1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * DTrace - Dynamic Tracing for Solaris 31 * 32 * This is the implementation of the Solaris Dynamic Tracing framework 33 * (DTrace). The user-visible interface to DTrace is described at length in 34 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 35 * library, the in-kernel DTrace framework, and the DTrace providers are 36 * described in the block comments in the <sys/dtrace.h> header file. The 37 * internal architecture of DTrace is described in the block comments in the 38 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 39 * implementation very much assume mastery of all of these sources; if one has 40 * an unanswered question about the implementation, one should consult them 41 * first. 42 * 43 * The functions here are ordered roughly as follows: 44 * 45 * - Probe context functions 46 * - Probe hashing functions 47 * - Non-probe context utility functions 48 * - Matching functions 49 * - Provider-to-Framework API functions 50 * - Probe management functions 51 * - DIF object functions 52 * - Format functions 53 * - Predicate functions 54 * - ECB functions 55 * - Buffer functions 56 * - Enabling functions 57 * - DOF functions 58 * - Anonymous enabling functions 59 * - Consumer state functions 60 * - Helper functions 61 * - Hook functions 62 * - Driver cookbook functions 63 * 64 * Each group of functions begins with a block comment labelled the "DTrace 65 * [Group] Functions", allowing one to find each block by searching forward 66 * on capital-f functions. 67 */ 68 #include <sys/errno.h> 69 #include <sys/stat.h> 70 #include <sys/modctl.h> 71 #include <sys/conf.h> 72 #include <sys/systm.h> 73 #include <sys/ddi.h> 74 #include <sys/sunddi.h> 75 #include <sys/cpuvar.h> 76 #include <sys/kmem.h> 77 #include <sys/strsubr.h> 78 #include <sys/sysmacros.h> 79 #include <sys/dtrace_impl.h> 80 #include <sys/atomic.h> 81 #include <sys/cmn_err.h> 82 #include <sys/mutex_impl.h> 83 #include <sys/rwlock_impl.h> 84 #include <sys/ctf_api.h> 85 #include <sys/panic.h> 86 #include <sys/priv_impl.h> 87 #include <sys/policy.h> 88 #include <sys/cred_impl.h> 89 #include <sys/procfs_isa.h> 90 #include <sys/taskq.h> 91 #include <sys/mkdev.h> 92 #include <sys/kdi.h> 93 #include <sys/zone.h> 94 95 /* 96 * DTrace Tunable Variables 97 * 98 * The following variables may be tuned by adding a line to /etc/system that 99 * includes both the name of the DTrace module ("dtrace") and the name of the 100 * variable. For example: 101 * 102 * set dtrace:dtrace_destructive_disallow = 1 103 * 104 * In general, the only variables that one should be tuning this way are those 105 * that affect system-wide DTrace behavior, and for which the default behavior 106 * is undesirable. Most of these variables are tunable on a per-consumer 107 * basis using DTrace options, and need not be tuned on a system-wide basis. 108 * When tuning these variables, avoid pathological values; while some attempt 109 * is made to verify the integrity of these variables, they are not considered 110 * part of the supported interface to DTrace, and they are therefore not 111 * checked comprehensively. Further, these variables should not be tuned 112 * dynamically via "mdb -kw" or other means; they should only be tuned via 113 * /etc/system. 114 */ 115 int dtrace_destructive_disallow = 0; 116 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 117 size_t dtrace_difo_maxsize = (256 * 1024); 118 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 119 size_t dtrace_global_maxsize = (16 * 1024); 120 size_t dtrace_actions_max = (16 * 1024); 121 size_t dtrace_retain_max = 1024; 122 dtrace_optval_t dtrace_helper_actions_max = 32; 123 dtrace_optval_t dtrace_helper_providers_max = 32; 124 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 125 size_t dtrace_strsize_default = 256; 126 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 127 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 128 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 129 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 130 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 132 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_nspec_default = 1; 134 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 135 dtrace_optval_t dtrace_stackframes_default = 20; 136 dtrace_optval_t dtrace_ustackframes_default = 20; 137 dtrace_optval_t dtrace_jstackframes_default = 50; 138 dtrace_optval_t dtrace_jstackstrsize_default = 512; 139 int dtrace_msgdsize_max = 128; 140 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 141 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 142 int dtrace_devdepth_max = 32; 143 int dtrace_err_verbose; 144 hrtime_t dtrace_deadman_interval = NANOSEC; 145 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 146 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 147 148 /* 149 * DTrace External Variables 150 * 151 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 152 * available to DTrace consumers via the backtick (`) syntax. One of these, 153 * dtrace_zero, is made deliberately so: it is provided as a source of 154 * well-known, zero-filled memory. While this variable is not documented, 155 * it is used by some translators as an implementation detail. 156 */ 157 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 158 159 /* 160 * DTrace Internal Variables 161 */ 162 static dev_info_t *dtrace_devi; /* device info */ 163 static vmem_t *dtrace_arena; /* probe ID arena */ 164 static vmem_t *dtrace_minor; /* minor number arena */ 165 static taskq_t *dtrace_taskq; /* task queue */ 166 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 167 static int dtrace_nprobes; /* number of probes */ 168 static dtrace_provider_t *dtrace_provider; /* provider list */ 169 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 170 static int dtrace_opens; /* number of opens */ 171 static int dtrace_helpers; /* number of helpers */ 172 static void *dtrace_softstate; /* softstate pointer */ 173 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 174 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 175 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 176 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 177 static int dtrace_toxranges; /* number of toxic ranges */ 178 static int dtrace_toxranges_max; /* size of toxic range array */ 179 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 180 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 181 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 182 static kthread_t *dtrace_panicked; /* panicking thread */ 183 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 184 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 185 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 186 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 187 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 188 189 /* 190 * DTrace Locking 191 * DTrace is protected by three (relatively coarse-grained) locks: 192 * 193 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 194 * including enabling state, probes, ECBs, consumer state, helper state, 195 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 196 * probe context is lock-free -- synchronization is handled via the 197 * dtrace_sync() cross call mechanism. 198 * 199 * (2) dtrace_provider_lock is required when manipulating provider state, or 200 * when provider state must be held constant. 201 * 202 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 203 * when meta provider state must be held constant. 204 * 205 * The lock ordering between these three locks is dtrace_meta_lock before 206 * dtrace_provider_lock before dtrace_lock. (In particular, there are 207 * several places where dtrace_provider_lock is held by the framework as it 208 * calls into the providers -- which then call back into the framework, 209 * grabbing dtrace_lock.) 210 * 211 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 212 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 213 * role as a coarse-grained lock; it is acquired before both of these locks. 214 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 215 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 216 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 217 * acquired _between_ dtrace_provider_lock and dtrace_lock. 218 */ 219 static kmutex_t dtrace_lock; /* probe state lock */ 220 static kmutex_t dtrace_provider_lock; /* provider state lock */ 221 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 222 223 /* 224 * DTrace Provider Variables 225 * 226 * These are the variables relating to DTrace as a provider (that is, the 227 * provider of the BEGIN, END, and ERROR probes). 228 */ 229 static dtrace_pattr_t dtrace_provider_attr = { 230 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 231 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 232 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 235 }; 236 237 static void 238 dtrace_nullop(void) 239 {} 240 241 static dtrace_pops_t dtrace_provider_ops = { 242 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 243 (void (*)(void *, struct modctl *))dtrace_nullop, 244 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 245 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 246 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 247 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 248 NULL, 249 NULL, 250 NULL, 251 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 252 }; 253 254 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 255 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 256 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 257 258 /* 259 * DTrace Helper Tracing Variables 260 */ 261 uint32_t dtrace_helptrace_next = 0; 262 uint32_t dtrace_helptrace_nlocals; 263 char *dtrace_helptrace_buffer; 264 int dtrace_helptrace_bufsize = 512 * 1024; 265 266 #ifdef DEBUG 267 int dtrace_helptrace_enabled = 1; 268 #else 269 int dtrace_helptrace_enabled = 0; 270 #endif 271 272 /* 273 * DTrace Error Hashing 274 * 275 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 276 * table. This is very useful for checking coverage of tests that are 277 * expected to induce DIF or DOF processing errors, and may be useful for 278 * debugging problems in the DIF code generator or in DOF generation . The 279 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 280 */ 281 #ifdef DEBUG 282 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 283 static const char *dtrace_errlast; 284 static kthread_t *dtrace_errthread; 285 static kmutex_t dtrace_errlock; 286 #endif 287 288 /* 289 * DTrace Macros and Constants 290 * 291 * These are various macros that are useful in various spots in the 292 * implementation, along with a few random constants that have no meaning 293 * outside of the implementation. There is no real structure to this cpp 294 * mishmash -- but is there ever? 295 */ 296 #define DTRACE_HASHSTR(hash, probe) \ 297 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 298 299 #define DTRACE_HASHNEXT(hash, probe) \ 300 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 301 302 #define DTRACE_HASHPREV(hash, probe) \ 303 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 304 305 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 306 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 307 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 308 309 #define DTRACE_AGGHASHSIZE_SLEW 17 310 311 /* 312 * The key for a thread-local variable consists of the lower 61 bits of the 313 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 314 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 315 * equal to a variable identifier. This is necessary (but not sufficient) to 316 * assure that global associative arrays never collide with thread-local 317 * variables. To guarantee that they cannot collide, we must also define the 318 * order for keying dynamic variables. That order is: 319 * 320 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 321 * 322 * Because the variable-key and the tls-key are in orthogonal spaces, there is 323 * no way for a global variable key signature to match a thread-local key 324 * signature. 325 */ 326 #define DTRACE_TLS_THRKEY(where) { \ 327 uint_t intr = 0; \ 328 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 329 for (; actv; actv >>= 1) \ 330 intr++; \ 331 ASSERT(intr < (1 << 3)); \ 332 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 333 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 334 } 335 336 #define DTRACE_STORE(type, tomax, offset, what) \ 337 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 338 339 #ifndef __i386 340 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 341 if (addr & (size - 1)) { \ 342 *flags |= CPU_DTRACE_BADALIGN; \ 343 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 344 return (0); \ 345 } 346 #else 347 #define DTRACE_ALIGNCHECK(addr, size, flags) 348 #endif 349 350 #define DTRACE_LOADFUNC(bits) \ 351 /*CSTYLED*/ \ 352 uint##bits##_t \ 353 dtrace_load##bits(uintptr_t addr) \ 354 { \ 355 size_t size = bits / NBBY; \ 356 /*CSTYLED*/ \ 357 uint##bits##_t rval; \ 358 int i; \ 359 volatile uint16_t *flags = (volatile uint16_t *) \ 360 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 361 \ 362 DTRACE_ALIGNCHECK(addr, size, flags); \ 363 \ 364 for (i = 0; i < dtrace_toxranges; i++) { \ 365 if (addr >= dtrace_toxrange[i].dtt_limit) \ 366 continue; \ 367 \ 368 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 369 continue; \ 370 \ 371 /* \ 372 * This address falls within a toxic region; return 0. \ 373 */ \ 374 *flags |= CPU_DTRACE_BADADDR; \ 375 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 376 return (0); \ 377 } \ 378 \ 379 *flags |= CPU_DTRACE_NOFAULT; \ 380 /*CSTYLED*/ \ 381 rval = *((volatile uint##bits##_t *)addr); \ 382 *flags &= ~CPU_DTRACE_NOFAULT; \ 383 \ 384 return (rval); \ 385 } 386 387 #ifdef _LP64 388 #define dtrace_loadptr dtrace_load64 389 #else 390 #define dtrace_loadptr dtrace_load32 391 #endif 392 393 #define DTRACE_DYNHASH_FREE 0 394 #define DTRACE_DYNHASH_SINK 1 395 #define DTRACE_DYNHASH_VALID 2 396 397 #define DTRACE_MATCH_NEXT 0 398 #define DTRACE_MATCH_DONE 1 399 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 400 #define DTRACE_STATE_ALIGN 64 401 402 #define DTRACE_FLAGS2FLT(flags) \ 403 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 404 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 405 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 406 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 407 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 408 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 409 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 410 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 411 DTRACEFLT_UNKNOWN) 412 413 #define DTRACEACT_ISSTRING(act) \ 414 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 415 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 416 417 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 418 static void dtrace_enabling_provide(dtrace_provider_t *); 419 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 420 static void dtrace_enabling_matchall(void); 421 static dtrace_state_t *dtrace_anon_grab(void); 422 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 423 dtrace_state_t *, uint64_t, uint64_t); 424 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 425 static void dtrace_buffer_drop(dtrace_buffer_t *); 426 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 427 dtrace_state_t *, dtrace_mstate_t *); 428 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 429 dtrace_optval_t); 430 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 431 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 432 433 /* 434 * DTrace Probe Context Functions 435 * 436 * These functions are called from probe context. Because probe context is 437 * any context in which C may be called, arbitrarily locks may be held, 438 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 439 * As a result, functions called from probe context may only call other DTrace 440 * support functions -- they may not interact at all with the system at large. 441 * (Note that the ASSERT macro is made probe-context safe by redefining it in 442 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 443 * loads are to be performed from probe context, they _must_ be in terms of 444 * the safe dtrace_load*() variants. 445 * 446 * Some functions in this block are not actually called from probe context; 447 * for these functions, there will be a comment above the function reading 448 * "Note: not called from probe context." 449 */ 450 void 451 dtrace_panic(const char *format, ...) 452 { 453 va_list alist; 454 455 va_start(alist, format); 456 dtrace_vpanic(format, alist); 457 va_end(alist); 458 } 459 460 int 461 dtrace_assfail(const char *a, const char *f, int l) 462 { 463 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 464 465 /* 466 * We just need something here that even the most clever compiler 467 * cannot optimize away. 468 */ 469 return (a[(uintptr_t)f]); 470 } 471 472 /* 473 * Atomically increment a specified error counter from probe context. 474 */ 475 static void 476 dtrace_error(uint32_t *counter) 477 { 478 /* 479 * Most counters stored to in probe context are per-CPU counters. 480 * However, there are some error conditions that are sufficiently 481 * arcane that they don't merit per-CPU storage. If these counters 482 * are incremented concurrently on different CPUs, scalability will be 483 * adversely affected -- but we don't expect them to be white-hot in a 484 * correctly constructed enabling... 485 */ 486 uint32_t oval, nval; 487 488 do { 489 oval = *counter; 490 491 if ((nval = oval + 1) == 0) { 492 /* 493 * If the counter would wrap, set it to 1 -- assuring 494 * that the counter is never zero when we have seen 495 * errors. (The counter must be 32-bits because we 496 * aren't guaranteed a 64-bit compare&swap operation.) 497 * To save this code both the infamy of being fingered 498 * by a priggish news story and the indignity of being 499 * the target of a neo-puritan witch trial, we're 500 * carefully avoiding any colorful description of the 501 * likelihood of this condition -- but suffice it to 502 * say that it is only slightly more likely than the 503 * overflow of predicate cache IDs, as discussed in 504 * dtrace_predicate_create(). 505 */ 506 nval = 1; 507 } 508 } while (dtrace_cas32(counter, oval, nval) != oval); 509 } 510 511 /* 512 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 513 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 514 */ 515 DTRACE_LOADFUNC(8) 516 DTRACE_LOADFUNC(16) 517 DTRACE_LOADFUNC(32) 518 DTRACE_LOADFUNC(64) 519 520 static int 521 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 522 { 523 if (dest < mstate->dtms_scratch_base) 524 return (0); 525 526 if (dest + size < dest) 527 return (0); 528 529 if (dest + size > mstate->dtms_scratch_ptr) 530 return (0); 531 532 return (1); 533 } 534 535 static int 536 dtrace_canstore_statvar(uint64_t addr, size_t sz, 537 dtrace_statvar_t **svars, int nsvars) 538 { 539 int i; 540 541 for (i = 0; i < nsvars; i++) { 542 dtrace_statvar_t *svar = svars[i]; 543 544 if (svar == NULL || svar->dtsv_size == 0) 545 continue; 546 547 if (addr - svar->dtsv_data < svar->dtsv_size && 548 addr + sz <= svar->dtsv_data + svar->dtsv_size) 549 return (1); 550 } 551 552 return (0); 553 } 554 555 /* 556 * Check to see if the address is within a memory region to which a store may 557 * be issued. This includes the DTrace scratch areas, and any DTrace variable 558 * region. The caller of dtrace_canstore() is responsible for performing any 559 * alignment checks that are needed before stores are actually executed. 560 */ 561 static int 562 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 563 dtrace_vstate_t *vstate) 564 { 565 uintptr_t a; 566 size_t s; 567 568 /* 569 * First, check to see if the address is in scratch space... 570 */ 571 a = mstate->dtms_scratch_base; 572 s = mstate->dtms_scratch_size; 573 574 if (addr - a < s && addr + sz <= a + s) 575 return (1); 576 577 /* 578 * Now check to see if it's a dynamic variable. This check will pick 579 * up both thread-local variables and any global dynamically-allocated 580 * variables. 581 */ 582 a = (uintptr_t)vstate->dtvs_dynvars.dtds_base; 583 s = vstate->dtvs_dynvars.dtds_size; 584 if (addr - a < s && addr + sz <= a + s) 585 return (1); 586 587 /* 588 * Finally, check the static local and global variables. These checks 589 * take the longest, so we perform them last. 590 */ 591 if (dtrace_canstore_statvar(addr, sz, 592 vstate->dtvs_locals, vstate->dtvs_nlocals)) 593 return (1); 594 595 if (dtrace_canstore_statvar(addr, sz, 596 vstate->dtvs_globals, vstate->dtvs_nglobals)) 597 return (1); 598 599 return (0); 600 } 601 602 /* 603 * Compare two strings using safe loads. 604 */ 605 static int 606 dtrace_strncmp(char *s1, char *s2, size_t limit) 607 { 608 uint8_t c1, c2; 609 volatile uint16_t *flags; 610 611 if (s1 == s2 || limit == 0) 612 return (0); 613 614 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 615 616 do { 617 if (s1 == NULL) { 618 c1 = '\0'; 619 } else { 620 c1 = dtrace_load8((uintptr_t)s1++); 621 } 622 623 if (s2 == NULL) { 624 c2 = '\0'; 625 } else { 626 c2 = dtrace_load8((uintptr_t)s2++); 627 } 628 629 if (c1 != c2) 630 return (c1 - c2); 631 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 632 633 return (0); 634 } 635 636 /* 637 * Compute strlen(s) for a string using safe memory accesses. The additional 638 * len parameter is used to specify a maximum length to ensure completion. 639 */ 640 static size_t 641 dtrace_strlen(const char *s, size_t lim) 642 { 643 uint_t len; 644 645 for (len = 0; len != lim; len++) { 646 if (dtrace_load8((uintptr_t)s++) == '\0') 647 break; 648 } 649 650 return (len); 651 } 652 653 /* 654 * Check if an address falls within a toxic region. 655 */ 656 static int 657 dtrace_istoxic(uintptr_t kaddr, size_t size) 658 { 659 uintptr_t taddr, tsize; 660 int i; 661 662 for (i = 0; i < dtrace_toxranges; i++) { 663 taddr = dtrace_toxrange[i].dtt_base; 664 tsize = dtrace_toxrange[i].dtt_limit - taddr; 665 666 if (kaddr - taddr < tsize) { 667 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 668 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 669 return (1); 670 } 671 672 if (taddr - kaddr < size) { 673 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 674 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 675 return (1); 676 } 677 } 678 679 return (0); 680 } 681 682 /* 683 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 684 * memory specified by the DIF program. The dst is assumed to be safe memory 685 * that we can store to directly because it is managed by DTrace. As with 686 * standard bcopy, overlapping copies are handled properly. 687 */ 688 static void 689 dtrace_bcopy(const void *src, void *dst, size_t len) 690 { 691 if (len != 0) { 692 uint8_t *s1 = dst; 693 const uint8_t *s2 = src; 694 695 if (s1 <= s2) { 696 do { 697 *s1++ = dtrace_load8((uintptr_t)s2++); 698 } while (--len != 0); 699 } else { 700 s2 += len; 701 s1 += len; 702 703 do { 704 *--s1 = dtrace_load8((uintptr_t)--s2); 705 } while (--len != 0); 706 } 707 } 708 } 709 710 /* 711 * Copy src to dst using safe memory accesses, up to either the specified 712 * length, or the point that a nul byte is encountered. The src is assumed to 713 * be unsafe memory specified by the DIF program. The dst is assumed to be 714 * safe memory that we can store to directly because it is managed by DTrace. 715 * Unlike dtrace_bcopy(), overlapping regions are not handled. 716 */ 717 static void 718 dtrace_strcpy(const void *src, void *dst, size_t len) 719 { 720 if (len != 0) { 721 uint8_t *s1 = dst, c; 722 const uint8_t *s2 = src; 723 724 do { 725 *s1++ = c = dtrace_load8((uintptr_t)s2++); 726 } while (--len != 0 && c != '\0'); 727 } 728 } 729 730 /* 731 * Copy src to dst, deriving the size and type from the specified (BYREF) 732 * variable type. The src is assumed to be unsafe memory specified by the DIF 733 * program. The dst is assumed to be DTrace variable memory that is of the 734 * specified type; we assume that we can store to directly. 735 */ 736 static void 737 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 738 { 739 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 740 741 if (type->dtdt_kind == DIF_TYPE_STRING) { 742 dtrace_strcpy(src, dst, type->dtdt_size); 743 } else { 744 dtrace_bcopy(src, dst, type->dtdt_size); 745 } 746 } 747 748 /* 749 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 750 * unsafe memory specified by the DIF program. The s2 data is assumed to be 751 * safe memory that we can access directly because it is managed by DTrace. 752 */ 753 static int 754 dtrace_bcmp(const void *s1, const void *s2, size_t len) 755 { 756 volatile uint16_t *flags; 757 758 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 759 760 if (s1 == s2) 761 return (0); 762 763 if (s1 == NULL || s2 == NULL) 764 return (1); 765 766 if (s1 != s2 && len != 0) { 767 const uint8_t *ps1 = s1; 768 const uint8_t *ps2 = s2; 769 770 do { 771 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 772 return (1); 773 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 774 } 775 return (0); 776 } 777 778 /* 779 * Zero the specified region using a simple byte-by-byte loop. Note that this 780 * is for safe DTrace-managed memory only. 781 */ 782 static void 783 dtrace_bzero(void *dst, size_t len) 784 { 785 uchar_t *cp; 786 787 for (cp = dst; len != 0; len--) 788 *cp++ = 0; 789 } 790 791 /* 792 * This privilege check should be used by actions and subroutines to 793 * verify that the user credentials of the process that enabled the 794 * invoking ECB match the target credentials 795 */ 796 static int 797 dtrace_priv_proc_common_user(dtrace_state_t *state) 798 { 799 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 800 801 /* 802 * We should always have a non-NULL state cred here, since if cred 803 * is null (anonymous tracing), we fast-path bypass this routine. 804 */ 805 ASSERT(s_cr != NULL); 806 807 if ((cr = CRED()) != NULL && 808 s_cr->cr_uid == cr->cr_uid && 809 s_cr->cr_uid == cr->cr_ruid && 810 s_cr->cr_uid == cr->cr_suid && 811 s_cr->cr_gid == cr->cr_gid && 812 s_cr->cr_gid == cr->cr_rgid && 813 s_cr->cr_gid == cr->cr_sgid) 814 return (1); 815 816 return (0); 817 } 818 819 /* 820 * This privilege check should be used by actions and subroutines to 821 * verify that the zone of the process that enabled the invoking ECB 822 * matches the target credentials 823 */ 824 static int 825 dtrace_priv_proc_common_zone(dtrace_state_t *state) 826 { 827 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 828 829 /* 830 * We should always have a non-NULL state cred here, since if cred 831 * is null (anonymous tracing), we fast-path bypass this routine. 832 */ 833 ASSERT(s_cr != NULL); 834 835 if ((cr = CRED()) != NULL && 836 s_cr->cr_zone == cr->cr_zone) 837 return (1); 838 839 return (0); 840 } 841 842 /* 843 * This privilege check should be used by actions and subroutines to 844 * verify that the process has not setuid or changed credentials. 845 */ 846 static int 847 dtrace_priv_proc_common_nocd() 848 { 849 proc_t *proc; 850 851 if ((proc = ttoproc(curthread)) != NULL && 852 !(proc->p_flag & SNOCD)) 853 return (1); 854 855 return (0); 856 } 857 858 static int 859 dtrace_priv_proc_destructive(dtrace_state_t *state) 860 { 861 int action = state->dts_cred.dcr_action; 862 863 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 864 dtrace_priv_proc_common_zone(state) == 0) 865 goto bad; 866 867 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 868 dtrace_priv_proc_common_user(state) == 0) 869 goto bad; 870 871 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 872 dtrace_priv_proc_common_nocd() == 0) 873 goto bad; 874 875 return (1); 876 877 bad: 878 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 879 880 return (0); 881 } 882 883 static int 884 dtrace_priv_proc_control(dtrace_state_t *state) 885 { 886 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 887 return (1); 888 889 if (dtrace_priv_proc_common_zone(state) && 890 dtrace_priv_proc_common_user(state) && 891 dtrace_priv_proc_common_nocd()) 892 return (1); 893 894 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 895 896 return (0); 897 } 898 899 static int 900 dtrace_priv_proc(dtrace_state_t *state) 901 { 902 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 903 return (1); 904 905 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 906 907 return (0); 908 } 909 910 static int 911 dtrace_priv_kernel(dtrace_state_t *state) 912 { 913 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 914 return (1); 915 916 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 917 918 return (0); 919 } 920 921 static int 922 dtrace_priv_kernel_destructive(dtrace_state_t *state) 923 { 924 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 925 return (1); 926 927 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 928 929 return (0); 930 } 931 932 /* 933 * Note: not called from probe context. This function is called 934 * asynchronously (and at a regular interval) from outside of probe context to 935 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 936 * cleaning is explained in detail in <sys/dtrace_impl.h>. 937 */ 938 void 939 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 940 { 941 dtrace_dynvar_t *dirty; 942 dtrace_dstate_percpu_t *dcpu; 943 int i, work = 0; 944 945 for (i = 0; i < NCPU; i++) { 946 dcpu = &dstate->dtds_percpu[i]; 947 948 ASSERT(dcpu->dtdsc_rinsing == NULL); 949 950 /* 951 * If the dirty list is NULL, there is no dirty work to do. 952 */ 953 if (dcpu->dtdsc_dirty == NULL) 954 continue; 955 956 /* 957 * If the clean list is non-NULL, then we're not going to do 958 * any work for this CPU -- it means that there has not been 959 * a dtrace_dynvar() allocation on this CPU (or from this CPU) 960 * since the last time we cleaned house. 961 */ 962 if (dcpu->dtdsc_clean != NULL) 963 continue; 964 965 work = 1; 966 967 /* 968 * Atomically move the dirty list aside. 969 */ 970 do { 971 dirty = dcpu->dtdsc_dirty; 972 973 /* 974 * Before we zap the dirty list, set the rinsing list. 975 * (This allows for a potential assertion in 976 * dtrace_dynvar(): if a free dynamic variable appears 977 * on a hash chain, either the dirty list or the 978 * rinsing list for some CPU must be non-NULL.) 979 */ 980 dcpu->dtdsc_rinsing = dirty; 981 dtrace_membar_producer(); 982 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 983 dirty, NULL) != dirty); 984 } 985 986 if (!work) { 987 /* 988 * We have no work to do; we can simply return. 989 */ 990 return; 991 } 992 993 dtrace_sync(); 994 995 for (i = 0; i < NCPU; i++) { 996 dcpu = &dstate->dtds_percpu[i]; 997 998 if (dcpu->dtdsc_rinsing == NULL) 999 continue; 1000 1001 /* 1002 * We are now guaranteed that no hash chain contains a pointer 1003 * into this dirty list; we can make it clean. 1004 */ 1005 ASSERT(dcpu->dtdsc_clean == NULL); 1006 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1007 dcpu->dtdsc_rinsing = NULL; 1008 } 1009 1010 /* 1011 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1012 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1013 * This prevents a race whereby a CPU incorrectly decides that 1014 * the state should be something other than DTRACE_DSTATE_CLEAN 1015 * after dtrace_dynvar_clean() has completed. 1016 */ 1017 dtrace_sync(); 1018 1019 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1020 } 1021 1022 /* 1023 * Depending on the value of the op parameter, this function looks-up, 1024 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1025 * allocation is requested, this function will return a pointer to a 1026 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1027 * variable can be allocated. If NULL is returned, the appropriate counter 1028 * will be incremented. 1029 */ 1030 dtrace_dynvar_t * 1031 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1032 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op) 1033 { 1034 uint64_t hashval = DTRACE_DYNHASH_VALID; 1035 dtrace_dynhash_t *hash = dstate->dtds_hash; 1036 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1037 processorid_t me = CPU->cpu_id, cpu = me; 1038 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1039 size_t bucket, ksize; 1040 size_t chunksize = dstate->dtds_chunksize; 1041 uintptr_t kdata, lock, nstate; 1042 uint_t i; 1043 1044 ASSERT(nkeys != 0); 1045 1046 /* 1047 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1048 * algorithm. For the by-value portions, we perform the algorithm in 1049 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1050 * bit, and seems to have only a minute effect on distribution. For 1051 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1052 * over each referenced byte. It's painful to do this, but it's much 1053 * better than pathological hash distribution. The efficacy of the 1054 * hashing algorithm (and a comparison with other algorithms) may be 1055 * found by running the ::dtrace_dynstat MDB dcmd. 1056 */ 1057 for (i = 0; i < nkeys; i++) { 1058 if (key[i].dttk_size == 0) { 1059 uint64_t val = key[i].dttk_value; 1060 1061 hashval += (val >> 48) & 0xffff; 1062 hashval += (hashval << 10); 1063 hashval ^= (hashval >> 6); 1064 1065 hashval += (val >> 32) & 0xffff; 1066 hashval += (hashval << 10); 1067 hashval ^= (hashval >> 6); 1068 1069 hashval += (val >> 16) & 0xffff; 1070 hashval += (hashval << 10); 1071 hashval ^= (hashval >> 6); 1072 1073 hashval += val & 0xffff; 1074 hashval += (hashval << 10); 1075 hashval ^= (hashval >> 6); 1076 } else { 1077 /* 1078 * This is incredibly painful, but it beats the hell 1079 * out of the alternative. 1080 */ 1081 uint64_t j, size = key[i].dttk_size; 1082 uintptr_t base = (uintptr_t)key[i].dttk_value; 1083 1084 for (j = 0; j < size; j++) { 1085 hashval += dtrace_load8(base + j); 1086 hashval += (hashval << 10); 1087 hashval ^= (hashval >> 6); 1088 } 1089 } 1090 } 1091 1092 hashval += (hashval << 3); 1093 hashval ^= (hashval >> 11); 1094 hashval += (hashval << 15); 1095 1096 /* 1097 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1098 * comes out to be one of our two sentinel hash values. If this 1099 * actually happens, we set the hashval to be a value known to be a 1100 * non-sentinel value. 1101 */ 1102 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1103 hashval = DTRACE_DYNHASH_VALID; 1104 1105 /* 1106 * Yes, it's painful to do a divide here. If the cycle count becomes 1107 * important here, tricks can be pulled to reduce it. (However, it's 1108 * critical that hash collisions be kept to an absolute minimum; 1109 * they're much more painful than a divide.) It's better to have a 1110 * solution that generates few collisions and still keeps things 1111 * relatively simple. 1112 */ 1113 bucket = hashval % dstate->dtds_hashsize; 1114 1115 if (op == DTRACE_DYNVAR_DEALLOC) { 1116 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1117 1118 for (;;) { 1119 while ((lock = *lockp) & 1) 1120 continue; 1121 1122 if (dtrace_casptr((void *)lockp, 1123 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1124 break; 1125 } 1126 1127 dtrace_membar_producer(); 1128 } 1129 1130 top: 1131 prev = NULL; 1132 lock = hash[bucket].dtdh_lock; 1133 1134 dtrace_membar_consumer(); 1135 1136 start = hash[bucket].dtdh_chain; 1137 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1138 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1139 op != DTRACE_DYNVAR_DEALLOC)); 1140 1141 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1142 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1143 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1144 1145 if (dvar->dtdv_hashval != hashval) { 1146 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1147 /* 1148 * We've reached the sink, and therefore the 1149 * end of the hash chain; we can kick out of 1150 * the loop knowing that we have seen a valid 1151 * snapshot of state. 1152 */ 1153 ASSERT(dvar->dtdv_next == NULL); 1154 ASSERT(dvar == &dtrace_dynhash_sink); 1155 break; 1156 } 1157 1158 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1159 /* 1160 * We've gone off the rails: somewhere along 1161 * the line, one of the members of this hash 1162 * chain was deleted. Note that we could also 1163 * detect this by simply letting this loop run 1164 * to completion, as we would eventually hit 1165 * the end of the dirty list. However, we 1166 * want to avoid running the length of the 1167 * dirty list unnecessarily (it might be quite 1168 * long), so we catch this as early as 1169 * possible by detecting the hash marker. In 1170 * this case, we simply set dvar to NULL and 1171 * break; the conditional after the loop will 1172 * send us back to top. 1173 */ 1174 dvar = NULL; 1175 break; 1176 } 1177 1178 goto next; 1179 } 1180 1181 if (dtuple->dtt_nkeys != nkeys) 1182 goto next; 1183 1184 for (i = 0; i < nkeys; i++, dkey++) { 1185 if (dkey->dttk_size != key[i].dttk_size) 1186 goto next; /* size or type mismatch */ 1187 1188 if (dkey->dttk_size != 0) { 1189 if (dtrace_bcmp( 1190 (void *)(uintptr_t)key[i].dttk_value, 1191 (void *)(uintptr_t)dkey->dttk_value, 1192 dkey->dttk_size)) 1193 goto next; 1194 } else { 1195 if (dkey->dttk_value != key[i].dttk_value) 1196 goto next; 1197 } 1198 } 1199 1200 if (op != DTRACE_DYNVAR_DEALLOC) 1201 return (dvar); 1202 1203 ASSERT(dvar->dtdv_next == NULL || 1204 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1205 1206 if (prev != NULL) { 1207 ASSERT(hash[bucket].dtdh_chain != dvar); 1208 ASSERT(start != dvar); 1209 ASSERT(prev->dtdv_next == dvar); 1210 prev->dtdv_next = dvar->dtdv_next; 1211 } else { 1212 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1213 start, dvar->dtdv_next) != start) { 1214 /* 1215 * We have failed to atomically swing the 1216 * hash table head pointer, presumably because 1217 * of a conflicting allocation on another CPU. 1218 * We need to reread the hash chain and try 1219 * again. 1220 */ 1221 goto top; 1222 } 1223 } 1224 1225 dtrace_membar_producer(); 1226 1227 /* 1228 * Now set the hash value to indicate that it's free. 1229 */ 1230 ASSERT(hash[bucket].dtdh_chain != dvar); 1231 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1232 1233 dtrace_membar_producer(); 1234 1235 /* 1236 * Set the next pointer to point at the dirty list, and 1237 * atomically swing the dirty pointer to the newly freed dvar. 1238 */ 1239 do { 1240 next = dcpu->dtdsc_dirty; 1241 dvar->dtdv_next = next; 1242 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1243 1244 /* 1245 * Finally, unlock this hash bucket. 1246 */ 1247 ASSERT(hash[bucket].dtdh_lock == lock); 1248 ASSERT(lock & 1); 1249 hash[bucket].dtdh_lock++; 1250 1251 return (NULL); 1252 next: 1253 prev = dvar; 1254 continue; 1255 } 1256 1257 if (dvar == NULL) { 1258 /* 1259 * If dvar is NULL, it is because we went off the rails: 1260 * one of the elements that we traversed in the hash chain 1261 * was deleted while we were traversing it. In this case, 1262 * we assert that we aren't doing a dealloc (deallocs lock 1263 * the hash bucket to prevent themselves from racing with 1264 * one another), and retry the hash chain traversal. 1265 */ 1266 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1267 goto top; 1268 } 1269 1270 if (op != DTRACE_DYNVAR_ALLOC) { 1271 /* 1272 * If we are not to allocate a new variable, we want to 1273 * return NULL now. Before we return, check that the value 1274 * of the lock word hasn't changed. If it has, we may have 1275 * seen an inconsistent snapshot. 1276 */ 1277 if (op == DTRACE_DYNVAR_NOALLOC) { 1278 if (hash[bucket].dtdh_lock != lock) 1279 goto top; 1280 } else { 1281 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1282 ASSERT(hash[bucket].dtdh_lock == lock); 1283 ASSERT(lock & 1); 1284 hash[bucket].dtdh_lock++; 1285 } 1286 1287 return (NULL); 1288 } 1289 1290 /* 1291 * We need to allocate a new dynamic variable. The size we need is the 1292 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1293 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1294 * the size of any referred-to data (dsize). We then round the final 1295 * size up to the chunksize for allocation. 1296 */ 1297 for (ksize = 0, i = 0; i < nkeys; i++) 1298 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1299 1300 /* 1301 * This should be pretty much impossible, but could happen if, say, 1302 * strange DIF specified the tuple. Ideally, this should be an 1303 * assertion and not an error condition -- but that requires that the 1304 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1305 * bullet-proof. (That is, it must not be able to be fooled by 1306 * malicious DIF.) Given the lack of backwards branches in DIF, 1307 * solving this would presumably not amount to solving the Halting 1308 * Problem -- but it still seems awfully hard. 1309 */ 1310 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1311 ksize + dsize > chunksize) { 1312 dcpu->dtdsc_drops++; 1313 return (NULL); 1314 } 1315 1316 nstate = DTRACE_DSTATE_EMPTY; 1317 1318 do { 1319 retry: 1320 free = dcpu->dtdsc_free; 1321 1322 if (free == NULL) { 1323 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1324 void *rval; 1325 1326 if (clean == NULL) { 1327 /* 1328 * We're out of dynamic variable space on 1329 * this CPU. Unless we have tried all CPUs, 1330 * we'll try to allocate from a different 1331 * CPU. 1332 */ 1333 switch (dstate->dtds_state) { 1334 case DTRACE_DSTATE_CLEAN: { 1335 void *sp = &dstate->dtds_state; 1336 1337 if (++cpu >= NCPU) 1338 cpu = 0; 1339 1340 if (dcpu->dtdsc_dirty != NULL && 1341 nstate == DTRACE_DSTATE_EMPTY) 1342 nstate = DTRACE_DSTATE_DIRTY; 1343 1344 if (dcpu->dtdsc_rinsing != NULL) 1345 nstate = DTRACE_DSTATE_RINSING; 1346 1347 dcpu = &dstate->dtds_percpu[cpu]; 1348 1349 if (cpu != me) 1350 goto retry; 1351 1352 (void) dtrace_cas32(sp, 1353 DTRACE_DSTATE_CLEAN, nstate); 1354 1355 /* 1356 * To increment the correct bean 1357 * counter, take another lap. 1358 */ 1359 goto retry; 1360 } 1361 1362 case DTRACE_DSTATE_DIRTY: 1363 dcpu->dtdsc_dirty_drops++; 1364 break; 1365 1366 case DTRACE_DSTATE_RINSING: 1367 dcpu->dtdsc_rinsing_drops++; 1368 break; 1369 1370 case DTRACE_DSTATE_EMPTY: 1371 dcpu->dtdsc_drops++; 1372 break; 1373 } 1374 1375 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1376 return (NULL); 1377 } 1378 1379 /* 1380 * The clean list appears to be non-empty. We want to 1381 * move the clean list to the free list; we start by 1382 * moving the clean pointer aside. 1383 */ 1384 if (dtrace_casptr(&dcpu->dtdsc_clean, 1385 clean, NULL) != clean) { 1386 /* 1387 * We are in one of two situations: 1388 * 1389 * (a) The clean list was switched to the 1390 * free list by another CPU. 1391 * 1392 * (b) The clean list was added to by the 1393 * cleansing cyclic. 1394 * 1395 * In either of these situations, we can 1396 * just reattempt the free list allocation. 1397 */ 1398 goto retry; 1399 } 1400 1401 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1402 1403 /* 1404 * Now we'll move the clean list to the free list. 1405 * It's impossible for this to fail: the only way 1406 * the free list can be updated is through this 1407 * code path, and only one CPU can own the clean list. 1408 * Thus, it would only be possible for this to fail if 1409 * this code were racing with dtrace_dynvar_clean(). 1410 * (That is, if dtrace_dynvar_clean() updated the clean 1411 * list, and we ended up racing to update the free 1412 * list.) This race is prevented by the dtrace_sync() 1413 * in dtrace_dynvar_clean() -- which flushes the 1414 * owners of the clean lists out before resetting 1415 * the clean lists. 1416 */ 1417 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1418 ASSERT(rval == NULL); 1419 goto retry; 1420 } 1421 1422 dvar = free; 1423 new_free = dvar->dtdv_next; 1424 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1425 1426 /* 1427 * We have now allocated a new chunk. We copy the tuple keys into the 1428 * tuple array and copy any referenced key data into the data space 1429 * following the tuple array. As we do this, we relocate dttk_value 1430 * in the final tuple to point to the key data address in the chunk. 1431 */ 1432 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1433 dvar->dtdv_data = (void *)(kdata + ksize); 1434 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1435 1436 for (i = 0; i < nkeys; i++) { 1437 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1438 size_t kesize = key[i].dttk_size; 1439 1440 if (kesize != 0) { 1441 dtrace_bcopy( 1442 (const void *)(uintptr_t)key[i].dttk_value, 1443 (void *)kdata, kesize); 1444 dkey->dttk_value = kdata; 1445 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1446 } else { 1447 dkey->dttk_value = key[i].dttk_value; 1448 } 1449 1450 dkey->dttk_size = kesize; 1451 } 1452 1453 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1454 dvar->dtdv_hashval = hashval; 1455 dvar->dtdv_next = start; 1456 1457 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1458 return (dvar); 1459 1460 /* 1461 * The cas has failed. Either another CPU is adding an element to 1462 * this hash chain, or another CPU is deleting an element from this 1463 * hash chain. The simplest way to deal with both of these cases 1464 * (though not necessarily the most efficient) is to free our 1465 * allocated block and tail-call ourselves. Note that the free is 1466 * to the dirty list and _not_ to the free list. This is to prevent 1467 * races with allocators, above. 1468 */ 1469 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1470 1471 dtrace_membar_producer(); 1472 1473 do { 1474 free = dcpu->dtdsc_dirty; 1475 dvar->dtdv_next = free; 1476 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1477 1478 return (dtrace_dynvar(dstate, nkeys, key, dsize, op)); 1479 } 1480 1481 /*ARGSUSED*/ 1482 static void 1483 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1484 { 1485 if (nval < *oval) 1486 *oval = nval; 1487 } 1488 1489 /*ARGSUSED*/ 1490 static void 1491 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1492 { 1493 if (nval > *oval) 1494 *oval = nval; 1495 } 1496 1497 static void 1498 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1499 { 1500 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1501 int64_t val = (int64_t)nval; 1502 1503 if (val < 0) { 1504 for (i = 0; i < zero; i++) { 1505 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1506 quanta[i] += incr; 1507 return; 1508 } 1509 } 1510 } else { 1511 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1512 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1513 quanta[i - 1] += incr; 1514 return; 1515 } 1516 } 1517 1518 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1519 return; 1520 } 1521 1522 ASSERT(0); 1523 } 1524 1525 static void 1526 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1527 { 1528 uint64_t arg = *lquanta++; 1529 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1530 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1531 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1532 int32_t val = (int32_t)nval, level; 1533 1534 ASSERT(step != 0); 1535 ASSERT(levels != 0); 1536 1537 if (val < base) { 1538 /* 1539 * This is an underflow. 1540 */ 1541 lquanta[0] += incr; 1542 return; 1543 } 1544 1545 level = (val - base) / step; 1546 1547 if (level < levels) { 1548 lquanta[level + 1] += incr; 1549 return; 1550 } 1551 1552 /* 1553 * This is an overflow. 1554 */ 1555 lquanta[levels + 1] += incr; 1556 } 1557 1558 /*ARGSUSED*/ 1559 static void 1560 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 1561 { 1562 data[0]++; 1563 data[1] += nval; 1564 } 1565 1566 /*ARGSUSED*/ 1567 static void 1568 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 1569 { 1570 *oval = *oval + 1; 1571 } 1572 1573 /*ARGSUSED*/ 1574 static void 1575 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 1576 { 1577 *oval += nval; 1578 } 1579 1580 /* 1581 * Aggregate given the tuple in the principal data buffer, and the aggregating 1582 * action denoted by the specified dtrace_aggregation_t. The aggregation 1583 * buffer is specified as the buf parameter. This routine does not return 1584 * failure; if there is no space in the aggregation buffer, the data will be 1585 * dropped, and a corresponding counter incremented. 1586 */ 1587 static void 1588 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 1589 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 1590 { 1591 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 1592 uint32_t i, ndx, size, fsize; 1593 uint32_t align = sizeof (uint64_t) - 1; 1594 dtrace_aggbuffer_t *agb; 1595 dtrace_aggkey_t *key; 1596 uint32_t hashval = 0, limit, isstr; 1597 caddr_t tomax, data, kdata; 1598 dtrace_actkind_t action; 1599 dtrace_action_t *act; 1600 uintptr_t offs; 1601 1602 if (buf == NULL) 1603 return; 1604 1605 if (!agg->dtag_hasarg) { 1606 /* 1607 * Currently, only quantize() and lquantize() take additional 1608 * arguments, and they have the same semantics: an increment 1609 * value that defaults to 1 when not present. If additional 1610 * aggregating actions take arguments, the setting of the 1611 * default argument value will presumably have to become more 1612 * sophisticated... 1613 */ 1614 arg = 1; 1615 } 1616 1617 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 1618 size = rec->dtrd_offset - agg->dtag_base; 1619 fsize = size + rec->dtrd_size; 1620 1621 ASSERT(dbuf->dtb_tomax != NULL); 1622 data = dbuf->dtb_tomax + offset + agg->dtag_base; 1623 1624 if ((tomax = buf->dtb_tomax) == NULL) { 1625 dtrace_buffer_drop(buf); 1626 return; 1627 } 1628 1629 /* 1630 * The metastructure is always at the bottom of the buffer. 1631 */ 1632 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 1633 sizeof (dtrace_aggbuffer_t)); 1634 1635 if (buf->dtb_offset == 0) { 1636 /* 1637 * We just kludge up approximately 1/8th of the size to be 1638 * buckets. If this guess ends up being routinely 1639 * off-the-mark, we may need to dynamically readjust this 1640 * based on past performance. 1641 */ 1642 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 1643 1644 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 1645 (uintptr_t)tomax || hashsize == 0) { 1646 /* 1647 * We've been given a ludicrously small buffer; 1648 * increment our drop count and leave. 1649 */ 1650 dtrace_buffer_drop(buf); 1651 return; 1652 } 1653 1654 /* 1655 * And now, a pathetic attempt to try to get a an odd (or 1656 * perchance, a prime) hash size for better hash distribution. 1657 */ 1658 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 1659 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 1660 1661 agb->dtagb_hashsize = hashsize; 1662 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 1663 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 1664 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 1665 1666 for (i = 0; i < agb->dtagb_hashsize; i++) 1667 agb->dtagb_hash[i] = NULL; 1668 } 1669 1670 ASSERT(agg->dtag_first != NULL); 1671 ASSERT(agg->dtag_first->dta_intuple); 1672 1673 /* 1674 * Calculate the hash value based on the key. Note that we _don't_ 1675 * include the aggid in the hashing (but we will store it as part of 1676 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 1677 * algorithm: a simple, quick algorithm that has no known funnels, and 1678 * gets good distribution in practice. The efficacy of the hashing 1679 * algorithm (and a comparison with other algorithms) may be found by 1680 * running the ::dtrace_aggstat MDB dcmd. 1681 */ 1682 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1683 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1684 limit = i + act->dta_rec.dtrd_size; 1685 ASSERT(limit <= size); 1686 isstr = DTRACEACT_ISSTRING(act); 1687 1688 for (; i < limit; i++) { 1689 hashval += data[i]; 1690 hashval += (hashval << 10); 1691 hashval ^= (hashval >> 6); 1692 1693 if (isstr && data[i] == '\0') 1694 break; 1695 } 1696 } 1697 1698 hashval += (hashval << 3); 1699 hashval ^= (hashval >> 11); 1700 hashval += (hashval << 15); 1701 1702 /* 1703 * Yes, the divide here is expensive -- but it's generally the least 1704 * of the performance issues given the amount of data that we iterate 1705 * over to compute hash values, compare data, etc. 1706 */ 1707 ndx = hashval % agb->dtagb_hashsize; 1708 1709 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 1710 ASSERT((caddr_t)key >= tomax); 1711 ASSERT((caddr_t)key < tomax + buf->dtb_size); 1712 1713 if (hashval != key->dtak_hashval || key->dtak_size != size) 1714 continue; 1715 1716 kdata = key->dtak_data; 1717 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 1718 1719 for (act = agg->dtag_first; act->dta_intuple; 1720 act = act->dta_next) { 1721 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1722 limit = i + act->dta_rec.dtrd_size; 1723 ASSERT(limit <= size); 1724 isstr = DTRACEACT_ISSTRING(act); 1725 1726 for (; i < limit; i++) { 1727 if (kdata[i] != data[i]) 1728 goto next; 1729 1730 if (isstr && data[i] == '\0') 1731 break; 1732 } 1733 } 1734 1735 if (action != key->dtak_action) { 1736 /* 1737 * We are aggregating on the same value in the same 1738 * aggregation with two different aggregating actions. 1739 * (This should have been picked up in the compiler, 1740 * so we may be dealing with errant or devious DIF.) 1741 * This is an error condition; we indicate as much, 1742 * and return. 1743 */ 1744 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 1745 return; 1746 } 1747 1748 /* 1749 * This is a hit: we need to apply the aggregator to 1750 * the value at this key. 1751 */ 1752 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 1753 return; 1754 next: 1755 continue; 1756 } 1757 1758 /* 1759 * We didn't find it. We need to allocate some zero-filled space, 1760 * link it into the hash table appropriately, and apply the aggregator 1761 * to the (zero-filled) value. 1762 */ 1763 offs = buf->dtb_offset; 1764 while (offs & (align - 1)) 1765 offs += sizeof (uint32_t); 1766 1767 /* 1768 * If we don't have enough room to both allocate a new key _and_ 1769 * its associated data, increment the drop count and return. 1770 */ 1771 if ((uintptr_t)tomax + offs + fsize > 1772 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 1773 dtrace_buffer_drop(buf); 1774 return; 1775 } 1776 1777 /*CONSTCOND*/ 1778 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 1779 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 1780 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 1781 1782 key->dtak_data = kdata = tomax + offs; 1783 buf->dtb_offset = offs + fsize; 1784 1785 /* 1786 * Now copy the data across. 1787 */ 1788 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 1789 1790 for (i = sizeof (dtrace_aggid_t); i < size; i++) 1791 kdata[i] = data[i]; 1792 1793 /* 1794 * Because strings are not zeroed out by default, we need to iterate 1795 * looking for actions that store strings, and we need to explicitly 1796 * pad these strings out with zeroes. 1797 */ 1798 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1799 int nul; 1800 1801 if (!DTRACEACT_ISSTRING(act)) 1802 continue; 1803 1804 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1805 limit = i + act->dta_rec.dtrd_size; 1806 ASSERT(limit <= size); 1807 1808 for (nul = 0; i < limit; i++) { 1809 if (nul) { 1810 kdata[i] = '\0'; 1811 continue; 1812 } 1813 1814 if (data[i] != '\0') 1815 continue; 1816 1817 nul = 1; 1818 } 1819 } 1820 1821 for (i = size; i < fsize; i++) 1822 kdata[i] = 0; 1823 1824 key->dtak_hashval = hashval; 1825 key->dtak_size = size; 1826 key->dtak_action = action; 1827 key->dtak_next = agb->dtagb_hash[ndx]; 1828 agb->dtagb_hash[ndx] = key; 1829 1830 /* 1831 * Finally, apply the aggregator. 1832 */ 1833 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 1834 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 1835 } 1836 1837 /* 1838 * Given consumer state, this routine finds a speculation in the INACTIVE 1839 * state and transitions it into the ACTIVE state. If there is no speculation 1840 * in the INACTIVE state, 0 is returned. In this case, no error counter is 1841 * incremented -- it is up to the caller to take appropriate action. 1842 */ 1843 static int 1844 dtrace_speculation(dtrace_state_t *state) 1845 { 1846 int i = 0; 1847 dtrace_speculation_state_t current; 1848 uint32_t *stat = &state->dts_speculations_unavail, count; 1849 1850 while (i < state->dts_nspeculations) { 1851 dtrace_speculation_t *spec = &state->dts_speculations[i]; 1852 1853 current = spec->dtsp_state; 1854 1855 if (current != DTRACESPEC_INACTIVE) { 1856 if (current == DTRACESPEC_COMMITTINGMANY || 1857 current == DTRACESPEC_COMMITTING || 1858 current == DTRACESPEC_DISCARDING) 1859 stat = &state->dts_speculations_busy; 1860 i++; 1861 continue; 1862 } 1863 1864 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 1865 current, DTRACESPEC_ACTIVE) == current) 1866 return (i + 1); 1867 } 1868 1869 /* 1870 * We couldn't find a speculation. If we found as much as a single 1871 * busy speculation buffer, we'll attribute this failure as "busy" 1872 * instead of "unavail". 1873 */ 1874 do { 1875 count = *stat; 1876 } while (dtrace_cas32(stat, count, count + 1) != count); 1877 1878 return (0); 1879 } 1880 1881 /* 1882 * This routine commits an active speculation. If the specified speculation 1883 * is not in a valid state to perform a commit(), this routine will silently do 1884 * nothing. The state of the specified speculation is transitioned according 1885 * to the state transition diagram outlined in <sys/dtrace_impl.h> 1886 */ 1887 static void 1888 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 1889 dtrace_specid_t which) 1890 { 1891 dtrace_speculation_t *spec; 1892 dtrace_buffer_t *src, *dest; 1893 uintptr_t daddr, saddr, dlimit; 1894 dtrace_speculation_state_t current, new; 1895 intptr_t offs; 1896 1897 if (which == 0) 1898 return; 1899 1900 if (which > state->dts_nspeculations) { 1901 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 1902 return; 1903 } 1904 1905 spec = &state->dts_speculations[which - 1]; 1906 src = &spec->dtsp_buffer[cpu]; 1907 dest = &state->dts_buffer[cpu]; 1908 1909 do { 1910 current = spec->dtsp_state; 1911 1912 if (current == DTRACESPEC_COMMITTINGMANY) 1913 break; 1914 1915 switch (current) { 1916 case DTRACESPEC_INACTIVE: 1917 case DTRACESPEC_DISCARDING: 1918 return; 1919 1920 case DTRACESPEC_COMMITTING: 1921 /* 1922 * This is only possible if we are (a) commit()'ing 1923 * without having done a prior speculate() on this CPU 1924 * and (b) racing with another commit() on a different 1925 * CPU. There's nothing to do -- we just assert that 1926 * our offset is 0. 1927 */ 1928 ASSERT(src->dtb_offset == 0); 1929 return; 1930 1931 case DTRACESPEC_ACTIVE: 1932 new = DTRACESPEC_COMMITTING; 1933 break; 1934 1935 case DTRACESPEC_ACTIVEONE: 1936 /* 1937 * This speculation is active on one CPU. If our 1938 * buffer offset is non-zero, we know that the one CPU 1939 * must be us. Otherwise, we are committing on a 1940 * different CPU from the speculate(), and we must 1941 * rely on being asynchronously cleaned. 1942 */ 1943 if (src->dtb_offset != 0) { 1944 new = DTRACESPEC_COMMITTING; 1945 break; 1946 } 1947 /*FALLTHROUGH*/ 1948 1949 case DTRACESPEC_ACTIVEMANY: 1950 new = DTRACESPEC_COMMITTINGMANY; 1951 break; 1952 1953 default: 1954 ASSERT(0); 1955 } 1956 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 1957 current, new) != current); 1958 1959 /* 1960 * We have set the state to indicate that we are committing this 1961 * speculation. Now reserve the necessary space in the destination 1962 * buffer. 1963 */ 1964 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 1965 sizeof (uint64_t), state, NULL)) < 0) { 1966 dtrace_buffer_drop(dest); 1967 goto out; 1968 } 1969 1970 /* 1971 * We have the space; copy the buffer across. (Note that this is a 1972 * highly subobtimal bcopy(); in the unlikely event that this becomes 1973 * a serious performance issue, a high-performance DTrace-specific 1974 * bcopy() should obviously be invented.) 1975 */ 1976 daddr = (uintptr_t)dest->dtb_tomax + offs; 1977 dlimit = daddr + src->dtb_offset; 1978 saddr = (uintptr_t)src->dtb_tomax; 1979 1980 /* 1981 * First, the aligned portion. 1982 */ 1983 while (dlimit - daddr >= sizeof (uint64_t)) { 1984 *((uint64_t *)daddr) = *((uint64_t *)saddr); 1985 1986 daddr += sizeof (uint64_t); 1987 saddr += sizeof (uint64_t); 1988 } 1989 1990 /* 1991 * Now any left-over bit... 1992 */ 1993 while (dlimit - daddr) 1994 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 1995 1996 /* 1997 * Finally, commit the reserved space in the destination buffer. 1998 */ 1999 dest->dtb_offset = offs + src->dtb_offset; 2000 2001 out: 2002 /* 2003 * If we're lucky enough to be the only active CPU on this speculation 2004 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2005 */ 2006 if (current == DTRACESPEC_ACTIVE || 2007 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2008 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2009 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2010 2011 ASSERT(rval == DTRACESPEC_COMMITTING); 2012 } 2013 2014 src->dtb_offset = 0; 2015 src->dtb_xamot_drops += src->dtb_drops; 2016 src->dtb_drops = 0; 2017 } 2018 2019 /* 2020 * This routine discards an active speculation. If the specified speculation 2021 * is not in a valid state to perform a discard(), this routine will silently 2022 * do nothing. The state of the specified speculation is transitioned 2023 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2024 */ 2025 static void 2026 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2027 dtrace_specid_t which) 2028 { 2029 dtrace_speculation_t *spec; 2030 dtrace_speculation_state_t current, new; 2031 dtrace_buffer_t *buf; 2032 2033 if (which == 0) 2034 return; 2035 2036 if (which > state->dts_nspeculations) { 2037 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2038 return; 2039 } 2040 2041 spec = &state->dts_speculations[which - 1]; 2042 buf = &spec->dtsp_buffer[cpu]; 2043 2044 do { 2045 current = spec->dtsp_state; 2046 2047 switch (current) { 2048 case DTRACESPEC_INACTIVE: 2049 case DTRACESPEC_COMMITTINGMANY: 2050 case DTRACESPEC_COMMITTING: 2051 case DTRACESPEC_DISCARDING: 2052 return; 2053 2054 case DTRACESPEC_ACTIVE: 2055 case DTRACESPEC_ACTIVEMANY: 2056 new = DTRACESPEC_DISCARDING; 2057 break; 2058 2059 case DTRACESPEC_ACTIVEONE: 2060 if (buf->dtb_offset != 0) { 2061 new = DTRACESPEC_INACTIVE; 2062 } else { 2063 new = DTRACESPEC_DISCARDING; 2064 } 2065 break; 2066 2067 default: 2068 ASSERT(0); 2069 } 2070 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2071 current, new) != current); 2072 2073 buf->dtb_offset = 0; 2074 buf->dtb_drops = 0; 2075 } 2076 2077 /* 2078 * Note: not called from probe context. This function is called 2079 * asynchronously from cross call context to clean any speculations that are 2080 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2081 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2082 * speculation. 2083 */ 2084 static void 2085 dtrace_speculation_clean_here(dtrace_state_t *state) 2086 { 2087 dtrace_icookie_t cookie; 2088 processorid_t cpu = CPU->cpu_id; 2089 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2090 dtrace_specid_t i; 2091 2092 cookie = dtrace_interrupt_disable(); 2093 2094 if (dest->dtb_tomax == NULL) { 2095 dtrace_interrupt_enable(cookie); 2096 return; 2097 } 2098 2099 for (i = 0; i < state->dts_nspeculations; i++) { 2100 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2101 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2102 2103 if (src->dtb_tomax == NULL) 2104 continue; 2105 2106 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2107 src->dtb_offset = 0; 2108 continue; 2109 } 2110 2111 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2112 continue; 2113 2114 if (src->dtb_offset == 0) 2115 continue; 2116 2117 dtrace_speculation_commit(state, cpu, i + 1); 2118 } 2119 2120 dtrace_interrupt_enable(cookie); 2121 } 2122 2123 /* 2124 * Note: not called from probe context. This function is called 2125 * asynchronously (and at a regular interval) to clean any speculations that 2126 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2127 * is work to be done, it cross calls all CPUs to perform that work; 2128 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2129 * INACTIVE state until they have been cleaned by all CPUs. 2130 */ 2131 static void 2132 dtrace_speculation_clean(dtrace_state_t *state) 2133 { 2134 int work = 0, rv; 2135 dtrace_specid_t i; 2136 2137 for (i = 0; i < state->dts_nspeculations; i++) { 2138 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2139 2140 ASSERT(!spec->dtsp_cleaning); 2141 2142 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2143 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2144 continue; 2145 2146 work++; 2147 spec->dtsp_cleaning = 1; 2148 } 2149 2150 if (!work) 2151 return; 2152 2153 dtrace_xcall(DTRACE_CPUALL, 2154 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2155 2156 /* 2157 * We now know that all CPUs have committed or discarded their 2158 * speculation buffers, as appropriate. We can now set the state 2159 * to inactive. 2160 */ 2161 for (i = 0; i < state->dts_nspeculations; i++) { 2162 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2163 dtrace_speculation_state_t current, new; 2164 2165 if (!spec->dtsp_cleaning) 2166 continue; 2167 2168 current = spec->dtsp_state; 2169 ASSERT(current == DTRACESPEC_DISCARDING || 2170 current == DTRACESPEC_COMMITTINGMANY); 2171 2172 new = DTRACESPEC_INACTIVE; 2173 2174 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2175 ASSERT(rv == current); 2176 spec->dtsp_cleaning = 0; 2177 } 2178 } 2179 2180 /* 2181 * Called as part of a speculate() to get the speculative buffer associated 2182 * with a given speculation. Returns NULL if the specified speculation is not 2183 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2184 * the active CPU is not the specified CPU -- the speculation will be 2185 * atomically transitioned into the ACTIVEMANY state. 2186 */ 2187 static dtrace_buffer_t * 2188 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2189 dtrace_specid_t which) 2190 { 2191 dtrace_speculation_t *spec; 2192 dtrace_speculation_state_t current, new; 2193 dtrace_buffer_t *buf; 2194 2195 if (which == 0) 2196 return (NULL); 2197 2198 if (which > state->dts_nspeculations) { 2199 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2200 return (NULL); 2201 } 2202 2203 spec = &state->dts_speculations[which - 1]; 2204 buf = &spec->dtsp_buffer[cpuid]; 2205 2206 do { 2207 current = spec->dtsp_state; 2208 2209 switch (current) { 2210 case DTRACESPEC_INACTIVE: 2211 case DTRACESPEC_COMMITTINGMANY: 2212 case DTRACESPEC_DISCARDING: 2213 return (NULL); 2214 2215 case DTRACESPEC_COMMITTING: 2216 ASSERT(buf->dtb_offset == 0); 2217 return (NULL); 2218 2219 case DTRACESPEC_ACTIVEONE: 2220 /* 2221 * This speculation is currently active on one CPU. 2222 * Check the offset in the buffer; if it's non-zero, 2223 * that CPU must be us (and we leave the state alone). 2224 * If it's zero, assume that we're starting on a new 2225 * CPU -- and change the state to indicate that the 2226 * speculation is active on more than one CPU. 2227 */ 2228 if (buf->dtb_offset != 0) 2229 return (buf); 2230 2231 new = DTRACESPEC_ACTIVEMANY; 2232 break; 2233 2234 case DTRACESPEC_ACTIVEMANY: 2235 return (buf); 2236 2237 case DTRACESPEC_ACTIVE: 2238 new = DTRACESPEC_ACTIVEONE; 2239 break; 2240 2241 default: 2242 ASSERT(0); 2243 } 2244 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2245 current, new) != current); 2246 2247 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2248 return (buf); 2249 } 2250 2251 /* 2252 * This function implements the DIF emulator's variable lookups. The emulator 2253 * passes a reserved variable identifier and optional built-in array index. 2254 */ 2255 static uint64_t 2256 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2257 uint64_t ndx) 2258 { 2259 /* 2260 * If we're accessing one of the uncached arguments, we'll turn this 2261 * into a reference in the args array. 2262 */ 2263 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2264 ndx = v - DIF_VAR_ARG0; 2265 v = DIF_VAR_ARGS; 2266 } 2267 2268 switch (v) { 2269 case DIF_VAR_ARGS: 2270 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2271 if (ndx >= sizeof (mstate->dtms_arg) / 2272 sizeof (mstate->dtms_arg[0])) { 2273 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2274 dtrace_provider_t *pv; 2275 uint64_t val; 2276 2277 pv = mstate->dtms_probe->dtpr_provider; 2278 if (pv->dtpv_pops.dtps_getargval != NULL) 2279 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2280 mstate->dtms_probe->dtpr_id, 2281 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2282 else 2283 val = dtrace_getarg(ndx, aframes); 2284 2285 /* 2286 * This is regrettably required to keep the compiler 2287 * from tail-optimizing the call to dtrace_getarg(). 2288 * The condition always evaluates to true, but the 2289 * compiler has no way of figuring that out a priori. 2290 * (None of this would be necessary if the compiler 2291 * could be relied upon to _always_ tail-optimize 2292 * the call to dtrace_getarg() -- but it can't.) 2293 */ 2294 if (mstate->dtms_probe != NULL) 2295 return (val); 2296 2297 ASSERT(0); 2298 } 2299 2300 return (mstate->dtms_arg[ndx]); 2301 2302 case DIF_VAR_UREGS: { 2303 klwp_t *lwp; 2304 2305 if (!dtrace_priv_proc(state)) 2306 return (0); 2307 2308 if ((lwp = curthread->t_lwp) == NULL) { 2309 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2310 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2311 return (0); 2312 } 2313 2314 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2315 } 2316 2317 case DIF_VAR_CURTHREAD: 2318 if (!dtrace_priv_kernel(state)) 2319 return (0); 2320 return ((uint64_t)(uintptr_t)curthread); 2321 2322 case DIF_VAR_TIMESTAMP: 2323 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2324 mstate->dtms_timestamp = dtrace_gethrtime(); 2325 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2326 } 2327 return (mstate->dtms_timestamp); 2328 2329 case DIF_VAR_VTIMESTAMP: 2330 ASSERT(dtrace_vtime_references != 0); 2331 return (curthread->t_dtrace_vtime); 2332 2333 case DIF_VAR_WALLTIMESTAMP: 2334 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2335 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2336 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2337 } 2338 return (mstate->dtms_walltimestamp); 2339 2340 case DIF_VAR_IPL: 2341 if (!dtrace_priv_kernel(state)) 2342 return (0); 2343 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2344 mstate->dtms_ipl = dtrace_getipl(); 2345 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2346 } 2347 return (mstate->dtms_ipl); 2348 2349 case DIF_VAR_EPID: 2350 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2351 return (mstate->dtms_epid); 2352 2353 case DIF_VAR_ID: 2354 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2355 return (mstate->dtms_probe->dtpr_id); 2356 2357 case DIF_VAR_STACKDEPTH: 2358 if (!dtrace_priv_kernel(state)) 2359 return (0); 2360 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2361 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2362 2363 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2364 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2365 } 2366 return (mstate->dtms_stackdepth); 2367 2368 case DIF_VAR_USTACKDEPTH: 2369 if (!dtrace_priv_proc(state)) 2370 return (0); 2371 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2372 /* 2373 * See comment in DIF_VAR_PID. 2374 */ 2375 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2376 CPU_ON_INTR(CPU)) { 2377 mstate->dtms_ustackdepth = 0; 2378 } else { 2379 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2380 mstate->dtms_ustackdepth = 2381 dtrace_getustackdepth(); 2382 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2383 } 2384 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2385 } 2386 return (mstate->dtms_ustackdepth); 2387 2388 case DIF_VAR_CALLER: 2389 if (!dtrace_priv_kernel(state)) 2390 return (0); 2391 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2392 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2393 2394 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2395 /* 2396 * If this is an unanchored probe, we are 2397 * required to go through the slow path: 2398 * dtrace_caller() only guarantees correct 2399 * results for anchored probes. 2400 */ 2401 pc_t caller[2]; 2402 2403 dtrace_getpcstack(caller, 2, aframes, 2404 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2405 mstate->dtms_caller = caller[1]; 2406 } else if ((mstate->dtms_caller = 2407 dtrace_caller(aframes)) == -1) { 2408 /* 2409 * We have failed to do this the quick way; 2410 * we must resort to the slower approach of 2411 * calling dtrace_getpcstack(). 2412 */ 2413 pc_t caller; 2414 2415 dtrace_getpcstack(&caller, 1, aframes, NULL); 2416 mstate->dtms_caller = caller; 2417 } 2418 2419 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2420 } 2421 return (mstate->dtms_caller); 2422 2423 case DIF_VAR_UCALLER: 2424 if (!dtrace_priv_proc(state)) 2425 return (0); 2426 2427 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 2428 uint64_t ustack[3]; 2429 2430 /* 2431 * dtrace_getupcstack() fills in the first uint64_t 2432 * with the current PID. The second uint64_t will 2433 * be the program counter at user-level. The third 2434 * uint64_t will contain the caller, which is what 2435 * we're after. 2436 */ 2437 ustack[2] = NULL; 2438 dtrace_getupcstack(ustack, 3); 2439 mstate->dtms_ucaller = ustack[2]; 2440 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 2441 } 2442 2443 return (mstate->dtms_ucaller); 2444 2445 case DIF_VAR_PROBEPROV: 2446 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2447 return ((uint64_t)(uintptr_t) 2448 mstate->dtms_probe->dtpr_provider->dtpv_name); 2449 2450 case DIF_VAR_PROBEMOD: 2451 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2452 return ((uint64_t)(uintptr_t) 2453 mstate->dtms_probe->dtpr_mod); 2454 2455 case DIF_VAR_PROBEFUNC: 2456 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2457 return ((uint64_t)(uintptr_t) 2458 mstate->dtms_probe->dtpr_func); 2459 2460 case DIF_VAR_PROBENAME: 2461 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2462 return ((uint64_t)(uintptr_t) 2463 mstate->dtms_probe->dtpr_name); 2464 2465 case DIF_VAR_PID: 2466 if (!dtrace_priv_proc(state)) 2467 return (0); 2468 2469 /* 2470 * Note that we are assuming that an unanchored probe is 2471 * always due to a high-level interrupt. (And we're assuming 2472 * that there is only a single high level interrupt.) 2473 */ 2474 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2475 return (pid0.pid_id); 2476 2477 /* 2478 * It is always safe to dereference one's own t_procp pointer: 2479 * it always points to a valid, allocated proc structure. 2480 * Further, it is always safe to dereference the p_pidp member 2481 * of one's own proc structure. (These are truisms becuase 2482 * threads and processes don't clean up their own state -- 2483 * they leave that task to whomever reaps them.) 2484 */ 2485 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 2486 2487 case DIF_VAR_TID: 2488 /* 2489 * See comment in DIF_VAR_PID. 2490 */ 2491 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2492 return (0); 2493 2494 return ((uint64_t)curthread->t_tid); 2495 2496 case DIF_VAR_EXECNAME: 2497 if (!dtrace_priv_proc(state)) 2498 return (0); 2499 2500 /* 2501 * See comment in DIF_VAR_PID. 2502 */ 2503 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2504 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 2505 2506 /* 2507 * It is always safe to dereference one's own t_procp pointer: 2508 * it always points to a valid, allocated proc structure. 2509 * (This is true because threads don't clean up their own 2510 * state -- they leave that task to whomever reaps them.) 2511 */ 2512 return ((uint64_t)(uintptr_t) 2513 curthread->t_procp->p_user.u_comm); 2514 2515 case DIF_VAR_ZONENAME: 2516 if (!dtrace_priv_proc(state)) 2517 return (0); 2518 2519 /* 2520 * See comment in DIF_VAR_PID. 2521 */ 2522 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2523 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 2524 2525 /* 2526 * It is always safe to dereference one's own t_procp pointer: 2527 * it always points to a valid, allocated proc structure. 2528 * (This is true because threads don't clean up their own 2529 * state -- they leave that task to whomever reaps them.) 2530 */ 2531 return ((uint64_t)(uintptr_t) 2532 curthread->t_procp->p_zone->zone_name); 2533 2534 default: 2535 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2536 return (0); 2537 } 2538 } 2539 2540 /* 2541 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 2542 * Notice that we don't bother validating the proper number of arguments or 2543 * their types in the tuple stack. This isn't needed because all argument 2544 * interpretation is safe because of our load safety -- the worst that can 2545 * happen is that a bogus program can obtain bogus results. 2546 */ 2547 static void 2548 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 2549 dtrace_key_t *tupregs, int nargs, 2550 dtrace_mstate_t *mstate, dtrace_state_t *state) 2551 { 2552 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 2553 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 2554 2555 union { 2556 mutex_impl_t mi; 2557 uint64_t mx; 2558 } m; 2559 2560 union { 2561 krwlock_t ri; 2562 uintptr_t rw; 2563 } r; 2564 2565 switch (subr) { 2566 case DIF_SUBR_RAND: 2567 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 2568 break; 2569 2570 case DIF_SUBR_MUTEX_OWNED: 2571 m.mx = dtrace_load64(tupregs[0].dttk_value); 2572 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 2573 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 2574 else 2575 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 2576 break; 2577 2578 case DIF_SUBR_MUTEX_OWNER: 2579 m.mx = dtrace_load64(tupregs[0].dttk_value); 2580 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 2581 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 2582 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 2583 else 2584 regs[rd] = 0; 2585 break; 2586 2587 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 2588 m.mx = dtrace_load64(tupregs[0].dttk_value); 2589 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 2590 break; 2591 2592 case DIF_SUBR_MUTEX_TYPE_SPIN: 2593 m.mx = dtrace_load64(tupregs[0].dttk_value); 2594 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 2595 break; 2596 2597 case DIF_SUBR_RW_READ_HELD: { 2598 uintptr_t tmp; 2599 2600 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2601 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 2602 break; 2603 } 2604 2605 case DIF_SUBR_RW_WRITE_HELD: 2606 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2607 regs[rd] = _RW_WRITE_HELD(&r.ri); 2608 break; 2609 2610 case DIF_SUBR_RW_ISWRITER: 2611 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2612 regs[rd] = _RW_ISWRITER(&r.ri); 2613 break; 2614 2615 case DIF_SUBR_BCOPY: { 2616 /* 2617 * We need to be sure that the destination is in the scratch 2618 * region -- no other region is allowed. 2619 */ 2620 uintptr_t src = tupregs[0].dttk_value; 2621 uintptr_t dest = tupregs[1].dttk_value; 2622 size_t size = tupregs[2].dttk_value; 2623 2624 if (!dtrace_inscratch(dest, size, mstate)) { 2625 *flags |= CPU_DTRACE_BADADDR; 2626 *illval = regs[rd]; 2627 break; 2628 } 2629 2630 dtrace_bcopy((void *)src, (void *)dest, size); 2631 break; 2632 } 2633 2634 case DIF_SUBR_ALLOCA: 2635 case DIF_SUBR_COPYIN: { 2636 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 2637 uint64_t size = 2638 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 2639 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 2640 2641 /* 2642 * This action doesn't require any credential checks since 2643 * probes will not activate in user contexts to which the 2644 * enabling user does not have permissions. 2645 */ 2646 if (mstate->dtms_scratch_ptr + scratch_size > 2647 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2648 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2649 regs[rd] = NULL; 2650 break; 2651 } 2652 2653 if (subr == DIF_SUBR_COPYIN) { 2654 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2655 dtrace_copyin(tupregs[0].dttk_value, dest, size); 2656 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2657 } 2658 2659 mstate->dtms_scratch_ptr += scratch_size; 2660 regs[rd] = dest; 2661 break; 2662 } 2663 2664 case DIF_SUBR_COPYINTO: { 2665 uint64_t size = tupregs[1].dttk_value; 2666 uintptr_t dest = tupregs[2].dttk_value; 2667 2668 /* 2669 * This action doesn't require any credential checks since 2670 * probes will not activate in user contexts to which the 2671 * enabling user does not have permissions. 2672 */ 2673 if (!dtrace_inscratch(dest, size, mstate)) { 2674 *flags |= CPU_DTRACE_BADADDR; 2675 *illval = regs[rd]; 2676 break; 2677 } 2678 2679 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2680 dtrace_copyin(tupregs[0].dttk_value, dest, size); 2681 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2682 break; 2683 } 2684 2685 case DIF_SUBR_COPYINSTR: { 2686 uintptr_t dest = mstate->dtms_scratch_ptr; 2687 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2688 2689 if (nargs > 1 && tupregs[1].dttk_value < size) 2690 size = tupregs[1].dttk_value + 1; 2691 2692 /* 2693 * This action doesn't require any credential checks since 2694 * probes will not activate in user contexts to which the 2695 * enabling user does not have permissions. 2696 */ 2697 if (mstate->dtms_scratch_ptr + size > 2698 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2699 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2700 regs[rd] = NULL; 2701 break; 2702 } 2703 2704 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2705 dtrace_copyinstr(tupregs[0].dttk_value, dest, size); 2706 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2707 2708 ((char *)dest)[size - 1] = '\0'; 2709 mstate->dtms_scratch_ptr += size; 2710 regs[rd] = dest; 2711 break; 2712 } 2713 2714 case DIF_SUBR_MSGSIZE: 2715 case DIF_SUBR_MSGDSIZE: { 2716 uintptr_t baddr = tupregs[0].dttk_value, daddr; 2717 uintptr_t wptr, rptr; 2718 size_t count = 0; 2719 int cont = 0; 2720 2721 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 2722 wptr = dtrace_loadptr(baddr + 2723 offsetof(mblk_t, b_wptr)); 2724 2725 rptr = dtrace_loadptr(baddr + 2726 offsetof(mblk_t, b_rptr)); 2727 2728 if (wptr < rptr) { 2729 *flags |= CPU_DTRACE_BADADDR; 2730 *illval = tupregs[0].dttk_value; 2731 break; 2732 } 2733 2734 daddr = dtrace_loadptr(baddr + 2735 offsetof(mblk_t, b_datap)); 2736 2737 baddr = dtrace_loadptr(baddr + 2738 offsetof(mblk_t, b_cont)); 2739 2740 /* 2741 * We want to prevent against denial-of-service here, 2742 * so we're only going to search the list for 2743 * dtrace_msgdsize_max mblks. 2744 */ 2745 if (cont++ > dtrace_msgdsize_max) { 2746 *flags |= CPU_DTRACE_ILLOP; 2747 break; 2748 } 2749 2750 if (subr == DIF_SUBR_MSGDSIZE) { 2751 if (dtrace_load8(daddr + 2752 offsetof(dblk_t, db_type)) != M_DATA) 2753 continue; 2754 } 2755 2756 count += wptr - rptr; 2757 } 2758 2759 if (!(*flags & CPU_DTRACE_FAULT)) 2760 regs[rd] = count; 2761 2762 break; 2763 } 2764 2765 case DIF_SUBR_PROGENYOF: { 2766 pid_t pid = tupregs[0].dttk_value; 2767 proc_t *p; 2768 int rval = 0; 2769 2770 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2771 2772 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 2773 if (p->p_pidp->pid_id == pid) { 2774 rval = 1; 2775 break; 2776 } 2777 } 2778 2779 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2780 2781 regs[rd] = rval; 2782 break; 2783 } 2784 2785 case DIF_SUBR_SPECULATION: 2786 regs[rd] = dtrace_speculation(state); 2787 break; 2788 2789 case DIF_SUBR_COPYOUT: { 2790 uintptr_t kaddr = tupregs[0].dttk_value; 2791 uintptr_t uaddr = tupregs[1].dttk_value; 2792 uint64_t size = tupregs[2].dttk_value; 2793 2794 if (!dtrace_destructive_disallow && 2795 dtrace_priv_proc_control(state) && 2796 !dtrace_istoxic(kaddr, size)) { 2797 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2798 dtrace_copyout(kaddr, uaddr, size); 2799 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2800 } 2801 break; 2802 } 2803 2804 case DIF_SUBR_COPYOUTSTR: { 2805 uintptr_t kaddr = tupregs[0].dttk_value; 2806 uintptr_t uaddr = tupregs[1].dttk_value; 2807 uint64_t size = tupregs[2].dttk_value; 2808 2809 if (!dtrace_destructive_disallow && 2810 dtrace_priv_proc_control(state) && 2811 !dtrace_istoxic(kaddr, size)) { 2812 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2813 dtrace_copyoutstr(kaddr, uaddr, size); 2814 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2815 } 2816 break; 2817 } 2818 2819 case DIF_SUBR_STRLEN: 2820 regs[rd] = dtrace_strlen((char *)(uintptr_t) 2821 tupregs[0].dttk_value, 2822 state->dts_options[DTRACEOPT_STRSIZE]); 2823 break; 2824 2825 case DIF_SUBR_STRCHR: 2826 case DIF_SUBR_STRRCHR: { 2827 /* 2828 * We're going to iterate over the string looking for the 2829 * specified character. We will iterate until we have reached 2830 * the string length or we have found the character. If this 2831 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 2832 * of the specified character instead of the first. 2833 */ 2834 uintptr_t addr = tupregs[0].dttk_value; 2835 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 2836 char c, target = (char)tupregs[1].dttk_value; 2837 2838 for (regs[rd] = NULL; addr < limit; addr++) { 2839 if ((c = dtrace_load8(addr)) == target) { 2840 regs[rd] = addr; 2841 2842 if (subr == DIF_SUBR_STRCHR) 2843 break; 2844 } 2845 2846 if (c == '\0') 2847 break; 2848 } 2849 2850 break; 2851 } 2852 2853 case DIF_SUBR_STRSTR: 2854 case DIF_SUBR_INDEX: 2855 case DIF_SUBR_RINDEX: { 2856 /* 2857 * We're going to iterate over the string looking for the 2858 * specified string. We will iterate until we have reached 2859 * the string length or we have found the string. (Yes, this 2860 * is done in the most naive way possible -- but considering 2861 * that the string we're searching for is likely to be 2862 * relatively short, the complexity of Rabin-Karp or similar 2863 * hardly seems merited.) 2864 */ 2865 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 2866 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 2867 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2868 size_t len = dtrace_strlen(addr, size); 2869 size_t sublen = dtrace_strlen(substr, size); 2870 char *limit = addr + len, *orig = addr; 2871 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 2872 int inc = 1; 2873 2874 regs[rd] = notfound; 2875 2876 /* 2877 * strstr() and index()/rindex() have similar semantics if 2878 * both strings are the empty string: strstr() returns a 2879 * pointer to the (empty) string, and index() and rindex() 2880 * both return index 0 (regardless of any position argument). 2881 */ 2882 if (sublen == 0 && len == 0) { 2883 if (subr == DIF_SUBR_STRSTR) 2884 regs[rd] = (uintptr_t)addr; 2885 else 2886 regs[rd] = 0; 2887 break; 2888 } 2889 2890 if (subr != DIF_SUBR_STRSTR) { 2891 if (subr == DIF_SUBR_RINDEX) { 2892 limit = orig - 1; 2893 addr += len; 2894 inc = -1; 2895 } 2896 2897 /* 2898 * Both index() and rindex() take an optional position 2899 * argument that denotes the starting position. 2900 */ 2901 if (nargs == 3) { 2902 int64_t pos = (int64_t)tupregs[2].dttk_value; 2903 2904 /* 2905 * If the position argument to index() is 2906 * negative, Perl implicitly clamps it at 2907 * zero. This semantic is a little surprising 2908 * given the special meaning of negative 2909 * positions to similar Perl functions like 2910 * substr(), but it appears to reflect a 2911 * notion that index() can start from a 2912 * negative index and increment its way up to 2913 * the string. Given this notion, Perl's 2914 * rindex() is at least self-consistent in 2915 * that it implicitly clamps positions greater 2916 * than the string length to be the string 2917 * length. Where Perl completely loses 2918 * coherence, however, is when the specified 2919 * substring is the empty string (""). In 2920 * this case, even if the position is 2921 * negative, rindex() returns 0 -- and even if 2922 * the position is greater than the length, 2923 * index() returns the string length. These 2924 * semantics violate the notion that index() 2925 * should never return a value less than the 2926 * specified position and that rindex() should 2927 * never return a value greater than the 2928 * specified position. (One assumes that 2929 * these semantics are artifacts of Perl's 2930 * implementation and not the results of 2931 * deliberate design -- it beggars belief that 2932 * even Larry Wall could desire such oddness.) 2933 * While in the abstract one would wish for 2934 * consistent position semantics across 2935 * substr(), index() and rindex() -- or at the 2936 * very least self-consistent position 2937 * semantics for index() and rindex() -- we 2938 * instead opt to keep with the extant Perl 2939 * semantics, in all their broken glory. (Do 2940 * we have more desire to maintain Perl's 2941 * semantics than Perl does? Probably.) 2942 */ 2943 if (subr == DIF_SUBR_RINDEX) { 2944 if (pos < 0) { 2945 if (sublen == 0) 2946 regs[rd] = 0; 2947 break; 2948 } 2949 2950 if (pos > len) 2951 pos = len; 2952 } else { 2953 if (pos < 0) 2954 pos = 0; 2955 2956 if (pos >= len) { 2957 if (sublen == 0) 2958 regs[rd] = len; 2959 break; 2960 } 2961 } 2962 2963 addr = orig + pos; 2964 } 2965 } 2966 2967 for (regs[rd] = notfound; addr != limit; addr += inc) { 2968 if (dtrace_strncmp(addr, substr, sublen) == 0) { 2969 if (subr != DIF_SUBR_STRSTR) { 2970 /* 2971 * As D index() and rindex() are 2972 * modeled on Perl (and not on awk), 2973 * we return a zero-based (and not a 2974 * one-based) index. (For you Perl 2975 * weenies: no, we're not going to add 2976 * $[ -- and shouldn't you be at a con 2977 * or something?) 2978 */ 2979 regs[rd] = (uintptr_t)(addr - orig); 2980 break; 2981 } 2982 2983 ASSERT(subr == DIF_SUBR_STRSTR); 2984 regs[rd] = (uintptr_t)addr; 2985 break; 2986 } 2987 } 2988 2989 break; 2990 } 2991 2992 case DIF_SUBR_STRTOK: { 2993 uintptr_t addr = tupregs[0].dttk_value; 2994 uintptr_t tokaddr = tupregs[1].dttk_value; 2995 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2996 uintptr_t limit, toklimit = tokaddr + size; 2997 uint8_t c, tokmap[32]; /* 256 / 8 */ 2998 char *dest = (char *)mstate->dtms_scratch_ptr; 2999 int i; 3000 3001 if (mstate->dtms_scratch_ptr + size > 3002 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3003 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3004 regs[rd] = NULL; 3005 break; 3006 } 3007 3008 if (addr == NULL) { 3009 /* 3010 * If the address specified is NULL, we use our saved 3011 * strtok pointer from the mstate. Note that this 3012 * means that the saved strtok pointer is _only_ 3013 * valid within multiple enablings of the same probe -- 3014 * it behaves like an implicit clause-local variable. 3015 */ 3016 addr = mstate->dtms_strtok; 3017 } 3018 3019 /* 3020 * First, zero the token map, and then process the token 3021 * string -- setting a bit in the map for every character 3022 * found in the token string. 3023 */ 3024 for (i = 0; i < sizeof (tokmap); i++) 3025 tokmap[i] = 0; 3026 3027 for (; tokaddr < toklimit; tokaddr++) { 3028 if ((c = dtrace_load8(tokaddr)) == '\0') 3029 break; 3030 3031 ASSERT((c >> 3) < sizeof (tokmap)); 3032 tokmap[c >> 3] |= (1 << (c & 0x7)); 3033 } 3034 3035 for (limit = addr + size; addr < limit; addr++) { 3036 /* 3037 * We're looking for a character that is _not_ contained 3038 * in the token string. 3039 */ 3040 if ((c = dtrace_load8(addr)) == '\0') 3041 break; 3042 3043 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3044 break; 3045 } 3046 3047 if (c == '\0') { 3048 /* 3049 * We reached the end of the string without finding 3050 * any character that was not in the token string. 3051 * We return NULL in this case, and we set the saved 3052 * address to NULL as well. 3053 */ 3054 regs[rd] = NULL; 3055 mstate->dtms_strtok = NULL; 3056 break; 3057 } 3058 3059 /* 3060 * From here on, we're copying into the destination string. 3061 */ 3062 for (i = 0; addr < limit && i < size - 1; addr++) { 3063 if ((c = dtrace_load8(addr)) == '\0') 3064 break; 3065 3066 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3067 break; 3068 3069 ASSERT(i < size); 3070 dest[i++] = c; 3071 } 3072 3073 ASSERT(i < size); 3074 dest[i] = '\0'; 3075 regs[rd] = (uintptr_t)dest; 3076 mstate->dtms_scratch_ptr += size; 3077 mstate->dtms_strtok = addr; 3078 break; 3079 } 3080 3081 case DIF_SUBR_SUBSTR: { 3082 uintptr_t s = tupregs[0].dttk_value; 3083 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3084 char *d = (char *)mstate->dtms_scratch_ptr; 3085 int64_t index = (int64_t)tupregs[1].dttk_value; 3086 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3087 size_t len = dtrace_strlen((char *)s, size); 3088 int64_t i = 0; 3089 3090 if (nargs <= 2) 3091 remaining = (int64_t)size; 3092 3093 if (mstate->dtms_scratch_ptr + size > 3094 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3095 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3096 regs[rd] = NULL; 3097 break; 3098 } 3099 3100 if (index < 0) { 3101 index += len; 3102 3103 if (index < 0 && index + remaining > 0) { 3104 remaining += index; 3105 index = 0; 3106 } 3107 } 3108 3109 if (index >= len || index < 0) 3110 index = len; 3111 3112 for (d[0] = '\0'; remaining > 0; remaining--) { 3113 if ((d[i++] = dtrace_load8(s++ + index)) == '\0') 3114 break; 3115 3116 if (i == size) { 3117 d[i - 1] = '\0'; 3118 break; 3119 } 3120 } 3121 3122 mstate->dtms_scratch_ptr += size; 3123 regs[rd] = (uintptr_t)d; 3124 break; 3125 } 3126 3127 case DIF_SUBR_GETMAJOR: 3128 #ifdef _LP64 3129 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3130 #else 3131 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3132 #endif 3133 break; 3134 3135 case DIF_SUBR_GETMINOR: 3136 #ifdef _LP64 3137 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3138 #else 3139 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3140 #endif 3141 break; 3142 3143 case DIF_SUBR_DDI_PATHNAME: { 3144 /* 3145 * This one is a galactic mess. We are going to roughly 3146 * emulate ddi_pathname(), but it's made more complicated 3147 * by the fact that we (a) want to include the minor name and 3148 * (b) must proceed iteratively instead of recursively. 3149 */ 3150 uintptr_t dest = mstate->dtms_scratch_ptr; 3151 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3152 char *start = (char *)dest, *end = start + size - 1; 3153 uintptr_t daddr = tupregs[0].dttk_value; 3154 int64_t minor = (int64_t)tupregs[1].dttk_value; 3155 char *s; 3156 int i, len, depth = 0; 3157 3158 if (size == 0 || mstate->dtms_scratch_ptr + size > 3159 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3160 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3161 regs[rd] = NULL; 3162 break; 3163 } 3164 3165 *end = '\0'; 3166 3167 /* 3168 * We want to have a name for the minor. In order to do this, 3169 * we need to walk the minor list from the devinfo. We want 3170 * to be sure that we don't infinitely walk a circular list, 3171 * so we check for circularity by sending a scout pointer 3172 * ahead two elements for every element that we iterate over; 3173 * if the list is circular, these will ultimately point to the 3174 * same element. You may recognize this little trick as the 3175 * answer to a stupid interview question -- one that always 3176 * seems to be asked by those who had to have it laboriously 3177 * explained to them, and who can't even concisely describe 3178 * the conditions under which one would be forced to resort to 3179 * this technique. Needless to say, those conditions are 3180 * found here -- and probably only here. Is this is the only 3181 * use of this infamous trick in shipping, production code? 3182 * If it isn't, it probably should be... 3183 */ 3184 if (minor != -1) { 3185 uintptr_t maddr = dtrace_loadptr(daddr + 3186 offsetof(struct dev_info, devi_minor)); 3187 3188 uintptr_t next = offsetof(struct ddi_minor_data, next); 3189 uintptr_t name = offsetof(struct ddi_minor_data, 3190 d_minor) + offsetof(struct ddi_minor, name); 3191 uintptr_t dev = offsetof(struct ddi_minor_data, 3192 d_minor) + offsetof(struct ddi_minor, dev); 3193 uintptr_t scout; 3194 3195 if (maddr != NULL) 3196 scout = dtrace_loadptr(maddr + next); 3197 3198 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3199 uint64_t m; 3200 #ifdef _LP64 3201 m = dtrace_load64(maddr + dev) & MAXMIN64; 3202 #else 3203 m = dtrace_load32(maddr + dev) & MAXMIN; 3204 #endif 3205 if (m != minor) { 3206 maddr = dtrace_loadptr(maddr + next); 3207 3208 if (scout == NULL) 3209 continue; 3210 3211 scout = dtrace_loadptr(scout + next); 3212 3213 if (scout == NULL) 3214 continue; 3215 3216 scout = dtrace_loadptr(scout + next); 3217 3218 if (scout == NULL) 3219 continue; 3220 3221 if (scout == maddr) { 3222 *flags |= CPU_DTRACE_ILLOP; 3223 break; 3224 } 3225 3226 continue; 3227 } 3228 3229 /* 3230 * We have the minor data. Now we need to 3231 * copy the minor's name into the end of the 3232 * pathname. 3233 */ 3234 s = (char *)dtrace_loadptr(maddr + name); 3235 len = dtrace_strlen(s, size); 3236 3237 if (*flags & CPU_DTRACE_FAULT) 3238 break; 3239 3240 if (len != 0) { 3241 if ((end -= (len + 1)) < start) 3242 break; 3243 3244 *end = ':'; 3245 } 3246 3247 for (i = 1; i <= len; i++) 3248 end[i] = dtrace_load8((uintptr_t)s++); 3249 break; 3250 } 3251 } 3252 3253 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3254 ddi_node_state_t devi_state; 3255 3256 devi_state = dtrace_load32(daddr + 3257 offsetof(struct dev_info, devi_node_state)); 3258 3259 if (*flags & CPU_DTRACE_FAULT) 3260 break; 3261 3262 if (devi_state >= DS_INITIALIZED) { 3263 s = (char *)dtrace_loadptr(daddr + 3264 offsetof(struct dev_info, devi_addr)); 3265 len = dtrace_strlen(s, size); 3266 3267 if (*flags & CPU_DTRACE_FAULT) 3268 break; 3269 3270 if (len != 0) { 3271 if ((end -= (len + 1)) < start) 3272 break; 3273 3274 *end = '@'; 3275 } 3276 3277 for (i = 1; i <= len; i++) 3278 end[i] = dtrace_load8((uintptr_t)s++); 3279 } 3280 3281 /* 3282 * Now for the node name... 3283 */ 3284 s = (char *)dtrace_loadptr(daddr + 3285 offsetof(struct dev_info, devi_node_name)); 3286 3287 daddr = dtrace_loadptr(daddr + 3288 offsetof(struct dev_info, devi_parent)); 3289 3290 /* 3291 * If our parent is NULL (that is, if we're the root 3292 * node), we're going to use the special path 3293 * "devices". 3294 */ 3295 if (daddr == NULL) 3296 s = "devices"; 3297 3298 len = dtrace_strlen(s, size); 3299 if (*flags & CPU_DTRACE_FAULT) 3300 break; 3301 3302 if ((end -= (len + 1)) < start) 3303 break; 3304 3305 for (i = 1; i <= len; i++) 3306 end[i] = dtrace_load8((uintptr_t)s++); 3307 *end = '/'; 3308 3309 if (depth++ > dtrace_devdepth_max) { 3310 *flags |= CPU_DTRACE_ILLOP; 3311 break; 3312 } 3313 } 3314 3315 if (end < start) 3316 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3317 3318 if (daddr == NULL) { 3319 regs[rd] = (uintptr_t)end; 3320 mstate->dtms_scratch_ptr += size; 3321 } 3322 3323 break; 3324 } 3325 3326 case DIF_SUBR_STRJOIN: { 3327 char *d = (char *)mstate->dtms_scratch_ptr; 3328 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3329 uintptr_t s1 = tupregs[0].dttk_value; 3330 uintptr_t s2 = tupregs[1].dttk_value; 3331 int i = 0; 3332 3333 if (mstate->dtms_scratch_ptr + size > 3334 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3335 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3336 regs[rd] = NULL; 3337 break; 3338 } 3339 3340 for (;;) { 3341 if (i >= size) { 3342 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3343 regs[rd] = NULL; 3344 break; 3345 } 3346 3347 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 3348 i--; 3349 break; 3350 } 3351 } 3352 3353 for (;;) { 3354 if (i >= size) { 3355 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3356 regs[rd] = NULL; 3357 break; 3358 } 3359 3360 if ((d[i++] = dtrace_load8(s2++)) == '\0') 3361 break; 3362 } 3363 3364 if (i < size) { 3365 mstate->dtms_scratch_ptr += i; 3366 regs[rd] = (uintptr_t)d; 3367 } 3368 3369 break; 3370 } 3371 3372 case DIF_SUBR_LLTOSTR: { 3373 int64_t i = (int64_t)tupregs[0].dttk_value; 3374 int64_t val = i < 0 ? i * -1 : i; 3375 uint64_t size = 22; /* enough room for 2^64 in decimal */ 3376 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 3377 3378 if (mstate->dtms_scratch_ptr + size > 3379 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3380 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3381 regs[rd] = NULL; 3382 break; 3383 } 3384 3385 for (*end-- = '\0'; val; val /= 10) 3386 *end-- = '0' + (val % 10); 3387 3388 if (i == 0) 3389 *end-- = '0'; 3390 3391 if (i < 0) 3392 *end-- = '-'; 3393 3394 regs[rd] = (uintptr_t)end + 1; 3395 mstate->dtms_scratch_ptr += size; 3396 break; 3397 } 3398 3399 case DIF_SUBR_DIRNAME: 3400 case DIF_SUBR_BASENAME: { 3401 char *dest = (char *)mstate->dtms_scratch_ptr; 3402 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3403 uintptr_t src = tupregs[0].dttk_value; 3404 int i, j, len = dtrace_strlen((char *)src, size); 3405 int lastbase = -1, firstbase = -1, lastdir = -1; 3406 int start, end; 3407 3408 if (mstate->dtms_scratch_ptr + size > 3409 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3410 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3411 regs[rd] = NULL; 3412 break; 3413 } 3414 3415 /* 3416 * The basename and dirname for a zero-length string is 3417 * defined to be "." 3418 */ 3419 if (len == 0) { 3420 len = 1; 3421 src = (uintptr_t)"."; 3422 } 3423 3424 /* 3425 * Start from the back of the string, moving back toward the 3426 * front until we see a character that isn't a slash. That 3427 * character is the last character in the basename. 3428 */ 3429 for (i = len - 1; i >= 0; i--) { 3430 if (dtrace_load8(src + i) != '/') 3431 break; 3432 } 3433 3434 if (i >= 0) 3435 lastbase = i; 3436 3437 /* 3438 * Starting from the last character in the basename, move 3439 * towards the front until we find a slash. The character 3440 * that we processed immediately before that is the first 3441 * character in the basename. 3442 */ 3443 for (; i >= 0; i--) { 3444 if (dtrace_load8(src + i) == '/') 3445 break; 3446 } 3447 3448 if (i >= 0) 3449 firstbase = i + 1; 3450 3451 /* 3452 * Now keep going until we find a non-slash character. That 3453 * character is the last character in the dirname. 3454 */ 3455 for (; i >= 0; i--) { 3456 if (dtrace_load8(src + i) != '/') 3457 break; 3458 } 3459 3460 if (i >= 0) 3461 lastdir = i; 3462 3463 ASSERT(!(lastbase == -1 && firstbase != -1)); 3464 ASSERT(!(firstbase == -1 && lastdir != -1)); 3465 3466 if (lastbase == -1) { 3467 /* 3468 * We didn't find a non-slash character. We know that 3469 * the length is non-zero, so the whole string must be 3470 * slashes. In either the dirname or the basename 3471 * case, we return '/'. 3472 */ 3473 ASSERT(firstbase == -1); 3474 firstbase = lastbase = lastdir = 0; 3475 } 3476 3477 if (firstbase == -1) { 3478 /* 3479 * The entire string consists only of a basename 3480 * component. If we're looking for dirname, we need 3481 * to change our string to be just "."; if we're 3482 * looking for a basename, we'll just set the first 3483 * character of the basename to be 0. 3484 */ 3485 if (subr == DIF_SUBR_DIRNAME) { 3486 ASSERT(lastdir == -1); 3487 src = (uintptr_t)"."; 3488 lastdir = 0; 3489 } else { 3490 firstbase = 0; 3491 } 3492 } 3493 3494 if (subr == DIF_SUBR_DIRNAME) { 3495 if (lastdir == -1) { 3496 /* 3497 * We know that we have a slash in the name -- 3498 * or lastdir would be set to 0, above. And 3499 * because lastdir is -1, we know that this 3500 * slash must be the first character. (That 3501 * is, the full string must be of the form 3502 * "/basename".) In this case, the last 3503 * character of the directory name is 0. 3504 */ 3505 lastdir = 0; 3506 } 3507 3508 start = 0; 3509 end = lastdir; 3510 } else { 3511 ASSERT(subr == DIF_SUBR_BASENAME); 3512 ASSERT(firstbase != -1 && lastbase != -1); 3513 start = firstbase; 3514 end = lastbase; 3515 } 3516 3517 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 3518 dest[j] = dtrace_load8(src + i); 3519 3520 dest[j] = '\0'; 3521 regs[rd] = (uintptr_t)dest; 3522 mstate->dtms_scratch_ptr += size; 3523 break; 3524 } 3525 3526 case DIF_SUBR_CLEANPATH: { 3527 char *dest = (char *)mstate->dtms_scratch_ptr, c; 3528 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3529 uintptr_t src = tupregs[0].dttk_value; 3530 int i = 0, j = 0; 3531 3532 if (mstate->dtms_scratch_ptr + size > 3533 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3534 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3535 regs[rd] = NULL; 3536 break; 3537 } 3538 3539 /* 3540 * Move forward, loading each character. 3541 */ 3542 do { 3543 c = dtrace_load8(src + i++); 3544 next: 3545 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 3546 break; 3547 3548 if (c != '/') { 3549 dest[j++] = c; 3550 continue; 3551 } 3552 3553 c = dtrace_load8(src + i++); 3554 3555 if (c == '/') { 3556 /* 3557 * We have two slashes -- we can just advance 3558 * to the next character. 3559 */ 3560 goto next; 3561 } 3562 3563 if (c != '.') { 3564 /* 3565 * This is not "." and it's not ".." -- we can 3566 * just store the "/" and this character and 3567 * drive on. 3568 */ 3569 dest[j++] = '/'; 3570 dest[j++] = c; 3571 continue; 3572 } 3573 3574 c = dtrace_load8(src + i++); 3575 3576 if (c == '/') { 3577 /* 3578 * This is a "/./" component. We're not going 3579 * to store anything in the destination buffer; 3580 * we're just going to go to the next component. 3581 */ 3582 goto next; 3583 } 3584 3585 if (c != '.') { 3586 /* 3587 * This is not ".." -- we can just store the 3588 * "/." and this character and continue 3589 * processing. 3590 */ 3591 dest[j++] = '/'; 3592 dest[j++] = '.'; 3593 dest[j++] = c; 3594 continue; 3595 } 3596 3597 c = dtrace_load8(src + i++); 3598 3599 if (c != '/' && c != '\0') { 3600 /* 3601 * This is not ".." -- it's "..[mumble]". 3602 * We'll store the "/.." and this character 3603 * and continue processing. 3604 */ 3605 dest[j++] = '/'; 3606 dest[j++] = '.'; 3607 dest[j++] = '.'; 3608 dest[j++] = c; 3609 continue; 3610 } 3611 3612 /* 3613 * This is "/../" or "/..\0". We need to back up 3614 * our destination pointer until we find a "/". 3615 */ 3616 i--; 3617 while (j != 0 && dest[--j] != '/') 3618 continue; 3619 3620 if (c == '\0') 3621 dest[++j] = '/'; 3622 } while (c != '\0'); 3623 3624 dest[j] = '\0'; 3625 regs[rd] = (uintptr_t)dest; 3626 mstate->dtms_scratch_ptr += size; 3627 break; 3628 } 3629 } 3630 } 3631 3632 /* 3633 * Emulate the execution of DTrace IR instructions specified by the given 3634 * DIF object. This function is deliberately void of assertions as all of 3635 * the necessary checks are handled by a call to dtrace_difo_validate(). 3636 */ 3637 static uint64_t 3638 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 3639 dtrace_vstate_t *vstate, dtrace_state_t *state) 3640 { 3641 const dif_instr_t *text = difo->dtdo_buf; 3642 const uint_t textlen = difo->dtdo_len; 3643 const char *strtab = difo->dtdo_strtab; 3644 const uint64_t *inttab = difo->dtdo_inttab; 3645 3646 uint64_t rval = 0; 3647 dtrace_statvar_t *svar; 3648 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 3649 dtrace_difv_t *v; 3650 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3651 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3652 3653 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 3654 uint64_t regs[DIF_DIR_NREGS]; 3655 uint64_t *tmp; 3656 3657 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 3658 int64_t cc_r; 3659 uint_t pc = 0, id, opc; 3660 uint8_t ttop = 0; 3661 dif_instr_t instr; 3662 uint_t r1, r2, rd; 3663 3664 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 3665 3666 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 3667 opc = pc; 3668 3669 instr = text[pc++]; 3670 r1 = DIF_INSTR_R1(instr); 3671 r2 = DIF_INSTR_R2(instr); 3672 rd = DIF_INSTR_RD(instr); 3673 3674 switch (DIF_INSTR_OP(instr)) { 3675 case DIF_OP_OR: 3676 regs[rd] = regs[r1] | regs[r2]; 3677 break; 3678 case DIF_OP_XOR: 3679 regs[rd] = regs[r1] ^ regs[r2]; 3680 break; 3681 case DIF_OP_AND: 3682 regs[rd] = regs[r1] & regs[r2]; 3683 break; 3684 case DIF_OP_SLL: 3685 regs[rd] = regs[r1] << regs[r2]; 3686 break; 3687 case DIF_OP_SRL: 3688 regs[rd] = regs[r1] >> regs[r2]; 3689 break; 3690 case DIF_OP_SUB: 3691 regs[rd] = regs[r1] - regs[r2]; 3692 break; 3693 case DIF_OP_ADD: 3694 regs[rd] = regs[r1] + regs[r2]; 3695 break; 3696 case DIF_OP_MUL: 3697 regs[rd] = regs[r1] * regs[r2]; 3698 break; 3699 case DIF_OP_SDIV: 3700 if (regs[r2] == 0) { 3701 regs[rd] = 0; 3702 *flags |= CPU_DTRACE_DIVZERO; 3703 } else { 3704 regs[rd] = (int64_t)regs[r1] / 3705 (int64_t)regs[r2]; 3706 } 3707 break; 3708 3709 case DIF_OP_UDIV: 3710 if (regs[r2] == 0) { 3711 regs[rd] = 0; 3712 *flags |= CPU_DTRACE_DIVZERO; 3713 } else { 3714 regs[rd] = regs[r1] / regs[r2]; 3715 } 3716 break; 3717 3718 case DIF_OP_SREM: 3719 if (regs[r2] == 0) { 3720 regs[rd] = 0; 3721 *flags |= CPU_DTRACE_DIVZERO; 3722 } else { 3723 regs[rd] = (int64_t)regs[r1] % 3724 (int64_t)regs[r2]; 3725 } 3726 break; 3727 3728 case DIF_OP_UREM: 3729 if (regs[r2] == 0) { 3730 regs[rd] = 0; 3731 *flags |= CPU_DTRACE_DIVZERO; 3732 } else { 3733 regs[rd] = regs[r1] % regs[r2]; 3734 } 3735 break; 3736 3737 case DIF_OP_NOT: 3738 regs[rd] = ~regs[r1]; 3739 break; 3740 case DIF_OP_MOV: 3741 regs[rd] = regs[r1]; 3742 break; 3743 case DIF_OP_CMP: 3744 cc_r = regs[r1] - regs[r2]; 3745 cc_n = cc_r < 0; 3746 cc_z = cc_r == 0; 3747 cc_v = 0; 3748 cc_c = regs[r1] < regs[r2]; 3749 break; 3750 case DIF_OP_TST: 3751 cc_n = cc_v = cc_c = 0; 3752 cc_z = regs[r1] == 0; 3753 break; 3754 case DIF_OP_BA: 3755 pc = DIF_INSTR_LABEL(instr); 3756 break; 3757 case DIF_OP_BE: 3758 if (cc_z) 3759 pc = DIF_INSTR_LABEL(instr); 3760 break; 3761 case DIF_OP_BNE: 3762 if (cc_z == 0) 3763 pc = DIF_INSTR_LABEL(instr); 3764 break; 3765 case DIF_OP_BG: 3766 if ((cc_z | (cc_n ^ cc_v)) == 0) 3767 pc = DIF_INSTR_LABEL(instr); 3768 break; 3769 case DIF_OP_BGU: 3770 if ((cc_c | cc_z) == 0) 3771 pc = DIF_INSTR_LABEL(instr); 3772 break; 3773 case DIF_OP_BGE: 3774 if ((cc_n ^ cc_v) == 0) 3775 pc = DIF_INSTR_LABEL(instr); 3776 break; 3777 case DIF_OP_BGEU: 3778 if (cc_c == 0) 3779 pc = DIF_INSTR_LABEL(instr); 3780 break; 3781 case DIF_OP_BL: 3782 if (cc_n ^ cc_v) 3783 pc = DIF_INSTR_LABEL(instr); 3784 break; 3785 case DIF_OP_BLU: 3786 if (cc_c) 3787 pc = DIF_INSTR_LABEL(instr); 3788 break; 3789 case DIF_OP_BLE: 3790 if (cc_z | (cc_n ^ cc_v)) 3791 pc = DIF_INSTR_LABEL(instr); 3792 break; 3793 case DIF_OP_BLEU: 3794 if (cc_c | cc_z) 3795 pc = DIF_INSTR_LABEL(instr); 3796 break; 3797 case DIF_OP_RLDSB: 3798 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 3799 *flags |= CPU_DTRACE_KPRIV; 3800 *illval = regs[r1]; 3801 break; 3802 } 3803 /*FALLTHROUGH*/ 3804 case DIF_OP_LDSB: 3805 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 3806 break; 3807 case DIF_OP_RLDSH: 3808 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 3809 *flags |= CPU_DTRACE_KPRIV; 3810 *illval = regs[r1]; 3811 break; 3812 } 3813 /*FALLTHROUGH*/ 3814 case DIF_OP_LDSH: 3815 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 3816 break; 3817 case DIF_OP_RLDSW: 3818 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 3819 *flags |= CPU_DTRACE_KPRIV; 3820 *illval = regs[r1]; 3821 break; 3822 } 3823 /*FALLTHROUGH*/ 3824 case DIF_OP_LDSW: 3825 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 3826 break; 3827 case DIF_OP_RLDUB: 3828 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 3829 *flags |= CPU_DTRACE_KPRIV; 3830 *illval = regs[r1]; 3831 break; 3832 } 3833 /*FALLTHROUGH*/ 3834 case DIF_OP_LDUB: 3835 regs[rd] = dtrace_load8(regs[r1]); 3836 break; 3837 case DIF_OP_RLDUH: 3838 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 3839 *flags |= CPU_DTRACE_KPRIV; 3840 *illval = regs[r1]; 3841 break; 3842 } 3843 /*FALLTHROUGH*/ 3844 case DIF_OP_LDUH: 3845 regs[rd] = dtrace_load16(regs[r1]); 3846 break; 3847 case DIF_OP_RLDUW: 3848 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 3849 *flags |= CPU_DTRACE_KPRIV; 3850 *illval = regs[r1]; 3851 break; 3852 } 3853 /*FALLTHROUGH*/ 3854 case DIF_OP_LDUW: 3855 regs[rd] = dtrace_load32(regs[r1]); 3856 break; 3857 case DIF_OP_RLDX: 3858 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 3859 *flags |= CPU_DTRACE_KPRIV; 3860 *illval = regs[r1]; 3861 break; 3862 } 3863 /*FALLTHROUGH*/ 3864 case DIF_OP_LDX: 3865 regs[rd] = dtrace_load64(regs[r1]); 3866 break; 3867 case DIF_OP_ULDSB: 3868 regs[rd] = (int8_t) 3869 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 3870 break; 3871 case DIF_OP_ULDSH: 3872 regs[rd] = (int16_t) 3873 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 3874 break; 3875 case DIF_OP_ULDSW: 3876 regs[rd] = (int32_t) 3877 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 3878 break; 3879 case DIF_OP_ULDUB: 3880 regs[rd] = 3881 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 3882 break; 3883 case DIF_OP_ULDUH: 3884 regs[rd] = 3885 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 3886 break; 3887 case DIF_OP_ULDUW: 3888 regs[rd] = 3889 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 3890 break; 3891 case DIF_OP_ULDX: 3892 regs[rd] = 3893 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 3894 break; 3895 case DIF_OP_RET: 3896 rval = regs[rd]; 3897 break; 3898 case DIF_OP_NOP: 3899 break; 3900 case DIF_OP_SETX: 3901 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 3902 break; 3903 case DIF_OP_SETS: 3904 regs[rd] = (uint64_t)(uintptr_t) 3905 (strtab + DIF_INSTR_STRING(instr)); 3906 break; 3907 case DIF_OP_SCMP: 3908 cc_r = dtrace_strncmp((char *)(uintptr_t)regs[r1], 3909 (char *)(uintptr_t)regs[r2], 3910 state->dts_options[DTRACEOPT_STRSIZE]); 3911 3912 cc_n = cc_r < 0; 3913 cc_z = cc_r == 0; 3914 cc_v = cc_c = 0; 3915 break; 3916 case DIF_OP_LDGA: 3917 regs[rd] = dtrace_dif_variable(mstate, state, 3918 r1, regs[r2]); 3919 break; 3920 case DIF_OP_LDGS: 3921 id = DIF_INSTR_VAR(instr); 3922 3923 if (id >= DIF_VAR_OTHER_UBASE) { 3924 uintptr_t a; 3925 3926 id -= DIF_VAR_OTHER_UBASE; 3927 svar = vstate->dtvs_globals[id]; 3928 ASSERT(svar != NULL); 3929 v = &svar->dtsv_var; 3930 3931 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 3932 regs[rd] = svar->dtsv_data; 3933 break; 3934 } 3935 3936 a = (uintptr_t)svar->dtsv_data; 3937 3938 if (*(uint8_t *)a == UINT8_MAX) { 3939 /* 3940 * If the 0th byte is set to UINT8_MAX 3941 * then this is to be treated as a 3942 * reference to a NULL variable. 3943 */ 3944 regs[rd] = NULL; 3945 } else { 3946 regs[rd] = a + sizeof (uint64_t); 3947 } 3948 3949 break; 3950 } 3951 3952 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 3953 break; 3954 3955 case DIF_OP_STGS: 3956 id = DIF_INSTR_VAR(instr); 3957 3958 ASSERT(id >= DIF_VAR_OTHER_UBASE); 3959 id -= DIF_VAR_OTHER_UBASE; 3960 3961 svar = vstate->dtvs_globals[id]; 3962 ASSERT(svar != NULL); 3963 v = &svar->dtsv_var; 3964 3965 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 3966 uintptr_t a = (uintptr_t)svar->dtsv_data; 3967 3968 ASSERT(a != NULL); 3969 ASSERT(svar->dtsv_size != 0); 3970 3971 if (regs[rd] == NULL) { 3972 *(uint8_t *)a = UINT8_MAX; 3973 break; 3974 } else { 3975 *(uint8_t *)a = 0; 3976 a += sizeof (uint64_t); 3977 } 3978 3979 dtrace_vcopy((void *)(uintptr_t)regs[rd], 3980 (void *)a, &v->dtdv_type); 3981 break; 3982 } 3983 3984 svar->dtsv_data = regs[rd]; 3985 break; 3986 3987 case DIF_OP_LDTA: 3988 /* 3989 * There are no DTrace built-in thread-local arrays at 3990 * present. This opcode is saved for future work. 3991 */ 3992 *flags |= CPU_DTRACE_ILLOP; 3993 regs[rd] = 0; 3994 break; 3995 3996 case DIF_OP_LDLS: 3997 id = DIF_INSTR_VAR(instr); 3998 3999 if (id < DIF_VAR_OTHER_UBASE) { 4000 /* 4001 * For now, this has no meaning. 4002 */ 4003 regs[rd] = 0; 4004 break; 4005 } 4006 4007 id -= DIF_VAR_OTHER_UBASE; 4008 4009 ASSERT(id < vstate->dtvs_nlocals); 4010 ASSERT(vstate->dtvs_locals != NULL); 4011 4012 svar = vstate->dtvs_locals[id]; 4013 ASSERT(svar != NULL); 4014 v = &svar->dtsv_var; 4015 4016 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4017 uintptr_t a = (uintptr_t)svar->dtsv_data; 4018 size_t sz = v->dtdv_type.dtdt_size; 4019 4020 sz += sizeof (uint64_t); 4021 ASSERT(svar->dtsv_size == NCPU * sz); 4022 a += CPU->cpu_id * sz; 4023 4024 if (*(uint8_t *)a == UINT8_MAX) { 4025 /* 4026 * If the 0th byte is set to UINT8_MAX 4027 * then this is to be treated as a 4028 * reference to a NULL variable. 4029 */ 4030 regs[rd] = NULL; 4031 } else { 4032 regs[rd] = a + sizeof (uint64_t); 4033 } 4034 4035 break; 4036 } 4037 4038 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4039 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4040 regs[rd] = tmp[CPU->cpu_id]; 4041 break; 4042 4043 case DIF_OP_STLS: 4044 id = DIF_INSTR_VAR(instr); 4045 4046 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4047 id -= DIF_VAR_OTHER_UBASE; 4048 ASSERT(id < vstate->dtvs_nlocals); 4049 4050 ASSERT(vstate->dtvs_locals != NULL); 4051 svar = vstate->dtvs_locals[id]; 4052 ASSERT(svar != NULL); 4053 v = &svar->dtsv_var; 4054 4055 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4056 uintptr_t a = (uintptr_t)svar->dtsv_data; 4057 size_t sz = v->dtdv_type.dtdt_size; 4058 4059 sz += sizeof (uint64_t); 4060 ASSERT(svar->dtsv_size == NCPU * sz); 4061 a += CPU->cpu_id * sz; 4062 4063 if (regs[rd] == NULL) { 4064 *(uint8_t *)a = UINT8_MAX; 4065 break; 4066 } else { 4067 *(uint8_t *)a = 0; 4068 a += sizeof (uint64_t); 4069 } 4070 4071 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4072 (void *)a, &v->dtdv_type); 4073 break; 4074 } 4075 4076 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4077 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4078 tmp[CPU->cpu_id] = regs[rd]; 4079 break; 4080 4081 case DIF_OP_LDTS: { 4082 dtrace_dynvar_t *dvar; 4083 dtrace_key_t *key; 4084 4085 id = DIF_INSTR_VAR(instr); 4086 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4087 id -= DIF_VAR_OTHER_UBASE; 4088 v = &vstate->dtvs_tlocals[id]; 4089 4090 key = &tupregs[DIF_DTR_NREGS]; 4091 key[0].dttk_value = (uint64_t)id; 4092 key[0].dttk_size = 0; 4093 DTRACE_TLS_THRKEY(key[1].dttk_value); 4094 key[1].dttk_size = 0; 4095 4096 dvar = dtrace_dynvar(dstate, 2, key, 4097 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC); 4098 4099 if (dvar == NULL) { 4100 regs[rd] = 0; 4101 break; 4102 } 4103 4104 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4105 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4106 } else { 4107 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4108 } 4109 4110 break; 4111 } 4112 4113 case DIF_OP_STTS: { 4114 dtrace_dynvar_t *dvar; 4115 dtrace_key_t *key; 4116 4117 id = DIF_INSTR_VAR(instr); 4118 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4119 id -= DIF_VAR_OTHER_UBASE; 4120 4121 key = &tupregs[DIF_DTR_NREGS]; 4122 key[0].dttk_value = (uint64_t)id; 4123 key[0].dttk_size = 0; 4124 DTRACE_TLS_THRKEY(key[1].dttk_value); 4125 key[1].dttk_size = 0; 4126 v = &vstate->dtvs_tlocals[id]; 4127 4128 dvar = dtrace_dynvar(dstate, 2, key, 4129 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4130 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4131 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4132 DTRACE_DYNVAR_DEALLOC); 4133 4134 /* 4135 * Given that we're storing to thread-local data, 4136 * we need to flush our predicate cache. 4137 */ 4138 curthread->t_predcache = NULL; 4139 4140 if (dvar == NULL) 4141 break; 4142 4143 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4144 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4145 dvar->dtdv_data, &v->dtdv_type); 4146 } else { 4147 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4148 } 4149 4150 break; 4151 } 4152 4153 case DIF_OP_SRA: 4154 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 4155 break; 4156 4157 case DIF_OP_CALL: 4158 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 4159 regs, tupregs, ttop, mstate, state); 4160 break; 4161 4162 case DIF_OP_PUSHTR: 4163 if (ttop == DIF_DTR_NREGS) { 4164 *flags |= CPU_DTRACE_TUPOFLOW; 4165 break; 4166 } 4167 4168 if (r1 == DIF_TYPE_STRING) { 4169 /* 4170 * If this is a string type and the size is 0, 4171 * we'll use the system-wide default string 4172 * size. Note that we are _not_ looking at 4173 * the value of the DTRACEOPT_STRSIZE option; 4174 * had this been set, we would expect to have 4175 * a non-zero size value in the "pushtr". 4176 */ 4177 tupregs[ttop].dttk_size = 4178 dtrace_strlen((char *)(uintptr_t)regs[rd], 4179 regs[r2] ? regs[r2] : 4180 dtrace_strsize_default) + 1; 4181 } else { 4182 tupregs[ttop].dttk_size = regs[r2]; 4183 } 4184 4185 tupregs[ttop++].dttk_value = regs[rd]; 4186 break; 4187 4188 case DIF_OP_PUSHTV: 4189 if (ttop == DIF_DTR_NREGS) { 4190 *flags |= CPU_DTRACE_TUPOFLOW; 4191 break; 4192 } 4193 4194 tupregs[ttop].dttk_value = regs[rd]; 4195 tupregs[ttop++].dttk_size = 0; 4196 break; 4197 4198 case DIF_OP_POPTS: 4199 if (ttop != 0) 4200 ttop--; 4201 break; 4202 4203 case DIF_OP_FLUSHTS: 4204 ttop = 0; 4205 break; 4206 4207 case DIF_OP_LDGAA: 4208 case DIF_OP_LDTAA: { 4209 dtrace_dynvar_t *dvar; 4210 dtrace_key_t *key = tupregs; 4211 uint_t nkeys = ttop; 4212 4213 id = DIF_INSTR_VAR(instr); 4214 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4215 id -= DIF_VAR_OTHER_UBASE; 4216 4217 key[nkeys].dttk_value = (uint64_t)id; 4218 key[nkeys++].dttk_size = 0; 4219 4220 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 4221 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 4222 key[nkeys++].dttk_size = 0; 4223 v = &vstate->dtvs_tlocals[id]; 4224 } else { 4225 v = &vstate->dtvs_globals[id]->dtsv_var; 4226 } 4227 4228 dvar = dtrace_dynvar(dstate, nkeys, key, 4229 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4230 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4231 DTRACE_DYNVAR_NOALLOC); 4232 4233 if (dvar == NULL) { 4234 regs[rd] = 0; 4235 break; 4236 } 4237 4238 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4239 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4240 } else { 4241 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4242 } 4243 4244 break; 4245 } 4246 4247 case DIF_OP_STGAA: 4248 case DIF_OP_STTAA: { 4249 dtrace_dynvar_t *dvar; 4250 dtrace_key_t *key = tupregs; 4251 uint_t nkeys = ttop; 4252 4253 id = DIF_INSTR_VAR(instr); 4254 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4255 id -= DIF_VAR_OTHER_UBASE; 4256 4257 key[nkeys].dttk_value = (uint64_t)id; 4258 key[nkeys++].dttk_size = 0; 4259 4260 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 4261 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 4262 key[nkeys++].dttk_size = 0; 4263 v = &vstate->dtvs_tlocals[id]; 4264 } else { 4265 v = &vstate->dtvs_globals[id]->dtsv_var; 4266 } 4267 4268 dvar = dtrace_dynvar(dstate, nkeys, key, 4269 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4270 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4271 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4272 DTRACE_DYNVAR_DEALLOC); 4273 4274 if (dvar == NULL) 4275 break; 4276 4277 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4278 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4279 dvar->dtdv_data, &v->dtdv_type); 4280 } else { 4281 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4282 } 4283 4284 break; 4285 } 4286 4287 case DIF_OP_ALLOCS: { 4288 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4289 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 4290 4291 if (mstate->dtms_scratch_ptr + size > 4292 mstate->dtms_scratch_base + 4293 mstate->dtms_scratch_size) { 4294 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4295 regs[rd] = NULL; 4296 } else { 4297 dtrace_bzero((void *) 4298 mstate->dtms_scratch_ptr, size); 4299 mstate->dtms_scratch_ptr += size; 4300 regs[rd] = ptr; 4301 } 4302 break; 4303 } 4304 4305 case DIF_OP_COPYS: 4306 if (!dtrace_canstore(regs[rd], regs[r2], 4307 mstate, vstate)) { 4308 *flags |= CPU_DTRACE_BADADDR; 4309 *illval = regs[rd]; 4310 break; 4311 } 4312 4313 dtrace_bcopy((void *)(uintptr_t)regs[r1], 4314 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 4315 break; 4316 4317 case DIF_OP_STB: 4318 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 4319 *flags |= CPU_DTRACE_BADADDR; 4320 *illval = regs[rd]; 4321 break; 4322 } 4323 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 4324 break; 4325 4326 case DIF_OP_STH: 4327 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 4328 *flags |= CPU_DTRACE_BADADDR; 4329 *illval = regs[rd]; 4330 break; 4331 } 4332 if (regs[rd] & 1) { 4333 *flags |= CPU_DTRACE_BADALIGN; 4334 *illval = regs[rd]; 4335 break; 4336 } 4337 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 4338 break; 4339 4340 case DIF_OP_STW: 4341 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 4342 *flags |= CPU_DTRACE_BADADDR; 4343 *illval = regs[rd]; 4344 break; 4345 } 4346 if (regs[rd] & 3) { 4347 *flags |= CPU_DTRACE_BADALIGN; 4348 *illval = regs[rd]; 4349 break; 4350 } 4351 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 4352 break; 4353 4354 case DIF_OP_STX: 4355 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 4356 *flags |= CPU_DTRACE_BADADDR; 4357 *illval = regs[rd]; 4358 break; 4359 } 4360 if (regs[rd] & 7) { 4361 *flags |= CPU_DTRACE_BADALIGN; 4362 *illval = regs[rd]; 4363 break; 4364 } 4365 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 4366 break; 4367 } 4368 } 4369 4370 if (!(*flags & CPU_DTRACE_FAULT)) 4371 return (rval); 4372 4373 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 4374 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 4375 4376 return (0); 4377 } 4378 4379 static void 4380 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 4381 { 4382 dtrace_probe_t *probe = ecb->dte_probe; 4383 dtrace_provider_t *prov = probe->dtpr_provider; 4384 char c[DTRACE_FULLNAMELEN + 80], *str; 4385 char *msg = "dtrace: breakpoint action at probe "; 4386 char *ecbmsg = " (ecb "; 4387 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 4388 uintptr_t val = (uintptr_t)ecb; 4389 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 4390 4391 if (dtrace_destructive_disallow) 4392 return; 4393 4394 /* 4395 * It's impossible to be taking action on the NULL probe. 4396 */ 4397 ASSERT(probe != NULL); 4398 4399 /* 4400 * This is a poor man's (destitute man's?) sprintf(): we want to 4401 * print the provider name, module name, function name and name of 4402 * the probe, along with the hex address of the ECB with the breakpoint 4403 * action -- all of which we must place in the character buffer by 4404 * hand. 4405 */ 4406 while (*msg != '\0') 4407 c[i++] = *msg++; 4408 4409 for (str = prov->dtpv_name; *str != '\0'; str++) 4410 c[i++] = *str; 4411 c[i++] = ':'; 4412 4413 for (str = probe->dtpr_mod; *str != '\0'; str++) 4414 c[i++] = *str; 4415 c[i++] = ':'; 4416 4417 for (str = probe->dtpr_func; *str != '\0'; str++) 4418 c[i++] = *str; 4419 c[i++] = ':'; 4420 4421 for (str = probe->dtpr_name; *str != '\0'; str++) 4422 c[i++] = *str; 4423 4424 while (*ecbmsg != '\0') 4425 c[i++] = *ecbmsg++; 4426 4427 while (shift >= 0) { 4428 mask = (uintptr_t)0xf << shift; 4429 4430 if (val >= ((uintptr_t)1 << shift)) 4431 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 4432 shift -= 4; 4433 } 4434 4435 c[i++] = ')'; 4436 c[i] = '\0'; 4437 4438 debug_enter(c); 4439 } 4440 4441 static void 4442 dtrace_action_panic(dtrace_ecb_t *ecb) 4443 { 4444 dtrace_probe_t *probe = ecb->dte_probe; 4445 4446 /* 4447 * It's impossible to be taking action on the NULL probe. 4448 */ 4449 ASSERT(probe != NULL); 4450 4451 if (dtrace_destructive_disallow) 4452 return; 4453 4454 if (dtrace_panicked != NULL) 4455 return; 4456 4457 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 4458 return; 4459 4460 /* 4461 * We won the right to panic. (We want to be sure that only one 4462 * thread calls panic() from dtrace_probe(), and that panic() is 4463 * called exactly once.) 4464 */ 4465 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 4466 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 4467 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 4468 } 4469 4470 static void 4471 dtrace_action_raise(uint64_t sig) 4472 { 4473 if (dtrace_destructive_disallow) 4474 return; 4475 4476 if (sig >= NSIG) { 4477 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4478 return; 4479 } 4480 4481 /* 4482 * raise() has a queue depth of 1 -- we ignore all subsequent 4483 * invocations of the raise() action. 4484 */ 4485 if (curthread->t_dtrace_sig == 0) 4486 curthread->t_dtrace_sig = (uint8_t)sig; 4487 4488 curthread->t_sig_check = 1; 4489 aston(curthread); 4490 } 4491 4492 static void 4493 dtrace_action_stop(void) 4494 { 4495 if (dtrace_destructive_disallow) 4496 return; 4497 4498 if (!curthread->t_dtrace_stop) { 4499 curthread->t_dtrace_stop = 1; 4500 curthread->t_sig_check = 1; 4501 aston(curthread); 4502 } 4503 } 4504 4505 static void 4506 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 4507 { 4508 hrtime_t now; 4509 volatile uint16_t *flags; 4510 cpu_t *cpu = CPU; 4511 4512 if (dtrace_destructive_disallow) 4513 return; 4514 4515 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 4516 4517 now = dtrace_gethrtime(); 4518 4519 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 4520 /* 4521 * We need to advance the mark to the current time. 4522 */ 4523 cpu->cpu_dtrace_chillmark = now; 4524 cpu->cpu_dtrace_chilled = 0; 4525 } 4526 4527 /* 4528 * Now check to see if the requested chill time would take us over 4529 * the maximum amount of time allowed in the chill interval. (Or 4530 * worse, if the calculation itself induces overflow.) 4531 */ 4532 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 4533 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 4534 *flags |= CPU_DTRACE_ILLOP; 4535 return; 4536 } 4537 4538 while (dtrace_gethrtime() - now < val) 4539 continue; 4540 4541 /* 4542 * Normally, we assure that the value of the variable "timestamp" does 4543 * not change within an ECB. The presence of chill() represents an 4544 * exception to this rule, however. 4545 */ 4546 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 4547 cpu->cpu_dtrace_chilled += val; 4548 } 4549 4550 static void 4551 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 4552 uint64_t *buf, uint64_t arg) 4553 { 4554 int nframes = DTRACE_USTACK_NFRAMES(arg); 4555 int strsize = DTRACE_USTACK_STRSIZE(arg); 4556 uint64_t *pcs = &buf[1], *fps; 4557 char *str = (char *)&pcs[nframes]; 4558 int size, offs = 0, i, j; 4559 uintptr_t old = mstate->dtms_scratch_ptr, saved; 4560 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4561 char *sym; 4562 4563 /* 4564 * Should be taking a faster path if string space has not been 4565 * allocated. 4566 */ 4567 ASSERT(strsize != 0); 4568 4569 /* 4570 * We will first allocate some temporary space for the frame pointers. 4571 */ 4572 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4573 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 4574 (nframes * sizeof (uint64_t)); 4575 4576 if (mstate->dtms_scratch_ptr + size > 4577 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 4578 /* 4579 * Not enough room for our frame pointers -- need to indicate 4580 * that we ran out of scratch space. 4581 */ 4582 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4583 return; 4584 } 4585 4586 mstate->dtms_scratch_ptr += size; 4587 saved = mstate->dtms_scratch_ptr; 4588 4589 /* 4590 * Now get a stack with both program counters and frame pointers. 4591 */ 4592 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4593 dtrace_getufpstack(buf, fps, nframes + 1); 4594 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4595 4596 /* 4597 * If that faulted, we're cooked. 4598 */ 4599 if (*flags & CPU_DTRACE_FAULT) 4600 goto out; 4601 4602 /* 4603 * Now we want to walk up the stack, calling the USTACK helper. For 4604 * each iteration, we restore the scratch pointer. 4605 */ 4606 for (i = 0; i < nframes; i++) { 4607 mstate->dtms_scratch_ptr = saved; 4608 4609 if (offs >= strsize) 4610 break; 4611 4612 sym = (char *)(uintptr_t)dtrace_helper( 4613 DTRACE_HELPER_ACTION_USTACK, 4614 mstate, state, pcs[i], fps[i]); 4615 4616 /* 4617 * If we faulted while running the helper, we're going to 4618 * clear the fault and null out the corresponding string. 4619 */ 4620 if (*flags & CPU_DTRACE_FAULT) { 4621 *flags &= ~CPU_DTRACE_FAULT; 4622 str[offs++] = '\0'; 4623 continue; 4624 } 4625 4626 if (sym == NULL) { 4627 str[offs++] = '\0'; 4628 continue; 4629 } 4630 4631 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4632 4633 /* 4634 * Now copy in the string that the helper returned to us. 4635 */ 4636 for (j = 0; offs + j < strsize; j++) { 4637 if ((str[offs + j] = sym[j]) == '\0') 4638 break; 4639 } 4640 4641 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4642 4643 offs += j + 1; 4644 } 4645 4646 if (offs >= strsize) { 4647 /* 4648 * If we didn't have room for all of the strings, we don't 4649 * abort processing -- this needn't be a fatal error -- but we 4650 * still want to increment a counter (dts_stkstroverflows) to 4651 * allow this condition to be warned about. (If this is from 4652 * a jstack() action, it is easily tuned via jstackstrsize.) 4653 */ 4654 dtrace_error(&state->dts_stkstroverflows); 4655 } 4656 4657 while (offs < strsize) 4658 str[offs++] = '\0'; 4659 4660 out: 4661 mstate->dtms_scratch_ptr = old; 4662 } 4663 4664 /* 4665 * If you're looking for the epicenter of DTrace, you just found it. This 4666 * is the function called by the provider to fire a probe -- from which all 4667 * subsequent probe-context DTrace activity emanates. 4668 */ 4669 void 4670 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 4671 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 4672 { 4673 processorid_t cpuid; 4674 dtrace_icookie_t cookie; 4675 dtrace_probe_t *probe; 4676 dtrace_mstate_t mstate; 4677 dtrace_ecb_t *ecb; 4678 dtrace_action_t *act; 4679 intptr_t offs; 4680 size_t size; 4681 int vtime, onintr; 4682 volatile uint16_t *flags; 4683 hrtime_t now; 4684 4685 /* 4686 * Kick out immediately if this CPU is still being born (in which case 4687 * curthread will be set to -1) 4688 */ 4689 if ((uintptr_t)curthread & 1) 4690 return; 4691 4692 cookie = dtrace_interrupt_disable(); 4693 probe = dtrace_probes[id - 1]; 4694 cpuid = CPU->cpu_id; 4695 onintr = CPU_ON_INTR(CPU); 4696 4697 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 4698 probe->dtpr_predcache == curthread->t_predcache) { 4699 /* 4700 * We have hit in the predicate cache; we know that 4701 * this predicate would evaluate to be false. 4702 */ 4703 dtrace_interrupt_enable(cookie); 4704 return; 4705 } 4706 4707 if (panic_quiesce) { 4708 /* 4709 * We don't trace anything if we're panicking. 4710 */ 4711 dtrace_interrupt_enable(cookie); 4712 return; 4713 } 4714 4715 now = dtrace_gethrtime(); 4716 vtime = dtrace_vtime_references != 0; 4717 4718 if (vtime && curthread->t_dtrace_start) 4719 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 4720 4721 mstate.dtms_probe = probe; 4722 mstate.dtms_arg[0] = arg0; 4723 mstate.dtms_arg[1] = arg1; 4724 mstate.dtms_arg[2] = arg2; 4725 mstate.dtms_arg[3] = arg3; 4726 mstate.dtms_arg[4] = arg4; 4727 4728 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 4729 4730 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 4731 dtrace_predicate_t *pred = ecb->dte_predicate; 4732 dtrace_state_t *state = ecb->dte_state; 4733 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 4734 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 4735 dtrace_vstate_t *vstate = &state->dts_vstate; 4736 dtrace_provider_t *prov = probe->dtpr_provider; 4737 int committed = 0; 4738 caddr_t tomax; 4739 4740 /* 4741 * A little subtlety with the following (seemingly innocuous) 4742 * declaration of the automatic 'val': by looking at the 4743 * code, you might think that it could be declared in the 4744 * action processing loop, below. (That is, it's only used in 4745 * the action processing loop.) However, it must be declared 4746 * out of that scope because in the case of DIF expression 4747 * arguments to aggregating actions, one iteration of the 4748 * action loop will use the last iteration's value. 4749 */ 4750 #ifdef lint 4751 uint64_t val = 0; 4752 #else 4753 uint64_t val; 4754 #endif 4755 4756 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 4757 *flags &= ~CPU_DTRACE_ERROR; 4758 4759 if (prov == dtrace_provider) { 4760 /* 4761 * If dtrace itself is the provider of this probe, 4762 * we're only going to continue processing the ECB if 4763 * arg0 (the dtrace_state_t) is equal to the ECB's 4764 * creating state. (This prevents disjoint consumers 4765 * from seeing one another's metaprobes.) 4766 */ 4767 if (arg0 != (uint64_t)(uintptr_t)state) 4768 continue; 4769 } 4770 4771 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 4772 /* 4773 * We're not currently active. If our provider isn't 4774 * the dtrace pseudo provider, we're not interested. 4775 */ 4776 if (prov != dtrace_provider) 4777 continue; 4778 4779 /* 4780 * Now we must further check if we are in the BEGIN 4781 * probe. If we are, we will only continue processing 4782 * if we're still in WARMUP -- if one BEGIN enabling 4783 * has invoked the exit() action, we don't want to 4784 * evaluate subsequent BEGIN enablings. 4785 */ 4786 if (probe->dtpr_id == dtrace_probeid_begin && 4787 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 4788 ASSERT(state->dts_activity == 4789 DTRACE_ACTIVITY_DRAINING); 4790 continue; 4791 } 4792 } 4793 4794 if (ecb->dte_cond) { 4795 /* 4796 * If the dte_cond bits indicate that this 4797 * consumer is only allowed to see user-mode firings 4798 * of this probe, call the provider's dtps_usermode() 4799 * entry point to check that the probe was fired 4800 * while in a user context. Skip this ECB if that's 4801 * not the case. 4802 */ 4803 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 4804 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 4805 probe->dtpr_id, probe->dtpr_arg) == 0) 4806 continue; 4807 4808 /* 4809 * This is more subtle than it looks. We have to be 4810 * absolutely certain that CRED() isn't going to 4811 * change out from under us so it's only legit to 4812 * examine that structure if we're in constrained 4813 * situations. Currently, the only times we'll this 4814 * check is if a non-super-user has enabled the 4815 * profile or syscall providers -- providers that 4816 * allow visibility of all processes. For the 4817 * profile case, the check above will ensure that 4818 * we're examining a user context. 4819 */ 4820 if (ecb->dte_cond & DTRACE_COND_OWNER) { 4821 cred_t *cr; 4822 cred_t *s_cr = 4823 ecb->dte_state->dts_cred.dcr_cred; 4824 proc_t *proc; 4825 4826 ASSERT(s_cr != NULL); 4827 4828 if ((cr = CRED()) == NULL || 4829 s_cr->cr_uid != cr->cr_uid || 4830 s_cr->cr_uid != cr->cr_ruid || 4831 s_cr->cr_uid != cr->cr_suid || 4832 s_cr->cr_gid != cr->cr_gid || 4833 s_cr->cr_gid != cr->cr_rgid || 4834 s_cr->cr_gid != cr->cr_sgid || 4835 (proc = ttoproc(curthread)) == NULL || 4836 (proc->p_flag & SNOCD)) 4837 continue; 4838 } 4839 4840 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 4841 cred_t *cr; 4842 cred_t *s_cr = 4843 ecb->dte_state->dts_cred.dcr_cred; 4844 4845 ASSERT(s_cr != NULL); 4846 4847 if ((cr = CRED()) == NULL || 4848 s_cr->cr_zone->zone_id != 4849 cr->cr_zone->zone_id) 4850 continue; 4851 } 4852 } 4853 4854 if (now - state->dts_alive > dtrace_deadman_timeout) { 4855 /* 4856 * We seem to be dead. Unless we (a) have kernel 4857 * destructive permissions (b) have expicitly enabled 4858 * destructive actions and (c) destructive actions have 4859 * not been disabled, we're going to transition into 4860 * the KILLED state, from which no further processing 4861 * on this state will be performed. 4862 */ 4863 if (!dtrace_priv_kernel_destructive(state) || 4864 !state->dts_cred.dcr_destructive || 4865 dtrace_destructive_disallow) { 4866 void *activity = &state->dts_activity; 4867 dtrace_activity_t current; 4868 4869 do { 4870 current = state->dts_activity; 4871 } while (dtrace_cas32(activity, current, 4872 DTRACE_ACTIVITY_KILLED) != current); 4873 4874 continue; 4875 } 4876 } 4877 4878 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 4879 ecb->dte_alignment, state, &mstate)) < 0) 4880 continue; 4881 4882 tomax = buf->dtb_tomax; 4883 ASSERT(tomax != NULL); 4884 4885 if (ecb->dte_size != 0) 4886 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 4887 4888 mstate.dtms_epid = ecb->dte_epid; 4889 mstate.dtms_present |= DTRACE_MSTATE_EPID; 4890 4891 if (pred != NULL) { 4892 dtrace_difo_t *dp = pred->dtp_difo; 4893 int rval; 4894 4895 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 4896 4897 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 4898 dtrace_cacheid_t cid = probe->dtpr_predcache; 4899 4900 if (cid != DTRACE_CACHEIDNONE && !onintr) { 4901 /* 4902 * Update the predicate cache... 4903 */ 4904 ASSERT(cid == pred->dtp_cacheid); 4905 curthread->t_predcache = cid; 4906 } 4907 4908 continue; 4909 } 4910 } 4911 4912 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 4913 act != NULL; act = act->dta_next) { 4914 size_t valoffs; 4915 dtrace_difo_t *dp; 4916 dtrace_recdesc_t *rec = &act->dta_rec; 4917 4918 size = rec->dtrd_size; 4919 valoffs = offs + rec->dtrd_offset; 4920 4921 if (DTRACEACT_ISAGG(act->dta_kind)) { 4922 uint64_t v = 0xbad; 4923 dtrace_aggregation_t *agg; 4924 4925 agg = (dtrace_aggregation_t *)act; 4926 4927 if ((dp = act->dta_difo) != NULL) 4928 v = dtrace_dif_emulate(dp, 4929 &mstate, vstate, state); 4930 4931 if (*flags & CPU_DTRACE_ERROR) 4932 continue; 4933 4934 /* 4935 * Note that we always pass the expression 4936 * value from the previous iteration of the 4937 * action loop. This value will only be used 4938 * if there is an expression argument to the 4939 * aggregating action, denoted by the 4940 * dtag_hasarg field. 4941 */ 4942 dtrace_aggregate(agg, buf, 4943 offs, aggbuf, v, val); 4944 continue; 4945 } 4946 4947 switch (act->dta_kind) { 4948 case DTRACEACT_STOP: 4949 if (dtrace_priv_proc_destructive(state)) 4950 dtrace_action_stop(); 4951 continue; 4952 4953 case DTRACEACT_BREAKPOINT: 4954 if (dtrace_priv_kernel_destructive(state)) 4955 dtrace_action_breakpoint(ecb); 4956 continue; 4957 4958 case DTRACEACT_PANIC: 4959 if (dtrace_priv_kernel_destructive(state)) 4960 dtrace_action_panic(ecb); 4961 continue; 4962 4963 case DTRACEACT_STACK: 4964 if (!dtrace_priv_kernel(state)) 4965 continue; 4966 4967 dtrace_getpcstack((pc_t *)(tomax + valoffs), 4968 size / sizeof (pc_t), probe->dtpr_aframes, 4969 DTRACE_ANCHORED(probe) ? NULL : 4970 (uint32_t *)arg0); 4971 4972 continue; 4973 4974 case DTRACEACT_JSTACK: 4975 case DTRACEACT_USTACK: 4976 if (!dtrace_priv_proc(state)) 4977 continue; 4978 4979 /* 4980 * See comment in DIF_VAR_PID. 4981 */ 4982 if (DTRACE_ANCHORED(mstate.dtms_probe) && 4983 CPU_ON_INTR(CPU)) { 4984 int depth = DTRACE_USTACK_NFRAMES( 4985 rec->dtrd_arg) + 1; 4986 4987 dtrace_bzero((void *)(tomax + valoffs), 4988 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 4989 + depth * sizeof (uint64_t)); 4990 4991 continue; 4992 } 4993 4994 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 4995 curproc->p_dtrace_helpers != NULL) { 4996 /* 4997 * This is the slow path -- we have 4998 * allocated string space, and we're 4999 * getting the stack of a process that 5000 * has helpers. Call into a separate 5001 * routine to perform this processing. 5002 */ 5003 dtrace_action_ustack(&mstate, state, 5004 (uint64_t *)(tomax + valoffs), 5005 rec->dtrd_arg); 5006 continue; 5007 } 5008 5009 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5010 dtrace_getupcstack((uint64_t *) 5011 (tomax + valoffs), 5012 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 5013 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5014 continue; 5015 5016 default: 5017 break; 5018 } 5019 5020 dp = act->dta_difo; 5021 ASSERT(dp != NULL); 5022 5023 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 5024 5025 if (*flags & CPU_DTRACE_ERROR) 5026 continue; 5027 5028 switch (act->dta_kind) { 5029 case DTRACEACT_SPECULATE: 5030 ASSERT(buf == &state->dts_buffer[cpuid]); 5031 buf = dtrace_speculation_buffer(state, 5032 cpuid, val); 5033 5034 if (buf == NULL) { 5035 *flags |= CPU_DTRACE_DROP; 5036 continue; 5037 } 5038 5039 offs = dtrace_buffer_reserve(buf, 5040 ecb->dte_needed, ecb->dte_alignment, 5041 state, NULL); 5042 5043 if (offs < 0) { 5044 *flags |= CPU_DTRACE_DROP; 5045 continue; 5046 } 5047 5048 tomax = buf->dtb_tomax; 5049 ASSERT(tomax != NULL); 5050 5051 if (ecb->dte_size != 0) 5052 DTRACE_STORE(uint32_t, tomax, offs, 5053 ecb->dte_epid); 5054 continue; 5055 5056 case DTRACEACT_CHILL: 5057 if (dtrace_priv_kernel_destructive(state)) 5058 dtrace_action_chill(&mstate, val); 5059 continue; 5060 5061 case DTRACEACT_RAISE: 5062 if (dtrace_priv_proc_destructive(state)) 5063 dtrace_action_raise(val); 5064 continue; 5065 5066 case DTRACEACT_COMMIT: 5067 ASSERT(!committed); 5068 5069 /* 5070 * We need to commit our buffer state. 5071 */ 5072 if (ecb->dte_size) 5073 buf->dtb_offset = offs + ecb->dte_size; 5074 buf = &state->dts_buffer[cpuid]; 5075 dtrace_speculation_commit(state, cpuid, val); 5076 committed = 1; 5077 continue; 5078 5079 case DTRACEACT_DISCARD: 5080 dtrace_speculation_discard(state, cpuid, val); 5081 continue; 5082 5083 case DTRACEACT_DIFEXPR: 5084 case DTRACEACT_LIBACT: 5085 case DTRACEACT_PRINTF: 5086 case DTRACEACT_PRINTA: 5087 case DTRACEACT_SYSTEM: 5088 case DTRACEACT_FREOPEN: 5089 break; 5090 5091 case DTRACEACT_SYM: 5092 case DTRACEACT_MOD: 5093 if (!dtrace_priv_kernel(state)) 5094 continue; 5095 break; 5096 5097 case DTRACEACT_USYM: 5098 case DTRACEACT_UMOD: 5099 case DTRACEACT_UADDR: { 5100 struct pid *pid = curthread->t_procp->p_pidp; 5101 5102 if (!dtrace_priv_proc(state)) 5103 continue; 5104 5105 DTRACE_STORE(uint64_t, tomax, 5106 valoffs, (uint64_t)pid->pid_id); 5107 DTRACE_STORE(uint64_t, tomax, 5108 valoffs + sizeof (uint64_t), val); 5109 5110 continue; 5111 } 5112 5113 case DTRACEACT_EXIT: { 5114 /* 5115 * For the exit action, we are going to attempt 5116 * to atomically set our activity to be 5117 * draining. If this fails (either because 5118 * another CPU has beat us to the exit action, 5119 * or because our current activity is something 5120 * other than ACTIVE or WARMUP), we will 5121 * continue. This assures that the exit action 5122 * can be successfully recorded at most once 5123 * when we're in the ACTIVE state. If we're 5124 * encountering the exit() action while in 5125 * COOLDOWN, however, we want to honor the new 5126 * status code. (We know that we're the only 5127 * thread in COOLDOWN, so there is no race.) 5128 */ 5129 void *activity = &state->dts_activity; 5130 dtrace_activity_t current = state->dts_activity; 5131 5132 if (current == DTRACE_ACTIVITY_COOLDOWN) 5133 break; 5134 5135 if (current != DTRACE_ACTIVITY_WARMUP) 5136 current = DTRACE_ACTIVITY_ACTIVE; 5137 5138 if (dtrace_cas32(activity, current, 5139 DTRACE_ACTIVITY_DRAINING) != current) { 5140 *flags |= CPU_DTRACE_DROP; 5141 continue; 5142 } 5143 5144 break; 5145 } 5146 5147 default: 5148 ASSERT(0); 5149 } 5150 5151 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 5152 uintptr_t end = valoffs + size; 5153 5154 /* 5155 * If this is a string, we're going to only 5156 * load until we find the zero byte -- after 5157 * which we'll store zero bytes. 5158 */ 5159 if (dp->dtdo_rtype.dtdt_kind == 5160 DIF_TYPE_STRING) { 5161 char c = '\0' + 1; 5162 int intuple = act->dta_intuple; 5163 size_t s; 5164 5165 for (s = 0; s < size; s++) { 5166 if (c != '\0') 5167 c = dtrace_load8(val++); 5168 5169 DTRACE_STORE(uint8_t, tomax, 5170 valoffs++, c); 5171 5172 if (c == '\0' && intuple) 5173 break; 5174 } 5175 5176 continue; 5177 } 5178 5179 while (valoffs < end) { 5180 DTRACE_STORE(uint8_t, tomax, valoffs++, 5181 dtrace_load8(val++)); 5182 } 5183 5184 continue; 5185 } 5186 5187 switch (size) { 5188 case 0: 5189 break; 5190 5191 case sizeof (uint8_t): 5192 DTRACE_STORE(uint8_t, tomax, valoffs, val); 5193 break; 5194 case sizeof (uint16_t): 5195 DTRACE_STORE(uint16_t, tomax, valoffs, val); 5196 break; 5197 case sizeof (uint32_t): 5198 DTRACE_STORE(uint32_t, tomax, valoffs, val); 5199 break; 5200 case sizeof (uint64_t): 5201 DTRACE_STORE(uint64_t, tomax, valoffs, val); 5202 break; 5203 default: 5204 /* 5205 * Any other size should have been returned by 5206 * reference, not by value. 5207 */ 5208 ASSERT(0); 5209 break; 5210 } 5211 } 5212 5213 if (*flags & CPU_DTRACE_DROP) 5214 continue; 5215 5216 if (*flags & CPU_DTRACE_FAULT) { 5217 int ndx; 5218 dtrace_action_t *err; 5219 5220 buf->dtb_errors++; 5221 5222 if (probe->dtpr_id == dtrace_probeid_error) { 5223 /* 5224 * There's nothing we can do -- we had an 5225 * error on the error probe. We bump an 5226 * error counter to at least indicate that 5227 * this condition happened. 5228 */ 5229 dtrace_error(&state->dts_dblerrors); 5230 continue; 5231 } 5232 5233 if (vtime) { 5234 /* 5235 * Before recursing on dtrace_probe(), we 5236 * need to explicitly clear out our start 5237 * time to prevent it from being accumulated 5238 * into t_dtrace_vtime. 5239 */ 5240 curthread->t_dtrace_start = 0; 5241 } 5242 5243 /* 5244 * Iterate over the actions to figure out which action 5245 * we were processing when we experienced the error. 5246 * Note that act points _past_ the faulting action; if 5247 * act is ecb->dte_action, the fault was in the 5248 * predicate, if it's ecb->dte_action->dta_next it's 5249 * in action #1, and so on. 5250 */ 5251 for (err = ecb->dte_action, ndx = 0; 5252 err != act; err = err->dta_next, ndx++) 5253 continue; 5254 5255 dtrace_probe_error(state, ecb->dte_epid, ndx, 5256 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 5257 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 5258 cpu_core[cpuid].cpuc_dtrace_illval); 5259 5260 continue; 5261 } 5262 5263 if (!committed) 5264 buf->dtb_offset = offs + ecb->dte_size; 5265 } 5266 5267 if (vtime) 5268 curthread->t_dtrace_start = dtrace_gethrtime(); 5269 5270 dtrace_interrupt_enable(cookie); 5271 } 5272 5273 /* 5274 * DTrace Probe Hashing Functions 5275 * 5276 * The functions in this section (and indeed, the functions in remaining 5277 * sections) are not _called_ from probe context. (Any exceptions to this are 5278 * marked with a "Note:".) Rather, they are called from elsewhere in the 5279 * DTrace framework to look-up probes in, add probes to and remove probes from 5280 * the DTrace probe hashes. (Each probe is hashed by each element of the 5281 * probe tuple -- allowing for fast lookups, regardless of what was 5282 * specified.) 5283 */ 5284 static uint_t 5285 dtrace_hash_str(char *p) 5286 { 5287 unsigned int g; 5288 uint_t hval = 0; 5289 5290 while (*p) { 5291 hval = (hval << 4) + *p++; 5292 if ((g = (hval & 0xf0000000)) != 0) 5293 hval ^= g >> 24; 5294 hval &= ~g; 5295 } 5296 return (hval); 5297 } 5298 5299 static dtrace_hash_t * 5300 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 5301 { 5302 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 5303 5304 hash->dth_stroffs = stroffs; 5305 hash->dth_nextoffs = nextoffs; 5306 hash->dth_prevoffs = prevoffs; 5307 5308 hash->dth_size = 1; 5309 hash->dth_mask = hash->dth_size - 1; 5310 5311 hash->dth_tab = kmem_zalloc(hash->dth_size * 5312 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 5313 5314 return (hash); 5315 } 5316 5317 static void 5318 dtrace_hash_destroy(dtrace_hash_t *hash) 5319 { 5320 #ifdef DEBUG 5321 int i; 5322 5323 for (i = 0; i < hash->dth_size; i++) 5324 ASSERT(hash->dth_tab[i] == NULL); 5325 #endif 5326 5327 kmem_free(hash->dth_tab, 5328 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 5329 kmem_free(hash, sizeof (dtrace_hash_t)); 5330 } 5331 5332 static void 5333 dtrace_hash_resize(dtrace_hash_t *hash) 5334 { 5335 int size = hash->dth_size, i, ndx; 5336 int new_size = hash->dth_size << 1; 5337 int new_mask = new_size - 1; 5338 dtrace_hashbucket_t **new_tab, *bucket, *next; 5339 5340 ASSERT((new_size & new_mask) == 0); 5341 5342 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 5343 5344 for (i = 0; i < size; i++) { 5345 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 5346 dtrace_probe_t *probe = bucket->dthb_chain; 5347 5348 ASSERT(probe != NULL); 5349 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 5350 5351 next = bucket->dthb_next; 5352 bucket->dthb_next = new_tab[ndx]; 5353 new_tab[ndx] = bucket; 5354 } 5355 } 5356 5357 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 5358 hash->dth_tab = new_tab; 5359 hash->dth_size = new_size; 5360 hash->dth_mask = new_mask; 5361 } 5362 5363 static void 5364 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 5365 { 5366 int hashval = DTRACE_HASHSTR(hash, new); 5367 int ndx = hashval & hash->dth_mask; 5368 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 5369 dtrace_probe_t **nextp, **prevp; 5370 5371 for (; bucket != NULL; bucket = bucket->dthb_next) { 5372 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 5373 goto add; 5374 } 5375 5376 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 5377 dtrace_hash_resize(hash); 5378 dtrace_hash_add(hash, new); 5379 return; 5380 } 5381 5382 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 5383 bucket->dthb_next = hash->dth_tab[ndx]; 5384 hash->dth_tab[ndx] = bucket; 5385 hash->dth_nbuckets++; 5386 5387 add: 5388 nextp = DTRACE_HASHNEXT(hash, new); 5389 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 5390 *nextp = bucket->dthb_chain; 5391 5392 if (bucket->dthb_chain != NULL) { 5393 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 5394 ASSERT(*prevp == NULL); 5395 *prevp = new; 5396 } 5397 5398 bucket->dthb_chain = new; 5399 bucket->dthb_len++; 5400 } 5401 5402 static dtrace_probe_t * 5403 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 5404 { 5405 int hashval = DTRACE_HASHSTR(hash, template); 5406 int ndx = hashval & hash->dth_mask; 5407 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 5408 5409 for (; bucket != NULL; bucket = bucket->dthb_next) { 5410 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 5411 return (bucket->dthb_chain); 5412 } 5413 5414 return (NULL); 5415 } 5416 5417 static int 5418 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 5419 { 5420 int hashval = DTRACE_HASHSTR(hash, template); 5421 int ndx = hashval & hash->dth_mask; 5422 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 5423 5424 for (; bucket != NULL; bucket = bucket->dthb_next) { 5425 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 5426 return (bucket->dthb_len); 5427 } 5428 5429 return (NULL); 5430 } 5431 5432 static void 5433 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 5434 { 5435 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 5436 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 5437 5438 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 5439 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 5440 5441 /* 5442 * Find the bucket that we're removing this probe from. 5443 */ 5444 for (; bucket != NULL; bucket = bucket->dthb_next) { 5445 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 5446 break; 5447 } 5448 5449 ASSERT(bucket != NULL); 5450 5451 if (*prevp == NULL) { 5452 if (*nextp == NULL) { 5453 /* 5454 * The removed probe was the only probe on this 5455 * bucket; we need to remove the bucket. 5456 */ 5457 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 5458 5459 ASSERT(bucket->dthb_chain == probe); 5460 ASSERT(b != NULL); 5461 5462 if (b == bucket) { 5463 hash->dth_tab[ndx] = bucket->dthb_next; 5464 } else { 5465 while (b->dthb_next != bucket) 5466 b = b->dthb_next; 5467 b->dthb_next = bucket->dthb_next; 5468 } 5469 5470 ASSERT(hash->dth_nbuckets > 0); 5471 hash->dth_nbuckets--; 5472 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 5473 return; 5474 } 5475 5476 bucket->dthb_chain = *nextp; 5477 } else { 5478 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 5479 } 5480 5481 if (*nextp != NULL) 5482 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 5483 } 5484 5485 /* 5486 * DTrace Utility Functions 5487 * 5488 * These are random utility functions that are _not_ called from probe context. 5489 */ 5490 static int 5491 dtrace_badattr(const dtrace_attribute_t *a) 5492 { 5493 return (a->dtat_name > DTRACE_STABILITY_MAX || 5494 a->dtat_data > DTRACE_STABILITY_MAX || 5495 a->dtat_class > DTRACE_CLASS_MAX); 5496 } 5497 5498 /* 5499 * Return a duplicate copy of a string. If the specified string is NULL, 5500 * this function returns a zero-length string. 5501 */ 5502 static char * 5503 dtrace_strdup(const char *str) 5504 { 5505 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 5506 5507 if (str != NULL) 5508 (void) strcpy(new, str); 5509 5510 return (new); 5511 } 5512 5513 #define DTRACE_ISALPHA(c) \ 5514 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 5515 5516 static int 5517 dtrace_badname(const char *s) 5518 { 5519 char c; 5520 5521 if (s == NULL || (c = *s++) == '\0') 5522 return (0); 5523 5524 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 5525 return (1); 5526 5527 while ((c = *s++) != '\0') { 5528 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 5529 c != '-' && c != '_' && c != '.' && c != '`') 5530 return (1); 5531 } 5532 5533 return (0); 5534 } 5535 5536 static void 5537 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 5538 { 5539 uint32_t priv; 5540 5541 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 5542 /* 5543 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 5544 */ 5545 priv = DTRACE_PRIV_ALL; 5546 } else { 5547 *uidp = crgetuid(cr); 5548 *zoneidp = crgetzoneid(cr); 5549 5550 priv = 0; 5551 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 5552 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 5553 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 5554 priv |= DTRACE_PRIV_USER; 5555 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 5556 priv |= DTRACE_PRIV_PROC; 5557 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 5558 priv |= DTRACE_PRIV_OWNER; 5559 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 5560 priv |= DTRACE_PRIV_ZONEOWNER; 5561 } 5562 5563 *privp = priv; 5564 } 5565 5566 #ifdef DTRACE_ERRDEBUG 5567 static void 5568 dtrace_errdebug(const char *str) 5569 { 5570 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 5571 int occupied = 0; 5572 5573 mutex_enter(&dtrace_errlock); 5574 dtrace_errlast = str; 5575 dtrace_errthread = curthread; 5576 5577 while (occupied++ < DTRACE_ERRHASHSZ) { 5578 if (dtrace_errhash[hval].dter_msg == str) { 5579 dtrace_errhash[hval].dter_count++; 5580 goto out; 5581 } 5582 5583 if (dtrace_errhash[hval].dter_msg != NULL) { 5584 hval = (hval + 1) % DTRACE_ERRHASHSZ; 5585 continue; 5586 } 5587 5588 dtrace_errhash[hval].dter_msg = str; 5589 dtrace_errhash[hval].dter_count = 1; 5590 goto out; 5591 } 5592 5593 panic("dtrace: undersized error hash"); 5594 out: 5595 mutex_exit(&dtrace_errlock); 5596 } 5597 #endif 5598 5599 /* 5600 * DTrace Matching Functions 5601 * 5602 * These functions are used to match groups of probes, given some elements of 5603 * a probe tuple, or some globbed expressions for elements of a probe tuple. 5604 */ 5605 static int 5606 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 5607 zoneid_t zoneid) 5608 { 5609 if (priv != DTRACE_PRIV_ALL) { 5610 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 5611 uint32_t match = priv & ppriv; 5612 5613 /* 5614 * No PRIV_DTRACE_* privileges... 5615 */ 5616 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 5617 DTRACE_PRIV_KERNEL)) == 0) 5618 return (0); 5619 5620 /* 5621 * No matching bits, but there were bits to match... 5622 */ 5623 if (match == 0 && ppriv != 0) 5624 return (0); 5625 5626 /* 5627 * Need to have permissions to the process, but don't... 5628 */ 5629 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 5630 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 5631 return (0); 5632 } 5633 5634 /* 5635 * Need to be in the same zone unless we possess the 5636 * privilege to examine all zones. 5637 */ 5638 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 5639 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 5640 return (0); 5641 } 5642 } 5643 5644 return (1); 5645 } 5646 5647 /* 5648 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 5649 * consists of input pattern strings and an ops-vector to evaluate them. 5650 * This function returns >0 for match, 0 for no match, and <0 for error. 5651 */ 5652 static int 5653 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 5654 uint32_t priv, uid_t uid, zoneid_t zoneid) 5655 { 5656 dtrace_provider_t *pvp = prp->dtpr_provider; 5657 int rv; 5658 5659 if (pvp->dtpv_defunct) 5660 return (0); 5661 5662 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 5663 return (rv); 5664 5665 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 5666 return (rv); 5667 5668 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 5669 return (rv); 5670 5671 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 5672 return (rv); 5673 5674 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 5675 return (0); 5676 5677 return (rv); 5678 } 5679 5680 /* 5681 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 5682 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 5683 * libc's version, the kernel version only applies to 8-bit ASCII strings. 5684 * In addition, all of the recursion cases except for '*' matching have been 5685 * unwound. For '*', we still implement recursive evaluation, but a depth 5686 * counter is maintained and matching is aborted if we recurse too deep. 5687 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 5688 */ 5689 static int 5690 dtrace_match_glob(const char *s, const char *p, int depth) 5691 { 5692 const char *olds; 5693 char s1, c; 5694 int gs; 5695 5696 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 5697 return (-1); 5698 5699 if (s == NULL) 5700 s = ""; /* treat NULL as empty string */ 5701 5702 top: 5703 olds = s; 5704 s1 = *s++; 5705 5706 if (p == NULL) 5707 return (0); 5708 5709 if ((c = *p++) == '\0') 5710 return (s1 == '\0'); 5711 5712 switch (c) { 5713 case '[': { 5714 int ok = 0, notflag = 0; 5715 char lc = '\0'; 5716 5717 if (s1 == '\0') 5718 return (0); 5719 5720 if (*p == '!') { 5721 notflag = 1; 5722 p++; 5723 } 5724 5725 if ((c = *p++) == '\0') 5726 return (0); 5727 5728 do { 5729 if (c == '-' && lc != '\0' && *p != ']') { 5730 if ((c = *p++) == '\0') 5731 return (0); 5732 if (c == '\\' && (c = *p++) == '\0') 5733 return (0); 5734 5735 if (notflag) { 5736 if (s1 < lc || s1 > c) 5737 ok++; 5738 else 5739 return (0); 5740 } else if (lc <= s1 && s1 <= c) 5741 ok++; 5742 5743 } else if (c == '\\' && (c = *p++) == '\0') 5744 return (0); 5745 5746 lc = c; /* save left-hand 'c' for next iteration */ 5747 5748 if (notflag) { 5749 if (s1 != c) 5750 ok++; 5751 else 5752 return (0); 5753 } else if (s1 == c) 5754 ok++; 5755 5756 if ((c = *p++) == '\0') 5757 return (0); 5758 5759 } while (c != ']'); 5760 5761 if (ok) 5762 goto top; 5763 5764 return (0); 5765 } 5766 5767 case '\\': 5768 if ((c = *p++) == '\0') 5769 return (0); 5770 /*FALLTHRU*/ 5771 5772 default: 5773 if (c != s1) 5774 return (0); 5775 /*FALLTHRU*/ 5776 5777 case '?': 5778 if (s1 != '\0') 5779 goto top; 5780 return (0); 5781 5782 case '*': 5783 while (*p == '*') 5784 p++; /* consecutive *'s are identical to a single one */ 5785 5786 if (*p == '\0') 5787 return (1); 5788 5789 for (s = olds; *s != '\0'; s++) { 5790 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 5791 return (gs); 5792 } 5793 5794 return (0); 5795 } 5796 } 5797 5798 /*ARGSUSED*/ 5799 static int 5800 dtrace_match_string(const char *s, const char *p, int depth) 5801 { 5802 return (s != NULL && strcmp(s, p) == 0); 5803 } 5804 5805 /*ARGSUSED*/ 5806 static int 5807 dtrace_match_nul(const char *s, const char *p, int depth) 5808 { 5809 return (1); /* always match the empty pattern */ 5810 } 5811 5812 /*ARGSUSED*/ 5813 static int 5814 dtrace_match_nonzero(const char *s, const char *p, int depth) 5815 { 5816 return (s != NULL && s[0] != '\0'); 5817 } 5818 5819 static int 5820 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 5821 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 5822 { 5823 dtrace_probe_t template, *probe; 5824 dtrace_hash_t *hash = NULL; 5825 int len, best = INT_MAX, nmatched = 0; 5826 dtrace_id_t i; 5827 5828 ASSERT(MUTEX_HELD(&dtrace_lock)); 5829 5830 /* 5831 * If the probe ID is specified in the key, just lookup by ID and 5832 * invoke the match callback once if a matching probe is found. 5833 */ 5834 if (pkp->dtpk_id != DTRACE_IDNONE) { 5835 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 5836 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 5837 (void) (*matched)(probe, arg); 5838 nmatched++; 5839 } 5840 return (nmatched); 5841 } 5842 5843 template.dtpr_mod = (char *)pkp->dtpk_mod; 5844 template.dtpr_func = (char *)pkp->dtpk_func; 5845 template.dtpr_name = (char *)pkp->dtpk_name; 5846 5847 /* 5848 * We want to find the most distinct of the module name, function 5849 * name, and name. So for each one that is not a glob pattern or 5850 * empty string, we perform a lookup in the corresponding hash and 5851 * use the hash table with the fewest collisions to do our search. 5852 */ 5853 if (pkp->dtpk_mmatch == &dtrace_match_string && 5854 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 5855 best = len; 5856 hash = dtrace_bymod; 5857 } 5858 5859 if (pkp->dtpk_fmatch == &dtrace_match_string && 5860 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 5861 best = len; 5862 hash = dtrace_byfunc; 5863 } 5864 5865 if (pkp->dtpk_nmatch == &dtrace_match_string && 5866 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 5867 best = len; 5868 hash = dtrace_byname; 5869 } 5870 5871 /* 5872 * If we did not select a hash table, iterate over every probe and 5873 * invoke our callback for each one that matches our input probe key. 5874 */ 5875 if (hash == NULL) { 5876 for (i = 0; i < dtrace_nprobes; i++) { 5877 if ((probe = dtrace_probes[i]) == NULL || 5878 dtrace_match_probe(probe, pkp, priv, uid, 5879 zoneid) <= 0) 5880 continue; 5881 5882 nmatched++; 5883 5884 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 5885 break; 5886 } 5887 5888 return (nmatched); 5889 } 5890 5891 /* 5892 * If we selected a hash table, iterate over each probe of the same key 5893 * name and invoke the callback for every probe that matches the other 5894 * attributes of our input probe key. 5895 */ 5896 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 5897 probe = *(DTRACE_HASHNEXT(hash, probe))) { 5898 5899 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 5900 continue; 5901 5902 nmatched++; 5903 5904 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 5905 break; 5906 } 5907 5908 return (nmatched); 5909 } 5910 5911 /* 5912 * Return the function pointer dtrace_probecmp() should use to compare the 5913 * specified pattern with a string. For NULL or empty patterns, we select 5914 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 5915 * For non-empty non-glob strings, we use dtrace_match_string(). 5916 */ 5917 static dtrace_probekey_f * 5918 dtrace_probekey_func(const char *p) 5919 { 5920 char c; 5921 5922 if (p == NULL || *p == '\0') 5923 return (&dtrace_match_nul); 5924 5925 while ((c = *p++) != '\0') { 5926 if (c == '[' || c == '?' || c == '*' || c == '\\') 5927 return (&dtrace_match_glob); 5928 } 5929 5930 return (&dtrace_match_string); 5931 } 5932 5933 /* 5934 * Build a probe comparison key for use with dtrace_match_probe() from the 5935 * given probe description. By convention, a null key only matches anchored 5936 * probes: if each field is the empty string, reset dtpk_fmatch to 5937 * dtrace_match_nonzero(). 5938 */ 5939 static void 5940 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 5941 { 5942 pkp->dtpk_prov = pdp->dtpd_provider; 5943 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 5944 5945 pkp->dtpk_mod = pdp->dtpd_mod; 5946 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 5947 5948 pkp->dtpk_func = pdp->dtpd_func; 5949 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 5950 5951 pkp->dtpk_name = pdp->dtpd_name; 5952 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 5953 5954 pkp->dtpk_id = pdp->dtpd_id; 5955 5956 if (pkp->dtpk_id == DTRACE_IDNONE && 5957 pkp->dtpk_pmatch == &dtrace_match_nul && 5958 pkp->dtpk_mmatch == &dtrace_match_nul && 5959 pkp->dtpk_fmatch == &dtrace_match_nul && 5960 pkp->dtpk_nmatch == &dtrace_match_nul) 5961 pkp->dtpk_fmatch = &dtrace_match_nonzero; 5962 } 5963 5964 /* 5965 * DTrace Provider-to-Framework API Functions 5966 * 5967 * These functions implement much of the Provider-to-Framework API, as 5968 * described in <sys/dtrace.h>. The parts of the API not in this section are 5969 * the functions in the API for probe management (found below), and 5970 * dtrace_probe() itself (found above). 5971 */ 5972 5973 /* 5974 * Register the calling provider with the DTrace framework. This should 5975 * generally be called by DTrace providers in their attach(9E) entry point. 5976 */ 5977 int 5978 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 5979 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 5980 { 5981 dtrace_provider_t *provider; 5982 5983 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 5984 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 5985 "arguments", name ? name : "<NULL>"); 5986 return (EINVAL); 5987 } 5988 5989 if (name[0] == '\0' || dtrace_badname(name)) { 5990 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 5991 "provider name", name); 5992 return (EINVAL); 5993 } 5994 5995 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 5996 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 5997 pops->dtps_destroy == NULL || 5998 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 5999 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6000 "provider ops", name); 6001 return (EINVAL); 6002 } 6003 6004 if (dtrace_badattr(&pap->dtpa_provider) || 6005 dtrace_badattr(&pap->dtpa_mod) || 6006 dtrace_badattr(&pap->dtpa_func) || 6007 dtrace_badattr(&pap->dtpa_name) || 6008 dtrace_badattr(&pap->dtpa_args)) { 6009 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6010 "provider attributes", name); 6011 return (EINVAL); 6012 } 6013 6014 if (priv & ~DTRACE_PRIV_ALL) { 6015 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6016 "privilege attributes", name); 6017 return (EINVAL); 6018 } 6019 6020 if ((priv & DTRACE_PRIV_KERNEL) && 6021 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 6022 pops->dtps_usermode == NULL) { 6023 cmn_err(CE_WARN, "failed to register provider '%s': need " 6024 "dtps_usermode() op for given privilege attributes", name); 6025 return (EINVAL); 6026 } 6027 6028 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 6029 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 6030 (void) strcpy(provider->dtpv_name, name); 6031 6032 provider->dtpv_attr = *pap; 6033 provider->dtpv_priv.dtpp_flags = priv; 6034 if (cr != NULL) { 6035 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 6036 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 6037 } 6038 provider->dtpv_pops = *pops; 6039 6040 if (pops->dtps_provide == NULL) { 6041 ASSERT(pops->dtps_provide_module != NULL); 6042 provider->dtpv_pops.dtps_provide = 6043 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 6044 } 6045 6046 if (pops->dtps_provide_module == NULL) { 6047 ASSERT(pops->dtps_provide != NULL); 6048 provider->dtpv_pops.dtps_provide_module = 6049 (void (*)(void *, struct modctl *))dtrace_nullop; 6050 } 6051 6052 if (pops->dtps_suspend == NULL) { 6053 ASSERT(pops->dtps_resume == NULL); 6054 provider->dtpv_pops.dtps_suspend = 6055 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6056 provider->dtpv_pops.dtps_resume = 6057 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6058 } 6059 6060 provider->dtpv_arg = arg; 6061 *idp = (dtrace_provider_id_t)provider; 6062 6063 if (pops == &dtrace_provider_ops) { 6064 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6065 ASSERT(MUTEX_HELD(&dtrace_lock)); 6066 ASSERT(dtrace_anon.dta_enabling == NULL); 6067 6068 /* 6069 * We make sure that the DTrace provider is at the head of 6070 * the provider chain. 6071 */ 6072 provider->dtpv_next = dtrace_provider; 6073 dtrace_provider = provider; 6074 return (0); 6075 } 6076 6077 mutex_enter(&dtrace_provider_lock); 6078 mutex_enter(&dtrace_lock); 6079 6080 /* 6081 * If there is at least one provider registered, we'll add this 6082 * provider after the first provider. 6083 */ 6084 if (dtrace_provider != NULL) { 6085 provider->dtpv_next = dtrace_provider->dtpv_next; 6086 dtrace_provider->dtpv_next = provider; 6087 } else { 6088 dtrace_provider = provider; 6089 } 6090 6091 if (dtrace_retained != NULL) { 6092 dtrace_enabling_provide(provider); 6093 6094 /* 6095 * Now we need to call dtrace_enabling_matchall() -- which 6096 * will acquire cpu_lock and dtrace_lock. We therefore need 6097 * to drop all of our locks before calling into it... 6098 */ 6099 mutex_exit(&dtrace_lock); 6100 mutex_exit(&dtrace_provider_lock); 6101 dtrace_enabling_matchall(); 6102 6103 return (0); 6104 } 6105 6106 mutex_exit(&dtrace_lock); 6107 mutex_exit(&dtrace_provider_lock); 6108 6109 return (0); 6110 } 6111 6112 /* 6113 * Unregister the specified provider from the DTrace framework. This should 6114 * generally be called by DTrace providers in their detach(9E) entry point. 6115 */ 6116 int 6117 dtrace_unregister(dtrace_provider_id_t id) 6118 { 6119 dtrace_provider_t *old = (dtrace_provider_t *)id; 6120 dtrace_provider_t *prev = NULL; 6121 int i, self = 0; 6122 dtrace_probe_t *probe, *first = NULL; 6123 6124 if (old->dtpv_pops.dtps_enable == 6125 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 6126 /* 6127 * If DTrace itself is the provider, we're called with locks 6128 * already held. 6129 */ 6130 ASSERT(old == dtrace_provider); 6131 ASSERT(dtrace_devi != NULL); 6132 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6133 ASSERT(MUTEX_HELD(&dtrace_lock)); 6134 self = 1; 6135 6136 if (dtrace_provider->dtpv_next != NULL) { 6137 /* 6138 * There's another provider here; return failure. 6139 */ 6140 return (EBUSY); 6141 } 6142 } else { 6143 mutex_enter(&dtrace_provider_lock); 6144 mutex_enter(&mod_lock); 6145 mutex_enter(&dtrace_lock); 6146 } 6147 6148 /* 6149 * If anyone has /dev/dtrace open, or if there are anonymous enabled 6150 * probes, we refuse to let providers slither away, unless this 6151 * provider has already been explicitly invalidated. 6152 */ 6153 if (!old->dtpv_defunct && 6154 (dtrace_opens || (dtrace_anon.dta_state != NULL && 6155 dtrace_anon.dta_state->dts_necbs > 0))) { 6156 if (!self) { 6157 mutex_exit(&dtrace_lock); 6158 mutex_exit(&mod_lock); 6159 mutex_exit(&dtrace_provider_lock); 6160 } 6161 return (EBUSY); 6162 } 6163 6164 /* 6165 * Attempt to destroy the probes associated with this provider. 6166 */ 6167 for (i = 0; i < dtrace_nprobes; i++) { 6168 if ((probe = dtrace_probes[i]) == NULL) 6169 continue; 6170 6171 if (probe->dtpr_provider != old) 6172 continue; 6173 6174 if (probe->dtpr_ecb == NULL) 6175 continue; 6176 6177 /* 6178 * We have at least one ECB; we can't remove this provider. 6179 */ 6180 if (!self) { 6181 mutex_exit(&dtrace_lock); 6182 mutex_exit(&mod_lock); 6183 mutex_exit(&dtrace_provider_lock); 6184 } 6185 return (EBUSY); 6186 } 6187 6188 /* 6189 * All of the probes for this provider are disabled; we can safely 6190 * remove all of them from their hash chains and from the probe array. 6191 */ 6192 for (i = 0; i < dtrace_nprobes; i++) { 6193 if ((probe = dtrace_probes[i]) == NULL) 6194 continue; 6195 6196 if (probe->dtpr_provider != old) 6197 continue; 6198 6199 dtrace_probes[i] = NULL; 6200 6201 dtrace_hash_remove(dtrace_bymod, probe); 6202 dtrace_hash_remove(dtrace_byfunc, probe); 6203 dtrace_hash_remove(dtrace_byname, probe); 6204 6205 if (first == NULL) { 6206 first = probe; 6207 probe->dtpr_nextmod = NULL; 6208 } else { 6209 probe->dtpr_nextmod = first; 6210 first = probe; 6211 } 6212 } 6213 6214 /* 6215 * The provider's probes have been removed from the hash chains and 6216 * from the probe array. Now issue a dtrace_sync() to be sure that 6217 * everyone has cleared out from any probe array processing. 6218 */ 6219 dtrace_sync(); 6220 6221 for (probe = first; probe != NULL; probe = first) { 6222 first = probe->dtpr_nextmod; 6223 6224 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 6225 probe->dtpr_arg); 6226 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 6227 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 6228 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 6229 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 6230 kmem_free(probe, sizeof (dtrace_probe_t)); 6231 } 6232 6233 if ((prev = dtrace_provider) == old) { 6234 ASSERT(self || dtrace_devi == NULL); 6235 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 6236 dtrace_provider = old->dtpv_next; 6237 } else { 6238 while (prev != NULL && prev->dtpv_next != old) 6239 prev = prev->dtpv_next; 6240 6241 if (prev == NULL) { 6242 panic("attempt to unregister non-existent " 6243 "dtrace provider %p\n", (void *)id); 6244 } 6245 6246 prev->dtpv_next = old->dtpv_next; 6247 } 6248 6249 if (!self) { 6250 mutex_exit(&dtrace_lock); 6251 mutex_exit(&mod_lock); 6252 mutex_exit(&dtrace_provider_lock); 6253 } 6254 6255 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 6256 kmem_free(old, sizeof (dtrace_provider_t)); 6257 6258 return (0); 6259 } 6260 6261 /* 6262 * Invalidate the specified provider. All subsequent probe lookups for the 6263 * specified provider will fail, but its probes will not be removed. 6264 */ 6265 void 6266 dtrace_invalidate(dtrace_provider_id_t id) 6267 { 6268 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 6269 6270 ASSERT(pvp->dtpv_pops.dtps_enable != 6271 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 6272 6273 mutex_enter(&dtrace_provider_lock); 6274 mutex_enter(&dtrace_lock); 6275 6276 pvp->dtpv_defunct = 1; 6277 6278 mutex_exit(&dtrace_lock); 6279 mutex_exit(&dtrace_provider_lock); 6280 } 6281 6282 /* 6283 * Indicate whether or not DTrace has attached. 6284 */ 6285 int 6286 dtrace_attached(void) 6287 { 6288 /* 6289 * dtrace_provider will be non-NULL iff the DTrace driver has 6290 * attached. (It's non-NULL because DTrace is always itself a 6291 * provider.) 6292 */ 6293 return (dtrace_provider != NULL); 6294 } 6295 6296 /* 6297 * Remove all the unenabled probes for the given provider. This function is 6298 * not unlike dtrace_unregister(), except that it doesn't remove the provider 6299 * -- just as many of its associated probes as it can. 6300 */ 6301 int 6302 dtrace_condense(dtrace_provider_id_t id) 6303 { 6304 dtrace_provider_t *prov = (dtrace_provider_t *)id; 6305 int i; 6306 dtrace_probe_t *probe; 6307 6308 /* 6309 * Make sure this isn't the dtrace provider itself. 6310 */ 6311 ASSERT(prov->dtpv_pops.dtps_enable != 6312 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 6313 6314 mutex_enter(&dtrace_provider_lock); 6315 mutex_enter(&dtrace_lock); 6316 6317 /* 6318 * Attempt to destroy the probes associated with this provider. 6319 */ 6320 for (i = 0; i < dtrace_nprobes; i++) { 6321 if ((probe = dtrace_probes[i]) == NULL) 6322 continue; 6323 6324 if (probe->dtpr_provider != prov) 6325 continue; 6326 6327 if (probe->dtpr_ecb != NULL) 6328 continue; 6329 6330 dtrace_probes[i] = NULL; 6331 6332 dtrace_hash_remove(dtrace_bymod, probe); 6333 dtrace_hash_remove(dtrace_byfunc, probe); 6334 dtrace_hash_remove(dtrace_byname, probe); 6335 6336 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 6337 probe->dtpr_arg); 6338 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 6339 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 6340 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 6341 kmem_free(probe, sizeof (dtrace_probe_t)); 6342 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 6343 } 6344 6345 mutex_exit(&dtrace_lock); 6346 mutex_exit(&dtrace_provider_lock); 6347 6348 return (0); 6349 } 6350 6351 /* 6352 * DTrace Probe Management Functions 6353 * 6354 * The functions in this section perform the DTrace probe management, 6355 * including functions to create probes, look-up probes, and call into the 6356 * providers to request that probes be provided. Some of these functions are 6357 * in the Provider-to-Framework API; these functions can be identified by the 6358 * fact that they are not declared "static". 6359 */ 6360 6361 /* 6362 * Create a probe with the specified module name, function name, and name. 6363 */ 6364 dtrace_id_t 6365 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 6366 const char *func, const char *name, int aframes, void *arg) 6367 { 6368 dtrace_probe_t *probe, **probes; 6369 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 6370 dtrace_id_t id; 6371 6372 if (provider == dtrace_provider) { 6373 ASSERT(MUTEX_HELD(&dtrace_lock)); 6374 } else { 6375 mutex_enter(&dtrace_lock); 6376 } 6377 6378 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 6379 VM_BESTFIT | VM_SLEEP); 6380 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 6381 6382 probe->dtpr_id = id; 6383 probe->dtpr_gen = dtrace_probegen++; 6384 probe->dtpr_mod = dtrace_strdup(mod); 6385 probe->dtpr_func = dtrace_strdup(func); 6386 probe->dtpr_name = dtrace_strdup(name); 6387 probe->dtpr_arg = arg; 6388 probe->dtpr_aframes = aframes; 6389 probe->dtpr_provider = provider; 6390 6391 dtrace_hash_add(dtrace_bymod, probe); 6392 dtrace_hash_add(dtrace_byfunc, probe); 6393 dtrace_hash_add(dtrace_byname, probe); 6394 6395 if (id - 1 >= dtrace_nprobes) { 6396 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 6397 size_t nsize = osize << 1; 6398 6399 if (nsize == 0) { 6400 ASSERT(osize == 0); 6401 ASSERT(dtrace_probes == NULL); 6402 nsize = sizeof (dtrace_probe_t *); 6403 } 6404 6405 probes = kmem_zalloc(nsize, KM_SLEEP); 6406 6407 if (dtrace_probes == NULL) { 6408 ASSERT(osize == 0); 6409 dtrace_probes = probes; 6410 dtrace_nprobes = 1; 6411 } else { 6412 dtrace_probe_t **oprobes = dtrace_probes; 6413 6414 bcopy(oprobes, probes, osize); 6415 dtrace_membar_producer(); 6416 dtrace_probes = probes; 6417 6418 dtrace_sync(); 6419 6420 /* 6421 * All CPUs are now seeing the new probes array; we can 6422 * safely free the old array. 6423 */ 6424 kmem_free(oprobes, osize); 6425 dtrace_nprobes <<= 1; 6426 } 6427 6428 ASSERT(id - 1 < dtrace_nprobes); 6429 } 6430 6431 ASSERT(dtrace_probes[id - 1] == NULL); 6432 dtrace_probes[id - 1] = probe; 6433 6434 if (provider != dtrace_provider) 6435 mutex_exit(&dtrace_lock); 6436 6437 return (id); 6438 } 6439 6440 static dtrace_probe_t * 6441 dtrace_probe_lookup_id(dtrace_id_t id) 6442 { 6443 ASSERT(MUTEX_HELD(&dtrace_lock)); 6444 6445 if (id == 0 || id > dtrace_nprobes) 6446 return (NULL); 6447 6448 return (dtrace_probes[id - 1]); 6449 } 6450 6451 static int 6452 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 6453 { 6454 *((dtrace_id_t *)arg) = probe->dtpr_id; 6455 6456 return (DTRACE_MATCH_DONE); 6457 } 6458 6459 /* 6460 * Look up a probe based on provider and one or more of module name, function 6461 * name and probe name. 6462 */ 6463 dtrace_id_t 6464 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 6465 const char *func, const char *name) 6466 { 6467 dtrace_probekey_t pkey; 6468 dtrace_id_t id; 6469 int match; 6470 6471 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 6472 pkey.dtpk_pmatch = &dtrace_match_string; 6473 pkey.dtpk_mod = mod; 6474 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 6475 pkey.dtpk_func = func; 6476 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 6477 pkey.dtpk_name = name; 6478 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 6479 pkey.dtpk_id = DTRACE_IDNONE; 6480 6481 mutex_enter(&dtrace_lock); 6482 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 6483 dtrace_probe_lookup_match, &id); 6484 mutex_exit(&dtrace_lock); 6485 6486 ASSERT(match == 1 || match == 0); 6487 return (match ? id : 0); 6488 } 6489 6490 /* 6491 * Returns the probe argument associated with the specified probe. 6492 */ 6493 void * 6494 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 6495 { 6496 dtrace_probe_t *probe; 6497 void *rval = NULL; 6498 6499 mutex_enter(&dtrace_lock); 6500 6501 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 6502 probe->dtpr_provider == (dtrace_provider_t *)id) 6503 rval = probe->dtpr_arg; 6504 6505 mutex_exit(&dtrace_lock); 6506 6507 return (rval); 6508 } 6509 6510 /* 6511 * Copy a probe into a probe description. 6512 */ 6513 static void 6514 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 6515 { 6516 bzero(pdp, sizeof (dtrace_probedesc_t)); 6517 pdp->dtpd_id = prp->dtpr_id; 6518 6519 (void) strncpy(pdp->dtpd_provider, 6520 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 6521 6522 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 6523 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 6524 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 6525 } 6526 6527 /* 6528 * Called to indicate that a probe -- or probes -- should be provided by a 6529 * specfied provider. If the specified description is NULL, the provider will 6530 * be told to provide all of its probes. (This is done whenever a new 6531 * consumer comes along, or whenever a retained enabling is to be matched.) If 6532 * the specified description is non-NULL, the provider is given the 6533 * opportunity to dynamically provide the specified probe, allowing providers 6534 * to support the creation of probes on-the-fly. (So-called _autocreated_ 6535 * probes.) If the provider is NULL, the operations will be applied to all 6536 * providers; if the provider is non-NULL the operations will only be applied 6537 * to the specified provider. The dtrace_provider_lock must be held, and the 6538 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 6539 * will need to grab the dtrace_lock when it reenters the framework through 6540 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 6541 */ 6542 static void 6543 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 6544 { 6545 struct modctl *ctl; 6546 int all = 0; 6547 6548 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6549 6550 if (prv == NULL) { 6551 all = 1; 6552 prv = dtrace_provider; 6553 } 6554 6555 do { 6556 /* 6557 * First, call the blanket provide operation. 6558 */ 6559 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 6560 6561 /* 6562 * Now call the per-module provide operation. We will grab 6563 * mod_lock to prevent the list from being modified. Note 6564 * that this also prevents the mod_busy bits from changing. 6565 * (mod_busy can only be changed with mod_lock held.) 6566 */ 6567 mutex_enter(&mod_lock); 6568 6569 ctl = &modules; 6570 do { 6571 if (ctl->mod_busy || ctl->mod_mp == NULL) 6572 continue; 6573 6574 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 6575 6576 } while ((ctl = ctl->mod_next) != &modules); 6577 6578 mutex_exit(&mod_lock); 6579 } while (all && (prv = prv->dtpv_next) != NULL); 6580 } 6581 6582 /* 6583 * Iterate over each probe, and call the Framework-to-Provider API function 6584 * denoted by offs. 6585 */ 6586 static void 6587 dtrace_probe_foreach(uintptr_t offs) 6588 { 6589 dtrace_provider_t *prov; 6590 void (*func)(void *, dtrace_id_t, void *); 6591 dtrace_probe_t *probe; 6592 dtrace_icookie_t cookie; 6593 int i; 6594 6595 /* 6596 * We disable interrupts to walk through the probe array. This is 6597 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 6598 * won't see stale data. 6599 */ 6600 cookie = dtrace_interrupt_disable(); 6601 6602 for (i = 0; i < dtrace_nprobes; i++) { 6603 if ((probe = dtrace_probes[i]) == NULL) 6604 continue; 6605 6606 if (probe->dtpr_ecb == NULL) { 6607 /* 6608 * This probe isn't enabled -- don't call the function. 6609 */ 6610 continue; 6611 } 6612 6613 prov = probe->dtpr_provider; 6614 func = *((void(**)(void *, dtrace_id_t, void *)) 6615 ((uintptr_t)&prov->dtpv_pops + offs)); 6616 6617 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 6618 } 6619 6620 dtrace_interrupt_enable(cookie); 6621 } 6622 6623 static int 6624 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 6625 { 6626 dtrace_probekey_t pkey; 6627 uint32_t priv; 6628 uid_t uid; 6629 zoneid_t zoneid; 6630 6631 ASSERT(MUTEX_HELD(&dtrace_lock)); 6632 dtrace_ecb_create_cache = NULL; 6633 6634 if (desc == NULL) { 6635 /* 6636 * If we're passed a NULL description, we're being asked to 6637 * create an ECB with a NULL probe. 6638 */ 6639 (void) dtrace_ecb_create_enable(NULL, enab); 6640 return (0); 6641 } 6642 6643 dtrace_probekey(desc, &pkey); 6644 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 6645 &priv, &uid, &zoneid); 6646 6647 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 6648 enab)); 6649 } 6650 6651 /* 6652 * DTrace Helper Provider Functions 6653 */ 6654 static void 6655 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 6656 { 6657 attr->dtat_name = DOF_ATTR_NAME(dofattr); 6658 attr->dtat_data = DOF_ATTR_DATA(dofattr); 6659 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 6660 } 6661 6662 static void 6663 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 6664 const dof_provider_t *dofprov, char *strtab) 6665 { 6666 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 6667 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 6668 dofprov->dofpv_provattr); 6669 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 6670 dofprov->dofpv_modattr); 6671 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 6672 dofprov->dofpv_funcattr); 6673 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 6674 dofprov->dofpv_nameattr); 6675 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 6676 dofprov->dofpv_argsattr); 6677 } 6678 6679 static void 6680 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 6681 { 6682 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 6683 dof_hdr_t *dof = (dof_hdr_t *)daddr; 6684 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 6685 dof_provider_t *provider; 6686 dof_probe_t *probe; 6687 uint32_t *off, *enoff; 6688 uint8_t *arg; 6689 char *strtab; 6690 uint_t i, nprobes; 6691 dtrace_helper_provdesc_t dhpv; 6692 dtrace_helper_probedesc_t dhpb; 6693 dtrace_meta_t *meta = dtrace_meta_pid; 6694 dtrace_mops_t *mops = &meta->dtm_mops; 6695 void *parg; 6696 6697 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 6698 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 6699 provider->dofpv_strtab * dof->dofh_secsize); 6700 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 6701 provider->dofpv_probes * dof->dofh_secsize); 6702 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 6703 provider->dofpv_prargs * dof->dofh_secsize); 6704 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 6705 provider->dofpv_proffs * dof->dofh_secsize); 6706 6707 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 6708 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 6709 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 6710 enoff = NULL; 6711 6712 /* 6713 * See dtrace_helper_provider_validate(). 6714 */ 6715 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 6716 provider->dofpv_prenoffs != DOF_SECT_NONE) { 6717 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 6718 provider->dofpv_prenoffs * dof->dofh_secsize); 6719 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 6720 } 6721 6722 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 6723 6724 /* 6725 * Create the provider. 6726 */ 6727 dtrace_dofprov2hprov(&dhpv, provider, strtab); 6728 6729 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 6730 return; 6731 6732 meta->dtm_count++; 6733 6734 /* 6735 * Create the probes. 6736 */ 6737 for (i = 0; i < nprobes; i++) { 6738 probe = (dof_probe_t *)(uintptr_t)(daddr + 6739 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 6740 6741 dhpb.dthpb_mod = dhp->dofhp_mod; 6742 dhpb.dthpb_func = strtab + probe->dofpr_func; 6743 dhpb.dthpb_name = strtab + probe->dofpr_name; 6744 dhpb.dthpb_base = probe->dofpr_addr; 6745 dhpb.dthpb_offs = off + probe->dofpr_offidx; 6746 dhpb.dthpb_noffs = probe->dofpr_noffs; 6747 if (enoff != NULL) { 6748 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 6749 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 6750 } else { 6751 dhpb.dthpb_enoffs = NULL; 6752 dhpb.dthpb_nenoffs = 0; 6753 } 6754 dhpb.dthpb_args = arg + probe->dofpr_argidx; 6755 dhpb.dthpb_nargc = probe->dofpr_nargc; 6756 dhpb.dthpb_xargc = probe->dofpr_xargc; 6757 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 6758 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 6759 6760 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 6761 } 6762 } 6763 6764 static void 6765 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 6766 { 6767 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 6768 dof_hdr_t *dof = (dof_hdr_t *)daddr; 6769 int i; 6770 6771 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 6772 6773 for (i = 0; i < dof->dofh_secnum; i++) { 6774 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 6775 dof->dofh_secoff + i * dof->dofh_secsize); 6776 6777 if (sec->dofs_type != DOF_SECT_PROVIDER) 6778 continue; 6779 6780 dtrace_helper_provide_one(dhp, sec, pid); 6781 } 6782 6783 /* 6784 * We may have just created probes, so we must now rematch against 6785 * any retained enablings. Note that this call will acquire both 6786 * cpu_lock and dtrace_lock; the fact that we are holding 6787 * dtrace_meta_lock now is what defines the ordering with respect to 6788 * these three locks. 6789 */ 6790 dtrace_enabling_matchall(); 6791 } 6792 6793 static void 6794 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 6795 { 6796 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 6797 dof_hdr_t *dof = (dof_hdr_t *)daddr; 6798 dof_sec_t *str_sec; 6799 dof_provider_t *provider; 6800 char *strtab; 6801 dtrace_helper_provdesc_t dhpv; 6802 dtrace_meta_t *meta = dtrace_meta_pid; 6803 dtrace_mops_t *mops = &meta->dtm_mops; 6804 6805 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 6806 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 6807 provider->dofpv_strtab * dof->dofh_secsize); 6808 6809 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 6810 6811 /* 6812 * Create the provider. 6813 */ 6814 dtrace_dofprov2hprov(&dhpv, provider, strtab); 6815 6816 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 6817 6818 meta->dtm_count--; 6819 } 6820 6821 static void 6822 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 6823 { 6824 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 6825 dof_hdr_t *dof = (dof_hdr_t *)daddr; 6826 int i; 6827 6828 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 6829 6830 for (i = 0; i < dof->dofh_secnum; i++) { 6831 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 6832 dof->dofh_secoff + i * dof->dofh_secsize); 6833 6834 if (sec->dofs_type != DOF_SECT_PROVIDER) 6835 continue; 6836 6837 dtrace_helper_provider_remove_one(dhp, sec, pid); 6838 } 6839 } 6840 6841 /* 6842 * DTrace Meta Provider-to-Framework API Functions 6843 * 6844 * These functions implement the Meta Provider-to-Framework API, as described 6845 * in <sys/dtrace.h>. 6846 */ 6847 int 6848 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 6849 dtrace_meta_provider_id_t *idp) 6850 { 6851 dtrace_meta_t *meta; 6852 dtrace_helpers_t *help, *next; 6853 int i; 6854 6855 *idp = DTRACE_METAPROVNONE; 6856 6857 /* 6858 * We strictly don't need the name, but we hold onto it for 6859 * debuggability. All hail error queues! 6860 */ 6861 if (name == NULL) { 6862 cmn_err(CE_WARN, "failed to register meta-provider: " 6863 "invalid name"); 6864 return (EINVAL); 6865 } 6866 6867 if (mops == NULL || 6868 mops->dtms_create_probe == NULL || 6869 mops->dtms_provide_pid == NULL || 6870 mops->dtms_remove_pid == NULL) { 6871 cmn_err(CE_WARN, "failed to register meta-register %s: " 6872 "invalid ops", name); 6873 return (EINVAL); 6874 } 6875 6876 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 6877 meta->dtm_mops = *mops; 6878 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 6879 (void) strcpy(meta->dtm_name, name); 6880 meta->dtm_arg = arg; 6881 6882 mutex_enter(&dtrace_meta_lock); 6883 mutex_enter(&dtrace_lock); 6884 6885 if (dtrace_meta_pid != NULL) { 6886 mutex_exit(&dtrace_lock); 6887 mutex_exit(&dtrace_meta_lock); 6888 cmn_err(CE_WARN, "failed to register meta-register %s: " 6889 "user-land meta-provider exists", name); 6890 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 6891 kmem_free(meta, sizeof (dtrace_meta_t)); 6892 return (EINVAL); 6893 } 6894 6895 dtrace_meta_pid = meta; 6896 *idp = (dtrace_meta_provider_id_t)meta; 6897 6898 /* 6899 * If there are providers and probes ready to go, pass them 6900 * off to the new meta provider now. 6901 */ 6902 6903 help = dtrace_deferred_pid; 6904 dtrace_deferred_pid = NULL; 6905 6906 mutex_exit(&dtrace_lock); 6907 6908 while (help != NULL) { 6909 for (i = 0; i < help->dthps_nprovs; i++) { 6910 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 6911 help->dthps_pid); 6912 } 6913 6914 next = help->dthps_next; 6915 help->dthps_next = NULL; 6916 help->dthps_prev = NULL; 6917 help->dthps_deferred = 0; 6918 help = next; 6919 } 6920 6921 mutex_exit(&dtrace_meta_lock); 6922 6923 return (0); 6924 } 6925 6926 int 6927 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 6928 { 6929 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 6930 6931 mutex_enter(&dtrace_meta_lock); 6932 mutex_enter(&dtrace_lock); 6933 6934 if (old == dtrace_meta_pid) { 6935 pp = &dtrace_meta_pid; 6936 } else { 6937 panic("attempt to unregister non-existent " 6938 "dtrace meta-provider %p\n", (void *)old); 6939 } 6940 6941 if (old->dtm_count != 0) { 6942 mutex_exit(&dtrace_lock); 6943 mutex_exit(&dtrace_meta_lock); 6944 return (EBUSY); 6945 } 6946 6947 *pp = NULL; 6948 6949 mutex_exit(&dtrace_lock); 6950 mutex_exit(&dtrace_meta_lock); 6951 6952 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 6953 kmem_free(old, sizeof (dtrace_meta_t)); 6954 6955 return (0); 6956 } 6957 6958 6959 /* 6960 * DTrace DIF Object Functions 6961 */ 6962 static int 6963 dtrace_difo_err(uint_t pc, const char *format, ...) 6964 { 6965 if (dtrace_err_verbose) { 6966 va_list alist; 6967 6968 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 6969 va_start(alist, format); 6970 (void) vuprintf(format, alist); 6971 va_end(alist); 6972 } 6973 6974 #ifdef DTRACE_ERRDEBUG 6975 dtrace_errdebug(format); 6976 #endif 6977 return (1); 6978 } 6979 6980 /* 6981 * Validate a DTrace DIF object by checking the IR instructions. The following 6982 * rules are currently enforced by dtrace_difo_validate(): 6983 * 6984 * 1. Each instruction must have a valid opcode 6985 * 2. Each register, string, variable, or subroutine reference must be valid 6986 * 3. No instruction can modify register %r0 (must be zero) 6987 * 4. All instruction reserved bits must be set to zero 6988 * 5. The last instruction must be a "ret" instruction 6989 * 6. All branch targets must reference a valid instruction _after_ the branch 6990 */ 6991 static int 6992 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 6993 cred_t *cr) 6994 { 6995 int err = 0, i; 6996 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 6997 int kcheck; 6998 uint_t pc; 6999 7000 kcheck = cr == NULL || 7001 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE) == 0; 7002 7003 dp->dtdo_destructive = 0; 7004 7005 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 7006 dif_instr_t instr = dp->dtdo_buf[pc]; 7007 7008 uint_t r1 = DIF_INSTR_R1(instr); 7009 uint_t r2 = DIF_INSTR_R2(instr); 7010 uint_t rd = DIF_INSTR_RD(instr); 7011 uint_t rs = DIF_INSTR_RS(instr); 7012 uint_t label = DIF_INSTR_LABEL(instr); 7013 uint_t v = DIF_INSTR_VAR(instr); 7014 uint_t subr = DIF_INSTR_SUBR(instr); 7015 uint_t type = DIF_INSTR_TYPE(instr); 7016 uint_t op = DIF_INSTR_OP(instr); 7017 7018 switch (op) { 7019 case DIF_OP_OR: 7020 case DIF_OP_XOR: 7021 case DIF_OP_AND: 7022 case DIF_OP_SLL: 7023 case DIF_OP_SRL: 7024 case DIF_OP_SRA: 7025 case DIF_OP_SUB: 7026 case DIF_OP_ADD: 7027 case DIF_OP_MUL: 7028 case DIF_OP_SDIV: 7029 case DIF_OP_UDIV: 7030 case DIF_OP_SREM: 7031 case DIF_OP_UREM: 7032 case DIF_OP_COPYS: 7033 if (r1 >= nregs) 7034 err += efunc(pc, "invalid register %u\n", r1); 7035 if (r2 >= nregs) 7036 err += efunc(pc, "invalid register %u\n", r2); 7037 if (rd >= nregs) 7038 err += efunc(pc, "invalid register %u\n", rd); 7039 if (rd == 0) 7040 err += efunc(pc, "cannot write to %r0\n"); 7041 break; 7042 case DIF_OP_NOT: 7043 case DIF_OP_MOV: 7044 case DIF_OP_ALLOCS: 7045 if (r1 >= nregs) 7046 err += efunc(pc, "invalid register %u\n", r1); 7047 if (r2 != 0) 7048 err += efunc(pc, "non-zero reserved bits\n"); 7049 if (rd >= nregs) 7050 err += efunc(pc, "invalid register %u\n", rd); 7051 if (rd == 0) 7052 err += efunc(pc, "cannot write to %r0\n"); 7053 break; 7054 case DIF_OP_LDSB: 7055 case DIF_OP_LDSH: 7056 case DIF_OP_LDSW: 7057 case DIF_OP_LDUB: 7058 case DIF_OP_LDUH: 7059 case DIF_OP_LDUW: 7060 case DIF_OP_LDX: 7061 if (r1 >= nregs) 7062 err += efunc(pc, "invalid register %u\n", r1); 7063 if (r2 != 0) 7064 err += efunc(pc, "non-zero reserved bits\n"); 7065 if (rd >= nregs) 7066 err += efunc(pc, "invalid register %u\n", rd); 7067 if (rd == 0) 7068 err += efunc(pc, "cannot write to %r0\n"); 7069 if (kcheck) 7070 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 7071 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 7072 break; 7073 case DIF_OP_RLDSB: 7074 case DIF_OP_RLDSH: 7075 case DIF_OP_RLDSW: 7076 case DIF_OP_RLDUB: 7077 case DIF_OP_RLDUH: 7078 case DIF_OP_RLDUW: 7079 case DIF_OP_RLDX: 7080 if (r1 >= nregs) 7081 err += efunc(pc, "invalid register %u\n", r1); 7082 if (r2 != 0) 7083 err += efunc(pc, "non-zero reserved bits\n"); 7084 if (rd >= nregs) 7085 err += efunc(pc, "invalid register %u\n", rd); 7086 if (rd == 0) 7087 err += efunc(pc, "cannot write to %r0\n"); 7088 break; 7089 case DIF_OP_ULDSB: 7090 case DIF_OP_ULDSH: 7091 case DIF_OP_ULDSW: 7092 case DIF_OP_ULDUB: 7093 case DIF_OP_ULDUH: 7094 case DIF_OP_ULDUW: 7095 case DIF_OP_ULDX: 7096 if (r1 >= nregs) 7097 err += efunc(pc, "invalid register %u\n", r1); 7098 if (r2 != 0) 7099 err += efunc(pc, "non-zero reserved bits\n"); 7100 if (rd >= nregs) 7101 err += efunc(pc, "invalid register %u\n", rd); 7102 if (rd == 0) 7103 err += efunc(pc, "cannot write to %r0\n"); 7104 break; 7105 case DIF_OP_STB: 7106 case DIF_OP_STH: 7107 case DIF_OP_STW: 7108 case DIF_OP_STX: 7109 if (r1 >= nregs) 7110 err += efunc(pc, "invalid register %u\n", r1); 7111 if (r2 != 0) 7112 err += efunc(pc, "non-zero reserved bits\n"); 7113 if (rd >= nregs) 7114 err += efunc(pc, "invalid register %u\n", rd); 7115 if (rd == 0) 7116 err += efunc(pc, "cannot write to 0 address\n"); 7117 break; 7118 case DIF_OP_CMP: 7119 case DIF_OP_SCMP: 7120 if (r1 >= nregs) 7121 err += efunc(pc, "invalid register %u\n", r1); 7122 if (r2 >= nregs) 7123 err += efunc(pc, "invalid register %u\n", r2); 7124 if (rd != 0) 7125 err += efunc(pc, "non-zero reserved bits\n"); 7126 break; 7127 case DIF_OP_TST: 7128 if (r1 >= nregs) 7129 err += efunc(pc, "invalid register %u\n", r1); 7130 if (r2 != 0 || rd != 0) 7131 err += efunc(pc, "non-zero reserved bits\n"); 7132 break; 7133 case DIF_OP_BA: 7134 case DIF_OP_BE: 7135 case DIF_OP_BNE: 7136 case DIF_OP_BG: 7137 case DIF_OP_BGU: 7138 case DIF_OP_BGE: 7139 case DIF_OP_BGEU: 7140 case DIF_OP_BL: 7141 case DIF_OP_BLU: 7142 case DIF_OP_BLE: 7143 case DIF_OP_BLEU: 7144 if (label >= dp->dtdo_len) { 7145 err += efunc(pc, "invalid branch target %u\n", 7146 label); 7147 } 7148 if (label <= pc) { 7149 err += efunc(pc, "backward branch to %u\n", 7150 label); 7151 } 7152 break; 7153 case DIF_OP_RET: 7154 if (r1 != 0 || r2 != 0) 7155 err += efunc(pc, "non-zero reserved bits\n"); 7156 if (rd >= nregs) 7157 err += efunc(pc, "invalid register %u\n", rd); 7158 break; 7159 case DIF_OP_NOP: 7160 case DIF_OP_POPTS: 7161 case DIF_OP_FLUSHTS: 7162 if (r1 != 0 || r2 != 0 || rd != 0) 7163 err += efunc(pc, "non-zero reserved bits\n"); 7164 break; 7165 case DIF_OP_SETX: 7166 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 7167 err += efunc(pc, "invalid integer ref %u\n", 7168 DIF_INSTR_INTEGER(instr)); 7169 } 7170 if (rd >= nregs) 7171 err += efunc(pc, "invalid register %u\n", rd); 7172 if (rd == 0) 7173 err += efunc(pc, "cannot write to %r0\n"); 7174 break; 7175 case DIF_OP_SETS: 7176 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 7177 err += efunc(pc, "invalid string ref %u\n", 7178 DIF_INSTR_STRING(instr)); 7179 } 7180 if (rd >= nregs) 7181 err += efunc(pc, "invalid register %u\n", rd); 7182 if (rd == 0) 7183 err += efunc(pc, "cannot write to %r0\n"); 7184 break; 7185 case DIF_OP_LDGA: 7186 case DIF_OP_LDTA: 7187 if (r1 > DIF_VAR_ARRAY_MAX) 7188 err += efunc(pc, "invalid array %u\n", r1); 7189 if (r2 >= nregs) 7190 err += efunc(pc, "invalid register %u\n", r2); 7191 if (rd >= nregs) 7192 err += efunc(pc, "invalid register %u\n", rd); 7193 if (rd == 0) 7194 err += efunc(pc, "cannot write to %r0\n"); 7195 break; 7196 case DIF_OP_LDGS: 7197 case DIF_OP_LDTS: 7198 case DIF_OP_LDLS: 7199 case DIF_OP_LDGAA: 7200 case DIF_OP_LDTAA: 7201 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 7202 err += efunc(pc, "invalid variable %u\n", v); 7203 if (rd >= nregs) 7204 err += efunc(pc, "invalid register %u\n", rd); 7205 if (rd == 0) 7206 err += efunc(pc, "cannot write to %r0\n"); 7207 break; 7208 case DIF_OP_STGS: 7209 case DIF_OP_STTS: 7210 case DIF_OP_STLS: 7211 case DIF_OP_STGAA: 7212 case DIF_OP_STTAA: 7213 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 7214 err += efunc(pc, "invalid variable %u\n", v); 7215 if (rs >= nregs) 7216 err += efunc(pc, "invalid register %u\n", rd); 7217 break; 7218 case DIF_OP_CALL: 7219 if (subr > DIF_SUBR_MAX) 7220 err += efunc(pc, "invalid subr %u\n", subr); 7221 if (rd >= nregs) 7222 err += efunc(pc, "invalid register %u\n", rd); 7223 if (rd == 0) 7224 err += efunc(pc, "cannot write to %r0\n"); 7225 7226 if (subr == DIF_SUBR_COPYOUT || 7227 subr == DIF_SUBR_COPYOUTSTR) { 7228 dp->dtdo_destructive = 1; 7229 } 7230 break; 7231 case DIF_OP_PUSHTR: 7232 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 7233 err += efunc(pc, "invalid ref type %u\n", type); 7234 if (r2 >= nregs) 7235 err += efunc(pc, "invalid register %u\n", r2); 7236 if (rs >= nregs) 7237 err += efunc(pc, "invalid register %u\n", rs); 7238 break; 7239 case DIF_OP_PUSHTV: 7240 if (type != DIF_TYPE_CTF) 7241 err += efunc(pc, "invalid val type %u\n", type); 7242 if (r2 >= nregs) 7243 err += efunc(pc, "invalid register %u\n", r2); 7244 if (rs >= nregs) 7245 err += efunc(pc, "invalid register %u\n", rs); 7246 break; 7247 default: 7248 err += efunc(pc, "invalid opcode %u\n", 7249 DIF_INSTR_OP(instr)); 7250 } 7251 } 7252 7253 if (dp->dtdo_len != 0 && 7254 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 7255 err += efunc(dp->dtdo_len - 1, 7256 "expected 'ret' as last DIF instruction\n"); 7257 } 7258 7259 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 7260 /* 7261 * If we're not returning by reference, the size must be either 7262 * 0 or the size of one of the base types. 7263 */ 7264 switch (dp->dtdo_rtype.dtdt_size) { 7265 case 0: 7266 case sizeof (uint8_t): 7267 case sizeof (uint16_t): 7268 case sizeof (uint32_t): 7269 case sizeof (uint64_t): 7270 break; 7271 7272 default: 7273 err += efunc(dp->dtdo_len - 1, "bad return size"); 7274 } 7275 } 7276 7277 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 7278 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 7279 dtrace_diftype_t *vt, *et; 7280 uint_t id, ndx; 7281 7282 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 7283 v->dtdv_scope != DIFV_SCOPE_THREAD && 7284 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 7285 err += efunc(i, "unrecognized variable scope %d\n", 7286 v->dtdv_scope); 7287 break; 7288 } 7289 7290 if (v->dtdv_kind != DIFV_KIND_ARRAY && 7291 v->dtdv_kind != DIFV_KIND_SCALAR) { 7292 err += efunc(i, "unrecognized variable type %d\n", 7293 v->dtdv_kind); 7294 break; 7295 } 7296 7297 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 7298 err += efunc(i, "%d exceeds variable id limit\n", id); 7299 break; 7300 } 7301 7302 if (id < DIF_VAR_OTHER_UBASE) 7303 continue; 7304 7305 /* 7306 * For user-defined variables, we need to check that this 7307 * definition is identical to any previous definition that we 7308 * encountered. 7309 */ 7310 ndx = id - DIF_VAR_OTHER_UBASE; 7311 7312 switch (v->dtdv_scope) { 7313 case DIFV_SCOPE_GLOBAL: 7314 if (ndx < vstate->dtvs_nglobals) { 7315 dtrace_statvar_t *svar; 7316 7317 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 7318 existing = &svar->dtsv_var; 7319 } 7320 7321 break; 7322 7323 case DIFV_SCOPE_THREAD: 7324 if (ndx < vstate->dtvs_ntlocals) 7325 existing = &vstate->dtvs_tlocals[ndx]; 7326 break; 7327 7328 case DIFV_SCOPE_LOCAL: 7329 if (ndx < vstate->dtvs_nlocals) { 7330 dtrace_statvar_t *svar; 7331 7332 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 7333 existing = &svar->dtsv_var; 7334 } 7335 7336 break; 7337 } 7338 7339 vt = &v->dtdv_type; 7340 7341 if (vt->dtdt_flags & DIF_TF_BYREF) { 7342 if (vt->dtdt_size == 0) { 7343 err += efunc(i, "zero-sized variable\n"); 7344 break; 7345 } 7346 7347 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 7348 vt->dtdt_size > dtrace_global_maxsize) { 7349 err += efunc(i, "oversized by-ref global\n"); 7350 break; 7351 } 7352 } 7353 7354 if (existing == NULL || existing->dtdv_id == 0) 7355 continue; 7356 7357 ASSERT(existing->dtdv_id == v->dtdv_id); 7358 ASSERT(existing->dtdv_scope == v->dtdv_scope); 7359 7360 if (existing->dtdv_kind != v->dtdv_kind) 7361 err += efunc(i, "%d changed variable kind\n", id); 7362 7363 et = &existing->dtdv_type; 7364 7365 if (vt->dtdt_flags != et->dtdt_flags) { 7366 err += efunc(i, "%d changed variable type flags\n", id); 7367 break; 7368 } 7369 7370 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 7371 err += efunc(i, "%d changed variable type size\n", id); 7372 break; 7373 } 7374 } 7375 7376 return (err); 7377 } 7378 7379 /* 7380 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 7381 * are much more constrained than normal DIFOs. Specifically, they may 7382 * not: 7383 * 7384 * 1. Make calls to subroutines other than copyin(), copyinstr() or 7385 * miscellaneous string routines 7386 * 2. Access DTrace variables other than the args[] array, and the 7387 * curthread, pid, tid and execname variables. 7388 * 3. Have thread-local variables. 7389 * 4. Have dynamic variables. 7390 */ 7391 static int 7392 dtrace_difo_validate_helper(dtrace_difo_t *dp) 7393 { 7394 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 7395 int err = 0; 7396 uint_t pc; 7397 7398 for (pc = 0; pc < dp->dtdo_len; pc++) { 7399 dif_instr_t instr = dp->dtdo_buf[pc]; 7400 7401 uint_t v = DIF_INSTR_VAR(instr); 7402 uint_t subr = DIF_INSTR_SUBR(instr); 7403 uint_t op = DIF_INSTR_OP(instr); 7404 7405 switch (op) { 7406 case DIF_OP_OR: 7407 case DIF_OP_XOR: 7408 case DIF_OP_AND: 7409 case DIF_OP_SLL: 7410 case DIF_OP_SRL: 7411 case DIF_OP_SRA: 7412 case DIF_OP_SUB: 7413 case DIF_OP_ADD: 7414 case DIF_OP_MUL: 7415 case DIF_OP_SDIV: 7416 case DIF_OP_UDIV: 7417 case DIF_OP_SREM: 7418 case DIF_OP_UREM: 7419 case DIF_OP_COPYS: 7420 case DIF_OP_NOT: 7421 case DIF_OP_MOV: 7422 case DIF_OP_RLDSB: 7423 case DIF_OP_RLDSH: 7424 case DIF_OP_RLDSW: 7425 case DIF_OP_RLDUB: 7426 case DIF_OP_RLDUH: 7427 case DIF_OP_RLDUW: 7428 case DIF_OP_RLDX: 7429 case DIF_OP_ULDSB: 7430 case DIF_OP_ULDSH: 7431 case DIF_OP_ULDSW: 7432 case DIF_OP_ULDUB: 7433 case DIF_OP_ULDUH: 7434 case DIF_OP_ULDUW: 7435 case DIF_OP_ULDX: 7436 case DIF_OP_STB: 7437 case DIF_OP_STH: 7438 case DIF_OP_STW: 7439 case DIF_OP_STX: 7440 case DIF_OP_ALLOCS: 7441 case DIF_OP_CMP: 7442 case DIF_OP_SCMP: 7443 case DIF_OP_TST: 7444 case DIF_OP_BA: 7445 case DIF_OP_BE: 7446 case DIF_OP_BNE: 7447 case DIF_OP_BG: 7448 case DIF_OP_BGU: 7449 case DIF_OP_BGE: 7450 case DIF_OP_BGEU: 7451 case DIF_OP_BL: 7452 case DIF_OP_BLU: 7453 case DIF_OP_BLE: 7454 case DIF_OP_BLEU: 7455 case DIF_OP_RET: 7456 case DIF_OP_NOP: 7457 case DIF_OP_POPTS: 7458 case DIF_OP_FLUSHTS: 7459 case DIF_OP_SETX: 7460 case DIF_OP_SETS: 7461 case DIF_OP_LDGA: 7462 case DIF_OP_LDLS: 7463 case DIF_OP_STGS: 7464 case DIF_OP_STLS: 7465 case DIF_OP_PUSHTR: 7466 case DIF_OP_PUSHTV: 7467 break; 7468 7469 case DIF_OP_LDGS: 7470 if (v >= DIF_VAR_OTHER_UBASE) 7471 break; 7472 7473 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 7474 break; 7475 7476 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 7477 v == DIF_VAR_TID || v == DIF_VAR_EXECNAME || 7478 v == DIF_VAR_ZONENAME) 7479 break; 7480 7481 err += efunc(pc, "illegal variable %u\n", v); 7482 break; 7483 7484 case DIF_OP_LDTA: 7485 case DIF_OP_LDTS: 7486 case DIF_OP_LDGAA: 7487 case DIF_OP_LDTAA: 7488 err += efunc(pc, "illegal dynamic variable load\n"); 7489 break; 7490 7491 case DIF_OP_STTS: 7492 case DIF_OP_STGAA: 7493 case DIF_OP_STTAA: 7494 err += efunc(pc, "illegal dynamic variable store\n"); 7495 break; 7496 7497 case DIF_OP_CALL: 7498 if (subr == DIF_SUBR_ALLOCA || 7499 subr == DIF_SUBR_BCOPY || 7500 subr == DIF_SUBR_COPYIN || 7501 subr == DIF_SUBR_COPYINTO || 7502 subr == DIF_SUBR_COPYINSTR || 7503 subr == DIF_SUBR_INDEX || 7504 subr == DIF_SUBR_LLTOSTR || 7505 subr == DIF_SUBR_RINDEX || 7506 subr == DIF_SUBR_STRCHR || 7507 subr == DIF_SUBR_STRJOIN || 7508 subr == DIF_SUBR_STRRCHR || 7509 subr == DIF_SUBR_STRSTR) 7510 break; 7511 7512 err += efunc(pc, "invalid subr %u\n", subr); 7513 break; 7514 7515 default: 7516 err += efunc(pc, "invalid opcode %u\n", 7517 DIF_INSTR_OP(instr)); 7518 } 7519 } 7520 7521 return (err); 7522 } 7523 7524 /* 7525 * Returns 1 if the expression in the DIF object can be cached on a per-thread 7526 * basis; 0 if not. 7527 */ 7528 static int 7529 dtrace_difo_cacheable(dtrace_difo_t *dp) 7530 { 7531 int i; 7532 7533 if (dp == NULL) 7534 return (0); 7535 7536 for (i = 0; i < dp->dtdo_varlen; i++) { 7537 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 7538 7539 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 7540 continue; 7541 7542 switch (v->dtdv_id) { 7543 case DIF_VAR_CURTHREAD: 7544 case DIF_VAR_PID: 7545 case DIF_VAR_TID: 7546 case DIF_VAR_EXECNAME: 7547 case DIF_VAR_ZONENAME: 7548 break; 7549 7550 default: 7551 return (0); 7552 } 7553 } 7554 7555 /* 7556 * This DIF object may be cacheable. Now we need to look for any 7557 * array loading instructions, any memory loading instructions, or 7558 * any stores to thread-local variables. 7559 */ 7560 for (i = 0; i < dp->dtdo_len; i++) { 7561 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 7562 7563 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 7564 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 7565 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 7566 op == DIF_OP_LDGA || op == DIF_OP_STTS) 7567 return (0); 7568 } 7569 7570 return (1); 7571 } 7572 7573 static void 7574 dtrace_difo_hold(dtrace_difo_t *dp) 7575 { 7576 int i; 7577 7578 ASSERT(MUTEX_HELD(&dtrace_lock)); 7579 7580 dp->dtdo_refcnt++; 7581 ASSERT(dp->dtdo_refcnt != 0); 7582 7583 /* 7584 * We need to check this DIF object for references to the variable 7585 * DIF_VAR_VTIMESTAMP. 7586 */ 7587 for (i = 0; i < dp->dtdo_varlen; i++) { 7588 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 7589 7590 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 7591 continue; 7592 7593 if (dtrace_vtime_references++ == 0) 7594 dtrace_vtime_enable(); 7595 } 7596 } 7597 7598 /* 7599 * This routine calculates the dynamic variable chunksize for a given DIF 7600 * object. The calculation is not fool-proof, and can probably be tricked by 7601 * malicious DIF -- but it works for all compiler-generated DIF. Because this 7602 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 7603 * if a dynamic variable size exceeds the chunksize. 7604 */ 7605 static void 7606 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 7607 { 7608 uint64_t sval; 7609 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 7610 const dif_instr_t *text = dp->dtdo_buf; 7611 uint_t pc, srd = 0; 7612 uint_t ttop = 0; 7613 size_t size, ksize; 7614 uint_t id, i; 7615 7616 for (pc = 0; pc < dp->dtdo_len; pc++) { 7617 dif_instr_t instr = text[pc]; 7618 uint_t op = DIF_INSTR_OP(instr); 7619 uint_t rd = DIF_INSTR_RD(instr); 7620 uint_t r1 = DIF_INSTR_R1(instr); 7621 uint_t nkeys = 0; 7622 uchar_t scope; 7623 7624 dtrace_key_t *key = tupregs; 7625 7626 switch (op) { 7627 case DIF_OP_SETX: 7628 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 7629 srd = rd; 7630 continue; 7631 7632 case DIF_OP_STTS: 7633 key = &tupregs[DIF_DTR_NREGS]; 7634 key[0].dttk_size = 0; 7635 key[1].dttk_size = 0; 7636 nkeys = 2; 7637 scope = DIFV_SCOPE_THREAD; 7638 break; 7639 7640 case DIF_OP_STGAA: 7641 case DIF_OP_STTAA: 7642 nkeys = ttop; 7643 7644 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 7645 key[nkeys++].dttk_size = 0; 7646 7647 key[nkeys++].dttk_size = 0; 7648 7649 if (op == DIF_OP_STTAA) { 7650 scope = DIFV_SCOPE_THREAD; 7651 } else { 7652 scope = DIFV_SCOPE_GLOBAL; 7653 } 7654 7655 break; 7656 7657 case DIF_OP_PUSHTR: 7658 if (ttop == DIF_DTR_NREGS) 7659 return; 7660 7661 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 7662 /* 7663 * If the register for the size of the "pushtr" 7664 * is %r0 (or the value is 0) and the type is 7665 * a string, we'll use the system-wide default 7666 * string size. 7667 */ 7668 tupregs[ttop++].dttk_size = 7669 dtrace_strsize_default; 7670 } else { 7671 if (srd == 0) 7672 return; 7673 7674 tupregs[ttop++].dttk_size = sval; 7675 } 7676 7677 break; 7678 7679 case DIF_OP_PUSHTV: 7680 if (ttop == DIF_DTR_NREGS) 7681 return; 7682 7683 tupregs[ttop++].dttk_size = 0; 7684 break; 7685 7686 case DIF_OP_FLUSHTS: 7687 ttop = 0; 7688 break; 7689 7690 case DIF_OP_POPTS: 7691 if (ttop != 0) 7692 ttop--; 7693 break; 7694 } 7695 7696 sval = 0; 7697 srd = 0; 7698 7699 if (nkeys == 0) 7700 continue; 7701 7702 /* 7703 * We have a dynamic variable allocation; calculate its size. 7704 */ 7705 for (ksize = 0, i = 0; i < nkeys; i++) 7706 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 7707 7708 size = sizeof (dtrace_dynvar_t); 7709 size += sizeof (dtrace_key_t) * (nkeys - 1); 7710 size += ksize; 7711 7712 /* 7713 * Now we need to determine the size of the stored data. 7714 */ 7715 id = DIF_INSTR_VAR(instr); 7716 7717 for (i = 0; i < dp->dtdo_varlen; i++) { 7718 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 7719 7720 if (v->dtdv_id == id && v->dtdv_scope == scope) { 7721 size += v->dtdv_type.dtdt_size; 7722 break; 7723 } 7724 } 7725 7726 if (i == dp->dtdo_varlen) 7727 return; 7728 7729 /* 7730 * We have the size. If this is larger than the chunk size 7731 * for our dynamic variable state, reset the chunk size. 7732 */ 7733 size = P2ROUNDUP(size, sizeof (uint64_t)); 7734 7735 if (size > vstate->dtvs_dynvars.dtds_chunksize) 7736 vstate->dtvs_dynvars.dtds_chunksize = size; 7737 } 7738 } 7739 7740 static void 7741 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 7742 { 7743 int i, oldsvars, osz, nsz, otlocals, ntlocals; 7744 uint_t id; 7745 7746 ASSERT(MUTEX_HELD(&dtrace_lock)); 7747 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 7748 7749 for (i = 0; i < dp->dtdo_varlen; i++) { 7750 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 7751 dtrace_statvar_t *svar, ***svarp; 7752 size_t dsize = 0; 7753 uint8_t scope = v->dtdv_scope; 7754 int *np; 7755 7756 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 7757 continue; 7758 7759 id -= DIF_VAR_OTHER_UBASE; 7760 7761 switch (scope) { 7762 case DIFV_SCOPE_THREAD: 7763 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 7764 dtrace_difv_t *tlocals; 7765 7766 if ((ntlocals = (otlocals << 1)) == 0) 7767 ntlocals = 1; 7768 7769 osz = otlocals * sizeof (dtrace_difv_t); 7770 nsz = ntlocals * sizeof (dtrace_difv_t); 7771 7772 tlocals = kmem_zalloc(nsz, KM_SLEEP); 7773 7774 if (osz != 0) { 7775 bcopy(vstate->dtvs_tlocals, 7776 tlocals, osz); 7777 kmem_free(vstate->dtvs_tlocals, osz); 7778 } 7779 7780 vstate->dtvs_tlocals = tlocals; 7781 vstate->dtvs_ntlocals = ntlocals; 7782 } 7783 7784 vstate->dtvs_tlocals[id] = *v; 7785 continue; 7786 7787 case DIFV_SCOPE_LOCAL: 7788 np = &vstate->dtvs_nlocals; 7789 svarp = &vstate->dtvs_locals; 7790 7791 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 7792 dsize = NCPU * (v->dtdv_type.dtdt_size + 7793 sizeof (uint64_t)); 7794 else 7795 dsize = NCPU * sizeof (uint64_t); 7796 7797 break; 7798 7799 case DIFV_SCOPE_GLOBAL: 7800 np = &vstate->dtvs_nglobals; 7801 svarp = &vstate->dtvs_globals; 7802 7803 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 7804 dsize = v->dtdv_type.dtdt_size + 7805 sizeof (uint64_t); 7806 7807 break; 7808 7809 default: 7810 ASSERT(0); 7811 } 7812 7813 while (id >= (oldsvars = *np)) { 7814 dtrace_statvar_t **statics; 7815 int newsvars, oldsize, newsize; 7816 7817 if ((newsvars = (oldsvars << 1)) == 0) 7818 newsvars = 1; 7819 7820 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 7821 newsize = newsvars * sizeof (dtrace_statvar_t *); 7822 7823 statics = kmem_zalloc(newsize, KM_SLEEP); 7824 7825 if (oldsize != 0) { 7826 bcopy(*svarp, statics, oldsize); 7827 kmem_free(*svarp, oldsize); 7828 } 7829 7830 *svarp = statics; 7831 *np = newsvars; 7832 } 7833 7834 if ((svar = (*svarp)[id]) == NULL) { 7835 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 7836 svar->dtsv_var = *v; 7837 7838 if ((svar->dtsv_size = dsize) != 0) { 7839 svar->dtsv_data = (uint64_t)(uintptr_t) 7840 kmem_zalloc(dsize, KM_SLEEP); 7841 } 7842 7843 (*svarp)[id] = svar; 7844 } 7845 7846 svar->dtsv_refcnt++; 7847 } 7848 7849 dtrace_difo_chunksize(dp, vstate); 7850 dtrace_difo_hold(dp); 7851 } 7852 7853 static dtrace_difo_t * 7854 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 7855 { 7856 dtrace_difo_t *new; 7857 size_t sz; 7858 7859 ASSERT(dp->dtdo_buf != NULL); 7860 ASSERT(dp->dtdo_refcnt != 0); 7861 7862 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 7863 7864 ASSERT(dp->dtdo_buf != NULL); 7865 sz = dp->dtdo_len * sizeof (dif_instr_t); 7866 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 7867 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 7868 new->dtdo_len = dp->dtdo_len; 7869 7870 if (dp->dtdo_strtab != NULL) { 7871 ASSERT(dp->dtdo_strlen != 0); 7872 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 7873 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 7874 new->dtdo_strlen = dp->dtdo_strlen; 7875 } 7876 7877 if (dp->dtdo_inttab != NULL) { 7878 ASSERT(dp->dtdo_intlen != 0); 7879 sz = dp->dtdo_intlen * sizeof (uint64_t); 7880 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 7881 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 7882 new->dtdo_intlen = dp->dtdo_intlen; 7883 } 7884 7885 if (dp->dtdo_vartab != NULL) { 7886 ASSERT(dp->dtdo_varlen != 0); 7887 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 7888 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 7889 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 7890 new->dtdo_varlen = dp->dtdo_varlen; 7891 } 7892 7893 dtrace_difo_init(new, vstate); 7894 return (new); 7895 } 7896 7897 static void 7898 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 7899 { 7900 int i; 7901 7902 ASSERT(dp->dtdo_refcnt == 0); 7903 7904 for (i = 0; i < dp->dtdo_varlen; i++) { 7905 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 7906 dtrace_statvar_t *svar, **svarp; 7907 uint_t id; 7908 uint8_t scope = v->dtdv_scope; 7909 int *np; 7910 7911 switch (scope) { 7912 case DIFV_SCOPE_THREAD: 7913 continue; 7914 7915 case DIFV_SCOPE_LOCAL: 7916 np = &vstate->dtvs_nlocals; 7917 svarp = vstate->dtvs_locals; 7918 break; 7919 7920 case DIFV_SCOPE_GLOBAL: 7921 np = &vstate->dtvs_nglobals; 7922 svarp = vstate->dtvs_globals; 7923 break; 7924 7925 default: 7926 ASSERT(0); 7927 } 7928 7929 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 7930 continue; 7931 7932 id -= DIF_VAR_OTHER_UBASE; 7933 ASSERT(id < *np); 7934 7935 svar = svarp[id]; 7936 ASSERT(svar != NULL); 7937 ASSERT(svar->dtsv_refcnt > 0); 7938 7939 if (--svar->dtsv_refcnt > 0) 7940 continue; 7941 7942 if (svar->dtsv_size != 0) { 7943 ASSERT(svar->dtsv_data != NULL); 7944 kmem_free((void *)(uintptr_t)svar->dtsv_data, 7945 svar->dtsv_size); 7946 } 7947 7948 kmem_free(svar, sizeof (dtrace_statvar_t)); 7949 svarp[id] = NULL; 7950 } 7951 7952 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 7953 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 7954 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 7955 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 7956 7957 kmem_free(dp, sizeof (dtrace_difo_t)); 7958 } 7959 7960 static void 7961 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 7962 { 7963 int i; 7964 7965 ASSERT(MUTEX_HELD(&dtrace_lock)); 7966 ASSERT(dp->dtdo_refcnt != 0); 7967 7968 for (i = 0; i < dp->dtdo_varlen; i++) { 7969 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 7970 7971 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 7972 continue; 7973 7974 ASSERT(dtrace_vtime_references > 0); 7975 if (--dtrace_vtime_references == 0) 7976 dtrace_vtime_disable(); 7977 } 7978 7979 if (--dp->dtdo_refcnt == 0) 7980 dtrace_difo_destroy(dp, vstate); 7981 } 7982 7983 /* 7984 * DTrace Format Functions 7985 */ 7986 static uint16_t 7987 dtrace_format_add(dtrace_state_t *state, char *str) 7988 { 7989 char *fmt, **new; 7990 uint16_t ndx, len = strlen(str) + 1; 7991 7992 fmt = kmem_zalloc(len, KM_SLEEP); 7993 bcopy(str, fmt, len); 7994 7995 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 7996 if (state->dts_formats[ndx] == NULL) { 7997 state->dts_formats[ndx] = fmt; 7998 return (ndx + 1); 7999 } 8000 } 8001 8002 if (state->dts_nformats == USHRT_MAX) { 8003 /* 8004 * This is only likely if a denial-of-service attack is being 8005 * attempted. As such, it's okay to fail silently here. 8006 */ 8007 kmem_free(fmt, len); 8008 return (0); 8009 } 8010 8011 /* 8012 * For simplicity, we always resize the formats array to be exactly the 8013 * number of formats. 8014 */ 8015 ndx = state->dts_nformats++; 8016 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 8017 8018 if (state->dts_formats != NULL) { 8019 ASSERT(ndx != 0); 8020 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 8021 kmem_free(state->dts_formats, ndx * sizeof (char *)); 8022 } 8023 8024 state->dts_formats = new; 8025 state->dts_formats[ndx] = fmt; 8026 8027 return (ndx + 1); 8028 } 8029 8030 static void 8031 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 8032 { 8033 char *fmt; 8034 8035 ASSERT(state->dts_formats != NULL); 8036 ASSERT(format <= state->dts_nformats); 8037 ASSERT(state->dts_formats[format - 1] != NULL); 8038 8039 fmt = state->dts_formats[format - 1]; 8040 kmem_free(fmt, strlen(fmt) + 1); 8041 state->dts_formats[format - 1] = NULL; 8042 } 8043 8044 static void 8045 dtrace_format_destroy(dtrace_state_t *state) 8046 { 8047 int i; 8048 8049 if (state->dts_nformats == 0) { 8050 ASSERT(state->dts_formats == NULL); 8051 return; 8052 } 8053 8054 ASSERT(state->dts_formats != NULL); 8055 8056 for (i = 0; i < state->dts_nformats; i++) { 8057 char *fmt = state->dts_formats[i]; 8058 8059 if (fmt == NULL) 8060 continue; 8061 8062 kmem_free(fmt, strlen(fmt) + 1); 8063 } 8064 8065 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 8066 state->dts_nformats = 0; 8067 state->dts_formats = NULL; 8068 } 8069 8070 /* 8071 * DTrace Predicate Functions 8072 */ 8073 static dtrace_predicate_t * 8074 dtrace_predicate_create(dtrace_difo_t *dp) 8075 { 8076 dtrace_predicate_t *pred; 8077 8078 ASSERT(MUTEX_HELD(&dtrace_lock)); 8079 ASSERT(dp->dtdo_refcnt != 0); 8080 8081 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 8082 pred->dtp_difo = dp; 8083 pred->dtp_refcnt = 1; 8084 8085 if (!dtrace_difo_cacheable(dp)) 8086 return (pred); 8087 8088 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 8089 /* 8090 * This is only theoretically possible -- we have had 2^32 8091 * cacheable predicates on this machine. We cannot allow any 8092 * more predicates to become cacheable: as unlikely as it is, 8093 * there may be a thread caching a (now stale) predicate cache 8094 * ID. (N.B.: the temptation is being successfully resisted to 8095 * have this cmn_err() "Holy shit -- we executed this code!") 8096 */ 8097 return (pred); 8098 } 8099 8100 pred->dtp_cacheid = dtrace_predcache_id++; 8101 8102 return (pred); 8103 } 8104 8105 static void 8106 dtrace_predicate_hold(dtrace_predicate_t *pred) 8107 { 8108 ASSERT(MUTEX_HELD(&dtrace_lock)); 8109 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 8110 ASSERT(pred->dtp_refcnt > 0); 8111 8112 pred->dtp_refcnt++; 8113 } 8114 8115 static void 8116 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 8117 { 8118 dtrace_difo_t *dp = pred->dtp_difo; 8119 8120 ASSERT(MUTEX_HELD(&dtrace_lock)); 8121 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 8122 ASSERT(pred->dtp_refcnt > 0); 8123 8124 if (--pred->dtp_refcnt == 0) { 8125 dtrace_difo_release(pred->dtp_difo, vstate); 8126 kmem_free(pred, sizeof (dtrace_predicate_t)); 8127 } 8128 } 8129 8130 /* 8131 * DTrace Action Description Functions 8132 */ 8133 static dtrace_actdesc_t * 8134 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 8135 uint64_t uarg, uint64_t arg) 8136 { 8137 dtrace_actdesc_t *act; 8138 8139 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 8140 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 8141 8142 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 8143 act->dtad_kind = kind; 8144 act->dtad_ntuple = ntuple; 8145 act->dtad_uarg = uarg; 8146 act->dtad_arg = arg; 8147 act->dtad_refcnt = 1; 8148 8149 return (act); 8150 } 8151 8152 static void 8153 dtrace_actdesc_hold(dtrace_actdesc_t *act) 8154 { 8155 ASSERT(act->dtad_refcnt >= 1); 8156 act->dtad_refcnt++; 8157 } 8158 8159 static void 8160 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 8161 { 8162 dtrace_actkind_t kind = act->dtad_kind; 8163 dtrace_difo_t *dp; 8164 8165 ASSERT(act->dtad_refcnt >= 1); 8166 8167 if (--act->dtad_refcnt != 0) 8168 return; 8169 8170 if ((dp = act->dtad_difo) != NULL) 8171 dtrace_difo_release(dp, vstate); 8172 8173 if (DTRACEACT_ISPRINTFLIKE(kind)) { 8174 char *str = (char *)(uintptr_t)act->dtad_arg; 8175 8176 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 8177 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 8178 8179 if (str != NULL) 8180 kmem_free(str, strlen(str) + 1); 8181 } 8182 8183 kmem_free(act, sizeof (dtrace_actdesc_t)); 8184 } 8185 8186 /* 8187 * DTrace ECB Functions 8188 */ 8189 static dtrace_ecb_t * 8190 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 8191 { 8192 dtrace_ecb_t *ecb; 8193 dtrace_epid_t epid; 8194 8195 ASSERT(MUTEX_HELD(&dtrace_lock)); 8196 8197 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 8198 ecb->dte_predicate = NULL; 8199 ecb->dte_probe = probe; 8200 8201 /* 8202 * The default size is the size of the default action: recording 8203 * the epid. 8204 */ 8205 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 8206 ecb->dte_alignment = sizeof (dtrace_epid_t); 8207 8208 epid = state->dts_epid++; 8209 8210 if (epid - 1 >= state->dts_necbs) { 8211 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 8212 int necbs = state->dts_necbs << 1; 8213 8214 ASSERT(epid == state->dts_necbs + 1); 8215 8216 if (necbs == 0) { 8217 ASSERT(oecbs == NULL); 8218 necbs = 1; 8219 } 8220 8221 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 8222 8223 if (oecbs != NULL) 8224 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 8225 8226 dtrace_membar_producer(); 8227 state->dts_ecbs = ecbs; 8228 8229 if (oecbs != NULL) { 8230 /* 8231 * If this state is active, we must dtrace_sync() 8232 * before we can free the old dts_ecbs array: we're 8233 * coming in hot, and there may be active ring 8234 * buffer processing (which indexes into the dts_ecbs 8235 * array) on another CPU. 8236 */ 8237 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 8238 dtrace_sync(); 8239 8240 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 8241 } 8242 8243 dtrace_membar_producer(); 8244 state->dts_necbs = necbs; 8245 } 8246 8247 ecb->dte_state = state; 8248 8249 ASSERT(state->dts_ecbs[epid - 1] == NULL); 8250 dtrace_membar_producer(); 8251 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 8252 8253 return (ecb); 8254 } 8255 8256 static void 8257 dtrace_ecb_enable(dtrace_ecb_t *ecb) 8258 { 8259 dtrace_probe_t *probe = ecb->dte_probe; 8260 8261 ASSERT(MUTEX_HELD(&cpu_lock)); 8262 ASSERT(MUTEX_HELD(&dtrace_lock)); 8263 ASSERT(ecb->dte_next == NULL); 8264 8265 if (probe == NULL) { 8266 /* 8267 * This is the NULL probe -- there's nothing to do. 8268 */ 8269 return; 8270 } 8271 8272 if (probe->dtpr_ecb == NULL) { 8273 dtrace_provider_t *prov = probe->dtpr_provider; 8274 8275 /* 8276 * We're the first ECB on this probe. 8277 */ 8278 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 8279 8280 if (ecb->dte_predicate != NULL) 8281 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 8282 8283 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 8284 probe->dtpr_id, probe->dtpr_arg); 8285 } else { 8286 /* 8287 * This probe is already active. Swing the last pointer to 8288 * point to the new ECB, and issue a dtrace_sync() to assure 8289 * that all CPUs have seen the change. 8290 */ 8291 ASSERT(probe->dtpr_ecb_last != NULL); 8292 probe->dtpr_ecb_last->dte_next = ecb; 8293 probe->dtpr_ecb_last = ecb; 8294 probe->dtpr_predcache = 0; 8295 8296 dtrace_sync(); 8297 } 8298 } 8299 8300 static void 8301 dtrace_ecb_resize(dtrace_ecb_t *ecb) 8302 { 8303 uint32_t maxalign = sizeof (dtrace_epid_t); 8304 uint32_t align = sizeof (uint8_t), offs, diff; 8305 dtrace_action_t *act; 8306 int wastuple = 0; 8307 uint32_t aggbase = UINT32_MAX; 8308 dtrace_state_t *state = ecb->dte_state; 8309 8310 /* 8311 * If we record anything, we always record the epid. (And we always 8312 * record it first.) 8313 */ 8314 offs = sizeof (dtrace_epid_t); 8315 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 8316 8317 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 8318 dtrace_recdesc_t *rec = &act->dta_rec; 8319 8320 if ((align = rec->dtrd_alignment) > maxalign) 8321 maxalign = align; 8322 8323 if (!wastuple && act->dta_intuple) { 8324 /* 8325 * This is the first record in a tuple. Align the 8326 * offset to be at offset 4 in an 8-byte aligned 8327 * block. 8328 */ 8329 diff = offs + sizeof (dtrace_aggid_t); 8330 8331 if (diff = (diff & (sizeof (uint64_t) - 1))) 8332 offs += sizeof (uint64_t) - diff; 8333 8334 aggbase = offs - sizeof (dtrace_aggid_t); 8335 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 8336 } 8337 8338 /*LINTED*/ 8339 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 8340 /* 8341 * The current offset is not properly aligned; align it. 8342 */ 8343 offs += align - diff; 8344 } 8345 8346 rec->dtrd_offset = offs; 8347 8348 if (offs + rec->dtrd_size > ecb->dte_needed) { 8349 ecb->dte_needed = offs + rec->dtrd_size; 8350 8351 if (ecb->dte_needed > state->dts_needed) 8352 state->dts_needed = ecb->dte_needed; 8353 } 8354 8355 if (DTRACEACT_ISAGG(act->dta_kind)) { 8356 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 8357 dtrace_action_t *first = agg->dtag_first, *prev; 8358 8359 ASSERT(rec->dtrd_size != 0 && first != NULL); 8360 ASSERT(wastuple); 8361 ASSERT(aggbase != UINT32_MAX); 8362 8363 agg->dtag_base = aggbase; 8364 8365 while ((prev = first->dta_prev) != NULL && 8366 DTRACEACT_ISAGG(prev->dta_kind)) { 8367 agg = (dtrace_aggregation_t *)prev; 8368 first = agg->dtag_first; 8369 } 8370 8371 if (prev != NULL) { 8372 offs = prev->dta_rec.dtrd_offset + 8373 prev->dta_rec.dtrd_size; 8374 } else { 8375 offs = sizeof (dtrace_epid_t); 8376 } 8377 wastuple = 0; 8378 } else { 8379 if (!act->dta_intuple) 8380 ecb->dte_size = offs + rec->dtrd_size; 8381 8382 offs += rec->dtrd_size; 8383 } 8384 8385 wastuple = act->dta_intuple; 8386 } 8387 8388 if ((act = ecb->dte_action) != NULL && 8389 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 8390 ecb->dte_size == sizeof (dtrace_epid_t)) { 8391 /* 8392 * If the size is still sizeof (dtrace_epid_t), then all 8393 * actions store no data; set the size to 0. 8394 */ 8395 ecb->dte_alignment = maxalign; 8396 ecb->dte_size = 0; 8397 8398 /* 8399 * If the needed space is still sizeof (dtrace_epid_t), then 8400 * all actions need no additional space; set the needed 8401 * size to 0. 8402 */ 8403 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 8404 ecb->dte_needed = 0; 8405 8406 return; 8407 } 8408 8409 /* 8410 * Set our alignment, and make sure that the dte_size and dte_needed 8411 * are aligned to the size of an EPID. 8412 */ 8413 ecb->dte_alignment = maxalign; 8414 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 8415 ~(sizeof (dtrace_epid_t) - 1); 8416 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 8417 ~(sizeof (dtrace_epid_t) - 1); 8418 ASSERT(ecb->dte_size <= ecb->dte_needed); 8419 } 8420 8421 static dtrace_action_t * 8422 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 8423 { 8424 dtrace_aggregation_t *agg; 8425 size_t size = sizeof (uint64_t); 8426 int ntuple = desc->dtad_ntuple; 8427 dtrace_action_t *act; 8428 dtrace_recdesc_t *frec; 8429 dtrace_aggid_t aggid; 8430 dtrace_state_t *state = ecb->dte_state; 8431 8432 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 8433 agg->dtag_ecb = ecb; 8434 8435 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 8436 8437 switch (desc->dtad_kind) { 8438 case DTRACEAGG_MIN: 8439 agg->dtag_initial = UINT64_MAX; 8440 agg->dtag_aggregate = dtrace_aggregate_min; 8441 break; 8442 8443 case DTRACEAGG_MAX: 8444 agg->dtag_aggregate = dtrace_aggregate_max; 8445 break; 8446 8447 case DTRACEAGG_COUNT: 8448 agg->dtag_aggregate = dtrace_aggregate_count; 8449 break; 8450 8451 case DTRACEAGG_QUANTIZE: 8452 agg->dtag_aggregate = dtrace_aggregate_quantize; 8453 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 8454 sizeof (uint64_t); 8455 break; 8456 8457 case DTRACEAGG_LQUANTIZE: { 8458 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 8459 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 8460 8461 agg->dtag_initial = desc->dtad_arg; 8462 agg->dtag_aggregate = dtrace_aggregate_lquantize; 8463 8464 if (step == 0 || levels == 0) 8465 goto err; 8466 8467 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 8468 break; 8469 } 8470 8471 case DTRACEAGG_AVG: 8472 agg->dtag_aggregate = dtrace_aggregate_avg; 8473 size = sizeof (uint64_t) * 2; 8474 break; 8475 8476 case DTRACEAGG_SUM: 8477 agg->dtag_aggregate = dtrace_aggregate_sum; 8478 break; 8479 8480 default: 8481 goto err; 8482 } 8483 8484 agg->dtag_action.dta_rec.dtrd_size = size; 8485 8486 if (ntuple == 0) 8487 goto err; 8488 8489 /* 8490 * We must make sure that we have enough actions for the n-tuple. 8491 */ 8492 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 8493 if (DTRACEACT_ISAGG(act->dta_kind)) 8494 break; 8495 8496 if (--ntuple == 0) { 8497 /* 8498 * This is the action with which our n-tuple begins. 8499 */ 8500 agg->dtag_first = act; 8501 goto success; 8502 } 8503 } 8504 8505 /* 8506 * This n-tuple is short by ntuple elements. Return failure. 8507 */ 8508 ASSERT(ntuple != 0); 8509 err: 8510 kmem_free(agg, sizeof (dtrace_aggregation_t)); 8511 return (NULL); 8512 8513 success: 8514 /* 8515 * If the last action in the tuple has a size of zero, it's actually 8516 * an expression argument for the aggregating action. 8517 */ 8518 ASSERT(ecb->dte_action_last != NULL); 8519 act = ecb->dte_action_last; 8520 8521 if (act->dta_kind == DTRACEACT_DIFEXPR) { 8522 ASSERT(act->dta_difo != NULL); 8523 8524 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 8525 agg->dtag_hasarg = 1; 8526 } 8527 8528 /* 8529 * We need to allocate an id for this aggregation. 8530 */ 8531 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 8532 VM_BESTFIT | VM_SLEEP); 8533 8534 if (aggid - 1 >= state->dts_naggregations) { 8535 dtrace_aggregation_t **oaggs = state->dts_aggregations; 8536 dtrace_aggregation_t **aggs; 8537 int naggs = state->dts_naggregations << 1; 8538 int onaggs = state->dts_naggregations; 8539 8540 ASSERT(aggid == state->dts_naggregations + 1); 8541 8542 if (naggs == 0) { 8543 ASSERT(oaggs == NULL); 8544 naggs = 1; 8545 } 8546 8547 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 8548 8549 if (oaggs != NULL) { 8550 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 8551 kmem_free(oaggs, onaggs * sizeof (*aggs)); 8552 } 8553 8554 state->dts_aggregations = aggs; 8555 state->dts_naggregations = naggs; 8556 } 8557 8558 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 8559 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 8560 8561 frec = &agg->dtag_first->dta_rec; 8562 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 8563 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 8564 8565 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 8566 ASSERT(!act->dta_intuple); 8567 act->dta_intuple = 1; 8568 } 8569 8570 return (&agg->dtag_action); 8571 } 8572 8573 static void 8574 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 8575 { 8576 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 8577 dtrace_state_t *state = ecb->dte_state; 8578 dtrace_aggid_t aggid = agg->dtag_id; 8579 8580 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 8581 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 8582 8583 ASSERT(state->dts_aggregations[aggid - 1] == agg); 8584 state->dts_aggregations[aggid - 1] = NULL; 8585 8586 kmem_free(agg, sizeof (dtrace_aggregation_t)); 8587 } 8588 8589 static int 8590 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 8591 { 8592 dtrace_action_t *action, *last; 8593 dtrace_difo_t *dp = desc->dtad_difo; 8594 uint32_t size = 0, align = sizeof (uint8_t), mask; 8595 uint16_t format = 0; 8596 dtrace_recdesc_t *rec; 8597 dtrace_state_t *state = ecb->dte_state; 8598 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 8599 uint64_t arg = desc->dtad_arg; 8600 8601 ASSERT(MUTEX_HELD(&dtrace_lock)); 8602 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 8603 8604 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 8605 /* 8606 * If this is an aggregating action, there must be neither 8607 * a speculate nor a commit on the action chain. 8608 */ 8609 dtrace_action_t *act; 8610 8611 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 8612 if (act->dta_kind == DTRACEACT_COMMIT) 8613 return (EINVAL); 8614 8615 if (act->dta_kind == DTRACEACT_SPECULATE) 8616 return (EINVAL); 8617 } 8618 8619 action = dtrace_ecb_aggregation_create(ecb, desc); 8620 8621 if (action == NULL) 8622 return (EINVAL); 8623 } else { 8624 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 8625 (desc->dtad_kind == DTRACEACT_DIFEXPR && 8626 dp != NULL && dp->dtdo_destructive)) { 8627 state->dts_destructive = 1; 8628 } 8629 8630 switch (desc->dtad_kind) { 8631 case DTRACEACT_PRINTF: 8632 case DTRACEACT_PRINTA: 8633 case DTRACEACT_SYSTEM: 8634 case DTRACEACT_FREOPEN: 8635 /* 8636 * We know that our arg is a string -- turn it into a 8637 * format. 8638 */ 8639 if (arg == NULL) { 8640 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); 8641 format = 0; 8642 } else { 8643 ASSERT(arg != NULL); 8644 ASSERT(arg > KERNELBASE); 8645 format = dtrace_format_add(state, 8646 (char *)(uintptr_t)arg); 8647 } 8648 8649 /*FALLTHROUGH*/ 8650 case DTRACEACT_LIBACT: 8651 case DTRACEACT_DIFEXPR: 8652 if (dp == NULL) 8653 return (EINVAL); 8654 8655 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 8656 break; 8657 8658 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 8659 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 8660 return (EINVAL); 8661 8662 size = opt[DTRACEOPT_STRSIZE]; 8663 } 8664 8665 break; 8666 8667 case DTRACEACT_STACK: 8668 if ((nframes = arg) == 0) { 8669 nframes = opt[DTRACEOPT_STACKFRAMES]; 8670 ASSERT(nframes > 0); 8671 arg = nframes; 8672 } 8673 8674 size = nframes * sizeof (pc_t); 8675 break; 8676 8677 case DTRACEACT_JSTACK: 8678 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 8679 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 8680 8681 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 8682 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 8683 8684 arg = DTRACE_USTACK_ARG(nframes, strsize); 8685 8686 /*FALLTHROUGH*/ 8687 case DTRACEACT_USTACK: 8688 if (desc->dtad_kind != DTRACEACT_JSTACK && 8689 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 8690 strsize = DTRACE_USTACK_STRSIZE(arg); 8691 nframes = opt[DTRACEOPT_USTACKFRAMES]; 8692 ASSERT(nframes > 0); 8693 arg = DTRACE_USTACK_ARG(nframes, strsize); 8694 } 8695 8696 /* 8697 * Save a slot for the pid. 8698 */ 8699 size = (nframes + 1) * sizeof (uint64_t); 8700 size += DTRACE_USTACK_STRSIZE(arg); 8701 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 8702 8703 break; 8704 8705 case DTRACEACT_SYM: 8706 case DTRACEACT_MOD: 8707 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 8708 sizeof (uint64_t)) || 8709 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 8710 return (EINVAL); 8711 break; 8712 8713 case DTRACEACT_USYM: 8714 case DTRACEACT_UMOD: 8715 case DTRACEACT_UADDR: 8716 if (dp == NULL || 8717 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 8718 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 8719 return (EINVAL); 8720 8721 /* 8722 * We have a slot for the pid, plus a slot for the 8723 * argument. To keep things simple (aligned with 8724 * bitness-neutral sizing), we store each as a 64-bit 8725 * quantity. 8726 */ 8727 size = 2 * sizeof (uint64_t); 8728 break; 8729 8730 case DTRACEACT_STOP: 8731 case DTRACEACT_BREAKPOINT: 8732 case DTRACEACT_PANIC: 8733 break; 8734 8735 case DTRACEACT_CHILL: 8736 case DTRACEACT_DISCARD: 8737 case DTRACEACT_RAISE: 8738 if (dp == NULL) 8739 return (EINVAL); 8740 break; 8741 8742 case DTRACEACT_EXIT: 8743 if (dp == NULL || 8744 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 8745 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 8746 return (EINVAL); 8747 break; 8748 8749 case DTRACEACT_SPECULATE: 8750 if (ecb->dte_size > sizeof (dtrace_epid_t)) 8751 return (EINVAL); 8752 8753 if (dp == NULL) 8754 return (EINVAL); 8755 8756 state->dts_speculates = 1; 8757 break; 8758 8759 case DTRACEACT_COMMIT: { 8760 dtrace_action_t *act = ecb->dte_action; 8761 8762 for (; act != NULL; act = act->dta_next) { 8763 if (act->dta_kind == DTRACEACT_COMMIT) 8764 return (EINVAL); 8765 } 8766 8767 if (dp == NULL) 8768 return (EINVAL); 8769 break; 8770 } 8771 8772 default: 8773 return (EINVAL); 8774 } 8775 8776 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 8777 /* 8778 * If this is a data-storing action or a speculate, 8779 * we must be sure that there isn't a commit on the 8780 * action chain. 8781 */ 8782 dtrace_action_t *act = ecb->dte_action; 8783 8784 for (; act != NULL; act = act->dta_next) { 8785 if (act->dta_kind == DTRACEACT_COMMIT) 8786 return (EINVAL); 8787 } 8788 } 8789 8790 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 8791 action->dta_rec.dtrd_size = size; 8792 } 8793 8794 action->dta_refcnt = 1; 8795 rec = &action->dta_rec; 8796 size = rec->dtrd_size; 8797 8798 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 8799 if (!(size & mask)) { 8800 align = mask + 1; 8801 break; 8802 } 8803 } 8804 8805 action->dta_kind = desc->dtad_kind; 8806 8807 if ((action->dta_difo = dp) != NULL) 8808 dtrace_difo_hold(dp); 8809 8810 rec->dtrd_action = action->dta_kind; 8811 rec->dtrd_arg = arg; 8812 rec->dtrd_uarg = desc->dtad_uarg; 8813 rec->dtrd_alignment = (uint16_t)align; 8814 rec->dtrd_format = format; 8815 8816 if ((last = ecb->dte_action_last) != NULL) { 8817 ASSERT(ecb->dte_action != NULL); 8818 action->dta_prev = last; 8819 last->dta_next = action; 8820 } else { 8821 ASSERT(ecb->dte_action == NULL); 8822 ecb->dte_action = action; 8823 } 8824 8825 ecb->dte_action_last = action; 8826 8827 return (0); 8828 } 8829 8830 static void 8831 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 8832 { 8833 dtrace_action_t *act = ecb->dte_action, *next; 8834 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 8835 dtrace_difo_t *dp; 8836 uint16_t format; 8837 8838 if (act != NULL && act->dta_refcnt > 1) { 8839 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 8840 act->dta_refcnt--; 8841 } else { 8842 for (; act != NULL; act = next) { 8843 next = act->dta_next; 8844 ASSERT(next != NULL || act == ecb->dte_action_last); 8845 ASSERT(act->dta_refcnt == 1); 8846 8847 if ((format = act->dta_rec.dtrd_format) != 0) 8848 dtrace_format_remove(ecb->dte_state, format); 8849 8850 if ((dp = act->dta_difo) != NULL) 8851 dtrace_difo_release(dp, vstate); 8852 8853 if (DTRACEACT_ISAGG(act->dta_kind)) { 8854 dtrace_ecb_aggregation_destroy(ecb, act); 8855 } else { 8856 kmem_free(act, sizeof (dtrace_action_t)); 8857 } 8858 } 8859 } 8860 8861 ecb->dte_action = NULL; 8862 ecb->dte_action_last = NULL; 8863 ecb->dte_size = sizeof (dtrace_epid_t); 8864 } 8865 8866 static void 8867 dtrace_ecb_disable(dtrace_ecb_t *ecb) 8868 { 8869 /* 8870 * We disable the ECB by removing it from its probe. 8871 */ 8872 dtrace_ecb_t *pecb, *prev = NULL; 8873 dtrace_probe_t *probe = ecb->dte_probe; 8874 8875 ASSERT(MUTEX_HELD(&dtrace_lock)); 8876 8877 if (probe == NULL) { 8878 /* 8879 * This is the NULL probe; there is nothing to disable. 8880 */ 8881 return; 8882 } 8883 8884 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 8885 if (pecb == ecb) 8886 break; 8887 prev = pecb; 8888 } 8889 8890 ASSERT(pecb != NULL); 8891 8892 if (prev == NULL) { 8893 probe->dtpr_ecb = ecb->dte_next; 8894 } else { 8895 prev->dte_next = ecb->dte_next; 8896 } 8897 8898 if (ecb == probe->dtpr_ecb_last) { 8899 ASSERT(ecb->dte_next == NULL); 8900 probe->dtpr_ecb_last = prev; 8901 } 8902 8903 /* 8904 * The ECB has been disconnected from the probe; now sync to assure 8905 * that all CPUs have seen the change before returning. 8906 */ 8907 dtrace_sync(); 8908 8909 if (probe->dtpr_ecb == NULL) { 8910 /* 8911 * That was the last ECB on the probe; clear the predicate 8912 * cache ID for the probe, disable it and sync one more time 8913 * to assure that we'll never hit it again. 8914 */ 8915 dtrace_provider_t *prov = probe->dtpr_provider; 8916 8917 ASSERT(ecb->dte_next == NULL); 8918 ASSERT(probe->dtpr_ecb_last == NULL); 8919 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 8920 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 8921 probe->dtpr_id, probe->dtpr_arg); 8922 dtrace_sync(); 8923 } else { 8924 /* 8925 * There is at least one ECB remaining on the probe. If there 8926 * is _exactly_ one, set the probe's predicate cache ID to be 8927 * the predicate cache ID of the remaining ECB. 8928 */ 8929 ASSERT(probe->dtpr_ecb_last != NULL); 8930 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 8931 8932 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 8933 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 8934 8935 ASSERT(probe->dtpr_ecb->dte_next == NULL); 8936 8937 if (p != NULL) 8938 probe->dtpr_predcache = p->dtp_cacheid; 8939 } 8940 8941 ecb->dte_next = NULL; 8942 } 8943 } 8944 8945 static void 8946 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 8947 { 8948 dtrace_state_t *state = ecb->dte_state; 8949 dtrace_vstate_t *vstate = &state->dts_vstate; 8950 dtrace_predicate_t *pred; 8951 dtrace_epid_t epid = ecb->dte_epid; 8952 8953 ASSERT(MUTEX_HELD(&dtrace_lock)); 8954 ASSERT(ecb->dte_next == NULL); 8955 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 8956 8957 if ((pred = ecb->dte_predicate) != NULL) 8958 dtrace_predicate_release(pred, vstate); 8959 8960 dtrace_ecb_action_remove(ecb); 8961 8962 ASSERT(state->dts_ecbs[epid - 1] == ecb); 8963 state->dts_ecbs[epid - 1] = NULL; 8964 8965 kmem_free(ecb, sizeof (dtrace_ecb_t)); 8966 } 8967 8968 static dtrace_ecb_t * 8969 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 8970 dtrace_enabling_t *enab) 8971 { 8972 dtrace_ecb_t *ecb; 8973 dtrace_predicate_t *pred; 8974 dtrace_actdesc_t *act; 8975 dtrace_provider_t *prov; 8976 dtrace_ecbdesc_t *desc = enab->dten_current; 8977 8978 ASSERT(MUTEX_HELD(&dtrace_lock)); 8979 ASSERT(state != NULL); 8980 8981 ecb = dtrace_ecb_add(state, probe); 8982 ecb->dte_uarg = desc->dted_uarg; 8983 8984 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 8985 dtrace_predicate_hold(pred); 8986 ecb->dte_predicate = pred; 8987 } 8988 8989 if (probe != NULL) { 8990 /* 8991 * If the provider shows more leg than the consumer is old 8992 * enough to see, we need to enable the appropriate implicit 8993 * predicate bits to prevent the ecb from activating at 8994 * revealing times. 8995 * 8996 * Providers specifying DTRACE_PRIV_USER at register time 8997 * are stating that they need the /proc-style privilege 8998 * model to be enforced, and this is what DTRACE_COND_OWNER 8999 * and DTRACE_COND_ZONEOWNER will then do at probe time. 9000 */ 9001 prov = probe->dtpr_provider; 9002 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 9003 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9004 ecb->dte_cond |= DTRACE_COND_OWNER; 9005 9006 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 9007 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9008 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 9009 9010 /* 9011 * If the provider shows us kernel innards and the user 9012 * is lacking sufficient privilege, enable the 9013 * DTRACE_COND_USERMODE implicit predicate. 9014 */ 9015 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 9016 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 9017 ecb->dte_cond |= DTRACE_COND_USERMODE; 9018 } 9019 9020 if (dtrace_ecb_create_cache != NULL) { 9021 /* 9022 * If we have a cached ecb, we'll use its action list instead 9023 * of creating our own (saving both time and space). 9024 */ 9025 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 9026 dtrace_action_t *act = cached->dte_action; 9027 9028 if (act != NULL) { 9029 ASSERT(act->dta_refcnt > 0); 9030 act->dta_refcnt++; 9031 ecb->dte_action = act; 9032 ecb->dte_action_last = cached->dte_action_last; 9033 ecb->dte_needed = cached->dte_needed; 9034 ecb->dte_size = cached->dte_size; 9035 ecb->dte_alignment = cached->dte_alignment; 9036 } 9037 9038 return (ecb); 9039 } 9040 9041 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 9042 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 9043 dtrace_ecb_destroy(ecb); 9044 return (NULL); 9045 } 9046 } 9047 9048 dtrace_ecb_resize(ecb); 9049 9050 return (dtrace_ecb_create_cache = ecb); 9051 } 9052 9053 static int 9054 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 9055 { 9056 dtrace_ecb_t *ecb; 9057 dtrace_enabling_t *enab = arg; 9058 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 9059 9060 ASSERT(state != NULL); 9061 9062 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 9063 /* 9064 * This probe was created in a generation for which this 9065 * enabling has previously created ECBs; we don't want to 9066 * enable it again, so just kick out. 9067 */ 9068 return (DTRACE_MATCH_NEXT); 9069 } 9070 9071 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 9072 return (DTRACE_MATCH_DONE); 9073 9074 dtrace_ecb_enable(ecb); 9075 return (DTRACE_MATCH_NEXT); 9076 } 9077 9078 static dtrace_ecb_t * 9079 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 9080 { 9081 dtrace_ecb_t *ecb; 9082 9083 ASSERT(MUTEX_HELD(&dtrace_lock)); 9084 9085 if (id == 0 || id > state->dts_necbs) 9086 return (NULL); 9087 9088 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 9089 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 9090 9091 return (state->dts_ecbs[id - 1]); 9092 } 9093 9094 static dtrace_aggregation_t * 9095 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 9096 { 9097 dtrace_aggregation_t *agg; 9098 9099 ASSERT(MUTEX_HELD(&dtrace_lock)); 9100 9101 if (id == 0 || id > state->dts_naggregations) 9102 return (NULL); 9103 9104 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 9105 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 9106 agg->dtag_id == id); 9107 9108 return (state->dts_aggregations[id - 1]); 9109 } 9110 9111 /* 9112 * DTrace Buffer Functions 9113 * 9114 * The following functions manipulate DTrace buffers. Most of these functions 9115 * are called in the context of establishing or processing consumer state; 9116 * exceptions are explicitly noted. 9117 */ 9118 9119 /* 9120 * Note: called from cross call context. This function switches the two 9121 * buffers on a given CPU. The atomicity of this operation is assured by 9122 * disabling interrupts while the actual switch takes place; the disabling of 9123 * interrupts serializes the execution with any execution of dtrace_probe() on 9124 * the same CPU. 9125 */ 9126 static void 9127 dtrace_buffer_switch(dtrace_buffer_t *buf) 9128 { 9129 caddr_t tomax = buf->dtb_tomax; 9130 caddr_t xamot = buf->dtb_xamot; 9131 dtrace_icookie_t cookie; 9132 9133 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 9134 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 9135 9136 cookie = dtrace_interrupt_disable(); 9137 buf->dtb_tomax = xamot; 9138 buf->dtb_xamot = tomax; 9139 buf->dtb_xamot_drops = buf->dtb_drops; 9140 buf->dtb_xamot_offset = buf->dtb_offset; 9141 buf->dtb_xamot_errors = buf->dtb_errors; 9142 buf->dtb_xamot_flags = buf->dtb_flags; 9143 buf->dtb_offset = 0; 9144 buf->dtb_drops = 0; 9145 buf->dtb_errors = 0; 9146 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 9147 dtrace_interrupt_enable(cookie); 9148 } 9149 9150 /* 9151 * Note: called from cross call context. This function activates a buffer 9152 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 9153 * is guaranteed by the disabling of interrupts. 9154 */ 9155 static void 9156 dtrace_buffer_activate(dtrace_state_t *state) 9157 { 9158 dtrace_buffer_t *buf; 9159 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 9160 9161 buf = &state->dts_buffer[CPU->cpu_id]; 9162 9163 if (buf->dtb_tomax != NULL) { 9164 /* 9165 * We might like to assert that the buffer is marked inactive, 9166 * but this isn't necessarily true: the buffer for the CPU 9167 * that processes the BEGIN probe has its buffer activated 9168 * manually. In this case, we take the (harmless) action 9169 * re-clearing the bit INACTIVE bit. 9170 */ 9171 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 9172 } 9173 9174 dtrace_interrupt_enable(cookie); 9175 } 9176 9177 static int 9178 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 9179 processorid_t cpu) 9180 { 9181 cpu_t *cp; 9182 dtrace_buffer_t *buf; 9183 9184 ASSERT(MUTEX_HELD(&cpu_lock)); 9185 ASSERT(MUTEX_HELD(&dtrace_lock)); 9186 9187 if (size > dtrace_nonroot_maxsize && 9188 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 9189 return (EFBIG); 9190 9191 cp = cpu_list; 9192 9193 do { 9194 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 9195 continue; 9196 9197 buf = &bufs[cp->cpu_id]; 9198 9199 /* 9200 * If there is already a buffer allocated for this CPU, it 9201 * is only possible that this is a DR event. In this case, 9202 * the buffer size must match our specified size. 9203 */ 9204 if (buf->dtb_tomax != NULL) { 9205 ASSERT(buf->dtb_size == size); 9206 continue; 9207 } 9208 9209 ASSERT(buf->dtb_xamot == NULL); 9210 9211 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 9212 goto err; 9213 9214 buf->dtb_size = size; 9215 buf->dtb_flags = flags; 9216 buf->dtb_offset = 0; 9217 buf->dtb_drops = 0; 9218 9219 if (flags & DTRACEBUF_NOSWITCH) 9220 continue; 9221 9222 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 9223 goto err; 9224 } while ((cp = cp->cpu_next) != cpu_list); 9225 9226 return (0); 9227 9228 err: 9229 cp = cpu_list; 9230 9231 do { 9232 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 9233 continue; 9234 9235 buf = &bufs[cp->cpu_id]; 9236 9237 if (buf->dtb_xamot != NULL) { 9238 ASSERT(buf->dtb_tomax != NULL); 9239 ASSERT(buf->dtb_size == size); 9240 kmem_free(buf->dtb_xamot, size); 9241 } 9242 9243 if (buf->dtb_tomax != NULL) { 9244 ASSERT(buf->dtb_size == size); 9245 kmem_free(buf->dtb_tomax, size); 9246 } 9247 9248 buf->dtb_tomax = NULL; 9249 buf->dtb_xamot = NULL; 9250 buf->dtb_size = 0; 9251 } while ((cp = cp->cpu_next) != cpu_list); 9252 9253 return (ENOMEM); 9254 } 9255 9256 /* 9257 * Note: called from probe context. This function just increments the drop 9258 * count on a buffer. It has been made a function to allow for the 9259 * possibility of understanding the source of mysterious drop counts. (A 9260 * problem for which one may be particularly disappointed that DTrace cannot 9261 * be used to understand DTrace.) 9262 */ 9263 static void 9264 dtrace_buffer_drop(dtrace_buffer_t *buf) 9265 { 9266 buf->dtb_drops++; 9267 } 9268 9269 /* 9270 * Note: called from probe context. This function is called to reserve space 9271 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 9272 * mstate. Returns the new offset in the buffer, or a negative value if an 9273 * error has occurred. 9274 */ 9275 static intptr_t 9276 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 9277 dtrace_state_t *state, dtrace_mstate_t *mstate) 9278 { 9279 intptr_t offs = buf->dtb_offset, soffs; 9280 intptr_t woffs; 9281 caddr_t tomax; 9282 size_t total; 9283 9284 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 9285 return (-1); 9286 9287 if ((tomax = buf->dtb_tomax) == NULL) { 9288 dtrace_buffer_drop(buf); 9289 return (-1); 9290 } 9291 9292 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 9293 while (offs & (align - 1)) { 9294 /* 9295 * Assert that our alignment is off by a number which 9296 * is itself sizeof (uint32_t) aligned. 9297 */ 9298 ASSERT(!((align - (offs & (align - 1))) & 9299 (sizeof (uint32_t) - 1))); 9300 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 9301 offs += sizeof (uint32_t); 9302 } 9303 9304 if ((soffs = offs + needed) > buf->dtb_size) { 9305 dtrace_buffer_drop(buf); 9306 return (-1); 9307 } 9308 9309 if (mstate == NULL) 9310 return (offs); 9311 9312 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 9313 mstate->dtms_scratch_size = buf->dtb_size - soffs; 9314 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 9315 9316 return (offs); 9317 } 9318 9319 if (buf->dtb_flags & DTRACEBUF_FILL) { 9320 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 9321 (buf->dtb_flags & DTRACEBUF_FULL)) 9322 return (-1); 9323 goto out; 9324 } 9325 9326 total = needed + (offs & (align - 1)); 9327 9328 /* 9329 * For a ring buffer, life is quite a bit more complicated. Before 9330 * we can store any padding, we need to adjust our wrapping offset. 9331 * (If we've never before wrapped or we're not about to, no adjustment 9332 * is required.) 9333 */ 9334 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 9335 offs + total > buf->dtb_size) { 9336 woffs = buf->dtb_xamot_offset; 9337 9338 if (offs + total > buf->dtb_size) { 9339 /* 9340 * We can't fit in the end of the buffer. First, a 9341 * sanity check that we can fit in the buffer at all. 9342 */ 9343 if (total > buf->dtb_size) { 9344 dtrace_buffer_drop(buf); 9345 return (-1); 9346 } 9347 9348 /* 9349 * We're going to be storing at the top of the buffer, 9350 * so now we need to deal with the wrapped offset. We 9351 * only reset our wrapped offset to 0 if it is 9352 * currently greater than the current offset. If it 9353 * is less than the current offset, it is because a 9354 * previous allocation induced a wrap -- but the 9355 * allocation didn't subsequently take the space due 9356 * to an error or false predicate evaluation. In this 9357 * case, we'll just leave the wrapped offset alone: if 9358 * the wrapped offset hasn't been advanced far enough 9359 * for this allocation, it will be adjusted in the 9360 * lower loop. 9361 */ 9362 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 9363 if (woffs >= offs) 9364 woffs = 0; 9365 } else { 9366 woffs = 0; 9367 } 9368 9369 /* 9370 * Now we know that we're going to be storing to the 9371 * top of the buffer and that there is room for us 9372 * there. We need to clear the buffer from the current 9373 * offset to the end (there may be old gunk there). 9374 */ 9375 while (offs < buf->dtb_size) 9376 tomax[offs++] = 0; 9377 9378 /* 9379 * We need to set our offset to zero. And because we 9380 * are wrapping, we need to set the bit indicating as 9381 * much. We can also adjust our needed space back 9382 * down to the space required by the ECB -- we know 9383 * that the top of the buffer is aligned. 9384 */ 9385 offs = 0; 9386 total = needed; 9387 buf->dtb_flags |= DTRACEBUF_WRAPPED; 9388 } else { 9389 /* 9390 * There is room for us in the buffer, so we simply 9391 * need to check the wrapped offset. 9392 */ 9393 if (woffs < offs) { 9394 /* 9395 * The wrapped offset is less than the offset. 9396 * This can happen if we allocated buffer space 9397 * that induced a wrap, but then we didn't 9398 * subsequently take the space due to an error 9399 * or false predicate evaluation. This is 9400 * okay; we know that _this_ allocation isn't 9401 * going to induce a wrap. We still can't 9402 * reset the wrapped offset to be zero, 9403 * however: the space may have been trashed in 9404 * the previous failed probe attempt. But at 9405 * least the wrapped offset doesn't need to 9406 * be adjusted at all... 9407 */ 9408 goto out; 9409 } 9410 } 9411 9412 while (offs + total > woffs) { 9413 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 9414 size_t size; 9415 9416 if (epid == DTRACE_EPIDNONE) { 9417 size = sizeof (uint32_t); 9418 } else { 9419 ASSERT(epid <= state->dts_necbs); 9420 ASSERT(state->dts_ecbs[epid - 1] != NULL); 9421 9422 size = state->dts_ecbs[epid - 1]->dte_size; 9423 } 9424 9425 ASSERT(woffs + size <= buf->dtb_size); 9426 ASSERT(size != 0); 9427 9428 if (woffs + size == buf->dtb_size) { 9429 /* 9430 * We've reached the end of the buffer; we want 9431 * to set the wrapped offset to 0 and break 9432 * out. However, if the offs is 0, then we're 9433 * in a strange edge-condition: the amount of 9434 * space that we want to reserve plus the size 9435 * of the record that we're overwriting is 9436 * greater than the size of the buffer. This 9437 * is problematic because if we reserve the 9438 * space but subsequently don't consume it (due 9439 * to a failed predicate or error) the wrapped 9440 * offset will be 0 -- yet the EPID at offset 0 9441 * will not be committed. This situation is 9442 * relatively easy to deal with: if we're in 9443 * this case, the buffer is indistinguishable 9444 * from one that hasn't wrapped; we need only 9445 * finish the job by clearing the wrapped bit, 9446 * explicitly setting the offset to be 0, and 9447 * zero'ing out the old data in the buffer. 9448 */ 9449 if (offs == 0) { 9450 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 9451 buf->dtb_offset = 0; 9452 woffs = total; 9453 9454 while (woffs < buf->dtb_size) 9455 tomax[woffs++] = 0; 9456 } 9457 9458 woffs = 0; 9459 break; 9460 } 9461 9462 woffs += size; 9463 } 9464 9465 /* 9466 * We have a wrapped offset. It may be that the wrapped offset 9467 * has become zero -- that's okay. 9468 */ 9469 buf->dtb_xamot_offset = woffs; 9470 } 9471 9472 out: 9473 /* 9474 * Now we can plow the buffer with any necessary padding. 9475 */ 9476 while (offs & (align - 1)) { 9477 /* 9478 * Assert that our alignment is off by a number which 9479 * is itself sizeof (uint32_t) aligned. 9480 */ 9481 ASSERT(!((align - (offs & (align - 1))) & 9482 (sizeof (uint32_t) - 1))); 9483 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 9484 offs += sizeof (uint32_t); 9485 } 9486 9487 if (buf->dtb_flags & DTRACEBUF_FILL) { 9488 if (offs + needed > buf->dtb_size - state->dts_reserve) { 9489 buf->dtb_flags |= DTRACEBUF_FULL; 9490 return (-1); 9491 } 9492 } 9493 9494 if (mstate == NULL) 9495 return (offs); 9496 9497 /* 9498 * For ring buffers and fill buffers, the scratch space is always 9499 * the inactive buffer. 9500 */ 9501 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 9502 mstate->dtms_scratch_size = buf->dtb_size; 9503 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 9504 9505 return (offs); 9506 } 9507 9508 static void 9509 dtrace_buffer_polish(dtrace_buffer_t *buf) 9510 { 9511 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 9512 ASSERT(MUTEX_HELD(&dtrace_lock)); 9513 9514 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 9515 return; 9516 9517 /* 9518 * We need to polish the ring buffer. There are three cases: 9519 * 9520 * - The first (and presumably most common) is that there is no gap 9521 * between the buffer offset and the wrapped offset. In this case, 9522 * there is nothing in the buffer that isn't valid data; we can 9523 * mark the buffer as polished and return. 9524 * 9525 * - The second (less common than the first but still more common 9526 * than the third) is that there is a gap between the buffer offset 9527 * and the wrapped offset, and the wrapped offset is larger than the 9528 * buffer offset. This can happen because of an alignment issue, or 9529 * can happen because of a call to dtrace_buffer_reserve() that 9530 * didn't subsequently consume the buffer space. In this case, 9531 * we need to zero the data from the buffer offset to the wrapped 9532 * offset. 9533 * 9534 * - The third (and least common) is that there is a gap between the 9535 * buffer offset and the wrapped offset, but the wrapped offset is 9536 * _less_ than the buffer offset. This can only happen because a 9537 * call to dtrace_buffer_reserve() induced a wrap, but the space 9538 * was not subsequently consumed. In this case, we need to zero the 9539 * space from the offset to the end of the buffer _and_ from the 9540 * top of the buffer to the wrapped offset. 9541 */ 9542 if (buf->dtb_offset < buf->dtb_xamot_offset) { 9543 bzero(buf->dtb_tomax + buf->dtb_offset, 9544 buf->dtb_xamot_offset - buf->dtb_offset); 9545 } 9546 9547 if (buf->dtb_offset > buf->dtb_xamot_offset) { 9548 bzero(buf->dtb_tomax + buf->dtb_offset, 9549 buf->dtb_size - buf->dtb_offset); 9550 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 9551 } 9552 } 9553 9554 static void 9555 dtrace_buffer_free(dtrace_buffer_t *bufs) 9556 { 9557 int i; 9558 9559 for (i = 0; i < NCPU; i++) { 9560 dtrace_buffer_t *buf = &bufs[i]; 9561 9562 if (buf->dtb_tomax == NULL) { 9563 ASSERT(buf->dtb_xamot == NULL); 9564 ASSERT(buf->dtb_size == 0); 9565 continue; 9566 } 9567 9568 if (buf->dtb_xamot != NULL) { 9569 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 9570 kmem_free(buf->dtb_xamot, buf->dtb_size); 9571 } 9572 9573 kmem_free(buf->dtb_tomax, buf->dtb_size); 9574 buf->dtb_size = 0; 9575 buf->dtb_tomax = NULL; 9576 buf->dtb_xamot = NULL; 9577 } 9578 } 9579 9580 /* 9581 * DTrace Enabling Functions 9582 */ 9583 static dtrace_enabling_t * 9584 dtrace_enabling_create(dtrace_vstate_t *vstate) 9585 { 9586 dtrace_enabling_t *enab; 9587 9588 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 9589 enab->dten_vstate = vstate; 9590 9591 return (enab); 9592 } 9593 9594 static void 9595 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 9596 { 9597 dtrace_ecbdesc_t **ndesc; 9598 size_t osize, nsize; 9599 9600 /* 9601 * We can't add to enablings after we've enabled them, or after we've 9602 * retained them. 9603 */ 9604 ASSERT(enab->dten_probegen == 0); 9605 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 9606 9607 if (enab->dten_ndesc < enab->dten_maxdesc) { 9608 enab->dten_desc[enab->dten_ndesc++] = ecb; 9609 return; 9610 } 9611 9612 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 9613 9614 if (enab->dten_maxdesc == 0) { 9615 enab->dten_maxdesc = 1; 9616 } else { 9617 enab->dten_maxdesc <<= 1; 9618 } 9619 9620 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 9621 9622 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 9623 ndesc = kmem_zalloc(nsize, KM_SLEEP); 9624 bcopy(enab->dten_desc, ndesc, osize); 9625 kmem_free(enab->dten_desc, osize); 9626 9627 enab->dten_desc = ndesc; 9628 enab->dten_desc[enab->dten_ndesc++] = ecb; 9629 } 9630 9631 static void 9632 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 9633 dtrace_probedesc_t *pd) 9634 { 9635 dtrace_ecbdesc_t *new; 9636 dtrace_predicate_t *pred; 9637 dtrace_actdesc_t *act; 9638 9639 /* 9640 * We're going to create a new ECB description that matches the 9641 * specified ECB in every way, but has the specified probe description. 9642 */ 9643 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 9644 9645 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 9646 dtrace_predicate_hold(pred); 9647 9648 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 9649 dtrace_actdesc_hold(act); 9650 9651 new->dted_action = ecb->dted_action; 9652 new->dted_pred = ecb->dted_pred; 9653 new->dted_probe = *pd; 9654 new->dted_uarg = ecb->dted_uarg; 9655 9656 dtrace_enabling_add(enab, new); 9657 } 9658 9659 static void 9660 dtrace_enabling_dump(dtrace_enabling_t *enab) 9661 { 9662 int i; 9663 9664 for (i = 0; i < enab->dten_ndesc; i++) { 9665 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 9666 9667 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 9668 desc->dtpd_provider, desc->dtpd_mod, 9669 desc->dtpd_func, desc->dtpd_name); 9670 } 9671 } 9672 9673 static void 9674 dtrace_enabling_destroy(dtrace_enabling_t *enab) 9675 { 9676 int i; 9677 dtrace_ecbdesc_t *ep; 9678 dtrace_vstate_t *vstate = enab->dten_vstate; 9679 9680 ASSERT(MUTEX_HELD(&dtrace_lock)); 9681 9682 for (i = 0; i < enab->dten_ndesc; i++) { 9683 dtrace_actdesc_t *act, *next; 9684 dtrace_predicate_t *pred; 9685 9686 ep = enab->dten_desc[i]; 9687 9688 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 9689 dtrace_predicate_release(pred, vstate); 9690 9691 for (act = ep->dted_action; act != NULL; act = next) { 9692 next = act->dtad_next; 9693 dtrace_actdesc_release(act, vstate); 9694 } 9695 9696 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 9697 } 9698 9699 kmem_free(enab->dten_desc, 9700 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 9701 9702 /* 9703 * If this was a retained enabling, decrement the dts_nretained count 9704 * and take it off of the dtrace_retained list. 9705 */ 9706 if (enab->dten_prev != NULL || enab->dten_next != NULL || 9707 dtrace_retained == enab) { 9708 ASSERT(enab->dten_vstate->dtvs_state != NULL); 9709 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 9710 enab->dten_vstate->dtvs_state->dts_nretained--; 9711 } 9712 9713 if (enab->dten_prev == NULL) { 9714 if (dtrace_retained == enab) { 9715 dtrace_retained = enab->dten_next; 9716 9717 if (dtrace_retained != NULL) 9718 dtrace_retained->dten_prev = NULL; 9719 } 9720 } else { 9721 ASSERT(enab != dtrace_retained); 9722 ASSERT(dtrace_retained != NULL); 9723 enab->dten_prev->dten_next = enab->dten_next; 9724 } 9725 9726 if (enab->dten_next != NULL) { 9727 ASSERT(dtrace_retained != NULL); 9728 enab->dten_next->dten_prev = enab->dten_prev; 9729 } 9730 9731 kmem_free(enab, sizeof (dtrace_enabling_t)); 9732 } 9733 9734 static int 9735 dtrace_enabling_retain(dtrace_enabling_t *enab) 9736 { 9737 dtrace_state_t *state; 9738 9739 ASSERT(MUTEX_HELD(&dtrace_lock)); 9740 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 9741 ASSERT(enab->dten_vstate != NULL); 9742 9743 state = enab->dten_vstate->dtvs_state; 9744 ASSERT(state != NULL); 9745 9746 /* 9747 * We only allow each state to retain dtrace_retain_max enablings. 9748 */ 9749 if (state->dts_nretained >= dtrace_retain_max) 9750 return (ENOSPC); 9751 9752 state->dts_nretained++; 9753 9754 if (dtrace_retained == NULL) { 9755 dtrace_retained = enab; 9756 return (0); 9757 } 9758 9759 enab->dten_next = dtrace_retained; 9760 dtrace_retained->dten_prev = enab; 9761 dtrace_retained = enab; 9762 9763 return (0); 9764 } 9765 9766 static int 9767 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 9768 dtrace_probedesc_t *create) 9769 { 9770 dtrace_enabling_t *new, *enab; 9771 int found = 0, err = ENOENT; 9772 9773 ASSERT(MUTEX_HELD(&dtrace_lock)); 9774 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 9775 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 9776 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 9777 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 9778 9779 new = dtrace_enabling_create(&state->dts_vstate); 9780 9781 /* 9782 * Iterate over all retained enablings, looking for enablings that 9783 * match the specified state. 9784 */ 9785 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 9786 int i; 9787 9788 /* 9789 * dtvs_state can only be NULL for helper enablings -- and 9790 * helper enablings can't be retained. 9791 */ 9792 ASSERT(enab->dten_vstate->dtvs_state != NULL); 9793 9794 if (enab->dten_vstate->dtvs_state != state) 9795 continue; 9796 9797 /* 9798 * Now iterate over each probe description; we're looking for 9799 * an exact match to the specified probe description. 9800 */ 9801 for (i = 0; i < enab->dten_ndesc; i++) { 9802 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 9803 dtrace_probedesc_t *pd = &ep->dted_probe; 9804 9805 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 9806 continue; 9807 9808 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 9809 continue; 9810 9811 if (strcmp(pd->dtpd_func, match->dtpd_func)) 9812 continue; 9813 9814 if (strcmp(pd->dtpd_name, match->dtpd_name)) 9815 continue; 9816 9817 /* 9818 * We have a winning probe! Add it to our growing 9819 * enabling. 9820 */ 9821 found = 1; 9822 dtrace_enabling_addlike(new, ep, create); 9823 } 9824 } 9825 9826 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 9827 dtrace_enabling_destroy(new); 9828 return (err); 9829 } 9830 9831 return (0); 9832 } 9833 9834 static void 9835 dtrace_enabling_retract(dtrace_state_t *state) 9836 { 9837 dtrace_enabling_t *enab, *next; 9838 9839 ASSERT(MUTEX_HELD(&dtrace_lock)); 9840 9841 /* 9842 * Iterate over all retained enablings, destroy the enablings retained 9843 * for the specified state. 9844 */ 9845 for (enab = dtrace_retained; enab != NULL; enab = next) { 9846 next = enab->dten_next; 9847 9848 /* 9849 * dtvs_state can only be NULL for helper enablings -- and 9850 * helper enablings can't be retained. 9851 */ 9852 ASSERT(enab->dten_vstate->dtvs_state != NULL); 9853 9854 if (enab->dten_vstate->dtvs_state == state) { 9855 ASSERT(state->dts_nretained > 0); 9856 dtrace_enabling_destroy(enab); 9857 } 9858 } 9859 9860 ASSERT(state->dts_nretained == 0); 9861 } 9862 9863 static int 9864 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 9865 { 9866 int i = 0; 9867 int matched = 0; 9868 9869 ASSERT(MUTEX_HELD(&cpu_lock)); 9870 ASSERT(MUTEX_HELD(&dtrace_lock)); 9871 9872 for (i = 0; i < enab->dten_ndesc; i++) { 9873 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 9874 9875 enab->dten_current = ep; 9876 enab->dten_error = 0; 9877 9878 matched += dtrace_probe_enable(&ep->dted_probe, enab); 9879 9880 if (enab->dten_error != 0) { 9881 /* 9882 * If we get an error half-way through enabling the 9883 * probes, we kick out -- perhaps with some number of 9884 * them enabled. Leaving enabled probes enabled may 9885 * be slightly confusing for user-level, but we expect 9886 * that no one will attempt to actually drive on in 9887 * the face of such errors. If this is an anonymous 9888 * enabling (indicated with a NULL nmatched pointer), 9889 * we cmn_err() a message. We aren't expecting to 9890 * get such an error -- such as it can exist at all, 9891 * it would be a result of corrupted DOF in the driver 9892 * properties. 9893 */ 9894 if (nmatched == NULL) { 9895 cmn_err(CE_WARN, "dtrace_enabling_match() " 9896 "error on %p: %d", (void *)ep, 9897 enab->dten_error); 9898 } 9899 9900 return (enab->dten_error); 9901 } 9902 } 9903 9904 enab->dten_probegen = dtrace_probegen; 9905 if (nmatched != NULL) 9906 *nmatched = matched; 9907 9908 return (0); 9909 } 9910 9911 static void 9912 dtrace_enabling_matchall(void) 9913 { 9914 dtrace_enabling_t *enab; 9915 9916 mutex_enter(&cpu_lock); 9917 mutex_enter(&dtrace_lock); 9918 9919 /* 9920 * Because we can be called after dtrace_detach() has been called, we 9921 * cannot assert that there are retained enablings. We can safely 9922 * load from dtrace_retained, however: the taskq_destroy() at the 9923 * end of dtrace_detach() will block pending our completion. 9924 */ 9925 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) 9926 (void) dtrace_enabling_match(enab, NULL); 9927 9928 mutex_exit(&dtrace_lock); 9929 mutex_exit(&cpu_lock); 9930 } 9931 9932 static int 9933 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched) 9934 { 9935 dtrace_enabling_t *enab; 9936 int matched, total = 0, err; 9937 9938 ASSERT(MUTEX_HELD(&cpu_lock)); 9939 ASSERT(MUTEX_HELD(&dtrace_lock)); 9940 9941 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 9942 ASSERT(enab->dten_vstate->dtvs_state != NULL); 9943 9944 if (enab->dten_vstate->dtvs_state != state) 9945 continue; 9946 9947 if ((err = dtrace_enabling_match(enab, &matched)) != 0) 9948 return (err); 9949 9950 total += matched; 9951 } 9952 9953 if (nmatched != NULL) 9954 *nmatched = total; 9955 9956 return (0); 9957 } 9958 9959 /* 9960 * If an enabling is to be enabled without having matched probes (that is, if 9961 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 9962 * enabling must be _primed_ by creating an ECB for every ECB description. 9963 * This must be done to assure that we know the number of speculations, the 9964 * number of aggregations, the minimum buffer size needed, etc. before we 9965 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 9966 * enabling any probes, we create ECBs for every ECB decription, but with a 9967 * NULL probe -- which is exactly what this function does. 9968 */ 9969 static void 9970 dtrace_enabling_prime(dtrace_state_t *state) 9971 { 9972 dtrace_enabling_t *enab; 9973 int i; 9974 9975 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 9976 ASSERT(enab->dten_vstate->dtvs_state != NULL); 9977 9978 if (enab->dten_vstate->dtvs_state != state) 9979 continue; 9980 9981 /* 9982 * We don't want to prime an enabling more than once, lest 9983 * we allow a malicious user to induce resource exhaustion. 9984 * (The ECBs that result from priming an enabling aren't 9985 * leaked -- but they also aren't deallocated until the 9986 * consumer state is destroyed.) 9987 */ 9988 if (enab->dten_primed) 9989 continue; 9990 9991 for (i = 0; i < enab->dten_ndesc; i++) { 9992 enab->dten_current = enab->dten_desc[i]; 9993 (void) dtrace_probe_enable(NULL, enab); 9994 } 9995 9996 enab->dten_primed = 1; 9997 } 9998 } 9999 10000 /* 10001 * Called to indicate that probes should be provided due to retained 10002 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 10003 * must take an initial lap through the enabling calling the dtps_provide() 10004 * entry point explicitly to allow for autocreated probes. 10005 */ 10006 static void 10007 dtrace_enabling_provide(dtrace_provider_t *prv) 10008 { 10009 int i, all = 0; 10010 dtrace_probedesc_t desc; 10011 10012 ASSERT(MUTEX_HELD(&dtrace_lock)); 10013 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 10014 10015 if (prv == NULL) { 10016 all = 1; 10017 prv = dtrace_provider; 10018 } 10019 10020 do { 10021 dtrace_enabling_t *enab = dtrace_retained; 10022 void *parg = prv->dtpv_arg; 10023 10024 for (; enab != NULL; enab = enab->dten_next) { 10025 for (i = 0; i < enab->dten_ndesc; i++) { 10026 desc = enab->dten_desc[i]->dted_probe; 10027 mutex_exit(&dtrace_lock); 10028 prv->dtpv_pops.dtps_provide(parg, &desc); 10029 mutex_enter(&dtrace_lock); 10030 } 10031 } 10032 } while (all && (prv = prv->dtpv_next) != NULL); 10033 10034 mutex_exit(&dtrace_lock); 10035 dtrace_probe_provide(NULL, all ? NULL : prv); 10036 mutex_enter(&dtrace_lock); 10037 } 10038 10039 /* 10040 * DTrace DOF Functions 10041 */ 10042 /*ARGSUSED*/ 10043 static void 10044 dtrace_dof_error(dof_hdr_t *dof, const char *str) 10045 { 10046 if (dtrace_err_verbose) 10047 cmn_err(CE_WARN, "failed to process DOF: %s", str); 10048 10049 #ifdef DTRACE_ERRDEBUG 10050 dtrace_errdebug(str); 10051 #endif 10052 } 10053 10054 /* 10055 * Create DOF out of a currently enabled state. Right now, we only create 10056 * DOF containing the run-time options -- but this could be expanded to create 10057 * complete DOF representing the enabled state. 10058 */ 10059 static dof_hdr_t * 10060 dtrace_dof_create(dtrace_state_t *state) 10061 { 10062 dof_hdr_t *dof; 10063 dof_sec_t *sec; 10064 dof_optdesc_t *opt; 10065 int i, len = sizeof (dof_hdr_t) + 10066 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 10067 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10068 10069 ASSERT(MUTEX_HELD(&dtrace_lock)); 10070 10071 dof = kmem_zalloc(len, KM_SLEEP); 10072 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 10073 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 10074 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 10075 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 10076 10077 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 10078 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 10079 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 10080 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 10081 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 10082 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 10083 10084 dof->dofh_flags = 0; 10085 dof->dofh_hdrsize = sizeof (dof_hdr_t); 10086 dof->dofh_secsize = sizeof (dof_sec_t); 10087 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 10088 dof->dofh_secoff = sizeof (dof_hdr_t); 10089 dof->dofh_loadsz = len; 10090 dof->dofh_filesz = len; 10091 dof->dofh_pad = 0; 10092 10093 /* 10094 * Fill in the option section header... 10095 */ 10096 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 10097 sec->dofs_type = DOF_SECT_OPTDESC; 10098 sec->dofs_align = sizeof (uint64_t); 10099 sec->dofs_flags = DOF_SECF_LOAD; 10100 sec->dofs_entsize = sizeof (dof_optdesc_t); 10101 10102 opt = (dof_optdesc_t *)((uintptr_t)sec + 10103 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 10104 10105 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 10106 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10107 10108 for (i = 0; i < DTRACEOPT_MAX; i++) { 10109 opt[i].dofo_option = i; 10110 opt[i].dofo_strtab = DOF_SECIDX_NONE; 10111 opt[i].dofo_value = state->dts_options[i]; 10112 } 10113 10114 return (dof); 10115 } 10116 10117 static dof_hdr_t * 10118 dtrace_dof_copyin(uintptr_t uarg, int *errp) 10119 { 10120 dof_hdr_t hdr, *dof; 10121 10122 ASSERT(!MUTEX_HELD(&dtrace_lock)); 10123 10124 /* 10125 * First, we're going to copyin() the sizeof (dof_hdr_t). 10126 */ 10127 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 10128 dtrace_dof_error(NULL, "failed to copyin DOF header"); 10129 *errp = EFAULT; 10130 return (NULL); 10131 } 10132 10133 /* 10134 * Now we'll allocate the entire DOF and copy it in -- provided 10135 * that the length isn't outrageous. 10136 */ 10137 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 10138 dtrace_dof_error(&hdr, "load size exceeds maximum"); 10139 *errp = E2BIG; 10140 return (NULL); 10141 } 10142 10143 if (hdr.dofh_loadsz < sizeof (hdr)) { 10144 dtrace_dof_error(&hdr, "invalid load size"); 10145 *errp = EINVAL; 10146 return (NULL); 10147 } 10148 10149 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 10150 10151 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) { 10152 kmem_free(dof, hdr.dofh_loadsz); 10153 *errp = EFAULT; 10154 return (NULL); 10155 } 10156 10157 return (dof); 10158 } 10159 10160 static dof_hdr_t * 10161 dtrace_dof_property(const char *name) 10162 { 10163 uchar_t *buf; 10164 uint64_t loadsz; 10165 unsigned int len, i; 10166 dof_hdr_t *dof; 10167 10168 /* 10169 * Unfortunately, array of values in .conf files are always (and 10170 * only) interpreted to be integer arrays. We must read our DOF 10171 * as an integer array, and then squeeze it into a byte array. 10172 */ 10173 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 10174 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 10175 return (NULL); 10176 10177 for (i = 0; i < len; i++) 10178 buf[i] = (uchar_t)(((int *)buf)[i]); 10179 10180 if (len < sizeof (dof_hdr_t)) { 10181 ddi_prop_free(buf); 10182 dtrace_dof_error(NULL, "truncated header"); 10183 return (NULL); 10184 } 10185 10186 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 10187 ddi_prop_free(buf); 10188 dtrace_dof_error(NULL, "truncated DOF"); 10189 return (NULL); 10190 } 10191 10192 if (loadsz >= dtrace_dof_maxsize) { 10193 ddi_prop_free(buf); 10194 dtrace_dof_error(NULL, "oversized DOF"); 10195 return (NULL); 10196 } 10197 10198 dof = kmem_alloc(loadsz, KM_SLEEP); 10199 bcopy(buf, dof, loadsz); 10200 ddi_prop_free(buf); 10201 10202 return (dof); 10203 } 10204 10205 static void 10206 dtrace_dof_destroy(dof_hdr_t *dof) 10207 { 10208 kmem_free(dof, dof->dofh_loadsz); 10209 } 10210 10211 /* 10212 * Return the dof_sec_t pointer corresponding to a given section index. If the 10213 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 10214 * a type other than DOF_SECT_NONE is specified, the header is checked against 10215 * this type and NULL is returned if the types do not match. 10216 */ 10217 static dof_sec_t * 10218 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 10219 { 10220 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 10221 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 10222 10223 if (i >= dof->dofh_secnum) { 10224 dtrace_dof_error(dof, "referenced section index is invalid"); 10225 return (NULL); 10226 } 10227 10228 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 10229 dtrace_dof_error(dof, "referenced section is not loadable"); 10230 return (NULL); 10231 } 10232 10233 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 10234 dtrace_dof_error(dof, "referenced section is the wrong type"); 10235 return (NULL); 10236 } 10237 10238 return (sec); 10239 } 10240 10241 static dtrace_probedesc_t * 10242 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 10243 { 10244 dof_probedesc_t *probe; 10245 dof_sec_t *strtab; 10246 uintptr_t daddr = (uintptr_t)dof; 10247 uintptr_t str; 10248 size_t size; 10249 10250 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 10251 dtrace_dof_error(dof, "invalid probe section"); 10252 return (NULL); 10253 } 10254 10255 if (sec->dofs_align != sizeof (dof_secidx_t)) { 10256 dtrace_dof_error(dof, "bad alignment in probe description"); 10257 return (NULL); 10258 } 10259 10260 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 10261 dtrace_dof_error(dof, "truncated probe description"); 10262 return (NULL); 10263 } 10264 10265 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 10266 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 10267 10268 if (strtab == NULL) 10269 return (NULL); 10270 10271 str = daddr + strtab->dofs_offset; 10272 size = strtab->dofs_size; 10273 10274 if (probe->dofp_provider >= strtab->dofs_size) { 10275 dtrace_dof_error(dof, "corrupt probe provider"); 10276 return (NULL); 10277 } 10278 10279 (void) strncpy(desc->dtpd_provider, 10280 (char *)(str + probe->dofp_provider), 10281 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 10282 10283 if (probe->dofp_mod >= strtab->dofs_size) { 10284 dtrace_dof_error(dof, "corrupt probe module"); 10285 return (NULL); 10286 } 10287 10288 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 10289 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 10290 10291 if (probe->dofp_func >= strtab->dofs_size) { 10292 dtrace_dof_error(dof, "corrupt probe function"); 10293 return (NULL); 10294 } 10295 10296 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 10297 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 10298 10299 if (probe->dofp_name >= strtab->dofs_size) { 10300 dtrace_dof_error(dof, "corrupt probe name"); 10301 return (NULL); 10302 } 10303 10304 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 10305 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 10306 10307 return (desc); 10308 } 10309 10310 static dtrace_difo_t * 10311 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 10312 cred_t *cr) 10313 { 10314 dtrace_difo_t *dp; 10315 size_t ttl = 0; 10316 dof_difohdr_t *dofd; 10317 uintptr_t daddr = (uintptr_t)dof; 10318 size_t max = dtrace_difo_maxsize; 10319 int i, l, n; 10320 10321 static const struct { 10322 int section; 10323 int bufoffs; 10324 int lenoffs; 10325 int entsize; 10326 int align; 10327 const char *msg; 10328 } difo[] = { 10329 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 10330 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 10331 sizeof (dif_instr_t), "multiple DIF sections" }, 10332 10333 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 10334 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 10335 sizeof (uint64_t), "multiple integer tables" }, 10336 10337 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 10338 offsetof(dtrace_difo_t, dtdo_strlen), 0, 10339 sizeof (char), "multiple string tables" }, 10340 10341 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 10342 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 10343 sizeof (uint_t), "multiple variable tables" }, 10344 10345 { DOF_SECT_NONE, 0, 0, 0, NULL } 10346 }; 10347 10348 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 10349 dtrace_dof_error(dof, "invalid DIFO header section"); 10350 return (NULL); 10351 } 10352 10353 if (sec->dofs_align != sizeof (dof_secidx_t)) { 10354 dtrace_dof_error(dof, "bad alignment in DIFO header"); 10355 return (NULL); 10356 } 10357 10358 if (sec->dofs_size < sizeof (dof_difohdr_t) || 10359 sec->dofs_size % sizeof (dof_secidx_t)) { 10360 dtrace_dof_error(dof, "bad size in DIFO header"); 10361 return (NULL); 10362 } 10363 10364 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 10365 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 10366 10367 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10368 dp->dtdo_rtype = dofd->dofd_rtype; 10369 10370 for (l = 0; l < n; l++) { 10371 dof_sec_t *subsec; 10372 void **bufp; 10373 uint32_t *lenp; 10374 10375 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 10376 dofd->dofd_links[l])) == NULL) 10377 goto err; /* invalid section link */ 10378 10379 if (ttl + subsec->dofs_size > max) { 10380 dtrace_dof_error(dof, "exceeds maximum size"); 10381 goto err; 10382 } 10383 10384 ttl += subsec->dofs_size; 10385 10386 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 10387 if (subsec->dofs_type != difo[i].section) 10388 continue; 10389 10390 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 10391 dtrace_dof_error(dof, "section not loaded"); 10392 goto err; 10393 } 10394 10395 if (subsec->dofs_align != difo[i].align) { 10396 dtrace_dof_error(dof, "bad alignment"); 10397 goto err; 10398 } 10399 10400 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 10401 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 10402 10403 if (*bufp != NULL) { 10404 dtrace_dof_error(dof, difo[i].msg); 10405 goto err; 10406 } 10407 10408 if (difo[i].entsize != subsec->dofs_entsize) { 10409 dtrace_dof_error(dof, "entry size mismatch"); 10410 goto err; 10411 } 10412 10413 if (subsec->dofs_entsize != 0 && 10414 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 10415 dtrace_dof_error(dof, "corrupt entry size"); 10416 goto err; 10417 } 10418 10419 *lenp = subsec->dofs_size; 10420 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 10421 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 10422 *bufp, subsec->dofs_size); 10423 10424 if (subsec->dofs_entsize != 0) 10425 *lenp /= subsec->dofs_entsize; 10426 10427 break; 10428 } 10429 10430 /* 10431 * If we encounter a loadable DIFO sub-section that is not 10432 * known to us, assume this is a broken program and fail. 10433 */ 10434 if (difo[i].section == DOF_SECT_NONE && 10435 (subsec->dofs_flags & DOF_SECF_LOAD)) { 10436 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 10437 goto err; 10438 } 10439 } 10440 10441 if (dp->dtdo_buf == NULL) { 10442 /* 10443 * We can't have a DIF object without DIF text. 10444 */ 10445 dtrace_dof_error(dof, "missing DIF text"); 10446 goto err; 10447 } 10448 10449 /* 10450 * Before we validate the DIF object, run through the variable table 10451 * looking for the strings -- if any of their size are under, we'll set 10452 * their size to be the system-wide default string size. Note that 10453 * this should _not_ happen if the "strsize" option has been set -- 10454 * in this case, the compiler should have set the size to reflect the 10455 * setting of the option. 10456 */ 10457 for (i = 0; i < dp->dtdo_varlen; i++) { 10458 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10459 dtrace_diftype_t *t = &v->dtdv_type; 10460 10461 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 10462 continue; 10463 10464 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 10465 t->dtdt_size = dtrace_strsize_default; 10466 } 10467 10468 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 10469 goto err; 10470 10471 dtrace_difo_init(dp, vstate); 10472 return (dp); 10473 10474 err: 10475 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10476 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10477 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10478 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10479 10480 kmem_free(dp, sizeof (dtrace_difo_t)); 10481 return (NULL); 10482 } 10483 10484 static dtrace_predicate_t * 10485 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 10486 cred_t *cr) 10487 { 10488 dtrace_difo_t *dp; 10489 10490 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 10491 return (NULL); 10492 10493 return (dtrace_predicate_create(dp)); 10494 } 10495 10496 static dtrace_actdesc_t * 10497 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 10498 cred_t *cr) 10499 { 10500 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 10501 dof_actdesc_t *desc; 10502 dof_sec_t *difosec; 10503 size_t offs; 10504 uintptr_t daddr = (uintptr_t)dof; 10505 uint64_t arg; 10506 dtrace_actkind_t kind; 10507 10508 if (sec->dofs_type != DOF_SECT_ACTDESC) { 10509 dtrace_dof_error(dof, "invalid action section"); 10510 return (NULL); 10511 } 10512 10513 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 10514 dtrace_dof_error(dof, "truncated action description"); 10515 return (NULL); 10516 } 10517 10518 if (sec->dofs_align != sizeof (uint64_t)) { 10519 dtrace_dof_error(dof, "bad alignment in action description"); 10520 return (NULL); 10521 } 10522 10523 if (sec->dofs_size < sec->dofs_entsize) { 10524 dtrace_dof_error(dof, "section entry size exceeds total size"); 10525 return (NULL); 10526 } 10527 10528 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 10529 dtrace_dof_error(dof, "bad entry size in action description"); 10530 return (NULL); 10531 } 10532 10533 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 10534 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 10535 return (NULL); 10536 } 10537 10538 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 10539 desc = (dof_actdesc_t *)(daddr + 10540 (uintptr_t)sec->dofs_offset + offs); 10541 kind = (dtrace_actkind_t)desc->dofa_kind; 10542 10543 if (DTRACEACT_ISPRINTFLIKE(kind) && 10544 (kind != DTRACEACT_PRINTA || 10545 desc->dofa_strtab != DOF_SECIDX_NONE)) { 10546 dof_sec_t *strtab; 10547 char *str, *fmt; 10548 uint64_t i; 10549 10550 /* 10551 * printf()-like actions must have a format string. 10552 */ 10553 if ((strtab = dtrace_dof_sect(dof, 10554 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 10555 goto err; 10556 10557 str = (char *)((uintptr_t)dof + 10558 (uintptr_t)strtab->dofs_offset); 10559 10560 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 10561 if (str[i] == '\0') 10562 break; 10563 } 10564 10565 if (i >= strtab->dofs_size) { 10566 dtrace_dof_error(dof, "bogus format string"); 10567 goto err; 10568 } 10569 10570 if (i == desc->dofa_arg) { 10571 dtrace_dof_error(dof, "empty format string"); 10572 goto err; 10573 } 10574 10575 i -= desc->dofa_arg; 10576 fmt = kmem_alloc(i + 1, KM_SLEEP); 10577 bcopy(&str[desc->dofa_arg], fmt, i + 1); 10578 arg = (uint64_t)(uintptr_t)fmt; 10579 } else { 10580 if (kind == DTRACEACT_PRINTA) { 10581 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 10582 arg = 0; 10583 } else { 10584 arg = desc->dofa_arg; 10585 } 10586 } 10587 10588 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 10589 desc->dofa_uarg, arg); 10590 10591 if (last != NULL) { 10592 last->dtad_next = act; 10593 } else { 10594 first = act; 10595 } 10596 10597 last = act; 10598 10599 if (desc->dofa_difo == DOF_SECIDX_NONE) 10600 continue; 10601 10602 if ((difosec = dtrace_dof_sect(dof, 10603 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 10604 goto err; 10605 10606 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 10607 10608 if (act->dtad_difo == NULL) 10609 goto err; 10610 } 10611 10612 ASSERT(first != NULL); 10613 return (first); 10614 10615 err: 10616 for (act = first; act != NULL; act = next) { 10617 next = act->dtad_next; 10618 dtrace_actdesc_release(act, vstate); 10619 } 10620 10621 return (NULL); 10622 } 10623 10624 static dtrace_ecbdesc_t * 10625 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 10626 cred_t *cr) 10627 { 10628 dtrace_ecbdesc_t *ep; 10629 dof_ecbdesc_t *ecb; 10630 dtrace_probedesc_t *desc; 10631 dtrace_predicate_t *pred = NULL; 10632 10633 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 10634 dtrace_dof_error(dof, "truncated ECB description"); 10635 return (NULL); 10636 } 10637 10638 if (sec->dofs_align != sizeof (uint64_t)) { 10639 dtrace_dof_error(dof, "bad alignment in ECB description"); 10640 return (NULL); 10641 } 10642 10643 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 10644 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 10645 10646 if (sec == NULL) 10647 return (NULL); 10648 10649 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10650 ep->dted_uarg = ecb->dofe_uarg; 10651 desc = &ep->dted_probe; 10652 10653 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 10654 goto err; 10655 10656 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 10657 if ((sec = dtrace_dof_sect(dof, 10658 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 10659 goto err; 10660 10661 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 10662 goto err; 10663 10664 ep->dted_pred.dtpdd_predicate = pred; 10665 } 10666 10667 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 10668 if ((sec = dtrace_dof_sect(dof, 10669 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 10670 goto err; 10671 10672 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 10673 10674 if (ep->dted_action == NULL) 10675 goto err; 10676 } 10677 10678 return (ep); 10679 10680 err: 10681 if (pred != NULL) 10682 dtrace_predicate_release(pred, vstate); 10683 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10684 return (NULL); 10685 } 10686 10687 /* 10688 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 10689 * specified DOF. At present, this amounts to simply adding 'ubase' to the 10690 * site of any user SETX relocations to account for load object base address. 10691 * In the future, if we need other relocations, this function can be extended. 10692 */ 10693 static int 10694 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 10695 { 10696 uintptr_t daddr = (uintptr_t)dof; 10697 dof_relohdr_t *dofr = 10698 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 10699 dof_sec_t *ss, *rs, *ts; 10700 dof_relodesc_t *r; 10701 uint_t i, n; 10702 10703 if (sec->dofs_size < sizeof (dof_relohdr_t) || 10704 sec->dofs_align != sizeof (dof_secidx_t)) { 10705 dtrace_dof_error(dof, "invalid relocation header"); 10706 return (-1); 10707 } 10708 10709 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 10710 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 10711 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 10712 10713 if (ss == NULL || rs == NULL || ts == NULL) 10714 return (-1); /* dtrace_dof_error() has been called already */ 10715 10716 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 10717 rs->dofs_align != sizeof (uint64_t)) { 10718 dtrace_dof_error(dof, "invalid relocation section"); 10719 return (-1); 10720 } 10721 10722 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 10723 n = rs->dofs_size / rs->dofs_entsize; 10724 10725 for (i = 0; i < n; i++) { 10726 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 10727 10728 switch (r->dofr_type) { 10729 case DOF_RELO_NONE: 10730 break; 10731 case DOF_RELO_SETX: 10732 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 10733 sizeof (uint64_t) > ts->dofs_size) { 10734 dtrace_dof_error(dof, "bad relocation offset"); 10735 return (-1); 10736 } 10737 10738 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 10739 dtrace_dof_error(dof, "misaligned setx relo"); 10740 return (-1); 10741 } 10742 10743 *(uint64_t *)taddr += ubase; 10744 break; 10745 default: 10746 dtrace_dof_error(dof, "invalid relocation type"); 10747 return (-1); 10748 } 10749 10750 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 10751 } 10752 10753 return (0); 10754 } 10755 10756 /* 10757 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 10758 * header: it should be at the front of a memory region that is at least 10759 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 10760 * size. It need not be validated in any other way. 10761 */ 10762 static int 10763 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 10764 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 10765 { 10766 uint64_t len = dof->dofh_loadsz, seclen; 10767 uintptr_t daddr = (uintptr_t)dof; 10768 dtrace_ecbdesc_t *ep; 10769 dtrace_enabling_t *enab; 10770 uint_t i; 10771 10772 ASSERT(MUTEX_HELD(&dtrace_lock)); 10773 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 10774 10775 /* 10776 * Check the DOF header identification bytes. In addition to checking 10777 * valid settings, we also verify that unused bits/bytes are zeroed so 10778 * we can use them later without fear of regressing existing binaries. 10779 */ 10780 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 10781 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 10782 dtrace_dof_error(dof, "DOF magic string mismatch"); 10783 return (-1); 10784 } 10785 10786 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 10787 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 10788 dtrace_dof_error(dof, "DOF has invalid data model"); 10789 return (-1); 10790 } 10791 10792 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 10793 dtrace_dof_error(dof, "DOF encoding mismatch"); 10794 return (-1); 10795 } 10796 10797 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 10798 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 10799 dtrace_dof_error(dof, "DOF version mismatch"); 10800 return (-1); 10801 } 10802 10803 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 10804 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 10805 return (-1); 10806 } 10807 10808 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 10809 dtrace_dof_error(dof, "DOF uses too many integer registers"); 10810 return (-1); 10811 } 10812 10813 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 10814 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 10815 return (-1); 10816 } 10817 10818 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 10819 if (dof->dofh_ident[i] != 0) { 10820 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 10821 return (-1); 10822 } 10823 } 10824 10825 if (dof->dofh_flags & ~DOF_FL_VALID) { 10826 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 10827 return (-1); 10828 } 10829 10830 if (dof->dofh_secsize == 0) { 10831 dtrace_dof_error(dof, "zero section header size"); 10832 return (-1); 10833 } 10834 10835 /* 10836 * Check that the section headers don't exceed the amount of DOF 10837 * data. Note that we cast the section size and number of sections 10838 * to uint64_t's to prevent possible overflow in the multiplication. 10839 */ 10840 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 10841 10842 if (dof->dofh_secoff > len || seclen > len || 10843 dof->dofh_secoff + seclen > len) { 10844 dtrace_dof_error(dof, "truncated section headers"); 10845 return (-1); 10846 } 10847 10848 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 10849 dtrace_dof_error(dof, "misaligned section headers"); 10850 return (-1); 10851 } 10852 10853 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 10854 dtrace_dof_error(dof, "misaligned section size"); 10855 return (-1); 10856 } 10857 10858 /* 10859 * Take an initial pass through the section headers to be sure that 10860 * the headers don't have stray offsets. If the 'noprobes' flag is 10861 * set, do not permit sections relating to providers, probes, or args. 10862 */ 10863 for (i = 0; i < dof->dofh_secnum; i++) { 10864 dof_sec_t *sec = (dof_sec_t *)(daddr + 10865 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 10866 10867 if (noprobes) { 10868 switch (sec->dofs_type) { 10869 case DOF_SECT_PROVIDER: 10870 case DOF_SECT_PROBES: 10871 case DOF_SECT_PRARGS: 10872 case DOF_SECT_PROFFS: 10873 dtrace_dof_error(dof, "illegal sections " 10874 "for enabling"); 10875 return (-1); 10876 } 10877 } 10878 10879 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 10880 continue; /* just ignore non-loadable sections */ 10881 10882 if (sec->dofs_align & (sec->dofs_align - 1)) { 10883 dtrace_dof_error(dof, "bad section alignment"); 10884 return (-1); 10885 } 10886 10887 if (sec->dofs_offset & (sec->dofs_align - 1)) { 10888 dtrace_dof_error(dof, "misaligned section"); 10889 return (-1); 10890 } 10891 10892 if (sec->dofs_offset > len || sec->dofs_size > len || 10893 sec->dofs_offset + sec->dofs_size > len) { 10894 dtrace_dof_error(dof, "corrupt section header"); 10895 return (-1); 10896 } 10897 10898 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 10899 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 10900 dtrace_dof_error(dof, "non-terminating string table"); 10901 return (-1); 10902 } 10903 } 10904 10905 /* 10906 * Take a second pass through the sections and locate and perform any 10907 * relocations that are present. We do this after the first pass to 10908 * be sure that all sections have had their headers validated. 10909 */ 10910 for (i = 0; i < dof->dofh_secnum; i++) { 10911 dof_sec_t *sec = (dof_sec_t *)(daddr + 10912 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 10913 10914 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 10915 continue; /* skip sections that are not loadable */ 10916 10917 switch (sec->dofs_type) { 10918 case DOF_SECT_URELHDR: 10919 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 10920 return (-1); 10921 break; 10922 } 10923 } 10924 10925 if ((enab = *enabp) == NULL) 10926 enab = *enabp = dtrace_enabling_create(vstate); 10927 10928 for (i = 0; i < dof->dofh_secnum; i++) { 10929 dof_sec_t *sec = (dof_sec_t *)(daddr + 10930 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 10931 10932 if (sec->dofs_type != DOF_SECT_ECBDESC) 10933 continue; 10934 10935 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 10936 dtrace_enabling_destroy(enab); 10937 *enabp = NULL; 10938 return (-1); 10939 } 10940 10941 dtrace_enabling_add(enab, ep); 10942 } 10943 10944 return (0); 10945 } 10946 10947 /* 10948 * Process DOF for any options. This routine assumes that the DOF has been 10949 * at least processed by dtrace_dof_slurp(). 10950 */ 10951 static int 10952 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 10953 { 10954 int i, rval; 10955 uint32_t entsize; 10956 size_t offs; 10957 dof_optdesc_t *desc; 10958 10959 for (i = 0; i < dof->dofh_secnum; i++) { 10960 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 10961 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 10962 10963 if (sec->dofs_type != DOF_SECT_OPTDESC) 10964 continue; 10965 10966 if (sec->dofs_align != sizeof (uint64_t)) { 10967 dtrace_dof_error(dof, "bad alignment in " 10968 "option description"); 10969 return (EINVAL); 10970 } 10971 10972 if ((entsize = sec->dofs_entsize) == 0) { 10973 dtrace_dof_error(dof, "zeroed option entry size"); 10974 return (EINVAL); 10975 } 10976 10977 if (entsize < sizeof (dof_optdesc_t)) { 10978 dtrace_dof_error(dof, "bad option entry size"); 10979 return (EINVAL); 10980 } 10981 10982 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 10983 desc = (dof_optdesc_t *)((uintptr_t)dof + 10984 (uintptr_t)sec->dofs_offset + offs); 10985 10986 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 10987 dtrace_dof_error(dof, "non-zero option string"); 10988 return (EINVAL); 10989 } 10990 10991 if (desc->dofo_value == DTRACEOPT_UNSET) { 10992 dtrace_dof_error(dof, "unset option"); 10993 return (EINVAL); 10994 } 10995 10996 if ((rval = dtrace_state_option(state, 10997 desc->dofo_option, desc->dofo_value)) != 0) { 10998 dtrace_dof_error(dof, "rejected option"); 10999 return (rval); 11000 } 11001 } 11002 } 11003 11004 return (0); 11005 } 11006 11007 /* 11008 * DTrace Consumer State Functions 11009 */ 11010 int 11011 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 11012 { 11013 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 11014 void *base; 11015 uintptr_t limit; 11016 dtrace_dynvar_t *dvar, *next, *start; 11017 int i; 11018 11019 ASSERT(MUTEX_HELD(&dtrace_lock)); 11020 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 11021 11022 bzero(dstate, sizeof (dtrace_dstate_t)); 11023 11024 if ((dstate->dtds_chunksize = chunksize) == 0) 11025 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 11026 11027 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 11028 size = min; 11029 11030 if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 11031 return (ENOMEM); 11032 11033 dstate->dtds_size = size; 11034 dstate->dtds_base = base; 11035 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 11036 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 11037 11038 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 11039 11040 if (hashsize != 1 && (hashsize & 1)) 11041 hashsize--; 11042 11043 dstate->dtds_hashsize = hashsize; 11044 dstate->dtds_hash = dstate->dtds_base; 11045 11046 /* 11047 * Set all of our hash buckets to point to the single sink, and (if 11048 * it hasn't already been set), set the sink's hash value to be the 11049 * sink sentinel value. The sink is needed for dynamic variable 11050 * lookups to know that they have iterated over an entire, valid hash 11051 * chain. 11052 */ 11053 for (i = 0; i < hashsize; i++) 11054 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 11055 11056 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 11057 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 11058 11059 /* 11060 * Determine number of active CPUs. Divide free list evenly among 11061 * active CPUs. 11062 */ 11063 start = (dtrace_dynvar_t *) 11064 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 11065 limit = (uintptr_t)base + size; 11066 11067 maxper = (limit - (uintptr_t)start) / NCPU; 11068 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 11069 11070 for (i = 0; i < NCPU; i++) { 11071 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 11072 11073 /* 11074 * If we don't even have enough chunks to make it once through 11075 * NCPUs, we're just going to allocate everything to the first 11076 * CPU. And if we're on the last CPU, we're going to allocate 11077 * whatever is left over. In either case, we set the limit to 11078 * be the limit of the dynamic variable space. 11079 */ 11080 if (maxper == 0 || i == NCPU - 1) { 11081 limit = (uintptr_t)base + size; 11082 start = NULL; 11083 } else { 11084 limit = (uintptr_t)start + maxper; 11085 start = (dtrace_dynvar_t *)limit; 11086 } 11087 11088 ASSERT(limit <= (uintptr_t)base + size); 11089 11090 for (;;) { 11091 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 11092 dstate->dtds_chunksize); 11093 11094 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 11095 break; 11096 11097 dvar->dtdv_next = next; 11098 dvar = next; 11099 } 11100 11101 if (maxper == 0) 11102 break; 11103 } 11104 11105 return (0); 11106 } 11107 11108 void 11109 dtrace_dstate_fini(dtrace_dstate_t *dstate) 11110 { 11111 ASSERT(MUTEX_HELD(&cpu_lock)); 11112 11113 if (dstate->dtds_base == NULL) 11114 return; 11115 11116 kmem_free(dstate->dtds_base, dstate->dtds_size); 11117 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 11118 } 11119 11120 static void 11121 dtrace_vstate_fini(dtrace_vstate_t *vstate) 11122 { 11123 /* 11124 * Logical XOR, where are you? 11125 */ 11126 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 11127 11128 if (vstate->dtvs_nglobals > 0) { 11129 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 11130 sizeof (dtrace_statvar_t *)); 11131 } 11132 11133 if (vstate->dtvs_ntlocals > 0) { 11134 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 11135 sizeof (dtrace_difv_t)); 11136 } 11137 11138 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 11139 11140 if (vstate->dtvs_nlocals > 0) { 11141 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 11142 sizeof (dtrace_statvar_t *)); 11143 } 11144 } 11145 11146 static void 11147 dtrace_state_clean(dtrace_state_t *state) 11148 { 11149 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 11150 return; 11151 11152 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 11153 dtrace_speculation_clean(state); 11154 } 11155 11156 static void 11157 dtrace_state_deadman(dtrace_state_t *state) 11158 { 11159 hrtime_t now; 11160 11161 dtrace_sync(); 11162 11163 now = dtrace_gethrtime(); 11164 11165 if (state != dtrace_anon.dta_state && 11166 now - state->dts_laststatus >= dtrace_deadman_user) 11167 return; 11168 11169 /* 11170 * We must be sure that dts_alive never appears to be less than the 11171 * value upon entry to dtrace_state_deadman(), and because we lack a 11172 * dtrace_cas64(), we cannot store to it atomically. We thus instead 11173 * store INT64_MAX to it, followed by a memory barrier, followed by 11174 * the new value. This assures that dts_alive never appears to be 11175 * less than its true value, regardless of the order in which the 11176 * stores to the underlying storage are issued. 11177 */ 11178 state->dts_alive = INT64_MAX; 11179 dtrace_membar_producer(); 11180 state->dts_alive = now; 11181 } 11182 11183 dtrace_state_t * 11184 dtrace_state_create(dev_t *devp, cred_t *cr) 11185 { 11186 minor_t minor; 11187 major_t major; 11188 char c[30]; 11189 dtrace_state_t *state; 11190 dtrace_optval_t *opt; 11191 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 11192 11193 ASSERT(MUTEX_HELD(&dtrace_lock)); 11194 ASSERT(MUTEX_HELD(&cpu_lock)); 11195 11196 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 11197 VM_BESTFIT | VM_SLEEP); 11198 11199 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 11200 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 11201 return (NULL); 11202 } 11203 11204 state = ddi_get_soft_state(dtrace_softstate, minor); 11205 state->dts_epid = DTRACE_EPIDNONE + 1; 11206 11207 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 11208 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 11209 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 11210 11211 if (devp != NULL) { 11212 major = getemajor(*devp); 11213 } else { 11214 major = ddi_driver_major(dtrace_devi); 11215 } 11216 11217 state->dts_dev = makedevice(major, minor); 11218 11219 if (devp != NULL) 11220 *devp = state->dts_dev; 11221 11222 /* 11223 * We allocate NCPU buffers. On the one hand, this can be quite 11224 * a bit of memory per instance (nearly 36K on a Starcat). On the 11225 * other hand, it saves an additional memory reference in the probe 11226 * path. 11227 */ 11228 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 11229 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 11230 state->dts_cleaner = CYCLIC_NONE; 11231 state->dts_deadman = CYCLIC_NONE; 11232 state->dts_vstate.dtvs_state = state; 11233 11234 for (i = 0; i < DTRACEOPT_MAX; i++) 11235 state->dts_options[i] = DTRACEOPT_UNSET; 11236 11237 /* 11238 * Set the default options. 11239 */ 11240 opt = state->dts_options; 11241 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 11242 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 11243 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 11244 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 11245 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 11246 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 11247 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 11248 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 11249 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 11250 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 11251 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 11252 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 11253 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 11254 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 11255 11256 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 11257 11258 /* 11259 * Depending on the user credentials, we set flag bits which alter probe 11260 * visibility or the amount of destructiveness allowed. In the case of 11261 * actual anonymous tracing, or the possession of all privileges, all of 11262 * the normal checks are bypassed. 11263 */ 11264 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 11265 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 11266 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 11267 } else { 11268 /* 11269 * Set up the credentials for this instantiation. We take a 11270 * hold on the credential to prevent it from disappearing on 11271 * us; this in turn prevents the zone_t referenced by this 11272 * credential from disappearing. This means that we can 11273 * examine the credential and the zone from probe context. 11274 */ 11275 crhold(cr); 11276 state->dts_cred.dcr_cred = cr; 11277 11278 /* 11279 * CRA_PROC means "we have *some* privilege for dtrace" and 11280 * unlocks the use of variables like pid, zonename, etc. 11281 */ 11282 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 11283 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 11284 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 11285 } 11286 11287 /* 11288 * dtrace_user allows use of syscall and profile providers. 11289 * If the user also has proc_owner and/or proc_zone, we 11290 * extend the scope to include additional visibility and 11291 * destructive power. 11292 */ 11293 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 11294 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 11295 state->dts_cred.dcr_visible |= 11296 DTRACE_CRV_ALLPROC; 11297 11298 state->dts_cred.dcr_action |= 11299 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 11300 } 11301 11302 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 11303 state->dts_cred.dcr_visible |= 11304 DTRACE_CRV_ALLZONE; 11305 11306 state->dts_cred.dcr_action |= 11307 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 11308 } 11309 11310 /* 11311 * If we have all privs in whatever zone this is, 11312 * we can do destructive things to processes which 11313 * have altered credentials. 11314 */ 11315 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 11316 cr->cr_zone->zone_privset)) { 11317 state->dts_cred.dcr_action |= 11318 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 11319 } 11320 } 11321 11322 /* 11323 * Holding the dtrace_kernel privilege also implies that 11324 * the user has the dtrace_user privilege from a visibility 11325 * perspective. But without further privileges, some 11326 * destructive actions are not available. 11327 */ 11328 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 11329 /* 11330 * Make all probes in all zones visible. However, 11331 * this doesn't mean that all actions become available 11332 * to all zones. 11333 */ 11334 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 11335 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 11336 11337 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 11338 DTRACE_CRA_PROC; 11339 /* 11340 * Holding proc_owner means that destructive actions 11341 * for *this* zone are allowed. 11342 */ 11343 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 11344 state->dts_cred.dcr_action |= 11345 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 11346 11347 /* 11348 * Holding proc_zone means that destructive actions 11349 * for this user/group ID in all zones is allowed. 11350 */ 11351 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 11352 state->dts_cred.dcr_action |= 11353 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 11354 11355 /* 11356 * If we have all privs in whatever zone this is, 11357 * we can do destructive things to processes which 11358 * have altered credentials. 11359 */ 11360 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 11361 cr->cr_zone->zone_privset)) { 11362 state->dts_cred.dcr_action |= 11363 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 11364 } 11365 } 11366 11367 /* 11368 * Holding the dtrace_proc privilege gives control over fasttrap 11369 * and pid providers. We need to grant wider destructive 11370 * privileges in the event that the user has proc_owner and/or 11371 * proc_zone. 11372 */ 11373 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 11374 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 11375 state->dts_cred.dcr_action |= 11376 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 11377 11378 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 11379 state->dts_cred.dcr_action |= 11380 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 11381 } 11382 } 11383 11384 return (state); 11385 } 11386 11387 static int 11388 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 11389 { 11390 dtrace_optval_t *opt = state->dts_options, size; 11391 processorid_t cpu; 11392 int flags = 0, rval; 11393 11394 ASSERT(MUTEX_HELD(&dtrace_lock)); 11395 ASSERT(MUTEX_HELD(&cpu_lock)); 11396 ASSERT(which < DTRACEOPT_MAX); 11397 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 11398 (state == dtrace_anon.dta_state && 11399 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 11400 11401 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 11402 return (0); 11403 11404 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 11405 cpu = opt[DTRACEOPT_CPU]; 11406 11407 if (which == DTRACEOPT_SPECSIZE) 11408 flags |= DTRACEBUF_NOSWITCH; 11409 11410 if (which == DTRACEOPT_BUFSIZE) { 11411 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 11412 flags |= DTRACEBUF_RING; 11413 11414 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 11415 flags |= DTRACEBUF_FILL; 11416 11417 flags |= DTRACEBUF_INACTIVE; 11418 } 11419 11420 for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) { 11421 /* 11422 * The size must be 8-byte aligned. If the size is not 8-byte 11423 * aligned, drop it down by the difference. 11424 */ 11425 if (size & (sizeof (uint64_t) - 1)) 11426 size -= size & (sizeof (uint64_t) - 1); 11427 11428 if (size < state->dts_reserve) { 11429 /* 11430 * Buffers always must be large enough to accommodate 11431 * their prereserved space. We return E2BIG instead 11432 * of ENOMEM in this case to allow for user-level 11433 * software to differentiate the cases. 11434 */ 11435 return (E2BIG); 11436 } 11437 11438 rval = dtrace_buffer_alloc(buf, size, flags, cpu); 11439 11440 if (rval != ENOMEM) { 11441 opt[which] = size; 11442 return (rval); 11443 } 11444 11445 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 11446 return (rval); 11447 } 11448 11449 return (ENOMEM); 11450 } 11451 11452 static int 11453 dtrace_state_buffers(dtrace_state_t *state) 11454 { 11455 dtrace_speculation_t *spec = state->dts_speculations; 11456 int rval, i; 11457 11458 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 11459 DTRACEOPT_BUFSIZE)) != 0) 11460 return (rval); 11461 11462 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 11463 DTRACEOPT_AGGSIZE)) != 0) 11464 return (rval); 11465 11466 for (i = 0; i < state->dts_nspeculations; i++) { 11467 if ((rval = dtrace_state_buffer(state, 11468 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 11469 return (rval); 11470 } 11471 11472 return (0); 11473 } 11474 11475 static void 11476 dtrace_state_prereserve(dtrace_state_t *state) 11477 { 11478 dtrace_ecb_t *ecb; 11479 dtrace_probe_t *probe; 11480 11481 state->dts_reserve = 0; 11482 11483 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 11484 return; 11485 11486 /* 11487 * If our buffer policy is a "fill" buffer policy, we need to set the 11488 * prereserved space to be the space required by the END probes. 11489 */ 11490 probe = dtrace_probes[dtrace_probeid_end - 1]; 11491 ASSERT(probe != NULL); 11492 11493 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 11494 if (ecb->dte_state != state) 11495 continue; 11496 11497 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 11498 } 11499 } 11500 11501 static int 11502 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 11503 { 11504 dtrace_optval_t *opt = state->dts_options, sz, nspec; 11505 dtrace_speculation_t *spec; 11506 dtrace_buffer_t *buf; 11507 cyc_handler_t hdlr; 11508 cyc_time_t when; 11509 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 11510 dtrace_icookie_t cookie; 11511 11512 mutex_enter(&cpu_lock); 11513 mutex_enter(&dtrace_lock); 11514 11515 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 11516 rval = EBUSY; 11517 goto out; 11518 } 11519 11520 /* 11521 * Before we can perform any checks, we must prime all of the 11522 * retained enablings that correspond to this state. 11523 */ 11524 dtrace_enabling_prime(state); 11525 11526 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 11527 rval = EACCES; 11528 goto out; 11529 } 11530 11531 dtrace_state_prereserve(state); 11532 11533 /* 11534 * Now we want to do is try to allocate our speculations. 11535 * We do not automatically resize the number of speculations; if 11536 * this fails, we will fail the operation. 11537 */ 11538 nspec = opt[DTRACEOPT_NSPEC]; 11539 ASSERT(nspec != DTRACEOPT_UNSET); 11540 11541 if (nspec > INT_MAX) { 11542 rval = ENOMEM; 11543 goto out; 11544 } 11545 11546 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); 11547 11548 if (spec == NULL) { 11549 rval = ENOMEM; 11550 goto out; 11551 } 11552 11553 state->dts_speculations = spec; 11554 state->dts_nspeculations = (int)nspec; 11555 11556 for (i = 0; i < nspec; i++) { 11557 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { 11558 rval = ENOMEM; 11559 goto err; 11560 } 11561 11562 spec[i].dtsp_buffer = buf; 11563 } 11564 11565 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 11566 if (dtrace_anon.dta_state == NULL) { 11567 rval = ENOENT; 11568 goto out; 11569 } 11570 11571 if (state->dts_necbs != 0) { 11572 rval = EALREADY; 11573 goto out; 11574 } 11575 11576 state->dts_anon = dtrace_anon_grab(); 11577 ASSERT(state->dts_anon != NULL); 11578 state = state->dts_anon; 11579 11580 /* 11581 * We want "grabanon" to be set in the grabbed state, so we'll 11582 * copy that option value from the grabbing state into the 11583 * grabbed state. 11584 */ 11585 state->dts_options[DTRACEOPT_GRABANON] = 11586 opt[DTRACEOPT_GRABANON]; 11587 11588 *cpu = dtrace_anon.dta_beganon; 11589 11590 /* 11591 * If the anonymous state is active (as it almost certainly 11592 * is if the anonymous enabling ultimately matched anything), 11593 * we don't allow any further option processing -- but we 11594 * don't return failure. 11595 */ 11596 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11597 goto out; 11598 } 11599 11600 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 11601 opt[DTRACEOPT_AGGSIZE] != 0) { 11602 if (state->dts_aggregations == NULL) { 11603 /* 11604 * We're not going to create an aggregation buffer 11605 * because we don't have any ECBs that contain 11606 * aggregations -- set this option to 0. 11607 */ 11608 opt[DTRACEOPT_AGGSIZE] = 0; 11609 } else { 11610 /* 11611 * If we have an aggregation buffer, we must also have 11612 * a buffer to use as scratch. 11613 */ 11614 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 11615 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 11616 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 11617 } 11618 } 11619 } 11620 11621 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 11622 opt[DTRACEOPT_SPECSIZE] != 0) { 11623 if (!state->dts_speculates) { 11624 /* 11625 * We're not going to create speculation buffers 11626 * because we don't have any ECBs that actually 11627 * speculate -- set the speculation size to 0. 11628 */ 11629 opt[DTRACEOPT_SPECSIZE] = 0; 11630 } 11631 } 11632 11633 /* 11634 * The bare minimum size for any buffer that we're actually going to 11635 * do anything to is sizeof (uint64_t). 11636 */ 11637 sz = sizeof (uint64_t); 11638 11639 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 11640 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 11641 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 11642 /* 11643 * A buffer size has been explicitly set to 0 (or to a size 11644 * that will be adjusted to 0) and we need the space -- we 11645 * need to return failure. We return ENOSPC to differentiate 11646 * it from failing to allocate a buffer due to failure to meet 11647 * the reserve (for which we return E2BIG). 11648 */ 11649 rval = ENOSPC; 11650 goto out; 11651 } 11652 11653 if ((rval = dtrace_state_buffers(state)) != 0) 11654 goto err; 11655 11656 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 11657 sz = dtrace_dstate_defsize; 11658 11659 do { 11660 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 11661 11662 if (rval == 0) 11663 break; 11664 11665 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 11666 goto err; 11667 } while (sz >>= 1); 11668 11669 opt[DTRACEOPT_DYNVARSIZE] = sz; 11670 11671 if (rval != 0) 11672 goto err; 11673 11674 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 11675 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 11676 11677 if (opt[DTRACEOPT_CLEANRATE] == 0) 11678 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 11679 11680 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 11681 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 11682 11683 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 11684 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 11685 11686 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 11687 hdlr.cyh_arg = state; 11688 hdlr.cyh_level = CY_LOW_LEVEL; 11689 11690 when.cyt_when = 0; 11691 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 11692 11693 state->dts_cleaner = cyclic_add(&hdlr, &when); 11694 11695 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 11696 hdlr.cyh_arg = state; 11697 hdlr.cyh_level = CY_LOW_LEVEL; 11698 11699 when.cyt_when = 0; 11700 when.cyt_interval = dtrace_deadman_interval; 11701 11702 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 11703 state->dts_deadman = cyclic_add(&hdlr, &when); 11704 11705 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 11706 11707 /* 11708 * Now it's time to actually fire the BEGIN probe. We need to disable 11709 * interrupts here both to record the CPU on which we fired the BEGIN 11710 * probe (the data from this CPU will be processed first at user 11711 * level) and to manually activate the buffer for this CPU. 11712 */ 11713 cookie = dtrace_interrupt_disable(); 11714 *cpu = CPU->cpu_id; 11715 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 11716 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 11717 11718 dtrace_probe(dtrace_probeid_begin, 11719 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 11720 dtrace_interrupt_enable(cookie); 11721 /* 11722 * We may have had an exit action from a BEGIN probe; only change our 11723 * state to ACTIVE if we're still in WARMUP. 11724 */ 11725 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 11726 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 11727 11728 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 11729 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 11730 11731 /* 11732 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 11733 * want each CPU to transition its principal buffer out of the 11734 * INACTIVE state. Doing this assures that no CPU will suddenly begin 11735 * processing an ECB halfway down a probe's ECB chain; all CPUs will 11736 * atomically transition from processing none of a state's ECBs to 11737 * processing all of them. 11738 */ 11739 dtrace_xcall(DTRACE_CPUALL, 11740 (dtrace_xcall_t)dtrace_buffer_activate, state); 11741 goto out; 11742 11743 err: 11744 dtrace_buffer_free(state->dts_buffer); 11745 dtrace_buffer_free(state->dts_aggbuffer); 11746 11747 if ((nspec = state->dts_nspeculations) == 0) { 11748 ASSERT(state->dts_speculations == NULL); 11749 goto out; 11750 } 11751 11752 spec = state->dts_speculations; 11753 ASSERT(spec != NULL); 11754 11755 for (i = 0; i < state->dts_nspeculations; i++) { 11756 if ((buf = spec[i].dtsp_buffer) == NULL) 11757 break; 11758 11759 dtrace_buffer_free(buf); 11760 kmem_free(buf, bufsize); 11761 } 11762 11763 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 11764 state->dts_nspeculations = 0; 11765 state->dts_speculations = NULL; 11766 11767 out: 11768 mutex_exit(&dtrace_lock); 11769 mutex_exit(&cpu_lock); 11770 11771 return (rval); 11772 } 11773 11774 static int 11775 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 11776 { 11777 dtrace_icookie_t cookie; 11778 11779 ASSERT(MUTEX_HELD(&dtrace_lock)); 11780 11781 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 11782 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 11783 return (EINVAL); 11784 11785 /* 11786 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 11787 * to be sure that every CPU has seen it. See below for the details 11788 * on why this is done. 11789 */ 11790 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 11791 dtrace_sync(); 11792 11793 /* 11794 * By this point, it is impossible for any CPU to be still processing 11795 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 11796 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 11797 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 11798 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 11799 * iff we're in the END probe. 11800 */ 11801 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 11802 dtrace_sync(); 11803 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 11804 11805 /* 11806 * Finally, we can release the reserve and call the END probe. We 11807 * disable interrupts across calling the END probe to allow us to 11808 * return the CPU on which we actually called the END probe. This 11809 * allows user-land to be sure that this CPU's principal buffer is 11810 * processed last. 11811 */ 11812 state->dts_reserve = 0; 11813 11814 cookie = dtrace_interrupt_disable(); 11815 *cpu = CPU->cpu_id; 11816 dtrace_probe(dtrace_probeid_end, 11817 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 11818 dtrace_interrupt_enable(cookie); 11819 11820 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 11821 dtrace_sync(); 11822 11823 return (0); 11824 } 11825 11826 static int 11827 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 11828 dtrace_optval_t val) 11829 { 11830 ASSERT(MUTEX_HELD(&dtrace_lock)); 11831 11832 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11833 return (EBUSY); 11834 11835 if (option >= DTRACEOPT_MAX) 11836 return (EINVAL); 11837 11838 if (option != DTRACEOPT_CPU && val < 0) 11839 return (EINVAL); 11840 11841 switch (option) { 11842 case DTRACEOPT_DESTRUCTIVE: 11843 if (dtrace_destructive_disallow) 11844 return (EACCES); 11845 11846 state->dts_cred.dcr_destructive = 1; 11847 break; 11848 11849 case DTRACEOPT_BUFSIZE: 11850 case DTRACEOPT_DYNVARSIZE: 11851 case DTRACEOPT_AGGSIZE: 11852 case DTRACEOPT_SPECSIZE: 11853 case DTRACEOPT_STRSIZE: 11854 if (val < 0) 11855 return (EINVAL); 11856 11857 if (val >= LONG_MAX) { 11858 /* 11859 * If this is an otherwise negative value, set it to 11860 * the highest multiple of 128m less than LONG_MAX. 11861 * Technically, we're adjusting the size without 11862 * regard to the buffer resizing policy, but in fact, 11863 * this has no effect -- if we set the buffer size to 11864 * ~LONG_MAX and the buffer policy is ultimately set to 11865 * be "manual", the buffer allocation is guaranteed to 11866 * fail, if only because the allocation requires two 11867 * buffers. (We set the the size to the highest 11868 * multiple of 128m because it ensures that the size 11869 * will remain a multiple of a megabyte when 11870 * repeatedly halved -- all the way down to 15m.) 11871 */ 11872 val = LONG_MAX - (1 << 27) + 1; 11873 } 11874 } 11875 11876 state->dts_options[option] = val; 11877 11878 return (0); 11879 } 11880 11881 static void 11882 dtrace_state_destroy(dtrace_state_t *state) 11883 { 11884 dtrace_ecb_t *ecb; 11885 dtrace_vstate_t *vstate = &state->dts_vstate; 11886 minor_t minor = getminor(state->dts_dev); 11887 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 11888 dtrace_speculation_t *spec = state->dts_speculations; 11889 int nspec = state->dts_nspeculations; 11890 uint32_t match; 11891 11892 ASSERT(MUTEX_HELD(&dtrace_lock)); 11893 ASSERT(MUTEX_HELD(&cpu_lock)); 11894 11895 /* 11896 * First, retract any retained enablings for this state. 11897 */ 11898 dtrace_enabling_retract(state); 11899 ASSERT(state->dts_nretained == 0); 11900 11901 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 11902 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 11903 /* 11904 * We have managed to come into dtrace_state_destroy() on a 11905 * hot enabling -- almost certainly because of a disorderly 11906 * shutdown of a consumer. (That is, a consumer that is 11907 * exiting without having called dtrace_stop().) In this case, 11908 * we're going to set our activity to be KILLED, and then 11909 * issue a sync to be sure that everyone is out of probe 11910 * context before we start blowing away ECBs. 11911 */ 11912 state->dts_activity = DTRACE_ACTIVITY_KILLED; 11913 dtrace_sync(); 11914 } 11915 11916 /* 11917 * Release the credential hold we took in dtrace_state_create(). 11918 */ 11919 if (state->dts_cred.dcr_cred != NULL) 11920 crfree(state->dts_cred.dcr_cred); 11921 11922 /* 11923 * Now we can safely disable and destroy any enabled probes. Because 11924 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 11925 * (especially if they're all enabled), we take two passes through the 11926 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 11927 * in the second we disable whatever is left over. 11928 */ 11929 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 11930 for (i = 0; i < state->dts_necbs; i++) { 11931 if ((ecb = state->dts_ecbs[i]) == NULL) 11932 continue; 11933 11934 if (match && ecb->dte_probe != NULL) { 11935 dtrace_probe_t *probe = ecb->dte_probe; 11936 dtrace_provider_t *prov = probe->dtpr_provider; 11937 11938 if (!(prov->dtpv_priv.dtpp_flags & match)) 11939 continue; 11940 } 11941 11942 dtrace_ecb_disable(ecb); 11943 dtrace_ecb_destroy(ecb); 11944 } 11945 11946 if (!match) 11947 break; 11948 } 11949 11950 /* 11951 * Before we free the buffers, perform one more sync to assure that 11952 * every CPU is out of probe context. 11953 */ 11954 dtrace_sync(); 11955 11956 dtrace_buffer_free(state->dts_buffer); 11957 dtrace_buffer_free(state->dts_aggbuffer); 11958 11959 for (i = 0; i < nspec; i++) 11960 dtrace_buffer_free(spec[i].dtsp_buffer); 11961 11962 if (state->dts_cleaner != CYCLIC_NONE) 11963 cyclic_remove(state->dts_cleaner); 11964 11965 if (state->dts_deadman != CYCLIC_NONE) 11966 cyclic_remove(state->dts_deadman); 11967 11968 dtrace_dstate_fini(&vstate->dtvs_dynvars); 11969 dtrace_vstate_fini(vstate); 11970 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 11971 11972 if (state->dts_aggregations != NULL) { 11973 #ifdef DEBUG 11974 for (i = 0; i < state->dts_naggregations; i++) 11975 ASSERT(state->dts_aggregations[i] == NULL); 11976 #endif 11977 ASSERT(state->dts_naggregations > 0); 11978 kmem_free(state->dts_aggregations, 11979 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 11980 } 11981 11982 kmem_free(state->dts_buffer, bufsize); 11983 kmem_free(state->dts_aggbuffer, bufsize); 11984 11985 for (i = 0; i < nspec; i++) 11986 kmem_free(spec[i].dtsp_buffer, bufsize); 11987 11988 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 11989 11990 dtrace_format_destroy(state); 11991 11992 vmem_destroy(state->dts_aggid_arena); 11993 ddi_soft_state_free(dtrace_softstate, minor); 11994 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 11995 } 11996 11997 /* 11998 * DTrace Anonymous Enabling Functions 11999 */ 12000 static dtrace_state_t * 12001 dtrace_anon_grab(void) 12002 { 12003 dtrace_state_t *state; 12004 12005 ASSERT(MUTEX_HELD(&dtrace_lock)); 12006 12007 if ((state = dtrace_anon.dta_state) == NULL) { 12008 ASSERT(dtrace_anon.dta_enabling == NULL); 12009 return (NULL); 12010 } 12011 12012 ASSERT(dtrace_anon.dta_enabling != NULL); 12013 ASSERT(dtrace_retained != NULL); 12014 12015 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 12016 dtrace_anon.dta_enabling = NULL; 12017 dtrace_anon.dta_state = NULL; 12018 12019 return (state); 12020 } 12021 12022 static void 12023 dtrace_anon_property(void) 12024 { 12025 int i, rv; 12026 dtrace_state_t *state; 12027 dof_hdr_t *dof; 12028 char c[32]; /* enough for "dof-data-" + digits */ 12029 12030 ASSERT(MUTEX_HELD(&dtrace_lock)); 12031 ASSERT(MUTEX_HELD(&cpu_lock)); 12032 12033 for (i = 0; ; i++) { 12034 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 12035 12036 dtrace_err_verbose = 1; 12037 12038 if ((dof = dtrace_dof_property(c)) == NULL) { 12039 dtrace_err_verbose = 0; 12040 break; 12041 } 12042 12043 /* 12044 * We want to create anonymous state, so we need to transition 12045 * the kernel debugger to indicate that DTrace is active. If 12046 * this fails (e.g. because the debugger has modified text in 12047 * some way), we won't continue with the processing. 12048 */ 12049 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 12050 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 12051 "enabling ignored."); 12052 dtrace_dof_destroy(dof); 12053 break; 12054 } 12055 12056 /* 12057 * If we haven't allocated an anonymous state, we'll do so now. 12058 */ 12059 if ((state = dtrace_anon.dta_state) == NULL) { 12060 state = dtrace_state_create(NULL, NULL); 12061 dtrace_anon.dta_state = state; 12062 12063 if (state == NULL) { 12064 /* 12065 * This basically shouldn't happen: the only 12066 * failure mode from dtrace_state_create() is a 12067 * failure of ddi_soft_state_zalloc() that 12068 * itself should never happen. Still, the 12069 * interface allows for a failure mode, and 12070 * we want to fail as gracefully as possible: 12071 * we'll emit an error message and cease 12072 * processing anonymous state in this case. 12073 */ 12074 cmn_err(CE_WARN, "failed to create " 12075 "anonymous state"); 12076 dtrace_dof_destroy(dof); 12077 break; 12078 } 12079 } 12080 12081 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 12082 &dtrace_anon.dta_enabling, 0, B_TRUE); 12083 12084 if (rv == 0) 12085 rv = dtrace_dof_options(dof, state); 12086 12087 dtrace_err_verbose = 0; 12088 dtrace_dof_destroy(dof); 12089 12090 if (rv != 0) { 12091 /* 12092 * This is malformed DOF; chuck any anonymous state 12093 * that we created. 12094 */ 12095 ASSERT(dtrace_anon.dta_enabling == NULL); 12096 dtrace_state_destroy(state); 12097 dtrace_anon.dta_state = NULL; 12098 break; 12099 } 12100 12101 ASSERT(dtrace_anon.dta_enabling != NULL); 12102 } 12103 12104 if (dtrace_anon.dta_enabling != NULL) { 12105 int rval; 12106 12107 /* 12108 * dtrace_enabling_retain() can only fail because we are 12109 * trying to retain more enablings than are allowed -- but 12110 * we only have one anonymous enabling, and we are guaranteed 12111 * to be allowed at least one retained enabling; we assert 12112 * that dtrace_enabling_retain() returns success. 12113 */ 12114 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 12115 ASSERT(rval == 0); 12116 12117 dtrace_enabling_dump(dtrace_anon.dta_enabling); 12118 } 12119 } 12120 12121 /* 12122 * DTrace Helper Functions 12123 */ 12124 static void 12125 dtrace_helper_trace(dtrace_helper_action_t *helper, 12126 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 12127 { 12128 uint32_t size, next, nnext, i; 12129 dtrace_helptrace_t *ent; 12130 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12131 12132 if (!dtrace_helptrace_enabled) 12133 return; 12134 12135 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 12136 12137 /* 12138 * What would a tracing framework be without its own tracing 12139 * framework? (Well, a hell of a lot simpler, for starters...) 12140 */ 12141 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 12142 sizeof (uint64_t) - sizeof (uint64_t); 12143 12144 /* 12145 * Iterate until we can allocate a slot in the trace buffer. 12146 */ 12147 do { 12148 next = dtrace_helptrace_next; 12149 12150 if (next + size < dtrace_helptrace_bufsize) { 12151 nnext = next + size; 12152 } else { 12153 nnext = size; 12154 } 12155 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 12156 12157 /* 12158 * We have our slot; fill it in. 12159 */ 12160 if (nnext == size) 12161 next = 0; 12162 12163 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 12164 ent->dtht_helper = helper; 12165 ent->dtht_where = where; 12166 ent->dtht_nlocals = vstate->dtvs_nlocals; 12167 12168 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 12169 mstate->dtms_fltoffs : -1; 12170 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 12171 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 12172 12173 for (i = 0; i < vstate->dtvs_nlocals; i++) { 12174 dtrace_statvar_t *svar; 12175 12176 if ((svar = vstate->dtvs_locals[i]) == NULL) 12177 continue; 12178 12179 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 12180 ent->dtht_locals[i] = 12181 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 12182 } 12183 } 12184 12185 static uint64_t 12186 dtrace_helper(int which, dtrace_mstate_t *mstate, 12187 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 12188 { 12189 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12190 uint64_t sarg0 = mstate->dtms_arg[0]; 12191 uint64_t sarg1 = mstate->dtms_arg[1]; 12192 uint64_t rval; 12193 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 12194 dtrace_helper_action_t *helper; 12195 dtrace_vstate_t *vstate; 12196 dtrace_difo_t *pred; 12197 int i, trace = dtrace_helptrace_enabled; 12198 12199 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 12200 12201 if (helpers == NULL) 12202 return (0); 12203 12204 if ((helper = helpers->dthps_actions[which]) == NULL) 12205 return (0); 12206 12207 vstate = &helpers->dthps_vstate; 12208 mstate->dtms_arg[0] = arg0; 12209 mstate->dtms_arg[1] = arg1; 12210 12211 /* 12212 * Now iterate over each helper. If its predicate evaluates to 'true', 12213 * we'll call the corresponding actions. Note that the below calls 12214 * to dtrace_dif_emulate() may set faults in machine state. This is 12215 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 12216 * the stored DIF offset with its own (which is the desired behavior). 12217 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 12218 * from machine state; this is okay, too. 12219 */ 12220 for (; helper != NULL; helper = helper->dtha_next) { 12221 if ((pred = helper->dtha_predicate) != NULL) { 12222 if (trace) 12223 dtrace_helper_trace(helper, mstate, vstate, 0); 12224 12225 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 12226 goto next; 12227 12228 if (*flags & CPU_DTRACE_FAULT) 12229 goto err; 12230 } 12231 12232 for (i = 0; i < helper->dtha_nactions; i++) { 12233 if (trace) 12234 dtrace_helper_trace(helper, 12235 mstate, vstate, i + 1); 12236 12237 rval = dtrace_dif_emulate(helper->dtha_actions[i], 12238 mstate, vstate, state); 12239 12240 if (*flags & CPU_DTRACE_FAULT) 12241 goto err; 12242 } 12243 12244 next: 12245 if (trace) 12246 dtrace_helper_trace(helper, mstate, vstate, 12247 DTRACE_HELPTRACE_NEXT); 12248 } 12249 12250 if (trace) 12251 dtrace_helper_trace(helper, mstate, vstate, 12252 DTRACE_HELPTRACE_DONE); 12253 12254 /* 12255 * Restore the arg0 that we saved upon entry. 12256 */ 12257 mstate->dtms_arg[0] = sarg0; 12258 mstate->dtms_arg[1] = sarg1; 12259 12260 return (rval); 12261 12262 err: 12263 if (trace) 12264 dtrace_helper_trace(helper, mstate, vstate, 12265 DTRACE_HELPTRACE_ERR); 12266 12267 /* 12268 * Restore the arg0 that we saved upon entry. 12269 */ 12270 mstate->dtms_arg[0] = sarg0; 12271 mstate->dtms_arg[1] = sarg1; 12272 12273 return (NULL); 12274 } 12275 12276 static void 12277 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 12278 dtrace_vstate_t *vstate) 12279 { 12280 int i; 12281 12282 if (helper->dtha_predicate != NULL) 12283 dtrace_difo_release(helper->dtha_predicate, vstate); 12284 12285 for (i = 0; i < helper->dtha_nactions; i++) { 12286 ASSERT(helper->dtha_actions[i] != NULL); 12287 dtrace_difo_release(helper->dtha_actions[i], vstate); 12288 } 12289 12290 kmem_free(helper->dtha_actions, 12291 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 12292 kmem_free(helper, sizeof (dtrace_helper_action_t)); 12293 } 12294 12295 static int 12296 dtrace_helper_destroygen(int gen) 12297 { 12298 proc_t *p = curproc; 12299 dtrace_helpers_t *help = p->p_dtrace_helpers; 12300 dtrace_vstate_t *vstate; 12301 int i; 12302 12303 ASSERT(MUTEX_HELD(&dtrace_lock)); 12304 12305 if (help == NULL || gen > help->dthps_generation) 12306 return (EINVAL); 12307 12308 vstate = &help->dthps_vstate; 12309 12310 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 12311 dtrace_helper_action_t *last = NULL, *h, *next; 12312 12313 for (h = help->dthps_actions[i]; h != NULL; h = next) { 12314 next = h->dtha_next; 12315 12316 if (h->dtha_generation == gen) { 12317 if (last != NULL) { 12318 last->dtha_next = next; 12319 } else { 12320 help->dthps_actions[i] = next; 12321 } 12322 12323 dtrace_helper_action_destroy(h, vstate); 12324 } else { 12325 last = h; 12326 } 12327 } 12328 } 12329 12330 /* 12331 * Interate until we've cleared out all helper providers with the 12332 * given generation number. 12333 */ 12334 for (;;) { 12335 dtrace_helper_provider_t *prov; 12336 12337 /* 12338 * Look for a helper provider with the right generation. We 12339 * have to start back at the beginning of the list each time 12340 * because we drop dtrace_lock. It's unlikely that we'll make 12341 * more than two passes. 12342 */ 12343 for (i = 0; i < help->dthps_nprovs; i++) { 12344 prov = help->dthps_provs[i]; 12345 12346 if (prov->dthp_generation == gen) 12347 break; 12348 } 12349 12350 /* 12351 * If there were no matches, we're done. 12352 */ 12353 if (i == help->dthps_nprovs) 12354 break; 12355 12356 /* 12357 * Move the last helper provider into this slot. 12358 */ 12359 help->dthps_nprovs--; 12360 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 12361 help->dthps_provs[help->dthps_nprovs] = NULL; 12362 12363 mutex_exit(&dtrace_lock); 12364 12365 /* 12366 * If we have a meta provider, remove this helper provider. 12367 */ 12368 mutex_enter(&dtrace_meta_lock); 12369 if (dtrace_meta_pid != NULL) { 12370 ASSERT(dtrace_deferred_pid == NULL); 12371 dtrace_helper_provider_remove(&prov->dthp_prov, 12372 p->p_pid); 12373 } 12374 mutex_exit(&dtrace_meta_lock); 12375 12376 dtrace_helper_provider_destroy(prov); 12377 12378 mutex_enter(&dtrace_lock); 12379 } 12380 12381 return (0); 12382 } 12383 12384 static int 12385 dtrace_helper_validate(dtrace_helper_action_t *helper) 12386 { 12387 int err = 0, i; 12388 dtrace_difo_t *dp; 12389 12390 if ((dp = helper->dtha_predicate) != NULL) 12391 err += dtrace_difo_validate_helper(dp); 12392 12393 for (i = 0; i < helper->dtha_nactions; i++) 12394 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 12395 12396 return (err == 0); 12397 } 12398 12399 static int 12400 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 12401 { 12402 dtrace_helpers_t *help; 12403 dtrace_helper_action_t *helper, *last; 12404 dtrace_actdesc_t *act; 12405 dtrace_vstate_t *vstate; 12406 dtrace_predicate_t *pred; 12407 int count = 0, nactions = 0, i; 12408 12409 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 12410 return (EINVAL); 12411 12412 help = curproc->p_dtrace_helpers; 12413 last = help->dthps_actions[which]; 12414 vstate = &help->dthps_vstate; 12415 12416 for (count = 0; last != NULL; last = last->dtha_next) { 12417 count++; 12418 if (last->dtha_next == NULL) 12419 break; 12420 } 12421 12422 /* 12423 * If we already have dtrace_helper_actions_max helper actions for this 12424 * helper action type, we'll refuse to add a new one. 12425 */ 12426 if (count >= dtrace_helper_actions_max) 12427 return (ENOSPC); 12428 12429 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 12430 helper->dtha_generation = help->dthps_generation; 12431 12432 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 12433 ASSERT(pred->dtp_difo != NULL); 12434 dtrace_difo_hold(pred->dtp_difo); 12435 helper->dtha_predicate = pred->dtp_difo; 12436 } 12437 12438 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 12439 if (act->dtad_kind != DTRACEACT_DIFEXPR) 12440 goto err; 12441 12442 if (act->dtad_difo == NULL) 12443 goto err; 12444 12445 nactions++; 12446 } 12447 12448 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 12449 (helper->dtha_nactions = nactions), KM_SLEEP); 12450 12451 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 12452 dtrace_difo_hold(act->dtad_difo); 12453 helper->dtha_actions[i++] = act->dtad_difo; 12454 } 12455 12456 if (!dtrace_helper_validate(helper)) 12457 goto err; 12458 12459 if (last == NULL) { 12460 help->dthps_actions[which] = helper; 12461 } else { 12462 last->dtha_next = helper; 12463 } 12464 12465 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 12466 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 12467 dtrace_helptrace_next = 0; 12468 } 12469 12470 return (0); 12471 err: 12472 dtrace_helper_action_destroy(helper, vstate); 12473 return (EINVAL); 12474 } 12475 12476 static void 12477 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 12478 dof_helper_t *dofhp) 12479 { 12480 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 12481 12482 mutex_enter(&dtrace_meta_lock); 12483 mutex_enter(&dtrace_lock); 12484 12485 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 12486 /* 12487 * If the dtrace module is loaded but not attached, or if 12488 * there aren't isn't a meta provider registered to deal with 12489 * these provider descriptions, we need to postpone creating 12490 * the actual providers until later. 12491 */ 12492 12493 if (help->dthps_next == NULL && help->dthps_prev == NULL && 12494 dtrace_deferred_pid != help) { 12495 help->dthps_deferred = 1; 12496 help->dthps_pid = p->p_pid; 12497 help->dthps_next = dtrace_deferred_pid; 12498 help->dthps_prev = NULL; 12499 if (dtrace_deferred_pid != NULL) 12500 dtrace_deferred_pid->dthps_prev = help; 12501 dtrace_deferred_pid = help; 12502 } 12503 12504 mutex_exit(&dtrace_lock); 12505 12506 } else if (dofhp != NULL) { 12507 /* 12508 * If the dtrace module is loaded and we have a particular 12509 * helper provider description, pass that off to the 12510 * meta provider. 12511 */ 12512 12513 mutex_exit(&dtrace_lock); 12514 12515 dtrace_helper_provide(dofhp, p->p_pid); 12516 12517 } else { 12518 /* 12519 * Otherwise, just pass all the helper provider descriptions 12520 * off to the meta provider. 12521 */ 12522 12523 int i; 12524 mutex_exit(&dtrace_lock); 12525 12526 for (i = 0; i < help->dthps_nprovs; i++) { 12527 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 12528 p->p_pid); 12529 } 12530 } 12531 12532 mutex_exit(&dtrace_meta_lock); 12533 } 12534 12535 static int 12536 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 12537 { 12538 dtrace_helpers_t *help; 12539 dtrace_helper_provider_t *hprov, **tmp_provs; 12540 uint_t tmp_maxprovs, i; 12541 12542 ASSERT(MUTEX_HELD(&dtrace_lock)); 12543 12544 help = curproc->p_dtrace_helpers; 12545 ASSERT(help != NULL); 12546 12547 /* 12548 * If we already have dtrace_helper_providers_max helper providers, 12549 * we're refuse to add a new one. 12550 */ 12551 if (help->dthps_nprovs >= dtrace_helper_providers_max) 12552 return (ENOSPC); 12553 12554 /* 12555 * Check to make sure this isn't a duplicate. 12556 */ 12557 for (i = 0; i < help->dthps_nprovs; i++) { 12558 if (dofhp->dofhp_addr == 12559 help->dthps_provs[i]->dthp_prov.dofhp_addr) 12560 return (EALREADY); 12561 } 12562 12563 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 12564 hprov->dthp_prov = *dofhp; 12565 hprov->dthp_ref = 1; 12566 hprov->dthp_generation = gen; 12567 12568 /* 12569 * Allocate a bigger table for helper providers if it's already full. 12570 */ 12571 if (help->dthps_maxprovs == help->dthps_nprovs) { 12572 tmp_maxprovs = help->dthps_maxprovs; 12573 tmp_provs = help->dthps_provs; 12574 12575 if (help->dthps_maxprovs == 0) 12576 help->dthps_maxprovs = 2; 12577 else 12578 help->dthps_maxprovs *= 2; 12579 if (help->dthps_maxprovs > dtrace_helper_providers_max) 12580 help->dthps_maxprovs = dtrace_helper_providers_max; 12581 12582 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 12583 12584 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 12585 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 12586 12587 if (tmp_provs != NULL) { 12588 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 12589 sizeof (dtrace_helper_provider_t *)); 12590 kmem_free(tmp_provs, tmp_maxprovs * 12591 sizeof (dtrace_helper_provider_t *)); 12592 } 12593 } 12594 12595 help->dthps_provs[help->dthps_nprovs] = hprov; 12596 help->dthps_nprovs++; 12597 12598 return (0); 12599 } 12600 12601 static void 12602 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 12603 { 12604 mutex_enter(&dtrace_lock); 12605 12606 if (--hprov->dthp_ref == 0) { 12607 dof_hdr_t *dof; 12608 mutex_exit(&dtrace_lock); 12609 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 12610 dtrace_dof_destroy(dof); 12611 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 12612 } else { 12613 mutex_exit(&dtrace_lock); 12614 } 12615 } 12616 12617 static int 12618 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 12619 { 12620 uintptr_t daddr = (uintptr_t)dof; 12621 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 12622 dof_provider_t *provider; 12623 dof_probe_t *probe; 12624 uint8_t *arg; 12625 char *strtab, *typestr; 12626 dof_stridx_t typeidx; 12627 size_t typesz; 12628 uint_t nprobes, j, k; 12629 12630 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 12631 12632 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 12633 dtrace_dof_error(dof, "misaligned section offset"); 12634 return (-1); 12635 } 12636 12637 /* 12638 * The section needs to be large enough to contain the DOF provider 12639 * structure appropriate for the given version. 12640 */ 12641 if (sec->dofs_size < 12642 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 12643 offsetof(dof_provider_t, dofpv_prenoffs) : 12644 sizeof (dof_provider_t))) { 12645 dtrace_dof_error(dof, "provider section too small"); 12646 return (-1); 12647 } 12648 12649 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 12650 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 12651 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 12652 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 12653 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 12654 12655 if (str_sec == NULL || prb_sec == NULL || 12656 arg_sec == NULL || off_sec == NULL) 12657 return (-1); 12658 12659 enoff_sec = NULL; 12660 12661 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12662 provider->dofpv_prenoffs != DOF_SECT_NONE && 12663 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 12664 provider->dofpv_prenoffs)) == NULL) 12665 return (-1); 12666 12667 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 12668 12669 if (provider->dofpv_name >= str_sec->dofs_size || 12670 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 12671 dtrace_dof_error(dof, "invalid provider name"); 12672 return (-1); 12673 } 12674 12675 if (prb_sec->dofs_entsize == 0 || 12676 prb_sec->dofs_entsize > prb_sec->dofs_size) { 12677 dtrace_dof_error(dof, "invalid entry size"); 12678 return (-1); 12679 } 12680 12681 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 12682 dtrace_dof_error(dof, "misaligned entry size"); 12683 return (-1); 12684 } 12685 12686 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 12687 dtrace_dof_error(dof, "invalid entry size"); 12688 return (-1); 12689 } 12690 12691 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 12692 dtrace_dof_error(dof, "misaligned section offset"); 12693 return (-1); 12694 } 12695 12696 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 12697 dtrace_dof_error(dof, "invalid entry size"); 12698 return (-1); 12699 } 12700 12701 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 12702 12703 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 12704 12705 /* 12706 * Take a pass through the probes to check for errors. 12707 */ 12708 for (j = 0; j < nprobes; j++) { 12709 probe = (dof_probe_t *)(uintptr_t)(daddr + 12710 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 12711 12712 if (probe->dofpr_func >= str_sec->dofs_size) { 12713 dtrace_dof_error(dof, "invalid function name"); 12714 return (-1); 12715 } 12716 12717 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 12718 dtrace_dof_error(dof, "function name too long"); 12719 return (-1); 12720 } 12721 12722 if (probe->dofpr_name >= str_sec->dofs_size || 12723 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 12724 dtrace_dof_error(dof, "invalid probe name"); 12725 return (-1); 12726 } 12727 12728 /* 12729 * The offset count must not wrap the index, and the offsets 12730 * must also not overflow the section's data. 12731 */ 12732 if (probe->dofpr_offidx + probe->dofpr_noffs < 12733 probe->dofpr_offidx || 12734 (probe->dofpr_offidx + probe->dofpr_noffs) * 12735 off_sec->dofs_entsize > off_sec->dofs_size) { 12736 dtrace_dof_error(dof, "invalid probe offset"); 12737 return (-1); 12738 } 12739 12740 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 12741 /* 12742 * If there's no is-enabled offset section, make sure 12743 * there aren't any is-enabled offsets. Otherwise 12744 * perform the same checks as for probe offsets 12745 * (immediately above). 12746 */ 12747 if (enoff_sec == NULL) { 12748 if (probe->dofpr_enoffidx != 0 || 12749 probe->dofpr_nenoffs != 0) { 12750 dtrace_dof_error(dof, "is-enabled " 12751 "offsets with null section"); 12752 return (-1); 12753 } 12754 } else if (probe->dofpr_enoffidx + 12755 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 12756 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 12757 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 12758 dtrace_dof_error(dof, "invalid is-enabled " 12759 "offset"); 12760 return (-1); 12761 } 12762 12763 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 12764 dtrace_dof_error(dof, "zero probe and " 12765 "is-enabled offsets"); 12766 return (-1); 12767 } 12768 } else if (probe->dofpr_noffs == 0) { 12769 dtrace_dof_error(dof, "zero probe offsets"); 12770 return (-1); 12771 } 12772 12773 if (probe->dofpr_argidx + probe->dofpr_xargc < 12774 probe->dofpr_argidx || 12775 (probe->dofpr_argidx + probe->dofpr_xargc) * 12776 arg_sec->dofs_entsize > arg_sec->dofs_size) { 12777 dtrace_dof_error(dof, "invalid args"); 12778 return (-1); 12779 } 12780 12781 typeidx = probe->dofpr_nargv; 12782 typestr = strtab + probe->dofpr_nargv; 12783 for (k = 0; k < probe->dofpr_nargc; k++) { 12784 if (typeidx >= str_sec->dofs_size) { 12785 dtrace_dof_error(dof, "bad " 12786 "native argument type"); 12787 return (-1); 12788 } 12789 12790 typesz = strlen(typestr) + 1; 12791 if (typesz > DTRACE_ARGTYPELEN) { 12792 dtrace_dof_error(dof, "native " 12793 "argument type too long"); 12794 return (-1); 12795 } 12796 typeidx += typesz; 12797 typestr += typesz; 12798 } 12799 12800 typeidx = probe->dofpr_xargv; 12801 typestr = strtab + probe->dofpr_xargv; 12802 for (k = 0; k < probe->dofpr_xargc; k++) { 12803 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 12804 dtrace_dof_error(dof, "bad " 12805 "native argument index"); 12806 return (-1); 12807 } 12808 12809 if (typeidx >= str_sec->dofs_size) { 12810 dtrace_dof_error(dof, "bad " 12811 "translated argument type"); 12812 return (-1); 12813 } 12814 12815 typesz = strlen(typestr) + 1; 12816 if (typesz > DTRACE_ARGTYPELEN) { 12817 dtrace_dof_error(dof, "translated argument " 12818 "type too long"); 12819 return (-1); 12820 } 12821 12822 typeidx += typesz; 12823 typestr += typesz; 12824 } 12825 } 12826 12827 return (0); 12828 } 12829 12830 static int 12831 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 12832 { 12833 dtrace_helpers_t *help; 12834 dtrace_vstate_t *vstate; 12835 dtrace_enabling_t *enab = NULL; 12836 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 12837 uintptr_t daddr = (uintptr_t)dof; 12838 12839 ASSERT(MUTEX_HELD(&dtrace_lock)); 12840 12841 if ((help = curproc->p_dtrace_helpers) == NULL) 12842 help = dtrace_helpers_create(curproc); 12843 12844 vstate = &help->dthps_vstate; 12845 12846 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 12847 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 12848 dtrace_dof_destroy(dof); 12849 return (rv); 12850 } 12851 12852 /* 12853 * Look for helper providers and validate their descriptions. 12854 */ 12855 if (dhp != NULL) { 12856 for (i = 0; i < dof->dofh_secnum; i++) { 12857 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 12858 dof->dofh_secoff + i * dof->dofh_secsize); 12859 12860 if (sec->dofs_type != DOF_SECT_PROVIDER) 12861 continue; 12862 12863 if (dtrace_helper_provider_validate(dof, sec) != 0) { 12864 dtrace_enabling_destroy(enab); 12865 dtrace_dof_destroy(dof); 12866 return (-1); 12867 } 12868 12869 nprovs++; 12870 } 12871 } 12872 12873 /* 12874 * Now we need to walk through the ECB descriptions in the enabling. 12875 */ 12876 for (i = 0; i < enab->dten_ndesc; i++) { 12877 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12878 dtrace_probedesc_t *desc = &ep->dted_probe; 12879 12880 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 12881 continue; 12882 12883 if (strcmp(desc->dtpd_mod, "helper") != 0) 12884 continue; 12885 12886 if (strcmp(desc->dtpd_func, "ustack") != 0) 12887 continue; 12888 12889 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 12890 ep)) != 0) { 12891 /* 12892 * Adding this helper action failed -- we are now going 12893 * to rip out the entire generation and return failure. 12894 */ 12895 (void) dtrace_helper_destroygen(help->dthps_generation); 12896 dtrace_enabling_destroy(enab); 12897 dtrace_dof_destroy(dof); 12898 return (-1); 12899 } 12900 12901 nhelpers++; 12902 } 12903 12904 if (nhelpers < enab->dten_ndesc) 12905 dtrace_dof_error(dof, "unmatched helpers"); 12906 12907 gen = help->dthps_generation++; 12908 dtrace_enabling_destroy(enab); 12909 12910 if (dhp != NULL && nprovs > 0) { 12911 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 12912 if (dtrace_helper_provider_add(dhp, gen) == 0) { 12913 mutex_exit(&dtrace_lock); 12914 dtrace_helper_provider_register(curproc, help, dhp); 12915 mutex_enter(&dtrace_lock); 12916 12917 destroy = 0; 12918 } 12919 } 12920 12921 if (destroy) 12922 dtrace_dof_destroy(dof); 12923 12924 return (gen); 12925 } 12926 12927 static dtrace_helpers_t * 12928 dtrace_helpers_create(proc_t *p) 12929 { 12930 dtrace_helpers_t *help; 12931 12932 ASSERT(MUTEX_HELD(&dtrace_lock)); 12933 ASSERT(p->p_dtrace_helpers == NULL); 12934 12935 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 12936 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 12937 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 12938 12939 p->p_dtrace_helpers = help; 12940 dtrace_helpers++; 12941 12942 return (help); 12943 } 12944 12945 static void 12946 dtrace_helpers_destroy(void) 12947 { 12948 dtrace_helpers_t *help; 12949 dtrace_vstate_t *vstate; 12950 proc_t *p = curproc; 12951 int i; 12952 12953 mutex_enter(&dtrace_lock); 12954 12955 ASSERT(p->p_dtrace_helpers != NULL); 12956 ASSERT(dtrace_helpers > 0); 12957 12958 help = p->p_dtrace_helpers; 12959 vstate = &help->dthps_vstate; 12960 12961 /* 12962 * We're now going to lose the help from this process. 12963 */ 12964 p->p_dtrace_helpers = NULL; 12965 dtrace_sync(); 12966 12967 /* 12968 * Destory the helper actions. 12969 */ 12970 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 12971 dtrace_helper_action_t *h, *next; 12972 12973 for (h = help->dthps_actions[i]; h != NULL; h = next) { 12974 next = h->dtha_next; 12975 dtrace_helper_action_destroy(h, vstate); 12976 h = next; 12977 } 12978 } 12979 12980 mutex_exit(&dtrace_lock); 12981 12982 /* 12983 * Destroy the helper providers. 12984 */ 12985 if (help->dthps_maxprovs > 0) { 12986 mutex_enter(&dtrace_meta_lock); 12987 if (dtrace_meta_pid != NULL) { 12988 ASSERT(dtrace_deferred_pid == NULL); 12989 12990 for (i = 0; i < help->dthps_nprovs; i++) { 12991 dtrace_helper_provider_remove( 12992 &help->dthps_provs[i]->dthp_prov, p->p_pid); 12993 } 12994 } else { 12995 mutex_enter(&dtrace_lock); 12996 ASSERT(help->dthps_deferred == 0 || 12997 help->dthps_next != NULL || 12998 help->dthps_prev != NULL || 12999 help == dtrace_deferred_pid); 13000 13001 /* 13002 * Remove the helper from the deferred list. 13003 */ 13004 if (help->dthps_next != NULL) 13005 help->dthps_next->dthps_prev = help->dthps_prev; 13006 if (help->dthps_prev != NULL) 13007 help->dthps_prev->dthps_next = help->dthps_next; 13008 if (dtrace_deferred_pid == help) { 13009 dtrace_deferred_pid = help->dthps_next; 13010 ASSERT(help->dthps_prev == NULL); 13011 } 13012 13013 mutex_exit(&dtrace_lock); 13014 } 13015 13016 mutex_exit(&dtrace_meta_lock); 13017 13018 for (i = 0; i < help->dthps_nprovs; i++) { 13019 dtrace_helper_provider_destroy(help->dthps_provs[i]); 13020 } 13021 13022 kmem_free(help->dthps_provs, help->dthps_maxprovs * 13023 sizeof (dtrace_helper_provider_t *)); 13024 } 13025 13026 mutex_enter(&dtrace_lock); 13027 13028 dtrace_vstate_fini(&help->dthps_vstate); 13029 kmem_free(help->dthps_actions, 13030 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 13031 kmem_free(help, sizeof (dtrace_helpers_t)); 13032 13033 --dtrace_helpers; 13034 mutex_exit(&dtrace_lock); 13035 } 13036 13037 static void 13038 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 13039 { 13040 dtrace_helpers_t *help, *newhelp; 13041 dtrace_helper_action_t *helper, *new, *last; 13042 dtrace_difo_t *dp; 13043 dtrace_vstate_t *vstate; 13044 int i, j, sz, hasprovs = 0; 13045 13046 mutex_enter(&dtrace_lock); 13047 ASSERT(from->p_dtrace_helpers != NULL); 13048 ASSERT(dtrace_helpers > 0); 13049 13050 help = from->p_dtrace_helpers; 13051 newhelp = dtrace_helpers_create(to); 13052 ASSERT(to->p_dtrace_helpers != NULL); 13053 13054 newhelp->dthps_generation = help->dthps_generation; 13055 vstate = &newhelp->dthps_vstate; 13056 13057 /* 13058 * Duplicate the helper actions. 13059 */ 13060 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13061 if ((helper = help->dthps_actions[i]) == NULL) 13062 continue; 13063 13064 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 13065 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 13066 KM_SLEEP); 13067 new->dtha_generation = helper->dtha_generation; 13068 13069 if ((dp = helper->dtha_predicate) != NULL) { 13070 dp = dtrace_difo_duplicate(dp, vstate); 13071 new->dtha_predicate = dp; 13072 } 13073 13074 new->dtha_nactions = helper->dtha_nactions; 13075 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 13076 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 13077 13078 for (j = 0; j < new->dtha_nactions; j++) { 13079 dtrace_difo_t *dp = helper->dtha_actions[j]; 13080 13081 ASSERT(dp != NULL); 13082 dp = dtrace_difo_duplicate(dp, vstate); 13083 new->dtha_actions[j] = dp; 13084 } 13085 13086 if (last != NULL) { 13087 last->dtha_next = new; 13088 } else { 13089 newhelp->dthps_actions[i] = new; 13090 } 13091 13092 last = new; 13093 } 13094 } 13095 13096 /* 13097 * Duplicate the helper providers and register them with the 13098 * DTrace framework. 13099 */ 13100 if (help->dthps_nprovs > 0) { 13101 newhelp->dthps_nprovs = help->dthps_nprovs; 13102 newhelp->dthps_maxprovs = help->dthps_nprovs; 13103 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 13104 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13105 for (i = 0; i < newhelp->dthps_nprovs; i++) { 13106 newhelp->dthps_provs[i] = help->dthps_provs[i]; 13107 newhelp->dthps_provs[i]->dthp_ref++; 13108 } 13109 13110 hasprovs = 1; 13111 } 13112 13113 mutex_exit(&dtrace_lock); 13114 13115 if (hasprovs) 13116 dtrace_helper_provider_register(to, newhelp, NULL); 13117 } 13118 13119 /* 13120 * DTrace Hook Functions 13121 */ 13122 static void 13123 dtrace_module_loaded(struct modctl *ctl) 13124 { 13125 dtrace_provider_t *prv; 13126 13127 mutex_enter(&dtrace_provider_lock); 13128 mutex_enter(&mod_lock); 13129 13130 ASSERT(ctl->mod_busy); 13131 13132 /* 13133 * We're going to call each providers per-module provide operation 13134 * specifying only this module. 13135 */ 13136 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 13137 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 13138 13139 mutex_exit(&mod_lock); 13140 mutex_exit(&dtrace_provider_lock); 13141 13142 /* 13143 * If we have any retained enablings, we need to match against them. 13144 * Enabling probes requires that cpu_lock be held, and we cannot hold 13145 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 13146 * module. (In particular, this happens when loading scheduling 13147 * classes.) So if we have any retained enablings, we need to dispatch 13148 * our task queue to do the match for us. 13149 */ 13150 mutex_enter(&dtrace_lock); 13151 13152 if (dtrace_retained == NULL) { 13153 mutex_exit(&dtrace_lock); 13154 return; 13155 } 13156 13157 (void) taskq_dispatch(dtrace_taskq, 13158 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 13159 13160 mutex_exit(&dtrace_lock); 13161 13162 /* 13163 * And now, for a little heuristic sleaze: in general, we want to 13164 * match modules as soon as they load. However, we cannot guarantee 13165 * this, because it would lead us to the lock ordering violation 13166 * outlined above. The common case, of course, is that cpu_lock is 13167 * _not_ held -- so we delay here for a clock tick, hoping that that's 13168 * long enough for the task queue to do its work. If it's not, it's 13169 * not a serious problem -- it just means that the module that we 13170 * just loaded may not be immediately instrumentable. 13171 */ 13172 delay(1); 13173 } 13174 13175 static void 13176 dtrace_module_unloaded(struct modctl *ctl) 13177 { 13178 dtrace_probe_t template, *probe, *first, *next; 13179 dtrace_provider_t *prov; 13180 13181 template.dtpr_mod = ctl->mod_modname; 13182 13183 mutex_enter(&dtrace_provider_lock); 13184 mutex_enter(&mod_lock); 13185 mutex_enter(&dtrace_lock); 13186 13187 if (dtrace_bymod == NULL) { 13188 /* 13189 * The DTrace module is loaded (obviously) but not attached; 13190 * we don't have any work to do. 13191 */ 13192 mutex_exit(&dtrace_provider_lock); 13193 mutex_exit(&mod_lock); 13194 mutex_exit(&dtrace_lock); 13195 return; 13196 } 13197 13198 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 13199 probe != NULL; probe = probe->dtpr_nextmod) { 13200 if (probe->dtpr_ecb != NULL) { 13201 mutex_exit(&dtrace_provider_lock); 13202 mutex_exit(&mod_lock); 13203 mutex_exit(&dtrace_lock); 13204 13205 /* 13206 * This shouldn't _actually_ be possible -- we're 13207 * unloading a module that has an enabled probe in it. 13208 * (It's normally up to the provider to make sure that 13209 * this can't happen.) However, because dtps_enable() 13210 * doesn't have a failure mode, there can be an 13211 * enable/unload race. Upshot: we don't want to 13212 * assert, but we're not going to disable the 13213 * probe, either. 13214 */ 13215 if (dtrace_err_verbose) { 13216 cmn_err(CE_WARN, "unloaded module '%s' had " 13217 "enabled probes", ctl->mod_modname); 13218 } 13219 13220 return; 13221 } 13222 } 13223 13224 probe = first; 13225 13226 for (first = NULL; probe != NULL; probe = next) { 13227 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 13228 13229 dtrace_probes[probe->dtpr_id - 1] = NULL; 13230 13231 next = probe->dtpr_nextmod; 13232 dtrace_hash_remove(dtrace_bymod, probe); 13233 dtrace_hash_remove(dtrace_byfunc, probe); 13234 dtrace_hash_remove(dtrace_byname, probe); 13235 13236 if (first == NULL) { 13237 first = probe; 13238 probe->dtpr_nextmod = NULL; 13239 } else { 13240 probe->dtpr_nextmod = first; 13241 first = probe; 13242 } 13243 } 13244 13245 /* 13246 * We've removed all of the module's probes from the hash chains and 13247 * from the probe array. Now issue a dtrace_sync() to be sure that 13248 * everyone has cleared out from any probe array processing. 13249 */ 13250 dtrace_sync(); 13251 13252 for (probe = first; probe != NULL; probe = first) { 13253 first = probe->dtpr_nextmod; 13254 prov = probe->dtpr_provider; 13255 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 13256 probe->dtpr_arg); 13257 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 13258 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 13259 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 13260 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 13261 kmem_free(probe, sizeof (dtrace_probe_t)); 13262 } 13263 13264 mutex_exit(&dtrace_lock); 13265 mutex_exit(&mod_lock); 13266 mutex_exit(&dtrace_provider_lock); 13267 } 13268 13269 void 13270 dtrace_suspend(void) 13271 { 13272 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 13273 } 13274 13275 void 13276 dtrace_resume(void) 13277 { 13278 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 13279 } 13280 13281 static int 13282 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 13283 { 13284 ASSERT(MUTEX_HELD(&cpu_lock)); 13285 mutex_enter(&dtrace_lock); 13286 13287 switch (what) { 13288 case CPU_CONFIG: { 13289 dtrace_state_t *state; 13290 dtrace_optval_t *opt, rs, c; 13291 13292 /* 13293 * For now, we only allocate a new buffer for anonymous state. 13294 */ 13295 if ((state = dtrace_anon.dta_state) == NULL) 13296 break; 13297 13298 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13299 break; 13300 13301 opt = state->dts_options; 13302 c = opt[DTRACEOPT_CPU]; 13303 13304 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 13305 break; 13306 13307 /* 13308 * Regardless of what the actual policy is, we're going to 13309 * temporarily set our resize policy to be manual. We're 13310 * also going to temporarily set our CPU option to denote 13311 * the newly configured CPU. 13312 */ 13313 rs = opt[DTRACEOPT_BUFRESIZE]; 13314 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 13315 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 13316 13317 (void) dtrace_state_buffers(state); 13318 13319 opt[DTRACEOPT_BUFRESIZE] = rs; 13320 opt[DTRACEOPT_CPU] = c; 13321 13322 break; 13323 } 13324 13325 case CPU_UNCONFIG: 13326 /* 13327 * We don't free the buffer in the CPU_UNCONFIG case. (The 13328 * buffer will be freed when the consumer exits.) 13329 */ 13330 break; 13331 13332 default: 13333 break; 13334 } 13335 13336 mutex_exit(&dtrace_lock); 13337 return (0); 13338 } 13339 13340 static void 13341 dtrace_cpu_setup_initial(processorid_t cpu) 13342 { 13343 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 13344 } 13345 13346 static void 13347 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 13348 { 13349 if (dtrace_toxranges >= dtrace_toxranges_max) { 13350 int osize, nsize; 13351 dtrace_toxrange_t *range; 13352 13353 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 13354 13355 if (osize == 0) { 13356 ASSERT(dtrace_toxrange == NULL); 13357 ASSERT(dtrace_toxranges_max == 0); 13358 dtrace_toxranges_max = 1; 13359 } else { 13360 dtrace_toxranges_max <<= 1; 13361 } 13362 13363 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 13364 range = kmem_zalloc(nsize, KM_SLEEP); 13365 13366 if (dtrace_toxrange != NULL) { 13367 ASSERT(osize != 0); 13368 bcopy(dtrace_toxrange, range, osize); 13369 kmem_free(dtrace_toxrange, osize); 13370 } 13371 13372 dtrace_toxrange = range; 13373 } 13374 13375 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 13376 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 13377 13378 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 13379 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 13380 dtrace_toxranges++; 13381 } 13382 13383 /* 13384 * DTrace Driver Cookbook Functions 13385 */ 13386 /*ARGSUSED*/ 13387 static int 13388 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 13389 { 13390 dtrace_provider_id_t id; 13391 dtrace_state_t *state = NULL; 13392 dtrace_enabling_t *enab; 13393 13394 mutex_enter(&cpu_lock); 13395 mutex_enter(&dtrace_provider_lock); 13396 mutex_enter(&dtrace_lock); 13397 13398 if (ddi_soft_state_init(&dtrace_softstate, 13399 sizeof (dtrace_state_t), 0) != 0) { 13400 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 13401 mutex_exit(&cpu_lock); 13402 mutex_exit(&dtrace_provider_lock); 13403 mutex_exit(&dtrace_lock); 13404 return (DDI_FAILURE); 13405 } 13406 13407 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 13408 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 13409 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 13410 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 13411 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 13412 ddi_remove_minor_node(devi, NULL); 13413 ddi_soft_state_fini(&dtrace_softstate); 13414 mutex_exit(&cpu_lock); 13415 mutex_exit(&dtrace_provider_lock); 13416 mutex_exit(&dtrace_lock); 13417 return (DDI_FAILURE); 13418 } 13419 13420 ddi_report_dev(devi); 13421 dtrace_devi = devi; 13422 13423 dtrace_modload = dtrace_module_loaded; 13424 dtrace_modunload = dtrace_module_unloaded; 13425 dtrace_cpu_init = dtrace_cpu_setup_initial; 13426 dtrace_helpers_cleanup = dtrace_helpers_destroy; 13427 dtrace_helpers_fork = dtrace_helpers_duplicate; 13428 dtrace_cpustart_init = dtrace_suspend; 13429 dtrace_cpustart_fini = dtrace_resume; 13430 dtrace_debugger_init = dtrace_suspend; 13431 dtrace_debugger_fini = dtrace_resume; 13432 dtrace_kreloc_init = dtrace_suspend; 13433 dtrace_kreloc_fini = dtrace_resume; 13434 13435 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 13436 13437 ASSERT(MUTEX_HELD(&cpu_lock)); 13438 13439 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 13440 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13441 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 13442 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 13443 VM_SLEEP | VMC_IDENTIFIER); 13444 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 13445 1, INT_MAX, 0); 13446 13447 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 13448 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 13449 NULL, NULL, NULL, NULL, NULL, 0); 13450 13451 ASSERT(MUTEX_HELD(&cpu_lock)); 13452 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 13453 offsetof(dtrace_probe_t, dtpr_nextmod), 13454 offsetof(dtrace_probe_t, dtpr_prevmod)); 13455 13456 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 13457 offsetof(dtrace_probe_t, dtpr_nextfunc), 13458 offsetof(dtrace_probe_t, dtpr_prevfunc)); 13459 13460 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 13461 offsetof(dtrace_probe_t, dtpr_nextname), 13462 offsetof(dtrace_probe_t, dtpr_prevname)); 13463 13464 if (dtrace_retain_max < 1) { 13465 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 13466 "setting to 1", dtrace_retain_max); 13467 dtrace_retain_max = 1; 13468 } 13469 13470 /* 13471 * Now discover our toxic ranges. 13472 */ 13473 dtrace_toxic_ranges(dtrace_toxrange_add); 13474 13475 /* 13476 * Before we register ourselves as a provider to our own framework, 13477 * we would like to assert that dtrace_provider is NULL -- but that's 13478 * not true if we were loaded as a dependency of a DTrace provider. 13479 * Once we've registered, we can assert that dtrace_provider is our 13480 * pseudo provider. 13481 */ 13482 (void) dtrace_register("dtrace", &dtrace_provider_attr, 13483 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 13484 13485 ASSERT(dtrace_provider != NULL); 13486 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 13487 13488 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 13489 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 13490 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 13491 dtrace_provider, NULL, NULL, "END", 0, NULL); 13492 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 13493 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 13494 13495 dtrace_anon_property(); 13496 mutex_exit(&cpu_lock); 13497 13498 /* 13499 * If DTrace helper tracing is enabled, we need to allocate the 13500 * trace buffer and initialize the values. 13501 */ 13502 if (dtrace_helptrace_enabled) { 13503 ASSERT(dtrace_helptrace_buffer == NULL); 13504 dtrace_helptrace_buffer = 13505 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 13506 dtrace_helptrace_next = 0; 13507 } 13508 13509 /* 13510 * If there are already providers, we must ask them to provide their 13511 * probes, and then match any anonymous enabling against them. Note 13512 * that there should be no other retained enablings at this time: 13513 * the only retained enablings at this time should be the anonymous 13514 * enabling. 13515 */ 13516 if (dtrace_anon.dta_enabling != NULL) { 13517 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 13518 13519 dtrace_enabling_provide(NULL); 13520 state = dtrace_anon.dta_state; 13521 13522 /* 13523 * We couldn't hold cpu_lock across the above call to 13524 * dtrace_enabling_provide(), but we must hold it to actually 13525 * enable the probes. We have to drop all of our locks, pick 13526 * up cpu_lock, and regain our locks before matching the 13527 * retained anonymous enabling. 13528 */ 13529 mutex_exit(&dtrace_lock); 13530 mutex_exit(&dtrace_provider_lock); 13531 13532 mutex_enter(&cpu_lock); 13533 mutex_enter(&dtrace_provider_lock); 13534 mutex_enter(&dtrace_lock); 13535 13536 if ((enab = dtrace_anon.dta_enabling) != NULL) 13537 (void) dtrace_enabling_match(enab, NULL); 13538 13539 mutex_exit(&cpu_lock); 13540 } 13541 13542 mutex_exit(&dtrace_lock); 13543 mutex_exit(&dtrace_provider_lock); 13544 13545 if (state != NULL) { 13546 /* 13547 * If we created any anonymous state, set it going now. 13548 */ 13549 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 13550 } 13551 13552 return (DDI_SUCCESS); 13553 } 13554 13555 /*ARGSUSED*/ 13556 static int 13557 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 13558 { 13559 dtrace_state_t *state; 13560 uint32_t priv; 13561 uid_t uid; 13562 zoneid_t zoneid; 13563 13564 if (getminor(*devp) == DTRACEMNRN_HELPER) 13565 return (0); 13566 13567 /* 13568 * If this wasn't an open with the "helper" minor, then it must be 13569 * the "dtrace" minor. 13570 */ 13571 ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE); 13572 13573 /* 13574 * If no DTRACE_PRIV_* bits are set in the credential, then the 13575 * caller lacks sufficient permission to do anything with DTrace. 13576 */ 13577 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 13578 if (priv == DTRACE_PRIV_NONE) 13579 return (EACCES); 13580 13581 /* 13582 * Ask all providers to provide all their probes. 13583 */ 13584 mutex_enter(&dtrace_provider_lock); 13585 dtrace_probe_provide(NULL, NULL); 13586 mutex_exit(&dtrace_provider_lock); 13587 13588 mutex_enter(&cpu_lock); 13589 mutex_enter(&dtrace_lock); 13590 dtrace_opens++; 13591 dtrace_membar_producer(); 13592 13593 /* 13594 * If the kernel debugger is active (that is, if the kernel debugger 13595 * modified text in some way), we won't allow the open. 13596 */ 13597 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 13598 dtrace_opens--; 13599 mutex_exit(&cpu_lock); 13600 mutex_exit(&dtrace_lock); 13601 return (EBUSY); 13602 } 13603 13604 state = dtrace_state_create(devp, cred_p); 13605 mutex_exit(&cpu_lock); 13606 13607 if (state == NULL) { 13608 if (--dtrace_opens == 0) 13609 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 13610 mutex_exit(&dtrace_lock); 13611 return (EAGAIN); 13612 } 13613 13614 mutex_exit(&dtrace_lock); 13615 13616 return (0); 13617 } 13618 13619 /*ARGSUSED*/ 13620 static int 13621 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 13622 { 13623 minor_t minor = getminor(dev); 13624 dtrace_state_t *state; 13625 13626 if (minor == DTRACEMNRN_HELPER) 13627 return (0); 13628 13629 state = ddi_get_soft_state(dtrace_softstate, minor); 13630 13631 mutex_enter(&cpu_lock); 13632 mutex_enter(&dtrace_lock); 13633 13634 if (state->dts_anon) { 13635 /* 13636 * There is anonymous state. Destroy that first. 13637 */ 13638 ASSERT(dtrace_anon.dta_state == NULL); 13639 dtrace_state_destroy(state->dts_anon); 13640 } 13641 13642 dtrace_state_destroy(state); 13643 ASSERT(dtrace_opens > 0); 13644 if (--dtrace_opens == 0) 13645 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 13646 13647 mutex_exit(&dtrace_lock); 13648 mutex_exit(&cpu_lock); 13649 13650 return (0); 13651 } 13652 13653 /*ARGSUSED*/ 13654 static int 13655 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 13656 { 13657 int rval; 13658 dof_helper_t help, *dhp = NULL; 13659 13660 switch (cmd) { 13661 case DTRACEHIOC_ADDDOF: 13662 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 13663 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 13664 return (EFAULT); 13665 } 13666 13667 dhp = &help; 13668 arg = (intptr_t)help.dofhp_dof; 13669 /*FALLTHROUGH*/ 13670 13671 case DTRACEHIOC_ADD: { 13672 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 13673 13674 if (dof == NULL) 13675 return (rval); 13676 13677 mutex_enter(&dtrace_lock); 13678 13679 /* 13680 * dtrace_helper_slurp() takes responsibility for the dof -- 13681 * it may free it now or it may save it and free it later. 13682 */ 13683 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 13684 *rv = rval; 13685 rval = 0; 13686 } else { 13687 rval = EINVAL; 13688 } 13689 13690 mutex_exit(&dtrace_lock); 13691 return (rval); 13692 } 13693 13694 case DTRACEHIOC_REMOVE: { 13695 mutex_enter(&dtrace_lock); 13696 rval = dtrace_helper_destroygen(arg); 13697 mutex_exit(&dtrace_lock); 13698 13699 return (rval); 13700 } 13701 13702 default: 13703 break; 13704 } 13705 13706 return (ENOTTY); 13707 } 13708 13709 /*ARGSUSED*/ 13710 static int 13711 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 13712 { 13713 minor_t minor = getminor(dev); 13714 dtrace_state_t *state; 13715 int rval; 13716 13717 if (minor == DTRACEMNRN_HELPER) 13718 return (dtrace_ioctl_helper(cmd, arg, rv)); 13719 13720 state = ddi_get_soft_state(dtrace_softstate, minor); 13721 13722 if (state->dts_anon) { 13723 ASSERT(dtrace_anon.dta_state == NULL); 13724 state = state->dts_anon; 13725 } 13726 13727 switch (cmd) { 13728 case DTRACEIOC_PROVIDER: { 13729 dtrace_providerdesc_t pvd; 13730 dtrace_provider_t *pvp; 13731 13732 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 13733 return (EFAULT); 13734 13735 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 13736 mutex_enter(&dtrace_provider_lock); 13737 13738 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 13739 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 13740 break; 13741 } 13742 13743 mutex_exit(&dtrace_provider_lock); 13744 13745 if (pvp == NULL) 13746 return (ESRCH); 13747 13748 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 13749 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 13750 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 13751 return (EFAULT); 13752 13753 return (0); 13754 } 13755 13756 case DTRACEIOC_EPROBE: { 13757 dtrace_eprobedesc_t epdesc; 13758 dtrace_ecb_t *ecb; 13759 dtrace_action_t *act; 13760 void *buf; 13761 size_t size; 13762 uintptr_t dest; 13763 int nrecs; 13764 13765 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 13766 return (EFAULT); 13767 13768 mutex_enter(&dtrace_lock); 13769 13770 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 13771 mutex_exit(&dtrace_lock); 13772 return (EINVAL); 13773 } 13774 13775 if (ecb->dte_probe == NULL) { 13776 mutex_exit(&dtrace_lock); 13777 return (EINVAL); 13778 } 13779 13780 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 13781 epdesc.dtepd_uarg = ecb->dte_uarg; 13782 epdesc.dtepd_size = ecb->dte_size; 13783 13784 nrecs = epdesc.dtepd_nrecs; 13785 epdesc.dtepd_nrecs = 0; 13786 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 13787 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 13788 continue; 13789 13790 epdesc.dtepd_nrecs++; 13791 } 13792 13793 /* 13794 * Now that we have the size, we need to allocate a temporary 13795 * buffer in which to store the complete description. We need 13796 * the temporary buffer to be able to drop dtrace_lock() 13797 * across the copyout(), below. 13798 */ 13799 size = sizeof (dtrace_eprobedesc_t) + 13800 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 13801 13802 buf = kmem_alloc(size, KM_SLEEP); 13803 dest = (uintptr_t)buf; 13804 13805 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 13806 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 13807 13808 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 13809 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 13810 continue; 13811 13812 if (nrecs-- == 0) 13813 break; 13814 13815 bcopy(&act->dta_rec, (void *)dest, 13816 sizeof (dtrace_recdesc_t)); 13817 dest += sizeof (dtrace_recdesc_t); 13818 } 13819 13820 mutex_exit(&dtrace_lock); 13821 13822 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 13823 kmem_free(buf, size); 13824 return (EFAULT); 13825 } 13826 13827 kmem_free(buf, size); 13828 return (0); 13829 } 13830 13831 case DTRACEIOC_AGGDESC: { 13832 dtrace_aggdesc_t aggdesc; 13833 dtrace_action_t *act; 13834 dtrace_aggregation_t *agg; 13835 int nrecs; 13836 uint32_t offs; 13837 dtrace_recdesc_t *lrec; 13838 void *buf; 13839 size_t size; 13840 uintptr_t dest; 13841 13842 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 13843 return (EFAULT); 13844 13845 mutex_enter(&dtrace_lock); 13846 13847 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 13848 mutex_exit(&dtrace_lock); 13849 return (EINVAL); 13850 } 13851 13852 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 13853 13854 nrecs = aggdesc.dtagd_nrecs; 13855 aggdesc.dtagd_nrecs = 0; 13856 13857 offs = agg->dtag_base; 13858 lrec = &agg->dtag_action.dta_rec; 13859 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 13860 13861 for (act = agg->dtag_first; ; act = act->dta_next) { 13862 ASSERT(act->dta_intuple || 13863 DTRACEACT_ISAGG(act->dta_kind)); 13864 13865 /* 13866 * If this action has a record size of zero, it 13867 * denotes an argument to the aggregating action. 13868 * Because the presence of this record doesn't (or 13869 * shouldn't) affect the way the data is interpreted, 13870 * we don't copy it out to save user-level the 13871 * confusion of dealing with a zero-length record. 13872 */ 13873 if (act->dta_rec.dtrd_size == 0) { 13874 ASSERT(agg->dtag_hasarg); 13875 continue; 13876 } 13877 13878 aggdesc.dtagd_nrecs++; 13879 13880 if (act == &agg->dtag_action) 13881 break; 13882 } 13883 13884 /* 13885 * Now that we have the size, we need to allocate a temporary 13886 * buffer in which to store the complete description. We need 13887 * the temporary buffer to be able to drop dtrace_lock() 13888 * across the copyout(), below. 13889 */ 13890 size = sizeof (dtrace_aggdesc_t) + 13891 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 13892 13893 buf = kmem_alloc(size, KM_SLEEP); 13894 dest = (uintptr_t)buf; 13895 13896 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 13897 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 13898 13899 for (act = agg->dtag_first; ; act = act->dta_next) { 13900 dtrace_recdesc_t rec = act->dta_rec; 13901 13902 /* 13903 * See the comment in the above loop for why we pass 13904 * over zero-length records. 13905 */ 13906 if (rec.dtrd_size == 0) { 13907 ASSERT(agg->dtag_hasarg); 13908 continue; 13909 } 13910 13911 if (nrecs-- == 0) 13912 break; 13913 13914 rec.dtrd_offset -= offs; 13915 bcopy(&rec, (void *)dest, sizeof (rec)); 13916 dest += sizeof (dtrace_recdesc_t); 13917 13918 if (act == &agg->dtag_action) 13919 break; 13920 } 13921 13922 mutex_exit(&dtrace_lock); 13923 13924 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 13925 kmem_free(buf, size); 13926 return (EFAULT); 13927 } 13928 13929 kmem_free(buf, size); 13930 return (0); 13931 } 13932 13933 case DTRACEIOC_ENABLE: { 13934 dof_hdr_t *dof; 13935 dtrace_enabling_t *enab = NULL; 13936 dtrace_vstate_t *vstate; 13937 int err = 0; 13938 13939 *rv = 0; 13940 13941 /* 13942 * If a NULL argument has been passed, we take this as our 13943 * cue to reevaluate our enablings. 13944 */ 13945 if (arg == NULL) { 13946 mutex_enter(&cpu_lock); 13947 mutex_enter(&dtrace_lock); 13948 err = dtrace_enabling_matchstate(state, rv); 13949 mutex_exit(&dtrace_lock); 13950 mutex_exit(&cpu_lock); 13951 13952 return (err); 13953 } 13954 13955 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 13956 return (rval); 13957 13958 mutex_enter(&cpu_lock); 13959 mutex_enter(&dtrace_lock); 13960 vstate = &state->dts_vstate; 13961 13962 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 13963 mutex_exit(&dtrace_lock); 13964 mutex_exit(&cpu_lock); 13965 dtrace_dof_destroy(dof); 13966 return (EBUSY); 13967 } 13968 13969 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 13970 mutex_exit(&dtrace_lock); 13971 mutex_exit(&cpu_lock); 13972 dtrace_dof_destroy(dof); 13973 return (EINVAL); 13974 } 13975 13976 if ((rval = dtrace_dof_options(dof, state)) != 0) { 13977 dtrace_enabling_destroy(enab); 13978 mutex_exit(&dtrace_lock); 13979 mutex_exit(&cpu_lock); 13980 dtrace_dof_destroy(dof); 13981 return (rval); 13982 } 13983 13984 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 13985 err = dtrace_enabling_retain(enab); 13986 } else { 13987 dtrace_enabling_destroy(enab); 13988 } 13989 13990 mutex_exit(&cpu_lock); 13991 mutex_exit(&dtrace_lock); 13992 dtrace_dof_destroy(dof); 13993 13994 return (err); 13995 } 13996 13997 case DTRACEIOC_REPLICATE: { 13998 dtrace_repldesc_t desc; 13999 dtrace_probedesc_t *match = &desc.dtrpd_match; 14000 dtrace_probedesc_t *create = &desc.dtrpd_create; 14001 int err; 14002 14003 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14004 return (EFAULT); 14005 14006 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14007 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14008 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14009 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14010 14011 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14012 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14013 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14014 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14015 14016 mutex_enter(&dtrace_lock); 14017 err = dtrace_enabling_replicate(state, match, create); 14018 mutex_exit(&dtrace_lock); 14019 14020 return (err); 14021 } 14022 14023 case DTRACEIOC_PROBEMATCH: 14024 case DTRACEIOC_PROBES: { 14025 dtrace_probe_t *probe = NULL; 14026 dtrace_probedesc_t desc; 14027 dtrace_probekey_t pkey; 14028 dtrace_id_t i; 14029 int m = 0; 14030 uint32_t priv; 14031 uid_t uid; 14032 zoneid_t zoneid; 14033 14034 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14035 return (EFAULT); 14036 14037 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14038 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14039 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14040 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14041 14042 /* 14043 * Before we attempt to match this probe, we want to give 14044 * all providers the opportunity to provide it. 14045 */ 14046 if (desc.dtpd_id == DTRACE_IDNONE) { 14047 mutex_enter(&dtrace_provider_lock); 14048 dtrace_probe_provide(&desc, NULL); 14049 mutex_exit(&dtrace_provider_lock); 14050 desc.dtpd_id++; 14051 } 14052 14053 if (cmd == DTRACEIOC_PROBEMATCH) { 14054 dtrace_probekey(&desc, &pkey); 14055 pkey.dtpk_id = DTRACE_IDNONE; 14056 } 14057 14058 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 14059 14060 mutex_enter(&dtrace_lock); 14061 14062 if (cmd == DTRACEIOC_PROBEMATCH) { 14063 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14064 if ((probe = dtrace_probes[i - 1]) != NULL && 14065 (m = dtrace_match_probe(probe, &pkey, 14066 priv, uid, zoneid)) != 0) 14067 break; 14068 } 14069 14070 if (m < 0) { 14071 mutex_exit(&dtrace_lock); 14072 return (EINVAL); 14073 } 14074 14075 } else { 14076 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14077 if ((probe = dtrace_probes[i - 1]) != NULL && 14078 dtrace_match_priv(probe, priv, uid, zoneid)) 14079 break; 14080 } 14081 } 14082 14083 if (probe == NULL) { 14084 mutex_exit(&dtrace_lock); 14085 return (ESRCH); 14086 } 14087 14088 dtrace_probe_description(probe, &desc); 14089 mutex_exit(&dtrace_lock); 14090 14091 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14092 return (EFAULT); 14093 14094 return (0); 14095 } 14096 14097 case DTRACEIOC_PROBEARG: { 14098 dtrace_argdesc_t desc; 14099 dtrace_probe_t *probe; 14100 dtrace_provider_t *prov; 14101 14102 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14103 return (EFAULT); 14104 14105 if (desc.dtargd_id == DTRACE_IDNONE) 14106 return (EINVAL); 14107 14108 if (desc.dtargd_ndx == DTRACE_ARGNONE) 14109 return (EINVAL); 14110 14111 mutex_enter(&dtrace_provider_lock); 14112 mutex_enter(&mod_lock); 14113 mutex_enter(&dtrace_lock); 14114 14115 if (desc.dtargd_id > dtrace_nprobes) { 14116 mutex_exit(&dtrace_lock); 14117 mutex_exit(&mod_lock); 14118 mutex_exit(&dtrace_provider_lock); 14119 return (EINVAL); 14120 } 14121 14122 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 14123 mutex_exit(&dtrace_lock); 14124 mutex_exit(&mod_lock); 14125 mutex_exit(&dtrace_provider_lock); 14126 return (EINVAL); 14127 } 14128 14129 mutex_exit(&dtrace_lock); 14130 14131 prov = probe->dtpr_provider; 14132 14133 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 14134 /* 14135 * There isn't any typed information for this probe. 14136 * Set the argument number to DTRACE_ARGNONE. 14137 */ 14138 desc.dtargd_ndx = DTRACE_ARGNONE; 14139 } else { 14140 desc.dtargd_native[0] = '\0'; 14141 desc.dtargd_xlate[0] = '\0'; 14142 desc.dtargd_mapping = desc.dtargd_ndx; 14143 14144 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 14145 probe->dtpr_id, probe->dtpr_arg, &desc); 14146 } 14147 14148 mutex_exit(&mod_lock); 14149 mutex_exit(&dtrace_provider_lock); 14150 14151 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14152 return (EFAULT); 14153 14154 return (0); 14155 } 14156 14157 case DTRACEIOC_GO: { 14158 processorid_t cpuid; 14159 rval = dtrace_state_go(state, &cpuid); 14160 14161 if (rval != 0) 14162 return (rval); 14163 14164 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 14165 return (EFAULT); 14166 14167 return (0); 14168 } 14169 14170 case DTRACEIOC_STOP: { 14171 processorid_t cpuid; 14172 14173 mutex_enter(&dtrace_lock); 14174 rval = dtrace_state_stop(state, &cpuid); 14175 mutex_exit(&dtrace_lock); 14176 14177 if (rval != 0) 14178 return (rval); 14179 14180 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 14181 return (EFAULT); 14182 14183 return (0); 14184 } 14185 14186 case DTRACEIOC_DOFGET: { 14187 dof_hdr_t hdr, *dof; 14188 uint64_t len; 14189 14190 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 14191 return (EFAULT); 14192 14193 mutex_enter(&dtrace_lock); 14194 dof = dtrace_dof_create(state); 14195 mutex_exit(&dtrace_lock); 14196 14197 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 14198 rval = copyout(dof, (void *)arg, len); 14199 dtrace_dof_destroy(dof); 14200 14201 return (rval == 0 ? 0 : EFAULT); 14202 } 14203 14204 case DTRACEIOC_AGGSNAP: 14205 case DTRACEIOC_BUFSNAP: { 14206 dtrace_bufdesc_t desc; 14207 caddr_t cached; 14208 dtrace_buffer_t *buf; 14209 14210 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14211 return (EFAULT); 14212 14213 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 14214 return (EINVAL); 14215 14216 mutex_enter(&dtrace_lock); 14217 14218 if (cmd == DTRACEIOC_BUFSNAP) { 14219 buf = &state->dts_buffer[desc.dtbd_cpu]; 14220 } else { 14221 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 14222 } 14223 14224 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 14225 size_t sz = buf->dtb_offset; 14226 14227 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 14228 mutex_exit(&dtrace_lock); 14229 return (EBUSY); 14230 } 14231 14232 /* 14233 * If this buffer has already been consumed, we're 14234 * going to indicate that there's nothing left here 14235 * to consume. 14236 */ 14237 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 14238 mutex_exit(&dtrace_lock); 14239 14240 desc.dtbd_size = 0; 14241 desc.dtbd_drops = 0; 14242 desc.dtbd_errors = 0; 14243 desc.dtbd_oldest = 0; 14244 sz = sizeof (desc); 14245 14246 if (copyout(&desc, (void *)arg, sz) != 0) 14247 return (EFAULT); 14248 14249 return (0); 14250 } 14251 14252 /* 14253 * If this is a ring buffer that has wrapped, we want 14254 * to copy the whole thing out. 14255 */ 14256 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 14257 dtrace_buffer_polish(buf); 14258 sz = buf->dtb_size; 14259 } 14260 14261 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 14262 mutex_exit(&dtrace_lock); 14263 return (EFAULT); 14264 } 14265 14266 desc.dtbd_size = sz; 14267 desc.dtbd_drops = buf->dtb_drops; 14268 desc.dtbd_errors = buf->dtb_errors; 14269 desc.dtbd_oldest = buf->dtb_xamot_offset; 14270 14271 mutex_exit(&dtrace_lock); 14272 14273 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14274 return (EFAULT); 14275 14276 buf->dtb_flags |= DTRACEBUF_CONSUMED; 14277 14278 return (0); 14279 } 14280 14281 if (buf->dtb_tomax == NULL) { 14282 ASSERT(buf->dtb_xamot == NULL); 14283 mutex_exit(&dtrace_lock); 14284 return (ENOENT); 14285 } 14286 14287 cached = buf->dtb_tomax; 14288 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 14289 14290 dtrace_xcall(desc.dtbd_cpu, 14291 (dtrace_xcall_t)dtrace_buffer_switch, buf); 14292 14293 state->dts_errors += buf->dtb_xamot_errors; 14294 14295 /* 14296 * If the buffers did not actually switch, then the cross call 14297 * did not take place -- presumably because the given CPU is 14298 * not in the ready set. If this is the case, we'll return 14299 * ENOENT. 14300 */ 14301 if (buf->dtb_tomax == cached) { 14302 ASSERT(buf->dtb_xamot != cached); 14303 mutex_exit(&dtrace_lock); 14304 return (ENOENT); 14305 } 14306 14307 ASSERT(cached == buf->dtb_xamot); 14308 14309 /* 14310 * We have our snapshot; now copy it out. 14311 */ 14312 if (copyout(buf->dtb_xamot, desc.dtbd_data, 14313 buf->dtb_xamot_offset) != 0) { 14314 mutex_exit(&dtrace_lock); 14315 return (EFAULT); 14316 } 14317 14318 desc.dtbd_size = buf->dtb_xamot_offset; 14319 desc.dtbd_drops = buf->dtb_xamot_drops; 14320 desc.dtbd_errors = buf->dtb_xamot_errors; 14321 desc.dtbd_oldest = 0; 14322 14323 mutex_exit(&dtrace_lock); 14324 14325 /* 14326 * Finally, copy out the buffer description. 14327 */ 14328 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14329 return (EFAULT); 14330 14331 return (0); 14332 } 14333 14334 case DTRACEIOC_CONF: { 14335 dtrace_conf_t conf; 14336 14337 bzero(&conf, sizeof (conf)); 14338 conf.dtc_difversion = DIF_VERSION; 14339 conf.dtc_difintregs = DIF_DIR_NREGS; 14340 conf.dtc_diftupregs = DIF_DTR_NREGS; 14341 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 14342 14343 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 14344 return (EFAULT); 14345 14346 return (0); 14347 } 14348 14349 case DTRACEIOC_STATUS: { 14350 dtrace_status_t stat; 14351 dtrace_dstate_t *dstate; 14352 int i, j; 14353 uint64_t nerrs; 14354 14355 /* 14356 * See the comment in dtrace_state_deadman() for the reason 14357 * for setting dts_laststatus to INT64_MAX before setting 14358 * it to the correct value. 14359 */ 14360 state->dts_laststatus = INT64_MAX; 14361 dtrace_membar_producer(); 14362 state->dts_laststatus = dtrace_gethrtime(); 14363 14364 bzero(&stat, sizeof (stat)); 14365 14366 mutex_enter(&dtrace_lock); 14367 14368 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 14369 mutex_exit(&dtrace_lock); 14370 return (ENOENT); 14371 } 14372 14373 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 14374 stat.dtst_exiting = 1; 14375 14376 nerrs = state->dts_errors; 14377 dstate = &state->dts_vstate.dtvs_dynvars; 14378 14379 for (i = 0; i < NCPU; i++) { 14380 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 14381 14382 stat.dtst_dyndrops += dcpu->dtdsc_drops; 14383 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 14384 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 14385 14386 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 14387 stat.dtst_filled++; 14388 14389 nerrs += state->dts_buffer[i].dtb_errors; 14390 14391 for (j = 0; j < state->dts_nspeculations; j++) { 14392 dtrace_speculation_t *spec; 14393 dtrace_buffer_t *buf; 14394 14395 spec = &state->dts_speculations[j]; 14396 buf = &spec->dtsp_buffer[i]; 14397 stat.dtst_specdrops += buf->dtb_xamot_drops; 14398 } 14399 } 14400 14401 stat.dtst_specdrops_busy = state->dts_speculations_busy; 14402 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 14403 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 14404 stat.dtst_dblerrors = state->dts_dblerrors; 14405 stat.dtst_killed = 14406 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 14407 stat.dtst_errors = nerrs; 14408 14409 mutex_exit(&dtrace_lock); 14410 14411 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 14412 return (EFAULT); 14413 14414 return (0); 14415 } 14416 14417 case DTRACEIOC_FORMAT: { 14418 dtrace_fmtdesc_t fmt; 14419 char *str; 14420 int len; 14421 14422 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 14423 return (EFAULT); 14424 14425 mutex_enter(&dtrace_lock); 14426 14427 if (fmt.dtfd_format == 0 || 14428 fmt.dtfd_format > state->dts_nformats) { 14429 mutex_exit(&dtrace_lock); 14430 return (EINVAL); 14431 } 14432 14433 /* 14434 * Format strings are allocated contiguously and they are 14435 * never freed; if a format index is less than the number 14436 * of formats, we can assert that the format map is non-NULL 14437 * and that the format for the specified index is non-NULL. 14438 */ 14439 ASSERT(state->dts_formats != NULL); 14440 str = state->dts_formats[fmt.dtfd_format - 1]; 14441 ASSERT(str != NULL); 14442 14443 len = strlen(str) + 1; 14444 14445 if (len > fmt.dtfd_length) { 14446 fmt.dtfd_length = len; 14447 14448 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 14449 mutex_exit(&dtrace_lock); 14450 return (EINVAL); 14451 } 14452 } else { 14453 if (copyout(str, fmt.dtfd_string, len) != 0) { 14454 mutex_exit(&dtrace_lock); 14455 return (EINVAL); 14456 } 14457 } 14458 14459 mutex_exit(&dtrace_lock); 14460 return (0); 14461 } 14462 14463 default: 14464 break; 14465 } 14466 14467 return (ENOTTY); 14468 } 14469 14470 /*ARGSUSED*/ 14471 static int 14472 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 14473 { 14474 dtrace_state_t *state; 14475 14476 switch (cmd) { 14477 case DDI_DETACH: 14478 break; 14479 14480 case DDI_SUSPEND: 14481 return (DDI_SUCCESS); 14482 14483 default: 14484 return (DDI_FAILURE); 14485 } 14486 14487 mutex_enter(&cpu_lock); 14488 mutex_enter(&dtrace_provider_lock); 14489 mutex_enter(&dtrace_lock); 14490 14491 ASSERT(dtrace_opens == 0); 14492 14493 if (dtrace_helpers > 0) { 14494 mutex_exit(&dtrace_provider_lock); 14495 mutex_exit(&dtrace_lock); 14496 mutex_exit(&cpu_lock); 14497 return (DDI_FAILURE); 14498 } 14499 14500 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 14501 mutex_exit(&dtrace_provider_lock); 14502 mutex_exit(&dtrace_lock); 14503 mutex_exit(&cpu_lock); 14504 return (DDI_FAILURE); 14505 } 14506 14507 dtrace_provider = NULL; 14508 14509 if ((state = dtrace_anon_grab()) != NULL) { 14510 /* 14511 * If there were ECBs on this state, the provider should 14512 * have not been allowed to detach; assert that there is 14513 * none. 14514 */ 14515 ASSERT(state->dts_necbs == 0); 14516 dtrace_state_destroy(state); 14517 14518 /* 14519 * If we're being detached with anonymous state, we need to 14520 * indicate to the kernel debugger that DTrace is now inactive. 14521 */ 14522 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14523 } 14524 14525 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 14526 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14527 dtrace_cpu_init = NULL; 14528 dtrace_helpers_cleanup = NULL; 14529 dtrace_helpers_fork = NULL; 14530 dtrace_cpustart_init = NULL; 14531 dtrace_cpustart_fini = NULL; 14532 dtrace_debugger_init = NULL; 14533 dtrace_debugger_fini = NULL; 14534 dtrace_kreloc_init = NULL; 14535 dtrace_kreloc_fini = NULL; 14536 dtrace_modload = NULL; 14537 dtrace_modunload = NULL; 14538 14539 mutex_exit(&cpu_lock); 14540 14541 if (dtrace_helptrace_enabled) { 14542 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 14543 dtrace_helptrace_buffer = NULL; 14544 } 14545 14546 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 14547 dtrace_probes = NULL; 14548 dtrace_nprobes = 0; 14549 14550 dtrace_hash_destroy(dtrace_bymod); 14551 dtrace_hash_destroy(dtrace_byfunc); 14552 dtrace_hash_destroy(dtrace_byname); 14553 dtrace_bymod = NULL; 14554 dtrace_byfunc = NULL; 14555 dtrace_byname = NULL; 14556 14557 kmem_cache_destroy(dtrace_state_cache); 14558 vmem_destroy(dtrace_minor); 14559 vmem_destroy(dtrace_arena); 14560 14561 if (dtrace_toxrange != NULL) { 14562 kmem_free(dtrace_toxrange, 14563 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 14564 dtrace_toxrange = NULL; 14565 dtrace_toxranges = 0; 14566 dtrace_toxranges_max = 0; 14567 } 14568 14569 ddi_remove_minor_node(dtrace_devi, NULL); 14570 dtrace_devi = NULL; 14571 14572 ddi_soft_state_fini(&dtrace_softstate); 14573 14574 ASSERT(dtrace_vtime_references == 0); 14575 ASSERT(dtrace_opens == 0); 14576 ASSERT(dtrace_retained == NULL); 14577 14578 mutex_exit(&dtrace_lock); 14579 mutex_exit(&dtrace_provider_lock); 14580 14581 /* 14582 * We don't destroy the task queue until after we have dropped our 14583 * locks (taskq_destroy() may block on running tasks). To prevent 14584 * attempting to do work after we have effectively detached but before 14585 * the task queue has been destroyed, all tasks dispatched via the 14586 * task queue must check that DTrace is still attached before 14587 * performing any operation. 14588 */ 14589 taskq_destroy(dtrace_taskq); 14590 dtrace_taskq = NULL; 14591 14592 return (DDI_SUCCESS); 14593 } 14594 14595 /*ARGSUSED*/ 14596 static int 14597 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 14598 { 14599 int error; 14600 14601 switch (infocmd) { 14602 case DDI_INFO_DEVT2DEVINFO: 14603 *result = (void *)dtrace_devi; 14604 error = DDI_SUCCESS; 14605 break; 14606 case DDI_INFO_DEVT2INSTANCE: 14607 *result = (void *)0; 14608 error = DDI_SUCCESS; 14609 break; 14610 default: 14611 error = DDI_FAILURE; 14612 } 14613 return (error); 14614 } 14615 14616 static struct cb_ops dtrace_cb_ops = { 14617 dtrace_open, /* open */ 14618 dtrace_close, /* close */ 14619 nulldev, /* strategy */ 14620 nulldev, /* print */ 14621 nodev, /* dump */ 14622 nodev, /* read */ 14623 nodev, /* write */ 14624 dtrace_ioctl, /* ioctl */ 14625 nodev, /* devmap */ 14626 nodev, /* mmap */ 14627 nodev, /* segmap */ 14628 nochpoll, /* poll */ 14629 ddi_prop_op, /* cb_prop_op */ 14630 0, /* streamtab */ 14631 D_NEW | D_MP /* Driver compatibility flag */ 14632 }; 14633 14634 static struct dev_ops dtrace_ops = { 14635 DEVO_REV, /* devo_rev */ 14636 0, /* refcnt */ 14637 dtrace_info, /* get_dev_info */ 14638 nulldev, /* identify */ 14639 nulldev, /* probe */ 14640 dtrace_attach, /* attach */ 14641 dtrace_detach, /* detach */ 14642 nodev, /* reset */ 14643 &dtrace_cb_ops, /* driver operations */ 14644 NULL, /* bus operations */ 14645 nodev /* dev power */ 14646 }; 14647 14648 static struct modldrv modldrv = { 14649 &mod_driverops, /* module type (this is a pseudo driver) */ 14650 "Dynamic Tracing", /* name of module */ 14651 &dtrace_ops, /* driver ops */ 14652 }; 14653 14654 static struct modlinkage modlinkage = { 14655 MODREV_1, 14656 (void *)&modldrv, 14657 NULL 14658 }; 14659 14660 int 14661 _init(void) 14662 { 14663 return (mod_install(&modlinkage)); 14664 } 14665 14666 int 14667 _info(struct modinfo *modinfop) 14668 { 14669 return (mod_info(&modlinkage, modinfop)); 14670 } 14671 14672 int 14673 _fini(void) 14674 { 14675 return (mod_remove(&modlinkage)); 14676 } 14677