1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * DTrace - Dynamic Tracing for Solaris 29 * 30 * This is the implementation of the Solaris Dynamic Tracing framework 31 * (DTrace). The user-visible interface to DTrace is described at length in 32 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 33 * library, the in-kernel DTrace framework, and the DTrace providers are 34 * described in the block comments in the <sys/dtrace.h> header file. The 35 * internal architecture of DTrace is described in the block comments in the 36 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 37 * implementation very much assume mastery of all of these sources; if one has 38 * an unanswered question about the implementation, one should consult them 39 * first. 40 * 41 * The functions here are ordered roughly as follows: 42 * 43 * - Probe context functions 44 * - Probe hashing functions 45 * - Non-probe context utility functions 46 * - Matching functions 47 * - Provider-to-Framework API functions 48 * - Probe management functions 49 * - DIF object functions 50 * - Format functions 51 * - Predicate functions 52 * - ECB functions 53 * - Buffer functions 54 * - Enabling functions 55 * - DOF functions 56 * - Anonymous enabling functions 57 * - Consumer state functions 58 * - Helper functions 59 * - Hook functions 60 * - Driver cookbook functions 61 * 62 * Each group of functions begins with a block comment labelled the "DTrace 63 * [Group] Functions", allowing one to find each block by searching forward 64 * on capital-f functions. 65 */ 66 #include <sys/errno.h> 67 #include <sys/stat.h> 68 #include <sys/modctl.h> 69 #include <sys/conf.h> 70 #include <sys/systm.h> 71 #include <sys/ddi.h> 72 #include <sys/sunddi.h> 73 #include <sys/cpuvar.h> 74 #include <sys/kmem.h> 75 #include <sys/strsubr.h> 76 #include <sys/sysmacros.h> 77 #include <sys/dtrace_impl.h> 78 #include <sys/atomic.h> 79 #include <sys/cmn_err.h> 80 #include <sys/mutex_impl.h> 81 #include <sys/rwlock_impl.h> 82 #include <sys/ctf_api.h> 83 #include <sys/panic.h> 84 #include <sys/priv_impl.h> 85 #include <sys/policy.h> 86 #include <sys/cred_impl.h> 87 #include <sys/procfs_isa.h> 88 #include <sys/taskq.h> 89 #include <sys/mkdev.h> 90 #include <sys/kdi.h> 91 #include <sys/zone.h> 92 #include <sys/socket.h> 93 #include <netinet/in.h> 94 95 /* 96 * DTrace Tunable Variables 97 * 98 * The following variables may be tuned by adding a line to /etc/system that 99 * includes both the name of the DTrace module ("dtrace") and the name of the 100 * variable. For example: 101 * 102 * set dtrace:dtrace_destructive_disallow = 1 103 * 104 * In general, the only variables that one should be tuning this way are those 105 * that affect system-wide DTrace behavior, and for which the default behavior 106 * is undesirable. Most of these variables are tunable on a per-consumer 107 * basis using DTrace options, and need not be tuned on a system-wide basis. 108 * When tuning these variables, avoid pathological values; while some attempt 109 * is made to verify the integrity of these variables, they are not considered 110 * part of the supported interface to DTrace, and they are therefore not 111 * checked comprehensively. Further, these variables should not be tuned 112 * dynamically via "mdb -kw" or other means; they should only be tuned via 113 * /etc/system. 114 */ 115 int dtrace_destructive_disallow = 0; 116 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 117 size_t dtrace_difo_maxsize = (256 * 1024); 118 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 119 size_t dtrace_global_maxsize = (16 * 1024); 120 size_t dtrace_actions_max = (16 * 1024); 121 size_t dtrace_retain_max = 1024; 122 dtrace_optval_t dtrace_helper_actions_max = 32; 123 dtrace_optval_t dtrace_helper_providers_max = 32; 124 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 125 size_t dtrace_strsize_default = 256; 126 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 127 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 128 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 129 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 130 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 132 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_nspec_default = 1; 134 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 135 dtrace_optval_t dtrace_stackframes_default = 20; 136 dtrace_optval_t dtrace_ustackframes_default = 20; 137 dtrace_optval_t dtrace_jstackframes_default = 50; 138 dtrace_optval_t dtrace_jstackstrsize_default = 512; 139 int dtrace_msgdsize_max = 128; 140 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 141 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 142 int dtrace_devdepth_max = 32; 143 int dtrace_err_verbose; 144 hrtime_t dtrace_deadman_interval = NANOSEC; 145 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 146 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 147 148 /* 149 * DTrace External Variables 150 * 151 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 152 * available to DTrace consumers via the backtick (`) syntax. One of these, 153 * dtrace_zero, is made deliberately so: it is provided as a source of 154 * well-known, zero-filled memory. While this variable is not documented, 155 * it is used by some translators as an implementation detail. 156 */ 157 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 158 159 /* 160 * DTrace Internal Variables 161 */ 162 static dev_info_t *dtrace_devi; /* device info */ 163 static vmem_t *dtrace_arena; /* probe ID arena */ 164 static vmem_t *dtrace_minor; /* minor number arena */ 165 static taskq_t *dtrace_taskq; /* task queue */ 166 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 167 static int dtrace_nprobes; /* number of probes */ 168 static dtrace_provider_t *dtrace_provider; /* provider list */ 169 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 170 static int dtrace_opens; /* number of opens */ 171 static int dtrace_helpers; /* number of helpers */ 172 static void *dtrace_softstate; /* softstate pointer */ 173 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 174 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 175 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 176 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 177 static int dtrace_toxranges; /* number of toxic ranges */ 178 static int dtrace_toxranges_max; /* size of toxic range array */ 179 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 180 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 181 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 182 static kthread_t *dtrace_panicked; /* panicking thread */ 183 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 184 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 185 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 186 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 187 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 188 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 189 190 /* 191 * DTrace Locking 192 * DTrace is protected by three (relatively coarse-grained) locks: 193 * 194 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 195 * including enabling state, probes, ECBs, consumer state, helper state, 196 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 197 * probe context is lock-free -- synchronization is handled via the 198 * dtrace_sync() cross call mechanism. 199 * 200 * (2) dtrace_provider_lock is required when manipulating provider state, or 201 * when provider state must be held constant. 202 * 203 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 204 * when meta provider state must be held constant. 205 * 206 * The lock ordering between these three locks is dtrace_meta_lock before 207 * dtrace_provider_lock before dtrace_lock. (In particular, there are 208 * several places where dtrace_provider_lock is held by the framework as it 209 * calls into the providers -- which then call back into the framework, 210 * grabbing dtrace_lock.) 211 * 212 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 213 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 214 * role as a coarse-grained lock; it is acquired before both of these locks. 215 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 216 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 217 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 218 * acquired _between_ dtrace_provider_lock and dtrace_lock. 219 */ 220 static kmutex_t dtrace_lock; /* probe state lock */ 221 static kmutex_t dtrace_provider_lock; /* provider state lock */ 222 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 223 224 /* 225 * DTrace Provider Variables 226 * 227 * These are the variables relating to DTrace as a provider (that is, the 228 * provider of the BEGIN, END, and ERROR probes). 229 */ 230 static dtrace_pattr_t dtrace_provider_attr = { 231 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 232 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 233 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 236 }; 237 238 static void 239 dtrace_nullop(void) 240 {} 241 242 static dtrace_pops_t dtrace_provider_ops = { 243 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 244 (void (*)(void *, struct modctl *))dtrace_nullop, 245 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 246 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 247 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 248 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 249 NULL, 250 NULL, 251 NULL, 252 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 253 }; 254 255 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 256 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 257 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 258 259 /* 260 * DTrace Helper Tracing Variables 261 */ 262 uint32_t dtrace_helptrace_next = 0; 263 uint32_t dtrace_helptrace_nlocals; 264 char *dtrace_helptrace_buffer; 265 int dtrace_helptrace_bufsize = 512 * 1024; 266 267 #ifdef DEBUG 268 int dtrace_helptrace_enabled = 1; 269 #else 270 int dtrace_helptrace_enabled = 0; 271 #endif 272 273 /* 274 * DTrace Error Hashing 275 * 276 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 277 * table. This is very useful for checking coverage of tests that are 278 * expected to induce DIF or DOF processing errors, and may be useful for 279 * debugging problems in the DIF code generator or in DOF generation . The 280 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 281 */ 282 #ifdef DEBUG 283 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 284 static const char *dtrace_errlast; 285 static kthread_t *dtrace_errthread; 286 static kmutex_t dtrace_errlock; 287 #endif 288 289 /* 290 * DTrace Macros and Constants 291 * 292 * These are various macros that are useful in various spots in the 293 * implementation, along with a few random constants that have no meaning 294 * outside of the implementation. There is no real structure to this cpp 295 * mishmash -- but is there ever? 296 */ 297 #define DTRACE_HASHSTR(hash, probe) \ 298 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 299 300 #define DTRACE_HASHNEXT(hash, probe) \ 301 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 302 303 #define DTRACE_HASHPREV(hash, probe) \ 304 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 305 306 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 307 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 308 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 309 310 #define DTRACE_AGGHASHSIZE_SLEW 17 311 312 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 313 314 /* 315 * The key for a thread-local variable consists of the lower 61 bits of the 316 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 317 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 318 * equal to a variable identifier. This is necessary (but not sufficient) to 319 * assure that global associative arrays never collide with thread-local 320 * variables. To guarantee that they cannot collide, we must also define the 321 * order for keying dynamic variables. That order is: 322 * 323 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 324 * 325 * Because the variable-key and the tls-key are in orthogonal spaces, there is 326 * no way for a global variable key signature to match a thread-local key 327 * signature. 328 */ 329 #define DTRACE_TLS_THRKEY(where) { \ 330 uint_t intr = 0; \ 331 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 332 for (; actv; actv >>= 1) \ 333 intr++; \ 334 ASSERT(intr < (1 << 3)); \ 335 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 336 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 337 } 338 339 #define DT_BSWAP_8(x) ((x) & 0xff) 340 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 341 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 342 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 343 344 #define DT_MASK_LO 0x00000000FFFFFFFFULL 345 346 #define DTRACE_STORE(type, tomax, offset, what) \ 347 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 348 349 #ifndef __i386 350 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 351 if (addr & (size - 1)) { \ 352 *flags |= CPU_DTRACE_BADALIGN; \ 353 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 354 return (0); \ 355 } 356 #else 357 #define DTRACE_ALIGNCHECK(addr, size, flags) 358 #endif 359 360 /* 361 * Test whether a range of memory starting at testaddr of size testsz falls 362 * within the range of memory described by addr, sz. We take care to avoid 363 * problems with overflow and underflow of the unsigned quantities, and 364 * disallow all negative sizes. Ranges of size 0 are allowed. 365 */ 366 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 367 ((testaddr) - (baseaddr) < (basesz) && \ 368 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 369 (testaddr) + (testsz) >= (testaddr)) 370 371 /* 372 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 373 * alloc_sz on the righthand side of the comparison in order to avoid overflow 374 * or underflow in the comparison with it. This is simpler than the INRANGE 375 * check above, because we know that the dtms_scratch_ptr is valid in the 376 * range. Allocations of size zero are allowed. 377 */ 378 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 379 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 380 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 381 382 #define DTRACE_LOADFUNC(bits) \ 383 /*CSTYLED*/ \ 384 uint##bits##_t \ 385 dtrace_load##bits(uintptr_t addr) \ 386 { \ 387 size_t size = bits / NBBY; \ 388 /*CSTYLED*/ \ 389 uint##bits##_t rval; \ 390 int i; \ 391 volatile uint16_t *flags = (volatile uint16_t *) \ 392 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 393 \ 394 DTRACE_ALIGNCHECK(addr, size, flags); \ 395 \ 396 for (i = 0; i < dtrace_toxranges; i++) { \ 397 if (addr >= dtrace_toxrange[i].dtt_limit) \ 398 continue; \ 399 \ 400 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 401 continue; \ 402 \ 403 /* \ 404 * This address falls within a toxic region; return 0. \ 405 */ \ 406 *flags |= CPU_DTRACE_BADADDR; \ 407 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 408 return (0); \ 409 } \ 410 \ 411 *flags |= CPU_DTRACE_NOFAULT; \ 412 /*CSTYLED*/ \ 413 rval = *((volatile uint##bits##_t *)addr); \ 414 *flags &= ~CPU_DTRACE_NOFAULT; \ 415 \ 416 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 417 } 418 419 #ifdef _LP64 420 #define dtrace_loadptr dtrace_load64 421 #else 422 #define dtrace_loadptr dtrace_load32 423 #endif 424 425 #define DTRACE_DYNHASH_FREE 0 426 #define DTRACE_DYNHASH_SINK 1 427 #define DTRACE_DYNHASH_VALID 2 428 429 #define DTRACE_MATCH_NEXT 0 430 #define DTRACE_MATCH_DONE 1 431 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 432 #define DTRACE_STATE_ALIGN 64 433 434 #define DTRACE_FLAGS2FLT(flags) \ 435 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 436 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 437 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 438 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 439 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 440 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 441 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 442 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 443 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 444 DTRACEFLT_UNKNOWN) 445 446 #define DTRACEACT_ISSTRING(act) \ 447 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 448 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 449 450 static size_t dtrace_strlen(const char *, size_t); 451 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 452 static void dtrace_enabling_provide(dtrace_provider_t *); 453 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 454 static void dtrace_enabling_matchall(void); 455 static dtrace_state_t *dtrace_anon_grab(void); 456 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 457 dtrace_state_t *, uint64_t, uint64_t); 458 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 459 static void dtrace_buffer_drop(dtrace_buffer_t *); 460 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 461 dtrace_state_t *, dtrace_mstate_t *); 462 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 463 dtrace_optval_t); 464 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 465 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 466 467 /* 468 * DTrace Probe Context Functions 469 * 470 * These functions are called from probe context. Because probe context is 471 * any context in which C may be called, arbitrarily locks may be held, 472 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 473 * As a result, functions called from probe context may only call other DTrace 474 * support functions -- they may not interact at all with the system at large. 475 * (Note that the ASSERT macro is made probe-context safe by redefining it in 476 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 477 * loads are to be performed from probe context, they _must_ be in terms of 478 * the safe dtrace_load*() variants. 479 * 480 * Some functions in this block are not actually called from probe context; 481 * for these functions, there will be a comment above the function reading 482 * "Note: not called from probe context." 483 */ 484 void 485 dtrace_panic(const char *format, ...) 486 { 487 va_list alist; 488 489 va_start(alist, format); 490 dtrace_vpanic(format, alist); 491 va_end(alist); 492 } 493 494 int 495 dtrace_assfail(const char *a, const char *f, int l) 496 { 497 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 498 499 /* 500 * We just need something here that even the most clever compiler 501 * cannot optimize away. 502 */ 503 return (a[(uintptr_t)f]); 504 } 505 506 /* 507 * Atomically increment a specified error counter from probe context. 508 */ 509 static void 510 dtrace_error(uint32_t *counter) 511 { 512 /* 513 * Most counters stored to in probe context are per-CPU counters. 514 * However, there are some error conditions that are sufficiently 515 * arcane that they don't merit per-CPU storage. If these counters 516 * are incremented concurrently on different CPUs, scalability will be 517 * adversely affected -- but we don't expect them to be white-hot in a 518 * correctly constructed enabling... 519 */ 520 uint32_t oval, nval; 521 522 do { 523 oval = *counter; 524 525 if ((nval = oval + 1) == 0) { 526 /* 527 * If the counter would wrap, set it to 1 -- assuring 528 * that the counter is never zero when we have seen 529 * errors. (The counter must be 32-bits because we 530 * aren't guaranteed a 64-bit compare&swap operation.) 531 * To save this code both the infamy of being fingered 532 * by a priggish news story and the indignity of being 533 * the target of a neo-puritan witch trial, we're 534 * carefully avoiding any colorful description of the 535 * likelihood of this condition -- but suffice it to 536 * say that it is only slightly more likely than the 537 * overflow of predicate cache IDs, as discussed in 538 * dtrace_predicate_create(). 539 */ 540 nval = 1; 541 } 542 } while (dtrace_cas32(counter, oval, nval) != oval); 543 } 544 545 /* 546 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 547 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 548 */ 549 DTRACE_LOADFUNC(8) 550 DTRACE_LOADFUNC(16) 551 DTRACE_LOADFUNC(32) 552 DTRACE_LOADFUNC(64) 553 554 static int 555 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 556 { 557 if (dest < mstate->dtms_scratch_base) 558 return (0); 559 560 if (dest + size < dest) 561 return (0); 562 563 if (dest + size > mstate->dtms_scratch_ptr) 564 return (0); 565 566 return (1); 567 } 568 569 static int 570 dtrace_canstore_statvar(uint64_t addr, size_t sz, 571 dtrace_statvar_t **svars, int nsvars) 572 { 573 int i; 574 575 for (i = 0; i < nsvars; i++) { 576 dtrace_statvar_t *svar = svars[i]; 577 578 if (svar == NULL || svar->dtsv_size == 0) 579 continue; 580 581 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 582 return (1); 583 } 584 585 return (0); 586 } 587 588 /* 589 * Check to see if the address is within a memory region to which a store may 590 * be issued. This includes the DTrace scratch areas, and any DTrace variable 591 * region. The caller of dtrace_canstore() is responsible for performing any 592 * alignment checks that are needed before stores are actually executed. 593 */ 594 static int 595 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 596 dtrace_vstate_t *vstate) 597 { 598 /* 599 * First, check to see if the address is in scratch space... 600 */ 601 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 602 mstate->dtms_scratch_size)) 603 return (1); 604 605 /* 606 * Now check to see if it's a dynamic variable. This check will pick 607 * up both thread-local variables and any global dynamically-allocated 608 * variables. 609 */ 610 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 611 vstate->dtvs_dynvars.dtds_size)) { 612 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 613 uintptr_t base = (uintptr_t)dstate->dtds_base + 614 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 615 uintptr_t chunkoffs; 616 617 /* 618 * Before we assume that we can store here, we need to make 619 * sure that it isn't in our metadata -- storing to our 620 * dynamic variable metadata would corrupt our state. For 621 * the range to not include any dynamic variable metadata, 622 * it must: 623 * 624 * (1) Start above the hash table that is at the base of 625 * the dynamic variable space 626 * 627 * (2) Have a starting chunk offset that is beyond the 628 * dtrace_dynvar_t that is at the base of every chunk 629 * 630 * (3) Not span a chunk boundary 631 * 632 */ 633 if (addr < base) 634 return (0); 635 636 chunkoffs = (addr - base) % dstate->dtds_chunksize; 637 638 if (chunkoffs < sizeof (dtrace_dynvar_t)) 639 return (0); 640 641 if (chunkoffs + sz > dstate->dtds_chunksize) 642 return (0); 643 644 return (1); 645 } 646 647 /* 648 * Finally, check the static local and global variables. These checks 649 * take the longest, so we perform them last. 650 */ 651 if (dtrace_canstore_statvar(addr, sz, 652 vstate->dtvs_locals, vstate->dtvs_nlocals)) 653 return (1); 654 655 if (dtrace_canstore_statvar(addr, sz, 656 vstate->dtvs_globals, vstate->dtvs_nglobals)) 657 return (1); 658 659 return (0); 660 } 661 662 663 /* 664 * Convenience routine to check to see if the address is within a memory 665 * region in which a load may be issued given the user's privilege level; 666 * if not, it sets the appropriate error flags and loads 'addr' into the 667 * illegal value slot. 668 * 669 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 670 * appropriate memory access protection. 671 */ 672 static int 673 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 674 dtrace_vstate_t *vstate) 675 { 676 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 677 678 /* 679 * If we hold the privilege to read from kernel memory, then 680 * everything is readable. 681 */ 682 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 683 return (1); 684 685 /* 686 * You can obviously read that which you can store. 687 */ 688 if (dtrace_canstore(addr, sz, mstate, vstate)) 689 return (1); 690 691 /* 692 * We're allowed to read from our own string table. 693 */ 694 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 695 mstate->dtms_difo->dtdo_strlen)) 696 return (1); 697 698 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 699 *illval = addr; 700 return (0); 701 } 702 703 /* 704 * Convenience routine to check to see if a given string is within a memory 705 * region in which a load may be issued given the user's privilege level; 706 * this exists so that we don't need to issue unnecessary dtrace_strlen() 707 * calls in the event that the user has all privileges. 708 */ 709 static int 710 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 711 dtrace_vstate_t *vstate) 712 { 713 size_t strsz; 714 715 /* 716 * If we hold the privilege to read from kernel memory, then 717 * everything is readable. 718 */ 719 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 720 return (1); 721 722 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 723 if (dtrace_canload(addr, strsz, mstate, vstate)) 724 return (1); 725 726 return (0); 727 } 728 729 /* 730 * Convenience routine to check to see if a given variable is within a memory 731 * region in which a load may be issued given the user's privilege level. 732 */ 733 static int 734 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 735 dtrace_vstate_t *vstate) 736 { 737 size_t sz; 738 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 739 740 /* 741 * If we hold the privilege to read from kernel memory, then 742 * everything is readable. 743 */ 744 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 745 return (1); 746 747 if (type->dtdt_kind == DIF_TYPE_STRING) 748 sz = dtrace_strlen(src, 749 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 750 else 751 sz = type->dtdt_size; 752 753 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 754 } 755 756 /* 757 * Compare two strings using safe loads. 758 */ 759 static int 760 dtrace_strncmp(char *s1, char *s2, size_t limit) 761 { 762 uint8_t c1, c2; 763 volatile uint16_t *flags; 764 765 if (s1 == s2 || limit == 0) 766 return (0); 767 768 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 769 770 do { 771 if (s1 == NULL) { 772 c1 = '\0'; 773 } else { 774 c1 = dtrace_load8((uintptr_t)s1++); 775 } 776 777 if (s2 == NULL) { 778 c2 = '\0'; 779 } else { 780 c2 = dtrace_load8((uintptr_t)s2++); 781 } 782 783 if (c1 != c2) 784 return (c1 - c2); 785 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 786 787 return (0); 788 } 789 790 /* 791 * Compute strlen(s) for a string using safe memory accesses. The additional 792 * len parameter is used to specify a maximum length to ensure completion. 793 */ 794 static size_t 795 dtrace_strlen(const char *s, size_t lim) 796 { 797 uint_t len; 798 799 for (len = 0; len != lim; len++) { 800 if (dtrace_load8((uintptr_t)s++) == '\0') 801 break; 802 } 803 804 return (len); 805 } 806 807 /* 808 * Check if an address falls within a toxic region. 809 */ 810 static int 811 dtrace_istoxic(uintptr_t kaddr, size_t size) 812 { 813 uintptr_t taddr, tsize; 814 int i; 815 816 for (i = 0; i < dtrace_toxranges; i++) { 817 taddr = dtrace_toxrange[i].dtt_base; 818 tsize = dtrace_toxrange[i].dtt_limit - taddr; 819 820 if (kaddr - taddr < tsize) { 821 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 822 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 823 return (1); 824 } 825 826 if (taddr - kaddr < size) { 827 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 828 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 829 return (1); 830 } 831 } 832 833 return (0); 834 } 835 836 /* 837 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 838 * memory specified by the DIF program. The dst is assumed to be safe memory 839 * that we can store to directly because it is managed by DTrace. As with 840 * standard bcopy, overlapping copies are handled properly. 841 */ 842 static void 843 dtrace_bcopy(const void *src, void *dst, size_t len) 844 { 845 if (len != 0) { 846 uint8_t *s1 = dst; 847 const uint8_t *s2 = src; 848 849 if (s1 <= s2) { 850 do { 851 *s1++ = dtrace_load8((uintptr_t)s2++); 852 } while (--len != 0); 853 } else { 854 s2 += len; 855 s1 += len; 856 857 do { 858 *--s1 = dtrace_load8((uintptr_t)--s2); 859 } while (--len != 0); 860 } 861 } 862 } 863 864 /* 865 * Copy src to dst using safe memory accesses, up to either the specified 866 * length, or the point that a nul byte is encountered. The src is assumed to 867 * be unsafe memory specified by the DIF program. The dst is assumed to be 868 * safe memory that we can store to directly because it is managed by DTrace. 869 * Unlike dtrace_bcopy(), overlapping regions are not handled. 870 */ 871 static void 872 dtrace_strcpy(const void *src, void *dst, size_t len) 873 { 874 if (len != 0) { 875 uint8_t *s1 = dst, c; 876 const uint8_t *s2 = src; 877 878 do { 879 *s1++ = c = dtrace_load8((uintptr_t)s2++); 880 } while (--len != 0 && c != '\0'); 881 } 882 } 883 884 /* 885 * Copy src to dst, deriving the size and type from the specified (BYREF) 886 * variable type. The src is assumed to be unsafe memory specified by the DIF 887 * program. The dst is assumed to be DTrace variable memory that is of the 888 * specified type; we assume that we can store to directly. 889 */ 890 static void 891 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 892 { 893 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 894 895 if (type->dtdt_kind == DIF_TYPE_STRING) { 896 dtrace_strcpy(src, dst, type->dtdt_size); 897 } else { 898 dtrace_bcopy(src, dst, type->dtdt_size); 899 } 900 } 901 902 /* 903 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 904 * unsafe memory specified by the DIF program. The s2 data is assumed to be 905 * safe memory that we can access directly because it is managed by DTrace. 906 */ 907 static int 908 dtrace_bcmp(const void *s1, const void *s2, size_t len) 909 { 910 volatile uint16_t *flags; 911 912 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 913 914 if (s1 == s2) 915 return (0); 916 917 if (s1 == NULL || s2 == NULL) 918 return (1); 919 920 if (s1 != s2 && len != 0) { 921 const uint8_t *ps1 = s1; 922 const uint8_t *ps2 = s2; 923 924 do { 925 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 926 return (1); 927 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 928 } 929 return (0); 930 } 931 932 /* 933 * Zero the specified region using a simple byte-by-byte loop. Note that this 934 * is for safe DTrace-managed memory only. 935 */ 936 static void 937 dtrace_bzero(void *dst, size_t len) 938 { 939 uchar_t *cp; 940 941 for (cp = dst; len != 0; len--) 942 *cp++ = 0; 943 } 944 945 static void 946 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 947 { 948 uint64_t result[2]; 949 950 result[0] = addend1[0] + addend2[0]; 951 result[1] = addend1[1] + addend2[1] + 952 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 953 954 sum[0] = result[0]; 955 sum[1] = result[1]; 956 } 957 958 /* 959 * Shift the 128-bit value in a by b. If b is positive, shift left. 960 * If b is negative, shift right. 961 */ 962 static void 963 dtrace_shift_128(uint64_t *a, int b) 964 { 965 uint64_t mask; 966 967 if (b == 0) 968 return; 969 970 if (b < 0) { 971 b = -b; 972 if (b >= 64) { 973 a[0] = a[1] >> (b - 64); 974 a[1] = 0; 975 } else { 976 a[0] >>= b; 977 mask = 1LL << (64 - b); 978 mask -= 1; 979 a[0] |= ((a[1] & mask) << (64 - b)); 980 a[1] >>= b; 981 } 982 } else { 983 if (b >= 64) { 984 a[1] = a[0] << (b - 64); 985 a[0] = 0; 986 } else { 987 a[1] <<= b; 988 mask = a[0] >> (64 - b); 989 a[1] |= mask; 990 a[0] <<= b; 991 } 992 } 993 } 994 995 /* 996 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 997 * use native multiplication on those, and then re-combine into the 998 * resulting 128-bit value. 999 * 1000 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1001 * hi1 * hi2 << 64 + 1002 * hi1 * lo2 << 32 + 1003 * hi2 * lo1 << 32 + 1004 * lo1 * lo2 1005 */ 1006 static void 1007 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1008 { 1009 uint64_t hi1, hi2, lo1, lo2; 1010 uint64_t tmp[2]; 1011 1012 hi1 = factor1 >> 32; 1013 hi2 = factor2 >> 32; 1014 1015 lo1 = factor1 & DT_MASK_LO; 1016 lo2 = factor2 & DT_MASK_LO; 1017 1018 product[0] = lo1 * lo2; 1019 product[1] = hi1 * hi2; 1020 1021 tmp[0] = hi1 * lo2; 1022 tmp[1] = 0; 1023 dtrace_shift_128(tmp, 32); 1024 dtrace_add_128(product, tmp, product); 1025 1026 tmp[0] = hi2 * lo1; 1027 tmp[1] = 0; 1028 dtrace_shift_128(tmp, 32); 1029 dtrace_add_128(product, tmp, product); 1030 } 1031 1032 /* 1033 * This privilege check should be used by actions and subroutines to 1034 * verify that the user credentials of the process that enabled the 1035 * invoking ECB match the target credentials 1036 */ 1037 static int 1038 dtrace_priv_proc_common_user(dtrace_state_t *state) 1039 { 1040 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1041 1042 /* 1043 * We should always have a non-NULL state cred here, since if cred 1044 * is null (anonymous tracing), we fast-path bypass this routine. 1045 */ 1046 ASSERT(s_cr != NULL); 1047 1048 if ((cr = CRED()) != NULL && 1049 s_cr->cr_uid == cr->cr_uid && 1050 s_cr->cr_uid == cr->cr_ruid && 1051 s_cr->cr_uid == cr->cr_suid && 1052 s_cr->cr_gid == cr->cr_gid && 1053 s_cr->cr_gid == cr->cr_rgid && 1054 s_cr->cr_gid == cr->cr_sgid) 1055 return (1); 1056 1057 return (0); 1058 } 1059 1060 /* 1061 * This privilege check should be used by actions and subroutines to 1062 * verify that the zone of the process that enabled the invoking ECB 1063 * matches the target credentials 1064 */ 1065 static int 1066 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1067 { 1068 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1069 1070 /* 1071 * We should always have a non-NULL state cred here, since if cred 1072 * is null (anonymous tracing), we fast-path bypass this routine. 1073 */ 1074 ASSERT(s_cr != NULL); 1075 1076 if ((cr = CRED()) != NULL && 1077 s_cr->cr_zone == cr->cr_zone) 1078 return (1); 1079 1080 return (0); 1081 } 1082 1083 /* 1084 * This privilege check should be used by actions and subroutines to 1085 * verify that the process has not setuid or changed credentials. 1086 */ 1087 static int 1088 dtrace_priv_proc_common_nocd() 1089 { 1090 proc_t *proc; 1091 1092 if ((proc = ttoproc(curthread)) != NULL && 1093 !(proc->p_flag & SNOCD)) 1094 return (1); 1095 1096 return (0); 1097 } 1098 1099 static int 1100 dtrace_priv_proc_destructive(dtrace_state_t *state) 1101 { 1102 int action = state->dts_cred.dcr_action; 1103 1104 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1105 dtrace_priv_proc_common_zone(state) == 0) 1106 goto bad; 1107 1108 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1109 dtrace_priv_proc_common_user(state) == 0) 1110 goto bad; 1111 1112 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1113 dtrace_priv_proc_common_nocd() == 0) 1114 goto bad; 1115 1116 return (1); 1117 1118 bad: 1119 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1120 1121 return (0); 1122 } 1123 1124 static int 1125 dtrace_priv_proc_control(dtrace_state_t *state) 1126 { 1127 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1128 return (1); 1129 1130 if (dtrace_priv_proc_common_zone(state) && 1131 dtrace_priv_proc_common_user(state) && 1132 dtrace_priv_proc_common_nocd()) 1133 return (1); 1134 1135 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1136 1137 return (0); 1138 } 1139 1140 static int 1141 dtrace_priv_proc(dtrace_state_t *state) 1142 { 1143 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1144 return (1); 1145 1146 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1147 1148 return (0); 1149 } 1150 1151 static int 1152 dtrace_priv_kernel(dtrace_state_t *state) 1153 { 1154 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1155 return (1); 1156 1157 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1158 1159 return (0); 1160 } 1161 1162 static int 1163 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1164 { 1165 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1166 return (1); 1167 1168 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1169 1170 return (0); 1171 } 1172 1173 /* 1174 * Note: not called from probe context. This function is called 1175 * asynchronously (and at a regular interval) from outside of probe context to 1176 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1177 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1178 */ 1179 void 1180 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1181 { 1182 dtrace_dynvar_t *dirty; 1183 dtrace_dstate_percpu_t *dcpu; 1184 int i, work = 0; 1185 1186 for (i = 0; i < NCPU; i++) { 1187 dcpu = &dstate->dtds_percpu[i]; 1188 1189 ASSERT(dcpu->dtdsc_rinsing == NULL); 1190 1191 /* 1192 * If the dirty list is NULL, there is no dirty work to do. 1193 */ 1194 if (dcpu->dtdsc_dirty == NULL) 1195 continue; 1196 1197 /* 1198 * If the clean list is non-NULL, then we're not going to do 1199 * any work for this CPU -- it means that there has not been 1200 * a dtrace_dynvar() allocation on this CPU (or from this CPU) 1201 * since the last time we cleaned house. 1202 */ 1203 if (dcpu->dtdsc_clean != NULL) 1204 continue; 1205 1206 work = 1; 1207 1208 /* 1209 * Atomically move the dirty list aside. 1210 */ 1211 do { 1212 dirty = dcpu->dtdsc_dirty; 1213 1214 /* 1215 * Before we zap the dirty list, set the rinsing list. 1216 * (This allows for a potential assertion in 1217 * dtrace_dynvar(): if a free dynamic variable appears 1218 * on a hash chain, either the dirty list or the 1219 * rinsing list for some CPU must be non-NULL.) 1220 */ 1221 dcpu->dtdsc_rinsing = dirty; 1222 dtrace_membar_producer(); 1223 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1224 dirty, NULL) != dirty); 1225 } 1226 1227 if (!work) { 1228 /* 1229 * We have no work to do; we can simply return. 1230 */ 1231 return; 1232 } 1233 1234 dtrace_sync(); 1235 1236 for (i = 0; i < NCPU; i++) { 1237 dcpu = &dstate->dtds_percpu[i]; 1238 1239 if (dcpu->dtdsc_rinsing == NULL) 1240 continue; 1241 1242 /* 1243 * We are now guaranteed that no hash chain contains a pointer 1244 * into this dirty list; we can make it clean. 1245 */ 1246 ASSERT(dcpu->dtdsc_clean == NULL); 1247 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1248 dcpu->dtdsc_rinsing = NULL; 1249 } 1250 1251 /* 1252 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1253 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1254 * This prevents a race whereby a CPU incorrectly decides that 1255 * the state should be something other than DTRACE_DSTATE_CLEAN 1256 * after dtrace_dynvar_clean() has completed. 1257 */ 1258 dtrace_sync(); 1259 1260 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1261 } 1262 1263 /* 1264 * Depending on the value of the op parameter, this function looks-up, 1265 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1266 * allocation is requested, this function will return a pointer to a 1267 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1268 * variable can be allocated. If NULL is returned, the appropriate counter 1269 * will be incremented. 1270 */ 1271 dtrace_dynvar_t * 1272 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1273 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1274 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1275 { 1276 uint64_t hashval = DTRACE_DYNHASH_VALID; 1277 dtrace_dynhash_t *hash = dstate->dtds_hash; 1278 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1279 processorid_t me = CPU->cpu_id, cpu = me; 1280 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1281 size_t bucket, ksize; 1282 size_t chunksize = dstate->dtds_chunksize; 1283 uintptr_t kdata, lock, nstate; 1284 uint_t i; 1285 1286 ASSERT(nkeys != 0); 1287 1288 /* 1289 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1290 * algorithm. For the by-value portions, we perform the algorithm in 1291 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1292 * bit, and seems to have only a minute effect on distribution. For 1293 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1294 * over each referenced byte. It's painful to do this, but it's much 1295 * better than pathological hash distribution. The efficacy of the 1296 * hashing algorithm (and a comparison with other algorithms) may be 1297 * found by running the ::dtrace_dynstat MDB dcmd. 1298 */ 1299 for (i = 0; i < nkeys; i++) { 1300 if (key[i].dttk_size == 0) { 1301 uint64_t val = key[i].dttk_value; 1302 1303 hashval += (val >> 48) & 0xffff; 1304 hashval += (hashval << 10); 1305 hashval ^= (hashval >> 6); 1306 1307 hashval += (val >> 32) & 0xffff; 1308 hashval += (hashval << 10); 1309 hashval ^= (hashval >> 6); 1310 1311 hashval += (val >> 16) & 0xffff; 1312 hashval += (hashval << 10); 1313 hashval ^= (hashval >> 6); 1314 1315 hashval += val & 0xffff; 1316 hashval += (hashval << 10); 1317 hashval ^= (hashval >> 6); 1318 } else { 1319 /* 1320 * This is incredibly painful, but it beats the hell 1321 * out of the alternative. 1322 */ 1323 uint64_t j, size = key[i].dttk_size; 1324 uintptr_t base = (uintptr_t)key[i].dttk_value; 1325 1326 if (!dtrace_canload(base, size, mstate, vstate)) 1327 break; 1328 1329 for (j = 0; j < size; j++) { 1330 hashval += dtrace_load8(base + j); 1331 hashval += (hashval << 10); 1332 hashval ^= (hashval >> 6); 1333 } 1334 } 1335 } 1336 1337 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1338 return (NULL); 1339 1340 hashval += (hashval << 3); 1341 hashval ^= (hashval >> 11); 1342 hashval += (hashval << 15); 1343 1344 /* 1345 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1346 * comes out to be one of our two sentinel hash values. If this 1347 * actually happens, we set the hashval to be a value known to be a 1348 * non-sentinel value. 1349 */ 1350 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1351 hashval = DTRACE_DYNHASH_VALID; 1352 1353 /* 1354 * Yes, it's painful to do a divide here. If the cycle count becomes 1355 * important here, tricks can be pulled to reduce it. (However, it's 1356 * critical that hash collisions be kept to an absolute minimum; 1357 * they're much more painful than a divide.) It's better to have a 1358 * solution that generates few collisions and still keeps things 1359 * relatively simple. 1360 */ 1361 bucket = hashval % dstate->dtds_hashsize; 1362 1363 if (op == DTRACE_DYNVAR_DEALLOC) { 1364 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1365 1366 for (;;) { 1367 while ((lock = *lockp) & 1) 1368 continue; 1369 1370 if (dtrace_casptr((void *)lockp, 1371 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1372 break; 1373 } 1374 1375 dtrace_membar_producer(); 1376 } 1377 1378 top: 1379 prev = NULL; 1380 lock = hash[bucket].dtdh_lock; 1381 1382 dtrace_membar_consumer(); 1383 1384 start = hash[bucket].dtdh_chain; 1385 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1386 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1387 op != DTRACE_DYNVAR_DEALLOC)); 1388 1389 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1390 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1391 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1392 1393 if (dvar->dtdv_hashval != hashval) { 1394 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1395 /* 1396 * We've reached the sink, and therefore the 1397 * end of the hash chain; we can kick out of 1398 * the loop knowing that we have seen a valid 1399 * snapshot of state. 1400 */ 1401 ASSERT(dvar->dtdv_next == NULL); 1402 ASSERT(dvar == &dtrace_dynhash_sink); 1403 break; 1404 } 1405 1406 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1407 /* 1408 * We've gone off the rails: somewhere along 1409 * the line, one of the members of this hash 1410 * chain was deleted. Note that we could also 1411 * detect this by simply letting this loop run 1412 * to completion, as we would eventually hit 1413 * the end of the dirty list. However, we 1414 * want to avoid running the length of the 1415 * dirty list unnecessarily (it might be quite 1416 * long), so we catch this as early as 1417 * possible by detecting the hash marker. In 1418 * this case, we simply set dvar to NULL and 1419 * break; the conditional after the loop will 1420 * send us back to top. 1421 */ 1422 dvar = NULL; 1423 break; 1424 } 1425 1426 goto next; 1427 } 1428 1429 if (dtuple->dtt_nkeys != nkeys) 1430 goto next; 1431 1432 for (i = 0; i < nkeys; i++, dkey++) { 1433 if (dkey->dttk_size != key[i].dttk_size) 1434 goto next; /* size or type mismatch */ 1435 1436 if (dkey->dttk_size != 0) { 1437 if (dtrace_bcmp( 1438 (void *)(uintptr_t)key[i].dttk_value, 1439 (void *)(uintptr_t)dkey->dttk_value, 1440 dkey->dttk_size)) 1441 goto next; 1442 } else { 1443 if (dkey->dttk_value != key[i].dttk_value) 1444 goto next; 1445 } 1446 } 1447 1448 if (op != DTRACE_DYNVAR_DEALLOC) 1449 return (dvar); 1450 1451 ASSERT(dvar->dtdv_next == NULL || 1452 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1453 1454 if (prev != NULL) { 1455 ASSERT(hash[bucket].dtdh_chain != dvar); 1456 ASSERT(start != dvar); 1457 ASSERT(prev->dtdv_next == dvar); 1458 prev->dtdv_next = dvar->dtdv_next; 1459 } else { 1460 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1461 start, dvar->dtdv_next) != start) { 1462 /* 1463 * We have failed to atomically swing the 1464 * hash table head pointer, presumably because 1465 * of a conflicting allocation on another CPU. 1466 * We need to reread the hash chain and try 1467 * again. 1468 */ 1469 goto top; 1470 } 1471 } 1472 1473 dtrace_membar_producer(); 1474 1475 /* 1476 * Now set the hash value to indicate that it's free. 1477 */ 1478 ASSERT(hash[bucket].dtdh_chain != dvar); 1479 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1480 1481 dtrace_membar_producer(); 1482 1483 /* 1484 * Set the next pointer to point at the dirty list, and 1485 * atomically swing the dirty pointer to the newly freed dvar. 1486 */ 1487 do { 1488 next = dcpu->dtdsc_dirty; 1489 dvar->dtdv_next = next; 1490 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1491 1492 /* 1493 * Finally, unlock this hash bucket. 1494 */ 1495 ASSERT(hash[bucket].dtdh_lock == lock); 1496 ASSERT(lock & 1); 1497 hash[bucket].dtdh_lock++; 1498 1499 return (NULL); 1500 next: 1501 prev = dvar; 1502 continue; 1503 } 1504 1505 if (dvar == NULL) { 1506 /* 1507 * If dvar is NULL, it is because we went off the rails: 1508 * one of the elements that we traversed in the hash chain 1509 * was deleted while we were traversing it. In this case, 1510 * we assert that we aren't doing a dealloc (deallocs lock 1511 * the hash bucket to prevent themselves from racing with 1512 * one another), and retry the hash chain traversal. 1513 */ 1514 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1515 goto top; 1516 } 1517 1518 if (op != DTRACE_DYNVAR_ALLOC) { 1519 /* 1520 * If we are not to allocate a new variable, we want to 1521 * return NULL now. Before we return, check that the value 1522 * of the lock word hasn't changed. If it has, we may have 1523 * seen an inconsistent snapshot. 1524 */ 1525 if (op == DTRACE_DYNVAR_NOALLOC) { 1526 if (hash[bucket].dtdh_lock != lock) 1527 goto top; 1528 } else { 1529 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1530 ASSERT(hash[bucket].dtdh_lock == lock); 1531 ASSERT(lock & 1); 1532 hash[bucket].dtdh_lock++; 1533 } 1534 1535 return (NULL); 1536 } 1537 1538 /* 1539 * We need to allocate a new dynamic variable. The size we need is the 1540 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1541 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1542 * the size of any referred-to data (dsize). We then round the final 1543 * size up to the chunksize for allocation. 1544 */ 1545 for (ksize = 0, i = 0; i < nkeys; i++) 1546 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1547 1548 /* 1549 * This should be pretty much impossible, but could happen if, say, 1550 * strange DIF specified the tuple. Ideally, this should be an 1551 * assertion and not an error condition -- but that requires that the 1552 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1553 * bullet-proof. (That is, it must not be able to be fooled by 1554 * malicious DIF.) Given the lack of backwards branches in DIF, 1555 * solving this would presumably not amount to solving the Halting 1556 * Problem -- but it still seems awfully hard. 1557 */ 1558 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1559 ksize + dsize > chunksize) { 1560 dcpu->dtdsc_drops++; 1561 return (NULL); 1562 } 1563 1564 nstate = DTRACE_DSTATE_EMPTY; 1565 1566 do { 1567 retry: 1568 free = dcpu->dtdsc_free; 1569 1570 if (free == NULL) { 1571 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1572 void *rval; 1573 1574 if (clean == NULL) { 1575 /* 1576 * We're out of dynamic variable space on 1577 * this CPU. Unless we have tried all CPUs, 1578 * we'll try to allocate from a different 1579 * CPU. 1580 */ 1581 switch (dstate->dtds_state) { 1582 case DTRACE_DSTATE_CLEAN: { 1583 void *sp = &dstate->dtds_state; 1584 1585 if (++cpu >= NCPU) 1586 cpu = 0; 1587 1588 if (dcpu->dtdsc_dirty != NULL && 1589 nstate == DTRACE_DSTATE_EMPTY) 1590 nstate = DTRACE_DSTATE_DIRTY; 1591 1592 if (dcpu->dtdsc_rinsing != NULL) 1593 nstate = DTRACE_DSTATE_RINSING; 1594 1595 dcpu = &dstate->dtds_percpu[cpu]; 1596 1597 if (cpu != me) 1598 goto retry; 1599 1600 (void) dtrace_cas32(sp, 1601 DTRACE_DSTATE_CLEAN, nstate); 1602 1603 /* 1604 * To increment the correct bean 1605 * counter, take another lap. 1606 */ 1607 goto retry; 1608 } 1609 1610 case DTRACE_DSTATE_DIRTY: 1611 dcpu->dtdsc_dirty_drops++; 1612 break; 1613 1614 case DTRACE_DSTATE_RINSING: 1615 dcpu->dtdsc_rinsing_drops++; 1616 break; 1617 1618 case DTRACE_DSTATE_EMPTY: 1619 dcpu->dtdsc_drops++; 1620 break; 1621 } 1622 1623 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1624 return (NULL); 1625 } 1626 1627 /* 1628 * The clean list appears to be non-empty. We want to 1629 * move the clean list to the free list; we start by 1630 * moving the clean pointer aside. 1631 */ 1632 if (dtrace_casptr(&dcpu->dtdsc_clean, 1633 clean, NULL) != clean) { 1634 /* 1635 * We are in one of two situations: 1636 * 1637 * (a) The clean list was switched to the 1638 * free list by another CPU. 1639 * 1640 * (b) The clean list was added to by the 1641 * cleansing cyclic. 1642 * 1643 * In either of these situations, we can 1644 * just reattempt the free list allocation. 1645 */ 1646 goto retry; 1647 } 1648 1649 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1650 1651 /* 1652 * Now we'll move the clean list to the free list. 1653 * It's impossible for this to fail: the only way 1654 * the free list can be updated is through this 1655 * code path, and only one CPU can own the clean list. 1656 * Thus, it would only be possible for this to fail if 1657 * this code were racing with dtrace_dynvar_clean(). 1658 * (That is, if dtrace_dynvar_clean() updated the clean 1659 * list, and we ended up racing to update the free 1660 * list.) This race is prevented by the dtrace_sync() 1661 * in dtrace_dynvar_clean() -- which flushes the 1662 * owners of the clean lists out before resetting 1663 * the clean lists. 1664 */ 1665 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1666 ASSERT(rval == NULL); 1667 goto retry; 1668 } 1669 1670 dvar = free; 1671 new_free = dvar->dtdv_next; 1672 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1673 1674 /* 1675 * We have now allocated a new chunk. We copy the tuple keys into the 1676 * tuple array and copy any referenced key data into the data space 1677 * following the tuple array. As we do this, we relocate dttk_value 1678 * in the final tuple to point to the key data address in the chunk. 1679 */ 1680 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1681 dvar->dtdv_data = (void *)(kdata + ksize); 1682 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1683 1684 for (i = 0; i < nkeys; i++) { 1685 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1686 size_t kesize = key[i].dttk_size; 1687 1688 if (kesize != 0) { 1689 dtrace_bcopy( 1690 (const void *)(uintptr_t)key[i].dttk_value, 1691 (void *)kdata, kesize); 1692 dkey->dttk_value = kdata; 1693 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1694 } else { 1695 dkey->dttk_value = key[i].dttk_value; 1696 } 1697 1698 dkey->dttk_size = kesize; 1699 } 1700 1701 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1702 dvar->dtdv_hashval = hashval; 1703 dvar->dtdv_next = start; 1704 1705 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1706 return (dvar); 1707 1708 /* 1709 * The cas has failed. Either another CPU is adding an element to 1710 * this hash chain, or another CPU is deleting an element from this 1711 * hash chain. The simplest way to deal with both of these cases 1712 * (though not necessarily the most efficient) is to free our 1713 * allocated block and tail-call ourselves. Note that the free is 1714 * to the dirty list and _not_ to the free list. This is to prevent 1715 * races with allocators, above. 1716 */ 1717 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1718 1719 dtrace_membar_producer(); 1720 1721 do { 1722 free = dcpu->dtdsc_dirty; 1723 dvar->dtdv_next = free; 1724 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1725 1726 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1727 } 1728 1729 /*ARGSUSED*/ 1730 static void 1731 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1732 { 1733 if ((int64_t)nval < (int64_t)*oval) 1734 *oval = nval; 1735 } 1736 1737 /*ARGSUSED*/ 1738 static void 1739 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1740 { 1741 if ((int64_t)nval > (int64_t)*oval) 1742 *oval = nval; 1743 } 1744 1745 static void 1746 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1747 { 1748 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1749 int64_t val = (int64_t)nval; 1750 1751 if (val < 0) { 1752 for (i = 0; i < zero; i++) { 1753 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1754 quanta[i] += incr; 1755 return; 1756 } 1757 } 1758 } else { 1759 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1760 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1761 quanta[i - 1] += incr; 1762 return; 1763 } 1764 } 1765 1766 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1767 return; 1768 } 1769 1770 ASSERT(0); 1771 } 1772 1773 static void 1774 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1775 { 1776 uint64_t arg = *lquanta++; 1777 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1778 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1779 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1780 int32_t val = (int32_t)nval, level; 1781 1782 ASSERT(step != 0); 1783 ASSERT(levels != 0); 1784 1785 if (val < base) { 1786 /* 1787 * This is an underflow. 1788 */ 1789 lquanta[0] += incr; 1790 return; 1791 } 1792 1793 level = (val - base) / step; 1794 1795 if (level < levels) { 1796 lquanta[level + 1] += incr; 1797 return; 1798 } 1799 1800 /* 1801 * This is an overflow. 1802 */ 1803 lquanta[levels + 1] += incr; 1804 } 1805 1806 /*ARGSUSED*/ 1807 static void 1808 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 1809 { 1810 data[0]++; 1811 data[1] += nval; 1812 } 1813 1814 /*ARGSUSED*/ 1815 static void 1816 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 1817 { 1818 int64_t snval = (int64_t)nval; 1819 uint64_t tmp[2]; 1820 1821 data[0]++; 1822 data[1] += nval; 1823 1824 /* 1825 * What we want to say here is: 1826 * 1827 * data[2] += nval * nval; 1828 * 1829 * But given that nval is 64-bit, we could easily overflow, so 1830 * we do this as 128-bit arithmetic. 1831 */ 1832 if (snval < 0) 1833 snval = -snval; 1834 1835 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 1836 dtrace_add_128(data + 2, tmp, data + 2); 1837 } 1838 1839 /*ARGSUSED*/ 1840 static void 1841 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 1842 { 1843 *oval = *oval + 1; 1844 } 1845 1846 /*ARGSUSED*/ 1847 static void 1848 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 1849 { 1850 *oval += nval; 1851 } 1852 1853 /* 1854 * Aggregate given the tuple in the principal data buffer, and the aggregating 1855 * action denoted by the specified dtrace_aggregation_t. The aggregation 1856 * buffer is specified as the buf parameter. This routine does not return 1857 * failure; if there is no space in the aggregation buffer, the data will be 1858 * dropped, and a corresponding counter incremented. 1859 */ 1860 static void 1861 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 1862 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 1863 { 1864 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 1865 uint32_t i, ndx, size, fsize; 1866 uint32_t align = sizeof (uint64_t) - 1; 1867 dtrace_aggbuffer_t *agb; 1868 dtrace_aggkey_t *key; 1869 uint32_t hashval = 0, limit, isstr; 1870 caddr_t tomax, data, kdata; 1871 dtrace_actkind_t action; 1872 dtrace_action_t *act; 1873 uintptr_t offs; 1874 1875 if (buf == NULL) 1876 return; 1877 1878 if (!agg->dtag_hasarg) { 1879 /* 1880 * Currently, only quantize() and lquantize() take additional 1881 * arguments, and they have the same semantics: an increment 1882 * value that defaults to 1 when not present. If additional 1883 * aggregating actions take arguments, the setting of the 1884 * default argument value will presumably have to become more 1885 * sophisticated... 1886 */ 1887 arg = 1; 1888 } 1889 1890 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 1891 size = rec->dtrd_offset - agg->dtag_base; 1892 fsize = size + rec->dtrd_size; 1893 1894 ASSERT(dbuf->dtb_tomax != NULL); 1895 data = dbuf->dtb_tomax + offset + agg->dtag_base; 1896 1897 if ((tomax = buf->dtb_tomax) == NULL) { 1898 dtrace_buffer_drop(buf); 1899 return; 1900 } 1901 1902 /* 1903 * The metastructure is always at the bottom of the buffer. 1904 */ 1905 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 1906 sizeof (dtrace_aggbuffer_t)); 1907 1908 if (buf->dtb_offset == 0) { 1909 /* 1910 * We just kludge up approximately 1/8th of the size to be 1911 * buckets. If this guess ends up being routinely 1912 * off-the-mark, we may need to dynamically readjust this 1913 * based on past performance. 1914 */ 1915 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 1916 1917 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 1918 (uintptr_t)tomax || hashsize == 0) { 1919 /* 1920 * We've been given a ludicrously small buffer; 1921 * increment our drop count and leave. 1922 */ 1923 dtrace_buffer_drop(buf); 1924 return; 1925 } 1926 1927 /* 1928 * And now, a pathetic attempt to try to get a an odd (or 1929 * perchance, a prime) hash size for better hash distribution. 1930 */ 1931 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 1932 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 1933 1934 agb->dtagb_hashsize = hashsize; 1935 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 1936 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 1937 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 1938 1939 for (i = 0; i < agb->dtagb_hashsize; i++) 1940 agb->dtagb_hash[i] = NULL; 1941 } 1942 1943 ASSERT(agg->dtag_first != NULL); 1944 ASSERT(agg->dtag_first->dta_intuple); 1945 1946 /* 1947 * Calculate the hash value based on the key. Note that we _don't_ 1948 * include the aggid in the hashing (but we will store it as part of 1949 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 1950 * algorithm: a simple, quick algorithm that has no known funnels, and 1951 * gets good distribution in practice. The efficacy of the hashing 1952 * algorithm (and a comparison with other algorithms) may be found by 1953 * running the ::dtrace_aggstat MDB dcmd. 1954 */ 1955 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1956 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1957 limit = i + act->dta_rec.dtrd_size; 1958 ASSERT(limit <= size); 1959 isstr = DTRACEACT_ISSTRING(act); 1960 1961 for (; i < limit; i++) { 1962 hashval += data[i]; 1963 hashval += (hashval << 10); 1964 hashval ^= (hashval >> 6); 1965 1966 if (isstr && data[i] == '\0') 1967 break; 1968 } 1969 } 1970 1971 hashval += (hashval << 3); 1972 hashval ^= (hashval >> 11); 1973 hashval += (hashval << 15); 1974 1975 /* 1976 * Yes, the divide here is expensive -- but it's generally the least 1977 * of the performance issues given the amount of data that we iterate 1978 * over to compute hash values, compare data, etc. 1979 */ 1980 ndx = hashval % agb->dtagb_hashsize; 1981 1982 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 1983 ASSERT((caddr_t)key >= tomax); 1984 ASSERT((caddr_t)key < tomax + buf->dtb_size); 1985 1986 if (hashval != key->dtak_hashval || key->dtak_size != size) 1987 continue; 1988 1989 kdata = key->dtak_data; 1990 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 1991 1992 for (act = agg->dtag_first; act->dta_intuple; 1993 act = act->dta_next) { 1994 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1995 limit = i + act->dta_rec.dtrd_size; 1996 ASSERT(limit <= size); 1997 isstr = DTRACEACT_ISSTRING(act); 1998 1999 for (; i < limit; i++) { 2000 if (kdata[i] != data[i]) 2001 goto next; 2002 2003 if (isstr && data[i] == '\0') 2004 break; 2005 } 2006 } 2007 2008 if (action != key->dtak_action) { 2009 /* 2010 * We are aggregating on the same value in the same 2011 * aggregation with two different aggregating actions. 2012 * (This should have been picked up in the compiler, 2013 * so we may be dealing with errant or devious DIF.) 2014 * This is an error condition; we indicate as much, 2015 * and return. 2016 */ 2017 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2018 return; 2019 } 2020 2021 /* 2022 * This is a hit: we need to apply the aggregator to 2023 * the value at this key. 2024 */ 2025 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2026 return; 2027 next: 2028 continue; 2029 } 2030 2031 /* 2032 * We didn't find it. We need to allocate some zero-filled space, 2033 * link it into the hash table appropriately, and apply the aggregator 2034 * to the (zero-filled) value. 2035 */ 2036 offs = buf->dtb_offset; 2037 while (offs & (align - 1)) 2038 offs += sizeof (uint32_t); 2039 2040 /* 2041 * If we don't have enough room to both allocate a new key _and_ 2042 * its associated data, increment the drop count and return. 2043 */ 2044 if ((uintptr_t)tomax + offs + fsize > 2045 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2046 dtrace_buffer_drop(buf); 2047 return; 2048 } 2049 2050 /*CONSTCOND*/ 2051 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2052 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2053 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2054 2055 key->dtak_data = kdata = tomax + offs; 2056 buf->dtb_offset = offs + fsize; 2057 2058 /* 2059 * Now copy the data across. 2060 */ 2061 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2062 2063 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2064 kdata[i] = data[i]; 2065 2066 /* 2067 * Because strings are not zeroed out by default, we need to iterate 2068 * looking for actions that store strings, and we need to explicitly 2069 * pad these strings out with zeroes. 2070 */ 2071 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2072 int nul; 2073 2074 if (!DTRACEACT_ISSTRING(act)) 2075 continue; 2076 2077 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2078 limit = i + act->dta_rec.dtrd_size; 2079 ASSERT(limit <= size); 2080 2081 for (nul = 0; i < limit; i++) { 2082 if (nul) { 2083 kdata[i] = '\0'; 2084 continue; 2085 } 2086 2087 if (data[i] != '\0') 2088 continue; 2089 2090 nul = 1; 2091 } 2092 } 2093 2094 for (i = size; i < fsize; i++) 2095 kdata[i] = 0; 2096 2097 key->dtak_hashval = hashval; 2098 key->dtak_size = size; 2099 key->dtak_action = action; 2100 key->dtak_next = agb->dtagb_hash[ndx]; 2101 agb->dtagb_hash[ndx] = key; 2102 2103 /* 2104 * Finally, apply the aggregator. 2105 */ 2106 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2107 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2108 } 2109 2110 /* 2111 * Given consumer state, this routine finds a speculation in the INACTIVE 2112 * state and transitions it into the ACTIVE state. If there is no speculation 2113 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2114 * incremented -- it is up to the caller to take appropriate action. 2115 */ 2116 static int 2117 dtrace_speculation(dtrace_state_t *state) 2118 { 2119 int i = 0; 2120 dtrace_speculation_state_t current; 2121 uint32_t *stat = &state->dts_speculations_unavail, count; 2122 2123 while (i < state->dts_nspeculations) { 2124 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2125 2126 current = spec->dtsp_state; 2127 2128 if (current != DTRACESPEC_INACTIVE) { 2129 if (current == DTRACESPEC_COMMITTINGMANY || 2130 current == DTRACESPEC_COMMITTING || 2131 current == DTRACESPEC_DISCARDING) 2132 stat = &state->dts_speculations_busy; 2133 i++; 2134 continue; 2135 } 2136 2137 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2138 current, DTRACESPEC_ACTIVE) == current) 2139 return (i + 1); 2140 } 2141 2142 /* 2143 * We couldn't find a speculation. If we found as much as a single 2144 * busy speculation buffer, we'll attribute this failure as "busy" 2145 * instead of "unavail". 2146 */ 2147 do { 2148 count = *stat; 2149 } while (dtrace_cas32(stat, count, count + 1) != count); 2150 2151 return (0); 2152 } 2153 2154 /* 2155 * This routine commits an active speculation. If the specified speculation 2156 * is not in a valid state to perform a commit(), this routine will silently do 2157 * nothing. The state of the specified speculation is transitioned according 2158 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2159 */ 2160 static void 2161 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2162 dtrace_specid_t which) 2163 { 2164 dtrace_speculation_t *spec; 2165 dtrace_buffer_t *src, *dest; 2166 uintptr_t daddr, saddr, dlimit; 2167 dtrace_speculation_state_t current, new; 2168 intptr_t offs; 2169 2170 if (which == 0) 2171 return; 2172 2173 if (which > state->dts_nspeculations) { 2174 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2175 return; 2176 } 2177 2178 spec = &state->dts_speculations[which - 1]; 2179 src = &spec->dtsp_buffer[cpu]; 2180 dest = &state->dts_buffer[cpu]; 2181 2182 do { 2183 current = spec->dtsp_state; 2184 2185 if (current == DTRACESPEC_COMMITTINGMANY) 2186 break; 2187 2188 switch (current) { 2189 case DTRACESPEC_INACTIVE: 2190 case DTRACESPEC_DISCARDING: 2191 return; 2192 2193 case DTRACESPEC_COMMITTING: 2194 /* 2195 * This is only possible if we are (a) commit()'ing 2196 * without having done a prior speculate() on this CPU 2197 * and (b) racing with another commit() on a different 2198 * CPU. There's nothing to do -- we just assert that 2199 * our offset is 0. 2200 */ 2201 ASSERT(src->dtb_offset == 0); 2202 return; 2203 2204 case DTRACESPEC_ACTIVE: 2205 new = DTRACESPEC_COMMITTING; 2206 break; 2207 2208 case DTRACESPEC_ACTIVEONE: 2209 /* 2210 * This speculation is active on one CPU. If our 2211 * buffer offset is non-zero, we know that the one CPU 2212 * must be us. Otherwise, we are committing on a 2213 * different CPU from the speculate(), and we must 2214 * rely on being asynchronously cleaned. 2215 */ 2216 if (src->dtb_offset != 0) { 2217 new = DTRACESPEC_COMMITTING; 2218 break; 2219 } 2220 /*FALLTHROUGH*/ 2221 2222 case DTRACESPEC_ACTIVEMANY: 2223 new = DTRACESPEC_COMMITTINGMANY; 2224 break; 2225 2226 default: 2227 ASSERT(0); 2228 } 2229 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2230 current, new) != current); 2231 2232 /* 2233 * We have set the state to indicate that we are committing this 2234 * speculation. Now reserve the necessary space in the destination 2235 * buffer. 2236 */ 2237 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2238 sizeof (uint64_t), state, NULL)) < 0) { 2239 dtrace_buffer_drop(dest); 2240 goto out; 2241 } 2242 2243 /* 2244 * We have the space; copy the buffer across. (Note that this is a 2245 * highly subobtimal bcopy(); in the unlikely event that this becomes 2246 * a serious performance issue, a high-performance DTrace-specific 2247 * bcopy() should obviously be invented.) 2248 */ 2249 daddr = (uintptr_t)dest->dtb_tomax + offs; 2250 dlimit = daddr + src->dtb_offset; 2251 saddr = (uintptr_t)src->dtb_tomax; 2252 2253 /* 2254 * First, the aligned portion. 2255 */ 2256 while (dlimit - daddr >= sizeof (uint64_t)) { 2257 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2258 2259 daddr += sizeof (uint64_t); 2260 saddr += sizeof (uint64_t); 2261 } 2262 2263 /* 2264 * Now any left-over bit... 2265 */ 2266 while (dlimit - daddr) 2267 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2268 2269 /* 2270 * Finally, commit the reserved space in the destination buffer. 2271 */ 2272 dest->dtb_offset = offs + src->dtb_offset; 2273 2274 out: 2275 /* 2276 * If we're lucky enough to be the only active CPU on this speculation 2277 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2278 */ 2279 if (current == DTRACESPEC_ACTIVE || 2280 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2281 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2282 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2283 2284 ASSERT(rval == DTRACESPEC_COMMITTING); 2285 } 2286 2287 src->dtb_offset = 0; 2288 src->dtb_xamot_drops += src->dtb_drops; 2289 src->dtb_drops = 0; 2290 } 2291 2292 /* 2293 * This routine discards an active speculation. If the specified speculation 2294 * is not in a valid state to perform a discard(), this routine will silently 2295 * do nothing. The state of the specified speculation is transitioned 2296 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2297 */ 2298 static void 2299 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2300 dtrace_specid_t which) 2301 { 2302 dtrace_speculation_t *spec; 2303 dtrace_speculation_state_t current, new; 2304 dtrace_buffer_t *buf; 2305 2306 if (which == 0) 2307 return; 2308 2309 if (which > state->dts_nspeculations) { 2310 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2311 return; 2312 } 2313 2314 spec = &state->dts_speculations[which - 1]; 2315 buf = &spec->dtsp_buffer[cpu]; 2316 2317 do { 2318 current = spec->dtsp_state; 2319 2320 switch (current) { 2321 case DTRACESPEC_INACTIVE: 2322 case DTRACESPEC_COMMITTINGMANY: 2323 case DTRACESPEC_COMMITTING: 2324 case DTRACESPEC_DISCARDING: 2325 return; 2326 2327 case DTRACESPEC_ACTIVE: 2328 case DTRACESPEC_ACTIVEMANY: 2329 new = DTRACESPEC_DISCARDING; 2330 break; 2331 2332 case DTRACESPEC_ACTIVEONE: 2333 if (buf->dtb_offset != 0) { 2334 new = DTRACESPEC_INACTIVE; 2335 } else { 2336 new = DTRACESPEC_DISCARDING; 2337 } 2338 break; 2339 2340 default: 2341 ASSERT(0); 2342 } 2343 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2344 current, new) != current); 2345 2346 buf->dtb_offset = 0; 2347 buf->dtb_drops = 0; 2348 } 2349 2350 /* 2351 * Note: not called from probe context. This function is called 2352 * asynchronously from cross call context to clean any speculations that are 2353 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2354 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2355 * speculation. 2356 */ 2357 static void 2358 dtrace_speculation_clean_here(dtrace_state_t *state) 2359 { 2360 dtrace_icookie_t cookie; 2361 processorid_t cpu = CPU->cpu_id; 2362 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2363 dtrace_specid_t i; 2364 2365 cookie = dtrace_interrupt_disable(); 2366 2367 if (dest->dtb_tomax == NULL) { 2368 dtrace_interrupt_enable(cookie); 2369 return; 2370 } 2371 2372 for (i = 0; i < state->dts_nspeculations; i++) { 2373 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2374 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2375 2376 if (src->dtb_tomax == NULL) 2377 continue; 2378 2379 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2380 src->dtb_offset = 0; 2381 continue; 2382 } 2383 2384 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2385 continue; 2386 2387 if (src->dtb_offset == 0) 2388 continue; 2389 2390 dtrace_speculation_commit(state, cpu, i + 1); 2391 } 2392 2393 dtrace_interrupt_enable(cookie); 2394 } 2395 2396 /* 2397 * Note: not called from probe context. This function is called 2398 * asynchronously (and at a regular interval) to clean any speculations that 2399 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2400 * is work to be done, it cross calls all CPUs to perform that work; 2401 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2402 * INACTIVE state until they have been cleaned by all CPUs. 2403 */ 2404 static void 2405 dtrace_speculation_clean(dtrace_state_t *state) 2406 { 2407 int work = 0, rv; 2408 dtrace_specid_t i; 2409 2410 for (i = 0; i < state->dts_nspeculations; i++) { 2411 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2412 2413 ASSERT(!spec->dtsp_cleaning); 2414 2415 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2416 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2417 continue; 2418 2419 work++; 2420 spec->dtsp_cleaning = 1; 2421 } 2422 2423 if (!work) 2424 return; 2425 2426 dtrace_xcall(DTRACE_CPUALL, 2427 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2428 2429 /* 2430 * We now know that all CPUs have committed or discarded their 2431 * speculation buffers, as appropriate. We can now set the state 2432 * to inactive. 2433 */ 2434 for (i = 0; i < state->dts_nspeculations; i++) { 2435 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2436 dtrace_speculation_state_t current, new; 2437 2438 if (!spec->dtsp_cleaning) 2439 continue; 2440 2441 current = spec->dtsp_state; 2442 ASSERT(current == DTRACESPEC_DISCARDING || 2443 current == DTRACESPEC_COMMITTINGMANY); 2444 2445 new = DTRACESPEC_INACTIVE; 2446 2447 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2448 ASSERT(rv == current); 2449 spec->dtsp_cleaning = 0; 2450 } 2451 } 2452 2453 /* 2454 * Called as part of a speculate() to get the speculative buffer associated 2455 * with a given speculation. Returns NULL if the specified speculation is not 2456 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2457 * the active CPU is not the specified CPU -- the speculation will be 2458 * atomically transitioned into the ACTIVEMANY state. 2459 */ 2460 static dtrace_buffer_t * 2461 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2462 dtrace_specid_t which) 2463 { 2464 dtrace_speculation_t *spec; 2465 dtrace_speculation_state_t current, new; 2466 dtrace_buffer_t *buf; 2467 2468 if (which == 0) 2469 return (NULL); 2470 2471 if (which > state->dts_nspeculations) { 2472 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2473 return (NULL); 2474 } 2475 2476 spec = &state->dts_speculations[which - 1]; 2477 buf = &spec->dtsp_buffer[cpuid]; 2478 2479 do { 2480 current = spec->dtsp_state; 2481 2482 switch (current) { 2483 case DTRACESPEC_INACTIVE: 2484 case DTRACESPEC_COMMITTINGMANY: 2485 case DTRACESPEC_DISCARDING: 2486 return (NULL); 2487 2488 case DTRACESPEC_COMMITTING: 2489 ASSERT(buf->dtb_offset == 0); 2490 return (NULL); 2491 2492 case DTRACESPEC_ACTIVEONE: 2493 /* 2494 * This speculation is currently active on one CPU. 2495 * Check the offset in the buffer; if it's non-zero, 2496 * that CPU must be us (and we leave the state alone). 2497 * If it's zero, assume that we're starting on a new 2498 * CPU -- and change the state to indicate that the 2499 * speculation is active on more than one CPU. 2500 */ 2501 if (buf->dtb_offset != 0) 2502 return (buf); 2503 2504 new = DTRACESPEC_ACTIVEMANY; 2505 break; 2506 2507 case DTRACESPEC_ACTIVEMANY: 2508 return (buf); 2509 2510 case DTRACESPEC_ACTIVE: 2511 new = DTRACESPEC_ACTIVEONE; 2512 break; 2513 2514 default: 2515 ASSERT(0); 2516 } 2517 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2518 current, new) != current); 2519 2520 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2521 return (buf); 2522 } 2523 2524 /* 2525 * Return a string. In the event that the user lacks the privilege to access 2526 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2527 * don't fail access checking. 2528 * 2529 * dtrace_dif_variable() uses this routine as a helper for various 2530 * builtin values such as 'execname' and 'probefunc.' 2531 */ 2532 uintptr_t 2533 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2534 dtrace_mstate_t *mstate) 2535 { 2536 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2537 uintptr_t ret; 2538 size_t strsz; 2539 2540 /* 2541 * The easy case: this probe is allowed to read all of memory, so 2542 * we can just return this as a vanilla pointer. 2543 */ 2544 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2545 return (addr); 2546 2547 /* 2548 * This is the tougher case: we copy the string in question from 2549 * kernel memory into scratch memory and return it that way: this 2550 * ensures that we won't trip up when access checking tests the 2551 * BYREF return value. 2552 */ 2553 strsz = dtrace_strlen((char *)addr, size) + 1; 2554 2555 if (mstate->dtms_scratch_ptr + strsz > 2556 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2557 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2558 return (NULL); 2559 } 2560 2561 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2562 strsz); 2563 ret = mstate->dtms_scratch_ptr; 2564 mstate->dtms_scratch_ptr += strsz; 2565 return (ret); 2566 } 2567 2568 /* 2569 * This function implements the DIF emulator's variable lookups. The emulator 2570 * passes a reserved variable identifier and optional built-in array index. 2571 */ 2572 static uint64_t 2573 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2574 uint64_t ndx) 2575 { 2576 /* 2577 * If we're accessing one of the uncached arguments, we'll turn this 2578 * into a reference in the args array. 2579 */ 2580 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2581 ndx = v - DIF_VAR_ARG0; 2582 v = DIF_VAR_ARGS; 2583 } 2584 2585 switch (v) { 2586 case DIF_VAR_ARGS: 2587 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2588 if (ndx >= sizeof (mstate->dtms_arg) / 2589 sizeof (mstate->dtms_arg[0])) { 2590 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2591 dtrace_provider_t *pv; 2592 uint64_t val; 2593 2594 pv = mstate->dtms_probe->dtpr_provider; 2595 if (pv->dtpv_pops.dtps_getargval != NULL) 2596 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2597 mstate->dtms_probe->dtpr_id, 2598 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2599 else 2600 val = dtrace_getarg(ndx, aframes); 2601 2602 /* 2603 * This is regrettably required to keep the compiler 2604 * from tail-optimizing the call to dtrace_getarg(). 2605 * The condition always evaluates to true, but the 2606 * compiler has no way of figuring that out a priori. 2607 * (None of this would be necessary if the compiler 2608 * could be relied upon to _always_ tail-optimize 2609 * the call to dtrace_getarg() -- but it can't.) 2610 */ 2611 if (mstate->dtms_probe != NULL) 2612 return (val); 2613 2614 ASSERT(0); 2615 } 2616 2617 return (mstate->dtms_arg[ndx]); 2618 2619 case DIF_VAR_UREGS: { 2620 klwp_t *lwp; 2621 2622 if (!dtrace_priv_proc(state)) 2623 return (0); 2624 2625 if ((lwp = curthread->t_lwp) == NULL) { 2626 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2627 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2628 return (0); 2629 } 2630 2631 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2632 } 2633 2634 case DIF_VAR_CURTHREAD: 2635 if (!dtrace_priv_kernel(state)) 2636 return (0); 2637 return ((uint64_t)(uintptr_t)curthread); 2638 2639 case DIF_VAR_TIMESTAMP: 2640 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2641 mstate->dtms_timestamp = dtrace_gethrtime(); 2642 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2643 } 2644 return (mstate->dtms_timestamp); 2645 2646 case DIF_VAR_VTIMESTAMP: 2647 ASSERT(dtrace_vtime_references != 0); 2648 return (curthread->t_dtrace_vtime); 2649 2650 case DIF_VAR_WALLTIMESTAMP: 2651 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2652 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2653 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2654 } 2655 return (mstate->dtms_walltimestamp); 2656 2657 case DIF_VAR_IPL: 2658 if (!dtrace_priv_kernel(state)) 2659 return (0); 2660 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2661 mstate->dtms_ipl = dtrace_getipl(); 2662 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2663 } 2664 return (mstate->dtms_ipl); 2665 2666 case DIF_VAR_EPID: 2667 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2668 return (mstate->dtms_epid); 2669 2670 case DIF_VAR_ID: 2671 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2672 return (mstate->dtms_probe->dtpr_id); 2673 2674 case DIF_VAR_STACKDEPTH: 2675 if (!dtrace_priv_kernel(state)) 2676 return (0); 2677 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2678 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2679 2680 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2681 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2682 } 2683 return (mstate->dtms_stackdepth); 2684 2685 case DIF_VAR_USTACKDEPTH: 2686 if (!dtrace_priv_proc(state)) 2687 return (0); 2688 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2689 /* 2690 * See comment in DIF_VAR_PID. 2691 */ 2692 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2693 CPU_ON_INTR(CPU)) { 2694 mstate->dtms_ustackdepth = 0; 2695 } else { 2696 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2697 mstate->dtms_ustackdepth = 2698 dtrace_getustackdepth(); 2699 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2700 } 2701 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2702 } 2703 return (mstate->dtms_ustackdepth); 2704 2705 case DIF_VAR_CALLER: 2706 if (!dtrace_priv_kernel(state)) 2707 return (0); 2708 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2709 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2710 2711 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2712 /* 2713 * If this is an unanchored probe, we are 2714 * required to go through the slow path: 2715 * dtrace_caller() only guarantees correct 2716 * results for anchored probes. 2717 */ 2718 pc_t caller[2]; 2719 2720 dtrace_getpcstack(caller, 2, aframes, 2721 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2722 mstate->dtms_caller = caller[1]; 2723 } else if ((mstate->dtms_caller = 2724 dtrace_caller(aframes)) == -1) { 2725 /* 2726 * We have failed to do this the quick way; 2727 * we must resort to the slower approach of 2728 * calling dtrace_getpcstack(). 2729 */ 2730 pc_t caller; 2731 2732 dtrace_getpcstack(&caller, 1, aframes, NULL); 2733 mstate->dtms_caller = caller; 2734 } 2735 2736 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2737 } 2738 return (mstate->dtms_caller); 2739 2740 case DIF_VAR_UCALLER: 2741 if (!dtrace_priv_proc(state)) 2742 return (0); 2743 2744 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 2745 uint64_t ustack[3]; 2746 2747 /* 2748 * dtrace_getupcstack() fills in the first uint64_t 2749 * with the current PID. The second uint64_t will 2750 * be the program counter at user-level. The third 2751 * uint64_t will contain the caller, which is what 2752 * we're after. 2753 */ 2754 ustack[2] = NULL; 2755 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2756 dtrace_getupcstack(ustack, 3); 2757 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2758 mstate->dtms_ucaller = ustack[2]; 2759 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 2760 } 2761 2762 return (mstate->dtms_ucaller); 2763 2764 case DIF_VAR_PROBEPROV: 2765 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2766 return (dtrace_dif_varstr( 2767 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 2768 state, mstate)); 2769 2770 case DIF_VAR_PROBEMOD: 2771 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2772 return (dtrace_dif_varstr( 2773 (uintptr_t)mstate->dtms_probe->dtpr_mod, 2774 state, mstate)); 2775 2776 case DIF_VAR_PROBEFUNC: 2777 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2778 return (dtrace_dif_varstr( 2779 (uintptr_t)mstate->dtms_probe->dtpr_func, 2780 state, mstate)); 2781 2782 case DIF_VAR_PROBENAME: 2783 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2784 return (dtrace_dif_varstr( 2785 (uintptr_t)mstate->dtms_probe->dtpr_name, 2786 state, mstate)); 2787 2788 case DIF_VAR_PID: 2789 if (!dtrace_priv_proc(state)) 2790 return (0); 2791 2792 /* 2793 * Note that we are assuming that an unanchored probe is 2794 * always due to a high-level interrupt. (And we're assuming 2795 * that there is only a single high level interrupt.) 2796 */ 2797 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2798 return (pid0.pid_id); 2799 2800 /* 2801 * It is always safe to dereference one's own t_procp pointer: 2802 * it always points to a valid, allocated proc structure. 2803 * Further, it is always safe to dereference the p_pidp member 2804 * of one's own proc structure. (These are truisms becuase 2805 * threads and processes don't clean up their own state -- 2806 * they leave that task to whomever reaps them.) 2807 */ 2808 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 2809 2810 case DIF_VAR_PPID: 2811 if (!dtrace_priv_proc(state)) 2812 return (0); 2813 2814 /* 2815 * See comment in DIF_VAR_PID. 2816 */ 2817 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2818 return (pid0.pid_id); 2819 2820 /* 2821 * It is always safe to dereference one's own t_procp pointer: 2822 * it always points to a valid, allocated proc structure. 2823 * (This is true because threads don't clean up their own 2824 * state -- they leave that task to whomever reaps them.) 2825 */ 2826 return ((uint64_t)curthread->t_procp->p_ppid); 2827 2828 case DIF_VAR_TID: 2829 /* 2830 * See comment in DIF_VAR_PID. 2831 */ 2832 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2833 return (0); 2834 2835 return ((uint64_t)curthread->t_tid); 2836 2837 case DIF_VAR_EXECNAME: 2838 if (!dtrace_priv_proc(state)) 2839 return (0); 2840 2841 /* 2842 * See comment in DIF_VAR_PID. 2843 */ 2844 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2845 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 2846 2847 /* 2848 * It is always safe to dereference one's own t_procp pointer: 2849 * it always points to a valid, allocated proc structure. 2850 * (This is true because threads don't clean up their own 2851 * state -- they leave that task to whomever reaps them.) 2852 */ 2853 return (dtrace_dif_varstr( 2854 (uintptr_t)curthread->t_procp->p_user.u_comm, 2855 state, mstate)); 2856 2857 case DIF_VAR_ZONENAME: 2858 if (!dtrace_priv_proc(state)) 2859 return (0); 2860 2861 /* 2862 * See comment in DIF_VAR_PID. 2863 */ 2864 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2865 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 2866 2867 /* 2868 * It is always safe to dereference one's own t_procp pointer: 2869 * it always points to a valid, allocated proc structure. 2870 * (This is true because threads don't clean up their own 2871 * state -- they leave that task to whomever reaps them.) 2872 */ 2873 return (dtrace_dif_varstr( 2874 (uintptr_t)curthread->t_procp->p_zone->zone_name, 2875 state, mstate)); 2876 2877 case DIF_VAR_UID: 2878 if (!dtrace_priv_proc(state)) 2879 return (0); 2880 2881 /* 2882 * See comment in DIF_VAR_PID. 2883 */ 2884 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2885 return ((uint64_t)p0.p_cred->cr_uid); 2886 2887 /* 2888 * It is always safe to dereference one's own t_procp pointer: 2889 * it always points to a valid, allocated proc structure. 2890 * (This is true because threads don't clean up their own 2891 * state -- they leave that task to whomever reaps them.) 2892 * 2893 * Additionally, it is safe to dereference one's own process 2894 * credential, since this is never NULL after process birth. 2895 */ 2896 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 2897 2898 case DIF_VAR_GID: 2899 if (!dtrace_priv_proc(state)) 2900 return (0); 2901 2902 /* 2903 * See comment in DIF_VAR_PID. 2904 */ 2905 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2906 return ((uint64_t)p0.p_cred->cr_gid); 2907 2908 /* 2909 * It is always safe to dereference one's own t_procp pointer: 2910 * it always points to a valid, allocated proc structure. 2911 * (This is true because threads don't clean up their own 2912 * state -- they leave that task to whomever reaps them.) 2913 * 2914 * Additionally, it is safe to dereference one's own process 2915 * credential, since this is never NULL after process birth. 2916 */ 2917 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 2918 2919 case DIF_VAR_ERRNO: { 2920 klwp_t *lwp; 2921 if (!dtrace_priv_proc(state)) 2922 return (0); 2923 2924 /* 2925 * See comment in DIF_VAR_PID. 2926 */ 2927 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2928 return (0); 2929 2930 /* 2931 * It is always safe to dereference one's own t_lwp pointer in 2932 * the event that this pointer is non-NULL. (This is true 2933 * because threads and lwps don't clean up their own state -- 2934 * they leave that task to whomever reaps them.) 2935 */ 2936 if ((lwp = curthread->t_lwp) == NULL) 2937 return (0); 2938 2939 return ((uint64_t)lwp->lwp_errno); 2940 } 2941 default: 2942 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2943 return (0); 2944 } 2945 } 2946 2947 /* 2948 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 2949 * Notice that we don't bother validating the proper number of arguments or 2950 * their types in the tuple stack. This isn't needed because all argument 2951 * interpretation is safe because of our load safety -- the worst that can 2952 * happen is that a bogus program can obtain bogus results. 2953 */ 2954 static void 2955 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 2956 dtrace_key_t *tupregs, int nargs, 2957 dtrace_mstate_t *mstate, dtrace_state_t *state) 2958 { 2959 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 2960 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 2961 dtrace_vstate_t *vstate = &state->dts_vstate; 2962 2963 union { 2964 mutex_impl_t mi; 2965 uint64_t mx; 2966 } m; 2967 2968 union { 2969 krwlock_t ri; 2970 uintptr_t rw; 2971 } r; 2972 2973 switch (subr) { 2974 case DIF_SUBR_RAND: 2975 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 2976 break; 2977 2978 case DIF_SUBR_MUTEX_OWNED: 2979 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2980 mstate, vstate)) { 2981 regs[rd] = NULL; 2982 break; 2983 } 2984 2985 m.mx = dtrace_load64(tupregs[0].dttk_value); 2986 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 2987 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 2988 else 2989 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 2990 break; 2991 2992 case DIF_SUBR_MUTEX_OWNER: 2993 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2994 mstate, vstate)) { 2995 regs[rd] = NULL; 2996 break; 2997 } 2998 2999 m.mx = dtrace_load64(tupregs[0].dttk_value); 3000 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3001 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3002 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3003 else 3004 regs[rd] = 0; 3005 break; 3006 3007 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3008 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3009 mstate, vstate)) { 3010 regs[rd] = NULL; 3011 break; 3012 } 3013 3014 m.mx = dtrace_load64(tupregs[0].dttk_value); 3015 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3016 break; 3017 3018 case DIF_SUBR_MUTEX_TYPE_SPIN: 3019 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3020 mstate, vstate)) { 3021 regs[rd] = NULL; 3022 break; 3023 } 3024 3025 m.mx = dtrace_load64(tupregs[0].dttk_value); 3026 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3027 break; 3028 3029 case DIF_SUBR_RW_READ_HELD: { 3030 uintptr_t tmp; 3031 3032 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3033 mstate, vstate)) { 3034 regs[rd] = NULL; 3035 break; 3036 } 3037 3038 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3039 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3040 break; 3041 } 3042 3043 case DIF_SUBR_RW_WRITE_HELD: 3044 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3045 mstate, vstate)) { 3046 regs[rd] = NULL; 3047 break; 3048 } 3049 3050 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3051 regs[rd] = _RW_WRITE_HELD(&r.ri); 3052 break; 3053 3054 case DIF_SUBR_RW_ISWRITER: 3055 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3056 mstate, vstate)) { 3057 regs[rd] = NULL; 3058 break; 3059 } 3060 3061 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3062 regs[rd] = _RW_ISWRITER(&r.ri); 3063 break; 3064 3065 case DIF_SUBR_BCOPY: { 3066 /* 3067 * We need to be sure that the destination is in the scratch 3068 * region -- no other region is allowed. 3069 */ 3070 uintptr_t src = tupregs[0].dttk_value; 3071 uintptr_t dest = tupregs[1].dttk_value; 3072 size_t size = tupregs[2].dttk_value; 3073 3074 if (!dtrace_inscratch(dest, size, mstate)) { 3075 *flags |= CPU_DTRACE_BADADDR; 3076 *illval = regs[rd]; 3077 break; 3078 } 3079 3080 if (!dtrace_canload(src, size, mstate, vstate)) { 3081 regs[rd] = NULL; 3082 break; 3083 } 3084 3085 dtrace_bcopy((void *)src, (void *)dest, size); 3086 break; 3087 } 3088 3089 case DIF_SUBR_ALLOCA: 3090 case DIF_SUBR_COPYIN: { 3091 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3092 uint64_t size = 3093 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3094 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3095 3096 /* 3097 * This action doesn't require any credential checks since 3098 * probes will not activate in user contexts to which the 3099 * enabling user does not have permissions. 3100 */ 3101 3102 /* 3103 * Rounding up the user allocation size could have overflowed 3104 * a large, bogus allocation (like -1ULL) to 0. 3105 */ 3106 if (scratch_size < size || 3107 !DTRACE_INSCRATCH(mstate, scratch_size)) { 3108 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3109 regs[rd] = NULL; 3110 break; 3111 } 3112 3113 if (subr == DIF_SUBR_COPYIN) { 3114 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3115 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3116 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3117 } 3118 3119 mstate->dtms_scratch_ptr += scratch_size; 3120 regs[rd] = dest; 3121 break; 3122 } 3123 3124 case DIF_SUBR_COPYINTO: { 3125 uint64_t size = tupregs[1].dttk_value; 3126 uintptr_t dest = tupregs[2].dttk_value; 3127 3128 /* 3129 * This action doesn't require any credential checks since 3130 * probes will not activate in user contexts to which the 3131 * enabling user does not have permissions. 3132 */ 3133 if (!dtrace_inscratch(dest, size, mstate)) { 3134 *flags |= CPU_DTRACE_BADADDR; 3135 *illval = regs[rd]; 3136 break; 3137 } 3138 3139 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3140 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3141 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3142 break; 3143 } 3144 3145 case DIF_SUBR_COPYINSTR: { 3146 uintptr_t dest = mstate->dtms_scratch_ptr; 3147 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3148 3149 if (nargs > 1 && tupregs[1].dttk_value < size) 3150 size = tupregs[1].dttk_value + 1; 3151 3152 /* 3153 * This action doesn't require any credential checks since 3154 * probes will not activate in user contexts to which the 3155 * enabling user does not have permissions. 3156 */ 3157 if (!DTRACE_INSCRATCH(mstate, size)) { 3158 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3159 regs[rd] = NULL; 3160 break; 3161 } 3162 3163 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3164 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3165 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3166 3167 ((char *)dest)[size - 1] = '\0'; 3168 mstate->dtms_scratch_ptr += size; 3169 regs[rd] = dest; 3170 break; 3171 } 3172 3173 case DIF_SUBR_MSGSIZE: 3174 case DIF_SUBR_MSGDSIZE: { 3175 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3176 uintptr_t wptr, rptr; 3177 size_t count = 0; 3178 int cont = 0; 3179 3180 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3181 3182 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3183 vstate)) { 3184 regs[rd] = NULL; 3185 break; 3186 } 3187 3188 wptr = dtrace_loadptr(baddr + 3189 offsetof(mblk_t, b_wptr)); 3190 3191 rptr = dtrace_loadptr(baddr + 3192 offsetof(mblk_t, b_rptr)); 3193 3194 if (wptr < rptr) { 3195 *flags |= CPU_DTRACE_BADADDR; 3196 *illval = tupregs[0].dttk_value; 3197 break; 3198 } 3199 3200 daddr = dtrace_loadptr(baddr + 3201 offsetof(mblk_t, b_datap)); 3202 3203 baddr = dtrace_loadptr(baddr + 3204 offsetof(mblk_t, b_cont)); 3205 3206 /* 3207 * We want to prevent against denial-of-service here, 3208 * so we're only going to search the list for 3209 * dtrace_msgdsize_max mblks. 3210 */ 3211 if (cont++ > dtrace_msgdsize_max) { 3212 *flags |= CPU_DTRACE_ILLOP; 3213 break; 3214 } 3215 3216 if (subr == DIF_SUBR_MSGDSIZE) { 3217 if (dtrace_load8(daddr + 3218 offsetof(dblk_t, db_type)) != M_DATA) 3219 continue; 3220 } 3221 3222 count += wptr - rptr; 3223 } 3224 3225 if (!(*flags & CPU_DTRACE_FAULT)) 3226 regs[rd] = count; 3227 3228 break; 3229 } 3230 3231 case DIF_SUBR_PROGENYOF: { 3232 pid_t pid = tupregs[0].dttk_value; 3233 proc_t *p; 3234 int rval = 0; 3235 3236 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3237 3238 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3239 if (p->p_pidp->pid_id == pid) { 3240 rval = 1; 3241 break; 3242 } 3243 } 3244 3245 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3246 3247 regs[rd] = rval; 3248 break; 3249 } 3250 3251 case DIF_SUBR_SPECULATION: 3252 regs[rd] = dtrace_speculation(state); 3253 break; 3254 3255 case DIF_SUBR_COPYOUT: { 3256 uintptr_t kaddr = tupregs[0].dttk_value; 3257 uintptr_t uaddr = tupregs[1].dttk_value; 3258 uint64_t size = tupregs[2].dttk_value; 3259 3260 if (!dtrace_destructive_disallow && 3261 dtrace_priv_proc_control(state) && 3262 !dtrace_istoxic(kaddr, size)) { 3263 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3264 dtrace_copyout(kaddr, uaddr, size, flags); 3265 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3266 } 3267 break; 3268 } 3269 3270 case DIF_SUBR_COPYOUTSTR: { 3271 uintptr_t kaddr = tupregs[0].dttk_value; 3272 uintptr_t uaddr = tupregs[1].dttk_value; 3273 uint64_t size = tupregs[2].dttk_value; 3274 3275 if (!dtrace_destructive_disallow && 3276 dtrace_priv_proc_control(state) && 3277 !dtrace_istoxic(kaddr, size)) { 3278 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3279 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3280 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3281 } 3282 break; 3283 } 3284 3285 case DIF_SUBR_STRLEN: { 3286 size_t sz; 3287 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3288 sz = dtrace_strlen((char *)addr, 3289 state->dts_options[DTRACEOPT_STRSIZE]); 3290 3291 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3292 regs[rd] = NULL; 3293 break; 3294 } 3295 3296 regs[rd] = sz; 3297 3298 break; 3299 } 3300 3301 case DIF_SUBR_STRCHR: 3302 case DIF_SUBR_STRRCHR: { 3303 /* 3304 * We're going to iterate over the string looking for the 3305 * specified character. We will iterate until we have reached 3306 * the string length or we have found the character. If this 3307 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3308 * of the specified character instead of the first. 3309 */ 3310 uintptr_t saddr = tupregs[0].dttk_value; 3311 uintptr_t addr = tupregs[0].dttk_value; 3312 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3313 char c, target = (char)tupregs[1].dttk_value; 3314 3315 for (regs[rd] = NULL; addr < limit; addr++) { 3316 if ((c = dtrace_load8(addr)) == target) { 3317 regs[rd] = addr; 3318 3319 if (subr == DIF_SUBR_STRCHR) 3320 break; 3321 } 3322 3323 if (c == '\0') 3324 break; 3325 } 3326 3327 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3328 regs[rd] = NULL; 3329 break; 3330 } 3331 3332 break; 3333 } 3334 3335 case DIF_SUBR_STRSTR: 3336 case DIF_SUBR_INDEX: 3337 case DIF_SUBR_RINDEX: { 3338 /* 3339 * We're going to iterate over the string looking for the 3340 * specified string. We will iterate until we have reached 3341 * the string length or we have found the string. (Yes, this 3342 * is done in the most naive way possible -- but considering 3343 * that the string we're searching for is likely to be 3344 * relatively short, the complexity of Rabin-Karp or similar 3345 * hardly seems merited.) 3346 */ 3347 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3348 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3349 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3350 size_t len = dtrace_strlen(addr, size); 3351 size_t sublen = dtrace_strlen(substr, size); 3352 char *limit = addr + len, *orig = addr; 3353 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3354 int inc = 1; 3355 3356 regs[rd] = notfound; 3357 3358 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3359 regs[rd] = NULL; 3360 break; 3361 } 3362 3363 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3364 vstate)) { 3365 regs[rd] = NULL; 3366 break; 3367 } 3368 3369 /* 3370 * strstr() and index()/rindex() have similar semantics if 3371 * both strings are the empty string: strstr() returns a 3372 * pointer to the (empty) string, and index() and rindex() 3373 * both return index 0 (regardless of any position argument). 3374 */ 3375 if (sublen == 0 && len == 0) { 3376 if (subr == DIF_SUBR_STRSTR) 3377 regs[rd] = (uintptr_t)addr; 3378 else 3379 regs[rd] = 0; 3380 break; 3381 } 3382 3383 if (subr != DIF_SUBR_STRSTR) { 3384 if (subr == DIF_SUBR_RINDEX) { 3385 limit = orig - 1; 3386 addr += len; 3387 inc = -1; 3388 } 3389 3390 /* 3391 * Both index() and rindex() take an optional position 3392 * argument that denotes the starting position. 3393 */ 3394 if (nargs == 3) { 3395 int64_t pos = (int64_t)tupregs[2].dttk_value; 3396 3397 /* 3398 * If the position argument to index() is 3399 * negative, Perl implicitly clamps it at 3400 * zero. This semantic is a little surprising 3401 * given the special meaning of negative 3402 * positions to similar Perl functions like 3403 * substr(), but it appears to reflect a 3404 * notion that index() can start from a 3405 * negative index and increment its way up to 3406 * the string. Given this notion, Perl's 3407 * rindex() is at least self-consistent in 3408 * that it implicitly clamps positions greater 3409 * than the string length to be the string 3410 * length. Where Perl completely loses 3411 * coherence, however, is when the specified 3412 * substring is the empty string (""). In 3413 * this case, even if the position is 3414 * negative, rindex() returns 0 -- and even if 3415 * the position is greater than the length, 3416 * index() returns the string length. These 3417 * semantics violate the notion that index() 3418 * should never return a value less than the 3419 * specified position and that rindex() should 3420 * never return a value greater than the 3421 * specified position. (One assumes that 3422 * these semantics are artifacts of Perl's 3423 * implementation and not the results of 3424 * deliberate design -- it beggars belief that 3425 * even Larry Wall could desire such oddness.) 3426 * While in the abstract one would wish for 3427 * consistent position semantics across 3428 * substr(), index() and rindex() -- or at the 3429 * very least self-consistent position 3430 * semantics for index() and rindex() -- we 3431 * instead opt to keep with the extant Perl 3432 * semantics, in all their broken glory. (Do 3433 * we have more desire to maintain Perl's 3434 * semantics than Perl does? Probably.) 3435 */ 3436 if (subr == DIF_SUBR_RINDEX) { 3437 if (pos < 0) { 3438 if (sublen == 0) 3439 regs[rd] = 0; 3440 break; 3441 } 3442 3443 if (pos > len) 3444 pos = len; 3445 } else { 3446 if (pos < 0) 3447 pos = 0; 3448 3449 if (pos >= len) { 3450 if (sublen == 0) 3451 regs[rd] = len; 3452 break; 3453 } 3454 } 3455 3456 addr = orig + pos; 3457 } 3458 } 3459 3460 for (regs[rd] = notfound; addr != limit; addr += inc) { 3461 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3462 if (subr != DIF_SUBR_STRSTR) { 3463 /* 3464 * As D index() and rindex() are 3465 * modeled on Perl (and not on awk), 3466 * we return a zero-based (and not a 3467 * one-based) index. (For you Perl 3468 * weenies: no, we're not going to add 3469 * $[ -- and shouldn't you be at a con 3470 * or something?) 3471 */ 3472 regs[rd] = (uintptr_t)(addr - orig); 3473 break; 3474 } 3475 3476 ASSERT(subr == DIF_SUBR_STRSTR); 3477 regs[rd] = (uintptr_t)addr; 3478 break; 3479 } 3480 } 3481 3482 break; 3483 } 3484 3485 case DIF_SUBR_STRTOK: { 3486 uintptr_t addr = tupregs[0].dttk_value; 3487 uintptr_t tokaddr = tupregs[1].dttk_value; 3488 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3489 uintptr_t limit, toklimit = tokaddr + size; 3490 uint8_t c, tokmap[32]; /* 256 / 8 */ 3491 char *dest = (char *)mstate->dtms_scratch_ptr; 3492 int i; 3493 3494 /* 3495 * Check both the token buffer and (later) the input buffer, 3496 * since both could be non-scratch addresses. 3497 */ 3498 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3499 regs[rd] = NULL; 3500 break; 3501 } 3502 3503 if (!DTRACE_INSCRATCH(mstate, size)) { 3504 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3505 regs[rd] = NULL; 3506 break; 3507 } 3508 3509 if (addr == NULL) { 3510 /* 3511 * If the address specified is NULL, we use our saved 3512 * strtok pointer from the mstate. Note that this 3513 * means that the saved strtok pointer is _only_ 3514 * valid within multiple enablings of the same probe -- 3515 * it behaves like an implicit clause-local variable. 3516 */ 3517 addr = mstate->dtms_strtok; 3518 } else { 3519 /* 3520 * If the user-specified address is non-NULL we must 3521 * access check it. This is the only time we have 3522 * a chance to do so, since this address may reside 3523 * in the string table of this clause-- future calls 3524 * (when we fetch addr from mstate->dtms_strtok) 3525 * would fail this access check. 3526 */ 3527 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3528 regs[rd] = NULL; 3529 break; 3530 } 3531 } 3532 3533 /* 3534 * First, zero the token map, and then process the token 3535 * string -- setting a bit in the map for every character 3536 * found in the token string. 3537 */ 3538 for (i = 0; i < sizeof (tokmap); i++) 3539 tokmap[i] = 0; 3540 3541 for (; tokaddr < toklimit; tokaddr++) { 3542 if ((c = dtrace_load8(tokaddr)) == '\0') 3543 break; 3544 3545 ASSERT((c >> 3) < sizeof (tokmap)); 3546 tokmap[c >> 3] |= (1 << (c & 0x7)); 3547 } 3548 3549 for (limit = addr + size; addr < limit; addr++) { 3550 /* 3551 * We're looking for a character that is _not_ contained 3552 * in the token string. 3553 */ 3554 if ((c = dtrace_load8(addr)) == '\0') 3555 break; 3556 3557 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3558 break; 3559 } 3560 3561 if (c == '\0') { 3562 /* 3563 * We reached the end of the string without finding 3564 * any character that was not in the token string. 3565 * We return NULL in this case, and we set the saved 3566 * address to NULL as well. 3567 */ 3568 regs[rd] = NULL; 3569 mstate->dtms_strtok = NULL; 3570 break; 3571 } 3572 3573 /* 3574 * From here on, we're copying into the destination string. 3575 */ 3576 for (i = 0; addr < limit && i < size - 1; addr++) { 3577 if ((c = dtrace_load8(addr)) == '\0') 3578 break; 3579 3580 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3581 break; 3582 3583 ASSERT(i < size); 3584 dest[i++] = c; 3585 } 3586 3587 ASSERT(i < size); 3588 dest[i] = '\0'; 3589 regs[rd] = (uintptr_t)dest; 3590 mstate->dtms_scratch_ptr += size; 3591 mstate->dtms_strtok = addr; 3592 break; 3593 } 3594 3595 case DIF_SUBR_SUBSTR: { 3596 uintptr_t s = tupregs[0].dttk_value; 3597 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3598 char *d = (char *)mstate->dtms_scratch_ptr; 3599 int64_t index = (int64_t)tupregs[1].dttk_value; 3600 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3601 size_t len = dtrace_strlen((char *)s, size); 3602 int64_t i = 0; 3603 3604 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3605 regs[rd] = NULL; 3606 break; 3607 } 3608 3609 if (!DTRACE_INSCRATCH(mstate, size)) { 3610 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3611 regs[rd] = NULL; 3612 break; 3613 } 3614 3615 if (nargs <= 2) 3616 remaining = (int64_t)size; 3617 3618 if (index < 0) { 3619 index += len; 3620 3621 if (index < 0 && index + remaining > 0) { 3622 remaining += index; 3623 index = 0; 3624 } 3625 } 3626 3627 if (index >= len || index < 0) { 3628 remaining = 0; 3629 } else if (remaining < 0) { 3630 remaining += len - index; 3631 } else if (index + remaining > size) { 3632 remaining = size - index; 3633 } 3634 3635 for (i = 0; i < remaining; i++) { 3636 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 3637 break; 3638 } 3639 3640 d[i] = '\0'; 3641 3642 mstate->dtms_scratch_ptr += size; 3643 regs[rd] = (uintptr_t)d; 3644 break; 3645 } 3646 3647 case DIF_SUBR_GETMAJOR: 3648 #ifdef _LP64 3649 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3650 #else 3651 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3652 #endif 3653 break; 3654 3655 case DIF_SUBR_GETMINOR: 3656 #ifdef _LP64 3657 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3658 #else 3659 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3660 #endif 3661 break; 3662 3663 case DIF_SUBR_DDI_PATHNAME: { 3664 /* 3665 * This one is a galactic mess. We are going to roughly 3666 * emulate ddi_pathname(), but it's made more complicated 3667 * by the fact that we (a) want to include the minor name and 3668 * (b) must proceed iteratively instead of recursively. 3669 */ 3670 uintptr_t dest = mstate->dtms_scratch_ptr; 3671 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3672 char *start = (char *)dest, *end = start + size - 1; 3673 uintptr_t daddr = tupregs[0].dttk_value; 3674 int64_t minor = (int64_t)tupregs[1].dttk_value; 3675 char *s; 3676 int i, len, depth = 0; 3677 3678 /* 3679 * Due to all the pointer jumping we do and context we must 3680 * rely upon, we just mandate that the user must have kernel 3681 * read privileges to use this routine. 3682 */ 3683 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 3684 *flags |= CPU_DTRACE_KPRIV; 3685 *illval = daddr; 3686 regs[rd] = NULL; 3687 } 3688 3689 if (!DTRACE_INSCRATCH(mstate, size)) { 3690 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3691 regs[rd] = NULL; 3692 break; 3693 } 3694 3695 *end = '\0'; 3696 3697 /* 3698 * We want to have a name for the minor. In order to do this, 3699 * we need to walk the minor list from the devinfo. We want 3700 * to be sure that we don't infinitely walk a circular list, 3701 * so we check for circularity by sending a scout pointer 3702 * ahead two elements for every element that we iterate over; 3703 * if the list is circular, these will ultimately point to the 3704 * same element. You may recognize this little trick as the 3705 * answer to a stupid interview question -- one that always 3706 * seems to be asked by those who had to have it laboriously 3707 * explained to them, and who can't even concisely describe 3708 * the conditions under which one would be forced to resort to 3709 * this technique. Needless to say, those conditions are 3710 * found here -- and probably only here. Is this the only use 3711 * of this infamous trick in shipping, production code? If it 3712 * isn't, it probably should be... 3713 */ 3714 if (minor != -1) { 3715 uintptr_t maddr = dtrace_loadptr(daddr + 3716 offsetof(struct dev_info, devi_minor)); 3717 3718 uintptr_t next = offsetof(struct ddi_minor_data, next); 3719 uintptr_t name = offsetof(struct ddi_minor_data, 3720 d_minor) + offsetof(struct ddi_minor, name); 3721 uintptr_t dev = offsetof(struct ddi_minor_data, 3722 d_minor) + offsetof(struct ddi_minor, dev); 3723 uintptr_t scout; 3724 3725 if (maddr != NULL) 3726 scout = dtrace_loadptr(maddr + next); 3727 3728 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3729 uint64_t m; 3730 #ifdef _LP64 3731 m = dtrace_load64(maddr + dev) & MAXMIN64; 3732 #else 3733 m = dtrace_load32(maddr + dev) & MAXMIN; 3734 #endif 3735 if (m != minor) { 3736 maddr = dtrace_loadptr(maddr + next); 3737 3738 if (scout == NULL) 3739 continue; 3740 3741 scout = dtrace_loadptr(scout + next); 3742 3743 if (scout == NULL) 3744 continue; 3745 3746 scout = dtrace_loadptr(scout + next); 3747 3748 if (scout == NULL) 3749 continue; 3750 3751 if (scout == maddr) { 3752 *flags |= CPU_DTRACE_ILLOP; 3753 break; 3754 } 3755 3756 continue; 3757 } 3758 3759 /* 3760 * We have the minor data. Now we need to 3761 * copy the minor's name into the end of the 3762 * pathname. 3763 */ 3764 s = (char *)dtrace_loadptr(maddr + name); 3765 len = dtrace_strlen(s, size); 3766 3767 if (*flags & CPU_DTRACE_FAULT) 3768 break; 3769 3770 if (len != 0) { 3771 if ((end -= (len + 1)) < start) 3772 break; 3773 3774 *end = ':'; 3775 } 3776 3777 for (i = 1; i <= len; i++) 3778 end[i] = dtrace_load8((uintptr_t)s++); 3779 break; 3780 } 3781 } 3782 3783 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3784 ddi_node_state_t devi_state; 3785 3786 devi_state = dtrace_load32(daddr + 3787 offsetof(struct dev_info, devi_node_state)); 3788 3789 if (*flags & CPU_DTRACE_FAULT) 3790 break; 3791 3792 if (devi_state >= DS_INITIALIZED) { 3793 s = (char *)dtrace_loadptr(daddr + 3794 offsetof(struct dev_info, devi_addr)); 3795 len = dtrace_strlen(s, size); 3796 3797 if (*flags & CPU_DTRACE_FAULT) 3798 break; 3799 3800 if (len != 0) { 3801 if ((end -= (len + 1)) < start) 3802 break; 3803 3804 *end = '@'; 3805 } 3806 3807 for (i = 1; i <= len; i++) 3808 end[i] = dtrace_load8((uintptr_t)s++); 3809 } 3810 3811 /* 3812 * Now for the node name... 3813 */ 3814 s = (char *)dtrace_loadptr(daddr + 3815 offsetof(struct dev_info, devi_node_name)); 3816 3817 daddr = dtrace_loadptr(daddr + 3818 offsetof(struct dev_info, devi_parent)); 3819 3820 /* 3821 * If our parent is NULL (that is, if we're the root 3822 * node), we're going to use the special path 3823 * "devices". 3824 */ 3825 if (daddr == NULL) 3826 s = "devices"; 3827 3828 len = dtrace_strlen(s, size); 3829 if (*flags & CPU_DTRACE_FAULT) 3830 break; 3831 3832 if ((end -= (len + 1)) < start) 3833 break; 3834 3835 for (i = 1; i <= len; i++) 3836 end[i] = dtrace_load8((uintptr_t)s++); 3837 *end = '/'; 3838 3839 if (depth++ > dtrace_devdepth_max) { 3840 *flags |= CPU_DTRACE_ILLOP; 3841 break; 3842 } 3843 } 3844 3845 if (end < start) 3846 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3847 3848 if (daddr == NULL) { 3849 regs[rd] = (uintptr_t)end; 3850 mstate->dtms_scratch_ptr += size; 3851 } 3852 3853 break; 3854 } 3855 3856 case DIF_SUBR_STRJOIN: { 3857 char *d = (char *)mstate->dtms_scratch_ptr; 3858 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3859 uintptr_t s1 = tupregs[0].dttk_value; 3860 uintptr_t s2 = tupregs[1].dttk_value; 3861 int i = 0; 3862 3863 if (!dtrace_strcanload(s1, size, mstate, vstate) || 3864 !dtrace_strcanload(s2, size, mstate, vstate)) { 3865 regs[rd] = NULL; 3866 break; 3867 } 3868 3869 if (!DTRACE_INSCRATCH(mstate, size)) { 3870 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3871 regs[rd] = NULL; 3872 break; 3873 } 3874 3875 for (;;) { 3876 if (i >= size) { 3877 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3878 regs[rd] = NULL; 3879 break; 3880 } 3881 3882 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 3883 i--; 3884 break; 3885 } 3886 } 3887 3888 for (;;) { 3889 if (i >= size) { 3890 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3891 regs[rd] = NULL; 3892 break; 3893 } 3894 3895 if ((d[i++] = dtrace_load8(s2++)) == '\0') 3896 break; 3897 } 3898 3899 if (i < size) { 3900 mstate->dtms_scratch_ptr += i; 3901 regs[rd] = (uintptr_t)d; 3902 } 3903 3904 break; 3905 } 3906 3907 case DIF_SUBR_LLTOSTR: { 3908 int64_t i = (int64_t)tupregs[0].dttk_value; 3909 int64_t val = i < 0 ? i * -1 : i; 3910 uint64_t size = 22; /* enough room for 2^64 in decimal */ 3911 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 3912 3913 if (!DTRACE_INSCRATCH(mstate, size)) { 3914 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3915 regs[rd] = NULL; 3916 break; 3917 } 3918 3919 for (*end-- = '\0'; val; val /= 10) 3920 *end-- = '0' + (val % 10); 3921 3922 if (i == 0) 3923 *end-- = '0'; 3924 3925 if (i < 0) 3926 *end-- = '-'; 3927 3928 regs[rd] = (uintptr_t)end + 1; 3929 mstate->dtms_scratch_ptr += size; 3930 break; 3931 } 3932 3933 case DIF_SUBR_HTONS: 3934 case DIF_SUBR_NTOHS: 3935 #ifdef _BIG_ENDIAN 3936 regs[rd] = (uint16_t)tupregs[0].dttk_value; 3937 #else 3938 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 3939 #endif 3940 break; 3941 3942 3943 case DIF_SUBR_HTONL: 3944 case DIF_SUBR_NTOHL: 3945 #ifdef _BIG_ENDIAN 3946 regs[rd] = (uint32_t)tupregs[0].dttk_value; 3947 #else 3948 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 3949 #endif 3950 break; 3951 3952 3953 case DIF_SUBR_HTONLL: 3954 case DIF_SUBR_NTOHLL: 3955 #ifdef _BIG_ENDIAN 3956 regs[rd] = (uint64_t)tupregs[0].dttk_value; 3957 #else 3958 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 3959 #endif 3960 break; 3961 3962 3963 case DIF_SUBR_DIRNAME: 3964 case DIF_SUBR_BASENAME: { 3965 char *dest = (char *)mstate->dtms_scratch_ptr; 3966 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3967 uintptr_t src = tupregs[0].dttk_value; 3968 int i, j, len = dtrace_strlen((char *)src, size); 3969 int lastbase = -1, firstbase = -1, lastdir = -1; 3970 int start, end; 3971 3972 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 3973 regs[rd] = NULL; 3974 break; 3975 } 3976 3977 if (!DTRACE_INSCRATCH(mstate, size)) { 3978 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3979 regs[rd] = NULL; 3980 break; 3981 } 3982 3983 /* 3984 * The basename and dirname for a zero-length string is 3985 * defined to be "." 3986 */ 3987 if (len == 0) { 3988 len = 1; 3989 src = (uintptr_t)"."; 3990 } 3991 3992 /* 3993 * Start from the back of the string, moving back toward the 3994 * front until we see a character that isn't a slash. That 3995 * character is the last character in the basename. 3996 */ 3997 for (i = len - 1; i >= 0; i--) { 3998 if (dtrace_load8(src + i) != '/') 3999 break; 4000 } 4001 4002 if (i >= 0) 4003 lastbase = i; 4004 4005 /* 4006 * Starting from the last character in the basename, move 4007 * towards the front until we find a slash. The character 4008 * that we processed immediately before that is the first 4009 * character in the basename. 4010 */ 4011 for (; i >= 0; i--) { 4012 if (dtrace_load8(src + i) == '/') 4013 break; 4014 } 4015 4016 if (i >= 0) 4017 firstbase = i + 1; 4018 4019 /* 4020 * Now keep going until we find a non-slash character. That 4021 * character is the last character in the dirname. 4022 */ 4023 for (; i >= 0; i--) { 4024 if (dtrace_load8(src + i) != '/') 4025 break; 4026 } 4027 4028 if (i >= 0) 4029 lastdir = i; 4030 4031 ASSERT(!(lastbase == -1 && firstbase != -1)); 4032 ASSERT(!(firstbase == -1 && lastdir != -1)); 4033 4034 if (lastbase == -1) { 4035 /* 4036 * We didn't find a non-slash character. We know that 4037 * the length is non-zero, so the whole string must be 4038 * slashes. In either the dirname or the basename 4039 * case, we return '/'. 4040 */ 4041 ASSERT(firstbase == -1); 4042 firstbase = lastbase = lastdir = 0; 4043 } 4044 4045 if (firstbase == -1) { 4046 /* 4047 * The entire string consists only of a basename 4048 * component. If we're looking for dirname, we need 4049 * to change our string to be just "."; if we're 4050 * looking for a basename, we'll just set the first 4051 * character of the basename to be 0. 4052 */ 4053 if (subr == DIF_SUBR_DIRNAME) { 4054 ASSERT(lastdir == -1); 4055 src = (uintptr_t)"."; 4056 lastdir = 0; 4057 } else { 4058 firstbase = 0; 4059 } 4060 } 4061 4062 if (subr == DIF_SUBR_DIRNAME) { 4063 if (lastdir == -1) { 4064 /* 4065 * We know that we have a slash in the name -- 4066 * or lastdir would be set to 0, above. And 4067 * because lastdir is -1, we know that this 4068 * slash must be the first character. (That 4069 * is, the full string must be of the form 4070 * "/basename".) In this case, the last 4071 * character of the directory name is 0. 4072 */ 4073 lastdir = 0; 4074 } 4075 4076 start = 0; 4077 end = lastdir; 4078 } else { 4079 ASSERT(subr == DIF_SUBR_BASENAME); 4080 ASSERT(firstbase != -1 && lastbase != -1); 4081 start = firstbase; 4082 end = lastbase; 4083 } 4084 4085 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 4086 dest[j] = dtrace_load8(src + i); 4087 4088 dest[j] = '\0'; 4089 regs[rd] = (uintptr_t)dest; 4090 mstate->dtms_scratch_ptr += size; 4091 break; 4092 } 4093 4094 case DIF_SUBR_CLEANPATH: { 4095 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4096 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4097 uintptr_t src = tupregs[0].dttk_value; 4098 int i = 0, j = 0; 4099 4100 if (!dtrace_strcanload(src, size, mstate, vstate)) { 4101 regs[rd] = NULL; 4102 break; 4103 } 4104 4105 if (!DTRACE_INSCRATCH(mstate, size)) { 4106 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4107 regs[rd] = NULL; 4108 break; 4109 } 4110 4111 /* 4112 * Move forward, loading each character. 4113 */ 4114 do { 4115 c = dtrace_load8(src + i++); 4116 next: 4117 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 4118 break; 4119 4120 if (c != '/') { 4121 dest[j++] = c; 4122 continue; 4123 } 4124 4125 c = dtrace_load8(src + i++); 4126 4127 if (c == '/') { 4128 /* 4129 * We have two slashes -- we can just advance 4130 * to the next character. 4131 */ 4132 goto next; 4133 } 4134 4135 if (c != '.') { 4136 /* 4137 * This is not "." and it's not ".." -- we can 4138 * just store the "/" and this character and 4139 * drive on. 4140 */ 4141 dest[j++] = '/'; 4142 dest[j++] = c; 4143 continue; 4144 } 4145 4146 c = dtrace_load8(src + i++); 4147 4148 if (c == '/') { 4149 /* 4150 * This is a "/./" component. We're not going 4151 * to store anything in the destination buffer; 4152 * we're just going to go to the next component. 4153 */ 4154 goto next; 4155 } 4156 4157 if (c != '.') { 4158 /* 4159 * This is not ".." -- we can just store the 4160 * "/." and this character and continue 4161 * processing. 4162 */ 4163 dest[j++] = '/'; 4164 dest[j++] = '.'; 4165 dest[j++] = c; 4166 continue; 4167 } 4168 4169 c = dtrace_load8(src + i++); 4170 4171 if (c != '/' && c != '\0') { 4172 /* 4173 * This is not ".." -- it's "..[mumble]". 4174 * We'll store the "/.." and this character 4175 * and continue processing. 4176 */ 4177 dest[j++] = '/'; 4178 dest[j++] = '.'; 4179 dest[j++] = '.'; 4180 dest[j++] = c; 4181 continue; 4182 } 4183 4184 /* 4185 * This is "/../" or "/..\0". We need to back up 4186 * our destination pointer until we find a "/". 4187 */ 4188 i--; 4189 while (j != 0 && dest[--j] != '/') 4190 continue; 4191 4192 if (c == '\0') 4193 dest[++j] = '/'; 4194 } while (c != '\0'); 4195 4196 dest[j] = '\0'; 4197 regs[rd] = (uintptr_t)dest; 4198 mstate->dtms_scratch_ptr += size; 4199 break; 4200 } 4201 4202 case DIF_SUBR_INET_NTOA: 4203 case DIF_SUBR_INET_NTOA6: 4204 case DIF_SUBR_INET_NTOP: { 4205 size_t size; 4206 int af, argi, i; 4207 char *base, *end; 4208 4209 if (subr == DIF_SUBR_INET_NTOP) { 4210 af = (int)tupregs[0].dttk_value; 4211 argi = 1; 4212 } else { 4213 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4214 argi = 0; 4215 } 4216 4217 if (af == AF_INET) { 4218 ipaddr_t ip4; 4219 uint8_t *ptr8, val; 4220 4221 /* 4222 * Safely load the IPv4 address. 4223 */ 4224 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4225 4226 /* 4227 * Check an IPv4 string will fit in scratch. 4228 */ 4229 size = INET_ADDRSTRLEN; 4230 if (!DTRACE_INSCRATCH(mstate, size)) { 4231 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4232 regs[rd] = NULL; 4233 break; 4234 } 4235 base = (char *)mstate->dtms_scratch_ptr; 4236 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4237 4238 /* 4239 * Stringify as a dotted decimal quad. 4240 */ 4241 *end-- = '\0'; 4242 ptr8 = (uint8_t *)&ip4; 4243 for (i = 3; i >= 0; i--) { 4244 val = ptr8[i]; 4245 4246 if (val == 0) { 4247 *end-- = '0'; 4248 } else { 4249 for (; val; val /= 10) { 4250 *end-- = '0' + (val % 10); 4251 } 4252 } 4253 4254 if (i > 0) 4255 *end-- = '.'; 4256 } 4257 ASSERT(end + 1 >= base); 4258 4259 } else if (af == AF_INET6) { 4260 struct in6_addr ip6; 4261 int firstzero, tryzero, numzero, v6end; 4262 uint16_t val; 4263 const char digits[] = "0123456789abcdef"; 4264 4265 /* 4266 * Stringify using RFC 1884 convention 2 - 16 bit 4267 * hexadecimal values with a zero-run compression. 4268 * Lower case hexadecimal digits are used. 4269 * eg, fe80::214:4fff:fe0b:76c8. 4270 * The IPv4 embedded form is returned for inet_ntop, 4271 * just the IPv4 string is returned for inet_ntoa6. 4272 */ 4273 4274 /* 4275 * Safely load the IPv6 address. 4276 */ 4277 dtrace_bcopy( 4278 (void *)(uintptr_t)tupregs[argi].dttk_value, 4279 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4280 4281 /* 4282 * Check an IPv6 string will fit in scratch. 4283 */ 4284 size = INET6_ADDRSTRLEN; 4285 if (!DTRACE_INSCRATCH(mstate, size)) { 4286 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4287 regs[rd] = NULL; 4288 break; 4289 } 4290 base = (char *)mstate->dtms_scratch_ptr; 4291 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4292 *end-- = '\0'; 4293 4294 /* 4295 * Find the longest run of 16 bit zero values 4296 * for the single allowed zero compression - "::". 4297 */ 4298 firstzero = -1; 4299 tryzero = -1; 4300 numzero = 1; 4301 for (i = 0; i < sizeof (struct in6_addr); i++) { 4302 if (ip6._S6_un._S6_u8[i] == 0 && 4303 tryzero == -1 && i % 2 == 0) { 4304 tryzero = i; 4305 continue; 4306 } 4307 4308 if (tryzero != -1 && 4309 (ip6._S6_un._S6_u8[i] != 0 || 4310 i == sizeof (struct in6_addr) - 1)) { 4311 4312 if (i - tryzero <= numzero) { 4313 tryzero = -1; 4314 continue; 4315 } 4316 4317 firstzero = tryzero; 4318 numzero = i - i % 2 - tryzero; 4319 tryzero = -1; 4320 4321 if (ip6._S6_un._S6_u8[i] == 0 && 4322 i == sizeof (struct in6_addr) - 1) 4323 numzero += 2; 4324 } 4325 } 4326 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4327 4328 /* 4329 * Check for an IPv4 embedded address. 4330 */ 4331 v6end = sizeof (struct in6_addr) - 2; 4332 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4333 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4334 for (i = sizeof (struct in6_addr) - 1; 4335 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4336 ASSERT(end >= base); 4337 4338 val = ip6._S6_un._S6_u8[i]; 4339 4340 if (val == 0) { 4341 *end-- = '0'; 4342 } else { 4343 for (; val; val /= 10) { 4344 *end-- = '0' + val % 10; 4345 } 4346 } 4347 4348 if (i > DTRACE_V4MAPPED_OFFSET) 4349 *end-- = '.'; 4350 } 4351 4352 if (subr == DIF_SUBR_INET_NTOA6) 4353 goto inetout; 4354 4355 /* 4356 * Set v6end to skip the IPv4 address that 4357 * we have already stringified. 4358 */ 4359 v6end = 10; 4360 } 4361 4362 /* 4363 * Build the IPv6 string by working through the 4364 * address in reverse. 4365 */ 4366 for (i = v6end; i >= 0; i -= 2) { 4367 ASSERT(end >= base); 4368 4369 if (i == firstzero + numzero - 2) { 4370 *end-- = ':'; 4371 *end-- = ':'; 4372 i -= numzero - 2; 4373 continue; 4374 } 4375 4376 if (i < 14 && i != firstzero - 2) 4377 *end-- = ':'; 4378 4379 val = (ip6._S6_un._S6_u8[i] << 8) + 4380 ip6._S6_un._S6_u8[i + 1]; 4381 4382 if (val == 0) { 4383 *end-- = '0'; 4384 } else { 4385 for (; val; val /= 16) { 4386 *end-- = digits[val % 16]; 4387 } 4388 } 4389 } 4390 ASSERT(end + 1 >= base); 4391 4392 } else { 4393 /* 4394 * The user didn't use AH_INET or AH_INET6. 4395 */ 4396 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4397 regs[rd] = NULL; 4398 break; 4399 } 4400 4401 inetout: regs[rd] = (uintptr_t)end + 1; 4402 mstate->dtms_scratch_ptr += size; 4403 break; 4404 } 4405 4406 } 4407 } 4408 4409 /* 4410 * Emulate the execution of DTrace IR instructions specified by the given 4411 * DIF object. This function is deliberately void of assertions as all of 4412 * the necessary checks are handled by a call to dtrace_difo_validate(). 4413 */ 4414 static uint64_t 4415 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4416 dtrace_vstate_t *vstate, dtrace_state_t *state) 4417 { 4418 const dif_instr_t *text = difo->dtdo_buf; 4419 const uint_t textlen = difo->dtdo_len; 4420 const char *strtab = difo->dtdo_strtab; 4421 const uint64_t *inttab = difo->dtdo_inttab; 4422 4423 uint64_t rval = 0; 4424 dtrace_statvar_t *svar; 4425 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4426 dtrace_difv_t *v; 4427 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4428 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4429 4430 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4431 uint64_t regs[DIF_DIR_NREGS]; 4432 uint64_t *tmp; 4433 4434 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4435 int64_t cc_r; 4436 uint_t pc = 0, id, opc; 4437 uint8_t ttop = 0; 4438 dif_instr_t instr; 4439 uint_t r1, r2, rd; 4440 4441 /* 4442 * We stash the current DIF object into the machine state: we need it 4443 * for subsequent access checking. 4444 */ 4445 mstate->dtms_difo = difo; 4446 4447 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4448 4449 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4450 opc = pc; 4451 4452 instr = text[pc++]; 4453 r1 = DIF_INSTR_R1(instr); 4454 r2 = DIF_INSTR_R2(instr); 4455 rd = DIF_INSTR_RD(instr); 4456 4457 switch (DIF_INSTR_OP(instr)) { 4458 case DIF_OP_OR: 4459 regs[rd] = regs[r1] | regs[r2]; 4460 break; 4461 case DIF_OP_XOR: 4462 regs[rd] = regs[r1] ^ regs[r2]; 4463 break; 4464 case DIF_OP_AND: 4465 regs[rd] = regs[r1] & regs[r2]; 4466 break; 4467 case DIF_OP_SLL: 4468 regs[rd] = regs[r1] << regs[r2]; 4469 break; 4470 case DIF_OP_SRL: 4471 regs[rd] = regs[r1] >> regs[r2]; 4472 break; 4473 case DIF_OP_SUB: 4474 regs[rd] = regs[r1] - regs[r2]; 4475 break; 4476 case DIF_OP_ADD: 4477 regs[rd] = regs[r1] + regs[r2]; 4478 break; 4479 case DIF_OP_MUL: 4480 regs[rd] = regs[r1] * regs[r2]; 4481 break; 4482 case DIF_OP_SDIV: 4483 if (regs[r2] == 0) { 4484 regs[rd] = 0; 4485 *flags |= CPU_DTRACE_DIVZERO; 4486 } else { 4487 regs[rd] = (int64_t)regs[r1] / 4488 (int64_t)regs[r2]; 4489 } 4490 break; 4491 4492 case DIF_OP_UDIV: 4493 if (regs[r2] == 0) { 4494 regs[rd] = 0; 4495 *flags |= CPU_DTRACE_DIVZERO; 4496 } else { 4497 regs[rd] = regs[r1] / regs[r2]; 4498 } 4499 break; 4500 4501 case DIF_OP_SREM: 4502 if (regs[r2] == 0) { 4503 regs[rd] = 0; 4504 *flags |= CPU_DTRACE_DIVZERO; 4505 } else { 4506 regs[rd] = (int64_t)regs[r1] % 4507 (int64_t)regs[r2]; 4508 } 4509 break; 4510 4511 case DIF_OP_UREM: 4512 if (regs[r2] == 0) { 4513 regs[rd] = 0; 4514 *flags |= CPU_DTRACE_DIVZERO; 4515 } else { 4516 regs[rd] = regs[r1] % regs[r2]; 4517 } 4518 break; 4519 4520 case DIF_OP_NOT: 4521 regs[rd] = ~regs[r1]; 4522 break; 4523 case DIF_OP_MOV: 4524 regs[rd] = regs[r1]; 4525 break; 4526 case DIF_OP_CMP: 4527 cc_r = regs[r1] - regs[r2]; 4528 cc_n = cc_r < 0; 4529 cc_z = cc_r == 0; 4530 cc_v = 0; 4531 cc_c = regs[r1] < regs[r2]; 4532 break; 4533 case DIF_OP_TST: 4534 cc_n = cc_v = cc_c = 0; 4535 cc_z = regs[r1] == 0; 4536 break; 4537 case DIF_OP_BA: 4538 pc = DIF_INSTR_LABEL(instr); 4539 break; 4540 case DIF_OP_BE: 4541 if (cc_z) 4542 pc = DIF_INSTR_LABEL(instr); 4543 break; 4544 case DIF_OP_BNE: 4545 if (cc_z == 0) 4546 pc = DIF_INSTR_LABEL(instr); 4547 break; 4548 case DIF_OP_BG: 4549 if ((cc_z | (cc_n ^ cc_v)) == 0) 4550 pc = DIF_INSTR_LABEL(instr); 4551 break; 4552 case DIF_OP_BGU: 4553 if ((cc_c | cc_z) == 0) 4554 pc = DIF_INSTR_LABEL(instr); 4555 break; 4556 case DIF_OP_BGE: 4557 if ((cc_n ^ cc_v) == 0) 4558 pc = DIF_INSTR_LABEL(instr); 4559 break; 4560 case DIF_OP_BGEU: 4561 if (cc_c == 0) 4562 pc = DIF_INSTR_LABEL(instr); 4563 break; 4564 case DIF_OP_BL: 4565 if (cc_n ^ cc_v) 4566 pc = DIF_INSTR_LABEL(instr); 4567 break; 4568 case DIF_OP_BLU: 4569 if (cc_c) 4570 pc = DIF_INSTR_LABEL(instr); 4571 break; 4572 case DIF_OP_BLE: 4573 if (cc_z | (cc_n ^ cc_v)) 4574 pc = DIF_INSTR_LABEL(instr); 4575 break; 4576 case DIF_OP_BLEU: 4577 if (cc_c | cc_z) 4578 pc = DIF_INSTR_LABEL(instr); 4579 break; 4580 case DIF_OP_RLDSB: 4581 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4582 *flags |= CPU_DTRACE_KPRIV; 4583 *illval = regs[r1]; 4584 break; 4585 } 4586 /*FALLTHROUGH*/ 4587 case DIF_OP_LDSB: 4588 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4589 break; 4590 case DIF_OP_RLDSH: 4591 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4592 *flags |= CPU_DTRACE_KPRIV; 4593 *illval = regs[r1]; 4594 break; 4595 } 4596 /*FALLTHROUGH*/ 4597 case DIF_OP_LDSH: 4598 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4599 break; 4600 case DIF_OP_RLDSW: 4601 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4602 *flags |= CPU_DTRACE_KPRIV; 4603 *illval = regs[r1]; 4604 break; 4605 } 4606 /*FALLTHROUGH*/ 4607 case DIF_OP_LDSW: 4608 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4609 break; 4610 case DIF_OP_RLDUB: 4611 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4612 *flags |= CPU_DTRACE_KPRIV; 4613 *illval = regs[r1]; 4614 break; 4615 } 4616 /*FALLTHROUGH*/ 4617 case DIF_OP_LDUB: 4618 regs[rd] = dtrace_load8(regs[r1]); 4619 break; 4620 case DIF_OP_RLDUH: 4621 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4622 *flags |= CPU_DTRACE_KPRIV; 4623 *illval = regs[r1]; 4624 break; 4625 } 4626 /*FALLTHROUGH*/ 4627 case DIF_OP_LDUH: 4628 regs[rd] = dtrace_load16(regs[r1]); 4629 break; 4630 case DIF_OP_RLDUW: 4631 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4632 *flags |= CPU_DTRACE_KPRIV; 4633 *illval = regs[r1]; 4634 break; 4635 } 4636 /*FALLTHROUGH*/ 4637 case DIF_OP_LDUW: 4638 regs[rd] = dtrace_load32(regs[r1]); 4639 break; 4640 case DIF_OP_RLDX: 4641 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 4642 *flags |= CPU_DTRACE_KPRIV; 4643 *illval = regs[r1]; 4644 break; 4645 } 4646 /*FALLTHROUGH*/ 4647 case DIF_OP_LDX: 4648 regs[rd] = dtrace_load64(regs[r1]); 4649 break; 4650 case DIF_OP_ULDSB: 4651 regs[rd] = (int8_t) 4652 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4653 break; 4654 case DIF_OP_ULDSH: 4655 regs[rd] = (int16_t) 4656 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4657 break; 4658 case DIF_OP_ULDSW: 4659 regs[rd] = (int32_t) 4660 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4661 break; 4662 case DIF_OP_ULDUB: 4663 regs[rd] = 4664 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4665 break; 4666 case DIF_OP_ULDUH: 4667 regs[rd] = 4668 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4669 break; 4670 case DIF_OP_ULDUW: 4671 regs[rd] = 4672 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4673 break; 4674 case DIF_OP_ULDX: 4675 regs[rd] = 4676 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 4677 break; 4678 case DIF_OP_RET: 4679 rval = regs[rd]; 4680 pc = textlen; 4681 break; 4682 case DIF_OP_NOP: 4683 break; 4684 case DIF_OP_SETX: 4685 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 4686 break; 4687 case DIF_OP_SETS: 4688 regs[rd] = (uint64_t)(uintptr_t) 4689 (strtab + DIF_INSTR_STRING(instr)); 4690 break; 4691 case DIF_OP_SCMP: { 4692 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 4693 uintptr_t s1 = regs[r1]; 4694 uintptr_t s2 = regs[r2]; 4695 4696 if (s1 != NULL && 4697 !dtrace_strcanload(s1, sz, mstate, vstate)) 4698 break; 4699 if (s2 != NULL && 4700 !dtrace_strcanload(s2, sz, mstate, vstate)) 4701 break; 4702 4703 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 4704 4705 cc_n = cc_r < 0; 4706 cc_z = cc_r == 0; 4707 cc_v = cc_c = 0; 4708 break; 4709 } 4710 case DIF_OP_LDGA: 4711 regs[rd] = dtrace_dif_variable(mstate, state, 4712 r1, regs[r2]); 4713 break; 4714 case DIF_OP_LDGS: 4715 id = DIF_INSTR_VAR(instr); 4716 4717 if (id >= DIF_VAR_OTHER_UBASE) { 4718 uintptr_t a; 4719 4720 id -= DIF_VAR_OTHER_UBASE; 4721 svar = vstate->dtvs_globals[id]; 4722 ASSERT(svar != NULL); 4723 v = &svar->dtsv_var; 4724 4725 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 4726 regs[rd] = svar->dtsv_data; 4727 break; 4728 } 4729 4730 a = (uintptr_t)svar->dtsv_data; 4731 4732 if (*(uint8_t *)a == UINT8_MAX) { 4733 /* 4734 * If the 0th byte is set to UINT8_MAX 4735 * then this is to be treated as a 4736 * reference to a NULL variable. 4737 */ 4738 regs[rd] = NULL; 4739 } else { 4740 regs[rd] = a + sizeof (uint64_t); 4741 } 4742 4743 break; 4744 } 4745 4746 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 4747 break; 4748 4749 case DIF_OP_STGS: 4750 id = DIF_INSTR_VAR(instr); 4751 4752 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4753 id -= DIF_VAR_OTHER_UBASE; 4754 4755 svar = vstate->dtvs_globals[id]; 4756 ASSERT(svar != NULL); 4757 v = &svar->dtsv_var; 4758 4759 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4760 uintptr_t a = (uintptr_t)svar->dtsv_data; 4761 4762 ASSERT(a != NULL); 4763 ASSERT(svar->dtsv_size != 0); 4764 4765 if (regs[rd] == NULL) { 4766 *(uint8_t *)a = UINT8_MAX; 4767 break; 4768 } else { 4769 *(uint8_t *)a = 0; 4770 a += sizeof (uint64_t); 4771 } 4772 if (!dtrace_vcanload( 4773 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4774 mstate, vstate)) 4775 break; 4776 4777 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4778 (void *)a, &v->dtdv_type); 4779 break; 4780 } 4781 4782 svar->dtsv_data = regs[rd]; 4783 break; 4784 4785 case DIF_OP_LDTA: 4786 /* 4787 * There are no DTrace built-in thread-local arrays at 4788 * present. This opcode is saved for future work. 4789 */ 4790 *flags |= CPU_DTRACE_ILLOP; 4791 regs[rd] = 0; 4792 break; 4793 4794 case DIF_OP_LDLS: 4795 id = DIF_INSTR_VAR(instr); 4796 4797 if (id < DIF_VAR_OTHER_UBASE) { 4798 /* 4799 * For now, this has no meaning. 4800 */ 4801 regs[rd] = 0; 4802 break; 4803 } 4804 4805 id -= DIF_VAR_OTHER_UBASE; 4806 4807 ASSERT(id < vstate->dtvs_nlocals); 4808 ASSERT(vstate->dtvs_locals != NULL); 4809 4810 svar = vstate->dtvs_locals[id]; 4811 ASSERT(svar != NULL); 4812 v = &svar->dtsv_var; 4813 4814 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4815 uintptr_t a = (uintptr_t)svar->dtsv_data; 4816 size_t sz = v->dtdv_type.dtdt_size; 4817 4818 sz += sizeof (uint64_t); 4819 ASSERT(svar->dtsv_size == NCPU * sz); 4820 a += CPU->cpu_id * sz; 4821 4822 if (*(uint8_t *)a == UINT8_MAX) { 4823 /* 4824 * If the 0th byte is set to UINT8_MAX 4825 * then this is to be treated as a 4826 * reference to a NULL variable. 4827 */ 4828 regs[rd] = NULL; 4829 } else { 4830 regs[rd] = a + sizeof (uint64_t); 4831 } 4832 4833 break; 4834 } 4835 4836 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4837 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4838 regs[rd] = tmp[CPU->cpu_id]; 4839 break; 4840 4841 case DIF_OP_STLS: 4842 id = DIF_INSTR_VAR(instr); 4843 4844 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4845 id -= DIF_VAR_OTHER_UBASE; 4846 ASSERT(id < vstate->dtvs_nlocals); 4847 4848 ASSERT(vstate->dtvs_locals != NULL); 4849 svar = vstate->dtvs_locals[id]; 4850 ASSERT(svar != NULL); 4851 v = &svar->dtsv_var; 4852 4853 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4854 uintptr_t a = (uintptr_t)svar->dtsv_data; 4855 size_t sz = v->dtdv_type.dtdt_size; 4856 4857 sz += sizeof (uint64_t); 4858 ASSERT(svar->dtsv_size == NCPU * sz); 4859 a += CPU->cpu_id * sz; 4860 4861 if (regs[rd] == NULL) { 4862 *(uint8_t *)a = UINT8_MAX; 4863 break; 4864 } else { 4865 *(uint8_t *)a = 0; 4866 a += sizeof (uint64_t); 4867 } 4868 4869 if (!dtrace_vcanload( 4870 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4871 mstate, vstate)) 4872 break; 4873 4874 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4875 (void *)a, &v->dtdv_type); 4876 break; 4877 } 4878 4879 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4880 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4881 tmp[CPU->cpu_id] = regs[rd]; 4882 break; 4883 4884 case DIF_OP_LDTS: { 4885 dtrace_dynvar_t *dvar; 4886 dtrace_key_t *key; 4887 4888 id = DIF_INSTR_VAR(instr); 4889 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4890 id -= DIF_VAR_OTHER_UBASE; 4891 v = &vstate->dtvs_tlocals[id]; 4892 4893 key = &tupregs[DIF_DTR_NREGS]; 4894 key[0].dttk_value = (uint64_t)id; 4895 key[0].dttk_size = 0; 4896 DTRACE_TLS_THRKEY(key[1].dttk_value); 4897 key[1].dttk_size = 0; 4898 4899 dvar = dtrace_dynvar(dstate, 2, key, 4900 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 4901 mstate, vstate); 4902 4903 if (dvar == NULL) { 4904 regs[rd] = 0; 4905 break; 4906 } 4907 4908 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4909 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4910 } else { 4911 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4912 } 4913 4914 break; 4915 } 4916 4917 case DIF_OP_STTS: { 4918 dtrace_dynvar_t *dvar; 4919 dtrace_key_t *key; 4920 4921 id = DIF_INSTR_VAR(instr); 4922 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4923 id -= DIF_VAR_OTHER_UBASE; 4924 4925 key = &tupregs[DIF_DTR_NREGS]; 4926 key[0].dttk_value = (uint64_t)id; 4927 key[0].dttk_size = 0; 4928 DTRACE_TLS_THRKEY(key[1].dttk_value); 4929 key[1].dttk_size = 0; 4930 v = &vstate->dtvs_tlocals[id]; 4931 4932 dvar = dtrace_dynvar(dstate, 2, key, 4933 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4934 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4935 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4936 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 4937 4938 /* 4939 * Given that we're storing to thread-local data, 4940 * we need to flush our predicate cache. 4941 */ 4942 curthread->t_predcache = NULL; 4943 4944 if (dvar == NULL) 4945 break; 4946 4947 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4948 if (!dtrace_vcanload( 4949 (void *)(uintptr_t)regs[rd], 4950 &v->dtdv_type, mstate, vstate)) 4951 break; 4952 4953 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4954 dvar->dtdv_data, &v->dtdv_type); 4955 } else { 4956 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4957 } 4958 4959 break; 4960 } 4961 4962 case DIF_OP_SRA: 4963 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 4964 break; 4965 4966 case DIF_OP_CALL: 4967 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 4968 regs, tupregs, ttop, mstate, state); 4969 break; 4970 4971 case DIF_OP_PUSHTR: 4972 if (ttop == DIF_DTR_NREGS) { 4973 *flags |= CPU_DTRACE_TUPOFLOW; 4974 break; 4975 } 4976 4977 if (r1 == DIF_TYPE_STRING) { 4978 /* 4979 * If this is a string type and the size is 0, 4980 * we'll use the system-wide default string 4981 * size. Note that we are _not_ looking at 4982 * the value of the DTRACEOPT_STRSIZE option; 4983 * had this been set, we would expect to have 4984 * a non-zero size value in the "pushtr". 4985 */ 4986 tupregs[ttop].dttk_size = 4987 dtrace_strlen((char *)(uintptr_t)regs[rd], 4988 regs[r2] ? regs[r2] : 4989 dtrace_strsize_default) + 1; 4990 } else { 4991 tupregs[ttop].dttk_size = regs[r2]; 4992 } 4993 4994 tupregs[ttop++].dttk_value = regs[rd]; 4995 break; 4996 4997 case DIF_OP_PUSHTV: 4998 if (ttop == DIF_DTR_NREGS) { 4999 *flags |= CPU_DTRACE_TUPOFLOW; 5000 break; 5001 } 5002 5003 tupregs[ttop].dttk_value = regs[rd]; 5004 tupregs[ttop++].dttk_size = 0; 5005 break; 5006 5007 case DIF_OP_POPTS: 5008 if (ttop != 0) 5009 ttop--; 5010 break; 5011 5012 case DIF_OP_FLUSHTS: 5013 ttop = 0; 5014 break; 5015 5016 case DIF_OP_LDGAA: 5017 case DIF_OP_LDTAA: { 5018 dtrace_dynvar_t *dvar; 5019 dtrace_key_t *key = tupregs; 5020 uint_t nkeys = ttop; 5021 5022 id = DIF_INSTR_VAR(instr); 5023 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5024 id -= DIF_VAR_OTHER_UBASE; 5025 5026 key[nkeys].dttk_value = (uint64_t)id; 5027 key[nkeys++].dttk_size = 0; 5028 5029 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 5030 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5031 key[nkeys++].dttk_size = 0; 5032 v = &vstate->dtvs_tlocals[id]; 5033 } else { 5034 v = &vstate->dtvs_globals[id]->dtsv_var; 5035 } 5036 5037 dvar = dtrace_dynvar(dstate, nkeys, key, 5038 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5039 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5040 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 5041 5042 if (dvar == NULL) { 5043 regs[rd] = 0; 5044 break; 5045 } 5046 5047 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5048 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5049 } else { 5050 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5051 } 5052 5053 break; 5054 } 5055 5056 case DIF_OP_STGAA: 5057 case DIF_OP_STTAA: { 5058 dtrace_dynvar_t *dvar; 5059 dtrace_key_t *key = tupregs; 5060 uint_t nkeys = ttop; 5061 5062 id = DIF_INSTR_VAR(instr); 5063 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5064 id -= DIF_VAR_OTHER_UBASE; 5065 5066 key[nkeys].dttk_value = (uint64_t)id; 5067 key[nkeys++].dttk_size = 0; 5068 5069 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 5070 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5071 key[nkeys++].dttk_size = 0; 5072 v = &vstate->dtvs_tlocals[id]; 5073 } else { 5074 v = &vstate->dtvs_globals[id]->dtsv_var; 5075 } 5076 5077 dvar = dtrace_dynvar(dstate, nkeys, key, 5078 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5079 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5080 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5081 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5082 5083 if (dvar == NULL) 5084 break; 5085 5086 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5087 if (!dtrace_vcanload( 5088 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5089 mstate, vstate)) 5090 break; 5091 5092 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5093 dvar->dtdv_data, &v->dtdv_type); 5094 } else { 5095 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5096 } 5097 5098 break; 5099 } 5100 5101 case DIF_OP_ALLOCS: { 5102 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5103 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 5104 5105 /* 5106 * Rounding up the user allocation size could have 5107 * overflowed large, bogus allocations (like -1ULL) to 5108 * 0. 5109 */ 5110 if (size < regs[r1] || 5111 !DTRACE_INSCRATCH(mstate, size)) { 5112 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5113 regs[rd] = NULL; 5114 break; 5115 } 5116 5117 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 5118 mstate->dtms_scratch_ptr += size; 5119 regs[rd] = ptr; 5120 break; 5121 } 5122 5123 case DIF_OP_COPYS: 5124 if (!dtrace_canstore(regs[rd], regs[r2], 5125 mstate, vstate)) { 5126 *flags |= CPU_DTRACE_BADADDR; 5127 *illval = regs[rd]; 5128 break; 5129 } 5130 5131 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 5132 break; 5133 5134 dtrace_bcopy((void *)(uintptr_t)regs[r1], 5135 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 5136 break; 5137 5138 case DIF_OP_STB: 5139 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 5140 *flags |= CPU_DTRACE_BADADDR; 5141 *illval = regs[rd]; 5142 break; 5143 } 5144 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 5145 break; 5146 5147 case DIF_OP_STH: 5148 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 5149 *flags |= CPU_DTRACE_BADADDR; 5150 *illval = regs[rd]; 5151 break; 5152 } 5153 if (regs[rd] & 1) { 5154 *flags |= CPU_DTRACE_BADALIGN; 5155 *illval = regs[rd]; 5156 break; 5157 } 5158 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5159 break; 5160 5161 case DIF_OP_STW: 5162 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5163 *flags |= CPU_DTRACE_BADADDR; 5164 *illval = regs[rd]; 5165 break; 5166 } 5167 if (regs[rd] & 3) { 5168 *flags |= CPU_DTRACE_BADALIGN; 5169 *illval = regs[rd]; 5170 break; 5171 } 5172 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5173 break; 5174 5175 case DIF_OP_STX: 5176 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5177 *flags |= CPU_DTRACE_BADADDR; 5178 *illval = regs[rd]; 5179 break; 5180 } 5181 if (regs[rd] & 7) { 5182 *flags |= CPU_DTRACE_BADALIGN; 5183 *illval = regs[rd]; 5184 break; 5185 } 5186 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5187 break; 5188 } 5189 } 5190 5191 if (!(*flags & CPU_DTRACE_FAULT)) 5192 return (rval); 5193 5194 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5195 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5196 5197 return (0); 5198 } 5199 5200 static void 5201 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5202 { 5203 dtrace_probe_t *probe = ecb->dte_probe; 5204 dtrace_provider_t *prov = probe->dtpr_provider; 5205 char c[DTRACE_FULLNAMELEN + 80], *str; 5206 char *msg = "dtrace: breakpoint action at probe "; 5207 char *ecbmsg = " (ecb "; 5208 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5209 uintptr_t val = (uintptr_t)ecb; 5210 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5211 5212 if (dtrace_destructive_disallow) 5213 return; 5214 5215 /* 5216 * It's impossible to be taking action on the NULL probe. 5217 */ 5218 ASSERT(probe != NULL); 5219 5220 /* 5221 * This is a poor man's (destitute man's?) sprintf(): we want to 5222 * print the provider name, module name, function name and name of 5223 * the probe, along with the hex address of the ECB with the breakpoint 5224 * action -- all of which we must place in the character buffer by 5225 * hand. 5226 */ 5227 while (*msg != '\0') 5228 c[i++] = *msg++; 5229 5230 for (str = prov->dtpv_name; *str != '\0'; str++) 5231 c[i++] = *str; 5232 c[i++] = ':'; 5233 5234 for (str = probe->dtpr_mod; *str != '\0'; str++) 5235 c[i++] = *str; 5236 c[i++] = ':'; 5237 5238 for (str = probe->dtpr_func; *str != '\0'; str++) 5239 c[i++] = *str; 5240 c[i++] = ':'; 5241 5242 for (str = probe->dtpr_name; *str != '\0'; str++) 5243 c[i++] = *str; 5244 5245 while (*ecbmsg != '\0') 5246 c[i++] = *ecbmsg++; 5247 5248 while (shift >= 0) { 5249 mask = (uintptr_t)0xf << shift; 5250 5251 if (val >= ((uintptr_t)1 << shift)) 5252 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5253 shift -= 4; 5254 } 5255 5256 c[i++] = ')'; 5257 c[i] = '\0'; 5258 5259 debug_enter(c); 5260 } 5261 5262 static void 5263 dtrace_action_panic(dtrace_ecb_t *ecb) 5264 { 5265 dtrace_probe_t *probe = ecb->dte_probe; 5266 5267 /* 5268 * It's impossible to be taking action on the NULL probe. 5269 */ 5270 ASSERT(probe != NULL); 5271 5272 if (dtrace_destructive_disallow) 5273 return; 5274 5275 if (dtrace_panicked != NULL) 5276 return; 5277 5278 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5279 return; 5280 5281 /* 5282 * We won the right to panic. (We want to be sure that only one 5283 * thread calls panic() from dtrace_probe(), and that panic() is 5284 * called exactly once.) 5285 */ 5286 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5287 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5288 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5289 } 5290 5291 static void 5292 dtrace_action_raise(uint64_t sig) 5293 { 5294 if (dtrace_destructive_disallow) 5295 return; 5296 5297 if (sig >= NSIG) { 5298 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5299 return; 5300 } 5301 5302 /* 5303 * raise() has a queue depth of 1 -- we ignore all subsequent 5304 * invocations of the raise() action. 5305 */ 5306 if (curthread->t_dtrace_sig == 0) 5307 curthread->t_dtrace_sig = (uint8_t)sig; 5308 5309 curthread->t_sig_check = 1; 5310 aston(curthread); 5311 } 5312 5313 static void 5314 dtrace_action_stop(void) 5315 { 5316 if (dtrace_destructive_disallow) 5317 return; 5318 5319 if (!curthread->t_dtrace_stop) { 5320 curthread->t_dtrace_stop = 1; 5321 curthread->t_sig_check = 1; 5322 aston(curthread); 5323 } 5324 } 5325 5326 static void 5327 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5328 { 5329 hrtime_t now; 5330 volatile uint16_t *flags; 5331 cpu_t *cpu = CPU; 5332 5333 if (dtrace_destructive_disallow) 5334 return; 5335 5336 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5337 5338 now = dtrace_gethrtime(); 5339 5340 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5341 /* 5342 * We need to advance the mark to the current time. 5343 */ 5344 cpu->cpu_dtrace_chillmark = now; 5345 cpu->cpu_dtrace_chilled = 0; 5346 } 5347 5348 /* 5349 * Now check to see if the requested chill time would take us over 5350 * the maximum amount of time allowed in the chill interval. (Or 5351 * worse, if the calculation itself induces overflow.) 5352 */ 5353 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5354 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5355 *flags |= CPU_DTRACE_ILLOP; 5356 return; 5357 } 5358 5359 while (dtrace_gethrtime() - now < val) 5360 continue; 5361 5362 /* 5363 * Normally, we assure that the value of the variable "timestamp" does 5364 * not change within an ECB. The presence of chill() represents an 5365 * exception to this rule, however. 5366 */ 5367 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5368 cpu->cpu_dtrace_chilled += val; 5369 } 5370 5371 static void 5372 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5373 uint64_t *buf, uint64_t arg) 5374 { 5375 int nframes = DTRACE_USTACK_NFRAMES(arg); 5376 int strsize = DTRACE_USTACK_STRSIZE(arg); 5377 uint64_t *pcs = &buf[1], *fps; 5378 char *str = (char *)&pcs[nframes]; 5379 int size, offs = 0, i, j; 5380 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5381 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5382 char *sym; 5383 5384 /* 5385 * Should be taking a faster path if string space has not been 5386 * allocated. 5387 */ 5388 ASSERT(strsize != 0); 5389 5390 /* 5391 * We will first allocate some temporary space for the frame pointers. 5392 */ 5393 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5394 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5395 (nframes * sizeof (uint64_t)); 5396 5397 if (!DTRACE_INSCRATCH(mstate, size)) { 5398 /* 5399 * Not enough room for our frame pointers -- need to indicate 5400 * that we ran out of scratch space. 5401 */ 5402 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5403 return; 5404 } 5405 5406 mstate->dtms_scratch_ptr += size; 5407 saved = mstate->dtms_scratch_ptr; 5408 5409 /* 5410 * Now get a stack with both program counters and frame pointers. 5411 */ 5412 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5413 dtrace_getufpstack(buf, fps, nframes + 1); 5414 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5415 5416 /* 5417 * If that faulted, we're cooked. 5418 */ 5419 if (*flags & CPU_DTRACE_FAULT) 5420 goto out; 5421 5422 /* 5423 * Now we want to walk up the stack, calling the USTACK helper. For 5424 * each iteration, we restore the scratch pointer. 5425 */ 5426 for (i = 0; i < nframes; i++) { 5427 mstate->dtms_scratch_ptr = saved; 5428 5429 if (offs >= strsize) 5430 break; 5431 5432 sym = (char *)(uintptr_t)dtrace_helper( 5433 DTRACE_HELPER_ACTION_USTACK, 5434 mstate, state, pcs[i], fps[i]); 5435 5436 /* 5437 * If we faulted while running the helper, we're going to 5438 * clear the fault and null out the corresponding string. 5439 */ 5440 if (*flags & CPU_DTRACE_FAULT) { 5441 *flags &= ~CPU_DTRACE_FAULT; 5442 str[offs++] = '\0'; 5443 continue; 5444 } 5445 5446 if (sym == NULL) { 5447 str[offs++] = '\0'; 5448 continue; 5449 } 5450 5451 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5452 5453 /* 5454 * Now copy in the string that the helper returned to us. 5455 */ 5456 for (j = 0; offs + j < strsize; j++) { 5457 if ((str[offs + j] = sym[j]) == '\0') 5458 break; 5459 } 5460 5461 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5462 5463 offs += j + 1; 5464 } 5465 5466 if (offs >= strsize) { 5467 /* 5468 * If we didn't have room for all of the strings, we don't 5469 * abort processing -- this needn't be a fatal error -- but we 5470 * still want to increment a counter (dts_stkstroverflows) to 5471 * allow this condition to be warned about. (If this is from 5472 * a jstack() action, it is easily tuned via jstackstrsize.) 5473 */ 5474 dtrace_error(&state->dts_stkstroverflows); 5475 } 5476 5477 while (offs < strsize) 5478 str[offs++] = '\0'; 5479 5480 out: 5481 mstate->dtms_scratch_ptr = old; 5482 } 5483 5484 /* 5485 * If you're looking for the epicenter of DTrace, you just found it. This 5486 * is the function called by the provider to fire a probe -- from which all 5487 * subsequent probe-context DTrace activity emanates. 5488 */ 5489 void 5490 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5491 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5492 { 5493 processorid_t cpuid; 5494 dtrace_icookie_t cookie; 5495 dtrace_probe_t *probe; 5496 dtrace_mstate_t mstate; 5497 dtrace_ecb_t *ecb; 5498 dtrace_action_t *act; 5499 intptr_t offs; 5500 size_t size; 5501 int vtime, onintr; 5502 volatile uint16_t *flags; 5503 hrtime_t now; 5504 5505 /* 5506 * Kick out immediately if this CPU is still being born (in which case 5507 * curthread will be set to -1) or the current thread can't allow 5508 * probes in its current context. 5509 */ 5510 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 5511 return; 5512 5513 cookie = dtrace_interrupt_disable(); 5514 probe = dtrace_probes[id - 1]; 5515 cpuid = CPU->cpu_id; 5516 onintr = CPU_ON_INTR(CPU); 5517 5518 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5519 probe->dtpr_predcache == curthread->t_predcache) { 5520 /* 5521 * We have hit in the predicate cache; we know that 5522 * this predicate would evaluate to be false. 5523 */ 5524 dtrace_interrupt_enable(cookie); 5525 return; 5526 } 5527 5528 if (panic_quiesce) { 5529 /* 5530 * We don't trace anything if we're panicking. 5531 */ 5532 dtrace_interrupt_enable(cookie); 5533 return; 5534 } 5535 5536 now = dtrace_gethrtime(); 5537 vtime = dtrace_vtime_references != 0; 5538 5539 if (vtime && curthread->t_dtrace_start) 5540 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5541 5542 mstate.dtms_difo = NULL; 5543 mstate.dtms_probe = probe; 5544 mstate.dtms_strtok = NULL; 5545 mstate.dtms_arg[0] = arg0; 5546 mstate.dtms_arg[1] = arg1; 5547 mstate.dtms_arg[2] = arg2; 5548 mstate.dtms_arg[3] = arg3; 5549 mstate.dtms_arg[4] = arg4; 5550 5551 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5552 5553 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5554 dtrace_predicate_t *pred = ecb->dte_predicate; 5555 dtrace_state_t *state = ecb->dte_state; 5556 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5557 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5558 dtrace_vstate_t *vstate = &state->dts_vstate; 5559 dtrace_provider_t *prov = probe->dtpr_provider; 5560 int committed = 0; 5561 caddr_t tomax; 5562 5563 /* 5564 * A little subtlety with the following (seemingly innocuous) 5565 * declaration of the automatic 'val': by looking at the 5566 * code, you might think that it could be declared in the 5567 * action processing loop, below. (That is, it's only used in 5568 * the action processing loop.) However, it must be declared 5569 * out of that scope because in the case of DIF expression 5570 * arguments to aggregating actions, one iteration of the 5571 * action loop will use the last iteration's value. 5572 */ 5573 #ifdef lint 5574 uint64_t val = 0; 5575 #else 5576 uint64_t val; 5577 #endif 5578 5579 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5580 *flags &= ~CPU_DTRACE_ERROR; 5581 5582 if (prov == dtrace_provider) { 5583 /* 5584 * If dtrace itself is the provider of this probe, 5585 * we're only going to continue processing the ECB if 5586 * arg0 (the dtrace_state_t) is equal to the ECB's 5587 * creating state. (This prevents disjoint consumers 5588 * from seeing one another's metaprobes.) 5589 */ 5590 if (arg0 != (uint64_t)(uintptr_t)state) 5591 continue; 5592 } 5593 5594 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5595 /* 5596 * We're not currently active. If our provider isn't 5597 * the dtrace pseudo provider, we're not interested. 5598 */ 5599 if (prov != dtrace_provider) 5600 continue; 5601 5602 /* 5603 * Now we must further check if we are in the BEGIN 5604 * probe. If we are, we will only continue processing 5605 * if we're still in WARMUP -- if one BEGIN enabling 5606 * has invoked the exit() action, we don't want to 5607 * evaluate subsequent BEGIN enablings. 5608 */ 5609 if (probe->dtpr_id == dtrace_probeid_begin && 5610 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5611 ASSERT(state->dts_activity == 5612 DTRACE_ACTIVITY_DRAINING); 5613 continue; 5614 } 5615 } 5616 5617 if (ecb->dte_cond) { 5618 /* 5619 * If the dte_cond bits indicate that this 5620 * consumer is only allowed to see user-mode firings 5621 * of this probe, call the provider's dtps_usermode() 5622 * entry point to check that the probe was fired 5623 * while in a user context. Skip this ECB if that's 5624 * not the case. 5625 */ 5626 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 5627 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 5628 probe->dtpr_id, probe->dtpr_arg) == 0) 5629 continue; 5630 5631 /* 5632 * This is more subtle than it looks. We have to be 5633 * absolutely certain that CRED() isn't going to 5634 * change out from under us so it's only legit to 5635 * examine that structure if we're in constrained 5636 * situations. Currently, the only times we'll this 5637 * check is if a non-super-user has enabled the 5638 * profile or syscall providers -- providers that 5639 * allow visibility of all processes. For the 5640 * profile case, the check above will ensure that 5641 * we're examining a user context. 5642 */ 5643 if (ecb->dte_cond & DTRACE_COND_OWNER) { 5644 cred_t *cr; 5645 cred_t *s_cr = 5646 ecb->dte_state->dts_cred.dcr_cred; 5647 proc_t *proc; 5648 5649 ASSERT(s_cr != NULL); 5650 5651 if ((cr = CRED()) == NULL || 5652 s_cr->cr_uid != cr->cr_uid || 5653 s_cr->cr_uid != cr->cr_ruid || 5654 s_cr->cr_uid != cr->cr_suid || 5655 s_cr->cr_gid != cr->cr_gid || 5656 s_cr->cr_gid != cr->cr_rgid || 5657 s_cr->cr_gid != cr->cr_sgid || 5658 (proc = ttoproc(curthread)) == NULL || 5659 (proc->p_flag & SNOCD)) 5660 continue; 5661 } 5662 5663 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 5664 cred_t *cr; 5665 cred_t *s_cr = 5666 ecb->dte_state->dts_cred.dcr_cred; 5667 5668 ASSERT(s_cr != NULL); 5669 5670 if ((cr = CRED()) == NULL || 5671 s_cr->cr_zone->zone_id != 5672 cr->cr_zone->zone_id) 5673 continue; 5674 } 5675 } 5676 5677 if (now - state->dts_alive > dtrace_deadman_timeout) { 5678 /* 5679 * We seem to be dead. Unless we (a) have kernel 5680 * destructive permissions (b) have expicitly enabled 5681 * destructive actions and (c) destructive actions have 5682 * not been disabled, we're going to transition into 5683 * the KILLED state, from which no further processing 5684 * on this state will be performed. 5685 */ 5686 if (!dtrace_priv_kernel_destructive(state) || 5687 !state->dts_cred.dcr_destructive || 5688 dtrace_destructive_disallow) { 5689 void *activity = &state->dts_activity; 5690 dtrace_activity_t current; 5691 5692 do { 5693 current = state->dts_activity; 5694 } while (dtrace_cas32(activity, current, 5695 DTRACE_ACTIVITY_KILLED) != current); 5696 5697 continue; 5698 } 5699 } 5700 5701 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 5702 ecb->dte_alignment, state, &mstate)) < 0) 5703 continue; 5704 5705 tomax = buf->dtb_tomax; 5706 ASSERT(tomax != NULL); 5707 5708 if (ecb->dte_size != 0) 5709 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 5710 5711 mstate.dtms_epid = ecb->dte_epid; 5712 mstate.dtms_present |= DTRACE_MSTATE_EPID; 5713 5714 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 5715 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 5716 else 5717 mstate.dtms_access = 0; 5718 5719 if (pred != NULL) { 5720 dtrace_difo_t *dp = pred->dtp_difo; 5721 int rval; 5722 5723 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 5724 5725 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 5726 dtrace_cacheid_t cid = probe->dtpr_predcache; 5727 5728 if (cid != DTRACE_CACHEIDNONE && !onintr) { 5729 /* 5730 * Update the predicate cache... 5731 */ 5732 ASSERT(cid == pred->dtp_cacheid); 5733 curthread->t_predcache = cid; 5734 } 5735 5736 continue; 5737 } 5738 } 5739 5740 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 5741 act != NULL; act = act->dta_next) { 5742 size_t valoffs; 5743 dtrace_difo_t *dp; 5744 dtrace_recdesc_t *rec = &act->dta_rec; 5745 5746 size = rec->dtrd_size; 5747 valoffs = offs + rec->dtrd_offset; 5748 5749 if (DTRACEACT_ISAGG(act->dta_kind)) { 5750 uint64_t v = 0xbad; 5751 dtrace_aggregation_t *agg; 5752 5753 agg = (dtrace_aggregation_t *)act; 5754 5755 if ((dp = act->dta_difo) != NULL) 5756 v = dtrace_dif_emulate(dp, 5757 &mstate, vstate, state); 5758 5759 if (*flags & CPU_DTRACE_ERROR) 5760 continue; 5761 5762 /* 5763 * Note that we always pass the expression 5764 * value from the previous iteration of the 5765 * action loop. This value will only be used 5766 * if there is an expression argument to the 5767 * aggregating action, denoted by the 5768 * dtag_hasarg field. 5769 */ 5770 dtrace_aggregate(agg, buf, 5771 offs, aggbuf, v, val); 5772 continue; 5773 } 5774 5775 switch (act->dta_kind) { 5776 case DTRACEACT_STOP: 5777 if (dtrace_priv_proc_destructive(state)) 5778 dtrace_action_stop(); 5779 continue; 5780 5781 case DTRACEACT_BREAKPOINT: 5782 if (dtrace_priv_kernel_destructive(state)) 5783 dtrace_action_breakpoint(ecb); 5784 continue; 5785 5786 case DTRACEACT_PANIC: 5787 if (dtrace_priv_kernel_destructive(state)) 5788 dtrace_action_panic(ecb); 5789 continue; 5790 5791 case DTRACEACT_STACK: 5792 if (!dtrace_priv_kernel(state)) 5793 continue; 5794 5795 dtrace_getpcstack((pc_t *)(tomax + valoffs), 5796 size / sizeof (pc_t), probe->dtpr_aframes, 5797 DTRACE_ANCHORED(probe) ? NULL : 5798 (uint32_t *)arg0); 5799 5800 continue; 5801 5802 case DTRACEACT_JSTACK: 5803 case DTRACEACT_USTACK: 5804 if (!dtrace_priv_proc(state)) 5805 continue; 5806 5807 /* 5808 * See comment in DIF_VAR_PID. 5809 */ 5810 if (DTRACE_ANCHORED(mstate.dtms_probe) && 5811 CPU_ON_INTR(CPU)) { 5812 int depth = DTRACE_USTACK_NFRAMES( 5813 rec->dtrd_arg) + 1; 5814 5815 dtrace_bzero((void *)(tomax + valoffs), 5816 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 5817 + depth * sizeof (uint64_t)); 5818 5819 continue; 5820 } 5821 5822 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 5823 curproc->p_dtrace_helpers != NULL) { 5824 /* 5825 * This is the slow path -- we have 5826 * allocated string space, and we're 5827 * getting the stack of a process that 5828 * has helpers. Call into a separate 5829 * routine to perform this processing. 5830 */ 5831 dtrace_action_ustack(&mstate, state, 5832 (uint64_t *)(tomax + valoffs), 5833 rec->dtrd_arg); 5834 continue; 5835 } 5836 5837 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5838 dtrace_getupcstack((uint64_t *) 5839 (tomax + valoffs), 5840 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 5841 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5842 continue; 5843 5844 default: 5845 break; 5846 } 5847 5848 dp = act->dta_difo; 5849 ASSERT(dp != NULL); 5850 5851 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 5852 5853 if (*flags & CPU_DTRACE_ERROR) 5854 continue; 5855 5856 switch (act->dta_kind) { 5857 case DTRACEACT_SPECULATE: 5858 ASSERT(buf == &state->dts_buffer[cpuid]); 5859 buf = dtrace_speculation_buffer(state, 5860 cpuid, val); 5861 5862 if (buf == NULL) { 5863 *flags |= CPU_DTRACE_DROP; 5864 continue; 5865 } 5866 5867 offs = dtrace_buffer_reserve(buf, 5868 ecb->dte_needed, ecb->dte_alignment, 5869 state, NULL); 5870 5871 if (offs < 0) { 5872 *flags |= CPU_DTRACE_DROP; 5873 continue; 5874 } 5875 5876 tomax = buf->dtb_tomax; 5877 ASSERT(tomax != NULL); 5878 5879 if (ecb->dte_size != 0) 5880 DTRACE_STORE(uint32_t, tomax, offs, 5881 ecb->dte_epid); 5882 continue; 5883 5884 case DTRACEACT_CHILL: 5885 if (dtrace_priv_kernel_destructive(state)) 5886 dtrace_action_chill(&mstate, val); 5887 continue; 5888 5889 case DTRACEACT_RAISE: 5890 if (dtrace_priv_proc_destructive(state)) 5891 dtrace_action_raise(val); 5892 continue; 5893 5894 case DTRACEACT_COMMIT: 5895 ASSERT(!committed); 5896 5897 /* 5898 * We need to commit our buffer state. 5899 */ 5900 if (ecb->dte_size) 5901 buf->dtb_offset = offs + ecb->dte_size; 5902 buf = &state->dts_buffer[cpuid]; 5903 dtrace_speculation_commit(state, cpuid, val); 5904 committed = 1; 5905 continue; 5906 5907 case DTRACEACT_DISCARD: 5908 dtrace_speculation_discard(state, cpuid, val); 5909 continue; 5910 5911 case DTRACEACT_DIFEXPR: 5912 case DTRACEACT_LIBACT: 5913 case DTRACEACT_PRINTF: 5914 case DTRACEACT_PRINTA: 5915 case DTRACEACT_SYSTEM: 5916 case DTRACEACT_FREOPEN: 5917 break; 5918 5919 case DTRACEACT_SYM: 5920 case DTRACEACT_MOD: 5921 if (!dtrace_priv_kernel(state)) 5922 continue; 5923 break; 5924 5925 case DTRACEACT_USYM: 5926 case DTRACEACT_UMOD: 5927 case DTRACEACT_UADDR: { 5928 struct pid *pid = curthread->t_procp->p_pidp; 5929 5930 if (!dtrace_priv_proc(state)) 5931 continue; 5932 5933 DTRACE_STORE(uint64_t, tomax, 5934 valoffs, (uint64_t)pid->pid_id); 5935 DTRACE_STORE(uint64_t, tomax, 5936 valoffs + sizeof (uint64_t), val); 5937 5938 continue; 5939 } 5940 5941 case DTRACEACT_EXIT: { 5942 /* 5943 * For the exit action, we are going to attempt 5944 * to atomically set our activity to be 5945 * draining. If this fails (either because 5946 * another CPU has beat us to the exit action, 5947 * or because our current activity is something 5948 * other than ACTIVE or WARMUP), we will 5949 * continue. This assures that the exit action 5950 * can be successfully recorded at most once 5951 * when we're in the ACTIVE state. If we're 5952 * encountering the exit() action while in 5953 * COOLDOWN, however, we want to honor the new 5954 * status code. (We know that we're the only 5955 * thread in COOLDOWN, so there is no race.) 5956 */ 5957 void *activity = &state->dts_activity; 5958 dtrace_activity_t current = state->dts_activity; 5959 5960 if (current == DTRACE_ACTIVITY_COOLDOWN) 5961 break; 5962 5963 if (current != DTRACE_ACTIVITY_WARMUP) 5964 current = DTRACE_ACTIVITY_ACTIVE; 5965 5966 if (dtrace_cas32(activity, current, 5967 DTRACE_ACTIVITY_DRAINING) != current) { 5968 *flags |= CPU_DTRACE_DROP; 5969 continue; 5970 } 5971 5972 break; 5973 } 5974 5975 default: 5976 ASSERT(0); 5977 } 5978 5979 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 5980 uintptr_t end = valoffs + size; 5981 5982 if (!dtrace_vcanload((void *)(uintptr_t)val, 5983 &dp->dtdo_rtype, &mstate, vstate)) 5984 continue; 5985 5986 /* 5987 * If this is a string, we're going to only 5988 * load until we find the zero byte -- after 5989 * which we'll store zero bytes. 5990 */ 5991 if (dp->dtdo_rtype.dtdt_kind == 5992 DIF_TYPE_STRING) { 5993 char c = '\0' + 1; 5994 int intuple = act->dta_intuple; 5995 size_t s; 5996 5997 for (s = 0; s < size; s++) { 5998 if (c != '\0') 5999 c = dtrace_load8(val++); 6000 6001 DTRACE_STORE(uint8_t, tomax, 6002 valoffs++, c); 6003 6004 if (c == '\0' && intuple) 6005 break; 6006 } 6007 6008 continue; 6009 } 6010 6011 while (valoffs < end) { 6012 DTRACE_STORE(uint8_t, tomax, valoffs++, 6013 dtrace_load8(val++)); 6014 } 6015 6016 continue; 6017 } 6018 6019 switch (size) { 6020 case 0: 6021 break; 6022 6023 case sizeof (uint8_t): 6024 DTRACE_STORE(uint8_t, tomax, valoffs, val); 6025 break; 6026 case sizeof (uint16_t): 6027 DTRACE_STORE(uint16_t, tomax, valoffs, val); 6028 break; 6029 case sizeof (uint32_t): 6030 DTRACE_STORE(uint32_t, tomax, valoffs, val); 6031 break; 6032 case sizeof (uint64_t): 6033 DTRACE_STORE(uint64_t, tomax, valoffs, val); 6034 break; 6035 default: 6036 /* 6037 * Any other size should have been returned by 6038 * reference, not by value. 6039 */ 6040 ASSERT(0); 6041 break; 6042 } 6043 } 6044 6045 if (*flags & CPU_DTRACE_DROP) 6046 continue; 6047 6048 if (*flags & CPU_DTRACE_FAULT) { 6049 int ndx; 6050 dtrace_action_t *err; 6051 6052 buf->dtb_errors++; 6053 6054 if (probe->dtpr_id == dtrace_probeid_error) { 6055 /* 6056 * There's nothing we can do -- we had an 6057 * error on the error probe. We bump an 6058 * error counter to at least indicate that 6059 * this condition happened. 6060 */ 6061 dtrace_error(&state->dts_dblerrors); 6062 continue; 6063 } 6064 6065 if (vtime) { 6066 /* 6067 * Before recursing on dtrace_probe(), we 6068 * need to explicitly clear out our start 6069 * time to prevent it from being accumulated 6070 * into t_dtrace_vtime. 6071 */ 6072 curthread->t_dtrace_start = 0; 6073 } 6074 6075 /* 6076 * Iterate over the actions to figure out which action 6077 * we were processing when we experienced the error. 6078 * Note that act points _past_ the faulting action; if 6079 * act is ecb->dte_action, the fault was in the 6080 * predicate, if it's ecb->dte_action->dta_next it's 6081 * in action #1, and so on. 6082 */ 6083 for (err = ecb->dte_action, ndx = 0; 6084 err != act; err = err->dta_next, ndx++) 6085 continue; 6086 6087 dtrace_probe_error(state, ecb->dte_epid, ndx, 6088 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 6089 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 6090 cpu_core[cpuid].cpuc_dtrace_illval); 6091 6092 continue; 6093 } 6094 6095 if (!committed) 6096 buf->dtb_offset = offs + ecb->dte_size; 6097 } 6098 6099 if (vtime) 6100 curthread->t_dtrace_start = dtrace_gethrtime(); 6101 6102 dtrace_interrupt_enable(cookie); 6103 } 6104 6105 /* 6106 * DTrace Probe Hashing Functions 6107 * 6108 * The functions in this section (and indeed, the functions in remaining 6109 * sections) are not _called_ from probe context. (Any exceptions to this are 6110 * marked with a "Note:".) Rather, they are called from elsewhere in the 6111 * DTrace framework to look-up probes in, add probes to and remove probes from 6112 * the DTrace probe hashes. (Each probe is hashed by each element of the 6113 * probe tuple -- allowing for fast lookups, regardless of what was 6114 * specified.) 6115 */ 6116 static uint_t 6117 dtrace_hash_str(char *p) 6118 { 6119 unsigned int g; 6120 uint_t hval = 0; 6121 6122 while (*p) { 6123 hval = (hval << 4) + *p++; 6124 if ((g = (hval & 0xf0000000)) != 0) 6125 hval ^= g >> 24; 6126 hval &= ~g; 6127 } 6128 return (hval); 6129 } 6130 6131 static dtrace_hash_t * 6132 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 6133 { 6134 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 6135 6136 hash->dth_stroffs = stroffs; 6137 hash->dth_nextoffs = nextoffs; 6138 hash->dth_prevoffs = prevoffs; 6139 6140 hash->dth_size = 1; 6141 hash->dth_mask = hash->dth_size - 1; 6142 6143 hash->dth_tab = kmem_zalloc(hash->dth_size * 6144 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 6145 6146 return (hash); 6147 } 6148 6149 static void 6150 dtrace_hash_destroy(dtrace_hash_t *hash) 6151 { 6152 #ifdef DEBUG 6153 int i; 6154 6155 for (i = 0; i < hash->dth_size; i++) 6156 ASSERT(hash->dth_tab[i] == NULL); 6157 #endif 6158 6159 kmem_free(hash->dth_tab, 6160 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6161 kmem_free(hash, sizeof (dtrace_hash_t)); 6162 } 6163 6164 static void 6165 dtrace_hash_resize(dtrace_hash_t *hash) 6166 { 6167 int size = hash->dth_size, i, ndx; 6168 int new_size = hash->dth_size << 1; 6169 int new_mask = new_size - 1; 6170 dtrace_hashbucket_t **new_tab, *bucket, *next; 6171 6172 ASSERT((new_size & new_mask) == 0); 6173 6174 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6175 6176 for (i = 0; i < size; i++) { 6177 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6178 dtrace_probe_t *probe = bucket->dthb_chain; 6179 6180 ASSERT(probe != NULL); 6181 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6182 6183 next = bucket->dthb_next; 6184 bucket->dthb_next = new_tab[ndx]; 6185 new_tab[ndx] = bucket; 6186 } 6187 } 6188 6189 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6190 hash->dth_tab = new_tab; 6191 hash->dth_size = new_size; 6192 hash->dth_mask = new_mask; 6193 } 6194 6195 static void 6196 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6197 { 6198 int hashval = DTRACE_HASHSTR(hash, new); 6199 int ndx = hashval & hash->dth_mask; 6200 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6201 dtrace_probe_t **nextp, **prevp; 6202 6203 for (; bucket != NULL; bucket = bucket->dthb_next) { 6204 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6205 goto add; 6206 } 6207 6208 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6209 dtrace_hash_resize(hash); 6210 dtrace_hash_add(hash, new); 6211 return; 6212 } 6213 6214 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6215 bucket->dthb_next = hash->dth_tab[ndx]; 6216 hash->dth_tab[ndx] = bucket; 6217 hash->dth_nbuckets++; 6218 6219 add: 6220 nextp = DTRACE_HASHNEXT(hash, new); 6221 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6222 *nextp = bucket->dthb_chain; 6223 6224 if (bucket->dthb_chain != NULL) { 6225 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6226 ASSERT(*prevp == NULL); 6227 *prevp = new; 6228 } 6229 6230 bucket->dthb_chain = new; 6231 bucket->dthb_len++; 6232 } 6233 6234 static dtrace_probe_t * 6235 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6236 { 6237 int hashval = DTRACE_HASHSTR(hash, template); 6238 int ndx = hashval & hash->dth_mask; 6239 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6240 6241 for (; bucket != NULL; bucket = bucket->dthb_next) { 6242 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6243 return (bucket->dthb_chain); 6244 } 6245 6246 return (NULL); 6247 } 6248 6249 static int 6250 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6251 { 6252 int hashval = DTRACE_HASHSTR(hash, template); 6253 int ndx = hashval & hash->dth_mask; 6254 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6255 6256 for (; bucket != NULL; bucket = bucket->dthb_next) { 6257 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6258 return (bucket->dthb_len); 6259 } 6260 6261 return (NULL); 6262 } 6263 6264 static void 6265 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6266 { 6267 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6268 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6269 6270 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6271 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6272 6273 /* 6274 * Find the bucket that we're removing this probe from. 6275 */ 6276 for (; bucket != NULL; bucket = bucket->dthb_next) { 6277 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6278 break; 6279 } 6280 6281 ASSERT(bucket != NULL); 6282 6283 if (*prevp == NULL) { 6284 if (*nextp == NULL) { 6285 /* 6286 * The removed probe was the only probe on this 6287 * bucket; we need to remove the bucket. 6288 */ 6289 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6290 6291 ASSERT(bucket->dthb_chain == probe); 6292 ASSERT(b != NULL); 6293 6294 if (b == bucket) { 6295 hash->dth_tab[ndx] = bucket->dthb_next; 6296 } else { 6297 while (b->dthb_next != bucket) 6298 b = b->dthb_next; 6299 b->dthb_next = bucket->dthb_next; 6300 } 6301 6302 ASSERT(hash->dth_nbuckets > 0); 6303 hash->dth_nbuckets--; 6304 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6305 return; 6306 } 6307 6308 bucket->dthb_chain = *nextp; 6309 } else { 6310 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6311 } 6312 6313 if (*nextp != NULL) 6314 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6315 } 6316 6317 /* 6318 * DTrace Utility Functions 6319 * 6320 * These are random utility functions that are _not_ called from probe context. 6321 */ 6322 static int 6323 dtrace_badattr(const dtrace_attribute_t *a) 6324 { 6325 return (a->dtat_name > DTRACE_STABILITY_MAX || 6326 a->dtat_data > DTRACE_STABILITY_MAX || 6327 a->dtat_class > DTRACE_CLASS_MAX); 6328 } 6329 6330 /* 6331 * Return a duplicate copy of a string. If the specified string is NULL, 6332 * this function returns a zero-length string. 6333 */ 6334 static char * 6335 dtrace_strdup(const char *str) 6336 { 6337 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6338 6339 if (str != NULL) 6340 (void) strcpy(new, str); 6341 6342 return (new); 6343 } 6344 6345 #define DTRACE_ISALPHA(c) \ 6346 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6347 6348 static int 6349 dtrace_badname(const char *s) 6350 { 6351 char c; 6352 6353 if (s == NULL || (c = *s++) == '\0') 6354 return (0); 6355 6356 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6357 return (1); 6358 6359 while ((c = *s++) != '\0') { 6360 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6361 c != '-' && c != '_' && c != '.' && c != '`') 6362 return (1); 6363 } 6364 6365 return (0); 6366 } 6367 6368 static void 6369 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6370 { 6371 uint32_t priv; 6372 6373 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6374 /* 6375 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6376 */ 6377 priv = DTRACE_PRIV_ALL; 6378 } else { 6379 *uidp = crgetuid(cr); 6380 *zoneidp = crgetzoneid(cr); 6381 6382 priv = 0; 6383 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6384 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6385 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6386 priv |= DTRACE_PRIV_USER; 6387 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6388 priv |= DTRACE_PRIV_PROC; 6389 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6390 priv |= DTRACE_PRIV_OWNER; 6391 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6392 priv |= DTRACE_PRIV_ZONEOWNER; 6393 } 6394 6395 *privp = priv; 6396 } 6397 6398 #ifdef DTRACE_ERRDEBUG 6399 static void 6400 dtrace_errdebug(const char *str) 6401 { 6402 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6403 int occupied = 0; 6404 6405 mutex_enter(&dtrace_errlock); 6406 dtrace_errlast = str; 6407 dtrace_errthread = curthread; 6408 6409 while (occupied++ < DTRACE_ERRHASHSZ) { 6410 if (dtrace_errhash[hval].dter_msg == str) { 6411 dtrace_errhash[hval].dter_count++; 6412 goto out; 6413 } 6414 6415 if (dtrace_errhash[hval].dter_msg != NULL) { 6416 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6417 continue; 6418 } 6419 6420 dtrace_errhash[hval].dter_msg = str; 6421 dtrace_errhash[hval].dter_count = 1; 6422 goto out; 6423 } 6424 6425 panic("dtrace: undersized error hash"); 6426 out: 6427 mutex_exit(&dtrace_errlock); 6428 } 6429 #endif 6430 6431 /* 6432 * DTrace Matching Functions 6433 * 6434 * These functions are used to match groups of probes, given some elements of 6435 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6436 */ 6437 static int 6438 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6439 zoneid_t zoneid) 6440 { 6441 if (priv != DTRACE_PRIV_ALL) { 6442 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6443 uint32_t match = priv & ppriv; 6444 6445 /* 6446 * No PRIV_DTRACE_* privileges... 6447 */ 6448 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6449 DTRACE_PRIV_KERNEL)) == 0) 6450 return (0); 6451 6452 /* 6453 * No matching bits, but there were bits to match... 6454 */ 6455 if (match == 0 && ppriv != 0) 6456 return (0); 6457 6458 /* 6459 * Need to have permissions to the process, but don't... 6460 */ 6461 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6462 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6463 return (0); 6464 } 6465 6466 /* 6467 * Need to be in the same zone unless we possess the 6468 * privilege to examine all zones. 6469 */ 6470 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6471 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6472 return (0); 6473 } 6474 } 6475 6476 return (1); 6477 } 6478 6479 /* 6480 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6481 * consists of input pattern strings and an ops-vector to evaluate them. 6482 * This function returns >0 for match, 0 for no match, and <0 for error. 6483 */ 6484 static int 6485 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6486 uint32_t priv, uid_t uid, zoneid_t zoneid) 6487 { 6488 dtrace_provider_t *pvp = prp->dtpr_provider; 6489 int rv; 6490 6491 if (pvp->dtpv_defunct) 6492 return (0); 6493 6494 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6495 return (rv); 6496 6497 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6498 return (rv); 6499 6500 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6501 return (rv); 6502 6503 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6504 return (rv); 6505 6506 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6507 return (0); 6508 6509 return (rv); 6510 } 6511 6512 /* 6513 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6514 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 6515 * libc's version, the kernel version only applies to 8-bit ASCII strings. 6516 * In addition, all of the recursion cases except for '*' matching have been 6517 * unwound. For '*', we still implement recursive evaluation, but a depth 6518 * counter is maintained and matching is aborted if we recurse too deep. 6519 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 6520 */ 6521 static int 6522 dtrace_match_glob(const char *s, const char *p, int depth) 6523 { 6524 const char *olds; 6525 char s1, c; 6526 int gs; 6527 6528 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 6529 return (-1); 6530 6531 if (s == NULL) 6532 s = ""; /* treat NULL as empty string */ 6533 6534 top: 6535 olds = s; 6536 s1 = *s++; 6537 6538 if (p == NULL) 6539 return (0); 6540 6541 if ((c = *p++) == '\0') 6542 return (s1 == '\0'); 6543 6544 switch (c) { 6545 case '[': { 6546 int ok = 0, notflag = 0; 6547 char lc = '\0'; 6548 6549 if (s1 == '\0') 6550 return (0); 6551 6552 if (*p == '!') { 6553 notflag = 1; 6554 p++; 6555 } 6556 6557 if ((c = *p++) == '\0') 6558 return (0); 6559 6560 do { 6561 if (c == '-' && lc != '\0' && *p != ']') { 6562 if ((c = *p++) == '\0') 6563 return (0); 6564 if (c == '\\' && (c = *p++) == '\0') 6565 return (0); 6566 6567 if (notflag) { 6568 if (s1 < lc || s1 > c) 6569 ok++; 6570 else 6571 return (0); 6572 } else if (lc <= s1 && s1 <= c) 6573 ok++; 6574 6575 } else if (c == '\\' && (c = *p++) == '\0') 6576 return (0); 6577 6578 lc = c; /* save left-hand 'c' for next iteration */ 6579 6580 if (notflag) { 6581 if (s1 != c) 6582 ok++; 6583 else 6584 return (0); 6585 } else if (s1 == c) 6586 ok++; 6587 6588 if ((c = *p++) == '\0') 6589 return (0); 6590 6591 } while (c != ']'); 6592 6593 if (ok) 6594 goto top; 6595 6596 return (0); 6597 } 6598 6599 case '\\': 6600 if ((c = *p++) == '\0') 6601 return (0); 6602 /*FALLTHRU*/ 6603 6604 default: 6605 if (c != s1) 6606 return (0); 6607 /*FALLTHRU*/ 6608 6609 case '?': 6610 if (s1 != '\0') 6611 goto top; 6612 return (0); 6613 6614 case '*': 6615 while (*p == '*') 6616 p++; /* consecutive *'s are identical to a single one */ 6617 6618 if (*p == '\0') 6619 return (1); 6620 6621 for (s = olds; *s != '\0'; s++) { 6622 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 6623 return (gs); 6624 } 6625 6626 return (0); 6627 } 6628 } 6629 6630 /*ARGSUSED*/ 6631 static int 6632 dtrace_match_string(const char *s, const char *p, int depth) 6633 { 6634 return (s != NULL && strcmp(s, p) == 0); 6635 } 6636 6637 /*ARGSUSED*/ 6638 static int 6639 dtrace_match_nul(const char *s, const char *p, int depth) 6640 { 6641 return (1); /* always match the empty pattern */ 6642 } 6643 6644 /*ARGSUSED*/ 6645 static int 6646 dtrace_match_nonzero(const char *s, const char *p, int depth) 6647 { 6648 return (s != NULL && s[0] != '\0'); 6649 } 6650 6651 static int 6652 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 6653 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 6654 { 6655 dtrace_probe_t template, *probe; 6656 dtrace_hash_t *hash = NULL; 6657 int len, best = INT_MAX, nmatched = 0; 6658 dtrace_id_t i; 6659 6660 ASSERT(MUTEX_HELD(&dtrace_lock)); 6661 6662 /* 6663 * If the probe ID is specified in the key, just lookup by ID and 6664 * invoke the match callback once if a matching probe is found. 6665 */ 6666 if (pkp->dtpk_id != DTRACE_IDNONE) { 6667 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 6668 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 6669 (void) (*matched)(probe, arg); 6670 nmatched++; 6671 } 6672 return (nmatched); 6673 } 6674 6675 template.dtpr_mod = (char *)pkp->dtpk_mod; 6676 template.dtpr_func = (char *)pkp->dtpk_func; 6677 template.dtpr_name = (char *)pkp->dtpk_name; 6678 6679 /* 6680 * We want to find the most distinct of the module name, function 6681 * name, and name. So for each one that is not a glob pattern or 6682 * empty string, we perform a lookup in the corresponding hash and 6683 * use the hash table with the fewest collisions to do our search. 6684 */ 6685 if (pkp->dtpk_mmatch == &dtrace_match_string && 6686 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 6687 best = len; 6688 hash = dtrace_bymod; 6689 } 6690 6691 if (pkp->dtpk_fmatch == &dtrace_match_string && 6692 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 6693 best = len; 6694 hash = dtrace_byfunc; 6695 } 6696 6697 if (pkp->dtpk_nmatch == &dtrace_match_string && 6698 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 6699 best = len; 6700 hash = dtrace_byname; 6701 } 6702 6703 /* 6704 * If we did not select a hash table, iterate over every probe and 6705 * invoke our callback for each one that matches our input probe key. 6706 */ 6707 if (hash == NULL) { 6708 for (i = 0; i < dtrace_nprobes; i++) { 6709 if ((probe = dtrace_probes[i]) == NULL || 6710 dtrace_match_probe(probe, pkp, priv, uid, 6711 zoneid) <= 0) 6712 continue; 6713 6714 nmatched++; 6715 6716 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 6717 break; 6718 } 6719 6720 return (nmatched); 6721 } 6722 6723 /* 6724 * If we selected a hash table, iterate over each probe of the same key 6725 * name and invoke the callback for every probe that matches the other 6726 * attributes of our input probe key. 6727 */ 6728 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 6729 probe = *(DTRACE_HASHNEXT(hash, probe))) { 6730 6731 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 6732 continue; 6733 6734 nmatched++; 6735 6736 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 6737 break; 6738 } 6739 6740 return (nmatched); 6741 } 6742 6743 /* 6744 * Return the function pointer dtrace_probecmp() should use to compare the 6745 * specified pattern with a string. For NULL or empty patterns, we select 6746 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 6747 * For non-empty non-glob strings, we use dtrace_match_string(). 6748 */ 6749 static dtrace_probekey_f * 6750 dtrace_probekey_func(const char *p) 6751 { 6752 char c; 6753 6754 if (p == NULL || *p == '\0') 6755 return (&dtrace_match_nul); 6756 6757 while ((c = *p++) != '\0') { 6758 if (c == '[' || c == '?' || c == '*' || c == '\\') 6759 return (&dtrace_match_glob); 6760 } 6761 6762 return (&dtrace_match_string); 6763 } 6764 6765 /* 6766 * Build a probe comparison key for use with dtrace_match_probe() from the 6767 * given probe description. By convention, a null key only matches anchored 6768 * probes: if each field is the empty string, reset dtpk_fmatch to 6769 * dtrace_match_nonzero(). 6770 */ 6771 static void 6772 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 6773 { 6774 pkp->dtpk_prov = pdp->dtpd_provider; 6775 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 6776 6777 pkp->dtpk_mod = pdp->dtpd_mod; 6778 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 6779 6780 pkp->dtpk_func = pdp->dtpd_func; 6781 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 6782 6783 pkp->dtpk_name = pdp->dtpd_name; 6784 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 6785 6786 pkp->dtpk_id = pdp->dtpd_id; 6787 6788 if (pkp->dtpk_id == DTRACE_IDNONE && 6789 pkp->dtpk_pmatch == &dtrace_match_nul && 6790 pkp->dtpk_mmatch == &dtrace_match_nul && 6791 pkp->dtpk_fmatch == &dtrace_match_nul && 6792 pkp->dtpk_nmatch == &dtrace_match_nul) 6793 pkp->dtpk_fmatch = &dtrace_match_nonzero; 6794 } 6795 6796 /* 6797 * DTrace Provider-to-Framework API Functions 6798 * 6799 * These functions implement much of the Provider-to-Framework API, as 6800 * described in <sys/dtrace.h>. The parts of the API not in this section are 6801 * the functions in the API for probe management (found below), and 6802 * dtrace_probe() itself (found above). 6803 */ 6804 6805 /* 6806 * Register the calling provider with the DTrace framework. This should 6807 * generally be called by DTrace providers in their attach(9E) entry point. 6808 */ 6809 int 6810 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 6811 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 6812 { 6813 dtrace_provider_t *provider; 6814 6815 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 6816 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6817 "arguments", name ? name : "<NULL>"); 6818 return (EINVAL); 6819 } 6820 6821 if (name[0] == '\0' || dtrace_badname(name)) { 6822 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6823 "provider name", name); 6824 return (EINVAL); 6825 } 6826 6827 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 6828 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 6829 pops->dtps_destroy == NULL || 6830 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 6831 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6832 "provider ops", name); 6833 return (EINVAL); 6834 } 6835 6836 if (dtrace_badattr(&pap->dtpa_provider) || 6837 dtrace_badattr(&pap->dtpa_mod) || 6838 dtrace_badattr(&pap->dtpa_func) || 6839 dtrace_badattr(&pap->dtpa_name) || 6840 dtrace_badattr(&pap->dtpa_args)) { 6841 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6842 "provider attributes", name); 6843 return (EINVAL); 6844 } 6845 6846 if (priv & ~DTRACE_PRIV_ALL) { 6847 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6848 "privilege attributes", name); 6849 return (EINVAL); 6850 } 6851 6852 if ((priv & DTRACE_PRIV_KERNEL) && 6853 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 6854 pops->dtps_usermode == NULL) { 6855 cmn_err(CE_WARN, "failed to register provider '%s': need " 6856 "dtps_usermode() op for given privilege attributes", name); 6857 return (EINVAL); 6858 } 6859 6860 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 6861 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 6862 (void) strcpy(provider->dtpv_name, name); 6863 6864 provider->dtpv_attr = *pap; 6865 provider->dtpv_priv.dtpp_flags = priv; 6866 if (cr != NULL) { 6867 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 6868 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 6869 } 6870 provider->dtpv_pops = *pops; 6871 6872 if (pops->dtps_provide == NULL) { 6873 ASSERT(pops->dtps_provide_module != NULL); 6874 provider->dtpv_pops.dtps_provide = 6875 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 6876 } 6877 6878 if (pops->dtps_provide_module == NULL) { 6879 ASSERT(pops->dtps_provide != NULL); 6880 provider->dtpv_pops.dtps_provide_module = 6881 (void (*)(void *, struct modctl *))dtrace_nullop; 6882 } 6883 6884 if (pops->dtps_suspend == NULL) { 6885 ASSERT(pops->dtps_resume == NULL); 6886 provider->dtpv_pops.dtps_suspend = 6887 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6888 provider->dtpv_pops.dtps_resume = 6889 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6890 } 6891 6892 provider->dtpv_arg = arg; 6893 *idp = (dtrace_provider_id_t)provider; 6894 6895 if (pops == &dtrace_provider_ops) { 6896 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6897 ASSERT(MUTEX_HELD(&dtrace_lock)); 6898 ASSERT(dtrace_anon.dta_enabling == NULL); 6899 6900 /* 6901 * We make sure that the DTrace provider is at the head of 6902 * the provider chain. 6903 */ 6904 provider->dtpv_next = dtrace_provider; 6905 dtrace_provider = provider; 6906 return (0); 6907 } 6908 6909 mutex_enter(&dtrace_provider_lock); 6910 mutex_enter(&dtrace_lock); 6911 6912 /* 6913 * If there is at least one provider registered, we'll add this 6914 * provider after the first provider. 6915 */ 6916 if (dtrace_provider != NULL) { 6917 provider->dtpv_next = dtrace_provider->dtpv_next; 6918 dtrace_provider->dtpv_next = provider; 6919 } else { 6920 dtrace_provider = provider; 6921 } 6922 6923 if (dtrace_retained != NULL) { 6924 dtrace_enabling_provide(provider); 6925 6926 /* 6927 * Now we need to call dtrace_enabling_matchall() -- which 6928 * will acquire cpu_lock and dtrace_lock. We therefore need 6929 * to drop all of our locks before calling into it... 6930 */ 6931 mutex_exit(&dtrace_lock); 6932 mutex_exit(&dtrace_provider_lock); 6933 dtrace_enabling_matchall(); 6934 6935 return (0); 6936 } 6937 6938 mutex_exit(&dtrace_lock); 6939 mutex_exit(&dtrace_provider_lock); 6940 6941 return (0); 6942 } 6943 6944 /* 6945 * Unregister the specified provider from the DTrace framework. This should 6946 * generally be called by DTrace providers in their detach(9E) entry point. 6947 */ 6948 int 6949 dtrace_unregister(dtrace_provider_id_t id) 6950 { 6951 dtrace_provider_t *old = (dtrace_provider_t *)id; 6952 dtrace_provider_t *prev = NULL; 6953 int i, self = 0; 6954 dtrace_probe_t *probe, *first = NULL; 6955 6956 if (old->dtpv_pops.dtps_enable == 6957 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 6958 /* 6959 * If DTrace itself is the provider, we're called with locks 6960 * already held. 6961 */ 6962 ASSERT(old == dtrace_provider); 6963 ASSERT(dtrace_devi != NULL); 6964 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6965 ASSERT(MUTEX_HELD(&dtrace_lock)); 6966 self = 1; 6967 6968 if (dtrace_provider->dtpv_next != NULL) { 6969 /* 6970 * There's another provider here; return failure. 6971 */ 6972 return (EBUSY); 6973 } 6974 } else { 6975 mutex_enter(&dtrace_provider_lock); 6976 mutex_enter(&mod_lock); 6977 mutex_enter(&dtrace_lock); 6978 } 6979 6980 /* 6981 * If anyone has /dev/dtrace open, or if there are anonymous enabled 6982 * probes, we refuse to let providers slither away, unless this 6983 * provider has already been explicitly invalidated. 6984 */ 6985 if (!old->dtpv_defunct && 6986 (dtrace_opens || (dtrace_anon.dta_state != NULL && 6987 dtrace_anon.dta_state->dts_necbs > 0))) { 6988 if (!self) { 6989 mutex_exit(&dtrace_lock); 6990 mutex_exit(&mod_lock); 6991 mutex_exit(&dtrace_provider_lock); 6992 } 6993 return (EBUSY); 6994 } 6995 6996 /* 6997 * Attempt to destroy the probes associated with this provider. 6998 */ 6999 for (i = 0; i < dtrace_nprobes; i++) { 7000 if ((probe = dtrace_probes[i]) == NULL) 7001 continue; 7002 7003 if (probe->dtpr_provider != old) 7004 continue; 7005 7006 if (probe->dtpr_ecb == NULL) 7007 continue; 7008 7009 /* 7010 * We have at least one ECB; we can't remove this provider. 7011 */ 7012 if (!self) { 7013 mutex_exit(&dtrace_lock); 7014 mutex_exit(&mod_lock); 7015 mutex_exit(&dtrace_provider_lock); 7016 } 7017 return (EBUSY); 7018 } 7019 7020 /* 7021 * All of the probes for this provider are disabled; we can safely 7022 * remove all of them from their hash chains and from the probe array. 7023 */ 7024 for (i = 0; i < dtrace_nprobes; i++) { 7025 if ((probe = dtrace_probes[i]) == NULL) 7026 continue; 7027 7028 if (probe->dtpr_provider != old) 7029 continue; 7030 7031 dtrace_probes[i] = NULL; 7032 7033 dtrace_hash_remove(dtrace_bymod, probe); 7034 dtrace_hash_remove(dtrace_byfunc, probe); 7035 dtrace_hash_remove(dtrace_byname, probe); 7036 7037 if (first == NULL) { 7038 first = probe; 7039 probe->dtpr_nextmod = NULL; 7040 } else { 7041 probe->dtpr_nextmod = first; 7042 first = probe; 7043 } 7044 } 7045 7046 /* 7047 * The provider's probes have been removed from the hash chains and 7048 * from the probe array. Now issue a dtrace_sync() to be sure that 7049 * everyone has cleared out from any probe array processing. 7050 */ 7051 dtrace_sync(); 7052 7053 for (probe = first; probe != NULL; probe = first) { 7054 first = probe->dtpr_nextmod; 7055 7056 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 7057 probe->dtpr_arg); 7058 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7059 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7060 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7061 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 7062 kmem_free(probe, sizeof (dtrace_probe_t)); 7063 } 7064 7065 if ((prev = dtrace_provider) == old) { 7066 ASSERT(self || dtrace_devi == NULL); 7067 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 7068 dtrace_provider = old->dtpv_next; 7069 } else { 7070 while (prev != NULL && prev->dtpv_next != old) 7071 prev = prev->dtpv_next; 7072 7073 if (prev == NULL) { 7074 panic("attempt to unregister non-existent " 7075 "dtrace provider %p\n", (void *)id); 7076 } 7077 7078 prev->dtpv_next = old->dtpv_next; 7079 } 7080 7081 if (!self) { 7082 mutex_exit(&dtrace_lock); 7083 mutex_exit(&mod_lock); 7084 mutex_exit(&dtrace_provider_lock); 7085 } 7086 7087 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 7088 kmem_free(old, sizeof (dtrace_provider_t)); 7089 7090 return (0); 7091 } 7092 7093 /* 7094 * Invalidate the specified provider. All subsequent probe lookups for the 7095 * specified provider will fail, but its probes will not be removed. 7096 */ 7097 void 7098 dtrace_invalidate(dtrace_provider_id_t id) 7099 { 7100 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 7101 7102 ASSERT(pvp->dtpv_pops.dtps_enable != 7103 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 7104 7105 mutex_enter(&dtrace_provider_lock); 7106 mutex_enter(&dtrace_lock); 7107 7108 pvp->dtpv_defunct = 1; 7109 7110 mutex_exit(&dtrace_lock); 7111 mutex_exit(&dtrace_provider_lock); 7112 } 7113 7114 /* 7115 * Indicate whether or not DTrace has attached. 7116 */ 7117 int 7118 dtrace_attached(void) 7119 { 7120 /* 7121 * dtrace_provider will be non-NULL iff the DTrace driver has 7122 * attached. (It's non-NULL because DTrace is always itself a 7123 * provider.) 7124 */ 7125 return (dtrace_provider != NULL); 7126 } 7127 7128 /* 7129 * Remove all the unenabled probes for the given provider. This function is 7130 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7131 * -- just as many of its associated probes as it can. 7132 */ 7133 int 7134 dtrace_condense(dtrace_provider_id_t id) 7135 { 7136 dtrace_provider_t *prov = (dtrace_provider_t *)id; 7137 int i; 7138 dtrace_probe_t *probe; 7139 7140 /* 7141 * Make sure this isn't the dtrace provider itself. 7142 */ 7143 ASSERT(prov->dtpv_pops.dtps_enable != 7144 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 7145 7146 mutex_enter(&dtrace_provider_lock); 7147 mutex_enter(&dtrace_lock); 7148 7149 /* 7150 * Attempt to destroy the probes associated with this provider. 7151 */ 7152 for (i = 0; i < dtrace_nprobes; i++) { 7153 if ((probe = dtrace_probes[i]) == NULL) 7154 continue; 7155 7156 if (probe->dtpr_provider != prov) 7157 continue; 7158 7159 if (probe->dtpr_ecb != NULL) 7160 continue; 7161 7162 dtrace_probes[i] = NULL; 7163 7164 dtrace_hash_remove(dtrace_bymod, probe); 7165 dtrace_hash_remove(dtrace_byfunc, probe); 7166 dtrace_hash_remove(dtrace_byname, probe); 7167 7168 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7169 probe->dtpr_arg); 7170 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7171 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7172 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7173 kmem_free(probe, sizeof (dtrace_probe_t)); 7174 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7175 } 7176 7177 mutex_exit(&dtrace_lock); 7178 mutex_exit(&dtrace_provider_lock); 7179 7180 return (0); 7181 } 7182 7183 /* 7184 * DTrace Probe Management Functions 7185 * 7186 * The functions in this section perform the DTrace probe management, 7187 * including functions to create probes, look-up probes, and call into the 7188 * providers to request that probes be provided. Some of these functions are 7189 * in the Provider-to-Framework API; these functions can be identified by the 7190 * fact that they are not declared "static". 7191 */ 7192 7193 /* 7194 * Create a probe with the specified module name, function name, and name. 7195 */ 7196 dtrace_id_t 7197 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7198 const char *func, const char *name, int aframes, void *arg) 7199 { 7200 dtrace_probe_t *probe, **probes; 7201 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7202 dtrace_id_t id; 7203 7204 if (provider == dtrace_provider) { 7205 ASSERT(MUTEX_HELD(&dtrace_lock)); 7206 } else { 7207 mutex_enter(&dtrace_lock); 7208 } 7209 7210 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7211 VM_BESTFIT | VM_SLEEP); 7212 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7213 7214 probe->dtpr_id = id; 7215 probe->dtpr_gen = dtrace_probegen++; 7216 probe->dtpr_mod = dtrace_strdup(mod); 7217 probe->dtpr_func = dtrace_strdup(func); 7218 probe->dtpr_name = dtrace_strdup(name); 7219 probe->dtpr_arg = arg; 7220 probe->dtpr_aframes = aframes; 7221 probe->dtpr_provider = provider; 7222 7223 dtrace_hash_add(dtrace_bymod, probe); 7224 dtrace_hash_add(dtrace_byfunc, probe); 7225 dtrace_hash_add(dtrace_byname, probe); 7226 7227 if (id - 1 >= dtrace_nprobes) { 7228 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7229 size_t nsize = osize << 1; 7230 7231 if (nsize == 0) { 7232 ASSERT(osize == 0); 7233 ASSERT(dtrace_probes == NULL); 7234 nsize = sizeof (dtrace_probe_t *); 7235 } 7236 7237 probes = kmem_zalloc(nsize, KM_SLEEP); 7238 7239 if (dtrace_probes == NULL) { 7240 ASSERT(osize == 0); 7241 dtrace_probes = probes; 7242 dtrace_nprobes = 1; 7243 } else { 7244 dtrace_probe_t **oprobes = dtrace_probes; 7245 7246 bcopy(oprobes, probes, osize); 7247 dtrace_membar_producer(); 7248 dtrace_probes = probes; 7249 7250 dtrace_sync(); 7251 7252 /* 7253 * All CPUs are now seeing the new probes array; we can 7254 * safely free the old array. 7255 */ 7256 kmem_free(oprobes, osize); 7257 dtrace_nprobes <<= 1; 7258 } 7259 7260 ASSERT(id - 1 < dtrace_nprobes); 7261 } 7262 7263 ASSERT(dtrace_probes[id - 1] == NULL); 7264 dtrace_probes[id - 1] = probe; 7265 7266 if (provider != dtrace_provider) 7267 mutex_exit(&dtrace_lock); 7268 7269 return (id); 7270 } 7271 7272 static dtrace_probe_t * 7273 dtrace_probe_lookup_id(dtrace_id_t id) 7274 { 7275 ASSERT(MUTEX_HELD(&dtrace_lock)); 7276 7277 if (id == 0 || id > dtrace_nprobes) 7278 return (NULL); 7279 7280 return (dtrace_probes[id - 1]); 7281 } 7282 7283 static int 7284 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7285 { 7286 *((dtrace_id_t *)arg) = probe->dtpr_id; 7287 7288 return (DTRACE_MATCH_DONE); 7289 } 7290 7291 /* 7292 * Look up a probe based on provider and one or more of module name, function 7293 * name and probe name. 7294 */ 7295 dtrace_id_t 7296 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 7297 const char *func, const char *name) 7298 { 7299 dtrace_probekey_t pkey; 7300 dtrace_id_t id; 7301 int match; 7302 7303 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7304 pkey.dtpk_pmatch = &dtrace_match_string; 7305 pkey.dtpk_mod = mod; 7306 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7307 pkey.dtpk_func = func; 7308 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7309 pkey.dtpk_name = name; 7310 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7311 pkey.dtpk_id = DTRACE_IDNONE; 7312 7313 mutex_enter(&dtrace_lock); 7314 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7315 dtrace_probe_lookup_match, &id); 7316 mutex_exit(&dtrace_lock); 7317 7318 ASSERT(match == 1 || match == 0); 7319 return (match ? id : 0); 7320 } 7321 7322 /* 7323 * Returns the probe argument associated with the specified probe. 7324 */ 7325 void * 7326 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7327 { 7328 dtrace_probe_t *probe; 7329 void *rval = NULL; 7330 7331 mutex_enter(&dtrace_lock); 7332 7333 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7334 probe->dtpr_provider == (dtrace_provider_t *)id) 7335 rval = probe->dtpr_arg; 7336 7337 mutex_exit(&dtrace_lock); 7338 7339 return (rval); 7340 } 7341 7342 /* 7343 * Copy a probe into a probe description. 7344 */ 7345 static void 7346 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7347 { 7348 bzero(pdp, sizeof (dtrace_probedesc_t)); 7349 pdp->dtpd_id = prp->dtpr_id; 7350 7351 (void) strncpy(pdp->dtpd_provider, 7352 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7353 7354 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7355 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7356 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7357 } 7358 7359 /* 7360 * Called to indicate that a probe -- or probes -- should be provided by a 7361 * specfied provider. If the specified description is NULL, the provider will 7362 * be told to provide all of its probes. (This is done whenever a new 7363 * consumer comes along, or whenever a retained enabling is to be matched.) If 7364 * the specified description is non-NULL, the provider is given the 7365 * opportunity to dynamically provide the specified probe, allowing providers 7366 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7367 * probes.) If the provider is NULL, the operations will be applied to all 7368 * providers; if the provider is non-NULL the operations will only be applied 7369 * to the specified provider. The dtrace_provider_lock must be held, and the 7370 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7371 * will need to grab the dtrace_lock when it reenters the framework through 7372 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7373 */ 7374 static void 7375 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7376 { 7377 struct modctl *ctl; 7378 int all = 0; 7379 7380 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7381 7382 if (prv == NULL) { 7383 all = 1; 7384 prv = dtrace_provider; 7385 } 7386 7387 do { 7388 /* 7389 * First, call the blanket provide operation. 7390 */ 7391 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7392 7393 /* 7394 * Now call the per-module provide operation. We will grab 7395 * mod_lock to prevent the list from being modified. Note 7396 * that this also prevents the mod_busy bits from changing. 7397 * (mod_busy can only be changed with mod_lock held.) 7398 */ 7399 mutex_enter(&mod_lock); 7400 7401 ctl = &modules; 7402 do { 7403 if (ctl->mod_busy || ctl->mod_mp == NULL) 7404 continue; 7405 7406 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7407 7408 } while ((ctl = ctl->mod_next) != &modules); 7409 7410 mutex_exit(&mod_lock); 7411 } while (all && (prv = prv->dtpv_next) != NULL); 7412 } 7413 7414 /* 7415 * Iterate over each probe, and call the Framework-to-Provider API function 7416 * denoted by offs. 7417 */ 7418 static void 7419 dtrace_probe_foreach(uintptr_t offs) 7420 { 7421 dtrace_provider_t *prov; 7422 void (*func)(void *, dtrace_id_t, void *); 7423 dtrace_probe_t *probe; 7424 dtrace_icookie_t cookie; 7425 int i; 7426 7427 /* 7428 * We disable interrupts to walk through the probe array. This is 7429 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7430 * won't see stale data. 7431 */ 7432 cookie = dtrace_interrupt_disable(); 7433 7434 for (i = 0; i < dtrace_nprobes; i++) { 7435 if ((probe = dtrace_probes[i]) == NULL) 7436 continue; 7437 7438 if (probe->dtpr_ecb == NULL) { 7439 /* 7440 * This probe isn't enabled -- don't call the function. 7441 */ 7442 continue; 7443 } 7444 7445 prov = probe->dtpr_provider; 7446 func = *((void(**)(void *, dtrace_id_t, void *)) 7447 ((uintptr_t)&prov->dtpv_pops + offs)); 7448 7449 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7450 } 7451 7452 dtrace_interrupt_enable(cookie); 7453 } 7454 7455 static int 7456 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7457 { 7458 dtrace_probekey_t pkey; 7459 uint32_t priv; 7460 uid_t uid; 7461 zoneid_t zoneid; 7462 7463 ASSERT(MUTEX_HELD(&dtrace_lock)); 7464 dtrace_ecb_create_cache = NULL; 7465 7466 if (desc == NULL) { 7467 /* 7468 * If we're passed a NULL description, we're being asked to 7469 * create an ECB with a NULL probe. 7470 */ 7471 (void) dtrace_ecb_create_enable(NULL, enab); 7472 return (0); 7473 } 7474 7475 dtrace_probekey(desc, &pkey); 7476 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7477 &priv, &uid, &zoneid); 7478 7479 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7480 enab)); 7481 } 7482 7483 /* 7484 * DTrace Helper Provider Functions 7485 */ 7486 static void 7487 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7488 { 7489 attr->dtat_name = DOF_ATTR_NAME(dofattr); 7490 attr->dtat_data = DOF_ATTR_DATA(dofattr); 7491 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 7492 } 7493 7494 static void 7495 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 7496 const dof_provider_t *dofprov, char *strtab) 7497 { 7498 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 7499 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 7500 dofprov->dofpv_provattr); 7501 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 7502 dofprov->dofpv_modattr); 7503 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 7504 dofprov->dofpv_funcattr); 7505 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 7506 dofprov->dofpv_nameattr); 7507 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 7508 dofprov->dofpv_argsattr); 7509 } 7510 7511 static void 7512 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7513 { 7514 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7515 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7516 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 7517 dof_provider_t *provider; 7518 dof_probe_t *probe; 7519 uint32_t *off, *enoff; 7520 uint8_t *arg; 7521 char *strtab; 7522 uint_t i, nprobes; 7523 dtrace_helper_provdesc_t dhpv; 7524 dtrace_helper_probedesc_t dhpb; 7525 dtrace_meta_t *meta = dtrace_meta_pid; 7526 dtrace_mops_t *mops = &meta->dtm_mops; 7527 void *parg; 7528 7529 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7530 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7531 provider->dofpv_strtab * dof->dofh_secsize); 7532 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7533 provider->dofpv_probes * dof->dofh_secsize); 7534 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7535 provider->dofpv_prargs * dof->dofh_secsize); 7536 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7537 provider->dofpv_proffs * dof->dofh_secsize); 7538 7539 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7540 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 7541 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 7542 enoff = NULL; 7543 7544 /* 7545 * See dtrace_helper_provider_validate(). 7546 */ 7547 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 7548 provider->dofpv_prenoffs != DOF_SECT_NONE) { 7549 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7550 provider->dofpv_prenoffs * dof->dofh_secsize); 7551 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 7552 } 7553 7554 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 7555 7556 /* 7557 * Create the provider. 7558 */ 7559 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7560 7561 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 7562 return; 7563 7564 meta->dtm_count++; 7565 7566 /* 7567 * Create the probes. 7568 */ 7569 for (i = 0; i < nprobes; i++) { 7570 probe = (dof_probe_t *)(uintptr_t)(daddr + 7571 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 7572 7573 dhpb.dthpb_mod = dhp->dofhp_mod; 7574 dhpb.dthpb_func = strtab + probe->dofpr_func; 7575 dhpb.dthpb_name = strtab + probe->dofpr_name; 7576 dhpb.dthpb_base = probe->dofpr_addr; 7577 dhpb.dthpb_offs = off + probe->dofpr_offidx; 7578 dhpb.dthpb_noffs = probe->dofpr_noffs; 7579 if (enoff != NULL) { 7580 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 7581 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 7582 } else { 7583 dhpb.dthpb_enoffs = NULL; 7584 dhpb.dthpb_nenoffs = 0; 7585 } 7586 dhpb.dthpb_args = arg + probe->dofpr_argidx; 7587 dhpb.dthpb_nargc = probe->dofpr_nargc; 7588 dhpb.dthpb_xargc = probe->dofpr_xargc; 7589 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 7590 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 7591 7592 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 7593 } 7594 } 7595 7596 static void 7597 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 7598 { 7599 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7600 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7601 int i; 7602 7603 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7604 7605 for (i = 0; i < dof->dofh_secnum; i++) { 7606 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7607 dof->dofh_secoff + i * dof->dofh_secsize); 7608 7609 if (sec->dofs_type != DOF_SECT_PROVIDER) 7610 continue; 7611 7612 dtrace_helper_provide_one(dhp, sec, pid); 7613 } 7614 7615 /* 7616 * We may have just created probes, so we must now rematch against 7617 * any retained enablings. Note that this call will acquire both 7618 * cpu_lock and dtrace_lock; the fact that we are holding 7619 * dtrace_meta_lock now is what defines the ordering with respect to 7620 * these three locks. 7621 */ 7622 dtrace_enabling_matchall(); 7623 } 7624 7625 static void 7626 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7627 { 7628 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7629 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7630 dof_sec_t *str_sec; 7631 dof_provider_t *provider; 7632 char *strtab; 7633 dtrace_helper_provdesc_t dhpv; 7634 dtrace_meta_t *meta = dtrace_meta_pid; 7635 dtrace_mops_t *mops = &meta->dtm_mops; 7636 7637 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7638 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7639 provider->dofpv_strtab * dof->dofh_secsize); 7640 7641 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7642 7643 /* 7644 * Create the provider. 7645 */ 7646 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7647 7648 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 7649 7650 meta->dtm_count--; 7651 } 7652 7653 static void 7654 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 7655 { 7656 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7657 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7658 int i; 7659 7660 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7661 7662 for (i = 0; i < dof->dofh_secnum; i++) { 7663 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7664 dof->dofh_secoff + i * dof->dofh_secsize); 7665 7666 if (sec->dofs_type != DOF_SECT_PROVIDER) 7667 continue; 7668 7669 dtrace_helper_provider_remove_one(dhp, sec, pid); 7670 } 7671 } 7672 7673 /* 7674 * DTrace Meta Provider-to-Framework API Functions 7675 * 7676 * These functions implement the Meta Provider-to-Framework API, as described 7677 * in <sys/dtrace.h>. 7678 */ 7679 int 7680 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 7681 dtrace_meta_provider_id_t *idp) 7682 { 7683 dtrace_meta_t *meta; 7684 dtrace_helpers_t *help, *next; 7685 int i; 7686 7687 *idp = DTRACE_METAPROVNONE; 7688 7689 /* 7690 * We strictly don't need the name, but we hold onto it for 7691 * debuggability. All hail error queues! 7692 */ 7693 if (name == NULL) { 7694 cmn_err(CE_WARN, "failed to register meta-provider: " 7695 "invalid name"); 7696 return (EINVAL); 7697 } 7698 7699 if (mops == NULL || 7700 mops->dtms_create_probe == NULL || 7701 mops->dtms_provide_pid == NULL || 7702 mops->dtms_remove_pid == NULL) { 7703 cmn_err(CE_WARN, "failed to register meta-register %s: " 7704 "invalid ops", name); 7705 return (EINVAL); 7706 } 7707 7708 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 7709 meta->dtm_mops = *mops; 7710 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7711 (void) strcpy(meta->dtm_name, name); 7712 meta->dtm_arg = arg; 7713 7714 mutex_enter(&dtrace_meta_lock); 7715 mutex_enter(&dtrace_lock); 7716 7717 if (dtrace_meta_pid != NULL) { 7718 mutex_exit(&dtrace_lock); 7719 mutex_exit(&dtrace_meta_lock); 7720 cmn_err(CE_WARN, "failed to register meta-register %s: " 7721 "user-land meta-provider exists", name); 7722 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 7723 kmem_free(meta, sizeof (dtrace_meta_t)); 7724 return (EINVAL); 7725 } 7726 7727 dtrace_meta_pid = meta; 7728 *idp = (dtrace_meta_provider_id_t)meta; 7729 7730 /* 7731 * If there are providers and probes ready to go, pass them 7732 * off to the new meta provider now. 7733 */ 7734 7735 help = dtrace_deferred_pid; 7736 dtrace_deferred_pid = NULL; 7737 7738 mutex_exit(&dtrace_lock); 7739 7740 while (help != NULL) { 7741 for (i = 0; i < help->dthps_nprovs; i++) { 7742 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 7743 help->dthps_pid); 7744 } 7745 7746 next = help->dthps_next; 7747 help->dthps_next = NULL; 7748 help->dthps_prev = NULL; 7749 help->dthps_deferred = 0; 7750 help = next; 7751 } 7752 7753 mutex_exit(&dtrace_meta_lock); 7754 7755 return (0); 7756 } 7757 7758 int 7759 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 7760 { 7761 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 7762 7763 mutex_enter(&dtrace_meta_lock); 7764 mutex_enter(&dtrace_lock); 7765 7766 if (old == dtrace_meta_pid) { 7767 pp = &dtrace_meta_pid; 7768 } else { 7769 panic("attempt to unregister non-existent " 7770 "dtrace meta-provider %p\n", (void *)old); 7771 } 7772 7773 if (old->dtm_count != 0) { 7774 mutex_exit(&dtrace_lock); 7775 mutex_exit(&dtrace_meta_lock); 7776 return (EBUSY); 7777 } 7778 7779 *pp = NULL; 7780 7781 mutex_exit(&dtrace_lock); 7782 mutex_exit(&dtrace_meta_lock); 7783 7784 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 7785 kmem_free(old, sizeof (dtrace_meta_t)); 7786 7787 return (0); 7788 } 7789 7790 7791 /* 7792 * DTrace DIF Object Functions 7793 */ 7794 static int 7795 dtrace_difo_err(uint_t pc, const char *format, ...) 7796 { 7797 if (dtrace_err_verbose) { 7798 va_list alist; 7799 7800 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 7801 va_start(alist, format); 7802 (void) vuprintf(format, alist); 7803 va_end(alist); 7804 } 7805 7806 #ifdef DTRACE_ERRDEBUG 7807 dtrace_errdebug(format); 7808 #endif 7809 return (1); 7810 } 7811 7812 /* 7813 * Validate a DTrace DIF object by checking the IR instructions. The following 7814 * rules are currently enforced by dtrace_difo_validate(): 7815 * 7816 * 1. Each instruction must have a valid opcode 7817 * 2. Each register, string, variable, or subroutine reference must be valid 7818 * 3. No instruction can modify register %r0 (must be zero) 7819 * 4. All instruction reserved bits must be set to zero 7820 * 5. The last instruction must be a "ret" instruction 7821 * 6. All branch targets must reference a valid instruction _after_ the branch 7822 */ 7823 static int 7824 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 7825 cred_t *cr) 7826 { 7827 int err = 0, i; 7828 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 7829 int kcheckload; 7830 uint_t pc; 7831 7832 kcheckload = cr == NULL || 7833 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 7834 7835 dp->dtdo_destructive = 0; 7836 7837 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 7838 dif_instr_t instr = dp->dtdo_buf[pc]; 7839 7840 uint_t r1 = DIF_INSTR_R1(instr); 7841 uint_t r2 = DIF_INSTR_R2(instr); 7842 uint_t rd = DIF_INSTR_RD(instr); 7843 uint_t rs = DIF_INSTR_RS(instr); 7844 uint_t label = DIF_INSTR_LABEL(instr); 7845 uint_t v = DIF_INSTR_VAR(instr); 7846 uint_t subr = DIF_INSTR_SUBR(instr); 7847 uint_t type = DIF_INSTR_TYPE(instr); 7848 uint_t op = DIF_INSTR_OP(instr); 7849 7850 switch (op) { 7851 case DIF_OP_OR: 7852 case DIF_OP_XOR: 7853 case DIF_OP_AND: 7854 case DIF_OP_SLL: 7855 case DIF_OP_SRL: 7856 case DIF_OP_SRA: 7857 case DIF_OP_SUB: 7858 case DIF_OP_ADD: 7859 case DIF_OP_MUL: 7860 case DIF_OP_SDIV: 7861 case DIF_OP_UDIV: 7862 case DIF_OP_SREM: 7863 case DIF_OP_UREM: 7864 case DIF_OP_COPYS: 7865 if (r1 >= nregs) 7866 err += efunc(pc, "invalid register %u\n", r1); 7867 if (r2 >= nregs) 7868 err += efunc(pc, "invalid register %u\n", r2); 7869 if (rd >= nregs) 7870 err += efunc(pc, "invalid register %u\n", rd); 7871 if (rd == 0) 7872 err += efunc(pc, "cannot write to %r0\n"); 7873 break; 7874 case DIF_OP_NOT: 7875 case DIF_OP_MOV: 7876 case DIF_OP_ALLOCS: 7877 if (r1 >= nregs) 7878 err += efunc(pc, "invalid register %u\n", r1); 7879 if (r2 != 0) 7880 err += efunc(pc, "non-zero reserved bits\n"); 7881 if (rd >= nregs) 7882 err += efunc(pc, "invalid register %u\n", rd); 7883 if (rd == 0) 7884 err += efunc(pc, "cannot write to %r0\n"); 7885 break; 7886 case DIF_OP_LDSB: 7887 case DIF_OP_LDSH: 7888 case DIF_OP_LDSW: 7889 case DIF_OP_LDUB: 7890 case DIF_OP_LDUH: 7891 case DIF_OP_LDUW: 7892 case DIF_OP_LDX: 7893 if (r1 >= nregs) 7894 err += efunc(pc, "invalid register %u\n", r1); 7895 if (r2 != 0) 7896 err += efunc(pc, "non-zero reserved bits\n"); 7897 if (rd >= nregs) 7898 err += efunc(pc, "invalid register %u\n", rd); 7899 if (rd == 0) 7900 err += efunc(pc, "cannot write to %r0\n"); 7901 if (kcheckload) 7902 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 7903 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 7904 break; 7905 case DIF_OP_RLDSB: 7906 case DIF_OP_RLDSH: 7907 case DIF_OP_RLDSW: 7908 case DIF_OP_RLDUB: 7909 case DIF_OP_RLDUH: 7910 case DIF_OP_RLDUW: 7911 case DIF_OP_RLDX: 7912 if (r1 >= nregs) 7913 err += efunc(pc, "invalid register %u\n", r1); 7914 if (r2 != 0) 7915 err += efunc(pc, "non-zero reserved bits\n"); 7916 if (rd >= nregs) 7917 err += efunc(pc, "invalid register %u\n", rd); 7918 if (rd == 0) 7919 err += efunc(pc, "cannot write to %r0\n"); 7920 break; 7921 case DIF_OP_ULDSB: 7922 case DIF_OP_ULDSH: 7923 case DIF_OP_ULDSW: 7924 case DIF_OP_ULDUB: 7925 case DIF_OP_ULDUH: 7926 case DIF_OP_ULDUW: 7927 case DIF_OP_ULDX: 7928 if (r1 >= nregs) 7929 err += efunc(pc, "invalid register %u\n", r1); 7930 if (r2 != 0) 7931 err += efunc(pc, "non-zero reserved bits\n"); 7932 if (rd >= nregs) 7933 err += efunc(pc, "invalid register %u\n", rd); 7934 if (rd == 0) 7935 err += efunc(pc, "cannot write to %r0\n"); 7936 break; 7937 case DIF_OP_STB: 7938 case DIF_OP_STH: 7939 case DIF_OP_STW: 7940 case DIF_OP_STX: 7941 if (r1 >= nregs) 7942 err += efunc(pc, "invalid register %u\n", r1); 7943 if (r2 != 0) 7944 err += efunc(pc, "non-zero reserved bits\n"); 7945 if (rd >= nregs) 7946 err += efunc(pc, "invalid register %u\n", rd); 7947 if (rd == 0) 7948 err += efunc(pc, "cannot write to 0 address\n"); 7949 break; 7950 case DIF_OP_CMP: 7951 case DIF_OP_SCMP: 7952 if (r1 >= nregs) 7953 err += efunc(pc, "invalid register %u\n", r1); 7954 if (r2 >= nregs) 7955 err += efunc(pc, "invalid register %u\n", r2); 7956 if (rd != 0) 7957 err += efunc(pc, "non-zero reserved bits\n"); 7958 break; 7959 case DIF_OP_TST: 7960 if (r1 >= nregs) 7961 err += efunc(pc, "invalid register %u\n", r1); 7962 if (r2 != 0 || rd != 0) 7963 err += efunc(pc, "non-zero reserved bits\n"); 7964 break; 7965 case DIF_OP_BA: 7966 case DIF_OP_BE: 7967 case DIF_OP_BNE: 7968 case DIF_OP_BG: 7969 case DIF_OP_BGU: 7970 case DIF_OP_BGE: 7971 case DIF_OP_BGEU: 7972 case DIF_OP_BL: 7973 case DIF_OP_BLU: 7974 case DIF_OP_BLE: 7975 case DIF_OP_BLEU: 7976 if (label >= dp->dtdo_len) { 7977 err += efunc(pc, "invalid branch target %u\n", 7978 label); 7979 } 7980 if (label <= pc) { 7981 err += efunc(pc, "backward branch to %u\n", 7982 label); 7983 } 7984 break; 7985 case DIF_OP_RET: 7986 if (r1 != 0 || r2 != 0) 7987 err += efunc(pc, "non-zero reserved bits\n"); 7988 if (rd >= nregs) 7989 err += efunc(pc, "invalid register %u\n", rd); 7990 break; 7991 case DIF_OP_NOP: 7992 case DIF_OP_POPTS: 7993 case DIF_OP_FLUSHTS: 7994 if (r1 != 0 || r2 != 0 || rd != 0) 7995 err += efunc(pc, "non-zero reserved bits\n"); 7996 break; 7997 case DIF_OP_SETX: 7998 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 7999 err += efunc(pc, "invalid integer ref %u\n", 8000 DIF_INSTR_INTEGER(instr)); 8001 } 8002 if (rd >= nregs) 8003 err += efunc(pc, "invalid register %u\n", rd); 8004 if (rd == 0) 8005 err += efunc(pc, "cannot write to %r0\n"); 8006 break; 8007 case DIF_OP_SETS: 8008 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 8009 err += efunc(pc, "invalid string ref %u\n", 8010 DIF_INSTR_STRING(instr)); 8011 } 8012 if (rd >= nregs) 8013 err += efunc(pc, "invalid register %u\n", rd); 8014 if (rd == 0) 8015 err += efunc(pc, "cannot write to %r0\n"); 8016 break; 8017 case DIF_OP_LDGA: 8018 case DIF_OP_LDTA: 8019 if (r1 > DIF_VAR_ARRAY_MAX) 8020 err += efunc(pc, "invalid array %u\n", r1); 8021 if (r2 >= nregs) 8022 err += efunc(pc, "invalid register %u\n", r2); 8023 if (rd >= nregs) 8024 err += efunc(pc, "invalid register %u\n", rd); 8025 if (rd == 0) 8026 err += efunc(pc, "cannot write to %r0\n"); 8027 break; 8028 case DIF_OP_LDGS: 8029 case DIF_OP_LDTS: 8030 case DIF_OP_LDLS: 8031 case DIF_OP_LDGAA: 8032 case DIF_OP_LDTAA: 8033 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 8034 err += efunc(pc, "invalid variable %u\n", v); 8035 if (rd >= nregs) 8036 err += efunc(pc, "invalid register %u\n", rd); 8037 if (rd == 0) 8038 err += efunc(pc, "cannot write to %r0\n"); 8039 break; 8040 case DIF_OP_STGS: 8041 case DIF_OP_STTS: 8042 case DIF_OP_STLS: 8043 case DIF_OP_STGAA: 8044 case DIF_OP_STTAA: 8045 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 8046 err += efunc(pc, "invalid variable %u\n", v); 8047 if (rs >= nregs) 8048 err += efunc(pc, "invalid register %u\n", rd); 8049 break; 8050 case DIF_OP_CALL: 8051 if (subr > DIF_SUBR_MAX) 8052 err += efunc(pc, "invalid subr %u\n", subr); 8053 if (rd >= nregs) 8054 err += efunc(pc, "invalid register %u\n", rd); 8055 if (rd == 0) 8056 err += efunc(pc, "cannot write to %r0\n"); 8057 8058 if (subr == DIF_SUBR_COPYOUT || 8059 subr == DIF_SUBR_COPYOUTSTR) { 8060 dp->dtdo_destructive = 1; 8061 } 8062 break; 8063 case DIF_OP_PUSHTR: 8064 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 8065 err += efunc(pc, "invalid ref type %u\n", type); 8066 if (r2 >= nregs) 8067 err += efunc(pc, "invalid register %u\n", r2); 8068 if (rs >= nregs) 8069 err += efunc(pc, "invalid register %u\n", rs); 8070 break; 8071 case DIF_OP_PUSHTV: 8072 if (type != DIF_TYPE_CTF) 8073 err += efunc(pc, "invalid val type %u\n", type); 8074 if (r2 >= nregs) 8075 err += efunc(pc, "invalid register %u\n", r2); 8076 if (rs >= nregs) 8077 err += efunc(pc, "invalid register %u\n", rs); 8078 break; 8079 default: 8080 err += efunc(pc, "invalid opcode %u\n", 8081 DIF_INSTR_OP(instr)); 8082 } 8083 } 8084 8085 if (dp->dtdo_len != 0 && 8086 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 8087 err += efunc(dp->dtdo_len - 1, 8088 "expected 'ret' as last DIF instruction\n"); 8089 } 8090 8091 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 8092 /* 8093 * If we're not returning by reference, the size must be either 8094 * 0 or the size of one of the base types. 8095 */ 8096 switch (dp->dtdo_rtype.dtdt_size) { 8097 case 0: 8098 case sizeof (uint8_t): 8099 case sizeof (uint16_t): 8100 case sizeof (uint32_t): 8101 case sizeof (uint64_t): 8102 break; 8103 8104 default: 8105 err += efunc(dp->dtdo_len - 1, "bad return size"); 8106 } 8107 } 8108 8109 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 8110 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 8111 dtrace_diftype_t *vt, *et; 8112 uint_t id, ndx; 8113 8114 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 8115 v->dtdv_scope != DIFV_SCOPE_THREAD && 8116 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 8117 err += efunc(i, "unrecognized variable scope %d\n", 8118 v->dtdv_scope); 8119 break; 8120 } 8121 8122 if (v->dtdv_kind != DIFV_KIND_ARRAY && 8123 v->dtdv_kind != DIFV_KIND_SCALAR) { 8124 err += efunc(i, "unrecognized variable type %d\n", 8125 v->dtdv_kind); 8126 break; 8127 } 8128 8129 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 8130 err += efunc(i, "%d exceeds variable id limit\n", id); 8131 break; 8132 } 8133 8134 if (id < DIF_VAR_OTHER_UBASE) 8135 continue; 8136 8137 /* 8138 * For user-defined variables, we need to check that this 8139 * definition is identical to any previous definition that we 8140 * encountered. 8141 */ 8142 ndx = id - DIF_VAR_OTHER_UBASE; 8143 8144 switch (v->dtdv_scope) { 8145 case DIFV_SCOPE_GLOBAL: 8146 if (ndx < vstate->dtvs_nglobals) { 8147 dtrace_statvar_t *svar; 8148 8149 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 8150 existing = &svar->dtsv_var; 8151 } 8152 8153 break; 8154 8155 case DIFV_SCOPE_THREAD: 8156 if (ndx < vstate->dtvs_ntlocals) 8157 existing = &vstate->dtvs_tlocals[ndx]; 8158 break; 8159 8160 case DIFV_SCOPE_LOCAL: 8161 if (ndx < vstate->dtvs_nlocals) { 8162 dtrace_statvar_t *svar; 8163 8164 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8165 existing = &svar->dtsv_var; 8166 } 8167 8168 break; 8169 } 8170 8171 vt = &v->dtdv_type; 8172 8173 if (vt->dtdt_flags & DIF_TF_BYREF) { 8174 if (vt->dtdt_size == 0) { 8175 err += efunc(i, "zero-sized variable\n"); 8176 break; 8177 } 8178 8179 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8180 vt->dtdt_size > dtrace_global_maxsize) { 8181 err += efunc(i, "oversized by-ref global\n"); 8182 break; 8183 } 8184 } 8185 8186 if (existing == NULL || existing->dtdv_id == 0) 8187 continue; 8188 8189 ASSERT(existing->dtdv_id == v->dtdv_id); 8190 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8191 8192 if (existing->dtdv_kind != v->dtdv_kind) 8193 err += efunc(i, "%d changed variable kind\n", id); 8194 8195 et = &existing->dtdv_type; 8196 8197 if (vt->dtdt_flags != et->dtdt_flags) { 8198 err += efunc(i, "%d changed variable type flags\n", id); 8199 break; 8200 } 8201 8202 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8203 err += efunc(i, "%d changed variable type size\n", id); 8204 break; 8205 } 8206 } 8207 8208 return (err); 8209 } 8210 8211 /* 8212 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8213 * are much more constrained than normal DIFOs. Specifically, they may 8214 * not: 8215 * 8216 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8217 * miscellaneous string routines 8218 * 2. Access DTrace variables other than the args[] array, and the 8219 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8220 * 3. Have thread-local variables. 8221 * 4. Have dynamic variables. 8222 */ 8223 static int 8224 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8225 { 8226 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8227 int err = 0; 8228 uint_t pc; 8229 8230 for (pc = 0; pc < dp->dtdo_len; pc++) { 8231 dif_instr_t instr = dp->dtdo_buf[pc]; 8232 8233 uint_t v = DIF_INSTR_VAR(instr); 8234 uint_t subr = DIF_INSTR_SUBR(instr); 8235 uint_t op = DIF_INSTR_OP(instr); 8236 8237 switch (op) { 8238 case DIF_OP_OR: 8239 case DIF_OP_XOR: 8240 case DIF_OP_AND: 8241 case DIF_OP_SLL: 8242 case DIF_OP_SRL: 8243 case DIF_OP_SRA: 8244 case DIF_OP_SUB: 8245 case DIF_OP_ADD: 8246 case DIF_OP_MUL: 8247 case DIF_OP_SDIV: 8248 case DIF_OP_UDIV: 8249 case DIF_OP_SREM: 8250 case DIF_OP_UREM: 8251 case DIF_OP_COPYS: 8252 case DIF_OP_NOT: 8253 case DIF_OP_MOV: 8254 case DIF_OP_RLDSB: 8255 case DIF_OP_RLDSH: 8256 case DIF_OP_RLDSW: 8257 case DIF_OP_RLDUB: 8258 case DIF_OP_RLDUH: 8259 case DIF_OP_RLDUW: 8260 case DIF_OP_RLDX: 8261 case DIF_OP_ULDSB: 8262 case DIF_OP_ULDSH: 8263 case DIF_OP_ULDSW: 8264 case DIF_OP_ULDUB: 8265 case DIF_OP_ULDUH: 8266 case DIF_OP_ULDUW: 8267 case DIF_OP_ULDX: 8268 case DIF_OP_STB: 8269 case DIF_OP_STH: 8270 case DIF_OP_STW: 8271 case DIF_OP_STX: 8272 case DIF_OP_ALLOCS: 8273 case DIF_OP_CMP: 8274 case DIF_OP_SCMP: 8275 case DIF_OP_TST: 8276 case DIF_OP_BA: 8277 case DIF_OP_BE: 8278 case DIF_OP_BNE: 8279 case DIF_OP_BG: 8280 case DIF_OP_BGU: 8281 case DIF_OP_BGE: 8282 case DIF_OP_BGEU: 8283 case DIF_OP_BL: 8284 case DIF_OP_BLU: 8285 case DIF_OP_BLE: 8286 case DIF_OP_BLEU: 8287 case DIF_OP_RET: 8288 case DIF_OP_NOP: 8289 case DIF_OP_POPTS: 8290 case DIF_OP_FLUSHTS: 8291 case DIF_OP_SETX: 8292 case DIF_OP_SETS: 8293 case DIF_OP_LDGA: 8294 case DIF_OP_LDLS: 8295 case DIF_OP_STGS: 8296 case DIF_OP_STLS: 8297 case DIF_OP_PUSHTR: 8298 case DIF_OP_PUSHTV: 8299 break; 8300 8301 case DIF_OP_LDGS: 8302 if (v >= DIF_VAR_OTHER_UBASE) 8303 break; 8304 8305 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8306 break; 8307 8308 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8309 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8310 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8311 v == DIF_VAR_UID || v == DIF_VAR_GID) 8312 break; 8313 8314 err += efunc(pc, "illegal variable %u\n", v); 8315 break; 8316 8317 case DIF_OP_LDTA: 8318 case DIF_OP_LDTS: 8319 case DIF_OP_LDGAA: 8320 case DIF_OP_LDTAA: 8321 err += efunc(pc, "illegal dynamic variable load\n"); 8322 break; 8323 8324 case DIF_OP_STTS: 8325 case DIF_OP_STGAA: 8326 case DIF_OP_STTAA: 8327 err += efunc(pc, "illegal dynamic variable store\n"); 8328 break; 8329 8330 case DIF_OP_CALL: 8331 if (subr == DIF_SUBR_ALLOCA || 8332 subr == DIF_SUBR_BCOPY || 8333 subr == DIF_SUBR_COPYIN || 8334 subr == DIF_SUBR_COPYINTO || 8335 subr == DIF_SUBR_COPYINSTR || 8336 subr == DIF_SUBR_INDEX || 8337 subr == DIF_SUBR_INET_NTOA || 8338 subr == DIF_SUBR_INET_NTOA6 || 8339 subr == DIF_SUBR_INET_NTOP || 8340 subr == DIF_SUBR_LLTOSTR || 8341 subr == DIF_SUBR_RINDEX || 8342 subr == DIF_SUBR_STRCHR || 8343 subr == DIF_SUBR_STRJOIN || 8344 subr == DIF_SUBR_STRRCHR || 8345 subr == DIF_SUBR_STRSTR || 8346 subr == DIF_SUBR_HTONS || 8347 subr == DIF_SUBR_HTONL || 8348 subr == DIF_SUBR_HTONLL || 8349 subr == DIF_SUBR_NTOHS || 8350 subr == DIF_SUBR_NTOHL || 8351 subr == DIF_SUBR_NTOHLL) 8352 break; 8353 8354 err += efunc(pc, "invalid subr %u\n", subr); 8355 break; 8356 8357 default: 8358 err += efunc(pc, "invalid opcode %u\n", 8359 DIF_INSTR_OP(instr)); 8360 } 8361 } 8362 8363 return (err); 8364 } 8365 8366 /* 8367 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8368 * basis; 0 if not. 8369 */ 8370 static int 8371 dtrace_difo_cacheable(dtrace_difo_t *dp) 8372 { 8373 int i; 8374 8375 if (dp == NULL) 8376 return (0); 8377 8378 for (i = 0; i < dp->dtdo_varlen; i++) { 8379 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8380 8381 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8382 continue; 8383 8384 switch (v->dtdv_id) { 8385 case DIF_VAR_CURTHREAD: 8386 case DIF_VAR_PID: 8387 case DIF_VAR_TID: 8388 case DIF_VAR_EXECNAME: 8389 case DIF_VAR_ZONENAME: 8390 break; 8391 8392 default: 8393 return (0); 8394 } 8395 } 8396 8397 /* 8398 * This DIF object may be cacheable. Now we need to look for any 8399 * array loading instructions, any memory loading instructions, or 8400 * any stores to thread-local variables. 8401 */ 8402 for (i = 0; i < dp->dtdo_len; i++) { 8403 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8404 8405 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8406 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8407 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8408 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8409 return (0); 8410 } 8411 8412 return (1); 8413 } 8414 8415 static void 8416 dtrace_difo_hold(dtrace_difo_t *dp) 8417 { 8418 int i; 8419 8420 ASSERT(MUTEX_HELD(&dtrace_lock)); 8421 8422 dp->dtdo_refcnt++; 8423 ASSERT(dp->dtdo_refcnt != 0); 8424 8425 /* 8426 * We need to check this DIF object for references to the variable 8427 * DIF_VAR_VTIMESTAMP. 8428 */ 8429 for (i = 0; i < dp->dtdo_varlen; i++) { 8430 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8431 8432 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8433 continue; 8434 8435 if (dtrace_vtime_references++ == 0) 8436 dtrace_vtime_enable(); 8437 } 8438 } 8439 8440 /* 8441 * This routine calculates the dynamic variable chunksize for a given DIF 8442 * object. The calculation is not fool-proof, and can probably be tricked by 8443 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8444 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8445 * if a dynamic variable size exceeds the chunksize. 8446 */ 8447 static void 8448 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8449 { 8450 uint64_t sval; 8451 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8452 const dif_instr_t *text = dp->dtdo_buf; 8453 uint_t pc, srd = 0; 8454 uint_t ttop = 0; 8455 size_t size, ksize; 8456 uint_t id, i; 8457 8458 for (pc = 0; pc < dp->dtdo_len; pc++) { 8459 dif_instr_t instr = text[pc]; 8460 uint_t op = DIF_INSTR_OP(instr); 8461 uint_t rd = DIF_INSTR_RD(instr); 8462 uint_t r1 = DIF_INSTR_R1(instr); 8463 uint_t nkeys = 0; 8464 uchar_t scope; 8465 8466 dtrace_key_t *key = tupregs; 8467 8468 switch (op) { 8469 case DIF_OP_SETX: 8470 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8471 srd = rd; 8472 continue; 8473 8474 case DIF_OP_STTS: 8475 key = &tupregs[DIF_DTR_NREGS]; 8476 key[0].dttk_size = 0; 8477 key[1].dttk_size = 0; 8478 nkeys = 2; 8479 scope = DIFV_SCOPE_THREAD; 8480 break; 8481 8482 case DIF_OP_STGAA: 8483 case DIF_OP_STTAA: 8484 nkeys = ttop; 8485 8486 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 8487 key[nkeys++].dttk_size = 0; 8488 8489 key[nkeys++].dttk_size = 0; 8490 8491 if (op == DIF_OP_STTAA) { 8492 scope = DIFV_SCOPE_THREAD; 8493 } else { 8494 scope = DIFV_SCOPE_GLOBAL; 8495 } 8496 8497 break; 8498 8499 case DIF_OP_PUSHTR: 8500 if (ttop == DIF_DTR_NREGS) 8501 return; 8502 8503 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 8504 /* 8505 * If the register for the size of the "pushtr" 8506 * is %r0 (or the value is 0) and the type is 8507 * a string, we'll use the system-wide default 8508 * string size. 8509 */ 8510 tupregs[ttop++].dttk_size = 8511 dtrace_strsize_default; 8512 } else { 8513 if (srd == 0) 8514 return; 8515 8516 tupregs[ttop++].dttk_size = sval; 8517 } 8518 8519 break; 8520 8521 case DIF_OP_PUSHTV: 8522 if (ttop == DIF_DTR_NREGS) 8523 return; 8524 8525 tupregs[ttop++].dttk_size = 0; 8526 break; 8527 8528 case DIF_OP_FLUSHTS: 8529 ttop = 0; 8530 break; 8531 8532 case DIF_OP_POPTS: 8533 if (ttop != 0) 8534 ttop--; 8535 break; 8536 } 8537 8538 sval = 0; 8539 srd = 0; 8540 8541 if (nkeys == 0) 8542 continue; 8543 8544 /* 8545 * We have a dynamic variable allocation; calculate its size. 8546 */ 8547 for (ksize = 0, i = 0; i < nkeys; i++) 8548 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 8549 8550 size = sizeof (dtrace_dynvar_t); 8551 size += sizeof (dtrace_key_t) * (nkeys - 1); 8552 size += ksize; 8553 8554 /* 8555 * Now we need to determine the size of the stored data. 8556 */ 8557 id = DIF_INSTR_VAR(instr); 8558 8559 for (i = 0; i < dp->dtdo_varlen; i++) { 8560 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8561 8562 if (v->dtdv_id == id && v->dtdv_scope == scope) { 8563 size += v->dtdv_type.dtdt_size; 8564 break; 8565 } 8566 } 8567 8568 if (i == dp->dtdo_varlen) 8569 return; 8570 8571 /* 8572 * We have the size. If this is larger than the chunk size 8573 * for our dynamic variable state, reset the chunk size. 8574 */ 8575 size = P2ROUNDUP(size, sizeof (uint64_t)); 8576 8577 if (size > vstate->dtvs_dynvars.dtds_chunksize) 8578 vstate->dtvs_dynvars.dtds_chunksize = size; 8579 } 8580 } 8581 8582 static void 8583 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8584 { 8585 int i, oldsvars, osz, nsz, otlocals, ntlocals; 8586 uint_t id; 8587 8588 ASSERT(MUTEX_HELD(&dtrace_lock)); 8589 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 8590 8591 for (i = 0; i < dp->dtdo_varlen; i++) { 8592 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8593 dtrace_statvar_t *svar, ***svarp; 8594 size_t dsize = 0; 8595 uint8_t scope = v->dtdv_scope; 8596 int *np; 8597 8598 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8599 continue; 8600 8601 id -= DIF_VAR_OTHER_UBASE; 8602 8603 switch (scope) { 8604 case DIFV_SCOPE_THREAD: 8605 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 8606 dtrace_difv_t *tlocals; 8607 8608 if ((ntlocals = (otlocals << 1)) == 0) 8609 ntlocals = 1; 8610 8611 osz = otlocals * sizeof (dtrace_difv_t); 8612 nsz = ntlocals * sizeof (dtrace_difv_t); 8613 8614 tlocals = kmem_zalloc(nsz, KM_SLEEP); 8615 8616 if (osz != 0) { 8617 bcopy(vstate->dtvs_tlocals, 8618 tlocals, osz); 8619 kmem_free(vstate->dtvs_tlocals, osz); 8620 } 8621 8622 vstate->dtvs_tlocals = tlocals; 8623 vstate->dtvs_ntlocals = ntlocals; 8624 } 8625 8626 vstate->dtvs_tlocals[id] = *v; 8627 continue; 8628 8629 case DIFV_SCOPE_LOCAL: 8630 np = &vstate->dtvs_nlocals; 8631 svarp = &vstate->dtvs_locals; 8632 8633 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8634 dsize = NCPU * (v->dtdv_type.dtdt_size + 8635 sizeof (uint64_t)); 8636 else 8637 dsize = NCPU * sizeof (uint64_t); 8638 8639 break; 8640 8641 case DIFV_SCOPE_GLOBAL: 8642 np = &vstate->dtvs_nglobals; 8643 svarp = &vstate->dtvs_globals; 8644 8645 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8646 dsize = v->dtdv_type.dtdt_size + 8647 sizeof (uint64_t); 8648 8649 break; 8650 8651 default: 8652 ASSERT(0); 8653 } 8654 8655 while (id >= (oldsvars = *np)) { 8656 dtrace_statvar_t **statics; 8657 int newsvars, oldsize, newsize; 8658 8659 if ((newsvars = (oldsvars << 1)) == 0) 8660 newsvars = 1; 8661 8662 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 8663 newsize = newsvars * sizeof (dtrace_statvar_t *); 8664 8665 statics = kmem_zalloc(newsize, KM_SLEEP); 8666 8667 if (oldsize != 0) { 8668 bcopy(*svarp, statics, oldsize); 8669 kmem_free(*svarp, oldsize); 8670 } 8671 8672 *svarp = statics; 8673 *np = newsvars; 8674 } 8675 8676 if ((svar = (*svarp)[id]) == NULL) { 8677 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 8678 svar->dtsv_var = *v; 8679 8680 if ((svar->dtsv_size = dsize) != 0) { 8681 svar->dtsv_data = (uint64_t)(uintptr_t) 8682 kmem_zalloc(dsize, KM_SLEEP); 8683 } 8684 8685 (*svarp)[id] = svar; 8686 } 8687 8688 svar->dtsv_refcnt++; 8689 } 8690 8691 dtrace_difo_chunksize(dp, vstate); 8692 dtrace_difo_hold(dp); 8693 } 8694 8695 static dtrace_difo_t * 8696 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8697 { 8698 dtrace_difo_t *new; 8699 size_t sz; 8700 8701 ASSERT(dp->dtdo_buf != NULL); 8702 ASSERT(dp->dtdo_refcnt != 0); 8703 8704 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 8705 8706 ASSERT(dp->dtdo_buf != NULL); 8707 sz = dp->dtdo_len * sizeof (dif_instr_t); 8708 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 8709 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 8710 new->dtdo_len = dp->dtdo_len; 8711 8712 if (dp->dtdo_strtab != NULL) { 8713 ASSERT(dp->dtdo_strlen != 0); 8714 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 8715 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 8716 new->dtdo_strlen = dp->dtdo_strlen; 8717 } 8718 8719 if (dp->dtdo_inttab != NULL) { 8720 ASSERT(dp->dtdo_intlen != 0); 8721 sz = dp->dtdo_intlen * sizeof (uint64_t); 8722 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 8723 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 8724 new->dtdo_intlen = dp->dtdo_intlen; 8725 } 8726 8727 if (dp->dtdo_vartab != NULL) { 8728 ASSERT(dp->dtdo_varlen != 0); 8729 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 8730 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 8731 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 8732 new->dtdo_varlen = dp->dtdo_varlen; 8733 } 8734 8735 dtrace_difo_init(new, vstate); 8736 return (new); 8737 } 8738 8739 static void 8740 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8741 { 8742 int i; 8743 8744 ASSERT(dp->dtdo_refcnt == 0); 8745 8746 for (i = 0; i < dp->dtdo_varlen; i++) { 8747 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8748 dtrace_statvar_t *svar, **svarp; 8749 uint_t id; 8750 uint8_t scope = v->dtdv_scope; 8751 int *np; 8752 8753 switch (scope) { 8754 case DIFV_SCOPE_THREAD: 8755 continue; 8756 8757 case DIFV_SCOPE_LOCAL: 8758 np = &vstate->dtvs_nlocals; 8759 svarp = vstate->dtvs_locals; 8760 break; 8761 8762 case DIFV_SCOPE_GLOBAL: 8763 np = &vstate->dtvs_nglobals; 8764 svarp = vstate->dtvs_globals; 8765 break; 8766 8767 default: 8768 ASSERT(0); 8769 } 8770 8771 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8772 continue; 8773 8774 id -= DIF_VAR_OTHER_UBASE; 8775 ASSERT(id < *np); 8776 8777 svar = svarp[id]; 8778 ASSERT(svar != NULL); 8779 ASSERT(svar->dtsv_refcnt > 0); 8780 8781 if (--svar->dtsv_refcnt > 0) 8782 continue; 8783 8784 if (svar->dtsv_size != 0) { 8785 ASSERT(svar->dtsv_data != NULL); 8786 kmem_free((void *)(uintptr_t)svar->dtsv_data, 8787 svar->dtsv_size); 8788 } 8789 8790 kmem_free(svar, sizeof (dtrace_statvar_t)); 8791 svarp[id] = NULL; 8792 } 8793 8794 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 8795 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 8796 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 8797 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 8798 8799 kmem_free(dp, sizeof (dtrace_difo_t)); 8800 } 8801 8802 static void 8803 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8804 { 8805 int i; 8806 8807 ASSERT(MUTEX_HELD(&dtrace_lock)); 8808 ASSERT(dp->dtdo_refcnt != 0); 8809 8810 for (i = 0; i < dp->dtdo_varlen; i++) { 8811 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8812 8813 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8814 continue; 8815 8816 ASSERT(dtrace_vtime_references > 0); 8817 if (--dtrace_vtime_references == 0) 8818 dtrace_vtime_disable(); 8819 } 8820 8821 if (--dp->dtdo_refcnt == 0) 8822 dtrace_difo_destroy(dp, vstate); 8823 } 8824 8825 /* 8826 * DTrace Format Functions 8827 */ 8828 static uint16_t 8829 dtrace_format_add(dtrace_state_t *state, char *str) 8830 { 8831 char *fmt, **new; 8832 uint16_t ndx, len = strlen(str) + 1; 8833 8834 fmt = kmem_zalloc(len, KM_SLEEP); 8835 bcopy(str, fmt, len); 8836 8837 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 8838 if (state->dts_formats[ndx] == NULL) { 8839 state->dts_formats[ndx] = fmt; 8840 return (ndx + 1); 8841 } 8842 } 8843 8844 if (state->dts_nformats == USHRT_MAX) { 8845 /* 8846 * This is only likely if a denial-of-service attack is being 8847 * attempted. As such, it's okay to fail silently here. 8848 */ 8849 kmem_free(fmt, len); 8850 return (0); 8851 } 8852 8853 /* 8854 * For simplicity, we always resize the formats array to be exactly the 8855 * number of formats. 8856 */ 8857 ndx = state->dts_nformats++; 8858 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 8859 8860 if (state->dts_formats != NULL) { 8861 ASSERT(ndx != 0); 8862 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 8863 kmem_free(state->dts_formats, ndx * sizeof (char *)); 8864 } 8865 8866 state->dts_formats = new; 8867 state->dts_formats[ndx] = fmt; 8868 8869 return (ndx + 1); 8870 } 8871 8872 static void 8873 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 8874 { 8875 char *fmt; 8876 8877 ASSERT(state->dts_formats != NULL); 8878 ASSERT(format <= state->dts_nformats); 8879 ASSERT(state->dts_formats[format - 1] != NULL); 8880 8881 fmt = state->dts_formats[format - 1]; 8882 kmem_free(fmt, strlen(fmt) + 1); 8883 state->dts_formats[format - 1] = NULL; 8884 } 8885 8886 static void 8887 dtrace_format_destroy(dtrace_state_t *state) 8888 { 8889 int i; 8890 8891 if (state->dts_nformats == 0) { 8892 ASSERT(state->dts_formats == NULL); 8893 return; 8894 } 8895 8896 ASSERT(state->dts_formats != NULL); 8897 8898 for (i = 0; i < state->dts_nformats; i++) { 8899 char *fmt = state->dts_formats[i]; 8900 8901 if (fmt == NULL) 8902 continue; 8903 8904 kmem_free(fmt, strlen(fmt) + 1); 8905 } 8906 8907 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 8908 state->dts_nformats = 0; 8909 state->dts_formats = NULL; 8910 } 8911 8912 /* 8913 * DTrace Predicate Functions 8914 */ 8915 static dtrace_predicate_t * 8916 dtrace_predicate_create(dtrace_difo_t *dp) 8917 { 8918 dtrace_predicate_t *pred; 8919 8920 ASSERT(MUTEX_HELD(&dtrace_lock)); 8921 ASSERT(dp->dtdo_refcnt != 0); 8922 8923 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 8924 pred->dtp_difo = dp; 8925 pred->dtp_refcnt = 1; 8926 8927 if (!dtrace_difo_cacheable(dp)) 8928 return (pred); 8929 8930 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 8931 /* 8932 * This is only theoretically possible -- we have had 2^32 8933 * cacheable predicates on this machine. We cannot allow any 8934 * more predicates to become cacheable: as unlikely as it is, 8935 * there may be a thread caching a (now stale) predicate cache 8936 * ID. (N.B.: the temptation is being successfully resisted to 8937 * have this cmn_err() "Holy shit -- we executed this code!") 8938 */ 8939 return (pred); 8940 } 8941 8942 pred->dtp_cacheid = dtrace_predcache_id++; 8943 8944 return (pred); 8945 } 8946 8947 static void 8948 dtrace_predicate_hold(dtrace_predicate_t *pred) 8949 { 8950 ASSERT(MUTEX_HELD(&dtrace_lock)); 8951 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 8952 ASSERT(pred->dtp_refcnt > 0); 8953 8954 pred->dtp_refcnt++; 8955 } 8956 8957 static void 8958 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 8959 { 8960 dtrace_difo_t *dp = pred->dtp_difo; 8961 8962 ASSERT(MUTEX_HELD(&dtrace_lock)); 8963 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 8964 ASSERT(pred->dtp_refcnt > 0); 8965 8966 if (--pred->dtp_refcnt == 0) { 8967 dtrace_difo_release(pred->dtp_difo, vstate); 8968 kmem_free(pred, sizeof (dtrace_predicate_t)); 8969 } 8970 } 8971 8972 /* 8973 * DTrace Action Description Functions 8974 */ 8975 static dtrace_actdesc_t * 8976 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 8977 uint64_t uarg, uint64_t arg) 8978 { 8979 dtrace_actdesc_t *act; 8980 8981 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 8982 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 8983 8984 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 8985 act->dtad_kind = kind; 8986 act->dtad_ntuple = ntuple; 8987 act->dtad_uarg = uarg; 8988 act->dtad_arg = arg; 8989 act->dtad_refcnt = 1; 8990 8991 return (act); 8992 } 8993 8994 static void 8995 dtrace_actdesc_hold(dtrace_actdesc_t *act) 8996 { 8997 ASSERT(act->dtad_refcnt >= 1); 8998 act->dtad_refcnt++; 8999 } 9000 9001 static void 9002 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 9003 { 9004 dtrace_actkind_t kind = act->dtad_kind; 9005 dtrace_difo_t *dp; 9006 9007 ASSERT(act->dtad_refcnt >= 1); 9008 9009 if (--act->dtad_refcnt != 0) 9010 return; 9011 9012 if ((dp = act->dtad_difo) != NULL) 9013 dtrace_difo_release(dp, vstate); 9014 9015 if (DTRACEACT_ISPRINTFLIKE(kind)) { 9016 char *str = (char *)(uintptr_t)act->dtad_arg; 9017 9018 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 9019 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 9020 9021 if (str != NULL) 9022 kmem_free(str, strlen(str) + 1); 9023 } 9024 9025 kmem_free(act, sizeof (dtrace_actdesc_t)); 9026 } 9027 9028 /* 9029 * DTrace ECB Functions 9030 */ 9031 static dtrace_ecb_t * 9032 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 9033 { 9034 dtrace_ecb_t *ecb; 9035 dtrace_epid_t epid; 9036 9037 ASSERT(MUTEX_HELD(&dtrace_lock)); 9038 9039 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 9040 ecb->dte_predicate = NULL; 9041 ecb->dte_probe = probe; 9042 9043 /* 9044 * The default size is the size of the default action: recording 9045 * the epid. 9046 */ 9047 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9048 ecb->dte_alignment = sizeof (dtrace_epid_t); 9049 9050 epid = state->dts_epid++; 9051 9052 if (epid - 1 >= state->dts_necbs) { 9053 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 9054 int necbs = state->dts_necbs << 1; 9055 9056 ASSERT(epid == state->dts_necbs + 1); 9057 9058 if (necbs == 0) { 9059 ASSERT(oecbs == NULL); 9060 necbs = 1; 9061 } 9062 9063 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 9064 9065 if (oecbs != NULL) 9066 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 9067 9068 dtrace_membar_producer(); 9069 state->dts_ecbs = ecbs; 9070 9071 if (oecbs != NULL) { 9072 /* 9073 * If this state is active, we must dtrace_sync() 9074 * before we can free the old dts_ecbs array: we're 9075 * coming in hot, and there may be active ring 9076 * buffer processing (which indexes into the dts_ecbs 9077 * array) on another CPU. 9078 */ 9079 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 9080 dtrace_sync(); 9081 9082 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 9083 } 9084 9085 dtrace_membar_producer(); 9086 state->dts_necbs = necbs; 9087 } 9088 9089 ecb->dte_state = state; 9090 9091 ASSERT(state->dts_ecbs[epid - 1] == NULL); 9092 dtrace_membar_producer(); 9093 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 9094 9095 return (ecb); 9096 } 9097 9098 static void 9099 dtrace_ecb_enable(dtrace_ecb_t *ecb) 9100 { 9101 dtrace_probe_t *probe = ecb->dte_probe; 9102 9103 ASSERT(MUTEX_HELD(&cpu_lock)); 9104 ASSERT(MUTEX_HELD(&dtrace_lock)); 9105 ASSERT(ecb->dte_next == NULL); 9106 9107 if (probe == NULL) { 9108 /* 9109 * This is the NULL probe -- there's nothing to do. 9110 */ 9111 return; 9112 } 9113 9114 if (probe->dtpr_ecb == NULL) { 9115 dtrace_provider_t *prov = probe->dtpr_provider; 9116 9117 /* 9118 * We're the first ECB on this probe. 9119 */ 9120 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 9121 9122 if (ecb->dte_predicate != NULL) 9123 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 9124 9125 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 9126 probe->dtpr_id, probe->dtpr_arg); 9127 } else { 9128 /* 9129 * This probe is already active. Swing the last pointer to 9130 * point to the new ECB, and issue a dtrace_sync() to assure 9131 * that all CPUs have seen the change. 9132 */ 9133 ASSERT(probe->dtpr_ecb_last != NULL); 9134 probe->dtpr_ecb_last->dte_next = ecb; 9135 probe->dtpr_ecb_last = ecb; 9136 probe->dtpr_predcache = 0; 9137 9138 dtrace_sync(); 9139 } 9140 } 9141 9142 static void 9143 dtrace_ecb_resize(dtrace_ecb_t *ecb) 9144 { 9145 uint32_t maxalign = sizeof (dtrace_epid_t); 9146 uint32_t align = sizeof (uint8_t), offs, diff; 9147 dtrace_action_t *act; 9148 int wastuple = 0; 9149 uint32_t aggbase = UINT32_MAX; 9150 dtrace_state_t *state = ecb->dte_state; 9151 9152 /* 9153 * If we record anything, we always record the epid. (And we always 9154 * record it first.) 9155 */ 9156 offs = sizeof (dtrace_epid_t); 9157 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9158 9159 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9160 dtrace_recdesc_t *rec = &act->dta_rec; 9161 9162 if ((align = rec->dtrd_alignment) > maxalign) 9163 maxalign = align; 9164 9165 if (!wastuple && act->dta_intuple) { 9166 /* 9167 * This is the first record in a tuple. Align the 9168 * offset to be at offset 4 in an 8-byte aligned 9169 * block. 9170 */ 9171 diff = offs + sizeof (dtrace_aggid_t); 9172 9173 if (diff = (diff & (sizeof (uint64_t) - 1))) 9174 offs += sizeof (uint64_t) - diff; 9175 9176 aggbase = offs - sizeof (dtrace_aggid_t); 9177 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 9178 } 9179 9180 /*LINTED*/ 9181 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 9182 /* 9183 * The current offset is not properly aligned; align it. 9184 */ 9185 offs += align - diff; 9186 } 9187 9188 rec->dtrd_offset = offs; 9189 9190 if (offs + rec->dtrd_size > ecb->dte_needed) { 9191 ecb->dte_needed = offs + rec->dtrd_size; 9192 9193 if (ecb->dte_needed > state->dts_needed) 9194 state->dts_needed = ecb->dte_needed; 9195 } 9196 9197 if (DTRACEACT_ISAGG(act->dta_kind)) { 9198 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9199 dtrace_action_t *first = agg->dtag_first, *prev; 9200 9201 ASSERT(rec->dtrd_size != 0 && first != NULL); 9202 ASSERT(wastuple); 9203 ASSERT(aggbase != UINT32_MAX); 9204 9205 agg->dtag_base = aggbase; 9206 9207 while ((prev = first->dta_prev) != NULL && 9208 DTRACEACT_ISAGG(prev->dta_kind)) { 9209 agg = (dtrace_aggregation_t *)prev; 9210 first = agg->dtag_first; 9211 } 9212 9213 if (prev != NULL) { 9214 offs = prev->dta_rec.dtrd_offset + 9215 prev->dta_rec.dtrd_size; 9216 } else { 9217 offs = sizeof (dtrace_epid_t); 9218 } 9219 wastuple = 0; 9220 } else { 9221 if (!act->dta_intuple) 9222 ecb->dte_size = offs + rec->dtrd_size; 9223 9224 offs += rec->dtrd_size; 9225 } 9226 9227 wastuple = act->dta_intuple; 9228 } 9229 9230 if ((act = ecb->dte_action) != NULL && 9231 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9232 ecb->dte_size == sizeof (dtrace_epid_t)) { 9233 /* 9234 * If the size is still sizeof (dtrace_epid_t), then all 9235 * actions store no data; set the size to 0. 9236 */ 9237 ecb->dte_alignment = maxalign; 9238 ecb->dte_size = 0; 9239 9240 /* 9241 * If the needed space is still sizeof (dtrace_epid_t), then 9242 * all actions need no additional space; set the needed 9243 * size to 0. 9244 */ 9245 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 9246 ecb->dte_needed = 0; 9247 9248 return; 9249 } 9250 9251 /* 9252 * Set our alignment, and make sure that the dte_size and dte_needed 9253 * are aligned to the size of an EPID. 9254 */ 9255 ecb->dte_alignment = maxalign; 9256 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 9257 ~(sizeof (dtrace_epid_t) - 1); 9258 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 9259 ~(sizeof (dtrace_epid_t) - 1); 9260 ASSERT(ecb->dte_size <= ecb->dte_needed); 9261 } 9262 9263 static dtrace_action_t * 9264 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9265 { 9266 dtrace_aggregation_t *agg; 9267 size_t size = sizeof (uint64_t); 9268 int ntuple = desc->dtad_ntuple; 9269 dtrace_action_t *act; 9270 dtrace_recdesc_t *frec; 9271 dtrace_aggid_t aggid; 9272 dtrace_state_t *state = ecb->dte_state; 9273 9274 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9275 agg->dtag_ecb = ecb; 9276 9277 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9278 9279 switch (desc->dtad_kind) { 9280 case DTRACEAGG_MIN: 9281 agg->dtag_initial = INT64_MAX; 9282 agg->dtag_aggregate = dtrace_aggregate_min; 9283 break; 9284 9285 case DTRACEAGG_MAX: 9286 agg->dtag_initial = INT64_MIN; 9287 agg->dtag_aggregate = dtrace_aggregate_max; 9288 break; 9289 9290 case DTRACEAGG_COUNT: 9291 agg->dtag_aggregate = dtrace_aggregate_count; 9292 break; 9293 9294 case DTRACEAGG_QUANTIZE: 9295 agg->dtag_aggregate = dtrace_aggregate_quantize; 9296 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9297 sizeof (uint64_t); 9298 break; 9299 9300 case DTRACEAGG_LQUANTIZE: { 9301 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9302 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9303 9304 agg->dtag_initial = desc->dtad_arg; 9305 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9306 9307 if (step == 0 || levels == 0) 9308 goto err; 9309 9310 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9311 break; 9312 } 9313 9314 case DTRACEAGG_AVG: 9315 agg->dtag_aggregate = dtrace_aggregate_avg; 9316 size = sizeof (uint64_t) * 2; 9317 break; 9318 9319 case DTRACEAGG_STDDEV: 9320 agg->dtag_aggregate = dtrace_aggregate_stddev; 9321 size = sizeof (uint64_t) * 4; 9322 break; 9323 9324 case DTRACEAGG_SUM: 9325 agg->dtag_aggregate = dtrace_aggregate_sum; 9326 break; 9327 9328 default: 9329 goto err; 9330 } 9331 9332 agg->dtag_action.dta_rec.dtrd_size = size; 9333 9334 if (ntuple == 0) 9335 goto err; 9336 9337 /* 9338 * We must make sure that we have enough actions for the n-tuple. 9339 */ 9340 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9341 if (DTRACEACT_ISAGG(act->dta_kind)) 9342 break; 9343 9344 if (--ntuple == 0) { 9345 /* 9346 * This is the action with which our n-tuple begins. 9347 */ 9348 agg->dtag_first = act; 9349 goto success; 9350 } 9351 } 9352 9353 /* 9354 * This n-tuple is short by ntuple elements. Return failure. 9355 */ 9356 ASSERT(ntuple != 0); 9357 err: 9358 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9359 return (NULL); 9360 9361 success: 9362 /* 9363 * If the last action in the tuple has a size of zero, it's actually 9364 * an expression argument for the aggregating action. 9365 */ 9366 ASSERT(ecb->dte_action_last != NULL); 9367 act = ecb->dte_action_last; 9368 9369 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9370 ASSERT(act->dta_difo != NULL); 9371 9372 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9373 agg->dtag_hasarg = 1; 9374 } 9375 9376 /* 9377 * We need to allocate an id for this aggregation. 9378 */ 9379 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9380 VM_BESTFIT | VM_SLEEP); 9381 9382 if (aggid - 1 >= state->dts_naggregations) { 9383 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9384 dtrace_aggregation_t **aggs; 9385 int naggs = state->dts_naggregations << 1; 9386 int onaggs = state->dts_naggregations; 9387 9388 ASSERT(aggid == state->dts_naggregations + 1); 9389 9390 if (naggs == 0) { 9391 ASSERT(oaggs == NULL); 9392 naggs = 1; 9393 } 9394 9395 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9396 9397 if (oaggs != NULL) { 9398 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9399 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9400 } 9401 9402 state->dts_aggregations = aggs; 9403 state->dts_naggregations = naggs; 9404 } 9405 9406 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9407 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9408 9409 frec = &agg->dtag_first->dta_rec; 9410 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9411 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9412 9413 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9414 ASSERT(!act->dta_intuple); 9415 act->dta_intuple = 1; 9416 } 9417 9418 return (&agg->dtag_action); 9419 } 9420 9421 static void 9422 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9423 { 9424 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9425 dtrace_state_t *state = ecb->dte_state; 9426 dtrace_aggid_t aggid = agg->dtag_id; 9427 9428 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9429 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9430 9431 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9432 state->dts_aggregations[aggid - 1] = NULL; 9433 9434 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9435 } 9436 9437 static int 9438 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9439 { 9440 dtrace_action_t *action, *last; 9441 dtrace_difo_t *dp = desc->dtad_difo; 9442 uint32_t size = 0, align = sizeof (uint8_t), mask; 9443 uint16_t format = 0; 9444 dtrace_recdesc_t *rec; 9445 dtrace_state_t *state = ecb->dte_state; 9446 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9447 uint64_t arg = desc->dtad_arg; 9448 9449 ASSERT(MUTEX_HELD(&dtrace_lock)); 9450 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9451 9452 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9453 /* 9454 * If this is an aggregating action, there must be neither 9455 * a speculate nor a commit on the action chain. 9456 */ 9457 dtrace_action_t *act; 9458 9459 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9460 if (act->dta_kind == DTRACEACT_COMMIT) 9461 return (EINVAL); 9462 9463 if (act->dta_kind == DTRACEACT_SPECULATE) 9464 return (EINVAL); 9465 } 9466 9467 action = dtrace_ecb_aggregation_create(ecb, desc); 9468 9469 if (action == NULL) 9470 return (EINVAL); 9471 } else { 9472 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9473 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9474 dp != NULL && dp->dtdo_destructive)) { 9475 state->dts_destructive = 1; 9476 } 9477 9478 switch (desc->dtad_kind) { 9479 case DTRACEACT_PRINTF: 9480 case DTRACEACT_PRINTA: 9481 case DTRACEACT_SYSTEM: 9482 case DTRACEACT_FREOPEN: 9483 /* 9484 * We know that our arg is a string -- turn it into a 9485 * format. 9486 */ 9487 if (arg == NULL) { 9488 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); 9489 format = 0; 9490 } else { 9491 ASSERT(arg != NULL); 9492 ASSERT(arg > KERNELBASE); 9493 format = dtrace_format_add(state, 9494 (char *)(uintptr_t)arg); 9495 } 9496 9497 /*FALLTHROUGH*/ 9498 case DTRACEACT_LIBACT: 9499 case DTRACEACT_DIFEXPR: 9500 if (dp == NULL) 9501 return (EINVAL); 9502 9503 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 9504 break; 9505 9506 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 9507 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9508 return (EINVAL); 9509 9510 size = opt[DTRACEOPT_STRSIZE]; 9511 } 9512 9513 break; 9514 9515 case DTRACEACT_STACK: 9516 if ((nframes = arg) == 0) { 9517 nframes = opt[DTRACEOPT_STACKFRAMES]; 9518 ASSERT(nframes > 0); 9519 arg = nframes; 9520 } 9521 9522 size = nframes * sizeof (pc_t); 9523 break; 9524 9525 case DTRACEACT_JSTACK: 9526 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 9527 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 9528 9529 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 9530 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 9531 9532 arg = DTRACE_USTACK_ARG(nframes, strsize); 9533 9534 /*FALLTHROUGH*/ 9535 case DTRACEACT_USTACK: 9536 if (desc->dtad_kind != DTRACEACT_JSTACK && 9537 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 9538 strsize = DTRACE_USTACK_STRSIZE(arg); 9539 nframes = opt[DTRACEOPT_USTACKFRAMES]; 9540 ASSERT(nframes > 0); 9541 arg = DTRACE_USTACK_ARG(nframes, strsize); 9542 } 9543 9544 /* 9545 * Save a slot for the pid. 9546 */ 9547 size = (nframes + 1) * sizeof (uint64_t); 9548 size += DTRACE_USTACK_STRSIZE(arg); 9549 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 9550 9551 break; 9552 9553 case DTRACEACT_SYM: 9554 case DTRACEACT_MOD: 9555 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 9556 sizeof (uint64_t)) || 9557 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9558 return (EINVAL); 9559 break; 9560 9561 case DTRACEACT_USYM: 9562 case DTRACEACT_UMOD: 9563 case DTRACEACT_UADDR: 9564 if (dp == NULL || 9565 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 9566 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9567 return (EINVAL); 9568 9569 /* 9570 * We have a slot for the pid, plus a slot for the 9571 * argument. To keep things simple (aligned with 9572 * bitness-neutral sizing), we store each as a 64-bit 9573 * quantity. 9574 */ 9575 size = 2 * sizeof (uint64_t); 9576 break; 9577 9578 case DTRACEACT_STOP: 9579 case DTRACEACT_BREAKPOINT: 9580 case DTRACEACT_PANIC: 9581 break; 9582 9583 case DTRACEACT_CHILL: 9584 case DTRACEACT_DISCARD: 9585 case DTRACEACT_RAISE: 9586 if (dp == NULL) 9587 return (EINVAL); 9588 break; 9589 9590 case DTRACEACT_EXIT: 9591 if (dp == NULL || 9592 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 9593 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9594 return (EINVAL); 9595 break; 9596 9597 case DTRACEACT_SPECULATE: 9598 if (ecb->dte_size > sizeof (dtrace_epid_t)) 9599 return (EINVAL); 9600 9601 if (dp == NULL) 9602 return (EINVAL); 9603 9604 state->dts_speculates = 1; 9605 break; 9606 9607 case DTRACEACT_COMMIT: { 9608 dtrace_action_t *act = ecb->dte_action; 9609 9610 for (; act != NULL; act = act->dta_next) { 9611 if (act->dta_kind == DTRACEACT_COMMIT) 9612 return (EINVAL); 9613 } 9614 9615 if (dp == NULL) 9616 return (EINVAL); 9617 break; 9618 } 9619 9620 default: 9621 return (EINVAL); 9622 } 9623 9624 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 9625 /* 9626 * If this is a data-storing action or a speculate, 9627 * we must be sure that there isn't a commit on the 9628 * action chain. 9629 */ 9630 dtrace_action_t *act = ecb->dte_action; 9631 9632 for (; act != NULL; act = act->dta_next) { 9633 if (act->dta_kind == DTRACEACT_COMMIT) 9634 return (EINVAL); 9635 } 9636 } 9637 9638 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 9639 action->dta_rec.dtrd_size = size; 9640 } 9641 9642 action->dta_refcnt = 1; 9643 rec = &action->dta_rec; 9644 size = rec->dtrd_size; 9645 9646 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 9647 if (!(size & mask)) { 9648 align = mask + 1; 9649 break; 9650 } 9651 } 9652 9653 action->dta_kind = desc->dtad_kind; 9654 9655 if ((action->dta_difo = dp) != NULL) 9656 dtrace_difo_hold(dp); 9657 9658 rec->dtrd_action = action->dta_kind; 9659 rec->dtrd_arg = arg; 9660 rec->dtrd_uarg = desc->dtad_uarg; 9661 rec->dtrd_alignment = (uint16_t)align; 9662 rec->dtrd_format = format; 9663 9664 if ((last = ecb->dte_action_last) != NULL) { 9665 ASSERT(ecb->dte_action != NULL); 9666 action->dta_prev = last; 9667 last->dta_next = action; 9668 } else { 9669 ASSERT(ecb->dte_action == NULL); 9670 ecb->dte_action = action; 9671 } 9672 9673 ecb->dte_action_last = action; 9674 9675 return (0); 9676 } 9677 9678 static void 9679 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 9680 { 9681 dtrace_action_t *act = ecb->dte_action, *next; 9682 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 9683 dtrace_difo_t *dp; 9684 uint16_t format; 9685 9686 if (act != NULL && act->dta_refcnt > 1) { 9687 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 9688 act->dta_refcnt--; 9689 } else { 9690 for (; act != NULL; act = next) { 9691 next = act->dta_next; 9692 ASSERT(next != NULL || act == ecb->dte_action_last); 9693 ASSERT(act->dta_refcnt == 1); 9694 9695 if ((format = act->dta_rec.dtrd_format) != 0) 9696 dtrace_format_remove(ecb->dte_state, format); 9697 9698 if ((dp = act->dta_difo) != NULL) 9699 dtrace_difo_release(dp, vstate); 9700 9701 if (DTRACEACT_ISAGG(act->dta_kind)) { 9702 dtrace_ecb_aggregation_destroy(ecb, act); 9703 } else { 9704 kmem_free(act, sizeof (dtrace_action_t)); 9705 } 9706 } 9707 } 9708 9709 ecb->dte_action = NULL; 9710 ecb->dte_action_last = NULL; 9711 ecb->dte_size = sizeof (dtrace_epid_t); 9712 } 9713 9714 static void 9715 dtrace_ecb_disable(dtrace_ecb_t *ecb) 9716 { 9717 /* 9718 * We disable the ECB by removing it from its probe. 9719 */ 9720 dtrace_ecb_t *pecb, *prev = NULL; 9721 dtrace_probe_t *probe = ecb->dte_probe; 9722 9723 ASSERT(MUTEX_HELD(&dtrace_lock)); 9724 9725 if (probe == NULL) { 9726 /* 9727 * This is the NULL probe; there is nothing to disable. 9728 */ 9729 return; 9730 } 9731 9732 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 9733 if (pecb == ecb) 9734 break; 9735 prev = pecb; 9736 } 9737 9738 ASSERT(pecb != NULL); 9739 9740 if (prev == NULL) { 9741 probe->dtpr_ecb = ecb->dte_next; 9742 } else { 9743 prev->dte_next = ecb->dte_next; 9744 } 9745 9746 if (ecb == probe->dtpr_ecb_last) { 9747 ASSERT(ecb->dte_next == NULL); 9748 probe->dtpr_ecb_last = prev; 9749 } 9750 9751 /* 9752 * The ECB has been disconnected from the probe; now sync to assure 9753 * that all CPUs have seen the change before returning. 9754 */ 9755 dtrace_sync(); 9756 9757 if (probe->dtpr_ecb == NULL) { 9758 /* 9759 * That was the last ECB on the probe; clear the predicate 9760 * cache ID for the probe, disable it and sync one more time 9761 * to assure that we'll never hit it again. 9762 */ 9763 dtrace_provider_t *prov = probe->dtpr_provider; 9764 9765 ASSERT(ecb->dte_next == NULL); 9766 ASSERT(probe->dtpr_ecb_last == NULL); 9767 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 9768 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 9769 probe->dtpr_id, probe->dtpr_arg); 9770 dtrace_sync(); 9771 } else { 9772 /* 9773 * There is at least one ECB remaining on the probe. If there 9774 * is _exactly_ one, set the probe's predicate cache ID to be 9775 * the predicate cache ID of the remaining ECB. 9776 */ 9777 ASSERT(probe->dtpr_ecb_last != NULL); 9778 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 9779 9780 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 9781 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 9782 9783 ASSERT(probe->dtpr_ecb->dte_next == NULL); 9784 9785 if (p != NULL) 9786 probe->dtpr_predcache = p->dtp_cacheid; 9787 } 9788 9789 ecb->dte_next = NULL; 9790 } 9791 } 9792 9793 static void 9794 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 9795 { 9796 dtrace_state_t *state = ecb->dte_state; 9797 dtrace_vstate_t *vstate = &state->dts_vstate; 9798 dtrace_predicate_t *pred; 9799 dtrace_epid_t epid = ecb->dte_epid; 9800 9801 ASSERT(MUTEX_HELD(&dtrace_lock)); 9802 ASSERT(ecb->dte_next == NULL); 9803 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 9804 9805 if ((pred = ecb->dte_predicate) != NULL) 9806 dtrace_predicate_release(pred, vstate); 9807 9808 dtrace_ecb_action_remove(ecb); 9809 9810 ASSERT(state->dts_ecbs[epid - 1] == ecb); 9811 state->dts_ecbs[epid - 1] = NULL; 9812 9813 kmem_free(ecb, sizeof (dtrace_ecb_t)); 9814 } 9815 9816 static dtrace_ecb_t * 9817 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 9818 dtrace_enabling_t *enab) 9819 { 9820 dtrace_ecb_t *ecb; 9821 dtrace_predicate_t *pred; 9822 dtrace_actdesc_t *act; 9823 dtrace_provider_t *prov; 9824 dtrace_ecbdesc_t *desc = enab->dten_current; 9825 9826 ASSERT(MUTEX_HELD(&dtrace_lock)); 9827 ASSERT(state != NULL); 9828 9829 ecb = dtrace_ecb_add(state, probe); 9830 ecb->dte_uarg = desc->dted_uarg; 9831 9832 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 9833 dtrace_predicate_hold(pred); 9834 ecb->dte_predicate = pred; 9835 } 9836 9837 if (probe != NULL) { 9838 /* 9839 * If the provider shows more leg than the consumer is old 9840 * enough to see, we need to enable the appropriate implicit 9841 * predicate bits to prevent the ecb from activating at 9842 * revealing times. 9843 * 9844 * Providers specifying DTRACE_PRIV_USER at register time 9845 * are stating that they need the /proc-style privilege 9846 * model to be enforced, and this is what DTRACE_COND_OWNER 9847 * and DTRACE_COND_ZONEOWNER will then do at probe time. 9848 */ 9849 prov = probe->dtpr_provider; 9850 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 9851 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9852 ecb->dte_cond |= DTRACE_COND_OWNER; 9853 9854 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 9855 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9856 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 9857 9858 /* 9859 * If the provider shows us kernel innards and the user 9860 * is lacking sufficient privilege, enable the 9861 * DTRACE_COND_USERMODE implicit predicate. 9862 */ 9863 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 9864 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 9865 ecb->dte_cond |= DTRACE_COND_USERMODE; 9866 } 9867 9868 if (dtrace_ecb_create_cache != NULL) { 9869 /* 9870 * If we have a cached ecb, we'll use its action list instead 9871 * of creating our own (saving both time and space). 9872 */ 9873 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 9874 dtrace_action_t *act = cached->dte_action; 9875 9876 if (act != NULL) { 9877 ASSERT(act->dta_refcnt > 0); 9878 act->dta_refcnt++; 9879 ecb->dte_action = act; 9880 ecb->dte_action_last = cached->dte_action_last; 9881 ecb->dte_needed = cached->dte_needed; 9882 ecb->dte_size = cached->dte_size; 9883 ecb->dte_alignment = cached->dte_alignment; 9884 } 9885 9886 return (ecb); 9887 } 9888 9889 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 9890 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 9891 dtrace_ecb_destroy(ecb); 9892 return (NULL); 9893 } 9894 } 9895 9896 dtrace_ecb_resize(ecb); 9897 9898 return (dtrace_ecb_create_cache = ecb); 9899 } 9900 9901 static int 9902 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 9903 { 9904 dtrace_ecb_t *ecb; 9905 dtrace_enabling_t *enab = arg; 9906 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 9907 9908 ASSERT(state != NULL); 9909 9910 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 9911 /* 9912 * This probe was created in a generation for which this 9913 * enabling has previously created ECBs; we don't want to 9914 * enable it again, so just kick out. 9915 */ 9916 return (DTRACE_MATCH_NEXT); 9917 } 9918 9919 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 9920 return (DTRACE_MATCH_DONE); 9921 9922 dtrace_ecb_enable(ecb); 9923 return (DTRACE_MATCH_NEXT); 9924 } 9925 9926 static dtrace_ecb_t * 9927 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 9928 { 9929 dtrace_ecb_t *ecb; 9930 9931 ASSERT(MUTEX_HELD(&dtrace_lock)); 9932 9933 if (id == 0 || id > state->dts_necbs) 9934 return (NULL); 9935 9936 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 9937 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 9938 9939 return (state->dts_ecbs[id - 1]); 9940 } 9941 9942 static dtrace_aggregation_t * 9943 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 9944 { 9945 dtrace_aggregation_t *agg; 9946 9947 ASSERT(MUTEX_HELD(&dtrace_lock)); 9948 9949 if (id == 0 || id > state->dts_naggregations) 9950 return (NULL); 9951 9952 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 9953 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 9954 agg->dtag_id == id); 9955 9956 return (state->dts_aggregations[id - 1]); 9957 } 9958 9959 /* 9960 * DTrace Buffer Functions 9961 * 9962 * The following functions manipulate DTrace buffers. Most of these functions 9963 * are called in the context of establishing or processing consumer state; 9964 * exceptions are explicitly noted. 9965 */ 9966 9967 /* 9968 * Note: called from cross call context. This function switches the two 9969 * buffers on a given CPU. The atomicity of this operation is assured by 9970 * disabling interrupts while the actual switch takes place; the disabling of 9971 * interrupts serializes the execution with any execution of dtrace_probe() on 9972 * the same CPU. 9973 */ 9974 static void 9975 dtrace_buffer_switch(dtrace_buffer_t *buf) 9976 { 9977 caddr_t tomax = buf->dtb_tomax; 9978 caddr_t xamot = buf->dtb_xamot; 9979 dtrace_icookie_t cookie; 9980 9981 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 9982 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 9983 9984 cookie = dtrace_interrupt_disable(); 9985 buf->dtb_tomax = xamot; 9986 buf->dtb_xamot = tomax; 9987 buf->dtb_xamot_drops = buf->dtb_drops; 9988 buf->dtb_xamot_offset = buf->dtb_offset; 9989 buf->dtb_xamot_errors = buf->dtb_errors; 9990 buf->dtb_xamot_flags = buf->dtb_flags; 9991 buf->dtb_offset = 0; 9992 buf->dtb_drops = 0; 9993 buf->dtb_errors = 0; 9994 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 9995 dtrace_interrupt_enable(cookie); 9996 } 9997 9998 /* 9999 * Note: called from cross call context. This function activates a buffer 10000 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 10001 * is guaranteed by the disabling of interrupts. 10002 */ 10003 static void 10004 dtrace_buffer_activate(dtrace_state_t *state) 10005 { 10006 dtrace_buffer_t *buf; 10007 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 10008 10009 buf = &state->dts_buffer[CPU->cpu_id]; 10010 10011 if (buf->dtb_tomax != NULL) { 10012 /* 10013 * We might like to assert that the buffer is marked inactive, 10014 * but this isn't necessarily true: the buffer for the CPU 10015 * that processes the BEGIN probe has its buffer activated 10016 * manually. In this case, we take the (harmless) action 10017 * re-clearing the bit INACTIVE bit. 10018 */ 10019 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 10020 } 10021 10022 dtrace_interrupt_enable(cookie); 10023 } 10024 10025 static int 10026 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 10027 processorid_t cpu) 10028 { 10029 cpu_t *cp; 10030 dtrace_buffer_t *buf; 10031 10032 ASSERT(MUTEX_HELD(&cpu_lock)); 10033 ASSERT(MUTEX_HELD(&dtrace_lock)); 10034 10035 if (size > dtrace_nonroot_maxsize && 10036 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 10037 return (EFBIG); 10038 10039 cp = cpu_list; 10040 10041 do { 10042 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10043 continue; 10044 10045 buf = &bufs[cp->cpu_id]; 10046 10047 /* 10048 * If there is already a buffer allocated for this CPU, it 10049 * is only possible that this is a DR event. In this case, 10050 * the buffer size must match our specified size. 10051 */ 10052 if (buf->dtb_tomax != NULL) { 10053 ASSERT(buf->dtb_size == size); 10054 continue; 10055 } 10056 10057 ASSERT(buf->dtb_xamot == NULL); 10058 10059 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 10060 goto err; 10061 10062 buf->dtb_size = size; 10063 buf->dtb_flags = flags; 10064 buf->dtb_offset = 0; 10065 buf->dtb_drops = 0; 10066 10067 if (flags & DTRACEBUF_NOSWITCH) 10068 continue; 10069 10070 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 10071 goto err; 10072 } while ((cp = cp->cpu_next) != cpu_list); 10073 10074 return (0); 10075 10076 err: 10077 cp = cpu_list; 10078 10079 do { 10080 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10081 continue; 10082 10083 buf = &bufs[cp->cpu_id]; 10084 10085 if (buf->dtb_xamot != NULL) { 10086 ASSERT(buf->dtb_tomax != NULL); 10087 ASSERT(buf->dtb_size == size); 10088 kmem_free(buf->dtb_xamot, size); 10089 } 10090 10091 if (buf->dtb_tomax != NULL) { 10092 ASSERT(buf->dtb_size == size); 10093 kmem_free(buf->dtb_tomax, size); 10094 } 10095 10096 buf->dtb_tomax = NULL; 10097 buf->dtb_xamot = NULL; 10098 buf->dtb_size = 0; 10099 } while ((cp = cp->cpu_next) != cpu_list); 10100 10101 return (ENOMEM); 10102 } 10103 10104 /* 10105 * Note: called from probe context. This function just increments the drop 10106 * count on a buffer. It has been made a function to allow for the 10107 * possibility of understanding the source of mysterious drop counts. (A 10108 * problem for which one may be particularly disappointed that DTrace cannot 10109 * be used to understand DTrace.) 10110 */ 10111 static void 10112 dtrace_buffer_drop(dtrace_buffer_t *buf) 10113 { 10114 buf->dtb_drops++; 10115 } 10116 10117 /* 10118 * Note: called from probe context. This function is called to reserve space 10119 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 10120 * mstate. Returns the new offset in the buffer, or a negative value if an 10121 * error has occurred. 10122 */ 10123 static intptr_t 10124 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 10125 dtrace_state_t *state, dtrace_mstate_t *mstate) 10126 { 10127 intptr_t offs = buf->dtb_offset, soffs; 10128 intptr_t woffs; 10129 caddr_t tomax; 10130 size_t total; 10131 10132 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 10133 return (-1); 10134 10135 if ((tomax = buf->dtb_tomax) == NULL) { 10136 dtrace_buffer_drop(buf); 10137 return (-1); 10138 } 10139 10140 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 10141 while (offs & (align - 1)) { 10142 /* 10143 * Assert that our alignment is off by a number which 10144 * is itself sizeof (uint32_t) aligned. 10145 */ 10146 ASSERT(!((align - (offs & (align - 1))) & 10147 (sizeof (uint32_t) - 1))); 10148 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10149 offs += sizeof (uint32_t); 10150 } 10151 10152 if ((soffs = offs + needed) > buf->dtb_size) { 10153 dtrace_buffer_drop(buf); 10154 return (-1); 10155 } 10156 10157 if (mstate == NULL) 10158 return (offs); 10159 10160 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10161 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10162 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10163 10164 return (offs); 10165 } 10166 10167 if (buf->dtb_flags & DTRACEBUF_FILL) { 10168 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10169 (buf->dtb_flags & DTRACEBUF_FULL)) 10170 return (-1); 10171 goto out; 10172 } 10173 10174 total = needed + (offs & (align - 1)); 10175 10176 /* 10177 * For a ring buffer, life is quite a bit more complicated. Before 10178 * we can store any padding, we need to adjust our wrapping offset. 10179 * (If we've never before wrapped or we're not about to, no adjustment 10180 * is required.) 10181 */ 10182 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10183 offs + total > buf->dtb_size) { 10184 woffs = buf->dtb_xamot_offset; 10185 10186 if (offs + total > buf->dtb_size) { 10187 /* 10188 * We can't fit in the end of the buffer. First, a 10189 * sanity check that we can fit in the buffer at all. 10190 */ 10191 if (total > buf->dtb_size) { 10192 dtrace_buffer_drop(buf); 10193 return (-1); 10194 } 10195 10196 /* 10197 * We're going to be storing at the top of the buffer, 10198 * so now we need to deal with the wrapped offset. We 10199 * only reset our wrapped offset to 0 if it is 10200 * currently greater than the current offset. If it 10201 * is less than the current offset, it is because a 10202 * previous allocation induced a wrap -- but the 10203 * allocation didn't subsequently take the space due 10204 * to an error or false predicate evaluation. In this 10205 * case, we'll just leave the wrapped offset alone: if 10206 * the wrapped offset hasn't been advanced far enough 10207 * for this allocation, it will be adjusted in the 10208 * lower loop. 10209 */ 10210 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10211 if (woffs >= offs) 10212 woffs = 0; 10213 } else { 10214 woffs = 0; 10215 } 10216 10217 /* 10218 * Now we know that we're going to be storing to the 10219 * top of the buffer and that there is room for us 10220 * there. We need to clear the buffer from the current 10221 * offset to the end (there may be old gunk there). 10222 */ 10223 while (offs < buf->dtb_size) 10224 tomax[offs++] = 0; 10225 10226 /* 10227 * We need to set our offset to zero. And because we 10228 * are wrapping, we need to set the bit indicating as 10229 * much. We can also adjust our needed space back 10230 * down to the space required by the ECB -- we know 10231 * that the top of the buffer is aligned. 10232 */ 10233 offs = 0; 10234 total = needed; 10235 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10236 } else { 10237 /* 10238 * There is room for us in the buffer, so we simply 10239 * need to check the wrapped offset. 10240 */ 10241 if (woffs < offs) { 10242 /* 10243 * The wrapped offset is less than the offset. 10244 * This can happen if we allocated buffer space 10245 * that induced a wrap, but then we didn't 10246 * subsequently take the space due to an error 10247 * or false predicate evaluation. This is 10248 * okay; we know that _this_ allocation isn't 10249 * going to induce a wrap. We still can't 10250 * reset the wrapped offset to be zero, 10251 * however: the space may have been trashed in 10252 * the previous failed probe attempt. But at 10253 * least the wrapped offset doesn't need to 10254 * be adjusted at all... 10255 */ 10256 goto out; 10257 } 10258 } 10259 10260 while (offs + total > woffs) { 10261 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10262 size_t size; 10263 10264 if (epid == DTRACE_EPIDNONE) { 10265 size = sizeof (uint32_t); 10266 } else { 10267 ASSERT(epid <= state->dts_necbs); 10268 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10269 10270 size = state->dts_ecbs[epid - 1]->dte_size; 10271 } 10272 10273 ASSERT(woffs + size <= buf->dtb_size); 10274 ASSERT(size != 0); 10275 10276 if (woffs + size == buf->dtb_size) { 10277 /* 10278 * We've reached the end of the buffer; we want 10279 * to set the wrapped offset to 0 and break 10280 * out. However, if the offs is 0, then we're 10281 * in a strange edge-condition: the amount of 10282 * space that we want to reserve plus the size 10283 * of the record that we're overwriting is 10284 * greater than the size of the buffer. This 10285 * is problematic because if we reserve the 10286 * space but subsequently don't consume it (due 10287 * to a failed predicate or error) the wrapped 10288 * offset will be 0 -- yet the EPID at offset 0 10289 * will not be committed. This situation is 10290 * relatively easy to deal with: if we're in 10291 * this case, the buffer is indistinguishable 10292 * from one that hasn't wrapped; we need only 10293 * finish the job by clearing the wrapped bit, 10294 * explicitly setting the offset to be 0, and 10295 * zero'ing out the old data in the buffer. 10296 */ 10297 if (offs == 0) { 10298 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10299 buf->dtb_offset = 0; 10300 woffs = total; 10301 10302 while (woffs < buf->dtb_size) 10303 tomax[woffs++] = 0; 10304 } 10305 10306 woffs = 0; 10307 break; 10308 } 10309 10310 woffs += size; 10311 } 10312 10313 /* 10314 * We have a wrapped offset. It may be that the wrapped offset 10315 * has become zero -- that's okay. 10316 */ 10317 buf->dtb_xamot_offset = woffs; 10318 } 10319 10320 out: 10321 /* 10322 * Now we can plow the buffer with any necessary padding. 10323 */ 10324 while (offs & (align - 1)) { 10325 /* 10326 * Assert that our alignment is off by a number which 10327 * is itself sizeof (uint32_t) aligned. 10328 */ 10329 ASSERT(!((align - (offs & (align - 1))) & 10330 (sizeof (uint32_t) - 1))); 10331 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10332 offs += sizeof (uint32_t); 10333 } 10334 10335 if (buf->dtb_flags & DTRACEBUF_FILL) { 10336 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10337 buf->dtb_flags |= DTRACEBUF_FULL; 10338 return (-1); 10339 } 10340 } 10341 10342 if (mstate == NULL) 10343 return (offs); 10344 10345 /* 10346 * For ring buffers and fill buffers, the scratch space is always 10347 * the inactive buffer. 10348 */ 10349 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10350 mstate->dtms_scratch_size = buf->dtb_size; 10351 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10352 10353 return (offs); 10354 } 10355 10356 static void 10357 dtrace_buffer_polish(dtrace_buffer_t *buf) 10358 { 10359 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10360 ASSERT(MUTEX_HELD(&dtrace_lock)); 10361 10362 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10363 return; 10364 10365 /* 10366 * We need to polish the ring buffer. There are three cases: 10367 * 10368 * - The first (and presumably most common) is that there is no gap 10369 * between the buffer offset and the wrapped offset. In this case, 10370 * there is nothing in the buffer that isn't valid data; we can 10371 * mark the buffer as polished and return. 10372 * 10373 * - The second (less common than the first but still more common 10374 * than the third) is that there is a gap between the buffer offset 10375 * and the wrapped offset, and the wrapped offset is larger than the 10376 * buffer offset. This can happen because of an alignment issue, or 10377 * can happen because of a call to dtrace_buffer_reserve() that 10378 * didn't subsequently consume the buffer space. In this case, 10379 * we need to zero the data from the buffer offset to the wrapped 10380 * offset. 10381 * 10382 * - The third (and least common) is that there is a gap between the 10383 * buffer offset and the wrapped offset, but the wrapped offset is 10384 * _less_ than the buffer offset. This can only happen because a 10385 * call to dtrace_buffer_reserve() induced a wrap, but the space 10386 * was not subsequently consumed. In this case, we need to zero the 10387 * space from the offset to the end of the buffer _and_ from the 10388 * top of the buffer to the wrapped offset. 10389 */ 10390 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10391 bzero(buf->dtb_tomax + buf->dtb_offset, 10392 buf->dtb_xamot_offset - buf->dtb_offset); 10393 } 10394 10395 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10396 bzero(buf->dtb_tomax + buf->dtb_offset, 10397 buf->dtb_size - buf->dtb_offset); 10398 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10399 } 10400 } 10401 10402 static void 10403 dtrace_buffer_free(dtrace_buffer_t *bufs) 10404 { 10405 int i; 10406 10407 for (i = 0; i < NCPU; i++) { 10408 dtrace_buffer_t *buf = &bufs[i]; 10409 10410 if (buf->dtb_tomax == NULL) { 10411 ASSERT(buf->dtb_xamot == NULL); 10412 ASSERT(buf->dtb_size == 0); 10413 continue; 10414 } 10415 10416 if (buf->dtb_xamot != NULL) { 10417 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10418 kmem_free(buf->dtb_xamot, buf->dtb_size); 10419 } 10420 10421 kmem_free(buf->dtb_tomax, buf->dtb_size); 10422 buf->dtb_size = 0; 10423 buf->dtb_tomax = NULL; 10424 buf->dtb_xamot = NULL; 10425 } 10426 } 10427 10428 /* 10429 * DTrace Enabling Functions 10430 */ 10431 static dtrace_enabling_t * 10432 dtrace_enabling_create(dtrace_vstate_t *vstate) 10433 { 10434 dtrace_enabling_t *enab; 10435 10436 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 10437 enab->dten_vstate = vstate; 10438 10439 return (enab); 10440 } 10441 10442 static void 10443 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 10444 { 10445 dtrace_ecbdesc_t **ndesc; 10446 size_t osize, nsize; 10447 10448 /* 10449 * We can't add to enablings after we've enabled them, or after we've 10450 * retained them. 10451 */ 10452 ASSERT(enab->dten_probegen == 0); 10453 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10454 10455 if (enab->dten_ndesc < enab->dten_maxdesc) { 10456 enab->dten_desc[enab->dten_ndesc++] = ecb; 10457 return; 10458 } 10459 10460 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10461 10462 if (enab->dten_maxdesc == 0) { 10463 enab->dten_maxdesc = 1; 10464 } else { 10465 enab->dten_maxdesc <<= 1; 10466 } 10467 10468 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 10469 10470 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10471 ndesc = kmem_zalloc(nsize, KM_SLEEP); 10472 bcopy(enab->dten_desc, ndesc, osize); 10473 kmem_free(enab->dten_desc, osize); 10474 10475 enab->dten_desc = ndesc; 10476 enab->dten_desc[enab->dten_ndesc++] = ecb; 10477 } 10478 10479 static void 10480 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 10481 dtrace_probedesc_t *pd) 10482 { 10483 dtrace_ecbdesc_t *new; 10484 dtrace_predicate_t *pred; 10485 dtrace_actdesc_t *act; 10486 10487 /* 10488 * We're going to create a new ECB description that matches the 10489 * specified ECB in every way, but has the specified probe description. 10490 */ 10491 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10492 10493 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 10494 dtrace_predicate_hold(pred); 10495 10496 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 10497 dtrace_actdesc_hold(act); 10498 10499 new->dted_action = ecb->dted_action; 10500 new->dted_pred = ecb->dted_pred; 10501 new->dted_probe = *pd; 10502 new->dted_uarg = ecb->dted_uarg; 10503 10504 dtrace_enabling_add(enab, new); 10505 } 10506 10507 static void 10508 dtrace_enabling_dump(dtrace_enabling_t *enab) 10509 { 10510 int i; 10511 10512 for (i = 0; i < enab->dten_ndesc; i++) { 10513 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 10514 10515 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 10516 desc->dtpd_provider, desc->dtpd_mod, 10517 desc->dtpd_func, desc->dtpd_name); 10518 } 10519 } 10520 10521 static void 10522 dtrace_enabling_destroy(dtrace_enabling_t *enab) 10523 { 10524 int i; 10525 dtrace_ecbdesc_t *ep; 10526 dtrace_vstate_t *vstate = enab->dten_vstate; 10527 10528 ASSERT(MUTEX_HELD(&dtrace_lock)); 10529 10530 for (i = 0; i < enab->dten_ndesc; i++) { 10531 dtrace_actdesc_t *act, *next; 10532 dtrace_predicate_t *pred; 10533 10534 ep = enab->dten_desc[i]; 10535 10536 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 10537 dtrace_predicate_release(pred, vstate); 10538 10539 for (act = ep->dted_action; act != NULL; act = next) { 10540 next = act->dtad_next; 10541 dtrace_actdesc_release(act, vstate); 10542 } 10543 10544 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10545 } 10546 10547 kmem_free(enab->dten_desc, 10548 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 10549 10550 /* 10551 * If this was a retained enabling, decrement the dts_nretained count 10552 * and take it off of the dtrace_retained list. 10553 */ 10554 if (enab->dten_prev != NULL || enab->dten_next != NULL || 10555 dtrace_retained == enab) { 10556 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10557 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 10558 enab->dten_vstate->dtvs_state->dts_nretained--; 10559 dtrace_retained_gen++; 10560 } 10561 10562 if (enab->dten_prev == NULL) { 10563 if (dtrace_retained == enab) { 10564 dtrace_retained = enab->dten_next; 10565 10566 if (dtrace_retained != NULL) 10567 dtrace_retained->dten_prev = NULL; 10568 } 10569 } else { 10570 ASSERT(enab != dtrace_retained); 10571 ASSERT(dtrace_retained != NULL); 10572 enab->dten_prev->dten_next = enab->dten_next; 10573 } 10574 10575 if (enab->dten_next != NULL) { 10576 ASSERT(dtrace_retained != NULL); 10577 enab->dten_next->dten_prev = enab->dten_prev; 10578 } 10579 10580 kmem_free(enab, sizeof (dtrace_enabling_t)); 10581 } 10582 10583 static int 10584 dtrace_enabling_retain(dtrace_enabling_t *enab) 10585 { 10586 dtrace_state_t *state; 10587 10588 ASSERT(MUTEX_HELD(&dtrace_lock)); 10589 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10590 ASSERT(enab->dten_vstate != NULL); 10591 10592 state = enab->dten_vstate->dtvs_state; 10593 ASSERT(state != NULL); 10594 10595 /* 10596 * We only allow each state to retain dtrace_retain_max enablings. 10597 */ 10598 if (state->dts_nretained >= dtrace_retain_max) 10599 return (ENOSPC); 10600 10601 state->dts_nretained++; 10602 dtrace_retained_gen++; 10603 10604 if (dtrace_retained == NULL) { 10605 dtrace_retained = enab; 10606 return (0); 10607 } 10608 10609 enab->dten_next = dtrace_retained; 10610 dtrace_retained->dten_prev = enab; 10611 dtrace_retained = enab; 10612 10613 return (0); 10614 } 10615 10616 static int 10617 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 10618 dtrace_probedesc_t *create) 10619 { 10620 dtrace_enabling_t *new, *enab; 10621 int found = 0, err = ENOENT; 10622 10623 ASSERT(MUTEX_HELD(&dtrace_lock)); 10624 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 10625 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 10626 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 10627 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 10628 10629 new = dtrace_enabling_create(&state->dts_vstate); 10630 10631 /* 10632 * Iterate over all retained enablings, looking for enablings that 10633 * match the specified state. 10634 */ 10635 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10636 int i; 10637 10638 /* 10639 * dtvs_state can only be NULL for helper enablings -- and 10640 * helper enablings can't be retained. 10641 */ 10642 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10643 10644 if (enab->dten_vstate->dtvs_state != state) 10645 continue; 10646 10647 /* 10648 * Now iterate over each probe description; we're looking for 10649 * an exact match to the specified probe description. 10650 */ 10651 for (i = 0; i < enab->dten_ndesc; i++) { 10652 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10653 dtrace_probedesc_t *pd = &ep->dted_probe; 10654 10655 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 10656 continue; 10657 10658 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 10659 continue; 10660 10661 if (strcmp(pd->dtpd_func, match->dtpd_func)) 10662 continue; 10663 10664 if (strcmp(pd->dtpd_name, match->dtpd_name)) 10665 continue; 10666 10667 /* 10668 * We have a winning probe! Add it to our growing 10669 * enabling. 10670 */ 10671 found = 1; 10672 dtrace_enabling_addlike(new, ep, create); 10673 } 10674 } 10675 10676 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 10677 dtrace_enabling_destroy(new); 10678 return (err); 10679 } 10680 10681 return (0); 10682 } 10683 10684 static void 10685 dtrace_enabling_retract(dtrace_state_t *state) 10686 { 10687 dtrace_enabling_t *enab, *next; 10688 10689 ASSERT(MUTEX_HELD(&dtrace_lock)); 10690 10691 /* 10692 * Iterate over all retained enablings, destroy the enablings retained 10693 * for the specified state. 10694 */ 10695 for (enab = dtrace_retained; enab != NULL; enab = next) { 10696 next = enab->dten_next; 10697 10698 /* 10699 * dtvs_state can only be NULL for helper enablings -- and 10700 * helper enablings can't be retained. 10701 */ 10702 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10703 10704 if (enab->dten_vstate->dtvs_state == state) { 10705 ASSERT(state->dts_nretained > 0); 10706 dtrace_enabling_destroy(enab); 10707 } 10708 } 10709 10710 ASSERT(state->dts_nretained == 0); 10711 } 10712 10713 static int 10714 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 10715 { 10716 int i = 0; 10717 int matched = 0; 10718 10719 ASSERT(MUTEX_HELD(&cpu_lock)); 10720 ASSERT(MUTEX_HELD(&dtrace_lock)); 10721 10722 for (i = 0; i < enab->dten_ndesc; i++) { 10723 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10724 10725 enab->dten_current = ep; 10726 enab->dten_error = 0; 10727 10728 matched += dtrace_probe_enable(&ep->dted_probe, enab); 10729 10730 if (enab->dten_error != 0) { 10731 /* 10732 * If we get an error half-way through enabling the 10733 * probes, we kick out -- perhaps with some number of 10734 * them enabled. Leaving enabled probes enabled may 10735 * be slightly confusing for user-level, but we expect 10736 * that no one will attempt to actually drive on in 10737 * the face of such errors. If this is an anonymous 10738 * enabling (indicated with a NULL nmatched pointer), 10739 * we cmn_err() a message. We aren't expecting to 10740 * get such an error -- such as it can exist at all, 10741 * it would be a result of corrupted DOF in the driver 10742 * properties. 10743 */ 10744 if (nmatched == NULL) { 10745 cmn_err(CE_WARN, "dtrace_enabling_match() " 10746 "error on %p: %d", (void *)ep, 10747 enab->dten_error); 10748 } 10749 10750 return (enab->dten_error); 10751 } 10752 } 10753 10754 enab->dten_probegen = dtrace_probegen; 10755 if (nmatched != NULL) 10756 *nmatched = matched; 10757 10758 return (0); 10759 } 10760 10761 static void 10762 dtrace_enabling_matchall(void) 10763 { 10764 dtrace_enabling_t *enab; 10765 10766 mutex_enter(&cpu_lock); 10767 mutex_enter(&dtrace_lock); 10768 10769 /* 10770 * Iterate over all retained enablings to see if any probes match 10771 * against them. We only perform this operation on enablings for which 10772 * we have sufficient permissions by virtue of being in the global zone 10773 * or in the same zone as the DTrace client. Because we can be called 10774 * after dtrace_detach() has been called, we cannot assert that there 10775 * are retained enablings. We can safely load from dtrace_retained, 10776 * however: the taskq_destroy() at the end of dtrace_detach() will 10777 * block pending our completion. 10778 */ 10779 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10780 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 10781 10782 if (INGLOBALZONE(curproc) || 10783 cr != NULL && getzoneid() == crgetzoneid(cr)) 10784 (void) dtrace_enabling_match(enab, NULL); 10785 } 10786 10787 mutex_exit(&dtrace_lock); 10788 mutex_exit(&cpu_lock); 10789 } 10790 10791 /* 10792 * If an enabling is to be enabled without having matched probes (that is, if 10793 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 10794 * enabling must be _primed_ by creating an ECB for every ECB description. 10795 * This must be done to assure that we know the number of speculations, the 10796 * number of aggregations, the minimum buffer size needed, etc. before we 10797 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 10798 * enabling any probes, we create ECBs for every ECB decription, but with a 10799 * NULL probe -- which is exactly what this function does. 10800 */ 10801 static void 10802 dtrace_enabling_prime(dtrace_state_t *state) 10803 { 10804 dtrace_enabling_t *enab; 10805 int i; 10806 10807 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10808 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10809 10810 if (enab->dten_vstate->dtvs_state != state) 10811 continue; 10812 10813 /* 10814 * We don't want to prime an enabling more than once, lest 10815 * we allow a malicious user to induce resource exhaustion. 10816 * (The ECBs that result from priming an enabling aren't 10817 * leaked -- but they also aren't deallocated until the 10818 * consumer state is destroyed.) 10819 */ 10820 if (enab->dten_primed) 10821 continue; 10822 10823 for (i = 0; i < enab->dten_ndesc; i++) { 10824 enab->dten_current = enab->dten_desc[i]; 10825 (void) dtrace_probe_enable(NULL, enab); 10826 } 10827 10828 enab->dten_primed = 1; 10829 } 10830 } 10831 10832 /* 10833 * Called to indicate that probes should be provided due to retained 10834 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 10835 * must take an initial lap through the enabling calling the dtps_provide() 10836 * entry point explicitly to allow for autocreated probes. 10837 */ 10838 static void 10839 dtrace_enabling_provide(dtrace_provider_t *prv) 10840 { 10841 int i, all = 0; 10842 dtrace_probedesc_t desc; 10843 dtrace_genid_t gen; 10844 10845 ASSERT(MUTEX_HELD(&dtrace_lock)); 10846 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 10847 10848 if (prv == NULL) { 10849 all = 1; 10850 prv = dtrace_provider; 10851 } 10852 10853 do { 10854 dtrace_enabling_t *enab; 10855 void *parg = prv->dtpv_arg; 10856 10857 retry: 10858 gen = dtrace_retained_gen; 10859 for (enab = dtrace_retained; enab != NULL; 10860 enab = enab->dten_next) { 10861 for (i = 0; i < enab->dten_ndesc; i++) { 10862 desc = enab->dten_desc[i]->dted_probe; 10863 mutex_exit(&dtrace_lock); 10864 prv->dtpv_pops.dtps_provide(parg, &desc); 10865 mutex_enter(&dtrace_lock); 10866 /* 10867 * Process the retained enablings again if 10868 * they have changed while we weren't holding 10869 * dtrace_lock. 10870 */ 10871 if (gen != dtrace_retained_gen) 10872 goto retry; 10873 } 10874 } 10875 } while (all && (prv = prv->dtpv_next) != NULL); 10876 10877 mutex_exit(&dtrace_lock); 10878 dtrace_probe_provide(NULL, all ? NULL : prv); 10879 mutex_enter(&dtrace_lock); 10880 } 10881 10882 /* 10883 * DTrace DOF Functions 10884 */ 10885 /*ARGSUSED*/ 10886 static void 10887 dtrace_dof_error(dof_hdr_t *dof, const char *str) 10888 { 10889 if (dtrace_err_verbose) 10890 cmn_err(CE_WARN, "failed to process DOF: %s", str); 10891 10892 #ifdef DTRACE_ERRDEBUG 10893 dtrace_errdebug(str); 10894 #endif 10895 } 10896 10897 /* 10898 * Create DOF out of a currently enabled state. Right now, we only create 10899 * DOF containing the run-time options -- but this could be expanded to create 10900 * complete DOF representing the enabled state. 10901 */ 10902 static dof_hdr_t * 10903 dtrace_dof_create(dtrace_state_t *state) 10904 { 10905 dof_hdr_t *dof; 10906 dof_sec_t *sec; 10907 dof_optdesc_t *opt; 10908 int i, len = sizeof (dof_hdr_t) + 10909 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 10910 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10911 10912 ASSERT(MUTEX_HELD(&dtrace_lock)); 10913 10914 dof = kmem_zalloc(len, KM_SLEEP); 10915 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 10916 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 10917 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 10918 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 10919 10920 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 10921 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 10922 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 10923 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 10924 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 10925 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 10926 10927 dof->dofh_flags = 0; 10928 dof->dofh_hdrsize = sizeof (dof_hdr_t); 10929 dof->dofh_secsize = sizeof (dof_sec_t); 10930 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 10931 dof->dofh_secoff = sizeof (dof_hdr_t); 10932 dof->dofh_loadsz = len; 10933 dof->dofh_filesz = len; 10934 dof->dofh_pad = 0; 10935 10936 /* 10937 * Fill in the option section header... 10938 */ 10939 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 10940 sec->dofs_type = DOF_SECT_OPTDESC; 10941 sec->dofs_align = sizeof (uint64_t); 10942 sec->dofs_flags = DOF_SECF_LOAD; 10943 sec->dofs_entsize = sizeof (dof_optdesc_t); 10944 10945 opt = (dof_optdesc_t *)((uintptr_t)sec + 10946 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 10947 10948 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 10949 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10950 10951 for (i = 0; i < DTRACEOPT_MAX; i++) { 10952 opt[i].dofo_option = i; 10953 opt[i].dofo_strtab = DOF_SECIDX_NONE; 10954 opt[i].dofo_value = state->dts_options[i]; 10955 } 10956 10957 return (dof); 10958 } 10959 10960 static dof_hdr_t * 10961 dtrace_dof_copyin(uintptr_t uarg, int *errp) 10962 { 10963 dof_hdr_t hdr, *dof; 10964 10965 ASSERT(!MUTEX_HELD(&dtrace_lock)); 10966 10967 /* 10968 * First, we're going to copyin() the sizeof (dof_hdr_t). 10969 */ 10970 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 10971 dtrace_dof_error(NULL, "failed to copyin DOF header"); 10972 *errp = EFAULT; 10973 return (NULL); 10974 } 10975 10976 /* 10977 * Now we'll allocate the entire DOF and copy it in -- provided 10978 * that the length isn't outrageous. 10979 */ 10980 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 10981 dtrace_dof_error(&hdr, "load size exceeds maximum"); 10982 *errp = E2BIG; 10983 return (NULL); 10984 } 10985 10986 if (hdr.dofh_loadsz < sizeof (hdr)) { 10987 dtrace_dof_error(&hdr, "invalid load size"); 10988 *errp = EINVAL; 10989 return (NULL); 10990 } 10991 10992 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 10993 10994 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) { 10995 kmem_free(dof, hdr.dofh_loadsz); 10996 *errp = EFAULT; 10997 return (NULL); 10998 } 10999 11000 return (dof); 11001 } 11002 11003 static dof_hdr_t * 11004 dtrace_dof_property(const char *name) 11005 { 11006 uchar_t *buf; 11007 uint64_t loadsz; 11008 unsigned int len, i; 11009 dof_hdr_t *dof; 11010 11011 /* 11012 * Unfortunately, array of values in .conf files are always (and 11013 * only) interpreted to be integer arrays. We must read our DOF 11014 * as an integer array, and then squeeze it into a byte array. 11015 */ 11016 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 11017 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 11018 return (NULL); 11019 11020 for (i = 0; i < len; i++) 11021 buf[i] = (uchar_t)(((int *)buf)[i]); 11022 11023 if (len < sizeof (dof_hdr_t)) { 11024 ddi_prop_free(buf); 11025 dtrace_dof_error(NULL, "truncated header"); 11026 return (NULL); 11027 } 11028 11029 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 11030 ddi_prop_free(buf); 11031 dtrace_dof_error(NULL, "truncated DOF"); 11032 return (NULL); 11033 } 11034 11035 if (loadsz >= dtrace_dof_maxsize) { 11036 ddi_prop_free(buf); 11037 dtrace_dof_error(NULL, "oversized DOF"); 11038 return (NULL); 11039 } 11040 11041 dof = kmem_alloc(loadsz, KM_SLEEP); 11042 bcopy(buf, dof, loadsz); 11043 ddi_prop_free(buf); 11044 11045 return (dof); 11046 } 11047 11048 static void 11049 dtrace_dof_destroy(dof_hdr_t *dof) 11050 { 11051 kmem_free(dof, dof->dofh_loadsz); 11052 } 11053 11054 /* 11055 * Return the dof_sec_t pointer corresponding to a given section index. If the 11056 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 11057 * a type other than DOF_SECT_NONE is specified, the header is checked against 11058 * this type and NULL is returned if the types do not match. 11059 */ 11060 static dof_sec_t * 11061 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 11062 { 11063 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 11064 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 11065 11066 if (i >= dof->dofh_secnum) { 11067 dtrace_dof_error(dof, "referenced section index is invalid"); 11068 return (NULL); 11069 } 11070 11071 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 11072 dtrace_dof_error(dof, "referenced section is not loadable"); 11073 return (NULL); 11074 } 11075 11076 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 11077 dtrace_dof_error(dof, "referenced section is the wrong type"); 11078 return (NULL); 11079 } 11080 11081 return (sec); 11082 } 11083 11084 static dtrace_probedesc_t * 11085 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 11086 { 11087 dof_probedesc_t *probe; 11088 dof_sec_t *strtab; 11089 uintptr_t daddr = (uintptr_t)dof; 11090 uintptr_t str; 11091 size_t size; 11092 11093 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 11094 dtrace_dof_error(dof, "invalid probe section"); 11095 return (NULL); 11096 } 11097 11098 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11099 dtrace_dof_error(dof, "bad alignment in probe description"); 11100 return (NULL); 11101 } 11102 11103 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 11104 dtrace_dof_error(dof, "truncated probe description"); 11105 return (NULL); 11106 } 11107 11108 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 11109 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 11110 11111 if (strtab == NULL) 11112 return (NULL); 11113 11114 str = daddr + strtab->dofs_offset; 11115 size = strtab->dofs_size; 11116 11117 if (probe->dofp_provider >= strtab->dofs_size) { 11118 dtrace_dof_error(dof, "corrupt probe provider"); 11119 return (NULL); 11120 } 11121 11122 (void) strncpy(desc->dtpd_provider, 11123 (char *)(str + probe->dofp_provider), 11124 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 11125 11126 if (probe->dofp_mod >= strtab->dofs_size) { 11127 dtrace_dof_error(dof, "corrupt probe module"); 11128 return (NULL); 11129 } 11130 11131 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 11132 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 11133 11134 if (probe->dofp_func >= strtab->dofs_size) { 11135 dtrace_dof_error(dof, "corrupt probe function"); 11136 return (NULL); 11137 } 11138 11139 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 11140 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 11141 11142 if (probe->dofp_name >= strtab->dofs_size) { 11143 dtrace_dof_error(dof, "corrupt probe name"); 11144 return (NULL); 11145 } 11146 11147 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 11148 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 11149 11150 return (desc); 11151 } 11152 11153 static dtrace_difo_t * 11154 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11155 cred_t *cr) 11156 { 11157 dtrace_difo_t *dp; 11158 size_t ttl = 0; 11159 dof_difohdr_t *dofd; 11160 uintptr_t daddr = (uintptr_t)dof; 11161 size_t max = dtrace_difo_maxsize; 11162 int i, l, n; 11163 11164 static const struct { 11165 int section; 11166 int bufoffs; 11167 int lenoffs; 11168 int entsize; 11169 int align; 11170 const char *msg; 11171 } difo[] = { 11172 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11173 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11174 sizeof (dif_instr_t), "multiple DIF sections" }, 11175 11176 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11177 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11178 sizeof (uint64_t), "multiple integer tables" }, 11179 11180 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11181 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11182 sizeof (char), "multiple string tables" }, 11183 11184 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11185 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11186 sizeof (uint_t), "multiple variable tables" }, 11187 11188 { DOF_SECT_NONE, 0, 0, 0, NULL } 11189 }; 11190 11191 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11192 dtrace_dof_error(dof, "invalid DIFO header section"); 11193 return (NULL); 11194 } 11195 11196 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11197 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11198 return (NULL); 11199 } 11200 11201 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11202 sec->dofs_size % sizeof (dof_secidx_t)) { 11203 dtrace_dof_error(dof, "bad size in DIFO header"); 11204 return (NULL); 11205 } 11206 11207 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11208 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11209 11210 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11211 dp->dtdo_rtype = dofd->dofd_rtype; 11212 11213 for (l = 0; l < n; l++) { 11214 dof_sec_t *subsec; 11215 void **bufp; 11216 uint32_t *lenp; 11217 11218 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11219 dofd->dofd_links[l])) == NULL) 11220 goto err; /* invalid section link */ 11221 11222 if (ttl + subsec->dofs_size > max) { 11223 dtrace_dof_error(dof, "exceeds maximum size"); 11224 goto err; 11225 } 11226 11227 ttl += subsec->dofs_size; 11228 11229 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11230 if (subsec->dofs_type != difo[i].section) 11231 continue; 11232 11233 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11234 dtrace_dof_error(dof, "section not loaded"); 11235 goto err; 11236 } 11237 11238 if (subsec->dofs_align != difo[i].align) { 11239 dtrace_dof_error(dof, "bad alignment"); 11240 goto err; 11241 } 11242 11243 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11244 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11245 11246 if (*bufp != NULL) { 11247 dtrace_dof_error(dof, difo[i].msg); 11248 goto err; 11249 } 11250 11251 if (difo[i].entsize != subsec->dofs_entsize) { 11252 dtrace_dof_error(dof, "entry size mismatch"); 11253 goto err; 11254 } 11255 11256 if (subsec->dofs_entsize != 0 && 11257 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11258 dtrace_dof_error(dof, "corrupt entry size"); 11259 goto err; 11260 } 11261 11262 *lenp = subsec->dofs_size; 11263 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11264 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11265 *bufp, subsec->dofs_size); 11266 11267 if (subsec->dofs_entsize != 0) 11268 *lenp /= subsec->dofs_entsize; 11269 11270 break; 11271 } 11272 11273 /* 11274 * If we encounter a loadable DIFO sub-section that is not 11275 * known to us, assume this is a broken program and fail. 11276 */ 11277 if (difo[i].section == DOF_SECT_NONE && 11278 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11279 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11280 goto err; 11281 } 11282 } 11283 11284 if (dp->dtdo_buf == NULL) { 11285 /* 11286 * We can't have a DIF object without DIF text. 11287 */ 11288 dtrace_dof_error(dof, "missing DIF text"); 11289 goto err; 11290 } 11291 11292 /* 11293 * Before we validate the DIF object, run through the variable table 11294 * looking for the strings -- if any of their size are under, we'll set 11295 * their size to be the system-wide default string size. Note that 11296 * this should _not_ happen if the "strsize" option has been set -- 11297 * in this case, the compiler should have set the size to reflect the 11298 * setting of the option. 11299 */ 11300 for (i = 0; i < dp->dtdo_varlen; i++) { 11301 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11302 dtrace_diftype_t *t = &v->dtdv_type; 11303 11304 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 11305 continue; 11306 11307 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 11308 t->dtdt_size = dtrace_strsize_default; 11309 } 11310 11311 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 11312 goto err; 11313 11314 dtrace_difo_init(dp, vstate); 11315 return (dp); 11316 11317 err: 11318 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11319 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11320 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11321 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11322 11323 kmem_free(dp, sizeof (dtrace_difo_t)); 11324 return (NULL); 11325 } 11326 11327 static dtrace_predicate_t * 11328 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11329 cred_t *cr) 11330 { 11331 dtrace_difo_t *dp; 11332 11333 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 11334 return (NULL); 11335 11336 return (dtrace_predicate_create(dp)); 11337 } 11338 11339 static dtrace_actdesc_t * 11340 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11341 cred_t *cr) 11342 { 11343 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 11344 dof_actdesc_t *desc; 11345 dof_sec_t *difosec; 11346 size_t offs; 11347 uintptr_t daddr = (uintptr_t)dof; 11348 uint64_t arg; 11349 dtrace_actkind_t kind; 11350 11351 if (sec->dofs_type != DOF_SECT_ACTDESC) { 11352 dtrace_dof_error(dof, "invalid action section"); 11353 return (NULL); 11354 } 11355 11356 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 11357 dtrace_dof_error(dof, "truncated action description"); 11358 return (NULL); 11359 } 11360 11361 if (sec->dofs_align != sizeof (uint64_t)) { 11362 dtrace_dof_error(dof, "bad alignment in action description"); 11363 return (NULL); 11364 } 11365 11366 if (sec->dofs_size < sec->dofs_entsize) { 11367 dtrace_dof_error(dof, "section entry size exceeds total size"); 11368 return (NULL); 11369 } 11370 11371 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 11372 dtrace_dof_error(dof, "bad entry size in action description"); 11373 return (NULL); 11374 } 11375 11376 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 11377 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 11378 return (NULL); 11379 } 11380 11381 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 11382 desc = (dof_actdesc_t *)(daddr + 11383 (uintptr_t)sec->dofs_offset + offs); 11384 kind = (dtrace_actkind_t)desc->dofa_kind; 11385 11386 if (DTRACEACT_ISPRINTFLIKE(kind) && 11387 (kind != DTRACEACT_PRINTA || 11388 desc->dofa_strtab != DOF_SECIDX_NONE)) { 11389 dof_sec_t *strtab; 11390 char *str, *fmt; 11391 uint64_t i; 11392 11393 /* 11394 * printf()-like actions must have a format string. 11395 */ 11396 if ((strtab = dtrace_dof_sect(dof, 11397 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 11398 goto err; 11399 11400 str = (char *)((uintptr_t)dof + 11401 (uintptr_t)strtab->dofs_offset); 11402 11403 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 11404 if (str[i] == '\0') 11405 break; 11406 } 11407 11408 if (i >= strtab->dofs_size) { 11409 dtrace_dof_error(dof, "bogus format string"); 11410 goto err; 11411 } 11412 11413 if (i == desc->dofa_arg) { 11414 dtrace_dof_error(dof, "empty format string"); 11415 goto err; 11416 } 11417 11418 i -= desc->dofa_arg; 11419 fmt = kmem_alloc(i + 1, KM_SLEEP); 11420 bcopy(&str[desc->dofa_arg], fmt, i + 1); 11421 arg = (uint64_t)(uintptr_t)fmt; 11422 } else { 11423 if (kind == DTRACEACT_PRINTA) { 11424 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 11425 arg = 0; 11426 } else { 11427 arg = desc->dofa_arg; 11428 } 11429 } 11430 11431 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 11432 desc->dofa_uarg, arg); 11433 11434 if (last != NULL) { 11435 last->dtad_next = act; 11436 } else { 11437 first = act; 11438 } 11439 11440 last = act; 11441 11442 if (desc->dofa_difo == DOF_SECIDX_NONE) 11443 continue; 11444 11445 if ((difosec = dtrace_dof_sect(dof, 11446 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 11447 goto err; 11448 11449 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 11450 11451 if (act->dtad_difo == NULL) 11452 goto err; 11453 } 11454 11455 ASSERT(first != NULL); 11456 return (first); 11457 11458 err: 11459 for (act = first; act != NULL; act = next) { 11460 next = act->dtad_next; 11461 dtrace_actdesc_release(act, vstate); 11462 } 11463 11464 return (NULL); 11465 } 11466 11467 static dtrace_ecbdesc_t * 11468 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11469 cred_t *cr) 11470 { 11471 dtrace_ecbdesc_t *ep; 11472 dof_ecbdesc_t *ecb; 11473 dtrace_probedesc_t *desc; 11474 dtrace_predicate_t *pred = NULL; 11475 11476 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 11477 dtrace_dof_error(dof, "truncated ECB description"); 11478 return (NULL); 11479 } 11480 11481 if (sec->dofs_align != sizeof (uint64_t)) { 11482 dtrace_dof_error(dof, "bad alignment in ECB description"); 11483 return (NULL); 11484 } 11485 11486 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 11487 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 11488 11489 if (sec == NULL) 11490 return (NULL); 11491 11492 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11493 ep->dted_uarg = ecb->dofe_uarg; 11494 desc = &ep->dted_probe; 11495 11496 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 11497 goto err; 11498 11499 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 11500 if ((sec = dtrace_dof_sect(dof, 11501 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 11502 goto err; 11503 11504 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 11505 goto err; 11506 11507 ep->dted_pred.dtpdd_predicate = pred; 11508 } 11509 11510 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 11511 if ((sec = dtrace_dof_sect(dof, 11512 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 11513 goto err; 11514 11515 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 11516 11517 if (ep->dted_action == NULL) 11518 goto err; 11519 } 11520 11521 return (ep); 11522 11523 err: 11524 if (pred != NULL) 11525 dtrace_predicate_release(pred, vstate); 11526 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11527 return (NULL); 11528 } 11529 11530 /* 11531 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 11532 * specified DOF. At present, this amounts to simply adding 'ubase' to the 11533 * site of any user SETX relocations to account for load object base address. 11534 * In the future, if we need other relocations, this function can be extended. 11535 */ 11536 static int 11537 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 11538 { 11539 uintptr_t daddr = (uintptr_t)dof; 11540 dof_relohdr_t *dofr = 11541 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11542 dof_sec_t *ss, *rs, *ts; 11543 dof_relodesc_t *r; 11544 uint_t i, n; 11545 11546 if (sec->dofs_size < sizeof (dof_relohdr_t) || 11547 sec->dofs_align != sizeof (dof_secidx_t)) { 11548 dtrace_dof_error(dof, "invalid relocation header"); 11549 return (-1); 11550 } 11551 11552 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 11553 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 11554 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 11555 11556 if (ss == NULL || rs == NULL || ts == NULL) 11557 return (-1); /* dtrace_dof_error() has been called already */ 11558 11559 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 11560 rs->dofs_align != sizeof (uint64_t)) { 11561 dtrace_dof_error(dof, "invalid relocation section"); 11562 return (-1); 11563 } 11564 11565 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 11566 n = rs->dofs_size / rs->dofs_entsize; 11567 11568 for (i = 0; i < n; i++) { 11569 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 11570 11571 switch (r->dofr_type) { 11572 case DOF_RELO_NONE: 11573 break; 11574 case DOF_RELO_SETX: 11575 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 11576 sizeof (uint64_t) > ts->dofs_size) { 11577 dtrace_dof_error(dof, "bad relocation offset"); 11578 return (-1); 11579 } 11580 11581 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 11582 dtrace_dof_error(dof, "misaligned setx relo"); 11583 return (-1); 11584 } 11585 11586 *(uint64_t *)taddr += ubase; 11587 break; 11588 default: 11589 dtrace_dof_error(dof, "invalid relocation type"); 11590 return (-1); 11591 } 11592 11593 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 11594 } 11595 11596 return (0); 11597 } 11598 11599 /* 11600 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 11601 * header: it should be at the front of a memory region that is at least 11602 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 11603 * size. It need not be validated in any other way. 11604 */ 11605 static int 11606 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 11607 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 11608 { 11609 uint64_t len = dof->dofh_loadsz, seclen; 11610 uintptr_t daddr = (uintptr_t)dof; 11611 dtrace_ecbdesc_t *ep; 11612 dtrace_enabling_t *enab; 11613 uint_t i; 11614 11615 ASSERT(MUTEX_HELD(&dtrace_lock)); 11616 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 11617 11618 /* 11619 * Check the DOF header identification bytes. In addition to checking 11620 * valid settings, we also verify that unused bits/bytes are zeroed so 11621 * we can use them later without fear of regressing existing binaries. 11622 */ 11623 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 11624 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 11625 dtrace_dof_error(dof, "DOF magic string mismatch"); 11626 return (-1); 11627 } 11628 11629 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 11630 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 11631 dtrace_dof_error(dof, "DOF has invalid data model"); 11632 return (-1); 11633 } 11634 11635 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 11636 dtrace_dof_error(dof, "DOF encoding mismatch"); 11637 return (-1); 11638 } 11639 11640 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 11641 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 11642 dtrace_dof_error(dof, "DOF version mismatch"); 11643 return (-1); 11644 } 11645 11646 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 11647 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 11648 return (-1); 11649 } 11650 11651 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 11652 dtrace_dof_error(dof, "DOF uses too many integer registers"); 11653 return (-1); 11654 } 11655 11656 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 11657 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 11658 return (-1); 11659 } 11660 11661 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 11662 if (dof->dofh_ident[i] != 0) { 11663 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 11664 return (-1); 11665 } 11666 } 11667 11668 if (dof->dofh_flags & ~DOF_FL_VALID) { 11669 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 11670 return (-1); 11671 } 11672 11673 if (dof->dofh_secsize == 0) { 11674 dtrace_dof_error(dof, "zero section header size"); 11675 return (-1); 11676 } 11677 11678 /* 11679 * Check that the section headers don't exceed the amount of DOF 11680 * data. Note that we cast the section size and number of sections 11681 * to uint64_t's to prevent possible overflow in the multiplication. 11682 */ 11683 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 11684 11685 if (dof->dofh_secoff > len || seclen > len || 11686 dof->dofh_secoff + seclen > len) { 11687 dtrace_dof_error(dof, "truncated section headers"); 11688 return (-1); 11689 } 11690 11691 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 11692 dtrace_dof_error(dof, "misaligned section headers"); 11693 return (-1); 11694 } 11695 11696 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 11697 dtrace_dof_error(dof, "misaligned section size"); 11698 return (-1); 11699 } 11700 11701 /* 11702 * Take an initial pass through the section headers to be sure that 11703 * the headers don't have stray offsets. If the 'noprobes' flag is 11704 * set, do not permit sections relating to providers, probes, or args. 11705 */ 11706 for (i = 0; i < dof->dofh_secnum; i++) { 11707 dof_sec_t *sec = (dof_sec_t *)(daddr + 11708 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11709 11710 if (noprobes) { 11711 switch (sec->dofs_type) { 11712 case DOF_SECT_PROVIDER: 11713 case DOF_SECT_PROBES: 11714 case DOF_SECT_PRARGS: 11715 case DOF_SECT_PROFFS: 11716 dtrace_dof_error(dof, "illegal sections " 11717 "for enabling"); 11718 return (-1); 11719 } 11720 } 11721 11722 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11723 continue; /* just ignore non-loadable sections */ 11724 11725 if (sec->dofs_align & (sec->dofs_align - 1)) { 11726 dtrace_dof_error(dof, "bad section alignment"); 11727 return (-1); 11728 } 11729 11730 if (sec->dofs_offset & (sec->dofs_align - 1)) { 11731 dtrace_dof_error(dof, "misaligned section"); 11732 return (-1); 11733 } 11734 11735 if (sec->dofs_offset > len || sec->dofs_size > len || 11736 sec->dofs_offset + sec->dofs_size > len) { 11737 dtrace_dof_error(dof, "corrupt section header"); 11738 return (-1); 11739 } 11740 11741 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 11742 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 11743 dtrace_dof_error(dof, "non-terminating string table"); 11744 return (-1); 11745 } 11746 } 11747 11748 /* 11749 * Take a second pass through the sections and locate and perform any 11750 * relocations that are present. We do this after the first pass to 11751 * be sure that all sections have had their headers validated. 11752 */ 11753 for (i = 0; i < dof->dofh_secnum; i++) { 11754 dof_sec_t *sec = (dof_sec_t *)(daddr + 11755 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11756 11757 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11758 continue; /* skip sections that are not loadable */ 11759 11760 switch (sec->dofs_type) { 11761 case DOF_SECT_URELHDR: 11762 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 11763 return (-1); 11764 break; 11765 } 11766 } 11767 11768 if ((enab = *enabp) == NULL) 11769 enab = *enabp = dtrace_enabling_create(vstate); 11770 11771 for (i = 0; i < dof->dofh_secnum; i++) { 11772 dof_sec_t *sec = (dof_sec_t *)(daddr + 11773 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11774 11775 if (sec->dofs_type != DOF_SECT_ECBDESC) 11776 continue; 11777 11778 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 11779 dtrace_enabling_destroy(enab); 11780 *enabp = NULL; 11781 return (-1); 11782 } 11783 11784 dtrace_enabling_add(enab, ep); 11785 } 11786 11787 return (0); 11788 } 11789 11790 /* 11791 * Process DOF for any options. This routine assumes that the DOF has been 11792 * at least processed by dtrace_dof_slurp(). 11793 */ 11794 static int 11795 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 11796 { 11797 int i, rval; 11798 uint32_t entsize; 11799 size_t offs; 11800 dof_optdesc_t *desc; 11801 11802 for (i = 0; i < dof->dofh_secnum; i++) { 11803 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 11804 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11805 11806 if (sec->dofs_type != DOF_SECT_OPTDESC) 11807 continue; 11808 11809 if (sec->dofs_align != sizeof (uint64_t)) { 11810 dtrace_dof_error(dof, "bad alignment in " 11811 "option description"); 11812 return (EINVAL); 11813 } 11814 11815 if ((entsize = sec->dofs_entsize) == 0) { 11816 dtrace_dof_error(dof, "zeroed option entry size"); 11817 return (EINVAL); 11818 } 11819 11820 if (entsize < sizeof (dof_optdesc_t)) { 11821 dtrace_dof_error(dof, "bad option entry size"); 11822 return (EINVAL); 11823 } 11824 11825 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 11826 desc = (dof_optdesc_t *)((uintptr_t)dof + 11827 (uintptr_t)sec->dofs_offset + offs); 11828 11829 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 11830 dtrace_dof_error(dof, "non-zero option string"); 11831 return (EINVAL); 11832 } 11833 11834 if (desc->dofo_value == DTRACEOPT_UNSET) { 11835 dtrace_dof_error(dof, "unset option"); 11836 return (EINVAL); 11837 } 11838 11839 if ((rval = dtrace_state_option(state, 11840 desc->dofo_option, desc->dofo_value)) != 0) { 11841 dtrace_dof_error(dof, "rejected option"); 11842 return (rval); 11843 } 11844 } 11845 } 11846 11847 return (0); 11848 } 11849 11850 /* 11851 * DTrace Consumer State Functions 11852 */ 11853 int 11854 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 11855 { 11856 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 11857 void *base; 11858 uintptr_t limit; 11859 dtrace_dynvar_t *dvar, *next, *start; 11860 int i; 11861 11862 ASSERT(MUTEX_HELD(&dtrace_lock)); 11863 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 11864 11865 bzero(dstate, sizeof (dtrace_dstate_t)); 11866 11867 if ((dstate->dtds_chunksize = chunksize) == 0) 11868 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 11869 11870 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 11871 size = min; 11872 11873 if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 11874 return (ENOMEM); 11875 11876 dstate->dtds_size = size; 11877 dstate->dtds_base = base; 11878 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 11879 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 11880 11881 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 11882 11883 if (hashsize != 1 && (hashsize & 1)) 11884 hashsize--; 11885 11886 dstate->dtds_hashsize = hashsize; 11887 dstate->dtds_hash = dstate->dtds_base; 11888 11889 /* 11890 * Set all of our hash buckets to point to the single sink, and (if 11891 * it hasn't already been set), set the sink's hash value to be the 11892 * sink sentinel value. The sink is needed for dynamic variable 11893 * lookups to know that they have iterated over an entire, valid hash 11894 * chain. 11895 */ 11896 for (i = 0; i < hashsize; i++) 11897 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 11898 11899 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 11900 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 11901 11902 /* 11903 * Determine number of active CPUs. Divide free list evenly among 11904 * active CPUs. 11905 */ 11906 start = (dtrace_dynvar_t *) 11907 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 11908 limit = (uintptr_t)base + size; 11909 11910 maxper = (limit - (uintptr_t)start) / NCPU; 11911 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 11912 11913 for (i = 0; i < NCPU; i++) { 11914 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 11915 11916 /* 11917 * If we don't even have enough chunks to make it once through 11918 * NCPUs, we're just going to allocate everything to the first 11919 * CPU. And if we're on the last CPU, we're going to allocate 11920 * whatever is left over. In either case, we set the limit to 11921 * be the limit of the dynamic variable space. 11922 */ 11923 if (maxper == 0 || i == NCPU - 1) { 11924 limit = (uintptr_t)base + size; 11925 start = NULL; 11926 } else { 11927 limit = (uintptr_t)start + maxper; 11928 start = (dtrace_dynvar_t *)limit; 11929 } 11930 11931 ASSERT(limit <= (uintptr_t)base + size); 11932 11933 for (;;) { 11934 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 11935 dstate->dtds_chunksize); 11936 11937 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 11938 break; 11939 11940 dvar->dtdv_next = next; 11941 dvar = next; 11942 } 11943 11944 if (maxper == 0) 11945 break; 11946 } 11947 11948 return (0); 11949 } 11950 11951 void 11952 dtrace_dstate_fini(dtrace_dstate_t *dstate) 11953 { 11954 ASSERT(MUTEX_HELD(&cpu_lock)); 11955 11956 if (dstate->dtds_base == NULL) 11957 return; 11958 11959 kmem_free(dstate->dtds_base, dstate->dtds_size); 11960 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 11961 } 11962 11963 static void 11964 dtrace_vstate_fini(dtrace_vstate_t *vstate) 11965 { 11966 /* 11967 * Logical XOR, where are you? 11968 */ 11969 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 11970 11971 if (vstate->dtvs_nglobals > 0) { 11972 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 11973 sizeof (dtrace_statvar_t *)); 11974 } 11975 11976 if (vstate->dtvs_ntlocals > 0) { 11977 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 11978 sizeof (dtrace_difv_t)); 11979 } 11980 11981 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 11982 11983 if (vstate->dtvs_nlocals > 0) { 11984 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 11985 sizeof (dtrace_statvar_t *)); 11986 } 11987 } 11988 11989 static void 11990 dtrace_state_clean(dtrace_state_t *state) 11991 { 11992 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 11993 return; 11994 11995 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 11996 dtrace_speculation_clean(state); 11997 } 11998 11999 static void 12000 dtrace_state_deadman(dtrace_state_t *state) 12001 { 12002 hrtime_t now; 12003 12004 dtrace_sync(); 12005 12006 now = dtrace_gethrtime(); 12007 12008 if (state != dtrace_anon.dta_state && 12009 now - state->dts_laststatus >= dtrace_deadman_user) 12010 return; 12011 12012 /* 12013 * We must be sure that dts_alive never appears to be less than the 12014 * value upon entry to dtrace_state_deadman(), and because we lack a 12015 * dtrace_cas64(), we cannot store to it atomically. We thus instead 12016 * store INT64_MAX to it, followed by a memory barrier, followed by 12017 * the new value. This assures that dts_alive never appears to be 12018 * less than its true value, regardless of the order in which the 12019 * stores to the underlying storage are issued. 12020 */ 12021 state->dts_alive = INT64_MAX; 12022 dtrace_membar_producer(); 12023 state->dts_alive = now; 12024 } 12025 12026 dtrace_state_t * 12027 dtrace_state_create(dev_t *devp, cred_t *cr) 12028 { 12029 minor_t minor; 12030 major_t major; 12031 char c[30]; 12032 dtrace_state_t *state; 12033 dtrace_optval_t *opt; 12034 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 12035 12036 ASSERT(MUTEX_HELD(&dtrace_lock)); 12037 ASSERT(MUTEX_HELD(&cpu_lock)); 12038 12039 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 12040 VM_BESTFIT | VM_SLEEP); 12041 12042 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 12043 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12044 return (NULL); 12045 } 12046 12047 state = ddi_get_soft_state(dtrace_softstate, minor); 12048 state->dts_epid = DTRACE_EPIDNONE + 1; 12049 12050 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 12051 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 12052 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 12053 12054 if (devp != NULL) { 12055 major = getemajor(*devp); 12056 } else { 12057 major = ddi_driver_major(dtrace_devi); 12058 } 12059 12060 state->dts_dev = makedevice(major, minor); 12061 12062 if (devp != NULL) 12063 *devp = state->dts_dev; 12064 12065 /* 12066 * We allocate NCPU buffers. On the one hand, this can be quite 12067 * a bit of memory per instance (nearly 36K on a Starcat). On the 12068 * other hand, it saves an additional memory reference in the probe 12069 * path. 12070 */ 12071 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 12072 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 12073 state->dts_cleaner = CYCLIC_NONE; 12074 state->dts_deadman = CYCLIC_NONE; 12075 state->dts_vstate.dtvs_state = state; 12076 12077 for (i = 0; i < DTRACEOPT_MAX; i++) 12078 state->dts_options[i] = DTRACEOPT_UNSET; 12079 12080 /* 12081 * Set the default options. 12082 */ 12083 opt = state->dts_options; 12084 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 12085 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 12086 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 12087 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 12088 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 12089 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 12090 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 12091 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 12092 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 12093 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 12094 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 12095 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 12096 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 12097 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 12098 12099 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 12100 12101 /* 12102 * Depending on the user credentials, we set flag bits which alter probe 12103 * visibility or the amount of destructiveness allowed. In the case of 12104 * actual anonymous tracing, or the possession of all privileges, all of 12105 * the normal checks are bypassed. 12106 */ 12107 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 12108 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 12109 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 12110 } else { 12111 /* 12112 * Set up the credentials for this instantiation. We take a 12113 * hold on the credential to prevent it from disappearing on 12114 * us; this in turn prevents the zone_t referenced by this 12115 * credential from disappearing. This means that we can 12116 * examine the credential and the zone from probe context. 12117 */ 12118 crhold(cr); 12119 state->dts_cred.dcr_cred = cr; 12120 12121 /* 12122 * CRA_PROC means "we have *some* privilege for dtrace" and 12123 * unlocks the use of variables like pid, zonename, etc. 12124 */ 12125 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 12126 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12127 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 12128 } 12129 12130 /* 12131 * dtrace_user allows use of syscall and profile providers. 12132 * If the user also has proc_owner and/or proc_zone, we 12133 * extend the scope to include additional visibility and 12134 * destructive power. 12135 */ 12136 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 12137 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 12138 state->dts_cred.dcr_visible |= 12139 DTRACE_CRV_ALLPROC; 12140 12141 state->dts_cred.dcr_action |= 12142 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12143 } 12144 12145 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 12146 state->dts_cred.dcr_visible |= 12147 DTRACE_CRV_ALLZONE; 12148 12149 state->dts_cred.dcr_action |= 12150 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12151 } 12152 12153 /* 12154 * If we have all privs in whatever zone this is, 12155 * we can do destructive things to processes which 12156 * have altered credentials. 12157 */ 12158 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12159 cr->cr_zone->zone_privset)) { 12160 state->dts_cred.dcr_action |= 12161 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12162 } 12163 } 12164 12165 /* 12166 * Holding the dtrace_kernel privilege also implies that 12167 * the user has the dtrace_user privilege from a visibility 12168 * perspective. But without further privileges, some 12169 * destructive actions are not available. 12170 */ 12171 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12172 /* 12173 * Make all probes in all zones visible. However, 12174 * this doesn't mean that all actions become available 12175 * to all zones. 12176 */ 12177 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12178 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12179 12180 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12181 DTRACE_CRA_PROC; 12182 /* 12183 * Holding proc_owner means that destructive actions 12184 * for *this* zone are allowed. 12185 */ 12186 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12187 state->dts_cred.dcr_action |= 12188 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12189 12190 /* 12191 * Holding proc_zone means that destructive actions 12192 * for this user/group ID in all zones is allowed. 12193 */ 12194 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12195 state->dts_cred.dcr_action |= 12196 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12197 12198 /* 12199 * If we have all privs in whatever zone this is, 12200 * we can do destructive things to processes which 12201 * have altered credentials. 12202 */ 12203 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12204 cr->cr_zone->zone_privset)) { 12205 state->dts_cred.dcr_action |= 12206 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12207 } 12208 } 12209 12210 /* 12211 * Holding the dtrace_proc privilege gives control over fasttrap 12212 * and pid providers. We need to grant wider destructive 12213 * privileges in the event that the user has proc_owner and/or 12214 * proc_zone. 12215 */ 12216 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12217 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12218 state->dts_cred.dcr_action |= 12219 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12220 12221 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12222 state->dts_cred.dcr_action |= 12223 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12224 } 12225 } 12226 12227 return (state); 12228 } 12229 12230 static int 12231 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 12232 { 12233 dtrace_optval_t *opt = state->dts_options, size; 12234 processorid_t cpu; 12235 int flags = 0, rval; 12236 12237 ASSERT(MUTEX_HELD(&dtrace_lock)); 12238 ASSERT(MUTEX_HELD(&cpu_lock)); 12239 ASSERT(which < DTRACEOPT_MAX); 12240 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 12241 (state == dtrace_anon.dta_state && 12242 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 12243 12244 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 12245 return (0); 12246 12247 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 12248 cpu = opt[DTRACEOPT_CPU]; 12249 12250 if (which == DTRACEOPT_SPECSIZE) 12251 flags |= DTRACEBUF_NOSWITCH; 12252 12253 if (which == DTRACEOPT_BUFSIZE) { 12254 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 12255 flags |= DTRACEBUF_RING; 12256 12257 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 12258 flags |= DTRACEBUF_FILL; 12259 12260 if (state != dtrace_anon.dta_state || 12261 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 12262 flags |= DTRACEBUF_INACTIVE; 12263 } 12264 12265 for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) { 12266 /* 12267 * The size must be 8-byte aligned. If the size is not 8-byte 12268 * aligned, drop it down by the difference. 12269 */ 12270 if (size & (sizeof (uint64_t) - 1)) 12271 size -= size & (sizeof (uint64_t) - 1); 12272 12273 if (size < state->dts_reserve) { 12274 /* 12275 * Buffers always must be large enough to accommodate 12276 * their prereserved space. We return E2BIG instead 12277 * of ENOMEM in this case to allow for user-level 12278 * software to differentiate the cases. 12279 */ 12280 return (E2BIG); 12281 } 12282 12283 rval = dtrace_buffer_alloc(buf, size, flags, cpu); 12284 12285 if (rval != ENOMEM) { 12286 opt[which] = size; 12287 return (rval); 12288 } 12289 12290 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12291 return (rval); 12292 } 12293 12294 return (ENOMEM); 12295 } 12296 12297 static int 12298 dtrace_state_buffers(dtrace_state_t *state) 12299 { 12300 dtrace_speculation_t *spec = state->dts_speculations; 12301 int rval, i; 12302 12303 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 12304 DTRACEOPT_BUFSIZE)) != 0) 12305 return (rval); 12306 12307 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 12308 DTRACEOPT_AGGSIZE)) != 0) 12309 return (rval); 12310 12311 for (i = 0; i < state->dts_nspeculations; i++) { 12312 if ((rval = dtrace_state_buffer(state, 12313 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 12314 return (rval); 12315 } 12316 12317 return (0); 12318 } 12319 12320 static void 12321 dtrace_state_prereserve(dtrace_state_t *state) 12322 { 12323 dtrace_ecb_t *ecb; 12324 dtrace_probe_t *probe; 12325 12326 state->dts_reserve = 0; 12327 12328 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 12329 return; 12330 12331 /* 12332 * If our buffer policy is a "fill" buffer policy, we need to set the 12333 * prereserved space to be the space required by the END probes. 12334 */ 12335 probe = dtrace_probes[dtrace_probeid_end - 1]; 12336 ASSERT(probe != NULL); 12337 12338 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 12339 if (ecb->dte_state != state) 12340 continue; 12341 12342 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 12343 } 12344 } 12345 12346 static int 12347 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 12348 { 12349 dtrace_optval_t *opt = state->dts_options, sz, nspec; 12350 dtrace_speculation_t *spec; 12351 dtrace_buffer_t *buf; 12352 cyc_handler_t hdlr; 12353 cyc_time_t when; 12354 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12355 dtrace_icookie_t cookie; 12356 12357 mutex_enter(&cpu_lock); 12358 mutex_enter(&dtrace_lock); 12359 12360 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 12361 rval = EBUSY; 12362 goto out; 12363 } 12364 12365 /* 12366 * Before we can perform any checks, we must prime all of the 12367 * retained enablings that correspond to this state. 12368 */ 12369 dtrace_enabling_prime(state); 12370 12371 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 12372 rval = EACCES; 12373 goto out; 12374 } 12375 12376 dtrace_state_prereserve(state); 12377 12378 /* 12379 * Now we want to do is try to allocate our speculations. 12380 * We do not automatically resize the number of speculations; if 12381 * this fails, we will fail the operation. 12382 */ 12383 nspec = opt[DTRACEOPT_NSPEC]; 12384 ASSERT(nspec != DTRACEOPT_UNSET); 12385 12386 if (nspec > INT_MAX) { 12387 rval = ENOMEM; 12388 goto out; 12389 } 12390 12391 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); 12392 12393 if (spec == NULL) { 12394 rval = ENOMEM; 12395 goto out; 12396 } 12397 12398 state->dts_speculations = spec; 12399 state->dts_nspeculations = (int)nspec; 12400 12401 for (i = 0; i < nspec; i++) { 12402 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { 12403 rval = ENOMEM; 12404 goto err; 12405 } 12406 12407 spec[i].dtsp_buffer = buf; 12408 } 12409 12410 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 12411 if (dtrace_anon.dta_state == NULL) { 12412 rval = ENOENT; 12413 goto out; 12414 } 12415 12416 if (state->dts_necbs != 0) { 12417 rval = EALREADY; 12418 goto out; 12419 } 12420 12421 state->dts_anon = dtrace_anon_grab(); 12422 ASSERT(state->dts_anon != NULL); 12423 state = state->dts_anon; 12424 12425 /* 12426 * We want "grabanon" to be set in the grabbed state, so we'll 12427 * copy that option value from the grabbing state into the 12428 * grabbed state. 12429 */ 12430 state->dts_options[DTRACEOPT_GRABANON] = 12431 opt[DTRACEOPT_GRABANON]; 12432 12433 *cpu = dtrace_anon.dta_beganon; 12434 12435 /* 12436 * If the anonymous state is active (as it almost certainly 12437 * is if the anonymous enabling ultimately matched anything), 12438 * we don't allow any further option processing -- but we 12439 * don't return failure. 12440 */ 12441 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12442 goto out; 12443 } 12444 12445 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 12446 opt[DTRACEOPT_AGGSIZE] != 0) { 12447 if (state->dts_aggregations == NULL) { 12448 /* 12449 * We're not going to create an aggregation buffer 12450 * because we don't have any ECBs that contain 12451 * aggregations -- set this option to 0. 12452 */ 12453 opt[DTRACEOPT_AGGSIZE] = 0; 12454 } else { 12455 /* 12456 * If we have an aggregation buffer, we must also have 12457 * a buffer to use as scratch. 12458 */ 12459 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 12460 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 12461 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 12462 } 12463 } 12464 } 12465 12466 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 12467 opt[DTRACEOPT_SPECSIZE] != 0) { 12468 if (!state->dts_speculates) { 12469 /* 12470 * We're not going to create speculation buffers 12471 * because we don't have any ECBs that actually 12472 * speculate -- set the speculation size to 0. 12473 */ 12474 opt[DTRACEOPT_SPECSIZE] = 0; 12475 } 12476 } 12477 12478 /* 12479 * The bare minimum size for any buffer that we're actually going to 12480 * do anything to is sizeof (uint64_t). 12481 */ 12482 sz = sizeof (uint64_t); 12483 12484 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 12485 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 12486 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 12487 /* 12488 * A buffer size has been explicitly set to 0 (or to a size 12489 * that will be adjusted to 0) and we need the space -- we 12490 * need to return failure. We return ENOSPC to differentiate 12491 * it from failing to allocate a buffer due to failure to meet 12492 * the reserve (for which we return E2BIG). 12493 */ 12494 rval = ENOSPC; 12495 goto out; 12496 } 12497 12498 if ((rval = dtrace_state_buffers(state)) != 0) 12499 goto err; 12500 12501 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 12502 sz = dtrace_dstate_defsize; 12503 12504 do { 12505 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 12506 12507 if (rval == 0) 12508 break; 12509 12510 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12511 goto err; 12512 } while (sz >>= 1); 12513 12514 opt[DTRACEOPT_DYNVARSIZE] = sz; 12515 12516 if (rval != 0) 12517 goto err; 12518 12519 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 12520 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 12521 12522 if (opt[DTRACEOPT_CLEANRATE] == 0) 12523 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12524 12525 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 12526 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 12527 12528 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 12529 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12530 12531 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 12532 hdlr.cyh_arg = state; 12533 hdlr.cyh_level = CY_LOW_LEVEL; 12534 12535 when.cyt_when = 0; 12536 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 12537 12538 state->dts_cleaner = cyclic_add(&hdlr, &when); 12539 12540 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 12541 hdlr.cyh_arg = state; 12542 hdlr.cyh_level = CY_LOW_LEVEL; 12543 12544 when.cyt_when = 0; 12545 when.cyt_interval = dtrace_deadman_interval; 12546 12547 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 12548 state->dts_deadman = cyclic_add(&hdlr, &when); 12549 12550 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 12551 12552 /* 12553 * Now it's time to actually fire the BEGIN probe. We need to disable 12554 * interrupts here both to record the CPU on which we fired the BEGIN 12555 * probe (the data from this CPU will be processed first at user 12556 * level) and to manually activate the buffer for this CPU. 12557 */ 12558 cookie = dtrace_interrupt_disable(); 12559 *cpu = CPU->cpu_id; 12560 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 12561 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12562 12563 dtrace_probe(dtrace_probeid_begin, 12564 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12565 dtrace_interrupt_enable(cookie); 12566 /* 12567 * We may have had an exit action from a BEGIN probe; only change our 12568 * state to ACTIVE if we're still in WARMUP. 12569 */ 12570 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 12571 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 12572 12573 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 12574 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 12575 12576 /* 12577 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 12578 * want each CPU to transition its principal buffer out of the 12579 * INACTIVE state. Doing this assures that no CPU will suddenly begin 12580 * processing an ECB halfway down a probe's ECB chain; all CPUs will 12581 * atomically transition from processing none of a state's ECBs to 12582 * processing all of them. 12583 */ 12584 dtrace_xcall(DTRACE_CPUALL, 12585 (dtrace_xcall_t)dtrace_buffer_activate, state); 12586 goto out; 12587 12588 err: 12589 dtrace_buffer_free(state->dts_buffer); 12590 dtrace_buffer_free(state->dts_aggbuffer); 12591 12592 if ((nspec = state->dts_nspeculations) == 0) { 12593 ASSERT(state->dts_speculations == NULL); 12594 goto out; 12595 } 12596 12597 spec = state->dts_speculations; 12598 ASSERT(spec != NULL); 12599 12600 for (i = 0; i < state->dts_nspeculations; i++) { 12601 if ((buf = spec[i].dtsp_buffer) == NULL) 12602 break; 12603 12604 dtrace_buffer_free(buf); 12605 kmem_free(buf, bufsize); 12606 } 12607 12608 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12609 state->dts_nspeculations = 0; 12610 state->dts_speculations = NULL; 12611 12612 out: 12613 mutex_exit(&dtrace_lock); 12614 mutex_exit(&cpu_lock); 12615 12616 return (rval); 12617 } 12618 12619 static int 12620 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 12621 { 12622 dtrace_icookie_t cookie; 12623 12624 ASSERT(MUTEX_HELD(&dtrace_lock)); 12625 12626 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 12627 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 12628 return (EINVAL); 12629 12630 /* 12631 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 12632 * to be sure that every CPU has seen it. See below for the details 12633 * on why this is done. 12634 */ 12635 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 12636 dtrace_sync(); 12637 12638 /* 12639 * By this point, it is impossible for any CPU to be still processing 12640 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 12641 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 12642 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 12643 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 12644 * iff we're in the END probe. 12645 */ 12646 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 12647 dtrace_sync(); 12648 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 12649 12650 /* 12651 * Finally, we can release the reserve and call the END probe. We 12652 * disable interrupts across calling the END probe to allow us to 12653 * return the CPU on which we actually called the END probe. This 12654 * allows user-land to be sure that this CPU's principal buffer is 12655 * processed last. 12656 */ 12657 state->dts_reserve = 0; 12658 12659 cookie = dtrace_interrupt_disable(); 12660 *cpu = CPU->cpu_id; 12661 dtrace_probe(dtrace_probeid_end, 12662 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12663 dtrace_interrupt_enable(cookie); 12664 12665 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 12666 dtrace_sync(); 12667 12668 return (0); 12669 } 12670 12671 static int 12672 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 12673 dtrace_optval_t val) 12674 { 12675 ASSERT(MUTEX_HELD(&dtrace_lock)); 12676 12677 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12678 return (EBUSY); 12679 12680 if (option >= DTRACEOPT_MAX) 12681 return (EINVAL); 12682 12683 if (option != DTRACEOPT_CPU && val < 0) 12684 return (EINVAL); 12685 12686 switch (option) { 12687 case DTRACEOPT_DESTRUCTIVE: 12688 if (dtrace_destructive_disallow) 12689 return (EACCES); 12690 12691 state->dts_cred.dcr_destructive = 1; 12692 break; 12693 12694 case DTRACEOPT_BUFSIZE: 12695 case DTRACEOPT_DYNVARSIZE: 12696 case DTRACEOPT_AGGSIZE: 12697 case DTRACEOPT_SPECSIZE: 12698 case DTRACEOPT_STRSIZE: 12699 if (val < 0) 12700 return (EINVAL); 12701 12702 if (val >= LONG_MAX) { 12703 /* 12704 * If this is an otherwise negative value, set it to 12705 * the highest multiple of 128m less than LONG_MAX. 12706 * Technically, we're adjusting the size without 12707 * regard to the buffer resizing policy, but in fact, 12708 * this has no effect -- if we set the buffer size to 12709 * ~LONG_MAX and the buffer policy is ultimately set to 12710 * be "manual", the buffer allocation is guaranteed to 12711 * fail, if only because the allocation requires two 12712 * buffers. (We set the the size to the highest 12713 * multiple of 128m because it ensures that the size 12714 * will remain a multiple of a megabyte when 12715 * repeatedly halved -- all the way down to 15m.) 12716 */ 12717 val = LONG_MAX - (1 << 27) + 1; 12718 } 12719 } 12720 12721 state->dts_options[option] = val; 12722 12723 return (0); 12724 } 12725 12726 static void 12727 dtrace_state_destroy(dtrace_state_t *state) 12728 { 12729 dtrace_ecb_t *ecb; 12730 dtrace_vstate_t *vstate = &state->dts_vstate; 12731 minor_t minor = getminor(state->dts_dev); 12732 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12733 dtrace_speculation_t *spec = state->dts_speculations; 12734 int nspec = state->dts_nspeculations; 12735 uint32_t match; 12736 12737 ASSERT(MUTEX_HELD(&dtrace_lock)); 12738 ASSERT(MUTEX_HELD(&cpu_lock)); 12739 12740 /* 12741 * First, retract any retained enablings for this state. 12742 */ 12743 dtrace_enabling_retract(state); 12744 ASSERT(state->dts_nretained == 0); 12745 12746 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 12747 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 12748 /* 12749 * We have managed to come into dtrace_state_destroy() on a 12750 * hot enabling -- almost certainly because of a disorderly 12751 * shutdown of a consumer. (That is, a consumer that is 12752 * exiting without having called dtrace_stop().) In this case, 12753 * we're going to set our activity to be KILLED, and then 12754 * issue a sync to be sure that everyone is out of probe 12755 * context before we start blowing away ECBs. 12756 */ 12757 state->dts_activity = DTRACE_ACTIVITY_KILLED; 12758 dtrace_sync(); 12759 } 12760 12761 /* 12762 * Release the credential hold we took in dtrace_state_create(). 12763 */ 12764 if (state->dts_cred.dcr_cred != NULL) 12765 crfree(state->dts_cred.dcr_cred); 12766 12767 /* 12768 * Now we can safely disable and destroy any enabled probes. Because 12769 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 12770 * (especially if they're all enabled), we take two passes through the 12771 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 12772 * in the second we disable whatever is left over. 12773 */ 12774 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 12775 for (i = 0; i < state->dts_necbs; i++) { 12776 if ((ecb = state->dts_ecbs[i]) == NULL) 12777 continue; 12778 12779 if (match && ecb->dte_probe != NULL) { 12780 dtrace_probe_t *probe = ecb->dte_probe; 12781 dtrace_provider_t *prov = probe->dtpr_provider; 12782 12783 if (!(prov->dtpv_priv.dtpp_flags & match)) 12784 continue; 12785 } 12786 12787 dtrace_ecb_disable(ecb); 12788 dtrace_ecb_destroy(ecb); 12789 } 12790 12791 if (!match) 12792 break; 12793 } 12794 12795 /* 12796 * Before we free the buffers, perform one more sync to assure that 12797 * every CPU is out of probe context. 12798 */ 12799 dtrace_sync(); 12800 12801 dtrace_buffer_free(state->dts_buffer); 12802 dtrace_buffer_free(state->dts_aggbuffer); 12803 12804 for (i = 0; i < nspec; i++) 12805 dtrace_buffer_free(spec[i].dtsp_buffer); 12806 12807 if (state->dts_cleaner != CYCLIC_NONE) 12808 cyclic_remove(state->dts_cleaner); 12809 12810 if (state->dts_deadman != CYCLIC_NONE) 12811 cyclic_remove(state->dts_deadman); 12812 12813 dtrace_dstate_fini(&vstate->dtvs_dynvars); 12814 dtrace_vstate_fini(vstate); 12815 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 12816 12817 if (state->dts_aggregations != NULL) { 12818 #ifdef DEBUG 12819 for (i = 0; i < state->dts_naggregations; i++) 12820 ASSERT(state->dts_aggregations[i] == NULL); 12821 #endif 12822 ASSERT(state->dts_naggregations > 0); 12823 kmem_free(state->dts_aggregations, 12824 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 12825 } 12826 12827 kmem_free(state->dts_buffer, bufsize); 12828 kmem_free(state->dts_aggbuffer, bufsize); 12829 12830 for (i = 0; i < nspec; i++) 12831 kmem_free(spec[i].dtsp_buffer, bufsize); 12832 12833 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12834 12835 dtrace_format_destroy(state); 12836 12837 vmem_destroy(state->dts_aggid_arena); 12838 ddi_soft_state_free(dtrace_softstate, minor); 12839 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12840 } 12841 12842 /* 12843 * DTrace Anonymous Enabling Functions 12844 */ 12845 static dtrace_state_t * 12846 dtrace_anon_grab(void) 12847 { 12848 dtrace_state_t *state; 12849 12850 ASSERT(MUTEX_HELD(&dtrace_lock)); 12851 12852 if ((state = dtrace_anon.dta_state) == NULL) { 12853 ASSERT(dtrace_anon.dta_enabling == NULL); 12854 return (NULL); 12855 } 12856 12857 ASSERT(dtrace_anon.dta_enabling != NULL); 12858 ASSERT(dtrace_retained != NULL); 12859 12860 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 12861 dtrace_anon.dta_enabling = NULL; 12862 dtrace_anon.dta_state = NULL; 12863 12864 return (state); 12865 } 12866 12867 static void 12868 dtrace_anon_property(void) 12869 { 12870 int i, rv; 12871 dtrace_state_t *state; 12872 dof_hdr_t *dof; 12873 char c[32]; /* enough for "dof-data-" + digits */ 12874 12875 ASSERT(MUTEX_HELD(&dtrace_lock)); 12876 ASSERT(MUTEX_HELD(&cpu_lock)); 12877 12878 for (i = 0; ; i++) { 12879 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 12880 12881 dtrace_err_verbose = 1; 12882 12883 if ((dof = dtrace_dof_property(c)) == NULL) { 12884 dtrace_err_verbose = 0; 12885 break; 12886 } 12887 12888 /* 12889 * We want to create anonymous state, so we need to transition 12890 * the kernel debugger to indicate that DTrace is active. If 12891 * this fails (e.g. because the debugger has modified text in 12892 * some way), we won't continue with the processing. 12893 */ 12894 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 12895 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 12896 "enabling ignored."); 12897 dtrace_dof_destroy(dof); 12898 break; 12899 } 12900 12901 /* 12902 * If we haven't allocated an anonymous state, we'll do so now. 12903 */ 12904 if ((state = dtrace_anon.dta_state) == NULL) { 12905 state = dtrace_state_create(NULL, NULL); 12906 dtrace_anon.dta_state = state; 12907 12908 if (state == NULL) { 12909 /* 12910 * This basically shouldn't happen: the only 12911 * failure mode from dtrace_state_create() is a 12912 * failure of ddi_soft_state_zalloc() that 12913 * itself should never happen. Still, the 12914 * interface allows for a failure mode, and 12915 * we want to fail as gracefully as possible: 12916 * we'll emit an error message and cease 12917 * processing anonymous state in this case. 12918 */ 12919 cmn_err(CE_WARN, "failed to create " 12920 "anonymous state"); 12921 dtrace_dof_destroy(dof); 12922 break; 12923 } 12924 } 12925 12926 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 12927 &dtrace_anon.dta_enabling, 0, B_TRUE); 12928 12929 if (rv == 0) 12930 rv = dtrace_dof_options(dof, state); 12931 12932 dtrace_err_verbose = 0; 12933 dtrace_dof_destroy(dof); 12934 12935 if (rv != 0) { 12936 /* 12937 * This is malformed DOF; chuck any anonymous state 12938 * that we created. 12939 */ 12940 ASSERT(dtrace_anon.dta_enabling == NULL); 12941 dtrace_state_destroy(state); 12942 dtrace_anon.dta_state = NULL; 12943 break; 12944 } 12945 12946 ASSERT(dtrace_anon.dta_enabling != NULL); 12947 } 12948 12949 if (dtrace_anon.dta_enabling != NULL) { 12950 int rval; 12951 12952 /* 12953 * dtrace_enabling_retain() can only fail because we are 12954 * trying to retain more enablings than are allowed -- but 12955 * we only have one anonymous enabling, and we are guaranteed 12956 * to be allowed at least one retained enabling; we assert 12957 * that dtrace_enabling_retain() returns success. 12958 */ 12959 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 12960 ASSERT(rval == 0); 12961 12962 dtrace_enabling_dump(dtrace_anon.dta_enabling); 12963 } 12964 } 12965 12966 /* 12967 * DTrace Helper Functions 12968 */ 12969 static void 12970 dtrace_helper_trace(dtrace_helper_action_t *helper, 12971 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 12972 { 12973 uint32_t size, next, nnext, i; 12974 dtrace_helptrace_t *ent; 12975 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12976 12977 if (!dtrace_helptrace_enabled) 12978 return; 12979 12980 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 12981 12982 /* 12983 * What would a tracing framework be without its own tracing 12984 * framework? (Well, a hell of a lot simpler, for starters...) 12985 */ 12986 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 12987 sizeof (uint64_t) - sizeof (uint64_t); 12988 12989 /* 12990 * Iterate until we can allocate a slot in the trace buffer. 12991 */ 12992 do { 12993 next = dtrace_helptrace_next; 12994 12995 if (next + size < dtrace_helptrace_bufsize) { 12996 nnext = next + size; 12997 } else { 12998 nnext = size; 12999 } 13000 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 13001 13002 /* 13003 * We have our slot; fill it in. 13004 */ 13005 if (nnext == size) 13006 next = 0; 13007 13008 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 13009 ent->dtht_helper = helper; 13010 ent->dtht_where = where; 13011 ent->dtht_nlocals = vstate->dtvs_nlocals; 13012 13013 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 13014 mstate->dtms_fltoffs : -1; 13015 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 13016 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 13017 13018 for (i = 0; i < vstate->dtvs_nlocals; i++) { 13019 dtrace_statvar_t *svar; 13020 13021 if ((svar = vstate->dtvs_locals[i]) == NULL) 13022 continue; 13023 13024 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 13025 ent->dtht_locals[i] = 13026 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 13027 } 13028 } 13029 13030 static uint64_t 13031 dtrace_helper(int which, dtrace_mstate_t *mstate, 13032 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 13033 { 13034 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13035 uint64_t sarg0 = mstate->dtms_arg[0]; 13036 uint64_t sarg1 = mstate->dtms_arg[1]; 13037 uint64_t rval; 13038 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 13039 dtrace_helper_action_t *helper; 13040 dtrace_vstate_t *vstate; 13041 dtrace_difo_t *pred; 13042 int i, trace = dtrace_helptrace_enabled; 13043 13044 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 13045 13046 if (helpers == NULL) 13047 return (0); 13048 13049 if ((helper = helpers->dthps_actions[which]) == NULL) 13050 return (0); 13051 13052 vstate = &helpers->dthps_vstate; 13053 mstate->dtms_arg[0] = arg0; 13054 mstate->dtms_arg[1] = arg1; 13055 13056 /* 13057 * Now iterate over each helper. If its predicate evaluates to 'true', 13058 * we'll call the corresponding actions. Note that the below calls 13059 * to dtrace_dif_emulate() may set faults in machine state. This is 13060 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 13061 * the stored DIF offset with its own (which is the desired behavior). 13062 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 13063 * from machine state; this is okay, too. 13064 */ 13065 for (; helper != NULL; helper = helper->dtha_next) { 13066 if ((pred = helper->dtha_predicate) != NULL) { 13067 if (trace) 13068 dtrace_helper_trace(helper, mstate, vstate, 0); 13069 13070 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 13071 goto next; 13072 13073 if (*flags & CPU_DTRACE_FAULT) 13074 goto err; 13075 } 13076 13077 for (i = 0; i < helper->dtha_nactions; i++) { 13078 if (trace) 13079 dtrace_helper_trace(helper, 13080 mstate, vstate, i + 1); 13081 13082 rval = dtrace_dif_emulate(helper->dtha_actions[i], 13083 mstate, vstate, state); 13084 13085 if (*flags & CPU_DTRACE_FAULT) 13086 goto err; 13087 } 13088 13089 next: 13090 if (trace) 13091 dtrace_helper_trace(helper, mstate, vstate, 13092 DTRACE_HELPTRACE_NEXT); 13093 } 13094 13095 if (trace) 13096 dtrace_helper_trace(helper, mstate, vstate, 13097 DTRACE_HELPTRACE_DONE); 13098 13099 /* 13100 * Restore the arg0 that we saved upon entry. 13101 */ 13102 mstate->dtms_arg[0] = sarg0; 13103 mstate->dtms_arg[1] = sarg1; 13104 13105 return (rval); 13106 13107 err: 13108 if (trace) 13109 dtrace_helper_trace(helper, mstate, vstate, 13110 DTRACE_HELPTRACE_ERR); 13111 13112 /* 13113 * Restore the arg0 that we saved upon entry. 13114 */ 13115 mstate->dtms_arg[0] = sarg0; 13116 mstate->dtms_arg[1] = sarg1; 13117 13118 return (NULL); 13119 } 13120 13121 static void 13122 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 13123 dtrace_vstate_t *vstate) 13124 { 13125 int i; 13126 13127 if (helper->dtha_predicate != NULL) 13128 dtrace_difo_release(helper->dtha_predicate, vstate); 13129 13130 for (i = 0; i < helper->dtha_nactions; i++) { 13131 ASSERT(helper->dtha_actions[i] != NULL); 13132 dtrace_difo_release(helper->dtha_actions[i], vstate); 13133 } 13134 13135 kmem_free(helper->dtha_actions, 13136 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 13137 kmem_free(helper, sizeof (dtrace_helper_action_t)); 13138 } 13139 13140 static int 13141 dtrace_helper_destroygen(int gen) 13142 { 13143 proc_t *p = curproc; 13144 dtrace_helpers_t *help = p->p_dtrace_helpers; 13145 dtrace_vstate_t *vstate; 13146 int i; 13147 13148 ASSERT(MUTEX_HELD(&dtrace_lock)); 13149 13150 if (help == NULL || gen > help->dthps_generation) 13151 return (EINVAL); 13152 13153 vstate = &help->dthps_vstate; 13154 13155 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13156 dtrace_helper_action_t *last = NULL, *h, *next; 13157 13158 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13159 next = h->dtha_next; 13160 13161 if (h->dtha_generation == gen) { 13162 if (last != NULL) { 13163 last->dtha_next = next; 13164 } else { 13165 help->dthps_actions[i] = next; 13166 } 13167 13168 dtrace_helper_action_destroy(h, vstate); 13169 } else { 13170 last = h; 13171 } 13172 } 13173 } 13174 13175 /* 13176 * Interate until we've cleared out all helper providers with the 13177 * given generation number. 13178 */ 13179 for (;;) { 13180 dtrace_helper_provider_t *prov; 13181 13182 /* 13183 * Look for a helper provider with the right generation. We 13184 * have to start back at the beginning of the list each time 13185 * because we drop dtrace_lock. It's unlikely that we'll make 13186 * more than two passes. 13187 */ 13188 for (i = 0; i < help->dthps_nprovs; i++) { 13189 prov = help->dthps_provs[i]; 13190 13191 if (prov->dthp_generation == gen) 13192 break; 13193 } 13194 13195 /* 13196 * If there were no matches, we're done. 13197 */ 13198 if (i == help->dthps_nprovs) 13199 break; 13200 13201 /* 13202 * Move the last helper provider into this slot. 13203 */ 13204 help->dthps_nprovs--; 13205 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 13206 help->dthps_provs[help->dthps_nprovs] = NULL; 13207 13208 mutex_exit(&dtrace_lock); 13209 13210 /* 13211 * If we have a meta provider, remove this helper provider. 13212 */ 13213 mutex_enter(&dtrace_meta_lock); 13214 if (dtrace_meta_pid != NULL) { 13215 ASSERT(dtrace_deferred_pid == NULL); 13216 dtrace_helper_provider_remove(&prov->dthp_prov, 13217 p->p_pid); 13218 } 13219 mutex_exit(&dtrace_meta_lock); 13220 13221 dtrace_helper_provider_destroy(prov); 13222 13223 mutex_enter(&dtrace_lock); 13224 } 13225 13226 return (0); 13227 } 13228 13229 static int 13230 dtrace_helper_validate(dtrace_helper_action_t *helper) 13231 { 13232 int err = 0, i; 13233 dtrace_difo_t *dp; 13234 13235 if ((dp = helper->dtha_predicate) != NULL) 13236 err += dtrace_difo_validate_helper(dp); 13237 13238 for (i = 0; i < helper->dtha_nactions; i++) 13239 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 13240 13241 return (err == 0); 13242 } 13243 13244 static int 13245 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 13246 { 13247 dtrace_helpers_t *help; 13248 dtrace_helper_action_t *helper, *last; 13249 dtrace_actdesc_t *act; 13250 dtrace_vstate_t *vstate; 13251 dtrace_predicate_t *pred; 13252 int count = 0, nactions = 0, i; 13253 13254 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 13255 return (EINVAL); 13256 13257 help = curproc->p_dtrace_helpers; 13258 last = help->dthps_actions[which]; 13259 vstate = &help->dthps_vstate; 13260 13261 for (count = 0; last != NULL; last = last->dtha_next) { 13262 count++; 13263 if (last->dtha_next == NULL) 13264 break; 13265 } 13266 13267 /* 13268 * If we already have dtrace_helper_actions_max helper actions for this 13269 * helper action type, we'll refuse to add a new one. 13270 */ 13271 if (count >= dtrace_helper_actions_max) 13272 return (ENOSPC); 13273 13274 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 13275 helper->dtha_generation = help->dthps_generation; 13276 13277 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 13278 ASSERT(pred->dtp_difo != NULL); 13279 dtrace_difo_hold(pred->dtp_difo); 13280 helper->dtha_predicate = pred->dtp_difo; 13281 } 13282 13283 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 13284 if (act->dtad_kind != DTRACEACT_DIFEXPR) 13285 goto err; 13286 13287 if (act->dtad_difo == NULL) 13288 goto err; 13289 13290 nactions++; 13291 } 13292 13293 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 13294 (helper->dtha_nactions = nactions), KM_SLEEP); 13295 13296 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 13297 dtrace_difo_hold(act->dtad_difo); 13298 helper->dtha_actions[i++] = act->dtad_difo; 13299 } 13300 13301 if (!dtrace_helper_validate(helper)) 13302 goto err; 13303 13304 if (last == NULL) { 13305 help->dthps_actions[which] = helper; 13306 } else { 13307 last->dtha_next = helper; 13308 } 13309 13310 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 13311 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 13312 dtrace_helptrace_next = 0; 13313 } 13314 13315 return (0); 13316 err: 13317 dtrace_helper_action_destroy(helper, vstate); 13318 return (EINVAL); 13319 } 13320 13321 static void 13322 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 13323 dof_helper_t *dofhp) 13324 { 13325 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 13326 13327 mutex_enter(&dtrace_meta_lock); 13328 mutex_enter(&dtrace_lock); 13329 13330 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 13331 /* 13332 * If the dtrace module is loaded but not attached, or if 13333 * there aren't isn't a meta provider registered to deal with 13334 * these provider descriptions, we need to postpone creating 13335 * the actual providers until later. 13336 */ 13337 13338 if (help->dthps_next == NULL && help->dthps_prev == NULL && 13339 dtrace_deferred_pid != help) { 13340 help->dthps_deferred = 1; 13341 help->dthps_pid = p->p_pid; 13342 help->dthps_next = dtrace_deferred_pid; 13343 help->dthps_prev = NULL; 13344 if (dtrace_deferred_pid != NULL) 13345 dtrace_deferred_pid->dthps_prev = help; 13346 dtrace_deferred_pid = help; 13347 } 13348 13349 mutex_exit(&dtrace_lock); 13350 13351 } else if (dofhp != NULL) { 13352 /* 13353 * If the dtrace module is loaded and we have a particular 13354 * helper provider description, pass that off to the 13355 * meta provider. 13356 */ 13357 13358 mutex_exit(&dtrace_lock); 13359 13360 dtrace_helper_provide(dofhp, p->p_pid); 13361 13362 } else { 13363 /* 13364 * Otherwise, just pass all the helper provider descriptions 13365 * off to the meta provider. 13366 */ 13367 13368 int i; 13369 mutex_exit(&dtrace_lock); 13370 13371 for (i = 0; i < help->dthps_nprovs; i++) { 13372 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 13373 p->p_pid); 13374 } 13375 } 13376 13377 mutex_exit(&dtrace_meta_lock); 13378 } 13379 13380 static int 13381 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 13382 { 13383 dtrace_helpers_t *help; 13384 dtrace_helper_provider_t *hprov, **tmp_provs; 13385 uint_t tmp_maxprovs, i; 13386 13387 ASSERT(MUTEX_HELD(&dtrace_lock)); 13388 13389 help = curproc->p_dtrace_helpers; 13390 ASSERT(help != NULL); 13391 13392 /* 13393 * If we already have dtrace_helper_providers_max helper providers, 13394 * we're refuse to add a new one. 13395 */ 13396 if (help->dthps_nprovs >= dtrace_helper_providers_max) 13397 return (ENOSPC); 13398 13399 /* 13400 * Check to make sure this isn't a duplicate. 13401 */ 13402 for (i = 0; i < help->dthps_nprovs; i++) { 13403 if (dofhp->dofhp_addr == 13404 help->dthps_provs[i]->dthp_prov.dofhp_addr) 13405 return (EALREADY); 13406 } 13407 13408 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 13409 hprov->dthp_prov = *dofhp; 13410 hprov->dthp_ref = 1; 13411 hprov->dthp_generation = gen; 13412 13413 /* 13414 * Allocate a bigger table for helper providers if it's already full. 13415 */ 13416 if (help->dthps_maxprovs == help->dthps_nprovs) { 13417 tmp_maxprovs = help->dthps_maxprovs; 13418 tmp_provs = help->dthps_provs; 13419 13420 if (help->dthps_maxprovs == 0) 13421 help->dthps_maxprovs = 2; 13422 else 13423 help->dthps_maxprovs *= 2; 13424 if (help->dthps_maxprovs > dtrace_helper_providers_max) 13425 help->dthps_maxprovs = dtrace_helper_providers_max; 13426 13427 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 13428 13429 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 13430 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13431 13432 if (tmp_provs != NULL) { 13433 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 13434 sizeof (dtrace_helper_provider_t *)); 13435 kmem_free(tmp_provs, tmp_maxprovs * 13436 sizeof (dtrace_helper_provider_t *)); 13437 } 13438 } 13439 13440 help->dthps_provs[help->dthps_nprovs] = hprov; 13441 help->dthps_nprovs++; 13442 13443 return (0); 13444 } 13445 13446 static void 13447 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 13448 { 13449 mutex_enter(&dtrace_lock); 13450 13451 if (--hprov->dthp_ref == 0) { 13452 dof_hdr_t *dof; 13453 mutex_exit(&dtrace_lock); 13454 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 13455 dtrace_dof_destroy(dof); 13456 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 13457 } else { 13458 mutex_exit(&dtrace_lock); 13459 } 13460 } 13461 13462 static int 13463 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 13464 { 13465 uintptr_t daddr = (uintptr_t)dof; 13466 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 13467 dof_provider_t *provider; 13468 dof_probe_t *probe; 13469 uint8_t *arg; 13470 char *strtab, *typestr; 13471 dof_stridx_t typeidx; 13472 size_t typesz; 13473 uint_t nprobes, j, k; 13474 13475 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 13476 13477 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 13478 dtrace_dof_error(dof, "misaligned section offset"); 13479 return (-1); 13480 } 13481 13482 /* 13483 * The section needs to be large enough to contain the DOF provider 13484 * structure appropriate for the given version. 13485 */ 13486 if (sec->dofs_size < 13487 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 13488 offsetof(dof_provider_t, dofpv_prenoffs) : 13489 sizeof (dof_provider_t))) { 13490 dtrace_dof_error(dof, "provider section too small"); 13491 return (-1); 13492 } 13493 13494 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 13495 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 13496 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 13497 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 13498 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 13499 13500 if (str_sec == NULL || prb_sec == NULL || 13501 arg_sec == NULL || off_sec == NULL) 13502 return (-1); 13503 13504 enoff_sec = NULL; 13505 13506 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13507 provider->dofpv_prenoffs != DOF_SECT_NONE && 13508 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 13509 provider->dofpv_prenoffs)) == NULL) 13510 return (-1); 13511 13512 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 13513 13514 if (provider->dofpv_name >= str_sec->dofs_size || 13515 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 13516 dtrace_dof_error(dof, "invalid provider name"); 13517 return (-1); 13518 } 13519 13520 if (prb_sec->dofs_entsize == 0 || 13521 prb_sec->dofs_entsize > prb_sec->dofs_size) { 13522 dtrace_dof_error(dof, "invalid entry size"); 13523 return (-1); 13524 } 13525 13526 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 13527 dtrace_dof_error(dof, "misaligned entry size"); 13528 return (-1); 13529 } 13530 13531 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 13532 dtrace_dof_error(dof, "invalid entry size"); 13533 return (-1); 13534 } 13535 13536 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 13537 dtrace_dof_error(dof, "misaligned section offset"); 13538 return (-1); 13539 } 13540 13541 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 13542 dtrace_dof_error(dof, "invalid entry size"); 13543 return (-1); 13544 } 13545 13546 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 13547 13548 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 13549 13550 /* 13551 * Take a pass through the probes to check for errors. 13552 */ 13553 for (j = 0; j < nprobes; j++) { 13554 probe = (dof_probe_t *)(uintptr_t)(daddr + 13555 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 13556 13557 if (probe->dofpr_func >= str_sec->dofs_size) { 13558 dtrace_dof_error(dof, "invalid function name"); 13559 return (-1); 13560 } 13561 13562 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 13563 dtrace_dof_error(dof, "function name too long"); 13564 return (-1); 13565 } 13566 13567 if (probe->dofpr_name >= str_sec->dofs_size || 13568 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 13569 dtrace_dof_error(dof, "invalid probe name"); 13570 return (-1); 13571 } 13572 13573 /* 13574 * The offset count must not wrap the index, and the offsets 13575 * must also not overflow the section's data. 13576 */ 13577 if (probe->dofpr_offidx + probe->dofpr_noffs < 13578 probe->dofpr_offidx || 13579 (probe->dofpr_offidx + probe->dofpr_noffs) * 13580 off_sec->dofs_entsize > off_sec->dofs_size) { 13581 dtrace_dof_error(dof, "invalid probe offset"); 13582 return (-1); 13583 } 13584 13585 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 13586 /* 13587 * If there's no is-enabled offset section, make sure 13588 * there aren't any is-enabled offsets. Otherwise 13589 * perform the same checks as for probe offsets 13590 * (immediately above). 13591 */ 13592 if (enoff_sec == NULL) { 13593 if (probe->dofpr_enoffidx != 0 || 13594 probe->dofpr_nenoffs != 0) { 13595 dtrace_dof_error(dof, "is-enabled " 13596 "offsets with null section"); 13597 return (-1); 13598 } 13599 } else if (probe->dofpr_enoffidx + 13600 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 13601 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 13602 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 13603 dtrace_dof_error(dof, "invalid is-enabled " 13604 "offset"); 13605 return (-1); 13606 } 13607 13608 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 13609 dtrace_dof_error(dof, "zero probe and " 13610 "is-enabled offsets"); 13611 return (-1); 13612 } 13613 } else if (probe->dofpr_noffs == 0) { 13614 dtrace_dof_error(dof, "zero probe offsets"); 13615 return (-1); 13616 } 13617 13618 if (probe->dofpr_argidx + probe->dofpr_xargc < 13619 probe->dofpr_argidx || 13620 (probe->dofpr_argidx + probe->dofpr_xargc) * 13621 arg_sec->dofs_entsize > arg_sec->dofs_size) { 13622 dtrace_dof_error(dof, "invalid args"); 13623 return (-1); 13624 } 13625 13626 typeidx = probe->dofpr_nargv; 13627 typestr = strtab + probe->dofpr_nargv; 13628 for (k = 0; k < probe->dofpr_nargc; k++) { 13629 if (typeidx >= str_sec->dofs_size) { 13630 dtrace_dof_error(dof, "bad " 13631 "native argument type"); 13632 return (-1); 13633 } 13634 13635 typesz = strlen(typestr) + 1; 13636 if (typesz > DTRACE_ARGTYPELEN) { 13637 dtrace_dof_error(dof, "native " 13638 "argument type too long"); 13639 return (-1); 13640 } 13641 typeidx += typesz; 13642 typestr += typesz; 13643 } 13644 13645 typeidx = probe->dofpr_xargv; 13646 typestr = strtab + probe->dofpr_xargv; 13647 for (k = 0; k < probe->dofpr_xargc; k++) { 13648 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 13649 dtrace_dof_error(dof, "bad " 13650 "native argument index"); 13651 return (-1); 13652 } 13653 13654 if (typeidx >= str_sec->dofs_size) { 13655 dtrace_dof_error(dof, "bad " 13656 "translated argument type"); 13657 return (-1); 13658 } 13659 13660 typesz = strlen(typestr) + 1; 13661 if (typesz > DTRACE_ARGTYPELEN) { 13662 dtrace_dof_error(dof, "translated argument " 13663 "type too long"); 13664 return (-1); 13665 } 13666 13667 typeidx += typesz; 13668 typestr += typesz; 13669 } 13670 } 13671 13672 return (0); 13673 } 13674 13675 static int 13676 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 13677 { 13678 dtrace_helpers_t *help; 13679 dtrace_vstate_t *vstate; 13680 dtrace_enabling_t *enab = NULL; 13681 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 13682 uintptr_t daddr = (uintptr_t)dof; 13683 13684 ASSERT(MUTEX_HELD(&dtrace_lock)); 13685 13686 if ((help = curproc->p_dtrace_helpers) == NULL) 13687 help = dtrace_helpers_create(curproc); 13688 13689 vstate = &help->dthps_vstate; 13690 13691 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 13692 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 13693 dtrace_dof_destroy(dof); 13694 return (rv); 13695 } 13696 13697 /* 13698 * Look for helper providers and validate their descriptions. 13699 */ 13700 if (dhp != NULL) { 13701 for (i = 0; i < dof->dofh_secnum; i++) { 13702 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 13703 dof->dofh_secoff + i * dof->dofh_secsize); 13704 13705 if (sec->dofs_type != DOF_SECT_PROVIDER) 13706 continue; 13707 13708 if (dtrace_helper_provider_validate(dof, sec) != 0) { 13709 dtrace_enabling_destroy(enab); 13710 dtrace_dof_destroy(dof); 13711 return (-1); 13712 } 13713 13714 nprovs++; 13715 } 13716 } 13717 13718 /* 13719 * Now we need to walk through the ECB descriptions in the enabling. 13720 */ 13721 for (i = 0; i < enab->dten_ndesc; i++) { 13722 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 13723 dtrace_probedesc_t *desc = &ep->dted_probe; 13724 13725 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 13726 continue; 13727 13728 if (strcmp(desc->dtpd_mod, "helper") != 0) 13729 continue; 13730 13731 if (strcmp(desc->dtpd_func, "ustack") != 0) 13732 continue; 13733 13734 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 13735 ep)) != 0) { 13736 /* 13737 * Adding this helper action failed -- we are now going 13738 * to rip out the entire generation and return failure. 13739 */ 13740 (void) dtrace_helper_destroygen(help->dthps_generation); 13741 dtrace_enabling_destroy(enab); 13742 dtrace_dof_destroy(dof); 13743 return (-1); 13744 } 13745 13746 nhelpers++; 13747 } 13748 13749 if (nhelpers < enab->dten_ndesc) 13750 dtrace_dof_error(dof, "unmatched helpers"); 13751 13752 gen = help->dthps_generation++; 13753 dtrace_enabling_destroy(enab); 13754 13755 if (dhp != NULL && nprovs > 0) { 13756 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 13757 if (dtrace_helper_provider_add(dhp, gen) == 0) { 13758 mutex_exit(&dtrace_lock); 13759 dtrace_helper_provider_register(curproc, help, dhp); 13760 mutex_enter(&dtrace_lock); 13761 13762 destroy = 0; 13763 } 13764 } 13765 13766 if (destroy) 13767 dtrace_dof_destroy(dof); 13768 13769 return (gen); 13770 } 13771 13772 static dtrace_helpers_t * 13773 dtrace_helpers_create(proc_t *p) 13774 { 13775 dtrace_helpers_t *help; 13776 13777 ASSERT(MUTEX_HELD(&dtrace_lock)); 13778 ASSERT(p->p_dtrace_helpers == NULL); 13779 13780 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 13781 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 13782 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 13783 13784 p->p_dtrace_helpers = help; 13785 dtrace_helpers++; 13786 13787 return (help); 13788 } 13789 13790 static void 13791 dtrace_helpers_destroy(void) 13792 { 13793 dtrace_helpers_t *help; 13794 dtrace_vstate_t *vstate; 13795 proc_t *p = curproc; 13796 int i; 13797 13798 mutex_enter(&dtrace_lock); 13799 13800 ASSERT(p->p_dtrace_helpers != NULL); 13801 ASSERT(dtrace_helpers > 0); 13802 13803 help = p->p_dtrace_helpers; 13804 vstate = &help->dthps_vstate; 13805 13806 /* 13807 * We're now going to lose the help from this process. 13808 */ 13809 p->p_dtrace_helpers = NULL; 13810 dtrace_sync(); 13811 13812 /* 13813 * Destory the helper actions. 13814 */ 13815 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13816 dtrace_helper_action_t *h, *next; 13817 13818 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13819 next = h->dtha_next; 13820 dtrace_helper_action_destroy(h, vstate); 13821 h = next; 13822 } 13823 } 13824 13825 mutex_exit(&dtrace_lock); 13826 13827 /* 13828 * Destroy the helper providers. 13829 */ 13830 if (help->dthps_maxprovs > 0) { 13831 mutex_enter(&dtrace_meta_lock); 13832 if (dtrace_meta_pid != NULL) { 13833 ASSERT(dtrace_deferred_pid == NULL); 13834 13835 for (i = 0; i < help->dthps_nprovs; i++) { 13836 dtrace_helper_provider_remove( 13837 &help->dthps_provs[i]->dthp_prov, p->p_pid); 13838 } 13839 } else { 13840 mutex_enter(&dtrace_lock); 13841 ASSERT(help->dthps_deferred == 0 || 13842 help->dthps_next != NULL || 13843 help->dthps_prev != NULL || 13844 help == dtrace_deferred_pid); 13845 13846 /* 13847 * Remove the helper from the deferred list. 13848 */ 13849 if (help->dthps_next != NULL) 13850 help->dthps_next->dthps_prev = help->dthps_prev; 13851 if (help->dthps_prev != NULL) 13852 help->dthps_prev->dthps_next = help->dthps_next; 13853 if (dtrace_deferred_pid == help) { 13854 dtrace_deferred_pid = help->dthps_next; 13855 ASSERT(help->dthps_prev == NULL); 13856 } 13857 13858 mutex_exit(&dtrace_lock); 13859 } 13860 13861 mutex_exit(&dtrace_meta_lock); 13862 13863 for (i = 0; i < help->dthps_nprovs; i++) { 13864 dtrace_helper_provider_destroy(help->dthps_provs[i]); 13865 } 13866 13867 kmem_free(help->dthps_provs, help->dthps_maxprovs * 13868 sizeof (dtrace_helper_provider_t *)); 13869 } 13870 13871 mutex_enter(&dtrace_lock); 13872 13873 dtrace_vstate_fini(&help->dthps_vstate); 13874 kmem_free(help->dthps_actions, 13875 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 13876 kmem_free(help, sizeof (dtrace_helpers_t)); 13877 13878 --dtrace_helpers; 13879 mutex_exit(&dtrace_lock); 13880 } 13881 13882 static void 13883 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 13884 { 13885 dtrace_helpers_t *help, *newhelp; 13886 dtrace_helper_action_t *helper, *new, *last; 13887 dtrace_difo_t *dp; 13888 dtrace_vstate_t *vstate; 13889 int i, j, sz, hasprovs = 0; 13890 13891 mutex_enter(&dtrace_lock); 13892 ASSERT(from->p_dtrace_helpers != NULL); 13893 ASSERT(dtrace_helpers > 0); 13894 13895 help = from->p_dtrace_helpers; 13896 newhelp = dtrace_helpers_create(to); 13897 ASSERT(to->p_dtrace_helpers != NULL); 13898 13899 newhelp->dthps_generation = help->dthps_generation; 13900 vstate = &newhelp->dthps_vstate; 13901 13902 /* 13903 * Duplicate the helper actions. 13904 */ 13905 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13906 if ((helper = help->dthps_actions[i]) == NULL) 13907 continue; 13908 13909 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 13910 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 13911 KM_SLEEP); 13912 new->dtha_generation = helper->dtha_generation; 13913 13914 if ((dp = helper->dtha_predicate) != NULL) { 13915 dp = dtrace_difo_duplicate(dp, vstate); 13916 new->dtha_predicate = dp; 13917 } 13918 13919 new->dtha_nactions = helper->dtha_nactions; 13920 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 13921 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 13922 13923 for (j = 0; j < new->dtha_nactions; j++) { 13924 dtrace_difo_t *dp = helper->dtha_actions[j]; 13925 13926 ASSERT(dp != NULL); 13927 dp = dtrace_difo_duplicate(dp, vstate); 13928 new->dtha_actions[j] = dp; 13929 } 13930 13931 if (last != NULL) { 13932 last->dtha_next = new; 13933 } else { 13934 newhelp->dthps_actions[i] = new; 13935 } 13936 13937 last = new; 13938 } 13939 } 13940 13941 /* 13942 * Duplicate the helper providers and register them with the 13943 * DTrace framework. 13944 */ 13945 if (help->dthps_nprovs > 0) { 13946 newhelp->dthps_nprovs = help->dthps_nprovs; 13947 newhelp->dthps_maxprovs = help->dthps_nprovs; 13948 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 13949 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13950 for (i = 0; i < newhelp->dthps_nprovs; i++) { 13951 newhelp->dthps_provs[i] = help->dthps_provs[i]; 13952 newhelp->dthps_provs[i]->dthp_ref++; 13953 } 13954 13955 hasprovs = 1; 13956 } 13957 13958 mutex_exit(&dtrace_lock); 13959 13960 if (hasprovs) 13961 dtrace_helper_provider_register(to, newhelp, NULL); 13962 } 13963 13964 /* 13965 * DTrace Hook Functions 13966 */ 13967 static void 13968 dtrace_module_loaded(struct modctl *ctl) 13969 { 13970 dtrace_provider_t *prv; 13971 13972 mutex_enter(&dtrace_provider_lock); 13973 mutex_enter(&mod_lock); 13974 13975 ASSERT(ctl->mod_busy); 13976 13977 /* 13978 * We're going to call each providers per-module provide operation 13979 * specifying only this module. 13980 */ 13981 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 13982 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 13983 13984 mutex_exit(&mod_lock); 13985 mutex_exit(&dtrace_provider_lock); 13986 13987 /* 13988 * If we have any retained enablings, we need to match against them. 13989 * Enabling probes requires that cpu_lock be held, and we cannot hold 13990 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 13991 * module. (In particular, this happens when loading scheduling 13992 * classes.) So if we have any retained enablings, we need to dispatch 13993 * our task queue to do the match for us. 13994 */ 13995 mutex_enter(&dtrace_lock); 13996 13997 if (dtrace_retained == NULL) { 13998 mutex_exit(&dtrace_lock); 13999 return; 14000 } 14001 14002 (void) taskq_dispatch(dtrace_taskq, 14003 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 14004 14005 mutex_exit(&dtrace_lock); 14006 14007 /* 14008 * And now, for a little heuristic sleaze: in general, we want to 14009 * match modules as soon as they load. However, we cannot guarantee 14010 * this, because it would lead us to the lock ordering violation 14011 * outlined above. The common case, of course, is that cpu_lock is 14012 * _not_ held -- so we delay here for a clock tick, hoping that that's 14013 * long enough for the task queue to do its work. If it's not, it's 14014 * not a serious problem -- it just means that the module that we 14015 * just loaded may not be immediately instrumentable. 14016 */ 14017 delay(1); 14018 } 14019 14020 static void 14021 dtrace_module_unloaded(struct modctl *ctl) 14022 { 14023 dtrace_probe_t template, *probe, *first, *next; 14024 dtrace_provider_t *prov; 14025 14026 template.dtpr_mod = ctl->mod_modname; 14027 14028 mutex_enter(&dtrace_provider_lock); 14029 mutex_enter(&mod_lock); 14030 mutex_enter(&dtrace_lock); 14031 14032 if (dtrace_bymod == NULL) { 14033 /* 14034 * The DTrace module is loaded (obviously) but not attached; 14035 * we don't have any work to do. 14036 */ 14037 mutex_exit(&dtrace_provider_lock); 14038 mutex_exit(&mod_lock); 14039 mutex_exit(&dtrace_lock); 14040 return; 14041 } 14042 14043 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 14044 probe != NULL; probe = probe->dtpr_nextmod) { 14045 if (probe->dtpr_ecb != NULL) { 14046 mutex_exit(&dtrace_provider_lock); 14047 mutex_exit(&mod_lock); 14048 mutex_exit(&dtrace_lock); 14049 14050 /* 14051 * This shouldn't _actually_ be possible -- we're 14052 * unloading a module that has an enabled probe in it. 14053 * (It's normally up to the provider to make sure that 14054 * this can't happen.) However, because dtps_enable() 14055 * doesn't have a failure mode, there can be an 14056 * enable/unload race. Upshot: we don't want to 14057 * assert, but we're not going to disable the 14058 * probe, either. 14059 */ 14060 if (dtrace_err_verbose) { 14061 cmn_err(CE_WARN, "unloaded module '%s' had " 14062 "enabled probes", ctl->mod_modname); 14063 } 14064 14065 return; 14066 } 14067 } 14068 14069 probe = first; 14070 14071 for (first = NULL; probe != NULL; probe = next) { 14072 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 14073 14074 dtrace_probes[probe->dtpr_id - 1] = NULL; 14075 14076 next = probe->dtpr_nextmod; 14077 dtrace_hash_remove(dtrace_bymod, probe); 14078 dtrace_hash_remove(dtrace_byfunc, probe); 14079 dtrace_hash_remove(dtrace_byname, probe); 14080 14081 if (first == NULL) { 14082 first = probe; 14083 probe->dtpr_nextmod = NULL; 14084 } else { 14085 probe->dtpr_nextmod = first; 14086 first = probe; 14087 } 14088 } 14089 14090 /* 14091 * We've removed all of the module's probes from the hash chains and 14092 * from the probe array. Now issue a dtrace_sync() to be sure that 14093 * everyone has cleared out from any probe array processing. 14094 */ 14095 dtrace_sync(); 14096 14097 for (probe = first; probe != NULL; probe = first) { 14098 first = probe->dtpr_nextmod; 14099 prov = probe->dtpr_provider; 14100 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 14101 probe->dtpr_arg); 14102 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 14103 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 14104 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 14105 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 14106 kmem_free(probe, sizeof (dtrace_probe_t)); 14107 } 14108 14109 mutex_exit(&dtrace_lock); 14110 mutex_exit(&mod_lock); 14111 mutex_exit(&dtrace_provider_lock); 14112 } 14113 14114 void 14115 dtrace_suspend(void) 14116 { 14117 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 14118 } 14119 14120 void 14121 dtrace_resume(void) 14122 { 14123 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 14124 } 14125 14126 static int 14127 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 14128 { 14129 ASSERT(MUTEX_HELD(&cpu_lock)); 14130 mutex_enter(&dtrace_lock); 14131 14132 switch (what) { 14133 case CPU_CONFIG: { 14134 dtrace_state_t *state; 14135 dtrace_optval_t *opt, rs, c; 14136 14137 /* 14138 * For now, we only allocate a new buffer for anonymous state. 14139 */ 14140 if ((state = dtrace_anon.dta_state) == NULL) 14141 break; 14142 14143 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14144 break; 14145 14146 opt = state->dts_options; 14147 c = opt[DTRACEOPT_CPU]; 14148 14149 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 14150 break; 14151 14152 /* 14153 * Regardless of what the actual policy is, we're going to 14154 * temporarily set our resize policy to be manual. We're 14155 * also going to temporarily set our CPU option to denote 14156 * the newly configured CPU. 14157 */ 14158 rs = opt[DTRACEOPT_BUFRESIZE]; 14159 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14160 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14161 14162 (void) dtrace_state_buffers(state); 14163 14164 opt[DTRACEOPT_BUFRESIZE] = rs; 14165 opt[DTRACEOPT_CPU] = c; 14166 14167 break; 14168 } 14169 14170 case CPU_UNCONFIG: 14171 /* 14172 * We don't free the buffer in the CPU_UNCONFIG case. (The 14173 * buffer will be freed when the consumer exits.) 14174 */ 14175 break; 14176 14177 default: 14178 break; 14179 } 14180 14181 mutex_exit(&dtrace_lock); 14182 return (0); 14183 } 14184 14185 static void 14186 dtrace_cpu_setup_initial(processorid_t cpu) 14187 { 14188 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 14189 } 14190 14191 static void 14192 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 14193 { 14194 if (dtrace_toxranges >= dtrace_toxranges_max) { 14195 int osize, nsize; 14196 dtrace_toxrange_t *range; 14197 14198 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14199 14200 if (osize == 0) { 14201 ASSERT(dtrace_toxrange == NULL); 14202 ASSERT(dtrace_toxranges_max == 0); 14203 dtrace_toxranges_max = 1; 14204 } else { 14205 dtrace_toxranges_max <<= 1; 14206 } 14207 14208 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14209 range = kmem_zalloc(nsize, KM_SLEEP); 14210 14211 if (dtrace_toxrange != NULL) { 14212 ASSERT(osize != 0); 14213 bcopy(dtrace_toxrange, range, osize); 14214 kmem_free(dtrace_toxrange, osize); 14215 } 14216 14217 dtrace_toxrange = range; 14218 } 14219 14220 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 14221 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 14222 14223 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 14224 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 14225 dtrace_toxranges++; 14226 } 14227 14228 /* 14229 * DTrace Driver Cookbook Functions 14230 */ 14231 /*ARGSUSED*/ 14232 static int 14233 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 14234 { 14235 dtrace_provider_id_t id; 14236 dtrace_state_t *state = NULL; 14237 dtrace_enabling_t *enab; 14238 14239 mutex_enter(&cpu_lock); 14240 mutex_enter(&dtrace_provider_lock); 14241 mutex_enter(&dtrace_lock); 14242 14243 if (ddi_soft_state_init(&dtrace_softstate, 14244 sizeof (dtrace_state_t), 0) != 0) { 14245 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 14246 mutex_exit(&cpu_lock); 14247 mutex_exit(&dtrace_provider_lock); 14248 mutex_exit(&dtrace_lock); 14249 return (DDI_FAILURE); 14250 } 14251 14252 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 14253 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 14254 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 14255 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 14256 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 14257 ddi_remove_minor_node(devi, NULL); 14258 ddi_soft_state_fini(&dtrace_softstate); 14259 mutex_exit(&cpu_lock); 14260 mutex_exit(&dtrace_provider_lock); 14261 mutex_exit(&dtrace_lock); 14262 return (DDI_FAILURE); 14263 } 14264 14265 ddi_report_dev(devi); 14266 dtrace_devi = devi; 14267 14268 dtrace_modload = dtrace_module_loaded; 14269 dtrace_modunload = dtrace_module_unloaded; 14270 dtrace_cpu_init = dtrace_cpu_setup_initial; 14271 dtrace_helpers_cleanup = dtrace_helpers_destroy; 14272 dtrace_helpers_fork = dtrace_helpers_duplicate; 14273 dtrace_cpustart_init = dtrace_suspend; 14274 dtrace_cpustart_fini = dtrace_resume; 14275 dtrace_debugger_init = dtrace_suspend; 14276 dtrace_debugger_fini = dtrace_resume; 14277 14278 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14279 14280 ASSERT(MUTEX_HELD(&cpu_lock)); 14281 14282 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 14283 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14284 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 14285 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 14286 VM_SLEEP | VMC_IDENTIFIER); 14287 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 14288 1, INT_MAX, 0); 14289 14290 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 14291 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 14292 NULL, NULL, NULL, NULL, NULL, 0); 14293 14294 ASSERT(MUTEX_HELD(&cpu_lock)); 14295 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 14296 offsetof(dtrace_probe_t, dtpr_nextmod), 14297 offsetof(dtrace_probe_t, dtpr_prevmod)); 14298 14299 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 14300 offsetof(dtrace_probe_t, dtpr_nextfunc), 14301 offsetof(dtrace_probe_t, dtpr_prevfunc)); 14302 14303 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 14304 offsetof(dtrace_probe_t, dtpr_nextname), 14305 offsetof(dtrace_probe_t, dtpr_prevname)); 14306 14307 if (dtrace_retain_max < 1) { 14308 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 14309 "setting to 1", dtrace_retain_max); 14310 dtrace_retain_max = 1; 14311 } 14312 14313 /* 14314 * Now discover our toxic ranges. 14315 */ 14316 dtrace_toxic_ranges(dtrace_toxrange_add); 14317 14318 /* 14319 * Before we register ourselves as a provider to our own framework, 14320 * we would like to assert that dtrace_provider is NULL -- but that's 14321 * not true if we were loaded as a dependency of a DTrace provider. 14322 * Once we've registered, we can assert that dtrace_provider is our 14323 * pseudo provider. 14324 */ 14325 (void) dtrace_register("dtrace", &dtrace_provider_attr, 14326 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 14327 14328 ASSERT(dtrace_provider != NULL); 14329 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 14330 14331 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 14332 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 14333 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 14334 dtrace_provider, NULL, NULL, "END", 0, NULL); 14335 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 14336 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 14337 14338 dtrace_anon_property(); 14339 mutex_exit(&cpu_lock); 14340 14341 /* 14342 * If DTrace helper tracing is enabled, we need to allocate the 14343 * trace buffer and initialize the values. 14344 */ 14345 if (dtrace_helptrace_enabled) { 14346 ASSERT(dtrace_helptrace_buffer == NULL); 14347 dtrace_helptrace_buffer = 14348 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 14349 dtrace_helptrace_next = 0; 14350 } 14351 14352 /* 14353 * If there are already providers, we must ask them to provide their 14354 * probes, and then match any anonymous enabling against them. Note 14355 * that there should be no other retained enablings at this time: 14356 * the only retained enablings at this time should be the anonymous 14357 * enabling. 14358 */ 14359 if (dtrace_anon.dta_enabling != NULL) { 14360 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 14361 14362 dtrace_enabling_provide(NULL); 14363 state = dtrace_anon.dta_state; 14364 14365 /* 14366 * We couldn't hold cpu_lock across the above call to 14367 * dtrace_enabling_provide(), but we must hold it to actually 14368 * enable the probes. We have to drop all of our locks, pick 14369 * up cpu_lock, and regain our locks before matching the 14370 * retained anonymous enabling. 14371 */ 14372 mutex_exit(&dtrace_lock); 14373 mutex_exit(&dtrace_provider_lock); 14374 14375 mutex_enter(&cpu_lock); 14376 mutex_enter(&dtrace_provider_lock); 14377 mutex_enter(&dtrace_lock); 14378 14379 if ((enab = dtrace_anon.dta_enabling) != NULL) 14380 (void) dtrace_enabling_match(enab, NULL); 14381 14382 mutex_exit(&cpu_lock); 14383 } 14384 14385 mutex_exit(&dtrace_lock); 14386 mutex_exit(&dtrace_provider_lock); 14387 14388 if (state != NULL) { 14389 /* 14390 * If we created any anonymous state, set it going now. 14391 */ 14392 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 14393 } 14394 14395 return (DDI_SUCCESS); 14396 } 14397 14398 /*ARGSUSED*/ 14399 static int 14400 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 14401 { 14402 dtrace_state_t *state; 14403 uint32_t priv; 14404 uid_t uid; 14405 zoneid_t zoneid; 14406 14407 if (getminor(*devp) == DTRACEMNRN_HELPER) 14408 return (0); 14409 14410 /* 14411 * If this wasn't an open with the "helper" minor, then it must be 14412 * the "dtrace" minor. 14413 */ 14414 if (getminor(*devp) != DTRACEMNRN_DTRACE) 14415 return (ENXIO); 14416 14417 /* 14418 * If no DTRACE_PRIV_* bits are set in the credential, then the 14419 * caller lacks sufficient permission to do anything with DTrace. 14420 */ 14421 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 14422 if (priv == DTRACE_PRIV_NONE) 14423 return (EACCES); 14424 14425 /* 14426 * Ask all providers to provide all their probes. 14427 */ 14428 mutex_enter(&dtrace_provider_lock); 14429 dtrace_probe_provide(NULL, NULL); 14430 mutex_exit(&dtrace_provider_lock); 14431 14432 mutex_enter(&cpu_lock); 14433 mutex_enter(&dtrace_lock); 14434 dtrace_opens++; 14435 dtrace_membar_producer(); 14436 14437 /* 14438 * If the kernel debugger is active (that is, if the kernel debugger 14439 * modified text in some way), we won't allow the open. 14440 */ 14441 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14442 dtrace_opens--; 14443 mutex_exit(&cpu_lock); 14444 mutex_exit(&dtrace_lock); 14445 return (EBUSY); 14446 } 14447 14448 state = dtrace_state_create(devp, cred_p); 14449 mutex_exit(&cpu_lock); 14450 14451 if (state == NULL) { 14452 if (--dtrace_opens == 0) 14453 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14454 mutex_exit(&dtrace_lock); 14455 return (EAGAIN); 14456 } 14457 14458 mutex_exit(&dtrace_lock); 14459 14460 return (0); 14461 } 14462 14463 /*ARGSUSED*/ 14464 static int 14465 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 14466 { 14467 minor_t minor = getminor(dev); 14468 dtrace_state_t *state; 14469 14470 if (minor == DTRACEMNRN_HELPER) 14471 return (0); 14472 14473 state = ddi_get_soft_state(dtrace_softstate, minor); 14474 14475 mutex_enter(&cpu_lock); 14476 mutex_enter(&dtrace_lock); 14477 14478 if (state->dts_anon) { 14479 /* 14480 * There is anonymous state. Destroy that first. 14481 */ 14482 ASSERT(dtrace_anon.dta_state == NULL); 14483 dtrace_state_destroy(state->dts_anon); 14484 } 14485 14486 dtrace_state_destroy(state); 14487 ASSERT(dtrace_opens > 0); 14488 if (--dtrace_opens == 0) 14489 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14490 14491 mutex_exit(&dtrace_lock); 14492 mutex_exit(&cpu_lock); 14493 14494 return (0); 14495 } 14496 14497 /*ARGSUSED*/ 14498 static int 14499 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 14500 { 14501 int rval; 14502 dof_helper_t help, *dhp = NULL; 14503 14504 switch (cmd) { 14505 case DTRACEHIOC_ADDDOF: 14506 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 14507 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 14508 return (EFAULT); 14509 } 14510 14511 dhp = &help; 14512 arg = (intptr_t)help.dofhp_dof; 14513 /*FALLTHROUGH*/ 14514 14515 case DTRACEHIOC_ADD: { 14516 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 14517 14518 if (dof == NULL) 14519 return (rval); 14520 14521 mutex_enter(&dtrace_lock); 14522 14523 /* 14524 * dtrace_helper_slurp() takes responsibility for the dof -- 14525 * it may free it now or it may save it and free it later. 14526 */ 14527 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 14528 *rv = rval; 14529 rval = 0; 14530 } else { 14531 rval = EINVAL; 14532 } 14533 14534 mutex_exit(&dtrace_lock); 14535 return (rval); 14536 } 14537 14538 case DTRACEHIOC_REMOVE: { 14539 mutex_enter(&dtrace_lock); 14540 rval = dtrace_helper_destroygen(arg); 14541 mutex_exit(&dtrace_lock); 14542 14543 return (rval); 14544 } 14545 14546 default: 14547 break; 14548 } 14549 14550 return (ENOTTY); 14551 } 14552 14553 /*ARGSUSED*/ 14554 static int 14555 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 14556 { 14557 minor_t minor = getminor(dev); 14558 dtrace_state_t *state; 14559 int rval; 14560 14561 if (minor == DTRACEMNRN_HELPER) 14562 return (dtrace_ioctl_helper(cmd, arg, rv)); 14563 14564 state = ddi_get_soft_state(dtrace_softstate, minor); 14565 14566 if (state->dts_anon) { 14567 ASSERT(dtrace_anon.dta_state == NULL); 14568 state = state->dts_anon; 14569 } 14570 14571 switch (cmd) { 14572 case DTRACEIOC_PROVIDER: { 14573 dtrace_providerdesc_t pvd; 14574 dtrace_provider_t *pvp; 14575 14576 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 14577 return (EFAULT); 14578 14579 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 14580 mutex_enter(&dtrace_provider_lock); 14581 14582 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 14583 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 14584 break; 14585 } 14586 14587 mutex_exit(&dtrace_provider_lock); 14588 14589 if (pvp == NULL) 14590 return (ESRCH); 14591 14592 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 14593 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 14594 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 14595 return (EFAULT); 14596 14597 return (0); 14598 } 14599 14600 case DTRACEIOC_EPROBE: { 14601 dtrace_eprobedesc_t epdesc; 14602 dtrace_ecb_t *ecb; 14603 dtrace_action_t *act; 14604 void *buf; 14605 size_t size; 14606 uintptr_t dest; 14607 int nrecs; 14608 14609 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 14610 return (EFAULT); 14611 14612 mutex_enter(&dtrace_lock); 14613 14614 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 14615 mutex_exit(&dtrace_lock); 14616 return (EINVAL); 14617 } 14618 14619 if (ecb->dte_probe == NULL) { 14620 mutex_exit(&dtrace_lock); 14621 return (EINVAL); 14622 } 14623 14624 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 14625 epdesc.dtepd_uarg = ecb->dte_uarg; 14626 epdesc.dtepd_size = ecb->dte_size; 14627 14628 nrecs = epdesc.dtepd_nrecs; 14629 epdesc.dtepd_nrecs = 0; 14630 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14631 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14632 continue; 14633 14634 epdesc.dtepd_nrecs++; 14635 } 14636 14637 /* 14638 * Now that we have the size, we need to allocate a temporary 14639 * buffer in which to store the complete description. We need 14640 * the temporary buffer to be able to drop dtrace_lock() 14641 * across the copyout(), below. 14642 */ 14643 size = sizeof (dtrace_eprobedesc_t) + 14644 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 14645 14646 buf = kmem_alloc(size, KM_SLEEP); 14647 dest = (uintptr_t)buf; 14648 14649 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 14650 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 14651 14652 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14653 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14654 continue; 14655 14656 if (nrecs-- == 0) 14657 break; 14658 14659 bcopy(&act->dta_rec, (void *)dest, 14660 sizeof (dtrace_recdesc_t)); 14661 dest += sizeof (dtrace_recdesc_t); 14662 } 14663 14664 mutex_exit(&dtrace_lock); 14665 14666 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14667 kmem_free(buf, size); 14668 return (EFAULT); 14669 } 14670 14671 kmem_free(buf, size); 14672 return (0); 14673 } 14674 14675 case DTRACEIOC_AGGDESC: { 14676 dtrace_aggdesc_t aggdesc; 14677 dtrace_action_t *act; 14678 dtrace_aggregation_t *agg; 14679 int nrecs; 14680 uint32_t offs; 14681 dtrace_recdesc_t *lrec; 14682 void *buf; 14683 size_t size; 14684 uintptr_t dest; 14685 14686 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 14687 return (EFAULT); 14688 14689 mutex_enter(&dtrace_lock); 14690 14691 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 14692 mutex_exit(&dtrace_lock); 14693 return (EINVAL); 14694 } 14695 14696 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 14697 14698 nrecs = aggdesc.dtagd_nrecs; 14699 aggdesc.dtagd_nrecs = 0; 14700 14701 offs = agg->dtag_base; 14702 lrec = &agg->dtag_action.dta_rec; 14703 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 14704 14705 for (act = agg->dtag_first; ; act = act->dta_next) { 14706 ASSERT(act->dta_intuple || 14707 DTRACEACT_ISAGG(act->dta_kind)); 14708 14709 /* 14710 * If this action has a record size of zero, it 14711 * denotes an argument to the aggregating action. 14712 * Because the presence of this record doesn't (or 14713 * shouldn't) affect the way the data is interpreted, 14714 * we don't copy it out to save user-level the 14715 * confusion of dealing with a zero-length record. 14716 */ 14717 if (act->dta_rec.dtrd_size == 0) { 14718 ASSERT(agg->dtag_hasarg); 14719 continue; 14720 } 14721 14722 aggdesc.dtagd_nrecs++; 14723 14724 if (act == &agg->dtag_action) 14725 break; 14726 } 14727 14728 /* 14729 * Now that we have the size, we need to allocate a temporary 14730 * buffer in which to store the complete description. We need 14731 * the temporary buffer to be able to drop dtrace_lock() 14732 * across the copyout(), below. 14733 */ 14734 size = sizeof (dtrace_aggdesc_t) + 14735 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 14736 14737 buf = kmem_alloc(size, KM_SLEEP); 14738 dest = (uintptr_t)buf; 14739 14740 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 14741 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 14742 14743 for (act = agg->dtag_first; ; act = act->dta_next) { 14744 dtrace_recdesc_t rec = act->dta_rec; 14745 14746 /* 14747 * See the comment in the above loop for why we pass 14748 * over zero-length records. 14749 */ 14750 if (rec.dtrd_size == 0) { 14751 ASSERT(agg->dtag_hasarg); 14752 continue; 14753 } 14754 14755 if (nrecs-- == 0) 14756 break; 14757 14758 rec.dtrd_offset -= offs; 14759 bcopy(&rec, (void *)dest, sizeof (rec)); 14760 dest += sizeof (dtrace_recdesc_t); 14761 14762 if (act == &agg->dtag_action) 14763 break; 14764 } 14765 14766 mutex_exit(&dtrace_lock); 14767 14768 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14769 kmem_free(buf, size); 14770 return (EFAULT); 14771 } 14772 14773 kmem_free(buf, size); 14774 return (0); 14775 } 14776 14777 case DTRACEIOC_ENABLE: { 14778 dof_hdr_t *dof; 14779 dtrace_enabling_t *enab = NULL; 14780 dtrace_vstate_t *vstate; 14781 int err = 0; 14782 14783 *rv = 0; 14784 14785 /* 14786 * If a NULL argument has been passed, we take this as our 14787 * cue to reevaluate our enablings. 14788 */ 14789 if (arg == NULL) { 14790 dtrace_enabling_matchall(); 14791 14792 return (0); 14793 } 14794 14795 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 14796 return (rval); 14797 14798 mutex_enter(&cpu_lock); 14799 mutex_enter(&dtrace_lock); 14800 vstate = &state->dts_vstate; 14801 14802 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14803 mutex_exit(&dtrace_lock); 14804 mutex_exit(&cpu_lock); 14805 dtrace_dof_destroy(dof); 14806 return (EBUSY); 14807 } 14808 14809 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 14810 mutex_exit(&dtrace_lock); 14811 mutex_exit(&cpu_lock); 14812 dtrace_dof_destroy(dof); 14813 return (EINVAL); 14814 } 14815 14816 if ((rval = dtrace_dof_options(dof, state)) != 0) { 14817 dtrace_enabling_destroy(enab); 14818 mutex_exit(&dtrace_lock); 14819 mutex_exit(&cpu_lock); 14820 dtrace_dof_destroy(dof); 14821 return (rval); 14822 } 14823 14824 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 14825 err = dtrace_enabling_retain(enab); 14826 } else { 14827 dtrace_enabling_destroy(enab); 14828 } 14829 14830 mutex_exit(&cpu_lock); 14831 mutex_exit(&dtrace_lock); 14832 dtrace_dof_destroy(dof); 14833 14834 return (err); 14835 } 14836 14837 case DTRACEIOC_REPLICATE: { 14838 dtrace_repldesc_t desc; 14839 dtrace_probedesc_t *match = &desc.dtrpd_match; 14840 dtrace_probedesc_t *create = &desc.dtrpd_create; 14841 int err; 14842 14843 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14844 return (EFAULT); 14845 14846 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14847 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14848 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14849 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14850 14851 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14852 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14853 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14854 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14855 14856 mutex_enter(&dtrace_lock); 14857 err = dtrace_enabling_replicate(state, match, create); 14858 mutex_exit(&dtrace_lock); 14859 14860 return (err); 14861 } 14862 14863 case DTRACEIOC_PROBEMATCH: 14864 case DTRACEIOC_PROBES: { 14865 dtrace_probe_t *probe = NULL; 14866 dtrace_probedesc_t desc; 14867 dtrace_probekey_t pkey; 14868 dtrace_id_t i; 14869 int m = 0; 14870 uint32_t priv; 14871 uid_t uid; 14872 zoneid_t zoneid; 14873 14874 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14875 return (EFAULT); 14876 14877 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14878 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14879 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14880 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14881 14882 /* 14883 * Before we attempt to match this probe, we want to give 14884 * all providers the opportunity to provide it. 14885 */ 14886 if (desc.dtpd_id == DTRACE_IDNONE) { 14887 mutex_enter(&dtrace_provider_lock); 14888 dtrace_probe_provide(&desc, NULL); 14889 mutex_exit(&dtrace_provider_lock); 14890 desc.dtpd_id++; 14891 } 14892 14893 if (cmd == DTRACEIOC_PROBEMATCH) { 14894 dtrace_probekey(&desc, &pkey); 14895 pkey.dtpk_id = DTRACE_IDNONE; 14896 } 14897 14898 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 14899 14900 mutex_enter(&dtrace_lock); 14901 14902 if (cmd == DTRACEIOC_PROBEMATCH) { 14903 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14904 if ((probe = dtrace_probes[i - 1]) != NULL && 14905 (m = dtrace_match_probe(probe, &pkey, 14906 priv, uid, zoneid)) != 0) 14907 break; 14908 } 14909 14910 if (m < 0) { 14911 mutex_exit(&dtrace_lock); 14912 return (EINVAL); 14913 } 14914 14915 } else { 14916 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14917 if ((probe = dtrace_probes[i - 1]) != NULL && 14918 dtrace_match_priv(probe, priv, uid, zoneid)) 14919 break; 14920 } 14921 } 14922 14923 if (probe == NULL) { 14924 mutex_exit(&dtrace_lock); 14925 return (ESRCH); 14926 } 14927 14928 dtrace_probe_description(probe, &desc); 14929 mutex_exit(&dtrace_lock); 14930 14931 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14932 return (EFAULT); 14933 14934 return (0); 14935 } 14936 14937 case DTRACEIOC_PROBEARG: { 14938 dtrace_argdesc_t desc; 14939 dtrace_probe_t *probe; 14940 dtrace_provider_t *prov; 14941 14942 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14943 return (EFAULT); 14944 14945 if (desc.dtargd_id == DTRACE_IDNONE) 14946 return (EINVAL); 14947 14948 if (desc.dtargd_ndx == DTRACE_ARGNONE) 14949 return (EINVAL); 14950 14951 mutex_enter(&dtrace_provider_lock); 14952 mutex_enter(&mod_lock); 14953 mutex_enter(&dtrace_lock); 14954 14955 if (desc.dtargd_id > dtrace_nprobes) { 14956 mutex_exit(&dtrace_lock); 14957 mutex_exit(&mod_lock); 14958 mutex_exit(&dtrace_provider_lock); 14959 return (EINVAL); 14960 } 14961 14962 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 14963 mutex_exit(&dtrace_lock); 14964 mutex_exit(&mod_lock); 14965 mutex_exit(&dtrace_provider_lock); 14966 return (EINVAL); 14967 } 14968 14969 mutex_exit(&dtrace_lock); 14970 14971 prov = probe->dtpr_provider; 14972 14973 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 14974 /* 14975 * There isn't any typed information for this probe. 14976 * Set the argument number to DTRACE_ARGNONE. 14977 */ 14978 desc.dtargd_ndx = DTRACE_ARGNONE; 14979 } else { 14980 desc.dtargd_native[0] = '\0'; 14981 desc.dtargd_xlate[0] = '\0'; 14982 desc.dtargd_mapping = desc.dtargd_ndx; 14983 14984 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 14985 probe->dtpr_id, probe->dtpr_arg, &desc); 14986 } 14987 14988 mutex_exit(&mod_lock); 14989 mutex_exit(&dtrace_provider_lock); 14990 14991 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14992 return (EFAULT); 14993 14994 return (0); 14995 } 14996 14997 case DTRACEIOC_GO: { 14998 processorid_t cpuid; 14999 rval = dtrace_state_go(state, &cpuid); 15000 15001 if (rval != 0) 15002 return (rval); 15003 15004 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15005 return (EFAULT); 15006 15007 return (0); 15008 } 15009 15010 case DTRACEIOC_STOP: { 15011 processorid_t cpuid; 15012 15013 mutex_enter(&dtrace_lock); 15014 rval = dtrace_state_stop(state, &cpuid); 15015 mutex_exit(&dtrace_lock); 15016 15017 if (rval != 0) 15018 return (rval); 15019 15020 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15021 return (EFAULT); 15022 15023 return (0); 15024 } 15025 15026 case DTRACEIOC_DOFGET: { 15027 dof_hdr_t hdr, *dof; 15028 uint64_t len; 15029 15030 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 15031 return (EFAULT); 15032 15033 mutex_enter(&dtrace_lock); 15034 dof = dtrace_dof_create(state); 15035 mutex_exit(&dtrace_lock); 15036 15037 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 15038 rval = copyout(dof, (void *)arg, len); 15039 dtrace_dof_destroy(dof); 15040 15041 return (rval == 0 ? 0 : EFAULT); 15042 } 15043 15044 case DTRACEIOC_AGGSNAP: 15045 case DTRACEIOC_BUFSNAP: { 15046 dtrace_bufdesc_t desc; 15047 caddr_t cached; 15048 dtrace_buffer_t *buf; 15049 15050 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15051 return (EFAULT); 15052 15053 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 15054 return (EINVAL); 15055 15056 mutex_enter(&dtrace_lock); 15057 15058 if (cmd == DTRACEIOC_BUFSNAP) { 15059 buf = &state->dts_buffer[desc.dtbd_cpu]; 15060 } else { 15061 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 15062 } 15063 15064 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 15065 size_t sz = buf->dtb_offset; 15066 15067 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 15068 mutex_exit(&dtrace_lock); 15069 return (EBUSY); 15070 } 15071 15072 /* 15073 * If this buffer has already been consumed, we're 15074 * going to indicate that there's nothing left here 15075 * to consume. 15076 */ 15077 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 15078 mutex_exit(&dtrace_lock); 15079 15080 desc.dtbd_size = 0; 15081 desc.dtbd_drops = 0; 15082 desc.dtbd_errors = 0; 15083 desc.dtbd_oldest = 0; 15084 sz = sizeof (desc); 15085 15086 if (copyout(&desc, (void *)arg, sz) != 0) 15087 return (EFAULT); 15088 15089 return (0); 15090 } 15091 15092 /* 15093 * If this is a ring buffer that has wrapped, we want 15094 * to copy the whole thing out. 15095 */ 15096 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 15097 dtrace_buffer_polish(buf); 15098 sz = buf->dtb_size; 15099 } 15100 15101 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 15102 mutex_exit(&dtrace_lock); 15103 return (EFAULT); 15104 } 15105 15106 desc.dtbd_size = sz; 15107 desc.dtbd_drops = buf->dtb_drops; 15108 desc.dtbd_errors = buf->dtb_errors; 15109 desc.dtbd_oldest = buf->dtb_xamot_offset; 15110 15111 mutex_exit(&dtrace_lock); 15112 15113 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15114 return (EFAULT); 15115 15116 buf->dtb_flags |= DTRACEBUF_CONSUMED; 15117 15118 return (0); 15119 } 15120 15121 if (buf->dtb_tomax == NULL) { 15122 ASSERT(buf->dtb_xamot == NULL); 15123 mutex_exit(&dtrace_lock); 15124 return (ENOENT); 15125 } 15126 15127 cached = buf->dtb_tomax; 15128 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 15129 15130 dtrace_xcall(desc.dtbd_cpu, 15131 (dtrace_xcall_t)dtrace_buffer_switch, buf); 15132 15133 state->dts_errors += buf->dtb_xamot_errors; 15134 15135 /* 15136 * If the buffers did not actually switch, then the cross call 15137 * did not take place -- presumably because the given CPU is 15138 * not in the ready set. If this is the case, we'll return 15139 * ENOENT. 15140 */ 15141 if (buf->dtb_tomax == cached) { 15142 ASSERT(buf->dtb_xamot != cached); 15143 mutex_exit(&dtrace_lock); 15144 return (ENOENT); 15145 } 15146 15147 ASSERT(cached == buf->dtb_xamot); 15148 15149 /* 15150 * We have our snapshot; now copy it out. 15151 */ 15152 if (copyout(buf->dtb_xamot, desc.dtbd_data, 15153 buf->dtb_xamot_offset) != 0) { 15154 mutex_exit(&dtrace_lock); 15155 return (EFAULT); 15156 } 15157 15158 desc.dtbd_size = buf->dtb_xamot_offset; 15159 desc.dtbd_drops = buf->dtb_xamot_drops; 15160 desc.dtbd_errors = buf->dtb_xamot_errors; 15161 desc.dtbd_oldest = 0; 15162 15163 mutex_exit(&dtrace_lock); 15164 15165 /* 15166 * Finally, copy out the buffer description. 15167 */ 15168 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15169 return (EFAULT); 15170 15171 return (0); 15172 } 15173 15174 case DTRACEIOC_CONF: { 15175 dtrace_conf_t conf; 15176 15177 bzero(&conf, sizeof (conf)); 15178 conf.dtc_difversion = DIF_VERSION; 15179 conf.dtc_difintregs = DIF_DIR_NREGS; 15180 conf.dtc_diftupregs = DIF_DTR_NREGS; 15181 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 15182 15183 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15184 return (EFAULT); 15185 15186 return (0); 15187 } 15188 15189 case DTRACEIOC_STATUS: { 15190 dtrace_status_t stat; 15191 dtrace_dstate_t *dstate; 15192 int i, j; 15193 uint64_t nerrs; 15194 15195 /* 15196 * See the comment in dtrace_state_deadman() for the reason 15197 * for setting dts_laststatus to INT64_MAX before setting 15198 * it to the correct value. 15199 */ 15200 state->dts_laststatus = INT64_MAX; 15201 dtrace_membar_producer(); 15202 state->dts_laststatus = dtrace_gethrtime(); 15203 15204 bzero(&stat, sizeof (stat)); 15205 15206 mutex_enter(&dtrace_lock); 15207 15208 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 15209 mutex_exit(&dtrace_lock); 15210 return (ENOENT); 15211 } 15212 15213 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 15214 stat.dtst_exiting = 1; 15215 15216 nerrs = state->dts_errors; 15217 dstate = &state->dts_vstate.dtvs_dynvars; 15218 15219 for (i = 0; i < NCPU; i++) { 15220 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 15221 15222 stat.dtst_dyndrops += dcpu->dtdsc_drops; 15223 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 15224 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 15225 15226 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 15227 stat.dtst_filled++; 15228 15229 nerrs += state->dts_buffer[i].dtb_errors; 15230 15231 for (j = 0; j < state->dts_nspeculations; j++) { 15232 dtrace_speculation_t *spec; 15233 dtrace_buffer_t *buf; 15234 15235 spec = &state->dts_speculations[j]; 15236 buf = &spec->dtsp_buffer[i]; 15237 stat.dtst_specdrops += buf->dtb_xamot_drops; 15238 } 15239 } 15240 15241 stat.dtst_specdrops_busy = state->dts_speculations_busy; 15242 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 15243 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 15244 stat.dtst_dblerrors = state->dts_dblerrors; 15245 stat.dtst_killed = 15246 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 15247 stat.dtst_errors = nerrs; 15248 15249 mutex_exit(&dtrace_lock); 15250 15251 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 15252 return (EFAULT); 15253 15254 return (0); 15255 } 15256 15257 case DTRACEIOC_FORMAT: { 15258 dtrace_fmtdesc_t fmt; 15259 char *str; 15260 int len; 15261 15262 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 15263 return (EFAULT); 15264 15265 mutex_enter(&dtrace_lock); 15266 15267 if (fmt.dtfd_format == 0 || 15268 fmt.dtfd_format > state->dts_nformats) { 15269 mutex_exit(&dtrace_lock); 15270 return (EINVAL); 15271 } 15272 15273 /* 15274 * Format strings are allocated contiguously and they are 15275 * never freed; if a format index is less than the number 15276 * of formats, we can assert that the format map is non-NULL 15277 * and that the format for the specified index is non-NULL. 15278 */ 15279 ASSERT(state->dts_formats != NULL); 15280 str = state->dts_formats[fmt.dtfd_format - 1]; 15281 ASSERT(str != NULL); 15282 15283 len = strlen(str) + 1; 15284 15285 if (len > fmt.dtfd_length) { 15286 fmt.dtfd_length = len; 15287 15288 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 15289 mutex_exit(&dtrace_lock); 15290 return (EINVAL); 15291 } 15292 } else { 15293 if (copyout(str, fmt.dtfd_string, len) != 0) { 15294 mutex_exit(&dtrace_lock); 15295 return (EINVAL); 15296 } 15297 } 15298 15299 mutex_exit(&dtrace_lock); 15300 return (0); 15301 } 15302 15303 default: 15304 break; 15305 } 15306 15307 return (ENOTTY); 15308 } 15309 15310 /*ARGSUSED*/ 15311 static int 15312 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 15313 { 15314 dtrace_state_t *state; 15315 15316 switch (cmd) { 15317 case DDI_DETACH: 15318 break; 15319 15320 case DDI_SUSPEND: 15321 return (DDI_SUCCESS); 15322 15323 default: 15324 return (DDI_FAILURE); 15325 } 15326 15327 mutex_enter(&cpu_lock); 15328 mutex_enter(&dtrace_provider_lock); 15329 mutex_enter(&dtrace_lock); 15330 15331 ASSERT(dtrace_opens == 0); 15332 15333 if (dtrace_helpers > 0) { 15334 mutex_exit(&dtrace_provider_lock); 15335 mutex_exit(&dtrace_lock); 15336 mutex_exit(&cpu_lock); 15337 return (DDI_FAILURE); 15338 } 15339 15340 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 15341 mutex_exit(&dtrace_provider_lock); 15342 mutex_exit(&dtrace_lock); 15343 mutex_exit(&cpu_lock); 15344 return (DDI_FAILURE); 15345 } 15346 15347 dtrace_provider = NULL; 15348 15349 if ((state = dtrace_anon_grab()) != NULL) { 15350 /* 15351 * If there were ECBs on this state, the provider should 15352 * have not been allowed to detach; assert that there is 15353 * none. 15354 */ 15355 ASSERT(state->dts_necbs == 0); 15356 dtrace_state_destroy(state); 15357 15358 /* 15359 * If we're being detached with anonymous state, we need to 15360 * indicate to the kernel debugger that DTrace is now inactive. 15361 */ 15362 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15363 } 15364 15365 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 15366 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15367 dtrace_cpu_init = NULL; 15368 dtrace_helpers_cleanup = NULL; 15369 dtrace_helpers_fork = NULL; 15370 dtrace_cpustart_init = NULL; 15371 dtrace_cpustart_fini = NULL; 15372 dtrace_debugger_init = NULL; 15373 dtrace_debugger_fini = NULL; 15374 dtrace_modload = NULL; 15375 dtrace_modunload = NULL; 15376 15377 mutex_exit(&cpu_lock); 15378 15379 if (dtrace_helptrace_enabled) { 15380 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 15381 dtrace_helptrace_buffer = NULL; 15382 } 15383 15384 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 15385 dtrace_probes = NULL; 15386 dtrace_nprobes = 0; 15387 15388 dtrace_hash_destroy(dtrace_bymod); 15389 dtrace_hash_destroy(dtrace_byfunc); 15390 dtrace_hash_destroy(dtrace_byname); 15391 dtrace_bymod = NULL; 15392 dtrace_byfunc = NULL; 15393 dtrace_byname = NULL; 15394 15395 kmem_cache_destroy(dtrace_state_cache); 15396 vmem_destroy(dtrace_minor); 15397 vmem_destroy(dtrace_arena); 15398 15399 if (dtrace_toxrange != NULL) { 15400 kmem_free(dtrace_toxrange, 15401 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 15402 dtrace_toxrange = NULL; 15403 dtrace_toxranges = 0; 15404 dtrace_toxranges_max = 0; 15405 } 15406 15407 ddi_remove_minor_node(dtrace_devi, NULL); 15408 dtrace_devi = NULL; 15409 15410 ddi_soft_state_fini(&dtrace_softstate); 15411 15412 ASSERT(dtrace_vtime_references == 0); 15413 ASSERT(dtrace_opens == 0); 15414 ASSERT(dtrace_retained == NULL); 15415 15416 mutex_exit(&dtrace_lock); 15417 mutex_exit(&dtrace_provider_lock); 15418 15419 /* 15420 * We don't destroy the task queue until after we have dropped our 15421 * locks (taskq_destroy() may block on running tasks). To prevent 15422 * attempting to do work after we have effectively detached but before 15423 * the task queue has been destroyed, all tasks dispatched via the 15424 * task queue must check that DTrace is still attached before 15425 * performing any operation. 15426 */ 15427 taskq_destroy(dtrace_taskq); 15428 dtrace_taskq = NULL; 15429 15430 return (DDI_SUCCESS); 15431 } 15432 15433 /*ARGSUSED*/ 15434 static int 15435 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 15436 { 15437 int error; 15438 15439 switch (infocmd) { 15440 case DDI_INFO_DEVT2DEVINFO: 15441 *result = (void *)dtrace_devi; 15442 error = DDI_SUCCESS; 15443 break; 15444 case DDI_INFO_DEVT2INSTANCE: 15445 *result = (void *)0; 15446 error = DDI_SUCCESS; 15447 break; 15448 default: 15449 error = DDI_FAILURE; 15450 } 15451 return (error); 15452 } 15453 15454 static struct cb_ops dtrace_cb_ops = { 15455 dtrace_open, /* open */ 15456 dtrace_close, /* close */ 15457 nulldev, /* strategy */ 15458 nulldev, /* print */ 15459 nodev, /* dump */ 15460 nodev, /* read */ 15461 nodev, /* write */ 15462 dtrace_ioctl, /* ioctl */ 15463 nodev, /* devmap */ 15464 nodev, /* mmap */ 15465 nodev, /* segmap */ 15466 nochpoll, /* poll */ 15467 ddi_prop_op, /* cb_prop_op */ 15468 0, /* streamtab */ 15469 D_NEW | D_MP /* Driver compatibility flag */ 15470 }; 15471 15472 static struct dev_ops dtrace_ops = { 15473 DEVO_REV, /* devo_rev */ 15474 0, /* refcnt */ 15475 dtrace_info, /* get_dev_info */ 15476 nulldev, /* identify */ 15477 nulldev, /* probe */ 15478 dtrace_attach, /* attach */ 15479 dtrace_detach, /* detach */ 15480 nodev, /* reset */ 15481 &dtrace_cb_ops, /* driver operations */ 15482 NULL, /* bus operations */ 15483 nodev, /* dev power */ 15484 ddi_quiesce_not_needed, /* quiesce */ 15485 }; 15486 15487 static struct modldrv modldrv = { 15488 &mod_driverops, /* module type (this is a pseudo driver) */ 15489 "Dynamic Tracing", /* name of module */ 15490 &dtrace_ops, /* driver ops */ 15491 }; 15492 15493 static struct modlinkage modlinkage = { 15494 MODREV_1, 15495 (void *)&modldrv, 15496 NULL 15497 }; 15498 15499 int 15500 _init(void) 15501 { 15502 return (mod_install(&modlinkage)); 15503 } 15504 15505 int 15506 _info(struct modinfo *modinfop) 15507 { 15508 return (mod_info(&modlinkage, modinfop)); 15509 } 15510 15511 int 15512 _fini(void) 15513 { 15514 return (mod_remove(&modlinkage)); 15515 } 15516