1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * DTrace - Dynamic Tracing for Solaris 31 * 32 * This is the implementation of the Solaris Dynamic Tracing framework 33 * (DTrace). The user-visible interface to DTrace is described at length in 34 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 35 * library, the in-kernel DTrace framework, and the DTrace providers are 36 * described in the block comments in the <sys/dtrace.h> header file. The 37 * internal architecture of DTrace is described in the block comments in the 38 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 39 * implementation very much assume mastery of all of these sources; if one has 40 * an unanswered question about the implementation, one should consult them 41 * first. 42 * 43 * The functions here are ordered roughly as follows: 44 * 45 * - Probe context functions 46 * - Probe hashing functions 47 * - Non-probe context utility functions 48 * - Matching functions 49 * - Provider-to-Framework API functions 50 * - Probe management functions 51 * - DIF object functions 52 * - Format functions 53 * - Predicate functions 54 * - ECB functions 55 * - Buffer functions 56 * - Enabling functions 57 * - DOF functions 58 * - Anonymous enabling functions 59 * - Consumer state functions 60 * - Helper functions 61 * - Hook functions 62 * - Driver cookbook functions 63 * 64 * Each group of functions begins with a block comment labelled the "DTrace 65 * [Group] Functions", allowing one to find each block by searching forward 66 * on capital-f functions. 67 */ 68 #include <sys/errno.h> 69 #include <sys/stat.h> 70 #include <sys/modctl.h> 71 #include <sys/conf.h> 72 #include <sys/systm.h> 73 #include <sys/ddi.h> 74 #include <sys/sunddi.h> 75 #include <sys/cpuvar.h> 76 #include <sys/kmem.h> 77 #include <sys/strsubr.h> 78 #include <sys/sysmacros.h> 79 #include <sys/dtrace_impl.h> 80 #include <sys/atomic.h> 81 #include <sys/cmn_err.h> 82 #include <sys/mutex_impl.h> 83 #include <sys/rwlock_impl.h> 84 #include <sys/ctf_api.h> 85 #include <sys/panic.h> 86 #include <sys/priv_impl.h> 87 #include <sys/policy.h> 88 #include <sys/cred_impl.h> 89 #include <sys/procfs_isa.h> 90 #include <sys/taskq.h> 91 #include <sys/mkdev.h> 92 #include <sys/kdi.h> 93 #include <sys/zone.h> 94 95 /* 96 * DTrace Tunable Variables 97 * 98 * The following variables may be tuned by adding a line to /etc/system that 99 * includes both the name of the DTrace module ("dtrace") and the name of the 100 * variable. For example: 101 * 102 * set dtrace:dtrace_destructive_disallow = 1 103 * 104 * In general, the only variables that one should be tuning this way are those 105 * that affect system-wide DTrace behavior, and for which the default behavior 106 * is undesirable. Most of these variables are tunable on a per-consumer 107 * basis using DTrace options, and need not be tuned on a system-wide basis. 108 * When tuning these variables, avoid pathological values; while some attempt 109 * is made to verify the integrity of these variables, they are not considered 110 * part of the supported interface to DTrace, and they are therefore not 111 * checked comprehensively. Further, these variables should not be tuned 112 * dynamically via "mdb -kw" or other means; they should only be tuned via 113 * /etc/system. 114 */ 115 int dtrace_destructive_disallow = 0; 116 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 117 size_t dtrace_difo_maxsize = (256 * 1024); 118 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 119 size_t dtrace_global_maxsize = (16 * 1024); 120 size_t dtrace_actions_max = (16 * 1024); 121 size_t dtrace_retain_max = 1024; 122 dtrace_optval_t dtrace_helper_actions_max = 32; 123 dtrace_optval_t dtrace_helper_providers_max = 32; 124 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 125 size_t dtrace_strsize_default = 256; 126 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 127 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 128 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 129 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 130 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 132 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_nspec_default = 1; 134 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 135 dtrace_optval_t dtrace_stackframes_default = 20; 136 dtrace_optval_t dtrace_ustackframes_default = 20; 137 dtrace_optval_t dtrace_jstackframes_default = 50; 138 dtrace_optval_t dtrace_jstackstrsize_default = 512; 139 int dtrace_msgdsize_max = 128; 140 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 141 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 142 int dtrace_devdepth_max = 32; 143 int dtrace_err_verbose; 144 hrtime_t dtrace_deadman_interval = NANOSEC; 145 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 146 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 147 148 /* 149 * DTrace External Variables 150 * 151 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 152 * available to DTrace consumers via the backtick (`) syntax. One of these, 153 * dtrace_zero, is made deliberately so: it is provided as a source of 154 * well-known, zero-filled memory. While this variable is not documented, 155 * it is used by some translators as an implementation detail. 156 */ 157 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 158 159 /* 160 * DTrace Internal Variables 161 */ 162 static dev_info_t *dtrace_devi; /* device info */ 163 static vmem_t *dtrace_arena; /* probe ID arena */ 164 static vmem_t *dtrace_minor; /* minor number arena */ 165 static taskq_t *dtrace_taskq; /* task queue */ 166 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 167 static int dtrace_nprobes; /* number of probes */ 168 static dtrace_provider_t *dtrace_provider; /* provider list */ 169 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 170 static int dtrace_opens; /* number of opens */ 171 static int dtrace_helpers; /* number of helpers */ 172 static void *dtrace_softstate; /* softstate pointer */ 173 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 174 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 175 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 176 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 177 static int dtrace_toxranges; /* number of toxic ranges */ 178 static int dtrace_toxranges_max; /* size of toxic range array */ 179 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 180 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 181 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 182 static kthread_t *dtrace_panicked; /* panicking thread */ 183 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 184 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 185 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 186 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 187 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 188 189 /* 190 * DTrace Locking 191 * DTrace is protected by three (relatively coarse-grained) locks: 192 * 193 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 194 * including enabling state, probes, ECBs, consumer state, helper state, 195 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 196 * probe context is lock-free -- synchronization is handled via the 197 * dtrace_sync() cross call mechanism. 198 * 199 * (2) dtrace_provider_lock is required when manipulating provider state, or 200 * when provider state must be held constant. 201 * 202 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 203 * when meta provider state must be held constant. 204 * 205 * The lock ordering between these three locks is dtrace_meta_lock before 206 * dtrace_provider_lock before dtrace_lock. (In particular, there are 207 * several places where dtrace_provider_lock is held by the framework as it 208 * calls into the providers -- which then call back into the framework, 209 * grabbing dtrace_lock.) 210 * 211 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 212 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 213 * role as a coarse-grained lock; it is acquired before both of these locks. 214 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 215 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 216 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 217 * acquired _between_ dtrace_provider_lock and dtrace_lock. 218 */ 219 static kmutex_t dtrace_lock; /* probe state lock */ 220 static kmutex_t dtrace_provider_lock; /* provider state lock */ 221 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 222 223 /* 224 * DTrace Provider Variables 225 * 226 * These are the variables relating to DTrace as a provider (that is, the 227 * provider of the BEGIN, END, and ERROR probes). 228 */ 229 static dtrace_pattr_t dtrace_provider_attr = { 230 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 231 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 232 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 235 }; 236 237 static void 238 dtrace_nullop(void) 239 {} 240 241 static dtrace_pops_t dtrace_provider_ops = { 242 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 243 (void (*)(void *, struct modctl *))dtrace_nullop, 244 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 245 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 246 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 247 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 248 NULL, 249 NULL, 250 NULL, 251 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 252 }; 253 254 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 255 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 256 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 257 258 /* 259 * DTrace Helper Tracing Variables 260 */ 261 uint32_t dtrace_helptrace_next = 0; 262 uint32_t dtrace_helptrace_nlocals; 263 char *dtrace_helptrace_buffer; 264 int dtrace_helptrace_bufsize = 512 * 1024; 265 266 #ifdef DEBUG 267 int dtrace_helptrace_enabled = 1; 268 #else 269 int dtrace_helptrace_enabled = 0; 270 #endif 271 272 /* 273 * DTrace Error Hashing 274 * 275 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 276 * table. This is very useful for checking coverage of tests that are 277 * expected to induce DIF or DOF processing errors, and may be useful for 278 * debugging problems in the DIF code generator or in DOF generation . The 279 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 280 */ 281 #ifdef DEBUG 282 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 283 static const char *dtrace_errlast; 284 static kthread_t *dtrace_errthread; 285 static kmutex_t dtrace_errlock; 286 #endif 287 288 /* 289 * DTrace Macros and Constants 290 * 291 * These are various macros that are useful in various spots in the 292 * implementation, along with a few random constants that have no meaning 293 * outside of the implementation. There is no real structure to this cpp 294 * mishmash -- but is there ever? 295 */ 296 #define DTRACE_HASHSTR(hash, probe) \ 297 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 298 299 #define DTRACE_HASHNEXT(hash, probe) \ 300 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 301 302 #define DTRACE_HASHPREV(hash, probe) \ 303 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 304 305 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 306 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 307 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 308 309 #define DTRACE_AGGHASHSIZE_SLEW 17 310 311 /* 312 * The key for a thread-local variable consists of the lower 61 bits of the 313 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 314 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 315 * equal to a variable identifier. This is necessary (but not sufficient) to 316 * assure that global associative arrays never collide with thread-local 317 * variables. To guarantee that they cannot collide, we must also define the 318 * order for keying dynamic variables. That order is: 319 * 320 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 321 * 322 * Because the variable-key and the tls-key are in orthogonal spaces, there is 323 * no way for a global variable key signature to match a thread-local key 324 * signature. 325 */ 326 #define DTRACE_TLS_THRKEY(where) { \ 327 uint_t intr = 0; \ 328 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 329 for (; actv; actv >>= 1) \ 330 intr++; \ 331 ASSERT(intr < (1 << 3)); \ 332 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 333 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 334 } 335 336 #define DT_BSWAP_8(x) ((x) & 0xff) 337 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 338 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 339 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 340 341 #define DTRACE_STORE(type, tomax, offset, what) \ 342 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 343 344 #ifndef __i386 345 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 346 if (addr & (size - 1)) { \ 347 *flags |= CPU_DTRACE_BADALIGN; \ 348 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 349 return (0); \ 350 } 351 #else 352 #define DTRACE_ALIGNCHECK(addr, size, flags) 353 #endif 354 355 /* 356 * Test whether a range of memory starting at testaddr of size testsz falls 357 * within the range of memory described by addr, sz. We take care to avoid 358 * problems with overflow and underflow of the unsigned quantities, and 359 * disallow all negative sizes. Ranges of size 0 are allowed. 360 */ 361 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 362 ((testaddr) - (baseaddr) < (basesz) && \ 363 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 364 (testaddr) + (testsz) >= (testaddr)) 365 366 /* 367 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 368 * alloc_sz on the righthand side of the comparison in order to avoid overflow 369 * or underflow in the comparison with it. This is simpler than the INRANGE 370 * check above, because we know that the dtms_scratch_ptr is valid in the 371 * range. Allocations of size zero are allowed. 372 */ 373 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 374 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 375 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 376 377 #define DTRACE_LOADFUNC(bits) \ 378 /*CSTYLED*/ \ 379 uint##bits##_t \ 380 dtrace_load##bits(uintptr_t addr) \ 381 { \ 382 size_t size = bits / NBBY; \ 383 /*CSTYLED*/ \ 384 uint##bits##_t rval; \ 385 int i; \ 386 volatile uint16_t *flags = (volatile uint16_t *) \ 387 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 388 \ 389 DTRACE_ALIGNCHECK(addr, size, flags); \ 390 \ 391 for (i = 0; i < dtrace_toxranges; i++) { \ 392 if (addr >= dtrace_toxrange[i].dtt_limit) \ 393 continue; \ 394 \ 395 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 396 continue; \ 397 \ 398 /* \ 399 * This address falls within a toxic region; return 0. \ 400 */ \ 401 *flags |= CPU_DTRACE_BADADDR; \ 402 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 403 return (0); \ 404 } \ 405 \ 406 *flags |= CPU_DTRACE_NOFAULT; \ 407 /*CSTYLED*/ \ 408 rval = *((volatile uint##bits##_t *)addr); \ 409 *flags &= ~CPU_DTRACE_NOFAULT; \ 410 \ 411 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 412 } 413 414 #ifdef _LP64 415 #define dtrace_loadptr dtrace_load64 416 #else 417 #define dtrace_loadptr dtrace_load32 418 #endif 419 420 #define DTRACE_DYNHASH_FREE 0 421 #define DTRACE_DYNHASH_SINK 1 422 #define DTRACE_DYNHASH_VALID 2 423 424 #define DTRACE_MATCH_NEXT 0 425 #define DTRACE_MATCH_DONE 1 426 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 427 #define DTRACE_STATE_ALIGN 64 428 429 #define DTRACE_FLAGS2FLT(flags) \ 430 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 431 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 432 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 433 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 434 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 435 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 436 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 437 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 438 DTRACEFLT_UNKNOWN) 439 440 #define DTRACEACT_ISSTRING(act) \ 441 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 442 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 443 444 static size_t dtrace_strlen(const char *, size_t); 445 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 446 static void dtrace_enabling_provide(dtrace_provider_t *); 447 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 448 static void dtrace_enabling_matchall(void); 449 static dtrace_state_t *dtrace_anon_grab(void); 450 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 451 dtrace_state_t *, uint64_t, uint64_t); 452 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 453 static void dtrace_buffer_drop(dtrace_buffer_t *); 454 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 455 dtrace_state_t *, dtrace_mstate_t *); 456 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 457 dtrace_optval_t); 458 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 459 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 460 461 /* 462 * DTrace Probe Context Functions 463 * 464 * These functions are called from probe context. Because probe context is 465 * any context in which C may be called, arbitrarily locks may be held, 466 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 467 * As a result, functions called from probe context may only call other DTrace 468 * support functions -- they may not interact at all with the system at large. 469 * (Note that the ASSERT macro is made probe-context safe by redefining it in 470 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 471 * loads are to be performed from probe context, they _must_ be in terms of 472 * the safe dtrace_load*() variants. 473 * 474 * Some functions in this block are not actually called from probe context; 475 * for these functions, there will be a comment above the function reading 476 * "Note: not called from probe context." 477 */ 478 void 479 dtrace_panic(const char *format, ...) 480 { 481 va_list alist; 482 483 va_start(alist, format); 484 dtrace_vpanic(format, alist); 485 va_end(alist); 486 } 487 488 int 489 dtrace_assfail(const char *a, const char *f, int l) 490 { 491 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 492 493 /* 494 * We just need something here that even the most clever compiler 495 * cannot optimize away. 496 */ 497 return (a[(uintptr_t)f]); 498 } 499 500 /* 501 * Atomically increment a specified error counter from probe context. 502 */ 503 static void 504 dtrace_error(uint32_t *counter) 505 { 506 /* 507 * Most counters stored to in probe context are per-CPU counters. 508 * However, there are some error conditions that are sufficiently 509 * arcane that they don't merit per-CPU storage. If these counters 510 * are incremented concurrently on different CPUs, scalability will be 511 * adversely affected -- but we don't expect them to be white-hot in a 512 * correctly constructed enabling... 513 */ 514 uint32_t oval, nval; 515 516 do { 517 oval = *counter; 518 519 if ((nval = oval + 1) == 0) { 520 /* 521 * If the counter would wrap, set it to 1 -- assuring 522 * that the counter is never zero when we have seen 523 * errors. (The counter must be 32-bits because we 524 * aren't guaranteed a 64-bit compare&swap operation.) 525 * To save this code both the infamy of being fingered 526 * by a priggish news story and the indignity of being 527 * the target of a neo-puritan witch trial, we're 528 * carefully avoiding any colorful description of the 529 * likelihood of this condition -- but suffice it to 530 * say that it is only slightly more likely than the 531 * overflow of predicate cache IDs, as discussed in 532 * dtrace_predicate_create(). 533 */ 534 nval = 1; 535 } 536 } while (dtrace_cas32(counter, oval, nval) != oval); 537 } 538 539 /* 540 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 541 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 542 */ 543 DTRACE_LOADFUNC(8) 544 DTRACE_LOADFUNC(16) 545 DTRACE_LOADFUNC(32) 546 DTRACE_LOADFUNC(64) 547 548 static int 549 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 550 { 551 if (dest < mstate->dtms_scratch_base) 552 return (0); 553 554 if (dest + size < dest) 555 return (0); 556 557 if (dest + size > mstate->dtms_scratch_ptr) 558 return (0); 559 560 return (1); 561 } 562 563 static int 564 dtrace_canstore_statvar(uint64_t addr, size_t sz, 565 dtrace_statvar_t **svars, int nsvars) 566 { 567 int i; 568 569 for (i = 0; i < nsvars; i++) { 570 dtrace_statvar_t *svar = svars[i]; 571 572 if (svar == NULL || svar->dtsv_size == 0) 573 continue; 574 575 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 576 return (1); 577 } 578 579 return (0); 580 } 581 582 /* 583 * Check to see if the address is within a memory region to which a store may 584 * be issued. This includes the DTrace scratch areas, and any DTrace variable 585 * region. The caller of dtrace_canstore() is responsible for performing any 586 * alignment checks that are needed before stores are actually executed. 587 */ 588 static int 589 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 590 dtrace_vstate_t *vstate) 591 { 592 /* 593 * First, check to see if the address is in scratch space... 594 */ 595 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 596 mstate->dtms_scratch_size)) 597 return (1); 598 599 /* 600 * Now check to see if it's a dynamic variable. This check will pick 601 * up both thread-local variables and any global dynamically-allocated 602 * variables. 603 */ 604 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 605 vstate->dtvs_dynvars.dtds_size)) 606 return (1); 607 608 /* 609 * Finally, check the static local and global variables. These checks 610 * take the longest, so we perform them last. 611 */ 612 if (dtrace_canstore_statvar(addr, sz, 613 vstate->dtvs_locals, vstate->dtvs_nlocals)) 614 return (1); 615 616 if (dtrace_canstore_statvar(addr, sz, 617 vstate->dtvs_globals, vstate->dtvs_nglobals)) 618 return (1); 619 620 return (0); 621 } 622 623 624 /* 625 * Convenience routine to check to see if the address is within a memory 626 * region in which a load may be issued given the user's privilege level; 627 * if not, it sets the appropriate error flags and loads 'addr' into the 628 * illegal value slot. 629 * 630 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 631 * appropriate memory access protection. 632 */ 633 static int 634 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 635 dtrace_vstate_t *vstate) 636 { 637 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 638 639 /* 640 * If we hold the privilege to read from kernel memory, then 641 * everything is readable. 642 */ 643 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 644 return (1); 645 646 /* 647 * You can obviously read that which you can store. 648 */ 649 if (dtrace_canstore(addr, sz, mstate, vstate)) 650 return (1); 651 652 /* 653 * We're allowed to read from our own string table. 654 */ 655 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 656 mstate->dtms_difo->dtdo_strlen)) 657 return (1); 658 659 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 660 *illval = addr; 661 return (0); 662 } 663 664 /* 665 * Convenience routine to check to see if a given string is within a memory 666 * region in which a load may be issued given the user's privilege level; 667 * this exists so that we don't need to issue unnecessary dtrace_strlen() 668 * calls in the event that the user has all privileges. 669 */ 670 static int 671 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 672 dtrace_vstate_t *vstate) 673 { 674 size_t strsz; 675 676 /* 677 * If we hold the privilege to read from kernel memory, then 678 * everything is readable. 679 */ 680 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 681 return (1); 682 683 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 684 if (dtrace_canload(addr, strsz, mstate, vstate)) 685 return (1); 686 687 return (0); 688 } 689 690 /* 691 * Convenience routine to check to see if a given variable is within a memory 692 * region in which a load may be issued given the user's privilege level. 693 */ 694 static int 695 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 696 dtrace_vstate_t *vstate) 697 { 698 size_t sz; 699 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 700 701 /* 702 * If we hold the privilege to read from kernel memory, then 703 * everything is readable. 704 */ 705 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 706 return (1); 707 708 if (type->dtdt_kind == DIF_TYPE_STRING) 709 sz = dtrace_strlen(src, 710 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 711 else 712 sz = type->dtdt_size; 713 714 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 715 } 716 717 /* 718 * Compare two strings using safe loads. 719 */ 720 static int 721 dtrace_strncmp(char *s1, char *s2, size_t limit) 722 { 723 uint8_t c1, c2; 724 volatile uint16_t *flags; 725 726 if (s1 == s2 || limit == 0) 727 return (0); 728 729 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 730 731 do { 732 if (s1 == NULL) { 733 c1 = '\0'; 734 } else { 735 c1 = dtrace_load8((uintptr_t)s1++); 736 } 737 738 if (s2 == NULL) { 739 c2 = '\0'; 740 } else { 741 c2 = dtrace_load8((uintptr_t)s2++); 742 } 743 744 if (c1 != c2) 745 return (c1 - c2); 746 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 747 748 return (0); 749 } 750 751 /* 752 * Compute strlen(s) for a string using safe memory accesses. The additional 753 * len parameter is used to specify a maximum length to ensure completion. 754 */ 755 static size_t 756 dtrace_strlen(const char *s, size_t lim) 757 { 758 uint_t len; 759 760 for (len = 0; len != lim; len++) { 761 if (dtrace_load8((uintptr_t)s++) == '\0') 762 break; 763 } 764 765 return (len); 766 } 767 768 /* 769 * Check if an address falls within a toxic region. 770 */ 771 static int 772 dtrace_istoxic(uintptr_t kaddr, size_t size) 773 { 774 uintptr_t taddr, tsize; 775 int i; 776 777 for (i = 0; i < dtrace_toxranges; i++) { 778 taddr = dtrace_toxrange[i].dtt_base; 779 tsize = dtrace_toxrange[i].dtt_limit - taddr; 780 781 if (kaddr - taddr < tsize) { 782 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 783 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 784 return (1); 785 } 786 787 if (taddr - kaddr < size) { 788 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 789 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 790 return (1); 791 } 792 } 793 794 return (0); 795 } 796 797 /* 798 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 799 * memory specified by the DIF program. The dst is assumed to be safe memory 800 * that we can store to directly because it is managed by DTrace. As with 801 * standard bcopy, overlapping copies are handled properly. 802 */ 803 static void 804 dtrace_bcopy(const void *src, void *dst, size_t len) 805 { 806 if (len != 0) { 807 uint8_t *s1 = dst; 808 const uint8_t *s2 = src; 809 810 if (s1 <= s2) { 811 do { 812 *s1++ = dtrace_load8((uintptr_t)s2++); 813 } while (--len != 0); 814 } else { 815 s2 += len; 816 s1 += len; 817 818 do { 819 *--s1 = dtrace_load8((uintptr_t)--s2); 820 } while (--len != 0); 821 } 822 } 823 } 824 825 /* 826 * Copy src to dst using safe memory accesses, up to either the specified 827 * length, or the point that a nul byte is encountered. The src is assumed to 828 * be unsafe memory specified by the DIF program. The dst is assumed to be 829 * safe memory that we can store to directly because it is managed by DTrace. 830 * Unlike dtrace_bcopy(), overlapping regions are not handled. 831 */ 832 static void 833 dtrace_strcpy(const void *src, void *dst, size_t len) 834 { 835 if (len != 0) { 836 uint8_t *s1 = dst, c; 837 const uint8_t *s2 = src; 838 839 do { 840 *s1++ = c = dtrace_load8((uintptr_t)s2++); 841 } while (--len != 0 && c != '\0'); 842 } 843 } 844 845 /* 846 * Copy src to dst, deriving the size and type from the specified (BYREF) 847 * variable type. The src is assumed to be unsafe memory specified by the DIF 848 * program. The dst is assumed to be DTrace variable memory that is of the 849 * specified type; we assume that we can store to directly. 850 */ 851 static void 852 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 853 { 854 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 855 856 if (type->dtdt_kind == DIF_TYPE_STRING) { 857 dtrace_strcpy(src, dst, type->dtdt_size); 858 } else { 859 dtrace_bcopy(src, dst, type->dtdt_size); 860 } 861 } 862 863 /* 864 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 865 * unsafe memory specified by the DIF program. The s2 data is assumed to be 866 * safe memory that we can access directly because it is managed by DTrace. 867 */ 868 static int 869 dtrace_bcmp(const void *s1, const void *s2, size_t len) 870 { 871 volatile uint16_t *flags; 872 873 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 874 875 if (s1 == s2) 876 return (0); 877 878 if (s1 == NULL || s2 == NULL) 879 return (1); 880 881 if (s1 != s2 && len != 0) { 882 const uint8_t *ps1 = s1; 883 const uint8_t *ps2 = s2; 884 885 do { 886 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 887 return (1); 888 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 889 } 890 return (0); 891 } 892 893 /* 894 * Zero the specified region using a simple byte-by-byte loop. Note that this 895 * is for safe DTrace-managed memory only. 896 */ 897 static void 898 dtrace_bzero(void *dst, size_t len) 899 { 900 uchar_t *cp; 901 902 for (cp = dst; len != 0; len--) 903 *cp++ = 0; 904 } 905 906 /* 907 * This privilege check should be used by actions and subroutines to 908 * verify that the user credentials of the process that enabled the 909 * invoking ECB match the target credentials 910 */ 911 static int 912 dtrace_priv_proc_common_user(dtrace_state_t *state) 913 { 914 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 915 916 /* 917 * We should always have a non-NULL state cred here, since if cred 918 * is null (anonymous tracing), we fast-path bypass this routine. 919 */ 920 ASSERT(s_cr != NULL); 921 922 if ((cr = CRED()) != NULL && 923 s_cr->cr_uid == cr->cr_uid && 924 s_cr->cr_uid == cr->cr_ruid && 925 s_cr->cr_uid == cr->cr_suid && 926 s_cr->cr_gid == cr->cr_gid && 927 s_cr->cr_gid == cr->cr_rgid && 928 s_cr->cr_gid == cr->cr_sgid) 929 return (1); 930 931 return (0); 932 } 933 934 /* 935 * This privilege check should be used by actions and subroutines to 936 * verify that the zone of the process that enabled the invoking ECB 937 * matches the target credentials 938 */ 939 static int 940 dtrace_priv_proc_common_zone(dtrace_state_t *state) 941 { 942 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 943 944 /* 945 * We should always have a non-NULL state cred here, since if cred 946 * is null (anonymous tracing), we fast-path bypass this routine. 947 */ 948 ASSERT(s_cr != NULL); 949 950 if ((cr = CRED()) != NULL && 951 s_cr->cr_zone == cr->cr_zone) 952 return (1); 953 954 return (0); 955 } 956 957 /* 958 * This privilege check should be used by actions and subroutines to 959 * verify that the process has not setuid or changed credentials. 960 */ 961 static int 962 dtrace_priv_proc_common_nocd() 963 { 964 proc_t *proc; 965 966 if ((proc = ttoproc(curthread)) != NULL && 967 !(proc->p_flag & SNOCD)) 968 return (1); 969 970 return (0); 971 } 972 973 static int 974 dtrace_priv_proc_destructive(dtrace_state_t *state) 975 { 976 int action = state->dts_cred.dcr_action; 977 978 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 979 dtrace_priv_proc_common_zone(state) == 0) 980 goto bad; 981 982 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 983 dtrace_priv_proc_common_user(state) == 0) 984 goto bad; 985 986 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 987 dtrace_priv_proc_common_nocd() == 0) 988 goto bad; 989 990 return (1); 991 992 bad: 993 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 994 995 return (0); 996 } 997 998 static int 999 dtrace_priv_proc_control(dtrace_state_t *state) 1000 { 1001 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1002 return (1); 1003 1004 if (dtrace_priv_proc_common_zone(state) && 1005 dtrace_priv_proc_common_user(state) && 1006 dtrace_priv_proc_common_nocd()) 1007 return (1); 1008 1009 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1010 1011 return (0); 1012 } 1013 1014 static int 1015 dtrace_priv_proc(dtrace_state_t *state) 1016 { 1017 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1018 return (1); 1019 1020 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1021 1022 return (0); 1023 } 1024 1025 static int 1026 dtrace_priv_kernel(dtrace_state_t *state) 1027 { 1028 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1029 return (1); 1030 1031 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1032 1033 return (0); 1034 } 1035 1036 static int 1037 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1038 { 1039 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1040 return (1); 1041 1042 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1043 1044 return (0); 1045 } 1046 1047 /* 1048 * Note: not called from probe context. This function is called 1049 * asynchronously (and at a regular interval) from outside of probe context to 1050 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1051 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1052 */ 1053 void 1054 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1055 { 1056 dtrace_dynvar_t *dirty; 1057 dtrace_dstate_percpu_t *dcpu; 1058 int i, work = 0; 1059 1060 for (i = 0; i < NCPU; i++) { 1061 dcpu = &dstate->dtds_percpu[i]; 1062 1063 ASSERT(dcpu->dtdsc_rinsing == NULL); 1064 1065 /* 1066 * If the dirty list is NULL, there is no dirty work to do. 1067 */ 1068 if (dcpu->dtdsc_dirty == NULL) 1069 continue; 1070 1071 /* 1072 * If the clean list is non-NULL, then we're not going to do 1073 * any work for this CPU -- it means that there has not been 1074 * a dtrace_dynvar() allocation on this CPU (or from this CPU) 1075 * since the last time we cleaned house. 1076 */ 1077 if (dcpu->dtdsc_clean != NULL) 1078 continue; 1079 1080 work = 1; 1081 1082 /* 1083 * Atomically move the dirty list aside. 1084 */ 1085 do { 1086 dirty = dcpu->dtdsc_dirty; 1087 1088 /* 1089 * Before we zap the dirty list, set the rinsing list. 1090 * (This allows for a potential assertion in 1091 * dtrace_dynvar(): if a free dynamic variable appears 1092 * on a hash chain, either the dirty list or the 1093 * rinsing list for some CPU must be non-NULL.) 1094 */ 1095 dcpu->dtdsc_rinsing = dirty; 1096 dtrace_membar_producer(); 1097 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1098 dirty, NULL) != dirty); 1099 } 1100 1101 if (!work) { 1102 /* 1103 * We have no work to do; we can simply return. 1104 */ 1105 return; 1106 } 1107 1108 dtrace_sync(); 1109 1110 for (i = 0; i < NCPU; i++) { 1111 dcpu = &dstate->dtds_percpu[i]; 1112 1113 if (dcpu->dtdsc_rinsing == NULL) 1114 continue; 1115 1116 /* 1117 * We are now guaranteed that no hash chain contains a pointer 1118 * into this dirty list; we can make it clean. 1119 */ 1120 ASSERT(dcpu->dtdsc_clean == NULL); 1121 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1122 dcpu->dtdsc_rinsing = NULL; 1123 } 1124 1125 /* 1126 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1127 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1128 * This prevents a race whereby a CPU incorrectly decides that 1129 * the state should be something other than DTRACE_DSTATE_CLEAN 1130 * after dtrace_dynvar_clean() has completed. 1131 */ 1132 dtrace_sync(); 1133 1134 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1135 } 1136 1137 /* 1138 * Depending on the value of the op parameter, this function looks-up, 1139 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1140 * allocation is requested, this function will return a pointer to a 1141 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1142 * variable can be allocated. If NULL is returned, the appropriate counter 1143 * will be incremented. 1144 */ 1145 dtrace_dynvar_t * 1146 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1147 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1148 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1149 { 1150 uint64_t hashval = DTRACE_DYNHASH_VALID; 1151 dtrace_dynhash_t *hash = dstate->dtds_hash; 1152 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1153 processorid_t me = CPU->cpu_id, cpu = me; 1154 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1155 size_t bucket, ksize; 1156 size_t chunksize = dstate->dtds_chunksize; 1157 uintptr_t kdata, lock, nstate; 1158 uint_t i; 1159 1160 ASSERT(nkeys != 0); 1161 1162 /* 1163 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1164 * algorithm. For the by-value portions, we perform the algorithm in 1165 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1166 * bit, and seems to have only a minute effect on distribution. For 1167 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1168 * over each referenced byte. It's painful to do this, but it's much 1169 * better than pathological hash distribution. The efficacy of the 1170 * hashing algorithm (and a comparison with other algorithms) may be 1171 * found by running the ::dtrace_dynstat MDB dcmd. 1172 */ 1173 for (i = 0; i < nkeys; i++) { 1174 if (key[i].dttk_size == 0) { 1175 uint64_t val = key[i].dttk_value; 1176 1177 hashval += (val >> 48) & 0xffff; 1178 hashval += (hashval << 10); 1179 hashval ^= (hashval >> 6); 1180 1181 hashval += (val >> 32) & 0xffff; 1182 hashval += (hashval << 10); 1183 hashval ^= (hashval >> 6); 1184 1185 hashval += (val >> 16) & 0xffff; 1186 hashval += (hashval << 10); 1187 hashval ^= (hashval >> 6); 1188 1189 hashval += val & 0xffff; 1190 hashval += (hashval << 10); 1191 hashval ^= (hashval >> 6); 1192 } else { 1193 /* 1194 * This is incredibly painful, but it beats the hell 1195 * out of the alternative. 1196 */ 1197 uint64_t j, size = key[i].dttk_size; 1198 uintptr_t base = (uintptr_t)key[i].dttk_value; 1199 1200 if (!dtrace_canload(base, size, mstate, vstate)) 1201 break; 1202 1203 for (j = 0; j < size; j++) { 1204 hashval += dtrace_load8(base + j); 1205 hashval += (hashval << 10); 1206 hashval ^= (hashval >> 6); 1207 } 1208 } 1209 } 1210 1211 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1212 return (NULL); 1213 1214 hashval += (hashval << 3); 1215 hashval ^= (hashval >> 11); 1216 hashval += (hashval << 15); 1217 1218 /* 1219 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1220 * comes out to be one of our two sentinel hash values. If this 1221 * actually happens, we set the hashval to be a value known to be a 1222 * non-sentinel value. 1223 */ 1224 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1225 hashval = DTRACE_DYNHASH_VALID; 1226 1227 /* 1228 * Yes, it's painful to do a divide here. If the cycle count becomes 1229 * important here, tricks can be pulled to reduce it. (However, it's 1230 * critical that hash collisions be kept to an absolute minimum; 1231 * they're much more painful than a divide.) It's better to have a 1232 * solution that generates few collisions and still keeps things 1233 * relatively simple. 1234 */ 1235 bucket = hashval % dstate->dtds_hashsize; 1236 1237 if (op == DTRACE_DYNVAR_DEALLOC) { 1238 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1239 1240 for (;;) { 1241 while ((lock = *lockp) & 1) 1242 continue; 1243 1244 if (dtrace_casptr((void *)lockp, 1245 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1246 break; 1247 } 1248 1249 dtrace_membar_producer(); 1250 } 1251 1252 top: 1253 prev = NULL; 1254 lock = hash[bucket].dtdh_lock; 1255 1256 dtrace_membar_consumer(); 1257 1258 start = hash[bucket].dtdh_chain; 1259 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1260 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1261 op != DTRACE_DYNVAR_DEALLOC)); 1262 1263 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1264 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1265 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1266 1267 if (dvar->dtdv_hashval != hashval) { 1268 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1269 /* 1270 * We've reached the sink, and therefore the 1271 * end of the hash chain; we can kick out of 1272 * the loop knowing that we have seen a valid 1273 * snapshot of state. 1274 */ 1275 ASSERT(dvar->dtdv_next == NULL); 1276 ASSERT(dvar == &dtrace_dynhash_sink); 1277 break; 1278 } 1279 1280 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1281 /* 1282 * We've gone off the rails: somewhere along 1283 * the line, one of the members of this hash 1284 * chain was deleted. Note that we could also 1285 * detect this by simply letting this loop run 1286 * to completion, as we would eventually hit 1287 * the end of the dirty list. However, we 1288 * want to avoid running the length of the 1289 * dirty list unnecessarily (it might be quite 1290 * long), so we catch this as early as 1291 * possible by detecting the hash marker. In 1292 * this case, we simply set dvar to NULL and 1293 * break; the conditional after the loop will 1294 * send us back to top. 1295 */ 1296 dvar = NULL; 1297 break; 1298 } 1299 1300 goto next; 1301 } 1302 1303 if (dtuple->dtt_nkeys != nkeys) 1304 goto next; 1305 1306 for (i = 0; i < nkeys; i++, dkey++) { 1307 if (dkey->dttk_size != key[i].dttk_size) 1308 goto next; /* size or type mismatch */ 1309 1310 if (dkey->dttk_size != 0) { 1311 if (dtrace_bcmp( 1312 (void *)(uintptr_t)key[i].dttk_value, 1313 (void *)(uintptr_t)dkey->dttk_value, 1314 dkey->dttk_size)) 1315 goto next; 1316 } else { 1317 if (dkey->dttk_value != key[i].dttk_value) 1318 goto next; 1319 } 1320 } 1321 1322 if (op != DTRACE_DYNVAR_DEALLOC) 1323 return (dvar); 1324 1325 ASSERT(dvar->dtdv_next == NULL || 1326 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1327 1328 if (prev != NULL) { 1329 ASSERT(hash[bucket].dtdh_chain != dvar); 1330 ASSERT(start != dvar); 1331 ASSERT(prev->dtdv_next == dvar); 1332 prev->dtdv_next = dvar->dtdv_next; 1333 } else { 1334 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1335 start, dvar->dtdv_next) != start) { 1336 /* 1337 * We have failed to atomically swing the 1338 * hash table head pointer, presumably because 1339 * of a conflicting allocation on another CPU. 1340 * We need to reread the hash chain and try 1341 * again. 1342 */ 1343 goto top; 1344 } 1345 } 1346 1347 dtrace_membar_producer(); 1348 1349 /* 1350 * Now set the hash value to indicate that it's free. 1351 */ 1352 ASSERT(hash[bucket].dtdh_chain != dvar); 1353 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1354 1355 dtrace_membar_producer(); 1356 1357 /* 1358 * Set the next pointer to point at the dirty list, and 1359 * atomically swing the dirty pointer to the newly freed dvar. 1360 */ 1361 do { 1362 next = dcpu->dtdsc_dirty; 1363 dvar->dtdv_next = next; 1364 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1365 1366 /* 1367 * Finally, unlock this hash bucket. 1368 */ 1369 ASSERT(hash[bucket].dtdh_lock == lock); 1370 ASSERT(lock & 1); 1371 hash[bucket].dtdh_lock++; 1372 1373 return (NULL); 1374 next: 1375 prev = dvar; 1376 continue; 1377 } 1378 1379 if (dvar == NULL) { 1380 /* 1381 * If dvar is NULL, it is because we went off the rails: 1382 * one of the elements that we traversed in the hash chain 1383 * was deleted while we were traversing it. In this case, 1384 * we assert that we aren't doing a dealloc (deallocs lock 1385 * the hash bucket to prevent themselves from racing with 1386 * one another), and retry the hash chain traversal. 1387 */ 1388 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1389 goto top; 1390 } 1391 1392 if (op != DTRACE_DYNVAR_ALLOC) { 1393 /* 1394 * If we are not to allocate a new variable, we want to 1395 * return NULL now. Before we return, check that the value 1396 * of the lock word hasn't changed. If it has, we may have 1397 * seen an inconsistent snapshot. 1398 */ 1399 if (op == DTRACE_DYNVAR_NOALLOC) { 1400 if (hash[bucket].dtdh_lock != lock) 1401 goto top; 1402 } else { 1403 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1404 ASSERT(hash[bucket].dtdh_lock == lock); 1405 ASSERT(lock & 1); 1406 hash[bucket].dtdh_lock++; 1407 } 1408 1409 return (NULL); 1410 } 1411 1412 /* 1413 * We need to allocate a new dynamic variable. The size we need is the 1414 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1415 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1416 * the size of any referred-to data (dsize). We then round the final 1417 * size up to the chunksize for allocation. 1418 */ 1419 for (ksize = 0, i = 0; i < nkeys; i++) 1420 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1421 1422 /* 1423 * This should be pretty much impossible, but could happen if, say, 1424 * strange DIF specified the tuple. Ideally, this should be an 1425 * assertion and not an error condition -- but that requires that the 1426 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1427 * bullet-proof. (That is, it must not be able to be fooled by 1428 * malicious DIF.) Given the lack of backwards branches in DIF, 1429 * solving this would presumably not amount to solving the Halting 1430 * Problem -- but it still seems awfully hard. 1431 */ 1432 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1433 ksize + dsize > chunksize) { 1434 dcpu->dtdsc_drops++; 1435 return (NULL); 1436 } 1437 1438 nstate = DTRACE_DSTATE_EMPTY; 1439 1440 do { 1441 retry: 1442 free = dcpu->dtdsc_free; 1443 1444 if (free == NULL) { 1445 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1446 void *rval; 1447 1448 if (clean == NULL) { 1449 /* 1450 * We're out of dynamic variable space on 1451 * this CPU. Unless we have tried all CPUs, 1452 * we'll try to allocate from a different 1453 * CPU. 1454 */ 1455 switch (dstate->dtds_state) { 1456 case DTRACE_DSTATE_CLEAN: { 1457 void *sp = &dstate->dtds_state; 1458 1459 if (++cpu >= NCPU) 1460 cpu = 0; 1461 1462 if (dcpu->dtdsc_dirty != NULL && 1463 nstate == DTRACE_DSTATE_EMPTY) 1464 nstate = DTRACE_DSTATE_DIRTY; 1465 1466 if (dcpu->dtdsc_rinsing != NULL) 1467 nstate = DTRACE_DSTATE_RINSING; 1468 1469 dcpu = &dstate->dtds_percpu[cpu]; 1470 1471 if (cpu != me) 1472 goto retry; 1473 1474 (void) dtrace_cas32(sp, 1475 DTRACE_DSTATE_CLEAN, nstate); 1476 1477 /* 1478 * To increment the correct bean 1479 * counter, take another lap. 1480 */ 1481 goto retry; 1482 } 1483 1484 case DTRACE_DSTATE_DIRTY: 1485 dcpu->dtdsc_dirty_drops++; 1486 break; 1487 1488 case DTRACE_DSTATE_RINSING: 1489 dcpu->dtdsc_rinsing_drops++; 1490 break; 1491 1492 case DTRACE_DSTATE_EMPTY: 1493 dcpu->dtdsc_drops++; 1494 break; 1495 } 1496 1497 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1498 return (NULL); 1499 } 1500 1501 /* 1502 * The clean list appears to be non-empty. We want to 1503 * move the clean list to the free list; we start by 1504 * moving the clean pointer aside. 1505 */ 1506 if (dtrace_casptr(&dcpu->dtdsc_clean, 1507 clean, NULL) != clean) { 1508 /* 1509 * We are in one of two situations: 1510 * 1511 * (a) The clean list was switched to the 1512 * free list by another CPU. 1513 * 1514 * (b) The clean list was added to by the 1515 * cleansing cyclic. 1516 * 1517 * In either of these situations, we can 1518 * just reattempt the free list allocation. 1519 */ 1520 goto retry; 1521 } 1522 1523 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1524 1525 /* 1526 * Now we'll move the clean list to the free list. 1527 * It's impossible for this to fail: the only way 1528 * the free list can be updated is through this 1529 * code path, and only one CPU can own the clean list. 1530 * Thus, it would only be possible for this to fail if 1531 * this code were racing with dtrace_dynvar_clean(). 1532 * (That is, if dtrace_dynvar_clean() updated the clean 1533 * list, and we ended up racing to update the free 1534 * list.) This race is prevented by the dtrace_sync() 1535 * in dtrace_dynvar_clean() -- which flushes the 1536 * owners of the clean lists out before resetting 1537 * the clean lists. 1538 */ 1539 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1540 ASSERT(rval == NULL); 1541 goto retry; 1542 } 1543 1544 dvar = free; 1545 new_free = dvar->dtdv_next; 1546 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1547 1548 /* 1549 * We have now allocated a new chunk. We copy the tuple keys into the 1550 * tuple array and copy any referenced key data into the data space 1551 * following the tuple array. As we do this, we relocate dttk_value 1552 * in the final tuple to point to the key data address in the chunk. 1553 */ 1554 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1555 dvar->dtdv_data = (void *)(kdata + ksize); 1556 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1557 1558 for (i = 0; i < nkeys; i++) { 1559 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1560 size_t kesize = key[i].dttk_size; 1561 1562 if (kesize != 0) { 1563 dtrace_bcopy( 1564 (const void *)(uintptr_t)key[i].dttk_value, 1565 (void *)kdata, kesize); 1566 dkey->dttk_value = kdata; 1567 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1568 } else { 1569 dkey->dttk_value = key[i].dttk_value; 1570 } 1571 1572 dkey->dttk_size = kesize; 1573 } 1574 1575 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1576 dvar->dtdv_hashval = hashval; 1577 dvar->dtdv_next = start; 1578 1579 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1580 return (dvar); 1581 1582 /* 1583 * The cas has failed. Either another CPU is adding an element to 1584 * this hash chain, or another CPU is deleting an element from this 1585 * hash chain. The simplest way to deal with both of these cases 1586 * (though not necessarily the most efficient) is to free our 1587 * allocated block and tail-call ourselves. Note that the free is 1588 * to the dirty list and _not_ to the free list. This is to prevent 1589 * races with allocators, above. 1590 */ 1591 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1592 1593 dtrace_membar_producer(); 1594 1595 do { 1596 free = dcpu->dtdsc_dirty; 1597 dvar->dtdv_next = free; 1598 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1599 1600 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1601 } 1602 1603 /*ARGSUSED*/ 1604 static void 1605 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1606 { 1607 if (nval < *oval) 1608 *oval = nval; 1609 } 1610 1611 /*ARGSUSED*/ 1612 static void 1613 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1614 { 1615 if (nval > *oval) 1616 *oval = nval; 1617 } 1618 1619 static void 1620 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1621 { 1622 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1623 int64_t val = (int64_t)nval; 1624 1625 if (val < 0) { 1626 for (i = 0; i < zero; i++) { 1627 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1628 quanta[i] += incr; 1629 return; 1630 } 1631 } 1632 } else { 1633 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1634 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1635 quanta[i - 1] += incr; 1636 return; 1637 } 1638 } 1639 1640 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1641 return; 1642 } 1643 1644 ASSERT(0); 1645 } 1646 1647 static void 1648 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1649 { 1650 uint64_t arg = *lquanta++; 1651 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1652 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1653 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1654 int32_t val = (int32_t)nval, level; 1655 1656 ASSERT(step != 0); 1657 ASSERT(levels != 0); 1658 1659 if (val < base) { 1660 /* 1661 * This is an underflow. 1662 */ 1663 lquanta[0] += incr; 1664 return; 1665 } 1666 1667 level = (val - base) / step; 1668 1669 if (level < levels) { 1670 lquanta[level + 1] += incr; 1671 return; 1672 } 1673 1674 /* 1675 * This is an overflow. 1676 */ 1677 lquanta[levels + 1] += incr; 1678 } 1679 1680 /*ARGSUSED*/ 1681 static void 1682 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 1683 { 1684 data[0]++; 1685 data[1] += nval; 1686 } 1687 1688 /*ARGSUSED*/ 1689 static void 1690 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 1691 { 1692 *oval = *oval + 1; 1693 } 1694 1695 /*ARGSUSED*/ 1696 static void 1697 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 1698 { 1699 *oval += nval; 1700 } 1701 1702 /* 1703 * Aggregate given the tuple in the principal data buffer, and the aggregating 1704 * action denoted by the specified dtrace_aggregation_t. The aggregation 1705 * buffer is specified as the buf parameter. This routine does not return 1706 * failure; if there is no space in the aggregation buffer, the data will be 1707 * dropped, and a corresponding counter incremented. 1708 */ 1709 static void 1710 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 1711 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 1712 { 1713 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 1714 uint32_t i, ndx, size, fsize; 1715 uint32_t align = sizeof (uint64_t) - 1; 1716 dtrace_aggbuffer_t *agb; 1717 dtrace_aggkey_t *key; 1718 uint32_t hashval = 0, limit, isstr; 1719 caddr_t tomax, data, kdata; 1720 dtrace_actkind_t action; 1721 dtrace_action_t *act; 1722 uintptr_t offs; 1723 1724 if (buf == NULL) 1725 return; 1726 1727 if (!agg->dtag_hasarg) { 1728 /* 1729 * Currently, only quantize() and lquantize() take additional 1730 * arguments, and they have the same semantics: an increment 1731 * value that defaults to 1 when not present. If additional 1732 * aggregating actions take arguments, the setting of the 1733 * default argument value will presumably have to become more 1734 * sophisticated... 1735 */ 1736 arg = 1; 1737 } 1738 1739 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 1740 size = rec->dtrd_offset - agg->dtag_base; 1741 fsize = size + rec->dtrd_size; 1742 1743 ASSERT(dbuf->dtb_tomax != NULL); 1744 data = dbuf->dtb_tomax + offset + agg->dtag_base; 1745 1746 if ((tomax = buf->dtb_tomax) == NULL) { 1747 dtrace_buffer_drop(buf); 1748 return; 1749 } 1750 1751 /* 1752 * The metastructure is always at the bottom of the buffer. 1753 */ 1754 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 1755 sizeof (dtrace_aggbuffer_t)); 1756 1757 if (buf->dtb_offset == 0) { 1758 /* 1759 * We just kludge up approximately 1/8th of the size to be 1760 * buckets. If this guess ends up being routinely 1761 * off-the-mark, we may need to dynamically readjust this 1762 * based on past performance. 1763 */ 1764 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 1765 1766 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 1767 (uintptr_t)tomax || hashsize == 0) { 1768 /* 1769 * We've been given a ludicrously small buffer; 1770 * increment our drop count and leave. 1771 */ 1772 dtrace_buffer_drop(buf); 1773 return; 1774 } 1775 1776 /* 1777 * And now, a pathetic attempt to try to get a an odd (or 1778 * perchance, a prime) hash size for better hash distribution. 1779 */ 1780 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 1781 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 1782 1783 agb->dtagb_hashsize = hashsize; 1784 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 1785 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 1786 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 1787 1788 for (i = 0; i < agb->dtagb_hashsize; i++) 1789 agb->dtagb_hash[i] = NULL; 1790 } 1791 1792 ASSERT(agg->dtag_first != NULL); 1793 ASSERT(agg->dtag_first->dta_intuple); 1794 1795 /* 1796 * Calculate the hash value based on the key. Note that we _don't_ 1797 * include the aggid in the hashing (but we will store it as part of 1798 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 1799 * algorithm: a simple, quick algorithm that has no known funnels, and 1800 * gets good distribution in practice. The efficacy of the hashing 1801 * algorithm (and a comparison with other algorithms) may be found by 1802 * running the ::dtrace_aggstat MDB dcmd. 1803 */ 1804 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1805 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1806 limit = i + act->dta_rec.dtrd_size; 1807 ASSERT(limit <= size); 1808 isstr = DTRACEACT_ISSTRING(act); 1809 1810 for (; i < limit; i++) { 1811 hashval += data[i]; 1812 hashval += (hashval << 10); 1813 hashval ^= (hashval >> 6); 1814 1815 if (isstr && data[i] == '\0') 1816 break; 1817 } 1818 } 1819 1820 hashval += (hashval << 3); 1821 hashval ^= (hashval >> 11); 1822 hashval += (hashval << 15); 1823 1824 /* 1825 * Yes, the divide here is expensive -- but it's generally the least 1826 * of the performance issues given the amount of data that we iterate 1827 * over to compute hash values, compare data, etc. 1828 */ 1829 ndx = hashval % agb->dtagb_hashsize; 1830 1831 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 1832 ASSERT((caddr_t)key >= tomax); 1833 ASSERT((caddr_t)key < tomax + buf->dtb_size); 1834 1835 if (hashval != key->dtak_hashval || key->dtak_size != size) 1836 continue; 1837 1838 kdata = key->dtak_data; 1839 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 1840 1841 for (act = agg->dtag_first; act->dta_intuple; 1842 act = act->dta_next) { 1843 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1844 limit = i + act->dta_rec.dtrd_size; 1845 ASSERT(limit <= size); 1846 isstr = DTRACEACT_ISSTRING(act); 1847 1848 for (; i < limit; i++) { 1849 if (kdata[i] != data[i]) 1850 goto next; 1851 1852 if (isstr && data[i] == '\0') 1853 break; 1854 } 1855 } 1856 1857 if (action != key->dtak_action) { 1858 /* 1859 * We are aggregating on the same value in the same 1860 * aggregation with two different aggregating actions. 1861 * (This should have been picked up in the compiler, 1862 * so we may be dealing with errant or devious DIF.) 1863 * This is an error condition; we indicate as much, 1864 * and return. 1865 */ 1866 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 1867 return; 1868 } 1869 1870 /* 1871 * This is a hit: we need to apply the aggregator to 1872 * the value at this key. 1873 */ 1874 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 1875 return; 1876 next: 1877 continue; 1878 } 1879 1880 /* 1881 * We didn't find it. We need to allocate some zero-filled space, 1882 * link it into the hash table appropriately, and apply the aggregator 1883 * to the (zero-filled) value. 1884 */ 1885 offs = buf->dtb_offset; 1886 while (offs & (align - 1)) 1887 offs += sizeof (uint32_t); 1888 1889 /* 1890 * If we don't have enough room to both allocate a new key _and_ 1891 * its associated data, increment the drop count and return. 1892 */ 1893 if ((uintptr_t)tomax + offs + fsize > 1894 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 1895 dtrace_buffer_drop(buf); 1896 return; 1897 } 1898 1899 /*CONSTCOND*/ 1900 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 1901 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 1902 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 1903 1904 key->dtak_data = kdata = tomax + offs; 1905 buf->dtb_offset = offs + fsize; 1906 1907 /* 1908 * Now copy the data across. 1909 */ 1910 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 1911 1912 for (i = sizeof (dtrace_aggid_t); i < size; i++) 1913 kdata[i] = data[i]; 1914 1915 /* 1916 * Because strings are not zeroed out by default, we need to iterate 1917 * looking for actions that store strings, and we need to explicitly 1918 * pad these strings out with zeroes. 1919 */ 1920 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1921 int nul; 1922 1923 if (!DTRACEACT_ISSTRING(act)) 1924 continue; 1925 1926 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1927 limit = i + act->dta_rec.dtrd_size; 1928 ASSERT(limit <= size); 1929 1930 for (nul = 0; i < limit; i++) { 1931 if (nul) { 1932 kdata[i] = '\0'; 1933 continue; 1934 } 1935 1936 if (data[i] != '\0') 1937 continue; 1938 1939 nul = 1; 1940 } 1941 } 1942 1943 for (i = size; i < fsize; i++) 1944 kdata[i] = 0; 1945 1946 key->dtak_hashval = hashval; 1947 key->dtak_size = size; 1948 key->dtak_action = action; 1949 key->dtak_next = agb->dtagb_hash[ndx]; 1950 agb->dtagb_hash[ndx] = key; 1951 1952 /* 1953 * Finally, apply the aggregator. 1954 */ 1955 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 1956 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 1957 } 1958 1959 /* 1960 * Given consumer state, this routine finds a speculation in the INACTIVE 1961 * state and transitions it into the ACTIVE state. If there is no speculation 1962 * in the INACTIVE state, 0 is returned. In this case, no error counter is 1963 * incremented -- it is up to the caller to take appropriate action. 1964 */ 1965 static int 1966 dtrace_speculation(dtrace_state_t *state) 1967 { 1968 int i = 0; 1969 dtrace_speculation_state_t current; 1970 uint32_t *stat = &state->dts_speculations_unavail, count; 1971 1972 while (i < state->dts_nspeculations) { 1973 dtrace_speculation_t *spec = &state->dts_speculations[i]; 1974 1975 current = spec->dtsp_state; 1976 1977 if (current != DTRACESPEC_INACTIVE) { 1978 if (current == DTRACESPEC_COMMITTINGMANY || 1979 current == DTRACESPEC_COMMITTING || 1980 current == DTRACESPEC_DISCARDING) 1981 stat = &state->dts_speculations_busy; 1982 i++; 1983 continue; 1984 } 1985 1986 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 1987 current, DTRACESPEC_ACTIVE) == current) 1988 return (i + 1); 1989 } 1990 1991 /* 1992 * We couldn't find a speculation. If we found as much as a single 1993 * busy speculation buffer, we'll attribute this failure as "busy" 1994 * instead of "unavail". 1995 */ 1996 do { 1997 count = *stat; 1998 } while (dtrace_cas32(stat, count, count + 1) != count); 1999 2000 return (0); 2001 } 2002 2003 /* 2004 * This routine commits an active speculation. If the specified speculation 2005 * is not in a valid state to perform a commit(), this routine will silently do 2006 * nothing. The state of the specified speculation is transitioned according 2007 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2008 */ 2009 static void 2010 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2011 dtrace_specid_t which) 2012 { 2013 dtrace_speculation_t *spec; 2014 dtrace_buffer_t *src, *dest; 2015 uintptr_t daddr, saddr, dlimit; 2016 dtrace_speculation_state_t current, new; 2017 intptr_t offs; 2018 2019 if (which == 0) 2020 return; 2021 2022 if (which > state->dts_nspeculations) { 2023 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2024 return; 2025 } 2026 2027 spec = &state->dts_speculations[which - 1]; 2028 src = &spec->dtsp_buffer[cpu]; 2029 dest = &state->dts_buffer[cpu]; 2030 2031 do { 2032 current = spec->dtsp_state; 2033 2034 if (current == DTRACESPEC_COMMITTINGMANY) 2035 break; 2036 2037 switch (current) { 2038 case DTRACESPEC_INACTIVE: 2039 case DTRACESPEC_DISCARDING: 2040 return; 2041 2042 case DTRACESPEC_COMMITTING: 2043 /* 2044 * This is only possible if we are (a) commit()'ing 2045 * without having done a prior speculate() on this CPU 2046 * and (b) racing with another commit() on a different 2047 * CPU. There's nothing to do -- we just assert that 2048 * our offset is 0. 2049 */ 2050 ASSERT(src->dtb_offset == 0); 2051 return; 2052 2053 case DTRACESPEC_ACTIVE: 2054 new = DTRACESPEC_COMMITTING; 2055 break; 2056 2057 case DTRACESPEC_ACTIVEONE: 2058 /* 2059 * This speculation is active on one CPU. If our 2060 * buffer offset is non-zero, we know that the one CPU 2061 * must be us. Otherwise, we are committing on a 2062 * different CPU from the speculate(), and we must 2063 * rely on being asynchronously cleaned. 2064 */ 2065 if (src->dtb_offset != 0) { 2066 new = DTRACESPEC_COMMITTING; 2067 break; 2068 } 2069 /*FALLTHROUGH*/ 2070 2071 case DTRACESPEC_ACTIVEMANY: 2072 new = DTRACESPEC_COMMITTINGMANY; 2073 break; 2074 2075 default: 2076 ASSERT(0); 2077 } 2078 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2079 current, new) != current); 2080 2081 /* 2082 * We have set the state to indicate that we are committing this 2083 * speculation. Now reserve the necessary space in the destination 2084 * buffer. 2085 */ 2086 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2087 sizeof (uint64_t), state, NULL)) < 0) { 2088 dtrace_buffer_drop(dest); 2089 goto out; 2090 } 2091 2092 /* 2093 * We have the space; copy the buffer across. (Note that this is a 2094 * highly subobtimal bcopy(); in the unlikely event that this becomes 2095 * a serious performance issue, a high-performance DTrace-specific 2096 * bcopy() should obviously be invented.) 2097 */ 2098 daddr = (uintptr_t)dest->dtb_tomax + offs; 2099 dlimit = daddr + src->dtb_offset; 2100 saddr = (uintptr_t)src->dtb_tomax; 2101 2102 /* 2103 * First, the aligned portion. 2104 */ 2105 while (dlimit - daddr >= sizeof (uint64_t)) { 2106 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2107 2108 daddr += sizeof (uint64_t); 2109 saddr += sizeof (uint64_t); 2110 } 2111 2112 /* 2113 * Now any left-over bit... 2114 */ 2115 while (dlimit - daddr) 2116 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2117 2118 /* 2119 * Finally, commit the reserved space in the destination buffer. 2120 */ 2121 dest->dtb_offset = offs + src->dtb_offset; 2122 2123 out: 2124 /* 2125 * If we're lucky enough to be the only active CPU on this speculation 2126 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2127 */ 2128 if (current == DTRACESPEC_ACTIVE || 2129 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2130 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2131 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2132 2133 ASSERT(rval == DTRACESPEC_COMMITTING); 2134 } 2135 2136 src->dtb_offset = 0; 2137 src->dtb_xamot_drops += src->dtb_drops; 2138 src->dtb_drops = 0; 2139 } 2140 2141 /* 2142 * This routine discards an active speculation. If the specified speculation 2143 * is not in a valid state to perform a discard(), this routine will silently 2144 * do nothing. The state of the specified speculation is transitioned 2145 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2146 */ 2147 static void 2148 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2149 dtrace_specid_t which) 2150 { 2151 dtrace_speculation_t *spec; 2152 dtrace_speculation_state_t current, new; 2153 dtrace_buffer_t *buf; 2154 2155 if (which == 0) 2156 return; 2157 2158 if (which > state->dts_nspeculations) { 2159 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2160 return; 2161 } 2162 2163 spec = &state->dts_speculations[which - 1]; 2164 buf = &spec->dtsp_buffer[cpu]; 2165 2166 do { 2167 current = spec->dtsp_state; 2168 2169 switch (current) { 2170 case DTRACESPEC_INACTIVE: 2171 case DTRACESPEC_COMMITTINGMANY: 2172 case DTRACESPEC_COMMITTING: 2173 case DTRACESPEC_DISCARDING: 2174 return; 2175 2176 case DTRACESPEC_ACTIVE: 2177 case DTRACESPEC_ACTIVEMANY: 2178 new = DTRACESPEC_DISCARDING; 2179 break; 2180 2181 case DTRACESPEC_ACTIVEONE: 2182 if (buf->dtb_offset != 0) { 2183 new = DTRACESPEC_INACTIVE; 2184 } else { 2185 new = DTRACESPEC_DISCARDING; 2186 } 2187 break; 2188 2189 default: 2190 ASSERT(0); 2191 } 2192 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2193 current, new) != current); 2194 2195 buf->dtb_offset = 0; 2196 buf->dtb_drops = 0; 2197 } 2198 2199 /* 2200 * Note: not called from probe context. This function is called 2201 * asynchronously from cross call context to clean any speculations that are 2202 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2203 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2204 * speculation. 2205 */ 2206 static void 2207 dtrace_speculation_clean_here(dtrace_state_t *state) 2208 { 2209 dtrace_icookie_t cookie; 2210 processorid_t cpu = CPU->cpu_id; 2211 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2212 dtrace_specid_t i; 2213 2214 cookie = dtrace_interrupt_disable(); 2215 2216 if (dest->dtb_tomax == NULL) { 2217 dtrace_interrupt_enable(cookie); 2218 return; 2219 } 2220 2221 for (i = 0; i < state->dts_nspeculations; i++) { 2222 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2223 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2224 2225 if (src->dtb_tomax == NULL) 2226 continue; 2227 2228 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2229 src->dtb_offset = 0; 2230 continue; 2231 } 2232 2233 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2234 continue; 2235 2236 if (src->dtb_offset == 0) 2237 continue; 2238 2239 dtrace_speculation_commit(state, cpu, i + 1); 2240 } 2241 2242 dtrace_interrupt_enable(cookie); 2243 } 2244 2245 /* 2246 * Note: not called from probe context. This function is called 2247 * asynchronously (and at a regular interval) to clean any speculations that 2248 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2249 * is work to be done, it cross calls all CPUs to perform that work; 2250 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2251 * INACTIVE state until they have been cleaned by all CPUs. 2252 */ 2253 static void 2254 dtrace_speculation_clean(dtrace_state_t *state) 2255 { 2256 int work = 0, rv; 2257 dtrace_specid_t i; 2258 2259 for (i = 0; i < state->dts_nspeculations; i++) { 2260 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2261 2262 ASSERT(!spec->dtsp_cleaning); 2263 2264 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2265 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2266 continue; 2267 2268 work++; 2269 spec->dtsp_cleaning = 1; 2270 } 2271 2272 if (!work) 2273 return; 2274 2275 dtrace_xcall(DTRACE_CPUALL, 2276 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2277 2278 /* 2279 * We now know that all CPUs have committed or discarded their 2280 * speculation buffers, as appropriate. We can now set the state 2281 * to inactive. 2282 */ 2283 for (i = 0; i < state->dts_nspeculations; i++) { 2284 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2285 dtrace_speculation_state_t current, new; 2286 2287 if (!spec->dtsp_cleaning) 2288 continue; 2289 2290 current = spec->dtsp_state; 2291 ASSERT(current == DTRACESPEC_DISCARDING || 2292 current == DTRACESPEC_COMMITTINGMANY); 2293 2294 new = DTRACESPEC_INACTIVE; 2295 2296 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2297 ASSERT(rv == current); 2298 spec->dtsp_cleaning = 0; 2299 } 2300 } 2301 2302 /* 2303 * Called as part of a speculate() to get the speculative buffer associated 2304 * with a given speculation. Returns NULL if the specified speculation is not 2305 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2306 * the active CPU is not the specified CPU -- the speculation will be 2307 * atomically transitioned into the ACTIVEMANY state. 2308 */ 2309 static dtrace_buffer_t * 2310 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2311 dtrace_specid_t which) 2312 { 2313 dtrace_speculation_t *spec; 2314 dtrace_speculation_state_t current, new; 2315 dtrace_buffer_t *buf; 2316 2317 if (which == 0) 2318 return (NULL); 2319 2320 if (which > state->dts_nspeculations) { 2321 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2322 return (NULL); 2323 } 2324 2325 spec = &state->dts_speculations[which - 1]; 2326 buf = &spec->dtsp_buffer[cpuid]; 2327 2328 do { 2329 current = spec->dtsp_state; 2330 2331 switch (current) { 2332 case DTRACESPEC_INACTIVE: 2333 case DTRACESPEC_COMMITTINGMANY: 2334 case DTRACESPEC_DISCARDING: 2335 return (NULL); 2336 2337 case DTRACESPEC_COMMITTING: 2338 ASSERT(buf->dtb_offset == 0); 2339 return (NULL); 2340 2341 case DTRACESPEC_ACTIVEONE: 2342 /* 2343 * This speculation is currently active on one CPU. 2344 * Check the offset in the buffer; if it's non-zero, 2345 * that CPU must be us (and we leave the state alone). 2346 * If it's zero, assume that we're starting on a new 2347 * CPU -- and change the state to indicate that the 2348 * speculation is active on more than one CPU. 2349 */ 2350 if (buf->dtb_offset != 0) 2351 return (buf); 2352 2353 new = DTRACESPEC_ACTIVEMANY; 2354 break; 2355 2356 case DTRACESPEC_ACTIVEMANY: 2357 return (buf); 2358 2359 case DTRACESPEC_ACTIVE: 2360 new = DTRACESPEC_ACTIVEONE; 2361 break; 2362 2363 default: 2364 ASSERT(0); 2365 } 2366 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2367 current, new) != current); 2368 2369 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2370 return (buf); 2371 } 2372 2373 /* 2374 * Return a string. In the event that the user lacks the privilege to access 2375 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2376 * don't fail access checking. 2377 * 2378 * dtrace_dif_variable() uses this routine as a helper for various 2379 * builtin values such as 'execname' and 'probefunc.' 2380 */ 2381 uintptr_t 2382 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2383 dtrace_mstate_t *mstate) 2384 { 2385 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2386 uintptr_t ret; 2387 size_t strsz; 2388 2389 /* 2390 * The easy case: this probe is allowed to read all of memory, so 2391 * we can just return this as a vanilla pointer. 2392 */ 2393 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2394 return (addr); 2395 2396 /* 2397 * This is the tougher case: we copy the string in question from 2398 * kernel memory into scratch memory and return it that way: this 2399 * ensures that we won't trip up when access checking tests the 2400 * BYREF return value. 2401 */ 2402 strsz = dtrace_strlen((char *)addr, size) + 1; 2403 2404 if (mstate->dtms_scratch_ptr + strsz > 2405 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2406 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2407 return (NULL); 2408 } 2409 2410 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2411 strsz); 2412 ret = mstate->dtms_scratch_ptr; 2413 mstate->dtms_scratch_ptr += strsz; 2414 return (ret); 2415 } 2416 2417 /* 2418 * This function implements the DIF emulator's variable lookups. The emulator 2419 * passes a reserved variable identifier and optional built-in array index. 2420 */ 2421 static uint64_t 2422 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2423 uint64_t ndx) 2424 { 2425 /* 2426 * If we're accessing one of the uncached arguments, we'll turn this 2427 * into a reference in the args array. 2428 */ 2429 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2430 ndx = v - DIF_VAR_ARG0; 2431 v = DIF_VAR_ARGS; 2432 } 2433 2434 switch (v) { 2435 case DIF_VAR_ARGS: 2436 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2437 if (ndx >= sizeof (mstate->dtms_arg) / 2438 sizeof (mstate->dtms_arg[0])) { 2439 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2440 dtrace_provider_t *pv; 2441 uint64_t val; 2442 2443 pv = mstate->dtms_probe->dtpr_provider; 2444 if (pv->dtpv_pops.dtps_getargval != NULL) 2445 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2446 mstate->dtms_probe->dtpr_id, 2447 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2448 else 2449 val = dtrace_getarg(ndx, aframes); 2450 2451 /* 2452 * This is regrettably required to keep the compiler 2453 * from tail-optimizing the call to dtrace_getarg(). 2454 * The condition always evaluates to true, but the 2455 * compiler has no way of figuring that out a priori. 2456 * (None of this would be necessary if the compiler 2457 * could be relied upon to _always_ tail-optimize 2458 * the call to dtrace_getarg() -- but it can't.) 2459 */ 2460 if (mstate->dtms_probe != NULL) 2461 return (val); 2462 2463 ASSERT(0); 2464 } 2465 2466 return (mstate->dtms_arg[ndx]); 2467 2468 case DIF_VAR_UREGS: { 2469 klwp_t *lwp; 2470 2471 if (!dtrace_priv_proc(state)) 2472 return (0); 2473 2474 if ((lwp = curthread->t_lwp) == NULL) { 2475 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2476 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2477 return (0); 2478 } 2479 2480 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2481 } 2482 2483 case DIF_VAR_CURTHREAD: 2484 if (!dtrace_priv_kernel(state)) 2485 return (0); 2486 return ((uint64_t)(uintptr_t)curthread); 2487 2488 case DIF_VAR_TIMESTAMP: 2489 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2490 mstate->dtms_timestamp = dtrace_gethrtime(); 2491 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2492 } 2493 return (mstate->dtms_timestamp); 2494 2495 case DIF_VAR_VTIMESTAMP: 2496 ASSERT(dtrace_vtime_references != 0); 2497 return (curthread->t_dtrace_vtime); 2498 2499 case DIF_VAR_WALLTIMESTAMP: 2500 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2501 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2502 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2503 } 2504 return (mstate->dtms_walltimestamp); 2505 2506 case DIF_VAR_IPL: 2507 if (!dtrace_priv_kernel(state)) 2508 return (0); 2509 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2510 mstate->dtms_ipl = dtrace_getipl(); 2511 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2512 } 2513 return (mstate->dtms_ipl); 2514 2515 case DIF_VAR_EPID: 2516 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2517 return (mstate->dtms_epid); 2518 2519 case DIF_VAR_ID: 2520 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2521 return (mstate->dtms_probe->dtpr_id); 2522 2523 case DIF_VAR_STACKDEPTH: 2524 if (!dtrace_priv_kernel(state)) 2525 return (0); 2526 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2527 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2528 2529 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2530 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2531 } 2532 return (mstate->dtms_stackdepth); 2533 2534 case DIF_VAR_USTACKDEPTH: 2535 if (!dtrace_priv_proc(state)) 2536 return (0); 2537 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2538 /* 2539 * See comment in DIF_VAR_PID. 2540 */ 2541 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2542 CPU_ON_INTR(CPU)) { 2543 mstate->dtms_ustackdepth = 0; 2544 } else { 2545 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2546 mstate->dtms_ustackdepth = 2547 dtrace_getustackdepth(); 2548 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2549 } 2550 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2551 } 2552 return (mstate->dtms_ustackdepth); 2553 2554 case DIF_VAR_CALLER: 2555 if (!dtrace_priv_kernel(state)) 2556 return (0); 2557 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2558 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2559 2560 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2561 /* 2562 * If this is an unanchored probe, we are 2563 * required to go through the slow path: 2564 * dtrace_caller() only guarantees correct 2565 * results for anchored probes. 2566 */ 2567 pc_t caller[2]; 2568 2569 dtrace_getpcstack(caller, 2, aframes, 2570 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2571 mstate->dtms_caller = caller[1]; 2572 } else if ((mstate->dtms_caller = 2573 dtrace_caller(aframes)) == -1) { 2574 /* 2575 * We have failed to do this the quick way; 2576 * we must resort to the slower approach of 2577 * calling dtrace_getpcstack(). 2578 */ 2579 pc_t caller; 2580 2581 dtrace_getpcstack(&caller, 1, aframes, NULL); 2582 mstate->dtms_caller = caller; 2583 } 2584 2585 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2586 } 2587 return (mstate->dtms_caller); 2588 2589 case DIF_VAR_UCALLER: 2590 if (!dtrace_priv_proc(state)) 2591 return (0); 2592 2593 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 2594 uint64_t ustack[3]; 2595 2596 /* 2597 * dtrace_getupcstack() fills in the first uint64_t 2598 * with the current PID. The second uint64_t will 2599 * be the program counter at user-level. The third 2600 * uint64_t will contain the caller, which is what 2601 * we're after. 2602 */ 2603 ustack[2] = NULL; 2604 dtrace_getupcstack(ustack, 3); 2605 mstate->dtms_ucaller = ustack[2]; 2606 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 2607 } 2608 2609 return (mstate->dtms_ucaller); 2610 2611 case DIF_VAR_PROBEPROV: 2612 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2613 return (dtrace_dif_varstr( 2614 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 2615 state, mstate)); 2616 2617 case DIF_VAR_PROBEMOD: 2618 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2619 return (dtrace_dif_varstr( 2620 (uintptr_t)mstate->dtms_probe->dtpr_mod, 2621 state, mstate)); 2622 2623 case DIF_VAR_PROBEFUNC: 2624 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2625 return (dtrace_dif_varstr( 2626 (uintptr_t)mstate->dtms_probe->dtpr_func, 2627 state, mstate)); 2628 2629 case DIF_VAR_PROBENAME: 2630 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2631 return (dtrace_dif_varstr( 2632 (uintptr_t)mstate->dtms_probe->dtpr_name, 2633 state, mstate)); 2634 2635 case DIF_VAR_PID: 2636 if (!dtrace_priv_proc(state)) 2637 return (0); 2638 2639 /* 2640 * Note that we are assuming that an unanchored probe is 2641 * always due to a high-level interrupt. (And we're assuming 2642 * that there is only a single high level interrupt.) 2643 */ 2644 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2645 return (pid0.pid_id); 2646 2647 /* 2648 * It is always safe to dereference one's own t_procp pointer: 2649 * it always points to a valid, allocated proc structure. 2650 * Further, it is always safe to dereference the p_pidp member 2651 * of one's own proc structure. (These are truisms becuase 2652 * threads and processes don't clean up their own state -- 2653 * they leave that task to whomever reaps them.) 2654 */ 2655 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 2656 2657 case DIF_VAR_PPID: 2658 if (!dtrace_priv_proc(state)) 2659 return (0); 2660 2661 /* 2662 * See comment in DIF_VAR_PID. 2663 */ 2664 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2665 return (pid0.pid_id); 2666 2667 /* 2668 * It is always safe to dereference one's own t_procp pointer: 2669 * it always points to a valid, allocated proc structure. 2670 * (This is true because threads don't clean up their own 2671 * state -- they leave that task to whomever reaps them.) 2672 */ 2673 return ((uint64_t)curthread->t_procp->p_ppid); 2674 2675 case DIF_VAR_TID: 2676 /* 2677 * See comment in DIF_VAR_PID. 2678 */ 2679 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2680 return (0); 2681 2682 return ((uint64_t)curthread->t_tid); 2683 2684 case DIF_VAR_EXECNAME: 2685 if (!dtrace_priv_proc(state)) 2686 return (0); 2687 2688 /* 2689 * See comment in DIF_VAR_PID. 2690 */ 2691 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2692 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 2693 2694 /* 2695 * It is always safe to dereference one's own t_procp pointer: 2696 * it always points to a valid, allocated proc structure. 2697 * (This is true because threads don't clean up their own 2698 * state -- they leave that task to whomever reaps them.) 2699 */ 2700 return (dtrace_dif_varstr( 2701 (uintptr_t)curthread->t_procp->p_user.u_comm, 2702 state, mstate)); 2703 2704 case DIF_VAR_ZONENAME: 2705 if (!dtrace_priv_proc(state)) 2706 return (0); 2707 2708 /* 2709 * See comment in DIF_VAR_PID. 2710 */ 2711 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2712 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 2713 2714 /* 2715 * It is always safe to dereference one's own t_procp pointer: 2716 * it always points to a valid, allocated proc structure. 2717 * (This is true because threads don't clean up their own 2718 * state -- they leave that task to whomever reaps them.) 2719 */ 2720 return (dtrace_dif_varstr( 2721 (uintptr_t)curthread->t_procp->p_zone->zone_name, 2722 state, mstate)); 2723 2724 case DIF_VAR_UID: 2725 if (!dtrace_priv_proc(state)) 2726 return (0); 2727 2728 /* 2729 * See comment in DIF_VAR_PID. 2730 */ 2731 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2732 return ((uint64_t)p0.p_cred->cr_uid); 2733 2734 /* 2735 * It is always safe to dereference one's own t_procp pointer: 2736 * it always points to a valid, allocated proc structure. 2737 * (This is true because threads don't clean up their own 2738 * state -- they leave that task to whomever reaps them.) 2739 * 2740 * Additionally, it is safe to dereference one's own process 2741 * credential, since this is never NULL after process birth. 2742 */ 2743 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 2744 2745 case DIF_VAR_GID: 2746 if (!dtrace_priv_proc(state)) 2747 return (0); 2748 2749 /* 2750 * See comment in DIF_VAR_PID. 2751 */ 2752 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2753 return ((uint64_t)p0.p_cred->cr_gid); 2754 2755 /* 2756 * It is always safe to dereference one's own t_procp pointer: 2757 * it always points to a valid, allocated proc structure. 2758 * (This is true because threads don't clean up their own 2759 * state -- they leave that task to whomever reaps them.) 2760 * 2761 * Additionally, it is safe to dereference one's own process 2762 * credential, since this is never NULL after process birth. 2763 */ 2764 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 2765 2766 case DIF_VAR_ERRNO: { 2767 klwp_t *lwp; 2768 if (!dtrace_priv_proc(state)) 2769 return (0); 2770 2771 /* 2772 * See comment in DIF_VAR_PID. 2773 */ 2774 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2775 return (0); 2776 2777 /* 2778 * It is always safe to dereference one's own t_lwp pointer in 2779 * the event that this pointer is non-NULL. (This is true 2780 * because threads and lwps don't clean up their own state -- 2781 * they leave that task to whomever reaps them.) 2782 */ 2783 if ((lwp = curthread->t_lwp) == NULL) 2784 return (0); 2785 2786 return ((uint64_t)lwp->lwp_errno); 2787 } 2788 default: 2789 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2790 return (0); 2791 } 2792 } 2793 2794 /* 2795 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 2796 * Notice that we don't bother validating the proper number of arguments or 2797 * their types in the tuple stack. This isn't needed because all argument 2798 * interpretation is safe because of our load safety -- the worst that can 2799 * happen is that a bogus program can obtain bogus results. 2800 */ 2801 static void 2802 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 2803 dtrace_key_t *tupregs, int nargs, 2804 dtrace_mstate_t *mstate, dtrace_state_t *state) 2805 { 2806 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 2807 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 2808 dtrace_vstate_t *vstate = &state->dts_vstate; 2809 2810 union { 2811 mutex_impl_t mi; 2812 uint64_t mx; 2813 } m; 2814 2815 union { 2816 krwlock_t ri; 2817 uintptr_t rw; 2818 } r; 2819 2820 switch (subr) { 2821 case DIF_SUBR_RAND: 2822 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 2823 break; 2824 2825 case DIF_SUBR_MUTEX_OWNED: 2826 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2827 mstate, vstate)) { 2828 regs[rd] = NULL; 2829 break; 2830 } 2831 2832 m.mx = dtrace_load64(tupregs[0].dttk_value); 2833 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 2834 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 2835 else 2836 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 2837 break; 2838 2839 case DIF_SUBR_MUTEX_OWNER: 2840 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2841 mstate, vstate)) { 2842 regs[rd] = NULL; 2843 break; 2844 } 2845 2846 m.mx = dtrace_load64(tupregs[0].dttk_value); 2847 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 2848 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 2849 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 2850 else 2851 regs[rd] = 0; 2852 break; 2853 2854 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 2855 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2856 mstate, vstate)) { 2857 regs[rd] = NULL; 2858 break; 2859 } 2860 2861 m.mx = dtrace_load64(tupregs[0].dttk_value); 2862 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 2863 break; 2864 2865 case DIF_SUBR_MUTEX_TYPE_SPIN: 2866 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2867 mstate, vstate)) { 2868 regs[rd] = NULL; 2869 break; 2870 } 2871 2872 m.mx = dtrace_load64(tupregs[0].dttk_value); 2873 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 2874 break; 2875 2876 case DIF_SUBR_RW_READ_HELD: { 2877 uintptr_t tmp; 2878 2879 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 2880 mstate, vstate)) { 2881 regs[rd] = NULL; 2882 break; 2883 } 2884 2885 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2886 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 2887 break; 2888 } 2889 2890 case DIF_SUBR_RW_WRITE_HELD: 2891 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 2892 mstate, vstate)) { 2893 regs[rd] = NULL; 2894 break; 2895 } 2896 2897 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2898 regs[rd] = _RW_WRITE_HELD(&r.ri); 2899 break; 2900 2901 case DIF_SUBR_RW_ISWRITER: 2902 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 2903 mstate, vstate)) { 2904 regs[rd] = NULL; 2905 break; 2906 } 2907 2908 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2909 regs[rd] = _RW_ISWRITER(&r.ri); 2910 break; 2911 2912 case DIF_SUBR_BCOPY: { 2913 /* 2914 * We need to be sure that the destination is in the scratch 2915 * region -- no other region is allowed. 2916 */ 2917 uintptr_t src = tupregs[0].dttk_value; 2918 uintptr_t dest = tupregs[1].dttk_value; 2919 size_t size = tupregs[2].dttk_value; 2920 2921 if (!dtrace_inscratch(dest, size, mstate)) { 2922 *flags |= CPU_DTRACE_BADADDR; 2923 *illval = regs[rd]; 2924 break; 2925 } 2926 2927 if (!dtrace_canload(src, size, mstate, vstate)) { 2928 regs[rd] = NULL; 2929 break; 2930 } 2931 2932 dtrace_bcopy((void *)src, (void *)dest, size); 2933 break; 2934 } 2935 2936 case DIF_SUBR_ALLOCA: 2937 case DIF_SUBR_COPYIN: { 2938 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 2939 uint64_t size = 2940 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 2941 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 2942 2943 /* 2944 * This action doesn't require any credential checks since 2945 * probes will not activate in user contexts to which the 2946 * enabling user does not have permissions. 2947 */ 2948 2949 /* 2950 * Rounding up the user allocation size could have overflowed 2951 * a large, bogus allocation (like -1ULL) to 0. 2952 */ 2953 if (scratch_size < size || 2954 !DTRACE_INSCRATCH(mstate, scratch_size)) { 2955 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2956 regs[rd] = NULL; 2957 break; 2958 } 2959 2960 if (subr == DIF_SUBR_COPYIN) { 2961 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2962 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 2963 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2964 } 2965 2966 mstate->dtms_scratch_ptr += scratch_size; 2967 regs[rd] = dest; 2968 break; 2969 } 2970 2971 case DIF_SUBR_COPYINTO: { 2972 uint64_t size = tupregs[1].dttk_value; 2973 uintptr_t dest = tupregs[2].dttk_value; 2974 2975 /* 2976 * This action doesn't require any credential checks since 2977 * probes will not activate in user contexts to which the 2978 * enabling user does not have permissions. 2979 */ 2980 if (!dtrace_inscratch(dest, size, mstate)) { 2981 *flags |= CPU_DTRACE_BADADDR; 2982 *illval = regs[rd]; 2983 break; 2984 } 2985 2986 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2987 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 2988 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2989 break; 2990 } 2991 2992 case DIF_SUBR_COPYINSTR: { 2993 uintptr_t dest = mstate->dtms_scratch_ptr; 2994 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2995 2996 if (nargs > 1 && tupregs[1].dttk_value < size) 2997 size = tupregs[1].dttk_value + 1; 2998 2999 /* 3000 * This action doesn't require any credential checks since 3001 * probes will not activate in user contexts to which the 3002 * enabling user does not have permissions. 3003 */ 3004 if (!DTRACE_INSCRATCH(mstate, size)) { 3005 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3006 regs[rd] = NULL; 3007 break; 3008 } 3009 3010 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3011 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3012 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3013 3014 ((char *)dest)[size - 1] = '\0'; 3015 mstate->dtms_scratch_ptr += size; 3016 regs[rd] = dest; 3017 break; 3018 } 3019 3020 case DIF_SUBR_MSGSIZE: 3021 case DIF_SUBR_MSGDSIZE: { 3022 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3023 uintptr_t wptr, rptr; 3024 size_t count = 0; 3025 int cont = 0; 3026 3027 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3028 3029 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3030 vstate)) { 3031 regs[rd] = NULL; 3032 break; 3033 } 3034 3035 wptr = dtrace_loadptr(baddr + 3036 offsetof(mblk_t, b_wptr)); 3037 3038 rptr = dtrace_loadptr(baddr + 3039 offsetof(mblk_t, b_rptr)); 3040 3041 if (wptr < rptr) { 3042 *flags |= CPU_DTRACE_BADADDR; 3043 *illval = tupregs[0].dttk_value; 3044 break; 3045 } 3046 3047 daddr = dtrace_loadptr(baddr + 3048 offsetof(mblk_t, b_datap)); 3049 3050 baddr = dtrace_loadptr(baddr + 3051 offsetof(mblk_t, b_cont)); 3052 3053 /* 3054 * We want to prevent against denial-of-service here, 3055 * so we're only going to search the list for 3056 * dtrace_msgdsize_max mblks. 3057 */ 3058 if (cont++ > dtrace_msgdsize_max) { 3059 *flags |= CPU_DTRACE_ILLOP; 3060 break; 3061 } 3062 3063 if (subr == DIF_SUBR_MSGDSIZE) { 3064 if (dtrace_load8(daddr + 3065 offsetof(dblk_t, db_type)) != M_DATA) 3066 continue; 3067 } 3068 3069 count += wptr - rptr; 3070 } 3071 3072 if (!(*flags & CPU_DTRACE_FAULT)) 3073 regs[rd] = count; 3074 3075 break; 3076 } 3077 3078 case DIF_SUBR_PROGENYOF: { 3079 pid_t pid = tupregs[0].dttk_value; 3080 proc_t *p; 3081 int rval = 0; 3082 3083 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3084 3085 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3086 if (p->p_pidp->pid_id == pid) { 3087 rval = 1; 3088 break; 3089 } 3090 } 3091 3092 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3093 3094 regs[rd] = rval; 3095 break; 3096 } 3097 3098 case DIF_SUBR_SPECULATION: 3099 regs[rd] = dtrace_speculation(state); 3100 break; 3101 3102 case DIF_SUBR_COPYOUT: { 3103 uintptr_t kaddr = tupregs[0].dttk_value; 3104 uintptr_t uaddr = tupregs[1].dttk_value; 3105 uint64_t size = tupregs[2].dttk_value; 3106 3107 if (!dtrace_destructive_disallow && 3108 dtrace_priv_proc_control(state) && 3109 !dtrace_istoxic(kaddr, size)) { 3110 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3111 dtrace_copyout(kaddr, uaddr, size, flags); 3112 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3113 } 3114 break; 3115 } 3116 3117 case DIF_SUBR_COPYOUTSTR: { 3118 uintptr_t kaddr = tupregs[0].dttk_value; 3119 uintptr_t uaddr = tupregs[1].dttk_value; 3120 uint64_t size = tupregs[2].dttk_value; 3121 3122 if (!dtrace_destructive_disallow && 3123 dtrace_priv_proc_control(state) && 3124 !dtrace_istoxic(kaddr, size)) { 3125 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3126 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3127 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3128 } 3129 break; 3130 } 3131 3132 case DIF_SUBR_STRLEN: { 3133 size_t sz; 3134 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3135 sz = dtrace_strlen((char *)addr, 3136 state->dts_options[DTRACEOPT_STRSIZE]); 3137 3138 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3139 regs[rd] = NULL; 3140 break; 3141 } 3142 3143 regs[rd] = sz; 3144 3145 break; 3146 } 3147 3148 case DIF_SUBR_STRCHR: 3149 case DIF_SUBR_STRRCHR: { 3150 /* 3151 * We're going to iterate over the string looking for the 3152 * specified character. We will iterate until we have reached 3153 * the string length or we have found the character. If this 3154 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3155 * of the specified character instead of the first. 3156 */ 3157 uintptr_t saddr = tupregs[0].dttk_value; 3158 uintptr_t addr = tupregs[0].dttk_value; 3159 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3160 char c, target = (char)tupregs[1].dttk_value; 3161 3162 for (regs[rd] = NULL; addr < limit; addr++) { 3163 if ((c = dtrace_load8(addr)) == target) { 3164 regs[rd] = addr; 3165 3166 if (subr == DIF_SUBR_STRCHR) 3167 break; 3168 } 3169 3170 if (c == '\0') 3171 break; 3172 } 3173 3174 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3175 regs[rd] = NULL; 3176 break; 3177 } 3178 3179 break; 3180 } 3181 3182 case DIF_SUBR_STRSTR: 3183 case DIF_SUBR_INDEX: 3184 case DIF_SUBR_RINDEX: { 3185 /* 3186 * We're going to iterate over the string looking for the 3187 * specified string. We will iterate until we have reached 3188 * the string length or we have found the string. (Yes, this 3189 * is done in the most naive way possible -- but considering 3190 * that the string we're searching for is likely to be 3191 * relatively short, the complexity of Rabin-Karp or similar 3192 * hardly seems merited.) 3193 */ 3194 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3195 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3196 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3197 size_t len = dtrace_strlen(addr, size); 3198 size_t sublen = dtrace_strlen(substr, size); 3199 char *limit = addr + len, *orig = addr; 3200 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3201 int inc = 1; 3202 3203 regs[rd] = notfound; 3204 3205 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3206 regs[rd] = NULL; 3207 break; 3208 } 3209 3210 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3211 vstate)) { 3212 regs[rd] = NULL; 3213 break; 3214 } 3215 3216 /* 3217 * strstr() and index()/rindex() have similar semantics if 3218 * both strings are the empty string: strstr() returns a 3219 * pointer to the (empty) string, and index() and rindex() 3220 * both return index 0 (regardless of any position argument). 3221 */ 3222 if (sublen == 0 && len == 0) { 3223 if (subr == DIF_SUBR_STRSTR) 3224 regs[rd] = (uintptr_t)addr; 3225 else 3226 regs[rd] = 0; 3227 break; 3228 } 3229 3230 if (subr != DIF_SUBR_STRSTR) { 3231 if (subr == DIF_SUBR_RINDEX) { 3232 limit = orig - 1; 3233 addr += len; 3234 inc = -1; 3235 } 3236 3237 /* 3238 * Both index() and rindex() take an optional position 3239 * argument that denotes the starting position. 3240 */ 3241 if (nargs == 3) { 3242 int64_t pos = (int64_t)tupregs[2].dttk_value; 3243 3244 /* 3245 * If the position argument to index() is 3246 * negative, Perl implicitly clamps it at 3247 * zero. This semantic is a little surprising 3248 * given the special meaning of negative 3249 * positions to similar Perl functions like 3250 * substr(), but it appears to reflect a 3251 * notion that index() can start from a 3252 * negative index and increment its way up to 3253 * the string. Given this notion, Perl's 3254 * rindex() is at least self-consistent in 3255 * that it implicitly clamps positions greater 3256 * than the string length to be the string 3257 * length. Where Perl completely loses 3258 * coherence, however, is when the specified 3259 * substring is the empty string (""). In 3260 * this case, even if the position is 3261 * negative, rindex() returns 0 -- and even if 3262 * the position is greater than the length, 3263 * index() returns the string length. These 3264 * semantics violate the notion that index() 3265 * should never return a value less than the 3266 * specified position and that rindex() should 3267 * never return a value greater than the 3268 * specified position. (One assumes that 3269 * these semantics are artifacts of Perl's 3270 * implementation and not the results of 3271 * deliberate design -- it beggars belief that 3272 * even Larry Wall could desire such oddness.) 3273 * While in the abstract one would wish for 3274 * consistent position semantics across 3275 * substr(), index() and rindex() -- or at the 3276 * very least self-consistent position 3277 * semantics for index() and rindex() -- we 3278 * instead opt to keep with the extant Perl 3279 * semantics, in all their broken glory. (Do 3280 * we have more desire to maintain Perl's 3281 * semantics than Perl does? Probably.) 3282 */ 3283 if (subr == DIF_SUBR_RINDEX) { 3284 if (pos < 0) { 3285 if (sublen == 0) 3286 regs[rd] = 0; 3287 break; 3288 } 3289 3290 if (pos > len) 3291 pos = len; 3292 } else { 3293 if (pos < 0) 3294 pos = 0; 3295 3296 if (pos >= len) { 3297 if (sublen == 0) 3298 regs[rd] = len; 3299 break; 3300 } 3301 } 3302 3303 addr = orig + pos; 3304 } 3305 } 3306 3307 for (regs[rd] = notfound; addr != limit; addr += inc) { 3308 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3309 if (subr != DIF_SUBR_STRSTR) { 3310 /* 3311 * As D index() and rindex() are 3312 * modeled on Perl (and not on awk), 3313 * we return a zero-based (and not a 3314 * one-based) index. (For you Perl 3315 * weenies: no, we're not going to add 3316 * $[ -- and shouldn't you be at a con 3317 * or something?) 3318 */ 3319 regs[rd] = (uintptr_t)(addr - orig); 3320 break; 3321 } 3322 3323 ASSERT(subr == DIF_SUBR_STRSTR); 3324 regs[rd] = (uintptr_t)addr; 3325 break; 3326 } 3327 } 3328 3329 break; 3330 } 3331 3332 case DIF_SUBR_STRTOK: { 3333 uintptr_t addr = tupregs[0].dttk_value; 3334 uintptr_t tokaddr = tupregs[1].dttk_value; 3335 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3336 uintptr_t limit, toklimit = tokaddr + size; 3337 uint8_t c, tokmap[32]; /* 256 / 8 */ 3338 char *dest = (char *)mstate->dtms_scratch_ptr; 3339 int i; 3340 3341 /* 3342 * Check both the token buffer and (later) the input buffer, 3343 * since both could be non-scratch addresses. 3344 */ 3345 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3346 regs[rd] = NULL; 3347 break; 3348 } 3349 3350 if (!DTRACE_INSCRATCH(mstate, size)) { 3351 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3352 regs[rd] = NULL; 3353 break; 3354 } 3355 3356 if (addr == NULL) { 3357 /* 3358 * If the address specified is NULL, we use our saved 3359 * strtok pointer from the mstate. Note that this 3360 * means that the saved strtok pointer is _only_ 3361 * valid within multiple enablings of the same probe -- 3362 * it behaves like an implicit clause-local variable. 3363 */ 3364 addr = mstate->dtms_strtok; 3365 } else { 3366 /* 3367 * If the user-specified address is non-NULL we must 3368 * access check it. This is the only time we have 3369 * a chance to do so, since this address may reside 3370 * in the string table of this clause-- future calls 3371 * (when we fetch addr from mstate->dtms_strtok) 3372 * would fail this access check. 3373 */ 3374 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3375 regs[rd] = NULL; 3376 break; 3377 } 3378 } 3379 3380 /* 3381 * First, zero the token map, and then process the token 3382 * string -- setting a bit in the map for every character 3383 * found in the token string. 3384 */ 3385 for (i = 0; i < sizeof (tokmap); i++) 3386 tokmap[i] = 0; 3387 3388 for (; tokaddr < toklimit; tokaddr++) { 3389 if ((c = dtrace_load8(tokaddr)) == '\0') 3390 break; 3391 3392 ASSERT((c >> 3) < sizeof (tokmap)); 3393 tokmap[c >> 3] |= (1 << (c & 0x7)); 3394 } 3395 3396 for (limit = addr + size; addr < limit; addr++) { 3397 /* 3398 * We're looking for a character that is _not_ contained 3399 * in the token string. 3400 */ 3401 if ((c = dtrace_load8(addr)) == '\0') 3402 break; 3403 3404 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3405 break; 3406 } 3407 3408 if (c == '\0') { 3409 /* 3410 * We reached the end of the string without finding 3411 * any character that was not in the token string. 3412 * We return NULL in this case, and we set the saved 3413 * address to NULL as well. 3414 */ 3415 regs[rd] = NULL; 3416 mstate->dtms_strtok = NULL; 3417 break; 3418 } 3419 3420 /* 3421 * From here on, we're copying into the destination string. 3422 */ 3423 for (i = 0; addr < limit && i < size - 1; addr++) { 3424 if ((c = dtrace_load8(addr)) == '\0') 3425 break; 3426 3427 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3428 break; 3429 3430 ASSERT(i < size); 3431 dest[i++] = c; 3432 } 3433 3434 ASSERT(i < size); 3435 dest[i] = '\0'; 3436 regs[rd] = (uintptr_t)dest; 3437 mstate->dtms_scratch_ptr += size; 3438 mstate->dtms_strtok = addr; 3439 break; 3440 } 3441 3442 case DIF_SUBR_SUBSTR: { 3443 uintptr_t s = tupregs[0].dttk_value; 3444 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3445 char *d = (char *)mstate->dtms_scratch_ptr; 3446 int64_t index = (int64_t)tupregs[1].dttk_value; 3447 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3448 size_t len = dtrace_strlen((char *)s, size); 3449 int64_t i = 0; 3450 3451 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3452 regs[rd] = NULL; 3453 break; 3454 } 3455 3456 if (nargs <= 2) 3457 remaining = (int64_t)size; 3458 3459 if (!DTRACE_INSCRATCH(mstate, size)) { 3460 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3461 regs[rd] = NULL; 3462 break; 3463 } 3464 3465 if (index < 0) { 3466 index += len; 3467 3468 if (index < 0 && index + remaining > 0) { 3469 remaining += index; 3470 index = 0; 3471 } 3472 } 3473 3474 if (index >= len || index < 0) 3475 index = len; 3476 3477 for (d[0] = '\0'; remaining > 0; remaining--) { 3478 if ((d[i++] = dtrace_load8(s++ + index)) == '\0') 3479 break; 3480 3481 if (i == size) { 3482 d[i - 1] = '\0'; 3483 break; 3484 } 3485 } 3486 3487 mstate->dtms_scratch_ptr += size; 3488 regs[rd] = (uintptr_t)d; 3489 break; 3490 } 3491 3492 case DIF_SUBR_GETMAJOR: 3493 #ifdef _LP64 3494 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3495 #else 3496 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3497 #endif 3498 break; 3499 3500 case DIF_SUBR_GETMINOR: 3501 #ifdef _LP64 3502 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3503 #else 3504 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3505 #endif 3506 break; 3507 3508 case DIF_SUBR_DDI_PATHNAME: { 3509 /* 3510 * This one is a galactic mess. We are going to roughly 3511 * emulate ddi_pathname(), but it's made more complicated 3512 * by the fact that we (a) want to include the minor name and 3513 * (b) must proceed iteratively instead of recursively. 3514 */ 3515 uintptr_t dest = mstate->dtms_scratch_ptr; 3516 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3517 char *start = (char *)dest, *end = start + size - 1; 3518 uintptr_t daddr = tupregs[0].dttk_value; 3519 int64_t minor = (int64_t)tupregs[1].dttk_value; 3520 char *s; 3521 int i, len, depth = 0; 3522 3523 /* 3524 * Due to all the pointer jumping we do and context we must 3525 * rely upon, we just mandate that the user must have kernel 3526 * read privileges to use this routine. 3527 */ 3528 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 3529 *flags |= CPU_DTRACE_KPRIV; 3530 *illval = daddr; 3531 regs[rd] = NULL; 3532 } 3533 3534 if (!DTRACE_INSCRATCH(mstate, size)) { 3535 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3536 regs[rd] = NULL; 3537 break; 3538 } 3539 3540 *end = '\0'; 3541 3542 /* 3543 * We want to have a name for the minor. In order to do this, 3544 * we need to walk the minor list from the devinfo. We want 3545 * to be sure that we don't infinitely walk a circular list, 3546 * so we check for circularity by sending a scout pointer 3547 * ahead two elements for every element that we iterate over; 3548 * if the list is circular, these will ultimately point to the 3549 * same element. You may recognize this little trick as the 3550 * answer to a stupid interview question -- one that always 3551 * seems to be asked by those who had to have it laboriously 3552 * explained to them, and who can't even concisely describe 3553 * the conditions under which one would be forced to resort to 3554 * this technique. Needless to say, those conditions are 3555 * found here -- and probably only here. Is this is the only 3556 * use of this infamous trick in shipping, production code? 3557 * If it isn't, it probably should be... 3558 */ 3559 if (minor != -1) { 3560 uintptr_t maddr = dtrace_loadptr(daddr + 3561 offsetof(struct dev_info, devi_minor)); 3562 3563 uintptr_t next = offsetof(struct ddi_minor_data, next); 3564 uintptr_t name = offsetof(struct ddi_minor_data, 3565 d_minor) + offsetof(struct ddi_minor, name); 3566 uintptr_t dev = offsetof(struct ddi_minor_data, 3567 d_minor) + offsetof(struct ddi_minor, dev); 3568 uintptr_t scout; 3569 3570 if (maddr != NULL) 3571 scout = dtrace_loadptr(maddr + next); 3572 3573 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3574 uint64_t m; 3575 #ifdef _LP64 3576 m = dtrace_load64(maddr + dev) & MAXMIN64; 3577 #else 3578 m = dtrace_load32(maddr + dev) & MAXMIN; 3579 #endif 3580 if (m != minor) { 3581 maddr = dtrace_loadptr(maddr + next); 3582 3583 if (scout == NULL) 3584 continue; 3585 3586 scout = dtrace_loadptr(scout + next); 3587 3588 if (scout == NULL) 3589 continue; 3590 3591 scout = dtrace_loadptr(scout + next); 3592 3593 if (scout == NULL) 3594 continue; 3595 3596 if (scout == maddr) { 3597 *flags |= CPU_DTRACE_ILLOP; 3598 break; 3599 } 3600 3601 continue; 3602 } 3603 3604 /* 3605 * We have the minor data. Now we need to 3606 * copy the minor's name into the end of the 3607 * pathname. 3608 */ 3609 s = (char *)dtrace_loadptr(maddr + name); 3610 len = dtrace_strlen(s, size); 3611 3612 if (*flags & CPU_DTRACE_FAULT) 3613 break; 3614 3615 if (len != 0) { 3616 if ((end -= (len + 1)) < start) 3617 break; 3618 3619 *end = ':'; 3620 } 3621 3622 for (i = 1; i <= len; i++) 3623 end[i] = dtrace_load8((uintptr_t)s++); 3624 break; 3625 } 3626 } 3627 3628 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3629 ddi_node_state_t devi_state; 3630 3631 devi_state = dtrace_load32(daddr + 3632 offsetof(struct dev_info, devi_node_state)); 3633 3634 if (*flags & CPU_DTRACE_FAULT) 3635 break; 3636 3637 if (devi_state >= DS_INITIALIZED) { 3638 s = (char *)dtrace_loadptr(daddr + 3639 offsetof(struct dev_info, devi_addr)); 3640 len = dtrace_strlen(s, size); 3641 3642 if (*flags & CPU_DTRACE_FAULT) 3643 break; 3644 3645 if (len != 0) { 3646 if ((end -= (len + 1)) < start) 3647 break; 3648 3649 *end = '@'; 3650 } 3651 3652 for (i = 1; i <= len; i++) 3653 end[i] = dtrace_load8((uintptr_t)s++); 3654 } 3655 3656 /* 3657 * Now for the node name... 3658 */ 3659 s = (char *)dtrace_loadptr(daddr + 3660 offsetof(struct dev_info, devi_node_name)); 3661 3662 daddr = dtrace_loadptr(daddr + 3663 offsetof(struct dev_info, devi_parent)); 3664 3665 /* 3666 * If our parent is NULL (that is, if we're the root 3667 * node), we're going to use the special path 3668 * "devices". 3669 */ 3670 if (daddr == NULL) 3671 s = "devices"; 3672 3673 len = dtrace_strlen(s, size); 3674 if (*flags & CPU_DTRACE_FAULT) 3675 break; 3676 3677 if ((end -= (len + 1)) < start) 3678 break; 3679 3680 for (i = 1; i <= len; i++) 3681 end[i] = dtrace_load8((uintptr_t)s++); 3682 *end = '/'; 3683 3684 if (depth++ > dtrace_devdepth_max) { 3685 *flags |= CPU_DTRACE_ILLOP; 3686 break; 3687 } 3688 } 3689 3690 if (end < start) 3691 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3692 3693 if (daddr == NULL) { 3694 regs[rd] = (uintptr_t)end; 3695 mstate->dtms_scratch_ptr += size; 3696 } 3697 3698 break; 3699 } 3700 3701 case DIF_SUBR_STRJOIN: { 3702 char *d = (char *)mstate->dtms_scratch_ptr; 3703 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3704 uintptr_t s1 = tupregs[0].dttk_value; 3705 uintptr_t s2 = tupregs[1].dttk_value; 3706 int i = 0; 3707 3708 if (!dtrace_strcanload(s1, size, mstate, vstate) || 3709 !dtrace_strcanload(s2, size, mstate, vstate)) { 3710 regs[rd] = NULL; 3711 break; 3712 } 3713 3714 if (!DTRACE_INSCRATCH(mstate, size)) { 3715 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3716 regs[rd] = NULL; 3717 break; 3718 } 3719 3720 for (;;) { 3721 if (i >= size) { 3722 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3723 regs[rd] = NULL; 3724 break; 3725 } 3726 3727 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 3728 i--; 3729 break; 3730 } 3731 } 3732 3733 for (;;) { 3734 if (i >= size) { 3735 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3736 regs[rd] = NULL; 3737 break; 3738 } 3739 3740 if ((d[i++] = dtrace_load8(s2++)) == '\0') 3741 break; 3742 } 3743 3744 if (i < size) { 3745 mstate->dtms_scratch_ptr += i; 3746 regs[rd] = (uintptr_t)d; 3747 } 3748 3749 break; 3750 } 3751 3752 case DIF_SUBR_LLTOSTR: { 3753 int64_t i = (int64_t)tupregs[0].dttk_value; 3754 int64_t val = i < 0 ? i * -1 : i; 3755 uint64_t size = 22; /* enough room for 2^64 in decimal */ 3756 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 3757 3758 if (!DTRACE_INSCRATCH(mstate, size)) { 3759 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3760 regs[rd] = NULL; 3761 break; 3762 } 3763 3764 for (*end-- = '\0'; val; val /= 10) 3765 *end-- = '0' + (val % 10); 3766 3767 if (i == 0) 3768 *end-- = '0'; 3769 3770 if (i < 0) 3771 *end-- = '-'; 3772 3773 regs[rd] = (uintptr_t)end + 1; 3774 mstate->dtms_scratch_ptr += size; 3775 break; 3776 } 3777 3778 case DIF_SUBR_HTONS: 3779 case DIF_SUBR_NTOHS: 3780 #ifdef _BIG_ENDIAN 3781 regs[rd] = (uint16_t)tupregs[0].dttk_value; 3782 #else 3783 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 3784 #endif 3785 break; 3786 3787 3788 case DIF_SUBR_HTONL: 3789 case DIF_SUBR_NTOHL: 3790 #ifdef _BIG_ENDIAN 3791 regs[rd] = (uint32_t)tupregs[0].dttk_value; 3792 #else 3793 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 3794 #endif 3795 break; 3796 3797 3798 case DIF_SUBR_HTONLL: 3799 case DIF_SUBR_NTOHLL: 3800 #ifdef _BIG_ENDIAN 3801 regs[rd] = (uint64_t)tupregs[0].dttk_value; 3802 #else 3803 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 3804 #endif 3805 break; 3806 3807 3808 case DIF_SUBR_DIRNAME: 3809 case DIF_SUBR_BASENAME: { 3810 char *dest = (char *)mstate->dtms_scratch_ptr; 3811 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3812 uintptr_t src = tupregs[0].dttk_value; 3813 int i, j, len = dtrace_strlen((char *)src, size); 3814 int lastbase = -1, firstbase = -1, lastdir = -1; 3815 int start, end; 3816 3817 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 3818 regs[rd] = NULL; 3819 break; 3820 } 3821 3822 if (!DTRACE_INSCRATCH(mstate, size)) { 3823 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3824 regs[rd] = NULL; 3825 break; 3826 } 3827 3828 /* 3829 * The basename and dirname for a zero-length string is 3830 * defined to be "." 3831 */ 3832 if (len == 0) { 3833 len = 1; 3834 src = (uintptr_t)"."; 3835 } 3836 3837 /* 3838 * Start from the back of the string, moving back toward the 3839 * front until we see a character that isn't a slash. That 3840 * character is the last character in the basename. 3841 */ 3842 for (i = len - 1; i >= 0; i--) { 3843 if (dtrace_load8(src + i) != '/') 3844 break; 3845 } 3846 3847 if (i >= 0) 3848 lastbase = i; 3849 3850 /* 3851 * Starting from the last character in the basename, move 3852 * towards the front until we find a slash. The character 3853 * that we processed immediately before that is the first 3854 * character in the basename. 3855 */ 3856 for (; i >= 0; i--) { 3857 if (dtrace_load8(src + i) == '/') 3858 break; 3859 } 3860 3861 if (i >= 0) 3862 firstbase = i + 1; 3863 3864 /* 3865 * Now keep going until we find a non-slash character. That 3866 * character is the last character in the dirname. 3867 */ 3868 for (; i >= 0; i--) { 3869 if (dtrace_load8(src + i) != '/') 3870 break; 3871 } 3872 3873 if (i >= 0) 3874 lastdir = i; 3875 3876 ASSERT(!(lastbase == -1 && firstbase != -1)); 3877 ASSERT(!(firstbase == -1 && lastdir != -1)); 3878 3879 if (lastbase == -1) { 3880 /* 3881 * We didn't find a non-slash character. We know that 3882 * the length is non-zero, so the whole string must be 3883 * slashes. In either the dirname or the basename 3884 * case, we return '/'. 3885 */ 3886 ASSERT(firstbase == -1); 3887 firstbase = lastbase = lastdir = 0; 3888 } 3889 3890 if (firstbase == -1) { 3891 /* 3892 * The entire string consists only of a basename 3893 * component. If we're looking for dirname, we need 3894 * to change our string to be just "."; if we're 3895 * looking for a basename, we'll just set the first 3896 * character of the basename to be 0. 3897 */ 3898 if (subr == DIF_SUBR_DIRNAME) { 3899 ASSERT(lastdir == -1); 3900 src = (uintptr_t)"."; 3901 lastdir = 0; 3902 } else { 3903 firstbase = 0; 3904 } 3905 } 3906 3907 if (subr == DIF_SUBR_DIRNAME) { 3908 if (lastdir == -1) { 3909 /* 3910 * We know that we have a slash in the name -- 3911 * or lastdir would be set to 0, above. And 3912 * because lastdir is -1, we know that this 3913 * slash must be the first character. (That 3914 * is, the full string must be of the form 3915 * "/basename".) In this case, the last 3916 * character of the directory name is 0. 3917 */ 3918 lastdir = 0; 3919 } 3920 3921 start = 0; 3922 end = lastdir; 3923 } else { 3924 ASSERT(subr == DIF_SUBR_BASENAME); 3925 ASSERT(firstbase != -1 && lastbase != -1); 3926 start = firstbase; 3927 end = lastbase; 3928 } 3929 3930 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 3931 dest[j] = dtrace_load8(src + i); 3932 3933 dest[j] = '\0'; 3934 regs[rd] = (uintptr_t)dest; 3935 mstate->dtms_scratch_ptr += size; 3936 break; 3937 } 3938 3939 case DIF_SUBR_CLEANPATH: { 3940 char *dest = (char *)mstate->dtms_scratch_ptr, c; 3941 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3942 uintptr_t src = tupregs[0].dttk_value; 3943 int i = 0, j = 0; 3944 3945 if (!dtrace_strcanload(src, size, mstate, vstate)) { 3946 regs[rd] = NULL; 3947 break; 3948 } 3949 3950 if (!DTRACE_INSCRATCH(mstate, size)) { 3951 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3952 regs[rd] = NULL; 3953 break; 3954 } 3955 3956 /* 3957 * Move forward, loading each character. 3958 */ 3959 do { 3960 c = dtrace_load8(src + i++); 3961 next: 3962 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 3963 break; 3964 3965 if (c != '/') { 3966 dest[j++] = c; 3967 continue; 3968 } 3969 3970 c = dtrace_load8(src + i++); 3971 3972 if (c == '/') { 3973 /* 3974 * We have two slashes -- we can just advance 3975 * to the next character. 3976 */ 3977 goto next; 3978 } 3979 3980 if (c != '.') { 3981 /* 3982 * This is not "." and it's not ".." -- we can 3983 * just store the "/" and this character and 3984 * drive on. 3985 */ 3986 dest[j++] = '/'; 3987 dest[j++] = c; 3988 continue; 3989 } 3990 3991 c = dtrace_load8(src + i++); 3992 3993 if (c == '/') { 3994 /* 3995 * This is a "/./" component. We're not going 3996 * to store anything in the destination buffer; 3997 * we're just going to go to the next component. 3998 */ 3999 goto next; 4000 } 4001 4002 if (c != '.') { 4003 /* 4004 * This is not ".." -- we can just store the 4005 * "/." and this character and continue 4006 * processing. 4007 */ 4008 dest[j++] = '/'; 4009 dest[j++] = '.'; 4010 dest[j++] = c; 4011 continue; 4012 } 4013 4014 c = dtrace_load8(src + i++); 4015 4016 if (c != '/' && c != '\0') { 4017 /* 4018 * This is not ".." -- it's "..[mumble]". 4019 * We'll store the "/.." and this character 4020 * and continue processing. 4021 */ 4022 dest[j++] = '/'; 4023 dest[j++] = '.'; 4024 dest[j++] = '.'; 4025 dest[j++] = c; 4026 continue; 4027 } 4028 4029 /* 4030 * This is "/../" or "/..\0". We need to back up 4031 * our destination pointer until we find a "/". 4032 */ 4033 i--; 4034 while (j != 0 && dest[--j] != '/') 4035 continue; 4036 4037 if (c == '\0') 4038 dest[++j] = '/'; 4039 } while (c != '\0'); 4040 4041 dest[j] = '\0'; 4042 regs[rd] = (uintptr_t)dest; 4043 mstate->dtms_scratch_ptr += size; 4044 break; 4045 } 4046 } 4047 } 4048 4049 /* 4050 * Emulate the execution of DTrace IR instructions specified by the given 4051 * DIF object. This function is deliberately void of assertions as all of 4052 * the necessary checks are handled by a call to dtrace_difo_validate(). 4053 */ 4054 static uint64_t 4055 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4056 dtrace_vstate_t *vstate, dtrace_state_t *state) 4057 { 4058 const dif_instr_t *text = difo->dtdo_buf; 4059 const uint_t textlen = difo->dtdo_len; 4060 const char *strtab = difo->dtdo_strtab; 4061 const uint64_t *inttab = difo->dtdo_inttab; 4062 4063 uint64_t rval = 0; 4064 dtrace_statvar_t *svar; 4065 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4066 dtrace_difv_t *v; 4067 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4068 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4069 4070 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4071 uint64_t regs[DIF_DIR_NREGS]; 4072 uint64_t *tmp; 4073 4074 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4075 int64_t cc_r; 4076 uint_t pc = 0, id, opc; 4077 uint8_t ttop = 0; 4078 dif_instr_t instr; 4079 uint_t r1, r2, rd; 4080 4081 /* 4082 * We stash the current DIF object into the machine state: we need it 4083 * for subsequent access checking. 4084 */ 4085 mstate->dtms_difo = difo; 4086 4087 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4088 4089 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4090 opc = pc; 4091 4092 instr = text[pc++]; 4093 r1 = DIF_INSTR_R1(instr); 4094 r2 = DIF_INSTR_R2(instr); 4095 rd = DIF_INSTR_RD(instr); 4096 4097 switch (DIF_INSTR_OP(instr)) { 4098 case DIF_OP_OR: 4099 regs[rd] = regs[r1] | regs[r2]; 4100 break; 4101 case DIF_OP_XOR: 4102 regs[rd] = regs[r1] ^ regs[r2]; 4103 break; 4104 case DIF_OP_AND: 4105 regs[rd] = regs[r1] & regs[r2]; 4106 break; 4107 case DIF_OP_SLL: 4108 regs[rd] = regs[r1] << regs[r2]; 4109 break; 4110 case DIF_OP_SRL: 4111 regs[rd] = regs[r1] >> regs[r2]; 4112 break; 4113 case DIF_OP_SUB: 4114 regs[rd] = regs[r1] - regs[r2]; 4115 break; 4116 case DIF_OP_ADD: 4117 regs[rd] = regs[r1] + regs[r2]; 4118 break; 4119 case DIF_OP_MUL: 4120 regs[rd] = regs[r1] * regs[r2]; 4121 break; 4122 case DIF_OP_SDIV: 4123 if (regs[r2] == 0) { 4124 regs[rd] = 0; 4125 *flags |= CPU_DTRACE_DIVZERO; 4126 } else { 4127 regs[rd] = (int64_t)regs[r1] / 4128 (int64_t)regs[r2]; 4129 } 4130 break; 4131 4132 case DIF_OP_UDIV: 4133 if (regs[r2] == 0) { 4134 regs[rd] = 0; 4135 *flags |= CPU_DTRACE_DIVZERO; 4136 } else { 4137 regs[rd] = regs[r1] / regs[r2]; 4138 } 4139 break; 4140 4141 case DIF_OP_SREM: 4142 if (regs[r2] == 0) { 4143 regs[rd] = 0; 4144 *flags |= CPU_DTRACE_DIVZERO; 4145 } else { 4146 regs[rd] = (int64_t)regs[r1] % 4147 (int64_t)regs[r2]; 4148 } 4149 break; 4150 4151 case DIF_OP_UREM: 4152 if (regs[r2] == 0) { 4153 regs[rd] = 0; 4154 *flags |= CPU_DTRACE_DIVZERO; 4155 } else { 4156 regs[rd] = regs[r1] % regs[r2]; 4157 } 4158 break; 4159 4160 case DIF_OP_NOT: 4161 regs[rd] = ~regs[r1]; 4162 break; 4163 case DIF_OP_MOV: 4164 regs[rd] = regs[r1]; 4165 break; 4166 case DIF_OP_CMP: 4167 cc_r = regs[r1] - regs[r2]; 4168 cc_n = cc_r < 0; 4169 cc_z = cc_r == 0; 4170 cc_v = 0; 4171 cc_c = regs[r1] < regs[r2]; 4172 break; 4173 case DIF_OP_TST: 4174 cc_n = cc_v = cc_c = 0; 4175 cc_z = regs[r1] == 0; 4176 break; 4177 case DIF_OP_BA: 4178 pc = DIF_INSTR_LABEL(instr); 4179 break; 4180 case DIF_OP_BE: 4181 if (cc_z) 4182 pc = DIF_INSTR_LABEL(instr); 4183 break; 4184 case DIF_OP_BNE: 4185 if (cc_z == 0) 4186 pc = DIF_INSTR_LABEL(instr); 4187 break; 4188 case DIF_OP_BG: 4189 if ((cc_z | (cc_n ^ cc_v)) == 0) 4190 pc = DIF_INSTR_LABEL(instr); 4191 break; 4192 case DIF_OP_BGU: 4193 if ((cc_c | cc_z) == 0) 4194 pc = DIF_INSTR_LABEL(instr); 4195 break; 4196 case DIF_OP_BGE: 4197 if ((cc_n ^ cc_v) == 0) 4198 pc = DIF_INSTR_LABEL(instr); 4199 break; 4200 case DIF_OP_BGEU: 4201 if (cc_c == 0) 4202 pc = DIF_INSTR_LABEL(instr); 4203 break; 4204 case DIF_OP_BL: 4205 if (cc_n ^ cc_v) 4206 pc = DIF_INSTR_LABEL(instr); 4207 break; 4208 case DIF_OP_BLU: 4209 if (cc_c) 4210 pc = DIF_INSTR_LABEL(instr); 4211 break; 4212 case DIF_OP_BLE: 4213 if (cc_z | (cc_n ^ cc_v)) 4214 pc = DIF_INSTR_LABEL(instr); 4215 break; 4216 case DIF_OP_BLEU: 4217 if (cc_c | cc_z) 4218 pc = DIF_INSTR_LABEL(instr); 4219 break; 4220 case DIF_OP_RLDSB: 4221 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4222 *flags |= CPU_DTRACE_KPRIV; 4223 *illval = regs[r1]; 4224 break; 4225 } 4226 /*FALLTHROUGH*/ 4227 case DIF_OP_LDSB: 4228 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4229 break; 4230 case DIF_OP_RLDSH: 4231 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4232 *flags |= CPU_DTRACE_KPRIV; 4233 *illval = regs[r1]; 4234 break; 4235 } 4236 /*FALLTHROUGH*/ 4237 case DIF_OP_LDSH: 4238 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4239 break; 4240 case DIF_OP_RLDSW: 4241 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4242 *flags |= CPU_DTRACE_KPRIV; 4243 *illval = regs[r1]; 4244 break; 4245 } 4246 /*FALLTHROUGH*/ 4247 case DIF_OP_LDSW: 4248 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4249 break; 4250 case DIF_OP_RLDUB: 4251 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4252 *flags |= CPU_DTRACE_KPRIV; 4253 *illval = regs[r1]; 4254 break; 4255 } 4256 /*FALLTHROUGH*/ 4257 case DIF_OP_LDUB: 4258 regs[rd] = dtrace_load8(regs[r1]); 4259 break; 4260 case DIF_OP_RLDUH: 4261 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4262 *flags |= CPU_DTRACE_KPRIV; 4263 *illval = regs[r1]; 4264 break; 4265 } 4266 /*FALLTHROUGH*/ 4267 case DIF_OP_LDUH: 4268 regs[rd] = dtrace_load16(regs[r1]); 4269 break; 4270 case DIF_OP_RLDUW: 4271 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4272 *flags |= CPU_DTRACE_KPRIV; 4273 *illval = regs[r1]; 4274 break; 4275 } 4276 /*FALLTHROUGH*/ 4277 case DIF_OP_LDUW: 4278 regs[rd] = dtrace_load32(regs[r1]); 4279 break; 4280 case DIF_OP_RLDX: 4281 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 4282 *flags |= CPU_DTRACE_KPRIV; 4283 *illval = regs[r1]; 4284 break; 4285 } 4286 /*FALLTHROUGH*/ 4287 case DIF_OP_LDX: 4288 regs[rd] = dtrace_load64(regs[r1]); 4289 break; 4290 case DIF_OP_ULDSB: 4291 regs[rd] = (int8_t) 4292 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4293 break; 4294 case DIF_OP_ULDSH: 4295 regs[rd] = (int16_t) 4296 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4297 break; 4298 case DIF_OP_ULDSW: 4299 regs[rd] = (int32_t) 4300 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4301 break; 4302 case DIF_OP_ULDUB: 4303 regs[rd] = 4304 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4305 break; 4306 case DIF_OP_ULDUH: 4307 regs[rd] = 4308 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4309 break; 4310 case DIF_OP_ULDUW: 4311 regs[rd] = 4312 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4313 break; 4314 case DIF_OP_ULDX: 4315 regs[rd] = 4316 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 4317 break; 4318 case DIF_OP_RET: 4319 rval = regs[rd]; 4320 break; 4321 case DIF_OP_NOP: 4322 break; 4323 case DIF_OP_SETX: 4324 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 4325 break; 4326 case DIF_OP_SETS: 4327 regs[rd] = (uint64_t)(uintptr_t) 4328 (strtab + DIF_INSTR_STRING(instr)); 4329 break; 4330 case DIF_OP_SCMP: { 4331 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 4332 uintptr_t s1 = regs[r1]; 4333 uintptr_t s2 = regs[r2]; 4334 4335 if (s1 != NULL && 4336 !dtrace_strcanload(s1, sz, mstate, vstate)) 4337 break; 4338 if (s2 != NULL && 4339 !dtrace_strcanload(s2, sz, mstate, vstate)) 4340 break; 4341 4342 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 4343 4344 cc_n = cc_r < 0; 4345 cc_z = cc_r == 0; 4346 cc_v = cc_c = 0; 4347 break; 4348 } 4349 case DIF_OP_LDGA: 4350 regs[rd] = dtrace_dif_variable(mstate, state, 4351 r1, regs[r2]); 4352 break; 4353 case DIF_OP_LDGS: 4354 id = DIF_INSTR_VAR(instr); 4355 4356 if (id >= DIF_VAR_OTHER_UBASE) { 4357 uintptr_t a; 4358 4359 id -= DIF_VAR_OTHER_UBASE; 4360 svar = vstate->dtvs_globals[id]; 4361 ASSERT(svar != NULL); 4362 v = &svar->dtsv_var; 4363 4364 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 4365 regs[rd] = svar->dtsv_data; 4366 break; 4367 } 4368 4369 a = (uintptr_t)svar->dtsv_data; 4370 4371 if (*(uint8_t *)a == UINT8_MAX) { 4372 /* 4373 * If the 0th byte is set to UINT8_MAX 4374 * then this is to be treated as a 4375 * reference to a NULL variable. 4376 */ 4377 regs[rd] = NULL; 4378 } else { 4379 regs[rd] = a + sizeof (uint64_t); 4380 } 4381 4382 break; 4383 } 4384 4385 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 4386 break; 4387 4388 case DIF_OP_STGS: 4389 id = DIF_INSTR_VAR(instr); 4390 4391 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4392 id -= DIF_VAR_OTHER_UBASE; 4393 4394 svar = vstate->dtvs_globals[id]; 4395 ASSERT(svar != NULL); 4396 v = &svar->dtsv_var; 4397 4398 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4399 uintptr_t a = (uintptr_t)svar->dtsv_data; 4400 4401 ASSERT(a != NULL); 4402 ASSERT(svar->dtsv_size != 0); 4403 4404 if (regs[rd] == NULL) { 4405 *(uint8_t *)a = UINT8_MAX; 4406 break; 4407 } else { 4408 *(uint8_t *)a = 0; 4409 a += sizeof (uint64_t); 4410 } 4411 if (!dtrace_vcanload( 4412 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4413 mstate, vstate)) 4414 break; 4415 4416 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4417 (void *)a, &v->dtdv_type); 4418 break; 4419 } 4420 4421 svar->dtsv_data = regs[rd]; 4422 break; 4423 4424 case DIF_OP_LDTA: 4425 /* 4426 * There are no DTrace built-in thread-local arrays at 4427 * present. This opcode is saved for future work. 4428 */ 4429 *flags |= CPU_DTRACE_ILLOP; 4430 regs[rd] = 0; 4431 break; 4432 4433 case DIF_OP_LDLS: 4434 id = DIF_INSTR_VAR(instr); 4435 4436 if (id < DIF_VAR_OTHER_UBASE) { 4437 /* 4438 * For now, this has no meaning. 4439 */ 4440 regs[rd] = 0; 4441 break; 4442 } 4443 4444 id -= DIF_VAR_OTHER_UBASE; 4445 4446 ASSERT(id < vstate->dtvs_nlocals); 4447 ASSERT(vstate->dtvs_locals != NULL); 4448 4449 svar = vstate->dtvs_locals[id]; 4450 ASSERT(svar != NULL); 4451 v = &svar->dtsv_var; 4452 4453 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4454 uintptr_t a = (uintptr_t)svar->dtsv_data; 4455 size_t sz = v->dtdv_type.dtdt_size; 4456 4457 sz += sizeof (uint64_t); 4458 ASSERT(svar->dtsv_size == NCPU * sz); 4459 a += CPU->cpu_id * sz; 4460 4461 if (*(uint8_t *)a == UINT8_MAX) { 4462 /* 4463 * If the 0th byte is set to UINT8_MAX 4464 * then this is to be treated as a 4465 * reference to a NULL variable. 4466 */ 4467 regs[rd] = NULL; 4468 } else { 4469 regs[rd] = a + sizeof (uint64_t); 4470 } 4471 4472 break; 4473 } 4474 4475 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4476 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4477 regs[rd] = tmp[CPU->cpu_id]; 4478 break; 4479 4480 case DIF_OP_STLS: 4481 id = DIF_INSTR_VAR(instr); 4482 4483 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4484 id -= DIF_VAR_OTHER_UBASE; 4485 ASSERT(id < vstate->dtvs_nlocals); 4486 4487 ASSERT(vstate->dtvs_locals != NULL); 4488 svar = vstate->dtvs_locals[id]; 4489 ASSERT(svar != NULL); 4490 v = &svar->dtsv_var; 4491 4492 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4493 uintptr_t a = (uintptr_t)svar->dtsv_data; 4494 size_t sz = v->dtdv_type.dtdt_size; 4495 4496 sz += sizeof (uint64_t); 4497 ASSERT(svar->dtsv_size == NCPU * sz); 4498 a += CPU->cpu_id * sz; 4499 4500 if (regs[rd] == NULL) { 4501 *(uint8_t *)a = UINT8_MAX; 4502 break; 4503 } else { 4504 *(uint8_t *)a = 0; 4505 a += sizeof (uint64_t); 4506 } 4507 4508 if (!dtrace_vcanload( 4509 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4510 mstate, vstate)) 4511 break; 4512 4513 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4514 (void *)a, &v->dtdv_type); 4515 break; 4516 } 4517 4518 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4519 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4520 tmp[CPU->cpu_id] = regs[rd]; 4521 break; 4522 4523 case DIF_OP_LDTS: { 4524 dtrace_dynvar_t *dvar; 4525 dtrace_key_t *key; 4526 4527 id = DIF_INSTR_VAR(instr); 4528 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4529 id -= DIF_VAR_OTHER_UBASE; 4530 v = &vstate->dtvs_tlocals[id]; 4531 4532 key = &tupregs[DIF_DTR_NREGS]; 4533 key[0].dttk_value = (uint64_t)id; 4534 key[0].dttk_size = 0; 4535 DTRACE_TLS_THRKEY(key[1].dttk_value); 4536 key[1].dttk_size = 0; 4537 4538 dvar = dtrace_dynvar(dstate, 2, key, 4539 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 4540 mstate, vstate); 4541 4542 if (dvar == NULL) { 4543 regs[rd] = 0; 4544 break; 4545 } 4546 4547 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4548 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4549 } else { 4550 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4551 } 4552 4553 break; 4554 } 4555 4556 case DIF_OP_STTS: { 4557 dtrace_dynvar_t *dvar; 4558 dtrace_key_t *key; 4559 4560 id = DIF_INSTR_VAR(instr); 4561 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4562 id -= DIF_VAR_OTHER_UBASE; 4563 4564 key = &tupregs[DIF_DTR_NREGS]; 4565 key[0].dttk_value = (uint64_t)id; 4566 key[0].dttk_size = 0; 4567 DTRACE_TLS_THRKEY(key[1].dttk_value); 4568 key[1].dttk_size = 0; 4569 v = &vstate->dtvs_tlocals[id]; 4570 4571 dvar = dtrace_dynvar(dstate, 2, key, 4572 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4573 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4574 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4575 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 4576 4577 /* 4578 * Given that we're storing to thread-local data, 4579 * we need to flush our predicate cache. 4580 */ 4581 curthread->t_predcache = NULL; 4582 4583 if (dvar == NULL) 4584 break; 4585 4586 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4587 if (!dtrace_vcanload( 4588 (void *)(uintptr_t)regs[rd], 4589 &v->dtdv_type, mstate, vstate)) 4590 break; 4591 4592 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4593 dvar->dtdv_data, &v->dtdv_type); 4594 } else { 4595 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4596 } 4597 4598 break; 4599 } 4600 4601 case DIF_OP_SRA: 4602 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 4603 break; 4604 4605 case DIF_OP_CALL: 4606 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 4607 regs, tupregs, ttop, mstate, state); 4608 break; 4609 4610 case DIF_OP_PUSHTR: 4611 if (ttop == DIF_DTR_NREGS) { 4612 *flags |= CPU_DTRACE_TUPOFLOW; 4613 break; 4614 } 4615 4616 if (r1 == DIF_TYPE_STRING) { 4617 /* 4618 * If this is a string type and the size is 0, 4619 * we'll use the system-wide default string 4620 * size. Note that we are _not_ looking at 4621 * the value of the DTRACEOPT_STRSIZE option; 4622 * had this been set, we would expect to have 4623 * a non-zero size value in the "pushtr". 4624 */ 4625 tupregs[ttop].dttk_size = 4626 dtrace_strlen((char *)(uintptr_t)regs[rd], 4627 regs[r2] ? regs[r2] : 4628 dtrace_strsize_default) + 1; 4629 } else { 4630 tupregs[ttop].dttk_size = regs[r2]; 4631 } 4632 4633 tupregs[ttop++].dttk_value = regs[rd]; 4634 break; 4635 4636 case DIF_OP_PUSHTV: 4637 if (ttop == DIF_DTR_NREGS) { 4638 *flags |= CPU_DTRACE_TUPOFLOW; 4639 break; 4640 } 4641 4642 tupregs[ttop].dttk_value = regs[rd]; 4643 tupregs[ttop++].dttk_size = 0; 4644 break; 4645 4646 case DIF_OP_POPTS: 4647 if (ttop != 0) 4648 ttop--; 4649 break; 4650 4651 case DIF_OP_FLUSHTS: 4652 ttop = 0; 4653 break; 4654 4655 case DIF_OP_LDGAA: 4656 case DIF_OP_LDTAA: { 4657 dtrace_dynvar_t *dvar; 4658 dtrace_key_t *key = tupregs; 4659 uint_t nkeys = ttop; 4660 4661 id = DIF_INSTR_VAR(instr); 4662 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4663 id -= DIF_VAR_OTHER_UBASE; 4664 4665 key[nkeys].dttk_value = (uint64_t)id; 4666 key[nkeys++].dttk_size = 0; 4667 4668 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 4669 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 4670 key[nkeys++].dttk_size = 0; 4671 v = &vstate->dtvs_tlocals[id]; 4672 } else { 4673 v = &vstate->dtvs_globals[id]->dtsv_var; 4674 } 4675 4676 dvar = dtrace_dynvar(dstate, nkeys, key, 4677 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4678 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4679 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 4680 4681 if (dvar == NULL) { 4682 regs[rd] = 0; 4683 break; 4684 } 4685 4686 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4687 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4688 } else { 4689 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4690 } 4691 4692 break; 4693 } 4694 4695 case DIF_OP_STGAA: 4696 case DIF_OP_STTAA: { 4697 dtrace_dynvar_t *dvar; 4698 dtrace_key_t *key = tupregs; 4699 uint_t nkeys = ttop; 4700 4701 id = DIF_INSTR_VAR(instr); 4702 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4703 id -= DIF_VAR_OTHER_UBASE; 4704 4705 key[nkeys].dttk_value = (uint64_t)id; 4706 key[nkeys++].dttk_size = 0; 4707 4708 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 4709 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 4710 key[nkeys++].dttk_size = 0; 4711 v = &vstate->dtvs_tlocals[id]; 4712 } else { 4713 v = &vstate->dtvs_globals[id]->dtsv_var; 4714 } 4715 4716 dvar = dtrace_dynvar(dstate, nkeys, key, 4717 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4718 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4719 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4720 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 4721 4722 if (dvar == NULL) 4723 break; 4724 4725 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4726 if (!dtrace_vcanload( 4727 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4728 mstate, vstate)) 4729 break; 4730 4731 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4732 dvar->dtdv_data, &v->dtdv_type); 4733 } else { 4734 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4735 } 4736 4737 break; 4738 } 4739 4740 case DIF_OP_ALLOCS: { 4741 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4742 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 4743 4744 /* 4745 * Rounding up the user allocation size could have 4746 * overflowed large, bogus allocations (like -1ULL) to 4747 * 0. 4748 */ 4749 if (size < regs[r1] || 4750 !DTRACE_INSCRATCH(mstate, size)) { 4751 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4752 regs[rd] = NULL; 4753 break; 4754 } 4755 4756 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 4757 mstate->dtms_scratch_ptr += size; 4758 regs[rd] = ptr; 4759 break; 4760 } 4761 4762 case DIF_OP_COPYS: 4763 if (!dtrace_canstore(regs[rd], regs[r2], 4764 mstate, vstate)) { 4765 *flags |= CPU_DTRACE_BADADDR; 4766 *illval = regs[rd]; 4767 break; 4768 } 4769 4770 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 4771 break; 4772 4773 dtrace_bcopy((void *)(uintptr_t)regs[r1], 4774 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 4775 break; 4776 4777 case DIF_OP_STB: 4778 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 4779 *flags |= CPU_DTRACE_BADADDR; 4780 *illval = regs[rd]; 4781 break; 4782 } 4783 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 4784 break; 4785 4786 case DIF_OP_STH: 4787 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 4788 *flags |= CPU_DTRACE_BADADDR; 4789 *illval = regs[rd]; 4790 break; 4791 } 4792 if (regs[rd] & 1) { 4793 *flags |= CPU_DTRACE_BADALIGN; 4794 *illval = regs[rd]; 4795 break; 4796 } 4797 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 4798 break; 4799 4800 case DIF_OP_STW: 4801 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 4802 *flags |= CPU_DTRACE_BADADDR; 4803 *illval = regs[rd]; 4804 break; 4805 } 4806 if (regs[rd] & 3) { 4807 *flags |= CPU_DTRACE_BADALIGN; 4808 *illval = regs[rd]; 4809 break; 4810 } 4811 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 4812 break; 4813 4814 case DIF_OP_STX: 4815 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 4816 *flags |= CPU_DTRACE_BADADDR; 4817 *illval = regs[rd]; 4818 break; 4819 } 4820 if (regs[rd] & 7) { 4821 *flags |= CPU_DTRACE_BADALIGN; 4822 *illval = regs[rd]; 4823 break; 4824 } 4825 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 4826 break; 4827 } 4828 } 4829 4830 if (!(*flags & CPU_DTRACE_FAULT)) 4831 return (rval); 4832 4833 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 4834 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 4835 4836 return (0); 4837 } 4838 4839 static void 4840 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 4841 { 4842 dtrace_probe_t *probe = ecb->dte_probe; 4843 dtrace_provider_t *prov = probe->dtpr_provider; 4844 char c[DTRACE_FULLNAMELEN + 80], *str; 4845 char *msg = "dtrace: breakpoint action at probe "; 4846 char *ecbmsg = " (ecb "; 4847 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 4848 uintptr_t val = (uintptr_t)ecb; 4849 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 4850 4851 if (dtrace_destructive_disallow) 4852 return; 4853 4854 /* 4855 * It's impossible to be taking action on the NULL probe. 4856 */ 4857 ASSERT(probe != NULL); 4858 4859 /* 4860 * This is a poor man's (destitute man's?) sprintf(): we want to 4861 * print the provider name, module name, function name and name of 4862 * the probe, along with the hex address of the ECB with the breakpoint 4863 * action -- all of which we must place in the character buffer by 4864 * hand. 4865 */ 4866 while (*msg != '\0') 4867 c[i++] = *msg++; 4868 4869 for (str = prov->dtpv_name; *str != '\0'; str++) 4870 c[i++] = *str; 4871 c[i++] = ':'; 4872 4873 for (str = probe->dtpr_mod; *str != '\0'; str++) 4874 c[i++] = *str; 4875 c[i++] = ':'; 4876 4877 for (str = probe->dtpr_func; *str != '\0'; str++) 4878 c[i++] = *str; 4879 c[i++] = ':'; 4880 4881 for (str = probe->dtpr_name; *str != '\0'; str++) 4882 c[i++] = *str; 4883 4884 while (*ecbmsg != '\0') 4885 c[i++] = *ecbmsg++; 4886 4887 while (shift >= 0) { 4888 mask = (uintptr_t)0xf << shift; 4889 4890 if (val >= ((uintptr_t)1 << shift)) 4891 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 4892 shift -= 4; 4893 } 4894 4895 c[i++] = ')'; 4896 c[i] = '\0'; 4897 4898 debug_enter(c); 4899 } 4900 4901 static void 4902 dtrace_action_panic(dtrace_ecb_t *ecb) 4903 { 4904 dtrace_probe_t *probe = ecb->dte_probe; 4905 4906 /* 4907 * It's impossible to be taking action on the NULL probe. 4908 */ 4909 ASSERT(probe != NULL); 4910 4911 if (dtrace_destructive_disallow) 4912 return; 4913 4914 if (dtrace_panicked != NULL) 4915 return; 4916 4917 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 4918 return; 4919 4920 /* 4921 * We won the right to panic. (We want to be sure that only one 4922 * thread calls panic() from dtrace_probe(), and that panic() is 4923 * called exactly once.) 4924 */ 4925 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 4926 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 4927 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 4928 } 4929 4930 static void 4931 dtrace_action_raise(uint64_t sig) 4932 { 4933 if (dtrace_destructive_disallow) 4934 return; 4935 4936 if (sig >= NSIG) { 4937 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4938 return; 4939 } 4940 4941 /* 4942 * raise() has a queue depth of 1 -- we ignore all subsequent 4943 * invocations of the raise() action. 4944 */ 4945 if (curthread->t_dtrace_sig == 0) 4946 curthread->t_dtrace_sig = (uint8_t)sig; 4947 4948 curthread->t_sig_check = 1; 4949 aston(curthread); 4950 } 4951 4952 static void 4953 dtrace_action_stop(void) 4954 { 4955 if (dtrace_destructive_disallow) 4956 return; 4957 4958 if (!curthread->t_dtrace_stop) { 4959 curthread->t_dtrace_stop = 1; 4960 curthread->t_sig_check = 1; 4961 aston(curthread); 4962 } 4963 } 4964 4965 static void 4966 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 4967 { 4968 hrtime_t now; 4969 volatile uint16_t *flags; 4970 cpu_t *cpu = CPU; 4971 4972 if (dtrace_destructive_disallow) 4973 return; 4974 4975 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 4976 4977 now = dtrace_gethrtime(); 4978 4979 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 4980 /* 4981 * We need to advance the mark to the current time. 4982 */ 4983 cpu->cpu_dtrace_chillmark = now; 4984 cpu->cpu_dtrace_chilled = 0; 4985 } 4986 4987 /* 4988 * Now check to see if the requested chill time would take us over 4989 * the maximum amount of time allowed in the chill interval. (Or 4990 * worse, if the calculation itself induces overflow.) 4991 */ 4992 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 4993 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 4994 *flags |= CPU_DTRACE_ILLOP; 4995 return; 4996 } 4997 4998 while (dtrace_gethrtime() - now < val) 4999 continue; 5000 5001 /* 5002 * Normally, we assure that the value of the variable "timestamp" does 5003 * not change within an ECB. The presence of chill() represents an 5004 * exception to this rule, however. 5005 */ 5006 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5007 cpu->cpu_dtrace_chilled += val; 5008 } 5009 5010 static void 5011 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5012 uint64_t *buf, uint64_t arg) 5013 { 5014 int nframes = DTRACE_USTACK_NFRAMES(arg); 5015 int strsize = DTRACE_USTACK_STRSIZE(arg); 5016 uint64_t *pcs = &buf[1], *fps; 5017 char *str = (char *)&pcs[nframes]; 5018 int size, offs = 0, i, j; 5019 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5020 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5021 char *sym; 5022 5023 /* 5024 * Should be taking a faster path if string space has not been 5025 * allocated. 5026 */ 5027 ASSERT(strsize != 0); 5028 5029 /* 5030 * We will first allocate some temporary space for the frame pointers. 5031 */ 5032 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5033 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5034 (nframes * sizeof (uint64_t)); 5035 5036 if (!DTRACE_INSCRATCH(mstate, size)) { 5037 /* 5038 * Not enough room for our frame pointers -- need to indicate 5039 * that we ran out of scratch space. 5040 */ 5041 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5042 return; 5043 } 5044 5045 mstate->dtms_scratch_ptr += size; 5046 saved = mstate->dtms_scratch_ptr; 5047 5048 /* 5049 * Now get a stack with both program counters and frame pointers. 5050 */ 5051 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5052 dtrace_getufpstack(buf, fps, nframes + 1); 5053 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5054 5055 /* 5056 * If that faulted, we're cooked. 5057 */ 5058 if (*flags & CPU_DTRACE_FAULT) 5059 goto out; 5060 5061 /* 5062 * Now we want to walk up the stack, calling the USTACK helper. For 5063 * each iteration, we restore the scratch pointer. 5064 */ 5065 for (i = 0; i < nframes; i++) { 5066 mstate->dtms_scratch_ptr = saved; 5067 5068 if (offs >= strsize) 5069 break; 5070 5071 sym = (char *)(uintptr_t)dtrace_helper( 5072 DTRACE_HELPER_ACTION_USTACK, 5073 mstate, state, pcs[i], fps[i]); 5074 5075 /* 5076 * If we faulted while running the helper, we're going to 5077 * clear the fault and null out the corresponding string. 5078 */ 5079 if (*flags & CPU_DTRACE_FAULT) { 5080 *flags &= ~CPU_DTRACE_FAULT; 5081 str[offs++] = '\0'; 5082 continue; 5083 } 5084 5085 if (sym == NULL) { 5086 str[offs++] = '\0'; 5087 continue; 5088 } 5089 5090 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5091 5092 /* 5093 * Now copy in the string that the helper returned to us. 5094 */ 5095 for (j = 0; offs + j < strsize; j++) { 5096 if ((str[offs + j] = sym[j]) == '\0') 5097 break; 5098 } 5099 5100 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5101 5102 offs += j + 1; 5103 } 5104 5105 if (offs >= strsize) { 5106 /* 5107 * If we didn't have room for all of the strings, we don't 5108 * abort processing -- this needn't be a fatal error -- but we 5109 * still want to increment a counter (dts_stkstroverflows) to 5110 * allow this condition to be warned about. (If this is from 5111 * a jstack() action, it is easily tuned via jstackstrsize.) 5112 */ 5113 dtrace_error(&state->dts_stkstroverflows); 5114 } 5115 5116 while (offs < strsize) 5117 str[offs++] = '\0'; 5118 5119 out: 5120 mstate->dtms_scratch_ptr = old; 5121 } 5122 5123 /* 5124 * If you're looking for the epicenter of DTrace, you just found it. This 5125 * is the function called by the provider to fire a probe -- from which all 5126 * subsequent probe-context DTrace activity emanates. 5127 */ 5128 void 5129 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5130 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5131 { 5132 processorid_t cpuid; 5133 dtrace_icookie_t cookie; 5134 dtrace_probe_t *probe; 5135 dtrace_mstate_t mstate; 5136 dtrace_ecb_t *ecb; 5137 dtrace_action_t *act; 5138 intptr_t offs; 5139 size_t size; 5140 int vtime, onintr; 5141 volatile uint16_t *flags; 5142 hrtime_t now; 5143 5144 /* 5145 * Kick out immediately if this CPU is still being born (in which case 5146 * curthread will be set to -1) 5147 */ 5148 if ((uintptr_t)curthread & 1) 5149 return; 5150 5151 cookie = dtrace_interrupt_disable(); 5152 probe = dtrace_probes[id - 1]; 5153 cpuid = CPU->cpu_id; 5154 onintr = CPU_ON_INTR(CPU); 5155 5156 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5157 probe->dtpr_predcache == curthread->t_predcache) { 5158 /* 5159 * We have hit in the predicate cache; we know that 5160 * this predicate would evaluate to be false. 5161 */ 5162 dtrace_interrupt_enable(cookie); 5163 return; 5164 } 5165 5166 if (panic_quiesce) { 5167 /* 5168 * We don't trace anything if we're panicking. 5169 */ 5170 dtrace_interrupt_enable(cookie); 5171 return; 5172 } 5173 5174 now = dtrace_gethrtime(); 5175 vtime = dtrace_vtime_references != 0; 5176 5177 if (vtime && curthread->t_dtrace_start) 5178 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5179 5180 mstate.dtms_difo = NULL; 5181 mstate.dtms_probe = probe; 5182 mstate.dtms_strtok = NULL; 5183 mstate.dtms_arg[0] = arg0; 5184 mstate.dtms_arg[1] = arg1; 5185 mstate.dtms_arg[2] = arg2; 5186 mstate.dtms_arg[3] = arg3; 5187 mstate.dtms_arg[4] = arg4; 5188 5189 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5190 5191 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5192 dtrace_predicate_t *pred = ecb->dte_predicate; 5193 dtrace_state_t *state = ecb->dte_state; 5194 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5195 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5196 dtrace_vstate_t *vstate = &state->dts_vstate; 5197 dtrace_provider_t *prov = probe->dtpr_provider; 5198 int committed = 0; 5199 caddr_t tomax; 5200 5201 /* 5202 * A little subtlety with the following (seemingly innocuous) 5203 * declaration of the automatic 'val': by looking at the 5204 * code, you might think that it could be declared in the 5205 * action processing loop, below. (That is, it's only used in 5206 * the action processing loop.) However, it must be declared 5207 * out of that scope because in the case of DIF expression 5208 * arguments to aggregating actions, one iteration of the 5209 * action loop will use the last iteration's value. 5210 */ 5211 #ifdef lint 5212 uint64_t val = 0; 5213 #else 5214 uint64_t val; 5215 #endif 5216 5217 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5218 *flags &= ~CPU_DTRACE_ERROR; 5219 5220 if (prov == dtrace_provider) { 5221 /* 5222 * If dtrace itself is the provider of this probe, 5223 * we're only going to continue processing the ECB if 5224 * arg0 (the dtrace_state_t) is equal to the ECB's 5225 * creating state. (This prevents disjoint consumers 5226 * from seeing one another's metaprobes.) 5227 */ 5228 if (arg0 != (uint64_t)(uintptr_t)state) 5229 continue; 5230 } 5231 5232 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5233 /* 5234 * We're not currently active. If our provider isn't 5235 * the dtrace pseudo provider, we're not interested. 5236 */ 5237 if (prov != dtrace_provider) 5238 continue; 5239 5240 /* 5241 * Now we must further check if we are in the BEGIN 5242 * probe. If we are, we will only continue processing 5243 * if we're still in WARMUP -- if one BEGIN enabling 5244 * has invoked the exit() action, we don't want to 5245 * evaluate subsequent BEGIN enablings. 5246 */ 5247 if (probe->dtpr_id == dtrace_probeid_begin && 5248 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5249 ASSERT(state->dts_activity == 5250 DTRACE_ACTIVITY_DRAINING); 5251 continue; 5252 } 5253 } 5254 5255 if (ecb->dte_cond) { 5256 /* 5257 * If the dte_cond bits indicate that this 5258 * consumer is only allowed to see user-mode firings 5259 * of this probe, call the provider's dtps_usermode() 5260 * entry point to check that the probe was fired 5261 * while in a user context. Skip this ECB if that's 5262 * not the case. 5263 */ 5264 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 5265 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 5266 probe->dtpr_id, probe->dtpr_arg) == 0) 5267 continue; 5268 5269 /* 5270 * This is more subtle than it looks. We have to be 5271 * absolutely certain that CRED() isn't going to 5272 * change out from under us so it's only legit to 5273 * examine that structure if we're in constrained 5274 * situations. Currently, the only times we'll this 5275 * check is if a non-super-user has enabled the 5276 * profile or syscall providers -- providers that 5277 * allow visibility of all processes. For the 5278 * profile case, the check above will ensure that 5279 * we're examining a user context. 5280 */ 5281 if (ecb->dte_cond & DTRACE_COND_OWNER) { 5282 cred_t *cr; 5283 cred_t *s_cr = 5284 ecb->dte_state->dts_cred.dcr_cred; 5285 proc_t *proc; 5286 5287 ASSERT(s_cr != NULL); 5288 5289 if ((cr = CRED()) == NULL || 5290 s_cr->cr_uid != cr->cr_uid || 5291 s_cr->cr_uid != cr->cr_ruid || 5292 s_cr->cr_uid != cr->cr_suid || 5293 s_cr->cr_gid != cr->cr_gid || 5294 s_cr->cr_gid != cr->cr_rgid || 5295 s_cr->cr_gid != cr->cr_sgid || 5296 (proc = ttoproc(curthread)) == NULL || 5297 (proc->p_flag & SNOCD)) 5298 continue; 5299 } 5300 5301 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 5302 cred_t *cr; 5303 cred_t *s_cr = 5304 ecb->dte_state->dts_cred.dcr_cred; 5305 5306 ASSERT(s_cr != NULL); 5307 5308 if ((cr = CRED()) == NULL || 5309 s_cr->cr_zone->zone_id != 5310 cr->cr_zone->zone_id) 5311 continue; 5312 } 5313 } 5314 5315 if (now - state->dts_alive > dtrace_deadman_timeout) { 5316 /* 5317 * We seem to be dead. Unless we (a) have kernel 5318 * destructive permissions (b) have expicitly enabled 5319 * destructive actions and (c) destructive actions have 5320 * not been disabled, we're going to transition into 5321 * the KILLED state, from which no further processing 5322 * on this state will be performed. 5323 */ 5324 if (!dtrace_priv_kernel_destructive(state) || 5325 !state->dts_cred.dcr_destructive || 5326 dtrace_destructive_disallow) { 5327 void *activity = &state->dts_activity; 5328 dtrace_activity_t current; 5329 5330 do { 5331 current = state->dts_activity; 5332 } while (dtrace_cas32(activity, current, 5333 DTRACE_ACTIVITY_KILLED) != current); 5334 5335 continue; 5336 } 5337 } 5338 5339 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 5340 ecb->dte_alignment, state, &mstate)) < 0) 5341 continue; 5342 5343 tomax = buf->dtb_tomax; 5344 ASSERT(tomax != NULL); 5345 5346 if (ecb->dte_size != 0) 5347 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 5348 5349 mstate.dtms_epid = ecb->dte_epid; 5350 mstate.dtms_present |= DTRACE_MSTATE_EPID; 5351 5352 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 5353 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 5354 else 5355 mstate.dtms_access = 0; 5356 5357 if (pred != NULL) { 5358 dtrace_difo_t *dp = pred->dtp_difo; 5359 int rval; 5360 5361 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 5362 5363 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 5364 dtrace_cacheid_t cid = probe->dtpr_predcache; 5365 5366 if (cid != DTRACE_CACHEIDNONE && !onintr) { 5367 /* 5368 * Update the predicate cache... 5369 */ 5370 ASSERT(cid == pred->dtp_cacheid); 5371 curthread->t_predcache = cid; 5372 } 5373 5374 continue; 5375 } 5376 } 5377 5378 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 5379 act != NULL; act = act->dta_next) { 5380 size_t valoffs; 5381 dtrace_difo_t *dp; 5382 dtrace_recdesc_t *rec = &act->dta_rec; 5383 5384 size = rec->dtrd_size; 5385 valoffs = offs + rec->dtrd_offset; 5386 5387 if (DTRACEACT_ISAGG(act->dta_kind)) { 5388 uint64_t v = 0xbad; 5389 dtrace_aggregation_t *agg; 5390 5391 agg = (dtrace_aggregation_t *)act; 5392 5393 if ((dp = act->dta_difo) != NULL) 5394 v = dtrace_dif_emulate(dp, 5395 &mstate, vstate, state); 5396 5397 if (*flags & CPU_DTRACE_ERROR) 5398 continue; 5399 5400 /* 5401 * Note that we always pass the expression 5402 * value from the previous iteration of the 5403 * action loop. This value will only be used 5404 * if there is an expression argument to the 5405 * aggregating action, denoted by the 5406 * dtag_hasarg field. 5407 */ 5408 dtrace_aggregate(agg, buf, 5409 offs, aggbuf, v, val); 5410 continue; 5411 } 5412 5413 switch (act->dta_kind) { 5414 case DTRACEACT_STOP: 5415 if (dtrace_priv_proc_destructive(state)) 5416 dtrace_action_stop(); 5417 continue; 5418 5419 case DTRACEACT_BREAKPOINT: 5420 if (dtrace_priv_kernel_destructive(state)) 5421 dtrace_action_breakpoint(ecb); 5422 continue; 5423 5424 case DTRACEACT_PANIC: 5425 if (dtrace_priv_kernel_destructive(state)) 5426 dtrace_action_panic(ecb); 5427 continue; 5428 5429 case DTRACEACT_STACK: 5430 if (!dtrace_priv_kernel(state)) 5431 continue; 5432 5433 dtrace_getpcstack((pc_t *)(tomax + valoffs), 5434 size / sizeof (pc_t), probe->dtpr_aframes, 5435 DTRACE_ANCHORED(probe) ? NULL : 5436 (uint32_t *)arg0); 5437 5438 continue; 5439 5440 case DTRACEACT_JSTACK: 5441 case DTRACEACT_USTACK: 5442 if (!dtrace_priv_proc(state)) 5443 continue; 5444 5445 /* 5446 * See comment in DIF_VAR_PID. 5447 */ 5448 if (DTRACE_ANCHORED(mstate.dtms_probe) && 5449 CPU_ON_INTR(CPU)) { 5450 int depth = DTRACE_USTACK_NFRAMES( 5451 rec->dtrd_arg) + 1; 5452 5453 dtrace_bzero((void *)(tomax + valoffs), 5454 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 5455 + depth * sizeof (uint64_t)); 5456 5457 continue; 5458 } 5459 5460 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 5461 curproc->p_dtrace_helpers != NULL) { 5462 /* 5463 * This is the slow path -- we have 5464 * allocated string space, and we're 5465 * getting the stack of a process that 5466 * has helpers. Call into a separate 5467 * routine to perform this processing. 5468 */ 5469 dtrace_action_ustack(&mstate, state, 5470 (uint64_t *)(tomax + valoffs), 5471 rec->dtrd_arg); 5472 continue; 5473 } 5474 5475 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5476 dtrace_getupcstack((uint64_t *) 5477 (tomax + valoffs), 5478 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 5479 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5480 continue; 5481 5482 default: 5483 break; 5484 } 5485 5486 dp = act->dta_difo; 5487 ASSERT(dp != NULL); 5488 5489 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 5490 5491 if (*flags & CPU_DTRACE_ERROR) 5492 continue; 5493 5494 switch (act->dta_kind) { 5495 case DTRACEACT_SPECULATE: 5496 ASSERT(buf == &state->dts_buffer[cpuid]); 5497 buf = dtrace_speculation_buffer(state, 5498 cpuid, val); 5499 5500 if (buf == NULL) { 5501 *flags |= CPU_DTRACE_DROP; 5502 continue; 5503 } 5504 5505 offs = dtrace_buffer_reserve(buf, 5506 ecb->dte_needed, ecb->dte_alignment, 5507 state, NULL); 5508 5509 if (offs < 0) { 5510 *flags |= CPU_DTRACE_DROP; 5511 continue; 5512 } 5513 5514 tomax = buf->dtb_tomax; 5515 ASSERT(tomax != NULL); 5516 5517 if (ecb->dte_size != 0) 5518 DTRACE_STORE(uint32_t, tomax, offs, 5519 ecb->dte_epid); 5520 continue; 5521 5522 case DTRACEACT_CHILL: 5523 if (dtrace_priv_kernel_destructive(state)) 5524 dtrace_action_chill(&mstate, val); 5525 continue; 5526 5527 case DTRACEACT_RAISE: 5528 if (dtrace_priv_proc_destructive(state)) 5529 dtrace_action_raise(val); 5530 continue; 5531 5532 case DTRACEACT_COMMIT: 5533 ASSERT(!committed); 5534 5535 /* 5536 * We need to commit our buffer state. 5537 */ 5538 if (ecb->dte_size) 5539 buf->dtb_offset = offs + ecb->dte_size; 5540 buf = &state->dts_buffer[cpuid]; 5541 dtrace_speculation_commit(state, cpuid, val); 5542 committed = 1; 5543 continue; 5544 5545 case DTRACEACT_DISCARD: 5546 dtrace_speculation_discard(state, cpuid, val); 5547 continue; 5548 5549 case DTRACEACT_DIFEXPR: 5550 case DTRACEACT_LIBACT: 5551 case DTRACEACT_PRINTF: 5552 case DTRACEACT_PRINTA: 5553 case DTRACEACT_SYSTEM: 5554 case DTRACEACT_FREOPEN: 5555 break; 5556 5557 case DTRACEACT_SYM: 5558 case DTRACEACT_MOD: 5559 if (!dtrace_priv_kernel(state)) 5560 continue; 5561 break; 5562 5563 case DTRACEACT_USYM: 5564 case DTRACEACT_UMOD: 5565 case DTRACEACT_UADDR: { 5566 struct pid *pid = curthread->t_procp->p_pidp; 5567 5568 if (!dtrace_priv_proc(state)) 5569 continue; 5570 5571 DTRACE_STORE(uint64_t, tomax, 5572 valoffs, (uint64_t)pid->pid_id); 5573 DTRACE_STORE(uint64_t, tomax, 5574 valoffs + sizeof (uint64_t), val); 5575 5576 continue; 5577 } 5578 5579 case DTRACEACT_EXIT: { 5580 /* 5581 * For the exit action, we are going to attempt 5582 * to atomically set our activity to be 5583 * draining. If this fails (either because 5584 * another CPU has beat us to the exit action, 5585 * or because our current activity is something 5586 * other than ACTIVE or WARMUP), we will 5587 * continue. This assures that the exit action 5588 * can be successfully recorded at most once 5589 * when we're in the ACTIVE state. If we're 5590 * encountering the exit() action while in 5591 * COOLDOWN, however, we want to honor the new 5592 * status code. (We know that we're the only 5593 * thread in COOLDOWN, so there is no race.) 5594 */ 5595 void *activity = &state->dts_activity; 5596 dtrace_activity_t current = state->dts_activity; 5597 5598 if (current == DTRACE_ACTIVITY_COOLDOWN) 5599 break; 5600 5601 if (current != DTRACE_ACTIVITY_WARMUP) 5602 current = DTRACE_ACTIVITY_ACTIVE; 5603 5604 if (dtrace_cas32(activity, current, 5605 DTRACE_ACTIVITY_DRAINING) != current) { 5606 *flags |= CPU_DTRACE_DROP; 5607 continue; 5608 } 5609 5610 break; 5611 } 5612 5613 default: 5614 ASSERT(0); 5615 } 5616 5617 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 5618 uintptr_t end = valoffs + size; 5619 5620 if (!dtrace_vcanload((void *)(uintptr_t)val, 5621 &dp->dtdo_rtype, &mstate, vstate)) 5622 continue; 5623 5624 /* 5625 * If this is a string, we're going to only 5626 * load until we find the zero byte -- after 5627 * which we'll store zero bytes. 5628 */ 5629 if (dp->dtdo_rtype.dtdt_kind == 5630 DIF_TYPE_STRING) { 5631 char c = '\0' + 1; 5632 int intuple = act->dta_intuple; 5633 size_t s; 5634 5635 for (s = 0; s < size; s++) { 5636 if (c != '\0') 5637 c = dtrace_load8(val++); 5638 5639 DTRACE_STORE(uint8_t, tomax, 5640 valoffs++, c); 5641 5642 if (c == '\0' && intuple) 5643 break; 5644 } 5645 5646 continue; 5647 } 5648 5649 while (valoffs < end) { 5650 DTRACE_STORE(uint8_t, tomax, valoffs++, 5651 dtrace_load8(val++)); 5652 } 5653 5654 continue; 5655 } 5656 5657 switch (size) { 5658 case 0: 5659 break; 5660 5661 case sizeof (uint8_t): 5662 DTRACE_STORE(uint8_t, tomax, valoffs, val); 5663 break; 5664 case sizeof (uint16_t): 5665 DTRACE_STORE(uint16_t, tomax, valoffs, val); 5666 break; 5667 case sizeof (uint32_t): 5668 DTRACE_STORE(uint32_t, tomax, valoffs, val); 5669 break; 5670 case sizeof (uint64_t): 5671 DTRACE_STORE(uint64_t, tomax, valoffs, val); 5672 break; 5673 default: 5674 /* 5675 * Any other size should have been returned by 5676 * reference, not by value. 5677 */ 5678 ASSERT(0); 5679 break; 5680 } 5681 } 5682 5683 if (*flags & CPU_DTRACE_DROP) 5684 continue; 5685 5686 if (*flags & CPU_DTRACE_FAULT) { 5687 int ndx; 5688 dtrace_action_t *err; 5689 5690 buf->dtb_errors++; 5691 5692 if (probe->dtpr_id == dtrace_probeid_error) { 5693 /* 5694 * There's nothing we can do -- we had an 5695 * error on the error probe. We bump an 5696 * error counter to at least indicate that 5697 * this condition happened. 5698 */ 5699 dtrace_error(&state->dts_dblerrors); 5700 continue; 5701 } 5702 5703 if (vtime) { 5704 /* 5705 * Before recursing on dtrace_probe(), we 5706 * need to explicitly clear out our start 5707 * time to prevent it from being accumulated 5708 * into t_dtrace_vtime. 5709 */ 5710 curthread->t_dtrace_start = 0; 5711 } 5712 5713 /* 5714 * Iterate over the actions to figure out which action 5715 * we were processing when we experienced the error. 5716 * Note that act points _past_ the faulting action; if 5717 * act is ecb->dte_action, the fault was in the 5718 * predicate, if it's ecb->dte_action->dta_next it's 5719 * in action #1, and so on. 5720 */ 5721 for (err = ecb->dte_action, ndx = 0; 5722 err != act; err = err->dta_next, ndx++) 5723 continue; 5724 5725 dtrace_probe_error(state, ecb->dte_epid, ndx, 5726 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 5727 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 5728 cpu_core[cpuid].cpuc_dtrace_illval); 5729 5730 continue; 5731 } 5732 5733 if (!committed) 5734 buf->dtb_offset = offs + ecb->dte_size; 5735 } 5736 5737 if (vtime) 5738 curthread->t_dtrace_start = dtrace_gethrtime(); 5739 5740 dtrace_interrupt_enable(cookie); 5741 } 5742 5743 /* 5744 * DTrace Probe Hashing Functions 5745 * 5746 * The functions in this section (and indeed, the functions in remaining 5747 * sections) are not _called_ from probe context. (Any exceptions to this are 5748 * marked with a "Note:".) Rather, they are called from elsewhere in the 5749 * DTrace framework to look-up probes in, add probes to and remove probes from 5750 * the DTrace probe hashes. (Each probe is hashed by each element of the 5751 * probe tuple -- allowing for fast lookups, regardless of what was 5752 * specified.) 5753 */ 5754 static uint_t 5755 dtrace_hash_str(char *p) 5756 { 5757 unsigned int g; 5758 uint_t hval = 0; 5759 5760 while (*p) { 5761 hval = (hval << 4) + *p++; 5762 if ((g = (hval & 0xf0000000)) != 0) 5763 hval ^= g >> 24; 5764 hval &= ~g; 5765 } 5766 return (hval); 5767 } 5768 5769 static dtrace_hash_t * 5770 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 5771 { 5772 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 5773 5774 hash->dth_stroffs = stroffs; 5775 hash->dth_nextoffs = nextoffs; 5776 hash->dth_prevoffs = prevoffs; 5777 5778 hash->dth_size = 1; 5779 hash->dth_mask = hash->dth_size - 1; 5780 5781 hash->dth_tab = kmem_zalloc(hash->dth_size * 5782 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 5783 5784 return (hash); 5785 } 5786 5787 static void 5788 dtrace_hash_destroy(dtrace_hash_t *hash) 5789 { 5790 #ifdef DEBUG 5791 int i; 5792 5793 for (i = 0; i < hash->dth_size; i++) 5794 ASSERT(hash->dth_tab[i] == NULL); 5795 #endif 5796 5797 kmem_free(hash->dth_tab, 5798 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 5799 kmem_free(hash, sizeof (dtrace_hash_t)); 5800 } 5801 5802 static void 5803 dtrace_hash_resize(dtrace_hash_t *hash) 5804 { 5805 int size = hash->dth_size, i, ndx; 5806 int new_size = hash->dth_size << 1; 5807 int new_mask = new_size - 1; 5808 dtrace_hashbucket_t **new_tab, *bucket, *next; 5809 5810 ASSERT((new_size & new_mask) == 0); 5811 5812 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 5813 5814 for (i = 0; i < size; i++) { 5815 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 5816 dtrace_probe_t *probe = bucket->dthb_chain; 5817 5818 ASSERT(probe != NULL); 5819 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 5820 5821 next = bucket->dthb_next; 5822 bucket->dthb_next = new_tab[ndx]; 5823 new_tab[ndx] = bucket; 5824 } 5825 } 5826 5827 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 5828 hash->dth_tab = new_tab; 5829 hash->dth_size = new_size; 5830 hash->dth_mask = new_mask; 5831 } 5832 5833 static void 5834 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 5835 { 5836 int hashval = DTRACE_HASHSTR(hash, new); 5837 int ndx = hashval & hash->dth_mask; 5838 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 5839 dtrace_probe_t **nextp, **prevp; 5840 5841 for (; bucket != NULL; bucket = bucket->dthb_next) { 5842 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 5843 goto add; 5844 } 5845 5846 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 5847 dtrace_hash_resize(hash); 5848 dtrace_hash_add(hash, new); 5849 return; 5850 } 5851 5852 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 5853 bucket->dthb_next = hash->dth_tab[ndx]; 5854 hash->dth_tab[ndx] = bucket; 5855 hash->dth_nbuckets++; 5856 5857 add: 5858 nextp = DTRACE_HASHNEXT(hash, new); 5859 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 5860 *nextp = bucket->dthb_chain; 5861 5862 if (bucket->dthb_chain != NULL) { 5863 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 5864 ASSERT(*prevp == NULL); 5865 *prevp = new; 5866 } 5867 5868 bucket->dthb_chain = new; 5869 bucket->dthb_len++; 5870 } 5871 5872 static dtrace_probe_t * 5873 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 5874 { 5875 int hashval = DTRACE_HASHSTR(hash, template); 5876 int ndx = hashval & hash->dth_mask; 5877 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 5878 5879 for (; bucket != NULL; bucket = bucket->dthb_next) { 5880 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 5881 return (bucket->dthb_chain); 5882 } 5883 5884 return (NULL); 5885 } 5886 5887 static int 5888 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 5889 { 5890 int hashval = DTRACE_HASHSTR(hash, template); 5891 int ndx = hashval & hash->dth_mask; 5892 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 5893 5894 for (; bucket != NULL; bucket = bucket->dthb_next) { 5895 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 5896 return (bucket->dthb_len); 5897 } 5898 5899 return (NULL); 5900 } 5901 5902 static void 5903 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 5904 { 5905 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 5906 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 5907 5908 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 5909 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 5910 5911 /* 5912 * Find the bucket that we're removing this probe from. 5913 */ 5914 for (; bucket != NULL; bucket = bucket->dthb_next) { 5915 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 5916 break; 5917 } 5918 5919 ASSERT(bucket != NULL); 5920 5921 if (*prevp == NULL) { 5922 if (*nextp == NULL) { 5923 /* 5924 * The removed probe was the only probe on this 5925 * bucket; we need to remove the bucket. 5926 */ 5927 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 5928 5929 ASSERT(bucket->dthb_chain == probe); 5930 ASSERT(b != NULL); 5931 5932 if (b == bucket) { 5933 hash->dth_tab[ndx] = bucket->dthb_next; 5934 } else { 5935 while (b->dthb_next != bucket) 5936 b = b->dthb_next; 5937 b->dthb_next = bucket->dthb_next; 5938 } 5939 5940 ASSERT(hash->dth_nbuckets > 0); 5941 hash->dth_nbuckets--; 5942 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 5943 return; 5944 } 5945 5946 bucket->dthb_chain = *nextp; 5947 } else { 5948 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 5949 } 5950 5951 if (*nextp != NULL) 5952 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 5953 } 5954 5955 /* 5956 * DTrace Utility Functions 5957 * 5958 * These are random utility functions that are _not_ called from probe context. 5959 */ 5960 static int 5961 dtrace_badattr(const dtrace_attribute_t *a) 5962 { 5963 return (a->dtat_name > DTRACE_STABILITY_MAX || 5964 a->dtat_data > DTRACE_STABILITY_MAX || 5965 a->dtat_class > DTRACE_CLASS_MAX); 5966 } 5967 5968 /* 5969 * Return a duplicate copy of a string. If the specified string is NULL, 5970 * this function returns a zero-length string. 5971 */ 5972 static char * 5973 dtrace_strdup(const char *str) 5974 { 5975 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 5976 5977 if (str != NULL) 5978 (void) strcpy(new, str); 5979 5980 return (new); 5981 } 5982 5983 #define DTRACE_ISALPHA(c) \ 5984 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 5985 5986 static int 5987 dtrace_badname(const char *s) 5988 { 5989 char c; 5990 5991 if (s == NULL || (c = *s++) == '\0') 5992 return (0); 5993 5994 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 5995 return (1); 5996 5997 while ((c = *s++) != '\0') { 5998 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 5999 c != '-' && c != '_' && c != '.' && c != '`') 6000 return (1); 6001 } 6002 6003 return (0); 6004 } 6005 6006 static void 6007 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6008 { 6009 uint32_t priv; 6010 6011 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6012 /* 6013 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6014 */ 6015 priv = DTRACE_PRIV_ALL; 6016 } else { 6017 *uidp = crgetuid(cr); 6018 *zoneidp = crgetzoneid(cr); 6019 6020 priv = 0; 6021 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6022 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6023 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6024 priv |= DTRACE_PRIV_USER; 6025 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6026 priv |= DTRACE_PRIV_PROC; 6027 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6028 priv |= DTRACE_PRIV_OWNER; 6029 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6030 priv |= DTRACE_PRIV_ZONEOWNER; 6031 } 6032 6033 *privp = priv; 6034 } 6035 6036 #ifdef DTRACE_ERRDEBUG 6037 static void 6038 dtrace_errdebug(const char *str) 6039 { 6040 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6041 int occupied = 0; 6042 6043 mutex_enter(&dtrace_errlock); 6044 dtrace_errlast = str; 6045 dtrace_errthread = curthread; 6046 6047 while (occupied++ < DTRACE_ERRHASHSZ) { 6048 if (dtrace_errhash[hval].dter_msg == str) { 6049 dtrace_errhash[hval].dter_count++; 6050 goto out; 6051 } 6052 6053 if (dtrace_errhash[hval].dter_msg != NULL) { 6054 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6055 continue; 6056 } 6057 6058 dtrace_errhash[hval].dter_msg = str; 6059 dtrace_errhash[hval].dter_count = 1; 6060 goto out; 6061 } 6062 6063 panic("dtrace: undersized error hash"); 6064 out: 6065 mutex_exit(&dtrace_errlock); 6066 } 6067 #endif 6068 6069 /* 6070 * DTrace Matching Functions 6071 * 6072 * These functions are used to match groups of probes, given some elements of 6073 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6074 */ 6075 static int 6076 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6077 zoneid_t zoneid) 6078 { 6079 if (priv != DTRACE_PRIV_ALL) { 6080 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6081 uint32_t match = priv & ppriv; 6082 6083 /* 6084 * No PRIV_DTRACE_* privileges... 6085 */ 6086 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6087 DTRACE_PRIV_KERNEL)) == 0) 6088 return (0); 6089 6090 /* 6091 * No matching bits, but there were bits to match... 6092 */ 6093 if (match == 0 && ppriv != 0) 6094 return (0); 6095 6096 /* 6097 * Need to have permissions to the process, but don't... 6098 */ 6099 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6100 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6101 return (0); 6102 } 6103 6104 /* 6105 * Need to be in the same zone unless we possess the 6106 * privilege to examine all zones. 6107 */ 6108 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6109 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6110 return (0); 6111 } 6112 } 6113 6114 return (1); 6115 } 6116 6117 /* 6118 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6119 * consists of input pattern strings and an ops-vector to evaluate them. 6120 * This function returns >0 for match, 0 for no match, and <0 for error. 6121 */ 6122 static int 6123 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6124 uint32_t priv, uid_t uid, zoneid_t zoneid) 6125 { 6126 dtrace_provider_t *pvp = prp->dtpr_provider; 6127 int rv; 6128 6129 if (pvp->dtpv_defunct) 6130 return (0); 6131 6132 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6133 return (rv); 6134 6135 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6136 return (rv); 6137 6138 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6139 return (rv); 6140 6141 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6142 return (rv); 6143 6144 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6145 return (0); 6146 6147 return (rv); 6148 } 6149 6150 /* 6151 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6152 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 6153 * libc's version, the kernel version only applies to 8-bit ASCII strings. 6154 * In addition, all of the recursion cases except for '*' matching have been 6155 * unwound. For '*', we still implement recursive evaluation, but a depth 6156 * counter is maintained and matching is aborted if we recurse too deep. 6157 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 6158 */ 6159 static int 6160 dtrace_match_glob(const char *s, const char *p, int depth) 6161 { 6162 const char *olds; 6163 char s1, c; 6164 int gs; 6165 6166 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 6167 return (-1); 6168 6169 if (s == NULL) 6170 s = ""; /* treat NULL as empty string */ 6171 6172 top: 6173 olds = s; 6174 s1 = *s++; 6175 6176 if (p == NULL) 6177 return (0); 6178 6179 if ((c = *p++) == '\0') 6180 return (s1 == '\0'); 6181 6182 switch (c) { 6183 case '[': { 6184 int ok = 0, notflag = 0; 6185 char lc = '\0'; 6186 6187 if (s1 == '\0') 6188 return (0); 6189 6190 if (*p == '!') { 6191 notflag = 1; 6192 p++; 6193 } 6194 6195 if ((c = *p++) == '\0') 6196 return (0); 6197 6198 do { 6199 if (c == '-' && lc != '\0' && *p != ']') { 6200 if ((c = *p++) == '\0') 6201 return (0); 6202 if (c == '\\' && (c = *p++) == '\0') 6203 return (0); 6204 6205 if (notflag) { 6206 if (s1 < lc || s1 > c) 6207 ok++; 6208 else 6209 return (0); 6210 } else if (lc <= s1 && s1 <= c) 6211 ok++; 6212 6213 } else if (c == '\\' && (c = *p++) == '\0') 6214 return (0); 6215 6216 lc = c; /* save left-hand 'c' for next iteration */ 6217 6218 if (notflag) { 6219 if (s1 != c) 6220 ok++; 6221 else 6222 return (0); 6223 } else if (s1 == c) 6224 ok++; 6225 6226 if ((c = *p++) == '\0') 6227 return (0); 6228 6229 } while (c != ']'); 6230 6231 if (ok) 6232 goto top; 6233 6234 return (0); 6235 } 6236 6237 case '\\': 6238 if ((c = *p++) == '\0') 6239 return (0); 6240 /*FALLTHRU*/ 6241 6242 default: 6243 if (c != s1) 6244 return (0); 6245 /*FALLTHRU*/ 6246 6247 case '?': 6248 if (s1 != '\0') 6249 goto top; 6250 return (0); 6251 6252 case '*': 6253 while (*p == '*') 6254 p++; /* consecutive *'s are identical to a single one */ 6255 6256 if (*p == '\0') 6257 return (1); 6258 6259 for (s = olds; *s != '\0'; s++) { 6260 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 6261 return (gs); 6262 } 6263 6264 return (0); 6265 } 6266 } 6267 6268 /*ARGSUSED*/ 6269 static int 6270 dtrace_match_string(const char *s, const char *p, int depth) 6271 { 6272 return (s != NULL && strcmp(s, p) == 0); 6273 } 6274 6275 /*ARGSUSED*/ 6276 static int 6277 dtrace_match_nul(const char *s, const char *p, int depth) 6278 { 6279 return (1); /* always match the empty pattern */ 6280 } 6281 6282 /*ARGSUSED*/ 6283 static int 6284 dtrace_match_nonzero(const char *s, const char *p, int depth) 6285 { 6286 return (s != NULL && s[0] != '\0'); 6287 } 6288 6289 static int 6290 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 6291 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 6292 { 6293 dtrace_probe_t template, *probe; 6294 dtrace_hash_t *hash = NULL; 6295 int len, best = INT_MAX, nmatched = 0; 6296 dtrace_id_t i; 6297 6298 ASSERT(MUTEX_HELD(&dtrace_lock)); 6299 6300 /* 6301 * If the probe ID is specified in the key, just lookup by ID and 6302 * invoke the match callback once if a matching probe is found. 6303 */ 6304 if (pkp->dtpk_id != DTRACE_IDNONE) { 6305 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 6306 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 6307 (void) (*matched)(probe, arg); 6308 nmatched++; 6309 } 6310 return (nmatched); 6311 } 6312 6313 template.dtpr_mod = (char *)pkp->dtpk_mod; 6314 template.dtpr_func = (char *)pkp->dtpk_func; 6315 template.dtpr_name = (char *)pkp->dtpk_name; 6316 6317 /* 6318 * We want to find the most distinct of the module name, function 6319 * name, and name. So for each one that is not a glob pattern or 6320 * empty string, we perform a lookup in the corresponding hash and 6321 * use the hash table with the fewest collisions to do our search. 6322 */ 6323 if (pkp->dtpk_mmatch == &dtrace_match_string && 6324 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 6325 best = len; 6326 hash = dtrace_bymod; 6327 } 6328 6329 if (pkp->dtpk_fmatch == &dtrace_match_string && 6330 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 6331 best = len; 6332 hash = dtrace_byfunc; 6333 } 6334 6335 if (pkp->dtpk_nmatch == &dtrace_match_string && 6336 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 6337 best = len; 6338 hash = dtrace_byname; 6339 } 6340 6341 /* 6342 * If we did not select a hash table, iterate over every probe and 6343 * invoke our callback for each one that matches our input probe key. 6344 */ 6345 if (hash == NULL) { 6346 for (i = 0; i < dtrace_nprobes; i++) { 6347 if ((probe = dtrace_probes[i]) == NULL || 6348 dtrace_match_probe(probe, pkp, priv, uid, 6349 zoneid) <= 0) 6350 continue; 6351 6352 nmatched++; 6353 6354 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 6355 break; 6356 } 6357 6358 return (nmatched); 6359 } 6360 6361 /* 6362 * If we selected a hash table, iterate over each probe of the same key 6363 * name and invoke the callback for every probe that matches the other 6364 * attributes of our input probe key. 6365 */ 6366 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 6367 probe = *(DTRACE_HASHNEXT(hash, probe))) { 6368 6369 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 6370 continue; 6371 6372 nmatched++; 6373 6374 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 6375 break; 6376 } 6377 6378 return (nmatched); 6379 } 6380 6381 /* 6382 * Return the function pointer dtrace_probecmp() should use to compare the 6383 * specified pattern with a string. For NULL or empty patterns, we select 6384 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 6385 * For non-empty non-glob strings, we use dtrace_match_string(). 6386 */ 6387 static dtrace_probekey_f * 6388 dtrace_probekey_func(const char *p) 6389 { 6390 char c; 6391 6392 if (p == NULL || *p == '\0') 6393 return (&dtrace_match_nul); 6394 6395 while ((c = *p++) != '\0') { 6396 if (c == '[' || c == '?' || c == '*' || c == '\\') 6397 return (&dtrace_match_glob); 6398 } 6399 6400 return (&dtrace_match_string); 6401 } 6402 6403 /* 6404 * Build a probe comparison key for use with dtrace_match_probe() from the 6405 * given probe description. By convention, a null key only matches anchored 6406 * probes: if each field is the empty string, reset dtpk_fmatch to 6407 * dtrace_match_nonzero(). 6408 */ 6409 static void 6410 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 6411 { 6412 pkp->dtpk_prov = pdp->dtpd_provider; 6413 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 6414 6415 pkp->dtpk_mod = pdp->dtpd_mod; 6416 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 6417 6418 pkp->dtpk_func = pdp->dtpd_func; 6419 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 6420 6421 pkp->dtpk_name = pdp->dtpd_name; 6422 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 6423 6424 pkp->dtpk_id = pdp->dtpd_id; 6425 6426 if (pkp->dtpk_id == DTRACE_IDNONE && 6427 pkp->dtpk_pmatch == &dtrace_match_nul && 6428 pkp->dtpk_mmatch == &dtrace_match_nul && 6429 pkp->dtpk_fmatch == &dtrace_match_nul && 6430 pkp->dtpk_nmatch == &dtrace_match_nul) 6431 pkp->dtpk_fmatch = &dtrace_match_nonzero; 6432 } 6433 6434 /* 6435 * DTrace Provider-to-Framework API Functions 6436 * 6437 * These functions implement much of the Provider-to-Framework API, as 6438 * described in <sys/dtrace.h>. The parts of the API not in this section are 6439 * the functions in the API for probe management (found below), and 6440 * dtrace_probe() itself (found above). 6441 */ 6442 6443 /* 6444 * Register the calling provider with the DTrace framework. This should 6445 * generally be called by DTrace providers in their attach(9E) entry point. 6446 */ 6447 int 6448 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 6449 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 6450 { 6451 dtrace_provider_t *provider; 6452 6453 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 6454 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6455 "arguments", name ? name : "<NULL>"); 6456 return (EINVAL); 6457 } 6458 6459 if (name[0] == '\0' || dtrace_badname(name)) { 6460 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6461 "provider name", name); 6462 return (EINVAL); 6463 } 6464 6465 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 6466 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 6467 pops->dtps_destroy == NULL || 6468 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 6469 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6470 "provider ops", name); 6471 return (EINVAL); 6472 } 6473 6474 if (dtrace_badattr(&pap->dtpa_provider) || 6475 dtrace_badattr(&pap->dtpa_mod) || 6476 dtrace_badattr(&pap->dtpa_func) || 6477 dtrace_badattr(&pap->dtpa_name) || 6478 dtrace_badattr(&pap->dtpa_args)) { 6479 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6480 "provider attributes", name); 6481 return (EINVAL); 6482 } 6483 6484 if (priv & ~DTRACE_PRIV_ALL) { 6485 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6486 "privilege attributes", name); 6487 return (EINVAL); 6488 } 6489 6490 if ((priv & DTRACE_PRIV_KERNEL) && 6491 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 6492 pops->dtps_usermode == NULL) { 6493 cmn_err(CE_WARN, "failed to register provider '%s': need " 6494 "dtps_usermode() op for given privilege attributes", name); 6495 return (EINVAL); 6496 } 6497 6498 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 6499 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 6500 (void) strcpy(provider->dtpv_name, name); 6501 6502 provider->dtpv_attr = *pap; 6503 provider->dtpv_priv.dtpp_flags = priv; 6504 if (cr != NULL) { 6505 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 6506 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 6507 } 6508 provider->dtpv_pops = *pops; 6509 6510 if (pops->dtps_provide == NULL) { 6511 ASSERT(pops->dtps_provide_module != NULL); 6512 provider->dtpv_pops.dtps_provide = 6513 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 6514 } 6515 6516 if (pops->dtps_provide_module == NULL) { 6517 ASSERT(pops->dtps_provide != NULL); 6518 provider->dtpv_pops.dtps_provide_module = 6519 (void (*)(void *, struct modctl *))dtrace_nullop; 6520 } 6521 6522 if (pops->dtps_suspend == NULL) { 6523 ASSERT(pops->dtps_resume == NULL); 6524 provider->dtpv_pops.dtps_suspend = 6525 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6526 provider->dtpv_pops.dtps_resume = 6527 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6528 } 6529 6530 provider->dtpv_arg = arg; 6531 *idp = (dtrace_provider_id_t)provider; 6532 6533 if (pops == &dtrace_provider_ops) { 6534 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6535 ASSERT(MUTEX_HELD(&dtrace_lock)); 6536 ASSERT(dtrace_anon.dta_enabling == NULL); 6537 6538 /* 6539 * We make sure that the DTrace provider is at the head of 6540 * the provider chain. 6541 */ 6542 provider->dtpv_next = dtrace_provider; 6543 dtrace_provider = provider; 6544 return (0); 6545 } 6546 6547 mutex_enter(&dtrace_provider_lock); 6548 mutex_enter(&dtrace_lock); 6549 6550 /* 6551 * If there is at least one provider registered, we'll add this 6552 * provider after the first provider. 6553 */ 6554 if (dtrace_provider != NULL) { 6555 provider->dtpv_next = dtrace_provider->dtpv_next; 6556 dtrace_provider->dtpv_next = provider; 6557 } else { 6558 dtrace_provider = provider; 6559 } 6560 6561 if (dtrace_retained != NULL) { 6562 dtrace_enabling_provide(provider); 6563 6564 /* 6565 * Now we need to call dtrace_enabling_matchall() -- which 6566 * will acquire cpu_lock and dtrace_lock. We therefore need 6567 * to drop all of our locks before calling into it... 6568 */ 6569 mutex_exit(&dtrace_lock); 6570 mutex_exit(&dtrace_provider_lock); 6571 dtrace_enabling_matchall(); 6572 6573 return (0); 6574 } 6575 6576 mutex_exit(&dtrace_lock); 6577 mutex_exit(&dtrace_provider_lock); 6578 6579 return (0); 6580 } 6581 6582 /* 6583 * Unregister the specified provider from the DTrace framework. This should 6584 * generally be called by DTrace providers in their detach(9E) entry point. 6585 */ 6586 int 6587 dtrace_unregister(dtrace_provider_id_t id) 6588 { 6589 dtrace_provider_t *old = (dtrace_provider_t *)id; 6590 dtrace_provider_t *prev = NULL; 6591 int i, self = 0; 6592 dtrace_probe_t *probe, *first = NULL; 6593 6594 if (old->dtpv_pops.dtps_enable == 6595 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 6596 /* 6597 * If DTrace itself is the provider, we're called with locks 6598 * already held. 6599 */ 6600 ASSERT(old == dtrace_provider); 6601 ASSERT(dtrace_devi != NULL); 6602 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6603 ASSERT(MUTEX_HELD(&dtrace_lock)); 6604 self = 1; 6605 6606 if (dtrace_provider->dtpv_next != NULL) { 6607 /* 6608 * There's another provider here; return failure. 6609 */ 6610 return (EBUSY); 6611 } 6612 } else { 6613 mutex_enter(&dtrace_provider_lock); 6614 mutex_enter(&mod_lock); 6615 mutex_enter(&dtrace_lock); 6616 } 6617 6618 /* 6619 * If anyone has /dev/dtrace open, or if there are anonymous enabled 6620 * probes, we refuse to let providers slither away, unless this 6621 * provider has already been explicitly invalidated. 6622 */ 6623 if (!old->dtpv_defunct && 6624 (dtrace_opens || (dtrace_anon.dta_state != NULL && 6625 dtrace_anon.dta_state->dts_necbs > 0))) { 6626 if (!self) { 6627 mutex_exit(&dtrace_lock); 6628 mutex_exit(&mod_lock); 6629 mutex_exit(&dtrace_provider_lock); 6630 } 6631 return (EBUSY); 6632 } 6633 6634 /* 6635 * Attempt to destroy the probes associated with this provider. 6636 */ 6637 for (i = 0; i < dtrace_nprobes; i++) { 6638 if ((probe = dtrace_probes[i]) == NULL) 6639 continue; 6640 6641 if (probe->dtpr_provider != old) 6642 continue; 6643 6644 if (probe->dtpr_ecb == NULL) 6645 continue; 6646 6647 /* 6648 * We have at least one ECB; we can't remove this provider. 6649 */ 6650 if (!self) { 6651 mutex_exit(&dtrace_lock); 6652 mutex_exit(&mod_lock); 6653 mutex_exit(&dtrace_provider_lock); 6654 } 6655 return (EBUSY); 6656 } 6657 6658 /* 6659 * All of the probes for this provider are disabled; we can safely 6660 * remove all of them from their hash chains and from the probe array. 6661 */ 6662 for (i = 0; i < dtrace_nprobes; i++) { 6663 if ((probe = dtrace_probes[i]) == NULL) 6664 continue; 6665 6666 if (probe->dtpr_provider != old) 6667 continue; 6668 6669 dtrace_probes[i] = NULL; 6670 6671 dtrace_hash_remove(dtrace_bymod, probe); 6672 dtrace_hash_remove(dtrace_byfunc, probe); 6673 dtrace_hash_remove(dtrace_byname, probe); 6674 6675 if (first == NULL) { 6676 first = probe; 6677 probe->dtpr_nextmod = NULL; 6678 } else { 6679 probe->dtpr_nextmod = first; 6680 first = probe; 6681 } 6682 } 6683 6684 /* 6685 * The provider's probes have been removed from the hash chains and 6686 * from the probe array. Now issue a dtrace_sync() to be sure that 6687 * everyone has cleared out from any probe array processing. 6688 */ 6689 dtrace_sync(); 6690 6691 for (probe = first; probe != NULL; probe = first) { 6692 first = probe->dtpr_nextmod; 6693 6694 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 6695 probe->dtpr_arg); 6696 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 6697 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 6698 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 6699 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 6700 kmem_free(probe, sizeof (dtrace_probe_t)); 6701 } 6702 6703 if ((prev = dtrace_provider) == old) { 6704 ASSERT(self || dtrace_devi == NULL); 6705 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 6706 dtrace_provider = old->dtpv_next; 6707 } else { 6708 while (prev != NULL && prev->dtpv_next != old) 6709 prev = prev->dtpv_next; 6710 6711 if (prev == NULL) { 6712 panic("attempt to unregister non-existent " 6713 "dtrace provider %p\n", (void *)id); 6714 } 6715 6716 prev->dtpv_next = old->dtpv_next; 6717 } 6718 6719 if (!self) { 6720 mutex_exit(&dtrace_lock); 6721 mutex_exit(&mod_lock); 6722 mutex_exit(&dtrace_provider_lock); 6723 } 6724 6725 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 6726 kmem_free(old, sizeof (dtrace_provider_t)); 6727 6728 return (0); 6729 } 6730 6731 /* 6732 * Invalidate the specified provider. All subsequent probe lookups for the 6733 * specified provider will fail, but its probes will not be removed. 6734 */ 6735 void 6736 dtrace_invalidate(dtrace_provider_id_t id) 6737 { 6738 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 6739 6740 ASSERT(pvp->dtpv_pops.dtps_enable != 6741 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 6742 6743 mutex_enter(&dtrace_provider_lock); 6744 mutex_enter(&dtrace_lock); 6745 6746 pvp->dtpv_defunct = 1; 6747 6748 mutex_exit(&dtrace_lock); 6749 mutex_exit(&dtrace_provider_lock); 6750 } 6751 6752 /* 6753 * Indicate whether or not DTrace has attached. 6754 */ 6755 int 6756 dtrace_attached(void) 6757 { 6758 /* 6759 * dtrace_provider will be non-NULL iff the DTrace driver has 6760 * attached. (It's non-NULL because DTrace is always itself a 6761 * provider.) 6762 */ 6763 return (dtrace_provider != NULL); 6764 } 6765 6766 /* 6767 * Remove all the unenabled probes for the given provider. This function is 6768 * not unlike dtrace_unregister(), except that it doesn't remove the provider 6769 * -- just as many of its associated probes as it can. 6770 */ 6771 int 6772 dtrace_condense(dtrace_provider_id_t id) 6773 { 6774 dtrace_provider_t *prov = (dtrace_provider_t *)id; 6775 int i; 6776 dtrace_probe_t *probe; 6777 6778 /* 6779 * Make sure this isn't the dtrace provider itself. 6780 */ 6781 ASSERT(prov->dtpv_pops.dtps_enable != 6782 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 6783 6784 mutex_enter(&dtrace_provider_lock); 6785 mutex_enter(&dtrace_lock); 6786 6787 /* 6788 * Attempt to destroy the probes associated with this provider. 6789 */ 6790 for (i = 0; i < dtrace_nprobes; i++) { 6791 if ((probe = dtrace_probes[i]) == NULL) 6792 continue; 6793 6794 if (probe->dtpr_provider != prov) 6795 continue; 6796 6797 if (probe->dtpr_ecb != NULL) 6798 continue; 6799 6800 dtrace_probes[i] = NULL; 6801 6802 dtrace_hash_remove(dtrace_bymod, probe); 6803 dtrace_hash_remove(dtrace_byfunc, probe); 6804 dtrace_hash_remove(dtrace_byname, probe); 6805 6806 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 6807 probe->dtpr_arg); 6808 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 6809 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 6810 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 6811 kmem_free(probe, sizeof (dtrace_probe_t)); 6812 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 6813 } 6814 6815 mutex_exit(&dtrace_lock); 6816 mutex_exit(&dtrace_provider_lock); 6817 6818 return (0); 6819 } 6820 6821 /* 6822 * DTrace Probe Management Functions 6823 * 6824 * The functions in this section perform the DTrace probe management, 6825 * including functions to create probes, look-up probes, and call into the 6826 * providers to request that probes be provided. Some of these functions are 6827 * in the Provider-to-Framework API; these functions can be identified by the 6828 * fact that they are not declared "static". 6829 */ 6830 6831 /* 6832 * Create a probe with the specified module name, function name, and name. 6833 */ 6834 dtrace_id_t 6835 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 6836 const char *func, const char *name, int aframes, void *arg) 6837 { 6838 dtrace_probe_t *probe, **probes; 6839 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 6840 dtrace_id_t id; 6841 6842 if (provider == dtrace_provider) { 6843 ASSERT(MUTEX_HELD(&dtrace_lock)); 6844 } else { 6845 mutex_enter(&dtrace_lock); 6846 } 6847 6848 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 6849 VM_BESTFIT | VM_SLEEP); 6850 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 6851 6852 probe->dtpr_id = id; 6853 probe->dtpr_gen = dtrace_probegen++; 6854 probe->dtpr_mod = dtrace_strdup(mod); 6855 probe->dtpr_func = dtrace_strdup(func); 6856 probe->dtpr_name = dtrace_strdup(name); 6857 probe->dtpr_arg = arg; 6858 probe->dtpr_aframes = aframes; 6859 probe->dtpr_provider = provider; 6860 6861 dtrace_hash_add(dtrace_bymod, probe); 6862 dtrace_hash_add(dtrace_byfunc, probe); 6863 dtrace_hash_add(dtrace_byname, probe); 6864 6865 if (id - 1 >= dtrace_nprobes) { 6866 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 6867 size_t nsize = osize << 1; 6868 6869 if (nsize == 0) { 6870 ASSERT(osize == 0); 6871 ASSERT(dtrace_probes == NULL); 6872 nsize = sizeof (dtrace_probe_t *); 6873 } 6874 6875 probes = kmem_zalloc(nsize, KM_SLEEP); 6876 6877 if (dtrace_probes == NULL) { 6878 ASSERT(osize == 0); 6879 dtrace_probes = probes; 6880 dtrace_nprobes = 1; 6881 } else { 6882 dtrace_probe_t **oprobes = dtrace_probes; 6883 6884 bcopy(oprobes, probes, osize); 6885 dtrace_membar_producer(); 6886 dtrace_probes = probes; 6887 6888 dtrace_sync(); 6889 6890 /* 6891 * All CPUs are now seeing the new probes array; we can 6892 * safely free the old array. 6893 */ 6894 kmem_free(oprobes, osize); 6895 dtrace_nprobes <<= 1; 6896 } 6897 6898 ASSERT(id - 1 < dtrace_nprobes); 6899 } 6900 6901 ASSERT(dtrace_probes[id - 1] == NULL); 6902 dtrace_probes[id - 1] = probe; 6903 6904 if (provider != dtrace_provider) 6905 mutex_exit(&dtrace_lock); 6906 6907 return (id); 6908 } 6909 6910 static dtrace_probe_t * 6911 dtrace_probe_lookup_id(dtrace_id_t id) 6912 { 6913 ASSERT(MUTEX_HELD(&dtrace_lock)); 6914 6915 if (id == 0 || id > dtrace_nprobes) 6916 return (NULL); 6917 6918 return (dtrace_probes[id - 1]); 6919 } 6920 6921 static int 6922 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 6923 { 6924 *((dtrace_id_t *)arg) = probe->dtpr_id; 6925 6926 return (DTRACE_MATCH_DONE); 6927 } 6928 6929 /* 6930 * Look up a probe based on provider and one or more of module name, function 6931 * name and probe name. 6932 */ 6933 dtrace_id_t 6934 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 6935 const char *func, const char *name) 6936 { 6937 dtrace_probekey_t pkey; 6938 dtrace_id_t id; 6939 int match; 6940 6941 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 6942 pkey.dtpk_pmatch = &dtrace_match_string; 6943 pkey.dtpk_mod = mod; 6944 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 6945 pkey.dtpk_func = func; 6946 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 6947 pkey.dtpk_name = name; 6948 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 6949 pkey.dtpk_id = DTRACE_IDNONE; 6950 6951 mutex_enter(&dtrace_lock); 6952 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 6953 dtrace_probe_lookup_match, &id); 6954 mutex_exit(&dtrace_lock); 6955 6956 ASSERT(match == 1 || match == 0); 6957 return (match ? id : 0); 6958 } 6959 6960 /* 6961 * Returns the probe argument associated with the specified probe. 6962 */ 6963 void * 6964 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 6965 { 6966 dtrace_probe_t *probe; 6967 void *rval = NULL; 6968 6969 mutex_enter(&dtrace_lock); 6970 6971 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 6972 probe->dtpr_provider == (dtrace_provider_t *)id) 6973 rval = probe->dtpr_arg; 6974 6975 mutex_exit(&dtrace_lock); 6976 6977 return (rval); 6978 } 6979 6980 /* 6981 * Copy a probe into a probe description. 6982 */ 6983 static void 6984 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 6985 { 6986 bzero(pdp, sizeof (dtrace_probedesc_t)); 6987 pdp->dtpd_id = prp->dtpr_id; 6988 6989 (void) strncpy(pdp->dtpd_provider, 6990 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 6991 6992 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 6993 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 6994 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 6995 } 6996 6997 /* 6998 * Called to indicate that a probe -- or probes -- should be provided by a 6999 * specfied provider. If the specified description is NULL, the provider will 7000 * be told to provide all of its probes. (This is done whenever a new 7001 * consumer comes along, or whenever a retained enabling is to be matched.) If 7002 * the specified description is non-NULL, the provider is given the 7003 * opportunity to dynamically provide the specified probe, allowing providers 7004 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7005 * probes.) If the provider is NULL, the operations will be applied to all 7006 * providers; if the provider is non-NULL the operations will only be applied 7007 * to the specified provider. The dtrace_provider_lock must be held, and the 7008 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7009 * will need to grab the dtrace_lock when it reenters the framework through 7010 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7011 */ 7012 static void 7013 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7014 { 7015 struct modctl *ctl; 7016 int all = 0; 7017 7018 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7019 7020 if (prv == NULL) { 7021 all = 1; 7022 prv = dtrace_provider; 7023 } 7024 7025 do { 7026 /* 7027 * First, call the blanket provide operation. 7028 */ 7029 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7030 7031 /* 7032 * Now call the per-module provide operation. We will grab 7033 * mod_lock to prevent the list from being modified. Note 7034 * that this also prevents the mod_busy bits from changing. 7035 * (mod_busy can only be changed with mod_lock held.) 7036 */ 7037 mutex_enter(&mod_lock); 7038 7039 ctl = &modules; 7040 do { 7041 if (ctl->mod_busy || ctl->mod_mp == NULL) 7042 continue; 7043 7044 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7045 7046 } while ((ctl = ctl->mod_next) != &modules); 7047 7048 mutex_exit(&mod_lock); 7049 } while (all && (prv = prv->dtpv_next) != NULL); 7050 } 7051 7052 /* 7053 * Iterate over each probe, and call the Framework-to-Provider API function 7054 * denoted by offs. 7055 */ 7056 static void 7057 dtrace_probe_foreach(uintptr_t offs) 7058 { 7059 dtrace_provider_t *prov; 7060 void (*func)(void *, dtrace_id_t, void *); 7061 dtrace_probe_t *probe; 7062 dtrace_icookie_t cookie; 7063 int i; 7064 7065 /* 7066 * We disable interrupts to walk through the probe array. This is 7067 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7068 * won't see stale data. 7069 */ 7070 cookie = dtrace_interrupt_disable(); 7071 7072 for (i = 0; i < dtrace_nprobes; i++) { 7073 if ((probe = dtrace_probes[i]) == NULL) 7074 continue; 7075 7076 if (probe->dtpr_ecb == NULL) { 7077 /* 7078 * This probe isn't enabled -- don't call the function. 7079 */ 7080 continue; 7081 } 7082 7083 prov = probe->dtpr_provider; 7084 func = *((void(**)(void *, dtrace_id_t, void *)) 7085 ((uintptr_t)&prov->dtpv_pops + offs)); 7086 7087 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7088 } 7089 7090 dtrace_interrupt_enable(cookie); 7091 } 7092 7093 static int 7094 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7095 { 7096 dtrace_probekey_t pkey; 7097 uint32_t priv; 7098 uid_t uid; 7099 zoneid_t zoneid; 7100 7101 ASSERT(MUTEX_HELD(&dtrace_lock)); 7102 dtrace_ecb_create_cache = NULL; 7103 7104 if (desc == NULL) { 7105 /* 7106 * If we're passed a NULL description, we're being asked to 7107 * create an ECB with a NULL probe. 7108 */ 7109 (void) dtrace_ecb_create_enable(NULL, enab); 7110 return (0); 7111 } 7112 7113 dtrace_probekey(desc, &pkey); 7114 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7115 &priv, &uid, &zoneid); 7116 7117 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7118 enab)); 7119 } 7120 7121 /* 7122 * DTrace Helper Provider Functions 7123 */ 7124 static void 7125 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7126 { 7127 attr->dtat_name = DOF_ATTR_NAME(dofattr); 7128 attr->dtat_data = DOF_ATTR_DATA(dofattr); 7129 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 7130 } 7131 7132 static void 7133 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 7134 const dof_provider_t *dofprov, char *strtab) 7135 { 7136 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 7137 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 7138 dofprov->dofpv_provattr); 7139 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 7140 dofprov->dofpv_modattr); 7141 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 7142 dofprov->dofpv_funcattr); 7143 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 7144 dofprov->dofpv_nameattr); 7145 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 7146 dofprov->dofpv_argsattr); 7147 } 7148 7149 static void 7150 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7151 { 7152 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7153 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7154 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 7155 dof_provider_t *provider; 7156 dof_probe_t *probe; 7157 uint32_t *off, *enoff; 7158 uint8_t *arg; 7159 char *strtab; 7160 uint_t i, nprobes; 7161 dtrace_helper_provdesc_t dhpv; 7162 dtrace_helper_probedesc_t dhpb; 7163 dtrace_meta_t *meta = dtrace_meta_pid; 7164 dtrace_mops_t *mops = &meta->dtm_mops; 7165 void *parg; 7166 7167 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7168 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7169 provider->dofpv_strtab * dof->dofh_secsize); 7170 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7171 provider->dofpv_probes * dof->dofh_secsize); 7172 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7173 provider->dofpv_prargs * dof->dofh_secsize); 7174 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7175 provider->dofpv_proffs * dof->dofh_secsize); 7176 7177 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7178 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 7179 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 7180 enoff = NULL; 7181 7182 /* 7183 * See dtrace_helper_provider_validate(). 7184 */ 7185 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 7186 provider->dofpv_prenoffs != DOF_SECT_NONE) { 7187 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7188 provider->dofpv_prenoffs * dof->dofh_secsize); 7189 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 7190 } 7191 7192 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 7193 7194 /* 7195 * Create the provider. 7196 */ 7197 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7198 7199 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 7200 return; 7201 7202 meta->dtm_count++; 7203 7204 /* 7205 * Create the probes. 7206 */ 7207 for (i = 0; i < nprobes; i++) { 7208 probe = (dof_probe_t *)(uintptr_t)(daddr + 7209 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 7210 7211 dhpb.dthpb_mod = dhp->dofhp_mod; 7212 dhpb.dthpb_func = strtab + probe->dofpr_func; 7213 dhpb.dthpb_name = strtab + probe->dofpr_name; 7214 dhpb.dthpb_base = probe->dofpr_addr; 7215 dhpb.dthpb_offs = off + probe->dofpr_offidx; 7216 dhpb.dthpb_noffs = probe->dofpr_noffs; 7217 if (enoff != NULL) { 7218 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 7219 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 7220 } else { 7221 dhpb.dthpb_enoffs = NULL; 7222 dhpb.dthpb_nenoffs = 0; 7223 } 7224 dhpb.dthpb_args = arg + probe->dofpr_argidx; 7225 dhpb.dthpb_nargc = probe->dofpr_nargc; 7226 dhpb.dthpb_xargc = probe->dofpr_xargc; 7227 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 7228 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 7229 7230 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 7231 } 7232 } 7233 7234 static void 7235 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 7236 { 7237 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7238 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7239 int i; 7240 7241 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7242 7243 for (i = 0; i < dof->dofh_secnum; i++) { 7244 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7245 dof->dofh_secoff + i * dof->dofh_secsize); 7246 7247 if (sec->dofs_type != DOF_SECT_PROVIDER) 7248 continue; 7249 7250 dtrace_helper_provide_one(dhp, sec, pid); 7251 } 7252 7253 /* 7254 * We may have just created probes, so we must now rematch against 7255 * any retained enablings. Note that this call will acquire both 7256 * cpu_lock and dtrace_lock; the fact that we are holding 7257 * dtrace_meta_lock now is what defines the ordering with respect to 7258 * these three locks. 7259 */ 7260 dtrace_enabling_matchall(); 7261 } 7262 7263 static void 7264 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7265 { 7266 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7267 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7268 dof_sec_t *str_sec; 7269 dof_provider_t *provider; 7270 char *strtab; 7271 dtrace_helper_provdesc_t dhpv; 7272 dtrace_meta_t *meta = dtrace_meta_pid; 7273 dtrace_mops_t *mops = &meta->dtm_mops; 7274 7275 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7276 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7277 provider->dofpv_strtab * dof->dofh_secsize); 7278 7279 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7280 7281 /* 7282 * Create the provider. 7283 */ 7284 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7285 7286 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 7287 7288 meta->dtm_count--; 7289 } 7290 7291 static void 7292 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 7293 { 7294 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7295 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7296 int i; 7297 7298 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7299 7300 for (i = 0; i < dof->dofh_secnum; i++) { 7301 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7302 dof->dofh_secoff + i * dof->dofh_secsize); 7303 7304 if (sec->dofs_type != DOF_SECT_PROVIDER) 7305 continue; 7306 7307 dtrace_helper_provider_remove_one(dhp, sec, pid); 7308 } 7309 } 7310 7311 /* 7312 * DTrace Meta Provider-to-Framework API Functions 7313 * 7314 * These functions implement the Meta Provider-to-Framework API, as described 7315 * in <sys/dtrace.h>. 7316 */ 7317 int 7318 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 7319 dtrace_meta_provider_id_t *idp) 7320 { 7321 dtrace_meta_t *meta; 7322 dtrace_helpers_t *help, *next; 7323 int i; 7324 7325 *idp = DTRACE_METAPROVNONE; 7326 7327 /* 7328 * We strictly don't need the name, but we hold onto it for 7329 * debuggability. All hail error queues! 7330 */ 7331 if (name == NULL) { 7332 cmn_err(CE_WARN, "failed to register meta-provider: " 7333 "invalid name"); 7334 return (EINVAL); 7335 } 7336 7337 if (mops == NULL || 7338 mops->dtms_create_probe == NULL || 7339 mops->dtms_provide_pid == NULL || 7340 mops->dtms_remove_pid == NULL) { 7341 cmn_err(CE_WARN, "failed to register meta-register %s: " 7342 "invalid ops", name); 7343 return (EINVAL); 7344 } 7345 7346 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 7347 meta->dtm_mops = *mops; 7348 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7349 (void) strcpy(meta->dtm_name, name); 7350 meta->dtm_arg = arg; 7351 7352 mutex_enter(&dtrace_meta_lock); 7353 mutex_enter(&dtrace_lock); 7354 7355 if (dtrace_meta_pid != NULL) { 7356 mutex_exit(&dtrace_lock); 7357 mutex_exit(&dtrace_meta_lock); 7358 cmn_err(CE_WARN, "failed to register meta-register %s: " 7359 "user-land meta-provider exists", name); 7360 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 7361 kmem_free(meta, sizeof (dtrace_meta_t)); 7362 return (EINVAL); 7363 } 7364 7365 dtrace_meta_pid = meta; 7366 *idp = (dtrace_meta_provider_id_t)meta; 7367 7368 /* 7369 * If there are providers and probes ready to go, pass them 7370 * off to the new meta provider now. 7371 */ 7372 7373 help = dtrace_deferred_pid; 7374 dtrace_deferred_pid = NULL; 7375 7376 mutex_exit(&dtrace_lock); 7377 7378 while (help != NULL) { 7379 for (i = 0; i < help->dthps_nprovs; i++) { 7380 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 7381 help->dthps_pid); 7382 } 7383 7384 next = help->dthps_next; 7385 help->dthps_next = NULL; 7386 help->dthps_prev = NULL; 7387 help->dthps_deferred = 0; 7388 help = next; 7389 } 7390 7391 mutex_exit(&dtrace_meta_lock); 7392 7393 return (0); 7394 } 7395 7396 int 7397 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 7398 { 7399 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 7400 7401 mutex_enter(&dtrace_meta_lock); 7402 mutex_enter(&dtrace_lock); 7403 7404 if (old == dtrace_meta_pid) { 7405 pp = &dtrace_meta_pid; 7406 } else { 7407 panic("attempt to unregister non-existent " 7408 "dtrace meta-provider %p\n", (void *)old); 7409 } 7410 7411 if (old->dtm_count != 0) { 7412 mutex_exit(&dtrace_lock); 7413 mutex_exit(&dtrace_meta_lock); 7414 return (EBUSY); 7415 } 7416 7417 *pp = NULL; 7418 7419 mutex_exit(&dtrace_lock); 7420 mutex_exit(&dtrace_meta_lock); 7421 7422 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 7423 kmem_free(old, sizeof (dtrace_meta_t)); 7424 7425 return (0); 7426 } 7427 7428 7429 /* 7430 * DTrace DIF Object Functions 7431 */ 7432 static int 7433 dtrace_difo_err(uint_t pc, const char *format, ...) 7434 { 7435 if (dtrace_err_verbose) { 7436 va_list alist; 7437 7438 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 7439 va_start(alist, format); 7440 (void) vuprintf(format, alist); 7441 va_end(alist); 7442 } 7443 7444 #ifdef DTRACE_ERRDEBUG 7445 dtrace_errdebug(format); 7446 #endif 7447 return (1); 7448 } 7449 7450 /* 7451 * Validate a DTrace DIF object by checking the IR instructions. The following 7452 * rules are currently enforced by dtrace_difo_validate(): 7453 * 7454 * 1. Each instruction must have a valid opcode 7455 * 2. Each register, string, variable, or subroutine reference must be valid 7456 * 3. No instruction can modify register %r0 (must be zero) 7457 * 4. All instruction reserved bits must be set to zero 7458 * 5. The last instruction must be a "ret" instruction 7459 * 6. All branch targets must reference a valid instruction _after_ the branch 7460 */ 7461 static int 7462 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 7463 cred_t *cr) 7464 { 7465 int err = 0, i; 7466 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 7467 int kcheckload; 7468 uint_t pc; 7469 7470 kcheckload = cr == NULL || 7471 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 7472 7473 dp->dtdo_destructive = 0; 7474 7475 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 7476 dif_instr_t instr = dp->dtdo_buf[pc]; 7477 7478 uint_t r1 = DIF_INSTR_R1(instr); 7479 uint_t r2 = DIF_INSTR_R2(instr); 7480 uint_t rd = DIF_INSTR_RD(instr); 7481 uint_t rs = DIF_INSTR_RS(instr); 7482 uint_t label = DIF_INSTR_LABEL(instr); 7483 uint_t v = DIF_INSTR_VAR(instr); 7484 uint_t subr = DIF_INSTR_SUBR(instr); 7485 uint_t type = DIF_INSTR_TYPE(instr); 7486 uint_t op = DIF_INSTR_OP(instr); 7487 7488 switch (op) { 7489 case DIF_OP_OR: 7490 case DIF_OP_XOR: 7491 case DIF_OP_AND: 7492 case DIF_OP_SLL: 7493 case DIF_OP_SRL: 7494 case DIF_OP_SRA: 7495 case DIF_OP_SUB: 7496 case DIF_OP_ADD: 7497 case DIF_OP_MUL: 7498 case DIF_OP_SDIV: 7499 case DIF_OP_UDIV: 7500 case DIF_OP_SREM: 7501 case DIF_OP_UREM: 7502 case DIF_OP_COPYS: 7503 if (r1 >= nregs) 7504 err += efunc(pc, "invalid register %u\n", r1); 7505 if (r2 >= nregs) 7506 err += efunc(pc, "invalid register %u\n", r2); 7507 if (rd >= nregs) 7508 err += efunc(pc, "invalid register %u\n", rd); 7509 if (rd == 0) 7510 err += efunc(pc, "cannot write to %r0\n"); 7511 break; 7512 case DIF_OP_NOT: 7513 case DIF_OP_MOV: 7514 case DIF_OP_ALLOCS: 7515 if (r1 >= nregs) 7516 err += efunc(pc, "invalid register %u\n", r1); 7517 if (r2 != 0) 7518 err += efunc(pc, "non-zero reserved bits\n"); 7519 if (rd >= nregs) 7520 err += efunc(pc, "invalid register %u\n", rd); 7521 if (rd == 0) 7522 err += efunc(pc, "cannot write to %r0\n"); 7523 break; 7524 case DIF_OP_LDSB: 7525 case DIF_OP_LDSH: 7526 case DIF_OP_LDSW: 7527 case DIF_OP_LDUB: 7528 case DIF_OP_LDUH: 7529 case DIF_OP_LDUW: 7530 case DIF_OP_LDX: 7531 if (r1 >= nregs) 7532 err += efunc(pc, "invalid register %u\n", r1); 7533 if (r2 != 0) 7534 err += efunc(pc, "non-zero reserved bits\n"); 7535 if (rd >= nregs) 7536 err += efunc(pc, "invalid register %u\n", rd); 7537 if (rd == 0) 7538 err += efunc(pc, "cannot write to %r0\n"); 7539 if (kcheckload) 7540 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 7541 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 7542 break; 7543 case DIF_OP_RLDSB: 7544 case DIF_OP_RLDSH: 7545 case DIF_OP_RLDSW: 7546 case DIF_OP_RLDUB: 7547 case DIF_OP_RLDUH: 7548 case DIF_OP_RLDUW: 7549 case DIF_OP_RLDX: 7550 if (r1 >= nregs) 7551 err += efunc(pc, "invalid register %u\n", r1); 7552 if (r2 != 0) 7553 err += efunc(pc, "non-zero reserved bits\n"); 7554 if (rd >= nregs) 7555 err += efunc(pc, "invalid register %u\n", rd); 7556 if (rd == 0) 7557 err += efunc(pc, "cannot write to %r0\n"); 7558 break; 7559 case DIF_OP_ULDSB: 7560 case DIF_OP_ULDSH: 7561 case DIF_OP_ULDSW: 7562 case DIF_OP_ULDUB: 7563 case DIF_OP_ULDUH: 7564 case DIF_OP_ULDUW: 7565 case DIF_OP_ULDX: 7566 if (r1 >= nregs) 7567 err += efunc(pc, "invalid register %u\n", r1); 7568 if (r2 != 0) 7569 err += efunc(pc, "non-zero reserved bits\n"); 7570 if (rd >= nregs) 7571 err += efunc(pc, "invalid register %u\n", rd); 7572 if (rd == 0) 7573 err += efunc(pc, "cannot write to %r0\n"); 7574 break; 7575 case DIF_OP_STB: 7576 case DIF_OP_STH: 7577 case DIF_OP_STW: 7578 case DIF_OP_STX: 7579 if (r1 >= nregs) 7580 err += efunc(pc, "invalid register %u\n", r1); 7581 if (r2 != 0) 7582 err += efunc(pc, "non-zero reserved bits\n"); 7583 if (rd >= nregs) 7584 err += efunc(pc, "invalid register %u\n", rd); 7585 if (rd == 0) 7586 err += efunc(pc, "cannot write to 0 address\n"); 7587 break; 7588 case DIF_OP_CMP: 7589 case DIF_OP_SCMP: 7590 if (r1 >= nregs) 7591 err += efunc(pc, "invalid register %u\n", r1); 7592 if (r2 >= nregs) 7593 err += efunc(pc, "invalid register %u\n", r2); 7594 if (rd != 0) 7595 err += efunc(pc, "non-zero reserved bits\n"); 7596 break; 7597 case DIF_OP_TST: 7598 if (r1 >= nregs) 7599 err += efunc(pc, "invalid register %u\n", r1); 7600 if (r2 != 0 || rd != 0) 7601 err += efunc(pc, "non-zero reserved bits\n"); 7602 break; 7603 case DIF_OP_BA: 7604 case DIF_OP_BE: 7605 case DIF_OP_BNE: 7606 case DIF_OP_BG: 7607 case DIF_OP_BGU: 7608 case DIF_OP_BGE: 7609 case DIF_OP_BGEU: 7610 case DIF_OP_BL: 7611 case DIF_OP_BLU: 7612 case DIF_OP_BLE: 7613 case DIF_OP_BLEU: 7614 if (label >= dp->dtdo_len) { 7615 err += efunc(pc, "invalid branch target %u\n", 7616 label); 7617 } 7618 if (label <= pc) { 7619 err += efunc(pc, "backward branch to %u\n", 7620 label); 7621 } 7622 break; 7623 case DIF_OP_RET: 7624 if (r1 != 0 || r2 != 0) 7625 err += efunc(pc, "non-zero reserved bits\n"); 7626 if (rd >= nregs) 7627 err += efunc(pc, "invalid register %u\n", rd); 7628 break; 7629 case DIF_OP_NOP: 7630 case DIF_OP_POPTS: 7631 case DIF_OP_FLUSHTS: 7632 if (r1 != 0 || r2 != 0 || rd != 0) 7633 err += efunc(pc, "non-zero reserved bits\n"); 7634 break; 7635 case DIF_OP_SETX: 7636 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 7637 err += efunc(pc, "invalid integer ref %u\n", 7638 DIF_INSTR_INTEGER(instr)); 7639 } 7640 if (rd >= nregs) 7641 err += efunc(pc, "invalid register %u\n", rd); 7642 if (rd == 0) 7643 err += efunc(pc, "cannot write to %r0\n"); 7644 break; 7645 case DIF_OP_SETS: 7646 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 7647 err += efunc(pc, "invalid string ref %u\n", 7648 DIF_INSTR_STRING(instr)); 7649 } 7650 if (rd >= nregs) 7651 err += efunc(pc, "invalid register %u\n", rd); 7652 if (rd == 0) 7653 err += efunc(pc, "cannot write to %r0\n"); 7654 break; 7655 case DIF_OP_LDGA: 7656 case DIF_OP_LDTA: 7657 if (r1 > DIF_VAR_ARRAY_MAX) 7658 err += efunc(pc, "invalid array %u\n", r1); 7659 if (r2 >= nregs) 7660 err += efunc(pc, "invalid register %u\n", r2); 7661 if (rd >= nregs) 7662 err += efunc(pc, "invalid register %u\n", rd); 7663 if (rd == 0) 7664 err += efunc(pc, "cannot write to %r0\n"); 7665 break; 7666 case DIF_OP_LDGS: 7667 case DIF_OP_LDTS: 7668 case DIF_OP_LDLS: 7669 case DIF_OP_LDGAA: 7670 case DIF_OP_LDTAA: 7671 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 7672 err += efunc(pc, "invalid variable %u\n", v); 7673 if (rd >= nregs) 7674 err += efunc(pc, "invalid register %u\n", rd); 7675 if (rd == 0) 7676 err += efunc(pc, "cannot write to %r0\n"); 7677 break; 7678 case DIF_OP_STGS: 7679 case DIF_OP_STTS: 7680 case DIF_OP_STLS: 7681 case DIF_OP_STGAA: 7682 case DIF_OP_STTAA: 7683 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 7684 err += efunc(pc, "invalid variable %u\n", v); 7685 if (rs >= nregs) 7686 err += efunc(pc, "invalid register %u\n", rd); 7687 break; 7688 case DIF_OP_CALL: 7689 if (subr > DIF_SUBR_MAX) 7690 err += efunc(pc, "invalid subr %u\n", subr); 7691 if (rd >= nregs) 7692 err += efunc(pc, "invalid register %u\n", rd); 7693 if (rd == 0) 7694 err += efunc(pc, "cannot write to %r0\n"); 7695 7696 if (subr == DIF_SUBR_COPYOUT || 7697 subr == DIF_SUBR_COPYOUTSTR) { 7698 dp->dtdo_destructive = 1; 7699 } 7700 break; 7701 case DIF_OP_PUSHTR: 7702 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 7703 err += efunc(pc, "invalid ref type %u\n", type); 7704 if (r2 >= nregs) 7705 err += efunc(pc, "invalid register %u\n", r2); 7706 if (rs >= nregs) 7707 err += efunc(pc, "invalid register %u\n", rs); 7708 break; 7709 case DIF_OP_PUSHTV: 7710 if (type != DIF_TYPE_CTF) 7711 err += efunc(pc, "invalid val type %u\n", type); 7712 if (r2 >= nregs) 7713 err += efunc(pc, "invalid register %u\n", r2); 7714 if (rs >= nregs) 7715 err += efunc(pc, "invalid register %u\n", rs); 7716 break; 7717 default: 7718 err += efunc(pc, "invalid opcode %u\n", 7719 DIF_INSTR_OP(instr)); 7720 } 7721 } 7722 7723 if (dp->dtdo_len != 0 && 7724 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 7725 err += efunc(dp->dtdo_len - 1, 7726 "expected 'ret' as last DIF instruction\n"); 7727 } 7728 7729 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 7730 /* 7731 * If we're not returning by reference, the size must be either 7732 * 0 or the size of one of the base types. 7733 */ 7734 switch (dp->dtdo_rtype.dtdt_size) { 7735 case 0: 7736 case sizeof (uint8_t): 7737 case sizeof (uint16_t): 7738 case sizeof (uint32_t): 7739 case sizeof (uint64_t): 7740 break; 7741 7742 default: 7743 err += efunc(dp->dtdo_len - 1, "bad return size"); 7744 } 7745 } 7746 7747 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 7748 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 7749 dtrace_diftype_t *vt, *et; 7750 uint_t id, ndx; 7751 7752 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 7753 v->dtdv_scope != DIFV_SCOPE_THREAD && 7754 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 7755 err += efunc(i, "unrecognized variable scope %d\n", 7756 v->dtdv_scope); 7757 break; 7758 } 7759 7760 if (v->dtdv_kind != DIFV_KIND_ARRAY && 7761 v->dtdv_kind != DIFV_KIND_SCALAR) { 7762 err += efunc(i, "unrecognized variable type %d\n", 7763 v->dtdv_kind); 7764 break; 7765 } 7766 7767 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 7768 err += efunc(i, "%d exceeds variable id limit\n", id); 7769 break; 7770 } 7771 7772 if (id < DIF_VAR_OTHER_UBASE) 7773 continue; 7774 7775 /* 7776 * For user-defined variables, we need to check that this 7777 * definition is identical to any previous definition that we 7778 * encountered. 7779 */ 7780 ndx = id - DIF_VAR_OTHER_UBASE; 7781 7782 switch (v->dtdv_scope) { 7783 case DIFV_SCOPE_GLOBAL: 7784 if (ndx < vstate->dtvs_nglobals) { 7785 dtrace_statvar_t *svar; 7786 7787 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 7788 existing = &svar->dtsv_var; 7789 } 7790 7791 break; 7792 7793 case DIFV_SCOPE_THREAD: 7794 if (ndx < vstate->dtvs_ntlocals) 7795 existing = &vstate->dtvs_tlocals[ndx]; 7796 break; 7797 7798 case DIFV_SCOPE_LOCAL: 7799 if (ndx < vstate->dtvs_nlocals) { 7800 dtrace_statvar_t *svar; 7801 7802 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 7803 existing = &svar->dtsv_var; 7804 } 7805 7806 break; 7807 } 7808 7809 vt = &v->dtdv_type; 7810 7811 if (vt->dtdt_flags & DIF_TF_BYREF) { 7812 if (vt->dtdt_size == 0) { 7813 err += efunc(i, "zero-sized variable\n"); 7814 break; 7815 } 7816 7817 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 7818 vt->dtdt_size > dtrace_global_maxsize) { 7819 err += efunc(i, "oversized by-ref global\n"); 7820 break; 7821 } 7822 } 7823 7824 if (existing == NULL || existing->dtdv_id == 0) 7825 continue; 7826 7827 ASSERT(existing->dtdv_id == v->dtdv_id); 7828 ASSERT(existing->dtdv_scope == v->dtdv_scope); 7829 7830 if (existing->dtdv_kind != v->dtdv_kind) 7831 err += efunc(i, "%d changed variable kind\n", id); 7832 7833 et = &existing->dtdv_type; 7834 7835 if (vt->dtdt_flags != et->dtdt_flags) { 7836 err += efunc(i, "%d changed variable type flags\n", id); 7837 break; 7838 } 7839 7840 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 7841 err += efunc(i, "%d changed variable type size\n", id); 7842 break; 7843 } 7844 } 7845 7846 return (err); 7847 } 7848 7849 /* 7850 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 7851 * are much more constrained than normal DIFOs. Specifically, they may 7852 * not: 7853 * 7854 * 1. Make calls to subroutines other than copyin(), copyinstr() or 7855 * miscellaneous string routines 7856 * 2. Access DTrace variables other than the args[] array, and the 7857 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 7858 * 3. Have thread-local variables. 7859 * 4. Have dynamic variables. 7860 */ 7861 static int 7862 dtrace_difo_validate_helper(dtrace_difo_t *dp) 7863 { 7864 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 7865 int err = 0; 7866 uint_t pc; 7867 7868 for (pc = 0; pc < dp->dtdo_len; pc++) { 7869 dif_instr_t instr = dp->dtdo_buf[pc]; 7870 7871 uint_t v = DIF_INSTR_VAR(instr); 7872 uint_t subr = DIF_INSTR_SUBR(instr); 7873 uint_t op = DIF_INSTR_OP(instr); 7874 7875 switch (op) { 7876 case DIF_OP_OR: 7877 case DIF_OP_XOR: 7878 case DIF_OP_AND: 7879 case DIF_OP_SLL: 7880 case DIF_OP_SRL: 7881 case DIF_OP_SRA: 7882 case DIF_OP_SUB: 7883 case DIF_OP_ADD: 7884 case DIF_OP_MUL: 7885 case DIF_OP_SDIV: 7886 case DIF_OP_UDIV: 7887 case DIF_OP_SREM: 7888 case DIF_OP_UREM: 7889 case DIF_OP_COPYS: 7890 case DIF_OP_NOT: 7891 case DIF_OP_MOV: 7892 case DIF_OP_RLDSB: 7893 case DIF_OP_RLDSH: 7894 case DIF_OP_RLDSW: 7895 case DIF_OP_RLDUB: 7896 case DIF_OP_RLDUH: 7897 case DIF_OP_RLDUW: 7898 case DIF_OP_RLDX: 7899 case DIF_OP_ULDSB: 7900 case DIF_OP_ULDSH: 7901 case DIF_OP_ULDSW: 7902 case DIF_OP_ULDUB: 7903 case DIF_OP_ULDUH: 7904 case DIF_OP_ULDUW: 7905 case DIF_OP_ULDX: 7906 case DIF_OP_STB: 7907 case DIF_OP_STH: 7908 case DIF_OP_STW: 7909 case DIF_OP_STX: 7910 case DIF_OP_ALLOCS: 7911 case DIF_OP_CMP: 7912 case DIF_OP_SCMP: 7913 case DIF_OP_TST: 7914 case DIF_OP_BA: 7915 case DIF_OP_BE: 7916 case DIF_OP_BNE: 7917 case DIF_OP_BG: 7918 case DIF_OP_BGU: 7919 case DIF_OP_BGE: 7920 case DIF_OP_BGEU: 7921 case DIF_OP_BL: 7922 case DIF_OP_BLU: 7923 case DIF_OP_BLE: 7924 case DIF_OP_BLEU: 7925 case DIF_OP_RET: 7926 case DIF_OP_NOP: 7927 case DIF_OP_POPTS: 7928 case DIF_OP_FLUSHTS: 7929 case DIF_OP_SETX: 7930 case DIF_OP_SETS: 7931 case DIF_OP_LDGA: 7932 case DIF_OP_LDLS: 7933 case DIF_OP_STGS: 7934 case DIF_OP_STLS: 7935 case DIF_OP_PUSHTR: 7936 case DIF_OP_PUSHTV: 7937 break; 7938 7939 case DIF_OP_LDGS: 7940 if (v >= DIF_VAR_OTHER_UBASE) 7941 break; 7942 7943 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 7944 break; 7945 7946 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 7947 v == DIF_VAR_PPID || v == DIF_VAR_TID || 7948 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 7949 v == DIF_VAR_UID || v == DIF_VAR_GID) 7950 break; 7951 7952 err += efunc(pc, "illegal variable %u\n", v); 7953 break; 7954 7955 case DIF_OP_LDTA: 7956 case DIF_OP_LDTS: 7957 case DIF_OP_LDGAA: 7958 case DIF_OP_LDTAA: 7959 err += efunc(pc, "illegal dynamic variable load\n"); 7960 break; 7961 7962 case DIF_OP_STTS: 7963 case DIF_OP_STGAA: 7964 case DIF_OP_STTAA: 7965 err += efunc(pc, "illegal dynamic variable store\n"); 7966 break; 7967 7968 case DIF_OP_CALL: 7969 if (subr == DIF_SUBR_ALLOCA || 7970 subr == DIF_SUBR_BCOPY || 7971 subr == DIF_SUBR_COPYIN || 7972 subr == DIF_SUBR_COPYINTO || 7973 subr == DIF_SUBR_COPYINSTR || 7974 subr == DIF_SUBR_INDEX || 7975 subr == DIF_SUBR_LLTOSTR || 7976 subr == DIF_SUBR_RINDEX || 7977 subr == DIF_SUBR_STRCHR || 7978 subr == DIF_SUBR_STRJOIN || 7979 subr == DIF_SUBR_STRRCHR || 7980 subr == DIF_SUBR_STRSTR || 7981 subr == DIF_SUBR_HTONS || 7982 subr == DIF_SUBR_HTONL || 7983 subr == DIF_SUBR_HTONLL || 7984 subr == DIF_SUBR_NTOHS || 7985 subr == DIF_SUBR_NTOHL || 7986 subr == DIF_SUBR_NTOHLL) 7987 break; 7988 7989 err += efunc(pc, "invalid subr %u\n", subr); 7990 break; 7991 7992 default: 7993 err += efunc(pc, "invalid opcode %u\n", 7994 DIF_INSTR_OP(instr)); 7995 } 7996 } 7997 7998 return (err); 7999 } 8000 8001 /* 8002 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8003 * basis; 0 if not. 8004 */ 8005 static int 8006 dtrace_difo_cacheable(dtrace_difo_t *dp) 8007 { 8008 int i; 8009 8010 if (dp == NULL) 8011 return (0); 8012 8013 for (i = 0; i < dp->dtdo_varlen; i++) { 8014 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8015 8016 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8017 continue; 8018 8019 switch (v->dtdv_id) { 8020 case DIF_VAR_CURTHREAD: 8021 case DIF_VAR_PID: 8022 case DIF_VAR_TID: 8023 case DIF_VAR_EXECNAME: 8024 case DIF_VAR_ZONENAME: 8025 break; 8026 8027 default: 8028 return (0); 8029 } 8030 } 8031 8032 /* 8033 * This DIF object may be cacheable. Now we need to look for any 8034 * array loading instructions, any memory loading instructions, or 8035 * any stores to thread-local variables. 8036 */ 8037 for (i = 0; i < dp->dtdo_len; i++) { 8038 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8039 8040 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8041 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8042 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8043 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8044 return (0); 8045 } 8046 8047 return (1); 8048 } 8049 8050 static void 8051 dtrace_difo_hold(dtrace_difo_t *dp) 8052 { 8053 int i; 8054 8055 ASSERT(MUTEX_HELD(&dtrace_lock)); 8056 8057 dp->dtdo_refcnt++; 8058 ASSERT(dp->dtdo_refcnt != 0); 8059 8060 /* 8061 * We need to check this DIF object for references to the variable 8062 * DIF_VAR_VTIMESTAMP. 8063 */ 8064 for (i = 0; i < dp->dtdo_varlen; i++) { 8065 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8066 8067 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8068 continue; 8069 8070 if (dtrace_vtime_references++ == 0) 8071 dtrace_vtime_enable(); 8072 } 8073 } 8074 8075 /* 8076 * This routine calculates the dynamic variable chunksize for a given DIF 8077 * object. The calculation is not fool-proof, and can probably be tricked by 8078 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8079 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8080 * if a dynamic variable size exceeds the chunksize. 8081 */ 8082 static void 8083 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8084 { 8085 uint64_t sval; 8086 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8087 const dif_instr_t *text = dp->dtdo_buf; 8088 uint_t pc, srd = 0; 8089 uint_t ttop = 0; 8090 size_t size, ksize; 8091 uint_t id, i; 8092 8093 for (pc = 0; pc < dp->dtdo_len; pc++) { 8094 dif_instr_t instr = text[pc]; 8095 uint_t op = DIF_INSTR_OP(instr); 8096 uint_t rd = DIF_INSTR_RD(instr); 8097 uint_t r1 = DIF_INSTR_R1(instr); 8098 uint_t nkeys = 0; 8099 uchar_t scope; 8100 8101 dtrace_key_t *key = tupregs; 8102 8103 switch (op) { 8104 case DIF_OP_SETX: 8105 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8106 srd = rd; 8107 continue; 8108 8109 case DIF_OP_STTS: 8110 key = &tupregs[DIF_DTR_NREGS]; 8111 key[0].dttk_size = 0; 8112 key[1].dttk_size = 0; 8113 nkeys = 2; 8114 scope = DIFV_SCOPE_THREAD; 8115 break; 8116 8117 case DIF_OP_STGAA: 8118 case DIF_OP_STTAA: 8119 nkeys = ttop; 8120 8121 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 8122 key[nkeys++].dttk_size = 0; 8123 8124 key[nkeys++].dttk_size = 0; 8125 8126 if (op == DIF_OP_STTAA) { 8127 scope = DIFV_SCOPE_THREAD; 8128 } else { 8129 scope = DIFV_SCOPE_GLOBAL; 8130 } 8131 8132 break; 8133 8134 case DIF_OP_PUSHTR: 8135 if (ttop == DIF_DTR_NREGS) 8136 return; 8137 8138 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 8139 /* 8140 * If the register for the size of the "pushtr" 8141 * is %r0 (or the value is 0) and the type is 8142 * a string, we'll use the system-wide default 8143 * string size. 8144 */ 8145 tupregs[ttop++].dttk_size = 8146 dtrace_strsize_default; 8147 } else { 8148 if (srd == 0) 8149 return; 8150 8151 tupregs[ttop++].dttk_size = sval; 8152 } 8153 8154 break; 8155 8156 case DIF_OP_PUSHTV: 8157 if (ttop == DIF_DTR_NREGS) 8158 return; 8159 8160 tupregs[ttop++].dttk_size = 0; 8161 break; 8162 8163 case DIF_OP_FLUSHTS: 8164 ttop = 0; 8165 break; 8166 8167 case DIF_OP_POPTS: 8168 if (ttop != 0) 8169 ttop--; 8170 break; 8171 } 8172 8173 sval = 0; 8174 srd = 0; 8175 8176 if (nkeys == 0) 8177 continue; 8178 8179 /* 8180 * We have a dynamic variable allocation; calculate its size. 8181 */ 8182 for (ksize = 0, i = 0; i < nkeys; i++) 8183 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 8184 8185 size = sizeof (dtrace_dynvar_t); 8186 size += sizeof (dtrace_key_t) * (nkeys - 1); 8187 size += ksize; 8188 8189 /* 8190 * Now we need to determine the size of the stored data. 8191 */ 8192 id = DIF_INSTR_VAR(instr); 8193 8194 for (i = 0; i < dp->dtdo_varlen; i++) { 8195 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8196 8197 if (v->dtdv_id == id && v->dtdv_scope == scope) { 8198 size += v->dtdv_type.dtdt_size; 8199 break; 8200 } 8201 } 8202 8203 if (i == dp->dtdo_varlen) 8204 return; 8205 8206 /* 8207 * We have the size. If this is larger than the chunk size 8208 * for our dynamic variable state, reset the chunk size. 8209 */ 8210 size = P2ROUNDUP(size, sizeof (uint64_t)); 8211 8212 if (size > vstate->dtvs_dynvars.dtds_chunksize) 8213 vstate->dtvs_dynvars.dtds_chunksize = size; 8214 } 8215 } 8216 8217 static void 8218 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8219 { 8220 int i, oldsvars, osz, nsz, otlocals, ntlocals; 8221 uint_t id; 8222 8223 ASSERT(MUTEX_HELD(&dtrace_lock)); 8224 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 8225 8226 for (i = 0; i < dp->dtdo_varlen; i++) { 8227 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8228 dtrace_statvar_t *svar, ***svarp; 8229 size_t dsize = 0; 8230 uint8_t scope = v->dtdv_scope; 8231 int *np; 8232 8233 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8234 continue; 8235 8236 id -= DIF_VAR_OTHER_UBASE; 8237 8238 switch (scope) { 8239 case DIFV_SCOPE_THREAD: 8240 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 8241 dtrace_difv_t *tlocals; 8242 8243 if ((ntlocals = (otlocals << 1)) == 0) 8244 ntlocals = 1; 8245 8246 osz = otlocals * sizeof (dtrace_difv_t); 8247 nsz = ntlocals * sizeof (dtrace_difv_t); 8248 8249 tlocals = kmem_zalloc(nsz, KM_SLEEP); 8250 8251 if (osz != 0) { 8252 bcopy(vstate->dtvs_tlocals, 8253 tlocals, osz); 8254 kmem_free(vstate->dtvs_tlocals, osz); 8255 } 8256 8257 vstate->dtvs_tlocals = tlocals; 8258 vstate->dtvs_ntlocals = ntlocals; 8259 } 8260 8261 vstate->dtvs_tlocals[id] = *v; 8262 continue; 8263 8264 case DIFV_SCOPE_LOCAL: 8265 np = &vstate->dtvs_nlocals; 8266 svarp = &vstate->dtvs_locals; 8267 8268 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8269 dsize = NCPU * (v->dtdv_type.dtdt_size + 8270 sizeof (uint64_t)); 8271 else 8272 dsize = NCPU * sizeof (uint64_t); 8273 8274 break; 8275 8276 case DIFV_SCOPE_GLOBAL: 8277 np = &vstate->dtvs_nglobals; 8278 svarp = &vstate->dtvs_globals; 8279 8280 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8281 dsize = v->dtdv_type.dtdt_size + 8282 sizeof (uint64_t); 8283 8284 break; 8285 8286 default: 8287 ASSERT(0); 8288 } 8289 8290 while (id >= (oldsvars = *np)) { 8291 dtrace_statvar_t **statics; 8292 int newsvars, oldsize, newsize; 8293 8294 if ((newsvars = (oldsvars << 1)) == 0) 8295 newsvars = 1; 8296 8297 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 8298 newsize = newsvars * sizeof (dtrace_statvar_t *); 8299 8300 statics = kmem_zalloc(newsize, KM_SLEEP); 8301 8302 if (oldsize != 0) { 8303 bcopy(*svarp, statics, oldsize); 8304 kmem_free(*svarp, oldsize); 8305 } 8306 8307 *svarp = statics; 8308 *np = newsvars; 8309 } 8310 8311 if ((svar = (*svarp)[id]) == NULL) { 8312 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 8313 svar->dtsv_var = *v; 8314 8315 if ((svar->dtsv_size = dsize) != 0) { 8316 svar->dtsv_data = (uint64_t)(uintptr_t) 8317 kmem_zalloc(dsize, KM_SLEEP); 8318 } 8319 8320 (*svarp)[id] = svar; 8321 } 8322 8323 svar->dtsv_refcnt++; 8324 } 8325 8326 dtrace_difo_chunksize(dp, vstate); 8327 dtrace_difo_hold(dp); 8328 } 8329 8330 static dtrace_difo_t * 8331 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8332 { 8333 dtrace_difo_t *new; 8334 size_t sz; 8335 8336 ASSERT(dp->dtdo_buf != NULL); 8337 ASSERT(dp->dtdo_refcnt != 0); 8338 8339 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 8340 8341 ASSERT(dp->dtdo_buf != NULL); 8342 sz = dp->dtdo_len * sizeof (dif_instr_t); 8343 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 8344 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 8345 new->dtdo_len = dp->dtdo_len; 8346 8347 if (dp->dtdo_strtab != NULL) { 8348 ASSERT(dp->dtdo_strlen != 0); 8349 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 8350 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 8351 new->dtdo_strlen = dp->dtdo_strlen; 8352 } 8353 8354 if (dp->dtdo_inttab != NULL) { 8355 ASSERT(dp->dtdo_intlen != 0); 8356 sz = dp->dtdo_intlen * sizeof (uint64_t); 8357 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 8358 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 8359 new->dtdo_intlen = dp->dtdo_intlen; 8360 } 8361 8362 if (dp->dtdo_vartab != NULL) { 8363 ASSERT(dp->dtdo_varlen != 0); 8364 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 8365 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 8366 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 8367 new->dtdo_varlen = dp->dtdo_varlen; 8368 } 8369 8370 dtrace_difo_init(new, vstate); 8371 return (new); 8372 } 8373 8374 static void 8375 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8376 { 8377 int i; 8378 8379 ASSERT(dp->dtdo_refcnt == 0); 8380 8381 for (i = 0; i < dp->dtdo_varlen; i++) { 8382 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8383 dtrace_statvar_t *svar, **svarp; 8384 uint_t id; 8385 uint8_t scope = v->dtdv_scope; 8386 int *np; 8387 8388 switch (scope) { 8389 case DIFV_SCOPE_THREAD: 8390 continue; 8391 8392 case DIFV_SCOPE_LOCAL: 8393 np = &vstate->dtvs_nlocals; 8394 svarp = vstate->dtvs_locals; 8395 break; 8396 8397 case DIFV_SCOPE_GLOBAL: 8398 np = &vstate->dtvs_nglobals; 8399 svarp = vstate->dtvs_globals; 8400 break; 8401 8402 default: 8403 ASSERT(0); 8404 } 8405 8406 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8407 continue; 8408 8409 id -= DIF_VAR_OTHER_UBASE; 8410 ASSERT(id < *np); 8411 8412 svar = svarp[id]; 8413 ASSERT(svar != NULL); 8414 ASSERT(svar->dtsv_refcnt > 0); 8415 8416 if (--svar->dtsv_refcnt > 0) 8417 continue; 8418 8419 if (svar->dtsv_size != 0) { 8420 ASSERT(svar->dtsv_data != NULL); 8421 kmem_free((void *)(uintptr_t)svar->dtsv_data, 8422 svar->dtsv_size); 8423 } 8424 8425 kmem_free(svar, sizeof (dtrace_statvar_t)); 8426 svarp[id] = NULL; 8427 } 8428 8429 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 8430 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 8431 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 8432 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 8433 8434 kmem_free(dp, sizeof (dtrace_difo_t)); 8435 } 8436 8437 static void 8438 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8439 { 8440 int i; 8441 8442 ASSERT(MUTEX_HELD(&dtrace_lock)); 8443 ASSERT(dp->dtdo_refcnt != 0); 8444 8445 for (i = 0; i < dp->dtdo_varlen; i++) { 8446 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8447 8448 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8449 continue; 8450 8451 ASSERT(dtrace_vtime_references > 0); 8452 if (--dtrace_vtime_references == 0) 8453 dtrace_vtime_disable(); 8454 } 8455 8456 if (--dp->dtdo_refcnt == 0) 8457 dtrace_difo_destroy(dp, vstate); 8458 } 8459 8460 /* 8461 * DTrace Format Functions 8462 */ 8463 static uint16_t 8464 dtrace_format_add(dtrace_state_t *state, char *str) 8465 { 8466 char *fmt, **new; 8467 uint16_t ndx, len = strlen(str) + 1; 8468 8469 fmt = kmem_zalloc(len, KM_SLEEP); 8470 bcopy(str, fmt, len); 8471 8472 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 8473 if (state->dts_formats[ndx] == NULL) { 8474 state->dts_formats[ndx] = fmt; 8475 return (ndx + 1); 8476 } 8477 } 8478 8479 if (state->dts_nformats == USHRT_MAX) { 8480 /* 8481 * This is only likely if a denial-of-service attack is being 8482 * attempted. As such, it's okay to fail silently here. 8483 */ 8484 kmem_free(fmt, len); 8485 return (0); 8486 } 8487 8488 /* 8489 * For simplicity, we always resize the formats array to be exactly the 8490 * number of formats. 8491 */ 8492 ndx = state->dts_nformats++; 8493 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 8494 8495 if (state->dts_formats != NULL) { 8496 ASSERT(ndx != 0); 8497 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 8498 kmem_free(state->dts_formats, ndx * sizeof (char *)); 8499 } 8500 8501 state->dts_formats = new; 8502 state->dts_formats[ndx] = fmt; 8503 8504 return (ndx + 1); 8505 } 8506 8507 static void 8508 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 8509 { 8510 char *fmt; 8511 8512 ASSERT(state->dts_formats != NULL); 8513 ASSERT(format <= state->dts_nformats); 8514 ASSERT(state->dts_formats[format - 1] != NULL); 8515 8516 fmt = state->dts_formats[format - 1]; 8517 kmem_free(fmt, strlen(fmt) + 1); 8518 state->dts_formats[format - 1] = NULL; 8519 } 8520 8521 static void 8522 dtrace_format_destroy(dtrace_state_t *state) 8523 { 8524 int i; 8525 8526 if (state->dts_nformats == 0) { 8527 ASSERT(state->dts_formats == NULL); 8528 return; 8529 } 8530 8531 ASSERT(state->dts_formats != NULL); 8532 8533 for (i = 0; i < state->dts_nformats; i++) { 8534 char *fmt = state->dts_formats[i]; 8535 8536 if (fmt == NULL) 8537 continue; 8538 8539 kmem_free(fmt, strlen(fmt) + 1); 8540 } 8541 8542 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 8543 state->dts_nformats = 0; 8544 state->dts_formats = NULL; 8545 } 8546 8547 /* 8548 * DTrace Predicate Functions 8549 */ 8550 static dtrace_predicate_t * 8551 dtrace_predicate_create(dtrace_difo_t *dp) 8552 { 8553 dtrace_predicate_t *pred; 8554 8555 ASSERT(MUTEX_HELD(&dtrace_lock)); 8556 ASSERT(dp->dtdo_refcnt != 0); 8557 8558 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 8559 pred->dtp_difo = dp; 8560 pred->dtp_refcnt = 1; 8561 8562 if (!dtrace_difo_cacheable(dp)) 8563 return (pred); 8564 8565 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 8566 /* 8567 * This is only theoretically possible -- we have had 2^32 8568 * cacheable predicates on this machine. We cannot allow any 8569 * more predicates to become cacheable: as unlikely as it is, 8570 * there may be a thread caching a (now stale) predicate cache 8571 * ID. (N.B.: the temptation is being successfully resisted to 8572 * have this cmn_err() "Holy shit -- we executed this code!") 8573 */ 8574 return (pred); 8575 } 8576 8577 pred->dtp_cacheid = dtrace_predcache_id++; 8578 8579 return (pred); 8580 } 8581 8582 static void 8583 dtrace_predicate_hold(dtrace_predicate_t *pred) 8584 { 8585 ASSERT(MUTEX_HELD(&dtrace_lock)); 8586 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 8587 ASSERT(pred->dtp_refcnt > 0); 8588 8589 pred->dtp_refcnt++; 8590 } 8591 8592 static void 8593 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 8594 { 8595 dtrace_difo_t *dp = pred->dtp_difo; 8596 8597 ASSERT(MUTEX_HELD(&dtrace_lock)); 8598 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 8599 ASSERT(pred->dtp_refcnt > 0); 8600 8601 if (--pred->dtp_refcnt == 0) { 8602 dtrace_difo_release(pred->dtp_difo, vstate); 8603 kmem_free(pred, sizeof (dtrace_predicate_t)); 8604 } 8605 } 8606 8607 /* 8608 * DTrace Action Description Functions 8609 */ 8610 static dtrace_actdesc_t * 8611 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 8612 uint64_t uarg, uint64_t arg) 8613 { 8614 dtrace_actdesc_t *act; 8615 8616 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 8617 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 8618 8619 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 8620 act->dtad_kind = kind; 8621 act->dtad_ntuple = ntuple; 8622 act->dtad_uarg = uarg; 8623 act->dtad_arg = arg; 8624 act->dtad_refcnt = 1; 8625 8626 return (act); 8627 } 8628 8629 static void 8630 dtrace_actdesc_hold(dtrace_actdesc_t *act) 8631 { 8632 ASSERT(act->dtad_refcnt >= 1); 8633 act->dtad_refcnt++; 8634 } 8635 8636 static void 8637 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 8638 { 8639 dtrace_actkind_t kind = act->dtad_kind; 8640 dtrace_difo_t *dp; 8641 8642 ASSERT(act->dtad_refcnt >= 1); 8643 8644 if (--act->dtad_refcnt != 0) 8645 return; 8646 8647 if ((dp = act->dtad_difo) != NULL) 8648 dtrace_difo_release(dp, vstate); 8649 8650 if (DTRACEACT_ISPRINTFLIKE(kind)) { 8651 char *str = (char *)(uintptr_t)act->dtad_arg; 8652 8653 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 8654 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 8655 8656 if (str != NULL) 8657 kmem_free(str, strlen(str) + 1); 8658 } 8659 8660 kmem_free(act, sizeof (dtrace_actdesc_t)); 8661 } 8662 8663 /* 8664 * DTrace ECB Functions 8665 */ 8666 static dtrace_ecb_t * 8667 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 8668 { 8669 dtrace_ecb_t *ecb; 8670 dtrace_epid_t epid; 8671 8672 ASSERT(MUTEX_HELD(&dtrace_lock)); 8673 8674 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 8675 ecb->dte_predicate = NULL; 8676 ecb->dte_probe = probe; 8677 8678 /* 8679 * The default size is the size of the default action: recording 8680 * the epid. 8681 */ 8682 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 8683 ecb->dte_alignment = sizeof (dtrace_epid_t); 8684 8685 epid = state->dts_epid++; 8686 8687 if (epid - 1 >= state->dts_necbs) { 8688 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 8689 int necbs = state->dts_necbs << 1; 8690 8691 ASSERT(epid == state->dts_necbs + 1); 8692 8693 if (necbs == 0) { 8694 ASSERT(oecbs == NULL); 8695 necbs = 1; 8696 } 8697 8698 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 8699 8700 if (oecbs != NULL) 8701 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 8702 8703 dtrace_membar_producer(); 8704 state->dts_ecbs = ecbs; 8705 8706 if (oecbs != NULL) { 8707 /* 8708 * If this state is active, we must dtrace_sync() 8709 * before we can free the old dts_ecbs array: we're 8710 * coming in hot, and there may be active ring 8711 * buffer processing (which indexes into the dts_ecbs 8712 * array) on another CPU. 8713 */ 8714 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 8715 dtrace_sync(); 8716 8717 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 8718 } 8719 8720 dtrace_membar_producer(); 8721 state->dts_necbs = necbs; 8722 } 8723 8724 ecb->dte_state = state; 8725 8726 ASSERT(state->dts_ecbs[epid - 1] == NULL); 8727 dtrace_membar_producer(); 8728 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 8729 8730 return (ecb); 8731 } 8732 8733 static void 8734 dtrace_ecb_enable(dtrace_ecb_t *ecb) 8735 { 8736 dtrace_probe_t *probe = ecb->dte_probe; 8737 8738 ASSERT(MUTEX_HELD(&cpu_lock)); 8739 ASSERT(MUTEX_HELD(&dtrace_lock)); 8740 ASSERT(ecb->dte_next == NULL); 8741 8742 if (probe == NULL) { 8743 /* 8744 * This is the NULL probe -- there's nothing to do. 8745 */ 8746 return; 8747 } 8748 8749 if (probe->dtpr_ecb == NULL) { 8750 dtrace_provider_t *prov = probe->dtpr_provider; 8751 8752 /* 8753 * We're the first ECB on this probe. 8754 */ 8755 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 8756 8757 if (ecb->dte_predicate != NULL) 8758 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 8759 8760 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 8761 probe->dtpr_id, probe->dtpr_arg); 8762 } else { 8763 /* 8764 * This probe is already active. Swing the last pointer to 8765 * point to the new ECB, and issue a dtrace_sync() to assure 8766 * that all CPUs have seen the change. 8767 */ 8768 ASSERT(probe->dtpr_ecb_last != NULL); 8769 probe->dtpr_ecb_last->dte_next = ecb; 8770 probe->dtpr_ecb_last = ecb; 8771 probe->dtpr_predcache = 0; 8772 8773 dtrace_sync(); 8774 } 8775 } 8776 8777 static void 8778 dtrace_ecb_resize(dtrace_ecb_t *ecb) 8779 { 8780 uint32_t maxalign = sizeof (dtrace_epid_t); 8781 uint32_t align = sizeof (uint8_t), offs, diff; 8782 dtrace_action_t *act; 8783 int wastuple = 0; 8784 uint32_t aggbase = UINT32_MAX; 8785 dtrace_state_t *state = ecb->dte_state; 8786 8787 /* 8788 * If we record anything, we always record the epid. (And we always 8789 * record it first.) 8790 */ 8791 offs = sizeof (dtrace_epid_t); 8792 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 8793 8794 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 8795 dtrace_recdesc_t *rec = &act->dta_rec; 8796 8797 if ((align = rec->dtrd_alignment) > maxalign) 8798 maxalign = align; 8799 8800 if (!wastuple && act->dta_intuple) { 8801 /* 8802 * This is the first record in a tuple. Align the 8803 * offset to be at offset 4 in an 8-byte aligned 8804 * block. 8805 */ 8806 diff = offs + sizeof (dtrace_aggid_t); 8807 8808 if (diff = (diff & (sizeof (uint64_t) - 1))) 8809 offs += sizeof (uint64_t) - diff; 8810 8811 aggbase = offs - sizeof (dtrace_aggid_t); 8812 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 8813 } 8814 8815 /*LINTED*/ 8816 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 8817 /* 8818 * The current offset is not properly aligned; align it. 8819 */ 8820 offs += align - diff; 8821 } 8822 8823 rec->dtrd_offset = offs; 8824 8825 if (offs + rec->dtrd_size > ecb->dte_needed) { 8826 ecb->dte_needed = offs + rec->dtrd_size; 8827 8828 if (ecb->dte_needed > state->dts_needed) 8829 state->dts_needed = ecb->dte_needed; 8830 } 8831 8832 if (DTRACEACT_ISAGG(act->dta_kind)) { 8833 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 8834 dtrace_action_t *first = agg->dtag_first, *prev; 8835 8836 ASSERT(rec->dtrd_size != 0 && first != NULL); 8837 ASSERT(wastuple); 8838 ASSERT(aggbase != UINT32_MAX); 8839 8840 agg->dtag_base = aggbase; 8841 8842 while ((prev = first->dta_prev) != NULL && 8843 DTRACEACT_ISAGG(prev->dta_kind)) { 8844 agg = (dtrace_aggregation_t *)prev; 8845 first = agg->dtag_first; 8846 } 8847 8848 if (prev != NULL) { 8849 offs = prev->dta_rec.dtrd_offset + 8850 prev->dta_rec.dtrd_size; 8851 } else { 8852 offs = sizeof (dtrace_epid_t); 8853 } 8854 wastuple = 0; 8855 } else { 8856 if (!act->dta_intuple) 8857 ecb->dte_size = offs + rec->dtrd_size; 8858 8859 offs += rec->dtrd_size; 8860 } 8861 8862 wastuple = act->dta_intuple; 8863 } 8864 8865 if ((act = ecb->dte_action) != NULL && 8866 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 8867 ecb->dte_size == sizeof (dtrace_epid_t)) { 8868 /* 8869 * If the size is still sizeof (dtrace_epid_t), then all 8870 * actions store no data; set the size to 0. 8871 */ 8872 ecb->dte_alignment = maxalign; 8873 ecb->dte_size = 0; 8874 8875 /* 8876 * If the needed space is still sizeof (dtrace_epid_t), then 8877 * all actions need no additional space; set the needed 8878 * size to 0. 8879 */ 8880 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 8881 ecb->dte_needed = 0; 8882 8883 return; 8884 } 8885 8886 /* 8887 * Set our alignment, and make sure that the dte_size and dte_needed 8888 * are aligned to the size of an EPID. 8889 */ 8890 ecb->dte_alignment = maxalign; 8891 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 8892 ~(sizeof (dtrace_epid_t) - 1); 8893 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 8894 ~(sizeof (dtrace_epid_t) - 1); 8895 ASSERT(ecb->dte_size <= ecb->dte_needed); 8896 } 8897 8898 static dtrace_action_t * 8899 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 8900 { 8901 dtrace_aggregation_t *agg; 8902 size_t size = sizeof (uint64_t); 8903 int ntuple = desc->dtad_ntuple; 8904 dtrace_action_t *act; 8905 dtrace_recdesc_t *frec; 8906 dtrace_aggid_t aggid; 8907 dtrace_state_t *state = ecb->dte_state; 8908 8909 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 8910 agg->dtag_ecb = ecb; 8911 8912 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 8913 8914 switch (desc->dtad_kind) { 8915 case DTRACEAGG_MIN: 8916 agg->dtag_initial = UINT64_MAX; 8917 agg->dtag_aggregate = dtrace_aggregate_min; 8918 break; 8919 8920 case DTRACEAGG_MAX: 8921 agg->dtag_aggregate = dtrace_aggregate_max; 8922 break; 8923 8924 case DTRACEAGG_COUNT: 8925 agg->dtag_aggregate = dtrace_aggregate_count; 8926 break; 8927 8928 case DTRACEAGG_QUANTIZE: 8929 agg->dtag_aggregate = dtrace_aggregate_quantize; 8930 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 8931 sizeof (uint64_t); 8932 break; 8933 8934 case DTRACEAGG_LQUANTIZE: { 8935 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 8936 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 8937 8938 agg->dtag_initial = desc->dtad_arg; 8939 agg->dtag_aggregate = dtrace_aggregate_lquantize; 8940 8941 if (step == 0 || levels == 0) 8942 goto err; 8943 8944 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 8945 break; 8946 } 8947 8948 case DTRACEAGG_AVG: 8949 agg->dtag_aggregate = dtrace_aggregate_avg; 8950 size = sizeof (uint64_t) * 2; 8951 break; 8952 8953 case DTRACEAGG_SUM: 8954 agg->dtag_aggregate = dtrace_aggregate_sum; 8955 break; 8956 8957 default: 8958 goto err; 8959 } 8960 8961 agg->dtag_action.dta_rec.dtrd_size = size; 8962 8963 if (ntuple == 0) 8964 goto err; 8965 8966 /* 8967 * We must make sure that we have enough actions for the n-tuple. 8968 */ 8969 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 8970 if (DTRACEACT_ISAGG(act->dta_kind)) 8971 break; 8972 8973 if (--ntuple == 0) { 8974 /* 8975 * This is the action with which our n-tuple begins. 8976 */ 8977 agg->dtag_first = act; 8978 goto success; 8979 } 8980 } 8981 8982 /* 8983 * This n-tuple is short by ntuple elements. Return failure. 8984 */ 8985 ASSERT(ntuple != 0); 8986 err: 8987 kmem_free(agg, sizeof (dtrace_aggregation_t)); 8988 return (NULL); 8989 8990 success: 8991 /* 8992 * If the last action in the tuple has a size of zero, it's actually 8993 * an expression argument for the aggregating action. 8994 */ 8995 ASSERT(ecb->dte_action_last != NULL); 8996 act = ecb->dte_action_last; 8997 8998 if (act->dta_kind == DTRACEACT_DIFEXPR) { 8999 ASSERT(act->dta_difo != NULL); 9000 9001 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9002 agg->dtag_hasarg = 1; 9003 } 9004 9005 /* 9006 * We need to allocate an id for this aggregation. 9007 */ 9008 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9009 VM_BESTFIT | VM_SLEEP); 9010 9011 if (aggid - 1 >= state->dts_naggregations) { 9012 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9013 dtrace_aggregation_t **aggs; 9014 int naggs = state->dts_naggregations << 1; 9015 int onaggs = state->dts_naggregations; 9016 9017 ASSERT(aggid == state->dts_naggregations + 1); 9018 9019 if (naggs == 0) { 9020 ASSERT(oaggs == NULL); 9021 naggs = 1; 9022 } 9023 9024 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9025 9026 if (oaggs != NULL) { 9027 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9028 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9029 } 9030 9031 state->dts_aggregations = aggs; 9032 state->dts_naggregations = naggs; 9033 } 9034 9035 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9036 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9037 9038 frec = &agg->dtag_first->dta_rec; 9039 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9040 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9041 9042 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9043 ASSERT(!act->dta_intuple); 9044 act->dta_intuple = 1; 9045 } 9046 9047 return (&agg->dtag_action); 9048 } 9049 9050 static void 9051 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9052 { 9053 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9054 dtrace_state_t *state = ecb->dte_state; 9055 dtrace_aggid_t aggid = agg->dtag_id; 9056 9057 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9058 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9059 9060 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9061 state->dts_aggregations[aggid - 1] = NULL; 9062 9063 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9064 } 9065 9066 static int 9067 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9068 { 9069 dtrace_action_t *action, *last; 9070 dtrace_difo_t *dp = desc->dtad_difo; 9071 uint32_t size = 0, align = sizeof (uint8_t), mask; 9072 uint16_t format = 0; 9073 dtrace_recdesc_t *rec; 9074 dtrace_state_t *state = ecb->dte_state; 9075 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9076 uint64_t arg = desc->dtad_arg; 9077 9078 ASSERT(MUTEX_HELD(&dtrace_lock)); 9079 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9080 9081 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9082 /* 9083 * If this is an aggregating action, there must be neither 9084 * a speculate nor a commit on the action chain. 9085 */ 9086 dtrace_action_t *act; 9087 9088 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9089 if (act->dta_kind == DTRACEACT_COMMIT) 9090 return (EINVAL); 9091 9092 if (act->dta_kind == DTRACEACT_SPECULATE) 9093 return (EINVAL); 9094 } 9095 9096 action = dtrace_ecb_aggregation_create(ecb, desc); 9097 9098 if (action == NULL) 9099 return (EINVAL); 9100 } else { 9101 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9102 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9103 dp != NULL && dp->dtdo_destructive)) { 9104 state->dts_destructive = 1; 9105 } 9106 9107 switch (desc->dtad_kind) { 9108 case DTRACEACT_PRINTF: 9109 case DTRACEACT_PRINTA: 9110 case DTRACEACT_SYSTEM: 9111 case DTRACEACT_FREOPEN: 9112 /* 9113 * We know that our arg is a string -- turn it into a 9114 * format. 9115 */ 9116 if (arg == NULL) { 9117 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); 9118 format = 0; 9119 } else { 9120 ASSERT(arg != NULL); 9121 ASSERT(arg > KERNELBASE); 9122 format = dtrace_format_add(state, 9123 (char *)(uintptr_t)arg); 9124 } 9125 9126 /*FALLTHROUGH*/ 9127 case DTRACEACT_LIBACT: 9128 case DTRACEACT_DIFEXPR: 9129 if (dp == NULL) 9130 return (EINVAL); 9131 9132 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 9133 break; 9134 9135 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 9136 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9137 return (EINVAL); 9138 9139 size = opt[DTRACEOPT_STRSIZE]; 9140 } 9141 9142 break; 9143 9144 case DTRACEACT_STACK: 9145 if ((nframes = arg) == 0) { 9146 nframes = opt[DTRACEOPT_STACKFRAMES]; 9147 ASSERT(nframes > 0); 9148 arg = nframes; 9149 } 9150 9151 size = nframes * sizeof (pc_t); 9152 break; 9153 9154 case DTRACEACT_JSTACK: 9155 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 9156 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 9157 9158 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 9159 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 9160 9161 arg = DTRACE_USTACK_ARG(nframes, strsize); 9162 9163 /*FALLTHROUGH*/ 9164 case DTRACEACT_USTACK: 9165 if (desc->dtad_kind != DTRACEACT_JSTACK && 9166 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 9167 strsize = DTRACE_USTACK_STRSIZE(arg); 9168 nframes = opt[DTRACEOPT_USTACKFRAMES]; 9169 ASSERT(nframes > 0); 9170 arg = DTRACE_USTACK_ARG(nframes, strsize); 9171 } 9172 9173 /* 9174 * Save a slot for the pid. 9175 */ 9176 size = (nframes + 1) * sizeof (uint64_t); 9177 size += DTRACE_USTACK_STRSIZE(arg); 9178 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 9179 9180 break; 9181 9182 case DTRACEACT_SYM: 9183 case DTRACEACT_MOD: 9184 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 9185 sizeof (uint64_t)) || 9186 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9187 return (EINVAL); 9188 break; 9189 9190 case DTRACEACT_USYM: 9191 case DTRACEACT_UMOD: 9192 case DTRACEACT_UADDR: 9193 if (dp == NULL || 9194 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 9195 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9196 return (EINVAL); 9197 9198 /* 9199 * We have a slot for the pid, plus a slot for the 9200 * argument. To keep things simple (aligned with 9201 * bitness-neutral sizing), we store each as a 64-bit 9202 * quantity. 9203 */ 9204 size = 2 * sizeof (uint64_t); 9205 break; 9206 9207 case DTRACEACT_STOP: 9208 case DTRACEACT_BREAKPOINT: 9209 case DTRACEACT_PANIC: 9210 break; 9211 9212 case DTRACEACT_CHILL: 9213 case DTRACEACT_DISCARD: 9214 case DTRACEACT_RAISE: 9215 if (dp == NULL) 9216 return (EINVAL); 9217 break; 9218 9219 case DTRACEACT_EXIT: 9220 if (dp == NULL || 9221 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 9222 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9223 return (EINVAL); 9224 break; 9225 9226 case DTRACEACT_SPECULATE: 9227 if (ecb->dte_size > sizeof (dtrace_epid_t)) 9228 return (EINVAL); 9229 9230 if (dp == NULL) 9231 return (EINVAL); 9232 9233 state->dts_speculates = 1; 9234 break; 9235 9236 case DTRACEACT_COMMIT: { 9237 dtrace_action_t *act = ecb->dte_action; 9238 9239 for (; act != NULL; act = act->dta_next) { 9240 if (act->dta_kind == DTRACEACT_COMMIT) 9241 return (EINVAL); 9242 } 9243 9244 if (dp == NULL) 9245 return (EINVAL); 9246 break; 9247 } 9248 9249 default: 9250 return (EINVAL); 9251 } 9252 9253 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 9254 /* 9255 * If this is a data-storing action or a speculate, 9256 * we must be sure that there isn't a commit on the 9257 * action chain. 9258 */ 9259 dtrace_action_t *act = ecb->dte_action; 9260 9261 for (; act != NULL; act = act->dta_next) { 9262 if (act->dta_kind == DTRACEACT_COMMIT) 9263 return (EINVAL); 9264 } 9265 } 9266 9267 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 9268 action->dta_rec.dtrd_size = size; 9269 } 9270 9271 action->dta_refcnt = 1; 9272 rec = &action->dta_rec; 9273 size = rec->dtrd_size; 9274 9275 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 9276 if (!(size & mask)) { 9277 align = mask + 1; 9278 break; 9279 } 9280 } 9281 9282 action->dta_kind = desc->dtad_kind; 9283 9284 if ((action->dta_difo = dp) != NULL) 9285 dtrace_difo_hold(dp); 9286 9287 rec->dtrd_action = action->dta_kind; 9288 rec->dtrd_arg = arg; 9289 rec->dtrd_uarg = desc->dtad_uarg; 9290 rec->dtrd_alignment = (uint16_t)align; 9291 rec->dtrd_format = format; 9292 9293 if ((last = ecb->dte_action_last) != NULL) { 9294 ASSERT(ecb->dte_action != NULL); 9295 action->dta_prev = last; 9296 last->dta_next = action; 9297 } else { 9298 ASSERT(ecb->dte_action == NULL); 9299 ecb->dte_action = action; 9300 } 9301 9302 ecb->dte_action_last = action; 9303 9304 return (0); 9305 } 9306 9307 static void 9308 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 9309 { 9310 dtrace_action_t *act = ecb->dte_action, *next; 9311 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 9312 dtrace_difo_t *dp; 9313 uint16_t format; 9314 9315 if (act != NULL && act->dta_refcnt > 1) { 9316 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 9317 act->dta_refcnt--; 9318 } else { 9319 for (; act != NULL; act = next) { 9320 next = act->dta_next; 9321 ASSERT(next != NULL || act == ecb->dte_action_last); 9322 ASSERT(act->dta_refcnt == 1); 9323 9324 if ((format = act->dta_rec.dtrd_format) != 0) 9325 dtrace_format_remove(ecb->dte_state, format); 9326 9327 if ((dp = act->dta_difo) != NULL) 9328 dtrace_difo_release(dp, vstate); 9329 9330 if (DTRACEACT_ISAGG(act->dta_kind)) { 9331 dtrace_ecb_aggregation_destroy(ecb, act); 9332 } else { 9333 kmem_free(act, sizeof (dtrace_action_t)); 9334 } 9335 } 9336 } 9337 9338 ecb->dte_action = NULL; 9339 ecb->dte_action_last = NULL; 9340 ecb->dte_size = sizeof (dtrace_epid_t); 9341 } 9342 9343 static void 9344 dtrace_ecb_disable(dtrace_ecb_t *ecb) 9345 { 9346 /* 9347 * We disable the ECB by removing it from its probe. 9348 */ 9349 dtrace_ecb_t *pecb, *prev = NULL; 9350 dtrace_probe_t *probe = ecb->dte_probe; 9351 9352 ASSERT(MUTEX_HELD(&dtrace_lock)); 9353 9354 if (probe == NULL) { 9355 /* 9356 * This is the NULL probe; there is nothing to disable. 9357 */ 9358 return; 9359 } 9360 9361 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 9362 if (pecb == ecb) 9363 break; 9364 prev = pecb; 9365 } 9366 9367 ASSERT(pecb != NULL); 9368 9369 if (prev == NULL) { 9370 probe->dtpr_ecb = ecb->dte_next; 9371 } else { 9372 prev->dte_next = ecb->dte_next; 9373 } 9374 9375 if (ecb == probe->dtpr_ecb_last) { 9376 ASSERT(ecb->dte_next == NULL); 9377 probe->dtpr_ecb_last = prev; 9378 } 9379 9380 /* 9381 * The ECB has been disconnected from the probe; now sync to assure 9382 * that all CPUs have seen the change before returning. 9383 */ 9384 dtrace_sync(); 9385 9386 if (probe->dtpr_ecb == NULL) { 9387 /* 9388 * That was the last ECB on the probe; clear the predicate 9389 * cache ID for the probe, disable it and sync one more time 9390 * to assure that we'll never hit it again. 9391 */ 9392 dtrace_provider_t *prov = probe->dtpr_provider; 9393 9394 ASSERT(ecb->dte_next == NULL); 9395 ASSERT(probe->dtpr_ecb_last == NULL); 9396 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 9397 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 9398 probe->dtpr_id, probe->dtpr_arg); 9399 dtrace_sync(); 9400 } else { 9401 /* 9402 * There is at least one ECB remaining on the probe. If there 9403 * is _exactly_ one, set the probe's predicate cache ID to be 9404 * the predicate cache ID of the remaining ECB. 9405 */ 9406 ASSERT(probe->dtpr_ecb_last != NULL); 9407 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 9408 9409 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 9410 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 9411 9412 ASSERT(probe->dtpr_ecb->dte_next == NULL); 9413 9414 if (p != NULL) 9415 probe->dtpr_predcache = p->dtp_cacheid; 9416 } 9417 9418 ecb->dte_next = NULL; 9419 } 9420 } 9421 9422 static void 9423 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 9424 { 9425 dtrace_state_t *state = ecb->dte_state; 9426 dtrace_vstate_t *vstate = &state->dts_vstate; 9427 dtrace_predicate_t *pred; 9428 dtrace_epid_t epid = ecb->dte_epid; 9429 9430 ASSERT(MUTEX_HELD(&dtrace_lock)); 9431 ASSERT(ecb->dte_next == NULL); 9432 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 9433 9434 if ((pred = ecb->dte_predicate) != NULL) 9435 dtrace_predicate_release(pred, vstate); 9436 9437 dtrace_ecb_action_remove(ecb); 9438 9439 ASSERT(state->dts_ecbs[epid - 1] == ecb); 9440 state->dts_ecbs[epid - 1] = NULL; 9441 9442 kmem_free(ecb, sizeof (dtrace_ecb_t)); 9443 } 9444 9445 static dtrace_ecb_t * 9446 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 9447 dtrace_enabling_t *enab) 9448 { 9449 dtrace_ecb_t *ecb; 9450 dtrace_predicate_t *pred; 9451 dtrace_actdesc_t *act; 9452 dtrace_provider_t *prov; 9453 dtrace_ecbdesc_t *desc = enab->dten_current; 9454 9455 ASSERT(MUTEX_HELD(&dtrace_lock)); 9456 ASSERT(state != NULL); 9457 9458 ecb = dtrace_ecb_add(state, probe); 9459 ecb->dte_uarg = desc->dted_uarg; 9460 9461 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 9462 dtrace_predicate_hold(pred); 9463 ecb->dte_predicate = pred; 9464 } 9465 9466 if (probe != NULL) { 9467 /* 9468 * If the provider shows more leg than the consumer is old 9469 * enough to see, we need to enable the appropriate implicit 9470 * predicate bits to prevent the ecb from activating at 9471 * revealing times. 9472 * 9473 * Providers specifying DTRACE_PRIV_USER at register time 9474 * are stating that they need the /proc-style privilege 9475 * model to be enforced, and this is what DTRACE_COND_OWNER 9476 * and DTRACE_COND_ZONEOWNER will then do at probe time. 9477 */ 9478 prov = probe->dtpr_provider; 9479 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 9480 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9481 ecb->dte_cond |= DTRACE_COND_OWNER; 9482 9483 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 9484 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9485 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 9486 9487 /* 9488 * If the provider shows us kernel innards and the user 9489 * is lacking sufficient privilege, enable the 9490 * DTRACE_COND_USERMODE implicit predicate. 9491 */ 9492 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 9493 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 9494 ecb->dte_cond |= DTRACE_COND_USERMODE; 9495 } 9496 9497 if (dtrace_ecb_create_cache != NULL) { 9498 /* 9499 * If we have a cached ecb, we'll use its action list instead 9500 * of creating our own (saving both time and space). 9501 */ 9502 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 9503 dtrace_action_t *act = cached->dte_action; 9504 9505 if (act != NULL) { 9506 ASSERT(act->dta_refcnt > 0); 9507 act->dta_refcnt++; 9508 ecb->dte_action = act; 9509 ecb->dte_action_last = cached->dte_action_last; 9510 ecb->dte_needed = cached->dte_needed; 9511 ecb->dte_size = cached->dte_size; 9512 ecb->dte_alignment = cached->dte_alignment; 9513 } 9514 9515 return (ecb); 9516 } 9517 9518 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 9519 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 9520 dtrace_ecb_destroy(ecb); 9521 return (NULL); 9522 } 9523 } 9524 9525 dtrace_ecb_resize(ecb); 9526 9527 return (dtrace_ecb_create_cache = ecb); 9528 } 9529 9530 static int 9531 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 9532 { 9533 dtrace_ecb_t *ecb; 9534 dtrace_enabling_t *enab = arg; 9535 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 9536 9537 ASSERT(state != NULL); 9538 9539 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 9540 /* 9541 * This probe was created in a generation for which this 9542 * enabling has previously created ECBs; we don't want to 9543 * enable it again, so just kick out. 9544 */ 9545 return (DTRACE_MATCH_NEXT); 9546 } 9547 9548 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 9549 return (DTRACE_MATCH_DONE); 9550 9551 dtrace_ecb_enable(ecb); 9552 return (DTRACE_MATCH_NEXT); 9553 } 9554 9555 static dtrace_ecb_t * 9556 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 9557 { 9558 dtrace_ecb_t *ecb; 9559 9560 ASSERT(MUTEX_HELD(&dtrace_lock)); 9561 9562 if (id == 0 || id > state->dts_necbs) 9563 return (NULL); 9564 9565 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 9566 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 9567 9568 return (state->dts_ecbs[id - 1]); 9569 } 9570 9571 static dtrace_aggregation_t * 9572 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 9573 { 9574 dtrace_aggregation_t *agg; 9575 9576 ASSERT(MUTEX_HELD(&dtrace_lock)); 9577 9578 if (id == 0 || id > state->dts_naggregations) 9579 return (NULL); 9580 9581 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 9582 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 9583 agg->dtag_id == id); 9584 9585 return (state->dts_aggregations[id - 1]); 9586 } 9587 9588 /* 9589 * DTrace Buffer Functions 9590 * 9591 * The following functions manipulate DTrace buffers. Most of these functions 9592 * are called in the context of establishing or processing consumer state; 9593 * exceptions are explicitly noted. 9594 */ 9595 9596 /* 9597 * Note: called from cross call context. This function switches the two 9598 * buffers on a given CPU. The atomicity of this operation is assured by 9599 * disabling interrupts while the actual switch takes place; the disabling of 9600 * interrupts serializes the execution with any execution of dtrace_probe() on 9601 * the same CPU. 9602 */ 9603 static void 9604 dtrace_buffer_switch(dtrace_buffer_t *buf) 9605 { 9606 caddr_t tomax = buf->dtb_tomax; 9607 caddr_t xamot = buf->dtb_xamot; 9608 dtrace_icookie_t cookie; 9609 9610 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 9611 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 9612 9613 cookie = dtrace_interrupt_disable(); 9614 buf->dtb_tomax = xamot; 9615 buf->dtb_xamot = tomax; 9616 buf->dtb_xamot_drops = buf->dtb_drops; 9617 buf->dtb_xamot_offset = buf->dtb_offset; 9618 buf->dtb_xamot_errors = buf->dtb_errors; 9619 buf->dtb_xamot_flags = buf->dtb_flags; 9620 buf->dtb_offset = 0; 9621 buf->dtb_drops = 0; 9622 buf->dtb_errors = 0; 9623 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 9624 dtrace_interrupt_enable(cookie); 9625 } 9626 9627 /* 9628 * Note: called from cross call context. This function activates a buffer 9629 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 9630 * is guaranteed by the disabling of interrupts. 9631 */ 9632 static void 9633 dtrace_buffer_activate(dtrace_state_t *state) 9634 { 9635 dtrace_buffer_t *buf; 9636 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 9637 9638 buf = &state->dts_buffer[CPU->cpu_id]; 9639 9640 if (buf->dtb_tomax != NULL) { 9641 /* 9642 * We might like to assert that the buffer is marked inactive, 9643 * but this isn't necessarily true: the buffer for the CPU 9644 * that processes the BEGIN probe has its buffer activated 9645 * manually. In this case, we take the (harmless) action 9646 * re-clearing the bit INACTIVE bit. 9647 */ 9648 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 9649 } 9650 9651 dtrace_interrupt_enable(cookie); 9652 } 9653 9654 static int 9655 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 9656 processorid_t cpu) 9657 { 9658 cpu_t *cp; 9659 dtrace_buffer_t *buf; 9660 9661 ASSERT(MUTEX_HELD(&cpu_lock)); 9662 ASSERT(MUTEX_HELD(&dtrace_lock)); 9663 9664 if (size > dtrace_nonroot_maxsize && 9665 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 9666 return (EFBIG); 9667 9668 cp = cpu_list; 9669 9670 do { 9671 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 9672 continue; 9673 9674 buf = &bufs[cp->cpu_id]; 9675 9676 /* 9677 * If there is already a buffer allocated for this CPU, it 9678 * is only possible that this is a DR event. In this case, 9679 * the buffer size must match our specified size. 9680 */ 9681 if (buf->dtb_tomax != NULL) { 9682 ASSERT(buf->dtb_size == size); 9683 continue; 9684 } 9685 9686 ASSERT(buf->dtb_xamot == NULL); 9687 9688 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 9689 goto err; 9690 9691 buf->dtb_size = size; 9692 buf->dtb_flags = flags; 9693 buf->dtb_offset = 0; 9694 buf->dtb_drops = 0; 9695 9696 if (flags & DTRACEBUF_NOSWITCH) 9697 continue; 9698 9699 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 9700 goto err; 9701 } while ((cp = cp->cpu_next) != cpu_list); 9702 9703 return (0); 9704 9705 err: 9706 cp = cpu_list; 9707 9708 do { 9709 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 9710 continue; 9711 9712 buf = &bufs[cp->cpu_id]; 9713 9714 if (buf->dtb_xamot != NULL) { 9715 ASSERT(buf->dtb_tomax != NULL); 9716 ASSERT(buf->dtb_size == size); 9717 kmem_free(buf->dtb_xamot, size); 9718 } 9719 9720 if (buf->dtb_tomax != NULL) { 9721 ASSERT(buf->dtb_size == size); 9722 kmem_free(buf->dtb_tomax, size); 9723 } 9724 9725 buf->dtb_tomax = NULL; 9726 buf->dtb_xamot = NULL; 9727 buf->dtb_size = 0; 9728 } while ((cp = cp->cpu_next) != cpu_list); 9729 9730 return (ENOMEM); 9731 } 9732 9733 /* 9734 * Note: called from probe context. This function just increments the drop 9735 * count on a buffer. It has been made a function to allow for the 9736 * possibility of understanding the source of mysterious drop counts. (A 9737 * problem for which one may be particularly disappointed that DTrace cannot 9738 * be used to understand DTrace.) 9739 */ 9740 static void 9741 dtrace_buffer_drop(dtrace_buffer_t *buf) 9742 { 9743 buf->dtb_drops++; 9744 } 9745 9746 /* 9747 * Note: called from probe context. This function is called to reserve space 9748 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 9749 * mstate. Returns the new offset in the buffer, or a negative value if an 9750 * error has occurred. 9751 */ 9752 static intptr_t 9753 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 9754 dtrace_state_t *state, dtrace_mstate_t *mstate) 9755 { 9756 intptr_t offs = buf->dtb_offset, soffs; 9757 intptr_t woffs; 9758 caddr_t tomax; 9759 size_t total; 9760 9761 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 9762 return (-1); 9763 9764 if ((tomax = buf->dtb_tomax) == NULL) { 9765 dtrace_buffer_drop(buf); 9766 return (-1); 9767 } 9768 9769 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 9770 while (offs & (align - 1)) { 9771 /* 9772 * Assert that our alignment is off by a number which 9773 * is itself sizeof (uint32_t) aligned. 9774 */ 9775 ASSERT(!((align - (offs & (align - 1))) & 9776 (sizeof (uint32_t) - 1))); 9777 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 9778 offs += sizeof (uint32_t); 9779 } 9780 9781 if ((soffs = offs + needed) > buf->dtb_size) { 9782 dtrace_buffer_drop(buf); 9783 return (-1); 9784 } 9785 9786 if (mstate == NULL) 9787 return (offs); 9788 9789 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 9790 mstate->dtms_scratch_size = buf->dtb_size - soffs; 9791 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 9792 9793 return (offs); 9794 } 9795 9796 if (buf->dtb_flags & DTRACEBUF_FILL) { 9797 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 9798 (buf->dtb_flags & DTRACEBUF_FULL)) 9799 return (-1); 9800 goto out; 9801 } 9802 9803 total = needed + (offs & (align - 1)); 9804 9805 /* 9806 * For a ring buffer, life is quite a bit more complicated. Before 9807 * we can store any padding, we need to adjust our wrapping offset. 9808 * (If we've never before wrapped or we're not about to, no adjustment 9809 * is required.) 9810 */ 9811 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 9812 offs + total > buf->dtb_size) { 9813 woffs = buf->dtb_xamot_offset; 9814 9815 if (offs + total > buf->dtb_size) { 9816 /* 9817 * We can't fit in the end of the buffer. First, a 9818 * sanity check that we can fit in the buffer at all. 9819 */ 9820 if (total > buf->dtb_size) { 9821 dtrace_buffer_drop(buf); 9822 return (-1); 9823 } 9824 9825 /* 9826 * We're going to be storing at the top of the buffer, 9827 * so now we need to deal with the wrapped offset. We 9828 * only reset our wrapped offset to 0 if it is 9829 * currently greater than the current offset. If it 9830 * is less than the current offset, it is because a 9831 * previous allocation induced a wrap -- but the 9832 * allocation didn't subsequently take the space due 9833 * to an error or false predicate evaluation. In this 9834 * case, we'll just leave the wrapped offset alone: if 9835 * the wrapped offset hasn't been advanced far enough 9836 * for this allocation, it will be adjusted in the 9837 * lower loop. 9838 */ 9839 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 9840 if (woffs >= offs) 9841 woffs = 0; 9842 } else { 9843 woffs = 0; 9844 } 9845 9846 /* 9847 * Now we know that we're going to be storing to the 9848 * top of the buffer and that there is room for us 9849 * there. We need to clear the buffer from the current 9850 * offset to the end (there may be old gunk there). 9851 */ 9852 while (offs < buf->dtb_size) 9853 tomax[offs++] = 0; 9854 9855 /* 9856 * We need to set our offset to zero. And because we 9857 * are wrapping, we need to set the bit indicating as 9858 * much. We can also adjust our needed space back 9859 * down to the space required by the ECB -- we know 9860 * that the top of the buffer is aligned. 9861 */ 9862 offs = 0; 9863 total = needed; 9864 buf->dtb_flags |= DTRACEBUF_WRAPPED; 9865 } else { 9866 /* 9867 * There is room for us in the buffer, so we simply 9868 * need to check the wrapped offset. 9869 */ 9870 if (woffs < offs) { 9871 /* 9872 * The wrapped offset is less than the offset. 9873 * This can happen if we allocated buffer space 9874 * that induced a wrap, but then we didn't 9875 * subsequently take the space due to an error 9876 * or false predicate evaluation. This is 9877 * okay; we know that _this_ allocation isn't 9878 * going to induce a wrap. We still can't 9879 * reset the wrapped offset to be zero, 9880 * however: the space may have been trashed in 9881 * the previous failed probe attempt. But at 9882 * least the wrapped offset doesn't need to 9883 * be adjusted at all... 9884 */ 9885 goto out; 9886 } 9887 } 9888 9889 while (offs + total > woffs) { 9890 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 9891 size_t size; 9892 9893 if (epid == DTRACE_EPIDNONE) { 9894 size = sizeof (uint32_t); 9895 } else { 9896 ASSERT(epid <= state->dts_necbs); 9897 ASSERT(state->dts_ecbs[epid - 1] != NULL); 9898 9899 size = state->dts_ecbs[epid - 1]->dte_size; 9900 } 9901 9902 ASSERT(woffs + size <= buf->dtb_size); 9903 ASSERT(size != 0); 9904 9905 if (woffs + size == buf->dtb_size) { 9906 /* 9907 * We've reached the end of the buffer; we want 9908 * to set the wrapped offset to 0 and break 9909 * out. However, if the offs is 0, then we're 9910 * in a strange edge-condition: the amount of 9911 * space that we want to reserve plus the size 9912 * of the record that we're overwriting is 9913 * greater than the size of the buffer. This 9914 * is problematic because if we reserve the 9915 * space but subsequently don't consume it (due 9916 * to a failed predicate or error) the wrapped 9917 * offset will be 0 -- yet the EPID at offset 0 9918 * will not be committed. This situation is 9919 * relatively easy to deal with: if we're in 9920 * this case, the buffer is indistinguishable 9921 * from one that hasn't wrapped; we need only 9922 * finish the job by clearing the wrapped bit, 9923 * explicitly setting the offset to be 0, and 9924 * zero'ing out the old data in the buffer. 9925 */ 9926 if (offs == 0) { 9927 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 9928 buf->dtb_offset = 0; 9929 woffs = total; 9930 9931 while (woffs < buf->dtb_size) 9932 tomax[woffs++] = 0; 9933 } 9934 9935 woffs = 0; 9936 break; 9937 } 9938 9939 woffs += size; 9940 } 9941 9942 /* 9943 * We have a wrapped offset. It may be that the wrapped offset 9944 * has become zero -- that's okay. 9945 */ 9946 buf->dtb_xamot_offset = woffs; 9947 } 9948 9949 out: 9950 /* 9951 * Now we can plow the buffer with any necessary padding. 9952 */ 9953 while (offs & (align - 1)) { 9954 /* 9955 * Assert that our alignment is off by a number which 9956 * is itself sizeof (uint32_t) aligned. 9957 */ 9958 ASSERT(!((align - (offs & (align - 1))) & 9959 (sizeof (uint32_t) - 1))); 9960 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 9961 offs += sizeof (uint32_t); 9962 } 9963 9964 if (buf->dtb_flags & DTRACEBUF_FILL) { 9965 if (offs + needed > buf->dtb_size - state->dts_reserve) { 9966 buf->dtb_flags |= DTRACEBUF_FULL; 9967 return (-1); 9968 } 9969 } 9970 9971 if (mstate == NULL) 9972 return (offs); 9973 9974 /* 9975 * For ring buffers and fill buffers, the scratch space is always 9976 * the inactive buffer. 9977 */ 9978 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 9979 mstate->dtms_scratch_size = buf->dtb_size; 9980 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 9981 9982 return (offs); 9983 } 9984 9985 static void 9986 dtrace_buffer_polish(dtrace_buffer_t *buf) 9987 { 9988 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 9989 ASSERT(MUTEX_HELD(&dtrace_lock)); 9990 9991 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 9992 return; 9993 9994 /* 9995 * We need to polish the ring buffer. There are three cases: 9996 * 9997 * - The first (and presumably most common) is that there is no gap 9998 * between the buffer offset and the wrapped offset. In this case, 9999 * there is nothing in the buffer that isn't valid data; we can 10000 * mark the buffer as polished and return. 10001 * 10002 * - The second (less common than the first but still more common 10003 * than the third) is that there is a gap between the buffer offset 10004 * and the wrapped offset, and the wrapped offset is larger than the 10005 * buffer offset. This can happen because of an alignment issue, or 10006 * can happen because of a call to dtrace_buffer_reserve() that 10007 * didn't subsequently consume the buffer space. In this case, 10008 * we need to zero the data from the buffer offset to the wrapped 10009 * offset. 10010 * 10011 * - The third (and least common) is that there is a gap between the 10012 * buffer offset and the wrapped offset, but the wrapped offset is 10013 * _less_ than the buffer offset. This can only happen because a 10014 * call to dtrace_buffer_reserve() induced a wrap, but the space 10015 * was not subsequently consumed. In this case, we need to zero the 10016 * space from the offset to the end of the buffer _and_ from the 10017 * top of the buffer to the wrapped offset. 10018 */ 10019 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10020 bzero(buf->dtb_tomax + buf->dtb_offset, 10021 buf->dtb_xamot_offset - buf->dtb_offset); 10022 } 10023 10024 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10025 bzero(buf->dtb_tomax + buf->dtb_offset, 10026 buf->dtb_size - buf->dtb_offset); 10027 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10028 } 10029 } 10030 10031 static void 10032 dtrace_buffer_free(dtrace_buffer_t *bufs) 10033 { 10034 int i; 10035 10036 for (i = 0; i < NCPU; i++) { 10037 dtrace_buffer_t *buf = &bufs[i]; 10038 10039 if (buf->dtb_tomax == NULL) { 10040 ASSERT(buf->dtb_xamot == NULL); 10041 ASSERT(buf->dtb_size == 0); 10042 continue; 10043 } 10044 10045 if (buf->dtb_xamot != NULL) { 10046 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10047 kmem_free(buf->dtb_xamot, buf->dtb_size); 10048 } 10049 10050 kmem_free(buf->dtb_tomax, buf->dtb_size); 10051 buf->dtb_size = 0; 10052 buf->dtb_tomax = NULL; 10053 buf->dtb_xamot = NULL; 10054 } 10055 } 10056 10057 /* 10058 * DTrace Enabling Functions 10059 */ 10060 static dtrace_enabling_t * 10061 dtrace_enabling_create(dtrace_vstate_t *vstate) 10062 { 10063 dtrace_enabling_t *enab; 10064 10065 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 10066 enab->dten_vstate = vstate; 10067 10068 return (enab); 10069 } 10070 10071 static void 10072 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 10073 { 10074 dtrace_ecbdesc_t **ndesc; 10075 size_t osize, nsize; 10076 10077 /* 10078 * We can't add to enablings after we've enabled them, or after we've 10079 * retained them. 10080 */ 10081 ASSERT(enab->dten_probegen == 0); 10082 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10083 10084 if (enab->dten_ndesc < enab->dten_maxdesc) { 10085 enab->dten_desc[enab->dten_ndesc++] = ecb; 10086 return; 10087 } 10088 10089 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10090 10091 if (enab->dten_maxdesc == 0) { 10092 enab->dten_maxdesc = 1; 10093 } else { 10094 enab->dten_maxdesc <<= 1; 10095 } 10096 10097 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 10098 10099 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10100 ndesc = kmem_zalloc(nsize, KM_SLEEP); 10101 bcopy(enab->dten_desc, ndesc, osize); 10102 kmem_free(enab->dten_desc, osize); 10103 10104 enab->dten_desc = ndesc; 10105 enab->dten_desc[enab->dten_ndesc++] = ecb; 10106 } 10107 10108 static void 10109 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 10110 dtrace_probedesc_t *pd) 10111 { 10112 dtrace_ecbdesc_t *new; 10113 dtrace_predicate_t *pred; 10114 dtrace_actdesc_t *act; 10115 10116 /* 10117 * We're going to create a new ECB description that matches the 10118 * specified ECB in every way, but has the specified probe description. 10119 */ 10120 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10121 10122 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 10123 dtrace_predicate_hold(pred); 10124 10125 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 10126 dtrace_actdesc_hold(act); 10127 10128 new->dted_action = ecb->dted_action; 10129 new->dted_pred = ecb->dted_pred; 10130 new->dted_probe = *pd; 10131 new->dted_uarg = ecb->dted_uarg; 10132 10133 dtrace_enabling_add(enab, new); 10134 } 10135 10136 static void 10137 dtrace_enabling_dump(dtrace_enabling_t *enab) 10138 { 10139 int i; 10140 10141 for (i = 0; i < enab->dten_ndesc; i++) { 10142 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 10143 10144 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 10145 desc->dtpd_provider, desc->dtpd_mod, 10146 desc->dtpd_func, desc->dtpd_name); 10147 } 10148 } 10149 10150 static void 10151 dtrace_enabling_destroy(dtrace_enabling_t *enab) 10152 { 10153 int i; 10154 dtrace_ecbdesc_t *ep; 10155 dtrace_vstate_t *vstate = enab->dten_vstate; 10156 10157 ASSERT(MUTEX_HELD(&dtrace_lock)); 10158 10159 for (i = 0; i < enab->dten_ndesc; i++) { 10160 dtrace_actdesc_t *act, *next; 10161 dtrace_predicate_t *pred; 10162 10163 ep = enab->dten_desc[i]; 10164 10165 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 10166 dtrace_predicate_release(pred, vstate); 10167 10168 for (act = ep->dted_action; act != NULL; act = next) { 10169 next = act->dtad_next; 10170 dtrace_actdesc_release(act, vstate); 10171 } 10172 10173 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10174 } 10175 10176 kmem_free(enab->dten_desc, 10177 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 10178 10179 /* 10180 * If this was a retained enabling, decrement the dts_nretained count 10181 * and take it off of the dtrace_retained list. 10182 */ 10183 if (enab->dten_prev != NULL || enab->dten_next != NULL || 10184 dtrace_retained == enab) { 10185 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10186 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 10187 enab->dten_vstate->dtvs_state->dts_nretained--; 10188 } 10189 10190 if (enab->dten_prev == NULL) { 10191 if (dtrace_retained == enab) { 10192 dtrace_retained = enab->dten_next; 10193 10194 if (dtrace_retained != NULL) 10195 dtrace_retained->dten_prev = NULL; 10196 } 10197 } else { 10198 ASSERT(enab != dtrace_retained); 10199 ASSERT(dtrace_retained != NULL); 10200 enab->dten_prev->dten_next = enab->dten_next; 10201 } 10202 10203 if (enab->dten_next != NULL) { 10204 ASSERT(dtrace_retained != NULL); 10205 enab->dten_next->dten_prev = enab->dten_prev; 10206 } 10207 10208 kmem_free(enab, sizeof (dtrace_enabling_t)); 10209 } 10210 10211 static int 10212 dtrace_enabling_retain(dtrace_enabling_t *enab) 10213 { 10214 dtrace_state_t *state; 10215 10216 ASSERT(MUTEX_HELD(&dtrace_lock)); 10217 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10218 ASSERT(enab->dten_vstate != NULL); 10219 10220 state = enab->dten_vstate->dtvs_state; 10221 ASSERT(state != NULL); 10222 10223 /* 10224 * We only allow each state to retain dtrace_retain_max enablings. 10225 */ 10226 if (state->dts_nretained >= dtrace_retain_max) 10227 return (ENOSPC); 10228 10229 state->dts_nretained++; 10230 10231 if (dtrace_retained == NULL) { 10232 dtrace_retained = enab; 10233 return (0); 10234 } 10235 10236 enab->dten_next = dtrace_retained; 10237 dtrace_retained->dten_prev = enab; 10238 dtrace_retained = enab; 10239 10240 return (0); 10241 } 10242 10243 static int 10244 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 10245 dtrace_probedesc_t *create) 10246 { 10247 dtrace_enabling_t *new, *enab; 10248 int found = 0, err = ENOENT; 10249 10250 ASSERT(MUTEX_HELD(&dtrace_lock)); 10251 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 10252 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 10253 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 10254 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 10255 10256 new = dtrace_enabling_create(&state->dts_vstate); 10257 10258 /* 10259 * Iterate over all retained enablings, looking for enablings that 10260 * match the specified state. 10261 */ 10262 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10263 int i; 10264 10265 /* 10266 * dtvs_state can only be NULL for helper enablings -- and 10267 * helper enablings can't be retained. 10268 */ 10269 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10270 10271 if (enab->dten_vstate->dtvs_state != state) 10272 continue; 10273 10274 /* 10275 * Now iterate over each probe description; we're looking for 10276 * an exact match to the specified probe description. 10277 */ 10278 for (i = 0; i < enab->dten_ndesc; i++) { 10279 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10280 dtrace_probedesc_t *pd = &ep->dted_probe; 10281 10282 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 10283 continue; 10284 10285 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 10286 continue; 10287 10288 if (strcmp(pd->dtpd_func, match->dtpd_func)) 10289 continue; 10290 10291 if (strcmp(pd->dtpd_name, match->dtpd_name)) 10292 continue; 10293 10294 /* 10295 * We have a winning probe! Add it to our growing 10296 * enabling. 10297 */ 10298 found = 1; 10299 dtrace_enabling_addlike(new, ep, create); 10300 } 10301 } 10302 10303 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 10304 dtrace_enabling_destroy(new); 10305 return (err); 10306 } 10307 10308 return (0); 10309 } 10310 10311 static void 10312 dtrace_enabling_retract(dtrace_state_t *state) 10313 { 10314 dtrace_enabling_t *enab, *next; 10315 10316 ASSERT(MUTEX_HELD(&dtrace_lock)); 10317 10318 /* 10319 * Iterate over all retained enablings, destroy the enablings retained 10320 * for the specified state. 10321 */ 10322 for (enab = dtrace_retained; enab != NULL; enab = next) { 10323 next = enab->dten_next; 10324 10325 /* 10326 * dtvs_state can only be NULL for helper enablings -- and 10327 * helper enablings can't be retained. 10328 */ 10329 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10330 10331 if (enab->dten_vstate->dtvs_state == state) { 10332 ASSERT(state->dts_nretained > 0); 10333 dtrace_enabling_destroy(enab); 10334 } 10335 } 10336 10337 ASSERT(state->dts_nretained == 0); 10338 } 10339 10340 static int 10341 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 10342 { 10343 int i = 0; 10344 int matched = 0; 10345 10346 ASSERT(MUTEX_HELD(&cpu_lock)); 10347 ASSERT(MUTEX_HELD(&dtrace_lock)); 10348 10349 for (i = 0; i < enab->dten_ndesc; i++) { 10350 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10351 10352 enab->dten_current = ep; 10353 enab->dten_error = 0; 10354 10355 matched += dtrace_probe_enable(&ep->dted_probe, enab); 10356 10357 if (enab->dten_error != 0) { 10358 /* 10359 * If we get an error half-way through enabling the 10360 * probes, we kick out -- perhaps with some number of 10361 * them enabled. Leaving enabled probes enabled may 10362 * be slightly confusing for user-level, but we expect 10363 * that no one will attempt to actually drive on in 10364 * the face of such errors. If this is an anonymous 10365 * enabling (indicated with a NULL nmatched pointer), 10366 * we cmn_err() a message. We aren't expecting to 10367 * get such an error -- such as it can exist at all, 10368 * it would be a result of corrupted DOF in the driver 10369 * properties. 10370 */ 10371 if (nmatched == NULL) { 10372 cmn_err(CE_WARN, "dtrace_enabling_match() " 10373 "error on %p: %d", (void *)ep, 10374 enab->dten_error); 10375 } 10376 10377 return (enab->dten_error); 10378 } 10379 } 10380 10381 enab->dten_probegen = dtrace_probegen; 10382 if (nmatched != NULL) 10383 *nmatched = matched; 10384 10385 return (0); 10386 } 10387 10388 static void 10389 dtrace_enabling_matchall(void) 10390 { 10391 dtrace_enabling_t *enab; 10392 10393 mutex_enter(&cpu_lock); 10394 mutex_enter(&dtrace_lock); 10395 10396 /* 10397 * Because we can be called after dtrace_detach() has been called, we 10398 * cannot assert that there are retained enablings. We can safely 10399 * load from dtrace_retained, however: the taskq_destroy() at the 10400 * end of dtrace_detach() will block pending our completion. 10401 */ 10402 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) 10403 (void) dtrace_enabling_match(enab, NULL); 10404 10405 mutex_exit(&dtrace_lock); 10406 mutex_exit(&cpu_lock); 10407 } 10408 10409 static int 10410 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched) 10411 { 10412 dtrace_enabling_t *enab; 10413 int matched, total = 0, err; 10414 10415 ASSERT(MUTEX_HELD(&cpu_lock)); 10416 ASSERT(MUTEX_HELD(&dtrace_lock)); 10417 10418 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10419 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10420 10421 if (enab->dten_vstate->dtvs_state != state) 10422 continue; 10423 10424 if ((err = dtrace_enabling_match(enab, &matched)) != 0) 10425 return (err); 10426 10427 total += matched; 10428 } 10429 10430 if (nmatched != NULL) 10431 *nmatched = total; 10432 10433 return (0); 10434 } 10435 10436 /* 10437 * If an enabling is to be enabled without having matched probes (that is, if 10438 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 10439 * enabling must be _primed_ by creating an ECB for every ECB description. 10440 * This must be done to assure that we know the number of speculations, the 10441 * number of aggregations, the minimum buffer size needed, etc. before we 10442 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 10443 * enabling any probes, we create ECBs for every ECB decription, but with a 10444 * NULL probe -- which is exactly what this function does. 10445 */ 10446 static void 10447 dtrace_enabling_prime(dtrace_state_t *state) 10448 { 10449 dtrace_enabling_t *enab; 10450 int i; 10451 10452 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10453 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10454 10455 if (enab->dten_vstate->dtvs_state != state) 10456 continue; 10457 10458 /* 10459 * We don't want to prime an enabling more than once, lest 10460 * we allow a malicious user to induce resource exhaustion. 10461 * (The ECBs that result from priming an enabling aren't 10462 * leaked -- but they also aren't deallocated until the 10463 * consumer state is destroyed.) 10464 */ 10465 if (enab->dten_primed) 10466 continue; 10467 10468 for (i = 0; i < enab->dten_ndesc; i++) { 10469 enab->dten_current = enab->dten_desc[i]; 10470 (void) dtrace_probe_enable(NULL, enab); 10471 } 10472 10473 enab->dten_primed = 1; 10474 } 10475 } 10476 10477 /* 10478 * Called to indicate that probes should be provided due to retained 10479 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 10480 * must take an initial lap through the enabling calling the dtps_provide() 10481 * entry point explicitly to allow for autocreated probes. 10482 */ 10483 static void 10484 dtrace_enabling_provide(dtrace_provider_t *prv) 10485 { 10486 int i, all = 0; 10487 dtrace_probedesc_t desc; 10488 10489 ASSERT(MUTEX_HELD(&dtrace_lock)); 10490 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 10491 10492 if (prv == NULL) { 10493 all = 1; 10494 prv = dtrace_provider; 10495 } 10496 10497 do { 10498 dtrace_enabling_t *enab = dtrace_retained; 10499 void *parg = prv->dtpv_arg; 10500 10501 for (; enab != NULL; enab = enab->dten_next) { 10502 for (i = 0; i < enab->dten_ndesc; i++) { 10503 desc = enab->dten_desc[i]->dted_probe; 10504 mutex_exit(&dtrace_lock); 10505 prv->dtpv_pops.dtps_provide(parg, &desc); 10506 mutex_enter(&dtrace_lock); 10507 } 10508 } 10509 } while (all && (prv = prv->dtpv_next) != NULL); 10510 10511 mutex_exit(&dtrace_lock); 10512 dtrace_probe_provide(NULL, all ? NULL : prv); 10513 mutex_enter(&dtrace_lock); 10514 } 10515 10516 /* 10517 * DTrace DOF Functions 10518 */ 10519 /*ARGSUSED*/ 10520 static void 10521 dtrace_dof_error(dof_hdr_t *dof, const char *str) 10522 { 10523 if (dtrace_err_verbose) 10524 cmn_err(CE_WARN, "failed to process DOF: %s", str); 10525 10526 #ifdef DTRACE_ERRDEBUG 10527 dtrace_errdebug(str); 10528 #endif 10529 } 10530 10531 /* 10532 * Create DOF out of a currently enabled state. Right now, we only create 10533 * DOF containing the run-time options -- but this could be expanded to create 10534 * complete DOF representing the enabled state. 10535 */ 10536 static dof_hdr_t * 10537 dtrace_dof_create(dtrace_state_t *state) 10538 { 10539 dof_hdr_t *dof; 10540 dof_sec_t *sec; 10541 dof_optdesc_t *opt; 10542 int i, len = sizeof (dof_hdr_t) + 10543 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 10544 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10545 10546 ASSERT(MUTEX_HELD(&dtrace_lock)); 10547 10548 dof = kmem_zalloc(len, KM_SLEEP); 10549 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 10550 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 10551 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 10552 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 10553 10554 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 10555 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 10556 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 10557 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 10558 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 10559 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 10560 10561 dof->dofh_flags = 0; 10562 dof->dofh_hdrsize = sizeof (dof_hdr_t); 10563 dof->dofh_secsize = sizeof (dof_sec_t); 10564 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 10565 dof->dofh_secoff = sizeof (dof_hdr_t); 10566 dof->dofh_loadsz = len; 10567 dof->dofh_filesz = len; 10568 dof->dofh_pad = 0; 10569 10570 /* 10571 * Fill in the option section header... 10572 */ 10573 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 10574 sec->dofs_type = DOF_SECT_OPTDESC; 10575 sec->dofs_align = sizeof (uint64_t); 10576 sec->dofs_flags = DOF_SECF_LOAD; 10577 sec->dofs_entsize = sizeof (dof_optdesc_t); 10578 10579 opt = (dof_optdesc_t *)((uintptr_t)sec + 10580 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 10581 10582 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 10583 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10584 10585 for (i = 0; i < DTRACEOPT_MAX; i++) { 10586 opt[i].dofo_option = i; 10587 opt[i].dofo_strtab = DOF_SECIDX_NONE; 10588 opt[i].dofo_value = state->dts_options[i]; 10589 } 10590 10591 return (dof); 10592 } 10593 10594 static dof_hdr_t * 10595 dtrace_dof_copyin(uintptr_t uarg, int *errp) 10596 { 10597 dof_hdr_t hdr, *dof; 10598 10599 ASSERT(!MUTEX_HELD(&dtrace_lock)); 10600 10601 /* 10602 * First, we're going to copyin() the sizeof (dof_hdr_t). 10603 */ 10604 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 10605 dtrace_dof_error(NULL, "failed to copyin DOF header"); 10606 *errp = EFAULT; 10607 return (NULL); 10608 } 10609 10610 /* 10611 * Now we'll allocate the entire DOF and copy it in -- provided 10612 * that the length isn't outrageous. 10613 */ 10614 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 10615 dtrace_dof_error(&hdr, "load size exceeds maximum"); 10616 *errp = E2BIG; 10617 return (NULL); 10618 } 10619 10620 if (hdr.dofh_loadsz < sizeof (hdr)) { 10621 dtrace_dof_error(&hdr, "invalid load size"); 10622 *errp = EINVAL; 10623 return (NULL); 10624 } 10625 10626 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 10627 10628 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) { 10629 kmem_free(dof, hdr.dofh_loadsz); 10630 *errp = EFAULT; 10631 return (NULL); 10632 } 10633 10634 return (dof); 10635 } 10636 10637 static dof_hdr_t * 10638 dtrace_dof_property(const char *name) 10639 { 10640 uchar_t *buf; 10641 uint64_t loadsz; 10642 unsigned int len, i; 10643 dof_hdr_t *dof; 10644 10645 /* 10646 * Unfortunately, array of values in .conf files are always (and 10647 * only) interpreted to be integer arrays. We must read our DOF 10648 * as an integer array, and then squeeze it into a byte array. 10649 */ 10650 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 10651 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 10652 return (NULL); 10653 10654 for (i = 0; i < len; i++) 10655 buf[i] = (uchar_t)(((int *)buf)[i]); 10656 10657 if (len < sizeof (dof_hdr_t)) { 10658 ddi_prop_free(buf); 10659 dtrace_dof_error(NULL, "truncated header"); 10660 return (NULL); 10661 } 10662 10663 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 10664 ddi_prop_free(buf); 10665 dtrace_dof_error(NULL, "truncated DOF"); 10666 return (NULL); 10667 } 10668 10669 if (loadsz >= dtrace_dof_maxsize) { 10670 ddi_prop_free(buf); 10671 dtrace_dof_error(NULL, "oversized DOF"); 10672 return (NULL); 10673 } 10674 10675 dof = kmem_alloc(loadsz, KM_SLEEP); 10676 bcopy(buf, dof, loadsz); 10677 ddi_prop_free(buf); 10678 10679 return (dof); 10680 } 10681 10682 static void 10683 dtrace_dof_destroy(dof_hdr_t *dof) 10684 { 10685 kmem_free(dof, dof->dofh_loadsz); 10686 } 10687 10688 /* 10689 * Return the dof_sec_t pointer corresponding to a given section index. If the 10690 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 10691 * a type other than DOF_SECT_NONE is specified, the header is checked against 10692 * this type and NULL is returned if the types do not match. 10693 */ 10694 static dof_sec_t * 10695 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 10696 { 10697 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 10698 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 10699 10700 if (i >= dof->dofh_secnum) { 10701 dtrace_dof_error(dof, "referenced section index is invalid"); 10702 return (NULL); 10703 } 10704 10705 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 10706 dtrace_dof_error(dof, "referenced section is not loadable"); 10707 return (NULL); 10708 } 10709 10710 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 10711 dtrace_dof_error(dof, "referenced section is the wrong type"); 10712 return (NULL); 10713 } 10714 10715 return (sec); 10716 } 10717 10718 static dtrace_probedesc_t * 10719 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 10720 { 10721 dof_probedesc_t *probe; 10722 dof_sec_t *strtab; 10723 uintptr_t daddr = (uintptr_t)dof; 10724 uintptr_t str; 10725 size_t size; 10726 10727 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 10728 dtrace_dof_error(dof, "invalid probe section"); 10729 return (NULL); 10730 } 10731 10732 if (sec->dofs_align != sizeof (dof_secidx_t)) { 10733 dtrace_dof_error(dof, "bad alignment in probe description"); 10734 return (NULL); 10735 } 10736 10737 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 10738 dtrace_dof_error(dof, "truncated probe description"); 10739 return (NULL); 10740 } 10741 10742 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 10743 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 10744 10745 if (strtab == NULL) 10746 return (NULL); 10747 10748 str = daddr + strtab->dofs_offset; 10749 size = strtab->dofs_size; 10750 10751 if (probe->dofp_provider >= strtab->dofs_size) { 10752 dtrace_dof_error(dof, "corrupt probe provider"); 10753 return (NULL); 10754 } 10755 10756 (void) strncpy(desc->dtpd_provider, 10757 (char *)(str + probe->dofp_provider), 10758 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 10759 10760 if (probe->dofp_mod >= strtab->dofs_size) { 10761 dtrace_dof_error(dof, "corrupt probe module"); 10762 return (NULL); 10763 } 10764 10765 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 10766 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 10767 10768 if (probe->dofp_func >= strtab->dofs_size) { 10769 dtrace_dof_error(dof, "corrupt probe function"); 10770 return (NULL); 10771 } 10772 10773 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 10774 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 10775 10776 if (probe->dofp_name >= strtab->dofs_size) { 10777 dtrace_dof_error(dof, "corrupt probe name"); 10778 return (NULL); 10779 } 10780 10781 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 10782 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 10783 10784 return (desc); 10785 } 10786 10787 static dtrace_difo_t * 10788 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 10789 cred_t *cr) 10790 { 10791 dtrace_difo_t *dp; 10792 size_t ttl = 0; 10793 dof_difohdr_t *dofd; 10794 uintptr_t daddr = (uintptr_t)dof; 10795 size_t max = dtrace_difo_maxsize; 10796 int i, l, n; 10797 10798 static const struct { 10799 int section; 10800 int bufoffs; 10801 int lenoffs; 10802 int entsize; 10803 int align; 10804 const char *msg; 10805 } difo[] = { 10806 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 10807 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 10808 sizeof (dif_instr_t), "multiple DIF sections" }, 10809 10810 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 10811 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 10812 sizeof (uint64_t), "multiple integer tables" }, 10813 10814 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 10815 offsetof(dtrace_difo_t, dtdo_strlen), 0, 10816 sizeof (char), "multiple string tables" }, 10817 10818 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 10819 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 10820 sizeof (uint_t), "multiple variable tables" }, 10821 10822 { DOF_SECT_NONE, 0, 0, 0, NULL } 10823 }; 10824 10825 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 10826 dtrace_dof_error(dof, "invalid DIFO header section"); 10827 return (NULL); 10828 } 10829 10830 if (sec->dofs_align != sizeof (dof_secidx_t)) { 10831 dtrace_dof_error(dof, "bad alignment in DIFO header"); 10832 return (NULL); 10833 } 10834 10835 if (sec->dofs_size < sizeof (dof_difohdr_t) || 10836 sec->dofs_size % sizeof (dof_secidx_t)) { 10837 dtrace_dof_error(dof, "bad size in DIFO header"); 10838 return (NULL); 10839 } 10840 10841 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 10842 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 10843 10844 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10845 dp->dtdo_rtype = dofd->dofd_rtype; 10846 10847 for (l = 0; l < n; l++) { 10848 dof_sec_t *subsec; 10849 void **bufp; 10850 uint32_t *lenp; 10851 10852 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 10853 dofd->dofd_links[l])) == NULL) 10854 goto err; /* invalid section link */ 10855 10856 if (ttl + subsec->dofs_size > max) { 10857 dtrace_dof_error(dof, "exceeds maximum size"); 10858 goto err; 10859 } 10860 10861 ttl += subsec->dofs_size; 10862 10863 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 10864 if (subsec->dofs_type != difo[i].section) 10865 continue; 10866 10867 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 10868 dtrace_dof_error(dof, "section not loaded"); 10869 goto err; 10870 } 10871 10872 if (subsec->dofs_align != difo[i].align) { 10873 dtrace_dof_error(dof, "bad alignment"); 10874 goto err; 10875 } 10876 10877 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 10878 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 10879 10880 if (*bufp != NULL) { 10881 dtrace_dof_error(dof, difo[i].msg); 10882 goto err; 10883 } 10884 10885 if (difo[i].entsize != subsec->dofs_entsize) { 10886 dtrace_dof_error(dof, "entry size mismatch"); 10887 goto err; 10888 } 10889 10890 if (subsec->dofs_entsize != 0 && 10891 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 10892 dtrace_dof_error(dof, "corrupt entry size"); 10893 goto err; 10894 } 10895 10896 *lenp = subsec->dofs_size; 10897 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 10898 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 10899 *bufp, subsec->dofs_size); 10900 10901 if (subsec->dofs_entsize != 0) 10902 *lenp /= subsec->dofs_entsize; 10903 10904 break; 10905 } 10906 10907 /* 10908 * If we encounter a loadable DIFO sub-section that is not 10909 * known to us, assume this is a broken program and fail. 10910 */ 10911 if (difo[i].section == DOF_SECT_NONE && 10912 (subsec->dofs_flags & DOF_SECF_LOAD)) { 10913 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 10914 goto err; 10915 } 10916 } 10917 10918 if (dp->dtdo_buf == NULL) { 10919 /* 10920 * We can't have a DIF object without DIF text. 10921 */ 10922 dtrace_dof_error(dof, "missing DIF text"); 10923 goto err; 10924 } 10925 10926 /* 10927 * Before we validate the DIF object, run through the variable table 10928 * looking for the strings -- if any of their size are under, we'll set 10929 * their size to be the system-wide default string size. Note that 10930 * this should _not_ happen if the "strsize" option has been set -- 10931 * in this case, the compiler should have set the size to reflect the 10932 * setting of the option. 10933 */ 10934 for (i = 0; i < dp->dtdo_varlen; i++) { 10935 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10936 dtrace_diftype_t *t = &v->dtdv_type; 10937 10938 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 10939 continue; 10940 10941 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 10942 t->dtdt_size = dtrace_strsize_default; 10943 } 10944 10945 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 10946 goto err; 10947 10948 dtrace_difo_init(dp, vstate); 10949 return (dp); 10950 10951 err: 10952 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10953 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10954 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10955 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10956 10957 kmem_free(dp, sizeof (dtrace_difo_t)); 10958 return (NULL); 10959 } 10960 10961 static dtrace_predicate_t * 10962 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 10963 cred_t *cr) 10964 { 10965 dtrace_difo_t *dp; 10966 10967 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 10968 return (NULL); 10969 10970 return (dtrace_predicate_create(dp)); 10971 } 10972 10973 static dtrace_actdesc_t * 10974 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 10975 cred_t *cr) 10976 { 10977 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 10978 dof_actdesc_t *desc; 10979 dof_sec_t *difosec; 10980 size_t offs; 10981 uintptr_t daddr = (uintptr_t)dof; 10982 uint64_t arg; 10983 dtrace_actkind_t kind; 10984 10985 if (sec->dofs_type != DOF_SECT_ACTDESC) { 10986 dtrace_dof_error(dof, "invalid action section"); 10987 return (NULL); 10988 } 10989 10990 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 10991 dtrace_dof_error(dof, "truncated action description"); 10992 return (NULL); 10993 } 10994 10995 if (sec->dofs_align != sizeof (uint64_t)) { 10996 dtrace_dof_error(dof, "bad alignment in action description"); 10997 return (NULL); 10998 } 10999 11000 if (sec->dofs_size < sec->dofs_entsize) { 11001 dtrace_dof_error(dof, "section entry size exceeds total size"); 11002 return (NULL); 11003 } 11004 11005 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 11006 dtrace_dof_error(dof, "bad entry size in action description"); 11007 return (NULL); 11008 } 11009 11010 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 11011 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 11012 return (NULL); 11013 } 11014 11015 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 11016 desc = (dof_actdesc_t *)(daddr + 11017 (uintptr_t)sec->dofs_offset + offs); 11018 kind = (dtrace_actkind_t)desc->dofa_kind; 11019 11020 if (DTRACEACT_ISPRINTFLIKE(kind) && 11021 (kind != DTRACEACT_PRINTA || 11022 desc->dofa_strtab != DOF_SECIDX_NONE)) { 11023 dof_sec_t *strtab; 11024 char *str, *fmt; 11025 uint64_t i; 11026 11027 /* 11028 * printf()-like actions must have a format string. 11029 */ 11030 if ((strtab = dtrace_dof_sect(dof, 11031 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 11032 goto err; 11033 11034 str = (char *)((uintptr_t)dof + 11035 (uintptr_t)strtab->dofs_offset); 11036 11037 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 11038 if (str[i] == '\0') 11039 break; 11040 } 11041 11042 if (i >= strtab->dofs_size) { 11043 dtrace_dof_error(dof, "bogus format string"); 11044 goto err; 11045 } 11046 11047 if (i == desc->dofa_arg) { 11048 dtrace_dof_error(dof, "empty format string"); 11049 goto err; 11050 } 11051 11052 i -= desc->dofa_arg; 11053 fmt = kmem_alloc(i + 1, KM_SLEEP); 11054 bcopy(&str[desc->dofa_arg], fmt, i + 1); 11055 arg = (uint64_t)(uintptr_t)fmt; 11056 } else { 11057 if (kind == DTRACEACT_PRINTA) { 11058 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 11059 arg = 0; 11060 } else { 11061 arg = desc->dofa_arg; 11062 } 11063 } 11064 11065 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 11066 desc->dofa_uarg, arg); 11067 11068 if (last != NULL) { 11069 last->dtad_next = act; 11070 } else { 11071 first = act; 11072 } 11073 11074 last = act; 11075 11076 if (desc->dofa_difo == DOF_SECIDX_NONE) 11077 continue; 11078 11079 if ((difosec = dtrace_dof_sect(dof, 11080 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 11081 goto err; 11082 11083 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 11084 11085 if (act->dtad_difo == NULL) 11086 goto err; 11087 } 11088 11089 ASSERT(first != NULL); 11090 return (first); 11091 11092 err: 11093 for (act = first; act != NULL; act = next) { 11094 next = act->dtad_next; 11095 dtrace_actdesc_release(act, vstate); 11096 } 11097 11098 return (NULL); 11099 } 11100 11101 static dtrace_ecbdesc_t * 11102 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11103 cred_t *cr) 11104 { 11105 dtrace_ecbdesc_t *ep; 11106 dof_ecbdesc_t *ecb; 11107 dtrace_probedesc_t *desc; 11108 dtrace_predicate_t *pred = NULL; 11109 11110 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 11111 dtrace_dof_error(dof, "truncated ECB description"); 11112 return (NULL); 11113 } 11114 11115 if (sec->dofs_align != sizeof (uint64_t)) { 11116 dtrace_dof_error(dof, "bad alignment in ECB description"); 11117 return (NULL); 11118 } 11119 11120 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 11121 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 11122 11123 if (sec == NULL) 11124 return (NULL); 11125 11126 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11127 ep->dted_uarg = ecb->dofe_uarg; 11128 desc = &ep->dted_probe; 11129 11130 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 11131 goto err; 11132 11133 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 11134 if ((sec = dtrace_dof_sect(dof, 11135 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 11136 goto err; 11137 11138 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 11139 goto err; 11140 11141 ep->dted_pred.dtpdd_predicate = pred; 11142 } 11143 11144 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 11145 if ((sec = dtrace_dof_sect(dof, 11146 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 11147 goto err; 11148 11149 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 11150 11151 if (ep->dted_action == NULL) 11152 goto err; 11153 } 11154 11155 return (ep); 11156 11157 err: 11158 if (pred != NULL) 11159 dtrace_predicate_release(pred, vstate); 11160 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11161 return (NULL); 11162 } 11163 11164 /* 11165 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 11166 * specified DOF. At present, this amounts to simply adding 'ubase' to the 11167 * site of any user SETX relocations to account for load object base address. 11168 * In the future, if we need other relocations, this function can be extended. 11169 */ 11170 static int 11171 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 11172 { 11173 uintptr_t daddr = (uintptr_t)dof; 11174 dof_relohdr_t *dofr = 11175 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11176 dof_sec_t *ss, *rs, *ts; 11177 dof_relodesc_t *r; 11178 uint_t i, n; 11179 11180 if (sec->dofs_size < sizeof (dof_relohdr_t) || 11181 sec->dofs_align != sizeof (dof_secidx_t)) { 11182 dtrace_dof_error(dof, "invalid relocation header"); 11183 return (-1); 11184 } 11185 11186 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 11187 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 11188 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 11189 11190 if (ss == NULL || rs == NULL || ts == NULL) 11191 return (-1); /* dtrace_dof_error() has been called already */ 11192 11193 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 11194 rs->dofs_align != sizeof (uint64_t)) { 11195 dtrace_dof_error(dof, "invalid relocation section"); 11196 return (-1); 11197 } 11198 11199 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 11200 n = rs->dofs_size / rs->dofs_entsize; 11201 11202 for (i = 0; i < n; i++) { 11203 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 11204 11205 switch (r->dofr_type) { 11206 case DOF_RELO_NONE: 11207 break; 11208 case DOF_RELO_SETX: 11209 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 11210 sizeof (uint64_t) > ts->dofs_size) { 11211 dtrace_dof_error(dof, "bad relocation offset"); 11212 return (-1); 11213 } 11214 11215 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 11216 dtrace_dof_error(dof, "misaligned setx relo"); 11217 return (-1); 11218 } 11219 11220 *(uint64_t *)taddr += ubase; 11221 break; 11222 default: 11223 dtrace_dof_error(dof, "invalid relocation type"); 11224 return (-1); 11225 } 11226 11227 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 11228 } 11229 11230 return (0); 11231 } 11232 11233 /* 11234 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 11235 * header: it should be at the front of a memory region that is at least 11236 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 11237 * size. It need not be validated in any other way. 11238 */ 11239 static int 11240 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 11241 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 11242 { 11243 uint64_t len = dof->dofh_loadsz, seclen; 11244 uintptr_t daddr = (uintptr_t)dof; 11245 dtrace_ecbdesc_t *ep; 11246 dtrace_enabling_t *enab; 11247 uint_t i; 11248 11249 ASSERT(MUTEX_HELD(&dtrace_lock)); 11250 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 11251 11252 /* 11253 * Check the DOF header identification bytes. In addition to checking 11254 * valid settings, we also verify that unused bits/bytes are zeroed so 11255 * we can use them later without fear of regressing existing binaries. 11256 */ 11257 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 11258 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 11259 dtrace_dof_error(dof, "DOF magic string mismatch"); 11260 return (-1); 11261 } 11262 11263 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 11264 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 11265 dtrace_dof_error(dof, "DOF has invalid data model"); 11266 return (-1); 11267 } 11268 11269 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 11270 dtrace_dof_error(dof, "DOF encoding mismatch"); 11271 return (-1); 11272 } 11273 11274 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 11275 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 11276 dtrace_dof_error(dof, "DOF version mismatch"); 11277 return (-1); 11278 } 11279 11280 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 11281 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 11282 return (-1); 11283 } 11284 11285 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 11286 dtrace_dof_error(dof, "DOF uses too many integer registers"); 11287 return (-1); 11288 } 11289 11290 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 11291 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 11292 return (-1); 11293 } 11294 11295 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 11296 if (dof->dofh_ident[i] != 0) { 11297 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 11298 return (-1); 11299 } 11300 } 11301 11302 if (dof->dofh_flags & ~DOF_FL_VALID) { 11303 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 11304 return (-1); 11305 } 11306 11307 if (dof->dofh_secsize == 0) { 11308 dtrace_dof_error(dof, "zero section header size"); 11309 return (-1); 11310 } 11311 11312 /* 11313 * Check that the section headers don't exceed the amount of DOF 11314 * data. Note that we cast the section size and number of sections 11315 * to uint64_t's to prevent possible overflow in the multiplication. 11316 */ 11317 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 11318 11319 if (dof->dofh_secoff > len || seclen > len || 11320 dof->dofh_secoff + seclen > len) { 11321 dtrace_dof_error(dof, "truncated section headers"); 11322 return (-1); 11323 } 11324 11325 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 11326 dtrace_dof_error(dof, "misaligned section headers"); 11327 return (-1); 11328 } 11329 11330 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 11331 dtrace_dof_error(dof, "misaligned section size"); 11332 return (-1); 11333 } 11334 11335 /* 11336 * Take an initial pass through the section headers to be sure that 11337 * the headers don't have stray offsets. If the 'noprobes' flag is 11338 * set, do not permit sections relating to providers, probes, or args. 11339 */ 11340 for (i = 0; i < dof->dofh_secnum; i++) { 11341 dof_sec_t *sec = (dof_sec_t *)(daddr + 11342 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11343 11344 if (noprobes) { 11345 switch (sec->dofs_type) { 11346 case DOF_SECT_PROVIDER: 11347 case DOF_SECT_PROBES: 11348 case DOF_SECT_PRARGS: 11349 case DOF_SECT_PROFFS: 11350 dtrace_dof_error(dof, "illegal sections " 11351 "for enabling"); 11352 return (-1); 11353 } 11354 } 11355 11356 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11357 continue; /* just ignore non-loadable sections */ 11358 11359 if (sec->dofs_align & (sec->dofs_align - 1)) { 11360 dtrace_dof_error(dof, "bad section alignment"); 11361 return (-1); 11362 } 11363 11364 if (sec->dofs_offset & (sec->dofs_align - 1)) { 11365 dtrace_dof_error(dof, "misaligned section"); 11366 return (-1); 11367 } 11368 11369 if (sec->dofs_offset > len || sec->dofs_size > len || 11370 sec->dofs_offset + sec->dofs_size > len) { 11371 dtrace_dof_error(dof, "corrupt section header"); 11372 return (-1); 11373 } 11374 11375 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 11376 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 11377 dtrace_dof_error(dof, "non-terminating string table"); 11378 return (-1); 11379 } 11380 } 11381 11382 /* 11383 * Take a second pass through the sections and locate and perform any 11384 * relocations that are present. We do this after the first pass to 11385 * be sure that all sections have had their headers validated. 11386 */ 11387 for (i = 0; i < dof->dofh_secnum; i++) { 11388 dof_sec_t *sec = (dof_sec_t *)(daddr + 11389 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11390 11391 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11392 continue; /* skip sections that are not loadable */ 11393 11394 switch (sec->dofs_type) { 11395 case DOF_SECT_URELHDR: 11396 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 11397 return (-1); 11398 break; 11399 } 11400 } 11401 11402 if ((enab = *enabp) == NULL) 11403 enab = *enabp = dtrace_enabling_create(vstate); 11404 11405 for (i = 0; i < dof->dofh_secnum; i++) { 11406 dof_sec_t *sec = (dof_sec_t *)(daddr + 11407 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11408 11409 if (sec->dofs_type != DOF_SECT_ECBDESC) 11410 continue; 11411 11412 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 11413 dtrace_enabling_destroy(enab); 11414 *enabp = NULL; 11415 return (-1); 11416 } 11417 11418 dtrace_enabling_add(enab, ep); 11419 } 11420 11421 return (0); 11422 } 11423 11424 /* 11425 * Process DOF for any options. This routine assumes that the DOF has been 11426 * at least processed by dtrace_dof_slurp(). 11427 */ 11428 static int 11429 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 11430 { 11431 int i, rval; 11432 uint32_t entsize; 11433 size_t offs; 11434 dof_optdesc_t *desc; 11435 11436 for (i = 0; i < dof->dofh_secnum; i++) { 11437 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 11438 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11439 11440 if (sec->dofs_type != DOF_SECT_OPTDESC) 11441 continue; 11442 11443 if (sec->dofs_align != sizeof (uint64_t)) { 11444 dtrace_dof_error(dof, "bad alignment in " 11445 "option description"); 11446 return (EINVAL); 11447 } 11448 11449 if ((entsize = sec->dofs_entsize) == 0) { 11450 dtrace_dof_error(dof, "zeroed option entry size"); 11451 return (EINVAL); 11452 } 11453 11454 if (entsize < sizeof (dof_optdesc_t)) { 11455 dtrace_dof_error(dof, "bad option entry size"); 11456 return (EINVAL); 11457 } 11458 11459 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 11460 desc = (dof_optdesc_t *)((uintptr_t)dof + 11461 (uintptr_t)sec->dofs_offset + offs); 11462 11463 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 11464 dtrace_dof_error(dof, "non-zero option string"); 11465 return (EINVAL); 11466 } 11467 11468 if (desc->dofo_value == DTRACEOPT_UNSET) { 11469 dtrace_dof_error(dof, "unset option"); 11470 return (EINVAL); 11471 } 11472 11473 if ((rval = dtrace_state_option(state, 11474 desc->dofo_option, desc->dofo_value)) != 0) { 11475 dtrace_dof_error(dof, "rejected option"); 11476 return (rval); 11477 } 11478 } 11479 } 11480 11481 return (0); 11482 } 11483 11484 /* 11485 * DTrace Consumer State Functions 11486 */ 11487 int 11488 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 11489 { 11490 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 11491 void *base; 11492 uintptr_t limit; 11493 dtrace_dynvar_t *dvar, *next, *start; 11494 int i; 11495 11496 ASSERT(MUTEX_HELD(&dtrace_lock)); 11497 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 11498 11499 bzero(dstate, sizeof (dtrace_dstate_t)); 11500 11501 if ((dstate->dtds_chunksize = chunksize) == 0) 11502 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 11503 11504 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 11505 size = min; 11506 11507 if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 11508 return (ENOMEM); 11509 11510 dstate->dtds_size = size; 11511 dstate->dtds_base = base; 11512 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 11513 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 11514 11515 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 11516 11517 if (hashsize != 1 && (hashsize & 1)) 11518 hashsize--; 11519 11520 dstate->dtds_hashsize = hashsize; 11521 dstate->dtds_hash = dstate->dtds_base; 11522 11523 /* 11524 * Set all of our hash buckets to point to the single sink, and (if 11525 * it hasn't already been set), set the sink's hash value to be the 11526 * sink sentinel value. The sink is needed for dynamic variable 11527 * lookups to know that they have iterated over an entire, valid hash 11528 * chain. 11529 */ 11530 for (i = 0; i < hashsize; i++) 11531 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 11532 11533 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 11534 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 11535 11536 /* 11537 * Determine number of active CPUs. Divide free list evenly among 11538 * active CPUs. 11539 */ 11540 start = (dtrace_dynvar_t *) 11541 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 11542 limit = (uintptr_t)base + size; 11543 11544 maxper = (limit - (uintptr_t)start) / NCPU; 11545 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 11546 11547 for (i = 0; i < NCPU; i++) { 11548 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 11549 11550 /* 11551 * If we don't even have enough chunks to make it once through 11552 * NCPUs, we're just going to allocate everything to the first 11553 * CPU. And if we're on the last CPU, we're going to allocate 11554 * whatever is left over. In either case, we set the limit to 11555 * be the limit of the dynamic variable space. 11556 */ 11557 if (maxper == 0 || i == NCPU - 1) { 11558 limit = (uintptr_t)base + size; 11559 start = NULL; 11560 } else { 11561 limit = (uintptr_t)start + maxper; 11562 start = (dtrace_dynvar_t *)limit; 11563 } 11564 11565 ASSERT(limit <= (uintptr_t)base + size); 11566 11567 for (;;) { 11568 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 11569 dstate->dtds_chunksize); 11570 11571 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 11572 break; 11573 11574 dvar->dtdv_next = next; 11575 dvar = next; 11576 } 11577 11578 if (maxper == 0) 11579 break; 11580 } 11581 11582 return (0); 11583 } 11584 11585 void 11586 dtrace_dstate_fini(dtrace_dstate_t *dstate) 11587 { 11588 ASSERT(MUTEX_HELD(&cpu_lock)); 11589 11590 if (dstate->dtds_base == NULL) 11591 return; 11592 11593 kmem_free(dstate->dtds_base, dstate->dtds_size); 11594 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 11595 } 11596 11597 static void 11598 dtrace_vstate_fini(dtrace_vstate_t *vstate) 11599 { 11600 /* 11601 * Logical XOR, where are you? 11602 */ 11603 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 11604 11605 if (vstate->dtvs_nglobals > 0) { 11606 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 11607 sizeof (dtrace_statvar_t *)); 11608 } 11609 11610 if (vstate->dtvs_ntlocals > 0) { 11611 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 11612 sizeof (dtrace_difv_t)); 11613 } 11614 11615 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 11616 11617 if (vstate->dtvs_nlocals > 0) { 11618 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 11619 sizeof (dtrace_statvar_t *)); 11620 } 11621 } 11622 11623 static void 11624 dtrace_state_clean(dtrace_state_t *state) 11625 { 11626 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 11627 return; 11628 11629 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 11630 dtrace_speculation_clean(state); 11631 } 11632 11633 static void 11634 dtrace_state_deadman(dtrace_state_t *state) 11635 { 11636 hrtime_t now; 11637 11638 dtrace_sync(); 11639 11640 now = dtrace_gethrtime(); 11641 11642 if (state != dtrace_anon.dta_state && 11643 now - state->dts_laststatus >= dtrace_deadman_user) 11644 return; 11645 11646 /* 11647 * We must be sure that dts_alive never appears to be less than the 11648 * value upon entry to dtrace_state_deadman(), and because we lack a 11649 * dtrace_cas64(), we cannot store to it atomically. We thus instead 11650 * store INT64_MAX to it, followed by a memory barrier, followed by 11651 * the new value. This assures that dts_alive never appears to be 11652 * less than its true value, regardless of the order in which the 11653 * stores to the underlying storage are issued. 11654 */ 11655 state->dts_alive = INT64_MAX; 11656 dtrace_membar_producer(); 11657 state->dts_alive = now; 11658 } 11659 11660 dtrace_state_t * 11661 dtrace_state_create(dev_t *devp, cred_t *cr) 11662 { 11663 minor_t minor; 11664 major_t major; 11665 char c[30]; 11666 dtrace_state_t *state; 11667 dtrace_optval_t *opt; 11668 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 11669 11670 ASSERT(MUTEX_HELD(&dtrace_lock)); 11671 ASSERT(MUTEX_HELD(&cpu_lock)); 11672 11673 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 11674 VM_BESTFIT | VM_SLEEP); 11675 11676 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 11677 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 11678 return (NULL); 11679 } 11680 11681 state = ddi_get_soft_state(dtrace_softstate, minor); 11682 state->dts_epid = DTRACE_EPIDNONE + 1; 11683 11684 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 11685 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 11686 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 11687 11688 if (devp != NULL) { 11689 major = getemajor(*devp); 11690 } else { 11691 major = ddi_driver_major(dtrace_devi); 11692 } 11693 11694 state->dts_dev = makedevice(major, minor); 11695 11696 if (devp != NULL) 11697 *devp = state->dts_dev; 11698 11699 /* 11700 * We allocate NCPU buffers. On the one hand, this can be quite 11701 * a bit of memory per instance (nearly 36K on a Starcat). On the 11702 * other hand, it saves an additional memory reference in the probe 11703 * path. 11704 */ 11705 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 11706 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 11707 state->dts_cleaner = CYCLIC_NONE; 11708 state->dts_deadman = CYCLIC_NONE; 11709 state->dts_vstate.dtvs_state = state; 11710 11711 for (i = 0; i < DTRACEOPT_MAX; i++) 11712 state->dts_options[i] = DTRACEOPT_UNSET; 11713 11714 /* 11715 * Set the default options. 11716 */ 11717 opt = state->dts_options; 11718 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 11719 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 11720 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 11721 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 11722 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 11723 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 11724 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 11725 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 11726 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 11727 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 11728 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 11729 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 11730 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 11731 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 11732 11733 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 11734 11735 /* 11736 * Depending on the user credentials, we set flag bits which alter probe 11737 * visibility or the amount of destructiveness allowed. In the case of 11738 * actual anonymous tracing, or the possession of all privileges, all of 11739 * the normal checks are bypassed. 11740 */ 11741 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 11742 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 11743 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 11744 } else { 11745 /* 11746 * Set up the credentials for this instantiation. We take a 11747 * hold on the credential to prevent it from disappearing on 11748 * us; this in turn prevents the zone_t referenced by this 11749 * credential from disappearing. This means that we can 11750 * examine the credential and the zone from probe context. 11751 */ 11752 crhold(cr); 11753 state->dts_cred.dcr_cred = cr; 11754 11755 /* 11756 * CRA_PROC means "we have *some* privilege for dtrace" and 11757 * unlocks the use of variables like pid, zonename, etc. 11758 */ 11759 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 11760 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 11761 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 11762 } 11763 11764 /* 11765 * dtrace_user allows use of syscall and profile providers. 11766 * If the user also has proc_owner and/or proc_zone, we 11767 * extend the scope to include additional visibility and 11768 * destructive power. 11769 */ 11770 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 11771 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 11772 state->dts_cred.dcr_visible |= 11773 DTRACE_CRV_ALLPROC; 11774 11775 state->dts_cred.dcr_action |= 11776 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 11777 } 11778 11779 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 11780 state->dts_cred.dcr_visible |= 11781 DTRACE_CRV_ALLZONE; 11782 11783 state->dts_cred.dcr_action |= 11784 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 11785 } 11786 11787 /* 11788 * If we have all privs in whatever zone this is, 11789 * we can do destructive things to processes which 11790 * have altered credentials. 11791 */ 11792 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 11793 cr->cr_zone->zone_privset)) { 11794 state->dts_cred.dcr_action |= 11795 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 11796 } 11797 } 11798 11799 /* 11800 * Holding the dtrace_kernel privilege also implies that 11801 * the user has the dtrace_user privilege from a visibility 11802 * perspective. But without further privileges, some 11803 * destructive actions are not available. 11804 */ 11805 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 11806 /* 11807 * Make all probes in all zones visible. However, 11808 * this doesn't mean that all actions become available 11809 * to all zones. 11810 */ 11811 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 11812 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 11813 11814 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 11815 DTRACE_CRA_PROC; 11816 /* 11817 * Holding proc_owner means that destructive actions 11818 * for *this* zone are allowed. 11819 */ 11820 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 11821 state->dts_cred.dcr_action |= 11822 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 11823 11824 /* 11825 * Holding proc_zone means that destructive actions 11826 * for this user/group ID in all zones is allowed. 11827 */ 11828 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 11829 state->dts_cred.dcr_action |= 11830 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 11831 11832 /* 11833 * If we have all privs in whatever zone this is, 11834 * we can do destructive things to processes which 11835 * have altered credentials. 11836 */ 11837 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 11838 cr->cr_zone->zone_privset)) { 11839 state->dts_cred.dcr_action |= 11840 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 11841 } 11842 } 11843 11844 /* 11845 * Holding the dtrace_proc privilege gives control over fasttrap 11846 * and pid providers. We need to grant wider destructive 11847 * privileges in the event that the user has proc_owner and/or 11848 * proc_zone. 11849 */ 11850 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 11851 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 11852 state->dts_cred.dcr_action |= 11853 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 11854 11855 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 11856 state->dts_cred.dcr_action |= 11857 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 11858 } 11859 } 11860 11861 return (state); 11862 } 11863 11864 static int 11865 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 11866 { 11867 dtrace_optval_t *opt = state->dts_options, size; 11868 processorid_t cpu; 11869 int flags = 0, rval; 11870 11871 ASSERT(MUTEX_HELD(&dtrace_lock)); 11872 ASSERT(MUTEX_HELD(&cpu_lock)); 11873 ASSERT(which < DTRACEOPT_MAX); 11874 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 11875 (state == dtrace_anon.dta_state && 11876 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 11877 11878 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 11879 return (0); 11880 11881 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 11882 cpu = opt[DTRACEOPT_CPU]; 11883 11884 if (which == DTRACEOPT_SPECSIZE) 11885 flags |= DTRACEBUF_NOSWITCH; 11886 11887 if (which == DTRACEOPT_BUFSIZE) { 11888 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 11889 flags |= DTRACEBUF_RING; 11890 11891 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 11892 flags |= DTRACEBUF_FILL; 11893 11894 if (state != dtrace_anon.dta_state || 11895 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 11896 flags |= DTRACEBUF_INACTIVE; 11897 } 11898 11899 for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) { 11900 /* 11901 * The size must be 8-byte aligned. If the size is not 8-byte 11902 * aligned, drop it down by the difference. 11903 */ 11904 if (size & (sizeof (uint64_t) - 1)) 11905 size -= size & (sizeof (uint64_t) - 1); 11906 11907 if (size < state->dts_reserve) { 11908 /* 11909 * Buffers always must be large enough to accommodate 11910 * their prereserved space. We return E2BIG instead 11911 * of ENOMEM in this case to allow for user-level 11912 * software to differentiate the cases. 11913 */ 11914 return (E2BIG); 11915 } 11916 11917 rval = dtrace_buffer_alloc(buf, size, flags, cpu); 11918 11919 if (rval != ENOMEM) { 11920 opt[which] = size; 11921 return (rval); 11922 } 11923 11924 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 11925 return (rval); 11926 } 11927 11928 return (ENOMEM); 11929 } 11930 11931 static int 11932 dtrace_state_buffers(dtrace_state_t *state) 11933 { 11934 dtrace_speculation_t *spec = state->dts_speculations; 11935 int rval, i; 11936 11937 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 11938 DTRACEOPT_BUFSIZE)) != 0) 11939 return (rval); 11940 11941 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 11942 DTRACEOPT_AGGSIZE)) != 0) 11943 return (rval); 11944 11945 for (i = 0; i < state->dts_nspeculations; i++) { 11946 if ((rval = dtrace_state_buffer(state, 11947 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 11948 return (rval); 11949 } 11950 11951 return (0); 11952 } 11953 11954 static void 11955 dtrace_state_prereserve(dtrace_state_t *state) 11956 { 11957 dtrace_ecb_t *ecb; 11958 dtrace_probe_t *probe; 11959 11960 state->dts_reserve = 0; 11961 11962 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 11963 return; 11964 11965 /* 11966 * If our buffer policy is a "fill" buffer policy, we need to set the 11967 * prereserved space to be the space required by the END probes. 11968 */ 11969 probe = dtrace_probes[dtrace_probeid_end - 1]; 11970 ASSERT(probe != NULL); 11971 11972 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 11973 if (ecb->dte_state != state) 11974 continue; 11975 11976 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 11977 } 11978 } 11979 11980 static int 11981 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 11982 { 11983 dtrace_optval_t *opt = state->dts_options, sz, nspec; 11984 dtrace_speculation_t *spec; 11985 dtrace_buffer_t *buf; 11986 cyc_handler_t hdlr; 11987 cyc_time_t when; 11988 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 11989 dtrace_icookie_t cookie; 11990 11991 mutex_enter(&cpu_lock); 11992 mutex_enter(&dtrace_lock); 11993 11994 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 11995 rval = EBUSY; 11996 goto out; 11997 } 11998 11999 /* 12000 * Before we can perform any checks, we must prime all of the 12001 * retained enablings that correspond to this state. 12002 */ 12003 dtrace_enabling_prime(state); 12004 12005 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 12006 rval = EACCES; 12007 goto out; 12008 } 12009 12010 dtrace_state_prereserve(state); 12011 12012 /* 12013 * Now we want to do is try to allocate our speculations. 12014 * We do not automatically resize the number of speculations; if 12015 * this fails, we will fail the operation. 12016 */ 12017 nspec = opt[DTRACEOPT_NSPEC]; 12018 ASSERT(nspec != DTRACEOPT_UNSET); 12019 12020 if (nspec > INT_MAX) { 12021 rval = ENOMEM; 12022 goto out; 12023 } 12024 12025 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); 12026 12027 if (spec == NULL) { 12028 rval = ENOMEM; 12029 goto out; 12030 } 12031 12032 state->dts_speculations = spec; 12033 state->dts_nspeculations = (int)nspec; 12034 12035 for (i = 0; i < nspec; i++) { 12036 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { 12037 rval = ENOMEM; 12038 goto err; 12039 } 12040 12041 spec[i].dtsp_buffer = buf; 12042 } 12043 12044 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 12045 if (dtrace_anon.dta_state == NULL) { 12046 rval = ENOENT; 12047 goto out; 12048 } 12049 12050 if (state->dts_necbs != 0) { 12051 rval = EALREADY; 12052 goto out; 12053 } 12054 12055 state->dts_anon = dtrace_anon_grab(); 12056 ASSERT(state->dts_anon != NULL); 12057 state = state->dts_anon; 12058 12059 /* 12060 * We want "grabanon" to be set in the grabbed state, so we'll 12061 * copy that option value from the grabbing state into the 12062 * grabbed state. 12063 */ 12064 state->dts_options[DTRACEOPT_GRABANON] = 12065 opt[DTRACEOPT_GRABANON]; 12066 12067 *cpu = dtrace_anon.dta_beganon; 12068 12069 /* 12070 * If the anonymous state is active (as it almost certainly 12071 * is if the anonymous enabling ultimately matched anything), 12072 * we don't allow any further option processing -- but we 12073 * don't return failure. 12074 */ 12075 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12076 goto out; 12077 } 12078 12079 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 12080 opt[DTRACEOPT_AGGSIZE] != 0) { 12081 if (state->dts_aggregations == NULL) { 12082 /* 12083 * We're not going to create an aggregation buffer 12084 * because we don't have any ECBs that contain 12085 * aggregations -- set this option to 0. 12086 */ 12087 opt[DTRACEOPT_AGGSIZE] = 0; 12088 } else { 12089 /* 12090 * If we have an aggregation buffer, we must also have 12091 * a buffer to use as scratch. 12092 */ 12093 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 12094 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 12095 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 12096 } 12097 } 12098 } 12099 12100 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 12101 opt[DTRACEOPT_SPECSIZE] != 0) { 12102 if (!state->dts_speculates) { 12103 /* 12104 * We're not going to create speculation buffers 12105 * because we don't have any ECBs that actually 12106 * speculate -- set the speculation size to 0. 12107 */ 12108 opt[DTRACEOPT_SPECSIZE] = 0; 12109 } 12110 } 12111 12112 /* 12113 * The bare minimum size for any buffer that we're actually going to 12114 * do anything to is sizeof (uint64_t). 12115 */ 12116 sz = sizeof (uint64_t); 12117 12118 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 12119 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 12120 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 12121 /* 12122 * A buffer size has been explicitly set to 0 (or to a size 12123 * that will be adjusted to 0) and we need the space -- we 12124 * need to return failure. We return ENOSPC to differentiate 12125 * it from failing to allocate a buffer due to failure to meet 12126 * the reserve (for which we return E2BIG). 12127 */ 12128 rval = ENOSPC; 12129 goto out; 12130 } 12131 12132 if ((rval = dtrace_state_buffers(state)) != 0) 12133 goto err; 12134 12135 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 12136 sz = dtrace_dstate_defsize; 12137 12138 do { 12139 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 12140 12141 if (rval == 0) 12142 break; 12143 12144 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12145 goto err; 12146 } while (sz >>= 1); 12147 12148 opt[DTRACEOPT_DYNVARSIZE] = sz; 12149 12150 if (rval != 0) 12151 goto err; 12152 12153 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 12154 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 12155 12156 if (opt[DTRACEOPT_CLEANRATE] == 0) 12157 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12158 12159 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 12160 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 12161 12162 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 12163 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12164 12165 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 12166 hdlr.cyh_arg = state; 12167 hdlr.cyh_level = CY_LOW_LEVEL; 12168 12169 when.cyt_when = 0; 12170 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 12171 12172 state->dts_cleaner = cyclic_add(&hdlr, &when); 12173 12174 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 12175 hdlr.cyh_arg = state; 12176 hdlr.cyh_level = CY_LOW_LEVEL; 12177 12178 when.cyt_when = 0; 12179 when.cyt_interval = dtrace_deadman_interval; 12180 12181 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 12182 state->dts_deadman = cyclic_add(&hdlr, &when); 12183 12184 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 12185 12186 /* 12187 * Now it's time to actually fire the BEGIN probe. We need to disable 12188 * interrupts here both to record the CPU on which we fired the BEGIN 12189 * probe (the data from this CPU will be processed first at user 12190 * level) and to manually activate the buffer for this CPU. 12191 */ 12192 cookie = dtrace_interrupt_disable(); 12193 *cpu = CPU->cpu_id; 12194 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 12195 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12196 12197 dtrace_probe(dtrace_probeid_begin, 12198 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12199 dtrace_interrupt_enable(cookie); 12200 /* 12201 * We may have had an exit action from a BEGIN probe; only change our 12202 * state to ACTIVE if we're still in WARMUP. 12203 */ 12204 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 12205 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 12206 12207 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 12208 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 12209 12210 /* 12211 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 12212 * want each CPU to transition its principal buffer out of the 12213 * INACTIVE state. Doing this assures that no CPU will suddenly begin 12214 * processing an ECB halfway down a probe's ECB chain; all CPUs will 12215 * atomically transition from processing none of a state's ECBs to 12216 * processing all of them. 12217 */ 12218 dtrace_xcall(DTRACE_CPUALL, 12219 (dtrace_xcall_t)dtrace_buffer_activate, state); 12220 goto out; 12221 12222 err: 12223 dtrace_buffer_free(state->dts_buffer); 12224 dtrace_buffer_free(state->dts_aggbuffer); 12225 12226 if ((nspec = state->dts_nspeculations) == 0) { 12227 ASSERT(state->dts_speculations == NULL); 12228 goto out; 12229 } 12230 12231 spec = state->dts_speculations; 12232 ASSERT(spec != NULL); 12233 12234 for (i = 0; i < state->dts_nspeculations; i++) { 12235 if ((buf = spec[i].dtsp_buffer) == NULL) 12236 break; 12237 12238 dtrace_buffer_free(buf); 12239 kmem_free(buf, bufsize); 12240 } 12241 12242 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12243 state->dts_nspeculations = 0; 12244 state->dts_speculations = NULL; 12245 12246 out: 12247 mutex_exit(&dtrace_lock); 12248 mutex_exit(&cpu_lock); 12249 12250 return (rval); 12251 } 12252 12253 static int 12254 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 12255 { 12256 dtrace_icookie_t cookie; 12257 12258 ASSERT(MUTEX_HELD(&dtrace_lock)); 12259 12260 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 12261 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 12262 return (EINVAL); 12263 12264 /* 12265 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 12266 * to be sure that every CPU has seen it. See below for the details 12267 * on why this is done. 12268 */ 12269 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 12270 dtrace_sync(); 12271 12272 /* 12273 * By this point, it is impossible for any CPU to be still processing 12274 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 12275 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 12276 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 12277 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 12278 * iff we're in the END probe. 12279 */ 12280 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 12281 dtrace_sync(); 12282 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 12283 12284 /* 12285 * Finally, we can release the reserve and call the END probe. We 12286 * disable interrupts across calling the END probe to allow us to 12287 * return the CPU on which we actually called the END probe. This 12288 * allows user-land to be sure that this CPU's principal buffer is 12289 * processed last. 12290 */ 12291 state->dts_reserve = 0; 12292 12293 cookie = dtrace_interrupt_disable(); 12294 *cpu = CPU->cpu_id; 12295 dtrace_probe(dtrace_probeid_end, 12296 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12297 dtrace_interrupt_enable(cookie); 12298 12299 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 12300 dtrace_sync(); 12301 12302 return (0); 12303 } 12304 12305 static int 12306 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 12307 dtrace_optval_t val) 12308 { 12309 ASSERT(MUTEX_HELD(&dtrace_lock)); 12310 12311 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12312 return (EBUSY); 12313 12314 if (option >= DTRACEOPT_MAX) 12315 return (EINVAL); 12316 12317 if (option != DTRACEOPT_CPU && val < 0) 12318 return (EINVAL); 12319 12320 switch (option) { 12321 case DTRACEOPT_DESTRUCTIVE: 12322 if (dtrace_destructive_disallow) 12323 return (EACCES); 12324 12325 state->dts_cred.dcr_destructive = 1; 12326 break; 12327 12328 case DTRACEOPT_BUFSIZE: 12329 case DTRACEOPT_DYNVARSIZE: 12330 case DTRACEOPT_AGGSIZE: 12331 case DTRACEOPT_SPECSIZE: 12332 case DTRACEOPT_STRSIZE: 12333 if (val < 0) 12334 return (EINVAL); 12335 12336 if (val >= LONG_MAX) { 12337 /* 12338 * If this is an otherwise negative value, set it to 12339 * the highest multiple of 128m less than LONG_MAX. 12340 * Technically, we're adjusting the size without 12341 * regard to the buffer resizing policy, but in fact, 12342 * this has no effect -- if we set the buffer size to 12343 * ~LONG_MAX and the buffer policy is ultimately set to 12344 * be "manual", the buffer allocation is guaranteed to 12345 * fail, if only because the allocation requires two 12346 * buffers. (We set the the size to the highest 12347 * multiple of 128m because it ensures that the size 12348 * will remain a multiple of a megabyte when 12349 * repeatedly halved -- all the way down to 15m.) 12350 */ 12351 val = LONG_MAX - (1 << 27) + 1; 12352 } 12353 } 12354 12355 state->dts_options[option] = val; 12356 12357 return (0); 12358 } 12359 12360 static void 12361 dtrace_state_destroy(dtrace_state_t *state) 12362 { 12363 dtrace_ecb_t *ecb; 12364 dtrace_vstate_t *vstate = &state->dts_vstate; 12365 minor_t minor = getminor(state->dts_dev); 12366 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12367 dtrace_speculation_t *spec = state->dts_speculations; 12368 int nspec = state->dts_nspeculations; 12369 uint32_t match; 12370 12371 ASSERT(MUTEX_HELD(&dtrace_lock)); 12372 ASSERT(MUTEX_HELD(&cpu_lock)); 12373 12374 /* 12375 * First, retract any retained enablings for this state. 12376 */ 12377 dtrace_enabling_retract(state); 12378 ASSERT(state->dts_nretained == 0); 12379 12380 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 12381 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 12382 /* 12383 * We have managed to come into dtrace_state_destroy() on a 12384 * hot enabling -- almost certainly because of a disorderly 12385 * shutdown of a consumer. (That is, a consumer that is 12386 * exiting without having called dtrace_stop().) In this case, 12387 * we're going to set our activity to be KILLED, and then 12388 * issue a sync to be sure that everyone is out of probe 12389 * context before we start blowing away ECBs. 12390 */ 12391 state->dts_activity = DTRACE_ACTIVITY_KILLED; 12392 dtrace_sync(); 12393 } 12394 12395 /* 12396 * Release the credential hold we took in dtrace_state_create(). 12397 */ 12398 if (state->dts_cred.dcr_cred != NULL) 12399 crfree(state->dts_cred.dcr_cred); 12400 12401 /* 12402 * Now we can safely disable and destroy any enabled probes. Because 12403 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 12404 * (especially if they're all enabled), we take two passes through the 12405 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 12406 * in the second we disable whatever is left over. 12407 */ 12408 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 12409 for (i = 0; i < state->dts_necbs; i++) { 12410 if ((ecb = state->dts_ecbs[i]) == NULL) 12411 continue; 12412 12413 if (match && ecb->dte_probe != NULL) { 12414 dtrace_probe_t *probe = ecb->dte_probe; 12415 dtrace_provider_t *prov = probe->dtpr_provider; 12416 12417 if (!(prov->dtpv_priv.dtpp_flags & match)) 12418 continue; 12419 } 12420 12421 dtrace_ecb_disable(ecb); 12422 dtrace_ecb_destroy(ecb); 12423 } 12424 12425 if (!match) 12426 break; 12427 } 12428 12429 /* 12430 * Before we free the buffers, perform one more sync to assure that 12431 * every CPU is out of probe context. 12432 */ 12433 dtrace_sync(); 12434 12435 dtrace_buffer_free(state->dts_buffer); 12436 dtrace_buffer_free(state->dts_aggbuffer); 12437 12438 for (i = 0; i < nspec; i++) 12439 dtrace_buffer_free(spec[i].dtsp_buffer); 12440 12441 if (state->dts_cleaner != CYCLIC_NONE) 12442 cyclic_remove(state->dts_cleaner); 12443 12444 if (state->dts_deadman != CYCLIC_NONE) 12445 cyclic_remove(state->dts_deadman); 12446 12447 dtrace_dstate_fini(&vstate->dtvs_dynvars); 12448 dtrace_vstate_fini(vstate); 12449 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 12450 12451 if (state->dts_aggregations != NULL) { 12452 #ifdef DEBUG 12453 for (i = 0; i < state->dts_naggregations; i++) 12454 ASSERT(state->dts_aggregations[i] == NULL); 12455 #endif 12456 ASSERT(state->dts_naggregations > 0); 12457 kmem_free(state->dts_aggregations, 12458 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 12459 } 12460 12461 kmem_free(state->dts_buffer, bufsize); 12462 kmem_free(state->dts_aggbuffer, bufsize); 12463 12464 for (i = 0; i < nspec; i++) 12465 kmem_free(spec[i].dtsp_buffer, bufsize); 12466 12467 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12468 12469 dtrace_format_destroy(state); 12470 12471 vmem_destroy(state->dts_aggid_arena); 12472 ddi_soft_state_free(dtrace_softstate, minor); 12473 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12474 } 12475 12476 /* 12477 * DTrace Anonymous Enabling Functions 12478 */ 12479 static dtrace_state_t * 12480 dtrace_anon_grab(void) 12481 { 12482 dtrace_state_t *state; 12483 12484 ASSERT(MUTEX_HELD(&dtrace_lock)); 12485 12486 if ((state = dtrace_anon.dta_state) == NULL) { 12487 ASSERT(dtrace_anon.dta_enabling == NULL); 12488 return (NULL); 12489 } 12490 12491 ASSERT(dtrace_anon.dta_enabling != NULL); 12492 ASSERT(dtrace_retained != NULL); 12493 12494 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 12495 dtrace_anon.dta_enabling = NULL; 12496 dtrace_anon.dta_state = NULL; 12497 12498 return (state); 12499 } 12500 12501 static void 12502 dtrace_anon_property(void) 12503 { 12504 int i, rv; 12505 dtrace_state_t *state; 12506 dof_hdr_t *dof; 12507 char c[32]; /* enough for "dof-data-" + digits */ 12508 12509 ASSERT(MUTEX_HELD(&dtrace_lock)); 12510 ASSERT(MUTEX_HELD(&cpu_lock)); 12511 12512 for (i = 0; ; i++) { 12513 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 12514 12515 dtrace_err_verbose = 1; 12516 12517 if ((dof = dtrace_dof_property(c)) == NULL) { 12518 dtrace_err_verbose = 0; 12519 break; 12520 } 12521 12522 /* 12523 * We want to create anonymous state, so we need to transition 12524 * the kernel debugger to indicate that DTrace is active. If 12525 * this fails (e.g. because the debugger has modified text in 12526 * some way), we won't continue with the processing. 12527 */ 12528 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 12529 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 12530 "enabling ignored."); 12531 dtrace_dof_destroy(dof); 12532 break; 12533 } 12534 12535 /* 12536 * If we haven't allocated an anonymous state, we'll do so now. 12537 */ 12538 if ((state = dtrace_anon.dta_state) == NULL) { 12539 state = dtrace_state_create(NULL, NULL); 12540 dtrace_anon.dta_state = state; 12541 12542 if (state == NULL) { 12543 /* 12544 * This basically shouldn't happen: the only 12545 * failure mode from dtrace_state_create() is a 12546 * failure of ddi_soft_state_zalloc() that 12547 * itself should never happen. Still, the 12548 * interface allows for a failure mode, and 12549 * we want to fail as gracefully as possible: 12550 * we'll emit an error message and cease 12551 * processing anonymous state in this case. 12552 */ 12553 cmn_err(CE_WARN, "failed to create " 12554 "anonymous state"); 12555 dtrace_dof_destroy(dof); 12556 break; 12557 } 12558 } 12559 12560 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 12561 &dtrace_anon.dta_enabling, 0, B_TRUE); 12562 12563 if (rv == 0) 12564 rv = dtrace_dof_options(dof, state); 12565 12566 dtrace_err_verbose = 0; 12567 dtrace_dof_destroy(dof); 12568 12569 if (rv != 0) { 12570 /* 12571 * This is malformed DOF; chuck any anonymous state 12572 * that we created. 12573 */ 12574 ASSERT(dtrace_anon.dta_enabling == NULL); 12575 dtrace_state_destroy(state); 12576 dtrace_anon.dta_state = NULL; 12577 break; 12578 } 12579 12580 ASSERT(dtrace_anon.dta_enabling != NULL); 12581 } 12582 12583 if (dtrace_anon.dta_enabling != NULL) { 12584 int rval; 12585 12586 /* 12587 * dtrace_enabling_retain() can only fail because we are 12588 * trying to retain more enablings than are allowed -- but 12589 * we only have one anonymous enabling, and we are guaranteed 12590 * to be allowed at least one retained enabling; we assert 12591 * that dtrace_enabling_retain() returns success. 12592 */ 12593 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 12594 ASSERT(rval == 0); 12595 12596 dtrace_enabling_dump(dtrace_anon.dta_enabling); 12597 } 12598 } 12599 12600 /* 12601 * DTrace Helper Functions 12602 */ 12603 static void 12604 dtrace_helper_trace(dtrace_helper_action_t *helper, 12605 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 12606 { 12607 uint32_t size, next, nnext, i; 12608 dtrace_helptrace_t *ent; 12609 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12610 12611 if (!dtrace_helptrace_enabled) 12612 return; 12613 12614 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 12615 12616 /* 12617 * What would a tracing framework be without its own tracing 12618 * framework? (Well, a hell of a lot simpler, for starters...) 12619 */ 12620 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 12621 sizeof (uint64_t) - sizeof (uint64_t); 12622 12623 /* 12624 * Iterate until we can allocate a slot in the trace buffer. 12625 */ 12626 do { 12627 next = dtrace_helptrace_next; 12628 12629 if (next + size < dtrace_helptrace_bufsize) { 12630 nnext = next + size; 12631 } else { 12632 nnext = size; 12633 } 12634 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 12635 12636 /* 12637 * We have our slot; fill it in. 12638 */ 12639 if (nnext == size) 12640 next = 0; 12641 12642 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 12643 ent->dtht_helper = helper; 12644 ent->dtht_where = where; 12645 ent->dtht_nlocals = vstate->dtvs_nlocals; 12646 12647 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 12648 mstate->dtms_fltoffs : -1; 12649 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 12650 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 12651 12652 for (i = 0; i < vstate->dtvs_nlocals; i++) { 12653 dtrace_statvar_t *svar; 12654 12655 if ((svar = vstate->dtvs_locals[i]) == NULL) 12656 continue; 12657 12658 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 12659 ent->dtht_locals[i] = 12660 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 12661 } 12662 } 12663 12664 static uint64_t 12665 dtrace_helper(int which, dtrace_mstate_t *mstate, 12666 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 12667 { 12668 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12669 uint64_t sarg0 = mstate->dtms_arg[0]; 12670 uint64_t sarg1 = mstate->dtms_arg[1]; 12671 uint64_t rval; 12672 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 12673 dtrace_helper_action_t *helper; 12674 dtrace_vstate_t *vstate; 12675 dtrace_difo_t *pred; 12676 int i, trace = dtrace_helptrace_enabled; 12677 12678 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 12679 12680 if (helpers == NULL) 12681 return (0); 12682 12683 if ((helper = helpers->dthps_actions[which]) == NULL) 12684 return (0); 12685 12686 vstate = &helpers->dthps_vstate; 12687 mstate->dtms_arg[0] = arg0; 12688 mstate->dtms_arg[1] = arg1; 12689 12690 /* 12691 * Now iterate over each helper. If its predicate evaluates to 'true', 12692 * we'll call the corresponding actions. Note that the below calls 12693 * to dtrace_dif_emulate() may set faults in machine state. This is 12694 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 12695 * the stored DIF offset with its own (which is the desired behavior). 12696 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 12697 * from machine state; this is okay, too. 12698 */ 12699 for (; helper != NULL; helper = helper->dtha_next) { 12700 if ((pred = helper->dtha_predicate) != NULL) { 12701 if (trace) 12702 dtrace_helper_trace(helper, mstate, vstate, 0); 12703 12704 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 12705 goto next; 12706 12707 if (*flags & CPU_DTRACE_FAULT) 12708 goto err; 12709 } 12710 12711 for (i = 0; i < helper->dtha_nactions; i++) { 12712 if (trace) 12713 dtrace_helper_trace(helper, 12714 mstate, vstate, i + 1); 12715 12716 rval = dtrace_dif_emulate(helper->dtha_actions[i], 12717 mstate, vstate, state); 12718 12719 if (*flags & CPU_DTRACE_FAULT) 12720 goto err; 12721 } 12722 12723 next: 12724 if (trace) 12725 dtrace_helper_trace(helper, mstate, vstate, 12726 DTRACE_HELPTRACE_NEXT); 12727 } 12728 12729 if (trace) 12730 dtrace_helper_trace(helper, mstate, vstate, 12731 DTRACE_HELPTRACE_DONE); 12732 12733 /* 12734 * Restore the arg0 that we saved upon entry. 12735 */ 12736 mstate->dtms_arg[0] = sarg0; 12737 mstate->dtms_arg[1] = sarg1; 12738 12739 return (rval); 12740 12741 err: 12742 if (trace) 12743 dtrace_helper_trace(helper, mstate, vstate, 12744 DTRACE_HELPTRACE_ERR); 12745 12746 /* 12747 * Restore the arg0 that we saved upon entry. 12748 */ 12749 mstate->dtms_arg[0] = sarg0; 12750 mstate->dtms_arg[1] = sarg1; 12751 12752 return (NULL); 12753 } 12754 12755 static void 12756 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 12757 dtrace_vstate_t *vstate) 12758 { 12759 int i; 12760 12761 if (helper->dtha_predicate != NULL) 12762 dtrace_difo_release(helper->dtha_predicate, vstate); 12763 12764 for (i = 0; i < helper->dtha_nactions; i++) { 12765 ASSERT(helper->dtha_actions[i] != NULL); 12766 dtrace_difo_release(helper->dtha_actions[i], vstate); 12767 } 12768 12769 kmem_free(helper->dtha_actions, 12770 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 12771 kmem_free(helper, sizeof (dtrace_helper_action_t)); 12772 } 12773 12774 static int 12775 dtrace_helper_destroygen(int gen) 12776 { 12777 proc_t *p = curproc; 12778 dtrace_helpers_t *help = p->p_dtrace_helpers; 12779 dtrace_vstate_t *vstate; 12780 int i; 12781 12782 ASSERT(MUTEX_HELD(&dtrace_lock)); 12783 12784 if (help == NULL || gen > help->dthps_generation) 12785 return (EINVAL); 12786 12787 vstate = &help->dthps_vstate; 12788 12789 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 12790 dtrace_helper_action_t *last = NULL, *h, *next; 12791 12792 for (h = help->dthps_actions[i]; h != NULL; h = next) { 12793 next = h->dtha_next; 12794 12795 if (h->dtha_generation == gen) { 12796 if (last != NULL) { 12797 last->dtha_next = next; 12798 } else { 12799 help->dthps_actions[i] = next; 12800 } 12801 12802 dtrace_helper_action_destroy(h, vstate); 12803 } else { 12804 last = h; 12805 } 12806 } 12807 } 12808 12809 /* 12810 * Interate until we've cleared out all helper providers with the 12811 * given generation number. 12812 */ 12813 for (;;) { 12814 dtrace_helper_provider_t *prov; 12815 12816 /* 12817 * Look for a helper provider with the right generation. We 12818 * have to start back at the beginning of the list each time 12819 * because we drop dtrace_lock. It's unlikely that we'll make 12820 * more than two passes. 12821 */ 12822 for (i = 0; i < help->dthps_nprovs; i++) { 12823 prov = help->dthps_provs[i]; 12824 12825 if (prov->dthp_generation == gen) 12826 break; 12827 } 12828 12829 /* 12830 * If there were no matches, we're done. 12831 */ 12832 if (i == help->dthps_nprovs) 12833 break; 12834 12835 /* 12836 * Move the last helper provider into this slot. 12837 */ 12838 help->dthps_nprovs--; 12839 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 12840 help->dthps_provs[help->dthps_nprovs] = NULL; 12841 12842 mutex_exit(&dtrace_lock); 12843 12844 /* 12845 * If we have a meta provider, remove this helper provider. 12846 */ 12847 mutex_enter(&dtrace_meta_lock); 12848 if (dtrace_meta_pid != NULL) { 12849 ASSERT(dtrace_deferred_pid == NULL); 12850 dtrace_helper_provider_remove(&prov->dthp_prov, 12851 p->p_pid); 12852 } 12853 mutex_exit(&dtrace_meta_lock); 12854 12855 dtrace_helper_provider_destroy(prov); 12856 12857 mutex_enter(&dtrace_lock); 12858 } 12859 12860 return (0); 12861 } 12862 12863 static int 12864 dtrace_helper_validate(dtrace_helper_action_t *helper) 12865 { 12866 int err = 0, i; 12867 dtrace_difo_t *dp; 12868 12869 if ((dp = helper->dtha_predicate) != NULL) 12870 err += dtrace_difo_validate_helper(dp); 12871 12872 for (i = 0; i < helper->dtha_nactions; i++) 12873 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 12874 12875 return (err == 0); 12876 } 12877 12878 static int 12879 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 12880 { 12881 dtrace_helpers_t *help; 12882 dtrace_helper_action_t *helper, *last; 12883 dtrace_actdesc_t *act; 12884 dtrace_vstate_t *vstate; 12885 dtrace_predicate_t *pred; 12886 int count = 0, nactions = 0, i; 12887 12888 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 12889 return (EINVAL); 12890 12891 help = curproc->p_dtrace_helpers; 12892 last = help->dthps_actions[which]; 12893 vstate = &help->dthps_vstate; 12894 12895 for (count = 0; last != NULL; last = last->dtha_next) { 12896 count++; 12897 if (last->dtha_next == NULL) 12898 break; 12899 } 12900 12901 /* 12902 * If we already have dtrace_helper_actions_max helper actions for this 12903 * helper action type, we'll refuse to add a new one. 12904 */ 12905 if (count >= dtrace_helper_actions_max) 12906 return (ENOSPC); 12907 12908 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 12909 helper->dtha_generation = help->dthps_generation; 12910 12911 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 12912 ASSERT(pred->dtp_difo != NULL); 12913 dtrace_difo_hold(pred->dtp_difo); 12914 helper->dtha_predicate = pred->dtp_difo; 12915 } 12916 12917 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 12918 if (act->dtad_kind != DTRACEACT_DIFEXPR) 12919 goto err; 12920 12921 if (act->dtad_difo == NULL) 12922 goto err; 12923 12924 nactions++; 12925 } 12926 12927 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 12928 (helper->dtha_nactions = nactions), KM_SLEEP); 12929 12930 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 12931 dtrace_difo_hold(act->dtad_difo); 12932 helper->dtha_actions[i++] = act->dtad_difo; 12933 } 12934 12935 if (!dtrace_helper_validate(helper)) 12936 goto err; 12937 12938 if (last == NULL) { 12939 help->dthps_actions[which] = helper; 12940 } else { 12941 last->dtha_next = helper; 12942 } 12943 12944 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 12945 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 12946 dtrace_helptrace_next = 0; 12947 } 12948 12949 return (0); 12950 err: 12951 dtrace_helper_action_destroy(helper, vstate); 12952 return (EINVAL); 12953 } 12954 12955 static void 12956 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 12957 dof_helper_t *dofhp) 12958 { 12959 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 12960 12961 mutex_enter(&dtrace_meta_lock); 12962 mutex_enter(&dtrace_lock); 12963 12964 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 12965 /* 12966 * If the dtrace module is loaded but not attached, or if 12967 * there aren't isn't a meta provider registered to deal with 12968 * these provider descriptions, we need to postpone creating 12969 * the actual providers until later. 12970 */ 12971 12972 if (help->dthps_next == NULL && help->dthps_prev == NULL && 12973 dtrace_deferred_pid != help) { 12974 help->dthps_deferred = 1; 12975 help->dthps_pid = p->p_pid; 12976 help->dthps_next = dtrace_deferred_pid; 12977 help->dthps_prev = NULL; 12978 if (dtrace_deferred_pid != NULL) 12979 dtrace_deferred_pid->dthps_prev = help; 12980 dtrace_deferred_pid = help; 12981 } 12982 12983 mutex_exit(&dtrace_lock); 12984 12985 } else if (dofhp != NULL) { 12986 /* 12987 * If the dtrace module is loaded and we have a particular 12988 * helper provider description, pass that off to the 12989 * meta provider. 12990 */ 12991 12992 mutex_exit(&dtrace_lock); 12993 12994 dtrace_helper_provide(dofhp, p->p_pid); 12995 12996 } else { 12997 /* 12998 * Otherwise, just pass all the helper provider descriptions 12999 * off to the meta provider. 13000 */ 13001 13002 int i; 13003 mutex_exit(&dtrace_lock); 13004 13005 for (i = 0; i < help->dthps_nprovs; i++) { 13006 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 13007 p->p_pid); 13008 } 13009 } 13010 13011 mutex_exit(&dtrace_meta_lock); 13012 } 13013 13014 static int 13015 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 13016 { 13017 dtrace_helpers_t *help; 13018 dtrace_helper_provider_t *hprov, **tmp_provs; 13019 uint_t tmp_maxprovs, i; 13020 13021 ASSERT(MUTEX_HELD(&dtrace_lock)); 13022 13023 help = curproc->p_dtrace_helpers; 13024 ASSERT(help != NULL); 13025 13026 /* 13027 * If we already have dtrace_helper_providers_max helper providers, 13028 * we're refuse to add a new one. 13029 */ 13030 if (help->dthps_nprovs >= dtrace_helper_providers_max) 13031 return (ENOSPC); 13032 13033 /* 13034 * Check to make sure this isn't a duplicate. 13035 */ 13036 for (i = 0; i < help->dthps_nprovs; i++) { 13037 if (dofhp->dofhp_addr == 13038 help->dthps_provs[i]->dthp_prov.dofhp_addr) 13039 return (EALREADY); 13040 } 13041 13042 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 13043 hprov->dthp_prov = *dofhp; 13044 hprov->dthp_ref = 1; 13045 hprov->dthp_generation = gen; 13046 13047 /* 13048 * Allocate a bigger table for helper providers if it's already full. 13049 */ 13050 if (help->dthps_maxprovs == help->dthps_nprovs) { 13051 tmp_maxprovs = help->dthps_maxprovs; 13052 tmp_provs = help->dthps_provs; 13053 13054 if (help->dthps_maxprovs == 0) 13055 help->dthps_maxprovs = 2; 13056 else 13057 help->dthps_maxprovs *= 2; 13058 if (help->dthps_maxprovs > dtrace_helper_providers_max) 13059 help->dthps_maxprovs = dtrace_helper_providers_max; 13060 13061 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 13062 13063 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 13064 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13065 13066 if (tmp_provs != NULL) { 13067 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 13068 sizeof (dtrace_helper_provider_t *)); 13069 kmem_free(tmp_provs, tmp_maxprovs * 13070 sizeof (dtrace_helper_provider_t *)); 13071 } 13072 } 13073 13074 help->dthps_provs[help->dthps_nprovs] = hprov; 13075 help->dthps_nprovs++; 13076 13077 return (0); 13078 } 13079 13080 static void 13081 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 13082 { 13083 mutex_enter(&dtrace_lock); 13084 13085 if (--hprov->dthp_ref == 0) { 13086 dof_hdr_t *dof; 13087 mutex_exit(&dtrace_lock); 13088 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 13089 dtrace_dof_destroy(dof); 13090 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 13091 } else { 13092 mutex_exit(&dtrace_lock); 13093 } 13094 } 13095 13096 static int 13097 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 13098 { 13099 uintptr_t daddr = (uintptr_t)dof; 13100 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 13101 dof_provider_t *provider; 13102 dof_probe_t *probe; 13103 uint8_t *arg; 13104 char *strtab, *typestr; 13105 dof_stridx_t typeidx; 13106 size_t typesz; 13107 uint_t nprobes, j, k; 13108 13109 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 13110 13111 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 13112 dtrace_dof_error(dof, "misaligned section offset"); 13113 return (-1); 13114 } 13115 13116 /* 13117 * The section needs to be large enough to contain the DOF provider 13118 * structure appropriate for the given version. 13119 */ 13120 if (sec->dofs_size < 13121 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 13122 offsetof(dof_provider_t, dofpv_prenoffs) : 13123 sizeof (dof_provider_t))) { 13124 dtrace_dof_error(dof, "provider section too small"); 13125 return (-1); 13126 } 13127 13128 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 13129 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 13130 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 13131 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 13132 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 13133 13134 if (str_sec == NULL || prb_sec == NULL || 13135 arg_sec == NULL || off_sec == NULL) 13136 return (-1); 13137 13138 enoff_sec = NULL; 13139 13140 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13141 provider->dofpv_prenoffs != DOF_SECT_NONE && 13142 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 13143 provider->dofpv_prenoffs)) == NULL) 13144 return (-1); 13145 13146 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 13147 13148 if (provider->dofpv_name >= str_sec->dofs_size || 13149 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 13150 dtrace_dof_error(dof, "invalid provider name"); 13151 return (-1); 13152 } 13153 13154 if (prb_sec->dofs_entsize == 0 || 13155 prb_sec->dofs_entsize > prb_sec->dofs_size) { 13156 dtrace_dof_error(dof, "invalid entry size"); 13157 return (-1); 13158 } 13159 13160 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 13161 dtrace_dof_error(dof, "misaligned entry size"); 13162 return (-1); 13163 } 13164 13165 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 13166 dtrace_dof_error(dof, "invalid entry size"); 13167 return (-1); 13168 } 13169 13170 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 13171 dtrace_dof_error(dof, "misaligned section offset"); 13172 return (-1); 13173 } 13174 13175 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 13176 dtrace_dof_error(dof, "invalid entry size"); 13177 return (-1); 13178 } 13179 13180 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 13181 13182 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 13183 13184 /* 13185 * Take a pass through the probes to check for errors. 13186 */ 13187 for (j = 0; j < nprobes; j++) { 13188 probe = (dof_probe_t *)(uintptr_t)(daddr + 13189 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 13190 13191 if (probe->dofpr_func >= str_sec->dofs_size) { 13192 dtrace_dof_error(dof, "invalid function name"); 13193 return (-1); 13194 } 13195 13196 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 13197 dtrace_dof_error(dof, "function name too long"); 13198 return (-1); 13199 } 13200 13201 if (probe->dofpr_name >= str_sec->dofs_size || 13202 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 13203 dtrace_dof_error(dof, "invalid probe name"); 13204 return (-1); 13205 } 13206 13207 /* 13208 * The offset count must not wrap the index, and the offsets 13209 * must also not overflow the section's data. 13210 */ 13211 if (probe->dofpr_offidx + probe->dofpr_noffs < 13212 probe->dofpr_offidx || 13213 (probe->dofpr_offidx + probe->dofpr_noffs) * 13214 off_sec->dofs_entsize > off_sec->dofs_size) { 13215 dtrace_dof_error(dof, "invalid probe offset"); 13216 return (-1); 13217 } 13218 13219 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 13220 /* 13221 * If there's no is-enabled offset section, make sure 13222 * there aren't any is-enabled offsets. Otherwise 13223 * perform the same checks as for probe offsets 13224 * (immediately above). 13225 */ 13226 if (enoff_sec == NULL) { 13227 if (probe->dofpr_enoffidx != 0 || 13228 probe->dofpr_nenoffs != 0) { 13229 dtrace_dof_error(dof, "is-enabled " 13230 "offsets with null section"); 13231 return (-1); 13232 } 13233 } else if (probe->dofpr_enoffidx + 13234 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 13235 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 13236 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 13237 dtrace_dof_error(dof, "invalid is-enabled " 13238 "offset"); 13239 return (-1); 13240 } 13241 13242 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 13243 dtrace_dof_error(dof, "zero probe and " 13244 "is-enabled offsets"); 13245 return (-1); 13246 } 13247 } else if (probe->dofpr_noffs == 0) { 13248 dtrace_dof_error(dof, "zero probe offsets"); 13249 return (-1); 13250 } 13251 13252 if (probe->dofpr_argidx + probe->dofpr_xargc < 13253 probe->dofpr_argidx || 13254 (probe->dofpr_argidx + probe->dofpr_xargc) * 13255 arg_sec->dofs_entsize > arg_sec->dofs_size) { 13256 dtrace_dof_error(dof, "invalid args"); 13257 return (-1); 13258 } 13259 13260 typeidx = probe->dofpr_nargv; 13261 typestr = strtab + probe->dofpr_nargv; 13262 for (k = 0; k < probe->dofpr_nargc; k++) { 13263 if (typeidx >= str_sec->dofs_size) { 13264 dtrace_dof_error(dof, "bad " 13265 "native argument type"); 13266 return (-1); 13267 } 13268 13269 typesz = strlen(typestr) + 1; 13270 if (typesz > DTRACE_ARGTYPELEN) { 13271 dtrace_dof_error(dof, "native " 13272 "argument type too long"); 13273 return (-1); 13274 } 13275 typeidx += typesz; 13276 typestr += typesz; 13277 } 13278 13279 typeidx = probe->dofpr_xargv; 13280 typestr = strtab + probe->dofpr_xargv; 13281 for (k = 0; k < probe->dofpr_xargc; k++) { 13282 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 13283 dtrace_dof_error(dof, "bad " 13284 "native argument index"); 13285 return (-1); 13286 } 13287 13288 if (typeidx >= str_sec->dofs_size) { 13289 dtrace_dof_error(dof, "bad " 13290 "translated argument type"); 13291 return (-1); 13292 } 13293 13294 typesz = strlen(typestr) + 1; 13295 if (typesz > DTRACE_ARGTYPELEN) { 13296 dtrace_dof_error(dof, "translated argument " 13297 "type too long"); 13298 return (-1); 13299 } 13300 13301 typeidx += typesz; 13302 typestr += typesz; 13303 } 13304 } 13305 13306 return (0); 13307 } 13308 13309 static int 13310 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 13311 { 13312 dtrace_helpers_t *help; 13313 dtrace_vstate_t *vstate; 13314 dtrace_enabling_t *enab = NULL; 13315 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 13316 uintptr_t daddr = (uintptr_t)dof; 13317 13318 ASSERT(MUTEX_HELD(&dtrace_lock)); 13319 13320 if ((help = curproc->p_dtrace_helpers) == NULL) 13321 help = dtrace_helpers_create(curproc); 13322 13323 vstate = &help->dthps_vstate; 13324 13325 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 13326 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 13327 dtrace_dof_destroy(dof); 13328 return (rv); 13329 } 13330 13331 /* 13332 * Look for helper providers and validate their descriptions. 13333 */ 13334 if (dhp != NULL) { 13335 for (i = 0; i < dof->dofh_secnum; i++) { 13336 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 13337 dof->dofh_secoff + i * dof->dofh_secsize); 13338 13339 if (sec->dofs_type != DOF_SECT_PROVIDER) 13340 continue; 13341 13342 if (dtrace_helper_provider_validate(dof, sec) != 0) { 13343 dtrace_enabling_destroy(enab); 13344 dtrace_dof_destroy(dof); 13345 return (-1); 13346 } 13347 13348 nprovs++; 13349 } 13350 } 13351 13352 /* 13353 * Now we need to walk through the ECB descriptions in the enabling. 13354 */ 13355 for (i = 0; i < enab->dten_ndesc; i++) { 13356 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 13357 dtrace_probedesc_t *desc = &ep->dted_probe; 13358 13359 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 13360 continue; 13361 13362 if (strcmp(desc->dtpd_mod, "helper") != 0) 13363 continue; 13364 13365 if (strcmp(desc->dtpd_func, "ustack") != 0) 13366 continue; 13367 13368 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 13369 ep)) != 0) { 13370 /* 13371 * Adding this helper action failed -- we are now going 13372 * to rip out the entire generation and return failure. 13373 */ 13374 (void) dtrace_helper_destroygen(help->dthps_generation); 13375 dtrace_enabling_destroy(enab); 13376 dtrace_dof_destroy(dof); 13377 return (-1); 13378 } 13379 13380 nhelpers++; 13381 } 13382 13383 if (nhelpers < enab->dten_ndesc) 13384 dtrace_dof_error(dof, "unmatched helpers"); 13385 13386 gen = help->dthps_generation++; 13387 dtrace_enabling_destroy(enab); 13388 13389 if (dhp != NULL && nprovs > 0) { 13390 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 13391 if (dtrace_helper_provider_add(dhp, gen) == 0) { 13392 mutex_exit(&dtrace_lock); 13393 dtrace_helper_provider_register(curproc, help, dhp); 13394 mutex_enter(&dtrace_lock); 13395 13396 destroy = 0; 13397 } 13398 } 13399 13400 if (destroy) 13401 dtrace_dof_destroy(dof); 13402 13403 return (gen); 13404 } 13405 13406 static dtrace_helpers_t * 13407 dtrace_helpers_create(proc_t *p) 13408 { 13409 dtrace_helpers_t *help; 13410 13411 ASSERT(MUTEX_HELD(&dtrace_lock)); 13412 ASSERT(p->p_dtrace_helpers == NULL); 13413 13414 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 13415 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 13416 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 13417 13418 p->p_dtrace_helpers = help; 13419 dtrace_helpers++; 13420 13421 return (help); 13422 } 13423 13424 static void 13425 dtrace_helpers_destroy(void) 13426 { 13427 dtrace_helpers_t *help; 13428 dtrace_vstate_t *vstate; 13429 proc_t *p = curproc; 13430 int i; 13431 13432 mutex_enter(&dtrace_lock); 13433 13434 ASSERT(p->p_dtrace_helpers != NULL); 13435 ASSERT(dtrace_helpers > 0); 13436 13437 help = p->p_dtrace_helpers; 13438 vstate = &help->dthps_vstate; 13439 13440 /* 13441 * We're now going to lose the help from this process. 13442 */ 13443 p->p_dtrace_helpers = NULL; 13444 dtrace_sync(); 13445 13446 /* 13447 * Destory the helper actions. 13448 */ 13449 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13450 dtrace_helper_action_t *h, *next; 13451 13452 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13453 next = h->dtha_next; 13454 dtrace_helper_action_destroy(h, vstate); 13455 h = next; 13456 } 13457 } 13458 13459 mutex_exit(&dtrace_lock); 13460 13461 /* 13462 * Destroy the helper providers. 13463 */ 13464 if (help->dthps_maxprovs > 0) { 13465 mutex_enter(&dtrace_meta_lock); 13466 if (dtrace_meta_pid != NULL) { 13467 ASSERT(dtrace_deferred_pid == NULL); 13468 13469 for (i = 0; i < help->dthps_nprovs; i++) { 13470 dtrace_helper_provider_remove( 13471 &help->dthps_provs[i]->dthp_prov, p->p_pid); 13472 } 13473 } else { 13474 mutex_enter(&dtrace_lock); 13475 ASSERT(help->dthps_deferred == 0 || 13476 help->dthps_next != NULL || 13477 help->dthps_prev != NULL || 13478 help == dtrace_deferred_pid); 13479 13480 /* 13481 * Remove the helper from the deferred list. 13482 */ 13483 if (help->dthps_next != NULL) 13484 help->dthps_next->dthps_prev = help->dthps_prev; 13485 if (help->dthps_prev != NULL) 13486 help->dthps_prev->dthps_next = help->dthps_next; 13487 if (dtrace_deferred_pid == help) { 13488 dtrace_deferred_pid = help->dthps_next; 13489 ASSERT(help->dthps_prev == NULL); 13490 } 13491 13492 mutex_exit(&dtrace_lock); 13493 } 13494 13495 mutex_exit(&dtrace_meta_lock); 13496 13497 for (i = 0; i < help->dthps_nprovs; i++) { 13498 dtrace_helper_provider_destroy(help->dthps_provs[i]); 13499 } 13500 13501 kmem_free(help->dthps_provs, help->dthps_maxprovs * 13502 sizeof (dtrace_helper_provider_t *)); 13503 } 13504 13505 mutex_enter(&dtrace_lock); 13506 13507 dtrace_vstate_fini(&help->dthps_vstate); 13508 kmem_free(help->dthps_actions, 13509 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 13510 kmem_free(help, sizeof (dtrace_helpers_t)); 13511 13512 --dtrace_helpers; 13513 mutex_exit(&dtrace_lock); 13514 } 13515 13516 static void 13517 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 13518 { 13519 dtrace_helpers_t *help, *newhelp; 13520 dtrace_helper_action_t *helper, *new, *last; 13521 dtrace_difo_t *dp; 13522 dtrace_vstate_t *vstate; 13523 int i, j, sz, hasprovs = 0; 13524 13525 mutex_enter(&dtrace_lock); 13526 ASSERT(from->p_dtrace_helpers != NULL); 13527 ASSERT(dtrace_helpers > 0); 13528 13529 help = from->p_dtrace_helpers; 13530 newhelp = dtrace_helpers_create(to); 13531 ASSERT(to->p_dtrace_helpers != NULL); 13532 13533 newhelp->dthps_generation = help->dthps_generation; 13534 vstate = &newhelp->dthps_vstate; 13535 13536 /* 13537 * Duplicate the helper actions. 13538 */ 13539 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13540 if ((helper = help->dthps_actions[i]) == NULL) 13541 continue; 13542 13543 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 13544 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 13545 KM_SLEEP); 13546 new->dtha_generation = helper->dtha_generation; 13547 13548 if ((dp = helper->dtha_predicate) != NULL) { 13549 dp = dtrace_difo_duplicate(dp, vstate); 13550 new->dtha_predicate = dp; 13551 } 13552 13553 new->dtha_nactions = helper->dtha_nactions; 13554 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 13555 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 13556 13557 for (j = 0; j < new->dtha_nactions; j++) { 13558 dtrace_difo_t *dp = helper->dtha_actions[j]; 13559 13560 ASSERT(dp != NULL); 13561 dp = dtrace_difo_duplicate(dp, vstate); 13562 new->dtha_actions[j] = dp; 13563 } 13564 13565 if (last != NULL) { 13566 last->dtha_next = new; 13567 } else { 13568 newhelp->dthps_actions[i] = new; 13569 } 13570 13571 last = new; 13572 } 13573 } 13574 13575 /* 13576 * Duplicate the helper providers and register them with the 13577 * DTrace framework. 13578 */ 13579 if (help->dthps_nprovs > 0) { 13580 newhelp->dthps_nprovs = help->dthps_nprovs; 13581 newhelp->dthps_maxprovs = help->dthps_nprovs; 13582 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 13583 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13584 for (i = 0; i < newhelp->dthps_nprovs; i++) { 13585 newhelp->dthps_provs[i] = help->dthps_provs[i]; 13586 newhelp->dthps_provs[i]->dthp_ref++; 13587 } 13588 13589 hasprovs = 1; 13590 } 13591 13592 mutex_exit(&dtrace_lock); 13593 13594 if (hasprovs) 13595 dtrace_helper_provider_register(to, newhelp, NULL); 13596 } 13597 13598 /* 13599 * DTrace Hook Functions 13600 */ 13601 static void 13602 dtrace_module_loaded(struct modctl *ctl) 13603 { 13604 dtrace_provider_t *prv; 13605 13606 mutex_enter(&dtrace_provider_lock); 13607 mutex_enter(&mod_lock); 13608 13609 ASSERT(ctl->mod_busy); 13610 13611 /* 13612 * We're going to call each providers per-module provide operation 13613 * specifying only this module. 13614 */ 13615 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 13616 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 13617 13618 mutex_exit(&mod_lock); 13619 mutex_exit(&dtrace_provider_lock); 13620 13621 /* 13622 * If we have any retained enablings, we need to match against them. 13623 * Enabling probes requires that cpu_lock be held, and we cannot hold 13624 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 13625 * module. (In particular, this happens when loading scheduling 13626 * classes.) So if we have any retained enablings, we need to dispatch 13627 * our task queue to do the match for us. 13628 */ 13629 mutex_enter(&dtrace_lock); 13630 13631 if (dtrace_retained == NULL) { 13632 mutex_exit(&dtrace_lock); 13633 return; 13634 } 13635 13636 (void) taskq_dispatch(dtrace_taskq, 13637 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 13638 13639 mutex_exit(&dtrace_lock); 13640 13641 /* 13642 * And now, for a little heuristic sleaze: in general, we want to 13643 * match modules as soon as they load. However, we cannot guarantee 13644 * this, because it would lead us to the lock ordering violation 13645 * outlined above. The common case, of course, is that cpu_lock is 13646 * _not_ held -- so we delay here for a clock tick, hoping that that's 13647 * long enough for the task queue to do its work. If it's not, it's 13648 * not a serious problem -- it just means that the module that we 13649 * just loaded may not be immediately instrumentable. 13650 */ 13651 delay(1); 13652 } 13653 13654 static void 13655 dtrace_module_unloaded(struct modctl *ctl) 13656 { 13657 dtrace_probe_t template, *probe, *first, *next; 13658 dtrace_provider_t *prov; 13659 13660 template.dtpr_mod = ctl->mod_modname; 13661 13662 mutex_enter(&dtrace_provider_lock); 13663 mutex_enter(&mod_lock); 13664 mutex_enter(&dtrace_lock); 13665 13666 if (dtrace_bymod == NULL) { 13667 /* 13668 * The DTrace module is loaded (obviously) but not attached; 13669 * we don't have any work to do. 13670 */ 13671 mutex_exit(&dtrace_provider_lock); 13672 mutex_exit(&mod_lock); 13673 mutex_exit(&dtrace_lock); 13674 return; 13675 } 13676 13677 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 13678 probe != NULL; probe = probe->dtpr_nextmod) { 13679 if (probe->dtpr_ecb != NULL) { 13680 mutex_exit(&dtrace_provider_lock); 13681 mutex_exit(&mod_lock); 13682 mutex_exit(&dtrace_lock); 13683 13684 /* 13685 * This shouldn't _actually_ be possible -- we're 13686 * unloading a module that has an enabled probe in it. 13687 * (It's normally up to the provider to make sure that 13688 * this can't happen.) However, because dtps_enable() 13689 * doesn't have a failure mode, there can be an 13690 * enable/unload race. Upshot: we don't want to 13691 * assert, but we're not going to disable the 13692 * probe, either. 13693 */ 13694 if (dtrace_err_verbose) { 13695 cmn_err(CE_WARN, "unloaded module '%s' had " 13696 "enabled probes", ctl->mod_modname); 13697 } 13698 13699 return; 13700 } 13701 } 13702 13703 probe = first; 13704 13705 for (first = NULL; probe != NULL; probe = next) { 13706 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 13707 13708 dtrace_probes[probe->dtpr_id - 1] = NULL; 13709 13710 next = probe->dtpr_nextmod; 13711 dtrace_hash_remove(dtrace_bymod, probe); 13712 dtrace_hash_remove(dtrace_byfunc, probe); 13713 dtrace_hash_remove(dtrace_byname, probe); 13714 13715 if (first == NULL) { 13716 first = probe; 13717 probe->dtpr_nextmod = NULL; 13718 } else { 13719 probe->dtpr_nextmod = first; 13720 first = probe; 13721 } 13722 } 13723 13724 /* 13725 * We've removed all of the module's probes from the hash chains and 13726 * from the probe array. Now issue a dtrace_sync() to be sure that 13727 * everyone has cleared out from any probe array processing. 13728 */ 13729 dtrace_sync(); 13730 13731 for (probe = first; probe != NULL; probe = first) { 13732 first = probe->dtpr_nextmod; 13733 prov = probe->dtpr_provider; 13734 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 13735 probe->dtpr_arg); 13736 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 13737 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 13738 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 13739 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 13740 kmem_free(probe, sizeof (dtrace_probe_t)); 13741 } 13742 13743 mutex_exit(&dtrace_lock); 13744 mutex_exit(&mod_lock); 13745 mutex_exit(&dtrace_provider_lock); 13746 } 13747 13748 void 13749 dtrace_suspend(void) 13750 { 13751 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 13752 } 13753 13754 void 13755 dtrace_resume(void) 13756 { 13757 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 13758 } 13759 13760 static int 13761 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 13762 { 13763 ASSERT(MUTEX_HELD(&cpu_lock)); 13764 mutex_enter(&dtrace_lock); 13765 13766 switch (what) { 13767 case CPU_CONFIG: { 13768 dtrace_state_t *state; 13769 dtrace_optval_t *opt, rs, c; 13770 13771 /* 13772 * For now, we only allocate a new buffer for anonymous state. 13773 */ 13774 if ((state = dtrace_anon.dta_state) == NULL) 13775 break; 13776 13777 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13778 break; 13779 13780 opt = state->dts_options; 13781 c = opt[DTRACEOPT_CPU]; 13782 13783 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 13784 break; 13785 13786 /* 13787 * Regardless of what the actual policy is, we're going to 13788 * temporarily set our resize policy to be manual. We're 13789 * also going to temporarily set our CPU option to denote 13790 * the newly configured CPU. 13791 */ 13792 rs = opt[DTRACEOPT_BUFRESIZE]; 13793 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 13794 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 13795 13796 (void) dtrace_state_buffers(state); 13797 13798 opt[DTRACEOPT_BUFRESIZE] = rs; 13799 opt[DTRACEOPT_CPU] = c; 13800 13801 break; 13802 } 13803 13804 case CPU_UNCONFIG: 13805 /* 13806 * We don't free the buffer in the CPU_UNCONFIG case. (The 13807 * buffer will be freed when the consumer exits.) 13808 */ 13809 break; 13810 13811 default: 13812 break; 13813 } 13814 13815 mutex_exit(&dtrace_lock); 13816 return (0); 13817 } 13818 13819 static void 13820 dtrace_cpu_setup_initial(processorid_t cpu) 13821 { 13822 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 13823 } 13824 13825 static void 13826 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 13827 { 13828 if (dtrace_toxranges >= dtrace_toxranges_max) { 13829 int osize, nsize; 13830 dtrace_toxrange_t *range; 13831 13832 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 13833 13834 if (osize == 0) { 13835 ASSERT(dtrace_toxrange == NULL); 13836 ASSERT(dtrace_toxranges_max == 0); 13837 dtrace_toxranges_max = 1; 13838 } else { 13839 dtrace_toxranges_max <<= 1; 13840 } 13841 13842 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 13843 range = kmem_zalloc(nsize, KM_SLEEP); 13844 13845 if (dtrace_toxrange != NULL) { 13846 ASSERT(osize != 0); 13847 bcopy(dtrace_toxrange, range, osize); 13848 kmem_free(dtrace_toxrange, osize); 13849 } 13850 13851 dtrace_toxrange = range; 13852 } 13853 13854 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 13855 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 13856 13857 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 13858 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 13859 dtrace_toxranges++; 13860 } 13861 13862 /* 13863 * DTrace Driver Cookbook Functions 13864 */ 13865 /*ARGSUSED*/ 13866 static int 13867 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 13868 { 13869 dtrace_provider_id_t id; 13870 dtrace_state_t *state = NULL; 13871 dtrace_enabling_t *enab; 13872 13873 mutex_enter(&cpu_lock); 13874 mutex_enter(&dtrace_provider_lock); 13875 mutex_enter(&dtrace_lock); 13876 13877 if (ddi_soft_state_init(&dtrace_softstate, 13878 sizeof (dtrace_state_t), 0) != 0) { 13879 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 13880 mutex_exit(&cpu_lock); 13881 mutex_exit(&dtrace_provider_lock); 13882 mutex_exit(&dtrace_lock); 13883 return (DDI_FAILURE); 13884 } 13885 13886 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 13887 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 13888 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 13889 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 13890 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 13891 ddi_remove_minor_node(devi, NULL); 13892 ddi_soft_state_fini(&dtrace_softstate); 13893 mutex_exit(&cpu_lock); 13894 mutex_exit(&dtrace_provider_lock); 13895 mutex_exit(&dtrace_lock); 13896 return (DDI_FAILURE); 13897 } 13898 13899 ddi_report_dev(devi); 13900 dtrace_devi = devi; 13901 13902 dtrace_modload = dtrace_module_loaded; 13903 dtrace_modunload = dtrace_module_unloaded; 13904 dtrace_cpu_init = dtrace_cpu_setup_initial; 13905 dtrace_helpers_cleanup = dtrace_helpers_destroy; 13906 dtrace_helpers_fork = dtrace_helpers_duplicate; 13907 dtrace_cpustart_init = dtrace_suspend; 13908 dtrace_cpustart_fini = dtrace_resume; 13909 dtrace_debugger_init = dtrace_suspend; 13910 dtrace_debugger_fini = dtrace_resume; 13911 dtrace_kreloc_init = dtrace_suspend; 13912 dtrace_kreloc_fini = dtrace_resume; 13913 13914 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 13915 13916 ASSERT(MUTEX_HELD(&cpu_lock)); 13917 13918 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 13919 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13920 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 13921 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 13922 VM_SLEEP | VMC_IDENTIFIER); 13923 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 13924 1, INT_MAX, 0); 13925 13926 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 13927 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 13928 NULL, NULL, NULL, NULL, NULL, 0); 13929 13930 ASSERT(MUTEX_HELD(&cpu_lock)); 13931 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 13932 offsetof(dtrace_probe_t, dtpr_nextmod), 13933 offsetof(dtrace_probe_t, dtpr_prevmod)); 13934 13935 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 13936 offsetof(dtrace_probe_t, dtpr_nextfunc), 13937 offsetof(dtrace_probe_t, dtpr_prevfunc)); 13938 13939 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 13940 offsetof(dtrace_probe_t, dtpr_nextname), 13941 offsetof(dtrace_probe_t, dtpr_prevname)); 13942 13943 if (dtrace_retain_max < 1) { 13944 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 13945 "setting to 1", dtrace_retain_max); 13946 dtrace_retain_max = 1; 13947 } 13948 13949 /* 13950 * Now discover our toxic ranges. 13951 */ 13952 dtrace_toxic_ranges(dtrace_toxrange_add); 13953 13954 /* 13955 * Before we register ourselves as a provider to our own framework, 13956 * we would like to assert that dtrace_provider is NULL -- but that's 13957 * not true if we were loaded as a dependency of a DTrace provider. 13958 * Once we've registered, we can assert that dtrace_provider is our 13959 * pseudo provider. 13960 */ 13961 (void) dtrace_register("dtrace", &dtrace_provider_attr, 13962 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 13963 13964 ASSERT(dtrace_provider != NULL); 13965 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 13966 13967 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 13968 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 13969 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 13970 dtrace_provider, NULL, NULL, "END", 0, NULL); 13971 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 13972 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 13973 13974 dtrace_anon_property(); 13975 mutex_exit(&cpu_lock); 13976 13977 /* 13978 * If DTrace helper tracing is enabled, we need to allocate the 13979 * trace buffer and initialize the values. 13980 */ 13981 if (dtrace_helptrace_enabled) { 13982 ASSERT(dtrace_helptrace_buffer == NULL); 13983 dtrace_helptrace_buffer = 13984 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 13985 dtrace_helptrace_next = 0; 13986 } 13987 13988 /* 13989 * If there are already providers, we must ask them to provide their 13990 * probes, and then match any anonymous enabling against them. Note 13991 * that there should be no other retained enablings at this time: 13992 * the only retained enablings at this time should be the anonymous 13993 * enabling. 13994 */ 13995 if (dtrace_anon.dta_enabling != NULL) { 13996 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 13997 13998 dtrace_enabling_provide(NULL); 13999 state = dtrace_anon.dta_state; 14000 14001 /* 14002 * We couldn't hold cpu_lock across the above call to 14003 * dtrace_enabling_provide(), but we must hold it to actually 14004 * enable the probes. We have to drop all of our locks, pick 14005 * up cpu_lock, and regain our locks before matching the 14006 * retained anonymous enabling. 14007 */ 14008 mutex_exit(&dtrace_lock); 14009 mutex_exit(&dtrace_provider_lock); 14010 14011 mutex_enter(&cpu_lock); 14012 mutex_enter(&dtrace_provider_lock); 14013 mutex_enter(&dtrace_lock); 14014 14015 if ((enab = dtrace_anon.dta_enabling) != NULL) 14016 (void) dtrace_enabling_match(enab, NULL); 14017 14018 mutex_exit(&cpu_lock); 14019 } 14020 14021 mutex_exit(&dtrace_lock); 14022 mutex_exit(&dtrace_provider_lock); 14023 14024 if (state != NULL) { 14025 /* 14026 * If we created any anonymous state, set it going now. 14027 */ 14028 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 14029 } 14030 14031 return (DDI_SUCCESS); 14032 } 14033 14034 /*ARGSUSED*/ 14035 static int 14036 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 14037 { 14038 dtrace_state_t *state; 14039 uint32_t priv; 14040 uid_t uid; 14041 zoneid_t zoneid; 14042 14043 if (getminor(*devp) == DTRACEMNRN_HELPER) 14044 return (0); 14045 14046 /* 14047 * If this wasn't an open with the "helper" minor, then it must be 14048 * the "dtrace" minor. 14049 */ 14050 ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE); 14051 14052 /* 14053 * If no DTRACE_PRIV_* bits are set in the credential, then the 14054 * caller lacks sufficient permission to do anything with DTrace. 14055 */ 14056 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 14057 if (priv == DTRACE_PRIV_NONE) 14058 return (EACCES); 14059 14060 /* 14061 * Ask all providers to provide all their probes. 14062 */ 14063 mutex_enter(&dtrace_provider_lock); 14064 dtrace_probe_provide(NULL, NULL); 14065 mutex_exit(&dtrace_provider_lock); 14066 14067 mutex_enter(&cpu_lock); 14068 mutex_enter(&dtrace_lock); 14069 dtrace_opens++; 14070 dtrace_membar_producer(); 14071 14072 /* 14073 * If the kernel debugger is active (that is, if the kernel debugger 14074 * modified text in some way), we won't allow the open. 14075 */ 14076 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14077 dtrace_opens--; 14078 mutex_exit(&cpu_lock); 14079 mutex_exit(&dtrace_lock); 14080 return (EBUSY); 14081 } 14082 14083 state = dtrace_state_create(devp, cred_p); 14084 mutex_exit(&cpu_lock); 14085 14086 if (state == NULL) { 14087 if (--dtrace_opens == 0) 14088 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14089 mutex_exit(&dtrace_lock); 14090 return (EAGAIN); 14091 } 14092 14093 mutex_exit(&dtrace_lock); 14094 14095 return (0); 14096 } 14097 14098 /*ARGSUSED*/ 14099 static int 14100 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 14101 { 14102 minor_t minor = getminor(dev); 14103 dtrace_state_t *state; 14104 14105 if (minor == DTRACEMNRN_HELPER) 14106 return (0); 14107 14108 state = ddi_get_soft_state(dtrace_softstate, minor); 14109 14110 mutex_enter(&cpu_lock); 14111 mutex_enter(&dtrace_lock); 14112 14113 if (state->dts_anon) { 14114 /* 14115 * There is anonymous state. Destroy that first. 14116 */ 14117 ASSERT(dtrace_anon.dta_state == NULL); 14118 dtrace_state_destroy(state->dts_anon); 14119 } 14120 14121 dtrace_state_destroy(state); 14122 ASSERT(dtrace_opens > 0); 14123 if (--dtrace_opens == 0) 14124 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14125 14126 mutex_exit(&dtrace_lock); 14127 mutex_exit(&cpu_lock); 14128 14129 return (0); 14130 } 14131 14132 /*ARGSUSED*/ 14133 static int 14134 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 14135 { 14136 int rval; 14137 dof_helper_t help, *dhp = NULL; 14138 14139 switch (cmd) { 14140 case DTRACEHIOC_ADDDOF: 14141 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 14142 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 14143 return (EFAULT); 14144 } 14145 14146 dhp = &help; 14147 arg = (intptr_t)help.dofhp_dof; 14148 /*FALLTHROUGH*/ 14149 14150 case DTRACEHIOC_ADD: { 14151 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 14152 14153 if (dof == NULL) 14154 return (rval); 14155 14156 mutex_enter(&dtrace_lock); 14157 14158 /* 14159 * dtrace_helper_slurp() takes responsibility for the dof -- 14160 * it may free it now or it may save it and free it later. 14161 */ 14162 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 14163 *rv = rval; 14164 rval = 0; 14165 } else { 14166 rval = EINVAL; 14167 } 14168 14169 mutex_exit(&dtrace_lock); 14170 return (rval); 14171 } 14172 14173 case DTRACEHIOC_REMOVE: { 14174 mutex_enter(&dtrace_lock); 14175 rval = dtrace_helper_destroygen(arg); 14176 mutex_exit(&dtrace_lock); 14177 14178 return (rval); 14179 } 14180 14181 default: 14182 break; 14183 } 14184 14185 return (ENOTTY); 14186 } 14187 14188 /*ARGSUSED*/ 14189 static int 14190 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 14191 { 14192 minor_t minor = getminor(dev); 14193 dtrace_state_t *state; 14194 int rval; 14195 14196 if (minor == DTRACEMNRN_HELPER) 14197 return (dtrace_ioctl_helper(cmd, arg, rv)); 14198 14199 state = ddi_get_soft_state(dtrace_softstate, minor); 14200 14201 if (state->dts_anon) { 14202 ASSERT(dtrace_anon.dta_state == NULL); 14203 state = state->dts_anon; 14204 } 14205 14206 switch (cmd) { 14207 case DTRACEIOC_PROVIDER: { 14208 dtrace_providerdesc_t pvd; 14209 dtrace_provider_t *pvp; 14210 14211 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 14212 return (EFAULT); 14213 14214 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 14215 mutex_enter(&dtrace_provider_lock); 14216 14217 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 14218 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 14219 break; 14220 } 14221 14222 mutex_exit(&dtrace_provider_lock); 14223 14224 if (pvp == NULL) 14225 return (ESRCH); 14226 14227 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 14228 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 14229 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 14230 return (EFAULT); 14231 14232 return (0); 14233 } 14234 14235 case DTRACEIOC_EPROBE: { 14236 dtrace_eprobedesc_t epdesc; 14237 dtrace_ecb_t *ecb; 14238 dtrace_action_t *act; 14239 void *buf; 14240 size_t size; 14241 uintptr_t dest; 14242 int nrecs; 14243 14244 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 14245 return (EFAULT); 14246 14247 mutex_enter(&dtrace_lock); 14248 14249 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 14250 mutex_exit(&dtrace_lock); 14251 return (EINVAL); 14252 } 14253 14254 if (ecb->dte_probe == NULL) { 14255 mutex_exit(&dtrace_lock); 14256 return (EINVAL); 14257 } 14258 14259 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 14260 epdesc.dtepd_uarg = ecb->dte_uarg; 14261 epdesc.dtepd_size = ecb->dte_size; 14262 14263 nrecs = epdesc.dtepd_nrecs; 14264 epdesc.dtepd_nrecs = 0; 14265 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14266 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14267 continue; 14268 14269 epdesc.dtepd_nrecs++; 14270 } 14271 14272 /* 14273 * Now that we have the size, we need to allocate a temporary 14274 * buffer in which to store the complete description. We need 14275 * the temporary buffer to be able to drop dtrace_lock() 14276 * across the copyout(), below. 14277 */ 14278 size = sizeof (dtrace_eprobedesc_t) + 14279 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 14280 14281 buf = kmem_alloc(size, KM_SLEEP); 14282 dest = (uintptr_t)buf; 14283 14284 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 14285 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 14286 14287 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14288 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14289 continue; 14290 14291 if (nrecs-- == 0) 14292 break; 14293 14294 bcopy(&act->dta_rec, (void *)dest, 14295 sizeof (dtrace_recdesc_t)); 14296 dest += sizeof (dtrace_recdesc_t); 14297 } 14298 14299 mutex_exit(&dtrace_lock); 14300 14301 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14302 kmem_free(buf, size); 14303 return (EFAULT); 14304 } 14305 14306 kmem_free(buf, size); 14307 return (0); 14308 } 14309 14310 case DTRACEIOC_AGGDESC: { 14311 dtrace_aggdesc_t aggdesc; 14312 dtrace_action_t *act; 14313 dtrace_aggregation_t *agg; 14314 int nrecs; 14315 uint32_t offs; 14316 dtrace_recdesc_t *lrec; 14317 void *buf; 14318 size_t size; 14319 uintptr_t dest; 14320 14321 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 14322 return (EFAULT); 14323 14324 mutex_enter(&dtrace_lock); 14325 14326 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 14327 mutex_exit(&dtrace_lock); 14328 return (EINVAL); 14329 } 14330 14331 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 14332 14333 nrecs = aggdesc.dtagd_nrecs; 14334 aggdesc.dtagd_nrecs = 0; 14335 14336 offs = agg->dtag_base; 14337 lrec = &agg->dtag_action.dta_rec; 14338 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 14339 14340 for (act = agg->dtag_first; ; act = act->dta_next) { 14341 ASSERT(act->dta_intuple || 14342 DTRACEACT_ISAGG(act->dta_kind)); 14343 14344 /* 14345 * If this action has a record size of zero, it 14346 * denotes an argument to the aggregating action. 14347 * Because the presence of this record doesn't (or 14348 * shouldn't) affect the way the data is interpreted, 14349 * we don't copy it out to save user-level the 14350 * confusion of dealing with a zero-length record. 14351 */ 14352 if (act->dta_rec.dtrd_size == 0) { 14353 ASSERT(agg->dtag_hasarg); 14354 continue; 14355 } 14356 14357 aggdesc.dtagd_nrecs++; 14358 14359 if (act == &agg->dtag_action) 14360 break; 14361 } 14362 14363 /* 14364 * Now that we have the size, we need to allocate a temporary 14365 * buffer in which to store the complete description. We need 14366 * the temporary buffer to be able to drop dtrace_lock() 14367 * across the copyout(), below. 14368 */ 14369 size = sizeof (dtrace_aggdesc_t) + 14370 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 14371 14372 buf = kmem_alloc(size, KM_SLEEP); 14373 dest = (uintptr_t)buf; 14374 14375 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 14376 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 14377 14378 for (act = agg->dtag_first; ; act = act->dta_next) { 14379 dtrace_recdesc_t rec = act->dta_rec; 14380 14381 /* 14382 * See the comment in the above loop for why we pass 14383 * over zero-length records. 14384 */ 14385 if (rec.dtrd_size == 0) { 14386 ASSERT(agg->dtag_hasarg); 14387 continue; 14388 } 14389 14390 if (nrecs-- == 0) 14391 break; 14392 14393 rec.dtrd_offset -= offs; 14394 bcopy(&rec, (void *)dest, sizeof (rec)); 14395 dest += sizeof (dtrace_recdesc_t); 14396 14397 if (act == &agg->dtag_action) 14398 break; 14399 } 14400 14401 mutex_exit(&dtrace_lock); 14402 14403 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14404 kmem_free(buf, size); 14405 return (EFAULT); 14406 } 14407 14408 kmem_free(buf, size); 14409 return (0); 14410 } 14411 14412 case DTRACEIOC_ENABLE: { 14413 dof_hdr_t *dof; 14414 dtrace_enabling_t *enab = NULL; 14415 dtrace_vstate_t *vstate; 14416 int err = 0; 14417 14418 *rv = 0; 14419 14420 /* 14421 * If a NULL argument has been passed, we take this as our 14422 * cue to reevaluate our enablings. 14423 */ 14424 if (arg == NULL) { 14425 mutex_enter(&cpu_lock); 14426 mutex_enter(&dtrace_lock); 14427 err = dtrace_enabling_matchstate(state, rv); 14428 mutex_exit(&dtrace_lock); 14429 mutex_exit(&cpu_lock); 14430 14431 return (err); 14432 } 14433 14434 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 14435 return (rval); 14436 14437 mutex_enter(&cpu_lock); 14438 mutex_enter(&dtrace_lock); 14439 vstate = &state->dts_vstate; 14440 14441 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14442 mutex_exit(&dtrace_lock); 14443 mutex_exit(&cpu_lock); 14444 dtrace_dof_destroy(dof); 14445 return (EBUSY); 14446 } 14447 14448 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 14449 mutex_exit(&dtrace_lock); 14450 mutex_exit(&cpu_lock); 14451 dtrace_dof_destroy(dof); 14452 return (EINVAL); 14453 } 14454 14455 if ((rval = dtrace_dof_options(dof, state)) != 0) { 14456 dtrace_enabling_destroy(enab); 14457 mutex_exit(&dtrace_lock); 14458 mutex_exit(&cpu_lock); 14459 dtrace_dof_destroy(dof); 14460 return (rval); 14461 } 14462 14463 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 14464 err = dtrace_enabling_retain(enab); 14465 } else { 14466 dtrace_enabling_destroy(enab); 14467 } 14468 14469 mutex_exit(&cpu_lock); 14470 mutex_exit(&dtrace_lock); 14471 dtrace_dof_destroy(dof); 14472 14473 return (err); 14474 } 14475 14476 case DTRACEIOC_REPLICATE: { 14477 dtrace_repldesc_t desc; 14478 dtrace_probedesc_t *match = &desc.dtrpd_match; 14479 dtrace_probedesc_t *create = &desc.dtrpd_create; 14480 int err; 14481 14482 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14483 return (EFAULT); 14484 14485 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14486 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14487 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14488 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14489 14490 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14491 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14492 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14493 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14494 14495 mutex_enter(&dtrace_lock); 14496 err = dtrace_enabling_replicate(state, match, create); 14497 mutex_exit(&dtrace_lock); 14498 14499 return (err); 14500 } 14501 14502 case DTRACEIOC_PROBEMATCH: 14503 case DTRACEIOC_PROBES: { 14504 dtrace_probe_t *probe = NULL; 14505 dtrace_probedesc_t desc; 14506 dtrace_probekey_t pkey; 14507 dtrace_id_t i; 14508 int m = 0; 14509 uint32_t priv; 14510 uid_t uid; 14511 zoneid_t zoneid; 14512 14513 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14514 return (EFAULT); 14515 14516 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14517 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14518 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14519 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14520 14521 /* 14522 * Before we attempt to match this probe, we want to give 14523 * all providers the opportunity to provide it. 14524 */ 14525 if (desc.dtpd_id == DTRACE_IDNONE) { 14526 mutex_enter(&dtrace_provider_lock); 14527 dtrace_probe_provide(&desc, NULL); 14528 mutex_exit(&dtrace_provider_lock); 14529 desc.dtpd_id++; 14530 } 14531 14532 if (cmd == DTRACEIOC_PROBEMATCH) { 14533 dtrace_probekey(&desc, &pkey); 14534 pkey.dtpk_id = DTRACE_IDNONE; 14535 } 14536 14537 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 14538 14539 mutex_enter(&dtrace_lock); 14540 14541 if (cmd == DTRACEIOC_PROBEMATCH) { 14542 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14543 if ((probe = dtrace_probes[i - 1]) != NULL && 14544 (m = dtrace_match_probe(probe, &pkey, 14545 priv, uid, zoneid)) != 0) 14546 break; 14547 } 14548 14549 if (m < 0) { 14550 mutex_exit(&dtrace_lock); 14551 return (EINVAL); 14552 } 14553 14554 } else { 14555 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14556 if ((probe = dtrace_probes[i - 1]) != NULL && 14557 dtrace_match_priv(probe, priv, uid, zoneid)) 14558 break; 14559 } 14560 } 14561 14562 if (probe == NULL) { 14563 mutex_exit(&dtrace_lock); 14564 return (ESRCH); 14565 } 14566 14567 dtrace_probe_description(probe, &desc); 14568 mutex_exit(&dtrace_lock); 14569 14570 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14571 return (EFAULT); 14572 14573 return (0); 14574 } 14575 14576 case DTRACEIOC_PROBEARG: { 14577 dtrace_argdesc_t desc; 14578 dtrace_probe_t *probe; 14579 dtrace_provider_t *prov; 14580 14581 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14582 return (EFAULT); 14583 14584 if (desc.dtargd_id == DTRACE_IDNONE) 14585 return (EINVAL); 14586 14587 if (desc.dtargd_ndx == DTRACE_ARGNONE) 14588 return (EINVAL); 14589 14590 mutex_enter(&dtrace_provider_lock); 14591 mutex_enter(&mod_lock); 14592 mutex_enter(&dtrace_lock); 14593 14594 if (desc.dtargd_id > dtrace_nprobes) { 14595 mutex_exit(&dtrace_lock); 14596 mutex_exit(&mod_lock); 14597 mutex_exit(&dtrace_provider_lock); 14598 return (EINVAL); 14599 } 14600 14601 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 14602 mutex_exit(&dtrace_lock); 14603 mutex_exit(&mod_lock); 14604 mutex_exit(&dtrace_provider_lock); 14605 return (EINVAL); 14606 } 14607 14608 mutex_exit(&dtrace_lock); 14609 14610 prov = probe->dtpr_provider; 14611 14612 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 14613 /* 14614 * There isn't any typed information for this probe. 14615 * Set the argument number to DTRACE_ARGNONE. 14616 */ 14617 desc.dtargd_ndx = DTRACE_ARGNONE; 14618 } else { 14619 desc.dtargd_native[0] = '\0'; 14620 desc.dtargd_xlate[0] = '\0'; 14621 desc.dtargd_mapping = desc.dtargd_ndx; 14622 14623 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 14624 probe->dtpr_id, probe->dtpr_arg, &desc); 14625 } 14626 14627 mutex_exit(&mod_lock); 14628 mutex_exit(&dtrace_provider_lock); 14629 14630 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14631 return (EFAULT); 14632 14633 return (0); 14634 } 14635 14636 case DTRACEIOC_GO: { 14637 processorid_t cpuid; 14638 rval = dtrace_state_go(state, &cpuid); 14639 14640 if (rval != 0) 14641 return (rval); 14642 14643 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 14644 return (EFAULT); 14645 14646 return (0); 14647 } 14648 14649 case DTRACEIOC_STOP: { 14650 processorid_t cpuid; 14651 14652 mutex_enter(&dtrace_lock); 14653 rval = dtrace_state_stop(state, &cpuid); 14654 mutex_exit(&dtrace_lock); 14655 14656 if (rval != 0) 14657 return (rval); 14658 14659 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 14660 return (EFAULT); 14661 14662 return (0); 14663 } 14664 14665 case DTRACEIOC_DOFGET: { 14666 dof_hdr_t hdr, *dof; 14667 uint64_t len; 14668 14669 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 14670 return (EFAULT); 14671 14672 mutex_enter(&dtrace_lock); 14673 dof = dtrace_dof_create(state); 14674 mutex_exit(&dtrace_lock); 14675 14676 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 14677 rval = copyout(dof, (void *)arg, len); 14678 dtrace_dof_destroy(dof); 14679 14680 return (rval == 0 ? 0 : EFAULT); 14681 } 14682 14683 case DTRACEIOC_AGGSNAP: 14684 case DTRACEIOC_BUFSNAP: { 14685 dtrace_bufdesc_t desc; 14686 caddr_t cached; 14687 dtrace_buffer_t *buf; 14688 14689 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14690 return (EFAULT); 14691 14692 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 14693 return (EINVAL); 14694 14695 mutex_enter(&dtrace_lock); 14696 14697 if (cmd == DTRACEIOC_BUFSNAP) { 14698 buf = &state->dts_buffer[desc.dtbd_cpu]; 14699 } else { 14700 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 14701 } 14702 14703 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 14704 size_t sz = buf->dtb_offset; 14705 14706 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 14707 mutex_exit(&dtrace_lock); 14708 return (EBUSY); 14709 } 14710 14711 /* 14712 * If this buffer has already been consumed, we're 14713 * going to indicate that there's nothing left here 14714 * to consume. 14715 */ 14716 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 14717 mutex_exit(&dtrace_lock); 14718 14719 desc.dtbd_size = 0; 14720 desc.dtbd_drops = 0; 14721 desc.dtbd_errors = 0; 14722 desc.dtbd_oldest = 0; 14723 sz = sizeof (desc); 14724 14725 if (copyout(&desc, (void *)arg, sz) != 0) 14726 return (EFAULT); 14727 14728 return (0); 14729 } 14730 14731 /* 14732 * If this is a ring buffer that has wrapped, we want 14733 * to copy the whole thing out. 14734 */ 14735 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 14736 dtrace_buffer_polish(buf); 14737 sz = buf->dtb_size; 14738 } 14739 14740 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 14741 mutex_exit(&dtrace_lock); 14742 return (EFAULT); 14743 } 14744 14745 desc.dtbd_size = sz; 14746 desc.dtbd_drops = buf->dtb_drops; 14747 desc.dtbd_errors = buf->dtb_errors; 14748 desc.dtbd_oldest = buf->dtb_xamot_offset; 14749 14750 mutex_exit(&dtrace_lock); 14751 14752 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14753 return (EFAULT); 14754 14755 buf->dtb_flags |= DTRACEBUF_CONSUMED; 14756 14757 return (0); 14758 } 14759 14760 if (buf->dtb_tomax == NULL) { 14761 ASSERT(buf->dtb_xamot == NULL); 14762 mutex_exit(&dtrace_lock); 14763 return (ENOENT); 14764 } 14765 14766 cached = buf->dtb_tomax; 14767 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 14768 14769 dtrace_xcall(desc.dtbd_cpu, 14770 (dtrace_xcall_t)dtrace_buffer_switch, buf); 14771 14772 state->dts_errors += buf->dtb_xamot_errors; 14773 14774 /* 14775 * If the buffers did not actually switch, then the cross call 14776 * did not take place -- presumably because the given CPU is 14777 * not in the ready set. If this is the case, we'll return 14778 * ENOENT. 14779 */ 14780 if (buf->dtb_tomax == cached) { 14781 ASSERT(buf->dtb_xamot != cached); 14782 mutex_exit(&dtrace_lock); 14783 return (ENOENT); 14784 } 14785 14786 ASSERT(cached == buf->dtb_xamot); 14787 14788 /* 14789 * We have our snapshot; now copy it out. 14790 */ 14791 if (copyout(buf->dtb_xamot, desc.dtbd_data, 14792 buf->dtb_xamot_offset) != 0) { 14793 mutex_exit(&dtrace_lock); 14794 return (EFAULT); 14795 } 14796 14797 desc.dtbd_size = buf->dtb_xamot_offset; 14798 desc.dtbd_drops = buf->dtb_xamot_drops; 14799 desc.dtbd_errors = buf->dtb_xamot_errors; 14800 desc.dtbd_oldest = 0; 14801 14802 mutex_exit(&dtrace_lock); 14803 14804 /* 14805 * Finally, copy out the buffer description. 14806 */ 14807 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14808 return (EFAULT); 14809 14810 return (0); 14811 } 14812 14813 case DTRACEIOC_CONF: { 14814 dtrace_conf_t conf; 14815 14816 bzero(&conf, sizeof (conf)); 14817 conf.dtc_difversion = DIF_VERSION; 14818 conf.dtc_difintregs = DIF_DIR_NREGS; 14819 conf.dtc_diftupregs = DIF_DTR_NREGS; 14820 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 14821 14822 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 14823 return (EFAULT); 14824 14825 return (0); 14826 } 14827 14828 case DTRACEIOC_STATUS: { 14829 dtrace_status_t stat; 14830 dtrace_dstate_t *dstate; 14831 int i, j; 14832 uint64_t nerrs; 14833 14834 /* 14835 * See the comment in dtrace_state_deadman() for the reason 14836 * for setting dts_laststatus to INT64_MAX before setting 14837 * it to the correct value. 14838 */ 14839 state->dts_laststatus = INT64_MAX; 14840 dtrace_membar_producer(); 14841 state->dts_laststatus = dtrace_gethrtime(); 14842 14843 bzero(&stat, sizeof (stat)); 14844 14845 mutex_enter(&dtrace_lock); 14846 14847 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 14848 mutex_exit(&dtrace_lock); 14849 return (ENOENT); 14850 } 14851 14852 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 14853 stat.dtst_exiting = 1; 14854 14855 nerrs = state->dts_errors; 14856 dstate = &state->dts_vstate.dtvs_dynvars; 14857 14858 for (i = 0; i < NCPU; i++) { 14859 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 14860 14861 stat.dtst_dyndrops += dcpu->dtdsc_drops; 14862 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 14863 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 14864 14865 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 14866 stat.dtst_filled++; 14867 14868 nerrs += state->dts_buffer[i].dtb_errors; 14869 14870 for (j = 0; j < state->dts_nspeculations; j++) { 14871 dtrace_speculation_t *spec; 14872 dtrace_buffer_t *buf; 14873 14874 spec = &state->dts_speculations[j]; 14875 buf = &spec->dtsp_buffer[i]; 14876 stat.dtst_specdrops += buf->dtb_xamot_drops; 14877 } 14878 } 14879 14880 stat.dtst_specdrops_busy = state->dts_speculations_busy; 14881 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 14882 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 14883 stat.dtst_dblerrors = state->dts_dblerrors; 14884 stat.dtst_killed = 14885 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 14886 stat.dtst_errors = nerrs; 14887 14888 mutex_exit(&dtrace_lock); 14889 14890 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 14891 return (EFAULT); 14892 14893 return (0); 14894 } 14895 14896 case DTRACEIOC_FORMAT: { 14897 dtrace_fmtdesc_t fmt; 14898 char *str; 14899 int len; 14900 14901 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 14902 return (EFAULT); 14903 14904 mutex_enter(&dtrace_lock); 14905 14906 if (fmt.dtfd_format == 0 || 14907 fmt.dtfd_format > state->dts_nformats) { 14908 mutex_exit(&dtrace_lock); 14909 return (EINVAL); 14910 } 14911 14912 /* 14913 * Format strings are allocated contiguously and they are 14914 * never freed; if a format index is less than the number 14915 * of formats, we can assert that the format map is non-NULL 14916 * and that the format for the specified index is non-NULL. 14917 */ 14918 ASSERT(state->dts_formats != NULL); 14919 str = state->dts_formats[fmt.dtfd_format - 1]; 14920 ASSERT(str != NULL); 14921 14922 len = strlen(str) + 1; 14923 14924 if (len > fmt.dtfd_length) { 14925 fmt.dtfd_length = len; 14926 14927 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 14928 mutex_exit(&dtrace_lock); 14929 return (EINVAL); 14930 } 14931 } else { 14932 if (copyout(str, fmt.dtfd_string, len) != 0) { 14933 mutex_exit(&dtrace_lock); 14934 return (EINVAL); 14935 } 14936 } 14937 14938 mutex_exit(&dtrace_lock); 14939 return (0); 14940 } 14941 14942 default: 14943 break; 14944 } 14945 14946 return (ENOTTY); 14947 } 14948 14949 /*ARGSUSED*/ 14950 static int 14951 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 14952 { 14953 dtrace_state_t *state; 14954 14955 switch (cmd) { 14956 case DDI_DETACH: 14957 break; 14958 14959 case DDI_SUSPEND: 14960 return (DDI_SUCCESS); 14961 14962 default: 14963 return (DDI_FAILURE); 14964 } 14965 14966 mutex_enter(&cpu_lock); 14967 mutex_enter(&dtrace_provider_lock); 14968 mutex_enter(&dtrace_lock); 14969 14970 ASSERT(dtrace_opens == 0); 14971 14972 if (dtrace_helpers > 0) { 14973 mutex_exit(&dtrace_provider_lock); 14974 mutex_exit(&dtrace_lock); 14975 mutex_exit(&cpu_lock); 14976 return (DDI_FAILURE); 14977 } 14978 14979 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 14980 mutex_exit(&dtrace_provider_lock); 14981 mutex_exit(&dtrace_lock); 14982 mutex_exit(&cpu_lock); 14983 return (DDI_FAILURE); 14984 } 14985 14986 dtrace_provider = NULL; 14987 14988 if ((state = dtrace_anon_grab()) != NULL) { 14989 /* 14990 * If there were ECBs on this state, the provider should 14991 * have not been allowed to detach; assert that there is 14992 * none. 14993 */ 14994 ASSERT(state->dts_necbs == 0); 14995 dtrace_state_destroy(state); 14996 14997 /* 14998 * If we're being detached with anonymous state, we need to 14999 * indicate to the kernel debugger that DTrace is now inactive. 15000 */ 15001 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15002 } 15003 15004 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 15005 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15006 dtrace_cpu_init = NULL; 15007 dtrace_helpers_cleanup = NULL; 15008 dtrace_helpers_fork = NULL; 15009 dtrace_cpustart_init = NULL; 15010 dtrace_cpustart_fini = NULL; 15011 dtrace_debugger_init = NULL; 15012 dtrace_debugger_fini = NULL; 15013 dtrace_kreloc_init = NULL; 15014 dtrace_kreloc_fini = NULL; 15015 dtrace_modload = NULL; 15016 dtrace_modunload = NULL; 15017 15018 mutex_exit(&cpu_lock); 15019 15020 if (dtrace_helptrace_enabled) { 15021 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 15022 dtrace_helptrace_buffer = NULL; 15023 } 15024 15025 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 15026 dtrace_probes = NULL; 15027 dtrace_nprobes = 0; 15028 15029 dtrace_hash_destroy(dtrace_bymod); 15030 dtrace_hash_destroy(dtrace_byfunc); 15031 dtrace_hash_destroy(dtrace_byname); 15032 dtrace_bymod = NULL; 15033 dtrace_byfunc = NULL; 15034 dtrace_byname = NULL; 15035 15036 kmem_cache_destroy(dtrace_state_cache); 15037 vmem_destroy(dtrace_minor); 15038 vmem_destroy(dtrace_arena); 15039 15040 if (dtrace_toxrange != NULL) { 15041 kmem_free(dtrace_toxrange, 15042 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 15043 dtrace_toxrange = NULL; 15044 dtrace_toxranges = 0; 15045 dtrace_toxranges_max = 0; 15046 } 15047 15048 ddi_remove_minor_node(dtrace_devi, NULL); 15049 dtrace_devi = NULL; 15050 15051 ddi_soft_state_fini(&dtrace_softstate); 15052 15053 ASSERT(dtrace_vtime_references == 0); 15054 ASSERT(dtrace_opens == 0); 15055 ASSERT(dtrace_retained == NULL); 15056 15057 mutex_exit(&dtrace_lock); 15058 mutex_exit(&dtrace_provider_lock); 15059 15060 /* 15061 * We don't destroy the task queue until after we have dropped our 15062 * locks (taskq_destroy() may block on running tasks). To prevent 15063 * attempting to do work after we have effectively detached but before 15064 * the task queue has been destroyed, all tasks dispatched via the 15065 * task queue must check that DTrace is still attached before 15066 * performing any operation. 15067 */ 15068 taskq_destroy(dtrace_taskq); 15069 dtrace_taskq = NULL; 15070 15071 return (DDI_SUCCESS); 15072 } 15073 15074 /*ARGSUSED*/ 15075 static int 15076 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 15077 { 15078 int error; 15079 15080 switch (infocmd) { 15081 case DDI_INFO_DEVT2DEVINFO: 15082 *result = (void *)dtrace_devi; 15083 error = DDI_SUCCESS; 15084 break; 15085 case DDI_INFO_DEVT2INSTANCE: 15086 *result = (void *)0; 15087 error = DDI_SUCCESS; 15088 break; 15089 default: 15090 error = DDI_FAILURE; 15091 } 15092 return (error); 15093 } 15094 15095 static struct cb_ops dtrace_cb_ops = { 15096 dtrace_open, /* open */ 15097 dtrace_close, /* close */ 15098 nulldev, /* strategy */ 15099 nulldev, /* print */ 15100 nodev, /* dump */ 15101 nodev, /* read */ 15102 nodev, /* write */ 15103 dtrace_ioctl, /* ioctl */ 15104 nodev, /* devmap */ 15105 nodev, /* mmap */ 15106 nodev, /* segmap */ 15107 nochpoll, /* poll */ 15108 ddi_prop_op, /* cb_prop_op */ 15109 0, /* streamtab */ 15110 D_NEW | D_MP /* Driver compatibility flag */ 15111 }; 15112 15113 static struct dev_ops dtrace_ops = { 15114 DEVO_REV, /* devo_rev */ 15115 0, /* refcnt */ 15116 dtrace_info, /* get_dev_info */ 15117 nulldev, /* identify */ 15118 nulldev, /* probe */ 15119 dtrace_attach, /* attach */ 15120 dtrace_detach, /* detach */ 15121 nodev, /* reset */ 15122 &dtrace_cb_ops, /* driver operations */ 15123 NULL, /* bus operations */ 15124 nodev /* dev power */ 15125 }; 15126 15127 static struct modldrv modldrv = { 15128 &mod_driverops, /* module type (this is a pseudo driver) */ 15129 "Dynamic Tracing", /* name of module */ 15130 &dtrace_ops, /* driver ops */ 15131 }; 15132 15133 static struct modlinkage modlinkage = { 15134 MODREV_1, 15135 (void *)&modldrv, 15136 NULL 15137 }; 15138 15139 int 15140 _init(void) 15141 { 15142 return (mod_install(&modlinkage)); 15143 } 15144 15145 int 15146 _info(struct modinfo *modinfop) 15147 { 15148 return (mod_info(&modlinkage, modinfop)); 15149 } 15150 15151 int 15152 _fini(void) 15153 { 15154 return (mod_remove(&modlinkage)); 15155 } 15156