1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 25 */ 26 27 /* 28 * DTrace - Dynamic Tracing for Solaris 29 * 30 * This is the implementation of the Solaris Dynamic Tracing framework 31 * (DTrace). The user-visible interface to DTrace is described at length in 32 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 33 * library, the in-kernel DTrace framework, and the DTrace providers are 34 * described in the block comments in the <sys/dtrace.h> header file. The 35 * internal architecture of DTrace is described in the block comments in the 36 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 37 * implementation very much assume mastery of all of these sources; if one has 38 * an unanswered question about the implementation, one should consult them 39 * first. 40 * 41 * The functions here are ordered roughly as follows: 42 * 43 * - Probe context functions 44 * - Probe hashing functions 45 * - Non-probe context utility functions 46 * - Matching functions 47 * - Provider-to-Framework API functions 48 * - Probe management functions 49 * - DIF object functions 50 * - Format functions 51 * - Predicate functions 52 * - ECB functions 53 * - Buffer functions 54 * - Enabling functions 55 * - DOF functions 56 * - Anonymous enabling functions 57 * - Consumer state functions 58 * - Helper functions 59 * - Hook functions 60 * - Driver cookbook functions 61 * 62 * Each group of functions begins with a block comment labelled the "DTrace 63 * [Group] Functions", allowing one to find each block by searching forward 64 * on capital-f functions. 65 */ 66 #include <sys/errno.h> 67 #include <sys/stat.h> 68 #include <sys/modctl.h> 69 #include <sys/conf.h> 70 #include <sys/systm.h> 71 #include <sys/ddi.h> 72 #include <sys/sunddi.h> 73 #include <sys/cpuvar.h> 74 #include <sys/kmem.h> 75 #include <sys/strsubr.h> 76 #include <sys/sysmacros.h> 77 #include <sys/dtrace_impl.h> 78 #include <sys/atomic.h> 79 #include <sys/cmn_err.h> 80 #include <sys/mutex_impl.h> 81 #include <sys/rwlock_impl.h> 82 #include <sys/ctf_api.h> 83 #include <sys/panic.h> 84 #include <sys/priv_impl.h> 85 #include <sys/policy.h> 86 #include <sys/cred_impl.h> 87 #include <sys/procfs_isa.h> 88 #include <sys/taskq.h> 89 #include <sys/mkdev.h> 90 #include <sys/kdi.h> 91 #include <sys/zone.h> 92 #include <sys/socket.h> 93 #include <netinet/in.h> 94 95 /* 96 * DTrace Tunable Variables 97 * 98 * The following variables may be tuned by adding a line to /etc/system that 99 * includes both the name of the DTrace module ("dtrace") and the name of the 100 * variable. For example: 101 * 102 * set dtrace:dtrace_destructive_disallow = 1 103 * 104 * In general, the only variables that one should be tuning this way are those 105 * that affect system-wide DTrace behavior, and for which the default behavior 106 * is undesirable. Most of these variables are tunable on a per-consumer 107 * basis using DTrace options, and need not be tuned on a system-wide basis. 108 * When tuning these variables, avoid pathological values; while some attempt 109 * is made to verify the integrity of these variables, they are not considered 110 * part of the supported interface to DTrace, and they are therefore not 111 * checked comprehensively. Further, these variables should not be tuned 112 * dynamically via "mdb -kw" or other means; they should only be tuned via 113 * /etc/system. 114 */ 115 int dtrace_destructive_disallow = 0; 116 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 117 size_t dtrace_difo_maxsize = (256 * 1024); 118 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 119 size_t dtrace_global_maxsize = (16 * 1024); 120 size_t dtrace_actions_max = (16 * 1024); 121 size_t dtrace_retain_max = 1024; 122 dtrace_optval_t dtrace_helper_actions_max = 32; 123 dtrace_optval_t dtrace_helper_providers_max = 32; 124 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 125 size_t dtrace_strsize_default = 256; 126 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 127 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 128 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 129 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 130 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 132 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_nspec_default = 1; 134 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 135 dtrace_optval_t dtrace_stackframes_default = 20; 136 dtrace_optval_t dtrace_ustackframes_default = 20; 137 dtrace_optval_t dtrace_jstackframes_default = 50; 138 dtrace_optval_t dtrace_jstackstrsize_default = 512; 139 int dtrace_msgdsize_max = 128; 140 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 141 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 142 int dtrace_devdepth_max = 32; 143 int dtrace_err_verbose; 144 hrtime_t dtrace_deadman_interval = NANOSEC; 145 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 146 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 147 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 148 149 /* 150 * DTrace External Variables 151 * 152 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 153 * available to DTrace consumers via the backtick (`) syntax. One of these, 154 * dtrace_zero, is made deliberately so: it is provided as a source of 155 * well-known, zero-filled memory. While this variable is not documented, 156 * it is used by some translators as an implementation detail. 157 */ 158 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 159 160 /* 161 * DTrace Internal Variables 162 */ 163 static dev_info_t *dtrace_devi; /* device info */ 164 static vmem_t *dtrace_arena; /* probe ID arena */ 165 static vmem_t *dtrace_minor; /* minor number arena */ 166 static taskq_t *dtrace_taskq; /* task queue */ 167 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 168 static int dtrace_nprobes; /* number of probes */ 169 static dtrace_provider_t *dtrace_provider; /* provider list */ 170 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 171 static int dtrace_opens; /* number of opens */ 172 static int dtrace_helpers; /* number of helpers */ 173 static void *dtrace_softstate; /* softstate pointer */ 174 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 175 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 176 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 177 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 178 static int dtrace_toxranges; /* number of toxic ranges */ 179 static int dtrace_toxranges_max; /* size of toxic range array */ 180 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 181 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 182 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 183 static kthread_t *dtrace_panicked; /* panicking thread */ 184 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 185 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 186 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 187 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 188 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 189 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 190 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 191 192 /* 193 * DTrace Locking 194 * DTrace is protected by three (relatively coarse-grained) locks: 195 * 196 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 197 * including enabling state, probes, ECBs, consumer state, helper state, 198 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 199 * probe context is lock-free -- synchronization is handled via the 200 * dtrace_sync() cross call mechanism. 201 * 202 * (2) dtrace_provider_lock is required when manipulating provider state, or 203 * when provider state must be held constant. 204 * 205 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 206 * when meta provider state must be held constant. 207 * 208 * The lock ordering between these three locks is dtrace_meta_lock before 209 * dtrace_provider_lock before dtrace_lock. (In particular, there are 210 * several places where dtrace_provider_lock is held by the framework as it 211 * calls into the providers -- which then call back into the framework, 212 * grabbing dtrace_lock.) 213 * 214 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 215 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 216 * role as a coarse-grained lock; it is acquired before both of these locks. 217 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 218 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 219 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 220 * acquired _between_ dtrace_provider_lock and dtrace_lock. 221 */ 222 static kmutex_t dtrace_lock; /* probe state lock */ 223 static kmutex_t dtrace_provider_lock; /* provider state lock */ 224 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 225 226 /* 227 * DTrace Provider Variables 228 * 229 * These are the variables relating to DTrace as a provider (that is, the 230 * provider of the BEGIN, END, and ERROR probes). 231 */ 232 static dtrace_pattr_t dtrace_provider_attr = { 233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 234 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 235 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 238 }; 239 240 static void 241 dtrace_nullop(void) 242 {} 243 244 static int 245 dtrace_enable_nullop(void) 246 { 247 return (0); 248 } 249 250 static dtrace_pops_t dtrace_provider_ops = { 251 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 252 (void (*)(void *, struct modctl *))dtrace_nullop, 253 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 254 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 255 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 256 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 257 NULL, 258 NULL, 259 NULL, 260 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 261 }; 262 263 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 264 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 265 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 266 267 /* 268 * DTrace Helper Tracing Variables 269 */ 270 uint32_t dtrace_helptrace_next = 0; 271 uint32_t dtrace_helptrace_nlocals; 272 char *dtrace_helptrace_buffer; 273 int dtrace_helptrace_bufsize = 512 * 1024; 274 275 #ifdef DEBUG 276 int dtrace_helptrace_enabled = 1; 277 #else 278 int dtrace_helptrace_enabled = 0; 279 #endif 280 281 /* 282 * DTrace Error Hashing 283 * 284 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 285 * table. This is very useful for checking coverage of tests that are 286 * expected to induce DIF or DOF processing errors, and may be useful for 287 * debugging problems in the DIF code generator or in DOF generation . The 288 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 289 */ 290 #ifdef DEBUG 291 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 292 static const char *dtrace_errlast; 293 static kthread_t *dtrace_errthread; 294 static kmutex_t dtrace_errlock; 295 #endif 296 297 /* 298 * DTrace Macros and Constants 299 * 300 * These are various macros that are useful in various spots in the 301 * implementation, along with a few random constants that have no meaning 302 * outside of the implementation. There is no real structure to this cpp 303 * mishmash -- but is there ever? 304 */ 305 #define DTRACE_HASHSTR(hash, probe) \ 306 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 307 308 #define DTRACE_HASHNEXT(hash, probe) \ 309 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 310 311 #define DTRACE_HASHPREV(hash, probe) \ 312 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 313 314 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 315 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 316 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 317 318 #define DTRACE_AGGHASHSIZE_SLEW 17 319 320 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 321 322 /* 323 * The key for a thread-local variable consists of the lower 61 bits of the 324 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 325 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 326 * equal to a variable identifier. This is necessary (but not sufficient) to 327 * assure that global associative arrays never collide with thread-local 328 * variables. To guarantee that they cannot collide, we must also define the 329 * order for keying dynamic variables. That order is: 330 * 331 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 332 * 333 * Because the variable-key and the tls-key are in orthogonal spaces, there is 334 * no way for a global variable key signature to match a thread-local key 335 * signature. 336 */ 337 #define DTRACE_TLS_THRKEY(where) { \ 338 uint_t intr = 0; \ 339 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 340 for (; actv; actv >>= 1) \ 341 intr++; \ 342 ASSERT(intr < (1 << 3)); \ 343 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 344 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 345 } 346 347 #define DT_BSWAP_8(x) ((x) & 0xff) 348 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 349 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 350 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 351 352 #define DT_MASK_LO 0x00000000FFFFFFFFULL 353 354 #define DTRACE_STORE(type, tomax, offset, what) \ 355 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 356 357 #ifndef __i386 358 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 359 if (addr & (size - 1)) { \ 360 *flags |= CPU_DTRACE_BADALIGN; \ 361 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 362 return (0); \ 363 } 364 #else 365 #define DTRACE_ALIGNCHECK(addr, size, flags) 366 #endif 367 368 /* 369 * Test whether a range of memory starting at testaddr of size testsz falls 370 * within the range of memory described by addr, sz. We take care to avoid 371 * problems with overflow and underflow of the unsigned quantities, and 372 * disallow all negative sizes. Ranges of size 0 are allowed. 373 */ 374 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 375 ((testaddr) - (baseaddr) < (basesz) && \ 376 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 377 (testaddr) + (testsz) >= (testaddr)) 378 379 /* 380 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 381 * alloc_sz on the righthand side of the comparison in order to avoid overflow 382 * or underflow in the comparison with it. This is simpler than the INRANGE 383 * check above, because we know that the dtms_scratch_ptr is valid in the 384 * range. Allocations of size zero are allowed. 385 */ 386 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 387 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 388 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 389 390 #define DTRACE_LOADFUNC(bits) \ 391 /*CSTYLED*/ \ 392 uint##bits##_t \ 393 dtrace_load##bits(uintptr_t addr) \ 394 { \ 395 size_t size = bits / NBBY; \ 396 /*CSTYLED*/ \ 397 uint##bits##_t rval; \ 398 int i; \ 399 volatile uint16_t *flags = (volatile uint16_t *) \ 400 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 401 \ 402 DTRACE_ALIGNCHECK(addr, size, flags); \ 403 \ 404 for (i = 0; i < dtrace_toxranges; i++) { \ 405 if (addr >= dtrace_toxrange[i].dtt_limit) \ 406 continue; \ 407 \ 408 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 409 continue; \ 410 \ 411 /* \ 412 * This address falls within a toxic region; return 0. \ 413 */ \ 414 *flags |= CPU_DTRACE_BADADDR; \ 415 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 416 return (0); \ 417 } \ 418 \ 419 *flags |= CPU_DTRACE_NOFAULT; \ 420 /*CSTYLED*/ \ 421 rval = *((volatile uint##bits##_t *)addr); \ 422 *flags &= ~CPU_DTRACE_NOFAULT; \ 423 \ 424 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 425 } 426 427 #ifdef _LP64 428 #define dtrace_loadptr dtrace_load64 429 #else 430 #define dtrace_loadptr dtrace_load32 431 #endif 432 433 #define DTRACE_DYNHASH_FREE 0 434 #define DTRACE_DYNHASH_SINK 1 435 #define DTRACE_DYNHASH_VALID 2 436 437 #define DTRACE_MATCH_FAIL -1 438 #define DTRACE_MATCH_NEXT 0 439 #define DTRACE_MATCH_DONE 1 440 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 441 #define DTRACE_STATE_ALIGN 64 442 443 #define DTRACE_FLAGS2FLT(flags) \ 444 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 445 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 446 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 447 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 448 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 449 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 450 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 451 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 452 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 453 DTRACEFLT_UNKNOWN) 454 455 #define DTRACEACT_ISSTRING(act) \ 456 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 457 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 458 459 static size_t dtrace_strlen(const char *, size_t); 460 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 461 static void dtrace_enabling_provide(dtrace_provider_t *); 462 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 463 static void dtrace_enabling_matchall(void); 464 static void dtrace_enabling_reap(void); 465 static dtrace_state_t *dtrace_anon_grab(void); 466 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 467 dtrace_state_t *, uint64_t, uint64_t); 468 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 469 static void dtrace_buffer_drop(dtrace_buffer_t *); 470 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 471 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 472 dtrace_state_t *, dtrace_mstate_t *); 473 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 474 dtrace_optval_t); 475 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 476 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 477 478 /* 479 * DTrace Probe Context Functions 480 * 481 * These functions are called from probe context. Because probe context is 482 * any context in which C may be called, arbitrarily locks may be held, 483 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 484 * As a result, functions called from probe context may only call other DTrace 485 * support functions -- they may not interact at all with the system at large. 486 * (Note that the ASSERT macro is made probe-context safe by redefining it in 487 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 488 * loads are to be performed from probe context, they _must_ be in terms of 489 * the safe dtrace_load*() variants. 490 * 491 * Some functions in this block are not actually called from probe context; 492 * for these functions, there will be a comment above the function reading 493 * "Note: not called from probe context." 494 */ 495 void 496 dtrace_panic(const char *format, ...) 497 { 498 va_list alist; 499 500 va_start(alist, format); 501 dtrace_vpanic(format, alist); 502 va_end(alist); 503 } 504 505 int 506 dtrace_assfail(const char *a, const char *f, int l) 507 { 508 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 509 510 /* 511 * We just need something here that even the most clever compiler 512 * cannot optimize away. 513 */ 514 return (a[(uintptr_t)f]); 515 } 516 517 /* 518 * Atomically increment a specified error counter from probe context. 519 */ 520 static void 521 dtrace_error(uint32_t *counter) 522 { 523 /* 524 * Most counters stored to in probe context are per-CPU counters. 525 * However, there are some error conditions that are sufficiently 526 * arcane that they don't merit per-CPU storage. If these counters 527 * are incremented concurrently on different CPUs, scalability will be 528 * adversely affected -- but we don't expect them to be white-hot in a 529 * correctly constructed enabling... 530 */ 531 uint32_t oval, nval; 532 533 do { 534 oval = *counter; 535 536 if ((nval = oval + 1) == 0) { 537 /* 538 * If the counter would wrap, set it to 1 -- assuring 539 * that the counter is never zero when we have seen 540 * errors. (The counter must be 32-bits because we 541 * aren't guaranteed a 64-bit compare&swap operation.) 542 * To save this code both the infamy of being fingered 543 * by a priggish news story and the indignity of being 544 * the target of a neo-puritan witch trial, we're 545 * carefully avoiding any colorful description of the 546 * likelihood of this condition -- but suffice it to 547 * say that it is only slightly more likely than the 548 * overflow of predicate cache IDs, as discussed in 549 * dtrace_predicate_create(). 550 */ 551 nval = 1; 552 } 553 } while (dtrace_cas32(counter, oval, nval) != oval); 554 } 555 556 /* 557 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 558 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 559 */ 560 DTRACE_LOADFUNC(8) 561 DTRACE_LOADFUNC(16) 562 DTRACE_LOADFUNC(32) 563 DTRACE_LOADFUNC(64) 564 565 static int 566 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 567 { 568 if (dest < mstate->dtms_scratch_base) 569 return (0); 570 571 if (dest + size < dest) 572 return (0); 573 574 if (dest + size > mstate->dtms_scratch_ptr) 575 return (0); 576 577 return (1); 578 } 579 580 static int 581 dtrace_canstore_statvar(uint64_t addr, size_t sz, 582 dtrace_statvar_t **svars, int nsvars) 583 { 584 int i; 585 586 for (i = 0; i < nsvars; i++) { 587 dtrace_statvar_t *svar = svars[i]; 588 589 if (svar == NULL || svar->dtsv_size == 0) 590 continue; 591 592 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 593 return (1); 594 } 595 596 return (0); 597 } 598 599 /* 600 * Check to see if the address is within a memory region to which a store may 601 * be issued. This includes the DTrace scratch areas, and any DTrace variable 602 * region. The caller of dtrace_canstore() is responsible for performing any 603 * alignment checks that are needed before stores are actually executed. 604 */ 605 static int 606 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 607 dtrace_vstate_t *vstate) 608 { 609 /* 610 * First, check to see if the address is in scratch space... 611 */ 612 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 613 mstate->dtms_scratch_size)) 614 return (1); 615 616 /* 617 * Now check to see if it's a dynamic variable. This check will pick 618 * up both thread-local variables and any global dynamically-allocated 619 * variables. 620 */ 621 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 622 vstate->dtvs_dynvars.dtds_size)) { 623 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 624 uintptr_t base = (uintptr_t)dstate->dtds_base + 625 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 626 uintptr_t chunkoffs; 627 628 /* 629 * Before we assume that we can store here, we need to make 630 * sure that it isn't in our metadata -- storing to our 631 * dynamic variable metadata would corrupt our state. For 632 * the range to not include any dynamic variable metadata, 633 * it must: 634 * 635 * (1) Start above the hash table that is at the base of 636 * the dynamic variable space 637 * 638 * (2) Have a starting chunk offset that is beyond the 639 * dtrace_dynvar_t that is at the base of every chunk 640 * 641 * (3) Not span a chunk boundary 642 * 643 */ 644 if (addr < base) 645 return (0); 646 647 chunkoffs = (addr - base) % dstate->dtds_chunksize; 648 649 if (chunkoffs < sizeof (dtrace_dynvar_t)) 650 return (0); 651 652 if (chunkoffs + sz > dstate->dtds_chunksize) 653 return (0); 654 655 return (1); 656 } 657 658 /* 659 * Finally, check the static local and global variables. These checks 660 * take the longest, so we perform them last. 661 */ 662 if (dtrace_canstore_statvar(addr, sz, 663 vstate->dtvs_locals, vstate->dtvs_nlocals)) 664 return (1); 665 666 if (dtrace_canstore_statvar(addr, sz, 667 vstate->dtvs_globals, vstate->dtvs_nglobals)) 668 return (1); 669 670 return (0); 671 } 672 673 674 /* 675 * Convenience routine to check to see if the address is within a memory 676 * region in which a load may be issued given the user's privilege level; 677 * if not, it sets the appropriate error flags and loads 'addr' into the 678 * illegal value slot. 679 * 680 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 681 * appropriate memory access protection. 682 */ 683 static int 684 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 685 dtrace_vstate_t *vstate) 686 { 687 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 688 689 /* 690 * If we hold the privilege to read from kernel memory, then 691 * everything is readable. 692 */ 693 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 694 return (1); 695 696 /* 697 * You can obviously read that which you can store. 698 */ 699 if (dtrace_canstore(addr, sz, mstate, vstate)) 700 return (1); 701 702 /* 703 * We're allowed to read from our own string table. 704 */ 705 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 706 mstate->dtms_difo->dtdo_strlen)) 707 return (1); 708 709 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 710 *illval = addr; 711 return (0); 712 } 713 714 /* 715 * Convenience routine to check to see if a given string is within a memory 716 * region in which a load may be issued given the user's privilege level; 717 * this exists so that we don't need to issue unnecessary dtrace_strlen() 718 * calls in the event that the user has all privileges. 719 */ 720 static int 721 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 722 dtrace_vstate_t *vstate) 723 { 724 size_t strsz; 725 726 /* 727 * If we hold the privilege to read from kernel memory, then 728 * everything is readable. 729 */ 730 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 731 return (1); 732 733 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 734 if (dtrace_canload(addr, strsz, mstate, vstate)) 735 return (1); 736 737 return (0); 738 } 739 740 /* 741 * Convenience routine to check to see if a given variable is within a memory 742 * region in which a load may be issued given the user's privilege level. 743 */ 744 static int 745 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 746 dtrace_vstate_t *vstate) 747 { 748 size_t sz; 749 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 750 751 /* 752 * If we hold the privilege to read from kernel memory, then 753 * everything is readable. 754 */ 755 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 756 return (1); 757 758 if (type->dtdt_kind == DIF_TYPE_STRING) 759 sz = dtrace_strlen(src, 760 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 761 else 762 sz = type->dtdt_size; 763 764 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 765 } 766 767 /* 768 * Compare two strings using safe loads. 769 */ 770 static int 771 dtrace_strncmp(char *s1, char *s2, size_t limit) 772 { 773 uint8_t c1, c2; 774 volatile uint16_t *flags; 775 776 if (s1 == s2 || limit == 0) 777 return (0); 778 779 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 780 781 do { 782 if (s1 == NULL) { 783 c1 = '\0'; 784 } else { 785 c1 = dtrace_load8((uintptr_t)s1++); 786 } 787 788 if (s2 == NULL) { 789 c2 = '\0'; 790 } else { 791 c2 = dtrace_load8((uintptr_t)s2++); 792 } 793 794 if (c1 != c2) 795 return (c1 - c2); 796 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 797 798 return (0); 799 } 800 801 /* 802 * Compute strlen(s) for a string using safe memory accesses. The additional 803 * len parameter is used to specify a maximum length to ensure completion. 804 */ 805 static size_t 806 dtrace_strlen(const char *s, size_t lim) 807 { 808 uint_t len; 809 810 for (len = 0; len != lim; len++) { 811 if (dtrace_load8((uintptr_t)s++) == '\0') 812 break; 813 } 814 815 return (len); 816 } 817 818 /* 819 * Check if an address falls within a toxic region. 820 */ 821 static int 822 dtrace_istoxic(uintptr_t kaddr, size_t size) 823 { 824 uintptr_t taddr, tsize; 825 int i; 826 827 for (i = 0; i < dtrace_toxranges; i++) { 828 taddr = dtrace_toxrange[i].dtt_base; 829 tsize = dtrace_toxrange[i].dtt_limit - taddr; 830 831 if (kaddr - taddr < tsize) { 832 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 833 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 834 return (1); 835 } 836 837 if (taddr - kaddr < size) { 838 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 839 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 840 return (1); 841 } 842 } 843 844 return (0); 845 } 846 847 /* 848 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 849 * memory specified by the DIF program. The dst is assumed to be safe memory 850 * that we can store to directly because it is managed by DTrace. As with 851 * standard bcopy, overlapping copies are handled properly. 852 */ 853 static void 854 dtrace_bcopy(const void *src, void *dst, size_t len) 855 { 856 if (len != 0) { 857 uint8_t *s1 = dst; 858 const uint8_t *s2 = src; 859 860 if (s1 <= s2) { 861 do { 862 *s1++ = dtrace_load8((uintptr_t)s2++); 863 } while (--len != 0); 864 } else { 865 s2 += len; 866 s1 += len; 867 868 do { 869 *--s1 = dtrace_load8((uintptr_t)--s2); 870 } while (--len != 0); 871 } 872 } 873 } 874 875 /* 876 * Copy src to dst using safe memory accesses, up to either the specified 877 * length, or the point that a nul byte is encountered. The src is assumed to 878 * be unsafe memory specified by the DIF program. The dst is assumed to be 879 * safe memory that we can store to directly because it is managed by DTrace. 880 * Unlike dtrace_bcopy(), overlapping regions are not handled. 881 */ 882 static void 883 dtrace_strcpy(const void *src, void *dst, size_t len) 884 { 885 if (len != 0) { 886 uint8_t *s1 = dst, c; 887 const uint8_t *s2 = src; 888 889 do { 890 *s1++ = c = dtrace_load8((uintptr_t)s2++); 891 } while (--len != 0 && c != '\0'); 892 } 893 } 894 895 /* 896 * Copy src to dst, deriving the size and type from the specified (BYREF) 897 * variable type. The src is assumed to be unsafe memory specified by the DIF 898 * program. The dst is assumed to be DTrace variable memory that is of the 899 * specified type; we assume that we can store to directly. 900 */ 901 static void 902 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 903 { 904 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 905 906 if (type->dtdt_kind == DIF_TYPE_STRING) { 907 dtrace_strcpy(src, dst, type->dtdt_size); 908 } else { 909 dtrace_bcopy(src, dst, type->dtdt_size); 910 } 911 } 912 913 /* 914 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 915 * unsafe memory specified by the DIF program. The s2 data is assumed to be 916 * safe memory that we can access directly because it is managed by DTrace. 917 */ 918 static int 919 dtrace_bcmp(const void *s1, const void *s2, size_t len) 920 { 921 volatile uint16_t *flags; 922 923 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 924 925 if (s1 == s2) 926 return (0); 927 928 if (s1 == NULL || s2 == NULL) 929 return (1); 930 931 if (s1 != s2 && len != 0) { 932 const uint8_t *ps1 = s1; 933 const uint8_t *ps2 = s2; 934 935 do { 936 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 937 return (1); 938 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 939 } 940 return (0); 941 } 942 943 /* 944 * Zero the specified region using a simple byte-by-byte loop. Note that this 945 * is for safe DTrace-managed memory only. 946 */ 947 static void 948 dtrace_bzero(void *dst, size_t len) 949 { 950 uchar_t *cp; 951 952 for (cp = dst; len != 0; len--) 953 *cp++ = 0; 954 } 955 956 static void 957 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 958 { 959 uint64_t result[2]; 960 961 result[0] = addend1[0] + addend2[0]; 962 result[1] = addend1[1] + addend2[1] + 963 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 964 965 sum[0] = result[0]; 966 sum[1] = result[1]; 967 } 968 969 /* 970 * Shift the 128-bit value in a by b. If b is positive, shift left. 971 * If b is negative, shift right. 972 */ 973 static void 974 dtrace_shift_128(uint64_t *a, int b) 975 { 976 uint64_t mask; 977 978 if (b == 0) 979 return; 980 981 if (b < 0) { 982 b = -b; 983 if (b >= 64) { 984 a[0] = a[1] >> (b - 64); 985 a[1] = 0; 986 } else { 987 a[0] >>= b; 988 mask = 1LL << (64 - b); 989 mask -= 1; 990 a[0] |= ((a[1] & mask) << (64 - b)); 991 a[1] >>= b; 992 } 993 } else { 994 if (b >= 64) { 995 a[1] = a[0] << (b - 64); 996 a[0] = 0; 997 } else { 998 a[1] <<= b; 999 mask = a[0] >> (64 - b); 1000 a[1] |= mask; 1001 a[0] <<= b; 1002 } 1003 } 1004 } 1005 1006 /* 1007 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1008 * use native multiplication on those, and then re-combine into the 1009 * resulting 128-bit value. 1010 * 1011 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1012 * hi1 * hi2 << 64 + 1013 * hi1 * lo2 << 32 + 1014 * hi2 * lo1 << 32 + 1015 * lo1 * lo2 1016 */ 1017 static void 1018 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1019 { 1020 uint64_t hi1, hi2, lo1, lo2; 1021 uint64_t tmp[2]; 1022 1023 hi1 = factor1 >> 32; 1024 hi2 = factor2 >> 32; 1025 1026 lo1 = factor1 & DT_MASK_LO; 1027 lo2 = factor2 & DT_MASK_LO; 1028 1029 product[0] = lo1 * lo2; 1030 product[1] = hi1 * hi2; 1031 1032 tmp[0] = hi1 * lo2; 1033 tmp[1] = 0; 1034 dtrace_shift_128(tmp, 32); 1035 dtrace_add_128(product, tmp, product); 1036 1037 tmp[0] = hi2 * lo1; 1038 tmp[1] = 0; 1039 dtrace_shift_128(tmp, 32); 1040 dtrace_add_128(product, tmp, product); 1041 } 1042 1043 /* 1044 * This privilege check should be used by actions and subroutines to 1045 * verify that the user credentials of the process that enabled the 1046 * invoking ECB match the target credentials 1047 */ 1048 static int 1049 dtrace_priv_proc_common_user(dtrace_state_t *state) 1050 { 1051 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1052 1053 /* 1054 * We should always have a non-NULL state cred here, since if cred 1055 * is null (anonymous tracing), we fast-path bypass this routine. 1056 */ 1057 ASSERT(s_cr != NULL); 1058 1059 if ((cr = CRED()) != NULL && 1060 s_cr->cr_uid == cr->cr_uid && 1061 s_cr->cr_uid == cr->cr_ruid && 1062 s_cr->cr_uid == cr->cr_suid && 1063 s_cr->cr_gid == cr->cr_gid && 1064 s_cr->cr_gid == cr->cr_rgid && 1065 s_cr->cr_gid == cr->cr_sgid) 1066 return (1); 1067 1068 return (0); 1069 } 1070 1071 /* 1072 * This privilege check should be used by actions and subroutines to 1073 * verify that the zone of the process that enabled the invoking ECB 1074 * matches the target credentials 1075 */ 1076 static int 1077 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1078 { 1079 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1080 1081 /* 1082 * We should always have a non-NULL state cred here, since if cred 1083 * is null (anonymous tracing), we fast-path bypass this routine. 1084 */ 1085 ASSERT(s_cr != NULL); 1086 1087 if ((cr = CRED()) != NULL && 1088 s_cr->cr_zone == cr->cr_zone) 1089 return (1); 1090 1091 return (0); 1092 } 1093 1094 /* 1095 * This privilege check should be used by actions and subroutines to 1096 * verify that the process has not setuid or changed credentials. 1097 */ 1098 static int 1099 dtrace_priv_proc_common_nocd() 1100 { 1101 proc_t *proc; 1102 1103 if ((proc = ttoproc(curthread)) != NULL && 1104 !(proc->p_flag & SNOCD)) 1105 return (1); 1106 1107 return (0); 1108 } 1109 1110 static int 1111 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1112 { 1113 int action = state->dts_cred.dcr_action; 1114 1115 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1116 goto bad; 1117 1118 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1119 dtrace_priv_proc_common_zone(state) == 0) 1120 goto bad; 1121 1122 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1123 dtrace_priv_proc_common_user(state) == 0) 1124 goto bad; 1125 1126 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1127 dtrace_priv_proc_common_nocd() == 0) 1128 goto bad; 1129 1130 return (1); 1131 1132 bad: 1133 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1134 1135 return (0); 1136 } 1137 1138 static int 1139 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1140 { 1141 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1142 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1143 return (1); 1144 1145 if (dtrace_priv_proc_common_zone(state) && 1146 dtrace_priv_proc_common_user(state) && 1147 dtrace_priv_proc_common_nocd()) 1148 return (1); 1149 } 1150 1151 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1152 1153 return (0); 1154 } 1155 1156 static int 1157 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1158 { 1159 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1160 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1161 return (1); 1162 1163 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1164 1165 return (0); 1166 } 1167 1168 static int 1169 dtrace_priv_kernel(dtrace_state_t *state) 1170 { 1171 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1172 return (1); 1173 1174 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1175 1176 return (0); 1177 } 1178 1179 static int 1180 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1181 { 1182 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1183 return (1); 1184 1185 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1186 1187 return (0); 1188 } 1189 1190 /* 1191 * Determine if the dte_cond of the specified ECB allows for processing of 1192 * the current probe to continue. Note that this routine may allow continued 1193 * processing, but with access(es) stripped from the mstate's dtms_access 1194 * field. 1195 */ 1196 static int 1197 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1198 dtrace_ecb_t *ecb) 1199 { 1200 dtrace_probe_t *probe = ecb->dte_probe; 1201 dtrace_provider_t *prov = probe->dtpr_provider; 1202 dtrace_pops_t *pops = &prov->dtpv_pops; 1203 int mode = DTRACE_MODE_NOPRIV_DROP; 1204 1205 ASSERT(ecb->dte_cond); 1206 1207 if (pops->dtps_mode != NULL) { 1208 mode = pops->dtps_mode(prov->dtpv_arg, 1209 probe->dtpr_id, probe->dtpr_arg); 1210 1211 ASSERT((mode & DTRACE_MODE_USER) || 1212 (mode & DTRACE_MODE_KERNEL)); 1213 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1214 (mode & DTRACE_MODE_NOPRIV_DROP)); 1215 } 1216 1217 /* 1218 * If the dte_cond bits indicate that this consumer is only allowed to 1219 * see user-mode firings of this probe, call the provider's dtps_mode() 1220 * entry point to check that the probe was fired while in a user 1221 * context. If that's not the case, use the policy specified by the 1222 * provider to determine if we drop the probe or merely restrict 1223 * operation. 1224 */ 1225 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1226 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1227 1228 if (!(mode & DTRACE_MODE_USER)) { 1229 if (mode & DTRACE_MODE_NOPRIV_DROP) 1230 return (0); 1231 1232 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1233 } 1234 } 1235 1236 /* 1237 * This is more subtle than it looks. We have to be absolutely certain 1238 * that CRED() isn't going to change out from under us so it's only 1239 * legit to examine that structure if we're in constrained situations. 1240 * Currently, the only times we'll this check is if a non-super-user 1241 * has enabled the profile or syscall providers -- providers that 1242 * allow visibility of all processes. For the profile case, the check 1243 * above will ensure that we're examining a user context. 1244 */ 1245 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1246 cred_t *cr; 1247 cred_t *s_cr = state->dts_cred.dcr_cred; 1248 proc_t *proc; 1249 1250 ASSERT(s_cr != NULL); 1251 1252 if ((cr = CRED()) == NULL || 1253 s_cr->cr_uid != cr->cr_uid || 1254 s_cr->cr_uid != cr->cr_ruid || 1255 s_cr->cr_uid != cr->cr_suid || 1256 s_cr->cr_gid != cr->cr_gid || 1257 s_cr->cr_gid != cr->cr_rgid || 1258 s_cr->cr_gid != cr->cr_sgid || 1259 (proc = ttoproc(curthread)) == NULL || 1260 (proc->p_flag & SNOCD)) { 1261 if (mode & DTRACE_MODE_NOPRIV_DROP) 1262 return (0); 1263 1264 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1265 } 1266 } 1267 1268 /* 1269 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1270 * in our zone, check to see if our mode policy is to restrict rather 1271 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1272 * and DTRACE_ACCESS_ARGS 1273 */ 1274 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1275 cred_t *cr; 1276 cred_t *s_cr = state->dts_cred.dcr_cred; 1277 1278 ASSERT(s_cr != NULL); 1279 1280 if ((cr = CRED()) == NULL || 1281 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1282 if (mode & DTRACE_MODE_NOPRIV_DROP) 1283 return (0); 1284 1285 mstate->dtms_access &= 1286 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1287 } 1288 } 1289 1290 return (1); 1291 } 1292 1293 /* 1294 * Note: not called from probe context. This function is called 1295 * asynchronously (and at a regular interval) from outside of probe context to 1296 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1297 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1298 */ 1299 void 1300 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1301 { 1302 dtrace_dynvar_t *dirty; 1303 dtrace_dstate_percpu_t *dcpu; 1304 dtrace_dynvar_t **rinsep; 1305 int i, j, work = 0; 1306 1307 for (i = 0; i < NCPU; i++) { 1308 dcpu = &dstate->dtds_percpu[i]; 1309 rinsep = &dcpu->dtdsc_rinsing; 1310 1311 /* 1312 * If the dirty list is NULL, there is no dirty work to do. 1313 */ 1314 if (dcpu->dtdsc_dirty == NULL) 1315 continue; 1316 1317 if (dcpu->dtdsc_rinsing != NULL) { 1318 /* 1319 * If the rinsing list is non-NULL, then it is because 1320 * this CPU was selected to accept another CPU's 1321 * dirty list -- and since that time, dirty buffers 1322 * have accumulated. This is a highly unlikely 1323 * condition, but we choose to ignore the dirty 1324 * buffers -- they'll be picked up a future cleanse. 1325 */ 1326 continue; 1327 } 1328 1329 if (dcpu->dtdsc_clean != NULL) { 1330 /* 1331 * If the clean list is non-NULL, then we're in a 1332 * situation where a CPU has done deallocations (we 1333 * have a non-NULL dirty list) but no allocations (we 1334 * also have a non-NULL clean list). We can't simply 1335 * move the dirty list into the clean list on this 1336 * CPU, yet we also don't want to allow this condition 1337 * to persist, lest a short clean list prevent a 1338 * massive dirty list from being cleaned (which in 1339 * turn could lead to otherwise avoidable dynamic 1340 * drops). To deal with this, we look for some CPU 1341 * with a NULL clean list, NULL dirty list, and NULL 1342 * rinsing list -- and then we borrow this CPU to 1343 * rinse our dirty list. 1344 */ 1345 for (j = 0; j < NCPU; j++) { 1346 dtrace_dstate_percpu_t *rinser; 1347 1348 rinser = &dstate->dtds_percpu[j]; 1349 1350 if (rinser->dtdsc_rinsing != NULL) 1351 continue; 1352 1353 if (rinser->dtdsc_dirty != NULL) 1354 continue; 1355 1356 if (rinser->dtdsc_clean != NULL) 1357 continue; 1358 1359 rinsep = &rinser->dtdsc_rinsing; 1360 break; 1361 } 1362 1363 if (j == NCPU) { 1364 /* 1365 * We were unable to find another CPU that 1366 * could accept this dirty list -- we are 1367 * therefore unable to clean it now. 1368 */ 1369 dtrace_dynvar_failclean++; 1370 continue; 1371 } 1372 } 1373 1374 work = 1; 1375 1376 /* 1377 * Atomically move the dirty list aside. 1378 */ 1379 do { 1380 dirty = dcpu->dtdsc_dirty; 1381 1382 /* 1383 * Before we zap the dirty list, set the rinsing list. 1384 * (This allows for a potential assertion in 1385 * dtrace_dynvar(): if a free dynamic variable appears 1386 * on a hash chain, either the dirty list or the 1387 * rinsing list for some CPU must be non-NULL.) 1388 */ 1389 *rinsep = dirty; 1390 dtrace_membar_producer(); 1391 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1392 dirty, NULL) != dirty); 1393 } 1394 1395 if (!work) { 1396 /* 1397 * We have no work to do; we can simply return. 1398 */ 1399 return; 1400 } 1401 1402 dtrace_sync(); 1403 1404 for (i = 0; i < NCPU; i++) { 1405 dcpu = &dstate->dtds_percpu[i]; 1406 1407 if (dcpu->dtdsc_rinsing == NULL) 1408 continue; 1409 1410 /* 1411 * We are now guaranteed that no hash chain contains a pointer 1412 * into this dirty list; we can make it clean. 1413 */ 1414 ASSERT(dcpu->dtdsc_clean == NULL); 1415 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1416 dcpu->dtdsc_rinsing = NULL; 1417 } 1418 1419 /* 1420 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1421 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1422 * This prevents a race whereby a CPU incorrectly decides that 1423 * the state should be something other than DTRACE_DSTATE_CLEAN 1424 * after dtrace_dynvar_clean() has completed. 1425 */ 1426 dtrace_sync(); 1427 1428 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1429 } 1430 1431 /* 1432 * Depending on the value of the op parameter, this function looks-up, 1433 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1434 * allocation is requested, this function will return a pointer to a 1435 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1436 * variable can be allocated. If NULL is returned, the appropriate counter 1437 * will be incremented. 1438 */ 1439 dtrace_dynvar_t * 1440 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1441 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1442 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1443 { 1444 uint64_t hashval = DTRACE_DYNHASH_VALID; 1445 dtrace_dynhash_t *hash = dstate->dtds_hash; 1446 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1447 processorid_t me = CPU->cpu_id, cpu = me; 1448 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1449 size_t bucket, ksize; 1450 size_t chunksize = dstate->dtds_chunksize; 1451 uintptr_t kdata, lock, nstate; 1452 uint_t i; 1453 1454 ASSERT(nkeys != 0); 1455 1456 /* 1457 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1458 * algorithm. For the by-value portions, we perform the algorithm in 1459 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1460 * bit, and seems to have only a minute effect on distribution. For 1461 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1462 * over each referenced byte. It's painful to do this, but it's much 1463 * better than pathological hash distribution. The efficacy of the 1464 * hashing algorithm (and a comparison with other algorithms) may be 1465 * found by running the ::dtrace_dynstat MDB dcmd. 1466 */ 1467 for (i = 0; i < nkeys; i++) { 1468 if (key[i].dttk_size == 0) { 1469 uint64_t val = key[i].dttk_value; 1470 1471 hashval += (val >> 48) & 0xffff; 1472 hashval += (hashval << 10); 1473 hashval ^= (hashval >> 6); 1474 1475 hashval += (val >> 32) & 0xffff; 1476 hashval += (hashval << 10); 1477 hashval ^= (hashval >> 6); 1478 1479 hashval += (val >> 16) & 0xffff; 1480 hashval += (hashval << 10); 1481 hashval ^= (hashval >> 6); 1482 1483 hashval += val & 0xffff; 1484 hashval += (hashval << 10); 1485 hashval ^= (hashval >> 6); 1486 } else { 1487 /* 1488 * This is incredibly painful, but it beats the hell 1489 * out of the alternative. 1490 */ 1491 uint64_t j, size = key[i].dttk_size; 1492 uintptr_t base = (uintptr_t)key[i].dttk_value; 1493 1494 if (!dtrace_canload(base, size, mstate, vstate)) 1495 break; 1496 1497 for (j = 0; j < size; j++) { 1498 hashval += dtrace_load8(base + j); 1499 hashval += (hashval << 10); 1500 hashval ^= (hashval >> 6); 1501 } 1502 } 1503 } 1504 1505 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1506 return (NULL); 1507 1508 hashval += (hashval << 3); 1509 hashval ^= (hashval >> 11); 1510 hashval += (hashval << 15); 1511 1512 /* 1513 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1514 * comes out to be one of our two sentinel hash values. If this 1515 * actually happens, we set the hashval to be a value known to be a 1516 * non-sentinel value. 1517 */ 1518 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1519 hashval = DTRACE_DYNHASH_VALID; 1520 1521 /* 1522 * Yes, it's painful to do a divide here. If the cycle count becomes 1523 * important here, tricks can be pulled to reduce it. (However, it's 1524 * critical that hash collisions be kept to an absolute minimum; 1525 * they're much more painful than a divide.) It's better to have a 1526 * solution that generates few collisions and still keeps things 1527 * relatively simple. 1528 */ 1529 bucket = hashval % dstate->dtds_hashsize; 1530 1531 if (op == DTRACE_DYNVAR_DEALLOC) { 1532 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1533 1534 for (;;) { 1535 while ((lock = *lockp) & 1) 1536 continue; 1537 1538 if (dtrace_casptr((void *)lockp, 1539 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1540 break; 1541 } 1542 1543 dtrace_membar_producer(); 1544 } 1545 1546 top: 1547 prev = NULL; 1548 lock = hash[bucket].dtdh_lock; 1549 1550 dtrace_membar_consumer(); 1551 1552 start = hash[bucket].dtdh_chain; 1553 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1554 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1555 op != DTRACE_DYNVAR_DEALLOC)); 1556 1557 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1558 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1559 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1560 1561 if (dvar->dtdv_hashval != hashval) { 1562 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1563 /* 1564 * We've reached the sink, and therefore the 1565 * end of the hash chain; we can kick out of 1566 * the loop knowing that we have seen a valid 1567 * snapshot of state. 1568 */ 1569 ASSERT(dvar->dtdv_next == NULL); 1570 ASSERT(dvar == &dtrace_dynhash_sink); 1571 break; 1572 } 1573 1574 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1575 /* 1576 * We've gone off the rails: somewhere along 1577 * the line, one of the members of this hash 1578 * chain was deleted. Note that we could also 1579 * detect this by simply letting this loop run 1580 * to completion, as we would eventually hit 1581 * the end of the dirty list. However, we 1582 * want to avoid running the length of the 1583 * dirty list unnecessarily (it might be quite 1584 * long), so we catch this as early as 1585 * possible by detecting the hash marker. In 1586 * this case, we simply set dvar to NULL and 1587 * break; the conditional after the loop will 1588 * send us back to top. 1589 */ 1590 dvar = NULL; 1591 break; 1592 } 1593 1594 goto next; 1595 } 1596 1597 if (dtuple->dtt_nkeys != nkeys) 1598 goto next; 1599 1600 for (i = 0; i < nkeys; i++, dkey++) { 1601 if (dkey->dttk_size != key[i].dttk_size) 1602 goto next; /* size or type mismatch */ 1603 1604 if (dkey->dttk_size != 0) { 1605 if (dtrace_bcmp( 1606 (void *)(uintptr_t)key[i].dttk_value, 1607 (void *)(uintptr_t)dkey->dttk_value, 1608 dkey->dttk_size)) 1609 goto next; 1610 } else { 1611 if (dkey->dttk_value != key[i].dttk_value) 1612 goto next; 1613 } 1614 } 1615 1616 if (op != DTRACE_DYNVAR_DEALLOC) 1617 return (dvar); 1618 1619 ASSERT(dvar->dtdv_next == NULL || 1620 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1621 1622 if (prev != NULL) { 1623 ASSERT(hash[bucket].dtdh_chain != dvar); 1624 ASSERT(start != dvar); 1625 ASSERT(prev->dtdv_next == dvar); 1626 prev->dtdv_next = dvar->dtdv_next; 1627 } else { 1628 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1629 start, dvar->dtdv_next) != start) { 1630 /* 1631 * We have failed to atomically swing the 1632 * hash table head pointer, presumably because 1633 * of a conflicting allocation on another CPU. 1634 * We need to reread the hash chain and try 1635 * again. 1636 */ 1637 goto top; 1638 } 1639 } 1640 1641 dtrace_membar_producer(); 1642 1643 /* 1644 * Now set the hash value to indicate that it's free. 1645 */ 1646 ASSERT(hash[bucket].dtdh_chain != dvar); 1647 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1648 1649 dtrace_membar_producer(); 1650 1651 /* 1652 * Set the next pointer to point at the dirty list, and 1653 * atomically swing the dirty pointer to the newly freed dvar. 1654 */ 1655 do { 1656 next = dcpu->dtdsc_dirty; 1657 dvar->dtdv_next = next; 1658 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1659 1660 /* 1661 * Finally, unlock this hash bucket. 1662 */ 1663 ASSERT(hash[bucket].dtdh_lock == lock); 1664 ASSERT(lock & 1); 1665 hash[bucket].dtdh_lock++; 1666 1667 return (NULL); 1668 next: 1669 prev = dvar; 1670 continue; 1671 } 1672 1673 if (dvar == NULL) { 1674 /* 1675 * If dvar is NULL, it is because we went off the rails: 1676 * one of the elements that we traversed in the hash chain 1677 * was deleted while we were traversing it. In this case, 1678 * we assert that we aren't doing a dealloc (deallocs lock 1679 * the hash bucket to prevent themselves from racing with 1680 * one another), and retry the hash chain traversal. 1681 */ 1682 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1683 goto top; 1684 } 1685 1686 if (op != DTRACE_DYNVAR_ALLOC) { 1687 /* 1688 * If we are not to allocate a new variable, we want to 1689 * return NULL now. Before we return, check that the value 1690 * of the lock word hasn't changed. If it has, we may have 1691 * seen an inconsistent snapshot. 1692 */ 1693 if (op == DTRACE_DYNVAR_NOALLOC) { 1694 if (hash[bucket].dtdh_lock != lock) 1695 goto top; 1696 } else { 1697 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1698 ASSERT(hash[bucket].dtdh_lock == lock); 1699 ASSERT(lock & 1); 1700 hash[bucket].dtdh_lock++; 1701 } 1702 1703 return (NULL); 1704 } 1705 1706 /* 1707 * We need to allocate a new dynamic variable. The size we need is the 1708 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1709 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1710 * the size of any referred-to data (dsize). We then round the final 1711 * size up to the chunksize for allocation. 1712 */ 1713 for (ksize = 0, i = 0; i < nkeys; i++) 1714 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1715 1716 /* 1717 * This should be pretty much impossible, but could happen if, say, 1718 * strange DIF specified the tuple. Ideally, this should be an 1719 * assertion and not an error condition -- but that requires that the 1720 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1721 * bullet-proof. (That is, it must not be able to be fooled by 1722 * malicious DIF.) Given the lack of backwards branches in DIF, 1723 * solving this would presumably not amount to solving the Halting 1724 * Problem -- but it still seems awfully hard. 1725 */ 1726 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1727 ksize + dsize > chunksize) { 1728 dcpu->dtdsc_drops++; 1729 return (NULL); 1730 } 1731 1732 nstate = DTRACE_DSTATE_EMPTY; 1733 1734 do { 1735 retry: 1736 free = dcpu->dtdsc_free; 1737 1738 if (free == NULL) { 1739 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1740 void *rval; 1741 1742 if (clean == NULL) { 1743 /* 1744 * We're out of dynamic variable space on 1745 * this CPU. Unless we have tried all CPUs, 1746 * we'll try to allocate from a different 1747 * CPU. 1748 */ 1749 switch (dstate->dtds_state) { 1750 case DTRACE_DSTATE_CLEAN: { 1751 void *sp = &dstate->dtds_state; 1752 1753 if (++cpu >= NCPU) 1754 cpu = 0; 1755 1756 if (dcpu->dtdsc_dirty != NULL && 1757 nstate == DTRACE_DSTATE_EMPTY) 1758 nstate = DTRACE_DSTATE_DIRTY; 1759 1760 if (dcpu->dtdsc_rinsing != NULL) 1761 nstate = DTRACE_DSTATE_RINSING; 1762 1763 dcpu = &dstate->dtds_percpu[cpu]; 1764 1765 if (cpu != me) 1766 goto retry; 1767 1768 (void) dtrace_cas32(sp, 1769 DTRACE_DSTATE_CLEAN, nstate); 1770 1771 /* 1772 * To increment the correct bean 1773 * counter, take another lap. 1774 */ 1775 goto retry; 1776 } 1777 1778 case DTRACE_DSTATE_DIRTY: 1779 dcpu->dtdsc_dirty_drops++; 1780 break; 1781 1782 case DTRACE_DSTATE_RINSING: 1783 dcpu->dtdsc_rinsing_drops++; 1784 break; 1785 1786 case DTRACE_DSTATE_EMPTY: 1787 dcpu->dtdsc_drops++; 1788 break; 1789 } 1790 1791 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1792 return (NULL); 1793 } 1794 1795 /* 1796 * The clean list appears to be non-empty. We want to 1797 * move the clean list to the free list; we start by 1798 * moving the clean pointer aside. 1799 */ 1800 if (dtrace_casptr(&dcpu->dtdsc_clean, 1801 clean, NULL) != clean) { 1802 /* 1803 * We are in one of two situations: 1804 * 1805 * (a) The clean list was switched to the 1806 * free list by another CPU. 1807 * 1808 * (b) The clean list was added to by the 1809 * cleansing cyclic. 1810 * 1811 * In either of these situations, we can 1812 * just reattempt the free list allocation. 1813 */ 1814 goto retry; 1815 } 1816 1817 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1818 1819 /* 1820 * Now we'll move the clean list to our free list. 1821 * It's impossible for this to fail: the only way 1822 * the free list can be updated is through this 1823 * code path, and only one CPU can own the clean list. 1824 * Thus, it would only be possible for this to fail if 1825 * this code were racing with dtrace_dynvar_clean(). 1826 * (That is, if dtrace_dynvar_clean() updated the clean 1827 * list, and we ended up racing to update the free 1828 * list.) This race is prevented by the dtrace_sync() 1829 * in dtrace_dynvar_clean() -- which flushes the 1830 * owners of the clean lists out before resetting 1831 * the clean lists. 1832 */ 1833 dcpu = &dstate->dtds_percpu[me]; 1834 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1835 ASSERT(rval == NULL); 1836 goto retry; 1837 } 1838 1839 dvar = free; 1840 new_free = dvar->dtdv_next; 1841 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1842 1843 /* 1844 * We have now allocated a new chunk. We copy the tuple keys into the 1845 * tuple array and copy any referenced key data into the data space 1846 * following the tuple array. As we do this, we relocate dttk_value 1847 * in the final tuple to point to the key data address in the chunk. 1848 */ 1849 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1850 dvar->dtdv_data = (void *)(kdata + ksize); 1851 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1852 1853 for (i = 0; i < nkeys; i++) { 1854 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1855 size_t kesize = key[i].dttk_size; 1856 1857 if (kesize != 0) { 1858 dtrace_bcopy( 1859 (const void *)(uintptr_t)key[i].dttk_value, 1860 (void *)kdata, kesize); 1861 dkey->dttk_value = kdata; 1862 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1863 } else { 1864 dkey->dttk_value = key[i].dttk_value; 1865 } 1866 1867 dkey->dttk_size = kesize; 1868 } 1869 1870 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1871 dvar->dtdv_hashval = hashval; 1872 dvar->dtdv_next = start; 1873 1874 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1875 return (dvar); 1876 1877 /* 1878 * The cas has failed. Either another CPU is adding an element to 1879 * this hash chain, or another CPU is deleting an element from this 1880 * hash chain. The simplest way to deal with both of these cases 1881 * (though not necessarily the most efficient) is to free our 1882 * allocated block and tail-call ourselves. Note that the free is 1883 * to the dirty list and _not_ to the free list. This is to prevent 1884 * races with allocators, above. 1885 */ 1886 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1887 1888 dtrace_membar_producer(); 1889 1890 do { 1891 free = dcpu->dtdsc_dirty; 1892 dvar->dtdv_next = free; 1893 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1894 1895 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1896 } 1897 1898 /*ARGSUSED*/ 1899 static void 1900 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1901 { 1902 if ((int64_t)nval < (int64_t)*oval) 1903 *oval = nval; 1904 } 1905 1906 /*ARGSUSED*/ 1907 static void 1908 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1909 { 1910 if ((int64_t)nval > (int64_t)*oval) 1911 *oval = nval; 1912 } 1913 1914 static void 1915 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1916 { 1917 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1918 int64_t val = (int64_t)nval; 1919 1920 if (val < 0) { 1921 for (i = 0; i < zero; i++) { 1922 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1923 quanta[i] += incr; 1924 return; 1925 } 1926 } 1927 } else { 1928 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1929 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1930 quanta[i - 1] += incr; 1931 return; 1932 } 1933 } 1934 1935 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1936 return; 1937 } 1938 1939 ASSERT(0); 1940 } 1941 1942 static void 1943 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1944 { 1945 uint64_t arg = *lquanta++; 1946 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1947 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1948 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1949 int32_t val = (int32_t)nval, level; 1950 1951 ASSERT(step != 0); 1952 ASSERT(levels != 0); 1953 1954 if (val < base) { 1955 /* 1956 * This is an underflow. 1957 */ 1958 lquanta[0] += incr; 1959 return; 1960 } 1961 1962 level = (val - base) / step; 1963 1964 if (level < levels) { 1965 lquanta[level + 1] += incr; 1966 return; 1967 } 1968 1969 /* 1970 * This is an overflow. 1971 */ 1972 lquanta[levels + 1] += incr; 1973 } 1974 1975 static int 1976 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 1977 uint16_t high, uint16_t nsteps, int64_t value) 1978 { 1979 int64_t this = 1, last, next; 1980 int base = 1, order; 1981 1982 ASSERT(factor <= nsteps); 1983 ASSERT(nsteps % factor == 0); 1984 1985 for (order = 0; order < low; order++) 1986 this *= factor; 1987 1988 /* 1989 * If our value is less than our factor taken to the power of the 1990 * low order of magnitude, it goes into the zeroth bucket. 1991 */ 1992 if (value < (last = this)) 1993 return (0); 1994 1995 for (this *= factor; order <= high; order++) { 1996 int nbuckets = this > nsteps ? nsteps : this; 1997 1998 if ((next = this * factor) < this) { 1999 /* 2000 * We should not generally get log/linear quantizations 2001 * with a high magnitude that allows 64-bits to 2002 * overflow, but we nonetheless protect against this 2003 * by explicitly checking for overflow, and clamping 2004 * our value accordingly. 2005 */ 2006 value = this - 1; 2007 } 2008 2009 if (value < this) { 2010 /* 2011 * If our value lies within this order of magnitude, 2012 * determine its position by taking the offset within 2013 * the order of magnitude, dividing by the bucket 2014 * width, and adding to our (accumulated) base. 2015 */ 2016 return (base + (value - last) / (this / nbuckets)); 2017 } 2018 2019 base += nbuckets - (nbuckets / factor); 2020 last = this; 2021 this = next; 2022 } 2023 2024 /* 2025 * Our value is greater than or equal to our factor taken to the 2026 * power of one plus the high magnitude -- return the top bucket. 2027 */ 2028 return (base); 2029 } 2030 2031 static void 2032 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2033 { 2034 uint64_t arg = *llquanta++; 2035 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2036 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2037 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2038 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2039 2040 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2041 low, high, nsteps, nval)] += incr; 2042 } 2043 2044 /*ARGSUSED*/ 2045 static void 2046 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2047 { 2048 data[0]++; 2049 data[1] += nval; 2050 } 2051 2052 /*ARGSUSED*/ 2053 static void 2054 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2055 { 2056 int64_t snval = (int64_t)nval; 2057 uint64_t tmp[2]; 2058 2059 data[0]++; 2060 data[1] += nval; 2061 2062 /* 2063 * What we want to say here is: 2064 * 2065 * data[2] += nval * nval; 2066 * 2067 * But given that nval is 64-bit, we could easily overflow, so 2068 * we do this as 128-bit arithmetic. 2069 */ 2070 if (snval < 0) 2071 snval = -snval; 2072 2073 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2074 dtrace_add_128(data + 2, tmp, data + 2); 2075 } 2076 2077 /*ARGSUSED*/ 2078 static void 2079 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2080 { 2081 *oval = *oval + 1; 2082 } 2083 2084 /*ARGSUSED*/ 2085 static void 2086 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2087 { 2088 *oval += nval; 2089 } 2090 2091 /* 2092 * Aggregate given the tuple in the principal data buffer, and the aggregating 2093 * action denoted by the specified dtrace_aggregation_t. The aggregation 2094 * buffer is specified as the buf parameter. This routine does not return 2095 * failure; if there is no space in the aggregation buffer, the data will be 2096 * dropped, and a corresponding counter incremented. 2097 */ 2098 static void 2099 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2100 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2101 { 2102 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2103 uint32_t i, ndx, size, fsize; 2104 uint32_t align = sizeof (uint64_t) - 1; 2105 dtrace_aggbuffer_t *agb; 2106 dtrace_aggkey_t *key; 2107 uint32_t hashval = 0, limit, isstr; 2108 caddr_t tomax, data, kdata; 2109 dtrace_actkind_t action; 2110 dtrace_action_t *act; 2111 uintptr_t offs; 2112 2113 if (buf == NULL) 2114 return; 2115 2116 if (!agg->dtag_hasarg) { 2117 /* 2118 * Currently, only quantize() and lquantize() take additional 2119 * arguments, and they have the same semantics: an increment 2120 * value that defaults to 1 when not present. If additional 2121 * aggregating actions take arguments, the setting of the 2122 * default argument value will presumably have to become more 2123 * sophisticated... 2124 */ 2125 arg = 1; 2126 } 2127 2128 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2129 size = rec->dtrd_offset - agg->dtag_base; 2130 fsize = size + rec->dtrd_size; 2131 2132 ASSERT(dbuf->dtb_tomax != NULL); 2133 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2134 2135 if ((tomax = buf->dtb_tomax) == NULL) { 2136 dtrace_buffer_drop(buf); 2137 return; 2138 } 2139 2140 /* 2141 * The metastructure is always at the bottom of the buffer. 2142 */ 2143 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2144 sizeof (dtrace_aggbuffer_t)); 2145 2146 if (buf->dtb_offset == 0) { 2147 /* 2148 * We just kludge up approximately 1/8th of the size to be 2149 * buckets. If this guess ends up being routinely 2150 * off-the-mark, we may need to dynamically readjust this 2151 * based on past performance. 2152 */ 2153 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2154 2155 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2156 (uintptr_t)tomax || hashsize == 0) { 2157 /* 2158 * We've been given a ludicrously small buffer; 2159 * increment our drop count and leave. 2160 */ 2161 dtrace_buffer_drop(buf); 2162 return; 2163 } 2164 2165 /* 2166 * And now, a pathetic attempt to try to get a an odd (or 2167 * perchance, a prime) hash size for better hash distribution. 2168 */ 2169 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2170 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2171 2172 agb->dtagb_hashsize = hashsize; 2173 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2174 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2175 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2176 2177 for (i = 0; i < agb->dtagb_hashsize; i++) 2178 agb->dtagb_hash[i] = NULL; 2179 } 2180 2181 ASSERT(agg->dtag_first != NULL); 2182 ASSERT(agg->dtag_first->dta_intuple); 2183 2184 /* 2185 * Calculate the hash value based on the key. Note that we _don't_ 2186 * include the aggid in the hashing (but we will store it as part of 2187 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2188 * algorithm: a simple, quick algorithm that has no known funnels, and 2189 * gets good distribution in practice. The efficacy of the hashing 2190 * algorithm (and a comparison with other algorithms) may be found by 2191 * running the ::dtrace_aggstat MDB dcmd. 2192 */ 2193 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2194 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2195 limit = i + act->dta_rec.dtrd_size; 2196 ASSERT(limit <= size); 2197 isstr = DTRACEACT_ISSTRING(act); 2198 2199 for (; i < limit; i++) { 2200 hashval += data[i]; 2201 hashval += (hashval << 10); 2202 hashval ^= (hashval >> 6); 2203 2204 if (isstr && data[i] == '\0') 2205 break; 2206 } 2207 } 2208 2209 hashval += (hashval << 3); 2210 hashval ^= (hashval >> 11); 2211 hashval += (hashval << 15); 2212 2213 /* 2214 * Yes, the divide here is expensive -- but it's generally the least 2215 * of the performance issues given the amount of data that we iterate 2216 * over to compute hash values, compare data, etc. 2217 */ 2218 ndx = hashval % agb->dtagb_hashsize; 2219 2220 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2221 ASSERT((caddr_t)key >= tomax); 2222 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2223 2224 if (hashval != key->dtak_hashval || key->dtak_size != size) 2225 continue; 2226 2227 kdata = key->dtak_data; 2228 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2229 2230 for (act = agg->dtag_first; act->dta_intuple; 2231 act = act->dta_next) { 2232 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2233 limit = i + act->dta_rec.dtrd_size; 2234 ASSERT(limit <= size); 2235 isstr = DTRACEACT_ISSTRING(act); 2236 2237 for (; i < limit; i++) { 2238 if (kdata[i] != data[i]) 2239 goto next; 2240 2241 if (isstr && data[i] == '\0') 2242 break; 2243 } 2244 } 2245 2246 if (action != key->dtak_action) { 2247 /* 2248 * We are aggregating on the same value in the same 2249 * aggregation with two different aggregating actions. 2250 * (This should have been picked up in the compiler, 2251 * so we may be dealing with errant or devious DIF.) 2252 * This is an error condition; we indicate as much, 2253 * and return. 2254 */ 2255 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2256 return; 2257 } 2258 2259 /* 2260 * This is a hit: we need to apply the aggregator to 2261 * the value at this key. 2262 */ 2263 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2264 return; 2265 next: 2266 continue; 2267 } 2268 2269 /* 2270 * We didn't find it. We need to allocate some zero-filled space, 2271 * link it into the hash table appropriately, and apply the aggregator 2272 * to the (zero-filled) value. 2273 */ 2274 offs = buf->dtb_offset; 2275 while (offs & (align - 1)) 2276 offs += sizeof (uint32_t); 2277 2278 /* 2279 * If we don't have enough room to both allocate a new key _and_ 2280 * its associated data, increment the drop count and return. 2281 */ 2282 if ((uintptr_t)tomax + offs + fsize > 2283 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2284 dtrace_buffer_drop(buf); 2285 return; 2286 } 2287 2288 /*CONSTCOND*/ 2289 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2290 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2291 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2292 2293 key->dtak_data = kdata = tomax + offs; 2294 buf->dtb_offset = offs + fsize; 2295 2296 /* 2297 * Now copy the data across. 2298 */ 2299 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2300 2301 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2302 kdata[i] = data[i]; 2303 2304 /* 2305 * Because strings are not zeroed out by default, we need to iterate 2306 * looking for actions that store strings, and we need to explicitly 2307 * pad these strings out with zeroes. 2308 */ 2309 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2310 int nul; 2311 2312 if (!DTRACEACT_ISSTRING(act)) 2313 continue; 2314 2315 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2316 limit = i + act->dta_rec.dtrd_size; 2317 ASSERT(limit <= size); 2318 2319 for (nul = 0; i < limit; i++) { 2320 if (nul) { 2321 kdata[i] = '\0'; 2322 continue; 2323 } 2324 2325 if (data[i] != '\0') 2326 continue; 2327 2328 nul = 1; 2329 } 2330 } 2331 2332 for (i = size; i < fsize; i++) 2333 kdata[i] = 0; 2334 2335 key->dtak_hashval = hashval; 2336 key->dtak_size = size; 2337 key->dtak_action = action; 2338 key->dtak_next = agb->dtagb_hash[ndx]; 2339 agb->dtagb_hash[ndx] = key; 2340 2341 /* 2342 * Finally, apply the aggregator. 2343 */ 2344 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2345 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2346 } 2347 2348 /* 2349 * Given consumer state, this routine finds a speculation in the INACTIVE 2350 * state and transitions it into the ACTIVE state. If there is no speculation 2351 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2352 * incremented -- it is up to the caller to take appropriate action. 2353 */ 2354 static int 2355 dtrace_speculation(dtrace_state_t *state) 2356 { 2357 int i = 0; 2358 dtrace_speculation_state_t current; 2359 uint32_t *stat = &state->dts_speculations_unavail, count; 2360 2361 while (i < state->dts_nspeculations) { 2362 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2363 2364 current = spec->dtsp_state; 2365 2366 if (current != DTRACESPEC_INACTIVE) { 2367 if (current == DTRACESPEC_COMMITTINGMANY || 2368 current == DTRACESPEC_COMMITTING || 2369 current == DTRACESPEC_DISCARDING) 2370 stat = &state->dts_speculations_busy; 2371 i++; 2372 continue; 2373 } 2374 2375 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2376 current, DTRACESPEC_ACTIVE) == current) 2377 return (i + 1); 2378 } 2379 2380 /* 2381 * We couldn't find a speculation. If we found as much as a single 2382 * busy speculation buffer, we'll attribute this failure as "busy" 2383 * instead of "unavail". 2384 */ 2385 do { 2386 count = *stat; 2387 } while (dtrace_cas32(stat, count, count + 1) != count); 2388 2389 return (0); 2390 } 2391 2392 /* 2393 * This routine commits an active speculation. If the specified speculation 2394 * is not in a valid state to perform a commit(), this routine will silently do 2395 * nothing. The state of the specified speculation is transitioned according 2396 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2397 */ 2398 static void 2399 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2400 dtrace_specid_t which) 2401 { 2402 dtrace_speculation_t *spec; 2403 dtrace_buffer_t *src, *dest; 2404 uintptr_t daddr, saddr, dlimit; 2405 dtrace_speculation_state_t current, new; 2406 intptr_t offs; 2407 2408 if (which == 0) 2409 return; 2410 2411 if (which > state->dts_nspeculations) { 2412 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2413 return; 2414 } 2415 2416 spec = &state->dts_speculations[which - 1]; 2417 src = &spec->dtsp_buffer[cpu]; 2418 dest = &state->dts_buffer[cpu]; 2419 2420 do { 2421 current = spec->dtsp_state; 2422 2423 if (current == DTRACESPEC_COMMITTINGMANY) 2424 break; 2425 2426 switch (current) { 2427 case DTRACESPEC_INACTIVE: 2428 case DTRACESPEC_DISCARDING: 2429 return; 2430 2431 case DTRACESPEC_COMMITTING: 2432 /* 2433 * This is only possible if we are (a) commit()'ing 2434 * without having done a prior speculate() on this CPU 2435 * and (b) racing with another commit() on a different 2436 * CPU. There's nothing to do -- we just assert that 2437 * our offset is 0. 2438 */ 2439 ASSERT(src->dtb_offset == 0); 2440 return; 2441 2442 case DTRACESPEC_ACTIVE: 2443 new = DTRACESPEC_COMMITTING; 2444 break; 2445 2446 case DTRACESPEC_ACTIVEONE: 2447 /* 2448 * This speculation is active on one CPU. If our 2449 * buffer offset is non-zero, we know that the one CPU 2450 * must be us. Otherwise, we are committing on a 2451 * different CPU from the speculate(), and we must 2452 * rely on being asynchronously cleaned. 2453 */ 2454 if (src->dtb_offset != 0) { 2455 new = DTRACESPEC_COMMITTING; 2456 break; 2457 } 2458 /*FALLTHROUGH*/ 2459 2460 case DTRACESPEC_ACTIVEMANY: 2461 new = DTRACESPEC_COMMITTINGMANY; 2462 break; 2463 2464 default: 2465 ASSERT(0); 2466 } 2467 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2468 current, new) != current); 2469 2470 /* 2471 * We have set the state to indicate that we are committing this 2472 * speculation. Now reserve the necessary space in the destination 2473 * buffer. 2474 */ 2475 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2476 sizeof (uint64_t), state, NULL)) < 0) { 2477 dtrace_buffer_drop(dest); 2478 goto out; 2479 } 2480 2481 /* 2482 * We have the space; copy the buffer across. (Note that this is a 2483 * highly subobtimal bcopy(); in the unlikely event that this becomes 2484 * a serious performance issue, a high-performance DTrace-specific 2485 * bcopy() should obviously be invented.) 2486 */ 2487 daddr = (uintptr_t)dest->dtb_tomax + offs; 2488 dlimit = daddr + src->dtb_offset; 2489 saddr = (uintptr_t)src->dtb_tomax; 2490 2491 /* 2492 * First, the aligned portion. 2493 */ 2494 while (dlimit - daddr >= sizeof (uint64_t)) { 2495 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2496 2497 daddr += sizeof (uint64_t); 2498 saddr += sizeof (uint64_t); 2499 } 2500 2501 /* 2502 * Now any left-over bit... 2503 */ 2504 while (dlimit - daddr) 2505 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2506 2507 /* 2508 * Finally, commit the reserved space in the destination buffer. 2509 */ 2510 dest->dtb_offset = offs + src->dtb_offset; 2511 2512 out: 2513 /* 2514 * If we're lucky enough to be the only active CPU on this speculation 2515 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2516 */ 2517 if (current == DTRACESPEC_ACTIVE || 2518 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2519 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2520 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2521 2522 ASSERT(rval == DTRACESPEC_COMMITTING); 2523 } 2524 2525 src->dtb_offset = 0; 2526 src->dtb_xamot_drops += src->dtb_drops; 2527 src->dtb_drops = 0; 2528 } 2529 2530 /* 2531 * This routine discards an active speculation. If the specified speculation 2532 * is not in a valid state to perform a discard(), this routine will silently 2533 * do nothing. The state of the specified speculation is transitioned 2534 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2535 */ 2536 static void 2537 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2538 dtrace_specid_t which) 2539 { 2540 dtrace_speculation_t *spec; 2541 dtrace_speculation_state_t current, new; 2542 dtrace_buffer_t *buf; 2543 2544 if (which == 0) 2545 return; 2546 2547 if (which > state->dts_nspeculations) { 2548 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2549 return; 2550 } 2551 2552 spec = &state->dts_speculations[which - 1]; 2553 buf = &spec->dtsp_buffer[cpu]; 2554 2555 do { 2556 current = spec->dtsp_state; 2557 2558 switch (current) { 2559 case DTRACESPEC_INACTIVE: 2560 case DTRACESPEC_COMMITTINGMANY: 2561 case DTRACESPEC_COMMITTING: 2562 case DTRACESPEC_DISCARDING: 2563 return; 2564 2565 case DTRACESPEC_ACTIVE: 2566 case DTRACESPEC_ACTIVEMANY: 2567 new = DTRACESPEC_DISCARDING; 2568 break; 2569 2570 case DTRACESPEC_ACTIVEONE: 2571 if (buf->dtb_offset != 0) { 2572 new = DTRACESPEC_INACTIVE; 2573 } else { 2574 new = DTRACESPEC_DISCARDING; 2575 } 2576 break; 2577 2578 default: 2579 ASSERT(0); 2580 } 2581 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2582 current, new) != current); 2583 2584 buf->dtb_offset = 0; 2585 buf->dtb_drops = 0; 2586 } 2587 2588 /* 2589 * Note: not called from probe context. This function is called 2590 * asynchronously from cross call context to clean any speculations that are 2591 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2592 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2593 * speculation. 2594 */ 2595 static void 2596 dtrace_speculation_clean_here(dtrace_state_t *state) 2597 { 2598 dtrace_icookie_t cookie; 2599 processorid_t cpu = CPU->cpu_id; 2600 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2601 dtrace_specid_t i; 2602 2603 cookie = dtrace_interrupt_disable(); 2604 2605 if (dest->dtb_tomax == NULL) { 2606 dtrace_interrupt_enable(cookie); 2607 return; 2608 } 2609 2610 for (i = 0; i < state->dts_nspeculations; i++) { 2611 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2612 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2613 2614 if (src->dtb_tomax == NULL) 2615 continue; 2616 2617 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2618 src->dtb_offset = 0; 2619 continue; 2620 } 2621 2622 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2623 continue; 2624 2625 if (src->dtb_offset == 0) 2626 continue; 2627 2628 dtrace_speculation_commit(state, cpu, i + 1); 2629 } 2630 2631 dtrace_interrupt_enable(cookie); 2632 } 2633 2634 /* 2635 * Note: not called from probe context. This function is called 2636 * asynchronously (and at a regular interval) to clean any speculations that 2637 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2638 * is work to be done, it cross calls all CPUs to perform that work; 2639 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2640 * INACTIVE state until they have been cleaned by all CPUs. 2641 */ 2642 static void 2643 dtrace_speculation_clean(dtrace_state_t *state) 2644 { 2645 int work = 0, rv; 2646 dtrace_specid_t i; 2647 2648 for (i = 0; i < state->dts_nspeculations; i++) { 2649 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2650 2651 ASSERT(!spec->dtsp_cleaning); 2652 2653 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2654 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2655 continue; 2656 2657 work++; 2658 spec->dtsp_cleaning = 1; 2659 } 2660 2661 if (!work) 2662 return; 2663 2664 dtrace_xcall(DTRACE_CPUALL, 2665 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2666 2667 /* 2668 * We now know that all CPUs have committed or discarded their 2669 * speculation buffers, as appropriate. We can now set the state 2670 * to inactive. 2671 */ 2672 for (i = 0; i < state->dts_nspeculations; i++) { 2673 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2674 dtrace_speculation_state_t current, new; 2675 2676 if (!spec->dtsp_cleaning) 2677 continue; 2678 2679 current = spec->dtsp_state; 2680 ASSERT(current == DTRACESPEC_DISCARDING || 2681 current == DTRACESPEC_COMMITTINGMANY); 2682 2683 new = DTRACESPEC_INACTIVE; 2684 2685 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2686 ASSERT(rv == current); 2687 spec->dtsp_cleaning = 0; 2688 } 2689 } 2690 2691 /* 2692 * Called as part of a speculate() to get the speculative buffer associated 2693 * with a given speculation. Returns NULL if the specified speculation is not 2694 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2695 * the active CPU is not the specified CPU -- the speculation will be 2696 * atomically transitioned into the ACTIVEMANY state. 2697 */ 2698 static dtrace_buffer_t * 2699 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2700 dtrace_specid_t which) 2701 { 2702 dtrace_speculation_t *spec; 2703 dtrace_speculation_state_t current, new; 2704 dtrace_buffer_t *buf; 2705 2706 if (which == 0) 2707 return (NULL); 2708 2709 if (which > state->dts_nspeculations) { 2710 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2711 return (NULL); 2712 } 2713 2714 spec = &state->dts_speculations[which - 1]; 2715 buf = &spec->dtsp_buffer[cpuid]; 2716 2717 do { 2718 current = spec->dtsp_state; 2719 2720 switch (current) { 2721 case DTRACESPEC_INACTIVE: 2722 case DTRACESPEC_COMMITTINGMANY: 2723 case DTRACESPEC_DISCARDING: 2724 return (NULL); 2725 2726 case DTRACESPEC_COMMITTING: 2727 ASSERT(buf->dtb_offset == 0); 2728 return (NULL); 2729 2730 case DTRACESPEC_ACTIVEONE: 2731 /* 2732 * This speculation is currently active on one CPU. 2733 * Check the offset in the buffer; if it's non-zero, 2734 * that CPU must be us (and we leave the state alone). 2735 * If it's zero, assume that we're starting on a new 2736 * CPU -- and change the state to indicate that the 2737 * speculation is active on more than one CPU. 2738 */ 2739 if (buf->dtb_offset != 0) 2740 return (buf); 2741 2742 new = DTRACESPEC_ACTIVEMANY; 2743 break; 2744 2745 case DTRACESPEC_ACTIVEMANY: 2746 return (buf); 2747 2748 case DTRACESPEC_ACTIVE: 2749 new = DTRACESPEC_ACTIVEONE; 2750 break; 2751 2752 default: 2753 ASSERT(0); 2754 } 2755 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2756 current, new) != current); 2757 2758 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2759 return (buf); 2760 } 2761 2762 /* 2763 * Return a string. In the event that the user lacks the privilege to access 2764 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2765 * don't fail access checking. 2766 * 2767 * dtrace_dif_variable() uses this routine as a helper for various 2768 * builtin values such as 'execname' and 'probefunc.' 2769 */ 2770 uintptr_t 2771 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2772 dtrace_mstate_t *mstate) 2773 { 2774 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2775 uintptr_t ret; 2776 size_t strsz; 2777 2778 /* 2779 * The easy case: this probe is allowed to read all of memory, so 2780 * we can just return this as a vanilla pointer. 2781 */ 2782 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2783 return (addr); 2784 2785 /* 2786 * This is the tougher case: we copy the string in question from 2787 * kernel memory into scratch memory and return it that way: this 2788 * ensures that we won't trip up when access checking tests the 2789 * BYREF return value. 2790 */ 2791 strsz = dtrace_strlen((char *)addr, size) + 1; 2792 2793 if (mstate->dtms_scratch_ptr + strsz > 2794 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2795 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2796 return (NULL); 2797 } 2798 2799 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2800 strsz); 2801 ret = mstate->dtms_scratch_ptr; 2802 mstate->dtms_scratch_ptr += strsz; 2803 return (ret); 2804 } 2805 2806 /* 2807 * This function implements the DIF emulator's variable lookups. The emulator 2808 * passes a reserved variable identifier and optional built-in array index. 2809 */ 2810 static uint64_t 2811 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2812 uint64_t ndx) 2813 { 2814 /* 2815 * If we're accessing one of the uncached arguments, we'll turn this 2816 * into a reference in the args array. 2817 */ 2818 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2819 ndx = v - DIF_VAR_ARG0; 2820 v = DIF_VAR_ARGS; 2821 } 2822 2823 switch (v) { 2824 case DIF_VAR_ARGS: 2825 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 2826 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 2827 CPU_DTRACE_KPRIV; 2828 return (0); 2829 } 2830 2831 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2832 if (ndx >= sizeof (mstate->dtms_arg) / 2833 sizeof (mstate->dtms_arg[0])) { 2834 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2835 dtrace_provider_t *pv; 2836 uint64_t val; 2837 2838 pv = mstate->dtms_probe->dtpr_provider; 2839 if (pv->dtpv_pops.dtps_getargval != NULL) 2840 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2841 mstate->dtms_probe->dtpr_id, 2842 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2843 else 2844 val = dtrace_getarg(ndx, aframes); 2845 2846 /* 2847 * This is regrettably required to keep the compiler 2848 * from tail-optimizing the call to dtrace_getarg(). 2849 * The condition always evaluates to true, but the 2850 * compiler has no way of figuring that out a priori. 2851 * (None of this would be necessary if the compiler 2852 * could be relied upon to _always_ tail-optimize 2853 * the call to dtrace_getarg() -- but it can't.) 2854 */ 2855 if (mstate->dtms_probe != NULL) 2856 return (val); 2857 2858 ASSERT(0); 2859 } 2860 2861 return (mstate->dtms_arg[ndx]); 2862 2863 case DIF_VAR_UREGS: { 2864 klwp_t *lwp; 2865 2866 if (!dtrace_priv_proc(state, mstate)) 2867 return (0); 2868 2869 if ((lwp = curthread->t_lwp) == NULL) { 2870 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2871 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2872 return (0); 2873 } 2874 2875 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2876 } 2877 2878 case DIF_VAR_VMREGS: { 2879 uint64_t rval; 2880 2881 if (!dtrace_priv_kernel(state)) 2882 return (0); 2883 2884 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2885 2886 rval = dtrace_getvmreg(ndx, 2887 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 2888 2889 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2890 2891 return (rval); 2892 } 2893 2894 case DIF_VAR_CURTHREAD: 2895 if (!dtrace_priv_kernel(state)) 2896 return (0); 2897 return ((uint64_t)(uintptr_t)curthread); 2898 2899 case DIF_VAR_TIMESTAMP: 2900 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2901 mstate->dtms_timestamp = dtrace_gethrtime(); 2902 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2903 } 2904 return (mstate->dtms_timestamp); 2905 2906 case DIF_VAR_VTIMESTAMP: 2907 ASSERT(dtrace_vtime_references != 0); 2908 return (curthread->t_dtrace_vtime); 2909 2910 case DIF_VAR_WALLTIMESTAMP: 2911 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2912 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2913 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2914 } 2915 return (mstate->dtms_walltimestamp); 2916 2917 case DIF_VAR_IPL: 2918 if (!dtrace_priv_kernel(state)) 2919 return (0); 2920 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2921 mstate->dtms_ipl = dtrace_getipl(); 2922 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2923 } 2924 return (mstate->dtms_ipl); 2925 2926 case DIF_VAR_EPID: 2927 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2928 return (mstate->dtms_epid); 2929 2930 case DIF_VAR_ID: 2931 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2932 return (mstate->dtms_probe->dtpr_id); 2933 2934 case DIF_VAR_STACKDEPTH: 2935 if (!dtrace_priv_kernel(state)) 2936 return (0); 2937 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2938 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2939 2940 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2941 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2942 } 2943 return (mstate->dtms_stackdepth); 2944 2945 case DIF_VAR_USTACKDEPTH: 2946 if (!dtrace_priv_proc(state, mstate)) 2947 return (0); 2948 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2949 /* 2950 * See comment in DIF_VAR_PID. 2951 */ 2952 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2953 CPU_ON_INTR(CPU)) { 2954 mstate->dtms_ustackdepth = 0; 2955 } else { 2956 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2957 mstate->dtms_ustackdepth = 2958 dtrace_getustackdepth(); 2959 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2960 } 2961 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2962 } 2963 return (mstate->dtms_ustackdepth); 2964 2965 case DIF_VAR_CALLER: 2966 if (!dtrace_priv_kernel(state)) 2967 return (0); 2968 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2969 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2970 2971 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2972 /* 2973 * If this is an unanchored probe, we are 2974 * required to go through the slow path: 2975 * dtrace_caller() only guarantees correct 2976 * results for anchored probes. 2977 */ 2978 pc_t caller[2]; 2979 2980 dtrace_getpcstack(caller, 2, aframes, 2981 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2982 mstate->dtms_caller = caller[1]; 2983 } else if ((mstate->dtms_caller = 2984 dtrace_caller(aframes)) == -1) { 2985 /* 2986 * We have failed to do this the quick way; 2987 * we must resort to the slower approach of 2988 * calling dtrace_getpcstack(). 2989 */ 2990 pc_t caller; 2991 2992 dtrace_getpcstack(&caller, 1, aframes, NULL); 2993 mstate->dtms_caller = caller; 2994 } 2995 2996 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2997 } 2998 return (mstate->dtms_caller); 2999 3000 case DIF_VAR_UCALLER: 3001 if (!dtrace_priv_proc(state, mstate)) 3002 return (0); 3003 3004 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3005 uint64_t ustack[3]; 3006 3007 /* 3008 * dtrace_getupcstack() fills in the first uint64_t 3009 * with the current PID. The second uint64_t will 3010 * be the program counter at user-level. The third 3011 * uint64_t will contain the caller, which is what 3012 * we're after. 3013 */ 3014 ustack[2] = NULL; 3015 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3016 dtrace_getupcstack(ustack, 3); 3017 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3018 mstate->dtms_ucaller = ustack[2]; 3019 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3020 } 3021 3022 return (mstate->dtms_ucaller); 3023 3024 case DIF_VAR_PROBEPROV: 3025 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3026 return (dtrace_dif_varstr( 3027 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3028 state, mstate)); 3029 3030 case DIF_VAR_PROBEMOD: 3031 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3032 return (dtrace_dif_varstr( 3033 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3034 state, mstate)); 3035 3036 case DIF_VAR_PROBEFUNC: 3037 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3038 return (dtrace_dif_varstr( 3039 (uintptr_t)mstate->dtms_probe->dtpr_func, 3040 state, mstate)); 3041 3042 case DIF_VAR_PROBENAME: 3043 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3044 return (dtrace_dif_varstr( 3045 (uintptr_t)mstate->dtms_probe->dtpr_name, 3046 state, mstate)); 3047 3048 case DIF_VAR_PID: 3049 if (!dtrace_priv_proc(state, mstate)) 3050 return (0); 3051 3052 /* 3053 * Note that we are assuming that an unanchored probe is 3054 * always due to a high-level interrupt. (And we're assuming 3055 * that there is only a single high level interrupt.) 3056 */ 3057 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3058 return (pid0.pid_id); 3059 3060 /* 3061 * It is always safe to dereference one's own t_procp pointer: 3062 * it always points to a valid, allocated proc structure. 3063 * Further, it is always safe to dereference the p_pidp member 3064 * of one's own proc structure. (These are truisms becuase 3065 * threads and processes don't clean up their own state -- 3066 * they leave that task to whomever reaps them.) 3067 */ 3068 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3069 3070 case DIF_VAR_PPID: 3071 if (!dtrace_priv_proc(state, mstate)) 3072 return (0); 3073 3074 /* 3075 * See comment in DIF_VAR_PID. 3076 */ 3077 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3078 return (pid0.pid_id); 3079 3080 /* 3081 * It is always safe to dereference one's own t_procp pointer: 3082 * it always points to a valid, allocated proc structure. 3083 * (This is true because threads don't clean up their own 3084 * state -- they leave that task to whomever reaps them.) 3085 */ 3086 return ((uint64_t)curthread->t_procp->p_ppid); 3087 3088 case DIF_VAR_TID: 3089 /* 3090 * See comment in DIF_VAR_PID. 3091 */ 3092 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3093 return (0); 3094 3095 return ((uint64_t)curthread->t_tid); 3096 3097 case DIF_VAR_EXECNAME: 3098 if (!dtrace_priv_proc(state, mstate)) 3099 return (0); 3100 3101 /* 3102 * See comment in DIF_VAR_PID. 3103 */ 3104 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3105 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3106 3107 /* 3108 * It is always safe to dereference one's own t_procp pointer: 3109 * it always points to a valid, allocated proc structure. 3110 * (This is true because threads don't clean up their own 3111 * state -- they leave that task to whomever reaps them.) 3112 */ 3113 return (dtrace_dif_varstr( 3114 (uintptr_t)curthread->t_procp->p_user.u_comm, 3115 state, mstate)); 3116 3117 case DIF_VAR_ZONENAME: 3118 if (!dtrace_priv_proc(state, mstate)) 3119 return (0); 3120 3121 /* 3122 * See comment in DIF_VAR_PID. 3123 */ 3124 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3125 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3126 3127 /* 3128 * It is always safe to dereference one's own t_procp pointer: 3129 * it always points to a valid, allocated proc structure. 3130 * (This is true because threads don't clean up their own 3131 * state -- they leave that task to whomever reaps them.) 3132 */ 3133 return (dtrace_dif_varstr( 3134 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3135 state, mstate)); 3136 3137 case DIF_VAR_UID: 3138 if (!dtrace_priv_proc(state, mstate)) 3139 return (0); 3140 3141 /* 3142 * See comment in DIF_VAR_PID. 3143 */ 3144 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3145 return ((uint64_t)p0.p_cred->cr_uid); 3146 3147 /* 3148 * It is always safe to dereference one's own t_procp pointer: 3149 * it always points to a valid, allocated proc structure. 3150 * (This is true because threads don't clean up their own 3151 * state -- they leave that task to whomever reaps them.) 3152 * 3153 * Additionally, it is safe to dereference one's own process 3154 * credential, since this is never NULL after process birth. 3155 */ 3156 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3157 3158 case DIF_VAR_GID: 3159 if (!dtrace_priv_proc(state, mstate)) 3160 return (0); 3161 3162 /* 3163 * See comment in DIF_VAR_PID. 3164 */ 3165 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3166 return ((uint64_t)p0.p_cred->cr_gid); 3167 3168 /* 3169 * It is always safe to dereference one's own t_procp pointer: 3170 * it always points to a valid, allocated proc structure. 3171 * (This is true because threads don't clean up their own 3172 * state -- they leave that task to whomever reaps them.) 3173 * 3174 * Additionally, it is safe to dereference one's own process 3175 * credential, since this is never NULL after process birth. 3176 */ 3177 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3178 3179 case DIF_VAR_ERRNO: { 3180 klwp_t *lwp; 3181 if (!dtrace_priv_proc(state, mstate)) 3182 return (0); 3183 3184 /* 3185 * See comment in DIF_VAR_PID. 3186 */ 3187 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3188 return (0); 3189 3190 /* 3191 * It is always safe to dereference one's own t_lwp pointer in 3192 * the event that this pointer is non-NULL. (This is true 3193 * because threads and lwps don't clean up their own state -- 3194 * they leave that task to whomever reaps them.) 3195 */ 3196 if ((lwp = curthread->t_lwp) == NULL) 3197 return (0); 3198 3199 return ((uint64_t)lwp->lwp_errno); 3200 } 3201 default: 3202 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3203 return (0); 3204 } 3205 } 3206 3207 /* 3208 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3209 * Notice that we don't bother validating the proper number of arguments or 3210 * their types in the tuple stack. This isn't needed because all argument 3211 * interpretation is safe because of our load safety -- the worst that can 3212 * happen is that a bogus program can obtain bogus results. 3213 */ 3214 static void 3215 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3216 dtrace_key_t *tupregs, int nargs, 3217 dtrace_mstate_t *mstate, dtrace_state_t *state) 3218 { 3219 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3220 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3221 dtrace_vstate_t *vstate = &state->dts_vstate; 3222 3223 union { 3224 mutex_impl_t mi; 3225 uint64_t mx; 3226 } m; 3227 3228 union { 3229 krwlock_t ri; 3230 uintptr_t rw; 3231 } r; 3232 3233 switch (subr) { 3234 case DIF_SUBR_RAND: 3235 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3236 break; 3237 3238 case DIF_SUBR_MUTEX_OWNED: 3239 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3240 mstate, vstate)) { 3241 regs[rd] = NULL; 3242 break; 3243 } 3244 3245 m.mx = dtrace_load64(tupregs[0].dttk_value); 3246 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3247 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3248 else 3249 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3250 break; 3251 3252 case DIF_SUBR_MUTEX_OWNER: 3253 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3254 mstate, vstate)) { 3255 regs[rd] = NULL; 3256 break; 3257 } 3258 3259 m.mx = dtrace_load64(tupregs[0].dttk_value); 3260 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3261 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3262 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3263 else 3264 regs[rd] = 0; 3265 break; 3266 3267 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3268 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3269 mstate, vstate)) { 3270 regs[rd] = NULL; 3271 break; 3272 } 3273 3274 m.mx = dtrace_load64(tupregs[0].dttk_value); 3275 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3276 break; 3277 3278 case DIF_SUBR_MUTEX_TYPE_SPIN: 3279 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3280 mstate, vstate)) { 3281 regs[rd] = NULL; 3282 break; 3283 } 3284 3285 m.mx = dtrace_load64(tupregs[0].dttk_value); 3286 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3287 break; 3288 3289 case DIF_SUBR_RW_READ_HELD: { 3290 uintptr_t tmp; 3291 3292 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3293 mstate, vstate)) { 3294 regs[rd] = NULL; 3295 break; 3296 } 3297 3298 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3299 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3300 break; 3301 } 3302 3303 case DIF_SUBR_RW_WRITE_HELD: 3304 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3305 mstate, vstate)) { 3306 regs[rd] = NULL; 3307 break; 3308 } 3309 3310 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3311 regs[rd] = _RW_WRITE_HELD(&r.ri); 3312 break; 3313 3314 case DIF_SUBR_RW_ISWRITER: 3315 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3316 mstate, vstate)) { 3317 regs[rd] = NULL; 3318 break; 3319 } 3320 3321 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3322 regs[rd] = _RW_ISWRITER(&r.ri); 3323 break; 3324 3325 case DIF_SUBR_BCOPY: { 3326 /* 3327 * We need to be sure that the destination is in the scratch 3328 * region -- no other region is allowed. 3329 */ 3330 uintptr_t src = tupregs[0].dttk_value; 3331 uintptr_t dest = tupregs[1].dttk_value; 3332 size_t size = tupregs[2].dttk_value; 3333 3334 if (!dtrace_inscratch(dest, size, mstate)) { 3335 *flags |= CPU_DTRACE_BADADDR; 3336 *illval = regs[rd]; 3337 break; 3338 } 3339 3340 if (!dtrace_canload(src, size, mstate, vstate)) { 3341 regs[rd] = NULL; 3342 break; 3343 } 3344 3345 dtrace_bcopy((void *)src, (void *)dest, size); 3346 break; 3347 } 3348 3349 case DIF_SUBR_ALLOCA: 3350 case DIF_SUBR_COPYIN: { 3351 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3352 uint64_t size = 3353 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3354 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3355 3356 /* 3357 * This action doesn't require any credential checks since 3358 * probes will not activate in user contexts to which the 3359 * enabling user does not have permissions. 3360 */ 3361 3362 /* 3363 * Rounding up the user allocation size could have overflowed 3364 * a large, bogus allocation (like -1ULL) to 0. 3365 */ 3366 if (scratch_size < size || 3367 !DTRACE_INSCRATCH(mstate, scratch_size)) { 3368 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3369 regs[rd] = NULL; 3370 break; 3371 } 3372 3373 if (subr == DIF_SUBR_COPYIN) { 3374 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3375 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3376 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3377 } 3378 3379 mstate->dtms_scratch_ptr += scratch_size; 3380 regs[rd] = dest; 3381 break; 3382 } 3383 3384 case DIF_SUBR_COPYINTO: { 3385 uint64_t size = tupregs[1].dttk_value; 3386 uintptr_t dest = tupregs[2].dttk_value; 3387 3388 /* 3389 * This action doesn't require any credential checks since 3390 * probes will not activate in user contexts to which the 3391 * enabling user does not have permissions. 3392 */ 3393 if (!dtrace_inscratch(dest, size, mstate)) { 3394 *flags |= CPU_DTRACE_BADADDR; 3395 *illval = regs[rd]; 3396 break; 3397 } 3398 3399 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3400 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3401 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3402 break; 3403 } 3404 3405 case DIF_SUBR_COPYINSTR: { 3406 uintptr_t dest = mstate->dtms_scratch_ptr; 3407 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3408 3409 if (nargs > 1 && tupregs[1].dttk_value < size) 3410 size = tupregs[1].dttk_value + 1; 3411 3412 /* 3413 * This action doesn't require any credential checks since 3414 * probes will not activate in user contexts to which the 3415 * enabling user does not have permissions. 3416 */ 3417 if (!DTRACE_INSCRATCH(mstate, size)) { 3418 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3419 regs[rd] = NULL; 3420 break; 3421 } 3422 3423 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3424 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3425 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3426 3427 ((char *)dest)[size - 1] = '\0'; 3428 mstate->dtms_scratch_ptr += size; 3429 regs[rd] = dest; 3430 break; 3431 } 3432 3433 case DIF_SUBR_MSGSIZE: 3434 case DIF_SUBR_MSGDSIZE: { 3435 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3436 uintptr_t wptr, rptr; 3437 size_t count = 0; 3438 int cont = 0; 3439 3440 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3441 3442 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3443 vstate)) { 3444 regs[rd] = NULL; 3445 break; 3446 } 3447 3448 wptr = dtrace_loadptr(baddr + 3449 offsetof(mblk_t, b_wptr)); 3450 3451 rptr = dtrace_loadptr(baddr + 3452 offsetof(mblk_t, b_rptr)); 3453 3454 if (wptr < rptr) { 3455 *flags |= CPU_DTRACE_BADADDR; 3456 *illval = tupregs[0].dttk_value; 3457 break; 3458 } 3459 3460 daddr = dtrace_loadptr(baddr + 3461 offsetof(mblk_t, b_datap)); 3462 3463 baddr = dtrace_loadptr(baddr + 3464 offsetof(mblk_t, b_cont)); 3465 3466 /* 3467 * We want to prevent against denial-of-service here, 3468 * so we're only going to search the list for 3469 * dtrace_msgdsize_max mblks. 3470 */ 3471 if (cont++ > dtrace_msgdsize_max) { 3472 *flags |= CPU_DTRACE_ILLOP; 3473 break; 3474 } 3475 3476 if (subr == DIF_SUBR_MSGDSIZE) { 3477 if (dtrace_load8(daddr + 3478 offsetof(dblk_t, db_type)) != M_DATA) 3479 continue; 3480 } 3481 3482 count += wptr - rptr; 3483 } 3484 3485 if (!(*flags & CPU_DTRACE_FAULT)) 3486 regs[rd] = count; 3487 3488 break; 3489 } 3490 3491 case DIF_SUBR_PROGENYOF: { 3492 pid_t pid = tupregs[0].dttk_value; 3493 proc_t *p; 3494 int rval = 0; 3495 3496 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3497 3498 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3499 if (p->p_pidp->pid_id == pid) { 3500 rval = 1; 3501 break; 3502 } 3503 } 3504 3505 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3506 3507 regs[rd] = rval; 3508 break; 3509 } 3510 3511 case DIF_SUBR_SPECULATION: 3512 regs[rd] = dtrace_speculation(state); 3513 break; 3514 3515 case DIF_SUBR_COPYOUT: { 3516 uintptr_t kaddr = tupregs[0].dttk_value; 3517 uintptr_t uaddr = tupregs[1].dttk_value; 3518 uint64_t size = tupregs[2].dttk_value; 3519 3520 if (!dtrace_destructive_disallow && 3521 dtrace_priv_proc_control(state, mstate) && 3522 !dtrace_istoxic(kaddr, size)) { 3523 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3524 dtrace_copyout(kaddr, uaddr, size, flags); 3525 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3526 } 3527 break; 3528 } 3529 3530 case DIF_SUBR_COPYOUTSTR: { 3531 uintptr_t kaddr = tupregs[0].dttk_value; 3532 uintptr_t uaddr = tupregs[1].dttk_value; 3533 uint64_t size = tupregs[2].dttk_value; 3534 3535 if (!dtrace_destructive_disallow && 3536 dtrace_priv_proc_control(state, mstate) && 3537 !dtrace_istoxic(kaddr, size)) { 3538 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3539 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3540 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3541 } 3542 break; 3543 } 3544 3545 case DIF_SUBR_STRLEN: { 3546 size_t sz; 3547 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3548 sz = dtrace_strlen((char *)addr, 3549 state->dts_options[DTRACEOPT_STRSIZE]); 3550 3551 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3552 regs[rd] = NULL; 3553 break; 3554 } 3555 3556 regs[rd] = sz; 3557 3558 break; 3559 } 3560 3561 case DIF_SUBR_STRCHR: 3562 case DIF_SUBR_STRRCHR: { 3563 /* 3564 * We're going to iterate over the string looking for the 3565 * specified character. We will iterate until we have reached 3566 * the string length or we have found the character. If this 3567 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3568 * of the specified character instead of the first. 3569 */ 3570 uintptr_t saddr = tupregs[0].dttk_value; 3571 uintptr_t addr = tupregs[0].dttk_value; 3572 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3573 char c, target = (char)tupregs[1].dttk_value; 3574 3575 for (regs[rd] = NULL; addr < limit; addr++) { 3576 if ((c = dtrace_load8(addr)) == target) { 3577 regs[rd] = addr; 3578 3579 if (subr == DIF_SUBR_STRCHR) 3580 break; 3581 } 3582 3583 if (c == '\0') 3584 break; 3585 } 3586 3587 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3588 regs[rd] = NULL; 3589 break; 3590 } 3591 3592 break; 3593 } 3594 3595 case DIF_SUBR_STRSTR: 3596 case DIF_SUBR_INDEX: 3597 case DIF_SUBR_RINDEX: { 3598 /* 3599 * We're going to iterate over the string looking for the 3600 * specified string. We will iterate until we have reached 3601 * the string length or we have found the string. (Yes, this 3602 * is done in the most naive way possible -- but considering 3603 * that the string we're searching for is likely to be 3604 * relatively short, the complexity of Rabin-Karp or similar 3605 * hardly seems merited.) 3606 */ 3607 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3608 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3609 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3610 size_t len = dtrace_strlen(addr, size); 3611 size_t sublen = dtrace_strlen(substr, size); 3612 char *limit = addr + len, *orig = addr; 3613 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3614 int inc = 1; 3615 3616 regs[rd] = notfound; 3617 3618 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3619 regs[rd] = NULL; 3620 break; 3621 } 3622 3623 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3624 vstate)) { 3625 regs[rd] = NULL; 3626 break; 3627 } 3628 3629 /* 3630 * strstr() and index()/rindex() have similar semantics if 3631 * both strings are the empty string: strstr() returns a 3632 * pointer to the (empty) string, and index() and rindex() 3633 * both return index 0 (regardless of any position argument). 3634 */ 3635 if (sublen == 0 && len == 0) { 3636 if (subr == DIF_SUBR_STRSTR) 3637 regs[rd] = (uintptr_t)addr; 3638 else 3639 regs[rd] = 0; 3640 break; 3641 } 3642 3643 if (subr != DIF_SUBR_STRSTR) { 3644 if (subr == DIF_SUBR_RINDEX) { 3645 limit = orig - 1; 3646 addr += len; 3647 inc = -1; 3648 } 3649 3650 /* 3651 * Both index() and rindex() take an optional position 3652 * argument that denotes the starting position. 3653 */ 3654 if (nargs == 3) { 3655 int64_t pos = (int64_t)tupregs[2].dttk_value; 3656 3657 /* 3658 * If the position argument to index() is 3659 * negative, Perl implicitly clamps it at 3660 * zero. This semantic is a little surprising 3661 * given the special meaning of negative 3662 * positions to similar Perl functions like 3663 * substr(), but it appears to reflect a 3664 * notion that index() can start from a 3665 * negative index and increment its way up to 3666 * the string. Given this notion, Perl's 3667 * rindex() is at least self-consistent in 3668 * that it implicitly clamps positions greater 3669 * than the string length to be the string 3670 * length. Where Perl completely loses 3671 * coherence, however, is when the specified 3672 * substring is the empty string (""). In 3673 * this case, even if the position is 3674 * negative, rindex() returns 0 -- and even if 3675 * the position is greater than the length, 3676 * index() returns the string length. These 3677 * semantics violate the notion that index() 3678 * should never return a value less than the 3679 * specified position and that rindex() should 3680 * never return a value greater than the 3681 * specified position. (One assumes that 3682 * these semantics are artifacts of Perl's 3683 * implementation and not the results of 3684 * deliberate design -- it beggars belief that 3685 * even Larry Wall could desire such oddness.) 3686 * While in the abstract one would wish for 3687 * consistent position semantics across 3688 * substr(), index() and rindex() -- or at the 3689 * very least self-consistent position 3690 * semantics for index() and rindex() -- we 3691 * instead opt to keep with the extant Perl 3692 * semantics, in all their broken glory. (Do 3693 * we have more desire to maintain Perl's 3694 * semantics than Perl does? Probably.) 3695 */ 3696 if (subr == DIF_SUBR_RINDEX) { 3697 if (pos < 0) { 3698 if (sublen == 0) 3699 regs[rd] = 0; 3700 break; 3701 } 3702 3703 if (pos > len) 3704 pos = len; 3705 } else { 3706 if (pos < 0) 3707 pos = 0; 3708 3709 if (pos >= len) { 3710 if (sublen == 0) 3711 regs[rd] = len; 3712 break; 3713 } 3714 } 3715 3716 addr = orig + pos; 3717 } 3718 } 3719 3720 for (regs[rd] = notfound; addr != limit; addr += inc) { 3721 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3722 if (subr != DIF_SUBR_STRSTR) { 3723 /* 3724 * As D index() and rindex() are 3725 * modeled on Perl (and not on awk), 3726 * we return a zero-based (and not a 3727 * one-based) index. (For you Perl 3728 * weenies: no, we're not going to add 3729 * $[ -- and shouldn't you be at a con 3730 * or something?) 3731 */ 3732 regs[rd] = (uintptr_t)(addr - orig); 3733 break; 3734 } 3735 3736 ASSERT(subr == DIF_SUBR_STRSTR); 3737 regs[rd] = (uintptr_t)addr; 3738 break; 3739 } 3740 } 3741 3742 break; 3743 } 3744 3745 case DIF_SUBR_STRTOK: { 3746 uintptr_t addr = tupregs[0].dttk_value; 3747 uintptr_t tokaddr = tupregs[1].dttk_value; 3748 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3749 uintptr_t limit, toklimit = tokaddr + size; 3750 uint8_t c, tokmap[32]; /* 256 / 8 */ 3751 char *dest = (char *)mstate->dtms_scratch_ptr; 3752 int i; 3753 3754 /* 3755 * Check both the token buffer and (later) the input buffer, 3756 * since both could be non-scratch addresses. 3757 */ 3758 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3759 regs[rd] = NULL; 3760 break; 3761 } 3762 3763 if (!DTRACE_INSCRATCH(mstate, size)) { 3764 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3765 regs[rd] = NULL; 3766 break; 3767 } 3768 3769 if (addr == NULL) { 3770 /* 3771 * If the address specified is NULL, we use our saved 3772 * strtok pointer from the mstate. Note that this 3773 * means that the saved strtok pointer is _only_ 3774 * valid within multiple enablings of the same probe -- 3775 * it behaves like an implicit clause-local variable. 3776 */ 3777 addr = mstate->dtms_strtok; 3778 } else { 3779 /* 3780 * If the user-specified address is non-NULL we must 3781 * access check it. This is the only time we have 3782 * a chance to do so, since this address may reside 3783 * in the string table of this clause-- future calls 3784 * (when we fetch addr from mstate->dtms_strtok) 3785 * would fail this access check. 3786 */ 3787 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3788 regs[rd] = NULL; 3789 break; 3790 } 3791 } 3792 3793 /* 3794 * First, zero the token map, and then process the token 3795 * string -- setting a bit in the map for every character 3796 * found in the token string. 3797 */ 3798 for (i = 0; i < sizeof (tokmap); i++) 3799 tokmap[i] = 0; 3800 3801 for (; tokaddr < toklimit; tokaddr++) { 3802 if ((c = dtrace_load8(tokaddr)) == '\0') 3803 break; 3804 3805 ASSERT((c >> 3) < sizeof (tokmap)); 3806 tokmap[c >> 3] |= (1 << (c & 0x7)); 3807 } 3808 3809 for (limit = addr + size; addr < limit; addr++) { 3810 /* 3811 * We're looking for a character that is _not_ contained 3812 * in the token string. 3813 */ 3814 if ((c = dtrace_load8(addr)) == '\0') 3815 break; 3816 3817 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3818 break; 3819 } 3820 3821 if (c == '\0') { 3822 /* 3823 * We reached the end of the string without finding 3824 * any character that was not in the token string. 3825 * We return NULL in this case, and we set the saved 3826 * address to NULL as well. 3827 */ 3828 regs[rd] = NULL; 3829 mstate->dtms_strtok = NULL; 3830 break; 3831 } 3832 3833 /* 3834 * From here on, we're copying into the destination string. 3835 */ 3836 for (i = 0; addr < limit && i < size - 1; addr++) { 3837 if ((c = dtrace_load8(addr)) == '\0') 3838 break; 3839 3840 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3841 break; 3842 3843 ASSERT(i < size); 3844 dest[i++] = c; 3845 } 3846 3847 ASSERT(i < size); 3848 dest[i] = '\0'; 3849 regs[rd] = (uintptr_t)dest; 3850 mstate->dtms_scratch_ptr += size; 3851 mstate->dtms_strtok = addr; 3852 break; 3853 } 3854 3855 case DIF_SUBR_SUBSTR: { 3856 uintptr_t s = tupregs[0].dttk_value; 3857 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3858 char *d = (char *)mstate->dtms_scratch_ptr; 3859 int64_t index = (int64_t)tupregs[1].dttk_value; 3860 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3861 size_t len = dtrace_strlen((char *)s, size); 3862 int64_t i; 3863 3864 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3865 regs[rd] = NULL; 3866 break; 3867 } 3868 3869 if (!DTRACE_INSCRATCH(mstate, size)) { 3870 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3871 regs[rd] = NULL; 3872 break; 3873 } 3874 3875 if (nargs <= 2) 3876 remaining = (int64_t)size; 3877 3878 if (index < 0) { 3879 index += len; 3880 3881 if (index < 0 && index + remaining > 0) { 3882 remaining += index; 3883 index = 0; 3884 } 3885 } 3886 3887 if (index >= len || index < 0) { 3888 remaining = 0; 3889 } else if (remaining < 0) { 3890 remaining += len - index; 3891 } else if (index + remaining > size) { 3892 remaining = size - index; 3893 } 3894 3895 for (i = 0; i < remaining; i++) { 3896 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 3897 break; 3898 } 3899 3900 d[i] = '\0'; 3901 3902 mstate->dtms_scratch_ptr += size; 3903 regs[rd] = (uintptr_t)d; 3904 break; 3905 } 3906 3907 case DIF_SUBR_GETMAJOR: 3908 #ifdef _LP64 3909 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3910 #else 3911 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3912 #endif 3913 break; 3914 3915 case DIF_SUBR_GETMINOR: 3916 #ifdef _LP64 3917 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3918 #else 3919 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3920 #endif 3921 break; 3922 3923 case DIF_SUBR_DDI_PATHNAME: { 3924 /* 3925 * This one is a galactic mess. We are going to roughly 3926 * emulate ddi_pathname(), but it's made more complicated 3927 * by the fact that we (a) want to include the minor name and 3928 * (b) must proceed iteratively instead of recursively. 3929 */ 3930 uintptr_t dest = mstate->dtms_scratch_ptr; 3931 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3932 char *start = (char *)dest, *end = start + size - 1; 3933 uintptr_t daddr = tupregs[0].dttk_value; 3934 int64_t minor = (int64_t)tupregs[1].dttk_value; 3935 char *s; 3936 int i, len, depth = 0; 3937 3938 /* 3939 * Due to all the pointer jumping we do and context we must 3940 * rely upon, we just mandate that the user must have kernel 3941 * read privileges to use this routine. 3942 */ 3943 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 3944 *flags |= CPU_DTRACE_KPRIV; 3945 *illval = daddr; 3946 regs[rd] = NULL; 3947 } 3948 3949 if (!DTRACE_INSCRATCH(mstate, size)) { 3950 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3951 regs[rd] = NULL; 3952 break; 3953 } 3954 3955 *end = '\0'; 3956 3957 /* 3958 * We want to have a name for the minor. In order to do this, 3959 * we need to walk the minor list from the devinfo. We want 3960 * to be sure that we don't infinitely walk a circular list, 3961 * so we check for circularity by sending a scout pointer 3962 * ahead two elements for every element that we iterate over; 3963 * if the list is circular, these will ultimately point to the 3964 * same element. You may recognize this little trick as the 3965 * answer to a stupid interview question -- one that always 3966 * seems to be asked by those who had to have it laboriously 3967 * explained to them, and who can't even concisely describe 3968 * the conditions under which one would be forced to resort to 3969 * this technique. Needless to say, those conditions are 3970 * found here -- and probably only here. Is this the only use 3971 * of this infamous trick in shipping, production code? If it 3972 * isn't, it probably should be... 3973 */ 3974 if (minor != -1) { 3975 uintptr_t maddr = dtrace_loadptr(daddr + 3976 offsetof(struct dev_info, devi_minor)); 3977 3978 uintptr_t next = offsetof(struct ddi_minor_data, next); 3979 uintptr_t name = offsetof(struct ddi_minor_data, 3980 d_minor) + offsetof(struct ddi_minor, name); 3981 uintptr_t dev = offsetof(struct ddi_minor_data, 3982 d_minor) + offsetof(struct ddi_minor, dev); 3983 uintptr_t scout; 3984 3985 if (maddr != NULL) 3986 scout = dtrace_loadptr(maddr + next); 3987 3988 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3989 uint64_t m; 3990 #ifdef _LP64 3991 m = dtrace_load64(maddr + dev) & MAXMIN64; 3992 #else 3993 m = dtrace_load32(maddr + dev) & MAXMIN; 3994 #endif 3995 if (m != minor) { 3996 maddr = dtrace_loadptr(maddr + next); 3997 3998 if (scout == NULL) 3999 continue; 4000 4001 scout = dtrace_loadptr(scout + next); 4002 4003 if (scout == NULL) 4004 continue; 4005 4006 scout = dtrace_loadptr(scout + next); 4007 4008 if (scout == NULL) 4009 continue; 4010 4011 if (scout == maddr) { 4012 *flags |= CPU_DTRACE_ILLOP; 4013 break; 4014 } 4015 4016 continue; 4017 } 4018 4019 /* 4020 * We have the minor data. Now we need to 4021 * copy the minor's name into the end of the 4022 * pathname. 4023 */ 4024 s = (char *)dtrace_loadptr(maddr + name); 4025 len = dtrace_strlen(s, size); 4026 4027 if (*flags & CPU_DTRACE_FAULT) 4028 break; 4029 4030 if (len != 0) { 4031 if ((end -= (len + 1)) < start) 4032 break; 4033 4034 *end = ':'; 4035 } 4036 4037 for (i = 1; i <= len; i++) 4038 end[i] = dtrace_load8((uintptr_t)s++); 4039 break; 4040 } 4041 } 4042 4043 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4044 ddi_node_state_t devi_state; 4045 4046 devi_state = dtrace_load32(daddr + 4047 offsetof(struct dev_info, devi_node_state)); 4048 4049 if (*flags & CPU_DTRACE_FAULT) 4050 break; 4051 4052 if (devi_state >= DS_INITIALIZED) { 4053 s = (char *)dtrace_loadptr(daddr + 4054 offsetof(struct dev_info, devi_addr)); 4055 len = dtrace_strlen(s, size); 4056 4057 if (*flags & CPU_DTRACE_FAULT) 4058 break; 4059 4060 if (len != 0) { 4061 if ((end -= (len + 1)) < start) 4062 break; 4063 4064 *end = '@'; 4065 } 4066 4067 for (i = 1; i <= len; i++) 4068 end[i] = dtrace_load8((uintptr_t)s++); 4069 } 4070 4071 /* 4072 * Now for the node name... 4073 */ 4074 s = (char *)dtrace_loadptr(daddr + 4075 offsetof(struct dev_info, devi_node_name)); 4076 4077 daddr = dtrace_loadptr(daddr + 4078 offsetof(struct dev_info, devi_parent)); 4079 4080 /* 4081 * If our parent is NULL (that is, if we're the root 4082 * node), we're going to use the special path 4083 * "devices". 4084 */ 4085 if (daddr == NULL) 4086 s = "devices"; 4087 4088 len = dtrace_strlen(s, size); 4089 if (*flags & CPU_DTRACE_FAULT) 4090 break; 4091 4092 if ((end -= (len + 1)) < start) 4093 break; 4094 4095 for (i = 1; i <= len; i++) 4096 end[i] = dtrace_load8((uintptr_t)s++); 4097 *end = '/'; 4098 4099 if (depth++ > dtrace_devdepth_max) { 4100 *flags |= CPU_DTRACE_ILLOP; 4101 break; 4102 } 4103 } 4104 4105 if (end < start) 4106 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4107 4108 if (daddr == NULL) { 4109 regs[rd] = (uintptr_t)end; 4110 mstate->dtms_scratch_ptr += size; 4111 } 4112 4113 break; 4114 } 4115 4116 case DIF_SUBR_STRJOIN: { 4117 char *d = (char *)mstate->dtms_scratch_ptr; 4118 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4119 uintptr_t s1 = tupregs[0].dttk_value; 4120 uintptr_t s2 = tupregs[1].dttk_value; 4121 int i = 0; 4122 4123 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4124 !dtrace_strcanload(s2, size, mstate, vstate)) { 4125 regs[rd] = NULL; 4126 break; 4127 } 4128 4129 if (!DTRACE_INSCRATCH(mstate, size)) { 4130 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4131 regs[rd] = NULL; 4132 break; 4133 } 4134 4135 for (;;) { 4136 if (i >= size) { 4137 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4138 regs[rd] = NULL; 4139 break; 4140 } 4141 4142 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4143 i--; 4144 break; 4145 } 4146 } 4147 4148 for (;;) { 4149 if (i >= size) { 4150 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4151 regs[rd] = NULL; 4152 break; 4153 } 4154 4155 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4156 break; 4157 } 4158 4159 if (i < size) { 4160 mstate->dtms_scratch_ptr += i; 4161 regs[rd] = (uintptr_t)d; 4162 } 4163 4164 break; 4165 } 4166 4167 case DIF_SUBR_LLTOSTR: { 4168 int64_t i = (int64_t)tupregs[0].dttk_value; 4169 int64_t val = i < 0 ? i * -1 : i; 4170 uint64_t size = 22; /* enough room for 2^64 in decimal */ 4171 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4172 4173 if (!DTRACE_INSCRATCH(mstate, size)) { 4174 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4175 regs[rd] = NULL; 4176 break; 4177 } 4178 4179 for (*end-- = '\0'; val; val /= 10) 4180 *end-- = '0' + (val % 10); 4181 4182 if (i == 0) 4183 *end-- = '0'; 4184 4185 if (i < 0) 4186 *end-- = '-'; 4187 4188 regs[rd] = (uintptr_t)end + 1; 4189 mstate->dtms_scratch_ptr += size; 4190 break; 4191 } 4192 4193 case DIF_SUBR_HTONS: 4194 case DIF_SUBR_NTOHS: 4195 #ifdef _BIG_ENDIAN 4196 regs[rd] = (uint16_t)tupregs[0].dttk_value; 4197 #else 4198 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 4199 #endif 4200 break; 4201 4202 4203 case DIF_SUBR_HTONL: 4204 case DIF_SUBR_NTOHL: 4205 #ifdef _BIG_ENDIAN 4206 regs[rd] = (uint32_t)tupregs[0].dttk_value; 4207 #else 4208 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 4209 #endif 4210 break; 4211 4212 4213 case DIF_SUBR_HTONLL: 4214 case DIF_SUBR_NTOHLL: 4215 #ifdef _BIG_ENDIAN 4216 regs[rd] = (uint64_t)tupregs[0].dttk_value; 4217 #else 4218 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 4219 #endif 4220 break; 4221 4222 4223 case DIF_SUBR_DIRNAME: 4224 case DIF_SUBR_BASENAME: { 4225 char *dest = (char *)mstate->dtms_scratch_ptr; 4226 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4227 uintptr_t src = tupregs[0].dttk_value; 4228 int i, j, len = dtrace_strlen((char *)src, size); 4229 int lastbase = -1, firstbase = -1, lastdir = -1; 4230 int start, end; 4231 4232 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 4233 regs[rd] = NULL; 4234 break; 4235 } 4236 4237 if (!DTRACE_INSCRATCH(mstate, size)) { 4238 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4239 regs[rd] = NULL; 4240 break; 4241 } 4242 4243 /* 4244 * The basename and dirname for a zero-length string is 4245 * defined to be "." 4246 */ 4247 if (len == 0) { 4248 len = 1; 4249 src = (uintptr_t)"."; 4250 } 4251 4252 /* 4253 * Start from the back of the string, moving back toward the 4254 * front until we see a character that isn't a slash. That 4255 * character is the last character in the basename. 4256 */ 4257 for (i = len - 1; i >= 0; i--) { 4258 if (dtrace_load8(src + i) != '/') 4259 break; 4260 } 4261 4262 if (i >= 0) 4263 lastbase = i; 4264 4265 /* 4266 * Starting from the last character in the basename, move 4267 * towards the front until we find a slash. The character 4268 * that we processed immediately before that is the first 4269 * character in the basename. 4270 */ 4271 for (; i >= 0; i--) { 4272 if (dtrace_load8(src + i) == '/') 4273 break; 4274 } 4275 4276 if (i >= 0) 4277 firstbase = i + 1; 4278 4279 /* 4280 * Now keep going until we find a non-slash character. That 4281 * character is the last character in the dirname. 4282 */ 4283 for (; i >= 0; i--) { 4284 if (dtrace_load8(src + i) != '/') 4285 break; 4286 } 4287 4288 if (i >= 0) 4289 lastdir = i; 4290 4291 ASSERT(!(lastbase == -1 && firstbase != -1)); 4292 ASSERT(!(firstbase == -1 && lastdir != -1)); 4293 4294 if (lastbase == -1) { 4295 /* 4296 * We didn't find a non-slash character. We know that 4297 * the length is non-zero, so the whole string must be 4298 * slashes. In either the dirname or the basename 4299 * case, we return '/'. 4300 */ 4301 ASSERT(firstbase == -1); 4302 firstbase = lastbase = lastdir = 0; 4303 } 4304 4305 if (firstbase == -1) { 4306 /* 4307 * The entire string consists only of a basename 4308 * component. If we're looking for dirname, we need 4309 * to change our string to be just "."; if we're 4310 * looking for a basename, we'll just set the first 4311 * character of the basename to be 0. 4312 */ 4313 if (subr == DIF_SUBR_DIRNAME) { 4314 ASSERT(lastdir == -1); 4315 src = (uintptr_t)"."; 4316 lastdir = 0; 4317 } else { 4318 firstbase = 0; 4319 } 4320 } 4321 4322 if (subr == DIF_SUBR_DIRNAME) { 4323 if (lastdir == -1) { 4324 /* 4325 * We know that we have a slash in the name -- 4326 * or lastdir would be set to 0, above. And 4327 * because lastdir is -1, we know that this 4328 * slash must be the first character. (That 4329 * is, the full string must be of the form 4330 * "/basename".) In this case, the last 4331 * character of the directory name is 0. 4332 */ 4333 lastdir = 0; 4334 } 4335 4336 start = 0; 4337 end = lastdir; 4338 } else { 4339 ASSERT(subr == DIF_SUBR_BASENAME); 4340 ASSERT(firstbase != -1 && lastbase != -1); 4341 start = firstbase; 4342 end = lastbase; 4343 } 4344 4345 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 4346 dest[j] = dtrace_load8(src + i); 4347 4348 dest[j] = '\0'; 4349 regs[rd] = (uintptr_t)dest; 4350 mstate->dtms_scratch_ptr += size; 4351 break; 4352 } 4353 4354 case DIF_SUBR_CLEANPATH: { 4355 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4356 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4357 uintptr_t src = tupregs[0].dttk_value; 4358 int i = 0, j = 0; 4359 4360 if (!dtrace_strcanload(src, size, mstate, vstate)) { 4361 regs[rd] = NULL; 4362 break; 4363 } 4364 4365 if (!DTRACE_INSCRATCH(mstate, size)) { 4366 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4367 regs[rd] = NULL; 4368 break; 4369 } 4370 4371 /* 4372 * Move forward, loading each character. 4373 */ 4374 do { 4375 c = dtrace_load8(src + i++); 4376 next: 4377 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 4378 break; 4379 4380 if (c != '/') { 4381 dest[j++] = c; 4382 continue; 4383 } 4384 4385 c = dtrace_load8(src + i++); 4386 4387 if (c == '/') { 4388 /* 4389 * We have two slashes -- we can just advance 4390 * to the next character. 4391 */ 4392 goto next; 4393 } 4394 4395 if (c != '.') { 4396 /* 4397 * This is not "." and it's not ".." -- we can 4398 * just store the "/" and this character and 4399 * drive on. 4400 */ 4401 dest[j++] = '/'; 4402 dest[j++] = c; 4403 continue; 4404 } 4405 4406 c = dtrace_load8(src + i++); 4407 4408 if (c == '/') { 4409 /* 4410 * This is a "/./" component. We're not going 4411 * to store anything in the destination buffer; 4412 * we're just going to go to the next component. 4413 */ 4414 goto next; 4415 } 4416 4417 if (c != '.') { 4418 /* 4419 * This is not ".." -- we can just store the 4420 * "/." and this character and continue 4421 * processing. 4422 */ 4423 dest[j++] = '/'; 4424 dest[j++] = '.'; 4425 dest[j++] = c; 4426 continue; 4427 } 4428 4429 c = dtrace_load8(src + i++); 4430 4431 if (c != '/' && c != '\0') { 4432 /* 4433 * This is not ".." -- it's "..[mumble]". 4434 * We'll store the "/.." and this character 4435 * and continue processing. 4436 */ 4437 dest[j++] = '/'; 4438 dest[j++] = '.'; 4439 dest[j++] = '.'; 4440 dest[j++] = c; 4441 continue; 4442 } 4443 4444 /* 4445 * This is "/../" or "/..\0". We need to back up 4446 * our destination pointer until we find a "/". 4447 */ 4448 i--; 4449 while (j != 0 && dest[--j] != '/') 4450 continue; 4451 4452 if (c == '\0') 4453 dest[++j] = '/'; 4454 } while (c != '\0'); 4455 4456 dest[j] = '\0'; 4457 regs[rd] = (uintptr_t)dest; 4458 mstate->dtms_scratch_ptr += size; 4459 break; 4460 } 4461 4462 case DIF_SUBR_INET_NTOA: 4463 case DIF_SUBR_INET_NTOA6: 4464 case DIF_SUBR_INET_NTOP: { 4465 size_t size; 4466 int af, argi, i; 4467 char *base, *end; 4468 4469 if (subr == DIF_SUBR_INET_NTOP) { 4470 af = (int)tupregs[0].dttk_value; 4471 argi = 1; 4472 } else { 4473 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4474 argi = 0; 4475 } 4476 4477 if (af == AF_INET) { 4478 ipaddr_t ip4; 4479 uint8_t *ptr8, val; 4480 4481 /* 4482 * Safely load the IPv4 address. 4483 */ 4484 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4485 4486 /* 4487 * Check an IPv4 string will fit in scratch. 4488 */ 4489 size = INET_ADDRSTRLEN; 4490 if (!DTRACE_INSCRATCH(mstate, size)) { 4491 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4492 regs[rd] = NULL; 4493 break; 4494 } 4495 base = (char *)mstate->dtms_scratch_ptr; 4496 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4497 4498 /* 4499 * Stringify as a dotted decimal quad. 4500 */ 4501 *end-- = '\0'; 4502 ptr8 = (uint8_t *)&ip4; 4503 for (i = 3; i >= 0; i--) { 4504 val = ptr8[i]; 4505 4506 if (val == 0) { 4507 *end-- = '0'; 4508 } else { 4509 for (; val; val /= 10) { 4510 *end-- = '0' + (val % 10); 4511 } 4512 } 4513 4514 if (i > 0) 4515 *end-- = '.'; 4516 } 4517 ASSERT(end + 1 >= base); 4518 4519 } else if (af == AF_INET6) { 4520 struct in6_addr ip6; 4521 int firstzero, tryzero, numzero, v6end; 4522 uint16_t val; 4523 const char digits[] = "0123456789abcdef"; 4524 4525 /* 4526 * Stringify using RFC 1884 convention 2 - 16 bit 4527 * hexadecimal values with a zero-run compression. 4528 * Lower case hexadecimal digits are used. 4529 * eg, fe80::214:4fff:fe0b:76c8. 4530 * The IPv4 embedded form is returned for inet_ntop, 4531 * just the IPv4 string is returned for inet_ntoa6. 4532 */ 4533 4534 /* 4535 * Safely load the IPv6 address. 4536 */ 4537 dtrace_bcopy( 4538 (void *)(uintptr_t)tupregs[argi].dttk_value, 4539 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4540 4541 /* 4542 * Check an IPv6 string will fit in scratch. 4543 */ 4544 size = INET6_ADDRSTRLEN; 4545 if (!DTRACE_INSCRATCH(mstate, size)) { 4546 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4547 regs[rd] = NULL; 4548 break; 4549 } 4550 base = (char *)mstate->dtms_scratch_ptr; 4551 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4552 *end-- = '\0'; 4553 4554 /* 4555 * Find the longest run of 16 bit zero values 4556 * for the single allowed zero compression - "::". 4557 */ 4558 firstzero = -1; 4559 tryzero = -1; 4560 numzero = 1; 4561 for (i = 0; i < sizeof (struct in6_addr); i++) { 4562 if (ip6._S6_un._S6_u8[i] == 0 && 4563 tryzero == -1 && i % 2 == 0) { 4564 tryzero = i; 4565 continue; 4566 } 4567 4568 if (tryzero != -1 && 4569 (ip6._S6_un._S6_u8[i] != 0 || 4570 i == sizeof (struct in6_addr) - 1)) { 4571 4572 if (i - tryzero <= numzero) { 4573 tryzero = -1; 4574 continue; 4575 } 4576 4577 firstzero = tryzero; 4578 numzero = i - i % 2 - tryzero; 4579 tryzero = -1; 4580 4581 if (ip6._S6_un._S6_u8[i] == 0 && 4582 i == sizeof (struct in6_addr) - 1) 4583 numzero += 2; 4584 } 4585 } 4586 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4587 4588 /* 4589 * Check for an IPv4 embedded address. 4590 */ 4591 v6end = sizeof (struct in6_addr) - 2; 4592 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4593 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4594 for (i = sizeof (struct in6_addr) - 1; 4595 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4596 ASSERT(end >= base); 4597 4598 val = ip6._S6_un._S6_u8[i]; 4599 4600 if (val == 0) { 4601 *end-- = '0'; 4602 } else { 4603 for (; val; val /= 10) { 4604 *end-- = '0' + val % 10; 4605 } 4606 } 4607 4608 if (i > DTRACE_V4MAPPED_OFFSET) 4609 *end-- = '.'; 4610 } 4611 4612 if (subr == DIF_SUBR_INET_NTOA6) 4613 goto inetout; 4614 4615 /* 4616 * Set v6end to skip the IPv4 address that 4617 * we have already stringified. 4618 */ 4619 v6end = 10; 4620 } 4621 4622 /* 4623 * Build the IPv6 string by working through the 4624 * address in reverse. 4625 */ 4626 for (i = v6end; i >= 0; i -= 2) { 4627 ASSERT(end >= base); 4628 4629 if (i == firstzero + numzero - 2) { 4630 *end-- = ':'; 4631 *end-- = ':'; 4632 i -= numzero - 2; 4633 continue; 4634 } 4635 4636 if (i < 14 && i != firstzero - 2) 4637 *end-- = ':'; 4638 4639 val = (ip6._S6_un._S6_u8[i] << 8) + 4640 ip6._S6_un._S6_u8[i + 1]; 4641 4642 if (val == 0) { 4643 *end-- = '0'; 4644 } else { 4645 for (; val; val /= 16) { 4646 *end-- = digits[val % 16]; 4647 } 4648 } 4649 } 4650 ASSERT(end + 1 >= base); 4651 4652 } else { 4653 /* 4654 * The user didn't use AH_INET or AH_INET6. 4655 */ 4656 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4657 regs[rd] = NULL; 4658 break; 4659 } 4660 4661 inetout: regs[rd] = (uintptr_t)end + 1; 4662 mstate->dtms_scratch_ptr += size; 4663 break; 4664 } 4665 4666 } 4667 } 4668 4669 /* 4670 * Emulate the execution of DTrace IR instructions specified by the given 4671 * DIF object. This function is deliberately void of assertions as all of 4672 * the necessary checks are handled by a call to dtrace_difo_validate(). 4673 */ 4674 static uint64_t 4675 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4676 dtrace_vstate_t *vstate, dtrace_state_t *state) 4677 { 4678 const dif_instr_t *text = difo->dtdo_buf; 4679 const uint_t textlen = difo->dtdo_len; 4680 const char *strtab = difo->dtdo_strtab; 4681 const uint64_t *inttab = difo->dtdo_inttab; 4682 4683 uint64_t rval = 0; 4684 dtrace_statvar_t *svar; 4685 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4686 dtrace_difv_t *v; 4687 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4688 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4689 4690 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4691 uint64_t regs[DIF_DIR_NREGS]; 4692 uint64_t *tmp; 4693 4694 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4695 int64_t cc_r; 4696 uint_t pc = 0, id, opc; 4697 uint8_t ttop = 0; 4698 dif_instr_t instr; 4699 uint_t r1, r2, rd; 4700 4701 /* 4702 * We stash the current DIF object into the machine state: we need it 4703 * for subsequent access checking. 4704 */ 4705 mstate->dtms_difo = difo; 4706 4707 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4708 4709 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4710 opc = pc; 4711 4712 instr = text[pc++]; 4713 r1 = DIF_INSTR_R1(instr); 4714 r2 = DIF_INSTR_R2(instr); 4715 rd = DIF_INSTR_RD(instr); 4716 4717 switch (DIF_INSTR_OP(instr)) { 4718 case DIF_OP_OR: 4719 regs[rd] = regs[r1] | regs[r2]; 4720 break; 4721 case DIF_OP_XOR: 4722 regs[rd] = regs[r1] ^ regs[r2]; 4723 break; 4724 case DIF_OP_AND: 4725 regs[rd] = regs[r1] & regs[r2]; 4726 break; 4727 case DIF_OP_SLL: 4728 regs[rd] = regs[r1] << regs[r2]; 4729 break; 4730 case DIF_OP_SRL: 4731 regs[rd] = regs[r1] >> regs[r2]; 4732 break; 4733 case DIF_OP_SUB: 4734 regs[rd] = regs[r1] - regs[r2]; 4735 break; 4736 case DIF_OP_ADD: 4737 regs[rd] = regs[r1] + regs[r2]; 4738 break; 4739 case DIF_OP_MUL: 4740 regs[rd] = regs[r1] * regs[r2]; 4741 break; 4742 case DIF_OP_SDIV: 4743 if (regs[r2] == 0) { 4744 regs[rd] = 0; 4745 *flags |= CPU_DTRACE_DIVZERO; 4746 } else { 4747 regs[rd] = (int64_t)regs[r1] / 4748 (int64_t)regs[r2]; 4749 } 4750 break; 4751 4752 case DIF_OP_UDIV: 4753 if (regs[r2] == 0) { 4754 regs[rd] = 0; 4755 *flags |= CPU_DTRACE_DIVZERO; 4756 } else { 4757 regs[rd] = regs[r1] / regs[r2]; 4758 } 4759 break; 4760 4761 case DIF_OP_SREM: 4762 if (regs[r2] == 0) { 4763 regs[rd] = 0; 4764 *flags |= CPU_DTRACE_DIVZERO; 4765 } else { 4766 regs[rd] = (int64_t)regs[r1] % 4767 (int64_t)regs[r2]; 4768 } 4769 break; 4770 4771 case DIF_OP_UREM: 4772 if (regs[r2] == 0) { 4773 regs[rd] = 0; 4774 *flags |= CPU_DTRACE_DIVZERO; 4775 } else { 4776 regs[rd] = regs[r1] % regs[r2]; 4777 } 4778 break; 4779 4780 case DIF_OP_NOT: 4781 regs[rd] = ~regs[r1]; 4782 break; 4783 case DIF_OP_MOV: 4784 regs[rd] = regs[r1]; 4785 break; 4786 case DIF_OP_CMP: 4787 cc_r = regs[r1] - regs[r2]; 4788 cc_n = cc_r < 0; 4789 cc_z = cc_r == 0; 4790 cc_v = 0; 4791 cc_c = regs[r1] < regs[r2]; 4792 break; 4793 case DIF_OP_TST: 4794 cc_n = cc_v = cc_c = 0; 4795 cc_z = regs[r1] == 0; 4796 break; 4797 case DIF_OP_BA: 4798 pc = DIF_INSTR_LABEL(instr); 4799 break; 4800 case DIF_OP_BE: 4801 if (cc_z) 4802 pc = DIF_INSTR_LABEL(instr); 4803 break; 4804 case DIF_OP_BNE: 4805 if (cc_z == 0) 4806 pc = DIF_INSTR_LABEL(instr); 4807 break; 4808 case DIF_OP_BG: 4809 if ((cc_z | (cc_n ^ cc_v)) == 0) 4810 pc = DIF_INSTR_LABEL(instr); 4811 break; 4812 case DIF_OP_BGU: 4813 if ((cc_c | cc_z) == 0) 4814 pc = DIF_INSTR_LABEL(instr); 4815 break; 4816 case DIF_OP_BGE: 4817 if ((cc_n ^ cc_v) == 0) 4818 pc = DIF_INSTR_LABEL(instr); 4819 break; 4820 case DIF_OP_BGEU: 4821 if (cc_c == 0) 4822 pc = DIF_INSTR_LABEL(instr); 4823 break; 4824 case DIF_OP_BL: 4825 if (cc_n ^ cc_v) 4826 pc = DIF_INSTR_LABEL(instr); 4827 break; 4828 case DIF_OP_BLU: 4829 if (cc_c) 4830 pc = DIF_INSTR_LABEL(instr); 4831 break; 4832 case DIF_OP_BLE: 4833 if (cc_z | (cc_n ^ cc_v)) 4834 pc = DIF_INSTR_LABEL(instr); 4835 break; 4836 case DIF_OP_BLEU: 4837 if (cc_c | cc_z) 4838 pc = DIF_INSTR_LABEL(instr); 4839 break; 4840 case DIF_OP_RLDSB: 4841 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4842 *flags |= CPU_DTRACE_KPRIV; 4843 *illval = regs[r1]; 4844 break; 4845 } 4846 /*FALLTHROUGH*/ 4847 case DIF_OP_LDSB: 4848 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4849 break; 4850 case DIF_OP_RLDSH: 4851 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4852 *flags |= CPU_DTRACE_KPRIV; 4853 *illval = regs[r1]; 4854 break; 4855 } 4856 /*FALLTHROUGH*/ 4857 case DIF_OP_LDSH: 4858 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4859 break; 4860 case DIF_OP_RLDSW: 4861 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4862 *flags |= CPU_DTRACE_KPRIV; 4863 *illval = regs[r1]; 4864 break; 4865 } 4866 /*FALLTHROUGH*/ 4867 case DIF_OP_LDSW: 4868 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4869 break; 4870 case DIF_OP_RLDUB: 4871 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4872 *flags |= CPU_DTRACE_KPRIV; 4873 *illval = regs[r1]; 4874 break; 4875 } 4876 /*FALLTHROUGH*/ 4877 case DIF_OP_LDUB: 4878 regs[rd] = dtrace_load8(regs[r1]); 4879 break; 4880 case DIF_OP_RLDUH: 4881 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4882 *flags |= CPU_DTRACE_KPRIV; 4883 *illval = regs[r1]; 4884 break; 4885 } 4886 /*FALLTHROUGH*/ 4887 case DIF_OP_LDUH: 4888 regs[rd] = dtrace_load16(regs[r1]); 4889 break; 4890 case DIF_OP_RLDUW: 4891 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4892 *flags |= CPU_DTRACE_KPRIV; 4893 *illval = regs[r1]; 4894 break; 4895 } 4896 /*FALLTHROUGH*/ 4897 case DIF_OP_LDUW: 4898 regs[rd] = dtrace_load32(regs[r1]); 4899 break; 4900 case DIF_OP_RLDX: 4901 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 4902 *flags |= CPU_DTRACE_KPRIV; 4903 *illval = regs[r1]; 4904 break; 4905 } 4906 /*FALLTHROUGH*/ 4907 case DIF_OP_LDX: 4908 regs[rd] = dtrace_load64(regs[r1]); 4909 break; 4910 case DIF_OP_ULDSB: 4911 regs[rd] = (int8_t) 4912 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4913 break; 4914 case DIF_OP_ULDSH: 4915 regs[rd] = (int16_t) 4916 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4917 break; 4918 case DIF_OP_ULDSW: 4919 regs[rd] = (int32_t) 4920 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4921 break; 4922 case DIF_OP_ULDUB: 4923 regs[rd] = 4924 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4925 break; 4926 case DIF_OP_ULDUH: 4927 regs[rd] = 4928 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4929 break; 4930 case DIF_OP_ULDUW: 4931 regs[rd] = 4932 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4933 break; 4934 case DIF_OP_ULDX: 4935 regs[rd] = 4936 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 4937 break; 4938 case DIF_OP_RET: 4939 rval = regs[rd]; 4940 pc = textlen; 4941 break; 4942 case DIF_OP_NOP: 4943 break; 4944 case DIF_OP_SETX: 4945 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 4946 break; 4947 case DIF_OP_SETS: 4948 regs[rd] = (uint64_t)(uintptr_t) 4949 (strtab + DIF_INSTR_STRING(instr)); 4950 break; 4951 case DIF_OP_SCMP: { 4952 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 4953 uintptr_t s1 = regs[r1]; 4954 uintptr_t s2 = regs[r2]; 4955 4956 if (s1 != NULL && 4957 !dtrace_strcanload(s1, sz, mstate, vstate)) 4958 break; 4959 if (s2 != NULL && 4960 !dtrace_strcanload(s2, sz, mstate, vstate)) 4961 break; 4962 4963 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 4964 4965 cc_n = cc_r < 0; 4966 cc_z = cc_r == 0; 4967 cc_v = cc_c = 0; 4968 break; 4969 } 4970 case DIF_OP_LDGA: 4971 regs[rd] = dtrace_dif_variable(mstate, state, 4972 r1, regs[r2]); 4973 break; 4974 case DIF_OP_LDGS: 4975 id = DIF_INSTR_VAR(instr); 4976 4977 if (id >= DIF_VAR_OTHER_UBASE) { 4978 uintptr_t a; 4979 4980 id -= DIF_VAR_OTHER_UBASE; 4981 svar = vstate->dtvs_globals[id]; 4982 ASSERT(svar != NULL); 4983 v = &svar->dtsv_var; 4984 4985 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 4986 regs[rd] = svar->dtsv_data; 4987 break; 4988 } 4989 4990 a = (uintptr_t)svar->dtsv_data; 4991 4992 if (*(uint8_t *)a == UINT8_MAX) { 4993 /* 4994 * If the 0th byte is set to UINT8_MAX 4995 * then this is to be treated as a 4996 * reference to a NULL variable. 4997 */ 4998 regs[rd] = NULL; 4999 } else { 5000 regs[rd] = a + sizeof (uint64_t); 5001 } 5002 5003 break; 5004 } 5005 5006 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5007 break; 5008 5009 case DIF_OP_STGS: 5010 id = DIF_INSTR_VAR(instr); 5011 5012 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5013 id -= DIF_VAR_OTHER_UBASE; 5014 5015 svar = vstate->dtvs_globals[id]; 5016 ASSERT(svar != NULL); 5017 v = &svar->dtsv_var; 5018 5019 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5020 uintptr_t a = (uintptr_t)svar->dtsv_data; 5021 5022 ASSERT(a != NULL); 5023 ASSERT(svar->dtsv_size != 0); 5024 5025 if (regs[rd] == NULL) { 5026 *(uint8_t *)a = UINT8_MAX; 5027 break; 5028 } else { 5029 *(uint8_t *)a = 0; 5030 a += sizeof (uint64_t); 5031 } 5032 if (!dtrace_vcanload( 5033 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5034 mstate, vstate)) 5035 break; 5036 5037 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5038 (void *)a, &v->dtdv_type); 5039 break; 5040 } 5041 5042 svar->dtsv_data = regs[rd]; 5043 break; 5044 5045 case DIF_OP_LDTA: 5046 /* 5047 * There are no DTrace built-in thread-local arrays at 5048 * present. This opcode is saved for future work. 5049 */ 5050 *flags |= CPU_DTRACE_ILLOP; 5051 regs[rd] = 0; 5052 break; 5053 5054 case DIF_OP_LDLS: 5055 id = DIF_INSTR_VAR(instr); 5056 5057 if (id < DIF_VAR_OTHER_UBASE) { 5058 /* 5059 * For now, this has no meaning. 5060 */ 5061 regs[rd] = 0; 5062 break; 5063 } 5064 5065 id -= DIF_VAR_OTHER_UBASE; 5066 5067 ASSERT(id < vstate->dtvs_nlocals); 5068 ASSERT(vstate->dtvs_locals != NULL); 5069 5070 svar = vstate->dtvs_locals[id]; 5071 ASSERT(svar != NULL); 5072 v = &svar->dtsv_var; 5073 5074 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5075 uintptr_t a = (uintptr_t)svar->dtsv_data; 5076 size_t sz = v->dtdv_type.dtdt_size; 5077 5078 sz += sizeof (uint64_t); 5079 ASSERT(svar->dtsv_size == NCPU * sz); 5080 a += CPU->cpu_id * sz; 5081 5082 if (*(uint8_t *)a == UINT8_MAX) { 5083 /* 5084 * If the 0th byte is set to UINT8_MAX 5085 * then this is to be treated as a 5086 * reference to a NULL variable. 5087 */ 5088 regs[rd] = NULL; 5089 } else { 5090 regs[rd] = a + sizeof (uint64_t); 5091 } 5092 5093 break; 5094 } 5095 5096 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5097 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5098 regs[rd] = tmp[CPU->cpu_id]; 5099 break; 5100 5101 case DIF_OP_STLS: 5102 id = DIF_INSTR_VAR(instr); 5103 5104 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5105 id -= DIF_VAR_OTHER_UBASE; 5106 ASSERT(id < vstate->dtvs_nlocals); 5107 5108 ASSERT(vstate->dtvs_locals != NULL); 5109 svar = vstate->dtvs_locals[id]; 5110 ASSERT(svar != NULL); 5111 v = &svar->dtsv_var; 5112 5113 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5114 uintptr_t a = (uintptr_t)svar->dtsv_data; 5115 size_t sz = v->dtdv_type.dtdt_size; 5116 5117 sz += sizeof (uint64_t); 5118 ASSERT(svar->dtsv_size == NCPU * sz); 5119 a += CPU->cpu_id * sz; 5120 5121 if (regs[rd] == NULL) { 5122 *(uint8_t *)a = UINT8_MAX; 5123 break; 5124 } else { 5125 *(uint8_t *)a = 0; 5126 a += sizeof (uint64_t); 5127 } 5128 5129 if (!dtrace_vcanload( 5130 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5131 mstate, vstate)) 5132 break; 5133 5134 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5135 (void *)a, &v->dtdv_type); 5136 break; 5137 } 5138 5139 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5140 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5141 tmp[CPU->cpu_id] = regs[rd]; 5142 break; 5143 5144 case DIF_OP_LDTS: { 5145 dtrace_dynvar_t *dvar; 5146 dtrace_key_t *key; 5147 5148 id = DIF_INSTR_VAR(instr); 5149 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5150 id -= DIF_VAR_OTHER_UBASE; 5151 v = &vstate->dtvs_tlocals[id]; 5152 5153 key = &tupregs[DIF_DTR_NREGS]; 5154 key[0].dttk_value = (uint64_t)id; 5155 key[0].dttk_size = 0; 5156 DTRACE_TLS_THRKEY(key[1].dttk_value); 5157 key[1].dttk_size = 0; 5158 5159 dvar = dtrace_dynvar(dstate, 2, key, 5160 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 5161 mstate, vstate); 5162 5163 if (dvar == NULL) { 5164 regs[rd] = 0; 5165 break; 5166 } 5167 5168 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5169 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5170 } else { 5171 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5172 } 5173 5174 break; 5175 } 5176 5177 case DIF_OP_STTS: { 5178 dtrace_dynvar_t *dvar; 5179 dtrace_key_t *key; 5180 5181 id = DIF_INSTR_VAR(instr); 5182 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5183 id -= DIF_VAR_OTHER_UBASE; 5184 5185 key = &tupregs[DIF_DTR_NREGS]; 5186 key[0].dttk_value = (uint64_t)id; 5187 key[0].dttk_size = 0; 5188 DTRACE_TLS_THRKEY(key[1].dttk_value); 5189 key[1].dttk_size = 0; 5190 v = &vstate->dtvs_tlocals[id]; 5191 5192 dvar = dtrace_dynvar(dstate, 2, key, 5193 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5194 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5195 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5196 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5197 5198 /* 5199 * Given that we're storing to thread-local data, 5200 * we need to flush our predicate cache. 5201 */ 5202 curthread->t_predcache = NULL; 5203 5204 if (dvar == NULL) 5205 break; 5206 5207 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5208 if (!dtrace_vcanload( 5209 (void *)(uintptr_t)regs[rd], 5210 &v->dtdv_type, mstate, vstate)) 5211 break; 5212 5213 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5214 dvar->dtdv_data, &v->dtdv_type); 5215 } else { 5216 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5217 } 5218 5219 break; 5220 } 5221 5222 case DIF_OP_SRA: 5223 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 5224 break; 5225 5226 case DIF_OP_CALL: 5227 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 5228 regs, tupregs, ttop, mstate, state); 5229 break; 5230 5231 case DIF_OP_PUSHTR: 5232 if (ttop == DIF_DTR_NREGS) { 5233 *flags |= CPU_DTRACE_TUPOFLOW; 5234 break; 5235 } 5236 5237 if (r1 == DIF_TYPE_STRING) { 5238 /* 5239 * If this is a string type and the size is 0, 5240 * we'll use the system-wide default string 5241 * size. Note that we are _not_ looking at 5242 * the value of the DTRACEOPT_STRSIZE option; 5243 * had this been set, we would expect to have 5244 * a non-zero size value in the "pushtr". 5245 */ 5246 tupregs[ttop].dttk_size = 5247 dtrace_strlen((char *)(uintptr_t)regs[rd], 5248 regs[r2] ? regs[r2] : 5249 dtrace_strsize_default) + 1; 5250 } else { 5251 tupregs[ttop].dttk_size = regs[r2]; 5252 } 5253 5254 tupregs[ttop++].dttk_value = regs[rd]; 5255 break; 5256 5257 case DIF_OP_PUSHTV: 5258 if (ttop == DIF_DTR_NREGS) { 5259 *flags |= CPU_DTRACE_TUPOFLOW; 5260 break; 5261 } 5262 5263 tupregs[ttop].dttk_value = regs[rd]; 5264 tupregs[ttop++].dttk_size = 0; 5265 break; 5266 5267 case DIF_OP_POPTS: 5268 if (ttop != 0) 5269 ttop--; 5270 break; 5271 5272 case DIF_OP_FLUSHTS: 5273 ttop = 0; 5274 break; 5275 5276 case DIF_OP_LDGAA: 5277 case DIF_OP_LDTAA: { 5278 dtrace_dynvar_t *dvar; 5279 dtrace_key_t *key = tupregs; 5280 uint_t nkeys = ttop; 5281 5282 id = DIF_INSTR_VAR(instr); 5283 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5284 id -= DIF_VAR_OTHER_UBASE; 5285 5286 key[nkeys].dttk_value = (uint64_t)id; 5287 key[nkeys++].dttk_size = 0; 5288 5289 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 5290 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5291 key[nkeys++].dttk_size = 0; 5292 v = &vstate->dtvs_tlocals[id]; 5293 } else { 5294 v = &vstate->dtvs_globals[id]->dtsv_var; 5295 } 5296 5297 dvar = dtrace_dynvar(dstate, nkeys, key, 5298 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5299 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5300 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 5301 5302 if (dvar == NULL) { 5303 regs[rd] = 0; 5304 break; 5305 } 5306 5307 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5308 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5309 } else { 5310 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5311 } 5312 5313 break; 5314 } 5315 5316 case DIF_OP_STGAA: 5317 case DIF_OP_STTAA: { 5318 dtrace_dynvar_t *dvar; 5319 dtrace_key_t *key = tupregs; 5320 uint_t nkeys = ttop; 5321 5322 id = DIF_INSTR_VAR(instr); 5323 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5324 id -= DIF_VAR_OTHER_UBASE; 5325 5326 key[nkeys].dttk_value = (uint64_t)id; 5327 key[nkeys++].dttk_size = 0; 5328 5329 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 5330 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5331 key[nkeys++].dttk_size = 0; 5332 v = &vstate->dtvs_tlocals[id]; 5333 } else { 5334 v = &vstate->dtvs_globals[id]->dtsv_var; 5335 } 5336 5337 dvar = dtrace_dynvar(dstate, nkeys, key, 5338 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5339 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5340 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5341 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5342 5343 if (dvar == NULL) 5344 break; 5345 5346 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5347 if (!dtrace_vcanload( 5348 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5349 mstate, vstate)) 5350 break; 5351 5352 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5353 dvar->dtdv_data, &v->dtdv_type); 5354 } else { 5355 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5356 } 5357 5358 break; 5359 } 5360 5361 case DIF_OP_ALLOCS: { 5362 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5363 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 5364 5365 /* 5366 * Rounding up the user allocation size could have 5367 * overflowed large, bogus allocations (like -1ULL) to 5368 * 0. 5369 */ 5370 if (size < regs[r1] || 5371 !DTRACE_INSCRATCH(mstate, size)) { 5372 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5373 regs[rd] = NULL; 5374 break; 5375 } 5376 5377 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 5378 mstate->dtms_scratch_ptr += size; 5379 regs[rd] = ptr; 5380 break; 5381 } 5382 5383 case DIF_OP_COPYS: 5384 if (!dtrace_canstore(regs[rd], regs[r2], 5385 mstate, vstate)) { 5386 *flags |= CPU_DTRACE_BADADDR; 5387 *illval = regs[rd]; 5388 break; 5389 } 5390 5391 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 5392 break; 5393 5394 dtrace_bcopy((void *)(uintptr_t)regs[r1], 5395 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 5396 break; 5397 5398 case DIF_OP_STB: 5399 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 5400 *flags |= CPU_DTRACE_BADADDR; 5401 *illval = regs[rd]; 5402 break; 5403 } 5404 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 5405 break; 5406 5407 case DIF_OP_STH: 5408 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 5409 *flags |= CPU_DTRACE_BADADDR; 5410 *illval = regs[rd]; 5411 break; 5412 } 5413 if (regs[rd] & 1) { 5414 *flags |= CPU_DTRACE_BADALIGN; 5415 *illval = regs[rd]; 5416 break; 5417 } 5418 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5419 break; 5420 5421 case DIF_OP_STW: 5422 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5423 *flags |= CPU_DTRACE_BADADDR; 5424 *illval = regs[rd]; 5425 break; 5426 } 5427 if (regs[rd] & 3) { 5428 *flags |= CPU_DTRACE_BADALIGN; 5429 *illval = regs[rd]; 5430 break; 5431 } 5432 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5433 break; 5434 5435 case DIF_OP_STX: 5436 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5437 *flags |= CPU_DTRACE_BADADDR; 5438 *illval = regs[rd]; 5439 break; 5440 } 5441 if (regs[rd] & 7) { 5442 *flags |= CPU_DTRACE_BADALIGN; 5443 *illval = regs[rd]; 5444 break; 5445 } 5446 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5447 break; 5448 } 5449 } 5450 5451 if (!(*flags & CPU_DTRACE_FAULT)) 5452 return (rval); 5453 5454 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5455 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5456 5457 return (0); 5458 } 5459 5460 static void 5461 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5462 { 5463 dtrace_probe_t *probe = ecb->dte_probe; 5464 dtrace_provider_t *prov = probe->dtpr_provider; 5465 char c[DTRACE_FULLNAMELEN + 80], *str; 5466 char *msg = "dtrace: breakpoint action at probe "; 5467 char *ecbmsg = " (ecb "; 5468 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5469 uintptr_t val = (uintptr_t)ecb; 5470 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5471 5472 if (dtrace_destructive_disallow) 5473 return; 5474 5475 /* 5476 * It's impossible to be taking action on the NULL probe. 5477 */ 5478 ASSERT(probe != NULL); 5479 5480 /* 5481 * This is a poor man's (destitute man's?) sprintf(): we want to 5482 * print the provider name, module name, function name and name of 5483 * the probe, along with the hex address of the ECB with the breakpoint 5484 * action -- all of which we must place in the character buffer by 5485 * hand. 5486 */ 5487 while (*msg != '\0') 5488 c[i++] = *msg++; 5489 5490 for (str = prov->dtpv_name; *str != '\0'; str++) 5491 c[i++] = *str; 5492 c[i++] = ':'; 5493 5494 for (str = probe->dtpr_mod; *str != '\0'; str++) 5495 c[i++] = *str; 5496 c[i++] = ':'; 5497 5498 for (str = probe->dtpr_func; *str != '\0'; str++) 5499 c[i++] = *str; 5500 c[i++] = ':'; 5501 5502 for (str = probe->dtpr_name; *str != '\0'; str++) 5503 c[i++] = *str; 5504 5505 while (*ecbmsg != '\0') 5506 c[i++] = *ecbmsg++; 5507 5508 while (shift >= 0) { 5509 mask = (uintptr_t)0xf << shift; 5510 5511 if (val >= ((uintptr_t)1 << shift)) 5512 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5513 shift -= 4; 5514 } 5515 5516 c[i++] = ')'; 5517 c[i] = '\0'; 5518 5519 debug_enter(c); 5520 } 5521 5522 static void 5523 dtrace_action_panic(dtrace_ecb_t *ecb) 5524 { 5525 dtrace_probe_t *probe = ecb->dte_probe; 5526 5527 /* 5528 * It's impossible to be taking action on the NULL probe. 5529 */ 5530 ASSERT(probe != NULL); 5531 5532 if (dtrace_destructive_disallow) 5533 return; 5534 5535 if (dtrace_panicked != NULL) 5536 return; 5537 5538 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5539 return; 5540 5541 /* 5542 * We won the right to panic. (We want to be sure that only one 5543 * thread calls panic() from dtrace_probe(), and that panic() is 5544 * called exactly once.) 5545 */ 5546 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5547 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5548 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5549 } 5550 5551 static void 5552 dtrace_action_raise(uint64_t sig) 5553 { 5554 if (dtrace_destructive_disallow) 5555 return; 5556 5557 if (sig >= NSIG) { 5558 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5559 return; 5560 } 5561 5562 /* 5563 * raise() has a queue depth of 1 -- we ignore all subsequent 5564 * invocations of the raise() action. 5565 */ 5566 if (curthread->t_dtrace_sig == 0) 5567 curthread->t_dtrace_sig = (uint8_t)sig; 5568 5569 curthread->t_sig_check = 1; 5570 aston(curthread); 5571 } 5572 5573 static void 5574 dtrace_action_stop(void) 5575 { 5576 if (dtrace_destructive_disallow) 5577 return; 5578 5579 if (!curthread->t_dtrace_stop) { 5580 curthread->t_dtrace_stop = 1; 5581 curthread->t_sig_check = 1; 5582 aston(curthread); 5583 } 5584 } 5585 5586 static void 5587 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5588 { 5589 hrtime_t now; 5590 volatile uint16_t *flags; 5591 cpu_t *cpu = CPU; 5592 5593 if (dtrace_destructive_disallow) 5594 return; 5595 5596 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5597 5598 now = dtrace_gethrtime(); 5599 5600 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5601 /* 5602 * We need to advance the mark to the current time. 5603 */ 5604 cpu->cpu_dtrace_chillmark = now; 5605 cpu->cpu_dtrace_chilled = 0; 5606 } 5607 5608 /* 5609 * Now check to see if the requested chill time would take us over 5610 * the maximum amount of time allowed in the chill interval. (Or 5611 * worse, if the calculation itself induces overflow.) 5612 */ 5613 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5614 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5615 *flags |= CPU_DTRACE_ILLOP; 5616 return; 5617 } 5618 5619 while (dtrace_gethrtime() - now < val) 5620 continue; 5621 5622 /* 5623 * Normally, we assure that the value of the variable "timestamp" does 5624 * not change within an ECB. The presence of chill() represents an 5625 * exception to this rule, however. 5626 */ 5627 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5628 cpu->cpu_dtrace_chilled += val; 5629 } 5630 5631 static void 5632 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5633 uint64_t *buf, uint64_t arg) 5634 { 5635 int nframes = DTRACE_USTACK_NFRAMES(arg); 5636 int strsize = DTRACE_USTACK_STRSIZE(arg); 5637 uint64_t *pcs = &buf[1], *fps; 5638 char *str = (char *)&pcs[nframes]; 5639 int size, offs = 0, i, j; 5640 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5641 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5642 char *sym; 5643 5644 /* 5645 * Should be taking a faster path if string space has not been 5646 * allocated. 5647 */ 5648 ASSERT(strsize != 0); 5649 5650 /* 5651 * We will first allocate some temporary space for the frame pointers. 5652 */ 5653 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5654 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5655 (nframes * sizeof (uint64_t)); 5656 5657 if (!DTRACE_INSCRATCH(mstate, size)) { 5658 /* 5659 * Not enough room for our frame pointers -- need to indicate 5660 * that we ran out of scratch space. 5661 */ 5662 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5663 return; 5664 } 5665 5666 mstate->dtms_scratch_ptr += size; 5667 saved = mstate->dtms_scratch_ptr; 5668 5669 /* 5670 * Now get a stack with both program counters and frame pointers. 5671 */ 5672 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5673 dtrace_getufpstack(buf, fps, nframes + 1); 5674 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5675 5676 /* 5677 * If that faulted, we're cooked. 5678 */ 5679 if (*flags & CPU_DTRACE_FAULT) 5680 goto out; 5681 5682 /* 5683 * Now we want to walk up the stack, calling the USTACK helper. For 5684 * each iteration, we restore the scratch pointer. 5685 */ 5686 for (i = 0; i < nframes; i++) { 5687 mstate->dtms_scratch_ptr = saved; 5688 5689 if (offs >= strsize) 5690 break; 5691 5692 sym = (char *)(uintptr_t)dtrace_helper( 5693 DTRACE_HELPER_ACTION_USTACK, 5694 mstate, state, pcs[i], fps[i]); 5695 5696 /* 5697 * If we faulted while running the helper, we're going to 5698 * clear the fault and null out the corresponding string. 5699 */ 5700 if (*flags & CPU_DTRACE_FAULT) { 5701 *flags &= ~CPU_DTRACE_FAULT; 5702 str[offs++] = '\0'; 5703 continue; 5704 } 5705 5706 if (sym == NULL) { 5707 str[offs++] = '\0'; 5708 continue; 5709 } 5710 5711 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5712 5713 /* 5714 * Now copy in the string that the helper returned to us. 5715 */ 5716 for (j = 0; offs + j < strsize; j++) { 5717 if ((str[offs + j] = sym[j]) == '\0') 5718 break; 5719 } 5720 5721 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5722 5723 offs += j + 1; 5724 } 5725 5726 if (offs >= strsize) { 5727 /* 5728 * If we didn't have room for all of the strings, we don't 5729 * abort processing -- this needn't be a fatal error -- but we 5730 * still want to increment a counter (dts_stkstroverflows) to 5731 * allow this condition to be warned about. (If this is from 5732 * a jstack() action, it is easily tuned via jstackstrsize.) 5733 */ 5734 dtrace_error(&state->dts_stkstroverflows); 5735 } 5736 5737 while (offs < strsize) 5738 str[offs++] = '\0'; 5739 5740 out: 5741 mstate->dtms_scratch_ptr = old; 5742 } 5743 5744 /* 5745 * If you're looking for the epicenter of DTrace, you just found it. This 5746 * is the function called by the provider to fire a probe -- from which all 5747 * subsequent probe-context DTrace activity emanates. 5748 */ 5749 void 5750 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5751 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5752 { 5753 processorid_t cpuid; 5754 dtrace_icookie_t cookie; 5755 dtrace_probe_t *probe; 5756 dtrace_mstate_t mstate; 5757 dtrace_ecb_t *ecb; 5758 dtrace_action_t *act; 5759 intptr_t offs; 5760 size_t size; 5761 int vtime, onintr; 5762 volatile uint16_t *flags; 5763 hrtime_t now; 5764 5765 /* 5766 * Kick out immediately if this CPU is still being born (in which case 5767 * curthread will be set to -1) or the current thread can't allow 5768 * probes in its current context. 5769 */ 5770 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 5771 return; 5772 5773 cookie = dtrace_interrupt_disable(); 5774 probe = dtrace_probes[id - 1]; 5775 cpuid = CPU->cpu_id; 5776 onintr = CPU_ON_INTR(CPU); 5777 5778 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5779 probe->dtpr_predcache == curthread->t_predcache) { 5780 /* 5781 * We have hit in the predicate cache; we know that 5782 * this predicate would evaluate to be false. 5783 */ 5784 dtrace_interrupt_enable(cookie); 5785 return; 5786 } 5787 5788 if (panic_quiesce) { 5789 /* 5790 * We don't trace anything if we're panicking. 5791 */ 5792 dtrace_interrupt_enable(cookie); 5793 return; 5794 } 5795 5796 now = dtrace_gethrtime(); 5797 vtime = dtrace_vtime_references != 0; 5798 5799 if (vtime && curthread->t_dtrace_start) 5800 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5801 5802 mstate.dtms_difo = NULL; 5803 mstate.dtms_probe = probe; 5804 mstate.dtms_strtok = NULL; 5805 mstate.dtms_arg[0] = arg0; 5806 mstate.dtms_arg[1] = arg1; 5807 mstate.dtms_arg[2] = arg2; 5808 mstate.dtms_arg[3] = arg3; 5809 mstate.dtms_arg[4] = arg4; 5810 5811 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5812 5813 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5814 dtrace_predicate_t *pred = ecb->dte_predicate; 5815 dtrace_state_t *state = ecb->dte_state; 5816 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5817 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5818 dtrace_vstate_t *vstate = &state->dts_vstate; 5819 dtrace_provider_t *prov = probe->dtpr_provider; 5820 int committed = 0; 5821 caddr_t tomax; 5822 5823 /* 5824 * A little subtlety with the following (seemingly innocuous) 5825 * declaration of the automatic 'val': by looking at the 5826 * code, you might think that it could be declared in the 5827 * action processing loop, below. (That is, it's only used in 5828 * the action processing loop.) However, it must be declared 5829 * out of that scope because in the case of DIF expression 5830 * arguments to aggregating actions, one iteration of the 5831 * action loop will use the last iteration's value. 5832 */ 5833 #ifdef lint 5834 uint64_t val = 0; 5835 #else 5836 uint64_t val; 5837 #endif 5838 5839 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5840 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 5841 *flags &= ~CPU_DTRACE_ERROR; 5842 5843 if (prov == dtrace_provider) { 5844 /* 5845 * If dtrace itself is the provider of this probe, 5846 * we're only going to continue processing the ECB if 5847 * arg0 (the dtrace_state_t) is equal to the ECB's 5848 * creating state. (This prevents disjoint consumers 5849 * from seeing one another's metaprobes.) 5850 */ 5851 if (arg0 != (uint64_t)(uintptr_t)state) 5852 continue; 5853 } 5854 5855 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5856 /* 5857 * We're not currently active. If our provider isn't 5858 * the dtrace pseudo provider, we're not interested. 5859 */ 5860 if (prov != dtrace_provider) 5861 continue; 5862 5863 /* 5864 * Now we must further check if we are in the BEGIN 5865 * probe. If we are, we will only continue processing 5866 * if we're still in WARMUP -- if one BEGIN enabling 5867 * has invoked the exit() action, we don't want to 5868 * evaluate subsequent BEGIN enablings. 5869 */ 5870 if (probe->dtpr_id == dtrace_probeid_begin && 5871 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5872 ASSERT(state->dts_activity == 5873 DTRACE_ACTIVITY_DRAINING); 5874 continue; 5875 } 5876 } 5877 5878 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 5879 continue; 5880 5881 if (now - state->dts_alive > dtrace_deadman_timeout) { 5882 /* 5883 * We seem to be dead. Unless we (a) have kernel 5884 * destructive permissions (b) have expicitly enabled 5885 * destructive actions and (c) destructive actions have 5886 * not been disabled, we're going to transition into 5887 * the KILLED state, from which no further processing 5888 * on this state will be performed. 5889 */ 5890 if (!dtrace_priv_kernel_destructive(state) || 5891 !state->dts_cred.dcr_destructive || 5892 dtrace_destructive_disallow) { 5893 void *activity = &state->dts_activity; 5894 dtrace_activity_t current; 5895 5896 do { 5897 current = state->dts_activity; 5898 } while (dtrace_cas32(activity, current, 5899 DTRACE_ACTIVITY_KILLED) != current); 5900 5901 continue; 5902 } 5903 } 5904 5905 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 5906 ecb->dte_alignment, state, &mstate)) < 0) 5907 continue; 5908 5909 tomax = buf->dtb_tomax; 5910 ASSERT(tomax != NULL); 5911 5912 if (ecb->dte_size != 0) 5913 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 5914 5915 mstate.dtms_epid = ecb->dte_epid; 5916 mstate.dtms_present |= DTRACE_MSTATE_EPID; 5917 5918 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 5919 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 5920 5921 if (pred != NULL) { 5922 dtrace_difo_t *dp = pred->dtp_difo; 5923 int rval; 5924 5925 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 5926 5927 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 5928 dtrace_cacheid_t cid = probe->dtpr_predcache; 5929 5930 if (cid != DTRACE_CACHEIDNONE && !onintr) { 5931 /* 5932 * Update the predicate cache... 5933 */ 5934 ASSERT(cid == pred->dtp_cacheid); 5935 curthread->t_predcache = cid; 5936 } 5937 5938 continue; 5939 } 5940 } 5941 5942 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 5943 act != NULL; act = act->dta_next) { 5944 size_t valoffs; 5945 dtrace_difo_t *dp; 5946 dtrace_recdesc_t *rec = &act->dta_rec; 5947 5948 size = rec->dtrd_size; 5949 valoffs = offs + rec->dtrd_offset; 5950 5951 if (DTRACEACT_ISAGG(act->dta_kind)) { 5952 uint64_t v = 0xbad; 5953 dtrace_aggregation_t *agg; 5954 5955 agg = (dtrace_aggregation_t *)act; 5956 5957 if ((dp = act->dta_difo) != NULL) 5958 v = dtrace_dif_emulate(dp, 5959 &mstate, vstate, state); 5960 5961 if (*flags & CPU_DTRACE_ERROR) 5962 continue; 5963 5964 /* 5965 * Note that we always pass the expression 5966 * value from the previous iteration of the 5967 * action loop. This value will only be used 5968 * if there is an expression argument to the 5969 * aggregating action, denoted by the 5970 * dtag_hasarg field. 5971 */ 5972 dtrace_aggregate(agg, buf, 5973 offs, aggbuf, v, val); 5974 continue; 5975 } 5976 5977 switch (act->dta_kind) { 5978 case DTRACEACT_STOP: 5979 if (dtrace_priv_proc_destructive(state, 5980 &mstate)) 5981 dtrace_action_stop(); 5982 continue; 5983 5984 case DTRACEACT_BREAKPOINT: 5985 if (dtrace_priv_kernel_destructive(state)) 5986 dtrace_action_breakpoint(ecb); 5987 continue; 5988 5989 case DTRACEACT_PANIC: 5990 if (dtrace_priv_kernel_destructive(state)) 5991 dtrace_action_panic(ecb); 5992 continue; 5993 5994 case DTRACEACT_STACK: 5995 if (!dtrace_priv_kernel(state)) 5996 continue; 5997 5998 dtrace_getpcstack((pc_t *)(tomax + valoffs), 5999 size / sizeof (pc_t), probe->dtpr_aframes, 6000 DTRACE_ANCHORED(probe) ? NULL : 6001 (uint32_t *)arg0); 6002 6003 continue; 6004 6005 case DTRACEACT_JSTACK: 6006 case DTRACEACT_USTACK: 6007 if (!dtrace_priv_proc(state, &mstate)) 6008 continue; 6009 6010 /* 6011 * See comment in DIF_VAR_PID. 6012 */ 6013 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6014 CPU_ON_INTR(CPU)) { 6015 int depth = DTRACE_USTACK_NFRAMES( 6016 rec->dtrd_arg) + 1; 6017 6018 dtrace_bzero((void *)(tomax + valoffs), 6019 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6020 + depth * sizeof (uint64_t)); 6021 6022 continue; 6023 } 6024 6025 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6026 curproc->p_dtrace_helpers != NULL) { 6027 /* 6028 * This is the slow path -- we have 6029 * allocated string space, and we're 6030 * getting the stack of a process that 6031 * has helpers. Call into a separate 6032 * routine to perform this processing. 6033 */ 6034 dtrace_action_ustack(&mstate, state, 6035 (uint64_t *)(tomax + valoffs), 6036 rec->dtrd_arg); 6037 continue; 6038 } 6039 6040 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6041 dtrace_getupcstack((uint64_t *) 6042 (tomax + valoffs), 6043 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6044 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6045 continue; 6046 6047 default: 6048 break; 6049 } 6050 6051 dp = act->dta_difo; 6052 ASSERT(dp != NULL); 6053 6054 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 6055 6056 if (*flags & CPU_DTRACE_ERROR) 6057 continue; 6058 6059 switch (act->dta_kind) { 6060 case DTRACEACT_SPECULATE: 6061 ASSERT(buf == &state->dts_buffer[cpuid]); 6062 buf = dtrace_speculation_buffer(state, 6063 cpuid, val); 6064 6065 if (buf == NULL) { 6066 *flags |= CPU_DTRACE_DROP; 6067 continue; 6068 } 6069 6070 offs = dtrace_buffer_reserve(buf, 6071 ecb->dte_needed, ecb->dte_alignment, 6072 state, NULL); 6073 6074 if (offs < 0) { 6075 *flags |= CPU_DTRACE_DROP; 6076 continue; 6077 } 6078 6079 tomax = buf->dtb_tomax; 6080 ASSERT(tomax != NULL); 6081 6082 if (ecb->dte_size != 0) 6083 DTRACE_STORE(uint32_t, tomax, offs, 6084 ecb->dte_epid); 6085 continue; 6086 6087 case DTRACEACT_CHILL: 6088 if (dtrace_priv_kernel_destructive(state)) 6089 dtrace_action_chill(&mstate, val); 6090 continue; 6091 6092 case DTRACEACT_RAISE: 6093 if (dtrace_priv_proc_destructive(state, 6094 &mstate)) 6095 dtrace_action_raise(val); 6096 continue; 6097 6098 case DTRACEACT_COMMIT: 6099 ASSERT(!committed); 6100 6101 /* 6102 * We need to commit our buffer state. 6103 */ 6104 if (ecb->dte_size) 6105 buf->dtb_offset = offs + ecb->dte_size; 6106 buf = &state->dts_buffer[cpuid]; 6107 dtrace_speculation_commit(state, cpuid, val); 6108 committed = 1; 6109 continue; 6110 6111 case DTRACEACT_DISCARD: 6112 dtrace_speculation_discard(state, cpuid, val); 6113 continue; 6114 6115 case DTRACEACT_DIFEXPR: 6116 case DTRACEACT_LIBACT: 6117 case DTRACEACT_PRINTF: 6118 case DTRACEACT_PRINTA: 6119 case DTRACEACT_SYSTEM: 6120 case DTRACEACT_FREOPEN: 6121 break; 6122 6123 case DTRACEACT_SYM: 6124 case DTRACEACT_MOD: 6125 if (!dtrace_priv_kernel(state)) 6126 continue; 6127 break; 6128 6129 case DTRACEACT_USYM: 6130 case DTRACEACT_UMOD: 6131 case DTRACEACT_UADDR: { 6132 struct pid *pid = curthread->t_procp->p_pidp; 6133 6134 if (!dtrace_priv_proc(state, &mstate)) 6135 continue; 6136 6137 DTRACE_STORE(uint64_t, tomax, 6138 valoffs, (uint64_t)pid->pid_id); 6139 DTRACE_STORE(uint64_t, tomax, 6140 valoffs + sizeof (uint64_t), val); 6141 6142 continue; 6143 } 6144 6145 case DTRACEACT_EXIT: { 6146 /* 6147 * For the exit action, we are going to attempt 6148 * to atomically set our activity to be 6149 * draining. If this fails (either because 6150 * another CPU has beat us to the exit action, 6151 * or because our current activity is something 6152 * other than ACTIVE or WARMUP), we will 6153 * continue. This assures that the exit action 6154 * can be successfully recorded at most once 6155 * when we're in the ACTIVE state. If we're 6156 * encountering the exit() action while in 6157 * COOLDOWN, however, we want to honor the new 6158 * status code. (We know that we're the only 6159 * thread in COOLDOWN, so there is no race.) 6160 */ 6161 void *activity = &state->dts_activity; 6162 dtrace_activity_t current = state->dts_activity; 6163 6164 if (current == DTRACE_ACTIVITY_COOLDOWN) 6165 break; 6166 6167 if (current != DTRACE_ACTIVITY_WARMUP) 6168 current = DTRACE_ACTIVITY_ACTIVE; 6169 6170 if (dtrace_cas32(activity, current, 6171 DTRACE_ACTIVITY_DRAINING) != current) { 6172 *flags |= CPU_DTRACE_DROP; 6173 continue; 6174 } 6175 6176 break; 6177 } 6178 6179 default: 6180 ASSERT(0); 6181 } 6182 6183 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 6184 uintptr_t end = valoffs + size; 6185 6186 if (!dtrace_vcanload((void *)(uintptr_t)val, 6187 &dp->dtdo_rtype, &mstate, vstate)) 6188 continue; 6189 6190 /* 6191 * If this is a string, we're going to only 6192 * load until we find the zero byte -- after 6193 * which we'll store zero bytes. 6194 */ 6195 if (dp->dtdo_rtype.dtdt_kind == 6196 DIF_TYPE_STRING) { 6197 char c = '\0' + 1; 6198 int intuple = act->dta_intuple; 6199 size_t s; 6200 6201 for (s = 0; s < size; s++) { 6202 if (c != '\0') 6203 c = dtrace_load8(val++); 6204 6205 DTRACE_STORE(uint8_t, tomax, 6206 valoffs++, c); 6207 6208 if (c == '\0' && intuple) 6209 break; 6210 } 6211 6212 continue; 6213 } 6214 6215 while (valoffs < end) { 6216 DTRACE_STORE(uint8_t, tomax, valoffs++, 6217 dtrace_load8(val++)); 6218 } 6219 6220 continue; 6221 } 6222 6223 switch (size) { 6224 case 0: 6225 break; 6226 6227 case sizeof (uint8_t): 6228 DTRACE_STORE(uint8_t, tomax, valoffs, val); 6229 break; 6230 case sizeof (uint16_t): 6231 DTRACE_STORE(uint16_t, tomax, valoffs, val); 6232 break; 6233 case sizeof (uint32_t): 6234 DTRACE_STORE(uint32_t, tomax, valoffs, val); 6235 break; 6236 case sizeof (uint64_t): 6237 DTRACE_STORE(uint64_t, tomax, valoffs, val); 6238 break; 6239 default: 6240 /* 6241 * Any other size should have been returned by 6242 * reference, not by value. 6243 */ 6244 ASSERT(0); 6245 break; 6246 } 6247 } 6248 6249 if (*flags & CPU_DTRACE_DROP) 6250 continue; 6251 6252 if (*flags & CPU_DTRACE_FAULT) { 6253 int ndx; 6254 dtrace_action_t *err; 6255 6256 buf->dtb_errors++; 6257 6258 if (probe->dtpr_id == dtrace_probeid_error) { 6259 /* 6260 * There's nothing we can do -- we had an 6261 * error on the error probe. We bump an 6262 * error counter to at least indicate that 6263 * this condition happened. 6264 */ 6265 dtrace_error(&state->dts_dblerrors); 6266 continue; 6267 } 6268 6269 if (vtime) { 6270 /* 6271 * Before recursing on dtrace_probe(), we 6272 * need to explicitly clear out our start 6273 * time to prevent it from being accumulated 6274 * into t_dtrace_vtime. 6275 */ 6276 curthread->t_dtrace_start = 0; 6277 } 6278 6279 /* 6280 * Iterate over the actions to figure out which action 6281 * we were processing when we experienced the error. 6282 * Note that act points _past_ the faulting action; if 6283 * act is ecb->dte_action, the fault was in the 6284 * predicate, if it's ecb->dte_action->dta_next it's 6285 * in action #1, and so on. 6286 */ 6287 for (err = ecb->dte_action, ndx = 0; 6288 err != act; err = err->dta_next, ndx++) 6289 continue; 6290 6291 dtrace_probe_error(state, ecb->dte_epid, ndx, 6292 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 6293 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 6294 cpu_core[cpuid].cpuc_dtrace_illval); 6295 6296 continue; 6297 } 6298 6299 if (!committed) 6300 buf->dtb_offset = offs + ecb->dte_size; 6301 } 6302 6303 if (vtime) 6304 curthread->t_dtrace_start = dtrace_gethrtime(); 6305 6306 dtrace_interrupt_enable(cookie); 6307 } 6308 6309 /* 6310 * DTrace Probe Hashing Functions 6311 * 6312 * The functions in this section (and indeed, the functions in remaining 6313 * sections) are not _called_ from probe context. (Any exceptions to this are 6314 * marked with a "Note:".) Rather, they are called from elsewhere in the 6315 * DTrace framework to look-up probes in, add probes to and remove probes from 6316 * the DTrace probe hashes. (Each probe is hashed by each element of the 6317 * probe tuple -- allowing for fast lookups, regardless of what was 6318 * specified.) 6319 */ 6320 static uint_t 6321 dtrace_hash_str(char *p) 6322 { 6323 unsigned int g; 6324 uint_t hval = 0; 6325 6326 while (*p) { 6327 hval = (hval << 4) + *p++; 6328 if ((g = (hval & 0xf0000000)) != 0) 6329 hval ^= g >> 24; 6330 hval &= ~g; 6331 } 6332 return (hval); 6333 } 6334 6335 static dtrace_hash_t * 6336 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 6337 { 6338 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 6339 6340 hash->dth_stroffs = stroffs; 6341 hash->dth_nextoffs = nextoffs; 6342 hash->dth_prevoffs = prevoffs; 6343 6344 hash->dth_size = 1; 6345 hash->dth_mask = hash->dth_size - 1; 6346 6347 hash->dth_tab = kmem_zalloc(hash->dth_size * 6348 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 6349 6350 return (hash); 6351 } 6352 6353 static void 6354 dtrace_hash_destroy(dtrace_hash_t *hash) 6355 { 6356 #ifdef DEBUG 6357 int i; 6358 6359 for (i = 0; i < hash->dth_size; i++) 6360 ASSERT(hash->dth_tab[i] == NULL); 6361 #endif 6362 6363 kmem_free(hash->dth_tab, 6364 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6365 kmem_free(hash, sizeof (dtrace_hash_t)); 6366 } 6367 6368 static void 6369 dtrace_hash_resize(dtrace_hash_t *hash) 6370 { 6371 int size = hash->dth_size, i, ndx; 6372 int new_size = hash->dth_size << 1; 6373 int new_mask = new_size - 1; 6374 dtrace_hashbucket_t **new_tab, *bucket, *next; 6375 6376 ASSERT((new_size & new_mask) == 0); 6377 6378 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6379 6380 for (i = 0; i < size; i++) { 6381 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6382 dtrace_probe_t *probe = bucket->dthb_chain; 6383 6384 ASSERT(probe != NULL); 6385 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6386 6387 next = bucket->dthb_next; 6388 bucket->dthb_next = new_tab[ndx]; 6389 new_tab[ndx] = bucket; 6390 } 6391 } 6392 6393 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6394 hash->dth_tab = new_tab; 6395 hash->dth_size = new_size; 6396 hash->dth_mask = new_mask; 6397 } 6398 6399 static void 6400 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6401 { 6402 int hashval = DTRACE_HASHSTR(hash, new); 6403 int ndx = hashval & hash->dth_mask; 6404 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6405 dtrace_probe_t **nextp, **prevp; 6406 6407 for (; bucket != NULL; bucket = bucket->dthb_next) { 6408 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6409 goto add; 6410 } 6411 6412 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6413 dtrace_hash_resize(hash); 6414 dtrace_hash_add(hash, new); 6415 return; 6416 } 6417 6418 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6419 bucket->dthb_next = hash->dth_tab[ndx]; 6420 hash->dth_tab[ndx] = bucket; 6421 hash->dth_nbuckets++; 6422 6423 add: 6424 nextp = DTRACE_HASHNEXT(hash, new); 6425 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6426 *nextp = bucket->dthb_chain; 6427 6428 if (bucket->dthb_chain != NULL) { 6429 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6430 ASSERT(*prevp == NULL); 6431 *prevp = new; 6432 } 6433 6434 bucket->dthb_chain = new; 6435 bucket->dthb_len++; 6436 } 6437 6438 static dtrace_probe_t * 6439 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6440 { 6441 int hashval = DTRACE_HASHSTR(hash, template); 6442 int ndx = hashval & hash->dth_mask; 6443 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6444 6445 for (; bucket != NULL; bucket = bucket->dthb_next) { 6446 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6447 return (bucket->dthb_chain); 6448 } 6449 6450 return (NULL); 6451 } 6452 6453 static int 6454 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6455 { 6456 int hashval = DTRACE_HASHSTR(hash, template); 6457 int ndx = hashval & hash->dth_mask; 6458 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6459 6460 for (; bucket != NULL; bucket = bucket->dthb_next) { 6461 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6462 return (bucket->dthb_len); 6463 } 6464 6465 return (NULL); 6466 } 6467 6468 static void 6469 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6470 { 6471 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6472 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6473 6474 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6475 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6476 6477 /* 6478 * Find the bucket that we're removing this probe from. 6479 */ 6480 for (; bucket != NULL; bucket = bucket->dthb_next) { 6481 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6482 break; 6483 } 6484 6485 ASSERT(bucket != NULL); 6486 6487 if (*prevp == NULL) { 6488 if (*nextp == NULL) { 6489 /* 6490 * The removed probe was the only probe on this 6491 * bucket; we need to remove the bucket. 6492 */ 6493 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6494 6495 ASSERT(bucket->dthb_chain == probe); 6496 ASSERT(b != NULL); 6497 6498 if (b == bucket) { 6499 hash->dth_tab[ndx] = bucket->dthb_next; 6500 } else { 6501 while (b->dthb_next != bucket) 6502 b = b->dthb_next; 6503 b->dthb_next = bucket->dthb_next; 6504 } 6505 6506 ASSERT(hash->dth_nbuckets > 0); 6507 hash->dth_nbuckets--; 6508 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6509 return; 6510 } 6511 6512 bucket->dthb_chain = *nextp; 6513 } else { 6514 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6515 } 6516 6517 if (*nextp != NULL) 6518 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6519 } 6520 6521 /* 6522 * DTrace Utility Functions 6523 * 6524 * These are random utility functions that are _not_ called from probe context. 6525 */ 6526 static int 6527 dtrace_badattr(const dtrace_attribute_t *a) 6528 { 6529 return (a->dtat_name > DTRACE_STABILITY_MAX || 6530 a->dtat_data > DTRACE_STABILITY_MAX || 6531 a->dtat_class > DTRACE_CLASS_MAX); 6532 } 6533 6534 /* 6535 * Return a duplicate copy of a string. If the specified string is NULL, 6536 * this function returns a zero-length string. 6537 */ 6538 static char * 6539 dtrace_strdup(const char *str) 6540 { 6541 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6542 6543 if (str != NULL) 6544 (void) strcpy(new, str); 6545 6546 return (new); 6547 } 6548 6549 #define DTRACE_ISALPHA(c) \ 6550 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6551 6552 static int 6553 dtrace_badname(const char *s) 6554 { 6555 char c; 6556 6557 if (s == NULL || (c = *s++) == '\0') 6558 return (0); 6559 6560 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6561 return (1); 6562 6563 while ((c = *s++) != '\0') { 6564 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6565 c != '-' && c != '_' && c != '.' && c != '`') 6566 return (1); 6567 } 6568 6569 return (0); 6570 } 6571 6572 static void 6573 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6574 { 6575 uint32_t priv; 6576 6577 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6578 /* 6579 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6580 */ 6581 priv = DTRACE_PRIV_ALL; 6582 } else { 6583 *uidp = crgetuid(cr); 6584 *zoneidp = crgetzoneid(cr); 6585 6586 priv = 0; 6587 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6588 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6589 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6590 priv |= DTRACE_PRIV_USER; 6591 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6592 priv |= DTRACE_PRIV_PROC; 6593 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6594 priv |= DTRACE_PRIV_OWNER; 6595 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6596 priv |= DTRACE_PRIV_ZONEOWNER; 6597 } 6598 6599 *privp = priv; 6600 } 6601 6602 #ifdef DTRACE_ERRDEBUG 6603 static void 6604 dtrace_errdebug(const char *str) 6605 { 6606 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6607 int occupied = 0; 6608 6609 mutex_enter(&dtrace_errlock); 6610 dtrace_errlast = str; 6611 dtrace_errthread = curthread; 6612 6613 while (occupied++ < DTRACE_ERRHASHSZ) { 6614 if (dtrace_errhash[hval].dter_msg == str) { 6615 dtrace_errhash[hval].dter_count++; 6616 goto out; 6617 } 6618 6619 if (dtrace_errhash[hval].dter_msg != NULL) { 6620 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6621 continue; 6622 } 6623 6624 dtrace_errhash[hval].dter_msg = str; 6625 dtrace_errhash[hval].dter_count = 1; 6626 goto out; 6627 } 6628 6629 panic("dtrace: undersized error hash"); 6630 out: 6631 mutex_exit(&dtrace_errlock); 6632 } 6633 #endif 6634 6635 /* 6636 * DTrace Matching Functions 6637 * 6638 * These functions are used to match groups of probes, given some elements of 6639 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6640 */ 6641 static int 6642 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6643 zoneid_t zoneid) 6644 { 6645 if (priv != DTRACE_PRIV_ALL) { 6646 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6647 uint32_t match = priv & ppriv; 6648 6649 /* 6650 * No PRIV_DTRACE_* privileges... 6651 */ 6652 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6653 DTRACE_PRIV_KERNEL)) == 0) 6654 return (0); 6655 6656 /* 6657 * No matching bits, but there were bits to match... 6658 */ 6659 if (match == 0 && ppriv != 0) 6660 return (0); 6661 6662 /* 6663 * Need to have permissions to the process, but don't... 6664 */ 6665 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6666 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6667 return (0); 6668 } 6669 6670 /* 6671 * Need to be in the same zone unless we possess the 6672 * privilege to examine all zones. 6673 */ 6674 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6675 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6676 return (0); 6677 } 6678 } 6679 6680 return (1); 6681 } 6682 6683 /* 6684 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6685 * consists of input pattern strings and an ops-vector to evaluate them. 6686 * This function returns >0 for match, 0 for no match, and <0 for error. 6687 */ 6688 static int 6689 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6690 uint32_t priv, uid_t uid, zoneid_t zoneid) 6691 { 6692 dtrace_provider_t *pvp = prp->dtpr_provider; 6693 int rv; 6694 6695 if (pvp->dtpv_defunct) 6696 return (0); 6697 6698 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6699 return (rv); 6700 6701 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6702 return (rv); 6703 6704 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6705 return (rv); 6706 6707 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6708 return (rv); 6709 6710 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6711 return (0); 6712 6713 return (rv); 6714 } 6715 6716 /* 6717 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6718 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 6719 * libc's version, the kernel version only applies to 8-bit ASCII strings. 6720 * In addition, all of the recursion cases except for '*' matching have been 6721 * unwound. For '*', we still implement recursive evaluation, but a depth 6722 * counter is maintained and matching is aborted if we recurse too deep. 6723 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 6724 */ 6725 static int 6726 dtrace_match_glob(const char *s, const char *p, int depth) 6727 { 6728 const char *olds; 6729 char s1, c; 6730 int gs; 6731 6732 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 6733 return (-1); 6734 6735 if (s == NULL) 6736 s = ""; /* treat NULL as empty string */ 6737 6738 top: 6739 olds = s; 6740 s1 = *s++; 6741 6742 if (p == NULL) 6743 return (0); 6744 6745 if ((c = *p++) == '\0') 6746 return (s1 == '\0'); 6747 6748 switch (c) { 6749 case '[': { 6750 int ok = 0, notflag = 0; 6751 char lc = '\0'; 6752 6753 if (s1 == '\0') 6754 return (0); 6755 6756 if (*p == '!') { 6757 notflag = 1; 6758 p++; 6759 } 6760 6761 if ((c = *p++) == '\0') 6762 return (0); 6763 6764 do { 6765 if (c == '-' && lc != '\0' && *p != ']') { 6766 if ((c = *p++) == '\0') 6767 return (0); 6768 if (c == '\\' && (c = *p++) == '\0') 6769 return (0); 6770 6771 if (notflag) { 6772 if (s1 < lc || s1 > c) 6773 ok++; 6774 else 6775 return (0); 6776 } else if (lc <= s1 && s1 <= c) 6777 ok++; 6778 6779 } else if (c == '\\' && (c = *p++) == '\0') 6780 return (0); 6781 6782 lc = c; /* save left-hand 'c' for next iteration */ 6783 6784 if (notflag) { 6785 if (s1 != c) 6786 ok++; 6787 else 6788 return (0); 6789 } else if (s1 == c) 6790 ok++; 6791 6792 if ((c = *p++) == '\0') 6793 return (0); 6794 6795 } while (c != ']'); 6796 6797 if (ok) 6798 goto top; 6799 6800 return (0); 6801 } 6802 6803 case '\\': 6804 if ((c = *p++) == '\0') 6805 return (0); 6806 /*FALLTHRU*/ 6807 6808 default: 6809 if (c != s1) 6810 return (0); 6811 /*FALLTHRU*/ 6812 6813 case '?': 6814 if (s1 != '\0') 6815 goto top; 6816 return (0); 6817 6818 case '*': 6819 while (*p == '*') 6820 p++; /* consecutive *'s are identical to a single one */ 6821 6822 if (*p == '\0') 6823 return (1); 6824 6825 for (s = olds; *s != '\0'; s++) { 6826 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 6827 return (gs); 6828 } 6829 6830 return (0); 6831 } 6832 } 6833 6834 /*ARGSUSED*/ 6835 static int 6836 dtrace_match_string(const char *s, const char *p, int depth) 6837 { 6838 return (s != NULL && strcmp(s, p) == 0); 6839 } 6840 6841 /*ARGSUSED*/ 6842 static int 6843 dtrace_match_nul(const char *s, const char *p, int depth) 6844 { 6845 return (1); /* always match the empty pattern */ 6846 } 6847 6848 /*ARGSUSED*/ 6849 static int 6850 dtrace_match_nonzero(const char *s, const char *p, int depth) 6851 { 6852 return (s != NULL && s[0] != '\0'); 6853 } 6854 6855 static int 6856 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 6857 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 6858 { 6859 dtrace_probe_t template, *probe; 6860 dtrace_hash_t *hash = NULL; 6861 int len, rc, best = INT_MAX, nmatched = 0; 6862 dtrace_id_t i; 6863 6864 ASSERT(MUTEX_HELD(&dtrace_lock)); 6865 6866 /* 6867 * If the probe ID is specified in the key, just lookup by ID and 6868 * invoke the match callback once if a matching probe is found. 6869 */ 6870 if (pkp->dtpk_id != DTRACE_IDNONE) { 6871 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 6872 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 6873 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 6874 return (DTRACE_MATCH_FAIL); 6875 nmatched++; 6876 } 6877 return (nmatched); 6878 } 6879 6880 template.dtpr_mod = (char *)pkp->dtpk_mod; 6881 template.dtpr_func = (char *)pkp->dtpk_func; 6882 template.dtpr_name = (char *)pkp->dtpk_name; 6883 6884 /* 6885 * We want to find the most distinct of the module name, function 6886 * name, and name. So for each one that is not a glob pattern or 6887 * empty string, we perform a lookup in the corresponding hash and 6888 * use the hash table with the fewest collisions to do our search. 6889 */ 6890 if (pkp->dtpk_mmatch == &dtrace_match_string && 6891 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 6892 best = len; 6893 hash = dtrace_bymod; 6894 } 6895 6896 if (pkp->dtpk_fmatch == &dtrace_match_string && 6897 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 6898 best = len; 6899 hash = dtrace_byfunc; 6900 } 6901 6902 if (pkp->dtpk_nmatch == &dtrace_match_string && 6903 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 6904 best = len; 6905 hash = dtrace_byname; 6906 } 6907 6908 /* 6909 * If we did not select a hash table, iterate over every probe and 6910 * invoke our callback for each one that matches our input probe key. 6911 */ 6912 if (hash == NULL) { 6913 for (i = 0; i < dtrace_nprobes; i++) { 6914 if ((probe = dtrace_probes[i]) == NULL || 6915 dtrace_match_probe(probe, pkp, priv, uid, 6916 zoneid) <= 0) 6917 continue; 6918 6919 nmatched++; 6920 6921 if ((rc = (*matched)(probe, arg)) != 6922 DTRACE_MATCH_NEXT) { 6923 if (rc == DTRACE_MATCH_FAIL) 6924 return (DTRACE_MATCH_FAIL); 6925 break; 6926 } 6927 } 6928 6929 return (nmatched); 6930 } 6931 6932 /* 6933 * If we selected a hash table, iterate over each probe of the same key 6934 * name and invoke the callback for every probe that matches the other 6935 * attributes of our input probe key. 6936 */ 6937 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 6938 probe = *(DTRACE_HASHNEXT(hash, probe))) { 6939 6940 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 6941 continue; 6942 6943 nmatched++; 6944 6945 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 6946 if (rc == DTRACE_MATCH_FAIL) 6947 return (DTRACE_MATCH_FAIL); 6948 break; 6949 } 6950 } 6951 6952 return (nmatched); 6953 } 6954 6955 /* 6956 * Return the function pointer dtrace_probecmp() should use to compare the 6957 * specified pattern with a string. For NULL or empty patterns, we select 6958 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 6959 * For non-empty non-glob strings, we use dtrace_match_string(). 6960 */ 6961 static dtrace_probekey_f * 6962 dtrace_probekey_func(const char *p) 6963 { 6964 char c; 6965 6966 if (p == NULL || *p == '\0') 6967 return (&dtrace_match_nul); 6968 6969 while ((c = *p++) != '\0') { 6970 if (c == '[' || c == '?' || c == '*' || c == '\\') 6971 return (&dtrace_match_glob); 6972 } 6973 6974 return (&dtrace_match_string); 6975 } 6976 6977 /* 6978 * Build a probe comparison key for use with dtrace_match_probe() from the 6979 * given probe description. By convention, a null key only matches anchored 6980 * probes: if each field is the empty string, reset dtpk_fmatch to 6981 * dtrace_match_nonzero(). 6982 */ 6983 static void 6984 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 6985 { 6986 pkp->dtpk_prov = pdp->dtpd_provider; 6987 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 6988 6989 pkp->dtpk_mod = pdp->dtpd_mod; 6990 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 6991 6992 pkp->dtpk_func = pdp->dtpd_func; 6993 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 6994 6995 pkp->dtpk_name = pdp->dtpd_name; 6996 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 6997 6998 pkp->dtpk_id = pdp->dtpd_id; 6999 7000 if (pkp->dtpk_id == DTRACE_IDNONE && 7001 pkp->dtpk_pmatch == &dtrace_match_nul && 7002 pkp->dtpk_mmatch == &dtrace_match_nul && 7003 pkp->dtpk_fmatch == &dtrace_match_nul && 7004 pkp->dtpk_nmatch == &dtrace_match_nul) 7005 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7006 } 7007 7008 /* 7009 * DTrace Provider-to-Framework API Functions 7010 * 7011 * These functions implement much of the Provider-to-Framework API, as 7012 * described in <sys/dtrace.h>. The parts of the API not in this section are 7013 * the functions in the API for probe management (found below), and 7014 * dtrace_probe() itself (found above). 7015 */ 7016 7017 /* 7018 * Register the calling provider with the DTrace framework. This should 7019 * generally be called by DTrace providers in their attach(9E) entry point. 7020 */ 7021 int 7022 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 7023 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 7024 { 7025 dtrace_provider_t *provider; 7026 7027 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 7028 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7029 "arguments", name ? name : "<NULL>"); 7030 return (EINVAL); 7031 } 7032 7033 if (name[0] == '\0' || dtrace_badname(name)) { 7034 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7035 "provider name", name); 7036 return (EINVAL); 7037 } 7038 7039 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 7040 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 7041 pops->dtps_destroy == NULL || 7042 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 7043 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7044 "provider ops", name); 7045 return (EINVAL); 7046 } 7047 7048 if (dtrace_badattr(&pap->dtpa_provider) || 7049 dtrace_badattr(&pap->dtpa_mod) || 7050 dtrace_badattr(&pap->dtpa_func) || 7051 dtrace_badattr(&pap->dtpa_name) || 7052 dtrace_badattr(&pap->dtpa_args)) { 7053 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7054 "provider attributes", name); 7055 return (EINVAL); 7056 } 7057 7058 if (priv & ~DTRACE_PRIV_ALL) { 7059 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7060 "privilege attributes", name); 7061 return (EINVAL); 7062 } 7063 7064 if ((priv & DTRACE_PRIV_KERNEL) && 7065 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 7066 pops->dtps_mode == NULL) { 7067 cmn_err(CE_WARN, "failed to register provider '%s': need " 7068 "dtps_mode() op for given privilege attributes", name); 7069 return (EINVAL); 7070 } 7071 7072 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 7073 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7074 (void) strcpy(provider->dtpv_name, name); 7075 7076 provider->dtpv_attr = *pap; 7077 provider->dtpv_priv.dtpp_flags = priv; 7078 if (cr != NULL) { 7079 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 7080 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 7081 } 7082 provider->dtpv_pops = *pops; 7083 7084 if (pops->dtps_provide == NULL) { 7085 ASSERT(pops->dtps_provide_module != NULL); 7086 provider->dtpv_pops.dtps_provide = 7087 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 7088 } 7089 7090 if (pops->dtps_provide_module == NULL) { 7091 ASSERT(pops->dtps_provide != NULL); 7092 provider->dtpv_pops.dtps_provide_module = 7093 (void (*)(void *, struct modctl *))dtrace_nullop; 7094 } 7095 7096 if (pops->dtps_suspend == NULL) { 7097 ASSERT(pops->dtps_resume == NULL); 7098 provider->dtpv_pops.dtps_suspend = 7099 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7100 provider->dtpv_pops.dtps_resume = 7101 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7102 } 7103 7104 provider->dtpv_arg = arg; 7105 *idp = (dtrace_provider_id_t)provider; 7106 7107 if (pops == &dtrace_provider_ops) { 7108 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7109 ASSERT(MUTEX_HELD(&dtrace_lock)); 7110 ASSERT(dtrace_anon.dta_enabling == NULL); 7111 7112 /* 7113 * We make sure that the DTrace provider is at the head of 7114 * the provider chain. 7115 */ 7116 provider->dtpv_next = dtrace_provider; 7117 dtrace_provider = provider; 7118 return (0); 7119 } 7120 7121 mutex_enter(&dtrace_provider_lock); 7122 mutex_enter(&dtrace_lock); 7123 7124 /* 7125 * If there is at least one provider registered, we'll add this 7126 * provider after the first provider. 7127 */ 7128 if (dtrace_provider != NULL) { 7129 provider->dtpv_next = dtrace_provider->dtpv_next; 7130 dtrace_provider->dtpv_next = provider; 7131 } else { 7132 dtrace_provider = provider; 7133 } 7134 7135 if (dtrace_retained != NULL) { 7136 dtrace_enabling_provide(provider); 7137 7138 /* 7139 * Now we need to call dtrace_enabling_matchall() -- which 7140 * will acquire cpu_lock and dtrace_lock. We therefore need 7141 * to drop all of our locks before calling into it... 7142 */ 7143 mutex_exit(&dtrace_lock); 7144 mutex_exit(&dtrace_provider_lock); 7145 dtrace_enabling_matchall(); 7146 7147 return (0); 7148 } 7149 7150 mutex_exit(&dtrace_lock); 7151 mutex_exit(&dtrace_provider_lock); 7152 7153 return (0); 7154 } 7155 7156 /* 7157 * Unregister the specified provider from the DTrace framework. This should 7158 * generally be called by DTrace providers in their detach(9E) entry point. 7159 */ 7160 int 7161 dtrace_unregister(dtrace_provider_id_t id) 7162 { 7163 dtrace_provider_t *old = (dtrace_provider_t *)id; 7164 dtrace_provider_t *prev = NULL; 7165 int i, self = 0, noreap = 0; 7166 dtrace_probe_t *probe, *first = NULL; 7167 7168 if (old->dtpv_pops.dtps_enable == 7169 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 7170 /* 7171 * If DTrace itself is the provider, we're called with locks 7172 * already held. 7173 */ 7174 ASSERT(old == dtrace_provider); 7175 ASSERT(dtrace_devi != NULL); 7176 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7177 ASSERT(MUTEX_HELD(&dtrace_lock)); 7178 self = 1; 7179 7180 if (dtrace_provider->dtpv_next != NULL) { 7181 /* 7182 * There's another provider here; return failure. 7183 */ 7184 return (EBUSY); 7185 } 7186 } else { 7187 mutex_enter(&dtrace_provider_lock); 7188 mutex_enter(&mod_lock); 7189 mutex_enter(&dtrace_lock); 7190 } 7191 7192 /* 7193 * If anyone has /dev/dtrace open, or if there are anonymous enabled 7194 * probes, we refuse to let providers slither away, unless this 7195 * provider has already been explicitly invalidated. 7196 */ 7197 if (!old->dtpv_defunct && 7198 (dtrace_opens || (dtrace_anon.dta_state != NULL && 7199 dtrace_anon.dta_state->dts_necbs > 0))) { 7200 if (!self) { 7201 mutex_exit(&dtrace_lock); 7202 mutex_exit(&mod_lock); 7203 mutex_exit(&dtrace_provider_lock); 7204 } 7205 return (EBUSY); 7206 } 7207 7208 /* 7209 * Attempt to destroy the probes associated with this provider. 7210 */ 7211 for (i = 0; i < dtrace_nprobes; i++) { 7212 if ((probe = dtrace_probes[i]) == NULL) 7213 continue; 7214 7215 if (probe->dtpr_provider != old) 7216 continue; 7217 7218 if (probe->dtpr_ecb == NULL) 7219 continue; 7220 7221 /* 7222 * If we are trying to unregister a defunct provider, and the 7223 * provider was made defunct within the interval dictated by 7224 * dtrace_unregister_defunct_reap, we'll (asynchronously) 7225 * attempt to reap our enablings. To denote that the provider 7226 * should reattempt to unregister itself at some point in the 7227 * future, we will return a differentiable error code (EAGAIN 7228 * instead of EBUSY) in this case. 7229 */ 7230 if (dtrace_gethrtime() - old->dtpv_defunct > 7231 dtrace_unregister_defunct_reap) 7232 noreap = 1; 7233 7234 if (!self) { 7235 mutex_exit(&dtrace_lock); 7236 mutex_exit(&mod_lock); 7237 mutex_exit(&dtrace_provider_lock); 7238 } 7239 7240 if (noreap) 7241 return (EBUSY); 7242 7243 (void) taskq_dispatch(dtrace_taskq, 7244 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 7245 7246 return (EAGAIN); 7247 } 7248 7249 /* 7250 * All of the probes for this provider are disabled; we can safely 7251 * remove all of them from their hash chains and from the probe array. 7252 */ 7253 for (i = 0; i < dtrace_nprobes; i++) { 7254 if ((probe = dtrace_probes[i]) == NULL) 7255 continue; 7256 7257 if (probe->dtpr_provider != old) 7258 continue; 7259 7260 dtrace_probes[i] = NULL; 7261 7262 dtrace_hash_remove(dtrace_bymod, probe); 7263 dtrace_hash_remove(dtrace_byfunc, probe); 7264 dtrace_hash_remove(dtrace_byname, probe); 7265 7266 if (first == NULL) { 7267 first = probe; 7268 probe->dtpr_nextmod = NULL; 7269 } else { 7270 probe->dtpr_nextmod = first; 7271 first = probe; 7272 } 7273 } 7274 7275 /* 7276 * The provider's probes have been removed from the hash chains and 7277 * from the probe array. Now issue a dtrace_sync() to be sure that 7278 * everyone has cleared out from any probe array processing. 7279 */ 7280 dtrace_sync(); 7281 7282 for (probe = first; probe != NULL; probe = first) { 7283 first = probe->dtpr_nextmod; 7284 7285 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 7286 probe->dtpr_arg); 7287 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7288 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7289 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7290 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 7291 kmem_free(probe, sizeof (dtrace_probe_t)); 7292 } 7293 7294 if ((prev = dtrace_provider) == old) { 7295 ASSERT(self || dtrace_devi == NULL); 7296 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 7297 dtrace_provider = old->dtpv_next; 7298 } else { 7299 while (prev != NULL && prev->dtpv_next != old) 7300 prev = prev->dtpv_next; 7301 7302 if (prev == NULL) { 7303 panic("attempt to unregister non-existent " 7304 "dtrace provider %p\n", (void *)id); 7305 } 7306 7307 prev->dtpv_next = old->dtpv_next; 7308 } 7309 7310 if (!self) { 7311 mutex_exit(&dtrace_lock); 7312 mutex_exit(&mod_lock); 7313 mutex_exit(&dtrace_provider_lock); 7314 } 7315 7316 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 7317 kmem_free(old, sizeof (dtrace_provider_t)); 7318 7319 return (0); 7320 } 7321 7322 /* 7323 * Invalidate the specified provider. All subsequent probe lookups for the 7324 * specified provider will fail, but its probes will not be removed. 7325 */ 7326 void 7327 dtrace_invalidate(dtrace_provider_id_t id) 7328 { 7329 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 7330 7331 ASSERT(pvp->dtpv_pops.dtps_enable != 7332 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7333 7334 mutex_enter(&dtrace_provider_lock); 7335 mutex_enter(&dtrace_lock); 7336 7337 pvp->dtpv_defunct = dtrace_gethrtime(); 7338 7339 mutex_exit(&dtrace_lock); 7340 mutex_exit(&dtrace_provider_lock); 7341 } 7342 7343 /* 7344 * Indicate whether or not DTrace has attached. 7345 */ 7346 int 7347 dtrace_attached(void) 7348 { 7349 /* 7350 * dtrace_provider will be non-NULL iff the DTrace driver has 7351 * attached. (It's non-NULL because DTrace is always itself a 7352 * provider.) 7353 */ 7354 return (dtrace_provider != NULL); 7355 } 7356 7357 /* 7358 * Remove all the unenabled probes for the given provider. This function is 7359 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7360 * -- just as many of its associated probes as it can. 7361 */ 7362 int 7363 dtrace_condense(dtrace_provider_id_t id) 7364 { 7365 dtrace_provider_t *prov = (dtrace_provider_t *)id; 7366 int i; 7367 dtrace_probe_t *probe; 7368 7369 /* 7370 * Make sure this isn't the dtrace provider itself. 7371 */ 7372 ASSERT(prov->dtpv_pops.dtps_enable != 7373 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7374 7375 mutex_enter(&dtrace_provider_lock); 7376 mutex_enter(&dtrace_lock); 7377 7378 /* 7379 * Attempt to destroy the probes associated with this provider. 7380 */ 7381 for (i = 0; i < dtrace_nprobes; i++) { 7382 if ((probe = dtrace_probes[i]) == NULL) 7383 continue; 7384 7385 if (probe->dtpr_provider != prov) 7386 continue; 7387 7388 if (probe->dtpr_ecb != NULL) 7389 continue; 7390 7391 dtrace_probes[i] = NULL; 7392 7393 dtrace_hash_remove(dtrace_bymod, probe); 7394 dtrace_hash_remove(dtrace_byfunc, probe); 7395 dtrace_hash_remove(dtrace_byname, probe); 7396 7397 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7398 probe->dtpr_arg); 7399 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7400 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7401 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7402 kmem_free(probe, sizeof (dtrace_probe_t)); 7403 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7404 } 7405 7406 mutex_exit(&dtrace_lock); 7407 mutex_exit(&dtrace_provider_lock); 7408 7409 return (0); 7410 } 7411 7412 /* 7413 * DTrace Probe Management Functions 7414 * 7415 * The functions in this section perform the DTrace probe management, 7416 * including functions to create probes, look-up probes, and call into the 7417 * providers to request that probes be provided. Some of these functions are 7418 * in the Provider-to-Framework API; these functions can be identified by the 7419 * fact that they are not declared "static". 7420 */ 7421 7422 /* 7423 * Create a probe with the specified module name, function name, and name. 7424 */ 7425 dtrace_id_t 7426 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7427 const char *func, const char *name, int aframes, void *arg) 7428 { 7429 dtrace_probe_t *probe, **probes; 7430 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7431 dtrace_id_t id; 7432 7433 if (provider == dtrace_provider) { 7434 ASSERT(MUTEX_HELD(&dtrace_lock)); 7435 } else { 7436 mutex_enter(&dtrace_lock); 7437 } 7438 7439 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7440 VM_BESTFIT | VM_SLEEP); 7441 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7442 7443 probe->dtpr_id = id; 7444 probe->dtpr_gen = dtrace_probegen++; 7445 probe->dtpr_mod = dtrace_strdup(mod); 7446 probe->dtpr_func = dtrace_strdup(func); 7447 probe->dtpr_name = dtrace_strdup(name); 7448 probe->dtpr_arg = arg; 7449 probe->dtpr_aframes = aframes; 7450 probe->dtpr_provider = provider; 7451 7452 dtrace_hash_add(dtrace_bymod, probe); 7453 dtrace_hash_add(dtrace_byfunc, probe); 7454 dtrace_hash_add(dtrace_byname, probe); 7455 7456 if (id - 1 >= dtrace_nprobes) { 7457 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7458 size_t nsize = osize << 1; 7459 7460 if (nsize == 0) { 7461 ASSERT(osize == 0); 7462 ASSERT(dtrace_probes == NULL); 7463 nsize = sizeof (dtrace_probe_t *); 7464 } 7465 7466 probes = kmem_zalloc(nsize, KM_SLEEP); 7467 7468 if (dtrace_probes == NULL) { 7469 ASSERT(osize == 0); 7470 dtrace_probes = probes; 7471 dtrace_nprobes = 1; 7472 } else { 7473 dtrace_probe_t **oprobes = dtrace_probes; 7474 7475 bcopy(oprobes, probes, osize); 7476 dtrace_membar_producer(); 7477 dtrace_probes = probes; 7478 7479 dtrace_sync(); 7480 7481 /* 7482 * All CPUs are now seeing the new probes array; we can 7483 * safely free the old array. 7484 */ 7485 kmem_free(oprobes, osize); 7486 dtrace_nprobes <<= 1; 7487 } 7488 7489 ASSERT(id - 1 < dtrace_nprobes); 7490 } 7491 7492 ASSERT(dtrace_probes[id - 1] == NULL); 7493 dtrace_probes[id - 1] = probe; 7494 7495 if (provider != dtrace_provider) 7496 mutex_exit(&dtrace_lock); 7497 7498 return (id); 7499 } 7500 7501 static dtrace_probe_t * 7502 dtrace_probe_lookup_id(dtrace_id_t id) 7503 { 7504 ASSERT(MUTEX_HELD(&dtrace_lock)); 7505 7506 if (id == 0 || id > dtrace_nprobes) 7507 return (NULL); 7508 7509 return (dtrace_probes[id - 1]); 7510 } 7511 7512 static int 7513 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7514 { 7515 *((dtrace_id_t *)arg) = probe->dtpr_id; 7516 7517 return (DTRACE_MATCH_DONE); 7518 } 7519 7520 /* 7521 * Look up a probe based on provider and one or more of module name, function 7522 * name and probe name. 7523 */ 7524 dtrace_id_t 7525 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 7526 const char *func, const char *name) 7527 { 7528 dtrace_probekey_t pkey; 7529 dtrace_id_t id; 7530 int match; 7531 7532 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7533 pkey.dtpk_pmatch = &dtrace_match_string; 7534 pkey.dtpk_mod = mod; 7535 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7536 pkey.dtpk_func = func; 7537 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7538 pkey.dtpk_name = name; 7539 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7540 pkey.dtpk_id = DTRACE_IDNONE; 7541 7542 mutex_enter(&dtrace_lock); 7543 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7544 dtrace_probe_lookup_match, &id); 7545 mutex_exit(&dtrace_lock); 7546 7547 ASSERT(match == 1 || match == 0); 7548 return (match ? id : 0); 7549 } 7550 7551 /* 7552 * Returns the probe argument associated with the specified probe. 7553 */ 7554 void * 7555 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7556 { 7557 dtrace_probe_t *probe; 7558 void *rval = NULL; 7559 7560 mutex_enter(&dtrace_lock); 7561 7562 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7563 probe->dtpr_provider == (dtrace_provider_t *)id) 7564 rval = probe->dtpr_arg; 7565 7566 mutex_exit(&dtrace_lock); 7567 7568 return (rval); 7569 } 7570 7571 /* 7572 * Copy a probe into a probe description. 7573 */ 7574 static void 7575 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7576 { 7577 bzero(pdp, sizeof (dtrace_probedesc_t)); 7578 pdp->dtpd_id = prp->dtpr_id; 7579 7580 (void) strncpy(pdp->dtpd_provider, 7581 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7582 7583 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7584 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7585 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7586 } 7587 7588 /* 7589 * Called to indicate that a probe -- or probes -- should be provided by a 7590 * specfied provider. If the specified description is NULL, the provider will 7591 * be told to provide all of its probes. (This is done whenever a new 7592 * consumer comes along, or whenever a retained enabling is to be matched.) If 7593 * the specified description is non-NULL, the provider is given the 7594 * opportunity to dynamically provide the specified probe, allowing providers 7595 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7596 * probes.) If the provider is NULL, the operations will be applied to all 7597 * providers; if the provider is non-NULL the operations will only be applied 7598 * to the specified provider. The dtrace_provider_lock must be held, and the 7599 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7600 * will need to grab the dtrace_lock when it reenters the framework through 7601 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7602 */ 7603 static void 7604 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7605 { 7606 struct modctl *ctl; 7607 int all = 0; 7608 7609 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7610 7611 if (prv == NULL) { 7612 all = 1; 7613 prv = dtrace_provider; 7614 } 7615 7616 do { 7617 /* 7618 * First, call the blanket provide operation. 7619 */ 7620 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7621 7622 /* 7623 * Now call the per-module provide operation. We will grab 7624 * mod_lock to prevent the list from being modified. Note 7625 * that this also prevents the mod_busy bits from changing. 7626 * (mod_busy can only be changed with mod_lock held.) 7627 */ 7628 mutex_enter(&mod_lock); 7629 7630 ctl = &modules; 7631 do { 7632 if (ctl->mod_busy || ctl->mod_mp == NULL) 7633 continue; 7634 7635 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7636 7637 } while ((ctl = ctl->mod_next) != &modules); 7638 7639 mutex_exit(&mod_lock); 7640 } while (all && (prv = prv->dtpv_next) != NULL); 7641 } 7642 7643 /* 7644 * Iterate over each probe, and call the Framework-to-Provider API function 7645 * denoted by offs. 7646 */ 7647 static void 7648 dtrace_probe_foreach(uintptr_t offs) 7649 { 7650 dtrace_provider_t *prov; 7651 void (*func)(void *, dtrace_id_t, void *); 7652 dtrace_probe_t *probe; 7653 dtrace_icookie_t cookie; 7654 int i; 7655 7656 /* 7657 * We disable interrupts to walk through the probe array. This is 7658 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7659 * won't see stale data. 7660 */ 7661 cookie = dtrace_interrupt_disable(); 7662 7663 for (i = 0; i < dtrace_nprobes; i++) { 7664 if ((probe = dtrace_probes[i]) == NULL) 7665 continue; 7666 7667 if (probe->dtpr_ecb == NULL) { 7668 /* 7669 * This probe isn't enabled -- don't call the function. 7670 */ 7671 continue; 7672 } 7673 7674 prov = probe->dtpr_provider; 7675 func = *((void(**)(void *, dtrace_id_t, void *)) 7676 ((uintptr_t)&prov->dtpv_pops + offs)); 7677 7678 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7679 } 7680 7681 dtrace_interrupt_enable(cookie); 7682 } 7683 7684 static int 7685 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7686 { 7687 dtrace_probekey_t pkey; 7688 uint32_t priv; 7689 uid_t uid; 7690 zoneid_t zoneid; 7691 7692 ASSERT(MUTEX_HELD(&dtrace_lock)); 7693 dtrace_ecb_create_cache = NULL; 7694 7695 if (desc == NULL) { 7696 /* 7697 * If we're passed a NULL description, we're being asked to 7698 * create an ECB with a NULL probe. 7699 */ 7700 (void) dtrace_ecb_create_enable(NULL, enab); 7701 return (0); 7702 } 7703 7704 dtrace_probekey(desc, &pkey); 7705 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7706 &priv, &uid, &zoneid); 7707 7708 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7709 enab)); 7710 } 7711 7712 /* 7713 * DTrace Helper Provider Functions 7714 */ 7715 static void 7716 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7717 { 7718 attr->dtat_name = DOF_ATTR_NAME(dofattr); 7719 attr->dtat_data = DOF_ATTR_DATA(dofattr); 7720 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 7721 } 7722 7723 static void 7724 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 7725 const dof_provider_t *dofprov, char *strtab) 7726 { 7727 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 7728 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 7729 dofprov->dofpv_provattr); 7730 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 7731 dofprov->dofpv_modattr); 7732 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 7733 dofprov->dofpv_funcattr); 7734 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 7735 dofprov->dofpv_nameattr); 7736 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 7737 dofprov->dofpv_argsattr); 7738 } 7739 7740 static void 7741 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7742 { 7743 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7744 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7745 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 7746 dof_provider_t *provider; 7747 dof_probe_t *probe; 7748 uint32_t *off, *enoff; 7749 uint8_t *arg; 7750 char *strtab; 7751 uint_t i, nprobes; 7752 dtrace_helper_provdesc_t dhpv; 7753 dtrace_helper_probedesc_t dhpb; 7754 dtrace_meta_t *meta = dtrace_meta_pid; 7755 dtrace_mops_t *mops = &meta->dtm_mops; 7756 void *parg; 7757 7758 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7759 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7760 provider->dofpv_strtab * dof->dofh_secsize); 7761 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7762 provider->dofpv_probes * dof->dofh_secsize); 7763 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7764 provider->dofpv_prargs * dof->dofh_secsize); 7765 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7766 provider->dofpv_proffs * dof->dofh_secsize); 7767 7768 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7769 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 7770 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 7771 enoff = NULL; 7772 7773 /* 7774 * See dtrace_helper_provider_validate(). 7775 */ 7776 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 7777 provider->dofpv_prenoffs != DOF_SECT_NONE) { 7778 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7779 provider->dofpv_prenoffs * dof->dofh_secsize); 7780 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 7781 } 7782 7783 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 7784 7785 /* 7786 * Create the provider. 7787 */ 7788 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7789 7790 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 7791 return; 7792 7793 meta->dtm_count++; 7794 7795 /* 7796 * Create the probes. 7797 */ 7798 for (i = 0; i < nprobes; i++) { 7799 probe = (dof_probe_t *)(uintptr_t)(daddr + 7800 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 7801 7802 dhpb.dthpb_mod = dhp->dofhp_mod; 7803 dhpb.dthpb_func = strtab + probe->dofpr_func; 7804 dhpb.dthpb_name = strtab + probe->dofpr_name; 7805 dhpb.dthpb_base = probe->dofpr_addr; 7806 dhpb.dthpb_offs = off + probe->dofpr_offidx; 7807 dhpb.dthpb_noffs = probe->dofpr_noffs; 7808 if (enoff != NULL) { 7809 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 7810 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 7811 } else { 7812 dhpb.dthpb_enoffs = NULL; 7813 dhpb.dthpb_nenoffs = 0; 7814 } 7815 dhpb.dthpb_args = arg + probe->dofpr_argidx; 7816 dhpb.dthpb_nargc = probe->dofpr_nargc; 7817 dhpb.dthpb_xargc = probe->dofpr_xargc; 7818 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 7819 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 7820 7821 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 7822 } 7823 } 7824 7825 static void 7826 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 7827 { 7828 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7829 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7830 int i; 7831 7832 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7833 7834 for (i = 0; i < dof->dofh_secnum; i++) { 7835 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7836 dof->dofh_secoff + i * dof->dofh_secsize); 7837 7838 if (sec->dofs_type != DOF_SECT_PROVIDER) 7839 continue; 7840 7841 dtrace_helper_provide_one(dhp, sec, pid); 7842 } 7843 7844 /* 7845 * We may have just created probes, so we must now rematch against 7846 * any retained enablings. Note that this call will acquire both 7847 * cpu_lock and dtrace_lock; the fact that we are holding 7848 * dtrace_meta_lock now is what defines the ordering with respect to 7849 * these three locks. 7850 */ 7851 dtrace_enabling_matchall(); 7852 } 7853 7854 static void 7855 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7856 { 7857 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7858 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7859 dof_sec_t *str_sec; 7860 dof_provider_t *provider; 7861 char *strtab; 7862 dtrace_helper_provdesc_t dhpv; 7863 dtrace_meta_t *meta = dtrace_meta_pid; 7864 dtrace_mops_t *mops = &meta->dtm_mops; 7865 7866 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7867 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7868 provider->dofpv_strtab * dof->dofh_secsize); 7869 7870 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7871 7872 /* 7873 * Create the provider. 7874 */ 7875 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7876 7877 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 7878 7879 meta->dtm_count--; 7880 } 7881 7882 static void 7883 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 7884 { 7885 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7886 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7887 int i; 7888 7889 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7890 7891 for (i = 0; i < dof->dofh_secnum; i++) { 7892 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7893 dof->dofh_secoff + i * dof->dofh_secsize); 7894 7895 if (sec->dofs_type != DOF_SECT_PROVIDER) 7896 continue; 7897 7898 dtrace_helper_provider_remove_one(dhp, sec, pid); 7899 } 7900 } 7901 7902 /* 7903 * DTrace Meta Provider-to-Framework API Functions 7904 * 7905 * These functions implement the Meta Provider-to-Framework API, as described 7906 * in <sys/dtrace.h>. 7907 */ 7908 int 7909 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 7910 dtrace_meta_provider_id_t *idp) 7911 { 7912 dtrace_meta_t *meta; 7913 dtrace_helpers_t *help, *next; 7914 int i; 7915 7916 *idp = DTRACE_METAPROVNONE; 7917 7918 /* 7919 * We strictly don't need the name, but we hold onto it for 7920 * debuggability. All hail error queues! 7921 */ 7922 if (name == NULL) { 7923 cmn_err(CE_WARN, "failed to register meta-provider: " 7924 "invalid name"); 7925 return (EINVAL); 7926 } 7927 7928 if (mops == NULL || 7929 mops->dtms_create_probe == NULL || 7930 mops->dtms_provide_pid == NULL || 7931 mops->dtms_remove_pid == NULL) { 7932 cmn_err(CE_WARN, "failed to register meta-register %s: " 7933 "invalid ops", name); 7934 return (EINVAL); 7935 } 7936 7937 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 7938 meta->dtm_mops = *mops; 7939 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7940 (void) strcpy(meta->dtm_name, name); 7941 meta->dtm_arg = arg; 7942 7943 mutex_enter(&dtrace_meta_lock); 7944 mutex_enter(&dtrace_lock); 7945 7946 if (dtrace_meta_pid != NULL) { 7947 mutex_exit(&dtrace_lock); 7948 mutex_exit(&dtrace_meta_lock); 7949 cmn_err(CE_WARN, "failed to register meta-register %s: " 7950 "user-land meta-provider exists", name); 7951 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 7952 kmem_free(meta, sizeof (dtrace_meta_t)); 7953 return (EINVAL); 7954 } 7955 7956 dtrace_meta_pid = meta; 7957 *idp = (dtrace_meta_provider_id_t)meta; 7958 7959 /* 7960 * If there are providers and probes ready to go, pass them 7961 * off to the new meta provider now. 7962 */ 7963 7964 help = dtrace_deferred_pid; 7965 dtrace_deferred_pid = NULL; 7966 7967 mutex_exit(&dtrace_lock); 7968 7969 while (help != NULL) { 7970 for (i = 0; i < help->dthps_nprovs; i++) { 7971 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 7972 help->dthps_pid); 7973 } 7974 7975 next = help->dthps_next; 7976 help->dthps_next = NULL; 7977 help->dthps_prev = NULL; 7978 help->dthps_deferred = 0; 7979 help = next; 7980 } 7981 7982 mutex_exit(&dtrace_meta_lock); 7983 7984 return (0); 7985 } 7986 7987 int 7988 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 7989 { 7990 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 7991 7992 mutex_enter(&dtrace_meta_lock); 7993 mutex_enter(&dtrace_lock); 7994 7995 if (old == dtrace_meta_pid) { 7996 pp = &dtrace_meta_pid; 7997 } else { 7998 panic("attempt to unregister non-existent " 7999 "dtrace meta-provider %p\n", (void *)old); 8000 } 8001 8002 if (old->dtm_count != 0) { 8003 mutex_exit(&dtrace_lock); 8004 mutex_exit(&dtrace_meta_lock); 8005 return (EBUSY); 8006 } 8007 8008 *pp = NULL; 8009 8010 mutex_exit(&dtrace_lock); 8011 mutex_exit(&dtrace_meta_lock); 8012 8013 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8014 kmem_free(old, sizeof (dtrace_meta_t)); 8015 8016 return (0); 8017 } 8018 8019 8020 /* 8021 * DTrace DIF Object Functions 8022 */ 8023 static int 8024 dtrace_difo_err(uint_t pc, const char *format, ...) 8025 { 8026 if (dtrace_err_verbose) { 8027 va_list alist; 8028 8029 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 8030 va_start(alist, format); 8031 (void) vuprintf(format, alist); 8032 va_end(alist); 8033 } 8034 8035 #ifdef DTRACE_ERRDEBUG 8036 dtrace_errdebug(format); 8037 #endif 8038 return (1); 8039 } 8040 8041 /* 8042 * Validate a DTrace DIF object by checking the IR instructions. The following 8043 * rules are currently enforced by dtrace_difo_validate(): 8044 * 8045 * 1. Each instruction must have a valid opcode 8046 * 2. Each register, string, variable, or subroutine reference must be valid 8047 * 3. No instruction can modify register %r0 (must be zero) 8048 * 4. All instruction reserved bits must be set to zero 8049 * 5. The last instruction must be a "ret" instruction 8050 * 6. All branch targets must reference a valid instruction _after_ the branch 8051 */ 8052 static int 8053 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 8054 cred_t *cr) 8055 { 8056 int err = 0, i; 8057 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8058 int kcheckload; 8059 uint_t pc; 8060 8061 kcheckload = cr == NULL || 8062 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 8063 8064 dp->dtdo_destructive = 0; 8065 8066 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 8067 dif_instr_t instr = dp->dtdo_buf[pc]; 8068 8069 uint_t r1 = DIF_INSTR_R1(instr); 8070 uint_t r2 = DIF_INSTR_R2(instr); 8071 uint_t rd = DIF_INSTR_RD(instr); 8072 uint_t rs = DIF_INSTR_RS(instr); 8073 uint_t label = DIF_INSTR_LABEL(instr); 8074 uint_t v = DIF_INSTR_VAR(instr); 8075 uint_t subr = DIF_INSTR_SUBR(instr); 8076 uint_t type = DIF_INSTR_TYPE(instr); 8077 uint_t op = DIF_INSTR_OP(instr); 8078 8079 switch (op) { 8080 case DIF_OP_OR: 8081 case DIF_OP_XOR: 8082 case DIF_OP_AND: 8083 case DIF_OP_SLL: 8084 case DIF_OP_SRL: 8085 case DIF_OP_SRA: 8086 case DIF_OP_SUB: 8087 case DIF_OP_ADD: 8088 case DIF_OP_MUL: 8089 case DIF_OP_SDIV: 8090 case DIF_OP_UDIV: 8091 case DIF_OP_SREM: 8092 case DIF_OP_UREM: 8093 case DIF_OP_COPYS: 8094 if (r1 >= nregs) 8095 err += efunc(pc, "invalid register %u\n", r1); 8096 if (r2 >= nregs) 8097 err += efunc(pc, "invalid register %u\n", r2); 8098 if (rd >= nregs) 8099 err += efunc(pc, "invalid register %u\n", rd); 8100 if (rd == 0) 8101 err += efunc(pc, "cannot write to %r0\n"); 8102 break; 8103 case DIF_OP_NOT: 8104 case DIF_OP_MOV: 8105 case DIF_OP_ALLOCS: 8106 if (r1 >= nregs) 8107 err += efunc(pc, "invalid register %u\n", r1); 8108 if (r2 != 0) 8109 err += efunc(pc, "non-zero reserved bits\n"); 8110 if (rd >= nregs) 8111 err += efunc(pc, "invalid register %u\n", rd); 8112 if (rd == 0) 8113 err += efunc(pc, "cannot write to %r0\n"); 8114 break; 8115 case DIF_OP_LDSB: 8116 case DIF_OP_LDSH: 8117 case DIF_OP_LDSW: 8118 case DIF_OP_LDUB: 8119 case DIF_OP_LDUH: 8120 case DIF_OP_LDUW: 8121 case DIF_OP_LDX: 8122 if (r1 >= nregs) 8123 err += efunc(pc, "invalid register %u\n", r1); 8124 if (r2 != 0) 8125 err += efunc(pc, "non-zero reserved bits\n"); 8126 if (rd >= nregs) 8127 err += efunc(pc, "invalid register %u\n", rd); 8128 if (rd == 0) 8129 err += efunc(pc, "cannot write to %r0\n"); 8130 if (kcheckload) 8131 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 8132 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 8133 break; 8134 case DIF_OP_RLDSB: 8135 case DIF_OP_RLDSH: 8136 case DIF_OP_RLDSW: 8137 case DIF_OP_RLDUB: 8138 case DIF_OP_RLDUH: 8139 case DIF_OP_RLDUW: 8140 case DIF_OP_RLDX: 8141 if (r1 >= nregs) 8142 err += efunc(pc, "invalid register %u\n", r1); 8143 if (r2 != 0) 8144 err += efunc(pc, "non-zero reserved bits\n"); 8145 if (rd >= nregs) 8146 err += efunc(pc, "invalid register %u\n", rd); 8147 if (rd == 0) 8148 err += efunc(pc, "cannot write to %r0\n"); 8149 break; 8150 case DIF_OP_ULDSB: 8151 case DIF_OP_ULDSH: 8152 case DIF_OP_ULDSW: 8153 case DIF_OP_ULDUB: 8154 case DIF_OP_ULDUH: 8155 case DIF_OP_ULDUW: 8156 case DIF_OP_ULDX: 8157 if (r1 >= nregs) 8158 err += efunc(pc, "invalid register %u\n", r1); 8159 if (r2 != 0) 8160 err += efunc(pc, "non-zero reserved bits\n"); 8161 if (rd >= nregs) 8162 err += efunc(pc, "invalid register %u\n", rd); 8163 if (rd == 0) 8164 err += efunc(pc, "cannot write to %r0\n"); 8165 break; 8166 case DIF_OP_STB: 8167 case DIF_OP_STH: 8168 case DIF_OP_STW: 8169 case DIF_OP_STX: 8170 if (r1 >= nregs) 8171 err += efunc(pc, "invalid register %u\n", r1); 8172 if (r2 != 0) 8173 err += efunc(pc, "non-zero reserved bits\n"); 8174 if (rd >= nregs) 8175 err += efunc(pc, "invalid register %u\n", rd); 8176 if (rd == 0) 8177 err += efunc(pc, "cannot write to 0 address\n"); 8178 break; 8179 case DIF_OP_CMP: 8180 case DIF_OP_SCMP: 8181 if (r1 >= nregs) 8182 err += efunc(pc, "invalid register %u\n", r1); 8183 if (r2 >= nregs) 8184 err += efunc(pc, "invalid register %u\n", r2); 8185 if (rd != 0) 8186 err += efunc(pc, "non-zero reserved bits\n"); 8187 break; 8188 case DIF_OP_TST: 8189 if (r1 >= nregs) 8190 err += efunc(pc, "invalid register %u\n", r1); 8191 if (r2 != 0 || rd != 0) 8192 err += efunc(pc, "non-zero reserved bits\n"); 8193 break; 8194 case DIF_OP_BA: 8195 case DIF_OP_BE: 8196 case DIF_OP_BNE: 8197 case DIF_OP_BG: 8198 case DIF_OP_BGU: 8199 case DIF_OP_BGE: 8200 case DIF_OP_BGEU: 8201 case DIF_OP_BL: 8202 case DIF_OP_BLU: 8203 case DIF_OP_BLE: 8204 case DIF_OP_BLEU: 8205 if (label >= dp->dtdo_len) { 8206 err += efunc(pc, "invalid branch target %u\n", 8207 label); 8208 } 8209 if (label <= pc) { 8210 err += efunc(pc, "backward branch to %u\n", 8211 label); 8212 } 8213 break; 8214 case DIF_OP_RET: 8215 if (r1 != 0 || r2 != 0) 8216 err += efunc(pc, "non-zero reserved bits\n"); 8217 if (rd >= nregs) 8218 err += efunc(pc, "invalid register %u\n", rd); 8219 break; 8220 case DIF_OP_NOP: 8221 case DIF_OP_POPTS: 8222 case DIF_OP_FLUSHTS: 8223 if (r1 != 0 || r2 != 0 || rd != 0) 8224 err += efunc(pc, "non-zero reserved bits\n"); 8225 break; 8226 case DIF_OP_SETX: 8227 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 8228 err += efunc(pc, "invalid integer ref %u\n", 8229 DIF_INSTR_INTEGER(instr)); 8230 } 8231 if (rd >= nregs) 8232 err += efunc(pc, "invalid register %u\n", rd); 8233 if (rd == 0) 8234 err += efunc(pc, "cannot write to %r0\n"); 8235 break; 8236 case DIF_OP_SETS: 8237 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 8238 err += efunc(pc, "invalid string ref %u\n", 8239 DIF_INSTR_STRING(instr)); 8240 } 8241 if (rd >= nregs) 8242 err += efunc(pc, "invalid register %u\n", rd); 8243 if (rd == 0) 8244 err += efunc(pc, "cannot write to %r0\n"); 8245 break; 8246 case DIF_OP_LDGA: 8247 case DIF_OP_LDTA: 8248 if (r1 > DIF_VAR_ARRAY_MAX) 8249 err += efunc(pc, "invalid array %u\n", r1); 8250 if (r2 >= nregs) 8251 err += efunc(pc, "invalid register %u\n", r2); 8252 if (rd >= nregs) 8253 err += efunc(pc, "invalid register %u\n", rd); 8254 if (rd == 0) 8255 err += efunc(pc, "cannot write to %r0\n"); 8256 break; 8257 case DIF_OP_LDGS: 8258 case DIF_OP_LDTS: 8259 case DIF_OP_LDLS: 8260 case DIF_OP_LDGAA: 8261 case DIF_OP_LDTAA: 8262 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 8263 err += efunc(pc, "invalid variable %u\n", v); 8264 if (rd >= nregs) 8265 err += efunc(pc, "invalid register %u\n", rd); 8266 if (rd == 0) 8267 err += efunc(pc, "cannot write to %r0\n"); 8268 break; 8269 case DIF_OP_STGS: 8270 case DIF_OP_STTS: 8271 case DIF_OP_STLS: 8272 case DIF_OP_STGAA: 8273 case DIF_OP_STTAA: 8274 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 8275 err += efunc(pc, "invalid variable %u\n", v); 8276 if (rs >= nregs) 8277 err += efunc(pc, "invalid register %u\n", rd); 8278 break; 8279 case DIF_OP_CALL: 8280 if (subr > DIF_SUBR_MAX) 8281 err += efunc(pc, "invalid subr %u\n", subr); 8282 if (rd >= nregs) 8283 err += efunc(pc, "invalid register %u\n", rd); 8284 if (rd == 0) 8285 err += efunc(pc, "cannot write to %r0\n"); 8286 8287 if (subr == DIF_SUBR_COPYOUT || 8288 subr == DIF_SUBR_COPYOUTSTR) { 8289 dp->dtdo_destructive = 1; 8290 } 8291 break; 8292 case DIF_OP_PUSHTR: 8293 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 8294 err += efunc(pc, "invalid ref type %u\n", type); 8295 if (r2 >= nregs) 8296 err += efunc(pc, "invalid register %u\n", r2); 8297 if (rs >= nregs) 8298 err += efunc(pc, "invalid register %u\n", rs); 8299 break; 8300 case DIF_OP_PUSHTV: 8301 if (type != DIF_TYPE_CTF) 8302 err += efunc(pc, "invalid val type %u\n", type); 8303 if (r2 >= nregs) 8304 err += efunc(pc, "invalid register %u\n", r2); 8305 if (rs >= nregs) 8306 err += efunc(pc, "invalid register %u\n", rs); 8307 break; 8308 default: 8309 err += efunc(pc, "invalid opcode %u\n", 8310 DIF_INSTR_OP(instr)); 8311 } 8312 } 8313 8314 if (dp->dtdo_len != 0 && 8315 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 8316 err += efunc(dp->dtdo_len - 1, 8317 "expected 'ret' as last DIF instruction\n"); 8318 } 8319 8320 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 8321 /* 8322 * If we're not returning by reference, the size must be either 8323 * 0 or the size of one of the base types. 8324 */ 8325 switch (dp->dtdo_rtype.dtdt_size) { 8326 case 0: 8327 case sizeof (uint8_t): 8328 case sizeof (uint16_t): 8329 case sizeof (uint32_t): 8330 case sizeof (uint64_t): 8331 break; 8332 8333 default: 8334 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 8335 } 8336 } 8337 8338 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 8339 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 8340 dtrace_diftype_t *vt, *et; 8341 uint_t id, ndx; 8342 8343 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 8344 v->dtdv_scope != DIFV_SCOPE_THREAD && 8345 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 8346 err += efunc(i, "unrecognized variable scope %d\n", 8347 v->dtdv_scope); 8348 break; 8349 } 8350 8351 if (v->dtdv_kind != DIFV_KIND_ARRAY && 8352 v->dtdv_kind != DIFV_KIND_SCALAR) { 8353 err += efunc(i, "unrecognized variable type %d\n", 8354 v->dtdv_kind); 8355 break; 8356 } 8357 8358 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 8359 err += efunc(i, "%d exceeds variable id limit\n", id); 8360 break; 8361 } 8362 8363 if (id < DIF_VAR_OTHER_UBASE) 8364 continue; 8365 8366 /* 8367 * For user-defined variables, we need to check that this 8368 * definition is identical to any previous definition that we 8369 * encountered. 8370 */ 8371 ndx = id - DIF_VAR_OTHER_UBASE; 8372 8373 switch (v->dtdv_scope) { 8374 case DIFV_SCOPE_GLOBAL: 8375 if (ndx < vstate->dtvs_nglobals) { 8376 dtrace_statvar_t *svar; 8377 8378 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 8379 existing = &svar->dtsv_var; 8380 } 8381 8382 break; 8383 8384 case DIFV_SCOPE_THREAD: 8385 if (ndx < vstate->dtvs_ntlocals) 8386 existing = &vstate->dtvs_tlocals[ndx]; 8387 break; 8388 8389 case DIFV_SCOPE_LOCAL: 8390 if (ndx < vstate->dtvs_nlocals) { 8391 dtrace_statvar_t *svar; 8392 8393 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8394 existing = &svar->dtsv_var; 8395 } 8396 8397 break; 8398 } 8399 8400 vt = &v->dtdv_type; 8401 8402 if (vt->dtdt_flags & DIF_TF_BYREF) { 8403 if (vt->dtdt_size == 0) { 8404 err += efunc(i, "zero-sized variable\n"); 8405 break; 8406 } 8407 8408 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8409 vt->dtdt_size > dtrace_global_maxsize) { 8410 err += efunc(i, "oversized by-ref global\n"); 8411 break; 8412 } 8413 } 8414 8415 if (existing == NULL || existing->dtdv_id == 0) 8416 continue; 8417 8418 ASSERT(existing->dtdv_id == v->dtdv_id); 8419 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8420 8421 if (existing->dtdv_kind != v->dtdv_kind) 8422 err += efunc(i, "%d changed variable kind\n", id); 8423 8424 et = &existing->dtdv_type; 8425 8426 if (vt->dtdt_flags != et->dtdt_flags) { 8427 err += efunc(i, "%d changed variable type flags\n", id); 8428 break; 8429 } 8430 8431 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8432 err += efunc(i, "%d changed variable type size\n", id); 8433 break; 8434 } 8435 } 8436 8437 return (err); 8438 } 8439 8440 /* 8441 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8442 * are much more constrained than normal DIFOs. Specifically, they may 8443 * not: 8444 * 8445 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8446 * miscellaneous string routines 8447 * 2. Access DTrace variables other than the args[] array, and the 8448 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8449 * 3. Have thread-local variables. 8450 * 4. Have dynamic variables. 8451 */ 8452 static int 8453 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8454 { 8455 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8456 int err = 0; 8457 uint_t pc; 8458 8459 for (pc = 0; pc < dp->dtdo_len; pc++) { 8460 dif_instr_t instr = dp->dtdo_buf[pc]; 8461 8462 uint_t v = DIF_INSTR_VAR(instr); 8463 uint_t subr = DIF_INSTR_SUBR(instr); 8464 uint_t op = DIF_INSTR_OP(instr); 8465 8466 switch (op) { 8467 case DIF_OP_OR: 8468 case DIF_OP_XOR: 8469 case DIF_OP_AND: 8470 case DIF_OP_SLL: 8471 case DIF_OP_SRL: 8472 case DIF_OP_SRA: 8473 case DIF_OP_SUB: 8474 case DIF_OP_ADD: 8475 case DIF_OP_MUL: 8476 case DIF_OP_SDIV: 8477 case DIF_OP_UDIV: 8478 case DIF_OP_SREM: 8479 case DIF_OP_UREM: 8480 case DIF_OP_COPYS: 8481 case DIF_OP_NOT: 8482 case DIF_OP_MOV: 8483 case DIF_OP_RLDSB: 8484 case DIF_OP_RLDSH: 8485 case DIF_OP_RLDSW: 8486 case DIF_OP_RLDUB: 8487 case DIF_OP_RLDUH: 8488 case DIF_OP_RLDUW: 8489 case DIF_OP_RLDX: 8490 case DIF_OP_ULDSB: 8491 case DIF_OP_ULDSH: 8492 case DIF_OP_ULDSW: 8493 case DIF_OP_ULDUB: 8494 case DIF_OP_ULDUH: 8495 case DIF_OP_ULDUW: 8496 case DIF_OP_ULDX: 8497 case DIF_OP_STB: 8498 case DIF_OP_STH: 8499 case DIF_OP_STW: 8500 case DIF_OP_STX: 8501 case DIF_OP_ALLOCS: 8502 case DIF_OP_CMP: 8503 case DIF_OP_SCMP: 8504 case DIF_OP_TST: 8505 case DIF_OP_BA: 8506 case DIF_OP_BE: 8507 case DIF_OP_BNE: 8508 case DIF_OP_BG: 8509 case DIF_OP_BGU: 8510 case DIF_OP_BGE: 8511 case DIF_OP_BGEU: 8512 case DIF_OP_BL: 8513 case DIF_OP_BLU: 8514 case DIF_OP_BLE: 8515 case DIF_OP_BLEU: 8516 case DIF_OP_RET: 8517 case DIF_OP_NOP: 8518 case DIF_OP_POPTS: 8519 case DIF_OP_FLUSHTS: 8520 case DIF_OP_SETX: 8521 case DIF_OP_SETS: 8522 case DIF_OP_LDGA: 8523 case DIF_OP_LDLS: 8524 case DIF_OP_STGS: 8525 case DIF_OP_STLS: 8526 case DIF_OP_PUSHTR: 8527 case DIF_OP_PUSHTV: 8528 break; 8529 8530 case DIF_OP_LDGS: 8531 if (v >= DIF_VAR_OTHER_UBASE) 8532 break; 8533 8534 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8535 break; 8536 8537 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8538 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8539 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8540 v == DIF_VAR_UID || v == DIF_VAR_GID) 8541 break; 8542 8543 err += efunc(pc, "illegal variable %u\n", v); 8544 break; 8545 8546 case DIF_OP_LDTA: 8547 case DIF_OP_LDTS: 8548 case DIF_OP_LDGAA: 8549 case DIF_OP_LDTAA: 8550 err += efunc(pc, "illegal dynamic variable load\n"); 8551 break; 8552 8553 case DIF_OP_STTS: 8554 case DIF_OP_STGAA: 8555 case DIF_OP_STTAA: 8556 err += efunc(pc, "illegal dynamic variable store\n"); 8557 break; 8558 8559 case DIF_OP_CALL: 8560 if (subr == DIF_SUBR_ALLOCA || 8561 subr == DIF_SUBR_BCOPY || 8562 subr == DIF_SUBR_COPYIN || 8563 subr == DIF_SUBR_COPYINTO || 8564 subr == DIF_SUBR_COPYINSTR || 8565 subr == DIF_SUBR_INDEX || 8566 subr == DIF_SUBR_INET_NTOA || 8567 subr == DIF_SUBR_INET_NTOA6 || 8568 subr == DIF_SUBR_INET_NTOP || 8569 subr == DIF_SUBR_LLTOSTR || 8570 subr == DIF_SUBR_RINDEX || 8571 subr == DIF_SUBR_STRCHR || 8572 subr == DIF_SUBR_STRJOIN || 8573 subr == DIF_SUBR_STRRCHR || 8574 subr == DIF_SUBR_STRSTR || 8575 subr == DIF_SUBR_HTONS || 8576 subr == DIF_SUBR_HTONL || 8577 subr == DIF_SUBR_HTONLL || 8578 subr == DIF_SUBR_NTOHS || 8579 subr == DIF_SUBR_NTOHL || 8580 subr == DIF_SUBR_NTOHLL) 8581 break; 8582 8583 err += efunc(pc, "invalid subr %u\n", subr); 8584 break; 8585 8586 default: 8587 err += efunc(pc, "invalid opcode %u\n", 8588 DIF_INSTR_OP(instr)); 8589 } 8590 } 8591 8592 return (err); 8593 } 8594 8595 /* 8596 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8597 * basis; 0 if not. 8598 */ 8599 static int 8600 dtrace_difo_cacheable(dtrace_difo_t *dp) 8601 { 8602 int i; 8603 8604 if (dp == NULL) 8605 return (0); 8606 8607 for (i = 0; i < dp->dtdo_varlen; i++) { 8608 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8609 8610 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8611 continue; 8612 8613 switch (v->dtdv_id) { 8614 case DIF_VAR_CURTHREAD: 8615 case DIF_VAR_PID: 8616 case DIF_VAR_TID: 8617 case DIF_VAR_EXECNAME: 8618 case DIF_VAR_ZONENAME: 8619 break; 8620 8621 default: 8622 return (0); 8623 } 8624 } 8625 8626 /* 8627 * This DIF object may be cacheable. Now we need to look for any 8628 * array loading instructions, any memory loading instructions, or 8629 * any stores to thread-local variables. 8630 */ 8631 for (i = 0; i < dp->dtdo_len; i++) { 8632 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8633 8634 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8635 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8636 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8637 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8638 return (0); 8639 } 8640 8641 return (1); 8642 } 8643 8644 static void 8645 dtrace_difo_hold(dtrace_difo_t *dp) 8646 { 8647 int i; 8648 8649 ASSERT(MUTEX_HELD(&dtrace_lock)); 8650 8651 dp->dtdo_refcnt++; 8652 ASSERT(dp->dtdo_refcnt != 0); 8653 8654 /* 8655 * We need to check this DIF object for references to the variable 8656 * DIF_VAR_VTIMESTAMP. 8657 */ 8658 for (i = 0; i < dp->dtdo_varlen; i++) { 8659 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8660 8661 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8662 continue; 8663 8664 if (dtrace_vtime_references++ == 0) 8665 dtrace_vtime_enable(); 8666 } 8667 } 8668 8669 /* 8670 * This routine calculates the dynamic variable chunksize for a given DIF 8671 * object. The calculation is not fool-proof, and can probably be tricked by 8672 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8673 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8674 * if a dynamic variable size exceeds the chunksize. 8675 */ 8676 static void 8677 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8678 { 8679 uint64_t sval; 8680 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8681 const dif_instr_t *text = dp->dtdo_buf; 8682 uint_t pc, srd = 0; 8683 uint_t ttop = 0; 8684 size_t size, ksize; 8685 uint_t id, i; 8686 8687 for (pc = 0; pc < dp->dtdo_len; pc++) { 8688 dif_instr_t instr = text[pc]; 8689 uint_t op = DIF_INSTR_OP(instr); 8690 uint_t rd = DIF_INSTR_RD(instr); 8691 uint_t r1 = DIF_INSTR_R1(instr); 8692 uint_t nkeys = 0; 8693 uchar_t scope; 8694 8695 dtrace_key_t *key = tupregs; 8696 8697 switch (op) { 8698 case DIF_OP_SETX: 8699 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8700 srd = rd; 8701 continue; 8702 8703 case DIF_OP_STTS: 8704 key = &tupregs[DIF_DTR_NREGS]; 8705 key[0].dttk_size = 0; 8706 key[1].dttk_size = 0; 8707 nkeys = 2; 8708 scope = DIFV_SCOPE_THREAD; 8709 break; 8710 8711 case DIF_OP_STGAA: 8712 case DIF_OP_STTAA: 8713 nkeys = ttop; 8714 8715 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 8716 key[nkeys++].dttk_size = 0; 8717 8718 key[nkeys++].dttk_size = 0; 8719 8720 if (op == DIF_OP_STTAA) { 8721 scope = DIFV_SCOPE_THREAD; 8722 } else { 8723 scope = DIFV_SCOPE_GLOBAL; 8724 } 8725 8726 break; 8727 8728 case DIF_OP_PUSHTR: 8729 if (ttop == DIF_DTR_NREGS) 8730 return; 8731 8732 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 8733 /* 8734 * If the register for the size of the "pushtr" 8735 * is %r0 (or the value is 0) and the type is 8736 * a string, we'll use the system-wide default 8737 * string size. 8738 */ 8739 tupregs[ttop++].dttk_size = 8740 dtrace_strsize_default; 8741 } else { 8742 if (srd == 0) 8743 return; 8744 8745 tupregs[ttop++].dttk_size = sval; 8746 } 8747 8748 break; 8749 8750 case DIF_OP_PUSHTV: 8751 if (ttop == DIF_DTR_NREGS) 8752 return; 8753 8754 tupregs[ttop++].dttk_size = 0; 8755 break; 8756 8757 case DIF_OP_FLUSHTS: 8758 ttop = 0; 8759 break; 8760 8761 case DIF_OP_POPTS: 8762 if (ttop != 0) 8763 ttop--; 8764 break; 8765 } 8766 8767 sval = 0; 8768 srd = 0; 8769 8770 if (nkeys == 0) 8771 continue; 8772 8773 /* 8774 * We have a dynamic variable allocation; calculate its size. 8775 */ 8776 for (ksize = 0, i = 0; i < nkeys; i++) 8777 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 8778 8779 size = sizeof (dtrace_dynvar_t); 8780 size += sizeof (dtrace_key_t) * (nkeys - 1); 8781 size += ksize; 8782 8783 /* 8784 * Now we need to determine the size of the stored data. 8785 */ 8786 id = DIF_INSTR_VAR(instr); 8787 8788 for (i = 0; i < dp->dtdo_varlen; i++) { 8789 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8790 8791 if (v->dtdv_id == id && v->dtdv_scope == scope) { 8792 size += v->dtdv_type.dtdt_size; 8793 break; 8794 } 8795 } 8796 8797 if (i == dp->dtdo_varlen) 8798 return; 8799 8800 /* 8801 * We have the size. If this is larger than the chunk size 8802 * for our dynamic variable state, reset the chunk size. 8803 */ 8804 size = P2ROUNDUP(size, sizeof (uint64_t)); 8805 8806 if (size > vstate->dtvs_dynvars.dtds_chunksize) 8807 vstate->dtvs_dynvars.dtds_chunksize = size; 8808 } 8809 } 8810 8811 static void 8812 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8813 { 8814 int i, oldsvars, osz, nsz, otlocals, ntlocals; 8815 uint_t id; 8816 8817 ASSERT(MUTEX_HELD(&dtrace_lock)); 8818 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 8819 8820 for (i = 0; i < dp->dtdo_varlen; i++) { 8821 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8822 dtrace_statvar_t *svar, ***svarp; 8823 size_t dsize = 0; 8824 uint8_t scope = v->dtdv_scope; 8825 int *np; 8826 8827 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8828 continue; 8829 8830 id -= DIF_VAR_OTHER_UBASE; 8831 8832 switch (scope) { 8833 case DIFV_SCOPE_THREAD: 8834 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 8835 dtrace_difv_t *tlocals; 8836 8837 if ((ntlocals = (otlocals << 1)) == 0) 8838 ntlocals = 1; 8839 8840 osz = otlocals * sizeof (dtrace_difv_t); 8841 nsz = ntlocals * sizeof (dtrace_difv_t); 8842 8843 tlocals = kmem_zalloc(nsz, KM_SLEEP); 8844 8845 if (osz != 0) { 8846 bcopy(vstate->dtvs_tlocals, 8847 tlocals, osz); 8848 kmem_free(vstate->dtvs_tlocals, osz); 8849 } 8850 8851 vstate->dtvs_tlocals = tlocals; 8852 vstate->dtvs_ntlocals = ntlocals; 8853 } 8854 8855 vstate->dtvs_tlocals[id] = *v; 8856 continue; 8857 8858 case DIFV_SCOPE_LOCAL: 8859 np = &vstate->dtvs_nlocals; 8860 svarp = &vstate->dtvs_locals; 8861 8862 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8863 dsize = NCPU * (v->dtdv_type.dtdt_size + 8864 sizeof (uint64_t)); 8865 else 8866 dsize = NCPU * sizeof (uint64_t); 8867 8868 break; 8869 8870 case DIFV_SCOPE_GLOBAL: 8871 np = &vstate->dtvs_nglobals; 8872 svarp = &vstate->dtvs_globals; 8873 8874 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8875 dsize = v->dtdv_type.dtdt_size + 8876 sizeof (uint64_t); 8877 8878 break; 8879 8880 default: 8881 ASSERT(0); 8882 } 8883 8884 while (id >= (oldsvars = *np)) { 8885 dtrace_statvar_t **statics; 8886 int newsvars, oldsize, newsize; 8887 8888 if ((newsvars = (oldsvars << 1)) == 0) 8889 newsvars = 1; 8890 8891 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 8892 newsize = newsvars * sizeof (dtrace_statvar_t *); 8893 8894 statics = kmem_zalloc(newsize, KM_SLEEP); 8895 8896 if (oldsize != 0) { 8897 bcopy(*svarp, statics, oldsize); 8898 kmem_free(*svarp, oldsize); 8899 } 8900 8901 *svarp = statics; 8902 *np = newsvars; 8903 } 8904 8905 if ((svar = (*svarp)[id]) == NULL) { 8906 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 8907 svar->dtsv_var = *v; 8908 8909 if ((svar->dtsv_size = dsize) != 0) { 8910 svar->dtsv_data = (uint64_t)(uintptr_t) 8911 kmem_zalloc(dsize, KM_SLEEP); 8912 } 8913 8914 (*svarp)[id] = svar; 8915 } 8916 8917 svar->dtsv_refcnt++; 8918 } 8919 8920 dtrace_difo_chunksize(dp, vstate); 8921 dtrace_difo_hold(dp); 8922 } 8923 8924 static dtrace_difo_t * 8925 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8926 { 8927 dtrace_difo_t *new; 8928 size_t sz; 8929 8930 ASSERT(dp->dtdo_buf != NULL); 8931 ASSERT(dp->dtdo_refcnt != 0); 8932 8933 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 8934 8935 ASSERT(dp->dtdo_buf != NULL); 8936 sz = dp->dtdo_len * sizeof (dif_instr_t); 8937 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 8938 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 8939 new->dtdo_len = dp->dtdo_len; 8940 8941 if (dp->dtdo_strtab != NULL) { 8942 ASSERT(dp->dtdo_strlen != 0); 8943 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 8944 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 8945 new->dtdo_strlen = dp->dtdo_strlen; 8946 } 8947 8948 if (dp->dtdo_inttab != NULL) { 8949 ASSERT(dp->dtdo_intlen != 0); 8950 sz = dp->dtdo_intlen * sizeof (uint64_t); 8951 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 8952 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 8953 new->dtdo_intlen = dp->dtdo_intlen; 8954 } 8955 8956 if (dp->dtdo_vartab != NULL) { 8957 ASSERT(dp->dtdo_varlen != 0); 8958 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 8959 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 8960 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 8961 new->dtdo_varlen = dp->dtdo_varlen; 8962 } 8963 8964 dtrace_difo_init(new, vstate); 8965 return (new); 8966 } 8967 8968 static void 8969 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8970 { 8971 int i; 8972 8973 ASSERT(dp->dtdo_refcnt == 0); 8974 8975 for (i = 0; i < dp->dtdo_varlen; i++) { 8976 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8977 dtrace_statvar_t *svar, **svarp; 8978 uint_t id; 8979 uint8_t scope = v->dtdv_scope; 8980 int *np; 8981 8982 switch (scope) { 8983 case DIFV_SCOPE_THREAD: 8984 continue; 8985 8986 case DIFV_SCOPE_LOCAL: 8987 np = &vstate->dtvs_nlocals; 8988 svarp = vstate->dtvs_locals; 8989 break; 8990 8991 case DIFV_SCOPE_GLOBAL: 8992 np = &vstate->dtvs_nglobals; 8993 svarp = vstate->dtvs_globals; 8994 break; 8995 8996 default: 8997 ASSERT(0); 8998 } 8999 9000 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9001 continue; 9002 9003 id -= DIF_VAR_OTHER_UBASE; 9004 ASSERT(id < *np); 9005 9006 svar = svarp[id]; 9007 ASSERT(svar != NULL); 9008 ASSERT(svar->dtsv_refcnt > 0); 9009 9010 if (--svar->dtsv_refcnt > 0) 9011 continue; 9012 9013 if (svar->dtsv_size != 0) { 9014 ASSERT(svar->dtsv_data != NULL); 9015 kmem_free((void *)(uintptr_t)svar->dtsv_data, 9016 svar->dtsv_size); 9017 } 9018 9019 kmem_free(svar, sizeof (dtrace_statvar_t)); 9020 svarp[id] = NULL; 9021 } 9022 9023 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 9024 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 9025 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 9026 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 9027 9028 kmem_free(dp, sizeof (dtrace_difo_t)); 9029 } 9030 9031 static void 9032 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9033 { 9034 int i; 9035 9036 ASSERT(MUTEX_HELD(&dtrace_lock)); 9037 ASSERT(dp->dtdo_refcnt != 0); 9038 9039 for (i = 0; i < dp->dtdo_varlen; i++) { 9040 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9041 9042 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9043 continue; 9044 9045 ASSERT(dtrace_vtime_references > 0); 9046 if (--dtrace_vtime_references == 0) 9047 dtrace_vtime_disable(); 9048 } 9049 9050 if (--dp->dtdo_refcnt == 0) 9051 dtrace_difo_destroy(dp, vstate); 9052 } 9053 9054 /* 9055 * DTrace Format Functions 9056 */ 9057 static uint16_t 9058 dtrace_format_add(dtrace_state_t *state, char *str) 9059 { 9060 char *fmt, **new; 9061 uint16_t ndx, len = strlen(str) + 1; 9062 9063 fmt = kmem_zalloc(len, KM_SLEEP); 9064 bcopy(str, fmt, len); 9065 9066 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 9067 if (state->dts_formats[ndx] == NULL) { 9068 state->dts_formats[ndx] = fmt; 9069 return (ndx + 1); 9070 } 9071 } 9072 9073 if (state->dts_nformats == USHRT_MAX) { 9074 /* 9075 * This is only likely if a denial-of-service attack is being 9076 * attempted. As such, it's okay to fail silently here. 9077 */ 9078 kmem_free(fmt, len); 9079 return (0); 9080 } 9081 9082 /* 9083 * For simplicity, we always resize the formats array to be exactly the 9084 * number of formats. 9085 */ 9086 ndx = state->dts_nformats++; 9087 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 9088 9089 if (state->dts_formats != NULL) { 9090 ASSERT(ndx != 0); 9091 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 9092 kmem_free(state->dts_formats, ndx * sizeof (char *)); 9093 } 9094 9095 state->dts_formats = new; 9096 state->dts_formats[ndx] = fmt; 9097 9098 return (ndx + 1); 9099 } 9100 9101 static void 9102 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 9103 { 9104 char *fmt; 9105 9106 ASSERT(state->dts_formats != NULL); 9107 ASSERT(format <= state->dts_nformats); 9108 ASSERT(state->dts_formats[format - 1] != NULL); 9109 9110 fmt = state->dts_formats[format - 1]; 9111 kmem_free(fmt, strlen(fmt) + 1); 9112 state->dts_formats[format - 1] = NULL; 9113 } 9114 9115 static void 9116 dtrace_format_destroy(dtrace_state_t *state) 9117 { 9118 int i; 9119 9120 if (state->dts_nformats == 0) { 9121 ASSERT(state->dts_formats == NULL); 9122 return; 9123 } 9124 9125 ASSERT(state->dts_formats != NULL); 9126 9127 for (i = 0; i < state->dts_nformats; i++) { 9128 char *fmt = state->dts_formats[i]; 9129 9130 if (fmt == NULL) 9131 continue; 9132 9133 kmem_free(fmt, strlen(fmt) + 1); 9134 } 9135 9136 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 9137 state->dts_nformats = 0; 9138 state->dts_formats = NULL; 9139 } 9140 9141 /* 9142 * DTrace Predicate Functions 9143 */ 9144 static dtrace_predicate_t * 9145 dtrace_predicate_create(dtrace_difo_t *dp) 9146 { 9147 dtrace_predicate_t *pred; 9148 9149 ASSERT(MUTEX_HELD(&dtrace_lock)); 9150 ASSERT(dp->dtdo_refcnt != 0); 9151 9152 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 9153 pred->dtp_difo = dp; 9154 pred->dtp_refcnt = 1; 9155 9156 if (!dtrace_difo_cacheable(dp)) 9157 return (pred); 9158 9159 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 9160 /* 9161 * This is only theoretically possible -- we have had 2^32 9162 * cacheable predicates on this machine. We cannot allow any 9163 * more predicates to become cacheable: as unlikely as it is, 9164 * there may be a thread caching a (now stale) predicate cache 9165 * ID. (N.B.: the temptation is being successfully resisted to 9166 * have this cmn_err() "Holy shit -- we executed this code!") 9167 */ 9168 return (pred); 9169 } 9170 9171 pred->dtp_cacheid = dtrace_predcache_id++; 9172 9173 return (pred); 9174 } 9175 9176 static void 9177 dtrace_predicate_hold(dtrace_predicate_t *pred) 9178 { 9179 ASSERT(MUTEX_HELD(&dtrace_lock)); 9180 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 9181 ASSERT(pred->dtp_refcnt > 0); 9182 9183 pred->dtp_refcnt++; 9184 } 9185 9186 static void 9187 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 9188 { 9189 dtrace_difo_t *dp = pred->dtp_difo; 9190 9191 ASSERT(MUTEX_HELD(&dtrace_lock)); 9192 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 9193 ASSERT(pred->dtp_refcnt > 0); 9194 9195 if (--pred->dtp_refcnt == 0) { 9196 dtrace_difo_release(pred->dtp_difo, vstate); 9197 kmem_free(pred, sizeof (dtrace_predicate_t)); 9198 } 9199 } 9200 9201 /* 9202 * DTrace Action Description Functions 9203 */ 9204 static dtrace_actdesc_t * 9205 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 9206 uint64_t uarg, uint64_t arg) 9207 { 9208 dtrace_actdesc_t *act; 9209 9210 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 9211 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 9212 9213 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 9214 act->dtad_kind = kind; 9215 act->dtad_ntuple = ntuple; 9216 act->dtad_uarg = uarg; 9217 act->dtad_arg = arg; 9218 act->dtad_refcnt = 1; 9219 9220 return (act); 9221 } 9222 9223 static void 9224 dtrace_actdesc_hold(dtrace_actdesc_t *act) 9225 { 9226 ASSERT(act->dtad_refcnt >= 1); 9227 act->dtad_refcnt++; 9228 } 9229 9230 static void 9231 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 9232 { 9233 dtrace_actkind_t kind = act->dtad_kind; 9234 dtrace_difo_t *dp; 9235 9236 ASSERT(act->dtad_refcnt >= 1); 9237 9238 if (--act->dtad_refcnt != 0) 9239 return; 9240 9241 if ((dp = act->dtad_difo) != NULL) 9242 dtrace_difo_release(dp, vstate); 9243 9244 if (DTRACEACT_ISPRINTFLIKE(kind)) { 9245 char *str = (char *)(uintptr_t)act->dtad_arg; 9246 9247 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 9248 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 9249 9250 if (str != NULL) 9251 kmem_free(str, strlen(str) + 1); 9252 } 9253 9254 kmem_free(act, sizeof (dtrace_actdesc_t)); 9255 } 9256 9257 /* 9258 * DTrace ECB Functions 9259 */ 9260 static dtrace_ecb_t * 9261 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 9262 { 9263 dtrace_ecb_t *ecb; 9264 dtrace_epid_t epid; 9265 9266 ASSERT(MUTEX_HELD(&dtrace_lock)); 9267 9268 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 9269 ecb->dte_predicate = NULL; 9270 ecb->dte_probe = probe; 9271 9272 /* 9273 * The default size is the size of the default action: recording 9274 * the epid. 9275 */ 9276 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9277 ecb->dte_alignment = sizeof (dtrace_epid_t); 9278 9279 epid = state->dts_epid++; 9280 9281 if (epid - 1 >= state->dts_necbs) { 9282 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 9283 int necbs = state->dts_necbs << 1; 9284 9285 ASSERT(epid == state->dts_necbs + 1); 9286 9287 if (necbs == 0) { 9288 ASSERT(oecbs == NULL); 9289 necbs = 1; 9290 } 9291 9292 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 9293 9294 if (oecbs != NULL) 9295 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 9296 9297 dtrace_membar_producer(); 9298 state->dts_ecbs = ecbs; 9299 9300 if (oecbs != NULL) { 9301 /* 9302 * If this state is active, we must dtrace_sync() 9303 * before we can free the old dts_ecbs array: we're 9304 * coming in hot, and there may be active ring 9305 * buffer processing (which indexes into the dts_ecbs 9306 * array) on another CPU. 9307 */ 9308 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 9309 dtrace_sync(); 9310 9311 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 9312 } 9313 9314 dtrace_membar_producer(); 9315 state->dts_necbs = necbs; 9316 } 9317 9318 ecb->dte_state = state; 9319 9320 ASSERT(state->dts_ecbs[epid - 1] == NULL); 9321 dtrace_membar_producer(); 9322 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 9323 9324 return (ecb); 9325 } 9326 9327 static int 9328 dtrace_ecb_enable(dtrace_ecb_t *ecb) 9329 { 9330 dtrace_probe_t *probe = ecb->dte_probe; 9331 9332 ASSERT(MUTEX_HELD(&cpu_lock)); 9333 ASSERT(MUTEX_HELD(&dtrace_lock)); 9334 ASSERT(ecb->dte_next == NULL); 9335 9336 if (probe == NULL) { 9337 /* 9338 * This is the NULL probe -- there's nothing to do. 9339 */ 9340 return (0); 9341 } 9342 9343 if (probe->dtpr_ecb == NULL) { 9344 dtrace_provider_t *prov = probe->dtpr_provider; 9345 9346 /* 9347 * We're the first ECB on this probe. 9348 */ 9349 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 9350 9351 if (ecb->dte_predicate != NULL) 9352 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 9353 9354 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 9355 probe->dtpr_id, probe->dtpr_arg)); 9356 } else { 9357 /* 9358 * This probe is already active. Swing the last pointer to 9359 * point to the new ECB, and issue a dtrace_sync() to assure 9360 * that all CPUs have seen the change. 9361 */ 9362 ASSERT(probe->dtpr_ecb_last != NULL); 9363 probe->dtpr_ecb_last->dte_next = ecb; 9364 probe->dtpr_ecb_last = ecb; 9365 probe->dtpr_predcache = 0; 9366 9367 dtrace_sync(); 9368 return (0); 9369 } 9370 } 9371 9372 static void 9373 dtrace_ecb_resize(dtrace_ecb_t *ecb) 9374 { 9375 uint32_t maxalign = sizeof (dtrace_epid_t); 9376 uint32_t align = sizeof (uint8_t), offs, diff; 9377 dtrace_action_t *act; 9378 int wastuple = 0; 9379 uint32_t aggbase = UINT32_MAX; 9380 dtrace_state_t *state = ecb->dte_state; 9381 9382 /* 9383 * If we record anything, we always record the epid. (And we always 9384 * record it first.) 9385 */ 9386 offs = sizeof (dtrace_epid_t); 9387 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9388 9389 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9390 dtrace_recdesc_t *rec = &act->dta_rec; 9391 9392 if ((align = rec->dtrd_alignment) > maxalign) 9393 maxalign = align; 9394 9395 if (!wastuple && act->dta_intuple) { 9396 /* 9397 * This is the first record in a tuple. Align the 9398 * offset to be at offset 4 in an 8-byte aligned 9399 * block. 9400 */ 9401 diff = offs + sizeof (dtrace_aggid_t); 9402 9403 if (diff = (diff & (sizeof (uint64_t) - 1))) 9404 offs += sizeof (uint64_t) - diff; 9405 9406 aggbase = offs - sizeof (dtrace_aggid_t); 9407 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 9408 } 9409 9410 /*LINTED*/ 9411 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 9412 /* 9413 * The current offset is not properly aligned; align it. 9414 */ 9415 offs += align - diff; 9416 } 9417 9418 rec->dtrd_offset = offs; 9419 9420 if (offs + rec->dtrd_size > ecb->dte_needed) { 9421 ecb->dte_needed = offs + rec->dtrd_size; 9422 9423 if (ecb->dte_needed > state->dts_needed) 9424 state->dts_needed = ecb->dte_needed; 9425 } 9426 9427 if (DTRACEACT_ISAGG(act->dta_kind)) { 9428 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9429 dtrace_action_t *first = agg->dtag_first, *prev; 9430 9431 ASSERT(rec->dtrd_size != 0 && first != NULL); 9432 ASSERT(wastuple); 9433 ASSERT(aggbase != UINT32_MAX); 9434 9435 agg->dtag_base = aggbase; 9436 9437 while ((prev = first->dta_prev) != NULL && 9438 DTRACEACT_ISAGG(prev->dta_kind)) { 9439 agg = (dtrace_aggregation_t *)prev; 9440 first = agg->dtag_first; 9441 } 9442 9443 if (prev != NULL) { 9444 offs = prev->dta_rec.dtrd_offset + 9445 prev->dta_rec.dtrd_size; 9446 } else { 9447 offs = sizeof (dtrace_epid_t); 9448 } 9449 wastuple = 0; 9450 } else { 9451 if (!act->dta_intuple) 9452 ecb->dte_size = offs + rec->dtrd_size; 9453 9454 offs += rec->dtrd_size; 9455 } 9456 9457 wastuple = act->dta_intuple; 9458 } 9459 9460 if ((act = ecb->dte_action) != NULL && 9461 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9462 ecb->dte_size == sizeof (dtrace_epid_t)) { 9463 /* 9464 * If the size is still sizeof (dtrace_epid_t), then all 9465 * actions store no data; set the size to 0. 9466 */ 9467 ecb->dte_alignment = maxalign; 9468 ecb->dte_size = 0; 9469 9470 /* 9471 * If the needed space is still sizeof (dtrace_epid_t), then 9472 * all actions need no additional space; set the needed 9473 * size to 0. 9474 */ 9475 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 9476 ecb->dte_needed = 0; 9477 9478 return; 9479 } 9480 9481 /* 9482 * Set our alignment, and make sure that the dte_size and dte_needed 9483 * are aligned to the size of an EPID. 9484 */ 9485 ecb->dte_alignment = maxalign; 9486 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 9487 ~(sizeof (dtrace_epid_t) - 1); 9488 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 9489 ~(sizeof (dtrace_epid_t) - 1); 9490 ASSERT(ecb->dte_size <= ecb->dte_needed); 9491 } 9492 9493 static dtrace_action_t * 9494 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9495 { 9496 dtrace_aggregation_t *agg; 9497 size_t size = sizeof (uint64_t); 9498 int ntuple = desc->dtad_ntuple; 9499 dtrace_action_t *act; 9500 dtrace_recdesc_t *frec; 9501 dtrace_aggid_t aggid; 9502 dtrace_state_t *state = ecb->dte_state; 9503 9504 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9505 agg->dtag_ecb = ecb; 9506 9507 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9508 9509 switch (desc->dtad_kind) { 9510 case DTRACEAGG_MIN: 9511 agg->dtag_initial = INT64_MAX; 9512 agg->dtag_aggregate = dtrace_aggregate_min; 9513 break; 9514 9515 case DTRACEAGG_MAX: 9516 agg->dtag_initial = INT64_MIN; 9517 agg->dtag_aggregate = dtrace_aggregate_max; 9518 break; 9519 9520 case DTRACEAGG_COUNT: 9521 agg->dtag_aggregate = dtrace_aggregate_count; 9522 break; 9523 9524 case DTRACEAGG_QUANTIZE: 9525 agg->dtag_aggregate = dtrace_aggregate_quantize; 9526 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9527 sizeof (uint64_t); 9528 break; 9529 9530 case DTRACEAGG_LQUANTIZE: { 9531 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9532 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9533 9534 agg->dtag_initial = desc->dtad_arg; 9535 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9536 9537 if (step == 0 || levels == 0) 9538 goto err; 9539 9540 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9541 break; 9542 } 9543 9544 case DTRACEAGG_LLQUANTIZE: { 9545 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 9546 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 9547 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 9548 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 9549 int64_t v; 9550 9551 agg->dtag_initial = desc->dtad_arg; 9552 agg->dtag_aggregate = dtrace_aggregate_llquantize; 9553 9554 if (factor < 2 || low >= high || nsteps < factor) 9555 goto err; 9556 9557 /* 9558 * Now check that the number of steps evenly divides a power 9559 * of the factor. (This assures both integer bucket size and 9560 * linearity within each magnitude.) 9561 */ 9562 for (v = factor; v < nsteps; v *= factor) 9563 continue; 9564 9565 if ((v % nsteps) || (nsteps % factor)) 9566 goto err; 9567 9568 size = (dtrace_aggregate_llquantize_bucket(factor, 9569 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 9570 break; 9571 } 9572 9573 case DTRACEAGG_AVG: 9574 agg->dtag_aggregate = dtrace_aggregate_avg; 9575 size = sizeof (uint64_t) * 2; 9576 break; 9577 9578 case DTRACEAGG_STDDEV: 9579 agg->dtag_aggregate = dtrace_aggregate_stddev; 9580 size = sizeof (uint64_t) * 4; 9581 break; 9582 9583 case DTRACEAGG_SUM: 9584 agg->dtag_aggregate = dtrace_aggregate_sum; 9585 break; 9586 9587 default: 9588 goto err; 9589 } 9590 9591 agg->dtag_action.dta_rec.dtrd_size = size; 9592 9593 if (ntuple == 0) 9594 goto err; 9595 9596 /* 9597 * We must make sure that we have enough actions for the n-tuple. 9598 */ 9599 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9600 if (DTRACEACT_ISAGG(act->dta_kind)) 9601 break; 9602 9603 if (--ntuple == 0) { 9604 /* 9605 * This is the action with which our n-tuple begins. 9606 */ 9607 agg->dtag_first = act; 9608 goto success; 9609 } 9610 } 9611 9612 /* 9613 * This n-tuple is short by ntuple elements. Return failure. 9614 */ 9615 ASSERT(ntuple != 0); 9616 err: 9617 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9618 return (NULL); 9619 9620 success: 9621 /* 9622 * If the last action in the tuple has a size of zero, it's actually 9623 * an expression argument for the aggregating action. 9624 */ 9625 ASSERT(ecb->dte_action_last != NULL); 9626 act = ecb->dte_action_last; 9627 9628 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9629 ASSERT(act->dta_difo != NULL); 9630 9631 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9632 agg->dtag_hasarg = 1; 9633 } 9634 9635 /* 9636 * We need to allocate an id for this aggregation. 9637 */ 9638 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9639 VM_BESTFIT | VM_SLEEP); 9640 9641 if (aggid - 1 >= state->dts_naggregations) { 9642 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9643 dtrace_aggregation_t **aggs; 9644 int naggs = state->dts_naggregations << 1; 9645 int onaggs = state->dts_naggregations; 9646 9647 ASSERT(aggid == state->dts_naggregations + 1); 9648 9649 if (naggs == 0) { 9650 ASSERT(oaggs == NULL); 9651 naggs = 1; 9652 } 9653 9654 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9655 9656 if (oaggs != NULL) { 9657 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9658 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9659 } 9660 9661 state->dts_aggregations = aggs; 9662 state->dts_naggregations = naggs; 9663 } 9664 9665 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9666 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9667 9668 frec = &agg->dtag_first->dta_rec; 9669 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9670 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9671 9672 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9673 ASSERT(!act->dta_intuple); 9674 act->dta_intuple = 1; 9675 } 9676 9677 return (&agg->dtag_action); 9678 } 9679 9680 static void 9681 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9682 { 9683 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9684 dtrace_state_t *state = ecb->dte_state; 9685 dtrace_aggid_t aggid = agg->dtag_id; 9686 9687 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9688 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9689 9690 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9691 state->dts_aggregations[aggid - 1] = NULL; 9692 9693 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9694 } 9695 9696 static int 9697 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9698 { 9699 dtrace_action_t *action, *last; 9700 dtrace_difo_t *dp = desc->dtad_difo; 9701 uint32_t size = 0, align = sizeof (uint8_t), mask; 9702 uint16_t format = 0; 9703 dtrace_recdesc_t *rec; 9704 dtrace_state_t *state = ecb->dte_state; 9705 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9706 uint64_t arg = desc->dtad_arg; 9707 9708 ASSERT(MUTEX_HELD(&dtrace_lock)); 9709 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9710 9711 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9712 /* 9713 * If this is an aggregating action, there must be neither 9714 * a speculate nor a commit on the action chain. 9715 */ 9716 dtrace_action_t *act; 9717 9718 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9719 if (act->dta_kind == DTRACEACT_COMMIT) 9720 return (EINVAL); 9721 9722 if (act->dta_kind == DTRACEACT_SPECULATE) 9723 return (EINVAL); 9724 } 9725 9726 action = dtrace_ecb_aggregation_create(ecb, desc); 9727 9728 if (action == NULL) 9729 return (EINVAL); 9730 } else { 9731 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9732 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9733 dp != NULL && dp->dtdo_destructive)) { 9734 state->dts_destructive = 1; 9735 } 9736 9737 switch (desc->dtad_kind) { 9738 case DTRACEACT_PRINTF: 9739 case DTRACEACT_PRINTA: 9740 case DTRACEACT_SYSTEM: 9741 case DTRACEACT_FREOPEN: 9742 /* 9743 * We know that our arg is a string -- turn it into a 9744 * format. 9745 */ 9746 if (arg == NULL) { 9747 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); 9748 format = 0; 9749 } else { 9750 ASSERT(arg != NULL); 9751 ASSERT(arg > KERNELBASE); 9752 format = dtrace_format_add(state, 9753 (char *)(uintptr_t)arg); 9754 } 9755 9756 /*FALLTHROUGH*/ 9757 case DTRACEACT_LIBACT: 9758 case DTRACEACT_DIFEXPR: 9759 if (dp == NULL) 9760 return (EINVAL); 9761 9762 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 9763 break; 9764 9765 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 9766 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9767 return (EINVAL); 9768 9769 size = opt[DTRACEOPT_STRSIZE]; 9770 } 9771 9772 break; 9773 9774 case DTRACEACT_STACK: 9775 if ((nframes = arg) == 0) { 9776 nframes = opt[DTRACEOPT_STACKFRAMES]; 9777 ASSERT(nframes > 0); 9778 arg = nframes; 9779 } 9780 9781 size = nframes * sizeof (pc_t); 9782 break; 9783 9784 case DTRACEACT_JSTACK: 9785 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 9786 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 9787 9788 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 9789 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 9790 9791 arg = DTRACE_USTACK_ARG(nframes, strsize); 9792 9793 /*FALLTHROUGH*/ 9794 case DTRACEACT_USTACK: 9795 if (desc->dtad_kind != DTRACEACT_JSTACK && 9796 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 9797 strsize = DTRACE_USTACK_STRSIZE(arg); 9798 nframes = opt[DTRACEOPT_USTACKFRAMES]; 9799 ASSERT(nframes > 0); 9800 arg = DTRACE_USTACK_ARG(nframes, strsize); 9801 } 9802 9803 /* 9804 * Save a slot for the pid. 9805 */ 9806 size = (nframes + 1) * sizeof (uint64_t); 9807 size += DTRACE_USTACK_STRSIZE(arg); 9808 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 9809 9810 break; 9811 9812 case DTRACEACT_SYM: 9813 case DTRACEACT_MOD: 9814 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 9815 sizeof (uint64_t)) || 9816 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9817 return (EINVAL); 9818 break; 9819 9820 case DTRACEACT_USYM: 9821 case DTRACEACT_UMOD: 9822 case DTRACEACT_UADDR: 9823 if (dp == NULL || 9824 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 9825 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9826 return (EINVAL); 9827 9828 /* 9829 * We have a slot for the pid, plus a slot for the 9830 * argument. To keep things simple (aligned with 9831 * bitness-neutral sizing), we store each as a 64-bit 9832 * quantity. 9833 */ 9834 size = 2 * sizeof (uint64_t); 9835 break; 9836 9837 case DTRACEACT_STOP: 9838 case DTRACEACT_BREAKPOINT: 9839 case DTRACEACT_PANIC: 9840 break; 9841 9842 case DTRACEACT_CHILL: 9843 case DTRACEACT_DISCARD: 9844 case DTRACEACT_RAISE: 9845 if (dp == NULL) 9846 return (EINVAL); 9847 break; 9848 9849 case DTRACEACT_EXIT: 9850 if (dp == NULL || 9851 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 9852 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9853 return (EINVAL); 9854 break; 9855 9856 case DTRACEACT_SPECULATE: 9857 if (ecb->dte_size > sizeof (dtrace_epid_t)) 9858 return (EINVAL); 9859 9860 if (dp == NULL) 9861 return (EINVAL); 9862 9863 state->dts_speculates = 1; 9864 break; 9865 9866 case DTRACEACT_COMMIT: { 9867 dtrace_action_t *act = ecb->dte_action; 9868 9869 for (; act != NULL; act = act->dta_next) { 9870 if (act->dta_kind == DTRACEACT_COMMIT) 9871 return (EINVAL); 9872 } 9873 9874 if (dp == NULL) 9875 return (EINVAL); 9876 break; 9877 } 9878 9879 default: 9880 return (EINVAL); 9881 } 9882 9883 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 9884 /* 9885 * If this is a data-storing action or a speculate, 9886 * we must be sure that there isn't a commit on the 9887 * action chain. 9888 */ 9889 dtrace_action_t *act = ecb->dte_action; 9890 9891 for (; act != NULL; act = act->dta_next) { 9892 if (act->dta_kind == DTRACEACT_COMMIT) 9893 return (EINVAL); 9894 } 9895 } 9896 9897 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 9898 action->dta_rec.dtrd_size = size; 9899 } 9900 9901 action->dta_refcnt = 1; 9902 rec = &action->dta_rec; 9903 size = rec->dtrd_size; 9904 9905 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 9906 if (!(size & mask)) { 9907 align = mask + 1; 9908 break; 9909 } 9910 } 9911 9912 action->dta_kind = desc->dtad_kind; 9913 9914 if ((action->dta_difo = dp) != NULL) 9915 dtrace_difo_hold(dp); 9916 9917 rec->dtrd_action = action->dta_kind; 9918 rec->dtrd_arg = arg; 9919 rec->dtrd_uarg = desc->dtad_uarg; 9920 rec->dtrd_alignment = (uint16_t)align; 9921 rec->dtrd_format = format; 9922 9923 if ((last = ecb->dte_action_last) != NULL) { 9924 ASSERT(ecb->dte_action != NULL); 9925 action->dta_prev = last; 9926 last->dta_next = action; 9927 } else { 9928 ASSERT(ecb->dte_action == NULL); 9929 ecb->dte_action = action; 9930 } 9931 9932 ecb->dte_action_last = action; 9933 9934 return (0); 9935 } 9936 9937 static void 9938 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 9939 { 9940 dtrace_action_t *act = ecb->dte_action, *next; 9941 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 9942 dtrace_difo_t *dp; 9943 uint16_t format; 9944 9945 if (act != NULL && act->dta_refcnt > 1) { 9946 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 9947 act->dta_refcnt--; 9948 } else { 9949 for (; act != NULL; act = next) { 9950 next = act->dta_next; 9951 ASSERT(next != NULL || act == ecb->dte_action_last); 9952 ASSERT(act->dta_refcnt == 1); 9953 9954 if ((format = act->dta_rec.dtrd_format) != 0) 9955 dtrace_format_remove(ecb->dte_state, format); 9956 9957 if ((dp = act->dta_difo) != NULL) 9958 dtrace_difo_release(dp, vstate); 9959 9960 if (DTRACEACT_ISAGG(act->dta_kind)) { 9961 dtrace_ecb_aggregation_destroy(ecb, act); 9962 } else { 9963 kmem_free(act, sizeof (dtrace_action_t)); 9964 } 9965 } 9966 } 9967 9968 ecb->dte_action = NULL; 9969 ecb->dte_action_last = NULL; 9970 ecb->dte_size = sizeof (dtrace_epid_t); 9971 } 9972 9973 static void 9974 dtrace_ecb_disable(dtrace_ecb_t *ecb) 9975 { 9976 /* 9977 * We disable the ECB by removing it from its probe. 9978 */ 9979 dtrace_ecb_t *pecb, *prev = NULL; 9980 dtrace_probe_t *probe = ecb->dte_probe; 9981 9982 ASSERT(MUTEX_HELD(&dtrace_lock)); 9983 9984 if (probe == NULL) { 9985 /* 9986 * This is the NULL probe; there is nothing to disable. 9987 */ 9988 return; 9989 } 9990 9991 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 9992 if (pecb == ecb) 9993 break; 9994 prev = pecb; 9995 } 9996 9997 ASSERT(pecb != NULL); 9998 9999 if (prev == NULL) { 10000 probe->dtpr_ecb = ecb->dte_next; 10001 } else { 10002 prev->dte_next = ecb->dte_next; 10003 } 10004 10005 if (ecb == probe->dtpr_ecb_last) { 10006 ASSERT(ecb->dte_next == NULL); 10007 probe->dtpr_ecb_last = prev; 10008 } 10009 10010 /* 10011 * The ECB has been disconnected from the probe; now sync to assure 10012 * that all CPUs have seen the change before returning. 10013 */ 10014 dtrace_sync(); 10015 10016 if (probe->dtpr_ecb == NULL) { 10017 /* 10018 * That was the last ECB on the probe; clear the predicate 10019 * cache ID for the probe, disable it and sync one more time 10020 * to assure that we'll never hit it again. 10021 */ 10022 dtrace_provider_t *prov = probe->dtpr_provider; 10023 10024 ASSERT(ecb->dte_next == NULL); 10025 ASSERT(probe->dtpr_ecb_last == NULL); 10026 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10027 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 10028 probe->dtpr_id, probe->dtpr_arg); 10029 dtrace_sync(); 10030 } else { 10031 /* 10032 * There is at least one ECB remaining on the probe. If there 10033 * is _exactly_ one, set the probe's predicate cache ID to be 10034 * the predicate cache ID of the remaining ECB. 10035 */ 10036 ASSERT(probe->dtpr_ecb_last != NULL); 10037 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 10038 10039 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 10040 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 10041 10042 ASSERT(probe->dtpr_ecb->dte_next == NULL); 10043 10044 if (p != NULL) 10045 probe->dtpr_predcache = p->dtp_cacheid; 10046 } 10047 10048 ecb->dte_next = NULL; 10049 } 10050 } 10051 10052 static void 10053 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 10054 { 10055 dtrace_state_t *state = ecb->dte_state; 10056 dtrace_vstate_t *vstate = &state->dts_vstate; 10057 dtrace_predicate_t *pred; 10058 dtrace_epid_t epid = ecb->dte_epid; 10059 10060 ASSERT(MUTEX_HELD(&dtrace_lock)); 10061 ASSERT(ecb->dte_next == NULL); 10062 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 10063 10064 if ((pred = ecb->dte_predicate) != NULL) 10065 dtrace_predicate_release(pred, vstate); 10066 10067 dtrace_ecb_action_remove(ecb); 10068 10069 ASSERT(state->dts_ecbs[epid - 1] == ecb); 10070 state->dts_ecbs[epid - 1] = NULL; 10071 10072 kmem_free(ecb, sizeof (dtrace_ecb_t)); 10073 } 10074 10075 static dtrace_ecb_t * 10076 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 10077 dtrace_enabling_t *enab) 10078 { 10079 dtrace_ecb_t *ecb; 10080 dtrace_predicate_t *pred; 10081 dtrace_actdesc_t *act; 10082 dtrace_provider_t *prov; 10083 dtrace_ecbdesc_t *desc = enab->dten_current; 10084 10085 ASSERT(MUTEX_HELD(&dtrace_lock)); 10086 ASSERT(state != NULL); 10087 10088 ecb = dtrace_ecb_add(state, probe); 10089 ecb->dte_uarg = desc->dted_uarg; 10090 10091 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 10092 dtrace_predicate_hold(pred); 10093 ecb->dte_predicate = pred; 10094 } 10095 10096 if (probe != NULL) { 10097 /* 10098 * If the provider shows more leg than the consumer is old 10099 * enough to see, we need to enable the appropriate implicit 10100 * predicate bits to prevent the ecb from activating at 10101 * revealing times. 10102 * 10103 * Providers specifying DTRACE_PRIV_USER at register time 10104 * are stating that they need the /proc-style privilege 10105 * model to be enforced, and this is what DTRACE_COND_OWNER 10106 * and DTRACE_COND_ZONEOWNER will then do at probe time. 10107 */ 10108 prov = probe->dtpr_provider; 10109 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 10110 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10111 ecb->dte_cond |= DTRACE_COND_OWNER; 10112 10113 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 10114 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10115 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 10116 10117 /* 10118 * If the provider shows us kernel innards and the user 10119 * is lacking sufficient privilege, enable the 10120 * DTRACE_COND_USERMODE implicit predicate. 10121 */ 10122 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 10123 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 10124 ecb->dte_cond |= DTRACE_COND_USERMODE; 10125 } 10126 10127 if (dtrace_ecb_create_cache != NULL) { 10128 /* 10129 * If we have a cached ecb, we'll use its action list instead 10130 * of creating our own (saving both time and space). 10131 */ 10132 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 10133 dtrace_action_t *act = cached->dte_action; 10134 10135 if (act != NULL) { 10136 ASSERT(act->dta_refcnt > 0); 10137 act->dta_refcnt++; 10138 ecb->dte_action = act; 10139 ecb->dte_action_last = cached->dte_action_last; 10140 ecb->dte_needed = cached->dte_needed; 10141 ecb->dte_size = cached->dte_size; 10142 ecb->dte_alignment = cached->dte_alignment; 10143 } 10144 10145 return (ecb); 10146 } 10147 10148 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 10149 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 10150 dtrace_ecb_destroy(ecb); 10151 return (NULL); 10152 } 10153 } 10154 10155 dtrace_ecb_resize(ecb); 10156 10157 return (dtrace_ecb_create_cache = ecb); 10158 } 10159 10160 static int 10161 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 10162 { 10163 dtrace_ecb_t *ecb; 10164 dtrace_enabling_t *enab = arg; 10165 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 10166 10167 ASSERT(state != NULL); 10168 10169 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 10170 /* 10171 * This probe was created in a generation for which this 10172 * enabling has previously created ECBs; we don't want to 10173 * enable it again, so just kick out. 10174 */ 10175 return (DTRACE_MATCH_NEXT); 10176 } 10177 10178 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 10179 return (DTRACE_MATCH_DONE); 10180 10181 if (dtrace_ecb_enable(ecb) < 0) 10182 return (DTRACE_MATCH_FAIL); 10183 10184 return (DTRACE_MATCH_NEXT); 10185 } 10186 10187 static dtrace_ecb_t * 10188 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 10189 { 10190 dtrace_ecb_t *ecb; 10191 10192 ASSERT(MUTEX_HELD(&dtrace_lock)); 10193 10194 if (id == 0 || id > state->dts_necbs) 10195 return (NULL); 10196 10197 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 10198 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 10199 10200 return (state->dts_ecbs[id - 1]); 10201 } 10202 10203 static dtrace_aggregation_t * 10204 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 10205 { 10206 dtrace_aggregation_t *agg; 10207 10208 ASSERT(MUTEX_HELD(&dtrace_lock)); 10209 10210 if (id == 0 || id > state->dts_naggregations) 10211 return (NULL); 10212 10213 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 10214 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 10215 agg->dtag_id == id); 10216 10217 return (state->dts_aggregations[id - 1]); 10218 } 10219 10220 /* 10221 * DTrace Buffer Functions 10222 * 10223 * The following functions manipulate DTrace buffers. Most of these functions 10224 * are called in the context of establishing or processing consumer state; 10225 * exceptions are explicitly noted. 10226 */ 10227 10228 /* 10229 * Note: called from cross call context. This function switches the two 10230 * buffers on a given CPU. The atomicity of this operation is assured by 10231 * disabling interrupts while the actual switch takes place; the disabling of 10232 * interrupts serializes the execution with any execution of dtrace_probe() on 10233 * the same CPU. 10234 */ 10235 static void 10236 dtrace_buffer_switch(dtrace_buffer_t *buf) 10237 { 10238 caddr_t tomax = buf->dtb_tomax; 10239 caddr_t xamot = buf->dtb_xamot; 10240 dtrace_icookie_t cookie; 10241 hrtime_t now = dtrace_gethrtime(); 10242 10243 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10244 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 10245 10246 cookie = dtrace_interrupt_disable(); 10247 buf->dtb_tomax = xamot; 10248 buf->dtb_xamot = tomax; 10249 buf->dtb_xamot_drops = buf->dtb_drops; 10250 buf->dtb_xamot_offset = buf->dtb_offset; 10251 buf->dtb_xamot_errors = buf->dtb_errors; 10252 buf->dtb_xamot_flags = buf->dtb_flags; 10253 buf->dtb_offset = 0; 10254 buf->dtb_drops = 0; 10255 buf->dtb_errors = 0; 10256 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 10257 buf->dtb_interval = now - buf->dtb_switched; 10258 buf->dtb_switched = now; 10259 dtrace_interrupt_enable(cookie); 10260 } 10261 10262 /* 10263 * Note: called from cross call context. This function activates a buffer 10264 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 10265 * is guaranteed by the disabling of interrupts. 10266 */ 10267 static void 10268 dtrace_buffer_activate(dtrace_state_t *state) 10269 { 10270 dtrace_buffer_t *buf; 10271 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 10272 10273 buf = &state->dts_buffer[CPU->cpu_id]; 10274 10275 if (buf->dtb_tomax != NULL) { 10276 /* 10277 * We might like to assert that the buffer is marked inactive, 10278 * but this isn't necessarily true: the buffer for the CPU 10279 * that processes the BEGIN probe has its buffer activated 10280 * manually. In this case, we take the (harmless) action 10281 * re-clearing the bit INACTIVE bit. 10282 */ 10283 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 10284 } 10285 10286 dtrace_interrupt_enable(cookie); 10287 } 10288 10289 static int 10290 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 10291 processorid_t cpu, int *factor) 10292 { 10293 cpu_t *cp; 10294 dtrace_buffer_t *buf; 10295 int allocated = 0, desired = 0; 10296 10297 ASSERT(MUTEX_HELD(&cpu_lock)); 10298 ASSERT(MUTEX_HELD(&dtrace_lock)); 10299 10300 *factor = 1; 10301 10302 if (size > dtrace_nonroot_maxsize && 10303 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 10304 return (EFBIG); 10305 10306 cp = cpu_list; 10307 10308 do { 10309 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10310 continue; 10311 10312 buf = &bufs[cp->cpu_id]; 10313 10314 /* 10315 * If there is already a buffer allocated for this CPU, it 10316 * is only possible that this is a DR event. In this case, 10317 * the buffer size must match our specified size. 10318 */ 10319 if (buf->dtb_tomax != NULL) { 10320 ASSERT(buf->dtb_size == size); 10321 continue; 10322 } 10323 10324 ASSERT(buf->dtb_xamot == NULL); 10325 10326 if ((buf->dtb_tomax = kmem_zalloc(size, 10327 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 10328 goto err; 10329 10330 buf->dtb_size = size; 10331 buf->dtb_flags = flags; 10332 buf->dtb_offset = 0; 10333 buf->dtb_drops = 0; 10334 10335 if (flags & DTRACEBUF_NOSWITCH) 10336 continue; 10337 10338 if ((buf->dtb_xamot = kmem_zalloc(size, 10339 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 10340 goto err; 10341 } while ((cp = cp->cpu_next) != cpu_list); 10342 10343 return (0); 10344 10345 err: 10346 cp = cpu_list; 10347 10348 do { 10349 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10350 continue; 10351 10352 buf = &bufs[cp->cpu_id]; 10353 desired += 2; 10354 10355 if (buf->dtb_xamot != NULL) { 10356 ASSERT(buf->dtb_tomax != NULL); 10357 ASSERT(buf->dtb_size == size); 10358 kmem_free(buf->dtb_xamot, size); 10359 allocated++; 10360 } 10361 10362 if (buf->dtb_tomax != NULL) { 10363 ASSERT(buf->dtb_size == size); 10364 kmem_free(buf->dtb_tomax, size); 10365 allocated++; 10366 } 10367 10368 buf->dtb_tomax = NULL; 10369 buf->dtb_xamot = NULL; 10370 buf->dtb_size = 0; 10371 } while ((cp = cp->cpu_next) != cpu_list); 10372 10373 *factor = desired / (allocated > 0 ? allocated : 1); 10374 10375 return (ENOMEM); 10376 } 10377 10378 /* 10379 * Note: called from probe context. This function just increments the drop 10380 * count on a buffer. It has been made a function to allow for the 10381 * possibility of understanding the source of mysterious drop counts. (A 10382 * problem for which one may be particularly disappointed that DTrace cannot 10383 * be used to understand DTrace.) 10384 */ 10385 static void 10386 dtrace_buffer_drop(dtrace_buffer_t *buf) 10387 { 10388 buf->dtb_drops++; 10389 } 10390 10391 /* 10392 * Note: called from probe context. This function is called to reserve space 10393 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 10394 * mstate. Returns the new offset in the buffer, or a negative value if an 10395 * error has occurred. 10396 */ 10397 static intptr_t 10398 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 10399 dtrace_state_t *state, dtrace_mstate_t *mstate) 10400 { 10401 intptr_t offs = buf->dtb_offset, soffs; 10402 intptr_t woffs; 10403 caddr_t tomax; 10404 size_t total; 10405 10406 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 10407 return (-1); 10408 10409 if ((tomax = buf->dtb_tomax) == NULL) { 10410 dtrace_buffer_drop(buf); 10411 return (-1); 10412 } 10413 10414 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 10415 while (offs & (align - 1)) { 10416 /* 10417 * Assert that our alignment is off by a number which 10418 * is itself sizeof (uint32_t) aligned. 10419 */ 10420 ASSERT(!((align - (offs & (align - 1))) & 10421 (sizeof (uint32_t) - 1))); 10422 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10423 offs += sizeof (uint32_t); 10424 } 10425 10426 if ((soffs = offs + needed) > buf->dtb_size) { 10427 dtrace_buffer_drop(buf); 10428 return (-1); 10429 } 10430 10431 if (mstate == NULL) 10432 return (offs); 10433 10434 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10435 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10436 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10437 10438 return (offs); 10439 } 10440 10441 if (buf->dtb_flags & DTRACEBUF_FILL) { 10442 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10443 (buf->dtb_flags & DTRACEBUF_FULL)) 10444 return (-1); 10445 goto out; 10446 } 10447 10448 total = needed + (offs & (align - 1)); 10449 10450 /* 10451 * For a ring buffer, life is quite a bit more complicated. Before 10452 * we can store any padding, we need to adjust our wrapping offset. 10453 * (If we've never before wrapped or we're not about to, no adjustment 10454 * is required.) 10455 */ 10456 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10457 offs + total > buf->dtb_size) { 10458 woffs = buf->dtb_xamot_offset; 10459 10460 if (offs + total > buf->dtb_size) { 10461 /* 10462 * We can't fit in the end of the buffer. First, a 10463 * sanity check that we can fit in the buffer at all. 10464 */ 10465 if (total > buf->dtb_size) { 10466 dtrace_buffer_drop(buf); 10467 return (-1); 10468 } 10469 10470 /* 10471 * We're going to be storing at the top of the buffer, 10472 * so now we need to deal with the wrapped offset. We 10473 * only reset our wrapped offset to 0 if it is 10474 * currently greater than the current offset. If it 10475 * is less than the current offset, it is because a 10476 * previous allocation induced a wrap -- but the 10477 * allocation didn't subsequently take the space due 10478 * to an error or false predicate evaluation. In this 10479 * case, we'll just leave the wrapped offset alone: if 10480 * the wrapped offset hasn't been advanced far enough 10481 * for this allocation, it will be adjusted in the 10482 * lower loop. 10483 */ 10484 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10485 if (woffs >= offs) 10486 woffs = 0; 10487 } else { 10488 woffs = 0; 10489 } 10490 10491 /* 10492 * Now we know that we're going to be storing to the 10493 * top of the buffer and that there is room for us 10494 * there. We need to clear the buffer from the current 10495 * offset to the end (there may be old gunk there). 10496 */ 10497 while (offs < buf->dtb_size) 10498 tomax[offs++] = 0; 10499 10500 /* 10501 * We need to set our offset to zero. And because we 10502 * are wrapping, we need to set the bit indicating as 10503 * much. We can also adjust our needed space back 10504 * down to the space required by the ECB -- we know 10505 * that the top of the buffer is aligned. 10506 */ 10507 offs = 0; 10508 total = needed; 10509 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10510 } else { 10511 /* 10512 * There is room for us in the buffer, so we simply 10513 * need to check the wrapped offset. 10514 */ 10515 if (woffs < offs) { 10516 /* 10517 * The wrapped offset is less than the offset. 10518 * This can happen if we allocated buffer space 10519 * that induced a wrap, but then we didn't 10520 * subsequently take the space due to an error 10521 * or false predicate evaluation. This is 10522 * okay; we know that _this_ allocation isn't 10523 * going to induce a wrap. We still can't 10524 * reset the wrapped offset to be zero, 10525 * however: the space may have been trashed in 10526 * the previous failed probe attempt. But at 10527 * least the wrapped offset doesn't need to 10528 * be adjusted at all... 10529 */ 10530 goto out; 10531 } 10532 } 10533 10534 while (offs + total > woffs) { 10535 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10536 size_t size; 10537 10538 if (epid == DTRACE_EPIDNONE) { 10539 size = sizeof (uint32_t); 10540 } else { 10541 ASSERT(epid <= state->dts_necbs); 10542 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10543 10544 size = state->dts_ecbs[epid - 1]->dte_size; 10545 } 10546 10547 ASSERT(woffs + size <= buf->dtb_size); 10548 ASSERT(size != 0); 10549 10550 if (woffs + size == buf->dtb_size) { 10551 /* 10552 * We've reached the end of the buffer; we want 10553 * to set the wrapped offset to 0 and break 10554 * out. However, if the offs is 0, then we're 10555 * in a strange edge-condition: the amount of 10556 * space that we want to reserve plus the size 10557 * of the record that we're overwriting is 10558 * greater than the size of the buffer. This 10559 * is problematic because if we reserve the 10560 * space but subsequently don't consume it (due 10561 * to a failed predicate or error) the wrapped 10562 * offset will be 0 -- yet the EPID at offset 0 10563 * will not be committed. This situation is 10564 * relatively easy to deal with: if we're in 10565 * this case, the buffer is indistinguishable 10566 * from one that hasn't wrapped; we need only 10567 * finish the job by clearing the wrapped bit, 10568 * explicitly setting the offset to be 0, and 10569 * zero'ing out the old data in the buffer. 10570 */ 10571 if (offs == 0) { 10572 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10573 buf->dtb_offset = 0; 10574 woffs = total; 10575 10576 while (woffs < buf->dtb_size) 10577 tomax[woffs++] = 0; 10578 } 10579 10580 woffs = 0; 10581 break; 10582 } 10583 10584 woffs += size; 10585 } 10586 10587 /* 10588 * We have a wrapped offset. It may be that the wrapped offset 10589 * has become zero -- that's okay. 10590 */ 10591 buf->dtb_xamot_offset = woffs; 10592 } 10593 10594 out: 10595 /* 10596 * Now we can plow the buffer with any necessary padding. 10597 */ 10598 while (offs & (align - 1)) { 10599 /* 10600 * Assert that our alignment is off by a number which 10601 * is itself sizeof (uint32_t) aligned. 10602 */ 10603 ASSERT(!((align - (offs & (align - 1))) & 10604 (sizeof (uint32_t) - 1))); 10605 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10606 offs += sizeof (uint32_t); 10607 } 10608 10609 if (buf->dtb_flags & DTRACEBUF_FILL) { 10610 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10611 buf->dtb_flags |= DTRACEBUF_FULL; 10612 return (-1); 10613 } 10614 } 10615 10616 if (mstate == NULL) 10617 return (offs); 10618 10619 /* 10620 * For ring buffers and fill buffers, the scratch space is always 10621 * the inactive buffer. 10622 */ 10623 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10624 mstate->dtms_scratch_size = buf->dtb_size; 10625 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10626 10627 return (offs); 10628 } 10629 10630 static void 10631 dtrace_buffer_polish(dtrace_buffer_t *buf) 10632 { 10633 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10634 ASSERT(MUTEX_HELD(&dtrace_lock)); 10635 10636 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10637 return; 10638 10639 /* 10640 * We need to polish the ring buffer. There are three cases: 10641 * 10642 * - The first (and presumably most common) is that there is no gap 10643 * between the buffer offset and the wrapped offset. In this case, 10644 * there is nothing in the buffer that isn't valid data; we can 10645 * mark the buffer as polished and return. 10646 * 10647 * - The second (less common than the first but still more common 10648 * than the third) is that there is a gap between the buffer offset 10649 * and the wrapped offset, and the wrapped offset is larger than the 10650 * buffer offset. This can happen because of an alignment issue, or 10651 * can happen because of a call to dtrace_buffer_reserve() that 10652 * didn't subsequently consume the buffer space. In this case, 10653 * we need to zero the data from the buffer offset to the wrapped 10654 * offset. 10655 * 10656 * - The third (and least common) is that there is a gap between the 10657 * buffer offset and the wrapped offset, but the wrapped offset is 10658 * _less_ than the buffer offset. This can only happen because a 10659 * call to dtrace_buffer_reserve() induced a wrap, but the space 10660 * was not subsequently consumed. In this case, we need to zero the 10661 * space from the offset to the end of the buffer _and_ from the 10662 * top of the buffer to the wrapped offset. 10663 */ 10664 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10665 bzero(buf->dtb_tomax + buf->dtb_offset, 10666 buf->dtb_xamot_offset - buf->dtb_offset); 10667 } 10668 10669 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10670 bzero(buf->dtb_tomax + buf->dtb_offset, 10671 buf->dtb_size - buf->dtb_offset); 10672 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10673 } 10674 } 10675 10676 /* 10677 * This routine determines if data generated at the specified time has likely 10678 * been entirely consumed at user-level. This routine is called to determine 10679 * if an ECB on a defunct probe (but for an active enabling) can be safely 10680 * disabled and destroyed. 10681 */ 10682 static int 10683 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 10684 { 10685 int i; 10686 10687 for (i = 0; i < NCPU; i++) { 10688 dtrace_buffer_t *buf = &bufs[i]; 10689 10690 if (buf->dtb_size == 0) 10691 continue; 10692 10693 if (buf->dtb_flags & DTRACEBUF_RING) 10694 return (0); 10695 10696 if (!buf->dtb_switched && buf->dtb_offset != 0) 10697 return (0); 10698 10699 if (buf->dtb_switched - buf->dtb_interval < when) 10700 return (0); 10701 } 10702 10703 return (1); 10704 } 10705 10706 static void 10707 dtrace_buffer_free(dtrace_buffer_t *bufs) 10708 { 10709 int i; 10710 10711 for (i = 0; i < NCPU; i++) { 10712 dtrace_buffer_t *buf = &bufs[i]; 10713 10714 if (buf->dtb_tomax == NULL) { 10715 ASSERT(buf->dtb_xamot == NULL); 10716 ASSERT(buf->dtb_size == 0); 10717 continue; 10718 } 10719 10720 if (buf->dtb_xamot != NULL) { 10721 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10722 kmem_free(buf->dtb_xamot, buf->dtb_size); 10723 } 10724 10725 kmem_free(buf->dtb_tomax, buf->dtb_size); 10726 buf->dtb_size = 0; 10727 buf->dtb_tomax = NULL; 10728 buf->dtb_xamot = NULL; 10729 } 10730 } 10731 10732 /* 10733 * DTrace Enabling Functions 10734 */ 10735 static dtrace_enabling_t * 10736 dtrace_enabling_create(dtrace_vstate_t *vstate) 10737 { 10738 dtrace_enabling_t *enab; 10739 10740 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 10741 enab->dten_vstate = vstate; 10742 10743 return (enab); 10744 } 10745 10746 static void 10747 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 10748 { 10749 dtrace_ecbdesc_t **ndesc; 10750 size_t osize, nsize; 10751 10752 /* 10753 * We can't add to enablings after we've enabled them, or after we've 10754 * retained them. 10755 */ 10756 ASSERT(enab->dten_probegen == 0); 10757 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10758 10759 if (enab->dten_ndesc < enab->dten_maxdesc) { 10760 enab->dten_desc[enab->dten_ndesc++] = ecb; 10761 return; 10762 } 10763 10764 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10765 10766 if (enab->dten_maxdesc == 0) { 10767 enab->dten_maxdesc = 1; 10768 } else { 10769 enab->dten_maxdesc <<= 1; 10770 } 10771 10772 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 10773 10774 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10775 ndesc = kmem_zalloc(nsize, KM_SLEEP); 10776 bcopy(enab->dten_desc, ndesc, osize); 10777 kmem_free(enab->dten_desc, osize); 10778 10779 enab->dten_desc = ndesc; 10780 enab->dten_desc[enab->dten_ndesc++] = ecb; 10781 } 10782 10783 static void 10784 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 10785 dtrace_probedesc_t *pd) 10786 { 10787 dtrace_ecbdesc_t *new; 10788 dtrace_predicate_t *pred; 10789 dtrace_actdesc_t *act; 10790 10791 /* 10792 * We're going to create a new ECB description that matches the 10793 * specified ECB in every way, but has the specified probe description. 10794 */ 10795 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10796 10797 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 10798 dtrace_predicate_hold(pred); 10799 10800 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 10801 dtrace_actdesc_hold(act); 10802 10803 new->dted_action = ecb->dted_action; 10804 new->dted_pred = ecb->dted_pred; 10805 new->dted_probe = *pd; 10806 new->dted_uarg = ecb->dted_uarg; 10807 10808 dtrace_enabling_add(enab, new); 10809 } 10810 10811 static void 10812 dtrace_enabling_dump(dtrace_enabling_t *enab) 10813 { 10814 int i; 10815 10816 for (i = 0; i < enab->dten_ndesc; i++) { 10817 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 10818 10819 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 10820 desc->dtpd_provider, desc->dtpd_mod, 10821 desc->dtpd_func, desc->dtpd_name); 10822 } 10823 } 10824 10825 static void 10826 dtrace_enabling_destroy(dtrace_enabling_t *enab) 10827 { 10828 int i; 10829 dtrace_ecbdesc_t *ep; 10830 dtrace_vstate_t *vstate = enab->dten_vstate; 10831 10832 ASSERT(MUTEX_HELD(&dtrace_lock)); 10833 10834 for (i = 0; i < enab->dten_ndesc; i++) { 10835 dtrace_actdesc_t *act, *next; 10836 dtrace_predicate_t *pred; 10837 10838 ep = enab->dten_desc[i]; 10839 10840 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 10841 dtrace_predicate_release(pred, vstate); 10842 10843 for (act = ep->dted_action; act != NULL; act = next) { 10844 next = act->dtad_next; 10845 dtrace_actdesc_release(act, vstate); 10846 } 10847 10848 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10849 } 10850 10851 kmem_free(enab->dten_desc, 10852 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 10853 10854 /* 10855 * If this was a retained enabling, decrement the dts_nretained count 10856 * and take it off of the dtrace_retained list. 10857 */ 10858 if (enab->dten_prev != NULL || enab->dten_next != NULL || 10859 dtrace_retained == enab) { 10860 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10861 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 10862 enab->dten_vstate->dtvs_state->dts_nretained--; 10863 dtrace_retained_gen++; 10864 } 10865 10866 if (enab->dten_prev == NULL) { 10867 if (dtrace_retained == enab) { 10868 dtrace_retained = enab->dten_next; 10869 10870 if (dtrace_retained != NULL) 10871 dtrace_retained->dten_prev = NULL; 10872 } 10873 } else { 10874 ASSERT(enab != dtrace_retained); 10875 ASSERT(dtrace_retained != NULL); 10876 enab->dten_prev->dten_next = enab->dten_next; 10877 } 10878 10879 if (enab->dten_next != NULL) { 10880 ASSERT(dtrace_retained != NULL); 10881 enab->dten_next->dten_prev = enab->dten_prev; 10882 } 10883 10884 kmem_free(enab, sizeof (dtrace_enabling_t)); 10885 } 10886 10887 static int 10888 dtrace_enabling_retain(dtrace_enabling_t *enab) 10889 { 10890 dtrace_state_t *state; 10891 10892 ASSERT(MUTEX_HELD(&dtrace_lock)); 10893 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10894 ASSERT(enab->dten_vstate != NULL); 10895 10896 state = enab->dten_vstate->dtvs_state; 10897 ASSERT(state != NULL); 10898 10899 /* 10900 * We only allow each state to retain dtrace_retain_max enablings. 10901 */ 10902 if (state->dts_nretained >= dtrace_retain_max) 10903 return (ENOSPC); 10904 10905 state->dts_nretained++; 10906 dtrace_retained_gen++; 10907 10908 if (dtrace_retained == NULL) { 10909 dtrace_retained = enab; 10910 return (0); 10911 } 10912 10913 enab->dten_next = dtrace_retained; 10914 dtrace_retained->dten_prev = enab; 10915 dtrace_retained = enab; 10916 10917 return (0); 10918 } 10919 10920 static int 10921 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 10922 dtrace_probedesc_t *create) 10923 { 10924 dtrace_enabling_t *new, *enab; 10925 int found = 0, err = ENOENT; 10926 10927 ASSERT(MUTEX_HELD(&dtrace_lock)); 10928 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 10929 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 10930 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 10931 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 10932 10933 new = dtrace_enabling_create(&state->dts_vstate); 10934 10935 /* 10936 * Iterate over all retained enablings, looking for enablings that 10937 * match the specified state. 10938 */ 10939 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10940 int i; 10941 10942 /* 10943 * dtvs_state can only be NULL for helper enablings -- and 10944 * helper enablings can't be retained. 10945 */ 10946 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10947 10948 if (enab->dten_vstate->dtvs_state != state) 10949 continue; 10950 10951 /* 10952 * Now iterate over each probe description; we're looking for 10953 * an exact match to the specified probe description. 10954 */ 10955 for (i = 0; i < enab->dten_ndesc; i++) { 10956 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10957 dtrace_probedesc_t *pd = &ep->dted_probe; 10958 10959 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 10960 continue; 10961 10962 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 10963 continue; 10964 10965 if (strcmp(pd->dtpd_func, match->dtpd_func)) 10966 continue; 10967 10968 if (strcmp(pd->dtpd_name, match->dtpd_name)) 10969 continue; 10970 10971 /* 10972 * We have a winning probe! Add it to our growing 10973 * enabling. 10974 */ 10975 found = 1; 10976 dtrace_enabling_addlike(new, ep, create); 10977 } 10978 } 10979 10980 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 10981 dtrace_enabling_destroy(new); 10982 return (err); 10983 } 10984 10985 return (0); 10986 } 10987 10988 static void 10989 dtrace_enabling_retract(dtrace_state_t *state) 10990 { 10991 dtrace_enabling_t *enab, *next; 10992 10993 ASSERT(MUTEX_HELD(&dtrace_lock)); 10994 10995 /* 10996 * Iterate over all retained enablings, destroy the enablings retained 10997 * for the specified state. 10998 */ 10999 for (enab = dtrace_retained; enab != NULL; enab = next) { 11000 next = enab->dten_next; 11001 11002 /* 11003 * dtvs_state can only be NULL for helper enablings -- and 11004 * helper enablings can't be retained. 11005 */ 11006 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11007 11008 if (enab->dten_vstate->dtvs_state == state) { 11009 ASSERT(state->dts_nretained > 0); 11010 dtrace_enabling_destroy(enab); 11011 } 11012 } 11013 11014 ASSERT(state->dts_nretained == 0); 11015 } 11016 11017 static int 11018 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 11019 { 11020 int i = 0; 11021 int total_matched = 0, matched = 0; 11022 11023 ASSERT(MUTEX_HELD(&cpu_lock)); 11024 ASSERT(MUTEX_HELD(&dtrace_lock)); 11025 11026 for (i = 0; i < enab->dten_ndesc; i++) { 11027 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11028 11029 enab->dten_current = ep; 11030 enab->dten_error = 0; 11031 11032 /* 11033 * If a provider failed to enable a probe then get out and 11034 * let the consumer know we failed. 11035 */ 11036 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 11037 return (EBUSY); 11038 11039 total_matched += matched; 11040 11041 if (enab->dten_error != 0) { 11042 /* 11043 * If we get an error half-way through enabling the 11044 * probes, we kick out -- perhaps with some number of 11045 * them enabled. Leaving enabled probes enabled may 11046 * be slightly confusing for user-level, but we expect 11047 * that no one will attempt to actually drive on in 11048 * the face of such errors. If this is an anonymous 11049 * enabling (indicated with a NULL nmatched pointer), 11050 * we cmn_err() a message. We aren't expecting to 11051 * get such an error -- such as it can exist at all, 11052 * it would be a result of corrupted DOF in the driver 11053 * properties. 11054 */ 11055 if (nmatched == NULL) { 11056 cmn_err(CE_WARN, "dtrace_enabling_match() " 11057 "error on %p: %d", (void *)ep, 11058 enab->dten_error); 11059 } 11060 11061 return (enab->dten_error); 11062 } 11063 } 11064 11065 enab->dten_probegen = dtrace_probegen; 11066 if (nmatched != NULL) 11067 *nmatched = total_matched; 11068 11069 return (0); 11070 } 11071 11072 static void 11073 dtrace_enabling_matchall(void) 11074 { 11075 dtrace_enabling_t *enab; 11076 11077 mutex_enter(&cpu_lock); 11078 mutex_enter(&dtrace_lock); 11079 11080 /* 11081 * Iterate over all retained enablings to see if any probes match 11082 * against them. We only perform this operation on enablings for which 11083 * we have sufficient permissions by virtue of being in the global zone 11084 * or in the same zone as the DTrace client. Because we can be called 11085 * after dtrace_detach() has been called, we cannot assert that there 11086 * are retained enablings. We can safely load from dtrace_retained, 11087 * however: the taskq_destroy() at the end of dtrace_detach() will 11088 * block pending our completion. 11089 */ 11090 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11091 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 11092 cred_t *cr = dcr->dcr_cred; 11093 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 11094 11095 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 11096 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 11097 (void) dtrace_enabling_match(enab, NULL); 11098 } 11099 11100 mutex_exit(&dtrace_lock); 11101 mutex_exit(&cpu_lock); 11102 } 11103 11104 /* 11105 * If an enabling is to be enabled without having matched probes (that is, if 11106 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 11107 * enabling must be _primed_ by creating an ECB for every ECB description. 11108 * This must be done to assure that we know the number of speculations, the 11109 * number of aggregations, the minimum buffer size needed, etc. before we 11110 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 11111 * enabling any probes, we create ECBs for every ECB decription, but with a 11112 * NULL probe -- which is exactly what this function does. 11113 */ 11114 static void 11115 dtrace_enabling_prime(dtrace_state_t *state) 11116 { 11117 dtrace_enabling_t *enab; 11118 int i; 11119 11120 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11121 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11122 11123 if (enab->dten_vstate->dtvs_state != state) 11124 continue; 11125 11126 /* 11127 * We don't want to prime an enabling more than once, lest 11128 * we allow a malicious user to induce resource exhaustion. 11129 * (The ECBs that result from priming an enabling aren't 11130 * leaked -- but they also aren't deallocated until the 11131 * consumer state is destroyed.) 11132 */ 11133 if (enab->dten_primed) 11134 continue; 11135 11136 for (i = 0; i < enab->dten_ndesc; i++) { 11137 enab->dten_current = enab->dten_desc[i]; 11138 (void) dtrace_probe_enable(NULL, enab); 11139 } 11140 11141 enab->dten_primed = 1; 11142 } 11143 } 11144 11145 /* 11146 * Called to indicate that probes should be provided due to retained 11147 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 11148 * must take an initial lap through the enabling calling the dtps_provide() 11149 * entry point explicitly to allow for autocreated probes. 11150 */ 11151 static void 11152 dtrace_enabling_provide(dtrace_provider_t *prv) 11153 { 11154 int i, all = 0; 11155 dtrace_probedesc_t desc; 11156 dtrace_genid_t gen; 11157 11158 ASSERT(MUTEX_HELD(&dtrace_lock)); 11159 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 11160 11161 if (prv == NULL) { 11162 all = 1; 11163 prv = dtrace_provider; 11164 } 11165 11166 do { 11167 dtrace_enabling_t *enab; 11168 void *parg = prv->dtpv_arg; 11169 11170 retry: 11171 gen = dtrace_retained_gen; 11172 for (enab = dtrace_retained; enab != NULL; 11173 enab = enab->dten_next) { 11174 for (i = 0; i < enab->dten_ndesc; i++) { 11175 desc = enab->dten_desc[i]->dted_probe; 11176 mutex_exit(&dtrace_lock); 11177 prv->dtpv_pops.dtps_provide(parg, &desc); 11178 mutex_enter(&dtrace_lock); 11179 /* 11180 * Process the retained enablings again if 11181 * they have changed while we weren't holding 11182 * dtrace_lock. 11183 */ 11184 if (gen != dtrace_retained_gen) 11185 goto retry; 11186 } 11187 } 11188 } while (all && (prv = prv->dtpv_next) != NULL); 11189 11190 mutex_exit(&dtrace_lock); 11191 dtrace_probe_provide(NULL, all ? NULL : prv); 11192 mutex_enter(&dtrace_lock); 11193 } 11194 11195 /* 11196 * Called to reap ECBs that are attached to probes from defunct providers. 11197 */ 11198 static void 11199 dtrace_enabling_reap(void) 11200 { 11201 dtrace_provider_t *prov; 11202 dtrace_probe_t *probe; 11203 dtrace_ecb_t *ecb; 11204 hrtime_t when; 11205 int i; 11206 11207 mutex_enter(&cpu_lock); 11208 mutex_enter(&dtrace_lock); 11209 11210 for (i = 0; i < dtrace_nprobes; i++) { 11211 if ((probe = dtrace_probes[i]) == NULL) 11212 continue; 11213 11214 if (probe->dtpr_ecb == NULL) 11215 continue; 11216 11217 prov = probe->dtpr_provider; 11218 11219 if ((when = prov->dtpv_defunct) == 0) 11220 continue; 11221 11222 /* 11223 * We have ECBs on a defunct provider: we want to reap these 11224 * ECBs to allow the provider to unregister. The destruction 11225 * of these ECBs must be done carefully: if we destroy the ECB 11226 * and the consumer later wishes to consume an EPID that 11227 * corresponds to the destroyed ECB (and if the EPID metadata 11228 * has not been previously consumed), the consumer will abort 11229 * processing on the unknown EPID. To reduce (but not, sadly, 11230 * eliminate) the possibility of this, we will only destroy an 11231 * ECB for a defunct provider if, for the state that 11232 * corresponds to the ECB: 11233 * 11234 * (a) There is no speculative tracing (which can effectively 11235 * cache an EPID for an arbitrary amount of time). 11236 * 11237 * (b) The principal buffers have been switched twice since the 11238 * provider became defunct. 11239 * 11240 * (c) The aggregation buffers are of zero size or have been 11241 * switched twice since the provider became defunct. 11242 * 11243 * We use dts_speculates to determine (a) and call a function 11244 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 11245 * that as soon as we've been unable to destroy one of the ECBs 11246 * associated with the probe, we quit trying -- reaping is only 11247 * fruitful in as much as we can destroy all ECBs associated 11248 * with the defunct provider's probes. 11249 */ 11250 while ((ecb = probe->dtpr_ecb) != NULL) { 11251 dtrace_state_t *state = ecb->dte_state; 11252 dtrace_buffer_t *buf = state->dts_buffer; 11253 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 11254 11255 if (state->dts_speculates) 11256 break; 11257 11258 if (!dtrace_buffer_consumed(buf, when)) 11259 break; 11260 11261 if (!dtrace_buffer_consumed(aggbuf, when)) 11262 break; 11263 11264 dtrace_ecb_disable(ecb); 11265 ASSERT(probe->dtpr_ecb != ecb); 11266 dtrace_ecb_destroy(ecb); 11267 } 11268 } 11269 11270 mutex_exit(&dtrace_lock); 11271 mutex_exit(&cpu_lock); 11272 } 11273 11274 /* 11275 * DTrace DOF Functions 11276 */ 11277 /*ARGSUSED*/ 11278 static void 11279 dtrace_dof_error(dof_hdr_t *dof, const char *str) 11280 { 11281 if (dtrace_err_verbose) 11282 cmn_err(CE_WARN, "failed to process DOF: %s", str); 11283 11284 #ifdef DTRACE_ERRDEBUG 11285 dtrace_errdebug(str); 11286 #endif 11287 } 11288 11289 /* 11290 * Create DOF out of a currently enabled state. Right now, we only create 11291 * DOF containing the run-time options -- but this could be expanded to create 11292 * complete DOF representing the enabled state. 11293 */ 11294 static dof_hdr_t * 11295 dtrace_dof_create(dtrace_state_t *state) 11296 { 11297 dof_hdr_t *dof; 11298 dof_sec_t *sec; 11299 dof_optdesc_t *opt; 11300 int i, len = sizeof (dof_hdr_t) + 11301 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 11302 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11303 11304 ASSERT(MUTEX_HELD(&dtrace_lock)); 11305 11306 dof = kmem_zalloc(len, KM_SLEEP); 11307 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 11308 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 11309 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 11310 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 11311 11312 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 11313 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 11314 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 11315 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 11316 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 11317 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 11318 11319 dof->dofh_flags = 0; 11320 dof->dofh_hdrsize = sizeof (dof_hdr_t); 11321 dof->dofh_secsize = sizeof (dof_sec_t); 11322 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 11323 dof->dofh_secoff = sizeof (dof_hdr_t); 11324 dof->dofh_loadsz = len; 11325 dof->dofh_filesz = len; 11326 dof->dofh_pad = 0; 11327 11328 /* 11329 * Fill in the option section header... 11330 */ 11331 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 11332 sec->dofs_type = DOF_SECT_OPTDESC; 11333 sec->dofs_align = sizeof (uint64_t); 11334 sec->dofs_flags = DOF_SECF_LOAD; 11335 sec->dofs_entsize = sizeof (dof_optdesc_t); 11336 11337 opt = (dof_optdesc_t *)((uintptr_t)sec + 11338 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 11339 11340 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 11341 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11342 11343 for (i = 0; i < DTRACEOPT_MAX; i++) { 11344 opt[i].dofo_option = i; 11345 opt[i].dofo_strtab = DOF_SECIDX_NONE; 11346 opt[i].dofo_value = state->dts_options[i]; 11347 } 11348 11349 return (dof); 11350 } 11351 11352 static dof_hdr_t * 11353 dtrace_dof_copyin(uintptr_t uarg, int *errp) 11354 { 11355 dof_hdr_t hdr, *dof; 11356 11357 ASSERT(!MUTEX_HELD(&dtrace_lock)); 11358 11359 /* 11360 * First, we're going to copyin() the sizeof (dof_hdr_t). 11361 */ 11362 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 11363 dtrace_dof_error(NULL, "failed to copyin DOF header"); 11364 *errp = EFAULT; 11365 return (NULL); 11366 } 11367 11368 /* 11369 * Now we'll allocate the entire DOF and copy it in -- provided 11370 * that the length isn't outrageous. 11371 */ 11372 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 11373 dtrace_dof_error(&hdr, "load size exceeds maximum"); 11374 *errp = E2BIG; 11375 return (NULL); 11376 } 11377 11378 if (hdr.dofh_loadsz < sizeof (hdr)) { 11379 dtrace_dof_error(&hdr, "invalid load size"); 11380 *errp = EINVAL; 11381 return (NULL); 11382 } 11383 11384 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 11385 11386 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 11387 dof->dofh_loadsz != hdr.dofh_loadsz) { 11388 kmem_free(dof, hdr.dofh_loadsz); 11389 *errp = EFAULT; 11390 return (NULL); 11391 } 11392 11393 return (dof); 11394 } 11395 11396 static dof_hdr_t * 11397 dtrace_dof_property(const char *name) 11398 { 11399 uchar_t *buf; 11400 uint64_t loadsz; 11401 unsigned int len, i; 11402 dof_hdr_t *dof; 11403 11404 /* 11405 * Unfortunately, array of values in .conf files are always (and 11406 * only) interpreted to be integer arrays. We must read our DOF 11407 * as an integer array, and then squeeze it into a byte array. 11408 */ 11409 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 11410 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 11411 return (NULL); 11412 11413 for (i = 0; i < len; i++) 11414 buf[i] = (uchar_t)(((int *)buf)[i]); 11415 11416 if (len < sizeof (dof_hdr_t)) { 11417 ddi_prop_free(buf); 11418 dtrace_dof_error(NULL, "truncated header"); 11419 return (NULL); 11420 } 11421 11422 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 11423 ddi_prop_free(buf); 11424 dtrace_dof_error(NULL, "truncated DOF"); 11425 return (NULL); 11426 } 11427 11428 if (loadsz >= dtrace_dof_maxsize) { 11429 ddi_prop_free(buf); 11430 dtrace_dof_error(NULL, "oversized DOF"); 11431 return (NULL); 11432 } 11433 11434 dof = kmem_alloc(loadsz, KM_SLEEP); 11435 bcopy(buf, dof, loadsz); 11436 ddi_prop_free(buf); 11437 11438 return (dof); 11439 } 11440 11441 static void 11442 dtrace_dof_destroy(dof_hdr_t *dof) 11443 { 11444 kmem_free(dof, dof->dofh_loadsz); 11445 } 11446 11447 /* 11448 * Return the dof_sec_t pointer corresponding to a given section index. If the 11449 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 11450 * a type other than DOF_SECT_NONE is specified, the header is checked against 11451 * this type and NULL is returned if the types do not match. 11452 */ 11453 static dof_sec_t * 11454 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 11455 { 11456 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 11457 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 11458 11459 if (i >= dof->dofh_secnum) { 11460 dtrace_dof_error(dof, "referenced section index is invalid"); 11461 return (NULL); 11462 } 11463 11464 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 11465 dtrace_dof_error(dof, "referenced section is not loadable"); 11466 return (NULL); 11467 } 11468 11469 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 11470 dtrace_dof_error(dof, "referenced section is the wrong type"); 11471 return (NULL); 11472 } 11473 11474 return (sec); 11475 } 11476 11477 static dtrace_probedesc_t * 11478 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 11479 { 11480 dof_probedesc_t *probe; 11481 dof_sec_t *strtab; 11482 uintptr_t daddr = (uintptr_t)dof; 11483 uintptr_t str; 11484 size_t size; 11485 11486 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 11487 dtrace_dof_error(dof, "invalid probe section"); 11488 return (NULL); 11489 } 11490 11491 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11492 dtrace_dof_error(dof, "bad alignment in probe description"); 11493 return (NULL); 11494 } 11495 11496 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 11497 dtrace_dof_error(dof, "truncated probe description"); 11498 return (NULL); 11499 } 11500 11501 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 11502 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 11503 11504 if (strtab == NULL) 11505 return (NULL); 11506 11507 str = daddr + strtab->dofs_offset; 11508 size = strtab->dofs_size; 11509 11510 if (probe->dofp_provider >= strtab->dofs_size) { 11511 dtrace_dof_error(dof, "corrupt probe provider"); 11512 return (NULL); 11513 } 11514 11515 (void) strncpy(desc->dtpd_provider, 11516 (char *)(str + probe->dofp_provider), 11517 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 11518 11519 if (probe->dofp_mod >= strtab->dofs_size) { 11520 dtrace_dof_error(dof, "corrupt probe module"); 11521 return (NULL); 11522 } 11523 11524 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 11525 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 11526 11527 if (probe->dofp_func >= strtab->dofs_size) { 11528 dtrace_dof_error(dof, "corrupt probe function"); 11529 return (NULL); 11530 } 11531 11532 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 11533 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 11534 11535 if (probe->dofp_name >= strtab->dofs_size) { 11536 dtrace_dof_error(dof, "corrupt probe name"); 11537 return (NULL); 11538 } 11539 11540 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 11541 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 11542 11543 return (desc); 11544 } 11545 11546 static dtrace_difo_t * 11547 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11548 cred_t *cr) 11549 { 11550 dtrace_difo_t *dp; 11551 size_t ttl = 0; 11552 dof_difohdr_t *dofd; 11553 uintptr_t daddr = (uintptr_t)dof; 11554 size_t max = dtrace_difo_maxsize; 11555 int i, l, n; 11556 11557 static const struct { 11558 int section; 11559 int bufoffs; 11560 int lenoffs; 11561 int entsize; 11562 int align; 11563 const char *msg; 11564 } difo[] = { 11565 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11566 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11567 sizeof (dif_instr_t), "multiple DIF sections" }, 11568 11569 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11570 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11571 sizeof (uint64_t), "multiple integer tables" }, 11572 11573 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11574 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11575 sizeof (char), "multiple string tables" }, 11576 11577 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11578 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11579 sizeof (uint_t), "multiple variable tables" }, 11580 11581 { DOF_SECT_NONE, 0, 0, 0, NULL } 11582 }; 11583 11584 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11585 dtrace_dof_error(dof, "invalid DIFO header section"); 11586 return (NULL); 11587 } 11588 11589 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11590 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11591 return (NULL); 11592 } 11593 11594 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11595 sec->dofs_size % sizeof (dof_secidx_t)) { 11596 dtrace_dof_error(dof, "bad size in DIFO header"); 11597 return (NULL); 11598 } 11599 11600 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11601 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11602 11603 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11604 dp->dtdo_rtype = dofd->dofd_rtype; 11605 11606 for (l = 0; l < n; l++) { 11607 dof_sec_t *subsec; 11608 void **bufp; 11609 uint32_t *lenp; 11610 11611 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11612 dofd->dofd_links[l])) == NULL) 11613 goto err; /* invalid section link */ 11614 11615 if (ttl + subsec->dofs_size > max) { 11616 dtrace_dof_error(dof, "exceeds maximum size"); 11617 goto err; 11618 } 11619 11620 ttl += subsec->dofs_size; 11621 11622 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11623 if (subsec->dofs_type != difo[i].section) 11624 continue; 11625 11626 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11627 dtrace_dof_error(dof, "section not loaded"); 11628 goto err; 11629 } 11630 11631 if (subsec->dofs_align != difo[i].align) { 11632 dtrace_dof_error(dof, "bad alignment"); 11633 goto err; 11634 } 11635 11636 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11637 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11638 11639 if (*bufp != NULL) { 11640 dtrace_dof_error(dof, difo[i].msg); 11641 goto err; 11642 } 11643 11644 if (difo[i].entsize != subsec->dofs_entsize) { 11645 dtrace_dof_error(dof, "entry size mismatch"); 11646 goto err; 11647 } 11648 11649 if (subsec->dofs_entsize != 0 && 11650 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11651 dtrace_dof_error(dof, "corrupt entry size"); 11652 goto err; 11653 } 11654 11655 *lenp = subsec->dofs_size; 11656 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11657 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11658 *bufp, subsec->dofs_size); 11659 11660 if (subsec->dofs_entsize != 0) 11661 *lenp /= subsec->dofs_entsize; 11662 11663 break; 11664 } 11665 11666 /* 11667 * If we encounter a loadable DIFO sub-section that is not 11668 * known to us, assume this is a broken program and fail. 11669 */ 11670 if (difo[i].section == DOF_SECT_NONE && 11671 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11672 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11673 goto err; 11674 } 11675 } 11676 11677 if (dp->dtdo_buf == NULL) { 11678 /* 11679 * We can't have a DIF object without DIF text. 11680 */ 11681 dtrace_dof_error(dof, "missing DIF text"); 11682 goto err; 11683 } 11684 11685 /* 11686 * Before we validate the DIF object, run through the variable table 11687 * looking for the strings -- if any of their size are under, we'll set 11688 * their size to be the system-wide default string size. Note that 11689 * this should _not_ happen if the "strsize" option has been set -- 11690 * in this case, the compiler should have set the size to reflect the 11691 * setting of the option. 11692 */ 11693 for (i = 0; i < dp->dtdo_varlen; i++) { 11694 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11695 dtrace_diftype_t *t = &v->dtdv_type; 11696 11697 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 11698 continue; 11699 11700 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 11701 t->dtdt_size = dtrace_strsize_default; 11702 } 11703 11704 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 11705 goto err; 11706 11707 dtrace_difo_init(dp, vstate); 11708 return (dp); 11709 11710 err: 11711 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11712 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11713 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11714 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11715 11716 kmem_free(dp, sizeof (dtrace_difo_t)); 11717 return (NULL); 11718 } 11719 11720 static dtrace_predicate_t * 11721 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11722 cred_t *cr) 11723 { 11724 dtrace_difo_t *dp; 11725 11726 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 11727 return (NULL); 11728 11729 return (dtrace_predicate_create(dp)); 11730 } 11731 11732 static dtrace_actdesc_t * 11733 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11734 cred_t *cr) 11735 { 11736 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 11737 dof_actdesc_t *desc; 11738 dof_sec_t *difosec; 11739 size_t offs; 11740 uintptr_t daddr = (uintptr_t)dof; 11741 uint64_t arg; 11742 dtrace_actkind_t kind; 11743 11744 if (sec->dofs_type != DOF_SECT_ACTDESC) { 11745 dtrace_dof_error(dof, "invalid action section"); 11746 return (NULL); 11747 } 11748 11749 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 11750 dtrace_dof_error(dof, "truncated action description"); 11751 return (NULL); 11752 } 11753 11754 if (sec->dofs_align != sizeof (uint64_t)) { 11755 dtrace_dof_error(dof, "bad alignment in action description"); 11756 return (NULL); 11757 } 11758 11759 if (sec->dofs_size < sec->dofs_entsize) { 11760 dtrace_dof_error(dof, "section entry size exceeds total size"); 11761 return (NULL); 11762 } 11763 11764 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 11765 dtrace_dof_error(dof, "bad entry size in action description"); 11766 return (NULL); 11767 } 11768 11769 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 11770 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 11771 return (NULL); 11772 } 11773 11774 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 11775 desc = (dof_actdesc_t *)(daddr + 11776 (uintptr_t)sec->dofs_offset + offs); 11777 kind = (dtrace_actkind_t)desc->dofa_kind; 11778 11779 if (DTRACEACT_ISPRINTFLIKE(kind) && 11780 (kind != DTRACEACT_PRINTA || 11781 desc->dofa_strtab != DOF_SECIDX_NONE)) { 11782 dof_sec_t *strtab; 11783 char *str, *fmt; 11784 uint64_t i; 11785 11786 /* 11787 * printf()-like actions must have a format string. 11788 */ 11789 if ((strtab = dtrace_dof_sect(dof, 11790 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 11791 goto err; 11792 11793 str = (char *)((uintptr_t)dof + 11794 (uintptr_t)strtab->dofs_offset); 11795 11796 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 11797 if (str[i] == '\0') 11798 break; 11799 } 11800 11801 if (i >= strtab->dofs_size) { 11802 dtrace_dof_error(dof, "bogus format string"); 11803 goto err; 11804 } 11805 11806 if (i == desc->dofa_arg) { 11807 dtrace_dof_error(dof, "empty format string"); 11808 goto err; 11809 } 11810 11811 i -= desc->dofa_arg; 11812 fmt = kmem_alloc(i + 1, KM_SLEEP); 11813 bcopy(&str[desc->dofa_arg], fmt, i + 1); 11814 arg = (uint64_t)(uintptr_t)fmt; 11815 } else { 11816 if (kind == DTRACEACT_PRINTA) { 11817 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 11818 arg = 0; 11819 } else { 11820 arg = desc->dofa_arg; 11821 } 11822 } 11823 11824 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 11825 desc->dofa_uarg, arg); 11826 11827 if (last != NULL) { 11828 last->dtad_next = act; 11829 } else { 11830 first = act; 11831 } 11832 11833 last = act; 11834 11835 if (desc->dofa_difo == DOF_SECIDX_NONE) 11836 continue; 11837 11838 if ((difosec = dtrace_dof_sect(dof, 11839 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 11840 goto err; 11841 11842 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 11843 11844 if (act->dtad_difo == NULL) 11845 goto err; 11846 } 11847 11848 ASSERT(first != NULL); 11849 return (first); 11850 11851 err: 11852 for (act = first; act != NULL; act = next) { 11853 next = act->dtad_next; 11854 dtrace_actdesc_release(act, vstate); 11855 } 11856 11857 return (NULL); 11858 } 11859 11860 static dtrace_ecbdesc_t * 11861 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11862 cred_t *cr) 11863 { 11864 dtrace_ecbdesc_t *ep; 11865 dof_ecbdesc_t *ecb; 11866 dtrace_probedesc_t *desc; 11867 dtrace_predicate_t *pred = NULL; 11868 11869 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 11870 dtrace_dof_error(dof, "truncated ECB description"); 11871 return (NULL); 11872 } 11873 11874 if (sec->dofs_align != sizeof (uint64_t)) { 11875 dtrace_dof_error(dof, "bad alignment in ECB description"); 11876 return (NULL); 11877 } 11878 11879 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 11880 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 11881 11882 if (sec == NULL) 11883 return (NULL); 11884 11885 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11886 ep->dted_uarg = ecb->dofe_uarg; 11887 desc = &ep->dted_probe; 11888 11889 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 11890 goto err; 11891 11892 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 11893 if ((sec = dtrace_dof_sect(dof, 11894 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 11895 goto err; 11896 11897 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 11898 goto err; 11899 11900 ep->dted_pred.dtpdd_predicate = pred; 11901 } 11902 11903 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 11904 if ((sec = dtrace_dof_sect(dof, 11905 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 11906 goto err; 11907 11908 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 11909 11910 if (ep->dted_action == NULL) 11911 goto err; 11912 } 11913 11914 return (ep); 11915 11916 err: 11917 if (pred != NULL) 11918 dtrace_predicate_release(pred, vstate); 11919 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11920 return (NULL); 11921 } 11922 11923 /* 11924 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 11925 * specified DOF. At present, this amounts to simply adding 'ubase' to the 11926 * site of any user SETX relocations to account for load object base address. 11927 * In the future, if we need other relocations, this function can be extended. 11928 */ 11929 static int 11930 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 11931 { 11932 uintptr_t daddr = (uintptr_t)dof; 11933 dof_relohdr_t *dofr = 11934 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11935 dof_sec_t *ss, *rs, *ts; 11936 dof_relodesc_t *r; 11937 uint_t i, n; 11938 11939 if (sec->dofs_size < sizeof (dof_relohdr_t) || 11940 sec->dofs_align != sizeof (dof_secidx_t)) { 11941 dtrace_dof_error(dof, "invalid relocation header"); 11942 return (-1); 11943 } 11944 11945 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 11946 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 11947 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 11948 11949 if (ss == NULL || rs == NULL || ts == NULL) 11950 return (-1); /* dtrace_dof_error() has been called already */ 11951 11952 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 11953 rs->dofs_align != sizeof (uint64_t)) { 11954 dtrace_dof_error(dof, "invalid relocation section"); 11955 return (-1); 11956 } 11957 11958 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 11959 n = rs->dofs_size / rs->dofs_entsize; 11960 11961 for (i = 0; i < n; i++) { 11962 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 11963 11964 switch (r->dofr_type) { 11965 case DOF_RELO_NONE: 11966 break; 11967 case DOF_RELO_SETX: 11968 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 11969 sizeof (uint64_t) > ts->dofs_size) { 11970 dtrace_dof_error(dof, "bad relocation offset"); 11971 return (-1); 11972 } 11973 11974 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 11975 dtrace_dof_error(dof, "misaligned setx relo"); 11976 return (-1); 11977 } 11978 11979 *(uint64_t *)taddr += ubase; 11980 break; 11981 default: 11982 dtrace_dof_error(dof, "invalid relocation type"); 11983 return (-1); 11984 } 11985 11986 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 11987 } 11988 11989 return (0); 11990 } 11991 11992 /* 11993 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 11994 * header: it should be at the front of a memory region that is at least 11995 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 11996 * size. It need not be validated in any other way. 11997 */ 11998 static int 11999 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 12000 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 12001 { 12002 uint64_t len = dof->dofh_loadsz, seclen; 12003 uintptr_t daddr = (uintptr_t)dof; 12004 dtrace_ecbdesc_t *ep; 12005 dtrace_enabling_t *enab; 12006 uint_t i; 12007 12008 ASSERT(MUTEX_HELD(&dtrace_lock)); 12009 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 12010 12011 /* 12012 * Check the DOF header identification bytes. In addition to checking 12013 * valid settings, we also verify that unused bits/bytes are zeroed so 12014 * we can use them later without fear of regressing existing binaries. 12015 */ 12016 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 12017 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 12018 dtrace_dof_error(dof, "DOF magic string mismatch"); 12019 return (-1); 12020 } 12021 12022 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 12023 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 12024 dtrace_dof_error(dof, "DOF has invalid data model"); 12025 return (-1); 12026 } 12027 12028 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 12029 dtrace_dof_error(dof, "DOF encoding mismatch"); 12030 return (-1); 12031 } 12032 12033 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12034 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 12035 dtrace_dof_error(dof, "DOF version mismatch"); 12036 return (-1); 12037 } 12038 12039 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 12040 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 12041 return (-1); 12042 } 12043 12044 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 12045 dtrace_dof_error(dof, "DOF uses too many integer registers"); 12046 return (-1); 12047 } 12048 12049 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 12050 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 12051 return (-1); 12052 } 12053 12054 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 12055 if (dof->dofh_ident[i] != 0) { 12056 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 12057 return (-1); 12058 } 12059 } 12060 12061 if (dof->dofh_flags & ~DOF_FL_VALID) { 12062 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 12063 return (-1); 12064 } 12065 12066 if (dof->dofh_secsize == 0) { 12067 dtrace_dof_error(dof, "zero section header size"); 12068 return (-1); 12069 } 12070 12071 /* 12072 * Check that the section headers don't exceed the amount of DOF 12073 * data. Note that we cast the section size and number of sections 12074 * to uint64_t's to prevent possible overflow in the multiplication. 12075 */ 12076 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 12077 12078 if (dof->dofh_secoff > len || seclen > len || 12079 dof->dofh_secoff + seclen > len) { 12080 dtrace_dof_error(dof, "truncated section headers"); 12081 return (-1); 12082 } 12083 12084 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 12085 dtrace_dof_error(dof, "misaligned section headers"); 12086 return (-1); 12087 } 12088 12089 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 12090 dtrace_dof_error(dof, "misaligned section size"); 12091 return (-1); 12092 } 12093 12094 /* 12095 * Take an initial pass through the section headers to be sure that 12096 * the headers don't have stray offsets. If the 'noprobes' flag is 12097 * set, do not permit sections relating to providers, probes, or args. 12098 */ 12099 for (i = 0; i < dof->dofh_secnum; i++) { 12100 dof_sec_t *sec = (dof_sec_t *)(daddr + 12101 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12102 12103 if (noprobes) { 12104 switch (sec->dofs_type) { 12105 case DOF_SECT_PROVIDER: 12106 case DOF_SECT_PROBES: 12107 case DOF_SECT_PRARGS: 12108 case DOF_SECT_PROFFS: 12109 dtrace_dof_error(dof, "illegal sections " 12110 "for enabling"); 12111 return (-1); 12112 } 12113 } 12114 12115 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 12116 !(sec->dofs_flags & DOF_SECF_LOAD)) { 12117 dtrace_dof_error(dof, "loadable section with load " 12118 "flag unset"); 12119 return (-1); 12120 } 12121 12122 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12123 continue; /* just ignore non-loadable sections */ 12124 12125 if (sec->dofs_align & (sec->dofs_align - 1)) { 12126 dtrace_dof_error(dof, "bad section alignment"); 12127 return (-1); 12128 } 12129 12130 if (sec->dofs_offset & (sec->dofs_align - 1)) { 12131 dtrace_dof_error(dof, "misaligned section"); 12132 return (-1); 12133 } 12134 12135 if (sec->dofs_offset > len || sec->dofs_size > len || 12136 sec->dofs_offset + sec->dofs_size > len) { 12137 dtrace_dof_error(dof, "corrupt section header"); 12138 return (-1); 12139 } 12140 12141 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 12142 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 12143 dtrace_dof_error(dof, "non-terminating string table"); 12144 return (-1); 12145 } 12146 } 12147 12148 /* 12149 * Take a second pass through the sections and locate and perform any 12150 * relocations that are present. We do this after the first pass to 12151 * be sure that all sections have had their headers validated. 12152 */ 12153 for (i = 0; i < dof->dofh_secnum; i++) { 12154 dof_sec_t *sec = (dof_sec_t *)(daddr + 12155 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12156 12157 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12158 continue; /* skip sections that are not loadable */ 12159 12160 switch (sec->dofs_type) { 12161 case DOF_SECT_URELHDR: 12162 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 12163 return (-1); 12164 break; 12165 } 12166 } 12167 12168 if ((enab = *enabp) == NULL) 12169 enab = *enabp = dtrace_enabling_create(vstate); 12170 12171 for (i = 0; i < dof->dofh_secnum; i++) { 12172 dof_sec_t *sec = (dof_sec_t *)(daddr + 12173 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12174 12175 if (sec->dofs_type != DOF_SECT_ECBDESC) 12176 continue; 12177 12178 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 12179 dtrace_enabling_destroy(enab); 12180 *enabp = NULL; 12181 return (-1); 12182 } 12183 12184 dtrace_enabling_add(enab, ep); 12185 } 12186 12187 return (0); 12188 } 12189 12190 /* 12191 * Process DOF for any options. This routine assumes that the DOF has been 12192 * at least processed by dtrace_dof_slurp(). 12193 */ 12194 static int 12195 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 12196 { 12197 int i, rval; 12198 uint32_t entsize; 12199 size_t offs; 12200 dof_optdesc_t *desc; 12201 12202 for (i = 0; i < dof->dofh_secnum; i++) { 12203 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 12204 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12205 12206 if (sec->dofs_type != DOF_SECT_OPTDESC) 12207 continue; 12208 12209 if (sec->dofs_align != sizeof (uint64_t)) { 12210 dtrace_dof_error(dof, "bad alignment in " 12211 "option description"); 12212 return (EINVAL); 12213 } 12214 12215 if ((entsize = sec->dofs_entsize) == 0) { 12216 dtrace_dof_error(dof, "zeroed option entry size"); 12217 return (EINVAL); 12218 } 12219 12220 if (entsize < sizeof (dof_optdesc_t)) { 12221 dtrace_dof_error(dof, "bad option entry size"); 12222 return (EINVAL); 12223 } 12224 12225 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 12226 desc = (dof_optdesc_t *)((uintptr_t)dof + 12227 (uintptr_t)sec->dofs_offset + offs); 12228 12229 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 12230 dtrace_dof_error(dof, "non-zero option string"); 12231 return (EINVAL); 12232 } 12233 12234 if (desc->dofo_value == DTRACEOPT_UNSET) { 12235 dtrace_dof_error(dof, "unset option"); 12236 return (EINVAL); 12237 } 12238 12239 if ((rval = dtrace_state_option(state, 12240 desc->dofo_option, desc->dofo_value)) != 0) { 12241 dtrace_dof_error(dof, "rejected option"); 12242 return (rval); 12243 } 12244 } 12245 } 12246 12247 return (0); 12248 } 12249 12250 /* 12251 * DTrace Consumer State Functions 12252 */ 12253 int 12254 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 12255 { 12256 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 12257 void *base; 12258 uintptr_t limit; 12259 dtrace_dynvar_t *dvar, *next, *start; 12260 int i; 12261 12262 ASSERT(MUTEX_HELD(&dtrace_lock)); 12263 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 12264 12265 bzero(dstate, sizeof (dtrace_dstate_t)); 12266 12267 if ((dstate->dtds_chunksize = chunksize) == 0) 12268 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 12269 12270 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 12271 size = min; 12272 12273 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12274 return (ENOMEM); 12275 12276 dstate->dtds_size = size; 12277 dstate->dtds_base = base; 12278 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 12279 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 12280 12281 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 12282 12283 if (hashsize != 1 && (hashsize & 1)) 12284 hashsize--; 12285 12286 dstate->dtds_hashsize = hashsize; 12287 dstate->dtds_hash = dstate->dtds_base; 12288 12289 /* 12290 * Set all of our hash buckets to point to the single sink, and (if 12291 * it hasn't already been set), set the sink's hash value to be the 12292 * sink sentinel value. The sink is needed for dynamic variable 12293 * lookups to know that they have iterated over an entire, valid hash 12294 * chain. 12295 */ 12296 for (i = 0; i < hashsize; i++) 12297 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 12298 12299 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 12300 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 12301 12302 /* 12303 * Determine number of active CPUs. Divide free list evenly among 12304 * active CPUs. 12305 */ 12306 start = (dtrace_dynvar_t *) 12307 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 12308 limit = (uintptr_t)base + size; 12309 12310 maxper = (limit - (uintptr_t)start) / NCPU; 12311 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 12312 12313 for (i = 0; i < NCPU; i++) { 12314 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 12315 12316 /* 12317 * If we don't even have enough chunks to make it once through 12318 * NCPUs, we're just going to allocate everything to the first 12319 * CPU. And if we're on the last CPU, we're going to allocate 12320 * whatever is left over. In either case, we set the limit to 12321 * be the limit of the dynamic variable space. 12322 */ 12323 if (maxper == 0 || i == NCPU - 1) { 12324 limit = (uintptr_t)base + size; 12325 start = NULL; 12326 } else { 12327 limit = (uintptr_t)start + maxper; 12328 start = (dtrace_dynvar_t *)limit; 12329 } 12330 12331 ASSERT(limit <= (uintptr_t)base + size); 12332 12333 for (;;) { 12334 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 12335 dstate->dtds_chunksize); 12336 12337 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 12338 break; 12339 12340 dvar->dtdv_next = next; 12341 dvar = next; 12342 } 12343 12344 if (maxper == 0) 12345 break; 12346 } 12347 12348 return (0); 12349 } 12350 12351 void 12352 dtrace_dstate_fini(dtrace_dstate_t *dstate) 12353 { 12354 ASSERT(MUTEX_HELD(&cpu_lock)); 12355 12356 if (dstate->dtds_base == NULL) 12357 return; 12358 12359 kmem_free(dstate->dtds_base, dstate->dtds_size); 12360 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 12361 } 12362 12363 static void 12364 dtrace_vstate_fini(dtrace_vstate_t *vstate) 12365 { 12366 /* 12367 * Logical XOR, where are you? 12368 */ 12369 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 12370 12371 if (vstate->dtvs_nglobals > 0) { 12372 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 12373 sizeof (dtrace_statvar_t *)); 12374 } 12375 12376 if (vstate->dtvs_ntlocals > 0) { 12377 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 12378 sizeof (dtrace_difv_t)); 12379 } 12380 12381 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 12382 12383 if (vstate->dtvs_nlocals > 0) { 12384 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 12385 sizeof (dtrace_statvar_t *)); 12386 } 12387 } 12388 12389 static void 12390 dtrace_state_clean(dtrace_state_t *state) 12391 { 12392 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 12393 return; 12394 12395 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 12396 dtrace_speculation_clean(state); 12397 } 12398 12399 static void 12400 dtrace_state_deadman(dtrace_state_t *state) 12401 { 12402 hrtime_t now; 12403 12404 dtrace_sync(); 12405 12406 now = dtrace_gethrtime(); 12407 12408 if (state != dtrace_anon.dta_state && 12409 now - state->dts_laststatus >= dtrace_deadman_user) 12410 return; 12411 12412 /* 12413 * We must be sure that dts_alive never appears to be less than the 12414 * value upon entry to dtrace_state_deadman(), and because we lack a 12415 * dtrace_cas64(), we cannot store to it atomically. We thus instead 12416 * store INT64_MAX to it, followed by a memory barrier, followed by 12417 * the new value. This assures that dts_alive never appears to be 12418 * less than its true value, regardless of the order in which the 12419 * stores to the underlying storage are issued. 12420 */ 12421 state->dts_alive = INT64_MAX; 12422 dtrace_membar_producer(); 12423 state->dts_alive = now; 12424 } 12425 12426 dtrace_state_t * 12427 dtrace_state_create(dev_t *devp, cred_t *cr) 12428 { 12429 minor_t minor; 12430 major_t major; 12431 char c[30]; 12432 dtrace_state_t *state; 12433 dtrace_optval_t *opt; 12434 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 12435 12436 ASSERT(MUTEX_HELD(&dtrace_lock)); 12437 ASSERT(MUTEX_HELD(&cpu_lock)); 12438 12439 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 12440 VM_BESTFIT | VM_SLEEP); 12441 12442 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 12443 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12444 return (NULL); 12445 } 12446 12447 state = ddi_get_soft_state(dtrace_softstate, minor); 12448 state->dts_epid = DTRACE_EPIDNONE + 1; 12449 12450 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 12451 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 12452 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 12453 12454 if (devp != NULL) { 12455 major = getemajor(*devp); 12456 } else { 12457 major = ddi_driver_major(dtrace_devi); 12458 } 12459 12460 state->dts_dev = makedevice(major, minor); 12461 12462 if (devp != NULL) 12463 *devp = state->dts_dev; 12464 12465 /* 12466 * We allocate NCPU buffers. On the one hand, this can be quite 12467 * a bit of memory per instance (nearly 36K on a Starcat). On the 12468 * other hand, it saves an additional memory reference in the probe 12469 * path. 12470 */ 12471 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 12472 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 12473 state->dts_cleaner = CYCLIC_NONE; 12474 state->dts_deadman = CYCLIC_NONE; 12475 state->dts_vstate.dtvs_state = state; 12476 12477 for (i = 0; i < DTRACEOPT_MAX; i++) 12478 state->dts_options[i] = DTRACEOPT_UNSET; 12479 12480 /* 12481 * Set the default options. 12482 */ 12483 opt = state->dts_options; 12484 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 12485 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 12486 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 12487 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 12488 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 12489 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 12490 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 12491 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 12492 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 12493 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 12494 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 12495 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 12496 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 12497 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 12498 12499 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 12500 12501 /* 12502 * Depending on the user credentials, we set flag bits which alter probe 12503 * visibility or the amount of destructiveness allowed. In the case of 12504 * actual anonymous tracing, or the possession of all privileges, all of 12505 * the normal checks are bypassed. 12506 */ 12507 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 12508 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 12509 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 12510 } else { 12511 /* 12512 * Set up the credentials for this instantiation. We take a 12513 * hold on the credential to prevent it from disappearing on 12514 * us; this in turn prevents the zone_t referenced by this 12515 * credential from disappearing. This means that we can 12516 * examine the credential and the zone from probe context. 12517 */ 12518 crhold(cr); 12519 state->dts_cred.dcr_cred = cr; 12520 12521 /* 12522 * CRA_PROC means "we have *some* privilege for dtrace" and 12523 * unlocks the use of variables like pid, zonename, etc. 12524 */ 12525 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 12526 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12527 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 12528 } 12529 12530 /* 12531 * dtrace_user allows use of syscall and profile providers. 12532 * If the user also has proc_owner and/or proc_zone, we 12533 * extend the scope to include additional visibility and 12534 * destructive power. 12535 */ 12536 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 12537 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 12538 state->dts_cred.dcr_visible |= 12539 DTRACE_CRV_ALLPROC; 12540 12541 state->dts_cred.dcr_action |= 12542 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12543 } 12544 12545 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 12546 state->dts_cred.dcr_visible |= 12547 DTRACE_CRV_ALLZONE; 12548 12549 state->dts_cred.dcr_action |= 12550 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12551 } 12552 12553 /* 12554 * If we have all privs in whatever zone this is, 12555 * we can do destructive things to processes which 12556 * have altered credentials. 12557 */ 12558 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12559 cr->cr_zone->zone_privset)) { 12560 state->dts_cred.dcr_action |= 12561 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12562 } 12563 } 12564 12565 /* 12566 * Holding the dtrace_kernel privilege also implies that 12567 * the user has the dtrace_user privilege from a visibility 12568 * perspective. But without further privileges, some 12569 * destructive actions are not available. 12570 */ 12571 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12572 /* 12573 * Make all probes in all zones visible. However, 12574 * this doesn't mean that all actions become available 12575 * to all zones. 12576 */ 12577 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12578 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12579 12580 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12581 DTRACE_CRA_PROC; 12582 /* 12583 * Holding proc_owner means that destructive actions 12584 * for *this* zone are allowed. 12585 */ 12586 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12587 state->dts_cred.dcr_action |= 12588 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12589 12590 /* 12591 * Holding proc_zone means that destructive actions 12592 * for this user/group ID in all zones is allowed. 12593 */ 12594 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12595 state->dts_cred.dcr_action |= 12596 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12597 12598 /* 12599 * If we have all privs in whatever zone this is, 12600 * we can do destructive things to processes which 12601 * have altered credentials. 12602 */ 12603 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12604 cr->cr_zone->zone_privset)) { 12605 state->dts_cred.dcr_action |= 12606 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12607 } 12608 } 12609 12610 /* 12611 * Holding the dtrace_proc privilege gives control over fasttrap 12612 * and pid providers. We need to grant wider destructive 12613 * privileges in the event that the user has proc_owner and/or 12614 * proc_zone. 12615 */ 12616 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12617 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12618 state->dts_cred.dcr_action |= 12619 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12620 12621 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12622 state->dts_cred.dcr_action |= 12623 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12624 } 12625 } 12626 12627 return (state); 12628 } 12629 12630 static int 12631 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 12632 { 12633 dtrace_optval_t *opt = state->dts_options, size; 12634 processorid_t cpu; 12635 int flags = 0, rval, factor, divisor = 1; 12636 12637 ASSERT(MUTEX_HELD(&dtrace_lock)); 12638 ASSERT(MUTEX_HELD(&cpu_lock)); 12639 ASSERT(which < DTRACEOPT_MAX); 12640 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 12641 (state == dtrace_anon.dta_state && 12642 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 12643 12644 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 12645 return (0); 12646 12647 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 12648 cpu = opt[DTRACEOPT_CPU]; 12649 12650 if (which == DTRACEOPT_SPECSIZE) 12651 flags |= DTRACEBUF_NOSWITCH; 12652 12653 if (which == DTRACEOPT_BUFSIZE) { 12654 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 12655 flags |= DTRACEBUF_RING; 12656 12657 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 12658 flags |= DTRACEBUF_FILL; 12659 12660 if (state != dtrace_anon.dta_state || 12661 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 12662 flags |= DTRACEBUF_INACTIVE; 12663 } 12664 12665 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 12666 /* 12667 * The size must be 8-byte aligned. If the size is not 8-byte 12668 * aligned, drop it down by the difference. 12669 */ 12670 if (size & (sizeof (uint64_t) - 1)) 12671 size -= size & (sizeof (uint64_t) - 1); 12672 12673 if (size < state->dts_reserve) { 12674 /* 12675 * Buffers always must be large enough to accommodate 12676 * their prereserved space. We return E2BIG instead 12677 * of ENOMEM in this case to allow for user-level 12678 * software to differentiate the cases. 12679 */ 12680 return (E2BIG); 12681 } 12682 12683 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 12684 12685 if (rval != ENOMEM) { 12686 opt[which] = size; 12687 return (rval); 12688 } 12689 12690 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12691 return (rval); 12692 12693 for (divisor = 2; divisor < factor; divisor <<= 1) 12694 continue; 12695 } 12696 12697 return (ENOMEM); 12698 } 12699 12700 static int 12701 dtrace_state_buffers(dtrace_state_t *state) 12702 { 12703 dtrace_speculation_t *spec = state->dts_speculations; 12704 int rval, i; 12705 12706 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 12707 DTRACEOPT_BUFSIZE)) != 0) 12708 return (rval); 12709 12710 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 12711 DTRACEOPT_AGGSIZE)) != 0) 12712 return (rval); 12713 12714 for (i = 0; i < state->dts_nspeculations; i++) { 12715 if ((rval = dtrace_state_buffer(state, 12716 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 12717 return (rval); 12718 } 12719 12720 return (0); 12721 } 12722 12723 static void 12724 dtrace_state_prereserve(dtrace_state_t *state) 12725 { 12726 dtrace_ecb_t *ecb; 12727 dtrace_probe_t *probe; 12728 12729 state->dts_reserve = 0; 12730 12731 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 12732 return; 12733 12734 /* 12735 * If our buffer policy is a "fill" buffer policy, we need to set the 12736 * prereserved space to be the space required by the END probes. 12737 */ 12738 probe = dtrace_probes[dtrace_probeid_end - 1]; 12739 ASSERT(probe != NULL); 12740 12741 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 12742 if (ecb->dte_state != state) 12743 continue; 12744 12745 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 12746 } 12747 } 12748 12749 static int 12750 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 12751 { 12752 dtrace_optval_t *opt = state->dts_options, sz, nspec; 12753 dtrace_speculation_t *spec; 12754 dtrace_buffer_t *buf; 12755 cyc_handler_t hdlr; 12756 cyc_time_t when; 12757 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12758 dtrace_icookie_t cookie; 12759 12760 mutex_enter(&cpu_lock); 12761 mutex_enter(&dtrace_lock); 12762 12763 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 12764 rval = EBUSY; 12765 goto out; 12766 } 12767 12768 /* 12769 * Before we can perform any checks, we must prime all of the 12770 * retained enablings that correspond to this state. 12771 */ 12772 dtrace_enabling_prime(state); 12773 12774 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 12775 rval = EACCES; 12776 goto out; 12777 } 12778 12779 dtrace_state_prereserve(state); 12780 12781 /* 12782 * Now we want to do is try to allocate our speculations. 12783 * We do not automatically resize the number of speculations; if 12784 * this fails, we will fail the operation. 12785 */ 12786 nspec = opt[DTRACEOPT_NSPEC]; 12787 ASSERT(nspec != DTRACEOPT_UNSET); 12788 12789 if (nspec > INT_MAX) { 12790 rval = ENOMEM; 12791 goto out; 12792 } 12793 12794 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 12795 KM_NOSLEEP | KM_NORMALPRI); 12796 12797 if (spec == NULL) { 12798 rval = ENOMEM; 12799 goto out; 12800 } 12801 12802 state->dts_speculations = spec; 12803 state->dts_nspeculations = (int)nspec; 12804 12805 for (i = 0; i < nspec; i++) { 12806 if ((buf = kmem_zalloc(bufsize, 12807 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 12808 rval = ENOMEM; 12809 goto err; 12810 } 12811 12812 spec[i].dtsp_buffer = buf; 12813 } 12814 12815 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 12816 if (dtrace_anon.dta_state == NULL) { 12817 rval = ENOENT; 12818 goto out; 12819 } 12820 12821 if (state->dts_necbs != 0) { 12822 rval = EALREADY; 12823 goto out; 12824 } 12825 12826 state->dts_anon = dtrace_anon_grab(); 12827 ASSERT(state->dts_anon != NULL); 12828 state = state->dts_anon; 12829 12830 /* 12831 * We want "grabanon" to be set in the grabbed state, so we'll 12832 * copy that option value from the grabbing state into the 12833 * grabbed state. 12834 */ 12835 state->dts_options[DTRACEOPT_GRABANON] = 12836 opt[DTRACEOPT_GRABANON]; 12837 12838 *cpu = dtrace_anon.dta_beganon; 12839 12840 /* 12841 * If the anonymous state is active (as it almost certainly 12842 * is if the anonymous enabling ultimately matched anything), 12843 * we don't allow any further option processing -- but we 12844 * don't return failure. 12845 */ 12846 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12847 goto out; 12848 } 12849 12850 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 12851 opt[DTRACEOPT_AGGSIZE] != 0) { 12852 if (state->dts_aggregations == NULL) { 12853 /* 12854 * We're not going to create an aggregation buffer 12855 * because we don't have any ECBs that contain 12856 * aggregations -- set this option to 0. 12857 */ 12858 opt[DTRACEOPT_AGGSIZE] = 0; 12859 } else { 12860 /* 12861 * If we have an aggregation buffer, we must also have 12862 * a buffer to use as scratch. 12863 */ 12864 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 12865 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 12866 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 12867 } 12868 } 12869 } 12870 12871 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 12872 opt[DTRACEOPT_SPECSIZE] != 0) { 12873 if (!state->dts_speculates) { 12874 /* 12875 * We're not going to create speculation buffers 12876 * because we don't have any ECBs that actually 12877 * speculate -- set the speculation size to 0. 12878 */ 12879 opt[DTRACEOPT_SPECSIZE] = 0; 12880 } 12881 } 12882 12883 /* 12884 * The bare minimum size for any buffer that we're actually going to 12885 * do anything to is sizeof (uint64_t). 12886 */ 12887 sz = sizeof (uint64_t); 12888 12889 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 12890 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 12891 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 12892 /* 12893 * A buffer size has been explicitly set to 0 (or to a size 12894 * that will be adjusted to 0) and we need the space -- we 12895 * need to return failure. We return ENOSPC to differentiate 12896 * it from failing to allocate a buffer due to failure to meet 12897 * the reserve (for which we return E2BIG). 12898 */ 12899 rval = ENOSPC; 12900 goto out; 12901 } 12902 12903 if ((rval = dtrace_state_buffers(state)) != 0) 12904 goto err; 12905 12906 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 12907 sz = dtrace_dstate_defsize; 12908 12909 do { 12910 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 12911 12912 if (rval == 0) 12913 break; 12914 12915 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12916 goto err; 12917 } while (sz >>= 1); 12918 12919 opt[DTRACEOPT_DYNVARSIZE] = sz; 12920 12921 if (rval != 0) 12922 goto err; 12923 12924 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 12925 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 12926 12927 if (opt[DTRACEOPT_CLEANRATE] == 0) 12928 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12929 12930 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 12931 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 12932 12933 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 12934 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12935 12936 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 12937 hdlr.cyh_arg = state; 12938 hdlr.cyh_level = CY_LOW_LEVEL; 12939 12940 when.cyt_when = 0; 12941 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 12942 12943 state->dts_cleaner = cyclic_add(&hdlr, &when); 12944 12945 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 12946 hdlr.cyh_arg = state; 12947 hdlr.cyh_level = CY_LOW_LEVEL; 12948 12949 when.cyt_when = 0; 12950 when.cyt_interval = dtrace_deadman_interval; 12951 12952 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 12953 state->dts_deadman = cyclic_add(&hdlr, &when); 12954 12955 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 12956 12957 /* 12958 * Now it's time to actually fire the BEGIN probe. We need to disable 12959 * interrupts here both to record the CPU on which we fired the BEGIN 12960 * probe (the data from this CPU will be processed first at user 12961 * level) and to manually activate the buffer for this CPU. 12962 */ 12963 cookie = dtrace_interrupt_disable(); 12964 *cpu = CPU->cpu_id; 12965 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 12966 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12967 12968 dtrace_probe(dtrace_probeid_begin, 12969 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12970 dtrace_interrupt_enable(cookie); 12971 /* 12972 * We may have had an exit action from a BEGIN probe; only change our 12973 * state to ACTIVE if we're still in WARMUP. 12974 */ 12975 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 12976 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 12977 12978 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 12979 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 12980 12981 /* 12982 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 12983 * want each CPU to transition its principal buffer out of the 12984 * INACTIVE state. Doing this assures that no CPU will suddenly begin 12985 * processing an ECB halfway down a probe's ECB chain; all CPUs will 12986 * atomically transition from processing none of a state's ECBs to 12987 * processing all of them. 12988 */ 12989 dtrace_xcall(DTRACE_CPUALL, 12990 (dtrace_xcall_t)dtrace_buffer_activate, state); 12991 goto out; 12992 12993 err: 12994 dtrace_buffer_free(state->dts_buffer); 12995 dtrace_buffer_free(state->dts_aggbuffer); 12996 12997 if ((nspec = state->dts_nspeculations) == 0) { 12998 ASSERT(state->dts_speculations == NULL); 12999 goto out; 13000 } 13001 13002 spec = state->dts_speculations; 13003 ASSERT(spec != NULL); 13004 13005 for (i = 0; i < state->dts_nspeculations; i++) { 13006 if ((buf = spec[i].dtsp_buffer) == NULL) 13007 break; 13008 13009 dtrace_buffer_free(buf); 13010 kmem_free(buf, bufsize); 13011 } 13012 13013 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13014 state->dts_nspeculations = 0; 13015 state->dts_speculations = NULL; 13016 13017 out: 13018 mutex_exit(&dtrace_lock); 13019 mutex_exit(&cpu_lock); 13020 13021 return (rval); 13022 } 13023 13024 static int 13025 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 13026 { 13027 dtrace_icookie_t cookie; 13028 13029 ASSERT(MUTEX_HELD(&dtrace_lock)); 13030 13031 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 13032 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 13033 return (EINVAL); 13034 13035 /* 13036 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 13037 * to be sure that every CPU has seen it. See below for the details 13038 * on why this is done. 13039 */ 13040 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 13041 dtrace_sync(); 13042 13043 /* 13044 * By this point, it is impossible for any CPU to be still processing 13045 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 13046 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 13047 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 13048 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 13049 * iff we're in the END probe. 13050 */ 13051 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 13052 dtrace_sync(); 13053 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 13054 13055 /* 13056 * Finally, we can release the reserve and call the END probe. We 13057 * disable interrupts across calling the END probe to allow us to 13058 * return the CPU on which we actually called the END probe. This 13059 * allows user-land to be sure that this CPU's principal buffer is 13060 * processed last. 13061 */ 13062 state->dts_reserve = 0; 13063 13064 cookie = dtrace_interrupt_disable(); 13065 *cpu = CPU->cpu_id; 13066 dtrace_probe(dtrace_probeid_end, 13067 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13068 dtrace_interrupt_enable(cookie); 13069 13070 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 13071 dtrace_sync(); 13072 13073 return (0); 13074 } 13075 13076 static int 13077 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 13078 dtrace_optval_t val) 13079 { 13080 ASSERT(MUTEX_HELD(&dtrace_lock)); 13081 13082 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13083 return (EBUSY); 13084 13085 if (option >= DTRACEOPT_MAX) 13086 return (EINVAL); 13087 13088 if (option != DTRACEOPT_CPU && val < 0) 13089 return (EINVAL); 13090 13091 switch (option) { 13092 case DTRACEOPT_DESTRUCTIVE: 13093 if (dtrace_destructive_disallow) 13094 return (EACCES); 13095 13096 state->dts_cred.dcr_destructive = 1; 13097 break; 13098 13099 case DTRACEOPT_BUFSIZE: 13100 case DTRACEOPT_DYNVARSIZE: 13101 case DTRACEOPT_AGGSIZE: 13102 case DTRACEOPT_SPECSIZE: 13103 case DTRACEOPT_STRSIZE: 13104 if (val < 0) 13105 return (EINVAL); 13106 13107 if (val >= LONG_MAX) { 13108 /* 13109 * If this is an otherwise negative value, set it to 13110 * the highest multiple of 128m less than LONG_MAX. 13111 * Technically, we're adjusting the size without 13112 * regard to the buffer resizing policy, but in fact, 13113 * this has no effect -- if we set the buffer size to 13114 * ~LONG_MAX and the buffer policy is ultimately set to 13115 * be "manual", the buffer allocation is guaranteed to 13116 * fail, if only because the allocation requires two 13117 * buffers. (We set the the size to the highest 13118 * multiple of 128m because it ensures that the size 13119 * will remain a multiple of a megabyte when 13120 * repeatedly halved -- all the way down to 15m.) 13121 */ 13122 val = LONG_MAX - (1 << 27) + 1; 13123 } 13124 } 13125 13126 state->dts_options[option] = val; 13127 13128 return (0); 13129 } 13130 13131 static void 13132 dtrace_state_destroy(dtrace_state_t *state) 13133 { 13134 dtrace_ecb_t *ecb; 13135 dtrace_vstate_t *vstate = &state->dts_vstate; 13136 minor_t minor = getminor(state->dts_dev); 13137 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13138 dtrace_speculation_t *spec = state->dts_speculations; 13139 int nspec = state->dts_nspeculations; 13140 uint32_t match; 13141 13142 ASSERT(MUTEX_HELD(&dtrace_lock)); 13143 ASSERT(MUTEX_HELD(&cpu_lock)); 13144 13145 /* 13146 * First, retract any retained enablings for this state. 13147 */ 13148 dtrace_enabling_retract(state); 13149 ASSERT(state->dts_nretained == 0); 13150 13151 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 13152 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 13153 /* 13154 * We have managed to come into dtrace_state_destroy() on a 13155 * hot enabling -- almost certainly because of a disorderly 13156 * shutdown of a consumer. (That is, a consumer that is 13157 * exiting without having called dtrace_stop().) In this case, 13158 * we're going to set our activity to be KILLED, and then 13159 * issue a sync to be sure that everyone is out of probe 13160 * context before we start blowing away ECBs. 13161 */ 13162 state->dts_activity = DTRACE_ACTIVITY_KILLED; 13163 dtrace_sync(); 13164 } 13165 13166 /* 13167 * Release the credential hold we took in dtrace_state_create(). 13168 */ 13169 if (state->dts_cred.dcr_cred != NULL) 13170 crfree(state->dts_cred.dcr_cred); 13171 13172 /* 13173 * Now we can safely disable and destroy any enabled probes. Because 13174 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 13175 * (especially if they're all enabled), we take two passes through the 13176 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 13177 * in the second we disable whatever is left over. 13178 */ 13179 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 13180 for (i = 0; i < state->dts_necbs; i++) { 13181 if ((ecb = state->dts_ecbs[i]) == NULL) 13182 continue; 13183 13184 if (match && ecb->dte_probe != NULL) { 13185 dtrace_probe_t *probe = ecb->dte_probe; 13186 dtrace_provider_t *prov = probe->dtpr_provider; 13187 13188 if (!(prov->dtpv_priv.dtpp_flags & match)) 13189 continue; 13190 } 13191 13192 dtrace_ecb_disable(ecb); 13193 dtrace_ecb_destroy(ecb); 13194 } 13195 13196 if (!match) 13197 break; 13198 } 13199 13200 /* 13201 * Before we free the buffers, perform one more sync to assure that 13202 * every CPU is out of probe context. 13203 */ 13204 dtrace_sync(); 13205 13206 dtrace_buffer_free(state->dts_buffer); 13207 dtrace_buffer_free(state->dts_aggbuffer); 13208 13209 for (i = 0; i < nspec; i++) 13210 dtrace_buffer_free(spec[i].dtsp_buffer); 13211 13212 if (state->dts_cleaner != CYCLIC_NONE) 13213 cyclic_remove(state->dts_cleaner); 13214 13215 if (state->dts_deadman != CYCLIC_NONE) 13216 cyclic_remove(state->dts_deadman); 13217 13218 dtrace_dstate_fini(&vstate->dtvs_dynvars); 13219 dtrace_vstate_fini(vstate); 13220 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 13221 13222 if (state->dts_aggregations != NULL) { 13223 #ifdef DEBUG 13224 for (i = 0; i < state->dts_naggregations; i++) 13225 ASSERT(state->dts_aggregations[i] == NULL); 13226 #endif 13227 ASSERT(state->dts_naggregations > 0); 13228 kmem_free(state->dts_aggregations, 13229 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 13230 } 13231 13232 kmem_free(state->dts_buffer, bufsize); 13233 kmem_free(state->dts_aggbuffer, bufsize); 13234 13235 for (i = 0; i < nspec; i++) 13236 kmem_free(spec[i].dtsp_buffer, bufsize); 13237 13238 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13239 13240 dtrace_format_destroy(state); 13241 13242 vmem_destroy(state->dts_aggid_arena); 13243 ddi_soft_state_free(dtrace_softstate, minor); 13244 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13245 } 13246 13247 /* 13248 * DTrace Anonymous Enabling Functions 13249 */ 13250 static dtrace_state_t * 13251 dtrace_anon_grab(void) 13252 { 13253 dtrace_state_t *state; 13254 13255 ASSERT(MUTEX_HELD(&dtrace_lock)); 13256 13257 if ((state = dtrace_anon.dta_state) == NULL) { 13258 ASSERT(dtrace_anon.dta_enabling == NULL); 13259 return (NULL); 13260 } 13261 13262 ASSERT(dtrace_anon.dta_enabling != NULL); 13263 ASSERT(dtrace_retained != NULL); 13264 13265 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 13266 dtrace_anon.dta_enabling = NULL; 13267 dtrace_anon.dta_state = NULL; 13268 13269 return (state); 13270 } 13271 13272 static void 13273 dtrace_anon_property(void) 13274 { 13275 int i, rv; 13276 dtrace_state_t *state; 13277 dof_hdr_t *dof; 13278 char c[32]; /* enough for "dof-data-" + digits */ 13279 13280 ASSERT(MUTEX_HELD(&dtrace_lock)); 13281 ASSERT(MUTEX_HELD(&cpu_lock)); 13282 13283 for (i = 0; ; i++) { 13284 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 13285 13286 dtrace_err_verbose = 1; 13287 13288 if ((dof = dtrace_dof_property(c)) == NULL) { 13289 dtrace_err_verbose = 0; 13290 break; 13291 } 13292 13293 /* 13294 * We want to create anonymous state, so we need to transition 13295 * the kernel debugger to indicate that DTrace is active. If 13296 * this fails (e.g. because the debugger has modified text in 13297 * some way), we won't continue with the processing. 13298 */ 13299 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 13300 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 13301 "enabling ignored."); 13302 dtrace_dof_destroy(dof); 13303 break; 13304 } 13305 13306 /* 13307 * If we haven't allocated an anonymous state, we'll do so now. 13308 */ 13309 if ((state = dtrace_anon.dta_state) == NULL) { 13310 state = dtrace_state_create(NULL, NULL); 13311 dtrace_anon.dta_state = state; 13312 13313 if (state == NULL) { 13314 /* 13315 * This basically shouldn't happen: the only 13316 * failure mode from dtrace_state_create() is a 13317 * failure of ddi_soft_state_zalloc() that 13318 * itself should never happen. Still, the 13319 * interface allows for a failure mode, and 13320 * we want to fail as gracefully as possible: 13321 * we'll emit an error message and cease 13322 * processing anonymous state in this case. 13323 */ 13324 cmn_err(CE_WARN, "failed to create " 13325 "anonymous state"); 13326 dtrace_dof_destroy(dof); 13327 break; 13328 } 13329 } 13330 13331 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 13332 &dtrace_anon.dta_enabling, 0, B_TRUE); 13333 13334 if (rv == 0) 13335 rv = dtrace_dof_options(dof, state); 13336 13337 dtrace_err_verbose = 0; 13338 dtrace_dof_destroy(dof); 13339 13340 if (rv != 0) { 13341 /* 13342 * This is malformed DOF; chuck any anonymous state 13343 * that we created. 13344 */ 13345 ASSERT(dtrace_anon.dta_enabling == NULL); 13346 dtrace_state_destroy(state); 13347 dtrace_anon.dta_state = NULL; 13348 break; 13349 } 13350 13351 ASSERT(dtrace_anon.dta_enabling != NULL); 13352 } 13353 13354 if (dtrace_anon.dta_enabling != NULL) { 13355 int rval; 13356 13357 /* 13358 * dtrace_enabling_retain() can only fail because we are 13359 * trying to retain more enablings than are allowed -- but 13360 * we only have one anonymous enabling, and we are guaranteed 13361 * to be allowed at least one retained enabling; we assert 13362 * that dtrace_enabling_retain() returns success. 13363 */ 13364 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 13365 ASSERT(rval == 0); 13366 13367 dtrace_enabling_dump(dtrace_anon.dta_enabling); 13368 } 13369 } 13370 13371 /* 13372 * DTrace Helper Functions 13373 */ 13374 static void 13375 dtrace_helper_trace(dtrace_helper_action_t *helper, 13376 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 13377 { 13378 uint32_t size, next, nnext, i; 13379 dtrace_helptrace_t *ent; 13380 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13381 13382 if (!dtrace_helptrace_enabled) 13383 return; 13384 13385 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 13386 13387 /* 13388 * What would a tracing framework be without its own tracing 13389 * framework? (Well, a hell of a lot simpler, for starters...) 13390 */ 13391 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 13392 sizeof (uint64_t) - sizeof (uint64_t); 13393 13394 /* 13395 * Iterate until we can allocate a slot in the trace buffer. 13396 */ 13397 do { 13398 next = dtrace_helptrace_next; 13399 13400 if (next + size < dtrace_helptrace_bufsize) { 13401 nnext = next + size; 13402 } else { 13403 nnext = size; 13404 } 13405 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 13406 13407 /* 13408 * We have our slot; fill it in. 13409 */ 13410 if (nnext == size) 13411 next = 0; 13412 13413 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 13414 ent->dtht_helper = helper; 13415 ent->dtht_where = where; 13416 ent->dtht_nlocals = vstate->dtvs_nlocals; 13417 13418 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 13419 mstate->dtms_fltoffs : -1; 13420 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 13421 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 13422 13423 for (i = 0; i < vstate->dtvs_nlocals; i++) { 13424 dtrace_statvar_t *svar; 13425 13426 if ((svar = vstate->dtvs_locals[i]) == NULL) 13427 continue; 13428 13429 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 13430 ent->dtht_locals[i] = 13431 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 13432 } 13433 } 13434 13435 static uint64_t 13436 dtrace_helper(int which, dtrace_mstate_t *mstate, 13437 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 13438 { 13439 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13440 uint64_t sarg0 = mstate->dtms_arg[0]; 13441 uint64_t sarg1 = mstate->dtms_arg[1]; 13442 uint64_t rval; 13443 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 13444 dtrace_helper_action_t *helper; 13445 dtrace_vstate_t *vstate; 13446 dtrace_difo_t *pred; 13447 int i, trace = dtrace_helptrace_enabled; 13448 13449 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 13450 13451 if (helpers == NULL) 13452 return (0); 13453 13454 if ((helper = helpers->dthps_actions[which]) == NULL) 13455 return (0); 13456 13457 vstate = &helpers->dthps_vstate; 13458 mstate->dtms_arg[0] = arg0; 13459 mstate->dtms_arg[1] = arg1; 13460 13461 /* 13462 * Now iterate over each helper. If its predicate evaluates to 'true', 13463 * we'll call the corresponding actions. Note that the below calls 13464 * to dtrace_dif_emulate() may set faults in machine state. This is 13465 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 13466 * the stored DIF offset with its own (which is the desired behavior). 13467 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 13468 * from machine state; this is okay, too. 13469 */ 13470 for (; helper != NULL; helper = helper->dtha_next) { 13471 if ((pred = helper->dtha_predicate) != NULL) { 13472 if (trace) 13473 dtrace_helper_trace(helper, mstate, vstate, 0); 13474 13475 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 13476 goto next; 13477 13478 if (*flags & CPU_DTRACE_FAULT) 13479 goto err; 13480 } 13481 13482 for (i = 0; i < helper->dtha_nactions; i++) { 13483 if (trace) 13484 dtrace_helper_trace(helper, 13485 mstate, vstate, i + 1); 13486 13487 rval = dtrace_dif_emulate(helper->dtha_actions[i], 13488 mstate, vstate, state); 13489 13490 if (*flags & CPU_DTRACE_FAULT) 13491 goto err; 13492 } 13493 13494 next: 13495 if (trace) 13496 dtrace_helper_trace(helper, mstate, vstate, 13497 DTRACE_HELPTRACE_NEXT); 13498 } 13499 13500 if (trace) 13501 dtrace_helper_trace(helper, mstate, vstate, 13502 DTRACE_HELPTRACE_DONE); 13503 13504 /* 13505 * Restore the arg0 that we saved upon entry. 13506 */ 13507 mstate->dtms_arg[0] = sarg0; 13508 mstate->dtms_arg[1] = sarg1; 13509 13510 return (rval); 13511 13512 err: 13513 if (trace) 13514 dtrace_helper_trace(helper, mstate, vstate, 13515 DTRACE_HELPTRACE_ERR); 13516 13517 /* 13518 * Restore the arg0 that we saved upon entry. 13519 */ 13520 mstate->dtms_arg[0] = sarg0; 13521 mstate->dtms_arg[1] = sarg1; 13522 13523 return (NULL); 13524 } 13525 13526 static void 13527 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 13528 dtrace_vstate_t *vstate) 13529 { 13530 int i; 13531 13532 if (helper->dtha_predicate != NULL) 13533 dtrace_difo_release(helper->dtha_predicate, vstate); 13534 13535 for (i = 0; i < helper->dtha_nactions; i++) { 13536 ASSERT(helper->dtha_actions[i] != NULL); 13537 dtrace_difo_release(helper->dtha_actions[i], vstate); 13538 } 13539 13540 kmem_free(helper->dtha_actions, 13541 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 13542 kmem_free(helper, sizeof (dtrace_helper_action_t)); 13543 } 13544 13545 static int 13546 dtrace_helper_destroygen(int gen) 13547 { 13548 proc_t *p = curproc; 13549 dtrace_helpers_t *help = p->p_dtrace_helpers; 13550 dtrace_vstate_t *vstate; 13551 int i; 13552 13553 ASSERT(MUTEX_HELD(&dtrace_lock)); 13554 13555 if (help == NULL || gen > help->dthps_generation) 13556 return (EINVAL); 13557 13558 vstate = &help->dthps_vstate; 13559 13560 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13561 dtrace_helper_action_t *last = NULL, *h, *next; 13562 13563 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13564 next = h->dtha_next; 13565 13566 if (h->dtha_generation == gen) { 13567 if (last != NULL) { 13568 last->dtha_next = next; 13569 } else { 13570 help->dthps_actions[i] = next; 13571 } 13572 13573 dtrace_helper_action_destroy(h, vstate); 13574 } else { 13575 last = h; 13576 } 13577 } 13578 } 13579 13580 /* 13581 * Interate until we've cleared out all helper providers with the 13582 * given generation number. 13583 */ 13584 for (;;) { 13585 dtrace_helper_provider_t *prov; 13586 13587 /* 13588 * Look for a helper provider with the right generation. We 13589 * have to start back at the beginning of the list each time 13590 * because we drop dtrace_lock. It's unlikely that we'll make 13591 * more than two passes. 13592 */ 13593 for (i = 0; i < help->dthps_nprovs; i++) { 13594 prov = help->dthps_provs[i]; 13595 13596 if (prov->dthp_generation == gen) 13597 break; 13598 } 13599 13600 /* 13601 * If there were no matches, we're done. 13602 */ 13603 if (i == help->dthps_nprovs) 13604 break; 13605 13606 /* 13607 * Move the last helper provider into this slot. 13608 */ 13609 help->dthps_nprovs--; 13610 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 13611 help->dthps_provs[help->dthps_nprovs] = NULL; 13612 13613 mutex_exit(&dtrace_lock); 13614 13615 /* 13616 * If we have a meta provider, remove this helper provider. 13617 */ 13618 mutex_enter(&dtrace_meta_lock); 13619 if (dtrace_meta_pid != NULL) { 13620 ASSERT(dtrace_deferred_pid == NULL); 13621 dtrace_helper_provider_remove(&prov->dthp_prov, 13622 p->p_pid); 13623 } 13624 mutex_exit(&dtrace_meta_lock); 13625 13626 dtrace_helper_provider_destroy(prov); 13627 13628 mutex_enter(&dtrace_lock); 13629 } 13630 13631 return (0); 13632 } 13633 13634 static int 13635 dtrace_helper_validate(dtrace_helper_action_t *helper) 13636 { 13637 int err = 0, i; 13638 dtrace_difo_t *dp; 13639 13640 if ((dp = helper->dtha_predicate) != NULL) 13641 err += dtrace_difo_validate_helper(dp); 13642 13643 for (i = 0; i < helper->dtha_nactions; i++) 13644 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 13645 13646 return (err == 0); 13647 } 13648 13649 static int 13650 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 13651 { 13652 dtrace_helpers_t *help; 13653 dtrace_helper_action_t *helper, *last; 13654 dtrace_actdesc_t *act; 13655 dtrace_vstate_t *vstate; 13656 dtrace_predicate_t *pred; 13657 int count = 0, nactions = 0, i; 13658 13659 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 13660 return (EINVAL); 13661 13662 help = curproc->p_dtrace_helpers; 13663 last = help->dthps_actions[which]; 13664 vstate = &help->dthps_vstate; 13665 13666 for (count = 0; last != NULL; last = last->dtha_next) { 13667 count++; 13668 if (last->dtha_next == NULL) 13669 break; 13670 } 13671 13672 /* 13673 * If we already have dtrace_helper_actions_max helper actions for this 13674 * helper action type, we'll refuse to add a new one. 13675 */ 13676 if (count >= dtrace_helper_actions_max) 13677 return (ENOSPC); 13678 13679 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 13680 helper->dtha_generation = help->dthps_generation; 13681 13682 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 13683 ASSERT(pred->dtp_difo != NULL); 13684 dtrace_difo_hold(pred->dtp_difo); 13685 helper->dtha_predicate = pred->dtp_difo; 13686 } 13687 13688 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 13689 if (act->dtad_kind != DTRACEACT_DIFEXPR) 13690 goto err; 13691 13692 if (act->dtad_difo == NULL) 13693 goto err; 13694 13695 nactions++; 13696 } 13697 13698 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 13699 (helper->dtha_nactions = nactions), KM_SLEEP); 13700 13701 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 13702 dtrace_difo_hold(act->dtad_difo); 13703 helper->dtha_actions[i++] = act->dtad_difo; 13704 } 13705 13706 if (!dtrace_helper_validate(helper)) 13707 goto err; 13708 13709 if (last == NULL) { 13710 help->dthps_actions[which] = helper; 13711 } else { 13712 last->dtha_next = helper; 13713 } 13714 13715 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 13716 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 13717 dtrace_helptrace_next = 0; 13718 } 13719 13720 return (0); 13721 err: 13722 dtrace_helper_action_destroy(helper, vstate); 13723 return (EINVAL); 13724 } 13725 13726 static void 13727 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 13728 dof_helper_t *dofhp) 13729 { 13730 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 13731 13732 mutex_enter(&dtrace_meta_lock); 13733 mutex_enter(&dtrace_lock); 13734 13735 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 13736 /* 13737 * If the dtrace module is loaded but not attached, or if 13738 * there aren't isn't a meta provider registered to deal with 13739 * these provider descriptions, we need to postpone creating 13740 * the actual providers until later. 13741 */ 13742 13743 if (help->dthps_next == NULL && help->dthps_prev == NULL && 13744 dtrace_deferred_pid != help) { 13745 help->dthps_deferred = 1; 13746 help->dthps_pid = p->p_pid; 13747 help->dthps_next = dtrace_deferred_pid; 13748 help->dthps_prev = NULL; 13749 if (dtrace_deferred_pid != NULL) 13750 dtrace_deferred_pid->dthps_prev = help; 13751 dtrace_deferred_pid = help; 13752 } 13753 13754 mutex_exit(&dtrace_lock); 13755 13756 } else if (dofhp != NULL) { 13757 /* 13758 * If the dtrace module is loaded and we have a particular 13759 * helper provider description, pass that off to the 13760 * meta provider. 13761 */ 13762 13763 mutex_exit(&dtrace_lock); 13764 13765 dtrace_helper_provide(dofhp, p->p_pid); 13766 13767 } else { 13768 /* 13769 * Otherwise, just pass all the helper provider descriptions 13770 * off to the meta provider. 13771 */ 13772 13773 int i; 13774 mutex_exit(&dtrace_lock); 13775 13776 for (i = 0; i < help->dthps_nprovs; i++) { 13777 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 13778 p->p_pid); 13779 } 13780 } 13781 13782 mutex_exit(&dtrace_meta_lock); 13783 } 13784 13785 static int 13786 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 13787 { 13788 dtrace_helpers_t *help; 13789 dtrace_helper_provider_t *hprov, **tmp_provs; 13790 uint_t tmp_maxprovs, i; 13791 13792 ASSERT(MUTEX_HELD(&dtrace_lock)); 13793 13794 help = curproc->p_dtrace_helpers; 13795 ASSERT(help != NULL); 13796 13797 /* 13798 * If we already have dtrace_helper_providers_max helper providers, 13799 * we're refuse to add a new one. 13800 */ 13801 if (help->dthps_nprovs >= dtrace_helper_providers_max) 13802 return (ENOSPC); 13803 13804 /* 13805 * Check to make sure this isn't a duplicate. 13806 */ 13807 for (i = 0; i < help->dthps_nprovs; i++) { 13808 if (dofhp->dofhp_addr == 13809 help->dthps_provs[i]->dthp_prov.dofhp_addr) 13810 return (EALREADY); 13811 } 13812 13813 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 13814 hprov->dthp_prov = *dofhp; 13815 hprov->dthp_ref = 1; 13816 hprov->dthp_generation = gen; 13817 13818 /* 13819 * Allocate a bigger table for helper providers if it's already full. 13820 */ 13821 if (help->dthps_maxprovs == help->dthps_nprovs) { 13822 tmp_maxprovs = help->dthps_maxprovs; 13823 tmp_provs = help->dthps_provs; 13824 13825 if (help->dthps_maxprovs == 0) 13826 help->dthps_maxprovs = 2; 13827 else 13828 help->dthps_maxprovs *= 2; 13829 if (help->dthps_maxprovs > dtrace_helper_providers_max) 13830 help->dthps_maxprovs = dtrace_helper_providers_max; 13831 13832 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 13833 13834 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 13835 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13836 13837 if (tmp_provs != NULL) { 13838 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 13839 sizeof (dtrace_helper_provider_t *)); 13840 kmem_free(tmp_provs, tmp_maxprovs * 13841 sizeof (dtrace_helper_provider_t *)); 13842 } 13843 } 13844 13845 help->dthps_provs[help->dthps_nprovs] = hprov; 13846 help->dthps_nprovs++; 13847 13848 return (0); 13849 } 13850 13851 static void 13852 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 13853 { 13854 mutex_enter(&dtrace_lock); 13855 13856 if (--hprov->dthp_ref == 0) { 13857 dof_hdr_t *dof; 13858 mutex_exit(&dtrace_lock); 13859 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 13860 dtrace_dof_destroy(dof); 13861 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 13862 } else { 13863 mutex_exit(&dtrace_lock); 13864 } 13865 } 13866 13867 static int 13868 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 13869 { 13870 uintptr_t daddr = (uintptr_t)dof; 13871 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 13872 dof_provider_t *provider; 13873 dof_probe_t *probe; 13874 uint8_t *arg; 13875 char *strtab, *typestr; 13876 dof_stridx_t typeidx; 13877 size_t typesz; 13878 uint_t nprobes, j, k; 13879 13880 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 13881 13882 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 13883 dtrace_dof_error(dof, "misaligned section offset"); 13884 return (-1); 13885 } 13886 13887 /* 13888 * The section needs to be large enough to contain the DOF provider 13889 * structure appropriate for the given version. 13890 */ 13891 if (sec->dofs_size < 13892 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 13893 offsetof(dof_provider_t, dofpv_prenoffs) : 13894 sizeof (dof_provider_t))) { 13895 dtrace_dof_error(dof, "provider section too small"); 13896 return (-1); 13897 } 13898 13899 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 13900 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 13901 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 13902 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 13903 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 13904 13905 if (str_sec == NULL || prb_sec == NULL || 13906 arg_sec == NULL || off_sec == NULL) 13907 return (-1); 13908 13909 enoff_sec = NULL; 13910 13911 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13912 provider->dofpv_prenoffs != DOF_SECT_NONE && 13913 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 13914 provider->dofpv_prenoffs)) == NULL) 13915 return (-1); 13916 13917 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 13918 13919 if (provider->dofpv_name >= str_sec->dofs_size || 13920 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 13921 dtrace_dof_error(dof, "invalid provider name"); 13922 return (-1); 13923 } 13924 13925 if (prb_sec->dofs_entsize == 0 || 13926 prb_sec->dofs_entsize > prb_sec->dofs_size) { 13927 dtrace_dof_error(dof, "invalid entry size"); 13928 return (-1); 13929 } 13930 13931 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 13932 dtrace_dof_error(dof, "misaligned entry size"); 13933 return (-1); 13934 } 13935 13936 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 13937 dtrace_dof_error(dof, "invalid entry size"); 13938 return (-1); 13939 } 13940 13941 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 13942 dtrace_dof_error(dof, "misaligned section offset"); 13943 return (-1); 13944 } 13945 13946 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 13947 dtrace_dof_error(dof, "invalid entry size"); 13948 return (-1); 13949 } 13950 13951 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 13952 13953 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 13954 13955 /* 13956 * Take a pass through the probes to check for errors. 13957 */ 13958 for (j = 0; j < nprobes; j++) { 13959 probe = (dof_probe_t *)(uintptr_t)(daddr + 13960 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 13961 13962 if (probe->dofpr_func >= str_sec->dofs_size) { 13963 dtrace_dof_error(dof, "invalid function name"); 13964 return (-1); 13965 } 13966 13967 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 13968 dtrace_dof_error(dof, "function name too long"); 13969 return (-1); 13970 } 13971 13972 if (probe->dofpr_name >= str_sec->dofs_size || 13973 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 13974 dtrace_dof_error(dof, "invalid probe name"); 13975 return (-1); 13976 } 13977 13978 /* 13979 * The offset count must not wrap the index, and the offsets 13980 * must also not overflow the section's data. 13981 */ 13982 if (probe->dofpr_offidx + probe->dofpr_noffs < 13983 probe->dofpr_offidx || 13984 (probe->dofpr_offidx + probe->dofpr_noffs) * 13985 off_sec->dofs_entsize > off_sec->dofs_size) { 13986 dtrace_dof_error(dof, "invalid probe offset"); 13987 return (-1); 13988 } 13989 13990 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 13991 /* 13992 * If there's no is-enabled offset section, make sure 13993 * there aren't any is-enabled offsets. Otherwise 13994 * perform the same checks as for probe offsets 13995 * (immediately above). 13996 */ 13997 if (enoff_sec == NULL) { 13998 if (probe->dofpr_enoffidx != 0 || 13999 probe->dofpr_nenoffs != 0) { 14000 dtrace_dof_error(dof, "is-enabled " 14001 "offsets with null section"); 14002 return (-1); 14003 } 14004 } else if (probe->dofpr_enoffidx + 14005 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 14006 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 14007 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 14008 dtrace_dof_error(dof, "invalid is-enabled " 14009 "offset"); 14010 return (-1); 14011 } 14012 14013 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 14014 dtrace_dof_error(dof, "zero probe and " 14015 "is-enabled offsets"); 14016 return (-1); 14017 } 14018 } else if (probe->dofpr_noffs == 0) { 14019 dtrace_dof_error(dof, "zero probe offsets"); 14020 return (-1); 14021 } 14022 14023 if (probe->dofpr_argidx + probe->dofpr_xargc < 14024 probe->dofpr_argidx || 14025 (probe->dofpr_argidx + probe->dofpr_xargc) * 14026 arg_sec->dofs_entsize > arg_sec->dofs_size) { 14027 dtrace_dof_error(dof, "invalid args"); 14028 return (-1); 14029 } 14030 14031 typeidx = probe->dofpr_nargv; 14032 typestr = strtab + probe->dofpr_nargv; 14033 for (k = 0; k < probe->dofpr_nargc; k++) { 14034 if (typeidx >= str_sec->dofs_size) { 14035 dtrace_dof_error(dof, "bad " 14036 "native argument type"); 14037 return (-1); 14038 } 14039 14040 typesz = strlen(typestr) + 1; 14041 if (typesz > DTRACE_ARGTYPELEN) { 14042 dtrace_dof_error(dof, "native " 14043 "argument type too long"); 14044 return (-1); 14045 } 14046 typeidx += typesz; 14047 typestr += typesz; 14048 } 14049 14050 typeidx = probe->dofpr_xargv; 14051 typestr = strtab + probe->dofpr_xargv; 14052 for (k = 0; k < probe->dofpr_xargc; k++) { 14053 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 14054 dtrace_dof_error(dof, "bad " 14055 "native argument index"); 14056 return (-1); 14057 } 14058 14059 if (typeidx >= str_sec->dofs_size) { 14060 dtrace_dof_error(dof, "bad " 14061 "translated argument type"); 14062 return (-1); 14063 } 14064 14065 typesz = strlen(typestr) + 1; 14066 if (typesz > DTRACE_ARGTYPELEN) { 14067 dtrace_dof_error(dof, "translated argument " 14068 "type too long"); 14069 return (-1); 14070 } 14071 14072 typeidx += typesz; 14073 typestr += typesz; 14074 } 14075 } 14076 14077 return (0); 14078 } 14079 14080 static int 14081 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 14082 { 14083 dtrace_helpers_t *help; 14084 dtrace_vstate_t *vstate; 14085 dtrace_enabling_t *enab = NULL; 14086 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 14087 uintptr_t daddr = (uintptr_t)dof; 14088 14089 ASSERT(MUTEX_HELD(&dtrace_lock)); 14090 14091 if ((help = curproc->p_dtrace_helpers) == NULL) 14092 help = dtrace_helpers_create(curproc); 14093 14094 vstate = &help->dthps_vstate; 14095 14096 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 14097 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 14098 dtrace_dof_destroy(dof); 14099 return (rv); 14100 } 14101 14102 /* 14103 * Look for helper providers and validate their descriptions. 14104 */ 14105 if (dhp != NULL) { 14106 for (i = 0; i < dof->dofh_secnum; i++) { 14107 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 14108 dof->dofh_secoff + i * dof->dofh_secsize); 14109 14110 if (sec->dofs_type != DOF_SECT_PROVIDER) 14111 continue; 14112 14113 if (dtrace_helper_provider_validate(dof, sec) != 0) { 14114 dtrace_enabling_destroy(enab); 14115 dtrace_dof_destroy(dof); 14116 return (-1); 14117 } 14118 14119 nprovs++; 14120 } 14121 } 14122 14123 /* 14124 * Now we need to walk through the ECB descriptions in the enabling. 14125 */ 14126 for (i = 0; i < enab->dten_ndesc; i++) { 14127 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 14128 dtrace_probedesc_t *desc = &ep->dted_probe; 14129 14130 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 14131 continue; 14132 14133 if (strcmp(desc->dtpd_mod, "helper") != 0) 14134 continue; 14135 14136 if (strcmp(desc->dtpd_func, "ustack") != 0) 14137 continue; 14138 14139 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 14140 ep)) != 0) { 14141 /* 14142 * Adding this helper action failed -- we are now going 14143 * to rip out the entire generation and return failure. 14144 */ 14145 (void) dtrace_helper_destroygen(help->dthps_generation); 14146 dtrace_enabling_destroy(enab); 14147 dtrace_dof_destroy(dof); 14148 return (-1); 14149 } 14150 14151 nhelpers++; 14152 } 14153 14154 if (nhelpers < enab->dten_ndesc) 14155 dtrace_dof_error(dof, "unmatched helpers"); 14156 14157 gen = help->dthps_generation++; 14158 dtrace_enabling_destroy(enab); 14159 14160 if (dhp != NULL && nprovs > 0) { 14161 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 14162 if (dtrace_helper_provider_add(dhp, gen) == 0) { 14163 mutex_exit(&dtrace_lock); 14164 dtrace_helper_provider_register(curproc, help, dhp); 14165 mutex_enter(&dtrace_lock); 14166 14167 destroy = 0; 14168 } 14169 } 14170 14171 if (destroy) 14172 dtrace_dof_destroy(dof); 14173 14174 return (gen); 14175 } 14176 14177 static dtrace_helpers_t * 14178 dtrace_helpers_create(proc_t *p) 14179 { 14180 dtrace_helpers_t *help; 14181 14182 ASSERT(MUTEX_HELD(&dtrace_lock)); 14183 ASSERT(p->p_dtrace_helpers == NULL); 14184 14185 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 14186 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 14187 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 14188 14189 p->p_dtrace_helpers = help; 14190 dtrace_helpers++; 14191 14192 return (help); 14193 } 14194 14195 static void 14196 dtrace_helpers_destroy(void) 14197 { 14198 dtrace_helpers_t *help; 14199 dtrace_vstate_t *vstate; 14200 proc_t *p = curproc; 14201 int i; 14202 14203 mutex_enter(&dtrace_lock); 14204 14205 ASSERT(p->p_dtrace_helpers != NULL); 14206 ASSERT(dtrace_helpers > 0); 14207 14208 help = p->p_dtrace_helpers; 14209 vstate = &help->dthps_vstate; 14210 14211 /* 14212 * We're now going to lose the help from this process. 14213 */ 14214 p->p_dtrace_helpers = NULL; 14215 dtrace_sync(); 14216 14217 /* 14218 * Destory the helper actions. 14219 */ 14220 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14221 dtrace_helper_action_t *h, *next; 14222 14223 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14224 next = h->dtha_next; 14225 dtrace_helper_action_destroy(h, vstate); 14226 h = next; 14227 } 14228 } 14229 14230 mutex_exit(&dtrace_lock); 14231 14232 /* 14233 * Destroy the helper providers. 14234 */ 14235 if (help->dthps_maxprovs > 0) { 14236 mutex_enter(&dtrace_meta_lock); 14237 if (dtrace_meta_pid != NULL) { 14238 ASSERT(dtrace_deferred_pid == NULL); 14239 14240 for (i = 0; i < help->dthps_nprovs; i++) { 14241 dtrace_helper_provider_remove( 14242 &help->dthps_provs[i]->dthp_prov, p->p_pid); 14243 } 14244 } else { 14245 mutex_enter(&dtrace_lock); 14246 ASSERT(help->dthps_deferred == 0 || 14247 help->dthps_next != NULL || 14248 help->dthps_prev != NULL || 14249 help == dtrace_deferred_pid); 14250 14251 /* 14252 * Remove the helper from the deferred list. 14253 */ 14254 if (help->dthps_next != NULL) 14255 help->dthps_next->dthps_prev = help->dthps_prev; 14256 if (help->dthps_prev != NULL) 14257 help->dthps_prev->dthps_next = help->dthps_next; 14258 if (dtrace_deferred_pid == help) { 14259 dtrace_deferred_pid = help->dthps_next; 14260 ASSERT(help->dthps_prev == NULL); 14261 } 14262 14263 mutex_exit(&dtrace_lock); 14264 } 14265 14266 mutex_exit(&dtrace_meta_lock); 14267 14268 for (i = 0; i < help->dthps_nprovs; i++) { 14269 dtrace_helper_provider_destroy(help->dthps_provs[i]); 14270 } 14271 14272 kmem_free(help->dthps_provs, help->dthps_maxprovs * 14273 sizeof (dtrace_helper_provider_t *)); 14274 } 14275 14276 mutex_enter(&dtrace_lock); 14277 14278 dtrace_vstate_fini(&help->dthps_vstate); 14279 kmem_free(help->dthps_actions, 14280 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 14281 kmem_free(help, sizeof (dtrace_helpers_t)); 14282 14283 --dtrace_helpers; 14284 mutex_exit(&dtrace_lock); 14285 } 14286 14287 static void 14288 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 14289 { 14290 dtrace_helpers_t *help, *newhelp; 14291 dtrace_helper_action_t *helper, *new, *last; 14292 dtrace_difo_t *dp; 14293 dtrace_vstate_t *vstate; 14294 int i, j, sz, hasprovs = 0; 14295 14296 mutex_enter(&dtrace_lock); 14297 ASSERT(from->p_dtrace_helpers != NULL); 14298 ASSERT(dtrace_helpers > 0); 14299 14300 help = from->p_dtrace_helpers; 14301 newhelp = dtrace_helpers_create(to); 14302 ASSERT(to->p_dtrace_helpers != NULL); 14303 14304 newhelp->dthps_generation = help->dthps_generation; 14305 vstate = &newhelp->dthps_vstate; 14306 14307 /* 14308 * Duplicate the helper actions. 14309 */ 14310 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14311 if ((helper = help->dthps_actions[i]) == NULL) 14312 continue; 14313 14314 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 14315 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 14316 KM_SLEEP); 14317 new->dtha_generation = helper->dtha_generation; 14318 14319 if ((dp = helper->dtha_predicate) != NULL) { 14320 dp = dtrace_difo_duplicate(dp, vstate); 14321 new->dtha_predicate = dp; 14322 } 14323 14324 new->dtha_nactions = helper->dtha_nactions; 14325 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 14326 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 14327 14328 for (j = 0; j < new->dtha_nactions; j++) { 14329 dtrace_difo_t *dp = helper->dtha_actions[j]; 14330 14331 ASSERT(dp != NULL); 14332 dp = dtrace_difo_duplicate(dp, vstate); 14333 new->dtha_actions[j] = dp; 14334 } 14335 14336 if (last != NULL) { 14337 last->dtha_next = new; 14338 } else { 14339 newhelp->dthps_actions[i] = new; 14340 } 14341 14342 last = new; 14343 } 14344 } 14345 14346 /* 14347 * Duplicate the helper providers and register them with the 14348 * DTrace framework. 14349 */ 14350 if (help->dthps_nprovs > 0) { 14351 newhelp->dthps_nprovs = help->dthps_nprovs; 14352 newhelp->dthps_maxprovs = help->dthps_nprovs; 14353 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 14354 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14355 for (i = 0; i < newhelp->dthps_nprovs; i++) { 14356 newhelp->dthps_provs[i] = help->dthps_provs[i]; 14357 newhelp->dthps_provs[i]->dthp_ref++; 14358 } 14359 14360 hasprovs = 1; 14361 } 14362 14363 mutex_exit(&dtrace_lock); 14364 14365 if (hasprovs) 14366 dtrace_helper_provider_register(to, newhelp, NULL); 14367 } 14368 14369 /* 14370 * DTrace Hook Functions 14371 */ 14372 static void 14373 dtrace_module_loaded(struct modctl *ctl) 14374 { 14375 dtrace_provider_t *prv; 14376 14377 mutex_enter(&dtrace_provider_lock); 14378 mutex_enter(&mod_lock); 14379 14380 ASSERT(ctl->mod_busy); 14381 14382 /* 14383 * We're going to call each providers per-module provide operation 14384 * specifying only this module. 14385 */ 14386 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 14387 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 14388 14389 mutex_exit(&mod_lock); 14390 mutex_exit(&dtrace_provider_lock); 14391 14392 /* 14393 * If we have any retained enablings, we need to match against them. 14394 * Enabling probes requires that cpu_lock be held, and we cannot hold 14395 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 14396 * module. (In particular, this happens when loading scheduling 14397 * classes.) So if we have any retained enablings, we need to dispatch 14398 * our task queue to do the match for us. 14399 */ 14400 mutex_enter(&dtrace_lock); 14401 14402 if (dtrace_retained == NULL) { 14403 mutex_exit(&dtrace_lock); 14404 return; 14405 } 14406 14407 (void) taskq_dispatch(dtrace_taskq, 14408 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 14409 14410 mutex_exit(&dtrace_lock); 14411 14412 /* 14413 * And now, for a little heuristic sleaze: in general, we want to 14414 * match modules as soon as they load. However, we cannot guarantee 14415 * this, because it would lead us to the lock ordering violation 14416 * outlined above. The common case, of course, is that cpu_lock is 14417 * _not_ held -- so we delay here for a clock tick, hoping that that's 14418 * long enough for the task queue to do its work. If it's not, it's 14419 * not a serious problem -- it just means that the module that we 14420 * just loaded may not be immediately instrumentable. 14421 */ 14422 delay(1); 14423 } 14424 14425 static void 14426 dtrace_module_unloaded(struct modctl *ctl) 14427 { 14428 dtrace_probe_t template, *probe, *first, *next; 14429 dtrace_provider_t *prov; 14430 14431 template.dtpr_mod = ctl->mod_modname; 14432 14433 mutex_enter(&dtrace_provider_lock); 14434 mutex_enter(&mod_lock); 14435 mutex_enter(&dtrace_lock); 14436 14437 if (dtrace_bymod == NULL) { 14438 /* 14439 * The DTrace module is loaded (obviously) but not attached; 14440 * we don't have any work to do. 14441 */ 14442 mutex_exit(&dtrace_provider_lock); 14443 mutex_exit(&mod_lock); 14444 mutex_exit(&dtrace_lock); 14445 return; 14446 } 14447 14448 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 14449 probe != NULL; probe = probe->dtpr_nextmod) { 14450 if (probe->dtpr_ecb != NULL) { 14451 mutex_exit(&dtrace_provider_lock); 14452 mutex_exit(&mod_lock); 14453 mutex_exit(&dtrace_lock); 14454 14455 /* 14456 * This shouldn't _actually_ be possible -- we're 14457 * unloading a module that has an enabled probe in it. 14458 * (It's normally up to the provider to make sure that 14459 * this can't happen.) However, because dtps_enable() 14460 * doesn't have a failure mode, there can be an 14461 * enable/unload race. Upshot: we don't want to 14462 * assert, but we're not going to disable the 14463 * probe, either. 14464 */ 14465 if (dtrace_err_verbose) { 14466 cmn_err(CE_WARN, "unloaded module '%s' had " 14467 "enabled probes", ctl->mod_modname); 14468 } 14469 14470 return; 14471 } 14472 } 14473 14474 probe = first; 14475 14476 for (first = NULL; probe != NULL; probe = next) { 14477 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 14478 14479 dtrace_probes[probe->dtpr_id - 1] = NULL; 14480 14481 next = probe->dtpr_nextmod; 14482 dtrace_hash_remove(dtrace_bymod, probe); 14483 dtrace_hash_remove(dtrace_byfunc, probe); 14484 dtrace_hash_remove(dtrace_byname, probe); 14485 14486 if (first == NULL) { 14487 first = probe; 14488 probe->dtpr_nextmod = NULL; 14489 } else { 14490 probe->dtpr_nextmod = first; 14491 first = probe; 14492 } 14493 } 14494 14495 /* 14496 * We've removed all of the module's probes from the hash chains and 14497 * from the probe array. Now issue a dtrace_sync() to be sure that 14498 * everyone has cleared out from any probe array processing. 14499 */ 14500 dtrace_sync(); 14501 14502 for (probe = first; probe != NULL; probe = first) { 14503 first = probe->dtpr_nextmod; 14504 prov = probe->dtpr_provider; 14505 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 14506 probe->dtpr_arg); 14507 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 14508 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 14509 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 14510 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 14511 kmem_free(probe, sizeof (dtrace_probe_t)); 14512 } 14513 14514 mutex_exit(&dtrace_lock); 14515 mutex_exit(&mod_lock); 14516 mutex_exit(&dtrace_provider_lock); 14517 } 14518 14519 void 14520 dtrace_suspend(void) 14521 { 14522 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 14523 } 14524 14525 void 14526 dtrace_resume(void) 14527 { 14528 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 14529 } 14530 14531 static int 14532 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 14533 { 14534 ASSERT(MUTEX_HELD(&cpu_lock)); 14535 mutex_enter(&dtrace_lock); 14536 14537 switch (what) { 14538 case CPU_CONFIG: { 14539 dtrace_state_t *state; 14540 dtrace_optval_t *opt, rs, c; 14541 14542 /* 14543 * For now, we only allocate a new buffer for anonymous state. 14544 */ 14545 if ((state = dtrace_anon.dta_state) == NULL) 14546 break; 14547 14548 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14549 break; 14550 14551 opt = state->dts_options; 14552 c = opt[DTRACEOPT_CPU]; 14553 14554 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 14555 break; 14556 14557 /* 14558 * Regardless of what the actual policy is, we're going to 14559 * temporarily set our resize policy to be manual. We're 14560 * also going to temporarily set our CPU option to denote 14561 * the newly configured CPU. 14562 */ 14563 rs = opt[DTRACEOPT_BUFRESIZE]; 14564 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14565 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14566 14567 (void) dtrace_state_buffers(state); 14568 14569 opt[DTRACEOPT_BUFRESIZE] = rs; 14570 opt[DTRACEOPT_CPU] = c; 14571 14572 break; 14573 } 14574 14575 case CPU_UNCONFIG: 14576 /* 14577 * We don't free the buffer in the CPU_UNCONFIG case. (The 14578 * buffer will be freed when the consumer exits.) 14579 */ 14580 break; 14581 14582 default: 14583 break; 14584 } 14585 14586 mutex_exit(&dtrace_lock); 14587 return (0); 14588 } 14589 14590 static void 14591 dtrace_cpu_setup_initial(processorid_t cpu) 14592 { 14593 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 14594 } 14595 14596 static void 14597 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 14598 { 14599 if (dtrace_toxranges >= dtrace_toxranges_max) { 14600 int osize, nsize; 14601 dtrace_toxrange_t *range; 14602 14603 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14604 14605 if (osize == 0) { 14606 ASSERT(dtrace_toxrange == NULL); 14607 ASSERT(dtrace_toxranges_max == 0); 14608 dtrace_toxranges_max = 1; 14609 } else { 14610 dtrace_toxranges_max <<= 1; 14611 } 14612 14613 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14614 range = kmem_zalloc(nsize, KM_SLEEP); 14615 14616 if (dtrace_toxrange != NULL) { 14617 ASSERT(osize != 0); 14618 bcopy(dtrace_toxrange, range, osize); 14619 kmem_free(dtrace_toxrange, osize); 14620 } 14621 14622 dtrace_toxrange = range; 14623 } 14624 14625 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 14626 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 14627 14628 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 14629 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 14630 dtrace_toxranges++; 14631 } 14632 14633 /* 14634 * DTrace Driver Cookbook Functions 14635 */ 14636 /*ARGSUSED*/ 14637 static int 14638 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 14639 { 14640 dtrace_provider_id_t id; 14641 dtrace_state_t *state = NULL; 14642 dtrace_enabling_t *enab; 14643 14644 mutex_enter(&cpu_lock); 14645 mutex_enter(&dtrace_provider_lock); 14646 mutex_enter(&dtrace_lock); 14647 14648 if (ddi_soft_state_init(&dtrace_softstate, 14649 sizeof (dtrace_state_t), 0) != 0) { 14650 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 14651 mutex_exit(&cpu_lock); 14652 mutex_exit(&dtrace_provider_lock); 14653 mutex_exit(&dtrace_lock); 14654 return (DDI_FAILURE); 14655 } 14656 14657 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 14658 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 14659 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 14660 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 14661 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 14662 ddi_remove_minor_node(devi, NULL); 14663 ddi_soft_state_fini(&dtrace_softstate); 14664 mutex_exit(&cpu_lock); 14665 mutex_exit(&dtrace_provider_lock); 14666 mutex_exit(&dtrace_lock); 14667 return (DDI_FAILURE); 14668 } 14669 14670 ddi_report_dev(devi); 14671 dtrace_devi = devi; 14672 14673 dtrace_modload = dtrace_module_loaded; 14674 dtrace_modunload = dtrace_module_unloaded; 14675 dtrace_cpu_init = dtrace_cpu_setup_initial; 14676 dtrace_helpers_cleanup = dtrace_helpers_destroy; 14677 dtrace_helpers_fork = dtrace_helpers_duplicate; 14678 dtrace_cpustart_init = dtrace_suspend; 14679 dtrace_cpustart_fini = dtrace_resume; 14680 dtrace_debugger_init = dtrace_suspend; 14681 dtrace_debugger_fini = dtrace_resume; 14682 14683 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14684 14685 ASSERT(MUTEX_HELD(&cpu_lock)); 14686 14687 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 14688 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14689 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 14690 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 14691 VM_SLEEP | VMC_IDENTIFIER); 14692 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 14693 1, INT_MAX, 0); 14694 14695 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 14696 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 14697 NULL, NULL, NULL, NULL, NULL, 0); 14698 14699 ASSERT(MUTEX_HELD(&cpu_lock)); 14700 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 14701 offsetof(dtrace_probe_t, dtpr_nextmod), 14702 offsetof(dtrace_probe_t, dtpr_prevmod)); 14703 14704 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 14705 offsetof(dtrace_probe_t, dtpr_nextfunc), 14706 offsetof(dtrace_probe_t, dtpr_prevfunc)); 14707 14708 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 14709 offsetof(dtrace_probe_t, dtpr_nextname), 14710 offsetof(dtrace_probe_t, dtpr_prevname)); 14711 14712 if (dtrace_retain_max < 1) { 14713 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 14714 "setting to 1", dtrace_retain_max); 14715 dtrace_retain_max = 1; 14716 } 14717 14718 /* 14719 * Now discover our toxic ranges. 14720 */ 14721 dtrace_toxic_ranges(dtrace_toxrange_add); 14722 14723 /* 14724 * Before we register ourselves as a provider to our own framework, 14725 * we would like to assert that dtrace_provider is NULL -- but that's 14726 * not true if we were loaded as a dependency of a DTrace provider. 14727 * Once we've registered, we can assert that dtrace_provider is our 14728 * pseudo provider. 14729 */ 14730 (void) dtrace_register("dtrace", &dtrace_provider_attr, 14731 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 14732 14733 ASSERT(dtrace_provider != NULL); 14734 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 14735 14736 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 14737 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 14738 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 14739 dtrace_provider, NULL, NULL, "END", 0, NULL); 14740 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 14741 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 14742 14743 dtrace_anon_property(); 14744 mutex_exit(&cpu_lock); 14745 14746 /* 14747 * If DTrace helper tracing is enabled, we need to allocate the 14748 * trace buffer and initialize the values. 14749 */ 14750 if (dtrace_helptrace_enabled) { 14751 ASSERT(dtrace_helptrace_buffer == NULL); 14752 dtrace_helptrace_buffer = 14753 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 14754 dtrace_helptrace_next = 0; 14755 } 14756 14757 /* 14758 * If there are already providers, we must ask them to provide their 14759 * probes, and then match any anonymous enabling against them. Note 14760 * that there should be no other retained enablings at this time: 14761 * the only retained enablings at this time should be the anonymous 14762 * enabling. 14763 */ 14764 if (dtrace_anon.dta_enabling != NULL) { 14765 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 14766 14767 dtrace_enabling_provide(NULL); 14768 state = dtrace_anon.dta_state; 14769 14770 /* 14771 * We couldn't hold cpu_lock across the above call to 14772 * dtrace_enabling_provide(), but we must hold it to actually 14773 * enable the probes. We have to drop all of our locks, pick 14774 * up cpu_lock, and regain our locks before matching the 14775 * retained anonymous enabling. 14776 */ 14777 mutex_exit(&dtrace_lock); 14778 mutex_exit(&dtrace_provider_lock); 14779 14780 mutex_enter(&cpu_lock); 14781 mutex_enter(&dtrace_provider_lock); 14782 mutex_enter(&dtrace_lock); 14783 14784 if ((enab = dtrace_anon.dta_enabling) != NULL) 14785 (void) dtrace_enabling_match(enab, NULL); 14786 14787 mutex_exit(&cpu_lock); 14788 } 14789 14790 mutex_exit(&dtrace_lock); 14791 mutex_exit(&dtrace_provider_lock); 14792 14793 if (state != NULL) { 14794 /* 14795 * If we created any anonymous state, set it going now. 14796 */ 14797 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 14798 } 14799 14800 return (DDI_SUCCESS); 14801 } 14802 14803 /*ARGSUSED*/ 14804 static int 14805 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 14806 { 14807 dtrace_state_t *state; 14808 uint32_t priv; 14809 uid_t uid; 14810 zoneid_t zoneid; 14811 14812 if (getminor(*devp) == DTRACEMNRN_HELPER) 14813 return (0); 14814 14815 /* 14816 * If this wasn't an open with the "helper" minor, then it must be 14817 * the "dtrace" minor. 14818 */ 14819 if (getminor(*devp) != DTRACEMNRN_DTRACE) 14820 return (ENXIO); 14821 14822 /* 14823 * If no DTRACE_PRIV_* bits are set in the credential, then the 14824 * caller lacks sufficient permission to do anything with DTrace. 14825 */ 14826 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 14827 if (priv == DTRACE_PRIV_NONE) 14828 return (EACCES); 14829 14830 /* 14831 * Ask all providers to provide all their probes. 14832 */ 14833 mutex_enter(&dtrace_provider_lock); 14834 dtrace_probe_provide(NULL, NULL); 14835 mutex_exit(&dtrace_provider_lock); 14836 14837 mutex_enter(&cpu_lock); 14838 mutex_enter(&dtrace_lock); 14839 dtrace_opens++; 14840 dtrace_membar_producer(); 14841 14842 /* 14843 * If the kernel debugger is active (that is, if the kernel debugger 14844 * modified text in some way), we won't allow the open. 14845 */ 14846 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14847 dtrace_opens--; 14848 mutex_exit(&cpu_lock); 14849 mutex_exit(&dtrace_lock); 14850 return (EBUSY); 14851 } 14852 14853 state = dtrace_state_create(devp, cred_p); 14854 mutex_exit(&cpu_lock); 14855 14856 if (state == NULL) { 14857 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 14858 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14859 mutex_exit(&dtrace_lock); 14860 return (EAGAIN); 14861 } 14862 14863 mutex_exit(&dtrace_lock); 14864 14865 return (0); 14866 } 14867 14868 /*ARGSUSED*/ 14869 static int 14870 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 14871 { 14872 minor_t minor = getminor(dev); 14873 dtrace_state_t *state; 14874 14875 if (minor == DTRACEMNRN_HELPER) 14876 return (0); 14877 14878 state = ddi_get_soft_state(dtrace_softstate, minor); 14879 14880 mutex_enter(&cpu_lock); 14881 mutex_enter(&dtrace_lock); 14882 14883 if (state->dts_anon) { 14884 /* 14885 * There is anonymous state. Destroy that first. 14886 */ 14887 ASSERT(dtrace_anon.dta_state == NULL); 14888 dtrace_state_destroy(state->dts_anon); 14889 } 14890 14891 dtrace_state_destroy(state); 14892 ASSERT(dtrace_opens > 0); 14893 14894 /* 14895 * Only relinquish control of the kernel debugger interface when there 14896 * are no consumers and no anonymous enablings. 14897 */ 14898 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 14899 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14900 14901 mutex_exit(&dtrace_lock); 14902 mutex_exit(&cpu_lock); 14903 14904 return (0); 14905 } 14906 14907 /*ARGSUSED*/ 14908 static int 14909 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 14910 { 14911 int rval; 14912 dof_helper_t help, *dhp = NULL; 14913 14914 switch (cmd) { 14915 case DTRACEHIOC_ADDDOF: 14916 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 14917 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 14918 return (EFAULT); 14919 } 14920 14921 dhp = &help; 14922 arg = (intptr_t)help.dofhp_dof; 14923 /*FALLTHROUGH*/ 14924 14925 case DTRACEHIOC_ADD: { 14926 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 14927 14928 if (dof == NULL) 14929 return (rval); 14930 14931 mutex_enter(&dtrace_lock); 14932 14933 /* 14934 * dtrace_helper_slurp() takes responsibility for the dof -- 14935 * it may free it now or it may save it and free it later. 14936 */ 14937 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 14938 *rv = rval; 14939 rval = 0; 14940 } else { 14941 rval = EINVAL; 14942 } 14943 14944 mutex_exit(&dtrace_lock); 14945 return (rval); 14946 } 14947 14948 case DTRACEHIOC_REMOVE: { 14949 mutex_enter(&dtrace_lock); 14950 rval = dtrace_helper_destroygen(arg); 14951 mutex_exit(&dtrace_lock); 14952 14953 return (rval); 14954 } 14955 14956 default: 14957 break; 14958 } 14959 14960 return (ENOTTY); 14961 } 14962 14963 /*ARGSUSED*/ 14964 static int 14965 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 14966 { 14967 minor_t minor = getminor(dev); 14968 dtrace_state_t *state; 14969 int rval; 14970 14971 if (minor == DTRACEMNRN_HELPER) 14972 return (dtrace_ioctl_helper(cmd, arg, rv)); 14973 14974 state = ddi_get_soft_state(dtrace_softstate, minor); 14975 14976 if (state->dts_anon) { 14977 ASSERT(dtrace_anon.dta_state == NULL); 14978 state = state->dts_anon; 14979 } 14980 14981 switch (cmd) { 14982 case DTRACEIOC_PROVIDER: { 14983 dtrace_providerdesc_t pvd; 14984 dtrace_provider_t *pvp; 14985 14986 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 14987 return (EFAULT); 14988 14989 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 14990 mutex_enter(&dtrace_provider_lock); 14991 14992 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 14993 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 14994 break; 14995 } 14996 14997 mutex_exit(&dtrace_provider_lock); 14998 14999 if (pvp == NULL) 15000 return (ESRCH); 15001 15002 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 15003 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 15004 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 15005 return (EFAULT); 15006 15007 return (0); 15008 } 15009 15010 case DTRACEIOC_EPROBE: { 15011 dtrace_eprobedesc_t epdesc; 15012 dtrace_ecb_t *ecb; 15013 dtrace_action_t *act; 15014 void *buf; 15015 size_t size; 15016 uintptr_t dest; 15017 int nrecs; 15018 15019 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 15020 return (EFAULT); 15021 15022 mutex_enter(&dtrace_lock); 15023 15024 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 15025 mutex_exit(&dtrace_lock); 15026 return (EINVAL); 15027 } 15028 15029 if (ecb->dte_probe == NULL) { 15030 mutex_exit(&dtrace_lock); 15031 return (EINVAL); 15032 } 15033 15034 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 15035 epdesc.dtepd_uarg = ecb->dte_uarg; 15036 epdesc.dtepd_size = ecb->dte_size; 15037 15038 nrecs = epdesc.dtepd_nrecs; 15039 epdesc.dtepd_nrecs = 0; 15040 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15041 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15042 continue; 15043 15044 epdesc.dtepd_nrecs++; 15045 } 15046 15047 /* 15048 * Now that we have the size, we need to allocate a temporary 15049 * buffer in which to store the complete description. We need 15050 * the temporary buffer to be able to drop dtrace_lock() 15051 * across the copyout(), below. 15052 */ 15053 size = sizeof (dtrace_eprobedesc_t) + 15054 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 15055 15056 buf = kmem_alloc(size, KM_SLEEP); 15057 dest = (uintptr_t)buf; 15058 15059 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 15060 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 15061 15062 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15063 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15064 continue; 15065 15066 if (nrecs-- == 0) 15067 break; 15068 15069 bcopy(&act->dta_rec, (void *)dest, 15070 sizeof (dtrace_recdesc_t)); 15071 dest += sizeof (dtrace_recdesc_t); 15072 } 15073 15074 mutex_exit(&dtrace_lock); 15075 15076 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15077 kmem_free(buf, size); 15078 return (EFAULT); 15079 } 15080 15081 kmem_free(buf, size); 15082 return (0); 15083 } 15084 15085 case DTRACEIOC_AGGDESC: { 15086 dtrace_aggdesc_t aggdesc; 15087 dtrace_action_t *act; 15088 dtrace_aggregation_t *agg; 15089 int nrecs; 15090 uint32_t offs; 15091 dtrace_recdesc_t *lrec; 15092 void *buf; 15093 size_t size; 15094 uintptr_t dest; 15095 15096 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 15097 return (EFAULT); 15098 15099 mutex_enter(&dtrace_lock); 15100 15101 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 15102 mutex_exit(&dtrace_lock); 15103 return (EINVAL); 15104 } 15105 15106 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 15107 15108 nrecs = aggdesc.dtagd_nrecs; 15109 aggdesc.dtagd_nrecs = 0; 15110 15111 offs = agg->dtag_base; 15112 lrec = &agg->dtag_action.dta_rec; 15113 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 15114 15115 for (act = agg->dtag_first; ; act = act->dta_next) { 15116 ASSERT(act->dta_intuple || 15117 DTRACEACT_ISAGG(act->dta_kind)); 15118 15119 /* 15120 * If this action has a record size of zero, it 15121 * denotes an argument to the aggregating action. 15122 * Because the presence of this record doesn't (or 15123 * shouldn't) affect the way the data is interpreted, 15124 * we don't copy it out to save user-level the 15125 * confusion of dealing with a zero-length record. 15126 */ 15127 if (act->dta_rec.dtrd_size == 0) { 15128 ASSERT(agg->dtag_hasarg); 15129 continue; 15130 } 15131 15132 aggdesc.dtagd_nrecs++; 15133 15134 if (act == &agg->dtag_action) 15135 break; 15136 } 15137 15138 /* 15139 * Now that we have the size, we need to allocate a temporary 15140 * buffer in which to store the complete description. We need 15141 * the temporary buffer to be able to drop dtrace_lock() 15142 * across the copyout(), below. 15143 */ 15144 size = sizeof (dtrace_aggdesc_t) + 15145 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 15146 15147 buf = kmem_alloc(size, KM_SLEEP); 15148 dest = (uintptr_t)buf; 15149 15150 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 15151 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 15152 15153 for (act = agg->dtag_first; ; act = act->dta_next) { 15154 dtrace_recdesc_t rec = act->dta_rec; 15155 15156 /* 15157 * See the comment in the above loop for why we pass 15158 * over zero-length records. 15159 */ 15160 if (rec.dtrd_size == 0) { 15161 ASSERT(agg->dtag_hasarg); 15162 continue; 15163 } 15164 15165 if (nrecs-- == 0) 15166 break; 15167 15168 rec.dtrd_offset -= offs; 15169 bcopy(&rec, (void *)dest, sizeof (rec)); 15170 dest += sizeof (dtrace_recdesc_t); 15171 15172 if (act == &agg->dtag_action) 15173 break; 15174 } 15175 15176 mutex_exit(&dtrace_lock); 15177 15178 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15179 kmem_free(buf, size); 15180 return (EFAULT); 15181 } 15182 15183 kmem_free(buf, size); 15184 return (0); 15185 } 15186 15187 case DTRACEIOC_ENABLE: { 15188 dof_hdr_t *dof; 15189 dtrace_enabling_t *enab = NULL; 15190 dtrace_vstate_t *vstate; 15191 int err = 0; 15192 15193 *rv = 0; 15194 15195 /* 15196 * If a NULL argument has been passed, we take this as our 15197 * cue to reevaluate our enablings. 15198 */ 15199 if (arg == NULL) { 15200 dtrace_enabling_matchall(); 15201 15202 return (0); 15203 } 15204 15205 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 15206 return (rval); 15207 15208 mutex_enter(&cpu_lock); 15209 mutex_enter(&dtrace_lock); 15210 vstate = &state->dts_vstate; 15211 15212 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 15213 mutex_exit(&dtrace_lock); 15214 mutex_exit(&cpu_lock); 15215 dtrace_dof_destroy(dof); 15216 return (EBUSY); 15217 } 15218 15219 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 15220 mutex_exit(&dtrace_lock); 15221 mutex_exit(&cpu_lock); 15222 dtrace_dof_destroy(dof); 15223 return (EINVAL); 15224 } 15225 15226 if ((rval = dtrace_dof_options(dof, state)) != 0) { 15227 dtrace_enabling_destroy(enab); 15228 mutex_exit(&dtrace_lock); 15229 mutex_exit(&cpu_lock); 15230 dtrace_dof_destroy(dof); 15231 return (rval); 15232 } 15233 15234 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 15235 err = dtrace_enabling_retain(enab); 15236 } else { 15237 dtrace_enabling_destroy(enab); 15238 } 15239 15240 mutex_exit(&cpu_lock); 15241 mutex_exit(&dtrace_lock); 15242 dtrace_dof_destroy(dof); 15243 15244 return (err); 15245 } 15246 15247 case DTRACEIOC_REPLICATE: { 15248 dtrace_repldesc_t desc; 15249 dtrace_probedesc_t *match = &desc.dtrpd_match; 15250 dtrace_probedesc_t *create = &desc.dtrpd_create; 15251 int err; 15252 15253 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15254 return (EFAULT); 15255 15256 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15257 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15258 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15259 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15260 15261 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15262 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15263 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15264 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15265 15266 mutex_enter(&dtrace_lock); 15267 err = dtrace_enabling_replicate(state, match, create); 15268 mutex_exit(&dtrace_lock); 15269 15270 return (err); 15271 } 15272 15273 case DTRACEIOC_PROBEMATCH: 15274 case DTRACEIOC_PROBES: { 15275 dtrace_probe_t *probe = NULL; 15276 dtrace_probedesc_t desc; 15277 dtrace_probekey_t pkey; 15278 dtrace_id_t i; 15279 int m = 0; 15280 uint32_t priv; 15281 uid_t uid; 15282 zoneid_t zoneid; 15283 15284 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15285 return (EFAULT); 15286 15287 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15288 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15289 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15290 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15291 15292 /* 15293 * Before we attempt to match this probe, we want to give 15294 * all providers the opportunity to provide it. 15295 */ 15296 if (desc.dtpd_id == DTRACE_IDNONE) { 15297 mutex_enter(&dtrace_provider_lock); 15298 dtrace_probe_provide(&desc, NULL); 15299 mutex_exit(&dtrace_provider_lock); 15300 desc.dtpd_id++; 15301 } 15302 15303 if (cmd == DTRACEIOC_PROBEMATCH) { 15304 dtrace_probekey(&desc, &pkey); 15305 pkey.dtpk_id = DTRACE_IDNONE; 15306 } 15307 15308 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 15309 15310 mutex_enter(&dtrace_lock); 15311 15312 if (cmd == DTRACEIOC_PROBEMATCH) { 15313 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15314 if ((probe = dtrace_probes[i - 1]) != NULL && 15315 (m = dtrace_match_probe(probe, &pkey, 15316 priv, uid, zoneid)) != 0) 15317 break; 15318 } 15319 15320 if (m < 0) { 15321 mutex_exit(&dtrace_lock); 15322 return (EINVAL); 15323 } 15324 15325 } else { 15326 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15327 if ((probe = dtrace_probes[i - 1]) != NULL && 15328 dtrace_match_priv(probe, priv, uid, zoneid)) 15329 break; 15330 } 15331 } 15332 15333 if (probe == NULL) { 15334 mutex_exit(&dtrace_lock); 15335 return (ESRCH); 15336 } 15337 15338 dtrace_probe_description(probe, &desc); 15339 mutex_exit(&dtrace_lock); 15340 15341 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15342 return (EFAULT); 15343 15344 return (0); 15345 } 15346 15347 case DTRACEIOC_PROBEARG: { 15348 dtrace_argdesc_t desc; 15349 dtrace_probe_t *probe; 15350 dtrace_provider_t *prov; 15351 15352 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15353 return (EFAULT); 15354 15355 if (desc.dtargd_id == DTRACE_IDNONE) 15356 return (EINVAL); 15357 15358 if (desc.dtargd_ndx == DTRACE_ARGNONE) 15359 return (EINVAL); 15360 15361 mutex_enter(&dtrace_provider_lock); 15362 mutex_enter(&mod_lock); 15363 mutex_enter(&dtrace_lock); 15364 15365 if (desc.dtargd_id > dtrace_nprobes) { 15366 mutex_exit(&dtrace_lock); 15367 mutex_exit(&mod_lock); 15368 mutex_exit(&dtrace_provider_lock); 15369 return (EINVAL); 15370 } 15371 15372 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 15373 mutex_exit(&dtrace_lock); 15374 mutex_exit(&mod_lock); 15375 mutex_exit(&dtrace_provider_lock); 15376 return (EINVAL); 15377 } 15378 15379 mutex_exit(&dtrace_lock); 15380 15381 prov = probe->dtpr_provider; 15382 15383 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 15384 /* 15385 * There isn't any typed information for this probe. 15386 * Set the argument number to DTRACE_ARGNONE. 15387 */ 15388 desc.dtargd_ndx = DTRACE_ARGNONE; 15389 } else { 15390 desc.dtargd_native[0] = '\0'; 15391 desc.dtargd_xlate[0] = '\0'; 15392 desc.dtargd_mapping = desc.dtargd_ndx; 15393 15394 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 15395 probe->dtpr_id, probe->dtpr_arg, &desc); 15396 } 15397 15398 mutex_exit(&mod_lock); 15399 mutex_exit(&dtrace_provider_lock); 15400 15401 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15402 return (EFAULT); 15403 15404 return (0); 15405 } 15406 15407 case DTRACEIOC_GO: { 15408 processorid_t cpuid; 15409 rval = dtrace_state_go(state, &cpuid); 15410 15411 if (rval != 0) 15412 return (rval); 15413 15414 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15415 return (EFAULT); 15416 15417 return (0); 15418 } 15419 15420 case DTRACEIOC_STOP: { 15421 processorid_t cpuid; 15422 15423 mutex_enter(&dtrace_lock); 15424 rval = dtrace_state_stop(state, &cpuid); 15425 mutex_exit(&dtrace_lock); 15426 15427 if (rval != 0) 15428 return (rval); 15429 15430 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15431 return (EFAULT); 15432 15433 return (0); 15434 } 15435 15436 case DTRACEIOC_DOFGET: { 15437 dof_hdr_t hdr, *dof; 15438 uint64_t len; 15439 15440 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 15441 return (EFAULT); 15442 15443 mutex_enter(&dtrace_lock); 15444 dof = dtrace_dof_create(state); 15445 mutex_exit(&dtrace_lock); 15446 15447 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 15448 rval = copyout(dof, (void *)arg, len); 15449 dtrace_dof_destroy(dof); 15450 15451 return (rval == 0 ? 0 : EFAULT); 15452 } 15453 15454 case DTRACEIOC_AGGSNAP: 15455 case DTRACEIOC_BUFSNAP: { 15456 dtrace_bufdesc_t desc; 15457 caddr_t cached; 15458 dtrace_buffer_t *buf; 15459 15460 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15461 return (EFAULT); 15462 15463 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 15464 return (EINVAL); 15465 15466 mutex_enter(&dtrace_lock); 15467 15468 if (cmd == DTRACEIOC_BUFSNAP) { 15469 buf = &state->dts_buffer[desc.dtbd_cpu]; 15470 } else { 15471 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 15472 } 15473 15474 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 15475 size_t sz = buf->dtb_offset; 15476 15477 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 15478 mutex_exit(&dtrace_lock); 15479 return (EBUSY); 15480 } 15481 15482 /* 15483 * If this buffer has already been consumed, we're 15484 * going to indicate that there's nothing left here 15485 * to consume. 15486 */ 15487 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 15488 mutex_exit(&dtrace_lock); 15489 15490 desc.dtbd_size = 0; 15491 desc.dtbd_drops = 0; 15492 desc.dtbd_errors = 0; 15493 desc.dtbd_oldest = 0; 15494 sz = sizeof (desc); 15495 15496 if (copyout(&desc, (void *)arg, sz) != 0) 15497 return (EFAULT); 15498 15499 return (0); 15500 } 15501 15502 /* 15503 * If this is a ring buffer that has wrapped, we want 15504 * to copy the whole thing out. 15505 */ 15506 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 15507 dtrace_buffer_polish(buf); 15508 sz = buf->dtb_size; 15509 } 15510 15511 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 15512 mutex_exit(&dtrace_lock); 15513 return (EFAULT); 15514 } 15515 15516 desc.dtbd_size = sz; 15517 desc.dtbd_drops = buf->dtb_drops; 15518 desc.dtbd_errors = buf->dtb_errors; 15519 desc.dtbd_oldest = buf->dtb_xamot_offset; 15520 15521 mutex_exit(&dtrace_lock); 15522 15523 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15524 return (EFAULT); 15525 15526 buf->dtb_flags |= DTRACEBUF_CONSUMED; 15527 15528 return (0); 15529 } 15530 15531 if (buf->dtb_tomax == NULL) { 15532 ASSERT(buf->dtb_xamot == NULL); 15533 mutex_exit(&dtrace_lock); 15534 return (ENOENT); 15535 } 15536 15537 cached = buf->dtb_tomax; 15538 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 15539 15540 dtrace_xcall(desc.dtbd_cpu, 15541 (dtrace_xcall_t)dtrace_buffer_switch, buf); 15542 15543 state->dts_errors += buf->dtb_xamot_errors; 15544 15545 /* 15546 * If the buffers did not actually switch, then the cross call 15547 * did not take place -- presumably because the given CPU is 15548 * not in the ready set. If this is the case, we'll return 15549 * ENOENT. 15550 */ 15551 if (buf->dtb_tomax == cached) { 15552 ASSERT(buf->dtb_xamot != cached); 15553 mutex_exit(&dtrace_lock); 15554 return (ENOENT); 15555 } 15556 15557 ASSERT(cached == buf->dtb_xamot); 15558 15559 /* 15560 * We have our snapshot; now copy it out. 15561 */ 15562 if (copyout(buf->dtb_xamot, desc.dtbd_data, 15563 buf->dtb_xamot_offset) != 0) { 15564 mutex_exit(&dtrace_lock); 15565 return (EFAULT); 15566 } 15567 15568 desc.dtbd_size = buf->dtb_xamot_offset; 15569 desc.dtbd_drops = buf->dtb_xamot_drops; 15570 desc.dtbd_errors = buf->dtb_xamot_errors; 15571 desc.dtbd_oldest = 0; 15572 15573 mutex_exit(&dtrace_lock); 15574 15575 /* 15576 * Finally, copy out the buffer description. 15577 */ 15578 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15579 return (EFAULT); 15580 15581 return (0); 15582 } 15583 15584 case DTRACEIOC_CONF: { 15585 dtrace_conf_t conf; 15586 15587 bzero(&conf, sizeof (conf)); 15588 conf.dtc_difversion = DIF_VERSION; 15589 conf.dtc_difintregs = DIF_DIR_NREGS; 15590 conf.dtc_diftupregs = DIF_DTR_NREGS; 15591 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 15592 15593 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15594 return (EFAULT); 15595 15596 return (0); 15597 } 15598 15599 case DTRACEIOC_STATUS: { 15600 dtrace_status_t stat; 15601 dtrace_dstate_t *dstate; 15602 int i, j; 15603 uint64_t nerrs; 15604 15605 /* 15606 * See the comment in dtrace_state_deadman() for the reason 15607 * for setting dts_laststatus to INT64_MAX before setting 15608 * it to the correct value. 15609 */ 15610 state->dts_laststatus = INT64_MAX; 15611 dtrace_membar_producer(); 15612 state->dts_laststatus = dtrace_gethrtime(); 15613 15614 bzero(&stat, sizeof (stat)); 15615 15616 mutex_enter(&dtrace_lock); 15617 15618 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 15619 mutex_exit(&dtrace_lock); 15620 return (ENOENT); 15621 } 15622 15623 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 15624 stat.dtst_exiting = 1; 15625 15626 nerrs = state->dts_errors; 15627 dstate = &state->dts_vstate.dtvs_dynvars; 15628 15629 for (i = 0; i < NCPU; i++) { 15630 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 15631 15632 stat.dtst_dyndrops += dcpu->dtdsc_drops; 15633 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 15634 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 15635 15636 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 15637 stat.dtst_filled++; 15638 15639 nerrs += state->dts_buffer[i].dtb_errors; 15640 15641 for (j = 0; j < state->dts_nspeculations; j++) { 15642 dtrace_speculation_t *spec; 15643 dtrace_buffer_t *buf; 15644 15645 spec = &state->dts_speculations[j]; 15646 buf = &spec->dtsp_buffer[i]; 15647 stat.dtst_specdrops += buf->dtb_xamot_drops; 15648 } 15649 } 15650 15651 stat.dtst_specdrops_busy = state->dts_speculations_busy; 15652 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 15653 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 15654 stat.dtst_dblerrors = state->dts_dblerrors; 15655 stat.dtst_killed = 15656 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 15657 stat.dtst_errors = nerrs; 15658 15659 mutex_exit(&dtrace_lock); 15660 15661 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 15662 return (EFAULT); 15663 15664 return (0); 15665 } 15666 15667 case DTRACEIOC_FORMAT: { 15668 dtrace_fmtdesc_t fmt; 15669 char *str; 15670 int len; 15671 15672 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 15673 return (EFAULT); 15674 15675 mutex_enter(&dtrace_lock); 15676 15677 if (fmt.dtfd_format == 0 || 15678 fmt.dtfd_format > state->dts_nformats) { 15679 mutex_exit(&dtrace_lock); 15680 return (EINVAL); 15681 } 15682 15683 /* 15684 * Format strings are allocated contiguously and they are 15685 * never freed; if a format index is less than the number 15686 * of formats, we can assert that the format map is non-NULL 15687 * and that the format for the specified index is non-NULL. 15688 */ 15689 ASSERT(state->dts_formats != NULL); 15690 str = state->dts_formats[fmt.dtfd_format - 1]; 15691 ASSERT(str != NULL); 15692 15693 len = strlen(str) + 1; 15694 15695 if (len > fmt.dtfd_length) { 15696 fmt.dtfd_length = len; 15697 15698 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 15699 mutex_exit(&dtrace_lock); 15700 return (EINVAL); 15701 } 15702 } else { 15703 if (copyout(str, fmt.dtfd_string, len) != 0) { 15704 mutex_exit(&dtrace_lock); 15705 return (EINVAL); 15706 } 15707 } 15708 15709 mutex_exit(&dtrace_lock); 15710 return (0); 15711 } 15712 15713 default: 15714 break; 15715 } 15716 15717 return (ENOTTY); 15718 } 15719 15720 /*ARGSUSED*/ 15721 static int 15722 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 15723 { 15724 dtrace_state_t *state; 15725 15726 switch (cmd) { 15727 case DDI_DETACH: 15728 break; 15729 15730 case DDI_SUSPEND: 15731 return (DDI_SUCCESS); 15732 15733 default: 15734 return (DDI_FAILURE); 15735 } 15736 15737 mutex_enter(&cpu_lock); 15738 mutex_enter(&dtrace_provider_lock); 15739 mutex_enter(&dtrace_lock); 15740 15741 ASSERT(dtrace_opens == 0); 15742 15743 if (dtrace_helpers > 0) { 15744 mutex_exit(&dtrace_provider_lock); 15745 mutex_exit(&dtrace_lock); 15746 mutex_exit(&cpu_lock); 15747 return (DDI_FAILURE); 15748 } 15749 15750 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 15751 mutex_exit(&dtrace_provider_lock); 15752 mutex_exit(&dtrace_lock); 15753 mutex_exit(&cpu_lock); 15754 return (DDI_FAILURE); 15755 } 15756 15757 dtrace_provider = NULL; 15758 15759 if ((state = dtrace_anon_grab()) != NULL) { 15760 /* 15761 * If there were ECBs on this state, the provider should 15762 * have not been allowed to detach; assert that there is 15763 * none. 15764 */ 15765 ASSERT(state->dts_necbs == 0); 15766 dtrace_state_destroy(state); 15767 15768 /* 15769 * If we're being detached with anonymous state, we need to 15770 * indicate to the kernel debugger that DTrace is now inactive. 15771 */ 15772 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15773 } 15774 15775 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 15776 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15777 dtrace_cpu_init = NULL; 15778 dtrace_helpers_cleanup = NULL; 15779 dtrace_helpers_fork = NULL; 15780 dtrace_cpustart_init = NULL; 15781 dtrace_cpustart_fini = NULL; 15782 dtrace_debugger_init = NULL; 15783 dtrace_debugger_fini = NULL; 15784 dtrace_modload = NULL; 15785 dtrace_modunload = NULL; 15786 15787 mutex_exit(&cpu_lock); 15788 15789 if (dtrace_helptrace_enabled) { 15790 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 15791 dtrace_helptrace_buffer = NULL; 15792 } 15793 15794 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 15795 dtrace_probes = NULL; 15796 dtrace_nprobes = 0; 15797 15798 dtrace_hash_destroy(dtrace_bymod); 15799 dtrace_hash_destroy(dtrace_byfunc); 15800 dtrace_hash_destroy(dtrace_byname); 15801 dtrace_bymod = NULL; 15802 dtrace_byfunc = NULL; 15803 dtrace_byname = NULL; 15804 15805 kmem_cache_destroy(dtrace_state_cache); 15806 vmem_destroy(dtrace_minor); 15807 vmem_destroy(dtrace_arena); 15808 15809 if (dtrace_toxrange != NULL) { 15810 kmem_free(dtrace_toxrange, 15811 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 15812 dtrace_toxrange = NULL; 15813 dtrace_toxranges = 0; 15814 dtrace_toxranges_max = 0; 15815 } 15816 15817 ddi_remove_minor_node(dtrace_devi, NULL); 15818 dtrace_devi = NULL; 15819 15820 ddi_soft_state_fini(&dtrace_softstate); 15821 15822 ASSERT(dtrace_vtime_references == 0); 15823 ASSERT(dtrace_opens == 0); 15824 ASSERT(dtrace_retained == NULL); 15825 15826 mutex_exit(&dtrace_lock); 15827 mutex_exit(&dtrace_provider_lock); 15828 15829 /* 15830 * We don't destroy the task queue until after we have dropped our 15831 * locks (taskq_destroy() may block on running tasks). To prevent 15832 * attempting to do work after we have effectively detached but before 15833 * the task queue has been destroyed, all tasks dispatched via the 15834 * task queue must check that DTrace is still attached before 15835 * performing any operation. 15836 */ 15837 taskq_destroy(dtrace_taskq); 15838 dtrace_taskq = NULL; 15839 15840 return (DDI_SUCCESS); 15841 } 15842 15843 /*ARGSUSED*/ 15844 static int 15845 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 15846 { 15847 int error; 15848 15849 switch (infocmd) { 15850 case DDI_INFO_DEVT2DEVINFO: 15851 *result = (void *)dtrace_devi; 15852 error = DDI_SUCCESS; 15853 break; 15854 case DDI_INFO_DEVT2INSTANCE: 15855 *result = (void *)0; 15856 error = DDI_SUCCESS; 15857 break; 15858 default: 15859 error = DDI_FAILURE; 15860 } 15861 return (error); 15862 } 15863 15864 static struct cb_ops dtrace_cb_ops = { 15865 dtrace_open, /* open */ 15866 dtrace_close, /* close */ 15867 nulldev, /* strategy */ 15868 nulldev, /* print */ 15869 nodev, /* dump */ 15870 nodev, /* read */ 15871 nodev, /* write */ 15872 dtrace_ioctl, /* ioctl */ 15873 nodev, /* devmap */ 15874 nodev, /* mmap */ 15875 nodev, /* segmap */ 15876 nochpoll, /* poll */ 15877 ddi_prop_op, /* cb_prop_op */ 15878 0, /* streamtab */ 15879 D_NEW | D_MP /* Driver compatibility flag */ 15880 }; 15881 15882 static struct dev_ops dtrace_ops = { 15883 DEVO_REV, /* devo_rev */ 15884 0, /* refcnt */ 15885 dtrace_info, /* get_dev_info */ 15886 nulldev, /* identify */ 15887 nulldev, /* probe */ 15888 dtrace_attach, /* attach */ 15889 dtrace_detach, /* detach */ 15890 nodev, /* reset */ 15891 &dtrace_cb_ops, /* driver operations */ 15892 NULL, /* bus operations */ 15893 nodev, /* dev power */ 15894 ddi_quiesce_not_needed, /* quiesce */ 15895 }; 15896 15897 static struct modldrv modldrv = { 15898 &mod_driverops, /* module type (this is a pseudo driver) */ 15899 "Dynamic Tracing", /* name of module */ 15900 &dtrace_ops, /* driver ops */ 15901 }; 15902 15903 static struct modlinkage modlinkage = { 15904 MODREV_1, 15905 (void *)&modldrv, 15906 NULL 15907 }; 15908 15909 int 15910 _init(void) 15911 { 15912 return (mod_install(&modlinkage)); 15913 } 15914 15915 int 15916 _info(struct modinfo *modinfop) 15917 { 15918 return (mod_info(&modlinkage, modinfop)); 15919 } 15920 15921 int 15922 _fini(void) 15923 { 15924 return (mod_remove(&modlinkage)); 15925 } 15926