612 break; 11613 default: 11614 dtrace_dof_error(dof, "invalid relocation type"); 11615 return (-1); 11616 } 11617 11618 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 11619 } 11620 11621 return (0); 11622 } 11623 11624 /* 11625 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 11626 * header: it should be at the front of a memory region that is at least 11627 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 11628 * size. It need not be validated in any other way. 11629 */ 11630 static int 11631 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 11632 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 11633 { 11634 uint64_t len = dof->dofh_loadsz, seclen; 11635 uintptr_t daddr = (uintptr_t)dof; 11636 dtrace_ecbdesc_t *ep; 11637 dtrace_enabling_t *enab; 11638 uint_t i; 11639 11640 ASSERT(MUTEX_HELD(&dtrace_lock)); 11641 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 11642 11643 /* 11644 * Check the DOF header identification bytes. In addition to checking 11645 * valid settings, we also verify that unused bits/bytes are zeroed so 11646 * we can use them later without fear of regressing existing binaries. 11647 */ 11648 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 11649 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 11650 dtrace_dof_error(dof, "DOF magic string mismatch"); 11651 return (-1); 11652 } 11653 11654 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 11655 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 11656 dtrace_dof_error(dof, "DOF has invalid data model"); 11657 return (-1); 11658 } 11659 11660 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 11661 dtrace_dof_error(dof, "DOF encoding mismatch"); 11662 return (-1); 11663 } 11664 11665 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 11666 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 11667 dtrace_dof_error(dof, "DOF version mismatch"); 11668 return (-1); 11669 } 11670 11671 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 11672 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 11673 return (-1); 11674 } 11675 11676 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 11677 dtrace_dof_error(dof, "DOF uses too many integer registers"); 11678 return (-1); 11679 } 11680 11681 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 11682 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 11683 return (-1); 11684 } 11685 11686 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 11687 if (dof->dofh_ident[i] != 0) { 11688 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 11689 return (-1); 11690 } 11691 } 11692 11693 if (dof->dofh_flags & ~DOF_FL_VALID) { 11694 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 11695 return (-1); 11696 } 11697 11698 if (dof->dofh_secsize == 0) { 11699 dtrace_dof_error(dof, "zero section header size"); 11700 return (-1); 11701 } 11702 11703 /* 11704 * Check that the section headers don't exceed the amount of DOF 11705 * data. Note that we cast the section size and number of sections 11706 * to uint64_t's to prevent possible overflow in the multiplication. 11707 */ 11708 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 11709 11710 if (dof->dofh_secoff > len || seclen > len || 11711 dof->dofh_secoff + seclen > len) { 11712 dtrace_dof_error(dof, "truncated section headers"); 11713 return (-1); 11714 } 11715 11716 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 11717 dtrace_dof_error(dof, "misaligned section headers"); 11718 return (-1); 11719 } 11720 11721 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 11722 dtrace_dof_error(dof, "misaligned section size"); 11723 return (-1); 11724 } 11725 11726 /* 11727 * Take an initial pass through the section headers to be sure that 11728 * the headers don't have stray offsets. If the 'noprobes' flag is 11729 * set, do not permit sections relating to providers, probes, or args. 11730 */ 11731 for (i = 0; i < dof->dofh_secnum; i++) { 11732 dof_sec_t *sec = (dof_sec_t *)(daddr + 11733 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11734 11735 if (noprobes) { 11736 switch (sec->dofs_type) { 11737 case DOF_SECT_PROVIDER: 11738 case DOF_SECT_PROBES: 11739 case DOF_SECT_PRARGS: 11740 case DOF_SECT_PROFFS: 11741 dtrace_dof_error(dof, "illegal sections " 11742 "for enabling"); 11743 return (-1); 11744 } 11745 } 11746 11747 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 11748 !(sec->dofs_flags & DOF_SECF_LOAD)) { 11749 dtrace_dof_error(dof, "loadable section with load " 11750 "flag unset"); 11751 return (-1); 11752 } 11753 11754 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11755 continue; /* just ignore non-loadable sections */ 11756 11757 if (sec->dofs_align & (sec->dofs_align - 1)) { 11758 dtrace_dof_error(dof, "bad section alignment"); 11759 return (-1); 11760 } 11761 11762 if (sec->dofs_offset & (sec->dofs_align - 1)) { 11763 dtrace_dof_error(dof, "misaligned section"); 11764 return (-1); 11765 } 11766 11767 if (sec->dofs_offset > len || sec->dofs_size > len || 11768 sec->dofs_offset + sec->dofs_size > len) { 11769 dtrace_dof_error(dof, "corrupt section header"); 11770 return (-1); 11771 } 11772 11773 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 11774 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 11775 dtrace_dof_error(dof, "non-terminating string table"); 11776 return (-1); 11777 } 11778 } 11779 11780 /* 11781 * Take a second pass through the sections and locate and perform any 11782 * relocations that are present. We do this after the first pass to 11783 * be sure that all sections have had their headers validated. 11784 */ 11785 for (i = 0; i < dof->dofh_secnum; i++) { 11786 dof_sec_t *sec = (dof_sec_t *)(daddr + 11787 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11788 11789 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11790 continue; /* skip sections that are not loadable */ 11791 11792 switch (sec->dofs_type) { 11793 case DOF_SECT_URELHDR: 11794 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 11795 return (-1); 11796 break; 11797 } 11798 } 11799 11800 if ((enab = *enabp) == NULL) 11801 enab = *enabp = dtrace_enabling_create(vstate); 11802 11803 for (i = 0; i < dof->dofh_secnum; i++) { 11804 dof_sec_t *sec = (dof_sec_t *)(daddr + 11805 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11806 11807 if (sec->dofs_type != DOF_SECT_ECBDESC) 11808 continue; 11809 11810 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 11811 dtrace_enabling_destroy(enab); 11812 *enabp = NULL; 11813 return (-1); 11814 } 11815 11816 dtrace_enabling_add(enab, ep); 11817 } 11818 11819 return (0); 11820 } 11821 11822 /* 11823 * Process DOF for any options. This routine assumes that the DOF has been 11824 * at least processed by dtrace_dof_slurp(). 11825 */ 11826 static int 11827 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 11828 { 11829 int i, rval; 11830 uint32_t entsize; 11831 size_t offs; 11832 dof_optdesc_t *desc; 11833 11834 for (i = 0; i < dof->dofh_secnum; i++) { 11835 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 11836 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11837 11838 if (sec->dofs_type != DOF_SECT_OPTDESC) 11839 continue; 11840 11841 if (sec->dofs_align != sizeof (uint64_t)) { 11842 dtrace_dof_error(dof, "bad alignment in " 11843 "option description"); 11844 return (EINVAL); 11845 } 11846 11847 if ((entsize = sec->dofs_entsize) == 0) { 11848 dtrace_dof_error(dof, "zeroed option entry size"); 11849 return (EINVAL); 11850 } 11851 11852 if (entsize < sizeof (dof_optdesc_t)) { 11853 dtrace_dof_error(dof, "bad option entry size"); 11854 return (EINVAL); 11855 } 11856 11857 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 11858 desc = (dof_optdesc_t *)((uintptr_t)dof + 11859 (uintptr_t)sec->dofs_offset + offs); 11860 11861 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 11862 dtrace_dof_error(dof, "non-zero option string"); 11863 return (EINVAL); 11864 } 11865 11866 if (desc->dofo_value == DTRACEOPT_UNSET) { 11867 dtrace_dof_error(dof, "unset option"); 11868 return (EINVAL); 11869 } 11870 11871 if ((rval = dtrace_state_option(state, 11872 desc->dofo_option, desc->dofo_value)) != 0) { 11873 dtrace_dof_error(dof, "rejected option"); 11874 return (rval); 11875 } 11876 } 11877 } 11878 11879 return (0); 11880 } 11881 11882 /* 11883 * DTrace Consumer State Functions 11884 */ 11885 int 11886 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 11887 { 11888 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 11889 void *base; 11890 uintptr_t limit; 11891 dtrace_dynvar_t *dvar, *next, *start; 11892 int i; 11893 11894 ASSERT(MUTEX_HELD(&dtrace_lock)); 11895 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 11896 11897 bzero(dstate, sizeof (dtrace_dstate_t)); 11898 11899 if ((dstate->dtds_chunksize = chunksize) == 0) 11900 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 11901 11902 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 11903 size = min; 11904 11905 if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 11906 return (ENOMEM); 11907 11908 dstate->dtds_size = size; 11909 dstate->dtds_base = base; 11910 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 11911 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 11912 11913 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 11914 11915 if (hashsize != 1 && (hashsize & 1)) 11916 hashsize--; 11917 11918 dstate->dtds_hashsize = hashsize; 11919 dstate->dtds_hash = dstate->dtds_base; 11920 11921 /* 11922 * Set all of our hash buckets to point to the single sink, and (if 11923 * it hasn't already been set), set the sink's hash value to be the 11924 * sink sentinel value. The sink is needed for dynamic variable 11925 * lookups to know that they have iterated over an entire, valid hash 11926 * chain. 11927 */ 11928 for (i = 0; i < hashsize; i++) 11929 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 11930 11931 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 11932 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 11933 11934 /* 11935 * Determine number of active CPUs. Divide free list evenly among 11936 * active CPUs. 11937 */ 11938 start = (dtrace_dynvar_t *) 11939 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 11940 limit = (uintptr_t)base + size; 11941 11942 maxper = (limit - (uintptr_t)start) / NCPU; 11943 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 11944 11945 for (i = 0; i < NCPU; i++) { 11946 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 11947 11948 /* 11949 * If we don't even have enough chunks to make it once through 11950 * NCPUs, we're just going to allocate everything to the first 11951 * CPU. And if we're on the last CPU, we're going to allocate 11952 * whatever is left over. In either case, we set the limit to 11953 * be the limit of the dynamic variable space. 11954 */ 11955 if (maxper == 0 || i == NCPU - 1) { 11956 limit = (uintptr_t)base + size; 11957 start = NULL; 11958 } else { 11959 limit = (uintptr_t)start + maxper; 11960 start = (dtrace_dynvar_t *)limit; 11961 } 11962 11963 ASSERT(limit <= (uintptr_t)base + size); 11964 11965 for (;;) { 11966 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 11967 dstate->dtds_chunksize); 11968 11969 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 11970 break; 11971 11972 dvar->dtdv_next = next; 11973 dvar = next; 11974 } 11975 11976 if (maxper == 0) 11977 break; 11978 } 11979 11980 return (0); 11981 } 11982 11983 void 11984 dtrace_dstate_fini(dtrace_dstate_t *dstate) 11985 { 11986 ASSERT(MUTEX_HELD(&cpu_lock)); 11987 11988 if (dstate->dtds_base == NULL) 11989 return; 11990 11991 kmem_free(dstate->dtds_base, dstate->dtds_size); 11992 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 11993 } 11994 11995 static void 11996 dtrace_vstate_fini(dtrace_vstate_t *vstate) 11997 { 11998 /* 11999 * Logical XOR, where are you? 12000 */ 12001 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 12002 12003 if (vstate->dtvs_nglobals > 0) { 12004 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 12005 sizeof (dtrace_statvar_t *)); 12006 } 12007 12008 if (vstate->dtvs_ntlocals > 0) { 12009 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 12010 sizeof (dtrace_difv_t)); 12011 } 12012 12013 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 12014 12015 if (vstate->dtvs_nlocals > 0) { 12016 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 12017 sizeof (dtrace_statvar_t *)); 12018 } 12019 } 12020 12021 static void 12022 dtrace_state_clean(dtrace_state_t *state) 12023 { 12024 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 12025 return; 12026 12027 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 12028 dtrace_speculation_clean(state); 12029 } 12030 12031 static void 12032 dtrace_state_deadman(dtrace_state_t *state) 12033 { 12034 hrtime_t now; 12035 12036 dtrace_sync(); 12037 12038 now = dtrace_gethrtime(); 12039 12040 if (state != dtrace_anon.dta_state && 12041 now - state->dts_laststatus >= dtrace_deadman_user) 12042 return; 12043 12044 /* 12045 * We must be sure that dts_alive never appears to be less than the 12046 * value upon entry to dtrace_state_deadman(), and because we lack a 12047 * dtrace_cas64(), we cannot store to it atomically. We thus instead 12048 * store INT64_MAX to it, followed by a memory barrier, followed by 12049 * the new value. This assures that dts_alive never appears to be 12050 * less than its true value, regardless of the order in which the 12051 * stores to the underlying storage are issued. 12052 */ 12053 state->dts_alive = INT64_MAX; 12054 dtrace_membar_producer(); 12055 state->dts_alive = now; 12056 } 12057 12058 dtrace_state_t * 12059 dtrace_state_create(dev_t *devp, cred_t *cr) 12060 { 12061 minor_t minor; 12062 major_t major; 12063 char c[30]; 12064 dtrace_state_t *state; 12065 dtrace_optval_t *opt; 12066 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 12067 12068 ASSERT(MUTEX_HELD(&dtrace_lock)); 12069 ASSERT(MUTEX_HELD(&cpu_lock)); 12070 12071 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 12072 VM_BESTFIT | VM_SLEEP); 12073 12074 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 12075 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12076 return (NULL); 12077 } 12078 12079 state = ddi_get_soft_state(dtrace_softstate, minor); 12080 state->dts_epid = DTRACE_EPIDNONE + 1; 12081 12082 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 12083 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 12084 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 12085 12086 if (devp != NULL) { 12087 major = getemajor(*devp); 12088 } else { 12089 major = ddi_driver_major(dtrace_devi); 12090 } 12091 12092 state->dts_dev = makedevice(major, minor); 12093 12094 if (devp != NULL) 12095 *devp = state->dts_dev; 12096 12097 /* 12098 * We allocate NCPU buffers. On the one hand, this can be quite 12099 * a bit of memory per instance (nearly 36K on a Starcat). On the 12100 * other hand, it saves an additional memory reference in the probe 12101 * path. 12102 */ 12103 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 12104 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 12105 state->dts_cleaner = CYCLIC_NONE; 12106 state->dts_deadman = CYCLIC_NONE; 12107 state->dts_vstate.dtvs_state = state; 12108 12109 for (i = 0; i < DTRACEOPT_MAX; i++) 12110 state->dts_options[i] = DTRACEOPT_UNSET; 12111 12112 /* 12113 * Set the default options. 12114 */ 12115 opt = state->dts_options; 12116 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 12117 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 12118 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 12119 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 12120 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 12121 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 12122 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 12123 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 12124 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 12125 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 12126 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 12127 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 12128 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 12129 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 12130 12131 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 12132 12133 /* 12134 * Depending on the user credentials, we set flag bits which alter probe 12135 * visibility or the amount of destructiveness allowed. In the case of 12136 * actual anonymous tracing, or the possession of all privileges, all of 12137 * the normal checks are bypassed. 12138 */ 12139 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 12140 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 12141 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 12142 } else { 12143 /* 12144 * Set up the credentials for this instantiation. We take a 12145 * hold on the credential to prevent it from disappearing on 12146 * us; this in turn prevents the zone_t referenced by this 12147 * credential from disappearing. This means that we can 12148 * examine the credential and the zone from probe context. 12149 */ 12150 crhold(cr); 12151 state->dts_cred.dcr_cred = cr; 12152 12153 /* 12154 * CRA_PROC means "we have *some* privilege for dtrace" and 12155 * unlocks the use of variables like pid, zonename, etc. 12156 */ 12157 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 12158 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12159 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 12160 } 12161 12162 /* 12163 * dtrace_user allows use of syscall and profile providers. 12164 * If the user also has proc_owner and/or proc_zone, we 12165 * extend the scope to include additional visibility and 12166 * destructive power. 12167 */ 12168 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 12169 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 12170 state->dts_cred.dcr_visible |= 12171 DTRACE_CRV_ALLPROC; 12172 12173 state->dts_cred.dcr_action |= 12174 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12175 } 12176 12177 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 12178 state->dts_cred.dcr_visible |= 12179 DTRACE_CRV_ALLZONE; 12180 12181 state->dts_cred.dcr_action |= 12182 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12183 } 12184 12185 /* 12186 * If we have all privs in whatever zone this is, 12187 * we can do destructive things to processes which 12188 * have altered credentials. 12189 */ 12190 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12191 cr->cr_zone->zone_privset)) { 12192 state->dts_cred.dcr_action |= 12193 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12194 } 12195 } 12196 12197 /* 12198 * Holding the dtrace_kernel privilege also implies that 12199 * the user has the dtrace_user privilege from a visibility 12200 * perspective. But without further privileges, some 12201 * destructive actions are not available. 12202 */ 12203 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12204 /* 12205 * Make all probes in all zones visible. However, 12206 * this doesn't mean that all actions become available 12207 * to all zones. 12208 */ 12209 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12210 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12211 12212 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12213 DTRACE_CRA_PROC; 12214 /* 12215 * Holding proc_owner means that destructive actions 12216 * for *this* zone are allowed. 12217 */ 12218 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12219 state->dts_cred.dcr_action |= 12220 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12221 12222 /* 12223 * Holding proc_zone means that destructive actions 12224 * for this user/group ID in all zones is allowed. 12225 */ 12226 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12227 state->dts_cred.dcr_action |= 12228 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12229 12230 /* 12231 * If we have all privs in whatever zone this is, 12232 * we can do destructive things to processes which 12233 * have altered credentials. 12234 */ 12235 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12236 cr->cr_zone->zone_privset)) { 12237 state->dts_cred.dcr_action |= 12238 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12239 } 12240 } 12241 12242 /* 12243 * Holding the dtrace_proc privilege gives control over fasttrap 12244 * and pid providers. We need to grant wider destructive 12245 * privileges in the event that the user has proc_owner and/or 12246 * proc_zone. 12247 */ 12248 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12249 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12250 state->dts_cred.dcr_action |= 12251 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12252 12253 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12254 state->dts_cred.dcr_action |= 12255 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12256 } 12257 } 12258 12259 return (state); 12260 } 12261 12262 static int 12263 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 12264 { 12265 dtrace_optval_t *opt = state->dts_options, size; 12266 processorid_t cpu; 12267 int flags = 0, rval; 12268 12269 ASSERT(MUTEX_HELD(&dtrace_lock)); 12270 ASSERT(MUTEX_HELD(&cpu_lock)); 12271 ASSERT(which < DTRACEOPT_MAX); 12272 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 12273 (state == dtrace_anon.dta_state && 12274 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 12275 12276 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 12277 return (0); 12278 12279 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 12280 cpu = opt[DTRACEOPT_CPU]; 12281 12282 if (which == DTRACEOPT_SPECSIZE) 12283 flags |= DTRACEBUF_NOSWITCH; 12284 12285 if (which == DTRACEOPT_BUFSIZE) { 12286 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 12287 flags |= DTRACEBUF_RING; 12288 12289 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 12290 flags |= DTRACEBUF_FILL; 12291 12292 if (state != dtrace_anon.dta_state || 12293 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 12294 flags |= DTRACEBUF_INACTIVE; 12295 } 12296 12297 for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) { 12298 /* 12299 * The size must be 8-byte aligned. If the size is not 8-byte 12300 * aligned, drop it down by the difference. 12301 */ 12302 if (size & (sizeof (uint64_t) - 1)) 12303 size -= size & (sizeof (uint64_t) - 1); 12304 12305 if (size < state->dts_reserve) { 12306 /* 12307 * Buffers always must be large enough to accommodate 12308 * their prereserved space. We return E2BIG instead 12309 * of ENOMEM in this case to allow for user-level 12310 * software to differentiate the cases. 12311 */ 12312 return (E2BIG); 12313 } 12314 12315 rval = dtrace_buffer_alloc(buf, size, flags, cpu); 12316 12317 if (rval != ENOMEM) { 12318 opt[which] = size; 12319 return (rval); 12320 } 12321 12322 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12323 return (rval); 12324 } 12325 12326 return (ENOMEM); 12327 } 12328 12329 static int 12330 dtrace_state_buffers(dtrace_state_t *state) 12331 { 12332 dtrace_speculation_t *spec = state->dts_speculations; 12333 int rval, i; 12334 12335 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 12336 DTRACEOPT_BUFSIZE)) != 0) 12337 return (rval); 12338 12339 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 12340 DTRACEOPT_AGGSIZE)) != 0) 12341 return (rval); 12342 12343 for (i = 0; i < state->dts_nspeculations; i++) { 12344 if ((rval = dtrace_state_buffer(state, 12345 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 12346 return (rval); 12347 } 12348 12349 return (0); 12350 } 12351 12352 static void 12353 dtrace_state_prereserve(dtrace_state_t *state) 12354 { 12355 dtrace_ecb_t *ecb; 12356 dtrace_probe_t *probe; 12357 12358 state->dts_reserve = 0; 12359 12360 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 12361 return; 12362 12363 /* 12364 * If our buffer policy is a "fill" buffer policy, we need to set the 12365 * prereserved space to be the space required by the END probes. 12366 */ 12367 probe = dtrace_probes[dtrace_probeid_end - 1]; 12368 ASSERT(probe != NULL); 12369 12370 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 12371 if (ecb->dte_state != state) 12372 continue; 12373 12374 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 12375 } 12376 } 12377 12378 static int 12379 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 12380 { 12381 dtrace_optval_t *opt = state->dts_options, sz, nspec; 12382 dtrace_speculation_t *spec; 12383 dtrace_buffer_t *buf; 12384 cyc_handler_t hdlr; 12385 cyc_time_t when; 12386 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12387 dtrace_icookie_t cookie; 12388 12389 mutex_enter(&cpu_lock); 12390 mutex_enter(&dtrace_lock); 12391 12392 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 12393 rval = EBUSY; 12394 goto out; 12395 } 12396 12397 /* 12398 * Before we can perform any checks, we must prime all of the 12399 * retained enablings that correspond to this state. 12400 */ 12401 dtrace_enabling_prime(state); 12402 12403 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 12404 rval = EACCES; 12405 goto out; 12406 } 12407 12408 dtrace_state_prereserve(state); 12409 12410 /* 12411 * Now we want to do is try to allocate our speculations. 12412 * We do not automatically resize the number of speculations; if 12413 * this fails, we will fail the operation. 12414 */ 12415 nspec = opt[DTRACEOPT_NSPEC]; 12416 ASSERT(nspec != DTRACEOPT_UNSET); 12417 12418 if (nspec > INT_MAX) { 12419 rval = ENOMEM; 12420 goto out; 12421 } 12422 12423 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); 12424 12425 if (spec == NULL) { 12426 rval = ENOMEM; 12427 goto out; 12428 } 12429 12430 state->dts_speculations = spec; 12431 state->dts_nspeculations = (int)nspec; 12432 12433 for (i = 0; i < nspec; i++) { 12434 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { 12435 rval = ENOMEM; 12436 goto err; 12437 } 12438 12439 spec[i].dtsp_buffer = buf; 12440 } 12441 12442 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 12443 if (dtrace_anon.dta_state == NULL) { 12444 rval = ENOENT; 12445 goto out; 12446 } 12447 12448 if (state->dts_necbs != 0) { 12449 rval = EALREADY; 12450 goto out; 12451 } 12452 12453 state->dts_anon = dtrace_anon_grab(); 12454 ASSERT(state->dts_anon != NULL); 12455 state = state->dts_anon; 12456 12457 /* 12458 * We want "grabanon" to be set in the grabbed state, so we'll 12459 * copy that option value from the grabbing state into the 12460 * grabbed state. 12461 */ 12462 state->dts_options[DTRACEOPT_GRABANON] = 12463 opt[DTRACEOPT_GRABANON]; 12464 12465 *cpu = dtrace_anon.dta_beganon; 12466 12467 /* 12468 * If the anonymous state is active (as it almost certainly 12469 * is if the anonymous enabling ultimately matched anything), 12470 * we don't allow any further option processing -- but we 12471 * don't return failure. 12472 */ 12473 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12474 goto out; 12475 } 12476 12477 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 12478 opt[DTRACEOPT_AGGSIZE] != 0) { 12479 if (state->dts_aggregations == NULL) { 12480 /* 12481 * We're not going to create an aggregation buffer 12482 * because we don't have any ECBs that contain 12483 * aggregations -- set this option to 0. 12484 */ 12485 opt[DTRACEOPT_AGGSIZE] = 0; 12486 } else { 12487 /* 12488 * If we have an aggregation buffer, we must also have 12489 * a buffer to use as scratch. 12490 */ 12491 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 12492 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 12493 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 12494 } 12495 } 12496 } 12497 12498 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 12499 opt[DTRACEOPT_SPECSIZE] != 0) { 12500 if (!state->dts_speculates) { 12501 /* 12502 * We're not going to create speculation buffers 12503 * because we don't have any ECBs that actually 12504 * speculate -- set the speculation size to 0. 12505 */ 12506 opt[DTRACEOPT_SPECSIZE] = 0; 12507 } 12508 } 12509 12510 /* 12511 * The bare minimum size for any buffer that we're actually going to 12512 * do anything to is sizeof (uint64_t). 12513 */ 12514 sz = sizeof (uint64_t); 12515 12516 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 12517 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 12518 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 12519 /* 12520 * A buffer size has been explicitly set to 0 (or to a size 12521 * that will be adjusted to 0) and we need the space -- we 12522 * need to return failure. We return ENOSPC to differentiate 12523 * it from failing to allocate a buffer due to failure to meet 12524 * the reserve (for which we return E2BIG). 12525 */ 12526 rval = ENOSPC; 12527 goto out; 12528 } 12529 12530 if ((rval = dtrace_state_buffers(state)) != 0) 12531 goto err; 12532 12533 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 12534 sz = dtrace_dstate_defsize; 12535 12536 do { 12537 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 12538 12539 if (rval == 0) 12540 break; 12541 12542 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12543 goto err; 12544 } while (sz >>= 1); 12545 12546 opt[DTRACEOPT_DYNVARSIZE] = sz; 12547 12548 if (rval != 0) 12549 goto err; 12550 12551 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 12552 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 12553 12554 if (opt[DTRACEOPT_CLEANRATE] == 0) 12555 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12556 12557 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 12558 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 12559 12560 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 12561 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12562 12563 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 12564 hdlr.cyh_arg = state; 12565 hdlr.cyh_level = CY_LOW_LEVEL; 12566 12567 when.cyt_when = 0; 12568 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 12569 12570 state->dts_cleaner = cyclic_add(&hdlr, &when); 12571 12572 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 12573 hdlr.cyh_arg = state; 12574 hdlr.cyh_level = CY_LOW_LEVEL; 12575 12576 when.cyt_when = 0; 12577 when.cyt_interval = dtrace_deadman_interval; 12578 12579 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 12580 state->dts_deadman = cyclic_add(&hdlr, &when); 12581 12582 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 12583 12584 /* 12585 * Now it's time to actually fire the BEGIN probe. We need to disable 12586 * interrupts here both to record the CPU on which we fired the BEGIN 12587 * probe (the data from this CPU will be processed first at user 12588 * level) and to manually activate the buffer for this CPU. 12589 */ 12590 cookie = dtrace_interrupt_disable(); 12591 *cpu = CPU->cpu_id; 12592 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 12593 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12594 12595 dtrace_probe(dtrace_probeid_begin, 12596 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12597 dtrace_interrupt_enable(cookie); 12598 /* 12599 * We may have had an exit action from a BEGIN probe; only change our 12600 * state to ACTIVE if we're still in WARMUP. 12601 */ 12602 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 12603 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 12604 12605 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 12606 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 12607 12608 /* 12609 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 12610 * want each CPU to transition its principal buffer out of the 12611 * INACTIVE state. Doing this assures that no CPU will suddenly begin 12612 * processing an ECB halfway down a probe's ECB chain; all CPUs will 12613 * atomically transition from processing none of a state's ECBs to 12614 * processing all of them. 12615 */ 12616 dtrace_xcall(DTRACE_CPUALL, 12617 (dtrace_xcall_t)dtrace_buffer_activate, state); 12618 goto out; 12619 12620 err: 12621 dtrace_buffer_free(state->dts_buffer); 12622 dtrace_buffer_free(state->dts_aggbuffer); 12623 12624 if ((nspec = state->dts_nspeculations) == 0) { 12625 ASSERT(state->dts_speculations == NULL); 12626 goto out; 12627 } 12628 12629 spec = state->dts_speculations; 12630 ASSERT(spec != NULL); 12631 12632 for (i = 0; i < state->dts_nspeculations; i++) { 12633 if ((buf = spec[i].dtsp_buffer) == NULL) 12634 break; 12635 12636 dtrace_buffer_free(buf); 12637 kmem_free(buf, bufsize); 12638 } 12639 12640 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12641 state->dts_nspeculations = 0; 12642 state->dts_speculations = NULL; 12643 12644 out: 12645 mutex_exit(&dtrace_lock); 12646 mutex_exit(&cpu_lock); 12647 12648 return (rval); 12649 } 12650 12651 static int 12652 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 12653 { 12654 dtrace_icookie_t cookie; 12655 12656 ASSERT(MUTEX_HELD(&dtrace_lock)); 12657 12658 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 12659 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 12660 return (EINVAL); 12661 12662 /* 12663 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 12664 * to be sure that every CPU has seen it. See below for the details 12665 * on why this is done. 12666 */ 12667 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 12668 dtrace_sync(); 12669 12670 /* 12671 * By this point, it is impossible for any CPU to be still processing 12672 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 12673 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 12674 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 12675 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 12676 * iff we're in the END probe. 12677 */ 12678 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 12679 dtrace_sync(); 12680 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 12681 12682 /* 12683 * Finally, we can release the reserve and call the END probe. We 12684 * disable interrupts across calling the END probe to allow us to 12685 * return the CPU on which we actually called the END probe. This 12686 * allows user-land to be sure that this CPU's principal buffer is 12687 * processed last. 12688 */ 12689 state->dts_reserve = 0; 12690 12691 cookie = dtrace_interrupt_disable(); 12692 *cpu = CPU->cpu_id; 12693 dtrace_probe(dtrace_probeid_end, 12694 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12695 dtrace_interrupt_enable(cookie); 12696 12697 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 12698 dtrace_sync(); 12699 12700 return (0); 12701 } 12702 12703 static int 12704 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 12705 dtrace_optval_t val) 12706 { 12707 ASSERT(MUTEX_HELD(&dtrace_lock)); 12708 12709 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12710 return (EBUSY); 12711 12712 if (option >= DTRACEOPT_MAX) 12713 return (EINVAL); 12714 12715 if (option != DTRACEOPT_CPU && val < 0) 12716 return (EINVAL); 12717 12718 switch (option) { 12719 case DTRACEOPT_DESTRUCTIVE: 12720 if (dtrace_destructive_disallow) 12721 return (EACCES); 12722 12723 state->dts_cred.dcr_destructive = 1; 12724 break; 12725 12726 case DTRACEOPT_BUFSIZE: 12727 case DTRACEOPT_DYNVARSIZE: 12728 case DTRACEOPT_AGGSIZE: 12729 case DTRACEOPT_SPECSIZE: 12730 case DTRACEOPT_STRSIZE: 12731 if (val < 0) 12732 return (EINVAL); 12733 12734 if (val >= LONG_MAX) { 12735 /* 12736 * If this is an otherwise negative value, set it to 12737 * the highest multiple of 128m less than LONG_MAX. 12738 * Technically, we're adjusting the size without 12739 * regard to the buffer resizing policy, but in fact, 12740 * this has no effect -- if we set the buffer size to 12741 * ~LONG_MAX and the buffer policy is ultimately set to 12742 * be "manual", the buffer allocation is guaranteed to 12743 * fail, if only because the allocation requires two 12744 * buffers. (We set the the size to the highest 12745 * multiple of 128m because it ensures that the size 12746 * will remain a multiple of a megabyte when 12747 * repeatedly halved -- all the way down to 15m.) 12748 */ 12749 val = LONG_MAX - (1 << 27) + 1; 12750 } 12751 } 12752 12753 state->dts_options[option] = val; 12754 12755 return (0); 12756 } 12757 12758 static void 12759 dtrace_state_destroy(dtrace_state_t *state) 12760 { 12761 dtrace_ecb_t *ecb; 12762 dtrace_vstate_t *vstate = &state->dts_vstate; 12763 minor_t minor = getminor(state->dts_dev); 12764 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12765 dtrace_speculation_t *spec = state->dts_speculations; 12766 int nspec = state->dts_nspeculations; 12767 uint32_t match; 12768 12769 ASSERT(MUTEX_HELD(&dtrace_lock)); 12770 ASSERT(MUTEX_HELD(&cpu_lock)); 12771 12772 /* 12773 * First, retract any retained enablings for this state. 12774 */ 12775 dtrace_enabling_retract(state); 12776 ASSERT(state->dts_nretained == 0); 12777 12778 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 12779 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 12780 /* 12781 * We have managed to come into dtrace_state_destroy() on a 12782 * hot enabling -- almost certainly because of a disorderly 12783 * shutdown of a consumer. (That is, a consumer that is 12784 * exiting without having called dtrace_stop().) In this case, 12785 * we're going to set our activity to be KILLED, and then 12786 * issue a sync to be sure that everyone is out of probe 12787 * context before we start blowing away ECBs. 12788 */ 12789 state->dts_activity = DTRACE_ACTIVITY_KILLED; 12790 dtrace_sync(); 12791 } 12792 12793 /* 12794 * Release the credential hold we took in dtrace_state_create(). 12795 */ 12796 if (state->dts_cred.dcr_cred != NULL) 12797 crfree(state->dts_cred.dcr_cred); 12798 12799 /* 12800 * Now we can safely disable and destroy any enabled probes. Because 12801 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 12802 * (especially if they're all enabled), we take two passes through the 12803 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 12804 * in the second we disable whatever is left over. 12805 */ 12806 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 12807 for (i = 0; i < state->dts_necbs; i++) { 12808 if ((ecb = state->dts_ecbs[i]) == NULL) 12809 continue; 12810 12811 if (match && ecb->dte_probe != NULL) { 12812 dtrace_probe_t *probe = ecb->dte_probe; 12813 dtrace_provider_t *prov = probe->dtpr_provider; 12814 12815 if (!(prov->dtpv_priv.dtpp_flags & match)) 12816 continue; 12817 } 12818 12819 dtrace_ecb_disable(ecb); 12820 dtrace_ecb_destroy(ecb); 12821 } 12822 12823 if (!match) 12824 break; 12825 } 12826 12827 /* 12828 * Before we free the buffers, perform one more sync to assure that 12829 * every CPU is out of probe context. 12830 */ 12831 dtrace_sync(); 12832 12833 dtrace_buffer_free(state->dts_buffer); 12834 dtrace_buffer_free(state->dts_aggbuffer); 12835 12836 for (i = 0; i < nspec; i++) 12837 dtrace_buffer_free(spec[i].dtsp_buffer); 12838 12839 if (state->dts_cleaner != CYCLIC_NONE) 12840 cyclic_remove(state->dts_cleaner); 12841 12842 if (state->dts_deadman != CYCLIC_NONE) 12843 cyclic_remove(state->dts_deadman); 12844 12845 dtrace_dstate_fini(&vstate->dtvs_dynvars); 12846 dtrace_vstate_fini(vstate); 12847 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 12848 12849 if (state->dts_aggregations != NULL) { 12850 #ifdef DEBUG 12851 for (i = 0; i < state->dts_naggregations; i++) 12852 ASSERT(state->dts_aggregations[i] == NULL); 12853 #endif 12854 ASSERT(state->dts_naggregations > 0); 12855 kmem_free(state->dts_aggregations, 12856 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 12857 } 12858 12859 kmem_free(state->dts_buffer, bufsize); 12860 kmem_free(state->dts_aggbuffer, bufsize); 12861 12862 for (i = 0; i < nspec; i++) 12863 kmem_free(spec[i].dtsp_buffer, bufsize); 12864 12865 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12866 12867 dtrace_format_destroy(state); 12868 12869 vmem_destroy(state->dts_aggid_arena); 12870 ddi_soft_state_free(dtrace_softstate, minor); 12871 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12872 } 12873 12874 /* 12875 * DTrace Anonymous Enabling Functions 12876 */ 12877 static dtrace_state_t * 12878 dtrace_anon_grab(void) 12879 { 12880 dtrace_state_t *state; 12881 12882 ASSERT(MUTEX_HELD(&dtrace_lock)); 12883 12884 if ((state = dtrace_anon.dta_state) == NULL) { 12885 ASSERT(dtrace_anon.dta_enabling == NULL); 12886 return (NULL); 12887 } 12888 12889 ASSERT(dtrace_anon.dta_enabling != NULL); 12890 ASSERT(dtrace_retained != NULL); 12891 12892 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 12893 dtrace_anon.dta_enabling = NULL; 12894 dtrace_anon.dta_state = NULL; 12895 12896 return (state); 12897 } 12898 12899 static void 12900 dtrace_anon_property(void) 12901 { 12902 int i, rv; 12903 dtrace_state_t *state; 12904 dof_hdr_t *dof; 12905 char c[32]; /* enough for "dof-data-" + digits */ 12906 12907 ASSERT(MUTEX_HELD(&dtrace_lock)); 12908 ASSERT(MUTEX_HELD(&cpu_lock)); 12909 12910 for (i = 0; ; i++) { 12911 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 12912 12913 dtrace_err_verbose = 1; 12914 12915 if ((dof = dtrace_dof_property(c)) == NULL) { 12916 dtrace_err_verbose = 0; 12917 break; 12918 } 12919 12920 /* 12921 * We want to create anonymous state, so we need to transition 12922 * the kernel debugger to indicate that DTrace is active. If 12923 * this fails (e.g. because the debugger has modified text in 12924 * some way), we won't continue with the processing. 12925 */ 12926 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 12927 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 12928 "enabling ignored."); 12929 dtrace_dof_destroy(dof); 12930 break; 12931 } 12932 12933 /* 12934 * If we haven't allocated an anonymous state, we'll do so now. 12935 */ 12936 if ((state = dtrace_anon.dta_state) == NULL) { 12937 state = dtrace_state_create(NULL, NULL); 12938 dtrace_anon.dta_state = state; 12939 12940 if (state == NULL) { 12941 /* 12942 * This basically shouldn't happen: the only 12943 * failure mode from dtrace_state_create() is a 12944 * failure of ddi_soft_state_zalloc() that 12945 * itself should never happen. Still, the 12946 * interface allows for a failure mode, and 12947 * we want to fail as gracefully as possible: 12948 * we'll emit an error message and cease 12949 * processing anonymous state in this case. 12950 */ 12951 cmn_err(CE_WARN, "failed to create " 12952 "anonymous state"); 12953 dtrace_dof_destroy(dof); 12954 break; 12955 } 12956 } 12957 12958 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 12959 &dtrace_anon.dta_enabling, 0, B_TRUE); 12960 12961 if (rv == 0) 12962 rv = dtrace_dof_options(dof, state); 12963 12964 dtrace_err_verbose = 0; 12965 dtrace_dof_destroy(dof); 12966 12967 if (rv != 0) { 12968 /* 12969 * This is malformed DOF; chuck any anonymous state 12970 * that we created. 12971 */ 12972 ASSERT(dtrace_anon.dta_enabling == NULL); 12973 dtrace_state_destroy(state); 12974 dtrace_anon.dta_state = NULL; 12975 break; 12976 } 12977 12978 ASSERT(dtrace_anon.dta_enabling != NULL); 12979 } 12980 12981 if (dtrace_anon.dta_enabling != NULL) { 12982 int rval; 12983 12984 /* 12985 * dtrace_enabling_retain() can only fail because we are 12986 * trying to retain more enablings than are allowed -- but 12987 * we only have one anonymous enabling, and we are guaranteed 12988 * to be allowed at least one retained enabling; we assert 12989 * that dtrace_enabling_retain() returns success. 12990 */ 12991 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 12992 ASSERT(rval == 0); 12993 12994 dtrace_enabling_dump(dtrace_anon.dta_enabling); 12995 } 12996 } 12997 12998 /* 12999 * DTrace Helper Functions 13000 */ 13001 static void 13002 dtrace_helper_trace(dtrace_helper_action_t *helper, 13003 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 13004 { 13005 uint32_t size, next, nnext, i; 13006 dtrace_helptrace_t *ent; 13007 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13008 13009 if (!dtrace_helptrace_enabled) 13010 return; 13011 13012 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 13013 13014 /* 13015 * What would a tracing framework be without its own tracing 13016 * framework? (Well, a hell of a lot simpler, for starters...) 13017 */ 13018 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 13019 sizeof (uint64_t) - sizeof (uint64_t); 13020 13021 /* 13022 * Iterate until we can allocate a slot in the trace buffer. 13023 */ 13024 do { 13025 next = dtrace_helptrace_next; 13026 13027 if (next + size < dtrace_helptrace_bufsize) { 13028 nnext = next + size; 13029 } else { 13030 nnext = size; 13031 } 13032 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 13033 13034 /* 13035 * We have our slot; fill it in. 13036 */ 13037 if (nnext == size) 13038 next = 0; 13039 13040 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 13041 ent->dtht_helper = helper; 13042 ent->dtht_where = where; 13043 ent->dtht_nlocals = vstate->dtvs_nlocals; 13044 13045 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 13046 mstate->dtms_fltoffs : -1; 13047 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 13048 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 13049 13050 for (i = 0; i < vstate->dtvs_nlocals; i++) { 13051 dtrace_statvar_t *svar; 13052 13053 if ((svar = vstate->dtvs_locals[i]) == NULL) 13054 continue; 13055 13056 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 13057 ent->dtht_locals[i] = 13058 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 13059 } 13060 } 13061 13062 static uint64_t 13063 dtrace_helper(int which, dtrace_mstate_t *mstate, 13064 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 13065 { 13066 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13067 uint64_t sarg0 = mstate->dtms_arg[0]; 13068 uint64_t sarg1 = mstate->dtms_arg[1]; 13069 uint64_t rval; 13070 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 13071 dtrace_helper_action_t *helper; 13072 dtrace_vstate_t *vstate; 13073 dtrace_difo_t *pred; 13074 int i, trace = dtrace_helptrace_enabled; 13075 13076 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 13077 13078 if (helpers == NULL) 13079 return (0); 13080 13081 if ((helper = helpers->dthps_actions[which]) == NULL) 13082 return (0); 13083 13084 vstate = &helpers->dthps_vstate; 13085 mstate->dtms_arg[0] = arg0; 13086 mstate->dtms_arg[1] = arg1; 13087 13088 /* 13089 * Now iterate over each helper. If its predicate evaluates to 'true', 13090 * we'll call the corresponding actions. Note that the below calls 13091 * to dtrace_dif_emulate() may set faults in machine state. This is 13092 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 13093 * the stored DIF offset with its own (which is the desired behavior). 13094 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 13095 * from machine state; this is okay, too. 13096 */ 13097 for (; helper != NULL; helper = helper->dtha_next) { 13098 if ((pred = helper->dtha_predicate) != NULL) { 13099 if (trace) 13100 dtrace_helper_trace(helper, mstate, vstate, 0); 13101 13102 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 13103 goto next; 13104 13105 if (*flags & CPU_DTRACE_FAULT) 13106 goto err; 13107 } 13108 13109 for (i = 0; i < helper->dtha_nactions; i++) { 13110 if (trace) 13111 dtrace_helper_trace(helper, 13112 mstate, vstate, i + 1); 13113 13114 rval = dtrace_dif_emulate(helper->dtha_actions[i], 13115 mstate, vstate, state); 13116 13117 if (*flags & CPU_DTRACE_FAULT) 13118 goto err; 13119 } 13120 13121 next: 13122 if (trace) 13123 dtrace_helper_trace(helper, mstate, vstate, 13124 DTRACE_HELPTRACE_NEXT); 13125 } 13126 13127 if (trace) 13128 dtrace_helper_trace(helper, mstate, vstate, 13129 DTRACE_HELPTRACE_DONE); 13130 13131 /* 13132 * Restore the arg0 that we saved upon entry. 13133 */ 13134 mstate->dtms_arg[0] = sarg0; 13135 mstate->dtms_arg[1] = sarg1; 13136 13137 return (rval); 13138 13139 err: 13140 if (trace) 13141 dtrace_helper_trace(helper, mstate, vstate, 13142 DTRACE_HELPTRACE_ERR); 13143 13144 /* 13145 * Restore the arg0 that we saved upon entry. 13146 */ 13147 mstate->dtms_arg[0] = sarg0; 13148 mstate->dtms_arg[1] = sarg1; 13149 13150 return (NULL); 13151 } 13152 13153 static void 13154 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 13155 dtrace_vstate_t *vstate) 13156 { 13157 int i; 13158 13159 if (helper->dtha_predicate != NULL) 13160 dtrace_difo_release(helper->dtha_predicate, vstate); 13161 13162 for (i = 0; i < helper->dtha_nactions; i++) { 13163 ASSERT(helper->dtha_actions[i] != NULL); 13164 dtrace_difo_release(helper->dtha_actions[i], vstate); 13165 } 13166 13167 kmem_free(helper->dtha_actions, 13168 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 13169 kmem_free(helper, sizeof (dtrace_helper_action_t)); 13170 } 13171 13172 static int 13173 dtrace_helper_destroygen(int gen) 13174 { 13175 proc_t *p = curproc; 13176 dtrace_helpers_t *help = p->p_dtrace_helpers; 13177 dtrace_vstate_t *vstate; 13178 int i; 13179 13180 ASSERT(MUTEX_HELD(&dtrace_lock)); 13181 13182 if (help == NULL || gen > help->dthps_generation) 13183 return (EINVAL); 13184 13185 vstate = &help->dthps_vstate; 13186 13187 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13188 dtrace_helper_action_t *last = NULL, *h, *next; 13189 13190 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13191 next = h->dtha_next; 13192 13193 if (h->dtha_generation == gen) { 13194 if (last != NULL) { 13195 last->dtha_next = next; 13196 } else { 13197 help->dthps_actions[i] = next; 13198 } 13199 13200 dtrace_helper_action_destroy(h, vstate); 13201 } else { 13202 last = h; 13203 } 13204 } 13205 } 13206 13207 /* 13208 * Interate until we've cleared out all helper providers with the 13209 * given generation number. 13210 */ 13211 for (;;) { 13212 dtrace_helper_provider_t *prov; 13213 13214 /* 13215 * Look for a helper provider with the right generation. We 13216 * have to start back at the beginning of the list each time 13217 * because we drop dtrace_lock. It's unlikely that we'll make 13218 * more than two passes. 13219 */ 13220 for (i = 0; i < help->dthps_nprovs; i++) { 13221 prov = help->dthps_provs[i]; 13222 13223 if (prov->dthp_generation == gen) 13224 break; 13225 } 13226 13227 /* 13228 * If there were no matches, we're done. 13229 */ 13230 if (i == help->dthps_nprovs) 13231 break; 13232 13233 /* 13234 * Move the last helper provider into this slot. 13235 */ 13236 help->dthps_nprovs--; 13237 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 13238 help->dthps_provs[help->dthps_nprovs] = NULL; 13239 13240 mutex_exit(&dtrace_lock); 13241 13242 /* 13243 * If we have a meta provider, remove this helper provider. 13244 */ 13245 mutex_enter(&dtrace_meta_lock); 13246 if (dtrace_meta_pid != NULL) { 13247 ASSERT(dtrace_deferred_pid == NULL); 13248 dtrace_helper_provider_remove(&prov->dthp_prov, 13249 p->p_pid); 13250 } 13251 mutex_exit(&dtrace_meta_lock); 13252 13253 dtrace_helper_provider_destroy(prov); 13254 13255 mutex_enter(&dtrace_lock); 13256 } 13257 13258 return (0); 13259 } 13260 13261 static int 13262 dtrace_helper_validate(dtrace_helper_action_t *helper) 13263 { 13264 int err = 0, i; 13265 dtrace_difo_t *dp; 13266 13267 if ((dp = helper->dtha_predicate) != NULL) 13268 err += dtrace_difo_validate_helper(dp); 13269 13270 for (i = 0; i < helper->dtha_nactions; i++) 13271 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 13272 13273 return (err == 0); 13274 } 13275 13276 static int 13277 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 13278 { 13279 dtrace_helpers_t *help; 13280 dtrace_helper_action_t *helper, *last; 13281 dtrace_actdesc_t *act; 13282 dtrace_vstate_t *vstate; 13283 dtrace_predicate_t *pred; 13284 int count = 0, nactions = 0, i; 13285 13286 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 13287 return (EINVAL); 13288 13289 help = curproc->p_dtrace_helpers; 13290 last = help->dthps_actions[which]; 13291 vstate = &help->dthps_vstate; 13292 13293 for (count = 0; last != NULL; last = last->dtha_next) { 13294 count++; 13295 if (last->dtha_next == NULL) 13296 break; 13297 } 13298 13299 /* 13300 * If we already have dtrace_helper_actions_max helper actions for this 13301 * helper action type, we'll refuse to add a new one. 13302 */ 13303 if (count >= dtrace_helper_actions_max) 13304 return (ENOSPC); 13305 13306 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 13307 helper->dtha_generation = help->dthps_generation; 13308 13309 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 13310 ASSERT(pred->dtp_difo != NULL); 13311 dtrace_difo_hold(pred->dtp_difo); 13312 helper->dtha_predicate = pred->dtp_difo; 13313 } 13314 13315 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 13316 if (act->dtad_kind != DTRACEACT_DIFEXPR) 13317 goto err; 13318 13319 if (act->dtad_difo == NULL) 13320 goto err; 13321 13322 nactions++; 13323 } 13324 13325 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 13326 (helper->dtha_nactions = nactions), KM_SLEEP); 13327 13328 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 13329 dtrace_difo_hold(act->dtad_difo); 13330 helper->dtha_actions[i++] = act->dtad_difo; 13331 } 13332 13333 if (!dtrace_helper_validate(helper)) 13334 goto err; 13335 13336 if (last == NULL) { 13337 help->dthps_actions[which] = helper; 13338 } else { 13339 last->dtha_next = helper; 13340 } 13341 13342 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 13343 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 13344 dtrace_helptrace_next = 0; 13345 } 13346 13347 return (0); 13348 err: 13349 dtrace_helper_action_destroy(helper, vstate); 13350 return (EINVAL); 13351 } 13352 13353 static void 13354 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 13355 dof_helper_t *dofhp) 13356 { 13357 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 13358 13359 mutex_enter(&dtrace_meta_lock); 13360 mutex_enter(&dtrace_lock); 13361 13362 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 13363 /* 13364 * If the dtrace module is loaded but not attached, or if 13365 * there aren't isn't a meta provider registered to deal with 13366 * these provider descriptions, we need to postpone creating 13367 * the actual providers until later. 13368 */ 13369 13370 if (help->dthps_next == NULL && help->dthps_prev == NULL && 13371 dtrace_deferred_pid != help) { 13372 help->dthps_deferred = 1; 13373 help->dthps_pid = p->p_pid; 13374 help->dthps_next = dtrace_deferred_pid; 13375 help->dthps_prev = NULL; 13376 if (dtrace_deferred_pid != NULL) 13377 dtrace_deferred_pid->dthps_prev = help; 13378 dtrace_deferred_pid = help; 13379 } 13380 13381 mutex_exit(&dtrace_lock); 13382 13383 } else if (dofhp != NULL) { 13384 /* 13385 * If the dtrace module is loaded and we have a particular 13386 * helper provider description, pass that off to the 13387 * meta provider. 13388 */ 13389 13390 mutex_exit(&dtrace_lock); 13391 13392 dtrace_helper_provide(dofhp, p->p_pid); 13393 13394 } else { 13395 /* 13396 * Otherwise, just pass all the helper provider descriptions 13397 * off to the meta provider. 13398 */ 13399 13400 int i; 13401 mutex_exit(&dtrace_lock); 13402 13403 for (i = 0; i < help->dthps_nprovs; i++) { 13404 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 13405 p->p_pid); 13406 } 13407 } 13408 13409 mutex_exit(&dtrace_meta_lock); 13410 } 13411 13412 static int 13413 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 13414 { 13415 dtrace_helpers_t *help; 13416 dtrace_helper_provider_t *hprov, **tmp_provs; 13417 uint_t tmp_maxprovs, i; 13418 13419 ASSERT(MUTEX_HELD(&dtrace_lock)); 13420 13421 help = curproc->p_dtrace_helpers; 13422 ASSERT(help != NULL); 13423 13424 /* 13425 * If we already have dtrace_helper_providers_max helper providers, 13426 * we're refuse to add a new one. 13427 */ 13428 if (help->dthps_nprovs >= dtrace_helper_providers_max) 13429 return (ENOSPC); 13430 13431 /* 13432 * Check to make sure this isn't a duplicate. 13433 */ 13434 for (i = 0; i < help->dthps_nprovs; i++) { 13435 if (dofhp->dofhp_addr == 13436 help->dthps_provs[i]->dthp_prov.dofhp_addr) 13437 return (EALREADY); 13438 } 13439 13440 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 13441 hprov->dthp_prov = *dofhp; 13442 hprov->dthp_ref = 1; 13443 hprov->dthp_generation = gen; 13444 13445 /* 13446 * Allocate a bigger table for helper providers if it's already full. 13447 */ 13448 if (help->dthps_maxprovs == help->dthps_nprovs) { 13449 tmp_maxprovs = help->dthps_maxprovs; 13450 tmp_provs = help->dthps_provs; 13451 13452 if (help->dthps_maxprovs == 0) 13453 help->dthps_maxprovs = 2; 13454 else 13455 help->dthps_maxprovs *= 2; 13456 if (help->dthps_maxprovs > dtrace_helper_providers_max) 13457 help->dthps_maxprovs = dtrace_helper_providers_max; 13458 13459 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 13460 13461 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 13462 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13463 13464 if (tmp_provs != NULL) { 13465 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 13466 sizeof (dtrace_helper_provider_t *)); 13467 kmem_free(tmp_provs, tmp_maxprovs * 13468 sizeof (dtrace_helper_provider_t *)); 13469 } 13470 } 13471 13472 help->dthps_provs[help->dthps_nprovs] = hprov; 13473 help->dthps_nprovs++; 13474 13475 return (0); 13476 } 13477 13478 static void 13479 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 13480 { 13481 mutex_enter(&dtrace_lock); 13482 13483 if (--hprov->dthp_ref == 0) { 13484 dof_hdr_t *dof; 13485 mutex_exit(&dtrace_lock); 13486 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 13487 dtrace_dof_destroy(dof); 13488 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 13489 } else { 13490 mutex_exit(&dtrace_lock); 13491 } 13492 } 13493 13494 static int 13495 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 13496 { 13497 uintptr_t daddr = (uintptr_t)dof; 13498 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 13499 dof_provider_t *provider; 13500 dof_probe_t *probe; 13501 uint8_t *arg; 13502 char *strtab, *typestr; 13503 dof_stridx_t typeidx; 13504 size_t typesz; 13505 uint_t nprobes, j, k; 13506 13507 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 13508 13509 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 13510 dtrace_dof_error(dof, "misaligned section offset"); 13511 return (-1); 13512 } 13513 13514 /* 13515 * The section needs to be large enough to contain the DOF provider 13516 * structure appropriate for the given version. 13517 */ 13518 if (sec->dofs_size < 13519 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 13520 offsetof(dof_provider_t, dofpv_prenoffs) : 13521 sizeof (dof_provider_t))) { 13522 dtrace_dof_error(dof, "provider section too small"); 13523 return (-1); 13524 } 13525 13526 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 13527 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 13528 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 13529 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 13530 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 13531 13532 if (str_sec == NULL || prb_sec == NULL || 13533 arg_sec == NULL || off_sec == NULL) 13534 return (-1); 13535 13536 enoff_sec = NULL; 13537 13538 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13539 provider->dofpv_prenoffs != DOF_SECT_NONE && 13540 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 13541 provider->dofpv_prenoffs)) == NULL) 13542 return (-1); 13543 13544 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 13545 13546 if (provider->dofpv_name >= str_sec->dofs_size || 13547 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 13548 dtrace_dof_error(dof, "invalid provider name"); 13549 return (-1); 13550 } 13551 13552 if (prb_sec->dofs_entsize == 0 || 13553 prb_sec->dofs_entsize > prb_sec->dofs_size) { 13554 dtrace_dof_error(dof, "invalid entry size"); 13555 return (-1); 13556 } 13557 13558 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 13559 dtrace_dof_error(dof, "misaligned entry size"); 13560 return (-1); 13561 } 13562 13563 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 13564 dtrace_dof_error(dof, "invalid entry size"); 13565 return (-1); 13566 } 13567 13568 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 13569 dtrace_dof_error(dof, "misaligned section offset"); 13570 return (-1); 13571 } 13572 13573 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 13574 dtrace_dof_error(dof, "invalid entry size"); 13575 return (-1); 13576 } 13577 13578 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 13579 13580 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 13581 13582 /* 13583 * Take a pass through the probes to check for errors. 13584 */ 13585 for (j = 0; j < nprobes; j++) { 13586 probe = (dof_probe_t *)(uintptr_t)(daddr + 13587 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 13588 13589 if (probe->dofpr_func >= str_sec->dofs_size) { 13590 dtrace_dof_error(dof, "invalid function name"); 13591 return (-1); 13592 } 13593 13594 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 13595 dtrace_dof_error(dof, "function name too long"); 13596 return (-1); 13597 } 13598 13599 if (probe->dofpr_name >= str_sec->dofs_size || 13600 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 13601 dtrace_dof_error(dof, "invalid probe name"); 13602 return (-1); 13603 } 13604 13605 /* 13606 * The offset count must not wrap the index, and the offsets 13607 * must also not overflow the section's data. 13608 */ 13609 if (probe->dofpr_offidx + probe->dofpr_noffs < 13610 probe->dofpr_offidx || 13611 (probe->dofpr_offidx + probe->dofpr_noffs) * 13612 off_sec->dofs_entsize > off_sec->dofs_size) { 13613 dtrace_dof_error(dof, "invalid probe offset"); 13614 return (-1); 13615 } 13616 13617 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 13618 /* 13619 * If there's no is-enabled offset section, make sure 13620 * there aren't any is-enabled offsets. Otherwise 13621 * perform the same checks as for probe offsets 13622 * (immediately above). 13623 */ 13624 if (enoff_sec == NULL) { 13625 if (probe->dofpr_enoffidx != 0 || 13626 probe->dofpr_nenoffs != 0) { 13627 dtrace_dof_error(dof, "is-enabled " 13628 "offsets with null section"); 13629 return (-1); 13630 } 13631 } else if (probe->dofpr_enoffidx + 13632 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 13633 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 13634 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 13635 dtrace_dof_error(dof, "invalid is-enabled " 13636 "offset"); 13637 return (-1); 13638 } 13639 13640 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 13641 dtrace_dof_error(dof, "zero probe and " 13642 "is-enabled offsets"); 13643 return (-1); 13644 } 13645 } else if (probe->dofpr_noffs == 0) { 13646 dtrace_dof_error(dof, "zero probe offsets"); 13647 return (-1); 13648 } 13649 13650 if (probe->dofpr_argidx + probe->dofpr_xargc < 13651 probe->dofpr_argidx || 13652 (probe->dofpr_argidx + probe->dofpr_xargc) * 13653 arg_sec->dofs_entsize > arg_sec->dofs_size) { 13654 dtrace_dof_error(dof, "invalid args"); 13655 return (-1); 13656 } 13657 13658 typeidx = probe->dofpr_nargv; 13659 typestr = strtab + probe->dofpr_nargv; 13660 for (k = 0; k < probe->dofpr_nargc; k++) { 13661 if (typeidx >= str_sec->dofs_size) { 13662 dtrace_dof_error(dof, "bad " 13663 "native argument type"); 13664 return (-1); 13665 } 13666 13667 typesz = strlen(typestr) + 1; 13668 if (typesz > DTRACE_ARGTYPELEN) { 13669 dtrace_dof_error(dof, "native " 13670 "argument type too long"); 13671 return (-1); 13672 } 13673 typeidx += typesz; 13674 typestr += typesz; 13675 } 13676 13677 typeidx = probe->dofpr_xargv; 13678 typestr = strtab + probe->dofpr_xargv; 13679 for (k = 0; k < probe->dofpr_xargc; k++) { 13680 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 13681 dtrace_dof_error(dof, "bad " 13682 "native argument index"); 13683 return (-1); 13684 } 13685 13686 if (typeidx >= str_sec->dofs_size) { 13687 dtrace_dof_error(dof, "bad " 13688 "translated argument type"); 13689 return (-1); 13690 } 13691 13692 typesz = strlen(typestr) + 1; 13693 if (typesz > DTRACE_ARGTYPELEN) { 13694 dtrace_dof_error(dof, "translated argument " 13695 "type too long"); 13696 return (-1); 13697 } 13698 13699 typeidx += typesz; 13700 typestr += typesz; 13701 } 13702 } 13703 13704 return (0); 13705 } 13706 13707 static int 13708 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 13709 { 13710 dtrace_helpers_t *help; 13711 dtrace_vstate_t *vstate; 13712 dtrace_enabling_t *enab = NULL; 13713 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 13714 uintptr_t daddr = (uintptr_t)dof; 13715 13716 ASSERT(MUTEX_HELD(&dtrace_lock)); 13717 13718 if ((help = curproc->p_dtrace_helpers) == NULL) 13719 help = dtrace_helpers_create(curproc); 13720 13721 vstate = &help->dthps_vstate; 13722 13723 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 13724 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 13725 dtrace_dof_destroy(dof); 13726 return (rv); 13727 } 13728 13729 /* 13730 * Look for helper providers and validate their descriptions. 13731 */ 13732 if (dhp != NULL) { 13733 for (i = 0; i < dof->dofh_secnum; i++) { 13734 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 13735 dof->dofh_secoff + i * dof->dofh_secsize); 13736 13737 if (sec->dofs_type != DOF_SECT_PROVIDER) 13738 continue; 13739 13740 if (dtrace_helper_provider_validate(dof, sec) != 0) { 13741 dtrace_enabling_destroy(enab); 13742 dtrace_dof_destroy(dof); 13743 return (-1); 13744 } 13745 13746 nprovs++; 13747 } 13748 } 13749 13750 /* 13751 * Now we need to walk through the ECB descriptions in the enabling. 13752 */ 13753 for (i = 0; i < enab->dten_ndesc; i++) { 13754 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 13755 dtrace_probedesc_t *desc = &ep->dted_probe; 13756 13757 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 13758 continue; 13759 13760 if (strcmp(desc->dtpd_mod, "helper") != 0) 13761 continue; 13762 13763 if (strcmp(desc->dtpd_func, "ustack") != 0) 13764 continue; 13765 13766 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 13767 ep)) != 0) { 13768 /* 13769 * Adding this helper action failed -- we are now going 13770 * to rip out the entire generation and return failure. 13771 */ 13772 (void) dtrace_helper_destroygen(help->dthps_generation); 13773 dtrace_enabling_destroy(enab); 13774 dtrace_dof_destroy(dof); 13775 return (-1); 13776 } 13777 13778 nhelpers++; 13779 } 13780 13781 if (nhelpers < enab->dten_ndesc) 13782 dtrace_dof_error(dof, "unmatched helpers"); 13783 13784 gen = help->dthps_generation++; 13785 dtrace_enabling_destroy(enab); 13786 13787 if (dhp != NULL && nprovs > 0) { 13788 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 13789 if (dtrace_helper_provider_add(dhp, gen) == 0) { 13790 mutex_exit(&dtrace_lock); 13791 dtrace_helper_provider_register(curproc, help, dhp); 13792 mutex_enter(&dtrace_lock); 13793 13794 destroy = 0; 13795 } 13796 } 13797 13798 if (destroy) 13799 dtrace_dof_destroy(dof); 13800 13801 return (gen); 13802 } 13803 13804 static dtrace_helpers_t * 13805 dtrace_helpers_create(proc_t *p) 13806 { 13807 dtrace_helpers_t *help; 13808 13809 ASSERT(MUTEX_HELD(&dtrace_lock)); 13810 ASSERT(p->p_dtrace_helpers == NULL); 13811 13812 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 13813 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 13814 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 13815 13816 p->p_dtrace_helpers = help; 13817 dtrace_helpers++; 13818 13819 return (help); 13820 } 13821 13822 static void 13823 dtrace_helpers_destroy(void) 13824 { 13825 dtrace_helpers_t *help; 13826 dtrace_vstate_t *vstate; 13827 proc_t *p = curproc; 13828 int i; 13829 13830 mutex_enter(&dtrace_lock); 13831 13832 ASSERT(p->p_dtrace_helpers != NULL); 13833 ASSERT(dtrace_helpers > 0); 13834 13835 help = p->p_dtrace_helpers; 13836 vstate = &help->dthps_vstate; 13837 13838 /* 13839 * We're now going to lose the help from this process. 13840 */ 13841 p->p_dtrace_helpers = NULL; 13842 dtrace_sync(); 13843 13844 /* 13845 * Destory the helper actions. 13846 */ 13847 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13848 dtrace_helper_action_t *h, *next; 13849 13850 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13851 next = h->dtha_next; 13852 dtrace_helper_action_destroy(h, vstate); 13853 h = next; 13854 } 13855 } 13856 13857 mutex_exit(&dtrace_lock); 13858 13859 /* 13860 * Destroy the helper providers. 13861 */ 13862 if (help->dthps_maxprovs > 0) { 13863 mutex_enter(&dtrace_meta_lock); 13864 if (dtrace_meta_pid != NULL) { 13865 ASSERT(dtrace_deferred_pid == NULL); 13866 13867 for (i = 0; i < help->dthps_nprovs; i++) { 13868 dtrace_helper_provider_remove( 13869 &help->dthps_provs[i]->dthp_prov, p->p_pid); 13870 } 13871 } else { 13872 mutex_enter(&dtrace_lock); 13873 ASSERT(help->dthps_deferred == 0 || 13874 help->dthps_next != NULL || 13875 help->dthps_prev != NULL || 13876 help == dtrace_deferred_pid); 13877 13878 /* 13879 * Remove the helper from the deferred list. 13880 */ 13881 if (help->dthps_next != NULL) 13882 help->dthps_next->dthps_prev = help->dthps_prev; 13883 if (help->dthps_prev != NULL) 13884 help->dthps_prev->dthps_next = help->dthps_next; 13885 if (dtrace_deferred_pid == help) { 13886 dtrace_deferred_pid = help->dthps_next; 13887 ASSERT(help->dthps_prev == NULL); 13888 } 13889 13890 mutex_exit(&dtrace_lock); 13891 } 13892 13893 mutex_exit(&dtrace_meta_lock); 13894 13895 for (i = 0; i < help->dthps_nprovs; i++) { 13896 dtrace_helper_provider_destroy(help->dthps_provs[i]); 13897 } 13898 13899 kmem_free(help->dthps_provs, help->dthps_maxprovs * 13900 sizeof (dtrace_helper_provider_t *)); 13901 } 13902 13903 mutex_enter(&dtrace_lock); 13904 13905 dtrace_vstate_fini(&help->dthps_vstate); 13906 kmem_free(help->dthps_actions, 13907 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 13908 kmem_free(help, sizeof (dtrace_helpers_t)); 13909 13910 --dtrace_helpers; 13911 mutex_exit(&dtrace_lock); 13912 } 13913 13914 static void 13915 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 13916 { 13917 dtrace_helpers_t *help, *newhelp; 13918 dtrace_helper_action_t *helper, *new, *last; 13919 dtrace_difo_t *dp; 13920 dtrace_vstate_t *vstate; 13921 int i, j, sz, hasprovs = 0; 13922 13923 mutex_enter(&dtrace_lock); 13924 ASSERT(from->p_dtrace_helpers != NULL); 13925 ASSERT(dtrace_helpers > 0); 13926 13927 help = from->p_dtrace_helpers; 13928 newhelp = dtrace_helpers_create(to); 13929 ASSERT(to->p_dtrace_helpers != NULL); 13930 13931 newhelp->dthps_generation = help->dthps_generation; 13932 vstate = &newhelp->dthps_vstate; 13933 13934 /* 13935 * Duplicate the helper actions. 13936 */ 13937 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13938 if ((helper = help->dthps_actions[i]) == NULL) 13939 continue; 13940 13941 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 13942 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 13943 KM_SLEEP); 13944 new->dtha_generation = helper->dtha_generation; 13945 13946 if ((dp = helper->dtha_predicate) != NULL) { 13947 dp = dtrace_difo_duplicate(dp, vstate); 13948 new->dtha_predicate = dp; 13949 } 13950 13951 new->dtha_nactions = helper->dtha_nactions; 13952 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 13953 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 13954 13955 for (j = 0; j < new->dtha_nactions; j++) { 13956 dtrace_difo_t *dp = helper->dtha_actions[j]; 13957 13958 ASSERT(dp != NULL); 13959 dp = dtrace_difo_duplicate(dp, vstate); 13960 new->dtha_actions[j] = dp; 13961 } 13962 13963 if (last != NULL) { 13964 last->dtha_next = new; 13965 } else { 13966 newhelp->dthps_actions[i] = new; 13967 } 13968 13969 last = new; 13970 } 13971 } 13972 13973 /* 13974 * Duplicate the helper providers and register them with the 13975 * DTrace framework. 13976 */ 13977 if (help->dthps_nprovs > 0) { 13978 newhelp->dthps_nprovs = help->dthps_nprovs; 13979 newhelp->dthps_maxprovs = help->dthps_nprovs; 13980 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 13981 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13982 for (i = 0; i < newhelp->dthps_nprovs; i++) { 13983 newhelp->dthps_provs[i] = help->dthps_provs[i]; 13984 newhelp->dthps_provs[i]->dthp_ref++; 13985 } 13986 13987 hasprovs = 1; 13988 } 13989 13990 mutex_exit(&dtrace_lock); 13991 13992 if (hasprovs) 13993 dtrace_helper_provider_register(to, newhelp, NULL); 13994 } 13995 13996 /* 13997 * DTrace Hook Functions 13998 */ 13999 static void 14000 dtrace_module_loaded(struct modctl *ctl) 14001 { 14002 dtrace_provider_t *prv; 14003 14004 mutex_enter(&dtrace_provider_lock); 14005 mutex_enter(&mod_lock); 14006 14007 ASSERT(ctl->mod_busy); 14008 14009 /* 14010 * We're going to call each providers per-module provide operation 14011 * specifying only this module. 14012 */ 14013 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 14014 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 14015 14016 mutex_exit(&mod_lock); 14017 mutex_exit(&dtrace_provider_lock); 14018 14019 /* 14020 * If we have any retained enablings, we need to match against them. 14021 * Enabling probes requires that cpu_lock be held, and we cannot hold 14022 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 14023 * module. (In particular, this happens when loading scheduling 14024 * classes.) So if we have any retained enablings, we need to dispatch 14025 * our task queue to do the match for us. 14026 */ 14027 mutex_enter(&dtrace_lock); 14028 14029 if (dtrace_retained == NULL) { 14030 mutex_exit(&dtrace_lock); 14031 return; 14032 } 14033 14034 (void) taskq_dispatch(dtrace_taskq, 14035 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 14036 14037 mutex_exit(&dtrace_lock); 14038 14039 /* 14040 * And now, for a little heuristic sleaze: in general, we want to 14041 * match modules as soon as they load. However, we cannot guarantee 14042 * this, because it would lead us to the lock ordering violation 14043 * outlined above. The common case, of course, is that cpu_lock is 14044 * _not_ held -- so we delay here for a clock tick, hoping that that's 14045 * long enough for the task queue to do its work. If it's not, it's 14046 * not a serious problem -- it just means that the module that we 14047 * just loaded may not be immediately instrumentable. 14048 */ 14049 delay(1); 14050 } 14051 14052 static void 14053 dtrace_module_unloaded(struct modctl *ctl) 14054 { 14055 dtrace_probe_t template, *probe, *first, *next; 14056 dtrace_provider_t *prov; 14057 14058 template.dtpr_mod = ctl->mod_modname; 14059 14060 mutex_enter(&dtrace_provider_lock); 14061 mutex_enter(&mod_lock); 14062 mutex_enter(&dtrace_lock); 14063 14064 if (dtrace_bymod == NULL) { 14065 /* 14066 * The DTrace module is loaded (obviously) but not attached; 14067 * we don't have any work to do. 14068 */ 14069 mutex_exit(&dtrace_provider_lock); 14070 mutex_exit(&mod_lock); 14071 mutex_exit(&dtrace_lock); 14072 return; 14073 } 14074 14075 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 14076 probe != NULL; probe = probe->dtpr_nextmod) { 14077 if (probe->dtpr_ecb != NULL) { 14078 mutex_exit(&dtrace_provider_lock); 14079 mutex_exit(&mod_lock); 14080 mutex_exit(&dtrace_lock); 14081 14082 /* 14083 * This shouldn't _actually_ be possible -- we're 14084 * unloading a module that has an enabled probe in it. 14085 * (It's normally up to the provider to make sure that 14086 * this can't happen.) However, because dtps_enable() 14087 * doesn't have a failure mode, there can be an 14088 * enable/unload race. Upshot: we don't want to 14089 * assert, but we're not going to disable the 14090 * probe, either. 14091 */ 14092 if (dtrace_err_verbose) { 14093 cmn_err(CE_WARN, "unloaded module '%s' had " 14094 "enabled probes", ctl->mod_modname); 14095 } 14096 14097 return; 14098 } 14099 } 14100 14101 probe = first; 14102 14103 for (first = NULL; probe != NULL; probe = next) { 14104 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 14105 14106 dtrace_probes[probe->dtpr_id - 1] = NULL; 14107 14108 next = probe->dtpr_nextmod; 14109 dtrace_hash_remove(dtrace_bymod, probe); 14110 dtrace_hash_remove(dtrace_byfunc, probe); 14111 dtrace_hash_remove(dtrace_byname, probe); 14112 14113 if (first == NULL) { 14114 first = probe; 14115 probe->dtpr_nextmod = NULL; 14116 } else { 14117 probe->dtpr_nextmod = first; 14118 first = probe; 14119 } 14120 } 14121 14122 /* 14123 * We've removed all of the module's probes from the hash chains and 14124 * from the probe array. Now issue a dtrace_sync() to be sure that 14125 * everyone has cleared out from any probe array processing. 14126 */ 14127 dtrace_sync(); 14128 14129 for (probe = first; probe != NULL; probe = first) { 14130 first = probe->dtpr_nextmod; 14131 prov = probe->dtpr_provider; 14132 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 14133 probe->dtpr_arg); 14134 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 14135 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 14136 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 14137 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 14138 kmem_free(probe, sizeof (dtrace_probe_t)); 14139 } 14140 14141 mutex_exit(&dtrace_lock); 14142 mutex_exit(&mod_lock); 14143 mutex_exit(&dtrace_provider_lock); 14144 } 14145 14146 void 14147 dtrace_suspend(void) 14148 { 14149 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 14150 } 14151 14152 void 14153 dtrace_resume(void) 14154 { 14155 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 14156 } 14157 14158 static int 14159 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 14160 { 14161 ASSERT(MUTEX_HELD(&cpu_lock)); 14162 mutex_enter(&dtrace_lock); 14163 14164 switch (what) { 14165 case CPU_CONFIG: { 14166 dtrace_state_t *state; 14167 dtrace_optval_t *opt, rs, c; 14168 14169 /* 14170 * For now, we only allocate a new buffer for anonymous state. 14171 */ 14172 if ((state = dtrace_anon.dta_state) == NULL) 14173 break; 14174 14175 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14176 break; 14177 14178 opt = state->dts_options; 14179 c = opt[DTRACEOPT_CPU]; 14180 14181 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 14182 break; 14183 14184 /* 14185 * Regardless of what the actual policy is, we're going to 14186 * temporarily set our resize policy to be manual. We're 14187 * also going to temporarily set our CPU option to denote 14188 * the newly configured CPU. 14189 */ 14190 rs = opt[DTRACEOPT_BUFRESIZE]; 14191 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14192 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14193 14194 (void) dtrace_state_buffers(state); 14195 14196 opt[DTRACEOPT_BUFRESIZE] = rs; 14197 opt[DTRACEOPT_CPU] = c; 14198 14199 break; 14200 } 14201 14202 case CPU_UNCONFIG: 14203 /* 14204 * We don't free the buffer in the CPU_UNCONFIG case. (The 14205 * buffer will be freed when the consumer exits.) 14206 */ 14207 break; 14208 14209 default: 14210 break; 14211 } 14212 14213 mutex_exit(&dtrace_lock); 14214 return (0); 14215 } 14216 14217 static void 14218 dtrace_cpu_setup_initial(processorid_t cpu) 14219 { 14220 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 14221 } 14222 14223 static void 14224 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 14225 { 14226 if (dtrace_toxranges >= dtrace_toxranges_max) { 14227 int osize, nsize; 14228 dtrace_toxrange_t *range; 14229 14230 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14231 14232 if (osize == 0) { 14233 ASSERT(dtrace_toxrange == NULL); 14234 ASSERT(dtrace_toxranges_max == 0); 14235 dtrace_toxranges_max = 1; 14236 } else { 14237 dtrace_toxranges_max <<= 1; 14238 } 14239 14240 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14241 range = kmem_zalloc(nsize, KM_SLEEP); 14242 14243 if (dtrace_toxrange != NULL) { 14244 ASSERT(osize != 0); 14245 bcopy(dtrace_toxrange, range, osize); 14246 kmem_free(dtrace_toxrange, osize); 14247 } 14248 14249 dtrace_toxrange = range; 14250 } 14251 14252 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 14253 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 14254 14255 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 14256 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 14257 dtrace_toxranges++; 14258 } 14259 14260 /* 14261 * DTrace Driver Cookbook Functions 14262 */ 14263 /*ARGSUSED*/ 14264 static int 14265 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 14266 { 14267 dtrace_provider_id_t id; 14268 dtrace_state_t *state = NULL; 14269 dtrace_enabling_t *enab; 14270 14271 mutex_enter(&cpu_lock); 14272 mutex_enter(&dtrace_provider_lock); 14273 mutex_enter(&dtrace_lock); 14274 14275 if (ddi_soft_state_init(&dtrace_softstate, 14276 sizeof (dtrace_state_t), 0) != 0) { 14277 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 14278 mutex_exit(&cpu_lock); 14279 mutex_exit(&dtrace_provider_lock); 14280 mutex_exit(&dtrace_lock); 14281 return (DDI_FAILURE); 14282 } 14283 14284 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 14285 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 14286 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 14287 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 14288 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 14289 ddi_remove_minor_node(devi, NULL); 14290 ddi_soft_state_fini(&dtrace_softstate); 14291 mutex_exit(&cpu_lock); 14292 mutex_exit(&dtrace_provider_lock); 14293 mutex_exit(&dtrace_lock); 14294 return (DDI_FAILURE); 14295 } 14296 14297 ddi_report_dev(devi); 14298 dtrace_devi = devi; 14299 14300 dtrace_modload = dtrace_module_loaded; 14301 dtrace_modunload = dtrace_module_unloaded; 14302 dtrace_cpu_init = dtrace_cpu_setup_initial; 14303 dtrace_helpers_cleanup = dtrace_helpers_destroy; 14304 dtrace_helpers_fork = dtrace_helpers_duplicate; 14305 dtrace_cpustart_init = dtrace_suspend; 14306 dtrace_cpustart_fini = dtrace_resume; 14307 dtrace_debugger_init = dtrace_suspend; 14308 dtrace_debugger_fini = dtrace_resume; 14309 14310 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14311 14312 ASSERT(MUTEX_HELD(&cpu_lock)); 14313 14314 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 14315 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14316 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 14317 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 14318 VM_SLEEP | VMC_IDENTIFIER); 14319 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 14320 1, INT_MAX, 0); 14321 14322 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 14323 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 14324 NULL, NULL, NULL, NULL, NULL, 0); 14325 14326 ASSERT(MUTEX_HELD(&cpu_lock)); 14327 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 14328 offsetof(dtrace_probe_t, dtpr_nextmod), 14329 offsetof(dtrace_probe_t, dtpr_prevmod)); 14330 14331 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 14332 offsetof(dtrace_probe_t, dtpr_nextfunc), 14333 offsetof(dtrace_probe_t, dtpr_prevfunc)); 14334 14335 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 14336 offsetof(dtrace_probe_t, dtpr_nextname), 14337 offsetof(dtrace_probe_t, dtpr_prevname)); 14338 14339 if (dtrace_retain_max < 1) { 14340 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 14341 "setting to 1", dtrace_retain_max); 14342 dtrace_retain_max = 1; 14343 } 14344 14345 /* 14346 * Now discover our toxic ranges. 14347 */ 14348 dtrace_toxic_ranges(dtrace_toxrange_add); 14349 14350 /* 14351 * Before we register ourselves as a provider to our own framework, 14352 * we would like to assert that dtrace_provider is NULL -- but that's 14353 * not true if we were loaded as a dependency of a DTrace provider. 14354 * Once we've registered, we can assert that dtrace_provider is our 14355 * pseudo provider. 14356 */ 14357 (void) dtrace_register("dtrace", &dtrace_provider_attr, 14358 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 14359 14360 ASSERT(dtrace_provider != NULL); 14361 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 14362 14363 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 14364 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 14365 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 14366 dtrace_provider, NULL, NULL, "END", 0, NULL); 14367 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 14368 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 14369 14370 dtrace_anon_property(); 14371 mutex_exit(&cpu_lock); 14372 14373 /* 14374 * If DTrace helper tracing is enabled, we need to allocate the 14375 * trace buffer and initialize the values. 14376 */ 14377 if (dtrace_helptrace_enabled) { 14378 ASSERT(dtrace_helptrace_buffer == NULL); 14379 dtrace_helptrace_buffer = 14380 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 14381 dtrace_helptrace_next = 0; 14382 } 14383 14384 /* 14385 * If there are already providers, we must ask them to provide their 14386 * probes, and then match any anonymous enabling against them. Note 14387 * that there should be no other retained enablings at this time: 14388 * the only retained enablings at this time should be the anonymous 14389 * enabling. 14390 */ 14391 if (dtrace_anon.dta_enabling != NULL) { 14392 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 14393 14394 dtrace_enabling_provide(NULL); 14395 state = dtrace_anon.dta_state; 14396 14397 /* 14398 * We couldn't hold cpu_lock across the above call to 14399 * dtrace_enabling_provide(), but we must hold it to actually 14400 * enable the probes. We have to drop all of our locks, pick 14401 * up cpu_lock, and regain our locks before matching the 14402 * retained anonymous enabling. 14403 */ 14404 mutex_exit(&dtrace_lock); 14405 mutex_exit(&dtrace_provider_lock); 14406 14407 mutex_enter(&cpu_lock); 14408 mutex_enter(&dtrace_provider_lock); 14409 mutex_enter(&dtrace_lock); 14410 14411 if ((enab = dtrace_anon.dta_enabling) != NULL) 14412 (void) dtrace_enabling_match(enab, NULL); 14413 14414 mutex_exit(&cpu_lock); 14415 } 14416 14417 mutex_exit(&dtrace_lock); 14418 mutex_exit(&dtrace_provider_lock); 14419 14420 if (state != NULL) { 14421 /* 14422 * If we created any anonymous state, set it going now. 14423 */ 14424 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 14425 } 14426 14427 return (DDI_SUCCESS); 14428 } 14429 14430 /*ARGSUSED*/ 14431 static int 14432 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 14433 { 14434 dtrace_state_t *state; 14435 uint32_t priv; 14436 uid_t uid; 14437 zoneid_t zoneid; 14438 14439 if (getminor(*devp) == DTRACEMNRN_HELPER) 14440 return (0); 14441 14442 /* 14443 * If this wasn't an open with the "helper" minor, then it must be 14444 * the "dtrace" minor. 14445 */ 14446 if (getminor(*devp) != DTRACEMNRN_DTRACE) 14447 return (ENXIO); 14448 14449 /* 14450 * If no DTRACE_PRIV_* bits are set in the credential, then the 14451 * caller lacks sufficient permission to do anything with DTrace. 14452 */ 14453 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 14454 if (priv == DTRACE_PRIV_NONE) 14455 return (EACCES); 14456 14457 /* 14458 * Ask all providers to provide all their probes. 14459 */ 14460 mutex_enter(&dtrace_provider_lock); 14461 dtrace_probe_provide(NULL, NULL); 14462 mutex_exit(&dtrace_provider_lock); 14463 14464 mutex_enter(&cpu_lock); 14465 mutex_enter(&dtrace_lock); 14466 dtrace_opens++; 14467 dtrace_membar_producer(); 14468 14469 /* 14470 * If the kernel debugger is active (that is, if the kernel debugger 14471 * modified text in some way), we won't allow the open. 14472 */ 14473 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14474 dtrace_opens--; 14475 mutex_exit(&cpu_lock); 14476 mutex_exit(&dtrace_lock); 14477 return (EBUSY); 14478 } 14479 14480 state = dtrace_state_create(devp, cred_p); 14481 mutex_exit(&cpu_lock); 14482 14483 if (state == NULL) { 14484 if (--dtrace_opens == 0) 14485 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14486 mutex_exit(&dtrace_lock); 14487 return (EAGAIN); 14488 } 14489 14490 mutex_exit(&dtrace_lock); 14491 14492 return (0); 14493 } 14494 14495 /*ARGSUSED*/ 14496 static int 14497 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 14498 { 14499 minor_t minor = getminor(dev); 14500 dtrace_state_t *state; 14501 14502 if (minor == DTRACEMNRN_HELPER) 14503 return (0); 14504 14505 state = ddi_get_soft_state(dtrace_softstate, minor); 14506 14507 mutex_enter(&cpu_lock); 14508 mutex_enter(&dtrace_lock); 14509 14510 if (state->dts_anon) { 14511 /* 14512 * There is anonymous state. Destroy that first. 14513 */ 14514 ASSERT(dtrace_anon.dta_state == NULL); 14515 dtrace_state_destroy(state->dts_anon); 14516 } 14517 14518 dtrace_state_destroy(state); 14519 ASSERT(dtrace_opens > 0); 14520 if (--dtrace_opens == 0) 14521 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14522 14523 mutex_exit(&dtrace_lock); 14524 mutex_exit(&cpu_lock); 14525 14526 return (0); 14527 } 14528 14529 /*ARGSUSED*/ 14530 static int 14531 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 14532 { 14533 int rval; 14534 dof_helper_t help, *dhp = NULL; 14535 14536 switch (cmd) { 14537 case DTRACEHIOC_ADDDOF: 14538 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 14539 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 14540 return (EFAULT); 14541 } 14542 14543 dhp = &help; 14544 arg = (intptr_t)help.dofhp_dof; 14545 /*FALLTHROUGH*/ 14546 14547 case DTRACEHIOC_ADD: { 14548 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 14549 14550 if (dof == NULL) 14551 return (rval); 14552 14553 mutex_enter(&dtrace_lock); 14554 14555 /* 14556 * dtrace_helper_slurp() takes responsibility for the dof -- 14557 * it may free it now or it may save it and free it later. 14558 */ 14559 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 14560 *rv = rval; 14561 rval = 0; 14562 } else { 14563 rval = EINVAL; 14564 } 14565 14566 mutex_exit(&dtrace_lock); 14567 return (rval); 14568 } 14569 14570 case DTRACEHIOC_REMOVE: { 14571 mutex_enter(&dtrace_lock); 14572 rval = dtrace_helper_destroygen(arg); 14573 mutex_exit(&dtrace_lock); 14574 14575 return (rval); 14576 } 14577 14578 default: 14579 break; 14580 } 14581 14582 return (ENOTTY); 14583 } 14584 14585 /*ARGSUSED*/ 14586 static int 14587 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 14588 { 14589 minor_t minor = getminor(dev); 14590 dtrace_state_t *state; 14591 int rval; 14592 14593 if (minor == DTRACEMNRN_HELPER) 14594 return (dtrace_ioctl_helper(cmd, arg, rv)); 14595 14596 state = ddi_get_soft_state(dtrace_softstate, minor); 14597 14598 if (state->dts_anon) { 14599 ASSERT(dtrace_anon.dta_state == NULL); 14600 state = state->dts_anon; 14601 } 14602 14603 switch (cmd) { 14604 case DTRACEIOC_PROVIDER: { 14605 dtrace_providerdesc_t pvd; 14606 dtrace_provider_t *pvp; 14607 14608 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 14609 return (EFAULT); 14610 14611 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 14612 mutex_enter(&dtrace_provider_lock); 14613 14614 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 14615 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 14616 break; 14617 } 14618 14619 mutex_exit(&dtrace_provider_lock); 14620 14621 if (pvp == NULL) 14622 return (ESRCH); 14623 14624 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 14625 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 14626 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 14627 return (EFAULT); 14628 14629 return (0); 14630 } 14631 14632 case DTRACEIOC_EPROBE: { 14633 dtrace_eprobedesc_t epdesc; 14634 dtrace_ecb_t *ecb; 14635 dtrace_action_t *act; 14636 void *buf; 14637 size_t size; 14638 uintptr_t dest; 14639 int nrecs; 14640 14641 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 14642 return (EFAULT); 14643 14644 mutex_enter(&dtrace_lock); 14645 14646 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 14647 mutex_exit(&dtrace_lock); 14648 return (EINVAL); 14649 } 14650 14651 if (ecb->dte_probe == NULL) { 14652 mutex_exit(&dtrace_lock); 14653 return (EINVAL); 14654 } 14655 14656 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 14657 epdesc.dtepd_uarg = ecb->dte_uarg; 14658 epdesc.dtepd_size = ecb->dte_size; 14659 14660 nrecs = epdesc.dtepd_nrecs; 14661 epdesc.dtepd_nrecs = 0; 14662 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14663 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14664 continue; 14665 14666 epdesc.dtepd_nrecs++; 14667 } 14668 14669 /* 14670 * Now that we have the size, we need to allocate a temporary 14671 * buffer in which to store the complete description. We need 14672 * the temporary buffer to be able to drop dtrace_lock() 14673 * across the copyout(), below. 14674 */ 14675 size = sizeof (dtrace_eprobedesc_t) + 14676 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 14677 14678 buf = kmem_alloc(size, KM_SLEEP); 14679 dest = (uintptr_t)buf; 14680 14681 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 14682 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 14683 14684 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14685 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14686 continue; 14687 14688 if (nrecs-- == 0) 14689 break; 14690 14691 bcopy(&act->dta_rec, (void *)dest, 14692 sizeof (dtrace_recdesc_t)); 14693 dest += sizeof (dtrace_recdesc_t); 14694 } 14695 14696 mutex_exit(&dtrace_lock); 14697 14698 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14699 kmem_free(buf, size); 14700 return (EFAULT); 14701 } 14702 14703 kmem_free(buf, size); 14704 return (0); 14705 } 14706 14707 case DTRACEIOC_AGGDESC: { 14708 dtrace_aggdesc_t aggdesc; 14709 dtrace_action_t *act; 14710 dtrace_aggregation_t *agg; 14711 int nrecs; 14712 uint32_t offs; 14713 dtrace_recdesc_t *lrec; 14714 void *buf; 14715 size_t size; 14716 uintptr_t dest; 14717 14718 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 14719 return (EFAULT); 14720 14721 mutex_enter(&dtrace_lock); 14722 14723 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 14724 mutex_exit(&dtrace_lock); 14725 return (EINVAL); 14726 } 14727 14728 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 14729 14730 nrecs = aggdesc.dtagd_nrecs; 14731 aggdesc.dtagd_nrecs = 0; 14732 14733 offs = agg->dtag_base; 14734 lrec = &agg->dtag_action.dta_rec; 14735 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 14736 14737 for (act = agg->dtag_first; ; act = act->dta_next) { 14738 ASSERT(act->dta_intuple || 14739 DTRACEACT_ISAGG(act->dta_kind)); 14740 14741 /* 14742 * If this action has a record size of zero, it 14743 * denotes an argument to the aggregating action. 14744 * Because the presence of this record doesn't (or 14745 * shouldn't) affect the way the data is interpreted, 14746 * we don't copy it out to save user-level the 14747 * confusion of dealing with a zero-length record. 14748 */ 14749 if (act->dta_rec.dtrd_size == 0) { 14750 ASSERT(agg->dtag_hasarg); 14751 continue; 14752 } 14753 14754 aggdesc.dtagd_nrecs++; 14755 14756 if (act == &agg->dtag_action) 14757 break; 14758 } 14759 14760 /* 14761 * Now that we have the size, we need to allocate a temporary 14762 * buffer in which to store the complete description. We need 14763 * the temporary buffer to be able to drop dtrace_lock() 14764 * across the copyout(), below. 14765 */ 14766 size = sizeof (dtrace_aggdesc_t) + 14767 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 14768 14769 buf = kmem_alloc(size, KM_SLEEP); 14770 dest = (uintptr_t)buf; 14771 14772 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 14773 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 14774 14775 for (act = agg->dtag_first; ; act = act->dta_next) { 14776 dtrace_recdesc_t rec = act->dta_rec; 14777 14778 /* 14779 * See the comment in the above loop for why we pass 14780 * over zero-length records. 14781 */ 14782 if (rec.dtrd_size == 0) { 14783 ASSERT(agg->dtag_hasarg); 14784 continue; 14785 } 14786 14787 if (nrecs-- == 0) 14788 break; 14789 14790 rec.dtrd_offset -= offs; 14791 bcopy(&rec, (void *)dest, sizeof (rec)); 14792 dest += sizeof (dtrace_recdesc_t); 14793 14794 if (act == &agg->dtag_action) 14795 break; 14796 } 14797 14798 mutex_exit(&dtrace_lock); 14799 14800 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14801 kmem_free(buf, size); 14802 return (EFAULT); 14803 } 14804 14805 kmem_free(buf, size); 14806 return (0); 14807 } 14808 14809 case DTRACEIOC_ENABLE: { 14810 dof_hdr_t *dof; 14811 dtrace_enabling_t *enab = NULL; 14812 dtrace_vstate_t *vstate; 14813 int err = 0; 14814 14815 *rv = 0; 14816 14817 /* 14818 * If a NULL argument has been passed, we take this as our 14819 * cue to reevaluate our enablings. 14820 */ 14821 if (arg == NULL) { 14822 dtrace_enabling_matchall(); 14823 14824 return (0); 14825 } 14826 14827 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 14828 return (rval); 14829 14830 mutex_enter(&cpu_lock); 14831 mutex_enter(&dtrace_lock); 14832 vstate = &state->dts_vstate; 14833 14834 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14835 mutex_exit(&dtrace_lock); 14836 mutex_exit(&cpu_lock); 14837 dtrace_dof_destroy(dof); 14838 return (EBUSY); 14839 } 14840 14841 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 14842 mutex_exit(&dtrace_lock); 14843 mutex_exit(&cpu_lock); 14844 dtrace_dof_destroy(dof); 14845 return (EINVAL); 14846 } 14847 14848 if ((rval = dtrace_dof_options(dof, state)) != 0) { 14849 dtrace_enabling_destroy(enab); 14850 mutex_exit(&dtrace_lock); 14851 mutex_exit(&cpu_lock); 14852 dtrace_dof_destroy(dof); 14853 return (rval); 14854 } 14855 14856 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 14857 err = dtrace_enabling_retain(enab); 14858 } else { 14859 dtrace_enabling_destroy(enab); 14860 } 14861 14862 mutex_exit(&cpu_lock); 14863 mutex_exit(&dtrace_lock); 14864 dtrace_dof_destroy(dof); 14865 14866 return (err); 14867 } 14868 14869 case DTRACEIOC_REPLICATE: { 14870 dtrace_repldesc_t desc; 14871 dtrace_probedesc_t *match = &desc.dtrpd_match; 14872 dtrace_probedesc_t *create = &desc.dtrpd_create; 14873 int err; 14874 14875 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14876 return (EFAULT); 14877 14878 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14879 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14880 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14881 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14882 14883 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14884 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14885 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14886 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14887 14888 mutex_enter(&dtrace_lock); 14889 err = dtrace_enabling_replicate(state, match, create); 14890 mutex_exit(&dtrace_lock); 14891 14892 return (err); 14893 } 14894 14895 case DTRACEIOC_PROBEMATCH: 14896 case DTRACEIOC_PROBES: { 14897 dtrace_probe_t *probe = NULL; 14898 dtrace_probedesc_t desc; 14899 dtrace_probekey_t pkey; 14900 dtrace_id_t i; 14901 int m = 0; 14902 uint32_t priv; 14903 uid_t uid; 14904 zoneid_t zoneid; 14905 14906 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14907 return (EFAULT); 14908 14909 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14910 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14911 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14912 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14913 14914 /* 14915 * Before we attempt to match this probe, we want to give 14916 * all providers the opportunity to provide it. 14917 */ 14918 if (desc.dtpd_id == DTRACE_IDNONE) { 14919 mutex_enter(&dtrace_provider_lock); 14920 dtrace_probe_provide(&desc, NULL); 14921 mutex_exit(&dtrace_provider_lock); 14922 desc.dtpd_id++; 14923 } 14924 14925 if (cmd == DTRACEIOC_PROBEMATCH) { 14926 dtrace_probekey(&desc, &pkey); 14927 pkey.dtpk_id = DTRACE_IDNONE; 14928 } 14929 14930 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 14931 14932 mutex_enter(&dtrace_lock); 14933 14934 if (cmd == DTRACEIOC_PROBEMATCH) { 14935 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14936 if ((probe = dtrace_probes[i - 1]) != NULL && 14937 (m = dtrace_match_probe(probe, &pkey, 14938 priv, uid, zoneid)) != 0) 14939 break; 14940 } 14941 14942 if (m < 0) { 14943 mutex_exit(&dtrace_lock); 14944 return (EINVAL); 14945 } 14946 14947 } else { 14948 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14949 if ((probe = dtrace_probes[i - 1]) != NULL && 14950 dtrace_match_priv(probe, priv, uid, zoneid)) 14951 break; 14952 } 14953 } 14954 14955 if (probe == NULL) { 14956 mutex_exit(&dtrace_lock); 14957 return (ESRCH); 14958 } 14959 14960 dtrace_probe_description(probe, &desc); 14961 mutex_exit(&dtrace_lock); 14962 14963 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14964 return (EFAULT); 14965 14966 return (0); 14967 } 14968 14969 case DTRACEIOC_PROBEARG: { 14970 dtrace_argdesc_t desc; 14971 dtrace_probe_t *probe; 14972 dtrace_provider_t *prov; 14973 14974 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14975 return (EFAULT); 14976 14977 if (desc.dtargd_id == DTRACE_IDNONE) 14978 return (EINVAL); 14979 14980 if (desc.dtargd_ndx == DTRACE_ARGNONE) 14981 return (EINVAL); 14982 14983 mutex_enter(&dtrace_provider_lock); 14984 mutex_enter(&mod_lock); 14985 mutex_enter(&dtrace_lock); 14986 14987 if (desc.dtargd_id > dtrace_nprobes) { 14988 mutex_exit(&dtrace_lock); 14989 mutex_exit(&mod_lock); 14990 mutex_exit(&dtrace_provider_lock); 14991 return (EINVAL); 14992 } 14993 14994 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 14995 mutex_exit(&dtrace_lock); 14996 mutex_exit(&mod_lock); 14997 mutex_exit(&dtrace_provider_lock); 14998 return (EINVAL); 14999 } 15000 15001 mutex_exit(&dtrace_lock); 15002 15003 prov = probe->dtpr_provider; 15004 15005 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 15006 /* 15007 * There isn't any typed information for this probe. 15008 * Set the argument number to DTRACE_ARGNONE. 15009 */ 15010 desc.dtargd_ndx = DTRACE_ARGNONE; 15011 } else { 15012 desc.dtargd_native[0] = '\0'; 15013 desc.dtargd_xlate[0] = '\0'; 15014 desc.dtargd_mapping = desc.dtargd_ndx; 15015 15016 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 15017 probe->dtpr_id, probe->dtpr_arg, &desc); 15018 } 15019 15020 mutex_exit(&mod_lock); 15021 mutex_exit(&dtrace_provider_lock); 15022 15023 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15024 return (EFAULT); 15025 15026 return (0); 15027 } 15028 15029 case DTRACEIOC_GO: { 15030 processorid_t cpuid; 15031 rval = dtrace_state_go(state, &cpuid); 15032 15033 if (rval != 0) 15034 return (rval); 15035 15036 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15037 return (EFAULT); 15038 15039 return (0); 15040 } 15041 15042 case DTRACEIOC_STOP: { 15043 processorid_t cpuid; 15044 15045 mutex_enter(&dtrace_lock); 15046 rval = dtrace_state_stop(state, &cpuid); 15047 mutex_exit(&dtrace_lock); 15048 15049 if (rval != 0) 15050 return (rval); 15051 15052 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15053 return (EFAULT); 15054 15055 return (0); 15056 } 15057 15058 case DTRACEIOC_DOFGET: { 15059 dof_hdr_t hdr, *dof; 15060 uint64_t len; 15061 15062 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 15063 return (EFAULT); 15064 15065 mutex_enter(&dtrace_lock); 15066 dof = dtrace_dof_create(state); 15067 mutex_exit(&dtrace_lock); 15068 15069 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 15070 rval = copyout(dof, (void *)arg, len); 15071 dtrace_dof_destroy(dof); 15072 15073 return (rval == 0 ? 0 : EFAULT); 15074 } 15075 15076 case DTRACEIOC_AGGSNAP: 15077 case DTRACEIOC_BUFSNAP: { 15078 dtrace_bufdesc_t desc; 15079 caddr_t cached; 15080 dtrace_buffer_t *buf; 15081 15082 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15083 return (EFAULT); 15084 15085 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 15086 return (EINVAL); 15087 15088 mutex_enter(&dtrace_lock); 15089 15090 if (cmd == DTRACEIOC_BUFSNAP) { 15091 buf = &state->dts_buffer[desc.dtbd_cpu]; 15092 } else { 15093 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 15094 } 15095 15096 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 15097 size_t sz = buf->dtb_offset; 15098 15099 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 15100 mutex_exit(&dtrace_lock); 15101 return (EBUSY); 15102 } 15103 15104 /* 15105 * If this buffer has already been consumed, we're 15106 * going to indicate that there's nothing left here 15107 * to consume. 15108 */ 15109 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 15110 mutex_exit(&dtrace_lock); 15111 15112 desc.dtbd_size = 0; 15113 desc.dtbd_drops = 0; 15114 desc.dtbd_errors = 0; 15115 desc.dtbd_oldest = 0; 15116 sz = sizeof (desc); 15117 15118 if (copyout(&desc, (void *)arg, sz) != 0) 15119 return (EFAULT); 15120 15121 return (0); 15122 } 15123 15124 /* 15125 * If this is a ring buffer that has wrapped, we want 15126 * to copy the whole thing out. 15127 */ 15128 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 15129 dtrace_buffer_polish(buf); 15130 sz = buf->dtb_size; 15131 } 15132 15133 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 15134 mutex_exit(&dtrace_lock); 15135 return (EFAULT); 15136 } 15137 15138 desc.dtbd_size = sz; 15139 desc.dtbd_drops = buf->dtb_drops; 15140 desc.dtbd_errors = buf->dtb_errors; 15141 desc.dtbd_oldest = buf->dtb_xamot_offset; 15142 15143 mutex_exit(&dtrace_lock); 15144 15145 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15146 return (EFAULT); 15147 15148 buf->dtb_flags |= DTRACEBUF_CONSUMED; 15149 15150 return (0); 15151 } 15152 15153 if (buf->dtb_tomax == NULL) { 15154 ASSERT(buf->dtb_xamot == NULL); 15155 mutex_exit(&dtrace_lock); 15156 return (ENOENT); 15157 } 15158 15159 cached = buf->dtb_tomax; 15160 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 15161 15162 dtrace_xcall(desc.dtbd_cpu, 15163 (dtrace_xcall_t)dtrace_buffer_switch, buf); 15164 15165 state->dts_errors += buf->dtb_xamot_errors; 15166 15167 /* 15168 * If the buffers did not actually switch, then the cross call 15169 * did not take place -- presumably because the given CPU is 15170 * not in the ready set. If this is the case, we'll return 15171 * ENOENT. 15172 */ 15173 if (buf->dtb_tomax == cached) { 15174 ASSERT(buf->dtb_xamot != cached); 15175 mutex_exit(&dtrace_lock); 15176 return (ENOENT); 15177 } 15178 15179 ASSERT(cached == buf->dtb_xamot); 15180 15181 /* 15182 * We have our snapshot; now copy it out. 15183 */ 15184 if (copyout(buf->dtb_xamot, desc.dtbd_data, 15185 buf->dtb_xamot_offset) != 0) { 15186 mutex_exit(&dtrace_lock); 15187 return (EFAULT); 15188 } 15189 15190 desc.dtbd_size = buf->dtb_xamot_offset; 15191 desc.dtbd_drops = buf->dtb_xamot_drops; 15192 desc.dtbd_errors = buf->dtb_xamot_errors; 15193 desc.dtbd_oldest = 0; 15194 15195 mutex_exit(&dtrace_lock); 15196 15197 /* 15198 * Finally, copy out the buffer description. 15199 */ 15200 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15201 return (EFAULT); 15202 15203 return (0); 15204 } 15205 15206 case DTRACEIOC_CONF: { 15207 dtrace_conf_t conf; 15208 15209 bzero(&conf, sizeof (conf)); 15210 conf.dtc_difversion = DIF_VERSION; 15211 conf.dtc_difintregs = DIF_DIR_NREGS; 15212 conf.dtc_diftupregs = DIF_DTR_NREGS; 15213 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 15214 15215 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15216 return (EFAULT); 15217 15218 return (0); 15219 } 15220 15221 case DTRACEIOC_STATUS: { 15222 dtrace_status_t stat; 15223 dtrace_dstate_t *dstate; 15224 int i, j; 15225 uint64_t nerrs; 15226 15227 /* 15228 * See the comment in dtrace_state_deadman() for the reason 15229 * for setting dts_laststatus to INT64_MAX before setting 15230 * it to the correct value. 15231 */ 15232 state->dts_laststatus = INT64_MAX; 15233 dtrace_membar_producer(); 15234 state->dts_laststatus = dtrace_gethrtime(); 15235 15236 bzero(&stat, sizeof (stat)); 15237 15238 mutex_enter(&dtrace_lock); 15239 15240 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 15241 mutex_exit(&dtrace_lock); 15242 return (ENOENT); 15243 } 15244 15245 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 15246 stat.dtst_exiting = 1; 15247 15248 nerrs = state->dts_errors; 15249 dstate = &state->dts_vstate.dtvs_dynvars; 15250 15251 for (i = 0; i < NCPU; i++) { 15252 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 15253 15254 stat.dtst_dyndrops += dcpu->dtdsc_drops; 15255 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 15256 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 15257 15258 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 15259 stat.dtst_filled++; 15260 15261 nerrs += state->dts_buffer[i].dtb_errors; 15262 15263 for (j = 0; j < state->dts_nspeculations; j++) { 15264 dtrace_speculation_t *spec; 15265 dtrace_buffer_t *buf; 15266 15267 spec = &state->dts_speculations[j]; 15268 buf = &spec->dtsp_buffer[i]; 15269 stat.dtst_specdrops += buf->dtb_xamot_drops; 15270 } 15271 } 15272 15273 stat.dtst_specdrops_busy = state->dts_speculations_busy; 15274 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 15275 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 15276 stat.dtst_dblerrors = state->dts_dblerrors; 15277 stat.dtst_killed = 15278 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 15279 stat.dtst_errors = nerrs; 15280 15281 mutex_exit(&dtrace_lock); 15282 15283 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 15284 return (EFAULT); 15285 15286 return (0); 15287 } 15288 15289 case DTRACEIOC_FORMAT: { 15290 dtrace_fmtdesc_t fmt; 15291 char *str; 15292 int len; 15293 15294 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 15295 return (EFAULT); 15296 15297 mutex_enter(&dtrace_lock); 15298 15299 if (fmt.dtfd_format == 0 || 15300 fmt.dtfd_format > state->dts_nformats) { 15301 mutex_exit(&dtrace_lock); 15302 return (EINVAL); 15303 } 15304 15305 /* 15306 * Format strings are allocated contiguously and they are 15307 * never freed; if a format index is less than the number 15308 * of formats, we can assert that the format map is non-NULL 15309 * and that the format for the specified index is non-NULL. 15310 */ 15311 ASSERT(state->dts_formats != NULL); 15312 str = state->dts_formats[fmt.dtfd_format - 1]; 15313 ASSERT(str != NULL); 15314 15315 len = strlen(str) + 1; 15316 15317 if (len > fmt.dtfd_length) { 15318 fmt.dtfd_length = len; 15319 15320 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 15321 mutex_exit(&dtrace_lock); 15322 return (EINVAL); 15323 } 15324 } else { 15325 if (copyout(str, fmt.dtfd_string, len) != 0) { 15326 mutex_exit(&dtrace_lock); 15327 return (EINVAL); 15328 } 15329 } 15330 15331 mutex_exit(&dtrace_lock); 15332 return (0); 15333 } 15334 15335 default: 15336 break; 15337 } 15338 15339 return (ENOTTY); 15340 } 15341 15342 /*ARGSUSED*/ 15343 static int 15344 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 15345 { 15346 dtrace_state_t *state; 15347 15348 switch (cmd) { 15349 case DDI_DETACH: 15350 break; 15351 15352 case DDI_SUSPEND: 15353 return (DDI_SUCCESS); 15354 15355 default: 15356 return (DDI_FAILURE); 15357 } 15358 15359 mutex_enter(&cpu_lock); 15360 mutex_enter(&dtrace_provider_lock); 15361 mutex_enter(&dtrace_lock); 15362 15363 ASSERT(dtrace_opens == 0); 15364 15365 if (dtrace_helpers > 0) { 15366 mutex_exit(&dtrace_provider_lock); 15367 mutex_exit(&dtrace_lock); 15368 mutex_exit(&cpu_lock); 15369 return (DDI_FAILURE); 15370 } 15371 15372 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 15373 mutex_exit(&dtrace_provider_lock); 15374 mutex_exit(&dtrace_lock); 15375 mutex_exit(&cpu_lock); 15376 return (DDI_FAILURE); 15377 } 15378 15379 dtrace_provider = NULL; 15380 15381 if ((state = dtrace_anon_grab()) != NULL) { 15382 /* 15383 * If there were ECBs on this state, the provider should 15384 * have not been allowed to detach; assert that there is 15385 * none. 15386 */ 15387 ASSERT(state->dts_necbs == 0); 15388 dtrace_state_destroy(state); 15389 15390 /* 15391 * If we're being detached with anonymous state, we need to 15392 * indicate to the kernel debugger that DTrace is now inactive. 15393 */ 15394 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15395 } 15396 15397 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 15398 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15399 dtrace_cpu_init = NULL; 15400 dtrace_helpers_cleanup = NULL; 15401 dtrace_helpers_fork = NULL; 15402 dtrace_cpustart_init = NULL; 15403 dtrace_cpustart_fini = NULL; 15404 dtrace_debugger_init = NULL; 15405 dtrace_debugger_fini = NULL; 15406 dtrace_modload = NULL; 15407 dtrace_modunload = NULL; 15408 15409 mutex_exit(&cpu_lock); 15410 15411 if (dtrace_helptrace_enabled) { 15412 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 15413 dtrace_helptrace_buffer = NULL; 15414 } 15415 15416 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 15417 dtrace_probes = NULL; 15418 dtrace_nprobes = 0; 15419 15420 dtrace_hash_destroy(dtrace_bymod); 15421 dtrace_hash_destroy(dtrace_byfunc); 15422 dtrace_hash_destroy(dtrace_byname); 15423 dtrace_bymod = NULL; 15424 dtrace_byfunc = NULL; 15425 dtrace_byname = NULL; 15426 15427 kmem_cache_destroy(dtrace_state_cache); 15428 vmem_destroy(dtrace_minor); 15429 vmem_destroy(dtrace_arena); 15430 15431 if (dtrace_toxrange != NULL) { 15432 kmem_free(dtrace_toxrange, 15433 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 15434 dtrace_toxrange = NULL; 15435 dtrace_toxranges = 0; 15436 dtrace_toxranges_max = 0; 15437 } 15438 15439 ddi_remove_minor_node(dtrace_devi, NULL); 15440 dtrace_devi = NULL; 15441 15442 ddi_soft_state_fini(&dtrace_softstate); 15443 15444 ASSERT(dtrace_vtime_references == 0); 15445 ASSERT(dtrace_opens == 0); 15446 ASSERT(dtrace_retained == NULL); 15447 15448 mutex_exit(&dtrace_lock); 15449 mutex_exit(&dtrace_provider_lock); 15450 15451 /* 15452 * We don't destroy the task queue until after we have dropped our 15453 * locks (taskq_destroy() may block on running tasks). To prevent 15454 * attempting to do work after we have effectively detached but before 15455 * the task queue has been destroyed, all tasks dispatched via the 15456 * task queue must check that DTrace is still attached before 15457 * performing any operation. 15458 */ 15459 taskq_destroy(dtrace_taskq); 15460 dtrace_taskq = NULL; 15461 15462 return (DDI_SUCCESS); 15463 } 15464 15465 /*ARGSUSED*/ 15466 static int 15467 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 15468 { 15469 int error; 15470 15471 switch (infocmd) { 15472 case DDI_INFO_DEVT2DEVINFO: 15473 *result = (void *)dtrace_devi; 15474 error = DDI_SUCCESS; 15475 break; 15476 case DDI_INFO_DEVT2INSTANCE: 15477 *result = (void *)0; 15478 error = DDI_SUCCESS; 15479 break; 15480 default: 15481 error = DDI_FAILURE; 15482 } 15483 return (error); 15484 } 15485 15486 static struct cb_ops dtrace_cb_ops = { 15487 dtrace_open, /* open */ 15488 dtrace_close, /* close */ 15489 nulldev, /* strategy */ 15490 nulldev, /* print */ 15491 nodev, /* dump */ 15492 nodev, /* read */ 15493 nodev, /* write */ 15494 dtrace_ioctl, /* ioctl */ 15495 nodev, /* devmap */ 15496 nodev, /* mmap */ 15497 nodev, /* segmap */ 15498 nochpoll, /* poll */ 15499 ddi_prop_op, /* cb_prop_op */ 15500 0, /* streamtab */ 15501 D_NEW | D_MP /* Driver compatibility flag */ 15502 }; 15503 15504 static struct dev_ops dtrace_ops = { 15505 DEVO_REV, /* devo_rev */ 15506 0, /* refcnt */ 15507 dtrace_info, /* get_dev_info */ 15508 nulldev, /* identify */ 15509 nulldev, /* probe */ 15510 dtrace_attach, /* attach */ 15511 dtrace_detach, /* detach */ 15512 nodev, /* reset */ 15513 &dtrace_cb_ops, /* driver operations */ 15514 NULL, /* bus operations */ 15515 nodev, /* dev power */ 15516 ddi_quiesce_not_needed, /* quiesce */ 15517 }; 15518 15519 static struct modldrv modldrv = { 15520 &mod_driverops, /* module type (this is a pseudo driver) */ 15521 "Dynamic Tracing", /* name of module */ 15522 &dtrace_ops, /* driver ops */ 15523 }; 15524 15525 static struct modlinkage modlinkage = { 15526 MODREV_1, 15527 (void *)&modldrv, 15528 NULL 15529 }; 15530 15531 int 15532 _init(void) 15533 { 15534 return (mod_install(&modlinkage)); 15535 } 15536 15537 int 15538 _info(struct modinfo *modinfop) 15539 { 15540 return (mod_info(&modlinkage, modinfop)); 15541 } 15542 15543 int 15544 _fini(void) 15545 { 15546 return (mod_remove(&modlinkage)); 15547 } 15548