xref: /titanic_41/usr/src/uts/common/dtrace/dtrace.c (revision 40cb5e5daa7b80bb70fcf8dadfb20f9281566331)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * DTrace - Dynamic Tracing for Solaris
31  *
32  * This is the implementation of the Solaris Dynamic Tracing framework
33  * (DTrace).  The user-visible interface to DTrace is described at length in
34  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
35  * library, the in-kernel DTrace framework, and the DTrace providers are
36  * described in the block comments in the <sys/dtrace.h> header file.  The
37  * internal architecture of DTrace is described in the block comments in the
38  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
39  * implementation very much assume mastery of all of these sources; if one has
40  * an unanswered question about the implementation, one should consult them
41  * first.
42  *
43  * The functions here are ordered roughly as follows:
44  *
45  *   - Probe context functions
46  *   - Probe hashing functions
47  *   - Non-probe context utility functions
48  *   - Matching functions
49  *   - Provider-to-Framework API functions
50  *   - Probe management functions
51  *   - DIF object functions
52  *   - Format functions
53  *   - Predicate functions
54  *   - ECB functions
55  *   - Buffer functions
56  *   - Enabling functions
57  *   - DOF functions
58  *   - Anonymous enabling functions
59  *   - Consumer state functions
60  *   - Helper functions
61  *   - Hook functions
62  *   - Driver cookbook functions
63  *
64  * Each group of functions begins with a block comment labelled the "DTrace
65  * [Group] Functions", allowing one to find each block by searching forward
66  * on capital-f functions.
67  */
68 #include <sys/errno.h>
69 #include <sys/stat.h>
70 #include <sys/modctl.h>
71 #include <sys/conf.h>
72 #include <sys/systm.h>
73 #include <sys/ddi.h>
74 #include <sys/sunddi.h>
75 #include <sys/cpuvar.h>
76 #include <sys/kmem.h>
77 #include <sys/strsubr.h>
78 #include <sys/sysmacros.h>
79 #include <sys/dtrace_impl.h>
80 #include <sys/atomic.h>
81 #include <sys/cmn_err.h>
82 #include <sys/mutex_impl.h>
83 #include <sys/rwlock_impl.h>
84 #include <sys/ctf_api.h>
85 #include <sys/panic.h>
86 #include <sys/priv_impl.h>
87 #include <sys/policy.h>
88 #include <sys/cred_impl.h>
89 #include <sys/procfs_isa.h>
90 #include <sys/taskq.h>
91 #include <sys/mkdev.h>
92 #include <sys/kdi.h>
93 #include <sys/zone.h>
94 
95 /*
96  * DTrace Tunable Variables
97  *
98  * The following variables may be tuned by adding a line to /etc/system that
99  * includes both the name of the DTrace module ("dtrace") and the name of the
100  * variable.  For example:
101  *
102  *   set dtrace:dtrace_destructive_disallow = 1
103  *
104  * In general, the only variables that one should be tuning this way are those
105  * that affect system-wide DTrace behavior, and for which the default behavior
106  * is undesirable.  Most of these variables are tunable on a per-consumer
107  * basis using DTrace options, and need not be tuned on a system-wide basis.
108  * When tuning these variables, avoid pathological values; while some attempt
109  * is made to verify the integrity of these variables, they are not considered
110  * part of the supported interface to DTrace, and they are therefore not
111  * checked comprehensively.  Further, these variables should not be tuned
112  * dynamically via "mdb -kw" or other means; they should only be tuned via
113  * /etc/system.
114  */
115 int		dtrace_destructive_disallow = 0;
116 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
117 size_t		dtrace_difo_maxsize = (256 * 1024);
118 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
119 size_t		dtrace_global_maxsize = (16 * 1024);
120 size_t		dtrace_actions_max = (16 * 1024);
121 size_t		dtrace_retain_max = 1024;
122 dtrace_optval_t	dtrace_helper_actions_max = 32;
123 dtrace_optval_t	dtrace_helper_providers_max = 32;
124 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
125 size_t		dtrace_strsize_default = 256;
126 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
127 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
128 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
129 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
130 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
132 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
133 dtrace_optval_t	dtrace_nspec_default = 1;
134 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
135 dtrace_optval_t dtrace_stackframes_default = 20;
136 dtrace_optval_t dtrace_ustackframes_default = 20;
137 dtrace_optval_t dtrace_jstackframes_default = 50;
138 dtrace_optval_t dtrace_jstackstrsize_default = 512;
139 int		dtrace_msgdsize_max = 128;
140 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
141 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
142 int		dtrace_devdepth_max = 32;
143 int		dtrace_err_verbose;
144 hrtime_t	dtrace_deadman_interval = NANOSEC;
145 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
146 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
147 
148 /*
149  * DTrace External Variables
150  *
151  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
152  * available to DTrace consumers via the backtick (`) syntax.  One of these,
153  * dtrace_zero, is made deliberately so:  it is provided as a source of
154  * well-known, zero-filled memory.  While this variable is not documented,
155  * it is used by some translators as an implementation detail.
156  */
157 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
158 
159 /*
160  * DTrace Internal Variables
161  */
162 static dev_info_t	*dtrace_devi;		/* device info */
163 static vmem_t		*dtrace_arena;		/* probe ID arena */
164 static vmem_t		*dtrace_minor;		/* minor number arena */
165 static taskq_t		*dtrace_taskq;		/* task queue */
166 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
167 static int		dtrace_nprobes;		/* number of probes */
168 static dtrace_provider_t *dtrace_provider;	/* provider list */
169 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
170 static int		dtrace_opens;		/* number of opens */
171 static int		dtrace_helpers;		/* number of helpers */
172 static void		*dtrace_softstate;	/* softstate pointer */
173 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
174 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
175 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
176 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
177 static int		dtrace_toxranges;	/* number of toxic ranges */
178 static int		dtrace_toxranges_max;	/* size of toxic range array */
179 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
180 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
181 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
182 static kthread_t	*dtrace_panicked;	/* panicking thread */
183 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
184 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
185 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
186 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
187 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
188 
189 /*
190  * DTrace Locking
191  * DTrace is protected by three (relatively coarse-grained) locks:
192  *
193  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
194  *     including enabling state, probes, ECBs, consumer state, helper state,
195  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
196  *     probe context is lock-free -- synchronization is handled via the
197  *     dtrace_sync() cross call mechanism.
198  *
199  * (2) dtrace_provider_lock is required when manipulating provider state, or
200  *     when provider state must be held constant.
201  *
202  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
203  *     when meta provider state must be held constant.
204  *
205  * The lock ordering between these three locks is dtrace_meta_lock before
206  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
207  * several places where dtrace_provider_lock is held by the framework as it
208  * calls into the providers -- which then call back into the framework,
209  * grabbing dtrace_lock.)
210  *
211  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
212  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
213  * role as a coarse-grained lock; it is acquired before both of these locks.
214  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
215  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
216  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
217  * acquired _between_ dtrace_provider_lock and dtrace_lock.
218  */
219 static kmutex_t		dtrace_lock;		/* probe state lock */
220 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
221 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
222 
223 /*
224  * DTrace Provider Variables
225  *
226  * These are the variables relating to DTrace as a provider (that is, the
227  * provider of the BEGIN, END, and ERROR probes).
228  */
229 static dtrace_pattr_t	dtrace_provider_attr = {
230 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
231 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
232 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
235 };
236 
237 static void
238 dtrace_nullop(void)
239 {}
240 
241 static dtrace_pops_t	dtrace_provider_ops = {
242 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
243 	(void (*)(void *, struct modctl *))dtrace_nullop,
244 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
245 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
246 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
247 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
248 	NULL,
249 	NULL,
250 	NULL,
251 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
252 };
253 
254 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
255 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
256 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
257 
258 /*
259  * DTrace Helper Tracing Variables
260  */
261 uint32_t dtrace_helptrace_next = 0;
262 uint32_t dtrace_helptrace_nlocals;
263 char	*dtrace_helptrace_buffer;
264 int	dtrace_helptrace_bufsize = 512 * 1024;
265 
266 #ifdef DEBUG
267 int	dtrace_helptrace_enabled = 1;
268 #else
269 int	dtrace_helptrace_enabled = 0;
270 #endif
271 
272 /*
273  * DTrace Error Hashing
274  *
275  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
276  * table.  This is very useful for checking coverage of tests that are
277  * expected to induce DIF or DOF processing errors, and may be useful for
278  * debugging problems in the DIF code generator or in DOF generation .  The
279  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
280  */
281 #ifdef DEBUG
282 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
283 static const char *dtrace_errlast;
284 static kthread_t *dtrace_errthread;
285 static kmutex_t dtrace_errlock;
286 #endif
287 
288 /*
289  * DTrace Macros and Constants
290  *
291  * These are various macros that are useful in various spots in the
292  * implementation, along with a few random constants that have no meaning
293  * outside of the implementation.  There is no real structure to this cpp
294  * mishmash -- but is there ever?
295  */
296 #define	DTRACE_HASHSTR(hash, probe)	\
297 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
298 
299 #define	DTRACE_HASHNEXT(hash, probe)	\
300 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
301 
302 #define	DTRACE_HASHPREV(hash, probe)	\
303 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
304 
305 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
306 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
307 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
308 
309 #define	DTRACE_AGGHASHSIZE_SLEW		17
310 
311 /*
312  * The key for a thread-local variable consists of the lower 61 bits of the
313  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
314  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
315  * equal to a variable identifier.  This is necessary (but not sufficient) to
316  * assure that global associative arrays never collide with thread-local
317  * variables.  To guarantee that they cannot collide, we must also define the
318  * order for keying dynamic variables.  That order is:
319  *
320  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
321  *
322  * Because the variable-key and the tls-key are in orthogonal spaces, there is
323  * no way for a global variable key signature to match a thread-local key
324  * signature.
325  */
326 #define	DTRACE_TLS_THRKEY(where) { \
327 	uint_t intr = 0; \
328 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
329 	for (; actv; actv >>= 1) \
330 		intr++; \
331 	ASSERT(intr < (1 << 3)); \
332 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
333 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
334 }
335 
336 #define	DT_BSWAP_8(x)	((x) & 0xff)
337 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
338 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
339 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
340 
341 #define	DTRACE_STORE(type, tomax, offset, what) \
342 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
343 
344 #ifndef __i386
345 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
346 	if (addr & (size - 1)) {					\
347 		*flags |= CPU_DTRACE_BADALIGN;				\
348 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
349 		return (0);						\
350 	}
351 #else
352 #define	DTRACE_ALIGNCHECK(addr, size, flags)
353 #endif
354 
355 /*
356  * Test whether a range of memory starting at testaddr of size testsz falls
357  * within the range of memory described by addr, sz, taking care to avoid
358  * problems with overflow and underflow of the unsigned quantities.
359  */
360 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
361 	((testaddr) - (baseaddr) < (basesz) && \
362 	(testaddr) + (testsz) - (baseaddr) <= (basesz))
363 
364 #define	DTRACE_LOADFUNC(bits)						\
365 /*CSTYLED*/								\
366 uint##bits##_t								\
367 dtrace_load##bits(uintptr_t addr)					\
368 {									\
369 	size_t size = bits / NBBY;					\
370 	/*CSTYLED*/							\
371 	uint##bits##_t rval;						\
372 	int i;								\
373 	volatile uint16_t *flags = (volatile uint16_t *)		\
374 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
375 									\
376 	DTRACE_ALIGNCHECK(addr, size, flags);				\
377 									\
378 	for (i = 0; i < dtrace_toxranges; i++) {			\
379 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
380 			continue;					\
381 									\
382 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
383 			continue;					\
384 									\
385 		/*							\
386 		 * This address falls within a toxic region; return 0.	\
387 		 */							\
388 		*flags |= CPU_DTRACE_BADADDR;				\
389 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
390 		return (0);						\
391 	}								\
392 									\
393 	*flags |= CPU_DTRACE_NOFAULT;					\
394 	/*CSTYLED*/							\
395 	rval = *((volatile uint##bits##_t *)addr);			\
396 	*flags &= ~CPU_DTRACE_NOFAULT;					\
397 									\
398 	return (rval);							\
399 }
400 
401 #ifdef _LP64
402 #define	dtrace_loadptr	dtrace_load64
403 #else
404 #define	dtrace_loadptr	dtrace_load32
405 #endif
406 
407 #define	DTRACE_DYNHASH_FREE	0
408 #define	DTRACE_DYNHASH_SINK	1
409 #define	DTRACE_DYNHASH_VALID	2
410 
411 #define	DTRACE_MATCH_NEXT	0
412 #define	DTRACE_MATCH_DONE	1
413 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
414 #define	DTRACE_STATE_ALIGN	64
415 
416 #define	DTRACE_FLAGS2FLT(flags)						\
417 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
418 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
419 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
420 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
421 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
422 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
423 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
424 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
425 	DTRACEFLT_UNKNOWN)
426 
427 #define	DTRACEACT_ISSTRING(act)						\
428 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
429 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
430 
431 static size_t dtrace_strlen(const char *, size_t);
432 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
433 static void dtrace_enabling_provide(dtrace_provider_t *);
434 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
435 static void dtrace_enabling_matchall(void);
436 static dtrace_state_t *dtrace_anon_grab(void);
437 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
438     dtrace_state_t *, uint64_t, uint64_t);
439 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
440 static void dtrace_buffer_drop(dtrace_buffer_t *);
441 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
442     dtrace_state_t *, dtrace_mstate_t *);
443 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
444     dtrace_optval_t);
445 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
446 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
447 
448 /*
449  * DTrace Probe Context Functions
450  *
451  * These functions are called from probe context.  Because probe context is
452  * any context in which C may be called, arbitrarily locks may be held,
453  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
454  * As a result, functions called from probe context may only call other DTrace
455  * support functions -- they may not interact at all with the system at large.
456  * (Note that the ASSERT macro is made probe-context safe by redefining it in
457  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
458  * loads are to be performed from probe context, they _must_ be in terms of
459  * the safe dtrace_load*() variants.
460  *
461  * Some functions in this block are not actually called from probe context;
462  * for these functions, there will be a comment above the function reading
463  * "Note:  not called from probe context."
464  */
465 void
466 dtrace_panic(const char *format, ...)
467 {
468 	va_list alist;
469 
470 	va_start(alist, format);
471 	dtrace_vpanic(format, alist);
472 	va_end(alist);
473 }
474 
475 int
476 dtrace_assfail(const char *a, const char *f, int l)
477 {
478 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
479 
480 	/*
481 	 * We just need something here that even the most clever compiler
482 	 * cannot optimize away.
483 	 */
484 	return (a[(uintptr_t)f]);
485 }
486 
487 /*
488  * Atomically increment a specified error counter from probe context.
489  */
490 static void
491 dtrace_error(uint32_t *counter)
492 {
493 	/*
494 	 * Most counters stored to in probe context are per-CPU counters.
495 	 * However, there are some error conditions that are sufficiently
496 	 * arcane that they don't merit per-CPU storage.  If these counters
497 	 * are incremented concurrently on different CPUs, scalability will be
498 	 * adversely affected -- but we don't expect them to be white-hot in a
499 	 * correctly constructed enabling...
500 	 */
501 	uint32_t oval, nval;
502 
503 	do {
504 		oval = *counter;
505 
506 		if ((nval = oval + 1) == 0) {
507 			/*
508 			 * If the counter would wrap, set it to 1 -- assuring
509 			 * that the counter is never zero when we have seen
510 			 * errors.  (The counter must be 32-bits because we
511 			 * aren't guaranteed a 64-bit compare&swap operation.)
512 			 * To save this code both the infamy of being fingered
513 			 * by a priggish news story and the indignity of being
514 			 * the target of a neo-puritan witch trial, we're
515 			 * carefully avoiding any colorful description of the
516 			 * likelihood of this condition -- but suffice it to
517 			 * say that it is only slightly more likely than the
518 			 * overflow of predicate cache IDs, as discussed in
519 			 * dtrace_predicate_create().
520 			 */
521 			nval = 1;
522 		}
523 	} while (dtrace_cas32(counter, oval, nval) != oval);
524 }
525 
526 /*
527  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
528  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
529  */
530 DTRACE_LOADFUNC(8)
531 DTRACE_LOADFUNC(16)
532 DTRACE_LOADFUNC(32)
533 DTRACE_LOADFUNC(64)
534 
535 static int
536 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
537 {
538 	if (dest < mstate->dtms_scratch_base)
539 		return (0);
540 
541 	if (dest + size < dest)
542 		return (0);
543 
544 	if (dest + size > mstate->dtms_scratch_ptr)
545 		return (0);
546 
547 	return (1);
548 }
549 
550 static int
551 dtrace_canstore_statvar(uint64_t addr, size_t sz,
552     dtrace_statvar_t **svars, int nsvars)
553 {
554 	int i;
555 
556 	for (i = 0; i < nsvars; i++) {
557 		dtrace_statvar_t *svar = svars[i];
558 
559 		if (svar == NULL || svar->dtsv_size == 0)
560 			continue;
561 
562 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
563 			return (1);
564 	}
565 
566 	return (0);
567 }
568 
569 /*
570  * Check to see if the address is within a memory region to which a store may
571  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
572  * region.  The caller of dtrace_canstore() is responsible for performing any
573  * alignment checks that are needed before stores are actually executed.
574  */
575 static int
576 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
577     dtrace_vstate_t *vstate)
578 {
579 	/*
580 	 * First, check to see if the address is in scratch space...
581 	 */
582 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
583 	    mstate->dtms_scratch_size))
584 		return (1);
585 
586 	/*
587 	 * Now check to see if it's a dynamic variable.  This check will pick
588 	 * up both thread-local variables and any global dynamically-allocated
589 	 * variables.
590 	 */
591 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
592 	    vstate->dtvs_dynvars.dtds_size))
593 		return (1);
594 
595 	/*
596 	 * Finally, check the static local and global variables.  These checks
597 	 * take the longest, so we perform them last.
598 	 */
599 	if (dtrace_canstore_statvar(addr, sz,
600 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
601 		return (1);
602 
603 	if (dtrace_canstore_statvar(addr, sz,
604 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
605 		return (1);
606 
607 	return (0);
608 }
609 
610 
611 /*
612  * Convenience routine to check to see if the address is within a memory
613  * region in which a load may be issued given the user's privilege level;
614  * if not, it sets the appropriate error flags and loads 'addr' into the
615  * illegal value slot.
616  *
617  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
618  * appropriate memory access protection.
619  */
620 static int
621 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
622     dtrace_vstate_t *vstate)
623 {
624 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
625 
626 	/*
627 	 * If we hold the privilege to read from kernel memory, then
628 	 * everything is readable.
629 	 */
630 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
631 		return (1);
632 
633 	/*
634 	 * You can obviously read that which you can store.
635 	 */
636 	if (dtrace_canstore(addr, sz, mstate, vstate))
637 		return (1);
638 
639 	/*
640 	 * We're allowed to read from our own string table.
641 	 */
642 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
643 	    mstate->dtms_difo->dtdo_strlen))
644 		return (1);
645 
646 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
647 	*illval = addr;
648 	return (0);
649 }
650 
651 /*
652  * Convenience routine to check to see if a given string is within a memory
653  * region in which a load may be issued given the user's privilege level;
654  * this exists so that we don't need to issue unnecessary dtrace_strlen()
655  * calls in the event that the user has all privileges.
656  */
657 static int
658 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
659     dtrace_vstate_t *vstate)
660 {
661 	size_t strsz;
662 
663 	/*
664 	 * If we hold the privilege to read from kernel memory, then
665 	 * everything is readable.
666 	 */
667 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
668 		return (1);
669 
670 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
671 	if (dtrace_canload(addr, strsz, mstate, vstate))
672 		return (1);
673 
674 	return (0);
675 }
676 
677 /*
678  * Convenience routine to check to see if a given variable is within a memory
679  * region in which a load may be issued given the user's privilege level.
680  */
681 static int
682 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
683     dtrace_vstate_t *vstate)
684 {
685 	size_t sz;
686 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
687 
688 	/*
689 	 * If we hold the privilege to read from kernel memory, then
690 	 * everything is readable.
691 	 */
692 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
693 		return (1);
694 
695 	if (type->dtdt_kind == DIF_TYPE_STRING)
696 		sz = dtrace_strlen(src,
697 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
698 	else
699 		sz = type->dtdt_size;
700 
701 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
702 }
703 
704 /*
705  * Compare two strings using safe loads.
706  */
707 static int
708 dtrace_strncmp(char *s1, char *s2, size_t limit)
709 {
710 	uint8_t c1, c2;
711 	volatile uint16_t *flags;
712 
713 	if (s1 == s2 || limit == 0)
714 		return (0);
715 
716 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
717 
718 	do {
719 		if (s1 == NULL) {
720 			c1 = '\0';
721 		} else {
722 			c1 = dtrace_load8((uintptr_t)s1++);
723 		}
724 
725 		if (s2 == NULL) {
726 			c2 = '\0';
727 		} else {
728 			c2 = dtrace_load8((uintptr_t)s2++);
729 		}
730 
731 		if (c1 != c2)
732 			return (c1 - c2);
733 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
734 
735 	return (0);
736 }
737 
738 /*
739  * Compute strlen(s) for a string using safe memory accesses.  The additional
740  * len parameter is used to specify a maximum length to ensure completion.
741  */
742 static size_t
743 dtrace_strlen(const char *s, size_t lim)
744 {
745 	uint_t len;
746 
747 	for (len = 0; len != lim; len++) {
748 		if (dtrace_load8((uintptr_t)s++) == '\0')
749 			break;
750 	}
751 
752 	return (len);
753 }
754 
755 /*
756  * Check if an address falls within a toxic region.
757  */
758 static int
759 dtrace_istoxic(uintptr_t kaddr, size_t size)
760 {
761 	uintptr_t taddr, tsize;
762 	int i;
763 
764 	for (i = 0; i < dtrace_toxranges; i++) {
765 		taddr = dtrace_toxrange[i].dtt_base;
766 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
767 
768 		if (kaddr - taddr < tsize) {
769 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
770 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
771 			return (1);
772 		}
773 
774 		if (taddr - kaddr < size) {
775 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
776 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
777 			return (1);
778 		}
779 	}
780 
781 	return (0);
782 }
783 
784 /*
785  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
786  * memory specified by the DIF program.  The dst is assumed to be safe memory
787  * that we can store to directly because it is managed by DTrace.  As with
788  * standard bcopy, overlapping copies are handled properly.
789  */
790 static void
791 dtrace_bcopy(const void *src, void *dst, size_t len)
792 {
793 	if (len != 0) {
794 		uint8_t *s1 = dst;
795 		const uint8_t *s2 = src;
796 
797 		if (s1 <= s2) {
798 			do {
799 				*s1++ = dtrace_load8((uintptr_t)s2++);
800 			} while (--len != 0);
801 		} else {
802 			s2 += len;
803 			s1 += len;
804 
805 			do {
806 				*--s1 = dtrace_load8((uintptr_t)--s2);
807 			} while (--len != 0);
808 		}
809 	}
810 }
811 
812 /*
813  * Copy src to dst using safe memory accesses, up to either the specified
814  * length, or the point that a nul byte is encountered.  The src is assumed to
815  * be unsafe memory specified by the DIF program.  The dst is assumed to be
816  * safe memory that we can store to directly because it is managed by DTrace.
817  * Unlike dtrace_bcopy(), overlapping regions are not handled.
818  */
819 static void
820 dtrace_strcpy(const void *src, void *dst, size_t len)
821 {
822 	if (len != 0) {
823 		uint8_t *s1 = dst, c;
824 		const uint8_t *s2 = src;
825 
826 		do {
827 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
828 		} while (--len != 0 && c != '\0');
829 	}
830 }
831 
832 /*
833  * Copy src to dst, deriving the size and type from the specified (BYREF)
834  * variable type.  The src is assumed to be unsafe memory specified by the DIF
835  * program.  The dst is assumed to be DTrace variable memory that is of the
836  * specified type; we assume that we can store to directly.
837  */
838 static void
839 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
840 {
841 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
842 
843 	if (type->dtdt_kind == DIF_TYPE_STRING) {
844 		dtrace_strcpy(src, dst, type->dtdt_size);
845 	} else {
846 		dtrace_bcopy(src, dst, type->dtdt_size);
847 	}
848 }
849 
850 /*
851  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
852  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
853  * safe memory that we can access directly because it is managed by DTrace.
854  */
855 static int
856 dtrace_bcmp(const void *s1, const void *s2, size_t len)
857 {
858 	volatile uint16_t *flags;
859 
860 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
861 
862 	if (s1 == s2)
863 		return (0);
864 
865 	if (s1 == NULL || s2 == NULL)
866 		return (1);
867 
868 	if (s1 != s2 && len != 0) {
869 		const uint8_t *ps1 = s1;
870 		const uint8_t *ps2 = s2;
871 
872 		do {
873 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
874 				return (1);
875 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
876 	}
877 	return (0);
878 }
879 
880 /*
881  * Zero the specified region using a simple byte-by-byte loop.  Note that this
882  * is for safe DTrace-managed memory only.
883  */
884 static void
885 dtrace_bzero(void *dst, size_t len)
886 {
887 	uchar_t *cp;
888 
889 	for (cp = dst; len != 0; len--)
890 		*cp++ = 0;
891 }
892 
893 /*
894  * This privilege check should be used by actions and subroutines to
895  * verify that the user credentials of the process that enabled the
896  * invoking ECB match the target credentials
897  */
898 static int
899 dtrace_priv_proc_common_user(dtrace_state_t *state)
900 {
901 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
902 
903 	/*
904 	 * We should always have a non-NULL state cred here, since if cred
905 	 * is null (anonymous tracing), we fast-path bypass this routine.
906 	 */
907 	ASSERT(s_cr != NULL);
908 
909 	if ((cr = CRED()) != NULL &&
910 	    s_cr->cr_uid == cr->cr_uid &&
911 	    s_cr->cr_uid == cr->cr_ruid &&
912 	    s_cr->cr_uid == cr->cr_suid &&
913 	    s_cr->cr_gid == cr->cr_gid &&
914 	    s_cr->cr_gid == cr->cr_rgid &&
915 	    s_cr->cr_gid == cr->cr_sgid)
916 		return (1);
917 
918 	return (0);
919 }
920 
921 /*
922  * This privilege check should be used by actions and subroutines to
923  * verify that the zone of the process that enabled the invoking ECB
924  * matches the target credentials
925  */
926 static int
927 dtrace_priv_proc_common_zone(dtrace_state_t *state)
928 {
929 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
930 
931 	/*
932 	 * We should always have a non-NULL state cred here, since if cred
933 	 * is null (anonymous tracing), we fast-path bypass this routine.
934 	 */
935 	ASSERT(s_cr != NULL);
936 
937 	if ((cr = CRED()) != NULL &&
938 	    s_cr->cr_zone == cr->cr_zone)
939 		return (1);
940 
941 	return (0);
942 }
943 
944 /*
945  * This privilege check should be used by actions and subroutines to
946  * verify that the process has not setuid or changed credentials.
947  */
948 static int
949 dtrace_priv_proc_common_nocd()
950 {
951 	proc_t *proc;
952 
953 	if ((proc = ttoproc(curthread)) != NULL &&
954 	    !(proc->p_flag & SNOCD))
955 		return (1);
956 
957 	return (0);
958 }
959 
960 static int
961 dtrace_priv_proc_destructive(dtrace_state_t *state)
962 {
963 	int action = state->dts_cred.dcr_action;
964 
965 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
966 	    dtrace_priv_proc_common_zone(state) == 0)
967 		goto bad;
968 
969 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
970 	    dtrace_priv_proc_common_user(state) == 0)
971 		goto bad;
972 
973 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
974 	    dtrace_priv_proc_common_nocd() == 0)
975 		goto bad;
976 
977 	return (1);
978 
979 bad:
980 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
981 
982 	return (0);
983 }
984 
985 static int
986 dtrace_priv_proc_control(dtrace_state_t *state)
987 {
988 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
989 		return (1);
990 
991 	if (dtrace_priv_proc_common_zone(state) &&
992 	    dtrace_priv_proc_common_user(state) &&
993 	    dtrace_priv_proc_common_nocd())
994 		return (1);
995 
996 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
997 
998 	return (0);
999 }
1000 
1001 static int
1002 dtrace_priv_proc(dtrace_state_t *state)
1003 {
1004 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1005 		return (1);
1006 
1007 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1008 
1009 	return (0);
1010 }
1011 
1012 static int
1013 dtrace_priv_kernel(dtrace_state_t *state)
1014 {
1015 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1016 		return (1);
1017 
1018 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1019 
1020 	return (0);
1021 }
1022 
1023 static int
1024 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1025 {
1026 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1027 		return (1);
1028 
1029 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1030 
1031 	return (0);
1032 }
1033 
1034 /*
1035  * Note:  not called from probe context.  This function is called
1036  * asynchronously (and at a regular interval) from outside of probe context to
1037  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1038  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1039  */
1040 void
1041 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1042 {
1043 	dtrace_dynvar_t *dirty;
1044 	dtrace_dstate_percpu_t *dcpu;
1045 	int i, work = 0;
1046 
1047 	for (i = 0; i < NCPU; i++) {
1048 		dcpu = &dstate->dtds_percpu[i];
1049 
1050 		ASSERT(dcpu->dtdsc_rinsing == NULL);
1051 
1052 		/*
1053 		 * If the dirty list is NULL, there is no dirty work to do.
1054 		 */
1055 		if (dcpu->dtdsc_dirty == NULL)
1056 			continue;
1057 
1058 		/*
1059 		 * If the clean list is non-NULL, then we're not going to do
1060 		 * any work for this CPU -- it means that there has not been
1061 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1062 		 * since the last time we cleaned house.
1063 		 */
1064 		if (dcpu->dtdsc_clean != NULL)
1065 			continue;
1066 
1067 		work = 1;
1068 
1069 		/*
1070 		 * Atomically move the dirty list aside.
1071 		 */
1072 		do {
1073 			dirty = dcpu->dtdsc_dirty;
1074 
1075 			/*
1076 			 * Before we zap the dirty list, set the rinsing list.
1077 			 * (This allows for a potential assertion in
1078 			 * dtrace_dynvar():  if a free dynamic variable appears
1079 			 * on a hash chain, either the dirty list or the
1080 			 * rinsing list for some CPU must be non-NULL.)
1081 			 */
1082 			dcpu->dtdsc_rinsing = dirty;
1083 			dtrace_membar_producer();
1084 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1085 		    dirty, NULL) != dirty);
1086 	}
1087 
1088 	if (!work) {
1089 		/*
1090 		 * We have no work to do; we can simply return.
1091 		 */
1092 		return;
1093 	}
1094 
1095 	dtrace_sync();
1096 
1097 	for (i = 0; i < NCPU; i++) {
1098 		dcpu = &dstate->dtds_percpu[i];
1099 
1100 		if (dcpu->dtdsc_rinsing == NULL)
1101 			continue;
1102 
1103 		/*
1104 		 * We are now guaranteed that no hash chain contains a pointer
1105 		 * into this dirty list; we can make it clean.
1106 		 */
1107 		ASSERT(dcpu->dtdsc_clean == NULL);
1108 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1109 		dcpu->dtdsc_rinsing = NULL;
1110 	}
1111 
1112 	/*
1113 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1114 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1115 	 * This prevents a race whereby a CPU incorrectly decides that
1116 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1117 	 * after dtrace_dynvar_clean() has completed.
1118 	 */
1119 	dtrace_sync();
1120 
1121 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1122 }
1123 
1124 /*
1125  * Depending on the value of the op parameter, this function looks-up,
1126  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1127  * allocation is requested, this function will return a pointer to a
1128  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1129  * variable can be allocated.  If NULL is returned, the appropriate counter
1130  * will be incremented.
1131  */
1132 dtrace_dynvar_t *
1133 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1134     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1135     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1136 {
1137 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1138 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1139 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1140 	processorid_t me = CPU->cpu_id, cpu = me;
1141 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1142 	size_t bucket, ksize;
1143 	size_t chunksize = dstate->dtds_chunksize;
1144 	uintptr_t kdata, lock, nstate;
1145 	uint_t i;
1146 
1147 	ASSERT(nkeys != 0);
1148 
1149 	/*
1150 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1151 	 * algorithm.  For the by-value portions, we perform the algorithm in
1152 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1153 	 * bit, and seems to have only a minute effect on distribution.  For
1154 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1155 	 * over each referenced byte.  It's painful to do this, but it's much
1156 	 * better than pathological hash distribution.  The efficacy of the
1157 	 * hashing algorithm (and a comparison with other algorithms) may be
1158 	 * found by running the ::dtrace_dynstat MDB dcmd.
1159 	 */
1160 	for (i = 0; i < nkeys; i++) {
1161 		if (key[i].dttk_size == 0) {
1162 			uint64_t val = key[i].dttk_value;
1163 
1164 			hashval += (val >> 48) & 0xffff;
1165 			hashval += (hashval << 10);
1166 			hashval ^= (hashval >> 6);
1167 
1168 			hashval += (val >> 32) & 0xffff;
1169 			hashval += (hashval << 10);
1170 			hashval ^= (hashval >> 6);
1171 
1172 			hashval += (val >> 16) & 0xffff;
1173 			hashval += (hashval << 10);
1174 			hashval ^= (hashval >> 6);
1175 
1176 			hashval += val & 0xffff;
1177 			hashval += (hashval << 10);
1178 			hashval ^= (hashval >> 6);
1179 		} else {
1180 			/*
1181 			 * This is incredibly painful, but it beats the hell
1182 			 * out of the alternative.
1183 			 */
1184 			uint64_t j, size = key[i].dttk_size;
1185 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1186 
1187 			if (!dtrace_canload(base, size, mstate, vstate))
1188 				break;
1189 
1190 			for (j = 0; j < size; j++) {
1191 				hashval += dtrace_load8(base + j);
1192 				hashval += (hashval << 10);
1193 				hashval ^= (hashval >> 6);
1194 			}
1195 		}
1196 	}
1197 
1198 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1199 		return (NULL);
1200 
1201 	hashval += (hashval << 3);
1202 	hashval ^= (hashval >> 11);
1203 	hashval += (hashval << 15);
1204 
1205 	/*
1206 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1207 	 * comes out to be one of our two sentinel hash values.  If this
1208 	 * actually happens, we set the hashval to be a value known to be a
1209 	 * non-sentinel value.
1210 	 */
1211 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1212 		hashval = DTRACE_DYNHASH_VALID;
1213 
1214 	/*
1215 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1216 	 * important here, tricks can be pulled to reduce it.  (However, it's
1217 	 * critical that hash collisions be kept to an absolute minimum;
1218 	 * they're much more painful than a divide.)  It's better to have a
1219 	 * solution that generates few collisions and still keeps things
1220 	 * relatively simple.
1221 	 */
1222 	bucket = hashval % dstate->dtds_hashsize;
1223 
1224 	if (op == DTRACE_DYNVAR_DEALLOC) {
1225 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1226 
1227 		for (;;) {
1228 			while ((lock = *lockp) & 1)
1229 				continue;
1230 
1231 			if (dtrace_casptr((void *)lockp,
1232 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1233 				break;
1234 		}
1235 
1236 		dtrace_membar_producer();
1237 	}
1238 
1239 top:
1240 	prev = NULL;
1241 	lock = hash[bucket].dtdh_lock;
1242 
1243 	dtrace_membar_consumer();
1244 
1245 	start = hash[bucket].dtdh_chain;
1246 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1247 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1248 	    op != DTRACE_DYNVAR_DEALLOC));
1249 
1250 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1251 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1252 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1253 
1254 		if (dvar->dtdv_hashval != hashval) {
1255 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1256 				/*
1257 				 * We've reached the sink, and therefore the
1258 				 * end of the hash chain; we can kick out of
1259 				 * the loop knowing that we have seen a valid
1260 				 * snapshot of state.
1261 				 */
1262 				ASSERT(dvar->dtdv_next == NULL);
1263 				ASSERT(dvar == &dtrace_dynhash_sink);
1264 				break;
1265 			}
1266 
1267 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1268 				/*
1269 				 * We've gone off the rails:  somewhere along
1270 				 * the line, one of the members of this hash
1271 				 * chain was deleted.  Note that we could also
1272 				 * detect this by simply letting this loop run
1273 				 * to completion, as we would eventually hit
1274 				 * the end of the dirty list.  However, we
1275 				 * want to avoid running the length of the
1276 				 * dirty list unnecessarily (it might be quite
1277 				 * long), so we catch this as early as
1278 				 * possible by detecting the hash marker.  In
1279 				 * this case, we simply set dvar to NULL and
1280 				 * break; the conditional after the loop will
1281 				 * send us back to top.
1282 				 */
1283 				dvar = NULL;
1284 				break;
1285 			}
1286 
1287 			goto next;
1288 		}
1289 
1290 		if (dtuple->dtt_nkeys != nkeys)
1291 			goto next;
1292 
1293 		for (i = 0; i < nkeys; i++, dkey++) {
1294 			if (dkey->dttk_size != key[i].dttk_size)
1295 				goto next; /* size or type mismatch */
1296 
1297 			if (dkey->dttk_size != 0) {
1298 				if (dtrace_bcmp(
1299 				    (void *)(uintptr_t)key[i].dttk_value,
1300 				    (void *)(uintptr_t)dkey->dttk_value,
1301 				    dkey->dttk_size))
1302 					goto next;
1303 			} else {
1304 				if (dkey->dttk_value != key[i].dttk_value)
1305 					goto next;
1306 			}
1307 		}
1308 
1309 		if (op != DTRACE_DYNVAR_DEALLOC)
1310 			return (dvar);
1311 
1312 		ASSERT(dvar->dtdv_next == NULL ||
1313 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1314 
1315 		if (prev != NULL) {
1316 			ASSERT(hash[bucket].dtdh_chain != dvar);
1317 			ASSERT(start != dvar);
1318 			ASSERT(prev->dtdv_next == dvar);
1319 			prev->dtdv_next = dvar->dtdv_next;
1320 		} else {
1321 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1322 			    start, dvar->dtdv_next) != start) {
1323 				/*
1324 				 * We have failed to atomically swing the
1325 				 * hash table head pointer, presumably because
1326 				 * of a conflicting allocation on another CPU.
1327 				 * We need to reread the hash chain and try
1328 				 * again.
1329 				 */
1330 				goto top;
1331 			}
1332 		}
1333 
1334 		dtrace_membar_producer();
1335 
1336 		/*
1337 		 * Now set the hash value to indicate that it's free.
1338 		 */
1339 		ASSERT(hash[bucket].dtdh_chain != dvar);
1340 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1341 
1342 		dtrace_membar_producer();
1343 
1344 		/*
1345 		 * Set the next pointer to point at the dirty list, and
1346 		 * atomically swing the dirty pointer to the newly freed dvar.
1347 		 */
1348 		do {
1349 			next = dcpu->dtdsc_dirty;
1350 			dvar->dtdv_next = next;
1351 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1352 
1353 		/*
1354 		 * Finally, unlock this hash bucket.
1355 		 */
1356 		ASSERT(hash[bucket].dtdh_lock == lock);
1357 		ASSERT(lock & 1);
1358 		hash[bucket].dtdh_lock++;
1359 
1360 		return (NULL);
1361 next:
1362 		prev = dvar;
1363 		continue;
1364 	}
1365 
1366 	if (dvar == NULL) {
1367 		/*
1368 		 * If dvar is NULL, it is because we went off the rails:
1369 		 * one of the elements that we traversed in the hash chain
1370 		 * was deleted while we were traversing it.  In this case,
1371 		 * we assert that we aren't doing a dealloc (deallocs lock
1372 		 * the hash bucket to prevent themselves from racing with
1373 		 * one another), and retry the hash chain traversal.
1374 		 */
1375 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1376 		goto top;
1377 	}
1378 
1379 	if (op != DTRACE_DYNVAR_ALLOC) {
1380 		/*
1381 		 * If we are not to allocate a new variable, we want to
1382 		 * return NULL now.  Before we return, check that the value
1383 		 * of the lock word hasn't changed.  If it has, we may have
1384 		 * seen an inconsistent snapshot.
1385 		 */
1386 		if (op == DTRACE_DYNVAR_NOALLOC) {
1387 			if (hash[bucket].dtdh_lock != lock)
1388 				goto top;
1389 		} else {
1390 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1391 			ASSERT(hash[bucket].dtdh_lock == lock);
1392 			ASSERT(lock & 1);
1393 			hash[bucket].dtdh_lock++;
1394 		}
1395 
1396 		return (NULL);
1397 	}
1398 
1399 	/*
1400 	 * We need to allocate a new dynamic variable.  The size we need is the
1401 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1402 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1403 	 * the size of any referred-to data (dsize).  We then round the final
1404 	 * size up to the chunksize for allocation.
1405 	 */
1406 	for (ksize = 0, i = 0; i < nkeys; i++)
1407 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1408 
1409 	/*
1410 	 * This should be pretty much impossible, but could happen if, say,
1411 	 * strange DIF specified the tuple.  Ideally, this should be an
1412 	 * assertion and not an error condition -- but that requires that the
1413 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1414 	 * bullet-proof.  (That is, it must not be able to be fooled by
1415 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1416 	 * solving this would presumably not amount to solving the Halting
1417 	 * Problem -- but it still seems awfully hard.
1418 	 */
1419 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1420 	    ksize + dsize > chunksize) {
1421 		dcpu->dtdsc_drops++;
1422 		return (NULL);
1423 	}
1424 
1425 	nstate = DTRACE_DSTATE_EMPTY;
1426 
1427 	do {
1428 retry:
1429 		free = dcpu->dtdsc_free;
1430 
1431 		if (free == NULL) {
1432 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1433 			void *rval;
1434 
1435 			if (clean == NULL) {
1436 				/*
1437 				 * We're out of dynamic variable space on
1438 				 * this CPU.  Unless we have tried all CPUs,
1439 				 * we'll try to allocate from a different
1440 				 * CPU.
1441 				 */
1442 				switch (dstate->dtds_state) {
1443 				case DTRACE_DSTATE_CLEAN: {
1444 					void *sp = &dstate->dtds_state;
1445 
1446 					if (++cpu >= NCPU)
1447 						cpu = 0;
1448 
1449 					if (dcpu->dtdsc_dirty != NULL &&
1450 					    nstate == DTRACE_DSTATE_EMPTY)
1451 						nstate = DTRACE_DSTATE_DIRTY;
1452 
1453 					if (dcpu->dtdsc_rinsing != NULL)
1454 						nstate = DTRACE_DSTATE_RINSING;
1455 
1456 					dcpu = &dstate->dtds_percpu[cpu];
1457 
1458 					if (cpu != me)
1459 						goto retry;
1460 
1461 					(void) dtrace_cas32(sp,
1462 					    DTRACE_DSTATE_CLEAN, nstate);
1463 
1464 					/*
1465 					 * To increment the correct bean
1466 					 * counter, take another lap.
1467 					 */
1468 					goto retry;
1469 				}
1470 
1471 				case DTRACE_DSTATE_DIRTY:
1472 					dcpu->dtdsc_dirty_drops++;
1473 					break;
1474 
1475 				case DTRACE_DSTATE_RINSING:
1476 					dcpu->dtdsc_rinsing_drops++;
1477 					break;
1478 
1479 				case DTRACE_DSTATE_EMPTY:
1480 					dcpu->dtdsc_drops++;
1481 					break;
1482 				}
1483 
1484 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1485 				return (NULL);
1486 			}
1487 
1488 			/*
1489 			 * The clean list appears to be non-empty.  We want to
1490 			 * move the clean list to the free list; we start by
1491 			 * moving the clean pointer aside.
1492 			 */
1493 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1494 			    clean, NULL) != clean) {
1495 				/*
1496 				 * We are in one of two situations:
1497 				 *
1498 				 *  (a)	The clean list was switched to the
1499 				 *	free list by another CPU.
1500 				 *
1501 				 *  (b)	The clean list was added to by the
1502 				 *	cleansing cyclic.
1503 				 *
1504 				 * In either of these situations, we can
1505 				 * just reattempt the free list allocation.
1506 				 */
1507 				goto retry;
1508 			}
1509 
1510 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1511 
1512 			/*
1513 			 * Now we'll move the clean list to the free list.
1514 			 * It's impossible for this to fail:  the only way
1515 			 * the free list can be updated is through this
1516 			 * code path, and only one CPU can own the clean list.
1517 			 * Thus, it would only be possible for this to fail if
1518 			 * this code were racing with dtrace_dynvar_clean().
1519 			 * (That is, if dtrace_dynvar_clean() updated the clean
1520 			 * list, and we ended up racing to update the free
1521 			 * list.)  This race is prevented by the dtrace_sync()
1522 			 * in dtrace_dynvar_clean() -- which flushes the
1523 			 * owners of the clean lists out before resetting
1524 			 * the clean lists.
1525 			 */
1526 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1527 			ASSERT(rval == NULL);
1528 			goto retry;
1529 		}
1530 
1531 		dvar = free;
1532 		new_free = dvar->dtdv_next;
1533 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1534 
1535 	/*
1536 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1537 	 * tuple array and copy any referenced key data into the data space
1538 	 * following the tuple array.  As we do this, we relocate dttk_value
1539 	 * in the final tuple to point to the key data address in the chunk.
1540 	 */
1541 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1542 	dvar->dtdv_data = (void *)(kdata + ksize);
1543 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1544 
1545 	for (i = 0; i < nkeys; i++) {
1546 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1547 		size_t kesize = key[i].dttk_size;
1548 
1549 		if (kesize != 0) {
1550 			dtrace_bcopy(
1551 			    (const void *)(uintptr_t)key[i].dttk_value,
1552 			    (void *)kdata, kesize);
1553 			dkey->dttk_value = kdata;
1554 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1555 		} else {
1556 			dkey->dttk_value = key[i].dttk_value;
1557 		}
1558 
1559 		dkey->dttk_size = kesize;
1560 	}
1561 
1562 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1563 	dvar->dtdv_hashval = hashval;
1564 	dvar->dtdv_next = start;
1565 
1566 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1567 		return (dvar);
1568 
1569 	/*
1570 	 * The cas has failed.  Either another CPU is adding an element to
1571 	 * this hash chain, or another CPU is deleting an element from this
1572 	 * hash chain.  The simplest way to deal with both of these cases
1573 	 * (though not necessarily the most efficient) is to free our
1574 	 * allocated block and tail-call ourselves.  Note that the free is
1575 	 * to the dirty list and _not_ to the free list.  This is to prevent
1576 	 * races with allocators, above.
1577 	 */
1578 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1579 
1580 	dtrace_membar_producer();
1581 
1582 	do {
1583 		free = dcpu->dtdsc_dirty;
1584 		dvar->dtdv_next = free;
1585 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1586 
1587 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1588 }
1589 
1590 /*ARGSUSED*/
1591 static void
1592 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1593 {
1594 	if (nval < *oval)
1595 		*oval = nval;
1596 }
1597 
1598 /*ARGSUSED*/
1599 static void
1600 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1601 {
1602 	if (nval > *oval)
1603 		*oval = nval;
1604 }
1605 
1606 static void
1607 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1608 {
1609 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1610 	int64_t val = (int64_t)nval;
1611 
1612 	if (val < 0) {
1613 		for (i = 0; i < zero; i++) {
1614 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1615 				quanta[i] += incr;
1616 				return;
1617 			}
1618 		}
1619 	} else {
1620 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1621 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1622 				quanta[i - 1] += incr;
1623 				return;
1624 			}
1625 		}
1626 
1627 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1628 		return;
1629 	}
1630 
1631 	ASSERT(0);
1632 }
1633 
1634 static void
1635 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1636 {
1637 	uint64_t arg = *lquanta++;
1638 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1639 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1640 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1641 	int32_t val = (int32_t)nval, level;
1642 
1643 	ASSERT(step != 0);
1644 	ASSERT(levels != 0);
1645 
1646 	if (val < base) {
1647 		/*
1648 		 * This is an underflow.
1649 		 */
1650 		lquanta[0] += incr;
1651 		return;
1652 	}
1653 
1654 	level = (val - base) / step;
1655 
1656 	if (level < levels) {
1657 		lquanta[level + 1] += incr;
1658 		return;
1659 	}
1660 
1661 	/*
1662 	 * This is an overflow.
1663 	 */
1664 	lquanta[levels + 1] += incr;
1665 }
1666 
1667 /*ARGSUSED*/
1668 static void
1669 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1670 {
1671 	data[0]++;
1672 	data[1] += nval;
1673 }
1674 
1675 /*ARGSUSED*/
1676 static void
1677 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1678 {
1679 	*oval = *oval + 1;
1680 }
1681 
1682 /*ARGSUSED*/
1683 static void
1684 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1685 {
1686 	*oval += nval;
1687 }
1688 
1689 /*
1690  * Aggregate given the tuple in the principal data buffer, and the aggregating
1691  * action denoted by the specified dtrace_aggregation_t.  The aggregation
1692  * buffer is specified as the buf parameter.  This routine does not return
1693  * failure; if there is no space in the aggregation buffer, the data will be
1694  * dropped, and a corresponding counter incremented.
1695  */
1696 static void
1697 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1698     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1699 {
1700 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1701 	uint32_t i, ndx, size, fsize;
1702 	uint32_t align = sizeof (uint64_t) - 1;
1703 	dtrace_aggbuffer_t *agb;
1704 	dtrace_aggkey_t *key;
1705 	uint32_t hashval = 0, limit, isstr;
1706 	caddr_t tomax, data, kdata;
1707 	dtrace_actkind_t action;
1708 	dtrace_action_t *act;
1709 	uintptr_t offs;
1710 
1711 	if (buf == NULL)
1712 		return;
1713 
1714 	if (!agg->dtag_hasarg) {
1715 		/*
1716 		 * Currently, only quantize() and lquantize() take additional
1717 		 * arguments, and they have the same semantics:  an increment
1718 		 * value that defaults to 1 when not present.  If additional
1719 		 * aggregating actions take arguments, the setting of the
1720 		 * default argument value will presumably have to become more
1721 		 * sophisticated...
1722 		 */
1723 		arg = 1;
1724 	}
1725 
1726 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
1727 	size = rec->dtrd_offset - agg->dtag_base;
1728 	fsize = size + rec->dtrd_size;
1729 
1730 	ASSERT(dbuf->dtb_tomax != NULL);
1731 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
1732 
1733 	if ((tomax = buf->dtb_tomax) == NULL) {
1734 		dtrace_buffer_drop(buf);
1735 		return;
1736 	}
1737 
1738 	/*
1739 	 * The metastructure is always at the bottom of the buffer.
1740 	 */
1741 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
1742 	    sizeof (dtrace_aggbuffer_t));
1743 
1744 	if (buf->dtb_offset == 0) {
1745 		/*
1746 		 * We just kludge up approximately 1/8th of the size to be
1747 		 * buckets.  If this guess ends up being routinely
1748 		 * off-the-mark, we may need to dynamically readjust this
1749 		 * based on past performance.
1750 		 */
1751 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
1752 
1753 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
1754 		    (uintptr_t)tomax || hashsize == 0) {
1755 			/*
1756 			 * We've been given a ludicrously small buffer;
1757 			 * increment our drop count and leave.
1758 			 */
1759 			dtrace_buffer_drop(buf);
1760 			return;
1761 		}
1762 
1763 		/*
1764 		 * And now, a pathetic attempt to try to get a an odd (or
1765 		 * perchance, a prime) hash size for better hash distribution.
1766 		 */
1767 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
1768 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
1769 
1770 		agb->dtagb_hashsize = hashsize;
1771 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
1772 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
1773 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
1774 
1775 		for (i = 0; i < agb->dtagb_hashsize; i++)
1776 			agb->dtagb_hash[i] = NULL;
1777 	}
1778 
1779 	ASSERT(agg->dtag_first != NULL);
1780 	ASSERT(agg->dtag_first->dta_intuple);
1781 
1782 	/*
1783 	 * Calculate the hash value based on the key.  Note that we _don't_
1784 	 * include the aggid in the hashing (but we will store it as part of
1785 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
1786 	 * algorithm: a simple, quick algorithm that has no known funnels, and
1787 	 * gets good distribution in practice.  The efficacy of the hashing
1788 	 * algorithm (and a comparison with other algorithms) may be found by
1789 	 * running the ::dtrace_aggstat MDB dcmd.
1790 	 */
1791 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
1792 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
1793 		limit = i + act->dta_rec.dtrd_size;
1794 		ASSERT(limit <= size);
1795 		isstr = DTRACEACT_ISSTRING(act);
1796 
1797 		for (; i < limit; i++) {
1798 			hashval += data[i];
1799 			hashval += (hashval << 10);
1800 			hashval ^= (hashval >> 6);
1801 
1802 			if (isstr && data[i] == '\0')
1803 				break;
1804 		}
1805 	}
1806 
1807 	hashval += (hashval << 3);
1808 	hashval ^= (hashval >> 11);
1809 	hashval += (hashval << 15);
1810 
1811 	/*
1812 	 * Yes, the divide here is expensive -- but it's generally the least
1813 	 * of the performance issues given the amount of data that we iterate
1814 	 * over to compute hash values, compare data, etc.
1815 	 */
1816 	ndx = hashval % agb->dtagb_hashsize;
1817 
1818 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
1819 		ASSERT((caddr_t)key >= tomax);
1820 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
1821 
1822 		if (hashval != key->dtak_hashval || key->dtak_size != size)
1823 			continue;
1824 
1825 		kdata = key->dtak_data;
1826 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
1827 
1828 		for (act = agg->dtag_first; act->dta_intuple;
1829 		    act = act->dta_next) {
1830 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
1831 			limit = i + act->dta_rec.dtrd_size;
1832 			ASSERT(limit <= size);
1833 			isstr = DTRACEACT_ISSTRING(act);
1834 
1835 			for (; i < limit; i++) {
1836 				if (kdata[i] != data[i])
1837 					goto next;
1838 
1839 				if (isstr && data[i] == '\0')
1840 					break;
1841 			}
1842 		}
1843 
1844 		if (action != key->dtak_action) {
1845 			/*
1846 			 * We are aggregating on the same value in the same
1847 			 * aggregation with two different aggregating actions.
1848 			 * (This should have been picked up in the compiler,
1849 			 * so we may be dealing with errant or devious DIF.)
1850 			 * This is an error condition; we indicate as much,
1851 			 * and return.
1852 			 */
1853 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
1854 			return;
1855 		}
1856 
1857 		/*
1858 		 * This is a hit:  we need to apply the aggregator to
1859 		 * the value at this key.
1860 		 */
1861 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
1862 		return;
1863 next:
1864 		continue;
1865 	}
1866 
1867 	/*
1868 	 * We didn't find it.  We need to allocate some zero-filled space,
1869 	 * link it into the hash table appropriately, and apply the aggregator
1870 	 * to the (zero-filled) value.
1871 	 */
1872 	offs = buf->dtb_offset;
1873 	while (offs & (align - 1))
1874 		offs += sizeof (uint32_t);
1875 
1876 	/*
1877 	 * If we don't have enough room to both allocate a new key _and_
1878 	 * its associated data, increment the drop count and return.
1879 	 */
1880 	if ((uintptr_t)tomax + offs + fsize >
1881 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
1882 		dtrace_buffer_drop(buf);
1883 		return;
1884 	}
1885 
1886 	/*CONSTCOND*/
1887 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
1888 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
1889 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
1890 
1891 	key->dtak_data = kdata = tomax + offs;
1892 	buf->dtb_offset = offs + fsize;
1893 
1894 	/*
1895 	 * Now copy the data across.
1896 	 */
1897 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
1898 
1899 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
1900 		kdata[i] = data[i];
1901 
1902 	/*
1903 	 * Because strings are not zeroed out by default, we need to iterate
1904 	 * looking for actions that store strings, and we need to explicitly
1905 	 * pad these strings out with zeroes.
1906 	 */
1907 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
1908 		int nul;
1909 
1910 		if (!DTRACEACT_ISSTRING(act))
1911 			continue;
1912 
1913 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
1914 		limit = i + act->dta_rec.dtrd_size;
1915 		ASSERT(limit <= size);
1916 
1917 		for (nul = 0; i < limit; i++) {
1918 			if (nul) {
1919 				kdata[i] = '\0';
1920 				continue;
1921 			}
1922 
1923 			if (data[i] != '\0')
1924 				continue;
1925 
1926 			nul = 1;
1927 		}
1928 	}
1929 
1930 	for (i = size; i < fsize; i++)
1931 		kdata[i] = 0;
1932 
1933 	key->dtak_hashval = hashval;
1934 	key->dtak_size = size;
1935 	key->dtak_action = action;
1936 	key->dtak_next = agb->dtagb_hash[ndx];
1937 	agb->dtagb_hash[ndx] = key;
1938 
1939 	/*
1940 	 * Finally, apply the aggregator.
1941 	 */
1942 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
1943 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
1944 }
1945 
1946 /*
1947  * Given consumer state, this routine finds a speculation in the INACTIVE
1948  * state and transitions it into the ACTIVE state.  If there is no speculation
1949  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
1950  * incremented -- it is up to the caller to take appropriate action.
1951  */
1952 static int
1953 dtrace_speculation(dtrace_state_t *state)
1954 {
1955 	int i = 0;
1956 	dtrace_speculation_state_t current;
1957 	uint32_t *stat = &state->dts_speculations_unavail, count;
1958 
1959 	while (i < state->dts_nspeculations) {
1960 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1961 
1962 		current = spec->dtsp_state;
1963 
1964 		if (current != DTRACESPEC_INACTIVE) {
1965 			if (current == DTRACESPEC_COMMITTINGMANY ||
1966 			    current == DTRACESPEC_COMMITTING ||
1967 			    current == DTRACESPEC_DISCARDING)
1968 				stat = &state->dts_speculations_busy;
1969 			i++;
1970 			continue;
1971 		}
1972 
1973 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1974 		    current, DTRACESPEC_ACTIVE) == current)
1975 			return (i + 1);
1976 	}
1977 
1978 	/*
1979 	 * We couldn't find a speculation.  If we found as much as a single
1980 	 * busy speculation buffer, we'll attribute this failure as "busy"
1981 	 * instead of "unavail".
1982 	 */
1983 	do {
1984 		count = *stat;
1985 	} while (dtrace_cas32(stat, count, count + 1) != count);
1986 
1987 	return (0);
1988 }
1989 
1990 /*
1991  * This routine commits an active speculation.  If the specified speculation
1992  * is not in a valid state to perform a commit(), this routine will silently do
1993  * nothing.  The state of the specified speculation is transitioned according
1994  * to the state transition diagram outlined in <sys/dtrace_impl.h>
1995  */
1996 static void
1997 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
1998     dtrace_specid_t which)
1999 {
2000 	dtrace_speculation_t *spec;
2001 	dtrace_buffer_t *src, *dest;
2002 	uintptr_t daddr, saddr, dlimit;
2003 	dtrace_speculation_state_t current, new;
2004 	intptr_t offs;
2005 
2006 	if (which == 0)
2007 		return;
2008 
2009 	if (which > state->dts_nspeculations) {
2010 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2011 		return;
2012 	}
2013 
2014 	spec = &state->dts_speculations[which - 1];
2015 	src = &spec->dtsp_buffer[cpu];
2016 	dest = &state->dts_buffer[cpu];
2017 
2018 	do {
2019 		current = spec->dtsp_state;
2020 
2021 		if (current == DTRACESPEC_COMMITTINGMANY)
2022 			break;
2023 
2024 		switch (current) {
2025 		case DTRACESPEC_INACTIVE:
2026 		case DTRACESPEC_DISCARDING:
2027 			return;
2028 
2029 		case DTRACESPEC_COMMITTING:
2030 			/*
2031 			 * This is only possible if we are (a) commit()'ing
2032 			 * without having done a prior speculate() on this CPU
2033 			 * and (b) racing with another commit() on a different
2034 			 * CPU.  There's nothing to do -- we just assert that
2035 			 * our offset is 0.
2036 			 */
2037 			ASSERT(src->dtb_offset == 0);
2038 			return;
2039 
2040 		case DTRACESPEC_ACTIVE:
2041 			new = DTRACESPEC_COMMITTING;
2042 			break;
2043 
2044 		case DTRACESPEC_ACTIVEONE:
2045 			/*
2046 			 * This speculation is active on one CPU.  If our
2047 			 * buffer offset is non-zero, we know that the one CPU
2048 			 * must be us.  Otherwise, we are committing on a
2049 			 * different CPU from the speculate(), and we must
2050 			 * rely on being asynchronously cleaned.
2051 			 */
2052 			if (src->dtb_offset != 0) {
2053 				new = DTRACESPEC_COMMITTING;
2054 				break;
2055 			}
2056 			/*FALLTHROUGH*/
2057 
2058 		case DTRACESPEC_ACTIVEMANY:
2059 			new = DTRACESPEC_COMMITTINGMANY;
2060 			break;
2061 
2062 		default:
2063 			ASSERT(0);
2064 		}
2065 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2066 	    current, new) != current);
2067 
2068 	/*
2069 	 * We have set the state to indicate that we are committing this
2070 	 * speculation.  Now reserve the necessary space in the destination
2071 	 * buffer.
2072 	 */
2073 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2074 	    sizeof (uint64_t), state, NULL)) < 0) {
2075 		dtrace_buffer_drop(dest);
2076 		goto out;
2077 	}
2078 
2079 	/*
2080 	 * We have the space; copy the buffer across.  (Note that this is a
2081 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2082 	 * a serious performance issue, a high-performance DTrace-specific
2083 	 * bcopy() should obviously be invented.)
2084 	 */
2085 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2086 	dlimit = daddr + src->dtb_offset;
2087 	saddr = (uintptr_t)src->dtb_tomax;
2088 
2089 	/*
2090 	 * First, the aligned portion.
2091 	 */
2092 	while (dlimit - daddr >= sizeof (uint64_t)) {
2093 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2094 
2095 		daddr += sizeof (uint64_t);
2096 		saddr += sizeof (uint64_t);
2097 	}
2098 
2099 	/*
2100 	 * Now any left-over bit...
2101 	 */
2102 	while (dlimit - daddr)
2103 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2104 
2105 	/*
2106 	 * Finally, commit the reserved space in the destination buffer.
2107 	 */
2108 	dest->dtb_offset = offs + src->dtb_offset;
2109 
2110 out:
2111 	/*
2112 	 * If we're lucky enough to be the only active CPU on this speculation
2113 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2114 	 */
2115 	if (current == DTRACESPEC_ACTIVE ||
2116 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2117 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2118 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2119 
2120 		ASSERT(rval == DTRACESPEC_COMMITTING);
2121 	}
2122 
2123 	src->dtb_offset = 0;
2124 	src->dtb_xamot_drops += src->dtb_drops;
2125 	src->dtb_drops = 0;
2126 }
2127 
2128 /*
2129  * This routine discards an active speculation.  If the specified speculation
2130  * is not in a valid state to perform a discard(), this routine will silently
2131  * do nothing.  The state of the specified speculation is transitioned
2132  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2133  */
2134 static void
2135 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2136     dtrace_specid_t which)
2137 {
2138 	dtrace_speculation_t *spec;
2139 	dtrace_speculation_state_t current, new;
2140 	dtrace_buffer_t *buf;
2141 
2142 	if (which == 0)
2143 		return;
2144 
2145 	if (which > state->dts_nspeculations) {
2146 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2147 		return;
2148 	}
2149 
2150 	spec = &state->dts_speculations[which - 1];
2151 	buf = &spec->dtsp_buffer[cpu];
2152 
2153 	do {
2154 		current = spec->dtsp_state;
2155 
2156 		switch (current) {
2157 		case DTRACESPEC_INACTIVE:
2158 		case DTRACESPEC_COMMITTINGMANY:
2159 		case DTRACESPEC_COMMITTING:
2160 		case DTRACESPEC_DISCARDING:
2161 			return;
2162 
2163 		case DTRACESPEC_ACTIVE:
2164 		case DTRACESPEC_ACTIVEMANY:
2165 			new = DTRACESPEC_DISCARDING;
2166 			break;
2167 
2168 		case DTRACESPEC_ACTIVEONE:
2169 			if (buf->dtb_offset != 0) {
2170 				new = DTRACESPEC_INACTIVE;
2171 			} else {
2172 				new = DTRACESPEC_DISCARDING;
2173 			}
2174 			break;
2175 
2176 		default:
2177 			ASSERT(0);
2178 		}
2179 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2180 	    current, new) != current);
2181 
2182 	buf->dtb_offset = 0;
2183 	buf->dtb_drops = 0;
2184 }
2185 
2186 /*
2187  * Note:  not called from probe context.  This function is called
2188  * asynchronously from cross call context to clean any speculations that are
2189  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2190  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2191  * speculation.
2192  */
2193 static void
2194 dtrace_speculation_clean_here(dtrace_state_t *state)
2195 {
2196 	dtrace_icookie_t cookie;
2197 	processorid_t cpu = CPU->cpu_id;
2198 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2199 	dtrace_specid_t i;
2200 
2201 	cookie = dtrace_interrupt_disable();
2202 
2203 	if (dest->dtb_tomax == NULL) {
2204 		dtrace_interrupt_enable(cookie);
2205 		return;
2206 	}
2207 
2208 	for (i = 0; i < state->dts_nspeculations; i++) {
2209 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2210 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2211 
2212 		if (src->dtb_tomax == NULL)
2213 			continue;
2214 
2215 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2216 			src->dtb_offset = 0;
2217 			continue;
2218 		}
2219 
2220 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2221 			continue;
2222 
2223 		if (src->dtb_offset == 0)
2224 			continue;
2225 
2226 		dtrace_speculation_commit(state, cpu, i + 1);
2227 	}
2228 
2229 	dtrace_interrupt_enable(cookie);
2230 }
2231 
2232 /*
2233  * Note:  not called from probe context.  This function is called
2234  * asynchronously (and at a regular interval) to clean any speculations that
2235  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2236  * is work to be done, it cross calls all CPUs to perform that work;
2237  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2238  * INACTIVE state until they have been cleaned by all CPUs.
2239  */
2240 static void
2241 dtrace_speculation_clean(dtrace_state_t *state)
2242 {
2243 	int work = 0, rv;
2244 	dtrace_specid_t i;
2245 
2246 	for (i = 0; i < state->dts_nspeculations; i++) {
2247 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2248 
2249 		ASSERT(!spec->dtsp_cleaning);
2250 
2251 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2252 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2253 			continue;
2254 
2255 		work++;
2256 		spec->dtsp_cleaning = 1;
2257 	}
2258 
2259 	if (!work)
2260 		return;
2261 
2262 	dtrace_xcall(DTRACE_CPUALL,
2263 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2264 
2265 	/*
2266 	 * We now know that all CPUs have committed or discarded their
2267 	 * speculation buffers, as appropriate.  We can now set the state
2268 	 * to inactive.
2269 	 */
2270 	for (i = 0; i < state->dts_nspeculations; i++) {
2271 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2272 		dtrace_speculation_state_t current, new;
2273 
2274 		if (!spec->dtsp_cleaning)
2275 			continue;
2276 
2277 		current = spec->dtsp_state;
2278 		ASSERT(current == DTRACESPEC_DISCARDING ||
2279 		    current == DTRACESPEC_COMMITTINGMANY);
2280 
2281 		new = DTRACESPEC_INACTIVE;
2282 
2283 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2284 		ASSERT(rv == current);
2285 		spec->dtsp_cleaning = 0;
2286 	}
2287 }
2288 
2289 /*
2290  * Called as part of a speculate() to get the speculative buffer associated
2291  * with a given speculation.  Returns NULL if the specified speculation is not
2292  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2293  * the active CPU is not the specified CPU -- the speculation will be
2294  * atomically transitioned into the ACTIVEMANY state.
2295  */
2296 static dtrace_buffer_t *
2297 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2298     dtrace_specid_t which)
2299 {
2300 	dtrace_speculation_t *spec;
2301 	dtrace_speculation_state_t current, new;
2302 	dtrace_buffer_t *buf;
2303 
2304 	if (which == 0)
2305 		return (NULL);
2306 
2307 	if (which > state->dts_nspeculations) {
2308 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2309 		return (NULL);
2310 	}
2311 
2312 	spec = &state->dts_speculations[which - 1];
2313 	buf = &spec->dtsp_buffer[cpuid];
2314 
2315 	do {
2316 		current = spec->dtsp_state;
2317 
2318 		switch (current) {
2319 		case DTRACESPEC_INACTIVE:
2320 		case DTRACESPEC_COMMITTINGMANY:
2321 		case DTRACESPEC_DISCARDING:
2322 			return (NULL);
2323 
2324 		case DTRACESPEC_COMMITTING:
2325 			ASSERT(buf->dtb_offset == 0);
2326 			return (NULL);
2327 
2328 		case DTRACESPEC_ACTIVEONE:
2329 			/*
2330 			 * This speculation is currently active on one CPU.
2331 			 * Check the offset in the buffer; if it's non-zero,
2332 			 * that CPU must be us (and we leave the state alone).
2333 			 * If it's zero, assume that we're starting on a new
2334 			 * CPU -- and change the state to indicate that the
2335 			 * speculation is active on more than one CPU.
2336 			 */
2337 			if (buf->dtb_offset != 0)
2338 				return (buf);
2339 
2340 			new = DTRACESPEC_ACTIVEMANY;
2341 			break;
2342 
2343 		case DTRACESPEC_ACTIVEMANY:
2344 			return (buf);
2345 
2346 		case DTRACESPEC_ACTIVE:
2347 			new = DTRACESPEC_ACTIVEONE;
2348 			break;
2349 
2350 		default:
2351 			ASSERT(0);
2352 		}
2353 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2354 	    current, new) != current);
2355 
2356 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2357 	return (buf);
2358 }
2359 
2360 /*
2361  * Return a string.  In the event that the user lacks the privilege to access
2362  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2363  * don't fail access checking.
2364  *
2365  * dtrace_dif_variable() uses this routine as a helper for various
2366  * builtin values such as 'execname' and 'probefunc.'
2367  */
2368 uintptr_t
2369 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2370     dtrace_mstate_t *mstate)
2371 {
2372 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2373 	uintptr_t ret;
2374 	size_t strsz;
2375 
2376 	/*
2377 	 * The easy case: this probe is allowed to read all of memory, so
2378 	 * we can just return this as a vanilla pointer.
2379 	 */
2380 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2381 		return (addr);
2382 
2383 	/*
2384 	 * This is the tougher case: we copy the string in question from
2385 	 * kernel memory into scratch memory and return it that way: this
2386 	 * ensures that we won't trip up when access checking tests the
2387 	 * BYREF return value.
2388 	 */
2389 	strsz = dtrace_strlen((char *)addr, size) + 1;
2390 
2391 	if (mstate->dtms_scratch_ptr + strsz >
2392 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2393 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2394 		return (NULL);
2395 	}
2396 
2397 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2398 	    strsz);
2399 	ret = mstate->dtms_scratch_ptr;
2400 	mstate->dtms_scratch_ptr += strsz;
2401 	return (ret);
2402 }
2403 
2404 /*
2405  * This function implements the DIF emulator's variable lookups.  The emulator
2406  * passes a reserved variable identifier and optional built-in array index.
2407  */
2408 static uint64_t
2409 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2410     uint64_t ndx)
2411 {
2412 	/*
2413 	 * If we're accessing one of the uncached arguments, we'll turn this
2414 	 * into a reference in the args array.
2415 	 */
2416 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2417 		ndx = v - DIF_VAR_ARG0;
2418 		v = DIF_VAR_ARGS;
2419 	}
2420 
2421 	switch (v) {
2422 	case DIF_VAR_ARGS:
2423 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2424 		if (ndx >= sizeof (mstate->dtms_arg) /
2425 		    sizeof (mstate->dtms_arg[0])) {
2426 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2427 			dtrace_provider_t *pv;
2428 			uint64_t val;
2429 
2430 			pv = mstate->dtms_probe->dtpr_provider;
2431 			if (pv->dtpv_pops.dtps_getargval != NULL)
2432 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2433 				    mstate->dtms_probe->dtpr_id,
2434 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2435 			else
2436 				val = dtrace_getarg(ndx, aframes);
2437 
2438 			/*
2439 			 * This is regrettably required to keep the compiler
2440 			 * from tail-optimizing the call to dtrace_getarg().
2441 			 * The condition always evaluates to true, but the
2442 			 * compiler has no way of figuring that out a priori.
2443 			 * (None of this would be necessary if the compiler
2444 			 * could be relied upon to _always_ tail-optimize
2445 			 * the call to dtrace_getarg() -- but it can't.)
2446 			 */
2447 			if (mstate->dtms_probe != NULL)
2448 				return (val);
2449 
2450 			ASSERT(0);
2451 		}
2452 
2453 		return (mstate->dtms_arg[ndx]);
2454 
2455 	case DIF_VAR_UREGS: {
2456 		klwp_t *lwp;
2457 
2458 		if (!dtrace_priv_proc(state))
2459 			return (0);
2460 
2461 		if ((lwp = curthread->t_lwp) == NULL) {
2462 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2463 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2464 			return (0);
2465 		}
2466 
2467 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2468 	}
2469 
2470 	case DIF_VAR_CURTHREAD:
2471 		if (!dtrace_priv_kernel(state))
2472 			return (0);
2473 		return ((uint64_t)(uintptr_t)curthread);
2474 
2475 	case DIF_VAR_TIMESTAMP:
2476 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2477 			mstate->dtms_timestamp = dtrace_gethrtime();
2478 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2479 		}
2480 		return (mstate->dtms_timestamp);
2481 
2482 	case DIF_VAR_VTIMESTAMP:
2483 		ASSERT(dtrace_vtime_references != 0);
2484 		return (curthread->t_dtrace_vtime);
2485 
2486 	case DIF_VAR_WALLTIMESTAMP:
2487 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2488 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2489 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2490 		}
2491 		return (mstate->dtms_walltimestamp);
2492 
2493 	case DIF_VAR_IPL:
2494 		if (!dtrace_priv_kernel(state))
2495 			return (0);
2496 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2497 			mstate->dtms_ipl = dtrace_getipl();
2498 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2499 		}
2500 		return (mstate->dtms_ipl);
2501 
2502 	case DIF_VAR_EPID:
2503 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2504 		return (mstate->dtms_epid);
2505 
2506 	case DIF_VAR_ID:
2507 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2508 		return (mstate->dtms_probe->dtpr_id);
2509 
2510 	case DIF_VAR_STACKDEPTH:
2511 		if (!dtrace_priv_kernel(state))
2512 			return (0);
2513 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2514 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2515 
2516 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2517 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2518 		}
2519 		return (mstate->dtms_stackdepth);
2520 
2521 	case DIF_VAR_USTACKDEPTH:
2522 		if (!dtrace_priv_proc(state))
2523 			return (0);
2524 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2525 			/*
2526 			 * See comment in DIF_VAR_PID.
2527 			 */
2528 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2529 			    CPU_ON_INTR(CPU)) {
2530 				mstate->dtms_ustackdepth = 0;
2531 			} else {
2532 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2533 				mstate->dtms_ustackdepth =
2534 				    dtrace_getustackdepth();
2535 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2536 			}
2537 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2538 		}
2539 		return (mstate->dtms_ustackdepth);
2540 
2541 	case DIF_VAR_CALLER:
2542 		if (!dtrace_priv_kernel(state))
2543 			return (0);
2544 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2545 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2546 
2547 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2548 				/*
2549 				 * If this is an unanchored probe, we are
2550 				 * required to go through the slow path:
2551 				 * dtrace_caller() only guarantees correct
2552 				 * results for anchored probes.
2553 				 */
2554 				pc_t caller[2];
2555 
2556 				dtrace_getpcstack(caller, 2, aframes,
2557 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2558 				mstate->dtms_caller = caller[1];
2559 			} else if ((mstate->dtms_caller =
2560 			    dtrace_caller(aframes)) == -1) {
2561 				/*
2562 				 * We have failed to do this the quick way;
2563 				 * we must resort to the slower approach of
2564 				 * calling dtrace_getpcstack().
2565 				 */
2566 				pc_t caller;
2567 
2568 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2569 				mstate->dtms_caller = caller;
2570 			}
2571 
2572 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2573 		}
2574 		return (mstate->dtms_caller);
2575 
2576 	case DIF_VAR_UCALLER:
2577 		if (!dtrace_priv_proc(state))
2578 			return (0);
2579 
2580 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2581 			uint64_t ustack[3];
2582 
2583 			/*
2584 			 * dtrace_getupcstack() fills in the first uint64_t
2585 			 * with the current PID.  The second uint64_t will
2586 			 * be the program counter at user-level.  The third
2587 			 * uint64_t will contain the caller, which is what
2588 			 * we're after.
2589 			 */
2590 			ustack[2] = NULL;
2591 			dtrace_getupcstack(ustack, 3);
2592 			mstate->dtms_ucaller = ustack[2];
2593 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2594 		}
2595 
2596 		return (mstate->dtms_ucaller);
2597 
2598 	case DIF_VAR_PROBEPROV:
2599 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2600 		return (dtrace_dif_varstr(
2601 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2602 		    state, mstate));
2603 
2604 	case DIF_VAR_PROBEMOD:
2605 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2606 		return (dtrace_dif_varstr(
2607 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2608 		    state, mstate));
2609 
2610 	case DIF_VAR_PROBEFUNC:
2611 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2612 		return (dtrace_dif_varstr(
2613 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2614 		    state, mstate));
2615 
2616 	case DIF_VAR_PROBENAME:
2617 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2618 		return (dtrace_dif_varstr(
2619 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2620 		    state, mstate));
2621 
2622 	case DIF_VAR_PID:
2623 		if (!dtrace_priv_proc(state))
2624 			return (0);
2625 
2626 		/*
2627 		 * Note that we are assuming that an unanchored probe is
2628 		 * always due to a high-level interrupt.  (And we're assuming
2629 		 * that there is only a single high level interrupt.)
2630 		 */
2631 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2632 			return (pid0.pid_id);
2633 
2634 		/*
2635 		 * It is always safe to dereference one's own t_procp pointer:
2636 		 * it always points to a valid, allocated proc structure.
2637 		 * Further, it is always safe to dereference the p_pidp member
2638 		 * of one's own proc structure.  (These are truisms becuase
2639 		 * threads and processes don't clean up their own state --
2640 		 * they leave that task to whomever reaps them.)
2641 		 */
2642 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2643 
2644 	case DIF_VAR_PPID:
2645 		if (!dtrace_priv_proc(state))
2646 			return (0);
2647 
2648 		/*
2649 		 * See comment in DIF_VAR_PID.
2650 		 */
2651 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2652 			return (pid0.pid_id);
2653 
2654 		/*
2655 		 * It is always safe to dereference one's own t_procp pointer:
2656 		 * it always points to a valid, allocated proc structure.
2657 		 * (This is true because threads don't clean up their own
2658 		 * state -- they leave that task to whomever reaps them.)
2659 		 */
2660 		return ((uint64_t)curthread->t_procp->p_ppid);
2661 
2662 	case DIF_VAR_TID:
2663 		/*
2664 		 * See comment in DIF_VAR_PID.
2665 		 */
2666 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2667 			return (0);
2668 
2669 		return ((uint64_t)curthread->t_tid);
2670 
2671 	case DIF_VAR_EXECNAME:
2672 		if (!dtrace_priv_proc(state))
2673 			return (0);
2674 
2675 		/*
2676 		 * See comment in DIF_VAR_PID.
2677 		 */
2678 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2679 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
2680 
2681 		/*
2682 		 * It is always safe to dereference one's own t_procp pointer:
2683 		 * it always points to a valid, allocated proc structure.
2684 		 * (This is true because threads don't clean up their own
2685 		 * state -- they leave that task to whomever reaps them.)
2686 		 */
2687 		return (dtrace_dif_varstr(
2688 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
2689 		    state, mstate));
2690 
2691 	case DIF_VAR_ZONENAME:
2692 		if (!dtrace_priv_proc(state))
2693 			return (0);
2694 
2695 		/*
2696 		 * See comment in DIF_VAR_PID.
2697 		 */
2698 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2699 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
2700 
2701 		/*
2702 		 * It is always safe to dereference one's own t_procp pointer:
2703 		 * it always points to a valid, allocated proc structure.
2704 		 * (This is true because threads don't clean up their own
2705 		 * state -- they leave that task to whomever reaps them.)
2706 		 */
2707 		return (dtrace_dif_varstr(
2708 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
2709 		    state, mstate));
2710 
2711 	case DIF_VAR_UID:
2712 		if (!dtrace_priv_proc(state))
2713 			return (0);
2714 
2715 		/*
2716 		 * See comment in DIF_VAR_PID.
2717 		 */
2718 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2719 			return ((uint64_t)p0.p_cred->cr_uid);
2720 
2721 		/*
2722 		 * It is always safe to dereference one's own t_procp pointer:
2723 		 * it always points to a valid, allocated proc structure.
2724 		 * (This is true because threads don't clean up their own
2725 		 * state -- they leave that task to whomever reaps them.)
2726 		 *
2727 		 * Additionally, it is safe to dereference one's own process
2728 		 * credential, since this is never NULL after process birth.
2729 		 */
2730 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
2731 
2732 	case DIF_VAR_GID:
2733 		if (!dtrace_priv_proc(state))
2734 			return (0);
2735 
2736 		/*
2737 		 * See comment in DIF_VAR_PID.
2738 		 */
2739 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2740 			return ((uint64_t)p0.p_cred->cr_gid);
2741 
2742 		/*
2743 		 * It is always safe to dereference one's own t_procp pointer:
2744 		 * it always points to a valid, allocated proc structure.
2745 		 * (This is true because threads don't clean up their own
2746 		 * state -- they leave that task to whomever reaps them.)
2747 		 *
2748 		 * Additionally, it is safe to dereference one's own process
2749 		 * credential, since this is never NULL after process birth.
2750 		 */
2751 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
2752 
2753 	case DIF_VAR_ERRNO: {
2754 		klwp_t *lwp;
2755 		if (!dtrace_priv_proc(state))
2756 			return (0);
2757 
2758 		/*
2759 		 * See comment in DIF_VAR_PID.
2760 		 */
2761 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2762 			return (0);
2763 
2764 		/*
2765 		 * It is always safe to dereference one's own t_lwp pointer in
2766 		 * the event that this pointer is non-NULL.  (This is true
2767 		 * because threads and lwps don't clean up their own state --
2768 		 * they leave that task to whomever reaps them.)
2769 		 */
2770 		if ((lwp = curthread->t_lwp) == NULL)
2771 			return (0);
2772 
2773 		return ((uint64_t)lwp->lwp_errno);
2774 	}
2775 	default:
2776 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2777 		return (0);
2778 	}
2779 }
2780 
2781 /*
2782  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
2783  * Notice that we don't bother validating the proper number of arguments or
2784  * their types in the tuple stack.  This isn't needed because all argument
2785  * interpretation is safe because of our load safety -- the worst that can
2786  * happen is that a bogus program can obtain bogus results.
2787  */
2788 static void
2789 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
2790     dtrace_key_t *tupregs, int nargs,
2791     dtrace_mstate_t *mstate, dtrace_state_t *state)
2792 {
2793 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
2794 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
2795 	dtrace_vstate_t *vstate = &state->dts_vstate;
2796 
2797 	union {
2798 		mutex_impl_t mi;
2799 		uint64_t mx;
2800 	} m;
2801 
2802 	union {
2803 		krwlock_t ri;
2804 		uintptr_t rw;
2805 	} r;
2806 
2807 	switch (subr) {
2808 	case DIF_SUBR_RAND:
2809 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
2810 		break;
2811 
2812 	case DIF_SUBR_MUTEX_OWNED:
2813 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2814 		    mstate, vstate)) {
2815 			regs[rd] = NULL;
2816 			break;
2817 		}
2818 
2819 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2820 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
2821 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
2822 		else
2823 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
2824 		break;
2825 
2826 	case DIF_SUBR_MUTEX_OWNER:
2827 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2828 		    mstate, vstate)) {
2829 			regs[rd] = NULL;
2830 			break;
2831 		}
2832 
2833 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2834 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
2835 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
2836 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
2837 		else
2838 			regs[rd] = 0;
2839 		break;
2840 
2841 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
2842 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2843 		    mstate, vstate)) {
2844 			regs[rd] = NULL;
2845 			break;
2846 		}
2847 
2848 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2849 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
2850 		break;
2851 
2852 	case DIF_SUBR_MUTEX_TYPE_SPIN:
2853 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2854 		    mstate, vstate)) {
2855 			regs[rd] = NULL;
2856 			break;
2857 		}
2858 
2859 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2860 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
2861 		break;
2862 
2863 	case DIF_SUBR_RW_READ_HELD: {
2864 		uintptr_t tmp;
2865 
2866 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
2867 		    mstate, vstate)) {
2868 			regs[rd] = NULL;
2869 			break;
2870 		}
2871 
2872 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2873 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
2874 		break;
2875 	}
2876 
2877 	case DIF_SUBR_RW_WRITE_HELD:
2878 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
2879 		    mstate, vstate)) {
2880 			regs[rd] = NULL;
2881 			break;
2882 		}
2883 
2884 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2885 		regs[rd] = _RW_WRITE_HELD(&r.ri);
2886 		break;
2887 
2888 	case DIF_SUBR_RW_ISWRITER:
2889 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
2890 		    mstate, vstate)) {
2891 			regs[rd] = NULL;
2892 			break;
2893 		}
2894 
2895 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2896 		regs[rd] = _RW_ISWRITER(&r.ri);
2897 		break;
2898 
2899 	case DIF_SUBR_BCOPY: {
2900 		/*
2901 		 * We need to be sure that the destination is in the scratch
2902 		 * region -- no other region is allowed.
2903 		 */
2904 		uintptr_t src = tupregs[0].dttk_value;
2905 		uintptr_t dest = tupregs[1].dttk_value;
2906 		size_t size = tupregs[2].dttk_value;
2907 
2908 		if (!dtrace_inscratch(dest, size, mstate)) {
2909 			*flags |= CPU_DTRACE_BADADDR;
2910 			*illval = regs[rd];
2911 			break;
2912 		}
2913 
2914 		if (!dtrace_canload(src, size, mstate, vstate)) {
2915 			regs[rd] = NULL;
2916 			break;
2917 		}
2918 
2919 		dtrace_bcopy((void *)src, (void *)dest, size);
2920 		break;
2921 	}
2922 
2923 	case DIF_SUBR_ALLOCA:
2924 	case DIF_SUBR_COPYIN: {
2925 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
2926 		uint64_t size =
2927 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
2928 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
2929 
2930 		/*
2931 		 * This action doesn't require any credential checks since
2932 		 * probes will not activate in user contexts to which the
2933 		 * enabling user does not have permissions.
2934 		 */
2935 		if (mstate->dtms_scratch_ptr + scratch_size >
2936 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2937 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2938 			regs[rd] = NULL;
2939 			break;
2940 		}
2941 
2942 		if (subr == DIF_SUBR_COPYIN) {
2943 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2944 			dtrace_copyin(tupregs[0].dttk_value, dest, size);
2945 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2946 		}
2947 
2948 		mstate->dtms_scratch_ptr += scratch_size;
2949 		regs[rd] = dest;
2950 		break;
2951 	}
2952 
2953 	case DIF_SUBR_COPYINTO: {
2954 		uint64_t size = tupregs[1].dttk_value;
2955 		uintptr_t dest = tupregs[2].dttk_value;
2956 
2957 		/*
2958 		 * This action doesn't require any credential checks since
2959 		 * probes will not activate in user contexts to which the
2960 		 * enabling user does not have permissions.
2961 		 */
2962 		if (!dtrace_inscratch(dest, size, mstate)) {
2963 			*flags |= CPU_DTRACE_BADADDR;
2964 			*illval = regs[rd];
2965 			break;
2966 		}
2967 
2968 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2969 		dtrace_copyin(tupregs[0].dttk_value, dest, size);
2970 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2971 		break;
2972 	}
2973 
2974 	case DIF_SUBR_COPYINSTR: {
2975 		uintptr_t dest = mstate->dtms_scratch_ptr;
2976 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2977 
2978 		if (nargs > 1 && tupregs[1].dttk_value < size)
2979 			size = tupregs[1].dttk_value + 1;
2980 
2981 		/*
2982 		 * This action doesn't require any credential checks since
2983 		 * probes will not activate in user contexts to which the
2984 		 * enabling user does not have permissions.
2985 		 */
2986 		if (mstate->dtms_scratch_ptr + size >
2987 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2988 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2989 			regs[rd] = NULL;
2990 			break;
2991 		}
2992 
2993 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2994 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size);
2995 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2996 
2997 		((char *)dest)[size - 1] = '\0';
2998 		mstate->dtms_scratch_ptr += size;
2999 		regs[rd] = dest;
3000 		break;
3001 	}
3002 
3003 	case DIF_SUBR_MSGSIZE:
3004 	case DIF_SUBR_MSGDSIZE: {
3005 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3006 		uintptr_t wptr, rptr;
3007 		size_t count = 0;
3008 		int cont = 0;
3009 
3010 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3011 
3012 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3013 			    vstate)) {
3014 				regs[rd] = NULL;
3015 				break;
3016 			}
3017 
3018 			wptr = dtrace_loadptr(baddr +
3019 			    offsetof(mblk_t, b_wptr));
3020 
3021 			rptr = dtrace_loadptr(baddr +
3022 			    offsetof(mblk_t, b_rptr));
3023 
3024 			if (wptr < rptr) {
3025 				*flags |= CPU_DTRACE_BADADDR;
3026 				*illval = tupregs[0].dttk_value;
3027 				break;
3028 			}
3029 
3030 			daddr = dtrace_loadptr(baddr +
3031 			    offsetof(mblk_t, b_datap));
3032 
3033 			baddr = dtrace_loadptr(baddr +
3034 			    offsetof(mblk_t, b_cont));
3035 
3036 			/*
3037 			 * We want to prevent against denial-of-service here,
3038 			 * so we're only going to search the list for
3039 			 * dtrace_msgdsize_max mblks.
3040 			 */
3041 			if (cont++ > dtrace_msgdsize_max) {
3042 				*flags |= CPU_DTRACE_ILLOP;
3043 				break;
3044 			}
3045 
3046 			if (subr == DIF_SUBR_MSGDSIZE) {
3047 				if (dtrace_load8(daddr +
3048 				    offsetof(dblk_t, db_type)) != M_DATA)
3049 					continue;
3050 			}
3051 
3052 			count += wptr - rptr;
3053 		}
3054 
3055 		if (!(*flags & CPU_DTRACE_FAULT))
3056 			regs[rd] = count;
3057 
3058 		break;
3059 	}
3060 
3061 	case DIF_SUBR_PROGENYOF: {
3062 		pid_t pid = tupregs[0].dttk_value;
3063 		proc_t *p;
3064 		int rval = 0;
3065 
3066 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3067 
3068 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3069 			if (p->p_pidp->pid_id == pid) {
3070 				rval = 1;
3071 				break;
3072 			}
3073 		}
3074 
3075 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3076 
3077 		regs[rd] = rval;
3078 		break;
3079 	}
3080 
3081 	case DIF_SUBR_SPECULATION:
3082 		regs[rd] = dtrace_speculation(state);
3083 		break;
3084 
3085 	case DIF_SUBR_COPYOUT: {
3086 		uintptr_t kaddr = tupregs[0].dttk_value;
3087 		uintptr_t uaddr = tupregs[1].dttk_value;
3088 		uint64_t size = tupregs[2].dttk_value;
3089 
3090 		if (!dtrace_destructive_disallow &&
3091 		    dtrace_priv_proc_control(state) &&
3092 		    !dtrace_istoxic(kaddr, size)) {
3093 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3094 			dtrace_copyout(kaddr, uaddr, size);
3095 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3096 		}
3097 		break;
3098 	}
3099 
3100 	case DIF_SUBR_COPYOUTSTR: {
3101 		uintptr_t kaddr = tupregs[0].dttk_value;
3102 		uintptr_t uaddr = tupregs[1].dttk_value;
3103 		uint64_t size = tupregs[2].dttk_value;
3104 
3105 		if (!dtrace_destructive_disallow &&
3106 		    dtrace_priv_proc_control(state) &&
3107 		    !dtrace_istoxic(kaddr, size)) {
3108 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3109 			dtrace_copyoutstr(kaddr, uaddr, size);
3110 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3111 		}
3112 		break;
3113 	}
3114 
3115 	case DIF_SUBR_STRLEN: {
3116 		size_t sz;
3117 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3118 		sz = dtrace_strlen((char *)addr,
3119 		    state->dts_options[DTRACEOPT_STRSIZE]);
3120 
3121 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3122 			regs[rd] = NULL;
3123 			break;
3124 		}
3125 
3126 		regs[rd] = sz;
3127 
3128 		break;
3129 	}
3130 
3131 	case DIF_SUBR_STRCHR:
3132 	case DIF_SUBR_STRRCHR: {
3133 		/*
3134 		 * We're going to iterate over the string looking for the
3135 		 * specified character.  We will iterate until we have reached
3136 		 * the string length or we have found the character.  If this
3137 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3138 		 * of the specified character instead of the first.
3139 		 */
3140 		uintptr_t saddr = tupregs[0].dttk_value;
3141 		uintptr_t addr = tupregs[0].dttk_value;
3142 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3143 		char c, target = (char)tupregs[1].dttk_value;
3144 
3145 		for (regs[rd] = NULL; addr < limit; addr++) {
3146 			if ((c = dtrace_load8(addr)) == target) {
3147 				regs[rd] = addr;
3148 
3149 				if (subr == DIF_SUBR_STRCHR)
3150 					break;
3151 			}
3152 
3153 			if (c == '\0')
3154 				break;
3155 		}
3156 
3157 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3158 			regs[rd] = NULL;
3159 			break;
3160 		}
3161 
3162 		break;
3163 	}
3164 
3165 	case DIF_SUBR_STRSTR:
3166 	case DIF_SUBR_INDEX:
3167 	case DIF_SUBR_RINDEX: {
3168 		/*
3169 		 * We're going to iterate over the string looking for the
3170 		 * specified string.  We will iterate until we have reached
3171 		 * the string length or we have found the string.  (Yes, this
3172 		 * is done in the most naive way possible -- but considering
3173 		 * that the string we're searching for is likely to be
3174 		 * relatively short, the complexity of Rabin-Karp or similar
3175 		 * hardly seems merited.)
3176 		 */
3177 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3178 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3179 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3180 		size_t len = dtrace_strlen(addr, size);
3181 		size_t sublen = dtrace_strlen(substr, size);
3182 		char *limit = addr + len, *orig = addr;
3183 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3184 		int inc = 1;
3185 
3186 		regs[rd] = notfound;
3187 
3188 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3189 			regs[rd] = NULL;
3190 			break;
3191 		}
3192 
3193 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3194 		    vstate)) {
3195 			regs[rd] = NULL;
3196 			break;
3197 		}
3198 
3199 		/*
3200 		 * strstr() and index()/rindex() have similar semantics if
3201 		 * both strings are the empty string: strstr() returns a
3202 		 * pointer to the (empty) string, and index() and rindex()
3203 		 * both return index 0 (regardless of any position argument).
3204 		 */
3205 		if (sublen == 0 && len == 0) {
3206 			if (subr == DIF_SUBR_STRSTR)
3207 				regs[rd] = (uintptr_t)addr;
3208 			else
3209 				regs[rd] = 0;
3210 			break;
3211 		}
3212 
3213 		if (subr != DIF_SUBR_STRSTR) {
3214 			if (subr == DIF_SUBR_RINDEX) {
3215 				limit = orig - 1;
3216 				addr += len;
3217 				inc = -1;
3218 			}
3219 
3220 			/*
3221 			 * Both index() and rindex() take an optional position
3222 			 * argument that denotes the starting position.
3223 			 */
3224 			if (nargs == 3) {
3225 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3226 
3227 				/*
3228 				 * If the position argument to index() is
3229 				 * negative, Perl implicitly clamps it at
3230 				 * zero.  This semantic is a little surprising
3231 				 * given the special meaning of negative
3232 				 * positions to similar Perl functions like
3233 				 * substr(), but it appears to reflect a
3234 				 * notion that index() can start from a
3235 				 * negative index and increment its way up to
3236 				 * the string.  Given this notion, Perl's
3237 				 * rindex() is at least self-consistent in
3238 				 * that it implicitly clamps positions greater
3239 				 * than the string length to be the string
3240 				 * length.  Where Perl completely loses
3241 				 * coherence, however, is when the specified
3242 				 * substring is the empty string ("").  In
3243 				 * this case, even if the position is
3244 				 * negative, rindex() returns 0 -- and even if
3245 				 * the position is greater than the length,
3246 				 * index() returns the string length.  These
3247 				 * semantics violate the notion that index()
3248 				 * should never return a value less than the
3249 				 * specified position and that rindex() should
3250 				 * never return a value greater than the
3251 				 * specified position.  (One assumes that
3252 				 * these semantics are artifacts of Perl's
3253 				 * implementation and not the results of
3254 				 * deliberate design -- it beggars belief that
3255 				 * even Larry Wall could desire such oddness.)
3256 				 * While in the abstract one would wish for
3257 				 * consistent position semantics across
3258 				 * substr(), index() and rindex() -- or at the
3259 				 * very least self-consistent position
3260 				 * semantics for index() and rindex() -- we
3261 				 * instead opt to keep with the extant Perl
3262 				 * semantics, in all their broken glory.  (Do
3263 				 * we have more desire to maintain Perl's
3264 				 * semantics than Perl does?  Probably.)
3265 				 */
3266 				if (subr == DIF_SUBR_RINDEX) {
3267 					if (pos < 0) {
3268 						if (sublen == 0)
3269 							regs[rd] = 0;
3270 						break;
3271 					}
3272 
3273 					if (pos > len)
3274 						pos = len;
3275 				} else {
3276 					if (pos < 0)
3277 						pos = 0;
3278 
3279 					if (pos >= len) {
3280 						if (sublen == 0)
3281 							regs[rd] = len;
3282 						break;
3283 					}
3284 				}
3285 
3286 				addr = orig + pos;
3287 			}
3288 		}
3289 
3290 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3291 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3292 				if (subr != DIF_SUBR_STRSTR) {
3293 					/*
3294 					 * As D index() and rindex() are
3295 					 * modeled on Perl (and not on awk),
3296 					 * we return a zero-based (and not a
3297 					 * one-based) index.  (For you Perl
3298 					 * weenies: no, we're not going to add
3299 					 * $[ -- and shouldn't you be at a con
3300 					 * or something?)
3301 					 */
3302 					regs[rd] = (uintptr_t)(addr - orig);
3303 					break;
3304 				}
3305 
3306 				ASSERT(subr == DIF_SUBR_STRSTR);
3307 				regs[rd] = (uintptr_t)addr;
3308 				break;
3309 			}
3310 		}
3311 
3312 		break;
3313 	}
3314 
3315 	case DIF_SUBR_STRTOK: {
3316 		uintptr_t addr = tupregs[0].dttk_value;
3317 		uintptr_t tokaddr = tupregs[1].dttk_value;
3318 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3319 		uintptr_t limit, toklimit = tokaddr + size;
3320 		uint8_t c, tokmap[32];	 /* 256 / 8 */
3321 		char *dest = (char *)mstate->dtms_scratch_ptr;
3322 		int i;
3323 
3324 		/*
3325 		 * Check both the token buffer and (later) the input buffer,
3326 		 * since both could be non-scratch addresses.
3327 		 */
3328 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3329 			regs[rd] = NULL;
3330 			break;
3331 		}
3332 
3333 		if (mstate->dtms_scratch_ptr + size >
3334 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3335 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3336 			regs[rd] = NULL;
3337 			break;
3338 		}
3339 
3340 		if (addr == NULL) {
3341 			/*
3342 			 * If the address specified is NULL, we use our saved
3343 			 * strtok pointer from the mstate.  Note that this
3344 			 * means that the saved strtok pointer is _only_
3345 			 * valid within multiple enablings of the same probe --
3346 			 * it behaves like an implicit clause-local variable.
3347 			 */
3348 			addr = mstate->dtms_strtok;
3349 		} else {
3350 			/*
3351 			 * If the user-specified address is non-NULL we must
3352 			 * access check it.  This is the only time we have
3353 			 * a chance to do so, since this address may reside
3354 			 * in the string table of this clause-- future calls
3355 			 * (when we fetch addr from mstate->dtms_strtok)
3356 			 * would fail this access check.
3357 			 */
3358 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3359 				regs[rd] = NULL;
3360 				break;
3361 			}
3362 		}
3363 
3364 		/*
3365 		 * First, zero the token map, and then process the token
3366 		 * string -- setting a bit in the map for every character
3367 		 * found in the token string.
3368 		 */
3369 		for (i = 0; i < sizeof (tokmap); i++)
3370 			tokmap[i] = 0;
3371 
3372 		for (; tokaddr < toklimit; tokaddr++) {
3373 			if ((c = dtrace_load8(tokaddr)) == '\0')
3374 				break;
3375 
3376 			ASSERT((c >> 3) < sizeof (tokmap));
3377 			tokmap[c >> 3] |= (1 << (c & 0x7));
3378 		}
3379 
3380 		for (limit = addr + size; addr < limit; addr++) {
3381 			/*
3382 			 * We're looking for a character that is _not_ contained
3383 			 * in the token string.
3384 			 */
3385 			if ((c = dtrace_load8(addr)) == '\0')
3386 				break;
3387 
3388 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3389 				break;
3390 		}
3391 
3392 		if (c == '\0') {
3393 			/*
3394 			 * We reached the end of the string without finding
3395 			 * any character that was not in the token string.
3396 			 * We return NULL in this case, and we set the saved
3397 			 * address to NULL as well.
3398 			 */
3399 			regs[rd] = NULL;
3400 			mstate->dtms_strtok = NULL;
3401 			break;
3402 		}
3403 
3404 		/*
3405 		 * From here on, we're copying into the destination string.
3406 		 */
3407 		for (i = 0; addr < limit && i < size - 1; addr++) {
3408 			if ((c = dtrace_load8(addr)) == '\0')
3409 				break;
3410 
3411 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3412 				break;
3413 
3414 			ASSERT(i < size);
3415 			dest[i++] = c;
3416 		}
3417 
3418 		ASSERT(i < size);
3419 		dest[i] = '\0';
3420 		regs[rd] = (uintptr_t)dest;
3421 		mstate->dtms_scratch_ptr += size;
3422 		mstate->dtms_strtok = addr;
3423 		break;
3424 	}
3425 
3426 	case DIF_SUBR_SUBSTR: {
3427 		uintptr_t s = tupregs[0].dttk_value;
3428 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3429 		char *d = (char *)mstate->dtms_scratch_ptr;
3430 		int64_t index = (int64_t)tupregs[1].dttk_value;
3431 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3432 		size_t len = dtrace_strlen((char *)s, size);
3433 		int64_t i = 0;
3434 
3435 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3436 			regs[rd] = NULL;
3437 			break;
3438 		}
3439 
3440 		if (nargs <= 2)
3441 			remaining = (int64_t)size;
3442 
3443 		if (mstate->dtms_scratch_ptr + size >
3444 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3445 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3446 			regs[rd] = NULL;
3447 			break;
3448 		}
3449 
3450 		if (index < 0) {
3451 			index += len;
3452 
3453 			if (index < 0 && index + remaining > 0) {
3454 				remaining += index;
3455 				index = 0;
3456 			}
3457 		}
3458 
3459 		if (index >= len || index < 0)
3460 			index = len;
3461 
3462 		for (d[0] = '\0'; remaining > 0; remaining--) {
3463 			if ((d[i++] = dtrace_load8(s++ + index)) == '\0')
3464 				break;
3465 
3466 			if (i == size) {
3467 				d[i - 1] = '\0';
3468 				break;
3469 			}
3470 		}
3471 
3472 		mstate->dtms_scratch_ptr += size;
3473 		regs[rd] = (uintptr_t)d;
3474 		break;
3475 	}
3476 
3477 	case DIF_SUBR_GETMAJOR:
3478 #ifdef _LP64
3479 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3480 #else
3481 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3482 #endif
3483 		break;
3484 
3485 	case DIF_SUBR_GETMINOR:
3486 #ifdef _LP64
3487 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3488 #else
3489 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3490 #endif
3491 		break;
3492 
3493 	case DIF_SUBR_DDI_PATHNAME: {
3494 		/*
3495 		 * This one is a galactic mess.  We are going to roughly
3496 		 * emulate ddi_pathname(), but it's made more complicated
3497 		 * by the fact that we (a) want to include the minor name and
3498 		 * (b) must proceed iteratively instead of recursively.
3499 		 */
3500 		uintptr_t dest = mstate->dtms_scratch_ptr;
3501 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3502 		char *start = (char *)dest, *end = start + size - 1;
3503 		uintptr_t daddr = tupregs[0].dttk_value;
3504 		int64_t minor = (int64_t)tupregs[1].dttk_value;
3505 		char *s;
3506 		int i, len, depth = 0;
3507 
3508 		/*
3509 		 * Due to all the pointer jumping we do and context we must
3510 		 * rely upon, we just mandate that the user must have kernel
3511 		 * read privileges to use this routine.
3512 		 */
3513 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3514 			*flags |= CPU_DTRACE_KPRIV;
3515 			*illval = daddr;
3516 			regs[rd] = NULL;
3517 		}
3518 
3519 		if (size == 0 || mstate->dtms_scratch_ptr + size >
3520 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3521 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3522 			regs[rd] = NULL;
3523 			break;
3524 		}
3525 
3526 		*end = '\0';
3527 
3528 		/*
3529 		 * We want to have a name for the minor.  In order to do this,
3530 		 * we need to walk the minor list from the devinfo.  We want
3531 		 * to be sure that we don't infinitely walk a circular list,
3532 		 * so we check for circularity by sending a scout pointer
3533 		 * ahead two elements for every element that we iterate over;
3534 		 * if the list is circular, these will ultimately point to the
3535 		 * same element.  You may recognize this little trick as the
3536 		 * answer to a stupid interview question -- one that always
3537 		 * seems to be asked by those who had to have it laboriously
3538 		 * explained to them, and who can't even concisely describe
3539 		 * the conditions under which one would be forced to resort to
3540 		 * this technique.  Needless to say, those conditions are
3541 		 * found here -- and probably only here.  Is this is the only
3542 		 * use of this infamous trick in shipping, production code?
3543 		 * If it isn't, it probably should be...
3544 		 */
3545 		if (minor != -1) {
3546 			uintptr_t maddr = dtrace_loadptr(daddr +
3547 			    offsetof(struct dev_info, devi_minor));
3548 
3549 			uintptr_t next = offsetof(struct ddi_minor_data, next);
3550 			uintptr_t name = offsetof(struct ddi_minor_data,
3551 			    d_minor) + offsetof(struct ddi_minor, name);
3552 			uintptr_t dev = offsetof(struct ddi_minor_data,
3553 			    d_minor) + offsetof(struct ddi_minor, dev);
3554 			uintptr_t scout;
3555 
3556 			if (maddr != NULL)
3557 				scout = dtrace_loadptr(maddr + next);
3558 
3559 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3560 				uint64_t m;
3561 #ifdef _LP64
3562 				m = dtrace_load64(maddr + dev) & MAXMIN64;
3563 #else
3564 				m = dtrace_load32(maddr + dev) & MAXMIN;
3565 #endif
3566 				if (m != minor) {
3567 					maddr = dtrace_loadptr(maddr + next);
3568 
3569 					if (scout == NULL)
3570 						continue;
3571 
3572 					scout = dtrace_loadptr(scout + next);
3573 
3574 					if (scout == NULL)
3575 						continue;
3576 
3577 					scout = dtrace_loadptr(scout + next);
3578 
3579 					if (scout == NULL)
3580 						continue;
3581 
3582 					if (scout == maddr) {
3583 						*flags |= CPU_DTRACE_ILLOP;
3584 						break;
3585 					}
3586 
3587 					continue;
3588 				}
3589 
3590 				/*
3591 				 * We have the minor data.  Now we need to
3592 				 * copy the minor's name into the end of the
3593 				 * pathname.
3594 				 */
3595 				s = (char *)dtrace_loadptr(maddr + name);
3596 				len = dtrace_strlen(s, size);
3597 
3598 				if (*flags & CPU_DTRACE_FAULT)
3599 					break;
3600 
3601 				if (len != 0) {
3602 					if ((end -= (len + 1)) < start)
3603 						break;
3604 
3605 					*end = ':';
3606 				}
3607 
3608 				for (i = 1; i <= len; i++)
3609 					end[i] = dtrace_load8((uintptr_t)s++);
3610 				break;
3611 			}
3612 		}
3613 
3614 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3615 			ddi_node_state_t devi_state;
3616 
3617 			devi_state = dtrace_load32(daddr +
3618 			    offsetof(struct dev_info, devi_node_state));
3619 
3620 			if (*flags & CPU_DTRACE_FAULT)
3621 				break;
3622 
3623 			if (devi_state >= DS_INITIALIZED) {
3624 				s = (char *)dtrace_loadptr(daddr +
3625 				    offsetof(struct dev_info, devi_addr));
3626 				len = dtrace_strlen(s, size);
3627 
3628 				if (*flags & CPU_DTRACE_FAULT)
3629 					break;
3630 
3631 				if (len != 0) {
3632 					if ((end -= (len + 1)) < start)
3633 						break;
3634 
3635 					*end = '@';
3636 				}
3637 
3638 				for (i = 1; i <= len; i++)
3639 					end[i] = dtrace_load8((uintptr_t)s++);
3640 			}
3641 
3642 			/*
3643 			 * Now for the node name...
3644 			 */
3645 			s = (char *)dtrace_loadptr(daddr +
3646 			    offsetof(struct dev_info, devi_node_name));
3647 
3648 			daddr = dtrace_loadptr(daddr +
3649 			    offsetof(struct dev_info, devi_parent));
3650 
3651 			/*
3652 			 * If our parent is NULL (that is, if we're the root
3653 			 * node), we're going to use the special path
3654 			 * "devices".
3655 			 */
3656 			if (daddr == NULL)
3657 				s = "devices";
3658 
3659 			len = dtrace_strlen(s, size);
3660 			if (*flags & CPU_DTRACE_FAULT)
3661 				break;
3662 
3663 			if ((end -= (len + 1)) < start)
3664 				break;
3665 
3666 			for (i = 1; i <= len; i++)
3667 				end[i] = dtrace_load8((uintptr_t)s++);
3668 			*end = '/';
3669 
3670 			if (depth++ > dtrace_devdepth_max) {
3671 				*flags |= CPU_DTRACE_ILLOP;
3672 				break;
3673 			}
3674 		}
3675 
3676 		if (end < start)
3677 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3678 
3679 		if (daddr == NULL) {
3680 			regs[rd] = (uintptr_t)end;
3681 			mstate->dtms_scratch_ptr += size;
3682 		}
3683 
3684 		break;
3685 	}
3686 
3687 	case DIF_SUBR_STRJOIN: {
3688 		char *d = (char *)mstate->dtms_scratch_ptr;
3689 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3690 		uintptr_t s1 = tupregs[0].dttk_value;
3691 		uintptr_t s2 = tupregs[1].dttk_value;
3692 		int i = 0;
3693 
3694 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
3695 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
3696 			regs[rd] = NULL;
3697 			break;
3698 		}
3699 
3700 		if (mstate->dtms_scratch_ptr + size >
3701 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3702 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3703 			regs[rd] = NULL;
3704 			break;
3705 		}
3706 
3707 		for (;;) {
3708 			if (i >= size) {
3709 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3710 				regs[rd] = NULL;
3711 				break;
3712 			}
3713 
3714 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
3715 				i--;
3716 				break;
3717 			}
3718 		}
3719 
3720 		for (;;) {
3721 			if (i >= size) {
3722 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3723 				regs[rd] = NULL;
3724 				break;
3725 			}
3726 
3727 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
3728 				break;
3729 		}
3730 
3731 		if (i < size) {
3732 			mstate->dtms_scratch_ptr += i;
3733 			regs[rd] = (uintptr_t)d;
3734 		}
3735 
3736 		break;
3737 	}
3738 
3739 	case DIF_SUBR_LLTOSTR: {
3740 		int64_t i = (int64_t)tupregs[0].dttk_value;
3741 		int64_t val = i < 0 ? i * -1 : i;
3742 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
3743 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
3744 
3745 		if (mstate->dtms_scratch_ptr + size >
3746 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3747 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3748 			regs[rd] = NULL;
3749 			break;
3750 		}
3751 
3752 		for (*end-- = '\0'; val; val /= 10)
3753 			*end-- = '0' + (val % 10);
3754 
3755 		if (i == 0)
3756 			*end-- = '0';
3757 
3758 		if (i < 0)
3759 			*end-- = '-';
3760 
3761 		regs[rd] = (uintptr_t)end + 1;
3762 		mstate->dtms_scratch_ptr += size;
3763 		break;
3764 	}
3765 
3766 	case DIF_SUBR_HTONS:
3767 	case DIF_SUBR_NTOHS:
3768 #ifdef _BIG_ENDIAN
3769 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
3770 #else
3771 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
3772 #endif
3773 		break;
3774 
3775 
3776 	case DIF_SUBR_HTONL:
3777 	case DIF_SUBR_NTOHL:
3778 #ifdef _BIG_ENDIAN
3779 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
3780 #else
3781 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
3782 #endif
3783 		break;
3784 
3785 
3786 	case DIF_SUBR_HTONLL:
3787 	case DIF_SUBR_NTOHLL:
3788 #ifdef _BIG_ENDIAN
3789 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
3790 #else
3791 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
3792 #endif
3793 		break;
3794 
3795 
3796 	case DIF_SUBR_DIRNAME:
3797 	case DIF_SUBR_BASENAME: {
3798 		char *dest = (char *)mstate->dtms_scratch_ptr;
3799 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3800 		uintptr_t src = tupregs[0].dttk_value;
3801 		int i, j, len = dtrace_strlen((char *)src, size);
3802 		int lastbase = -1, firstbase = -1, lastdir = -1;
3803 		int start, end;
3804 
3805 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
3806 			regs[rd] = NULL;
3807 			break;
3808 		}
3809 
3810 		if (mstate->dtms_scratch_ptr + size >
3811 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3812 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3813 			regs[rd] = NULL;
3814 			break;
3815 		}
3816 
3817 		/*
3818 		 * The basename and dirname for a zero-length string is
3819 		 * defined to be "."
3820 		 */
3821 		if (len == 0) {
3822 			len = 1;
3823 			src = (uintptr_t)".";
3824 		}
3825 
3826 		/*
3827 		 * Start from the back of the string, moving back toward the
3828 		 * front until we see a character that isn't a slash.  That
3829 		 * character is the last character in the basename.
3830 		 */
3831 		for (i = len - 1; i >= 0; i--) {
3832 			if (dtrace_load8(src + i) != '/')
3833 				break;
3834 		}
3835 
3836 		if (i >= 0)
3837 			lastbase = i;
3838 
3839 		/*
3840 		 * Starting from the last character in the basename, move
3841 		 * towards the front until we find a slash.  The character
3842 		 * that we processed immediately before that is the first
3843 		 * character in the basename.
3844 		 */
3845 		for (; i >= 0; i--) {
3846 			if (dtrace_load8(src + i) == '/')
3847 				break;
3848 		}
3849 
3850 		if (i >= 0)
3851 			firstbase = i + 1;
3852 
3853 		/*
3854 		 * Now keep going until we find a non-slash character.  That
3855 		 * character is the last character in the dirname.
3856 		 */
3857 		for (; i >= 0; i--) {
3858 			if (dtrace_load8(src + i) != '/')
3859 				break;
3860 		}
3861 
3862 		if (i >= 0)
3863 			lastdir = i;
3864 
3865 		ASSERT(!(lastbase == -1 && firstbase != -1));
3866 		ASSERT(!(firstbase == -1 && lastdir != -1));
3867 
3868 		if (lastbase == -1) {
3869 			/*
3870 			 * We didn't find a non-slash character.  We know that
3871 			 * the length is non-zero, so the whole string must be
3872 			 * slashes.  In either the dirname or the basename
3873 			 * case, we return '/'.
3874 			 */
3875 			ASSERT(firstbase == -1);
3876 			firstbase = lastbase = lastdir = 0;
3877 		}
3878 
3879 		if (firstbase == -1) {
3880 			/*
3881 			 * The entire string consists only of a basename
3882 			 * component.  If we're looking for dirname, we need
3883 			 * to change our string to be just "."; if we're
3884 			 * looking for a basename, we'll just set the first
3885 			 * character of the basename to be 0.
3886 			 */
3887 			if (subr == DIF_SUBR_DIRNAME) {
3888 				ASSERT(lastdir == -1);
3889 				src = (uintptr_t)".";
3890 				lastdir = 0;
3891 			} else {
3892 				firstbase = 0;
3893 			}
3894 		}
3895 
3896 		if (subr == DIF_SUBR_DIRNAME) {
3897 			if (lastdir == -1) {
3898 				/*
3899 				 * We know that we have a slash in the name --
3900 				 * or lastdir would be set to 0, above.  And
3901 				 * because lastdir is -1, we know that this
3902 				 * slash must be the first character.  (That
3903 				 * is, the full string must be of the form
3904 				 * "/basename".)  In this case, the last
3905 				 * character of the directory name is 0.
3906 				 */
3907 				lastdir = 0;
3908 			}
3909 
3910 			start = 0;
3911 			end = lastdir;
3912 		} else {
3913 			ASSERT(subr == DIF_SUBR_BASENAME);
3914 			ASSERT(firstbase != -1 && lastbase != -1);
3915 			start = firstbase;
3916 			end = lastbase;
3917 		}
3918 
3919 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
3920 			dest[j] = dtrace_load8(src + i);
3921 
3922 		dest[j] = '\0';
3923 		regs[rd] = (uintptr_t)dest;
3924 		mstate->dtms_scratch_ptr += size;
3925 		break;
3926 	}
3927 
3928 	case DIF_SUBR_CLEANPATH: {
3929 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
3930 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3931 		uintptr_t src = tupregs[0].dttk_value;
3932 		int i = 0, j = 0;
3933 
3934 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
3935 			regs[rd] = NULL;
3936 			break;
3937 		}
3938 
3939 		if (mstate->dtms_scratch_ptr + size >
3940 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3941 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3942 			regs[rd] = NULL;
3943 			break;
3944 		}
3945 
3946 		/*
3947 		 * Move forward, loading each character.
3948 		 */
3949 		do {
3950 			c = dtrace_load8(src + i++);
3951 next:
3952 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
3953 				break;
3954 
3955 			if (c != '/') {
3956 				dest[j++] = c;
3957 				continue;
3958 			}
3959 
3960 			c = dtrace_load8(src + i++);
3961 
3962 			if (c == '/') {
3963 				/*
3964 				 * We have two slashes -- we can just advance
3965 				 * to the next character.
3966 				 */
3967 				goto next;
3968 			}
3969 
3970 			if (c != '.') {
3971 				/*
3972 				 * This is not "." and it's not ".." -- we can
3973 				 * just store the "/" and this character and
3974 				 * drive on.
3975 				 */
3976 				dest[j++] = '/';
3977 				dest[j++] = c;
3978 				continue;
3979 			}
3980 
3981 			c = dtrace_load8(src + i++);
3982 
3983 			if (c == '/') {
3984 				/*
3985 				 * This is a "/./" component.  We're not going
3986 				 * to store anything in the destination buffer;
3987 				 * we're just going to go to the next component.
3988 				 */
3989 				goto next;
3990 			}
3991 
3992 			if (c != '.') {
3993 				/*
3994 				 * This is not ".." -- we can just store the
3995 				 * "/." and this character and continue
3996 				 * processing.
3997 				 */
3998 				dest[j++] = '/';
3999 				dest[j++] = '.';
4000 				dest[j++] = c;
4001 				continue;
4002 			}
4003 
4004 			c = dtrace_load8(src + i++);
4005 
4006 			if (c != '/' && c != '\0') {
4007 				/*
4008 				 * This is not ".." -- it's "..[mumble]".
4009 				 * We'll store the "/.." and this character
4010 				 * and continue processing.
4011 				 */
4012 				dest[j++] = '/';
4013 				dest[j++] = '.';
4014 				dest[j++] = '.';
4015 				dest[j++] = c;
4016 				continue;
4017 			}
4018 
4019 			/*
4020 			 * This is "/../" or "/..\0".  We need to back up
4021 			 * our destination pointer until we find a "/".
4022 			 */
4023 			i--;
4024 			while (j != 0 && dest[--j] != '/')
4025 				continue;
4026 
4027 			if (c == '\0')
4028 				dest[++j] = '/';
4029 		} while (c != '\0');
4030 
4031 		dest[j] = '\0';
4032 		regs[rd] = (uintptr_t)dest;
4033 		mstate->dtms_scratch_ptr += size;
4034 		break;
4035 	}
4036 	}
4037 }
4038 
4039 /*
4040  * Emulate the execution of DTrace IR instructions specified by the given
4041  * DIF object.  This function is deliberately void of assertions as all of
4042  * the necessary checks are handled by a call to dtrace_difo_validate().
4043  */
4044 static uint64_t
4045 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4046     dtrace_vstate_t *vstate, dtrace_state_t *state)
4047 {
4048 	const dif_instr_t *text = difo->dtdo_buf;
4049 	const uint_t textlen = difo->dtdo_len;
4050 	const char *strtab = difo->dtdo_strtab;
4051 	const uint64_t *inttab = difo->dtdo_inttab;
4052 
4053 	uint64_t rval = 0;
4054 	dtrace_statvar_t *svar;
4055 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4056 	dtrace_difv_t *v;
4057 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4058 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4059 
4060 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4061 	uint64_t regs[DIF_DIR_NREGS];
4062 	uint64_t *tmp;
4063 
4064 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4065 	int64_t cc_r;
4066 	uint_t pc = 0, id, opc;
4067 	uint8_t ttop = 0;
4068 	dif_instr_t instr;
4069 	uint_t r1, r2, rd;
4070 
4071 	/*
4072 	 * We stash the current DIF object into the machine state: we need it
4073 	 * for subsequent access checking.
4074 	 */
4075 	mstate->dtms_difo = difo;
4076 
4077 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4078 
4079 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4080 		opc = pc;
4081 
4082 		instr = text[pc++];
4083 		r1 = DIF_INSTR_R1(instr);
4084 		r2 = DIF_INSTR_R2(instr);
4085 		rd = DIF_INSTR_RD(instr);
4086 
4087 		switch (DIF_INSTR_OP(instr)) {
4088 		case DIF_OP_OR:
4089 			regs[rd] = regs[r1] | regs[r2];
4090 			break;
4091 		case DIF_OP_XOR:
4092 			regs[rd] = regs[r1] ^ regs[r2];
4093 			break;
4094 		case DIF_OP_AND:
4095 			regs[rd] = regs[r1] & regs[r2];
4096 			break;
4097 		case DIF_OP_SLL:
4098 			regs[rd] = regs[r1] << regs[r2];
4099 			break;
4100 		case DIF_OP_SRL:
4101 			regs[rd] = regs[r1] >> regs[r2];
4102 			break;
4103 		case DIF_OP_SUB:
4104 			regs[rd] = regs[r1] - regs[r2];
4105 			break;
4106 		case DIF_OP_ADD:
4107 			regs[rd] = regs[r1] + regs[r2];
4108 			break;
4109 		case DIF_OP_MUL:
4110 			regs[rd] = regs[r1] * regs[r2];
4111 			break;
4112 		case DIF_OP_SDIV:
4113 			if (regs[r2] == 0) {
4114 				regs[rd] = 0;
4115 				*flags |= CPU_DTRACE_DIVZERO;
4116 			} else {
4117 				regs[rd] = (int64_t)regs[r1] /
4118 				    (int64_t)regs[r2];
4119 			}
4120 			break;
4121 
4122 		case DIF_OP_UDIV:
4123 			if (regs[r2] == 0) {
4124 				regs[rd] = 0;
4125 				*flags |= CPU_DTRACE_DIVZERO;
4126 			} else {
4127 				regs[rd] = regs[r1] / regs[r2];
4128 			}
4129 			break;
4130 
4131 		case DIF_OP_SREM:
4132 			if (regs[r2] == 0) {
4133 				regs[rd] = 0;
4134 				*flags |= CPU_DTRACE_DIVZERO;
4135 			} else {
4136 				regs[rd] = (int64_t)regs[r1] %
4137 				    (int64_t)regs[r2];
4138 			}
4139 			break;
4140 
4141 		case DIF_OP_UREM:
4142 			if (regs[r2] == 0) {
4143 				regs[rd] = 0;
4144 				*flags |= CPU_DTRACE_DIVZERO;
4145 			} else {
4146 				regs[rd] = regs[r1] % regs[r2];
4147 			}
4148 			break;
4149 
4150 		case DIF_OP_NOT:
4151 			regs[rd] = ~regs[r1];
4152 			break;
4153 		case DIF_OP_MOV:
4154 			regs[rd] = regs[r1];
4155 			break;
4156 		case DIF_OP_CMP:
4157 			cc_r = regs[r1] - regs[r2];
4158 			cc_n = cc_r < 0;
4159 			cc_z = cc_r == 0;
4160 			cc_v = 0;
4161 			cc_c = regs[r1] < regs[r2];
4162 			break;
4163 		case DIF_OP_TST:
4164 			cc_n = cc_v = cc_c = 0;
4165 			cc_z = regs[r1] == 0;
4166 			break;
4167 		case DIF_OP_BA:
4168 			pc = DIF_INSTR_LABEL(instr);
4169 			break;
4170 		case DIF_OP_BE:
4171 			if (cc_z)
4172 				pc = DIF_INSTR_LABEL(instr);
4173 			break;
4174 		case DIF_OP_BNE:
4175 			if (cc_z == 0)
4176 				pc = DIF_INSTR_LABEL(instr);
4177 			break;
4178 		case DIF_OP_BG:
4179 			if ((cc_z | (cc_n ^ cc_v)) == 0)
4180 				pc = DIF_INSTR_LABEL(instr);
4181 			break;
4182 		case DIF_OP_BGU:
4183 			if ((cc_c | cc_z) == 0)
4184 				pc = DIF_INSTR_LABEL(instr);
4185 			break;
4186 		case DIF_OP_BGE:
4187 			if ((cc_n ^ cc_v) == 0)
4188 				pc = DIF_INSTR_LABEL(instr);
4189 			break;
4190 		case DIF_OP_BGEU:
4191 			if (cc_c == 0)
4192 				pc = DIF_INSTR_LABEL(instr);
4193 			break;
4194 		case DIF_OP_BL:
4195 			if (cc_n ^ cc_v)
4196 				pc = DIF_INSTR_LABEL(instr);
4197 			break;
4198 		case DIF_OP_BLU:
4199 			if (cc_c)
4200 				pc = DIF_INSTR_LABEL(instr);
4201 			break;
4202 		case DIF_OP_BLE:
4203 			if (cc_z | (cc_n ^ cc_v))
4204 				pc = DIF_INSTR_LABEL(instr);
4205 			break;
4206 		case DIF_OP_BLEU:
4207 			if (cc_c | cc_z)
4208 				pc = DIF_INSTR_LABEL(instr);
4209 			break;
4210 		case DIF_OP_RLDSB:
4211 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4212 				*flags |= CPU_DTRACE_KPRIV;
4213 				*illval = regs[r1];
4214 				break;
4215 			}
4216 			/*FALLTHROUGH*/
4217 		case DIF_OP_LDSB:
4218 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4219 			break;
4220 		case DIF_OP_RLDSH:
4221 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4222 				*flags |= CPU_DTRACE_KPRIV;
4223 				*illval = regs[r1];
4224 				break;
4225 			}
4226 			/*FALLTHROUGH*/
4227 		case DIF_OP_LDSH:
4228 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4229 			break;
4230 		case DIF_OP_RLDSW:
4231 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4232 				*flags |= CPU_DTRACE_KPRIV;
4233 				*illval = regs[r1];
4234 				break;
4235 			}
4236 			/*FALLTHROUGH*/
4237 		case DIF_OP_LDSW:
4238 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4239 			break;
4240 		case DIF_OP_RLDUB:
4241 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4242 				*flags |= CPU_DTRACE_KPRIV;
4243 				*illval = regs[r1];
4244 				break;
4245 			}
4246 			/*FALLTHROUGH*/
4247 		case DIF_OP_LDUB:
4248 			regs[rd] = dtrace_load8(regs[r1]);
4249 			break;
4250 		case DIF_OP_RLDUH:
4251 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4252 				*flags |= CPU_DTRACE_KPRIV;
4253 				*illval = regs[r1];
4254 				break;
4255 			}
4256 			/*FALLTHROUGH*/
4257 		case DIF_OP_LDUH:
4258 			regs[rd] = dtrace_load16(regs[r1]);
4259 			break;
4260 		case DIF_OP_RLDUW:
4261 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4262 				*flags |= CPU_DTRACE_KPRIV;
4263 				*illval = regs[r1];
4264 				break;
4265 			}
4266 			/*FALLTHROUGH*/
4267 		case DIF_OP_LDUW:
4268 			regs[rd] = dtrace_load32(regs[r1]);
4269 			break;
4270 		case DIF_OP_RLDX:
4271 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4272 				*flags |= CPU_DTRACE_KPRIV;
4273 				*illval = regs[r1];
4274 				break;
4275 			}
4276 			/*FALLTHROUGH*/
4277 		case DIF_OP_LDX:
4278 			regs[rd] = dtrace_load64(regs[r1]);
4279 			break;
4280 		case DIF_OP_ULDSB:
4281 			regs[rd] = (int8_t)
4282 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4283 			break;
4284 		case DIF_OP_ULDSH:
4285 			regs[rd] = (int16_t)
4286 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4287 			break;
4288 		case DIF_OP_ULDSW:
4289 			regs[rd] = (int32_t)
4290 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4291 			break;
4292 		case DIF_OP_ULDUB:
4293 			regs[rd] =
4294 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4295 			break;
4296 		case DIF_OP_ULDUH:
4297 			regs[rd] =
4298 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4299 			break;
4300 		case DIF_OP_ULDUW:
4301 			regs[rd] =
4302 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4303 			break;
4304 		case DIF_OP_ULDX:
4305 			regs[rd] =
4306 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
4307 			break;
4308 		case DIF_OP_RET:
4309 			rval = regs[rd];
4310 			break;
4311 		case DIF_OP_NOP:
4312 			break;
4313 		case DIF_OP_SETX:
4314 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
4315 			break;
4316 		case DIF_OP_SETS:
4317 			regs[rd] = (uint64_t)(uintptr_t)
4318 			    (strtab + DIF_INSTR_STRING(instr));
4319 			break;
4320 		case DIF_OP_SCMP: {
4321 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
4322 			uintptr_t s1 = regs[r1];
4323 			uintptr_t s2 = regs[r2];
4324 
4325 			if (s1 != NULL &&
4326 			    !dtrace_strcanload(s1, sz, mstate, vstate))
4327 				break;
4328 			if (s2 != NULL &&
4329 			    !dtrace_strcanload(s2, sz, mstate, vstate))
4330 				break;
4331 
4332 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
4333 
4334 			cc_n = cc_r < 0;
4335 			cc_z = cc_r == 0;
4336 			cc_v = cc_c = 0;
4337 			break;
4338 		}
4339 		case DIF_OP_LDGA:
4340 			regs[rd] = dtrace_dif_variable(mstate, state,
4341 			    r1, regs[r2]);
4342 			break;
4343 		case DIF_OP_LDGS:
4344 			id = DIF_INSTR_VAR(instr);
4345 
4346 			if (id >= DIF_VAR_OTHER_UBASE) {
4347 				uintptr_t a;
4348 
4349 				id -= DIF_VAR_OTHER_UBASE;
4350 				svar = vstate->dtvs_globals[id];
4351 				ASSERT(svar != NULL);
4352 				v = &svar->dtsv_var;
4353 
4354 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
4355 					regs[rd] = svar->dtsv_data;
4356 					break;
4357 				}
4358 
4359 				a = (uintptr_t)svar->dtsv_data;
4360 
4361 				if (*(uint8_t *)a == UINT8_MAX) {
4362 					/*
4363 					 * If the 0th byte is set to UINT8_MAX
4364 					 * then this is to be treated as a
4365 					 * reference to a NULL variable.
4366 					 */
4367 					regs[rd] = NULL;
4368 				} else {
4369 					regs[rd] = a + sizeof (uint64_t);
4370 				}
4371 
4372 				break;
4373 			}
4374 
4375 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
4376 			break;
4377 
4378 		case DIF_OP_STGS:
4379 			id = DIF_INSTR_VAR(instr);
4380 
4381 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4382 			id -= DIF_VAR_OTHER_UBASE;
4383 
4384 			svar = vstate->dtvs_globals[id];
4385 			ASSERT(svar != NULL);
4386 			v = &svar->dtsv_var;
4387 
4388 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4389 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4390 
4391 				ASSERT(a != NULL);
4392 				ASSERT(svar->dtsv_size != 0);
4393 
4394 				if (regs[rd] == NULL) {
4395 					*(uint8_t *)a = UINT8_MAX;
4396 					break;
4397 				} else {
4398 					*(uint8_t *)a = 0;
4399 					a += sizeof (uint64_t);
4400 				}
4401 				if (!dtrace_vcanload(
4402 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4403 				    mstate, vstate))
4404 					break;
4405 
4406 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4407 				    (void *)a, &v->dtdv_type);
4408 				break;
4409 			}
4410 
4411 			svar->dtsv_data = regs[rd];
4412 			break;
4413 
4414 		case DIF_OP_LDTA:
4415 			/*
4416 			 * There are no DTrace built-in thread-local arrays at
4417 			 * present.  This opcode is saved for future work.
4418 			 */
4419 			*flags |= CPU_DTRACE_ILLOP;
4420 			regs[rd] = 0;
4421 			break;
4422 
4423 		case DIF_OP_LDLS:
4424 			id = DIF_INSTR_VAR(instr);
4425 
4426 			if (id < DIF_VAR_OTHER_UBASE) {
4427 				/*
4428 				 * For now, this has no meaning.
4429 				 */
4430 				regs[rd] = 0;
4431 				break;
4432 			}
4433 
4434 			id -= DIF_VAR_OTHER_UBASE;
4435 
4436 			ASSERT(id < vstate->dtvs_nlocals);
4437 			ASSERT(vstate->dtvs_locals != NULL);
4438 
4439 			svar = vstate->dtvs_locals[id];
4440 			ASSERT(svar != NULL);
4441 			v = &svar->dtsv_var;
4442 
4443 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4444 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4445 				size_t sz = v->dtdv_type.dtdt_size;
4446 
4447 				sz += sizeof (uint64_t);
4448 				ASSERT(svar->dtsv_size == NCPU * sz);
4449 				a += CPU->cpu_id * sz;
4450 
4451 				if (*(uint8_t *)a == UINT8_MAX) {
4452 					/*
4453 					 * If the 0th byte is set to UINT8_MAX
4454 					 * then this is to be treated as a
4455 					 * reference to a NULL variable.
4456 					 */
4457 					regs[rd] = NULL;
4458 				} else {
4459 					regs[rd] = a + sizeof (uint64_t);
4460 				}
4461 
4462 				break;
4463 			}
4464 
4465 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4466 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4467 			regs[rd] = tmp[CPU->cpu_id];
4468 			break;
4469 
4470 		case DIF_OP_STLS:
4471 			id = DIF_INSTR_VAR(instr);
4472 
4473 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4474 			id -= DIF_VAR_OTHER_UBASE;
4475 			ASSERT(id < vstate->dtvs_nlocals);
4476 
4477 			ASSERT(vstate->dtvs_locals != NULL);
4478 			svar = vstate->dtvs_locals[id];
4479 			ASSERT(svar != NULL);
4480 			v = &svar->dtsv_var;
4481 
4482 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4483 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4484 				size_t sz = v->dtdv_type.dtdt_size;
4485 
4486 				sz += sizeof (uint64_t);
4487 				ASSERT(svar->dtsv_size == NCPU * sz);
4488 				a += CPU->cpu_id * sz;
4489 
4490 				if (regs[rd] == NULL) {
4491 					*(uint8_t *)a = UINT8_MAX;
4492 					break;
4493 				} else {
4494 					*(uint8_t *)a = 0;
4495 					a += sizeof (uint64_t);
4496 				}
4497 
4498 				if (!dtrace_vcanload(
4499 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4500 				    mstate, vstate))
4501 					break;
4502 
4503 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4504 				    (void *)a, &v->dtdv_type);
4505 				break;
4506 			}
4507 
4508 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4509 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4510 			tmp[CPU->cpu_id] = regs[rd];
4511 			break;
4512 
4513 		case DIF_OP_LDTS: {
4514 			dtrace_dynvar_t *dvar;
4515 			dtrace_key_t *key;
4516 
4517 			id = DIF_INSTR_VAR(instr);
4518 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4519 			id -= DIF_VAR_OTHER_UBASE;
4520 			v = &vstate->dtvs_tlocals[id];
4521 
4522 			key = &tupregs[DIF_DTR_NREGS];
4523 			key[0].dttk_value = (uint64_t)id;
4524 			key[0].dttk_size = 0;
4525 			DTRACE_TLS_THRKEY(key[1].dttk_value);
4526 			key[1].dttk_size = 0;
4527 
4528 			dvar = dtrace_dynvar(dstate, 2, key,
4529 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
4530 			    mstate, vstate);
4531 
4532 			if (dvar == NULL) {
4533 				regs[rd] = 0;
4534 				break;
4535 			}
4536 
4537 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4538 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4539 			} else {
4540 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4541 			}
4542 
4543 			break;
4544 		}
4545 
4546 		case DIF_OP_STTS: {
4547 			dtrace_dynvar_t *dvar;
4548 			dtrace_key_t *key;
4549 
4550 			id = DIF_INSTR_VAR(instr);
4551 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4552 			id -= DIF_VAR_OTHER_UBASE;
4553 
4554 			key = &tupregs[DIF_DTR_NREGS];
4555 			key[0].dttk_value = (uint64_t)id;
4556 			key[0].dttk_size = 0;
4557 			DTRACE_TLS_THRKEY(key[1].dttk_value);
4558 			key[1].dttk_size = 0;
4559 			v = &vstate->dtvs_tlocals[id];
4560 
4561 			dvar = dtrace_dynvar(dstate, 2, key,
4562 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4563 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4564 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4565 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
4566 
4567 			/*
4568 			 * Given that we're storing to thread-local data,
4569 			 * we need to flush our predicate cache.
4570 			 */
4571 			curthread->t_predcache = NULL;
4572 
4573 			if (dvar == NULL)
4574 				break;
4575 
4576 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4577 				if (!dtrace_vcanload(
4578 				    (void *)(uintptr_t)regs[rd],
4579 				    &v->dtdv_type, mstate, vstate))
4580 					break;
4581 
4582 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4583 				    dvar->dtdv_data, &v->dtdv_type);
4584 			} else {
4585 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4586 			}
4587 
4588 			break;
4589 		}
4590 
4591 		case DIF_OP_SRA:
4592 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
4593 			break;
4594 
4595 		case DIF_OP_CALL:
4596 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
4597 			    regs, tupregs, ttop, mstate, state);
4598 			break;
4599 
4600 		case DIF_OP_PUSHTR:
4601 			if (ttop == DIF_DTR_NREGS) {
4602 				*flags |= CPU_DTRACE_TUPOFLOW;
4603 				break;
4604 			}
4605 
4606 			if (r1 == DIF_TYPE_STRING) {
4607 				/*
4608 				 * If this is a string type and the size is 0,
4609 				 * we'll use the system-wide default string
4610 				 * size.  Note that we are _not_ looking at
4611 				 * the value of the DTRACEOPT_STRSIZE option;
4612 				 * had this been set, we would expect to have
4613 				 * a non-zero size value in the "pushtr".
4614 				 */
4615 				tupregs[ttop].dttk_size =
4616 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
4617 				    regs[r2] ? regs[r2] :
4618 				    dtrace_strsize_default) + 1;
4619 			} else {
4620 				tupregs[ttop].dttk_size = regs[r2];
4621 			}
4622 
4623 			tupregs[ttop++].dttk_value = regs[rd];
4624 			break;
4625 
4626 		case DIF_OP_PUSHTV:
4627 			if (ttop == DIF_DTR_NREGS) {
4628 				*flags |= CPU_DTRACE_TUPOFLOW;
4629 				break;
4630 			}
4631 
4632 			tupregs[ttop].dttk_value = regs[rd];
4633 			tupregs[ttop++].dttk_size = 0;
4634 			break;
4635 
4636 		case DIF_OP_POPTS:
4637 			if (ttop != 0)
4638 				ttop--;
4639 			break;
4640 
4641 		case DIF_OP_FLUSHTS:
4642 			ttop = 0;
4643 			break;
4644 
4645 		case DIF_OP_LDGAA:
4646 		case DIF_OP_LDTAA: {
4647 			dtrace_dynvar_t *dvar;
4648 			dtrace_key_t *key = tupregs;
4649 			uint_t nkeys = ttop;
4650 
4651 			id = DIF_INSTR_VAR(instr);
4652 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4653 			id -= DIF_VAR_OTHER_UBASE;
4654 
4655 			key[nkeys].dttk_value = (uint64_t)id;
4656 			key[nkeys++].dttk_size = 0;
4657 
4658 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
4659 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4660 				key[nkeys++].dttk_size = 0;
4661 				v = &vstate->dtvs_tlocals[id];
4662 			} else {
4663 				v = &vstate->dtvs_globals[id]->dtsv_var;
4664 			}
4665 
4666 			dvar = dtrace_dynvar(dstate, nkeys, key,
4667 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4668 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4669 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
4670 
4671 			if (dvar == NULL) {
4672 				regs[rd] = 0;
4673 				break;
4674 			}
4675 
4676 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4677 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4678 			} else {
4679 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4680 			}
4681 
4682 			break;
4683 		}
4684 
4685 		case DIF_OP_STGAA:
4686 		case DIF_OP_STTAA: {
4687 			dtrace_dynvar_t *dvar;
4688 			dtrace_key_t *key = tupregs;
4689 			uint_t nkeys = ttop;
4690 
4691 			id = DIF_INSTR_VAR(instr);
4692 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4693 			id -= DIF_VAR_OTHER_UBASE;
4694 
4695 			key[nkeys].dttk_value = (uint64_t)id;
4696 			key[nkeys++].dttk_size = 0;
4697 
4698 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
4699 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4700 				key[nkeys++].dttk_size = 0;
4701 				v = &vstate->dtvs_tlocals[id];
4702 			} else {
4703 				v = &vstate->dtvs_globals[id]->dtsv_var;
4704 			}
4705 
4706 			dvar = dtrace_dynvar(dstate, nkeys, key,
4707 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4708 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4709 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4710 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
4711 
4712 			if (dvar == NULL)
4713 				break;
4714 
4715 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4716 				if (!dtrace_vcanload(
4717 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4718 				    mstate, vstate))
4719 					break;
4720 
4721 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4722 				    dvar->dtdv_data, &v->dtdv_type);
4723 			} else {
4724 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4725 			}
4726 
4727 			break;
4728 		}
4729 
4730 		case DIF_OP_ALLOCS: {
4731 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4732 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
4733 
4734 			if (mstate->dtms_scratch_ptr + size >
4735 			    mstate->dtms_scratch_base +
4736 			    mstate->dtms_scratch_size) {
4737 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4738 				regs[rd] = NULL;
4739 			} else {
4740 				dtrace_bzero((void *)
4741 				    mstate->dtms_scratch_ptr, size);
4742 				mstate->dtms_scratch_ptr += size;
4743 				regs[rd] = ptr;
4744 			}
4745 			break;
4746 		}
4747 
4748 		case DIF_OP_COPYS:
4749 			if (!dtrace_canstore(regs[rd], regs[r2],
4750 			    mstate, vstate)) {
4751 				*flags |= CPU_DTRACE_BADADDR;
4752 				*illval = regs[rd];
4753 				break;
4754 			}
4755 
4756 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
4757 				break;
4758 
4759 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
4760 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
4761 			break;
4762 
4763 		case DIF_OP_STB:
4764 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
4765 				*flags |= CPU_DTRACE_BADADDR;
4766 				*illval = regs[rd];
4767 				break;
4768 			}
4769 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
4770 			break;
4771 
4772 		case DIF_OP_STH:
4773 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
4774 				*flags |= CPU_DTRACE_BADADDR;
4775 				*illval = regs[rd];
4776 				break;
4777 			}
4778 			if (regs[rd] & 1) {
4779 				*flags |= CPU_DTRACE_BADALIGN;
4780 				*illval = regs[rd];
4781 				break;
4782 			}
4783 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
4784 			break;
4785 
4786 		case DIF_OP_STW:
4787 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
4788 				*flags |= CPU_DTRACE_BADADDR;
4789 				*illval = regs[rd];
4790 				break;
4791 			}
4792 			if (regs[rd] & 3) {
4793 				*flags |= CPU_DTRACE_BADALIGN;
4794 				*illval = regs[rd];
4795 				break;
4796 			}
4797 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
4798 			break;
4799 
4800 		case DIF_OP_STX:
4801 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
4802 				*flags |= CPU_DTRACE_BADADDR;
4803 				*illval = regs[rd];
4804 				break;
4805 			}
4806 			if (regs[rd] & 7) {
4807 				*flags |= CPU_DTRACE_BADALIGN;
4808 				*illval = regs[rd];
4809 				break;
4810 			}
4811 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
4812 			break;
4813 		}
4814 	}
4815 
4816 	if (!(*flags & CPU_DTRACE_FAULT))
4817 		return (rval);
4818 
4819 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
4820 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
4821 
4822 	return (0);
4823 }
4824 
4825 static void
4826 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
4827 {
4828 	dtrace_probe_t *probe = ecb->dte_probe;
4829 	dtrace_provider_t *prov = probe->dtpr_provider;
4830 	char c[DTRACE_FULLNAMELEN + 80], *str;
4831 	char *msg = "dtrace: breakpoint action at probe ";
4832 	char *ecbmsg = " (ecb ";
4833 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
4834 	uintptr_t val = (uintptr_t)ecb;
4835 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
4836 
4837 	if (dtrace_destructive_disallow)
4838 		return;
4839 
4840 	/*
4841 	 * It's impossible to be taking action on the NULL probe.
4842 	 */
4843 	ASSERT(probe != NULL);
4844 
4845 	/*
4846 	 * This is a poor man's (destitute man's?) sprintf():  we want to
4847 	 * print the provider name, module name, function name and name of
4848 	 * the probe, along with the hex address of the ECB with the breakpoint
4849 	 * action -- all of which we must place in the character buffer by
4850 	 * hand.
4851 	 */
4852 	while (*msg != '\0')
4853 		c[i++] = *msg++;
4854 
4855 	for (str = prov->dtpv_name; *str != '\0'; str++)
4856 		c[i++] = *str;
4857 	c[i++] = ':';
4858 
4859 	for (str = probe->dtpr_mod; *str != '\0'; str++)
4860 		c[i++] = *str;
4861 	c[i++] = ':';
4862 
4863 	for (str = probe->dtpr_func; *str != '\0'; str++)
4864 		c[i++] = *str;
4865 	c[i++] = ':';
4866 
4867 	for (str = probe->dtpr_name; *str != '\0'; str++)
4868 		c[i++] = *str;
4869 
4870 	while (*ecbmsg != '\0')
4871 		c[i++] = *ecbmsg++;
4872 
4873 	while (shift >= 0) {
4874 		mask = (uintptr_t)0xf << shift;
4875 
4876 		if (val >= ((uintptr_t)1 << shift))
4877 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
4878 		shift -= 4;
4879 	}
4880 
4881 	c[i++] = ')';
4882 	c[i] = '\0';
4883 
4884 	debug_enter(c);
4885 }
4886 
4887 static void
4888 dtrace_action_panic(dtrace_ecb_t *ecb)
4889 {
4890 	dtrace_probe_t *probe = ecb->dte_probe;
4891 
4892 	/*
4893 	 * It's impossible to be taking action on the NULL probe.
4894 	 */
4895 	ASSERT(probe != NULL);
4896 
4897 	if (dtrace_destructive_disallow)
4898 		return;
4899 
4900 	if (dtrace_panicked != NULL)
4901 		return;
4902 
4903 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
4904 		return;
4905 
4906 	/*
4907 	 * We won the right to panic.  (We want to be sure that only one
4908 	 * thread calls panic() from dtrace_probe(), and that panic() is
4909 	 * called exactly once.)
4910 	 */
4911 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
4912 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
4913 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
4914 }
4915 
4916 static void
4917 dtrace_action_raise(uint64_t sig)
4918 {
4919 	if (dtrace_destructive_disallow)
4920 		return;
4921 
4922 	if (sig >= NSIG) {
4923 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4924 		return;
4925 	}
4926 
4927 	/*
4928 	 * raise() has a queue depth of 1 -- we ignore all subsequent
4929 	 * invocations of the raise() action.
4930 	 */
4931 	if (curthread->t_dtrace_sig == 0)
4932 		curthread->t_dtrace_sig = (uint8_t)sig;
4933 
4934 	curthread->t_sig_check = 1;
4935 	aston(curthread);
4936 }
4937 
4938 static void
4939 dtrace_action_stop(void)
4940 {
4941 	if (dtrace_destructive_disallow)
4942 		return;
4943 
4944 	if (!curthread->t_dtrace_stop) {
4945 		curthread->t_dtrace_stop = 1;
4946 		curthread->t_sig_check = 1;
4947 		aston(curthread);
4948 	}
4949 }
4950 
4951 static void
4952 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
4953 {
4954 	hrtime_t now;
4955 	volatile uint16_t *flags;
4956 	cpu_t *cpu = CPU;
4957 
4958 	if (dtrace_destructive_disallow)
4959 		return;
4960 
4961 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
4962 
4963 	now = dtrace_gethrtime();
4964 
4965 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
4966 		/*
4967 		 * We need to advance the mark to the current time.
4968 		 */
4969 		cpu->cpu_dtrace_chillmark = now;
4970 		cpu->cpu_dtrace_chilled = 0;
4971 	}
4972 
4973 	/*
4974 	 * Now check to see if the requested chill time would take us over
4975 	 * the maximum amount of time allowed in the chill interval.  (Or
4976 	 * worse, if the calculation itself induces overflow.)
4977 	 */
4978 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
4979 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
4980 		*flags |= CPU_DTRACE_ILLOP;
4981 		return;
4982 	}
4983 
4984 	while (dtrace_gethrtime() - now < val)
4985 		continue;
4986 
4987 	/*
4988 	 * Normally, we assure that the value of the variable "timestamp" does
4989 	 * not change within an ECB.  The presence of chill() represents an
4990 	 * exception to this rule, however.
4991 	 */
4992 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
4993 	cpu->cpu_dtrace_chilled += val;
4994 }
4995 
4996 static void
4997 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
4998     uint64_t *buf, uint64_t arg)
4999 {
5000 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5001 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5002 	uint64_t *pcs = &buf[1], *fps;
5003 	char *str = (char *)&pcs[nframes];
5004 	int size, offs = 0, i, j;
5005 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5006 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5007 	char *sym;
5008 
5009 	/*
5010 	 * Should be taking a faster path if string space has not been
5011 	 * allocated.
5012 	 */
5013 	ASSERT(strsize != 0);
5014 
5015 	/*
5016 	 * We will first allocate some temporary space for the frame pointers.
5017 	 */
5018 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5019 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5020 	    (nframes * sizeof (uint64_t));
5021 
5022 	if (mstate->dtms_scratch_ptr + size >
5023 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
5024 		/*
5025 		 * Not enough room for our frame pointers -- need to indicate
5026 		 * that we ran out of scratch space.
5027 		 */
5028 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5029 		return;
5030 	}
5031 
5032 	mstate->dtms_scratch_ptr += size;
5033 	saved = mstate->dtms_scratch_ptr;
5034 
5035 	/*
5036 	 * Now get a stack with both program counters and frame pointers.
5037 	 */
5038 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5039 	dtrace_getufpstack(buf, fps, nframes + 1);
5040 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5041 
5042 	/*
5043 	 * If that faulted, we're cooked.
5044 	 */
5045 	if (*flags & CPU_DTRACE_FAULT)
5046 		goto out;
5047 
5048 	/*
5049 	 * Now we want to walk up the stack, calling the USTACK helper.  For
5050 	 * each iteration, we restore the scratch pointer.
5051 	 */
5052 	for (i = 0; i < nframes; i++) {
5053 		mstate->dtms_scratch_ptr = saved;
5054 
5055 		if (offs >= strsize)
5056 			break;
5057 
5058 		sym = (char *)(uintptr_t)dtrace_helper(
5059 		    DTRACE_HELPER_ACTION_USTACK,
5060 		    mstate, state, pcs[i], fps[i]);
5061 
5062 		/*
5063 		 * If we faulted while running the helper, we're going to
5064 		 * clear the fault and null out the corresponding string.
5065 		 */
5066 		if (*flags & CPU_DTRACE_FAULT) {
5067 			*flags &= ~CPU_DTRACE_FAULT;
5068 			str[offs++] = '\0';
5069 			continue;
5070 		}
5071 
5072 		if (sym == NULL) {
5073 			str[offs++] = '\0';
5074 			continue;
5075 		}
5076 
5077 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5078 
5079 		/*
5080 		 * Now copy in the string that the helper returned to us.
5081 		 */
5082 		for (j = 0; offs + j < strsize; j++) {
5083 			if ((str[offs + j] = sym[j]) == '\0')
5084 				break;
5085 		}
5086 
5087 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5088 
5089 		offs += j + 1;
5090 	}
5091 
5092 	if (offs >= strsize) {
5093 		/*
5094 		 * If we didn't have room for all of the strings, we don't
5095 		 * abort processing -- this needn't be a fatal error -- but we
5096 		 * still want to increment a counter (dts_stkstroverflows) to
5097 		 * allow this condition to be warned about.  (If this is from
5098 		 * a jstack() action, it is easily tuned via jstackstrsize.)
5099 		 */
5100 		dtrace_error(&state->dts_stkstroverflows);
5101 	}
5102 
5103 	while (offs < strsize)
5104 		str[offs++] = '\0';
5105 
5106 out:
5107 	mstate->dtms_scratch_ptr = old;
5108 }
5109 
5110 /*
5111  * If you're looking for the epicenter of DTrace, you just found it.  This
5112  * is the function called by the provider to fire a probe -- from which all
5113  * subsequent probe-context DTrace activity emanates.
5114  */
5115 void
5116 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5117     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5118 {
5119 	processorid_t cpuid;
5120 	dtrace_icookie_t cookie;
5121 	dtrace_probe_t *probe;
5122 	dtrace_mstate_t mstate;
5123 	dtrace_ecb_t *ecb;
5124 	dtrace_action_t *act;
5125 	intptr_t offs;
5126 	size_t size;
5127 	int vtime, onintr;
5128 	volatile uint16_t *flags;
5129 	hrtime_t now;
5130 
5131 	/*
5132 	 * Kick out immediately if this CPU is still being born (in which case
5133 	 * curthread will be set to -1)
5134 	 */
5135 	if ((uintptr_t)curthread & 1)
5136 		return;
5137 
5138 	cookie = dtrace_interrupt_disable();
5139 	probe = dtrace_probes[id - 1];
5140 	cpuid = CPU->cpu_id;
5141 	onintr = CPU_ON_INTR(CPU);
5142 
5143 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5144 	    probe->dtpr_predcache == curthread->t_predcache) {
5145 		/*
5146 		 * We have hit in the predicate cache; we know that
5147 		 * this predicate would evaluate to be false.
5148 		 */
5149 		dtrace_interrupt_enable(cookie);
5150 		return;
5151 	}
5152 
5153 	if (panic_quiesce) {
5154 		/*
5155 		 * We don't trace anything if we're panicking.
5156 		 */
5157 		dtrace_interrupt_enable(cookie);
5158 		return;
5159 	}
5160 
5161 	now = dtrace_gethrtime();
5162 	vtime = dtrace_vtime_references != 0;
5163 
5164 	if (vtime && curthread->t_dtrace_start)
5165 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5166 
5167 	mstate.dtms_difo = NULL;
5168 	mstate.dtms_probe = probe;
5169 	mstate.dtms_strtok = NULL;
5170 	mstate.dtms_arg[0] = arg0;
5171 	mstate.dtms_arg[1] = arg1;
5172 	mstate.dtms_arg[2] = arg2;
5173 	mstate.dtms_arg[3] = arg3;
5174 	mstate.dtms_arg[4] = arg4;
5175 
5176 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5177 
5178 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5179 		dtrace_predicate_t *pred = ecb->dte_predicate;
5180 		dtrace_state_t *state = ecb->dte_state;
5181 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5182 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5183 		dtrace_vstate_t *vstate = &state->dts_vstate;
5184 		dtrace_provider_t *prov = probe->dtpr_provider;
5185 		int committed = 0;
5186 		caddr_t tomax;
5187 
5188 		/*
5189 		 * A little subtlety with the following (seemingly innocuous)
5190 		 * declaration of the automatic 'val':  by looking at the
5191 		 * code, you might think that it could be declared in the
5192 		 * action processing loop, below.  (That is, it's only used in
5193 		 * the action processing loop.)  However, it must be declared
5194 		 * out of that scope because in the case of DIF expression
5195 		 * arguments to aggregating actions, one iteration of the
5196 		 * action loop will use the last iteration's value.
5197 		 */
5198 #ifdef lint
5199 		uint64_t val = 0;
5200 #else
5201 		uint64_t val;
5202 #endif
5203 
5204 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5205 		*flags &= ~CPU_DTRACE_ERROR;
5206 
5207 		if (prov == dtrace_provider) {
5208 			/*
5209 			 * If dtrace itself is the provider of this probe,
5210 			 * we're only going to continue processing the ECB if
5211 			 * arg0 (the dtrace_state_t) is equal to the ECB's
5212 			 * creating state.  (This prevents disjoint consumers
5213 			 * from seeing one another's metaprobes.)
5214 			 */
5215 			if (arg0 != (uint64_t)(uintptr_t)state)
5216 				continue;
5217 		}
5218 
5219 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5220 			/*
5221 			 * We're not currently active.  If our provider isn't
5222 			 * the dtrace pseudo provider, we're not interested.
5223 			 */
5224 			if (prov != dtrace_provider)
5225 				continue;
5226 
5227 			/*
5228 			 * Now we must further check if we are in the BEGIN
5229 			 * probe.  If we are, we will only continue processing
5230 			 * if we're still in WARMUP -- if one BEGIN enabling
5231 			 * has invoked the exit() action, we don't want to
5232 			 * evaluate subsequent BEGIN enablings.
5233 			 */
5234 			if (probe->dtpr_id == dtrace_probeid_begin &&
5235 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5236 				ASSERT(state->dts_activity ==
5237 				    DTRACE_ACTIVITY_DRAINING);
5238 				continue;
5239 			}
5240 		}
5241 
5242 		if (ecb->dte_cond) {
5243 			/*
5244 			 * If the dte_cond bits indicate that this
5245 			 * consumer is only allowed to see user-mode firings
5246 			 * of this probe, call the provider's dtps_usermode()
5247 			 * entry point to check that the probe was fired
5248 			 * while in a user context. Skip this ECB if that's
5249 			 * not the case.
5250 			 */
5251 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
5252 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
5253 			    probe->dtpr_id, probe->dtpr_arg) == 0)
5254 				continue;
5255 
5256 			/*
5257 			 * This is more subtle than it looks. We have to be
5258 			 * absolutely certain that CRED() isn't going to
5259 			 * change out from under us so it's only legit to
5260 			 * examine that structure if we're in constrained
5261 			 * situations. Currently, the only times we'll this
5262 			 * check is if a non-super-user has enabled the
5263 			 * profile or syscall providers -- providers that
5264 			 * allow visibility of all processes. For the
5265 			 * profile case, the check above will ensure that
5266 			 * we're examining a user context.
5267 			 */
5268 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
5269 				cred_t *cr;
5270 				cred_t *s_cr =
5271 				    ecb->dte_state->dts_cred.dcr_cred;
5272 				proc_t *proc;
5273 
5274 				ASSERT(s_cr != NULL);
5275 
5276 				if ((cr = CRED()) == NULL ||
5277 				    s_cr->cr_uid != cr->cr_uid ||
5278 				    s_cr->cr_uid != cr->cr_ruid ||
5279 				    s_cr->cr_uid != cr->cr_suid ||
5280 				    s_cr->cr_gid != cr->cr_gid ||
5281 				    s_cr->cr_gid != cr->cr_rgid ||
5282 				    s_cr->cr_gid != cr->cr_sgid ||
5283 				    (proc = ttoproc(curthread)) == NULL ||
5284 				    (proc->p_flag & SNOCD))
5285 					continue;
5286 			}
5287 
5288 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
5289 				cred_t *cr;
5290 				cred_t *s_cr =
5291 				    ecb->dte_state->dts_cred.dcr_cred;
5292 
5293 				ASSERT(s_cr != NULL);
5294 
5295 				if ((cr = CRED()) == NULL ||
5296 				    s_cr->cr_zone->zone_id !=
5297 				    cr->cr_zone->zone_id)
5298 					continue;
5299 			}
5300 		}
5301 
5302 		if (now - state->dts_alive > dtrace_deadman_timeout) {
5303 			/*
5304 			 * We seem to be dead.  Unless we (a) have kernel
5305 			 * destructive permissions (b) have expicitly enabled
5306 			 * destructive actions and (c) destructive actions have
5307 			 * not been disabled, we're going to transition into
5308 			 * the KILLED state, from which no further processing
5309 			 * on this state will be performed.
5310 			 */
5311 			if (!dtrace_priv_kernel_destructive(state) ||
5312 			    !state->dts_cred.dcr_destructive ||
5313 			    dtrace_destructive_disallow) {
5314 				void *activity = &state->dts_activity;
5315 				dtrace_activity_t current;
5316 
5317 				do {
5318 					current = state->dts_activity;
5319 				} while (dtrace_cas32(activity, current,
5320 				    DTRACE_ACTIVITY_KILLED) != current);
5321 
5322 				continue;
5323 			}
5324 		}
5325 
5326 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
5327 		    ecb->dte_alignment, state, &mstate)) < 0)
5328 			continue;
5329 
5330 		tomax = buf->dtb_tomax;
5331 		ASSERT(tomax != NULL);
5332 
5333 		if (ecb->dte_size != 0)
5334 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
5335 
5336 		mstate.dtms_epid = ecb->dte_epid;
5337 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
5338 
5339 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
5340 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
5341 		else
5342 			mstate.dtms_access = 0;
5343 
5344 		if (pred != NULL) {
5345 			dtrace_difo_t *dp = pred->dtp_difo;
5346 			int rval;
5347 
5348 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
5349 
5350 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
5351 				dtrace_cacheid_t cid = probe->dtpr_predcache;
5352 
5353 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
5354 					/*
5355 					 * Update the predicate cache...
5356 					 */
5357 					ASSERT(cid == pred->dtp_cacheid);
5358 					curthread->t_predcache = cid;
5359 				}
5360 
5361 				continue;
5362 			}
5363 		}
5364 
5365 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
5366 		    act != NULL; act = act->dta_next) {
5367 			size_t valoffs;
5368 			dtrace_difo_t *dp;
5369 			dtrace_recdesc_t *rec = &act->dta_rec;
5370 
5371 			size = rec->dtrd_size;
5372 			valoffs = offs + rec->dtrd_offset;
5373 
5374 			if (DTRACEACT_ISAGG(act->dta_kind)) {
5375 				uint64_t v = 0xbad;
5376 				dtrace_aggregation_t *agg;
5377 
5378 				agg = (dtrace_aggregation_t *)act;
5379 
5380 				if ((dp = act->dta_difo) != NULL)
5381 					v = dtrace_dif_emulate(dp,
5382 					    &mstate, vstate, state);
5383 
5384 				if (*flags & CPU_DTRACE_ERROR)
5385 					continue;
5386 
5387 				/*
5388 				 * Note that we always pass the expression
5389 				 * value from the previous iteration of the
5390 				 * action loop.  This value will only be used
5391 				 * if there is an expression argument to the
5392 				 * aggregating action, denoted by the
5393 				 * dtag_hasarg field.
5394 				 */
5395 				dtrace_aggregate(agg, buf,
5396 				    offs, aggbuf, v, val);
5397 				continue;
5398 			}
5399 
5400 			switch (act->dta_kind) {
5401 			case DTRACEACT_STOP:
5402 				if (dtrace_priv_proc_destructive(state))
5403 					dtrace_action_stop();
5404 				continue;
5405 
5406 			case DTRACEACT_BREAKPOINT:
5407 				if (dtrace_priv_kernel_destructive(state))
5408 					dtrace_action_breakpoint(ecb);
5409 				continue;
5410 
5411 			case DTRACEACT_PANIC:
5412 				if (dtrace_priv_kernel_destructive(state))
5413 					dtrace_action_panic(ecb);
5414 				continue;
5415 
5416 			case DTRACEACT_STACK:
5417 				if (!dtrace_priv_kernel(state))
5418 					continue;
5419 
5420 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
5421 				    size / sizeof (pc_t), probe->dtpr_aframes,
5422 				    DTRACE_ANCHORED(probe) ? NULL :
5423 				    (uint32_t *)arg0);
5424 
5425 				continue;
5426 
5427 			case DTRACEACT_JSTACK:
5428 			case DTRACEACT_USTACK:
5429 				if (!dtrace_priv_proc(state))
5430 					continue;
5431 
5432 				/*
5433 				 * See comment in DIF_VAR_PID.
5434 				 */
5435 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
5436 				    CPU_ON_INTR(CPU)) {
5437 					int depth = DTRACE_USTACK_NFRAMES(
5438 					    rec->dtrd_arg) + 1;
5439 
5440 					dtrace_bzero((void *)(tomax + valoffs),
5441 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
5442 					    + depth * sizeof (uint64_t));
5443 
5444 					continue;
5445 				}
5446 
5447 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
5448 				    curproc->p_dtrace_helpers != NULL) {
5449 					/*
5450 					 * This is the slow path -- we have
5451 					 * allocated string space, and we're
5452 					 * getting the stack of a process that
5453 					 * has helpers.  Call into a separate
5454 					 * routine to perform this processing.
5455 					 */
5456 					dtrace_action_ustack(&mstate, state,
5457 					    (uint64_t *)(tomax + valoffs),
5458 					    rec->dtrd_arg);
5459 					continue;
5460 				}
5461 
5462 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5463 				dtrace_getupcstack((uint64_t *)
5464 				    (tomax + valoffs),
5465 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
5466 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5467 				continue;
5468 
5469 			default:
5470 				break;
5471 			}
5472 
5473 			dp = act->dta_difo;
5474 			ASSERT(dp != NULL);
5475 
5476 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
5477 
5478 			if (*flags & CPU_DTRACE_ERROR)
5479 				continue;
5480 
5481 			switch (act->dta_kind) {
5482 			case DTRACEACT_SPECULATE:
5483 				ASSERT(buf == &state->dts_buffer[cpuid]);
5484 				buf = dtrace_speculation_buffer(state,
5485 				    cpuid, val);
5486 
5487 				if (buf == NULL) {
5488 					*flags |= CPU_DTRACE_DROP;
5489 					continue;
5490 				}
5491 
5492 				offs = dtrace_buffer_reserve(buf,
5493 				    ecb->dte_needed, ecb->dte_alignment,
5494 				    state, NULL);
5495 
5496 				if (offs < 0) {
5497 					*flags |= CPU_DTRACE_DROP;
5498 					continue;
5499 				}
5500 
5501 				tomax = buf->dtb_tomax;
5502 				ASSERT(tomax != NULL);
5503 
5504 				if (ecb->dte_size != 0)
5505 					DTRACE_STORE(uint32_t, tomax, offs,
5506 					    ecb->dte_epid);
5507 				continue;
5508 
5509 			case DTRACEACT_CHILL:
5510 				if (dtrace_priv_kernel_destructive(state))
5511 					dtrace_action_chill(&mstate, val);
5512 				continue;
5513 
5514 			case DTRACEACT_RAISE:
5515 				if (dtrace_priv_proc_destructive(state))
5516 					dtrace_action_raise(val);
5517 				continue;
5518 
5519 			case DTRACEACT_COMMIT:
5520 				ASSERT(!committed);
5521 
5522 				/*
5523 				 * We need to commit our buffer state.
5524 				 */
5525 				if (ecb->dte_size)
5526 					buf->dtb_offset = offs + ecb->dte_size;
5527 				buf = &state->dts_buffer[cpuid];
5528 				dtrace_speculation_commit(state, cpuid, val);
5529 				committed = 1;
5530 				continue;
5531 
5532 			case DTRACEACT_DISCARD:
5533 				dtrace_speculation_discard(state, cpuid, val);
5534 				continue;
5535 
5536 			case DTRACEACT_DIFEXPR:
5537 			case DTRACEACT_LIBACT:
5538 			case DTRACEACT_PRINTF:
5539 			case DTRACEACT_PRINTA:
5540 			case DTRACEACT_SYSTEM:
5541 			case DTRACEACT_FREOPEN:
5542 				break;
5543 
5544 			case DTRACEACT_SYM:
5545 			case DTRACEACT_MOD:
5546 				if (!dtrace_priv_kernel(state))
5547 					continue;
5548 				break;
5549 
5550 			case DTRACEACT_USYM:
5551 			case DTRACEACT_UMOD:
5552 			case DTRACEACT_UADDR: {
5553 				struct pid *pid = curthread->t_procp->p_pidp;
5554 
5555 				if (!dtrace_priv_proc(state))
5556 					continue;
5557 
5558 				DTRACE_STORE(uint64_t, tomax,
5559 				    valoffs, (uint64_t)pid->pid_id);
5560 				DTRACE_STORE(uint64_t, tomax,
5561 				    valoffs + sizeof (uint64_t), val);
5562 
5563 				continue;
5564 			}
5565 
5566 			case DTRACEACT_EXIT: {
5567 				/*
5568 				 * For the exit action, we are going to attempt
5569 				 * to atomically set our activity to be
5570 				 * draining.  If this fails (either because
5571 				 * another CPU has beat us to the exit action,
5572 				 * or because our current activity is something
5573 				 * other than ACTIVE or WARMUP), we will
5574 				 * continue.  This assures that the exit action
5575 				 * can be successfully recorded at most once
5576 				 * when we're in the ACTIVE state.  If we're
5577 				 * encountering the exit() action while in
5578 				 * COOLDOWN, however, we want to honor the new
5579 				 * status code.  (We know that we're the only
5580 				 * thread in COOLDOWN, so there is no race.)
5581 				 */
5582 				void *activity = &state->dts_activity;
5583 				dtrace_activity_t current = state->dts_activity;
5584 
5585 				if (current == DTRACE_ACTIVITY_COOLDOWN)
5586 					break;
5587 
5588 				if (current != DTRACE_ACTIVITY_WARMUP)
5589 					current = DTRACE_ACTIVITY_ACTIVE;
5590 
5591 				if (dtrace_cas32(activity, current,
5592 				    DTRACE_ACTIVITY_DRAINING) != current) {
5593 					*flags |= CPU_DTRACE_DROP;
5594 					continue;
5595 				}
5596 
5597 				break;
5598 			}
5599 
5600 			default:
5601 				ASSERT(0);
5602 			}
5603 
5604 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
5605 				uintptr_t end = valoffs + size;
5606 
5607 				if (!dtrace_vcanload((void *)(uintptr_t)val,
5608 				    &dp->dtdo_rtype, &mstate, vstate))
5609 					continue;
5610 
5611 				/*
5612 				 * If this is a string, we're going to only
5613 				 * load until we find the zero byte -- after
5614 				 * which we'll store zero bytes.
5615 				 */
5616 				if (dp->dtdo_rtype.dtdt_kind ==
5617 				    DIF_TYPE_STRING) {
5618 					char c = '\0' + 1;
5619 					int intuple = act->dta_intuple;
5620 					size_t s;
5621 
5622 					for (s = 0; s < size; s++) {
5623 						if (c != '\0')
5624 							c = dtrace_load8(val++);
5625 
5626 						DTRACE_STORE(uint8_t, tomax,
5627 						    valoffs++, c);
5628 
5629 						if (c == '\0' && intuple)
5630 							break;
5631 					}
5632 
5633 					continue;
5634 				}
5635 
5636 				while (valoffs < end) {
5637 					DTRACE_STORE(uint8_t, tomax, valoffs++,
5638 					    dtrace_load8(val++));
5639 				}
5640 
5641 				continue;
5642 			}
5643 
5644 			switch (size) {
5645 			case 0:
5646 				break;
5647 
5648 			case sizeof (uint8_t):
5649 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
5650 				break;
5651 			case sizeof (uint16_t):
5652 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
5653 				break;
5654 			case sizeof (uint32_t):
5655 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
5656 				break;
5657 			case sizeof (uint64_t):
5658 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
5659 				break;
5660 			default:
5661 				/*
5662 				 * Any other size should have been returned by
5663 				 * reference, not by value.
5664 				 */
5665 				ASSERT(0);
5666 				break;
5667 			}
5668 		}
5669 
5670 		if (*flags & CPU_DTRACE_DROP)
5671 			continue;
5672 
5673 		if (*flags & CPU_DTRACE_FAULT) {
5674 			int ndx;
5675 			dtrace_action_t *err;
5676 
5677 			buf->dtb_errors++;
5678 
5679 			if (probe->dtpr_id == dtrace_probeid_error) {
5680 				/*
5681 				 * There's nothing we can do -- we had an
5682 				 * error on the error probe.  We bump an
5683 				 * error counter to at least indicate that
5684 				 * this condition happened.
5685 				 */
5686 				dtrace_error(&state->dts_dblerrors);
5687 				continue;
5688 			}
5689 
5690 			if (vtime) {
5691 				/*
5692 				 * Before recursing on dtrace_probe(), we
5693 				 * need to explicitly clear out our start
5694 				 * time to prevent it from being accumulated
5695 				 * into t_dtrace_vtime.
5696 				 */
5697 				curthread->t_dtrace_start = 0;
5698 			}
5699 
5700 			/*
5701 			 * Iterate over the actions to figure out which action
5702 			 * we were processing when we experienced the error.
5703 			 * Note that act points _past_ the faulting action; if
5704 			 * act is ecb->dte_action, the fault was in the
5705 			 * predicate, if it's ecb->dte_action->dta_next it's
5706 			 * in action #1, and so on.
5707 			 */
5708 			for (err = ecb->dte_action, ndx = 0;
5709 			    err != act; err = err->dta_next, ndx++)
5710 				continue;
5711 
5712 			dtrace_probe_error(state, ecb->dte_epid, ndx,
5713 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
5714 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
5715 			    cpu_core[cpuid].cpuc_dtrace_illval);
5716 
5717 			continue;
5718 		}
5719 
5720 		if (!committed)
5721 			buf->dtb_offset = offs + ecb->dte_size;
5722 	}
5723 
5724 	if (vtime)
5725 		curthread->t_dtrace_start = dtrace_gethrtime();
5726 
5727 	dtrace_interrupt_enable(cookie);
5728 }
5729 
5730 /*
5731  * DTrace Probe Hashing Functions
5732  *
5733  * The functions in this section (and indeed, the functions in remaining
5734  * sections) are not _called_ from probe context.  (Any exceptions to this are
5735  * marked with a "Note:".)  Rather, they are called from elsewhere in the
5736  * DTrace framework to look-up probes in, add probes to and remove probes from
5737  * the DTrace probe hashes.  (Each probe is hashed by each element of the
5738  * probe tuple -- allowing for fast lookups, regardless of what was
5739  * specified.)
5740  */
5741 static uint_t
5742 dtrace_hash_str(char *p)
5743 {
5744 	unsigned int g;
5745 	uint_t hval = 0;
5746 
5747 	while (*p) {
5748 		hval = (hval << 4) + *p++;
5749 		if ((g = (hval & 0xf0000000)) != 0)
5750 			hval ^= g >> 24;
5751 		hval &= ~g;
5752 	}
5753 	return (hval);
5754 }
5755 
5756 static dtrace_hash_t *
5757 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
5758 {
5759 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
5760 
5761 	hash->dth_stroffs = stroffs;
5762 	hash->dth_nextoffs = nextoffs;
5763 	hash->dth_prevoffs = prevoffs;
5764 
5765 	hash->dth_size = 1;
5766 	hash->dth_mask = hash->dth_size - 1;
5767 
5768 	hash->dth_tab = kmem_zalloc(hash->dth_size *
5769 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
5770 
5771 	return (hash);
5772 }
5773 
5774 static void
5775 dtrace_hash_destroy(dtrace_hash_t *hash)
5776 {
5777 #ifdef DEBUG
5778 	int i;
5779 
5780 	for (i = 0; i < hash->dth_size; i++)
5781 		ASSERT(hash->dth_tab[i] == NULL);
5782 #endif
5783 
5784 	kmem_free(hash->dth_tab,
5785 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
5786 	kmem_free(hash, sizeof (dtrace_hash_t));
5787 }
5788 
5789 static void
5790 dtrace_hash_resize(dtrace_hash_t *hash)
5791 {
5792 	int size = hash->dth_size, i, ndx;
5793 	int new_size = hash->dth_size << 1;
5794 	int new_mask = new_size - 1;
5795 	dtrace_hashbucket_t **new_tab, *bucket, *next;
5796 
5797 	ASSERT((new_size & new_mask) == 0);
5798 
5799 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
5800 
5801 	for (i = 0; i < size; i++) {
5802 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
5803 			dtrace_probe_t *probe = bucket->dthb_chain;
5804 
5805 			ASSERT(probe != NULL);
5806 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
5807 
5808 			next = bucket->dthb_next;
5809 			bucket->dthb_next = new_tab[ndx];
5810 			new_tab[ndx] = bucket;
5811 		}
5812 	}
5813 
5814 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
5815 	hash->dth_tab = new_tab;
5816 	hash->dth_size = new_size;
5817 	hash->dth_mask = new_mask;
5818 }
5819 
5820 static void
5821 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
5822 {
5823 	int hashval = DTRACE_HASHSTR(hash, new);
5824 	int ndx = hashval & hash->dth_mask;
5825 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5826 	dtrace_probe_t **nextp, **prevp;
5827 
5828 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5829 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
5830 			goto add;
5831 	}
5832 
5833 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
5834 		dtrace_hash_resize(hash);
5835 		dtrace_hash_add(hash, new);
5836 		return;
5837 	}
5838 
5839 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
5840 	bucket->dthb_next = hash->dth_tab[ndx];
5841 	hash->dth_tab[ndx] = bucket;
5842 	hash->dth_nbuckets++;
5843 
5844 add:
5845 	nextp = DTRACE_HASHNEXT(hash, new);
5846 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
5847 	*nextp = bucket->dthb_chain;
5848 
5849 	if (bucket->dthb_chain != NULL) {
5850 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
5851 		ASSERT(*prevp == NULL);
5852 		*prevp = new;
5853 	}
5854 
5855 	bucket->dthb_chain = new;
5856 	bucket->dthb_len++;
5857 }
5858 
5859 static dtrace_probe_t *
5860 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
5861 {
5862 	int hashval = DTRACE_HASHSTR(hash, template);
5863 	int ndx = hashval & hash->dth_mask;
5864 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5865 
5866 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5867 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5868 			return (bucket->dthb_chain);
5869 	}
5870 
5871 	return (NULL);
5872 }
5873 
5874 static int
5875 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
5876 {
5877 	int hashval = DTRACE_HASHSTR(hash, template);
5878 	int ndx = hashval & hash->dth_mask;
5879 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5880 
5881 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5882 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5883 			return (bucket->dthb_len);
5884 	}
5885 
5886 	return (NULL);
5887 }
5888 
5889 static void
5890 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
5891 {
5892 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
5893 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5894 
5895 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
5896 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
5897 
5898 	/*
5899 	 * Find the bucket that we're removing this probe from.
5900 	 */
5901 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5902 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
5903 			break;
5904 	}
5905 
5906 	ASSERT(bucket != NULL);
5907 
5908 	if (*prevp == NULL) {
5909 		if (*nextp == NULL) {
5910 			/*
5911 			 * The removed probe was the only probe on this
5912 			 * bucket; we need to remove the bucket.
5913 			 */
5914 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
5915 
5916 			ASSERT(bucket->dthb_chain == probe);
5917 			ASSERT(b != NULL);
5918 
5919 			if (b == bucket) {
5920 				hash->dth_tab[ndx] = bucket->dthb_next;
5921 			} else {
5922 				while (b->dthb_next != bucket)
5923 					b = b->dthb_next;
5924 				b->dthb_next = bucket->dthb_next;
5925 			}
5926 
5927 			ASSERT(hash->dth_nbuckets > 0);
5928 			hash->dth_nbuckets--;
5929 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
5930 			return;
5931 		}
5932 
5933 		bucket->dthb_chain = *nextp;
5934 	} else {
5935 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
5936 	}
5937 
5938 	if (*nextp != NULL)
5939 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
5940 }
5941 
5942 /*
5943  * DTrace Utility Functions
5944  *
5945  * These are random utility functions that are _not_ called from probe context.
5946  */
5947 static int
5948 dtrace_badattr(const dtrace_attribute_t *a)
5949 {
5950 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
5951 	    a->dtat_data > DTRACE_STABILITY_MAX ||
5952 	    a->dtat_class > DTRACE_CLASS_MAX);
5953 }
5954 
5955 /*
5956  * Return a duplicate copy of a string.  If the specified string is NULL,
5957  * this function returns a zero-length string.
5958  */
5959 static char *
5960 dtrace_strdup(const char *str)
5961 {
5962 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
5963 
5964 	if (str != NULL)
5965 		(void) strcpy(new, str);
5966 
5967 	return (new);
5968 }
5969 
5970 #define	DTRACE_ISALPHA(c)	\
5971 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
5972 
5973 static int
5974 dtrace_badname(const char *s)
5975 {
5976 	char c;
5977 
5978 	if (s == NULL || (c = *s++) == '\0')
5979 		return (0);
5980 
5981 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
5982 		return (1);
5983 
5984 	while ((c = *s++) != '\0') {
5985 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
5986 		    c != '-' && c != '_' && c != '.' && c != '`')
5987 			return (1);
5988 	}
5989 
5990 	return (0);
5991 }
5992 
5993 static void
5994 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
5995 {
5996 	uint32_t priv;
5997 
5998 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
5999 		/*
6000 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6001 		 */
6002 		priv = DTRACE_PRIV_ALL;
6003 	} else {
6004 		*uidp = crgetuid(cr);
6005 		*zoneidp = crgetzoneid(cr);
6006 
6007 		priv = 0;
6008 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6009 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6010 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6011 			priv |= DTRACE_PRIV_USER;
6012 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6013 			priv |= DTRACE_PRIV_PROC;
6014 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6015 			priv |= DTRACE_PRIV_OWNER;
6016 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6017 			priv |= DTRACE_PRIV_ZONEOWNER;
6018 	}
6019 
6020 	*privp = priv;
6021 }
6022 
6023 #ifdef DTRACE_ERRDEBUG
6024 static void
6025 dtrace_errdebug(const char *str)
6026 {
6027 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
6028 	int occupied = 0;
6029 
6030 	mutex_enter(&dtrace_errlock);
6031 	dtrace_errlast = str;
6032 	dtrace_errthread = curthread;
6033 
6034 	while (occupied++ < DTRACE_ERRHASHSZ) {
6035 		if (dtrace_errhash[hval].dter_msg == str) {
6036 			dtrace_errhash[hval].dter_count++;
6037 			goto out;
6038 		}
6039 
6040 		if (dtrace_errhash[hval].dter_msg != NULL) {
6041 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6042 			continue;
6043 		}
6044 
6045 		dtrace_errhash[hval].dter_msg = str;
6046 		dtrace_errhash[hval].dter_count = 1;
6047 		goto out;
6048 	}
6049 
6050 	panic("dtrace: undersized error hash");
6051 out:
6052 	mutex_exit(&dtrace_errlock);
6053 }
6054 #endif
6055 
6056 /*
6057  * DTrace Matching Functions
6058  *
6059  * These functions are used to match groups of probes, given some elements of
6060  * a probe tuple, or some globbed expressions for elements of a probe tuple.
6061  */
6062 static int
6063 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6064     zoneid_t zoneid)
6065 {
6066 	if (priv != DTRACE_PRIV_ALL) {
6067 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6068 		uint32_t match = priv & ppriv;
6069 
6070 		/*
6071 		 * No PRIV_DTRACE_* privileges...
6072 		 */
6073 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6074 		    DTRACE_PRIV_KERNEL)) == 0)
6075 			return (0);
6076 
6077 		/*
6078 		 * No matching bits, but there were bits to match...
6079 		 */
6080 		if (match == 0 && ppriv != 0)
6081 			return (0);
6082 
6083 		/*
6084 		 * Need to have permissions to the process, but don't...
6085 		 */
6086 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6087 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6088 			return (0);
6089 		}
6090 
6091 		/*
6092 		 * Need to be in the same zone unless we possess the
6093 		 * privilege to examine all zones.
6094 		 */
6095 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6096 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6097 			return (0);
6098 		}
6099 	}
6100 
6101 	return (1);
6102 }
6103 
6104 /*
6105  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6106  * consists of input pattern strings and an ops-vector to evaluate them.
6107  * This function returns >0 for match, 0 for no match, and <0 for error.
6108  */
6109 static int
6110 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6111     uint32_t priv, uid_t uid, zoneid_t zoneid)
6112 {
6113 	dtrace_provider_t *pvp = prp->dtpr_provider;
6114 	int rv;
6115 
6116 	if (pvp->dtpv_defunct)
6117 		return (0);
6118 
6119 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6120 		return (rv);
6121 
6122 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6123 		return (rv);
6124 
6125 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6126 		return (rv);
6127 
6128 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6129 		return (rv);
6130 
6131 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6132 		return (0);
6133 
6134 	return (rv);
6135 }
6136 
6137 /*
6138  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6139  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
6140  * libc's version, the kernel version only applies to 8-bit ASCII strings.
6141  * In addition, all of the recursion cases except for '*' matching have been
6142  * unwound.  For '*', we still implement recursive evaluation, but a depth
6143  * counter is maintained and matching is aborted if we recurse too deep.
6144  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
6145  */
6146 static int
6147 dtrace_match_glob(const char *s, const char *p, int depth)
6148 {
6149 	const char *olds;
6150 	char s1, c;
6151 	int gs;
6152 
6153 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
6154 		return (-1);
6155 
6156 	if (s == NULL)
6157 		s = ""; /* treat NULL as empty string */
6158 
6159 top:
6160 	olds = s;
6161 	s1 = *s++;
6162 
6163 	if (p == NULL)
6164 		return (0);
6165 
6166 	if ((c = *p++) == '\0')
6167 		return (s1 == '\0');
6168 
6169 	switch (c) {
6170 	case '[': {
6171 		int ok = 0, notflag = 0;
6172 		char lc = '\0';
6173 
6174 		if (s1 == '\0')
6175 			return (0);
6176 
6177 		if (*p == '!') {
6178 			notflag = 1;
6179 			p++;
6180 		}
6181 
6182 		if ((c = *p++) == '\0')
6183 			return (0);
6184 
6185 		do {
6186 			if (c == '-' && lc != '\0' && *p != ']') {
6187 				if ((c = *p++) == '\0')
6188 					return (0);
6189 				if (c == '\\' && (c = *p++) == '\0')
6190 					return (0);
6191 
6192 				if (notflag) {
6193 					if (s1 < lc || s1 > c)
6194 						ok++;
6195 					else
6196 						return (0);
6197 				} else if (lc <= s1 && s1 <= c)
6198 					ok++;
6199 
6200 			} else if (c == '\\' && (c = *p++) == '\0')
6201 				return (0);
6202 
6203 			lc = c; /* save left-hand 'c' for next iteration */
6204 
6205 			if (notflag) {
6206 				if (s1 != c)
6207 					ok++;
6208 				else
6209 					return (0);
6210 			} else if (s1 == c)
6211 				ok++;
6212 
6213 			if ((c = *p++) == '\0')
6214 				return (0);
6215 
6216 		} while (c != ']');
6217 
6218 		if (ok)
6219 			goto top;
6220 
6221 		return (0);
6222 	}
6223 
6224 	case '\\':
6225 		if ((c = *p++) == '\0')
6226 			return (0);
6227 		/*FALLTHRU*/
6228 
6229 	default:
6230 		if (c != s1)
6231 			return (0);
6232 		/*FALLTHRU*/
6233 
6234 	case '?':
6235 		if (s1 != '\0')
6236 			goto top;
6237 		return (0);
6238 
6239 	case '*':
6240 		while (*p == '*')
6241 			p++; /* consecutive *'s are identical to a single one */
6242 
6243 		if (*p == '\0')
6244 			return (1);
6245 
6246 		for (s = olds; *s != '\0'; s++) {
6247 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
6248 				return (gs);
6249 		}
6250 
6251 		return (0);
6252 	}
6253 }
6254 
6255 /*ARGSUSED*/
6256 static int
6257 dtrace_match_string(const char *s, const char *p, int depth)
6258 {
6259 	return (s != NULL && strcmp(s, p) == 0);
6260 }
6261 
6262 /*ARGSUSED*/
6263 static int
6264 dtrace_match_nul(const char *s, const char *p, int depth)
6265 {
6266 	return (1); /* always match the empty pattern */
6267 }
6268 
6269 /*ARGSUSED*/
6270 static int
6271 dtrace_match_nonzero(const char *s, const char *p, int depth)
6272 {
6273 	return (s != NULL && s[0] != '\0');
6274 }
6275 
6276 static int
6277 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
6278     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
6279 {
6280 	dtrace_probe_t template, *probe;
6281 	dtrace_hash_t *hash = NULL;
6282 	int len, best = INT_MAX, nmatched = 0;
6283 	dtrace_id_t i;
6284 
6285 	ASSERT(MUTEX_HELD(&dtrace_lock));
6286 
6287 	/*
6288 	 * If the probe ID is specified in the key, just lookup by ID and
6289 	 * invoke the match callback once if a matching probe is found.
6290 	 */
6291 	if (pkp->dtpk_id != DTRACE_IDNONE) {
6292 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
6293 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
6294 			(void) (*matched)(probe, arg);
6295 			nmatched++;
6296 		}
6297 		return (nmatched);
6298 	}
6299 
6300 	template.dtpr_mod = (char *)pkp->dtpk_mod;
6301 	template.dtpr_func = (char *)pkp->dtpk_func;
6302 	template.dtpr_name = (char *)pkp->dtpk_name;
6303 
6304 	/*
6305 	 * We want to find the most distinct of the module name, function
6306 	 * name, and name.  So for each one that is not a glob pattern or
6307 	 * empty string, we perform a lookup in the corresponding hash and
6308 	 * use the hash table with the fewest collisions to do our search.
6309 	 */
6310 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
6311 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
6312 		best = len;
6313 		hash = dtrace_bymod;
6314 	}
6315 
6316 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
6317 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
6318 		best = len;
6319 		hash = dtrace_byfunc;
6320 	}
6321 
6322 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
6323 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
6324 		best = len;
6325 		hash = dtrace_byname;
6326 	}
6327 
6328 	/*
6329 	 * If we did not select a hash table, iterate over every probe and
6330 	 * invoke our callback for each one that matches our input probe key.
6331 	 */
6332 	if (hash == NULL) {
6333 		for (i = 0; i < dtrace_nprobes; i++) {
6334 			if ((probe = dtrace_probes[i]) == NULL ||
6335 			    dtrace_match_probe(probe, pkp, priv, uid,
6336 			    zoneid) <= 0)
6337 				continue;
6338 
6339 			nmatched++;
6340 
6341 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
6342 				break;
6343 		}
6344 
6345 		return (nmatched);
6346 	}
6347 
6348 	/*
6349 	 * If we selected a hash table, iterate over each probe of the same key
6350 	 * name and invoke the callback for every probe that matches the other
6351 	 * attributes of our input probe key.
6352 	 */
6353 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
6354 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
6355 
6356 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
6357 			continue;
6358 
6359 		nmatched++;
6360 
6361 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
6362 			break;
6363 	}
6364 
6365 	return (nmatched);
6366 }
6367 
6368 /*
6369  * Return the function pointer dtrace_probecmp() should use to compare the
6370  * specified pattern with a string.  For NULL or empty patterns, we select
6371  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
6372  * For non-empty non-glob strings, we use dtrace_match_string().
6373  */
6374 static dtrace_probekey_f *
6375 dtrace_probekey_func(const char *p)
6376 {
6377 	char c;
6378 
6379 	if (p == NULL || *p == '\0')
6380 		return (&dtrace_match_nul);
6381 
6382 	while ((c = *p++) != '\0') {
6383 		if (c == '[' || c == '?' || c == '*' || c == '\\')
6384 			return (&dtrace_match_glob);
6385 	}
6386 
6387 	return (&dtrace_match_string);
6388 }
6389 
6390 /*
6391  * Build a probe comparison key for use with dtrace_match_probe() from the
6392  * given probe description.  By convention, a null key only matches anchored
6393  * probes: if each field is the empty string, reset dtpk_fmatch to
6394  * dtrace_match_nonzero().
6395  */
6396 static void
6397 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
6398 {
6399 	pkp->dtpk_prov = pdp->dtpd_provider;
6400 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
6401 
6402 	pkp->dtpk_mod = pdp->dtpd_mod;
6403 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
6404 
6405 	pkp->dtpk_func = pdp->dtpd_func;
6406 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
6407 
6408 	pkp->dtpk_name = pdp->dtpd_name;
6409 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
6410 
6411 	pkp->dtpk_id = pdp->dtpd_id;
6412 
6413 	if (pkp->dtpk_id == DTRACE_IDNONE &&
6414 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
6415 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
6416 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
6417 	    pkp->dtpk_nmatch == &dtrace_match_nul)
6418 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
6419 }
6420 
6421 /*
6422  * DTrace Provider-to-Framework API Functions
6423  *
6424  * These functions implement much of the Provider-to-Framework API, as
6425  * described in <sys/dtrace.h>.  The parts of the API not in this section are
6426  * the functions in the API for probe management (found below), and
6427  * dtrace_probe() itself (found above).
6428  */
6429 
6430 /*
6431  * Register the calling provider with the DTrace framework.  This should
6432  * generally be called by DTrace providers in their attach(9E) entry point.
6433  */
6434 int
6435 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
6436     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
6437 {
6438 	dtrace_provider_t *provider;
6439 
6440 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
6441 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6442 		    "arguments", name ? name : "<NULL>");
6443 		return (EINVAL);
6444 	}
6445 
6446 	if (name[0] == '\0' || dtrace_badname(name)) {
6447 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6448 		    "provider name", name);
6449 		return (EINVAL);
6450 	}
6451 
6452 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
6453 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
6454 	    pops->dtps_destroy == NULL ||
6455 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
6456 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6457 		    "provider ops", name);
6458 		return (EINVAL);
6459 	}
6460 
6461 	if (dtrace_badattr(&pap->dtpa_provider) ||
6462 	    dtrace_badattr(&pap->dtpa_mod) ||
6463 	    dtrace_badattr(&pap->dtpa_func) ||
6464 	    dtrace_badattr(&pap->dtpa_name) ||
6465 	    dtrace_badattr(&pap->dtpa_args)) {
6466 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6467 		    "provider attributes", name);
6468 		return (EINVAL);
6469 	}
6470 
6471 	if (priv & ~DTRACE_PRIV_ALL) {
6472 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6473 		    "privilege attributes", name);
6474 		return (EINVAL);
6475 	}
6476 
6477 	if ((priv & DTRACE_PRIV_KERNEL) &&
6478 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
6479 	    pops->dtps_usermode == NULL) {
6480 		cmn_err(CE_WARN, "failed to register provider '%s': need "
6481 		    "dtps_usermode() op for given privilege attributes", name);
6482 		return (EINVAL);
6483 	}
6484 
6485 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
6486 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
6487 	(void) strcpy(provider->dtpv_name, name);
6488 
6489 	provider->dtpv_attr = *pap;
6490 	provider->dtpv_priv.dtpp_flags = priv;
6491 	if (cr != NULL) {
6492 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
6493 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
6494 	}
6495 	provider->dtpv_pops = *pops;
6496 
6497 	if (pops->dtps_provide == NULL) {
6498 		ASSERT(pops->dtps_provide_module != NULL);
6499 		provider->dtpv_pops.dtps_provide =
6500 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
6501 	}
6502 
6503 	if (pops->dtps_provide_module == NULL) {
6504 		ASSERT(pops->dtps_provide != NULL);
6505 		provider->dtpv_pops.dtps_provide_module =
6506 		    (void (*)(void *, struct modctl *))dtrace_nullop;
6507 	}
6508 
6509 	if (pops->dtps_suspend == NULL) {
6510 		ASSERT(pops->dtps_resume == NULL);
6511 		provider->dtpv_pops.dtps_suspend =
6512 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6513 		provider->dtpv_pops.dtps_resume =
6514 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6515 	}
6516 
6517 	provider->dtpv_arg = arg;
6518 	*idp = (dtrace_provider_id_t)provider;
6519 
6520 	if (pops == &dtrace_provider_ops) {
6521 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6522 		ASSERT(MUTEX_HELD(&dtrace_lock));
6523 		ASSERT(dtrace_anon.dta_enabling == NULL);
6524 
6525 		/*
6526 		 * We make sure that the DTrace provider is at the head of
6527 		 * the provider chain.
6528 		 */
6529 		provider->dtpv_next = dtrace_provider;
6530 		dtrace_provider = provider;
6531 		return (0);
6532 	}
6533 
6534 	mutex_enter(&dtrace_provider_lock);
6535 	mutex_enter(&dtrace_lock);
6536 
6537 	/*
6538 	 * If there is at least one provider registered, we'll add this
6539 	 * provider after the first provider.
6540 	 */
6541 	if (dtrace_provider != NULL) {
6542 		provider->dtpv_next = dtrace_provider->dtpv_next;
6543 		dtrace_provider->dtpv_next = provider;
6544 	} else {
6545 		dtrace_provider = provider;
6546 	}
6547 
6548 	if (dtrace_retained != NULL) {
6549 		dtrace_enabling_provide(provider);
6550 
6551 		/*
6552 		 * Now we need to call dtrace_enabling_matchall() -- which
6553 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
6554 		 * to drop all of our locks before calling into it...
6555 		 */
6556 		mutex_exit(&dtrace_lock);
6557 		mutex_exit(&dtrace_provider_lock);
6558 		dtrace_enabling_matchall();
6559 
6560 		return (0);
6561 	}
6562 
6563 	mutex_exit(&dtrace_lock);
6564 	mutex_exit(&dtrace_provider_lock);
6565 
6566 	return (0);
6567 }
6568 
6569 /*
6570  * Unregister the specified provider from the DTrace framework.  This should
6571  * generally be called by DTrace providers in their detach(9E) entry point.
6572  */
6573 int
6574 dtrace_unregister(dtrace_provider_id_t id)
6575 {
6576 	dtrace_provider_t *old = (dtrace_provider_t *)id;
6577 	dtrace_provider_t *prev = NULL;
6578 	int i, self = 0;
6579 	dtrace_probe_t *probe, *first = NULL;
6580 
6581 	if (old->dtpv_pops.dtps_enable ==
6582 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
6583 		/*
6584 		 * If DTrace itself is the provider, we're called with locks
6585 		 * already held.
6586 		 */
6587 		ASSERT(old == dtrace_provider);
6588 		ASSERT(dtrace_devi != NULL);
6589 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6590 		ASSERT(MUTEX_HELD(&dtrace_lock));
6591 		self = 1;
6592 
6593 		if (dtrace_provider->dtpv_next != NULL) {
6594 			/*
6595 			 * There's another provider here; return failure.
6596 			 */
6597 			return (EBUSY);
6598 		}
6599 	} else {
6600 		mutex_enter(&dtrace_provider_lock);
6601 		mutex_enter(&mod_lock);
6602 		mutex_enter(&dtrace_lock);
6603 	}
6604 
6605 	/*
6606 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
6607 	 * probes, we refuse to let providers slither away, unless this
6608 	 * provider has already been explicitly invalidated.
6609 	 */
6610 	if (!old->dtpv_defunct &&
6611 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
6612 	    dtrace_anon.dta_state->dts_necbs > 0))) {
6613 		if (!self) {
6614 			mutex_exit(&dtrace_lock);
6615 			mutex_exit(&mod_lock);
6616 			mutex_exit(&dtrace_provider_lock);
6617 		}
6618 		return (EBUSY);
6619 	}
6620 
6621 	/*
6622 	 * Attempt to destroy the probes associated with this provider.
6623 	 */
6624 	for (i = 0; i < dtrace_nprobes; i++) {
6625 		if ((probe = dtrace_probes[i]) == NULL)
6626 			continue;
6627 
6628 		if (probe->dtpr_provider != old)
6629 			continue;
6630 
6631 		if (probe->dtpr_ecb == NULL)
6632 			continue;
6633 
6634 		/*
6635 		 * We have at least one ECB; we can't remove this provider.
6636 		 */
6637 		if (!self) {
6638 			mutex_exit(&dtrace_lock);
6639 			mutex_exit(&mod_lock);
6640 			mutex_exit(&dtrace_provider_lock);
6641 		}
6642 		return (EBUSY);
6643 	}
6644 
6645 	/*
6646 	 * All of the probes for this provider are disabled; we can safely
6647 	 * remove all of them from their hash chains and from the probe array.
6648 	 */
6649 	for (i = 0; i < dtrace_nprobes; i++) {
6650 		if ((probe = dtrace_probes[i]) == NULL)
6651 			continue;
6652 
6653 		if (probe->dtpr_provider != old)
6654 			continue;
6655 
6656 		dtrace_probes[i] = NULL;
6657 
6658 		dtrace_hash_remove(dtrace_bymod, probe);
6659 		dtrace_hash_remove(dtrace_byfunc, probe);
6660 		dtrace_hash_remove(dtrace_byname, probe);
6661 
6662 		if (first == NULL) {
6663 			first = probe;
6664 			probe->dtpr_nextmod = NULL;
6665 		} else {
6666 			probe->dtpr_nextmod = first;
6667 			first = probe;
6668 		}
6669 	}
6670 
6671 	/*
6672 	 * The provider's probes have been removed from the hash chains and
6673 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
6674 	 * everyone has cleared out from any probe array processing.
6675 	 */
6676 	dtrace_sync();
6677 
6678 	for (probe = first; probe != NULL; probe = first) {
6679 		first = probe->dtpr_nextmod;
6680 
6681 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
6682 		    probe->dtpr_arg);
6683 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
6684 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
6685 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
6686 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
6687 		kmem_free(probe, sizeof (dtrace_probe_t));
6688 	}
6689 
6690 	if ((prev = dtrace_provider) == old) {
6691 		ASSERT(self || dtrace_devi == NULL);
6692 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
6693 		dtrace_provider = old->dtpv_next;
6694 	} else {
6695 		while (prev != NULL && prev->dtpv_next != old)
6696 			prev = prev->dtpv_next;
6697 
6698 		if (prev == NULL) {
6699 			panic("attempt to unregister non-existent "
6700 			    "dtrace provider %p\n", (void *)id);
6701 		}
6702 
6703 		prev->dtpv_next = old->dtpv_next;
6704 	}
6705 
6706 	if (!self) {
6707 		mutex_exit(&dtrace_lock);
6708 		mutex_exit(&mod_lock);
6709 		mutex_exit(&dtrace_provider_lock);
6710 	}
6711 
6712 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
6713 	kmem_free(old, sizeof (dtrace_provider_t));
6714 
6715 	return (0);
6716 }
6717 
6718 /*
6719  * Invalidate the specified provider.  All subsequent probe lookups for the
6720  * specified provider will fail, but its probes will not be removed.
6721  */
6722 void
6723 dtrace_invalidate(dtrace_provider_id_t id)
6724 {
6725 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
6726 
6727 	ASSERT(pvp->dtpv_pops.dtps_enable !=
6728 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
6729 
6730 	mutex_enter(&dtrace_provider_lock);
6731 	mutex_enter(&dtrace_lock);
6732 
6733 	pvp->dtpv_defunct = 1;
6734 
6735 	mutex_exit(&dtrace_lock);
6736 	mutex_exit(&dtrace_provider_lock);
6737 }
6738 
6739 /*
6740  * Indicate whether or not DTrace has attached.
6741  */
6742 int
6743 dtrace_attached(void)
6744 {
6745 	/*
6746 	 * dtrace_provider will be non-NULL iff the DTrace driver has
6747 	 * attached.  (It's non-NULL because DTrace is always itself a
6748 	 * provider.)
6749 	 */
6750 	return (dtrace_provider != NULL);
6751 }
6752 
6753 /*
6754  * Remove all the unenabled probes for the given provider.  This function is
6755  * not unlike dtrace_unregister(), except that it doesn't remove the provider
6756  * -- just as many of its associated probes as it can.
6757  */
6758 int
6759 dtrace_condense(dtrace_provider_id_t id)
6760 {
6761 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
6762 	int i;
6763 	dtrace_probe_t *probe;
6764 
6765 	/*
6766 	 * Make sure this isn't the dtrace provider itself.
6767 	 */
6768 	ASSERT(prov->dtpv_pops.dtps_enable !=
6769 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
6770 
6771 	mutex_enter(&dtrace_provider_lock);
6772 	mutex_enter(&dtrace_lock);
6773 
6774 	/*
6775 	 * Attempt to destroy the probes associated with this provider.
6776 	 */
6777 	for (i = 0; i < dtrace_nprobes; i++) {
6778 		if ((probe = dtrace_probes[i]) == NULL)
6779 			continue;
6780 
6781 		if (probe->dtpr_provider != prov)
6782 			continue;
6783 
6784 		if (probe->dtpr_ecb != NULL)
6785 			continue;
6786 
6787 		dtrace_probes[i] = NULL;
6788 
6789 		dtrace_hash_remove(dtrace_bymod, probe);
6790 		dtrace_hash_remove(dtrace_byfunc, probe);
6791 		dtrace_hash_remove(dtrace_byname, probe);
6792 
6793 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
6794 		    probe->dtpr_arg);
6795 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
6796 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
6797 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
6798 		kmem_free(probe, sizeof (dtrace_probe_t));
6799 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
6800 	}
6801 
6802 	mutex_exit(&dtrace_lock);
6803 	mutex_exit(&dtrace_provider_lock);
6804 
6805 	return (0);
6806 }
6807 
6808 /*
6809  * DTrace Probe Management Functions
6810  *
6811  * The functions in this section perform the DTrace probe management,
6812  * including functions to create probes, look-up probes, and call into the
6813  * providers to request that probes be provided.  Some of these functions are
6814  * in the Provider-to-Framework API; these functions can be identified by the
6815  * fact that they are not declared "static".
6816  */
6817 
6818 /*
6819  * Create a probe with the specified module name, function name, and name.
6820  */
6821 dtrace_id_t
6822 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
6823     const char *func, const char *name, int aframes, void *arg)
6824 {
6825 	dtrace_probe_t *probe, **probes;
6826 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
6827 	dtrace_id_t id;
6828 
6829 	if (provider == dtrace_provider) {
6830 		ASSERT(MUTEX_HELD(&dtrace_lock));
6831 	} else {
6832 		mutex_enter(&dtrace_lock);
6833 	}
6834 
6835 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
6836 	    VM_BESTFIT | VM_SLEEP);
6837 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
6838 
6839 	probe->dtpr_id = id;
6840 	probe->dtpr_gen = dtrace_probegen++;
6841 	probe->dtpr_mod = dtrace_strdup(mod);
6842 	probe->dtpr_func = dtrace_strdup(func);
6843 	probe->dtpr_name = dtrace_strdup(name);
6844 	probe->dtpr_arg = arg;
6845 	probe->dtpr_aframes = aframes;
6846 	probe->dtpr_provider = provider;
6847 
6848 	dtrace_hash_add(dtrace_bymod, probe);
6849 	dtrace_hash_add(dtrace_byfunc, probe);
6850 	dtrace_hash_add(dtrace_byname, probe);
6851 
6852 	if (id - 1 >= dtrace_nprobes) {
6853 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
6854 		size_t nsize = osize << 1;
6855 
6856 		if (nsize == 0) {
6857 			ASSERT(osize == 0);
6858 			ASSERT(dtrace_probes == NULL);
6859 			nsize = sizeof (dtrace_probe_t *);
6860 		}
6861 
6862 		probes = kmem_zalloc(nsize, KM_SLEEP);
6863 
6864 		if (dtrace_probes == NULL) {
6865 			ASSERT(osize == 0);
6866 			dtrace_probes = probes;
6867 			dtrace_nprobes = 1;
6868 		} else {
6869 			dtrace_probe_t **oprobes = dtrace_probes;
6870 
6871 			bcopy(oprobes, probes, osize);
6872 			dtrace_membar_producer();
6873 			dtrace_probes = probes;
6874 
6875 			dtrace_sync();
6876 
6877 			/*
6878 			 * All CPUs are now seeing the new probes array; we can
6879 			 * safely free the old array.
6880 			 */
6881 			kmem_free(oprobes, osize);
6882 			dtrace_nprobes <<= 1;
6883 		}
6884 
6885 		ASSERT(id - 1 < dtrace_nprobes);
6886 	}
6887 
6888 	ASSERT(dtrace_probes[id - 1] == NULL);
6889 	dtrace_probes[id - 1] = probe;
6890 
6891 	if (provider != dtrace_provider)
6892 		mutex_exit(&dtrace_lock);
6893 
6894 	return (id);
6895 }
6896 
6897 static dtrace_probe_t *
6898 dtrace_probe_lookup_id(dtrace_id_t id)
6899 {
6900 	ASSERT(MUTEX_HELD(&dtrace_lock));
6901 
6902 	if (id == 0 || id > dtrace_nprobes)
6903 		return (NULL);
6904 
6905 	return (dtrace_probes[id - 1]);
6906 }
6907 
6908 static int
6909 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
6910 {
6911 	*((dtrace_id_t *)arg) = probe->dtpr_id;
6912 
6913 	return (DTRACE_MATCH_DONE);
6914 }
6915 
6916 /*
6917  * Look up a probe based on provider and one or more of module name, function
6918  * name and probe name.
6919  */
6920 dtrace_id_t
6921 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
6922     const char *func, const char *name)
6923 {
6924 	dtrace_probekey_t pkey;
6925 	dtrace_id_t id;
6926 	int match;
6927 
6928 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
6929 	pkey.dtpk_pmatch = &dtrace_match_string;
6930 	pkey.dtpk_mod = mod;
6931 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
6932 	pkey.dtpk_func = func;
6933 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
6934 	pkey.dtpk_name = name;
6935 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
6936 	pkey.dtpk_id = DTRACE_IDNONE;
6937 
6938 	mutex_enter(&dtrace_lock);
6939 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
6940 	    dtrace_probe_lookup_match, &id);
6941 	mutex_exit(&dtrace_lock);
6942 
6943 	ASSERT(match == 1 || match == 0);
6944 	return (match ? id : 0);
6945 }
6946 
6947 /*
6948  * Returns the probe argument associated with the specified probe.
6949  */
6950 void *
6951 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
6952 {
6953 	dtrace_probe_t *probe;
6954 	void *rval = NULL;
6955 
6956 	mutex_enter(&dtrace_lock);
6957 
6958 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
6959 	    probe->dtpr_provider == (dtrace_provider_t *)id)
6960 		rval = probe->dtpr_arg;
6961 
6962 	mutex_exit(&dtrace_lock);
6963 
6964 	return (rval);
6965 }
6966 
6967 /*
6968  * Copy a probe into a probe description.
6969  */
6970 static void
6971 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
6972 {
6973 	bzero(pdp, sizeof (dtrace_probedesc_t));
6974 	pdp->dtpd_id = prp->dtpr_id;
6975 
6976 	(void) strncpy(pdp->dtpd_provider,
6977 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
6978 
6979 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
6980 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
6981 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
6982 }
6983 
6984 /*
6985  * Called to indicate that a probe -- or probes -- should be provided by a
6986  * specfied provider.  If the specified description is NULL, the provider will
6987  * be told to provide all of its probes.  (This is done whenever a new
6988  * consumer comes along, or whenever a retained enabling is to be matched.) If
6989  * the specified description is non-NULL, the provider is given the
6990  * opportunity to dynamically provide the specified probe, allowing providers
6991  * to support the creation of probes on-the-fly.  (So-called _autocreated_
6992  * probes.)  If the provider is NULL, the operations will be applied to all
6993  * providers; if the provider is non-NULL the operations will only be applied
6994  * to the specified provider.  The dtrace_provider_lock must be held, and the
6995  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
6996  * will need to grab the dtrace_lock when it reenters the framework through
6997  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
6998  */
6999 static void
7000 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7001 {
7002 	struct modctl *ctl;
7003 	int all = 0;
7004 
7005 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7006 
7007 	if (prv == NULL) {
7008 		all = 1;
7009 		prv = dtrace_provider;
7010 	}
7011 
7012 	do {
7013 		/*
7014 		 * First, call the blanket provide operation.
7015 		 */
7016 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7017 
7018 		/*
7019 		 * Now call the per-module provide operation.  We will grab
7020 		 * mod_lock to prevent the list from being modified.  Note
7021 		 * that this also prevents the mod_busy bits from changing.
7022 		 * (mod_busy can only be changed with mod_lock held.)
7023 		 */
7024 		mutex_enter(&mod_lock);
7025 
7026 		ctl = &modules;
7027 		do {
7028 			if (ctl->mod_busy || ctl->mod_mp == NULL)
7029 				continue;
7030 
7031 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7032 
7033 		} while ((ctl = ctl->mod_next) != &modules);
7034 
7035 		mutex_exit(&mod_lock);
7036 	} while (all && (prv = prv->dtpv_next) != NULL);
7037 }
7038 
7039 /*
7040  * Iterate over each probe, and call the Framework-to-Provider API function
7041  * denoted by offs.
7042  */
7043 static void
7044 dtrace_probe_foreach(uintptr_t offs)
7045 {
7046 	dtrace_provider_t *prov;
7047 	void (*func)(void *, dtrace_id_t, void *);
7048 	dtrace_probe_t *probe;
7049 	dtrace_icookie_t cookie;
7050 	int i;
7051 
7052 	/*
7053 	 * We disable interrupts to walk through the probe array.  This is
7054 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7055 	 * won't see stale data.
7056 	 */
7057 	cookie = dtrace_interrupt_disable();
7058 
7059 	for (i = 0; i < dtrace_nprobes; i++) {
7060 		if ((probe = dtrace_probes[i]) == NULL)
7061 			continue;
7062 
7063 		if (probe->dtpr_ecb == NULL) {
7064 			/*
7065 			 * This probe isn't enabled -- don't call the function.
7066 			 */
7067 			continue;
7068 		}
7069 
7070 		prov = probe->dtpr_provider;
7071 		func = *((void(**)(void *, dtrace_id_t, void *))
7072 		    ((uintptr_t)&prov->dtpv_pops + offs));
7073 
7074 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7075 	}
7076 
7077 	dtrace_interrupt_enable(cookie);
7078 }
7079 
7080 static int
7081 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7082 {
7083 	dtrace_probekey_t pkey;
7084 	uint32_t priv;
7085 	uid_t uid;
7086 	zoneid_t zoneid;
7087 
7088 	ASSERT(MUTEX_HELD(&dtrace_lock));
7089 	dtrace_ecb_create_cache = NULL;
7090 
7091 	if (desc == NULL) {
7092 		/*
7093 		 * If we're passed a NULL description, we're being asked to
7094 		 * create an ECB with a NULL probe.
7095 		 */
7096 		(void) dtrace_ecb_create_enable(NULL, enab);
7097 		return (0);
7098 	}
7099 
7100 	dtrace_probekey(desc, &pkey);
7101 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7102 	    &priv, &uid, &zoneid);
7103 
7104 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7105 	    enab));
7106 }
7107 
7108 /*
7109  * DTrace Helper Provider Functions
7110  */
7111 static void
7112 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7113 {
7114 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
7115 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
7116 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
7117 }
7118 
7119 static void
7120 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
7121     const dof_provider_t *dofprov, char *strtab)
7122 {
7123 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
7124 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
7125 	    dofprov->dofpv_provattr);
7126 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
7127 	    dofprov->dofpv_modattr);
7128 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
7129 	    dofprov->dofpv_funcattr);
7130 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
7131 	    dofprov->dofpv_nameattr);
7132 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
7133 	    dofprov->dofpv_argsattr);
7134 }
7135 
7136 static void
7137 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7138 {
7139 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7140 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7141 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
7142 	dof_provider_t *provider;
7143 	dof_probe_t *probe;
7144 	uint32_t *off, *enoff;
7145 	uint8_t *arg;
7146 	char *strtab;
7147 	uint_t i, nprobes;
7148 	dtrace_helper_provdesc_t dhpv;
7149 	dtrace_helper_probedesc_t dhpb;
7150 	dtrace_meta_t *meta = dtrace_meta_pid;
7151 	dtrace_mops_t *mops = &meta->dtm_mops;
7152 	void *parg;
7153 
7154 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7155 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7156 	    provider->dofpv_strtab * dof->dofh_secsize);
7157 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7158 	    provider->dofpv_probes * dof->dofh_secsize);
7159 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7160 	    provider->dofpv_prargs * dof->dofh_secsize);
7161 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7162 	    provider->dofpv_proffs * dof->dofh_secsize);
7163 
7164 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7165 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
7166 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
7167 	enoff = NULL;
7168 
7169 	/*
7170 	 * See dtrace_helper_provider_validate().
7171 	 */
7172 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
7173 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
7174 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7175 		    provider->dofpv_prenoffs * dof->dofh_secsize);
7176 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
7177 	}
7178 
7179 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
7180 
7181 	/*
7182 	 * Create the provider.
7183 	 */
7184 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
7185 
7186 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
7187 		return;
7188 
7189 	meta->dtm_count++;
7190 
7191 	/*
7192 	 * Create the probes.
7193 	 */
7194 	for (i = 0; i < nprobes; i++) {
7195 		probe = (dof_probe_t *)(uintptr_t)(daddr +
7196 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
7197 
7198 		dhpb.dthpb_mod = dhp->dofhp_mod;
7199 		dhpb.dthpb_func = strtab + probe->dofpr_func;
7200 		dhpb.dthpb_name = strtab + probe->dofpr_name;
7201 		dhpb.dthpb_base = probe->dofpr_addr;
7202 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
7203 		dhpb.dthpb_noffs = probe->dofpr_noffs;
7204 		if (enoff != NULL) {
7205 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
7206 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
7207 		} else {
7208 			dhpb.dthpb_enoffs = NULL;
7209 			dhpb.dthpb_nenoffs = 0;
7210 		}
7211 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
7212 		dhpb.dthpb_nargc = probe->dofpr_nargc;
7213 		dhpb.dthpb_xargc = probe->dofpr_xargc;
7214 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
7215 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
7216 
7217 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
7218 	}
7219 }
7220 
7221 static void
7222 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
7223 {
7224 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7225 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7226 	int i;
7227 
7228 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7229 
7230 	for (i = 0; i < dof->dofh_secnum; i++) {
7231 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7232 		    dof->dofh_secoff + i * dof->dofh_secsize);
7233 
7234 		if (sec->dofs_type != DOF_SECT_PROVIDER)
7235 			continue;
7236 
7237 		dtrace_helper_provide_one(dhp, sec, pid);
7238 	}
7239 
7240 	/*
7241 	 * We may have just created probes, so we must now rematch against
7242 	 * any retained enablings.  Note that this call will acquire both
7243 	 * cpu_lock and dtrace_lock; the fact that we are holding
7244 	 * dtrace_meta_lock now is what defines the ordering with respect to
7245 	 * these three locks.
7246 	 */
7247 	dtrace_enabling_matchall();
7248 }
7249 
7250 static void
7251 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7252 {
7253 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7254 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7255 	dof_sec_t *str_sec;
7256 	dof_provider_t *provider;
7257 	char *strtab;
7258 	dtrace_helper_provdesc_t dhpv;
7259 	dtrace_meta_t *meta = dtrace_meta_pid;
7260 	dtrace_mops_t *mops = &meta->dtm_mops;
7261 
7262 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7263 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7264 	    provider->dofpv_strtab * dof->dofh_secsize);
7265 
7266 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7267 
7268 	/*
7269 	 * Create the provider.
7270 	 */
7271 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
7272 
7273 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
7274 
7275 	meta->dtm_count--;
7276 }
7277 
7278 static void
7279 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
7280 {
7281 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7282 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7283 	int i;
7284 
7285 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7286 
7287 	for (i = 0; i < dof->dofh_secnum; i++) {
7288 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7289 		    dof->dofh_secoff + i * dof->dofh_secsize);
7290 
7291 		if (sec->dofs_type != DOF_SECT_PROVIDER)
7292 			continue;
7293 
7294 		dtrace_helper_provider_remove_one(dhp, sec, pid);
7295 	}
7296 }
7297 
7298 /*
7299  * DTrace Meta Provider-to-Framework API Functions
7300  *
7301  * These functions implement the Meta Provider-to-Framework API, as described
7302  * in <sys/dtrace.h>.
7303  */
7304 int
7305 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
7306     dtrace_meta_provider_id_t *idp)
7307 {
7308 	dtrace_meta_t *meta;
7309 	dtrace_helpers_t *help, *next;
7310 	int i;
7311 
7312 	*idp = DTRACE_METAPROVNONE;
7313 
7314 	/*
7315 	 * We strictly don't need the name, but we hold onto it for
7316 	 * debuggability. All hail error queues!
7317 	 */
7318 	if (name == NULL) {
7319 		cmn_err(CE_WARN, "failed to register meta-provider: "
7320 		    "invalid name");
7321 		return (EINVAL);
7322 	}
7323 
7324 	if (mops == NULL ||
7325 	    mops->dtms_create_probe == NULL ||
7326 	    mops->dtms_provide_pid == NULL ||
7327 	    mops->dtms_remove_pid == NULL) {
7328 		cmn_err(CE_WARN, "failed to register meta-register %s: "
7329 		    "invalid ops", name);
7330 		return (EINVAL);
7331 	}
7332 
7333 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
7334 	meta->dtm_mops = *mops;
7335 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7336 	(void) strcpy(meta->dtm_name, name);
7337 	meta->dtm_arg = arg;
7338 
7339 	mutex_enter(&dtrace_meta_lock);
7340 	mutex_enter(&dtrace_lock);
7341 
7342 	if (dtrace_meta_pid != NULL) {
7343 		mutex_exit(&dtrace_lock);
7344 		mutex_exit(&dtrace_meta_lock);
7345 		cmn_err(CE_WARN, "failed to register meta-register %s: "
7346 		    "user-land meta-provider exists", name);
7347 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
7348 		kmem_free(meta, sizeof (dtrace_meta_t));
7349 		return (EINVAL);
7350 	}
7351 
7352 	dtrace_meta_pid = meta;
7353 	*idp = (dtrace_meta_provider_id_t)meta;
7354 
7355 	/*
7356 	 * If there are providers and probes ready to go, pass them
7357 	 * off to the new meta provider now.
7358 	 */
7359 
7360 	help = dtrace_deferred_pid;
7361 	dtrace_deferred_pid = NULL;
7362 
7363 	mutex_exit(&dtrace_lock);
7364 
7365 	while (help != NULL) {
7366 		for (i = 0; i < help->dthps_nprovs; i++) {
7367 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
7368 			    help->dthps_pid);
7369 		}
7370 
7371 		next = help->dthps_next;
7372 		help->dthps_next = NULL;
7373 		help->dthps_prev = NULL;
7374 		help->dthps_deferred = 0;
7375 		help = next;
7376 	}
7377 
7378 	mutex_exit(&dtrace_meta_lock);
7379 
7380 	return (0);
7381 }
7382 
7383 int
7384 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
7385 {
7386 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
7387 
7388 	mutex_enter(&dtrace_meta_lock);
7389 	mutex_enter(&dtrace_lock);
7390 
7391 	if (old == dtrace_meta_pid) {
7392 		pp = &dtrace_meta_pid;
7393 	} else {
7394 		panic("attempt to unregister non-existent "
7395 		    "dtrace meta-provider %p\n", (void *)old);
7396 	}
7397 
7398 	if (old->dtm_count != 0) {
7399 		mutex_exit(&dtrace_lock);
7400 		mutex_exit(&dtrace_meta_lock);
7401 		return (EBUSY);
7402 	}
7403 
7404 	*pp = NULL;
7405 
7406 	mutex_exit(&dtrace_lock);
7407 	mutex_exit(&dtrace_meta_lock);
7408 
7409 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
7410 	kmem_free(old, sizeof (dtrace_meta_t));
7411 
7412 	return (0);
7413 }
7414 
7415 
7416 /*
7417  * DTrace DIF Object Functions
7418  */
7419 static int
7420 dtrace_difo_err(uint_t pc, const char *format, ...)
7421 {
7422 	if (dtrace_err_verbose) {
7423 		va_list alist;
7424 
7425 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
7426 		va_start(alist, format);
7427 		(void) vuprintf(format, alist);
7428 		va_end(alist);
7429 	}
7430 
7431 #ifdef DTRACE_ERRDEBUG
7432 	dtrace_errdebug(format);
7433 #endif
7434 	return (1);
7435 }
7436 
7437 /*
7438  * Validate a DTrace DIF object by checking the IR instructions.  The following
7439  * rules are currently enforced by dtrace_difo_validate():
7440  *
7441  * 1. Each instruction must have a valid opcode
7442  * 2. Each register, string, variable, or subroutine reference must be valid
7443  * 3. No instruction can modify register %r0 (must be zero)
7444  * 4. All instruction reserved bits must be set to zero
7445  * 5. The last instruction must be a "ret" instruction
7446  * 6. All branch targets must reference a valid instruction _after_ the branch
7447  */
7448 static int
7449 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
7450     cred_t *cr)
7451 {
7452 	int err = 0, i;
7453 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7454 	int kcheckload;
7455 	uint_t pc;
7456 
7457 	kcheckload = cr == NULL ||
7458 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
7459 
7460 	dp->dtdo_destructive = 0;
7461 
7462 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
7463 		dif_instr_t instr = dp->dtdo_buf[pc];
7464 
7465 		uint_t r1 = DIF_INSTR_R1(instr);
7466 		uint_t r2 = DIF_INSTR_R2(instr);
7467 		uint_t rd = DIF_INSTR_RD(instr);
7468 		uint_t rs = DIF_INSTR_RS(instr);
7469 		uint_t label = DIF_INSTR_LABEL(instr);
7470 		uint_t v = DIF_INSTR_VAR(instr);
7471 		uint_t subr = DIF_INSTR_SUBR(instr);
7472 		uint_t type = DIF_INSTR_TYPE(instr);
7473 		uint_t op = DIF_INSTR_OP(instr);
7474 
7475 		switch (op) {
7476 		case DIF_OP_OR:
7477 		case DIF_OP_XOR:
7478 		case DIF_OP_AND:
7479 		case DIF_OP_SLL:
7480 		case DIF_OP_SRL:
7481 		case DIF_OP_SRA:
7482 		case DIF_OP_SUB:
7483 		case DIF_OP_ADD:
7484 		case DIF_OP_MUL:
7485 		case DIF_OP_SDIV:
7486 		case DIF_OP_UDIV:
7487 		case DIF_OP_SREM:
7488 		case DIF_OP_UREM:
7489 		case DIF_OP_COPYS:
7490 			if (r1 >= nregs)
7491 				err += efunc(pc, "invalid register %u\n", r1);
7492 			if (r2 >= nregs)
7493 				err += efunc(pc, "invalid register %u\n", r2);
7494 			if (rd >= nregs)
7495 				err += efunc(pc, "invalid register %u\n", rd);
7496 			if (rd == 0)
7497 				err += efunc(pc, "cannot write to %r0\n");
7498 			break;
7499 		case DIF_OP_NOT:
7500 		case DIF_OP_MOV:
7501 		case DIF_OP_ALLOCS:
7502 			if (r1 >= nregs)
7503 				err += efunc(pc, "invalid register %u\n", r1);
7504 			if (r2 != 0)
7505 				err += efunc(pc, "non-zero reserved bits\n");
7506 			if (rd >= nregs)
7507 				err += efunc(pc, "invalid register %u\n", rd);
7508 			if (rd == 0)
7509 				err += efunc(pc, "cannot write to %r0\n");
7510 			break;
7511 		case DIF_OP_LDSB:
7512 		case DIF_OP_LDSH:
7513 		case DIF_OP_LDSW:
7514 		case DIF_OP_LDUB:
7515 		case DIF_OP_LDUH:
7516 		case DIF_OP_LDUW:
7517 		case DIF_OP_LDX:
7518 			if (r1 >= nregs)
7519 				err += efunc(pc, "invalid register %u\n", r1);
7520 			if (r2 != 0)
7521 				err += efunc(pc, "non-zero reserved bits\n");
7522 			if (rd >= nregs)
7523 				err += efunc(pc, "invalid register %u\n", rd);
7524 			if (rd == 0)
7525 				err += efunc(pc, "cannot write to %r0\n");
7526 			if (kcheckload)
7527 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
7528 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
7529 			break;
7530 		case DIF_OP_RLDSB:
7531 		case DIF_OP_RLDSH:
7532 		case DIF_OP_RLDSW:
7533 		case DIF_OP_RLDUB:
7534 		case DIF_OP_RLDUH:
7535 		case DIF_OP_RLDUW:
7536 		case DIF_OP_RLDX:
7537 			if (r1 >= nregs)
7538 				err += efunc(pc, "invalid register %u\n", r1);
7539 			if (r2 != 0)
7540 				err += efunc(pc, "non-zero reserved bits\n");
7541 			if (rd >= nregs)
7542 				err += efunc(pc, "invalid register %u\n", rd);
7543 			if (rd == 0)
7544 				err += efunc(pc, "cannot write to %r0\n");
7545 			break;
7546 		case DIF_OP_ULDSB:
7547 		case DIF_OP_ULDSH:
7548 		case DIF_OP_ULDSW:
7549 		case DIF_OP_ULDUB:
7550 		case DIF_OP_ULDUH:
7551 		case DIF_OP_ULDUW:
7552 		case DIF_OP_ULDX:
7553 			if (r1 >= nregs)
7554 				err += efunc(pc, "invalid register %u\n", r1);
7555 			if (r2 != 0)
7556 				err += efunc(pc, "non-zero reserved bits\n");
7557 			if (rd >= nregs)
7558 				err += efunc(pc, "invalid register %u\n", rd);
7559 			if (rd == 0)
7560 				err += efunc(pc, "cannot write to %r0\n");
7561 			break;
7562 		case DIF_OP_STB:
7563 		case DIF_OP_STH:
7564 		case DIF_OP_STW:
7565 		case DIF_OP_STX:
7566 			if (r1 >= nregs)
7567 				err += efunc(pc, "invalid register %u\n", r1);
7568 			if (r2 != 0)
7569 				err += efunc(pc, "non-zero reserved bits\n");
7570 			if (rd >= nregs)
7571 				err += efunc(pc, "invalid register %u\n", rd);
7572 			if (rd == 0)
7573 				err += efunc(pc, "cannot write to 0 address\n");
7574 			break;
7575 		case DIF_OP_CMP:
7576 		case DIF_OP_SCMP:
7577 			if (r1 >= nregs)
7578 				err += efunc(pc, "invalid register %u\n", r1);
7579 			if (r2 >= nregs)
7580 				err += efunc(pc, "invalid register %u\n", r2);
7581 			if (rd != 0)
7582 				err += efunc(pc, "non-zero reserved bits\n");
7583 			break;
7584 		case DIF_OP_TST:
7585 			if (r1 >= nregs)
7586 				err += efunc(pc, "invalid register %u\n", r1);
7587 			if (r2 != 0 || rd != 0)
7588 				err += efunc(pc, "non-zero reserved bits\n");
7589 			break;
7590 		case DIF_OP_BA:
7591 		case DIF_OP_BE:
7592 		case DIF_OP_BNE:
7593 		case DIF_OP_BG:
7594 		case DIF_OP_BGU:
7595 		case DIF_OP_BGE:
7596 		case DIF_OP_BGEU:
7597 		case DIF_OP_BL:
7598 		case DIF_OP_BLU:
7599 		case DIF_OP_BLE:
7600 		case DIF_OP_BLEU:
7601 			if (label >= dp->dtdo_len) {
7602 				err += efunc(pc, "invalid branch target %u\n",
7603 				    label);
7604 			}
7605 			if (label <= pc) {
7606 				err += efunc(pc, "backward branch to %u\n",
7607 				    label);
7608 			}
7609 			break;
7610 		case DIF_OP_RET:
7611 			if (r1 != 0 || r2 != 0)
7612 				err += efunc(pc, "non-zero reserved bits\n");
7613 			if (rd >= nregs)
7614 				err += efunc(pc, "invalid register %u\n", rd);
7615 			break;
7616 		case DIF_OP_NOP:
7617 		case DIF_OP_POPTS:
7618 		case DIF_OP_FLUSHTS:
7619 			if (r1 != 0 || r2 != 0 || rd != 0)
7620 				err += efunc(pc, "non-zero reserved bits\n");
7621 			break;
7622 		case DIF_OP_SETX:
7623 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
7624 				err += efunc(pc, "invalid integer ref %u\n",
7625 				    DIF_INSTR_INTEGER(instr));
7626 			}
7627 			if (rd >= nregs)
7628 				err += efunc(pc, "invalid register %u\n", rd);
7629 			if (rd == 0)
7630 				err += efunc(pc, "cannot write to %r0\n");
7631 			break;
7632 		case DIF_OP_SETS:
7633 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
7634 				err += efunc(pc, "invalid string ref %u\n",
7635 				    DIF_INSTR_STRING(instr));
7636 			}
7637 			if (rd >= nregs)
7638 				err += efunc(pc, "invalid register %u\n", rd);
7639 			if (rd == 0)
7640 				err += efunc(pc, "cannot write to %r0\n");
7641 			break;
7642 		case DIF_OP_LDGA:
7643 		case DIF_OP_LDTA:
7644 			if (r1 > DIF_VAR_ARRAY_MAX)
7645 				err += efunc(pc, "invalid array %u\n", r1);
7646 			if (r2 >= nregs)
7647 				err += efunc(pc, "invalid register %u\n", r2);
7648 			if (rd >= nregs)
7649 				err += efunc(pc, "invalid register %u\n", rd);
7650 			if (rd == 0)
7651 				err += efunc(pc, "cannot write to %r0\n");
7652 			break;
7653 		case DIF_OP_LDGS:
7654 		case DIF_OP_LDTS:
7655 		case DIF_OP_LDLS:
7656 		case DIF_OP_LDGAA:
7657 		case DIF_OP_LDTAA:
7658 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
7659 				err += efunc(pc, "invalid variable %u\n", v);
7660 			if (rd >= nregs)
7661 				err += efunc(pc, "invalid register %u\n", rd);
7662 			if (rd == 0)
7663 				err += efunc(pc, "cannot write to %r0\n");
7664 			break;
7665 		case DIF_OP_STGS:
7666 		case DIF_OP_STTS:
7667 		case DIF_OP_STLS:
7668 		case DIF_OP_STGAA:
7669 		case DIF_OP_STTAA:
7670 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
7671 				err += efunc(pc, "invalid variable %u\n", v);
7672 			if (rs >= nregs)
7673 				err += efunc(pc, "invalid register %u\n", rd);
7674 			break;
7675 		case DIF_OP_CALL:
7676 			if (subr > DIF_SUBR_MAX)
7677 				err += efunc(pc, "invalid subr %u\n", subr);
7678 			if (rd >= nregs)
7679 				err += efunc(pc, "invalid register %u\n", rd);
7680 			if (rd == 0)
7681 				err += efunc(pc, "cannot write to %r0\n");
7682 
7683 			if (subr == DIF_SUBR_COPYOUT ||
7684 			    subr == DIF_SUBR_COPYOUTSTR) {
7685 				dp->dtdo_destructive = 1;
7686 			}
7687 			break;
7688 		case DIF_OP_PUSHTR:
7689 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
7690 				err += efunc(pc, "invalid ref type %u\n", type);
7691 			if (r2 >= nregs)
7692 				err += efunc(pc, "invalid register %u\n", r2);
7693 			if (rs >= nregs)
7694 				err += efunc(pc, "invalid register %u\n", rs);
7695 			break;
7696 		case DIF_OP_PUSHTV:
7697 			if (type != DIF_TYPE_CTF)
7698 				err += efunc(pc, "invalid val type %u\n", type);
7699 			if (r2 >= nregs)
7700 				err += efunc(pc, "invalid register %u\n", r2);
7701 			if (rs >= nregs)
7702 				err += efunc(pc, "invalid register %u\n", rs);
7703 			break;
7704 		default:
7705 			err += efunc(pc, "invalid opcode %u\n",
7706 			    DIF_INSTR_OP(instr));
7707 		}
7708 	}
7709 
7710 	if (dp->dtdo_len != 0 &&
7711 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
7712 		err += efunc(dp->dtdo_len - 1,
7713 		    "expected 'ret' as last DIF instruction\n");
7714 	}
7715 
7716 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
7717 		/*
7718 		 * If we're not returning by reference, the size must be either
7719 		 * 0 or the size of one of the base types.
7720 		 */
7721 		switch (dp->dtdo_rtype.dtdt_size) {
7722 		case 0:
7723 		case sizeof (uint8_t):
7724 		case sizeof (uint16_t):
7725 		case sizeof (uint32_t):
7726 		case sizeof (uint64_t):
7727 			break;
7728 
7729 		default:
7730 			err += efunc(dp->dtdo_len - 1, "bad return size");
7731 		}
7732 	}
7733 
7734 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
7735 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
7736 		dtrace_diftype_t *vt, *et;
7737 		uint_t id, ndx;
7738 
7739 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
7740 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
7741 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
7742 			err += efunc(i, "unrecognized variable scope %d\n",
7743 			    v->dtdv_scope);
7744 			break;
7745 		}
7746 
7747 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
7748 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
7749 			err += efunc(i, "unrecognized variable type %d\n",
7750 			    v->dtdv_kind);
7751 			break;
7752 		}
7753 
7754 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
7755 			err += efunc(i, "%d exceeds variable id limit\n", id);
7756 			break;
7757 		}
7758 
7759 		if (id < DIF_VAR_OTHER_UBASE)
7760 			continue;
7761 
7762 		/*
7763 		 * For user-defined variables, we need to check that this
7764 		 * definition is identical to any previous definition that we
7765 		 * encountered.
7766 		 */
7767 		ndx = id - DIF_VAR_OTHER_UBASE;
7768 
7769 		switch (v->dtdv_scope) {
7770 		case DIFV_SCOPE_GLOBAL:
7771 			if (ndx < vstate->dtvs_nglobals) {
7772 				dtrace_statvar_t *svar;
7773 
7774 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
7775 					existing = &svar->dtsv_var;
7776 			}
7777 
7778 			break;
7779 
7780 		case DIFV_SCOPE_THREAD:
7781 			if (ndx < vstate->dtvs_ntlocals)
7782 				existing = &vstate->dtvs_tlocals[ndx];
7783 			break;
7784 
7785 		case DIFV_SCOPE_LOCAL:
7786 			if (ndx < vstate->dtvs_nlocals) {
7787 				dtrace_statvar_t *svar;
7788 
7789 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
7790 					existing = &svar->dtsv_var;
7791 			}
7792 
7793 			break;
7794 		}
7795 
7796 		vt = &v->dtdv_type;
7797 
7798 		if (vt->dtdt_flags & DIF_TF_BYREF) {
7799 			if (vt->dtdt_size == 0) {
7800 				err += efunc(i, "zero-sized variable\n");
7801 				break;
7802 			}
7803 
7804 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
7805 			    vt->dtdt_size > dtrace_global_maxsize) {
7806 				err += efunc(i, "oversized by-ref global\n");
7807 				break;
7808 			}
7809 		}
7810 
7811 		if (existing == NULL || existing->dtdv_id == 0)
7812 			continue;
7813 
7814 		ASSERT(existing->dtdv_id == v->dtdv_id);
7815 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
7816 
7817 		if (existing->dtdv_kind != v->dtdv_kind)
7818 			err += efunc(i, "%d changed variable kind\n", id);
7819 
7820 		et = &existing->dtdv_type;
7821 
7822 		if (vt->dtdt_flags != et->dtdt_flags) {
7823 			err += efunc(i, "%d changed variable type flags\n", id);
7824 			break;
7825 		}
7826 
7827 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
7828 			err += efunc(i, "%d changed variable type size\n", id);
7829 			break;
7830 		}
7831 	}
7832 
7833 	return (err);
7834 }
7835 
7836 /*
7837  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
7838  * are much more constrained than normal DIFOs.  Specifically, they may
7839  * not:
7840  *
7841  * 1. Make calls to subroutines other than copyin(), copyinstr() or
7842  *    miscellaneous string routines
7843  * 2. Access DTrace variables other than the args[] array, and the
7844  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
7845  * 3. Have thread-local variables.
7846  * 4. Have dynamic variables.
7847  */
7848 static int
7849 dtrace_difo_validate_helper(dtrace_difo_t *dp)
7850 {
7851 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7852 	int err = 0;
7853 	uint_t pc;
7854 
7855 	for (pc = 0; pc < dp->dtdo_len; pc++) {
7856 		dif_instr_t instr = dp->dtdo_buf[pc];
7857 
7858 		uint_t v = DIF_INSTR_VAR(instr);
7859 		uint_t subr = DIF_INSTR_SUBR(instr);
7860 		uint_t op = DIF_INSTR_OP(instr);
7861 
7862 		switch (op) {
7863 		case DIF_OP_OR:
7864 		case DIF_OP_XOR:
7865 		case DIF_OP_AND:
7866 		case DIF_OP_SLL:
7867 		case DIF_OP_SRL:
7868 		case DIF_OP_SRA:
7869 		case DIF_OP_SUB:
7870 		case DIF_OP_ADD:
7871 		case DIF_OP_MUL:
7872 		case DIF_OP_SDIV:
7873 		case DIF_OP_UDIV:
7874 		case DIF_OP_SREM:
7875 		case DIF_OP_UREM:
7876 		case DIF_OP_COPYS:
7877 		case DIF_OP_NOT:
7878 		case DIF_OP_MOV:
7879 		case DIF_OP_RLDSB:
7880 		case DIF_OP_RLDSH:
7881 		case DIF_OP_RLDSW:
7882 		case DIF_OP_RLDUB:
7883 		case DIF_OP_RLDUH:
7884 		case DIF_OP_RLDUW:
7885 		case DIF_OP_RLDX:
7886 		case DIF_OP_ULDSB:
7887 		case DIF_OP_ULDSH:
7888 		case DIF_OP_ULDSW:
7889 		case DIF_OP_ULDUB:
7890 		case DIF_OP_ULDUH:
7891 		case DIF_OP_ULDUW:
7892 		case DIF_OP_ULDX:
7893 		case DIF_OP_STB:
7894 		case DIF_OP_STH:
7895 		case DIF_OP_STW:
7896 		case DIF_OP_STX:
7897 		case DIF_OP_ALLOCS:
7898 		case DIF_OP_CMP:
7899 		case DIF_OP_SCMP:
7900 		case DIF_OP_TST:
7901 		case DIF_OP_BA:
7902 		case DIF_OP_BE:
7903 		case DIF_OP_BNE:
7904 		case DIF_OP_BG:
7905 		case DIF_OP_BGU:
7906 		case DIF_OP_BGE:
7907 		case DIF_OP_BGEU:
7908 		case DIF_OP_BL:
7909 		case DIF_OP_BLU:
7910 		case DIF_OP_BLE:
7911 		case DIF_OP_BLEU:
7912 		case DIF_OP_RET:
7913 		case DIF_OP_NOP:
7914 		case DIF_OP_POPTS:
7915 		case DIF_OP_FLUSHTS:
7916 		case DIF_OP_SETX:
7917 		case DIF_OP_SETS:
7918 		case DIF_OP_LDGA:
7919 		case DIF_OP_LDLS:
7920 		case DIF_OP_STGS:
7921 		case DIF_OP_STLS:
7922 		case DIF_OP_PUSHTR:
7923 		case DIF_OP_PUSHTV:
7924 			break;
7925 
7926 		case DIF_OP_LDGS:
7927 			if (v >= DIF_VAR_OTHER_UBASE)
7928 				break;
7929 
7930 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
7931 				break;
7932 
7933 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
7934 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
7935 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
7936 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
7937 				break;
7938 
7939 			err += efunc(pc, "illegal variable %u\n", v);
7940 			break;
7941 
7942 		case DIF_OP_LDTA:
7943 		case DIF_OP_LDTS:
7944 		case DIF_OP_LDGAA:
7945 		case DIF_OP_LDTAA:
7946 			err += efunc(pc, "illegal dynamic variable load\n");
7947 			break;
7948 
7949 		case DIF_OP_STTS:
7950 		case DIF_OP_STGAA:
7951 		case DIF_OP_STTAA:
7952 			err += efunc(pc, "illegal dynamic variable store\n");
7953 			break;
7954 
7955 		case DIF_OP_CALL:
7956 			if (subr == DIF_SUBR_ALLOCA ||
7957 			    subr == DIF_SUBR_BCOPY ||
7958 			    subr == DIF_SUBR_COPYIN ||
7959 			    subr == DIF_SUBR_COPYINTO ||
7960 			    subr == DIF_SUBR_COPYINSTR ||
7961 			    subr == DIF_SUBR_INDEX ||
7962 			    subr == DIF_SUBR_LLTOSTR ||
7963 			    subr == DIF_SUBR_RINDEX ||
7964 			    subr == DIF_SUBR_STRCHR ||
7965 			    subr == DIF_SUBR_STRJOIN ||
7966 			    subr == DIF_SUBR_STRRCHR ||
7967 			    subr == DIF_SUBR_STRSTR ||
7968 			    subr == DIF_SUBR_HTONS ||
7969 			    subr == DIF_SUBR_HTONL ||
7970 			    subr == DIF_SUBR_HTONLL ||
7971 			    subr == DIF_SUBR_NTOHS ||
7972 			    subr == DIF_SUBR_NTOHL ||
7973 			    subr == DIF_SUBR_NTOHLL)
7974 				break;
7975 
7976 			err += efunc(pc, "invalid subr %u\n", subr);
7977 			break;
7978 
7979 		default:
7980 			err += efunc(pc, "invalid opcode %u\n",
7981 			    DIF_INSTR_OP(instr));
7982 		}
7983 	}
7984 
7985 	return (err);
7986 }
7987 
7988 /*
7989  * Returns 1 if the expression in the DIF object can be cached on a per-thread
7990  * basis; 0 if not.
7991  */
7992 static int
7993 dtrace_difo_cacheable(dtrace_difo_t *dp)
7994 {
7995 	int i;
7996 
7997 	if (dp == NULL)
7998 		return (0);
7999 
8000 	for (i = 0; i < dp->dtdo_varlen; i++) {
8001 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8002 
8003 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8004 			continue;
8005 
8006 		switch (v->dtdv_id) {
8007 		case DIF_VAR_CURTHREAD:
8008 		case DIF_VAR_PID:
8009 		case DIF_VAR_TID:
8010 		case DIF_VAR_EXECNAME:
8011 		case DIF_VAR_ZONENAME:
8012 			break;
8013 
8014 		default:
8015 			return (0);
8016 		}
8017 	}
8018 
8019 	/*
8020 	 * This DIF object may be cacheable.  Now we need to look for any
8021 	 * array loading instructions, any memory loading instructions, or
8022 	 * any stores to thread-local variables.
8023 	 */
8024 	for (i = 0; i < dp->dtdo_len; i++) {
8025 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8026 
8027 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8028 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8029 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8030 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8031 			return (0);
8032 	}
8033 
8034 	return (1);
8035 }
8036 
8037 static void
8038 dtrace_difo_hold(dtrace_difo_t *dp)
8039 {
8040 	int i;
8041 
8042 	ASSERT(MUTEX_HELD(&dtrace_lock));
8043 
8044 	dp->dtdo_refcnt++;
8045 	ASSERT(dp->dtdo_refcnt != 0);
8046 
8047 	/*
8048 	 * We need to check this DIF object for references to the variable
8049 	 * DIF_VAR_VTIMESTAMP.
8050 	 */
8051 	for (i = 0; i < dp->dtdo_varlen; i++) {
8052 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8053 
8054 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8055 			continue;
8056 
8057 		if (dtrace_vtime_references++ == 0)
8058 			dtrace_vtime_enable();
8059 	}
8060 }
8061 
8062 /*
8063  * This routine calculates the dynamic variable chunksize for a given DIF
8064  * object.  The calculation is not fool-proof, and can probably be tricked by
8065  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8066  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8067  * if a dynamic variable size exceeds the chunksize.
8068  */
8069 static void
8070 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8071 {
8072 	uint64_t sval;
8073 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8074 	const dif_instr_t *text = dp->dtdo_buf;
8075 	uint_t pc, srd = 0;
8076 	uint_t ttop = 0;
8077 	size_t size, ksize;
8078 	uint_t id, i;
8079 
8080 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8081 		dif_instr_t instr = text[pc];
8082 		uint_t op = DIF_INSTR_OP(instr);
8083 		uint_t rd = DIF_INSTR_RD(instr);
8084 		uint_t r1 = DIF_INSTR_R1(instr);
8085 		uint_t nkeys = 0;
8086 		uchar_t scope;
8087 
8088 		dtrace_key_t *key = tupregs;
8089 
8090 		switch (op) {
8091 		case DIF_OP_SETX:
8092 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8093 			srd = rd;
8094 			continue;
8095 
8096 		case DIF_OP_STTS:
8097 			key = &tupregs[DIF_DTR_NREGS];
8098 			key[0].dttk_size = 0;
8099 			key[1].dttk_size = 0;
8100 			nkeys = 2;
8101 			scope = DIFV_SCOPE_THREAD;
8102 			break;
8103 
8104 		case DIF_OP_STGAA:
8105 		case DIF_OP_STTAA:
8106 			nkeys = ttop;
8107 
8108 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
8109 				key[nkeys++].dttk_size = 0;
8110 
8111 			key[nkeys++].dttk_size = 0;
8112 
8113 			if (op == DIF_OP_STTAA) {
8114 				scope = DIFV_SCOPE_THREAD;
8115 			} else {
8116 				scope = DIFV_SCOPE_GLOBAL;
8117 			}
8118 
8119 			break;
8120 
8121 		case DIF_OP_PUSHTR:
8122 			if (ttop == DIF_DTR_NREGS)
8123 				return;
8124 
8125 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
8126 				/*
8127 				 * If the register for the size of the "pushtr"
8128 				 * is %r0 (or the value is 0) and the type is
8129 				 * a string, we'll use the system-wide default
8130 				 * string size.
8131 				 */
8132 				tupregs[ttop++].dttk_size =
8133 				    dtrace_strsize_default;
8134 			} else {
8135 				if (srd == 0)
8136 					return;
8137 
8138 				tupregs[ttop++].dttk_size = sval;
8139 			}
8140 
8141 			break;
8142 
8143 		case DIF_OP_PUSHTV:
8144 			if (ttop == DIF_DTR_NREGS)
8145 				return;
8146 
8147 			tupregs[ttop++].dttk_size = 0;
8148 			break;
8149 
8150 		case DIF_OP_FLUSHTS:
8151 			ttop = 0;
8152 			break;
8153 
8154 		case DIF_OP_POPTS:
8155 			if (ttop != 0)
8156 				ttop--;
8157 			break;
8158 		}
8159 
8160 		sval = 0;
8161 		srd = 0;
8162 
8163 		if (nkeys == 0)
8164 			continue;
8165 
8166 		/*
8167 		 * We have a dynamic variable allocation; calculate its size.
8168 		 */
8169 		for (ksize = 0, i = 0; i < nkeys; i++)
8170 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
8171 
8172 		size = sizeof (dtrace_dynvar_t);
8173 		size += sizeof (dtrace_key_t) * (nkeys - 1);
8174 		size += ksize;
8175 
8176 		/*
8177 		 * Now we need to determine the size of the stored data.
8178 		 */
8179 		id = DIF_INSTR_VAR(instr);
8180 
8181 		for (i = 0; i < dp->dtdo_varlen; i++) {
8182 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
8183 
8184 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
8185 				size += v->dtdv_type.dtdt_size;
8186 				break;
8187 			}
8188 		}
8189 
8190 		if (i == dp->dtdo_varlen)
8191 			return;
8192 
8193 		/*
8194 		 * We have the size.  If this is larger than the chunk size
8195 		 * for our dynamic variable state, reset the chunk size.
8196 		 */
8197 		size = P2ROUNDUP(size, sizeof (uint64_t));
8198 
8199 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
8200 			vstate->dtvs_dynvars.dtds_chunksize = size;
8201 	}
8202 }
8203 
8204 static void
8205 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8206 {
8207 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
8208 	uint_t id;
8209 
8210 	ASSERT(MUTEX_HELD(&dtrace_lock));
8211 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
8212 
8213 	for (i = 0; i < dp->dtdo_varlen; i++) {
8214 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8215 		dtrace_statvar_t *svar, ***svarp;
8216 		size_t dsize = 0;
8217 		uint8_t scope = v->dtdv_scope;
8218 		int *np;
8219 
8220 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8221 			continue;
8222 
8223 		id -= DIF_VAR_OTHER_UBASE;
8224 
8225 		switch (scope) {
8226 		case DIFV_SCOPE_THREAD:
8227 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
8228 				dtrace_difv_t *tlocals;
8229 
8230 				if ((ntlocals = (otlocals << 1)) == 0)
8231 					ntlocals = 1;
8232 
8233 				osz = otlocals * sizeof (dtrace_difv_t);
8234 				nsz = ntlocals * sizeof (dtrace_difv_t);
8235 
8236 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
8237 
8238 				if (osz != 0) {
8239 					bcopy(vstate->dtvs_tlocals,
8240 					    tlocals, osz);
8241 					kmem_free(vstate->dtvs_tlocals, osz);
8242 				}
8243 
8244 				vstate->dtvs_tlocals = tlocals;
8245 				vstate->dtvs_ntlocals = ntlocals;
8246 			}
8247 
8248 			vstate->dtvs_tlocals[id] = *v;
8249 			continue;
8250 
8251 		case DIFV_SCOPE_LOCAL:
8252 			np = &vstate->dtvs_nlocals;
8253 			svarp = &vstate->dtvs_locals;
8254 
8255 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8256 				dsize = NCPU * (v->dtdv_type.dtdt_size +
8257 				    sizeof (uint64_t));
8258 			else
8259 				dsize = NCPU * sizeof (uint64_t);
8260 
8261 			break;
8262 
8263 		case DIFV_SCOPE_GLOBAL:
8264 			np = &vstate->dtvs_nglobals;
8265 			svarp = &vstate->dtvs_globals;
8266 
8267 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8268 				dsize = v->dtdv_type.dtdt_size +
8269 				    sizeof (uint64_t);
8270 
8271 			break;
8272 
8273 		default:
8274 			ASSERT(0);
8275 		}
8276 
8277 		while (id >= (oldsvars = *np)) {
8278 			dtrace_statvar_t **statics;
8279 			int newsvars, oldsize, newsize;
8280 
8281 			if ((newsvars = (oldsvars << 1)) == 0)
8282 				newsvars = 1;
8283 
8284 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
8285 			newsize = newsvars * sizeof (dtrace_statvar_t *);
8286 
8287 			statics = kmem_zalloc(newsize, KM_SLEEP);
8288 
8289 			if (oldsize != 0) {
8290 				bcopy(*svarp, statics, oldsize);
8291 				kmem_free(*svarp, oldsize);
8292 			}
8293 
8294 			*svarp = statics;
8295 			*np = newsvars;
8296 		}
8297 
8298 		if ((svar = (*svarp)[id]) == NULL) {
8299 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
8300 			svar->dtsv_var = *v;
8301 
8302 			if ((svar->dtsv_size = dsize) != 0) {
8303 				svar->dtsv_data = (uint64_t)(uintptr_t)
8304 				    kmem_zalloc(dsize, KM_SLEEP);
8305 			}
8306 
8307 			(*svarp)[id] = svar;
8308 		}
8309 
8310 		svar->dtsv_refcnt++;
8311 	}
8312 
8313 	dtrace_difo_chunksize(dp, vstate);
8314 	dtrace_difo_hold(dp);
8315 }
8316 
8317 static dtrace_difo_t *
8318 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8319 {
8320 	dtrace_difo_t *new;
8321 	size_t sz;
8322 
8323 	ASSERT(dp->dtdo_buf != NULL);
8324 	ASSERT(dp->dtdo_refcnt != 0);
8325 
8326 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
8327 
8328 	ASSERT(dp->dtdo_buf != NULL);
8329 	sz = dp->dtdo_len * sizeof (dif_instr_t);
8330 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
8331 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
8332 	new->dtdo_len = dp->dtdo_len;
8333 
8334 	if (dp->dtdo_strtab != NULL) {
8335 		ASSERT(dp->dtdo_strlen != 0);
8336 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
8337 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
8338 		new->dtdo_strlen = dp->dtdo_strlen;
8339 	}
8340 
8341 	if (dp->dtdo_inttab != NULL) {
8342 		ASSERT(dp->dtdo_intlen != 0);
8343 		sz = dp->dtdo_intlen * sizeof (uint64_t);
8344 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
8345 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
8346 		new->dtdo_intlen = dp->dtdo_intlen;
8347 	}
8348 
8349 	if (dp->dtdo_vartab != NULL) {
8350 		ASSERT(dp->dtdo_varlen != 0);
8351 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
8352 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
8353 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
8354 		new->dtdo_varlen = dp->dtdo_varlen;
8355 	}
8356 
8357 	dtrace_difo_init(new, vstate);
8358 	return (new);
8359 }
8360 
8361 static void
8362 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8363 {
8364 	int i;
8365 
8366 	ASSERT(dp->dtdo_refcnt == 0);
8367 
8368 	for (i = 0; i < dp->dtdo_varlen; i++) {
8369 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8370 		dtrace_statvar_t *svar, **svarp;
8371 		uint_t id;
8372 		uint8_t scope = v->dtdv_scope;
8373 		int *np;
8374 
8375 		switch (scope) {
8376 		case DIFV_SCOPE_THREAD:
8377 			continue;
8378 
8379 		case DIFV_SCOPE_LOCAL:
8380 			np = &vstate->dtvs_nlocals;
8381 			svarp = vstate->dtvs_locals;
8382 			break;
8383 
8384 		case DIFV_SCOPE_GLOBAL:
8385 			np = &vstate->dtvs_nglobals;
8386 			svarp = vstate->dtvs_globals;
8387 			break;
8388 
8389 		default:
8390 			ASSERT(0);
8391 		}
8392 
8393 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8394 			continue;
8395 
8396 		id -= DIF_VAR_OTHER_UBASE;
8397 		ASSERT(id < *np);
8398 
8399 		svar = svarp[id];
8400 		ASSERT(svar != NULL);
8401 		ASSERT(svar->dtsv_refcnt > 0);
8402 
8403 		if (--svar->dtsv_refcnt > 0)
8404 			continue;
8405 
8406 		if (svar->dtsv_size != 0) {
8407 			ASSERT(svar->dtsv_data != NULL);
8408 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
8409 			    svar->dtsv_size);
8410 		}
8411 
8412 		kmem_free(svar, sizeof (dtrace_statvar_t));
8413 		svarp[id] = NULL;
8414 	}
8415 
8416 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
8417 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
8418 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
8419 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
8420 
8421 	kmem_free(dp, sizeof (dtrace_difo_t));
8422 }
8423 
8424 static void
8425 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8426 {
8427 	int i;
8428 
8429 	ASSERT(MUTEX_HELD(&dtrace_lock));
8430 	ASSERT(dp->dtdo_refcnt != 0);
8431 
8432 	for (i = 0; i < dp->dtdo_varlen; i++) {
8433 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8434 
8435 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8436 			continue;
8437 
8438 		ASSERT(dtrace_vtime_references > 0);
8439 		if (--dtrace_vtime_references == 0)
8440 			dtrace_vtime_disable();
8441 	}
8442 
8443 	if (--dp->dtdo_refcnt == 0)
8444 		dtrace_difo_destroy(dp, vstate);
8445 }
8446 
8447 /*
8448  * DTrace Format Functions
8449  */
8450 static uint16_t
8451 dtrace_format_add(dtrace_state_t *state, char *str)
8452 {
8453 	char *fmt, **new;
8454 	uint16_t ndx, len = strlen(str) + 1;
8455 
8456 	fmt = kmem_zalloc(len, KM_SLEEP);
8457 	bcopy(str, fmt, len);
8458 
8459 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
8460 		if (state->dts_formats[ndx] == NULL) {
8461 			state->dts_formats[ndx] = fmt;
8462 			return (ndx + 1);
8463 		}
8464 	}
8465 
8466 	if (state->dts_nformats == USHRT_MAX) {
8467 		/*
8468 		 * This is only likely if a denial-of-service attack is being
8469 		 * attempted.  As such, it's okay to fail silently here.
8470 		 */
8471 		kmem_free(fmt, len);
8472 		return (0);
8473 	}
8474 
8475 	/*
8476 	 * For simplicity, we always resize the formats array to be exactly the
8477 	 * number of formats.
8478 	 */
8479 	ndx = state->dts_nformats++;
8480 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
8481 
8482 	if (state->dts_formats != NULL) {
8483 		ASSERT(ndx != 0);
8484 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
8485 		kmem_free(state->dts_formats, ndx * sizeof (char *));
8486 	}
8487 
8488 	state->dts_formats = new;
8489 	state->dts_formats[ndx] = fmt;
8490 
8491 	return (ndx + 1);
8492 }
8493 
8494 static void
8495 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
8496 {
8497 	char *fmt;
8498 
8499 	ASSERT(state->dts_formats != NULL);
8500 	ASSERT(format <= state->dts_nformats);
8501 	ASSERT(state->dts_formats[format - 1] != NULL);
8502 
8503 	fmt = state->dts_formats[format - 1];
8504 	kmem_free(fmt, strlen(fmt) + 1);
8505 	state->dts_formats[format - 1] = NULL;
8506 }
8507 
8508 static void
8509 dtrace_format_destroy(dtrace_state_t *state)
8510 {
8511 	int i;
8512 
8513 	if (state->dts_nformats == 0) {
8514 		ASSERT(state->dts_formats == NULL);
8515 		return;
8516 	}
8517 
8518 	ASSERT(state->dts_formats != NULL);
8519 
8520 	for (i = 0; i < state->dts_nformats; i++) {
8521 		char *fmt = state->dts_formats[i];
8522 
8523 		if (fmt == NULL)
8524 			continue;
8525 
8526 		kmem_free(fmt, strlen(fmt) + 1);
8527 	}
8528 
8529 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
8530 	state->dts_nformats = 0;
8531 	state->dts_formats = NULL;
8532 }
8533 
8534 /*
8535  * DTrace Predicate Functions
8536  */
8537 static dtrace_predicate_t *
8538 dtrace_predicate_create(dtrace_difo_t *dp)
8539 {
8540 	dtrace_predicate_t *pred;
8541 
8542 	ASSERT(MUTEX_HELD(&dtrace_lock));
8543 	ASSERT(dp->dtdo_refcnt != 0);
8544 
8545 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
8546 	pred->dtp_difo = dp;
8547 	pred->dtp_refcnt = 1;
8548 
8549 	if (!dtrace_difo_cacheable(dp))
8550 		return (pred);
8551 
8552 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
8553 		/*
8554 		 * This is only theoretically possible -- we have had 2^32
8555 		 * cacheable predicates on this machine.  We cannot allow any
8556 		 * more predicates to become cacheable:  as unlikely as it is,
8557 		 * there may be a thread caching a (now stale) predicate cache
8558 		 * ID. (N.B.: the temptation is being successfully resisted to
8559 		 * have this cmn_err() "Holy shit -- we executed this code!")
8560 		 */
8561 		return (pred);
8562 	}
8563 
8564 	pred->dtp_cacheid = dtrace_predcache_id++;
8565 
8566 	return (pred);
8567 }
8568 
8569 static void
8570 dtrace_predicate_hold(dtrace_predicate_t *pred)
8571 {
8572 	ASSERT(MUTEX_HELD(&dtrace_lock));
8573 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
8574 	ASSERT(pred->dtp_refcnt > 0);
8575 
8576 	pred->dtp_refcnt++;
8577 }
8578 
8579 static void
8580 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
8581 {
8582 	dtrace_difo_t *dp = pred->dtp_difo;
8583 
8584 	ASSERT(MUTEX_HELD(&dtrace_lock));
8585 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
8586 	ASSERT(pred->dtp_refcnt > 0);
8587 
8588 	if (--pred->dtp_refcnt == 0) {
8589 		dtrace_difo_release(pred->dtp_difo, vstate);
8590 		kmem_free(pred, sizeof (dtrace_predicate_t));
8591 	}
8592 }
8593 
8594 /*
8595  * DTrace Action Description Functions
8596  */
8597 static dtrace_actdesc_t *
8598 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
8599     uint64_t uarg, uint64_t arg)
8600 {
8601 	dtrace_actdesc_t *act;
8602 
8603 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
8604 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
8605 
8606 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
8607 	act->dtad_kind = kind;
8608 	act->dtad_ntuple = ntuple;
8609 	act->dtad_uarg = uarg;
8610 	act->dtad_arg = arg;
8611 	act->dtad_refcnt = 1;
8612 
8613 	return (act);
8614 }
8615 
8616 static void
8617 dtrace_actdesc_hold(dtrace_actdesc_t *act)
8618 {
8619 	ASSERT(act->dtad_refcnt >= 1);
8620 	act->dtad_refcnt++;
8621 }
8622 
8623 static void
8624 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
8625 {
8626 	dtrace_actkind_t kind = act->dtad_kind;
8627 	dtrace_difo_t *dp;
8628 
8629 	ASSERT(act->dtad_refcnt >= 1);
8630 
8631 	if (--act->dtad_refcnt != 0)
8632 		return;
8633 
8634 	if ((dp = act->dtad_difo) != NULL)
8635 		dtrace_difo_release(dp, vstate);
8636 
8637 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
8638 		char *str = (char *)(uintptr_t)act->dtad_arg;
8639 
8640 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
8641 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
8642 
8643 		if (str != NULL)
8644 			kmem_free(str, strlen(str) + 1);
8645 	}
8646 
8647 	kmem_free(act, sizeof (dtrace_actdesc_t));
8648 }
8649 
8650 /*
8651  * DTrace ECB Functions
8652  */
8653 static dtrace_ecb_t *
8654 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
8655 {
8656 	dtrace_ecb_t *ecb;
8657 	dtrace_epid_t epid;
8658 
8659 	ASSERT(MUTEX_HELD(&dtrace_lock));
8660 
8661 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
8662 	ecb->dte_predicate = NULL;
8663 	ecb->dte_probe = probe;
8664 
8665 	/*
8666 	 * The default size is the size of the default action: recording
8667 	 * the epid.
8668 	 */
8669 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
8670 	ecb->dte_alignment = sizeof (dtrace_epid_t);
8671 
8672 	epid = state->dts_epid++;
8673 
8674 	if (epid - 1 >= state->dts_necbs) {
8675 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
8676 		int necbs = state->dts_necbs << 1;
8677 
8678 		ASSERT(epid == state->dts_necbs + 1);
8679 
8680 		if (necbs == 0) {
8681 			ASSERT(oecbs == NULL);
8682 			necbs = 1;
8683 		}
8684 
8685 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
8686 
8687 		if (oecbs != NULL)
8688 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
8689 
8690 		dtrace_membar_producer();
8691 		state->dts_ecbs = ecbs;
8692 
8693 		if (oecbs != NULL) {
8694 			/*
8695 			 * If this state is active, we must dtrace_sync()
8696 			 * before we can free the old dts_ecbs array:  we're
8697 			 * coming in hot, and there may be active ring
8698 			 * buffer processing (which indexes into the dts_ecbs
8699 			 * array) on another CPU.
8700 			 */
8701 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
8702 				dtrace_sync();
8703 
8704 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
8705 		}
8706 
8707 		dtrace_membar_producer();
8708 		state->dts_necbs = necbs;
8709 	}
8710 
8711 	ecb->dte_state = state;
8712 
8713 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
8714 	dtrace_membar_producer();
8715 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
8716 
8717 	return (ecb);
8718 }
8719 
8720 static void
8721 dtrace_ecb_enable(dtrace_ecb_t *ecb)
8722 {
8723 	dtrace_probe_t *probe = ecb->dte_probe;
8724 
8725 	ASSERT(MUTEX_HELD(&cpu_lock));
8726 	ASSERT(MUTEX_HELD(&dtrace_lock));
8727 	ASSERT(ecb->dte_next == NULL);
8728 
8729 	if (probe == NULL) {
8730 		/*
8731 		 * This is the NULL probe -- there's nothing to do.
8732 		 */
8733 		return;
8734 	}
8735 
8736 	if (probe->dtpr_ecb == NULL) {
8737 		dtrace_provider_t *prov = probe->dtpr_provider;
8738 
8739 		/*
8740 		 * We're the first ECB on this probe.
8741 		 */
8742 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
8743 
8744 		if (ecb->dte_predicate != NULL)
8745 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
8746 
8747 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
8748 		    probe->dtpr_id, probe->dtpr_arg);
8749 	} else {
8750 		/*
8751 		 * This probe is already active.  Swing the last pointer to
8752 		 * point to the new ECB, and issue a dtrace_sync() to assure
8753 		 * that all CPUs have seen the change.
8754 		 */
8755 		ASSERT(probe->dtpr_ecb_last != NULL);
8756 		probe->dtpr_ecb_last->dte_next = ecb;
8757 		probe->dtpr_ecb_last = ecb;
8758 		probe->dtpr_predcache = 0;
8759 
8760 		dtrace_sync();
8761 	}
8762 }
8763 
8764 static void
8765 dtrace_ecb_resize(dtrace_ecb_t *ecb)
8766 {
8767 	uint32_t maxalign = sizeof (dtrace_epid_t);
8768 	uint32_t align = sizeof (uint8_t), offs, diff;
8769 	dtrace_action_t *act;
8770 	int wastuple = 0;
8771 	uint32_t aggbase = UINT32_MAX;
8772 	dtrace_state_t *state = ecb->dte_state;
8773 
8774 	/*
8775 	 * If we record anything, we always record the epid.  (And we always
8776 	 * record it first.)
8777 	 */
8778 	offs = sizeof (dtrace_epid_t);
8779 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
8780 
8781 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
8782 		dtrace_recdesc_t *rec = &act->dta_rec;
8783 
8784 		if ((align = rec->dtrd_alignment) > maxalign)
8785 			maxalign = align;
8786 
8787 		if (!wastuple && act->dta_intuple) {
8788 			/*
8789 			 * This is the first record in a tuple.  Align the
8790 			 * offset to be at offset 4 in an 8-byte aligned
8791 			 * block.
8792 			 */
8793 			diff = offs + sizeof (dtrace_aggid_t);
8794 
8795 			if (diff = (diff & (sizeof (uint64_t) - 1)))
8796 				offs += sizeof (uint64_t) - diff;
8797 
8798 			aggbase = offs - sizeof (dtrace_aggid_t);
8799 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
8800 		}
8801 
8802 		/*LINTED*/
8803 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
8804 			/*
8805 			 * The current offset is not properly aligned; align it.
8806 			 */
8807 			offs += align - diff;
8808 		}
8809 
8810 		rec->dtrd_offset = offs;
8811 
8812 		if (offs + rec->dtrd_size > ecb->dte_needed) {
8813 			ecb->dte_needed = offs + rec->dtrd_size;
8814 
8815 			if (ecb->dte_needed > state->dts_needed)
8816 				state->dts_needed = ecb->dte_needed;
8817 		}
8818 
8819 		if (DTRACEACT_ISAGG(act->dta_kind)) {
8820 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
8821 			dtrace_action_t *first = agg->dtag_first, *prev;
8822 
8823 			ASSERT(rec->dtrd_size != 0 && first != NULL);
8824 			ASSERT(wastuple);
8825 			ASSERT(aggbase != UINT32_MAX);
8826 
8827 			agg->dtag_base = aggbase;
8828 
8829 			while ((prev = first->dta_prev) != NULL &&
8830 			    DTRACEACT_ISAGG(prev->dta_kind)) {
8831 				agg = (dtrace_aggregation_t *)prev;
8832 				first = agg->dtag_first;
8833 			}
8834 
8835 			if (prev != NULL) {
8836 				offs = prev->dta_rec.dtrd_offset +
8837 				    prev->dta_rec.dtrd_size;
8838 			} else {
8839 				offs = sizeof (dtrace_epid_t);
8840 			}
8841 			wastuple = 0;
8842 		} else {
8843 			if (!act->dta_intuple)
8844 				ecb->dte_size = offs + rec->dtrd_size;
8845 
8846 			offs += rec->dtrd_size;
8847 		}
8848 
8849 		wastuple = act->dta_intuple;
8850 	}
8851 
8852 	if ((act = ecb->dte_action) != NULL &&
8853 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
8854 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
8855 		/*
8856 		 * If the size is still sizeof (dtrace_epid_t), then all
8857 		 * actions store no data; set the size to 0.
8858 		 */
8859 		ecb->dte_alignment = maxalign;
8860 		ecb->dte_size = 0;
8861 
8862 		/*
8863 		 * If the needed space is still sizeof (dtrace_epid_t), then
8864 		 * all actions need no additional space; set the needed
8865 		 * size to 0.
8866 		 */
8867 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
8868 			ecb->dte_needed = 0;
8869 
8870 		return;
8871 	}
8872 
8873 	/*
8874 	 * Set our alignment, and make sure that the dte_size and dte_needed
8875 	 * are aligned to the size of an EPID.
8876 	 */
8877 	ecb->dte_alignment = maxalign;
8878 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
8879 	    ~(sizeof (dtrace_epid_t) - 1);
8880 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
8881 	    ~(sizeof (dtrace_epid_t) - 1);
8882 	ASSERT(ecb->dte_size <= ecb->dte_needed);
8883 }
8884 
8885 static dtrace_action_t *
8886 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8887 {
8888 	dtrace_aggregation_t *agg;
8889 	size_t size = sizeof (uint64_t);
8890 	int ntuple = desc->dtad_ntuple;
8891 	dtrace_action_t *act;
8892 	dtrace_recdesc_t *frec;
8893 	dtrace_aggid_t aggid;
8894 	dtrace_state_t *state = ecb->dte_state;
8895 
8896 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
8897 	agg->dtag_ecb = ecb;
8898 
8899 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
8900 
8901 	switch (desc->dtad_kind) {
8902 	case DTRACEAGG_MIN:
8903 		agg->dtag_initial = UINT64_MAX;
8904 		agg->dtag_aggregate = dtrace_aggregate_min;
8905 		break;
8906 
8907 	case DTRACEAGG_MAX:
8908 		agg->dtag_aggregate = dtrace_aggregate_max;
8909 		break;
8910 
8911 	case DTRACEAGG_COUNT:
8912 		agg->dtag_aggregate = dtrace_aggregate_count;
8913 		break;
8914 
8915 	case DTRACEAGG_QUANTIZE:
8916 		agg->dtag_aggregate = dtrace_aggregate_quantize;
8917 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
8918 		    sizeof (uint64_t);
8919 		break;
8920 
8921 	case DTRACEAGG_LQUANTIZE: {
8922 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
8923 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
8924 
8925 		agg->dtag_initial = desc->dtad_arg;
8926 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
8927 
8928 		if (step == 0 || levels == 0)
8929 			goto err;
8930 
8931 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
8932 		break;
8933 	}
8934 
8935 	case DTRACEAGG_AVG:
8936 		agg->dtag_aggregate = dtrace_aggregate_avg;
8937 		size = sizeof (uint64_t) * 2;
8938 		break;
8939 
8940 	case DTRACEAGG_SUM:
8941 		agg->dtag_aggregate = dtrace_aggregate_sum;
8942 		break;
8943 
8944 	default:
8945 		goto err;
8946 	}
8947 
8948 	agg->dtag_action.dta_rec.dtrd_size = size;
8949 
8950 	if (ntuple == 0)
8951 		goto err;
8952 
8953 	/*
8954 	 * We must make sure that we have enough actions for the n-tuple.
8955 	 */
8956 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
8957 		if (DTRACEACT_ISAGG(act->dta_kind))
8958 			break;
8959 
8960 		if (--ntuple == 0) {
8961 			/*
8962 			 * This is the action with which our n-tuple begins.
8963 			 */
8964 			agg->dtag_first = act;
8965 			goto success;
8966 		}
8967 	}
8968 
8969 	/*
8970 	 * This n-tuple is short by ntuple elements.  Return failure.
8971 	 */
8972 	ASSERT(ntuple != 0);
8973 err:
8974 	kmem_free(agg, sizeof (dtrace_aggregation_t));
8975 	return (NULL);
8976 
8977 success:
8978 	/*
8979 	 * If the last action in the tuple has a size of zero, it's actually
8980 	 * an expression argument for the aggregating action.
8981 	 */
8982 	ASSERT(ecb->dte_action_last != NULL);
8983 	act = ecb->dte_action_last;
8984 
8985 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
8986 		ASSERT(act->dta_difo != NULL);
8987 
8988 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
8989 			agg->dtag_hasarg = 1;
8990 	}
8991 
8992 	/*
8993 	 * We need to allocate an id for this aggregation.
8994 	 */
8995 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
8996 	    VM_BESTFIT | VM_SLEEP);
8997 
8998 	if (aggid - 1 >= state->dts_naggregations) {
8999 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9000 		dtrace_aggregation_t **aggs;
9001 		int naggs = state->dts_naggregations << 1;
9002 		int onaggs = state->dts_naggregations;
9003 
9004 		ASSERT(aggid == state->dts_naggregations + 1);
9005 
9006 		if (naggs == 0) {
9007 			ASSERT(oaggs == NULL);
9008 			naggs = 1;
9009 		}
9010 
9011 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9012 
9013 		if (oaggs != NULL) {
9014 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9015 			kmem_free(oaggs, onaggs * sizeof (*aggs));
9016 		}
9017 
9018 		state->dts_aggregations = aggs;
9019 		state->dts_naggregations = naggs;
9020 	}
9021 
9022 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9023 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9024 
9025 	frec = &agg->dtag_first->dta_rec;
9026 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9027 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9028 
9029 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9030 		ASSERT(!act->dta_intuple);
9031 		act->dta_intuple = 1;
9032 	}
9033 
9034 	return (&agg->dtag_action);
9035 }
9036 
9037 static void
9038 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9039 {
9040 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9041 	dtrace_state_t *state = ecb->dte_state;
9042 	dtrace_aggid_t aggid = agg->dtag_id;
9043 
9044 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9045 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9046 
9047 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9048 	state->dts_aggregations[aggid - 1] = NULL;
9049 
9050 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9051 }
9052 
9053 static int
9054 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9055 {
9056 	dtrace_action_t *action, *last;
9057 	dtrace_difo_t *dp = desc->dtad_difo;
9058 	uint32_t size = 0, align = sizeof (uint8_t), mask;
9059 	uint16_t format = 0;
9060 	dtrace_recdesc_t *rec;
9061 	dtrace_state_t *state = ecb->dte_state;
9062 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
9063 	uint64_t arg = desc->dtad_arg;
9064 
9065 	ASSERT(MUTEX_HELD(&dtrace_lock));
9066 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9067 
9068 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9069 		/*
9070 		 * If this is an aggregating action, there must be neither
9071 		 * a speculate nor a commit on the action chain.
9072 		 */
9073 		dtrace_action_t *act;
9074 
9075 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9076 			if (act->dta_kind == DTRACEACT_COMMIT)
9077 				return (EINVAL);
9078 
9079 			if (act->dta_kind == DTRACEACT_SPECULATE)
9080 				return (EINVAL);
9081 		}
9082 
9083 		action = dtrace_ecb_aggregation_create(ecb, desc);
9084 
9085 		if (action == NULL)
9086 			return (EINVAL);
9087 	} else {
9088 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
9089 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
9090 		    dp != NULL && dp->dtdo_destructive)) {
9091 			state->dts_destructive = 1;
9092 		}
9093 
9094 		switch (desc->dtad_kind) {
9095 		case DTRACEACT_PRINTF:
9096 		case DTRACEACT_PRINTA:
9097 		case DTRACEACT_SYSTEM:
9098 		case DTRACEACT_FREOPEN:
9099 			/*
9100 			 * We know that our arg is a string -- turn it into a
9101 			 * format.
9102 			 */
9103 			if (arg == NULL) {
9104 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
9105 				format = 0;
9106 			} else {
9107 				ASSERT(arg != NULL);
9108 				ASSERT(arg > KERNELBASE);
9109 				format = dtrace_format_add(state,
9110 				    (char *)(uintptr_t)arg);
9111 			}
9112 
9113 			/*FALLTHROUGH*/
9114 		case DTRACEACT_LIBACT:
9115 		case DTRACEACT_DIFEXPR:
9116 			if (dp == NULL)
9117 				return (EINVAL);
9118 
9119 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
9120 				break;
9121 
9122 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
9123 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9124 					return (EINVAL);
9125 
9126 				size = opt[DTRACEOPT_STRSIZE];
9127 			}
9128 
9129 			break;
9130 
9131 		case DTRACEACT_STACK:
9132 			if ((nframes = arg) == 0) {
9133 				nframes = opt[DTRACEOPT_STACKFRAMES];
9134 				ASSERT(nframes > 0);
9135 				arg = nframes;
9136 			}
9137 
9138 			size = nframes * sizeof (pc_t);
9139 			break;
9140 
9141 		case DTRACEACT_JSTACK:
9142 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
9143 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
9144 
9145 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
9146 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
9147 
9148 			arg = DTRACE_USTACK_ARG(nframes, strsize);
9149 
9150 			/*FALLTHROUGH*/
9151 		case DTRACEACT_USTACK:
9152 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
9153 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
9154 				strsize = DTRACE_USTACK_STRSIZE(arg);
9155 				nframes = opt[DTRACEOPT_USTACKFRAMES];
9156 				ASSERT(nframes > 0);
9157 				arg = DTRACE_USTACK_ARG(nframes, strsize);
9158 			}
9159 
9160 			/*
9161 			 * Save a slot for the pid.
9162 			 */
9163 			size = (nframes + 1) * sizeof (uint64_t);
9164 			size += DTRACE_USTACK_STRSIZE(arg);
9165 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
9166 
9167 			break;
9168 
9169 		case DTRACEACT_SYM:
9170 		case DTRACEACT_MOD:
9171 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
9172 			    sizeof (uint64_t)) ||
9173 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9174 				return (EINVAL);
9175 			break;
9176 
9177 		case DTRACEACT_USYM:
9178 		case DTRACEACT_UMOD:
9179 		case DTRACEACT_UADDR:
9180 			if (dp == NULL ||
9181 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
9182 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9183 				return (EINVAL);
9184 
9185 			/*
9186 			 * We have a slot for the pid, plus a slot for the
9187 			 * argument.  To keep things simple (aligned with
9188 			 * bitness-neutral sizing), we store each as a 64-bit
9189 			 * quantity.
9190 			 */
9191 			size = 2 * sizeof (uint64_t);
9192 			break;
9193 
9194 		case DTRACEACT_STOP:
9195 		case DTRACEACT_BREAKPOINT:
9196 		case DTRACEACT_PANIC:
9197 			break;
9198 
9199 		case DTRACEACT_CHILL:
9200 		case DTRACEACT_DISCARD:
9201 		case DTRACEACT_RAISE:
9202 			if (dp == NULL)
9203 				return (EINVAL);
9204 			break;
9205 
9206 		case DTRACEACT_EXIT:
9207 			if (dp == NULL ||
9208 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
9209 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9210 				return (EINVAL);
9211 			break;
9212 
9213 		case DTRACEACT_SPECULATE:
9214 			if (ecb->dte_size > sizeof (dtrace_epid_t))
9215 				return (EINVAL);
9216 
9217 			if (dp == NULL)
9218 				return (EINVAL);
9219 
9220 			state->dts_speculates = 1;
9221 			break;
9222 
9223 		case DTRACEACT_COMMIT: {
9224 			dtrace_action_t *act = ecb->dte_action;
9225 
9226 			for (; act != NULL; act = act->dta_next) {
9227 				if (act->dta_kind == DTRACEACT_COMMIT)
9228 					return (EINVAL);
9229 			}
9230 
9231 			if (dp == NULL)
9232 				return (EINVAL);
9233 			break;
9234 		}
9235 
9236 		default:
9237 			return (EINVAL);
9238 		}
9239 
9240 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
9241 			/*
9242 			 * If this is a data-storing action or a speculate,
9243 			 * we must be sure that there isn't a commit on the
9244 			 * action chain.
9245 			 */
9246 			dtrace_action_t *act = ecb->dte_action;
9247 
9248 			for (; act != NULL; act = act->dta_next) {
9249 				if (act->dta_kind == DTRACEACT_COMMIT)
9250 					return (EINVAL);
9251 			}
9252 		}
9253 
9254 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
9255 		action->dta_rec.dtrd_size = size;
9256 	}
9257 
9258 	action->dta_refcnt = 1;
9259 	rec = &action->dta_rec;
9260 	size = rec->dtrd_size;
9261 
9262 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
9263 		if (!(size & mask)) {
9264 			align = mask + 1;
9265 			break;
9266 		}
9267 	}
9268 
9269 	action->dta_kind = desc->dtad_kind;
9270 
9271 	if ((action->dta_difo = dp) != NULL)
9272 		dtrace_difo_hold(dp);
9273 
9274 	rec->dtrd_action = action->dta_kind;
9275 	rec->dtrd_arg = arg;
9276 	rec->dtrd_uarg = desc->dtad_uarg;
9277 	rec->dtrd_alignment = (uint16_t)align;
9278 	rec->dtrd_format = format;
9279 
9280 	if ((last = ecb->dte_action_last) != NULL) {
9281 		ASSERT(ecb->dte_action != NULL);
9282 		action->dta_prev = last;
9283 		last->dta_next = action;
9284 	} else {
9285 		ASSERT(ecb->dte_action == NULL);
9286 		ecb->dte_action = action;
9287 	}
9288 
9289 	ecb->dte_action_last = action;
9290 
9291 	return (0);
9292 }
9293 
9294 static void
9295 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
9296 {
9297 	dtrace_action_t *act = ecb->dte_action, *next;
9298 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
9299 	dtrace_difo_t *dp;
9300 	uint16_t format;
9301 
9302 	if (act != NULL && act->dta_refcnt > 1) {
9303 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
9304 		act->dta_refcnt--;
9305 	} else {
9306 		for (; act != NULL; act = next) {
9307 			next = act->dta_next;
9308 			ASSERT(next != NULL || act == ecb->dte_action_last);
9309 			ASSERT(act->dta_refcnt == 1);
9310 
9311 			if ((format = act->dta_rec.dtrd_format) != 0)
9312 				dtrace_format_remove(ecb->dte_state, format);
9313 
9314 			if ((dp = act->dta_difo) != NULL)
9315 				dtrace_difo_release(dp, vstate);
9316 
9317 			if (DTRACEACT_ISAGG(act->dta_kind)) {
9318 				dtrace_ecb_aggregation_destroy(ecb, act);
9319 			} else {
9320 				kmem_free(act, sizeof (dtrace_action_t));
9321 			}
9322 		}
9323 	}
9324 
9325 	ecb->dte_action = NULL;
9326 	ecb->dte_action_last = NULL;
9327 	ecb->dte_size = sizeof (dtrace_epid_t);
9328 }
9329 
9330 static void
9331 dtrace_ecb_disable(dtrace_ecb_t *ecb)
9332 {
9333 	/*
9334 	 * We disable the ECB by removing it from its probe.
9335 	 */
9336 	dtrace_ecb_t *pecb, *prev = NULL;
9337 	dtrace_probe_t *probe = ecb->dte_probe;
9338 
9339 	ASSERT(MUTEX_HELD(&dtrace_lock));
9340 
9341 	if (probe == NULL) {
9342 		/*
9343 		 * This is the NULL probe; there is nothing to disable.
9344 		 */
9345 		return;
9346 	}
9347 
9348 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
9349 		if (pecb == ecb)
9350 			break;
9351 		prev = pecb;
9352 	}
9353 
9354 	ASSERT(pecb != NULL);
9355 
9356 	if (prev == NULL) {
9357 		probe->dtpr_ecb = ecb->dte_next;
9358 	} else {
9359 		prev->dte_next = ecb->dte_next;
9360 	}
9361 
9362 	if (ecb == probe->dtpr_ecb_last) {
9363 		ASSERT(ecb->dte_next == NULL);
9364 		probe->dtpr_ecb_last = prev;
9365 	}
9366 
9367 	/*
9368 	 * The ECB has been disconnected from the probe; now sync to assure
9369 	 * that all CPUs have seen the change before returning.
9370 	 */
9371 	dtrace_sync();
9372 
9373 	if (probe->dtpr_ecb == NULL) {
9374 		/*
9375 		 * That was the last ECB on the probe; clear the predicate
9376 		 * cache ID for the probe, disable it and sync one more time
9377 		 * to assure that we'll never hit it again.
9378 		 */
9379 		dtrace_provider_t *prov = probe->dtpr_provider;
9380 
9381 		ASSERT(ecb->dte_next == NULL);
9382 		ASSERT(probe->dtpr_ecb_last == NULL);
9383 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
9384 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
9385 		    probe->dtpr_id, probe->dtpr_arg);
9386 		dtrace_sync();
9387 	} else {
9388 		/*
9389 		 * There is at least one ECB remaining on the probe.  If there
9390 		 * is _exactly_ one, set the probe's predicate cache ID to be
9391 		 * the predicate cache ID of the remaining ECB.
9392 		 */
9393 		ASSERT(probe->dtpr_ecb_last != NULL);
9394 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
9395 
9396 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
9397 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
9398 
9399 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
9400 
9401 			if (p != NULL)
9402 				probe->dtpr_predcache = p->dtp_cacheid;
9403 		}
9404 
9405 		ecb->dte_next = NULL;
9406 	}
9407 }
9408 
9409 static void
9410 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
9411 {
9412 	dtrace_state_t *state = ecb->dte_state;
9413 	dtrace_vstate_t *vstate = &state->dts_vstate;
9414 	dtrace_predicate_t *pred;
9415 	dtrace_epid_t epid = ecb->dte_epid;
9416 
9417 	ASSERT(MUTEX_HELD(&dtrace_lock));
9418 	ASSERT(ecb->dte_next == NULL);
9419 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
9420 
9421 	if ((pred = ecb->dte_predicate) != NULL)
9422 		dtrace_predicate_release(pred, vstate);
9423 
9424 	dtrace_ecb_action_remove(ecb);
9425 
9426 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
9427 	state->dts_ecbs[epid - 1] = NULL;
9428 
9429 	kmem_free(ecb, sizeof (dtrace_ecb_t));
9430 }
9431 
9432 static dtrace_ecb_t *
9433 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
9434     dtrace_enabling_t *enab)
9435 {
9436 	dtrace_ecb_t *ecb;
9437 	dtrace_predicate_t *pred;
9438 	dtrace_actdesc_t *act;
9439 	dtrace_provider_t *prov;
9440 	dtrace_ecbdesc_t *desc = enab->dten_current;
9441 
9442 	ASSERT(MUTEX_HELD(&dtrace_lock));
9443 	ASSERT(state != NULL);
9444 
9445 	ecb = dtrace_ecb_add(state, probe);
9446 	ecb->dte_uarg = desc->dted_uarg;
9447 
9448 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
9449 		dtrace_predicate_hold(pred);
9450 		ecb->dte_predicate = pred;
9451 	}
9452 
9453 	if (probe != NULL) {
9454 		/*
9455 		 * If the provider shows more leg than the consumer is old
9456 		 * enough to see, we need to enable the appropriate implicit
9457 		 * predicate bits to prevent the ecb from activating at
9458 		 * revealing times.
9459 		 *
9460 		 * Providers specifying DTRACE_PRIV_USER at register time
9461 		 * are stating that they need the /proc-style privilege
9462 		 * model to be enforced, and this is what DTRACE_COND_OWNER
9463 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
9464 		 */
9465 		prov = probe->dtpr_provider;
9466 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
9467 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
9468 			ecb->dte_cond |= DTRACE_COND_OWNER;
9469 
9470 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
9471 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
9472 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
9473 
9474 		/*
9475 		 * If the provider shows us kernel innards and the user
9476 		 * is lacking sufficient privilege, enable the
9477 		 * DTRACE_COND_USERMODE implicit predicate.
9478 		 */
9479 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
9480 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
9481 			ecb->dte_cond |= DTRACE_COND_USERMODE;
9482 	}
9483 
9484 	if (dtrace_ecb_create_cache != NULL) {
9485 		/*
9486 		 * If we have a cached ecb, we'll use its action list instead
9487 		 * of creating our own (saving both time and space).
9488 		 */
9489 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
9490 		dtrace_action_t *act = cached->dte_action;
9491 
9492 		if (act != NULL) {
9493 			ASSERT(act->dta_refcnt > 0);
9494 			act->dta_refcnt++;
9495 			ecb->dte_action = act;
9496 			ecb->dte_action_last = cached->dte_action_last;
9497 			ecb->dte_needed = cached->dte_needed;
9498 			ecb->dte_size = cached->dte_size;
9499 			ecb->dte_alignment = cached->dte_alignment;
9500 		}
9501 
9502 		return (ecb);
9503 	}
9504 
9505 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
9506 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
9507 			dtrace_ecb_destroy(ecb);
9508 			return (NULL);
9509 		}
9510 	}
9511 
9512 	dtrace_ecb_resize(ecb);
9513 
9514 	return (dtrace_ecb_create_cache = ecb);
9515 }
9516 
9517 static int
9518 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
9519 {
9520 	dtrace_ecb_t *ecb;
9521 	dtrace_enabling_t *enab = arg;
9522 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
9523 
9524 	ASSERT(state != NULL);
9525 
9526 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
9527 		/*
9528 		 * This probe was created in a generation for which this
9529 		 * enabling has previously created ECBs; we don't want to
9530 		 * enable it again, so just kick out.
9531 		 */
9532 		return (DTRACE_MATCH_NEXT);
9533 	}
9534 
9535 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
9536 		return (DTRACE_MATCH_DONE);
9537 
9538 	dtrace_ecb_enable(ecb);
9539 	return (DTRACE_MATCH_NEXT);
9540 }
9541 
9542 static dtrace_ecb_t *
9543 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
9544 {
9545 	dtrace_ecb_t *ecb;
9546 
9547 	ASSERT(MUTEX_HELD(&dtrace_lock));
9548 
9549 	if (id == 0 || id > state->dts_necbs)
9550 		return (NULL);
9551 
9552 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
9553 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
9554 
9555 	return (state->dts_ecbs[id - 1]);
9556 }
9557 
9558 static dtrace_aggregation_t *
9559 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
9560 {
9561 	dtrace_aggregation_t *agg;
9562 
9563 	ASSERT(MUTEX_HELD(&dtrace_lock));
9564 
9565 	if (id == 0 || id > state->dts_naggregations)
9566 		return (NULL);
9567 
9568 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
9569 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
9570 	    agg->dtag_id == id);
9571 
9572 	return (state->dts_aggregations[id - 1]);
9573 }
9574 
9575 /*
9576  * DTrace Buffer Functions
9577  *
9578  * The following functions manipulate DTrace buffers.  Most of these functions
9579  * are called in the context of establishing or processing consumer state;
9580  * exceptions are explicitly noted.
9581  */
9582 
9583 /*
9584  * Note:  called from cross call context.  This function switches the two
9585  * buffers on a given CPU.  The atomicity of this operation is assured by
9586  * disabling interrupts while the actual switch takes place; the disabling of
9587  * interrupts serializes the execution with any execution of dtrace_probe() on
9588  * the same CPU.
9589  */
9590 static void
9591 dtrace_buffer_switch(dtrace_buffer_t *buf)
9592 {
9593 	caddr_t tomax = buf->dtb_tomax;
9594 	caddr_t xamot = buf->dtb_xamot;
9595 	dtrace_icookie_t cookie;
9596 
9597 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
9598 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
9599 
9600 	cookie = dtrace_interrupt_disable();
9601 	buf->dtb_tomax = xamot;
9602 	buf->dtb_xamot = tomax;
9603 	buf->dtb_xamot_drops = buf->dtb_drops;
9604 	buf->dtb_xamot_offset = buf->dtb_offset;
9605 	buf->dtb_xamot_errors = buf->dtb_errors;
9606 	buf->dtb_xamot_flags = buf->dtb_flags;
9607 	buf->dtb_offset = 0;
9608 	buf->dtb_drops = 0;
9609 	buf->dtb_errors = 0;
9610 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
9611 	dtrace_interrupt_enable(cookie);
9612 }
9613 
9614 /*
9615  * Note:  called from cross call context.  This function activates a buffer
9616  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
9617  * is guaranteed by the disabling of interrupts.
9618  */
9619 static void
9620 dtrace_buffer_activate(dtrace_state_t *state)
9621 {
9622 	dtrace_buffer_t *buf;
9623 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
9624 
9625 	buf = &state->dts_buffer[CPU->cpu_id];
9626 
9627 	if (buf->dtb_tomax != NULL) {
9628 		/*
9629 		 * We might like to assert that the buffer is marked inactive,
9630 		 * but this isn't necessarily true:  the buffer for the CPU
9631 		 * that processes the BEGIN probe has its buffer activated
9632 		 * manually.  In this case, we take the (harmless) action
9633 		 * re-clearing the bit INACTIVE bit.
9634 		 */
9635 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
9636 	}
9637 
9638 	dtrace_interrupt_enable(cookie);
9639 }
9640 
9641 static int
9642 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
9643     processorid_t cpu)
9644 {
9645 	cpu_t *cp;
9646 	dtrace_buffer_t *buf;
9647 
9648 	ASSERT(MUTEX_HELD(&cpu_lock));
9649 	ASSERT(MUTEX_HELD(&dtrace_lock));
9650 
9651 	if (size > dtrace_nonroot_maxsize &&
9652 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
9653 		return (EFBIG);
9654 
9655 	cp = cpu_list;
9656 
9657 	do {
9658 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
9659 			continue;
9660 
9661 		buf = &bufs[cp->cpu_id];
9662 
9663 		/*
9664 		 * If there is already a buffer allocated for this CPU, it
9665 		 * is only possible that this is a DR event.  In this case,
9666 		 * the buffer size must match our specified size.
9667 		 */
9668 		if (buf->dtb_tomax != NULL) {
9669 			ASSERT(buf->dtb_size == size);
9670 			continue;
9671 		}
9672 
9673 		ASSERT(buf->dtb_xamot == NULL);
9674 
9675 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
9676 			goto err;
9677 
9678 		buf->dtb_size = size;
9679 		buf->dtb_flags = flags;
9680 		buf->dtb_offset = 0;
9681 		buf->dtb_drops = 0;
9682 
9683 		if (flags & DTRACEBUF_NOSWITCH)
9684 			continue;
9685 
9686 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
9687 			goto err;
9688 	} while ((cp = cp->cpu_next) != cpu_list);
9689 
9690 	return (0);
9691 
9692 err:
9693 	cp = cpu_list;
9694 
9695 	do {
9696 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
9697 			continue;
9698 
9699 		buf = &bufs[cp->cpu_id];
9700 
9701 		if (buf->dtb_xamot != NULL) {
9702 			ASSERT(buf->dtb_tomax != NULL);
9703 			ASSERT(buf->dtb_size == size);
9704 			kmem_free(buf->dtb_xamot, size);
9705 		}
9706 
9707 		if (buf->dtb_tomax != NULL) {
9708 			ASSERT(buf->dtb_size == size);
9709 			kmem_free(buf->dtb_tomax, size);
9710 		}
9711 
9712 		buf->dtb_tomax = NULL;
9713 		buf->dtb_xamot = NULL;
9714 		buf->dtb_size = 0;
9715 	} while ((cp = cp->cpu_next) != cpu_list);
9716 
9717 	return (ENOMEM);
9718 }
9719 
9720 /*
9721  * Note:  called from probe context.  This function just increments the drop
9722  * count on a buffer.  It has been made a function to allow for the
9723  * possibility of understanding the source of mysterious drop counts.  (A
9724  * problem for which one may be particularly disappointed that DTrace cannot
9725  * be used to understand DTrace.)
9726  */
9727 static void
9728 dtrace_buffer_drop(dtrace_buffer_t *buf)
9729 {
9730 	buf->dtb_drops++;
9731 }
9732 
9733 /*
9734  * Note:  called from probe context.  This function is called to reserve space
9735  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
9736  * mstate.  Returns the new offset in the buffer, or a negative value if an
9737  * error has occurred.
9738  */
9739 static intptr_t
9740 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
9741     dtrace_state_t *state, dtrace_mstate_t *mstate)
9742 {
9743 	intptr_t offs = buf->dtb_offset, soffs;
9744 	intptr_t woffs;
9745 	caddr_t tomax;
9746 	size_t total;
9747 
9748 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
9749 		return (-1);
9750 
9751 	if ((tomax = buf->dtb_tomax) == NULL) {
9752 		dtrace_buffer_drop(buf);
9753 		return (-1);
9754 	}
9755 
9756 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
9757 		while (offs & (align - 1)) {
9758 			/*
9759 			 * Assert that our alignment is off by a number which
9760 			 * is itself sizeof (uint32_t) aligned.
9761 			 */
9762 			ASSERT(!((align - (offs & (align - 1))) &
9763 			    (sizeof (uint32_t) - 1)));
9764 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9765 			offs += sizeof (uint32_t);
9766 		}
9767 
9768 		if ((soffs = offs + needed) > buf->dtb_size) {
9769 			dtrace_buffer_drop(buf);
9770 			return (-1);
9771 		}
9772 
9773 		if (mstate == NULL)
9774 			return (offs);
9775 
9776 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
9777 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
9778 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9779 
9780 		return (offs);
9781 	}
9782 
9783 	if (buf->dtb_flags & DTRACEBUF_FILL) {
9784 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
9785 		    (buf->dtb_flags & DTRACEBUF_FULL))
9786 			return (-1);
9787 		goto out;
9788 	}
9789 
9790 	total = needed + (offs & (align - 1));
9791 
9792 	/*
9793 	 * For a ring buffer, life is quite a bit more complicated.  Before
9794 	 * we can store any padding, we need to adjust our wrapping offset.
9795 	 * (If we've never before wrapped or we're not about to, no adjustment
9796 	 * is required.)
9797 	 */
9798 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
9799 	    offs + total > buf->dtb_size) {
9800 		woffs = buf->dtb_xamot_offset;
9801 
9802 		if (offs + total > buf->dtb_size) {
9803 			/*
9804 			 * We can't fit in the end of the buffer.  First, a
9805 			 * sanity check that we can fit in the buffer at all.
9806 			 */
9807 			if (total > buf->dtb_size) {
9808 				dtrace_buffer_drop(buf);
9809 				return (-1);
9810 			}
9811 
9812 			/*
9813 			 * We're going to be storing at the top of the buffer,
9814 			 * so now we need to deal with the wrapped offset.  We
9815 			 * only reset our wrapped offset to 0 if it is
9816 			 * currently greater than the current offset.  If it
9817 			 * is less than the current offset, it is because a
9818 			 * previous allocation induced a wrap -- but the
9819 			 * allocation didn't subsequently take the space due
9820 			 * to an error or false predicate evaluation.  In this
9821 			 * case, we'll just leave the wrapped offset alone: if
9822 			 * the wrapped offset hasn't been advanced far enough
9823 			 * for this allocation, it will be adjusted in the
9824 			 * lower loop.
9825 			 */
9826 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
9827 				if (woffs >= offs)
9828 					woffs = 0;
9829 			} else {
9830 				woffs = 0;
9831 			}
9832 
9833 			/*
9834 			 * Now we know that we're going to be storing to the
9835 			 * top of the buffer and that there is room for us
9836 			 * there.  We need to clear the buffer from the current
9837 			 * offset to the end (there may be old gunk there).
9838 			 */
9839 			while (offs < buf->dtb_size)
9840 				tomax[offs++] = 0;
9841 
9842 			/*
9843 			 * We need to set our offset to zero.  And because we
9844 			 * are wrapping, we need to set the bit indicating as
9845 			 * much.  We can also adjust our needed space back
9846 			 * down to the space required by the ECB -- we know
9847 			 * that the top of the buffer is aligned.
9848 			 */
9849 			offs = 0;
9850 			total = needed;
9851 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
9852 		} else {
9853 			/*
9854 			 * There is room for us in the buffer, so we simply
9855 			 * need to check the wrapped offset.
9856 			 */
9857 			if (woffs < offs) {
9858 				/*
9859 				 * The wrapped offset is less than the offset.
9860 				 * This can happen if we allocated buffer space
9861 				 * that induced a wrap, but then we didn't
9862 				 * subsequently take the space due to an error
9863 				 * or false predicate evaluation.  This is
9864 				 * okay; we know that _this_ allocation isn't
9865 				 * going to induce a wrap.  We still can't
9866 				 * reset the wrapped offset to be zero,
9867 				 * however: the space may have been trashed in
9868 				 * the previous failed probe attempt.  But at
9869 				 * least the wrapped offset doesn't need to
9870 				 * be adjusted at all...
9871 				 */
9872 				goto out;
9873 			}
9874 		}
9875 
9876 		while (offs + total > woffs) {
9877 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
9878 			size_t size;
9879 
9880 			if (epid == DTRACE_EPIDNONE) {
9881 				size = sizeof (uint32_t);
9882 			} else {
9883 				ASSERT(epid <= state->dts_necbs);
9884 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
9885 
9886 				size = state->dts_ecbs[epid - 1]->dte_size;
9887 			}
9888 
9889 			ASSERT(woffs + size <= buf->dtb_size);
9890 			ASSERT(size != 0);
9891 
9892 			if (woffs + size == buf->dtb_size) {
9893 				/*
9894 				 * We've reached the end of the buffer; we want
9895 				 * to set the wrapped offset to 0 and break
9896 				 * out.  However, if the offs is 0, then we're
9897 				 * in a strange edge-condition:  the amount of
9898 				 * space that we want to reserve plus the size
9899 				 * of the record that we're overwriting is
9900 				 * greater than the size of the buffer.  This
9901 				 * is problematic because if we reserve the
9902 				 * space but subsequently don't consume it (due
9903 				 * to a failed predicate or error) the wrapped
9904 				 * offset will be 0 -- yet the EPID at offset 0
9905 				 * will not be committed.  This situation is
9906 				 * relatively easy to deal with:  if we're in
9907 				 * this case, the buffer is indistinguishable
9908 				 * from one that hasn't wrapped; we need only
9909 				 * finish the job by clearing the wrapped bit,
9910 				 * explicitly setting the offset to be 0, and
9911 				 * zero'ing out the old data in the buffer.
9912 				 */
9913 				if (offs == 0) {
9914 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
9915 					buf->dtb_offset = 0;
9916 					woffs = total;
9917 
9918 					while (woffs < buf->dtb_size)
9919 						tomax[woffs++] = 0;
9920 				}
9921 
9922 				woffs = 0;
9923 				break;
9924 			}
9925 
9926 			woffs += size;
9927 		}
9928 
9929 		/*
9930 		 * We have a wrapped offset.  It may be that the wrapped offset
9931 		 * has become zero -- that's okay.
9932 		 */
9933 		buf->dtb_xamot_offset = woffs;
9934 	}
9935 
9936 out:
9937 	/*
9938 	 * Now we can plow the buffer with any necessary padding.
9939 	 */
9940 	while (offs & (align - 1)) {
9941 		/*
9942 		 * Assert that our alignment is off by a number which
9943 		 * is itself sizeof (uint32_t) aligned.
9944 		 */
9945 		ASSERT(!((align - (offs & (align - 1))) &
9946 		    (sizeof (uint32_t) - 1)));
9947 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9948 		offs += sizeof (uint32_t);
9949 	}
9950 
9951 	if (buf->dtb_flags & DTRACEBUF_FILL) {
9952 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
9953 			buf->dtb_flags |= DTRACEBUF_FULL;
9954 			return (-1);
9955 		}
9956 	}
9957 
9958 	if (mstate == NULL)
9959 		return (offs);
9960 
9961 	/*
9962 	 * For ring buffers and fill buffers, the scratch space is always
9963 	 * the inactive buffer.
9964 	 */
9965 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
9966 	mstate->dtms_scratch_size = buf->dtb_size;
9967 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9968 
9969 	return (offs);
9970 }
9971 
9972 static void
9973 dtrace_buffer_polish(dtrace_buffer_t *buf)
9974 {
9975 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
9976 	ASSERT(MUTEX_HELD(&dtrace_lock));
9977 
9978 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
9979 		return;
9980 
9981 	/*
9982 	 * We need to polish the ring buffer.  There are three cases:
9983 	 *
9984 	 * - The first (and presumably most common) is that there is no gap
9985 	 *   between the buffer offset and the wrapped offset.  In this case,
9986 	 *   there is nothing in the buffer that isn't valid data; we can
9987 	 *   mark the buffer as polished and return.
9988 	 *
9989 	 * - The second (less common than the first but still more common
9990 	 *   than the third) is that there is a gap between the buffer offset
9991 	 *   and the wrapped offset, and the wrapped offset is larger than the
9992 	 *   buffer offset.  This can happen because of an alignment issue, or
9993 	 *   can happen because of a call to dtrace_buffer_reserve() that
9994 	 *   didn't subsequently consume the buffer space.  In this case,
9995 	 *   we need to zero the data from the buffer offset to the wrapped
9996 	 *   offset.
9997 	 *
9998 	 * - The third (and least common) is that there is a gap between the
9999 	 *   buffer offset and the wrapped offset, but the wrapped offset is
10000 	 *   _less_ than the buffer offset.  This can only happen because a
10001 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
10002 	 *   was not subsequently consumed.  In this case, we need to zero the
10003 	 *   space from the offset to the end of the buffer _and_ from the
10004 	 *   top of the buffer to the wrapped offset.
10005 	 */
10006 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
10007 		bzero(buf->dtb_tomax + buf->dtb_offset,
10008 		    buf->dtb_xamot_offset - buf->dtb_offset);
10009 	}
10010 
10011 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
10012 		bzero(buf->dtb_tomax + buf->dtb_offset,
10013 		    buf->dtb_size - buf->dtb_offset);
10014 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
10015 	}
10016 }
10017 
10018 static void
10019 dtrace_buffer_free(dtrace_buffer_t *bufs)
10020 {
10021 	int i;
10022 
10023 	for (i = 0; i < NCPU; i++) {
10024 		dtrace_buffer_t *buf = &bufs[i];
10025 
10026 		if (buf->dtb_tomax == NULL) {
10027 			ASSERT(buf->dtb_xamot == NULL);
10028 			ASSERT(buf->dtb_size == 0);
10029 			continue;
10030 		}
10031 
10032 		if (buf->dtb_xamot != NULL) {
10033 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10034 			kmem_free(buf->dtb_xamot, buf->dtb_size);
10035 		}
10036 
10037 		kmem_free(buf->dtb_tomax, buf->dtb_size);
10038 		buf->dtb_size = 0;
10039 		buf->dtb_tomax = NULL;
10040 		buf->dtb_xamot = NULL;
10041 	}
10042 }
10043 
10044 /*
10045  * DTrace Enabling Functions
10046  */
10047 static dtrace_enabling_t *
10048 dtrace_enabling_create(dtrace_vstate_t *vstate)
10049 {
10050 	dtrace_enabling_t *enab;
10051 
10052 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
10053 	enab->dten_vstate = vstate;
10054 
10055 	return (enab);
10056 }
10057 
10058 static void
10059 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
10060 {
10061 	dtrace_ecbdesc_t **ndesc;
10062 	size_t osize, nsize;
10063 
10064 	/*
10065 	 * We can't add to enablings after we've enabled them, or after we've
10066 	 * retained them.
10067 	 */
10068 	ASSERT(enab->dten_probegen == 0);
10069 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10070 
10071 	if (enab->dten_ndesc < enab->dten_maxdesc) {
10072 		enab->dten_desc[enab->dten_ndesc++] = ecb;
10073 		return;
10074 	}
10075 
10076 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10077 
10078 	if (enab->dten_maxdesc == 0) {
10079 		enab->dten_maxdesc = 1;
10080 	} else {
10081 		enab->dten_maxdesc <<= 1;
10082 	}
10083 
10084 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
10085 
10086 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10087 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
10088 	bcopy(enab->dten_desc, ndesc, osize);
10089 	kmem_free(enab->dten_desc, osize);
10090 
10091 	enab->dten_desc = ndesc;
10092 	enab->dten_desc[enab->dten_ndesc++] = ecb;
10093 }
10094 
10095 static void
10096 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
10097     dtrace_probedesc_t *pd)
10098 {
10099 	dtrace_ecbdesc_t *new;
10100 	dtrace_predicate_t *pred;
10101 	dtrace_actdesc_t *act;
10102 
10103 	/*
10104 	 * We're going to create a new ECB description that matches the
10105 	 * specified ECB in every way, but has the specified probe description.
10106 	 */
10107 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10108 
10109 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
10110 		dtrace_predicate_hold(pred);
10111 
10112 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
10113 		dtrace_actdesc_hold(act);
10114 
10115 	new->dted_action = ecb->dted_action;
10116 	new->dted_pred = ecb->dted_pred;
10117 	new->dted_probe = *pd;
10118 	new->dted_uarg = ecb->dted_uarg;
10119 
10120 	dtrace_enabling_add(enab, new);
10121 }
10122 
10123 static void
10124 dtrace_enabling_dump(dtrace_enabling_t *enab)
10125 {
10126 	int i;
10127 
10128 	for (i = 0; i < enab->dten_ndesc; i++) {
10129 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
10130 
10131 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
10132 		    desc->dtpd_provider, desc->dtpd_mod,
10133 		    desc->dtpd_func, desc->dtpd_name);
10134 	}
10135 }
10136 
10137 static void
10138 dtrace_enabling_destroy(dtrace_enabling_t *enab)
10139 {
10140 	int i;
10141 	dtrace_ecbdesc_t *ep;
10142 	dtrace_vstate_t *vstate = enab->dten_vstate;
10143 
10144 	ASSERT(MUTEX_HELD(&dtrace_lock));
10145 
10146 	for (i = 0; i < enab->dten_ndesc; i++) {
10147 		dtrace_actdesc_t *act, *next;
10148 		dtrace_predicate_t *pred;
10149 
10150 		ep = enab->dten_desc[i];
10151 
10152 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
10153 			dtrace_predicate_release(pred, vstate);
10154 
10155 		for (act = ep->dted_action; act != NULL; act = next) {
10156 			next = act->dtad_next;
10157 			dtrace_actdesc_release(act, vstate);
10158 		}
10159 
10160 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10161 	}
10162 
10163 	kmem_free(enab->dten_desc,
10164 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
10165 
10166 	/*
10167 	 * If this was a retained enabling, decrement the dts_nretained count
10168 	 * and take it off of the dtrace_retained list.
10169 	 */
10170 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
10171 	    dtrace_retained == enab) {
10172 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10173 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
10174 		enab->dten_vstate->dtvs_state->dts_nretained--;
10175 	}
10176 
10177 	if (enab->dten_prev == NULL) {
10178 		if (dtrace_retained == enab) {
10179 			dtrace_retained = enab->dten_next;
10180 
10181 			if (dtrace_retained != NULL)
10182 				dtrace_retained->dten_prev = NULL;
10183 		}
10184 	} else {
10185 		ASSERT(enab != dtrace_retained);
10186 		ASSERT(dtrace_retained != NULL);
10187 		enab->dten_prev->dten_next = enab->dten_next;
10188 	}
10189 
10190 	if (enab->dten_next != NULL) {
10191 		ASSERT(dtrace_retained != NULL);
10192 		enab->dten_next->dten_prev = enab->dten_prev;
10193 	}
10194 
10195 	kmem_free(enab, sizeof (dtrace_enabling_t));
10196 }
10197 
10198 static int
10199 dtrace_enabling_retain(dtrace_enabling_t *enab)
10200 {
10201 	dtrace_state_t *state;
10202 
10203 	ASSERT(MUTEX_HELD(&dtrace_lock));
10204 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10205 	ASSERT(enab->dten_vstate != NULL);
10206 
10207 	state = enab->dten_vstate->dtvs_state;
10208 	ASSERT(state != NULL);
10209 
10210 	/*
10211 	 * We only allow each state to retain dtrace_retain_max enablings.
10212 	 */
10213 	if (state->dts_nretained >= dtrace_retain_max)
10214 		return (ENOSPC);
10215 
10216 	state->dts_nretained++;
10217 
10218 	if (dtrace_retained == NULL) {
10219 		dtrace_retained = enab;
10220 		return (0);
10221 	}
10222 
10223 	enab->dten_next = dtrace_retained;
10224 	dtrace_retained->dten_prev = enab;
10225 	dtrace_retained = enab;
10226 
10227 	return (0);
10228 }
10229 
10230 static int
10231 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
10232     dtrace_probedesc_t *create)
10233 {
10234 	dtrace_enabling_t *new, *enab;
10235 	int found = 0, err = ENOENT;
10236 
10237 	ASSERT(MUTEX_HELD(&dtrace_lock));
10238 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
10239 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
10240 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
10241 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
10242 
10243 	new = dtrace_enabling_create(&state->dts_vstate);
10244 
10245 	/*
10246 	 * Iterate over all retained enablings, looking for enablings that
10247 	 * match the specified state.
10248 	 */
10249 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10250 		int i;
10251 
10252 		/*
10253 		 * dtvs_state can only be NULL for helper enablings -- and
10254 		 * helper enablings can't be retained.
10255 		 */
10256 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10257 
10258 		if (enab->dten_vstate->dtvs_state != state)
10259 			continue;
10260 
10261 		/*
10262 		 * Now iterate over each probe description; we're looking for
10263 		 * an exact match to the specified probe description.
10264 		 */
10265 		for (i = 0; i < enab->dten_ndesc; i++) {
10266 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10267 			dtrace_probedesc_t *pd = &ep->dted_probe;
10268 
10269 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
10270 				continue;
10271 
10272 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
10273 				continue;
10274 
10275 			if (strcmp(pd->dtpd_func, match->dtpd_func))
10276 				continue;
10277 
10278 			if (strcmp(pd->dtpd_name, match->dtpd_name))
10279 				continue;
10280 
10281 			/*
10282 			 * We have a winning probe!  Add it to our growing
10283 			 * enabling.
10284 			 */
10285 			found = 1;
10286 			dtrace_enabling_addlike(new, ep, create);
10287 		}
10288 	}
10289 
10290 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
10291 		dtrace_enabling_destroy(new);
10292 		return (err);
10293 	}
10294 
10295 	return (0);
10296 }
10297 
10298 static void
10299 dtrace_enabling_retract(dtrace_state_t *state)
10300 {
10301 	dtrace_enabling_t *enab, *next;
10302 
10303 	ASSERT(MUTEX_HELD(&dtrace_lock));
10304 
10305 	/*
10306 	 * Iterate over all retained enablings, destroy the enablings retained
10307 	 * for the specified state.
10308 	 */
10309 	for (enab = dtrace_retained; enab != NULL; enab = next) {
10310 		next = enab->dten_next;
10311 
10312 		/*
10313 		 * dtvs_state can only be NULL for helper enablings -- and
10314 		 * helper enablings can't be retained.
10315 		 */
10316 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10317 
10318 		if (enab->dten_vstate->dtvs_state == state) {
10319 			ASSERT(state->dts_nretained > 0);
10320 			dtrace_enabling_destroy(enab);
10321 		}
10322 	}
10323 
10324 	ASSERT(state->dts_nretained == 0);
10325 }
10326 
10327 static int
10328 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
10329 {
10330 	int i = 0;
10331 	int matched = 0;
10332 
10333 	ASSERT(MUTEX_HELD(&cpu_lock));
10334 	ASSERT(MUTEX_HELD(&dtrace_lock));
10335 
10336 	for (i = 0; i < enab->dten_ndesc; i++) {
10337 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10338 
10339 		enab->dten_current = ep;
10340 		enab->dten_error = 0;
10341 
10342 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
10343 
10344 		if (enab->dten_error != 0) {
10345 			/*
10346 			 * If we get an error half-way through enabling the
10347 			 * probes, we kick out -- perhaps with some number of
10348 			 * them enabled.  Leaving enabled probes enabled may
10349 			 * be slightly confusing for user-level, but we expect
10350 			 * that no one will attempt to actually drive on in
10351 			 * the face of such errors.  If this is an anonymous
10352 			 * enabling (indicated with a NULL nmatched pointer),
10353 			 * we cmn_err() a message.  We aren't expecting to
10354 			 * get such an error -- such as it can exist at all,
10355 			 * it would be a result of corrupted DOF in the driver
10356 			 * properties.
10357 			 */
10358 			if (nmatched == NULL) {
10359 				cmn_err(CE_WARN, "dtrace_enabling_match() "
10360 				    "error on %p: %d", (void *)ep,
10361 				    enab->dten_error);
10362 			}
10363 
10364 			return (enab->dten_error);
10365 		}
10366 	}
10367 
10368 	enab->dten_probegen = dtrace_probegen;
10369 	if (nmatched != NULL)
10370 		*nmatched = matched;
10371 
10372 	return (0);
10373 }
10374 
10375 static void
10376 dtrace_enabling_matchall(void)
10377 {
10378 	dtrace_enabling_t *enab;
10379 
10380 	mutex_enter(&cpu_lock);
10381 	mutex_enter(&dtrace_lock);
10382 
10383 	/*
10384 	 * Because we can be called after dtrace_detach() has been called, we
10385 	 * cannot assert that there are retained enablings.  We can safely
10386 	 * load from dtrace_retained, however:  the taskq_destroy() at the
10387 	 * end of dtrace_detach() will block pending our completion.
10388 	 */
10389 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next)
10390 		(void) dtrace_enabling_match(enab, NULL);
10391 
10392 	mutex_exit(&dtrace_lock);
10393 	mutex_exit(&cpu_lock);
10394 }
10395 
10396 static int
10397 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched)
10398 {
10399 	dtrace_enabling_t *enab;
10400 	int matched, total = 0, err;
10401 
10402 	ASSERT(MUTEX_HELD(&cpu_lock));
10403 	ASSERT(MUTEX_HELD(&dtrace_lock));
10404 
10405 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10406 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10407 
10408 		if (enab->dten_vstate->dtvs_state != state)
10409 			continue;
10410 
10411 		if ((err = dtrace_enabling_match(enab, &matched)) != 0)
10412 			return (err);
10413 
10414 		total += matched;
10415 	}
10416 
10417 	if (nmatched != NULL)
10418 		*nmatched = total;
10419 
10420 	return (0);
10421 }
10422 
10423 /*
10424  * If an enabling is to be enabled without having matched probes (that is, if
10425  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
10426  * enabling must be _primed_ by creating an ECB for every ECB description.
10427  * This must be done to assure that we know the number of speculations, the
10428  * number of aggregations, the minimum buffer size needed, etc. before we
10429  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
10430  * enabling any probes, we create ECBs for every ECB decription, but with a
10431  * NULL probe -- which is exactly what this function does.
10432  */
10433 static void
10434 dtrace_enabling_prime(dtrace_state_t *state)
10435 {
10436 	dtrace_enabling_t *enab;
10437 	int i;
10438 
10439 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10440 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10441 
10442 		if (enab->dten_vstate->dtvs_state != state)
10443 			continue;
10444 
10445 		/*
10446 		 * We don't want to prime an enabling more than once, lest
10447 		 * we allow a malicious user to induce resource exhaustion.
10448 		 * (The ECBs that result from priming an enabling aren't
10449 		 * leaked -- but they also aren't deallocated until the
10450 		 * consumer state is destroyed.)
10451 		 */
10452 		if (enab->dten_primed)
10453 			continue;
10454 
10455 		for (i = 0; i < enab->dten_ndesc; i++) {
10456 			enab->dten_current = enab->dten_desc[i];
10457 			(void) dtrace_probe_enable(NULL, enab);
10458 		}
10459 
10460 		enab->dten_primed = 1;
10461 	}
10462 }
10463 
10464 /*
10465  * Called to indicate that probes should be provided due to retained
10466  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
10467  * must take an initial lap through the enabling calling the dtps_provide()
10468  * entry point explicitly to allow for autocreated probes.
10469  */
10470 static void
10471 dtrace_enabling_provide(dtrace_provider_t *prv)
10472 {
10473 	int i, all = 0;
10474 	dtrace_probedesc_t desc;
10475 
10476 	ASSERT(MUTEX_HELD(&dtrace_lock));
10477 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
10478 
10479 	if (prv == NULL) {
10480 		all = 1;
10481 		prv = dtrace_provider;
10482 	}
10483 
10484 	do {
10485 		dtrace_enabling_t *enab = dtrace_retained;
10486 		void *parg = prv->dtpv_arg;
10487 
10488 		for (; enab != NULL; enab = enab->dten_next) {
10489 			for (i = 0; i < enab->dten_ndesc; i++) {
10490 				desc = enab->dten_desc[i]->dted_probe;
10491 				mutex_exit(&dtrace_lock);
10492 				prv->dtpv_pops.dtps_provide(parg, &desc);
10493 				mutex_enter(&dtrace_lock);
10494 			}
10495 		}
10496 	} while (all && (prv = prv->dtpv_next) != NULL);
10497 
10498 	mutex_exit(&dtrace_lock);
10499 	dtrace_probe_provide(NULL, all ? NULL : prv);
10500 	mutex_enter(&dtrace_lock);
10501 }
10502 
10503 /*
10504  * DTrace DOF Functions
10505  */
10506 /*ARGSUSED*/
10507 static void
10508 dtrace_dof_error(dof_hdr_t *dof, const char *str)
10509 {
10510 	if (dtrace_err_verbose)
10511 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
10512 
10513 #ifdef DTRACE_ERRDEBUG
10514 	dtrace_errdebug(str);
10515 #endif
10516 }
10517 
10518 /*
10519  * Create DOF out of a currently enabled state.  Right now, we only create
10520  * DOF containing the run-time options -- but this could be expanded to create
10521  * complete DOF representing the enabled state.
10522  */
10523 static dof_hdr_t *
10524 dtrace_dof_create(dtrace_state_t *state)
10525 {
10526 	dof_hdr_t *dof;
10527 	dof_sec_t *sec;
10528 	dof_optdesc_t *opt;
10529 	int i, len = sizeof (dof_hdr_t) +
10530 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
10531 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10532 
10533 	ASSERT(MUTEX_HELD(&dtrace_lock));
10534 
10535 	dof = kmem_zalloc(len, KM_SLEEP);
10536 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
10537 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
10538 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
10539 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
10540 
10541 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
10542 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
10543 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
10544 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
10545 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
10546 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
10547 
10548 	dof->dofh_flags = 0;
10549 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
10550 	dof->dofh_secsize = sizeof (dof_sec_t);
10551 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
10552 	dof->dofh_secoff = sizeof (dof_hdr_t);
10553 	dof->dofh_loadsz = len;
10554 	dof->dofh_filesz = len;
10555 	dof->dofh_pad = 0;
10556 
10557 	/*
10558 	 * Fill in the option section header...
10559 	 */
10560 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
10561 	sec->dofs_type = DOF_SECT_OPTDESC;
10562 	sec->dofs_align = sizeof (uint64_t);
10563 	sec->dofs_flags = DOF_SECF_LOAD;
10564 	sec->dofs_entsize = sizeof (dof_optdesc_t);
10565 
10566 	opt = (dof_optdesc_t *)((uintptr_t)sec +
10567 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
10568 
10569 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
10570 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10571 
10572 	for (i = 0; i < DTRACEOPT_MAX; i++) {
10573 		opt[i].dofo_option = i;
10574 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
10575 		opt[i].dofo_value = state->dts_options[i];
10576 	}
10577 
10578 	return (dof);
10579 }
10580 
10581 static dof_hdr_t *
10582 dtrace_dof_copyin(uintptr_t uarg, int *errp)
10583 {
10584 	dof_hdr_t hdr, *dof;
10585 
10586 	ASSERT(!MUTEX_HELD(&dtrace_lock));
10587 
10588 	/*
10589 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
10590 	 */
10591 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
10592 		dtrace_dof_error(NULL, "failed to copyin DOF header");
10593 		*errp = EFAULT;
10594 		return (NULL);
10595 	}
10596 
10597 	/*
10598 	 * Now we'll allocate the entire DOF and copy it in -- provided
10599 	 * that the length isn't outrageous.
10600 	 */
10601 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
10602 		dtrace_dof_error(&hdr, "load size exceeds maximum");
10603 		*errp = E2BIG;
10604 		return (NULL);
10605 	}
10606 
10607 	if (hdr.dofh_loadsz < sizeof (hdr)) {
10608 		dtrace_dof_error(&hdr, "invalid load size");
10609 		*errp = EINVAL;
10610 		return (NULL);
10611 	}
10612 
10613 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
10614 
10615 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
10616 		kmem_free(dof, hdr.dofh_loadsz);
10617 		*errp = EFAULT;
10618 		return (NULL);
10619 	}
10620 
10621 	return (dof);
10622 }
10623 
10624 static dof_hdr_t *
10625 dtrace_dof_property(const char *name)
10626 {
10627 	uchar_t *buf;
10628 	uint64_t loadsz;
10629 	unsigned int len, i;
10630 	dof_hdr_t *dof;
10631 
10632 	/*
10633 	 * Unfortunately, array of values in .conf files are always (and
10634 	 * only) interpreted to be integer arrays.  We must read our DOF
10635 	 * as an integer array, and then squeeze it into a byte array.
10636 	 */
10637 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
10638 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
10639 		return (NULL);
10640 
10641 	for (i = 0; i < len; i++)
10642 		buf[i] = (uchar_t)(((int *)buf)[i]);
10643 
10644 	if (len < sizeof (dof_hdr_t)) {
10645 		ddi_prop_free(buf);
10646 		dtrace_dof_error(NULL, "truncated header");
10647 		return (NULL);
10648 	}
10649 
10650 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
10651 		ddi_prop_free(buf);
10652 		dtrace_dof_error(NULL, "truncated DOF");
10653 		return (NULL);
10654 	}
10655 
10656 	if (loadsz >= dtrace_dof_maxsize) {
10657 		ddi_prop_free(buf);
10658 		dtrace_dof_error(NULL, "oversized DOF");
10659 		return (NULL);
10660 	}
10661 
10662 	dof = kmem_alloc(loadsz, KM_SLEEP);
10663 	bcopy(buf, dof, loadsz);
10664 	ddi_prop_free(buf);
10665 
10666 	return (dof);
10667 }
10668 
10669 static void
10670 dtrace_dof_destroy(dof_hdr_t *dof)
10671 {
10672 	kmem_free(dof, dof->dofh_loadsz);
10673 }
10674 
10675 /*
10676  * Return the dof_sec_t pointer corresponding to a given section index.  If the
10677  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
10678  * a type other than DOF_SECT_NONE is specified, the header is checked against
10679  * this type and NULL is returned if the types do not match.
10680  */
10681 static dof_sec_t *
10682 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
10683 {
10684 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
10685 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
10686 
10687 	if (i >= dof->dofh_secnum) {
10688 		dtrace_dof_error(dof, "referenced section index is invalid");
10689 		return (NULL);
10690 	}
10691 
10692 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
10693 		dtrace_dof_error(dof, "referenced section is not loadable");
10694 		return (NULL);
10695 	}
10696 
10697 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
10698 		dtrace_dof_error(dof, "referenced section is the wrong type");
10699 		return (NULL);
10700 	}
10701 
10702 	return (sec);
10703 }
10704 
10705 static dtrace_probedesc_t *
10706 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
10707 {
10708 	dof_probedesc_t *probe;
10709 	dof_sec_t *strtab;
10710 	uintptr_t daddr = (uintptr_t)dof;
10711 	uintptr_t str;
10712 	size_t size;
10713 
10714 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
10715 		dtrace_dof_error(dof, "invalid probe section");
10716 		return (NULL);
10717 	}
10718 
10719 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
10720 		dtrace_dof_error(dof, "bad alignment in probe description");
10721 		return (NULL);
10722 	}
10723 
10724 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
10725 		dtrace_dof_error(dof, "truncated probe description");
10726 		return (NULL);
10727 	}
10728 
10729 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
10730 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
10731 
10732 	if (strtab == NULL)
10733 		return (NULL);
10734 
10735 	str = daddr + strtab->dofs_offset;
10736 	size = strtab->dofs_size;
10737 
10738 	if (probe->dofp_provider >= strtab->dofs_size) {
10739 		dtrace_dof_error(dof, "corrupt probe provider");
10740 		return (NULL);
10741 	}
10742 
10743 	(void) strncpy(desc->dtpd_provider,
10744 	    (char *)(str + probe->dofp_provider),
10745 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
10746 
10747 	if (probe->dofp_mod >= strtab->dofs_size) {
10748 		dtrace_dof_error(dof, "corrupt probe module");
10749 		return (NULL);
10750 	}
10751 
10752 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
10753 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
10754 
10755 	if (probe->dofp_func >= strtab->dofs_size) {
10756 		dtrace_dof_error(dof, "corrupt probe function");
10757 		return (NULL);
10758 	}
10759 
10760 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
10761 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
10762 
10763 	if (probe->dofp_name >= strtab->dofs_size) {
10764 		dtrace_dof_error(dof, "corrupt probe name");
10765 		return (NULL);
10766 	}
10767 
10768 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
10769 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
10770 
10771 	return (desc);
10772 }
10773 
10774 static dtrace_difo_t *
10775 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10776     cred_t *cr)
10777 {
10778 	dtrace_difo_t *dp;
10779 	size_t ttl = 0;
10780 	dof_difohdr_t *dofd;
10781 	uintptr_t daddr = (uintptr_t)dof;
10782 	size_t max = dtrace_difo_maxsize;
10783 	int i, l, n;
10784 
10785 	static const struct {
10786 		int section;
10787 		int bufoffs;
10788 		int lenoffs;
10789 		int entsize;
10790 		int align;
10791 		const char *msg;
10792 	} difo[] = {
10793 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
10794 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
10795 		sizeof (dif_instr_t), "multiple DIF sections" },
10796 
10797 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
10798 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
10799 		sizeof (uint64_t), "multiple integer tables" },
10800 
10801 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
10802 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
10803 		sizeof (char), "multiple string tables" },
10804 
10805 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
10806 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
10807 		sizeof (uint_t), "multiple variable tables" },
10808 
10809 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
10810 	};
10811 
10812 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
10813 		dtrace_dof_error(dof, "invalid DIFO header section");
10814 		return (NULL);
10815 	}
10816 
10817 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
10818 		dtrace_dof_error(dof, "bad alignment in DIFO header");
10819 		return (NULL);
10820 	}
10821 
10822 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
10823 	    sec->dofs_size % sizeof (dof_secidx_t)) {
10824 		dtrace_dof_error(dof, "bad size in DIFO header");
10825 		return (NULL);
10826 	}
10827 
10828 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
10829 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
10830 
10831 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10832 	dp->dtdo_rtype = dofd->dofd_rtype;
10833 
10834 	for (l = 0; l < n; l++) {
10835 		dof_sec_t *subsec;
10836 		void **bufp;
10837 		uint32_t *lenp;
10838 
10839 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
10840 		    dofd->dofd_links[l])) == NULL)
10841 			goto err; /* invalid section link */
10842 
10843 		if (ttl + subsec->dofs_size > max) {
10844 			dtrace_dof_error(dof, "exceeds maximum size");
10845 			goto err;
10846 		}
10847 
10848 		ttl += subsec->dofs_size;
10849 
10850 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
10851 			if (subsec->dofs_type != difo[i].section)
10852 				continue;
10853 
10854 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
10855 				dtrace_dof_error(dof, "section not loaded");
10856 				goto err;
10857 			}
10858 
10859 			if (subsec->dofs_align != difo[i].align) {
10860 				dtrace_dof_error(dof, "bad alignment");
10861 				goto err;
10862 			}
10863 
10864 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
10865 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
10866 
10867 			if (*bufp != NULL) {
10868 				dtrace_dof_error(dof, difo[i].msg);
10869 				goto err;
10870 			}
10871 
10872 			if (difo[i].entsize != subsec->dofs_entsize) {
10873 				dtrace_dof_error(dof, "entry size mismatch");
10874 				goto err;
10875 			}
10876 
10877 			if (subsec->dofs_entsize != 0 &&
10878 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
10879 				dtrace_dof_error(dof, "corrupt entry size");
10880 				goto err;
10881 			}
10882 
10883 			*lenp = subsec->dofs_size;
10884 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
10885 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
10886 			    *bufp, subsec->dofs_size);
10887 
10888 			if (subsec->dofs_entsize != 0)
10889 				*lenp /= subsec->dofs_entsize;
10890 
10891 			break;
10892 		}
10893 
10894 		/*
10895 		 * If we encounter a loadable DIFO sub-section that is not
10896 		 * known to us, assume this is a broken program and fail.
10897 		 */
10898 		if (difo[i].section == DOF_SECT_NONE &&
10899 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
10900 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
10901 			goto err;
10902 		}
10903 	}
10904 
10905 	if (dp->dtdo_buf == NULL) {
10906 		/*
10907 		 * We can't have a DIF object without DIF text.
10908 		 */
10909 		dtrace_dof_error(dof, "missing DIF text");
10910 		goto err;
10911 	}
10912 
10913 	/*
10914 	 * Before we validate the DIF object, run through the variable table
10915 	 * looking for the strings -- if any of their size are under, we'll set
10916 	 * their size to be the system-wide default string size.  Note that
10917 	 * this should _not_ happen if the "strsize" option has been set --
10918 	 * in this case, the compiler should have set the size to reflect the
10919 	 * setting of the option.
10920 	 */
10921 	for (i = 0; i < dp->dtdo_varlen; i++) {
10922 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10923 		dtrace_diftype_t *t = &v->dtdv_type;
10924 
10925 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
10926 			continue;
10927 
10928 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
10929 			t->dtdt_size = dtrace_strsize_default;
10930 	}
10931 
10932 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
10933 		goto err;
10934 
10935 	dtrace_difo_init(dp, vstate);
10936 	return (dp);
10937 
10938 err:
10939 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10940 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10941 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10942 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10943 
10944 	kmem_free(dp, sizeof (dtrace_difo_t));
10945 	return (NULL);
10946 }
10947 
10948 static dtrace_predicate_t *
10949 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10950     cred_t *cr)
10951 {
10952 	dtrace_difo_t *dp;
10953 
10954 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
10955 		return (NULL);
10956 
10957 	return (dtrace_predicate_create(dp));
10958 }
10959 
10960 static dtrace_actdesc_t *
10961 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10962     cred_t *cr)
10963 {
10964 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
10965 	dof_actdesc_t *desc;
10966 	dof_sec_t *difosec;
10967 	size_t offs;
10968 	uintptr_t daddr = (uintptr_t)dof;
10969 	uint64_t arg;
10970 	dtrace_actkind_t kind;
10971 
10972 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
10973 		dtrace_dof_error(dof, "invalid action section");
10974 		return (NULL);
10975 	}
10976 
10977 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
10978 		dtrace_dof_error(dof, "truncated action description");
10979 		return (NULL);
10980 	}
10981 
10982 	if (sec->dofs_align != sizeof (uint64_t)) {
10983 		dtrace_dof_error(dof, "bad alignment in action description");
10984 		return (NULL);
10985 	}
10986 
10987 	if (sec->dofs_size < sec->dofs_entsize) {
10988 		dtrace_dof_error(dof, "section entry size exceeds total size");
10989 		return (NULL);
10990 	}
10991 
10992 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
10993 		dtrace_dof_error(dof, "bad entry size in action description");
10994 		return (NULL);
10995 	}
10996 
10997 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
10998 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
10999 		return (NULL);
11000 	}
11001 
11002 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
11003 		desc = (dof_actdesc_t *)(daddr +
11004 		    (uintptr_t)sec->dofs_offset + offs);
11005 		kind = (dtrace_actkind_t)desc->dofa_kind;
11006 
11007 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
11008 		    (kind != DTRACEACT_PRINTA ||
11009 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
11010 			dof_sec_t *strtab;
11011 			char *str, *fmt;
11012 			uint64_t i;
11013 
11014 			/*
11015 			 * printf()-like actions must have a format string.
11016 			 */
11017 			if ((strtab = dtrace_dof_sect(dof,
11018 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
11019 				goto err;
11020 
11021 			str = (char *)((uintptr_t)dof +
11022 			    (uintptr_t)strtab->dofs_offset);
11023 
11024 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
11025 				if (str[i] == '\0')
11026 					break;
11027 			}
11028 
11029 			if (i >= strtab->dofs_size) {
11030 				dtrace_dof_error(dof, "bogus format string");
11031 				goto err;
11032 			}
11033 
11034 			if (i == desc->dofa_arg) {
11035 				dtrace_dof_error(dof, "empty format string");
11036 				goto err;
11037 			}
11038 
11039 			i -= desc->dofa_arg;
11040 			fmt = kmem_alloc(i + 1, KM_SLEEP);
11041 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
11042 			arg = (uint64_t)(uintptr_t)fmt;
11043 		} else {
11044 			if (kind == DTRACEACT_PRINTA) {
11045 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
11046 				arg = 0;
11047 			} else {
11048 				arg = desc->dofa_arg;
11049 			}
11050 		}
11051 
11052 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
11053 		    desc->dofa_uarg, arg);
11054 
11055 		if (last != NULL) {
11056 			last->dtad_next = act;
11057 		} else {
11058 			first = act;
11059 		}
11060 
11061 		last = act;
11062 
11063 		if (desc->dofa_difo == DOF_SECIDX_NONE)
11064 			continue;
11065 
11066 		if ((difosec = dtrace_dof_sect(dof,
11067 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
11068 			goto err;
11069 
11070 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
11071 
11072 		if (act->dtad_difo == NULL)
11073 			goto err;
11074 	}
11075 
11076 	ASSERT(first != NULL);
11077 	return (first);
11078 
11079 err:
11080 	for (act = first; act != NULL; act = next) {
11081 		next = act->dtad_next;
11082 		dtrace_actdesc_release(act, vstate);
11083 	}
11084 
11085 	return (NULL);
11086 }
11087 
11088 static dtrace_ecbdesc_t *
11089 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11090     cred_t *cr)
11091 {
11092 	dtrace_ecbdesc_t *ep;
11093 	dof_ecbdesc_t *ecb;
11094 	dtrace_probedesc_t *desc;
11095 	dtrace_predicate_t *pred = NULL;
11096 
11097 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
11098 		dtrace_dof_error(dof, "truncated ECB description");
11099 		return (NULL);
11100 	}
11101 
11102 	if (sec->dofs_align != sizeof (uint64_t)) {
11103 		dtrace_dof_error(dof, "bad alignment in ECB description");
11104 		return (NULL);
11105 	}
11106 
11107 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
11108 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
11109 
11110 	if (sec == NULL)
11111 		return (NULL);
11112 
11113 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11114 	ep->dted_uarg = ecb->dofe_uarg;
11115 	desc = &ep->dted_probe;
11116 
11117 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
11118 		goto err;
11119 
11120 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
11121 		if ((sec = dtrace_dof_sect(dof,
11122 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
11123 			goto err;
11124 
11125 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
11126 			goto err;
11127 
11128 		ep->dted_pred.dtpdd_predicate = pred;
11129 	}
11130 
11131 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
11132 		if ((sec = dtrace_dof_sect(dof,
11133 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
11134 			goto err;
11135 
11136 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
11137 
11138 		if (ep->dted_action == NULL)
11139 			goto err;
11140 	}
11141 
11142 	return (ep);
11143 
11144 err:
11145 	if (pred != NULL)
11146 		dtrace_predicate_release(pred, vstate);
11147 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11148 	return (NULL);
11149 }
11150 
11151 /*
11152  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
11153  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
11154  * site of any user SETX relocations to account for load object base address.
11155  * In the future, if we need other relocations, this function can be extended.
11156  */
11157 static int
11158 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
11159 {
11160 	uintptr_t daddr = (uintptr_t)dof;
11161 	dof_relohdr_t *dofr =
11162 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11163 	dof_sec_t *ss, *rs, *ts;
11164 	dof_relodesc_t *r;
11165 	uint_t i, n;
11166 
11167 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
11168 	    sec->dofs_align != sizeof (dof_secidx_t)) {
11169 		dtrace_dof_error(dof, "invalid relocation header");
11170 		return (-1);
11171 	}
11172 
11173 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
11174 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
11175 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
11176 
11177 	if (ss == NULL || rs == NULL || ts == NULL)
11178 		return (-1); /* dtrace_dof_error() has been called already */
11179 
11180 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
11181 	    rs->dofs_align != sizeof (uint64_t)) {
11182 		dtrace_dof_error(dof, "invalid relocation section");
11183 		return (-1);
11184 	}
11185 
11186 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
11187 	n = rs->dofs_size / rs->dofs_entsize;
11188 
11189 	for (i = 0; i < n; i++) {
11190 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
11191 
11192 		switch (r->dofr_type) {
11193 		case DOF_RELO_NONE:
11194 			break;
11195 		case DOF_RELO_SETX:
11196 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
11197 			    sizeof (uint64_t) > ts->dofs_size) {
11198 				dtrace_dof_error(dof, "bad relocation offset");
11199 				return (-1);
11200 			}
11201 
11202 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
11203 				dtrace_dof_error(dof, "misaligned setx relo");
11204 				return (-1);
11205 			}
11206 
11207 			*(uint64_t *)taddr += ubase;
11208 			break;
11209 		default:
11210 			dtrace_dof_error(dof, "invalid relocation type");
11211 			return (-1);
11212 		}
11213 
11214 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
11215 	}
11216 
11217 	return (0);
11218 }
11219 
11220 /*
11221  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
11222  * header:  it should be at the front of a memory region that is at least
11223  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
11224  * size.  It need not be validated in any other way.
11225  */
11226 static int
11227 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
11228     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
11229 {
11230 	uint64_t len = dof->dofh_loadsz, seclen;
11231 	uintptr_t daddr = (uintptr_t)dof;
11232 	dtrace_ecbdesc_t *ep;
11233 	dtrace_enabling_t *enab;
11234 	uint_t i;
11235 
11236 	ASSERT(MUTEX_HELD(&dtrace_lock));
11237 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
11238 
11239 	/*
11240 	 * Check the DOF header identification bytes.  In addition to checking
11241 	 * valid settings, we also verify that unused bits/bytes are zeroed so
11242 	 * we can use them later without fear of regressing existing binaries.
11243 	 */
11244 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
11245 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
11246 		dtrace_dof_error(dof, "DOF magic string mismatch");
11247 		return (-1);
11248 	}
11249 
11250 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
11251 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
11252 		dtrace_dof_error(dof, "DOF has invalid data model");
11253 		return (-1);
11254 	}
11255 
11256 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
11257 		dtrace_dof_error(dof, "DOF encoding mismatch");
11258 		return (-1);
11259 	}
11260 
11261 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
11262 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
11263 		dtrace_dof_error(dof, "DOF version mismatch");
11264 		return (-1);
11265 	}
11266 
11267 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
11268 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
11269 		return (-1);
11270 	}
11271 
11272 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
11273 		dtrace_dof_error(dof, "DOF uses too many integer registers");
11274 		return (-1);
11275 	}
11276 
11277 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
11278 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
11279 		return (-1);
11280 	}
11281 
11282 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
11283 		if (dof->dofh_ident[i] != 0) {
11284 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
11285 			return (-1);
11286 		}
11287 	}
11288 
11289 	if (dof->dofh_flags & ~DOF_FL_VALID) {
11290 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
11291 		return (-1);
11292 	}
11293 
11294 	if (dof->dofh_secsize == 0) {
11295 		dtrace_dof_error(dof, "zero section header size");
11296 		return (-1);
11297 	}
11298 
11299 	/*
11300 	 * Check that the section headers don't exceed the amount of DOF
11301 	 * data.  Note that we cast the section size and number of sections
11302 	 * to uint64_t's to prevent possible overflow in the multiplication.
11303 	 */
11304 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
11305 
11306 	if (dof->dofh_secoff > len || seclen > len ||
11307 	    dof->dofh_secoff + seclen > len) {
11308 		dtrace_dof_error(dof, "truncated section headers");
11309 		return (-1);
11310 	}
11311 
11312 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
11313 		dtrace_dof_error(dof, "misaligned section headers");
11314 		return (-1);
11315 	}
11316 
11317 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
11318 		dtrace_dof_error(dof, "misaligned section size");
11319 		return (-1);
11320 	}
11321 
11322 	/*
11323 	 * Take an initial pass through the section headers to be sure that
11324 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
11325 	 * set, do not permit sections relating to providers, probes, or args.
11326 	 */
11327 	for (i = 0; i < dof->dofh_secnum; i++) {
11328 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11329 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11330 
11331 		if (noprobes) {
11332 			switch (sec->dofs_type) {
11333 			case DOF_SECT_PROVIDER:
11334 			case DOF_SECT_PROBES:
11335 			case DOF_SECT_PRARGS:
11336 			case DOF_SECT_PROFFS:
11337 				dtrace_dof_error(dof, "illegal sections "
11338 				    "for enabling");
11339 				return (-1);
11340 			}
11341 		}
11342 
11343 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
11344 			continue; /* just ignore non-loadable sections */
11345 
11346 		if (sec->dofs_align & (sec->dofs_align - 1)) {
11347 			dtrace_dof_error(dof, "bad section alignment");
11348 			return (-1);
11349 		}
11350 
11351 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
11352 			dtrace_dof_error(dof, "misaligned section");
11353 			return (-1);
11354 		}
11355 
11356 		if (sec->dofs_offset > len || sec->dofs_size > len ||
11357 		    sec->dofs_offset + sec->dofs_size > len) {
11358 			dtrace_dof_error(dof, "corrupt section header");
11359 			return (-1);
11360 		}
11361 
11362 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
11363 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
11364 			dtrace_dof_error(dof, "non-terminating string table");
11365 			return (-1);
11366 		}
11367 	}
11368 
11369 	/*
11370 	 * Take a second pass through the sections and locate and perform any
11371 	 * relocations that are present.  We do this after the first pass to
11372 	 * be sure that all sections have had their headers validated.
11373 	 */
11374 	for (i = 0; i < dof->dofh_secnum; i++) {
11375 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11376 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11377 
11378 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
11379 			continue; /* skip sections that are not loadable */
11380 
11381 		switch (sec->dofs_type) {
11382 		case DOF_SECT_URELHDR:
11383 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
11384 				return (-1);
11385 			break;
11386 		}
11387 	}
11388 
11389 	if ((enab = *enabp) == NULL)
11390 		enab = *enabp = dtrace_enabling_create(vstate);
11391 
11392 	for (i = 0; i < dof->dofh_secnum; i++) {
11393 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11394 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11395 
11396 		if (sec->dofs_type != DOF_SECT_ECBDESC)
11397 			continue;
11398 
11399 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
11400 			dtrace_enabling_destroy(enab);
11401 			*enabp = NULL;
11402 			return (-1);
11403 		}
11404 
11405 		dtrace_enabling_add(enab, ep);
11406 	}
11407 
11408 	return (0);
11409 }
11410 
11411 /*
11412  * Process DOF for any options.  This routine assumes that the DOF has been
11413  * at least processed by dtrace_dof_slurp().
11414  */
11415 static int
11416 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
11417 {
11418 	int i, rval;
11419 	uint32_t entsize;
11420 	size_t offs;
11421 	dof_optdesc_t *desc;
11422 
11423 	for (i = 0; i < dof->dofh_secnum; i++) {
11424 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
11425 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11426 
11427 		if (sec->dofs_type != DOF_SECT_OPTDESC)
11428 			continue;
11429 
11430 		if (sec->dofs_align != sizeof (uint64_t)) {
11431 			dtrace_dof_error(dof, "bad alignment in "
11432 			    "option description");
11433 			return (EINVAL);
11434 		}
11435 
11436 		if ((entsize = sec->dofs_entsize) == 0) {
11437 			dtrace_dof_error(dof, "zeroed option entry size");
11438 			return (EINVAL);
11439 		}
11440 
11441 		if (entsize < sizeof (dof_optdesc_t)) {
11442 			dtrace_dof_error(dof, "bad option entry size");
11443 			return (EINVAL);
11444 		}
11445 
11446 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
11447 			desc = (dof_optdesc_t *)((uintptr_t)dof +
11448 			    (uintptr_t)sec->dofs_offset + offs);
11449 
11450 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
11451 				dtrace_dof_error(dof, "non-zero option string");
11452 				return (EINVAL);
11453 			}
11454 
11455 			if (desc->dofo_value == DTRACEOPT_UNSET) {
11456 				dtrace_dof_error(dof, "unset option");
11457 				return (EINVAL);
11458 			}
11459 
11460 			if ((rval = dtrace_state_option(state,
11461 			    desc->dofo_option, desc->dofo_value)) != 0) {
11462 				dtrace_dof_error(dof, "rejected option");
11463 				return (rval);
11464 			}
11465 		}
11466 	}
11467 
11468 	return (0);
11469 }
11470 
11471 /*
11472  * DTrace Consumer State Functions
11473  */
11474 int
11475 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
11476 {
11477 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
11478 	void *base;
11479 	uintptr_t limit;
11480 	dtrace_dynvar_t *dvar, *next, *start;
11481 	int i;
11482 
11483 	ASSERT(MUTEX_HELD(&dtrace_lock));
11484 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
11485 
11486 	bzero(dstate, sizeof (dtrace_dstate_t));
11487 
11488 	if ((dstate->dtds_chunksize = chunksize) == 0)
11489 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
11490 
11491 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
11492 		size = min;
11493 
11494 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
11495 		return (ENOMEM);
11496 
11497 	dstate->dtds_size = size;
11498 	dstate->dtds_base = base;
11499 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
11500 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
11501 
11502 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
11503 
11504 	if (hashsize != 1 && (hashsize & 1))
11505 		hashsize--;
11506 
11507 	dstate->dtds_hashsize = hashsize;
11508 	dstate->dtds_hash = dstate->dtds_base;
11509 
11510 	/*
11511 	 * Set all of our hash buckets to point to the single sink, and (if
11512 	 * it hasn't already been set), set the sink's hash value to be the
11513 	 * sink sentinel value.  The sink is needed for dynamic variable
11514 	 * lookups to know that they have iterated over an entire, valid hash
11515 	 * chain.
11516 	 */
11517 	for (i = 0; i < hashsize; i++)
11518 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
11519 
11520 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
11521 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
11522 
11523 	/*
11524 	 * Determine number of active CPUs.  Divide free list evenly among
11525 	 * active CPUs.
11526 	 */
11527 	start = (dtrace_dynvar_t *)
11528 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
11529 	limit = (uintptr_t)base + size;
11530 
11531 	maxper = (limit - (uintptr_t)start) / NCPU;
11532 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
11533 
11534 	for (i = 0; i < NCPU; i++) {
11535 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
11536 
11537 		/*
11538 		 * If we don't even have enough chunks to make it once through
11539 		 * NCPUs, we're just going to allocate everything to the first
11540 		 * CPU.  And if we're on the last CPU, we're going to allocate
11541 		 * whatever is left over.  In either case, we set the limit to
11542 		 * be the limit of the dynamic variable space.
11543 		 */
11544 		if (maxper == 0 || i == NCPU - 1) {
11545 			limit = (uintptr_t)base + size;
11546 			start = NULL;
11547 		} else {
11548 			limit = (uintptr_t)start + maxper;
11549 			start = (dtrace_dynvar_t *)limit;
11550 		}
11551 
11552 		ASSERT(limit <= (uintptr_t)base + size);
11553 
11554 		for (;;) {
11555 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
11556 			    dstate->dtds_chunksize);
11557 
11558 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
11559 				break;
11560 
11561 			dvar->dtdv_next = next;
11562 			dvar = next;
11563 		}
11564 
11565 		if (maxper == 0)
11566 			break;
11567 	}
11568 
11569 	return (0);
11570 }
11571 
11572 void
11573 dtrace_dstate_fini(dtrace_dstate_t *dstate)
11574 {
11575 	ASSERT(MUTEX_HELD(&cpu_lock));
11576 
11577 	if (dstate->dtds_base == NULL)
11578 		return;
11579 
11580 	kmem_free(dstate->dtds_base, dstate->dtds_size);
11581 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
11582 }
11583 
11584 static void
11585 dtrace_vstate_fini(dtrace_vstate_t *vstate)
11586 {
11587 	/*
11588 	 * Logical XOR, where are you?
11589 	 */
11590 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
11591 
11592 	if (vstate->dtvs_nglobals > 0) {
11593 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
11594 		    sizeof (dtrace_statvar_t *));
11595 	}
11596 
11597 	if (vstate->dtvs_ntlocals > 0) {
11598 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
11599 		    sizeof (dtrace_difv_t));
11600 	}
11601 
11602 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
11603 
11604 	if (vstate->dtvs_nlocals > 0) {
11605 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
11606 		    sizeof (dtrace_statvar_t *));
11607 	}
11608 }
11609 
11610 static void
11611 dtrace_state_clean(dtrace_state_t *state)
11612 {
11613 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
11614 		return;
11615 
11616 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
11617 	dtrace_speculation_clean(state);
11618 }
11619 
11620 static void
11621 dtrace_state_deadman(dtrace_state_t *state)
11622 {
11623 	hrtime_t now;
11624 
11625 	dtrace_sync();
11626 
11627 	now = dtrace_gethrtime();
11628 
11629 	if (state != dtrace_anon.dta_state &&
11630 	    now - state->dts_laststatus >= dtrace_deadman_user)
11631 		return;
11632 
11633 	/*
11634 	 * We must be sure that dts_alive never appears to be less than the
11635 	 * value upon entry to dtrace_state_deadman(), and because we lack a
11636 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
11637 	 * store INT64_MAX to it, followed by a memory barrier, followed by
11638 	 * the new value.  This assures that dts_alive never appears to be
11639 	 * less than its true value, regardless of the order in which the
11640 	 * stores to the underlying storage are issued.
11641 	 */
11642 	state->dts_alive = INT64_MAX;
11643 	dtrace_membar_producer();
11644 	state->dts_alive = now;
11645 }
11646 
11647 dtrace_state_t *
11648 dtrace_state_create(dev_t *devp, cred_t *cr)
11649 {
11650 	minor_t minor;
11651 	major_t major;
11652 	char c[30];
11653 	dtrace_state_t *state;
11654 	dtrace_optval_t *opt;
11655 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
11656 
11657 	ASSERT(MUTEX_HELD(&dtrace_lock));
11658 	ASSERT(MUTEX_HELD(&cpu_lock));
11659 
11660 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
11661 	    VM_BESTFIT | VM_SLEEP);
11662 
11663 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
11664 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
11665 		return (NULL);
11666 	}
11667 
11668 	state = ddi_get_soft_state(dtrace_softstate, minor);
11669 	state->dts_epid = DTRACE_EPIDNONE + 1;
11670 
11671 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
11672 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
11673 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
11674 
11675 	if (devp != NULL) {
11676 		major = getemajor(*devp);
11677 	} else {
11678 		major = ddi_driver_major(dtrace_devi);
11679 	}
11680 
11681 	state->dts_dev = makedevice(major, minor);
11682 
11683 	if (devp != NULL)
11684 		*devp = state->dts_dev;
11685 
11686 	/*
11687 	 * We allocate NCPU buffers.  On the one hand, this can be quite
11688 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
11689 	 * other hand, it saves an additional memory reference in the probe
11690 	 * path.
11691 	 */
11692 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
11693 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
11694 	state->dts_cleaner = CYCLIC_NONE;
11695 	state->dts_deadman = CYCLIC_NONE;
11696 	state->dts_vstate.dtvs_state = state;
11697 
11698 	for (i = 0; i < DTRACEOPT_MAX; i++)
11699 		state->dts_options[i] = DTRACEOPT_UNSET;
11700 
11701 	/*
11702 	 * Set the default options.
11703 	 */
11704 	opt = state->dts_options;
11705 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
11706 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
11707 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
11708 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
11709 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
11710 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
11711 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
11712 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
11713 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
11714 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
11715 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
11716 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
11717 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
11718 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
11719 
11720 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
11721 
11722 	/*
11723 	 * Depending on the user credentials, we set flag bits which alter probe
11724 	 * visibility or the amount of destructiveness allowed.  In the case of
11725 	 * actual anonymous tracing, or the possession of all privileges, all of
11726 	 * the normal checks are bypassed.
11727 	 */
11728 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
11729 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
11730 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
11731 	} else {
11732 		/*
11733 		 * Set up the credentials for this instantiation.  We take a
11734 		 * hold on the credential to prevent it from disappearing on
11735 		 * us; this in turn prevents the zone_t referenced by this
11736 		 * credential from disappearing.  This means that we can
11737 		 * examine the credential and the zone from probe context.
11738 		 */
11739 		crhold(cr);
11740 		state->dts_cred.dcr_cred = cr;
11741 
11742 		/*
11743 		 * CRA_PROC means "we have *some* privilege for dtrace" and
11744 		 * unlocks the use of variables like pid, zonename, etc.
11745 		 */
11746 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
11747 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
11748 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
11749 		}
11750 
11751 		/*
11752 		 * dtrace_user allows use of syscall and profile providers.
11753 		 * If the user also has proc_owner and/or proc_zone, we
11754 		 * extend the scope to include additional visibility and
11755 		 * destructive power.
11756 		 */
11757 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
11758 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
11759 				state->dts_cred.dcr_visible |=
11760 				    DTRACE_CRV_ALLPROC;
11761 
11762 				state->dts_cred.dcr_action |=
11763 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11764 			}
11765 
11766 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
11767 				state->dts_cred.dcr_visible |=
11768 				    DTRACE_CRV_ALLZONE;
11769 
11770 				state->dts_cred.dcr_action |=
11771 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11772 			}
11773 
11774 			/*
11775 			 * If we have all privs in whatever zone this is,
11776 			 * we can do destructive things to processes which
11777 			 * have altered credentials.
11778 			 */
11779 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
11780 			    cr->cr_zone->zone_privset)) {
11781 				state->dts_cred.dcr_action |=
11782 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
11783 			}
11784 		}
11785 
11786 		/*
11787 		 * Holding the dtrace_kernel privilege also implies that
11788 		 * the user has the dtrace_user privilege from a visibility
11789 		 * perspective.  But without further privileges, some
11790 		 * destructive actions are not available.
11791 		 */
11792 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
11793 			/*
11794 			 * Make all probes in all zones visible.  However,
11795 			 * this doesn't mean that all actions become available
11796 			 * to all zones.
11797 			 */
11798 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
11799 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
11800 
11801 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
11802 			    DTRACE_CRA_PROC;
11803 			/*
11804 			 * Holding proc_owner means that destructive actions
11805 			 * for *this* zone are allowed.
11806 			 */
11807 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
11808 				state->dts_cred.dcr_action |=
11809 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11810 
11811 			/*
11812 			 * Holding proc_zone means that destructive actions
11813 			 * for this user/group ID in all zones is allowed.
11814 			 */
11815 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
11816 				state->dts_cred.dcr_action |=
11817 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11818 
11819 			/*
11820 			 * If we have all privs in whatever zone this is,
11821 			 * we can do destructive things to processes which
11822 			 * have altered credentials.
11823 			 */
11824 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
11825 			    cr->cr_zone->zone_privset)) {
11826 				state->dts_cred.dcr_action |=
11827 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
11828 			}
11829 		}
11830 
11831 		/*
11832 		 * Holding the dtrace_proc privilege gives control over fasttrap
11833 		 * and pid providers.  We need to grant wider destructive
11834 		 * privileges in the event that the user has proc_owner and/or
11835 		 * proc_zone.
11836 		 */
11837 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
11838 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
11839 				state->dts_cred.dcr_action |=
11840 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11841 
11842 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
11843 				state->dts_cred.dcr_action |=
11844 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11845 		}
11846 	}
11847 
11848 	return (state);
11849 }
11850 
11851 static int
11852 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
11853 {
11854 	dtrace_optval_t *opt = state->dts_options, size;
11855 	processorid_t cpu;
11856 	int flags = 0, rval;
11857 
11858 	ASSERT(MUTEX_HELD(&dtrace_lock));
11859 	ASSERT(MUTEX_HELD(&cpu_lock));
11860 	ASSERT(which < DTRACEOPT_MAX);
11861 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
11862 	    (state == dtrace_anon.dta_state &&
11863 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
11864 
11865 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
11866 		return (0);
11867 
11868 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
11869 		cpu = opt[DTRACEOPT_CPU];
11870 
11871 	if (which == DTRACEOPT_SPECSIZE)
11872 		flags |= DTRACEBUF_NOSWITCH;
11873 
11874 	if (which == DTRACEOPT_BUFSIZE) {
11875 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
11876 			flags |= DTRACEBUF_RING;
11877 
11878 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
11879 			flags |= DTRACEBUF_FILL;
11880 
11881 		if (state != dtrace_anon.dta_state ||
11882 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
11883 			flags |= DTRACEBUF_INACTIVE;
11884 	}
11885 
11886 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
11887 		/*
11888 		 * The size must be 8-byte aligned.  If the size is not 8-byte
11889 		 * aligned, drop it down by the difference.
11890 		 */
11891 		if (size & (sizeof (uint64_t) - 1))
11892 			size -= size & (sizeof (uint64_t) - 1);
11893 
11894 		if (size < state->dts_reserve) {
11895 			/*
11896 			 * Buffers always must be large enough to accommodate
11897 			 * their prereserved space.  We return E2BIG instead
11898 			 * of ENOMEM in this case to allow for user-level
11899 			 * software to differentiate the cases.
11900 			 */
11901 			return (E2BIG);
11902 		}
11903 
11904 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
11905 
11906 		if (rval != ENOMEM) {
11907 			opt[which] = size;
11908 			return (rval);
11909 		}
11910 
11911 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
11912 			return (rval);
11913 	}
11914 
11915 	return (ENOMEM);
11916 }
11917 
11918 static int
11919 dtrace_state_buffers(dtrace_state_t *state)
11920 {
11921 	dtrace_speculation_t *spec = state->dts_speculations;
11922 	int rval, i;
11923 
11924 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
11925 	    DTRACEOPT_BUFSIZE)) != 0)
11926 		return (rval);
11927 
11928 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
11929 	    DTRACEOPT_AGGSIZE)) != 0)
11930 		return (rval);
11931 
11932 	for (i = 0; i < state->dts_nspeculations; i++) {
11933 		if ((rval = dtrace_state_buffer(state,
11934 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
11935 			return (rval);
11936 	}
11937 
11938 	return (0);
11939 }
11940 
11941 static void
11942 dtrace_state_prereserve(dtrace_state_t *state)
11943 {
11944 	dtrace_ecb_t *ecb;
11945 	dtrace_probe_t *probe;
11946 
11947 	state->dts_reserve = 0;
11948 
11949 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
11950 		return;
11951 
11952 	/*
11953 	 * If our buffer policy is a "fill" buffer policy, we need to set the
11954 	 * prereserved space to be the space required by the END probes.
11955 	 */
11956 	probe = dtrace_probes[dtrace_probeid_end - 1];
11957 	ASSERT(probe != NULL);
11958 
11959 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
11960 		if (ecb->dte_state != state)
11961 			continue;
11962 
11963 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
11964 	}
11965 }
11966 
11967 static int
11968 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
11969 {
11970 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
11971 	dtrace_speculation_t *spec;
11972 	dtrace_buffer_t *buf;
11973 	cyc_handler_t hdlr;
11974 	cyc_time_t when;
11975 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
11976 	dtrace_icookie_t cookie;
11977 
11978 	mutex_enter(&cpu_lock);
11979 	mutex_enter(&dtrace_lock);
11980 
11981 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
11982 		rval = EBUSY;
11983 		goto out;
11984 	}
11985 
11986 	/*
11987 	 * Before we can perform any checks, we must prime all of the
11988 	 * retained enablings that correspond to this state.
11989 	 */
11990 	dtrace_enabling_prime(state);
11991 
11992 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
11993 		rval = EACCES;
11994 		goto out;
11995 	}
11996 
11997 	dtrace_state_prereserve(state);
11998 
11999 	/*
12000 	 * Now we want to do is try to allocate our speculations.
12001 	 * We do not automatically resize the number of speculations; if
12002 	 * this fails, we will fail the operation.
12003 	 */
12004 	nspec = opt[DTRACEOPT_NSPEC];
12005 	ASSERT(nspec != DTRACEOPT_UNSET);
12006 
12007 	if (nspec > INT_MAX) {
12008 		rval = ENOMEM;
12009 		goto out;
12010 	}
12011 
12012 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
12013 
12014 	if (spec == NULL) {
12015 		rval = ENOMEM;
12016 		goto out;
12017 	}
12018 
12019 	state->dts_speculations = spec;
12020 	state->dts_nspeculations = (int)nspec;
12021 
12022 	for (i = 0; i < nspec; i++) {
12023 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
12024 			rval = ENOMEM;
12025 			goto err;
12026 		}
12027 
12028 		spec[i].dtsp_buffer = buf;
12029 	}
12030 
12031 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
12032 		if (dtrace_anon.dta_state == NULL) {
12033 			rval = ENOENT;
12034 			goto out;
12035 		}
12036 
12037 		if (state->dts_necbs != 0) {
12038 			rval = EALREADY;
12039 			goto out;
12040 		}
12041 
12042 		state->dts_anon = dtrace_anon_grab();
12043 		ASSERT(state->dts_anon != NULL);
12044 		state = state->dts_anon;
12045 
12046 		/*
12047 		 * We want "grabanon" to be set in the grabbed state, so we'll
12048 		 * copy that option value from the grabbing state into the
12049 		 * grabbed state.
12050 		 */
12051 		state->dts_options[DTRACEOPT_GRABANON] =
12052 		    opt[DTRACEOPT_GRABANON];
12053 
12054 		*cpu = dtrace_anon.dta_beganon;
12055 
12056 		/*
12057 		 * If the anonymous state is active (as it almost certainly
12058 		 * is if the anonymous enabling ultimately matched anything),
12059 		 * we don't allow any further option processing -- but we
12060 		 * don't return failure.
12061 		 */
12062 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12063 			goto out;
12064 	}
12065 
12066 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
12067 	    opt[DTRACEOPT_AGGSIZE] != 0) {
12068 		if (state->dts_aggregations == NULL) {
12069 			/*
12070 			 * We're not going to create an aggregation buffer
12071 			 * because we don't have any ECBs that contain
12072 			 * aggregations -- set this option to 0.
12073 			 */
12074 			opt[DTRACEOPT_AGGSIZE] = 0;
12075 		} else {
12076 			/*
12077 			 * If we have an aggregation buffer, we must also have
12078 			 * a buffer to use as scratch.
12079 			 */
12080 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
12081 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
12082 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
12083 			}
12084 		}
12085 	}
12086 
12087 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
12088 	    opt[DTRACEOPT_SPECSIZE] != 0) {
12089 		if (!state->dts_speculates) {
12090 			/*
12091 			 * We're not going to create speculation buffers
12092 			 * because we don't have any ECBs that actually
12093 			 * speculate -- set the speculation size to 0.
12094 			 */
12095 			opt[DTRACEOPT_SPECSIZE] = 0;
12096 		}
12097 	}
12098 
12099 	/*
12100 	 * The bare minimum size for any buffer that we're actually going to
12101 	 * do anything to is sizeof (uint64_t).
12102 	 */
12103 	sz = sizeof (uint64_t);
12104 
12105 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
12106 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
12107 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
12108 		/*
12109 		 * A buffer size has been explicitly set to 0 (or to a size
12110 		 * that will be adjusted to 0) and we need the space -- we
12111 		 * need to return failure.  We return ENOSPC to differentiate
12112 		 * it from failing to allocate a buffer due to failure to meet
12113 		 * the reserve (for which we return E2BIG).
12114 		 */
12115 		rval = ENOSPC;
12116 		goto out;
12117 	}
12118 
12119 	if ((rval = dtrace_state_buffers(state)) != 0)
12120 		goto err;
12121 
12122 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
12123 		sz = dtrace_dstate_defsize;
12124 
12125 	do {
12126 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
12127 
12128 		if (rval == 0)
12129 			break;
12130 
12131 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12132 			goto err;
12133 	} while (sz >>= 1);
12134 
12135 	opt[DTRACEOPT_DYNVARSIZE] = sz;
12136 
12137 	if (rval != 0)
12138 		goto err;
12139 
12140 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
12141 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
12142 
12143 	if (opt[DTRACEOPT_CLEANRATE] == 0)
12144 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12145 
12146 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
12147 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
12148 
12149 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
12150 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12151 
12152 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
12153 	hdlr.cyh_arg = state;
12154 	hdlr.cyh_level = CY_LOW_LEVEL;
12155 
12156 	when.cyt_when = 0;
12157 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
12158 
12159 	state->dts_cleaner = cyclic_add(&hdlr, &when);
12160 
12161 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
12162 	hdlr.cyh_arg = state;
12163 	hdlr.cyh_level = CY_LOW_LEVEL;
12164 
12165 	when.cyt_when = 0;
12166 	when.cyt_interval = dtrace_deadman_interval;
12167 
12168 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
12169 	state->dts_deadman = cyclic_add(&hdlr, &when);
12170 
12171 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
12172 
12173 	/*
12174 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
12175 	 * interrupts here both to record the CPU on which we fired the BEGIN
12176 	 * probe (the data from this CPU will be processed first at user
12177 	 * level) and to manually activate the buffer for this CPU.
12178 	 */
12179 	cookie = dtrace_interrupt_disable();
12180 	*cpu = CPU->cpu_id;
12181 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
12182 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12183 
12184 	dtrace_probe(dtrace_probeid_begin,
12185 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12186 	dtrace_interrupt_enable(cookie);
12187 	/*
12188 	 * We may have had an exit action from a BEGIN probe; only change our
12189 	 * state to ACTIVE if we're still in WARMUP.
12190 	 */
12191 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
12192 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
12193 
12194 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
12195 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
12196 
12197 	/*
12198 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
12199 	 * want each CPU to transition its principal buffer out of the
12200 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
12201 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
12202 	 * atomically transition from processing none of a state's ECBs to
12203 	 * processing all of them.
12204 	 */
12205 	dtrace_xcall(DTRACE_CPUALL,
12206 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
12207 	goto out;
12208 
12209 err:
12210 	dtrace_buffer_free(state->dts_buffer);
12211 	dtrace_buffer_free(state->dts_aggbuffer);
12212 
12213 	if ((nspec = state->dts_nspeculations) == 0) {
12214 		ASSERT(state->dts_speculations == NULL);
12215 		goto out;
12216 	}
12217 
12218 	spec = state->dts_speculations;
12219 	ASSERT(spec != NULL);
12220 
12221 	for (i = 0; i < state->dts_nspeculations; i++) {
12222 		if ((buf = spec[i].dtsp_buffer) == NULL)
12223 			break;
12224 
12225 		dtrace_buffer_free(buf);
12226 		kmem_free(buf, bufsize);
12227 	}
12228 
12229 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
12230 	state->dts_nspeculations = 0;
12231 	state->dts_speculations = NULL;
12232 
12233 out:
12234 	mutex_exit(&dtrace_lock);
12235 	mutex_exit(&cpu_lock);
12236 
12237 	return (rval);
12238 }
12239 
12240 static int
12241 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
12242 {
12243 	dtrace_icookie_t cookie;
12244 
12245 	ASSERT(MUTEX_HELD(&dtrace_lock));
12246 
12247 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
12248 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
12249 		return (EINVAL);
12250 
12251 	/*
12252 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
12253 	 * to be sure that every CPU has seen it.  See below for the details
12254 	 * on why this is done.
12255 	 */
12256 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
12257 	dtrace_sync();
12258 
12259 	/*
12260 	 * By this point, it is impossible for any CPU to be still processing
12261 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
12262 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
12263 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
12264 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
12265 	 * iff we're in the END probe.
12266 	 */
12267 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
12268 	dtrace_sync();
12269 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
12270 
12271 	/*
12272 	 * Finally, we can release the reserve and call the END probe.  We
12273 	 * disable interrupts across calling the END probe to allow us to
12274 	 * return the CPU on which we actually called the END probe.  This
12275 	 * allows user-land to be sure that this CPU's principal buffer is
12276 	 * processed last.
12277 	 */
12278 	state->dts_reserve = 0;
12279 
12280 	cookie = dtrace_interrupt_disable();
12281 	*cpu = CPU->cpu_id;
12282 	dtrace_probe(dtrace_probeid_end,
12283 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12284 	dtrace_interrupt_enable(cookie);
12285 
12286 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
12287 	dtrace_sync();
12288 
12289 	return (0);
12290 }
12291 
12292 static int
12293 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
12294     dtrace_optval_t val)
12295 {
12296 	ASSERT(MUTEX_HELD(&dtrace_lock));
12297 
12298 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12299 		return (EBUSY);
12300 
12301 	if (option >= DTRACEOPT_MAX)
12302 		return (EINVAL);
12303 
12304 	if (option != DTRACEOPT_CPU && val < 0)
12305 		return (EINVAL);
12306 
12307 	switch (option) {
12308 	case DTRACEOPT_DESTRUCTIVE:
12309 		if (dtrace_destructive_disallow)
12310 			return (EACCES);
12311 
12312 		state->dts_cred.dcr_destructive = 1;
12313 		break;
12314 
12315 	case DTRACEOPT_BUFSIZE:
12316 	case DTRACEOPT_DYNVARSIZE:
12317 	case DTRACEOPT_AGGSIZE:
12318 	case DTRACEOPT_SPECSIZE:
12319 	case DTRACEOPT_STRSIZE:
12320 		if (val < 0)
12321 			return (EINVAL);
12322 
12323 		if (val >= LONG_MAX) {
12324 			/*
12325 			 * If this is an otherwise negative value, set it to
12326 			 * the highest multiple of 128m less than LONG_MAX.
12327 			 * Technically, we're adjusting the size without
12328 			 * regard to the buffer resizing policy, but in fact,
12329 			 * this has no effect -- if we set the buffer size to
12330 			 * ~LONG_MAX and the buffer policy is ultimately set to
12331 			 * be "manual", the buffer allocation is guaranteed to
12332 			 * fail, if only because the allocation requires two
12333 			 * buffers.  (We set the the size to the highest
12334 			 * multiple of 128m because it ensures that the size
12335 			 * will remain a multiple of a megabyte when
12336 			 * repeatedly halved -- all the way down to 15m.)
12337 			 */
12338 			val = LONG_MAX - (1 << 27) + 1;
12339 		}
12340 	}
12341 
12342 	state->dts_options[option] = val;
12343 
12344 	return (0);
12345 }
12346 
12347 static void
12348 dtrace_state_destroy(dtrace_state_t *state)
12349 {
12350 	dtrace_ecb_t *ecb;
12351 	dtrace_vstate_t *vstate = &state->dts_vstate;
12352 	minor_t minor = getminor(state->dts_dev);
12353 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
12354 	dtrace_speculation_t *spec = state->dts_speculations;
12355 	int nspec = state->dts_nspeculations;
12356 	uint32_t match;
12357 
12358 	ASSERT(MUTEX_HELD(&dtrace_lock));
12359 	ASSERT(MUTEX_HELD(&cpu_lock));
12360 
12361 	/*
12362 	 * First, retract any retained enablings for this state.
12363 	 */
12364 	dtrace_enabling_retract(state);
12365 	ASSERT(state->dts_nretained == 0);
12366 
12367 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
12368 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
12369 		/*
12370 		 * We have managed to come into dtrace_state_destroy() on a
12371 		 * hot enabling -- almost certainly because of a disorderly
12372 		 * shutdown of a consumer.  (That is, a consumer that is
12373 		 * exiting without having called dtrace_stop().) In this case,
12374 		 * we're going to set our activity to be KILLED, and then
12375 		 * issue a sync to be sure that everyone is out of probe
12376 		 * context before we start blowing away ECBs.
12377 		 */
12378 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
12379 		dtrace_sync();
12380 	}
12381 
12382 	/*
12383 	 * Release the credential hold we took in dtrace_state_create().
12384 	 */
12385 	if (state->dts_cred.dcr_cred != NULL)
12386 		crfree(state->dts_cred.dcr_cred);
12387 
12388 	/*
12389 	 * Now we can safely disable and destroy any enabled probes.  Because
12390 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
12391 	 * (especially if they're all enabled), we take two passes through the
12392 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
12393 	 * in the second we disable whatever is left over.
12394 	 */
12395 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
12396 		for (i = 0; i < state->dts_necbs; i++) {
12397 			if ((ecb = state->dts_ecbs[i]) == NULL)
12398 				continue;
12399 
12400 			if (match && ecb->dte_probe != NULL) {
12401 				dtrace_probe_t *probe = ecb->dte_probe;
12402 				dtrace_provider_t *prov = probe->dtpr_provider;
12403 
12404 				if (!(prov->dtpv_priv.dtpp_flags & match))
12405 					continue;
12406 			}
12407 
12408 			dtrace_ecb_disable(ecb);
12409 			dtrace_ecb_destroy(ecb);
12410 		}
12411 
12412 		if (!match)
12413 			break;
12414 	}
12415 
12416 	/*
12417 	 * Before we free the buffers, perform one more sync to assure that
12418 	 * every CPU is out of probe context.
12419 	 */
12420 	dtrace_sync();
12421 
12422 	dtrace_buffer_free(state->dts_buffer);
12423 	dtrace_buffer_free(state->dts_aggbuffer);
12424 
12425 	for (i = 0; i < nspec; i++)
12426 		dtrace_buffer_free(spec[i].dtsp_buffer);
12427 
12428 	if (state->dts_cleaner != CYCLIC_NONE)
12429 		cyclic_remove(state->dts_cleaner);
12430 
12431 	if (state->dts_deadman != CYCLIC_NONE)
12432 		cyclic_remove(state->dts_deadman);
12433 
12434 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
12435 	dtrace_vstate_fini(vstate);
12436 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
12437 
12438 	if (state->dts_aggregations != NULL) {
12439 #ifdef DEBUG
12440 		for (i = 0; i < state->dts_naggregations; i++)
12441 			ASSERT(state->dts_aggregations[i] == NULL);
12442 #endif
12443 		ASSERT(state->dts_naggregations > 0);
12444 		kmem_free(state->dts_aggregations,
12445 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
12446 	}
12447 
12448 	kmem_free(state->dts_buffer, bufsize);
12449 	kmem_free(state->dts_aggbuffer, bufsize);
12450 
12451 	for (i = 0; i < nspec; i++)
12452 		kmem_free(spec[i].dtsp_buffer, bufsize);
12453 
12454 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
12455 
12456 	dtrace_format_destroy(state);
12457 
12458 	vmem_destroy(state->dts_aggid_arena);
12459 	ddi_soft_state_free(dtrace_softstate, minor);
12460 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12461 }
12462 
12463 /*
12464  * DTrace Anonymous Enabling Functions
12465  */
12466 static dtrace_state_t *
12467 dtrace_anon_grab(void)
12468 {
12469 	dtrace_state_t *state;
12470 
12471 	ASSERT(MUTEX_HELD(&dtrace_lock));
12472 
12473 	if ((state = dtrace_anon.dta_state) == NULL) {
12474 		ASSERT(dtrace_anon.dta_enabling == NULL);
12475 		return (NULL);
12476 	}
12477 
12478 	ASSERT(dtrace_anon.dta_enabling != NULL);
12479 	ASSERT(dtrace_retained != NULL);
12480 
12481 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
12482 	dtrace_anon.dta_enabling = NULL;
12483 	dtrace_anon.dta_state = NULL;
12484 
12485 	return (state);
12486 }
12487 
12488 static void
12489 dtrace_anon_property(void)
12490 {
12491 	int i, rv;
12492 	dtrace_state_t *state;
12493 	dof_hdr_t *dof;
12494 	char c[32];		/* enough for "dof-data-" + digits */
12495 
12496 	ASSERT(MUTEX_HELD(&dtrace_lock));
12497 	ASSERT(MUTEX_HELD(&cpu_lock));
12498 
12499 	for (i = 0; ; i++) {
12500 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
12501 
12502 		dtrace_err_verbose = 1;
12503 
12504 		if ((dof = dtrace_dof_property(c)) == NULL) {
12505 			dtrace_err_verbose = 0;
12506 			break;
12507 		}
12508 
12509 		/*
12510 		 * We want to create anonymous state, so we need to transition
12511 		 * the kernel debugger to indicate that DTrace is active.  If
12512 		 * this fails (e.g. because the debugger has modified text in
12513 		 * some way), we won't continue with the processing.
12514 		 */
12515 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
12516 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
12517 			    "enabling ignored.");
12518 			dtrace_dof_destroy(dof);
12519 			break;
12520 		}
12521 
12522 		/*
12523 		 * If we haven't allocated an anonymous state, we'll do so now.
12524 		 */
12525 		if ((state = dtrace_anon.dta_state) == NULL) {
12526 			state = dtrace_state_create(NULL, NULL);
12527 			dtrace_anon.dta_state = state;
12528 
12529 			if (state == NULL) {
12530 				/*
12531 				 * This basically shouldn't happen:  the only
12532 				 * failure mode from dtrace_state_create() is a
12533 				 * failure of ddi_soft_state_zalloc() that
12534 				 * itself should never happen.  Still, the
12535 				 * interface allows for a failure mode, and
12536 				 * we want to fail as gracefully as possible:
12537 				 * we'll emit an error message and cease
12538 				 * processing anonymous state in this case.
12539 				 */
12540 				cmn_err(CE_WARN, "failed to create "
12541 				    "anonymous state");
12542 				dtrace_dof_destroy(dof);
12543 				break;
12544 			}
12545 		}
12546 
12547 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
12548 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
12549 
12550 		if (rv == 0)
12551 			rv = dtrace_dof_options(dof, state);
12552 
12553 		dtrace_err_verbose = 0;
12554 		dtrace_dof_destroy(dof);
12555 
12556 		if (rv != 0) {
12557 			/*
12558 			 * This is malformed DOF; chuck any anonymous state
12559 			 * that we created.
12560 			 */
12561 			ASSERT(dtrace_anon.dta_enabling == NULL);
12562 			dtrace_state_destroy(state);
12563 			dtrace_anon.dta_state = NULL;
12564 			break;
12565 		}
12566 
12567 		ASSERT(dtrace_anon.dta_enabling != NULL);
12568 	}
12569 
12570 	if (dtrace_anon.dta_enabling != NULL) {
12571 		int rval;
12572 
12573 		/*
12574 		 * dtrace_enabling_retain() can only fail because we are
12575 		 * trying to retain more enablings than are allowed -- but
12576 		 * we only have one anonymous enabling, and we are guaranteed
12577 		 * to be allowed at least one retained enabling; we assert
12578 		 * that dtrace_enabling_retain() returns success.
12579 		 */
12580 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
12581 		ASSERT(rval == 0);
12582 
12583 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
12584 	}
12585 }
12586 
12587 /*
12588  * DTrace Helper Functions
12589  */
12590 static void
12591 dtrace_helper_trace(dtrace_helper_action_t *helper,
12592     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
12593 {
12594 	uint32_t size, next, nnext, i;
12595 	dtrace_helptrace_t *ent;
12596 	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
12597 
12598 	if (!dtrace_helptrace_enabled)
12599 		return;
12600 
12601 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
12602 
12603 	/*
12604 	 * What would a tracing framework be without its own tracing
12605 	 * framework?  (Well, a hell of a lot simpler, for starters...)
12606 	 */
12607 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
12608 	    sizeof (uint64_t) - sizeof (uint64_t);
12609 
12610 	/*
12611 	 * Iterate until we can allocate a slot in the trace buffer.
12612 	 */
12613 	do {
12614 		next = dtrace_helptrace_next;
12615 
12616 		if (next + size < dtrace_helptrace_bufsize) {
12617 			nnext = next + size;
12618 		} else {
12619 			nnext = size;
12620 		}
12621 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
12622 
12623 	/*
12624 	 * We have our slot; fill it in.
12625 	 */
12626 	if (nnext == size)
12627 		next = 0;
12628 
12629 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
12630 	ent->dtht_helper = helper;
12631 	ent->dtht_where = where;
12632 	ent->dtht_nlocals = vstate->dtvs_nlocals;
12633 
12634 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
12635 	    mstate->dtms_fltoffs : -1;
12636 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
12637 	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
12638 
12639 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
12640 		dtrace_statvar_t *svar;
12641 
12642 		if ((svar = vstate->dtvs_locals[i]) == NULL)
12643 			continue;
12644 
12645 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
12646 		ent->dtht_locals[i] =
12647 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
12648 	}
12649 }
12650 
12651 static uint64_t
12652 dtrace_helper(int which, dtrace_mstate_t *mstate,
12653     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
12654 {
12655 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
12656 	uint64_t sarg0 = mstate->dtms_arg[0];
12657 	uint64_t sarg1 = mstate->dtms_arg[1];
12658 	uint64_t rval;
12659 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
12660 	dtrace_helper_action_t *helper;
12661 	dtrace_vstate_t *vstate;
12662 	dtrace_difo_t *pred;
12663 	int i, trace = dtrace_helptrace_enabled;
12664 
12665 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
12666 
12667 	if (helpers == NULL)
12668 		return (0);
12669 
12670 	if ((helper = helpers->dthps_actions[which]) == NULL)
12671 		return (0);
12672 
12673 	vstate = &helpers->dthps_vstate;
12674 	mstate->dtms_arg[0] = arg0;
12675 	mstate->dtms_arg[1] = arg1;
12676 
12677 	/*
12678 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
12679 	 * we'll call the corresponding actions.  Note that the below calls
12680 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
12681 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
12682 	 * the stored DIF offset with its own (which is the desired behavior).
12683 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
12684 	 * from machine state; this is okay, too.
12685 	 */
12686 	for (; helper != NULL; helper = helper->dtha_next) {
12687 		if ((pred = helper->dtha_predicate) != NULL) {
12688 			if (trace)
12689 				dtrace_helper_trace(helper, mstate, vstate, 0);
12690 
12691 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
12692 				goto next;
12693 
12694 			if (*flags & CPU_DTRACE_FAULT)
12695 				goto err;
12696 		}
12697 
12698 		for (i = 0; i < helper->dtha_nactions; i++) {
12699 			if (trace)
12700 				dtrace_helper_trace(helper,
12701 				    mstate, vstate, i + 1);
12702 
12703 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
12704 			    mstate, vstate, state);
12705 
12706 			if (*flags & CPU_DTRACE_FAULT)
12707 				goto err;
12708 		}
12709 
12710 next:
12711 		if (trace)
12712 			dtrace_helper_trace(helper, mstate, vstate,
12713 			    DTRACE_HELPTRACE_NEXT);
12714 	}
12715 
12716 	if (trace)
12717 		dtrace_helper_trace(helper, mstate, vstate,
12718 		    DTRACE_HELPTRACE_DONE);
12719 
12720 	/*
12721 	 * Restore the arg0 that we saved upon entry.
12722 	 */
12723 	mstate->dtms_arg[0] = sarg0;
12724 	mstate->dtms_arg[1] = sarg1;
12725 
12726 	return (rval);
12727 
12728 err:
12729 	if (trace)
12730 		dtrace_helper_trace(helper, mstate, vstate,
12731 		    DTRACE_HELPTRACE_ERR);
12732 
12733 	/*
12734 	 * Restore the arg0 that we saved upon entry.
12735 	 */
12736 	mstate->dtms_arg[0] = sarg0;
12737 	mstate->dtms_arg[1] = sarg1;
12738 
12739 	return (NULL);
12740 }
12741 
12742 static void
12743 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
12744     dtrace_vstate_t *vstate)
12745 {
12746 	int i;
12747 
12748 	if (helper->dtha_predicate != NULL)
12749 		dtrace_difo_release(helper->dtha_predicate, vstate);
12750 
12751 	for (i = 0; i < helper->dtha_nactions; i++) {
12752 		ASSERT(helper->dtha_actions[i] != NULL);
12753 		dtrace_difo_release(helper->dtha_actions[i], vstate);
12754 	}
12755 
12756 	kmem_free(helper->dtha_actions,
12757 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
12758 	kmem_free(helper, sizeof (dtrace_helper_action_t));
12759 }
12760 
12761 static int
12762 dtrace_helper_destroygen(int gen)
12763 {
12764 	proc_t *p = curproc;
12765 	dtrace_helpers_t *help = p->p_dtrace_helpers;
12766 	dtrace_vstate_t *vstate;
12767 	int i;
12768 
12769 	ASSERT(MUTEX_HELD(&dtrace_lock));
12770 
12771 	if (help == NULL || gen > help->dthps_generation)
12772 		return (EINVAL);
12773 
12774 	vstate = &help->dthps_vstate;
12775 
12776 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12777 		dtrace_helper_action_t *last = NULL, *h, *next;
12778 
12779 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
12780 			next = h->dtha_next;
12781 
12782 			if (h->dtha_generation == gen) {
12783 				if (last != NULL) {
12784 					last->dtha_next = next;
12785 				} else {
12786 					help->dthps_actions[i] = next;
12787 				}
12788 
12789 				dtrace_helper_action_destroy(h, vstate);
12790 			} else {
12791 				last = h;
12792 			}
12793 		}
12794 	}
12795 
12796 	/*
12797 	 * Interate until we've cleared out all helper providers with the
12798 	 * given generation number.
12799 	 */
12800 	for (;;) {
12801 		dtrace_helper_provider_t *prov;
12802 
12803 		/*
12804 		 * Look for a helper provider with the right generation. We
12805 		 * have to start back at the beginning of the list each time
12806 		 * because we drop dtrace_lock. It's unlikely that we'll make
12807 		 * more than two passes.
12808 		 */
12809 		for (i = 0; i < help->dthps_nprovs; i++) {
12810 			prov = help->dthps_provs[i];
12811 
12812 			if (prov->dthp_generation == gen)
12813 				break;
12814 		}
12815 
12816 		/*
12817 		 * If there were no matches, we're done.
12818 		 */
12819 		if (i == help->dthps_nprovs)
12820 			break;
12821 
12822 		/*
12823 		 * Move the last helper provider into this slot.
12824 		 */
12825 		help->dthps_nprovs--;
12826 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
12827 		help->dthps_provs[help->dthps_nprovs] = NULL;
12828 
12829 		mutex_exit(&dtrace_lock);
12830 
12831 		/*
12832 		 * If we have a meta provider, remove this helper provider.
12833 		 */
12834 		mutex_enter(&dtrace_meta_lock);
12835 		if (dtrace_meta_pid != NULL) {
12836 			ASSERT(dtrace_deferred_pid == NULL);
12837 			dtrace_helper_provider_remove(&prov->dthp_prov,
12838 			    p->p_pid);
12839 		}
12840 		mutex_exit(&dtrace_meta_lock);
12841 
12842 		dtrace_helper_provider_destroy(prov);
12843 
12844 		mutex_enter(&dtrace_lock);
12845 	}
12846 
12847 	return (0);
12848 }
12849 
12850 static int
12851 dtrace_helper_validate(dtrace_helper_action_t *helper)
12852 {
12853 	int err = 0, i;
12854 	dtrace_difo_t *dp;
12855 
12856 	if ((dp = helper->dtha_predicate) != NULL)
12857 		err += dtrace_difo_validate_helper(dp);
12858 
12859 	for (i = 0; i < helper->dtha_nactions; i++)
12860 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
12861 
12862 	return (err == 0);
12863 }
12864 
12865 static int
12866 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
12867 {
12868 	dtrace_helpers_t *help;
12869 	dtrace_helper_action_t *helper, *last;
12870 	dtrace_actdesc_t *act;
12871 	dtrace_vstate_t *vstate;
12872 	dtrace_predicate_t *pred;
12873 	int count = 0, nactions = 0, i;
12874 
12875 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
12876 		return (EINVAL);
12877 
12878 	help = curproc->p_dtrace_helpers;
12879 	last = help->dthps_actions[which];
12880 	vstate = &help->dthps_vstate;
12881 
12882 	for (count = 0; last != NULL; last = last->dtha_next) {
12883 		count++;
12884 		if (last->dtha_next == NULL)
12885 			break;
12886 	}
12887 
12888 	/*
12889 	 * If we already have dtrace_helper_actions_max helper actions for this
12890 	 * helper action type, we'll refuse to add a new one.
12891 	 */
12892 	if (count >= dtrace_helper_actions_max)
12893 		return (ENOSPC);
12894 
12895 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
12896 	helper->dtha_generation = help->dthps_generation;
12897 
12898 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
12899 		ASSERT(pred->dtp_difo != NULL);
12900 		dtrace_difo_hold(pred->dtp_difo);
12901 		helper->dtha_predicate = pred->dtp_difo;
12902 	}
12903 
12904 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
12905 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
12906 			goto err;
12907 
12908 		if (act->dtad_difo == NULL)
12909 			goto err;
12910 
12911 		nactions++;
12912 	}
12913 
12914 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
12915 	    (helper->dtha_nactions = nactions), KM_SLEEP);
12916 
12917 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
12918 		dtrace_difo_hold(act->dtad_difo);
12919 		helper->dtha_actions[i++] = act->dtad_difo;
12920 	}
12921 
12922 	if (!dtrace_helper_validate(helper))
12923 		goto err;
12924 
12925 	if (last == NULL) {
12926 		help->dthps_actions[which] = helper;
12927 	} else {
12928 		last->dtha_next = helper;
12929 	}
12930 
12931 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
12932 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
12933 		dtrace_helptrace_next = 0;
12934 	}
12935 
12936 	return (0);
12937 err:
12938 	dtrace_helper_action_destroy(helper, vstate);
12939 	return (EINVAL);
12940 }
12941 
12942 static void
12943 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
12944     dof_helper_t *dofhp)
12945 {
12946 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
12947 
12948 	mutex_enter(&dtrace_meta_lock);
12949 	mutex_enter(&dtrace_lock);
12950 
12951 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
12952 		/*
12953 		 * If the dtrace module is loaded but not attached, or if
12954 		 * there aren't isn't a meta provider registered to deal with
12955 		 * these provider descriptions, we need to postpone creating
12956 		 * the actual providers until later.
12957 		 */
12958 
12959 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
12960 		    dtrace_deferred_pid != help) {
12961 			help->dthps_deferred = 1;
12962 			help->dthps_pid = p->p_pid;
12963 			help->dthps_next = dtrace_deferred_pid;
12964 			help->dthps_prev = NULL;
12965 			if (dtrace_deferred_pid != NULL)
12966 				dtrace_deferred_pid->dthps_prev = help;
12967 			dtrace_deferred_pid = help;
12968 		}
12969 
12970 		mutex_exit(&dtrace_lock);
12971 
12972 	} else if (dofhp != NULL) {
12973 		/*
12974 		 * If the dtrace module is loaded and we have a particular
12975 		 * helper provider description, pass that off to the
12976 		 * meta provider.
12977 		 */
12978 
12979 		mutex_exit(&dtrace_lock);
12980 
12981 		dtrace_helper_provide(dofhp, p->p_pid);
12982 
12983 	} else {
12984 		/*
12985 		 * Otherwise, just pass all the helper provider descriptions
12986 		 * off to the meta provider.
12987 		 */
12988 
12989 		int i;
12990 		mutex_exit(&dtrace_lock);
12991 
12992 		for (i = 0; i < help->dthps_nprovs; i++) {
12993 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
12994 			    p->p_pid);
12995 		}
12996 	}
12997 
12998 	mutex_exit(&dtrace_meta_lock);
12999 }
13000 
13001 static int
13002 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
13003 {
13004 	dtrace_helpers_t *help;
13005 	dtrace_helper_provider_t *hprov, **tmp_provs;
13006 	uint_t tmp_maxprovs, i;
13007 
13008 	ASSERT(MUTEX_HELD(&dtrace_lock));
13009 
13010 	help = curproc->p_dtrace_helpers;
13011 	ASSERT(help != NULL);
13012 
13013 	/*
13014 	 * If we already have dtrace_helper_providers_max helper providers,
13015 	 * we're refuse to add a new one.
13016 	 */
13017 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
13018 		return (ENOSPC);
13019 
13020 	/*
13021 	 * Check to make sure this isn't a duplicate.
13022 	 */
13023 	for (i = 0; i < help->dthps_nprovs; i++) {
13024 		if (dofhp->dofhp_addr ==
13025 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
13026 			return (EALREADY);
13027 	}
13028 
13029 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
13030 	hprov->dthp_prov = *dofhp;
13031 	hprov->dthp_ref = 1;
13032 	hprov->dthp_generation = gen;
13033 
13034 	/*
13035 	 * Allocate a bigger table for helper providers if it's already full.
13036 	 */
13037 	if (help->dthps_maxprovs == help->dthps_nprovs) {
13038 		tmp_maxprovs = help->dthps_maxprovs;
13039 		tmp_provs = help->dthps_provs;
13040 
13041 		if (help->dthps_maxprovs == 0)
13042 			help->dthps_maxprovs = 2;
13043 		else
13044 			help->dthps_maxprovs *= 2;
13045 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
13046 			help->dthps_maxprovs = dtrace_helper_providers_max;
13047 
13048 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
13049 
13050 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
13051 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13052 
13053 		if (tmp_provs != NULL) {
13054 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
13055 			    sizeof (dtrace_helper_provider_t *));
13056 			kmem_free(tmp_provs, tmp_maxprovs *
13057 			    sizeof (dtrace_helper_provider_t *));
13058 		}
13059 	}
13060 
13061 	help->dthps_provs[help->dthps_nprovs] = hprov;
13062 	help->dthps_nprovs++;
13063 
13064 	return (0);
13065 }
13066 
13067 static void
13068 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
13069 {
13070 	mutex_enter(&dtrace_lock);
13071 
13072 	if (--hprov->dthp_ref == 0) {
13073 		dof_hdr_t *dof;
13074 		mutex_exit(&dtrace_lock);
13075 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
13076 		dtrace_dof_destroy(dof);
13077 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
13078 	} else {
13079 		mutex_exit(&dtrace_lock);
13080 	}
13081 }
13082 
13083 static int
13084 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
13085 {
13086 	uintptr_t daddr = (uintptr_t)dof;
13087 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
13088 	dof_provider_t *provider;
13089 	dof_probe_t *probe;
13090 	uint8_t *arg;
13091 	char *strtab, *typestr;
13092 	dof_stridx_t typeidx;
13093 	size_t typesz;
13094 	uint_t nprobes, j, k;
13095 
13096 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
13097 
13098 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
13099 		dtrace_dof_error(dof, "misaligned section offset");
13100 		return (-1);
13101 	}
13102 
13103 	/*
13104 	 * The section needs to be large enough to contain the DOF provider
13105 	 * structure appropriate for the given version.
13106 	 */
13107 	if (sec->dofs_size <
13108 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
13109 	    offsetof(dof_provider_t, dofpv_prenoffs) :
13110 	    sizeof (dof_provider_t))) {
13111 		dtrace_dof_error(dof, "provider section too small");
13112 		return (-1);
13113 	}
13114 
13115 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
13116 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
13117 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
13118 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
13119 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
13120 
13121 	if (str_sec == NULL || prb_sec == NULL ||
13122 	    arg_sec == NULL || off_sec == NULL)
13123 		return (-1);
13124 
13125 	enoff_sec = NULL;
13126 
13127 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13128 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
13129 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
13130 	    provider->dofpv_prenoffs)) == NULL)
13131 		return (-1);
13132 
13133 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
13134 
13135 	if (provider->dofpv_name >= str_sec->dofs_size ||
13136 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
13137 		dtrace_dof_error(dof, "invalid provider name");
13138 		return (-1);
13139 	}
13140 
13141 	if (prb_sec->dofs_entsize == 0 ||
13142 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
13143 		dtrace_dof_error(dof, "invalid entry size");
13144 		return (-1);
13145 	}
13146 
13147 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
13148 		dtrace_dof_error(dof, "misaligned entry size");
13149 		return (-1);
13150 	}
13151 
13152 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
13153 		dtrace_dof_error(dof, "invalid entry size");
13154 		return (-1);
13155 	}
13156 
13157 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
13158 		dtrace_dof_error(dof, "misaligned section offset");
13159 		return (-1);
13160 	}
13161 
13162 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
13163 		dtrace_dof_error(dof, "invalid entry size");
13164 		return (-1);
13165 	}
13166 
13167 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
13168 
13169 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
13170 
13171 	/*
13172 	 * Take a pass through the probes to check for errors.
13173 	 */
13174 	for (j = 0; j < nprobes; j++) {
13175 		probe = (dof_probe_t *)(uintptr_t)(daddr +
13176 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
13177 
13178 		if (probe->dofpr_func >= str_sec->dofs_size) {
13179 			dtrace_dof_error(dof, "invalid function name");
13180 			return (-1);
13181 		}
13182 
13183 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
13184 			dtrace_dof_error(dof, "function name too long");
13185 			return (-1);
13186 		}
13187 
13188 		if (probe->dofpr_name >= str_sec->dofs_size ||
13189 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
13190 			dtrace_dof_error(dof, "invalid probe name");
13191 			return (-1);
13192 		}
13193 
13194 		/*
13195 		 * The offset count must not wrap the index, and the offsets
13196 		 * must also not overflow the section's data.
13197 		 */
13198 		if (probe->dofpr_offidx + probe->dofpr_noffs <
13199 		    probe->dofpr_offidx ||
13200 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
13201 		    off_sec->dofs_entsize > off_sec->dofs_size) {
13202 			dtrace_dof_error(dof, "invalid probe offset");
13203 			return (-1);
13204 		}
13205 
13206 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
13207 			/*
13208 			 * If there's no is-enabled offset section, make sure
13209 			 * there aren't any is-enabled offsets. Otherwise
13210 			 * perform the same checks as for probe offsets
13211 			 * (immediately above).
13212 			 */
13213 			if (enoff_sec == NULL) {
13214 				if (probe->dofpr_enoffidx != 0 ||
13215 				    probe->dofpr_nenoffs != 0) {
13216 					dtrace_dof_error(dof, "is-enabled "
13217 					    "offsets with null section");
13218 					return (-1);
13219 				}
13220 			} else if (probe->dofpr_enoffidx +
13221 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
13222 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
13223 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
13224 				dtrace_dof_error(dof, "invalid is-enabled "
13225 				    "offset");
13226 				return (-1);
13227 			}
13228 
13229 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
13230 				dtrace_dof_error(dof, "zero probe and "
13231 				    "is-enabled offsets");
13232 				return (-1);
13233 			}
13234 		} else if (probe->dofpr_noffs == 0) {
13235 			dtrace_dof_error(dof, "zero probe offsets");
13236 			return (-1);
13237 		}
13238 
13239 		if (probe->dofpr_argidx + probe->dofpr_xargc <
13240 		    probe->dofpr_argidx ||
13241 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
13242 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
13243 			dtrace_dof_error(dof, "invalid args");
13244 			return (-1);
13245 		}
13246 
13247 		typeidx = probe->dofpr_nargv;
13248 		typestr = strtab + probe->dofpr_nargv;
13249 		for (k = 0; k < probe->dofpr_nargc; k++) {
13250 			if (typeidx >= str_sec->dofs_size) {
13251 				dtrace_dof_error(dof, "bad "
13252 				    "native argument type");
13253 				return (-1);
13254 			}
13255 
13256 			typesz = strlen(typestr) + 1;
13257 			if (typesz > DTRACE_ARGTYPELEN) {
13258 				dtrace_dof_error(dof, "native "
13259 				    "argument type too long");
13260 				return (-1);
13261 			}
13262 			typeidx += typesz;
13263 			typestr += typesz;
13264 		}
13265 
13266 		typeidx = probe->dofpr_xargv;
13267 		typestr = strtab + probe->dofpr_xargv;
13268 		for (k = 0; k < probe->dofpr_xargc; k++) {
13269 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
13270 				dtrace_dof_error(dof, "bad "
13271 				    "native argument index");
13272 				return (-1);
13273 			}
13274 
13275 			if (typeidx >= str_sec->dofs_size) {
13276 				dtrace_dof_error(dof, "bad "
13277 				    "translated argument type");
13278 				return (-1);
13279 			}
13280 
13281 			typesz = strlen(typestr) + 1;
13282 			if (typesz > DTRACE_ARGTYPELEN) {
13283 				dtrace_dof_error(dof, "translated argument "
13284 				    "type too long");
13285 				return (-1);
13286 			}
13287 
13288 			typeidx += typesz;
13289 			typestr += typesz;
13290 		}
13291 	}
13292 
13293 	return (0);
13294 }
13295 
13296 static int
13297 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
13298 {
13299 	dtrace_helpers_t *help;
13300 	dtrace_vstate_t *vstate;
13301 	dtrace_enabling_t *enab = NULL;
13302 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
13303 	uintptr_t daddr = (uintptr_t)dof;
13304 
13305 	ASSERT(MUTEX_HELD(&dtrace_lock));
13306 
13307 	if ((help = curproc->p_dtrace_helpers) == NULL)
13308 		help = dtrace_helpers_create(curproc);
13309 
13310 	vstate = &help->dthps_vstate;
13311 
13312 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
13313 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
13314 		dtrace_dof_destroy(dof);
13315 		return (rv);
13316 	}
13317 
13318 	/*
13319 	 * Look for helper providers and validate their descriptions.
13320 	 */
13321 	if (dhp != NULL) {
13322 		for (i = 0; i < dof->dofh_secnum; i++) {
13323 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
13324 			    dof->dofh_secoff + i * dof->dofh_secsize);
13325 
13326 			if (sec->dofs_type != DOF_SECT_PROVIDER)
13327 				continue;
13328 
13329 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
13330 				dtrace_enabling_destroy(enab);
13331 				dtrace_dof_destroy(dof);
13332 				return (-1);
13333 			}
13334 
13335 			nprovs++;
13336 		}
13337 	}
13338 
13339 	/*
13340 	 * Now we need to walk through the ECB descriptions in the enabling.
13341 	 */
13342 	for (i = 0; i < enab->dten_ndesc; i++) {
13343 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
13344 		dtrace_probedesc_t *desc = &ep->dted_probe;
13345 
13346 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
13347 			continue;
13348 
13349 		if (strcmp(desc->dtpd_mod, "helper") != 0)
13350 			continue;
13351 
13352 		if (strcmp(desc->dtpd_func, "ustack") != 0)
13353 			continue;
13354 
13355 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
13356 		    ep)) != 0) {
13357 			/*
13358 			 * Adding this helper action failed -- we are now going
13359 			 * to rip out the entire generation and return failure.
13360 			 */
13361 			(void) dtrace_helper_destroygen(help->dthps_generation);
13362 			dtrace_enabling_destroy(enab);
13363 			dtrace_dof_destroy(dof);
13364 			return (-1);
13365 		}
13366 
13367 		nhelpers++;
13368 	}
13369 
13370 	if (nhelpers < enab->dten_ndesc)
13371 		dtrace_dof_error(dof, "unmatched helpers");
13372 
13373 	gen = help->dthps_generation++;
13374 	dtrace_enabling_destroy(enab);
13375 
13376 	if (dhp != NULL && nprovs > 0) {
13377 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
13378 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
13379 			mutex_exit(&dtrace_lock);
13380 			dtrace_helper_provider_register(curproc, help, dhp);
13381 			mutex_enter(&dtrace_lock);
13382 
13383 			destroy = 0;
13384 		}
13385 	}
13386 
13387 	if (destroy)
13388 		dtrace_dof_destroy(dof);
13389 
13390 	return (gen);
13391 }
13392 
13393 static dtrace_helpers_t *
13394 dtrace_helpers_create(proc_t *p)
13395 {
13396 	dtrace_helpers_t *help;
13397 
13398 	ASSERT(MUTEX_HELD(&dtrace_lock));
13399 	ASSERT(p->p_dtrace_helpers == NULL);
13400 
13401 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
13402 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
13403 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
13404 
13405 	p->p_dtrace_helpers = help;
13406 	dtrace_helpers++;
13407 
13408 	return (help);
13409 }
13410 
13411 static void
13412 dtrace_helpers_destroy(void)
13413 {
13414 	dtrace_helpers_t *help;
13415 	dtrace_vstate_t *vstate;
13416 	proc_t *p = curproc;
13417 	int i;
13418 
13419 	mutex_enter(&dtrace_lock);
13420 
13421 	ASSERT(p->p_dtrace_helpers != NULL);
13422 	ASSERT(dtrace_helpers > 0);
13423 
13424 	help = p->p_dtrace_helpers;
13425 	vstate = &help->dthps_vstate;
13426 
13427 	/*
13428 	 * We're now going to lose the help from this process.
13429 	 */
13430 	p->p_dtrace_helpers = NULL;
13431 	dtrace_sync();
13432 
13433 	/*
13434 	 * Destory the helper actions.
13435 	 */
13436 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13437 		dtrace_helper_action_t *h, *next;
13438 
13439 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13440 			next = h->dtha_next;
13441 			dtrace_helper_action_destroy(h, vstate);
13442 			h = next;
13443 		}
13444 	}
13445 
13446 	mutex_exit(&dtrace_lock);
13447 
13448 	/*
13449 	 * Destroy the helper providers.
13450 	 */
13451 	if (help->dthps_maxprovs > 0) {
13452 		mutex_enter(&dtrace_meta_lock);
13453 		if (dtrace_meta_pid != NULL) {
13454 			ASSERT(dtrace_deferred_pid == NULL);
13455 
13456 			for (i = 0; i < help->dthps_nprovs; i++) {
13457 				dtrace_helper_provider_remove(
13458 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
13459 			}
13460 		} else {
13461 			mutex_enter(&dtrace_lock);
13462 			ASSERT(help->dthps_deferred == 0 ||
13463 			    help->dthps_next != NULL ||
13464 			    help->dthps_prev != NULL ||
13465 			    help == dtrace_deferred_pid);
13466 
13467 			/*
13468 			 * Remove the helper from the deferred list.
13469 			 */
13470 			if (help->dthps_next != NULL)
13471 				help->dthps_next->dthps_prev = help->dthps_prev;
13472 			if (help->dthps_prev != NULL)
13473 				help->dthps_prev->dthps_next = help->dthps_next;
13474 			if (dtrace_deferred_pid == help) {
13475 				dtrace_deferred_pid = help->dthps_next;
13476 				ASSERT(help->dthps_prev == NULL);
13477 			}
13478 
13479 			mutex_exit(&dtrace_lock);
13480 		}
13481 
13482 		mutex_exit(&dtrace_meta_lock);
13483 
13484 		for (i = 0; i < help->dthps_nprovs; i++) {
13485 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
13486 		}
13487 
13488 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
13489 		    sizeof (dtrace_helper_provider_t *));
13490 	}
13491 
13492 	mutex_enter(&dtrace_lock);
13493 
13494 	dtrace_vstate_fini(&help->dthps_vstate);
13495 	kmem_free(help->dthps_actions,
13496 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
13497 	kmem_free(help, sizeof (dtrace_helpers_t));
13498 
13499 	--dtrace_helpers;
13500 	mutex_exit(&dtrace_lock);
13501 }
13502 
13503 static void
13504 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
13505 {
13506 	dtrace_helpers_t *help, *newhelp;
13507 	dtrace_helper_action_t *helper, *new, *last;
13508 	dtrace_difo_t *dp;
13509 	dtrace_vstate_t *vstate;
13510 	int i, j, sz, hasprovs = 0;
13511 
13512 	mutex_enter(&dtrace_lock);
13513 	ASSERT(from->p_dtrace_helpers != NULL);
13514 	ASSERT(dtrace_helpers > 0);
13515 
13516 	help = from->p_dtrace_helpers;
13517 	newhelp = dtrace_helpers_create(to);
13518 	ASSERT(to->p_dtrace_helpers != NULL);
13519 
13520 	newhelp->dthps_generation = help->dthps_generation;
13521 	vstate = &newhelp->dthps_vstate;
13522 
13523 	/*
13524 	 * Duplicate the helper actions.
13525 	 */
13526 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13527 		if ((helper = help->dthps_actions[i]) == NULL)
13528 			continue;
13529 
13530 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
13531 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
13532 			    KM_SLEEP);
13533 			new->dtha_generation = helper->dtha_generation;
13534 
13535 			if ((dp = helper->dtha_predicate) != NULL) {
13536 				dp = dtrace_difo_duplicate(dp, vstate);
13537 				new->dtha_predicate = dp;
13538 			}
13539 
13540 			new->dtha_nactions = helper->dtha_nactions;
13541 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
13542 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
13543 
13544 			for (j = 0; j < new->dtha_nactions; j++) {
13545 				dtrace_difo_t *dp = helper->dtha_actions[j];
13546 
13547 				ASSERT(dp != NULL);
13548 				dp = dtrace_difo_duplicate(dp, vstate);
13549 				new->dtha_actions[j] = dp;
13550 			}
13551 
13552 			if (last != NULL) {
13553 				last->dtha_next = new;
13554 			} else {
13555 				newhelp->dthps_actions[i] = new;
13556 			}
13557 
13558 			last = new;
13559 		}
13560 	}
13561 
13562 	/*
13563 	 * Duplicate the helper providers and register them with the
13564 	 * DTrace framework.
13565 	 */
13566 	if (help->dthps_nprovs > 0) {
13567 		newhelp->dthps_nprovs = help->dthps_nprovs;
13568 		newhelp->dthps_maxprovs = help->dthps_nprovs;
13569 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
13570 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13571 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
13572 			newhelp->dthps_provs[i] = help->dthps_provs[i];
13573 			newhelp->dthps_provs[i]->dthp_ref++;
13574 		}
13575 
13576 		hasprovs = 1;
13577 	}
13578 
13579 	mutex_exit(&dtrace_lock);
13580 
13581 	if (hasprovs)
13582 		dtrace_helper_provider_register(to, newhelp, NULL);
13583 }
13584 
13585 /*
13586  * DTrace Hook Functions
13587  */
13588 static void
13589 dtrace_module_loaded(struct modctl *ctl)
13590 {
13591 	dtrace_provider_t *prv;
13592 
13593 	mutex_enter(&dtrace_provider_lock);
13594 	mutex_enter(&mod_lock);
13595 
13596 	ASSERT(ctl->mod_busy);
13597 
13598 	/*
13599 	 * We're going to call each providers per-module provide operation
13600 	 * specifying only this module.
13601 	 */
13602 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
13603 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
13604 
13605 	mutex_exit(&mod_lock);
13606 	mutex_exit(&dtrace_provider_lock);
13607 
13608 	/*
13609 	 * If we have any retained enablings, we need to match against them.
13610 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
13611 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
13612 	 * module.  (In particular, this happens when loading scheduling
13613 	 * classes.)  So if we have any retained enablings, we need to dispatch
13614 	 * our task queue to do the match for us.
13615 	 */
13616 	mutex_enter(&dtrace_lock);
13617 
13618 	if (dtrace_retained == NULL) {
13619 		mutex_exit(&dtrace_lock);
13620 		return;
13621 	}
13622 
13623 	(void) taskq_dispatch(dtrace_taskq,
13624 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
13625 
13626 	mutex_exit(&dtrace_lock);
13627 
13628 	/*
13629 	 * And now, for a little heuristic sleaze:  in general, we want to
13630 	 * match modules as soon as they load.  However, we cannot guarantee
13631 	 * this, because it would lead us to the lock ordering violation
13632 	 * outlined above.  The common case, of course, is that cpu_lock is
13633 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
13634 	 * long enough for the task queue to do its work.  If it's not, it's
13635 	 * not a serious problem -- it just means that the module that we
13636 	 * just loaded may not be immediately instrumentable.
13637 	 */
13638 	delay(1);
13639 }
13640 
13641 static void
13642 dtrace_module_unloaded(struct modctl *ctl)
13643 {
13644 	dtrace_probe_t template, *probe, *first, *next;
13645 	dtrace_provider_t *prov;
13646 
13647 	template.dtpr_mod = ctl->mod_modname;
13648 
13649 	mutex_enter(&dtrace_provider_lock);
13650 	mutex_enter(&mod_lock);
13651 	mutex_enter(&dtrace_lock);
13652 
13653 	if (dtrace_bymod == NULL) {
13654 		/*
13655 		 * The DTrace module is loaded (obviously) but not attached;
13656 		 * we don't have any work to do.
13657 		 */
13658 		mutex_exit(&dtrace_provider_lock);
13659 		mutex_exit(&mod_lock);
13660 		mutex_exit(&dtrace_lock);
13661 		return;
13662 	}
13663 
13664 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
13665 	    probe != NULL; probe = probe->dtpr_nextmod) {
13666 		if (probe->dtpr_ecb != NULL) {
13667 			mutex_exit(&dtrace_provider_lock);
13668 			mutex_exit(&mod_lock);
13669 			mutex_exit(&dtrace_lock);
13670 
13671 			/*
13672 			 * This shouldn't _actually_ be possible -- we're
13673 			 * unloading a module that has an enabled probe in it.
13674 			 * (It's normally up to the provider to make sure that
13675 			 * this can't happen.)  However, because dtps_enable()
13676 			 * doesn't have a failure mode, there can be an
13677 			 * enable/unload race.  Upshot:  we don't want to
13678 			 * assert, but we're not going to disable the
13679 			 * probe, either.
13680 			 */
13681 			if (dtrace_err_verbose) {
13682 				cmn_err(CE_WARN, "unloaded module '%s' had "
13683 				    "enabled probes", ctl->mod_modname);
13684 			}
13685 
13686 			return;
13687 		}
13688 	}
13689 
13690 	probe = first;
13691 
13692 	for (first = NULL; probe != NULL; probe = next) {
13693 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
13694 
13695 		dtrace_probes[probe->dtpr_id - 1] = NULL;
13696 
13697 		next = probe->dtpr_nextmod;
13698 		dtrace_hash_remove(dtrace_bymod, probe);
13699 		dtrace_hash_remove(dtrace_byfunc, probe);
13700 		dtrace_hash_remove(dtrace_byname, probe);
13701 
13702 		if (first == NULL) {
13703 			first = probe;
13704 			probe->dtpr_nextmod = NULL;
13705 		} else {
13706 			probe->dtpr_nextmod = first;
13707 			first = probe;
13708 		}
13709 	}
13710 
13711 	/*
13712 	 * We've removed all of the module's probes from the hash chains and
13713 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
13714 	 * everyone has cleared out from any probe array processing.
13715 	 */
13716 	dtrace_sync();
13717 
13718 	for (probe = first; probe != NULL; probe = first) {
13719 		first = probe->dtpr_nextmod;
13720 		prov = probe->dtpr_provider;
13721 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
13722 		    probe->dtpr_arg);
13723 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
13724 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
13725 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
13726 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
13727 		kmem_free(probe, sizeof (dtrace_probe_t));
13728 	}
13729 
13730 	mutex_exit(&dtrace_lock);
13731 	mutex_exit(&mod_lock);
13732 	mutex_exit(&dtrace_provider_lock);
13733 }
13734 
13735 void
13736 dtrace_suspend(void)
13737 {
13738 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
13739 }
13740 
13741 void
13742 dtrace_resume(void)
13743 {
13744 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
13745 }
13746 
13747 static int
13748 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
13749 {
13750 	ASSERT(MUTEX_HELD(&cpu_lock));
13751 	mutex_enter(&dtrace_lock);
13752 
13753 	switch (what) {
13754 	case CPU_CONFIG: {
13755 		dtrace_state_t *state;
13756 		dtrace_optval_t *opt, rs, c;
13757 
13758 		/*
13759 		 * For now, we only allocate a new buffer for anonymous state.
13760 		 */
13761 		if ((state = dtrace_anon.dta_state) == NULL)
13762 			break;
13763 
13764 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13765 			break;
13766 
13767 		opt = state->dts_options;
13768 		c = opt[DTRACEOPT_CPU];
13769 
13770 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
13771 			break;
13772 
13773 		/*
13774 		 * Regardless of what the actual policy is, we're going to
13775 		 * temporarily set our resize policy to be manual.  We're
13776 		 * also going to temporarily set our CPU option to denote
13777 		 * the newly configured CPU.
13778 		 */
13779 		rs = opt[DTRACEOPT_BUFRESIZE];
13780 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
13781 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
13782 
13783 		(void) dtrace_state_buffers(state);
13784 
13785 		opt[DTRACEOPT_BUFRESIZE] = rs;
13786 		opt[DTRACEOPT_CPU] = c;
13787 
13788 		break;
13789 	}
13790 
13791 	case CPU_UNCONFIG:
13792 		/*
13793 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
13794 		 * buffer will be freed when the consumer exits.)
13795 		 */
13796 		break;
13797 
13798 	default:
13799 		break;
13800 	}
13801 
13802 	mutex_exit(&dtrace_lock);
13803 	return (0);
13804 }
13805 
13806 static void
13807 dtrace_cpu_setup_initial(processorid_t cpu)
13808 {
13809 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
13810 }
13811 
13812 static void
13813 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
13814 {
13815 	if (dtrace_toxranges >= dtrace_toxranges_max) {
13816 		int osize, nsize;
13817 		dtrace_toxrange_t *range;
13818 
13819 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
13820 
13821 		if (osize == 0) {
13822 			ASSERT(dtrace_toxrange == NULL);
13823 			ASSERT(dtrace_toxranges_max == 0);
13824 			dtrace_toxranges_max = 1;
13825 		} else {
13826 			dtrace_toxranges_max <<= 1;
13827 		}
13828 
13829 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
13830 		range = kmem_zalloc(nsize, KM_SLEEP);
13831 
13832 		if (dtrace_toxrange != NULL) {
13833 			ASSERT(osize != 0);
13834 			bcopy(dtrace_toxrange, range, osize);
13835 			kmem_free(dtrace_toxrange, osize);
13836 		}
13837 
13838 		dtrace_toxrange = range;
13839 	}
13840 
13841 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
13842 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
13843 
13844 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
13845 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
13846 	dtrace_toxranges++;
13847 }
13848 
13849 /*
13850  * DTrace Driver Cookbook Functions
13851  */
13852 /*ARGSUSED*/
13853 static int
13854 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
13855 {
13856 	dtrace_provider_id_t id;
13857 	dtrace_state_t *state = NULL;
13858 	dtrace_enabling_t *enab;
13859 
13860 	mutex_enter(&cpu_lock);
13861 	mutex_enter(&dtrace_provider_lock);
13862 	mutex_enter(&dtrace_lock);
13863 
13864 	if (ddi_soft_state_init(&dtrace_softstate,
13865 	    sizeof (dtrace_state_t), 0) != 0) {
13866 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
13867 		mutex_exit(&cpu_lock);
13868 		mutex_exit(&dtrace_provider_lock);
13869 		mutex_exit(&dtrace_lock);
13870 		return (DDI_FAILURE);
13871 	}
13872 
13873 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
13874 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
13875 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
13876 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
13877 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
13878 		ddi_remove_minor_node(devi, NULL);
13879 		ddi_soft_state_fini(&dtrace_softstate);
13880 		mutex_exit(&cpu_lock);
13881 		mutex_exit(&dtrace_provider_lock);
13882 		mutex_exit(&dtrace_lock);
13883 		return (DDI_FAILURE);
13884 	}
13885 
13886 	ddi_report_dev(devi);
13887 	dtrace_devi = devi;
13888 
13889 	dtrace_modload = dtrace_module_loaded;
13890 	dtrace_modunload = dtrace_module_unloaded;
13891 	dtrace_cpu_init = dtrace_cpu_setup_initial;
13892 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
13893 	dtrace_helpers_fork = dtrace_helpers_duplicate;
13894 	dtrace_cpustart_init = dtrace_suspend;
13895 	dtrace_cpustart_fini = dtrace_resume;
13896 	dtrace_debugger_init = dtrace_suspend;
13897 	dtrace_debugger_fini = dtrace_resume;
13898 	dtrace_kreloc_init = dtrace_suspend;
13899 	dtrace_kreloc_fini = dtrace_resume;
13900 
13901 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
13902 
13903 	ASSERT(MUTEX_HELD(&cpu_lock));
13904 
13905 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
13906 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13907 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
13908 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
13909 	    VM_SLEEP | VMC_IDENTIFIER);
13910 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
13911 	    1, INT_MAX, 0);
13912 
13913 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
13914 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
13915 	    NULL, NULL, NULL, NULL, NULL, 0);
13916 
13917 	ASSERT(MUTEX_HELD(&cpu_lock));
13918 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
13919 	    offsetof(dtrace_probe_t, dtpr_nextmod),
13920 	    offsetof(dtrace_probe_t, dtpr_prevmod));
13921 
13922 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
13923 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
13924 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
13925 
13926 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
13927 	    offsetof(dtrace_probe_t, dtpr_nextname),
13928 	    offsetof(dtrace_probe_t, dtpr_prevname));
13929 
13930 	if (dtrace_retain_max < 1) {
13931 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
13932 		    "setting to 1", dtrace_retain_max);
13933 		dtrace_retain_max = 1;
13934 	}
13935 
13936 	/*
13937 	 * Now discover our toxic ranges.
13938 	 */
13939 	dtrace_toxic_ranges(dtrace_toxrange_add);
13940 
13941 	/*
13942 	 * Before we register ourselves as a provider to our own framework,
13943 	 * we would like to assert that dtrace_provider is NULL -- but that's
13944 	 * not true if we were loaded as a dependency of a DTrace provider.
13945 	 * Once we've registered, we can assert that dtrace_provider is our
13946 	 * pseudo provider.
13947 	 */
13948 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
13949 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
13950 
13951 	ASSERT(dtrace_provider != NULL);
13952 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
13953 
13954 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
13955 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
13956 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
13957 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
13958 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
13959 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
13960 
13961 	dtrace_anon_property();
13962 	mutex_exit(&cpu_lock);
13963 
13964 	/*
13965 	 * If DTrace helper tracing is enabled, we need to allocate the
13966 	 * trace buffer and initialize the values.
13967 	 */
13968 	if (dtrace_helptrace_enabled) {
13969 		ASSERT(dtrace_helptrace_buffer == NULL);
13970 		dtrace_helptrace_buffer =
13971 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
13972 		dtrace_helptrace_next = 0;
13973 	}
13974 
13975 	/*
13976 	 * If there are already providers, we must ask them to provide their
13977 	 * probes, and then match any anonymous enabling against them.  Note
13978 	 * that there should be no other retained enablings at this time:
13979 	 * the only retained enablings at this time should be the anonymous
13980 	 * enabling.
13981 	 */
13982 	if (dtrace_anon.dta_enabling != NULL) {
13983 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
13984 
13985 		dtrace_enabling_provide(NULL);
13986 		state = dtrace_anon.dta_state;
13987 
13988 		/*
13989 		 * We couldn't hold cpu_lock across the above call to
13990 		 * dtrace_enabling_provide(), but we must hold it to actually
13991 		 * enable the probes.  We have to drop all of our locks, pick
13992 		 * up cpu_lock, and regain our locks before matching the
13993 		 * retained anonymous enabling.
13994 		 */
13995 		mutex_exit(&dtrace_lock);
13996 		mutex_exit(&dtrace_provider_lock);
13997 
13998 		mutex_enter(&cpu_lock);
13999 		mutex_enter(&dtrace_provider_lock);
14000 		mutex_enter(&dtrace_lock);
14001 
14002 		if ((enab = dtrace_anon.dta_enabling) != NULL)
14003 			(void) dtrace_enabling_match(enab, NULL);
14004 
14005 		mutex_exit(&cpu_lock);
14006 	}
14007 
14008 	mutex_exit(&dtrace_lock);
14009 	mutex_exit(&dtrace_provider_lock);
14010 
14011 	if (state != NULL) {
14012 		/*
14013 		 * If we created any anonymous state, set it going now.
14014 		 */
14015 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
14016 	}
14017 
14018 	return (DDI_SUCCESS);
14019 }
14020 
14021 /*ARGSUSED*/
14022 static int
14023 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
14024 {
14025 	dtrace_state_t *state;
14026 	uint32_t priv;
14027 	uid_t uid;
14028 	zoneid_t zoneid;
14029 
14030 	if (getminor(*devp) == DTRACEMNRN_HELPER)
14031 		return (0);
14032 
14033 	/*
14034 	 * If this wasn't an open with the "helper" minor, then it must be
14035 	 * the "dtrace" minor.
14036 	 */
14037 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
14038 
14039 	/*
14040 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
14041 	 * caller lacks sufficient permission to do anything with DTrace.
14042 	 */
14043 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
14044 	if (priv == DTRACE_PRIV_NONE)
14045 		return (EACCES);
14046 
14047 	/*
14048 	 * Ask all providers to provide all their probes.
14049 	 */
14050 	mutex_enter(&dtrace_provider_lock);
14051 	dtrace_probe_provide(NULL, NULL);
14052 	mutex_exit(&dtrace_provider_lock);
14053 
14054 	mutex_enter(&cpu_lock);
14055 	mutex_enter(&dtrace_lock);
14056 	dtrace_opens++;
14057 	dtrace_membar_producer();
14058 
14059 	/*
14060 	 * If the kernel debugger is active (that is, if the kernel debugger
14061 	 * modified text in some way), we won't allow the open.
14062 	 */
14063 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14064 		dtrace_opens--;
14065 		mutex_exit(&cpu_lock);
14066 		mutex_exit(&dtrace_lock);
14067 		return (EBUSY);
14068 	}
14069 
14070 	state = dtrace_state_create(devp, cred_p);
14071 	mutex_exit(&cpu_lock);
14072 
14073 	if (state == NULL) {
14074 		if (--dtrace_opens == 0)
14075 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14076 		mutex_exit(&dtrace_lock);
14077 		return (EAGAIN);
14078 	}
14079 
14080 	mutex_exit(&dtrace_lock);
14081 
14082 	return (0);
14083 }
14084 
14085 /*ARGSUSED*/
14086 static int
14087 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
14088 {
14089 	minor_t minor = getminor(dev);
14090 	dtrace_state_t *state;
14091 
14092 	if (minor == DTRACEMNRN_HELPER)
14093 		return (0);
14094 
14095 	state = ddi_get_soft_state(dtrace_softstate, minor);
14096 
14097 	mutex_enter(&cpu_lock);
14098 	mutex_enter(&dtrace_lock);
14099 
14100 	if (state->dts_anon) {
14101 		/*
14102 		 * There is anonymous state. Destroy that first.
14103 		 */
14104 		ASSERT(dtrace_anon.dta_state == NULL);
14105 		dtrace_state_destroy(state->dts_anon);
14106 	}
14107 
14108 	dtrace_state_destroy(state);
14109 	ASSERT(dtrace_opens > 0);
14110 	if (--dtrace_opens == 0)
14111 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14112 
14113 	mutex_exit(&dtrace_lock);
14114 	mutex_exit(&cpu_lock);
14115 
14116 	return (0);
14117 }
14118 
14119 /*ARGSUSED*/
14120 static int
14121 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
14122 {
14123 	int rval;
14124 	dof_helper_t help, *dhp = NULL;
14125 
14126 	switch (cmd) {
14127 	case DTRACEHIOC_ADDDOF:
14128 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
14129 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
14130 			return (EFAULT);
14131 		}
14132 
14133 		dhp = &help;
14134 		arg = (intptr_t)help.dofhp_dof;
14135 		/*FALLTHROUGH*/
14136 
14137 	case DTRACEHIOC_ADD: {
14138 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
14139 
14140 		if (dof == NULL)
14141 			return (rval);
14142 
14143 		mutex_enter(&dtrace_lock);
14144 
14145 		/*
14146 		 * dtrace_helper_slurp() takes responsibility for the dof --
14147 		 * it may free it now or it may save it and free it later.
14148 		 */
14149 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
14150 			*rv = rval;
14151 			rval = 0;
14152 		} else {
14153 			rval = EINVAL;
14154 		}
14155 
14156 		mutex_exit(&dtrace_lock);
14157 		return (rval);
14158 	}
14159 
14160 	case DTRACEHIOC_REMOVE: {
14161 		mutex_enter(&dtrace_lock);
14162 		rval = dtrace_helper_destroygen(arg);
14163 		mutex_exit(&dtrace_lock);
14164 
14165 		return (rval);
14166 	}
14167 
14168 	default:
14169 		break;
14170 	}
14171 
14172 	return (ENOTTY);
14173 }
14174 
14175 /*ARGSUSED*/
14176 static int
14177 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
14178 {
14179 	minor_t minor = getminor(dev);
14180 	dtrace_state_t *state;
14181 	int rval;
14182 
14183 	if (minor == DTRACEMNRN_HELPER)
14184 		return (dtrace_ioctl_helper(cmd, arg, rv));
14185 
14186 	state = ddi_get_soft_state(dtrace_softstate, minor);
14187 
14188 	if (state->dts_anon) {
14189 		ASSERT(dtrace_anon.dta_state == NULL);
14190 		state = state->dts_anon;
14191 	}
14192 
14193 	switch (cmd) {
14194 	case DTRACEIOC_PROVIDER: {
14195 		dtrace_providerdesc_t pvd;
14196 		dtrace_provider_t *pvp;
14197 
14198 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
14199 			return (EFAULT);
14200 
14201 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
14202 		mutex_enter(&dtrace_provider_lock);
14203 
14204 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
14205 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
14206 				break;
14207 		}
14208 
14209 		mutex_exit(&dtrace_provider_lock);
14210 
14211 		if (pvp == NULL)
14212 			return (ESRCH);
14213 
14214 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
14215 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
14216 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
14217 			return (EFAULT);
14218 
14219 		return (0);
14220 	}
14221 
14222 	case DTRACEIOC_EPROBE: {
14223 		dtrace_eprobedesc_t epdesc;
14224 		dtrace_ecb_t *ecb;
14225 		dtrace_action_t *act;
14226 		void *buf;
14227 		size_t size;
14228 		uintptr_t dest;
14229 		int nrecs;
14230 
14231 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
14232 			return (EFAULT);
14233 
14234 		mutex_enter(&dtrace_lock);
14235 
14236 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
14237 			mutex_exit(&dtrace_lock);
14238 			return (EINVAL);
14239 		}
14240 
14241 		if (ecb->dte_probe == NULL) {
14242 			mutex_exit(&dtrace_lock);
14243 			return (EINVAL);
14244 		}
14245 
14246 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
14247 		epdesc.dtepd_uarg = ecb->dte_uarg;
14248 		epdesc.dtepd_size = ecb->dte_size;
14249 
14250 		nrecs = epdesc.dtepd_nrecs;
14251 		epdesc.dtepd_nrecs = 0;
14252 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
14253 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
14254 				continue;
14255 
14256 			epdesc.dtepd_nrecs++;
14257 		}
14258 
14259 		/*
14260 		 * Now that we have the size, we need to allocate a temporary
14261 		 * buffer in which to store the complete description.  We need
14262 		 * the temporary buffer to be able to drop dtrace_lock()
14263 		 * across the copyout(), below.
14264 		 */
14265 		size = sizeof (dtrace_eprobedesc_t) +
14266 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
14267 
14268 		buf = kmem_alloc(size, KM_SLEEP);
14269 		dest = (uintptr_t)buf;
14270 
14271 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
14272 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
14273 
14274 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
14275 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
14276 				continue;
14277 
14278 			if (nrecs-- == 0)
14279 				break;
14280 
14281 			bcopy(&act->dta_rec, (void *)dest,
14282 			    sizeof (dtrace_recdesc_t));
14283 			dest += sizeof (dtrace_recdesc_t);
14284 		}
14285 
14286 		mutex_exit(&dtrace_lock);
14287 
14288 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
14289 			kmem_free(buf, size);
14290 			return (EFAULT);
14291 		}
14292 
14293 		kmem_free(buf, size);
14294 		return (0);
14295 	}
14296 
14297 	case DTRACEIOC_AGGDESC: {
14298 		dtrace_aggdesc_t aggdesc;
14299 		dtrace_action_t *act;
14300 		dtrace_aggregation_t *agg;
14301 		int nrecs;
14302 		uint32_t offs;
14303 		dtrace_recdesc_t *lrec;
14304 		void *buf;
14305 		size_t size;
14306 		uintptr_t dest;
14307 
14308 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
14309 			return (EFAULT);
14310 
14311 		mutex_enter(&dtrace_lock);
14312 
14313 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
14314 			mutex_exit(&dtrace_lock);
14315 			return (EINVAL);
14316 		}
14317 
14318 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
14319 
14320 		nrecs = aggdesc.dtagd_nrecs;
14321 		aggdesc.dtagd_nrecs = 0;
14322 
14323 		offs = agg->dtag_base;
14324 		lrec = &agg->dtag_action.dta_rec;
14325 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
14326 
14327 		for (act = agg->dtag_first; ; act = act->dta_next) {
14328 			ASSERT(act->dta_intuple ||
14329 			    DTRACEACT_ISAGG(act->dta_kind));
14330 
14331 			/*
14332 			 * If this action has a record size of zero, it
14333 			 * denotes an argument to the aggregating action.
14334 			 * Because the presence of this record doesn't (or
14335 			 * shouldn't) affect the way the data is interpreted,
14336 			 * we don't copy it out to save user-level the
14337 			 * confusion of dealing with a zero-length record.
14338 			 */
14339 			if (act->dta_rec.dtrd_size == 0) {
14340 				ASSERT(agg->dtag_hasarg);
14341 				continue;
14342 			}
14343 
14344 			aggdesc.dtagd_nrecs++;
14345 
14346 			if (act == &agg->dtag_action)
14347 				break;
14348 		}
14349 
14350 		/*
14351 		 * Now that we have the size, we need to allocate a temporary
14352 		 * buffer in which to store the complete description.  We need
14353 		 * the temporary buffer to be able to drop dtrace_lock()
14354 		 * across the copyout(), below.
14355 		 */
14356 		size = sizeof (dtrace_aggdesc_t) +
14357 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
14358 
14359 		buf = kmem_alloc(size, KM_SLEEP);
14360 		dest = (uintptr_t)buf;
14361 
14362 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
14363 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
14364 
14365 		for (act = agg->dtag_first; ; act = act->dta_next) {
14366 			dtrace_recdesc_t rec = act->dta_rec;
14367 
14368 			/*
14369 			 * See the comment in the above loop for why we pass
14370 			 * over zero-length records.
14371 			 */
14372 			if (rec.dtrd_size == 0) {
14373 				ASSERT(agg->dtag_hasarg);
14374 				continue;
14375 			}
14376 
14377 			if (nrecs-- == 0)
14378 				break;
14379 
14380 			rec.dtrd_offset -= offs;
14381 			bcopy(&rec, (void *)dest, sizeof (rec));
14382 			dest += sizeof (dtrace_recdesc_t);
14383 
14384 			if (act == &agg->dtag_action)
14385 				break;
14386 		}
14387 
14388 		mutex_exit(&dtrace_lock);
14389 
14390 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
14391 			kmem_free(buf, size);
14392 			return (EFAULT);
14393 		}
14394 
14395 		kmem_free(buf, size);
14396 		return (0);
14397 	}
14398 
14399 	case DTRACEIOC_ENABLE: {
14400 		dof_hdr_t *dof;
14401 		dtrace_enabling_t *enab = NULL;
14402 		dtrace_vstate_t *vstate;
14403 		int err = 0;
14404 
14405 		*rv = 0;
14406 
14407 		/*
14408 		 * If a NULL argument has been passed, we take this as our
14409 		 * cue to reevaluate our enablings.
14410 		 */
14411 		if (arg == NULL) {
14412 			mutex_enter(&cpu_lock);
14413 			mutex_enter(&dtrace_lock);
14414 			err = dtrace_enabling_matchstate(state, rv);
14415 			mutex_exit(&dtrace_lock);
14416 			mutex_exit(&cpu_lock);
14417 
14418 			return (err);
14419 		}
14420 
14421 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
14422 			return (rval);
14423 
14424 		mutex_enter(&cpu_lock);
14425 		mutex_enter(&dtrace_lock);
14426 		vstate = &state->dts_vstate;
14427 
14428 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14429 			mutex_exit(&dtrace_lock);
14430 			mutex_exit(&cpu_lock);
14431 			dtrace_dof_destroy(dof);
14432 			return (EBUSY);
14433 		}
14434 
14435 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
14436 			mutex_exit(&dtrace_lock);
14437 			mutex_exit(&cpu_lock);
14438 			dtrace_dof_destroy(dof);
14439 			return (EINVAL);
14440 		}
14441 
14442 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
14443 			dtrace_enabling_destroy(enab);
14444 			mutex_exit(&dtrace_lock);
14445 			mutex_exit(&cpu_lock);
14446 			dtrace_dof_destroy(dof);
14447 			return (rval);
14448 		}
14449 
14450 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
14451 			err = dtrace_enabling_retain(enab);
14452 		} else {
14453 			dtrace_enabling_destroy(enab);
14454 		}
14455 
14456 		mutex_exit(&cpu_lock);
14457 		mutex_exit(&dtrace_lock);
14458 		dtrace_dof_destroy(dof);
14459 
14460 		return (err);
14461 	}
14462 
14463 	case DTRACEIOC_REPLICATE: {
14464 		dtrace_repldesc_t desc;
14465 		dtrace_probedesc_t *match = &desc.dtrpd_match;
14466 		dtrace_probedesc_t *create = &desc.dtrpd_create;
14467 		int err;
14468 
14469 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14470 			return (EFAULT);
14471 
14472 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14473 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14474 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14475 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14476 
14477 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14478 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14479 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14480 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14481 
14482 		mutex_enter(&dtrace_lock);
14483 		err = dtrace_enabling_replicate(state, match, create);
14484 		mutex_exit(&dtrace_lock);
14485 
14486 		return (err);
14487 	}
14488 
14489 	case DTRACEIOC_PROBEMATCH:
14490 	case DTRACEIOC_PROBES: {
14491 		dtrace_probe_t *probe = NULL;
14492 		dtrace_probedesc_t desc;
14493 		dtrace_probekey_t pkey;
14494 		dtrace_id_t i;
14495 		int m = 0;
14496 		uint32_t priv;
14497 		uid_t uid;
14498 		zoneid_t zoneid;
14499 
14500 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14501 			return (EFAULT);
14502 
14503 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14504 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14505 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14506 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14507 
14508 		/*
14509 		 * Before we attempt to match this probe, we want to give
14510 		 * all providers the opportunity to provide it.
14511 		 */
14512 		if (desc.dtpd_id == DTRACE_IDNONE) {
14513 			mutex_enter(&dtrace_provider_lock);
14514 			dtrace_probe_provide(&desc, NULL);
14515 			mutex_exit(&dtrace_provider_lock);
14516 			desc.dtpd_id++;
14517 		}
14518 
14519 		if (cmd == DTRACEIOC_PROBEMATCH)  {
14520 			dtrace_probekey(&desc, &pkey);
14521 			pkey.dtpk_id = DTRACE_IDNONE;
14522 		}
14523 
14524 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
14525 
14526 		mutex_enter(&dtrace_lock);
14527 
14528 		if (cmd == DTRACEIOC_PROBEMATCH) {
14529 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
14530 				if ((probe = dtrace_probes[i - 1]) != NULL &&
14531 				    (m = dtrace_match_probe(probe, &pkey,
14532 				    priv, uid, zoneid)) != 0)
14533 					break;
14534 			}
14535 
14536 			if (m < 0) {
14537 				mutex_exit(&dtrace_lock);
14538 				return (EINVAL);
14539 			}
14540 
14541 		} else {
14542 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
14543 				if ((probe = dtrace_probes[i - 1]) != NULL &&
14544 				    dtrace_match_priv(probe, priv, uid, zoneid))
14545 					break;
14546 			}
14547 		}
14548 
14549 		if (probe == NULL) {
14550 			mutex_exit(&dtrace_lock);
14551 			return (ESRCH);
14552 		}
14553 
14554 		dtrace_probe_description(probe, &desc);
14555 		mutex_exit(&dtrace_lock);
14556 
14557 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14558 			return (EFAULT);
14559 
14560 		return (0);
14561 	}
14562 
14563 	case DTRACEIOC_PROBEARG: {
14564 		dtrace_argdesc_t desc;
14565 		dtrace_probe_t *probe;
14566 		dtrace_provider_t *prov;
14567 
14568 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14569 			return (EFAULT);
14570 
14571 		if (desc.dtargd_id == DTRACE_IDNONE)
14572 			return (EINVAL);
14573 
14574 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
14575 			return (EINVAL);
14576 
14577 		mutex_enter(&dtrace_provider_lock);
14578 		mutex_enter(&mod_lock);
14579 		mutex_enter(&dtrace_lock);
14580 
14581 		if (desc.dtargd_id > dtrace_nprobes) {
14582 			mutex_exit(&dtrace_lock);
14583 			mutex_exit(&mod_lock);
14584 			mutex_exit(&dtrace_provider_lock);
14585 			return (EINVAL);
14586 		}
14587 
14588 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
14589 			mutex_exit(&dtrace_lock);
14590 			mutex_exit(&mod_lock);
14591 			mutex_exit(&dtrace_provider_lock);
14592 			return (EINVAL);
14593 		}
14594 
14595 		mutex_exit(&dtrace_lock);
14596 
14597 		prov = probe->dtpr_provider;
14598 
14599 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
14600 			/*
14601 			 * There isn't any typed information for this probe.
14602 			 * Set the argument number to DTRACE_ARGNONE.
14603 			 */
14604 			desc.dtargd_ndx = DTRACE_ARGNONE;
14605 		} else {
14606 			desc.dtargd_native[0] = '\0';
14607 			desc.dtargd_xlate[0] = '\0';
14608 			desc.dtargd_mapping = desc.dtargd_ndx;
14609 
14610 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
14611 			    probe->dtpr_id, probe->dtpr_arg, &desc);
14612 		}
14613 
14614 		mutex_exit(&mod_lock);
14615 		mutex_exit(&dtrace_provider_lock);
14616 
14617 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14618 			return (EFAULT);
14619 
14620 		return (0);
14621 	}
14622 
14623 	case DTRACEIOC_GO: {
14624 		processorid_t cpuid;
14625 		rval = dtrace_state_go(state, &cpuid);
14626 
14627 		if (rval != 0)
14628 			return (rval);
14629 
14630 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
14631 			return (EFAULT);
14632 
14633 		return (0);
14634 	}
14635 
14636 	case DTRACEIOC_STOP: {
14637 		processorid_t cpuid;
14638 
14639 		mutex_enter(&dtrace_lock);
14640 		rval = dtrace_state_stop(state, &cpuid);
14641 		mutex_exit(&dtrace_lock);
14642 
14643 		if (rval != 0)
14644 			return (rval);
14645 
14646 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
14647 			return (EFAULT);
14648 
14649 		return (0);
14650 	}
14651 
14652 	case DTRACEIOC_DOFGET: {
14653 		dof_hdr_t hdr, *dof;
14654 		uint64_t len;
14655 
14656 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
14657 			return (EFAULT);
14658 
14659 		mutex_enter(&dtrace_lock);
14660 		dof = dtrace_dof_create(state);
14661 		mutex_exit(&dtrace_lock);
14662 
14663 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
14664 		rval = copyout(dof, (void *)arg, len);
14665 		dtrace_dof_destroy(dof);
14666 
14667 		return (rval == 0 ? 0 : EFAULT);
14668 	}
14669 
14670 	case DTRACEIOC_AGGSNAP:
14671 	case DTRACEIOC_BUFSNAP: {
14672 		dtrace_bufdesc_t desc;
14673 		caddr_t cached;
14674 		dtrace_buffer_t *buf;
14675 
14676 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14677 			return (EFAULT);
14678 
14679 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
14680 			return (EINVAL);
14681 
14682 		mutex_enter(&dtrace_lock);
14683 
14684 		if (cmd == DTRACEIOC_BUFSNAP) {
14685 			buf = &state->dts_buffer[desc.dtbd_cpu];
14686 		} else {
14687 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
14688 		}
14689 
14690 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
14691 			size_t sz = buf->dtb_offset;
14692 
14693 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
14694 				mutex_exit(&dtrace_lock);
14695 				return (EBUSY);
14696 			}
14697 
14698 			/*
14699 			 * If this buffer has already been consumed, we're
14700 			 * going to indicate that there's nothing left here
14701 			 * to consume.
14702 			 */
14703 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
14704 				mutex_exit(&dtrace_lock);
14705 
14706 				desc.dtbd_size = 0;
14707 				desc.dtbd_drops = 0;
14708 				desc.dtbd_errors = 0;
14709 				desc.dtbd_oldest = 0;
14710 				sz = sizeof (desc);
14711 
14712 				if (copyout(&desc, (void *)arg, sz) != 0)
14713 					return (EFAULT);
14714 
14715 				return (0);
14716 			}
14717 
14718 			/*
14719 			 * If this is a ring buffer that has wrapped, we want
14720 			 * to copy the whole thing out.
14721 			 */
14722 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
14723 				dtrace_buffer_polish(buf);
14724 				sz = buf->dtb_size;
14725 			}
14726 
14727 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
14728 				mutex_exit(&dtrace_lock);
14729 				return (EFAULT);
14730 			}
14731 
14732 			desc.dtbd_size = sz;
14733 			desc.dtbd_drops = buf->dtb_drops;
14734 			desc.dtbd_errors = buf->dtb_errors;
14735 			desc.dtbd_oldest = buf->dtb_xamot_offset;
14736 
14737 			mutex_exit(&dtrace_lock);
14738 
14739 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14740 				return (EFAULT);
14741 
14742 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
14743 
14744 			return (0);
14745 		}
14746 
14747 		if (buf->dtb_tomax == NULL) {
14748 			ASSERT(buf->dtb_xamot == NULL);
14749 			mutex_exit(&dtrace_lock);
14750 			return (ENOENT);
14751 		}
14752 
14753 		cached = buf->dtb_tomax;
14754 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
14755 
14756 		dtrace_xcall(desc.dtbd_cpu,
14757 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
14758 
14759 		state->dts_errors += buf->dtb_xamot_errors;
14760 
14761 		/*
14762 		 * If the buffers did not actually switch, then the cross call
14763 		 * did not take place -- presumably because the given CPU is
14764 		 * not in the ready set.  If this is the case, we'll return
14765 		 * ENOENT.
14766 		 */
14767 		if (buf->dtb_tomax == cached) {
14768 			ASSERT(buf->dtb_xamot != cached);
14769 			mutex_exit(&dtrace_lock);
14770 			return (ENOENT);
14771 		}
14772 
14773 		ASSERT(cached == buf->dtb_xamot);
14774 
14775 		/*
14776 		 * We have our snapshot; now copy it out.
14777 		 */
14778 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
14779 		    buf->dtb_xamot_offset) != 0) {
14780 			mutex_exit(&dtrace_lock);
14781 			return (EFAULT);
14782 		}
14783 
14784 		desc.dtbd_size = buf->dtb_xamot_offset;
14785 		desc.dtbd_drops = buf->dtb_xamot_drops;
14786 		desc.dtbd_errors = buf->dtb_xamot_errors;
14787 		desc.dtbd_oldest = 0;
14788 
14789 		mutex_exit(&dtrace_lock);
14790 
14791 		/*
14792 		 * Finally, copy out the buffer description.
14793 		 */
14794 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14795 			return (EFAULT);
14796 
14797 		return (0);
14798 	}
14799 
14800 	case DTRACEIOC_CONF: {
14801 		dtrace_conf_t conf;
14802 
14803 		bzero(&conf, sizeof (conf));
14804 		conf.dtc_difversion = DIF_VERSION;
14805 		conf.dtc_difintregs = DIF_DIR_NREGS;
14806 		conf.dtc_diftupregs = DIF_DTR_NREGS;
14807 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
14808 
14809 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
14810 			return (EFAULT);
14811 
14812 		return (0);
14813 	}
14814 
14815 	case DTRACEIOC_STATUS: {
14816 		dtrace_status_t stat;
14817 		dtrace_dstate_t *dstate;
14818 		int i, j;
14819 		uint64_t nerrs;
14820 
14821 		/*
14822 		 * See the comment in dtrace_state_deadman() for the reason
14823 		 * for setting dts_laststatus to INT64_MAX before setting
14824 		 * it to the correct value.
14825 		 */
14826 		state->dts_laststatus = INT64_MAX;
14827 		dtrace_membar_producer();
14828 		state->dts_laststatus = dtrace_gethrtime();
14829 
14830 		bzero(&stat, sizeof (stat));
14831 
14832 		mutex_enter(&dtrace_lock);
14833 
14834 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
14835 			mutex_exit(&dtrace_lock);
14836 			return (ENOENT);
14837 		}
14838 
14839 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
14840 			stat.dtst_exiting = 1;
14841 
14842 		nerrs = state->dts_errors;
14843 		dstate = &state->dts_vstate.dtvs_dynvars;
14844 
14845 		for (i = 0; i < NCPU; i++) {
14846 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
14847 
14848 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
14849 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
14850 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
14851 
14852 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
14853 				stat.dtst_filled++;
14854 
14855 			nerrs += state->dts_buffer[i].dtb_errors;
14856 
14857 			for (j = 0; j < state->dts_nspeculations; j++) {
14858 				dtrace_speculation_t *spec;
14859 				dtrace_buffer_t *buf;
14860 
14861 				spec = &state->dts_speculations[j];
14862 				buf = &spec->dtsp_buffer[i];
14863 				stat.dtst_specdrops += buf->dtb_xamot_drops;
14864 			}
14865 		}
14866 
14867 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
14868 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
14869 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
14870 		stat.dtst_dblerrors = state->dts_dblerrors;
14871 		stat.dtst_killed =
14872 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
14873 		stat.dtst_errors = nerrs;
14874 
14875 		mutex_exit(&dtrace_lock);
14876 
14877 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
14878 			return (EFAULT);
14879 
14880 		return (0);
14881 	}
14882 
14883 	case DTRACEIOC_FORMAT: {
14884 		dtrace_fmtdesc_t fmt;
14885 		char *str;
14886 		int len;
14887 
14888 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
14889 			return (EFAULT);
14890 
14891 		mutex_enter(&dtrace_lock);
14892 
14893 		if (fmt.dtfd_format == 0 ||
14894 		    fmt.dtfd_format > state->dts_nformats) {
14895 			mutex_exit(&dtrace_lock);
14896 			return (EINVAL);
14897 		}
14898 
14899 		/*
14900 		 * Format strings are allocated contiguously and they are
14901 		 * never freed; if a format index is less than the number
14902 		 * of formats, we can assert that the format map is non-NULL
14903 		 * and that the format for the specified index is non-NULL.
14904 		 */
14905 		ASSERT(state->dts_formats != NULL);
14906 		str = state->dts_formats[fmt.dtfd_format - 1];
14907 		ASSERT(str != NULL);
14908 
14909 		len = strlen(str) + 1;
14910 
14911 		if (len > fmt.dtfd_length) {
14912 			fmt.dtfd_length = len;
14913 
14914 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
14915 				mutex_exit(&dtrace_lock);
14916 				return (EINVAL);
14917 			}
14918 		} else {
14919 			if (copyout(str, fmt.dtfd_string, len) != 0) {
14920 				mutex_exit(&dtrace_lock);
14921 				return (EINVAL);
14922 			}
14923 		}
14924 
14925 		mutex_exit(&dtrace_lock);
14926 		return (0);
14927 	}
14928 
14929 	default:
14930 		break;
14931 	}
14932 
14933 	return (ENOTTY);
14934 }
14935 
14936 /*ARGSUSED*/
14937 static int
14938 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
14939 {
14940 	dtrace_state_t *state;
14941 
14942 	switch (cmd) {
14943 	case DDI_DETACH:
14944 		break;
14945 
14946 	case DDI_SUSPEND:
14947 		return (DDI_SUCCESS);
14948 
14949 	default:
14950 		return (DDI_FAILURE);
14951 	}
14952 
14953 	mutex_enter(&cpu_lock);
14954 	mutex_enter(&dtrace_provider_lock);
14955 	mutex_enter(&dtrace_lock);
14956 
14957 	ASSERT(dtrace_opens == 0);
14958 
14959 	if (dtrace_helpers > 0) {
14960 		mutex_exit(&dtrace_provider_lock);
14961 		mutex_exit(&dtrace_lock);
14962 		mutex_exit(&cpu_lock);
14963 		return (DDI_FAILURE);
14964 	}
14965 
14966 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
14967 		mutex_exit(&dtrace_provider_lock);
14968 		mutex_exit(&dtrace_lock);
14969 		mutex_exit(&cpu_lock);
14970 		return (DDI_FAILURE);
14971 	}
14972 
14973 	dtrace_provider = NULL;
14974 
14975 	if ((state = dtrace_anon_grab()) != NULL) {
14976 		/*
14977 		 * If there were ECBs on this state, the provider should
14978 		 * have not been allowed to detach; assert that there is
14979 		 * none.
14980 		 */
14981 		ASSERT(state->dts_necbs == 0);
14982 		dtrace_state_destroy(state);
14983 
14984 		/*
14985 		 * If we're being detached with anonymous state, we need to
14986 		 * indicate to the kernel debugger that DTrace is now inactive.
14987 		 */
14988 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14989 	}
14990 
14991 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
14992 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
14993 	dtrace_cpu_init = NULL;
14994 	dtrace_helpers_cleanup = NULL;
14995 	dtrace_helpers_fork = NULL;
14996 	dtrace_cpustart_init = NULL;
14997 	dtrace_cpustart_fini = NULL;
14998 	dtrace_debugger_init = NULL;
14999 	dtrace_debugger_fini = NULL;
15000 	dtrace_kreloc_init = NULL;
15001 	dtrace_kreloc_fini = NULL;
15002 	dtrace_modload = NULL;
15003 	dtrace_modunload = NULL;
15004 
15005 	mutex_exit(&cpu_lock);
15006 
15007 	if (dtrace_helptrace_enabled) {
15008 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
15009 		dtrace_helptrace_buffer = NULL;
15010 	}
15011 
15012 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
15013 	dtrace_probes = NULL;
15014 	dtrace_nprobes = 0;
15015 
15016 	dtrace_hash_destroy(dtrace_bymod);
15017 	dtrace_hash_destroy(dtrace_byfunc);
15018 	dtrace_hash_destroy(dtrace_byname);
15019 	dtrace_bymod = NULL;
15020 	dtrace_byfunc = NULL;
15021 	dtrace_byname = NULL;
15022 
15023 	kmem_cache_destroy(dtrace_state_cache);
15024 	vmem_destroy(dtrace_minor);
15025 	vmem_destroy(dtrace_arena);
15026 
15027 	if (dtrace_toxrange != NULL) {
15028 		kmem_free(dtrace_toxrange,
15029 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
15030 		dtrace_toxrange = NULL;
15031 		dtrace_toxranges = 0;
15032 		dtrace_toxranges_max = 0;
15033 	}
15034 
15035 	ddi_remove_minor_node(dtrace_devi, NULL);
15036 	dtrace_devi = NULL;
15037 
15038 	ddi_soft_state_fini(&dtrace_softstate);
15039 
15040 	ASSERT(dtrace_vtime_references == 0);
15041 	ASSERT(dtrace_opens == 0);
15042 	ASSERT(dtrace_retained == NULL);
15043 
15044 	mutex_exit(&dtrace_lock);
15045 	mutex_exit(&dtrace_provider_lock);
15046 
15047 	/*
15048 	 * We don't destroy the task queue until after we have dropped our
15049 	 * locks (taskq_destroy() may block on running tasks).  To prevent
15050 	 * attempting to do work after we have effectively detached but before
15051 	 * the task queue has been destroyed, all tasks dispatched via the
15052 	 * task queue must check that DTrace is still attached before
15053 	 * performing any operation.
15054 	 */
15055 	taskq_destroy(dtrace_taskq);
15056 	dtrace_taskq = NULL;
15057 
15058 	return (DDI_SUCCESS);
15059 }
15060 
15061 /*ARGSUSED*/
15062 static int
15063 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
15064 {
15065 	int error;
15066 
15067 	switch (infocmd) {
15068 	case DDI_INFO_DEVT2DEVINFO:
15069 		*result = (void *)dtrace_devi;
15070 		error = DDI_SUCCESS;
15071 		break;
15072 	case DDI_INFO_DEVT2INSTANCE:
15073 		*result = (void *)0;
15074 		error = DDI_SUCCESS;
15075 		break;
15076 	default:
15077 		error = DDI_FAILURE;
15078 	}
15079 	return (error);
15080 }
15081 
15082 static struct cb_ops dtrace_cb_ops = {
15083 	dtrace_open,		/* open */
15084 	dtrace_close,		/* close */
15085 	nulldev,		/* strategy */
15086 	nulldev,		/* print */
15087 	nodev,			/* dump */
15088 	nodev,			/* read */
15089 	nodev,			/* write */
15090 	dtrace_ioctl,		/* ioctl */
15091 	nodev,			/* devmap */
15092 	nodev,			/* mmap */
15093 	nodev,			/* segmap */
15094 	nochpoll,		/* poll */
15095 	ddi_prop_op,		/* cb_prop_op */
15096 	0,			/* streamtab  */
15097 	D_NEW | D_MP		/* Driver compatibility flag */
15098 };
15099 
15100 static struct dev_ops dtrace_ops = {
15101 	DEVO_REV,		/* devo_rev */
15102 	0,			/* refcnt */
15103 	dtrace_info,		/* get_dev_info */
15104 	nulldev,		/* identify */
15105 	nulldev,		/* probe */
15106 	dtrace_attach,		/* attach */
15107 	dtrace_detach,		/* detach */
15108 	nodev,			/* reset */
15109 	&dtrace_cb_ops,		/* driver operations */
15110 	NULL,			/* bus operations */
15111 	nodev			/* dev power */
15112 };
15113 
15114 static struct modldrv modldrv = {
15115 	&mod_driverops,		/* module type (this is a pseudo driver) */
15116 	"Dynamic Tracing",	/* name of module */
15117 	&dtrace_ops,		/* driver ops */
15118 };
15119 
15120 static struct modlinkage modlinkage = {
15121 	MODREV_1,
15122 	(void *)&modldrv,
15123 	NULL
15124 };
15125 
15126 int
15127 _init(void)
15128 {
15129 	return (mod_install(&modlinkage));
15130 }
15131 
15132 int
15133 _info(struct modinfo *modinfop)
15134 {
15135 	return (mod_info(&modlinkage, modinfop));
15136 }
15137 
15138 int
15139 _fini(void)
15140 {
15141 	return (mod_remove(&modlinkage));
15142 }
15143