1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * DTrace - Dynamic Tracing for Solaris 31 * 32 * This is the implementation of the Solaris Dynamic Tracing framework 33 * (DTrace). The user-visible interface to DTrace is described at length in 34 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 35 * library, the in-kernel DTrace framework, and the DTrace providers are 36 * described in the block comments in the <sys/dtrace.h> header file. The 37 * internal architecture of DTrace is described in the block comments in the 38 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 39 * implementation very much assume mastery of all of these sources; if one has 40 * an unanswered question about the implementation, one should consult them 41 * first. 42 * 43 * The functions here are ordered roughly as follows: 44 * 45 * - Probe context functions 46 * - Probe hashing functions 47 * - Non-probe context utility functions 48 * - Matching functions 49 * - Provider-to-Framework API functions 50 * - Probe management functions 51 * - DIF object functions 52 * - Format functions 53 * - Predicate functions 54 * - ECB functions 55 * - Buffer functions 56 * - Enabling functions 57 * - DOF functions 58 * - Anonymous enabling functions 59 * - Consumer state functions 60 * - Helper functions 61 * - Hook functions 62 * - Driver cookbook functions 63 * 64 * Each group of functions begins with a block comment labelled the "DTrace 65 * [Group] Functions", allowing one to find each block by searching forward 66 * on capital-f functions. 67 */ 68 #include <sys/errno.h> 69 #include <sys/stat.h> 70 #include <sys/modctl.h> 71 #include <sys/conf.h> 72 #include <sys/systm.h> 73 #include <sys/ddi.h> 74 #include <sys/sunddi.h> 75 #include <sys/cpuvar.h> 76 #include <sys/kmem.h> 77 #include <sys/strsubr.h> 78 #include <sys/sysmacros.h> 79 #include <sys/dtrace_impl.h> 80 #include <sys/atomic.h> 81 #include <sys/cmn_err.h> 82 #include <sys/mutex_impl.h> 83 #include <sys/rwlock_impl.h> 84 #include <sys/ctf_api.h> 85 #include <sys/panic.h> 86 #include <sys/priv_impl.h> 87 #include <sys/policy.h> 88 #include <sys/cred_impl.h> 89 #include <sys/procfs_isa.h> 90 #include <sys/taskq.h> 91 #include <sys/mkdev.h> 92 #include <sys/kdi.h> 93 #include <sys/zone.h> 94 #include <sys/socket.h> 95 #include <netinet/in.h> 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 121 size_t dtrace_global_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 32; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 150 /* 151 * DTrace External Variables 152 * 153 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 154 * available to DTrace consumers via the backtick (`) syntax. One of these, 155 * dtrace_zero, is made deliberately so: it is provided as a source of 156 * well-known, zero-filled memory. While this variable is not documented, 157 * it is used by some translators as an implementation detail. 158 */ 159 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 160 161 /* 162 * DTrace Internal Variables 163 */ 164 static dev_info_t *dtrace_devi; /* device info */ 165 static vmem_t *dtrace_arena; /* probe ID arena */ 166 static vmem_t *dtrace_minor; /* minor number arena */ 167 static taskq_t *dtrace_taskq; /* task queue */ 168 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 169 static int dtrace_nprobes; /* number of probes */ 170 static dtrace_provider_t *dtrace_provider; /* provider list */ 171 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 172 static int dtrace_opens; /* number of opens */ 173 static int dtrace_helpers; /* number of helpers */ 174 static void *dtrace_softstate; /* softstate pointer */ 175 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 176 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 177 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 178 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 179 static int dtrace_toxranges; /* number of toxic ranges */ 180 static int dtrace_toxranges_max; /* size of toxic range array */ 181 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 182 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 183 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 184 static kthread_t *dtrace_panicked; /* panicking thread */ 185 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 186 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 187 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 188 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 189 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 190 191 /* 192 * DTrace Locking 193 * DTrace is protected by three (relatively coarse-grained) locks: 194 * 195 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 196 * including enabling state, probes, ECBs, consumer state, helper state, 197 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 198 * probe context is lock-free -- synchronization is handled via the 199 * dtrace_sync() cross call mechanism. 200 * 201 * (2) dtrace_provider_lock is required when manipulating provider state, or 202 * when provider state must be held constant. 203 * 204 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 205 * when meta provider state must be held constant. 206 * 207 * The lock ordering between these three locks is dtrace_meta_lock before 208 * dtrace_provider_lock before dtrace_lock. (In particular, there are 209 * several places where dtrace_provider_lock is held by the framework as it 210 * calls into the providers -- which then call back into the framework, 211 * grabbing dtrace_lock.) 212 * 213 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 214 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 215 * role as a coarse-grained lock; it is acquired before both of these locks. 216 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 217 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 218 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 219 * acquired _between_ dtrace_provider_lock and dtrace_lock. 220 */ 221 static kmutex_t dtrace_lock; /* probe state lock */ 222 static kmutex_t dtrace_provider_lock; /* provider state lock */ 223 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 224 225 /* 226 * DTrace Provider Variables 227 * 228 * These are the variables relating to DTrace as a provider (that is, the 229 * provider of the BEGIN, END, and ERROR probes). 230 */ 231 static dtrace_pattr_t dtrace_provider_attr = { 232 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 233 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 234 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 }; 238 239 static void 240 dtrace_nullop(void) 241 {} 242 243 static dtrace_pops_t dtrace_provider_ops = { 244 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 245 (void (*)(void *, struct modctl *))dtrace_nullop, 246 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 247 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 248 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 249 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 250 NULL, 251 NULL, 252 NULL, 253 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 254 }; 255 256 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 257 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 258 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 259 260 /* 261 * DTrace Helper Tracing Variables 262 */ 263 uint32_t dtrace_helptrace_next = 0; 264 uint32_t dtrace_helptrace_nlocals; 265 char *dtrace_helptrace_buffer; 266 int dtrace_helptrace_bufsize = 512 * 1024; 267 268 #ifdef DEBUG 269 int dtrace_helptrace_enabled = 1; 270 #else 271 int dtrace_helptrace_enabled = 0; 272 #endif 273 274 /* 275 * DTrace Error Hashing 276 * 277 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 278 * table. This is very useful for checking coverage of tests that are 279 * expected to induce DIF or DOF processing errors, and may be useful for 280 * debugging problems in the DIF code generator or in DOF generation . The 281 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 282 */ 283 #ifdef DEBUG 284 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 285 static const char *dtrace_errlast; 286 static kthread_t *dtrace_errthread; 287 static kmutex_t dtrace_errlock; 288 #endif 289 290 /* 291 * DTrace Macros and Constants 292 * 293 * These are various macros that are useful in various spots in the 294 * implementation, along with a few random constants that have no meaning 295 * outside of the implementation. There is no real structure to this cpp 296 * mishmash -- but is there ever? 297 */ 298 #define DTRACE_HASHSTR(hash, probe) \ 299 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 300 301 #define DTRACE_HASHNEXT(hash, probe) \ 302 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 303 304 #define DTRACE_HASHPREV(hash, probe) \ 305 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 306 307 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 308 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 309 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 310 311 #define DTRACE_AGGHASHSIZE_SLEW 17 312 313 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 314 315 /* 316 * The key for a thread-local variable consists of the lower 61 bits of the 317 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 318 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 319 * equal to a variable identifier. This is necessary (but not sufficient) to 320 * assure that global associative arrays never collide with thread-local 321 * variables. To guarantee that they cannot collide, we must also define the 322 * order for keying dynamic variables. That order is: 323 * 324 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 325 * 326 * Because the variable-key and the tls-key are in orthogonal spaces, there is 327 * no way for a global variable key signature to match a thread-local key 328 * signature. 329 */ 330 #define DTRACE_TLS_THRKEY(where) { \ 331 uint_t intr = 0; \ 332 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 333 for (; actv; actv >>= 1) \ 334 intr++; \ 335 ASSERT(intr < (1 << 3)); \ 336 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 337 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 338 } 339 340 #define DT_BSWAP_8(x) ((x) & 0xff) 341 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 342 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 343 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 344 345 #define DT_MASK_LO 0x00000000FFFFFFFFULL 346 347 #define DTRACE_STORE(type, tomax, offset, what) \ 348 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 349 350 #ifndef __i386 351 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 352 if (addr & (size - 1)) { \ 353 *flags |= CPU_DTRACE_BADALIGN; \ 354 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 355 return (0); \ 356 } 357 #else 358 #define DTRACE_ALIGNCHECK(addr, size, flags) 359 #endif 360 361 /* 362 * Test whether a range of memory starting at testaddr of size testsz falls 363 * within the range of memory described by addr, sz. We take care to avoid 364 * problems with overflow and underflow of the unsigned quantities, and 365 * disallow all negative sizes. Ranges of size 0 are allowed. 366 */ 367 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 368 ((testaddr) - (baseaddr) < (basesz) && \ 369 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 370 (testaddr) + (testsz) >= (testaddr)) 371 372 /* 373 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 374 * alloc_sz on the righthand side of the comparison in order to avoid overflow 375 * or underflow in the comparison with it. This is simpler than the INRANGE 376 * check above, because we know that the dtms_scratch_ptr is valid in the 377 * range. Allocations of size zero are allowed. 378 */ 379 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 380 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 381 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 382 383 #define DTRACE_LOADFUNC(bits) \ 384 /*CSTYLED*/ \ 385 uint##bits##_t \ 386 dtrace_load##bits(uintptr_t addr) \ 387 { \ 388 size_t size = bits / NBBY; \ 389 /*CSTYLED*/ \ 390 uint##bits##_t rval; \ 391 int i; \ 392 volatile uint16_t *flags = (volatile uint16_t *) \ 393 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 394 \ 395 DTRACE_ALIGNCHECK(addr, size, flags); \ 396 \ 397 for (i = 0; i < dtrace_toxranges; i++) { \ 398 if (addr >= dtrace_toxrange[i].dtt_limit) \ 399 continue; \ 400 \ 401 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 402 continue; \ 403 \ 404 /* \ 405 * This address falls within a toxic region; return 0. \ 406 */ \ 407 *flags |= CPU_DTRACE_BADADDR; \ 408 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 409 return (0); \ 410 } \ 411 \ 412 *flags |= CPU_DTRACE_NOFAULT; \ 413 /*CSTYLED*/ \ 414 rval = *((volatile uint##bits##_t *)addr); \ 415 *flags &= ~CPU_DTRACE_NOFAULT; \ 416 \ 417 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 418 } 419 420 #ifdef _LP64 421 #define dtrace_loadptr dtrace_load64 422 #else 423 #define dtrace_loadptr dtrace_load32 424 #endif 425 426 #define DTRACE_DYNHASH_FREE 0 427 #define DTRACE_DYNHASH_SINK 1 428 #define DTRACE_DYNHASH_VALID 2 429 430 #define DTRACE_MATCH_NEXT 0 431 #define DTRACE_MATCH_DONE 1 432 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 433 #define DTRACE_STATE_ALIGN 64 434 435 #define DTRACE_FLAGS2FLT(flags) \ 436 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 437 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 438 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 439 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 440 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 441 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 442 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 443 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 444 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 445 DTRACEFLT_UNKNOWN) 446 447 #define DTRACEACT_ISSTRING(act) \ 448 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 449 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 450 451 static size_t dtrace_strlen(const char *, size_t); 452 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 453 static void dtrace_enabling_provide(dtrace_provider_t *); 454 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 455 static void dtrace_enabling_matchall(void); 456 static dtrace_state_t *dtrace_anon_grab(void); 457 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 458 dtrace_state_t *, uint64_t, uint64_t); 459 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 460 static void dtrace_buffer_drop(dtrace_buffer_t *); 461 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 462 dtrace_state_t *, dtrace_mstate_t *); 463 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 464 dtrace_optval_t); 465 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 466 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 467 468 /* 469 * DTrace Probe Context Functions 470 * 471 * These functions are called from probe context. Because probe context is 472 * any context in which C may be called, arbitrarily locks may be held, 473 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 474 * As a result, functions called from probe context may only call other DTrace 475 * support functions -- they may not interact at all with the system at large. 476 * (Note that the ASSERT macro is made probe-context safe by redefining it in 477 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 478 * loads are to be performed from probe context, they _must_ be in terms of 479 * the safe dtrace_load*() variants. 480 * 481 * Some functions in this block are not actually called from probe context; 482 * for these functions, there will be a comment above the function reading 483 * "Note: not called from probe context." 484 */ 485 void 486 dtrace_panic(const char *format, ...) 487 { 488 va_list alist; 489 490 va_start(alist, format); 491 dtrace_vpanic(format, alist); 492 va_end(alist); 493 } 494 495 int 496 dtrace_assfail(const char *a, const char *f, int l) 497 { 498 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 499 500 /* 501 * We just need something here that even the most clever compiler 502 * cannot optimize away. 503 */ 504 return (a[(uintptr_t)f]); 505 } 506 507 /* 508 * Atomically increment a specified error counter from probe context. 509 */ 510 static void 511 dtrace_error(uint32_t *counter) 512 { 513 /* 514 * Most counters stored to in probe context are per-CPU counters. 515 * However, there are some error conditions that are sufficiently 516 * arcane that they don't merit per-CPU storage. If these counters 517 * are incremented concurrently on different CPUs, scalability will be 518 * adversely affected -- but we don't expect them to be white-hot in a 519 * correctly constructed enabling... 520 */ 521 uint32_t oval, nval; 522 523 do { 524 oval = *counter; 525 526 if ((nval = oval + 1) == 0) { 527 /* 528 * If the counter would wrap, set it to 1 -- assuring 529 * that the counter is never zero when we have seen 530 * errors. (The counter must be 32-bits because we 531 * aren't guaranteed a 64-bit compare&swap operation.) 532 * To save this code both the infamy of being fingered 533 * by a priggish news story and the indignity of being 534 * the target of a neo-puritan witch trial, we're 535 * carefully avoiding any colorful description of the 536 * likelihood of this condition -- but suffice it to 537 * say that it is only slightly more likely than the 538 * overflow of predicate cache IDs, as discussed in 539 * dtrace_predicate_create(). 540 */ 541 nval = 1; 542 } 543 } while (dtrace_cas32(counter, oval, nval) != oval); 544 } 545 546 /* 547 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 548 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 549 */ 550 DTRACE_LOADFUNC(8) 551 DTRACE_LOADFUNC(16) 552 DTRACE_LOADFUNC(32) 553 DTRACE_LOADFUNC(64) 554 555 static int 556 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 557 { 558 if (dest < mstate->dtms_scratch_base) 559 return (0); 560 561 if (dest + size < dest) 562 return (0); 563 564 if (dest + size > mstate->dtms_scratch_ptr) 565 return (0); 566 567 return (1); 568 } 569 570 static int 571 dtrace_canstore_statvar(uint64_t addr, size_t sz, 572 dtrace_statvar_t **svars, int nsvars) 573 { 574 int i; 575 576 for (i = 0; i < nsvars; i++) { 577 dtrace_statvar_t *svar = svars[i]; 578 579 if (svar == NULL || svar->dtsv_size == 0) 580 continue; 581 582 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 583 return (1); 584 } 585 586 return (0); 587 } 588 589 /* 590 * Check to see if the address is within a memory region to which a store may 591 * be issued. This includes the DTrace scratch areas, and any DTrace variable 592 * region. The caller of dtrace_canstore() is responsible for performing any 593 * alignment checks that are needed before stores are actually executed. 594 */ 595 static int 596 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 597 dtrace_vstate_t *vstate) 598 { 599 /* 600 * First, check to see if the address is in scratch space... 601 */ 602 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 603 mstate->dtms_scratch_size)) 604 return (1); 605 606 /* 607 * Now check to see if it's a dynamic variable. This check will pick 608 * up both thread-local variables and any global dynamically-allocated 609 * variables. 610 */ 611 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 612 vstate->dtvs_dynvars.dtds_size)) { 613 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 614 uintptr_t base = (uintptr_t)dstate->dtds_base + 615 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 616 uintptr_t chunkoffs; 617 618 /* 619 * Before we assume that we can store here, we need to make 620 * sure that it isn't in our metadata -- storing to our 621 * dynamic variable metadata would corrupt our state. For 622 * the range to not include any dynamic variable metadata, 623 * it must: 624 * 625 * (1) Start above the hash table that is at the base of 626 * the dynamic variable space 627 * 628 * (2) Have a starting chunk offset that is beyond the 629 * dtrace_dynvar_t that is at the base of every chunk 630 * 631 * (3) Not span a chunk boundary 632 * 633 */ 634 if (addr < base) 635 return (0); 636 637 chunkoffs = (addr - base) % dstate->dtds_chunksize; 638 639 if (chunkoffs < sizeof (dtrace_dynvar_t)) 640 return (0); 641 642 if (chunkoffs + sz > dstate->dtds_chunksize) 643 return (0); 644 645 return (1); 646 } 647 648 /* 649 * Finally, check the static local and global variables. These checks 650 * take the longest, so we perform them last. 651 */ 652 if (dtrace_canstore_statvar(addr, sz, 653 vstate->dtvs_locals, vstate->dtvs_nlocals)) 654 return (1); 655 656 if (dtrace_canstore_statvar(addr, sz, 657 vstate->dtvs_globals, vstate->dtvs_nglobals)) 658 return (1); 659 660 return (0); 661 } 662 663 664 /* 665 * Convenience routine to check to see if the address is within a memory 666 * region in which a load may be issued given the user's privilege level; 667 * if not, it sets the appropriate error flags and loads 'addr' into the 668 * illegal value slot. 669 * 670 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 671 * appropriate memory access protection. 672 */ 673 static int 674 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 675 dtrace_vstate_t *vstate) 676 { 677 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 678 679 /* 680 * If we hold the privilege to read from kernel memory, then 681 * everything is readable. 682 */ 683 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 684 return (1); 685 686 /* 687 * You can obviously read that which you can store. 688 */ 689 if (dtrace_canstore(addr, sz, mstate, vstate)) 690 return (1); 691 692 /* 693 * We're allowed to read from our own string table. 694 */ 695 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 696 mstate->dtms_difo->dtdo_strlen)) 697 return (1); 698 699 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 700 *illval = addr; 701 return (0); 702 } 703 704 /* 705 * Convenience routine to check to see if a given string is within a memory 706 * region in which a load may be issued given the user's privilege level; 707 * this exists so that we don't need to issue unnecessary dtrace_strlen() 708 * calls in the event that the user has all privileges. 709 */ 710 static int 711 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 712 dtrace_vstate_t *vstate) 713 { 714 size_t strsz; 715 716 /* 717 * If we hold the privilege to read from kernel memory, then 718 * everything is readable. 719 */ 720 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 721 return (1); 722 723 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 724 if (dtrace_canload(addr, strsz, mstate, vstate)) 725 return (1); 726 727 return (0); 728 } 729 730 /* 731 * Convenience routine to check to see if a given variable is within a memory 732 * region in which a load may be issued given the user's privilege level. 733 */ 734 static int 735 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 736 dtrace_vstate_t *vstate) 737 { 738 size_t sz; 739 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 740 741 /* 742 * If we hold the privilege to read from kernel memory, then 743 * everything is readable. 744 */ 745 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 746 return (1); 747 748 if (type->dtdt_kind == DIF_TYPE_STRING) 749 sz = dtrace_strlen(src, 750 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 751 else 752 sz = type->dtdt_size; 753 754 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 755 } 756 757 /* 758 * Compare two strings using safe loads. 759 */ 760 static int 761 dtrace_strncmp(char *s1, char *s2, size_t limit) 762 { 763 uint8_t c1, c2; 764 volatile uint16_t *flags; 765 766 if (s1 == s2 || limit == 0) 767 return (0); 768 769 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 770 771 do { 772 if (s1 == NULL) { 773 c1 = '\0'; 774 } else { 775 c1 = dtrace_load8((uintptr_t)s1++); 776 } 777 778 if (s2 == NULL) { 779 c2 = '\0'; 780 } else { 781 c2 = dtrace_load8((uintptr_t)s2++); 782 } 783 784 if (c1 != c2) 785 return (c1 - c2); 786 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 787 788 return (0); 789 } 790 791 /* 792 * Compute strlen(s) for a string using safe memory accesses. The additional 793 * len parameter is used to specify a maximum length to ensure completion. 794 */ 795 static size_t 796 dtrace_strlen(const char *s, size_t lim) 797 { 798 uint_t len; 799 800 for (len = 0; len != lim; len++) { 801 if (dtrace_load8((uintptr_t)s++) == '\0') 802 break; 803 } 804 805 return (len); 806 } 807 808 /* 809 * Check if an address falls within a toxic region. 810 */ 811 static int 812 dtrace_istoxic(uintptr_t kaddr, size_t size) 813 { 814 uintptr_t taddr, tsize; 815 int i; 816 817 for (i = 0; i < dtrace_toxranges; i++) { 818 taddr = dtrace_toxrange[i].dtt_base; 819 tsize = dtrace_toxrange[i].dtt_limit - taddr; 820 821 if (kaddr - taddr < tsize) { 822 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 823 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 824 return (1); 825 } 826 827 if (taddr - kaddr < size) { 828 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 829 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 830 return (1); 831 } 832 } 833 834 return (0); 835 } 836 837 /* 838 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 839 * memory specified by the DIF program. The dst is assumed to be safe memory 840 * that we can store to directly because it is managed by DTrace. As with 841 * standard bcopy, overlapping copies are handled properly. 842 */ 843 static void 844 dtrace_bcopy(const void *src, void *dst, size_t len) 845 { 846 if (len != 0) { 847 uint8_t *s1 = dst; 848 const uint8_t *s2 = src; 849 850 if (s1 <= s2) { 851 do { 852 *s1++ = dtrace_load8((uintptr_t)s2++); 853 } while (--len != 0); 854 } else { 855 s2 += len; 856 s1 += len; 857 858 do { 859 *--s1 = dtrace_load8((uintptr_t)--s2); 860 } while (--len != 0); 861 } 862 } 863 } 864 865 /* 866 * Copy src to dst using safe memory accesses, up to either the specified 867 * length, or the point that a nul byte is encountered. The src is assumed to 868 * be unsafe memory specified by the DIF program. The dst is assumed to be 869 * safe memory that we can store to directly because it is managed by DTrace. 870 * Unlike dtrace_bcopy(), overlapping regions are not handled. 871 */ 872 static void 873 dtrace_strcpy(const void *src, void *dst, size_t len) 874 { 875 if (len != 0) { 876 uint8_t *s1 = dst, c; 877 const uint8_t *s2 = src; 878 879 do { 880 *s1++ = c = dtrace_load8((uintptr_t)s2++); 881 } while (--len != 0 && c != '\0'); 882 } 883 } 884 885 /* 886 * Copy src to dst, deriving the size and type from the specified (BYREF) 887 * variable type. The src is assumed to be unsafe memory specified by the DIF 888 * program. The dst is assumed to be DTrace variable memory that is of the 889 * specified type; we assume that we can store to directly. 890 */ 891 static void 892 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 893 { 894 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 895 896 if (type->dtdt_kind == DIF_TYPE_STRING) { 897 dtrace_strcpy(src, dst, type->dtdt_size); 898 } else { 899 dtrace_bcopy(src, dst, type->dtdt_size); 900 } 901 } 902 903 /* 904 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 905 * unsafe memory specified by the DIF program. The s2 data is assumed to be 906 * safe memory that we can access directly because it is managed by DTrace. 907 */ 908 static int 909 dtrace_bcmp(const void *s1, const void *s2, size_t len) 910 { 911 volatile uint16_t *flags; 912 913 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 914 915 if (s1 == s2) 916 return (0); 917 918 if (s1 == NULL || s2 == NULL) 919 return (1); 920 921 if (s1 != s2 && len != 0) { 922 const uint8_t *ps1 = s1; 923 const uint8_t *ps2 = s2; 924 925 do { 926 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 927 return (1); 928 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 929 } 930 return (0); 931 } 932 933 /* 934 * Zero the specified region using a simple byte-by-byte loop. Note that this 935 * is for safe DTrace-managed memory only. 936 */ 937 static void 938 dtrace_bzero(void *dst, size_t len) 939 { 940 uchar_t *cp; 941 942 for (cp = dst; len != 0; len--) 943 *cp++ = 0; 944 } 945 946 static void 947 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 948 { 949 uint64_t result[2]; 950 951 result[0] = addend1[0] + addend2[0]; 952 result[1] = addend1[1] + addend2[1] + 953 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 954 955 sum[0] = result[0]; 956 sum[1] = result[1]; 957 } 958 959 /* 960 * Shift the 128-bit value in a by b. If b is positive, shift left. 961 * If b is negative, shift right. 962 */ 963 static void 964 dtrace_shift_128(uint64_t *a, int b) 965 { 966 uint64_t mask; 967 968 if (b == 0) 969 return; 970 971 if (b < 0) { 972 b = -b; 973 if (b >= 64) { 974 a[0] = a[1] >> (b - 64); 975 a[1] = 0; 976 } else { 977 a[0] >>= b; 978 mask = 1LL << (64 - b); 979 mask -= 1; 980 a[0] |= ((a[1] & mask) << (64 - b)); 981 a[1] >>= b; 982 } 983 } else { 984 if (b >= 64) { 985 a[1] = a[0] << (b - 64); 986 a[0] = 0; 987 } else { 988 a[1] <<= b; 989 mask = a[0] >> (64 - b); 990 a[1] |= mask; 991 a[0] <<= b; 992 } 993 } 994 } 995 996 /* 997 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 998 * use native multiplication on those, and then re-combine into the 999 * resulting 128-bit value. 1000 * 1001 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1002 * hi1 * hi2 << 64 + 1003 * hi1 * lo2 << 32 + 1004 * hi2 * lo1 << 32 + 1005 * lo1 * lo2 1006 */ 1007 static void 1008 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1009 { 1010 uint64_t hi1, hi2, lo1, lo2; 1011 uint64_t tmp[2]; 1012 1013 hi1 = factor1 >> 32; 1014 hi2 = factor2 >> 32; 1015 1016 lo1 = factor1 & DT_MASK_LO; 1017 lo2 = factor2 & DT_MASK_LO; 1018 1019 product[0] = lo1 * lo2; 1020 product[1] = hi1 * hi2; 1021 1022 tmp[0] = hi1 * lo2; 1023 tmp[1] = 0; 1024 dtrace_shift_128(tmp, 32); 1025 dtrace_add_128(product, tmp, product); 1026 1027 tmp[0] = hi2 * lo1; 1028 tmp[1] = 0; 1029 dtrace_shift_128(tmp, 32); 1030 dtrace_add_128(product, tmp, product); 1031 } 1032 1033 /* 1034 * This privilege check should be used by actions and subroutines to 1035 * verify that the user credentials of the process that enabled the 1036 * invoking ECB match the target credentials 1037 */ 1038 static int 1039 dtrace_priv_proc_common_user(dtrace_state_t *state) 1040 { 1041 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1042 1043 /* 1044 * We should always have a non-NULL state cred here, since if cred 1045 * is null (anonymous tracing), we fast-path bypass this routine. 1046 */ 1047 ASSERT(s_cr != NULL); 1048 1049 if ((cr = CRED()) != NULL && 1050 s_cr->cr_uid == cr->cr_uid && 1051 s_cr->cr_uid == cr->cr_ruid && 1052 s_cr->cr_uid == cr->cr_suid && 1053 s_cr->cr_gid == cr->cr_gid && 1054 s_cr->cr_gid == cr->cr_rgid && 1055 s_cr->cr_gid == cr->cr_sgid) 1056 return (1); 1057 1058 return (0); 1059 } 1060 1061 /* 1062 * This privilege check should be used by actions and subroutines to 1063 * verify that the zone of the process that enabled the invoking ECB 1064 * matches the target credentials 1065 */ 1066 static int 1067 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1068 { 1069 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1070 1071 /* 1072 * We should always have a non-NULL state cred here, since if cred 1073 * is null (anonymous tracing), we fast-path bypass this routine. 1074 */ 1075 ASSERT(s_cr != NULL); 1076 1077 if ((cr = CRED()) != NULL && 1078 s_cr->cr_zone == cr->cr_zone) 1079 return (1); 1080 1081 return (0); 1082 } 1083 1084 /* 1085 * This privilege check should be used by actions and subroutines to 1086 * verify that the process has not setuid or changed credentials. 1087 */ 1088 static int 1089 dtrace_priv_proc_common_nocd() 1090 { 1091 proc_t *proc; 1092 1093 if ((proc = ttoproc(curthread)) != NULL && 1094 !(proc->p_flag & SNOCD)) 1095 return (1); 1096 1097 return (0); 1098 } 1099 1100 static int 1101 dtrace_priv_proc_destructive(dtrace_state_t *state) 1102 { 1103 int action = state->dts_cred.dcr_action; 1104 1105 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1106 dtrace_priv_proc_common_zone(state) == 0) 1107 goto bad; 1108 1109 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1110 dtrace_priv_proc_common_user(state) == 0) 1111 goto bad; 1112 1113 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1114 dtrace_priv_proc_common_nocd() == 0) 1115 goto bad; 1116 1117 return (1); 1118 1119 bad: 1120 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1121 1122 return (0); 1123 } 1124 1125 static int 1126 dtrace_priv_proc_control(dtrace_state_t *state) 1127 { 1128 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1129 return (1); 1130 1131 if (dtrace_priv_proc_common_zone(state) && 1132 dtrace_priv_proc_common_user(state) && 1133 dtrace_priv_proc_common_nocd()) 1134 return (1); 1135 1136 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1137 1138 return (0); 1139 } 1140 1141 static int 1142 dtrace_priv_proc(dtrace_state_t *state) 1143 { 1144 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1145 return (1); 1146 1147 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1148 1149 return (0); 1150 } 1151 1152 static int 1153 dtrace_priv_kernel(dtrace_state_t *state) 1154 { 1155 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1156 return (1); 1157 1158 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1159 1160 return (0); 1161 } 1162 1163 static int 1164 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1165 { 1166 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1167 return (1); 1168 1169 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1170 1171 return (0); 1172 } 1173 1174 /* 1175 * Note: not called from probe context. This function is called 1176 * asynchronously (and at a regular interval) from outside of probe context to 1177 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1178 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1179 */ 1180 void 1181 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1182 { 1183 dtrace_dynvar_t *dirty; 1184 dtrace_dstate_percpu_t *dcpu; 1185 int i, work = 0; 1186 1187 for (i = 0; i < NCPU; i++) { 1188 dcpu = &dstate->dtds_percpu[i]; 1189 1190 ASSERT(dcpu->dtdsc_rinsing == NULL); 1191 1192 /* 1193 * If the dirty list is NULL, there is no dirty work to do. 1194 */ 1195 if (dcpu->dtdsc_dirty == NULL) 1196 continue; 1197 1198 /* 1199 * If the clean list is non-NULL, then we're not going to do 1200 * any work for this CPU -- it means that there has not been 1201 * a dtrace_dynvar() allocation on this CPU (or from this CPU) 1202 * since the last time we cleaned house. 1203 */ 1204 if (dcpu->dtdsc_clean != NULL) 1205 continue; 1206 1207 work = 1; 1208 1209 /* 1210 * Atomically move the dirty list aside. 1211 */ 1212 do { 1213 dirty = dcpu->dtdsc_dirty; 1214 1215 /* 1216 * Before we zap the dirty list, set the rinsing list. 1217 * (This allows for a potential assertion in 1218 * dtrace_dynvar(): if a free dynamic variable appears 1219 * on a hash chain, either the dirty list or the 1220 * rinsing list for some CPU must be non-NULL.) 1221 */ 1222 dcpu->dtdsc_rinsing = dirty; 1223 dtrace_membar_producer(); 1224 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1225 dirty, NULL) != dirty); 1226 } 1227 1228 if (!work) { 1229 /* 1230 * We have no work to do; we can simply return. 1231 */ 1232 return; 1233 } 1234 1235 dtrace_sync(); 1236 1237 for (i = 0; i < NCPU; i++) { 1238 dcpu = &dstate->dtds_percpu[i]; 1239 1240 if (dcpu->dtdsc_rinsing == NULL) 1241 continue; 1242 1243 /* 1244 * We are now guaranteed that no hash chain contains a pointer 1245 * into this dirty list; we can make it clean. 1246 */ 1247 ASSERT(dcpu->dtdsc_clean == NULL); 1248 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1249 dcpu->dtdsc_rinsing = NULL; 1250 } 1251 1252 /* 1253 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1254 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1255 * This prevents a race whereby a CPU incorrectly decides that 1256 * the state should be something other than DTRACE_DSTATE_CLEAN 1257 * after dtrace_dynvar_clean() has completed. 1258 */ 1259 dtrace_sync(); 1260 1261 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1262 } 1263 1264 /* 1265 * Depending on the value of the op parameter, this function looks-up, 1266 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1267 * allocation is requested, this function will return a pointer to a 1268 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1269 * variable can be allocated. If NULL is returned, the appropriate counter 1270 * will be incremented. 1271 */ 1272 dtrace_dynvar_t * 1273 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1274 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1275 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1276 { 1277 uint64_t hashval = DTRACE_DYNHASH_VALID; 1278 dtrace_dynhash_t *hash = dstate->dtds_hash; 1279 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1280 processorid_t me = CPU->cpu_id, cpu = me; 1281 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1282 size_t bucket, ksize; 1283 size_t chunksize = dstate->dtds_chunksize; 1284 uintptr_t kdata, lock, nstate; 1285 uint_t i; 1286 1287 ASSERT(nkeys != 0); 1288 1289 /* 1290 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1291 * algorithm. For the by-value portions, we perform the algorithm in 1292 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1293 * bit, and seems to have only a minute effect on distribution. For 1294 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1295 * over each referenced byte. It's painful to do this, but it's much 1296 * better than pathological hash distribution. The efficacy of the 1297 * hashing algorithm (and a comparison with other algorithms) may be 1298 * found by running the ::dtrace_dynstat MDB dcmd. 1299 */ 1300 for (i = 0; i < nkeys; i++) { 1301 if (key[i].dttk_size == 0) { 1302 uint64_t val = key[i].dttk_value; 1303 1304 hashval += (val >> 48) & 0xffff; 1305 hashval += (hashval << 10); 1306 hashval ^= (hashval >> 6); 1307 1308 hashval += (val >> 32) & 0xffff; 1309 hashval += (hashval << 10); 1310 hashval ^= (hashval >> 6); 1311 1312 hashval += (val >> 16) & 0xffff; 1313 hashval += (hashval << 10); 1314 hashval ^= (hashval >> 6); 1315 1316 hashval += val & 0xffff; 1317 hashval += (hashval << 10); 1318 hashval ^= (hashval >> 6); 1319 } else { 1320 /* 1321 * This is incredibly painful, but it beats the hell 1322 * out of the alternative. 1323 */ 1324 uint64_t j, size = key[i].dttk_size; 1325 uintptr_t base = (uintptr_t)key[i].dttk_value; 1326 1327 if (!dtrace_canload(base, size, mstate, vstate)) 1328 break; 1329 1330 for (j = 0; j < size; j++) { 1331 hashval += dtrace_load8(base + j); 1332 hashval += (hashval << 10); 1333 hashval ^= (hashval >> 6); 1334 } 1335 } 1336 } 1337 1338 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1339 return (NULL); 1340 1341 hashval += (hashval << 3); 1342 hashval ^= (hashval >> 11); 1343 hashval += (hashval << 15); 1344 1345 /* 1346 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1347 * comes out to be one of our two sentinel hash values. If this 1348 * actually happens, we set the hashval to be a value known to be a 1349 * non-sentinel value. 1350 */ 1351 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1352 hashval = DTRACE_DYNHASH_VALID; 1353 1354 /* 1355 * Yes, it's painful to do a divide here. If the cycle count becomes 1356 * important here, tricks can be pulled to reduce it. (However, it's 1357 * critical that hash collisions be kept to an absolute minimum; 1358 * they're much more painful than a divide.) It's better to have a 1359 * solution that generates few collisions and still keeps things 1360 * relatively simple. 1361 */ 1362 bucket = hashval % dstate->dtds_hashsize; 1363 1364 if (op == DTRACE_DYNVAR_DEALLOC) { 1365 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1366 1367 for (;;) { 1368 while ((lock = *lockp) & 1) 1369 continue; 1370 1371 if (dtrace_casptr((void *)lockp, 1372 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1373 break; 1374 } 1375 1376 dtrace_membar_producer(); 1377 } 1378 1379 top: 1380 prev = NULL; 1381 lock = hash[bucket].dtdh_lock; 1382 1383 dtrace_membar_consumer(); 1384 1385 start = hash[bucket].dtdh_chain; 1386 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1387 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1388 op != DTRACE_DYNVAR_DEALLOC)); 1389 1390 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1391 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1392 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1393 1394 if (dvar->dtdv_hashval != hashval) { 1395 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1396 /* 1397 * We've reached the sink, and therefore the 1398 * end of the hash chain; we can kick out of 1399 * the loop knowing that we have seen a valid 1400 * snapshot of state. 1401 */ 1402 ASSERT(dvar->dtdv_next == NULL); 1403 ASSERT(dvar == &dtrace_dynhash_sink); 1404 break; 1405 } 1406 1407 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1408 /* 1409 * We've gone off the rails: somewhere along 1410 * the line, one of the members of this hash 1411 * chain was deleted. Note that we could also 1412 * detect this by simply letting this loop run 1413 * to completion, as we would eventually hit 1414 * the end of the dirty list. However, we 1415 * want to avoid running the length of the 1416 * dirty list unnecessarily (it might be quite 1417 * long), so we catch this as early as 1418 * possible by detecting the hash marker. In 1419 * this case, we simply set dvar to NULL and 1420 * break; the conditional after the loop will 1421 * send us back to top. 1422 */ 1423 dvar = NULL; 1424 break; 1425 } 1426 1427 goto next; 1428 } 1429 1430 if (dtuple->dtt_nkeys != nkeys) 1431 goto next; 1432 1433 for (i = 0; i < nkeys; i++, dkey++) { 1434 if (dkey->dttk_size != key[i].dttk_size) 1435 goto next; /* size or type mismatch */ 1436 1437 if (dkey->dttk_size != 0) { 1438 if (dtrace_bcmp( 1439 (void *)(uintptr_t)key[i].dttk_value, 1440 (void *)(uintptr_t)dkey->dttk_value, 1441 dkey->dttk_size)) 1442 goto next; 1443 } else { 1444 if (dkey->dttk_value != key[i].dttk_value) 1445 goto next; 1446 } 1447 } 1448 1449 if (op != DTRACE_DYNVAR_DEALLOC) 1450 return (dvar); 1451 1452 ASSERT(dvar->dtdv_next == NULL || 1453 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1454 1455 if (prev != NULL) { 1456 ASSERT(hash[bucket].dtdh_chain != dvar); 1457 ASSERT(start != dvar); 1458 ASSERT(prev->dtdv_next == dvar); 1459 prev->dtdv_next = dvar->dtdv_next; 1460 } else { 1461 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1462 start, dvar->dtdv_next) != start) { 1463 /* 1464 * We have failed to atomically swing the 1465 * hash table head pointer, presumably because 1466 * of a conflicting allocation on another CPU. 1467 * We need to reread the hash chain and try 1468 * again. 1469 */ 1470 goto top; 1471 } 1472 } 1473 1474 dtrace_membar_producer(); 1475 1476 /* 1477 * Now set the hash value to indicate that it's free. 1478 */ 1479 ASSERT(hash[bucket].dtdh_chain != dvar); 1480 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1481 1482 dtrace_membar_producer(); 1483 1484 /* 1485 * Set the next pointer to point at the dirty list, and 1486 * atomically swing the dirty pointer to the newly freed dvar. 1487 */ 1488 do { 1489 next = dcpu->dtdsc_dirty; 1490 dvar->dtdv_next = next; 1491 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1492 1493 /* 1494 * Finally, unlock this hash bucket. 1495 */ 1496 ASSERT(hash[bucket].dtdh_lock == lock); 1497 ASSERT(lock & 1); 1498 hash[bucket].dtdh_lock++; 1499 1500 return (NULL); 1501 next: 1502 prev = dvar; 1503 continue; 1504 } 1505 1506 if (dvar == NULL) { 1507 /* 1508 * If dvar is NULL, it is because we went off the rails: 1509 * one of the elements that we traversed in the hash chain 1510 * was deleted while we were traversing it. In this case, 1511 * we assert that we aren't doing a dealloc (deallocs lock 1512 * the hash bucket to prevent themselves from racing with 1513 * one another), and retry the hash chain traversal. 1514 */ 1515 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1516 goto top; 1517 } 1518 1519 if (op != DTRACE_DYNVAR_ALLOC) { 1520 /* 1521 * If we are not to allocate a new variable, we want to 1522 * return NULL now. Before we return, check that the value 1523 * of the lock word hasn't changed. If it has, we may have 1524 * seen an inconsistent snapshot. 1525 */ 1526 if (op == DTRACE_DYNVAR_NOALLOC) { 1527 if (hash[bucket].dtdh_lock != lock) 1528 goto top; 1529 } else { 1530 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1531 ASSERT(hash[bucket].dtdh_lock == lock); 1532 ASSERT(lock & 1); 1533 hash[bucket].dtdh_lock++; 1534 } 1535 1536 return (NULL); 1537 } 1538 1539 /* 1540 * We need to allocate a new dynamic variable. The size we need is the 1541 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1542 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1543 * the size of any referred-to data (dsize). We then round the final 1544 * size up to the chunksize for allocation. 1545 */ 1546 for (ksize = 0, i = 0; i < nkeys; i++) 1547 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1548 1549 /* 1550 * This should be pretty much impossible, but could happen if, say, 1551 * strange DIF specified the tuple. Ideally, this should be an 1552 * assertion and not an error condition -- but that requires that the 1553 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1554 * bullet-proof. (That is, it must not be able to be fooled by 1555 * malicious DIF.) Given the lack of backwards branches in DIF, 1556 * solving this would presumably not amount to solving the Halting 1557 * Problem -- but it still seems awfully hard. 1558 */ 1559 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1560 ksize + dsize > chunksize) { 1561 dcpu->dtdsc_drops++; 1562 return (NULL); 1563 } 1564 1565 nstate = DTRACE_DSTATE_EMPTY; 1566 1567 do { 1568 retry: 1569 free = dcpu->dtdsc_free; 1570 1571 if (free == NULL) { 1572 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1573 void *rval; 1574 1575 if (clean == NULL) { 1576 /* 1577 * We're out of dynamic variable space on 1578 * this CPU. Unless we have tried all CPUs, 1579 * we'll try to allocate from a different 1580 * CPU. 1581 */ 1582 switch (dstate->dtds_state) { 1583 case DTRACE_DSTATE_CLEAN: { 1584 void *sp = &dstate->dtds_state; 1585 1586 if (++cpu >= NCPU) 1587 cpu = 0; 1588 1589 if (dcpu->dtdsc_dirty != NULL && 1590 nstate == DTRACE_DSTATE_EMPTY) 1591 nstate = DTRACE_DSTATE_DIRTY; 1592 1593 if (dcpu->dtdsc_rinsing != NULL) 1594 nstate = DTRACE_DSTATE_RINSING; 1595 1596 dcpu = &dstate->dtds_percpu[cpu]; 1597 1598 if (cpu != me) 1599 goto retry; 1600 1601 (void) dtrace_cas32(sp, 1602 DTRACE_DSTATE_CLEAN, nstate); 1603 1604 /* 1605 * To increment the correct bean 1606 * counter, take another lap. 1607 */ 1608 goto retry; 1609 } 1610 1611 case DTRACE_DSTATE_DIRTY: 1612 dcpu->dtdsc_dirty_drops++; 1613 break; 1614 1615 case DTRACE_DSTATE_RINSING: 1616 dcpu->dtdsc_rinsing_drops++; 1617 break; 1618 1619 case DTRACE_DSTATE_EMPTY: 1620 dcpu->dtdsc_drops++; 1621 break; 1622 } 1623 1624 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1625 return (NULL); 1626 } 1627 1628 /* 1629 * The clean list appears to be non-empty. We want to 1630 * move the clean list to the free list; we start by 1631 * moving the clean pointer aside. 1632 */ 1633 if (dtrace_casptr(&dcpu->dtdsc_clean, 1634 clean, NULL) != clean) { 1635 /* 1636 * We are in one of two situations: 1637 * 1638 * (a) The clean list was switched to the 1639 * free list by another CPU. 1640 * 1641 * (b) The clean list was added to by the 1642 * cleansing cyclic. 1643 * 1644 * In either of these situations, we can 1645 * just reattempt the free list allocation. 1646 */ 1647 goto retry; 1648 } 1649 1650 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1651 1652 /* 1653 * Now we'll move the clean list to the free list. 1654 * It's impossible for this to fail: the only way 1655 * the free list can be updated is through this 1656 * code path, and only one CPU can own the clean list. 1657 * Thus, it would only be possible for this to fail if 1658 * this code were racing with dtrace_dynvar_clean(). 1659 * (That is, if dtrace_dynvar_clean() updated the clean 1660 * list, and we ended up racing to update the free 1661 * list.) This race is prevented by the dtrace_sync() 1662 * in dtrace_dynvar_clean() -- which flushes the 1663 * owners of the clean lists out before resetting 1664 * the clean lists. 1665 */ 1666 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1667 ASSERT(rval == NULL); 1668 goto retry; 1669 } 1670 1671 dvar = free; 1672 new_free = dvar->dtdv_next; 1673 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1674 1675 /* 1676 * We have now allocated a new chunk. We copy the tuple keys into the 1677 * tuple array and copy any referenced key data into the data space 1678 * following the tuple array. As we do this, we relocate dttk_value 1679 * in the final tuple to point to the key data address in the chunk. 1680 */ 1681 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1682 dvar->dtdv_data = (void *)(kdata + ksize); 1683 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1684 1685 for (i = 0; i < nkeys; i++) { 1686 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1687 size_t kesize = key[i].dttk_size; 1688 1689 if (kesize != 0) { 1690 dtrace_bcopy( 1691 (const void *)(uintptr_t)key[i].dttk_value, 1692 (void *)kdata, kesize); 1693 dkey->dttk_value = kdata; 1694 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1695 } else { 1696 dkey->dttk_value = key[i].dttk_value; 1697 } 1698 1699 dkey->dttk_size = kesize; 1700 } 1701 1702 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1703 dvar->dtdv_hashval = hashval; 1704 dvar->dtdv_next = start; 1705 1706 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1707 return (dvar); 1708 1709 /* 1710 * The cas has failed. Either another CPU is adding an element to 1711 * this hash chain, or another CPU is deleting an element from this 1712 * hash chain. The simplest way to deal with both of these cases 1713 * (though not necessarily the most efficient) is to free our 1714 * allocated block and tail-call ourselves. Note that the free is 1715 * to the dirty list and _not_ to the free list. This is to prevent 1716 * races with allocators, above. 1717 */ 1718 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1719 1720 dtrace_membar_producer(); 1721 1722 do { 1723 free = dcpu->dtdsc_dirty; 1724 dvar->dtdv_next = free; 1725 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1726 1727 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1728 } 1729 1730 /*ARGSUSED*/ 1731 static void 1732 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1733 { 1734 if ((int64_t)nval < (int64_t)*oval) 1735 *oval = nval; 1736 } 1737 1738 /*ARGSUSED*/ 1739 static void 1740 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1741 { 1742 if ((int64_t)nval > (int64_t)*oval) 1743 *oval = nval; 1744 } 1745 1746 static void 1747 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1748 { 1749 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1750 int64_t val = (int64_t)nval; 1751 1752 if (val < 0) { 1753 for (i = 0; i < zero; i++) { 1754 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1755 quanta[i] += incr; 1756 return; 1757 } 1758 } 1759 } else { 1760 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1761 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1762 quanta[i - 1] += incr; 1763 return; 1764 } 1765 } 1766 1767 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1768 return; 1769 } 1770 1771 ASSERT(0); 1772 } 1773 1774 static void 1775 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1776 { 1777 uint64_t arg = *lquanta++; 1778 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1779 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1780 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1781 int32_t val = (int32_t)nval, level; 1782 1783 ASSERT(step != 0); 1784 ASSERT(levels != 0); 1785 1786 if (val < base) { 1787 /* 1788 * This is an underflow. 1789 */ 1790 lquanta[0] += incr; 1791 return; 1792 } 1793 1794 level = (val - base) / step; 1795 1796 if (level < levels) { 1797 lquanta[level + 1] += incr; 1798 return; 1799 } 1800 1801 /* 1802 * This is an overflow. 1803 */ 1804 lquanta[levels + 1] += incr; 1805 } 1806 1807 /*ARGSUSED*/ 1808 static void 1809 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 1810 { 1811 data[0]++; 1812 data[1] += nval; 1813 } 1814 1815 /*ARGSUSED*/ 1816 static void 1817 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 1818 { 1819 int64_t snval = (int64_t)nval; 1820 uint64_t tmp[2]; 1821 1822 data[0]++; 1823 data[1] += nval; 1824 1825 /* 1826 * What we want to say here is: 1827 * 1828 * data[2] += nval * nval; 1829 * 1830 * But given that nval is 64-bit, we could easily overflow, so 1831 * we do this as 128-bit arithmetic. 1832 */ 1833 if (snval < 0) 1834 snval = -snval; 1835 1836 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 1837 dtrace_add_128(data + 2, tmp, data + 2); 1838 } 1839 1840 /*ARGSUSED*/ 1841 static void 1842 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 1843 { 1844 *oval = *oval + 1; 1845 } 1846 1847 /*ARGSUSED*/ 1848 static void 1849 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 1850 { 1851 *oval += nval; 1852 } 1853 1854 /* 1855 * Aggregate given the tuple in the principal data buffer, and the aggregating 1856 * action denoted by the specified dtrace_aggregation_t. The aggregation 1857 * buffer is specified as the buf parameter. This routine does not return 1858 * failure; if there is no space in the aggregation buffer, the data will be 1859 * dropped, and a corresponding counter incremented. 1860 */ 1861 static void 1862 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 1863 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 1864 { 1865 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 1866 uint32_t i, ndx, size, fsize; 1867 uint32_t align = sizeof (uint64_t) - 1; 1868 dtrace_aggbuffer_t *agb; 1869 dtrace_aggkey_t *key; 1870 uint32_t hashval = 0, limit, isstr; 1871 caddr_t tomax, data, kdata; 1872 dtrace_actkind_t action; 1873 dtrace_action_t *act; 1874 uintptr_t offs; 1875 1876 if (buf == NULL) 1877 return; 1878 1879 if (!agg->dtag_hasarg) { 1880 /* 1881 * Currently, only quantize() and lquantize() take additional 1882 * arguments, and they have the same semantics: an increment 1883 * value that defaults to 1 when not present. If additional 1884 * aggregating actions take arguments, the setting of the 1885 * default argument value will presumably have to become more 1886 * sophisticated... 1887 */ 1888 arg = 1; 1889 } 1890 1891 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 1892 size = rec->dtrd_offset - agg->dtag_base; 1893 fsize = size + rec->dtrd_size; 1894 1895 ASSERT(dbuf->dtb_tomax != NULL); 1896 data = dbuf->dtb_tomax + offset + agg->dtag_base; 1897 1898 if ((tomax = buf->dtb_tomax) == NULL) { 1899 dtrace_buffer_drop(buf); 1900 return; 1901 } 1902 1903 /* 1904 * The metastructure is always at the bottom of the buffer. 1905 */ 1906 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 1907 sizeof (dtrace_aggbuffer_t)); 1908 1909 if (buf->dtb_offset == 0) { 1910 /* 1911 * We just kludge up approximately 1/8th of the size to be 1912 * buckets. If this guess ends up being routinely 1913 * off-the-mark, we may need to dynamically readjust this 1914 * based on past performance. 1915 */ 1916 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 1917 1918 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 1919 (uintptr_t)tomax || hashsize == 0) { 1920 /* 1921 * We've been given a ludicrously small buffer; 1922 * increment our drop count and leave. 1923 */ 1924 dtrace_buffer_drop(buf); 1925 return; 1926 } 1927 1928 /* 1929 * And now, a pathetic attempt to try to get a an odd (or 1930 * perchance, a prime) hash size for better hash distribution. 1931 */ 1932 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 1933 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 1934 1935 agb->dtagb_hashsize = hashsize; 1936 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 1937 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 1938 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 1939 1940 for (i = 0; i < agb->dtagb_hashsize; i++) 1941 agb->dtagb_hash[i] = NULL; 1942 } 1943 1944 ASSERT(agg->dtag_first != NULL); 1945 ASSERT(agg->dtag_first->dta_intuple); 1946 1947 /* 1948 * Calculate the hash value based on the key. Note that we _don't_ 1949 * include the aggid in the hashing (but we will store it as part of 1950 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 1951 * algorithm: a simple, quick algorithm that has no known funnels, and 1952 * gets good distribution in practice. The efficacy of the hashing 1953 * algorithm (and a comparison with other algorithms) may be found by 1954 * running the ::dtrace_aggstat MDB dcmd. 1955 */ 1956 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1957 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1958 limit = i + act->dta_rec.dtrd_size; 1959 ASSERT(limit <= size); 1960 isstr = DTRACEACT_ISSTRING(act); 1961 1962 for (; i < limit; i++) { 1963 hashval += data[i]; 1964 hashval += (hashval << 10); 1965 hashval ^= (hashval >> 6); 1966 1967 if (isstr && data[i] == '\0') 1968 break; 1969 } 1970 } 1971 1972 hashval += (hashval << 3); 1973 hashval ^= (hashval >> 11); 1974 hashval += (hashval << 15); 1975 1976 /* 1977 * Yes, the divide here is expensive -- but it's generally the least 1978 * of the performance issues given the amount of data that we iterate 1979 * over to compute hash values, compare data, etc. 1980 */ 1981 ndx = hashval % agb->dtagb_hashsize; 1982 1983 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 1984 ASSERT((caddr_t)key >= tomax); 1985 ASSERT((caddr_t)key < tomax + buf->dtb_size); 1986 1987 if (hashval != key->dtak_hashval || key->dtak_size != size) 1988 continue; 1989 1990 kdata = key->dtak_data; 1991 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 1992 1993 for (act = agg->dtag_first; act->dta_intuple; 1994 act = act->dta_next) { 1995 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1996 limit = i + act->dta_rec.dtrd_size; 1997 ASSERT(limit <= size); 1998 isstr = DTRACEACT_ISSTRING(act); 1999 2000 for (; i < limit; i++) { 2001 if (kdata[i] != data[i]) 2002 goto next; 2003 2004 if (isstr && data[i] == '\0') 2005 break; 2006 } 2007 } 2008 2009 if (action != key->dtak_action) { 2010 /* 2011 * We are aggregating on the same value in the same 2012 * aggregation with two different aggregating actions. 2013 * (This should have been picked up in the compiler, 2014 * so we may be dealing with errant or devious DIF.) 2015 * This is an error condition; we indicate as much, 2016 * and return. 2017 */ 2018 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2019 return; 2020 } 2021 2022 /* 2023 * This is a hit: we need to apply the aggregator to 2024 * the value at this key. 2025 */ 2026 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2027 return; 2028 next: 2029 continue; 2030 } 2031 2032 /* 2033 * We didn't find it. We need to allocate some zero-filled space, 2034 * link it into the hash table appropriately, and apply the aggregator 2035 * to the (zero-filled) value. 2036 */ 2037 offs = buf->dtb_offset; 2038 while (offs & (align - 1)) 2039 offs += sizeof (uint32_t); 2040 2041 /* 2042 * If we don't have enough room to both allocate a new key _and_ 2043 * its associated data, increment the drop count and return. 2044 */ 2045 if ((uintptr_t)tomax + offs + fsize > 2046 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2047 dtrace_buffer_drop(buf); 2048 return; 2049 } 2050 2051 /*CONSTCOND*/ 2052 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2053 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2054 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2055 2056 key->dtak_data = kdata = tomax + offs; 2057 buf->dtb_offset = offs + fsize; 2058 2059 /* 2060 * Now copy the data across. 2061 */ 2062 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2063 2064 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2065 kdata[i] = data[i]; 2066 2067 /* 2068 * Because strings are not zeroed out by default, we need to iterate 2069 * looking for actions that store strings, and we need to explicitly 2070 * pad these strings out with zeroes. 2071 */ 2072 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2073 int nul; 2074 2075 if (!DTRACEACT_ISSTRING(act)) 2076 continue; 2077 2078 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2079 limit = i + act->dta_rec.dtrd_size; 2080 ASSERT(limit <= size); 2081 2082 for (nul = 0; i < limit; i++) { 2083 if (nul) { 2084 kdata[i] = '\0'; 2085 continue; 2086 } 2087 2088 if (data[i] != '\0') 2089 continue; 2090 2091 nul = 1; 2092 } 2093 } 2094 2095 for (i = size; i < fsize; i++) 2096 kdata[i] = 0; 2097 2098 key->dtak_hashval = hashval; 2099 key->dtak_size = size; 2100 key->dtak_action = action; 2101 key->dtak_next = agb->dtagb_hash[ndx]; 2102 agb->dtagb_hash[ndx] = key; 2103 2104 /* 2105 * Finally, apply the aggregator. 2106 */ 2107 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2108 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2109 } 2110 2111 /* 2112 * Given consumer state, this routine finds a speculation in the INACTIVE 2113 * state and transitions it into the ACTIVE state. If there is no speculation 2114 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2115 * incremented -- it is up to the caller to take appropriate action. 2116 */ 2117 static int 2118 dtrace_speculation(dtrace_state_t *state) 2119 { 2120 int i = 0; 2121 dtrace_speculation_state_t current; 2122 uint32_t *stat = &state->dts_speculations_unavail, count; 2123 2124 while (i < state->dts_nspeculations) { 2125 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2126 2127 current = spec->dtsp_state; 2128 2129 if (current != DTRACESPEC_INACTIVE) { 2130 if (current == DTRACESPEC_COMMITTINGMANY || 2131 current == DTRACESPEC_COMMITTING || 2132 current == DTRACESPEC_DISCARDING) 2133 stat = &state->dts_speculations_busy; 2134 i++; 2135 continue; 2136 } 2137 2138 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2139 current, DTRACESPEC_ACTIVE) == current) 2140 return (i + 1); 2141 } 2142 2143 /* 2144 * We couldn't find a speculation. If we found as much as a single 2145 * busy speculation buffer, we'll attribute this failure as "busy" 2146 * instead of "unavail". 2147 */ 2148 do { 2149 count = *stat; 2150 } while (dtrace_cas32(stat, count, count + 1) != count); 2151 2152 return (0); 2153 } 2154 2155 /* 2156 * This routine commits an active speculation. If the specified speculation 2157 * is not in a valid state to perform a commit(), this routine will silently do 2158 * nothing. The state of the specified speculation is transitioned according 2159 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2160 */ 2161 static void 2162 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2163 dtrace_specid_t which) 2164 { 2165 dtrace_speculation_t *spec; 2166 dtrace_buffer_t *src, *dest; 2167 uintptr_t daddr, saddr, dlimit; 2168 dtrace_speculation_state_t current, new; 2169 intptr_t offs; 2170 2171 if (which == 0) 2172 return; 2173 2174 if (which > state->dts_nspeculations) { 2175 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2176 return; 2177 } 2178 2179 spec = &state->dts_speculations[which - 1]; 2180 src = &spec->dtsp_buffer[cpu]; 2181 dest = &state->dts_buffer[cpu]; 2182 2183 do { 2184 current = spec->dtsp_state; 2185 2186 if (current == DTRACESPEC_COMMITTINGMANY) 2187 break; 2188 2189 switch (current) { 2190 case DTRACESPEC_INACTIVE: 2191 case DTRACESPEC_DISCARDING: 2192 return; 2193 2194 case DTRACESPEC_COMMITTING: 2195 /* 2196 * This is only possible if we are (a) commit()'ing 2197 * without having done a prior speculate() on this CPU 2198 * and (b) racing with another commit() on a different 2199 * CPU. There's nothing to do -- we just assert that 2200 * our offset is 0. 2201 */ 2202 ASSERT(src->dtb_offset == 0); 2203 return; 2204 2205 case DTRACESPEC_ACTIVE: 2206 new = DTRACESPEC_COMMITTING; 2207 break; 2208 2209 case DTRACESPEC_ACTIVEONE: 2210 /* 2211 * This speculation is active on one CPU. If our 2212 * buffer offset is non-zero, we know that the one CPU 2213 * must be us. Otherwise, we are committing on a 2214 * different CPU from the speculate(), and we must 2215 * rely on being asynchronously cleaned. 2216 */ 2217 if (src->dtb_offset != 0) { 2218 new = DTRACESPEC_COMMITTING; 2219 break; 2220 } 2221 /*FALLTHROUGH*/ 2222 2223 case DTRACESPEC_ACTIVEMANY: 2224 new = DTRACESPEC_COMMITTINGMANY; 2225 break; 2226 2227 default: 2228 ASSERT(0); 2229 } 2230 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2231 current, new) != current); 2232 2233 /* 2234 * We have set the state to indicate that we are committing this 2235 * speculation. Now reserve the necessary space in the destination 2236 * buffer. 2237 */ 2238 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2239 sizeof (uint64_t), state, NULL)) < 0) { 2240 dtrace_buffer_drop(dest); 2241 goto out; 2242 } 2243 2244 /* 2245 * We have the space; copy the buffer across. (Note that this is a 2246 * highly subobtimal bcopy(); in the unlikely event that this becomes 2247 * a serious performance issue, a high-performance DTrace-specific 2248 * bcopy() should obviously be invented.) 2249 */ 2250 daddr = (uintptr_t)dest->dtb_tomax + offs; 2251 dlimit = daddr + src->dtb_offset; 2252 saddr = (uintptr_t)src->dtb_tomax; 2253 2254 /* 2255 * First, the aligned portion. 2256 */ 2257 while (dlimit - daddr >= sizeof (uint64_t)) { 2258 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2259 2260 daddr += sizeof (uint64_t); 2261 saddr += sizeof (uint64_t); 2262 } 2263 2264 /* 2265 * Now any left-over bit... 2266 */ 2267 while (dlimit - daddr) 2268 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2269 2270 /* 2271 * Finally, commit the reserved space in the destination buffer. 2272 */ 2273 dest->dtb_offset = offs + src->dtb_offset; 2274 2275 out: 2276 /* 2277 * If we're lucky enough to be the only active CPU on this speculation 2278 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2279 */ 2280 if (current == DTRACESPEC_ACTIVE || 2281 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2282 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2283 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2284 2285 ASSERT(rval == DTRACESPEC_COMMITTING); 2286 } 2287 2288 src->dtb_offset = 0; 2289 src->dtb_xamot_drops += src->dtb_drops; 2290 src->dtb_drops = 0; 2291 } 2292 2293 /* 2294 * This routine discards an active speculation. If the specified speculation 2295 * is not in a valid state to perform a discard(), this routine will silently 2296 * do nothing. The state of the specified speculation is transitioned 2297 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2298 */ 2299 static void 2300 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2301 dtrace_specid_t which) 2302 { 2303 dtrace_speculation_t *spec; 2304 dtrace_speculation_state_t current, new; 2305 dtrace_buffer_t *buf; 2306 2307 if (which == 0) 2308 return; 2309 2310 if (which > state->dts_nspeculations) { 2311 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2312 return; 2313 } 2314 2315 spec = &state->dts_speculations[which - 1]; 2316 buf = &spec->dtsp_buffer[cpu]; 2317 2318 do { 2319 current = spec->dtsp_state; 2320 2321 switch (current) { 2322 case DTRACESPEC_INACTIVE: 2323 case DTRACESPEC_COMMITTINGMANY: 2324 case DTRACESPEC_COMMITTING: 2325 case DTRACESPEC_DISCARDING: 2326 return; 2327 2328 case DTRACESPEC_ACTIVE: 2329 case DTRACESPEC_ACTIVEMANY: 2330 new = DTRACESPEC_DISCARDING; 2331 break; 2332 2333 case DTRACESPEC_ACTIVEONE: 2334 if (buf->dtb_offset != 0) { 2335 new = DTRACESPEC_INACTIVE; 2336 } else { 2337 new = DTRACESPEC_DISCARDING; 2338 } 2339 break; 2340 2341 default: 2342 ASSERT(0); 2343 } 2344 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2345 current, new) != current); 2346 2347 buf->dtb_offset = 0; 2348 buf->dtb_drops = 0; 2349 } 2350 2351 /* 2352 * Note: not called from probe context. This function is called 2353 * asynchronously from cross call context to clean any speculations that are 2354 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2355 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2356 * speculation. 2357 */ 2358 static void 2359 dtrace_speculation_clean_here(dtrace_state_t *state) 2360 { 2361 dtrace_icookie_t cookie; 2362 processorid_t cpu = CPU->cpu_id; 2363 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2364 dtrace_specid_t i; 2365 2366 cookie = dtrace_interrupt_disable(); 2367 2368 if (dest->dtb_tomax == NULL) { 2369 dtrace_interrupt_enable(cookie); 2370 return; 2371 } 2372 2373 for (i = 0; i < state->dts_nspeculations; i++) { 2374 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2375 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2376 2377 if (src->dtb_tomax == NULL) 2378 continue; 2379 2380 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2381 src->dtb_offset = 0; 2382 continue; 2383 } 2384 2385 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2386 continue; 2387 2388 if (src->dtb_offset == 0) 2389 continue; 2390 2391 dtrace_speculation_commit(state, cpu, i + 1); 2392 } 2393 2394 dtrace_interrupt_enable(cookie); 2395 } 2396 2397 /* 2398 * Note: not called from probe context. This function is called 2399 * asynchronously (and at a regular interval) to clean any speculations that 2400 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2401 * is work to be done, it cross calls all CPUs to perform that work; 2402 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2403 * INACTIVE state until they have been cleaned by all CPUs. 2404 */ 2405 static void 2406 dtrace_speculation_clean(dtrace_state_t *state) 2407 { 2408 int work = 0, rv; 2409 dtrace_specid_t i; 2410 2411 for (i = 0; i < state->dts_nspeculations; i++) { 2412 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2413 2414 ASSERT(!spec->dtsp_cleaning); 2415 2416 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2417 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2418 continue; 2419 2420 work++; 2421 spec->dtsp_cleaning = 1; 2422 } 2423 2424 if (!work) 2425 return; 2426 2427 dtrace_xcall(DTRACE_CPUALL, 2428 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2429 2430 /* 2431 * We now know that all CPUs have committed or discarded their 2432 * speculation buffers, as appropriate. We can now set the state 2433 * to inactive. 2434 */ 2435 for (i = 0; i < state->dts_nspeculations; i++) { 2436 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2437 dtrace_speculation_state_t current, new; 2438 2439 if (!spec->dtsp_cleaning) 2440 continue; 2441 2442 current = spec->dtsp_state; 2443 ASSERT(current == DTRACESPEC_DISCARDING || 2444 current == DTRACESPEC_COMMITTINGMANY); 2445 2446 new = DTRACESPEC_INACTIVE; 2447 2448 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2449 ASSERT(rv == current); 2450 spec->dtsp_cleaning = 0; 2451 } 2452 } 2453 2454 /* 2455 * Called as part of a speculate() to get the speculative buffer associated 2456 * with a given speculation. Returns NULL if the specified speculation is not 2457 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2458 * the active CPU is not the specified CPU -- the speculation will be 2459 * atomically transitioned into the ACTIVEMANY state. 2460 */ 2461 static dtrace_buffer_t * 2462 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2463 dtrace_specid_t which) 2464 { 2465 dtrace_speculation_t *spec; 2466 dtrace_speculation_state_t current, new; 2467 dtrace_buffer_t *buf; 2468 2469 if (which == 0) 2470 return (NULL); 2471 2472 if (which > state->dts_nspeculations) { 2473 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2474 return (NULL); 2475 } 2476 2477 spec = &state->dts_speculations[which - 1]; 2478 buf = &spec->dtsp_buffer[cpuid]; 2479 2480 do { 2481 current = spec->dtsp_state; 2482 2483 switch (current) { 2484 case DTRACESPEC_INACTIVE: 2485 case DTRACESPEC_COMMITTINGMANY: 2486 case DTRACESPEC_DISCARDING: 2487 return (NULL); 2488 2489 case DTRACESPEC_COMMITTING: 2490 ASSERT(buf->dtb_offset == 0); 2491 return (NULL); 2492 2493 case DTRACESPEC_ACTIVEONE: 2494 /* 2495 * This speculation is currently active on one CPU. 2496 * Check the offset in the buffer; if it's non-zero, 2497 * that CPU must be us (and we leave the state alone). 2498 * If it's zero, assume that we're starting on a new 2499 * CPU -- and change the state to indicate that the 2500 * speculation is active on more than one CPU. 2501 */ 2502 if (buf->dtb_offset != 0) 2503 return (buf); 2504 2505 new = DTRACESPEC_ACTIVEMANY; 2506 break; 2507 2508 case DTRACESPEC_ACTIVEMANY: 2509 return (buf); 2510 2511 case DTRACESPEC_ACTIVE: 2512 new = DTRACESPEC_ACTIVEONE; 2513 break; 2514 2515 default: 2516 ASSERT(0); 2517 } 2518 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2519 current, new) != current); 2520 2521 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2522 return (buf); 2523 } 2524 2525 /* 2526 * Return a string. In the event that the user lacks the privilege to access 2527 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2528 * don't fail access checking. 2529 * 2530 * dtrace_dif_variable() uses this routine as a helper for various 2531 * builtin values such as 'execname' and 'probefunc.' 2532 */ 2533 uintptr_t 2534 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2535 dtrace_mstate_t *mstate) 2536 { 2537 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2538 uintptr_t ret; 2539 size_t strsz; 2540 2541 /* 2542 * The easy case: this probe is allowed to read all of memory, so 2543 * we can just return this as a vanilla pointer. 2544 */ 2545 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2546 return (addr); 2547 2548 /* 2549 * This is the tougher case: we copy the string in question from 2550 * kernel memory into scratch memory and return it that way: this 2551 * ensures that we won't trip up when access checking tests the 2552 * BYREF return value. 2553 */ 2554 strsz = dtrace_strlen((char *)addr, size) + 1; 2555 2556 if (mstate->dtms_scratch_ptr + strsz > 2557 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2558 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2559 return (NULL); 2560 } 2561 2562 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2563 strsz); 2564 ret = mstate->dtms_scratch_ptr; 2565 mstate->dtms_scratch_ptr += strsz; 2566 return (ret); 2567 } 2568 2569 /* 2570 * This function implements the DIF emulator's variable lookups. The emulator 2571 * passes a reserved variable identifier and optional built-in array index. 2572 */ 2573 static uint64_t 2574 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2575 uint64_t ndx) 2576 { 2577 /* 2578 * If we're accessing one of the uncached arguments, we'll turn this 2579 * into a reference in the args array. 2580 */ 2581 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2582 ndx = v - DIF_VAR_ARG0; 2583 v = DIF_VAR_ARGS; 2584 } 2585 2586 switch (v) { 2587 case DIF_VAR_ARGS: 2588 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2589 if (ndx >= sizeof (mstate->dtms_arg) / 2590 sizeof (mstate->dtms_arg[0])) { 2591 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2592 dtrace_provider_t *pv; 2593 uint64_t val; 2594 2595 pv = mstate->dtms_probe->dtpr_provider; 2596 if (pv->dtpv_pops.dtps_getargval != NULL) 2597 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2598 mstate->dtms_probe->dtpr_id, 2599 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2600 else 2601 val = dtrace_getarg(ndx, aframes); 2602 2603 /* 2604 * This is regrettably required to keep the compiler 2605 * from tail-optimizing the call to dtrace_getarg(). 2606 * The condition always evaluates to true, but the 2607 * compiler has no way of figuring that out a priori. 2608 * (None of this would be necessary if the compiler 2609 * could be relied upon to _always_ tail-optimize 2610 * the call to dtrace_getarg() -- but it can't.) 2611 */ 2612 if (mstate->dtms_probe != NULL) 2613 return (val); 2614 2615 ASSERT(0); 2616 } 2617 2618 return (mstate->dtms_arg[ndx]); 2619 2620 case DIF_VAR_UREGS: { 2621 klwp_t *lwp; 2622 2623 if (!dtrace_priv_proc(state)) 2624 return (0); 2625 2626 if ((lwp = curthread->t_lwp) == NULL) { 2627 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2628 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2629 return (0); 2630 } 2631 2632 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2633 } 2634 2635 case DIF_VAR_CURTHREAD: 2636 if (!dtrace_priv_kernel(state)) 2637 return (0); 2638 return ((uint64_t)(uintptr_t)curthread); 2639 2640 case DIF_VAR_TIMESTAMP: 2641 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2642 mstate->dtms_timestamp = dtrace_gethrtime(); 2643 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2644 } 2645 return (mstate->dtms_timestamp); 2646 2647 case DIF_VAR_VTIMESTAMP: 2648 ASSERT(dtrace_vtime_references != 0); 2649 return (curthread->t_dtrace_vtime); 2650 2651 case DIF_VAR_WALLTIMESTAMP: 2652 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2653 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2654 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2655 } 2656 return (mstate->dtms_walltimestamp); 2657 2658 case DIF_VAR_IPL: 2659 if (!dtrace_priv_kernel(state)) 2660 return (0); 2661 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2662 mstate->dtms_ipl = dtrace_getipl(); 2663 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2664 } 2665 return (mstate->dtms_ipl); 2666 2667 case DIF_VAR_EPID: 2668 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2669 return (mstate->dtms_epid); 2670 2671 case DIF_VAR_ID: 2672 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2673 return (mstate->dtms_probe->dtpr_id); 2674 2675 case DIF_VAR_STACKDEPTH: 2676 if (!dtrace_priv_kernel(state)) 2677 return (0); 2678 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2679 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2680 2681 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2682 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2683 } 2684 return (mstate->dtms_stackdepth); 2685 2686 case DIF_VAR_USTACKDEPTH: 2687 if (!dtrace_priv_proc(state)) 2688 return (0); 2689 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2690 /* 2691 * See comment in DIF_VAR_PID. 2692 */ 2693 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2694 CPU_ON_INTR(CPU)) { 2695 mstate->dtms_ustackdepth = 0; 2696 } else { 2697 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2698 mstate->dtms_ustackdepth = 2699 dtrace_getustackdepth(); 2700 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2701 } 2702 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2703 } 2704 return (mstate->dtms_ustackdepth); 2705 2706 case DIF_VAR_CALLER: 2707 if (!dtrace_priv_kernel(state)) 2708 return (0); 2709 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2710 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2711 2712 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2713 /* 2714 * If this is an unanchored probe, we are 2715 * required to go through the slow path: 2716 * dtrace_caller() only guarantees correct 2717 * results for anchored probes. 2718 */ 2719 pc_t caller[2]; 2720 2721 dtrace_getpcstack(caller, 2, aframes, 2722 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2723 mstate->dtms_caller = caller[1]; 2724 } else if ((mstate->dtms_caller = 2725 dtrace_caller(aframes)) == -1) { 2726 /* 2727 * We have failed to do this the quick way; 2728 * we must resort to the slower approach of 2729 * calling dtrace_getpcstack(). 2730 */ 2731 pc_t caller; 2732 2733 dtrace_getpcstack(&caller, 1, aframes, NULL); 2734 mstate->dtms_caller = caller; 2735 } 2736 2737 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2738 } 2739 return (mstate->dtms_caller); 2740 2741 case DIF_VAR_UCALLER: 2742 if (!dtrace_priv_proc(state)) 2743 return (0); 2744 2745 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 2746 uint64_t ustack[3]; 2747 2748 /* 2749 * dtrace_getupcstack() fills in the first uint64_t 2750 * with the current PID. The second uint64_t will 2751 * be the program counter at user-level. The third 2752 * uint64_t will contain the caller, which is what 2753 * we're after. 2754 */ 2755 ustack[2] = NULL; 2756 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2757 dtrace_getupcstack(ustack, 3); 2758 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2759 mstate->dtms_ucaller = ustack[2]; 2760 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 2761 } 2762 2763 return (mstate->dtms_ucaller); 2764 2765 case DIF_VAR_PROBEPROV: 2766 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2767 return (dtrace_dif_varstr( 2768 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 2769 state, mstate)); 2770 2771 case DIF_VAR_PROBEMOD: 2772 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2773 return (dtrace_dif_varstr( 2774 (uintptr_t)mstate->dtms_probe->dtpr_mod, 2775 state, mstate)); 2776 2777 case DIF_VAR_PROBEFUNC: 2778 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2779 return (dtrace_dif_varstr( 2780 (uintptr_t)mstate->dtms_probe->dtpr_func, 2781 state, mstate)); 2782 2783 case DIF_VAR_PROBENAME: 2784 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2785 return (dtrace_dif_varstr( 2786 (uintptr_t)mstate->dtms_probe->dtpr_name, 2787 state, mstate)); 2788 2789 case DIF_VAR_PID: 2790 if (!dtrace_priv_proc(state)) 2791 return (0); 2792 2793 /* 2794 * Note that we are assuming that an unanchored probe is 2795 * always due to a high-level interrupt. (And we're assuming 2796 * that there is only a single high level interrupt.) 2797 */ 2798 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2799 return (pid0.pid_id); 2800 2801 /* 2802 * It is always safe to dereference one's own t_procp pointer: 2803 * it always points to a valid, allocated proc structure. 2804 * Further, it is always safe to dereference the p_pidp member 2805 * of one's own proc structure. (These are truisms becuase 2806 * threads and processes don't clean up their own state -- 2807 * they leave that task to whomever reaps them.) 2808 */ 2809 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 2810 2811 case DIF_VAR_PPID: 2812 if (!dtrace_priv_proc(state)) 2813 return (0); 2814 2815 /* 2816 * See comment in DIF_VAR_PID. 2817 */ 2818 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2819 return (pid0.pid_id); 2820 2821 /* 2822 * It is always safe to dereference one's own t_procp pointer: 2823 * it always points to a valid, allocated proc structure. 2824 * (This is true because threads don't clean up their own 2825 * state -- they leave that task to whomever reaps them.) 2826 */ 2827 return ((uint64_t)curthread->t_procp->p_ppid); 2828 2829 case DIF_VAR_TID: 2830 /* 2831 * See comment in DIF_VAR_PID. 2832 */ 2833 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2834 return (0); 2835 2836 return ((uint64_t)curthread->t_tid); 2837 2838 case DIF_VAR_EXECNAME: 2839 if (!dtrace_priv_proc(state)) 2840 return (0); 2841 2842 /* 2843 * See comment in DIF_VAR_PID. 2844 */ 2845 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2846 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 2847 2848 /* 2849 * It is always safe to dereference one's own t_procp pointer: 2850 * it always points to a valid, allocated proc structure. 2851 * (This is true because threads don't clean up their own 2852 * state -- they leave that task to whomever reaps them.) 2853 */ 2854 return (dtrace_dif_varstr( 2855 (uintptr_t)curthread->t_procp->p_user.u_comm, 2856 state, mstate)); 2857 2858 case DIF_VAR_ZONENAME: 2859 if (!dtrace_priv_proc(state)) 2860 return (0); 2861 2862 /* 2863 * See comment in DIF_VAR_PID. 2864 */ 2865 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2866 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 2867 2868 /* 2869 * It is always safe to dereference one's own t_procp pointer: 2870 * it always points to a valid, allocated proc structure. 2871 * (This is true because threads don't clean up their own 2872 * state -- they leave that task to whomever reaps them.) 2873 */ 2874 return (dtrace_dif_varstr( 2875 (uintptr_t)curthread->t_procp->p_zone->zone_name, 2876 state, mstate)); 2877 2878 case DIF_VAR_UID: 2879 if (!dtrace_priv_proc(state)) 2880 return (0); 2881 2882 /* 2883 * See comment in DIF_VAR_PID. 2884 */ 2885 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2886 return ((uint64_t)p0.p_cred->cr_uid); 2887 2888 /* 2889 * It is always safe to dereference one's own t_procp pointer: 2890 * it always points to a valid, allocated proc structure. 2891 * (This is true because threads don't clean up their own 2892 * state -- they leave that task to whomever reaps them.) 2893 * 2894 * Additionally, it is safe to dereference one's own process 2895 * credential, since this is never NULL after process birth. 2896 */ 2897 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 2898 2899 case DIF_VAR_GID: 2900 if (!dtrace_priv_proc(state)) 2901 return (0); 2902 2903 /* 2904 * See comment in DIF_VAR_PID. 2905 */ 2906 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2907 return ((uint64_t)p0.p_cred->cr_gid); 2908 2909 /* 2910 * It is always safe to dereference one's own t_procp pointer: 2911 * it always points to a valid, allocated proc structure. 2912 * (This is true because threads don't clean up their own 2913 * state -- they leave that task to whomever reaps them.) 2914 * 2915 * Additionally, it is safe to dereference one's own process 2916 * credential, since this is never NULL after process birth. 2917 */ 2918 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 2919 2920 case DIF_VAR_ERRNO: { 2921 klwp_t *lwp; 2922 if (!dtrace_priv_proc(state)) 2923 return (0); 2924 2925 /* 2926 * See comment in DIF_VAR_PID. 2927 */ 2928 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2929 return (0); 2930 2931 /* 2932 * It is always safe to dereference one's own t_lwp pointer in 2933 * the event that this pointer is non-NULL. (This is true 2934 * because threads and lwps don't clean up their own state -- 2935 * they leave that task to whomever reaps them.) 2936 */ 2937 if ((lwp = curthread->t_lwp) == NULL) 2938 return (0); 2939 2940 return ((uint64_t)lwp->lwp_errno); 2941 } 2942 default: 2943 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2944 return (0); 2945 } 2946 } 2947 2948 /* 2949 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 2950 * Notice that we don't bother validating the proper number of arguments or 2951 * their types in the tuple stack. This isn't needed because all argument 2952 * interpretation is safe because of our load safety -- the worst that can 2953 * happen is that a bogus program can obtain bogus results. 2954 */ 2955 static void 2956 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 2957 dtrace_key_t *tupregs, int nargs, 2958 dtrace_mstate_t *mstate, dtrace_state_t *state) 2959 { 2960 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 2961 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 2962 dtrace_vstate_t *vstate = &state->dts_vstate; 2963 2964 union { 2965 mutex_impl_t mi; 2966 uint64_t mx; 2967 } m; 2968 2969 union { 2970 krwlock_t ri; 2971 uintptr_t rw; 2972 } r; 2973 2974 switch (subr) { 2975 case DIF_SUBR_RAND: 2976 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 2977 break; 2978 2979 case DIF_SUBR_MUTEX_OWNED: 2980 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2981 mstate, vstate)) { 2982 regs[rd] = NULL; 2983 break; 2984 } 2985 2986 m.mx = dtrace_load64(tupregs[0].dttk_value); 2987 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 2988 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 2989 else 2990 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 2991 break; 2992 2993 case DIF_SUBR_MUTEX_OWNER: 2994 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2995 mstate, vstate)) { 2996 regs[rd] = NULL; 2997 break; 2998 } 2999 3000 m.mx = dtrace_load64(tupregs[0].dttk_value); 3001 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3002 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3003 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3004 else 3005 regs[rd] = 0; 3006 break; 3007 3008 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3009 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3010 mstate, vstate)) { 3011 regs[rd] = NULL; 3012 break; 3013 } 3014 3015 m.mx = dtrace_load64(tupregs[0].dttk_value); 3016 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3017 break; 3018 3019 case DIF_SUBR_MUTEX_TYPE_SPIN: 3020 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3021 mstate, vstate)) { 3022 regs[rd] = NULL; 3023 break; 3024 } 3025 3026 m.mx = dtrace_load64(tupregs[0].dttk_value); 3027 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3028 break; 3029 3030 case DIF_SUBR_RW_READ_HELD: { 3031 uintptr_t tmp; 3032 3033 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3034 mstate, vstate)) { 3035 regs[rd] = NULL; 3036 break; 3037 } 3038 3039 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3040 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3041 break; 3042 } 3043 3044 case DIF_SUBR_RW_WRITE_HELD: 3045 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3046 mstate, vstate)) { 3047 regs[rd] = NULL; 3048 break; 3049 } 3050 3051 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3052 regs[rd] = _RW_WRITE_HELD(&r.ri); 3053 break; 3054 3055 case DIF_SUBR_RW_ISWRITER: 3056 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3057 mstate, vstate)) { 3058 regs[rd] = NULL; 3059 break; 3060 } 3061 3062 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3063 regs[rd] = _RW_ISWRITER(&r.ri); 3064 break; 3065 3066 case DIF_SUBR_BCOPY: { 3067 /* 3068 * We need to be sure that the destination is in the scratch 3069 * region -- no other region is allowed. 3070 */ 3071 uintptr_t src = tupregs[0].dttk_value; 3072 uintptr_t dest = tupregs[1].dttk_value; 3073 size_t size = tupregs[2].dttk_value; 3074 3075 if (!dtrace_inscratch(dest, size, mstate)) { 3076 *flags |= CPU_DTRACE_BADADDR; 3077 *illval = regs[rd]; 3078 break; 3079 } 3080 3081 if (!dtrace_canload(src, size, mstate, vstate)) { 3082 regs[rd] = NULL; 3083 break; 3084 } 3085 3086 dtrace_bcopy((void *)src, (void *)dest, size); 3087 break; 3088 } 3089 3090 case DIF_SUBR_ALLOCA: 3091 case DIF_SUBR_COPYIN: { 3092 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3093 uint64_t size = 3094 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3095 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3096 3097 /* 3098 * This action doesn't require any credential checks since 3099 * probes will not activate in user contexts to which the 3100 * enabling user does not have permissions. 3101 */ 3102 3103 /* 3104 * Rounding up the user allocation size could have overflowed 3105 * a large, bogus allocation (like -1ULL) to 0. 3106 */ 3107 if (scratch_size < size || 3108 !DTRACE_INSCRATCH(mstate, scratch_size)) { 3109 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3110 regs[rd] = NULL; 3111 break; 3112 } 3113 3114 if (subr == DIF_SUBR_COPYIN) { 3115 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3116 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3117 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3118 } 3119 3120 mstate->dtms_scratch_ptr += scratch_size; 3121 regs[rd] = dest; 3122 break; 3123 } 3124 3125 case DIF_SUBR_COPYINTO: { 3126 uint64_t size = tupregs[1].dttk_value; 3127 uintptr_t dest = tupregs[2].dttk_value; 3128 3129 /* 3130 * This action doesn't require any credential checks since 3131 * probes will not activate in user contexts to which the 3132 * enabling user does not have permissions. 3133 */ 3134 if (!dtrace_inscratch(dest, size, mstate)) { 3135 *flags |= CPU_DTRACE_BADADDR; 3136 *illval = regs[rd]; 3137 break; 3138 } 3139 3140 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3141 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3142 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3143 break; 3144 } 3145 3146 case DIF_SUBR_COPYINSTR: { 3147 uintptr_t dest = mstate->dtms_scratch_ptr; 3148 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3149 3150 if (nargs > 1 && tupregs[1].dttk_value < size) 3151 size = tupregs[1].dttk_value + 1; 3152 3153 /* 3154 * This action doesn't require any credential checks since 3155 * probes will not activate in user contexts to which the 3156 * enabling user does not have permissions. 3157 */ 3158 if (!DTRACE_INSCRATCH(mstate, size)) { 3159 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3160 regs[rd] = NULL; 3161 break; 3162 } 3163 3164 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3165 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3166 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3167 3168 ((char *)dest)[size - 1] = '\0'; 3169 mstate->dtms_scratch_ptr += size; 3170 regs[rd] = dest; 3171 break; 3172 } 3173 3174 case DIF_SUBR_MSGSIZE: 3175 case DIF_SUBR_MSGDSIZE: { 3176 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3177 uintptr_t wptr, rptr; 3178 size_t count = 0; 3179 int cont = 0; 3180 3181 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3182 3183 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3184 vstate)) { 3185 regs[rd] = NULL; 3186 break; 3187 } 3188 3189 wptr = dtrace_loadptr(baddr + 3190 offsetof(mblk_t, b_wptr)); 3191 3192 rptr = dtrace_loadptr(baddr + 3193 offsetof(mblk_t, b_rptr)); 3194 3195 if (wptr < rptr) { 3196 *flags |= CPU_DTRACE_BADADDR; 3197 *illval = tupregs[0].dttk_value; 3198 break; 3199 } 3200 3201 daddr = dtrace_loadptr(baddr + 3202 offsetof(mblk_t, b_datap)); 3203 3204 baddr = dtrace_loadptr(baddr + 3205 offsetof(mblk_t, b_cont)); 3206 3207 /* 3208 * We want to prevent against denial-of-service here, 3209 * so we're only going to search the list for 3210 * dtrace_msgdsize_max mblks. 3211 */ 3212 if (cont++ > dtrace_msgdsize_max) { 3213 *flags |= CPU_DTRACE_ILLOP; 3214 break; 3215 } 3216 3217 if (subr == DIF_SUBR_MSGDSIZE) { 3218 if (dtrace_load8(daddr + 3219 offsetof(dblk_t, db_type)) != M_DATA) 3220 continue; 3221 } 3222 3223 count += wptr - rptr; 3224 } 3225 3226 if (!(*flags & CPU_DTRACE_FAULT)) 3227 regs[rd] = count; 3228 3229 break; 3230 } 3231 3232 case DIF_SUBR_PROGENYOF: { 3233 pid_t pid = tupregs[0].dttk_value; 3234 proc_t *p; 3235 int rval = 0; 3236 3237 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3238 3239 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3240 if (p->p_pidp->pid_id == pid) { 3241 rval = 1; 3242 break; 3243 } 3244 } 3245 3246 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3247 3248 regs[rd] = rval; 3249 break; 3250 } 3251 3252 case DIF_SUBR_SPECULATION: 3253 regs[rd] = dtrace_speculation(state); 3254 break; 3255 3256 case DIF_SUBR_COPYOUT: { 3257 uintptr_t kaddr = tupregs[0].dttk_value; 3258 uintptr_t uaddr = tupregs[1].dttk_value; 3259 uint64_t size = tupregs[2].dttk_value; 3260 3261 if (!dtrace_destructive_disallow && 3262 dtrace_priv_proc_control(state) && 3263 !dtrace_istoxic(kaddr, size)) { 3264 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3265 dtrace_copyout(kaddr, uaddr, size, flags); 3266 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3267 } 3268 break; 3269 } 3270 3271 case DIF_SUBR_COPYOUTSTR: { 3272 uintptr_t kaddr = tupregs[0].dttk_value; 3273 uintptr_t uaddr = tupregs[1].dttk_value; 3274 uint64_t size = tupregs[2].dttk_value; 3275 3276 if (!dtrace_destructive_disallow && 3277 dtrace_priv_proc_control(state) && 3278 !dtrace_istoxic(kaddr, size)) { 3279 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3280 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3281 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3282 } 3283 break; 3284 } 3285 3286 case DIF_SUBR_STRLEN: { 3287 size_t sz; 3288 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3289 sz = dtrace_strlen((char *)addr, 3290 state->dts_options[DTRACEOPT_STRSIZE]); 3291 3292 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3293 regs[rd] = NULL; 3294 break; 3295 } 3296 3297 regs[rd] = sz; 3298 3299 break; 3300 } 3301 3302 case DIF_SUBR_STRCHR: 3303 case DIF_SUBR_STRRCHR: { 3304 /* 3305 * We're going to iterate over the string looking for the 3306 * specified character. We will iterate until we have reached 3307 * the string length or we have found the character. If this 3308 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3309 * of the specified character instead of the first. 3310 */ 3311 uintptr_t saddr = tupregs[0].dttk_value; 3312 uintptr_t addr = tupregs[0].dttk_value; 3313 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3314 char c, target = (char)tupregs[1].dttk_value; 3315 3316 for (regs[rd] = NULL; addr < limit; addr++) { 3317 if ((c = dtrace_load8(addr)) == target) { 3318 regs[rd] = addr; 3319 3320 if (subr == DIF_SUBR_STRCHR) 3321 break; 3322 } 3323 3324 if (c == '\0') 3325 break; 3326 } 3327 3328 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3329 regs[rd] = NULL; 3330 break; 3331 } 3332 3333 break; 3334 } 3335 3336 case DIF_SUBR_STRSTR: 3337 case DIF_SUBR_INDEX: 3338 case DIF_SUBR_RINDEX: { 3339 /* 3340 * We're going to iterate over the string looking for the 3341 * specified string. We will iterate until we have reached 3342 * the string length or we have found the string. (Yes, this 3343 * is done in the most naive way possible -- but considering 3344 * that the string we're searching for is likely to be 3345 * relatively short, the complexity of Rabin-Karp or similar 3346 * hardly seems merited.) 3347 */ 3348 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3349 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3350 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3351 size_t len = dtrace_strlen(addr, size); 3352 size_t sublen = dtrace_strlen(substr, size); 3353 char *limit = addr + len, *orig = addr; 3354 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3355 int inc = 1; 3356 3357 regs[rd] = notfound; 3358 3359 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3360 regs[rd] = NULL; 3361 break; 3362 } 3363 3364 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3365 vstate)) { 3366 regs[rd] = NULL; 3367 break; 3368 } 3369 3370 /* 3371 * strstr() and index()/rindex() have similar semantics if 3372 * both strings are the empty string: strstr() returns a 3373 * pointer to the (empty) string, and index() and rindex() 3374 * both return index 0 (regardless of any position argument). 3375 */ 3376 if (sublen == 0 && len == 0) { 3377 if (subr == DIF_SUBR_STRSTR) 3378 regs[rd] = (uintptr_t)addr; 3379 else 3380 regs[rd] = 0; 3381 break; 3382 } 3383 3384 if (subr != DIF_SUBR_STRSTR) { 3385 if (subr == DIF_SUBR_RINDEX) { 3386 limit = orig - 1; 3387 addr += len; 3388 inc = -1; 3389 } 3390 3391 /* 3392 * Both index() and rindex() take an optional position 3393 * argument that denotes the starting position. 3394 */ 3395 if (nargs == 3) { 3396 int64_t pos = (int64_t)tupregs[2].dttk_value; 3397 3398 /* 3399 * If the position argument to index() is 3400 * negative, Perl implicitly clamps it at 3401 * zero. This semantic is a little surprising 3402 * given the special meaning of negative 3403 * positions to similar Perl functions like 3404 * substr(), but it appears to reflect a 3405 * notion that index() can start from a 3406 * negative index and increment its way up to 3407 * the string. Given this notion, Perl's 3408 * rindex() is at least self-consistent in 3409 * that it implicitly clamps positions greater 3410 * than the string length to be the string 3411 * length. Where Perl completely loses 3412 * coherence, however, is when the specified 3413 * substring is the empty string (""). In 3414 * this case, even if the position is 3415 * negative, rindex() returns 0 -- and even if 3416 * the position is greater than the length, 3417 * index() returns the string length. These 3418 * semantics violate the notion that index() 3419 * should never return a value less than the 3420 * specified position and that rindex() should 3421 * never return a value greater than the 3422 * specified position. (One assumes that 3423 * these semantics are artifacts of Perl's 3424 * implementation and not the results of 3425 * deliberate design -- it beggars belief that 3426 * even Larry Wall could desire such oddness.) 3427 * While in the abstract one would wish for 3428 * consistent position semantics across 3429 * substr(), index() and rindex() -- or at the 3430 * very least self-consistent position 3431 * semantics for index() and rindex() -- we 3432 * instead opt to keep with the extant Perl 3433 * semantics, in all their broken glory. (Do 3434 * we have more desire to maintain Perl's 3435 * semantics than Perl does? Probably.) 3436 */ 3437 if (subr == DIF_SUBR_RINDEX) { 3438 if (pos < 0) { 3439 if (sublen == 0) 3440 regs[rd] = 0; 3441 break; 3442 } 3443 3444 if (pos > len) 3445 pos = len; 3446 } else { 3447 if (pos < 0) 3448 pos = 0; 3449 3450 if (pos >= len) { 3451 if (sublen == 0) 3452 regs[rd] = len; 3453 break; 3454 } 3455 } 3456 3457 addr = orig + pos; 3458 } 3459 } 3460 3461 for (regs[rd] = notfound; addr != limit; addr += inc) { 3462 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3463 if (subr != DIF_SUBR_STRSTR) { 3464 /* 3465 * As D index() and rindex() are 3466 * modeled on Perl (and not on awk), 3467 * we return a zero-based (and not a 3468 * one-based) index. (For you Perl 3469 * weenies: no, we're not going to add 3470 * $[ -- and shouldn't you be at a con 3471 * or something?) 3472 */ 3473 regs[rd] = (uintptr_t)(addr - orig); 3474 break; 3475 } 3476 3477 ASSERT(subr == DIF_SUBR_STRSTR); 3478 regs[rd] = (uintptr_t)addr; 3479 break; 3480 } 3481 } 3482 3483 break; 3484 } 3485 3486 case DIF_SUBR_STRTOK: { 3487 uintptr_t addr = tupregs[0].dttk_value; 3488 uintptr_t tokaddr = tupregs[1].dttk_value; 3489 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3490 uintptr_t limit, toklimit = tokaddr + size; 3491 uint8_t c, tokmap[32]; /* 256 / 8 */ 3492 char *dest = (char *)mstate->dtms_scratch_ptr; 3493 int i; 3494 3495 /* 3496 * Check both the token buffer and (later) the input buffer, 3497 * since both could be non-scratch addresses. 3498 */ 3499 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3500 regs[rd] = NULL; 3501 break; 3502 } 3503 3504 if (!DTRACE_INSCRATCH(mstate, size)) { 3505 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3506 regs[rd] = NULL; 3507 break; 3508 } 3509 3510 if (addr == NULL) { 3511 /* 3512 * If the address specified is NULL, we use our saved 3513 * strtok pointer from the mstate. Note that this 3514 * means that the saved strtok pointer is _only_ 3515 * valid within multiple enablings of the same probe -- 3516 * it behaves like an implicit clause-local variable. 3517 */ 3518 addr = mstate->dtms_strtok; 3519 } else { 3520 /* 3521 * If the user-specified address is non-NULL we must 3522 * access check it. This is the only time we have 3523 * a chance to do so, since this address may reside 3524 * in the string table of this clause-- future calls 3525 * (when we fetch addr from mstate->dtms_strtok) 3526 * would fail this access check. 3527 */ 3528 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3529 regs[rd] = NULL; 3530 break; 3531 } 3532 } 3533 3534 /* 3535 * First, zero the token map, and then process the token 3536 * string -- setting a bit in the map for every character 3537 * found in the token string. 3538 */ 3539 for (i = 0; i < sizeof (tokmap); i++) 3540 tokmap[i] = 0; 3541 3542 for (; tokaddr < toklimit; tokaddr++) { 3543 if ((c = dtrace_load8(tokaddr)) == '\0') 3544 break; 3545 3546 ASSERT((c >> 3) < sizeof (tokmap)); 3547 tokmap[c >> 3] |= (1 << (c & 0x7)); 3548 } 3549 3550 for (limit = addr + size; addr < limit; addr++) { 3551 /* 3552 * We're looking for a character that is _not_ contained 3553 * in the token string. 3554 */ 3555 if ((c = dtrace_load8(addr)) == '\0') 3556 break; 3557 3558 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3559 break; 3560 } 3561 3562 if (c == '\0') { 3563 /* 3564 * We reached the end of the string without finding 3565 * any character that was not in the token string. 3566 * We return NULL in this case, and we set the saved 3567 * address to NULL as well. 3568 */ 3569 regs[rd] = NULL; 3570 mstate->dtms_strtok = NULL; 3571 break; 3572 } 3573 3574 /* 3575 * From here on, we're copying into the destination string. 3576 */ 3577 for (i = 0; addr < limit && i < size - 1; addr++) { 3578 if ((c = dtrace_load8(addr)) == '\0') 3579 break; 3580 3581 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3582 break; 3583 3584 ASSERT(i < size); 3585 dest[i++] = c; 3586 } 3587 3588 ASSERT(i < size); 3589 dest[i] = '\0'; 3590 regs[rd] = (uintptr_t)dest; 3591 mstate->dtms_scratch_ptr += size; 3592 mstate->dtms_strtok = addr; 3593 break; 3594 } 3595 3596 case DIF_SUBR_SUBSTR: { 3597 uintptr_t s = tupregs[0].dttk_value; 3598 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3599 char *d = (char *)mstate->dtms_scratch_ptr; 3600 int64_t index = (int64_t)tupregs[1].dttk_value; 3601 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3602 size_t len = dtrace_strlen((char *)s, size); 3603 int64_t i = 0; 3604 3605 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3606 regs[rd] = NULL; 3607 break; 3608 } 3609 3610 if (!DTRACE_INSCRATCH(mstate, size)) { 3611 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3612 regs[rd] = NULL; 3613 break; 3614 } 3615 3616 if (nargs <= 2) 3617 remaining = (int64_t)size; 3618 3619 if (index < 0) { 3620 index += len; 3621 3622 if (index < 0 && index + remaining > 0) { 3623 remaining += index; 3624 index = 0; 3625 } 3626 } 3627 3628 if (index >= len || index < 0) { 3629 remaining = 0; 3630 } else if (remaining < 0) { 3631 remaining += len - index; 3632 } else if (index + remaining > size) { 3633 remaining = size - index; 3634 } 3635 3636 for (i = 0; i < remaining; i++) { 3637 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 3638 break; 3639 } 3640 3641 d[i] = '\0'; 3642 3643 mstate->dtms_scratch_ptr += size; 3644 regs[rd] = (uintptr_t)d; 3645 break; 3646 } 3647 3648 case DIF_SUBR_GETMAJOR: 3649 #ifdef _LP64 3650 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3651 #else 3652 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3653 #endif 3654 break; 3655 3656 case DIF_SUBR_GETMINOR: 3657 #ifdef _LP64 3658 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3659 #else 3660 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3661 #endif 3662 break; 3663 3664 case DIF_SUBR_DDI_PATHNAME: { 3665 /* 3666 * This one is a galactic mess. We are going to roughly 3667 * emulate ddi_pathname(), but it's made more complicated 3668 * by the fact that we (a) want to include the minor name and 3669 * (b) must proceed iteratively instead of recursively. 3670 */ 3671 uintptr_t dest = mstate->dtms_scratch_ptr; 3672 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3673 char *start = (char *)dest, *end = start + size - 1; 3674 uintptr_t daddr = tupregs[0].dttk_value; 3675 int64_t minor = (int64_t)tupregs[1].dttk_value; 3676 char *s; 3677 int i, len, depth = 0; 3678 3679 /* 3680 * Due to all the pointer jumping we do and context we must 3681 * rely upon, we just mandate that the user must have kernel 3682 * read privileges to use this routine. 3683 */ 3684 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 3685 *flags |= CPU_DTRACE_KPRIV; 3686 *illval = daddr; 3687 regs[rd] = NULL; 3688 } 3689 3690 if (!DTRACE_INSCRATCH(mstate, size)) { 3691 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3692 regs[rd] = NULL; 3693 break; 3694 } 3695 3696 *end = '\0'; 3697 3698 /* 3699 * We want to have a name for the minor. In order to do this, 3700 * we need to walk the minor list from the devinfo. We want 3701 * to be sure that we don't infinitely walk a circular list, 3702 * so we check for circularity by sending a scout pointer 3703 * ahead two elements for every element that we iterate over; 3704 * if the list is circular, these will ultimately point to the 3705 * same element. You may recognize this little trick as the 3706 * answer to a stupid interview question -- one that always 3707 * seems to be asked by those who had to have it laboriously 3708 * explained to them, and who can't even concisely describe 3709 * the conditions under which one would be forced to resort to 3710 * this technique. Needless to say, those conditions are 3711 * found here -- and probably only here. Is this the only use 3712 * of this infamous trick in shipping, production code? If it 3713 * isn't, it probably should be... 3714 */ 3715 if (minor != -1) { 3716 uintptr_t maddr = dtrace_loadptr(daddr + 3717 offsetof(struct dev_info, devi_minor)); 3718 3719 uintptr_t next = offsetof(struct ddi_minor_data, next); 3720 uintptr_t name = offsetof(struct ddi_minor_data, 3721 d_minor) + offsetof(struct ddi_minor, name); 3722 uintptr_t dev = offsetof(struct ddi_minor_data, 3723 d_minor) + offsetof(struct ddi_minor, dev); 3724 uintptr_t scout; 3725 3726 if (maddr != NULL) 3727 scout = dtrace_loadptr(maddr + next); 3728 3729 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3730 uint64_t m; 3731 #ifdef _LP64 3732 m = dtrace_load64(maddr + dev) & MAXMIN64; 3733 #else 3734 m = dtrace_load32(maddr + dev) & MAXMIN; 3735 #endif 3736 if (m != minor) { 3737 maddr = dtrace_loadptr(maddr + next); 3738 3739 if (scout == NULL) 3740 continue; 3741 3742 scout = dtrace_loadptr(scout + next); 3743 3744 if (scout == NULL) 3745 continue; 3746 3747 scout = dtrace_loadptr(scout + next); 3748 3749 if (scout == NULL) 3750 continue; 3751 3752 if (scout == maddr) { 3753 *flags |= CPU_DTRACE_ILLOP; 3754 break; 3755 } 3756 3757 continue; 3758 } 3759 3760 /* 3761 * We have the minor data. Now we need to 3762 * copy the minor's name into the end of the 3763 * pathname. 3764 */ 3765 s = (char *)dtrace_loadptr(maddr + name); 3766 len = dtrace_strlen(s, size); 3767 3768 if (*flags & CPU_DTRACE_FAULT) 3769 break; 3770 3771 if (len != 0) { 3772 if ((end -= (len + 1)) < start) 3773 break; 3774 3775 *end = ':'; 3776 } 3777 3778 for (i = 1; i <= len; i++) 3779 end[i] = dtrace_load8((uintptr_t)s++); 3780 break; 3781 } 3782 } 3783 3784 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3785 ddi_node_state_t devi_state; 3786 3787 devi_state = dtrace_load32(daddr + 3788 offsetof(struct dev_info, devi_node_state)); 3789 3790 if (*flags & CPU_DTRACE_FAULT) 3791 break; 3792 3793 if (devi_state >= DS_INITIALIZED) { 3794 s = (char *)dtrace_loadptr(daddr + 3795 offsetof(struct dev_info, devi_addr)); 3796 len = dtrace_strlen(s, size); 3797 3798 if (*flags & CPU_DTRACE_FAULT) 3799 break; 3800 3801 if (len != 0) { 3802 if ((end -= (len + 1)) < start) 3803 break; 3804 3805 *end = '@'; 3806 } 3807 3808 for (i = 1; i <= len; i++) 3809 end[i] = dtrace_load8((uintptr_t)s++); 3810 } 3811 3812 /* 3813 * Now for the node name... 3814 */ 3815 s = (char *)dtrace_loadptr(daddr + 3816 offsetof(struct dev_info, devi_node_name)); 3817 3818 daddr = dtrace_loadptr(daddr + 3819 offsetof(struct dev_info, devi_parent)); 3820 3821 /* 3822 * If our parent is NULL (that is, if we're the root 3823 * node), we're going to use the special path 3824 * "devices". 3825 */ 3826 if (daddr == NULL) 3827 s = "devices"; 3828 3829 len = dtrace_strlen(s, size); 3830 if (*flags & CPU_DTRACE_FAULT) 3831 break; 3832 3833 if ((end -= (len + 1)) < start) 3834 break; 3835 3836 for (i = 1; i <= len; i++) 3837 end[i] = dtrace_load8((uintptr_t)s++); 3838 *end = '/'; 3839 3840 if (depth++ > dtrace_devdepth_max) { 3841 *flags |= CPU_DTRACE_ILLOP; 3842 break; 3843 } 3844 } 3845 3846 if (end < start) 3847 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3848 3849 if (daddr == NULL) { 3850 regs[rd] = (uintptr_t)end; 3851 mstate->dtms_scratch_ptr += size; 3852 } 3853 3854 break; 3855 } 3856 3857 case DIF_SUBR_STRJOIN: { 3858 char *d = (char *)mstate->dtms_scratch_ptr; 3859 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3860 uintptr_t s1 = tupregs[0].dttk_value; 3861 uintptr_t s2 = tupregs[1].dttk_value; 3862 int i = 0; 3863 3864 if (!dtrace_strcanload(s1, size, mstate, vstate) || 3865 !dtrace_strcanload(s2, size, mstate, vstate)) { 3866 regs[rd] = NULL; 3867 break; 3868 } 3869 3870 if (!DTRACE_INSCRATCH(mstate, size)) { 3871 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3872 regs[rd] = NULL; 3873 break; 3874 } 3875 3876 for (;;) { 3877 if (i >= size) { 3878 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3879 regs[rd] = NULL; 3880 break; 3881 } 3882 3883 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 3884 i--; 3885 break; 3886 } 3887 } 3888 3889 for (;;) { 3890 if (i >= size) { 3891 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3892 regs[rd] = NULL; 3893 break; 3894 } 3895 3896 if ((d[i++] = dtrace_load8(s2++)) == '\0') 3897 break; 3898 } 3899 3900 if (i < size) { 3901 mstate->dtms_scratch_ptr += i; 3902 regs[rd] = (uintptr_t)d; 3903 } 3904 3905 break; 3906 } 3907 3908 case DIF_SUBR_LLTOSTR: { 3909 int64_t i = (int64_t)tupregs[0].dttk_value; 3910 int64_t val = i < 0 ? i * -1 : i; 3911 uint64_t size = 22; /* enough room for 2^64 in decimal */ 3912 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 3913 3914 if (!DTRACE_INSCRATCH(mstate, size)) { 3915 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3916 regs[rd] = NULL; 3917 break; 3918 } 3919 3920 for (*end-- = '\0'; val; val /= 10) 3921 *end-- = '0' + (val % 10); 3922 3923 if (i == 0) 3924 *end-- = '0'; 3925 3926 if (i < 0) 3927 *end-- = '-'; 3928 3929 regs[rd] = (uintptr_t)end + 1; 3930 mstate->dtms_scratch_ptr += size; 3931 break; 3932 } 3933 3934 case DIF_SUBR_HTONS: 3935 case DIF_SUBR_NTOHS: 3936 #ifdef _BIG_ENDIAN 3937 regs[rd] = (uint16_t)tupregs[0].dttk_value; 3938 #else 3939 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 3940 #endif 3941 break; 3942 3943 3944 case DIF_SUBR_HTONL: 3945 case DIF_SUBR_NTOHL: 3946 #ifdef _BIG_ENDIAN 3947 regs[rd] = (uint32_t)tupregs[0].dttk_value; 3948 #else 3949 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 3950 #endif 3951 break; 3952 3953 3954 case DIF_SUBR_HTONLL: 3955 case DIF_SUBR_NTOHLL: 3956 #ifdef _BIG_ENDIAN 3957 regs[rd] = (uint64_t)tupregs[0].dttk_value; 3958 #else 3959 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 3960 #endif 3961 break; 3962 3963 3964 case DIF_SUBR_DIRNAME: 3965 case DIF_SUBR_BASENAME: { 3966 char *dest = (char *)mstate->dtms_scratch_ptr; 3967 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3968 uintptr_t src = tupregs[0].dttk_value; 3969 int i, j, len = dtrace_strlen((char *)src, size); 3970 int lastbase = -1, firstbase = -1, lastdir = -1; 3971 int start, end; 3972 3973 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 3974 regs[rd] = NULL; 3975 break; 3976 } 3977 3978 if (!DTRACE_INSCRATCH(mstate, size)) { 3979 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3980 regs[rd] = NULL; 3981 break; 3982 } 3983 3984 /* 3985 * The basename and dirname for a zero-length string is 3986 * defined to be "." 3987 */ 3988 if (len == 0) { 3989 len = 1; 3990 src = (uintptr_t)"."; 3991 } 3992 3993 /* 3994 * Start from the back of the string, moving back toward the 3995 * front until we see a character that isn't a slash. That 3996 * character is the last character in the basename. 3997 */ 3998 for (i = len - 1; i >= 0; i--) { 3999 if (dtrace_load8(src + i) != '/') 4000 break; 4001 } 4002 4003 if (i >= 0) 4004 lastbase = i; 4005 4006 /* 4007 * Starting from the last character in the basename, move 4008 * towards the front until we find a slash. The character 4009 * that we processed immediately before that is the first 4010 * character in the basename. 4011 */ 4012 for (; i >= 0; i--) { 4013 if (dtrace_load8(src + i) == '/') 4014 break; 4015 } 4016 4017 if (i >= 0) 4018 firstbase = i + 1; 4019 4020 /* 4021 * Now keep going until we find a non-slash character. That 4022 * character is the last character in the dirname. 4023 */ 4024 for (; i >= 0; i--) { 4025 if (dtrace_load8(src + i) != '/') 4026 break; 4027 } 4028 4029 if (i >= 0) 4030 lastdir = i; 4031 4032 ASSERT(!(lastbase == -1 && firstbase != -1)); 4033 ASSERT(!(firstbase == -1 && lastdir != -1)); 4034 4035 if (lastbase == -1) { 4036 /* 4037 * We didn't find a non-slash character. We know that 4038 * the length is non-zero, so the whole string must be 4039 * slashes. In either the dirname or the basename 4040 * case, we return '/'. 4041 */ 4042 ASSERT(firstbase == -1); 4043 firstbase = lastbase = lastdir = 0; 4044 } 4045 4046 if (firstbase == -1) { 4047 /* 4048 * The entire string consists only of a basename 4049 * component. If we're looking for dirname, we need 4050 * to change our string to be just "."; if we're 4051 * looking for a basename, we'll just set the first 4052 * character of the basename to be 0. 4053 */ 4054 if (subr == DIF_SUBR_DIRNAME) { 4055 ASSERT(lastdir == -1); 4056 src = (uintptr_t)"."; 4057 lastdir = 0; 4058 } else { 4059 firstbase = 0; 4060 } 4061 } 4062 4063 if (subr == DIF_SUBR_DIRNAME) { 4064 if (lastdir == -1) { 4065 /* 4066 * We know that we have a slash in the name -- 4067 * or lastdir would be set to 0, above. And 4068 * because lastdir is -1, we know that this 4069 * slash must be the first character. (That 4070 * is, the full string must be of the form 4071 * "/basename".) In this case, the last 4072 * character of the directory name is 0. 4073 */ 4074 lastdir = 0; 4075 } 4076 4077 start = 0; 4078 end = lastdir; 4079 } else { 4080 ASSERT(subr == DIF_SUBR_BASENAME); 4081 ASSERT(firstbase != -1 && lastbase != -1); 4082 start = firstbase; 4083 end = lastbase; 4084 } 4085 4086 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 4087 dest[j] = dtrace_load8(src + i); 4088 4089 dest[j] = '\0'; 4090 regs[rd] = (uintptr_t)dest; 4091 mstate->dtms_scratch_ptr += size; 4092 break; 4093 } 4094 4095 case DIF_SUBR_CLEANPATH: { 4096 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4097 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4098 uintptr_t src = tupregs[0].dttk_value; 4099 int i = 0, j = 0; 4100 4101 if (!dtrace_strcanload(src, size, mstate, vstate)) { 4102 regs[rd] = NULL; 4103 break; 4104 } 4105 4106 if (!DTRACE_INSCRATCH(mstate, size)) { 4107 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4108 regs[rd] = NULL; 4109 break; 4110 } 4111 4112 /* 4113 * Move forward, loading each character. 4114 */ 4115 do { 4116 c = dtrace_load8(src + i++); 4117 next: 4118 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 4119 break; 4120 4121 if (c != '/') { 4122 dest[j++] = c; 4123 continue; 4124 } 4125 4126 c = dtrace_load8(src + i++); 4127 4128 if (c == '/') { 4129 /* 4130 * We have two slashes -- we can just advance 4131 * to the next character. 4132 */ 4133 goto next; 4134 } 4135 4136 if (c != '.') { 4137 /* 4138 * This is not "." and it's not ".." -- we can 4139 * just store the "/" and this character and 4140 * drive on. 4141 */ 4142 dest[j++] = '/'; 4143 dest[j++] = c; 4144 continue; 4145 } 4146 4147 c = dtrace_load8(src + i++); 4148 4149 if (c == '/') { 4150 /* 4151 * This is a "/./" component. We're not going 4152 * to store anything in the destination buffer; 4153 * we're just going to go to the next component. 4154 */ 4155 goto next; 4156 } 4157 4158 if (c != '.') { 4159 /* 4160 * This is not ".." -- we can just store the 4161 * "/." and this character and continue 4162 * processing. 4163 */ 4164 dest[j++] = '/'; 4165 dest[j++] = '.'; 4166 dest[j++] = c; 4167 continue; 4168 } 4169 4170 c = dtrace_load8(src + i++); 4171 4172 if (c != '/' && c != '\0') { 4173 /* 4174 * This is not ".." -- it's "..[mumble]". 4175 * We'll store the "/.." and this character 4176 * and continue processing. 4177 */ 4178 dest[j++] = '/'; 4179 dest[j++] = '.'; 4180 dest[j++] = '.'; 4181 dest[j++] = c; 4182 continue; 4183 } 4184 4185 /* 4186 * This is "/../" or "/..\0". We need to back up 4187 * our destination pointer until we find a "/". 4188 */ 4189 i--; 4190 while (j != 0 && dest[--j] != '/') 4191 continue; 4192 4193 if (c == '\0') 4194 dest[++j] = '/'; 4195 } while (c != '\0'); 4196 4197 dest[j] = '\0'; 4198 regs[rd] = (uintptr_t)dest; 4199 mstate->dtms_scratch_ptr += size; 4200 break; 4201 } 4202 4203 case DIF_SUBR_INET_NTOA: 4204 case DIF_SUBR_INET_NTOA6: 4205 case DIF_SUBR_INET_NTOP: { 4206 size_t size; 4207 int af, argi, i; 4208 char *base, *end; 4209 4210 if (subr == DIF_SUBR_INET_NTOP) { 4211 af = (int)tupregs[0].dttk_value; 4212 argi = 1; 4213 } else { 4214 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4215 argi = 0; 4216 } 4217 4218 if (af == AF_INET) { 4219 ipaddr_t ip4; 4220 uint8_t *ptr8, val; 4221 4222 /* 4223 * Safely load the IPv4 address. 4224 */ 4225 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4226 4227 /* 4228 * Check an IPv4 string will fit in scratch. 4229 */ 4230 size = INET_ADDRSTRLEN; 4231 if (!DTRACE_INSCRATCH(mstate, size)) { 4232 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4233 regs[rd] = NULL; 4234 break; 4235 } 4236 base = (char *)mstate->dtms_scratch_ptr; 4237 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4238 4239 /* 4240 * Stringify as a dotted decimal quad. 4241 */ 4242 *end-- = '\0'; 4243 ptr8 = (uint8_t *)&ip4; 4244 for (i = 3; i >= 0; i--) { 4245 val = ptr8[i]; 4246 4247 if (val == 0) { 4248 *end-- = '0'; 4249 } else { 4250 for (; val; val /= 10) { 4251 *end-- = '0' + (val % 10); 4252 } 4253 } 4254 4255 if (i > 0) 4256 *end-- = '.'; 4257 } 4258 ASSERT(end + 1 >= base); 4259 4260 } else if (af == AF_INET6) { 4261 struct in6_addr ip6; 4262 int firstzero, tryzero, numzero, v6end; 4263 uint16_t val; 4264 const char digits[] = "0123456789abcdef"; 4265 4266 /* 4267 * Stringify using RFC 1884 convention 2 - 16 bit 4268 * hexadecimal values with a zero-run compression. 4269 * Lower case hexadecimal digits are used. 4270 * eg, fe80::214:4fff:fe0b:76c8. 4271 * The IPv4 embedded form is returned for inet_ntop, 4272 * just the IPv4 string is returned for inet_ntoa6. 4273 */ 4274 4275 /* 4276 * Safely load the IPv6 address. 4277 */ 4278 dtrace_bcopy( 4279 (void *)(uintptr_t)tupregs[argi].dttk_value, 4280 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4281 4282 /* 4283 * Check an IPv6 string will fit in scratch. 4284 */ 4285 size = INET6_ADDRSTRLEN; 4286 if (!DTRACE_INSCRATCH(mstate, size)) { 4287 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4288 regs[rd] = NULL; 4289 break; 4290 } 4291 base = (char *)mstate->dtms_scratch_ptr; 4292 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4293 *end-- = '\0'; 4294 4295 /* 4296 * Find the longest run of 16 bit zero values 4297 * for the single allowed zero compression - "::". 4298 */ 4299 firstzero = -1; 4300 tryzero = -1; 4301 numzero = 1; 4302 for (i = 0; i < sizeof (struct in6_addr); i++) { 4303 if (ip6._S6_un._S6_u8[i] == 0 && 4304 tryzero == -1 && i % 2 == 0) { 4305 tryzero = i; 4306 continue; 4307 } 4308 4309 if (tryzero != -1 && 4310 (ip6._S6_un._S6_u8[i] != 0 || 4311 i == sizeof (struct in6_addr) - 1)) { 4312 4313 if (i - tryzero <= numzero) { 4314 tryzero = -1; 4315 continue; 4316 } 4317 4318 firstzero = tryzero; 4319 numzero = i - i % 2 - tryzero; 4320 tryzero = -1; 4321 4322 if (ip6._S6_un._S6_u8[i] == 0 && 4323 i == sizeof (struct in6_addr) - 1) 4324 numzero += 2; 4325 } 4326 } 4327 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4328 4329 /* 4330 * Check for an IPv4 embedded address. 4331 */ 4332 v6end = sizeof (struct in6_addr) - 2; 4333 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4334 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4335 for (i = sizeof (struct in6_addr) - 1; 4336 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4337 ASSERT(end >= base); 4338 4339 val = ip6._S6_un._S6_u8[i]; 4340 4341 if (val == 0) { 4342 *end-- = '0'; 4343 } else { 4344 for (; val; val /= 10) { 4345 *end-- = '0' + val % 10; 4346 } 4347 } 4348 4349 if (i > DTRACE_V4MAPPED_OFFSET) 4350 *end-- = '.'; 4351 } 4352 4353 if (subr == DIF_SUBR_INET_NTOA6) 4354 goto inetout; 4355 4356 /* 4357 * Set v6end to skip the IPv4 address that 4358 * we have already stringified. 4359 */ 4360 v6end = 10; 4361 } 4362 4363 /* 4364 * Build the IPv6 string by working through the 4365 * address in reverse. 4366 */ 4367 for (i = v6end; i >= 0; i -= 2) { 4368 ASSERT(end >= base); 4369 4370 if (i == firstzero + numzero - 2) { 4371 *end-- = ':'; 4372 *end-- = ':'; 4373 i -= numzero - 2; 4374 continue; 4375 } 4376 4377 if (i < 14 && i != firstzero - 2) 4378 *end-- = ':'; 4379 4380 val = (ip6._S6_un._S6_u8[i] << 8) + 4381 ip6._S6_un._S6_u8[i + 1]; 4382 4383 if (val == 0) { 4384 *end-- = '0'; 4385 } else { 4386 for (; val; val /= 16) { 4387 *end-- = digits[val % 16]; 4388 } 4389 } 4390 } 4391 ASSERT(end + 1 >= base); 4392 4393 } else { 4394 /* 4395 * The user didn't use AH_INET or AH_INET6. 4396 */ 4397 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4398 regs[rd] = NULL; 4399 break; 4400 } 4401 4402 inetout: regs[rd] = (uintptr_t)end + 1; 4403 mstate->dtms_scratch_ptr += size; 4404 break; 4405 } 4406 4407 } 4408 } 4409 4410 /* 4411 * Emulate the execution of DTrace IR instructions specified by the given 4412 * DIF object. This function is deliberately void of assertions as all of 4413 * the necessary checks are handled by a call to dtrace_difo_validate(). 4414 */ 4415 static uint64_t 4416 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4417 dtrace_vstate_t *vstate, dtrace_state_t *state) 4418 { 4419 const dif_instr_t *text = difo->dtdo_buf; 4420 const uint_t textlen = difo->dtdo_len; 4421 const char *strtab = difo->dtdo_strtab; 4422 const uint64_t *inttab = difo->dtdo_inttab; 4423 4424 uint64_t rval = 0; 4425 dtrace_statvar_t *svar; 4426 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4427 dtrace_difv_t *v; 4428 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4429 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4430 4431 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4432 uint64_t regs[DIF_DIR_NREGS]; 4433 uint64_t *tmp; 4434 4435 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4436 int64_t cc_r; 4437 uint_t pc = 0, id, opc; 4438 uint8_t ttop = 0; 4439 dif_instr_t instr; 4440 uint_t r1, r2, rd; 4441 4442 /* 4443 * We stash the current DIF object into the machine state: we need it 4444 * for subsequent access checking. 4445 */ 4446 mstate->dtms_difo = difo; 4447 4448 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4449 4450 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4451 opc = pc; 4452 4453 instr = text[pc++]; 4454 r1 = DIF_INSTR_R1(instr); 4455 r2 = DIF_INSTR_R2(instr); 4456 rd = DIF_INSTR_RD(instr); 4457 4458 switch (DIF_INSTR_OP(instr)) { 4459 case DIF_OP_OR: 4460 regs[rd] = regs[r1] | regs[r2]; 4461 break; 4462 case DIF_OP_XOR: 4463 regs[rd] = regs[r1] ^ regs[r2]; 4464 break; 4465 case DIF_OP_AND: 4466 regs[rd] = regs[r1] & regs[r2]; 4467 break; 4468 case DIF_OP_SLL: 4469 regs[rd] = regs[r1] << regs[r2]; 4470 break; 4471 case DIF_OP_SRL: 4472 regs[rd] = regs[r1] >> regs[r2]; 4473 break; 4474 case DIF_OP_SUB: 4475 regs[rd] = regs[r1] - regs[r2]; 4476 break; 4477 case DIF_OP_ADD: 4478 regs[rd] = regs[r1] + regs[r2]; 4479 break; 4480 case DIF_OP_MUL: 4481 regs[rd] = regs[r1] * regs[r2]; 4482 break; 4483 case DIF_OP_SDIV: 4484 if (regs[r2] == 0) { 4485 regs[rd] = 0; 4486 *flags |= CPU_DTRACE_DIVZERO; 4487 } else { 4488 regs[rd] = (int64_t)regs[r1] / 4489 (int64_t)regs[r2]; 4490 } 4491 break; 4492 4493 case DIF_OP_UDIV: 4494 if (regs[r2] == 0) { 4495 regs[rd] = 0; 4496 *flags |= CPU_DTRACE_DIVZERO; 4497 } else { 4498 regs[rd] = regs[r1] / regs[r2]; 4499 } 4500 break; 4501 4502 case DIF_OP_SREM: 4503 if (regs[r2] == 0) { 4504 regs[rd] = 0; 4505 *flags |= CPU_DTRACE_DIVZERO; 4506 } else { 4507 regs[rd] = (int64_t)regs[r1] % 4508 (int64_t)regs[r2]; 4509 } 4510 break; 4511 4512 case DIF_OP_UREM: 4513 if (regs[r2] == 0) { 4514 regs[rd] = 0; 4515 *flags |= CPU_DTRACE_DIVZERO; 4516 } else { 4517 regs[rd] = regs[r1] % regs[r2]; 4518 } 4519 break; 4520 4521 case DIF_OP_NOT: 4522 regs[rd] = ~regs[r1]; 4523 break; 4524 case DIF_OP_MOV: 4525 regs[rd] = regs[r1]; 4526 break; 4527 case DIF_OP_CMP: 4528 cc_r = regs[r1] - regs[r2]; 4529 cc_n = cc_r < 0; 4530 cc_z = cc_r == 0; 4531 cc_v = 0; 4532 cc_c = regs[r1] < regs[r2]; 4533 break; 4534 case DIF_OP_TST: 4535 cc_n = cc_v = cc_c = 0; 4536 cc_z = regs[r1] == 0; 4537 break; 4538 case DIF_OP_BA: 4539 pc = DIF_INSTR_LABEL(instr); 4540 break; 4541 case DIF_OP_BE: 4542 if (cc_z) 4543 pc = DIF_INSTR_LABEL(instr); 4544 break; 4545 case DIF_OP_BNE: 4546 if (cc_z == 0) 4547 pc = DIF_INSTR_LABEL(instr); 4548 break; 4549 case DIF_OP_BG: 4550 if ((cc_z | (cc_n ^ cc_v)) == 0) 4551 pc = DIF_INSTR_LABEL(instr); 4552 break; 4553 case DIF_OP_BGU: 4554 if ((cc_c | cc_z) == 0) 4555 pc = DIF_INSTR_LABEL(instr); 4556 break; 4557 case DIF_OP_BGE: 4558 if ((cc_n ^ cc_v) == 0) 4559 pc = DIF_INSTR_LABEL(instr); 4560 break; 4561 case DIF_OP_BGEU: 4562 if (cc_c == 0) 4563 pc = DIF_INSTR_LABEL(instr); 4564 break; 4565 case DIF_OP_BL: 4566 if (cc_n ^ cc_v) 4567 pc = DIF_INSTR_LABEL(instr); 4568 break; 4569 case DIF_OP_BLU: 4570 if (cc_c) 4571 pc = DIF_INSTR_LABEL(instr); 4572 break; 4573 case DIF_OP_BLE: 4574 if (cc_z | (cc_n ^ cc_v)) 4575 pc = DIF_INSTR_LABEL(instr); 4576 break; 4577 case DIF_OP_BLEU: 4578 if (cc_c | cc_z) 4579 pc = DIF_INSTR_LABEL(instr); 4580 break; 4581 case DIF_OP_RLDSB: 4582 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4583 *flags |= CPU_DTRACE_KPRIV; 4584 *illval = regs[r1]; 4585 break; 4586 } 4587 /*FALLTHROUGH*/ 4588 case DIF_OP_LDSB: 4589 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4590 break; 4591 case DIF_OP_RLDSH: 4592 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4593 *flags |= CPU_DTRACE_KPRIV; 4594 *illval = regs[r1]; 4595 break; 4596 } 4597 /*FALLTHROUGH*/ 4598 case DIF_OP_LDSH: 4599 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4600 break; 4601 case DIF_OP_RLDSW: 4602 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4603 *flags |= CPU_DTRACE_KPRIV; 4604 *illval = regs[r1]; 4605 break; 4606 } 4607 /*FALLTHROUGH*/ 4608 case DIF_OP_LDSW: 4609 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4610 break; 4611 case DIF_OP_RLDUB: 4612 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4613 *flags |= CPU_DTRACE_KPRIV; 4614 *illval = regs[r1]; 4615 break; 4616 } 4617 /*FALLTHROUGH*/ 4618 case DIF_OP_LDUB: 4619 regs[rd] = dtrace_load8(regs[r1]); 4620 break; 4621 case DIF_OP_RLDUH: 4622 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4623 *flags |= CPU_DTRACE_KPRIV; 4624 *illval = regs[r1]; 4625 break; 4626 } 4627 /*FALLTHROUGH*/ 4628 case DIF_OP_LDUH: 4629 regs[rd] = dtrace_load16(regs[r1]); 4630 break; 4631 case DIF_OP_RLDUW: 4632 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4633 *flags |= CPU_DTRACE_KPRIV; 4634 *illval = regs[r1]; 4635 break; 4636 } 4637 /*FALLTHROUGH*/ 4638 case DIF_OP_LDUW: 4639 regs[rd] = dtrace_load32(regs[r1]); 4640 break; 4641 case DIF_OP_RLDX: 4642 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 4643 *flags |= CPU_DTRACE_KPRIV; 4644 *illval = regs[r1]; 4645 break; 4646 } 4647 /*FALLTHROUGH*/ 4648 case DIF_OP_LDX: 4649 regs[rd] = dtrace_load64(regs[r1]); 4650 break; 4651 case DIF_OP_ULDSB: 4652 regs[rd] = (int8_t) 4653 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4654 break; 4655 case DIF_OP_ULDSH: 4656 regs[rd] = (int16_t) 4657 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4658 break; 4659 case DIF_OP_ULDSW: 4660 regs[rd] = (int32_t) 4661 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4662 break; 4663 case DIF_OP_ULDUB: 4664 regs[rd] = 4665 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4666 break; 4667 case DIF_OP_ULDUH: 4668 regs[rd] = 4669 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4670 break; 4671 case DIF_OP_ULDUW: 4672 regs[rd] = 4673 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4674 break; 4675 case DIF_OP_ULDX: 4676 regs[rd] = 4677 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 4678 break; 4679 case DIF_OP_RET: 4680 rval = regs[rd]; 4681 pc = textlen; 4682 break; 4683 case DIF_OP_NOP: 4684 break; 4685 case DIF_OP_SETX: 4686 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 4687 break; 4688 case DIF_OP_SETS: 4689 regs[rd] = (uint64_t)(uintptr_t) 4690 (strtab + DIF_INSTR_STRING(instr)); 4691 break; 4692 case DIF_OP_SCMP: { 4693 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 4694 uintptr_t s1 = regs[r1]; 4695 uintptr_t s2 = regs[r2]; 4696 4697 if (s1 != NULL && 4698 !dtrace_strcanload(s1, sz, mstate, vstate)) 4699 break; 4700 if (s2 != NULL && 4701 !dtrace_strcanload(s2, sz, mstate, vstate)) 4702 break; 4703 4704 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 4705 4706 cc_n = cc_r < 0; 4707 cc_z = cc_r == 0; 4708 cc_v = cc_c = 0; 4709 break; 4710 } 4711 case DIF_OP_LDGA: 4712 regs[rd] = dtrace_dif_variable(mstate, state, 4713 r1, regs[r2]); 4714 break; 4715 case DIF_OP_LDGS: 4716 id = DIF_INSTR_VAR(instr); 4717 4718 if (id >= DIF_VAR_OTHER_UBASE) { 4719 uintptr_t a; 4720 4721 id -= DIF_VAR_OTHER_UBASE; 4722 svar = vstate->dtvs_globals[id]; 4723 ASSERT(svar != NULL); 4724 v = &svar->dtsv_var; 4725 4726 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 4727 regs[rd] = svar->dtsv_data; 4728 break; 4729 } 4730 4731 a = (uintptr_t)svar->dtsv_data; 4732 4733 if (*(uint8_t *)a == UINT8_MAX) { 4734 /* 4735 * If the 0th byte is set to UINT8_MAX 4736 * then this is to be treated as a 4737 * reference to a NULL variable. 4738 */ 4739 regs[rd] = NULL; 4740 } else { 4741 regs[rd] = a + sizeof (uint64_t); 4742 } 4743 4744 break; 4745 } 4746 4747 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 4748 break; 4749 4750 case DIF_OP_STGS: 4751 id = DIF_INSTR_VAR(instr); 4752 4753 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4754 id -= DIF_VAR_OTHER_UBASE; 4755 4756 svar = vstate->dtvs_globals[id]; 4757 ASSERT(svar != NULL); 4758 v = &svar->dtsv_var; 4759 4760 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4761 uintptr_t a = (uintptr_t)svar->dtsv_data; 4762 4763 ASSERT(a != NULL); 4764 ASSERT(svar->dtsv_size != 0); 4765 4766 if (regs[rd] == NULL) { 4767 *(uint8_t *)a = UINT8_MAX; 4768 break; 4769 } else { 4770 *(uint8_t *)a = 0; 4771 a += sizeof (uint64_t); 4772 } 4773 if (!dtrace_vcanload( 4774 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4775 mstate, vstate)) 4776 break; 4777 4778 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4779 (void *)a, &v->dtdv_type); 4780 break; 4781 } 4782 4783 svar->dtsv_data = regs[rd]; 4784 break; 4785 4786 case DIF_OP_LDTA: 4787 /* 4788 * There are no DTrace built-in thread-local arrays at 4789 * present. This opcode is saved for future work. 4790 */ 4791 *flags |= CPU_DTRACE_ILLOP; 4792 regs[rd] = 0; 4793 break; 4794 4795 case DIF_OP_LDLS: 4796 id = DIF_INSTR_VAR(instr); 4797 4798 if (id < DIF_VAR_OTHER_UBASE) { 4799 /* 4800 * For now, this has no meaning. 4801 */ 4802 regs[rd] = 0; 4803 break; 4804 } 4805 4806 id -= DIF_VAR_OTHER_UBASE; 4807 4808 ASSERT(id < vstate->dtvs_nlocals); 4809 ASSERT(vstate->dtvs_locals != NULL); 4810 4811 svar = vstate->dtvs_locals[id]; 4812 ASSERT(svar != NULL); 4813 v = &svar->dtsv_var; 4814 4815 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4816 uintptr_t a = (uintptr_t)svar->dtsv_data; 4817 size_t sz = v->dtdv_type.dtdt_size; 4818 4819 sz += sizeof (uint64_t); 4820 ASSERT(svar->dtsv_size == NCPU * sz); 4821 a += CPU->cpu_id * sz; 4822 4823 if (*(uint8_t *)a == UINT8_MAX) { 4824 /* 4825 * If the 0th byte is set to UINT8_MAX 4826 * then this is to be treated as a 4827 * reference to a NULL variable. 4828 */ 4829 regs[rd] = NULL; 4830 } else { 4831 regs[rd] = a + sizeof (uint64_t); 4832 } 4833 4834 break; 4835 } 4836 4837 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4838 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4839 regs[rd] = tmp[CPU->cpu_id]; 4840 break; 4841 4842 case DIF_OP_STLS: 4843 id = DIF_INSTR_VAR(instr); 4844 4845 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4846 id -= DIF_VAR_OTHER_UBASE; 4847 ASSERT(id < vstate->dtvs_nlocals); 4848 4849 ASSERT(vstate->dtvs_locals != NULL); 4850 svar = vstate->dtvs_locals[id]; 4851 ASSERT(svar != NULL); 4852 v = &svar->dtsv_var; 4853 4854 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4855 uintptr_t a = (uintptr_t)svar->dtsv_data; 4856 size_t sz = v->dtdv_type.dtdt_size; 4857 4858 sz += sizeof (uint64_t); 4859 ASSERT(svar->dtsv_size == NCPU * sz); 4860 a += CPU->cpu_id * sz; 4861 4862 if (regs[rd] == NULL) { 4863 *(uint8_t *)a = UINT8_MAX; 4864 break; 4865 } else { 4866 *(uint8_t *)a = 0; 4867 a += sizeof (uint64_t); 4868 } 4869 4870 if (!dtrace_vcanload( 4871 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4872 mstate, vstate)) 4873 break; 4874 4875 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4876 (void *)a, &v->dtdv_type); 4877 break; 4878 } 4879 4880 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4881 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4882 tmp[CPU->cpu_id] = regs[rd]; 4883 break; 4884 4885 case DIF_OP_LDTS: { 4886 dtrace_dynvar_t *dvar; 4887 dtrace_key_t *key; 4888 4889 id = DIF_INSTR_VAR(instr); 4890 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4891 id -= DIF_VAR_OTHER_UBASE; 4892 v = &vstate->dtvs_tlocals[id]; 4893 4894 key = &tupregs[DIF_DTR_NREGS]; 4895 key[0].dttk_value = (uint64_t)id; 4896 key[0].dttk_size = 0; 4897 DTRACE_TLS_THRKEY(key[1].dttk_value); 4898 key[1].dttk_size = 0; 4899 4900 dvar = dtrace_dynvar(dstate, 2, key, 4901 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 4902 mstate, vstate); 4903 4904 if (dvar == NULL) { 4905 regs[rd] = 0; 4906 break; 4907 } 4908 4909 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4910 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4911 } else { 4912 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4913 } 4914 4915 break; 4916 } 4917 4918 case DIF_OP_STTS: { 4919 dtrace_dynvar_t *dvar; 4920 dtrace_key_t *key; 4921 4922 id = DIF_INSTR_VAR(instr); 4923 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4924 id -= DIF_VAR_OTHER_UBASE; 4925 4926 key = &tupregs[DIF_DTR_NREGS]; 4927 key[0].dttk_value = (uint64_t)id; 4928 key[0].dttk_size = 0; 4929 DTRACE_TLS_THRKEY(key[1].dttk_value); 4930 key[1].dttk_size = 0; 4931 v = &vstate->dtvs_tlocals[id]; 4932 4933 dvar = dtrace_dynvar(dstate, 2, key, 4934 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4935 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4936 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4937 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 4938 4939 /* 4940 * Given that we're storing to thread-local data, 4941 * we need to flush our predicate cache. 4942 */ 4943 curthread->t_predcache = NULL; 4944 4945 if (dvar == NULL) 4946 break; 4947 4948 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4949 if (!dtrace_vcanload( 4950 (void *)(uintptr_t)regs[rd], 4951 &v->dtdv_type, mstate, vstate)) 4952 break; 4953 4954 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4955 dvar->dtdv_data, &v->dtdv_type); 4956 } else { 4957 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4958 } 4959 4960 break; 4961 } 4962 4963 case DIF_OP_SRA: 4964 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 4965 break; 4966 4967 case DIF_OP_CALL: 4968 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 4969 regs, tupregs, ttop, mstate, state); 4970 break; 4971 4972 case DIF_OP_PUSHTR: 4973 if (ttop == DIF_DTR_NREGS) { 4974 *flags |= CPU_DTRACE_TUPOFLOW; 4975 break; 4976 } 4977 4978 if (r1 == DIF_TYPE_STRING) { 4979 /* 4980 * If this is a string type and the size is 0, 4981 * we'll use the system-wide default string 4982 * size. Note that we are _not_ looking at 4983 * the value of the DTRACEOPT_STRSIZE option; 4984 * had this been set, we would expect to have 4985 * a non-zero size value in the "pushtr". 4986 */ 4987 tupregs[ttop].dttk_size = 4988 dtrace_strlen((char *)(uintptr_t)regs[rd], 4989 regs[r2] ? regs[r2] : 4990 dtrace_strsize_default) + 1; 4991 } else { 4992 tupregs[ttop].dttk_size = regs[r2]; 4993 } 4994 4995 tupregs[ttop++].dttk_value = regs[rd]; 4996 break; 4997 4998 case DIF_OP_PUSHTV: 4999 if (ttop == DIF_DTR_NREGS) { 5000 *flags |= CPU_DTRACE_TUPOFLOW; 5001 break; 5002 } 5003 5004 tupregs[ttop].dttk_value = regs[rd]; 5005 tupregs[ttop++].dttk_size = 0; 5006 break; 5007 5008 case DIF_OP_POPTS: 5009 if (ttop != 0) 5010 ttop--; 5011 break; 5012 5013 case DIF_OP_FLUSHTS: 5014 ttop = 0; 5015 break; 5016 5017 case DIF_OP_LDGAA: 5018 case DIF_OP_LDTAA: { 5019 dtrace_dynvar_t *dvar; 5020 dtrace_key_t *key = tupregs; 5021 uint_t nkeys = ttop; 5022 5023 id = DIF_INSTR_VAR(instr); 5024 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5025 id -= DIF_VAR_OTHER_UBASE; 5026 5027 key[nkeys].dttk_value = (uint64_t)id; 5028 key[nkeys++].dttk_size = 0; 5029 5030 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 5031 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5032 key[nkeys++].dttk_size = 0; 5033 v = &vstate->dtvs_tlocals[id]; 5034 } else { 5035 v = &vstate->dtvs_globals[id]->dtsv_var; 5036 } 5037 5038 dvar = dtrace_dynvar(dstate, nkeys, key, 5039 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5040 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5041 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 5042 5043 if (dvar == NULL) { 5044 regs[rd] = 0; 5045 break; 5046 } 5047 5048 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5049 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5050 } else { 5051 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5052 } 5053 5054 break; 5055 } 5056 5057 case DIF_OP_STGAA: 5058 case DIF_OP_STTAA: { 5059 dtrace_dynvar_t *dvar; 5060 dtrace_key_t *key = tupregs; 5061 uint_t nkeys = ttop; 5062 5063 id = DIF_INSTR_VAR(instr); 5064 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5065 id -= DIF_VAR_OTHER_UBASE; 5066 5067 key[nkeys].dttk_value = (uint64_t)id; 5068 key[nkeys++].dttk_size = 0; 5069 5070 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 5071 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5072 key[nkeys++].dttk_size = 0; 5073 v = &vstate->dtvs_tlocals[id]; 5074 } else { 5075 v = &vstate->dtvs_globals[id]->dtsv_var; 5076 } 5077 5078 dvar = dtrace_dynvar(dstate, nkeys, key, 5079 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5080 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5081 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5082 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5083 5084 if (dvar == NULL) 5085 break; 5086 5087 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5088 if (!dtrace_vcanload( 5089 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5090 mstate, vstate)) 5091 break; 5092 5093 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5094 dvar->dtdv_data, &v->dtdv_type); 5095 } else { 5096 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5097 } 5098 5099 break; 5100 } 5101 5102 case DIF_OP_ALLOCS: { 5103 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5104 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 5105 5106 /* 5107 * Rounding up the user allocation size could have 5108 * overflowed large, bogus allocations (like -1ULL) to 5109 * 0. 5110 */ 5111 if (size < regs[r1] || 5112 !DTRACE_INSCRATCH(mstate, size)) { 5113 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5114 regs[rd] = NULL; 5115 break; 5116 } 5117 5118 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 5119 mstate->dtms_scratch_ptr += size; 5120 regs[rd] = ptr; 5121 break; 5122 } 5123 5124 case DIF_OP_COPYS: 5125 if (!dtrace_canstore(regs[rd], regs[r2], 5126 mstate, vstate)) { 5127 *flags |= CPU_DTRACE_BADADDR; 5128 *illval = regs[rd]; 5129 break; 5130 } 5131 5132 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 5133 break; 5134 5135 dtrace_bcopy((void *)(uintptr_t)regs[r1], 5136 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 5137 break; 5138 5139 case DIF_OP_STB: 5140 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 5141 *flags |= CPU_DTRACE_BADADDR; 5142 *illval = regs[rd]; 5143 break; 5144 } 5145 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 5146 break; 5147 5148 case DIF_OP_STH: 5149 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 5150 *flags |= CPU_DTRACE_BADADDR; 5151 *illval = regs[rd]; 5152 break; 5153 } 5154 if (regs[rd] & 1) { 5155 *flags |= CPU_DTRACE_BADALIGN; 5156 *illval = regs[rd]; 5157 break; 5158 } 5159 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5160 break; 5161 5162 case DIF_OP_STW: 5163 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5164 *flags |= CPU_DTRACE_BADADDR; 5165 *illval = regs[rd]; 5166 break; 5167 } 5168 if (regs[rd] & 3) { 5169 *flags |= CPU_DTRACE_BADALIGN; 5170 *illval = regs[rd]; 5171 break; 5172 } 5173 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5174 break; 5175 5176 case DIF_OP_STX: 5177 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5178 *flags |= CPU_DTRACE_BADADDR; 5179 *illval = regs[rd]; 5180 break; 5181 } 5182 if (regs[rd] & 7) { 5183 *flags |= CPU_DTRACE_BADALIGN; 5184 *illval = regs[rd]; 5185 break; 5186 } 5187 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5188 break; 5189 } 5190 } 5191 5192 if (!(*flags & CPU_DTRACE_FAULT)) 5193 return (rval); 5194 5195 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5196 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5197 5198 return (0); 5199 } 5200 5201 static void 5202 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5203 { 5204 dtrace_probe_t *probe = ecb->dte_probe; 5205 dtrace_provider_t *prov = probe->dtpr_provider; 5206 char c[DTRACE_FULLNAMELEN + 80], *str; 5207 char *msg = "dtrace: breakpoint action at probe "; 5208 char *ecbmsg = " (ecb "; 5209 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5210 uintptr_t val = (uintptr_t)ecb; 5211 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5212 5213 if (dtrace_destructive_disallow) 5214 return; 5215 5216 /* 5217 * It's impossible to be taking action on the NULL probe. 5218 */ 5219 ASSERT(probe != NULL); 5220 5221 /* 5222 * This is a poor man's (destitute man's?) sprintf(): we want to 5223 * print the provider name, module name, function name and name of 5224 * the probe, along with the hex address of the ECB with the breakpoint 5225 * action -- all of which we must place in the character buffer by 5226 * hand. 5227 */ 5228 while (*msg != '\0') 5229 c[i++] = *msg++; 5230 5231 for (str = prov->dtpv_name; *str != '\0'; str++) 5232 c[i++] = *str; 5233 c[i++] = ':'; 5234 5235 for (str = probe->dtpr_mod; *str != '\0'; str++) 5236 c[i++] = *str; 5237 c[i++] = ':'; 5238 5239 for (str = probe->dtpr_func; *str != '\0'; str++) 5240 c[i++] = *str; 5241 c[i++] = ':'; 5242 5243 for (str = probe->dtpr_name; *str != '\0'; str++) 5244 c[i++] = *str; 5245 5246 while (*ecbmsg != '\0') 5247 c[i++] = *ecbmsg++; 5248 5249 while (shift >= 0) { 5250 mask = (uintptr_t)0xf << shift; 5251 5252 if (val >= ((uintptr_t)1 << shift)) 5253 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5254 shift -= 4; 5255 } 5256 5257 c[i++] = ')'; 5258 c[i] = '\0'; 5259 5260 debug_enter(c); 5261 } 5262 5263 static void 5264 dtrace_action_panic(dtrace_ecb_t *ecb) 5265 { 5266 dtrace_probe_t *probe = ecb->dte_probe; 5267 5268 /* 5269 * It's impossible to be taking action on the NULL probe. 5270 */ 5271 ASSERT(probe != NULL); 5272 5273 if (dtrace_destructive_disallow) 5274 return; 5275 5276 if (dtrace_panicked != NULL) 5277 return; 5278 5279 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5280 return; 5281 5282 /* 5283 * We won the right to panic. (We want to be sure that only one 5284 * thread calls panic() from dtrace_probe(), and that panic() is 5285 * called exactly once.) 5286 */ 5287 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5288 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5289 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5290 } 5291 5292 static void 5293 dtrace_action_raise(uint64_t sig) 5294 { 5295 if (dtrace_destructive_disallow) 5296 return; 5297 5298 if (sig >= NSIG) { 5299 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5300 return; 5301 } 5302 5303 /* 5304 * raise() has a queue depth of 1 -- we ignore all subsequent 5305 * invocations of the raise() action. 5306 */ 5307 if (curthread->t_dtrace_sig == 0) 5308 curthread->t_dtrace_sig = (uint8_t)sig; 5309 5310 curthread->t_sig_check = 1; 5311 aston(curthread); 5312 } 5313 5314 static void 5315 dtrace_action_stop(void) 5316 { 5317 if (dtrace_destructive_disallow) 5318 return; 5319 5320 if (!curthread->t_dtrace_stop) { 5321 curthread->t_dtrace_stop = 1; 5322 curthread->t_sig_check = 1; 5323 aston(curthread); 5324 } 5325 } 5326 5327 static void 5328 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5329 { 5330 hrtime_t now; 5331 volatile uint16_t *flags; 5332 cpu_t *cpu = CPU; 5333 5334 if (dtrace_destructive_disallow) 5335 return; 5336 5337 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5338 5339 now = dtrace_gethrtime(); 5340 5341 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5342 /* 5343 * We need to advance the mark to the current time. 5344 */ 5345 cpu->cpu_dtrace_chillmark = now; 5346 cpu->cpu_dtrace_chilled = 0; 5347 } 5348 5349 /* 5350 * Now check to see if the requested chill time would take us over 5351 * the maximum amount of time allowed in the chill interval. (Or 5352 * worse, if the calculation itself induces overflow.) 5353 */ 5354 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5355 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5356 *flags |= CPU_DTRACE_ILLOP; 5357 return; 5358 } 5359 5360 while (dtrace_gethrtime() - now < val) 5361 continue; 5362 5363 /* 5364 * Normally, we assure that the value of the variable "timestamp" does 5365 * not change within an ECB. The presence of chill() represents an 5366 * exception to this rule, however. 5367 */ 5368 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5369 cpu->cpu_dtrace_chilled += val; 5370 } 5371 5372 static void 5373 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5374 uint64_t *buf, uint64_t arg) 5375 { 5376 int nframes = DTRACE_USTACK_NFRAMES(arg); 5377 int strsize = DTRACE_USTACK_STRSIZE(arg); 5378 uint64_t *pcs = &buf[1], *fps; 5379 char *str = (char *)&pcs[nframes]; 5380 int size, offs = 0, i, j; 5381 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5382 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5383 char *sym; 5384 5385 /* 5386 * Should be taking a faster path if string space has not been 5387 * allocated. 5388 */ 5389 ASSERT(strsize != 0); 5390 5391 /* 5392 * We will first allocate some temporary space for the frame pointers. 5393 */ 5394 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5395 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5396 (nframes * sizeof (uint64_t)); 5397 5398 if (!DTRACE_INSCRATCH(mstate, size)) { 5399 /* 5400 * Not enough room for our frame pointers -- need to indicate 5401 * that we ran out of scratch space. 5402 */ 5403 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5404 return; 5405 } 5406 5407 mstate->dtms_scratch_ptr += size; 5408 saved = mstate->dtms_scratch_ptr; 5409 5410 /* 5411 * Now get a stack with both program counters and frame pointers. 5412 */ 5413 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5414 dtrace_getufpstack(buf, fps, nframes + 1); 5415 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5416 5417 /* 5418 * If that faulted, we're cooked. 5419 */ 5420 if (*flags & CPU_DTRACE_FAULT) 5421 goto out; 5422 5423 /* 5424 * Now we want to walk up the stack, calling the USTACK helper. For 5425 * each iteration, we restore the scratch pointer. 5426 */ 5427 for (i = 0; i < nframes; i++) { 5428 mstate->dtms_scratch_ptr = saved; 5429 5430 if (offs >= strsize) 5431 break; 5432 5433 sym = (char *)(uintptr_t)dtrace_helper( 5434 DTRACE_HELPER_ACTION_USTACK, 5435 mstate, state, pcs[i], fps[i]); 5436 5437 /* 5438 * If we faulted while running the helper, we're going to 5439 * clear the fault and null out the corresponding string. 5440 */ 5441 if (*flags & CPU_DTRACE_FAULT) { 5442 *flags &= ~CPU_DTRACE_FAULT; 5443 str[offs++] = '\0'; 5444 continue; 5445 } 5446 5447 if (sym == NULL) { 5448 str[offs++] = '\0'; 5449 continue; 5450 } 5451 5452 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5453 5454 /* 5455 * Now copy in the string that the helper returned to us. 5456 */ 5457 for (j = 0; offs + j < strsize; j++) { 5458 if ((str[offs + j] = sym[j]) == '\0') 5459 break; 5460 } 5461 5462 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5463 5464 offs += j + 1; 5465 } 5466 5467 if (offs >= strsize) { 5468 /* 5469 * If we didn't have room for all of the strings, we don't 5470 * abort processing -- this needn't be a fatal error -- but we 5471 * still want to increment a counter (dts_stkstroverflows) to 5472 * allow this condition to be warned about. (If this is from 5473 * a jstack() action, it is easily tuned via jstackstrsize.) 5474 */ 5475 dtrace_error(&state->dts_stkstroverflows); 5476 } 5477 5478 while (offs < strsize) 5479 str[offs++] = '\0'; 5480 5481 out: 5482 mstate->dtms_scratch_ptr = old; 5483 } 5484 5485 /* 5486 * If you're looking for the epicenter of DTrace, you just found it. This 5487 * is the function called by the provider to fire a probe -- from which all 5488 * subsequent probe-context DTrace activity emanates. 5489 */ 5490 void 5491 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5492 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5493 { 5494 processorid_t cpuid; 5495 dtrace_icookie_t cookie; 5496 dtrace_probe_t *probe; 5497 dtrace_mstate_t mstate; 5498 dtrace_ecb_t *ecb; 5499 dtrace_action_t *act; 5500 intptr_t offs; 5501 size_t size; 5502 int vtime, onintr; 5503 volatile uint16_t *flags; 5504 hrtime_t now; 5505 5506 /* 5507 * Kick out immediately if this CPU is still being born (in which case 5508 * curthread will be set to -1) or the current thread can't allow 5509 * probes in its current context. 5510 */ 5511 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 5512 return; 5513 5514 cookie = dtrace_interrupt_disable(); 5515 probe = dtrace_probes[id - 1]; 5516 cpuid = CPU->cpu_id; 5517 onintr = CPU_ON_INTR(CPU); 5518 5519 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5520 probe->dtpr_predcache == curthread->t_predcache) { 5521 /* 5522 * We have hit in the predicate cache; we know that 5523 * this predicate would evaluate to be false. 5524 */ 5525 dtrace_interrupt_enable(cookie); 5526 return; 5527 } 5528 5529 if (panic_quiesce) { 5530 /* 5531 * We don't trace anything if we're panicking. 5532 */ 5533 dtrace_interrupt_enable(cookie); 5534 return; 5535 } 5536 5537 now = dtrace_gethrtime(); 5538 vtime = dtrace_vtime_references != 0; 5539 5540 if (vtime && curthread->t_dtrace_start) 5541 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5542 5543 mstate.dtms_difo = NULL; 5544 mstate.dtms_probe = probe; 5545 mstate.dtms_strtok = NULL; 5546 mstate.dtms_arg[0] = arg0; 5547 mstate.dtms_arg[1] = arg1; 5548 mstate.dtms_arg[2] = arg2; 5549 mstate.dtms_arg[3] = arg3; 5550 mstate.dtms_arg[4] = arg4; 5551 5552 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5553 5554 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5555 dtrace_predicate_t *pred = ecb->dte_predicate; 5556 dtrace_state_t *state = ecb->dte_state; 5557 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5558 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5559 dtrace_vstate_t *vstate = &state->dts_vstate; 5560 dtrace_provider_t *prov = probe->dtpr_provider; 5561 int committed = 0; 5562 caddr_t tomax; 5563 5564 /* 5565 * A little subtlety with the following (seemingly innocuous) 5566 * declaration of the automatic 'val': by looking at the 5567 * code, you might think that it could be declared in the 5568 * action processing loop, below. (That is, it's only used in 5569 * the action processing loop.) However, it must be declared 5570 * out of that scope because in the case of DIF expression 5571 * arguments to aggregating actions, one iteration of the 5572 * action loop will use the last iteration's value. 5573 */ 5574 #ifdef lint 5575 uint64_t val = 0; 5576 #else 5577 uint64_t val; 5578 #endif 5579 5580 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5581 *flags &= ~CPU_DTRACE_ERROR; 5582 5583 if (prov == dtrace_provider) { 5584 /* 5585 * If dtrace itself is the provider of this probe, 5586 * we're only going to continue processing the ECB if 5587 * arg0 (the dtrace_state_t) is equal to the ECB's 5588 * creating state. (This prevents disjoint consumers 5589 * from seeing one another's metaprobes.) 5590 */ 5591 if (arg0 != (uint64_t)(uintptr_t)state) 5592 continue; 5593 } 5594 5595 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5596 /* 5597 * We're not currently active. If our provider isn't 5598 * the dtrace pseudo provider, we're not interested. 5599 */ 5600 if (prov != dtrace_provider) 5601 continue; 5602 5603 /* 5604 * Now we must further check if we are in the BEGIN 5605 * probe. If we are, we will only continue processing 5606 * if we're still in WARMUP -- if one BEGIN enabling 5607 * has invoked the exit() action, we don't want to 5608 * evaluate subsequent BEGIN enablings. 5609 */ 5610 if (probe->dtpr_id == dtrace_probeid_begin && 5611 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5612 ASSERT(state->dts_activity == 5613 DTRACE_ACTIVITY_DRAINING); 5614 continue; 5615 } 5616 } 5617 5618 if (ecb->dte_cond) { 5619 /* 5620 * If the dte_cond bits indicate that this 5621 * consumer is only allowed to see user-mode firings 5622 * of this probe, call the provider's dtps_usermode() 5623 * entry point to check that the probe was fired 5624 * while in a user context. Skip this ECB if that's 5625 * not the case. 5626 */ 5627 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 5628 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 5629 probe->dtpr_id, probe->dtpr_arg) == 0) 5630 continue; 5631 5632 /* 5633 * This is more subtle than it looks. We have to be 5634 * absolutely certain that CRED() isn't going to 5635 * change out from under us so it's only legit to 5636 * examine that structure if we're in constrained 5637 * situations. Currently, the only times we'll this 5638 * check is if a non-super-user has enabled the 5639 * profile or syscall providers -- providers that 5640 * allow visibility of all processes. For the 5641 * profile case, the check above will ensure that 5642 * we're examining a user context. 5643 */ 5644 if (ecb->dte_cond & DTRACE_COND_OWNER) { 5645 cred_t *cr; 5646 cred_t *s_cr = 5647 ecb->dte_state->dts_cred.dcr_cred; 5648 proc_t *proc; 5649 5650 ASSERT(s_cr != NULL); 5651 5652 if ((cr = CRED()) == NULL || 5653 s_cr->cr_uid != cr->cr_uid || 5654 s_cr->cr_uid != cr->cr_ruid || 5655 s_cr->cr_uid != cr->cr_suid || 5656 s_cr->cr_gid != cr->cr_gid || 5657 s_cr->cr_gid != cr->cr_rgid || 5658 s_cr->cr_gid != cr->cr_sgid || 5659 (proc = ttoproc(curthread)) == NULL || 5660 (proc->p_flag & SNOCD)) 5661 continue; 5662 } 5663 5664 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 5665 cred_t *cr; 5666 cred_t *s_cr = 5667 ecb->dte_state->dts_cred.dcr_cred; 5668 5669 ASSERT(s_cr != NULL); 5670 5671 if ((cr = CRED()) == NULL || 5672 s_cr->cr_zone->zone_id != 5673 cr->cr_zone->zone_id) 5674 continue; 5675 } 5676 } 5677 5678 if (now - state->dts_alive > dtrace_deadman_timeout) { 5679 /* 5680 * We seem to be dead. Unless we (a) have kernel 5681 * destructive permissions (b) have expicitly enabled 5682 * destructive actions and (c) destructive actions have 5683 * not been disabled, we're going to transition into 5684 * the KILLED state, from which no further processing 5685 * on this state will be performed. 5686 */ 5687 if (!dtrace_priv_kernel_destructive(state) || 5688 !state->dts_cred.dcr_destructive || 5689 dtrace_destructive_disallow) { 5690 void *activity = &state->dts_activity; 5691 dtrace_activity_t current; 5692 5693 do { 5694 current = state->dts_activity; 5695 } while (dtrace_cas32(activity, current, 5696 DTRACE_ACTIVITY_KILLED) != current); 5697 5698 continue; 5699 } 5700 } 5701 5702 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 5703 ecb->dte_alignment, state, &mstate)) < 0) 5704 continue; 5705 5706 tomax = buf->dtb_tomax; 5707 ASSERT(tomax != NULL); 5708 5709 if (ecb->dte_size != 0) 5710 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 5711 5712 mstate.dtms_epid = ecb->dte_epid; 5713 mstate.dtms_present |= DTRACE_MSTATE_EPID; 5714 5715 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 5716 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 5717 else 5718 mstate.dtms_access = 0; 5719 5720 if (pred != NULL) { 5721 dtrace_difo_t *dp = pred->dtp_difo; 5722 int rval; 5723 5724 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 5725 5726 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 5727 dtrace_cacheid_t cid = probe->dtpr_predcache; 5728 5729 if (cid != DTRACE_CACHEIDNONE && !onintr) { 5730 /* 5731 * Update the predicate cache... 5732 */ 5733 ASSERT(cid == pred->dtp_cacheid); 5734 curthread->t_predcache = cid; 5735 } 5736 5737 continue; 5738 } 5739 } 5740 5741 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 5742 act != NULL; act = act->dta_next) { 5743 size_t valoffs; 5744 dtrace_difo_t *dp; 5745 dtrace_recdesc_t *rec = &act->dta_rec; 5746 5747 size = rec->dtrd_size; 5748 valoffs = offs + rec->dtrd_offset; 5749 5750 if (DTRACEACT_ISAGG(act->dta_kind)) { 5751 uint64_t v = 0xbad; 5752 dtrace_aggregation_t *agg; 5753 5754 agg = (dtrace_aggregation_t *)act; 5755 5756 if ((dp = act->dta_difo) != NULL) 5757 v = dtrace_dif_emulate(dp, 5758 &mstate, vstate, state); 5759 5760 if (*flags & CPU_DTRACE_ERROR) 5761 continue; 5762 5763 /* 5764 * Note that we always pass the expression 5765 * value from the previous iteration of the 5766 * action loop. This value will only be used 5767 * if there is an expression argument to the 5768 * aggregating action, denoted by the 5769 * dtag_hasarg field. 5770 */ 5771 dtrace_aggregate(agg, buf, 5772 offs, aggbuf, v, val); 5773 continue; 5774 } 5775 5776 switch (act->dta_kind) { 5777 case DTRACEACT_STOP: 5778 if (dtrace_priv_proc_destructive(state)) 5779 dtrace_action_stop(); 5780 continue; 5781 5782 case DTRACEACT_BREAKPOINT: 5783 if (dtrace_priv_kernel_destructive(state)) 5784 dtrace_action_breakpoint(ecb); 5785 continue; 5786 5787 case DTRACEACT_PANIC: 5788 if (dtrace_priv_kernel_destructive(state)) 5789 dtrace_action_panic(ecb); 5790 continue; 5791 5792 case DTRACEACT_STACK: 5793 if (!dtrace_priv_kernel(state)) 5794 continue; 5795 5796 dtrace_getpcstack((pc_t *)(tomax + valoffs), 5797 size / sizeof (pc_t), probe->dtpr_aframes, 5798 DTRACE_ANCHORED(probe) ? NULL : 5799 (uint32_t *)arg0); 5800 5801 continue; 5802 5803 case DTRACEACT_JSTACK: 5804 case DTRACEACT_USTACK: 5805 if (!dtrace_priv_proc(state)) 5806 continue; 5807 5808 /* 5809 * See comment in DIF_VAR_PID. 5810 */ 5811 if (DTRACE_ANCHORED(mstate.dtms_probe) && 5812 CPU_ON_INTR(CPU)) { 5813 int depth = DTRACE_USTACK_NFRAMES( 5814 rec->dtrd_arg) + 1; 5815 5816 dtrace_bzero((void *)(tomax + valoffs), 5817 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 5818 + depth * sizeof (uint64_t)); 5819 5820 continue; 5821 } 5822 5823 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 5824 curproc->p_dtrace_helpers != NULL) { 5825 /* 5826 * This is the slow path -- we have 5827 * allocated string space, and we're 5828 * getting the stack of a process that 5829 * has helpers. Call into a separate 5830 * routine to perform this processing. 5831 */ 5832 dtrace_action_ustack(&mstate, state, 5833 (uint64_t *)(tomax + valoffs), 5834 rec->dtrd_arg); 5835 continue; 5836 } 5837 5838 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5839 dtrace_getupcstack((uint64_t *) 5840 (tomax + valoffs), 5841 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 5842 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5843 continue; 5844 5845 default: 5846 break; 5847 } 5848 5849 dp = act->dta_difo; 5850 ASSERT(dp != NULL); 5851 5852 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 5853 5854 if (*flags & CPU_DTRACE_ERROR) 5855 continue; 5856 5857 switch (act->dta_kind) { 5858 case DTRACEACT_SPECULATE: 5859 ASSERT(buf == &state->dts_buffer[cpuid]); 5860 buf = dtrace_speculation_buffer(state, 5861 cpuid, val); 5862 5863 if (buf == NULL) { 5864 *flags |= CPU_DTRACE_DROP; 5865 continue; 5866 } 5867 5868 offs = dtrace_buffer_reserve(buf, 5869 ecb->dte_needed, ecb->dte_alignment, 5870 state, NULL); 5871 5872 if (offs < 0) { 5873 *flags |= CPU_DTRACE_DROP; 5874 continue; 5875 } 5876 5877 tomax = buf->dtb_tomax; 5878 ASSERT(tomax != NULL); 5879 5880 if (ecb->dte_size != 0) 5881 DTRACE_STORE(uint32_t, tomax, offs, 5882 ecb->dte_epid); 5883 continue; 5884 5885 case DTRACEACT_CHILL: 5886 if (dtrace_priv_kernel_destructive(state)) 5887 dtrace_action_chill(&mstate, val); 5888 continue; 5889 5890 case DTRACEACT_RAISE: 5891 if (dtrace_priv_proc_destructive(state)) 5892 dtrace_action_raise(val); 5893 continue; 5894 5895 case DTRACEACT_COMMIT: 5896 ASSERT(!committed); 5897 5898 /* 5899 * We need to commit our buffer state. 5900 */ 5901 if (ecb->dte_size) 5902 buf->dtb_offset = offs + ecb->dte_size; 5903 buf = &state->dts_buffer[cpuid]; 5904 dtrace_speculation_commit(state, cpuid, val); 5905 committed = 1; 5906 continue; 5907 5908 case DTRACEACT_DISCARD: 5909 dtrace_speculation_discard(state, cpuid, val); 5910 continue; 5911 5912 case DTRACEACT_DIFEXPR: 5913 case DTRACEACT_LIBACT: 5914 case DTRACEACT_PRINTF: 5915 case DTRACEACT_PRINTA: 5916 case DTRACEACT_SYSTEM: 5917 case DTRACEACT_FREOPEN: 5918 break; 5919 5920 case DTRACEACT_SYM: 5921 case DTRACEACT_MOD: 5922 if (!dtrace_priv_kernel(state)) 5923 continue; 5924 break; 5925 5926 case DTRACEACT_USYM: 5927 case DTRACEACT_UMOD: 5928 case DTRACEACT_UADDR: { 5929 struct pid *pid = curthread->t_procp->p_pidp; 5930 5931 if (!dtrace_priv_proc(state)) 5932 continue; 5933 5934 DTRACE_STORE(uint64_t, tomax, 5935 valoffs, (uint64_t)pid->pid_id); 5936 DTRACE_STORE(uint64_t, tomax, 5937 valoffs + sizeof (uint64_t), val); 5938 5939 continue; 5940 } 5941 5942 case DTRACEACT_EXIT: { 5943 /* 5944 * For the exit action, we are going to attempt 5945 * to atomically set our activity to be 5946 * draining. If this fails (either because 5947 * another CPU has beat us to the exit action, 5948 * or because our current activity is something 5949 * other than ACTIVE or WARMUP), we will 5950 * continue. This assures that the exit action 5951 * can be successfully recorded at most once 5952 * when we're in the ACTIVE state. If we're 5953 * encountering the exit() action while in 5954 * COOLDOWN, however, we want to honor the new 5955 * status code. (We know that we're the only 5956 * thread in COOLDOWN, so there is no race.) 5957 */ 5958 void *activity = &state->dts_activity; 5959 dtrace_activity_t current = state->dts_activity; 5960 5961 if (current == DTRACE_ACTIVITY_COOLDOWN) 5962 break; 5963 5964 if (current != DTRACE_ACTIVITY_WARMUP) 5965 current = DTRACE_ACTIVITY_ACTIVE; 5966 5967 if (dtrace_cas32(activity, current, 5968 DTRACE_ACTIVITY_DRAINING) != current) { 5969 *flags |= CPU_DTRACE_DROP; 5970 continue; 5971 } 5972 5973 break; 5974 } 5975 5976 default: 5977 ASSERT(0); 5978 } 5979 5980 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 5981 uintptr_t end = valoffs + size; 5982 5983 if (!dtrace_vcanload((void *)(uintptr_t)val, 5984 &dp->dtdo_rtype, &mstate, vstate)) 5985 continue; 5986 5987 /* 5988 * If this is a string, we're going to only 5989 * load until we find the zero byte -- after 5990 * which we'll store zero bytes. 5991 */ 5992 if (dp->dtdo_rtype.dtdt_kind == 5993 DIF_TYPE_STRING) { 5994 char c = '\0' + 1; 5995 int intuple = act->dta_intuple; 5996 size_t s; 5997 5998 for (s = 0; s < size; s++) { 5999 if (c != '\0') 6000 c = dtrace_load8(val++); 6001 6002 DTRACE_STORE(uint8_t, tomax, 6003 valoffs++, c); 6004 6005 if (c == '\0' && intuple) 6006 break; 6007 } 6008 6009 continue; 6010 } 6011 6012 while (valoffs < end) { 6013 DTRACE_STORE(uint8_t, tomax, valoffs++, 6014 dtrace_load8(val++)); 6015 } 6016 6017 continue; 6018 } 6019 6020 switch (size) { 6021 case 0: 6022 break; 6023 6024 case sizeof (uint8_t): 6025 DTRACE_STORE(uint8_t, tomax, valoffs, val); 6026 break; 6027 case sizeof (uint16_t): 6028 DTRACE_STORE(uint16_t, tomax, valoffs, val); 6029 break; 6030 case sizeof (uint32_t): 6031 DTRACE_STORE(uint32_t, tomax, valoffs, val); 6032 break; 6033 case sizeof (uint64_t): 6034 DTRACE_STORE(uint64_t, tomax, valoffs, val); 6035 break; 6036 default: 6037 /* 6038 * Any other size should have been returned by 6039 * reference, not by value. 6040 */ 6041 ASSERT(0); 6042 break; 6043 } 6044 } 6045 6046 if (*flags & CPU_DTRACE_DROP) 6047 continue; 6048 6049 if (*flags & CPU_DTRACE_FAULT) { 6050 int ndx; 6051 dtrace_action_t *err; 6052 6053 buf->dtb_errors++; 6054 6055 if (probe->dtpr_id == dtrace_probeid_error) { 6056 /* 6057 * There's nothing we can do -- we had an 6058 * error on the error probe. We bump an 6059 * error counter to at least indicate that 6060 * this condition happened. 6061 */ 6062 dtrace_error(&state->dts_dblerrors); 6063 continue; 6064 } 6065 6066 if (vtime) { 6067 /* 6068 * Before recursing on dtrace_probe(), we 6069 * need to explicitly clear out our start 6070 * time to prevent it from being accumulated 6071 * into t_dtrace_vtime. 6072 */ 6073 curthread->t_dtrace_start = 0; 6074 } 6075 6076 /* 6077 * Iterate over the actions to figure out which action 6078 * we were processing when we experienced the error. 6079 * Note that act points _past_ the faulting action; if 6080 * act is ecb->dte_action, the fault was in the 6081 * predicate, if it's ecb->dte_action->dta_next it's 6082 * in action #1, and so on. 6083 */ 6084 for (err = ecb->dte_action, ndx = 0; 6085 err != act; err = err->dta_next, ndx++) 6086 continue; 6087 6088 dtrace_probe_error(state, ecb->dte_epid, ndx, 6089 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 6090 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 6091 cpu_core[cpuid].cpuc_dtrace_illval); 6092 6093 continue; 6094 } 6095 6096 if (!committed) 6097 buf->dtb_offset = offs + ecb->dte_size; 6098 } 6099 6100 if (vtime) 6101 curthread->t_dtrace_start = dtrace_gethrtime(); 6102 6103 dtrace_interrupt_enable(cookie); 6104 } 6105 6106 /* 6107 * DTrace Probe Hashing Functions 6108 * 6109 * The functions in this section (and indeed, the functions in remaining 6110 * sections) are not _called_ from probe context. (Any exceptions to this are 6111 * marked with a "Note:".) Rather, they are called from elsewhere in the 6112 * DTrace framework to look-up probes in, add probes to and remove probes from 6113 * the DTrace probe hashes. (Each probe is hashed by each element of the 6114 * probe tuple -- allowing for fast lookups, regardless of what was 6115 * specified.) 6116 */ 6117 static uint_t 6118 dtrace_hash_str(char *p) 6119 { 6120 unsigned int g; 6121 uint_t hval = 0; 6122 6123 while (*p) { 6124 hval = (hval << 4) + *p++; 6125 if ((g = (hval & 0xf0000000)) != 0) 6126 hval ^= g >> 24; 6127 hval &= ~g; 6128 } 6129 return (hval); 6130 } 6131 6132 static dtrace_hash_t * 6133 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 6134 { 6135 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 6136 6137 hash->dth_stroffs = stroffs; 6138 hash->dth_nextoffs = nextoffs; 6139 hash->dth_prevoffs = prevoffs; 6140 6141 hash->dth_size = 1; 6142 hash->dth_mask = hash->dth_size - 1; 6143 6144 hash->dth_tab = kmem_zalloc(hash->dth_size * 6145 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 6146 6147 return (hash); 6148 } 6149 6150 static void 6151 dtrace_hash_destroy(dtrace_hash_t *hash) 6152 { 6153 #ifdef DEBUG 6154 int i; 6155 6156 for (i = 0; i < hash->dth_size; i++) 6157 ASSERT(hash->dth_tab[i] == NULL); 6158 #endif 6159 6160 kmem_free(hash->dth_tab, 6161 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6162 kmem_free(hash, sizeof (dtrace_hash_t)); 6163 } 6164 6165 static void 6166 dtrace_hash_resize(dtrace_hash_t *hash) 6167 { 6168 int size = hash->dth_size, i, ndx; 6169 int new_size = hash->dth_size << 1; 6170 int new_mask = new_size - 1; 6171 dtrace_hashbucket_t **new_tab, *bucket, *next; 6172 6173 ASSERT((new_size & new_mask) == 0); 6174 6175 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6176 6177 for (i = 0; i < size; i++) { 6178 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6179 dtrace_probe_t *probe = bucket->dthb_chain; 6180 6181 ASSERT(probe != NULL); 6182 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6183 6184 next = bucket->dthb_next; 6185 bucket->dthb_next = new_tab[ndx]; 6186 new_tab[ndx] = bucket; 6187 } 6188 } 6189 6190 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6191 hash->dth_tab = new_tab; 6192 hash->dth_size = new_size; 6193 hash->dth_mask = new_mask; 6194 } 6195 6196 static void 6197 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6198 { 6199 int hashval = DTRACE_HASHSTR(hash, new); 6200 int ndx = hashval & hash->dth_mask; 6201 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6202 dtrace_probe_t **nextp, **prevp; 6203 6204 for (; bucket != NULL; bucket = bucket->dthb_next) { 6205 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6206 goto add; 6207 } 6208 6209 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6210 dtrace_hash_resize(hash); 6211 dtrace_hash_add(hash, new); 6212 return; 6213 } 6214 6215 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6216 bucket->dthb_next = hash->dth_tab[ndx]; 6217 hash->dth_tab[ndx] = bucket; 6218 hash->dth_nbuckets++; 6219 6220 add: 6221 nextp = DTRACE_HASHNEXT(hash, new); 6222 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6223 *nextp = bucket->dthb_chain; 6224 6225 if (bucket->dthb_chain != NULL) { 6226 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6227 ASSERT(*prevp == NULL); 6228 *prevp = new; 6229 } 6230 6231 bucket->dthb_chain = new; 6232 bucket->dthb_len++; 6233 } 6234 6235 static dtrace_probe_t * 6236 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6237 { 6238 int hashval = DTRACE_HASHSTR(hash, template); 6239 int ndx = hashval & hash->dth_mask; 6240 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6241 6242 for (; bucket != NULL; bucket = bucket->dthb_next) { 6243 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6244 return (bucket->dthb_chain); 6245 } 6246 6247 return (NULL); 6248 } 6249 6250 static int 6251 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6252 { 6253 int hashval = DTRACE_HASHSTR(hash, template); 6254 int ndx = hashval & hash->dth_mask; 6255 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6256 6257 for (; bucket != NULL; bucket = bucket->dthb_next) { 6258 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6259 return (bucket->dthb_len); 6260 } 6261 6262 return (NULL); 6263 } 6264 6265 static void 6266 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6267 { 6268 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6269 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6270 6271 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6272 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6273 6274 /* 6275 * Find the bucket that we're removing this probe from. 6276 */ 6277 for (; bucket != NULL; bucket = bucket->dthb_next) { 6278 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6279 break; 6280 } 6281 6282 ASSERT(bucket != NULL); 6283 6284 if (*prevp == NULL) { 6285 if (*nextp == NULL) { 6286 /* 6287 * The removed probe was the only probe on this 6288 * bucket; we need to remove the bucket. 6289 */ 6290 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6291 6292 ASSERT(bucket->dthb_chain == probe); 6293 ASSERT(b != NULL); 6294 6295 if (b == bucket) { 6296 hash->dth_tab[ndx] = bucket->dthb_next; 6297 } else { 6298 while (b->dthb_next != bucket) 6299 b = b->dthb_next; 6300 b->dthb_next = bucket->dthb_next; 6301 } 6302 6303 ASSERT(hash->dth_nbuckets > 0); 6304 hash->dth_nbuckets--; 6305 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6306 return; 6307 } 6308 6309 bucket->dthb_chain = *nextp; 6310 } else { 6311 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6312 } 6313 6314 if (*nextp != NULL) 6315 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6316 } 6317 6318 /* 6319 * DTrace Utility Functions 6320 * 6321 * These are random utility functions that are _not_ called from probe context. 6322 */ 6323 static int 6324 dtrace_badattr(const dtrace_attribute_t *a) 6325 { 6326 return (a->dtat_name > DTRACE_STABILITY_MAX || 6327 a->dtat_data > DTRACE_STABILITY_MAX || 6328 a->dtat_class > DTRACE_CLASS_MAX); 6329 } 6330 6331 /* 6332 * Return a duplicate copy of a string. If the specified string is NULL, 6333 * this function returns a zero-length string. 6334 */ 6335 static char * 6336 dtrace_strdup(const char *str) 6337 { 6338 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6339 6340 if (str != NULL) 6341 (void) strcpy(new, str); 6342 6343 return (new); 6344 } 6345 6346 #define DTRACE_ISALPHA(c) \ 6347 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6348 6349 static int 6350 dtrace_badname(const char *s) 6351 { 6352 char c; 6353 6354 if (s == NULL || (c = *s++) == '\0') 6355 return (0); 6356 6357 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6358 return (1); 6359 6360 while ((c = *s++) != '\0') { 6361 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6362 c != '-' && c != '_' && c != '.' && c != '`') 6363 return (1); 6364 } 6365 6366 return (0); 6367 } 6368 6369 static void 6370 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6371 { 6372 uint32_t priv; 6373 6374 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6375 /* 6376 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6377 */ 6378 priv = DTRACE_PRIV_ALL; 6379 } else { 6380 *uidp = crgetuid(cr); 6381 *zoneidp = crgetzoneid(cr); 6382 6383 priv = 0; 6384 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6385 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6386 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6387 priv |= DTRACE_PRIV_USER; 6388 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6389 priv |= DTRACE_PRIV_PROC; 6390 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6391 priv |= DTRACE_PRIV_OWNER; 6392 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6393 priv |= DTRACE_PRIV_ZONEOWNER; 6394 } 6395 6396 *privp = priv; 6397 } 6398 6399 #ifdef DTRACE_ERRDEBUG 6400 static void 6401 dtrace_errdebug(const char *str) 6402 { 6403 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6404 int occupied = 0; 6405 6406 mutex_enter(&dtrace_errlock); 6407 dtrace_errlast = str; 6408 dtrace_errthread = curthread; 6409 6410 while (occupied++ < DTRACE_ERRHASHSZ) { 6411 if (dtrace_errhash[hval].dter_msg == str) { 6412 dtrace_errhash[hval].dter_count++; 6413 goto out; 6414 } 6415 6416 if (dtrace_errhash[hval].dter_msg != NULL) { 6417 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6418 continue; 6419 } 6420 6421 dtrace_errhash[hval].dter_msg = str; 6422 dtrace_errhash[hval].dter_count = 1; 6423 goto out; 6424 } 6425 6426 panic("dtrace: undersized error hash"); 6427 out: 6428 mutex_exit(&dtrace_errlock); 6429 } 6430 #endif 6431 6432 /* 6433 * DTrace Matching Functions 6434 * 6435 * These functions are used to match groups of probes, given some elements of 6436 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6437 */ 6438 static int 6439 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6440 zoneid_t zoneid) 6441 { 6442 if (priv != DTRACE_PRIV_ALL) { 6443 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6444 uint32_t match = priv & ppriv; 6445 6446 /* 6447 * No PRIV_DTRACE_* privileges... 6448 */ 6449 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6450 DTRACE_PRIV_KERNEL)) == 0) 6451 return (0); 6452 6453 /* 6454 * No matching bits, but there were bits to match... 6455 */ 6456 if (match == 0 && ppriv != 0) 6457 return (0); 6458 6459 /* 6460 * Need to have permissions to the process, but don't... 6461 */ 6462 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6463 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6464 return (0); 6465 } 6466 6467 /* 6468 * Need to be in the same zone unless we possess the 6469 * privilege to examine all zones. 6470 */ 6471 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6472 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6473 return (0); 6474 } 6475 } 6476 6477 return (1); 6478 } 6479 6480 /* 6481 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6482 * consists of input pattern strings and an ops-vector to evaluate them. 6483 * This function returns >0 for match, 0 for no match, and <0 for error. 6484 */ 6485 static int 6486 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6487 uint32_t priv, uid_t uid, zoneid_t zoneid) 6488 { 6489 dtrace_provider_t *pvp = prp->dtpr_provider; 6490 int rv; 6491 6492 if (pvp->dtpv_defunct) 6493 return (0); 6494 6495 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6496 return (rv); 6497 6498 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6499 return (rv); 6500 6501 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6502 return (rv); 6503 6504 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6505 return (rv); 6506 6507 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6508 return (0); 6509 6510 return (rv); 6511 } 6512 6513 /* 6514 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6515 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 6516 * libc's version, the kernel version only applies to 8-bit ASCII strings. 6517 * In addition, all of the recursion cases except for '*' matching have been 6518 * unwound. For '*', we still implement recursive evaluation, but a depth 6519 * counter is maintained and matching is aborted if we recurse too deep. 6520 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 6521 */ 6522 static int 6523 dtrace_match_glob(const char *s, const char *p, int depth) 6524 { 6525 const char *olds; 6526 char s1, c; 6527 int gs; 6528 6529 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 6530 return (-1); 6531 6532 if (s == NULL) 6533 s = ""; /* treat NULL as empty string */ 6534 6535 top: 6536 olds = s; 6537 s1 = *s++; 6538 6539 if (p == NULL) 6540 return (0); 6541 6542 if ((c = *p++) == '\0') 6543 return (s1 == '\0'); 6544 6545 switch (c) { 6546 case '[': { 6547 int ok = 0, notflag = 0; 6548 char lc = '\0'; 6549 6550 if (s1 == '\0') 6551 return (0); 6552 6553 if (*p == '!') { 6554 notflag = 1; 6555 p++; 6556 } 6557 6558 if ((c = *p++) == '\0') 6559 return (0); 6560 6561 do { 6562 if (c == '-' && lc != '\0' && *p != ']') { 6563 if ((c = *p++) == '\0') 6564 return (0); 6565 if (c == '\\' && (c = *p++) == '\0') 6566 return (0); 6567 6568 if (notflag) { 6569 if (s1 < lc || s1 > c) 6570 ok++; 6571 else 6572 return (0); 6573 } else if (lc <= s1 && s1 <= c) 6574 ok++; 6575 6576 } else if (c == '\\' && (c = *p++) == '\0') 6577 return (0); 6578 6579 lc = c; /* save left-hand 'c' for next iteration */ 6580 6581 if (notflag) { 6582 if (s1 != c) 6583 ok++; 6584 else 6585 return (0); 6586 } else if (s1 == c) 6587 ok++; 6588 6589 if ((c = *p++) == '\0') 6590 return (0); 6591 6592 } while (c != ']'); 6593 6594 if (ok) 6595 goto top; 6596 6597 return (0); 6598 } 6599 6600 case '\\': 6601 if ((c = *p++) == '\0') 6602 return (0); 6603 /*FALLTHRU*/ 6604 6605 default: 6606 if (c != s1) 6607 return (0); 6608 /*FALLTHRU*/ 6609 6610 case '?': 6611 if (s1 != '\0') 6612 goto top; 6613 return (0); 6614 6615 case '*': 6616 while (*p == '*') 6617 p++; /* consecutive *'s are identical to a single one */ 6618 6619 if (*p == '\0') 6620 return (1); 6621 6622 for (s = olds; *s != '\0'; s++) { 6623 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 6624 return (gs); 6625 } 6626 6627 return (0); 6628 } 6629 } 6630 6631 /*ARGSUSED*/ 6632 static int 6633 dtrace_match_string(const char *s, const char *p, int depth) 6634 { 6635 return (s != NULL && strcmp(s, p) == 0); 6636 } 6637 6638 /*ARGSUSED*/ 6639 static int 6640 dtrace_match_nul(const char *s, const char *p, int depth) 6641 { 6642 return (1); /* always match the empty pattern */ 6643 } 6644 6645 /*ARGSUSED*/ 6646 static int 6647 dtrace_match_nonzero(const char *s, const char *p, int depth) 6648 { 6649 return (s != NULL && s[0] != '\0'); 6650 } 6651 6652 static int 6653 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 6654 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 6655 { 6656 dtrace_probe_t template, *probe; 6657 dtrace_hash_t *hash = NULL; 6658 int len, best = INT_MAX, nmatched = 0; 6659 dtrace_id_t i; 6660 6661 ASSERT(MUTEX_HELD(&dtrace_lock)); 6662 6663 /* 6664 * If the probe ID is specified in the key, just lookup by ID and 6665 * invoke the match callback once if a matching probe is found. 6666 */ 6667 if (pkp->dtpk_id != DTRACE_IDNONE) { 6668 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 6669 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 6670 (void) (*matched)(probe, arg); 6671 nmatched++; 6672 } 6673 return (nmatched); 6674 } 6675 6676 template.dtpr_mod = (char *)pkp->dtpk_mod; 6677 template.dtpr_func = (char *)pkp->dtpk_func; 6678 template.dtpr_name = (char *)pkp->dtpk_name; 6679 6680 /* 6681 * We want to find the most distinct of the module name, function 6682 * name, and name. So for each one that is not a glob pattern or 6683 * empty string, we perform a lookup in the corresponding hash and 6684 * use the hash table with the fewest collisions to do our search. 6685 */ 6686 if (pkp->dtpk_mmatch == &dtrace_match_string && 6687 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 6688 best = len; 6689 hash = dtrace_bymod; 6690 } 6691 6692 if (pkp->dtpk_fmatch == &dtrace_match_string && 6693 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 6694 best = len; 6695 hash = dtrace_byfunc; 6696 } 6697 6698 if (pkp->dtpk_nmatch == &dtrace_match_string && 6699 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 6700 best = len; 6701 hash = dtrace_byname; 6702 } 6703 6704 /* 6705 * If we did not select a hash table, iterate over every probe and 6706 * invoke our callback for each one that matches our input probe key. 6707 */ 6708 if (hash == NULL) { 6709 for (i = 0; i < dtrace_nprobes; i++) { 6710 if ((probe = dtrace_probes[i]) == NULL || 6711 dtrace_match_probe(probe, pkp, priv, uid, 6712 zoneid) <= 0) 6713 continue; 6714 6715 nmatched++; 6716 6717 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 6718 break; 6719 } 6720 6721 return (nmatched); 6722 } 6723 6724 /* 6725 * If we selected a hash table, iterate over each probe of the same key 6726 * name and invoke the callback for every probe that matches the other 6727 * attributes of our input probe key. 6728 */ 6729 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 6730 probe = *(DTRACE_HASHNEXT(hash, probe))) { 6731 6732 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 6733 continue; 6734 6735 nmatched++; 6736 6737 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 6738 break; 6739 } 6740 6741 return (nmatched); 6742 } 6743 6744 /* 6745 * Return the function pointer dtrace_probecmp() should use to compare the 6746 * specified pattern with a string. For NULL or empty patterns, we select 6747 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 6748 * For non-empty non-glob strings, we use dtrace_match_string(). 6749 */ 6750 static dtrace_probekey_f * 6751 dtrace_probekey_func(const char *p) 6752 { 6753 char c; 6754 6755 if (p == NULL || *p == '\0') 6756 return (&dtrace_match_nul); 6757 6758 while ((c = *p++) != '\0') { 6759 if (c == '[' || c == '?' || c == '*' || c == '\\') 6760 return (&dtrace_match_glob); 6761 } 6762 6763 return (&dtrace_match_string); 6764 } 6765 6766 /* 6767 * Build a probe comparison key for use with dtrace_match_probe() from the 6768 * given probe description. By convention, a null key only matches anchored 6769 * probes: if each field is the empty string, reset dtpk_fmatch to 6770 * dtrace_match_nonzero(). 6771 */ 6772 static void 6773 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 6774 { 6775 pkp->dtpk_prov = pdp->dtpd_provider; 6776 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 6777 6778 pkp->dtpk_mod = pdp->dtpd_mod; 6779 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 6780 6781 pkp->dtpk_func = pdp->dtpd_func; 6782 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 6783 6784 pkp->dtpk_name = pdp->dtpd_name; 6785 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 6786 6787 pkp->dtpk_id = pdp->dtpd_id; 6788 6789 if (pkp->dtpk_id == DTRACE_IDNONE && 6790 pkp->dtpk_pmatch == &dtrace_match_nul && 6791 pkp->dtpk_mmatch == &dtrace_match_nul && 6792 pkp->dtpk_fmatch == &dtrace_match_nul && 6793 pkp->dtpk_nmatch == &dtrace_match_nul) 6794 pkp->dtpk_fmatch = &dtrace_match_nonzero; 6795 } 6796 6797 /* 6798 * DTrace Provider-to-Framework API Functions 6799 * 6800 * These functions implement much of the Provider-to-Framework API, as 6801 * described in <sys/dtrace.h>. The parts of the API not in this section are 6802 * the functions in the API for probe management (found below), and 6803 * dtrace_probe() itself (found above). 6804 */ 6805 6806 /* 6807 * Register the calling provider with the DTrace framework. This should 6808 * generally be called by DTrace providers in their attach(9E) entry point. 6809 */ 6810 int 6811 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 6812 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 6813 { 6814 dtrace_provider_t *provider; 6815 6816 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 6817 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6818 "arguments", name ? name : "<NULL>"); 6819 return (EINVAL); 6820 } 6821 6822 if (name[0] == '\0' || dtrace_badname(name)) { 6823 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6824 "provider name", name); 6825 return (EINVAL); 6826 } 6827 6828 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 6829 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 6830 pops->dtps_destroy == NULL || 6831 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 6832 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6833 "provider ops", name); 6834 return (EINVAL); 6835 } 6836 6837 if (dtrace_badattr(&pap->dtpa_provider) || 6838 dtrace_badattr(&pap->dtpa_mod) || 6839 dtrace_badattr(&pap->dtpa_func) || 6840 dtrace_badattr(&pap->dtpa_name) || 6841 dtrace_badattr(&pap->dtpa_args)) { 6842 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6843 "provider attributes", name); 6844 return (EINVAL); 6845 } 6846 6847 if (priv & ~DTRACE_PRIV_ALL) { 6848 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6849 "privilege attributes", name); 6850 return (EINVAL); 6851 } 6852 6853 if ((priv & DTRACE_PRIV_KERNEL) && 6854 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 6855 pops->dtps_usermode == NULL) { 6856 cmn_err(CE_WARN, "failed to register provider '%s': need " 6857 "dtps_usermode() op for given privilege attributes", name); 6858 return (EINVAL); 6859 } 6860 6861 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 6862 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 6863 (void) strcpy(provider->dtpv_name, name); 6864 6865 provider->dtpv_attr = *pap; 6866 provider->dtpv_priv.dtpp_flags = priv; 6867 if (cr != NULL) { 6868 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 6869 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 6870 } 6871 provider->dtpv_pops = *pops; 6872 6873 if (pops->dtps_provide == NULL) { 6874 ASSERT(pops->dtps_provide_module != NULL); 6875 provider->dtpv_pops.dtps_provide = 6876 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 6877 } 6878 6879 if (pops->dtps_provide_module == NULL) { 6880 ASSERT(pops->dtps_provide != NULL); 6881 provider->dtpv_pops.dtps_provide_module = 6882 (void (*)(void *, struct modctl *))dtrace_nullop; 6883 } 6884 6885 if (pops->dtps_suspend == NULL) { 6886 ASSERT(pops->dtps_resume == NULL); 6887 provider->dtpv_pops.dtps_suspend = 6888 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6889 provider->dtpv_pops.dtps_resume = 6890 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6891 } 6892 6893 provider->dtpv_arg = arg; 6894 *idp = (dtrace_provider_id_t)provider; 6895 6896 if (pops == &dtrace_provider_ops) { 6897 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6898 ASSERT(MUTEX_HELD(&dtrace_lock)); 6899 ASSERT(dtrace_anon.dta_enabling == NULL); 6900 6901 /* 6902 * We make sure that the DTrace provider is at the head of 6903 * the provider chain. 6904 */ 6905 provider->dtpv_next = dtrace_provider; 6906 dtrace_provider = provider; 6907 return (0); 6908 } 6909 6910 mutex_enter(&dtrace_provider_lock); 6911 mutex_enter(&dtrace_lock); 6912 6913 /* 6914 * If there is at least one provider registered, we'll add this 6915 * provider after the first provider. 6916 */ 6917 if (dtrace_provider != NULL) { 6918 provider->dtpv_next = dtrace_provider->dtpv_next; 6919 dtrace_provider->dtpv_next = provider; 6920 } else { 6921 dtrace_provider = provider; 6922 } 6923 6924 if (dtrace_retained != NULL) { 6925 dtrace_enabling_provide(provider); 6926 6927 /* 6928 * Now we need to call dtrace_enabling_matchall() -- which 6929 * will acquire cpu_lock and dtrace_lock. We therefore need 6930 * to drop all of our locks before calling into it... 6931 */ 6932 mutex_exit(&dtrace_lock); 6933 mutex_exit(&dtrace_provider_lock); 6934 dtrace_enabling_matchall(); 6935 6936 return (0); 6937 } 6938 6939 mutex_exit(&dtrace_lock); 6940 mutex_exit(&dtrace_provider_lock); 6941 6942 return (0); 6943 } 6944 6945 /* 6946 * Unregister the specified provider from the DTrace framework. This should 6947 * generally be called by DTrace providers in their detach(9E) entry point. 6948 */ 6949 int 6950 dtrace_unregister(dtrace_provider_id_t id) 6951 { 6952 dtrace_provider_t *old = (dtrace_provider_t *)id; 6953 dtrace_provider_t *prev = NULL; 6954 int i, self = 0; 6955 dtrace_probe_t *probe, *first = NULL; 6956 6957 if (old->dtpv_pops.dtps_enable == 6958 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 6959 /* 6960 * If DTrace itself is the provider, we're called with locks 6961 * already held. 6962 */ 6963 ASSERT(old == dtrace_provider); 6964 ASSERT(dtrace_devi != NULL); 6965 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6966 ASSERT(MUTEX_HELD(&dtrace_lock)); 6967 self = 1; 6968 6969 if (dtrace_provider->dtpv_next != NULL) { 6970 /* 6971 * There's another provider here; return failure. 6972 */ 6973 return (EBUSY); 6974 } 6975 } else { 6976 mutex_enter(&dtrace_provider_lock); 6977 mutex_enter(&mod_lock); 6978 mutex_enter(&dtrace_lock); 6979 } 6980 6981 /* 6982 * If anyone has /dev/dtrace open, or if there are anonymous enabled 6983 * probes, we refuse to let providers slither away, unless this 6984 * provider has already been explicitly invalidated. 6985 */ 6986 if (!old->dtpv_defunct && 6987 (dtrace_opens || (dtrace_anon.dta_state != NULL && 6988 dtrace_anon.dta_state->dts_necbs > 0))) { 6989 if (!self) { 6990 mutex_exit(&dtrace_lock); 6991 mutex_exit(&mod_lock); 6992 mutex_exit(&dtrace_provider_lock); 6993 } 6994 return (EBUSY); 6995 } 6996 6997 /* 6998 * Attempt to destroy the probes associated with this provider. 6999 */ 7000 for (i = 0; i < dtrace_nprobes; i++) { 7001 if ((probe = dtrace_probes[i]) == NULL) 7002 continue; 7003 7004 if (probe->dtpr_provider != old) 7005 continue; 7006 7007 if (probe->dtpr_ecb == NULL) 7008 continue; 7009 7010 /* 7011 * We have at least one ECB; we can't remove this provider. 7012 */ 7013 if (!self) { 7014 mutex_exit(&dtrace_lock); 7015 mutex_exit(&mod_lock); 7016 mutex_exit(&dtrace_provider_lock); 7017 } 7018 return (EBUSY); 7019 } 7020 7021 /* 7022 * All of the probes for this provider are disabled; we can safely 7023 * remove all of them from their hash chains and from the probe array. 7024 */ 7025 for (i = 0; i < dtrace_nprobes; i++) { 7026 if ((probe = dtrace_probes[i]) == NULL) 7027 continue; 7028 7029 if (probe->dtpr_provider != old) 7030 continue; 7031 7032 dtrace_probes[i] = NULL; 7033 7034 dtrace_hash_remove(dtrace_bymod, probe); 7035 dtrace_hash_remove(dtrace_byfunc, probe); 7036 dtrace_hash_remove(dtrace_byname, probe); 7037 7038 if (first == NULL) { 7039 first = probe; 7040 probe->dtpr_nextmod = NULL; 7041 } else { 7042 probe->dtpr_nextmod = first; 7043 first = probe; 7044 } 7045 } 7046 7047 /* 7048 * The provider's probes have been removed from the hash chains and 7049 * from the probe array. Now issue a dtrace_sync() to be sure that 7050 * everyone has cleared out from any probe array processing. 7051 */ 7052 dtrace_sync(); 7053 7054 for (probe = first; probe != NULL; probe = first) { 7055 first = probe->dtpr_nextmod; 7056 7057 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 7058 probe->dtpr_arg); 7059 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7060 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7061 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7062 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 7063 kmem_free(probe, sizeof (dtrace_probe_t)); 7064 } 7065 7066 if ((prev = dtrace_provider) == old) { 7067 ASSERT(self || dtrace_devi == NULL); 7068 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 7069 dtrace_provider = old->dtpv_next; 7070 } else { 7071 while (prev != NULL && prev->dtpv_next != old) 7072 prev = prev->dtpv_next; 7073 7074 if (prev == NULL) { 7075 panic("attempt to unregister non-existent " 7076 "dtrace provider %p\n", (void *)id); 7077 } 7078 7079 prev->dtpv_next = old->dtpv_next; 7080 } 7081 7082 if (!self) { 7083 mutex_exit(&dtrace_lock); 7084 mutex_exit(&mod_lock); 7085 mutex_exit(&dtrace_provider_lock); 7086 } 7087 7088 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 7089 kmem_free(old, sizeof (dtrace_provider_t)); 7090 7091 return (0); 7092 } 7093 7094 /* 7095 * Invalidate the specified provider. All subsequent probe lookups for the 7096 * specified provider will fail, but its probes will not be removed. 7097 */ 7098 void 7099 dtrace_invalidate(dtrace_provider_id_t id) 7100 { 7101 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 7102 7103 ASSERT(pvp->dtpv_pops.dtps_enable != 7104 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 7105 7106 mutex_enter(&dtrace_provider_lock); 7107 mutex_enter(&dtrace_lock); 7108 7109 pvp->dtpv_defunct = 1; 7110 7111 mutex_exit(&dtrace_lock); 7112 mutex_exit(&dtrace_provider_lock); 7113 } 7114 7115 /* 7116 * Indicate whether or not DTrace has attached. 7117 */ 7118 int 7119 dtrace_attached(void) 7120 { 7121 /* 7122 * dtrace_provider will be non-NULL iff the DTrace driver has 7123 * attached. (It's non-NULL because DTrace is always itself a 7124 * provider.) 7125 */ 7126 return (dtrace_provider != NULL); 7127 } 7128 7129 /* 7130 * Remove all the unenabled probes for the given provider. This function is 7131 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7132 * -- just as many of its associated probes as it can. 7133 */ 7134 int 7135 dtrace_condense(dtrace_provider_id_t id) 7136 { 7137 dtrace_provider_t *prov = (dtrace_provider_t *)id; 7138 int i; 7139 dtrace_probe_t *probe; 7140 7141 /* 7142 * Make sure this isn't the dtrace provider itself. 7143 */ 7144 ASSERT(prov->dtpv_pops.dtps_enable != 7145 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 7146 7147 mutex_enter(&dtrace_provider_lock); 7148 mutex_enter(&dtrace_lock); 7149 7150 /* 7151 * Attempt to destroy the probes associated with this provider. 7152 */ 7153 for (i = 0; i < dtrace_nprobes; i++) { 7154 if ((probe = dtrace_probes[i]) == NULL) 7155 continue; 7156 7157 if (probe->dtpr_provider != prov) 7158 continue; 7159 7160 if (probe->dtpr_ecb != NULL) 7161 continue; 7162 7163 dtrace_probes[i] = NULL; 7164 7165 dtrace_hash_remove(dtrace_bymod, probe); 7166 dtrace_hash_remove(dtrace_byfunc, probe); 7167 dtrace_hash_remove(dtrace_byname, probe); 7168 7169 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7170 probe->dtpr_arg); 7171 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7172 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7173 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7174 kmem_free(probe, sizeof (dtrace_probe_t)); 7175 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7176 } 7177 7178 mutex_exit(&dtrace_lock); 7179 mutex_exit(&dtrace_provider_lock); 7180 7181 return (0); 7182 } 7183 7184 /* 7185 * DTrace Probe Management Functions 7186 * 7187 * The functions in this section perform the DTrace probe management, 7188 * including functions to create probes, look-up probes, and call into the 7189 * providers to request that probes be provided. Some of these functions are 7190 * in the Provider-to-Framework API; these functions can be identified by the 7191 * fact that they are not declared "static". 7192 */ 7193 7194 /* 7195 * Create a probe with the specified module name, function name, and name. 7196 */ 7197 dtrace_id_t 7198 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7199 const char *func, const char *name, int aframes, void *arg) 7200 { 7201 dtrace_probe_t *probe, **probes; 7202 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7203 dtrace_id_t id; 7204 7205 if (provider == dtrace_provider) { 7206 ASSERT(MUTEX_HELD(&dtrace_lock)); 7207 } else { 7208 mutex_enter(&dtrace_lock); 7209 } 7210 7211 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7212 VM_BESTFIT | VM_SLEEP); 7213 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7214 7215 probe->dtpr_id = id; 7216 probe->dtpr_gen = dtrace_probegen++; 7217 probe->dtpr_mod = dtrace_strdup(mod); 7218 probe->dtpr_func = dtrace_strdup(func); 7219 probe->dtpr_name = dtrace_strdup(name); 7220 probe->dtpr_arg = arg; 7221 probe->dtpr_aframes = aframes; 7222 probe->dtpr_provider = provider; 7223 7224 dtrace_hash_add(dtrace_bymod, probe); 7225 dtrace_hash_add(dtrace_byfunc, probe); 7226 dtrace_hash_add(dtrace_byname, probe); 7227 7228 if (id - 1 >= dtrace_nprobes) { 7229 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7230 size_t nsize = osize << 1; 7231 7232 if (nsize == 0) { 7233 ASSERT(osize == 0); 7234 ASSERT(dtrace_probes == NULL); 7235 nsize = sizeof (dtrace_probe_t *); 7236 } 7237 7238 probes = kmem_zalloc(nsize, KM_SLEEP); 7239 7240 if (dtrace_probes == NULL) { 7241 ASSERT(osize == 0); 7242 dtrace_probes = probes; 7243 dtrace_nprobes = 1; 7244 } else { 7245 dtrace_probe_t **oprobes = dtrace_probes; 7246 7247 bcopy(oprobes, probes, osize); 7248 dtrace_membar_producer(); 7249 dtrace_probes = probes; 7250 7251 dtrace_sync(); 7252 7253 /* 7254 * All CPUs are now seeing the new probes array; we can 7255 * safely free the old array. 7256 */ 7257 kmem_free(oprobes, osize); 7258 dtrace_nprobes <<= 1; 7259 } 7260 7261 ASSERT(id - 1 < dtrace_nprobes); 7262 } 7263 7264 ASSERT(dtrace_probes[id - 1] == NULL); 7265 dtrace_probes[id - 1] = probe; 7266 7267 if (provider != dtrace_provider) 7268 mutex_exit(&dtrace_lock); 7269 7270 return (id); 7271 } 7272 7273 static dtrace_probe_t * 7274 dtrace_probe_lookup_id(dtrace_id_t id) 7275 { 7276 ASSERT(MUTEX_HELD(&dtrace_lock)); 7277 7278 if (id == 0 || id > dtrace_nprobes) 7279 return (NULL); 7280 7281 return (dtrace_probes[id - 1]); 7282 } 7283 7284 static int 7285 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7286 { 7287 *((dtrace_id_t *)arg) = probe->dtpr_id; 7288 7289 return (DTRACE_MATCH_DONE); 7290 } 7291 7292 /* 7293 * Look up a probe based on provider and one or more of module name, function 7294 * name and probe name. 7295 */ 7296 dtrace_id_t 7297 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 7298 const char *func, const char *name) 7299 { 7300 dtrace_probekey_t pkey; 7301 dtrace_id_t id; 7302 int match; 7303 7304 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7305 pkey.dtpk_pmatch = &dtrace_match_string; 7306 pkey.dtpk_mod = mod; 7307 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7308 pkey.dtpk_func = func; 7309 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7310 pkey.dtpk_name = name; 7311 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7312 pkey.dtpk_id = DTRACE_IDNONE; 7313 7314 mutex_enter(&dtrace_lock); 7315 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7316 dtrace_probe_lookup_match, &id); 7317 mutex_exit(&dtrace_lock); 7318 7319 ASSERT(match == 1 || match == 0); 7320 return (match ? id : 0); 7321 } 7322 7323 /* 7324 * Returns the probe argument associated with the specified probe. 7325 */ 7326 void * 7327 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7328 { 7329 dtrace_probe_t *probe; 7330 void *rval = NULL; 7331 7332 mutex_enter(&dtrace_lock); 7333 7334 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7335 probe->dtpr_provider == (dtrace_provider_t *)id) 7336 rval = probe->dtpr_arg; 7337 7338 mutex_exit(&dtrace_lock); 7339 7340 return (rval); 7341 } 7342 7343 /* 7344 * Copy a probe into a probe description. 7345 */ 7346 static void 7347 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7348 { 7349 bzero(pdp, sizeof (dtrace_probedesc_t)); 7350 pdp->dtpd_id = prp->dtpr_id; 7351 7352 (void) strncpy(pdp->dtpd_provider, 7353 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7354 7355 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7356 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7357 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7358 } 7359 7360 /* 7361 * Called to indicate that a probe -- or probes -- should be provided by a 7362 * specfied provider. If the specified description is NULL, the provider will 7363 * be told to provide all of its probes. (This is done whenever a new 7364 * consumer comes along, or whenever a retained enabling is to be matched.) If 7365 * the specified description is non-NULL, the provider is given the 7366 * opportunity to dynamically provide the specified probe, allowing providers 7367 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7368 * probes.) If the provider is NULL, the operations will be applied to all 7369 * providers; if the provider is non-NULL the operations will only be applied 7370 * to the specified provider. The dtrace_provider_lock must be held, and the 7371 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7372 * will need to grab the dtrace_lock when it reenters the framework through 7373 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7374 */ 7375 static void 7376 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7377 { 7378 struct modctl *ctl; 7379 int all = 0; 7380 7381 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7382 7383 if (prv == NULL) { 7384 all = 1; 7385 prv = dtrace_provider; 7386 } 7387 7388 do { 7389 /* 7390 * First, call the blanket provide operation. 7391 */ 7392 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7393 7394 /* 7395 * Now call the per-module provide operation. We will grab 7396 * mod_lock to prevent the list from being modified. Note 7397 * that this also prevents the mod_busy bits from changing. 7398 * (mod_busy can only be changed with mod_lock held.) 7399 */ 7400 mutex_enter(&mod_lock); 7401 7402 ctl = &modules; 7403 do { 7404 if (ctl->mod_busy || ctl->mod_mp == NULL) 7405 continue; 7406 7407 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7408 7409 } while ((ctl = ctl->mod_next) != &modules); 7410 7411 mutex_exit(&mod_lock); 7412 } while (all && (prv = prv->dtpv_next) != NULL); 7413 } 7414 7415 /* 7416 * Iterate over each probe, and call the Framework-to-Provider API function 7417 * denoted by offs. 7418 */ 7419 static void 7420 dtrace_probe_foreach(uintptr_t offs) 7421 { 7422 dtrace_provider_t *prov; 7423 void (*func)(void *, dtrace_id_t, void *); 7424 dtrace_probe_t *probe; 7425 dtrace_icookie_t cookie; 7426 int i; 7427 7428 /* 7429 * We disable interrupts to walk through the probe array. This is 7430 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7431 * won't see stale data. 7432 */ 7433 cookie = dtrace_interrupt_disable(); 7434 7435 for (i = 0; i < dtrace_nprobes; i++) { 7436 if ((probe = dtrace_probes[i]) == NULL) 7437 continue; 7438 7439 if (probe->dtpr_ecb == NULL) { 7440 /* 7441 * This probe isn't enabled -- don't call the function. 7442 */ 7443 continue; 7444 } 7445 7446 prov = probe->dtpr_provider; 7447 func = *((void(**)(void *, dtrace_id_t, void *)) 7448 ((uintptr_t)&prov->dtpv_pops + offs)); 7449 7450 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7451 } 7452 7453 dtrace_interrupt_enable(cookie); 7454 } 7455 7456 static int 7457 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7458 { 7459 dtrace_probekey_t pkey; 7460 uint32_t priv; 7461 uid_t uid; 7462 zoneid_t zoneid; 7463 7464 ASSERT(MUTEX_HELD(&dtrace_lock)); 7465 dtrace_ecb_create_cache = NULL; 7466 7467 if (desc == NULL) { 7468 /* 7469 * If we're passed a NULL description, we're being asked to 7470 * create an ECB with a NULL probe. 7471 */ 7472 (void) dtrace_ecb_create_enable(NULL, enab); 7473 return (0); 7474 } 7475 7476 dtrace_probekey(desc, &pkey); 7477 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7478 &priv, &uid, &zoneid); 7479 7480 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7481 enab)); 7482 } 7483 7484 /* 7485 * DTrace Helper Provider Functions 7486 */ 7487 static void 7488 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7489 { 7490 attr->dtat_name = DOF_ATTR_NAME(dofattr); 7491 attr->dtat_data = DOF_ATTR_DATA(dofattr); 7492 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 7493 } 7494 7495 static void 7496 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 7497 const dof_provider_t *dofprov, char *strtab) 7498 { 7499 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 7500 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 7501 dofprov->dofpv_provattr); 7502 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 7503 dofprov->dofpv_modattr); 7504 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 7505 dofprov->dofpv_funcattr); 7506 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 7507 dofprov->dofpv_nameattr); 7508 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 7509 dofprov->dofpv_argsattr); 7510 } 7511 7512 static void 7513 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7514 { 7515 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7516 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7517 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 7518 dof_provider_t *provider; 7519 dof_probe_t *probe; 7520 uint32_t *off, *enoff; 7521 uint8_t *arg; 7522 char *strtab; 7523 uint_t i, nprobes; 7524 dtrace_helper_provdesc_t dhpv; 7525 dtrace_helper_probedesc_t dhpb; 7526 dtrace_meta_t *meta = dtrace_meta_pid; 7527 dtrace_mops_t *mops = &meta->dtm_mops; 7528 void *parg; 7529 7530 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7531 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7532 provider->dofpv_strtab * dof->dofh_secsize); 7533 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7534 provider->dofpv_probes * dof->dofh_secsize); 7535 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7536 provider->dofpv_prargs * dof->dofh_secsize); 7537 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7538 provider->dofpv_proffs * dof->dofh_secsize); 7539 7540 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7541 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 7542 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 7543 enoff = NULL; 7544 7545 /* 7546 * See dtrace_helper_provider_validate(). 7547 */ 7548 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 7549 provider->dofpv_prenoffs != DOF_SECT_NONE) { 7550 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7551 provider->dofpv_prenoffs * dof->dofh_secsize); 7552 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 7553 } 7554 7555 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 7556 7557 /* 7558 * Create the provider. 7559 */ 7560 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7561 7562 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 7563 return; 7564 7565 meta->dtm_count++; 7566 7567 /* 7568 * Create the probes. 7569 */ 7570 for (i = 0; i < nprobes; i++) { 7571 probe = (dof_probe_t *)(uintptr_t)(daddr + 7572 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 7573 7574 dhpb.dthpb_mod = dhp->dofhp_mod; 7575 dhpb.dthpb_func = strtab + probe->dofpr_func; 7576 dhpb.dthpb_name = strtab + probe->dofpr_name; 7577 dhpb.dthpb_base = probe->dofpr_addr; 7578 dhpb.dthpb_offs = off + probe->dofpr_offidx; 7579 dhpb.dthpb_noffs = probe->dofpr_noffs; 7580 if (enoff != NULL) { 7581 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 7582 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 7583 } else { 7584 dhpb.dthpb_enoffs = NULL; 7585 dhpb.dthpb_nenoffs = 0; 7586 } 7587 dhpb.dthpb_args = arg + probe->dofpr_argidx; 7588 dhpb.dthpb_nargc = probe->dofpr_nargc; 7589 dhpb.dthpb_xargc = probe->dofpr_xargc; 7590 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 7591 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 7592 7593 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 7594 } 7595 } 7596 7597 static void 7598 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 7599 { 7600 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7601 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7602 int i; 7603 7604 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7605 7606 for (i = 0; i < dof->dofh_secnum; i++) { 7607 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7608 dof->dofh_secoff + i * dof->dofh_secsize); 7609 7610 if (sec->dofs_type != DOF_SECT_PROVIDER) 7611 continue; 7612 7613 dtrace_helper_provide_one(dhp, sec, pid); 7614 } 7615 7616 /* 7617 * We may have just created probes, so we must now rematch against 7618 * any retained enablings. Note that this call will acquire both 7619 * cpu_lock and dtrace_lock; the fact that we are holding 7620 * dtrace_meta_lock now is what defines the ordering with respect to 7621 * these three locks. 7622 */ 7623 dtrace_enabling_matchall(); 7624 } 7625 7626 static void 7627 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7628 { 7629 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7630 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7631 dof_sec_t *str_sec; 7632 dof_provider_t *provider; 7633 char *strtab; 7634 dtrace_helper_provdesc_t dhpv; 7635 dtrace_meta_t *meta = dtrace_meta_pid; 7636 dtrace_mops_t *mops = &meta->dtm_mops; 7637 7638 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7639 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7640 provider->dofpv_strtab * dof->dofh_secsize); 7641 7642 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7643 7644 /* 7645 * Create the provider. 7646 */ 7647 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7648 7649 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 7650 7651 meta->dtm_count--; 7652 } 7653 7654 static void 7655 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 7656 { 7657 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7658 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7659 int i; 7660 7661 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7662 7663 for (i = 0; i < dof->dofh_secnum; i++) { 7664 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7665 dof->dofh_secoff + i * dof->dofh_secsize); 7666 7667 if (sec->dofs_type != DOF_SECT_PROVIDER) 7668 continue; 7669 7670 dtrace_helper_provider_remove_one(dhp, sec, pid); 7671 } 7672 } 7673 7674 /* 7675 * DTrace Meta Provider-to-Framework API Functions 7676 * 7677 * These functions implement the Meta Provider-to-Framework API, as described 7678 * in <sys/dtrace.h>. 7679 */ 7680 int 7681 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 7682 dtrace_meta_provider_id_t *idp) 7683 { 7684 dtrace_meta_t *meta; 7685 dtrace_helpers_t *help, *next; 7686 int i; 7687 7688 *idp = DTRACE_METAPROVNONE; 7689 7690 /* 7691 * We strictly don't need the name, but we hold onto it for 7692 * debuggability. All hail error queues! 7693 */ 7694 if (name == NULL) { 7695 cmn_err(CE_WARN, "failed to register meta-provider: " 7696 "invalid name"); 7697 return (EINVAL); 7698 } 7699 7700 if (mops == NULL || 7701 mops->dtms_create_probe == NULL || 7702 mops->dtms_provide_pid == NULL || 7703 mops->dtms_remove_pid == NULL) { 7704 cmn_err(CE_WARN, "failed to register meta-register %s: " 7705 "invalid ops", name); 7706 return (EINVAL); 7707 } 7708 7709 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 7710 meta->dtm_mops = *mops; 7711 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7712 (void) strcpy(meta->dtm_name, name); 7713 meta->dtm_arg = arg; 7714 7715 mutex_enter(&dtrace_meta_lock); 7716 mutex_enter(&dtrace_lock); 7717 7718 if (dtrace_meta_pid != NULL) { 7719 mutex_exit(&dtrace_lock); 7720 mutex_exit(&dtrace_meta_lock); 7721 cmn_err(CE_WARN, "failed to register meta-register %s: " 7722 "user-land meta-provider exists", name); 7723 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 7724 kmem_free(meta, sizeof (dtrace_meta_t)); 7725 return (EINVAL); 7726 } 7727 7728 dtrace_meta_pid = meta; 7729 *idp = (dtrace_meta_provider_id_t)meta; 7730 7731 /* 7732 * If there are providers and probes ready to go, pass them 7733 * off to the new meta provider now. 7734 */ 7735 7736 help = dtrace_deferred_pid; 7737 dtrace_deferred_pid = NULL; 7738 7739 mutex_exit(&dtrace_lock); 7740 7741 while (help != NULL) { 7742 for (i = 0; i < help->dthps_nprovs; i++) { 7743 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 7744 help->dthps_pid); 7745 } 7746 7747 next = help->dthps_next; 7748 help->dthps_next = NULL; 7749 help->dthps_prev = NULL; 7750 help->dthps_deferred = 0; 7751 help = next; 7752 } 7753 7754 mutex_exit(&dtrace_meta_lock); 7755 7756 return (0); 7757 } 7758 7759 int 7760 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 7761 { 7762 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 7763 7764 mutex_enter(&dtrace_meta_lock); 7765 mutex_enter(&dtrace_lock); 7766 7767 if (old == dtrace_meta_pid) { 7768 pp = &dtrace_meta_pid; 7769 } else { 7770 panic("attempt to unregister non-existent " 7771 "dtrace meta-provider %p\n", (void *)old); 7772 } 7773 7774 if (old->dtm_count != 0) { 7775 mutex_exit(&dtrace_lock); 7776 mutex_exit(&dtrace_meta_lock); 7777 return (EBUSY); 7778 } 7779 7780 *pp = NULL; 7781 7782 mutex_exit(&dtrace_lock); 7783 mutex_exit(&dtrace_meta_lock); 7784 7785 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 7786 kmem_free(old, sizeof (dtrace_meta_t)); 7787 7788 return (0); 7789 } 7790 7791 7792 /* 7793 * DTrace DIF Object Functions 7794 */ 7795 static int 7796 dtrace_difo_err(uint_t pc, const char *format, ...) 7797 { 7798 if (dtrace_err_verbose) { 7799 va_list alist; 7800 7801 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 7802 va_start(alist, format); 7803 (void) vuprintf(format, alist); 7804 va_end(alist); 7805 } 7806 7807 #ifdef DTRACE_ERRDEBUG 7808 dtrace_errdebug(format); 7809 #endif 7810 return (1); 7811 } 7812 7813 /* 7814 * Validate a DTrace DIF object by checking the IR instructions. The following 7815 * rules are currently enforced by dtrace_difo_validate(): 7816 * 7817 * 1. Each instruction must have a valid opcode 7818 * 2. Each register, string, variable, or subroutine reference must be valid 7819 * 3. No instruction can modify register %r0 (must be zero) 7820 * 4. All instruction reserved bits must be set to zero 7821 * 5. The last instruction must be a "ret" instruction 7822 * 6. All branch targets must reference a valid instruction _after_ the branch 7823 */ 7824 static int 7825 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 7826 cred_t *cr) 7827 { 7828 int err = 0, i; 7829 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 7830 int kcheckload; 7831 uint_t pc; 7832 7833 kcheckload = cr == NULL || 7834 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 7835 7836 dp->dtdo_destructive = 0; 7837 7838 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 7839 dif_instr_t instr = dp->dtdo_buf[pc]; 7840 7841 uint_t r1 = DIF_INSTR_R1(instr); 7842 uint_t r2 = DIF_INSTR_R2(instr); 7843 uint_t rd = DIF_INSTR_RD(instr); 7844 uint_t rs = DIF_INSTR_RS(instr); 7845 uint_t label = DIF_INSTR_LABEL(instr); 7846 uint_t v = DIF_INSTR_VAR(instr); 7847 uint_t subr = DIF_INSTR_SUBR(instr); 7848 uint_t type = DIF_INSTR_TYPE(instr); 7849 uint_t op = DIF_INSTR_OP(instr); 7850 7851 switch (op) { 7852 case DIF_OP_OR: 7853 case DIF_OP_XOR: 7854 case DIF_OP_AND: 7855 case DIF_OP_SLL: 7856 case DIF_OP_SRL: 7857 case DIF_OP_SRA: 7858 case DIF_OP_SUB: 7859 case DIF_OP_ADD: 7860 case DIF_OP_MUL: 7861 case DIF_OP_SDIV: 7862 case DIF_OP_UDIV: 7863 case DIF_OP_SREM: 7864 case DIF_OP_UREM: 7865 case DIF_OP_COPYS: 7866 if (r1 >= nregs) 7867 err += efunc(pc, "invalid register %u\n", r1); 7868 if (r2 >= nregs) 7869 err += efunc(pc, "invalid register %u\n", r2); 7870 if (rd >= nregs) 7871 err += efunc(pc, "invalid register %u\n", rd); 7872 if (rd == 0) 7873 err += efunc(pc, "cannot write to %r0\n"); 7874 break; 7875 case DIF_OP_NOT: 7876 case DIF_OP_MOV: 7877 case DIF_OP_ALLOCS: 7878 if (r1 >= nregs) 7879 err += efunc(pc, "invalid register %u\n", r1); 7880 if (r2 != 0) 7881 err += efunc(pc, "non-zero reserved bits\n"); 7882 if (rd >= nregs) 7883 err += efunc(pc, "invalid register %u\n", rd); 7884 if (rd == 0) 7885 err += efunc(pc, "cannot write to %r0\n"); 7886 break; 7887 case DIF_OP_LDSB: 7888 case DIF_OP_LDSH: 7889 case DIF_OP_LDSW: 7890 case DIF_OP_LDUB: 7891 case DIF_OP_LDUH: 7892 case DIF_OP_LDUW: 7893 case DIF_OP_LDX: 7894 if (r1 >= nregs) 7895 err += efunc(pc, "invalid register %u\n", r1); 7896 if (r2 != 0) 7897 err += efunc(pc, "non-zero reserved bits\n"); 7898 if (rd >= nregs) 7899 err += efunc(pc, "invalid register %u\n", rd); 7900 if (rd == 0) 7901 err += efunc(pc, "cannot write to %r0\n"); 7902 if (kcheckload) 7903 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 7904 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 7905 break; 7906 case DIF_OP_RLDSB: 7907 case DIF_OP_RLDSH: 7908 case DIF_OP_RLDSW: 7909 case DIF_OP_RLDUB: 7910 case DIF_OP_RLDUH: 7911 case DIF_OP_RLDUW: 7912 case DIF_OP_RLDX: 7913 if (r1 >= nregs) 7914 err += efunc(pc, "invalid register %u\n", r1); 7915 if (r2 != 0) 7916 err += efunc(pc, "non-zero reserved bits\n"); 7917 if (rd >= nregs) 7918 err += efunc(pc, "invalid register %u\n", rd); 7919 if (rd == 0) 7920 err += efunc(pc, "cannot write to %r0\n"); 7921 break; 7922 case DIF_OP_ULDSB: 7923 case DIF_OP_ULDSH: 7924 case DIF_OP_ULDSW: 7925 case DIF_OP_ULDUB: 7926 case DIF_OP_ULDUH: 7927 case DIF_OP_ULDUW: 7928 case DIF_OP_ULDX: 7929 if (r1 >= nregs) 7930 err += efunc(pc, "invalid register %u\n", r1); 7931 if (r2 != 0) 7932 err += efunc(pc, "non-zero reserved bits\n"); 7933 if (rd >= nregs) 7934 err += efunc(pc, "invalid register %u\n", rd); 7935 if (rd == 0) 7936 err += efunc(pc, "cannot write to %r0\n"); 7937 break; 7938 case DIF_OP_STB: 7939 case DIF_OP_STH: 7940 case DIF_OP_STW: 7941 case DIF_OP_STX: 7942 if (r1 >= nregs) 7943 err += efunc(pc, "invalid register %u\n", r1); 7944 if (r2 != 0) 7945 err += efunc(pc, "non-zero reserved bits\n"); 7946 if (rd >= nregs) 7947 err += efunc(pc, "invalid register %u\n", rd); 7948 if (rd == 0) 7949 err += efunc(pc, "cannot write to 0 address\n"); 7950 break; 7951 case DIF_OP_CMP: 7952 case DIF_OP_SCMP: 7953 if (r1 >= nregs) 7954 err += efunc(pc, "invalid register %u\n", r1); 7955 if (r2 >= nregs) 7956 err += efunc(pc, "invalid register %u\n", r2); 7957 if (rd != 0) 7958 err += efunc(pc, "non-zero reserved bits\n"); 7959 break; 7960 case DIF_OP_TST: 7961 if (r1 >= nregs) 7962 err += efunc(pc, "invalid register %u\n", r1); 7963 if (r2 != 0 || rd != 0) 7964 err += efunc(pc, "non-zero reserved bits\n"); 7965 break; 7966 case DIF_OP_BA: 7967 case DIF_OP_BE: 7968 case DIF_OP_BNE: 7969 case DIF_OP_BG: 7970 case DIF_OP_BGU: 7971 case DIF_OP_BGE: 7972 case DIF_OP_BGEU: 7973 case DIF_OP_BL: 7974 case DIF_OP_BLU: 7975 case DIF_OP_BLE: 7976 case DIF_OP_BLEU: 7977 if (label >= dp->dtdo_len) { 7978 err += efunc(pc, "invalid branch target %u\n", 7979 label); 7980 } 7981 if (label <= pc) { 7982 err += efunc(pc, "backward branch to %u\n", 7983 label); 7984 } 7985 break; 7986 case DIF_OP_RET: 7987 if (r1 != 0 || r2 != 0) 7988 err += efunc(pc, "non-zero reserved bits\n"); 7989 if (rd >= nregs) 7990 err += efunc(pc, "invalid register %u\n", rd); 7991 break; 7992 case DIF_OP_NOP: 7993 case DIF_OP_POPTS: 7994 case DIF_OP_FLUSHTS: 7995 if (r1 != 0 || r2 != 0 || rd != 0) 7996 err += efunc(pc, "non-zero reserved bits\n"); 7997 break; 7998 case DIF_OP_SETX: 7999 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 8000 err += efunc(pc, "invalid integer ref %u\n", 8001 DIF_INSTR_INTEGER(instr)); 8002 } 8003 if (rd >= nregs) 8004 err += efunc(pc, "invalid register %u\n", rd); 8005 if (rd == 0) 8006 err += efunc(pc, "cannot write to %r0\n"); 8007 break; 8008 case DIF_OP_SETS: 8009 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 8010 err += efunc(pc, "invalid string ref %u\n", 8011 DIF_INSTR_STRING(instr)); 8012 } 8013 if (rd >= nregs) 8014 err += efunc(pc, "invalid register %u\n", rd); 8015 if (rd == 0) 8016 err += efunc(pc, "cannot write to %r0\n"); 8017 break; 8018 case DIF_OP_LDGA: 8019 case DIF_OP_LDTA: 8020 if (r1 > DIF_VAR_ARRAY_MAX) 8021 err += efunc(pc, "invalid array %u\n", r1); 8022 if (r2 >= nregs) 8023 err += efunc(pc, "invalid register %u\n", r2); 8024 if (rd >= nregs) 8025 err += efunc(pc, "invalid register %u\n", rd); 8026 if (rd == 0) 8027 err += efunc(pc, "cannot write to %r0\n"); 8028 break; 8029 case DIF_OP_LDGS: 8030 case DIF_OP_LDTS: 8031 case DIF_OP_LDLS: 8032 case DIF_OP_LDGAA: 8033 case DIF_OP_LDTAA: 8034 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 8035 err += efunc(pc, "invalid variable %u\n", v); 8036 if (rd >= nregs) 8037 err += efunc(pc, "invalid register %u\n", rd); 8038 if (rd == 0) 8039 err += efunc(pc, "cannot write to %r0\n"); 8040 break; 8041 case DIF_OP_STGS: 8042 case DIF_OP_STTS: 8043 case DIF_OP_STLS: 8044 case DIF_OP_STGAA: 8045 case DIF_OP_STTAA: 8046 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 8047 err += efunc(pc, "invalid variable %u\n", v); 8048 if (rs >= nregs) 8049 err += efunc(pc, "invalid register %u\n", rd); 8050 break; 8051 case DIF_OP_CALL: 8052 if (subr > DIF_SUBR_MAX) 8053 err += efunc(pc, "invalid subr %u\n", subr); 8054 if (rd >= nregs) 8055 err += efunc(pc, "invalid register %u\n", rd); 8056 if (rd == 0) 8057 err += efunc(pc, "cannot write to %r0\n"); 8058 8059 if (subr == DIF_SUBR_COPYOUT || 8060 subr == DIF_SUBR_COPYOUTSTR) { 8061 dp->dtdo_destructive = 1; 8062 } 8063 break; 8064 case DIF_OP_PUSHTR: 8065 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 8066 err += efunc(pc, "invalid ref type %u\n", type); 8067 if (r2 >= nregs) 8068 err += efunc(pc, "invalid register %u\n", r2); 8069 if (rs >= nregs) 8070 err += efunc(pc, "invalid register %u\n", rs); 8071 break; 8072 case DIF_OP_PUSHTV: 8073 if (type != DIF_TYPE_CTF) 8074 err += efunc(pc, "invalid val type %u\n", type); 8075 if (r2 >= nregs) 8076 err += efunc(pc, "invalid register %u\n", r2); 8077 if (rs >= nregs) 8078 err += efunc(pc, "invalid register %u\n", rs); 8079 break; 8080 default: 8081 err += efunc(pc, "invalid opcode %u\n", 8082 DIF_INSTR_OP(instr)); 8083 } 8084 } 8085 8086 if (dp->dtdo_len != 0 && 8087 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 8088 err += efunc(dp->dtdo_len - 1, 8089 "expected 'ret' as last DIF instruction\n"); 8090 } 8091 8092 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 8093 /* 8094 * If we're not returning by reference, the size must be either 8095 * 0 or the size of one of the base types. 8096 */ 8097 switch (dp->dtdo_rtype.dtdt_size) { 8098 case 0: 8099 case sizeof (uint8_t): 8100 case sizeof (uint16_t): 8101 case sizeof (uint32_t): 8102 case sizeof (uint64_t): 8103 break; 8104 8105 default: 8106 err += efunc(dp->dtdo_len - 1, "bad return size"); 8107 } 8108 } 8109 8110 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 8111 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 8112 dtrace_diftype_t *vt, *et; 8113 uint_t id, ndx; 8114 8115 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 8116 v->dtdv_scope != DIFV_SCOPE_THREAD && 8117 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 8118 err += efunc(i, "unrecognized variable scope %d\n", 8119 v->dtdv_scope); 8120 break; 8121 } 8122 8123 if (v->dtdv_kind != DIFV_KIND_ARRAY && 8124 v->dtdv_kind != DIFV_KIND_SCALAR) { 8125 err += efunc(i, "unrecognized variable type %d\n", 8126 v->dtdv_kind); 8127 break; 8128 } 8129 8130 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 8131 err += efunc(i, "%d exceeds variable id limit\n", id); 8132 break; 8133 } 8134 8135 if (id < DIF_VAR_OTHER_UBASE) 8136 continue; 8137 8138 /* 8139 * For user-defined variables, we need to check that this 8140 * definition is identical to any previous definition that we 8141 * encountered. 8142 */ 8143 ndx = id - DIF_VAR_OTHER_UBASE; 8144 8145 switch (v->dtdv_scope) { 8146 case DIFV_SCOPE_GLOBAL: 8147 if (ndx < vstate->dtvs_nglobals) { 8148 dtrace_statvar_t *svar; 8149 8150 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 8151 existing = &svar->dtsv_var; 8152 } 8153 8154 break; 8155 8156 case DIFV_SCOPE_THREAD: 8157 if (ndx < vstate->dtvs_ntlocals) 8158 existing = &vstate->dtvs_tlocals[ndx]; 8159 break; 8160 8161 case DIFV_SCOPE_LOCAL: 8162 if (ndx < vstate->dtvs_nlocals) { 8163 dtrace_statvar_t *svar; 8164 8165 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8166 existing = &svar->dtsv_var; 8167 } 8168 8169 break; 8170 } 8171 8172 vt = &v->dtdv_type; 8173 8174 if (vt->dtdt_flags & DIF_TF_BYREF) { 8175 if (vt->dtdt_size == 0) { 8176 err += efunc(i, "zero-sized variable\n"); 8177 break; 8178 } 8179 8180 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8181 vt->dtdt_size > dtrace_global_maxsize) { 8182 err += efunc(i, "oversized by-ref global\n"); 8183 break; 8184 } 8185 } 8186 8187 if (existing == NULL || existing->dtdv_id == 0) 8188 continue; 8189 8190 ASSERT(existing->dtdv_id == v->dtdv_id); 8191 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8192 8193 if (existing->dtdv_kind != v->dtdv_kind) 8194 err += efunc(i, "%d changed variable kind\n", id); 8195 8196 et = &existing->dtdv_type; 8197 8198 if (vt->dtdt_flags != et->dtdt_flags) { 8199 err += efunc(i, "%d changed variable type flags\n", id); 8200 break; 8201 } 8202 8203 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8204 err += efunc(i, "%d changed variable type size\n", id); 8205 break; 8206 } 8207 } 8208 8209 return (err); 8210 } 8211 8212 /* 8213 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8214 * are much more constrained than normal DIFOs. Specifically, they may 8215 * not: 8216 * 8217 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8218 * miscellaneous string routines 8219 * 2. Access DTrace variables other than the args[] array, and the 8220 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8221 * 3. Have thread-local variables. 8222 * 4. Have dynamic variables. 8223 */ 8224 static int 8225 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8226 { 8227 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8228 int err = 0; 8229 uint_t pc; 8230 8231 for (pc = 0; pc < dp->dtdo_len; pc++) { 8232 dif_instr_t instr = dp->dtdo_buf[pc]; 8233 8234 uint_t v = DIF_INSTR_VAR(instr); 8235 uint_t subr = DIF_INSTR_SUBR(instr); 8236 uint_t op = DIF_INSTR_OP(instr); 8237 8238 switch (op) { 8239 case DIF_OP_OR: 8240 case DIF_OP_XOR: 8241 case DIF_OP_AND: 8242 case DIF_OP_SLL: 8243 case DIF_OP_SRL: 8244 case DIF_OP_SRA: 8245 case DIF_OP_SUB: 8246 case DIF_OP_ADD: 8247 case DIF_OP_MUL: 8248 case DIF_OP_SDIV: 8249 case DIF_OP_UDIV: 8250 case DIF_OP_SREM: 8251 case DIF_OP_UREM: 8252 case DIF_OP_COPYS: 8253 case DIF_OP_NOT: 8254 case DIF_OP_MOV: 8255 case DIF_OP_RLDSB: 8256 case DIF_OP_RLDSH: 8257 case DIF_OP_RLDSW: 8258 case DIF_OP_RLDUB: 8259 case DIF_OP_RLDUH: 8260 case DIF_OP_RLDUW: 8261 case DIF_OP_RLDX: 8262 case DIF_OP_ULDSB: 8263 case DIF_OP_ULDSH: 8264 case DIF_OP_ULDSW: 8265 case DIF_OP_ULDUB: 8266 case DIF_OP_ULDUH: 8267 case DIF_OP_ULDUW: 8268 case DIF_OP_ULDX: 8269 case DIF_OP_STB: 8270 case DIF_OP_STH: 8271 case DIF_OP_STW: 8272 case DIF_OP_STX: 8273 case DIF_OP_ALLOCS: 8274 case DIF_OP_CMP: 8275 case DIF_OP_SCMP: 8276 case DIF_OP_TST: 8277 case DIF_OP_BA: 8278 case DIF_OP_BE: 8279 case DIF_OP_BNE: 8280 case DIF_OP_BG: 8281 case DIF_OP_BGU: 8282 case DIF_OP_BGE: 8283 case DIF_OP_BGEU: 8284 case DIF_OP_BL: 8285 case DIF_OP_BLU: 8286 case DIF_OP_BLE: 8287 case DIF_OP_BLEU: 8288 case DIF_OP_RET: 8289 case DIF_OP_NOP: 8290 case DIF_OP_POPTS: 8291 case DIF_OP_FLUSHTS: 8292 case DIF_OP_SETX: 8293 case DIF_OP_SETS: 8294 case DIF_OP_LDGA: 8295 case DIF_OP_LDLS: 8296 case DIF_OP_STGS: 8297 case DIF_OP_STLS: 8298 case DIF_OP_PUSHTR: 8299 case DIF_OP_PUSHTV: 8300 break; 8301 8302 case DIF_OP_LDGS: 8303 if (v >= DIF_VAR_OTHER_UBASE) 8304 break; 8305 8306 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8307 break; 8308 8309 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8310 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8311 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8312 v == DIF_VAR_UID || v == DIF_VAR_GID) 8313 break; 8314 8315 err += efunc(pc, "illegal variable %u\n", v); 8316 break; 8317 8318 case DIF_OP_LDTA: 8319 case DIF_OP_LDTS: 8320 case DIF_OP_LDGAA: 8321 case DIF_OP_LDTAA: 8322 err += efunc(pc, "illegal dynamic variable load\n"); 8323 break; 8324 8325 case DIF_OP_STTS: 8326 case DIF_OP_STGAA: 8327 case DIF_OP_STTAA: 8328 err += efunc(pc, "illegal dynamic variable store\n"); 8329 break; 8330 8331 case DIF_OP_CALL: 8332 if (subr == DIF_SUBR_ALLOCA || 8333 subr == DIF_SUBR_BCOPY || 8334 subr == DIF_SUBR_COPYIN || 8335 subr == DIF_SUBR_COPYINTO || 8336 subr == DIF_SUBR_COPYINSTR || 8337 subr == DIF_SUBR_INDEX || 8338 subr == DIF_SUBR_INET_NTOA || 8339 subr == DIF_SUBR_INET_NTOA6 || 8340 subr == DIF_SUBR_INET_NTOP || 8341 subr == DIF_SUBR_LLTOSTR || 8342 subr == DIF_SUBR_RINDEX || 8343 subr == DIF_SUBR_STRCHR || 8344 subr == DIF_SUBR_STRJOIN || 8345 subr == DIF_SUBR_STRRCHR || 8346 subr == DIF_SUBR_STRSTR || 8347 subr == DIF_SUBR_HTONS || 8348 subr == DIF_SUBR_HTONL || 8349 subr == DIF_SUBR_HTONLL || 8350 subr == DIF_SUBR_NTOHS || 8351 subr == DIF_SUBR_NTOHL || 8352 subr == DIF_SUBR_NTOHLL) 8353 break; 8354 8355 err += efunc(pc, "invalid subr %u\n", subr); 8356 break; 8357 8358 default: 8359 err += efunc(pc, "invalid opcode %u\n", 8360 DIF_INSTR_OP(instr)); 8361 } 8362 } 8363 8364 return (err); 8365 } 8366 8367 /* 8368 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8369 * basis; 0 if not. 8370 */ 8371 static int 8372 dtrace_difo_cacheable(dtrace_difo_t *dp) 8373 { 8374 int i; 8375 8376 if (dp == NULL) 8377 return (0); 8378 8379 for (i = 0; i < dp->dtdo_varlen; i++) { 8380 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8381 8382 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8383 continue; 8384 8385 switch (v->dtdv_id) { 8386 case DIF_VAR_CURTHREAD: 8387 case DIF_VAR_PID: 8388 case DIF_VAR_TID: 8389 case DIF_VAR_EXECNAME: 8390 case DIF_VAR_ZONENAME: 8391 break; 8392 8393 default: 8394 return (0); 8395 } 8396 } 8397 8398 /* 8399 * This DIF object may be cacheable. Now we need to look for any 8400 * array loading instructions, any memory loading instructions, or 8401 * any stores to thread-local variables. 8402 */ 8403 for (i = 0; i < dp->dtdo_len; i++) { 8404 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8405 8406 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8407 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8408 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8409 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8410 return (0); 8411 } 8412 8413 return (1); 8414 } 8415 8416 static void 8417 dtrace_difo_hold(dtrace_difo_t *dp) 8418 { 8419 int i; 8420 8421 ASSERT(MUTEX_HELD(&dtrace_lock)); 8422 8423 dp->dtdo_refcnt++; 8424 ASSERT(dp->dtdo_refcnt != 0); 8425 8426 /* 8427 * We need to check this DIF object for references to the variable 8428 * DIF_VAR_VTIMESTAMP. 8429 */ 8430 for (i = 0; i < dp->dtdo_varlen; i++) { 8431 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8432 8433 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8434 continue; 8435 8436 if (dtrace_vtime_references++ == 0) 8437 dtrace_vtime_enable(); 8438 } 8439 } 8440 8441 /* 8442 * This routine calculates the dynamic variable chunksize for a given DIF 8443 * object. The calculation is not fool-proof, and can probably be tricked by 8444 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8445 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8446 * if a dynamic variable size exceeds the chunksize. 8447 */ 8448 static void 8449 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8450 { 8451 uint64_t sval; 8452 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8453 const dif_instr_t *text = dp->dtdo_buf; 8454 uint_t pc, srd = 0; 8455 uint_t ttop = 0; 8456 size_t size, ksize; 8457 uint_t id, i; 8458 8459 for (pc = 0; pc < dp->dtdo_len; pc++) { 8460 dif_instr_t instr = text[pc]; 8461 uint_t op = DIF_INSTR_OP(instr); 8462 uint_t rd = DIF_INSTR_RD(instr); 8463 uint_t r1 = DIF_INSTR_R1(instr); 8464 uint_t nkeys = 0; 8465 uchar_t scope; 8466 8467 dtrace_key_t *key = tupregs; 8468 8469 switch (op) { 8470 case DIF_OP_SETX: 8471 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8472 srd = rd; 8473 continue; 8474 8475 case DIF_OP_STTS: 8476 key = &tupregs[DIF_DTR_NREGS]; 8477 key[0].dttk_size = 0; 8478 key[1].dttk_size = 0; 8479 nkeys = 2; 8480 scope = DIFV_SCOPE_THREAD; 8481 break; 8482 8483 case DIF_OP_STGAA: 8484 case DIF_OP_STTAA: 8485 nkeys = ttop; 8486 8487 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 8488 key[nkeys++].dttk_size = 0; 8489 8490 key[nkeys++].dttk_size = 0; 8491 8492 if (op == DIF_OP_STTAA) { 8493 scope = DIFV_SCOPE_THREAD; 8494 } else { 8495 scope = DIFV_SCOPE_GLOBAL; 8496 } 8497 8498 break; 8499 8500 case DIF_OP_PUSHTR: 8501 if (ttop == DIF_DTR_NREGS) 8502 return; 8503 8504 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 8505 /* 8506 * If the register for the size of the "pushtr" 8507 * is %r0 (or the value is 0) and the type is 8508 * a string, we'll use the system-wide default 8509 * string size. 8510 */ 8511 tupregs[ttop++].dttk_size = 8512 dtrace_strsize_default; 8513 } else { 8514 if (srd == 0) 8515 return; 8516 8517 tupregs[ttop++].dttk_size = sval; 8518 } 8519 8520 break; 8521 8522 case DIF_OP_PUSHTV: 8523 if (ttop == DIF_DTR_NREGS) 8524 return; 8525 8526 tupregs[ttop++].dttk_size = 0; 8527 break; 8528 8529 case DIF_OP_FLUSHTS: 8530 ttop = 0; 8531 break; 8532 8533 case DIF_OP_POPTS: 8534 if (ttop != 0) 8535 ttop--; 8536 break; 8537 } 8538 8539 sval = 0; 8540 srd = 0; 8541 8542 if (nkeys == 0) 8543 continue; 8544 8545 /* 8546 * We have a dynamic variable allocation; calculate its size. 8547 */ 8548 for (ksize = 0, i = 0; i < nkeys; i++) 8549 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 8550 8551 size = sizeof (dtrace_dynvar_t); 8552 size += sizeof (dtrace_key_t) * (nkeys - 1); 8553 size += ksize; 8554 8555 /* 8556 * Now we need to determine the size of the stored data. 8557 */ 8558 id = DIF_INSTR_VAR(instr); 8559 8560 for (i = 0; i < dp->dtdo_varlen; i++) { 8561 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8562 8563 if (v->dtdv_id == id && v->dtdv_scope == scope) { 8564 size += v->dtdv_type.dtdt_size; 8565 break; 8566 } 8567 } 8568 8569 if (i == dp->dtdo_varlen) 8570 return; 8571 8572 /* 8573 * We have the size. If this is larger than the chunk size 8574 * for our dynamic variable state, reset the chunk size. 8575 */ 8576 size = P2ROUNDUP(size, sizeof (uint64_t)); 8577 8578 if (size > vstate->dtvs_dynvars.dtds_chunksize) 8579 vstate->dtvs_dynvars.dtds_chunksize = size; 8580 } 8581 } 8582 8583 static void 8584 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8585 { 8586 int i, oldsvars, osz, nsz, otlocals, ntlocals; 8587 uint_t id; 8588 8589 ASSERT(MUTEX_HELD(&dtrace_lock)); 8590 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 8591 8592 for (i = 0; i < dp->dtdo_varlen; i++) { 8593 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8594 dtrace_statvar_t *svar, ***svarp; 8595 size_t dsize = 0; 8596 uint8_t scope = v->dtdv_scope; 8597 int *np; 8598 8599 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8600 continue; 8601 8602 id -= DIF_VAR_OTHER_UBASE; 8603 8604 switch (scope) { 8605 case DIFV_SCOPE_THREAD: 8606 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 8607 dtrace_difv_t *tlocals; 8608 8609 if ((ntlocals = (otlocals << 1)) == 0) 8610 ntlocals = 1; 8611 8612 osz = otlocals * sizeof (dtrace_difv_t); 8613 nsz = ntlocals * sizeof (dtrace_difv_t); 8614 8615 tlocals = kmem_zalloc(nsz, KM_SLEEP); 8616 8617 if (osz != 0) { 8618 bcopy(vstate->dtvs_tlocals, 8619 tlocals, osz); 8620 kmem_free(vstate->dtvs_tlocals, osz); 8621 } 8622 8623 vstate->dtvs_tlocals = tlocals; 8624 vstate->dtvs_ntlocals = ntlocals; 8625 } 8626 8627 vstate->dtvs_tlocals[id] = *v; 8628 continue; 8629 8630 case DIFV_SCOPE_LOCAL: 8631 np = &vstate->dtvs_nlocals; 8632 svarp = &vstate->dtvs_locals; 8633 8634 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8635 dsize = NCPU * (v->dtdv_type.dtdt_size + 8636 sizeof (uint64_t)); 8637 else 8638 dsize = NCPU * sizeof (uint64_t); 8639 8640 break; 8641 8642 case DIFV_SCOPE_GLOBAL: 8643 np = &vstate->dtvs_nglobals; 8644 svarp = &vstate->dtvs_globals; 8645 8646 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8647 dsize = v->dtdv_type.dtdt_size + 8648 sizeof (uint64_t); 8649 8650 break; 8651 8652 default: 8653 ASSERT(0); 8654 } 8655 8656 while (id >= (oldsvars = *np)) { 8657 dtrace_statvar_t **statics; 8658 int newsvars, oldsize, newsize; 8659 8660 if ((newsvars = (oldsvars << 1)) == 0) 8661 newsvars = 1; 8662 8663 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 8664 newsize = newsvars * sizeof (dtrace_statvar_t *); 8665 8666 statics = kmem_zalloc(newsize, KM_SLEEP); 8667 8668 if (oldsize != 0) { 8669 bcopy(*svarp, statics, oldsize); 8670 kmem_free(*svarp, oldsize); 8671 } 8672 8673 *svarp = statics; 8674 *np = newsvars; 8675 } 8676 8677 if ((svar = (*svarp)[id]) == NULL) { 8678 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 8679 svar->dtsv_var = *v; 8680 8681 if ((svar->dtsv_size = dsize) != 0) { 8682 svar->dtsv_data = (uint64_t)(uintptr_t) 8683 kmem_zalloc(dsize, KM_SLEEP); 8684 } 8685 8686 (*svarp)[id] = svar; 8687 } 8688 8689 svar->dtsv_refcnt++; 8690 } 8691 8692 dtrace_difo_chunksize(dp, vstate); 8693 dtrace_difo_hold(dp); 8694 } 8695 8696 static dtrace_difo_t * 8697 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8698 { 8699 dtrace_difo_t *new; 8700 size_t sz; 8701 8702 ASSERT(dp->dtdo_buf != NULL); 8703 ASSERT(dp->dtdo_refcnt != 0); 8704 8705 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 8706 8707 ASSERT(dp->dtdo_buf != NULL); 8708 sz = dp->dtdo_len * sizeof (dif_instr_t); 8709 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 8710 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 8711 new->dtdo_len = dp->dtdo_len; 8712 8713 if (dp->dtdo_strtab != NULL) { 8714 ASSERT(dp->dtdo_strlen != 0); 8715 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 8716 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 8717 new->dtdo_strlen = dp->dtdo_strlen; 8718 } 8719 8720 if (dp->dtdo_inttab != NULL) { 8721 ASSERT(dp->dtdo_intlen != 0); 8722 sz = dp->dtdo_intlen * sizeof (uint64_t); 8723 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 8724 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 8725 new->dtdo_intlen = dp->dtdo_intlen; 8726 } 8727 8728 if (dp->dtdo_vartab != NULL) { 8729 ASSERT(dp->dtdo_varlen != 0); 8730 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 8731 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 8732 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 8733 new->dtdo_varlen = dp->dtdo_varlen; 8734 } 8735 8736 dtrace_difo_init(new, vstate); 8737 return (new); 8738 } 8739 8740 static void 8741 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8742 { 8743 int i; 8744 8745 ASSERT(dp->dtdo_refcnt == 0); 8746 8747 for (i = 0; i < dp->dtdo_varlen; i++) { 8748 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8749 dtrace_statvar_t *svar, **svarp; 8750 uint_t id; 8751 uint8_t scope = v->dtdv_scope; 8752 int *np; 8753 8754 switch (scope) { 8755 case DIFV_SCOPE_THREAD: 8756 continue; 8757 8758 case DIFV_SCOPE_LOCAL: 8759 np = &vstate->dtvs_nlocals; 8760 svarp = vstate->dtvs_locals; 8761 break; 8762 8763 case DIFV_SCOPE_GLOBAL: 8764 np = &vstate->dtvs_nglobals; 8765 svarp = vstate->dtvs_globals; 8766 break; 8767 8768 default: 8769 ASSERT(0); 8770 } 8771 8772 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8773 continue; 8774 8775 id -= DIF_VAR_OTHER_UBASE; 8776 ASSERT(id < *np); 8777 8778 svar = svarp[id]; 8779 ASSERT(svar != NULL); 8780 ASSERT(svar->dtsv_refcnt > 0); 8781 8782 if (--svar->dtsv_refcnt > 0) 8783 continue; 8784 8785 if (svar->dtsv_size != 0) { 8786 ASSERT(svar->dtsv_data != NULL); 8787 kmem_free((void *)(uintptr_t)svar->dtsv_data, 8788 svar->dtsv_size); 8789 } 8790 8791 kmem_free(svar, sizeof (dtrace_statvar_t)); 8792 svarp[id] = NULL; 8793 } 8794 8795 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 8796 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 8797 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 8798 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 8799 8800 kmem_free(dp, sizeof (dtrace_difo_t)); 8801 } 8802 8803 static void 8804 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8805 { 8806 int i; 8807 8808 ASSERT(MUTEX_HELD(&dtrace_lock)); 8809 ASSERT(dp->dtdo_refcnt != 0); 8810 8811 for (i = 0; i < dp->dtdo_varlen; i++) { 8812 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8813 8814 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8815 continue; 8816 8817 ASSERT(dtrace_vtime_references > 0); 8818 if (--dtrace_vtime_references == 0) 8819 dtrace_vtime_disable(); 8820 } 8821 8822 if (--dp->dtdo_refcnt == 0) 8823 dtrace_difo_destroy(dp, vstate); 8824 } 8825 8826 /* 8827 * DTrace Format Functions 8828 */ 8829 static uint16_t 8830 dtrace_format_add(dtrace_state_t *state, char *str) 8831 { 8832 char *fmt, **new; 8833 uint16_t ndx, len = strlen(str) + 1; 8834 8835 fmt = kmem_zalloc(len, KM_SLEEP); 8836 bcopy(str, fmt, len); 8837 8838 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 8839 if (state->dts_formats[ndx] == NULL) { 8840 state->dts_formats[ndx] = fmt; 8841 return (ndx + 1); 8842 } 8843 } 8844 8845 if (state->dts_nformats == USHRT_MAX) { 8846 /* 8847 * This is only likely if a denial-of-service attack is being 8848 * attempted. As such, it's okay to fail silently here. 8849 */ 8850 kmem_free(fmt, len); 8851 return (0); 8852 } 8853 8854 /* 8855 * For simplicity, we always resize the formats array to be exactly the 8856 * number of formats. 8857 */ 8858 ndx = state->dts_nformats++; 8859 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 8860 8861 if (state->dts_formats != NULL) { 8862 ASSERT(ndx != 0); 8863 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 8864 kmem_free(state->dts_formats, ndx * sizeof (char *)); 8865 } 8866 8867 state->dts_formats = new; 8868 state->dts_formats[ndx] = fmt; 8869 8870 return (ndx + 1); 8871 } 8872 8873 static void 8874 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 8875 { 8876 char *fmt; 8877 8878 ASSERT(state->dts_formats != NULL); 8879 ASSERT(format <= state->dts_nformats); 8880 ASSERT(state->dts_formats[format - 1] != NULL); 8881 8882 fmt = state->dts_formats[format - 1]; 8883 kmem_free(fmt, strlen(fmt) + 1); 8884 state->dts_formats[format - 1] = NULL; 8885 } 8886 8887 static void 8888 dtrace_format_destroy(dtrace_state_t *state) 8889 { 8890 int i; 8891 8892 if (state->dts_nformats == 0) { 8893 ASSERT(state->dts_formats == NULL); 8894 return; 8895 } 8896 8897 ASSERT(state->dts_formats != NULL); 8898 8899 for (i = 0; i < state->dts_nformats; i++) { 8900 char *fmt = state->dts_formats[i]; 8901 8902 if (fmt == NULL) 8903 continue; 8904 8905 kmem_free(fmt, strlen(fmt) + 1); 8906 } 8907 8908 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 8909 state->dts_nformats = 0; 8910 state->dts_formats = NULL; 8911 } 8912 8913 /* 8914 * DTrace Predicate Functions 8915 */ 8916 static dtrace_predicate_t * 8917 dtrace_predicate_create(dtrace_difo_t *dp) 8918 { 8919 dtrace_predicate_t *pred; 8920 8921 ASSERT(MUTEX_HELD(&dtrace_lock)); 8922 ASSERT(dp->dtdo_refcnt != 0); 8923 8924 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 8925 pred->dtp_difo = dp; 8926 pred->dtp_refcnt = 1; 8927 8928 if (!dtrace_difo_cacheable(dp)) 8929 return (pred); 8930 8931 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 8932 /* 8933 * This is only theoretically possible -- we have had 2^32 8934 * cacheable predicates on this machine. We cannot allow any 8935 * more predicates to become cacheable: as unlikely as it is, 8936 * there may be a thread caching a (now stale) predicate cache 8937 * ID. (N.B.: the temptation is being successfully resisted to 8938 * have this cmn_err() "Holy shit -- we executed this code!") 8939 */ 8940 return (pred); 8941 } 8942 8943 pred->dtp_cacheid = dtrace_predcache_id++; 8944 8945 return (pred); 8946 } 8947 8948 static void 8949 dtrace_predicate_hold(dtrace_predicate_t *pred) 8950 { 8951 ASSERT(MUTEX_HELD(&dtrace_lock)); 8952 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 8953 ASSERT(pred->dtp_refcnt > 0); 8954 8955 pred->dtp_refcnt++; 8956 } 8957 8958 static void 8959 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 8960 { 8961 dtrace_difo_t *dp = pred->dtp_difo; 8962 8963 ASSERT(MUTEX_HELD(&dtrace_lock)); 8964 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 8965 ASSERT(pred->dtp_refcnt > 0); 8966 8967 if (--pred->dtp_refcnt == 0) { 8968 dtrace_difo_release(pred->dtp_difo, vstate); 8969 kmem_free(pred, sizeof (dtrace_predicate_t)); 8970 } 8971 } 8972 8973 /* 8974 * DTrace Action Description Functions 8975 */ 8976 static dtrace_actdesc_t * 8977 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 8978 uint64_t uarg, uint64_t arg) 8979 { 8980 dtrace_actdesc_t *act; 8981 8982 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 8983 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 8984 8985 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 8986 act->dtad_kind = kind; 8987 act->dtad_ntuple = ntuple; 8988 act->dtad_uarg = uarg; 8989 act->dtad_arg = arg; 8990 act->dtad_refcnt = 1; 8991 8992 return (act); 8993 } 8994 8995 static void 8996 dtrace_actdesc_hold(dtrace_actdesc_t *act) 8997 { 8998 ASSERT(act->dtad_refcnt >= 1); 8999 act->dtad_refcnt++; 9000 } 9001 9002 static void 9003 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 9004 { 9005 dtrace_actkind_t kind = act->dtad_kind; 9006 dtrace_difo_t *dp; 9007 9008 ASSERT(act->dtad_refcnt >= 1); 9009 9010 if (--act->dtad_refcnt != 0) 9011 return; 9012 9013 if ((dp = act->dtad_difo) != NULL) 9014 dtrace_difo_release(dp, vstate); 9015 9016 if (DTRACEACT_ISPRINTFLIKE(kind)) { 9017 char *str = (char *)(uintptr_t)act->dtad_arg; 9018 9019 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 9020 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 9021 9022 if (str != NULL) 9023 kmem_free(str, strlen(str) + 1); 9024 } 9025 9026 kmem_free(act, sizeof (dtrace_actdesc_t)); 9027 } 9028 9029 /* 9030 * DTrace ECB Functions 9031 */ 9032 static dtrace_ecb_t * 9033 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 9034 { 9035 dtrace_ecb_t *ecb; 9036 dtrace_epid_t epid; 9037 9038 ASSERT(MUTEX_HELD(&dtrace_lock)); 9039 9040 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 9041 ecb->dte_predicate = NULL; 9042 ecb->dte_probe = probe; 9043 9044 /* 9045 * The default size is the size of the default action: recording 9046 * the epid. 9047 */ 9048 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9049 ecb->dte_alignment = sizeof (dtrace_epid_t); 9050 9051 epid = state->dts_epid++; 9052 9053 if (epid - 1 >= state->dts_necbs) { 9054 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 9055 int necbs = state->dts_necbs << 1; 9056 9057 ASSERT(epid == state->dts_necbs + 1); 9058 9059 if (necbs == 0) { 9060 ASSERT(oecbs == NULL); 9061 necbs = 1; 9062 } 9063 9064 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 9065 9066 if (oecbs != NULL) 9067 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 9068 9069 dtrace_membar_producer(); 9070 state->dts_ecbs = ecbs; 9071 9072 if (oecbs != NULL) { 9073 /* 9074 * If this state is active, we must dtrace_sync() 9075 * before we can free the old dts_ecbs array: we're 9076 * coming in hot, and there may be active ring 9077 * buffer processing (which indexes into the dts_ecbs 9078 * array) on another CPU. 9079 */ 9080 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 9081 dtrace_sync(); 9082 9083 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 9084 } 9085 9086 dtrace_membar_producer(); 9087 state->dts_necbs = necbs; 9088 } 9089 9090 ecb->dte_state = state; 9091 9092 ASSERT(state->dts_ecbs[epid - 1] == NULL); 9093 dtrace_membar_producer(); 9094 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 9095 9096 return (ecb); 9097 } 9098 9099 static void 9100 dtrace_ecb_enable(dtrace_ecb_t *ecb) 9101 { 9102 dtrace_probe_t *probe = ecb->dte_probe; 9103 9104 ASSERT(MUTEX_HELD(&cpu_lock)); 9105 ASSERT(MUTEX_HELD(&dtrace_lock)); 9106 ASSERT(ecb->dte_next == NULL); 9107 9108 if (probe == NULL) { 9109 /* 9110 * This is the NULL probe -- there's nothing to do. 9111 */ 9112 return; 9113 } 9114 9115 if (probe->dtpr_ecb == NULL) { 9116 dtrace_provider_t *prov = probe->dtpr_provider; 9117 9118 /* 9119 * We're the first ECB on this probe. 9120 */ 9121 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 9122 9123 if (ecb->dte_predicate != NULL) 9124 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 9125 9126 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 9127 probe->dtpr_id, probe->dtpr_arg); 9128 } else { 9129 /* 9130 * This probe is already active. Swing the last pointer to 9131 * point to the new ECB, and issue a dtrace_sync() to assure 9132 * that all CPUs have seen the change. 9133 */ 9134 ASSERT(probe->dtpr_ecb_last != NULL); 9135 probe->dtpr_ecb_last->dte_next = ecb; 9136 probe->dtpr_ecb_last = ecb; 9137 probe->dtpr_predcache = 0; 9138 9139 dtrace_sync(); 9140 } 9141 } 9142 9143 static void 9144 dtrace_ecb_resize(dtrace_ecb_t *ecb) 9145 { 9146 uint32_t maxalign = sizeof (dtrace_epid_t); 9147 uint32_t align = sizeof (uint8_t), offs, diff; 9148 dtrace_action_t *act; 9149 int wastuple = 0; 9150 uint32_t aggbase = UINT32_MAX; 9151 dtrace_state_t *state = ecb->dte_state; 9152 9153 /* 9154 * If we record anything, we always record the epid. (And we always 9155 * record it first.) 9156 */ 9157 offs = sizeof (dtrace_epid_t); 9158 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9159 9160 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9161 dtrace_recdesc_t *rec = &act->dta_rec; 9162 9163 if ((align = rec->dtrd_alignment) > maxalign) 9164 maxalign = align; 9165 9166 if (!wastuple && act->dta_intuple) { 9167 /* 9168 * This is the first record in a tuple. Align the 9169 * offset to be at offset 4 in an 8-byte aligned 9170 * block. 9171 */ 9172 diff = offs + sizeof (dtrace_aggid_t); 9173 9174 if (diff = (diff & (sizeof (uint64_t) - 1))) 9175 offs += sizeof (uint64_t) - diff; 9176 9177 aggbase = offs - sizeof (dtrace_aggid_t); 9178 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 9179 } 9180 9181 /*LINTED*/ 9182 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 9183 /* 9184 * The current offset is not properly aligned; align it. 9185 */ 9186 offs += align - diff; 9187 } 9188 9189 rec->dtrd_offset = offs; 9190 9191 if (offs + rec->dtrd_size > ecb->dte_needed) { 9192 ecb->dte_needed = offs + rec->dtrd_size; 9193 9194 if (ecb->dte_needed > state->dts_needed) 9195 state->dts_needed = ecb->dte_needed; 9196 } 9197 9198 if (DTRACEACT_ISAGG(act->dta_kind)) { 9199 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9200 dtrace_action_t *first = agg->dtag_first, *prev; 9201 9202 ASSERT(rec->dtrd_size != 0 && first != NULL); 9203 ASSERT(wastuple); 9204 ASSERT(aggbase != UINT32_MAX); 9205 9206 agg->dtag_base = aggbase; 9207 9208 while ((prev = first->dta_prev) != NULL && 9209 DTRACEACT_ISAGG(prev->dta_kind)) { 9210 agg = (dtrace_aggregation_t *)prev; 9211 first = agg->dtag_first; 9212 } 9213 9214 if (prev != NULL) { 9215 offs = prev->dta_rec.dtrd_offset + 9216 prev->dta_rec.dtrd_size; 9217 } else { 9218 offs = sizeof (dtrace_epid_t); 9219 } 9220 wastuple = 0; 9221 } else { 9222 if (!act->dta_intuple) 9223 ecb->dte_size = offs + rec->dtrd_size; 9224 9225 offs += rec->dtrd_size; 9226 } 9227 9228 wastuple = act->dta_intuple; 9229 } 9230 9231 if ((act = ecb->dte_action) != NULL && 9232 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9233 ecb->dte_size == sizeof (dtrace_epid_t)) { 9234 /* 9235 * If the size is still sizeof (dtrace_epid_t), then all 9236 * actions store no data; set the size to 0. 9237 */ 9238 ecb->dte_alignment = maxalign; 9239 ecb->dte_size = 0; 9240 9241 /* 9242 * If the needed space is still sizeof (dtrace_epid_t), then 9243 * all actions need no additional space; set the needed 9244 * size to 0. 9245 */ 9246 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 9247 ecb->dte_needed = 0; 9248 9249 return; 9250 } 9251 9252 /* 9253 * Set our alignment, and make sure that the dte_size and dte_needed 9254 * are aligned to the size of an EPID. 9255 */ 9256 ecb->dte_alignment = maxalign; 9257 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 9258 ~(sizeof (dtrace_epid_t) - 1); 9259 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 9260 ~(sizeof (dtrace_epid_t) - 1); 9261 ASSERT(ecb->dte_size <= ecb->dte_needed); 9262 } 9263 9264 static dtrace_action_t * 9265 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9266 { 9267 dtrace_aggregation_t *agg; 9268 size_t size = sizeof (uint64_t); 9269 int ntuple = desc->dtad_ntuple; 9270 dtrace_action_t *act; 9271 dtrace_recdesc_t *frec; 9272 dtrace_aggid_t aggid; 9273 dtrace_state_t *state = ecb->dte_state; 9274 9275 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9276 agg->dtag_ecb = ecb; 9277 9278 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9279 9280 switch (desc->dtad_kind) { 9281 case DTRACEAGG_MIN: 9282 agg->dtag_initial = INT64_MAX; 9283 agg->dtag_aggregate = dtrace_aggregate_min; 9284 break; 9285 9286 case DTRACEAGG_MAX: 9287 agg->dtag_initial = INT64_MIN; 9288 agg->dtag_aggregate = dtrace_aggregate_max; 9289 break; 9290 9291 case DTRACEAGG_COUNT: 9292 agg->dtag_aggregate = dtrace_aggregate_count; 9293 break; 9294 9295 case DTRACEAGG_QUANTIZE: 9296 agg->dtag_aggregate = dtrace_aggregate_quantize; 9297 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9298 sizeof (uint64_t); 9299 break; 9300 9301 case DTRACEAGG_LQUANTIZE: { 9302 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9303 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9304 9305 agg->dtag_initial = desc->dtad_arg; 9306 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9307 9308 if (step == 0 || levels == 0) 9309 goto err; 9310 9311 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9312 break; 9313 } 9314 9315 case DTRACEAGG_AVG: 9316 agg->dtag_aggregate = dtrace_aggregate_avg; 9317 size = sizeof (uint64_t) * 2; 9318 break; 9319 9320 case DTRACEAGG_STDDEV: 9321 agg->dtag_aggregate = dtrace_aggregate_stddev; 9322 size = sizeof (uint64_t) * 4; 9323 break; 9324 9325 case DTRACEAGG_SUM: 9326 agg->dtag_aggregate = dtrace_aggregate_sum; 9327 break; 9328 9329 default: 9330 goto err; 9331 } 9332 9333 agg->dtag_action.dta_rec.dtrd_size = size; 9334 9335 if (ntuple == 0) 9336 goto err; 9337 9338 /* 9339 * We must make sure that we have enough actions for the n-tuple. 9340 */ 9341 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9342 if (DTRACEACT_ISAGG(act->dta_kind)) 9343 break; 9344 9345 if (--ntuple == 0) { 9346 /* 9347 * This is the action with which our n-tuple begins. 9348 */ 9349 agg->dtag_first = act; 9350 goto success; 9351 } 9352 } 9353 9354 /* 9355 * This n-tuple is short by ntuple elements. Return failure. 9356 */ 9357 ASSERT(ntuple != 0); 9358 err: 9359 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9360 return (NULL); 9361 9362 success: 9363 /* 9364 * If the last action in the tuple has a size of zero, it's actually 9365 * an expression argument for the aggregating action. 9366 */ 9367 ASSERT(ecb->dte_action_last != NULL); 9368 act = ecb->dte_action_last; 9369 9370 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9371 ASSERT(act->dta_difo != NULL); 9372 9373 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9374 agg->dtag_hasarg = 1; 9375 } 9376 9377 /* 9378 * We need to allocate an id for this aggregation. 9379 */ 9380 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9381 VM_BESTFIT | VM_SLEEP); 9382 9383 if (aggid - 1 >= state->dts_naggregations) { 9384 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9385 dtrace_aggregation_t **aggs; 9386 int naggs = state->dts_naggregations << 1; 9387 int onaggs = state->dts_naggregations; 9388 9389 ASSERT(aggid == state->dts_naggregations + 1); 9390 9391 if (naggs == 0) { 9392 ASSERT(oaggs == NULL); 9393 naggs = 1; 9394 } 9395 9396 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9397 9398 if (oaggs != NULL) { 9399 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9400 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9401 } 9402 9403 state->dts_aggregations = aggs; 9404 state->dts_naggregations = naggs; 9405 } 9406 9407 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9408 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9409 9410 frec = &agg->dtag_first->dta_rec; 9411 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9412 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9413 9414 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9415 ASSERT(!act->dta_intuple); 9416 act->dta_intuple = 1; 9417 } 9418 9419 return (&agg->dtag_action); 9420 } 9421 9422 static void 9423 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9424 { 9425 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9426 dtrace_state_t *state = ecb->dte_state; 9427 dtrace_aggid_t aggid = agg->dtag_id; 9428 9429 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9430 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9431 9432 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9433 state->dts_aggregations[aggid - 1] = NULL; 9434 9435 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9436 } 9437 9438 static int 9439 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9440 { 9441 dtrace_action_t *action, *last; 9442 dtrace_difo_t *dp = desc->dtad_difo; 9443 uint32_t size = 0, align = sizeof (uint8_t), mask; 9444 uint16_t format = 0; 9445 dtrace_recdesc_t *rec; 9446 dtrace_state_t *state = ecb->dte_state; 9447 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9448 uint64_t arg = desc->dtad_arg; 9449 9450 ASSERT(MUTEX_HELD(&dtrace_lock)); 9451 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9452 9453 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9454 /* 9455 * If this is an aggregating action, there must be neither 9456 * a speculate nor a commit on the action chain. 9457 */ 9458 dtrace_action_t *act; 9459 9460 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9461 if (act->dta_kind == DTRACEACT_COMMIT) 9462 return (EINVAL); 9463 9464 if (act->dta_kind == DTRACEACT_SPECULATE) 9465 return (EINVAL); 9466 } 9467 9468 action = dtrace_ecb_aggregation_create(ecb, desc); 9469 9470 if (action == NULL) 9471 return (EINVAL); 9472 } else { 9473 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9474 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9475 dp != NULL && dp->dtdo_destructive)) { 9476 state->dts_destructive = 1; 9477 } 9478 9479 switch (desc->dtad_kind) { 9480 case DTRACEACT_PRINTF: 9481 case DTRACEACT_PRINTA: 9482 case DTRACEACT_SYSTEM: 9483 case DTRACEACT_FREOPEN: 9484 /* 9485 * We know that our arg is a string -- turn it into a 9486 * format. 9487 */ 9488 if (arg == NULL) { 9489 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); 9490 format = 0; 9491 } else { 9492 ASSERT(arg != NULL); 9493 ASSERT(arg > KERNELBASE); 9494 format = dtrace_format_add(state, 9495 (char *)(uintptr_t)arg); 9496 } 9497 9498 /*FALLTHROUGH*/ 9499 case DTRACEACT_LIBACT: 9500 case DTRACEACT_DIFEXPR: 9501 if (dp == NULL) 9502 return (EINVAL); 9503 9504 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 9505 break; 9506 9507 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 9508 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9509 return (EINVAL); 9510 9511 size = opt[DTRACEOPT_STRSIZE]; 9512 } 9513 9514 break; 9515 9516 case DTRACEACT_STACK: 9517 if ((nframes = arg) == 0) { 9518 nframes = opt[DTRACEOPT_STACKFRAMES]; 9519 ASSERT(nframes > 0); 9520 arg = nframes; 9521 } 9522 9523 size = nframes * sizeof (pc_t); 9524 break; 9525 9526 case DTRACEACT_JSTACK: 9527 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 9528 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 9529 9530 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 9531 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 9532 9533 arg = DTRACE_USTACK_ARG(nframes, strsize); 9534 9535 /*FALLTHROUGH*/ 9536 case DTRACEACT_USTACK: 9537 if (desc->dtad_kind != DTRACEACT_JSTACK && 9538 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 9539 strsize = DTRACE_USTACK_STRSIZE(arg); 9540 nframes = opt[DTRACEOPT_USTACKFRAMES]; 9541 ASSERT(nframes > 0); 9542 arg = DTRACE_USTACK_ARG(nframes, strsize); 9543 } 9544 9545 /* 9546 * Save a slot for the pid. 9547 */ 9548 size = (nframes + 1) * sizeof (uint64_t); 9549 size += DTRACE_USTACK_STRSIZE(arg); 9550 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 9551 9552 break; 9553 9554 case DTRACEACT_SYM: 9555 case DTRACEACT_MOD: 9556 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 9557 sizeof (uint64_t)) || 9558 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9559 return (EINVAL); 9560 break; 9561 9562 case DTRACEACT_USYM: 9563 case DTRACEACT_UMOD: 9564 case DTRACEACT_UADDR: 9565 if (dp == NULL || 9566 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 9567 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9568 return (EINVAL); 9569 9570 /* 9571 * We have a slot for the pid, plus a slot for the 9572 * argument. To keep things simple (aligned with 9573 * bitness-neutral sizing), we store each as a 64-bit 9574 * quantity. 9575 */ 9576 size = 2 * sizeof (uint64_t); 9577 break; 9578 9579 case DTRACEACT_STOP: 9580 case DTRACEACT_BREAKPOINT: 9581 case DTRACEACT_PANIC: 9582 break; 9583 9584 case DTRACEACT_CHILL: 9585 case DTRACEACT_DISCARD: 9586 case DTRACEACT_RAISE: 9587 if (dp == NULL) 9588 return (EINVAL); 9589 break; 9590 9591 case DTRACEACT_EXIT: 9592 if (dp == NULL || 9593 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 9594 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9595 return (EINVAL); 9596 break; 9597 9598 case DTRACEACT_SPECULATE: 9599 if (ecb->dte_size > sizeof (dtrace_epid_t)) 9600 return (EINVAL); 9601 9602 if (dp == NULL) 9603 return (EINVAL); 9604 9605 state->dts_speculates = 1; 9606 break; 9607 9608 case DTRACEACT_COMMIT: { 9609 dtrace_action_t *act = ecb->dte_action; 9610 9611 for (; act != NULL; act = act->dta_next) { 9612 if (act->dta_kind == DTRACEACT_COMMIT) 9613 return (EINVAL); 9614 } 9615 9616 if (dp == NULL) 9617 return (EINVAL); 9618 break; 9619 } 9620 9621 default: 9622 return (EINVAL); 9623 } 9624 9625 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 9626 /* 9627 * If this is a data-storing action or a speculate, 9628 * we must be sure that there isn't a commit on the 9629 * action chain. 9630 */ 9631 dtrace_action_t *act = ecb->dte_action; 9632 9633 for (; act != NULL; act = act->dta_next) { 9634 if (act->dta_kind == DTRACEACT_COMMIT) 9635 return (EINVAL); 9636 } 9637 } 9638 9639 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 9640 action->dta_rec.dtrd_size = size; 9641 } 9642 9643 action->dta_refcnt = 1; 9644 rec = &action->dta_rec; 9645 size = rec->dtrd_size; 9646 9647 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 9648 if (!(size & mask)) { 9649 align = mask + 1; 9650 break; 9651 } 9652 } 9653 9654 action->dta_kind = desc->dtad_kind; 9655 9656 if ((action->dta_difo = dp) != NULL) 9657 dtrace_difo_hold(dp); 9658 9659 rec->dtrd_action = action->dta_kind; 9660 rec->dtrd_arg = arg; 9661 rec->dtrd_uarg = desc->dtad_uarg; 9662 rec->dtrd_alignment = (uint16_t)align; 9663 rec->dtrd_format = format; 9664 9665 if ((last = ecb->dte_action_last) != NULL) { 9666 ASSERT(ecb->dte_action != NULL); 9667 action->dta_prev = last; 9668 last->dta_next = action; 9669 } else { 9670 ASSERT(ecb->dte_action == NULL); 9671 ecb->dte_action = action; 9672 } 9673 9674 ecb->dte_action_last = action; 9675 9676 return (0); 9677 } 9678 9679 static void 9680 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 9681 { 9682 dtrace_action_t *act = ecb->dte_action, *next; 9683 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 9684 dtrace_difo_t *dp; 9685 uint16_t format; 9686 9687 if (act != NULL && act->dta_refcnt > 1) { 9688 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 9689 act->dta_refcnt--; 9690 } else { 9691 for (; act != NULL; act = next) { 9692 next = act->dta_next; 9693 ASSERT(next != NULL || act == ecb->dte_action_last); 9694 ASSERT(act->dta_refcnt == 1); 9695 9696 if ((format = act->dta_rec.dtrd_format) != 0) 9697 dtrace_format_remove(ecb->dte_state, format); 9698 9699 if ((dp = act->dta_difo) != NULL) 9700 dtrace_difo_release(dp, vstate); 9701 9702 if (DTRACEACT_ISAGG(act->dta_kind)) { 9703 dtrace_ecb_aggregation_destroy(ecb, act); 9704 } else { 9705 kmem_free(act, sizeof (dtrace_action_t)); 9706 } 9707 } 9708 } 9709 9710 ecb->dte_action = NULL; 9711 ecb->dte_action_last = NULL; 9712 ecb->dte_size = sizeof (dtrace_epid_t); 9713 } 9714 9715 static void 9716 dtrace_ecb_disable(dtrace_ecb_t *ecb) 9717 { 9718 /* 9719 * We disable the ECB by removing it from its probe. 9720 */ 9721 dtrace_ecb_t *pecb, *prev = NULL; 9722 dtrace_probe_t *probe = ecb->dte_probe; 9723 9724 ASSERT(MUTEX_HELD(&dtrace_lock)); 9725 9726 if (probe == NULL) { 9727 /* 9728 * This is the NULL probe; there is nothing to disable. 9729 */ 9730 return; 9731 } 9732 9733 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 9734 if (pecb == ecb) 9735 break; 9736 prev = pecb; 9737 } 9738 9739 ASSERT(pecb != NULL); 9740 9741 if (prev == NULL) { 9742 probe->dtpr_ecb = ecb->dte_next; 9743 } else { 9744 prev->dte_next = ecb->dte_next; 9745 } 9746 9747 if (ecb == probe->dtpr_ecb_last) { 9748 ASSERT(ecb->dte_next == NULL); 9749 probe->dtpr_ecb_last = prev; 9750 } 9751 9752 /* 9753 * The ECB has been disconnected from the probe; now sync to assure 9754 * that all CPUs have seen the change before returning. 9755 */ 9756 dtrace_sync(); 9757 9758 if (probe->dtpr_ecb == NULL) { 9759 /* 9760 * That was the last ECB on the probe; clear the predicate 9761 * cache ID for the probe, disable it and sync one more time 9762 * to assure that we'll never hit it again. 9763 */ 9764 dtrace_provider_t *prov = probe->dtpr_provider; 9765 9766 ASSERT(ecb->dte_next == NULL); 9767 ASSERT(probe->dtpr_ecb_last == NULL); 9768 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 9769 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 9770 probe->dtpr_id, probe->dtpr_arg); 9771 dtrace_sync(); 9772 } else { 9773 /* 9774 * There is at least one ECB remaining on the probe. If there 9775 * is _exactly_ one, set the probe's predicate cache ID to be 9776 * the predicate cache ID of the remaining ECB. 9777 */ 9778 ASSERT(probe->dtpr_ecb_last != NULL); 9779 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 9780 9781 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 9782 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 9783 9784 ASSERT(probe->dtpr_ecb->dte_next == NULL); 9785 9786 if (p != NULL) 9787 probe->dtpr_predcache = p->dtp_cacheid; 9788 } 9789 9790 ecb->dte_next = NULL; 9791 } 9792 } 9793 9794 static void 9795 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 9796 { 9797 dtrace_state_t *state = ecb->dte_state; 9798 dtrace_vstate_t *vstate = &state->dts_vstate; 9799 dtrace_predicate_t *pred; 9800 dtrace_epid_t epid = ecb->dte_epid; 9801 9802 ASSERT(MUTEX_HELD(&dtrace_lock)); 9803 ASSERT(ecb->dte_next == NULL); 9804 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 9805 9806 if ((pred = ecb->dte_predicate) != NULL) 9807 dtrace_predicate_release(pred, vstate); 9808 9809 dtrace_ecb_action_remove(ecb); 9810 9811 ASSERT(state->dts_ecbs[epid - 1] == ecb); 9812 state->dts_ecbs[epid - 1] = NULL; 9813 9814 kmem_free(ecb, sizeof (dtrace_ecb_t)); 9815 } 9816 9817 static dtrace_ecb_t * 9818 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 9819 dtrace_enabling_t *enab) 9820 { 9821 dtrace_ecb_t *ecb; 9822 dtrace_predicate_t *pred; 9823 dtrace_actdesc_t *act; 9824 dtrace_provider_t *prov; 9825 dtrace_ecbdesc_t *desc = enab->dten_current; 9826 9827 ASSERT(MUTEX_HELD(&dtrace_lock)); 9828 ASSERT(state != NULL); 9829 9830 ecb = dtrace_ecb_add(state, probe); 9831 ecb->dte_uarg = desc->dted_uarg; 9832 9833 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 9834 dtrace_predicate_hold(pred); 9835 ecb->dte_predicate = pred; 9836 } 9837 9838 if (probe != NULL) { 9839 /* 9840 * If the provider shows more leg than the consumer is old 9841 * enough to see, we need to enable the appropriate implicit 9842 * predicate bits to prevent the ecb from activating at 9843 * revealing times. 9844 * 9845 * Providers specifying DTRACE_PRIV_USER at register time 9846 * are stating that they need the /proc-style privilege 9847 * model to be enforced, and this is what DTRACE_COND_OWNER 9848 * and DTRACE_COND_ZONEOWNER will then do at probe time. 9849 */ 9850 prov = probe->dtpr_provider; 9851 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 9852 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9853 ecb->dte_cond |= DTRACE_COND_OWNER; 9854 9855 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 9856 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9857 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 9858 9859 /* 9860 * If the provider shows us kernel innards and the user 9861 * is lacking sufficient privilege, enable the 9862 * DTRACE_COND_USERMODE implicit predicate. 9863 */ 9864 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 9865 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 9866 ecb->dte_cond |= DTRACE_COND_USERMODE; 9867 } 9868 9869 if (dtrace_ecb_create_cache != NULL) { 9870 /* 9871 * If we have a cached ecb, we'll use its action list instead 9872 * of creating our own (saving both time and space). 9873 */ 9874 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 9875 dtrace_action_t *act = cached->dte_action; 9876 9877 if (act != NULL) { 9878 ASSERT(act->dta_refcnt > 0); 9879 act->dta_refcnt++; 9880 ecb->dte_action = act; 9881 ecb->dte_action_last = cached->dte_action_last; 9882 ecb->dte_needed = cached->dte_needed; 9883 ecb->dte_size = cached->dte_size; 9884 ecb->dte_alignment = cached->dte_alignment; 9885 } 9886 9887 return (ecb); 9888 } 9889 9890 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 9891 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 9892 dtrace_ecb_destroy(ecb); 9893 return (NULL); 9894 } 9895 } 9896 9897 dtrace_ecb_resize(ecb); 9898 9899 return (dtrace_ecb_create_cache = ecb); 9900 } 9901 9902 static int 9903 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 9904 { 9905 dtrace_ecb_t *ecb; 9906 dtrace_enabling_t *enab = arg; 9907 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 9908 9909 ASSERT(state != NULL); 9910 9911 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 9912 /* 9913 * This probe was created in a generation for which this 9914 * enabling has previously created ECBs; we don't want to 9915 * enable it again, so just kick out. 9916 */ 9917 return (DTRACE_MATCH_NEXT); 9918 } 9919 9920 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 9921 return (DTRACE_MATCH_DONE); 9922 9923 dtrace_ecb_enable(ecb); 9924 return (DTRACE_MATCH_NEXT); 9925 } 9926 9927 static dtrace_ecb_t * 9928 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 9929 { 9930 dtrace_ecb_t *ecb; 9931 9932 ASSERT(MUTEX_HELD(&dtrace_lock)); 9933 9934 if (id == 0 || id > state->dts_necbs) 9935 return (NULL); 9936 9937 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 9938 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 9939 9940 return (state->dts_ecbs[id - 1]); 9941 } 9942 9943 static dtrace_aggregation_t * 9944 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 9945 { 9946 dtrace_aggregation_t *agg; 9947 9948 ASSERT(MUTEX_HELD(&dtrace_lock)); 9949 9950 if (id == 0 || id > state->dts_naggregations) 9951 return (NULL); 9952 9953 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 9954 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 9955 agg->dtag_id == id); 9956 9957 return (state->dts_aggregations[id - 1]); 9958 } 9959 9960 /* 9961 * DTrace Buffer Functions 9962 * 9963 * The following functions manipulate DTrace buffers. Most of these functions 9964 * are called in the context of establishing or processing consumer state; 9965 * exceptions are explicitly noted. 9966 */ 9967 9968 /* 9969 * Note: called from cross call context. This function switches the two 9970 * buffers on a given CPU. The atomicity of this operation is assured by 9971 * disabling interrupts while the actual switch takes place; the disabling of 9972 * interrupts serializes the execution with any execution of dtrace_probe() on 9973 * the same CPU. 9974 */ 9975 static void 9976 dtrace_buffer_switch(dtrace_buffer_t *buf) 9977 { 9978 caddr_t tomax = buf->dtb_tomax; 9979 caddr_t xamot = buf->dtb_xamot; 9980 dtrace_icookie_t cookie; 9981 9982 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 9983 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 9984 9985 cookie = dtrace_interrupt_disable(); 9986 buf->dtb_tomax = xamot; 9987 buf->dtb_xamot = tomax; 9988 buf->dtb_xamot_drops = buf->dtb_drops; 9989 buf->dtb_xamot_offset = buf->dtb_offset; 9990 buf->dtb_xamot_errors = buf->dtb_errors; 9991 buf->dtb_xamot_flags = buf->dtb_flags; 9992 buf->dtb_offset = 0; 9993 buf->dtb_drops = 0; 9994 buf->dtb_errors = 0; 9995 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 9996 dtrace_interrupt_enable(cookie); 9997 } 9998 9999 /* 10000 * Note: called from cross call context. This function activates a buffer 10001 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 10002 * is guaranteed by the disabling of interrupts. 10003 */ 10004 static void 10005 dtrace_buffer_activate(dtrace_state_t *state) 10006 { 10007 dtrace_buffer_t *buf; 10008 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 10009 10010 buf = &state->dts_buffer[CPU->cpu_id]; 10011 10012 if (buf->dtb_tomax != NULL) { 10013 /* 10014 * We might like to assert that the buffer is marked inactive, 10015 * but this isn't necessarily true: the buffer for the CPU 10016 * that processes the BEGIN probe has its buffer activated 10017 * manually. In this case, we take the (harmless) action 10018 * re-clearing the bit INACTIVE bit. 10019 */ 10020 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 10021 } 10022 10023 dtrace_interrupt_enable(cookie); 10024 } 10025 10026 static int 10027 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 10028 processorid_t cpu) 10029 { 10030 cpu_t *cp; 10031 dtrace_buffer_t *buf; 10032 10033 ASSERT(MUTEX_HELD(&cpu_lock)); 10034 ASSERT(MUTEX_HELD(&dtrace_lock)); 10035 10036 if (size > dtrace_nonroot_maxsize && 10037 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 10038 return (EFBIG); 10039 10040 cp = cpu_list; 10041 10042 do { 10043 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10044 continue; 10045 10046 buf = &bufs[cp->cpu_id]; 10047 10048 /* 10049 * If there is already a buffer allocated for this CPU, it 10050 * is only possible that this is a DR event. In this case, 10051 * the buffer size must match our specified size. 10052 */ 10053 if (buf->dtb_tomax != NULL) { 10054 ASSERT(buf->dtb_size == size); 10055 continue; 10056 } 10057 10058 ASSERT(buf->dtb_xamot == NULL); 10059 10060 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 10061 goto err; 10062 10063 buf->dtb_size = size; 10064 buf->dtb_flags = flags; 10065 buf->dtb_offset = 0; 10066 buf->dtb_drops = 0; 10067 10068 if (flags & DTRACEBUF_NOSWITCH) 10069 continue; 10070 10071 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 10072 goto err; 10073 } while ((cp = cp->cpu_next) != cpu_list); 10074 10075 return (0); 10076 10077 err: 10078 cp = cpu_list; 10079 10080 do { 10081 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10082 continue; 10083 10084 buf = &bufs[cp->cpu_id]; 10085 10086 if (buf->dtb_xamot != NULL) { 10087 ASSERT(buf->dtb_tomax != NULL); 10088 ASSERT(buf->dtb_size == size); 10089 kmem_free(buf->dtb_xamot, size); 10090 } 10091 10092 if (buf->dtb_tomax != NULL) { 10093 ASSERT(buf->dtb_size == size); 10094 kmem_free(buf->dtb_tomax, size); 10095 } 10096 10097 buf->dtb_tomax = NULL; 10098 buf->dtb_xamot = NULL; 10099 buf->dtb_size = 0; 10100 } while ((cp = cp->cpu_next) != cpu_list); 10101 10102 return (ENOMEM); 10103 } 10104 10105 /* 10106 * Note: called from probe context. This function just increments the drop 10107 * count on a buffer. It has been made a function to allow for the 10108 * possibility of understanding the source of mysterious drop counts. (A 10109 * problem for which one may be particularly disappointed that DTrace cannot 10110 * be used to understand DTrace.) 10111 */ 10112 static void 10113 dtrace_buffer_drop(dtrace_buffer_t *buf) 10114 { 10115 buf->dtb_drops++; 10116 } 10117 10118 /* 10119 * Note: called from probe context. This function is called to reserve space 10120 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 10121 * mstate. Returns the new offset in the buffer, or a negative value if an 10122 * error has occurred. 10123 */ 10124 static intptr_t 10125 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 10126 dtrace_state_t *state, dtrace_mstate_t *mstate) 10127 { 10128 intptr_t offs = buf->dtb_offset, soffs; 10129 intptr_t woffs; 10130 caddr_t tomax; 10131 size_t total; 10132 10133 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 10134 return (-1); 10135 10136 if ((tomax = buf->dtb_tomax) == NULL) { 10137 dtrace_buffer_drop(buf); 10138 return (-1); 10139 } 10140 10141 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 10142 while (offs & (align - 1)) { 10143 /* 10144 * Assert that our alignment is off by a number which 10145 * is itself sizeof (uint32_t) aligned. 10146 */ 10147 ASSERT(!((align - (offs & (align - 1))) & 10148 (sizeof (uint32_t) - 1))); 10149 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10150 offs += sizeof (uint32_t); 10151 } 10152 10153 if ((soffs = offs + needed) > buf->dtb_size) { 10154 dtrace_buffer_drop(buf); 10155 return (-1); 10156 } 10157 10158 if (mstate == NULL) 10159 return (offs); 10160 10161 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10162 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10163 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10164 10165 return (offs); 10166 } 10167 10168 if (buf->dtb_flags & DTRACEBUF_FILL) { 10169 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10170 (buf->dtb_flags & DTRACEBUF_FULL)) 10171 return (-1); 10172 goto out; 10173 } 10174 10175 total = needed + (offs & (align - 1)); 10176 10177 /* 10178 * For a ring buffer, life is quite a bit more complicated. Before 10179 * we can store any padding, we need to adjust our wrapping offset. 10180 * (If we've never before wrapped or we're not about to, no adjustment 10181 * is required.) 10182 */ 10183 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10184 offs + total > buf->dtb_size) { 10185 woffs = buf->dtb_xamot_offset; 10186 10187 if (offs + total > buf->dtb_size) { 10188 /* 10189 * We can't fit in the end of the buffer. First, a 10190 * sanity check that we can fit in the buffer at all. 10191 */ 10192 if (total > buf->dtb_size) { 10193 dtrace_buffer_drop(buf); 10194 return (-1); 10195 } 10196 10197 /* 10198 * We're going to be storing at the top of the buffer, 10199 * so now we need to deal with the wrapped offset. We 10200 * only reset our wrapped offset to 0 if it is 10201 * currently greater than the current offset. If it 10202 * is less than the current offset, it is because a 10203 * previous allocation induced a wrap -- but the 10204 * allocation didn't subsequently take the space due 10205 * to an error or false predicate evaluation. In this 10206 * case, we'll just leave the wrapped offset alone: if 10207 * the wrapped offset hasn't been advanced far enough 10208 * for this allocation, it will be adjusted in the 10209 * lower loop. 10210 */ 10211 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10212 if (woffs >= offs) 10213 woffs = 0; 10214 } else { 10215 woffs = 0; 10216 } 10217 10218 /* 10219 * Now we know that we're going to be storing to the 10220 * top of the buffer and that there is room for us 10221 * there. We need to clear the buffer from the current 10222 * offset to the end (there may be old gunk there). 10223 */ 10224 while (offs < buf->dtb_size) 10225 tomax[offs++] = 0; 10226 10227 /* 10228 * We need to set our offset to zero. And because we 10229 * are wrapping, we need to set the bit indicating as 10230 * much. We can also adjust our needed space back 10231 * down to the space required by the ECB -- we know 10232 * that the top of the buffer is aligned. 10233 */ 10234 offs = 0; 10235 total = needed; 10236 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10237 } else { 10238 /* 10239 * There is room for us in the buffer, so we simply 10240 * need to check the wrapped offset. 10241 */ 10242 if (woffs < offs) { 10243 /* 10244 * The wrapped offset is less than the offset. 10245 * This can happen if we allocated buffer space 10246 * that induced a wrap, but then we didn't 10247 * subsequently take the space due to an error 10248 * or false predicate evaluation. This is 10249 * okay; we know that _this_ allocation isn't 10250 * going to induce a wrap. We still can't 10251 * reset the wrapped offset to be zero, 10252 * however: the space may have been trashed in 10253 * the previous failed probe attempt. But at 10254 * least the wrapped offset doesn't need to 10255 * be adjusted at all... 10256 */ 10257 goto out; 10258 } 10259 } 10260 10261 while (offs + total > woffs) { 10262 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10263 size_t size; 10264 10265 if (epid == DTRACE_EPIDNONE) { 10266 size = sizeof (uint32_t); 10267 } else { 10268 ASSERT(epid <= state->dts_necbs); 10269 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10270 10271 size = state->dts_ecbs[epid - 1]->dte_size; 10272 } 10273 10274 ASSERT(woffs + size <= buf->dtb_size); 10275 ASSERT(size != 0); 10276 10277 if (woffs + size == buf->dtb_size) { 10278 /* 10279 * We've reached the end of the buffer; we want 10280 * to set the wrapped offset to 0 and break 10281 * out. However, if the offs is 0, then we're 10282 * in a strange edge-condition: the amount of 10283 * space that we want to reserve plus the size 10284 * of the record that we're overwriting is 10285 * greater than the size of the buffer. This 10286 * is problematic because if we reserve the 10287 * space but subsequently don't consume it (due 10288 * to a failed predicate or error) the wrapped 10289 * offset will be 0 -- yet the EPID at offset 0 10290 * will not be committed. This situation is 10291 * relatively easy to deal with: if we're in 10292 * this case, the buffer is indistinguishable 10293 * from one that hasn't wrapped; we need only 10294 * finish the job by clearing the wrapped bit, 10295 * explicitly setting the offset to be 0, and 10296 * zero'ing out the old data in the buffer. 10297 */ 10298 if (offs == 0) { 10299 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10300 buf->dtb_offset = 0; 10301 woffs = total; 10302 10303 while (woffs < buf->dtb_size) 10304 tomax[woffs++] = 0; 10305 } 10306 10307 woffs = 0; 10308 break; 10309 } 10310 10311 woffs += size; 10312 } 10313 10314 /* 10315 * We have a wrapped offset. It may be that the wrapped offset 10316 * has become zero -- that's okay. 10317 */ 10318 buf->dtb_xamot_offset = woffs; 10319 } 10320 10321 out: 10322 /* 10323 * Now we can plow the buffer with any necessary padding. 10324 */ 10325 while (offs & (align - 1)) { 10326 /* 10327 * Assert that our alignment is off by a number which 10328 * is itself sizeof (uint32_t) aligned. 10329 */ 10330 ASSERT(!((align - (offs & (align - 1))) & 10331 (sizeof (uint32_t) - 1))); 10332 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10333 offs += sizeof (uint32_t); 10334 } 10335 10336 if (buf->dtb_flags & DTRACEBUF_FILL) { 10337 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10338 buf->dtb_flags |= DTRACEBUF_FULL; 10339 return (-1); 10340 } 10341 } 10342 10343 if (mstate == NULL) 10344 return (offs); 10345 10346 /* 10347 * For ring buffers and fill buffers, the scratch space is always 10348 * the inactive buffer. 10349 */ 10350 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10351 mstate->dtms_scratch_size = buf->dtb_size; 10352 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10353 10354 return (offs); 10355 } 10356 10357 static void 10358 dtrace_buffer_polish(dtrace_buffer_t *buf) 10359 { 10360 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10361 ASSERT(MUTEX_HELD(&dtrace_lock)); 10362 10363 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10364 return; 10365 10366 /* 10367 * We need to polish the ring buffer. There are three cases: 10368 * 10369 * - The first (and presumably most common) is that there is no gap 10370 * between the buffer offset and the wrapped offset. In this case, 10371 * there is nothing in the buffer that isn't valid data; we can 10372 * mark the buffer as polished and return. 10373 * 10374 * - The second (less common than the first but still more common 10375 * than the third) is that there is a gap between the buffer offset 10376 * and the wrapped offset, and the wrapped offset is larger than the 10377 * buffer offset. This can happen because of an alignment issue, or 10378 * can happen because of a call to dtrace_buffer_reserve() that 10379 * didn't subsequently consume the buffer space. In this case, 10380 * we need to zero the data from the buffer offset to the wrapped 10381 * offset. 10382 * 10383 * - The third (and least common) is that there is a gap between the 10384 * buffer offset and the wrapped offset, but the wrapped offset is 10385 * _less_ than the buffer offset. This can only happen because a 10386 * call to dtrace_buffer_reserve() induced a wrap, but the space 10387 * was not subsequently consumed. In this case, we need to zero the 10388 * space from the offset to the end of the buffer _and_ from the 10389 * top of the buffer to the wrapped offset. 10390 */ 10391 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10392 bzero(buf->dtb_tomax + buf->dtb_offset, 10393 buf->dtb_xamot_offset - buf->dtb_offset); 10394 } 10395 10396 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10397 bzero(buf->dtb_tomax + buf->dtb_offset, 10398 buf->dtb_size - buf->dtb_offset); 10399 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10400 } 10401 } 10402 10403 static void 10404 dtrace_buffer_free(dtrace_buffer_t *bufs) 10405 { 10406 int i; 10407 10408 for (i = 0; i < NCPU; i++) { 10409 dtrace_buffer_t *buf = &bufs[i]; 10410 10411 if (buf->dtb_tomax == NULL) { 10412 ASSERT(buf->dtb_xamot == NULL); 10413 ASSERT(buf->dtb_size == 0); 10414 continue; 10415 } 10416 10417 if (buf->dtb_xamot != NULL) { 10418 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10419 kmem_free(buf->dtb_xamot, buf->dtb_size); 10420 } 10421 10422 kmem_free(buf->dtb_tomax, buf->dtb_size); 10423 buf->dtb_size = 0; 10424 buf->dtb_tomax = NULL; 10425 buf->dtb_xamot = NULL; 10426 } 10427 } 10428 10429 /* 10430 * DTrace Enabling Functions 10431 */ 10432 static dtrace_enabling_t * 10433 dtrace_enabling_create(dtrace_vstate_t *vstate) 10434 { 10435 dtrace_enabling_t *enab; 10436 10437 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 10438 enab->dten_vstate = vstate; 10439 10440 return (enab); 10441 } 10442 10443 static void 10444 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 10445 { 10446 dtrace_ecbdesc_t **ndesc; 10447 size_t osize, nsize; 10448 10449 /* 10450 * We can't add to enablings after we've enabled them, or after we've 10451 * retained them. 10452 */ 10453 ASSERT(enab->dten_probegen == 0); 10454 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10455 10456 if (enab->dten_ndesc < enab->dten_maxdesc) { 10457 enab->dten_desc[enab->dten_ndesc++] = ecb; 10458 return; 10459 } 10460 10461 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10462 10463 if (enab->dten_maxdesc == 0) { 10464 enab->dten_maxdesc = 1; 10465 } else { 10466 enab->dten_maxdesc <<= 1; 10467 } 10468 10469 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 10470 10471 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10472 ndesc = kmem_zalloc(nsize, KM_SLEEP); 10473 bcopy(enab->dten_desc, ndesc, osize); 10474 kmem_free(enab->dten_desc, osize); 10475 10476 enab->dten_desc = ndesc; 10477 enab->dten_desc[enab->dten_ndesc++] = ecb; 10478 } 10479 10480 static void 10481 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 10482 dtrace_probedesc_t *pd) 10483 { 10484 dtrace_ecbdesc_t *new; 10485 dtrace_predicate_t *pred; 10486 dtrace_actdesc_t *act; 10487 10488 /* 10489 * We're going to create a new ECB description that matches the 10490 * specified ECB in every way, but has the specified probe description. 10491 */ 10492 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10493 10494 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 10495 dtrace_predicate_hold(pred); 10496 10497 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 10498 dtrace_actdesc_hold(act); 10499 10500 new->dted_action = ecb->dted_action; 10501 new->dted_pred = ecb->dted_pred; 10502 new->dted_probe = *pd; 10503 new->dted_uarg = ecb->dted_uarg; 10504 10505 dtrace_enabling_add(enab, new); 10506 } 10507 10508 static void 10509 dtrace_enabling_dump(dtrace_enabling_t *enab) 10510 { 10511 int i; 10512 10513 for (i = 0; i < enab->dten_ndesc; i++) { 10514 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 10515 10516 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 10517 desc->dtpd_provider, desc->dtpd_mod, 10518 desc->dtpd_func, desc->dtpd_name); 10519 } 10520 } 10521 10522 static void 10523 dtrace_enabling_destroy(dtrace_enabling_t *enab) 10524 { 10525 int i; 10526 dtrace_ecbdesc_t *ep; 10527 dtrace_vstate_t *vstate = enab->dten_vstate; 10528 10529 ASSERT(MUTEX_HELD(&dtrace_lock)); 10530 10531 for (i = 0; i < enab->dten_ndesc; i++) { 10532 dtrace_actdesc_t *act, *next; 10533 dtrace_predicate_t *pred; 10534 10535 ep = enab->dten_desc[i]; 10536 10537 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 10538 dtrace_predicate_release(pred, vstate); 10539 10540 for (act = ep->dted_action; act != NULL; act = next) { 10541 next = act->dtad_next; 10542 dtrace_actdesc_release(act, vstate); 10543 } 10544 10545 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10546 } 10547 10548 kmem_free(enab->dten_desc, 10549 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 10550 10551 /* 10552 * If this was a retained enabling, decrement the dts_nretained count 10553 * and take it off of the dtrace_retained list. 10554 */ 10555 if (enab->dten_prev != NULL || enab->dten_next != NULL || 10556 dtrace_retained == enab) { 10557 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10558 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 10559 enab->dten_vstate->dtvs_state->dts_nretained--; 10560 } 10561 10562 if (enab->dten_prev == NULL) { 10563 if (dtrace_retained == enab) { 10564 dtrace_retained = enab->dten_next; 10565 10566 if (dtrace_retained != NULL) 10567 dtrace_retained->dten_prev = NULL; 10568 } 10569 } else { 10570 ASSERT(enab != dtrace_retained); 10571 ASSERT(dtrace_retained != NULL); 10572 enab->dten_prev->dten_next = enab->dten_next; 10573 } 10574 10575 if (enab->dten_next != NULL) { 10576 ASSERT(dtrace_retained != NULL); 10577 enab->dten_next->dten_prev = enab->dten_prev; 10578 } 10579 10580 kmem_free(enab, sizeof (dtrace_enabling_t)); 10581 } 10582 10583 static int 10584 dtrace_enabling_retain(dtrace_enabling_t *enab) 10585 { 10586 dtrace_state_t *state; 10587 10588 ASSERT(MUTEX_HELD(&dtrace_lock)); 10589 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10590 ASSERT(enab->dten_vstate != NULL); 10591 10592 state = enab->dten_vstate->dtvs_state; 10593 ASSERT(state != NULL); 10594 10595 /* 10596 * We only allow each state to retain dtrace_retain_max enablings. 10597 */ 10598 if (state->dts_nretained >= dtrace_retain_max) 10599 return (ENOSPC); 10600 10601 state->dts_nretained++; 10602 10603 if (dtrace_retained == NULL) { 10604 dtrace_retained = enab; 10605 return (0); 10606 } 10607 10608 enab->dten_next = dtrace_retained; 10609 dtrace_retained->dten_prev = enab; 10610 dtrace_retained = enab; 10611 10612 return (0); 10613 } 10614 10615 static int 10616 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 10617 dtrace_probedesc_t *create) 10618 { 10619 dtrace_enabling_t *new, *enab; 10620 int found = 0, err = ENOENT; 10621 10622 ASSERT(MUTEX_HELD(&dtrace_lock)); 10623 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 10624 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 10625 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 10626 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 10627 10628 new = dtrace_enabling_create(&state->dts_vstate); 10629 10630 /* 10631 * Iterate over all retained enablings, looking for enablings that 10632 * match the specified state. 10633 */ 10634 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10635 int i; 10636 10637 /* 10638 * dtvs_state can only be NULL for helper enablings -- and 10639 * helper enablings can't be retained. 10640 */ 10641 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10642 10643 if (enab->dten_vstate->dtvs_state != state) 10644 continue; 10645 10646 /* 10647 * Now iterate over each probe description; we're looking for 10648 * an exact match to the specified probe description. 10649 */ 10650 for (i = 0; i < enab->dten_ndesc; i++) { 10651 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10652 dtrace_probedesc_t *pd = &ep->dted_probe; 10653 10654 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 10655 continue; 10656 10657 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 10658 continue; 10659 10660 if (strcmp(pd->dtpd_func, match->dtpd_func)) 10661 continue; 10662 10663 if (strcmp(pd->dtpd_name, match->dtpd_name)) 10664 continue; 10665 10666 /* 10667 * We have a winning probe! Add it to our growing 10668 * enabling. 10669 */ 10670 found = 1; 10671 dtrace_enabling_addlike(new, ep, create); 10672 } 10673 } 10674 10675 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 10676 dtrace_enabling_destroy(new); 10677 return (err); 10678 } 10679 10680 return (0); 10681 } 10682 10683 static void 10684 dtrace_enabling_retract(dtrace_state_t *state) 10685 { 10686 dtrace_enabling_t *enab, *next; 10687 10688 ASSERT(MUTEX_HELD(&dtrace_lock)); 10689 10690 /* 10691 * Iterate over all retained enablings, destroy the enablings retained 10692 * for the specified state. 10693 */ 10694 for (enab = dtrace_retained; enab != NULL; enab = next) { 10695 next = enab->dten_next; 10696 10697 /* 10698 * dtvs_state can only be NULL for helper enablings -- and 10699 * helper enablings can't be retained. 10700 */ 10701 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10702 10703 if (enab->dten_vstate->dtvs_state == state) { 10704 ASSERT(state->dts_nretained > 0); 10705 dtrace_enabling_destroy(enab); 10706 } 10707 } 10708 10709 ASSERT(state->dts_nretained == 0); 10710 } 10711 10712 static int 10713 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 10714 { 10715 int i = 0; 10716 int matched = 0; 10717 10718 ASSERT(MUTEX_HELD(&cpu_lock)); 10719 ASSERT(MUTEX_HELD(&dtrace_lock)); 10720 10721 for (i = 0; i < enab->dten_ndesc; i++) { 10722 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10723 10724 enab->dten_current = ep; 10725 enab->dten_error = 0; 10726 10727 matched += dtrace_probe_enable(&ep->dted_probe, enab); 10728 10729 if (enab->dten_error != 0) { 10730 /* 10731 * If we get an error half-way through enabling the 10732 * probes, we kick out -- perhaps with some number of 10733 * them enabled. Leaving enabled probes enabled may 10734 * be slightly confusing for user-level, but we expect 10735 * that no one will attempt to actually drive on in 10736 * the face of such errors. If this is an anonymous 10737 * enabling (indicated with a NULL nmatched pointer), 10738 * we cmn_err() a message. We aren't expecting to 10739 * get such an error -- such as it can exist at all, 10740 * it would be a result of corrupted DOF in the driver 10741 * properties. 10742 */ 10743 if (nmatched == NULL) { 10744 cmn_err(CE_WARN, "dtrace_enabling_match() " 10745 "error on %p: %d", (void *)ep, 10746 enab->dten_error); 10747 } 10748 10749 return (enab->dten_error); 10750 } 10751 } 10752 10753 enab->dten_probegen = dtrace_probegen; 10754 if (nmatched != NULL) 10755 *nmatched = matched; 10756 10757 return (0); 10758 } 10759 10760 static void 10761 dtrace_enabling_matchall(void) 10762 { 10763 dtrace_enabling_t *enab; 10764 10765 mutex_enter(&cpu_lock); 10766 mutex_enter(&dtrace_lock); 10767 10768 /* 10769 * Iterate over all retained enablings to see if any probes match 10770 * against them. We only perform this operation on enablings for which 10771 * we have sufficient permissions by virtue of being in the global zone 10772 * or in the same zone as the DTrace client. Because we can be called 10773 * after dtrace_detach() has been called, we cannot assert that there 10774 * are retained enablings. We can safely load from dtrace_retained, 10775 * however: the taskq_destroy() at the end of dtrace_detach() will 10776 * block pending our completion. 10777 */ 10778 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10779 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 10780 10781 if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr)) 10782 (void) dtrace_enabling_match(enab, NULL); 10783 } 10784 10785 mutex_exit(&dtrace_lock); 10786 mutex_exit(&cpu_lock); 10787 } 10788 10789 /* 10790 * If an enabling is to be enabled without having matched probes (that is, if 10791 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 10792 * enabling must be _primed_ by creating an ECB for every ECB description. 10793 * This must be done to assure that we know the number of speculations, the 10794 * number of aggregations, the minimum buffer size needed, etc. before we 10795 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 10796 * enabling any probes, we create ECBs for every ECB decription, but with a 10797 * NULL probe -- which is exactly what this function does. 10798 */ 10799 static void 10800 dtrace_enabling_prime(dtrace_state_t *state) 10801 { 10802 dtrace_enabling_t *enab; 10803 int i; 10804 10805 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10806 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10807 10808 if (enab->dten_vstate->dtvs_state != state) 10809 continue; 10810 10811 /* 10812 * We don't want to prime an enabling more than once, lest 10813 * we allow a malicious user to induce resource exhaustion. 10814 * (The ECBs that result from priming an enabling aren't 10815 * leaked -- but they also aren't deallocated until the 10816 * consumer state is destroyed.) 10817 */ 10818 if (enab->dten_primed) 10819 continue; 10820 10821 for (i = 0; i < enab->dten_ndesc; i++) { 10822 enab->dten_current = enab->dten_desc[i]; 10823 (void) dtrace_probe_enable(NULL, enab); 10824 } 10825 10826 enab->dten_primed = 1; 10827 } 10828 } 10829 10830 /* 10831 * Called to indicate that probes should be provided due to retained 10832 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 10833 * must take an initial lap through the enabling calling the dtps_provide() 10834 * entry point explicitly to allow for autocreated probes. 10835 */ 10836 static void 10837 dtrace_enabling_provide(dtrace_provider_t *prv) 10838 { 10839 int i, all = 0; 10840 dtrace_probedesc_t desc; 10841 10842 ASSERT(MUTEX_HELD(&dtrace_lock)); 10843 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 10844 10845 if (prv == NULL) { 10846 all = 1; 10847 prv = dtrace_provider; 10848 } 10849 10850 do { 10851 dtrace_enabling_t *enab = dtrace_retained; 10852 void *parg = prv->dtpv_arg; 10853 10854 for (; enab != NULL; enab = enab->dten_next) { 10855 for (i = 0; i < enab->dten_ndesc; i++) { 10856 desc = enab->dten_desc[i]->dted_probe; 10857 mutex_exit(&dtrace_lock); 10858 prv->dtpv_pops.dtps_provide(parg, &desc); 10859 mutex_enter(&dtrace_lock); 10860 } 10861 } 10862 } while (all && (prv = prv->dtpv_next) != NULL); 10863 10864 mutex_exit(&dtrace_lock); 10865 dtrace_probe_provide(NULL, all ? NULL : prv); 10866 mutex_enter(&dtrace_lock); 10867 } 10868 10869 /* 10870 * DTrace DOF Functions 10871 */ 10872 /*ARGSUSED*/ 10873 static void 10874 dtrace_dof_error(dof_hdr_t *dof, const char *str) 10875 { 10876 if (dtrace_err_verbose) 10877 cmn_err(CE_WARN, "failed to process DOF: %s", str); 10878 10879 #ifdef DTRACE_ERRDEBUG 10880 dtrace_errdebug(str); 10881 #endif 10882 } 10883 10884 /* 10885 * Create DOF out of a currently enabled state. Right now, we only create 10886 * DOF containing the run-time options -- but this could be expanded to create 10887 * complete DOF representing the enabled state. 10888 */ 10889 static dof_hdr_t * 10890 dtrace_dof_create(dtrace_state_t *state) 10891 { 10892 dof_hdr_t *dof; 10893 dof_sec_t *sec; 10894 dof_optdesc_t *opt; 10895 int i, len = sizeof (dof_hdr_t) + 10896 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 10897 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10898 10899 ASSERT(MUTEX_HELD(&dtrace_lock)); 10900 10901 dof = kmem_zalloc(len, KM_SLEEP); 10902 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 10903 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 10904 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 10905 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 10906 10907 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 10908 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 10909 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 10910 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 10911 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 10912 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 10913 10914 dof->dofh_flags = 0; 10915 dof->dofh_hdrsize = sizeof (dof_hdr_t); 10916 dof->dofh_secsize = sizeof (dof_sec_t); 10917 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 10918 dof->dofh_secoff = sizeof (dof_hdr_t); 10919 dof->dofh_loadsz = len; 10920 dof->dofh_filesz = len; 10921 dof->dofh_pad = 0; 10922 10923 /* 10924 * Fill in the option section header... 10925 */ 10926 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 10927 sec->dofs_type = DOF_SECT_OPTDESC; 10928 sec->dofs_align = sizeof (uint64_t); 10929 sec->dofs_flags = DOF_SECF_LOAD; 10930 sec->dofs_entsize = sizeof (dof_optdesc_t); 10931 10932 opt = (dof_optdesc_t *)((uintptr_t)sec + 10933 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 10934 10935 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 10936 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10937 10938 for (i = 0; i < DTRACEOPT_MAX; i++) { 10939 opt[i].dofo_option = i; 10940 opt[i].dofo_strtab = DOF_SECIDX_NONE; 10941 opt[i].dofo_value = state->dts_options[i]; 10942 } 10943 10944 return (dof); 10945 } 10946 10947 static dof_hdr_t * 10948 dtrace_dof_copyin(uintptr_t uarg, int *errp) 10949 { 10950 dof_hdr_t hdr, *dof; 10951 10952 ASSERT(!MUTEX_HELD(&dtrace_lock)); 10953 10954 /* 10955 * First, we're going to copyin() the sizeof (dof_hdr_t). 10956 */ 10957 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 10958 dtrace_dof_error(NULL, "failed to copyin DOF header"); 10959 *errp = EFAULT; 10960 return (NULL); 10961 } 10962 10963 /* 10964 * Now we'll allocate the entire DOF and copy it in -- provided 10965 * that the length isn't outrageous. 10966 */ 10967 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 10968 dtrace_dof_error(&hdr, "load size exceeds maximum"); 10969 *errp = E2BIG; 10970 return (NULL); 10971 } 10972 10973 if (hdr.dofh_loadsz < sizeof (hdr)) { 10974 dtrace_dof_error(&hdr, "invalid load size"); 10975 *errp = EINVAL; 10976 return (NULL); 10977 } 10978 10979 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 10980 10981 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) { 10982 kmem_free(dof, hdr.dofh_loadsz); 10983 *errp = EFAULT; 10984 return (NULL); 10985 } 10986 10987 return (dof); 10988 } 10989 10990 static dof_hdr_t * 10991 dtrace_dof_property(const char *name) 10992 { 10993 uchar_t *buf; 10994 uint64_t loadsz; 10995 unsigned int len, i; 10996 dof_hdr_t *dof; 10997 10998 /* 10999 * Unfortunately, array of values in .conf files are always (and 11000 * only) interpreted to be integer arrays. We must read our DOF 11001 * as an integer array, and then squeeze it into a byte array. 11002 */ 11003 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 11004 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 11005 return (NULL); 11006 11007 for (i = 0; i < len; i++) 11008 buf[i] = (uchar_t)(((int *)buf)[i]); 11009 11010 if (len < sizeof (dof_hdr_t)) { 11011 ddi_prop_free(buf); 11012 dtrace_dof_error(NULL, "truncated header"); 11013 return (NULL); 11014 } 11015 11016 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 11017 ddi_prop_free(buf); 11018 dtrace_dof_error(NULL, "truncated DOF"); 11019 return (NULL); 11020 } 11021 11022 if (loadsz >= dtrace_dof_maxsize) { 11023 ddi_prop_free(buf); 11024 dtrace_dof_error(NULL, "oversized DOF"); 11025 return (NULL); 11026 } 11027 11028 dof = kmem_alloc(loadsz, KM_SLEEP); 11029 bcopy(buf, dof, loadsz); 11030 ddi_prop_free(buf); 11031 11032 return (dof); 11033 } 11034 11035 static void 11036 dtrace_dof_destroy(dof_hdr_t *dof) 11037 { 11038 kmem_free(dof, dof->dofh_loadsz); 11039 } 11040 11041 /* 11042 * Return the dof_sec_t pointer corresponding to a given section index. If the 11043 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 11044 * a type other than DOF_SECT_NONE is specified, the header is checked against 11045 * this type and NULL is returned if the types do not match. 11046 */ 11047 static dof_sec_t * 11048 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 11049 { 11050 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 11051 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 11052 11053 if (i >= dof->dofh_secnum) { 11054 dtrace_dof_error(dof, "referenced section index is invalid"); 11055 return (NULL); 11056 } 11057 11058 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 11059 dtrace_dof_error(dof, "referenced section is not loadable"); 11060 return (NULL); 11061 } 11062 11063 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 11064 dtrace_dof_error(dof, "referenced section is the wrong type"); 11065 return (NULL); 11066 } 11067 11068 return (sec); 11069 } 11070 11071 static dtrace_probedesc_t * 11072 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 11073 { 11074 dof_probedesc_t *probe; 11075 dof_sec_t *strtab; 11076 uintptr_t daddr = (uintptr_t)dof; 11077 uintptr_t str; 11078 size_t size; 11079 11080 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 11081 dtrace_dof_error(dof, "invalid probe section"); 11082 return (NULL); 11083 } 11084 11085 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11086 dtrace_dof_error(dof, "bad alignment in probe description"); 11087 return (NULL); 11088 } 11089 11090 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 11091 dtrace_dof_error(dof, "truncated probe description"); 11092 return (NULL); 11093 } 11094 11095 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 11096 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 11097 11098 if (strtab == NULL) 11099 return (NULL); 11100 11101 str = daddr + strtab->dofs_offset; 11102 size = strtab->dofs_size; 11103 11104 if (probe->dofp_provider >= strtab->dofs_size) { 11105 dtrace_dof_error(dof, "corrupt probe provider"); 11106 return (NULL); 11107 } 11108 11109 (void) strncpy(desc->dtpd_provider, 11110 (char *)(str + probe->dofp_provider), 11111 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 11112 11113 if (probe->dofp_mod >= strtab->dofs_size) { 11114 dtrace_dof_error(dof, "corrupt probe module"); 11115 return (NULL); 11116 } 11117 11118 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 11119 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 11120 11121 if (probe->dofp_func >= strtab->dofs_size) { 11122 dtrace_dof_error(dof, "corrupt probe function"); 11123 return (NULL); 11124 } 11125 11126 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 11127 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 11128 11129 if (probe->dofp_name >= strtab->dofs_size) { 11130 dtrace_dof_error(dof, "corrupt probe name"); 11131 return (NULL); 11132 } 11133 11134 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 11135 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 11136 11137 return (desc); 11138 } 11139 11140 static dtrace_difo_t * 11141 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11142 cred_t *cr) 11143 { 11144 dtrace_difo_t *dp; 11145 size_t ttl = 0; 11146 dof_difohdr_t *dofd; 11147 uintptr_t daddr = (uintptr_t)dof; 11148 size_t max = dtrace_difo_maxsize; 11149 int i, l, n; 11150 11151 static const struct { 11152 int section; 11153 int bufoffs; 11154 int lenoffs; 11155 int entsize; 11156 int align; 11157 const char *msg; 11158 } difo[] = { 11159 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11160 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11161 sizeof (dif_instr_t), "multiple DIF sections" }, 11162 11163 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11164 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11165 sizeof (uint64_t), "multiple integer tables" }, 11166 11167 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11168 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11169 sizeof (char), "multiple string tables" }, 11170 11171 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11172 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11173 sizeof (uint_t), "multiple variable tables" }, 11174 11175 { DOF_SECT_NONE, 0, 0, 0, NULL } 11176 }; 11177 11178 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11179 dtrace_dof_error(dof, "invalid DIFO header section"); 11180 return (NULL); 11181 } 11182 11183 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11184 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11185 return (NULL); 11186 } 11187 11188 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11189 sec->dofs_size % sizeof (dof_secidx_t)) { 11190 dtrace_dof_error(dof, "bad size in DIFO header"); 11191 return (NULL); 11192 } 11193 11194 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11195 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11196 11197 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11198 dp->dtdo_rtype = dofd->dofd_rtype; 11199 11200 for (l = 0; l < n; l++) { 11201 dof_sec_t *subsec; 11202 void **bufp; 11203 uint32_t *lenp; 11204 11205 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11206 dofd->dofd_links[l])) == NULL) 11207 goto err; /* invalid section link */ 11208 11209 if (ttl + subsec->dofs_size > max) { 11210 dtrace_dof_error(dof, "exceeds maximum size"); 11211 goto err; 11212 } 11213 11214 ttl += subsec->dofs_size; 11215 11216 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11217 if (subsec->dofs_type != difo[i].section) 11218 continue; 11219 11220 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11221 dtrace_dof_error(dof, "section not loaded"); 11222 goto err; 11223 } 11224 11225 if (subsec->dofs_align != difo[i].align) { 11226 dtrace_dof_error(dof, "bad alignment"); 11227 goto err; 11228 } 11229 11230 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11231 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11232 11233 if (*bufp != NULL) { 11234 dtrace_dof_error(dof, difo[i].msg); 11235 goto err; 11236 } 11237 11238 if (difo[i].entsize != subsec->dofs_entsize) { 11239 dtrace_dof_error(dof, "entry size mismatch"); 11240 goto err; 11241 } 11242 11243 if (subsec->dofs_entsize != 0 && 11244 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11245 dtrace_dof_error(dof, "corrupt entry size"); 11246 goto err; 11247 } 11248 11249 *lenp = subsec->dofs_size; 11250 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11251 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11252 *bufp, subsec->dofs_size); 11253 11254 if (subsec->dofs_entsize != 0) 11255 *lenp /= subsec->dofs_entsize; 11256 11257 break; 11258 } 11259 11260 /* 11261 * If we encounter a loadable DIFO sub-section that is not 11262 * known to us, assume this is a broken program and fail. 11263 */ 11264 if (difo[i].section == DOF_SECT_NONE && 11265 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11266 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11267 goto err; 11268 } 11269 } 11270 11271 if (dp->dtdo_buf == NULL) { 11272 /* 11273 * We can't have a DIF object without DIF text. 11274 */ 11275 dtrace_dof_error(dof, "missing DIF text"); 11276 goto err; 11277 } 11278 11279 /* 11280 * Before we validate the DIF object, run through the variable table 11281 * looking for the strings -- if any of their size are under, we'll set 11282 * their size to be the system-wide default string size. Note that 11283 * this should _not_ happen if the "strsize" option has been set -- 11284 * in this case, the compiler should have set the size to reflect the 11285 * setting of the option. 11286 */ 11287 for (i = 0; i < dp->dtdo_varlen; i++) { 11288 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11289 dtrace_diftype_t *t = &v->dtdv_type; 11290 11291 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 11292 continue; 11293 11294 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 11295 t->dtdt_size = dtrace_strsize_default; 11296 } 11297 11298 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 11299 goto err; 11300 11301 dtrace_difo_init(dp, vstate); 11302 return (dp); 11303 11304 err: 11305 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11306 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11307 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11308 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11309 11310 kmem_free(dp, sizeof (dtrace_difo_t)); 11311 return (NULL); 11312 } 11313 11314 static dtrace_predicate_t * 11315 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11316 cred_t *cr) 11317 { 11318 dtrace_difo_t *dp; 11319 11320 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 11321 return (NULL); 11322 11323 return (dtrace_predicate_create(dp)); 11324 } 11325 11326 static dtrace_actdesc_t * 11327 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11328 cred_t *cr) 11329 { 11330 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 11331 dof_actdesc_t *desc; 11332 dof_sec_t *difosec; 11333 size_t offs; 11334 uintptr_t daddr = (uintptr_t)dof; 11335 uint64_t arg; 11336 dtrace_actkind_t kind; 11337 11338 if (sec->dofs_type != DOF_SECT_ACTDESC) { 11339 dtrace_dof_error(dof, "invalid action section"); 11340 return (NULL); 11341 } 11342 11343 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 11344 dtrace_dof_error(dof, "truncated action description"); 11345 return (NULL); 11346 } 11347 11348 if (sec->dofs_align != sizeof (uint64_t)) { 11349 dtrace_dof_error(dof, "bad alignment in action description"); 11350 return (NULL); 11351 } 11352 11353 if (sec->dofs_size < sec->dofs_entsize) { 11354 dtrace_dof_error(dof, "section entry size exceeds total size"); 11355 return (NULL); 11356 } 11357 11358 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 11359 dtrace_dof_error(dof, "bad entry size in action description"); 11360 return (NULL); 11361 } 11362 11363 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 11364 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 11365 return (NULL); 11366 } 11367 11368 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 11369 desc = (dof_actdesc_t *)(daddr + 11370 (uintptr_t)sec->dofs_offset + offs); 11371 kind = (dtrace_actkind_t)desc->dofa_kind; 11372 11373 if (DTRACEACT_ISPRINTFLIKE(kind) && 11374 (kind != DTRACEACT_PRINTA || 11375 desc->dofa_strtab != DOF_SECIDX_NONE)) { 11376 dof_sec_t *strtab; 11377 char *str, *fmt; 11378 uint64_t i; 11379 11380 /* 11381 * printf()-like actions must have a format string. 11382 */ 11383 if ((strtab = dtrace_dof_sect(dof, 11384 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 11385 goto err; 11386 11387 str = (char *)((uintptr_t)dof + 11388 (uintptr_t)strtab->dofs_offset); 11389 11390 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 11391 if (str[i] == '\0') 11392 break; 11393 } 11394 11395 if (i >= strtab->dofs_size) { 11396 dtrace_dof_error(dof, "bogus format string"); 11397 goto err; 11398 } 11399 11400 if (i == desc->dofa_arg) { 11401 dtrace_dof_error(dof, "empty format string"); 11402 goto err; 11403 } 11404 11405 i -= desc->dofa_arg; 11406 fmt = kmem_alloc(i + 1, KM_SLEEP); 11407 bcopy(&str[desc->dofa_arg], fmt, i + 1); 11408 arg = (uint64_t)(uintptr_t)fmt; 11409 } else { 11410 if (kind == DTRACEACT_PRINTA) { 11411 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 11412 arg = 0; 11413 } else { 11414 arg = desc->dofa_arg; 11415 } 11416 } 11417 11418 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 11419 desc->dofa_uarg, arg); 11420 11421 if (last != NULL) { 11422 last->dtad_next = act; 11423 } else { 11424 first = act; 11425 } 11426 11427 last = act; 11428 11429 if (desc->dofa_difo == DOF_SECIDX_NONE) 11430 continue; 11431 11432 if ((difosec = dtrace_dof_sect(dof, 11433 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 11434 goto err; 11435 11436 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 11437 11438 if (act->dtad_difo == NULL) 11439 goto err; 11440 } 11441 11442 ASSERT(first != NULL); 11443 return (first); 11444 11445 err: 11446 for (act = first; act != NULL; act = next) { 11447 next = act->dtad_next; 11448 dtrace_actdesc_release(act, vstate); 11449 } 11450 11451 return (NULL); 11452 } 11453 11454 static dtrace_ecbdesc_t * 11455 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11456 cred_t *cr) 11457 { 11458 dtrace_ecbdesc_t *ep; 11459 dof_ecbdesc_t *ecb; 11460 dtrace_probedesc_t *desc; 11461 dtrace_predicate_t *pred = NULL; 11462 11463 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 11464 dtrace_dof_error(dof, "truncated ECB description"); 11465 return (NULL); 11466 } 11467 11468 if (sec->dofs_align != sizeof (uint64_t)) { 11469 dtrace_dof_error(dof, "bad alignment in ECB description"); 11470 return (NULL); 11471 } 11472 11473 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 11474 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 11475 11476 if (sec == NULL) 11477 return (NULL); 11478 11479 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11480 ep->dted_uarg = ecb->dofe_uarg; 11481 desc = &ep->dted_probe; 11482 11483 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 11484 goto err; 11485 11486 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 11487 if ((sec = dtrace_dof_sect(dof, 11488 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 11489 goto err; 11490 11491 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 11492 goto err; 11493 11494 ep->dted_pred.dtpdd_predicate = pred; 11495 } 11496 11497 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 11498 if ((sec = dtrace_dof_sect(dof, 11499 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 11500 goto err; 11501 11502 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 11503 11504 if (ep->dted_action == NULL) 11505 goto err; 11506 } 11507 11508 return (ep); 11509 11510 err: 11511 if (pred != NULL) 11512 dtrace_predicate_release(pred, vstate); 11513 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11514 return (NULL); 11515 } 11516 11517 /* 11518 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 11519 * specified DOF. At present, this amounts to simply adding 'ubase' to the 11520 * site of any user SETX relocations to account for load object base address. 11521 * In the future, if we need other relocations, this function can be extended. 11522 */ 11523 static int 11524 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 11525 { 11526 uintptr_t daddr = (uintptr_t)dof; 11527 dof_relohdr_t *dofr = 11528 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11529 dof_sec_t *ss, *rs, *ts; 11530 dof_relodesc_t *r; 11531 uint_t i, n; 11532 11533 if (sec->dofs_size < sizeof (dof_relohdr_t) || 11534 sec->dofs_align != sizeof (dof_secidx_t)) { 11535 dtrace_dof_error(dof, "invalid relocation header"); 11536 return (-1); 11537 } 11538 11539 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 11540 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 11541 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 11542 11543 if (ss == NULL || rs == NULL || ts == NULL) 11544 return (-1); /* dtrace_dof_error() has been called already */ 11545 11546 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 11547 rs->dofs_align != sizeof (uint64_t)) { 11548 dtrace_dof_error(dof, "invalid relocation section"); 11549 return (-1); 11550 } 11551 11552 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 11553 n = rs->dofs_size / rs->dofs_entsize; 11554 11555 for (i = 0; i < n; i++) { 11556 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 11557 11558 switch (r->dofr_type) { 11559 case DOF_RELO_NONE: 11560 break; 11561 case DOF_RELO_SETX: 11562 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 11563 sizeof (uint64_t) > ts->dofs_size) { 11564 dtrace_dof_error(dof, "bad relocation offset"); 11565 return (-1); 11566 } 11567 11568 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 11569 dtrace_dof_error(dof, "misaligned setx relo"); 11570 return (-1); 11571 } 11572 11573 *(uint64_t *)taddr += ubase; 11574 break; 11575 default: 11576 dtrace_dof_error(dof, "invalid relocation type"); 11577 return (-1); 11578 } 11579 11580 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 11581 } 11582 11583 return (0); 11584 } 11585 11586 /* 11587 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 11588 * header: it should be at the front of a memory region that is at least 11589 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 11590 * size. It need not be validated in any other way. 11591 */ 11592 static int 11593 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 11594 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 11595 { 11596 uint64_t len = dof->dofh_loadsz, seclen; 11597 uintptr_t daddr = (uintptr_t)dof; 11598 dtrace_ecbdesc_t *ep; 11599 dtrace_enabling_t *enab; 11600 uint_t i; 11601 11602 ASSERT(MUTEX_HELD(&dtrace_lock)); 11603 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 11604 11605 /* 11606 * Check the DOF header identification bytes. In addition to checking 11607 * valid settings, we also verify that unused bits/bytes are zeroed so 11608 * we can use them later without fear of regressing existing binaries. 11609 */ 11610 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 11611 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 11612 dtrace_dof_error(dof, "DOF magic string mismatch"); 11613 return (-1); 11614 } 11615 11616 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 11617 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 11618 dtrace_dof_error(dof, "DOF has invalid data model"); 11619 return (-1); 11620 } 11621 11622 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 11623 dtrace_dof_error(dof, "DOF encoding mismatch"); 11624 return (-1); 11625 } 11626 11627 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 11628 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 11629 dtrace_dof_error(dof, "DOF version mismatch"); 11630 return (-1); 11631 } 11632 11633 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 11634 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 11635 return (-1); 11636 } 11637 11638 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 11639 dtrace_dof_error(dof, "DOF uses too many integer registers"); 11640 return (-1); 11641 } 11642 11643 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 11644 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 11645 return (-1); 11646 } 11647 11648 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 11649 if (dof->dofh_ident[i] != 0) { 11650 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 11651 return (-1); 11652 } 11653 } 11654 11655 if (dof->dofh_flags & ~DOF_FL_VALID) { 11656 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 11657 return (-1); 11658 } 11659 11660 if (dof->dofh_secsize == 0) { 11661 dtrace_dof_error(dof, "zero section header size"); 11662 return (-1); 11663 } 11664 11665 /* 11666 * Check that the section headers don't exceed the amount of DOF 11667 * data. Note that we cast the section size and number of sections 11668 * to uint64_t's to prevent possible overflow in the multiplication. 11669 */ 11670 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 11671 11672 if (dof->dofh_secoff > len || seclen > len || 11673 dof->dofh_secoff + seclen > len) { 11674 dtrace_dof_error(dof, "truncated section headers"); 11675 return (-1); 11676 } 11677 11678 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 11679 dtrace_dof_error(dof, "misaligned section headers"); 11680 return (-1); 11681 } 11682 11683 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 11684 dtrace_dof_error(dof, "misaligned section size"); 11685 return (-1); 11686 } 11687 11688 /* 11689 * Take an initial pass through the section headers to be sure that 11690 * the headers don't have stray offsets. If the 'noprobes' flag is 11691 * set, do not permit sections relating to providers, probes, or args. 11692 */ 11693 for (i = 0; i < dof->dofh_secnum; i++) { 11694 dof_sec_t *sec = (dof_sec_t *)(daddr + 11695 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11696 11697 if (noprobes) { 11698 switch (sec->dofs_type) { 11699 case DOF_SECT_PROVIDER: 11700 case DOF_SECT_PROBES: 11701 case DOF_SECT_PRARGS: 11702 case DOF_SECT_PROFFS: 11703 dtrace_dof_error(dof, "illegal sections " 11704 "for enabling"); 11705 return (-1); 11706 } 11707 } 11708 11709 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11710 continue; /* just ignore non-loadable sections */ 11711 11712 if (sec->dofs_align & (sec->dofs_align - 1)) { 11713 dtrace_dof_error(dof, "bad section alignment"); 11714 return (-1); 11715 } 11716 11717 if (sec->dofs_offset & (sec->dofs_align - 1)) { 11718 dtrace_dof_error(dof, "misaligned section"); 11719 return (-1); 11720 } 11721 11722 if (sec->dofs_offset > len || sec->dofs_size > len || 11723 sec->dofs_offset + sec->dofs_size > len) { 11724 dtrace_dof_error(dof, "corrupt section header"); 11725 return (-1); 11726 } 11727 11728 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 11729 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 11730 dtrace_dof_error(dof, "non-terminating string table"); 11731 return (-1); 11732 } 11733 } 11734 11735 /* 11736 * Take a second pass through the sections and locate and perform any 11737 * relocations that are present. We do this after the first pass to 11738 * be sure that all sections have had their headers validated. 11739 */ 11740 for (i = 0; i < dof->dofh_secnum; i++) { 11741 dof_sec_t *sec = (dof_sec_t *)(daddr + 11742 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11743 11744 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11745 continue; /* skip sections that are not loadable */ 11746 11747 switch (sec->dofs_type) { 11748 case DOF_SECT_URELHDR: 11749 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 11750 return (-1); 11751 break; 11752 } 11753 } 11754 11755 if ((enab = *enabp) == NULL) 11756 enab = *enabp = dtrace_enabling_create(vstate); 11757 11758 for (i = 0; i < dof->dofh_secnum; i++) { 11759 dof_sec_t *sec = (dof_sec_t *)(daddr + 11760 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11761 11762 if (sec->dofs_type != DOF_SECT_ECBDESC) 11763 continue; 11764 11765 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 11766 dtrace_enabling_destroy(enab); 11767 *enabp = NULL; 11768 return (-1); 11769 } 11770 11771 dtrace_enabling_add(enab, ep); 11772 } 11773 11774 return (0); 11775 } 11776 11777 /* 11778 * Process DOF for any options. This routine assumes that the DOF has been 11779 * at least processed by dtrace_dof_slurp(). 11780 */ 11781 static int 11782 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 11783 { 11784 int i, rval; 11785 uint32_t entsize; 11786 size_t offs; 11787 dof_optdesc_t *desc; 11788 11789 for (i = 0; i < dof->dofh_secnum; i++) { 11790 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 11791 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11792 11793 if (sec->dofs_type != DOF_SECT_OPTDESC) 11794 continue; 11795 11796 if (sec->dofs_align != sizeof (uint64_t)) { 11797 dtrace_dof_error(dof, "bad alignment in " 11798 "option description"); 11799 return (EINVAL); 11800 } 11801 11802 if ((entsize = sec->dofs_entsize) == 0) { 11803 dtrace_dof_error(dof, "zeroed option entry size"); 11804 return (EINVAL); 11805 } 11806 11807 if (entsize < sizeof (dof_optdesc_t)) { 11808 dtrace_dof_error(dof, "bad option entry size"); 11809 return (EINVAL); 11810 } 11811 11812 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 11813 desc = (dof_optdesc_t *)((uintptr_t)dof + 11814 (uintptr_t)sec->dofs_offset + offs); 11815 11816 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 11817 dtrace_dof_error(dof, "non-zero option string"); 11818 return (EINVAL); 11819 } 11820 11821 if (desc->dofo_value == DTRACEOPT_UNSET) { 11822 dtrace_dof_error(dof, "unset option"); 11823 return (EINVAL); 11824 } 11825 11826 if ((rval = dtrace_state_option(state, 11827 desc->dofo_option, desc->dofo_value)) != 0) { 11828 dtrace_dof_error(dof, "rejected option"); 11829 return (rval); 11830 } 11831 } 11832 } 11833 11834 return (0); 11835 } 11836 11837 /* 11838 * DTrace Consumer State Functions 11839 */ 11840 int 11841 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 11842 { 11843 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 11844 void *base; 11845 uintptr_t limit; 11846 dtrace_dynvar_t *dvar, *next, *start; 11847 int i; 11848 11849 ASSERT(MUTEX_HELD(&dtrace_lock)); 11850 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 11851 11852 bzero(dstate, sizeof (dtrace_dstate_t)); 11853 11854 if ((dstate->dtds_chunksize = chunksize) == 0) 11855 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 11856 11857 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 11858 size = min; 11859 11860 if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 11861 return (ENOMEM); 11862 11863 dstate->dtds_size = size; 11864 dstate->dtds_base = base; 11865 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 11866 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 11867 11868 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 11869 11870 if (hashsize != 1 && (hashsize & 1)) 11871 hashsize--; 11872 11873 dstate->dtds_hashsize = hashsize; 11874 dstate->dtds_hash = dstate->dtds_base; 11875 11876 /* 11877 * Set all of our hash buckets to point to the single sink, and (if 11878 * it hasn't already been set), set the sink's hash value to be the 11879 * sink sentinel value. The sink is needed for dynamic variable 11880 * lookups to know that they have iterated over an entire, valid hash 11881 * chain. 11882 */ 11883 for (i = 0; i < hashsize; i++) 11884 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 11885 11886 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 11887 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 11888 11889 /* 11890 * Determine number of active CPUs. Divide free list evenly among 11891 * active CPUs. 11892 */ 11893 start = (dtrace_dynvar_t *) 11894 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 11895 limit = (uintptr_t)base + size; 11896 11897 maxper = (limit - (uintptr_t)start) / NCPU; 11898 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 11899 11900 for (i = 0; i < NCPU; i++) { 11901 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 11902 11903 /* 11904 * If we don't even have enough chunks to make it once through 11905 * NCPUs, we're just going to allocate everything to the first 11906 * CPU. And if we're on the last CPU, we're going to allocate 11907 * whatever is left over. In either case, we set the limit to 11908 * be the limit of the dynamic variable space. 11909 */ 11910 if (maxper == 0 || i == NCPU - 1) { 11911 limit = (uintptr_t)base + size; 11912 start = NULL; 11913 } else { 11914 limit = (uintptr_t)start + maxper; 11915 start = (dtrace_dynvar_t *)limit; 11916 } 11917 11918 ASSERT(limit <= (uintptr_t)base + size); 11919 11920 for (;;) { 11921 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 11922 dstate->dtds_chunksize); 11923 11924 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 11925 break; 11926 11927 dvar->dtdv_next = next; 11928 dvar = next; 11929 } 11930 11931 if (maxper == 0) 11932 break; 11933 } 11934 11935 return (0); 11936 } 11937 11938 void 11939 dtrace_dstate_fini(dtrace_dstate_t *dstate) 11940 { 11941 ASSERT(MUTEX_HELD(&cpu_lock)); 11942 11943 if (dstate->dtds_base == NULL) 11944 return; 11945 11946 kmem_free(dstate->dtds_base, dstate->dtds_size); 11947 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 11948 } 11949 11950 static void 11951 dtrace_vstate_fini(dtrace_vstate_t *vstate) 11952 { 11953 /* 11954 * Logical XOR, where are you? 11955 */ 11956 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 11957 11958 if (vstate->dtvs_nglobals > 0) { 11959 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 11960 sizeof (dtrace_statvar_t *)); 11961 } 11962 11963 if (vstate->dtvs_ntlocals > 0) { 11964 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 11965 sizeof (dtrace_difv_t)); 11966 } 11967 11968 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 11969 11970 if (vstate->dtvs_nlocals > 0) { 11971 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 11972 sizeof (dtrace_statvar_t *)); 11973 } 11974 } 11975 11976 static void 11977 dtrace_state_clean(dtrace_state_t *state) 11978 { 11979 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 11980 return; 11981 11982 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 11983 dtrace_speculation_clean(state); 11984 } 11985 11986 static void 11987 dtrace_state_deadman(dtrace_state_t *state) 11988 { 11989 hrtime_t now; 11990 11991 dtrace_sync(); 11992 11993 now = dtrace_gethrtime(); 11994 11995 if (state != dtrace_anon.dta_state && 11996 now - state->dts_laststatus >= dtrace_deadman_user) 11997 return; 11998 11999 /* 12000 * We must be sure that dts_alive never appears to be less than the 12001 * value upon entry to dtrace_state_deadman(), and because we lack a 12002 * dtrace_cas64(), we cannot store to it atomically. We thus instead 12003 * store INT64_MAX to it, followed by a memory barrier, followed by 12004 * the new value. This assures that dts_alive never appears to be 12005 * less than its true value, regardless of the order in which the 12006 * stores to the underlying storage are issued. 12007 */ 12008 state->dts_alive = INT64_MAX; 12009 dtrace_membar_producer(); 12010 state->dts_alive = now; 12011 } 12012 12013 dtrace_state_t * 12014 dtrace_state_create(dev_t *devp, cred_t *cr) 12015 { 12016 minor_t minor; 12017 major_t major; 12018 char c[30]; 12019 dtrace_state_t *state; 12020 dtrace_optval_t *opt; 12021 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 12022 12023 ASSERT(MUTEX_HELD(&dtrace_lock)); 12024 ASSERT(MUTEX_HELD(&cpu_lock)); 12025 12026 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 12027 VM_BESTFIT | VM_SLEEP); 12028 12029 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 12030 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12031 return (NULL); 12032 } 12033 12034 state = ddi_get_soft_state(dtrace_softstate, minor); 12035 state->dts_epid = DTRACE_EPIDNONE + 1; 12036 12037 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 12038 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 12039 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 12040 12041 if (devp != NULL) { 12042 major = getemajor(*devp); 12043 } else { 12044 major = ddi_driver_major(dtrace_devi); 12045 } 12046 12047 state->dts_dev = makedevice(major, minor); 12048 12049 if (devp != NULL) 12050 *devp = state->dts_dev; 12051 12052 /* 12053 * We allocate NCPU buffers. On the one hand, this can be quite 12054 * a bit of memory per instance (nearly 36K on a Starcat). On the 12055 * other hand, it saves an additional memory reference in the probe 12056 * path. 12057 */ 12058 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 12059 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 12060 state->dts_cleaner = CYCLIC_NONE; 12061 state->dts_deadman = CYCLIC_NONE; 12062 state->dts_vstate.dtvs_state = state; 12063 12064 for (i = 0; i < DTRACEOPT_MAX; i++) 12065 state->dts_options[i] = DTRACEOPT_UNSET; 12066 12067 /* 12068 * Set the default options. 12069 */ 12070 opt = state->dts_options; 12071 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 12072 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 12073 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 12074 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 12075 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 12076 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 12077 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 12078 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 12079 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 12080 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 12081 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 12082 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 12083 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 12084 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 12085 12086 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 12087 12088 /* 12089 * Depending on the user credentials, we set flag bits which alter probe 12090 * visibility or the amount of destructiveness allowed. In the case of 12091 * actual anonymous tracing, or the possession of all privileges, all of 12092 * the normal checks are bypassed. 12093 */ 12094 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 12095 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 12096 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 12097 } else { 12098 /* 12099 * Set up the credentials for this instantiation. We take a 12100 * hold on the credential to prevent it from disappearing on 12101 * us; this in turn prevents the zone_t referenced by this 12102 * credential from disappearing. This means that we can 12103 * examine the credential and the zone from probe context. 12104 */ 12105 crhold(cr); 12106 state->dts_cred.dcr_cred = cr; 12107 12108 /* 12109 * CRA_PROC means "we have *some* privilege for dtrace" and 12110 * unlocks the use of variables like pid, zonename, etc. 12111 */ 12112 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 12113 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12114 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 12115 } 12116 12117 /* 12118 * dtrace_user allows use of syscall and profile providers. 12119 * If the user also has proc_owner and/or proc_zone, we 12120 * extend the scope to include additional visibility and 12121 * destructive power. 12122 */ 12123 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 12124 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 12125 state->dts_cred.dcr_visible |= 12126 DTRACE_CRV_ALLPROC; 12127 12128 state->dts_cred.dcr_action |= 12129 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12130 } 12131 12132 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 12133 state->dts_cred.dcr_visible |= 12134 DTRACE_CRV_ALLZONE; 12135 12136 state->dts_cred.dcr_action |= 12137 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12138 } 12139 12140 /* 12141 * If we have all privs in whatever zone this is, 12142 * we can do destructive things to processes which 12143 * have altered credentials. 12144 */ 12145 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12146 cr->cr_zone->zone_privset)) { 12147 state->dts_cred.dcr_action |= 12148 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12149 } 12150 } 12151 12152 /* 12153 * Holding the dtrace_kernel privilege also implies that 12154 * the user has the dtrace_user privilege from a visibility 12155 * perspective. But without further privileges, some 12156 * destructive actions are not available. 12157 */ 12158 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12159 /* 12160 * Make all probes in all zones visible. However, 12161 * this doesn't mean that all actions become available 12162 * to all zones. 12163 */ 12164 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12165 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12166 12167 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12168 DTRACE_CRA_PROC; 12169 /* 12170 * Holding proc_owner means that destructive actions 12171 * for *this* zone are allowed. 12172 */ 12173 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12174 state->dts_cred.dcr_action |= 12175 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12176 12177 /* 12178 * Holding proc_zone means that destructive actions 12179 * for this user/group ID in all zones is allowed. 12180 */ 12181 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12182 state->dts_cred.dcr_action |= 12183 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12184 12185 /* 12186 * If we have all privs in whatever zone this is, 12187 * we can do destructive things to processes which 12188 * have altered credentials. 12189 */ 12190 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12191 cr->cr_zone->zone_privset)) { 12192 state->dts_cred.dcr_action |= 12193 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12194 } 12195 } 12196 12197 /* 12198 * Holding the dtrace_proc privilege gives control over fasttrap 12199 * and pid providers. We need to grant wider destructive 12200 * privileges in the event that the user has proc_owner and/or 12201 * proc_zone. 12202 */ 12203 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12204 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12205 state->dts_cred.dcr_action |= 12206 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12207 12208 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12209 state->dts_cred.dcr_action |= 12210 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12211 } 12212 } 12213 12214 return (state); 12215 } 12216 12217 static int 12218 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 12219 { 12220 dtrace_optval_t *opt = state->dts_options, size; 12221 processorid_t cpu; 12222 int flags = 0, rval; 12223 12224 ASSERT(MUTEX_HELD(&dtrace_lock)); 12225 ASSERT(MUTEX_HELD(&cpu_lock)); 12226 ASSERT(which < DTRACEOPT_MAX); 12227 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 12228 (state == dtrace_anon.dta_state && 12229 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 12230 12231 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 12232 return (0); 12233 12234 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 12235 cpu = opt[DTRACEOPT_CPU]; 12236 12237 if (which == DTRACEOPT_SPECSIZE) 12238 flags |= DTRACEBUF_NOSWITCH; 12239 12240 if (which == DTRACEOPT_BUFSIZE) { 12241 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 12242 flags |= DTRACEBUF_RING; 12243 12244 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 12245 flags |= DTRACEBUF_FILL; 12246 12247 if (state != dtrace_anon.dta_state || 12248 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 12249 flags |= DTRACEBUF_INACTIVE; 12250 } 12251 12252 for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) { 12253 /* 12254 * The size must be 8-byte aligned. If the size is not 8-byte 12255 * aligned, drop it down by the difference. 12256 */ 12257 if (size & (sizeof (uint64_t) - 1)) 12258 size -= size & (sizeof (uint64_t) - 1); 12259 12260 if (size < state->dts_reserve) { 12261 /* 12262 * Buffers always must be large enough to accommodate 12263 * their prereserved space. We return E2BIG instead 12264 * of ENOMEM in this case to allow for user-level 12265 * software to differentiate the cases. 12266 */ 12267 return (E2BIG); 12268 } 12269 12270 rval = dtrace_buffer_alloc(buf, size, flags, cpu); 12271 12272 if (rval != ENOMEM) { 12273 opt[which] = size; 12274 return (rval); 12275 } 12276 12277 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12278 return (rval); 12279 } 12280 12281 return (ENOMEM); 12282 } 12283 12284 static int 12285 dtrace_state_buffers(dtrace_state_t *state) 12286 { 12287 dtrace_speculation_t *spec = state->dts_speculations; 12288 int rval, i; 12289 12290 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 12291 DTRACEOPT_BUFSIZE)) != 0) 12292 return (rval); 12293 12294 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 12295 DTRACEOPT_AGGSIZE)) != 0) 12296 return (rval); 12297 12298 for (i = 0; i < state->dts_nspeculations; i++) { 12299 if ((rval = dtrace_state_buffer(state, 12300 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 12301 return (rval); 12302 } 12303 12304 return (0); 12305 } 12306 12307 static void 12308 dtrace_state_prereserve(dtrace_state_t *state) 12309 { 12310 dtrace_ecb_t *ecb; 12311 dtrace_probe_t *probe; 12312 12313 state->dts_reserve = 0; 12314 12315 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 12316 return; 12317 12318 /* 12319 * If our buffer policy is a "fill" buffer policy, we need to set the 12320 * prereserved space to be the space required by the END probes. 12321 */ 12322 probe = dtrace_probes[dtrace_probeid_end - 1]; 12323 ASSERT(probe != NULL); 12324 12325 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 12326 if (ecb->dte_state != state) 12327 continue; 12328 12329 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 12330 } 12331 } 12332 12333 static int 12334 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 12335 { 12336 dtrace_optval_t *opt = state->dts_options, sz, nspec; 12337 dtrace_speculation_t *spec; 12338 dtrace_buffer_t *buf; 12339 cyc_handler_t hdlr; 12340 cyc_time_t when; 12341 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12342 dtrace_icookie_t cookie; 12343 12344 mutex_enter(&cpu_lock); 12345 mutex_enter(&dtrace_lock); 12346 12347 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 12348 rval = EBUSY; 12349 goto out; 12350 } 12351 12352 /* 12353 * Before we can perform any checks, we must prime all of the 12354 * retained enablings that correspond to this state. 12355 */ 12356 dtrace_enabling_prime(state); 12357 12358 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 12359 rval = EACCES; 12360 goto out; 12361 } 12362 12363 dtrace_state_prereserve(state); 12364 12365 /* 12366 * Now we want to do is try to allocate our speculations. 12367 * We do not automatically resize the number of speculations; if 12368 * this fails, we will fail the operation. 12369 */ 12370 nspec = opt[DTRACEOPT_NSPEC]; 12371 ASSERT(nspec != DTRACEOPT_UNSET); 12372 12373 if (nspec > INT_MAX) { 12374 rval = ENOMEM; 12375 goto out; 12376 } 12377 12378 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); 12379 12380 if (spec == NULL) { 12381 rval = ENOMEM; 12382 goto out; 12383 } 12384 12385 state->dts_speculations = spec; 12386 state->dts_nspeculations = (int)nspec; 12387 12388 for (i = 0; i < nspec; i++) { 12389 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { 12390 rval = ENOMEM; 12391 goto err; 12392 } 12393 12394 spec[i].dtsp_buffer = buf; 12395 } 12396 12397 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 12398 if (dtrace_anon.dta_state == NULL) { 12399 rval = ENOENT; 12400 goto out; 12401 } 12402 12403 if (state->dts_necbs != 0) { 12404 rval = EALREADY; 12405 goto out; 12406 } 12407 12408 state->dts_anon = dtrace_anon_grab(); 12409 ASSERT(state->dts_anon != NULL); 12410 state = state->dts_anon; 12411 12412 /* 12413 * We want "grabanon" to be set in the grabbed state, so we'll 12414 * copy that option value from the grabbing state into the 12415 * grabbed state. 12416 */ 12417 state->dts_options[DTRACEOPT_GRABANON] = 12418 opt[DTRACEOPT_GRABANON]; 12419 12420 *cpu = dtrace_anon.dta_beganon; 12421 12422 /* 12423 * If the anonymous state is active (as it almost certainly 12424 * is if the anonymous enabling ultimately matched anything), 12425 * we don't allow any further option processing -- but we 12426 * don't return failure. 12427 */ 12428 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12429 goto out; 12430 } 12431 12432 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 12433 opt[DTRACEOPT_AGGSIZE] != 0) { 12434 if (state->dts_aggregations == NULL) { 12435 /* 12436 * We're not going to create an aggregation buffer 12437 * because we don't have any ECBs that contain 12438 * aggregations -- set this option to 0. 12439 */ 12440 opt[DTRACEOPT_AGGSIZE] = 0; 12441 } else { 12442 /* 12443 * If we have an aggregation buffer, we must also have 12444 * a buffer to use as scratch. 12445 */ 12446 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 12447 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 12448 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 12449 } 12450 } 12451 } 12452 12453 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 12454 opt[DTRACEOPT_SPECSIZE] != 0) { 12455 if (!state->dts_speculates) { 12456 /* 12457 * We're not going to create speculation buffers 12458 * because we don't have any ECBs that actually 12459 * speculate -- set the speculation size to 0. 12460 */ 12461 opt[DTRACEOPT_SPECSIZE] = 0; 12462 } 12463 } 12464 12465 /* 12466 * The bare minimum size for any buffer that we're actually going to 12467 * do anything to is sizeof (uint64_t). 12468 */ 12469 sz = sizeof (uint64_t); 12470 12471 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 12472 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 12473 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 12474 /* 12475 * A buffer size has been explicitly set to 0 (or to a size 12476 * that will be adjusted to 0) and we need the space -- we 12477 * need to return failure. We return ENOSPC to differentiate 12478 * it from failing to allocate a buffer due to failure to meet 12479 * the reserve (for which we return E2BIG). 12480 */ 12481 rval = ENOSPC; 12482 goto out; 12483 } 12484 12485 if ((rval = dtrace_state_buffers(state)) != 0) 12486 goto err; 12487 12488 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 12489 sz = dtrace_dstate_defsize; 12490 12491 do { 12492 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 12493 12494 if (rval == 0) 12495 break; 12496 12497 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12498 goto err; 12499 } while (sz >>= 1); 12500 12501 opt[DTRACEOPT_DYNVARSIZE] = sz; 12502 12503 if (rval != 0) 12504 goto err; 12505 12506 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 12507 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 12508 12509 if (opt[DTRACEOPT_CLEANRATE] == 0) 12510 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12511 12512 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 12513 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 12514 12515 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 12516 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12517 12518 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 12519 hdlr.cyh_arg = state; 12520 hdlr.cyh_level = CY_LOW_LEVEL; 12521 12522 when.cyt_when = 0; 12523 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 12524 12525 state->dts_cleaner = cyclic_add(&hdlr, &when); 12526 12527 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 12528 hdlr.cyh_arg = state; 12529 hdlr.cyh_level = CY_LOW_LEVEL; 12530 12531 when.cyt_when = 0; 12532 when.cyt_interval = dtrace_deadman_interval; 12533 12534 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 12535 state->dts_deadman = cyclic_add(&hdlr, &when); 12536 12537 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 12538 12539 /* 12540 * Now it's time to actually fire the BEGIN probe. We need to disable 12541 * interrupts here both to record the CPU on which we fired the BEGIN 12542 * probe (the data from this CPU will be processed first at user 12543 * level) and to manually activate the buffer for this CPU. 12544 */ 12545 cookie = dtrace_interrupt_disable(); 12546 *cpu = CPU->cpu_id; 12547 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 12548 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12549 12550 dtrace_probe(dtrace_probeid_begin, 12551 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12552 dtrace_interrupt_enable(cookie); 12553 /* 12554 * We may have had an exit action from a BEGIN probe; only change our 12555 * state to ACTIVE if we're still in WARMUP. 12556 */ 12557 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 12558 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 12559 12560 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 12561 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 12562 12563 /* 12564 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 12565 * want each CPU to transition its principal buffer out of the 12566 * INACTIVE state. Doing this assures that no CPU will suddenly begin 12567 * processing an ECB halfway down a probe's ECB chain; all CPUs will 12568 * atomically transition from processing none of a state's ECBs to 12569 * processing all of them. 12570 */ 12571 dtrace_xcall(DTRACE_CPUALL, 12572 (dtrace_xcall_t)dtrace_buffer_activate, state); 12573 goto out; 12574 12575 err: 12576 dtrace_buffer_free(state->dts_buffer); 12577 dtrace_buffer_free(state->dts_aggbuffer); 12578 12579 if ((nspec = state->dts_nspeculations) == 0) { 12580 ASSERT(state->dts_speculations == NULL); 12581 goto out; 12582 } 12583 12584 spec = state->dts_speculations; 12585 ASSERT(spec != NULL); 12586 12587 for (i = 0; i < state->dts_nspeculations; i++) { 12588 if ((buf = spec[i].dtsp_buffer) == NULL) 12589 break; 12590 12591 dtrace_buffer_free(buf); 12592 kmem_free(buf, bufsize); 12593 } 12594 12595 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12596 state->dts_nspeculations = 0; 12597 state->dts_speculations = NULL; 12598 12599 out: 12600 mutex_exit(&dtrace_lock); 12601 mutex_exit(&cpu_lock); 12602 12603 return (rval); 12604 } 12605 12606 static int 12607 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 12608 { 12609 dtrace_icookie_t cookie; 12610 12611 ASSERT(MUTEX_HELD(&dtrace_lock)); 12612 12613 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 12614 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 12615 return (EINVAL); 12616 12617 /* 12618 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 12619 * to be sure that every CPU has seen it. See below for the details 12620 * on why this is done. 12621 */ 12622 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 12623 dtrace_sync(); 12624 12625 /* 12626 * By this point, it is impossible for any CPU to be still processing 12627 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 12628 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 12629 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 12630 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 12631 * iff we're in the END probe. 12632 */ 12633 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 12634 dtrace_sync(); 12635 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 12636 12637 /* 12638 * Finally, we can release the reserve and call the END probe. We 12639 * disable interrupts across calling the END probe to allow us to 12640 * return the CPU on which we actually called the END probe. This 12641 * allows user-land to be sure that this CPU's principal buffer is 12642 * processed last. 12643 */ 12644 state->dts_reserve = 0; 12645 12646 cookie = dtrace_interrupt_disable(); 12647 *cpu = CPU->cpu_id; 12648 dtrace_probe(dtrace_probeid_end, 12649 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12650 dtrace_interrupt_enable(cookie); 12651 12652 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 12653 dtrace_sync(); 12654 12655 return (0); 12656 } 12657 12658 static int 12659 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 12660 dtrace_optval_t val) 12661 { 12662 ASSERT(MUTEX_HELD(&dtrace_lock)); 12663 12664 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12665 return (EBUSY); 12666 12667 if (option >= DTRACEOPT_MAX) 12668 return (EINVAL); 12669 12670 if (option != DTRACEOPT_CPU && val < 0) 12671 return (EINVAL); 12672 12673 switch (option) { 12674 case DTRACEOPT_DESTRUCTIVE: 12675 if (dtrace_destructive_disallow) 12676 return (EACCES); 12677 12678 state->dts_cred.dcr_destructive = 1; 12679 break; 12680 12681 case DTRACEOPT_BUFSIZE: 12682 case DTRACEOPT_DYNVARSIZE: 12683 case DTRACEOPT_AGGSIZE: 12684 case DTRACEOPT_SPECSIZE: 12685 case DTRACEOPT_STRSIZE: 12686 if (val < 0) 12687 return (EINVAL); 12688 12689 if (val >= LONG_MAX) { 12690 /* 12691 * If this is an otherwise negative value, set it to 12692 * the highest multiple of 128m less than LONG_MAX. 12693 * Technically, we're adjusting the size without 12694 * regard to the buffer resizing policy, but in fact, 12695 * this has no effect -- if we set the buffer size to 12696 * ~LONG_MAX and the buffer policy is ultimately set to 12697 * be "manual", the buffer allocation is guaranteed to 12698 * fail, if only because the allocation requires two 12699 * buffers. (We set the the size to the highest 12700 * multiple of 128m because it ensures that the size 12701 * will remain a multiple of a megabyte when 12702 * repeatedly halved -- all the way down to 15m.) 12703 */ 12704 val = LONG_MAX - (1 << 27) + 1; 12705 } 12706 } 12707 12708 state->dts_options[option] = val; 12709 12710 return (0); 12711 } 12712 12713 static void 12714 dtrace_state_destroy(dtrace_state_t *state) 12715 { 12716 dtrace_ecb_t *ecb; 12717 dtrace_vstate_t *vstate = &state->dts_vstate; 12718 minor_t minor = getminor(state->dts_dev); 12719 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12720 dtrace_speculation_t *spec = state->dts_speculations; 12721 int nspec = state->dts_nspeculations; 12722 uint32_t match; 12723 12724 ASSERT(MUTEX_HELD(&dtrace_lock)); 12725 ASSERT(MUTEX_HELD(&cpu_lock)); 12726 12727 /* 12728 * First, retract any retained enablings for this state. 12729 */ 12730 dtrace_enabling_retract(state); 12731 ASSERT(state->dts_nretained == 0); 12732 12733 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 12734 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 12735 /* 12736 * We have managed to come into dtrace_state_destroy() on a 12737 * hot enabling -- almost certainly because of a disorderly 12738 * shutdown of a consumer. (That is, a consumer that is 12739 * exiting without having called dtrace_stop().) In this case, 12740 * we're going to set our activity to be KILLED, and then 12741 * issue a sync to be sure that everyone is out of probe 12742 * context before we start blowing away ECBs. 12743 */ 12744 state->dts_activity = DTRACE_ACTIVITY_KILLED; 12745 dtrace_sync(); 12746 } 12747 12748 /* 12749 * Release the credential hold we took in dtrace_state_create(). 12750 */ 12751 if (state->dts_cred.dcr_cred != NULL) 12752 crfree(state->dts_cred.dcr_cred); 12753 12754 /* 12755 * Now we can safely disable and destroy any enabled probes. Because 12756 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 12757 * (especially if they're all enabled), we take two passes through the 12758 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 12759 * in the second we disable whatever is left over. 12760 */ 12761 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 12762 for (i = 0; i < state->dts_necbs; i++) { 12763 if ((ecb = state->dts_ecbs[i]) == NULL) 12764 continue; 12765 12766 if (match && ecb->dte_probe != NULL) { 12767 dtrace_probe_t *probe = ecb->dte_probe; 12768 dtrace_provider_t *prov = probe->dtpr_provider; 12769 12770 if (!(prov->dtpv_priv.dtpp_flags & match)) 12771 continue; 12772 } 12773 12774 dtrace_ecb_disable(ecb); 12775 dtrace_ecb_destroy(ecb); 12776 } 12777 12778 if (!match) 12779 break; 12780 } 12781 12782 /* 12783 * Before we free the buffers, perform one more sync to assure that 12784 * every CPU is out of probe context. 12785 */ 12786 dtrace_sync(); 12787 12788 dtrace_buffer_free(state->dts_buffer); 12789 dtrace_buffer_free(state->dts_aggbuffer); 12790 12791 for (i = 0; i < nspec; i++) 12792 dtrace_buffer_free(spec[i].dtsp_buffer); 12793 12794 if (state->dts_cleaner != CYCLIC_NONE) 12795 cyclic_remove(state->dts_cleaner); 12796 12797 if (state->dts_deadman != CYCLIC_NONE) 12798 cyclic_remove(state->dts_deadman); 12799 12800 dtrace_dstate_fini(&vstate->dtvs_dynvars); 12801 dtrace_vstate_fini(vstate); 12802 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 12803 12804 if (state->dts_aggregations != NULL) { 12805 #ifdef DEBUG 12806 for (i = 0; i < state->dts_naggregations; i++) 12807 ASSERT(state->dts_aggregations[i] == NULL); 12808 #endif 12809 ASSERT(state->dts_naggregations > 0); 12810 kmem_free(state->dts_aggregations, 12811 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 12812 } 12813 12814 kmem_free(state->dts_buffer, bufsize); 12815 kmem_free(state->dts_aggbuffer, bufsize); 12816 12817 for (i = 0; i < nspec; i++) 12818 kmem_free(spec[i].dtsp_buffer, bufsize); 12819 12820 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12821 12822 dtrace_format_destroy(state); 12823 12824 vmem_destroy(state->dts_aggid_arena); 12825 ddi_soft_state_free(dtrace_softstate, minor); 12826 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12827 } 12828 12829 /* 12830 * DTrace Anonymous Enabling Functions 12831 */ 12832 static dtrace_state_t * 12833 dtrace_anon_grab(void) 12834 { 12835 dtrace_state_t *state; 12836 12837 ASSERT(MUTEX_HELD(&dtrace_lock)); 12838 12839 if ((state = dtrace_anon.dta_state) == NULL) { 12840 ASSERT(dtrace_anon.dta_enabling == NULL); 12841 return (NULL); 12842 } 12843 12844 ASSERT(dtrace_anon.dta_enabling != NULL); 12845 ASSERT(dtrace_retained != NULL); 12846 12847 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 12848 dtrace_anon.dta_enabling = NULL; 12849 dtrace_anon.dta_state = NULL; 12850 12851 return (state); 12852 } 12853 12854 static void 12855 dtrace_anon_property(void) 12856 { 12857 int i, rv; 12858 dtrace_state_t *state; 12859 dof_hdr_t *dof; 12860 char c[32]; /* enough for "dof-data-" + digits */ 12861 12862 ASSERT(MUTEX_HELD(&dtrace_lock)); 12863 ASSERT(MUTEX_HELD(&cpu_lock)); 12864 12865 for (i = 0; ; i++) { 12866 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 12867 12868 dtrace_err_verbose = 1; 12869 12870 if ((dof = dtrace_dof_property(c)) == NULL) { 12871 dtrace_err_verbose = 0; 12872 break; 12873 } 12874 12875 /* 12876 * We want to create anonymous state, so we need to transition 12877 * the kernel debugger to indicate that DTrace is active. If 12878 * this fails (e.g. because the debugger has modified text in 12879 * some way), we won't continue with the processing. 12880 */ 12881 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 12882 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 12883 "enabling ignored."); 12884 dtrace_dof_destroy(dof); 12885 break; 12886 } 12887 12888 /* 12889 * If we haven't allocated an anonymous state, we'll do so now. 12890 */ 12891 if ((state = dtrace_anon.dta_state) == NULL) { 12892 state = dtrace_state_create(NULL, NULL); 12893 dtrace_anon.dta_state = state; 12894 12895 if (state == NULL) { 12896 /* 12897 * This basically shouldn't happen: the only 12898 * failure mode from dtrace_state_create() is a 12899 * failure of ddi_soft_state_zalloc() that 12900 * itself should never happen. Still, the 12901 * interface allows for a failure mode, and 12902 * we want to fail as gracefully as possible: 12903 * we'll emit an error message and cease 12904 * processing anonymous state in this case. 12905 */ 12906 cmn_err(CE_WARN, "failed to create " 12907 "anonymous state"); 12908 dtrace_dof_destroy(dof); 12909 break; 12910 } 12911 } 12912 12913 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 12914 &dtrace_anon.dta_enabling, 0, B_TRUE); 12915 12916 if (rv == 0) 12917 rv = dtrace_dof_options(dof, state); 12918 12919 dtrace_err_verbose = 0; 12920 dtrace_dof_destroy(dof); 12921 12922 if (rv != 0) { 12923 /* 12924 * This is malformed DOF; chuck any anonymous state 12925 * that we created. 12926 */ 12927 ASSERT(dtrace_anon.dta_enabling == NULL); 12928 dtrace_state_destroy(state); 12929 dtrace_anon.dta_state = NULL; 12930 break; 12931 } 12932 12933 ASSERT(dtrace_anon.dta_enabling != NULL); 12934 } 12935 12936 if (dtrace_anon.dta_enabling != NULL) { 12937 int rval; 12938 12939 /* 12940 * dtrace_enabling_retain() can only fail because we are 12941 * trying to retain more enablings than are allowed -- but 12942 * we only have one anonymous enabling, and we are guaranteed 12943 * to be allowed at least one retained enabling; we assert 12944 * that dtrace_enabling_retain() returns success. 12945 */ 12946 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 12947 ASSERT(rval == 0); 12948 12949 dtrace_enabling_dump(dtrace_anon.dta_enabling); 12950 } 12951 } 12952 12953 /* 12954 * DTrace Helper Functions 12955 */ 12956 static void 12957 dtrace_helper_trace(dtrace_helper_action_t *helper, 12958 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 12959 { 12960 uint32_t size, next, nnext, i; 12961 dtrace_helptrace_t *ent; 12962 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12963 12964 if (!dtrace_helptrace_enabled) 12965 return; 12966 12967 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 12968 12969 /* 12970 * What would a tracing framework be without its own tracing 12971 * framework? (Well, a hell of a lot simpler, for starters...) 12972 */ 12973 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 12974 sizeof (uint64_t) - sizeof (uint64_t); 12975 12976 /* 12977 * Iterate until we can allocate a slot in the trace buffer. 12978 */ 12979 do { 12980 next = dtrace_helptrace_next; 12981 12982 if (next + size < dtrace_helptrace_bufsize) { 12983 nnext = next + size; 12984 } else { 12985 nnext = size; 12986 } 12987 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 12988 12989 /* 12990 * We have our slot; fill it in. 12991 */ 12992 if (nnext == size) 12993 next = 0; 12994 12995 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 12996 ent->dtht_helper = helper; 12997 ent->dtht_where = where; 12998 ent->dtht_nlocals = vstate->dtvs_nlocals; 12999 13000 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 13001 mstate->dtms_fltoffs : -1; 13002 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 13003 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 13004 13005 for (i = 0; i < vstate->dtvs_nlocals; i++) { 13006 dtrace_statvar_t *svar; 13007 13008 if ((svar = vstate->dtvs_locals[i]) == NULL) 13009 continue; 13010 13011 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 13012 ent->dtht_locals[i] = 13013 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 13014 } 13015 } 13016 13017 static uint64_t 13018 dtrace_helper(int which, dtrace_mstate_t *mstate, 13019 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 13020 { 13021 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13022 uint64_t sarg0 = mstate->dtms_arg[0]; 13023 uint64_t sarg1 = mstate->dtms_arg[1]; 13024 uint64_t rval; 13025 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 13026 dtrace_helper_action_t *helper; 13027 dtrace_vstate_t *vstate; 13028 dtrace_difo_t *pred; 13029 int i, trace = dtrace_helptrace_enabled; 13030 13031 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 13032 13033 if (helpers == NULL) 13034 return (0); 13035 13036 if ((helper = helpers->dthps_actions[which]) == NULL) 13037 return (0); 13038 13039 vstate = &helpers->dthps_vstate; 13040 mstate->dtms_arg[0] = arg0; 13041 mstate->dtms_arg[1] = arg1; 13042 13043 /* 13044 * Now iterate over each helper. If its predicate evaluates to 'true', 13045 * we'll call the corresponding actions. Note that the below calls 13046 * to dtrace_dif_emulate() may set faults in machine state. This is 13047 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 13048 * the stored DIF offset with its own (which is the desired behavior). 13049 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 13050 * from machine state; this is okay, too. 13051 */ 13052 for (; helper != NULL; helper = helper->dtha_next) { 13053 if ((pred = helper->dtha_predicate) != NULL) { 13054 if (trace) 13055 dtrace_helper_trace(helper, mstate, vstate, 0); 13056 13057 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 13058 goto next; 13059 13060 if (*flags & CPU_DTRACE_FAULT) 13061 goto err; 13062 } 13063 13064 for (i = 0; i < helper->dtha_nactions; i++) { 13065 if (trace) 13066 dtrace_helper_trace(helper, 13067 mstate, vstate, i + 1); 13068 13069 rval = dtrace_dif_emulate(helper->dtha_actions[i], 13070 mstate, vstate, state); 13071 13072 if (*flags & CPU_DTRACE_FAULT) 13073 goto err; 13074 } 13075 13076 next: 13077 if (trace) 13078 dtrace_helper_trace(helper, mstate, vstate, 13079 DTRACE_HELPTRACE_NEXT); 13080 } 13081 13082 if (trace) 13083 dtrace_helper_trace(helper, mstate, vstate, 13084 DTRACE_HELPTRACE_DONE); 13085 13086 /* 13087 * Restore the arg0 that we saved upon entry. 13088 */ 13089 mstate->dtms_arg[0] = sarg0; 13090 mstate->dtms_arg[1] = sarg1; 13091 13092 return (rval); 13093 13094 err: 13095 if (trace) 13096 dtrace_helper_trace(helper, mstate, vstate, 13097 DTRACE_HELPTRACE_ERR); 13098 13099 /* 13100 * Restore the arg0 that we saved upon entry. 13101 */ 13102 mstate->dtms_arg[0] = sarg0; 13103 mstate->dtms_arg[1] = sarg1; 13104 13105 return (NULL); 13106 } 13107 13108 static void 13109 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 13110 dtrace_vstate_t *vstate) 13111 { 13112 int i; 13113 13114 if (helper->dtha_predicate != NULL) 13115 dtrace_difo_release(helper->dtha_predicate, vstate); 13116 13117 for (i = 0; i < helper->dtha_nactions; i++) { 13118 ASSERT(helper->dtha_actions[i] != NULL); 13119 dtrace_difo_release(helper->dtha_actions[i], vstate); 13120 } 13121 13122 kmem_free(helper->dtha_actions, 13123 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 13124 kmem_free(helper, sizeof (dtrace_helper_action_t)); 13125 } 13126 13127 static int 13128 dtrace_helper_destroygen(int gen) 13129 { 13130 proc_t *p = curproc; 13131 dtrace_helpers_t *help = p->p_dtrace_helpers; 13132 dtrace_vstate_t *vstate; 13133 int i; 13134 13135 ASSERT(MUTEX_HELD(&dtrace_lock)); 13136 13137 if (help == NULL || gen > help->dthps_generation) 13138 return (EINVAL); 13139 13140 vstate = &help->dthps_vstate; 13141 13142 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13143 dtrace_helper_action_t *last = NULL, *h, *next; 13144 13145 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13146 next = h->dtha_next; 13147 13148 if (h->dtha_generation == gen) { 13149 if (last != NULL) { 13150 last->dtha_next = next; 13151 } else { 13152 help->dthps_actions[i] = next; 13153 } 13154 13155 dtrace_helper_action_destroy(h, vstate); 13156 } else { 13157 last = h; 13158 } 13159 } 13160 } 13161 13162 /* 13163 * Interate until we've cleared out all helper providers with the 13164 * given generation number. 13165 */ 13166 for (;;) { 13167 dtrace_helper_provider_t *prov; 13168 13169 /* 13170 * Look for a helper provider with the right generation. We 13171 * have to start back at the beginning of the list each time 13172 * because we drop dtrace_lock. It's unlikely that we'll make 13173 * more than two passes. 13174 */ 13175 for (i = 0; i < help->dthps_nprovs; i++) { 13176 prov = help->dthps_provs[i]; 13177 13178 if (prov->dthp_generation == gen) 13179 break; 13180 } 13181 13182 /* 13183 * If there were no matches, we're done. 13184 */ 13185 if (i == help->dthps_nprovs) 13186 break; 13187 13188 /* 13189 * Move the last helper provider into this slot. 13190 */ 13191 help->dthps_nprovs--; 13192 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 13193 help->dthps_provs[help->dthps_nprovs] = NULL; 13194 13195 mutex_exit(&dtrace_lock); 13196 13197 /* 13198 * If we have a meta provider, remove this helper provider. 13199 */ 13200 mutex_enter(&dtrace_meta_lock); 13201 if (dtrace_meta_pid != NULL) { 13202 ASSERT(dtrace_deferred_pid == NULL); 13203 dtrace_helper_provider_remove(&prov->dthp_prov, 13204 p->p_pid); 13205 } 13206 mutex_exit(&dtrace_meta_lock); 13207 13208 dtrace_helper_provider_destroy(prov); 13209 13210 mutex_enter(&dtrace_lock); 13211 } 13212 13213 return (0); 13214 } 13215 13216 static int 13217 dtrace_helper_validate(dtrace_helper_action_t *helper) 13218 { 13219 int err = 0, i; 13220 dtrace_difo_t *dp; 13221 13222 if ((dp = helper->dtha_predicate) != NULL) 13223 err += dtrace_difo_validate_helper(dp); 13224 13225 for (i = 0; i < helper->dtha_nactions; i++) 13226 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 13227 13228 return (err == 0); 13229 } 13230 13231 static int 13232 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 13233 { 13234 dtrace_helpers_t *help; 13235 dtrace_helper_action_t *helper, *last; 13236 dtrace_actdesc_t *act; 13237 dtrace_vstate_t *vstate; 13238 dtrace_predicate_t *pred; 13239 int count = 0, nactions = 0, i; 13240 13241 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 13242 return (EINVAL); 13243 13244 help = curproc->p_dtrace_helpers; 13245 last = help->dthps_actions[which]; 13246 vstate = &help->dthps_vstate; 13247 13248 for (count = 0; last != NULL; last = last->dtha_next) { 13249 count++; 13250 if (last->dtha_next == NULL) 13251 break; 13252 } 13253 13254 /* 13255 * If we already have dtrace_helper_actions_max helper actions for this 13256 * helper action type, we'll refuse to add a new one. 13257 */ 13258 if (count >= dtrace_helper_actions_max) 13259 return (ENOSPC); 13260 13261 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 13262 helper->dtha_generation = help->dthps_generation; 13263 13264 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 13265 ASSERT(pred->dtp_difo != NULL); 13266 dtrace_difo_hold(pred->dtp_difo); 13267 helper->dtha_predicate = pred->dtp_difo; 13268 } 13269 13270 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 13271 if (act->dtad_kind != DTRACEACT_DIFEXPR) 13272 goto err; 13273 13274 if (act->dtad_difo == NULL) 13275 goto err; 13276 13277 nactions++; 13278 } 13279 13280 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 13281 (helper->dtha_nactions = nactions), KM_SLEEP); 13282 13283 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 13284 dtrace_difo_hold(act->dtad_difo); 13285 helper->dtha_actions[i++] = act->dtad_difo; 13286 } 13287 13288 if (!dtrace_helper_validate(helper)) 13289 goto err; 13290 13291 if (last == NULL) { 13292 help->dthps_actions[which] = helper; 13293 } else { 13294 last->dtha_next = helper; 13295 } 13296 13297 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 13298 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 13299 dtrace_helptrace_next = 0; 13300 } 13301 13302 return (0); 13303 err: 13304 dtrace_helper_action_destroy(helper, vstate); 13305 return (EINVAL); 13306 } 13307 13308 static void 13309 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 13310 dof_helper_t *dofhp) 13311 { 13312 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 13313 13314 mutex_enter(&dtrace_meta_lock); 13315 mutex_enter(&dtrace_lock); 13316 13317 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 13318 /* 13319 * If the dtrace module is loaded but not attached, or if 13320 * there aren't isn't a meta provider registered to deal with 13321 * these provider descriptions, we need to postpone creating 13322 * the actual providers until later. 13323 */ 13324 13325 if (help->dthps_next == NULL && help->dthps_prev == NULL && 13326 dtrace_deferred_pid != help) { 13327 help->dthps_deferred = 1; 13328 help->dthps_pid = p->p_pid; 13329 help->dthps_next = dtrace_deferred_pid; 13330 help->dthps_prev = NULL; 13331 if (dtrace_deferred_pid != NULL) 13332 dtrace_deferred_pid->dthps_prev = help; 13333 dtrace_deferred_pid = help; 13334 } 13335 13336 mutex_exit(&dtrace_lock); 13337 13338 } else if (dofhp != NULL) { 13339 /* 13340 * If the dtrace module is loaded and we have a particular 13341 * helper provider description, pass that off to the 13342 * meta provider. 13343 */ 13344 13345 mutex_exit(&dtrace_lock); 13346 13347 dtrace_helper_provide(dofhp, p->p_pid); 13348 13349 } else { 13350 /* 13351 * Otherwise, just pass all the helper provider descriptions 13352 * off to the meta provider. 13353 */ 13354 13355 int i; 13356 mutex_exit(&dtrace_lock); 13357 13358 for (i = 0; i < help->dthps_nprovs; i++) { 13359 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 13360 p->p_pid); 13361 } 13362 } 13363 13364 mutex_exit(&dtrace_meta_lock); 13365 } 13366 13367 static int 13368 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 13369 { 13370 dtrace_helpers_t *help; 13371 dtrace_helper_provider_t *hprov, **tmp_provs; 13372 uint_t tmp_maxprovs, i; 13373 13374 ASSERT(MUTEX_HELD(&dtrace_lock)); 13375 13376 help = curproc->p_dtrace_helpers; 13377 ASSERT(help != NULL); 13378 13379 /* 13380 * If we already have dtrace_helper_providers_max helper providers, 13381 * we're refuse to add a new one. 13382 */ 13383 if (help->dthps_nprovs >= dtrace_helper_providers_max) 13384 return (ENOSPC); 13385 13386 /* 13387 * Check to make sure this isn't a duplicate. 13388 */ 13389 for (i = 0; i < help->dthps_nprovs; i++) { 13390 if (dofhp->dofhp_addr == 13391 help->dthps_provs[i]->dthp_prov.dofhp_addr) 13392 return (EALREADY); 13393 } 13394 13395 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 13396 hprov->dthp_prov = *dofhp; 13397 hprov->dthp_ref = 1; 13398 hprov->dthp_generation = gen; 13399 13400 /* 13401 * Allocate a bigger table for helper providers if it's already full. 13402 */ 13403 if (help->dthps_maxprovs == help->dthps_nprovs) { 13404 tmp_maxprovs = help->dthps_maxprovs; 13405 tmp_provs = help->dthps_provs; 13406 13407 if (help->dthps_maxprovs == 0) 13408 help->dthps_maxprovs = 2; 13409 else 13410 help->dthps_maxprovs *= 2; 13411 if (help->dthps_maxprovs > dtrace_helper_providers_max) 13412 help->dthps_maxprovs = dtrace_helper_providers_max; 13413 13414 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 13415 13416 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 13417 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13418 13419 if (tmp_provs != NULL) { 13420 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 13421 sizeof (dtrace_helper_provider_t *)); 13422 kmem_free(tmp_provs, tmp_maxprovs * 13423 sizeof (dtrace_helper_provider_t *)); 13424 } 13425 } 13426 13427 help->dthps_provs[help->dthps_nprovs] = hprov; 13428 help->dthps_nprovs++; 13429 13430 return (0); 13431 } 13432 13433 static void 13434 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 13435 { 13436 mutex_enter(&dtrace_lock); 13437 13438 if (--hprov->dthp_ref == 0) { 13439 dof_hdr_t *dof; 13440 mutex_exit(&dtrace_lock); 13441 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 13442 dtrace_dof_destroy(dof); 13443 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 13444 } else { 13445 mutex_exit(&dtrace_lock); 13446 } 13447 } 13448 13449 static int 13450 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 13451 { 13452 uintptr_t daddr = (uintptr_t)dof; 13453 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 13454 dof_provider_t *provider; 13455 dof_probe_t *probe; 13456 uint8_t *arg; 13457 char *strtab, *typestr; 13458 dof_stridx_t typeidx; 13459 size_t typesz; 13460 uint_t nprobes, j, k; 13461 13462 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 13463 13464 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 13465 dtrace_dof_error(dof, "misaligned section offset"); 13466 return (-1); 13467 } 13468 13469 /* 13470 * The section needs to be large enough to contain the DOF provider 13471 * structure appropriate for the given version. 13472 */ 13473 if (sec->dofs_size < 13474 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 13475 offsetof(dof_provider_t, dofpv_prenoffs) : 13476 sizeof (dof_provider_t))) { 13477 dtrace_dof_error(dof, "provider section too small"); 13478 return (-1); 13479 } 13480 13481 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 13482 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 13483 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 13484 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 13485 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 13486 13487 if (str_sec == NULL || prb_sec == NULL || 13488 arg_sec == NULL || off_sec == NULL) 13489 return (-1); 13490 13491 enoff_sec = NULL; 13492 13493 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13494 provider->dofpv_prenoffs != DOF_SECT_NONE && 13495 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 13496 provider->dofpv_prenoffs)) == NULL) 13497 return (-1); 13498 13499 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 13500 13501 if (provider->dofpv_name >= str_sec->dofs_size || 13502 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 13503 dtrace_dof_error(dof, "invalid provider name"); 13504 return (-1); 13505 } 13506 13507 if (prb_sec->dofs_entsize == 0 || 13508 prb_sec->dofs_entsize > prb_sec->dofs_size) { 13509 dtrace_dof_error(dof, "invalid entry size"); 13510 return (-1); 13511 } 13512 13513 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 13514 dtrace_dof_error(dof, "misaligned entry size"); 13515 return (-1); 13516 } 13517 13518 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 13519 dtrace_dof_error(dof, "invalid entry size"); 13520 return (-1); 13521 } 13522 13523 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 13524 dtrace_dof_error(dof, "misaligned section offset"); 13525 return (-1); 13526 } 13527 13528 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 13529 dtrace_dof_error(dof, "invalid entry size"); 13530 return (-1); 13531 } 13532 13533 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 13534 13535 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 13536 13537 /* 13538 * Take a pass through the probes to check for errors. 13539 */ 13540 for (j = 0; j < nprobes; j++) { 13541 probe = (dof_probe_t *)(uintptr_t)(daddr + 13542 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 13543 13544 if (probe->dofpr_func >= str_sec->dofs_size) { 13545 dtrace_dof_error(dof, "invalid function name"); 13546 return (-1); 13547 } 13548 13549 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 13550 dtrace_dof_error(dof, "function name too long"); 13551 return (-1); 13552 } 13553 13554 if (probe->dofpr_name >= str_sec->dofs_size || 13555 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 13556 dtrace_dof_error(dof, "invalid probe name"); 13557 return (-1); 13558 } 13559 13560 /* 13561 * The offset count must not wrap the index, and the offsets 13562 * must also not overflow the section's data. 13563 */ 13564 if (probe->dofpr_offidx + probe->dofpr_noffs < 13565 probe->dofpr_offidx || 13566 (probe->dofpr_offidx + probe->dofpr_noffs) * 13567 off_sec->dofs_entsize > off_sec->dofs_size) { 13568 dtrace_dof_error(dof, "invalid probe offset"); 13569 return (-1); 13570 } 13571 13572 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 13573 /* 13574 * If there's no is-enabled offset section, make sure 13575 * there aren't any is-enabled offsets. Otherwise 13576 * perform the same checks as for probe offsets 13577 * (immediately above). 13578 */ 13579 if (enoff_sec == NULL) { 13580 if (probe->dofpr_enoffidx != 0 || 13581 probe->dofpr_nenoffs != 0) { 13582 dtrace_dof_error(dof, "is-enabled " 13583 "offsets with null section"); 13584 return (-1); 13585 } 13586 } else if (probe->dofpr_enoffidx + 13587 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 13588 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 13589 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 13590 dtrace_dof_error(dof, "invalid is-enabled " 13591 "offset"); 13592 return (-1); 13593 } 13594 13595 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 13596 dtrace_dof_error(dof, "zero probe and " 13597 "is-enabled offsets"); 13598 return (-1); 13599 } 13600 } else if (probe->dofpr_noffs == 0) { 13601 dtrace_dof_error(dof, "zero probe offsets"); 13602 return (-1); 13603 } 13604 13605 if (probe->dofpr_argidx + probe->dofpr_xargc < 13606 probe->dofpr_argidx || 13607 (probe->dofpr_argidx + probe->dofpr_xargc) * 13608 arg_sec->dofs_entsize > arg_sec->dofs_size) { 13609 dtrace_dof_error(dof, "invalid args"); 13610 return (-1); 13611 } 13612 13613 typeidx = probe->dofpr_nargv; 13614 typestr = strtab + probe->dofpr_nargv; 13615 for (k = 0; k < probe->dofpr_nargc; k++) { 13616 if (typeidx >= str_sec->dofs_size) { 13617 dtrace_dof_error(dof, "bad " 13618 "native argument type"); 13619 return (-1); 13620 } 13621 13622 typesz = strlen(typestr) + 1; 13623 if (typesz > DTRACE_ARGTYPELEN) { 13624 dtrace_dof_error(dof, "native " 13625 "argument type too long"); 13626 return (-1); 13627 } 13628 typeidx += typesz; 13629 typestr += typesz; 13630 } 13631 13632 typeidx = probe->dofpr_xargv; 13633 typestr = strtab + probe->dofpr_xargv; 13634 for (k = 0; k < probe->dofpr_xargc; k++) { 13635 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 13636 dtrace_dof_error(dof, "bad " 13637 "native argument index"); 13638 return (-1); 13639 } 13640 13641 if (typeidx >= str_sec->dofs_size) { 13642 dtrace_dof_error(dof, "bad " 13643 "translated argument type"); 13644 return (-1); 13645 } 13646 13647 typesz = strlen(typestr) + 1; 13648 if (typesz > DTRACE_ARGTYPELEN) { 13649 dtrace_dof_error(dof, "translated argument " 13650 "type too long"); 13651 return (-1); 13652 } 13653 13654 typeidx += typesz; 13655 typestr += typesz; 13656 } 13657 } 13658 13659 return (0); 13660 } 13661 13662 static int 13663 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 13664 { 13665 dtrace_helpers_t *help; 13666 dtrace_vstate_t *vstate; 13667 dtrace_enabling_t *enab = NULL; 13668 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 13669 uintptr_t daddr = (uintptr_t)dof; 13670 13671 ASSERT(MUTEX_HELD(&dtrace_lock)); 13672 13673 if ((help = curproc->p_dtrace_helpers) == NULL) 13674 help = dtrace_helpers_create(curproc); 13675 13676 vstate = &help->dthps_vstate; 13677 13678 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 13679 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 13680 dtrace_dof_destroy(dof); 13681 return (rv); 13682 } 13683 13684 /* 13685 * Look for helper providers and validate their descriptions. 13686 */ 13687 if (dhp != NULL) { 13688 for (i = 0; i < dof->dofh_secnum; i++) { 13689 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 13690 dof->dofh_secoff + i * dof->dofh_secsize); 13691 13692 if (sec->dofs_type != DOF_SECT_PROVIDER) 13693 continue; 13694 13695 if (dtrace_helper_provider_validate(dof, sec) != 0) { 13696 dtrace_enabling_destroy(enab); 13697 dtrace_dof_destroy(dof); 13698 return (-1); 13699 } 13700 13701 nprovs++; 13702 } 13703 } 13704 13705 /* 13706 * Now we need to walk through the ECB descriptions in the enabling. 13707 */ 13708 for (i = 0; i < enab->dten_ndesc; i++) { 13709 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 13710 dtrace_probedesc_t *desc = &ep->dted_probe; 13711 13712 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 13713 continue; 13714 13715 if (strcmp(desc->dtpd_mod, "helper") != 0) 13716 continue; 13717 13718 if (strcmp(desc->dtpd_func, "ustack") != 0) 13719 continue; 13720 13721 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 13722 ep)) != 0) { 13723 /* 13724 * Adding this helper action failed -- we are now going 13725 * to rip out the entire generation and return failure. 13726 */ 13727 (void) dtrace_helper_destroygen(help->dthps_generation); 13728 dtrace_enabling_destroy(enab); 13729 dtrace_dof_destroy(dof); 13730 return (-1); 13731 } 13732 13733 nhelpers++; 13734 } 13735 13736 if (nhelpers < enab->dten_ndesc) 13737 dtrace_dof_error(dof, "unmatched helpers"); 13738 13739 gen = help->dthps_generation++; 13740 dtrace_enabling_destroy(enab); 13741 13742 if (dhp != NULL && nprovs > 0) { 13743 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 13744 if (dtrace_helper_provider_add(dhp, gen) == 0) { 13745 mutex_exit(&dtrace_lock); 13746 dtrace_helper_provider_register(curproc, help, dhp); 13747 mutex_enter(&dtrace_lock); 13748 13749 destroy = 0; 13750 } 13751 } 13752 13753 if (destroy) 13754 dtrace_dof_destroy(dof); 13755 13756 return (gen); 13757 } 13758 13759 static dtrace_helpers_t * 13760 dtrace_helpers_create(proc_t *p) 13761 { 13762 dtrace_helpers_t *help; 13763 13764 ASSERT(MUTEX_HELD(&dtrace_lock)); 13765 ASSERT(p->p_dtrace_helpers == NULL); 13766 13767 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 13768 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 13769 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 13770 13771 p->p_dtrace_helpers = help; 13772 dtrace_helpers++; 13773 13774 return (help); 13775 } 13776 13777 static void 13778 dtrace_helpers_destroy(void) 13779 { 13780 dtrace_helpers_t *help; 13781 dtrace_vstate_t *vstate; 13782 proc_t *p = curproc; 13783 int i; 13784 13785 mutex_enter(&dtrace_lock); 13786 13787 ASSERT(p->p_dtrace_helpers != NULL); 13788 ASSERT(dtrace_helpers > 0); 13789 13790 help = p->p_dtrace_helpers; 13791 vstate = &help->dthps_vstate; 13792 13793 /* 13794 * We're now going to lose the help from this process. 13795 */ 13796 p->p_dtrace_helpers = NULL; 13797 dtrace_sync(); 13798 13799 /* 13800 * Destory the helper actions. 13801 */ 13802 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13803 dtrace_helper_action_t *h, *next; 13804 13805 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13806 next = h->dtha_next; 13807 dtrace_helper_action_destroy(h, vstate); 13808 h = next; 13809 } 13810 } 13811 13812 mutex_exit(&dtrace_lock); 13813 13814 /* 13815 * Destroy the helper providers. 13816 */ 13817 if (help->dthps_maxprovs > 0) { 13818 mutex_enter(&dtrace_meta_lock); 13819 if (dtrace_meta_pid != NULL) { 13820 ASSERT(dtrace_deferred_pid == NULL); 13821 13822 for (i = 0; i < help->dthps_nprovs; i++) { 13823 dtrace_helper_provider_remove( 13824 &help->dthps_provs[i]->dthp_prov, p->p_pid); 13825 } 13826 } else { 13827 mutex_enter(&dtrace_lock); 13828 ASSERT(help->dthps_deferred == 0 || 13829 help->dthps_next != NULL || 13830 help->dthps_prev != NULL || 13831 help == dtrace_deferred_pid); 13832 13833 /* 13834 * Remove the helper from the deferred list. 13835 */ 13836 if (help->dthps_next != NULL) 13837 help->dthps_next->dthps_prev = help->dthps_prev; 13838 if (help->dthps_prev != NULL) 13839 help->dthps_prev->dthps_next = help->dthps_next; 13840 if (dtrace_deferred_pid == help) { 13841 dtrace_deferred_pid = help->dthps_next; 13842 ASSERT(help->dthps_prev == NULL); 13843 } 13844 13845 mutex_exit(&dtrace_lock); 13846 } 13847 13848 mutex_exit(&dtrace_meta_lock); 13849 13850 for (i = 0; i < help->dthps_nprovs; i++) { 13851 dtrace_helper_provider_destroy(help->dthps_provs[i]); 13852 } 13853 13854 kmem_free(help->dthps_provs, help->dthps_maxprovs * 13855 sizeof (dtrace_helper_provider_t *)); 13856 } 13857 13858 mutex_enter(&dtrace_lock); 13859 13860 dtrace_vstate_fini(&help->dthps_vstate); 13861 kmem_free(help->dthps_actions, 13862 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 13863 kmem_free(help, sizeof (dtrace_helpers_t)); 13864 13865 --dtrace_helpers; 13866 mutex_exit(&dtrace_lock); 13867 } 13868 13869 static void 13870 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 13871 { 13872 dtrace_helpers_t *help, *newhelp; 13873 dtrace_helper_action_t *helper, *new, *last; 13874 dtrace_difo_t *dp; 13875 dtrace_vstate_t *vstate; 13876 int i, j, sz, hasprovs = 0; 13877 13878 mutex_enter(&dtrace_lock); 13879 ASSERT(from->p_dtrace_helpers != NULL); 13880 ASSERT(dtrace_helpers > 0); 13881 13882 help = from->p_dtrace_helpers; 13883 newhelp = dtrace_helpers_create(to); 13884 ASSERT(to->p_dtrace_helpers != NULL); 13885 13886 newhelp->dthps_generation = help->dthps_generation; 13887 vstate = &newhelp->dthps_vstate; 13888 13889 /* 13890 * Duplicate the helper actions. 13891 */ 13892 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13893 if ((helper = help->dthps_actions[i]) == NULL) 13894 continue; 13895 13896 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 13897 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 13898 KM_SLEEP); 13899 new->dtha_generation = helper->dtha_generation; 13900 13901 if ((dp = helper->dtha_predicate) != NULL) { 13902 dp = dtrace_difo_duplicate(dp, vstate); 13903 new->dtha_predicate = dp; 13904 } 13905 13906 new->dtha_nactions = helper->dtha_nactions; 13907 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 13908 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 13909 13910 for (j = 0; j < new->dtha_nactions; j++) { 13911 dtrace_difo_t *dp = helper->dtha_actions[j]; 13912 13913 ASSERT(dp != NULL); 13914 dp = dtrace_difo_duplicate(dp, vstate); 13915 new->dtha_actions[j] = dp; 13916 } 13917 13918 if (last != NULL) { 13919 last->dtha_next = new; 13920 } else { 13921 newhelp->dthps_actions[i] = new; 13922 } 13923 13924 last = new; 13925 } 13926 } 13927 13928 /* 13929 * Duplicate the helper providers and register them with the 13930 * DTrace framework. 13931 */ 13932 if (help->dthps_nprovs > 0) { 13933 newhelp->dthps_nprovs = help->dthps_nprovs; 13934 newhelp->dthps_maxprovs = help->dthps_nprovs; 13935 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 13936 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13937 for (i = 0; i < newhelp->dthps_nprovs; i++) { 13938 newhelp->dthps_provs[i] = help->dthps_provs[i]; 13939 newhelp->dthps_provs[i]->dthp_ref++; 13940 } 13941 13942 hasprovs = 1; 13943 } 13944 13945 mutex_exit(&dtrace_lock); 13946 13947 if (hasprovs) 13948 dtrace_helper_provider_register(to, newhelp, NULL); 13949 } 13950 13951 /* 13952 * DTrace Hook Functions 13953 */ 13954 static void 13955 dtrace_module_loaded(struct modctl *ctl) 13956 { 13957 dtrace_provider_t *prv; 13958 13959 mutex_enter(&dtrace_provider_lock); 13960 mutex_enter(&mod_lock); 13961 13962 ASSERT(ctl->mod_busy); 13963 13964 /* 13965 * We're going to call each providers per-module provide operation 13966 * specifying only this module. 13967 */ 13968 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 13969 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 13970 13971 mutex_exit(&mod_lock); 13972 mutex_exit(&dtrace_provider_lock); 13973 13974 /* 13975 * If we have any retained enablings, we need to match against them. 13976 * Enabling probes requires that cpu_lock be held, and we cannot hold 13977 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 13978 * module. (In particular, this happens when loading scheduling 13979 * classes.) So if we have any retained enablings, we need to dispatch 13980 * our task queue to do the match for us. 13981 */ 13982 mutex_enter(&dtrace_lock); 13983 13984 if (dtrace_retained == NULL) { 13985 mutex_exit(&dtrace_lock); 13986 return; 13987 } 13988 13989 (void) taskq_dispatch(dtrace_taskq, 13990 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 13991 13992 mutex_exit(&dtrace_lock); 13993 13994 /* 13995 * And now, for a little heuristic sleaze: in general, we want to 13996 * match modules as soon as they load. However, we cannot guarantee 13997 * this, because it would lead us to the lock ordering violation 13998 * outlined above. The common case, of course, is that cpu_lock is 13999 * _not_ held -- so we delay here for a clock tick, hoping that that's 14000 * long enough for the task queue to do its work. If it's not, it's 14001 * not a serious problem -- it just means that the module that we 14002 * just loaded may not be immediately instrumentable. 14003 */ 14004 delay(1); 14005 } 14006 14007 static void 14008 dtrace_module_unloaded(struct modctl *ctl) 14009 { 14010 dtrace_probe_t template, *probe, *first, *next; 14011 dtrace_provider_t *prov; 14012 14013 template.dtpr_mod = ctl->mod_modname; 14014 14015 mutex_enter(&dtrace_provider_lock); 14016 mutex_enter(&mod_lock); 14017 mutex_enter(&dtrace_lock); 14018 14019 if (dtrace_bymod == NULL) { 14020 /* 14021 * The DTrace module is loaded (obviously) but not attached; 14022 * we don't have any work to do. 14023 */ 14024 mutex_exit(&dtrace_provider_lock); 14025 mutex_exit(&mod_lock); 14026 mutex_exit(&dtrace_lock); 14027 return; 14028 } 14029 14030 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 14031 probe != NULL; probe = probe->dtpr_nextmod) { 14032 if (probe->dtpr_ecb != NULL) { 14033 mutex_exit(&dtrace_provider_lock); 14034 mutex_exit(&mod_lock); 14035 mutex_exit(&dtrace_lock); 14036 14037 /* 14038 * This shouldn't _actually_ be possible -- we're 14039 * unloading a module that has an enabled probe in it. 14040 * (It's normally up to the provider to make sure that 14041 * this can't happen.) However, because dtps_enable() 14042 * doesn't have a failure mode, there can be an 14043 * enable/unload race. Upshot: we don't want to 14044 * assert, but we're not going to disable the 14045 * probe, either. 14046 */ 14047 if (dtrace_err_verbose) { 14048 cmn_err(CE_WARN, "unloaded module '%s' had " 14049 "enabled probes", ctl->mod_modname); 14050 } 14051 14052 return; 14053 } 14054 } 14055 14056 probe = first; 14057 14058 for (first = NULL; probe != NULL; probe = next) { 14059 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 14060 14061 dtrace_probes[probe->dtpr_id - 1] = NULL; 14062 14063 next = probe->dtpr_nextmod; 14064 dtrace_hash_remove(dtrace_bymod, probe); 14065 dtrace_hash_remove(dtrace_byfunc, probe); 14066 dtrace_hash_remove(dtrace_byname, probe); 14067 14068 if (first == NULL) { 14069 first = probe; 14070 probe->dtpr_nextmod = NULL; 14071 } else { 14072 probe->dtpr_nextmod = first; 14073 first = probe; 14074 } 14075 } 14076 14077 /* 14078 * We've removed all of the module's probes from the hash chains and 14079 * from the probe array. Now issue a dtrace_sync() to be sure that 14080 * everyone has cleared out from any probe array processing. 14081 */ 14082 dtrace_sync(); 14083 14084 for (probe = first; probe != NULL; probe = first) { 14085 first = probe->dtpr_nextmod; 14086 prov = probe->dtpr_provider; 14087 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 14088 probe->dtpr_arg); 14089 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 14090 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 14091 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 14092 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 14093 kmem_free(probe, sizeof (dtrace_probe_t)); 14094 } 14095 14096 mutex_exit(&dtrace_lock); 14097 mutex_exit(&mod_lock); 14098 mutex_exit(&dtrace_provider_lock); 14099 } 14100 14101 void 14102 dtrace_suspend(void) 14103 { 14104 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 14105 } 14106 14107 void 14108 dtrace_resume(void) 14109 { 14110 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 14111 } 14112 14113 static int 14114 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 14115 { 14116 ASSERT(MUTEX_HELD(&cpu_lock)); 14117 mutex_enter(&dtrace_lock); 14118 14119 switch (what) { 14120 case CPU_CONFIG: { 14121 dtrace_state_t *state; 14122 dtrace_optval_t *opt, rs, c; 14123 14124 /* 14125 * For now, we only allocate a new buffer for anonymous state. 14126 */ 14127 if ((state = dtrace_anon.dta_state) == NULL) 14128 break; 14129 14130 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14131 break; 14132 14133 opt = state->dts_options; 14134 c = opt[DTRACEOPT_CPU]; 14135 14136 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 14137 break; 14138 14139 /* 14140 * Regardless of what the actual policy is, we're going to 14141 * temporarily set our resize policy to be manual. We're 14142 * also going to temporarily set our CPU option to denote 14143 * the newly configured CPU. 14144 */ 14145 rs = opt[DTRACEOPT_BUFRESIZE]; 14146 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14147 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14148 14149 (void) dtrace_state_buffers(state); 14150 14151 opt[DTRACEOPT_BUFRESIZE] = rs; 14152 opt[DTRACEOPT_CPU] = c; 14153 14154 break; 14155 } 14156 14157 case CPU_UNCONFIG: 14158 /* 14159 * We don't free the buffer in the CPU_UNCONFIG case. (The 14160 * buffer will be freed when the consumer exits.) 14161 */ 14162 break; 14163 14164 default: 14165 break; 14166 } 14167 14168 mutex_exit(&dtrace_lock); 14169 return (0); 14170 } 14171 14172 static void 14173 dtrace_cpu_setup_initial(processorid_t cpu) 14174 { 14175 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 14176 } 14177 14178 static void 14179 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 14180 { 14181 if (dtrace_toxranges >= dtrace_toxranges_max) { 14182 int osize, nsize; 14183 dtrace_toxrange_t *range; 14184 14185 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14186 14187 if (osize == 0) { 14188 ASSERT(dtrace_toxrange == NULL); 14189 ASSERT(dtrace_toxranges_max == 0); 14190 dtrace_toxranges_max = 1; 14191 } else { 14192 dtrace_toxranges_max <<= 1; 14193 } 14194 14195 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14196 range = kmem_zalloc(nsize, KM_SLEEP); 14197 14198 if (dtrace_toxrange != NULL) { 14199 ASSERT(osize != 0); 14200 bcopy(dtrace_toxrange, range, osize); 14201 kmem_free(dtrace_toxrange, osize); 14202 } 14203 14204 dtrace_toxrange = range; 14205 } 14206 14207 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 14208 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 14209 14210 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 14211 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 14212 dtrace_toxranges++; 14213 } 14214 14215 /* 14216 * DTrace Driver Cookbook Functions 14217 */ 14218 /*ARGSUSED*/ 14219 static int 14220 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 14221 { 14222 dtrace_provider_id_t id; 14223 dtrace_state_t *state = NULL; 14224 dtrace_enabling_t *enab; 14225 14226 mutex_enter(&cpu_lock); 14227 mutex_enter(&dtrace_provider_lock); 14228 mutex_enter(&dtrace_lock); 14229 14230 if (ddi_soft_state_init(&dtrace_softstate, 14231 sizeof (dtrace_state_t), 0) != 0) { 14232 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 14233 mutex_exit(&cpu_lock); 14234 mutex_exit(&dtrace_provider_lock); 14235 mutex_exit(&dtrace_lock); 14236 return (DDI_FAILURE); 14237 } 14238 14239 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 14240 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 14241 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 14242 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 14243 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 14244 ddi_remove_minor_node(devi, NULL); 14245 ddi_soft_state_fini(&dtrace_softstate); 14246 mutex_exit(&cpu_lock); 14247 mutex_exit(&dtrace_provider_lock); 14248 mutex_exit(&dtrace_lock); 14249 return (DDI_FAILURE); 14250 } 14251 14252 ddi_report_dev(devi); 14253 dtrace_devi = devi; 14254 14255 dtrace_modload = dtrace_module_loaded; 14256 dtrace_modunload = dtrace_module_unloaded; 14257 dtrace_cpu_init = dtrace_cpu_setup_initial; 14258 dtrace_helpers_cleanup = dtrace_helpers_destroy; 14259 dtrace_helpers_fork = dtrace_helpers_duplicate; 14260 dtrace_cpustart_init = dtrace_suspend; 14261 dtrace_cpustart_fini = dtrace_resume; 14262 dtrace_debugger_init = dtrace_suspend; 14263 dtrace_debugger_fini = dtrace_resume; 14264 14265 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14266 14267 ASSERT(MUTEX_HELD(&cpu_lock)); 14268 14269 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 14270 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14271 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 14272 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 14273 VM_SLEEP | VMC_IDENTIFIER); 14274 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 14275 1, INT_MAX, 0); 14276 14277 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 14278 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 14279 NULL, NULL, NULL, NULL, NULL, 0); 14280 14281 ASSERT(MUTEX_HELD(&cpu_lock)); 14282 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 14283 offsetof(dtrace_probe_t, dtpr_nextmod), 14284 offsetof(dtrace_probe_t, dtpr_prevmod)); 14285 14286 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 14287 offsetof(dtrace_probe_t, dtpr_nextfunc), 14288 offsetof(dtrace_probe_t, dtpr_prevfunc)); 14289 14290 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 14291 offsetof(dtrace_probe_t, dtpr_nextname), 14292 offsetof(dtrace_probe_t, dtpr_prevname)); 14293 14294 if (dtrace_retain_max < 1) { 14295 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 14296 "setting to 1", dtrace_retain_max); 14297 dtrace_retain_max = 1; 14298 } 14299 14300 /* 14301 * Now discover our toxic ranges. 14302 */ 14303 dtrace_toxic_ranges(dtrace_toxrange_add); 14304 14305 /* 14306 * Before we register ourselves as a provider to our own framework, 14307 * we would like to assert that dtrace_provider is NULL -- but that's 14308 * not true if we were loaded as a dependency of a DTrace provider. 14309 * Once we've registered, we can assert that dtrace_provider is our 14310 * pseudo provider. 14311 */ 14312 (void) dtrace_register("dtrace", &dtrace_provider_attr, 14313 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 14314 14315 ASSERT(dtrace_provider != NULL); 14316 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 14317 14318 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 14319 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 14320 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 14321 dtrace_provider, NULL, NULL, "END", 0, NULL); 14322 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 14323 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 14324 14325 dtrace_anon_property(); 14326 mutex_exit(&cpu_lock); 14327 14328 /* 14329 * If DTrace helper tracing is enabled, we need to allocate the 14330 * trace buffer and initialize the values. 14331 */ 14332 if (dtrace_helptrace_enabled) { 14333 ASSERT(dtrace_helptrace_buffer == NULL); 14334 dtrace_helptrace_buffer = 14335 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 14336 dtrace_helptrace_next = 0; 14337 } 14338 14339 /* 14340 * If there are already providers, we must ask them to provide their 14341 * probes, and then match any anonymous enabling against them. Note 14342 * that there should be no other retained enablings at this time: 14343 * the only retained enablings at this time should be the anonymous 14344 * enabling. 14345 */ 14346 if (dtrace_anon.dta_enabling != NULL) { 14347 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 14348 14349 dtrace_enabling_provide(NULL); 14350 state = dtrace_anon.dta_state; 14351 14352 /* 14353 * We couldn't hold cpu_lock across the above call to 14354 * dtrace_enabling_provide(), but we must hold it to actually 14355 * enable the probes. We have to drop all of our locks, pick 14356 * up cpu_lock, and regain our locks before matching the 14357 * retained anonymous enabling. 14358 */ 14359 mutex_exit(&dtrace_lock); 14360 mutex_exit(&dtrace_provider_lock); 14361 14362 mutex_enter(&cpu_lock); 14363 mutex_enter(&dtrace_provider_lock); 14364 mutex_enter(&dtrace_lock); 14365 14366 if ((enab = dtrace_anon.dta_enabling) != NULL) 14367 (void) dtrace_enabling_match(enab, NULL); 14368 14369 mutex_exit(&cpu_lock); 14370 } 14371 14372 mutex_exit(&dtrace_lock); 14373 mutex_exit(&dtrace_provider_lock); 14374 14375 if (state != NULL) { 14376 /* 14377 * If we created any anonymous state, set it going now. 14378 */ 14379 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 14380 } 14381 14382 return (DDI_SUCCESS); 14383 } 14384 14385 /*ARGSUSED*/ 14386 static int 14387 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 14388 { 14389 dtrace_state_t *state; 14390 uint32_t priv; 14391 uid_t uid; 14392 zoneid_t zoneid; 14393 14394 if (getminor(*devp) == DTRACEMNRN_HELPER) 14395 return (0); 14396 14397 /* 14398 * If this wasn't an open with the "helper" minor, then it must be 14399 * the "dtrace" minor. 14400 */ 14401 if (getminor(*devp) != DTRACEMNRN_DTRACE) 14402 return (ENXIO); 14403 14404 /* 14405 * If no DTRACE_PRIV_* bits are set in the credential, then the 14406 * caller lacks sufficient permission to do anything with DTrace. 14407 */ 14408 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 14409 if (priv == DTRACE_PRIV_NONE) 14410 return (EACCES); 14411 14412 /* 14413 * Ask all providers to provide all their probes. 14414 */ 14415 mutex_enter(&dtrace_provider_lock); 14416 dtrace_probe_provide(NULL, NULL); 14417 mutex_exit(&dtrace_provider_lock); 14418 14419 mutex_enter(&cpu_lock); 14420 mutex_enter(&dtrace_lock); 14421 dtrace_opens++; 14422 dtrace_membar_producer(); 14423 14424 /* 14425 * If the kernel debugger is active (that is, if the kernel debugger 14426 * modified text in some way), we won't allow the open. 14427 */ 14428 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14429 dtrace_opens--; 14430 mutex_exit(&cpu_lock); 14431 mutex_exit(&dtrace_lock); 14432 return (EBUSY); 14433 } 14434 14435 state = dtrace_state_create(devp, cred_p); 14436 mutex_exit(&cpu_lock); 14437 14438 if (state == NULL) { 14439 if (--dtrace_opens == 0) 14440 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14441 mutex_exit(&dtrace_lock); 14442 return (EAGAIN); 14443 } 14444 14445 mutex_exit(&dtrace_lock); 14446 14447 return (0); 14448 } 14449 14450 /*ARGSUSED*/ 14451 static int 14452 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 14453 { 14454 minor_t minor = getminor(dev); 14455 dtrace_state_t *state; 14456 14457 if (minor == DTRACEMNRN_HELPER) 14458 return (0); 14459 14460 state = ddi_get_soft_state(dtrace_softstate, minor); 14461 14462 mutex_enter(&cpu_lock); 14463 mutex_enter(&dtrace_lock); 14464 14465 if (state->dts_anon) { 14466 /* 14467 * There is anonymous state. Destroy that first. 14468 */ 14469 ASSERT(dtrace_anon.dta_state == NULL); 14470 dtrace_state_destroy(state->dts_anon); 14471 } 14472 14473 dtrace_state_destroy(state); 14474 ASSERT(dtrace_opens > 0); 14475 if (--dtrace_opens == 0) 14476 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14477 14478 mutex_exit(&dtrace_lock); 14479 mutex_exit(&cpu_lock); 14480 14481 return (0); 14482 } 14483 14484 /*ARGSUSED*/ 14485 static int 14486 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 14487 { 14488 int rval; 14489 dof_helper_t help, *dhp = NULL; 14490 14491 switch (cmd) { 14492 case DTRACEHIOC_ADDDOF: 14493 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 14494 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 14495 return (EFAULT); 14496 } 14497 14498 dhp = &help; 14499 arg = (intptr_t)help.dofhp_dof; 14500 /*FALLTHROUGH*/ 14501 14502 case DTRACEHIOC_ADD: { 14503 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 14504 14505 if (dof == NULL) 14506 return (rval); 14507 14508 mutex_enter(&dtrace_lock); 14509 14510 /* 14511 * dtrace_helper_slurp() takes responsibility for the dof -- 14512 * it may free it now or it may save it and free it later. 14513 */ 14514 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 14515 *rv = rval; 14516 rval = 0; 14517 } else { 14518 rval = EINVAL; 14519 } 14520 14521 mutex_exit(&dtrace_lock); 14522 return (rval); 14523 } 14524 14525 case DTRACEHIOC_REMOVE: { 14526 mutex_enter(&dtrace_lock); 14527 rval = dtrace_helper_destroygen(arg); 14528 mutex_exit(&dtrace_lock); 14529 14530 return (rval); 14531 } 14532 14533 default: 14534 break; 14535 } 14536 14537 return (ENOTTY); 14538 } 14539 14540 /*ARGSUSED*/ 14541 static int 14542 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 14543 { 14544 minor_t minor = getminor(dev); 14545 dtrace_state_t *state; 14546 int rval; 14547 14548 if (minor == DTRACEMNRN_HELPER) 14549 return (dtrace_ioctl_helper(cmd, arg, rv)); 14550 14551 state = ddi_get_soft_state(dtrace_softstate, minor); 14552 14553 if (state->dts_anon) { 14554 ASSERT(dtrace_anon.dta_state == NULL); 14555 state = state->dts_anon; 14556 } 14557 14558 switch (cmd) { 14559 case DTRACEIOC_PROVIDER: { 14560 dtrace_providerdesc_t pvd; 14561 dtrace_provider_t *pvp; 14562 14563 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 14564 return (EFAULT); 14565 14566 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 14567 mutex_enter(&dtrace_provider_lock); 14568 14569 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 14570 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 14571 break; 14572 } 14573 14574 mutex_exit(&dtrace_provider_lock); 14575 14576 if (pvp == NULL) 14577 return (ESRCH); 14578 14579 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 14580 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 14581 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 14582 return (EFAULT); 14583 14584 return (0); 14585 } 14586 14587 case DTRACEIOC_EPROBE: { 14588 dtrace_eprobedesc_t epdesc; 14589 dtrace_ecb_t *ecb; 14590 dtrace_action_t *act; 14591 void *buf; 14592 size_t size; 14593 uintptr_t dest; 14594 int nrecs; 14595 14596 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 14597 return (EFAULT); 14598 14599 mutex_enter(&dtrace_lock); 14600 14601 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 14602 mutex_exit(&dtrace_lock); 14603 return (EINVAL); 14604 } 14605 14606 if (ecb->dte_probe == NULL) { 14607 mutex_exit(&dtrace_lock); 14608 return (EINVAL); 14609 } 14610 14611 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 14612 epdesc.dtepd_uarg = ecb->dte_uarg; 14613 epdesc.dtepd_size = ecb->dte_size; 14614 14615 nrecs = epdesc.dtepd_nrecs; 14616 epdesc.dtepd_nrecs = 0; 14617 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14618 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14619 continue; 14620 14621 epdesc.dtepd_nrecs++; 14622 } 14623 14624 /* 14625 * Now that we have the size, we need to allocate a temporary 14626 * buffer in which to store the complete description. We need 14627 * the temporary buffer to be able to drop dtrace_lock() 14628 * across the copyout(), below. 14629 */ 14630 size = sizeof (dtrace_eprobedesc_t) + 14631 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 14632 14633 buf = kmem_alloc(size, KM_SLEEP); 14634 dest = (uintptr_t)buf; 14635 14636 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 14637 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 14638 14639 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14640 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14641 continue; 14642 14643 if (nrecs-- == 0) 14644 break; 14645 14646 bcopy(&act->dta_rec, (void *)dest, 14647 sizeof (dtrace_recdesc_t)); 14648 dest += sizeof (dtrace_recdesc_t); 14649 } 14650 14651 mutex_exit(&dtrace_lock); 14652 14653 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14654 kmem_free(buf, size); 14655 return (EFAULT); 14656 } 14657 14658 kmem_free(buf, size); 14659 return (0); 14660 } 14661 14662 case DTRACEIOC_AGGDESC: { 14663 dtrace_aggdesc_t aggdesc; 14664 dtrace_action_t *act; 14665 dtrace_aggregation_t *agg; 14666 int nrecs; 14667 uint32_t offs; 14668 dtrace_recdesc_t *lrec; 14669 void *buf; 14670 size_t size; 14671 uintptr_t dest; 14672 14673 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 14674 return (EFAULT); 14675 14676 mutex_enter(&dtrace_lock); 14677 14678 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 14679 mutex_exit(&dtrace_lock); 14680 return (EINVAL); 14681 } 14682 14683 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 14684 14685 nrecs = aggdesc.dtagd_nrecs; 14686 aggdesc.dtagd_nrecs = 0; 14687 14688 offs = agg->dtag_base; 14689 lrec = &agg->dtag_action.dta_rec; 14690 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 14691 14692 for (act = agg->dtag_first; ; act = act->dta_next) { 14693 ASSERT(act->dta_intuple || 14694 DTRACEACT_ISAGG(act->dta_kind)); 14695 14696 /* 14697 * If this action has a record size of zero, it 14698 * denotes an argument to the aggregating action. 14699 * Because the presence of this record doesn't (or 14700 * shouldn't) affect the way the data is interpreted, 14701 * we don't copy it out to save user-level the 14702 * confusion of dealing with a zero-length record. 14703 */ 14704 if (act->dta_rec.dtrd_size == 0) { 14705 ASSERT(agg->dtag_hasarg); 14706 continue; 14707 } 14708 14709 aggdesc.dtagd_nrecs++; 14710 14711 if (act == &agg->dtag_action) 14712 break; 14713 } 14714 14715 /* 14716 * Now that we have the size, we need to allocate a temporary 14717 * buffer in which to store the complete description. We need 14718 * the temporary buffer to be able to drop dtrace_lock() 14719 * across the copyout(), below. 14720 */ 14721 size = sizeof (dtrace_aggdesc_t) + 14722 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 14723 14724 buf = kmem_alloc(size, KM_SLEEP); 14725 dest = (uintptr_t)buf; 14726 14727 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 14728 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 14729 14730 for (act = agg->dtag_first; ; act = act->dta_next) { 14731 dtrace_recdesc_t rec = act->dta_rec; 14732 14733 /* 14734 * See the comment in the above loop for why we pass 14735 * over zero-length records. 14736 */ 14737 if (rec.dtrd_size == 0) { 14738 ASSERT(agg->dtag_hasarg); 14739 continue; 14740 } 14741 14742 if (nrecs-- == 0) 14743 break; 14744 14745 rec.dtrd_offset -= offs; 14746 bcopy(&rec, (void *)dest, sizeof (rec)); 14747 dest += sizeof (dtrace_recdesc_t); 14748 14749 if (act == &agg->dtag_action) 14750 break; 14751 } 14752 14753 mutex_exit(&dtrace_lock); 14754 14755 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14756 kmem_free(buf, size); 14757 return (EFAULT); 14758 } 14759 14760 kmem_free(buf, size); 14761 return (0); 14762 } 14763 14764 case DTRACEIOC_ENABLE: { 14765 dof_hdr_t *dof; 14766 dtrace_enabling_t *enab = NULL; 14767 dtrace_vstate_t *vstate; 14768 int err = 0; 14769 14770 *rv = 0; 14771 14772 /* 14773 * If a NULL argument has been passed, we take this as our 14774 * cue to reevaluate our enablings. 14775 */ 14776 if (arg == NULL) { 14777 dtrace_enabling_matchall(); 14778 14779 return (0); 14780 } 14781 14782 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 14783 return (rval); 14784 14785 mutex_enter(&cpu_lock); 14786 mutex_enter(&dtrace_lock); 14787 vstate = &state->dts_vstate; 14788 14789 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14790 mutex_exit(&dtrace_lock); 14791 mutex_exit(&cpu_lock); 14792 dtrace_dof_destroy(dof); 14793 return (EBUSY); 14794 } 14795 14796 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 14797 mutex_exit(&dtrace_lock); 14798 mutex_exit(&cpu_lock); 14799 dtrace_dof_destroy(dof); 14800 return (EINVAL); 14801 } 14802 14803 if ((rval = dtrace_dof_options(dof, state)) != 0) { 14804 dtrace_enabling_destroy(enab); 14805 mutex_exit(&dtrace_lock); 14806 mutex_exit(&cpu_lock); 14807 dtrace_dof_destroy(dof); 14808 return (rval); 14809 } 14810 14811 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 14812 err = dtrace_enabling_retain(enab); 14813 } else { 14814 dtrace_enabling_destroy(enab); 14815 } 14816 14817 mutex_exit(&cpu_lock); 14818 mutex_exit(&dtrace_lock); 14819 dtrace_dof_destroy(dof); 14820 14821 return (err); 14822 } 14823 14824 case DTRACEIOC_REPLICATE: { 14825 dtrace_repldesc_t desc; 14826 dtrace_probedesc_t *match = &desc.dtrpd_match; 14827 dtrace_probedesc_t *create = &desc.dtrpd_create; 14828 int err; 14829 14830 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14831 return (EFAULT); 14832 14833 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14834 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14835 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14836 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14837 14838 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14839 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14840 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14841 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14842 14843 mutex_enter(&dtrace_lock); 14844 err = dtrace_enabling_replicate(state, match, create); 14845 mutex_exit(&dtrace_lock); 14846 14847 return (err); 14848 } 14849 14850 case DTRACEIOC_PROBEMATCH: 14851 case DTRACEIOC_PROBES: { 14852 dtrace_probe_t *probe = NULL; 14853 dtrace_probedesc_t desc; 14854 dtrace_probekey_t pkey; 14855 dtrace_id_t i; 14856 int m = 0; 14857 uint32_t priv; 14858 uid_t uid; 14859 zoneid_t zoneid; 14860 14861 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14862 return (EFAULT); 14863 14864 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14865 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14866 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14867 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14868 14869 /* 14870 * Before we attempt to match this probe, we want to give 14871 * all providers the opportunity to provide it. 14872 */ 14873 if (desc.dtpd_id == DTRACE_IDNONE) { 14874 mutex_enter(&dtrace_provider_lock); 14875 dtrace_probe_provide(&desc, NULL); 14876 mutex_exit(&dtrace_provider_lock); 14877 desc.dtpd_id++; 14878 } 14879 14880 if (cmd == DTRACEIOC_PROBEMATCH) { 14881 dtrace_probekey(&desc, &pkey); 14882 pkey.dtpk_id = DTRACE_IDNONE; 14883 } 14884 14885 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 14886 14887 mutex_enter(&dtrace_lock); 14888 14889 if (cmd == DTRACEIOC_PROBEMATCH) { 14890 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14891 if ((probe = dtrace_probes[i - 1]) != NULL && 14892 (m = dtrace_match_probe(probe, &pkey, 14893 priv, uid, zoneid)) != 0) 14894 break; 14895 } 14896 14897 if (m < 0) { 14898 mutex_exit(&dtrace_lock); 14899 return (EINVAL); 14900 } 14901 14902 } else { 14903 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14904 if ((probe = dtrace_probes[i - 1]) != NULL && 14905 dtrace_match_priv(probe, priv, uid, zoneid)) 14906 break; 14907 } 14908 } 14909 14910 if (probe == NULL) { 14911 mutex_exit(&dtrace_lock); 14912 return (ESRCH); 14913 } 14914 14915 dtrace_probe_description(probe, &desc); 14916 mutex_exit(&dtrace_lock); 14917 14918 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14919 return (EFAULT); 14920 14921 return (0); 14922 } 14923 14924 case DTRACEIOC_PROBEARG: { 14925 dtrace_argdesc_t desc; 14926 dtrace_probe_t *probe; 14927 dtrace_provider_t *prov; 14928 14929 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14930 return (EFAULT); 14931 14932 if (desc.dtargd_id == DTRACE_IDNONE) 14933 return (EINVAL); 14934 14935 if (desc.dtargd_ndx == DTRACE_ARGNONE) 14936 return (EINVAL); 14937 14938 mutex_enter(&dtrace_provider_lock); 14939 mutex_enter(&mod_lock); 14940 mutex_enter(&dtrace_lock); 14941 14942 if (desc.dtargd_id > dtrace_nprobes) { 14943 mutex_exit(&dtrace_lock); 14944 mutex_exit(&mod_lock); 14945 mutex_exit(&dtrace_provider_lock); 14946 return (EINVAL); 14947 } 14948 14949 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 14950 mutex_exit(&dtrace_lock); 14951 mutex_exit(&mod_lock); 14952 mutex_exit(&dtrace_provider_lock); 14953 return (EINVAL); 14954 } 14955 14956 mutex_exit(&dtrace_lock); 14957 14958 prov = probe->dtpr_provider; 14959 14960 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 14961 /* 14962 * There isn't any typed information for this probe. 14963 * Set the argument number to DTRACE_ARGNONE. 14964 */ 14965 desc.dtargd_ndx = DTRACE_ARGNONE; 14966 } else { 14967 desc.dtargd_native[0] = '\0'; 14968 desc.dtargd_xlate[0] = '\0'; 14969 desc.dtargd_mapping = desc.dtargd_ndx; 14970 14971 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 14972 probe->dtpr_id, probe->dtpr_arg, &desc); 14973 } 14974 14975 mutex_exit(&mod_lock); 14976 mutex_exit(&dtrace_provider_lock); 14977 14978 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14979 return (EFAULT); 14980 14981 return (0); 14982 } 14983 14984 case DTRACEIOC_GO: { 14985 processorid_t cpuid; 14986 rval = dtrace_state_go(state, &cpuid); 14987 14988 if (rval != 0) 14989 return (rval); 14990 14991 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 14992 return (EFAULT); 14993 14994 return (0); 14995 } 14996 14997 case DTRACEIOC_STOP: { 14998 processorid_t cpuid; 14999 15000 mutex_enter(&dtrace_lock); 15001 rval = dtrace_state_stop(state, &cpuid); 15002 mutex_exit(&dtrace_lock); 15003 15004 if (rval != 0) 15005 return (rval); 15006 15007 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15008 return (EFAULT); 15009 15010 return (0); 15011 } 15012 15013 case DTRACEIOC_DOFGET: { 15014 dof_hdr_t hdr, *dof; 15015 uint64_t len; 15016 15017 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 15018 return (EFAULT); 15019 15020 mutex_enter(&dtrace_lock); 15021 dof = dtrace_dof_create(state); 15022 mutex_exit(&dtrace_lock); 15023 15024 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 15025 rval = copyout(dof, (void *)arg, len); 15026 dtrace_dof_destroy(dof); 15027 15028 return (rval == 0 ? 0 : EFAULT); 15029 } 15030 15031 case DTRACEIOC_AGGSNAP: 15032 case DTRACEIOC_BUFSNAP: { 15033 dtrace_bufdesc_t desc; 15034 caddr_t cached; 15035 dtrace_buffer_t *buf; 15036 15037 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15038 return (EFAULT); 15039 15040 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 15041 return (EINVAL); 15042 15043 mutex_enter(&dtrace_lock); 15044 15045 if (cmd == DTRACEIOC_BUFSNAP) { 15046 buf = &state->dts_buffer[desc.dtbd_cpu]; 15047 } else { 15048 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 15049 } 15050 15051 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 15052 size_t sz = buf->dtb_offset; 15053 15054 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 15055 mutex_exit(&dtrace_lock); 15056 return (EBUSY); 15057 } 15058 15059 /* 15060 * If this buffer has already been consumed, we're 15061 * going to indicate that there's nothing left here 15062 * to consume. 15063 */ 15064 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 15065 mutex_exit(&dtrace_lock); 15066 15067 desc.dtbd_size = 0; 15068 desc.dtbd_drops = 0; 15069 desc.dtbd_errors = 0; 15070 desc.dtbd_oldest = 0; 15071 sz = sizeof (desc); 15072 15073 if (copyout(&desc, (void *)arg, sz) != 0) 15074 return (EFAULT); 15075 15076 return (0); 15077 } 15078 15079 /* 15080 * If this is a ring buffer that has wrapped, we want 15081 * to copy the whole thing out. 15082 */ 15083 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 15084 dtrace_buffer_polish(buf); 15085 sz = buf->dtb_size; 15086 } 15087 15088 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 15089 mutex_exit(&dtrace_lock); 15090 return (EFAULT); 15091 } 15092 15093 desc.dtbd_size = sz; 15094 desc.dtbd_drops = buf->dtb_drops; 15095 desc.dtbd_errors = buf->dtb_errors; 15096 desc.dtbd_oldest = buf->dtb_xamot_offset; 15097 15098 mutex_exit(&dtrace_lock); 15099 15100 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15101 return (EFAULT); 15102 15103 buf->dtb_flags |= DTRACEBUF_CONSUMED; 15104 15105 return (0); 15106 } 15107 15108 if (buf->dtb_tomax == NULL) { 15109 ASSERT(buf->dtb_xamot == NULL); 15110 mutex_exit(&dtrace_lock); 15111 return (ENOENT); 15112 } 15113 15114 cached = buf->dtb_tomax; 15115 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 15116 15117 dtrace_xcall(desc.dtbd_cpu, 15118 (dtrace_xcall_t)dtrace_buffer_switch, buf); 15119 15120 state->dts_errors += buf->dtb_xamot_errors; 15121 15122 /* 15123 * If the buffers did not actually switch, then the cross call 15124 * did not take place -- presumably because the given CPU is 15125 * not in the ready set. If this is the case, we'll return 15126 * ENOENT. 15127 */ 15128 if (buf->dtb_tomax == cached) { 15129 ASSERT(buf->dtb_xamot != cached); 15130 mutex_exit(&dtrace_lock); 15131 return (ENOENT); 15132 } 15133 15134 ASSERT(cached == buf->dtb_xamot); 15135 15136 /* 15137 * We have our snapshot; now copy it out. 15138 */ 15139 if (copyout(buf->dtb_xamot, desc.dtbd_data, 15140 buf->dtb_xamot_offset) != 0) { 15141 mutex_exit(&dtrace_lock); 15142 return (EFAULT); 15143 } 15144 15145 desc.dtbd_size = buf->dtb_xamot_offset; 15146 desc.dtbd_drops = buf->dtb_xamot_drops; 15147 desc.dtbd_errors = buf->dtb_xamot_errors; 15148 desc.dtbd_oldest = 0; 15149 15150 mutex_exit(&dtrace_lock); 15151 15152 /* 15153 * Finally, copy out the buffer description. 15154 */ 15155 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15156 return (EFAULT); 15157 15158 return (0); 15159 } 15160 15161 case DTRACEIOC_CONF: { 15162 dtrace_conf_t conf; 15163 15164 bzero(&conf, sizeof (conf)); 15165 conf.dtc_difversion = DIF_VERSION; 15166 conf.dtc_difintregs = DIF_DIR_NREGS; 15167 conf.dtc_diftupregs = DIF_DTR_NREGS; 15168 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 15169 15170 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15171 return (EFAULT); 15172 15173 return (0); 15174 } 15175 15176 case DTRACEIOC_STATUS: { 15177 dtrace_status_t stat; 15178 dtrace_dstate_t *dstate; 15179 int i, j; 15180 uint64_t nerrs; 15181 15182 /* 15183 * See the comment in dtrace_state_deadman() for the reason 15184 * for setting dts_laststatus to INT64_MAX before setting 15185 * it to the correct value. 15186 */ 15187 state->dts_laststatus = INT64_MAX; 15188 dtrace_membar_producer(); 15189 state->dts_laststatus = dtrace_gethrtime(); 15190 15191 bzero(&stat, sizeof (stat)); 15192 15193 mutex_enter(&dtrace_lock); 15194 15195 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 15196 mutex_exit(&dtrace_lock); 15197 return (ENOENT); 15198 } 15199 15200 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 15201 stat.dtst_exiting = 1; 15202 15203 nerrs = state->dts_errors; 15204 dstate = &state->dts_vstate.dtvs_dynvars; 15205 15206 for (i = 0; i < NCPU; i++) { 15207 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 15208 15209 stat.dtst_dyndrops += dcpu->dtdsc_drops; 15210 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 15211 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 15212 15213 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 15214 stat.dtst_filled++; 15215 15216 nerrs += state->dts_buffer[i].dtb_errors; 15217 15218 for (j = 0; j < state->dts_nspeculations; j++) { 15219 dtrace_speculation_t *spec; 15220 dtrace_buffer_t *buf; 15221 15222 spec = &state->dts_speculations[j]; 15223 buf = &spec->dtsp_buffer[i]; 15224 stat.dtst_specdrops += buf->dtb_xamot_drops; 15225 } 15226 } 15227 15228 stat.dtst_specdrops_busy = state->dts_speculations_busy; 15229 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 15230 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 15231 stat.dtst_dblerrors = state->dts_dblerrors; 15232 stat.dtst_killed = 15233 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 15234 stat.dtst_errors = nerrs; 15235 15236 mutex_exit(&dtrace_lock); 15237 15238 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 15239 return (EFAULT); 15240 15241 return (0); 15242 } 15243 15244 case DTRACEIOC_FORMAT: { 15245 dtrace_fmtdesc_t fmt; 15246 char *str; 15247 int len; 15248 15249 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 15250 return (EFAULT); 15251 15252 mutex_enter(&dtrace_lock); 15253 15254 if (fmt.dtfd_format == 0 || 15255 fmt.dtfd_format > state->dts_nformats) { 15256 mutex_exit(&dtrace_lock); 15257 return (EINVAL); 15258 } 15259 15260 /* 15261 * Format strings are allocated contiguously and they are 15262 * never freed; if a format index is less than the number 15263 * of formats, we can assert that the format map is non-NULL 15264 * and that the format for the specified index is non-NULL. 15265 */ 15266 ASSERT(state->dts_formats != NULL); 15267 str = state->dts_formats[fmt.dtfd_format - 1]; 15268 ASSERT(str != NULL); 15269 15270 len = strlen(str) + 1; 15271 15272 if (len > fmt.dtfd_length) { 15273 fmt.dtfd_length = len; 15274 15275 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 15276 mutex_exit(&dtrace_lock); 15277 return (EINVAL); 15278 } 15279 } else { 15280 if (copyout(str, fmt.dtfd_string, len) != 0) { 15281 mutex_exit(&dtrace_lock); 15282 return (EINVAL); 15283 } 15284 } 15285 15286 mutex_exit(&dtrace_lock); 15287 return (0); 15288 } 15289 15290 default: 15291 break; 15292 } 15293 15294 return (ENOTTY); 15295 } 15296 15297 /*ARGSUSED*/ 15298 static int 15299 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 15300 { 15301 dtrace_state_t *state; 15302 15303 switch (cmd) { 15304 case DDI_DETACH: 15305 break; 15306 15307 case DDI_SUSPEND: 15308 return (DDI_SUCCESS); 15309 15310 default: 15311 return (DDI_FAILURE); 15312 } 15313 15314 mutex_enter(&cpu_lock); 15315 mutex_enter(&dtrace_provider_lock); 15316 mutex_enter(&dtrace_lock); 15317 15318 ASSERT(dtrace_opens == 0); 15319 15320 if (dtrace_helpers > 0) { 15321 mutex_exit(&dtrace_provider_lock); 15322 mutex_exit(&dtrace_lock); 15323 mutex_exit(&cpu_lock); 15324 return (DDI_FAILURE); 15325 } 15326 15327 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 15328 mutex_exit(&dtrace_provider_lock); 15329 mutex_exit(&dtrace_lock); 15330 mutex_exit(&cpu_lock); 15331 return (DDI_FAILURE); 15332 } 15333 15334 dtrace_provider = NULL; 15335 15336 if ((state = dtrace_anon_grab()) != NULL) { 15337 /* 15338 * If there were ECBs on this state, the provider should 15339 * have not been allowed to detach; assert that there is 15340 * none. 15341 */ 15342 ASSERT(state->dts_necbs == 0); 15343 dtrace_state_destroy(state); 15344 15345 /* 15346 * If we're being detached with anonymous state, we need to 15347 * indicate to the kernel debugger that DTrace is now inactive. 15348 */ 15349 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15350 } 15351 15352 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 15353 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15354 dtrace_cpu_init = NULL; 15355 dtrace_helpers_cleanup = NULL; 15356 dtrace_helpers_fork = NULL; 15357 dtrace_cpustart_init = NULL; 15358 dtrace_cpustart_fini = NULL; 15359 dtrace_debugger_init = NULL; 15360 dtrace_debugger_fini = NULL; 15361 dtrace_modload = NULL; 15362 dtrace_modunload = NULL; 15363 15364 mutex_exit(&cpu_lock); 15365 15366 if (dtrace_helptrace_enabled) { 15367 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 15368 dtrace_helptrace_buffer = NULL; 15369 } 15370 15371 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 15372 dtrace_probes = NULL; 15373 dtrace_nprobes = 0; 15374 15375 dtrace_hash_destroy(dtrace_bymod); 15376 dtrace_hash_destroy(dtrace_byfunc); 15377 dtrace_hash_destroy(dtrace_byname); 15378 dtrace_bymod = NULL; 15379 dtrace_byfunc = NULL; 15380 dtrace_byname = NULL; 15381 15382 kmem_cache_destroy(dtrace_state_cache); 15383 vmem_destroy(dtrace_minor); 15384 vmem_destroy(dtrace_arena); 15385 15386 if (dtrace_toxrange != NULL) { 15387 kmem_free(dtrace_toxrange, 15388 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 15389 dtrace_toxrange = NULL; 15390 dtrace_toxranges = 0; 15391 dtrace_toxranges_max = 0; 15392 } 15393 15394 ddi_remove_minor_node(dtrace_devi, NULL); 15395 dtrace_devi = NULL; 15396 15397 ddi_soft_state_fini(&dtrace_softstate); 15398 15399 ASSERT(dtrace_vtime_references == 0); 15400 ASSERT(dtrace_opens == 0); 15401 ASSERT(dtrace_retained == NULL); 15402 15403 mutex_exit(&dtrace_lock); 15404 mutex_exit(&dtrace_provider_lock); 15405 15406 /* 15407 * We don't destroy the task queue until after we have dropped our 15408 * locks (taskq_destroy() may block on running tasks). To prevent 15409 * attempting to do work after we have effectively detached but before 15410 * the task queue has been destroyed, all tasks dispatched via the 15411 * task queue must check that DTrace is still attached before 15412 * performing any operation. 15413 */ 15414 taskq_destroy(dtrace_taskq); 15415 dtrace_taskq = NULL; 15416 15417 return (DDI_SUCCESS); 15418 } 15419 15420 /*ARGSUSED*/ 15421 static int 15422 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 15423 { 15424 int error; 15425 15426 switch (infocmd) { 15427 case DDI_INFO_DEVT2DEVINFO: 15428 *result = (void *)dtrace_devi; 15429 error = DDI_SUCCESS; 15430 break; 15431 case DDI_INFO_DEVT2INSTANCE: 15432 *result = (void *)0; 15433 error = DDI_SUCCESS; 15434 break; 15435 default: 15436 error = DDI_FAILURE; 15437 } 15438 return (error); 15439 } 15440 15441 static struct cb_ops dtrace_cb_ops = { 15442 dtrace_open, /* open */ 15443 dtrace_close, /* close */ 15444 nulldev, /* strategy */ 15445 nulldev, /* print */ 15446 nodev, /* dump */ 15447 nodev, /* read */ 15448 nodev, /* write */ 15449 dtrace_ioctl, /* ioctl */ 15450 nodev, /* devmap */ 15451 nodev, /* mmap */ 15452 nodev, /* segmap */ 15453 nochpoll, /* poll */ 15454 ddi_prop_op, /* cb_prop_op */ 15455 0, /* streamtab */ 15456 D_NEW | D_MP /* Driver compatibility flag */ 15457 }; 15458 15459 static struct dev_ops dtrace_ops = { 15460 DEVO_REV, /* devo_rev */ 15461 0, /* refcnt */ 15462 dtrace_info, /* get_dev_info */ 15463 nulldev, /* identify */ 15464 nulldev, /* probe */ 15465 dtrace_attach, /* attach */ 15466 dtrace_detach, /* detach */ 15467 nodev, /* reset */ 15468 &dtrace_cb_ops, /* driver operations */ 15469 NULL, /* bus operations */ 15470 nodev /* dev power */ 15471 }; 15472 15473 static struct modldrv modldrv = { 15474 &mod_driverops, /* module type (this is a pseudo driver) */ 15475 "Dynamic Tracing", /* name of module */ 15476 &dtrace_ops, /* driver ops */ 15477 }; 15478 15479 static struct modlinkage modlinkage = { 15480 MODREV_1, 15481 (void *)&modldrv, 15482 NULL 15483 }; 15484 15485 int 15486 _init(void) 15487 { 15488 return (mod_install(&modlinkage)); 15489 } 15490 15491 int 15492 _info(struct modinfo *modinfop) 15493 { 15494 return (mod_info(&modlinkage, modinfop)); 15495 } 15496 15497 int 15498 _fini(void) 15499 { 15500 return (mod_remove(&modlinkage)); 15501 } 15502