1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * DTrace - Dynamic Tracing for Solaris 31 * 32 * This is the implementation of the Solaris Dynamic Tracing framework 33 * (DTrace). The user-visible interface to DTrace is described at length in 34 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 35 * library, the in-kernel DTrace framework, and the DTrace providers are 36 * described in the block comments in the <sys/dtrace.h> header file. The 37 * internal architecture of DTrace is described in the block comments in the 38 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 39 * implementation very much assume mastery of all of these sources; if one has 40 * an unanswered question about the implementation, one should consult them 41 * first. 42 * 43 * The functions here are ordered roughly as follows: 44 * 45 * - Probe context functions 46 * - Probe hashing functions 47 * - Non-probe context utility functions 48 * - Matching functions 49 * - Provider-to-Framework API functions 50 * - Probe management functions 51 * - DIF object functions 52 * - Format functions 53 * - Predicate functions 54 * - ECB functions 55 * - Buffer functions 56 * - Enabling functions 57 * - DOF functions 58 * - Anonymous enabling functions 59 * - Consumer state functions 60 * - Helper functions 61 * - Hook functions 62 * - Driver cookbook functions 63 * 64 * Each group of functions begins with a block comment labelled the "DTrace 65 * [Group] Functions", allowing one to find each block by searching forward 66 * on capital-f functions. 67 */ 68 #include <sys/errno.h> 69 #include <sys/stat.h> 70 #include <sys/modctl.h> 71 #include <sys/conf.h> 72 #include <sys/systm.h> 73 #include <sys/ddi.h> 74 #include <sys/sunddi.h> 75 #include <sys/cpuvar.h> 76 #include <sys/kmem.h> 77 #include <sys/strsubr.h> 78 #include <sys/sysmacros.h> 79 #include <sys/dtrace_impl.h> 80 #include <sys/atomic.h> 81 #include <sys/cmn_err.h> 82 #include <sys/mutex_impl.h> 83 #include <sys/rwlock_impl.h> 84 #include <sys/ctf_api.h> 85 #include <sys/panic.h> 86 #include <sys/priv_impl.h> 87 #include <sys/policy.h> 88 #include <sys/cred_impl.h> 89 #include <sys/procfs_isa.h> 90 #include <sys/taskq.h> 91 #include <sys/mkdev.h> 92 #include <sys/kdi.h> 93 #include <sys/zone.h> 94 #include <sys/socket.h> 95 #include <netinet/in.h> 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 121 size_t dtrace_global_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 32; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 150 /* 151 * DTrace External Variables 152 * 153 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 154 * available to DTrace consumers via the backtick (`) syntax. One of these, 155 * dtrace_zero, is made deliberately so: it is provided as a source of 156 * well-known, zero-filled memory. While this variable is not documented, 157 * it is used by some translators as an implementation detail. 158 */ 159 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 160 161 /* 162 * DTrace Internal Variables 163 */ 164 static dev_info_t *dtrace_devi; /* device info */ 165 static vmem_t *dtrace_arena; /* probe ID arena */ 166 static vmem_t *dtrace_minor; /* minor number arena */ 167 static taskq_t *dtrace_taskq; /* task queue */ 168 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 169 static int dtrace_nprobes; /* number of probes */ 170 static dtrace_provider_t *dtrace_provider; /* provider list */ 171 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 172 static int dtrace_opens; /* number of opens */ 173 static int dtrace_helpers; /* number of helpers */ 174 static void *dtrace_softstate; /* softstate pointer */ 175 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 176 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 177 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 178 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 179 static int dtrace_toxranges; /* number of toxic ranges */ 180 static int dtrace_toxranges_max; /* size of toxic range array */ 181 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 182 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 183 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 184 static kthread_t *dtrace_panicked; /* panicking thread */ 185 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 186 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 187 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 188 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 189 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 190 191 /* 192 * DTrace Locking 193 * DTrace is protected by three (relatively coarse-grained) locks: 194 * 195 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 196 * including enabling state, probes, ECBs, consumer state, helper state, 197 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 198 * probe context is lock-free -- synchronization is handled via the 199 * dtrace_sync() cross call mechanism. 200 * 201 * (2) dtrace_provider_lock is required when manipulating provider state, or 202 * when provider state must be held constant. 203 * 204 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 205 * when meta provider state must be held constant. 206 * 207 * The lock ordering between these three locks is dtrace_meta_lock before 208 * dtrace_provider_lock before dtrace_lock. (In particular, there are 209 * several places where dtrace_provider_lock is held by the framework as it 210 * calls into the providers -- which then call back into the framework, 211 * grabbing dtrace_lock.) 212 * 213 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 214 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 215 * role as a coarse-grained lock; it is acquired before both of these locks. 216 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 217 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 218 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 219 * acquired _between_ dtrace_provider_lock and dtrace_lock. 220 */ 221 static kmutex_t dtrace_lock; /* probe state lock */ 222 static kmutex_t dtrace_provider_lock; /* provider state lock */ 223 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 224 225 /* 226 * DTrace Provider Variables 227 * 228 * These are the variables relating to DTrace as a provider (that is, the 229 * provider of the BEGIN, END, and ERROR probes). 230 */ 231 static dtrace_pattr_t dtrace_provider_attr = { 232 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 233 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 234 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 }; 238 239 static void 240 dtrace_nullop(void) 241 {} 242 243 static dtrace_pops_t dtrace_provider_ops = { 244 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 245 (void (*)(void *, struct modctl *))dtrace_nullop, 246 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 247 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 248 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 249 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 250 NULL, 251 NULL, 252 NULL, 253 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 254 }; 255 256 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 257 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 258 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 259 260 /* 261 * DTrace Helper Tracing Variables 262 */ 263 uint32_t dtrace_helptrace_next = 0; 264 uint32_t dtrace_helptrace_nlocals; 265 char *dtrace_helptrace_buffer; 266 int dtrace_helptrace_bufsize = 512 * 1024; 267 268 #ifdef DEBUG 269 int dtrace_helptrace_enabled = 1; 270 #else 271 int dtrace_helptrace_enabled = 0; 272 #endif 273 274 /* 275 * DTrace Error Hashing 276 * 277 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 278 * table. This is very useful for checking coverage of tests that are 279 * expected to induce DIF or DOF processing errors, and may be useful for 280 * debugging problems in the DIF code generator or in DOF generation . The 281 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 282 */ 283 #ifdef DEBUG 284 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 285 static const char *dtrace_errlast; 286 static kthread_t *dtrace_errthread; 287 static kmutex_t dtrace_errlock; 288 #endif 289 290 /* 291 * DTrace Macros and Constants 292 * 293 * These are various macros that are useful in various spots in the 294 * implementation, along with a few random constants that have no meaning 295 * outside of the implementation. There is no real structure to this cpp 296 * mishmash -- but is there ever? 297 */ 298 #define DTRACE_HASHSTR(hash, probe) \ 299 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 300 301 #define DTRACE_HASHNEXT(hash, probe) \ 302 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 303 304 #define DTRACE_HASHPREV(hash, probe) \ 305 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 306 307 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 308 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 309 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 310 311 #define DTRACE_AGGHASHSIZE_SLEW 17 312 313 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 314 315 /* 316 * The key for a thread-local variable consists of the lower 61 bits of the 317 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 318 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 319 * equal to a variable identifier. This is necessary (but not sufficient) to 320 * assure that global associative arrays never collide with thread-local 321 * variables. To guarantee that they cannot collide, we must also define the 322 * order for keying dynamic variables. That order is: 323 * 324 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 325 * 326 * Because the variable-key and the tls-key are in orthogonal spaces, there is 327 * no way for a global variable key signature to match a thread-local key 328 * signature. 329 */ 330 #define DTRACE_TLS_THRKEY(where) { \ 331 uint_t intr = 0; \ 332 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 333 for (; actv; actv >>= 1) \ 334 intr++; \ 335 ASSERT(intr < (1 << 3)); \ 336 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 337 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 338 } 339 340 #define DT_BSWAP_8(x) ((x) & 0xff) 341 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 342 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 343 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 344 345 #define DTRACE_STORE(type, tomax, offset, what) \ 346 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 347 348 #ifndef __i386 349 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 350 if (addr & (size - 1)) { \ 351 *flags |= CPU_DTRACE_BADALIGN; \ 352 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 353 return (0); \ 354 } 355 #else 356 #define DTRACE_ALIGNCHECK(addr, size, flags) 357 #endif 358 359 /* 360 * Test whether a range of memory starting at testaddr of size testsz falls 361 * within the range of memory described by addr, sz. We take care to avoid 362 * problems with overflow and underflow of the unsigned quantities, and 363 * disallow all negative sizes. Ranges of size 0 are allowed. 364 */ 365 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 366 ((testaddr) - (baseaddr) < (basesz) && \ 367 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 368 (testaddr) + (testsz) >= (testaddr)) 369 370 /* 371 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 372 * alloc_sz on the righthand side of the comparison in order to avoid overflow 373 * or underflow in the comparison with it. This is simpler than the INRANGE 374 * check above, because we know that the dtms_scratch_ptr is valid in the 375 * range. Allocations of size zero are allowed. 376 */ 377 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 378 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 379 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 380 381 #define DTRACE_LOADFUNC(bits) \ 382 /*CSTYLED*/ \ 383 uint##bits##_t \ 384 dtrace_load##bits(uintptr_t addr) \ 385 { \ 386 size_t size = bits / NBBY; \ 387 /*CSTYLED*/ \ 388 uint##bits##_t rval; \ 389 int i; \ 390 volatile uint16_t *flags = (volatile uint16_t *) \ 391 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 392 \ 393 DTRACE_ALIGNCHECK(addr, size, flags); \ 394 \ 395 for (i = 0; i < dtrace_toxranges; i++) { \ 396 if (addr >= dtrace_toxrange[i].dtt_limit) \ 397 continue; \ 398 \ 399 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 400 continue; \ 401 \ 402 /* \ 403 * This address falls within a toxic region; return 0. \ 404 */ \ 405 *flags |= CPU_DTRACE_BADADDR; \ 406 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 407 return (0); \ 408 } \ 409 \ 410 *flags |= CPU_DTRACE_NOFAULT; \ 411 /*CSTYLED*/ \ 412 rval = *((volatile uint##bits##_t *)addr); \ 413 *flags &= ~CPU_DTRACE_NOFAULT; \ 414 \ 415 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 416 } 417 418 #ifdef _LP64 419 #define dtrace_loadptr dtrace_load64 420 #else 421 #define dtrace_loadptr dtrace_load32 422 #endif 423 424 #define DTRACE_DYNHASH_FREE 0 425 #define DTRACE_DYNHASH_SINK 1 426 #define DTRACE_DYNHASH_VALID 2 427 428 #define DTRACE_MATCH_NEXT 0 429 #define DTRACE_MATCH_DONE 1 430 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 431 #define DTRACE_STATE_ALIGN 64 432 433 #define DTRACE_FLAGS2FLT(flags) \ 434 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 435 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 436 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 437 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 438 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 439 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 440 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 441 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 442 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 443 DTRACEFLT_UNKNOWN) 444 445 #define DTRACEACT_ISSTRING(act) \ 446 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 447 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 448 449 static size_t dtrace_strlen(const char *, size_t); 450 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 451 static void dtrace_enabling_provide(dtrace_provider_t *); 452 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 453 static void dtrace_enabling_matchall(void); 454 static dtrace_state_t *dtrace_anon_grab(void); 455 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 456 dtrace_state_t *, uint64_t, uint64_t); 457 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 458 static void dtrace_buffer_drop(dtrace_buffer_t *); 459 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 460 dtrace_state_t *, dtrace_mstate_t *); 461 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 462 dtrace_optval_t); 463 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 464 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 465 466 /* 467 * DTrace Probe Context Functions 468 * 469 * These functions are called from probe context. Because probe context is 470 * any context in which C may be called, arbitrarily locks may be held, 471 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 472 * As a result, functions called from probe context may only call other DTrace 473 * support functions -- they may not interact at all with the system at large. 474 * (Note that the ASSERT macro is made probe-context safe by redefining it in 475 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 476 * loads are to be performed from probe context, they _must_ be in terms of 477 * the safe dtrace_load*() variants. 478 * 479 * Some functions in this block are not actually called from probe context; 480 * for these functions, there will be a comment above the function reading 481 * "Note: not called from probe context." 482 */ 483 void 484 dtrace_panic(const char *format, ...) 485 { 486 va_list alist; 487 488 va_start(alist, format); 489 dtrace_vpanic(format, alist); 490 va_end(alist); 491 } 492 493 int 494 dtrace_assfail(const char *a, const char *f, int l) 495 { 496 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 497 498 /* 499 * We just need something here that even the most clever compiler 500 * cannot optimize away. 501 */ 502 return (a[(uintptr_t)f]); 503 } 504 505 /* 506 * Atomically increment a specified error counter from probe context. 507 */ 508 static void 509 dtrace_error(uint32_t *counter) 510 { 511 /* 512 * Most counters stored to in probe context are per-CPU counters. 513 * However, there are some error conditions that are sufficiently 514 * arcane that they don't merit per-CPU storage. If these counters 515 * are incremented concurrently on different CPUs, scalability will be 516 * adversely affected -- but we don't expect them to be white-hot in a 517 * correctly constructed enabling... 518 */ 519 uint32_t oval, nval; 520 521 do { 522 oval = *counter; 523 524 if ((nval = oval + 1) == 0) { 525 /* 526 * If the counter would wrap, set it to 1 -- assuring 527 * that the counter is never zero when we have seen 528 * errors. (The counter must be 32-bits because we 529 * aren't guaranteed a 64-bit compare&swap operation.) 530 * To save this code both the infamy of being fingered 531 * by a priggish news story and the indignity of being 532 * the target of a neo-puritan witch trial, we're 533 * carefully avoiding any colorful description of the 534 * likelihood of this condition -- but suffice it to 535 * say that it is only slightly more likely than the 536 * overflow of predicate cache IDs, as discussed in 537 * dtrace_predicate_create(). 538 */ 539 nval = 1; 540 } 541 } while (dtrace_cas32(counter, oval, nval) != oval); 542 } 543 544 /* 545 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 546 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 547 */ 548 DTRACE_LOADFUNC(8) 549 DTRACE_LOADFUNC(16) 550 DTRACE_LOADFUNC(32) 551 DTRACE_LOADFUNC(64) 552 553 static int 554 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 555 { 556 if (dest < mstate->dtms_scratch_base) 557 return (0); 558 559 if (dest + size < dest) 560 return (0); 561 562 if (dest + size > mstate->dtms_scratch_ptr) 563 return (0); 564 565 return (1); 566 } 567 568 static int 569 dtrace_canstore_statvar(uint64_t addr, size_t sz, 570 dtrace_statvar_t **svars, int nsvars) 571 { 572 int i; 573 574 for (i = 0; i < nsvars; i++) { 575 dtrace_statvar_t *svar = svars[i]; 576 577 if (svar == NULL || svar->dtsv_size == 0) 578 continue; 579 580 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 581 return (1); 582 } 583 584 return (0); 585 } 586 587 /* 588 * Check to see if the address is within a memory region to which a store may 589 * be issued. This includes the DTrace scratch areas, and any DTrace variable 590 * region. The caller of dtrace_canstore() is responsible for performing any 591 * alignment checks that are needed before stores are actually executed. 592 */ 593 static int 594 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 595 dtrace_vstate_t *vstate) 596 { 597 /* 598 * First, check to see if the address is in scratch space... 599 */ 600 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 601 mstate->dtms_scratch_size)) 602 return (1); 603 604 /* 605 * Now check to see if it's a dynamic variable. This check will pick 606 * up both thread-local variables and any global dynamically-allocated 607 * variables. 608 */ 609 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 610 vstate->dtvs_dynvars.dtds_size)) { 611 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 612 uintptr_t base = (uintptr_t)dstate->dtds_base + 613 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 614 uintptr_t chunkoffs; 615 616 /* 617 * Before we assume that we can store here, we need to make 618 * sure that it isn't in our metadata -- storing to our 619 * dynamic variable metadata would corrupt our state. For 620 * the range to not include any dynamic variable metadata, 621 * it must: 622 * 623 * (1) Start above the hash table that is at the base of 624 * the dynamic variable space 625 * 626 * (2) Have a starting chunk offset that is beyond the 627 * dtrace_dynvar_t that is at the base of every chunk 628 * 629 * (3) Not span a chunk boundary 630 * 631 */ 632 if (addr < base) 633 return (0); 634 635 chunkoffs = (addr - base) % dstate->dtds_chunksize; 636 637 if (chunkoffs < sizeof (dtrace_dynvar_t)) 638 return (0); 639 640 if (chunkoffs + sz > dstate->dtds_chunksize) 641 return (0); 642 643 return (1); 644 } 645 646 /* 647 * Finally, check the static local and global variables. These checks 648 * take the longest, so we perform them last. 649 */ 650 if (dtrace_canstore_statvar(addr, sz, 651 vstate->dtvs_locals, vstate->dtvs_nlocals)) 652 return (1); 653 654 if (dtrace_canstore_statvar(addr, sz, 655 vstate->dtvs_globals, vstate->dtvs_nglobals)) 656 return (1); 657 658 return (0); 659 } 660 661 662 /* 663 * Convenience routine to check to see if the address is within a memory 664 * region in which a load may be issued given the user's privilege level; 665 * if not, it sets the appropriate error flags and loads 'addr' into the 666 * illegal value slot. 667 * 668 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 669 * appropriate memory access protection. 670 */ 671 static int 672 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 673 dtrace_vstate_t *vstate) 674 { 675 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 676 677 /* 678 * If we hold the privilege to read from kernel memory, then 679 * everything is readable. 680 */ 681 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 682 return (1); 683 684 /* 685 * You can obviously read that which you can store. 686 */ 687 if (dtrace_canstore(addr, sz, mstate, vstate)) 688 return (1); 689 690 /* 691 * We're allowed to read from our own string table. 692 */ 693 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 694 mstate->dtms_difo->dtdo_strlen)) 695 return (1); 696 697 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 698 *illval = addr; 699 return (0); 700 } 701 702 /* 703 * Convenience routine to check to see if a given string is within a memory 704 * region in which a load may be issued given the user's privilege level; 705 * this exists so that we don't need to issue unnecessary dtrace_strlen() 706 * calls in the event that the user has all privileges. 707 */ 708 static int 709 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 710 dtrace_vstate_t *vstate) 711 { 712 size_t strsz; 713 714 /* 715 * If we hold the privilege to read from kernel memory, then 716 * everything is readable. 717 */ 718 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 719 return (1); 720 721 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 722 if (dtrace_canload(addr, strsz, mstate, vstate)) 723 return (1); 724 725 return (0); 726 } 727 728 /* 729 * Convenience routine to check to see if a given variable is within a memory 730 * region in which a load may be issued given the user's privilege level. 731 */ 732 static int 733 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 734 dtrace_vstate_t *vstate) 735 { 736 size_t sz; 737 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 738 739 /* 740 * If we hold the privilege to read from kernel memory, then 741 * everything is readable. 742 */ 743 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 744 return (1); 745 746 if (type->dtdt_kind == DIF_TYPE_STRING) 747 sz = dtrace_strlen(src, 748 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 749 else 750 sz = type->dtdt_size; 751 752 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 753 } 754 755 /* 756 * Compare two strings using safe loads. 757 */ 758 static int 759 dtrace_strncmp(char *s1, char *s2, size_t limit) 760 { 761 uint8_t c1, c2; 762 volatile uint16_t *flags; 763 764 if (s1 == s2 || limit == 0) 765 return (0); 766 767 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 768 769 do { 770 if (s1 == NULL) { 771 c1 = '\0'; 772 } else { 773 c1 = dtrace_load8((uintptr_t)s1++); 774 } 775 776 if (s2 == NULL) { 777 c2 = '\0'; 778 } else { 779 c2 = dtrace_load8((uintptr_t)s2++); 780 } 781 782 if (c1 != c2) 783 return (c1 - c2); 784 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 785 786 return (0); 787 } 788 789 /* 790 * Compute strlen(s) for a string using safe memory accesses. The additional 791 * len parameter is used to specify a maximum length to ensure completion. 792 */ 793 static size_t 794 dtrace_strlen(const char *s, size_t lim) 795 { 796 uint_t len; 797 798 for (len = 0; len != lim; len++) { 799 if (dtrace_load8((uintptr_t)s++) == '\0') 800 break; 801 } 802 803 return (len); 804 } 805 806 /* 807 * Check if an address falls within a toxic region. 808 */ 809 static int 810 dtrace_istoxic(uintptr_t kaddr, size_t size) 811 { 812 uintptr_t taddr, tsize; 813 int i; 814 815 for (i = 0; i < dtrace_toxranges; i++) { 816 taddr = dtrace_toxrange[i].dtt_base; 817 tsize = dtrace_toxrange[i].dtt_limit - taddr; 818 819 if (kaddr - taddr < tsize) { 820 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 821 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 822 return (1); 823 } 824 825 if (taddr - kaddr < size) { 826 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 827 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 828 return (1); 829 } 830 } 831 832 return (0); 833 } 834 835 /* 836 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 837 * memory specified by the DIF program. The dst is assumed to be safe memory 838 * that we can store to directly because it is managed by DTrace. As with 839 * standard bcopy, overlapping copies are handled properly. 840 */ 841 static void 842 dtrace_bcopy(const void *src, void *dst, size_t len) 843 { 844 if (len != 0) { 845 uint8_t *s1 = dst; 846 const uint8_t *s2 = src; 847 848 if (s1 <= s2) { 849 do { 850 *s1++ = dtrace_load8((uintptr_t)s2++); 851 } while (--len != 0); 852 } else { 853 s2 += len; 854 s1 += len; 855 856 do { 857 *--s1 = dtrace_load8((uintptr_t)--s2); 858 } while (--len != 0); 859 } 860 } 861 } 862 863 /* 864 * Copy src to dst using safe memory accesses, up to either the specified 865 * length, or the point that a nul byte is encountered. The src is assumed to 866 * be unsafe memory specified by the DIF program. The dst is assumed to be 867 * safe memory that we can store to directly because it is managed by DTrace. 868 * Unlike dtrace_bcopy(), overlapping regions are not handled. 869 */ 870 static void 871 dtrace_strcpy(const void *src, void *dst, size_t len) 872 { 873 if (len != 0) { 874 uint8_t *s1 = dst, c; 875 const uint8_t *s2 = src; 876 877 do { 878 *s1++ = c = dtrace_load8((uintptr_t)s2++); 879 } while (--len != 0 && c != '\0'); 880 } 881 } 882 883 /* 884 * Copy src to dst, deriving the size and type from the specified (BYREF) 885 * variable type. The src is assumed to be unsafe memory specified by the DIF 886 * program. The dst is assumed to be DTrace variable memory that is of the 887 * specified type; we assume that we can store to directly. 888 */ 889 static void 890 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 891 { 892 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 893 894 if (type->dtdt_kind == DIF_TYPE_STRING) { 895 dtrace_strcpy(src, dst, type->dtdt_size); 896 } else { 897 dtrace_bcopy(src, dst, type->dtdt_size); 898 } 899 } 900 901 /* 902 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 903 * unsafe memory specified by the DIF program. The s2 data is assumed to be 904 * safe memory that we can access directly because it is managed by DTrace. 905 */ 906 static int 907 dtrace_bcmp(const void *s1, const void *s2, size_t len) 908 { 909 volatile uint16_t *flags; 910 911 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 912 913 if (s1 == s2) 914 return (0); 915 916 if (s1 == NULL || s2 == NULL) 917 return (1); 918 919 if (s1 != s2 && len != 0) { 920 const uint8_t *ps1 = s1; 921 const uint8_t *ps2 = s2; 922 923 do { 924 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 925 return (1); 926 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 927 } 928 return (0); 929 } 930 931 /* 932 * Zero the specified region using a simple byte-by-byte loop. Note that this 933 * is for safe DTrace-managed memory only. 934 */ 935 static void 936 dtrace_bzero(void *dst, size_t len) 937 { 938 uchar_t *cp; 939 940 for (cp = dst; len != 0; len--) 941 *cp++ = 0; 942 } 943 944 /* 945 * This privilege check should be used by actions and subroutines to 946 * verify that the user credentials of the process that enabled the 947 * invoking ECB match the target credentials 948 */ 949 static int 950 dtrace_priv_proc_common_user(dtrace_state_t *state) 951 { 952 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 953 954 /* 955 * We should always have a non-NULL state cred here, since if cred 956 * is null (anonymous tracing), we fast-path bypass this routine. 957 */ 958 ASSERT(s_cr != NULL); 959 960 if ((cr = CRED()) != NULL && 961 s_cr->cr_uid == cr->cr_uid && 962 s_cr->cr_uid == cr->cr_ruid && 963 s_cr->cr_uid == cr->cr_suid && 964 s_cr->cr_gid == cr->cr_gid && 965 s_cr->cr_gid == cr->cr_rgid && 966 s_cr->cr_gid == cr->cr_sgid) 967 return (1); 968 969 return (0); 970 } 971 972 /* 973 * This privilege check should be used by actions and subroutines to 974 * verify that the zone of the process that enabled the invoking ECB 975 * matches the target credentials 976 */ 977 static int 978 dtrace_priv_proc_common_zone(dtrace_state_t *state) 979 { 980 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 981 982 /* 983 * We should always have a non-NULL state cred here, since if cred 984 * is null (anonymous tracing), we fast-path bypass this routine. 985 */ 986 ASSERT(s_cr != NULL); 987 988 if ((cr = CRED()) != NULL && 989 s_cr->cr_zone == cr->cr_zone) 990 return (1); 991 992 return (0); 993 } 994 995 /* 996 * This privilege check should be used by actions and subroutines to 997 * verify that the process has not setuid or changed credentials. 998 */ 999 static int 1000 dtrace_priv_proc_common_nocd() 1001 { 1002 proc_t *proc; 1003 1004 if ((proc = ttoproc(curthread)) != NULL && 1005 !(proc->p_flag & SNOCD)) 1006 return (1); 1007 1008 return (0); 1009 } 1010 1011 static int 1012 dtrace_priv_proc_destructive(dtrace_state_t *state) 1013 { 1014 int action = state->dts_cred.dcr_action; 1015 1016 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1017 dtrace_priv_proc_common_zone(state) == 0) 1018 goto bad; 1019 1020 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1021 dtrace_priv_proc_common_user(state) == 0) 1022 goto bad; 1023 1024 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1025 dtrace_priv_proc_common_nocd() == 0) 1026 goto bad; 1027 1028 return (1); 1029 1030 bad: 1031 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1032 1033 return (0); 1034 } 1035 1036 static int 1037 dtrace_priv_proc_control(dtrace_state_t *state) 1038 { 1039 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1040 return (1); 1041 1042 if (dtrace_priv_proc_common_zone(state) && 1043 dtrace_priv_proc_common_user(state) && 1044 dtrace_priv_proc_common_nocd()) 1045 return (1); 1046 1047 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1048 1049 return (0); 1050 } 1051 1052 static int 1053 dtrace_priv_proc(dtrace_state_t *state) 1054 { 1055 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1056 return (1); 1057 1058 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1059 1060 return (0); 1061 } 1062 1063 static int 1064 dtrace_priv_kernel(dtrace_state_t *state) 1065 { 1066 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1067 return (1); 1068 1069 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1070 1071 return (0); 1072 } 1073 1074 static int 1075 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1076 { 1077 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1078 return (1); 1079 1080 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1081 1082 return (0); 1083 } 1084 1085 /* 1086 * Note: not called from probe context. This function is called 1087 * asynchronously (and at a regular interval) from outside of probe context to 1088 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1089 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1090 */ 1091 void 1092 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1093 { 1094 dtrace_dynvar_t *dirty; 1095 dtrace_dstate_percpu_t *dcpu; 1096 int i, work = 0; 1097 1098 for (i = 0; i < NCPU; i++) { 1099 dcpu = &dstate->dtds_percpu[i]; 1100 1101 ASSERT(dcpu->dtdsc_rinsing == NULL); 1102 1103 /* 1104 * If the dirty list is NULL, there is no dirty work to do. 1105 */ 1106 if (dcpu->dtdsc_dirty == NULL) 1107 continue; 1108 1109 /* 1110 * If the clean list is non-NULL, then we're not going to do 1111 * any work for this CPU -- it means that there has not been 1112 * a dtrace_dynvar() allocation on this CPU (or from this CPU) 1113 * since the last time we cleaned house. 1114 */ 1115 if (dcpu->dtdsc_clean != NULL) 1116 continue; 1117 1118 work = 1; 1119 1120 /* 1121 * Atomically move the dirty list aside. 1122 */ 1123 do { 1124 dirty = dcpu->dtdsc_dirty; 1125 1126 /* 1127 * Before we zap the dirty list, set the rinsing list. 1128 * (This allows for a potential assertion in 1129 * dtrace_dynvar(): if a free dynamic variable appears 1130 * on a hash chain, either the dirty list or the 1131 * rinsing list for some CPU must be non-NULL.) 1132 */ 1133 dcpu->dtdsc_rinsing = dirty; 1134 dtrace_membar_producer(); 1135 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1136 dirty, NULL) != dirty); 1137 } 1138 1139 if (!work) { 1140 /* 1141 * We have no work to do; we can simply return. 1142 */ 1143 return; 1144 } 1145 1146 dtrace_sync(); 1147 1148 for (i = 0; i < NCPU; i++) { 1149 dcpu = &dstate->dtds_percpu[i]; 1150 1151 if (dcpu->dtdsc_rinsing == NULL) 1152 continue; 1153 1154 /* 1155 * We are now guaranteed that no hash chain contains a pointer 1156 * into this dirty list; we can make it clean. 1157 */ 1158 ASSERT(dcpu->dtdsc_clean == NULL); 1159 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1160 dcpu->dtdsc_rinsing = NULL; 1161 } 1162 1163 /* 1164 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1165 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1166 * This prevents a race whereby a CPU incorrectly decides that 1167 * the state should be something other than DTRACE_DSTATE_CLEAN 1168 * after dtrace_dynvar_clean() has completed. 1169 */ 1170 dtrace_sync(); 1171 1172 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1173 } 1174 1175 /* 1176 * Depending on the value of the op parameter, this function looks-up, 1177 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1178 * allocation is requested, this function will return a pointer to a 1179 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1180 * variable can be allocated. If NULL is returned, the appropriate counter 1181 * will be incremented. 1182 */ 1183 dtrace_dynvar_t * 1184 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1185 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1186 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1187 { 1188 uint64_t hashval = DTRACE_DYNHASH_VALID; 1189 dtrace_dynhash_t *hash = dstate->dtds_hash; 1190 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1191 processorid_t me = CPU->cpu_id, cpu = me; 1192 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1193 size_t bucket, ksize; 1194 size_t chunksize = dstate->dtds_chunksize; 1195 uintptr_t kdata, lock, nstate; 1196 uint_t i; 1197 1198 ASSERT(nkeys != 0); 1199 1200 /* 1201 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1202 * algorithm. For the by-value portions, we perform the algorithm in 1203 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1204 * bit, and seems to have only a minute effect on distribution. For 1205 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1206 * over each referenced byte. It's painful to do this, but it's much 1207 * better than pathological hash distribution. The efficacy of the 1208 * hashing algorithm (and a comparison with other algorithms) may be 1209 * found by running the ::dtrace_dynstat MDB dcmd. 1210 */ 1211 for (i = 0; i < nkeys; i++) { 1212 if (key[i].dttk_size == 0) { 1213 uint64_t val = key[i].dttk_value; 1214 1215 hashval += (val >> 48) & 0xffff; 1216 hashval += (hashval << 10); 1217 hashval ^= (hashval >> 6); 1218 1219 hashval += (val >> 32) & 0xffff; 1220 hashval += (hashval << 10); 1221 hashval ^= (hashval >> 6); 1222 1223 hashval += (val >> 16) & 0xffff; 1224 hashval += (hashval << 10); 1225 hashval ^= (hashval >> 6); 1226 1227 hashval += val & 0xffff; 1228 hashval += (hashval << 10); 1229 hashval ^= (hashval >> 6); 1230 } else { 1231 /* 1232 * This is incredibly painful, but it beats the hell 1233 * out of the alternative. 1234 */ 1235 uint64_t j, size = key[i].dttk_size; 1236 uintptr_t base = (uintptr_t)key[i].dttk_value; 1237 1238 if (!dtrace_canload(base, size, mstate, vstate)) 1239 break; 1240 1241 for (j = 0; j < size; j++) { 1242 hashval += dtrace_load8(base + j); 1243 hashval += (hashval << 10); 1244 hashval ^= (hashval >> 6); 1245 } 1246 } 1247 } 1248 1249 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1250 return (NULL); 1251 1252 hashval += (hashval << 3); 1253 hashval ^= (hashval >> 11); 1254 hashval += (hashval << 15); 1255 1256 /* 1257 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1258 * comes out to be one of our two sentinel hash values. If this 1259 * actually happens, we set the hashval to be a value known to be a 1260 * non-sentinel value. 1261 */ 1262 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1263 hashval = DTRACE_DYNHASH_VALID; 1264 1265 /* 1266 * Yes, it's painful to do a divide here. If the cycle count becomes 1267 * important here, tricks can be pulled to reduce it. (However, it's 1268 * critical that hash collisions be kept to an absolute minimum; 1269 * they're much more painful than a divide.) It's better to have a 1270 * solution that generates few collisions and still keeps things 1271 * relatively simple. 1272 */ 1273 bucket = hashval % dstate->dtds_hashsize; 1274 1275 if (op == DTRACE_DYNVAR_DEALLOC) { 1276 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1277 1278 for (;;) { 1279 while ((lock = *lockp) & 1) 1280 continue; 1281 1282 if (dtrace_casptr((void *)lockp, 1283 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1284 break; 1285 } 1286 1287 dtrace_membar_producer(); 1288 } 1289 1290 top: 1291 prev = NULL; 1292 lock = hash[bucket].dtdh_lock; 1293 1294 dtrace_membar_consumer(); 1295 1296 start = hash[bucket].dtdh_chain; 1297 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1298 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1299 op != DTRACE_DYNVAR_DEALLOC)); 1300 1301 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1302 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1303 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1304 1305 if (dvar->dtdv_hashval != hashval) { 1306 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1307 /* 1308 * We've reached the sink, and therefore the 1309 * end of the hash chain; we can kick out of 1310 * the loop knowing that we have seen a valid 1311 * snapshot of state. 1312 */ 1313 ASSERT(dvar->dtdv_next == NULL); 1314 ASSERT(dvar == &dtrace_dynhash_sink); 1315 break; 1316 } 1317 1318 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1319 /* 1320 * We've gone off the rails: somewhere along 1321 * the line, one of the members of this hash 1322 * chain was deleted. Note that we could also 1323 * detect this by simply letting this loop run 1324 * to completion, as we would eventually hit 1325 * the end of the dirty list. However, we 1326 * want to avoid running the length of the 1327 * dirty list unnecessarily (it might be quite 1328 * long), so we catch this as early as 1329 * possible by detecting the hash marker. In 1330 * this case, we simply set dvar to NULL and 1331 * break; the conditional after the loop will 1332 * send us back to top. 1333 */ 1334 dvar = NULL; 1335 break; 1336 } 1337 1338 goto next; 1339 } 1340 1341 if (dtuple->dtt_nkeys != nkeys) 1342 goto next; 1343 1344 for (i = 0; i < nkeys; i++, dkey++) { 1345 if (dkey->dttk_size != key[i].dttk_size) 1346 goto next; /* size or type mismatch */ 1347 1348 if (dkey->dttk_size != 0) { 1349 if (dtrace_bcmp( 1350 (void *)(uintptr_t)key[i].dttk_value, 1351 (void *)(uintptr_t)dkey->dttk_value, 1352 dkey->dttk_size)) 1353 goto next; 1354 } else { 1355 if (dkey->dttk_value != key[i].dttk_value) 1356 goto next; 1357 } 1358 } 1359 1360 if (op != DTRACE_DYNVAR_DEALLOC) 1361 return (dvar); 1362 1363 ASSERT(dvar->dtdv_next == NULL || 1364 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1365 1366 if (prev != NULL) { 1367 ASSERT(hash[bucket].dtdh_chain != dvar); 1368 ASSERT(start != dvar); 1369 ASSERT(prev->dtdv_next == dvar); 1370 prev->dtdv_next = dvar->dtdv_next; 1371 } else { 1372 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1373 start, dvar->dtdv_next) != start) { 1374 /* 1375 * We have failed to atomically swing the 1376 * hash table head pointer, presumably because 1377 * of a conflicting allocation on another CPU. 1378 * We need to reread the hash chain and try 1379 * again. 1380 */ 1381 goto top; 1382 } 1383 } 1384 1385 dtrace_membar_producer(); 1386 1387 /* 1388 * Now set the hash value to indicate that it's free. 1389 */ 1390 ASSERT(hash[bucket].dtdh_chain != dvar); 1391 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1392 1393 dtrace_membar_producer(); 1394 1395 /* 1396 * Set the next pointer to point at the dirty list, and 1397 * atomically swing the dirty pointer to the newly freed dvar. 1398 */ 1399 do { 1400 next = dcpu->dtdsc_dirty; 1401 dvar->dtdv_next = next; 1402 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1403 1404 /* 1405 * Finally, unlock this hash bucket. 1406 */ 1407 ASSERT(hash[bucket].dtdh_lock == lock); 1408 ASSERT(lock & 1); 1409 hash[bucket].dtdh_lock++; 1410 1411 return (NULL); 1412 next: 1413 prev = dvar; 1414 continue; 1415 } 1416 1417 if (dvar == NULL) { 1418 /* 1419 * If dvar is NULL, it is because we went off the rails: 1420 * one of the elements that we traversed in the hash chain 1421 * was deleted while we were traversing it. In this case, 1422 * we assert that we aren't doing a dealloc (deallocs lock 1423 * the hash bucket to prevent themselves from racing with 1424 * one another), and retry the hash chain traversal. 1425 */ 1426 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1427 goto top; 1428 } 1429 1430 if (op != DTRACE_DYNVAR_ALLOC) { 1431 /* 1432 * If we are not to allocate a new variable, we want to 1433 * return NULL now. Before we return, check that the value 1434 * of the lock word hasn't changed. If it has, we may have 1435 * seen an inconsistent snapshot. 1436 */ 1437 if (op == DTRACE_DYNVAR_NOALLOC) { 1438 if (hash[bucket].dtdh_lock != lock) 1439 goto top; 1440 } else { 1441 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1442 ASSERT(hash[bucket].dtdh_lock == lock); 1443 ASSERT(lock & 1); 1444 hash[bucket].dtdh_lock++; 1445 } 1446 1447 return (NULL); 1448 } 1449 1450 /* 1451 * We need to allocate a new dynamic variable. The size we need is the 1452 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1453 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1454 * the size of any referred-to data (dsize). We then round the final 1455 * size up to the chunksize for allocation. 1456 */ 1457 for (ksize = 0, i = 0; i < nkeys; i++) 1458 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1459 1460 /* 1461 * This should be pretty much impossible, but could happen if, say, 1462 * strange DIF specified the tuple. Ideally, this should be an 1463 * assertion and not an error condition -- but that requires that the 1464 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1465 * bullet-proof. (That is, it must not be able to be fooled by 1466 * malicious DIF.) Given the lack of backwards branches in DIF, 1467 * solving this would presumably not amount to solving the Halting 1468 * Problem -- but it still seems awfully hard. 1469 */ 1470 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1471 ksize + dsize > chunksize) { 1472 dcpu->dtdsc_drops++; 1473 return (NULL); 1474 } 1475 1476 nstate = DTRACE_DSTATE_EMPTY; 1477 1478 do { 1479 retry: 1480 free = dcpu->dtdsc_free; 1481 1482 if (free == NULL) { 1483 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1484 void *rval; 1485 1486 if (clean == NULL) { 1487 /* 1488 * We're out of dynamic variable space on 1489 * this CPU. Unless we have tried all CPUs, 1490 * we'll try to allocate from a different 1491 * CPU. 1492 */ 1493 switch (dstate->dtds_state) { 1494 case DTRACE_DSTATE_CLEAN: { 1495 void *sp = &dstate->dtds_state; 1496 1497 if (++cpu >= NCPU) 1498 cpu = 0; 1499 1500 if (dcpu->dtdsc_dirty != NULL && 1501 nstate == DTRACE_DSTATE_EMPTY) 1502 nstate = DTRACE_DSTATE_DIRTY; 1503 1504 if (dcpu->dtdsc_rinsing != NULL) 1505 nstate = DTRACE_DSTATE_RINSING; 1506 1507 dcpu = &dstate->dtds_percpu[cpu]; 1508 1509 if (cpu != me) 1510 goto retry; 1511 1512 (void) dtrace_cas32(sp, 1513 DTRACE_DSTATE_CLEAN, nstate); 1514 1515 /* 1516 * To increment the correct bean 1517 * counter, take another lap. 1518 */ 1519 goto retry; 1520 } 1521 1522 case DTRACE_DSTATE_DIRTY: 1523 dcpu->dtdsc_dirty_drops++; 1524 break; 1525 1526 case DTRACE_DSTATE_RINSING: 1527 dcpu->dtdsc_rinsing_drops++; 1528 break; 1529 1530 case DTRACE_DSTATE_EMPTY: 1531 dcpu->dtdsc_drops++; 1532 break; 1533 } 1534 1535 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1536 return (NULL); 1537 } 1538 1539 /* 1540 * The clean list appears to be non-empty. We want to 1541 * move the clean list to the free list; we start by 1542 * moving the clean pointer aside. 1543 */ 1544 if (dtrace_casptr(&dcpu->dtdsc_clean, 1545 clean, NULL) != clean) { 1546 /* 1547 * We are in one of two situations: 1548 * 1549 * (a) The clean list was switched to the 1550 * free list by another CPU. 1551 * 1552 * (b) The clean list was added to by the 1553 * cleansing cyclic. 1554 * 1555 * In either of these situations, we can 1556 * just reattempt the free list allocation. 1557 */ 1558 goto retry; 1559 } 1560 1561 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1562 1563 /* 1564 * Now we'll move the clean list to the free list. 1565 * It's impossible for this to fail: the only way 1566 * the free list can be updated is through this 1567 * code path, and only one CPU can own the clean list. 1568 * Thus, it would only be possible for this to fail if 1569 * this code were racing with dtrace_dynvar_clean(). 1570 * (That is, if dtrace_dynvar_clean() updated the clean 1571 * list, and we ended up racing to update the free 1572 * list.) This race is prevented by the dtrace_sync() 1573 * in dtrace_dynvar_clean() -- which flushes the 1574 * owners of the clean lists out before resetting 1575 * the clean lists. 1576 */ 1577 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1578 ASSERT(rval == NULL); 1579 goto retry; 1580 } 1581 1582 dvar = free; 1583 new_free = dvar->dtdv_next; 1584 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1585 1586 /* 1587 * We have now allocated a new chunk. We copy the tuple keys into the 1588 * tuple array and copy any referenced key data into the data space 1589 * following the tuple array. As we do this, we relocate dttk_value 1590 * in the final tuple to point to the key data address in the chunk. 1591 */ 1592 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1593 dvar->dtdv_data = (void *)(kdata + ksize); 1594 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1595 1596 for (i = 0; i < nkeys; i++) { 1597 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1598 size_t kesize = key[i].dttk_size; 1599 1600 if (kesize != 0) { 1601 dtrace_bcopy( 1602 (const void *)(uintptr_t)key[i].dttk_value, 1603 (void *)kdata, kesize); 1604 dkey->dttk_value = kdata; 1605 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1606 } else { 1607 dkey->dttk_value = key[i].dttk_value; 1608 } 1609 1610 dkey->dttk_size = kesize; 1611 } 1612 1613 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1614 dvar->dtdv_hashval = hashval; 1615 dvar->dtdv_next = start; 1616 1617 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1618 return (dvar); 1619 1620 /* 1621 * The cas has failed. Either another CPU is adding an element to 1622 * this hash chain, or another CPU is deleting an element from this 1623 * hash chain. The simplest way to deal with both of these cases 1624 * (though not necessarily the most efficient) is to free our 1625 * allocated block and tail-call ourselves. Note that the free is 1626 * to the dirty list and _not_ to the free list. This is to prevent 1627 * races with allocators, above. 1628 */ 1629 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1630 1631 dtrace_membar_producer(); 1632 1633 do { 1634 free = dcpu->dtdsc_dirty; 1635 dvar->dtdv_next = free; 1636 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1637 1638 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1639 } 1640 1641 /*ARGSUSED*/ 1642 static void 1643 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1644 { 1645 if (nval < *oval) 1646 *oval = nval; 1647 } 1648 1649 /*ARGSUSED*/ 1650 static void 1651 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1652 { 1653 if (nval > *oval) 1654 *oval = nval; 1655 } 1656 1657 static void 1658 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1659 { 1660 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1661 int64_t val = (int64_t)nval; 1662 1663 if (val < 0) { 1664 for (i = 0; i < zero; i++) { 1665 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1666 quanta[i] += incr; 1667 return; 1668 } 1669 } 1670 } else { 1671 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1672 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1673 quanta[i - 1] += incr; 1674 return; 1675 } 1676 } 1677 1678 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1679 return; 1680 } 1681 1682 ASSERT(0); 1683 } 1684 1685 static void 1686 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1687 { 1688 uint64_t arg = *lquanta++; 1689 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1690 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1691 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1692 int32_t val = (int32_t)nval, level; 1693 1694 ASSERT(step != 0); 1695 ASSERT(levels != 0); 1696 1697 if (val < base) { 1698 /* 1699 * This is an underflow. 1700 */ 1701 lquanta[0] += incr; 1702 return; 1703 } 1704 1705 level = (val - base) / step; 1706 1707 if (level < levels) { 1708 lquanta[level + 1] += incr; 1709 return; 1710 } 1711 1712 /* 1713 * This is an overflow. 1714 */ 1715 lquanta[levels + 1] += incr; 1716 } 1717 1718 /*ARGSUSED*/ 1719 static void 1720 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 1721 { 1722 data[0]++; 1723 data[1] += nval; 1724 } 1725 1726 /*ARGSUSED*/ 1727 static void 1728 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 1729 { 1730 *oval = *oval + 1; 1731 } 1732 1733 /*ARGSUSED*/ 1734 static void 1735 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 1736 { 1737 *oval += nval; 1738 } 1739 1740 /* 1741 * Aggregate given the tuple in the principal data buffer, and the aggregating 1742 * action denoted by the specified dtrace_aggregation_t. The aggregation 1743 * buffer is specified as the buf parameter. This routine does not return 1744 * failure; if there is no space in the aggregation buffer, the data will be 1745 * dropped, and a corresponding counter incremented. 1746 */ 1747 static void 1748 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 1749 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 1750 { 1751 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 1752 uint32_t i, ndx, size, fsize; 1753 uint32_t align = sizeof (uint64_t) - 1; 1754 dtrace_aggbuffer_t *agb; 1755 dtrace_aggkey_t *key; 1756 uint32_t hashval = 0, limit, isstr; 1757 caddr_t tomax, data, kdata; 1758 dtrace_actkind_t action; 1759 dtrace_action_t *act; 1760 uintptr_t offs; 1761 1762 if (buf == NULL) 1763 return; 1764 1765 if (!agg->dtag_hasarg) { 1766 /* 1767 * Currently, only quantize() and lquantize() take additional 1768 * arguments, and they have the same semantics: an increment 1769 * value that defaults to 1 when not present. If additional 1770 * aggregating actions take arguments, the setting of the 1771 * default argument value will presumably have to become more 1772 * sophisticated... 1773 */ 1774 arg = 1; 1775 } 1776 1777 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 1778 size = rec->dtrd_offset - agg->dtag_base; 1779 fsize = size + rec->dtrd_size; 1780 1781 ASSERT(dbuf->dtb_tomax != NULL); 1782 data = dbuf->dtb_tomax + offset + agg->dtag_base; 1783 1784 if ((tomax = buf->dtb_tomax) == NULL) { 1785 dtrace_buffer_drop(buf); 1786 return; 1787 } 1788 1789 /* 1790 * The metastructure is always at the bottom of the buffer. 1791 */ 1792 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 1793 sizeof (dtrace_aggbuffer_t)); 1794 1795 if (buf->dtb_offset == 0) { 1796 /* 1797 * We just kludge up approximately 1/8th of the size to be 1798 * buckets. If this guess ends up being routinely 1799 * off-the-mark, we may need to dynamically readjust this 1800 * based on past performance. 1801 */ 1802 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 1803 1804 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 1805 (uintptr_t)tomax || hashsize == 0) { 1806 /* 1807 * We've been given a ludicrously small buffer; 1808 * increment our drop count and leave. 1809 */ 1810 dtrace_buffer_drop(buf); 1811 return; 1812 } 1813 1814 /* 1815 * And now, a pathetic attempt to try to get a an odd (or 1816 * perchance, a prime) hash size for better hash distribution. 1817 */ 1818 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 1819 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 1820 1821 agb->dtagb_hashsize = hashsize; 1822 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 1823 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 1824 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 1825 1826 for (i = 0; i < agb->dtagb_hashsize; i++) 1827 agb->dtagb_hash[i] = NULL; 1828 } 1829 1830 ASSERT(agg->dtag_first != NULL); 1831 ASSERT(agg->dtag_first->dta_intuple); 1832 1833 /* 1834 * Calculate the hash value based on the key. Note that we _don't_ 1835 * include the aggid in the hashing (but we will store it as part of 1836 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 1837 * algorithm: a simple, quick algorithm that has no known funnels, and 1838 * gets good distribution in practice. The efficacy of the hashing 1839 * algorithm (and a comparison with other algorithms) may be found by 1840 * running the ::dtrace_aggstat MDB dcmd. 1841 */ 1842 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1843 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1844 limit = i + act->dta_rec.dtrd_size; 1845 ASSERT(limit <= size); 1846 isstr = DTRACEACT_ISSTRING(act); 1847 1848 for (; i < limit; i++) { 1849 hashval += data[i]; 1850 hashval += (hashval << 10); 1851 hashval ^= (hashval >> 6); 1852 1853 if (isstr && data[i] == '\0') 1854 break; 1855 } 1856 } 1857 1858 hashval += (hashval << 3); 1859 hashval ^= (hashval >> 11); 1860 hashval += (hashval << 15); 1861 1862 /* 1863 * Yes, the divide here is expensive -- but it's generally the least 1864 * of the performance issues given the amount of data that we iterate 1865 * over to compute hash values, compare data, etc. 1866 */ 1867 ndx = hashval % agb->dtagb_hashsize; 1868 1869 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 1870 ASSERT((caddr_t)key >= tomax); 1871 ASSERT((caddr_t)key < tomax + buf->dtb_size); 1872 1873 if (hashval != key->dtak_hashval || key->dtak_size != size) 1874 continue; 1875 1876 kdata = key->dtak_data; 1877 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 1878 1879 for (act = agg->dtag_first; act->dta_intuple; 1880 act = act->dta_next) { 1881 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1882 limit = i + act->dta_rec.dtrd_size; 1883 ASSERT(limit <= size); 1884 isstr = DTRACEACT_ISSTRING(act); 1885 1886 for (; i < limit; i++) { 1887 if (kdata[i] != data[i]) 1888 goto next; 1889 1890 if (isstr && data[i] == '\0') 1891 break; 1892 } 1893 } 1894 1895 if (action != key->dtak_action) { 1896 /* 1897 * We are aggregating on the same value in the same 1898 * aggregation with two different aggregating actions. 1899 * (This should have been picked up in the compiler, 1900 * so we may be dealing with errant or devious DIF.) 1901 * This is an error condition; we indicate as much, 1902 * and return. 1903 */ 1904 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 1905 return; 1906 } 1907 1908 /* 1909 * This is a hit: we need to apply the aggregator to 1910 * the value at this key. 1911 */ 1912 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 1913 return; 1914 next: 1915 continue; 1916 } 1917 1918 /* 1919 * We didn't find it. We need to allocate some zero-filled space, 1920 * link it into the hash table appropriately, and apply the aggregator 1921 * to the (zero-filled) value. 1922 */ 1923 offs = buf->dtb_offset; 1924 while (offs & (align - 1)) 1925 offs += sizeof (uint32_t); 1926 1927 /* 1928 * If we don't have enough room to both allocate a new key _and_ 1929 * its associated data, increment the drop count and return. 1930 */ 1931 if ((uintptr_t)tomax + offs + fsize > 1932 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 1933 dtrace_buffer_drop(buf); 1934 return; 1935 } 1936 1937 /*CONSTCOND*/ 1938 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 1939 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 1940 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 1941 1942 key->dtak_data = kdata = tomax + offs; 1943 buf->dtb_offset = offs + fsize; 1944 1945 /* 1946 * Now copy the data across. 1947 */ 1948 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 1949 1950 for (i = sizeof (dtrace_aggid_t); i < size; i++) 1951 kdata[i] = data[i]; 1952 1953 /* 1954 * Because strings are not zeroed out by default, we need to iterate 1955 * looking for actions that store strings, and we need to explicitly 1956 * pad these strings out with zeroes. 1957 */ 1958 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1959 int nul; 1960 1961 if (!DTRACEACT_ISSTRING(act)) 1962 continue; 1963 1964 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1965 limit = i + act->dta_rec.dtrd_size; 1966 ASSERT(limit <= size); 1967 1968 for (nul = 0; i < limit; i++) { 1969 if (nul) { 1970 kdata[i] = '\0'; 1971 continue; 1972 } 1973 1974 if (data[i] != '\0') 1975 continue; 1976 1977 nul = 1; 1978 } 1979 } 1980 1981 for (i = size; i < fsize; i++) 1982 kdata[i] = 0; 1983 1984 key->dtak_hashval = hashval; 1985 key->dtak_size = size; 1986 key->dtak_action = action; 1987 key->dtak_next = agb->dtagb_hash[ndx]; 1988 agb->dtagb_hash[ndx] = key; 1989 1990 /* 1991 * Finally, apply the aggregator. 1992 */ 1993 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 1994 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 1995 } 1996 1997 /* 1998 * Given consumer state, this routine finds a speculation in the INACTIVE 1999 * state and transitions it into the ACTIVE state. If there is no speculation 2000 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2001 * incremented -- it is up to the caller to take appropriate action. 2002 */ 2003 static int 2004 dtrace_speculation(dtrace_state_t *state) 2005 { 2006 int i = 0; 2007 dtrace_speculation_state_t current; 2008 uint32_t *stat = &state->dts_speculations_unavail, count; 2009 2010 while (i < state->dts_nspeculations) { 2011 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2012 2013 current = spec->dtsp_state; 2014 2015 if (current != DTRACESPEC_INACTIVE) { 2016 if (current == DTRACESPEC_COMMITTINGMANY || 2017 current == DTRACESPEC_COMMITTING || 2018 current == DTRACESPEC_DISCARDING) 2019 stat = &state->dts_speculations_busy; 2020 i++; 2021 continue; 2022 } 2023 2024 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2025 current, DTRACESPEC_ACTIVE) == current) 2026 return (i + 1); 2027 } 2028 2029 /* 2030 * We couldn't find a speculation. If we found as much as a single 2031 * busy speculation buffer, we'll attribute this failure as "busy" 2032 * instead of "unavail". 2033 */ 2034 do { 2035 count = *stat; 2036 } while (dtrace_cas32(stat, count, count + 1) != count); 2037 2038 return (0); 2039 } 2040 2041 /* 2042 * This routine commits an active speculation. If the specified speculation 2043 * is not in a valid state to perform a commit(), this routine will silently do 2044 * nothing. The state of the specified speculation is transitioned according 2045 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2046 */ 2047 static void 2048 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2049 dtrace_specid_t which) 2050 { 2051 dtrace_speculation_t *spec; 2052 dtrace_buffer_t *src, *dest; 2053 uintptr_t daddr, saddr, dlimit; 2054 dtrace_speculation_state_t current, new; 2055 intptr_t offs; 2056 2057 if (which == 0) 2058 return; 2059 2060 if (which > state->dts_nspeculations) { 2061 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2062 return; 2063 } 2064 2065 spec = &state->dts_speculations[which - 1]; 2066 src = &spec->dtsp_buffer[cpu]; 2067 dest = &state->dts_buffer[cpu]; 2068 2069 do { 2070 current = spec->dtsp_state; 2071 2072 if (current == DTRACESPEC_COMMITTINGMANY) 2073 break; 2074 2075 switch (current) { 2076 case DTRACESPEC_INACTIVE: 2077 case DTRACESPEC_DISCARDING: 2078 return; 2079 2080 case DTRACESPEC_COMMITTING: 2081 /* 2082 * This is only possible if we are (a) commit()'ing 2083 * without having done a prior speculate() on this CPU 2084 * and (b) racing with another commit() on a different 2085 * CPU. There's nothing to do -- we just assert that 2086 * our offset is 0. 2087 */ 2088 ASSERT(src->dtb_offset == 0); 2089 return; 2090 2091 case DTRACESPEC_ACTIVE: 2092 new = DTRACESPEC_COMMITTING; 2093 break; 2094 2095 case DTRACESPEC_ACTIVEONE: 2096 /* 2097 * This speculation is active on one CPU. If our 2098 * buffer offset is non-zero, we know that the one CPU 2099 * must be us. Otherwise, we are committing on a 2100 * different CPU from the speculate(), and we must 2101 * rely on being asynchronously cleaned. 2102 */ 2103 if (src->dtb_offset != 0) { 2104 new = DTRACESPEC_COMMITTING; 2105 break; 2106 } 2107 /*FALLTHROUGH*/ 2108 2109 case DTRACESPEC_ACTIVEMANY: 2110 new = DTRACESPEC_COMMITTINGMANY; 2111 break; 2112 2113 default: 2114 ASSERT(0); 2115 } 2116 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2117 current, new) != current); 2118 2119 /* 2120 * We have set the state to indicate that we are committing this 2121 * speculation. Now reserve the necessary space in the destination 2122 * buffer. 2123 */ 2124 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2125 sizeof (uint64_t), state, NULL)) < 0) { 2126 dtrace_buffer_drop(dest); 2127 goto out; 2128 } 2129 2130 /* 2131 * We have the space; copy the buffer across. (Note that this is a 2132 * highly subobtimal bcopy(); in the unlikely event that this becomes 2133 * a serious performance issue, a high-performance DTrace-specific 2134 * bcopy() should obviously be invented.) 2135 */ 2136 daddr = (uintptr_t)dest->dtb_tomax + offs; 2137 dlimit = daddr + src->dtb_offset; 2138 saddr = (uintptr_t)src->dtb_tomax; 2139 2140 /* 2141 * First, the aligned portion. 2142 */ 2143 while (dlimit - daddr >= sizeof (uint64_t)) { 2144 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2145 2146 daddr += sizeof (uint64_t); 2147 saddr += sizeof (uint64_t); 2148 } 2149 2150 /* 2151 * Now any left-over bit... 2152 */ 2153 while (dlimit - daddr) 2154 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2155 2156 /* 2157 * Finally, commit the reserved space in the destination buffer. 2158 */ 2159 dest->dtb_offset = offs + src->dtb_offset; 2160 2161 out: 2162 /* 2163 * If we're lucky enough to be the only active CPU on this speculation 2164 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2165 */ 2166 if (current == DTRACESPEC_ACTIVE || 2167 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2168 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2169 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2170 2171 ASSERT(rval == DTRACESPEC_COMMITTING); 2172 } 2173 2174 src->dtb_offset = 0; 2175 src->dtb_xamot_drops += src->dtb_drops; 2176 src->dtb_drops = 0; 2177 } 2178 2179 /* 2180 * This routine discards an active speculation. If the specified speculation 2181 * is not in a valid state to perform a discard(), this routine will silently 2182 * do nothing. The state of the specified speculation is transitioned 2183 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2184 */ 2185 static void 2186 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2187 dtrace_specid_t which) 2188 { 2189 dtrace_speculation_t *spec; 2190 dtrace_speculation_state_t current, new; 2191 dtrace_buffer_t *buf; 2192 2193 if (which == 0) 2194 return; 2195 2196 if (which > state->dts_nspeculations) { 2197 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2198 return; 2199 } 2200 2201 spec = &state->dts_speculations[which - 1]; 2202 buf = &spec->dtsp_buffer[cpu]; 2203 2204 do { 2205 current = spec->dtsp_state; 2206 2207 switch (current) { 2208 case DTRACESPEC_INACTIVE: 2209 case DTRACESPEC_COMMITTINGMANY: 2210 case DTRACESPEC_COMMITTING: 2211 case DTRACESPEC_DISCARDING: 2212 return; 2213 2214 case DTRACESPEC_ACTIVE: 2215 case DTRACESPEC_ACTIVEMANY: 2216 new = DTRACESPEC_DISCARDING; 2217 break; 2218 2219 case DTRACESPEC_ACTIVEONE: 2220 if (buf->dtb_offset != 0) { 2221 new = DTRACESPEC_INACTIVE; 2222 } else { 2223 new = DTRACESPEC_DISCARDING; 2224 } 2225 break; 2226 2227 default: 2228 ASSERT(0); 2229 } 2230 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2231 current, new) != current); 2232 2233 buf->dtb_offset = 0; 2234 buf->dtb_drops = 0; 2235 } 2236 2237 /* 2238 * Note: not called from probe context. This function is called 2239 * asynchronously from cross call context to clean any speculations that are 2240 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2241 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2242 * speculation. 2243 */ 2244 static void 2245 dtrace_speculation_clean_here(dtrace_state_t *state) 2246 { 2247 dtrace_icookie_t cookie; 2248 processorid_t cpu = CPU->cpu_id; 2249 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2250 dtrace_specid_t i; 2251 2252 cookie = dtrace_interrupt_disable(); 2253 2254 if (dest->dtb_tomax == NULL) { 2255 dtrace_interrupt_enable(cookie); 2256 return; 2257 } 2258 2259 for (i = 0; i < state->dts_nspeculations; i++) { 2260 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2261 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2262 2263 if (src->dtb_tomax == NULL) 2264 continue; 2265 2266 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2267 src->dtb_offset = 0; 2268 continue; 2269 } 2270 2271 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2272 continue; 2273 2274 if (src->dtb_offset == 0) 2275 continue; 2276 2277 dtrace_speculation_commit(state, cpu, i + 1); 2278 } 2279 2280 dtrace_interrupt_enable(cookie); 2281 } 2282 2283 /* 2284 * Note: not called from probe context. This function is called 2285 * asynchronously (and at a regular interval) to clean any speculations that 2286 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2287 * is work to be done, it cross calls all CPUs to perform that work; 2288 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2289 * INACTIVE state until they have been cleaned by all CPUs. 2290 */ 2291 static void 2292 dtrace_speculation_clean(dtrace_state_t *state) 2293 { 2294 int work = 0, rv; 2295 dtrace_specid_t i; 2296 2297 for (i = 0; i < state->dts_nspeculations; i++) { 2298 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2299 2300 ASSERT(!spec->dtsp_cleaning); 2301 2302 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2303 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2304 continue; 2305 2306 work++; 2307 spec->dtsp_cleaning = 1; 2308 } 2309 2310 if (!work) 2311 return; 2312 2313 dtrace_xcall(DTRACE_CPUALL, 2314 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2315 2316 /* 2317 * We now know that all CPUs have committed or discarded their 2318 * speculation buffers, as appropriate. We can now set the state 2319 * to inactive. 2320 */ 2321 for (i = 0; i < state->dts_nspeculations; i++) { 2322 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2323 dtrace_speculation_state_t current, new; 2324 2325 if (!spec->dtsp_cleaning) 2326 continue; 2327 2328 current = spec->dtsp_state; 2329 ASSERT(current == DTRACESPEC_DISCARDING || 2330 current == DTRACESPEC_COMMITTINGMANY); 2331 2332 new = DTRACESPEC_INACTIVE; 2333 2334 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2335 ASSERT(rv == current); 2336 spec->dtsp_cleaning = 0; 2337 } 2338 } 2339 2340 /* 2341 * Called as part of a speculate() to get the speculative buffer associated 2342 * with a given speculation. Returns NULL if the specified speculation is not 2343 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2344 * the active CPU is not the specified CPU -- the speculation will be 2345 * atomically transitioned into the ACTIVEMANY state. 2346 */ 2347 static dtrace_buffer_t * 2348 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2349 dtrace_specid_t which) 2350 { 2351 dtrace_speculation_t *spec; 2352 dtrace_speculation_state_t current, new; 2353 dtrace_buffer_t *buf; 2354 2355 if (which == 0) 2356 return (NULL); 2357 2358 if (which > state->dts_nspeculations) { 2359 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2360 return (NULL); 2361 } 2362 2363 spec = &state->dts_speculations[which - 1]; 2364 buf = &spec->dtsp_buffer[cpuid]; 2365 2366 do { 2367 current = spec->dtsp_state; 2368 2369 switch (current) { 2370 case DTRACESPEC_INACTIVE: 2371 case DTRACESPEC_COMMITTINGMANY: 2372 case DTRACESPEC_DISCARDING: 2373 return (NULL); 2374 2375 case DTRACESPEC_COMMITTING: 2376 ASSERT(buf->dtb_offset == 0); 2377 return (NULL); 2378 2379 case DTRACESPEC_ACTIVEONE: 2380 /* 2381 * This speculation is currently active on one CPU. 2382 * Check the offset in the buffer; if it's non-zero, 2383 * that CPU must be us (and we leave the state alone). 2384 * If it's zero, assume that we're starting on a new 2385 * CPU -- and change the state to indicate that the 2386 * speculation is active on more than one CPU. 2387 */ 2388 if (buf->dtb_offset != 0) 2389 return (buf); 2390 2391 new = DTRACESPEC_ACTIVEMANY; 2392 break; 2393 2394 case DTRACESPEC_ACTIVEMANY: 2395 return (buf); 2396 2397 case DTRACESPEC_ACTIVE: 2398 new = DTRACESPEC_ACTIVEONE; 2399 break; 2400 2401 default: 2402 ASSERT(0); 2403 } 2404 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2405 current, new) != current); 2406 2407 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2408 return (buf); 2409 } 2410 2411 /* 2412 * Return a string. In the event that the user lacks the privilege to access 2413 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2414 * don't fail access checking. 2415 * 2416 * dtrace_dif_variable() uses this routine as a helper for various 2417 * builtin values such as 'execname' and 'probefunc.' 2418 */ 2419 uintptr_t 2420 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2421 dtrace_mstate_t *mstate) 2422 { 2423 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2424 uintptr_t ret; 2425 size_t strsz; 2426 2427 /* 2428 * The easy case: this probe is allowed to read all of memory, so 2429 * we can just return this as a vanilla pointer. 2430 */ 2431 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2432 return (addr); 2433 2434 /* 2435 * This is the tougher case: we copy the string in question from 2436 * kernel memory into scratch memory and return it that way: this 2437 * ensures that we won't trip up when access checking tests the 2438 * BYREF return value. 2439 */ 2440 strsz = dtrace_strlen((char *)addr, size) + 1; 2441 2442 if (mstate->dtms_scratch_ptr + strsz > 2443 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2444 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2445 return (NULL); 2446 } 2447 2448 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2449 strsz); 2450 ret = mstate->dtms_scratch_ptr; 2451 mstate->dtms_scratch_ptr += strsz; 2452 return (ret); 2453 } 2454 2455 /* 2456 * This function implements the DIF emulator's variable lookups. The emulator 2457 * passes a reserved variable identifier and optional built-in array index. 2458 */ 2459 static uint64_t 2460 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2461 uint64_t ndx) 2462 { 2463 /* 2464 * If we're accessing one of the uncached arguments, we'll turn this 2465 * into a reference in the args array. 2466 */ 2467 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2468 ndx = v - DIF_VAR_ARG0; 2469 v = DIF_VAR_ARGS; 2470 } 2471 2472 switch (v) { 2473 case DIF_VAR_ARGS: 2474 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2475 if (ndx >= sizeof (mstate->dtms_arg) / 2476 sizeof (mstate->dtms_arg[0])) { 2477 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2478 dtrace_provider_t *pv; 2479 uint64_t val; 2480 2481 pv = mstate->dtms_probe->dtpr_provider; 2482 if (pv->dtpv_pops.dtps_getargval != NULL) 2483 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2484 mstate->dtms_probe->dtpr_id, 2485 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2486 else 2487 val = dtrace_getarg(ndx, aframes); 2488 2489 /* 2490 * This is regrettably required to keep the compiler 2491 * from tail-optimizing the call to dtrace_getarg(). 2492 * The condition always evaluates to true, but the 2493 * compiler has no way of figuring that out a priori. 2494 * (None of this would be necessary if the compiler 2495 * could be relied upon to _always_ tail-optimize 2496 * the call to dtrace_getarg() -- but it can't.) 2497 */ 2498 if (mstate->dtms_probe != NULL) 2499 return (val); 2500 2501 ASSERT(0); 2502 } 2503 2504 return (mstate->dtms_arg[ndx]); 2505 2506 case DIF_VAR_UREGS: { 2507 klwp_t *lwp; 2508 2509 if (!dtrace_priv_proc(state)) 2510 return (0); 2511 2512 if ((lwp = curthread->t_lwp) == NULL) { 2513 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2514 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2515 return (0); 2516 } 2517 2518 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2519 } 2520 2521 case DIF_VAR_CURTHREAD: 2522 if (!dtrace_priv_kernel(state)) 2523 return (0); 2524 return ((uint64_t)(uintptr_t)curthread); 2525 2526 case DIF_VAR_TIMESTAMP: 2527 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2528 mstate->dtms_timestamp = dtrace_gethrtime(); 2529 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2530 } 2531 return (mstate->dtms_timestamp); 2532 2533 case DIF_VAR_VTIMESTAMP: 2534 ASSERT(dtrace_vtime_references != 0); 2535 return (curthread->t_dtrace_vtime); 2536 2537 case DIF_VAR_WALLTIMESTAMP: 2538 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2539 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2540 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2541 } 2542 return (mstate->dtms_walltimestamp); 2543 2544 case DIF_VAR_IPL: 2545 if (!dtrace_priv_kernel(state)) 2546 return (0); 2547 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2548 mstate->dtms_ipl = dtrace_getipl(); 2549 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2550 } 2551 return (mstate->dtms_ipl); 2552 2553 case DIF_VAR_EPID: 2554 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2555 return (mstate->dtms_epid); 2556 2557 case DIF_VAR_ID: 2558 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2559 return (mstate->dtms_probe->dtpr_id); 2560 2561 case DIF_VAR_STACKDEPTH: 2562 if (!dtrace_priv_kernel(state)) 2563 return (0); 2564 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2565 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2566 2567 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2568 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2569 } 2570 return (mstate->dtms_stackdepth); 2571 2572 case DIF_VAR_USTACKDEPTH: 2573 if (!dtrace_priv_proc(state)) 2574 return (0); 2575 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2576 /* 2577 * See comment in DIF_VAR_PID. 2578 */ 2579 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2580 CPU_ON_INTR(CPU)) { 2581 mstate->dtms_ustackdepth = 0; 2582 } else { 2583 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2584 mstate->dtms_ustackdepth = 2585 dtrace_getustackdepth(); 2586 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2587 } 2588 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2589 } 2590 return (mstate->dtms_ustackdepth); 2591 2592 case DIF_VAR_CALLER: 2593 if (!dtrace_priv_kernel(state)) 2594 return (0); 2595 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2596 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2597 2598 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2599 /* 2600 * If this is an unanchored probe, we are 2601 * required to go through the slow path: 2602 * dtrace_caller() only guarantees correct 2603 * results for anchored probes. 2604 */ 2605 pc_t caller[2]; 2606 2607 dtrace_getpcstack(caller, 2, aframes, 2608 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2609 mstate->dtms_caller = caller[1]; 2610 } else if ((mstate->dtms_caller = 2611 dtrace_caller(aframes)) == -1) { 2612 /* 2613 * We have failed to do this the quick way; 2614 * we must resort to the slower approach of 2615 * calling dtrace_getpcstack(). 2616 */ 2617 pc_t caller; 2618 2619 dtrace_getpcstack(&caller, 1, aframes, NULL); 2620 mstate->dtms_caller = caller; 2621 } 2622 2623 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2624 } 2625 return (mstate->dtms_caller); 2626 2627 case DIF_VAR_UCALLER: 2628 if (!dtrace_priv_proc(state)) 2629 return (0); 2630 2631 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 2632 uint64_t ustack[3]; 2633 2634 /* 2635 * dtrace_getupcstack() fills in the first uint64_t 2636 * with the current PID. The second uint64_t will 2637 * be the program counter at user-level. The third 2638 * uint64_t will contain the caller, which is what 2639 * we're after. 2640 */ 2641 ustack[2] = NULL; 2642 dtrace_getupcstack(ustack, 3); 2643 mstate->dtms_ucaller = ustack[2]; 2644 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 2645 } 2646 2647 return (mstate->dtms_ucaller); 2648 2649 case DIF_VAR_PROBEPROV: 2650 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2651 return (dtrace_dif_varstr( 2652 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 2653 state, mstate)); 2654 2655 case DIF_VAR_PROBEMOD: 2656 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2657 return (dtrace_dif_varstr( 2658 (uintptr_t)mstate->dtms_probe->dtpr_mod, 2659 state, mstate)); 2660 2661 case DIF_VAR_PROBEFUNC: 2662 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2663 return (dtrace_dif_varstr( 2664 (uintptr_t)mstate->dtms_probe->dtpr_func, 2665 state, mstate)); 2666 2667 case DIF_VAR_PROBENAME: 2668 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2669 return (dtrace_dif_varstr( 2670 (uintptr_t)mstate->dtms_probe->dtpr_name, 2671 state, mstate)); 2672 2673 case DIF_VAR_PID: 2674 if (!dtrace_priv_proc(state)) 2675 return (0); 2676 2677 /* 2678 * Note that we are assuming that an unanchored probe is 2679 * always due to a high-level interrupt. (And we're assuming 2680 * that there is only a single high level interrupt.) 2681 */ 2682 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2683 return (pid0.pid_id); 2684 2685 /* 2686 * It is always safe to dereference one's own t_procp pointer: 2687 * it always points to a valid, allocated proc structure. 2688 * Further, it is always safe to dereference the p_pidp member 2689 * of one's own proc structure. (These are truisms becuase 2690 * threads and processes don't clean up their own state -- 2691 * they leave that task to whomever reaps them.) 2692 */ 2693 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 2694 2695 case DIF_VAR_PPID: 2696 if (!dtrace_priv_proc(state)) 2697 return (0); 2698 2699 /* 2700 * See comment in DIF_VAR_PID. 2701 */ 2702 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2703 return (pid0.pid_id); 2704 2705 /* 2706 * It is always safe to dereference one's own t_procp pointer: 2707 * it always points to a valid, allocated proc structure. 2708 * (This is true because threads don't clean up their own 2709 * state -- they leave that task to whomever reaps them.) 2710 */ 2711 return ((uint64_t)curthread->t_procp->p_ppid); 2712 2713 case DIF_VAR_TID: 2714 /* 2715 * See comment in DIF_VAR_PID. 2716 */ 2717 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2718 return (0); 2719 2720 return ((uint64_t)curthread->t_tid); 2721 2722 case DIF_VAR_EXECNAME: 2723 if (!dtrace_priv_proc(state)) 2724 return (0); 2725 2726 /* 2727 * See comment in DIF_VAR_PID. 2728 */ 2729 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2730 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 2731 2732 /* 2733 * It is always safe to dereference one's own t_procp pointer: 2734 * it always points to a valid, allocated proc structure. 2735 * (This is true because threads don't clean up their own 2736 * state -- they leave that task to whomever reaps them.) 2737 */ 2738 return (dtrace_dif_varstr( 2739 (uintptr_t)curthread->t_procp->p_user.u_comm, 2740 state, mstate)); 2741 2742 case DIF_VAR_ZONENAME: 2743 if (!dtrace_priv_proc(state)) 2744 return (0); 2745 2746 /* 2747 * See comment in DIF_VAR_PID. 2748 */ 2749 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2750 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 2751 2752 /* 2753 * It is always safe to dereference one's own t_procp pointer: 2754 * it always points to a valid, allocated proc structure. 2755 * (This is true because threads don't clean up their own 2756 * state -- they leave that task to whomever reaps them.) 2757 */ 2758 return (dtrace_dif_varstr( 2759 (uintptr_t)curthread->t_procp->p_zone->zone_name, 2760 state, mstate)); 2761 2762 case DIF_VAR_UID: 2763 if (!dtrace_priv_proc(state)) 2764 return (0); 2765 2766 /* 2767 * See comment in DIF_VAR_PID. 2768 */ 2769 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2770 return ((uint64_t)p0.p_cred->cr_uid); 2771 2772 /* 2773 * It is always safe to dereference one's own t_procp pointer: 2774 * it always points to a valid, allocated proc structure. 2775 * (This is true because threads don't clean up their own 2776 * state -- they leave that task to whomever reaps them.) 2777 * 2778 * Additionally, it is safe to dereference one's own process 2779 * credential, since this is never NULL after process birth. 2780 */ 2781 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 2782 2783 case DIF_VAR_GID: 2784 if (!dtrace_priv_proc(state)) 2785 return (0); 2786 2787 /* 2788 * See comment in DIF_VAR_PID. 2789 */ 2790 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2791 return ((uint64_t)p0.p_cred->cr_gid); 2792 2793 /* 2794 * It is always safe to dereference one's own t_procp pointer: 2795 * it always points to a valid, allocated proc structure. 2796 * (This is true because threads don't clean up their own 2797 * state -- they leave that task to whomever reaps them.) 2798 * 2799 * Additionally, it is safe to dereference one's own process 2800 * credential, since this is never NULL after process birth. 2801 */ 2802 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 2803 2804 case DIF_VAR_ERRNO: { 2805 klwp_t *lwp; 2806 if (!dtrace_priv_proc(state)) 2807 return (0); 2808 2809 /* 2810 * See comment in DIF_VAR_PID. 2811 */ 2812 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2813 return (0); 2814 2815 /* 2816 * It is always safe to dereference one's own t_lwp pointer in 2817 * the event that this pointer is non-NULL. (This is true 2818 * because threads and lwps don't clean up their own state -- 2819 * they leave that task to whomever reaps them.) 2820 */ 2821 if ((lwp = curthread->t_lwp) == NULL) 2822 return (0); 2823 2824 return ((uint64_t)lwp->lwp_errno); 2825 } 2826 default: 2827 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2828 return (0); 2829 } 2830 } 2831 2832 /* 2833 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 2834 * Notice that we don't bother validating the proper number of arguments or 2835 * their types in the tuple stack. This isn't needed because all argument 2836 * interpretation is safe because of our load safety -- the worst that can 2837 * happen is that a bogus program can obtain bogus results. 2838 */ 2839 static void 2840 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 2841 dtrace_key_t *tupregs, int nargs, 2842 dtrace_mstate_t *mstate, dtrace_state_t *state) 2843 { 2844 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 2845 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 2846 dtrace_vstate_t *vstate = &state->dts_vstate; 2847 2848 union { 2849 mutex_impl_t mi; 2850 uint64_t mx; 2851 } m; 2852 2853 union { 2854 krwlock_t ri; 2855 uintptr_t rw; 2856 } r; 2857 2858 switch (subr) { 2859 case DIF_SUBR_RAND: 2860 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 2861 break; 2862 2863 case DIF_SUBR_MUTEX_OWNED: 2864 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2865 mstate, vstate)) { 2866 regs[rd] = NULL; 2867 break; 2868 } 2869 2870 m.mx = dtrace_load64(tupregs[0].dttk_value); 2871 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 2872 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 2873 else 2874 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 2875 break; 2876 2877 case DIF_SUBR_MUTEX_OWNER: 2878 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2879 mstate, vstate)) { 2880 regs[rd] = NULL; 2881 break; 2882 } 2883 2884 m.mx = dtrace_load64(tupregs[0].dttk_value); 2885 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 2886 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 2887 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 2888 else 2889 regs[rd] = 0; 2890 break; 2891 2892 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 2893 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2894 mstate, vstate)) { 2895 regs[rd] = NULL; 2896 break; 2897 } 2898 2899 m.mx = dtrace_load64(tupregs[0].dttk_value); 2900 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 2901 break; 2902 2903 case DIF_SUBR_MUTEX_TYPE_SPIN: 2904 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2905 mstate, vstate)) { 2906 regs[rd] = NULL; 2907 break; 2908 } 2909 2910 m.mx = dtrace_load64(tupregs[0].dttk_value); 2911 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 2912 break; 2913 2914 case DIF_SUBR_RW_READ_HELD: { 2915 uintptr_t tmp; 2916 2917 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 2918 mstate, vstate)) { 2919 regs[rd] = NULL; 2920 break; 2921 } 2922 2923 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2924 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 2925 break; 2926 } 2927 2928 case DIF_SUBR_RW_WRITE_HELD: 2929 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 2930 mstate, vstate)) { 2931 regs[rd] = NULL; 2932 break; 2933 } 2934 2935 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2936 regs[rd] = _RW_WRITE_HELD(&r.ri); 2937 break; 2938 2939 case DIF_SUBR_RW_ISWRITER: 2940 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 2941 mstate, vstate)) { 2942 regs[rd] = NULL; 2943 break; 2944 } 2945 2946 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2947 regs[rd] = _RW_ISWRITER(&r.ri); 2948 break; 2949 2950 case DIF_SUBR_BCOPY: { 2951 /* 2952 * We need to be sure that the destination is in the scratch 2953 * region -- no other region is allowed. 2954 */ 2955 uintptr_t src = tupregs[0].dttk_value; 2956 uintptr_t dest = tupregs[1].dttk_value; 2957 size_t size = tupregs[2].dttk_value; 2958 2959 if (!dtrace_inscratch(dest, size, mstate)) { 2960 *flags |= CPU_DTRACE_BADADDR; 2961 *illval = regs[rd]; 2962 break; 2963 } 2964 2965 if (!dtrace_canload(src, size, mstate, vstate)) { 2966 regs[rd] = NULL; 2967 break; 2968 } 2969 2970 dtrace_bcopy((void *)src, (void *)dest, size); 2971 break; 2972 } 2973 2974 case DIF_SUBR_ALLOCA: 2975 case DIF_SUBR_COPYIN: { 2976 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 2977 uint64_t size = 2978 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 2979 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 2980 2981 /* 2982 * This action doesn't require any credential checks since 2983 * probes will not activate in user contexts to which the 2984 * enabling user does not have permissions. 2985 */ 2986 2987 /* 2988 * Rounding up the user allocation size could have overflowed 2989 * a large, bogus allocation (like -1ULL) to 0. 2990 */ 2991 if (scratch_size < size || 2992 !DTRACE_INSCRATCH(mstate, scratch_size)) { 2993 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2994 regs[rd] = NULL; 2995 break; 2996 } 2997 2998 if (subr == DIF_SUBR_COPYIN) { 2999 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3000 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3001 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3002 } 3003 3004 mstate->dtms_scratch_ptr += scratch_size; 3005 regs[rd] = dest; 3006 break; 3007 } 3008 3009 case DIF_SUBR_COPYINTO: { 3010 uint64_t size = tupregs[1].dttk_value; 3011 uintptr_t dest = tupregs[2].dttk_value; 3012 3013 /* 3014 * This action doesn't require any credential checks since 3015 * probes will not activate in user contexts to which the 3016 * enabling user does not have permissions. 3017 */ 3018 if (!dtrace_inscratch(dest, size, mstate)) { 3019 *flags |= CPU_DTRACE_BADADDR; 3020 *illval = regs[rd]; 3021 break; 3022 } 3023 3024 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3025 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3026 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3027 break; 3028 } 3029 3030 case DIF_SUBR_COPYINSTR: { 3031 uintptr_t dest = mstate->dtms_scratch_ptr; 3032 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3033 3034 if (nargs > 1 && tupregs[1].dttk_value < size) 3035 size = tupregs[1].dttk_value + 1; 3036 3037 /* 3038 * This action doesn't require any credential checks since 3039 * probes will not activate in user contexts to which the 3040 * enabling user does not have permissions. 3041 */ 3042 if (!DTRACE_INSCRATCH(mstate, size)) { 3043 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3044 regs[rd] = NULL; 3045 break; 3046 } 3047 3048 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3049 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3050 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3051 3052 ((char *)dest)[size - 1] = '\0'; 3053 mstate->dtms_scratch_ptr += size; 3054 regs[rd] = dest; 3055 break; 3056 } 3057 3058 case DIF_SUBR_MSGSIZE: 3059 case DIF_SUBR_MSGDSIZE: { 3060 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3061 uintptr_t wptr, rptr; 3062 size_t count = 0; 3063 int cont = 0; 3064 3065 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3066 3067 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3068 vstate)) { 3069 regs[rd] = NULL; 3070 break; 3071 } 3072 3073 wptr = dtrace_loadptr(baddr + 3074 offsetof(mblk_t, b_wptr)); 3075 3076 rptr = dtrace_loadptr(baddr + 3077 offsetof(mblk_t, b_rptr)); 3078 3079 if (wptr < rptr) { 3080 *flags |= CPU_DTRACE_BADADDR; 3081 *illval = tupregs[0].dttk_value; 3082 break; 3083 } 3084 3085 daddr = dtrace_loadptr(baddr + 3086 offsetof(mblk_t, b_datap)); 3087 3088 baddr = dtrace_loadptr(baddr + 3089 offsetof(mblk_t, b_cont)); 3090 3091 /* 3092 * We want to prevent against denial-of-service here, 3093 * so we're only going to search the list for 3094 * dtrace_msgdsize_max mblks. 3095 */ 3096 if (cont++ > dtrace_msgdsize_max) { 3097 *flags |= CPU_DTRACE_ILLOP; 3098 break; 3099 } 3100 3101 if (subr == DIF_SUBR_MSGDSIZE) { 3102 if (dtrace_load8(daddr + 3103 offsetof(dblk_t, db_type)) != M_DATA) 3104 continue; 3105 } 3106 3107 count += wptr - rptr; 3108 } 3109 3110 if (!(*flags & CPU_DTRACE_FAULT)) 3111 regs[rd] = count; 3112 3113 break; 3114 } 3115 3116 case DIF_SUBR_PROGENYOF: { 3117 pid_t pid = tupregs[0].dttk_value; 3118 proc_t *p; 3119 int rval = 0; 3120 3121 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3122 3123 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3124 if (p->p_pidp->pid_id == pid) { 3125 rval = 1; 3126 break; 3127 } 3128 } 3129 3130 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3131 3132 regs[rd] = rval; 3133 break; 3134 } 3135 3136 case DIF_SUBR_SPECULATION: 3137 regs[rd] = dtrace_speculation(state); 3138 break; 3139 3140 case DIF_SUBR_COPYOUT: { 3141 uintptr_t kaddr = tupregs[0].dttk_value; 3142 uintptr_t uaddr = tupregs[1].dttk_value; 3143 uint64_t size = tupregs[2].dttk_value; 3144 3145 if (!dtrace_destructive_disallow && 3146 dtrace_priv_proc_control(state) && 3147 !dtrace_istoxic(kaddr, size)) { 3148 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3149 dtrace_copyout(kaddr, uaddr, size, flags); 3150 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3151 } 3152 break; 3153 } 3154 3155 case DIF_SUBR_COPYOUTSTR: { 3156 uintptr_t kaddr = tupregs[0].dttk_value; 3157 uintptr_t uaddr = tupregs[1].dttk_value; 3158 uint64_t size = tupregs[2].dttk_value; 3159 3160 if (!dtrace_destructive_disallow && 3161 dtrace_priv_proc_control(state) && 3162 !dtrace_istoxic(kaddr, size)) { 3163 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3164 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3165 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3166 } 3167 break; 3168 } 3169 3170 case DIF_SUBR_STRLEN: { 3171 size_t sz; 3172 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3173 sz = dtrace_strlen((char *)addr, 3174 state->dts_options[DTRACEOPT_STRSIZE]); 3175 3176 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3177 regs[rd] = NULL; 3178 break; 3179 } 3180 3181 regs[rd] = sz; 3182 3183 break; 3184 } 3185 3186 case DIF_SUBR_STRCHR: 3187 case DIF_SUBR_STRRCHR: { 3188 /* 3189 * We're going to iterate over the string looking for the 3190 * specified character. We will iterate until we have reached 3191 * the string length or we have found the character. If this 3192 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3193 * of the specified character instead of the first. 3194 */ 3195 uintptr_t saddr = tupregs[0].dttk_value; 3196 uintptr_t addr = tupregs[0].dttk_value; 3197 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3198 char c, target = (char)tupregs[1].dttk_value; 3199 3200 for (regs[rd] = NULL; addr < limit; addr++) { 3201 if ((c = dtrace_load8(addr)) == target) { 3202 regs[rd] = addr; 3203 3204 if (subr == DIF_SUBR_STRCHR) 3205 break; 3206 } 3207 3208 if (c == '\0') 3209 break; 3210 } 3211 3212 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3213 regs[rd] = NULL; 3214 break; 3215 } 3216 3217 break; 3218 } 3219 3220 case DIF_SUBR_STRSTR: 3221 case DIF_SUBR_INDEX: 3222 case DIF_SUBR_RINDEX: { 3223 /* 3224 * We're going to iterate over the string looking for the 3225 * specified string. We will iterate until we have reached 3226 * the string length or we have found the string. (Yes, this 3227 * is done in the most naive way possible -- but considering 3228 * that the string we're searching for is likely to be 3229 * relatively short, the complexity of Rabin-Karp or similar 3230 * hardly seems merited.) 3231 */ 3232 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3233 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3234 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3235 size_t len = dtrace_strlen(addr, size); 3236 size_t sublen = dtrace_strlen(substr, size); 3237 char *limit = addr + len, *orig = addr; 3238 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3239 int inc = 1; 3240 3241 regs[rd] = notfound; 3242 3243 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3244 regs[rd] = NULL; 3245 break; 3246 } 3247 3248 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3249 vstate)) { 3250 regs[rd] = NULL; 3251 break; 3252 } 3253 3254 /* 3255 * strstr() and index()/rindex() have similar semantics if 3256 * both strings are the empty string: strstr() returns a 3257 * pointer to the (empty) string, and index() and rindex() 3258 * both return index 0 (regardless of any position argument). 3259 */ 3260 if (sublen == 0 && len == 0) { 3261 if (subr == DIF_SUBR_STRSTR) 3262 regs[rd] = (uintptr_t)addr; 3263 else 3264 regs[rd] = 0; 3265 break; 3266 } 3267 3268 if (subr != DIF_SUBR_STRSTR) { 3269 if (subr == DIF_SUBR_RINDEX) { 3270 limit = orig - 1; 3271 addr += len; 3272 inc = -1; 3273 } 3274 3275 /* 3276 * Both index() and rindex() take an optional position 3277 * argument that denotes the starting position. 3278 */ 3279 if (nargs == 3) { 3280 int64_t pos = (int64_t)tupregs[2].dttk_value; 3281 3282 /* 3283 * If the position argument to index() is 3284 * negative, Perl implicitly clamps it at 3285 * zero. This semantic is a little surprising 3286 * given the special meaning of negative 3287 * positions to similar Perl functions like 3288 * substr(), but it appears to reflect a 3289 * notion that index() can start from a 3290 * negative index and increment its way up to 3291 * the string. Given this notion, Perl's 3292 * rindex() is at least self-consistent in 3293 * that it implicitly clamps positions greater 3294 * than the string length to be the string 3295 * length. Where Perl completely loses 3296 * coherence, however, is when the specified 3297 * substring is the empty string (""). In 3298 * this case, even if the position is 3299 * negative, rindex() returns 0 -- and even if 3300 * the position is greater than the length, 3301 * index() returns the string length. These 3302 * semantics violate the notion that index() 3303 * should never return a value less than the 3304 * specified position and that rindex() should 3305 * never return a value greater than the 3306 * specified position. (One assumes that 3307 * these semantics are artifacts of Perl's 3308 * implementation and not the results of 3309 * deliberate design -- it beggars belief that 3310 * even Larry Wall could desire such oddness.) 3311 * While in the abstract one would wish for 3312 * consistent position semantics across 3313 * substr(), index() and rindex() -- or at the 3314 * very least self-consistent position 3315 * semantics for index() and rindex() -- we 3316 * instead opt to keep with the extant Perl 3317 * semantics, in all their broken glory. (Do 3318 * we have more desire to maintain Perl's 3319 * semantics than Perl does? Probably.) 3320 */ 3321 if (subr == DIF_SUBR_RINDEX) { 3322 if (pos < 0) { 3323 if (sublen == 0) 3324 regs[rd] = 0; 3325 break; 3326 } 3327 3328 if (pos > len) 3329 pos = len; 3330 } else { 3331 if (pos < 0) 3332 pos = 0; 3333 3334 if (pos >= len) { 3335 if (sublen == 0) 3336 regs[rd] = len; 3337 break; 3338 } 3339 } 3340 3341 addr = orig + pos; 3342 } 3343 } 3344 3345 for (regs[rd] = notfound; addr != limit; addr += inc) { 3346 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3347 if (subr != DIF_SUBR_STRSTR) { 3348 /* 3349 * As D index() and rindex() are 3350 * modeled on Perl (and not on awk), 3351 * we return a zero-based (and not a 3352 * one-based) index. (For you Perl 3353 * weenies: no, we're not going to add 3354 * $[ -- and shouldn't you be at a con 3355 * or something?) 3356 */ 3357 regs[rd] = (uintptr_t)(addr - orig); 3358 break; 3359 } 3360 3361 ASSERT(subr == DIF_SUBR_STRSTR); 3362 regs[rd] = (uintptr_t)addr; 3363 break; 3364 } 3365 } 3366 3367 break; 3368 } 3369 3370 case DIF_SUBR_STRTOK: { 3371 uintptr_t addr = tupregs[0].dttk_value; 3372 uintptr_t tokaddr = tupregs[1].dttk_value; 3373 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3374 uintptr_t limit, toklimit = tokaddr + size; 3375 uint8_t c, tokmap[32]; /* 256 / 8 */ 3376 char *dest = (char *)mstate->dtms_scratch_ptr; 3377 int i; 3378 3379 /* 3380 * Check both the token buffer and (later) the input buffer, 3381 * since both could be non-scratch addresses. 3382 */ 3383 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3384 regs[rd] = NULL; 3385 break; 3386 } 3387 3388 if (!DTRACE_INSCRATCH(mstate, size)) { 3389 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3390 regs[rd] = NULL; 3391 break; 3392 } 3393 3394 if (addr == NULL) { 3395 /* 3396 * If the address specified is NULL, we use our saved 3397 * strtok pointer from the mstate. Note that this 3398 * means that the saved strtok pointer is _only_ 3399 * valid within multiple enablings of the same probe -- 3400 * it behaves like an implicit clause-local variable. 3401 */ 3402 addr = mstate->dtms_strtok; 3403 } else { 3404 /* 3405 * If the user-specified address is non-NULL we must 3406 * access check it. This is the only time we have 3407 * a chance to do so, since this address may reside 3408 * in the string table of this clause-- future calls 3409 * (when we fetch addr from mstate->dtms_strtok) 3410 * would fail this access check. 3411 */ 3412 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3413 regs[rd] = NULL; 3414 break; 3415 } 3416 } 3417 3418 /* 3419 * First, zero the token map, and then process the token 3420 * string -- setting a bit in the map for every character 3421 * found in the token string. 3422 */ 3423 for (i = 0; i < sizeof (tokmap); i++) 3424 tokmap[i] = 0; 3425 3426 for (; tokaddr < toklimit; tokaddr++) { 3427 if ((c = dtrace_load8(tokaddr)) == '\0') 3428 break; 3429 3430 ASSERT((c >> 3) < sizeof (tokmap)); 3431 tokmap[c >> 3] |= (1 << (c & 0x7)); 3432 } 3433 3434 for (limit = addr + size; addr < limit; addr++) { 3435 /* 3436 * We're looking for a character that is _not_ contained 3437 * in the token string. 3438 */ 3439 if ((c = dtrace_load8(addr)) == '\0') 3440 break; 3441 3442 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3443 break; 3444 } 3445 3446 if (c == '\0') { 3447 /* 3448 * We reached the end of the string without finding 3449 * any character that was not in the token string. 3450 * We return NULL in this case, and we set the saved 3451 * address to NULL as well. 3452 */ 3453 regs[rd] = NULL; 3454 mstate->dtms_strtok = NULL; 3455 break; 3456 } 3457 3458 /* 3459 * From here on, we're copying into the destination string. 3460 */ 3461 for (i = 0; addr < limit && i < size - 1; addr++) { 3462 if ((c = dtrace_load8(addr)) == '\0') 3463 break; 3464 3465 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3466 break; 3467 3468 ASSERT(i < size); 3469 dest[i++] = c; 3470 } 3471 3472 ASSERT(i < size); 3473 dest[i] = '\0'; 3474 regs[rd] = (uintptr_t)dest; 3475 mstate->dtms_scratch_ptr += size; 3476 mstate->dtms_strtok = addr; 3477 break; 3478 } 3479 3480 case DIF_SUBR_SUBSTR: { 3481 uintptr_t s = tupregs[0].dttk_value; 3482 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3483 char *d = (char *)mstate->dtms_scratch_ptr; 3484 int64_t index = (int64_t)tupregs[1].dttk_value; 3485 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3486 size_t len = dtrace_strlen((char *)s, size); 3487 int64_t i = 0; 3488 3489 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3490 regs[rd] = NULL; 3491 break; 3492 } 3493 3494 if (nargs <= 2) 3495 remaining = (int64_t)size; 3496 3497 if (!DTRACE_INSCRATCH(mstate, size)) { 3498 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3499 regs[rd] = NULL; 3500 break; 3501 } 3502 3503 if (index < 0) { 3504 index += len; 3505 3506 if (index < 0 && index + remaining > 0) { 3507 remaining += index; 3508 index = 0; 3509 } 3510 } 3511 3512 if (index >= len || index < 0) 3513 index = len; 3514 3515 for (d[0] = '\0'; remaining > 0; remaining--) { 3516 if ((d[i++] = dtrace_load8(s++ + index)) == '\0') 3517 break; 3518 3519 if (i == size) { 3520 d[i - 1] = '\0'; 3521 break; 3522 } 3523 } 3524 3525 mstate->dtms_scratch_ptr += size; 3526 regs[rd] = (uintptr_t)d; 3527 break; 3528 } 3529 3530 case DIF_SUBR_GETMAJOR: 3531 #ifdef _LP64 3532 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3533 #else 3534 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3535 #endif 3536 break; 3537 3538 case DIF_SUBR_GETMINOR: 3539 #ifdef _LP64 3540 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3541 #else 3542 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3543 #endif 3544 break; 3545 3546 case DIF_SUBR_DDI_PATHNAME: { 3547 /* 3548 * This one is a galactic mess. We are going to roughly 3549 * emulate ddi_pathname(), but it's made more complicated 3550 * by the fact that we (a) want to include the minor name and 3551 * (b) must proceed iteratively instead of recursively. 3552 */ 3553 uintptr_t dest = mstate->dtms_scratch_ptr; 3554 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3555 char *start = (char *)dest, *end = start + size - 1; 3556 uintptr_t daddr = tupregs[0].dttk_value; 3557 int64_t minor = (int64_t)tupregs[1].dttk_value; 3558 char *s; 3559 int i, len, depth = 0; 3560 3561 /* 3562 * Due to all the pointer jumping we do and context we must 3563 * rely upon, we just mandate that the user must have kernel 3564 * read privileges to use this routine. 3565 */ 3566 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 3567 *flags |= CPU_DTRACE_KPRIV; 3568 *illval = daddr; 3569 regs[rd] = NULL; 3570 } 3571 3572 if (!DTRACE_INSCRATCH(mstate, size)) { 3573 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3574 regs[rd] = NULL; 3575 break; 3576 } 3577 3578 *end = '\0'; 3579 3580 /* 3581 * We want to have a name for the minor. In order to do this, 3582 * we need to walk the minor list from the devinfo. We want 3583 * to be sure that we don't infinitely walk a circular list, 3584 * so we check for circularity by sending a scout pointer 3585 * ahead two elements for every element that we iterate over; 3586 * if the list is circular, these will ultimately point to the 3587 * same element. You may recognize this little trick as the 3588 * answer to a stupid interview question -- one that always 3589 * seems to be asked by those who had to have it laboriously 3590 * explained to them, and who can't even concisely describe 3591 * the conditions under which one would be forced to resort to 3592 * this technique. Needless to say, those conditions are 3593 * found here -- and probably only here. Is this is the only 3594 * use of this infamous trick in shipping, production code? 3595 * If it isn't, it probably should be... 3596 */ 3597 if (minor != -1) { 3598 uintptr_t maddr = dtrace_loadptr(daddr + 3599 offsetof(struct dev_info, devi_minor)); 3600 3601 uintptr_t next = offsetof(struct ddi_minor_data, next); 3602 uintptr_t name = offsetof(struct ddi_minor_data, 3603 d_minor) + offsetof(struct ddi_minor, name); 3604 uintptr_t dev = offsetof(struct ddi_minor_data, 3605 d_minor) + offsetof(struct ddi_minor, dev); 3606 uintptr_t scout; 3607 3608 if (maddr != NULL) 3609 scout = dtrace_loadptr(maddr + next); 3610 3611 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3612 uint64_t m; 3613 #ifdef _LP64 3614 m = dtrace_load64(maddr + dev) & MAXMIN64; 3615 #else 3616 m = dtrace_load32(maddr + dev) & MAXMIN; 3617 #endif 3618 if (m != minor) { 3619 maddr = dtrace_loadptr(maddr + next); 3620 3621 if (scout == NULL) 3622 continue; 3623 3624 scout = dtrace_loadptr(scout + next); 3625 3626 if (scout == NULL) 3627 continue; 3628 3629 scout = dtrace_loadptr(scout + next); 3630 3631 if (scout == NULL) 3632 continue; 3633 3634 if (scout == maddr) { 3635 *flags |= CPU_DTRACE_ILLOP; 3636 break; 3637 } 3638 3639 continue; 3640 } 3641 3642 /* 3643 * We have the minor data. Now we need to 3644 * copy the minor's name into the end of the 3645 * pathname. 3646 */ 3647 s = (char *)dtrace_loadptr(maddr + name); 3648 len = dtrace_strlen(s, size); 3649 3650 if (*flags & CPU_DTRACE_FAULT) 3651 break; 3652 3653 if (len != 0) { 3654 if ((end -= (len + 1)) < start) 3655 break; 3656 3657 *end = ':'; 3658 } 3659 3660 for (i = 1; i <= len; i++) 3661 end[i] = dtrace_load8((uintptr_t)s++); 3662 break; 3663 } 3664 } 3665 3666 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3667 ddi_node_state_t devi_state; 3668 3669 devi_state = dtrace_load32(daddr + 3670 offsetof(struct dev_info, devi_node_state)); 3671 3672 if (*flags & CPU_DTRACE_FAULT) 3673 break; 3674 3675 if (devi_state >= DS_INITIALIZED) { 3676 s = (char *)dtrace_loadptr(daddr + 3677 offsetof(struct dev_info, devi_addr)); 3678 len = dtrace_strlen(s, size); 3679 3680 if (*flags & CPU_DTRACE_FAULT) 3681 break; 3682 3683 if (len != 0) { 3684 if ((end -= (len + 1)) < start) 3685 break; 3686 3687 *end = '@'; 3688 } 3689 3690 for (i = 1; i <= len; i++) 3691 end[i] = dtrace_load8((uintptr_t)s++); 3692 } 3693 3694 /* 3695 * Now for the node name... 3696 */ 3697 s = (char *)dtrace_loadptr(daddr + 3698 offsetof(struct dev_info, devi_node_name)); 3699 3700 daddr = dtrace_loadptr(daddr + 3701 offsetof(struct dev_info, devi_parent)); 3702 3703 /* 3704 * If our parent is NULL (that is, if we're the root 3705 * node), we're going to use the special path 3706 * "devices". 3707 */ 3708 if (daddr == NULL) 3709 s = "devices"; 3710 3711 len = dtrace_strlen(s, size); 3712 if (*flags & CPU_DTRACE_FAULT) 3713 break; 3714 3715 if ((end -= (len + 1)) < start) 3716 break; 3717 3718 for (i = 1; i <= len; i++) 3719 end[i] = dtrace_load8((uintptr_t)s++); 3720 *end = '/'; 3721 3722 if (depth++ > dtrace_devdepth_max) { 3723 *flags |= CPU_DTRACE_ILLOP; 3724 break; 3725 } 3726 } 3727 3728 if (end < start) 3729 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3730 3731 if (daddr == NULL) { 3732 regs[rd] = (uintptr_t)end; 3733 mstate->dtms_scratch_ptr += size; 3734 } 3735 3736 break; 3737 } 3738 3739 case DIF_SUBR_STRJOIN: { 3740 char *d = (char *)mstate->dtms_scratch_ptr; 3741 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3742 uintptr_t s1 = tupregs[0].dttk_value; 3743 uintptr_t s2 = tupregs[1].dttk_value; 3744 int i = 0; 3745 3746 if (!dtrace_strcanload(s1, size, mstate, vstate) || 3747 !dtrace_strcanload(s2, size, mstate, vstate)) { 3748 regs[rd] = NULL; 3749 break; 3750 } 3751 3752 if (!DTRACE_INSCRATCH(mstate, size)) { 3753 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3754 regs[rd] = NULL; 3755 break; 3756 } 3757 3758 for (;;) { 3759 if (i >= size) { 3760 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3761 regs[rd] = NULL; 3762 break; 3763 } 3764 3765 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 3766 i--; 3767 break; 3768 } 3769 } 3770 3771 for (;;) { 3772 if (i >= size) { 3773 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3774 regs[rd] = NULL; 3775 break; 3776 } 3777 3778 if ((d[i++] = dtrace_load8(s2++)) == '\0') 3779 break; 3780 } 3781 3782 if (i < size) { 3783 mstate->dtms_scratch_ptr += i; 3784 regs[rd] = (uintptr_t)d; 3785 } 3786 3787 break; 3788 } 3789 3790 case DIF_SUBR_LLTOSTR: { 3791 int64_t i = (int64_t)tupregs[0].dttk_value; 3792 int64_t val = i < 0 ? i * -1 : i; 3793 uint64_t size = 22; /* enough room for 2^64 in decimal */ 3794 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 3795 3796 if (!DTRACE_INSCRATCH(mstate, size)) { 3797 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3798 regs[rd] = NULL; 3799 break; 3800 } 3801 3802 for (*end-- = '\0'; val; val /= 10) 3803 *end-- = '0' + (val % 10); 3804 3805 if (i == 0) 3806 *end-- = '0'; 3807 3808 if (i < 0) 3809 *end-- = '-'; 3810 3811 regs[rd] = (uintptr_t)end + 1; 3812 mstate->dtms_scratch_ptr += size; 3813 break; 3814 } 3815 3816 case DIF_SUBR_HTONS: 3817 case DIF_SUBR_NTOHS: 3818 #ifdef _BIG_ENDIAN 3819 regs[rd] = (uint16_t)tupregs[0].dttk_value; 3820 #else 3821 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 3822 #endif 3823 break; 3824 3825 3826 case DIF_SUBR_HTONL: 3827 case DIF_SUBR_NTOHL: 3828 #ifdef _BIG_ENDIAN 3829 regs[rd] = (uint32_t)tupregs[0].dttk_value; 3830 #else 3831 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 3832 #endif 3833 break; 3834 3835 3836 case DIF_SUBR_HTONLL: 3837 case DIF_SUBR_NTOHLL: 3838 #ifdef _BIG_ENDIAN 3839 regs[rd] = (uint64_t)tupregs[0].dttk_value; 3840 #else 3841 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 3842 #endif 3843 break; 3844 3845 3846 case DIF_SUBR_DIRNAME: 3847 case DIF_SUBR_BASENAME: { 3848 char *dest = (char *)mstate->dtms_scratch_ptr; 3849 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3850 uintptr_t src = tupregs[0].dttk_value; 3851 int i, j, len = dtrace_strlen((char *)src, size); 3852 int lastbase = -1, firstbase = -1, lastdir = -1; 3853 int start, end; 3854 3855 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 3856 regs[rd] = NULL; 3857 break; 3858 } 3859 3860 if (!DTRACE_INSCRATCH(mstate, size)) { 3861 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3862 regs[rd] = NULL; 3863 break; 3864 } 3865 3866 /* 3867 * The basename and dirname for a zero-length string is 3868 * defined to be "." 3869 */ 3870 if (len == 0) { 3871 len = 1; 3872 src = (uintptr_t)"."; 3873 } 3874 3875 /* 3876 * Start from the back of the string, moving back toward the 3877 * front until we see a character that isn't a slash. That 3878 * character is the last character in the basename. 3879 */ 3880 for (i = len - 1; i >= 0; i--) { 3881 if (dtrace_load8(src + i) != '/') 3882 break; 3883 } 3884 3885 if (i >= 0) 3886 lastbase = i; 3887 3888 /* 3889 * Starting from the last character in the basename, move 3890 * towards the front until we find a slash. The character 3891 * that we processed immediately before that is the first 3892 * character in the basename. 3893 */ 3894 for (; i >= 0; i--) { 3895 if (dtrace_load8(src + i) == '/') 3896 break; 3897 } 3898 3899 if (i >= 0) 3900 firstbase = i + 1; 3901 3902 /* 3903 * Now keep going until we find a non-slash character. That 3904 * character is the last character in the dirname. 3905 */ 3906 for (; i >= 0; i--) { 3907 if (dtrace_load8(src + i) != '/') 3908 break; 3909 } 3910 3911 if (i >= 0) 3912 lastdir = i; 3913 3914 ASSERT(!(lastbase == -1 && firstbase != -1)); 3915 ASSERT(!(firstbase == -1 && lastdir != -1)); 3916 3917 if (lastbase == -1) { 3918 /* 3919 * We didn't find a non-slash character. We know that 3920 * the length is non-zero, so the whole string must be 3921 * slashes. In either the dirname or the basename 3922 * case, we return '/'. 3923 */ 3924 ASSERT(firstbase == -1); 3925 firstbase = lastbase = lastdir = 0; 3926 } 3927 3928 if (firstbase == -1) { 3929 /* 3930 * The entire string consists only of a basename 3931 * component. If we're looking for dirname, we need 3932 * to change our string to be just "."; if we're 3933 * looking for a basename, we'll just set the first 3934 * character of the basename to be 0. 3935 */ 3936 if (subr == DIF_SUBR_DIRNAME) { 3937 ASSERT(lastdir == -1); 3938 src = (uintptr_t)"."; 3939 lastdir = 0; 3940 } else { 3941 firstbase = 0; 3942 } 3943 } 3944 3945 if (subr == DIF_SUBR_DIRNAME) { 3946 if (lastdir == -1) { 3947 /* 3948 * We know that we have a slash in the name -- 3949 * or lastdir would be set to 0, above. And 3950 * because lastdir is -1, we know that this 3951 * slash must be the first character. (That 3952 * is, the full string must be of the form 3953 * "/basename".) In this case, the last 3954 * character of the directory name is 0. 3955 */ 3956 lastdir = 0; 3957 } 3958 3959 start = 0; 3960 end = lastdir; 3961 } else { 3962 ASSERT(subr == DIF_SUBR_BASENAME); 3963 ASSERT(firstbase != -1 && lastbase != -1); 3964 start = firstbase; 3965 end = lastbase; 3966 } 3967 3968 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 3969 dest[j] = dtrace_load8(src + i); 3970 3971 dest[j] = '\0'; 3972 regs[rd] = (uintptr_t)dest; 3973 mstate->dtms_scratch_ptr += size; 3974 break; 3975 } 3976 3977 case DIF_SUBR_CLEANPATH: { 3978 char *dest = (char *)mstate->dtms_scratch_ptr, c; 3979 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3980 uintptr_t src = tupregs[0].dttk_value; 3981 int i = 0, j = 0; 3982 3983 if (!dtrace_strcanload(src, size, mstate, vstate)) { 3984 regs[rd] = NULL; 3985 break; 3986 } 3987 3988 if (!DTRACE_INSCRATCH(mstate, size)) { 3989 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3990 regs[rd] = NULL; 3991 break; 3992 } 3993 3994 /* 3995 * Move forward, loading each character. 3996 */ 3997 do { 3998 c = dtrace_load8(src + i++); 3999 next: 4000 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 4001 break; 4002 4003 if (c != '/') { 4004 dest[j++] = c; 4005 continue; 4006 } 4007 4008 c = dtrace_load8(src + i++); 4009 4010 if (c == '/') { 4011 /* 4012 * We have two slashes -- we can just advance 4013 * to the next character. 4014 */ 4015 goto next; 4016 } 4017 4018 if (c != '.') { 4019 /* 4020 * This is not "." and it's not ".." -- we can 4021 * just store the "/" and this character and 4022 * drive on. 4023 */ 4024 dest[j++] = '/'; 4025 dest[j++] = c; 4026 continue; 4027 } 4028 4029 c = dtrace_load8(src + i++); 4030 4031 if (c == '/') { 4032 /* 4033 * This is a "/./" component. We're not going 4034 * to store anything in the destination buffer; 4035 * we're just going to go to the next component. 4036 */ 4037 goto next; 4038 } 4039 4040 if (c != '.') { 4041 /* 4042 * This is not ".." -- we can just store the 4043 * "/." and this character and continue 4044 * processing. 4045 */ 4046 dest[j++] = '/'; 4047 dest[j++] = '.'; 4048 dest[j++] = c; 4049 continue; 4050 } 4051 4052 c = dtrace_load8(src + i++); 4053 4054 if (c != '/' && c != '\0') { 4055 /* 4056 * This is not ".." -- it's "..[mumble]". 4057 * We'll store the "/.." and this character 4058 * and continue processing. 4059 */ 4060 dest[j++] = '/'; 4061 dest[j++] = '.'; 4062 dest[j++] = '.'; 4063 dest[j++] = c; 4064 continue; 4065 } 4066 4067 /* 4068 * This is "/../" or "/..\0". We need to back up 4069 * our destination pointer until we find a "/". 4070 */ 4071 i--; 4072 while (j != 0 && dest[--j] != '/') 4073 continue; 4074 4075 if (c == '\0') 4076 dest[++j] = '/'; 4077 } while (c != '\0'); 4078 4079 dest[j] = '\0'; 4080 regs[rd] = (uintptr_t)dest; 4081 mstate->dtms_scratch_ptr += size; 4082 break; 4083 } 4084 4085 case DIF_SUBR_INET_NTOA: 4086 case DIF_SUBR_INET_NTOA6: 4087 case DIF_SUBR_INET_NTOP: { 4088 size_t size; 4089 int af, argi, i; 4090 char *base, *end; 4091 4092 if (subr == DIF_SUBR_INET_NTOP) { 4093 af = (int)tupregs[0].dttk_value; 4094 argi = 1; 4095 } else { 4096 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4097 argi = 0; 4098 } 4099 4100 if (af == AF_INET) { 4101 ipaddr_t ip4; 4102 uint8_t *ptr8, val; 4103 4104 /* 4105 * Safely load the IPv4 address. 4106 */ 4107 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4108 4109 /* 4110 * Check an IPv4 string will fit in scratch. 4111 */ 4112 size = INET_ADDRSTRLEN; 4113 if (!DTRACE_INSCRATCH(mstate, size)) { 4114 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4115 regs[rd] = NULL; 4116 break; 4117 } 4118 base = (char *)mstate->dtms_scratch_ptr; 4119 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4120 4121 /* 4122 * Stringify as a dotted decimal quad. 4123 */ 4124 *end-- = '\0'; 4125 ptr8 = (uint8_t *)&ip4; 4126 for (i = 3; i >= 0; i--) { 4127 val = ptr8[i]; 4128 4129 if (val == 0) { 4130 *end-- = '0'; 4131 } else { 4132 for (; val; val /= 10) { 4133 *end-- = '0' + (val % 10); 4134 } 4135 } 4136 4137 if (i > 0) 4138 *end-- = '.'; 4139 } 4140 ASSERT(end + 1 >= base); 4141 4142 } else if (af == AF_INET6) { 4143 struct in6_addr ip6; 4144 int firstzero, tryzero, numzero, v6end; 4145 uint16_t val; 4146 const char digits[] = "0123456789abcdef"; 4147 4148 /* 4149 * Stringify using RFC 1884 convention 2 - 16 bit 4150 * hexadecimal values with a zero-run compression. 4151 * Lower case hexadecimal digits are used. 4152 * eg, fe80::214:4fff:fe0b:76c8. 4153 * The IPv4 embedded form is returned for inet_ntop, 4154 * just the IPv4 string is returned for inet_ntoa6. 4155 */ 4156 4157 /* 4158 * Safely load the IPv6 address. 4159 */ 4160 dtrace_bcopy( 4161 (void *)(uintptr_t)tupregs[argi].dttk_value, 4162 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4163 4164 /* 4165 * Check an IPv6 string will fit in scratch. 4166 */ 4167 size = INET6_ADDRSTRLEN; 4168 if (!DTRACE_INSCRATCH(mstate, size)) { 4169 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4170 regs[rd] = NULL; 4171 break; 4172 } 4173 base = (char *)mstate->dtms_scratch_ptr; 4174 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4175 *end-- = '\0'; 4176 4177 /* 4178 * Find the longest run of 16 bit zero values 4179 * for the single allowed zero compression - "::". 4180 */ 4181 firstzero = -1; 4182 tryzero = -1; 4183 numzero = 1; 4184 for (i = 0; i < sizeof (struct in6_addr); i++) { 4185 if (ip6._S6_un._S6_u8[i] == 0 && 4186 tryzero == -1 && i % 2 == 0) { 4187 tryzero = i; 4188 continue; 4189 } 4190 4191 if (tryzero != -1 && 4192 (ip6._S6_un._S6_u8[i] != 0 || 4193 i == sizeof (struct in6_addr) - 1)) { 4194 4195 if (i - tryzero <= numzero) { 4196 tryzero = -1; 4197 continue; 4198 } 4199 4200 firstzero = tryzero; 4201 numzero = i - i % 2 - tryzero; 4202 tryzero = -1; 4203 4204 if (ip6._S6_un._S6_u8[i] == 0 && 4205 i == sizeof (struct in6_addr) - 1) 4206 numzero += 2; 4207 } 4208 } 4209 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4210 4211 /* 4212 * Check for an IPv4 embedded address. 4213 */ 4214 v6end = sizeof (struct in6_addr) - 2; 4215 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4216 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4217 for (i = sizeof (struct in6_addr) - 1; 4218 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4219 ASSERT(end >= base); 4220 4221 val = ip6._S6_un._S6_u8[i]; 4222 4223 if (val == 0) { 4224 *end-- = '0'; 4225 } else { 4226 for (; val; val /= 10) { 4227 *end-- = '0' + val % 10; 4228 } 4229 } 4230 4231 if (i > DTRACE_V4MAPPED_OFFSET) 4232 *end-- = '.'; 4233 } 4234 4235 if (subr == DIF_SUBR_INET_NTOA6) 4236 goto inetout; 4237 4238 /* 4239 * Set v6end to skip the IPv4 address that 4240 * we have already stringified. 4241 */ 4242 v6end = 10; 4243 } 4244 4245 /* 4246 * Build the IPv6 string by working through the 4247 * address in reverse. 4248 */ 4249 for (i = v6end; i >= 0; i -= 2) { 4250 ASSERT(end >= base); 4251 4252 if (i == firstzero + numzero - 2) { 4253 *end-- = ':'; 4254 *end-- = ':'; 4255 i -= numzero - 2; 4256 continue; 4257 } 4258 4259 if (i < 14 && i != firstzero - 2) 4260 *end-- = ':'; 4261 4262 val = (ip6._S6_un._S6_u8[i] << 8) + 4263 ip6._S6_un._S6_u8[i + 1]; 4264 4265 if (val == 0) { 4266 *end-- = '0'; 4267 } else { 4268 for (; val; val /= 16) { 4269 *end-- = digits[val % 16]; 4270 } 4271 } 4272 } 4273 ASSERT(end + 1 >= base); 4274 4275 } else { 4276 /* 4277 * The user didn't use AH_INET or AH_INET6. 4278 */ 4279 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4280 regs[rd] = NULL; 4281 break; 4282 } 4283 4284 inetout: regs[rd] = (uintptr_t)end + 1; 4285 mstate->dtms_scratch_ptr += size; 4286 break; 4287 } 4288 4289 } 4290 } 4291 4292 /* 4293 * Emulate the execution of DTrace IR instructions specified by the given 4294 * DIF object. This function is deliberately void of assertions as all of 4295 * the necessary checks are handled by a call to dtrace_difo_validate(). 4296 */ 4297 static uint64_t 4298 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4299 dtrace_vstate_t *vstate, dtrace_state_t *state) 4300 { 4301 const dif_instr_t *text = difo->dtdo_buf; 4302 const uint_t textlen = difo->dtdo_len; 4303 const char *strtab = difo->dtdo_strtab; 4304 const uint64_t *inttab = difo->dtdo_inttab; 4305 4306 uint64_t rval = 0; 4307 dtrace_statvar_t *svar; 4308 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4309 dtrace_difv_t *v; 4310 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4311 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4312 4313 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4314 uint64_t regs[DIF_DIR_NREGS]; 4315 uint64_t *tmp; 4316 4317 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4318 int64_t cc_r; 4319 uint_t pc = 0, id, opc; 4320 uint8_t ttop = 0; 4321 dif_instr_t instr; 4322 uint_t r1, r2, rd; 4323 4324 /* 4325 * We stash the current DIF object into the machine state: we need it 4326 * for subsequent access checking. 4327 */ 4328 mstate->dtms_difo = difo; 4329 4330 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4331 4332 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4333 opc = pc; 4334 4335 instr = text[pc++]; 4336 r1 = DIF_INSTR_R1(instr); 4337 r2 = DIF_INSTR_R2(instr); 4338 rd = DIF_INSTR_RD(instr); 4339 4340 switch (DIF_INSTR_OP(instr)) { 4341 case DIF_OP_OR: 4342 regs[rd] = regs[r1] | regs[r2]; 4343 break; 4344 case DIF_OP_XOR: 4345 regs[rd] = regs[r1] ^ regs[r2]; 4346 break; 4347 case DIF_OP_AND: 4348 regs[rd] = regs[r1] & regs[r2]; 4349 break; 4350 case DIF_OP_SLL: 4351 regs[rd] = regs[r1] << regs[r2]; 4352 break; 4353 case DIF_OP_SRL: 4354 regs[rd] = regs[r1] >> regs[r2]; 4355 break; 4356 case DIF_OP_SUB: 4357 regs[rd] = regs[r1] - regs[r2]; 4358 break; 4359 case DIF_OP_ADD: 4360 regs[rd] = regs[r1] + regs[r2]; 4361 break; 4362 case DIF_OP_MUL: 4363 regs[rd] = regs[r1] * regs[r2]; 4364 break; 4365 case DIF_OP_SDIV: 4366 if (regs[r2] == 0) { 4367 regs[rd] = 0; 4368 *flags |= CPU_DTRACE_DIVZERO; 4369 } else { 4370 regs[rd] = (int64_t)regs[r1] / 4371 (int64_t)regs[r2]; 4372 } 4373 break; 4374 4375 case DIF_OP_UDIV: 4376 if (regs[r2] == 0) { 4377 regs[rd] = 0; 4378 *flags |= CPU_DTRACE_DIVZERO; 4379 } else { 4380 regs[rd] = regs[r1] / regs[r2]; 4381 } 4382 break; 4383 4384 case DIF_OP_SREM: 4385 if (regs[r2] == 0) { 4386 regs[rd] = 0; 4387 *flags |= CPU_DTRACE_DIVZERO; 4388 } else { 4389 regs[rd] = (int64_t)regs[r1] % 4390 (int64_t)regs[r2]; 4391 } 4392 break; 4393 4394 case DIF_OP_UREM: 4395 if (regs[r2] == 0) { 4396 regs[rd] = 0; 4397 *flags |= CPU_DTRACE_DIVZERO; 4398 } else { 4399 regs[rd] = regs[r1] % regs[r2]; 4400 } 4401 break; 4402 4403 case DIF_OP_NOT: 4404 regs[rd] = ~regs[r1]; 4405 break; 4406 case DIF_OP_MOV: 4407 regs[rd] = regs[r1]; 4408 break; 4409 case DIF_OP_CMP: 4410 cc_r = regs[r1] - regs[r2]; 4411 cc_n = cc_r < 0; 4412 cc_z = cc_r == 0; 4413 cc_v = 0; 4414 cc_c = regs[r1] < regs[r2]; 4415 break; 4416 case DIF_OP_TST: 4417 cc_n = cc_v = cc_c = 0; 4418 cc_z = regs[r1] == 0; 4419 break; 4420 case DIF_OP_BA: 4421 pc = DIF_INSTR_LABEL(instr); 4422 break; 4423 case DIF_OP_BE: 4424 if (cc_z) 4425 pc = DIF_INSTR_LABEL(instr); 4426 break; 4427 case DIF_OP_BNE: 4428 if (cc_z == 0) 4429 pc = DIF_INSTR_LABEL(instr); 4430 break; 4431 case DIF_OP_BG: 4432 if ((cc_z | (cc_n ^ cc_v)) == 0) 4433 pc = DIF_INSTR_LABEL(instr); 4434 break; 4435 case DIF_OP_BGU: 4436 if ((cc_c | cc_z) == 0) 4437 pc = DIF_INSTR_LABEL(instr); 4438 break; 4439 case DIF_OP_BGE: 4440 if ((cc_n ^ cc_v) == 0) 4441 pc = DIF_INSTR_LABEL(instr); 4442 break; 4443 case DIF_OP_BGEU: 4444 if (cc_c == 0) 4445 pc = DIF_INSTR_LABEL(instr); 4446 break; 4447 case DIF_OP_BL: 4448 if (cc_n ^ cc_v) 4449 pc = DIF_INSTR_LABEL(instr); 4450 break; 4451 case DIF_OP_BLU: 4452 if (cc_c) 4453 pc = DIF_INSTR_LABEL(instr); 4454 break; 4455 case DIF_OP_BLE: 4456 if (cc_z | (cc_n ^ cc_v)) 4457 pc = DIF_INSTR_LABEL(instr); 4458 break; 4459 case DIF_OP_BLEU: 4460 if (cc_c | cc_z) 4461 pc = DIF_INSTR_LABEL(instr); 4462 break; 4463 case DIF_OP_RLDSB: 4464 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4465 *flags |= CPU_DTRACE_KPRIV; 4466 *illval = regs[r1]; 4467 break; 4468 } 4469 /*FALLTHROUGH*/ 4470 case DIF_OP_LDSB: 4471 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4472 break; 4473 case DIF_OP_RLDSH: 4474 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4475 *flags |= CPU_DTRACE_KPRIV; 4476 *illval = regs[r1]; 4477 break; 4478 } 4479 /*FALLTHROUGH*/ 4480 case DIF_OP_LDSH: 4481 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4482 break; 4483 case DIF_OP_RLDSW: 4484 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4485 *flags |= CPU_DTRACE_KPRIV; 4486 *illval = regs[r1]; 4487 break; 4488 } 4489 /*FALLTHROUGH*/ 4490 case DIF_OP_LDSW: 4491 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4492 break; 4493 case DIF_OP_RLDUB: 4494 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4495 *flags |= CPU_DTRACE_KPRIV; 4496 *illval = regs[r1]; 4497 break; 4498 } 4499 /*FALLTHROUGH*/ 4500 case DIF_OP_LDUB: 4501 regs[rd] = dtrace_load8(regs[r1]); 4502 break; 4503 case DIF_OP_RLDUH: 4504 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4505 *flags |= CPU_DTRACE_KPRIV; 4506 *illval = regs[r1]; 4507 break; 4508 } 4509 /*FALLTHROUGH*/ 4510 case DIF_OP_LDUH: 4511 regs[rd] = dtrace_load16(regs[r1]); 4512 break; 4513 case DIF_OP_RLDUW: 4514 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4515 *flags |= CPU_DTRACE_KPRIV; 4516 *illval = regs[r1]; 4517 break; 4518 } 4519 /*FALLTHROUGH*/ 4520 case DIF_OP_LDUW: 4521 regs[rd] = dtrace_load32(regs[r1]); 4522 break; 4523 case DIF_OP_RLDX: 4524 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 4525 *flags |= CPU_DTRACE_KPRIV; 4526 *illval = regs[r1]; 4527 break; 4528 } 4529 /*FALLTHROUGH*/ 4530 case DIF_OP_LDX: 4531 regs[rd] = dtrace_load64(regs[r1]); 4532 break; 4533 case DIF_OP_ULDSB: 4534 regs[rd] = (int8_t) 4535 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4536 break; 4537 case DIF_OP_ULDSH: 4538 regs[rd] = (int16_t) 4539 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4540 break; 4541 case DIF_OP_ULDSW: 4542 regs[rd] = (int32_t) 4543 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4544 break; 4545 case DIF_OP_ULDUB: 4546 regs[rd] = 4547 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4548 break; 4549 case DIF_OP_ULDUH: 4550 regs[rd] = 4551 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4552 break; 4553 case DIF_OP_ULDUW: 4554 regs[rd] = 4555 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4556 break; 4557 case DIF_OP_ULDX: 4558 regs[rd] = 4559 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 4560 break; 4561 case DIF_OP_RET: 4562 rval = regs[rd]; 4563 pc = textlen; 4564 break; 4565 case DIF_OP_NOP: 4566 break; 4567 case DIF_OP_SETX: 4568 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 4569 break; 4570 case DIF_OP_SETS: 4571 regs[rd] = (uint64_t)(uintptr_t) 4572 (strtab + DIF_INSTR_STRING(instr)); 4573 break; 4574 case DIF_OP_SCMP: { 4575 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 4576 uintptr_t s1 = regs[r1]; 4577 uintptr_t s2 = regs[r2]; 4578 4579 if (s1 != NULL && 4580 !dtrace_strcanload(s1, sz, mstate, vstate)) 4581 break; 4582 if (s2 != NULL && 4583 !dtrace_strcanload(s2, sz, mstate, vstate)) 4584 break; 4585 4586 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 4587 4588 cc_n = cc_r < 0; 4589 cc_z = cc_r == 0; 4590 cc_v = cc_c = 0; 4591 break; 4592 } 4593 case DIF_OP_LDGA: 4594 regs[rd] = dtrace_dif_variable(mstate, state, 4595 r1, regs[r2]); 4596 break; 4597 case DIF_OP_LDGS: 4598 id = DIF_INSTR_VAR(instr); 4599 4600 if (id >= DIF_VAR_OTHER_UBASE) { 4601 uintptr_t a; 4602 4603 id -= DIF_VAR_OTHER_UBASE; 4604 svar = vstate->dtvs_globals[id]; 4605 ASSERT(svar != NULL); 4606 v = &svar->dtsv_var; 4607 4608 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 4609 regs[rd] = svar->dtsv_data; 4610 break; 4611 } 4612 4613 a = (uintptr_t)svar->dtsv_data; 4614 4615 if (*(uint8_t *)a == UINT8_MAX) { 4616 /* 4617 * If the 0th byte is set to UINT8_MAX 4618 * then this is to be treated as a 4619 * reference to a NULL variable. 4620 */ 4621 regs[rd] = NULL; 4622 } else { 4623 regs[rd] = a + sizeof (uint64_t); 4624 } 4625 4626 break; 4627 } 4628 4629 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 4630 break; 4631 4632 case DIF_OP_STGS: 4633 id = DIF_INSTR_VAR(instr); 4634 4635 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4636 id -= DIF_VAR_OTHER_UBASE; 4637 4638 svar = vstate->dtvs_globals[id]; 4639 ASSERT(svar != NULL); 4640 v = &svar->dtsv_var; 4641 4642 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4643 uintptr_t a = (uintptr_t)svar->dtsv_data; 4644 4645 ASSERT(a != NULL); 4646 ASSERT(svar->dtsv_size != 0); 4647 4648 if (regs[rd] == NULL) { 4649 *(uint8_t *)a = UINT8_MAX; 4650 break; 4651 } else { 4652 *(uint8_t *)a = 0; 4653 a += sizeof (uint64_t); 4654 } 4655 if (!dtrace_vcanload( 4656 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4657 mstate, vstate)) 4658 break; 4659 4660 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4661 (void *)a, &v->dtdv_type); 4662 break; 4663 } 4664 4665 svar->dtsv_data = regs[rd]; 4666 break; 4667 4668 case DIF_OP_LDTA: 4669 /* 4670 * There are no DTrace built-in thread-local arrays at 4671 * present. This opcode is saved for future work. 4672 */ 4673 *flags |= CPU_DTRACE_ILLOP; 4674 regs[rd] = 0; 4675 break; 4676 4677 case DIF_OP_LDLS: 4678 id = DIF_INSTR_VAR(instr); 4679 4680 if (id < DIF_VAR_OTHER_UBASE) { 4681 /* 4682 * For now, this has no meaning. 4683 */ 4684 regs[rd] = 0; 4685 break; 4686 } 4687 4688 id -= DIF_VAR_OTHER_UBASE; 4689 4690 ASSERT(id < vstate->dtvs_nlocals); 4691 ASSERT(vstate->dtvs_locals != NULL); 4692 4693 svar = vstate->dtvs_locals[id]; 4694 ASSERT(svar != NULL); 4695 v = &svar->dtsv_var; 4696 4697 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4698 uintptr_t a = (uintptr_t)svar->dtsv_data; 4699 size_t sz = v->dtdv_type.dtdt_size; 4700 4701 sz += sizeof (uint64_t); 4702 ASSERT(svar->dtsv_size == NCPU * sz); 4703 a += CPU->cpu_id * sz; 4704 4705 if (*(uint8_t *)a == UINT8_MAX) { 4706 /* 4707 * If the 0th byte is set to UINT8_MAX 4708 * then this is to be treated as a 4709 * reference to a NULL variable. 4710 */ 4711 regs[rd] = NULL; 4712 } else { 4713 regs[rd] = a + sizeof (uint64_t); 4714 } 4715 4716 break; 4717 } 4718 4719 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4720 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4721 regs[rd] = tmp[CPU->cpu_id]; 4722 break; 4723 4724 case DIF_OP_STLS: 4725 id = DIF_INSTR_VAR(instr); 4726 4727 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4728 id -= DIF_VAR_OTHER_UBASE; 4729 ASSERT(id < vstate->dtvs_nlocals); 4730 4731 ASSERT(vstate->dtvs_locals != NULL); 4732 svar = vstate->dtvs_locals[id]; 4733 ASSERT(svar != NULL); 4734 v = &svar->dtsv_var; 4735 4736 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4737 uintptr_t a = (uintptr_t)svar->dtsv_data; 4738 size_t sz = v->dtdv_type.dtdt_size; 4739 4740 sz += sizeof (uint64_t); 4741 ASSERT(svar->dtsv_size == NCPU * sz); 4742 a += CPU->cpu_id * sz; 4743 4744 if (regs[rd] == NULL) { 4745 *(uint8_t *)a = UINT8_MAX; 4746 break; 4747 } else { 4748 *(uint8_t *)a = 0; 4749 a += sizeof (uint64_t); 4750 } 4751 4752 if (!dtrace_vcanload( 4753 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4754 mstate, vstate)) 4755 break; 4756 4757 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4758 (void *)a, &v->dtdv_type); 4759 break; 4760 } 4761 4762 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4763 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4764 tmp[CPU->cpu_id] = regs[rd]; 4765 break; 4766 4767 case DIF_OP_LDTS: { 4768 dtrace_dynvar_t *dvar; 4769 dtrace_key_t *key; 4770 4771 id = DIF_INSTR_VAR(instr); 4772 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4773 id -= DIF_VAR_OTHER_UBASE; 4774 v = &vstate->dtvs_tlocals[id]; 4775 4776 key = &tupregs[DIF_DTR_NREGS]; 4777 key[0].dttk_value = (uint64_t)id; 4778 key[0].dttk_size = 0; 4779 DTRACE_TLS_THRKEY(key[1].dttk_value); 4780 key[1].dttk_size = 0; 4781 4782 dvar = dtrace_dynvar(dstate, 2, key, 4783 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 4784 mstate, vstate); 4785 4786 if (dvar == NULL) { 4787 regs[rd] = 0; 4788 break; 4789 } 4790 4791 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4792 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4793 } else { 4794 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4795 } 4796 4797 break; 4798 } 4799 4800 case DIF_OP_STTS: { 4801 dtrace_dynvar_t *dvar; 4802 dtrace_key_t *key; 4803 4804 id = DIF_INSTR_VAR(instr); 4805 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4806 id -= DIF_VAR_OTHER_UBASE; 4807 4808 key = &tupregs[DIF_DTR_NREGS]; 4809 key[0].dttk_value = (uint64_t)id; 4810 key[0].dttk_size = 0; 4811 DTRACE_TLS_THRKEY(key[1].dttk_value); 4812 key[1].dttk_size = 0; 4813 v = &vstate->dtvs_tlocals[id]; 4814 4815 dvar = dtrace_dynvar(dstate, 2, key, 4816 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4817 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4818 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4819 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 4820 4821 /* 4822 * Given that we're storing to thread-local data, 4823 * we need to flush our predicate cache. 4824 */ 4825 curthread->t_predcache = NULL; 4826 4827 if (dvar == NULL) 4828 break; 4829 4830 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4831 if (!dtrace_vcanload( 4832 (void *)(uintptr_t)regs[rd], 4833 &v->dtdv_type, mstate, vstate)) 4834 break; 4835 4836 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4837 dvar->dtdv_data, &v->dtdv_type); 4838 } else { 4839 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4840 } 4841 4842 break; 4843 } 4844 4845 case DIF_OP_SRA: 4846 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 4847 break; 4848 4849 case DIF_OP_CALL: 4850 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 4851 regs, tupregs, ttop, mstate, state); 4852 break; 4853 4854 case DIF_OP_PUSHTR: 4855 if (ttop == DIF_DTR_NREGS) { 4856 *flags |= CPU_DTRACE_TUPOFLOW; 4857 break; 4858 } 4859 4860 if (r1 == DIF_TYPE_STRING) { 4861 /* 4862 * If this is a string type and the size is 0, 4863 * we'll use the system-wide default string 4864 * size. Note that we are _not_ looking at 4865 * the value of the DTRACEOPT_STRSIZE option; 4866 * had this been set, we would expect to have 4867 * a non-zero size value in the "pushtr". 4868 */ 4869 tupregs[ttop].dttk_size = 4870 dtrace_strlen((char *)(uintptr_t)regs[rd], 4871 regs[r2] ? regs[r2] : 4872 dtrace_strsize_default) + 1; 4873 } else { 4874 tupregs[ttop].dttk_size = regs[r2]; 4875 } 4876 4877 tupregs[ttop++].dttk_value = regs[rd]; 4878 break; 4879 4880 case DIF_OP_PUSHTV: 4881 if (ttop == DIF_DTR_NREGS) { 4882 *flags |= CPU_DTRACE_TUPOFLOW; 4883 break; 4884 } 4885 4886 tupregs[ttop].dttk_value = regs[rd]; 4887 tupregs[ttop++].dttk_size = 0; 4888 break; 4889 4890 case DIF_OP_POPTS: 4891 if (ttop != 0) 4892 ttop--; 4893 break; 4894 4895 case DIF_OP_FLUSHTS: 4896 ttop = 0; 4897 break; 4898 4899 case DIF_OP_LDGAA: 4900 case DIF_OP_LDTAA: { 4901 dtrace_dynvar_t *dvar; 4902 dtrace_key_t *key = tupregs; 4903 uint_t nkeys = ttop; 4904 4905 id = DIF_INSTR_VAR(instr); 4906 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4907 id -= DIF_VAR_OTHER_UBASE; 4908 4909 key[nkeys].dttk_value = (uint64_t)id; 4910 key[nkeys++].dttk_size = 0; 4911 4912 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 4913 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 4914 key[nkeys++].dttk_size = 0; 4915 v = &vstate->dtvs_tlocals[id]; 4916 } else { 4917 v = &vstate->dtvs_globals[id]->dtsv_var; 4918 } 4919 4920 dvar = dtrace_dynvar(dstate, nkeys, key, 4921 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4922 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4923 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 4924 4925 if (dvar == NULL) { 4926 regs[rd] = 0; 4927 break; 4928 } 4929 4930 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4931 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4932 } else { 4933 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4934 } 4935 4936 break; 4937 } 4938 4939 case DIF_OP_STGAA: 4940 case DIF_OP_STTAA: { 4941 dtrace_dynvar_t *dvar; 4942 dtrace_key_t *key = tupregs; 4943 uint_t nkeys = ttop; 4944 4945 id = DIF_INSTR_VAR(instr); 4946 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4947 id -= DIF_VAR_OTHER_UBASE; 4948 4949 key[nkeys].dttk_value = (uint64_t)id; 4950 key[nkeys++].dttk_size = 0; 4951 4952 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 4953 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 4954 key[nkeys++].dttk_size = 0; 4955 v = &vstate->dtvs_tlocals[id]; 4956 } else { 4957 v = &vstate->dtvs_globals[id]->dtsv_var; 4958 } 4959 4960 dvar = dtrace_dynvar(dstate, nkeys, key, 4961 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4962 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4963 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4964 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 4965 4966 if (dvar == NULL) 4967 break; 4968 4969 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4970 if (!dtrace_vcanload( 4971 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4972 mstate, vstate)) 4973 break; 4974 4975 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4976 dvar->dtdv_data, &v->dtdv_type); 4977 } else { 4978 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4979 } 4980 4981 break; 4982 } 4983 4984 case DIF_OP_ALLOCS: { 4985 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4986 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 4987 4988 /* 4989 * Rounding up the user allocation size could have 4990 * overflowed large, bogus allocations (like -1ULL) to 4991 * 0. 4992 */ 4993 if (size < regs[r1] || 4994 !DTRACE_INSCRATCH(mstate, size)) { 4995 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4996 regs[rd] = NULL; 4997 break; 4998 } 4999 5000 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 5001 mstate->dtms_scratch_ptr += size; 5002 regs[rd] = ptr; 5003 break; 5004 } 5005 5006 case DIF_OP_COPYS: 5007 if (!dtrace_canstore(regs[rd], regs[r2], 5008 mstate, vstate)) { 5009 *flags |= CPU_DTRACE_BADADDR; 5010 *illval = regs[rd]; 5011 break; 5012 } 5013 5014 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 5015 break; 5016 5017 dtrace_bcopy((void *)(uintptr_t)regs[r1], 5018 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 5019 break; 5020 5021 case DIF_OP_STB: 5022 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 5023 *flags |= CPU_DTRACE_BADADDR; 5024 *illval = regs[rd]; 5025 break; 5026 } 5027 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 5028 break; 5029 5030 case DIF_OP_STH: 5031 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 5032 *flags |= CPU_DTRACE_BADADDR; 5033 *illval = regs[rd]; 5034 break; 5035 } 5036 if (regs[rd] & 1) { 5037 *flags |= CPU_DTRACE_BADALIGN; 5038 *illval = regs[rd]; 5039 break; 5040 } 5041 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5042 break; 5043 5044 case DIF_OP_STW: 5045 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5046 *flags |= CPU_DTRACE_BADADDR; 5047 *illval = regs[rd]; 5048 break; 5049 } 5050 if (regs[rd] & 3) { 5051 *flags |= CPU_DTRACE_BADALIGN; 5052 *illval = regs[rd]; 5053 break; 5054 } 5055 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5056 break; 5057 5058 case DIF_OP_STX: 5059 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5060 *flags |= CPU_DTRACE_BADADDR; 5061 *illval = regs[rd]; 5062 break; 5063 } 5064 if (regs[rd] & 7) { 5065 *flags |= CPU_DTRACE_BADALIGN; 5066 *illval = regs[rd]; 5067 break; 5068 } 5069 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5070 break; 5071 } 5072 } 5073 5074 if (!(*flags & CPU_DTRACE_FAULT)) 5075 return (rval); 5076 5077 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5078 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5079 5080 return (0); 5081 } 5082 5083 static void 5084 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5085 { 5086 dtrace_probe_t *probe = ecb->dte_probe; 5087 dtrace_provider_t *prov = probe->dtpr_provider; 5088 char c[DTRACE_FULLNAMELEN + 80], *str; 5089 char *msg = "dtrace: breakpoint action at probe "; 5090 char *ecbmsg = " (ecb "; 5091 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5092 uintptr_t val = (uintptr_t)ecb; 5093 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5094 5095 if (dtrace_destructive_disallow) 5096 return; 5097 5098 /* 5099 * It's impossible to be taking action on the NULL probe. 5100 */ 5101 ASSERT(probe != NULL); 5102 5103 /* 5104 * This is a poor man's (destitute man's?) sprintf(): we want to 5105 * print the provider name, module name, function name and name of 5106 * the probe, along with the hex address of the ECB with the breakpoint 5107 * action -- all of which we must place in the character buffer by 5108 * hand. 5109 */ 5110 while (*msg != '\0') 5111 c[i++] = *msg++; 5112 5113 for (str = prov->dtpv_name; *str != '\0'; str++) 5114 c[i++] = *str; 5115 c[i++] = ':'; 5116 5117 for (str = probe->dtpr_mod; *str != '\0'; str++) 5118 c[i++] = *str; 5119 c[i++] = ':'; 5120 5121 for (str = probe->dtpr_func; *str != '\0'; str++) 5122 c[i++] = *str; 5123 c[i++] = ':'; 5124 5125 for (str = probe->dtpr_name; *str != '\0'; str++) 5126 c[i++] = *str; 5127 5128 while (*ecbmsg != '\0') 5129 c[i++] = *ecbmsg++; 5130 5131 while (shift >= 0) { 5132 mask = (uintptr_t)0xf << shift; 5133 5134 if (val >= ((uintptr_t)1 << shift)) 5135 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5136 shift -= 4; 5137 } 5138 5139 c[i++] = ')'; 5140 c[i] = '\0'; 5141 5142 debug_enter(c); 5143 } 5144 5145 static void 5146 dtrace_action_panic(dtrace_ecb_t *ecb) 5147 { 5148 dtrace_probe_t *probe = ecb->dte_probe; 5149 5150 /* 5151 * It's impossible to be taking action on the NULL probe. 5152 */ 5153 ASSERT(probe != NULL); 5154 5155 if (dtrace_destructive_disallow) 5156 return; 5157 5158 if (dtrace_panicked != NULL) 5159 return; 5160 5161 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5162 return; 5163 5164 /* 5165 * We won the right to panic. (We want to be sure that only one 5166 * thread calls panic() from dtrace_probe(), and that panic() is 5167 * called exactly once.) 5168 */ 5169 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5170 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5171 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5172 } 5173 5174 static void 5175 dtrace_action_raise(uint64_t sig) 5176 { 5177 if (dtrace_destructive_disallow) 5178 return; 5179 5180 if (sig >= NSIG) { 5181 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5182 return; 5183 } 5184 5185 /* 5186 * raise() has a queue depth of 1 -- we ignore all subsequent 5187 * invocations of the raise() action. 5188 */ 5189 if (curthread->t_dtrace_sig == 0) 5190 curthread->t_dtrace_sig = (uint8_t)sig; 5191 5192 curthread->t_sig_check = 1; 5193 aston(curthread); 5194 } 5195 5196 static void 5197 dtrace_action_stop(void) 5198 { 5199 if (dtrace_destructive_disallow) 5200 return; 5201 5202 if (!curthread->t_dtrace_stop) { 5203 curthread->t_dtrace_stop = 1; 5204 curthread->t_sig_check = 1; 5205 aston(curthread); 5206 } 5207 } 5208 5209 static void 5210 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5211 { 5212 hrtime_t now; 5213 volatile uint16_t *flags; 5214 cpu_t *cpu = CPU; 5215 5216 if (dtrace_destructive_disallow) 5217 return; 5218 5219 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5220 5221 now = dtrace_gethrtime(); 5222 5223 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5224 /* 5225 * We need to advance the mark to the current time. 5226 */ 5227 cpu->cpu_dtrace_chillmark = now; 5228 cpu->cpu_dtrace_chilled = 0; 5229 } 5230 5231 /* 5232 * Now check to see if the requested chill time would take us over 5233 * the maximum amount of time allowed in the chill interval. (Or 5234 * worse, if the calculation itself induces overflow.) 5235 */ 5236 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5237 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5238 *flags |= CPU_DTRACE_ILLOP; 5239 return; 5240 } 5241 5242 while (dtrace_gethrtime() - now < val) 5243 continue; 5244 5245 /* 5246 * Normally, we assure that the value of the variable "timestamp" does 5247 * not change within an ECB. The presence of chill() represents an 5248 * exception to this rule, however. 5249 */ 5250 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5251 cpu->cpu_dtrace_chilled += val; 5252 } 5253 5254 static void 5255 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5256 uint64_t *buf, uint64_t arg) 5257 { 5258 int nframes = DTRACE_USTACK_NFRAMES(arg); 5259 int strsize = DTRACE_USTACK_STRSIZE(arg); 5260 uint64_t *pcs = &buf[1], *fps; 5261 char *str = (char *)&pcs[nframes]; 5262 int size, offs = 0, i, j; 5263 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5264 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5265 char *sym; 5266 5267 /* 5268 * Should be taking a faster path if string space has not been 5269 * allocated. 5270 */ 5271 ASSERT(strsize != 0); 5272 5273 /* 5274 * We will first allocate some temporary space for the frame pointers. 5275 */ 5276 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5277 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5278 (nframes * sizeof (uint64_t)); 5279 5280 if (!DTRACE_INSCRATCH(mstate, size)) { 5281 /* 5282 * Not enough room for our frame pointers -- need to indicate 5283 * that we ran out of scratch space. 5284 */ 5285 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5286 return; 5287 } 5288 5289 mstate->dtms_scratch_ptr += size; 5290 saved = mstate->dtms_scratch_ptr; 5291 5292 /* 5293 * Now get a stack with both program counters and frame pointers. 5294 */ 5295 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5296 dtrace_getufpstack(buf, fps, nframes + 1); 5297 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5298 5299 /* 5300 * If that faulted, we're cooked. 5301 */ 5302 if (*flags & CPU_DTRACE_FAULT) 5303 goto out; 5304 5305 /* 5306 * Now we want to walk up the stack, calling the USTACK helper. For 5307 * each iteration, we restore the scratch pointer. 5308 */ 5309 for (i = 0; i < nframes; i++) { 5310 mstate->dtms_scratch_ptr = saved; 5311 5312 if (offs >= strsize) 5313 break; 5314 5315 sym = (char *)(uintptr_t)dtrace_helper( 5316 DTRACE_HELPER_ACTION_USTACK, 5317 mstate, state, pcs[i], fps[i]); 5318 5319 /* 5320 * If we faulted while running the helper, we're going to 5321 * clear the fault and null out the corresponding string. 5322 */ 5323 if (*flags & CPU_DTRACE_FAULT) { 5324 *flags &= ~CPU_DTRACE_FAULT; 5325 str[offs++] = '\0'; 5326 continue; 5327 } 5328 5329 if (sym == NULL) { 5330 str[offs++] = '\0'; 5331 continue; 5332 } 5333 5334 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5335 5336 /* 5337 * Now copy in the string that the helper returned to us. 5338 */ 5339 for (j = 0; offs + j < strsize; j++) { 5340 if ((str[offs + j] = sym[j]) == '\0') 5341 break; 5342 } 5343 5344 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5345 5346 offs += j + 1; 5347 } 5348 5349 if (offs >= strsize) { 5350 /* 5351 * If we didn't have room for all of the strings, we don't 5352 * abort processing -- this needn't be a fatal error -- but we 5353 * still want to increment a counter (dts_stkstroverflows) to 5354 * allow this condition to be warned about. (If this is from 5355 * a jstack() action, it is easily tuned via jstackstrsize.) 5356 */ 5357 dtrace_error(&state->dts_stkstroverflows); 5358 } 5359 5360 while (offs < strsize) 5361 str[offs++] = '\0'; 5362 5363 out: 5364 mstate->dtms_scratch_ptr = old; 5365 } 5366 5367 /* 5368 * If you're looking for the epicenter of DTrace, you just found it. This 5369 * is the function called by the provider to fire a probe -- from which all 5370 * subsequent probe-context DTrace activity emanates. 5371 */ 5372 void 5373 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5374 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5375 { 5376 processorid_t cpuid; 5377 dtrace_icookie_t cookie; 5378 dtrace_probe_t *probe; 5379 dtrace_mstate_t mstate; 5380 dtrace_ecb_t *ecb; 5381 dtrace_action_t *act; 5382 intptr_t offs; 5383 size_t size; 5384 int vtime, onintr; 5385 volatile uint16_t *flags; 5386 hrtime_t now; 5387 5388 /* 5389 * Kick out immediately if this CPU is still being born (in which case 5390 * curthread will be set to -1) or the current thread can't allow 5391 * probes in its current context. 5392 */ 5393 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 5394 return; 5395 5396 cookie = dtrace_interrupt_disable(); 5397 probe = dtrace_probes[id - 1]; 5398 cpuid = CPU->cpu_id; 5399 onintr = CPU_ON_INTR(CPU); 5400 5401 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5402 probe->dtpr_predcache == curthread->t_predcache) { 5403 /* 5404 * We have hit in the predicate cache; we know that 5405 * this predicate would evaluate to be false. 5406 */ 5407 dtrace_interrupt_enable(cookie); 5408 return; 5409 } 5410 5411 if (panic_quiesce) { 5412 /* 5413 * We don't trace anything if we're panicking. 5414 */ 5415 dtrace_interrupt_enable(cookie); 5416 return; 5417 } 5418 5419 now = dtrace_gethrtime(); 5420 vtime = dtrace_vtime_references != 0; 5421 5422 if (vtime && curthread->t_dtrace_start) 5423 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5424 5425 mstate.dtms_difo = NULL; 5426 mstate.dtms_probe = probe; 5427 mstate.dtms_strtok = NULL; 5428 mstate.dtms_arg[0] = arg0; 5429 mstate.dtms_arg[1] = arg1; 5430 mstate.dtms_arg[2] = arg2; 5431 mstate.dtms_arg[3] = arg3; 5432 mstate.dtms_arg[4] = arg4; 5433 5434 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5435 5436 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5437 dtrace_predicate_t *pred = ecb->dte_predicate; 5438 dtrace_state_t *state = ecb->dte_state; 5439 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5440 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5441 dtrace_vstate_t *vstate = &state->dts_vstate; 5442 dtrace_provider_t *prov = probe->dtpr_provider; 5443 int committed = 0; 5444 caddr_t tomax; 5445 5446 /* 5447 * A little subtlety with the following (seemingly innocuous) 5448 * declaration of the automatic 'val': by looking at the 5449 * code, you might think that it could be declared in the 5450 * action processing loop, below. (That is, it's only used in 5451 * the action processing loop.) However, it must be declared 5452 * out of that scope because in the case of DIF expression 5453 * arguments to aggregating actions, one iteration of the 5454 * action loop will use the last iteration's value. 5455 */ 5456 #ifdef lint 5457 uint64_t val = 0; 5458 #else 5459 uint64_t val; 5460 #endif 5461 5462 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5463 *flags &= ~CPU_DTRACE_ERROR; 5464 5465 if (prov == dtrace_provider) { 5466 /* 5467 * If dtrace itself is the provider of this probe, 5468 * we're only going to continue processing the ECB if 5469 * arg0 (the dtrace_state_t) is equal to the ECB's 5470 * creating state. (This prevents disjoint consumers 5471 * from seeing one another's metaprobes.) 5472 */ 5473 if (arg0 != (uint64_t)(uintptr_t)state) 5474 continue; 5475 } 5476 5477 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5478 /* 5479 * We're not currently active. If our provider isn't 5480 * the dtrace pseudo provider, we're not interested. 5481 */ 5482 if (prov != dtrace_provider) 5483 continue; 5484 5485 /* 5486 * Now we must further check if we are in the BEGIN 5487 * probe. If we are, we will only continue processing 5488 * if we're still in WARMUP -- if one BEGIN enabling 5489 * has invoked the exit() action, we don't want to 5490 * evaluate subsequent BEGIN enablings. 5491 */ 5492 if (probe->dtpr_id == dtrace_probeid_begin && 5493 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5494 ASSERT(state->dts_activity == 5495 DTRACE_ACTIVITY_DRAINING); 5496 continue; 5497 } 5498 } 5499 5500 if (ecb->dte_cond) { 5501 /* 5502 * If the dte_cond bits indicate that this 5503 * consumer is only allowed to see user-mode firings 5504 * of this probe, call the provider's dtps_usermode() 5505 * entry point to check that the probe was fired 5506 * while in a user context. Skip this ECB if that's 5507 * not the case. 5508 */ 5509 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 5510 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 5511 probe->dtpr_id, probe->dtpr_arg) == 0) 5512 continue; 5513 5514 /* 5515 * This is more subtle than it looks. We have to be 5516 * absolutely certain that CRED() isn't going to 5517 * change out from under us so it's only legit to 5518 * examine that structure if we're in constrained 5519 * situations. Currently, the only times we'll this 5520 * check is if a non-super-user has enabled the 5521 * profile or syscall providers -- providers that 5522 * allow visibility of all processes. For the 5523 * profile case, the check above will ensure that 5524 * we're examining a user context. 5525 */ 5526 if (ecb->dte_cond & DTRACE_COND_OWNER) { 5527 cred_t *cr; 5528 cred_t *s_cr = 5529 ecb->dte_state->dts_cred.dcr_cred; 5530 proc_t *proc; 5531 5532 ASSERT(s_cr != NULL); 5533 5534 if ((cr = CRED()) == NULL || 5535 s_cr->cr_uid != cr->cr_uid || 5536 s_cr->cr_uid != cr->cr_ruid || 5537 s_cr->cr_uid != cr->cr_suid || 5538 s_cr->cr_gid != cr->cr_gid || 5539 s_cr->cr_gid != cr->cr_rgid || 5540 s_cr->cr_gid != cr->cr_sgid || 5541 (proc = ttoproc(curthread)) == NULL || 5542 (proc->p_flag & SNOCD)) 5543 continue; 5544 } 5545 5546 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 5547 cred_t *cr; 5548 cred_t *s_cr = 5549 ecb->dte_state->dts_cred.dcr_cred; 5550 5551 ASSERT(s_cr != NULL); 5552 5553 if ((cr = CRED()) == NULL || 5554 s_cr->cr_zone->zone_id != 5555 cr->cr_zone->zone_id) 5556 continue; 5557 } 5558 } 5559 5560 if (now - state->dts_alive > dtrace_deadman_timeout) { 5561 /* 5562 * We seem to be dead. Unless we (a) have kernel 5563 * destructive permissions (b) have expicitly enabled 5564 * destructive actions and (c) destructive actions have 5565 * not been disabled, we're going to transition into 5566 * the KILLED state, from which no further processing 5567 * on this state will be performed. 5568 */ 5569 if (!dtrace_priv_kernel_destructive(state) || 5570 !state->dts_cred.dcr_destructive || 5571 dtrace_destructive_disallow) { 5572 void *activity = &state->dts_activity; 5573 dtrace_activity_t current; 5574 5575 do { 5576 current = state->dts_activity; 5577 } while (dtrace_cas32(activity, current, 5578 DTRACE_ACTIVITY_KILLED) != current); 5579 5580 continue; 5581 } 5582 } 5583 5584 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 5585 ecb->dte_alignment, state, &mstate)) < 0) 5586 continue; 5587 5588 tomax = buf->dtb_tomax; 5589 ASSERT(tomax != NULL); 5590 5591 if (ecb->dte_size != 0) 5592 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 5593 5594 mstate.dtms_epid = ecb->dte_epid; 5595 mstate.dtms_present |= DTRACE_MSTATE_EPID; 5596 5597 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 5598 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 5599 else 5600 mstate.dtms_access = 0; 5601 5602 if (pred != NULL) { 5603 dtrace_difo_t *dp = pred->dtp_difo; 5604 int rval; 5605 5606 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 5607 5608 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 5609 dtrace_cacheid_t cid = probe->dtpr_predcache; 5610 5611 if (cid != DTRACE_CACHEIDNONE && !onintr) { 5612 /* 5613 * Update the predicate cache... 5614 */ 5615 ASSERT(cid == pred->dtp_cacheid); 5616 curthread->t_predcache = cid; 5617 } 5618 5619 continue; 5620 } 5621 } 5622 5623 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 5624 act != NULL; act = act->dta_next) { 5625 size_t valoffs; 5626 dtrace_difo_t *dp; 5627 dtrace_recdesc_t *rec = &act->dta_rec; 5628 5629 size = rec->dtrd_size; 5630 valoffs = offs + rec->dtrd_offset; 5631 5632 if (DTRACEACT_ISAGG(act->dta_kind)) { 5633 uint64_t v = 0xbad; 5634 dtrace_aggregation_t *agg; 5635 5636 agg = (dtrace_aggregation_t *)act; 5637 5638 if ((dp = act->dta_difo) != NULL) 5639 v = dtrace_dif_emulate(dp, 5640 &mstate, vstate, state); 5641 5642 if (*flags & CPU_DTRACE_ERROR) 5643 continue; 5644 5645 /* 5646 * Note that we always pass the expression 5647 * value from the previous iteration of the 5648 * action loop. This value will only be used 5649 * if there is an expression argument to the 5650 * aggregating action, denoted by the 5651 * dtag_hasarg field. 5652 */ 5653 dtrace_aggregate(agg, buf, 5654 offs, aggbuf, v, val); 5655 continue; 5656 } 5657 5658 switch (act->dta_kind) { 5659 case DTRACEACT_STOP: 5660 if (dtrace_priv_proc_destructive(state)) 5661 dtrace_action_stop(); 5662 continue; 5663 5664 case DTRACEACT_BREAKPOINT: 5665 if (dtrace_priv_kernel_destructive(state)) 5666 dtrace_action_breakpoint(ecb); 5667 continue; 5668 5669 case DTRACEACT_PANIC: 5670 if (dtrace_priv_kernel_destructive(state)) 5671 dtrace_action_panic(ecb); 5672 continue; 5673 5674 case DTRACEACT_STACK: 5675 if (!dtrace_priv_kernel(state)) 5676 continue; 5677 5678 dtrace_getpcstack((pc_t *)(tomax + valoffs), 5679 size / sizeof (pc_t), probe->dtpr_aframes, 5680 DTRACE_ANCHORED(probe) ? NULL : 5681 (uint32_t *)arg0); 5682 5683 continue; 5684 5685 case DTRACEACT_JSTACK: 5686 case DTRACEACT_USTACK: 5687 if (!dtrace_priv_proc(state)) 5688 continue; 5689 5690 /* 5691 * See comment in DIF_VAR_PID. 5692 */ 5693 if (DTRACE_ANCHORED(mstate.dtms_probe) && 5694 CPU_ON_INTR(CPU)) { 5695 int depth = DTRACE_USTACK_NFRAMES( 5696 rec->dtrd_arg) + 1; 5697 5698 dtrace_bzero((void *)(tomax + valoffs), 5699 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 5700 + depth * sizeof (uint64_t)); 5701 5702 continue; 5703 } 5704 5705 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 5706 curproc->p_dtrace_helpers != NULL) { 5707 /* 5708 * This is the slow path -- we have 5709 * allocated string space, and we're 5710 * getting the stack of a process that 5711 * has helpers. Call into a separate 5712 * routine to perform this processing. 5713 */ 5714 dtrace_action_ustack(&mstate, state, 5715 (uint64_t *)(tomax + valoffs), 5716 rec->dtrd_arg); 5717 continue; 5718 } 5719 5720 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5721 dtrace_getupcstack((uint64_t *) 5722 (tomax + valoffs), 5723 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 5724 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5725 continue; 5726 5727 default: 5728 break; 5729 } 5730 5731 dp = act->dta_difo; 5732 ASSERT(dp != NULL); 5733 5734 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 5735 5736 if (*flags & CPU_DTRACE_ERROR) 5737 continue; 5738 5739 switch (act->dta_kind) { 5740 case DTRACEACT_SPECULATE: 5741 ASSERT(buf == &state->dts_buffer[cpuid]); 5742 buf = dtrace_speculation_buffer(state, 5743 cpuid, val); 5744 5745 if (buf == NULL) { 5746 *flags |= CPU_DTRACE_DROP; 5747 continue; 5748 } 5749 5750 offs = dtrace_buffer_reserve(buf, 5751 ecb->dte_needed, ecb->dte_alignment, 5752 state, NULL); 5753 5754 if (offs < 0) { 5755 *flags |= CPU_DTRACE_DROP; 5756 continue; 5757 } 5758 5759 tomax = buf->dtb_tomax; 5760 ASSERT(tomax != NULL); 5761 5762 if (ecb->dte_size != 0) 5763 DTRACE_STORE(uint32_t, tomax, offs, 5764 ecb->dte_epid); 5765 continue; 5766 5767 case DTRACEACT_CHILL: 5768 if (dtrace_priv_kernel_destructive(state)) 5769 dtrace_action_chill(&mstate, val); 5770 continue; 5771 5772 case DTRACEACT_RAISE: 5773 if (dtrace_priv_proc_destructive(state)) 5774 dtrace_action_raise(val); 5775 continue; 5776 5777 case DTRACEACT_COMMIT: 5778 ASSERT(!committed); 5779 5780 /* 5781 * We need to commit our buffer state. 5782 */ 5783 if (ecb->dte_size) 5784 buf->dtb_offset = offs + ecb->dte_size; 5785 buf = &state->dts_buffer[cpuid]; 5786 dtrace_speculation_commit(state, cpuid, val); 5787 committed = 1; 5788 continue; 5789 5790 case DTRACEACT_DISCARD: 5791 dtrace_speculation_discard(state, cpuid, val); 5792 continue; 5793 5794 case DTRACEACT_DIFEXPR: 5795 case DTRACEACT_LIBACT: 5796 case DTRACEACT_PRINTF: 5797 case DTRACEACT_PRINTA: 5798 case DTRACEACT_SYSTEM: 5799 case DTRACEACT_FREOPEN: 5800 break; 5801 5802 case DTRACEACT_SYM: 5803 case DTRACEACT_MOD: 5804 if (!dtrace_priv_kernel(state)) 5805 continue; 5806 break; 5807 5808 case DTRACEACT_USYM: 5809 case DTRACEACT_UMOD: 5810 case DTRACEACT_UADDR: { 5811 struct pid *pid = curthread->t_procp->p_pidp; 5812 5813 if (!dtrace_priv_proc(state)) 5814 continue; 5815 5816 DTRACE_STORE(uint64_t, tomax, 5817 valoffs, (uint64_t)pid->pid_id); 5818 DTRACE_STORE(uint64_t, tomax, 5819 valoffs + sizeof (uint64_t), val); 5820 5821 continue; 5822 } 5823 5824 case DTRACEACT_EXIT: { 5825 /* 5826 * For the exit action, we are going to attempt 5827 * to atomically set our activity to be 5828 * draining. If this fails (either because 5829 * another CPU has beat us to the exit action, 5830 * or because our current activity is something 5831 * other than ACTIVE or WARMUP), we will 5832 * continue. This assures that the exit action 5833 * can be successfully recorded at most once 5834 * when we're in the ACTIVE state. If we're 5835 * encountering the exit() action while in 5836 * COOLDOWN, however, we want to honor the new 5837 * status code. (We know that we're the only 5838 * thread in COOLDOWN, so there is no race.) 5839 */ 5840 void *activity = &state->dts_activity; 5841 dtrace_activity_t current = state->dts_activity; 5842 5843 if (current == DTRACE_ACTIVITY_COOLDOWN) 5844 break; 5845 5846 if (current != DTRACE_ACTIVITY_WARMUP) 5847 current = DTRACE_ACTIVITY_ACTIVE; 5848 5849 if (dtrace_cas32(activity, current, 5850 DTRACE_ACTIVITY_DRAINING) != current) { 5851 *flags |= CPU_DTRACE_DROP; 5852 continue; 5853 } 5854 5855 break; 5856 } 5857 5858 default: 5859 ASSERT(0); 5860 } 5861 5862 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 5863 uintptr_t end = valoffs + size; 5864 5865 if (!dtrace_vcanload((void *)(uintptr_t)val, 5866 &dp->dtdo_rtype, &mstate, vstate)) 5867 continue; 5868 5869 /* 5870 * If this is a string, we're going to only 5871 * load until we find the zero byte -- after 5872 * which we'll store zero bytes. 5873 */ 5874 if (dp->dtdo_rtype.dtdt_kind == 5875 DIF_TYPE_STRING) { 5876 char c = '\0' + 1; 5877 int intuple = act->dta_intuple; 5878 size_t s; 5879 5880 for (s = 0; s < size; s++) { 5881 if (c != '\0') 5882 c = dtrace_load8(val++); 5883 5884 DTRACE_STORE(uint8_t, tomax, 5885 valoffs++, c); 5886 5887 if (c == '\0' && intuple) 5888 break; 5889 } 5890 5891 continue; 5892 } 5893 5894 while (valoffs < end) { 5895 DTRACE_STORE(uint8_t, tomax, valoffs++, 5896 dtrace_load8(val++)); 5897 } 5898 5899 continue; 5900 } 5901 5902 switch (size) { 5903 case 0: 5904 break; 5905 5906 case sizeof (uint8_t): 5907 DTRACE_STORE(uint8_t, tomax, valoffs, val); 5908 break; 5909 case sizeof (uint16_t): 5910 DTRACE_STORE(uint16_t, tomax, valoffs, val); 5911 break; 5912 case sizeof (uint32_t): 5913 DTRACE_STORE(uint32_t, tomax, valoffs, val); 5914 break; 5915 case sizeof (uint64_t): 5916 DTRACE_STORE(uint64_t, tomax, valoffs, val); 5917 break; 5918 default: 5919 /* 5920 * Any other size should have been returned by 5921 * reference, not by value. 5922 */ 5923 ASSERT(0); 5924 break; 5925 } 5926 } 5927 5928 if (*flags & CPU_DTRACE_DROP) 5929 continue; 5930 5931 if (*flags & CPU_DTRACE_FAULT) { 5932 int ndx; 5933 dtrace_action_t *err; 5934 5935 buf->dtb_errors++; 5936 5937 if (probe->dtpr_id == dtrace_probeid_error) { 5938 /* 5939 * There's nothing we can do -- we had an 5940 * error on the error probe. We bump an 5941 * error counter to at least indicate that 5942 * this condition happened. 5943 */ 5944 dtrace_error(&state->dts_dblerrors); 5945 continue; 5946 } 5947 5948 if (vtime) { 5949 /* 5950 * Before recursing on dtrace_probe(), we 5951 * need to explicitly clear out our start 5952 * time to prevent it from being accumulated 5953 * into t_dtrace_vtime. 5954 */ 5955 curthread->t_dtrace_start = 0; 5956 } 5957 5958 /* 5959 * Iterate over the actions to figure out which action 5960 * we were processing when we experienced the error. 5961 * Note that act points _past_ the faulting action; if 5962 * act is ecb->dte_action, the fault was in the 5963 * predicate, if it's ecb->dte_action->dta_next it's 5964 * in action #1, and so on. 5965 */ 5966 for (err = ecb->dte_action, ndx = 0; 5967 err != act; err = err->dta_next, ndx++) 5968 continue; 5969 5970 dtrace_probe_error(state, ecb->dte_epid, ndx, 5971 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 5972 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 5973 cpu_core[cpuid].cpuc_dtrace_illval); 5974 5975 continue; 5976 } 5977 5978 if (!committed) 5979 buf->dtb_offset = offs + ecb->dte_size; 5980 } 5981 5982 if (vtime) 5983 curthread->t_dtrace_start = dtrace_gethrtime(); 5984 5985 dtrace_interrupt_enable(cookie); 5986 } 5987 5988 /* 5989 * DTrace Probe Hashing Functions 5990 * 5991 * The functions in this section (and indeed, the functions in remaining 5992 * sections) are not _called_ from probe context. (Any exceptions to this are 5993 * marked with a "Note:".) Rather, they are called from elsewhere in the 5994 * DTrace framework to look-up probes in, add probes to and remove probes from 5995 * the DTrace probe hashes. (Each probe is hashed by each element of the 5996 * probe tuple -- allowing for fast lookups, regardless of what was 5997 * specified.) 5998 */ 5999 static uint_t 6000 dtrace_hash_str(char *p) 6001 { 6002 unsigned int g; 6003 uint_t hval = 0; 6004 6005 while (*p) { 6006 hval = (hval << 4) + *p++; 6007 if ((g = (hval & 0xf0000000)) != 0) 6008 hval ^= g >> 24; 6009 hval &= ~g; 6010 } 6011 return (hval); 6012 } 6013 6014 static dtrace_hash_t * 6015 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 6016 { 6017 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 6018 6019 hash->dth_stroffs = stroffs; 6020 hash->dth_nextoffs = nextoffs; 6021 hash->dth_prevoffs = prevoffs; 6022 6023 hash->dth_size = 1; 6024 hash->dth_mask = hash->dth_size - 1; 6025 6026 hash->dth_tab = kmem_zalloc(hash->dth_size * 6027 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 6028 6029 return (hash); 6030 } 6031 6032 static void 6033 dtrace_hash_destroy(dtrace_hash_t *hash) 6034 { 6035 #ifdef DEBUG 6036 int i; 6037 6038 for (i = 0; i < hash->dth_size; i++) 6039 ASSERT(hash->dth_tab[i] == NULL); 6040 #endif 6041 6042 kmem_free(hash->dth_tab, 6043 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6044 kmem_free(hash, sizeof (dtrace_hash_t)); 6045 } 6046 6047 static void 6048 dtrace_hash_resize(dtrace_hash_t *hash) 6049 { 6050 int size = hash->dth_size, i, ndx; 6051 int new_size = hash->dth_size << 1; 6052 int new_mask = new_size - 1; 6053 dtrace_hashbucket_t **new_tab, *bucket, *next; 6054 6055 ASSERT((new_size & new_mask) == 0); 6056 6057 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6058 6059 for (i = 0; i < size; i++) { 6060 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6061 dtrace_probe_t *probe = bucket->dthb_chain; 6062 6063 ASSERT(probe != NULL); 6064 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6065 6066 next = bucket->dthb_next; 6067 bucket->dthb_next = new_tab[ndx]; 6068 new_tab[ndx] = bucket; 6069 } 6070 } 6071 6072 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6073 hash->dth_tab = new_tab; 6074 hash->dth_size = new_size; 6075 hash->dth_mask = new_mask; 6076 } 6077 6078 static void 6079 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6080 { 6081 int hashval = DTRACE_HASHSTR(hash, new); 6082 int ndx = hashval & hash->dth_mask; 6083 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6084 dtrace_probe_t **nextp, **prevp; 6085 6086 for (; bucket != NULL; bucket = bucket->dthb_next) { 6087 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6088 goto add; 6089 } 6090 6091 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6092 dtrace_hash_resize(hash); 6093 dtrace_hash_add(hash, new); 6094 return; 6095 } 6096 6097 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6098 bucket->dthb_next = hash->dth_tab[ndx]; 6099 hash->dth_tab[ndx] = bucket; 6100 hash->dth_nbuckets++; 6101 6102 add: 6103 nextp = DTRACE_HASHNEXT(hash, new); 6104 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6105 *nextp = bucket->dthb_chain; 6106 6107 if (bucket->dthb_chain != NULL) { 6108 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6109 ASSERT(*prevp == NULL); 6110 *prevp = new; 6111 } 6112 6113 bucket->dthb_chain = new; 6114 bucket->dthb_len++; 6115 } 6116 6117 static dtrace_probe_t * 6118 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6119 { 6120 int hashval = DTRACE_HASHSTR(hash, template); 6121 int ndx = hashval & hash->dth_mask; 6122 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6123 6124 for (; bucket != NULL; bucket = bucket->dthb_next) { 6125 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6126 return (bucket->dthb_chain); 6127 } 6128 6129 return (NULL); 6130 } 6131 6132 static int 6133 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6134 { 6135 int hashval = DTRACE_HASHSTR(hash, template); 6136 int ndx = hashval & hash->dth_mask; 6137 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6138 6139 for (; bucket != NULL; bucket = bucket->dthb_next) { 6140 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6141 return (bucket->dthb_len); 6142 } 6143 6144 return (NULL); 6145 } 6146 6147 static void 6148 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6149 { 6150 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6151 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6152 6153 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6154 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6155 6156 /* 6157 * Find the bucket that we're removing this probe from. 6158 */ 6159 for (; bucket != NULL; bucket = bucket->dthb_next) { 6160 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6161 break; 6162 } 6163 6164 ASSERT(bucket != NULL); 6165 6166 if (*prevp == NULL) { 6167 if (*nextp == NULL) { 6168 /* 6169 * The removed probe was the only probe on this 6170 * bucket; we need to remove the bucket. 6171 */ 6172 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6173 6174 ASSERT(bucket->dthb_chain == probe); 6175 ASSERT(b != NULL); 6176 6177 if (b == bucket) { 6178 hash->dth_tab[ndx] = bucket->dthb_next; 6179 } else { 6180 while (b->dthb_next != bucket) 6181 b = b->dthb_next; 6182 b->dthb_next = bucket->dthb_next; 6183 } 6184 6185 ASSERT(hash->dth_nbuckets > 0); 6186 hash->dth_nbuckets--; 6187 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6188 return; 6189 } 6190 6191 bucket->dthb_chain = *nextp; 6192 } else { 6193 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6194 } 6195 6196 if (*nextp != NULL) 6197 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6198 } 6199 6200 /* 6201 * DTrace Utility Functions 6202 * 6203 * These are random utility functions that are _not_ called from probe context. 6204 */ 6205 static int 6206 dtrace_badattr(const dtrace_attribute_t *a) 6207 { 6208 return (a->dtat_name > DTRACE_STABILITY_MAX || 6209 a->dtat_data > DTRACE_STABILITY_MAX || 6210 a->dtat_class > DTRACE_CLASS_MAX); 6211 } 6212 6213 /* 6214 * Return a duplicate copy of a string. If the specified string is NULL, 6215 * this function returns a zero-length string. 6216 */ 6217 static char * 6218 dtrace_strdup(const char *str) 6219 { 6220 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6221 6222 if (str != NULL) 6223 (void) strcpy(new, str); 6224 6225 return (new); 6226 } 6227 6228 #define DTRACE_ISALPHA(c) \ 6229 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6230 6231 static int 6232 dtrace_badname(const char *s) 6233 { 6234 char c; 6235 6236 if (s == NULL || (c = *s++) == '\0') 6237 return (0); 6238 6239 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6240 return (1); 6241 6242 while ((c = *s++) != '\0') { 6243 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6244 c != '-' && c != '_' && c != '.' && c != '`') 6245 return (1); 6246 } 6247 6248 return (0); 6249 } 6250 6251 static void 6252 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6253 { 6254 uint32_t priv; 6255 6256 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6257 /* 6258 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6259 */ 6260 priv = DTRACE_PRIV_ALL; 6261 } else { 6262 *uidp = crgetuid(cr); 6263 *zoneidp = crgetzoneid(cr); 6264 6265 priv = 0; 6266 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6267 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6268 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6269 priv |= DTRACE_PRIV_USER; 6270 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6271 priv |= DTRACE_PRIV_PROC; 6272 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6273 priv |= DTRACE_PRIV_OWNER; 6274 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6275 priv |= DTRACE_PRIV_ZONEOWNER; 6276 } 6277 6278 *privp = priv; 6279 } 6280 6281 #ifdef DTRACE_ERRDEBUG 6282 static void 6283 dtrace_errdebug(const char *str) 6284 { 6285 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6286 int occupied = 0; 6287 6288 mutex_enter(&dtrace_errlock); 6289 dtrace_errlast = str; 6290 dtrace_errthread = curthread; 6291 6292 while (occupied++ < DTRACE_ERRHASHSZ) { 6293 if (dtrace_errhash[hval].dter_msg == str) { 6294 dtrace_errhash[hval].dter_count++; 6295 goto out; 6296 } 6297 6298 if (dtrace_errhash[hval].dter_msg != NULL) { 6299 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6300 continue; 6301 } 6302 6303 dtrace_errhash[hval].dter_msg = str; 6304 dtrace_errhash[hval].dter_count = 1; 6305 goto out; 6306 } 6307 6308 panic("dtrace: undersized error hash"); 6309 out: 6310 mutex_exit(&dtrace_errlock); 6311 } 6312 #endif 6313 6314 /* 6315 * DTrace Matching Functions 6316 * 6317 * These functions are used to match groups of probes, given some elements of 6318 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6319 */ 6320 static int 6321 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6322 zoneid_t zoneid) 6323 { 6324 if (priv != DTRACE_PRIV_ALL) { 6325 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6326 uint32_t match = priv & ppriv; 6327 6328 /* 6329 * No PRIV_DTRACE_* privileges... 6330 */ 6331 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6332 DTRACE_PRIV_KERNEL)) == 0) 6333 return (0); 6334 6335 /* 6336 * No matching bits, but there were bits to match... 6337 */ 6338 if (match == 0 && ppriv != 0) 6339 return (0); 6340 6341 /* 6342 * Need to have permissions to the process, but don't... 6343 */ 6344 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6345 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6346 return (0); 6347 } 6348 6349 /* 6350 * Need to be in the same zone unless we possess the 6351 * privilege to examine all zones. 6352 */ 6353 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6354 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6355 return (0); 6356 } 6357 } 6358 6359 return (1); 6360 } 6361 6362 /* 6363 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6364 * consists of input pattern strings and an ops-vector to evaluate them. 6365 * This function returns >0 for match, 0 for no match, and <0 for error. 6366 */ 6367 static int 6368 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6369 uint32_t priv, uid_t uid, zoneid_t zoneid) 6370 { 6371 dtrace_provider_t *pvp = prp->dtpr_provider; 6372 int rv; 6373 6374 if (pvp->dtpv_defunct) 6375 return (0); 6376 6377 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6378 return (rv); 6379 6380 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6381 return (rv); 6382 6383 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6384 return (rv); 6385 6386 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6387 return (rv); 6388 6389 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6390 return (0); 6391 6392 return (rv); 6393 } 6394 6395 /* 6396 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6397 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 6398 * libc's version, the kernel version only applies to 8-bit ASCII strings. 6399 * In addition, all of the recursion cases except for '*' matching have been 6400 * unwound. For '*', we still implement recursive evaluation, but a depth 6401 * counter is maintained and matching is aborted if we recurse too deep. 6402 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 6403 */ 6404 static int 6405 dtrace_match_glob(const char *s, const char *p, int depth) 6406 { 6407 const char *olds; 6408 char s1, c; 6409 int gs; 6410 6411 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 6412 return (-1); 6413 6414 if (s == NULL) 6415 s = ""; /* treat NULL as empty string */ 6416 6417 top: 6418 olds = s; 6419 s1 = *s++; 6420 6421 if (p == NULL) 6422 return (0); 6423 6424 if ((c = *p++) == '\0') 6425 return (s1 == '\0'); 6426 6427 switch (c) { 6428 case '[': { 6429 int ok = 0, notflag = 0; 6430 char lc = '\0'; 6431 6432 if (s1 == '\0') 6433 return (0); 6434 6435 if (*p == '!') { 6436 notflag = 1; 6437 p++; 6438 } 6439 6440 if ((c = *p++) == '\0') 6441 return (0); 6442 6443 do { 6444 if (c == '-' && lc != '\0' && *p != ']') { 6445 if ((c = *p++) == '\0') 6446 return (0); 6447 if (c == '\\' && (c = *p++) == '\0') 6448 return (0); 6449 6450 if (notflag) { 6451 if (s1 < lc || s1 > c) 6452 ok++; 6453 else 6454 return (0); 6455 } else if (lc <= s1 && s1 <= c) 6456 ok++; 6457 6458 } else if (c == '\\' && (c = *p++) == '\0') 6459 return (0); 6460 6461 lc = c; /* save left-hand 'c' for next iteration */ 6462 6463 if (notflag) { 6464 if (s1 != c) 6465 ok++; 6466 else 6467 return (0); 6468 } else if (s1 == c) 6469 ok++; 6470 6471 if ((c = *p++) == '\0') 6472 return (0); 6473 6474 } while (c != ']'); 6475 6476 if (ok) 6477 goto top; 6478 6479 return (0); 6480 } 6481 6482 case '\\': 6483 if ((c = *p++) == '\0') 6484 return (0); 6485 /*FALLTHRU*/ 6486 6487 default: 6488 if (c != s1) 6489 return (0); 6490 /*FALLTHRU*/ 6491 6492 case '?': 6493 if (s1 != '\0') 6494 goto top; 6495 return (0); 6496 6497 case '*': 6498 while (*p == '*') 6499 p++; /* consecutive *'s are identical to a single one */ 6500 6501 if (*p == '\0') 6502 return (1); 6503 6504 for (s = olds; *s != '\0'; s++) { 6505 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 6506 return (gs); 6507 } 6508 6509 return (0); 6510 } 6511 } 6512 6513 /*ARGSUSED*/ 6514 static int 6515 dtrace_match_string(const char *s, const char *p, int depth) 6516 { 6517 return (s != NULL && strcmp(s, p) == 0); 6518 } 6519 6520 /*ARGSUSED*/ 6521 static int 6522 dtrace_match_nul(const char *s, const char *p, int depth) 6523 { 6524 return (1); /* always match the empty pattern */ 6525 } 6526 6527 /*ARGSUSED*/ 6528 static int 6529 dtrace_match_nonzero(const char *s, const char *p, int depth) 6530 { 6531 return (s != NULL && s[0] != '\0'); 6532 } 6533 6534 static int 6535 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 6536 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 6537 { 6538 dtrace_probe_t template, *probe; 6539 dtrace_hash_t *hash = NULL; 6540 int len, best = INT_MAX, nmatched = 0; 6541 dtrace_id_t i; 6542 6543 ASSERT(MUTEX_HELD(&dtrace_lock)); 6544 6545 /* 6546 * If the probe ID is specified in the key, just lookup by ID and 6547 * invoke the match callback once if a matching probe is found. 6548 */ 6549 if (pkp->dtpk_id != DTRACE_IDNONE) { 6550 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 6551 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 6552 (void) (*matched)(probe, arg); 6553 nmatched++; 6554 } 6555 return (nmatched); 6556 } 6557 6558 template.dtpr_mod = (char *)pkp->dtpk_mod; 6559 template.dtpr_func = (char *)pkp->dtpk_func; 6560 template.dtpr_name = (char *)pkp->dtpk_name; 6561 6562 /* 6563 * We want to find the most distinct of the module name, function 6564 * name, and name. So for each one that is not a glob pattern or 6565 * empty string, we perform a lookup in the corresponding hash and 6566 * use the hash table with the fewest collisions to do our search. 6567 */ 6568 if (pkp->dtpk_mmatch == &dtrace_match_string && 6569 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 6570 best = len; 6571 hash = dtrace_bymod; 6572 } 6573 6574 if (pkp->dtpk_fmatch == &dtrace_match_string && 6575 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 6576 best = len; 6577 hash = dtrace_byfunc; 6578 } 6579 6580 if (pkp->dtpk_nmatch == &dtrace_match_string && 6581 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 6582 best = len; 6583 hash = dtrace_byname; 6584 } 6585 6586 /* 6587 * If we did not select a hash table, iterate over every probe and 6588 * invoke our callback for each one that matches our input probe key. 6589 */ 6590 if (hash == NULL) { 6591 for (i = 0; i < dtrace_nprobes; i++) { 6592 if ((probe = dtrace_probes[i]) == NULL || 6593 dtrace_match_probe(probe, pkp, priv, uid, 6594 zoneid) <= 0) 6595 continue; 6596 6597 nmatched++; 6598 6599 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 6600 break; 6601 } 6602 6603 return (nmatched); 6604 } 6605 6606 /* 6607 * If we selected a hash table, iterate over each probe of the same key 6608 * name and invoke the callback for every probe that matches the other 6609 * attributes of our input probe key. 6610 */ 6611 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 6612 probe = *(DTRACE_HASHNEXT(hash, probe))) { 6613 6614 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 6615 continue; 6616 6617 nmatched++; 6618 6619 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 6620 break; 6621 } 6622 6623 return (nmatched); 6624 } 6625 6626 /* 6627 * Return the function pointer dtrace_probecmp() should use to compare the 6628 * specified pattern with a string. For NULL or empty patterns, we select 6629 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 6630 * For non-empty non-glob strings, we use dtrace_match_string(). 6631 */ 6632 static dtrace_probekey_f * 6633 dtrace_probekey_func(const char *p) 6634 { 6635 char c; 6636 6637 if (p == NULL || *p == '\0') 6638 return (&dtrace_match_nul); 6639 6640 while ((c = *p++) != '\0') { 6641 if (c == '[' || c == '?' || c == '*' || c == '\\') 6642 return (&dtrace_match_glob); 6643 } 6644 6645 return (&dtrace_match_string); 6646 } 6647 6648 /* 6649 * Build a probe comparison key for use with dtrace_match_probe() from the 6650 * given probe description. By convention, a null key only matches anchored 6651 * probes: if each field is the empty string, reset dtpk_fmatch to 6652 * dtrace_match_nonzero(). 6653 */ 6654 static void 6655 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 6656 { 6657 pkp->dtpk_prov = pdp->dtpd_provider; 6658 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 6659 6660 pkp->dtpk_mod = pdp->dtpd_mod; 6661 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 6662 6663 pkp->dtpk_func = pdp->dtpd_func; 6664 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 6665 6666 pkp->dtpk_name = pdp->dtpd_name; 6667 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 6668 6669 pkp->dtpk_id = pdp->dtpd_id; 6670 6671 if (pkp->dtpk_id == DTRACE_IDNONE && 6672 pkp->dtpk_pmatch == &dtrace_match_nul && 6673 pkp->dtpk_mmatch == &dtrace_match_nul && 6674 pkp->dtpk_fmatch == &dtrace_match_nul && 6675 pkp->dtpk_nmatch == &dtrace_match_nul) 6676 pkp->dtpk_fmatch = &dtrace_match_nonzero; 6677 } 6678 6679 /* 6680 * DTrace Provider-to-Framework API Functions 6681 * 6682 * These functions implement much of the Provider-to-Framework API, as 6683 * described in <sys/dtrace.h>. The parts of the API not in this section are 6684 * the functions in the API for probe management (found below), and 6685 * dtrace_probe() itself (found above). 6686 */ 6687 6688 /* 6689 * Register the calling provider with the DTrace framework. This should 6690 * generally be called by DTrace providers in their attach(9E) entry point. 6691 */ 6692 int 6693 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 6694 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 6695 { 6696 dtrace_provider_t *provider; 6697 6698 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 6699 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6700 "arguments", name ? name : "<NULL>"); 6701 return (EINVAL); 6702 } 6703 6704 if (name[0] == '\0' || dtrace_badname(name)) { 6705 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6706 "provider name", name); 6707 return (EINVAL); 6708 } 6709 6710 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 6711 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 6712 pops->dtps_destroy == NULL || 6713 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 6714 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6715 "provider ops", name); 6716 return (EINVAL); 6717 } 6718 6719 if (dtrace_badattr(&pap->dtpa_provider) || 6720 dtrace_badattr(&pap->dtpa_mod) || 6721 dtrace_badattr(&pap->dtpa_func) || 6722 dtrace_badattr(&pap->dtpa_name) || 6723 dtrace_badattr(&pap->dtpa_args)) { 6724 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6725 "provider attributes", name); 6726 return (EINVAL); 6727 } 6728 6729 if (priv & ~DTRACE_PRIV_ALL) { 6730 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6731 "privilege attributes", name); 6732 return (EINVAL); 6733 } 6734 6735 if ((priv & DTRACE_PRIV_KERNEL) && 6736 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 6737 pops->dtps_usermode == NULL) { 6738 cmn_err(CE_WARN, "failed to register provider '%s': need " 6739 "dtps_usermode() op for given privilege attributes", name); 6740 return (EINVAL); 6741 } 6742 6743 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 6744 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 6745 (void) strcpy(provider->dtpv_name, name); 6746 6747 provider->dtpv_attr = *pap; 6748 provider->dtpv_priv.dtpp_flags = priv; 6749 if (cr != NULL) { 6750 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 6751 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 6752 } 6753 provider->dtpv_pops = *pops; 6754 6755 if (pops->dtps_provide == NULL) { 6756 ASSERT(pops->dtps_provide_module != NULL); 6757 provider->dtpv_pops.dtps_provide = 6758 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 6759 } 6760 6761 if (pops->dtps_provide_module == NULL) { 6762 ASSERT(pops->dtps_provide != NULL); 6763 provider->dtpv_pops.dtps_provide_module = 6764 (void (*)(void *, struct modctl *))dtrace_nullop; 6765 } 6766 6767 if (pops->dtps_suspend == NULL) { 6768 ASSERT(pops->dtps_resume == NULL); 6769 provider->dtpv_pops.dtps_suspend = 6770 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6771 provider->dtpv_pops.dtps_resume = 6772 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6773 } 6774 6775 provider->dtpv_arg = arg; 6776 *idp = (dtrace_provider_id_t)provider; 6777 6778 if (pops == &dtrace_provider_ops) { 6779 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6780 ASSERT(MUTEX_HELD(&dtrace_lock)); 6781 ASSERT(dtrace_anon.dta_enabling == NULL); 6782 6783 /* 6784 * We make sure that the DTrace provider is at the head of 6785 * the provider chain. 6786 */ 6787 provider->dtpv_next = dtrace_provider; 6788 dtrace_provider = provider; 6789 return (0); 6790 } 6791 6792 mutex_enter(&dtrace_provider_lock); 6793 mutex_enter(&dtrace_lock); 6794 6795 /* 6796 * If there is at least one provider registered, we'll add this 6797 * provider after the first provider. 6798 */ 6799 if (dtrace_provider != NULL) { 6800 provider->dtpv_next = dtrace_provider->dtpv_next; 6801 dtrace_provider->dtpv_next = provider; 6802 } else { 6803 dtrace_provider = provider; 6804 } 6805 6806 if (dtrace_retained != NULL) { 6807 dtrace_enabling_provide(provider); 6808 6809 /* 6810 * Now we need to call dtrace_enabling_matchall() -- which 6811 * will acquire cpu_lock and dtrace_lock. We therefore need 6812 * to drop all of our locks before calling into it... 6813 */ 6814 mutex_exit(&dtrace_lock); 6815 mutex_exit(&dtrace_provider_lock); 6816 dtrace_enabling_matchall(); 6817 6818 return (0); 6819 } 6820 6821 mutex_exit(&dtrace_lock); 6822 mutex_exit(&dtrace_provider_lock); 6823 6824 return (0); 6825 } 6826 6827 /* 6828 * Unregister the specified provider from the DTrace framework. This should 6829 * generally be called by DTrace providers in their detach(9E) entry point. 6830 */ 6831 int 6832 dtrace_unregister(dtrace_provider_id_t id) 6833 { 6834 dtrace_provider_t *old = (dtrace_provider_t *)id; 6835 dtrace_provider_t *prev = NULL; 6836 int i, self = 0; 6837 dtrace_probe_t *probe, *first = NULL; 6838 6839 if (old->dtpv_pops.dtps_enable == 6840 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 6841 /* 6842 * If DTrace itself is the provider, we're called with locks 6843 * already held. 6844 */ 6845 ASSERT(old == dtrace_provider); 6846 ASSERT(dtrace_devi != NULL); 6847 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6848 ASSERT(MUTEX_HELD(&dtrace_lock)); 6849 self = 1; 6850 6851 if (dtrace_provider->dtpv_next != NULL) { 6852 /* 6853 * There's another provider here; return failure. 6854 */ 6855 return (EBUSY); 6856 } 6857 } else { 6858 mutex_enter(&dtrace_provider_lock); 6859 mutex_enter(&mod_lock); 6860 mutex_enter(&dtrace_lock); 6861 } 6862 6863 /* 6864 * If anyone has /dev/dtrace open, or if there are anonymous enabled 6865 * probes, we refuse to let providers slither away, unless this 6866 * provider has already been explicitly invalidated. 6867 */ 6868 if (!old->dtpv_defunct && 6869 (dtrace_opens || (dtrace_anon.dta_state != NULL && 6870 dtrace_anon.dta_state->dts_necbs > 0))) { 6871 if (!self) { 6872 mutex_exit(&dtrace_lock); 6873 mutex_exit(&mod_lock); 6874 mutex_exit(&dtrace_provider_lock); 6875 } 6876 return (EBUSY); 6877 } 6878 6879 /* 6880 * Attempt to destroy the probes associated with this provider. 6881 */ 6882 for (i = 0; i < dtrace_nprobes; i++) { 6883 if ((probe = dtrace_probes[i]) == NULL) 6884 continue; 6885 6886 if (probe->dtpr_provider != old) 6887 continue; 6888 6889 if (probe->dtpr_ecb == NULL) 6890 continue; 6891 6892 /* 6893 * We have at least one ECB; we can't remove this provider. 6894 */ 6895 if (!self) { 6896 mutex_exit(&dtrace_lock); 6897 mutex_exit(&mod_lock); 6898 mutex_exit(&dtrace_provider_lock); 6899 } 6900 return (EBUSY); 6901 } 6902 6903 /* 6904 * All of the probes for this provider are disabled; we can safely 6905 * remove all of them from their hash chains and from the probe array. 6906 */ 6907 for (i = 0; i < dtrace_nprobes; i++) { 6908 if ((probe = dtrace_probes[i]) == NULL) 6909 continue; 6910 6911 if (probe->dtpr_provider != old) 6912 continue; 6913 6914 dtrace_probes[i] = NULL; 6915 6916 dtrace_hash_remove(dtrace_bymod, probe); 6917 dtrace_hash_remove(dtrace_byfunc, probe); 6918 dtrace_hash_remove(dtrace_byname, probe); 6919 6920 if (first == NULL) { 6921 first = probe; 6922 probe->dtpr_nextmod = NULL; 6923 } else { 6924 probe->dtpr_nextmod = first; 6925 first = probe; 6926 } 6927 } 6928 6929 /* 6930 * The provider's probes have been removed from the hash chains and 6931 * from the probe array. Now issue a dtrace_sync() to be sure that 6932 * everyone has cleared out from any probe array processing. 6933 */ 6934 dtrace_sync(); 6935 6936 for (probe = first; probe != NULL; probe = first) { 6937 first = probe->dtpr_nextmod; 6938 6939 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 6940 probe->dtpr_arg); 6941 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 6942 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 6943 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 6944 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 6945 kmem_free(probe, sizeof (dtrace_probe_t)); 6946 } 6947 6948 if ((prev = dtrace_provider) == old) { 6949 ASSERT(self || dtrace_devi == NULL); 6950 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 6951 dtrace_provider = old->dtpv_next; 6952 } else { 6953 while (prev != NULL && prev->dtpv_next != old) 6954 prev = prev->dtpv_next; 6955 6956 if (prev == NULL) { 6957 panic("attempt to unregister non-existent " 6958 "dtrace provider %p\n", (void *)id); 6959 } 6960 6961 prev->dtpv_next = old->dtpv_next; 6962 } 6963 6964 if (!self) { 6965 mutex_exit(&dtrace_lock); 6966 mutex_exit(&mod_lock); 6967 mutex_exit(&dtrace_provider_lock); 6968 } 6969 6970 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 6971 kmem_free(old, sizeof (dtrace_provider_t)); 6972 6973 return (0); 6974 } 6975 6976 /* 6977 * Invalidate the specified provider. All subsequent probe lookups for the 6978 * specified provider will fail, but its probes will not be removed. 6979 */ 6980 void 6981 dtrace_invalidate(dtrace_provider_id_t id) 6982 { 6983 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 6984 6985 ASSERT(pvp->dtpv_pops.dtps_enable != 6986 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 6987 6988 mutex_enter(&dtrace_provider_lock); 6989 mutex_enter(&dtrace_lock); 6990 6991 pvp->dtpv_defunct = 1; 6992 6993 mutex_exit(&dtrace_lock); 6994 mutex_exit(&dtrace_provider_lock); 6995 } 6996 6997 /* 6998 * Indicate whether or not DTrace has attached. 6999 */ 7000 int 7001 dtrace_attached(void) 7002 { 7003 /* 7004 * dtrace_provider will be non-NULL iff the DTrace driver has 7005 * attached. (It's non-NULL because DTrace is always itself a 7006 * provider.) 7007 */ 7008 return (dtrace_provider != NULL); 7009 } 7010 7011 /* 7012 * Remove all the unenabled probes for the given provider. This function is 7013 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7014 * -- just as many of its associated probes as it can. 7015 */ 7016 int 7017 dtrace_condense(dtrace_provider_id_t id) 7018 { 7019 dtrace_provider_t *prov = (dtrace_provider_t *)id; 7020 int i; 7021 dtrace_probe_t *probe; 7022 7023 /* 7024 * Make sure this isn't the dtrace provider itself. 7025 */ 7026 ASSERT(prov->dtpv_pops.dtps_enable != 7027 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 7028 7029 mutex_enter(&dtrace_provider_lock); 7030 mutex_enter(&dtrace_lock); 7031 7032 /* 7033 * Attempt to destroy the probes associated with this provider. 7034 */ 7035 for (i = 0; i < dtrace_nprobes; i++) { 7036 if ((probe = dtrace_probes[i]) == NULL) 7037 continue; 7038 7039 if (probe->dtpr_provider != prov) 7040 continue; 7041 7042 if (probe->dtpr_ecb != NULL) 7043 continue; 7044 7045 dtrace_probes[i] = NULL; 7046 7047 dtrace_hash_remove(dtrace_bymod, probe); 7048 dtrace_hash_remove(dtrace_byfunc, probe); 7049 dtrace_hash_remove(dtrace_byname, probe); 7050 7051 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7052 probe->dtpr_arg); 7053 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7054 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7055 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7056 kmem_free(probe, sizeof (dtrace_probe_t)); 7057 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7058 } 7059 7060 mutex_exit(&dtrace_lock); 7061 mutex_exit(&dtrace_provider_lock); 7062 7063 return (0); 7064 } 7065 7066 /* 7067 * DTrace Probe Management Functions 7068 * 7069 * The functions in this section perform the DTrace probe management, 7070 * including functions to create probes, look-up probes, and call into the 7071 * providers to request that probes be provided. Some of these functions are 7072 * in the Provider-to-Framework API; these functions can be identified by the 7073 * fact that they are not declared "static". 7074 */ 7075 7076 /* 7077 * Create a probe with the specified module name, function name, and name. 7078 */ 7079 dtrace_id_t 7080 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7081 const char *func, const char *name, int aframes, void *arg) 7082 { 7083 dtrace_probe_t *probe, **probes; 7084 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7085 dtrace_id_t id; 7086 7087 if (provider == dtrace_provider) { 7088 ASSERT(MUTEX_HELD(&dtrace_lock)); 7089 } else { 7090 mutex_enter(&dtrace_lock); 7091 } 7092 7093 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7094 VM_BESTFIT | VM_SLEEP); 7095 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7096 7097 probe->dtpr_id = id; 7098 probe->dtpr_gen = dtrace_probegen++; 7099 probe->dtpr_mod = dtrace_strdup(mod); 7100 probe->dtpr_func = dtrace_strdup(func); 7101 probe->dtpr_name = dtrace_strdup(name); 7102 probe->dtpr_arg = arg; 7103 probe->dtpr_aframes = aframes; 7104 probe->dtpr_provider = provider; 7105 7106 dtrace_hash_add(dtrace_bymod, probe); 7107 dtrace_hash_add(dtrace_byfunc, probe); 7108 dtrace_hash_add(dtrace_byname, probe); 7109 7110 if (id - 1 >= dtrace_nprobes) { 7111 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7112 size_t nsize = osize << 1; 7113 7114 if (nsize == 0) { 7115 ASSERT(osize == 0); 7116 ASSERT(dtrace_probes == NULL); 7117 nsize = sizeof (dtrace_probe_t *); 7118 } 7119 7120 probes = kmem_zalloc(nsize, KM_SLEEP); 7121 7122 if (dtrace_probes == NULL) { 7123 ASSERT(osize == 0); 7124 dtrace_probes = probes; 7125 dtrace_nprobes = 1; 7126 } else { 7127 dtrace_probe_t **oprobes = dtrace_probes; 7128 7129 bcopy(oprobes, probes, osize); 7130 dtrace_membar_producer(); 7131 dtrace_probes = probes; 7132 7133 dtrace_sync(); 7134 7135 /* 7136 * All CPUs are now seeing the new probes array; we can 7137 * safely free the old array. 7138 */ 7139 kmem_free(oprobes, osize); 7140 dtrace_nprobes <<= 1; 7141 } 7142 7143 ASSERT(id - 1 < dtrace_nprobes); 7144 } 7145 7146 ASSERT(dtrace_probes[id - 1] == NULL); 7147 dtrace_probes[id - 1] = probe; 7148 7149 if (provider != dtrace_provider) 7150 mutex_exit(&dtrace_lock); 7151 7152 return (id); 7153 } 7154 7155 static dtrace_probe_t * 7156 dtrace_probe_lookup_id(dtrace_id_t id) 7157 { 7158 ASSERT(MUTEX_HELD(&dtrace_lock)); 7159 7160 if (id == 0 || id > dtrace_nprobes) 7161 return (NULL); 7162 7163 return (dtrace_probes[id - 1]); 7164 } 7165 7166 static int 7167 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7168 { 7169 *((dtrace_id_t *)arg) = probe->dtpr_id; 7170 7171 return (DTRACE_MATCH_DONE); 7172 } 7173 7174 /* 7175 * Look up a probe based on provider and one or more of module name, function 7176 * name and probe name. 7177 */ 7178 dtrace_id_t 7179 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 7180 const char *func, const char *name) 7181 { 7182 dtrace_probekey_t pkey; 7183 dtrace_id_t id; 7184 int match; 7185 7186 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7187 pkey.dtpk_pmatch = &dtrace_match_string; 7188 pkey.dtpk_mod = mod; 7189 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7190 pkey.dtpk_func = func; 7191 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7192 pkey.dtpk_name = name; 7193 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7194 pkey.dtpk_id = DTRACE_IDNONE; 7195 7196 mutex_enter(&dtrace_lock); 7197 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7198 dtrace_probe_lookup_match, &id); 7199 mutex_exit(&dtrace_lock); 7200 7201 ASSERT(match == 1 || match == 0); 7202 return (match ? id : 0); 7203 } 7204 7205 /* 7206 * Returns the probe argument associated with the specified probe. 7207 */ 7208 void * 7209 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7210 { 7211 dtrace_probe_t *probe; 7212 void *rval = NULL; 7213 7214 mutex_enter(&dtrace_lock); 7215 7216 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7217 probe->dtpr_provider == (dtrace_provider_t *)id) 7218 rval = probe->dtpr_arg; 7219 7220 mutex_exit(&dtrace_lock); 7221 7222 return (rval); 7223 } 7224 7225 /* 7226 * Copy a probe into a probe description. 7227 */ 7228 static void 7229 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7230 { 7231 bzero(pdp, sizeof (dtrace_probedesc_t)); 7232 pdp->dtpd_id = prp->dtpr_id; 7233 7234 (void) strncpy(pdp->dtpd_provider, 7235 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7236 7237 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7238 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7239 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7240 } 7241 7242 /* 7243 * Called to indicate that a probe -- or probes -- should be provided by a 7244 * specfied provider. If the specified description is NULL, the provider will 7245 * be told to provide all of its probes. (This is done whenever a new 7246 * consumer comes along, or whenever a retained enabling is to be matched.) If 7247 * the specified description is non-NULL, the provider is given the 7248 * opportunity to dynamically provide the specified probe, allowing providers 7249 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7250 * probes.) If the provider is NULL, the operations will be applied to all 7251 * providers; if the provider is non-NULL the operations will only be applied 7252 * to the specified provider. The dtrace_provider_lock must be held, and the 7253 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7254 * will need to grab the dtrace_lock when it reenters the framework through 7255 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7256 */ 7257 static void 7258 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7259 { 7260 struct modctl *ctl; 7261 int all = 0; 7262 7263 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7264 7265 if (prv == NULL) { 7266 all = 1; 7267 prv = dtrace_provider; 7268 } 7269 7270 do { 7271 /* 7272 * First, call the blanket provide operation. 7273 */ 7274 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7275 7276 /* 7277 * Now call the per-module provide operation. We will grab 7278 * mod_lock to prevent the list from being modified. Note 7279 * that this also prevents the mod_busy bits from changing. 7280 * (mod_busy can only be changed with mod_lock held.) 7281 */ 7282 mutex_enter(&mod_lock); 7283 7284 ctl = &modules; 7285 do { 7286 if (ctl->mod_busy || ctl->mod_mp == NULL) 7287 continue; 7288 7289 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7290 7291 } while ((ctl = ctl->mod_next) != &modules); 7292 7293 mutex_exit(&mod_lock); 7294 } while (all && (prv = prv->dtpv_next) != NULL); 7295 } 7296 7297 /* 7298 * Iterate over each probe, and call the Framework-to-Provider API function 7299 * denoted by offs. 7300 */ 7301 static void 7302 dtrace_probe_foreach(uintptr_t offs) 7303 { 7304 dtrace_provider_t *prov; 7305 void (*func)(void *, dtrace_id_t, void *); 7306 dtrace_probe_t *probe; 7307 dtrace_icookie_t cookie; 7308 int i; 7309 7310 /* 7311 * We disable interrupts to walk through the probe array. This is 7312 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7313 * won't see stale data. 7314 */ 7315 cookie = dtrace_interrupt_disable(); 7316 7317 for (i = 0; i < dtrace_nprobes; i++) { 7318 if ((probe = dtrace_probes[i]) == NULL) 7319 continue; 7320 7321 if (probe->dtpr_ecb == NULL) { 7322 /* 7323 * This probe isn't enabled -- don't call the function. 7324 */ 7325 continue; 7326 } 7327 7328 prov = probe->dtpr_provider; 7329 func = *((void(**)(void *, dtrace_id_t, void *)) 7330 ((uintptr_t)&prov->dtpv_pops + offs)); 7331 7332 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7333 } 7334 7335 dtrace_interrupt_enable(cookie); 7336 } 7337 7338 static int 7339 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7340 { 7341 dtrace_probekey_t pkey; 7342 uint32_t priv; 7343 uid_t uid; 7344 zoneid_t zoneid; 7345 7346 ASSERT(MUTEX_HELD(&dtrace_lock)); 7347 dtrace_ecb_create_cache = NULL; 7348 7349 if (desc == NULL) { 7350 /* 7351 * If we're passed a NULL description, we're being asked to 7352 * create an ECB with a NULL probe. 7353 */ 7354 (void) dtrace_ecb_create_enable(NULL, enab); 7355 return (0); 7356 } 7357 7358 dtrace_probekey(desc, &pkey); 7359 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7360 &priv, &uid, &zoneid); 7361 7362 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7363 enab)); 7364 } 7365 7366 /* 7367 * DTrace Helper Provider Functions 7368 */ 7369 static void 7370 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7371 { 7372 attr->dtat_name = DOF_ATTR_NAME(dofattr); 7373 attr->dtat_data = DOF_ATTR_DATA(dofattr); 7374 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 7375 } 7376 7377 static void 7378 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 7379 const dof_provider_t *dofprov, char *strtab) 7380 { 7381 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 7382 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 7383 dofprov->dofpv_provattr); 7384 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 7385 dofprov->dofpv_modattr); 7386 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 7387 dofprov->dofpv_funcattr); 7388 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 7389 dofprov->dofpv_nameattr); 7390 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 7391 dofprov->dofpv_argsattr); 7392 } 7393 7394 static void 7395 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7396 { 7397 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7398 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7399 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 7400 dof_provider_t *provider; 7401 dof_probe_t *probe; 7402 uint32_t *off, *enoff; 7403 uint8_t *arg; 7404 char *strtab; 7405 uint_t i, nprobes; 7406 dtrace_helper_provdesc_t dhpv; 7407 dtrace_helper_probedesc_t dhpb; 7408 dtrace_meta_t *meta = dtrace_meta_pid; 7409 dtrace_mops_t *mops = &meta->dtm_mops; 7410 void *parg; 7411 7412 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7413 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7414 provider->dofpv_strtab * dof->dofh_secsize); 7415 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7416 provider->dofpv_probes * dof->dofh_secsize); 7417 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7418 provider->dofpv_prargs * dof->dofh_secsize); 7419 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7420 provider->dofpv_proffs * dof->dofh_secsize); 7421 7422 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7423 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 7424 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 7425 enoff = NULL; 7426 7427 /* 7428 * See dtrace_helper_provider_validate(). 7429 */ 7430 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 7431 provider->dofpv_prenoffs != DOF_SECT_NONE) { 7432 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7433 provider->dofpv_prenoffs * dof->dofh_secsize); 7434 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 7435 } 7436 7437 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 7438 7439 /* 7440 * Create the provider. 7441 */ 7442 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7443 7444 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 7445 return; 7446 7447 meta->dtm_count++; 7448 7449 /* 7450 * Create the probes. 7451 */ 7452 for (i = 0; i < nprobes; i++) { 7453 probe = (dof_probe_t *)(uintptr_t)(daddr + 7454 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 7455 7456 dhpb.dthpb_mod = dhp->dofhp_mod; 7457 dhpb.dthpb_func = strtab + probe->dofpr_func; 7458 dhpb.dthpb_name = strtab + probe->dofpr_name; 7459 dhpb.dthpb_base = probe->dofpr_addr; 7460 dhpb.dthpb_offs = off + probe->dofpr_offidx; 7461 dhpb.dthpb_noffs = probe->dofpr_noffs; 7462 if (enoff != NULL) { 7463 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 7464 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 7465 } else { 7466 dhpb.dthpb_enoffs = NULL; 7467 dhpb.dthpb_nenoffs = 0; 7468 } 7469 dhpb.dthpb_args = arg + probe->dofpr_argidx; 7470 dhpb.dthpb_nargc = probe->dofpr_nargc; 7471 dhpb.dthpb_xargc = probe->dofpr_xargc; 7472 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 7473 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 7474 7475 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 7476 } 7477 } 7478 7479 static void 7480 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 7481 { 7482 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7483 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7484 int i; 7485 7486 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7487 7488 for (i = 0; i < dof->dofh_secnum; i++) { 7489 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7490 dof->dofh_secoff + i * dof->dofh_secsize); 7491 7492 if (sec->dofs_type != DOF_SECT_PROVIDER) 7493 continue; 7494 7495 dtrace_helper_provide_one(dhp, sec, pid); 7496 } 7497 7498 /* 7499 * We may have just created probes, so we must now rematch against 7500 * any retained enablings. Note that this call will acquire both 7501 * cpu_lock and dtrace_lock; the fact that we are holding 7502 * dtrace_meta_lock now is what defines the ordering with respect to 7503 * these three locks. 7504 */ 7505 dtrace_enabling_matchall(); 7506 } 7507 7508 static void 7509 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7510 { 7511 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7512 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7513 dof_sec_t *str_sec; 7514 dof_provider_t *provider; 7515 char *strtab; 7516 dtrace_helper_provdesc_t dhpv; 7517 dtrace_meta_t *meta = dtrace_meta_pid; 7518 dtrace_mops_t *mops = &meta->dtm_mops; 7519 7520 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7521 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7522 provider->dofpv_strtab * dof->dofh_secsize); 7523 7524 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7525 7526 /* 7527 * Create the provider. 7528 */ 7529 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7530 7531 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 7532 7533 meta->dtm_count--; 7534 } 7535 7536 static void 7537 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 7538 { 7539 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7540 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7541 int i; 7542 7543 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7544 7545 for (i = 0; i < dof->dofh_secnum; i++) { 7546 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7547 dof->dofh_secoff + i * dof->dofh_secsize); 7548 7549 if (sec->dofs_type != DOF_SECT_PROVIDER) 7550 continue; 7551 7552 dtrace_helper_provider_remove_one(dhp, sec, pid); 7553 } 7554 } 7555 7556 /* 7557 * DTrace Meta Provider-to-Framework API Functions 7558 * 7559 * These functions implement the Meta Provider-to-Framework API, as described 7560 * in <sys/dtrace.h>. 7561 */ 7562 int 7563 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 7564 dtrace_meta_provider_id_t *idp) 7565 { 7566 dtrace_meta_t *meta; 7567 dtrace_helpers_t *help, *next; 7568 int i; 7569 7570 *idp = DTRACE_METAPROVNONE; 7571 7572 /* 7573 * We strictly don't need the name, but we hold onto it for 7574 * debuggability. All hail error queues! 7575 */ 7576 if (name == NULL) { 7577 cmn_err(CE_WARN, "failed to register meta-provider: " 7578 "invalid name"); 7579 return (EINVAL); 7580 } 7581 7582 if (mops == NULL || 7583 mops->dtms_create_probe == NULL || 7584 mops->dtms_provide_pid == NULL || 7585 mops->dtms_remove_pid == NULL) { 7586 cmn_err(CE_WARN, "failed to register meta-register %s: " 7587 "invalid ops", name); 7588 return (EINVAL); 7589 } 7590 7591 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 7592 meta->dtm_mops = *mops; 7593 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7594 (void) strcpy(meta->dtm_name, name); 7595 meta->dtm_arg = arg; 7596 7597 mutex_enter(&dtrace_meta_lock); 7598 mutex_enter(&dtrace_lock); 7599 7600 if (dtrace_meta_pid != NULL) { 7601 mutex_exit(&dtrace_lock); 7602 mutex_exit(&dtrace_meta_lock); 7603 cmn_err(CE_WARN, "failed to register meta-register %s: " 7604 "user-land meta-provider exists", name); 7605 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 7606 kmem_free(meta, sizeof (dtrace_meta_t)); 7607 return (EINVAL); 7608 } 7609 7610 dtrace_meta_pid = meta; 7611 *idp = (dtrace_meta_provider_id_t)meta; 7612 7613 /* 7614 * If there are providers and probes ready to go, pass them 7615 * off to the new meta provider now. 7616 */ 7617 7618 help = dtrace_deferred_pid; 7619 dtrace_deferred_pid = NULL; 7620 7621 mutex_exit(&dtrace_lock); 7622 7623 while (help != NULL) { 7624 for (i = 0; i < help->dthps_nprovs; i++) { 7625 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 7626 help->dthps_pid); 7627 } 7628 7629 next = help->dthps_next; 7630 help->dthps_next = NULL; 7631 help->dthps_prev = NULL; 7632 help->dthps_deferred = 0; 7633 help = next; 7634 } 7635 7636 mutex_exit(&dtrace_meta_lock); 7637 7638 return (0); 7639 } 7640 7641 int 7642 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 7643 { 7644 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 7645 7646 mutex_enter(&dtrace_meta_lock); 7647 mutex_enter(&dtrace_lock); 7648 7649 if (old == dtrace_meta_pid) { 7650 pp = &dtrace_meta_pid; 7651 } else { 7652 panic("attempt to unregister non-existent " 7653 "dtrace meta-provider %p\n", (void *)old); 7654 } 7655 7656 if (old->dtm_count != 0) { 7657 mutex_exit(&dtrace_lock); 7658 mutex_exit(&dtrace_meta_lock); 7659 return (EBUSY); 7660 } 7661 7662 *pp = NULL; 7663 7664 mutex_exit(&dtrace_lock); 7665 mutex_exit(&dtrace_meta_lock); 7666 7667 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 7668 kmem_free(old, sizeof (dtrace_meta_t)); 7669 7670 return (0); 7671 } 7672 7673 7674 /* 7675 * DTrace DIF Object Functions 7676 */ 7677 static int 7678 dtrace_difo_err(uint_t pc, const char *format, ...) 7679 { 7680 if (dtrace_err_verbose) { 7681 va_list alist; 7682 7683 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 7684 va_start(alist, format); 7685 (void) vuprintf(format, alist); 7686 va_end(alist); 7687 } 7688 7689 #ifdef DTRACE_ERRDEBUG 7690 dtrace_errdebug(format); 7691 #endif 7692 return (1); 7693 } 7694 7695 /* 7696 * Validate a DTrace DIF object by checking the IR instructions. The following 7697 * rules are currently enforced by dtrace_difo_validate(): 7698 * 7699 * 1. Each instruction must have a valid opcode 7700 * 2. Each register, string, variable, or subroutine reference must be valid 7701 * 3. No instruction can modify register %r0 (must be zero) 7702 * 4. All instruction reserved bits must be set to zero 7703 * 5. The last instruction must be a "ret" instruction 7704 * 6. All branch targets must reference a valid instruction _after_ the branch 7705 */ 7706 static int 7707 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 7708 cred_t *cr) 7709 { 7710 int err = 0, i; 7711 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 7712 int kcheckload; 7713 uint_t pc; 7714 7715 kcheckload = cr == NULL || 7716 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 7717 7718 dp->dtdo_destructive = 0; 7719 7720 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 7721 dif_instr_t instr = dp->dtdo_buf[pc]; 7722 7723 uint_t r1 = DIF_INSTR_R1(instr); 7724 uint_t r2 = DIF_INSTR_R2(instr); 7725 uint_t rd = DIF_INSTR_RD(instr); 7726 uint_t rs = DIF_INSTR_RS(instr); 7727 uint_t label = DIF_INSTR_LABEL(instr); 7728 uint_t v = DIF_INSTR_VAR(instr); 7729 uint_t subr = DIF_INSTR_SUBR(instr); 7730 uint_t type = DIF_INSTR_TYPE(instr); 7731 uint_t op = DIF_INSTR_OP(instr); 7732 7733 switch (op) { 7734 case DIF_OP_OR: 7735 case DIF_OP_XOR: 7736 case DIF_OP_AND: 7737 case DIF_OP_SLL: 7738 case DIF_OP_SRL: 7739 case DIF_OP_SRA: 7740 case DIF_OP_SUB: 7741 case DIF_OP_ADD: 7742 case DIF_OP_MUL: 7743 case DIF_OP_SDIV: 7744 case DIF_OP_UDIV: 7745 case DIF_OP_SREM: 7746 case DIF_OP_UREM: 7747 case DIF_OP_COPYS: 7748 if (r1 >= nregs) 7749 err += efunc(pc, "invalid register %u\n", r1); 7750 if (r2 >= nregs) 7751 err += efunc(pc, "invalid register %u\n", r2); 7752 if (rd >= nregs) 7753 err += efunc(pc, "invalid register %u\n", rd); 7754 if (rd == 0) 7755 err += efunc(pc, "cannot write to %r0\n"); 7756 break; 7757 case DIF_OP_NOT: 7758 case DIF_OP_MOV: 7759 case DIF_OP_ALLOCS: 7760 if (r1 >= nregs) 7761 err += efunc(pc, "invalid register %u\n", r1); 7762 if (r2 != 0) 7763 err += efunc(pc, "non-zero reserved bits\n"); 7764 if (rd >= nregs) 7765 err += efunc(pc, "invalid register %u\n", rd); 7766 if (rd == 0) 7767 err += efunc(pc, "cannot write to %r0\n"); 7768 break; 7769 case DIF_OP_LDSB: 7770 case DIF_OP_LDSH: 7771 case DIF_OP_LDSW: 7772 case DIF_OP_LDUB: 7773 case DIF_OP_LDUH: 7774 case DIF_OP_LDUW: 7775 case DIF_OP_LDX: 7776 if (r1 >= nregs) 7777 err += efunc(pc, "invalid register %u\n", r1); 7778 if (r2 != 0) 7779 err += efunc(pc, "non-zero reserved bits\n"); 7780 if (rd >= nregs) 7781 err += efunc(pc, "invalid register %u\n", rd); 7782 if (rd == 0) 7783 err += efunc(pc, "cannot write to %r0\n"); 7784 if (kcheckload) 7785 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 7786 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 7787 break; 7788 case DIF_OP_RLDSB: 7789 case DIF_OP_RLDSH: 7790 case DIF_OP_RLDSW: 7791 case DIF_OP_RLDUB: 7792 case DIF_OP_RLDUH: 7793 case DIF_OP_RLDUW: 7794 case DIF_OP_RLDX: 7795 if (r1 >= nregs) 7796 err += efunc(pc, "invalid register %u\n", r1); 7797 if (r2 != 0) 7798 err += efunc(pc, "non-zero reserved bits\n"); 7799 if (rd >= nregs) 7800 err += efunc(pc, "invalid register %u\n", rd); 7801 if (rd == 0) 7802 err += efunc(pc, "cannot write to %r0\n"); 7803 break; 7804 case DIF_OP_ULDSB: 7805 case DIF_OP_ULDSH: 7806 case DIF_OP_ULDSW: 7807 case DIF_OP_ULDUB: 7808 case DIF_OP_ULDUH: 7809 case DIF_OP_ULDUW: 7810 case DIF_OP_ULDX: 7811 if (r1 >= nregs) 7812 err += efunc(pc, "invalid register %u\n", r1); 7813 if (r2 != 0) 7814 err += efunc(pc, "non-zero reserved bits\n"); 7815 if (rd >= nregs) 7816 err += efunc(pc, "invalid register %u\n", rd); 7817 if (rd == 0) 7818 err += efunc(pc, "cannot write to %r0\n"); 7819 break; 7820 case DIF_OP_STB: 7821 case DIF_OP_STH: 7822 case DIF_OP_STW: 7823 case DIF_OP_STX: 7824 if (r1 >= nregs) 7825 err += efunc(pc, "invalid register %u\n", r1); 7826 if (r2 != 0) 7827 err += efunc(pc, "non-zero reserved bits\n"); 7828 if (rd >= nregs) 7829 err += efunc(pc, "invalid register %u\n", rd); 7830 if (rd == 0) 7831 err += efunc(pc, "cannot write to 0 address\n"); 7832 break; 7833 case DIF_OP_CMP: 7834 case DIF_OP_SCMP: 7835 if (r1 >= nregs) 7836 err += efunc(pc, "invalid register %u\n", r1); 7837 if (r2 >= nregs) 7838 err += efunc(pc, "invalid register %u\n", r2); 7839 if (rd != 0) 7840 err += efunc(pc, "non-zero reserved bits\n"); 7841 break; 7842 case DIF_OP_TST: 7843 if (r1 >= nregs) 7844 err += efunc(pc, "invalid register %u\n", r1); 7845 if (r2 != 0 || rd != 0) 7846 err += efunc(pc, "non-zero reserved bits\n"); 7847 break; 7848 case DIF_OP_BA: 7849 case DIF_OP_BE: 7850 case DIF_OP_BNE: 7851 case DIF_OP_BG: 7852 case DIF_OP_BGU: 7853 case DIF_OP_BGE: 7854 case DIF_OP_BGEU: 7855 case DIF_OP_BL: 7856 case DIF_OP_BLU: 7857 case DIF_OP_BLE: 7858 case DIF_OP_BLEU: 7859 if (label >= dp->dtdo_len) { 7860 err += efunc(pc, "invalid branch target %u\n", 7861 label); 7862 } 7863 if (label <= pc) { 7864 err += efunc(pc, "backward branch to %u\n", 7865 label); 7866 } 7867 break; 7868 case DIF_OP_RET: 7869 if (r1 != 0 || r2 != 0) 7870 err += efunc(pc, "non-zero reserved bits\n"); 7871 if (rd >= nregs) 7872 err += efunc(pc, "invalid register %u\n", rd); 7873 break; 7874 case DIF_OP_NOP: 7875 case DIF_OP_POPTS: 7876 case DIF_OP_FLUSHTS: 7877 if (r1 != 0 || r2 != 0 || rd != 0) 7878 err += efunc(pc, "non-zero reserved bits\n"); 7879 break; 7880 case DIF_OP_SETX: 7881 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 7882 err += efunc(pc, "invalid integer ref %u\n", 7883 DIF_INSTR_INTEGER(instr)); 7884 } 7885 if (rd >= nregs) 7886 err += efunc(pc, "invalid register %u\n", rd); 7887 if (rd == 0) 7888 err += efunc(pc, "cannot write to %r0\n"); 7889 break; 7890 case DIF_OP_SETS: 7891 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 7892 err += efunc(pc, "invalid string ref %u\n", 7893 DIF_INSTR_STRING(instr)); 7894 } 7895 if (rd >= nregs) 7896 err += efunc(pc, "invalid register %u\n", rd); 7897 if (rd == 0) 7898 err += efunc(pc, "cannot write to %r0\n"); 7899 break; 7900 case DIF_OP_LDGA: 7901 case DIF_OP_LDTA: 7902 if (r1 > DIF_VAR_ARRAY_MAX) 7903 err += efunc(pc, "invalid array %u\n", r1); 7904 if (r2 >= nregs) 7905 err += efunc(pc, "invalid register %u\n", r2); 7906 if (rd >= nregs) 7907 err += efunc(pc, "invalid register %u\n", rd); 7908 if (rd == 0) 7909 err += efunc(pc, "cannot write to %r0\n"); 7910 break; 7911 case DIF_OP_LDGS: 7912 case DIF_OP_LDTS: 7913 case DIF_OP_LDLS: 7914 case DIF_OP_LDGAA: 7915 case DIF_OP_LDTAA: 7916 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 7917 err += efunc(pc, "invalid variable %u\n", v); 7918 if (rd >= nregs) 7919 err += efunc(pc, "invalid register %u\n", rd); 7920 if (rd == 0) 7921 err += efunc(pc, "cannot write to %r0\n"); 7922 break; 7923 case DIF_OP_STGS: 7924 case DIF_OP_STTS: 7925 case DIF_OP_STLS: 7926 case DIF_OP_STGAA: 7927 case DIF_OP_STTAA: 7928 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 7929 err += efunc(pc, "invalid variable %u\n", v); 7930 if (rs >= nregs) 7931 err += efunc(pc, "invalid register %u\n", rd); 7932 break; 7933 case DIF_OP_CALL: 7934 if (subr > DIF_SUBR_MAX) 7935 err += efunc(pc, "invalid subr %u\n", subr); 7936 if (rd >= nregs) 7937 err += efunc(pc, "invalid register %u\n", rd); 7938 if (rd == 0) 7939 err += efunc(pc, "cannot write to %r0\n"); 7940 7941 if (subr == DIF_SUBR_COPYOUT || 7942 subr == DIF_SUBR_COPYOUTSTR) { 7943 dp->dtdo_destructive = 1; 7944 } 7945 break; 7946 case DIF_OP_PUSHTR: 7947 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 7948 err += efunc(pc, "invalid ref type %u\n", type); 7949 if (r2 >= nregs) 7950 err += efunc(pc, "invalid register %u\n", r2); 7951 if (rs >= nregs) 7952 err += efunc(pc, "invalid register %u\n", rs); 7953 break; 7954 case DIF_OP_PUSHTV: 7955 if (type != DIF_TYPE_CTF) 7956 err += efunc(pc, "invalid val type %u\n", type); 7957 if (r2 >= nregs) 7958 err += efunc(pc, "invalid register %u\n", r2); 7959 if (rs >= nregs) 7960 err += efunc(pc, "invalid register %u\n", rs); 7961 break; 7962 default: 7963 err += efunc(pc, "invalid opcode %u\n", 7964 DIF_INSTR_OP(instr)); 7965 } 7966 } 7967 7968 if (dp->dtdo_len != 0 && 7969 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 7970 err += efunc(dp->dtdo_len - 1, 7971 "expected 'ret' as last DIF instruction\n"); 7972 } 7973 7974 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 7975 /* 7976 * If we're not returning by reference, the size must be either 7977 * 0 or the size of one of the base types. 7978 */ 7979 switch (dp->dtdo_rtype.dtdt_size) { 7980 case 0: 7981 case sizeof (uint8_t): 7982 case sizeof (uint16_t): 7983 case sizeof (uint32_t): 7984 case sizeof (uint64_t): 7985 break; 7986 7987 default: 7988 err += efunc(dp->dtdo_len - 1, "bad return size"); 7989 } 7990 } 7991 7992 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 7993 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 7994 dtrace_diftype_t *vt, *et; 7995 uint_t id, ndx; 7996 7997 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 7998 v->dtdv_scope != DIFV_SCOPE_THREAD && 7999 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 8000 err += efunc(i, "unrecognized variable scope %d\n", 8001 v->dtdv_scope); 8002 break; 8003 } 8004 8005 if (v->dtdv_kind != DIFV_KIND_ARRAY && 8006 v->dtdv_kind != DIFV_KIND_SCALAR) { 8007 err += efunc(i, "unrecognized variable type %d\n", 8008 v->dtdv_kind); 8009 break; 8010 } 8011 8012 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 8013 err += efunc(i, "%d exceeds variable id limit\n", id); 8014 break; 8015 } 8016 8017 if (id < DIF_VAR_OTHER_UBASE) 8018 continue; 8019 8020 /* 8021 * For user-defined variables, we need to check that this 8022 * definition is identical to any previous definition that we 8023 * encountered. 8024 */ 8025 ndx = id - DIF_VAR_OTHER_UBASE; 8026 8027 switch (v->dtdv_scope) { 8028 case DIFV_SCOPE_GLOBAL: 8029 if (ndx < vstate->dtvs_nglobals) { 8030 dtrace_statvar_t *svar; 8031 8032 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 8033 existing = &svar->dtsv_var; 8034 } 8035 8036 break; 8037 8038 case DIFV_SCOPE_THREAD: 8039 if (ndx < vstate->dtvs_ntlocals) 8040 existing = &vstate->dtvs_tlocals[ndx]; 8041 break; 8042 8043 case DIFV_SCOPE_LOCAL: 8044 if (ndx < vstate->dtvs_nlocals) { 8045 dtrace_statvar_t *svar; 8046 8047 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8048 existing = &svar->dtsv_var; 8049 } 8050 8051 break; 8052 } 8053 8054 vt = &v->dtdv_type; 8055 8056 if (vt->dtdt_flags & DIF_TF_BYREF) { 8057 if (vt->dtdt_size == 0) { 8058 err += efunc(i, "zero-sized variable\n"); 8059 break; 8060 } 8061 8062 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8063 vt->dtdt_size > dtrace_global_maxsize) { 8064 err += efunc(i, "oversized by-ref global\n"); 8065 break; 8066 } 8067 } 8068 8069 if (existing == NULL || existing->dtdv_id == 0) 8070 continue; 8071 8072 ASSERT(existing->dtdv_id == v->dtdv_id); 8073 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8074 8075 if (existing->dtdv_kind != v->dtdv_kind) 8076 err += efunc(i, "%d changed variable kind\n", id); 8077 8078 et = &existing->dtdv_type; 8079 8080 if (vt->dtdt_flags != et->dtdt_flags) { 8081 err += efunc(i, "%d changed variable type flags\n", id); 8082 break; 8083 } 8084 8085 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8086 err += efunc(i, "%d changed variable type size\n", id); 8087 break; 8088 } 8089 } 8090 8091 return (err); 8092 } 8093 8094 /* 8095 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8096 * are much more constrained than normal DIFOs. Specifically, they may 8097 * not: 8098 * 8099 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8100 * miscellaneous string routines 8101 * 2. Access DTrace variables other than the args[] array, and the 8102 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8103 * 3. Have thread-local variables. 8104 * 4. Have dynamic variables. 8105 */ 8106 static int 8107 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8108 { 8109 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8110 int err = 0; 8111 uint_t pc; 8112 8113 for (pc = 0; pc < dp->dtdo_len; pc++) { 8114 dif_instr_t instr = dp->dtdo_buf[pc]; 8115 8116 uint_t v = DIF_INSTR_VAR(instr); 8117 uint_t subr = DIF_INSTR_SUBR(instr); 8118 uint_t op = DIF_INSTR_OP(instr); 8119 8120 switch (op) { 8121 case DIF_OP_OR: 8122 case DIF_OP_XOR: 8123 case DIF_OP_AND: 8124 case DIF_OP_SLL: 8125 case DIF_OP_SRL: 8126 case DIF_OP_SRA: 8127 case DIF_OP_SUB: 8128 case DIF_OP_ADD: 8129 case DIF_OP_MUL: 8130 case DIF_OP_SDIV: 8131 case DIF_OP_UDIV: 8132 case DIF_OP_SREM: 8133 case DIF_OP_UREM: 8134 case DIF_OP_COPYS: 8135 case DIF_OP_NOT: 8136 case DIF_OP_MOV: 8137 case DIF_OP_RLDSB: 8138 case DIF_OP_RLDSH: 8139 case DIF_OP_RLDSW: 8140 case DIF_OP_RLDUB: 8141 case DIF_OP_RLDUH: 8142 case DIF_OP_RLDUW: 8143 case DIF_OP_RLDX: 8144 case DIF_OP_ULDSB: 8145 case DIF_OP_ULDSH: 8146 case DIF_OP_ULDSW: 8147 case DIF_OP_ULDUB: 8148 case DIF_OP_ULDUH: 8149 case DIF_OP_ULDUW: 8150 case DIF_OP_ULDX: 8151 case DIF_OP_STB: 8152 case DIF_OP_STH: 8153 case DIF_OP_STW: 8154 case DIF_OP_STX: 8155 case DIF_OP_ALLOCS: 8156 case DIF_OP_CMP: 8157 case DIF_OP_SCMP: 8158 case DIF_OP_TST: 8159 case DIF_OP_BA: 8160 case DIF_OP_BE: 8161 case DIF_OP_BNE: 8162 case DIF_OP_BG: 8163 case DIF_OP_BGU: 8164 case DIF_OP_BGE: 8165 case DIF_OP_BGEU: 8166 case DIF_OP_BL: 8167 case DIF_OP_BLU: 8168 case DIF_OP_BLE: 8169 case DIF_OP_BLEU: 8170 case DIF_OP_RET: 8171 case DIF_OP_NOP: 8172 case DIF_OP_POPTS: 8173 case DIF_OP_FLUSHTS: 8174 case DIF_OP_SETX: 8175 case DIF_OP_SETS: 8176 case DIF_OP_LDGA: 8177 case DIF_OP_LDLS: 8178 case DIF_OP_STGS: 8179 case DIF_OP_STLS: 8180 case DIF_OP_PUSHTR: 8181 case DIF_OP_PUSHTV: 8182 break; 8183 8184 case DIF_OP_LDGS: 8185 if (v >= DIF_VAR_OTHER_UBASE) 8186 break; 8187 8188 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8189 break; 8190 8191 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8192 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8193 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8194 v == DIF_VAR_UID || v == DIF_VAR_GID) 8195 break; 8196 8197 err += efunc(pc, "illegal variable %u\n", v); 8198 break; 8199 8200 case DIF_OP_LDTA: 8201 case DIF_OP_LDTS: 8202 case DIF_OP_LDGAA: 8203 case DIF_OP_LDTAA: 8204 err += efunc(pc, "illegal dynamic variable load\n"); 8205 break; 8206 8207 case DIF_OP_STTS: 8208 case DIF_OP_STGAA: 8209 case DIF_OP_STTAA: 8210 err += efunc(pc, "illegal dynamic variable store\n"); 8211 break; 8212 8213 case DIF_OP_CALL: 8214 if (subr == DIF_SUBR_ALLOCA || 8215 subr == DIF_SUBR_BCOPY || 8216 subr == DIF_SUBR_COPYIN || 8217 subr == DIF_SUBR_COPYINTO || 8218 subr == DIF_SUBR_COPYINSTR || 8219 subr == DIF_SUBR_INDEX || 8220 subr == DIF_SUBR_INET_NTOA || 8221 subr == DIF_SUBR_INET_NTOA6 || 8222 subr == DIF_SUBR_INET_NTOP || 8223 subr == DIF_SUBR_LLTOSTR || 8224 subr == DIF_SUBR_RINDEX || 8225 subr == DIF_SUBR_STRCHR || 8226 subr == DIF_SUBR_STRJOIN || 8227 subr == DIF_SUBR_STRRCHR || 8228 subr == DIF_SUBR_STRSTR || 8229 subr == DIF_SUBR_HTONS || 8230 subr == DIF_SUBR_HTONL || 8231 subr == DIF_SUBR_HTONLL || 8232 subr == DIF_SUBR_NTOHS || 8233 subr == DIF_SUBR_NTOHL || 8234 subr == DIF_SUBR_NTOHLL) 8235 break; 8236 8237 err += efunc(pc, "invalid subr %u\n", subr); 8238 break; 8239 8240 default: 8241 err += efunc(pc, "invalid opcode %u\n", 8242 DIF_INSTR_OP(instr)); 8243 } 8244 } 8245 8246 return (err); 8247 } 8248 8249 /* 8250 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8251 * basis; 0 if not. 8252 */ 8253 static int 8254 dtrace_difo_cacheable(dtrace_difo_t *dp) 8255 { 8256 int i; 8257 8258 if (dp == NULL) 8259 return (0); 8260 8261 for (i = 0; i < dp->dtdo_varlen; i++) { 8262 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8263 8264 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8265 continue; 8266 8267 switch (v->dtdv_id) { 8268 case DIF_VAR_CURTHREAD: 8269 case DIF_VAR_PID: 8270 case DIF_VAR_TID: 8271 case DIF_VAR_EXECNAME: 8272 case DIF_VAR_ZONENAME: 8273 break; 8274 8275 default: 8276 return (0); 8277 } 8278 } 8279 8280 /* 8281 * This DIF object may be cacheable. Now we need to look for any 8282 * array loading instructions, any memory loading instructions, or 8283 * any stores to thread-local variables. 8284 */ 8285 for (i = 0; i < dp->dtdo_len; i++) { 8286 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8287 8288 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8289 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8290 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8291 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8292 return (0); 8293 } 8294 8295 return (1); 8296 } 8297 8298 static void 8299 dtrace_difo_hold(dtrace_difo_t *dp) 8300 { 8301 int i; 8302 8303 ASSERT(MUTEX_HELD(&dtrace_lock)); 8304 8305 dp->dtdo_refcnt++; 8306 ASSERT(dp->dtdo_refcnt != 0); 8307 8308 /* 8309 * We need to check this DIF object for references to the variable 8310 * DIF_VAR_VTIMESTAMP. 8311 */ 8312 for (i = 0; i < dp->dtdo_varlen; i++) { 8313 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8314 8315 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8316 continue; 8317 8318 if (dtrace_vtime_references++ == 0) 8319 dtrace_vtime_enable(); 8320 } 8321 } 8322 8323 /* 8324 * This routine calculates the dynamic variable chunksize for a given DIF 8325 * object. The calculation is not fool-proof, and can probably be tricked by 8326 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8327 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8328 * if a dynamic variable size exceeds the chunksize. 8329 */ 8330 static void 8331 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8332 { 8333 uint64_t sval; 8334 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8335 const dif_instr_t *text = dp->dtdo_buf; 8336 uint_t pc, srd = 0; 8337 uint_t ttop = 0; 8338 size_t size, ksize; 8339 uint_t id, i; 8340 8341 for (pc = 0; pc < dp->dtdo_len; pc++) { 8342 dif_instr_t instr = text[pc]; 8343 uint_t op = DIF_INSTR_OP(instr); 8344 uint_t rd = DIF_INSTR_RD(instr); 8345 uint_t r1 = DIF_INSTR_R1(instr); 8346 uint_t nkeys = 0; 8347 uchar_t scope; 8348 8349 dtrace_key_t *key = tupregs; 8350 8351 switch (op) { 8352 case DIF_OP_SETX: 8353 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8354 srd = rd; 8355 continue; 8356 8357 case DIF_OP_STTS: 8358 key = &tupregs[DIF_DTR_NREGS]; 8359 key[0].dttk_size = 0; 8360 key[1].dttk_size = 0; 8361 nkeys = 2; 8362 scope = DIFV_SCOPE_THREAD; 8363 break; 8364 8365 case DIF_OP_STGAA: 8366 case DIF_OP_STTAA: 8367 nkeys = ttop; 8368 8369 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 8370 key[nkeys++].dttk_size = 0; 8371 8372 key[nkeys++].dttk_size = 0; 8373 8374 if (op == DIF_OP_STTAA) { 8375 scope = DIFV_SCOPE_THREAD; 8376 } else { 8377 scope = DIFV_SCOPE_GLOBAL; 8378 } 8379 8380 break; 8381 8382 case DIF_OP_PUSHTR: 8383 if (ttop == DIF_DTR_NREGS) 8384 return; 8385 8386 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 8387 /* 8388 * If the register for the size of the "pushtr" 8389 * is %r0 (or the value is 0) and the type is 8390 * a string, we'll use the system-wide default 8391 * string size. 8392 */ 8393 tupregs[ttop++].dttk_size = 8394 dtrace_strsize_default; 8395 } else { 8396 if (srd == 0) 8397 return; 8398 8399 tupregs[ttop++].dttk_size = sval; 8400 } 8401 8402 break; 8403 8404 case DIF_OP_PUSHTV: 8405 if (ttop == DIF_DTR_NREGS) 8406 return; 8407 8408 tupregs[ttop++].dttk_size = 0; 8409 break; 8410 8411 case DIF_OP_FLUSHTS: 8412 ttop = 0; 8413 break; 8414 8415 case DIF_OP_POPTS: 8416 if (ttop != 0) 8417 ttop--; 8418 break; 8419 } 8420 8421 sval = 0; 8422 srd = 0; 8423 8424 if (nkeys == 0) 8425 continue; 8426 8427 /* 8428 * We have a dynamic variable allocation; calculate its size. 8429 */ 8430 for (ksize = 0, i = 0; i < nkeys; i++) 8431 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 8432 8433 size = sizeof (dtrace_dynvar_t); 8434 size += sizeof (dtrace_key_t) * (nkeys - 1); 8435 size += ksize; 8436 8437 /* 8438 * Now we need to determine the size of the stored data. 8439 */ 8440 id = DIF_INSTR_VAR(instr); 8441 8442 for (i = 0; i < dp->dtdo_varlen; i++) { 8443 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8444 8445 if (v->dtdv_id == id && v->dtdv_scope == scope) { 8446 size += v->dtdv_type.dtdt_size; 8447 break; 8448 } 8449 } 8450 8451 if (i == dp->dtdo_varlen) 8452 return; 8453 8454 /* 8455 * We have the size. If this is larger than the chunk size 8456 * for our dynamic variable state, reset the chunk size. 8457 */ 8458 size = P2ROUNDUP(size, sizeof (uint64_t)); 8459 8460 if (size > vstate->dtvs_dynvars.dtds_chunksize) 8461 vstate->dtvs_dynvars.dtds_chunksize = size; 8462 } 8463 } 8464 8465 static void 8466 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8467 { 8468 int i, oldsvars, osz, nsz, otlocals, ntlocals; 8469 uint_t id; 8470 8471 ASSERT(MUTEX_HELD(&dtrace_lock)); 8472 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 8473 8474 for (i = 0; i < dp->dtdo_varlen; i++) { 8475 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8476 dtrace_statvar_t *svar, ***svarp; 8477 size_t dsize = 0; 8478 uint8_t scope = v->dtdv_scope; 8479 int *np; 8480 8481 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8482 continue; 8483 8484 id -= DIF_VAR_OTHER_UBASE; 8485 8486 switch (scope) { 8487 case DIFV_SCOPE_THREAD: 8488 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 8489 dtrace_difv_t *tlocals; 8490 8491 if ((ntlocals = (otlocals << 1)) == 0) 8492 ntlocals = 1; 8493 8494 osz = otlocals * sizeof (dtrace_difv_t); 8495 nsz = ntlocals * sizeof (dtrace_difv_t); 8496 8497 tlocals = kmem_zalloc(nsz, KM_SLEEP); 8498 8499 if (osz != 0) { 8500 bcopy(vstate->dtvs_tlocals, 8501 tlocals, osz); 8502 kmem_free(vstate->dtvs_tlocals, osz); 8503 } 8504 8505 vstate->dtvs_tlocals = tlocals; 8506 vstate->dtvs_ntlocals = ntlocals; 8507 } 8508 8509 vstate->dtvs_tlocals[id] = *v; 8510 continue; 8511 8512 case DIFV_SCOPE_LOCAL: 8513 np = &vstate->dtvs_nlocals; 8514 svarp = &vstate->dtvs_locals; 8515 8516 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8517 dsize = NCPU * (v->dtdv_type.dtdt_size + 8518 sizeof (uint64_t)); 8519 else 8520 dsize = NCPU * sizeof (uint64_t); 8521 8522 break; 8523 8524 case DIFV_SCOPE_GLOBAL: 8525 np = &vstate->dtvs_nglobals; 8526 svarp = &vstate->dtvs_globals; 8527 8528 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8529 dsize = v->dtdv_type.dtdt_size + 8530 sizeof (uint64_t); 8531 8532 break; 8533 8534 default: 8535 ASSERT(0); 8536 } 8537 8538 while (id >= (oldsvars = *np)) { 8539 dtrace_statvar_t **statics; 8540 int newsvars, oldsize, newsize; 8541 8542 if ((newsvars = (oldsvars << 1)) == 0) 8543 newsvars = 1; 8544 8545 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 8546 newsize = newsvars * sizeof (dtrace_statvar_t *); 8547 8548 statics = kmem_zalloc(newsize, KM_SLEEP); 8549 8550 if (oldsize != 0) { 8551 bcopy(*svarp, statics, oldsize); 8552 kmem_free(*svarp, oldsize); 8553 } 8554 8555 *svarp = statics; 8556 *np = newsvars; 8557 } 8558 8559 if ((svar = (*svarp)[id]) == NULL) { 8560 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 8561 svar->dtsv_var = *v; 8562 8563 if ((svar->dtsv_size = dsize) != 0) { 8564 svar->dtsv_data = (uint64_t)(uintptr_t) 8565 kmem_zalloc(dsize, KM_SLEEP); 8566 } 8567 8568 (*svarp)[id] = svar; 8569 } 8570 8571 svar->dtsv_refcnt++; 8572 } 8573 8574 dtrace_difo_chunksize(dp, vstate); 8575 dtrace_difo_hold(dp); 8576 } 8577 8578 static dtrace_difo_t * 8579 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8580 { 8581 dtrace_difo_t *new; 8582 size_t sz; 8583 8584 ASSERT(dp->dtdo_buf != NULL); 8585 ASSERT(dp->dtdo_refcnt != 0); 8586 8587 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 8588 8589 ASSERT(dp->dtdo_buf != NULL); 8590 sz = dp->dtdo_len * sizeof (dif_instr_t); 8591 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 8592 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 8593 new->dtdo_len = dp->dtdo_len; 8594 8595 if (dp->dtdo_strtab != NULL) { 8596 ASSERT(dp->dtdo_strlen != 0); 8597 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 8598 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 8599 new->dtdo_strlen = dp->dtdo_strlen; 8600 } 8601 8602 if (dp->dtdo_inttab != NULL) { 8603 ASSERT(dp->dtdo_intlen != 0); 8604 sz = dp->dtdo_intlen * sizeof (uint64_t); 8605 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 8606 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 8607 new->dtdo_intlen = dp->dtdo_intlen; 8608 } 8609 8610 if (dp->dtdo_vartab != NULL) { 8611 ASSERT(dp->dtdo_varlen != 0); 8612 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 8613 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 8614 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 8615 new->dtdo_varlen = dp->dtdo_varlen; 8616 } 8617 8618 dtrace_difo_init(new, vstate); 8619 return (new); 8620 } 8621 8622 static void 8623 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8624 { 8625 int i; 8626 8627 ASSERT(dp->dtdo_refcnt == 0); 8628 8629 for (i = 0; i < dp->dtdo_varlen; i++) { 8630 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8631 dtrace_statvar_t *svar, **svarp; 8632 uint_t id; 8633 uint8_t scope = v->dtdv_scope; 8634 int *np; 8635 8636 switch (scope) { 8637 case DIFV_SCOPE_THREAD: 8638 continue; 8639 8640 case DIFV_SCOPE_LOCAL: 8641 np = &vstate->dtvs_nlocals; 8642 svarp = vstate->dtvs_locals; 8643 break; 8644 8645 case DIFV_SCOPE_GLOBAL: 8646 np = &vstate->dtvs_nglobals; 8647 svarp = vstate->dtvs_globals; 8648 break; 8649 8650 default: 8651 ASSERT(0); 8652 } 8653 8654 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8655 continue; 8656 8657 id -= DIF_VAR_OTHER_UBASE; 8658 ASSERT(id < *np); 8659 8660 svar = svarp[id]; 8661 ASSERT(svar != NULL); 8662 ASSERT(svar->dtsv_refcnt > 0); 8663 8664 if (--svar->dtsv_refcnt > 0) 8665 continue; 8666 8667 if (svar->dtsv_size != 0) { 8668 ASSERT(svar->dtsv_data != NULL); 8669 kmem_free((void *)(uintptr_t)svar->dtsv_data, 8670 svar->dtsv_size); 8671 } 8672 8673 kmem_free(svar, sizeof (dtrace_statvar_t)); 8674 svarp[id] = NULL; 8675 } 8676 8677 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 8678 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 8679 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 8680 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 8681 8682 kmem_free(dp, sizeof (dtrace_difo_t)); 8683 } 8684 8685 static void 8686 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8687 { 8688 int i; 8689 8690 ASSERT(MUTEX_HELD(&dtrace_lock)); 8691 ASSERT(dp->dtdo_refcnt != 0); 8692 8693 for (i = 0; i < dp->dtdo_varlen; i++) { 8694 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8695 8696 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8697 continue; 8698 8699 ASSERT(dtrace_vtime_references > 0); 8700 if (--dtrace_vtime_references == 0) 8701 dtrace_vtime_disable(); 8702 } 8703 8704 if (--dp->dtdo_refcnt == 0) 8705 dtrace_difo_destroy(dp, vstate); 8706 } 8707 8708 /* 8709 * DTrace Format Functions 8710 */ 8711 static uint16_t 8712 dtrace_format_add(dtrace_state_t *state, char *str) 8713 { 8714 char *fmt, **new; 8715 uint16_t ndx, len = strlen(str) + 1; 8716 8717 fmt = kmem_zalloc(len, KM_SLEEP); 8718 bcopy(str, fmt, len); 8719 8720 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 8721 if (state->dts_formats[ndx] == NULL) { 8722 state->dts_formats[ndx] = fmt; 8723 return (ndx + 1); 8724 } 8725 } 8726 8727 if (state->dts_nformats == USHRT_MAX) { 8728 /* 8729 * This is only likely if a denial-of-service attack is being 8730 * attempted. As such, it's okay to fail silently here. 8731 */ 8732 kmem_free(fmt, len); 8733 return (0); 8734 } 8735 8736 /* 8737 * For simplicity, we always resize the formats array to be exactly the 8738 * number of formats. 8739 */ 8740 ndx = state->dts_nformats++; 8741 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 8742 8743 if (state->dts_formats != NULL) { 8744 ASSERT(ndx != 0); 8745 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 8746 kmem_free(state->dts_formats, ndx * sizeof (char *)); 8747 } 8748 8749 state->dts_formats = new; 8750 state->dts_formats[ndx] = fmt; 8751 8752 return (ndx + 1); 8753 } 8754 8755 static void 8756 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 8757 { 8758 char *fmt; 8759 8760 ASSERT(state->dts_formats != NULL); 8761 ASSERT(format <= state->dts_nformats); 8762 ASSERT(state->dts_formats[format - 1] != NULL); 8763 8764 fmt = state->dts_formats[format - 1]; 8765 kmem_free(fmt, strlen(fmt) + 1); 8766 state->dts_formats[format - 1] = NULL; 8767 } 8768 8769 static void 8770 dtrace_format_destroy(dtrace_state_t *state) 8771 { 8772 int i; 8773 8774 if (state->dts_nformats == 0) { 8775 ASSERT(state->dts_formats == NULL); 8776 return; 8777 } 8778 8779 ASSERT(state->dts_formats != NULL); 8780 8781 for (i = 0; i < state->dts_nformats; i++) { 8782 char *fmt = state->dts_formats[i]; 8783 8784 if (fmt == NULL) 8785 continue; 8786 8787 kmem_free(fmt, strlen(fmt) + 1); 8788 } 8789 8790 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 8791 state->dts_nformats = 0; 8792 state->dts_formats = NULL; 8793 } 8794 8795 /* 8796 * DTrace Predicate Functions 8797 */ 8798 static dtrace_predicate_t * 8799 dtrace_predicate_create(dtrace_difo_t *dp) 8800 { 8801 dtrace_predicate_t *pred; 8802 8803 ASSERT(MUTEX_HELD(&dtrace_lock)); 8804 ASSERT(dp->dtdo_refcnt != 0); 8805 8806 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 8807 pred->dtp_difo = dp; 8808 pred->dtp_refcnt = 1; 8809 8810 if (!dtrace_difo_cacheable(dp)) 8811 return (pred); 8812 8813 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 8814 /* 8815 * This is only theoretically possible -- we have had 2^32 8816 * cacheable predicates on this machine. We cannot allow any 8817 * more predicates to become cacheable: as unlikely as it is, 8818 * there may be a thread caching a (now stale) predicate cache 8819 * ID. (N.B.: the temptation is being successfully resisted to 8820 * have this cmn_err() "Holy shit -- we executed this code!") 8821 */ 8822 return (pred); 8823 } 8824 8825 pred->dtp_cacheid = dtrace_predcache_id++; 8826 8827 return (pred); 8828 } 8829 8830 static void 8831 dtrace_predicate_hold(dtrace_predicate_t *pred) 8832 { 8833 ASSERT(MUTEX_HELD(&dtrace_lock)); 8834 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 8835 ASSERT(pred->dtp_refcnt > 0); 8836 8837 pred->dtp_refcnt++; 8838 } 8839 8840 static void 8841 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 8842 { 8843 dtrace_difo_t *dp = pred->dtp_difo; 8844 8845 ASSERT(MUTEX_HELD(&dtrace_lock)); 8846 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 8847 ASSERT(pred->dtp_refcnt > 0); 8848 8849 if (--pred->dtp_refcnt == 0) { 8850 dtrace_difo_release(pred->dtp_difo, vstate); 8851 kmem_free(pred, sizeof (dtrace_predicate_t)); 8852 } 8853 } 8854 8855 /* 8856 * DTrace Action Description Functions 8857 */ 8858 static dtrace_actdesc_t * 8859 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 8860 uint64_t uarg, uint64_t arg) 8861 { 8862 dtrace_actdesc_t *act; 8863 8864 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 8865 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 8866 8867 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 8868 act->dtad_kind = kind; 8869 act->dtad_ntuple = ntuple; 8870 act->dtad_uarg = uarg; 8871 act->dtad_arg = arg; 8872 act->dtad_refcnt = 1; 8873 8874 return (act); 8875 } 8876 8877 static void 8878 dtrace_actdesc_hold(dtrace_actdesc_t *act) 8879 { 8880 ASSERT(act->dtad_refcnt >= 1); 8881 act->dtad_refcnt++; 8882 } 8883 8884 static void 8885 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 8886 { 8887 dtrace_actkind_t kind = act->dtad_kind; 8888 dtrace_difo_t *dp; 8889 8890 ASSERT(act->dtad_refcnt >= 1); 8891 8892 if (--act->dtad_refcnt != 0) 8893 return; 8894 8895 if ((dp = act->dtad_difo) != NULL) 8896 dtrace_difo_release(dp, vstate); 8897 8898 if (DTRACEACT_ISPRINTFLIKE(kind)) { 8899 char *str = (char *)(uintptr_t)act->dtad_arg; 8900 8901 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 8902 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 8903 8904 if (str != NULL) 8905 kmem_free(str, strlen(str) + 1); 8906 } 8907 8908 kmem_free(act, sizeof (dtrace_actdesc_t)); 8909 } 8910 8911 /* 8912 * DTrace ECB Functions 8913 */ 8914 static dtrace_ecb_t * 8915 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 8916 { 8917 dtrace_ecb_t *ecb; 8918 dtrace_epid_t epid; 8919 8920 ASSERT(MUTEX_HELD(&dtrace_lock)); 8921 8922 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 8923 ecb->dte_predicate = NULL; 8924 ecb->dte_probe = probe; 8925 8926 /* 8927 * The default size is the size of the default action: recording 8928 * the epid. 8929 */ 8930 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 8931 ecb->dte_alignment = sizeof (dtrace_epid_t); 8932 8933 epid = state->dts_epid++; 8934 8935 if (epid - 1 >= state->dts_necbs) { 8936 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 8937 int necbs = state->dts_necbs << 1; 8938 8939 ASSERT(epid == state->dts_necbs + 1); 8940 8941 if (necbs == 0) { 8942 ASSERT(oecbs == NULL); 8943 necbs = 1; 8944 } 8945 8946 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 8947 8948 if (oecbs != NULL) 8949 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 8950 8951 dtrace_membar_producer(); 8952 state->dts_ecbs = ecbs; 8953 8954 if (oecbs != NULL) { 8955 /* 8956 * If this state is active, we must dtrace_sync() 8957 * before we can free the old dts_ecbs array: we're 8958 * coming in hot, and there may be active ring 8959 * buffer processing (which indexes into the dts_ecbs 8960 * array) on another CPU. 8961 */ 8962 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 8963 dtrace_sync(); 8964 8965 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 8966 } 8967 8968 dtrace_membar_producer(); 8969 state->dts_necbs = necbs; 8970 } 8971 8972 ecb->dte_state = state; 8973 8974 ASSERT(state->dts_ecbs[epid - 1] == NULL); 8975 dtrace_membar_producer(); 8976 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 8977 8978 return (ecb); 8979 } 8980 8981 static void 8982 dtrace_ecb_enable(dtrace_ecb_t *ecb) 8983 { 8984 dtrace_probe_t *probe = ecb->dte_probe; 8985 8986 ASSERT(MUTEX_HELD(&cpu_lock)); 8987 ASSERT(MUTEX_HELD(&dtrace_lock)); 8988 ASSERT(ecb->dte_next == NULL); 8989 8990 if (probe == NULL) { 8991 /* 8992 * This is the NULL probe -- there's nothing to do. 8993 */ 8994 return; 8995 } 8996 8997 if (probe->dtpr_ecb == NULL) { 8998 dtrace_provider_t *prov = probe->dtpr_provider; 8999 9000 /* 9001 * We're the first ECB on this probe. 9002 */ 9003 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 9004 9005 if (ecb->dte_predicate != NULL) 9006 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 9007 9008 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 9009 probe->dtpr_id, probe->dtpr_arg); 9010 } else { 9011 /* 9012 * This probe is already active. Swing the last pointer to 9013 * point to the new ECB, and issue a dtrace_sync() to assure 9014 * that all CPUs have seen the change. 9015 */ 9016 ASSERT(probe->dtpr_ecb_last != NULL); 9017 probe->dtpr_ecb_last->dte_next = ecb; 9018 probe->dtpr_ecb_last = ecb; 9019 probe->dtpr_predcache = 0; 9020 9021 dtrace_sync(); 9022 } 9023 } 9024 9025 static void 9026 dtrace_ecb_resize(dtrace_ecb_t *ecb) 9027 { 9028 uint32_t maxalign = sizeof (dtrace_epid_t); 9029 uint32_t align = sizeof (uint8_t), offs, diff; 9030 dtrace_action_t *act; 9031 int wastuple = 0; 9032 uint32_t aggbase = UINT32_MAX; 9033 dtrace_state_t *state = ecb->dte_state; 9034 9035 /* 9036 * If we record anything, we always record the epid. (And we always 9037 * record it first.) 9038 */ 9039 offs = sizeof (dtrace_epid_t); 9040 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9041 9042 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9043 dtrace_recdesc_t *rec = &act->dta_rec; 9044 9045 if ((align = rec->dtrd_alignment) > maxalign) 9046 maxalign = align; 9047 9048 if (!wastuple && act->dta_intuple) { 9049 /* 9050 * This is the first record in a tuple. Align the 9051 * offset to be at offset 4 in an 8-byte aligned 9052 * block. 9053 */ 9054 diff = offs + sizeof (dtrace_aggid_t); 9055 9056 if (diff = (diff & (sizeof (uint64_t) - 1))) 9057 offs += sizeof (uint64_t) - diff; 9058 9059 aggbase = offs - sizeof (dtrace_aggid_t); 9060 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 9061 } 9062 9063 /*LINTED*/ 9064 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 9065 /* 9066 * The current offset is not properly aligned; align it. 9067 */ 9068 offs += align - diff; 9069 } 9070 9071 rec->dtrd_offset = offs; 9072 9073 if (offs + rec->dtrd_size > ecb->dte_needed) { 9074 ecb->dte_needed = offs + rec->dtrd_size; 9075 9076 if (ecb->dte_needed > state->dts_needed) 9077 state->dts_needed = ecb->dte_needed; 9078 } 9079 9080 if (DTRACEACT_ISAGG(act->dta_kind)) { 9081 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9082 dtrace_action_t *first = agg->dtag_first, *prev; 9083 9084 ASSERT(rec->dtrd_size != 0 && first != NULL); 9085 ASSERT(wastuple); 9086 ASSERT(aggbase != UINT32_MAX); 9087 9088 agg->dtag_base = aggbase; 9089 9090 while ((prev = first->dta_prev) != NULL && 9091 DTRACEACT_ISAGG(prev->dta_kind)) { 9092 agg = (dtrace_aggregation_t *)prev; 9093 first = agg->dtag_first; 9094 } 9095 9096 if (prev != NULL) { 9097 offs = prev->dta_rec.dtrd_offset + 9098 prev->dta_rec.dtrd_size; 9099 } else { 9100 offs = sizeof (dtrace_epid_t); 9101 } 9102 wastuple = 0; 9103 } else { 9104 if (!act->dta_intuple) 9105 ecb->dte_size = offs + rec->dtrd_size; 9106 9107 offs += rec->dtrd_size; 9108 } 9109 9110 wastuple = act->dta_intuple; 9111 } 9112 9113 if ((act = ecb->dte_action) != NULL && 9114 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9115 ecb->dte_size == sizeof (dtrace_epid_t)) { 9116 /* 9117 * If the size is still sizeof (dtrace_epid_t), then all 9118 * actions store no data; set the size to 0. 9119 */ 9120 ecb->dte_alignment = maxalign; 9121 ecb->dte_size = 0; 9122 9123 /* 9124 * If the needed space is still sizeof (dtrace_epid_t), then 9125 * all actions need no additional space; set the needed 9126 * size to 0. 9127 */ 9128 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 9129 ecb->dte_needed = 0; 9130 9131 return; 9132 } 9133 9134 /* 9135 * Set our alignment, and make sure that the dte_size and dte_needed 9136 * are aligned to the size of an EPID. 9137 */ 9138 ecb->dte_alignment = maxalign; 9139 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 9140 ~(sizeof (dtrace_epid_t) - 1); 9141 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 9142 ~(sizeof (dtrace_epid_t) - 1); 9143 ASSERT(ecb->dte_size <= ecb->dte_needed); 9144 } 9145 9146 static dtrace_action_t * 9147 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9148 { 9149 dtrace_aggregation_t *agg; 9150 size_t size = sizeof (uint64_t); 9151 int ntuple = desc->dtad_ntuple; 9152 dtrace_action_t *act; 9153 dtrace_recdesc_t *frec; 9154 dtrace_aggid_t aggid; 9155 dtrace_state_t *state = ecb->dte_state; 9156 9157 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9158 agg->dtag_ecb = ecb; 9159 9160 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9161 9162 switch (desc->dtad_kind) { 9163 case DTRACEAGG_MIN: 9164 agg->dtag_initial = UINT64_MAX; 9165 agg->dtag_aggregate = dtrace_aggregate_min; 9166 break; 9167 9168 case DTRACEAGG_MAX: 9169 agg->dtag_aggregate = dtrace_aggregate_max; 9170 break; 9171 9172 case DTRACEAGG_COUNT: 9173 agg->dtag_aggregate = dtrace_aggregate_count; 9174 break; 9175 9176 case DTRACEAGG_QUANTIZE: 9177 agg->dtag_aggregate = dtrace_aggregate_quantize; 9178 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9179 sizeof (uint64_t); 9180 break; 9181 9182 case DTRACEAGG_LQUANTIZE: { 9183 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9184 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9185 9186 agg->dtag_initial = desc->dtad_arg; 9187 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9188 9189 if (step == 0 || levels == 0) 9190 goto err; 9191 9192 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9193 break; 9194 } 9195 9196 case DTRACEAGG_AVG: 9197 agg->dtag_aggregate = dtrace_aggregate_avg; 9198 size = sizeof (uint64_t) * 2; 9199 break; 9200 9201 case DTRACEAGG_SUM: 9202 agg->dtag_aggregate = dtrace_aggregate_sum; 9203 break; 9204 9205 default: 9206 goto err; 9207 } 9208 9209 agg->dtag_action.dta_rec.dtrd_size = size; 9210 9211 if (ntuple == 0) 9212 goto err; 9213 9214 /* 9215 * We must make sure that we have enough actions for the n-tuple. 9216 */ 9217 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9218 if (DTRACEACT_ISAGG(act->dta_kind)) 9219 break; 9220 9221 if (--ntuple == 0) { 9222 /* 9223 * This is the action with which our n-tuple begins. 9224 */ 9225 agg->dtag_first = act; 9226 goto success; 9227 } 9228 } 9229 9230 /* 9231 * This n-tuple is short by ntuple elements. Return failure. 9232 */ 9233 ASSERT(ntuple != 0); 9234 err: 9235 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9236 return (NULL); 9237 9238 success: 9239 /* 9240 * If the last action in the tuple has a size of zero, it's actually 9241 * an expression argument for the aggregating action. 9242 */ 9243 ASSERT(ecb->dte_action_last != NULL); 9244 act = ecb->dte_action_last; 9245 9246 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9247 ASSERT(act->dta_difo != NULL); 9248 9249 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9250 agg->dtag_hasarg = 1; 9251 } 9252 9253 /* 9254 * We need to allocate an id for this aggregation. 9255 */ 9256 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9257 VM_BESTFIT | VM_SLEEP); 9258 9259 if (aggid - 1 >= state->dts_naggregations) { 9260 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9261 dtrace_aggregation_t **aggs; 9262 int naggs = state->dts_naggregations << 1; 9263 int onaggs = state->dts_naggregations; 9264 9265 ASSERT(aggid == state->dts_naggregations + 1); 9266 9267 if (naggs == 0) { 9268 ASSERT(oaggs == NULL); 9269 naggs = 1; 9270 } 9271 9272 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9273 9274 if (oaggs != NULL) { 9275 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9276 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9277 } 9278 9279 state->dts_aggregations = aggs; 9280 state->dts_naggregations = naggs; 9281 } 9282 9283 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9284 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9285 9286 frec = &agg->dtag_first->dta_rec; 9287 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9288 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9289 9290 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9291 ASSERT(!act->dta_intuple); 9292 act->dta_intuple = 1; 9293 } 9294 9295 return (&agg->dtag_action); 9296 } 9297 9298 static void 9299 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9300 { 9301 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9302 dtrace_state_t *state = ecb->dte_state; 9303 dtrace_aggid_t aggid = agg->dtag_id; 9304 9305 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9306 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9307 9308 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9309 state->dts_aggregations[aggid - 1] = NULL; 9310 9311 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9312 } 9313 9314 static int 9315 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9316 { 9317 dtrace_action_t *action, *last; 9318 dtrace_difo_t *dp = desc->dtad_difo; 9319 uint32_t size = 0, align = sizeof (uint8_t), mask; 9320 uint16_t format = 0; 9321 dtrace_recdesc_t *rec; 9322 dtrace_state_t *state = ecb->dte_state; 9323 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9324 uint64_t arg = desc->dtad_arg; 9325 9326 ASSERT(MUTEX_HELD(&dtrace_lock)); 9327 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9328 9329 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9330 /* 9331 * If this is an aggregating action, there must be neither 9332 * a speculate nor a commit on the action chain. 9333 */ 9334 dtrace_action_t *act; 9335 9336 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9337 if (act->dta_kind == DTRACEACT_COMMIT) 9338 return (EINVAL); 9339 9340 if (act->dta_kind == DTRACEACT_SPECULATE) 9341 return (EINVAL); 9342 } 9343 9344 action = dtrace_ecb_aggregation_create(ecb, desc); 9345 9346 if (action == NULL) 9347 return (EINVAL); 9348 } else { 9349 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9350 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9351 dp != NULL && dp->dtdo_destructive)) { 9352 state->dts_destructive = 1; 9353 } 9354 9355 switch (desc->dtad_kind) { 9356 case DTRACEACT_PRINTF: 9357 case DTRACEACT_PRINTA: 9358 case DTRACEACT_SYSTEM: 9359 case DTRACEACT_FREOPEN: 9360 /* 9361 * We know that our arg is a string -- turn it into a 9362 * format. 9363 */ 9364 if (arg == NULL) { 9365 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); 9366 format = 0; 9367 } else { 9368 ASSERT(arg != NULL); 9369 ASSERT(arg > KERNELBASE); 9370 format = dtrace_format_add(state, 9371 (char *)(uintptr_t)arg); 9372 } 9373 9374 /*FALLTHROUGH*/ 9375 case DTRACEACT_LIBACT: 9376 case DTRACEACT_DIFEXPR: 9377 if (dp == NULL) 9378 return (EINVAL); 9379 9380 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 9381 break; 9382 9383 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 9384 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9385 return (EINVAL); 9386 9387 size = opt[DTRACEOPT_STRSIZE]; 9388 } 9389 9390 break; 9391 9392 case DTRACEACT_STACK: 9393 if ((nframes = arg) == 0) { 9394 nframes = opt[DTRACEOPT_STACKFRAMES]; 9395 ASSERT(nframes > 0); 9396 arg = nframes; 9397 } 9398 9399 size = nframes * sizeof (pc_t); 9400 break; 9401 9402 case DTRACEACT_JSTACK: 9403 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 9404 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 9405 9406 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 9407 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 9408 9409 arg = DTRACE_USTACK_ARG(nframes, strsize); 9410 9411 /*FALLTHROUGH*/ 9412 case DTRACEACT_USTACK: 9413 if (desc->dtad_kind != DTRACEACT_JSTACK && 9414 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 9415 strsize = DTRACE_USTACK_STRSIZE(arg); 9416 nframes = opt[DTRACEOPT_USTACKFRAMES]; 9417 ASSERT(nframes > 0); 9418 arg = DTRACE_USTACK_ARG(nframes, strsize); 9419 } 9420 9421 /* 9422 * Save a slot for the pid. 9423 */ 9424 size = (nframes + 1) * sizeof (uint64_t); 9425 size += DTRACE_USTACK_STRSIZE(arg); 9426 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 9427 9428 break; 9429 9430 case DTRACEACT_SYM: 9431 case DTRACEACT_MOD: 9432 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 9433 sizeof (uint64_t)) || 9434 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9435 return (EINVAL); 9436 break; 9437 9438 case DTRACEACT_USYM: 9439 case DTRACEACT_UMOD: 9440 case DTRACEACT_UADDR: 9441 if (dp == NULL || 9442 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 9443 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9444 return (EINVAL); 9445 9446 /* 9447 * We have a slot for the pid, plus a slot for the 9448 * argument. To keep things simple (aligned with 9449 * bitness-neutral sizing), we store each as a 64-bit 9450 * quantity. 9451 */ 9452 size = 2 * sizeof (uint64_t); 9453 break; 9454 9455 case DTRACEACT_STOP: 9456 case DTRACEACT_BREAKPOINT: 9457 case DTRACEACT_PANIC: 9458 break; 9459 9460 case DTRACEACT_CHILL: 9461 case DTRACEACT_DISCARD: 9462 case DTRACEACT_RAISE: 9463 if (dp == NULL) 9464 return (EINVAL); 9465 break; 9466 9467 case DTRACEACT_EXIT: 9468 if (dp == NULL || 9469 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 9470 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9471 return (EINVAL); 9472 break; 9473 9474 case DTRACEACT_SPECULATE: 9475 if (ecb->dte_size > sizeof (dtrace_epid_t)) 9476 return (EINVAL); 9477 9478 if (dp == NULL) 9479 return (EINVAL); 9480 9481 state->dts_speculates = 1; 9482 break; 9483 9484 case DTRACEACT_COMMIT: { 9485 dtrace_action_t *act = ecb->dte_action; 9486 9487 for (; act != NULL; act = act->dta_next) { 9488 if (act->dta_kind == DTRACEACT_COMMIT) 9489 return (EINVAL); 9490 } 9491 9492 if (dp == NULL) 9493 return (EINVAL); 9494 break; 9495 } 9496 9497 default: 9498 return (EINVAL); 9499 } 9500 9501 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 9502 /* 9503 * If this is a data-storing action or a speculate, 9504 * we must be sure that there isn't a commit on the 9505 * action chain. 9506 */ 9507 dtrace_action_t *act = ecb->dte_action; 9508 9509 for (; act != NULL; act = act->dta_next) { 9510 if (act->dta_kind == DTRACEACT_COMMIT) 9511 return (EINVAL); 9512 } 9513 } 9514 9515 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 9516 action->dta_rec.dtrd_size = size; 9517 } 9518 9519 action->dta_refcnt = 1; 9520 rec = &action->dta_rec; 9521 size = rec->dtrd_size; 9522 9523 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 9524 if (!(size & mask)) { 9525 align = mask + 1; 9526 break; 9527 } 9528 } 9529 9530 action->dta_kind = desc->dtad_kind; 9531 9532 if ((action->dta_difo = dp) != NULL) 9533 dtrace_difo_hold(dp); 9534 9535 rec->dtrd_action = action->dta_kind; 9536 rec->dtrd_arg = arg; 9537 rec->dtrd_uarg = desc->dtad_uarg; 9538 rec->dtrd_alignment = (uint16_t)align; 9539 rec->dtrd_format = format; 9540 9541 if ((last = ecb->dte_action_last) != NULL) { 9542 ASSERT(ecb->dte_action != NULL); 9543 action->dta_prev = last; 9544 last->dta_next = action; 9545 } else { 9546 ASSERT(ecb->dte_action == NULL); 9547 ecb->dte_action = action; 9548 } 9549 9550 ecb->dte_action_last = action; 9551 9552 return (0); 9553 } 9554 9555 static void 9556 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 9557 { 9558 dtrace_action_t *act = ecb->dte_action, *next; 9559 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 9560 dtrace_difo_t *dp; 9561 uint16_t format; 9562 9563 if (act != NULL && act->dta_refcnt > 1) { 9564 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 9565 act->dta_refcnt--; 9566 } else { 9567 for (; act != NULL; act = next) { 9568 next = act->dta_next; 9569 ASSERT(next != NULL || act == ecb->dte_action_last); 9570 ASSERT(act->dta_refcnt == 1); 9571 9572 if ((format = act->dta_rec.dtrd_format) != 0) 9573 dtrace_format_remove(ecb->dte_state, format); 9574 9575 if ((dp = act->dta_difo) != NULL) 9576 dtrace_difo_release(dp, vstate); 9577 9578 if (DTRACEACT_ISAGG(act->dta_kind)) { 9579 dtrace_ecb_aggregation_destroy(ecb, act); 9580 } else { 9581 kmem_free(act, sizeof (dtrace_action_t)); 9582 } 9583 } 9584 } 9585 9586 ecb->dte_action = NULL; 9587 ecb->dte_action_last = NULL; 9588 ecb->dte_size = sizeof (dtrace_epid_t); 9589 } 9590 9591 static void 9592 dtrace_ecb_disable(dtrace_ecb_t *ecb) 9593 { 9594 /* 9595 * We disable the ECB by removing it from its probe. 9596 */ 9597 dtrace_ecb_t *pecb, *prev = NULL; 9598 dtrace_probe_t *probe = ecb->dte_probe; 9599 9600 ASSERT(MUTEX_HELD(&dtrace_lock)); 9601 9602 if (probe == NULL) { 9603 /* 9604 * This is the NULL probe; there is nothing to disable. 9605 */ 9606 return; 9607 } 9608 9609 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 9610 if (pecb == ecb) 9611 break; 9612 prev = pecb; 9613 } 9614 9615 ASSERT(pecb != NULL); 9616 9617 if (prev == NULL) { 9618 probe->dtpr_ecb = ecb->dte_next; 9619 } else { 9620 prev->dte_next = ecb->dte_next; 9621 } 9622 9623 if (ecb == probe->dtpr_ecb_last) { 9624 ASSERT(ecb->dte_next == NULL); 9625 probe->dtpr_ecb_last = prev; 9626 } 9627 9628 /* 9629 * The ECB has been disconnected from the probe; now sync to assure 9630 * that all CPUs have seen the change before returning. 9631 */ 9632 dtrace_sync(); 9633 9634 if (probe->dtpr_ecb == NULL) { 9635 /* 9636 * That was the last ECB on the probe; clear the predicate 9637 * cache ID for the probe, disable it and sync one more time 9638 * to assure that we'll never hit it again. 9639 */ 9640 dtrace_provider_t *prov = probe->dtpr_provider; 9641 9642 ASSERT(ecb->dte_next == NULL); 9643 ASSERT(probe->dtpr_ecb_last == NULL); 9644 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 9645 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 9646 probe->dtpr_id, probe->dtpr_arg); 9647 dtrace_sync(); 9648 } else { 9649 /* 9650 * There is at least one ECB remaining on the probe. If there 9651 * is _exactly_ one, set the probe's predicate cache ID to be 9652 * the predicate cache ID of the remaining ECB. 9653 */ 9654 ASSERT(probe->dtpr_ecb_last != NULL); 9655 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 9656 9657 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 9658 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 9659 9660 ASSERT(probe->dtpr_ecb->dte_next == NULL); 9661 9662 if (p != NULL) 9663 probe->dtpr_predcache = p->dtp_cacheid; 9664 } 9665 9666 ecb->dte_next = NULL; 9667 } 9668 } 9669 9670 static void 9671 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 9672 { 9673 dtrace_state_t *state = ecb->dte_state; 9674 dtrace_vstate_t *vstate = &state->dts_vstate; 9675 dtrace_predicate_t *pred; 9676 dtrace_epid_t epid = ecb->dte_epid; 9677 9678 ASSERT(MUTEX_HELD(&dtrace_lock)); 9679 ASSERT(ecb->dte_next == NULL); 9680 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 9681 9682 if ((pred = ecb->dte_predicate) != NULL) 9683 dtrace_predicate_release(pred, vstate); 9684 9685 dtrace_ecb_action_remove(ecb); 9686 9687 ASSERT(state->dts_ecbs[epid - 1] == ecb); 9688 state->dts_ecbs[epid - 1] = NULL; 9689 9690 kmem_free(ecb, sizeof (dtrace_ecb_t)); 9691 } 9692 9693 static dtrace_ecb_t * 9694 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 9695 dtrace_enabling_t *enab) 9696 { 9697 dtrace_ecb_t *ecb; 9698 dtrace_predicate_t *pred; 9699 dtrace_actdesc_t *act; 9700 dtrace_provider_t *prov; 9701 dtrace_ecbdesc_t *desc = enab->dten_current; 9702 9703 ASSERT(MUTEX_HELD(&dtrace_lock)); 9704 ASSERT(state != NULL); 9705 9706 ecb = dtrace_ecb_add(state, probe); 9707 ecb->dte_uarg = desc->dted_uarg; 9708 9709 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 9710 dtrace_predicate_hold(pred); 9711 ecb->dte_predicate = pred; 9712 } 9713 9714 if (probe != NULL) { 9715 /* 9716 * If the provider shows more leg than the consumer is old 9717 * enough to see, we need to enable the appropriate implicit 9718 * predicate bits to prevent the ecb from activating at 9719 * revealing times. 9720 * 9721 * Providers specifying DTRACE_PRIV_USER at register time 9722 * are stating that they need the /proc-style privilege 9723 * model to be enforced, and this is what DTRACE_COND_OWNER 9724 * and DTRACE_COND_ZONEOWNER will then do at probe time. 9725 */ 9726 prov = probe->dtpr_provider; 9727 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 9728 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9729 ecb->dte_cond |= DTRACE_COND_OWNER; 9730 9731 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 9732 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9733 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 9734 9735 /* 9736 * If the provider shows us kernel innards and the user 9737 * is lacking sufficient privilege, enable the 9738 * DTRACE_COND_USERMODE implicit predicate. 9739 */ 9740 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 9741 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 9742 ecb->dte_cond |= DTRACE_COND_USERMODE; 9743 } 9744 9745 if (dtrace_ecb_create_cache != NULL) { 9746 /* 9747 * If we have a cached ecb, we'll use its action list instead 9748 * of creating our own (saving both time and space). 9749 */ 9750 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 9751 dtrace_action_t *act = cached->dte_action; 9752 9753 if (act != NULL) { 9754 ASSERT(act->dta_refcnt > 0); 9755 act->dta_refcnt++; 9756 ecb->dte_action = act; 9757 ecb->dte_action_last = cached->dte_action_last; 9758 ecb->dte_needed = cached->dte_needed; 9759 ecb->dte_size = cached->dte_size; 9760 ecb->dte_alignment = cached->dte_alignment; 9761 } 9762 9763 return (ecb); 9764 } 9765 9766 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 9767 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 9768 dtrace_ecb_destroy(ecb); 9769 return (NULL); 9770 } 9771 } 9772 9773 dtrace_ecb_resize(ecb); 9774 9775 return (dtrace_ecb_create_cache = ecb); 9776 } 9777 9778 static int 9779 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 9780 { 9781 dtrace_ecb_t *ecb; 9782 dtrace_enabling_t *enab = arg; 9783 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 9784 9785 ASSERT(state != NULL); 9786 9787 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 9788 /* 9789 * This probe was created in a generation for which this 9790 * enabling has previously created ECBs; we don't want to 9791 * enable it again, so just kick out. 9792 */ 9793 return (DTRACE_MATCH_NEXT); 9794 } 9795 9796 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 9797 return (DTRACE_MATCH_DONE); 9798 9799 dtrace_ecb_enable(ecb); 9800 return (DTRACE_MATCH_NEXT); 9801 } 9802 9803 static dtrace_ecb_t * 9804 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 9805 { 9806 dtrace_ecb_t *ecb; 9807 9808 ASSERT(MUTEX_HELD(&dtrace_lock)); 9809 9810 if (id == 0 || id > state->dts_necbs) 9811 return (NULL); 9812 9813 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 9814 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 9815 9816 return (state->dts_ecbs[id - 1]); 9817 } 9818 9819 static dtrace_aggregation_t * 9820 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 9821 { 9822 dtrace_aggregation_t *agg; 9823 9824 ASSERT(MUTEX_HELD(&dtrace_lock)); 9825 9826 if (id == 0 || id > state->dts_naggregations) 9827 return (NULL); 9828 9829 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 9830 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 9831 agg->dtag_id == id); 9832 9833 return (state->dts_aggregations[id - 1]); 9834 } 9835 9836 /* 9837 * DTrace Buffer Functions 9838 * 9839 * The following functions manipulate DTrace buffers. Most of these functions 9840 * are called in the context of establishing or processing consumer state; 9841 * exceptions are explicitly noted. 9842 */ 9843 9844 /* 9845 * Note: called from cross call context. This function switches the two 9846 * buffers on a given CPU. The atomicity of this operation is assured by 9847 * disabling interrupts while the actual switch takes place; the disabling of 9848 * interrupts serializes the execution with any execution of dtrace_probe() on 9849 * the same CPU. 9850 */ 9851 static void 9852 dtrace_buffer_switch(dtrace_buffer_t *buf) 9853 { 9854 caddr_t tomax = buf->dtb_tomax; 9855 caddr_t xamot = buf->dtb_xamot; 9856 dtrace_icookie_t cookie; 9857 9858 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 9859 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 9860 9861 cookie = dtrace_interrupt_disable(); 9862 buf->dtb_tomax = xamot; 9863 buf->dtb_xamot = tomax; 9864 buf->dtb_xamot_drops = buf->dtb_drops; 9865 buf->dtb_xamot_offset = buf->dtb_offset; 9866 buf->dtb_xamot_errors = buf->dtb_errors; 9867 buf->dtb_xamot_flags = buf->dtb_flags; 9868 buf->dtb_offset = 0; 9869 buf->dtb_drops = 0; 9870 buf->dtb_errors = 0; 9871 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 9872 dtrace_interrupt_enable(cookie); 9873 } 9874 9875 /* 9876 * Note: called from cross call context. This function activates a buffer 9877 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 9878 * is guaranteed by the disabling of interrupts. 9879 */ 9880 static void 9881 dtrace_buffer_activate(dtrace_state_t *state) 9882 { 9883 dtrace_buffer_t *buf; 9884 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 9885 9886 buf = &state->dts_buffer[CPU->cpu_id]; 9887 9888 if (buf->dtb_tomax != NULL) { 9889 /* 9890 * We might like to assert that the buffer is marked inactive, 9891 * but this isn't necessarily true: the buffer for the CPU 9892 * that processes the BEGIN probe has its buffer activated 9893 * manually. In this case, we take the (harmless) action 9894 * re-clearing the bit INACTIVE bit. 9895 */ 9896 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 9897 } 9898 9899 dtrace_interrupt_enable(cookie); 9900 } 9901 9902 static int 9903 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 9904 processorid_t cpu) 9905 { 9906 cpu_t *cp; 9907 dtrace_buffer_t *buf; 9908 9909 ASSERT(MUTEX_HELD(&cpu_lock)); 9910 ASSERT(MUTEX_HELD(&dtrace_lock)); 9911 9912 if (size > dtrace_nonroot_maxsize && 9913 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 9914 return (EFBIG); 9915 9916 cp = cpu_list; 9917 9918 do { 9919 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 9920 continue; 9921 9922 buf = &bufs[cp->cpu_id]; 9923 9924 /* 9925 * If there is already a buffer allocated for this CPU, it 9926 * is only possible that this is a DR event. In this case, 9927 * the buffer size must match our specified size. 9928 */ 9929 if (buf->dtb_tomax != NULL) { 9930 ASSERT(buf->dtb_size == size); 9931 continue; 9932 } 9933 9934 ASSERT(buf->dtb_xamot == NULL); 9935 9936 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 9937 goto err; 9938 9939 buf->dtb_size = size; 9940 buf->dtb_flags = flags; 9941 buf->dtb_offset = 0; 9942 buf->dtb_drops = 0; 9943 9944 if (flags & DTRACEBUF_NOSWITCH) 9945 continue; 9946 9947 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 9948 goto err; 9949 } while ((cp = cp->cpu_next) != cpu_list); 9950 9951 return (0); 9952 9953 err: 9954 cp = cpu_list; 9955 9956 do { 9957 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 9958 continue; 9959 9960 buf = &bufs[cp->cpu_id]; 9961 9962 if (buf->dtb_xamot != NULL) { 9963 ASSERT(buf->dtb_tomax != NULL); 9964 ASSERT(buf->dtb_size == size); 9965 kmem_free(buf->dtb_xamot, size); 9966 } 9967 9968 if (buf->dtb_tomax != NULL) { 9969 ASSERT(buf->dtb_size == size); 9970 kmem_free(buf->dtb_tomax, size); 9971 } 9972 9973 buf->dtb_tomax = NULL; 9974 buf->dtb_xamot = NULL; 9975 buf->dtb_size = 0; 9976 } while ((cp = cp->cpu_next) != cpu_list); 9977 9978 return (ENOMEM); 9979 } 9980 9981 /* 9982 * Note: called from probe context. This function just increments the drop 9983 * count on a buffer. It has been made a function to allow for the 9984 * possibility of understanding the source of mysterious drop counts. (A 9985 * problem for which one may be particularly disappointed that DTrace cannot 9986 * be used to understand DTrace.) 9987 */ 9988 static void 9989 dtrace_buffer_drop(dtrace_buffer_t *buf) 9990 { 9991 buf->dtb_drops++; 9992 } 9993 9994 /* 9995 * Note: called from probe context. This function is called to reserve space 9996 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 9997 * mstate. Returns the new offset in the buffer, or a negative value if an 9998 * error has occurred. 9999 */ 10000 static intptr_t 10001 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 10002 dtrace_state_t *state, dtrace_mstate_t *mstate) 10003 { 10004 intptr_t offs = buf->dtb_offset, soffs; 10005 intptr_t woffs; 10006 caddr_t tomax; 10007 size_t total; 10008 10009 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 10010 return (-1); 10011 10012 if ((tomax = buf->dtb_tomax) == NULL) { 10013 dtrace_buffer_drop(buf); 10014 return (-1); 10015 } 10016 10017 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 10018 while (offs & (align - 1)) { 10019 /* 10020 * Assert that our alignment is off by a number which 10021 * is itself sizeof (uint32_t) aligned. 10022 */ 10023 ASSERT(!((align - (offs & (align - 1))) & 10024 (sizeof (uint32_t) - 1))); 10025 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10026 offs += sizeof (uint32_t); 10027 } 10028 10029 if ((soffs = offs + needed) > buf->dtb_size) { 10030 dtrace_buffer_drop(buf); 10031 return (-1); 10032 } 10033 10034 if (mstate == NULL) 10035 return (offs); 10036 10037 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10038 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10039 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10040 10041 return (offs); 10042 } 10043 10044 if (buf->dtb_flags & DTRACEBUF_FILL) { 10045 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10046 (buf->dtb_flags & DTRACEBUF_FULL)) 10047 return (-1); 10048 goto out; 10049 } 10050 10051 total = needed + (offs & (align - 1)); 10052 10053 /* 10054 * For a ring buffer, life is quite a bit more complicated. Before 10055 * we can store any padding, we need to adjust our wrapping offset. 10056 * (If we've never before wrapped or we're not about to, no adjustment 10057 * is required.) 10058 */ 10059 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10060 offs + total > buf->dtb_size) { 10061 woffs = buf->dtb_xamot_offset; 10062 10063 if (offs + total > buf->dtb_size) { 10064 /* 10065 * We can't fit in the end of the buffer. First, a 10066 * sanity check that we can fit in the buffer at all. 10067 */ 10068 if (total > buf->dtb_size) { 10069 dtrace_buffer_drop(buf); 10070 return (-1); 10071 } 10072 10073 /* 10074 * We're going to be storing at the top of the buffer, 10075 * so now we need to deal with the wrapped offset. We 10076 * only reset our wrapped offset to 0 if it is 10077 * currently greater than the current offset. If it 10078 * is less than the current offset, it is because a 10079 * previous allocation induced a wrap -- but the 10080 * allocation didn't subsequently take the space due 10081 * to an error or false predicate evaluation. In this 10082 * case, we'll just leave the wrapped offset alone: if 10083 * the wrapped offset hasn't been advanced far enough 10084 * for this allocation, it will be adjusted in the 10085 * lower loop. 10086 */ 10087 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10088 if (woffs >= offs) 10089 woffs = 0; 10090 } else { 10091 woffs = 0; 10092 } 10093 10094 /* 10095 * Now we know that we're going to be storing to the 10096 * top of the buffer and that there is room for us 10097 * there. We need to clear the buffer from the current 10098 * offset to the end (there may be old gunk there). 10099 */ 10100 while (offs < buf->dtb_size) 10101 tomax[offs++] = 0; 10102 10103 /* 10104 * We need to set our offset to zero. And because we 10105 * are wrapping, we need to set the bit indicating as 10106 * much. We can also adjust our needed space back 10107 * down to the space required by the ECB -- we know 10108 * that the top of the buffer is aligned. 10109 */ 10110 offs = 0; 10111 total = needed; 10112 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10113 } else { 10114 /* 10115 * There is room for us in the buffer, so we simply 10116 * need to check the wrapped offset. 10117 */ 10118 if (woffs < offs) { 10119 /* 10120 * The wrapped offset is less than the offset. 10121 * This can happen if we allocated buffer space 10122 * that induced a wrap, but then we didn't 10123 * subsequently take the space due to an error 10124 * or false predicate evaluation. This is 10125 * okay; we know that _this_ allocation isn't 10126 * going to induce a wrap. We still can't 10127 * reset the wrapped offset to be zero, 10128 * however: the space may have been trashed in 10129 * the previous failed probe attempt. But at 10130 * least the wrapped offset doesn't need to 10131 * be adjusted at all... 10132 */ 10133 goto out; 10134 } 10135 } 10136 10137 while (offs + total > woffs) { 10138 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10139 size_t size; 10140 10141 if (epid == DTRACE_EPIDNONE) { 10142 size = sizeof (uint32_t); 10143 } else { 10144 ASSERT(epid <= state->dts_necbs); 10145 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10146 10147 size = state->dts_ecbs[epid - 1]->dte_size; 10148 } 10149 10150 ASSERT(woffs + size <= buf->dtb_size); 10151 ASSERT(size != 0); 10152 10153 if (woffs + size == buf->dtb_size) { 10154 /* 10155 * We've reached the end of the buffer; we want 10156 * to set the wrapped offset to 0 and break 10157 * out. However, if the offs is 0, then we're 10158 * in a strange edge-condition: the amount of 10159 * space that we want to reserve plus the size 10160 * of the record that we're overwriting is 10161 * greater than the size of the buffer. This 10162 * is problematic because if we reserve the 10163 * space but subsequently don't consume it (due 10164 * to a failed predicate or error) the wrapped 10165 * offset will be 0 -- yet the EPID at offset 0 10166 * will not be committed. This situation is 10167 * relatively easy to deal with: if we're in 10168 * this case, the buffer is indistinguishable 10169 * from one that hasn't wrapped; we need only 10170 * finish the job by clearing the wrapped bit, 10171 * explicitly setting the offset to be 0, and 10172 * zero'ing out the old data in the buffer. 10173 */ 10174 if (offs == 0) { 10175 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10176 buf->dtb_offset = 0; 10177 woffs = total; 10178 10179 while (woffs < buf->dtb_size) 10180 tomax[woffs++] = 0; 10181 } 10182 10183 woffs = 0; 10184 break; 10185 } 10186 10187 woffs += size; 10188 } 10189 10190 /* 10191 * We have a wrapped offset. It may be that the wrapped offset 10192 * has become zero -- that's okay. 10193 */ 10194 buf->dtb_xamot_offset = woffs; 10195 } 10196 10197 out: 10198 /* 10199 * Now we can plow the buffer with any necessary padding. 10200 */ 10201 while (offs & (align - 1)) { 10202 /* 10203 * Assert that our alignment is off by a number which 10204 * is itself sizeof (uint32_t) aligned. 10205 */ 10206 ASSERT(!((align - (offs & (align - 1))) & 10207 (sizeof (uint32_t) - 1))); 10208 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10209 offs += sizeof (uint32_t); 10210 } 10211 10212 if (buf->dtb_flags & DTRACEBUF_FILL) { 10213 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10214 buf->dtb_flags |= DTRACEBUF_FULL; 10215 return (-1); 10216 } 10217 } 10218 10219 if (mstate == NULL) 10220 return (offs); 10221 10222 /* 10223 * For ring buffers and fill buffers, the scratch space is always 10224 * the inactive buffer. 10225 */ 10226 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10227 mstate->dtms_scratch_size = buf->dtb_size; 10228 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10229 10230 return (offs); 10231 } 10232 10233 static void 10234 dtrace_buffer_polish(dtrace_buffer_t *buf) 10235 { 10236 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10237 ASSERT(MUTEX_HELD(&dtrace_lock)); 10238 10239 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10240 return; 10241 10242 /* 10243 * We need to polish the ring buffer. There are three cases: 10244 * 10245 * - The first (and presumably most common) is that there is no gap 10246 * between the buffer offset and the wrapped offset. In this case, 10247 * there is nothing in the buffer that isn't valid data; we can 10248 * mark the buffer as polished and return. 10249 * 10250 * - The second (less common than the first but still more common 10251 * than the third) is that there is a gap between the buffer offset 10252 * and the wrapped offset, and the wrapped offset is larger than the 10253 * buffer offset. This can happen because of an alignment issue, or 10254 * can happen because of a call to dtrace_buffer_reserve() that 10255 * didn't subsequently consume the buffer space. In this case, 10256 * we need to zero the data from the buffer offset to the wrapped 10257 * offset. 10258 * 10259 * - The third (and least common) is that there is a gap between the 10260 * buffer offset and the wrapped offset, but the wrapped offset is 10261 * _less_ than the buffer offset. This can only happen because a 10262 * call to dtrace_buffer_reserve() induced a wrap, but the space 10263 * was not subsequently consumed. In this case, we need to zero the 10264 * space from the offset to the end of the buffer _and_ from the 10265 * top of the buffer to the wrapped offset. 10266 */ 10267 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10268 bzero(buf->dtb_tomax + buf->dtb_offset, 10269 buf->dtb_xamot_offset - buf->dtb_offset); 10270 } 10271 10272 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10273 bzero(buf->dtb_tomax + buf->dtb_offset, 10274 buf->dtb_size - buf->dtb_offset); 10275 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10276 } 10277 } 10278 10279 static void 10280 dtrace_buffer_free(dtrace_buffer_t *bufs) 10281 { 10282 int i; 10283 10284 for (i = 0; i < NCPU; i++) { 10285 dtrace_buffer_t *buf = &bufs[i]; 10286 10287 if (buf->dtb_tomax == NULL) { 10288 ASSERT(buf->dtb_xamot == NULL); 10289 ASSERT(buf->dtb_size == 0); 10290 continue; 10291 } 10292 10293 if (buf->dtb_xamot != NULL) { 10294 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10295 kmem_free(buf->dtb_xamot, buf->dtb_size); 10296 } 10297 10298 kmem_free(buf->dtb_tomax, buf->dtb_size); 10299 buf->dtb_size = 0; 10300 buf->dtb_tomax = NULL; 10301 buf->dtb_xamot = NULL; 10302 } 10303 } 10304 10305 /* 10306 * DTrace Enabling Functions 10307 */ 10308 static dtrace_enabling_t * 10309 dtrace_enabling_create(dtrace_vstate_t *vstate) 10310 { 10311 dtrace_enabling_t *enab; 10312 10313 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 10314 enab->dten_vstate = vstate; 10315 10316 return (enab); 10317 } 10318 10319 static void 10320 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 10321 { 10322 dtrace_ecbdesc_t **ndesc; 10323 size_t osize, nsize; 10324 10325 /* 10326 * We can't add to enablings after we've enabled them, or after we've 10327 * retained them. 10328 */ 10329 ASSERT(enab->dten_probegen == 0); 10330 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10331 10332 if (enab->dten_ndesc < enab->dten_maxdesc) { 10333 enab->dten_desc[enab->dten_ndesc++] = ecb; 10334 return; 10335 } 10336 10337 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10338 10339 if (enab->dten_maxdesc == 0) { 10340 enab->dten_maxdesc = 1; 10341 } else { 10342 enab->dten_maxdesc <<= 1; 10343 } 10344 10345 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 10346 10347 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10348 ndesc = kmem_zalloc(nsize, KM_SLEEP); 10349 bcopy(enab->dten_desc, ndesc, osize); 10350 kmem_free(enab->dten_desc, osize); 10351 10352 enab->dten_desc = ndesc; 10353 enab->dten_desc[enab->dten_ndesc++] = ecb; 10354 } 10355 10356 static void 10357 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 10358 dtrace_probedesc_t *pd) 10359 { 10360 dtrace_ecbdesc_t *new; 10361 dtrace_predicate_t *pred; 10362 dtrace_actdesc_t *act; 10363 10364 /* 10365 * We're going to create a new ECB description that matches the 10366 * specified ECB in every way, but has the specified probe description. 10367 */ 10368 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10369 10370 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 10371 dtrace_predicate_hold(pred); 10372 10373 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 10374 dtrace_actdesc_hold(act); 10375 10376 new->dted_action = ecb->dted_action; 10377 new->dted_pred = ecb->dted_pred; 10378 new->dted_probe = *pd; 10379 new->dted_uarg = ecb->dted_uarg; 10380 10381 dtrace_enabling_add(enab, new); 10382 } 10383 10384 static void 10385 dtrace_enabling_dump(dtrace_enabling_t *enab) 10386 { 10387 int i; 10388 10389 for (i = 0; i < enab->dten_ndesc; i++) { 10390 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 10391 10392 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 10393 desc->dtpd_provider, desc->dtpd_mod, 10394 desc->dtpd_func, desc->dtpd_name); 10395 } 10396 } 10397 10398 static void 10399 dtrace_enabling_destroy(dtrace_enabling_t *enab) 10400 { 10401 int i; 10402 dtrace_ecbdesc_t *ep; 10403 dtrace_vstate_t *vstate = enab->dten_vstate; 10404 10405 ASSERT(MUTEX_HELD(&dtrace_lock)); 10406 10407 for (i = 0; i < enab->dten_ndesc; i++) { 10408 dtrace_actdesc_t *act, *next; 10409 dtrace_predicate_t *pred; 10410 10411 ep = enab->dten_desc[i]; 10412 10413 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 10414 dtrace_predicate_release(pred, vstate); 10415 10416 for (act = ep->dted_action; act != NULL; act = next) { 10417 next = act->dtad_next; 10418 dtrace_actdesc_release(act, vstate); 10419 } 10420 10421 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10422 } 10423 10424 kmem_free(enab->dten_desc, 10425 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 10426 10427 /* 10428 * If this was a retained enabling, decrement the dts_nretained count 10429 * and take it off of the dtrace_retained list. 10430 */ 10431 if (enab->dten_prev != NULL || enab->dten_next != NULL || 10432 dtrace_retained == enab) { 10433 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10434 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 10435 enab->dten_vstate->dtvs_state->dts_nretained--; 10436 } 10437 10438 if (enab->dten_prev == NULL) { 10439 if (dtrace_retained == enab) { 10440 dtrace_retained = enab->dten_next; 10441 10442 if (dtrace_retained != NULL) 10443 dtrace_retained->dten_prev = NULL; 10444 } 10445 } else { 10446 ASSERT(enab != dtrace_retained); 10447 ASSERT(dtrace_retained != NULL); 10448 enab->dten_prev->dten_next = enab->dten_next; 10449 } 10450 10451 if (enab->dten_next != NULL) { 10452 ASSERT(dtrace_retained != NULL); 10453 enab->dten_next->dten_prev = enab->dten_prev; 10454 } 10455 10456 kmem_free(enab, sizeof (dtrace_enabling_t)); 10457 } 10458 10459 static int 10460 dtrace_enabling_retain(dtrace_enabling_t *enab) 10461 { 10462 dtrace_state_t *state; 10463 10464 ASSERT(MUTEX_HELD(&dtrace_lock)); 10465 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10466 ASSERT(enab->dten_vstate != NULL); 10467 10468 state = enab->dten_vstate->dtvs_state; 10469 ASSERT(state != NULL); 10470 10471 /* 10472 * We only allow each state to retain dtrace_retain_max enablings. 10473 */ 10474 if (state->dts_nretained >= dtrace_retain_max) 10475 return (ENOSPC); 10476 10477 state->dts_nretained++; 10478 10479 if (dtrace_retained == NULL) { 10480 dtrace_retained = enab; 10481 return (0); 10482 } 10483 10484 enab->dten_next = dtrace_retained; 10485 dtrace_retained->dten_prev = enab; 10486 dtrace_retained = enab; 10487 10488 return (0); 10489 } 10490 10491 static int 10492 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 10493 dtrace_probedesc_t *create) 10494 { 10495 dtrace_enabling_t *new, *enab; 10496 int found = 0, err = ENOENT; 10497 10498 ASSERT(MUTEX_HELD(&dtrace_lock)); 10499 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 10500 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 10501 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 10502 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 10503 10504 new = dtrace_enabling_create(&state->dts_vstate); 10505 10506 /* 10507 * Iterate over all retained enablings, looking for enablings that 10508 * match the specified state. 10509 */ 10510 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10511 int i; 10512 10513 /* 10514 * dtvs_state can only be NULL for helper enablings -- and 10515 * helper enablings can't be retained. 10516 */ 10517 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10518 10519 if (enab->dten_vstate->dtvs_state != state) 10520 continue; 10521 10522 /* 10523 * Now iterate over each probe description; we're looking for 10524 * an exact match to the specified probe description. 10525 */ 10526 for (i = 0; i < enab->dten_ndesc; i++) { 10527 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10528 dtrace_probedesc_t *pd = &ep->dted_probe; 10529 10530 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 10531 continue; 10532 10533 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 10534 continue; 10535 10536 if (strcmp(pd->dtpd_func, match->dtpd_func)) 10537 continue; 10538 10539 if (strcmp(pd->dtpd_name, match->dtpd_name)) 10540 continue; 10541 10542 /* 10543 * We have a winning probe! Add it to our growing 10544 * enabling. 10545 */ 10546 found = 1; 10547 dtrace_enabling_addlike(new, ep, create); 10548 } 10549 } 10550 10551 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 10552 dtrace_enabling_destroy(new); 10553 return (err); 10554 } 10555 10556 return (0); 10557 } 10558 10559 static void 10560 dtrace_enabling_retract(dtrace_state_t *state) 10561 { 10562 dtrace_enabling_t *enab, *next; 10563 10564 ASSERT(MUTEX_HELD(&dtrace_lock)); 10565 10566 /* 10567 * Iterate over all retained enablings, destroy the enablings retained 10568 * for the specified state. 10569 */ 10570 for (enab = dtrace_retained; enab != NULL; enab = next) { 10571 next = enab->dten_next; 10572 10573 /* 10574 * dtvs_state can only be NULL for helper enablings -- and 10575 * helper enablings can't be retained. 10576 */ 10577 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10578 10579 if (enab->dten_vstate->dtvs_state == state) { 10580 ASSERT(state->dts_nretained > 0); 10581 dtrace_enabling_destroy(enab); 10582 } 10583 } 10584 10585 ASSERT(state->dts_nretained == 0); 10586 } 10587 10588 static int 10589 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 10590 { 10591 int i = 0; 10592 int matched = 0; 10593 10594 ASSERT(MUTEX_HELD(&cpu_lock)); 10595 ASSERT(MUTEX_HELD(&dtrace_lock)); 10596 10597 for (i = 0; i < enab->dten_ndesc; i++) { 10598 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10599 10600 enab->dten_current = ep; 10601 enab->dten_error = 0; 10602 10603 matched += dtrace_probe_enable(&ep->dted_probe, enab); 10604 10605 if (enab->dten_error != 0) { 10606 /* 10607 * If we get an error half-way through enabling the 10608 * probes, we kick out -- perhaps with some number of 10609 * them enabled. Leaving enabled probes enabled may 10610 * be slightly confusing for user-level, but we expect 10611 * that no one will attempt to actually drive on in 10612 * the face of such errors. If this is an anonymous 10613 * enabling (indicated with a NULL nmatched pointer), 10614 * we cmn_err() a message. We aren't expecting to 10615 * get such an error -- such as it can exist at all, 10616 * it would be a result of corrupted DOF in the driver 10617 * properties. 10618 */ 10619 if (nmatched == NULL) { 10620 cmn_err(CE_WARN, "dtrace_enabling_match() " 10621 "error on %p: %d", (void *)ep, 10622 enab->dten_error); 10623 } 10624 10625 return (enab->dten_error); 10626 } 10627 } 10628 10629 enab->dten_probegen = dtrace_probegen; 10630 if (nmatched != NULL) 10631 *nmatched = matched; 10632 10633 return (0); 10634 } 10635 10636 static void 10637 dtrace_enabling_matchall(void) 10638 { 10639 dtrace_enabling_t *enab; 10640 10641 mutex_enter(&cpu_lock); 10642 mutex_enter(&dtrace_lock); 10643 10644 /* 10645 * Because we can be called after dtrace_detach() has been called, we 10646 * cannot assert that there are retained enablings. We can safely 10647 * load from dtrace_retained, however: the taskq_destroy() at the 10648 * end of dtrace_detach() will block pending our completion. 10649 */ 10650 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) 10651 (void) dtrace_enabling_match(enab, NULL); 10652 10653 mutex_exit(&dtrace_lock); 10654 mutex_exit(&cpu_lock); 10655 } 10656 10657 static int 10658 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched) 10659 { 10660 dtrace_enabling_t *enab; 10661 int matched, total = 0, err; 10662 10663 ASSERT(MUTEX_HELD(&cpu_lock)); 10664 ASSERT(MUTEX_HELD(&dtrace_lock)); 10665 10666 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10667 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10668 10669 if (enab->dten_vstate->dtvs_state != state) 10670 continue; 10671 10672 if ((err = dtrace_enabling_match(enab, &matched)) != 0) 10673 return (err); 10674 10675 total += matched; 10676 } 10677 10678 if (nmatched != NULL) 10679 *nmatched = total; 10680 10681 return (0); 10682 } 10683 10684 /* 10685 * If an enabling is to be enabled without having matched probes (that is, if 10686 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 10687 * enabling must be _primed_ by creating an ECB for every ECB description. 10688 * This must be done to assure that we know the number of speculations, the 10689 * number of aggregations, the minimum buffer size needed, etc. before we 10690 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 10691 * enabling any probes, we create ECBs for every ECB decription, but with a 10692 * NULL probe -- which is exactly what this function does. 10693 */ 10694 static void 10695 dtrace_enabling_prime(dtrace_state_t *state) 10696 { 10697 dtrace_enabling_t *enab; 10698 int i; 10699 10700 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10701 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10702 10703 if (enab->dten_vstate->dtvs_state != state) 10704 continue; 10705 10706 /* 10707 * We don't want to prime an enabling more than once, lest 10708 * we allow a malicious user to induce resource exhaustion. 10709 * (The ECBs that result from priming an enabling aren't 10710 * leaked -- but they also aren't deallocated until the 10711 * consumer state is destroyed.) 10712 */ 10713 if (enab->dten_primed) 10714 continue; 10715 10716 for (i = 0; i < enab->dten_ndesc; i++) { 10717 enab->dten_current = enab->dten_desc[i]; 10718 (void) dtrace_probe_enable(NULL, enab); 10719 } 10720 10721 enab->dten_primed = 1; 10722 } 10723 } 10724 10725 /* 10726 * Called to indicate that probes should be provided due to retained 10727 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 10728 * must take an initial lap through the enabling calling the dtps_provide() 10729 * entry point explicitly to allow for autocreated probes. 10730 */ 10731 static void 10732 dtrace_enabling_provide(dtrace_provider_t *prv) 10733 { 10734 int i, all = 0; 10735 dtrace_probedesc_t desc; 10736 10737 ASSERT(MUTEX_HELD(&dtrace_lock)); 10738 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 10739 10740 if (prv == NULL) { 10741 all = 1; 10742 prv = dtrace_provider; 10743 } 10744 10745 do { 10746 dtrace_enabling_t *enab = dtrace_retained; 10747 void *parg = prv->dtpv_arg; 10748 10749 for (; enab != NULL; enab = enab->dten_next) { 10750 for (i = 0; i < enab->dten_ndesc; i++) { 10751 desc = enab->dten_desc[i]->dted_probe; 10752 mutex_exit(&dtrace_lock); 10753 prv->dtpv_pops.dtps_provide(parg, &desc); 10754 mutex_enter(&dtrace_lock); 10755 } 10756 } 10757 } while (all && (prv = prv->dtpv_next) != NULL); 10758 10759 mutex_exit(&dtrace_lock); 10760 dtrace_probe_provide(NULL, all ? NULL : prv); 10761 mutex_enter(&dtrace_lock); 10762 } 10763 10764 /* 10765 * DTrace DOF Functions 10766 */ 10767 /*ARGSUSED*/ 10768 static void 10769 dtrace_dof_error(dof_hdr_t *dof, const char *str) 10770 { 10771 if (dtrace_err_verbose) 10772 cmn_err(CE_WARN, "failed to process DOF: %s", str); 10773 10774 #ifdef DTRACE_ERRDEBUG 10775 dtrace_errdebug(str); 10776 #endif 10777 } 10778 10779 /* 10780 * Create DOF out of a currently enabled state. Right now, we only create 10781 * DOF containing the run-time options -- but this could be expanded to create 10782 * complete DOF representing the enabled state. 10783 */ 10784 static dof_hdr_t * 10785 dtrace_dof_create(dtrace_state_t *state) 10786 { 10787 dof_hdr_t *dof; 10788 dof_sec_t *sec; 10789 dof_optdesc_t *opt; 10790 int i, len = sizeof (dof_hdr_t) + 10791 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 10792 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10793 10794 ASSERT(MUTEX_HELD(&dtrace_lock)); 10795 10796 dof = kmem_zalloc(len, KM_SLEEP); 10797 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 10798 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 10799 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 10800 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 10801 10802 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 10803 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 10804 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 10805 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 10806 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 10807 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 10808 10809 dof->dofh_flags = 0; 10810 dof->dofh_hdrsize = sizeof (dof_hdr_t); 10811 dof->dofh_secsize = sizeof (dof_sec_t); 10812 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 10813 dof->dofh_secoff = sizeof (dof_hdr_t); 10814 dof->dofh_loadsz = len; 10815 dof->dofh_filesz = len; 10816 dof->dofh_pad = 0; 10817 10818 /* 10819 * Fill in the option section header... 10820 */ 10821 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 10822 sec->dofs_type = DOF_SECT_OPTDESC; 10823 sec->dofs_align = sizeof (uint64_t); 10824 sec->dofs_flags = DOF_SECF_LOAD; 10825 sec->dofs_entsize = sizeof (dof_optdesc_t); 10826 10827 opt = (dof_optdesc_t *)((uintptr_t)sec + 10828 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 10829 10830 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 10831 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10832 10833 for (i = 0; i < DTRACEOPT_MAX; i++) { 10834 opt[i].dofo_option = i; 10835 opt[i].dofo_strtab = DOF_SECIDX_NONE; 10836 opt[i].dofo_value = state->dts_options[i]; 10837 } 10838 10839 return (dof); 10840 } 10841 10842 static dof_hdr_t * 10843 dtrace_dof_copyin(uintptr_t uarg, int *errp) 10844 { 10845 dof_hdr_t hdr, *dof; 10846 10847 ASSERT(!MUTEX_HELD(&dtrace_lock)); 10848 10849 /* 10850 * First, we're going to copyin() the sizeof (dof_hdr_t). 10851 */ 10852 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 10853 dtrace_dof_error(NULL, "failed to copyin DOF header"); 10854 *errp = EFAULT; 10855 return (NULL); 10856 } 10857 10858 /* 10859 * Now we'll allocate the entire DOF and copy it in -- provided 10860 * that the length isn't outrageous. 10861 */ 10862 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 10863 dtrace_dof_error(&hdr, "load size exceeds maximum"); 10864 *errp = E2BIG; 10865 return (NULL); 10866 } 10867 10868 if (hdr.dofh_loadsz < sizeof (hdr)) { 10869 dtrace_dof_error(&hdr, "invalid load size"); 10870 *errp = EINVAL; 10871 return (NULL); 10872 } 10873 10874 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 10875 10876 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) { 10877 kmem_free(dof, hdr.dofh_loadsz); 10878 *errp = EFAULT; 10879 return (NULL); 10880 } 10881 10882 return (dof); 10883 } 10884 10885 static dof_hdr_t * 10886 dtrace_dof_property(const char *name) 10887 { 10888 uchar_t *buf; 10889 uint64_t loadsz; 10890 unsigned int len, i; 10891 dof_hdr_t *dof; 10892 10893 /* 10894 * Unfortunately, array of values in .conf files are always (and 10895 * only) interpreted to be integer arrays. We must read our DOF 10896 * as an integer array, and then squeeze it into a byte array. 10897 */ 10898 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 10899 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 10900 return (NULL); 10901 10902 for (i = 0; i < len; i++) 10903 buf[i] = (uchar_t)(((int *)buf)[i]); 10904 10905 if (len < sizeof (dof_hdr_t)) { 10906 ddi_prop_free(buf); 10907 dtrace_dof_error(NULL, "truncated header"); 10908 return (NULL); 10909 } 10910 10911 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 10912 ddi_prop_free(buf); 10913 dtrace_dof_error(NULL, "truncated DOF"); 10914 return (NULL); 10915 } 10916 10917 if (loadsz >= dtrace_dof_maxsize) { 10918 ddi_prop_free(buf); 10919 dtrace_dof_error(NULL, "oversized DOF"); 10920 return (NULL); 10921 } 10922 10923 dof = kmem_alloc(loadsz, KM_SLEEP); 10924 bcopy(buf, dof, loadsz); 10925 ddi_prop_free(buf); 10926 10927 return (dof); 10928 } 10929 10930 static void 10931 dtrace_dof_destroy(dof_hdr_t *dof) 10932 { 10933 kmem_free(dof, dof->dofh_loadsz); 10934 } 10935 10936 /* 10937 * Return the dof_sec_t pointer corresponding to a given section index. If the 10938 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 10939 * a type other than DOF_SECT_NONE is specified, the header is checked against 10940 * this type and NULL is returned if the types do not match. 10941 */ 10942 static dof_sec_t * 10943 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 10944 { 10945 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 10946 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 10947 10948 if (i >= dof->dofh_secnum) { 10949 dtrace_dof_error(dof, "referenced section index is invalid"); 10950 return (NULL); 10951 } 10952 10953 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 10954 dtrace_dof_error(dof, "referenced section is not loadable"); 10955 return (NULL); 10956 } 10957 10958 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 10959 dtrace_dof_error(dof, "referenced section is the wrong type"); 10960 return (NULL); 10961 } 10962 10963 return (sec); 10964 } 10965 10966 static dtrace_probedesc_t * 10967 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 10968 { 10969 dof_probedesc_t *probe; 10970 dof_sec_t *strtab; 10971 uintptr_t daddr = (uintptr_t)dof; 10972 uintptr_t str; 10973 size_t size; 10974 10975 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 10976 dtrace_dof_error(dof, "invalid probe section"); 10977 return (NULL); 10978 } 10979 10980 if (sec->dofs_align != sizeof (dof_secidx_t)) { 10981 dtrace_dof_error(dof, "bad alignment in probe description"); 10982 return (NULL); 10983 } 10984 10985 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 10986 dtrace_dof_error(dof, "truncated probe description"); 10987 return (NULL); 10988 } 10989 10990 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 10991 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 10992 10993 if (strtab == NULL) 10994 return (NULL); 10995 10996 str = daddr + strtab->dofs_offset; 10997 size = strtab->dofs_size; 10998 10999 if (probe->dofp_provider >= strtab->dofs_size) { 11000 dtrace_dof_error(dof, "corrupt probe provider"); 11001 return (NULL); 11002 } 11003 11004 (void) strncpy(desc->dtpd_provider, 11005 (char *)(str + probe->dofp_provider), 11006 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 11007 11008 if (probe->dofp_mod >= strtab->dofs_size) { 11009 dtrace_dof_error(dof, "corrupt probe module"); 11010 return (NULL); 11011 } 11012 11013 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 11014 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 11015 11016 if (probe->dofp_func >= strtab->dofs_size) { 11017 dtrace_dof_error(dof, "corrupt probe function"); 11018 return (NULL); 11019 } 11020 11021 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 11022 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 11023 11024 if (probe->dofp_name >= strtab->dofs_size) { 11025 dtrace_dof_error(dof, "corrupt probe name"); 11026 return (NULL); 11027 } 11028 11029 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 11030 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 11031 11032 return (desc); 11033 } 11034 11035 static dtrace_difo_t * 11036 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11037 cred_t *cr) 11038 { 11039 dtrace_difo_t *dp; 11040 size_t ttl = 0; 11041 dof_difohdr_t *dofd; 11042 uintptr_t daddr = (uintptr_t)dof; 11043 size_t max = dtrace_difo_maxsize; 11044 int i, l, n; 11045 11046 static const struct { 11047 int section; 11048 int bufoffs; 11049 int lenoffs; 11050 int entsize; 11051 int align; 11052 const char *msg; 11053 } difo[] = { 11054 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11055 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11056 sizeof (dif_instr_t), "multiple DIF sections" }, 11057 11058 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11059 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11060 sizeof (uint64_t), "multiple integer tables" }, 11061 11062 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11063 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11064 sizeof (char), "multiple string tables" }, 11065 11066 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11067 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11068 sizeof (uint_t), "multiple variable tables" }, 11069 11070 { DOF_SECT_NONE, 0, 0, 0, NULL } 11071 }; 11072 11073 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11074 dtrace_dof_error(dof, "invalid DIFO header section"); 11075 return (NULL); 11076 } 11077 11078 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11079 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11080 return (NULL); 11081 } 11082 11083 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11084 sec->dofs_size % sizeof (dof_secidx_t)) { 11085 dtrace_dof_error(dof, "bad size in DIFO header"); 11086 return (NULL); 11087 } 11088 11089 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11090 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11091 11092 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11093 dp->dtdo_rtype = dofd->dofd_rtype; 11094 11095 for (l = 0; l < n; l++) { 11096 dof_sec_t *subsec; 11097 void **bufp; 11098 uint32_t *lenp; 11099 11100 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11101 dofd->dofd_links[l])) == NULL) 11102 goto err; /* invalid section link */ 11103 11104 if (ttl + subsec->dofs_size > max) { 11105 dtrace_dof_error(dof, "exceeds maximum size"); 11106 goto err; 11107 } 11108 11109 ttl += subsec->dofs_size; 11110 11111 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11112 if (subsec->dofs_type != difo[i].section) 11113 continue; 11114 11115 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11116 dtrace_dof_error(dof, "section not loaded"); 11117 goto err; 11118 } 11119 11120 if (subsec->dofs_align != difo[i].align) { 11121 dtrace_dof_error(dof, "bad alignment"); 11122 goto err; 11123 } 11124 11125 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11126 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11127 11128 if (*bufp != NULL) { 11129 dtrace_dof_error(dof, difo[i].msg); 11130 goto err; 11131 } 11132 11133 if (difo[i].entsize != subsec->dofs_entsize) { 11134 dtrace_dof_error(dof, "entry size mismatch"); 11135 goto err; 11136 } 11137 11138 if (subsec->dofs_entsize != 0 && 11139 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11140 dtrace_dof_error(dof, "corrupt entry size"); 11141 goto err; 11142 } 11143 11144 *lenp = subsec->dofs_size; 11145 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11146 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11147 *bufp, subsec->dofs_size); 11148 11149 if (subsec->dofs_entsize != 0) 11150 *lenp /= subsec->dofs_entsize; 11151 11152 break; 11153 } 11154 11155 /* 11156 * If we encounter a loadable DIFO sub-section that is not 11157 * known to us, assume this is a broken program and fail. 11158 */ 11159 if (difo[i].section == DOF_SECT_NONE && 11160 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11161 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11162 goto err; 11163 } 11164 } 11165 11166 if (dp->dtdo_buf == NULL) { 11167 /* 11168 * We can't have a DIF object without DIF text. 11169 */ 11170 dtrace_dof_error(dof, "missing DIF text"); 11171 goto err; 11172 } 11173 11174 /* 11175 * Before we validate the DIF object, run through the variable table 11176 * looking for the strings -- if any of their size are under, we'll set 11177 * their size to be the system-wide default string size. Note that 11178 * this should _not_ happen if the "strsize" option has been set -- 11179 * in this case, the compiler should have set the size to reflect the 11180 * setting of the option. 11181 */ 11182 for (i = 0; i < dp->dtdo_varlen; i++) { 11183 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11184 dtrace_diftype_t *t = &v->dtdv_type; 11185 11186 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 11187 continue; 11188 11189 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 11190 t->dtdt_size = dtrace_strsize_default; 11191 } 11192 11193 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 11194 goto err; 11195 11196 dtrace_difo_init(dp, vstate); 11197 return (dp); 11198 11199 err: 11200 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11201 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11202 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11203 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11204 11205 kmem_free(dp, sizeof (dtrace_difo_t)); 11206 return (NULL); 11207 } 11208 11209 static dtrace_predicate_t * 11210 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11211 cred_t *cr) 11212 { 11213 dtrace_difo_t *dp; 11214 11215 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 11216 return (NULL); 11217 11218 return (dtrace_predicate_create(dp)); 11219 } 11220 11221 static dtrace_actdesc_t * 11222 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11223 cred_t *cr) 11224 { 11225 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 11226 dof_actdesc_t *desc; 11227 dof_sec_t *difosec; 11228 size_t offs; 11229 uintptr_t daddr = (uintptr_t)dof; 11230 uint64_t arg; 11231 dtrace_actkind_t kind; 11232 11233 if (sec->dofs_type != DOF_SECT_ACTDESC) { 11234 dtrace_dof_error(dof, "invalid action section"); 11235 return (NULL); 11236 } 11237 11238 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 11239 dtrace_dof_error(dof, "truncated action description"); 11240 return (NULL); 11241 } 11242 11243 if (sec->dofs_align != sizeof (uint64_t)) { 11244 dtrace_dof_error(dof, "bad alignment in action description"); 11245 return (NULL); 11246 } 11247 11248 if (sec->dofs_size < sec->dofs_entsize) { 11249 dtrace_dof_error(dof, "section entry size exceeds total size"); 11250 return (NULL); 11251 } 11252 11253 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 11254 dtrace_dof_error(dof, "bad entry size in action description"); 11255 return (NULL); 11256 } 11257 11258 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 11259 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 11260 return (NULL); 11261 } 11262 11263 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 11264 desc = (dof_actdesc_t *)(daddr + 11265 (uintptr_t)sec->dofs_offset + offs); 11266 kind = (dtrace_actkind_t)desc->dofa_kind; 11267 11268 if (DTRACEACT_ISPRINTFLIKE(kind) && 11269 (kind != DTRACEACT_PRINTA || 11270 desc->dofa_strtab != DOF_SECIDX_NONE)) { 11271 dof_sec_t *strtab; 11272 char *str, *fmt; 11273 uint64_t i; 11274 11275 /* 11276 * printf()-like actions must have a format string. 11277 */ 11278 if ((strtab = dtrace_dof_sect(dof, 11279 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 11280 goto err; 11281 11282 str = (char *)((uintptr_t)dof + 11283 (uintptr_t)strtab->dofs_offset); 11284 11285 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 11286 if (str[i] == '\0') 11287 break; 11288 } 11289 11290 if (i >= strtab->dofs_size) { 11291 dtrace_dof_error(dof, "bogus format string"); 11292 goto err; 11293 } 11294 11295 if (i == desc->dofa_arg) { 11296 dtrace_dof_error(dof, "empty format string"); 11297 goto err; 11298 } 11299 11300 i -= desc->dofa_arg; 11301 fmt = kmem_alloc(i + 1, KM_SLEEP); 11302 bcopy(&str[desc->dofa_arg], fmt, i + 1); 11303 arg = (uint64_t)(uintptr_t)fmt; 11304 } else { 11305 if (kind == DTRACEACT_PRINTA) { 11306 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 11307 arg = 0; 11308 } else { 11309 arg = desc->dofa_arg; 11310 } 11311 } 11312 11313 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 11314 desc->dofa_uarg, arg); 11315 11316 if (last != NULL) { 11317 last->dtad_next = act; 11318 } else { 11319 first = act; 11320 } 11321 11322 last = act; 11323 11324 if (desc->dofa_difo == DOF_SECIDX_NONE) 11325 continue; 11326 11327 if ((difosec = dtrace_dof_sect(dof, 11328 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 11329 goto err; 11330 11331 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 11332 11333 if (act->dtad_difo == NULL) 11334 goto err; 11335 } 11336 11337 ASSERT(first != NULL); 11338 return (first); 11339 11340 err: 11341 for (act = first; act != NULL; act = next) { 11342 next = act->dtad_next; 11343 dtrace_actdesc_release(act, vstate); 11344 } 11345 11346 return (NULL); 11347 } 11348 11349 static dtrace_ecbdesc_t * 11350 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11351 cred_t *cr) 11352 { 11353 dtrace_ecbdesc_t *ep; 11354 dof_ecbdesc_t *ecb; 11355 dtrace_probedesc_t *desc; 11356 dtrace_predicate_t *pred = NULL; 11357 11358 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 11359 dtrace_dof_error(dof, "truncated ECB description"); 11360 return (NULL); 11361 } 11362 11363 if (sec->dofs_align != sizeof (uint64_t)) { 11364 dtrace_dof_error(dof, "bad alignment in ECB description"); 11365 return (NULL); 11366 } 11367 11368 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 11369 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 11370 11371 if (sec == NULL) 11372 return (NULL); 11373 11374 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11375 ep->dted_uarg = ecb->dofe_uarg; 11376 desc = &ep->dted_probe; 11377 11378 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 11379 goto err; 11380 11381 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 11382 if ((sec = dtrace_dof_sect(dof, 11383 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 11384 goto err; 11385 11386 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 11387 goto err; 11388 11389 ep->dted_pred.dtpdd_predicate = pred; 11390 } 11391 11392 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 11393 if ((sec = dtrace_dof_sect(dof, 11394 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 11395 goto err; 11396 11397 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 11398 11399 if (ep->dted_action == NULL) 11400 goto err; 11401 } 11402 11403 return (ep); 11404 11405 err: 11406 if (pred != NULL) 11407 dtrace_predicate_release(pred, vstate); 11408 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11409 return (NULL); 11410 } 11411 11412 /* 11413 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 11414 * specified DOF. At present, this amounts to simply adding 'ubase' to the 11415 * site of any user SETX relocations to account for load object base address. 11416 * In the future, if we need other relocations, this function can be extended. 11417 */ 11418 static int 11419 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 11420 { 11421 uintptr_t daddr = (uintptr_t)dof; 11422 dof_relohdr_t *dofr = 11423 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11424 dof_sec_t *ss, *rs, *ts; 11425 dof_relodesc_t *r; 11426 uint_t i, n; 11427 11428 if (sec->dofs_size < sizeof (dof_relohdr_t) || 11429 sec->dofs_align != sizeof (dof_secidx_t)) { 11430 dtrace_dof_error(dof, "invalid relocation header"); 11431 return (-1); 11432 } 11433 11434 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 11435 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 11436 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 11437 11438 if (ss == NULL || rs == NULL || ts == NULL) 11439 return (-1); /* dtrace_dof_error() has been called already */ 11440 11441 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 11442 rs->dofs_align != sizeof (uint64_t)) { 11443 dtrace_dof_error(dof, "invalid relocation section"); 11444 return (-1); 11445 } 11446 11447 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 11448 n = rs->dofs_size / rs->dofs_entsize; 11449 11450 for (i = 0; i < n; i++) { 11451 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 11452 11453 switch (r->dofr_type) { 11454 case DOF_RELO_NONE: 11455 break; 11456 case DOF_RELO_SETX: 11457 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 11458 sizeof (uint64_t) > ts->dofs_size) { 11459 dtrace_dof_error(dof, "bad relocation offset"); 11460 return (-1); 11461 } 11462 11463 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 11464 dtrace_dof_error(dof, "misaligned setx relo"); 11465 return (-1); 11466 } 11467 11468 *(uint64_t *)taddr += ubase; 11469 break; 11470 default: 11471 dtrace_dof_error(dof, "invalid relocation type"); 11472 return (-1); 11473 } 11474 11475 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 11476 } 11477 11478 return (0); 11479 } 11480 11481 /* 11482 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 11483 * header: it should be at the front of a memory region that is at least 11484 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 11485 * size. It need not be validated in any other way. 11486 */ 11487 static int 11488 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 11489 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 11490 { 11491 uint64_t len = dof->dofh_loadsz, seclen; 11492 uintptr_t daddr = (uintptr_t)dof; 11493 dtrace_ecbdesc_t *ep; 11494 dtrace_enabling_t *enab; 11495 uint_t i; 11496 11497 ASSERT(MUTEX_HELD(&dtrace_lock)); 11498 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 11499 11500 /* 11501 * Check the DOF header identification bytes. In addition to checking 11502 * valid settings, we also verify that unused bits/bytes are zeroed so 11503 * we can use them later without fear of regressing existing binaries. 11504 */ 11505 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 11506 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 11507 dtrace_dof_error(dof, "DOF magic string mismatch"); 11508 return (-1); 11509 } 11510 11511 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 11512 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 11513 dtrace_dof_error(dof, "DOF has invalid data model"); 11514 return (-1); 11515 } 11516 11517 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 11518 dtrace_dof_error(dof, "DOF encoding mismatch"); 11519 return (-1); 11520 } 11521 11522 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 11523 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 11524 dtrace_dof_error(dof, "DOF version mismatch"); 11525 return (-1); 11526 } 11527 11528 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 11529 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 11530 return (-1); 11531 } 11532 11533 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 11534 dtrace_dof_error(dof, "DOF uses too many integer registers"); 11535 return (-1); 11536 } 11537 11538 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 11539 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 11540 return (-1); 11541 } 11542 11543 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 11544 if (dof->dofh_ident[i] != 0) { 11545 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 11546 return (-1); 11547 } 11548 } 11549 11550 if (dof->dofh_flags & ~DOF_FL_VALID) { 11551 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 11552 return (-1); 11553 } 11554 11555 if (dof->dofh_secsize == 0) { 11556 dtrace_dof_error(dof, "zero section header size"); 11557 return (-1); 11558 } 11559 11560 /* 11561 * Check that the section headers don't exceed the amount of DOF 11562 * data. Note that we cast the section size and number of sections 11563 * to uint64_t's to prevent possible overflow in the multiplication. 11564 */ 11565 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 11566 11567 if (dof->dofh_secoff > len || seclen > len || 11568 dof->dofh_secoff + seclen > len) { 11569 dtrace_dof_error(dof, "truncated section headers"); 11570 return (-1); 11571 } 11572 11573 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 11574 dtrace_dof_error(dof, "misaligned section headers"); 11575 return (-1); 11576 } 11577 11578 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 11579 dtrace_dof_error(dof, "misaligned section size"); 11580 return (-1); 11581 } 11582 11583 /* 11584 * Take an initial pass through the section headers to be sure that 11585 * the headers don't have stray offsets. If the 'noprobes' flag is 11586 * set, do not permit sections relating to providers, probes, or args. 11587 */ 11588 for (i = 0; i < dof->dofh_secnum; i++) { 11589 dof_sec_t *sec = (dof_sec_t *)(daddr + 11590 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11591 11592 if (noprobes) { 11593 switch (sec->dofs_type) { 11594 case DOF_SECT_PROVIDER: 11595 case DOF_SECT_PROBES: 11596 case DOF_SECT_PRARGS: 11597 case DOF_SECT_PROFFS: 11598 dtrace_dof_error(dof, "illegal sections " 11599 "for enabling"); 11600 return (-1); 11601 } 11602 } 11603 11604 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11605 continue; /* just ignore non-loadable sections */ 11606 11607 if (sec->dofs_align & (sec->dofs_align - 1)) { 11608 dtrace_dof_error(dof, "bad section alignment"); 11609 return (-1); 11610 } 11611 11612 if (sec->dofs_offset & (sec->dofs_align - 1)) { 11613 dtrace_dof_error(dof, "misaligned section"); 11614 return (-1); 11615 } 11616 11617 if (sec->dofs_offset > len || sec->dofs_size > len || 11618 sec->dofs_offset + sec->dofs_size > len) { 11619 dtrace_dof_error(dof, "corrupt section header"); 11620 return (-1); 11621 } 11622 11623 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 11624 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 11625 dtrace_dof_error(dof, "non-terminating string table"); 11626 return (-1); 11627 } 11628 } 11629 11630 /* 11631 * Take a second pass through the sections and locate and perform any 11632 * relocations that are present. We do this after the first pass to 11633 * be sure that all sections have had their headers validated. 11634 */ 11635 for (i = 0; i < dof->dofh_secnum; i++) { 11636 dof_sec_t *sec = (dof_sec_t *)(daddr + 11637 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11638 11639 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11640 continue; /* skip sections that are not loadable */ 11641 11642 switch (sec->dofs_type) { 11643 case DOF_SECT_URELHDR: 11644 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 11645 return (-1); 11646 break; 11647 } 11648 } 11649 11650 if ((enab = *enabp) == NULL) 11651 enab = *enabp = dtrace_enabling_create(vstate); 11652 11653 for (i = 0; i < dof->dofh_secnum; i++) { 11654 dof_sec_t *sec = (dof_sec_t *)(daddr + 11655 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11656 11657 if (sec->dofs_type != DOF_SECT_ECBDESC) 11658 continue; 11659 11660 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 11661 dtrace_enabling_destroy(enab); 11662 *enabp = NULL; 11663 return (-1); 11664 } 11665 11666 dtrace_enabling_add(enab, ep); 11667 } 11668 11669 return (0); 11670 } 11671 11672 /* 11673 * Process DOF for any options. This routine assumes that the DOF has been 11674 * at least processed by dtrace_dof_slurp(). 11675 */ 11676 static int 11677 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 11678 { 11679 int i, rval; 11680 uint32_t entsize; 11681 size_t offs; 11682 dof_optdesc_t *desc; 11683 11684 for (i = 0; i < dof->dofh_secnum; i++) { 11685 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 11686 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11687 11688 if (sec->dofs_type != DOF_SECT_OPTDESC) 11689 continue; 11690 11691 if (sec->dofs_align != sizeof (uint64_t)) { 11692 dtrace_dof_error(dof, "bad alignment in " 11693 "option description"); 11694 return (EINVAL); 11695 } 11696 11697 if ((entsize = sec->dofs_entsize) == 0) { 11698 dtrace_dof_error(dof, "zeroed option entry size"); 11699 return (EINVAL); 11700 } 11701 11702 if (entsize < sizeof (dof_optdesc_t)) { 11703 dtrace_dof_error(dof, "bad option entry size"); 11704 return (EINVAL); 11705 } 11706 11707 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 11708 desc = (dof_optdesc_t *)((uintptr_t)dof + 11709 (uintptr_t)sec->dofs_offset + offs); 11710 11711 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 11712 dtrace_dof_error(dof, "non-zero option string"); 11713 return (EINVAL); 11714 } 11715 11716 if (desc->dofo_value == DTRACEOPT_UNSET) { 11717 dtrace_dof_error(dof, "unset option"); 11718 return (EINVAL); 11719 } 11720 11721 if ((rval = dtrace_state_option(state, 11722 desc->dofo_option, desc->dofo_value)) != 0) { 11723 dtrace_dof_error(dof, "rejected option"); 11724 return (rval); 11725 } 11726 } 11727 } 11728 11729 return (0); 11730 } 11731 11732 /* 11733 * DTrace Consumer State Functions 11734 */ 11735 int 11736 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 11737 { 11738 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 11739 void *base; 11740 uintptr_t limit; 11741 dtrace_dynvar_t *dvar, *next, *start; 11742 int i; 11743 11744 ASSERT(MUTEX_HELD(&dtrace_lock)); 11745 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 11746 11747 bzero(dstate, sizeof (dtrace_dstate_t)); 11748 11749 if ((dstate->dtds_chunksize = chunksize) == 0) 11750 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 11751 11752 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 11753 size = min; 11754 11755 if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 11756 return (ENOMEM); 11757 11758 dstate->dtds_size = size; 11759 dstate->dtds_base = base; 11760 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 11761 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 11762 11763 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 11764 11765 if (hashsize != 1 && (hashsize & 1)) 11766 hashsize--; 11767 11768 dstate->dtds_hashsize = hashsize; 11769 dstate->dtds_hash = dstate->dtds_base; 11770 11771 /* 11772 * Set all of our hash buckets to point to the single sink, and (if 11773 * it hasn't already been set), set the sink's hash value to be the 11774 * sink sentinel value. The sink is needed for dynamic variable 11775 * lookups to know that they have iterated over an entire, valid hash 11776 * chain. 11777 */ 11778 for (i = 0; i < hashsize; i++) 11779 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 11780 11781 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 11782 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 11783 11784 /* 11785 * Determine number of active CPUs. Divide free list evenly among 11786 * active CPUs. 11787 */ 11788 start = (dtrace_dynvar_t *) 11789 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 11790 limit = (uintptr_t)base + size; 11791 11792 maxper = (limit - (uintptr_t)start) / NCPU; 11793 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 11794 11795 for (i = 0; i < NCPU; i++) { 11796 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 11797 11798 /* 11799 * If we don't even have enough chunks to make it once through 11800 * NCPUs, we're just going to allocate everything to the first 11801 * CPU. And if we're on the last CPU, we're going to allocate 11802 * whatever is left over. In either case, we set the limit to 11803 * be the limit of the dynamic variable space. 11804 */ 11805 if (maxper == 0 || i == NCPU - 1) { 11806 limit = (uintptr_t)base + size; 11807 start = NULL; 11808 } else { 11809 limit = (uintptr_t)start + maxper; 11810 start = (dtrace_dynvar_t *)limit; 11811 } 11812 11813 ASSERT(limit <= (uintptr_t)base + size); 11814 11815 for (;;) { 11816 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 11817 dstate->dtds_chunksize); 11818 11819 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 11820 break; 11821 11822 dvar->dtdv_next = next; 11823 dvar = next; 11824 } 11825 11826 if (maxper == 0) 11827 break; 11828 } 11829 11830 return (0); 11831 } 11832 11833 void 11834 dtrace_dstate_fini(dtrace_dstate_t *dstate) 11835 { 11836 ASSERT(MUTEX_HELD(&cpu_lock)); 11837 11838 if (dstate->dtds_base == NULL) 11839 return; 11840 11841 kmem_free(dstate->dtds_base, dstate->dtds_size); 11842 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 11843 } 11844 11845 static void 11846 dtrace_vstate_fini(dtrace_vstate_t *vstate) 11847 { 11848 /* 11849 * Logical XOR, where are you? 11850 */ 11851 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 11852 11853 if (vstate->dtvs_nglobals > 0) { 11854 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 11855 sizeof (dtrace_statvar_t *)); 11856 } 11857 11858 if (vstate->dtvs_ntlocals > 0) { 11859 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 11860 sizeof (dtrace_difv_t)); 11861 } 11862 11863 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 11864 11865 if (vstate->dtvs_nlocals > 0) { 11866 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 11867 sizeof (dtrace_statvar_t *)); 11868 } 11869 } 11870 11871 static void 11872 dtrace_state_clean(dtrace_state_t *state) 11873 { 11874 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 11875 return; 11876 11877 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 11878 dtrace_speculation_clean(state); 11879 } 11880 11881 static void 11882 dtrace_state_deadman(dtrace_state_t *state) 11883 { 11884 hrtime_t now; 11885 11886 dtrace_sync(); 11887 11888 now = dtrace_gethrtime(); 11889 11890 if (state != dtrace_anon.dta_state && 11891 now - state->dts_laststatus >= dtrace_deadman_user) 11892 return; 11893 11894 /* 11895 * We must be sure that dts_alive never appears to be less than the 11896 * value upon entry to dtrace_state_deadman(), and because we lack a 11897 * dtrace_cas64(), we cannot store to it atomically. We thus instead 11898 * store INT64_MAX to it, followed by a memory barrier, followed by 11899 * the new value. This assures that dts_alive never appears to be 11900 * less than its true value, regardless of the order in which the 11901 * stores to the underlying storage are issued. 11902 */ 11903 state->dts_alive = INT64_MAX; 11904 dtrace_membar_producer(); 11905 state->dts_alive = now; 11906 } 11907 11908 dtrace_state_t * 11909 dtrace_state_create(dev_t *devp, cred_t *cr) 11910 { 11911 minor_t minor; 11912 major_t major; 11913 char c[30]; 11914 dtrace_state_t *state; 11915 dtrace_optval_t *opt; 11916 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 11917 11918 ASSERT(MUTEX_HELD(&dtrace_lock)); 11919 ASSERT(MUTEX_HELD(&cpu_lock)); 11920 11921 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 11922 VM_BESTFIT | VM_SLEEP); 11923 11924 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 11925 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 11926 return (NULL); 11927 } 11928 11929 state = ddi_get_soft_state(dtrace_softstate, minor); 11930 state->dts_epid = DTRACE_EPIDNONE + 1; 11931 11932 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 11933 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 11934 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 11935 11936 if (devp != NULL) { 11937 major = getemajor(*devp); 11938 } else { 11939 major = ddi_driver_major(dtrace_devi); 11940 } 11941 11942 state->dts_dev = makedevice(major, minor); 11943 11944 if (devp != NULL) 11945 *devp = state->dts_dev; 11946 11947 /* 11948 * We allocate NCPU buffers. On the one hand, this can be quite 11949 * a bit of memory per instance (nearly 36K on a Starcat). On the 11950 * other hand, it saves an additional memory reference in the probe 11951 * path. 11952 */ 11953 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 11954 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 11955 state->dts_cleaner = CYCLIC_NONE; 11956 state->dts_deadman = CYCLIC_NONE; 11957 state->dts_vstate.dtvs_state = state; 11958 11959 for (i = 0; i < DTRACEOPT_MAX; i++) 11960 state->dts_options[i] = DTRACEOPT_UNSET; 11961 11962 /* 11963 * Set the default options. 11964 */ 11965 opt = state->dts_options; 11966 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 11967 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 11968 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 11969 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 11970 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 11971 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 11972 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 11973 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 11974 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 11975 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 11976 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 11977 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 11978 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 11979 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 11980 11981 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 11982 11983 /* 11984 * Depending on the user credentials, we set flag bits which alter probe 11985 * visibility or the amount of destructiveness allowed. In the case of 11986 * actual anonymous tracing, or the possession of all privileges, all of 11987 * the normal checks are bypassed. 11988 */ 11989 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 11990 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 11991 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 11992 } else { 11993 /* 11994 * Set up the credentials for this instantiation. We take a 11995 * hold on the credential to prevent it from disappearing on 11996 * us; this in turn prevents the zone_t referenced by this 11997 * credential from disappearing. This means that we can 11998 * examine the credential and the zone from probe context. 11999 */ 12000 crhold(cr); 12001 state->dts_cred.dcr_cred = cr; 12002 12003 /* 12004 * CRA_PROC means "we have *some* privilege for dtrace" and 12005 * unlocks the use of variables like pid, zonename, etc. 12006 */ 12007 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 12008 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12009 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 12010 } 12011 12012 /* 12013 * dtrace_user allows use of syscall and profile providers. 12014 * If the user also has proc_owner and/or proc_zone, we 12015 * extend the scope to include additional visibility and 12016 * destructive power. 12017 */ 12018 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 12019 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 12020 state->dts_cred.dcr_visible |= 12021 DTRACE_CRV_ALLPROC; 12022 12023 state->dts_cred.dcr_action |= 12024 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12025 } 12026 12027 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 12028 state->dts_cred.dcr_visible |= 12029 DTRACE_CRV_ALLZONE; 12030 12031 state->dts_cred.dcr_action |= 12032 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12033 } 12034 12035 /* 12036 * If we have all privs in whatever zone this is, 12037 * we can do destructive things to processes which 12038 * have altered credentials. 12039 */ 12040 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12041 cr->cr_zone->zone_privset)) { 12042 state->dts_cred.dcr_action |= 12043 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12044 } 12045 } 12046 12047 /* 12048 * Holding the dtrace_kernel privilege also implies that 12049 * the user has the dtrace_user privilege from a visibility 12050 * perspective. But without further privileges, some 12051 * destructive actions are not available. 12052 */ 12053 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12054 /* 12055 * Make all probes in all zones visible. However, 12056 * this doesn't mean that all actions become available 12057 * to all zones. 12058 */ 12059 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12060 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12061 12062 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12063 DTRACE_CRA_PROC; 12064 /* 12065 * Holding proc_owner means that destructive actions 12066 * for *this* zone are allowed. 12067 */ 12068 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12069 state->dts_cred.dcr_action |= 12070 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12071 12072 /* 12073 * Holding proc_zone means that destructive actions 12074 * for this user/group ID in all zones is allowed. 12075 */ 12076 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12077 state->dts_cred.dcr_action |= 12078 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12079 12080 /* 12081 * If we have all privs in whatever zone this is, 12082 * we can do destructive things to processes which 12083 * have altered credentials. 12084 */ 12085 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12086 cr->cr_zone->zone_privset)) { 12087 state->dts_cred.dcr_action |= 12088 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12089 } 12090 } 12091 12092 /* 12093 * Holding the dtrace_proc privilege gives control over fasttrap 12094 * and pid providers. We need to grant wider destructive 12095 * privileges in the event that the user has proc_owner and/or 12096 * proc_zone. 12097 */ 12098 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12099 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12100 state->dts_cred.dcr_action |= 12101 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12102 12103 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12104 state->dts_cred.dcr_action |= 12105 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12106 } 12107 } 12108 12109 return (state); 12110 } 12111 12112 static int 12113 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 12114 { 12115 dtrace_optval_t *opt = state->dts_options, size; 12116 processorid_t cpu; 12117 int flags = 0, rval; 12118 12119 ASSERT(MUTEX_HELD(&dtrace_lock)); 12120 ASSERT(MUTEX_HELD(&cpu_lock)); 12121 ASSERT(which < DTRACEOPT_MAX); 12122 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 12123 (state == dtrace_anon.dta_state && 12124 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 12125 12126 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 12127 return (0); 12128 12129 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 12130 cpu = opt[DTRACEOPT_CPU]; 12131 12132 if (which == DTRACEOPT_SPECSIZE) 12133 flags |= DTRACEBUF_NOSWITCH; 12134 12135 if (which == DTRACEOPT_BUFSIZE) { 12136 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 12137 flags |= DTRACEBUF_RING; 12138 12139 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 12140 flags |= DTRACEBUF_FILL; 12141 12142 if (state != dtrace_anon.dta_state || 12143 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 12144 flags |= DTRACEBUF_INACTIVE; 12145 } 12146 12147 for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) { 12148 /* 12149 * The size must be 8-byte aligned. If the size is not 8-byte 12150 * aligned, drop it down by the difference. 12151 */ 12152 if (size & (sizeof (uint64_t) - 1)) 12153 size -= size & (sizeof (uint64_t) - 1); 12154 12155 if (size < state->dts_reserve) { 12156 /* 12157 * Buffers always must be large enough to accommodate 12158 * their prereserved space. We return E2BIG instead 12159 * of ENOMEM in this case to allow for user-level 12160 * software to differentiate the cases. 12161 */ 12162 return (E2BIG); 12163 } 12164 12165 rval = dtrace_buffer_alloc(buf, size, flags, cpu); 12166 12167 if (rval != ENOMEM) { 12168 opt[which] = size; 12169 return (rval); 12170 } 12171 12172 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12173 return (rval); 12174 } 12175 12176 return (ENOMEM); 12177 } 12178 12179 static int 12180 dtrace_state_buffers(dtrace_state_t *state) 12181 { 12182 dtrace_speculation_t *spec = state->dts_speculations; 12183 int rval, i; 12184 12185 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 12186 DTRACEOPT_BUFSIZE)) != 0) 12187 return (rval); 12188 12189 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 12190 DTRACEOPT_AGGSIZE)) != 0) 12191 return (rval); 12192 12193 for (i = 0; i < state->dts_nspeculations; i++) { 12194 if ((rval = dtrace_state_buffer(state, 12195 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 12196 return (rval); 12197 } 12198 12199 return (0); 12200 } 12201 12202 static void 12203 dtrace_state_prereserve(dtrace_state_t *state) 12204 { 12205 dtrace_ecb_t *ecb; 12206 dtrace_probe_t *probe; 12207 12208 state->dts_reserve = 0; 12209 12210 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 12211 return; 12212 12213 /* 12214 * If our buffer policy is a "fill" buffer policy, we need to set the 12215 * prereserved space to be the space required by the END probes. 12216 */ 12217 probe = dtrace_probes[dtrace_probeid_end - 1]; 12218 ASSERT(probe != NULL); 12219 12220 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 12221 if (ecb->dte_state != state) 12222 continue; 12223 12224 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 12225 } 12226 } 12227 12228 static int 12229 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 12230 { 12231 dtrace_optval_t *opt = state->dts_options, sz, nspec; 12232 dtrace_speculation_t *spec; 12233 dtrace_buffer_t *buf; 12234 cyc_handler_t hdlr; 12235 cyc_time_t when; 12236 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12237 dtrace_icookie_t cookie; 12238 12239 mutex_enter(&cpu_lock); 12240 mutex_enter(&dtrace_lock); 12241 12242 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 12243 rval = EBUSY; 12244 goto out; 12245 } 12246 12247 /* 12248 * Before we can perform any checks, we must prime all of the 12249 * retained enablings that correspond to this state. 12250 */ 12251 dtrace_enabling_prime(state); 12252 12253 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 12254 rval = EACCES; 12255 goto out; 12256 } 12257 12258 dtrace_state_prereserve(state); 12259 12260 /* 12261 * Now we want to do is try to allocate our speculations. 12262 * We do not automatically resize the number of speculations; if 12263 * this fails, we will fail the operation. 12264 */ 12265 nspec = opt[DTRACEOPT_NSPEC]; 12266 ASSERT(nspec != DTRACEOPT_UNSET); 12267 12268 if (nspec > INT_MAX) { 12269 rval = ENOMEM; 12270 goto out; 12271 } 12272 12273 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); 12274 12275 if (spec == NULL) { 12276 rval = ENOMEM; 12277 goto out; 12278 } 12279 12280 state->dts_speculations = spec; 12281 state->dts_nspeculations = (int)nspec; 12282 12283 for (i = 0; i < nspec; i++) { 12284 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { 12285 rval = ENOMEM; 12286 goto err; 12287 } 12288 12289 spec[i].dtsp_buffer = buf; 12290 } 12291 12292 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 12293 if (dtrace_anon.dta_state == NULL) { 12294 rval = ENOENT; 12295 goto out; 12296 } 12297 12298 if (state->dts_necbs != 0) { 12299 rval = EALREADY; 12300 goto out; 12301 } 12302 12303 state->dts_anon = dtrace_anon_grab(); 12304 ASSERT(state->dts_anon != NULL); 12305 state = state->dts_anon; 12306 12307 /* 12308 * We want "grabanon" to be set in the grabbed state, so we'll 12309 * copy that option value from the grabbing state into the 12310 * grabbed state. 12311 */ 12312 state->dts_options[DTRACEOPT_GRABANON] = 12313 opt[DTRACEOPT_GRABANON]; 12314 12315 *cpu = dtrace_anon.dta_beganon; 12316 12317 /* 12318 * If the anonymous state is active (as it almost certainly 12319 * is if the anonymous enabling ultimately matched anything), 12320 * we don't allow any further option processing -- but we 12321 * don't return failure. 12322 */ 12323 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12324 goto out; 12325 } 12326 12327 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 12328 opt[DTRACEOPT_AGGSIZE] != 0) { 12329 if (state->dts_aggregations == NULL) { 12330 /* 12331 * We're not going to create an aggregation buffer 12332 * because we don't have any ECBs that contain 12333 * aggregations -- set this option to 0. 12334 */ 12335 opt[DTRACEOPT_AGGSIZE] = 0; 12336 } else { 12337 /* 12338 * If we have an aggregation buffer, we must also have 12339 * a buffer to use as scratch. 12340 */ 12341 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 12342 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 12343 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 12344 } 12345 } 12346 } 12347 12348 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 12349 opt[DTRACEOPT_SPECSIZE] != 0) { 12350 if (!state->dts_speculates) { 12351 /* 12352 * We're not going to create speculation buffers 12353 * because we don't have any ECBs that actually 12354 * speculate -- set the speculation size to 0. 12355 */ 12356 opt[DTRACEOPT_SPECSIZE] = 0; 12357 } 12358 } 12359 12360 /* 12361 * The bare minimum size for any buffer that we're actually going to 12362 * do anything to is sizeof (uint64_t). 12363 */ 12364 sz = sizeof (uint64_t); 12365 12366 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 12367 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 12368 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 12369 /* 12370 * A buffer size has been explicitly set to 0 (or to a size 12371 * that will be adjusted to 0) and we need the space -- we 12372 * need to return failure. We return ENOSPC to differentiate 12373 * it from failing to allocate a buffer due to failure to meet 12374 * the reserve (for which we return E2BIG). 12375 */ 12376 rval = ENOSPC; 12377 goto out; 12378 } 12379 12380 if ((rval = dtrace_state_buffers(state)) != 0) 12381 goto err; 12382 12383 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 12384 sz = dtrace_dstate_defsize; 12385 12386 do { 12387 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 12388 12389 if (rval == 0) 12390 break; 12391 12392 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12393 goto err; 12394 } while (sz >>= 1); 12395 12396 opt[DTRACEOPT_DYNVARSIZE] = sz; 12397 12398 if (rval != 0) 12399 goto err; 12400 12401 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 12402 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 12403 12404 if (opt[DTRACEOPT_CLEANRATE] == 0) 12405 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12406 12407 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 12408 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 12409 12410 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 12411 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12412 12413 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 12414 hdlr.cyh_arg = state; 12415 hdlr.cyh_level = CY_LOW_LEVEL; 12416 12417 when.cyt_when = 0; 12418 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 12419 12420 state->dts_cleaner = cyclic_add(&hdlr, &when); 12421 12422 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 12423 hdlr.cyh_arg = state; 12424 hdlr.cyh_level = CY_LOW_LEVEL; 12425 12426 when.cyt_when = 0; 12427 when.cyt_interval = dtrace_deadman_interval; 12428 12429 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 12430 state->dts_deadman = cyclic_add(&hdlr, &when); 12431 12432 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 12433 12434 /* 12435 * Now it's time to actually fire the BEGIN probe. We need to disable 12436 * interrupts here both to record the CPU on which we fired the BEGIN 12437 * probe (the data from this CPU will be processed first at user 12438 * level) and to manually activate the buffer for this CPU. 12439 */ 12440 cookie = dtrace_interrupt_disable(); 12441 *cpu = CPU->cpu_id; 12442 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 12443 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12444 12445 dtrace_probe(dtrace_probeid_begin, 12446 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12447 dtrace_interrupt_enable(cookie); 12448 /* 12449 * We may have had an exit action from a BEGIN probe; only change our 12450 * state to ACTIVE if we're still in WARMUP. 12451 */ 12452 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 12453 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 12454 12455 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 12456 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 12457 12458 /* 12459 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 12460 * want each CPU to transition its principal buffer out of the 12461 * INACTIVE state. Doing this assures that no CPU will suddenly begin 12462 * processing an ECB halfway down a probe's ECB chain; all CPUs will 12463 * atomically transition from processing none of a state's ECBs to 12464 * processing all of them. 12465 */ 12466 dtrace_xcall(DTRACE_CPUALL, 12467 (dtrace_xcall_t)dtrace_buffer_activate, state); 12468 goto out; 12469 12470 err: 12471 dtrace_buffer_free(state->dts_buffer); 12472 dtrace_buffer_free(state->dts_aggbuffer); 12473 12474 if ((nspec = state->dts_nspeculations) == 0) { 12475 ASSERT(state->dts_speculations == NULL); 12476 goto out; 12477 } 12478 12479 spec = state->dts_speculations; 12480 ASSERT(spec != NULL); 12481 12482 for (i = 0; i < state->dts_nspeculations; i++) { 12483 if ((buf = spec[i].dtsp_buffer) == NULL) 12484 break; 12485 12486 dtrace_buffer_free(buf); 12487 kmem_free(buf, bufsize); 12488 } 12489 12490 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12491 state->dts_nspeculations = 0; 12492 state->dts_speculations = NULL; 12493 12494 out: 12495 mutex_exit(&dtrace_lock); 12496 mutex_exit(&cpu_lock); 12497 12498 return (rval); 12499 } 12500 12501 static int 12502 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 12503 { 12504 dtrace_icookie_t cookie; 12505 12506 ASSERT(MUTEX_HELD(&dtrace_lock)); 12507 12508 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 12509 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 12510 return (EINVAL); 12511 12512 /* 12513 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 12514 * to be sure that every CPU has seen it. See below for the details 12515 * on why this is done. 12516 */ 12517 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 12518 dtrace_sync(); 12519 12520 /* 12521 * By this point, it is impossible for any CPU to be still processing 12522 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 12523 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 12524 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 12525 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 12526 * iff we're in the END probe. 12527 */ 12528 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 12529 dtrace_sync(); 12530 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 12531 12532 /* 12533 * Finally, we can release the reserve and call the END probe. We 12534 * disable interrupts across calling the END probe to allow us to 12535 * return the CPU on which we actually called the END probe. This 12536 * allows user-land to be sure that this CPU's principal buffer is 12537 * processed last. 12538 */ 12539 state->dts_reserve = 0; 12540 12541 cookie = dtrace_interrupt_disable(); 12542 *cpu = CPU->cpu_id; 12543 dtrace_probe(dtrace_probeid_end, 12544 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12545 dtrace_interrupt_enable(cookie); 12546 12547 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 12548 dtrace_sync(); 12549 12550 return (0); 12551 } 12552 12553 static int 12554 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 12555 dtrace_optval_t val) 12556 { 12557 ASSERT(MUTEX_HELD(&dtrace_lock)); 12558 12559 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12560 return (EBUSY); 12561 12562 if (option >= DTRACEOPT_MAX) 12563 return (EINVAL); 12564 12565 if (option != DTRACEOPT_CPU && val < 0) 12566 return (EINVAL); 12567 12568 switch (option) { 12569 case DTRACEOPT_DESTRUCTIVE: 12570 if (dtrace_destructive_disallow) 12571 return (EACCES); 12572 12573 state->dts_cred.dcr_destructive = 1; 12574 break; 12575 12576 case DTRACEOPT_BUFSIZE: 12577 case DTRACEOPT_DYNVARSIZE: 12578 case DTRACEOPT_AGGSIZE: 12579 case DTRACEOPT_SPECSIZE: 12580 case DTRACEOPT_STRSIZE: 12581 if (val < 0) 12582 return (EINVAL); 12583 12584 if (val >= LONG_MAX) { 12585 /* 12586 * If this is an otherwise negative value, set it to 12587 * the highest multiple of 128m less than LONG_MAX. 12588 * Technically, we're adjusting the size without 12589 * regard to the buffer resizing policy, but in fact, 12590 * this has no effect -- if we set the buffer size to 12591 * ~LONG_MAX and the buffer policy is ultimately set to 12592 * be "manual", the buffer allocation is guaranteed to 12593 * fail, if only because the allocation requires two 12594 * buffers. (We set the the size to the highest 12595 * multiple of 128m because it ensures that the size 12596 * will remain a multiple of a megabyte when 12597 * repeatedly halved -- all the way down to 15m.) 12598 */ 12599 val = LONG_MAX - (1 << 27) + 1; 12600 } 12601 } 12602 12603 state->dts_options[option] = val; 12604 12605 return (0); 12606 } 12607 12608 static void 12609 dtrace_state_destroy(dtrace_state_t *state) 12610 { 12611 dtrace_ecb_t *ecb; 12612 dtrace_vstate_t *vstate = &state->dts_vstate; 12613 minor_t minor = getminor(state->dts_dev); 12614 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12615 dtrace_speculation_t *spec = state->dts_speculations; 12616 int nspec = state->dts_nspeculations; 12617 uint32_t match; 12618 12619 ASSERT(MUTEX_HELD(&dtrace_lock)); 12620 ASSERT(MUTEX_HELD(&cpu_lock)); 12621 12622 /* 12623 * First, retract any retained enablings for this state. 12624 */ 12625 dtrace_enabling_retract(state); 12626 ASSERT(state->dts_nretained == 0); 12627 12628 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 12629 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 12630 /* 12631 * We have managed to come into dtrace_state_destroy() on a 12632 * hot enabling -- almost certainly because of a disorderly 12633 * shutdown of a consumer. (That is, a consumer that is 12634 * exiting without having called dtrace_stop().) In this case, 12635 * we're going to set our activity to be KILLED, and then 12636 * issue a sync to be sure that everyone is out of probe 12637 * context before we start blowing away ECBs. 12638 */ 12639 state->dts_activity = DTRACE_ACTIVITY_KILLED; 12640 dtrace_sync(); 12641 } 12642 12643 /* 12644 * Release the credential hold we took in dtrace_state_create(). 12645 */ 12646 if (state->dts_cred.dcr_cred != NULL) 12647 crfree(state->dts_cred.dcr_cred); 12648 12649 /* 12650 * Now we can safely disable and destroy any enabled probes. Because 12651 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 12652 * (especially if they're all enabled), we take two passes through the 12653 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 12654 * in the second we disable whatever is left over. 12655 */ 12656 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 12657 for (i = 0; i < state->dts_necbs; i++) { 12658 if ((ecb = state->dts_ecbs[i]) == NULL) 12659 continue; 12660 12661 if (match && ecb->dte_probe != NULL) { 12662 dtrace_probe_t *probe = ecb->dte_probe; 12663 dtrace_provider_t *prov = probe->dtpr_provider; 12664 12665 if (!(prov->dtpv_priv.dtpp_flags & match)) 12666 continue; 12667 } 12668 12669 dtrace_ecb_disable(ecb); 12670 dtrace_ecb_destroy(ecb); 12671 } 12672 12673 if (!match) 12674 break; 12675 } 12676 12677 /* 12678 * Before we free the buffers, perform one more sync to assure that 12679 * every CPU is out of probe context. 12680 */ 12681 dtrace_sync(); 12682 12683 dtrace_buffer_free(state->dts_buffer); 12684 dtrace_buffer_free(state->dts_aggbuffer); 12685 12686 for (i = 0; i < nspec; i++) 12687 dtrace_buffer_free(spec[i].dtsp_buffer); 12688 12689 if (state->dts_cleaner != CYCLIC_NONE) 12690 cyclic_remove(state->dts_cleaner); 12691 12692 if (state->dts_deadman != CYCLIC_NONE) 12693 cyclic_remove(state->dts_deadman); 12694 12695 dtrace_dstate_fini(&vstate->dtvs_dynvars); 12696 dtrace_vstate_fini(vstate); 12697 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 12698 12699 if (state->dts_aggregations != NULL) { 12700 #ifdef DEBUG 12701 for (i = 0; i < state->dts_naggregations; i++) 12702 ASSERT(state->dts_aggregations[i] == NULL); 12703 #endif 12704 ASSERT(state->dts_naggregations > 0); 12705 kmem_free(state->dts_aggregations, 12706 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 12707 } 12708 12709 kmem_free(state->dts_buffer, bufsize); 12710 kmem_free(state->dts_aggbuffer, bufsize); 12711 12712 for (i = 0; i < nspec; i++) 12713 kmem_free(spec[i].dtsp_buffer, bufsize); 12714 12715 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12716 12717 dtrace_format_destroy(state); 12718 12719 vmem_destroy(state->dts_aggid_arena); 12720 ddi_soft_state_free(dtrace_softstate, minor); 12721 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12722 } 12723 12724 /* 12725 * DTrace Anonymous Enabling Functions 12726 */ 12727 static dtrace_state_t * 12728 dtrace_anon_grab(void) 12729 { 12730 dtrace_state_t *state; 12731 12732 ASSERT(MUTEX_HELD(&dtrace_lock)); 12733 12734 if ((state = dtrace_anon.dta_state) == NULL) { 12735 ASSERT(dtrace_anon.dta_enabling == NULL); 12736 return (NULL); 12737 } 12738 12739 ASSERT(dtrace_anon.dta_enabling != NULL); 12740 ASSERT(dtrace_retained != NULL); 12741 12742 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 12743 dtrace_anon.dta_enabling = NULL; 12744 dtrace_anon.dta_state = NULL; 12745 12746 return (state); 12747 } 12748 12749 static void 12750 dtrace_anon_property(void) 12751 { 12752 int i, rv; 12753 dtrace_state_t *state; 12754 dof_hdr_t *dof; 12755 char c[32]; /* enough for "dof-data-" + digits */ 12756 12757 ASSERT(MUTEX_HELD(&dtrace_lock)); 12758 ASSERT(MUTEX_HELD(&cpu_lock)); 12759 12760 for (i = 0; ; i++) { 12761 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 12762 12763 dtrace_err_verbose = 1; 12764 12765 if ((dof = dtrace_dof_property(c)) == NULL) { 12766 dtrace_err_verbose = 0; 12767 break; 12768 } 12769 12770 /* 12771 * We want to create anonymous state, so we need to transition 12772 * the kernel debugger to indicate that DTrace is active. If 12773 * this fails (e.g. because the debugger has modified text in 12774 * some way), we won't continue with the processing. 12775 */ 12776 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 12777 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 12778 "enabling ignored."); 12779 dtrace_dof_destroy(dof); 12780 break; 12781 } 12782 12783 /* 12784 * If we haven't allocated an anonymous state, we'll do so now. 12785 */ 12786 if ((state = dtrace_anon.dta_state) == NULL) { 12787 state = dtrace_state_create(NULL, NULL); 12788 dtrace_anon.dta_state = state; 12789 12790 if (state == NULL) { 12791 /* 12792 * This basically shouldn't happen: the only 12793 * failure mode from dtrace_state_create() is a 12794 * failure of ddi_soft_state_zalloc() that 12795 * itself should never happen. Still, the 12796 * interface allows for a failure mode, and 12797 * we want to fail as gracefully as possible: 12798 * we'll emit an error message and cease 12799 * processing anonymous state in this case. 12800 */ 12801 cmn_err(CE_WARN, "failed to create " 12802 "anonymous state"); 12803 dtrace_dof_destroy(dof); 12804 break; 12805 } 12806 } 12807 12808 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 12809 &dtrace_anon.dta_enabling, 0, B_TRUE); 12810 12811 if (rv == 0) 12812 rv = dtrace_dof_options(dof, state); 12813 12814 dtrace_err_verbose = 0; 12815 dtrace_dof_destroy(dof); 12816 12817 if (rv != 0) { 12818 /* 12819 * This is malformed DOF; chuck any anonymous state 12820 * that we created. 12821 */ 12822 ASSERT(dtrace_anon.dta_enabling == NULL); 12823 dtrace_state_destroy(state); 12824 dtrace_anon.dta_state = NULL; 12825 break; 12826 } 12827 12828 ASSERT(dtrace_anon.dta_enabling != NULL); 12829 } 12830 12831 if (dtrace_anon.dta_enabling != NULL) { 12832 int rval; 12833 12834 /* 12835 * dtrace_enabling_retain() can only fail because we are 12836 * trying to retain more enablings than are allowed -- but 12837 * we only have one anonymous enabling, and we are guaranteed 12838 * to be allowed at least one retained enabling; we assert 12839 * that dtrace_enabling_retain() returns success. 12840 */ 12841 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 12842 ASSERT(rval == 0); 12843 12844 dtrace_enabling_dump(dtrace_anon.dta_enabling); 12845 } 12846 } 12847 12848 /* 12849 * DTrace Helper Functions 12850 */ 12851 static void 12852 dtrace_helper_trace(dtrace_helper_action_t *helper, 12853 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 12854 { 12855 uint32_t size, next, nnext, i; 12856 dtrace_helptrace_t *ent; 12857 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12858 12859 if (!dtrace_helptrace_enabled) 12860 return; 12861 12862 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 12863 12864 /* 12865 * What would a tracing framework be without its own tracing 12866 * framework? (Well, a hell of a lot simpler, for starters...) 12867 */ 12868 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 12869 sizeof (uint64_t) - sizeof (uint64_t); 12870 12871 /* 12872 * Iterate until we can allocate a slot in the trace buffer. 12873 */ 12874 do { 12875 next = dtrace_helptrace_next; 12876 12877 if (next + size < dtrace_helptrace_bufsize) { 12878 nnext = next + size; 12879 } else { 12880 nnext = size; 12881 } 12882 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 12883 12884 /* 12885 * We have our slot; fill it in. 12886 */ 12887 if (nnext == size) 12888 next = 0; 12889 12890 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 12891 ent->dtht_helper = helper; 12892 ent->dtht_where = where; 12893 ent->dtht_nlocals = vstate->dtvs_nlocals; 12894 12895 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 12896 mstate->dtms_fltoffs : -1; 12897 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 12898 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 12899 12900 for (i = 0; i < vstate->dtvs_nlocals; i++) { 12901 dtrace_statvar_t *svar; 12902 12903 if ((svar = vstate->dtvs_locals[i]) == NULL) 12904 continue; 12905 12906 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 12907 ent->dtht_locals[i] = 12908 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 12909 } 12910 } 12911 12912 static uint64_t 12913 dtrace_helper(int which, dtrace_mstate_t *mstate, 12914 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 12915 { 12916 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12917 uint64_t sarg0 = mstate->dtms_arg[0]; 12918 uint64_t sarg1 = mstate->dtms_arg[1]; 12919 uint64_t rval; 12920 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 12921 dtrace_helper_action_t *helper; 12922 dtrace_vstate_t *vstate; 12923 dtrace_difo_t *pred; 12924 int i, trace = dtrace_helptrace_enabled; 12925 12926 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 12927 12928 if (helpers == NULL) 12929 return (0); 12930 12931 if ((helper = helpers->dthps_actions[which]) == NULL) 12932 return (0); 12933 12934 vstate = &helpers->dthps_vstate; 12935 mstate->dtms_arg[0] = arg0; 12936 mstate->dtms_arg[1] = arg1; 12937 12938 /* 12939 * Now iterate over each helper. If its predicate evaluates to 'true', 12940 * we'll call the corresponding actions. Note that the below calls 12941 * to dtrace_dif_emulate() may set faults in machine state. This is 12942 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 12943 * the stored DIF offset with its own (which is the desired behavior). 12944 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 12945 * from machine state; this is okay, too. 12946 */ 12947 for (; helper != NULL; helper = helper->dtha_next) { 12948 if ((pred = helper->dtha_predicate) != NULL) { 12949 if (trace) 12950 dtrace_helper_trace(helper, mstate, vstate, 0); 12951 12952 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 12953 goto next; 12954 12955 if (*flags & CPU_DTRACE_FAULT) 12956 goto err; 12957 } 12958 12959 for (i = 0; i < helper->dtha_nactions; i++) { 12960 if (trace) 12961 dtrace_helper_trace(helper, 12962 mstate, vstate, i + 1); 12963 12964 rval = dtrace_dif_emulate(helper->dtha_actions[i], 12965 mstate, vstate, state); 12966 12967 if (*flags & CPU_DTRACE_FAULT) 12968 goto err; 12969 } 12970 12971 next: 12972 if (trace) 12973 dtrace_helper_trace(helper, mstate, vstate, 12974 DTRACE_HELPTRACE_NEXT); 12975 } 12976 12977 if (trace) 12978 dtrace_helper_trace(helper, mstate, vstate, 12979 DTRACE_HELPTRACE_DONE); 12980 12981 /* 12982 * Restore the arg0 that we saved upon entry. 12983 */ 12984 mstate->dtms_arg[0] = sarg0; 12985 mstate->dtms_arg[1] = sarg1; 12986 12987 return (rval); 12988 12989 err: 12990 if (trace) 12991 dtrace_helper_trace(helper, mstate, vstate, 12992 DTRACE_HELPTRACE_ERR); 12993 12994 /* 12995 * Restore the arg0 that we saved upon entry. 12996 */ 12997 mstate->dtms_arg[0] = sarg0; 12998 mstate->dtms_arg[1] = sarg1; 12999 13000 return (NULL); 13001 } 13002 13003 static void 13004 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 13005 dtrace_vstate_t *vstate) 13006 { 13007 int i; 13008 13009 if (helper->dtha_predicate != NULL) 13010 dtrace_difo_release(helper->dtha_predicate, vstate); 13011 13012 for (i = 0; i < helper->dtha_nactions; i++) { 13013 ASSERT(helper->dtha_actions[i] != NULL); 13014 dtrace_difo_release(helper->dtha_actions[i], vstate); 13015 } 13016 13017 kmem_free(helper->dtha_actions, 13018 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 13019 kmem_free(helper, sizeof (dtrace_helper_action_t)); 13020 } 13021 13022 static int 13023 dtrace_helper_destroygen(int gen) 13024 { 13025 proc_t *p = curproc; 13026 dtrace_helpers_t *help = p->p_dtrace_helpers; 13027 dtrace_vstate_t *vstate; 13028 int i; 13029 13030 ASSERT(MUTEX_HELD(&dtrace_lock)); 13031 13032 if (help == NULL || gen > help->dthps_generation) 13033 return (EINVAL); 13034 13035 vstate = &help->dthps_vstate; 13036 13037 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13038 dtrace_helper_action_t *last = NULL, *h, *next; 13039 13040 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13041 next = h->dtha_next; 13042 13043 if (h->dtha_generation == gen) { 13044 if (last != NULL) { 13045 last->dtha_next = next; 13046 } else { 13047 help->dthps_actions[i] = next; 13048 } 13049 13050 dtrace_helper_action_destroy(h, vstate); 13051 } else { 13052 last = h; 13053 } 13054 } 13055 } 13056 13057 /* 13058 * Interate until we've cleared out all helper providers with the 13059 * given generation number. 13060 */ 13061 for (;;) { 13062 dtrace_helper_provider_t *prov; 13063 13064 /* 13065 * Look for a helper provider with the right generation. We 13066 * have to start back at the beginning of the list each time 13067 * because we drop dtrace_lock. It's unlikely that we'll make 13068 * more than two passes. 13069 */ 13070 for (i = 0; i < help->dthps_nprovs; i++) { 13071 prov = help->dthps_provs[i]; 13072 13073 if (prov->dthp_generation == gen) 13074 break; 13075 } 13076 13077 /* 13078 * If there were no matches, we're done. 13079 */ 13080 if (i == help->dthps_nprovs) 13081 break; 13082 13083 /* 13084 * Move the last helper provider into this slot. 13085 */ 13086 help->dthps_nprovs--; 13087 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 13088 help->dthps_provs[help->dthps_nprovs] = NULL; 13089 13090 mutex_exit(&dtrace_lock); 13091 13092 /* 13093 * If we have a meta provider, remove this helper provider. 13094 */ 13095 mutex_enter(&dtrace_meta_lock); 13096 if (dtrace_meta_pid != NULL) { 13097 ASSERT(dtrace_deferred_pid == NULL); 13098 dtrace_helper_provider_remove(&prov->dthp_prov, 13099 p->p_pid); 13100 } 13101 mutex_exit(&dtrace_meta_lock); 13102 13103 dtrace_helper_provider_destroy(prov); 13104 13105 mutex_enter(&dtrace_lock); 13106 } 13107 13108 return (0); 13109 } 13110 13111 static int 13112 dtrace_helper_validate(dtrace_helper_action_t *helper) 13113 { 13114 int err = 0, i; 13115 dtrace_difo_t *dp; 13116 13117 if ((dp = helper->dtha_predicate) != NULL) 13118 err += dtrace_difo_validate_helper(dp); 13119 13120 for (i = 0; i < helper->dtha_nactions; i++) 13121 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 13122 13123 return (err == 0); 13124 } 13125 13126 static int 13127 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 13128 { 13129 dtrace_helpers_t *help; 13130 dtrace_helper_action_t *helper, *last; 13131 dtrace_actdesc_t *act; 13132 dtrace_vstate_t *vstate; 13133 dtrace_predicate_t *pred; 13134 int count = 0, nactions = 0, i; 13135 13136 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 13137 return (EINVAL); 13138 13139 help = curproc->p_dtrace_helpers; 13140 last = help->dthps_actions[which]; 13141 vstate = &help->dthps_vstate; 13142 13143 for (count = 0; last != NULL; last = last->dtha_next) { 13144 count++; 13145 if (last->dtha_next == NULL) 13146 break; 13147 } 13148 13149 /* 13150 * If we already have dtrace_helper_actions_max helper actions for this 13151 * helper action type, we'll refuse to add a new one. 13152 */ 13153 if (count >= dtrace_helper_actions_max) 13154 return (ENOSPC); 13155 13156 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 13157 helper->dtha_generation = help->dthps_generation; 13158 13159 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 13160 ASSERT(pred->dtp_difo != NULL); 13161 dtrace_difo_hold(pred->dtp_difo); 13162 helper->dtha_predicate = pred->dtp_difo; 13163 } 13164 13165 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 13166 if (act->dtad_kind != DTRACEACT_DIFEXPR) 13167 goto err; 13168 13169 if (act->dtad_difo == NULL) 13170 goto err; 13171 13172 nactions++; 13173 } 13174 13175 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 13176 (helper->dtha_nactions = nactions), KM_SLEEP); 13177 13178 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 13179 dtrace_difo_hold(act->dtad_difo); 13180 helper->dtha_actions[i++] = act->dtad_difo; 13181 } 13182 13183 if (!dtrace_helper_validate(helper)) 13184 goto err; 13185 13186 if (last == NULL) { 13187 help->dthps_actions[which] = helper; 13188 } else { 13189 last->dtha_next = helper; 13190 } 13191 13192 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 13193 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 13194 dtrace_helptrace_next = 0; 13195 } 13196 13197 return (0); 13198 err: 13199 dtrace_helper_action_destroy(helper, vstate); 13200 return (EINVAL); 13201 } 13202 13203 static void 13204 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 13205 dof_helper_t *dofhp) 13206 { 13207 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 13208 13209 mutex_enter(&dtrace_meta_lock); 13210 mutex_enter(&dtrace_lock); 13211 13212 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 13213 /* 13214 * If the dtrace module is loaded but not attached, or if 13215 * there aren't isn't a meta provider registered to deal with 13216 * these provider descriptions, we need to postpone creating 13217 * the actual providers until later. 13218 */ 13219 13220 if (help->dthps_next == NULL && help->dthps_prev == NULL && 13221 dtrace_deferred_pid != help) { 13222 help->dthps_deferred = 1; 13223 help->dthps_pid = p->p_pid; 13224 help->dthps_next = dtrace_deferred_pid; 13225 help->dthps_prev = NULL; 13226 if (dtrace_deferred_pid != NULL) 13227 dtrace_deferred_pid->dthps_prev = help; 13228 dtrace_deferred_pid = help; 13229 } 13230 13231 mutex_exit(&dtrace_lock); 13232 13233 } else if (dofhp != NULL) { 13234 /* 13235 * If the dtrace module is loaded and we have a particular 13236 * helper provider description, pass that off to the 13237 * meta provider. 13238 */ 13239 13240 mutex_exit(&dtrace_lock); 13241 13242 dtrace_helper_provide(dofhp, p->p_pid); 13243 13244 } else { 13245 /* 13246 * Otherwise, just pass all the helper provider descriptions 13247 * off to the meta provider. 13248 */ 13249 13250 int i; 13251 mutex_exit(&dtrace_lock); 13252 13253 for (i = 0; i < help->dthps_nprovs; i++) { 13254 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 13255 p->p_pid); 13256 } 13257 } 13258 13259 mutex_exit(&dtrace_meta_lock); 13260 } 13261 13262 static int 13263 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 13264 { 13265 dtrace_helpers_t *help; 13266 dtrace_helper_provider_t *hprov, **tmp_provs; 13267 uint_t tmp_maxprovs, i; 13268 13269 ASSERT(MUTEX_HELD(&dtrace_lock)); 13270 13271 help = curproc->p_dtrace_helpers; 13272 ASSERT(help != NULL); 13273 13274 /* 13275 * If we already have dtrace_helper_providers_max helper providers, 13276 * we're refuse to add a new one. 13277 */ 13278 if (help->dthps_nprovs >= dtrace_helper_providers_max) 13279 return (ENOSPC); 13280 13281 /* 13282 * Check to make sure this isn't a duplicate. 13283 */ 13284 for (i = 0; i < help->dthps_nprovs; i++) { 13285 if (dofhp->dofhp_addr == 13286 help->dthps_provs[i]->dthp_prov.dofhp_addr) 13287 return (EALREADY); 13288 } 13289 13290 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 13291 hprov->dthp_prov = *dofhp; 13292 hprov->dthp_ref = 1; 13293 hprov->dthp_generation = gen; 13294 13295 /* 13296 * Allocate a bigger table for helper providers if it's already full. 13297 */ 13298 if (help->dthps_maxprovs == help->dthps_nprovs) { 13299 tmp_maxprovs = help->dthps_maxprovs; 13300 tmp_provs = help->dthps_provs; 13301 13302 if (help->dthps_maxprovs == 0) 13303 help->dthps_maxprovs = 2; 13304 else 13305 help->dthps_maxprovs *= 2; 13306 if (help->dthps_maxprovs > dtrace_helper_providers_max) 13307 help->dthps_maxprovs = dtrace_helper_providers_max; 13308 13309 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 13310 13311 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 13312 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13313 13314 if (tmp_provs != NULL) { 13315 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 13316 sizeof (dtrace_helper_provider_t *)); 13317 kmem_free(tmp_provs, tmp_maxprovs * 13318 sizeof (dtrace_helper_provider_t *)); 13319 } 13320 } 13321 13322 help->dthps_provs[help->dthps_nprovs] = hprov; 13323 help->dthps_nprovs++; 13324 13325 return (0); 13326 } 13327 13328 static void 13329 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 13330 { 13331 mutex_enter(&dtrace_lock); 13332 13333 if (--hprov->dthp_ref == 0) { 13334 dof_hdr_t *dof; 13335 mutex_exit(&dtrace_lock); 13336 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 13337 dtrace_dof_destroy(dof); 13338 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 13339 } else { 13340 mutex_exit(&dtrace_lock); 13341 } 13342 } 13343 13344 static int 13345 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 13346 { 13347 uintptr_t daddr = (uintptr_t)dof; 13348 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 13349 dof_provider_t *provider; 13350 dof_probe_t *probe; 13351 uint8_t *arg; 13352 char *strtab, *typestr; 13353 dof_stridx_t typeidx; 13354 size_t typesz; 13355 uint_t nprobes, j, k; 13356 13357 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 13358 13359 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 13360 dtrace_dof_error(dof, "misaligned section offset"); 13361 return (-1); 13362 } 13363 13364 /* 13365 * The section needs to be large enough to contain the DOF provider 13366 * structure appropriate for the given version. 13367 */ 13368 if (sec->dofs_size < 13369 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 13370 offsetof(dof_provider_t, dofpv_prenoffs) : 13371 sizeof (dof_provider_t))) { 13372 dtrace_dof_error(dof, "provider section too small"); 13373 return (-1); 13374 } 13375 13376 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 13377 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 13378 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 13379 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 13380 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 13381 13382 if (str_sec == NULL || prb_sec == NULL || 13383 arg_sec == NULL || off_sec == NULL) 13384 return (-1); 13385 13386 enoff_sec = NULL; 13387 13388 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13389 provider->dofpv_prenoffs != DOF_SECT_NONE && 13390 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 13391 provider->dofpv_prenoffs)) == NULL) 13392 return (-1); 13393 13394 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 13395 13396 if (provider->dofpv_name >= str_sec->dofs_size || 13397 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 13398 dtrace_dof_error(dof, "invalid provider name"); 13399 return (-1); 13400 } 13401 13402 if (prb_sec->dofs_entsize == 0 || 13403 prb_sec->dofs_entsize > prb_sec->dofs_size) { 13404 dtrace_dof_error(dof, "invalid entry size"); 13405 return (-1); 13406 } 13407 13408 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 13409 dtrace_dof_error(dof, "misaligned entry size"); 13410 return (-1); 13411 } 13412 13413 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 13414 dtrace_dof_error(dof, "invalid entry size"); 13415 return (-1); 13416 } 13417 13418 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 13419 dtrace_dof_error(dof, "misaligned section offset"); 13420 return (-1); 13421 } 13422 13423 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 13424 dtrace_dof_error(dof, "invalid entry size"); 13425 return (-1); 13426 } 13427 13428 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 13429 13430 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 13431 13432 /* 13433 * Take a pass through the probes to check for errors. 13434 */ 13435 for (j = 0; j < nprobes; j++) { 13436 probe = (dof_probe_t *)(uintptr_t)(daddr + 13437 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 13438 13439 if (probe->dofpr_func >= str_sec->dofs_size) { 13440 dtrace_dof_error(dof, "invalid function name"); 13441 return (-1); 13442 } 13443 13444 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 13445 dtrace_dof_error(dof, "function name too long"); 13446 return (-1); 13447 } 13448 13449 if (probe->dofpr_name >= str_sec->dofs_size || 13450 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 13451 dtrace_dof_error(dof, "invalid probe name"); 13452 return (-1); 13453 } 13454 13455 /* 13456 * The offset count must not wrap the index, and the offsets 13457 * must also not overflow the section's data. 13458 */ 13459 if (probe->dofpr_offidx + probe->dofpr_noffs < 13460 probe->dofpr_offidx || 13461 (probe->dofpr_offidx + probe->dofpr_noffs) * 13462 off_sec->dofs_entsize > off_sec->dofs_size) { 13463 dtrace_dof_error(dof, "invalid probe offset"); 13464 return (-1); 13465 } 13466 13467 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 13468 /* 13469 * If there's no is-enabled offset section, make sure 13470 * there aren't any is-enabled offsets. Otherwise 13471 * perform the same checks as for probe offsets 13472 * (immediately above). 13473 */ 13474 if (enoff_sec == NULL) { 13475 if (probe->dofpr_enoffidx != 0 || 13476 probe->dofpr_nenoffs != 0) { 13477 dtrace_dof_error(dof, "is-enabled " 13478 "offsets with null section"); 13479 return (-1); 13480 } 13481 } else if (probe->dofpr_enoffidx + 13482 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 13483 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 13484 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 13485 dtrace_dof_error(dof, "invalid is-enabled " 13486 "offset"); 13487 return (-1); 13488 } 13489 13490 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 13491 dtrace_dof_error(dof, "zero probe and " 13492 "is-enabled offsets"); 13493 return (-1); 13494 } 13495 } else if (probe->dofpr_noffs == 0) { 13496 dtrace_dof_error(dof, "zero probe offsets"); 13497 return (-1); 13498 } 13499 13500 if (probe->dofpr_argidx + probe->dofpr_xargc < 13501 probe->dofpr_argidx || 13502 (probe->dofpr_argidx + probe->dofpr_xargc) * 13503 arg_sec->dofs_entsize > arg_sec->dofs_size) { 13504 dtrace_dof_error(dof, "invalid args"); 13505 return (-1); 13506 } 13507 13508 typeidx = probe->dofpr_nargv; 13509 typestr = strtab + probe->dofpr_nargv; 13510 for (k = 0; k < probe->dofpr_nargc; k++) { 13511 if (typeidx >= str_sec->dofs_size) { 13512 dtrace_dof_error(dof, "bad " 13513 "native argument type"); 13514 return (-1); 13515 } 13516 13517 typesz = strlen(typestr) + 1; 13518 if (typesz > DTRACE_ARGTYPELEN) { 13519 dtrace_dof_error(dof, "native " 13520 "argument type too long"); 13521 return (-1); 13522 } 13523 typeidx += typesz; 13524 typestr += typesz; 13525 } 13526 13527 typeidx = probe->dofpr_xargv; 13528 typestr = strtab + probe->dofpr_xargv; 13529 for (k = 0; k < probe->dofpr_xargc; k++) { 13530 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 13531 dtrace_dof_error(dof, "bad " 13532 "native argument index"); 13533 return (-1); 13534 } 13535 13536 if (typeidx >= str_sec->dofs_size) { 13537 dtrace_dof_error(dof, "bad " 13538 "translated argument type"); 13539 return (-1); 13540 } 13541 13542 typesz = strlen(typestr) + 1; 13543 if (typesz > DTRACE_ARGTYPELEN) { 13544 dtrace_dof_error(dof, "translated argument " 13545 "type too long"); 13546 return (-1); 13547 } 13548 13549 typeidx += typesz; 13550 typestr += typesz; 13551 } 13552 } 13553 13554 return (0); 13555 } 13556 13557 static int 13558 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 13559 { 13560 dtrace_helpers_t *help; 13561 dtrace_vstate_t *vstate; 13562 dtrace_enabling_t *enab = NULL; 13563 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 13564 uintptr_t daddr = (uintptr_t)dof; 13565 13566 ASSERT(MUTEX_HELD(&dtrace_lock)); 13567 13568 if ((help = curproc->p_dtrace_helpers) == NULL) 13569 help = dtrace_helpers_create(curproc); 13570 13571 vstate = &help->dthps_vstate; 13572 13573 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 13574 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 13575 dtrace_dof_destroy(dof); 13576 return (rv); 13577 } 13578 13579 /* 13580 * Look for helper providers and validate their descriptions. 13581 */ 13582 if (dhp != NULL) { 13583 for (i = 0; i < dof->dofh_secnum; i++) { 13584 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 13585 dof->dofh_secoff + i * dof->dofh_secsize); 13586 13587 if (sec->dofs_type != DOF_SECT_PROVIDER) 13588 continue; 13589 13590 if (dtrace_helper_provider_validate(dof, sec) != 0) { 13591 dtrace_enabling_destroy(enab); 13592 dtrace_dof_destroy(dof); 13593 return (-1); 13594 } 13595 13596 nprovs++; 13597 } 13598 } 13599 13600 /* 13601 * Now we need to walk through the ECB descriptions in the enabling. 13602 */ 13603 for (i = 0; i < enab->dten_ndesc; i++) { 13604 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 13605 dtrace_probedesc_t *desc = &ep->dted_probe; 13606 13607 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 13608 continue; 13609 13610 if (strcmp(desc->dtpd_mod, "helper") != 0) 13611 continue; 13612 13613 if (strcmp(desc->dtpd_func, "ustack") != 0) 13614 continue; 13615 13616 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 13617 ep)) != 0) { 13618 /* 13619 * Adding this helper action failed -- we are now going 13620 * to rip out the entire generation and return failure. 13621 */ 13622 (void) dtrace_helper_destroygen(help->dthps_generation); 13623 dtrace_enabling_destroy(enab); 13624 dtrace_dof_destroy(dof); 13625 return (-1); 13626 } 13627 13628 nhelpers++; 13629 } 13630 13631 if (nhelpers < enab->dten_ndesc) 13632 dtrace_dof_error(dof, "unmatched helpers"); 13633 13634 gen = help->dthps_generation++; 13635 dtrace_enabling_destroy(enab); 13636 13637 if (dhp != NULL && nprovs > 0) { 13638 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 13639 if (dtrace_helper_provider_add(dhp, gen) == 0) { 13640 mutex_exit(&dtrace_lock); 13641 dtrace_helper_provider_register(curproc, help, dhp); 13642 mutex_enter(&dtrace_lock); 13643 13644 destroy = 0; 13645 } 13646 } 13647 13648 if (destroy) 13649 dtrace_dof_destroy(dof); 13650 13651 return (gen); 13652 } 13653 13654 static dtrace_helpers_t * 13655 dtrace_helpers_create(proc_t *p) 13656 { 13657 dtrace_helpers_t *help; 13658 13659 ASSERT(MUTEX_HELD(&dtrace_lock)); 13660 ASSERT(p->p_dtrace_helpers == NULL); 13661 13662 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 13663 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 13664 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 13665 13666 p->p_dtrace_helpers = help; 13667 dtrace_helpers++; 13668 13669 return (help); 13670 } 13671 13672 static void 13673 dtrace_helpers_destroy(void) 13674 { 13675 dtrace_helpers_t *help; 13676 dtrace_vstate_t *vstate; 13677 proc_t *p = curproc; 13678 int i; 13679 13680 mutex_enter(&dtrace_lock); 13681 13682 ASSERT(p->p_dtrace_helpers != NULL); 13683 ASSERT(dtrace_helpers > 0); 13684 13685 help = p->p_dtrace_helpers; 13686 vstate = &help->dthps_vstate; 13687 13688 /* 13689 * We're now going to lose the help from this process. 13690 */ 13691 p->p_dtrace_helpers = NULL; 13692 dtrace_sync(); 13693 13694 /* 13695 * Destory the helper actions. 13696 */ 13697 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13698 dtrace_helper_action_t *h, *next; 13699 13700 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13701 next = h->dtha_next; 13702 dtrace_helper_action_destroy(h, vstate); 13703 h = next; 13704 } 13705 } 13706 13707 mutex_exit(&dtrace_lock); 13708 13709 /* 13710 * Destroy the helper providers. 13711 */ 13712 if (help->dthps_maxprovs > 0) { 13713 mutex_enter(&dtrace_meta_lock); 13714 if (dtrace_meta_pid != NULL) { 13715 ASSERT(dtrace_deferred_pid == NULL); 13716 13717 for (i = 0; i < help->dthps_nprovs; i++) { 13718 dtrace_helper_provider_remove( 13719 &help->dthps_provs[i]->dthp_prov, p->p_pid); 13720 } 13721 } else { 13722 mutex_enter(&dtrace_lock); 13723 ASSERT(help->dthps_deferred == 0 || 13724 help->dthps_next != NULL || 13725 help->dthps_prev != NULL || 13726 help == dtrace_deferred_pid); 13727 13728 /* 13729 * Remove the helper from the deferred list. 13730 */ 13731 if (help->dthps_next != NULL) 13732 help->dthps_next->dthps_prev = help->dthps_prev; 13733 if (help->dthps_prev != NULL) 13734 help->dthps_prev->dthps_next = help->dthps_next; 13735 if (dtrace_deferred_pid == help) { 13736 dtrace_deferred_pid = help->dthps_next; 13737 ASSERT(help->dthps_prev == NULL); 13738 } 13739 13740 mutex_exit(&dtrace_lock); 13741 } 13742 13743 mutex_exit(&dtrace_meta_lock); 13744 13745 for (i = 0; i < help->dthps_nprovs; i++) { 13746 dtrace_helper_provider_destroy(help->dthps_provs[i]); 13747 } 13748 13749 kmem_free(help->dthps_provs, help->dthps_maxprovs * 13750 sizeof (dtrace_helper_provider_t *)); 13751 } 13752 13753 mutex_enter(&dtrace_lock); 13754 13755 dtrace_vstate_fini(&help->dthps_vstate); 13756 kmem_free(help->dthps_actions, 13757 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 13758 kmem_free(help, sizeof (dtrace_helpers_t)); 13759 13760 --dtrace_helpers; 13761 mutex_exit(&dtrace_lock); 13762 } 13763 13764 static void 13765 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 13766 { 13767 dtrace_helpers_t *help, *newhelp; 13768 dtrace_helper_action_t *helper, *new, *last; 13769 dtrace_difo_t *dp; 13770 dtrace_vstate_t *vstate; 13771 int i, j, sz, hasprovs = 0; 13772 13773 mutex_enter(&dtrace_lock); 13774 ASSERT(from->p_dtrace_helpers != NULL); 13775 ASSERT(dtrace_helpers > 0); 13776 13777 help = from->p_dtrace_helpers; 13778 newhelp = dtrace_helpers_create(to); 13779 ASSERT(to->p_dtrace_helpers != NULL); 13780 13781 newhelp->dthps_generation = help->dthps_generation; 13782 vstate = &newhelp->dthps_vstate; 13783 13784 /* 13785 * Duplicate the helper actions. 13786 */ 13787 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13788 if ((helper = help->dthps_actions[i]) == NULL) 13789 continue; 13790 13791 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 13792 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 13793 KM_SLEEP); 13794 new->dtha_generation = helper->dtha_generation; 13795 13796 if ((dp = helper->dtha_predicate) != NULL) { 13797 dp = dtrace_difo_duplicate(dp, vstate); 13798 new->dtha_predicate = dp; 13799 } 13800 13801 new->dtha_nactions = helper->dtha_nactions; 13802 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 13803 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 13804 13805 for (j = 0; j < new->dtha_nactions; j++) { 13806 dtrace_difo_t *dp = helper->dtha_actions[j]; 13807 13808 ASSERT(dp != NULL); 13809 dp = dtrace_difo_duplicate(dp, vstate); 13810 new->dtha_actions[j] = dp; 13811 } 13812 13813 if (last != NULL) { 13814 last->dtha_next = new; 13815 } else { 13816 newhelp->dthps_actions[i] = new; 13817 } 13818 13819 last = new; 13820 } 13821 } 13822 13823 /* 13824 * Duplicate the helper providers and register them with the 13825 * DTrace framework. 13826 */ 13827 if (help->dthps_nprovs > 0) { 13828 newhelp->dthps_nprovs = help->dthps_nprovs; 13829 newhelp->dthps_maxprovs = help->dthps_nprovs; 13830 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 13831 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13832 for (i = 0; i < newhelp->dthps_nprovs; i++) { 13833 newhelp->dthps_provs[i] = help->dthps_provs[i]; 13834 newhelp->dthps_provs[i]->dthp_ref++; 13835 } 13836 13837 hasprovs = 1; 13838 } 13839 13840 mutex_exit(&dtrace_lock); 13841 13842 if (hasprovs) 13843 dtrace_helper_provider_register(to, newhelp, NULL); 13844 } 13845 13846 /* 13847 * DTrace Hook Functions 13848 */ 13849 static void 13850 dtrace_module_loaded(struct modctl *ctl) 13851 { 13852 dtrace_provider_t *prv; 13853 13854 mutex_enter(&dtrace_provider_lock); 13855 mutex_enter(&mod_lock); 13856 13857 ASSERT(ctl->mod_busy); 13858 13859 /* 13860 * We're going to call each providers per-module provide operation 13861 * specifying only this module. 13862 */ 13863 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 13864 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 13865 13866 mutex_exit(&mod_lock); 13867 mutex_exit(&dtrace_provider_lock); 13868 13869 /* 13870 * If we have any retained enablings, we need to match against them. 13871 * Enabling probes requires that cpu_lock be held, and we cannot hold 13872 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 13873 * module. (In particular, this happens when loading scheduling 13874 * classes.) So if we have any retained enablings, we need to dispatch 13875 * our task queue to do the match for us. 13876 */ 13877 mutex_enter(&dtrace_lock); 13878 13879 if (dtrace_retained == NULL) { 13880 mutex_exit(&dtrace_lock); 13881 return; 13882 } 13883 13884 (void) taskq_dispatch(dtrace_taskq, 13885 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 13886 13887 mutex_exit(&dtrace_lock); 13888 13889 /* 13890 * And now, for a little heuristic sleaze: in general, we want to 13891 * match modules as soon as they load. However, we cannot guarantee 13892 * this, because it would lead us to the lock ordering violation 13893 * outlined above. The common case, of course, is that cpu_lock is 13894 * _not_ held -- so we delay here for a clock tick, hoping that that's 13895 * long enough for the task queue to do its work. If it's not, it's 13896 * not a serious problem -- it just means that the module that we 13897 * just loaded may not be immediately instrumentable. 13898 */ 13899 delay(1); 13900 } 13901 13902 static void 13903 dtrace_module_unloaded(struct modctl *ctl) 13904 { 13905 dtrace_probe_t template, *probe, *first, *next; 13906 dtrace_provider_t *prov; 13907 13908 template.dtpr_mod = ctl->mod_modname; 13909 13910 mutex_enter(&dtrace_provider_lock); 13911 mutex_enter(&mod_lock); 13912 mutex_enter(&dtrace_lock); 13913 13914 if (dtrace_bymod == NULL) { 13915 /* 13916 * The DTrace module is loaded (obviously) but not attached; 13917 * we don't have any work to do. 13918 */ 13919 mutex_exit(&dtrace_provider_lock); 13920 mutex_exit(&mod_lock); 13921 mutex_exit(&dtrace_lock); 13922 return; 13923 } 13924 13925 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 13926 probe != NULL; probe = probe->dtpr_nextmod) { 13927 if (probe->dtpr_ecb != NULL) { 13928 mutex_exit(&dtrace_provider_lock); 13929 mutex_exit(&mod_lock); 13930 mutex_exit(&dtrace_lock); 13931 13932 /* 13933 * This shouldn't _actually_ be possible -- we're 13934 * unloading a module that has an enabled probe in it. 13935 * (It's normally up to the provider to make sure that 13936 * this can't happen.) However, because dtps_enable() 13937 * doesn't have a failure mode, there can be an 13938 * enable/unload race. Upshot: we don't want to 13939 * assert, but we're not going to disable the 13940 * probe, either. 13941 */ 13942 if (dtrace_err_verbose) { 13943 cmn_err(CE_WARN, "unloaded module '%s' had " 13944 "enabled probes", ctl->mod_modname); 13945 } 13946 13947 return; 13948 } 13949 } 13950 13951 probe = first; 13952 13953 for (first = NULL; probe != NULL; probe = next) { 13954 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 13955 13956 dtrace_probes[probe->dtpr_id - 1] = NULL; 13957 13958 next = probe->dtpr_nextmod; 13959 dtrace_hash_remove(dtrace_bymod, probe); 13960 dtrace_hash_remove(dtrace_byfunc, probe); 13961 dtrace_hash_remove(dtrace_byname, probe); 13962 13963 if (first == NULL) { 13964 first = probe; 13965 probe->dtpr_nextmod = NULL; 13966 } else { 13967 probe->dtpr_nextmod = first; 13968 first = probe; 13969 } 13970 } 13971 13972 /* 13973 * We've removed all of the module's probes from the hash chains and 13974 * from the probe array. Now issue a dtrace_sync() to be sure that 13975 * everyone has cleared out from any probe array processing. 13976 */ 13977 dtrace_sync(); 13978 13979 for (probe = first; probe != NULL; probe = first) { 13980 first = probe->dtpr_nextmod; 13981 prov = probe->dtpr_provider; 13982 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 13983 probe->dtpr_arg); 13984 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 13985 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 13986 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 13987 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 13988 kmem_free(probe, sizeof (dtrace_probe_t)); 13989 } 13990 13991 mutex_exit(&dtrace_lock); 13992 mutex_exit(&mod_lock); 13993 mutex_exit(&dtrace_provider_lock); 13994 } 13995 13996 void 13997 dtrace_suspend(void) 13998 { 13999 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 14000 } 14001 14002 void 14003 dtrace_resume(void) 14004 { 14005 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 14006 } 14007 14008 static int 14009 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 14010 { 14011 ASSERT(MUTEX_HELD(&cpu_lock)); 14012 mutex_enter(&dtrace_lock); 14013 14014 switch (what) { 14015 case CPU_CONFIG: { 14016 dtrace_state_t *state; 14017 dtrace_optval_t *opt, rs, c; 14018 14019 /* 14020 * For now, we only allocate a new buffer for anonymous state. 14021 */ 14022 if ((state = dtrace_anon.dta_state) == NULL) 14023 break; 14024 14025 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14026 break; 14027 14028 opt = state->dts_options; 14029 c = opt[DTRACEOPT_CPU]; 14030 14031 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 14032 break; 14033 14034 /* 14035 * Regardless of what the actual policy is, we're going to 14036 * temporarily set our resize policy to be manual. We're 14037 * also going to temporarily set our CPU option to denote 14038 * the newly configured CPU. 14039 */ 14040 rs = opt[DTRACEOPT_BUFRESIZE]; 14041 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14042 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14043 14044 (void) dtrace_state_buffers(state); 14045 14046 opt[DTRACEOPT_BUFRESIZE] = rs; 14047 opt[DTRACEOPT_CPU] = c; 14048 14049 break; 14050 } 14051 14052 case CPU_UNCONFIG: 14053 /* 14054 * We don't free the buffer in the CPU_UNCONFIG case. (The 14055 * buffer will be freed when the consumer exits.) 14056 */ 14057 break; 14058 14059 default: 14060 break; 14061 } 14062 14063 mutex_exit(&dtrace_lock); 14064 return (0); 14065 } 14066 14067 static void 14068 dtrace_cpu_setup_initial(processorid_t cpu) 14069 { 14070 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 14071 } 14072 14073 static void 14074 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 14075 { 14076 if (dtrace_toxranges >= dtrace_toxranges_max) { 14077 int osize, nsize; 14078 dtrace_toxrange_t *range; 14079 14080 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14081 14082 if (osize == 0) { 14083 ASSERT(dtrace_toxrange == NULL); 14084 ASSERT(dtrace_toxranges_max == 0); 14085 dtrace_toxranges_max = 1; 14086 } else { 14087 dtrace_toxranges_max <<= 1; 14088 } 14089 14090 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14091 range = kmem_zalloc(nsize, KM_SLEEP); 14092 14093 if (dtrace_toxrange != NULL) { 14094 ASSERT(osize != 0); 14095 bcopy(dtrace_toxrange, range, osize); 14096 kmem_free(dtrace_toxrange, osize); 14097 } 14098 14099 dtrace_toxrange = range; 14100 } 14101 14102 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 14103 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 14104 14105 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 14106 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 14107 dtrace_toxranges++; 14108 } 14109 14110 /* 14111 * DTrace Driver Cookbook Functions 14112 */ 14113 /*ARGSUSED*/ 14114 static int 14115 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 14116 { 14117 dtrace_provider_id_t id; 14118 dtrace_state_t *state = NULL; 14119 dtrace_enabling_t *enab; 14120 14121 mutex_enter(&cpu_lock); 14122 mutex_enter(&dtrace_provider_lock); 14123 mutex_enter(&dtrace_lock); 14124 14125 if (ddi_soft_state_init(&dtrace_softstate, 14126 sizeof (dtrace_state_t), 0) != 0) { 14127 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 14128 mutex_exit(&cpu_lock); 14129 mutex_exit(&dtrace_provider_lock); 14130 mutex_exit(&dtrace_lock); 14131 return (DDI_FAILURE); 14132 } 14133 14134 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 14135 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 14136 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 14137 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 14138 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 14139 ddi_remove_minor_node(devi, NULL); 14140 ddi_soft_state_fini(&dtrace_softstate); 14141 mutex_exit(&cpu_lock); 14142 mutex_exit(&dtrace_provider_lock); 14143 mutex_exit(&dtrace_lock); 14144 return (DDI_FAILURE); 14145 } 14146 14147 ddi_report_dev(devi); 14148 dtrace_devi = devi; 14149 14150 dtrace_modload = dtrace_module_loaded; 14151 dtrace_modunload = dtrace_module_unloaded; 14152 dtrace_cpu_init = dtrace_cpu_setup_initial; 14153 dtrace_helpers_cleanup = dtrace_helpers_destroy; 14154 dtrace_helpers_fork = dtrace_helpers_duplicate; 14155 dtrace_cpustart_init = dtrace_suspend; 14156 dtrace_cpustart_fini = dtrace_resume; 14157 dtrace_debugger_init = dtrace_suspend; 14158 dtrace_debugger_fini = dtrace_resume; 14159 14160 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14161 14162 ASSERT(MUTEX_HELD(&cpu_lock)); 14163 14164 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 14165 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14166 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 14167 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 14168 VM_SLEEP | VMC_IDENTIFIER); 14169 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 14170 1, INT_MAX, 0); 14171 14172 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 14173 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 14174 NULL, NULL, NULL, NULL, NULL, 0); 14175 14176 ASSERT(MUTEX_HELD(&cpu_lock)); 14177 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 14178 offsetof(dtrace_probe_t, dtpr_nextmod), 14179 offsetof(dtrace_probe_t, dtpr_prevmod)); 14180 14181 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 14182 offsetof(dtrace_probe_t, dtpr_nextfunc), 14183 offsetof(dtrace_probe_t, dtpr_prevfunc)); 14184 14185 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 14186 offsetof(dtrace_probe_t, dtpr_nextname), 14187 offsetof(dtrace_probe_t, dtpr_prevname)); 14188 14189 if (dtrace_retain_max < 1) { 14190 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 14191 "setting to 1", dtrace_retain_max); 14192 dtrace_retain_max = 1; 14193 } 14194 14195 /* 14196 * Now discover our toxic ranges. 14197 */ 14198 dtrace_toxic_ranges(dtrace_toxrange_add); 14199 14200 /* 14201 * Before we register ourselves as a provider to our own framework, 14202 * we would like to assert that dtrace_provider is NULL -- but that's 14203 * not true if we were loaded as a dependency of a DTrace provider. 14204 * Once we've registered, we can assert that dtrace_provider is our 14205 * pseudo provider. 14206 */ 14207 (void) dtrace_register("dtrace", &dtrace_provider_attr, 14208 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 14209 14210 ASSERT(dtrace_provider != NULL); 14211 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 14212 14213 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 14214 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 14215 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 14216 dtrace_provider, NULL, NULL, "END", 0, NULL); 14217 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 14218 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 14219 14220 dtrace_anon_property(); 14221 mutex_exit(&cpu_lock); 14222 14223 /* 14224 * If DTrace helper tracing is enabled, we need to allocate the 14225 * trace buffer and initialize the values. 14226 */ 14227 if (dtrace_helptrace_enabled) { 14228 ASSERT(dtrace_helptrace_buffer == NULL); 14229 dtrace_helptrace_buffer = 14230 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 14231 dtrace_helptrace_next = 0; 14232 } 14233 14234 /* 14235 * If there are already providers, we must ask them to provide their 14236 * probes, and then match any anonymous enabling against them. Note 14237 * that there should be no other retained enablings at this time: 14238 * the only retained enablings at this time should be the anonymous 14239 * enabling. 14240 */ 14241 if (dtrace_anon.dta_enabling != NULL) { 14242 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 14243 14244 dtrace_enabling_provide(NULL); 14245 state = dtrace_anon.dta_state; 14246 14247 /* 14248 * We couldn't hold cpu_lock across the above call to 14249 * dtrace_enabling_provide(), but we must hold it to actually 14250 * enable the probes. We have to drop all of our locks, pick 14251 * up cpu_lock, and regain our locks before matching the 14252 * retained anonymous enabling. 14253 */ 14254 mutex_exit(&dtrace_lock); 14255 mutex_exit(&dtrace_provider_lock); 14256 14257 mutex_enter(&cpu_lock); 14258 mutex_enter(&dtrace_provider_lock); 14259 mutex_enter(&dtrace_lock); 14260 14261 if ((enab = dtrace_anon.dta_enabling) != NULL) 14262 (void) dtrace_enabling_match(enab, NULL); 14263 14264 mutex_exit(&cpu_lock); 14265 } 14266 14267 mutex_exit(&dtrace_lock); 14268 mutex_exit(&dtrace_provider_lock); 14269 14270 if (state != NULL) { 14271 /* 14272 * If we created any anonymous state, set it going now. 14273 */ 14274 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 14275 } 14276 14277 return (DDI_SUCCESS); 14278 } 14279 14280 /*ARGSUSED*/ 14281 static int 14282 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 14283 { 14284 dtrace_state_t *state; 14285 uint32_t priv; 14286 uid_t uid; 14287 zoneid_t zoneid; 14288 14289 if (getminor(*devp) == DTRACEMNRN_HELPER) 14290 return (0); 14291 14292 /* 14293 * If this wasn't an open with the "helper" minor, then it must be 14294 * the "dtrace" minor. 14295 */ 14296 ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE); 14297 14298 /* 14299 * If no DTRACE_PRIV_* bits are set in the credential, then the 14300 * caller lacks sufficient permission to do anything with DTrace. 14301 */ 14302 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 14303 if (priv == DTRACE_PRIV_NONE) 14304 return (EACCES); 14305 14306 /* 14307 * Ask all providers to provide all their probes. 14308 */ 14309 mutex_enter(&dtrace_provider_lock); 14310 dtrace_probe_provide(NULL, NULL); 14311 mutex_exit(&dtrace_provider_lock); 14312 14313 mutex_enter(&cpu_lock); 14314 mutex_enter(&dtrace_lock); 14315 dtrace_opens++; 14316 dtrace_membar_producer(); 14317 14318 /* 14319 * If the kernel debugger is active (that is, if the kernel debugger 14320 * modified text in some way), we won't allow the open. 14321 */ 14322 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14323 dtrace_opens--; 14324 mutex_exit(&cpu_lock); 14325 mutex_exit(&dtrace_lock); 14326 return (EBUSY); 14327 } 14328 14329 state = dtrace_state_create(devp, cred_p); 14330 mutex_exit(&cpu_lock); 14331 14332 if (state == NULL) { 14333 if (--dtrace_opens == 0) 14334 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14335 mutex_exit(&dtrace_lock); 14336 return (EAGAIN); 14337 } 14338 14339 mutex_exit(&dtrace_lock); 14340 14341 return (0); 14342 } 14343 14344 /*ARGSUSED*/ 14345 static int 14346 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 14347 { 14348 minor_t minor = getminor(dev); 14349 dtrace_state_t *state; 14350 14351 if (minor == DTRACEMNRN_HELPER) 14352 return (0); 14353 14354 state = ddi_get_soft_state(dtrace_softstate, minor); 14355 14356 mutex_enter(&cpu_lock); 14357 mutex_enter(&dtrace_lock); 14358 14359 if (state->dts_anon) { 14360 /* 14361 * There is anonymous state. Destroy that first. 14362 */ 14363 ASSERT(dtrace_anon.dta_state == NULL); 14364 dtrace_state_destroy(state->dts_anon); 14365 } 14366 14367 dtrace_state_destroy(state); 14368 ASSERT(dtrace_opens > 0); 14369 if (--dtrace_opens == 0) 14370 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14371 14372 mutex_exit(&dtrace_lock); 14373 mutex_exit(&cpu_lock); 14374 14375 return (0); 14376 } 14377 14378 /*ARGSUSED*/ 14379 static int 14380 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 14381 { 14382 int rval; 14383 dof_helper_t help, *dhp = NULL; 14384 14385 switch (cmd) { 14386 case DTRACEHIOC_ADDDOF: 14387 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 14388 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 14389 return (EFAULT); 14390 } 14391 14392 dhp = &help; 14393 arg = (intptr_t)help.dofhp_dof; 14394 /*FALLTHROUGH*/ 14395 14396 case DTRACEHIOC_ADD: { 14397 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 14398 14399 if (dof == NULL) 14400 return (rval); 14401 14402 mutex_enter(&dtrace_lock); 14403 14404 /* 14405 * dtrace_helper_slurp() takes responsibility for the dof -- 14406 * it may free it now or it may save it and free it later. 14407 */ 14408 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 14409 *rv = rval; 14410 rval = 0; 14411 } else { 14412 rval = EINVAL; 14413 } 14414 14415 mutex_exit(&dtrace_lock); 14416 return (rval); 14417 } 14418 14419 case DTRACEHIOC_REMOVE: { 14420 mutex_enter(&dtrace_lock); 14421 rval = dtrace_helper_destroygen(arg); 14422 mutex_exit(&dtrace_lock); 14423 14424 return (rval); 14425 } 14426 14427 default: 14428 break; 14429 } 14430 14431 return (ENOTTY); 14432 } 14433 14434 /*ARGSUSED*/ 14435 static int 14436 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 14437 { 14438 minor_t minor = getminor(dev); 14439 dtrace_state_t *state; 14440 int rval; 14441 14442 if (minor == DTRACEMNRN_HELPER) 14443 return (dtrace_ioctl_helper(cmd, arg, rv)); 14444 14445 state = ddi_get_soft_state(dtrace_softstate, minor); 14446 14447 if (state->dts_anon) { 14448 ASSERT(dtrace_anon.dta_state == NULL); 14449 state = state->dts_anon; 14450 } 14451 14452 switch (cmd) { 14453 case DTRACEIOC_PROVIDER: { 14454 dtrace_providerdesc_t pvd; 14455 dtrace_provider_t *pvp; 14456 14457 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 14458 return (EFAULT); 14459 14460 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 14461 mutex_enter(&dtrace_provider_lock); 14462 14463 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 14464 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 14465 break; 14466 } 14467 14468 mutex_exit(&dtrace_provider_lock); 14469 14470 if (pvp == NULL) 14471 return (ESRCH); 14472 14473 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 14474 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 14475 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 14476 return (EFAULT); 14477 14478 return (0); 14479 } 14480 14481 case DTRACEIOC_EPROBE: { 14482 dtrace_eprobedesc_t epdesc; 14483 dtrace_ecb_t *ecb; 14484 dtrace_action_t *act; 14485 void *buf; 14486 size_t size; 14487 uintptr_t dest; 14488 int nrecs; 14489 14490 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 14491 return (EFAULT); 14492 14493 mutex_enter(&dtrace_lock); 14494 14495 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 14496 mutex_exit(&dtrace_lock); 14497 return (EINVAL); 14498 } 14499 14500 if (ecb->dte_probe == NULL) { 14501 mutex_exit(&dtrace_lock); 14502 return (EINVAL); 14503 } 14504 14505 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 14506 epdesc.dtepd_uarg = ecb->dte_uarg; 14507 epdesc.dtepd_size = ecb->dte_size; 14508 14509 nrecs = epdesc.dtepd_nrecs; 14510 epdesc.dtepd_nrecs = 0; 14511 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14512 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14513 continue; 14514 14515 epdesc.dtepd_nrecs++; 14516 } 14517 14518 /* 14519 * Now that we have the size, we need to allocate a temporary 14520 * buffer in which to store the complete description. We need 14521 * the temporary buffer to be able to drop dtrace_lock() 14522 * across the copyout(), below. 14523 */ 14524 size = sizeof (dtrace_eprobedesc_t) + 14525 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 14526 14527 buf = kmem_alloc(size, KM_SLEEP); 14528 dest = (uintptr_t)buf; 14529 14530 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 14531 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 14532 14533 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14534 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14535 continue; 14536 14537 if (nrecs-- == 0) 14538 break; 14539 14540 bcopy(&act->dta_rec, (void *)dest, 14541 sizeof (dtrace_recdesc_t)); 14542 dest += sizeof (dtrace_recdesc_t); 14543 } 14544 14545 mutex_exit(&dtrace_lock); 14546 14547 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14548 kmem_free(buf, size); 14549 return (EFAULT); 14550 } 14551 14552 kmem_free(buf, size); 14553 return (0); 14554 } 14555 14556 case DTRACEIOC_AGGDESC: { 14557 dtrace_aggdesc_t aggdesc; 14558 dtrace_action_t *act; 14559 dtrace_aggregation_t *agg; 14560 int nrecs; 14561 uint32_t offs; 14562 dtrace_recdesc_t *lrec; 14563 void *buf; 14564 size_t size; 14565 uintptr_t dest; 14566 14567 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 14568 return (EFAULT); 14569 14570 mutex_enter(&dtrace_lock); 14571 14572 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 14573 mutex_exit(&dtrace_lock); 14574 return (EINVAL); 14575 } 14576 14577 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 14578 14579 nrecs = aggdesc.dtagd_nrecs; 14580 aggdesc.dtagd_nrecs = 0; 14581 14582 offs = agg->dtag_base; 14583 lrec = &agg->dtag_action.dta_rec; 14584 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 14585 14586 for (act = agg->dtag_first; ; act = act->dta_next) { 14587 ASSERT(act->dta_intuple || 14588 DTRACEACT_ISAGG(act->dta_kind)); 14589 14590 /* 14591 * If this action has a record size of zero, it 14592 * denotes an argument to the aggregating action. 14593 * Because the presence of this record doesn't (or 14594 * shouldn't) affect the way the data is interpreted, 14595 * we don't copy it out to save user-level the 14596 * confusion of dealing with a zero-length record. 14597 */ 14598 if (act->dta_rec.dtrd_size == 0) { 14599 ASSERT(agg->dtag_hasarg); 14600 continue; 14601 } 14602 14603 aggdesc.dtagd_nrecs++; 14604 14605 if (act == &agg->dtag_action) 14606 break; 14607 } 14608 14609 /* 14610 * Now that we have the size, we need to allocate a temporary 14611 * buffer in which to store the complete description. We need 14612 * the temporary buffer to be able to drop dtrace_lock() 14613 * across the copyout(), below. 14614 */ 14615 size = sizeof (dtrace_aggdesc_t) + 14616 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 14617 14618 buf = kmem_alloc(size, KM_SLEEP); 14619 dest = (uintptr_t)buf; 14620 14621 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 14622 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 14623 14624 for (act = agg->dtag_first; ; act = act->dta_next) { 14625 dtrace_recdesc_t rec = act->dta_rec; 14626 14627 /* 14628 * See the comment in the above loop for why we pass 14629 * over zero-length records. 14630 */ 14631 if (rec.dtrd_size == 0) { 14632 ASSERT(agg->dtag_hasarg); 14633 continue; 14634 } 14635 14636 if (nrecs-- == 0) 14637 break; 14638 14639 rec.dtrd_offset -= offs; 14640 bcopy(&rec, (void *)dest, sizeof (rec)); 14641 dest += sizeof (dtrace_recdesc_t); 14642 14643 if (act == &agg->dtag_action) 14644 break; 14645 } 14646 14647 mutex_exit(&dtrace_lock); 14648 14649 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14650 kmem_free(buf, size); 14651 return (EFAULT); 14652 } 14653 14654 kmem_free(buf, size); 14655 return (0); 14656 } 14657 14658 case DTRACEIOC_ENABLE: { 14659 dof_hdr_t *dof; 14660 dtrace_enabling_t *enab = NULL; 14661 dtrace_vstate_t *vstate; 14662 int err = 0; 14663 14664 *rv = 0; 14665 14666 /* 14667 * If a NULL argument has been passed, we take this as our 14668 * cue to reevaluate our enablings. 14669 */ 14670 if (arg == NULL) { 14671 mutex_enter(&cpu_lock); 14672 mutex_enter(&dtrace_lock); 14673 err = dtrace_enabling_matchstate(state, rv); 14674 mutex_exit(&dtrace_lock); 14675 mutex_exit(&cpu_lock); 14676 14677 return (err); 14678 } 14679 14680 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 14681 return (rval); 14682 14683 mutex_enter(&cpu_lock); 14684 mutex_enter(&dtrace_lock); 14685 vstate = &state->dts_vstate; 14686 14687 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14688 mutex_exit(&dtrace_lock); 14689 mutex_exit(&cpu_lock); 14690 dtrace_dof_destroy(dof); 14691 return (EBUSY); 14692 } 14693 14694 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 14695 mutex_exit(&dtrace_lock); 14696 mutex_exit(&cpu_lock); 14697 dtrace_dof_destroy(dof); 14698 return (EINVAL); 14699 } 14700 14701 if ((rval = dtrace_dof_options(dof, state)) != 0) { 14702 dtrace_enabling_destroy(enab); 14703 mutex_exit(&dtrace_lock); 14704 mutex_exit(&cpu_lock); 14705 dtrace_dof_destroy(dof); 14706 return (rval); 14707 } 14708 14709 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 14710 err = dtrace_enabling_retain(enab); 14711 } else { 14712 dtrace_enabling_destroy(enab); 14713 } 14714 14715 mutex_exit(&cpu_lock); 14716 mutex_exit(&dtrace_lock); 14717 dtrace_dof_destroy(dof); 14718 14719 return (err); 14720 } 14721 14722 case DTRACEIOC_REPLICATE: { 14723 dtrace_repldesc_t desc; 14724 dtrace_probedesc_t *match = &desc.dtrpd_match; 14725 dtrace_probedesc_t *create = &desc.dtrpd_create; 14726 int err; 14727 14728 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14729 return (EFAULT); 14730 14731 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14732 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14733 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14734 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14735 14736 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14737 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14738 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14739 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14740 14741 mutex_enter(&dtrace_lock); 14742 err = dtrace_enabling_replicate(state, match, create); 14743 mutex_exit(&dtrace_lock); 14744 14745 return (err); 14746 } 14747 14748 case DTRACEIOC_PROBEMATCH: 14749 case DTRACEIOC_PROBES: { 14750 dtrace_probe_t *probe = NULL; 14751 dtrace_probedesc_t desc; 14752 dtrace_probekey_t pkey; 14753 dtrace_id_t i; 14754 int m = 0; 14755 uint32_t priv; 14756 uid_t uid; 14757 zoneid_t zoneid; 14758 14759 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14760 return (EFAULT); 14761 14762 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14763 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14764 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14765 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14766 14767 /* 14768 * Before we attempt to match this probe, we want to give 14769 * all providers the opportunity to provide it. 14770 */ 14771 if (desc.dtpd_id == DTRACE_IDNONE) { 14772 mutex_enter(&dtrace_provider_lock); 14773 dtrace_probe_provide(&desc, NULL); 14774 mutex_exit(&dtrace_provider_lock); 14775 desc.dtpd_id++; 14776 } 14777 14778 if (cmd == DTRACEIOC_PROBEMATCH) { 14779 dtrace_probekey(&desc, &pkey); 14780 pkey.dtpk_id = DTRACE_IDNONE; 14781 } 14782 14783 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 14784 14785 mutex_enter(&dtrace_lock); 14786 14787 if (cmd == DTRACEIOC_PROBEMATCH) { 14788 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14789 if ((probe = dtrace_probes[i - 1]) != NULL && 14790 (m = dtrace_match_probe(probe, &pkey, 14791 priv, uid, zoneid)) != 0) 14792 break; 14793 } 14794 14795 if (m < 0) { 14796 mutex_exit(&dtrace_lock); 14797 return (EINVAL); 14798 } 14799 14800 } else { 14801 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14802 if ((probe = dtrace_probes[i - 1]) != NULL && 14803 dtrace_match_priv(probe, priv, uid, zoneid)) 14804 break; 14805 } 14806 } 14807 14808 if (probe == NULL) { 14809 mutex_exit(&dtrace_lock); 14810 return (ESRCH); 14811 } 14812 14813 dtrace_probe_description(probe, &desc); 14814 mutex_exit(&dtrace_lock); 14815 14816 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14817 return (EFAULT); 14818 14819 return (0); 14820 } 14821 14822 case DTRACEIOC_PROBEARG: { 14823 dtrace_argdesc_t desc; 14824 dtrace_probe_t *probe; 14825 dtrace_provider_t *prov; 14826 14827 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14828 return (EFAULT); 14829 14830 if (desc.dtargd_id == DTRACE_IDNONE) 14831 return (EINVAL); 14832 14833 if (desc.dtargd_ndx == DTRACE_ARGNONE) 14834 return (EINVAL); 14835 14836 mutex_enter(&dtrace_provider_lock); 14837 mutex_enter(&mod_lock); 14838 mutex_enter(&dtrace_lock); 14839 14840 if (desc.dtargd_id > dtrace_nprobes) { 14841 mutex_exit(&dtrace_lock); 14842 mutex_exit(&mod_lock); 14843 mutex_exit(&dtrace_provider_lock); 14844 return (EINVAL); 14845 } 14846 14847 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 14848 mutex_exit(&dtrace_lock); 14849 mutex_exit(&mod_lock); 14850 mutex_exit(&dtrace_provider_lock); 14851 return (EINVAL); 14852 } 14853 14854 mutex_exit(&dtrace_lock); 14855 14856 prov = probe->dtpr_provider; 14857 14858 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 14859 /* 14860 * There isn't any typed information for this probe. 14861 * Set the argument number to DTRACE_ARGNONE. 14862 */ 14863 desc.dtargd_ndx = DTRACE_ARGNONE; 14864 } else { 14865 desc.dtargd_native[0] = '\0'; 14866 desc.dtargd_xlate[0] = '\0'; 14867 desc.dtargd_mapping = desc.dtargd_ndx; 14868 14869 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 14870 probe->dtpr_id, probe->dtpr_arg, &desc); 14871 } 14872 14873 mutex_exit(&mod_lock); 14874 mutex_exit(&dtrace_provider_lock); 14875 14876 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14877 return (EFAULT); 14878 14879 return (0); 14880 } 14881 14882 case DTRACEIOC_GO: { 14883 processorid_t cpuid; 14884 rval = dtrace_state_go(state, &cpuid); 14885 14886 if (rval != 0) 14887 return (rval); 14888 14889 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 14890 return (EFAULT); 14891 14892 return (0); 14893 } 14894 14895 case DTRACEIOC_STOP: { 14896 processorid_t cpuid; 14897 14898 mutex_enter(&dtrace_lock); 14899 rval = dtrace_state_stop(state, &cpuid); 14900 mutex_exit(&dtrace_lock); 14901 14902 if (rval != 0) 14903 return (rval); 14904 14905 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 14906 return (EFAULT); 14907 14908 return (0); 14909 } 14910 14911 case DTRACEIOC_DOFGET: { 14912 dof_hdr_t hdr, *dof; 14913 uint64_t len; 14914 14915 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 14916 return (EFAULT); 14917 14918 mutex_enter(&dtrace_lock); 14919 dof = dtrace_dof_create(state); 14920 mutex_exit(&dtrace_lock); 14921 14922 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 14923 rval = copyout(dof, (void *)arg, len); 14924 dtrace_dof_destroy(dof); 14925 14926 return (rval == 0 ? 0 : EFAULT); 14927 } 14928 14929 case DTRACEIOC_AGGSNAP: 14930 case DTRACEIOC_BUFSNAP: { 14931 dtrace_bufdesc_t desc; 14932 caddr_t cached; 14933 dtrace_buffer_t *buf; 14934 14935 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14936 return (EFAULT); 14937 14938 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 14939 return (EINVAL); 14940 14941 mutex_enter(&dtrace_lock); 14942 14943 if (cmd == DTRACEIOC_BUFSNAP) { 14944 buf = &state->dts_buffer[desc.dtbd_cpu]; 14945 } else { 14946 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 14947 } 14948 14949 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 14950 size_t sz = buf->dtb_offset; 14951 14952 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 14953 mutex_exit(&dtrace_lock); 14954 return (EBUSY); 14955 } 14956 14957 /* 14958 * If this buffer has already been consumed, we're 14959 * going to indicate that there's nothing left here 14960 * to consume. 14961 */ 14962 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 14963 mutex_exit(&dtrace_lock); 14964 14965 desc.dtbd_size = 0; 14966 desc.dtbd_drops = 0; 14967 desc.dtbd_errors = 0; 14968 desc.dtbd_oldest = 0; 14969 sz = sizeof (desc); 14970 14971 if (copyout(&desc, (void *)arg, sz) != 0) 14972 return (EFAULT); 14973 14974 return (0); 14975 } 14976 14977 /* 14978 * If this is a ring buffer that has wrapped, we want 14979 * to copy the whole thing out. 14980 */ 14981 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 14982 dtrace_buffer_polish(buf); 14983 sz = buf->dtb_size; 14984 } 14985 14986 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 14987 mutex_exit(&dtrace_lock); 14988 return (EFAULT); 14989 } 14990 14991 desc.dtbd_size = sz; 14992 desc.dtbd_drops = buf->dtb_drops; 14993 desc.dtbd_errors = buf->dtb_errors; 14994 desc.dtbd_oldest = buf->dtb_xamot_offset; 14995 14996 mutex_exit(&dtrace_lock); 14997 14998 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14999 return (EFAULT); 15000 15001 buf->dtb_flags |= DTRACEBUF_CONSUMED; 15002 15003 return (0); 15004 } 15005 15006 if (buf->dtb_tomax == NULL) { 15007 ASSERT(buf->dtb_xamot == NULL); 15008 mutex_exit(&dtrace_lock); 15009 return (ENOENT); 15010 } 15011 15012 cached = buf->dtb_tomax; 15013 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 15014 15015 dtrace_xcall(desc.dtbd_cpu, 15016 (dtrace_xcall_t)dtrace_buffer_switch, buf); 15017 15018 state->dts_errors += buf->dtb_xamot_errors; 15019 15020 /* 15021 * If the buffers did not actually switch, then the cross call 15022 * did not take place -- presumably because the given CPU is 15023 * not in the ready set. If this is the case, we'll return 15024 * ENOENT. 15025 */ 15026 if (buf->dtb_tomax == cached) { 15027 ASSERT(buf->dtb_xamot != cached); 15028 mutex_exit(&dtrace_lock); 15029 return (ENOENT); 15030 } 15031 15032 ASSERT(cached == buf->dtb_xamot); 15033 15034 /* 15035 * We have our snapshot; now copy it out. 15036 */ 15037 if (copyout(buf->dtb_xamot, desc.dtbd_data, 15038 buf->dtb_xamot_offset) != 0) { 15039 mutex_exit(&dtrace_lock); 15040 return (EFAULT); 15041 } 15042 15043 desc.dtbd_size = buf->dtb_xamot_offset; 15044 desc.dtbd_drops = buf->dtb_xamot_drops; 15045 desc.dtbd_errors = buf->dtb_xamot_errors; 15046 desc.dtbd_oldest = 0; 15047 15048 mutex_exit(&dtrace_lock); 15049 15050 /* 15051 * Finally, copy out the buffer description. 15052 */ 15053 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15054 return (EFAULT); 15055 15056 return (0); 15057 } 15058 15059 case DTRACEIOC_CONF: { 15060 dtrace_conf_t conf; 15061 15062 bzero(&conf, sizeof (conf)); 15063 conf.dtc_difversion = DIF_VERSION; 15064 conf.dtc_difintregs = DIF_DIR_NREGS; 15065 conf.dtc_diftupregs = DIF_DTR_NREGS; 15066 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 15067 15068 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15069 return (EFAULT); 15070 15071 return (0); 15072 } 15073 15074 case DTRACEIOC_STATUS: { 15075 dtrace_status_t stat; 15076 dtrace_dstate_t *dstate; 15077 int i, j; 15078 uint64_t nerrs; 15079 15080 /* 15081 * See the comment in dtrace_state_deadman() for the reason 15082 * for setting dts_laststatus to INT64_MAX before setting 15083 * it to the correct value. 15084 */ 15085 state->dts_laststatus = INT64_MAX; 15086 dtrace_membar_producer(); 15087 state->dts_laststatus = dtrace_gethrtime(); 15088 15089 bzero(&stat, sizeof (stat)); 15090 15091 mutex_enter(&dtrace_lock); 15092 15093 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 15094 mutex_exit(&dtrace_lock); 15095 return (ENOENT); 15096 } 15097 15098 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 15099 stat.dtst_exiting = 1; 15100 15101 nerrs = state->dts_errors; 15102 dstate = &state->dts_vstate.dtvs_dynvars; 15103 15104 for (i = 0; i < NCPU; i++) { 15105 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 15106 15107 stat.dtst_dyndrops += dcpu->dtdsc_drops; 15108 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 15109 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 15110 15111 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 15112 stat.dtst_filled++; 15113 15114 nerrs += state->dts_buffer[i].dtb_errors; 15115 15116 for (j = 0; j < state->dts_nspeculations; j++) { 15117 dtrace_speculation_t *spec; 15118 dtrace_buffer_t *buf; 15119 15120 spec = &state->dts_speculations[j]; 15121 buf = &spec->dtsp_buffer[i]; 15122 stat.dtst_specdrops += buf->dtb_xamot_drops; 15123 } 15124 } 15125 15126 stat.dtst_specdrops_busy = state->dts_speculations_busy; 15127 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 15128 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 15129 stat.dtst_dblerrors = state->dts_dblerrors; 15130 stat.dtst_killed = 15131 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 15132 stat.dtst_errors = nerrs; 15133 15134 mutex_exit(&dtrace_lock); 15135 15136 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 15137 return (EFAULT); 15138 15139 return (0); 15140 } 15141 15142 case DTRACEIOC_FORMAT: { 15143 dtrace_fmtdesc_t fmt; 15144 char *str; 15145 int len; 15146 15147 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 15148 return (EFAULT); 15149 15150 mutex_enter(&dtrace_lock); 15151 15152 if (fmt.dtfd_format == 0 || 15153 fmt.dtfd_format > state->dts_nformats) { 15154 mutex_exit(&dtrace_lock); 15155 return (EINVAL); 15156 } 15157 15158 /* 15159 * Format strings are allocated contiguously and they are 15160 * never freed; if a format index is less than the number 15161 * of formats, we can assert that the format map is non-NULL 15162 * and that the format for the specified index is non-NULL. 15163 */ 15164 ASSERT(state->dts_formats != NULL); 15165 str = state->dts_formats[fmt.dtfd_format - 1]; 15166 ASSERT(str != NULL); 15167 15168 len = strlen(str) + 1; 15169 15170 if (len > fmt.dtfd_length) { 15171 fmt.dtfd_length = len; 15172 15173 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 15174 mutex_exit(&dtrace_lock); 15175 return (EINVAL); 15176 } 15177 } else { 15178 if (copyout(str, fmt.dtfd_string, len) != 0) { 15179 mutex_exit(&dtrace_lock); 15180 return (EINVAL); 15181 } 15182 } 15183 15184 mutex_exit(&dtrace_lock); 15185 return (0); 15186 } 15187 15188 default: 15189 break; 15190 } 15191 15192 return (ENOTTY); 15193 } 15194 15195 /*ARGSUSED*/ 15196 static int 15197 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 15198 { 15199 dtrace_state_t *state; 15200 15201 switch (cmd) { 15202 case DDI_DETACH: 15203 break; 15204 15205 case DDI_SUSPEND: 15206 return (DDI_SUCCESS); 15207 15208 default: 15209 return (DDI_FAILURE); 15210 } 15211 15212 mutex_enter(&cpu_lock); 15213 mutex_enter(&dtrace_provider_lock); 15214 mutex_enter(&dtrace_lock); 15215 15216 ASSERT(dtrace_opens == 0); 15217 15218 if (dtrace_helpers > 0) { 15219 mutex_exit(&dtrace_provider_lock); 15220 mutex_exit(&dtrace_lock); 15221 mutex_exit(&cpu_lock); 15222 return (DDI_FAILURE); 15223 } 15224 15225 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 15226 mutex_exit(&dtrace_provider_lock); 15227 mutex_exit(&dtrace_lock); 15228 mutex_exit(&cpu_lock); 15229 return (DDI_FAILURE); 15230 } 15231 15232 dtrace_provider = NULL; 15233 15234 if ((state = dtrace_anon_grab()) != NULL) { 15235 /* 15236 * If there were ECBs on this state, the provider should 15237 * have not been allowed to detach; assert that there is 15238 * none. 15239 */ 15240 ASSERT(state->dts_necbs == 0); 15241 dtrace_state_destroy(state); 15242 15243 /* 15244 * If we're being detached with anonymous state, we need to 15245 * indicate to the kernel debugger that DTrace is now inactive. 15246 */ 15247 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15248 } 15249 15250 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 15251 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15252 dtrace_cpu_init = NULL; 15253 dtrace_helpers_cleanup = NULL; 15254 dtrace_helpers_fork = NULL; 15255 dtrace_cpustart_init = NULL; 15256 dtrace_cpustart_fini = NULL; 15257 dtrace_debugger_init = NULL; 15258 dtrace_debugger_fini = NULL; 15259 dtrace_modload = NULL; 15260 dtrace_modunload = NULL; 15261 15262 mutex_exit(&cpu_lock); 15263 15264 if (dtrace_helptrace_enabled) { 15265 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 15266 dtrace_helptrace_buffer = NULL; 15267 } 15268 15269 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 15270 dtrace_probes = NULL; 15271 dtrace_nprobes = 0; 15272 15273 dtrace_hash_destroy(dtrace_bymod); 15274 dtrace_hash_destroy(dtrace_byfunc); 15275 dtrace_hash_destroy(dtrace_byname); 15276 dtrace_bymod = NULL; 15277 dtrace_byfunc = NULL; 15278 dtrace_byname = NULL; 15279 15280 kmem_cache_destroy(dtrace_state_cache); 15281 vmem_destroy(dtrace_minor); 15282 vmem_destroy(dtrace_arena); 15283 15284 if (dtrace_toxrange != NULL) { 15285 kmem_free(dtrace_toxrange, 15286 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 15287 dtrace_toxrange = NULL; 15288 dtrace_toxranges = 0; 15289 dtrace_toxranges_max = 0; 15290 } 15291 15292 ddi_remove_minor_node(dtrace_devi, NULL); 15293 dtrace_devi = NULL; 15294 15295 ddi_soft_state_fini(&dtrace_softstate); 15296 15297 ASSERT(dtrace_vtime_references == 0); 15298 ASSERT(dtrace_opens == 0); 15299 ASSERT(dtrace_retained == NULL); 15300 15301 mutex_exit(&dtrace_lock); 15302 mutex_exit(&dtrace_provider_lock); 15303 15304 /* 15305 * We don't destroy the task queue until after we have dropped our 15306 * locks (taskq_destroy() may block on running tasks). To prevent 15307 * attempting to do work after we have effectively detached but before 15308 * the task queue has been destroyed, all tasks dispatched via the 15309 * task queue must check that DTrace is still attached before 15310 * performing any operation. 15311 */ 15312 taskq_destroy(dtrace_taskq); 15313 dtrace_taskq = NULL; 15314 15315 return (DDI_SUCCESS); 15316 } 15317 15318 /*ARGSUSED*/ 15319 static int 15320 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 15321 { 15322 int error; 15323 15324 switch (infocmd) { 15325 case DDI_INFO_DEVT2DEVINFO: 15326 *result = (void *)dtrace_devi; 15327 error = DDI_SUCCESS; 15328 break; 15329 case DDI_INFO_DEVT2INSTANCE: 15330 *result = (void *)0; 15331 error = DDI_SUCCESS; 15332 break; 15333 default: 15334 error = DDI_FAILURE; 15335 } 15336 return (error); 15337 } 15338 15339 static struct cb_ops dtrace_cb_ops = { 15340 dtrace_open, /* open */ 15341 dtrace_close, /* close */ 15342 nulldev, /* strategy */ 15343 nulldev, /* print */ 15344 nodev, /* dump */ 15345 nodev, /* read */ 15346 nodev, /* write */ 15347 dtrace_ioctl, /* ioctl */ 15348 nodev, /* devmap */ 15349 nodev, /* mmap */ 15350 nodev, /* segmap */ 15351 nochpoll, /* poll */ 15352 ddi_prop_op, /* cb_prop_op */ 15353 0, /* streamtab */ 15354 D_NEW | D_MP /* Driver compatibility flag */ 15355 }; 15356 15357 static struct dev_ops dtrace_ops = { 15358 DEVO_REV, /* devo_rev */ 15359 0, /* refcnt */ 15360 dtrace_info, /* get_dev_info */ 15361 nulldev, /* identify */ 15362 nulldev, /* probe */ 15363 dtrace_attach, /* attach */ 15364 dtrace_detach, /* detach */ 15365 nodev, /* reset */ 15366 &dtrace_cb_ops, /* driver operations */ 15367 NULL, /* bus operations */ 15368 nodev /* dev power */ 15369 }; 15370 15371 static struct modldrv modldrv = { 15372 &mod_driverops, /* module type (this is a pseudo driver) */ 15373 "Dynamic Tracing", /* name of module */ 15374 &dtrace_ops, /* driver ops */ 15375 }; 15376 15377 static struct modlinkage modlinkage = { 15378 MODREV_1, 15379 (void *)&modldrv, 15380 NULL 15381 }; 15382 15383 int 15384 _init(void) 15385 { 15386 return (mod_install(&modlinkage)); 15387 } 15388 15389 int 15390 _info(struct modinfo *modinfop) 15391 { 15392 return (mod_info(&modlinkage, modinfop)); 15393 } 15394 15395 int 15396 _fini(void) 15397 { 15398 return (mod_remove(&modlinkage)); 15399 } 15400